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In science the difficulty is not to have ideas,
but it is to make them work.

Carlo Rovelli



Preface

The big data era is characterized by an exponential increase of volume, velocity, and
variety of the available data. This raises various challenges for the data processing
tasks that require not only to store, organize, and provide a granular access to
the data, but also to clean and analyze their content. Data mining is an important
part of the data analysis as it contributes to knowledge discovery by identifying
understandable patterns in data.

The potential of these techniques has already attracted interest from users and
decision-makers as well as from researchers of fields such as statistics or computer
science. They proved efficient in various domains, for example, medicine and
astronomy. However, there is still a growing demand for efficient and scalable
solutions to handle some task, clustering is a representative example, with limited
resources both in time and memory space.

This opened several and complementary ways of research. The first one aims to
take advantage of the new capabilities of hardware components. Famous examples
are parallel computing, use of graphics processing unit (GPU) for fast calculations.
The second one deals with the algorithms themselves: how to make them faster,
more tractable? But what is gained by the optimization procedures is likely to be
compensated by the need to deal with more complex data, for example, shapes
and densities in clustering, or with an increased volume. In this context, sampling
appears as a third option. Working with a representative sample and optimized
algorithms with an implementation that takes advantage of the hardware structure
may result successful.

Defining a sample that behaves like the whole data set is a quite long-standing
issue in data management. It has received fresh interest with the challenge of big
data. Sampling may be applied to instances (or items), or features, with the goal
of unsupervised (e.g., clustering) or supervised tasks (e.g., classification). This
book provides the reader with an up-to-date review of some important sampling
techniques. It is organized in seven chapters.

Sampling has strong statistical roots, even if this is sometimes forgotten in the
machine learning community. In Chap. 1, Guillaume Chauvet, research professor
from ENSAI/IRMAR (France), describes the framework of a sampling design, and
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viii Preface

the associated estimators and measures of accuracy. Then, he introduces several
sampling algorithms that can be used for sample selection, with discussion of their
practical and theoretical pros and cons.

Chapter 2, by Dan Feldman from University of Haifa (Israel), is dedicated to an
updated review on coresets. The author participated in the main developments of
this notion introduced in 2003. A coreset is a summary of the input, where every
possible query (usually from an infinite set of queries) has approximately the same
answer on both data sets. Generic techniques enable efficient coreset maintenance of
streaming, distributed and dynamic data. An approximation to the optimal solution
of the original input can then be maintained via the coreset.

The challenge is to design coresets with provable trade-off between their size and
approximation error. The objective of this survey is to introduce the state of the art
of these techniques.

Chapter 3, by Serge Guillaume from Irstea (France) and Frédéric Ros from
Université d’Orléans (France), introduces a family of unsupervised sampling algo-
rithms based on distance and density concepts. Once the common characteristics
are described, the three algorithms are detailed and compared. An open source
implementation of the proposed algorithms is available. This chapter also includes
a state-of-the-art section about unsupervised sampling.

Chapter 4, by Frédéric Ros and Serge Guillaume, reviews the data reduction
problem for instance and feature selection methods in the context of supervised
classification. In the first part, instance and feature selections are studied separately.
As instance and feature selection are not independent, algorithms dealing with
simultaneous selection are then presented. To provide a comprehensive and tractable
view of this field, the strategy was to start from the fundamental and original
contributions go towards state-of-the-art algorithms, paying particular attention to
large-scale selections. Detailed pseudo codes of representative algorithms are given
to consolidate the whole.

Chapter 5, by Nicolas Tremblay from CNRS, GIPSA-lab (France) and Andreas
Loukas from Ecole Polytechnique Fédérale de Lausanne (Switzerland), reviews
sampling methods that were specifically designed for spectral clustering: a family
of well-known unsupervised learning algorithms. In a nutshell, spectral clustering
techniques do not attempt to cluster data in their native domain of representation
and are the combination of three main steps: (1) transform the data by constructing
a (usually sparse) similarity graph, (2) compute the principal eigenvectors of its
Laplacian, and (3) cluster (with k-means for instance) the transformed data in the
spectral domain. One of the advantages of this framework is to be able to separate
non-convex clusters. The main drawback of these methods is their computational
cost. This chapter reviews available sampling methods that are specifically designed
to accelerate one or more of these three steps, focusing on their approximation
guarantees when available and discusses practical merits and limitations.

The last two chapters illustrate one of the new challenges of sampling: dealing
with complex objects, instead of traditional vectors, and dynamic data flows. In
Chap. 6, by Ali Idarrou and H. Douzi, from the University of Agadir (Morocco),
deals with managing streams of unstructured data, such as those provided by social
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networks. In the first part, the authors review the concepts of sliding window and
reservoir techniques that are useful for managing data streams. The processing of
dynamic complex data, coming from heterogeneous sources and likely to include
some inconsistency and uncertainty, raises many problems. Conventional sampling
tools and techniques used with simple vector data may give poor results. The second
part of this chapter reviews the main techniques of integration and data fusion. The
goal is to take advantage of the complementarity and redundancy of the different
information sources to get a more robust information.

Chapter 7, by Javier Calle et al. from Carlos III University of Madrid (Spain),
proposes methods to handle huge dynamic graphs using Ant Colony Optimization
algorithms (ACO). The main focus is on the path search problem: while many
algorithms try to find the best path, either the shortest or the cheapest, the goal with
huge dynamic graphs is to privilege response time. The algorithms benefit from
the storage and quick access to the data provided by the database technology. The
authors show that their novel metaheuristic method of the ACO is good enough to
avoid the expiration of the validity of the solution provided in most cases.

This book comes from the machine learning community, and it is suited to
anyone, practitioner, student, or teacher, who wants to become more familiar with
the sampling techniques as they can be helpful to tackle the big data challenge. The
chapters are independent and complementary, from theoretical concepts to practical
implementations. They can be read in any order. Have fun in the sampling world!

Orléans, France Frédéric Ros
Montpellier, France Serge Guillaume
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Chapter 1
Introduction to Sampling Techniques

Guillaume Chauvet

1.1 Introduction

The theory of sample surveys aims at selecting a sample of units, so as to represent a
larger population. Although such techniques are now of routine use, in particular by
national statistical agencies, the legitimacy of this approach has long been debated.
The introduction of the representative method dates back to [42], who proposes to
produce estimations by using a non-random controlled sample of municipalities and
individuals, rather than a census. But this is truly with [46] that the basics of modern
survey sampling are established. Neyman proposes a rigorous setup for random
surveys, laying the foundations of probabilistic yet controlled surveys, which enable
to statistically control the accuracy of estimators.

During decades, many of the available data sets emerged from surveys, the
bigger ones being produced by the national statistical agencies. These samples of
reasonably large size (a few thousand up to a few tens of thousands of units) aimed
at shortening the delay of production of statistical information, with limited cost.
For the past 10 years, we have been facing a completely new situation with a burst
of the volume of the generated data. It is estimated that 200,000 sms are sent every
second worldwide, Facebook users generate four million likes every minute, and
in 2020, each person will produce 1.7 MB of data per second. These data cannot
be saved and treated comprehensively. The theory of sample surveys is therefore
needed to select large but tractable samples, sometimes processed in real time, to
faithfully represent these huge masses of data.

More than ever, we need to control the statistical properties of the estimators
produced. The purpose of this chapter is therefore to provide an introduction to the

G. Chauvet (�)
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2 G. Chauvet

estimation framework of survey sampling, by reviewing some of the classical sam-
pling methods. For the sake of simplicity, we focus on direct sampling procedures,
which may be seen as the basic bricks needed to build a sampling design in practice.
For the processed sampling methods, their statistical properties are discussed. For
the reader interested by a more complete presentation of survey sampling tools, see
[1, 16, 52, 58] and [28], for example.

This chapter is organized as follows: In Sect. 1.2, we present the survey sampling
framework, and describe the classical Horvitz–Thompson estimator and the associ-
ated measures of accuracy. In Sect. 1.3, we focus on simple random sampling, for
which we describe the statistical properties and give a number of possible sampling
algorithms. In Sect. 1.4, we describe a number of classical unequal probability
sampling algorithms, and we discuss their statistical properties in Sect. 1.5. We
conclude in Sect. 1.6.

1.2 Notation and Estimation

In this section, we define our main notation and introduce the Horvitz–Thompson
estimator which is of routine use in survey sampling. We then discuss variance
computation and variance estimation for the Horvitz–Thompson estimator.

1.2.1 Notation

We are interested in a finite population UN consisting of N statistical units, which
are supposed to be easily identified by a label. Therefore, it is common practice to
make no distinction between a unit and its label, and we simply write the population
as

UN = {1, . . . , N} (1.1)

We are interested in some quantitative variable of interest y, taking the value yk on
unit k.

We suppose that the population of interest UN is embedded into a nested
sequence {UN } of finite populations with increasing sizes, and all limiting processes
will be taken as N → ∞. This is essentially the asymptotic framework of [41],
which is often used to study the asymptotic properties of a sampling design and of
the assorted estimators. Also, this is a natural framework if we are interested in a
population which is growing over time, for example, if we wish to select a sample
in a data stream.

A without-replacement sampling design pN(·) is a probability distribution on the
subsets in UN , namely
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∀s ⊂ UN pN(s) ≥ 0 and
∑

s⊂UN

pN(s) = 1 (1.2)

It enables selecting the random sample SN of units used for estimation, in the sense
that Pr(SN = s) = pN(s). Once the sampling design is defined, we need to choose
a sampling algorithm, which is an effective procedure for the selection of the sample.
For a given sampling design, there is usually a variety of sampling algorithms
possible [58], see Sect. 1.3 for an illustration on simple random sampling.

The quantity πk|N ≡ Pr(k ∈ SN) for unit k to be selected is called the first-order
inclusion probability. The πk|N ’s are involved in the computation of estimators, and
their sum

∑

k∈UN

πk|N ≡ n (1.3)

gives the average sample size. The probability πkl|N ≡ Pr(k, l ∈ SN) for units k

and l to be jointly selected in SN is called the second-order inclusion probability.
The πkl|N ’s are involved in the computation of the variance of estimators. For a given
set of first-order inclusion probabilities πk|N, k ∈ UN , the second-order inclusion
probabilities depend on the design used for the selection of the sample.

1.2.2 Horvitz–Thompson Estimator

The Horvitz and Thompson [39] estimator (HT) of the total tyN =∑k∈UN
yk is

t̂yπ =
∑

k∈SN

yk

πk|N
=
∑

k∈UN

IkN

yk

πk|N
(1.4)

with IkN the sample membership indicator of unit k. We note

IN = (I1N, . . . , IkN , . . . , INN) (1.5)

the vector of sample membership indicators. If all the πk|N ’s are positive, which
is assumed in the rest of the paper, there is no selection bias. In such case, the
HT-estimator is design-unbiased for tyN , i.e., unbiased under the randomization
associated with the sampling design. It is remarkable that this property comes
completely model-free. It holds for any variable of interest, without requiring any
model assumptions.

There is no severe loss of generality in focusing on the total tyN , since many other
parameters of interest can be written as smooth functions of totals. Such parameters
are therefore easily estimated in a plug-in principle once an estimator of a total is
available, see [20]. For example, the population mean is μyN = N−1∑

k∈UN
yk ,

and is estimated by
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μ̂yπ = t̂yπ

N̂π

(1.6)

where N̂π = ∑
k∈SN

1
πk|N is the HT-estimator of the population size N . Simi-

larly, the population distribution function for some real number t is FyN(t) =
N−1∑

k∈UN
1(yk ≤ t), with 1(·) the indicator function. The plug-in estimator of

FyN(t) is

F̂yπ = 1

N̂π

∑

k∈SN

1(yk ≤ t)

πk|N
(1.7)

1.2.3 Variance Computation

The variance of the HT-estimator is

V
(
t̂yπ

) =
∑

k∈UN

πk|N(1− πk|N)

(
yk

πk|N

)2

+
∑

k 
=l∈UN

(πkl|N − πk|Nπl|N)
yk

πk|N
yl

πl|N
(1.8)

In Eq. (1.8), the first term in the right-hand side is the variance we would obtain if
the units in the population were selected independently, which is known as Poisson
sampling (see Sect. 1.4.1).

A gain in efficiency can be obtained by using fixed-size sampling designs, which
are such that only the subsets s in UN of size n have positive selection probabilities
pN(s). Many fixed-size sampling designs verify the so-called Sen–Yates–Grundy
conditions:

πkl|N ≤ πk|Nπl|N for any k 
= l ∈ UN (1.9)

Under Eq. (1.9), the second-term in the right-hand side of (1.8) is non-positive for a
non-negative variable of interest yk , resulting in a variance reduction as compared
to Poisson sampling.

For fixed-size sampling designs, the variance of the HT-estimator may be
rewritten as

V
(
t̂yπ

) = 1

2

∑

k 
=l∈UN

(πk|Nπl|N − πkl|N)

(
yk

πk|N
− yl

πl|N

)2

(1.10)

which is known as the Sen–Yates–Grundy (SYG) variance formula [53, 62].
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Multinomial sampling (a.k.a. sampling with replacement) is an important bench-
mark for a sampling design pN(·). It consists in n independent draws in the
population with probabilities pk|N = n−1πk|N at each draw. Under multinomial
sampling, tyN is unbiasedly estimated by the Hansen–Hurwitz estimator

t̂yHH =
∑

k∈UN

WkN

yk

πk|N
(1.11)

with WkN the number of selections for unit k, see [35]. The variance is

V
(
t̂yHH

) =
∑

k∈UN

πk|N
(

yk

πk|N
− tyN

n

)2

(1.12)

The sampling design pN(·) is more efficient than multinomial sampling if

V
(
t̂yπ

) ≤ V
(
t̂yHH

)
for any variable of interest y (1.13)

Some sufficient conditions for Eq. (1.13) are listed in [29].

1.2.4 Variance Estimation

For any sampling design, the variance of the HT-estimator may be estimated by the
HT-variance estimator

V̂HT

(
t̂yπ

) =
∑

k∈SN

(1− πk|N)

(
yk

πk|N

)2

+
∑

k 
=l∈SN

πkl|N − πk|Nπl|N
πkl|N

yk

πk|N
yl

πl|N
(1.14)

For a fixed-size sampling design, we may alternatively use the SYG-variance
estimator

V̂SYG

(
t̂yπ

) = 1

2

∑

k 
=l∈SN

πk|Nπl|N − πkl|N
πkl|N

(
yk

πk|N
− yl

πl|N

)2

(1.15)

These two variance estimators usually take different values.
Three properties related to the second-order inclusion probabilities are partic-

ularly useful for variance estimation. First and obviously, the πkl|N ’s need to be
calculable. Second, the two variance estimators are design-unbiased if and only if
all the πkl|N ’s are positive. Finally, for a fixed-size sampling design, the variance
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estimator V̂SYG

(
t̂yπ

)
is non-negative for any variable of interest if and only if the

SYG conditions given in (1.9) are respected.

1.3 Simple Random Sampling

When the sampling design pN(·) is defined, it is possible that no particular
information is known on the population UN , or that such information is meaningless
for our target of inference. In such case, we have no other reasonable choice but to
give to the units equal inclusion probabilities. In view of Eq. (1.3), this leads to

πk|N = n

N
(1.16)

For example, equal inclusion probabilities are obtained under simple random
sampling.

1.3.1 Definition

Simple random sampling without replacement (SI) is the fixed-size sampling design
which gives to any subset s ⊂ UN of size n the same selection probability, namely

p(s) =
{

1
(N

n)
if Card(s) = n,

0 otherwise
(1.17)

Under SI, the HT-estimator simplifies as

t̂yπ = NȳN with ȳN = 1

n

∑

k∈SN

yk the sample mean (1.18)

Also, the variance of the HT-estimator given in (1.8) simplifies as

V
(
t̂yπ

) = N2
(

1

n
− 1

N

)
S2

yN (1.19)

with S2
yN =

1

N − 1

∑

k∈UN

(yk − μyN)2 the population dispersion

In the particular case of SI, both the HT-variance estimator and the SYG-variance
estimator are identical, and equal to
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V̂HT

(
t̂yπ

) = N2
(

1

n
− 1

N

)
s2
yN (1.20)

with s2
yN =

1

n− 1

∑

k∈SN

(yk − ȳN )2 the sample dispersion

Among the large number of sampling algorithms proposed for SI, see Sect. 4.4
in [58] for a review, we consider three important implementations.

1.3.2 Draw by Draw Sampling Algorithm

The draw by draw procedure given in Algorithm 1 consists in successively drawing
n units with equal probabilities, among the units remaining after the last draw.
The procedure is computationally very intensive, since n readings of the file are
necessary for sample selection. This is therefore not usable for sampling in large
populations.

1.3.3 Selection–Rejection Method

The selection–rejection method [26] presented in Algorithm 2 requires one pass
of the file only. We note Ft−1 for the σ -field generated by the random variables
up to step t − 1: πt |Ft−1

is therefore the inclusion probability conditionally on
selection steps 1, . . . , t − 1, which in case of SI is simply the sampling rate among
the remaining. Algorithm 2 is a fast implementation of SI, but improvements are
possible, see, for example, [21] for a review.

We consider an illustration of the selection–rejection procedure on a small
population of size N = 6, presented in Table 1.1. We wish to select a sample of size
n = 3, and the inclusion probabilities are therefore πk|N = 0.5. Since u1 > π1|N ,
unit 1 is not selected in the sample. We have j (1) = 0, and the conditional inclusion
probability of units k > 1 is therefore πk|F1

= 3/5 = 0.60. Since u2 ≤ π2|F1
, unit

2 is selected in the sample and j (2) = 1. The conditional inclusion probability of

Algorithm 1 Draw by draw procedure for simple random sampling
• Initialize with t = 1 and UN(1) = UN .
• For t = 1, . . . , n:

– Select some unit (k, say) from UN(t) with equal probabilities.
– Take UN(t + 1) = UN(t) \ {k}.
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Algorithm 2 Selection–rejection procedure for simple random sampling
• Initialize with t = 0. The number of selected units is j (0) = 0.
• For t = 1, . . . , N :

– Generate a random number ut according to a uniform distribution.
– If ut ≤ πk|Ft−1

the unit is selected, where

πk|Ft−1
≡ n− j (t − 1)

N − (t − 1)
. (1.21)

In such case, j (t) = j (t − 1)+ 1.
– Otherwise, j (t) = j (t − 1).

Table 1.1 Example of selection by the selection–rejection method

k x0k uk πk|N IkN πk|F1
IkN πk|F2

IkN πk|F3
IkN πk|F4

IkN

1 30 0.87 0.50 0 0 0 0 0

2 10 0.09 0.50 0.60 1 1 1 1

3 20 0.68 0.50 0.60 0.50 0 0 0

4 10 0.18 0.50 0.60 0.50 0.67 1 1

5 20 0.28 0.50 0.60 0.50 0.67 0.50 1

6 30 0.59 0.50 0.60 0.50 0.67 0.50 0

units k > 2 is therefore πk|F2
= 2/4 = 0.50. The final sample is SN = {2, 4, 5},

see Table 1.1.

1.3.4 Reservoir Procedure

The selection–rejection procedure requires to know the size N of the population
to compute the inclusion probabilities. It is therefore not feasible when sampling
in a data stream, when the population size is not fixed but grows over time. The
reservoir procedure [45] presented in Algorithm 3 enables to select a SI sample,
without knowing in advance the population size N . The principle is to maintain
at any time t a reservoir St , which is in fact a SI sample of n units selected in
Ut = {1, . . . , t}. We consider in Sect. 1.4.5 a generalization to unequal probability
sampling, called Chao’s procedure [9].
We consider an illustration of the reservoir procedure on the population presented
in Table 1.1. We initialize with S3 = {1, 2, 3}. At Step 4, u4 ≤ 3/4 = 0.75,
and unit 4 is therefore selected in the reservoir, while one unit of S3 (2, say) is
randomly removed. At Step 5, u5 ≤ 3/5 = 0.60, and unit 5 is therefore selected
in the reservoir, while one unit of S4 (4, say) is randomly removed. At Step 6,
u6 > 3/6 = 0.50, and unit 6 is therefore not selected. The final sample is
SN = {1, 3, 5}, see Table 1.2.



1 Introduction to Sampling Techniques 9

Algorithm 3 Reservoir procedure for simple random sampling
• Initialize with t = n, and with Sn = {1, . . . , n}.
• For t = n+ 1, . . . , N , do:

– Generate a random number ut according to a uniform distribution.
– If ut ≤ n/t , remove one unit (k, say) from St−1 with equal probabilities. Take St = St−1 ∪
{t} \ {k}.

– Otherwise, take St = St−1.

Table 1.2 Example of
selection by the reservoir
procedure

k uk πk|N Ik3 Ik4 Ik5 Ik6

1 0.50 1 1 1 1

2 0.50 1 0 0 0

3 0.50 1 1 1 1

4 0.18 0.50 0 1 0 0

5 0.28 0.50 0 0 1 1

6 0.59 0.50 0 0 0 0

1.3.5 Stratification

It is often possible to have access at the sampling stage to a q-vector xk of auxiliary
variables, known for any unit in the population. Rather than directly selecting a SI
sample, we can use xk to partition the population into groups. Sub-samples are then
independently selected into each of these groups by SI. The groups are called strata,
and the sampling design is called stratified simple random sampling (STSI).

We note UNh, h = 1, . . . , H of size Nh the strata, in which SI samples SNh are
independently selected. The HT-estimator may be rewritten as

t̂yπ =
H∑

h=1

NhȳNh with ȳNh = 1

nh

∑

k∈SNh

yk the sample mean in SNh (1.22)

The variance of the HT-estimator may be rewritten as

V
(
t̂yπ

) =
H∑

h=1

N2
h

(
1

nh

− 1

Nh

)
S2

yNh (1.23)

with S2
yNh the dispersion inside the stratum Uh. The comparison between Eqs. (1.19)

and (1.23) shows that stratification reduces the variance by dropping the dispersion
between strata, leaving the dispersion within strata only. STSI is therefore particu-
larly efficient if the strata are homogeneous with respect to the variable of interest. A
further gain in efficiency can be obtained by adequately allocating the global sample
size into the strata [46].
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Stratification is of routine use in surveys, and may result in large gains in
efficiency. It is also useful if we wish to make estimations on sub-populations, and
if these sub-populations may be used as strata. In this case, stratification makes it
possible to control the sample size selected inside these sub-populations. Methods
to define appropriate stratification of populations are discussed in [37] and [38].

1.4 Sampling with Unequal Probabilities

Suppose that a positive auxiliary variable x0k is known for any unit in the population,
and that this variable is positively correlated to yk . For a fixed-size sampling design,
it follows from Eq. (1.10) that the variance of the HT-estimator is small if πk|N is
roughly proportional to yk . Since yk is unknown at the sampling stage, this suggests
defining the inclusion probabilities proportionally to x0k . This leads to probability
proportional to size (π -ps) sampling, and the inclusion probabilities are

πk|N = n
x0k∑

l∈UN
x0l

(1.24)

Equation (1.24) may lead to inclusion probabilities greater than 1 for units with
large values of x0k . In such case, these inclusion probabilities are set to 1, and the
other probabilities are recomputed until all of them are lower than 1.

For example, imagine that we wish to select in the population presented in
Table 1.1 a sample of size n = 5, with probabilities proportional to x0k . Applying
Eq. (1.24) leads to

π1|N = π6|N = 1.25 π2|N = π4|N = 0.42 π3|N = π5|N = 0.83

We set π1|N = π6|N = 1, and recompute the other probabilities on the remaining
population, i.e.,

πk|N = (n− 2)
x0k∑

l∈U\{1,6} x0l

for k ∈ UN \ {1, 6}

The final inclusion probabilities are

π1|N = π3|N = π5|N = π6|N = 1, π2|N = π4|N = 0.5

In the rest of this section, we present some important sampling designs with
unequal inclusion probabilities. A more comprehensive treatment of unequal prob-
ability sampling procedures may be found in [8] and [58].
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Algorithm 4 Poisson sampling
• At step t = 1, . . . , N , do:

– Generate a random number ut according to a uniform distribution, independently of
u1, . . . , ut−1.

– The unit t is selected if ut ≤ πt |N .

Table 1.3 Example of
selection by Poisson sampling

k x0k πk|N uk IkN

1 30 0.75 0.87 0

2 10 0.25 0.09 1

3 20 0.50 0.68 0

4 10 0.25 0.18 1

5 20 0.50 0.28 1

6 30 0.75 0.59 1

1.4.1 Poisson Sampling

Poisson sampling, which is described in Algorithm 4, is a very simple method for
π -ps sampling. The units are selected through a series of N independent heads or
tails experiment. In the particular case when all the units have the same inclusion
probability πk|N = n/N , the algorithm is called Bernoulli sampling.

For illustration, we consider the population in Table 1.1. The inclusion proba-
bilities are defined proportionally to x0k . All units are given independent random
numbers uk generated from a uniform distribution. Comparing them with the πk|N ’s
leads to the sample SN = {2, 4, 5, 6}, see Table 1.3.

The simplicity of Poisson sampling makes it attractive for coordination sampling,
i.e., when we wish to select several samples with controlled overlap. Positive
coordination targets a maximum overlap: this is useful in repeated surveys, where
we are interested in comparisons over time. Negative coordination targets a
minimum overlap: this is useful to minimize the response burden, and currently
used in business surveys, for example. For a good overview of sample coordination
methods, see, for example, [25, 49], and [31].

1.4.2 Rejective Sampling

Since the units are independently selected under Poisson sampling, the sample size
is random. In the example given in Table 1.3, we targeted an average sample size
of n = 3, but the size of the sample finally selected is 4. This random sample
size results in a greater variability of estimators. To circumvent this problem,
[34] introduced rejective sampling (a.k.a. conditional Poisson sampling) which is
presented in Algorithm 5. It consists in repeatedly performing Poisson sampling,
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Algorithm 5 Rejective sampling

• Let πb|N = (πb1|N, . . . , πbN |N)� denote a set of basic inclusion probabilities, with∑
k∈U πbk|N = n.

• Select a Poisson sample with inclusion probabilities πb|N .
• We stop if the sample is of size n. Otherwise, we select another Poisson sample.

Table 1.4 Example of
selection by rejective
sampling

k πk πbk u1k I 1
kN u2k I 2

kN

1 0.75 0.71 0.87 0 0.92 0

2 0.25 0.29 0.09 1 0.28 1

3 0.50 0.50 0.68 0 0.85 0

4 0.25 0.29 0.18 1 0.21 1

5 0.50 0.50 0.28 1 0.69 0

6 0.75 0.71 0.59 1 0.16 1

with a basic set of inclusion probabilities πbk|N , until the target sample size is
attained. This is a fixed-size sampling design by construction. In the particular case
of equal inclusion probabilities, rejective sampling is equivalent to SI.

Due to the rejection of some samples, the final inclusion probability πk|N differs
from the basic inclusion probability πbk|N . More precisely, denoting by SNp the
Poisson random sample and by SNr the rejective random sample, the final inclusion
probabilities are

πk|N ≡ Pr(k ∈ SNr) = Pr(k ∈ SNp|Card(SNp) = n) (1.25)

[24] showed that for any prescribed inclusion probabilities πk|N , associated basic
probabilities πbk|N always exist. Some efficient algorithms to compute these
probabilities are also available, see [15] and [18]. Rejective sampling has been
widely considered in the sampling literature, see, for example, [44] for a review
of variance approximations, and [6] for approximations of inclusion probabilities
up to any order.

For illustration, we consider the population with inclusion probabilities πk|N
given in Table 1.3. The associated basic inclusion probabilities πbk|N are given in
Table 1.4. Using the first series of random numbers u1k , we obtain a sample of size
4 which is therefore rejected. Using the second series of random numbers u2k , we
obtain the sample SN = {2, 4, 6} which is of appropriate size.

1.4.3 Systematic Sampling

Systematic sampling [43], which is presented in Algorithm 6, is a very popular
method for π -ps sampling. It consists in ordering the units in the population,
generating a random start to determine the first unit selected, and then making jumps
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Algorithm 6 Systematic sampling

• Compute V0 = 0 and Vk =∑k
l=1 πl|N for any k ∈ UN .

• Generate a random number u according to a uniform distribution.
• Select the units k such that for some integer i ∈ {1, . . . , n}

Vk−1 ≤ u+ (i − 1) ≤ Vk

Table 1.5 Example of selection by systematic sampling

0 1 2 3

V0 V1 V2 V3 V4 V5 V6

� � �

of size 1 to determine the other sampled units. This sampling design is very simple,
but involves very few randomness since one random number only is sufficient for
the whole sample selection, and its statistical properties are therefore limited.

For illustration, we consider the population in Table 1.3. We generate a random
number u = 0.65 ∈ [V0, V1[, and unit 1 is therefore selected. By making jumps of
length 1, we obtain the complete sample SN = {1, 4, 6} (Table 1.5).

There is a huge body of literature on systematic sampling, see, for example, [40]
for a critical review. Systematic sampling enables selecting samples which are well-
spread, which is in particular useful in spatial sampling. The popular generalized
random tessellation stratified (GRTS) sampling [56] consists in defining an order
on the spatial units by tessellation, and then applying systematic sampling; see also
[60] and [3] for a review of spatial sampling methods.

1.4.4 Pivotal Sampling

Pivotal sampling [22], which is presented in Algorithm 7, consists in a succession
of duels between units. At each step, we consider the two first units remaining in the
population. If the sum of their probabilities is lower than 1, one of them gets the sum
of their probabilities, while the other is discarded. If the sum of their probabilities
is greater than 1, one of the units is selected, while the other one gets the residual
probability. Pivotal sampling is also known in computer science as the Srinivasan
sampling procedure, see [55].

An illustration of sample selection is given in Table 1.6. At the first step, units 1
and 2 fight, which results in selecting unit 1 and in discarding unit 2. At the second
step, units 3 and 4 fight, and unit 3 gets the cumulative probability, while unit 4 is
discarded. At the third step, units 3 and 5 fight, and unit 5 is selected, while unit
3 gets the residual probability 0.5 + 0.75 − 1 = 0.25. At the fourth step, units 3
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Algorithm 7 Pivotal sampling
• Initialize with π(0) = πN .
• At step t = 1, . . . , T :

– Initialize with π(t) = π(t − 1).
– Take k < l the two first units in the population such that

πk(t − 1) /∈ {0, 1} and πl(t − 1) /∈ {0, 1}

– If πk(t − 1)+ πl(t − 1) ≤ 1, then do:

{πk(t), πl(t)} =
{
{πk(t − 1)+ πl(t − 1), 0} with prob.

πk(t−1)
πk(t−1)+πl(t−1)

{0, πk(t − 1)+ πl(t − 1)} with prob.
πl (t−1)

πk(t−1)+πl(t−1)

– If πk(t − 1)+ πl(t − 1) > 1, then do:

{πk(t), πl(t)} =
{
{1, πk(t − 1)+ πl(t − 1)− 1} with prob.

1−πl(t−1)
2−πk(t−1)−πl(t−1)

{πk(t − 1)+ πl(t − 1)− 1, 1} with prob.
1−πk(t−1)

2−πk(t−1)−πl(t−1)

• The algorithm stops at step T when all the components of π(T ) are 0 or 1. Take IN = π(T ).

Table 1.6 Example of
selection by pivotal sampling

k πk πk(1) πk(2) πk(3) πk(4) = Ik

1 0.75 1 1 1 1

2 0.25 0 0 0 0

3 0.50 0.50 0.75 0.25 0

4 0.25 0.25 0 0 0

5 0.50 0.50 0.50 1 1

6 0.75 0.75 0.75 0.75 1

and 6 fight, and unit 6 is selected, while unit 3 is discarded. The final sample is
S = {1, 5, 6}.

Like systematic sampling, pivotal sampling enables to select samples which
are well-spread over space. Since more randomization is introduced in the sample
process, the method possesses better statistical properties, see Sect. 1.5. It has
therefore been proposed as an alternative for spatial sampling, see, for example,
[30] and [13].

Pivotal sampling is a particular case of the cube method [23], which enables to
perform balanced sampling. If a q-vector xk of quantitative variables is known for
any unit k ∈ UN at the design stage, a sampling design is balanced on xk if the
random sample SN is such that

∑

k∈UN

IkN

xk

πk

=
∑

k∈UN

xk (1.26)
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with IkN the sample membership indicator for unit k. This means that the HT-
estimator of txN = ∑

k∈UN
xk exactly matches the known total, see [59] for a

review on the cube method. Apart from the cube method, balanced samples may
also be selected by rejective sampling. A sample is first selected by means of a
basic sampling strategy. If Eq. (1.26) is approximately matched, we keep the sample.
Otherwise, another candidate sample is selected by means of the basic sampling
strategy [28, 34].

1.4.5 Chao’s Procedure

Rejective sampling requires that the inclusion probabilities πk|N are computable
from the start of the algorithm. Poisson sampling, systematic sampling, and pivotal
sampling require that the probability πk|N is computable, at least when unit k is
considered for selection. In view of Eq. (1.24), we therefore need to know at each
step the total tx0N =

∑
k∈UN

x0k of the auxiliary variable on the entire population.
This is feasible if we have a sampling frame of the units in the population.

However, if we wish to sample in a data stream, the units arrive successively
and tx0N is not known in advance. Chao’s procedure [9], which is presented in
Algorithm 8, enables to perform π -ps sampling without sampling frame. The
presentation in Algorithm 8, due to [58], is somewhat simpler than the original
algorithm.

We consider an illustration of Chao’s procedure on the population presented in
Table 1.1. We initialize with S3 = {1, 2, 3}. At Step 4, u4 ≤ π4|4 = 0.5, and unit
4 is therefore selected in the reservoir, while one unit of S3 is randomly removed
with probabilities pk|4 (in this particular case, unit 2 is removed with certainty). At

Algorithm 8 Chao’s procedure
• Initialize with t = n, πk|n = 1 for k = 1, . . . , n, and Sn = {1, . . . , n}.
• For t = n+ 1, . . . , N :

– Compute the inclusion probabilities proportional to x0k in the population Ut , namely:

πk|t = n
x0k∑t
k=1 x0l

(1.27)

If some probabilities exceed 1, they are set to 1 and the other inclusion probabilities are
recomputed until all the probabilities are lower than 1.

– Generate a random number ut according to a uniform distribution.
– If ut ≤ πt |t , remove one unit (k, say) from St−1 with probabilities

pk|t = 1

πt |t

{
1− πk|t

πk|t−1

}
for k ∈ St−1

Take St = St−1 ∪ {t} \ {k}.
– Otherwise, take St = St−1.
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Table 1.7 Example of selection by Chao’s procedure

k x0k uk Ik3 πk|4 pk|4 Ik4 πk|5 pk|5 Ik5 πk|6 pk|6 Ik6

1 30 1 1 0 1 1 0 1 0.75 0.33 0

2 10 1 0.5 1 0 0.33 0 0.25 0

3 20 1 1 0 1 0.67 0.5 1 0.50 1

4 10 0.18 0 0.5 1 0.33 0.5 0 0.25 0.33 0

5 20 0.28 0 0.67 1 0.50 0.33 1

6 30 0.59 0 0.75 1

Step 5, u5 ≤ π5|5 = 0.67, and unit 5 is therefore selected in the reservoir, while
one unit of S4 (4, say) is randomly removed with probabilities pk|5. At Step 6,
u6 ≤ π6|6 = 0.75, and unit 6 is therefore selected while one unit of S5 (1, say) is
randomly removed with probabilities pk|6. The final sample is SN = {3, 5, 6}, see
Table 1.7.

1.5 Statistical Properties of a Sampling Design

The choice of using some specific sampling design is based on both practical and
theoretical matters. To produce consistent estimators with appropriate confidence
intervals, it is desirable that the three following statistical properties hold: (a) the
HT-estimator is weakly consistent for the true total; (b) the HT-estimator satisfies
a central-limit theorem; (c) a consistent variance estimator is available for the HT-
estimator.

In order to study the statistical properties of the sampling designs presented in
this chapter, we consider the following assumptions:

• H1: There exists some constant c1, C1 > 0 such that for any k ∈ U :

c1
n

N
≤ πk ≤ C1

n

N
(1.28)

• H2: There exists some constant C2 such that:

1

N

∑

k∈U

y4
k ≤ C2 (1.29)

• H3: There exists some constant c3 > 0 such that:

c3
N2

n
≤ V (t̂yπ ) (1.30)

Assumption (H1) states that the inclusion probabilities are not too variable, and do
not depart much from those obtained when sampling with equal probabilities. This
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assumption is under the control of the survey sampler. It is assumed in (H2) that the
variable of interest has a finite moment of order 4, and in (H3) that the variance of
the HT-estimator is non-vanishing. These assumptions are fairly weak, although we
may find situations under which they are not respected. For example, (H2) does not
hold for heavily skewed populations where some units in the population have very
large yk’s.

1.5.1 Weak Consistency of the HT-Estimator

The HT-estimator is weakly consistent for the total ty if

N−1 (t̂yπ − ty
)→Pr 0 (1.31)

where →Pr stands for the convergence in probability. Under assumptions (H1)
and (H2), this property holds if the SYG conditions in (1.9) are respected. These
conditions hold for SI, and for all the sampling designs presented in Sect. 1.4
except systematic sampling. The result is trivial for Poisson sampling, and has been
proved by [15] for rejective sampling, [22] for pivotal sampling, and [9] for Chao’s
procedure. More generally, this property holds if the sampling design is negatively
associated [7].

The weak consistency of the HT-estimator also holds under assumptions (H1)
and (H2) if the sampling design is more efficient than multinomial sampling, see
Eq. (1.13). This property holds true for SI. It does not generally hold for Poisson
sampling and systematic sampling, but has been proved for the three other designs:
see [51] for rejective sampling, [12] for pivotal sampling, and [54] for Chao’s
procedure.

1.5.2 Central-Limit Theorem

Several different methods have been used in survey sampling to prove the property
(b), which states that the HT-estimator satisfies a central-limit theorem. For example,
two different and very elegant proofs for SI are due to [32] and [33].

The simplest case occurs when the sampling design may be seen as a series of
independent experiments, like for Poisson sampling where the units are selected
independently, or for multinomial sampling where the draws are independent. In this
case, the asymptotic normality follows from the Lyapunov central-limit theorem.

The other unequal probability sampling designs are more difficult to handle,
due to the dependence in the selection of the units. Reference [32] introduced
a coupling method to prove a CLT for simple random sampling, which he later
extended in [34] to cover rejective sampling. The basic idea of the coupling method
is to link the sampling design under study to another one where the units are selected
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independently, and such that the two sampling designs are close with respect to some
distance function, see, for example, [57]. The coupling method has also been used
by [48] for sequential Poisson sampling, and [11] and [14] for multistage sampling,
see also [4].

Another technique consists in applying the weaker martingale CLT, see, for
example, [36]. This is used by [47] for the Rao–Hartley–Cochran method, [48] for
two-stage sampling designs, and [13] for pivotal sampling.

1.5.3 Consistency of a Variance Estimator

The property (c) that a weakly consistent variance estimator is available is somewhat
difficult to prove, except for Poisson sampling for which it holds automatically from
assumptions (H1) and (H2), and for SI for which it can be proved by tedious, but
fairly straightforward computation, see exercise 2.21 in [2].

The second-order inclusion probabilities can be computed for all the sampling
designs presented in Sect. 1.4, either by means of an explicit formula for systematic
sampling [17] and pivotal sampling [10, 19] or by means of a recursive formula,
see [18] for rejective sampling and [9] for Chao’s procedure. However, it can
be easily proved that many second-order inclusion probabilities are zero for both
systematic sampling and pivotal sampling, and consequently unbiased variance
estimators are not available. Numerous variance estimators have been proposed
for systematic sampling, see, for example, [50, 61] or [27]. Variance estimators for
pivotal sampling are considered in [12, 30] and [13].

Even for sampling designs with positive second-order inclusion probabilities, the
consistency of the HT-variance estimator or the SYG-variance estimator requires in
particular that the second-order inclusion probabilities are bounded below, which is
difficult to prove. For rejective sampling, [34] proposed a variance approximation
which does not require the second-order inclusion probabilities. This results in a
simplified variance estimator, whose consistency is proved in [14].

1.6 Conclusion

Among the unequal probability sampling designs presented in this chapter, Poisson
sampling, rejective sampling, and pivotal sampling possess good statistical prop-
erties. Poisson sampling has the disadvantage to lead to random sample size, and
therefore to an inflated variance. Rejective sampling is presumably the best sampling
method, presenting many favorable properties needed for statistical inference.
Pivotal sampling also possesses good statistical properties, but no unbiased variance
estimator is available. Anyway, conservative variance estimators are possible [13],
and pivotal sampling leads to well-spread samples, and may be more efficient than
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rejective sampling when the units are ranked with respect to some variable which is
related to the variable of interest.

Despite its great interest for sampling in data streams, the currently known
statistical properties of Chao’s procedure are limited. Reference [5] studies the
validity of Hajek’s variance estimator [34] for Chao’s procedure, but under very
restrictive conditions on the first-order inclusion probabilities. Establishing a CLT
and the consistency of a variance estimator for Chao’s procedure is both an
important and challenging task.
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Chapter 2
Core-Sets: Updated Survey

Dan Feldman

2.1 Motivation

Every day 2.5 exabytes of data (2.5 × 1018) [69] are generated by cheap and
numerous information-sensing mobile devices, remote sensing, software logs,
cameras, microphones, RFID readers, and wireless sensor networks [58, 67, 87].
These require clustering algorithms that, unlike traditional algorithms, (a) learn
unbounded streaming data that cannot fit into main memory, (b) run in parallel on
distributed data among thousands of machines, (c) use low communication between
the machines (d) apply real-time computations on the device, (e) handle privacy and
security issues.

A common approach is to re-invent computer science for handling these new
computational models, and develop new algorithms “from scratch” independently
of existing solutions.

Data reduction/summarization advocates a different approach: given a large
data set, reduce the data so that it takes up significantly less space in memory,
but provably approximates the large data in a problem dependent sense. Running
existing (possibly off-line, non-parallel, or inefficient) algorithms on the reduced
(small) data would then produce a result that is provably close to the solution
obtained from running on the complete (big) data. Such a compressed data set is
sometimes called a core-set (or, coreset); see Fig. 2.1(left).
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Fig. 2.1 (left) A function (algorithm) f gets a points set and outputs its clustering into linear
segments. Applying f on the coreset of the data would ideally yield the same result faster
using less resources, without changing f . (middle) An ε-coreset (in red) for 1-center queries
far(P, q) = maxp∈P ‖p − q‖2 of a set P of (blue) points and a query q, both on the plane, where
r = minq ′∈R2 far(P, q ′) is the minimum cost. (right) In k-center clustering, the query is replaced
by a set Q of k centers, far(P,Q) = maxp∈P minq∈Q ‖p − q‖2 and a grid is constructed around
each of the optimal centers

Zen Coresets might be a better name for the coresets due to their flexible definition,
based on the problem and related community: when we cannot find a coreset for a
problem, we change the definition of a coreset. This is part of the reason why curious
researchers and engineers find it hard to get into the coreset “cult.”

The Coreset Paradigm shift is another source of confusion between readers,
users, coreset developers, and especially reviewers: why your coreset construction
algorithm assumes that it gets the optimal solution as input, if this is the main
motivation for constructing it in the first place? Why you claim O(n) construction
time when the main theorem states O(n5)? Where are the streaming and parallel
coreset constructions (there are only off-line constructions)? Where is the analysis
for the communication between the machines? What is wrong with uniform
sampling as a coreset? Why do we need coresets, if gradient descent provides a
sparse solution in linear time? What is the generalization error? Why there are
experiments only on training (not testing) data?

The goal of this survey is to answer such questions by introducing the coreset
paradigm together with the recent frameworks, as well as explaining their relations
to other techniques.

Structure of This Paper The paper begins with high-level discussions and general
definitions, continues to frameworks, and then to specific problems and solutions.
Section 2.2 presents several inconsistent definitions of coresets that were suggested
over the years, by focusing on their different properties, and provide a definition
that captures most of them. Section 2.3 suggests example scenarios where coresets
can be used or combined with existing solutions. Section 2.5 defines the type of
problems that coreset may be applied on with some examples, while Sect. 2.4 defines
specific types of coresets to solve such problems.

While there are dozens or hundreds of coreset constructions, Sect. 2.6 aims to
present a framework called sup-sampling that can be used to solve many of them,
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by unifying existing frameworks. It usually reduces the coreset construction to
the computation of the sup or max of corresponding functions, as well as their
corresponding dimension (that is related to the notion of VC-dimension). To this
end, Sect. 2.7 surveys techniques to bound sup and dimension for common family
of problems.

Section 2.8 suggests future research and open problems.

2.2 What Is a Coreset?

The term coreset was coined in [3] and used for computing the smallest k balls that
cover a set of input points, and then similar covering problems where coresets are
called certificates (e.g. in [8]); see survey in [3]. Today there are many inconsistent
coreset definitions and data reduction techniques adding to the motivation for
writing this survey. We focus on coresets construction with provable guarantees for
the trade-offs between size of coreset and approximation error. Other parameters
such as construction or update time are usually derived from this trade-off; see
Sect. 2.6.

Query Space is a tuple (P,w,X , f ), where P is a (usually finite and of size
|P | = n) input set that is called points, X is a (usually infinite) set of queries
(models, shapes, classifiers, hypotheses), w : P → R is a (usually positive) weight
function that assigns importance to each point, and f : P × X → R is a (usually
non-negative) pseudo-distance function, or distance for short f (p, x) from p to
x; see [22, 40]. More generally it can be considered as a loss function. For max
optimization problem it may be used as score (where higher is better).

Coreset in this review is a small data structure C that allows us to approxi-
mate the sum of weighted distances

∑
p∈P w(p)f (p, x), its maximum distance

maxp∈P w(p)f (p, x) which is related to covering problems, or in general, any
function cost : R

n → R that maps the n = |P | distances (f (p, x))p∈P to a
(usually non-negative) total cost. The exact definitions for “small,” “data structure,”
and “approximates” have been changed from paper to paper and we suggest a few
of them in Sect. 2.4.

Example P ⊆ R
d , w ≡ 1, X = {

X ⊆ R
d | |X| = k

}
, and f (p,X) =

minx∈X ‖p − x‖2 corresponds to k-means queries that aim to compute an optimal
query set X∗ of |X∗| = k centers that minimize the sum of squared distances∑

p∈P f 2(p,X) = ∥∥(f (p,X))p∈P

∥∥2
2 over X ∈ X . More generally, Rd can be

replaced by any set, and ‖p − x‖2 by any distance f (p, x).In the k-median problem
the cost is the non-squared distances

∑
p∈P f (p,X) = ∥∥(f (p,X))p∈P

∥∥
1.

Composable Coresets [19, 62, 71] are important types of coresets that make them
especially relevant for handling big or real-time data as explained in the next section.
It means that a union of a pair of coresets C1∪C2 is a coreset for the underlying input
P1∪P2, and that we can re-compute coreset C3 for this coreset C1∪C2 recursively.
In particular, strong and weak coresets as defined in Sect. 2.4.2 are composable.
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Using merge-and-reduce trees [19] we can apply the coreset construction only
on small subsets of the input independently (i.e., “embarrassingly parallel” [57]),
merge them, and then reduce recursively. This implies that an efficient off-line
coreset construction can be applied only to small subsets, to obtain linear coreset
construction time via sub-linear memory; see Sect. 2.4.3.

2.3 Why Coresets?

In this section we give only a few of the many advantages of using coresets, or at
least, composable coresets.

Answering Queries, such as SQL queries, to save either time, memory, or
communication via the compressed small coreset C, including on the computation
models below.

Optimization is the most common motivation for constructing coresets, where the
goal is to compute an optimal query that minimizes the cost. Solving the opti-
mization problem or its approximation on the small coreset yields an approximate
solution of the original (big) dataset, sometimes after suitable post-processing. For
example, the k-means problem is NP-hard when k is part of the input [76]. However,
composable coresets of near-linear size in (k/ε) can be used to produce 1 ± ε

multiplicative factor approximation in O(ndk) time, even for streaming distributed
data in parallel [22, 52].

Boosting Existing Heuristics, i.e., algorithms with no provable guarantees is
possible by running them on the small coreset. For example, we can run many more
iterations or initial seeds on the coreset in the same time it takes for a single run on
the original (big) data. In this sense we “improve the state-of-the-art using the state-
of-the-art,” and coreset is used as a bridge between theory and practical systems;
see examples in [38, 51, 84].

“Magically” Turn Existing Off-Line Algorithms to (1) streaming algorithms,
i.e., that use small memory and one pass over a possibly infinite input stream [19,
62], (2) parallel algorithms that use multiple threads (as in GPU), or more generally
distributed data (network/cloud/swarm of robots or smartphones) via low or no
communication between the machines [71], also simultaneously for unbounded
stream of data [42] as in (1), and (3) dynamic (insertions and deletions of points) in
small time, but using linear space [2].

This is done by maintaining a single coreset via these computational models
during the night (or every few seconds). In the morning (or every few seconds)
we apply the possibly inefficient existing algorithm in an off-line, non-parallel way
from scratch on this coreset that represents all the data.

Constrained Optimization can be computed on a coreset that was constructed
independently of these constraints. E.g. coreset for k-means queries can be used to
compute the optimal query whose centers must be subset of the input, are close to
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some input points, or cannot be placed in forbidden areas, by solving the constrained
problem on the coreset.

Model Selection and Features Reduction can be computed and evaluated on the
coreset in a similar way. A particular useful property is that a coreset for, say, k

centers is a coreset for k′ ≤ k centers by definition: put k centers on top of k′ centers.
This allows us to handle regularization terms or costs that are common in machine
learning such as to compute X that minimizes costf (P,X) + |X| over every set X

of |X| ≤ k centers [5, 12]. Same property occurs for other model parameters such
as j -subspaces [52].

2.4 Coreset Types

Approximation Error for the majority of coresets aims to have a multiplicative
(1 + ε) approximation for the desired cost of each query X ∈ X , or at least
the optimal query. That is, an additive error of εcostf (P,X). Grid coresets
(See Sect. 2.4.3) usually introduce smaller error of εcostf (P,X∗), where X∗ is
the optimal query. Weaker but sometimes smaller coresets use larger additive
error that may be multiplicative under some assumption on the input (e.g., well
clustered [33, 83], scaled data [36, 59]), by adding more parameters to the coreset’s
size that takes these parameters into account [49, 90], or lower bound on the cost for
the allowed queries.

The Size of a coreset is usually by order of magnitude smaller than the size n of
the input, about near-logarithmic or even independent of n. Rarely the reduction
is on the dimension; see Low-Dimensional coresets in Sect. 2.4.1. The dependency
on the approximation error ε ∈ (0, 1) is usually polynomial in 1/ε. Probabilistic
constructions of coreset constructions are usually given a parameter δ ∈ (0, 1)

that determines an upper bound on the probability of failure. The coreset size
usually depends poly-logarithmically on log(1/δ). This is strongly related to the
size O(log(1/δ)/ε2) of a random sample that is needed to approximate the mean of
a set of numbers in the interval [0, 1], up to an ε error [68]. Rarely constructions
the coreset size depends linearly on 1/δ, which is related to the fact that only
δ fraction of the numbers are more than 1/δ of the mean above [70]. First
coresets were deterministic of size exponential in their (VC-)dimension d [3, 43],
random constructions whose output is polynomial in d replaced them [26], and
independency of d is sometimes possible using either weak coresets [42] or squared
Euclidean distances [16, 52, 55].

2.4.1 Data Types

Any small coreset C may be used to answer queries efficiently. However, if the data
type of the coreset is different from the original data type of P , we cannot use the
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same loss function f on C. In particular, we cannot directly run existing solvers
for computing the optimal query on these coresets. More complicated and different
data types may help to reduce the size of the coreset, but require the design of new
(possibly non-efficient) optimization algorithms.

Weighted Subset of Input is a coreset C ⊆ P , where each point in C may be
assigned a multiplicative scalar weight. The simplest case is where all the weights
equal 1, and C is just a subset, which makes sense for covering problems [1, 2].
For approximating average of distances by few points, we can still avoid weights,
e.g., by uniform sample/distribution [74]. For sum of weights, the weight is positive
and intuitively tells us how many input points each coreset point represents [43, 62].
Most of the solvers support weighted input or can be easily changed to support it.
However, negative weights or weights u(p, x) that depend also on the query might
imply non-convex optimization problem or other complications [40, 47, 50]; see
Fig. 2.1(right).

Advantages of weighted subsets are (1) preserved sparsity of the input, (2)
interpretability, (3) coreset may be used (heuristically) for other problems, (4) less
numerical issues that occur when non-exact linear combination of points is used.

Weighted Subset of Input Space, where we assume that the input P is from a
ground set or metric space, and the coreset is from the same ground set. E.g. for
k-means, the coreset may be a subset of Rd but not a subset of P ; e.g. [61, 86]. This
is related to the notion of weak ε-net in computational geometry [79] (nothing to do
with weak coresets in the next section).

Sketch Matrices imply that each point in the coreset is a linear combination of
the input points. The input is represented as a matrix P ∈ R

n×d where every point
corresponds to a row, and the coreset construction is a “fat” matrix (m � n) S ∈
R

m×d called sketch matrix. The coreset (called sketch) is then C = SP ∈ R
m×d .

Sketch matrices are generalizations of previous coresets, where S is either a fat or
sparse diagonal n×n matrix of the original row weights. As coresets, the term sketch
is not consistent among papers. Sketch matrices may support the stronger turn-style
model that allows deletion and changing single entries and not only insertion of
records, in sub-linear space and without using trees. See surveys in [29, 85].

Low-Dimensional Coresets are coresets that instead of having small number
of points, are contained in a low dimensional space in some sense. The classic
examples are low-rank approximations (SVD/PCA) [30, 52, 77], JL-lemma (random
projections) [21], and well conditioned matrices [32]. Sometimes such coresets are
the first step before reducing the number of input points; see Sect. 2.7 for projections
on the optimal query.

Generic Data Structures are usually the result of combining few types of the
above coresets. These are the hardest to handle for optimization, but may be
unavoidable for obtaining small coreset for some problems [40, 50, 86].
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2.4.2 Query Sets

In Sect. 2.2 we defined coreset with respect to a set of queries that it approximates.
The first two following types of coresets are much stronger than the third, as they
are also composable.

Strong Coreset approximates any given query in the given query set. They are
thus composable and it is usually easy to extract from them an approximation to the
optimal query of the original input P . See examples in [3, 40, 85].

Weak Coreset is a coreset C that does not approximate all the queries. Instead, it
approximates a subset of queries X (C). If this function X (C) is monotonic, i.e.,
C′ ⊆ C implies X (C) ⊆ X (C′), then the techniques for constructing ε-sample (see
Sect. 2.6) can be applied [40]. Due to the smaller query space, the sample might
be smaller by order of magnitude. This is since it depends on the generalized VC-
dimension of the function X and not the VC-dimension of the set X (P ); e.g. [40,
42, 45].

Example The VC-dimension for the range space of k balls in R
d is O(dk log k);

[52]. However, a (1 + ε)-approximation to the optimal query (center) for the k-
means/median/center problem is spanned by a convex combination of k/εO(1) input
points in P [55, 89]. By defining the function X that maps a coreset C to the union
X (C) of all these centers, we obtain a generalized VC-dimension of 1/εO(1), i.e.,
independent of d for the query spaces of these problems. Generalizations hold for
projective clustering (j > 0), and suggestions on how to compute the optimal query
of the restricted set X (C) can be found in [22, 40, 42, 45].

Sparse Solution (query) that approximates only the optimal query can be com-
puted using convex optimization techniques such as Frank-Wolfe algorithm [13, 28].
An approximation solution, sparse or not, for a subset of the input points at hand,
usually says nothing about the optimal solution of the complete data, or even after
the insertion of a single new point. Hence, sparse solutions are not composable
and thus do not support all the computation models from Sect. 2.3. Sometimes it
is unavoidable: such coreset for 1-center has size O(1/ε) for ε ∈ (0, 1), while
composable coreset or any coreset that handles streaming data must be of size
exponential in d as was proven in [3]. Sometimes the sparse solution is the weight
vector of the (strong) coreset itself [54].

2.4.3 Construction Types

Uniform Sample from the input is probably the most common “coreset.” This is
also a natural competitor of every other coreset. Unlike other constructions, uniform
sampling takes sub-linear time in the input, which also explains why it misses small
but important input points or far clusters, and does not provide (1±ε)-multiplicative
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error as other coresets. Nevertheless, most of the coresets use uniform sampling after
proper scaling by sup-weights which enables smaller coresets using the notion of ε-
sample; see Sect. 2.6 and [31, 40, 74].

Importance Sampling aims to reduce the additive error of εncost(P, x) to
εcost(P, x), i.e., (1 ± ε)-multiplicative error by replacing uniform sampling with
non-uniform sample of the same size over the input space. The main technique is
to re-weight each point by its sensitivity, or sup-weight respectively, as explained
in Sect. 2.6. Then compute a “uniform” sample from the weighted set, where
each input point is replaced by duplicated points according to its new weight,
e.g., [22, 73].

Grids are based on discritization of the input space to small clusters, and then
taking a representative from each cluster, weighted by the number of input points in
its cell. These are the first coresets and were first used for covering problems [3, 7].
The additive error εcost (P,X∗) ≤ εcost (P,X) is usually smaller than modern
coresets. However, the time and space is exponential in d due to the large number
of cells, which is also the reason that deterministic constructions (that takes time
exponential in d) are used. E.g. [7, 62]; see Fig. 2.1(middle/right).

Greedy Constructions are used for problems with specific properties to obtain
smaller coresets, e.g., based on convex optimization. Here, in each iteration we
adaptively pick the next best point to the coreset deterministically [54, 55] or based
on importance sampling [9]. Such deterministic constructions may obtain coresets
of size that cannot be obtained via random constructions; see Fig. 2.3(right), and
Sect. 2.6 and [16, 17]

Such deterministic or adaptive constructions may be smaller by order of magni-
tudes compared to other constructions. For example, the query set of all the possible
convex shapes (sets) has corresponding unbounded VC-dimension, but still has an
ε-sample of finite size [25]; see also Lower Bounds in Sect. 2.6.

2.5 Problem Types

The Input Set P usually consists of finite number of n = ∑p∈P w(p) points in
some metric or Euclidean space. Some coresets have size independent of n, and may
be applied on a set P that consists of infinite number of points, e.g., an analog and
continuous signal or image [45, 49, 61, 86]. Every point may be assigned a positive
multiplicative weight, which usually does not make the problem easier or harder.
This is necessary when computing coreset for coresets as in the case of composable
coresets.

The Fitting Error f is usually a Log-Lipschitz function of some distance function
and thus satisfies the weak triangle inequality in some sense, i.e., f (p, x)−f (p′, x)

is bounded by the distance from p to p′ for every p, p′ ∈ P and x ∈ X, up to a small
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multiplicative factor. This includes a distance to the power of a constant z ≥ 0 or
M-estimators that ignore large distances and thus handle outliers. When the query
X is a set of centers as in k-means, or a shape as in low-rank approximations, or
k-line means, we usually define f (p,X) = minx∈X f (p, x); see [22, 41].

Projective Clustering is one of the fundamental type of problems that is suitable
for coresets [4, 6, 34, 53, 64]. Here, each item in the set of queries X is a set
of k affine j -dimensional subspaces. Special cases include k-means/median/center
(j = 0) in a metric or pseudo-metric spaces (discrete versions) [23, 24], low-rank
approximation (PCA) where k = 1 [24, 35], or well conditioned basis [32] for
different distance functions. Many other problems can be reduced to these kinds
of problems via linearizations in high-dimensional space. Projective clustering is a
special case of dictionary learning as explained in [39].

Supervised Learning is done recently using coresets, where each input point
(p, y) includes a discrete or continuous label. E.g. for learning kernels, y ∈ {−1, 1},
and the distance function is f ((p, y), x) = y · φ(p · x) for some kernel function
φ : R→ [0,∞). Unlike other optimization techniques, if the coreset is composable
we may compute a coreset for each class y independently and then return the union
of coresets as the final coreset [72, 75, 90].

Generalization Error is less relevant for most of the coresets. Unlike in machine
learning and more like in computer science and computational geometry, there is
usually no assumption that the data is a set of i.i.d samples from some known or
unknown distribution. The question of what problem to solve, using which model
and how to avoid overfilling is related to techniques such as maximum-likelihood or
empirical risk-minimization. Exceptions include model selection in Sect. 2.3.

2.6 Generic Coreset Construction

Many of the existing and especially old coreset constructions can be simplified,
improved, and have better guarantees using modern and retrospective analysis. In
this section we try to give a generic algorithm that can be used to generate many of
these existing coresets, which continues and improves such tries from [22, 40].

Reduction to Off-Line Construction on a Pair of Coresets is possible using
composable coresets (strong or weak) construction which support the streaming
model as explained in Sect. 2.2. Using the merge-and-reduce tree (as explained in
Sect. 2.2), we can assume that we are given a set of m� n points, which is a union
of two other coresets, and the goal is to reduce it by half to a coreset of size m/2,
for the smallest possible value of m. We then partition the (possibly infinite) input
stream into consecutive subsets of size m. Each inner node of the merge-reduce tree
then gets the union of coresets in its pair of children, and reduce them from 2m to m.
In this way every level has at most one coreset in memory and the overall coreset is
the union of coresets over the levels of the tree. This assumption usually adds extra
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polynomial factors in log(n), since ε is replaced with ε/(log n) due to the increasing
error over the levels of the tree. The final coreset can still be small by constructing
it once from the union of coresets above with ε, and not ε/ log(n).

ε-Sample Many, if not most, of the existing coresets can be defined formally as
an ε-sample, which is a generalization of the definition of ε-nets in computational
geometry for binary functions [37, 66, 74]. Given a query space (P,w,X , f ) and an
error (usually constant) ε ∈ (0, 1), an ε-sample is a query space (C, u,X , f ) where
C ⊆ P , such that cost((w(p)f (p, x))p∈p) =∑p∈P w(p)f (p, x) is approximated
by cost(u(q)(f (q, x))q∈C) for every query x ∈ X , up to an additive error of ε, i.e.,

∣∣∣∣∣∣

∑

p∈P

w(p)f (p, x)−
∑

q∈C

u(p)f (q, x)

∣∣∣∣∣∣
≤ ε. (2.1)

Hence, C is a weighted subset strong coreset, and is also a composable coreset as
defined in Sect. 2.2.

In most papers related to coresets we were actually interested in (1 + ε)-
multiplicative error, and not an additive error of ε, e.g., since the problem hardness is
invariant to scaling. In this case, the common (1± ε)-multiplicative approximation
error for a function

∑
p∈P w(p)g(p, x) can be obtained by defining f (p, x) =

g(p, x)/
∑

q∈P w(q)g(q, x). Of course, an additive ε-approximation for f as in 2.1
is a multiplicative (1+ ε)-approximation for the original function g.

Smaller bound on the error as in Grid coresets may be obtained by defining
f (p, x) = g(p, x)/

∑
q∈P w(q)g(q, x∗), where x∗ is an optimal query. If this is

hard or impossible, larger (no-longer multiplicative) error of �(P, x) ≥ 0 can be
obtained by defining f (p, x) = g(p, x)/�(P, x).

Simple ε-Sample If the input weights are non-negative, i.e., w : P → [0,∞),
then PAC-learning [20, 65, 74], which generalizes Hoeffding’s inequality [68],
proves that a simple i.i.d uniform sampling (if w ≡ 1/n, or proportional to w in
general) yields an ε-sample with probability at least 1 − δ. The size of the sample
depends polynomially on maxp∈P,x∈X |f (p, x)|, the sum of weights

∑
p∈P w(p),

1/ε, log(1/δ), and a measure of complexity for a query space that is related to
generalized VC-dimension [22, 40]. Formally, given a pair (F, ranges) where F is
a set, and ranges is a set of subsets from F , the VC-dimension of (F, ranges) is
the size |G| of the largest subset G ⊆ F such that

| {G ∩ range | range ∈ ranges} | = 2|G|.

Intuitively, this is usually (but not always) the number of free parameters that are
needed to define a single range in the set, i.e., query in the query set. For example,
in k-means the corresponding range space is the set of k-balls in R

d , which has VC-
dimension O(kd). Indeed each ball in R

d can be defined by its center and radius
(d + 1 parameters), and thus k balls require k(d + 1) = O(kd) such parameters.
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While uniform sample is the most common and generic way to compute an ε-
sample, generic deterministic constructions (usually of size exponential in d) were
suggested in [78], and obtain the same or better bounds of most of the Grid coresets,
after proper scaling by the sup-weights below. See Sect. 2.4.3 and Fig. 2.1(right).

Sup-Weights were suggested in [40] to reduce the size or the error of the sample
above by a factor of n. We can see that it is possible to replace the weight function
w by any function m : P → [0,∞) and g(p, x) = w(p)f (p, x)/m(p), and
obtain the same desired cost

∑
p∈P w(p)f (p, x) = ∑

p∈P m(p)g(p, x). The
sample size above now depends on maxp,x |g(p, x)|, and the new total weight∑

p∈P m(p). To minimize them, we assign to each point p ∈ P a weight m(p) =
w(p) maxx∈X |f (p, x)| (more generally, its supremum). That is, we minimize the
total weight under the constraint

max
p,x
|g(p, x)| = max

p,x

w(p)|f (p, x)|
m(p)

= 1.

Computing weaker bounds m′(p) ≥ m(p), say, up to a multiplicative constant factor
for every point p ∈ P , would increase the total weight and size of resulting coreset
by the same factor.

This new optimization problem is independent of ε or one of the many algorithms
to construct ε-sample (randomly or deterministically) on the new re-weighted set.
Hence, it simplifies the analysis and results of many previous papers.

Sensitivity is a special case of this reweighting, where we wish to obtain mul-
tiplicative 1 ± ε approximation for a non-negative function f , i.e., f (p, x) =
g(p, x)/

∑
q∈P w(q)g(q, x) as explained in the beginning of this section. Here,

m(p) = max
x

w(p)f (p, x) = max
x

w(p)g(p, x)∑
q∈P w(q)g(q, x)

.

See e.g. [22, 26, 48, 73].

Finding small sup-weights or sensitivities for different cost functions is the main
challenge of many current coreset papers. Sometimes it may be harder than the
original optimization problem of finding x∗. In fact, the problems are usually related
as explained below.

The Chicken-and-Egg problem stems from the fact that the optimal query x∗
is usually required to bound sensitivity or sup-weights; see Fig. 2.1(right) and
Sect. 2.7. However, this is usually the main motivation for constructing the coreset
in the first place. There are a few lee-ways: first, it can be assumed that the size of
the input is the size of a pair of coresets m� n as explained in the beginning of this
section. So inefficient algorithms (say, polynomial in their input size m), would still
yield linear construction time in n. However, for NP-hard problems such as k-means
clustering, the running time would still be exponential in k. For other problems (such
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Fig. 2.2 (left) A robust approximation to the optimal clustering (the stars) is computed on a
small εn-sample. About half of the closest points in the full set are then removed. (middle) The
process continues recursively on the remaining half and new robust approximation (the new stars)
is produced, until there are no points are left. (right) The output (α, β)-approximation is the union
of robust estimators during the O(log n) iterations

as general projective clustering) even inefficient optimization algorithms might not
be known.

Bicriteria or (α, β)-Approximation for the optimal solution can be used in
such cases, which is a set B ⊆ X of β ≥ 1 queries whose fitting cost∑

p∈P minx∈B f (p, x) is larger by a factor of at most α ≥ 1 compared to the cost of
the optimal solution; see Fig. 2.2. The bound on the total sup-weights or sensitivities
usually depends polynomially on α and β so near-logarithmic bounds for α, β are
reasonable.

Generic Algorithm for (α,β)-Approximation is suggested in [40] follow-
ing [44]. First we compute an (α, β, 1/4)-approximation X ⊆ X to the robust
optimal query as explained below, then we compute for each point p ∈ P its
distance minx∈X f (p, x) to its closest center in X, and remove half of the closest
points (or weights, in general). We continue recursively on the remaining n/2 input
points (or total weight) until there are no points left; see Fig. 2.2. The running time
is only linear in the number of input points due to the geometric sequence of points
in each iteration.

Unlike techniques such as RANSAC [27], while the first iteration uses random
sampling, the overall algorithm is adaptive: in each layer we remove the “main
stream/cluster” of the data. “Hidden isolated” clusters may not be caught by uniform
sampling in the first iteration but would be left and be discovered during the last
iterations.

Robust Optimal query x ∈ X minimizes the sum of distances to its closest
(say, half) input points Px,1/2, i.e., ignoring a constant fraction (1/2) of outliers.
Computing such a query is usually much harder than computing the optimal query
x∗. However, computing an approximation x̃ that serves only quarter of the points,
such that

∑
p∈Px̃,1/4

f (p, x̃) ≤ ∑p∈Px,1/2
f (p, x) is much easier, since ε-sample

(in particular, uniform sample) is a coreset for this problem [40]. An (α, β, 1/4)
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approximation allows multiplicative factor α of error to the last cost, and using
|X| = β centers.

For example, for problems such as k-means/median/center, an ε-sample S for
k balls, i.e., uniform sample of size |S| = O(k) is also the desired (1, |S|, 1/4)-
robust estimator. Generic algorithm for computing such robust estimator can be
found in [40]. In practice, it may be computed via heuristics such as EM-estimators,
but without provable bounds [48, 80].

Bootstrapping is used to reduce the overall size of the ε-coreset after computing
an ε-sample that is based on sup-weights that are in turn based on an (α, β)-
approximation. These total sup-weights or sensitivities usually depend polynomially
on α and β, and so does the final coreset. To remove these factors we compute the
coreset (off-line, on each subset of the merge-and-reduce tree) using, say, ε′ = 1/2
to obtain a small coreset that can be used to compute a constant factor approximation
to the optimal query (α′ = β ′ = O(1)). We then compute the coreset for the
desired ε ∈ (0, 1) using this (α′, β ′)-approximation instead of the previous (α, β)-
approximation to obtain coreset that depends on α′ = β ′ = O(1). See e.g. [63].

In this sense, the framework in this section can be seen as a series of improved
approximations, from initial (εn)-samples that are based on uniform samples, to
sup-weights sampling that are based on a rough (α, β)-approximation that is in
turn based on robust estimators in each iteration, which are eventually replaced
by (α′, β ′)-approximation and smaller total sup-weights/sensitivity. This process is
then applied on each small subset (node) of the merge-reduce tree.

Lower Bounds Since there is no exact definition for a coreset, the most general
definition is “any data structure that can answer every query in the query set.” Here,
the computation issues from Sect. 2.4.1 are ignored. The size of the coreset can
be measured by the total number of bits it takes to store it in memory. A lower
bound under this assumption is usually proved via communication protocols where
Alice tries to answer a query based on an input data that Bob has, using minimum
communication between them [81, 82].

Other lower bounds are known for specific problems and coreset types, such as
for the size of weighted subset coresets [36, 59, 60], dependency on the stretch
ratio of the input [92], or order of input points [11]. For random constructions,
lower bounds may be computed using e.g. the coupon collector [22], and smaller
deterministic versions are possible via [17].

2.7 Bounding Total Sup-Weights and Dimension

In this section we suggest generic existing technique to bound sup-weights and
dimension of query space.
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2.7.1 Bounding Sup-Weight

Most of the techniques for bounding total sensitivity or sup-weights in general are
based on a given (α, β)-approximation for the optimal query of the corresponding
query space, as explained in the previous section. For simplicity, we assume in this
section that we are given the optimal solution (α = β = 1). Otherwise we use the
bootstrapping technique above.

Grids First coresets discretized/clustered the space into a grid of cells around the
optimal solution, or around each center in the optimal solution, as explained in
Sect. 2.4.2 and Fig. 2.1(right), such that every input point p in a grid cell � has
the same distance to every query up to an additive factor of εf (p, x∗). Hence, the
sup-weight is

f (p, x)

f (P, x∗)
≤ f (p, x)

f (P ∩�, x∗)
≤ 1

|P ∩�| .

The sum of the last term over every point p ∈ P ∩ � in the square is 1, so the
total sup-weights is the number of cells in the grid, which is usually exponential in
d. This is why deterministic ε-sample constructions, whose time is exponential in
d, are used in these coreset constructions. The approximation error for f (P, x) is
εf (P, x∗) ≤ εf (P, x) as explained in Sect. 2.6.

Projection on the Optimal Query is an inductive technique to bound sensitivity,
which is also used for solving related optimization problems. The idea is to compute
the optimal solution or its approximation and to project the input on this subset
(usually a shape or set of shapes). Assuming that we are using a metric space, by
the weak triangle inequality the distance from the projected set and the original set
to any query is bounded by the optimum cost, which is less than the query’s cost.
We then add this projected input points P ′ to the coreset, and compute coreset for
the difference f (P, x) − f (P ′, x) ≤ f (P, P ′), by bounding the sup-weight of
f (p, x) − f (p′, x) ≤ f (p, p′). Here we assume that f (P, P ′) and f (p, p′) are
well defined. The resulting coreset is the union of P ′ with a weighted subset of pairs
that can be replaced by two points: p with positive weight and p′ with a negative
weight, as explained in [47, 50]. For problems such as k-means we have that P ′
consists of only k points, and the negative weights can actually be removed [22, 40].
For other problems we need to compute a coreset for P ′ of size |P | = n but whose
dimension is smaller. See following techniques.

Bounding Sensitivity directly using the previous technique is possible since the
sensitivity of a point is bounded by f (p, x∗)/f (P, x∗) plus the sensitivity of its
projected point p′ above with respect to the set P ′, as proven in [93]. The coreset is
usually larger compared to previous technique (e.g., for k-means the total sensitivity
is k and not 1). However, the resulting coreset is a weighted subset, with only
positive weights.



2 Core-Sets: Updated Survey 37

The cUTE Decomposition is used to bound sensitivity of higher-dimensional
centers than points, such as in projective clustering where j ≥ 1. Using the above
techniques we can reduce the dimension of P to the dimension j of the optimal
query by replacing it with P ′. It was proved in [43, 47] that in this case every m-
dimensional affine subspace X can be replaced by an affine (j − 1)-dimensional
subspace X′ and a constant c > 0 such that the distance from every point in P ′
to X is the same as the distance to X′ multiplied by a constant (weight) c. See
Fig. 2.2(left) for the case j = 1. This is a special case for the claim that there is a
factorization A = cUT E for every A ∈ R

m×j and E ∈ R
d×j , such that UT U = I

and c ≥ 0.

The reduction is from a set P in R
d and j -dimensional queries, to a set P ′ in

R
j with j -dimensional queries. We can then apply this reduction recursively j − 1

times till the centers (queries) are points. Unfortunately, careful analysis shows that
the final total sensitivity is exponential in j [47].

Weighted Centers (multiplicative weight w′(x) for every query x) occur: (1) when
clustering to k ≥ 2 (multiple) subspaces, which reduce to handling weighted
(j − 1)-subspaces as explained above, and (2) for clustering weighted facilities
(centers), e.g., when the travelling costs to a center at the sea/air and a center of
the same distance on the ground are not the same, and (3) handling k-clustering
with m outliers (centers whose weight is infinity), or M-estimators f ′(p, x) =
min {f (p, x), c)} for some constant threshold c > 0.

Bounds on the sensitivities for these cases are usually exponential in the number
of centers and also depend on log(n); See Sect. 2.4.3.

Reduction of cost(·) from ‖·‖1 to ‖·‖∞ Suppose that we have a subset coreset
construction for our query space, ε = 1/2, and any input P of n points, where
cost(·) = ‖·‖∞, i.e., covering queries. If the output coreset consists of at most m

points, then it was proven in [52] based on a simple generalization of [92] (for
projective clustering), that the total sensitivity is bounded by O(m log n).

Beyond Sup-Weights The max-sampling framework is very generic but for spe-
cific problems we might get better coreset constructions. This includes pre-
processing techniques such as dimension reduction before computing the core-
set [52]. The sparsity of the input is loss in this case, so recursive partitioning of the
data can be used instead [16]. Convex optimization techniques such as the Frank-
Wolfe algorithm [14, 28] produces a sparse solution for a given function which are
not composable, as explained in Sect. 2.4.2. However, a coreset construction may
be formulated as such a convex optimization problem where we wish to compute
a sparse distribution over the input (the set of coreset weights) that satisfies some
requirements. See for example deterministic small coresets for 1-mean and low-rank
approximation [54, 55].
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2.7.2 Bounding Queries Dimension

The dimension of a query space is the VC-dimension of the corresponding range
space of the ε-sample as explained in Sect. 2.6. There are many techniques for
bounding the VC-dimension of such a range space; see e.g. [10]. The range space is
the same for the same pseudo-distance function to any power of z ≥ 1. For example,
k-median/median/center queries have the same corresponding range space: the sets
of k balls in R

d . To bound the VC-dimension it is usually useful to consider the
squared distances, which are polynomial functions in case of points in R

d , as in the
case of projective clustering. The VC-dimension for such n polynomial functions is
their degree d [52]. More generally, if we can answer a query in O(d) arithmetic
operations and exponential functions then the corresponding dimension of the query
space is also polynomial in d.

Weak Composable Corests maintains the approximated optimal solution using
smaller sample, by replacing the VC-dimension by generalized VC-dimension that
may be smaller by order of magnitudes, or even independent, on parameters such as
dimension d; see Sect. 2.4.2.

Homomorphic Query Space is a query space whose dimension is smaller, but
sufficient to answer every query of a query space of a larger dimension. For example,
squared distances to any shape that is contained in a k-subspace can be approximated
up to factor of 1 ± ε by another rotated shape that is contained in a fixed (k/ε)-
dimensional subspace [52].

Deterministic Constructions for ε-sample might be smaller than the non-tight
bound on the size that is obtained from uniform random sampling or other
techniques. See Fig. 2.3(right) and Sect. 2.4.3.

Fig. 2.3 (left) For every pair of lines 
 (in blue) and 
′ (in red) there is a center c (in green) and
w ≥ 0 such that the distance from every p ∈ 
 to 
′ is the same as its distance to c multiplied by w.
(middle) An arbitrary input point c1 is the first center and coreset point. Its farthest input point p2
is the second coreset point, and c2 is the closest point between them to the origin. (right) The next
coreset point p3 is the farthest input point from c2, and c3 is the new closest point to the origin.
After i = 1/ε iterations we have errori = ‖ci‖ ≤ ε
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2.8 Future Research

Another direction is to apply coresets for problems beyond data reductions, as the
following two examples.

Private Coresets In the recent years, we started to solve theoretical and practical
open problems using coresets in fields that seemingly have nothing to do with
data reduction. For example, in [46, 56] private coresets that preserve differential
privacy were suggested to enable answer unbounded number of queries with no
leakage of privacy for a specific user. It was also proved there that a small coreset
for any problem implies a private coreset that introduces a small additive noise,
for the corresponding query space. However, the proof is not constructive. Having
a constructive proof will turn the existing numerous coreset constructions into
private coresets for many open problems in machine learning. Such a contribution
is especially important since lack of practical results for machine learning is one
of the critique on differential privacy [15]. A more humble but important result is
to suggest private coresets for specific problems, based on their corresponding non-
private versions as in [46, 56].

Deterministic Coresets Using the sup-sampling approach in this survey, the prob-
lem of computing coresets can be reduced to the problem of computing ε-samples,
after proper weighting by the sup or sensitivity of the function at hand. Computing
such ε-samples deterministically of size polynomial in the VC-dimension is an open
problem even for the case where the query is the set of half-spaces in R

d . Promising
direction is suggested in [91].

Deep Learning Coresets for deep learning are natural since deep learning usually
applied on very big data sets, in parallel, and the training time is long. One goal may
be to reduce the training data for shorter training time, and another goal may be to
sparsity (compress) the network itself for faster classification. Since the functions in
deep learning are much more complicated than the functions in this survey, a natural
approach is to compute coreset for each neuron and then train the network neuron-
by-neuron as in [90]. Similarly, we can compress the network neuron-by-neuron via
sensitivities of edges as was suggested in [18, 88]. Since no coresets are known even
for activation functions of a single neuron, there are many open problems also in this
field.

Coresets for Other Machine Learning Problems There are many problems in
traditional machine learning with no coresets, including e.g. decision trees/forest
with all their variants, as well as supported vector machines and other optimization
functions such as RELU.
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Chapter 3
A Family of Unsupervised Sampling
Algorithms

Serge Guillaume and Frédéric Ros

3.1 Introduction

Defining a sample that behaves like the whole data set is a quite long-standing issue
in data management. It has received fresh interest with the challenge of big data,
characterized by an increase in the volume, velocity, and variety of the data. In this
chapter, sampling aims to cope with the volume dimension.

The first attempt was the Lloyd algorithm designed in 1957, but only published
in 1982 [40]. The goal was to find evenly spaced sets of points in subsets of
Euclidean spaces, and partitions of these subsets into well-shaped and uniformly
sized convex cells. It is closely related to the k-means algorithm, first proposed by
James MacQueen in 1967 [44] and made popular by Hartigan [21], as both minimize
the same objective function, called quantization distortion in signal processing. The
main difference is that the Lloyd algorithm uses a Voronoi tessellation.

The Lloyd approach was generalized to any distribution, even with discrete
components, by Linde, Buzo and Gray in 1980 [38]. Their technique does not
involve any differentiation. This vectorial quantization yields an optimal codebook.
The LBG algorithm is widely used in signal compression, either image or speech.

Recently, the concept of coreset, more precisely ε-coreset, was proposed [1]. The
idea is to quantify the distortion of a given monotonic measure when computed on
a sample instead of on the whole set. Extensive research has been carried out to
generate such coresets in different frameworks [20].
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Sampling and coresets have been applied to clustering. Clustering is an unsu-
pervised task to organize, summarize, and finally understand the data. In the field
of big data, clustering algorithms are becoming more and more sophisticated
in order to deal with complex data of various shapes and densities [28]. Two
challenging and connected problems arise with complexity: tuning and timing.
Uniform sampling is the simplest and quickest way to proceed. Unfortunately, it
requires very large sample sets to deal with shape and density variability. Smarter
and more powerful algorithms have been proposed. These sampling algorithms are
density or distance based and some of them combine the two notions under specific
strategies. Density-based methods can be grouped in two main families for density
estimation: space partition [27, 50] (e.g., grids, trees) and local estimation, using
neighborhood or kernel functions [35]. Both are highly sensitive to parameters,
cell definition for grids, bandwidth or neighborhood for local estimators. With an
inappropriate setting, these methods are either likely to sample noise or to miss
regions of interest. Distance-based clustering algorithms are used for sampling with
a number of samples much greater than the number of clusters. The most famous
representative of this family is the k-means [22]. Its sensitivity to initialization has
been exhaustively investigated [4, 7, 68]. Single scan approaches have also been
proposed such as leader [39] clustering. The results are highly dependent on the
distance threshold, even with improved versions [59, 62].

Moreover, improvements in accuracy often conflict with time performance, and
response time is of major concern nowadays for data processing algorithms. The
increased computational cost limits the application of some of the above-mentioned
algorithms to small or average size data sets. Several techniques have been investi-
gated to address these challenges [41, 42, 59, 69]. The stratification concept has been
proposed to speed up algorithms with quadratic or exponential time complexity. To
overcome sensitivity to splitting, extensions have been proposed to work with non
disjoint partitions, using replication techniques [43].

The objective of this work is to introduce a family of three sampling algorithms
that are easy to tune, scalable, and yield a small size sample. The three of them
combine density and distance and are based on the farthest-first traversal (fft)
concept. They are iterative algorithms that add a new sample at each iteration. The
new representative is chosen, in a given group which depends on the algorithm, as
the farthest from the representative of the group. This ensures space coverage and
allows for time optimization that makes them faster than any competing approach.
They also share an interesting property: they yield a coreset. In [18], an Efficient
Coreset Construction via Adaptive Sampling was proposed, involving density and
distance concepts while biasing the random sampling. The coreset framework
introduced the idea of approximation quantification: a subset is called a coreset of a
whole set if solving the optimization problem on the subset gives an ε-approximate
solution on the whole input set.

The three algorithms are also easy to tune as they have only one meaningful and
dimensionless user parameter. The first two ones give the priority either to distance,
DIDES [53] which stands for DIstance and DEnsity based Sampling, or density,
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DENDIS [52] for, DENsity and DIstance based Sampling. This priority impacts the
group in which the new representative is chosen as well as the stopping criterion.
Their common parameter is called granularity: the lower its value the higher the
sample size.

The third algorithm is called ProTraS [54], which stands for Probabilistic
Traversing Sampling. It differs from the others as it is explicitly designed to produce
a (k, ε)-coreset: the approximation level, ε, is its unique parameter and is also used
as the stopping criterion. ProTraS manages the concepts of distance and density in
a new probabilistic way: the representative is chosen in the group with the highest
probability of cost reduction. This probability is computed according to the within
group distance and to the representativeness of the sample item.

The three algorithms in the family have common properties but also some
differences. They all achieve a trade-off between space coverage and density
representation. They have little sensitivity to the initialization and can be fully
deterministic, they are robust to noise and yield a sample size which mainly depends
on the data structure.

The remaining of the chapter is organized as follows. An overview of unsu-
pervised sampling method is provided in Sect. 3.2. The concepts shared by the
algorithms in the family, fft, time optimization and relationship to coresets are
introduced in Sect. 3.3. Then the three algorithms, DIDES, DENDIS, and ProTraS,
are individually described in Sect. 3.4. Their common properties and differences are
illustrated using synthetic data and analyzed in Sect. 3.5.

Finally, the main conclusions are stated in Sect. 3.6.

3.2 An Overview of Unsupervised Sampling

The objective of the sampling is to select a subset of the original data that behaves
like the whole.

The first method to appear was random sampling, subject of many studies. The
results are interesting from a theoretical point of view [10, 11, 26], but they tend
to overestimate the sample size in non worst-case situations. A lot of work has
been done to improve this basic algorithm. In our case, sampling is a pre-processing
step for clustering and clustering is assessed according to compactness (or cluster
homogeneity) and group separability. This calls for two basic notions: density and
distance. Clusters can be defined as dense input areas separated by low density
transition zones.

Sampling algorithms are based upon these two notions, one driving the process
while the other is more or less induced. Strategies have also been developed to
improve and speed up the sampling process. Several approaches benefit from a kd-
tree implementation [29].
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3.2.1 Density Biased Sampling

The main idea of density methods [8, 9, 49] is to add a bias according to space
density, giving a higher probability for patterns located in less dense regions to be
selected so as to ensure the representation of small clusters. These methods can be
grouped in two main families: space partition and kernel estimation.

The simplest space partition based method is a grid with non overlapping cells.
Palmer and Faloutsos [50] introduced the problem of non uniform sampling for
clusters corresponding to skew size distributions. The space is divided into equally
sized bins. The bins with a small number of patterns are considered with a higher
probability. This method is easy to implement and has a reasonable time complexity
which allows its use with large data sets. However, the results are obviously sensitive
to cell definition and bias level: noise can be selected when the bias is too high.
Some work has been done to adapt the grid to the data [27]. Finding new boundaries
is not a trivial task and leads to a substantial increase in the computational cost.
Trees can be seen as an extension of grids, where the cells have not the same size
but are specific to a node. Nanopoulos et al. presented one of the pioneering studies
for clustering and sampling using R-tree [48]. Points belonging to the same node are
considered to have an identical probability of being selected. An approximate local
density is thus given by the ratio of the node cardinality to the corresponding volume
(hyperrectangle). The sampling is done according to the biased local densities. The
results are highly sensitive to the splitting strategy as well as to some key parameters
such as the stopping criterion. Algorithms like the minimum spanning tree [64] have
been proposed to improve both cluster relevance and tractability. Kd-trees proved
efficient for outlier detection [25]. The drawbacks induced by the binary split are
well known: the partitions lack smoothness as similar data may be found on both
sides of a given boundary.

The local density in each data point of the population can also be estimated using
non parametric kernel or neighboring approaches.

The multidimensional kernel density estimator is defined as:

f̂ (x) = 1

nh1 . . . hd

n∑

i=1

⎡

⎣
d∏

j=1

K

(
xj − xi

j

hj

)⎤

⎦

where d is the space dimension, n the set size, K(·) the kernel, and h the bandwidth.
Under weak conditions (h1, . . . , hd decrease when n increases) the estimate

converges in probability to the true density. A lot of work has been dedicated to
kernel shape and its impact on results [5, 45, 46], but the most influential parameter
is the bandwidth. It controls the smoothness of a density estimate. If improperly
defined, it can lead to rough estimations.

The general expression for neighboring density estimation is the following:

f̂ (x) = k

nV



3 A Family of Unsupervised Sampling Algorithms 49

where V is the volume surrounding x and k the number of items located in V . The
estimate can be reached using two methods: either setting V and computing k or
finding the k nearest neighbors of x and then deducing the corresponding volume.

Once the local densities have been estimated, they are used to bias the sampling
process. In the work by Kollios et al. [35], the kernel is that of Epanechnikov [16]
and the bias is as follows:

s
∑

f̂ (x)
f̂ (x)b

where s is the desired sample size and b the bias parameter.
If b = 0, the process reduces to a random sampling

(
s
n

)
. Otherwise, if b > 0

(respectively b < 0) high density regions are sampled at a higher (lower) rate.
Although extensively studied, these approaches are rather difficult to param-

eterize. With an inappropriate setting, these methods are either likely to sample
noise or to miss some regions of interest. Moreover, clusters’ shapes are not taken
into account, nothing ensures that they are preserved in the sample set. This is
an intrinsic limitation of these methods. Moreover, they usually require significant
storage capacity and have a high computational cost.

3.2.2 Distance-Based Sampling

Density is an important cluster feature. Distance is the other notion involved in
cluster definition, as it is used to measure similarity and proximity between patterns.
For this reason, it is widely used in clustering and sampling algorithms.

The most popular algorithm representative of this family is the k-means [22], and
its robust version called k-medoids [32]. This simple and powerful algorithm can be
used for sampling large data sets. It remains one of the most influential and studied
clustering algorithms [34, 41, 69]. Some work has been done about its computational
efficiency [12], but most studies deal with the quality of the initial partition. They
address the well-known k-means shortcoming: its sensitivity to initialization [4, 7,
68]. Different approaches based on sampling or condensing techniques, including
evolutionary algorithms [23, 47], have been investigated.

The original version is limited as it only produces spherical clusters. It has been
enriched to deal with more complex data and to yield overlapping clusters. The
fuzzy extension [6] is widely used, while the possibilistic version [36] does not
constrain the sum of the membership degrees to be 1.

k-means has been successfully used as a pre-processing sampling step for
sophisticated and expensive techniques such as hierarchical approaches or support
vector machine algorithms (SVM) [61, 65]. It is run with k = s, the number of
representatives, such as: c � s � n, c being the unknown number of clusters.

While the k-means is an iterative algorithm, whose convergence is guaranteed,
some single data-scan distance-based algorithms have also been proposed, such as
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leader clustering [39]. Each pattern, x is assigned to a leader, l, if d(x, l) ≤ t , t

being a predefined threshold. If there is no leader in x neighborhood, x becomes a
new leader. The results are sensitive to the threshold, and to the initial pattern order.
This basic version has been improved [58, 62]. In the latter various thresholds are
used to yield clusters of different sizes. First the k-means is run on a small random
sample of the original data, with k � c groups. The centers (means) are m1, . . . , mk .
The threshold distance for a new leader, x, is computed from its two nearest means,
mi and mj , as follows:

t (x) = λ (a − b), 0 < λ ≤ 1, wherea = ‖mi−mj‖
2

andb = (x −mi)
mi−mj

‖mi−mj‖ .

The leader method is a pure distance-based algorithm that does not account for
density. The mountain method [13, 66] can be considered as an improved leader
approach in which local density is also taken into account. It finds first the most
representative pattern in order to be less dependent on the presentation order. Like
the k-means, leader algorithms can be used for sampling with a threshold t ′ � t to
give a number of representatives s � c.

The pioneering versions of distance-based methods, such as the leader family
approaches, are simple and fast but clearly limited. When improved, by taking
density into account [55], they become more relevant but their overall performance
depends on the way both concepts are associated and on the increased computational
cost.

The mountain method proposed by Yager and its modified versions [67] are good
representatives of hybrid methodologies as well as the recent work proposed by
Feldman et al. [18]. Density is managed by removing from the original set items
already represented in the sample.

3.2.3 Stratification Strategies

The stratification concept has been proposed to speed up algorithms with quadratic
or exponential time complexity. The idea is to divide the set into subsets, called
strata, that are processed, or sampled in our case, independently. The final sampling
is built from the union of the samples of each data set.

The main drawback of stratification methods stems from the splitting: it is done
randomly, with no prior knowledge about the data distribution. This does not ensure
that the most informative patterns are selected in each subset. This highlights the
importance of the final aggregation step. When each subset has been sampled, the
sampling can be reiterated on the union of the selected patterns to keep only the
most representative ones.

In the earliest versions the strata had the same size, collectively exhaustive and
mutually exclusive. As an example, Bagged clustering [14, 37] consists in running
a cluster method on each subset with the same number of clusters.
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Extensions have been proposed to work with non disjoint partitions, using
replication techniques [43]. These methods take density into consideration. Dense
areas are obviously represented in the strata while regions corresponding to noisy
data are likely to be diluted in the whole set of strata. This way, they have less
opportunity to be represented in the final set.

Stratification can be combined with boosting strategies [19]. The former speeds
up the process while the latter improves the sampling or clustering relevance.

Reservoir algorithms [63] are incremental and can be seen as a special case of
stratification approaches. They have been proposed to deal with dynamic data sets,
like the ones to be found in web processing applications.

Many variants exist. As examples [2] is adapted to handle heterogeneous data
distribution and [15] considers sampling with and without replacement.

Some studies have been done to adapt the size of the reservoir [3] and to propose
appropriate aggregation strategies. Density is explicitly managed in [33] using the
weighted k-means.

This short survey shows that sampling for clustering techniques have been well
investigated. Both concepts, density and distance, and the methods have reached
a good level of maturity. Some work deal with algorithm computational efficiency
[59], but only a few papers study the sample size [51, 60]. As far as we know, the
question of parameter tuning has not really been addressed. The new challenge is
to take the best of the available techniques and combine them in order to propose
a self-adaptive, data independent, and tractable algorithm able to process various
kinds of large data sets with a standard setting.

3.3 Common Concepts Shared by the Three Algorithms

The algorithms in the family are based on three concepts which are introduced in this
section. The farthest-first traversal concept comes to select the new representative as
the farthest from the representative in a given group. This distance property can be
used to optimize the algorithm thanks to the triangular inequality. The third common
point is that these algorithms yield a coreset.

3.3.1 The Farthest-First Traversal Item as a Representative

The algorithms introduced in this chapter are iterative algorithms that add a new
item to the sample at each loop, until a stopping criterion is met. They share the way
the new representative is chosen: this process, based on the distance, is also known
as the farthest-first traversal ( fft) algorithm. This concept has been used 30 years
ago to initialize the k-means algorithm [24, 56]. Sensitive to outliers, it has inspired
Arthur and Vassilvitskii [4] to propose kmeans++: new seeds are randomly chosen
with a probability proportional to their distance to already chosen ones.
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The proposed algorithms can be considered as fft improvements. The concept is
summarized in Algorithm 1.

Algorithm 1 fft algorithms: representative selection
1: Input: T = {xi}, i = 1 . . . , n

2: Output: S = {yj }, T (yj ), j = 1, . . . , s

3: Select an initial pattern xinit ∈ T

4: S = {y1 = xinit }, s = 1
5: repeat
6: for all xl ∈ T \ S do
7: Find dnear (xl) = min

yk∈S
d(xl, yk)

8: T (yk) = T (yk) ∪ {xl} {Set of patterns represented by yk}
9: end for

10: for all yk ∈ S do
11: Find dmax(yk) = max

xm∈T (yk)
d(xm, yk)

12: Store dmax(yk), xmax(yk) {where dmax(yk) = d(xmax(yk), yk)},
13: end for
14: {Select the farthest pattern from the representative in a given group.}
15: {The group, w, depends on the proposed algorithm: y∗ = xmax(yw).}
16: S = S ∪ {y∗}
17: until Stopping condition is met
18: return S, T (yj ), j = 1, . . . , s

Let T = {xi} be the input set of n multidimensional data, and S = {yj } the
size-s sample to be built, S ⊂ T . The set of patterns represented by yk is: T (yk) =
{xi | d(xi, yk) = min

j
d(xi, yj )}.

The first pattern can be randomly chosen or it can be computed as the farthest,
depending on the selected distance, from the minimum value in each input space
dimension. The latter makes the algorithm fully deterministic. After the initializa-
tion phase, the set S only counts this initial pattern, xinit (lines 3–4).

The main loop (lines 5–17) includes two steps. First, each unselected pattern,
x ∈ T \ S, is attached to the closest selected one in S (lines 6–9). At the first step,
T (y1) = T \{xinit }. Then, for each set T (yk), the algorithm searches for the farthest
attached pattern located at the distance dmax(yk) (lines 10–13).

The next selected representative, xw, is the farthest item chosen in a given group.
So, boundary patterns are first chosen instead of inner ones. This way, the selected
set spans the whole input space.

3.3.2 Optimization

Distance-based algorithms have an usual complexity of O(n2). This is not the case
for the proposal as the fft concept allows for some optimization. Many distance
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computations can be avoided thanks to the algorithm structure itself and by using
the triangular inequality.

For each of the s iterations, the first loop, lines 6–9, computes (n− s)n distances
while the second one, lines 10–13, calculates n more ones.

3.3.2.1 Reducing Time Complexity

These two loops can be combined in a single one, lines 2–12 in Algorithm 2. This
allows for only computing n − s distances to the new representative, y∗, at each of
the s iterations.

Algorithm 2 The first two loops are combined into a single one
1: while (ADD==TRUE) do
2: for all xl ∈ T \ S do
3: Compute d = d(xl, y∗)
4: if (d < dnear (xl)) then
5: Ty∗ = Ty∗ ∪ {xl}, Ty(xl ) = Ty(xl ) \ {xl}
6: dnear (xl) = d, y(xl) = y∗
7: end if
8: if (d > dmax(y∗)) then
9: xP = x(xs), YP = y∗

10: dmax(y∗) = d, x(y∗) = xl

11: end if
12: end for
13: Find a new representative y∗.
14: end while

The complexity is then O(ns), with s � n.
The number of distances to be computed is:

T =
n∑

l=s

(l − 1) = n (n− 1)

2
− s (s − 1)

2
(3.1)

The spatial complexity for this time optimization can be considered as reason-
able: n + 2s distances between the representatives are stored: n dnear (x)and s

dmax(y) as well as the corresponding elements, y for dnear (x), and x for dmax(y).

3.3.2.2 Using the Triangle Inequality

A given iteration only impacts a part of the input space, meaning the neighborhood
of the new representative. Moreover as the process goes on, the corresponding
induced volume decreases. This may save many distance calculations.
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Algorithm 3 The optimized version of the fft algorithm
1: Input: T = {xi}, i = 1 . . . , n, gr

2: Output: S = {yj }, {Tyj
}, j = 1, . . . , s

3: ADD=TRUE, Wt = n gr

4: Select an initial pattern xinit ∈ T

5: S = {y1 = y∗ = xinit }, s = 1
6: dnear (xi) = ∞, i = 1 . . . , n

7: while (ADD==TRUE) do
8: F = {Tyj

|d(yj , y∗) ≥ 2 dmax(yj )}
9: for all xl ∈ T \ {S ∪ F } do

10: if (dnear (xl) > 0.5 d(y(xl), y∗)) then
11: Compute d = d(xl, y∗)
12: if (d < dnear (xl)) then
13: Ty∗ = Ty∗ ∪ {xl}, Ty(xl ) = Ty(xl ) \ {xl}
14: dnear (xl) = d, y(xl) = y∗
15: end if
16: if (d > dmax(y∗)) then
17: xP = x(xs), YP = y∗
18: dmax(y∗) = d, x(y∗) = xl

19: end if
20: end if
21: end for
22: Find a new representative y∗
23: end while
24: return S, Tyk

∀k ∈ S

When a new representative in S has been selected, y∗, the question is: should
a given initial pattern, xi , be attached to y∗ instead of remaining in Tyj

? The
triangular inequality states: d(yj , y∗) ≤ d(xi, yj )+ d(xi, y∗). And, xi ∈ Ty∗ ⇐⇒
d(xi, y∗) < d(xi, yj ). So, if d(yj , y∗) ≥ 2 d(xi, yj ), xi remains in Tyj

, no change
needs to be made. Only two distances are needed to check the inequality, and discard
any further calculations in the case of no change. In our algorithm, there is no need to
check this inequality for all the initial patterns. For each representative, yk , dmax(yk)

is stored. If d(yk, y∗) ≥ 2 dmax(yk), meaning the furthest initial pattern from
yk remains attached to yk , this also holds ∀xi ∈ Tyk

. Then, these representatives
and their attached patterns are not concerned by the main loop of the algorithm
(Algorithm 3, line 8–9). When this is not the case, the same triangle inequality
provides a useful threshold. All xi ∈ Tyk

with dnear (xi) ≤ 0.5 d(yj , y∗) remain
attached to Tyk

(line 10).
To take advantage of the triangular inequality properties, the number of distances

between representatives to be stored is s(s − 1)/2.
The optimized version of the sampling algorithm is shown in Algorithm 3.
In the case illustrated in Fig. 3.1 y∗ = y4 is the farthest item in Group 1, x1,

and the closest representative from y1 is y3. The limits of the new group, Group 4,
are plotted in dashed lines. Group 3 is reduced and xi becomes the farthest element
from y3, and it is now labeled as x3. Similarly xj becomes x4.
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Fig. 3.1 Optimization
illustration

3.3.2.3 Estimating the Number of Computed Distances

The number of computed distances cannot be rigorously defined as it depends on
the data, but it can be however roughly estimated under some weak hypothesis.
Each iteration of this distance based algorithm impacts only the neighborhood
of the new representative. Let k be the number of neighbors to consider. The
number of distances to be calculated is (n − 1) at the first step, then the number
of representatives to take into account is min(k, s), and the number of patterns for
which the distance to the representatives has to be computed is only a proportion, δ,
of the set of the attached ones as the others are managed by the triangular inequality
properties. A value of δ = 0.5 seems to be reasonable. This means that a high
proportion of representatives are concerned at the starting of the algorithm but the
process then becomes more and more powerful when s increases compared to k.
The real number of computed distances can be estimated as follows:

C = (n− 1)+
n−1∑

i=s

min(k,s−i)∑

l=1

δ ∗ |Tyl
(i)| (3.2)

where |Tyl
(i)| is the number of patterns attached to representative l when i

representatives are selected.
To approximate C, one can consider that on average the representatives have a

similar weight ∀y, |Tyl
(i)| ≈ n/i. When the two cases, i ≤ k and i > k, are

developed, the approximation becomes:

C = (n− 1)+ δ

(
k+1∑

i=2

(i − 1)
n

i
+

n−k−2∑

i=s

k
n

i

)
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As
k+1∑
i=2

(i − 1) (n/i) ≤
k+1∑
i=2

(i) (n/i) and
n−k−2∑

i=s

k n
i
≤

n−k−2∑
i=s

k n
s
, an upper bound

of C can be defined as follows:

C ≤ (n− 1)+ δ
(
n(k − 1)+ k

n

s
(n− k − 2− s)

)
(3.3)

As an illustration, using n = 20,000, s = 250, k = 10, and δ = 0.6, the ratio of
the number of computed distances to the number of distances that would have been
calculated without the optimization procedure, as given in Eq. (3.1), is:

D = C

T
≤ 5%

This estimation is clearly confirmed by the experiments.
Under some reasonable assumptions, it can be estimated that most of distance

calculations can be saved by judiciously using the triangle inequality. This opti-
mization makes these algorithms very tractable.

3.3.3 Relationship to Coresets

The challenge of big data has aroused a new interest in sampling techniques. But the
idea is not new: vector quantization was introduced in the field of signal and image
processing to summarize a data distribution by a finite number of vectors [38].

More recently, the coreset framework introduced the idea of approximation
quantification: a subset is called a coreset of a whole set if solving the optimization
problem on the subset gives an ε-approximate solution on the whole input set.

This section aims to investigate whether there is a relationship between the
proposed fft algorithms and coresets.

This concept was initially analyzed by Agarwal et al. [1] for the geometric
approximation of point sets. Given a monotone measure function, μ, i.e., for S ⊆ T ,
μ(S) ≤ μ(T ), and given ε > 0, S ⊆ T is an ε-coreset for T with respect to μ, if
(1 − ε)μ(T ) ≤ μ(S). Typical measures include statistics about the set itself such
as diameter, width or the geometric shape enclosing T , e.g., the smallest enclosing
ball characteristics such as radius or volume.

They proved that this approximation can be obtained using a sample whose size
is independent of the number of points and only dependent on ε.

This concept has been extended to clustering applications [20]. The authors
proposed the following definition.

Definition 3.1 A set S, of s items, is an (k, ε)-coreset for a set T , of n > s items if:

(1− ε)CostT (C) ≤ CostS(C) ≤ (1+ ε)CostT (C) (3.4)
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where C = {c1, . . . , ck} is a set of k centers.

Let c∗i ∈ C be the closest center for a given xi ∈ T : d(xi, c
∗
i ) =

min
m∈1,...,k

d(xi, cm).

Similarly, let c∗′j ∈ C be the closest center for a given yj ∈ S: d(yj , c
∗′
j ) =

min
m∈1,...,k

d(yj , cm).

With the k-means algorithm, the two costs are:

• CostT (C) =
n∑

i=1
d(xi, c

∗
i )

• CostS(C) =
s∑

j=1
wj d(yj , c

∗′
j ), with wj = |T (yj )|, i.e., the number of items

from T whose closest point in S is yj .

When this definition only holds for the optimal number of centers, k, S is called
a weak coreset for T , otherwise, if it holds for any set C, it is called a strong coreset
for T .

Theorem 3.1 The proposed fft algorithms yield a (k, ε)-coreset.

Proof As yj also belongs to T , let d(yj , c
∗
i ) be the distance between the represen-

tative and its closest center computed from the whole set T .
One obtains ∀j ∈ S: d(yj , c

∗
i ) > d(yj , c

∗′
j ) if c∗i 
= c∗′j otherwise d(yj , c

∗
i ) =

d(yj , c
∗′
j ) then

s∑
j=1

wj d(yj , c
∗′
j ) ≤

s∑
j=1

wj d(yj , c
∗
i )

The triangle inequality yields: d(yj , c
∗
i ) ≤ d(x, yj )+ d(x, c∗i )

For a given j ∈ S: wj d(yj , c
∗
i ) ≤ wj dj +

wj∑
l=1

d(xl, c
∗
i ), dj = dmaxy(j) being

the maximum inner distance for group j .

Considering the whole set of the representatives:
s∑

j=1
wj d(yj , c

∗′
j ) ≤

s∑
j=1

wj d(yj , c
∗
j ) ≤

s∑
j=1

wj dj +
n∑

i=1
d(xi, c

∗
i ) then

CostS(C) ≤
s∑

j=1

wj dj + CostT (C)

The quantity
s∑

j=1
wj dj is the sampling cost, or the quantization distortion.

The triangle inequality also gives: d(x, c∗′j ) ≤ d(x, yj )+ d(yj , c
∗′
j )

then d(yj , c
∗′
j ) ≥ d(x, c∗′j )− d(x, yj )

For all the j groups, it gives:
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s∑
j=1

wj d(yj , c
∗′
j ) ≥

n∑
i=1

d(xi, c
∗
i )−

s∑
j=1

wj dj

Meaning:

CostS(C) ≥ CostT (C)−
s∑

j=1

wj dj

The final relation between the two costs is:

CostT (C)−
s∑

j=1

wj dj ≤ CostS(C) ≤ CostT (C)+
s∑

j=1

wj dj (3.5)

Dividing Eq. (3.5) by CostT (C), and then multiplying by CostT (C), yields:

⎛

⎜⎜⎜⎝1−

s∑
j=1

wj dj

CostT (C)

⎞

⎟⎟⎟⎠CostT (C) ≤ CostS(C) ≤

⎛

⎜⎜⎜⎝1+

s∑
j=1

wj dj

CostT (C)

⎞

⎟⎟⎟⎠CostT (C)

which is Eq. (3.4) with ε =
s∑

j=1
wj dj

CostT (C)
. ��

S is thus a (k, ε)-coreset for T , with ε equals the ratio of the sampling cost to the
whole cost. As there is no assumption about C, S is a strong coreset for T .

The sampling cost and, consequently, ε has a monotonic evolution with respect
to the granularity. A lower granularity tends to yield a higher sample size and adding
a new item to S decreases both w and d. This monotonic behavior may be locally
unchecked due to the random initialization and to the inner control mechanisms of
the two algorithms.

3.4 The Three Algorithms in the Family

Besides tractability tuning is of prime concern to the end user. The three proposed
algorithms are driven by a unique, and meaningful parameter. The sample size is
not a priori defined, it depends on the data structure.

The first two ones are called DIDES [53] and DENDIS [52] and combine distance
and density concepts. Their unique parameter is called granularity and labeled gr .
It impacts the S size, in that the lower the granularity the higher the number of
representatives. It is data independent, and is combined with the whole set cardinal-
ity, n, to define a threshold, n gr . This threshold has a different meaning for the two
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algorithms: it is the minimum size of a cluster one wants to have a representative in
DIDES while in DENDIS it is the minimum size for a group to be split.

The last one, ProTras [54], is only driven by the sampling cost.

3.4.1 DIDES: Distance First

In DIDES, distance is the dominant criterion and the new representative is the
farthest item from all the already selected ones. This ensures space coverage. The
threshold th is the minimum size, in the initial set, T , for a cluster one wants to
have representatives in S. A representative with fewer than th patterns attached
is called a poor representative. When the proportion of T whose representative is
a poor representative is high enough, the input space is homogeneously covered.
Then, the dmax evolution curve can be modeled to define the stopping criterion as a
distance threshold. Density is managed in a post-processing step to discard outliers
and consider the representation of connected areas.

3.4.1.1 Beginning of the Algorithm

The selection of a new representative, line 14 of Algorithm 1, is as follows:

yw = arg max
yk∈S

dmax(yk), y∗ = xmax(yw), MaxDmax = dmax(yw)

The new representative is chosen as the farthest from the representatives in the
group with the maximum inner distance. Boundary patterns are first chosen instead
of inner ones.

Figure 3.2 illustrates the first steps of our algorithm (blue triangles) with well-
structured data including clusters of various shapes and densities, and then shows
the input space is correctly spanned (red symbols).

The stopping criterion is not defined yet. Rather than the common number of
samples we introduce step by step, in the following sections, an adaptive threshold
on the MaxDmax distance.

3.4.1.2 The MaxDmax Evolution Properties

The MaxDmax criterion used for selecting a new representative is monotonically
decreasing. Unfortunately, the evolution curve, shown in blue in Fig. 3.3, does not
indicate any break-point that would serve as a stopping criterion. A proportion in the
decrease, with respect to the initial value, is not stable enough: the optimal threshold
is really data dependent.
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Fig. 3.2 DIDES: first steps
of the algorithm. Data
(yellow)—First selected items
(blue triangles)—Sample
points (red)

Fig. 3.3 Distance evolution
curves for the data in Fig. 3.2:
MaxDmax (blue),
MinDmax (red),
MinDmaxW (dashed green)
is similar to MinDmax when
the small cluster located at
(6, 0) has been removed

In the flat area, the number of samples is highly sensitive to the value of the
MaxDmax criterion. To ensure the representativeness, a cautious attitude would
be to set a small threshold value, but this would lead to a number of selected
samples higher than required to obtain the expected behavior. The challenge comes
to estimate an acceptable trade-off.

Based on the common definition for a cluster, i.e., a dense area separated from
another dense area by a sparsely populated zone, one needs to make sure that all
the clusters are represented by the selected data. The narrowest cluster is correctly
identified when the minimum of the dmax for all the representatives, hereafter called
MinDmax becomes equal to the smallest cluster dimension which is unknown.
Let’s make clear the item corresponding to the MinDmax is never selected as a
representative, only the one corresponding to the MaxDmax is added to the sample
set.
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Once this value has been reached, the algorithm samples only the inner cluster
structures. Defining the distance threshold according to the dmin evolution would
ensure a perfect data coverage. However, in the case of singular clusters of small
sizes, it would yield an over representation since the same distance needed for small
clusters would also be used for the large ones. This is illustrated by the MinDmax

evolution shown in red in Fig. 3.3.
When the small cluster located at (6, 0) in Fig. 3.2 has been removed, this curve,

MinDmaxW , is likely to provide valuable information, as shown with the dashed
green line in Fig. 3.3.

As no threshold can be identified, its estimation for a given data set is based
on a MaxDmax evolution model. But a new issue arises: how to characterize the
evolution stage that allows for building an accurate model?

Let MinCard be the minimum size, in the initial set T , for a cluster one wants
to have representatives in S. yk is labeled as a poor representative if |T (yk)| <

MinCard. This parameter can be set according to the initial data set size and the
desired granularity, MinCard = n gr .

Let P be the proportion of initial data represented by poor representatives:

P = 1

n

s∑

k=1

{
|T (yk)|, |T (yk)| < MinCard

}

P evolves from 0 to 1, when s is close to n. P is a function of s, it is nearly
monotonically increasing. It is getting positive as soon as an outlier, part of an
isolated small cluster or noise, has been selected as a representative. The idea is
then to threshold P to model the MaxDmax evolution curve. It is expected that a
wide range of P value yield a similar threshold.

When P has reached its desired value, meaning that this proportion of T is
represented in S by small sets, all the small clusters in T are represented in S

according to the MinCard parameter.

3.4.1.3 Estimating a Lower Bound of the Threshold

The MaxDmax curve has reached the flat area, and its evolution can be modeled
by a power function f (x) = axp. The representatives are now numerous enough
to make a robust estimation of the two parameters thanks to a least squares
minimization. The so-called asymptote value is used as a lower bound of the
threshold. The asymptote is characterized by small variations in f (x); it is reached
for sa such that:

f (sa)

f (sa + 1)
≥ (1− ε) (3.6)

where ε is a small positive value set to 0.001.



62 S. Guillaume and F. Ros

Taking the logarithm of Eq. (3.6) yields:

ln

(
x

x + 1

)
≥ ln(1− ε)

p
whichgives :sa = − 1

1− e
ln(1−ε)

p

Finally, tha = f (sa) = as
p
a .

3.4.1.4 An Adaptive Stopping Criterion

This lower bound of the distance threshold tha has been computed with a generic
configuration, defined by three hidden parameters: P = 0.2, ε = 0.001, and gr =
0.01. With this configuration, shapes in the original space are well represented in
the selected sample, whatever the data distribution and the noise amount.

To define the distance threshold that serves as a stopping criterion for the
algorithm, the data as well as the granularity input parameter are now considered.

The selected sample is analyzed according to a twofold point of view: the
dmax(yk) and the cardinality of the set attached to the sample, |T (yk)| for repre-
sentative, yk . Both distributions are used to define the threshold.

As the space is correctly covered, this is guaranteed by the P proportion for
gr = 0.01, outliers or noise representatives selected according to the distance
criterion are now quite isolated, meaning both dmax(yk) and |T (yk)| are low. Let
St = {yk| |T (yk)| < MinCard & dmax(yk) > tha} be a subset of representatives,
tha is the lower bound of the threshold and MinCard is now computed with the
user granularity. St includes small cluster representatives as well as outliers. The
objective is to define a threshold that allows for keeping the former while removing
the latter. The desired threshold, th, can be merely set as the average dmax over St :

th = mean
yk∈St

dmax(yk) (3.7)

Then, the algorithm iterates until this threshold is reached. If the user granularity
is higher than 0.01, no more iteration may be needed.

3.4.1.5 Post-Processing: Density Area Management

As the selection is only done according to the distance from already selected items,
density has to be taken into account with a twofold objective: remove noise points
that might have been selected, especially during the first steps of the process and
ensure dense area representativeness in the sample.

The first step is to remove noisy representatives. A threshold can be simply
defined from the St set introduced in the previous section:

Tn = mean
yk∈St

|T (yk)| (3.8)
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All the representatives with |T (yk)| < Tn are removed from S. The others are
kept, meaning that even if they do not have MinCard attached items they are not
considered as noise.

Then density specific management is based on groups defined as connected
areas. How to define a connected group of representatives? Representatives that
belong to the same group are closer, one to each other, than representatives that
belong to different groups. So, the group can be defined as the set of reachable
points, from one another, within a given distance. The problem is now to set the
threshold. It is based upon the distribution of distances between the representatives
and their nearest neighbor, d1nn(yk), and also on the dmax(yk) distribution. It is
worth mentioning the d1nn(yk) distances are updated at each iteration without any
extra calculation.

The d1nn(yk) distribution is filtered to only consider the potential connected pairs.
As the regions of space containing data are homogeneously covered, neighbors
separated by a distance higher than twice the MaxDmax cannot be part of the
same group. So, these values, d1nn(yk) > 2 MaxDmax, are not taken into account
to compute the basics statistics of the distribution: the average, d, and standard
deviation, σ , of the d1nn distribution, and let MaxD1nn be the maximum of the
distribution. The reachable threshold is defined as:

dr = min
(
d + 2σ,MaxD1nn

)
(3.9)

The density is considered at the group scale. A group, G, is characterized by
the number of representatives part of the group, G(s), and the number of patterns
attached to the group: G(t) = ∑

r∈G

|T (r)|.
Low density groups are removed. G is a small density group if G(t) <

MinCard.
High density group representation is enhanced. Let G(d) = G(t)

G(s)
be the G group

density, and let dg the average density for all the groups. A group G is a high density
group if G(d) > dg . The number of representatives in G is increased according

to the density ratio: s′ = G(s)
(

1− G(d)

dg

)
. The s′ new representatives in G are

randomly chosen.

3.4.1.6 DIDES: Illustration of the Whole Process

The main steps of the algorithm are illustrated in Fig. 3.4 with synthetic 2D-data,
40,000 items, structured in clusters of various shapes and densities to which an
important level of noise has been added.

The upper part of the figure shows the selected items at two evolution steps.
When the proportion P becomes positive (left), the space is not properly covered,
some important clusters are not represented, due to the noise. The right picture
corresponds to P > 0.2. Space coverage is now homogeneous, and the MaxDmax
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Fig. 3.4 The main steps of the DIDES sampling: P > 0 (top left), P > 0.2 (top right), Output
with gr = 0.001 (bottom left) and gr = 0.01 (bottom right)

evolution can be accurately estimated. The fitting curve equation is: y = 7.1 x0.59,
with R2 = 0.996.

The lower row of this figure shows the final results for two user granularity
settings: gr = 0.001 (left) and gr = 0.01 (right). The granularity is used
to compute the MinCard internal parameter which impacts the distance and
cardinality thresholds. In both cases, all the noisy representatives have been removed
by the density management post-processing and all the clusters are represented.
There are more representatives associated to the smaller granularity, even if both
cardinalities are similar. In the bottom left graph the connected groups are displayed
in distinct colors.

3.4.2 DENDIS: Density Representation

While the priority is given to distance in DIDES, in DENDIS density is of prime
concern while distance is controlled: the representative is chosen in the most
populated group. A constraint on the hyper volume induced by the samples avoids
over sampling in high density areas, thus keeping the sample size small. The
attraction basins are not defined using a parameter but are induced by the sampling
process.

The stopping criterion is also based upon density: the algorithm stops when there
are no more groups with a number of attached patterns higher than the threshold
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and with a maximum distance in the group high enough with respect to the whole
distribution.

The algorithm is made up of two steps. The first one, Algorithm 4, is based
on space density while taking into account distance notions. The second one,
Algorithm 5, can be seen as a post-processing step which aims at not selecting
outliers as representatives.

3.4.2.1 The Algorithm: Choice of the New Representative and Stopping
Criterion

This algorithm is called in line 14 of Algorithm 1.

Algorithm 4 DENDIS: the selection of the new representative
1: ADD=FALSE, K = 0.2, Wt = n gr

2: Sort y(1), . . . , y(s) with |Ty(1)
| ≥ . . . ≥ |Ty(s)

|
3: for all yk in S do
4: if (|Tyk

| < Wt ) then
5: break
6: end if
7: αk = max( Wt|Tyk

| ,K)

8: if (dmax(yk) ≥ αk dmax(yk)
yk∈S

) then

9: y∗ = xmax(yk)

10: ADD=TRUE, break
11: end if
12: end for

The already selected items, y, are sorted according to the cardinality of the set
of patterns they are the representative (line 2) and these sets, Tyk

, are analyzed
in decreasing order of weight. Each of them is split when two conditions are met
(lines 4 and 8). The first one deals with the number of attached patterns: it has
to be higher than the threshold, Wt = n gr . Without any additional constraint, the
representatives would tend to have the same number of patters attached, close to Wt .
This behavior would lead to an oversized sample in high density areas. Therefore,
the other condition is related to the density, controlled by the induced hyper volume.
At the beginning of the process, the dmax values are quite high, as well as the
cardinalities |Tyk

|. The fraction of minimum volume is then limited by an upper
bound, K . This allows for the space to be covered in an homogeneous way, the
dmax values tend to a lower mean with a lower deviation. In the last steps of the
process, αk dynamically promotes dense areas in order for the sample to reflect the
original densities: the larger the cardinality the smaller αk and thus the constraint
on the induced volume (line 7). The constant value, K = 0.2, has been empirically
defined from experimental simulations.
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Fig. 3.5 Impact of the induced volume constraint

Fig. 3.6 Zoom of the two densest clusters

Figure 3.5 illustrates the impact of the constraint on the induced volume
(Algorithm 4, line 5). The data (blue) are well structured in four clusters of
heterogeneous densities. The six first selected representatives are plotted in red,
while the following ones appear in black. The small groups, in the bottom part of
the figure, are denser than the others. The results for these two clusters are displayed
in a zoom version in Fig. 3.6, with and without this constraint.

Without the mentioned constraint, the new representatives are located in the
denser areas until the number of attached patterns become smaller than the Wt

threshold. When the constraint is active the number of representatives in the dense
area is limited by the induced volume. Density and distance are both useful to avoid
an over representation in dense areas.
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As previously explained, the new representative is chosen as the furthest attached
pattern, xmax(yk), for space covering purposes (line 9).

The process is repeated until there is no more set to split (line 4–5).

3.4.2.2 The Post-Processing Step

When all the s representatives are selected, the post-processing step, Algorithm 5,
discards outliers as representatives. As the new selected item is chosen as the
furthest from the ones which are already selected, the S set is likely to include some
outliers.

Algorithm 5 DENDIS: the post-processing algorithm
1: for all yi in S do
2: if (|Tyi

| ≤ Wn) then
3: S = S − {yi}, s = s − 1
4: end if
5: if (dmax(yi) > dmax(yi)

yi∈S

) then

6: yi = arg min
xl∈Tyi

d(xl, B) {B is the barycenter of Tyi
}

7: end if
8: Tyi

= {yi}
9: end for

10: for all xl ∈ T \ S do
11: Find dnear (xl) = min

yk∈S
d(xl, yk)

12: Tyk
= Tyk

∪ {xl}
13: end for

Two cases may occur.
In the first one (lines 2–3), when the representative is isolated, the number of

attached patterns is lower than or equal to the noise threshold |Tyi
| ≤ Wn, inferred

from the Tyk
distribution. Let T ′ = {Tyk

| |Tyk
| < |Tyk

|} be the reduced set of
representatives with a number of attached pattern less than the average, and let m,
σ , and min, the mean, standard deviation, and minimum of the |T ′|. The noise
threshold is defined as: Wn = max(m−2σ,min). The choice is then to remove this
representative labeled as noise.

In the other case, the outlier detection is based upon the induced volume: the
corresponding dmax is higher than average (line 5). In the post-processing phase, the
input space coverage is quite homogeneous: the mean can be used as a threshold. In
this case, the new representative is chosen as the closest to the barycenter, B, of the
set (line 6). This way of doing is similar to the usual practice: the representative is
set at the center of the dense areas, like in kernel and neighboring approaches. By
contrast, the proposal comes to select the representative at the border of the dense
area. Once at least a representative has been changed or removed, an update of the
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attached patterns is needed (lines 10–13), and to do this the sets of attached patterns
must be previously reset (line 8).

Even if DIDES and DENDIS look similar, with the same unique parameter and a
common reference to distance and density, they are very different in the way these
concepts are combined. DENDIS is able to deal with highly structured data while
DIDES is more suited to fit irregular shapes.

3.4.3 ProTraS: Based on the Sampling Cost

DIDES and DENDIS are powerful algorithms that manage in different ways distance
and density using in single user parameter, granularity. However, they also have
limitations. First, the meaning that this unique parameter conveys is not the same for
the two proposals, this may be an inconvenient from the user point of view. Second,
they use internal heuristics based on parameters inferred from the data. Although
the approach has been validated on a wide range of data sets with contrasted
characteristics, heuristics elimination is always advisable.

The fft-based algorithms yield coresets even if they were not designed with this
goal in mind. The objective of ProTras is to generate coresets.

3.4.3.1 Description of the Algorithm

The proposed sampling algorithm generates a (k, ε) coreset, S, for a whole set T .
The sampling cost plays a central role. The approximation level, ε, is the unique
parameter. It also serves as the stopping criterion: the algorithm ends when the cost
is below the threshold. Finally it is used to guide the sampling process itself: at each
iteration a new representative is added to the sample, in the group with the highest
probability of cost reduction. This tends to limit the sample size.

The algorithm is summarized in Fig. 3.7.
The representative is the farthest-first traversal item of a given group.
As the sampling cost in a given group, j , is proportional to both the number

of attached patterns, wj = |Tyj
|, and the maximum within group distance, dj =

dmax(yj ), the new representative is chosen in the group that is likely to best
contribute to the global cost, ε, reduction. The probability of cost reduction is a
combination of two basic probabilities: the first one according to the distance and the

Fig. 3.7 ProTraS: summary
of the algorithm

1. Add a new sample in the group with
the highest probability of cost reduction

2. Assign each pattern to the nearest sample
3. Compute Cost
4. If (Cost > CostParam) goto Step 1
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other one according to the number of attached patterns. Each of them is estimated
by normalizing the values by the maximum over all the groups.

For a given group, j , the probabilities are:

• Density-based probability: Pdens(j) = wj

max
i

wi

• Distance-based probability: Pdist (j) = dj

max
i

di

Both have the same meaning: the higher the value, the higher the expected
cost reduction. The probability of cost reduction is computed as the following

combination: PCostRed(j) = wjdj

max
i

(widi)
.

This probabilistic approach differs from greedy algorithms. For instance in
decision trees, the node to be split is the one with the highest gain. This requires
all the nodes to be tested, i.e., all the gains have to be computed. The probability
estimation tends to speed up the sampling process.

The algorithm is detailed in Algorithm 6.

Algorithm 6 The ProTraS algorithm
1: Input: T = {xi}, i = 1 . . . , n, ε

2: Output: S = {yj }, T (yj ), j = 1, . . . , s

3: Select an initial pattern xinit ∈ T

4: S = {y1 = xinit }, s = 1, T (y1) = {y1}
5: repeat
6: for all xl ∈ T \ S do
7: Find dnear (xl) = min

yk∈S
d(xl, yk)

8: T (yk) = T (yk) ∪ {xl} {Set of patterns represented by yk}

9: end for
10: MaxWD = 0, Cost = 0
11: for all yk ∈ S do
12: Find dmax(yk) = max

xm∈T (yk)
d(xm, yk)

13: Store dmax(yk), xmax(yk) {where dmax(yk) = d(xmax(yk), yk)}
14: pk = |T (yk)| dmax(yk)

15: if (pk > MaxWD) then
16: MaxWD = pk, yw = yk
17: end if
18: Cost := Cost + pk/n

19: end for
20: y∗ = xmax(yw)

21: S = S ∪ {y∗}, s = s + 1, T (ys) = {y∗}
22: Update Cost

{Remove the part due to former y∗ and add the two new costs, induced by yw and y∗}

23: until (Cost < ε)
24: return Cost , S, T (yj ), j = 1, . . . , s

The main loop, lines 5–23, includes two for loops. The first one is described
in Algorithm 1. The second loop is enriched compared to the previous version. It
also computes the combined probability according to |Tyk

| and dmax(yk) (line 14),
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identifies the group with the highest cost reduction probability (line 16), and updates
the global cost before splitting (line 18). The new representative is the farthest-first
traversal, y∗, of the group with the highest probability, represented by yw. To update
the current cost, the cost due to former y∗ is subtracted and the new costs, induced by
yw and y∗, are added. The cost is computed at each iteration without any additional
computational effort.

The algorithm uses, in line 18, a normalized distortion cost:

s∑
j=1

wj dj

n
, meaning

that the approximation, ε, is now a proportion of the whole normalized cost,
CostT (C)

n
. This new expression carries the same meaning for all the data, irrespective

of the data size.
This last algorithm is really simple as it is only driven by the sampling cost. The

stopping criterion is easy to understand and no post-processing is required contrary
to DIDES and DENDIS.

3.5 Algorithms’ Behavior: Common Properties and Some
Differences

As they are based on similar concepts, the three algorithms in the family share
common properties but they also have their own characteristics. The former and
the latter are studied in this section.

3.5.1 Common Properties

Some interesting properties shared by the three algorithms are illustrated using the
S1 data shown in Fig. 3.8.

This synthetic data set includes 3000 2D-points and was used in [30] under the
name A.set 1.

3.5.1.1 Little Sensitivity to Initialization

The first sample item is randomly chosen. This section aims to assess how this
unique random step impacts the sampling process.

This experiment is based upon the distance between a sample point in a given
ProTraS outcome and its nearest neighbor in another one. This distance is expected
to be low on average if the sampling process is only slightly impacted by the
initialization step.

Let S1 and S2 be two sample sets given by two runs with the same cost, and s1, s2
their corresponding sizes. For a given x ∈ S1, the distance with its closest neighbor,
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Fig. 3.8 The S1 data

Fig. 3.9 Sensitivity to
initialization, index
normalization with d for 1%
of the data

y ∈ S2 is dnn(x, y). The index used for the two sample set comparison is computed
as follows:

I (S1, S2) = 1

s1s2d

⎛

⎝
∑

x∈S1

dnn(x, y)+
∑

y∈S2

dnn(y, x)

⎞

⎠

where d is a normalization distance. This distance could be chosen as the average
distance between all points in both sets. But, in this case, the ratio would be quite
low and difficult to interpret. Instead, d is the mean radius of the hypersphere that
includes a given proportion of the data.

This index is averaged over 100 trials for a given cost. The results for S1 and d

computed for 1% of the data are plotted in Fig. 3.9.



72 S. Guillaume and F. Ros

A wide range of costs was studied. This experiment confirms that random
initialization has no critical influence on the results: even with small sample sets, till
s/t = 1%, the average distance between the neighbors of two different outcomes is
less than the radius of the sphere that includes 1% of the data.

As all the instances, including noise and outliers, are given the same importance,
this empirical result cannot be guaranteed for all the configurations. However, it is
widely confirmed by extensive experiments. In the most extreme cases, this radius
becomes the one that includes 5% of the data.

This is expected as there is only one random step. Making the algorithm fully
deterministic would require an extra iteration to select the first sample item as the
farthest from a virtual extreme pattern computed as the minimum (or the maximum)
over the data set in each dimension.

3.5.1.2 Robust to Noise

An increasing amount of uniform random noise (from 1 to 9%) was added to the
data. The new values were computed independently in each dimension, according
to the whole range of the given feature: noisej = minj +U [0.+1]∗(maxj −minj ).

Table 3.1 reports the sample size and the RI .
Noise clearly impacts the sampling: the sample size tends to increase with the

amount of noise, even if these results also include an initialization variation. RI

values show that the sampling algorithm is still able to identify and represent the
data structure even with a significant level of noise.

Table 3.1 Noise sensitivity:
sample size and RI , on S1
data, cost = 0.1

% noise Size s RI

0 3000 261 0.981

1 3030 272 0.972

2 3060 278 0.973

3 3090 300 0.986

4 3120 301 0.990

5 3150 317 0.980

6 3180 317 0.990

7 3210 326 0.982

8 3240 325 0.985

9 3270 333 0.963

μ 303 0.980

σ 25.1 0.009



3 A Family of Unsupervised Sampling Algorithms 73

3.5.1.3 Sample Size Mainly Dependent on Data Structure

The test consists in comparing the algorithm performances on the initial set and an
enriched similar one. The latter results from the aggregation of new patterns: each
data point was replicated k times, k = 2, . . . 20, with an additional uniform random
noise in the range [−0.1,+0.1]σj where σj is the standard deviation for feature j .
It is worth mentioning that the noise generation is distinct from the one used in the
previous section. The expected magnitude is lower as the goal is just to generate non
identical items. The sampling is applied with the same cost. In Table 3.2 the sample
size and the RI are given for the initial set and the enriched ones.

The sample size is significantly increased at the first step of the procedure due
to the additional noise: the data structure is significantly modified as the noise
is randomly defined for each input dimension. Then it tends to become more
stable. The sample size ranges from 261 to 397 while the whole size becomes
20 times bigger. This does not impact the results. Moreover, for the higher values
of k, between 30,000 and 60,000, the variation, from 371 to 397, is due to
the initialization of the k-means algorithm: the same results are obtained when
the duplication is done without additional noise. This experiment shows that the
outcome of ProTraS depends more on the data structure than on the data size.

Table 3.2 Data size
sensitivity: sample size and
RI , on S1 data, cost = 0.1

Size s RI

3000 261 0.987

6000 316 0.973

9000 331 0.980

12,000 338 0.977

15,000 347 0.983

18,000 354 0.970

21,000 363 0.980

24,000 357 0.981

27,000 366 0.979

30,000 371 0.980

33,000 368 0.983

36,000 377 0.991

39,000 374 0.981

42,000 386 0.980

45,000 376 0.985

48,000 382 0.985

51,000 388 0.986

54,000 394 0.975

57,000 397 0.977

60,000 379 0.986

μ 0.981

σ 0.005
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Due to the similar behavior of the two algorithms, the comparison with alterna-
tive sampling techniques carried out with DENDIS in [52] holds for ProTraS.

3.5.2 Some Differences

To investigate the algorithms’ behavior two synthetic data sets were designed. They
are spatially structured in clusters of various shapes and densities. The first one,
SD1, is made up of 3800 2D-points. The second one, SD2, is based on data widely
used by the scientific community [31], and includes 8000 2D-points. The input
density is quite homogeneous.

These data can be processed by the two algorithms with the same unique
parameter, granularity. The final distortion cost can be computed in both cases.
ProTraS can also be run with different cost values. The comparison between these
three algorithms can be based on the sample size, the sampling cost, and also on the
sample item locations.

As an example, the granularity gr = 0.007 is considered for the SD1 data. The
results obtained with DIDES and DENDIS are very different. The former yields a
sample set of 154 items and the corresponding cost is 0.122. These values become
224 and 0.086 with the latter. This is quite interesting: the relationship between cost
and granularity is not the same for the two algorithms. This is also expected because
granularity is combined with the data size to define a threshold, but this threshold is
not used in the same way in both cases, as recalled in the heading of Sect. 3.4.

A fair comparison cannot be based upon the granularity value: either the sample
size or the cost should be similar. The granularity value that gives with DENDIS
results close to those of DIDES with gr = 0.007 is gr = 0.013: 123 representatives
and the same cost of 0.122.

When ProTraS is run with this cost, the sample size is 128.
Figure 3.10 shows that the three algorithms behave in a comparable but distinct

way. DIDES ensures a space coverage without taking density into account. The
sample points are spatially distributed to fit data shapes. Using DENDIS the
representatives are located in high density areas. ProTraS, using the combined
probabilities, gives a trade-off between space coverage and density representation.
In high density areas, ProTraS uses fewer sample points than DENDIS but more
than DIDES. In more sparsely populated areas, it is the opposite.

For the SD1 data, with the same number of representatives, DENDIS yields a
lower cost than DIDES. This can be explained by the difference in their densities.
More representatives in high density zones decrease the global cost.

As the SD1 data set includes four connected subsets, a smart algorithm should
identify the same number of clusters. DBSCAN [17] was run on the whole data set
as well as on the ProT raS sample with a 0.1 cost. Figure 3.11 shows the silhouette
index [57] evolution according to the distance, d, that defines the neighborhood for
directly reachable points.
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Fig. 3.10 The three sampling algorithms with SD1 data

In both cases, either from the whole data set or from the sample, the optimal
number of clusters is clearly identified.

To get a global picture, these two algorithms were run for granularity values
ranging from 0.001 to 0.02, with 100 steps for the two data sets SD1 and SD2.
Density is more homogeneous in the SD2 data, as shown in Fig. 3.12. Both the cost
and the sample size were recorded. The cost evolution is shown in Fig. 3.13.

The difference in the cost values depends on the algorithm, with DIDES yielding
higher costs than DENDIS, but also on the data. With SD1, the gap between the
two curves increases with the granularity. When the density is more homogeneous,
the two sampling methods give more similar results as shown in the right part of
Fig. 3.13.

This can be explained by the evolution of the sample size, shown in Fig. 3.14.
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Fig. 3.11 Silhouette index
evolution with DBSCAN on
SD1 data

Fig. 3.12 ProTraS sampling
with SD2 data

Fig. 3.13 Cost vs granularity for SD1 and SD2 data
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Fig. 3.14 Size vs granularity for SD1 and SD2 data

Fig. 3.15 Cost vs Sample
size for the three algorithms
with SD1 and SD2 data

The DIDES sample size is lower than the DENDIS one for a given granularity.
The difference is greater with SD1 data. This seems to be in agreement with a higher
cost.

Even if granularity has a different meaning for each algorithm, the relationship
between the sample size and the cost is almost monotone, and the same for the three
algorithms as shown in Fig. 3.15. This result is expected as the three of them are
fft-like.

Some differences can be observed. DIDES is the least efficient in terms of
the cost size ratio, while ProTraS and DENDIS have a similar behavior. It is
worth mentioning that this comparable, or even better, result is gained with a very
simple algorithm, which specifically aims at a given cost approximation. No other
parameters, explicit or hidden, are needed.
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3.6 Conclusion

This chapter introduces a family of sampling algorithms that are based on distance
and density. These are iterative algorithms that share three concepts. First, the new
representative at a given iteration is the farthest-first traversal item in a given group.
This property allows for a time optimization that makes the algorithms really fast.
The third common concept is that they yield a coreset of the whole data. There are
three algorithms in the family. DIDES tends to cover the input space and DENDIS
aims to represent space densities, the probabilistic approach in ProTraS achieves a
trade-off between space coverage and density representation. The latter explicitly
builds a coreset.

The three of them have common properties. They show little sensitivity to
initialization as only the first sample item is randomly chosen and can be made fully
deterministic by starting from a virtual extreme point. They are robust to noise and
the sample size mainly depends on the data structure instead of the data size itself.
They are easy to tune as they are driven by a unique and meaningful parameter that
allows for a gradual representation of the data.

Numerical experiments show that they are really faster than competitive algo-
rithms and more efficient than alternative approaches. The reader may refer to the
original publications [52–54] for details.
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43. Machová, K., Puszta, M., Barčák, F., Bednár, P.: A comparison of the bagging and the boosting
methods using the decision trees classifiers. Comput. Sci. Inf. Syst. 3(2), 57–72 (2006)

44. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: In
5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

45. Menardi, G., Azzalini, A.: An advancement in clustering via nonparametric density estimation.
Stat. Comput. 24(5), 753–767 (2014)

46. Mitra, P., Murthy, C., Pal, S.: Density-based multiscale data condensation. IEEE Trans. Pattern
Anal. Mach. Intell. 24(6), 734–747 (2002)

47. Naldi, M., Campello, R.: Comparison of distributed evolutionary k-means clustering algo-
rithms. Neurocomputing 163, 78–93 (2015)

48. Nanopoulos, A., Manolopoulos, Y., Theodoridis, Y.: An efficient and effective algorithm
for density biased sampling. In: Proceedings of the Eleventh International Conference on
Information and knowledge Management, pp. 398–404 (2002)

49. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: Indexed-based density biased sampling
for clustering applications. Data Knowl. Eng. 57(1), 37–63 (2006)

50. Palmer, C.R., Faloutsos, C.: Density biased sampling: an improved method for data mining
and clustering. In: ACM SIGMOD Intl. Conference on Management of Data, Dallas, pp. 82–
92 (2000)

51. Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel genetic
algorithm with k-means. Knowl.-Based Syst. 71, 345–365 (2014)

52. Ros, F., Guillaume, S.: Dendis: A new density-based sampling for clustering algorithm. Expert
Syst. Appl. 56, 349–359 (2016). https://doi.org/10.1016/j.eswa.2016.03.008

53. Ros, F., Guillaume, S.: Dides: a fast and effective sampling for clustering algorithm. Knowl.
Inf. Syst. 50, 543–568 (2016). https://doi.org/10.1007/s10115-016-0946-8

54. Ros, F., Guillaume, S.: Protras: a probabilistic traversing sampling algorithm. Expert Syst.
Appl. 105, 65–76 (2018). https://doi.org/10.1016/j.eswa.2018.03.052

55. Ros, F., Pintore, M., Deman, A., Chrétien, J.: Automatical initialization of RBF neural
networks. Chemom. Intell. Lab. Syst. 87(1), 26–32 (2007)

56. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M. II.: An analysis of several heuristics for the
traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

57. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

58. Sarma, T., Viswanath, P., Reddy, B.: Speeding-up the kernel k-means clustering method:
a prototype based hybrid approach. Pattern Recognit. Lett. 34(5), 564–573 (2013)

59. Sarma, T.H., Viswanath, P., Reddy, B.E.: Speeding-up the kernel k-means clustering method:
a prototype based hybrid approach. Pattern Recognit. Lett. 34(5), 564–573 (2013)

60. Tan, S.C., Ting, K.M., Teng, S.W.: A general stochastic clustering method for automatic cluster
discovery. Pattern Recognit. 44(10), 2786–2799 (2011)

61. Tax, D., Duin, R.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1016/j.eswa.2016.03.008
https://doi.org/10.1007/s10115-016-0946-8
https://doi.org/10.1016/j.eswa.2018.03.052


3 A Family of Unsupervised Sampling Algorithms 81

62. Viswanath, P., Sarma, T., Reddy, B.: A hybrid approach to speed-up the k-means clustering
method. Int. J. Mach. Learn. Cybern. 4(2), 107–117 (2013)

63. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)
64. Wang, X., Wang, X., Wilkes, D.M.: A divide-and-conquer approach for minimum spanning

tree-based clustering. IEEE Trans. Knowl. Data Eng. 21(7), 945–958 (2009)
65. Xiao, Y., Liu, B., Hao, Z., Cao, L.: A k-farthest-neighbor-based approach for support vector

data description. Appl. Intell. 41(1), 196–211 (2014)
66. Yager, R.R., Filev, D.P.: Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst.

2, 209–219 (1994)
67. Yang, M.S., Wu, K.L.: A modified mountain clustering algorithm. Pattern Anal. Appl. 8(1–2),

125–138 (2005)
68. Zahra, S., Ghazanfar, M.A., Khalid, A., Azam, M.A., Naeem, U., Prugel-Bennett, A.: Novel

centroid selection approaches for kmeans-clustering based recommender systems. Inf. Sci. 320,
156–189 (2015)

69. Zhong, C., Malinen, M., Miao, D., Fränti, P.: A fast minimum spanning tree algorithm based
on k-means. Inf. Sci. 295, 1–17 (2015)



Chapter 4
From Supervised Instance and Feature
Selection Algorithms to Dual Selection:
A Review

Frédéric Ros and Serge Guillaume

4.1 Introduction

For classification problems there is a target concept we wish to learn about and
this concept is represented in each instance as a dependent variable having finitely
many values called the class. The goal of classification is therefore to construct
a model from instances with known class values, called the training dataset, to
predict which class an instance should belong to in view of its observed attribute
values. In some cases the induced classification model, or classifier, is simply used
to make class predictions for instances with unknown class values. In supervised
learning, a training set providing previously known information is used to classify
new instances. Commonly, several instances are stored in the training set but
some of them are not useful for classification purposes; therefore, it is possible to
obtain acceptable classification rates while ignoring non-useful cases; this process
is known as instance selection. Through instance selection [13, 77] the training set
is reduced, which also reduces runtimes in the classification and/or training stages
of classifiers.

Over recent decades, database sizes have grown considerably. Big data is
characterized by an increase in the volume, velocity, and variety of the data. From a
technical point of view, big data are required for cleaning, analyzing, securing, and
providing a granular access to massive datasets. Big data present new challenges,
because machine learning algorithms were not designed to process such large
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volumes of information. The application of classical algorithms is much more
difficult and scalability is a major concern. With regard to instance selection, the
solutions that have been proposed so far to deal with big data problems adopt the
divide and conquer approach. Instance selection methods can alleviate this problem
when the size of the dataset is medium to large. However, even these methods face
similar problems with very large-to-massive datasets.

In addition to larger sizes, big data usually conducted by various fields of science
may contain hundreds of features. As most of these features have no relevance with
data mining tasks, they are redundant. The related experts can pick out the useful
features, but it may be a difficult and time-consuming task, especially when the
data pattern is not clear. Missing relevant features or leaving irrelevant features are
both harmful for real applications. It can make the mining algorithm useless. In
addition, the presence of irrelevant or redundant features will increase the storage
space, which not only slow down the mining process, but also impoverishes the
quality of the discovered knowledge poor.

The challenge of data reduction is in fact dual as feature and instance selection
are closely related. Depending on the subset of instances considered, the relevant
features may change. Different subsets of features may yield to different subsets
of relevant instances. To be useful, data reduction methods need to address both
instance and feature selection. This strategy achieves a considerable reduction in
the training data while maintaining, or even improving, the performance of the data-
mining algorithm. The need consists in simultaneously selecting relevant features,
and in cleaning the database by reducing the number of patterns. There are two
difficulties: The first one is to find trade-offs between removing too many correct
patterns and leaving some small overlap among classes. The second difficulty is
that it suffers from a high degree of scalability problems, even for medium-sized
datasets. Evaluation of all the solutions via greedy approaches is impracticable in
many cases. Feature selection has been far more investigated than instance selection,
and few algorithms have been presented that could cope with the particular problem
of dual selection.

This chapter deals with the data reduction problem for instance and feature
selection methods in the context of supervised classification. Selection for regres-
sion tasks (see [59] and [8]) has been largely investigated but is not addressed
in this chapter. Many studies related to instance and feature selection separately
are available. Simultaneous selection approaches are specific but often involve
techniques or strategies developed for single selection. In this chapter, we review
single selection algorithms as well as dual selection. Particular attention will be
paid to solutions that can be scalable.

The remainder of the chapter is organized as follows: An overview of supervised
sampling and feature selection methods is provided in Sects. 4.2 and 4.3. Section 4.4
is dedicated to dual selection. Approaches dealing with simultaneous feature and
instance selection are presented as well as pseudocodes of popular and more recent
methods.
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4.2 Supervised Instance Selection Algorithms

Instance reduction is a task in which the input is the set of all data and the output
is a subset of inputs. This means instance reduction consists in choosing a subset of
the total available data to achieve the original purpose of a data mining application
and it works as if the whole data is used. There are numerous instance selection
methods for classification. The goal of an instance reduction method is to obtain
a subset S ⊂ T such that it does not contain any superfluous instances, i.e.,
noisy or redundant data and acc(S) ≈ acc(T ), where acc(X) is the classification
accuracy obtained using X as a training set. It can use various strategies such as
boosting, sampling, prototype selection, and active learning. It has been found that
instance selection not only reduces the size of the dataset, but it also improves
the dataset quality by selecting outlying, noisy, contradictory, or simply unhelpful
instances. Instance selection has also been applied to both regression and time series
prediction. For example, the decrease instance size for kNN regression (DISKR)
algorithm [93] allows decreasing the size of the training set for k nearest neighbors
(kNN) regression. It first removes the outlier instances that impact the regressor
performance, and then sorts the remaining instances by the difference on output
among instances and their nearest neighbors.

4.2.1 Overview of Supervised Instance Selection

Depending on the order in which instances are processed, instance selection meth-
ods can be classified into five categories. If they begin with an empty set and they
add instances to the selected subset, analyzing the instances in the training set, they
are called incremental. Decremental methods, on the contrary, start with the original
training dataset and they remove those instances that are considered superfluous or
unnecessary. Batch methods are those in which no instance is removed until all of
them have been analyzed; instances are simply marked for removal if the algorithm
determines that they are not needed, and at the end of the process only the unmarked
instances are kept. Mixed algorithms start with a preselected set of instances. The
process then decides either to add or to delete the instances. Finally, fixed methods
are a sub-family of mixed ones, in which the number of additions and removals
are the same. This approach allows them to maintain a fixed number of instances
(more frequent in prototype generation). Considering the type of selection, three
categories may be distinguished. The criterion is mainly correlated with the points
that they remove: either border points, central points, or otherwise. Condensation
techniques try to retain border points. Their underlying idea is that internal points
do not affect classification, because the boundaries between classes are the keystone
of the classification process. Edition methods may be considered the opposite of
condensation techniques, as their aim is to remove those instances that are not
well-classified by their nearest neighbors. The edition process achieves smoother



86 F. Ros and S. Guillaume

boundaries as well as noise removal. The edition nearest neighbors (ENN) algorithm
by Wilson [98] represents this algorithm family. Between these two approaches are
hybrid algorithms, which try to maintain or even to increase the accuracy capability
of the dataset by removing both internal and border points. Evolutionary approaches
for instance selection have shown remarkable results in both reduction and accuracy.
However, their main limitation is their computational complexity. Many techniques
have proven to be successful. Finally, most of them are content to employ more or
less sophisticated heuristics that simply search a prohibitively large solution space.

The process of instance selection (see [42] for a comparison of popular
approaches and [77] for a recent review) was first used for instance based classifiers,
such as k-nearest neighbors (k-NN ) and is based on k-nearest techniques [12].
Using these approaches, faster and less costly classifications were obtained by
maintaining only certain necessary instances in the classifier’s dataset. Pioneering
works were carried out by Hart [48], Ritter et al. [84], Gatesgates1972reduced,
and Wilson [98]. That is, because instance based classifiers perform calculations
for each instance of a dataset every time a new classification is to be made, a
smaller dataset would require a smaller amount of memory storage and a fewer
number of calculations. The goals of the first instance selection algorithms were
therefore to select the minimum number of instances required to maintain the
current classification accuracy of a dataset. Condensed nearest neighbor (CNN)
rule by Hart [48] starts a new dataset from one instance per class randomly chosen
from the training set. After that each instance from the training set that is wrongly
classified using the new dataset is added to this set. This procedure is very fragile
with respect to noise and the order of presentation. Reduced nearest neighbor (RNN)
by Gates [38] follows the same concept while starting from the original training set
and rejecting only those instances that do not decrease accuracy. Instance Based
(IB) methods [2] are proposed; they are incremental methods, IB1 relates to the
1-NN rule; IB2 selects the instances misclassified by 1-NN (as CNN); IB3 is an
extension of IB2 where a classification record is used in order to determine the
instances to be retained. This corresponds to instances such that their deletion
does not impact the classification accuracy. Iterative case filtering (ICF) that was
proposed by Brighton and Mellish [13] is based on the concept of local set (see
algorithm 5 ). Other methods related to k-NN are those proposed by Wilson and
Martinez [99], namely the family of decremental reduction optimization procedure
(DROP ) methods from DROP1 to DROP5. These methods are based on the
concept of associates combined with that of nearest neighbors. The relation of
associate is the opposite of nearest neighbor: an instance p that has q as one of its
nearest neighbors is referred to as an associate of q. The set of nearest neighbors of
one instance is called neighborhood. Then, the associates of an instance p are those
instances such that p is one of their k nearest neighbors. The set of associates for
each instance is a list with all instances that have that particular instance in their
neighborhood. DROP1 discards an instance p from T if the associates of p in S are
correctly classified without p; through this rule, DROP1 discards noisy instances
since the associates of a noisy instance can be correctly classified without it but in
DROP1, when the neighbors of a noisy instance are first removed, then the noisy
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instance will not be discarded. In order to solve this problem, DROP2 is similar
to DROP1 but the associates of an instance are searched in the whole training set,
that is, p is deleted only if its associates in T are classified correctly without p.
DROP3 and DROP4 first discard noisy instances using a filter similar to ENN

and then they apply DROP2. DROP5 is based on DROP2 but it starts discarding
the nearest enemies (nearest instances with a different class) in order to smooth
the decision boundaries. Another way to find suboptimal solutions is the sequential
search approaches. A decremental algorithm was proposed in [73]. Floating search
methods [82] are more efficient but also more computationally expensive, the
idea being the hybridization of forward and backward selections. They consist in
applying after each forward/backward step a number of backward/forward steps
as long as the quality subsets are better than the previously evaluated ones. The
restricted floating object selection (RFOS) [74] method was proposed by the same
authors to reduce the excessive computing time of these approaches by restricting
the floating process. Local Density-Based Instance Selection (LDIS) [19] and
eXtended Local Density-Based Instance Selection (XLDIS) [18] algorithms have
been recently proposed. They evaluate the instances of each class separately and
keep only the densest instances in a given neighborhood. These algorithms are
simple and their performance in terms of the balance between accuracy and
reduction is comparable to that of the other popular algorithms. Compared to
LDIS, XLDIS selects the instances that have the highest local density ordering
in their k partial neighborhood (kPN ). It avoids the inclusion of identical instances
that have a high local density. XLDIS keeps a list of instances that can be avoided.
Then XLDI does not need to check if they should be analyzed as candidates in
the selection process, thereby reducing the lower computational time. In addition to
the popular algorithms above, it should be mentioned that evolutionary algorithms
which are a more usual process for dual selection (see Sect. 4.4.1) have also been
used for instance selection as recently in [27]. They are rather efficient but less
tractable than more classical methods.

4.2.1.1 Random Approaches and Genetic Algorithms

In addition to traditional approaches, it is worth mentioning that the majority of
instance selection methods for training set selection can find an acceptable set of
training instances utilizing random search with evolutionary algorithms[35, 60].
Evolutionary algorithms are a popular search technique because they are capable
of taking into consideration the particular bias of a specific classification algorithm,
and as such, lead to a good selection of training instances for that classifier. Most
instance selection methods for training set selection are designed for neural net-
works and decision trees, but can be adapted for a variety of different classification
algorithms that learn a classification scheme from a training dataset. More details are
given in Sect. 4.4, on dual selection. Recently, a genetic-based prototyping algorithm
[65] has been developed to obtain optimal prototype from images regarding the
problem of image annotation. Then, for a given query image, its neighbor images
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are retrieved from the optimal prototype gained, and its candidate tags are generated
using methods such as voting.

4.2.1.2 Instance Selection and Graph

The decision tree classifier is another popular choice for training set instance
selection because unhelpful instances in the decision tree’s training dataset cause the
structure of the tree to grow unnecessarily [71, 89]. This overfitting problem defeats
the purpose of the decision tree by hiding or confusing the discovered knowledge
in a large and uninterpretable tree structure that has poor generalization abilities.
Performing instance selection often results in a smaller and more interpretable tree,
an indication that the unhelpful instances have not been selected. In [11, 15], the
strategy consists in evolving the instances contained in a subset of the training
dataset in the hopes of finding a collection of instances that adequately describe
the full dataset. Endou and Zhao [30], as well as Cano et al. [17], evaluated the
fitness of the selected training dataset through the construction and evaluation of
a decision tree from the training dataset, and both of these methods are successful
in reducing decision tree size while still maintaining acceptable, if not improved,
levels of accuracy.

4.2.1.3 Performances via Reduction

Instance selection not only reduces the size of the dataset, but it also improves the
dataset quality by selecting not to maintain outlying, noisy, contradictory, or simply
unhelpful instances [77, 89, 106]. As a consequence of instance selection’s ability
to improve the quality of a dataset, it is now increasingly also being used to select
good training datasets for learning a classification model, such as with the decision
tree or neural network classifiers. This area of instance selection is different than
early methods used for instance based classifiers because the goal is no longer data
reduction but it is rather to maximize classifier accuracy. However, a good selection
of instances for an instance based classifier may not lead to the best training dataset
for another type of classifier, indicating that methods that incorporate the intended
classifier in the learning process are warranted [75, 76]. Then, using the intended
classifier in instance selection procedures can be beneficial because instances that
obscure an advantageous structure or relationships with respect to the classifier’s
bias can be removed. This makes learning good boundaries between class values
easier for the classifier. Therefore, with the majority of instance selection algorithms
being developed for instance based classifiers, effort should be made to develop
instance selection algorithms that are applicable to other classification methods used
in practice.



4 From Supervised Instance and Feature Selection Algorithms to Dual. . . 89

4.2.2 Popular Algorithms

In this section, the pseudocodes of several popular algorithms are provided. Methods
based on evolutionary algorithms are not included as these methods are conceptually
close to the ones presented for dual selection in Sect. 4.4.2.

Wilson edition as a pioneer Edition nearest neighbors (ENN) algorithm is
presented in algorithm 1. It follows a decremental process based on the k nearest
rule. Let k be the number of nearest neighbors and {x(1), x(2), . . . , x(n−1)} be the
permutation of the elements of X \ {x}, such that:

||x(1) − x|| ≤ ||x(2) − x|| ≤ . . . ||x(n−1) − x|| (4.1)

The k-nearest neighbors of the x item are the set defined as:

N(x) = {x(1), x(2), . . . , x(k)} (4.2)

The training set T = [X,C] includes Xn,p and Cn,1 that are, respectively,
the data matrix (n patterns in a p-dimensional space) and the corresponding class
column vector label of dimension n. ENN acts on T as a noise filtering to provide
the output S = [X′, C′] (Xn′,p and Cn′,1), where n

′ ≤ n.

Algorithm 1 ENN [98]
1: Input: training set T (data and labels), k (number of nearest neighbors)
2: Output: S (selected subset S ⊂ T )
3: S = T

4: for all (x ∈ T ) do
5: Find N(x), the k nearest neighbors of x {Eq. (4.2)}
6: Compute Ĉ(x), the most frequent label in N(x), (C(x) is the category of x)
7: if C(x) 
= Ĉ(x) then
8: S =S\{x} {if x is misclassified using its k nearest neighbors, it is removed from S.}
9: end if

10: end for

Note that there are several extensions such as the Multi-Edit (the process of
ENN is repeated as long as any changes are made in the selected set) and citation
editing algorithms [29].

Instance based learning (IBL) algorithms classify instances based on the
classification of their most similar neighbors. IB3 [2] is an incremental algorithm
that improves the preliminary versions 1 and 2. It deals with noise, keeps only good
classifier data points, and discards instances that do not perform well. Instance x

from the training set is added to a new set S if the nearest acceptable instance in S

has a different class to x. An acceptable instance y is when Ca(y) the ratio between
the number of instances correctly classified and the total number of instances
classified with y (Ca(y) = correct[y]/classif ied[y]) is more than a threshold θ1.
If there are no acceptable instances a random one is used. IB3 employs a “wait and
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see” evidence gathering method to determine which saved instances are expected to
perform well during classification. IB3 maintains a classification record related to
the past classification performance of each instance. Information for each instance y

is the number of classifications done as well as the correct ones giving Ca(y). IB3
also uses a test based on a threshold θ2 to determine which instances are believed to
be noisy. If (Ca(y) < θ2), y is removed from S.

Algorithm 2 IB3 [2]
1: Inputs: T (training data with label), s (similarity function),θ1 (threshold acceptable), θ2

(threshold significantly bad)
2: Output: S (selected subset S ⊂ T )
3: S = ∅

4: for all (x ∈ T ) do
5: correct[x]=0, classified[x]=0
6: for all (y ∈ S) do
7: Sim(y) = s(x, y) (similaritybetweenyandx)
8: end for
9: if (S = ∅) then

10: S = S ∪ {x}
11: GOTO: 4 {at the first iteration S = ∅}
12: end if
13: if (∃y ∈ S | Ca(y) ≥ θ1 then
14: ymax = argmax

y
(Sim(y)) {(the most similar y from x among the acceptable y)}

15: else
16: Select ymax randomly in S as the most similar instance to x

17: end if
18: if (C(x) = C(ymax)) then
19: Classif ication = 1
20: else
21: Classif ication = 0
22: S = S ∪ {x} (x becomes a potential selected instance)
23: end if
24: for all (y ∈ S \ {x}) do
25: if (Sim(y) � Sim(ymax)) then
26: correct[y] = correct[y] + Classif ication

27: classif ied[y] = classif ied[y] + 1
28: Ca(y) = correct[y]/classif ied[y] {Update y’s classification record}
29: if (Ca(y) < θ2) then
30: S = S \ {y} {y is considered as noisy}
31: end if
32: end if
33: end for
34: end for

The DROP3 algorithm, the most powerful one in the DROP family method, is
presented in algorithm 3. Let us define A(x) as the associate of x:

A(x) = {y | x ∈ N(y)} (4.3)

where N(y) defines the nearest neighbors of y.
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A(x) is then the set of instances for which instance x is one of the k nearest
neighbors. DROP3 starts the process by running the ENN algorithm. In the first
step, line 5, as y ∈ N(x) x is added to A(y). But the converse does not hold. The
purpose of line 9 is to add y to A(x) because x ∈ A(y) but x /∈ N(y). This situation
is illustrated in Fig. 4.1. Then the idea is to remove instance x from the training set
if its presence does not improve or change the classification of instances from A(x).
The algorithm is incremental and modifies at each step the associate and neighbor
sets of the remaining instances.

Algorithm 3 Drop3 [99]
1: Input: T (training set with label), k (number of nearest neighbors)
2: Output: S (selected subset S ⊂ T )
3: S = ENN(T,k) {Algorithm 1 Noise filtering}
4: for all (x ∈ S) do
5: A(x) = {y | x ∈ N(y)} {Eq. (4.3), set of associates of x}
6: end for
7: for all (x ∈ S) do
8: for all (y ∈ A(x)) do
9: N(y) = N(y) ∪ {x}

x�N(y)

{Add x to each of its neighbors’ list of associates}

10: end for
11: end for
12: for all (x ∈ S) do
13: let Awith(x) = {y ∈ A(x)|C(y) = Ĉ(x)} {list of associates of x classified correctly with x

as a neighbor}
14: Awithout (x) = {y ∈ A(x)|C(y) = Ĉ(x),N(y) = N(y) \ {x}} {list of associates of x

classified correctly without x}
15: if (|Awithout (x)| ≥ |Awith(x)|) then
16: S = S \ {x} {remove x from S}
17: for all (y ∈ A(x)) do
18: N(y) = N(y) \ {x} {Remove x from y’s list of nearest neighbors}
19: find u = argmin

z∈S\N(y)

(d(y, z)) {Find a new nearest neighbor for y}

20: N(y) = N(y) ∪ {u} {add u to the neighbor list of y}
21: for all (z ∈ N(y)) do
22: A(z) = A(z) ∪ {y} {Add y to its new neighbor’s list of associates}
23: end for
24: end for
25: end if
26: end for
27: return S

The Fast Condensed Nearest Neighbor (FCNN ) rule algorithm (see algo-
rithm 4) is based on the Voronoi cell concept. FCNN selects points very close to
the border decision. It is independent of the order, and has a quadratic complexity.
S is a training set consistent subset of T for the NN rule if for each element x of S,
V orEn(x, S, T ) is empty. V orEn(x, S, T ) is the set of Voronoi enemies of x in T

with respect to S.
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Fig. 4.1 Neighbors and
associates

V orEn(x, S, T ) = {y ∈ V or(x, S, T ) | C(x) 
= C(y)} (4.4)

where V or(x, S, T ) is the set of the elements of T that are closer to x than to any
other element of S. V or(x, S, T ) is a general notion that can be adapted through
the k nearest neighbors rule. The algorithm initializes the subset S with a seed
element from each class label of the training set T . The centroid of each class is the
instance which is closest to the geometrical center of the class region. The algorithm
is incremental. During each iteration of the algorithm, for each point x in S, the set
of points y of T belonging to the Voronoi cell of x but having a different class label
(i.e., V orEn(x, S, T )) is selected and added to the subset A. The algorithm stops
when A is empty meaning that no further point can be added to S, that is, when T is
correctly classified using S, i.e., all instances in T are correctly classified using S.

Algorithm 4 FCNN [6]
1: Input: T (training set with label)
2: Output: S (selected subset S ⊂ T )
3: S = ∅

4: A = ∅

5: for all (label l) do
6: L = {x| C(x) = l}
7: y = argmin

x∈L

(d(x, gc(L))) {gc(L) is the geometric center of L}

8: A = A ∪ {y}
9: end for

10: while (A 
= ∅) do
11: S = S ∪ A

12: A = ∅

13: for all (x ⊂ S) do
14: A = A∪V orEn(x, S, T ) {Eq. (4.4). Add the enemies of x located in its Voronoi region}
15: end for
16: end while

Iterative Case Filtering (ICF ) was proposed by Brighton and Mellish [13]. The
key concept is the local set (LS) for an instance x, LS(x). It is the set of items in
the same class of x located in the largest homogeneous hypersphere centered on x.
Let ne(x) be the nearest neighbor of x with a different label, i.e., the nearest enemy
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of x:

ne(x) = argmin
x′ | C(x′) 
=C(x)

d(x, x′) (4.5)

The distance between x and ne(x) is the radius of the hypersphere that defines
the local set:

LS(x) = {x′ ∈ T | d(x, x′) < d(x, ne(x))} (4.6)

The LS is used to define the coverage of an instance x: coverage is the set of
elements that include x in their LS.

cover(x) = {x′ ∈ T | x ∈ LS(x′)} (4.7)

The first step of the algorithm consists in removing noise from the neighborhood
using the Wilson Edition algorithm (Algorithm 1). Then the algorithm iteratively
removes items for which |LS(x) | ≥ |cover(x)|. The idea is to keep only the
instances that are useful to another one.

Algorithm 5 ICF [13]
1: Input: T (training set with label), k (number of nearest neighbors)
2: Output: S (selected subset S ⊂ T )
3: S = ENN(T , k) {Algorithm 1. Noise filtering}
4: repeat
5: for all (x ∈ S) do
6: LS(x) {Eq. (4.6)}
7: cover(x) {Eq. (4.7)}
8: Rem[x] = false
9: end for

10: progress = False
11: for all (x ∈ S) do
12: if (|LS(x)| � |cover(x)|) then
13: Rem[x]=true
14: Progress = true
15: end if
16: end for
17: for all (x ∈ S) do
18: if (Rem[x]=true) S = S \ {x}
19: end for
20: until Progress = false

The Local Set-based Smoother (LSSm) algorithm [62] is an Edition method
based on the notion of usefulness (u(x)) and harmfulness (h(x)) of a given instance
x. u(x) is the number of instances having x among the members of their LSs and
h(x) is the number of instances having x as the nearest enemy:
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u(x) = |LS(x)| (4.8)

where LS(x) is the Local Set of x.

h(x) = |{y | ne(y) = x}| (4.9)

where ne(x) is the enemy class of x. The idea behind the algorithm (see
algorithm 6) is that a harmful instance misclassifies more instances than those that
it correctly classifies. The key point is that the algorithm focuses on the influence
of the instance in the neighborhood rather than the influence of the neighborhood
for the instance. The algorithm consists in removing instances with a harmfulness
greater than a usefulness. In contrast to most editing techniques, the methods avoid
removing instances close to the border if the border is smooth. This is due to their
closeness to instances of the other classes. On the contrary, it is likely to remove
noisy instances or overlapped instances as they generally have a large harmfulness
and a very low usefulness.

Local Set Border Selector (LSBo) is an instance selection algorithm derived
from LSSm. The heuristic criterion of LSBo relies on the fact that instances which
are near the class borders tend to have smaller LSCs than those located farther away.
An instance is a border instance if it has a local set cardinality among the members of
its local set. Then, the LSs in T’ (T ′ = LSSm(T )) are computed, and the instances
are sorted in ascending order by their LSC. Due to this sorting, the loop below starts
processing the instances which are closer to the class boundaries. The loop verifies
for each instance x in T if any member of its LS is contained in S, thus ensuring
the proper classification of x. If that is not the case, x is included in S to ensure its
correct classification.

Algorithm 6 LSSm [62]
1: Input: T (training set), k (number of nearest neighbors)
2: Output: S (selected subset S ⊂ T )
3: S = ∅

4: for all (x ∈ T ) do
5: Compute LS(x) {Eq. (4.6)}
6: end for
7: for all (x ∈ T ) do
8: Compute u(x) {Eq. (4.8)}
9: Compute h(x) {Eq. (4.9)}

10: if (u(x) ≥ h(x)) then
11: S = S ∪ {x}
12: end if
13: end for
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Algorithm 7 LSBo [62]
1: Input: T (training set), k (number of nearest neighbors)
2: Output: S (selected subset S ⊂ T )
3: S = ∅

4: T ′ = LSSm(T ) {Algorithm 6}
5: for all (x ∈ T ′) do
6: Compute LS(x) {Eq. (4.6)}
7: end for
8: Sort T ′ according to |LS(x)| in increasing order
9: for all (x ∈ T ′) do

10: I = LS(x) ∩ S

11: S = S ∪ I

12: end for

LDIS is an incremental algorithm that adopts the notion of local density
Dens(x, P ):

Dens(x, P ) = − 1

|P |
∑

y∈P

d(x, y) (4.10)

where d is a given distance.
This definition was kept in the algorithm description to be in line with the original

algorithm. The proposed formalism is however questionable as a density is not
negative.

LDIS also adopts the concept of partial neighborhood Np. Np(x) is the set
of the k nearest neighbors of x that has the same class of x. Let TC(x) =
{y | y ∈ T

C(x)=C(y)

}. Np(x) is obtained in a similar way to N(x) considering TC(x) as

the reference set instead of T (TC(x) ⊂ T ).

Np(x) = NTC(x)(x) (4.11)

N(x) being the neighborhood set of x regarding its k nearest neighbors.
LDIS analyzes the instances of each class separately. It preserves only the

densest instances in a given neighborhood. It verifies, for each x of a given class
l, if there is some instance y ∈ Np(x) (Eq. (4.11)), such that its density is superior
to that the one of x (related to class l). If this is not the case, this means that x is the
locally densest instance in its partial k-neighborhood and, due to this, x is included
in S.
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Algorithm 8 LDIS [19]
1: Input: T (training set with label), k (number of nearest neighbors)
2: Output: S (selected subset S ⊂ T )
3: S = ∅

4: for all (label l) do
5: for all (x | C(x) = l) do
6: FoundDenser = False

7: for all (y ∈ Np(x)) {Eq. (4.11) } do
8: T l = {z ∈ T | C(z) = l}
9: if (Dens(x,T l) � Dens(y,T l) then

10: FoundDenser = T rue {Eq. 4.10, Dens(x,T l) local density of x limited to y ∈
T l}

11: end if
12: if (foundDenser is False) then
13: S = S ∪ {x}
14: end if
15: end for
16: end for
17: end for

4.2.3 Large Scale Instance Selection

The main drawback of instance selection methods is their complexity that is
quadratic o(n2), where n is the number of instances or, at best, log-linear o(n log n);
thus, the majority of them are not applicable in datasets with hundreds or even many
thousands of instances. Over the last few years, different approximations have been
used to try to adapt instance selection methods to big/huge datasets.

4.2.3.1 State of the Art

One approach to deal with massive datasets is to divide the original problem into
smaller subsets of instances, a process known as stratification. The underlying
idea of these methods is to split the original dataset into disjoint subsets, then
an instance selection algorithm is applied to each subset. Many state-of-the-art
algorithms are due to Spanish teams [16, 25, 26]. One of the main interest of a
stratification process is as follows. For an O(n2) instance selection algorithm, if
the dataset is divided into ns subsets of size s, ns = n/s, the algorithm must be
applied ns times. The complexity of a stratification approach is highly reduced
as O(ns (̇s

2)) � O(n2). The very first stratification proposal [16] consisted in
splitting the original dataset into disjoint strata (groups or sets of instances) with the
same class distribution as the original one. The scaling-up benefits can be tuned by
varying the size of each stratum. Moreover, the stratification process is suitable for
boosting any other method. These preliminary works were improved in [34]. Divide
and conquer algorithms are also commonly used in the instance selection area. The
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principle underlying these algorithms [92] can be simply stated: if the problem
posed by a given input is sufficiently simple, it is solved directly; otherwise, it is
decomposed into independent subproblems, the subproblems are solved, then the
results are composed. The process of decomposing the input problem and solving
the subproblems gives rise to the term “divide and conquer” although “decompose,
solve, and compose” would be more accurate. This concept was applied in [25]
to manage instance selection (see algorithm 10). The study in [53] proposed a
method based on a recursive application of instance selection to smaller datasets.
The dataset is subdivided recursively into smaller subsets to filter out the less useful
internal points. The prototypes which result from each subset are then coalesced,
and processed again by the instance selection algorithm to yield more refined
prototypes. After the recursive subdivision, the smaller subsets are reduced with any
traditional instance selection algorithm. The resulting sets of prototypes obtained
are, in turn, gathered and processed at the higher level of the recursion to yield more
refined prototypes. This sequence of divide-reduce-coalesce is invoked recursively
to ultimately yield the desired reduced instances. In this manner, prototypes which
are in the interior of the Voronoi spaces, and are thus ineffective in the classification,
are eliminated at subsequent iterations of the instance selection algorithm. A direct
consequence of eliminating the “redundant” samples in the computations is that
the processing time is significantly reduced. One useful way to accelerate instance
selection methods and to be able to cope with massive datasets is to adapt them
to parallel environments [26]. To do so, the way that algorithms work has to be
redesigned. The MapReduce paradigm offers a robust framework with which to
process huge datasets over clusters of machines. Recently, two novel algorithms
based on locality-sensitive hashing (LSH-IS-S and LSH-IS-F) presenting a o(n)
complexity were proposed [8]. They make a particular use of hash functions. As a
recall, hash functions present any functions that can be used to map data of arbitrary
size to data of a fixed size. The idea with hashing is to turn a complex input value
into a different value which can be used to rapidly extract or store data. LSH is used
to find similarities between instances. The principle consists in making the instance
selection on each of the buckets (results) that will be obtained by LSH when applied
to all instances. LSH-IS-S completes the selection process in a single pass, analyzing
each instance consecutively. It processes instances in one pass, so not all instances
need to fit in memory. LSH-IS-F performs two passes: in the initial one, it counts the
instances in each bucket; in the second, it completes the instance selection with this
information. Both algorithms can be seen as incremental methods, due to the fact
that the selected dataset is formed by successive additions to the empty set. However,
the second one conforms more closely to batch processing because it analyzes the
impact of the removal on the whole dataset.

4.2.3.2 Popular Algorithms

This section provides the pseudocode of popular instance selection algorithms that
are scalable.
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Democratic Instance Selection [34] is based on repeating several rounds r of a
fast instance selection process. In each round, a partition splits the whole dataset into
different disjoint subsets, also called bins. Different approaches are possible. The
one-dimensional grand tour method [9] with several simplifications is suggested
in the democratic algorithm. Each round on its own would not be able to achieve
a good performance. However, the combination of several rounds using a voting
scheme is able to match the performance of an instance selection algorithm applied
to the whole dataset while considerably reducing the runtime of the algorithm. The
algorithm updates an array of votes by increasing them by one if the instance has
been selected. After performing a predefined number of rounds, the array of votes
is used to determine, by means of a threshold, which instances should be either
selected or removed. As the threshold of vote v cannot be preestablished (depending
on the specific dataset) it is selected directly from the dataset in runtime by taking
into account two criteria: training error, εt , and storage, or memory, requirements m.
Both values must be minimized. A criterion f (v) is defined, which is a combination
of these two values:

f (v) = αεt (v)+ (1− α)m(v) (4.12)

where m is measured as the percentage of instances retained, εt is the training
error, and α is a value in the interval [0, 1] that measures the relative relevance of
both values. After r rounds, each instance obtains a number of votes. The criterion
f (v) is processed for all the possible threshold values (in the range [1, r]) obtained
in the different rounds. v is assigned to the value that minimizes the criterion.

The idea of the Divide and Conquer algorithm in [25] consists in splitting the
whole dataset into disjoint sets. After the first batch of sets has been processed, the
instances selected by the algorithm are joined, and the process starts again. This
recursive instance selection proceeds until a certain reduction is achieved or any
other stopping criterion is met. Fixing a number of iterations as stopping criterion
for every dataset is possible but difficult. It depends on the specific features of each

Algorithm 9 Democratic instance selection [34]
1: Input: training set T , number of rounds r , threshold th, instance selection algorithm A

2: Output: S (selected subset S ⊂ T )
3: for all (rounds r) do
4: Process ti | ∪ ti = T { Divide instance to ns disjoint subsets ti of size.}
5: for all (subsets t i of size ns ) do
6: si = A(ti) {Apply A to ti}
7: Store votes of ti \ si {removed instance from ti}
8: end for
9: end for

10: th = argmin
v∈[1,r]

f (v) {Eq. (4.12) threshold of votes to remove an instance}

11: R = {x ∈ T | votes(x) ≥ th }
12: S = T \ R {Remove from S all the instances having votes ≥ th}
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problem. Thus, a cross-validation approach can be used. The training set is divided
into two parts, using one of them for performing the instance selection algorithm and
the other one for obtaining the validation error. The number of iterations is obtained
as the last iteration before the validation error starts to grow.

Algorithm 10 Divide and conquer [25]
1: Input : the training set T , instance selection algorithm A, size s, stopping criterion
2: Output: the selected subset S (S ⊂ T )
3: S = T

4: Compute all ti | ∪
i

ti = T {Partition instances into disjoint subsets ti of size s}

5: repeat
6: for all (ti ∈ S) do
7: si = A(ti) {Apply A to ti}
8: S = S \ ti ∪ si {Remove from S instances removed from ti}
9: end for

10: Compute all ti | (∪
i
ti ) = S with ti = (∪

j
sj ) and |ti | ≈ s {Fusion subsets sj to obtain new

subsets ti of approximatively size s}
11: until stopping criterion

The Federal Algorithm in [26] presents a methodology for scaling up instance
selection algorithms by means of a parallel procedure that performs instance selec-
tion on small subsets of the original dataset. The concept has some similarities with
the democratic instance selection algorithm [34]. The idea consists in performing r
partitions in disjoint subsets, so all instances are included exactly in r subsets. An
instance selection algorithm (that is a parameter of the method) is applied to each
subset concurrently. As for the democratic algorithm, the grand tour is suggested
to generate the partition. The algorithm can be launched in parallel as most of the
tasks can be performed concurrently reducing its complexity. As a key point for
huge datasets, there is no need to have the whole dataset in memory. The instances
that are selected to be removed receive a vote. After all the tasks are finished, the
instances which have received a number of votes above a certain threshold are
removed. As for the democratic selection algorithm, the election of the number of
votes is based on two different criteria (Eq. (4.12)): training error εt , and storage, or
memory, requirements m.

The criterion is evaluated in a federal way. These subsets are sent to the slaves
which perform an evaluation of f (v) for the subset using cross-validation and return
the evaluation to the master. The master records the evaluations made by each slave
and assigns the fitness, f (v), averaged by the slaves to each possible value of v.
Then, it assigns v to the value which minimizes the criterion. After that the instance
selection is performed removing the instances whose number of votes is above or
equal to the obtained threshold v.
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Algorithm 11 Federal selection [26]
1: Input: Training set T , subset size s,number of rounds r , Instance algorithm A, number of

processors pr

2: Output: the selected subset S (S ⊂ T )
3: for all (rounds i) do
4: Compute ti [j ]

j∈[1,ns ]
| ∪

j
ti [j ] = T {Divide instances into ns disjoint subsets for each round i}

5: end for
6: Initialization: i = 1 and j = 1 {i refer to the round index, j refers to the subset index}
7: * start the process by initiating a first task to each slave (processor)*
8: for all (processors pr ) do
9: Master task: send subset ti [j ] to one Slave l

10: Slave task: si [j ] = A(ti [j ]) {Apply A and send A(ti [j ]) \ si [j ] to Master}
11: if (j = ns ) then
12: j = 1 and i = i + 1
13: end if
14: j = j + 1
15: end for
16: *Continue the process of sending tasks to slaves until all ti are managed*
17: repeat
18: Master task: Wait for a result for one slave w among pr to finish
19: Master task: Store results from w { i.e. tiw [jw] \ siw [jw] the set of removed instances, iw

and jw being the w indexes}
20: if (More subsets to process) then
21: Master task: Send Subset ti [j ] to Slave w

22: Slave Task (w): process si [j ] = A(ti [j ]), and send A(ti [j ]) \ si [j ] to the Master {the
removed instances from w}

23: if (j = ns ) then
24: j = 1 and i = i + 1
25: end if
26: end if
27: j = j + 1
28: until (all ti [j ] are performed: i = r and j = ns{Master has received all the results from its

slaves})
29: Apply the parallel loop (line 6 to 26) to perform ε and m {Each slave receives the removed

instances and processes ε and m}
30: Master task: process f (v)

v∈[1,r]
31: th = argmin

v∈[1,r]
f (v) {Equation 4.12 threshold of votes to remove an instance}

32: R = {x ∈ T | votes(x) ≥ th }
33: S = T \ R {Remove from S all the instances having votes ≥ th}

4.3 Feature Selection Algorithms

The problem in feature selection (FS) can be easily stated as the search for a
sufficiently reduced subset of, say, s features out of the total number of available
ones, p, without significantly degrading (or even improving in some cases) the
performance of the resulting classifier when using either set of features [44]. This
search problem is driven by a certain measure of performance or criterion function
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which is used to assess the validity of each feature subset. This criterion has
to be related to the final performance measure of the resulting classifier, i.e., its
recognition rate. There are many potential benefits of variable and feature selection:
facilitating data visualization and data understanding, reducing the measurement
and storage requirements, reducing training and utilization times, defying the
curse of dimensionality to improve prediction performance. Feature selection has
been a fertile field of research since the 1970s in statistical pattern recognition,
machine learning, and data mining, and widely applied to many fields such as
text categorization, image retrieval, customer relationship management, intrusion
detection, and genomic analysis. Feature selection is a process that selects a subset
of original features. The optimality of a feature subset is measured by an evaluation
criterion. As the dimensionality of a domain expands, the number of features p

increases. The goal consists in constructing and selecting subsets of features that
are useful to build a good predictor. This contrasts with the problem of finding or
ranking all potentially relevant variables. Selecting the most relevant variables is
usually suboptimal for building a predictor, particularly if the features are redundant.
Conversely, a subset of useful features may exclude many redundant, but relevant,
features. Finding an optimal feature subset is usually intractable and many problems
related to feature selection have been shown to be NP-hard. For most problems it
is computationally intractable to search the whole space of possible feature subsets.
One usually has to settle for approximations of the optimal subset. Most of the
research in this area is devoted to finding efficient search-heuristics.

4.3.1 Preliminaries: Basics of Information Theory

This section gives some elements of information theory on which many of the
state-of-the-art algorithms related to feature selection are based. More details and
theoretical concepts can be found in [14].

4.3.1.1 Entropy

The entropy of a discrete random variable X with probability mass function (pmf)
pX(x) measures the expected uncertainty in X.

H(X) = −
∑

x

p(x)log(p(x)) (4.13)

where p(x) is the probability mass function. When X is discrete p(x) is simply
the ratio between the number of instants with x and the total number of instants.
Dealing with feature selection problems, the features within these datasets have
different characteristics, being binary, discrete or categorical, or continuous. The
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continuous features in feature selection approaches are generally discretized into δ

intervals, using different methods [100].
In the case of continuous random variables, the summation is replaced by a

definite integral and one talks about probability density function (pdf).
H(X) is approximately equal to how much information is learnt on average from

one instance of the random variable X. Entropy is always non-negative H(X) ≥ 0
and H(X) = 0 iff X is deterministic.

With two random variables X, Y jointly distributed according to the pmf p(x, y)

H(X, Y ) = −
∑

x,y

p(x, y) log(p(x, y)) (4.14)

H(X, Y ) is named the joined entropy.
The conditional entropy of X given Y is

H(X|Y ) = −
∑

x,y

p(x, y) log(p(x|y)) (4.15)

4.3.1.2 Mutual Information

The concept of mutual information is intricately linked to that of entropy of a ran-
dom variable. It quantifies the “amount of information” obtained about one random
variable through observing the other random variable The mutual information I
between two discrete random variables X, Y jointly distributed according to p(x, y)

is given by

I (X, Y ) = −
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
(4.16)

I (X, Y ) = H(X)−H(X|Y ) = H(Y)−H(Y |X) = H(X)+H(Y)−H(X, Y )

(4.17)
I (X, Y ) is always positive.

4.3.1.3 Conditional Mutual Information

Let X, Y,Z be jointly distributed according to some p.m.f. p(x, y, z). The condi-
tional mutual information between X, Y given Z is

I (X, Y |Z) = −
∑

x,y,z

p(x, y, z) log
p(x, y|z)

p(x)p(y|z) (4.18)
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4.3.1.4 Other Usual Notions

Let SF be a set of selected features and fi a feature candidate. Feature redundancy
R(fi, SF ) is defined as the summation of the mutual information between a feature
candidate fi and each of the selected features.

Rf (fi, SF ) = β
∑

fj∈SF

I (fi, fj ) (4.19)

where β is a normalization factor (|F |).
Feature relevancy R(fi, C) expresses the relevance of fi related to a class

vector C.

Rf (fi, C) = I (fi, C) (4.20)

This notion can be extended to the relevancy of a subset of m features related
to C.

Rf ({f1 . . . fm}, C) =
∑

i∈[1,m]

∑

∀S⊆{f1...fm},|S|=i

I (S ∪ C) (4.21)

where I (S ∪ C) = I (f1, . . . fi)
(i<m)

Interaction information is defined as follows:

I (fi, Y, fj ) = I (fi, Y )+ I (Y, fj )− I (Y, fi, fj ) (4.22)

where I (Y, fi, fj ) is the joint mutual information between Y and (fi ,fj ).

4.3.2 Overview of Feature Selection

There exists a vast amount of literature on feature selection [4, 63] as it is central in
many areas involving classification problems [24]. It remains an open research area:
feature selection is a difficult problem not only because of the large search space,
but also because of feature interaction issues. Feature selection methods are often
classified into two main categories (filter and wrapper) and two peripheral ones
(hybrid and embedded). Filtering approaches [56] aim at selecting features inde-
pendently of the learning algorithm. The wrapper approach uses a criterion that is
dependent on the performances of the learning algorithm. The wrapper approaches
considered in [55] are globally better but only at great computational expense. They
aim at making the model performance estimation more reliable while improving
the discrimination accuracy. Hybrid approaches attempt to take advantage of the
two models by exploiting their different evaluation criteria in different search
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stages and using different techniques (see [23, 50, 52, 72]). Embedded approaches
are more specific. Feature selection is intrinsic to the learning algorithm, which
simultaneously learns the classifier and chooses a subset of features. Recently,
other types of feature selection approaches such as ensemble feature selection and
clustering-based feature selection methods have attracted researchers. In the big data
context, data stream solutions are sometimes needed and hence online streaming
feature selection. In [105], the authors present a method based on an adaptive density
neighborhood relation, named OFS-density. Using the neighborhood rough set
theory, OFS-density does not require the domain information before learning. A new
adaptive neighborhood relation using the density information of the surrounding
instances is presented. No parameters need to be specified in advance. The method
can select features with a low redundancy using the fuzzy equal constraint.

4.3.2.1 Filtering and Wrapper Methods

A filter method selects subsets of variables as a preprocessing step, independently
of the classifier used. It is based on the idea of relevance. Basically, the problem
is to find the feature subset of minimum cardinality that preserves the information
contained in the whole set of features with respect to the class variable C. This
problem is usually solved by finding the relevant features and discarding redundant
and irrelevant features. Filter methods are usually fast but not optimized as they
are not related to a classifier. Many filter feature selection algorithms are based on
information theory [14] and can handle high-dimensional datasets since they are
fast and efficient. There are two main categories: ranking and subset techniques.
The idea of ranking techniques is to order features according to importance scores
that can be statistic, probabilistic, or even related to classification scores. Based
on the use of different classifiers, it is shown in [70] that there is no best ranking
index for different datasets and different classifiers accuracy. The function of the
number of features used may significantly differ. The only way to be sure that the
highest accuracy is obtained in practical problems is by testing a given classifier on a
number of feature subsets, obtained from different ranking indices. With filter-based
feature subset techniques, one evaluates the importance of each feature and selects
a subset of relevant features. Measures can be correlation-based, distance-based,
and consistency-based measures. For the second scores, the underlying techniques
are rank search, best first search, and genetic search. Many supervised models have
been proposed. Some algorithms as in [46, 54, 57] remain popular even though old.
Correlation-based feature selection (CFS) is a subset selection method, and mainly
uses heuristic approaches to evaluate the effect of a single feature corresponding
to each category in order to obtain an optimal feature subset. ReliefF is extended
from relief to support multiclass problems. Its main idea is to take Euclidean
distance as the correlation index and then weight features according to how well
they differentiate instances of different classes.

The idea behind wrapper methods is to select features according to the predictive
power of a classifier when using the subsets. This means that the results are



4 From Supervised Instance and Feature Selection Algorithms to Dual. . . 105

correlated to the classifier but are also dependent on it. The most problematic
weakness is the requirement of a large amount of computation. One needs to define
the way to search the space of all possible variable subsets and how to assess the
prediction performance. A wide range of heuristic search strategies can be used. The
most classical are forward and backward selections as well as hybrid strategies. In
forward selection, one starts with an empty feature set and adds features at each step.
In backward elimination, one starts with a full feature set and discards features at
each step. Wrapper feature selection methods also include genetic algorithms (GA)
[41], ant colony optimization (ACO) [1], particle swarm optimization (PSO) [5],
and successive feature selection (SFS). The predictive power is usually measured
on a validation set or by cross-validation. Note also in [40] a feature selection
algorithm based on the FOA algorithm (forest optimization algorithm) [39] that has
been adapted to discrete space.

In [64] a unifying platform is proposed for feature selection and generic
algorithms for filter (algorithm 12), wrapper (algorithm 13), and hybrid methods
(algorithm 14) are provided enabling a better understanding of dedicated algorithms.
Filter algorithms are based on the following process. Given a training dataset T

(F = {f1, . . . , fp}) being the feature set), the algorithm starts the search from a
given subset SF0 (an empty set, a full set, or any randomly selected subset) and
searches through the feature space by a particular search strategy. Each generated
subset S is evaluated by an independent measure M and compared with the previous
best one. If it is found to be better, it is regarded as the current best subset. The search
iterates until a predefined stopping criterion is reached. Typically, an independent
criterion (without a mining algorithm) is used in algorithms of the filter model
to evaluate the goodness of a feature: distance measures, information measures,
dependency measures, and consistency measures. The stopping criterion can be
related to the following items:

1. The search completes.
2. Some given bound is reached, where a bound can be a specified number

(minimum number of features or maximum number of iterations).
3. Subsequent addition (or deletion) of any feature does not produce a better subset.

Wrapper algorithms are based on the same process except that the measure M is
replaced by a mining algorithm A. The stopping criterion is generally related to the
classification result: A sufficiently good subset is selected (e.g., a subset may be
sufficiently good if its classification error rate is less than the allowable error rate
for a given task).

4.3.2.2 Hybrid and Embedded Methods

Hybrid methods are based on strategies aiming at reaching the twofold objective
of an efficiency comparable to that of wrapper methods and computation time
comparable to that of filter ones [32]. They have received much attention as novel
feature selection methods. In hybrid methods, a common way is to apply filter
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Algorithm 12 Generic filter [64]
1: Inputs: the training set T (F = {f1, ..., fp}), initial subset SF0 , independent measure M , δ a

stopping criterion
2: Output: the selected feature subset SF (SF ⊂ F )
3: Initialize SFbest

= SF0

4: γbest = Eval(SF0 , T ,M) {Evaluate SF0 by M .}
5: while (δ is not reached) {δ is related to M} do
6: SF =Generate(T,SFbest ) {generate a subset for evaluation}
7: γ = Eval(SF , T ,M) {evaluate the current subset by M .}
8: if (γ ≥ γbest ) then
9: γbest = γ

10: SFbest = SF

11: end if
12: end while
13: SF = SFbest

Algorithm 13 Generic wrapper [64]
1: Inputs: the training set T (F = {f1, ..., fp}), initial subset S0, Mining algorithm A, δ a

stopping criterion
2: Output: the selected feature subset SF (SF ⊂ F )
3: Initialize SFbest = SF0

4: γbest = Eval(SF0 , T ,A) {Evaluate SF0 by A}
5: while (δ is not reached) do {δ is related to A}
6: S=Generate(T , SFbest ) {generate a subset for evaluation}
7: γ = Eval(SF , T ,A) {evaluate the current subset by A}
8: if (γ ≥ γbest ) then
9: γbest = γ

10: SFbest = SF

11: end if
12: end while
13: SF = SFbest

approaches as a preprocessing step and wrapper ones to finish the task. In [50],
candidate features are first selected from the original feature set via computationally
efficient filters. The candidate feature set is further refined by more accurate
wrappers. In [7], the hybrid algorithms are based on the combination of a wrapper
FS and rank-based filter methods. The wrapper FS is itself based on a binary
differential evolution (BDE) algorithm [81].

Embedded methods are specific to a given classifier as the variable selection
is implicitly integrated in the training process. These methods typically work by
including in the objective function of the learning algorithm a sparsity-inducing
regularizer or prior. These methods tend to be more computationally efficient than
wrappers because they simultaneously integrate modeling with feature selection.
This can be done, for instance, by optimizing a two-part objective function with a
goodness-of-fit term and a penalty for a larger number of features. As with wrappers,
the features selected by embedded methods are induction algorithm dependent.
Embedded models embedding feature selection with classifier construction have the
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advantages of wrapper models as they include the interaction with the classification
model and the advantages of filter models as they are far less computationally
intensive than wrapper methods. Methods can be roughly divided into three different
approaches: The first are pruning methods that first utilize all features to train a
model and then attempt to eliminate some features by setting the corresponding
coefficients to 0, while maintaining model performance. The second are models
with a built-in mechanism for feature selection such as the C4.5 [86] algorithm. The
third are regularization models with objective functions that minimize fitting errors
and in the meantime force the coefficients to be small or to be exact zero. Features
with coefficients that are close to 0 are then eliminated. Examples include Lasso,
Elastic Net, and various decision tree based algorithms, e.g., CART, C4.5, and most
recently, XGBoost [20, 94].

Algorithms 12 and13 are hybridized in a novel sequential forward hybrid
algorithm (Algorithm 14) as follows: In each round for a best subset with cardinality
c, it searches through all possible subsets of cardinality c+ 1 by adding one feature
from the remaining features. Each newly generated subset S with cardinality c+1 is
evaluated by an independent measure M and compared with the previous best one.
If S is better, it becomes the current best subset best at level c + 1. At the end of
each iteration, a mining algorithm A is applied on the best subset at level c + 1 and
the quality of the mined result is compared with that from the best subset at level c.

4.3.2.3 Feature Selection and Relevance

Feature selection is highly related to the notion of relevance. There are however
several definitions [102] in the literature: relevance of one variable, relevance of a
variable given other variables, relevance given a certain learning algorithm. Most
definitions are problematic, because there are problems where all features would be
declared to be irrelevant. Two degrees of relevance can be defined [10, 51]: weak
and strong relevance. A feature is relevant if it is weakly or strongly relevant and
irrelevant (redundant) otherwise. Relevance does not mean optimality of the feature
set: classifiers induced from training data are likely to be suboptimal as there is
no access to the real distribution of the data. The relevance does not imply that
the feature is in the optimal feature subset. Even irrelevant features can improve
a classifier’s performance [45]. Relevance of one feature is relative (to a given
algorithm) and not absolute. In addition, it does not take into account the interaction
effects with other features [67]. Therefore, defining relevance in terms of a given
classifier (and therefore a hypothesis space) would be better. Strongly relevant
features provide unique information about C (the vector class), i.e., they cannot
be replaced by other features. Weakly relevant features provide information about
C, but they can be replaced by other features without losing information about C.
Irrelevant features do not provide information about C, and they can be discarded
without losing information. A good feature subset is one that contains features
highly correlated with (predictive of) the class, yet uncorrelated with (not predictive
of) each other.



108 F. Ros and S. Guillaume

Algorithm 14 Generic hybrid [64]
1: Inputs: the training set T (F = {f1, ..., fp}), initial subset SF0 , an independent measure M , a

mining algorithm A

2: Output: the selected feature subset SF (SF ⊂ F )
3: Initialize SFbest = SF0

4: c = c0 = |SF0 | {feature number in [1,p]}
5: γbest = Eval(SF0 , T ,M) {Evaluate SF0 by M}
6: θbest = Eval(SF0 , T ,A) {Evaluate SF0 by A}
7: for (pf = c + 1 to p) do
8: for (i = 0 to p − c) do
9: SFbest = SFbest∪ {fi}

fi�SFbest

{generate a subset of cardinality nf for evaluation with feature

fi}
10: γ = Eval(SF val , T ,M) {evaluate the current subset by M}
11: S′Fbest = SFbest

12: if (γ ≥ γbest ) then
13: γbest = γ

14: S′F best = SFval

15: end if
16: θ = Eval(S′Fbest

, T , A) {evaluate the current subset by A}
17: if (θ ≥ θbest ) then
18: θbest = θ

19: SFbest = S′Fbest
, c = |SFbest |

20: else
21: return SF = SFbest {no more classification improvement}
22: end if
23: end for
24: end for

4.3.2.4 Feature Selection Versus Feature Extraction

With the recent success of deep learning, we should mention the notion of feature
extraction and highlight the difference with feature selection. Feature selection
refers to selecting a portion of the original dimensions that are most important to
the task. Feature extraction refers to extracting a new and smaller representation
set from the original dimension space. Principal component analysis (PCA), linear
discriminant analysis (LDA), or canonic correlation analysis (CCA) represents this
category but also deep learning architectures too like convolution neural networks
(CNN). Sometimes, feature extraction is difficult to explain as the link between
features from the original feature space and new features is generally complex. It
is then often not suitable for many practical situations. Feature selection is clearly
superior in terms of better readability and interpretability than feature extraction.
Convolution neural network (CNN) [88] has been very successful in image process-
ing. It is a kind of feed-forward deep neural network with a convolutional structure
that performs very well. CNN is composed of two parts: an automatic feature
extractor and a trainable classifier. The model inputs images directly, global and
local features are extracted via linear convolution layers. After convolution layers,
the following usually is a non-linear polling layer. The polling layer can reduce the
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resolution of the extracted features, and there are two methods of polling layer that
are usually used in the network. Average polling can be seen as a further feature
extraction process to reduce computation. For the way of max polling, it can be
seen as a feature selection to obtain the most important point of local features.
The complete training process can be observed as a wonderful combination of
feature extraction and feature selection. Today this task is internally done but the
information is not factually accessible and interpretable. There is however hope
with recent advances that CNNs or other deep learning architectures will be able
to provide powerful instance and feature selection. The only remaining problem is
the computational time of deep learning approaches. They are not appropriate for
the timing objective.

4.3.2.5 Large-Scale Feature Selection

High dimensionality causes two major problems for feature selection. The crucial
one is the so-called curse of dimensionality limiting the use of wrapper methods
because of time complexity. In some application fields, another difficulty faced by
feature selection with data of very large dimensionality can be the relative shortage
of instances. Several authors proposed hybrid mechanisms to perform relevant
selections while paying attention to the computation time [43, 101]. In [47] for
example, a forward search approach is proposed that works in two steps to reduce
the number of subset evaluations. In the first step, all attributes are ranked. This
can be done either with a filter method or with the wrapper. In the second step the
algorithm builds p attribute subsets: the first set is the top-ranked attribute, followed
by the two top-ranked attributes, the three top-ranked attributes, and so on. These
subsets are evaluated using the wrapper or a filter method that can evaluate sets of
attributes. The authors used this technique to compare various filter techniques to
the wrapper. With 2p evaluations, this algorithm known as rank-search is quite fast
but chooses relatively large subsets. Rank-searched based instance (BIRS) [87] is
one of the most popular approaches. An initial ranking is produced based on a filter
method or the wrapper. The second step constructs attribute subsets and uses the
wrapper for evaluation. The algorithm then starts with the top-ranked attribute and
regards the remaining attributes in order of the ranking, but it only adds an attribute
if it improves the current subset significantly. This method requires 2p evaluations,
but generates smaller subsets than rank-search. A new hybrid feature selection
algorithm has been recently proposed in [68]. Interaction information-guided
incremental selection (IGIS) is computationally efficient with high accuracy rates
for high-dimensional data. The proposed method employs interaction information
to guide the search. Many individual features may be irrelevant for a class, but
when combined together, they can interact and provide information that is useful
for classification. IGIS sequentially adds one feature at a time into the currently
selected subset, and adopts early stopping to prevent overfitting and speed up the
search. The method selects only relevant and irredundant features that significantly
improve the accuracy rates. In [70], state-of-the-art algorithms generally address
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generic problems. Some domains have however some specific problematics. It is
the case for the big data bioinformatics area where the number of features can be
very large. Main principles of feature selection and their recent applications in this
field can be seen in [7, 96].

4.3.3 Popular Algorithms

This section provides several pseudocodes of popular feature selection algorithms.
Relief is an algorithm that takes a filter-method approach to feature selection. It

was originally designed for binary classification problems with discrete or numerical
features. Relief calculates a feature score for each feature which can then be applied
to rank and select top scoring features for feature selection. Relief feature scoring
is based on the identification of feature value differences between nearest neighbor
instance pairs. At each iteration, one random instance xi is selected in the training set
T, and the feature vectors of the instance closest to xi (by a given distance d) from
each class. The closest same-class instance h is called “near hit,” and the closest
different-class instance m is called “near miss.”

h(xi) = {y ∈ T | y = argmin d(xi, z)
z∈T \{xi } | C(z)=C(xi )

} (4.23)

m(xi) = {y ∈ T | y = argmin d(xi, z)
z∈T \{xi } | C(z) 
=C(xi )

} (4.24)

If for a given feature a difference is observed in a neighboring instance pair
with the same class (“near hit”) values, the feature score decreases. Alternatively,
if a feature value difference is observed in a neighboring instance pair with
different class (“near miss”) values, the feature score increases. Relief is provided
in Algorithm 15.

Algorithm 15 Relief [54]
1: Inputs: training data T (F = {f1, ..., fp}), r (number of random training instances), d

(distance function)
2: Outputs: W = {W1, ...,Wp} scores that estimate the quality of the p features
3: Wj = 0 (for all features)
4: for all (r random trials) do
5: Randomly select a target instance xi

6: for all (feature j ) do

7: Wj = Wj − d(xi [j ], h(xi [j ])
r

+ d(xi [j ],m(xi [j ]))
r

{h(xi [j ]) and m(xi [j ]) are the nearest hit and miss: Eqs. (4.23) and (4.24)}
8: end for
9: end for
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ReliefF evaluates the worth of a feature by repeatedly sampling an instance and
considering the value of the given feature for the nearest instance of the same and
different class. This attribute evaluation assigns a weight to each feature based on
the ability of the feature to distinguish among the classes, and then selects those
features whose weights exceed a user-defined threshold as relevant features. The
weight computation is based on the probability of the nearest neighbors from two
different classes having different values for a feature and the probability of two
nearest neighbors of the same class having the same value of the feature. The higher
the difference between these two probabilities, the more significant the feature is.
Inherently, the measure is defined for a two-class problem, which can be extended to
handle multiple classes, by splitting the problem into a series of two-class problems.
It is described in Algorithm 16. Other extensions of relief have been proposed as
in [22].

Algorithm 16 ReliefF [57, 58]
1: Input: training data T (F = {f1, ..., fp}), r (number of random training instances), k nearest

neighbors, d (distance function)
2: Output: W = {W1, ...,Wp} scores that estimate the quality of the p features
3: Wj = 0 (for all features)
4: for all (r random trials) do
5: Randomly select a ‘target’ instance xi

6: for all (feature j) do
7: for all (neighbor k) do

8: Wj = Wj − d(xi [j ], hk(xi [j ])
r

+ d(xi [j ],mk(xi [j ])
r

{hk(xi [j ]) and mk(xi [j ]) are the kth nearest hit and miss.}
9: end for

10: end for
11: end for

Feature selection is usually based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy methods [78]. Minimum redun-
dancy and maximum relevance feature selection (mRMR) is considered as one
of the most powerful filters among the machine learning community. The general
idea consists in minimizing the redundancy of features as well as maximizing
the relevance regarding the class vector C. Many recent algorithms are based on
mRMR. It is used to rank the importance of a set of features for a given classification
task. This method can rank features based on their relevance to the target, and, at
the same time, the redundancy of features is also penalized. The main objective is
to find the maximum dependency between a set of features F and the class C, using
mutual information I (Eq. (4.16)).



112 F. Ros and S. Guillaume

Algorithm 17 mRMR [78]
1: Input: training data T (F = {f1, ..., fp}, class variable C), number of wanted features nf

2: Output: selected feature subset SF (SF ⊂ F )
3: for all (feature candidate fi ) do
4: Rl[i] = I (fi , C)

{Equation (4.16): relevance of each feature}
5: Rd [i] = 0
6: for all (feature candidate fj ) do
7: Rd [i] = Rd [i] + I (fi , fj )

{redundancy of feature i with the other ones}
8: end for
9: mRMR[i] = Rl[i] − Rd [i]

{a subtractive scheme is adopted}
10: end for
11: Select the nf first according to mRMR scores.

Ranked-Searched Based Instance (BIRS) [87] is a popular feature selection
algorithm. In the original algorithm features are ordered according to their indi-
vidual accuracy rates, say the performance of a predefined classifier built with a
single feature. In the second phase, the list of ranked features is processed only
once from the best to the worst. Only the features that, when added to the currently
selected feature set, improve the performance result will be kept. Any classification
algorithm can be performed. The algorithm terminates when it reaches the end
of the ranked list, and the currently selected feature set is returned. A modified
version which was proposed in [69] is described in Algorithm 18. It was applied for
predicting domain–peptide interactions. The difference is only in the first phase that
uses the mRMR algorithm to rank all N features of the training set.

Algorithm 18 Modified BIRS [69]
1: Input: the training data T (F = {f1, ..., fp})
2: Output: the selected feature subset SF (SF ⊂ F )
3: Rank = mRMR(T )

{Rank the features using the mRMR algorithm}
4: BestScore = 0
5: BestSubset = ∅

6: for all (ranked feature i) do
7: T empSubset = BestSubset ∪ {FRank[i]}
8: T empScore = WrapperClassif (T empSubset, C)

9: if (T empScore � BestScore) then
10: BestSubset = T empSubset

11: BestScore = T empScore

12: end if
13: end for
14: S = BestSubset
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Minimal Redundancy-Maximal New Classification Information (MR-
MNCI) is a feature selection algorithm that integrates two groups of feature
evaluation criteria. It is based on the observation that the methods that focus on
minimizing feature redundancy do not consider new classification information
and vice versa, thereby resulting in selected features with large amounts of new
classification information but high redundancy, or features with low redundancy
but little new classification information feature redundancy or maximizing new
classification information. Concerning feature redundancy, the method adopts both
class-dependent feature redundancy and class-independent feature redundancy.
The proposed criterion consists of three terms, namely feature relevancy, new
classification information, and class-independent feature redundancy.

Algorithm 19 MR-MNCI [33]
1: Input: the training data set T (F = {f1, ..., fp}, class variable C), threshold T h (number of

wanted features)
2: Output: the selected feature subset SF (SF ⊂ F )
3: FT = F

4: u = 1
5: SF = Fu = argmax

fi∈FT

(I (fi , C))

{Init SF with the feature j having the maximum I (fi , C)}
6: for all (feature fi ) do
7: Calculate I (fi , C)

{the mutual information between feature fi and the class variable C}
8: end for
9: while (u ≤ T h) do

10: for all (candidate fi ∈ FT ) do
11: RFi = ∑

fj∈FT

I (fi , fj )

{process feature redundancy fi}

12: ri = RFi

|F | {normalize feature redundancy }

13: J (fi) = I (fi , Y )+ min
fj∈FT

(I (fi , C|fj ))− ri {Eq. (4.18) for I ((X, Y |Z)}

14: end for
15: Fu = argmax(J (fi))

fi∈FT

{Select the feature fu with the best J (fi)}

16: SF = SF ∪ {fu}
17: FT = FT \ {fu}
18: u = u+ 1
19: end while

IGIS employs interaction information to guide the search. Many individual
features may be irrelevant for the class, but when combined together, they can
interact and provide information that is useful for classification. Based on interaction
information, the proposed method conditionally adds one feature at a time into
the currently selected subset and tests whether the resulting subset improves the
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performance significantly. Only relevant and irredundant features are thus selected.
IGIS adopts early stopping to prevent overfitting and runs in linear time. It is
composed of 4 steps.

Step1 IGIS starts with an empty set S and selects the first feature Fu from the full
set F of p features that gives the largest mutual information between the feature and
the class target C.

fu = argmax
fj∈F

(I (fj , C)) (4.25)

The feature fu is added to S and removed from S.

Step 2 A candidate feature is searched. The next candidate feature fd is the one
that maximizes the joint mutual information criterion

fd = argmax
fi∈F

(I (fi, C))+ 1

|S|I (fi, fj , C
fj∈S

) (4.26)

The first term measures the gain with C and the second the interaction between the
currently selected feature and C.

Step 3 The candidate feature fd is temporarily added to the current set S (i.e.,
S ∪ Fd ). The classification accuracy is computed. If it is improved significantly,
go to step 4. Otherwise, fd is not selected and then removed from the set F. If F is
empty, terminate the algorithm. Otherwise, go to step 2.

Step 4 The classification accuracy is computed for the validation set with the subset
S∪fd using a given classifier. If the classification accuracy for the validation set does
not decrease significantly (using a Student’s paired left-tailed t-test at 0.1 level),
permanently add fd into the set S (i.e., S = S ∪ fd ) and remove fd from the set F,
update the classification accuracy rates for the training and validation sets, and go
to step 2. Otherwise, fd is not selected and the algorithm terminates.
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Algorithm 20 IGIS [68]
1: Inputs: the training set T (F = {f1, ..., fp}, class variable C), and a given classifier

“Classifier”
2: Output: the selected feature subset SF (SF ⊂ F )
3: Divide T to create Ttrain and Ttest .
4: FT = F , fu = argmax

fi∈FT

(MI [i])
{select the first feature fu, MI [i] = I (fi , C)}

5: BestAccT rain = Classif ier(Ttrain, Ttrain, fu)

6: BestAccV al = Classif ier(Ttrain, Ttest , fu)

7: SF = {fu}
8: FT = FT \ {fu}
9: while (FT 
= ∅) do

10: for all (fi ∈ FT ) do
11: Compute Interaction[i] {Eq. (4.26)}
12: end for
13: fd = argmax

fj∈FT

(Interaction[j ])
14: FT = FT \ {fd }
15: Stm = S ∪ {fd }
16: AccT rain = Classif ier(Ttrain, Ttrain, Stm)

17: if (AccT rain ≥ BestAccT rain) then
18: AccV al = Classif ier(Ttrain, Ttest , Stm)

19: if (AccV al ≤ BestAccV al) then
20: break
21: else
22: BestAccT rain = AccT rain

23: BestAccV al = AccV al

24: S = Stmp

25: end if
26: end if
27: end while

4.4 Dual Selection

Dual selection can be performed separately via a sequential procedure. Another
solution consists in managing the dual selection via a sole procedure. The authors
in [95] tested different configurations. Based on their experiments, they concluded
that performing feature selection first and instance selection second can make the
classifiers provide slightly better classification results than performing instance
selection first and feature selection second. However, the classifiers utilizing a
combination of feature and instance perform slightly more poorly than the ones
using feature selection or instance selection individually. On the other hand, in
the large-scale experiments, the classifiers sometimes perform better based on a
combination of feature and instance selection than those based on feature and
instance selection alone. They therefore found it hard to figure out the winner of
these four different data preprocessing steps since there is not a big difference
between them. Consequently, the computational cost of training classifiers becomes
another important indicator to assess these data preprocessing methods. The time
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complexity analysis shows that the combination of feature and instance selection
greatly reduces the computational cost of training classifiers. As a result, it can be
seen that the combination of feature and instance selection is a suitable solution for
data preprocessing on large datasets.

4.4.1 Evolutionary Algorithms as a Usual Tool

Genetic algorithms (GAs) are one of the most widely used techniques for feature
and instance selection [95], and can improve the performance of data-mining
algorithms. They have the advantage of facing the so-called nesting effect of more
classical methods in which a feature (instance) that is selected or removed cannot
be removed or selected in later stages. In particular, [15] showed that better results
can be obtained with GAs than with many traditional and non-evolutionary instance
selection methods in terms of better instance selection rates and higher classification
accuracy. Moreover, GAs have been shown to be suitable for large-scale feature
selection problems. There have also been several studies in which GAs were used
to perform both feature and instance selection tasks at the same time. Papers related
to the simultaneous selection of features and instances are very few in number, and
unquestionably the pioneers are those by Skalak [90, 91] and Kuncheva [61]. The
idea was to define a chromosome representing the whole solution by encoding it
in a string of bits, whose length is the sum of the number of available features and
the number of patterns in the training set. In a chromosome a 1 for the ith feature
or pattern stands for its selection, while a 0 means it is not taken into account.
In [90] a single random mutation hill climbing procedure is proposed that gives
predictive accuracy equal or superior to a basic nearest neighbor algorithm whose
runtime storage costs were approximately 10–200 times greater. In [61], the authors
conducted experiments where a GA was employed to simultaneously select suitable
instances and features for a k-NN classifier. They used a fitness function that
performs for the 1-knn rule and adds a penalty term as a soft constraint on the total
cardinality of feature and instance sizes. They showed that a GA was an expedient
solution compared to other traditional approaches. A GA method is proposed in
[3] to simultaneously optimize feature weighting and instance selection for case-
based reasoning in the bankruptcy prediction problem. Similarly, Ros et al. in [85]
proposed a hybrid genetic approach, which treats feature and instance selection
problems as a single optimization problem. The fitness function is different from
the one proposed in [61] as penalty terms for feature and instance are distinguished.
Moreover, several mechanisms are introduced in the GA procedure to improve
the timing performance. In [31] the same authors propose an efficient nearest
classifier that selects the most critical prototypes while discarding irrelevant and
noisy features. GA and evolution strategies are combined in [83] to select instances
and weight the features for the k-NN classifier. An intelligent genetic algorithm
(IGA) was designed in [49] to tackle both instance and feature selection problems
simultaneously by introducing a special orthogonal cross operator. The authors
show that IGA performs better than the method developed in [61]. An evolutionary
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model based on cooperative coevolution is proposed in [28] to perform feature and
instance selection in k-NN classification. This approach performs better than other
evolutionary feature and instance selection methods over a wide range of datasets.
It is worth mentioning that the drawback of GAs remains the difficulty of setting
up and driving the algorithm to obtain good solutions in a reasonable time. This is
especially critical when dealing with large databases as they are computationally
expensive. They are therefore limited in the context of big data.

The Simultaneous Selection Study in [61] is a pioneering work dealing with
simultaneous selection from which several more recent algorithms have been based.
A selective (basic) genetic algorithm is proposed for simultaneous editing and
feature selection. By itself, it is however not appropriate for large scale selection.
The search space consists of 2n+p elements. Each chromosome ch is represented
by a binary string consisting of (n + p) bits divided into 2 sets: the first n bits are
used for the instance space, and the last p bits for the feature space. A population of
Ps=10 chromosomes is taken in the original version. The fitness function is based
on the k1NN rule and a penalty term as a soft constraint on the total cardinality of n

and p.

f (ch) = acc(ch)− αλ(ch) (4.27)

where acc(ch) is the classification score (% of well-classified patterns), α the

parameter that controls the balance between the criteria. λ(ch) = n′ + p′

n+ p
, where

(n′, p′) are the reduced cardinalities in chromosome x (n′ < n and p′ < p).

Algorithm 21 Simultaneous selection [61]
1: Inputs: the training set T (F = {f1, ..., fp}, class variable C, population size ps , Mutation

probability Pm, Number of generations Ps .
2: Output: best chromosome (SXF ) {⇔ set SXF (SXF ⊂ T ) reduced in the pattern and feature

dimensions}
3: Initialize chromosomes (80% of bits are set to 1)
4: The whole population is taken as the “mating” set
5: for all (genetic generation) do
6: Select (ps/2) couples randomly to produce ps offsprings
7: Apply Crossover with probability 1 and Mutation with probability Pm.
8: Apply an Elitist selection:

(i) The ps chromosomes and the current population are pooled.
(ii) The fittest ps survive as the next population.

9: end for
10: Derive SXF from the best chromosome
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4.4.2 Large Scale Dual Selection and Popular Algorithms

Despite the extensive research efforts in the literature, most selection methods
are restricted to batch learning settings. Existing solutions are still not feasible
due to the high computation and memory cost in real-world applications. Existing
approaches are unfortunately non-scalable when solving real-world applications
with large-scale datasets that exceed the memory capacity. Another drawback is
that batch learning methods usually assume that all training data and their full
set of features have been made available prior to the learning process. There are
two solutions: online selection and scalable approaches. Online feature selection
has been studied for feature selection but not for dual selection. There are few
studies dealing with simultaneous selection [21, 61, 85, 95] and very few dealing
with scalability [36, 79, 103]. In [104], the authors addressed dual selection via
in the case where the number of instances is fewer than the number of features.
Different optimization techniques are used: Ant Lion Optimization (ALO), Grey
Wolf Optimization (GWO), and a combination of the two (ALO-GWO) [66].

Pseudocodes of several dual selection algorithms are provided. The last one
(Algorithm 24) provides a scalable strategy version. The others are based on GAs
and share the same principle. They are not scalable by themselves but can be applied
in a scalable way.

The principle of Scalable Simultaneous Instance and Feature Selection
(SSIFS) [79] is similar to [61] but the evolution strategy and the chromosome
are more sophisticated: The chromosome is enlarged to take into account weights
associated with each feature and instance, following the principle of instance and
feature weighting (see [97] for a review of weighting schemes). Given that there
are n training instances with p features, the chromosome is of length 2n + 2p.
For each instance, the chromosome codifies a real value, its weight, and a binary
value based on whether it is selected. It is the same for each feature: a unique
weight is considered for the whole instance set. In synthesis, there are n+p weights
and n+p bits. A differential evolution (DE) algorithm and cross generational elitist
selection heterogeneous recombination and cataclysmic (CHC) genetic algorithm
[15] are combined. Weights are evolved using a differential evolution algorithm, and
selection (feature and instance) is evolved using a CHC genetic algorithm [15].

The fitness value, f , for an individual ch, is given thus by

f (ch) = αaacc(ch)+ αi(1− fi(ch))+ αf (1− ff (ch)) (4.28)

where acc(ch) is the accuracy of the individual ch measured using a nearest
neighbor rule, fi(ch) is the fraction of selected instances, ff (ch) is the fraction of
selected features, and αa + αi + αf = 1.

The initial population is randomly created using a probability of 0.5 to select a
feature or instance and a uniform distribution of weights in the interval [0, 1]. If any
of the four tasks is not carried out, the corresponding weights are set to 1. Then,
a new population is generated by differential mutation, recombination (via CHC),
and selection. This cycle is repeated through a number of generations that is given
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as a parameter. Finally the individual with the best fitness in the last population is
returned as the result of the optimization process.

Weighted Distances and Differential Evolution For instance weighting, the distance
between an instance x and a query instance q is as follows:

d(q, x) = wx

√ ∑
j∈[1,p]

(qj − xj )2, where wx is the weight attached to x. For

feature weighting, the weights are related to each feature that gives np weights.
To simplify, if a unique weight for each feature is considered for the whole instance

set, the weighting distance is as follows: d(q, x) =
√ ∑

j∈[1,p]
w2

j (qj − xj )2. Using

weights proved to be efficient in accuracy and processing time in problems related
to feature and instance selection. The different weights present novel parameters
to be optimized. By combining the two weighting schemes a weighted distance
depending both on instances and features can be obtained. Differential evolution
operates through similar computational steps as those employed by a standard
evolutionary algorithm (EA). However, unlike traditional EAs, the DE-variants
perturb the current generation population members with the scaled differences
of randomly selected and distinct population members. Therefore, no separate
probability distribution needs to be used to generate the offspring.

Differential evolution generates new parameter vectors by adding the weighted
difference between two population vectors to a third vector. The initial vector
population is chosen randomly and should cover the entire parameter space. The
basic strategy uses three different operators: mutation, crossover, and selection.
Consider that an auxiliary population is generated from the current one. For
mutation, a mutant chromosome for each target chromosome is generated, thus:

chm
i

i∈[1,Ps ]
= chr1 + γ (chr2 − chr3) (4.29)

with random different indexes r1, r2, and r3 and γ > 0. Crossover is used to increase
the diversity of the perturbed parameter vectors. For each chromosome i, the
crossover operation is applied to each of the component weights j (j ∈ [1, n+ p]).
It provides chc

i = {chc
i1, . . . , ch

c
i(n+p)} that is formed, thus:

{
chc

ij = chm
ij if (r < CR or j = rnbr(i) else

chc
ij = chij

(4.30)

where r is a random number in [0, 1] and rnbr(i) is a randomly generated index
related to chromosome i. It is in the range [1, n + p] and ensures that chc

i gets at
least one weight from the mutant chromosome chm

i . CR is a crossover constant,
CR ∈ [0, 1].
CHC Process In CHC, the chromosome of each individual has as many bits as
instances plus features. A bit with a value of 1 means that the corresponding instance
or feature is selected and a value of 0 means that the corresponding instance is not
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selected. Crossover is done via a half uniform crossover (HUX) [80]. This operator
generates two offspring from two parents. Each offspring inherits the matching bits
of the two parents (of1i = of2i = b if p1i = p2i = b) and half of the non-
matching bits (p1i 
= p2i) from each parent alternately (of1i = p2i and of2i = p1i

half times). In SSIFS, this operation is applied to the (n + p) bits in parallel to the
differential evolution applied to the weights. (Ps/2) pairs of parents are generated
from the current population. If the Hamming distance between two parents is more
than a threshold th, two children are generated using the HUX operator. If no
crossovers are operated th is decreased by 1 until it becomes negative. If negative
the population is regenerated and th is set to its initial value. This process is detailed
in Algorithm 23. To simplify the reading of SSIFS, one defines the CHC process as
follows: G′ = CHCHUX(G) that produces a population G’ from G the operation
being restricted to only the binary part of the chromosomes.

The double crossover operation gives a population of trial vectors chm
i (i ∈

[1, Ps]). To decide whether it should become a member of generation G + 1, chm
i

is compared to the target vector chi . If vector chm
i yields a better fitness function

value than chi , then chi is set to chm
i ; otherwise, the old value chi is retained.

Algorithm 22 SSIFS [79]
1: Inputs: training set T (F = {f1, ..., fp}, class variable C), population size Ps , γ , αa , αi , αf ,

CR, stopping criterion.
2: Outputs: best chromosome {⇔ set SXF (SXF ⊂ T ) reduced in the pattern and feature

dimensions}
3: Set the generation number G = 0
4: *Initialize a population of Ps chromosomes*
5: for all (Chrom chi ) do
6: fu = 1

u∈[1,p]
with prob = 0.5, Wfu = random(U(0, 1))

u∈[1,p]
{U is the Uniform distribution}

7: xv = 1
v∈[1,n]

with prob = 0.5, Wxv = random(U(0, 1))
v∈[1,n]

8: end for
9: repeat

10: Set G = {ch1, ...chPs}
11: G′ = CHCHUX(G) {G′ = {chc

1, ...ch
c
P s}, only the binary part is managed}

12: for all (Chrom chi ) do
13: Mutation Step for the weights {Eq. (4.29): process the mutant vector chm

i with chr1,
chr2 and chr3 and γ }

14: Compute chc
i {Eq. (4.30): compute crossover for the weight part}

15: if f (chc
i ) > f (chi) {chc

i comes from the CHC process and Differential Evolution}
then

16: chi = chc
i

17: end if
18: end for
19: G = G+ 1
20: until (Stopping criterion is satisfied)
21: Best Chrom w = argmax

i∈[1,n]
f(chi ) {Eq. 4.28}

22: Derive SXF from the best chromosome
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Algorithm 23 Memetic algorithm [37]
1: Inputs: the training set T (F = {f1, ..., fp}, class variable C, population G size ps , Crossover

probabilities PFSLS , PISLS , PIFSLS , threshold function dmin and number of generation
(stopping criterion).

2: Output: best chromosome (SXF ) {⇔ set SXF (SXF ⊂ T ) reduced in the pattern and feature
dimensions}

3: Initialize Ps chromosomes (ch) randomly (chi , i ∈ [1, ps ])
4: f itness[i]

i∈[1,ps )

= f (chi) {Evaluate fitness for all the chromosomes, Eq. (4.28)}

5: th = dmin(n+ p) {threshold function for the Hamming distance}
6: repeat
7: Process (Ps/2) pairs of parents (p1i , p2i ) for crossover {p1i ∈ G, p2i ∈ G and p1i 
= p2i}
8: G′ = G = {ch1...chPs } {init G’ with the current population}
9: cross=0

10: for all (pairs p1i , p2i ∈ G) do
11: if (dHamming(p1i , p2i )/2 > th) then
12: (ch1i , ch2i ) = HUX(p1i , p2i ), cross=cross+1

{Apply HUX crossover to obtain children}
13: G′ = {ch1i} ∪G′, G′ = {ch2i} ∪G′
14: end if
15: end for
16: Process f itness[i]

i∈[1,|G′ |)
{Evaluate fitness for all the |G′| chromosomes}

17: Process ch1
i

i∈[1,|G′ |]
= FSLS (chi ,PFSLS ) {f (ch1

i � f (chi}

18: Process ch2
i

i∈[1,[1,|G′ |]]
= ISLS (ch1

i ,PISLS ) {f (ch2
i � f (ch1

i }

19: Process ch3
i

i∈[1,[1,|G′ |]
= IFSLS (ch2

i ,PIFSLS ) {f (ch3
i � f (ch2

i }

20: G = Selection(ch3, Ps)
ch3∈G′

{The fittest ps among [1, |G′|] are selected and survive as the next population G =
{ch1...chPs }}

21: if (cross=0) then
22: th=th-1
23: end if
24: if (th < 0) then
25: G=Regenerate(G), th = dmin(n+ p)

{a restart process is operated}
26: end if
27: until Stopping criterion is satisfied
28: chbest = argmax

i∈[1,ps ]
f itness[i] {chbest the best chromosome}

29: Derive SXF from the best chromosome

The authors in [37] present a memetic algorithm based on a binary chromosome
as in Algorithm 21. It is based on a fitness function similar to the one presented
in Eq. (4.28). The algorithm has the following characteristics: (1) It is selective
so as to obtain the next generation for a population of size Ps , the parents and
the offspring are considered together, and the Ps best individuals are selected.
(2) Premature convergence is prevented: only different individuals, separated by a
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threshold Hamming distance, dmin, are allowed to mate. The threshold distance is set
to dmin = l/4, where l = p + n is the length of the individual. If no individuals with
a Hamming distance above dmin are found in a generation, and hence no matings
are performed, then the threshold is decreased by 1. (3) The crossover operation
is done via HUX. (4) Three local procedures are involved in the process: feature
selection local search (FSLS) applying a backward selection, each feature being
randomly tested; instance selection local search (ISLS) on the basis of an instance
selection algorithm such as IB3; and instance and feature selection local search
(IFSLS) applying a sequential backward selection. IFSLS begins with instance
selection: each instance is removed and the fitness of the individual is reevaluated.
If the fitness is equal to or better than the fitness with the instance selected, then the
instance is removed permanently; otherwise, the instance is kept. Once the search
in the space of instances is finished, the same procedure is repeated for the features.

Scalable Simultaneous Instance and Feature Selection Method (SSIFSM)
[36] is a wrapper approach based on the divide-and-conquer principle combined
with bookkeeping. It is one of the few papers that have addressed the simultaneous
selection of features and instances allowing large scale dual selection. The training
dataset T is divided into t disjoint subsets tj (instance sampling) that are themselves
divided in s subsubsets tj i (feature sampling), with m features. An evolutionary
algorithm for simultaneously selecting instances and features is applied on each
subset tj i . The fitness function of an individual ch depends on accuracy acc(ch)

and reduction red(ch). It is driven by a parameter α as follows:

f (ch) = αacc(ch)+ (1− α)red(ch) (4.31)

with acc(ch) the classification score and

red(ch) = 1− λ(ch) (4.32)

The process is repeated r times, r being the number of rounds. At each round, the
selections performed are recorded. Finally, the most relevant instances and features
are retained via a voting process. The number of votes received by an instance is
in the interval [0; rs], as an instance is in s subsets in every round. Each feature
is in t subsets each round. Thus, the number of votes is in the interval [0; rt]. The
thresholds θi and θf are determined automatically using an evaluation function J as
follows:

J (T (θi, θf )) = βacc(T (θi, θf ))+ (1− β)red(T (θi, θf )) (4.33)

where red(T (θi, θf )) is the reduction achieved using threshold θi and θf to
select T (θi, θf ), acc(T (θi, θf )) is the accuracy achieved with this selection using a
k1nn classifier and β to adjust the balance between the two criteria. β should be close
to 1 (β = 0.75) in order to avoid a large reduction at the expense of poor accuracy.
For every pair of thresholds (θi, θf ), J is then evaluated in each instance partition
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and the pair of thresholds with the highest J is selected. The divide-and-conquer
principle speeds up the execution of the algorithm.

Algorithm 24 SSIFSM [36]
1: Inputs: training set T (F = {f1, . . . , fp}, class variable C), number of feature subsets s and

number of rounds r

2: Output: SXF {(SXF ⊂ T ) reduced in the pattern and feature dimensions}
3: for (i = 1 to r) do
4: Process ti [j ] | ∪ ti [j ] = T {Divide instances into t disjoint subsets of approximately the

same size}
5: for (j = 1 to t) do
6: ∪ti [j ][u] = ti [j ] {Divide ti [j ] into s disjoint subsets ti [j ][u] with approximately the

same number of features m}
7: for (u=1 to s) do
8: Apply instance selection algorithm to ti [j ][u]
9: Store votes of selected instances from ti [j ][u]

10: end for
11: end for
12: end for
13: Obtain thresholds of votes to keep an instance,θi , and a feature θf

14: SXF = {xi ∈ T | votes(xi) � θi and which features j | vote(j) � θi}

4.5 Conclusion

The rapid development of machine learning has led to significant advances in
societal issues such as face recognition, disease diagnosis, speech recognition,
image classification, and many other real-life problems. Sample selection and
dimensionality reduction techniques are extremely important in large-scale data
analysis, especially in machine learning.

The central point of feature and instance selection is approximation with the
hope of achieving as good mining results as possible (within efficiency and timing
criteria). The process consists in approximating the complete dataset with the
selected instances. There are many ways of achieving approximation and it would
be nice if there were a single general purpose selection method that guarantees
a good performance in any situation. This chapter has reviewed the main state-
of-the-art techniques of instance reduction and feature selection as well as some
preliminary solutions of dual selection in the context of big data. It is clear that
these two techniques have been applied widely, but as yet there is no universal
method for sample selection and dimensionality reduction that can be applied to
all problems. Sample and feature selection methods either use only one of these
techniques or use all sequentially or simultaneously. Each specific problem typically
adopts one unique method in order to improve on previous work. For very large
or huge databases, the tendency is to apply stratification strategies combined with
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relevant algorithms that proved to be very efficient for small databases. To balance
the trade-off between accuracy and reduction, evolutionary algorithms are often
claimed as the most relevant even if they can have convergence issues. Despite
good progress in solving feature and instance selection problems, more study is also
welcomed to further optimize the solutions. In all the proposed methods, one should
choose either computational feasibility or optimality. Further research is needed to
develop more promising selection methods.
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Chapter 5
Approximating Spectral Clustering via
Sampling: A Review

Nicolas Tremblay and Andreas Loukas

5.1 Introduction

Clustering is a cornerstone of our learning process and, thus, of our understanding
of the world. Indeed, we can all distinguish between a rose and a tulip precisely
because we have learned what these flowers are. Plato would say that we learned
the Idea—or Form [120]—of both the rose and the tulip, which then enables us to
recognize all instances of such flowers. A machine learner would say that we learned
two classes: their most discriminating features (shape, size, number of petals, smell,
etc.) as well as their possible intra-class variability.

Mathematically speaking, the first step on the road to classifying objects (such as
flowers) is to create an abstract representation of these objects: with each object
i we associate a feature vector pi ∈ R

d , where the dimension d of the vector
corresponds to the number of features one chooses to select for the classification
task. The space R

d in this context is sometimes called the feature space. The
choice of representation will obviously have a strong impact on the subsequent
classification performance. Say that in the flower example we choose to represent
each flower by only d = 3 features: the average color of each RGB channel (level
of red, green, and blue) of its petals. This choice is not fail-proof: even though the
archetype of the rose is red and the archetype of the tulip is yellow, we know that
some varieties of both flowers can have very similar colors and thus a classification
solely based on the color will necessarily lead to confusion. In fact, there are many
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different ways of choosing features: from features based on the expert knowledge of
a botanist to features learned by a deep learning architecture from many instances of
labeled images of roses and tulips, via features obtained by hybrid methods more-
or-less based on human intelligence (such as the first few components of a principal
component analysis of expert-based features).

The second step on the road to classifying n objects is to choose a machine
learning algorithm that groups the set of n points P = (p1, . . . , pn) in k classes
(k may be known in advance or determined by the algorithm itself). Choosing an
appropriate algorithm depends on the context:

• Availability of pre-labeled data. Classifying the points P in k classes may be
seen as assigning a label (such as “rose” or “tulip” in our k = 2 example) to
each of the points. If one has access to some pre-labeled data, we are in the
case of supervised learning: a more-or-less parametrized model is first learned
from the pre-labeled data and then applied to the unlabeled points that need
classification. If one does not have access to any pre-labeled data, we are in
the case of unsupervised learning where classes are typically inferred only via
geometrical consideration of the distribution of points in the feature space. If one
has only access to a few labeled data, we are in the in-between case of semi-
supervised learning where the known labels are typically propagated in one form
or another in the feature space.

• Inductive vs transductive learning. Another important characteristic of a
classification algorithm is whether it can be used to classify only the set of points
P at hand (transductive), or if it can also be directly used to classify any never-
seen data point pn+1 (inductive).

This chapter focuses on the family of algorithms jointly referred to as spectral
clustering. These algorithms are unsupervised and transductive: no label is known
in advance and one may not naturally1 extend the results obtained on P to never-
seen data points. Another particularity of spectral clustering algorithms is that the
number of classes k is known in advance.

Spectral clustering algorithms have received a large attention in the last two
decades due to their good performance on a wide range of different datasets, as
well as their ease of implementation. In a nutshell, they combine three steps:

1. Graph construction. A sparse similarity graph is built between the n points.
2. Spectral embedding. The first k eigenvectors of a graph representative matrix

(such as the Laplacian) are computed.
3. Clustering. k-means is performed on these spectral features, to obtain k clusters.

For background information about spectral clustering, such as several justifications
of its performance, out-of-sample extensions, as well as comparisons with local
methods, the interested reader is referred to the recent book chapter [144].

1Out-of-sample extensions of spectral clustering do exist (see, for instance, Section 5.3.6 of [144]),
but they require additional work.
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One of the drawbacks of spectral clustering is its computational cost as n, d,
and/or k become large (see Sect. 5.2.3 for a discussion on the cost). Since the turn
of the century, a large number of authors have striven to reduce the computational
cost while keeping the high level of classification performance. The majority of such
accelerating methods are based on sampling: they reduce the dimension of a sub-
problem of spectral clustering, compute a low-cost solution in small dimension, and
lift the result back to the original space.

The goal of this chapter is to review existing sampling methods for spectral
clustering, focusing especially on their approximation guarantees. Some of the
fundamental questions we are interested in are: where is the sampling performed
and what is sampled precisely? how should the reduced approximate solutions be
lifted back to the original space? what is the computational gain? what is the control
on performances—if it exists? Given the breadth of the literature on the subject, we
do not try to be exhaustive, but rather to illustrate the key ways that sampling can
be used to provide acceleration, paying special attention on recent developments on
the subject.

Chapter Organization We begin by recalling in Sect. 5.2 the prototypical spectral
clustering algorithm. We also provide some intuitive and formal justification of why
it works. The next three sections classify the different methods of the literature
depending on where the sampling is performed with respect to the three steps of
spectral clustering:

• Section 5.3 details methods that sample directly in the original feature space.
• Section 5.4 assumes that the similarity graph is given and details methods that

sample nodes and/or edges to approximate the spectral embedding.
• Section 5.5 assumes that the spectral embedding is given and details methods to

accelerate the k-means step.

Finally, Sect. 5.6 gives perspective on the limitations of existing works and discusses
key open problems.

Notation Scalars, such as λ or d, are written with lowercase letters. Vectors, such
as u, z, or the all-one vector 1, are denoted by lowercase bold letters. Matrices,
such as W or L, are denoted by bold capital letters. Ensembles are denoted by serif
font capital letters, such as C or X. The “tilde” will denote approximations, such
as in z̃ or Ũk . We use so-called Matlab notations to slice matrices: given a set of
indices S of size m and an n × n matrix W, W(S, :) ∈ R

m×n is W reduced to
the lines indexed by S, W(:, S) ∈ R

n×m is W reduced to the columns indexed by
S, and W(S, S) ∈ R

m×m is W reduced to the lines and columns indexed by S.
The equation Uk = U(:, :k) defines Uk as the reduction of U to its first k columns.
Also, C� is the transpose of matrix C and C+ its Moore–Penrose pseudo-inverse.
The operator X = diag(x) takes as an input a vector x ∈ R

n and returns an n ×
n diagonal matrix X featuring x in its main diagonal, i.e., X(i, j) = x(i) if i =
j and X(i, j) = 0, otherwise. Finally, we will consider graphs in a large part of
this paper. We will denote by G = (V, E, W) the undirected weighted graph of
|V| = n nodes interconnected by |E| = e edges. eij ∈ E is the edge connecting
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nodes vi and vj , with weight W(i, j) ≥ 0. Matrix W is the adjacency matrix of
G. As G is considered undirected, W is also symmetric. In general, W can be any
symmetric matrix with positive entries, but we usually prefer to work with sparse
graphs without self-loops, in which case the matrix is also sparse and has a zero
diagonal.

5.2 Spectral Clustering

The input of spectral clustering algorithms consists of (1) a set of points P =
(p1, p2, . . . , pn) (also called featured vectors) representing n objects in a feature
space of dimension d, and (2) the number of classes k in which to classify
these objects. The output is a partition of the n objects in k disjoint clusters.
The prototypical spectral clustering algorithm [102, 121] dates back in fact to
fundamental ideas by Fiedler [46] and entails the following steps:

Algorithm 1. The prototypical spectral clustering algorithm
Input. A set of n points P = (p1, p2, . . . , pn) in dimension d and a number
of desired clusters k.

1. Graph construction (optional)

(a) Compute the kernel matrix K ∈ R
n×n: ∀(i, j), K(i, j) = κ(‖pi −

pj‖2).
(b) Compute W = s(K), a sparsified version of K.
(c) Interpret W as the adjacency matrix of a weighted undirected graph G.

2. Spectral embedding

(a) Compute the eigenvectors u1, u2, · · · , uk associated with the k

smallest eigenvalues of a graph representative matrix R (usually a
Laplacian) computed from W.

(b) Set Uk = [ u1| u2| · · · | uk ] ∈ R
n×k .

(c) Embed the i-th node to xi = Uk(i,:)�
q(‖Uk(i,:)‖2)

, with q(·) a normalizing
function.

3. Clustering

(a) Use k-means on x1, . . . , xn in order to identify k centroids c1, . . . , ck .
(b) Voronoi tessellation: construct one cluster per centroid c
 and assign

each object i to the cluster of the centroid closest to xi .

Output: A partition of the n points in k clusters.
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A few comments are in order:

• A common choice of kernel in step 1a is the radial basis function (RBF)
kernel κ(‖pi − pj‖2) = exp

(−‖pi − pj‖2
2/σ

2
)

for some user-defined σ . The
sparsification s of K usually entails setting the diagonal to 0 and keeping only
the k largest entries of each column (i.e., set all others to 0). The obtained matrix
Ksp is not symmetric in general and a final “symmetrization” step W = Ksp+K�sp
is necessary to obtain a matrix W interpretable as the adjacency matrix of
a weighted undirected graph2 G = (V, E, W). This graph is called the k

nearest neighbor (k-NN) similarity graph (note that the k used in this paragraph
has nothing to do with the number of clusters). Other kernel functions κ and
sparsification methods are possible (see Section 2 of [138] for instance).

• There are several possibilities for choosing the graph representative matrix R in
step 2a. We consider three main choices [138]. Let us denote by D the diagonal
degree matrix such that D(i, i) = ∑j W(i, j) is the (weighted) degree of node
vi . We define the combinatorial graph Laplacian matrix L = D − W, the
normalized graph Laplacian matrix Ln = I − D−1/2WD−1/2, and the random
walk Laplacian Lrw = I − D−1W. Other popular choices include3 the non-
backtracking matrix [73], degree-corrected versions of the modularity matrix [2],
the Bethe–Hessian matrix [114], or similar deformed Laplacians [34].

• The normalizing function q(·) used in step 2c depends on which representative
matrix is chosen. In the case of the Laplacians, experimental evidence as well
as some theoretical arguments [138] support using a unit norm normalization for
the eigenvectors of Ln (i.e., q is the identity function), and no normalization for
the eigenvectors of L and Lrw (i.e., q(·) = 1).

• Step 1 of the algorithm is “optional” in the sense that in some cases the input
is not a set of points but directly a graph. For instance, it could be a graph
representing a social network between n individuals, where each node is an
individual and there is an edge between two nodes if they know each other. The
weight on each edge can represent the strength of their relation (for instance,
close to 0 if they barely know each other, and close to 1 if they are best friends).
The goal is then to classify individuals based on the structure of these social
connections and is usually referred to as community detection in this context [47].
Given the input graph, and the number k of communities to identify, one can
run spectral algorithms starting directly at step 2. Readers only interested in such
applications can skip Sect. 5.3, which is devoted to sampling techniques designed
to accelerate step 1.

2Each node vi of V represents a point pi , an undirected edge exists between nodes vi and vj if and
only if W(i, j) 
= 0, and the weight of that connection is W(i, j).
3In some of these examples, the k largest eigenvalues (instead of the k lowest in the Laplacian
cases) of the representative matrix, and especially their corresponding eigenvectors, are of interest.
This is only a matter of sign of the matrix R and has no impact on the general discussion.
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After the spectral embedding X = ( x1, . . . , xn ) has been identified, spectral
clustering uses k-means in order to find the set of k centroids C = (c1, . . . , ck ) that
best represents the data. Formally, the k-means cost function to minimize reads:

f (C;X) =
∑

x∈X

min
c∈C
‖x− c‖2

2. (5.1)

We would ideally hope to identify the set of k centroids C∗ minimizing f (C;X).
Solving exactly this problem is NP-hard [42], so one commonly resorts to approxi-
mation and heuristic solutions (see, for instance, [128] for details on different such
heuristics). The most famous is the so-called Lloyd-Max heuristic algorithm:

Algorithm 2. The Lloyd-Max algorithm [87]
Input. Set of n points X = (x1, x2, . . . , xn) and number of desired clus-
ters k.

1. Start from an initial guess Cini of k centroids
2. Iterate until convergence:

(a) Assign each point xi to its closest centroid to obtain a partition of X in
k clusters.

(b) Move each centroid c
 to the average position of all points in cluster 
.

Output: A set of k centroids C = (c1, . . . , ck).

When the clusters are sufficiently separated and Cini is not too far from
the optimal centroids, then the Lloyd-Max algorithm converges to the correct
solution [75]. Otherwise, it typically ends up in a local minimum.

A Remark on Notation Two quantities of fundamental importance in spectral
clustering are the eigenvalues λi and especially the eigenvectors ui of the graph
Laplacian matrix. We adopt the graph theoretic convention of sorting eigenvalues in
non-decreasing order: 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. Also, for reasons of brevity, we
overload notation and use the same symbol for the spectrum of the three Laplacians
L, Ln, and Lrw. Thus, we advise the reader to rely on the context in order to discern
which Laplacian gives rise to the eigenvalues and eigenvectors. Finally, the reader
should keep in mind that the largest eigenvalue is always bounded by 2 for Ln and
Lrw.
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5.2.1 An Illustration of Spectral Clustering

The first two steps of the algorithm can be understood as a non-linear transformation
from the initial feature space to another feature space (that we call spectral feature
space or spectral embedding): a transformation of features pi in R

d to spectral
features xi in R

k . The first natural question that arises is why do we run k-means
on the spectral features X = (x1, . . . , xn) that are subject to parameter tuning and
costly to compute, rather than directly run k-means on the original P? Figures 5.1
and 5.2 illustrate the answer.

In Fig. 5.1, we show the result of k-means directly on a set of artificial features
P known as the two half-moons dataset. In this example, the intuitive ground truth
is that each half-moon corresponds to a class that we want to recover. Running k-
means directly in this 2D feature space will necessarily output a linear separation
between the two obtained Voronoi cells and will thus necessarily fail, as no straight
line can separate the two half-moons.

Spectral clustering, via the computation of the spectral features of a similarity
graph, transforms these original features P in spectral features X that are typically
linearly separable by k-means: the two half-moons are successfully recovered! We
illustrate this in Fig. 5.2. In the next section, we will examine a theoretical argument
aiming to justify this phenomenon.

5.2.2 Justification of Spectral Clustering

A popular approach—and by no means the only one, see Sect. 5.2.2.3—to justify
spectral clustering algorithms stems from its connection to graph partitioning.
Suppose that the similarity graph G = (V, E, W) has been obtained and we want to
compute a partition4 P = {V1, V2, . . . , Vk} of the nodes V in k groups. Intuitively,
a good clustering objective function should favor strongly connected nodes to end

Fig. 5.1 Left: the two half-moons synthetic dataset (n = 500, d = 2, k = 2). Right: k-means with
k = 2 directly on P is unsuccessful to separate the two half-moons

4By definition, a partition P = {V1, V2, . . . , Vk} of the nodes V is such that ∪
=1,...,kV
 = V and
∀
 
= 
′, V
 ∩ V
′ = ∅.
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Fig. 5.2 Illustration of the spectral clustering algorithm on the two half-moons dataset (n = 500,
d = 2, k = 2). The graph is created with a RBF kernel and via a sparsification done with k-nearest
neighbors (with k = 5). The spectral embedding is done with the two eigenvectors associated with
the two smallest eigenvalues of the combinatorial Laplacian matrix L. The embedding X is here
in practice in 1D as the first eigenvector of L is always constant and thus not discriminative (to
confirm this, first show that L is a PSD matrix and then prove that Lc = 0 for any constant vector
c). Observe how the two clusters are now linearly separable in the spectral feature space. k-means
on these features successfully recovers the two half-moons

up in the same subset, and nodes that are far apart in the graph to end up in different
subsets. This intuition can be formalized with graph cuts.

Considering two groups V1 and V2, define w(V1, V2) = ∑i∈V1

∑
j∈V2

W(i, j)

to be the total weight of all links connecting V1 to V2. Also, denote by V̄
 the
complement of V
 in V, such that 1

2w(V
, V̄
) is the total weight one needs to cut
in order to disconnect V
 from the rest of the graph. Given these definitions, the
simplest graph cut objective function, denoted by cut, is:

cut (P = {V1, . . . , Vk}) = 1

2

k∑


=1

w
(
V
, V̄


)
. (5.2)

The best partition according to the cut criterion is P∗ = argminP cut(P). For
k = 2, solving this problem can be done exactly in O(ne + n2 log(n)) amortized
time using the Stoer–Wagner algorithm [126] and approximated in nearly linear
time [68]. Nevertheless, this criterion is not satisfactory as it often separates an
individual node from the rest of the graph, with no attention to the balance of the
sizes or volumes of the groups. In clustering, one usually wants to partition into
groups that are “large enough.” There are two famous ways to balance the previous
cost in the machine learning literature5: the ratio cut [143] and normalized cut [121]
cost functions, respectively defined as:

5The reader should note that in the graph theory literature, the measure of conductance is preferred
over ncut. Conductance is max
 w(V
, V̄
)/w(V
). The two measures are equivalent when k = 2.
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rcut(P) = 1

2

k∑


=1

w(V
, V̄
)

|V
| and ncut(P) = 1

2

k∑


=1

w(V
, V̄
)

vol(V
)
, (5.3)

where |V
| is the number of nodes in V
 and vol(V
) =∑i∈V


∑
j∈V W(i, j) is the

so-called volume of V
. The difference between them is that ncut favors clusters
of large volume, whereas rcut only considers cluster size—though for a d-regular
graph with unit weights the two measures match (up to multiplication by 1/d).
Unfortunately, it is hard to minimize these cost functions directly: minimizing these
two balanced costs is NP-hard [121, 139] and one needs to search over the space of
all possible partitions which is of exponential size.

A Continuous Relaxation Spectral clustering may be interpreted as a continuous
relaxation of the above minimization problems. Without loss of generality, in the
following we concentrate on relaxing the rcut minimization problem (ncut is
relaxed almost identically). Given a partition P = (V1, . . . , Vk), let us define

C =
(

z1√|V1|
| . . . | zk√|Vk|

)
∈ R

n×k, (5.4)

where z
 ∈ R
n is the indicator vector of V
:

z
(i) =
{

1 if node i ∈ V
,

0 otherwise.
(5.5)

It will prove useful in the following to remark that, independently of how
the partitions are chosen, we always have that C�C = I, the identity matrix in
dimension k. With this in place, the problem of minimizing rcut can be rewritten
as (see discussion in [138]):

min
C∈Rn×k

tr
(

C�LC
)

s.t. C�C = I and C as in (5.4) (5.6)

To understand why this equivalence holds, one should simply note that

tr
(

C�LC
)
=

k∑


=1

1

|V
|z
�

 Lz
 =

k∑


=1

1

|V
|
∑

i>j

W(i, j)(z
(i)− z
(j))2

=
k∑


=1

w(V
, V̄
)

|V
| = 2 rcut(P).

Solving (5.6) is obviously still NP-hard as the only thing we have achieved is to
rewrite the rcut minimization problem in matrix form. Yet, in this form, it is easier
to realize that one may find an approximate solution by relaxing the discreteness
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constraint “C as in (5.4).” In the absence of the hard-to-deal-with constraint, the
relaxed problem is not only polynomially solvable but also possesses a closed-form
solution! By the Courant–Fischer–Weyl (min-max) theorem, the solution is given
by the first k eigenvectors Uk = [u1, u2, . . . , uk] of L:

Uk = arg min
C∈Rn×k

tr
(

C�LC
)

subject to C�C = I.

This relaxation is not unique to the combinatorial Laplacian. In the same spirit, the
minimum ncut optimization problem can be formulated in terms of the normalized
Laplacian matrix Ln, and the relaxed problem’s solution is given by the first k

eigenvectors of Ln.
A difficulty still lies before us: how do we go from a real-valued Uk to a partition

of the nodes? The two next subsections aim to motivate the use of k-means as a
rounding heuristic. The exposition starts from the simple case when there are only
two clusters (k = 2) before considering the general case (arbitrary k).

5.2.2.1 The Case of Two Clusters: Thresholding Suffices

For simplicity, we first consider the case of two clusters. If one constructs a
partitioning Pt with V1 = {vi : u2(i) > t} and V2 = {vi : u2(i) ≤ t} for every
level set t ∈ (−1, 1), then it is a folklore result that

rcut(P∗) ≤ min
t

rcut(Pt ) ≤ 2

√

rcut(P∗)
(

dmax − λ2

2

)
, (5.7)

with P∗ = arg minP rcut(P) being the optimal partitioning, dmax is the
maximum degree of any node in V, and λ2 the second smallest eigenvalue of L. The
upper bound is achieved by the tree-cross-path graph constructed by Guattery and
Miller [57]. In an analogous manner, if P∗ = arg minP ncut(P) is the optimal
partitioning w.r.t. the ncut cost and every Pt has been constructed by thresholding
the second eigenvector of Ln, then

ncut(P∗) ≤ min
t

ncut(Pt ) ≤ 2
√
ncut(P∗). (5.8)

Inequality (5.8) can be derived as a consequence of the Cheeger inequality, a key
result of spectral graph theory [32], which for the normalized Laplacian reads:

λ2

2
≤ ncut(P∗) ≤ min

V

w(V, V̄)

min{w(V), w(V̄)} ≤ min
t

ncut(Pt ) ≤
√

2λ2.

As a consequence, we have



5 Approximating Spectral Clustering via Sampling: A Review 139

ncut(P∗) ≤ min
t

ncut(Pt ) ≤
√

2λ2 ≤
√

4ncut(P∗) = 2
√
ncut(P∗),

as desired. The derivation of the rcut bound given in (5.7) follows similarly.

5.2.2.2 More Than Two Clusters: Use k-Means

As the number of clusters k increases, the brute-force approach of testing every
level set becomes quickly prohibitive. But why is k-means the right way to obtain
the clusters in the spectral embedding? Though a plethora of experimental evidence
advocate the use of k-means, a rigorous justification is still lacking. The interested
reader may refer to [83] for an example of an analysis of spectral partitioning
without k-means.

More recently, Peng et al. [107] came up with a mathematical argument showing
that, if G is well clusterable and we use a k-means algorithm (e.g., [76]) which
guarantees that the identified solution C̃ abides to

f (C̃;X) ≤ (1+ ε)f (C∗;X),

where C∗ is the optimal solution of the k-means problem, then the partitioning P̃
produced by spectral clustering when using Ln has ncut cost provably close to
that of the optimal partitioning P∗. In particular, it was shown that, as long as
λk+1 ≥ ck2ncut(P∗), then

ncut(P∗) ≤ ncut(P̃) ≤ ζ ncut(P∗)
(

1+ ε
k3

λk+1

)
,

for some constants c, ζ > 0 that are independent of n and k (see also [71]). Note that,
using the higher-order Cheeger inequality [83] λk/2 ≤ ncut(P∗), the condition
λk+1 ≥ ck2ncut(P∗) implies

λk+1

λk

≥ ck2

2
= �(k2).

Though hopefully milder than this one,6 such gap assumptions are very common
in the analysis of spectral clustering. Simply put, the larger the gap λk+1 − λk is,
the stronger the cluster structure and the easier it is to identify a good clustering.

6To construct an example possibly verifying such a strong gap assumption, consider k cliques of
size k connected together via only k−1 edges, so as to form a loosely connected chain. Even though
this is a straightforward clustering problem known to be easy for spectral clustering algorithms, the
above theorem’s assumption implies λk+1 = �(k2ncut(P∗)) = �(k) which, independently of
n, can only be satisfied when k is a small (recall that the eigenvalues of Ln are necessarily between
0 and 2).
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Besides quantifying the difficulty of the clustering problem, the gap also encodes
the robustness of the spectral embedding to errors induced by approximation
algorithms [36]. The eigenvectors of a perturbed Hermitian matrix exhibit an
interesting property: instead of being arbitrary, induced changes are localized w.r.t.
the eigenvalue axis, following an inverse square eigenvalue-distance law [89]. More
precisely, if ũi is the i-th eigenvector after perturbation, then the inner products
(ũ�i uj )

2 decrease proportionally with |λi−λj |2. As such, demanding that λk+1−λk

is large is often helpful in the analysis of spectral clustering algorithms in order to
ensure that the majority of useful information (contained within Uk) is preserved (in
Ũk) despite approximation errors.7

5.2.2.3 Choice of Relaxation

The presented relaxation approach is not unique and other relaxations could be
equally valid (see, for instance, [17, 24, 112]). This relaxation has nevertheless
the double advantage of being theoretically simple and computationally easy to
implement. Also, justification of spectral clustering algorithms does not only come
from this graph cut perspective and in fact encompasses several approaches that we
will not detail here: perturbation approaches or hitting time considerations [138],
a polarization theorem [23], consistency derivations [84, 135], etc. Interestingly,
recent studies (for instance, [18]) on the stochastic block models have shown
that spectral clustering (on other matrices than the Laplacian, such as the non-
backtracking matrix [73], or the Bethe–Hessian matrix [114] or other similar
deformed Laplacians [34]) perform well up to the detectability threshold of the
block structure.

5.2.3 Computational Complexity Considerations

What is the computational complexity of spectral clustering as a function of the
number of points n, their dimension d, and the number of desired clusters k? Let us
examine the three steps involved one by one.

The first step entails the construction of a sparse similarity graph from the input
points, which is dominated by the kernel computation and costs O(dn2). In the
second step, given the graph G consisting of n nodes and e edges.8 one needs to
compute the spectral embedding (step 2 of Algorithm 1). Without exploiting the
special structure of a graph Laplacian—other than its sparsity that is—there are two
main options:

7Usually, one needs to ensure that
∑

i≤k,j>k(ũ
�
i uj )

2/k remains bounded.
8With e of the order of n if the sparsification step was well conducted.
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• Using power iterations, one may identify sequentially each non-trivial eigenvec-
tor u
 in time O(e/δ
), where δ
 = λ
 − λ
−1 is the 
-th eigenvalue gap and e

is the number of edges of the graph [136]. Computing the spectral embedding
therefore takes O(ke/δ) with δ = min
 δ
. Unfortunately, there exist graphs9

such that δ = O(1/n), bringing the overall worst-case complexity to O(kne).
• The Lanczos method can be used to approximate the first k eigenvectors

in roughly O(ek + nk2) time. This procedure is often numerically unstable
resulting to a loss of orthogonality in the computed Krylov subspace basis.
The most common way to circumvent this problem is by implicit restart [26],
whose computational complexity is not easily derived. The number of restarts,
empirically, depends heavily on the eigenvalue distribution in the vicinity of
λk: if λk is in an eigenvalue bulk, the algorithms takes longer than when λk is
isolated. We decide to write the complexity of restarted Arnoldi as O(t (ek+nk2))

with t modeling the number of restarts. Note that throughout this paper, t will
generically refer to a number of iterations in algorithm complexities. We refer
the interested reader to [13] for an in-depth discussion of Lanczos methods.

The third step entails solving the k-means problem, typically by using the Lloyd-
Max algorithm to converge to a local minimum of f (C;X). Since there is no
guarantee that this procedure will find a good local minimum, it is usually rerun
multiple times, starting in each case from randomly selected centroids Cini. The
computational complexity of this third step is O(tnk2), where t is a bound on the
number of iterations required until convergence multiplied by the number of retries
(typically 10).

5.2.4 A Taxonomy of Sampling Methods for Spectral
Clustering

For the remainder of the chapter, we propose to classify sampling methods aiming
at accelerating one or more of these three steps according to when they sample.
If they sample before step 1, they are detailed in Sect. 5.3. Methods that assume
that the similarity graph is given or well-approximated and sample between steps
1 and 2 will be found in Sect. 5.4. Finally, methods that assume that the spectral
embedding has been exactly computed or well-approximated and sample before
the k-means step are explained in Sect. 5.5. This classification of methods, like all
classification systems, bears a few flaws. For instance, Nyström methods can be
applied to both the context of Sects. 5.3 and 5.4 and are thus mentioned in both.
Also, we decided to include the pseudo-code of only a few chosen algorithms that
we think are illustrative of the literature. This choice is of course subjective and

9The combinatorial Laplacian of a complete balanced binary tree on k ≥ 3 levels and n = 2k − 1
nodes has 1

n
≤ λ2 ≤ 2

n
[56].
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debatable. Notwithstanding these flaws, we hope that this taxonomy clarifies the
landscape of existing methods.

5.3 Sampling in the Original Feature Space

This section is devoted to methods that ambitiously aim to reduce the dimension of
the spectral clustering problem even before the graph has been formed. Indeed, the
naive way of building the similarity graph (step 1 of spectral clustering algorithms)
costs O(dn2) and, as such, is one of the main computational bottlenecks of spectral
clustering. It should be remarked that the present discussion fits into the wider realm
of kernel approximation, a proper review of which cannot fit in this chapter: we will
thus concentrate on methods that were in practice used for spectral clustering.

5.3.1 Nyström-Based Methods

The methods of this section aim to obtain an approximation Ũk of the exact spectral
embedding Uk via a sampling procedure in the original feature space.

The Nyström method is a well-known algorithm for obtaining a rough low-rank
approximation of a positive semi-definite (PSD) matrix A. Here is a high level
description of the steps entailed:

Algorithm 3. Nyström’s method
Input. PSD matrix A ∈ R

n×n, number of samples m, desired rank k

1. Let S be m column indices chosen by some sampling procedure.
2. Denote by B = A(S, S) ∈ R

m×m and C = A(:, S) ∈ R
n×m the sub-

matrices indexed by S.
3. Let B = Q�Q� be the eigen-decomposition of B with the diagonal of �

sorted in decreasing magnitude.
4. Compute the rank-k approximation of B as Bk = Qk�kQ�k , where Qk =

Q(:, :k) ∈ R
n×k and �k = �(:k, :k).

Possible outputs:

• A low-rank approximation Ã = CB+C� ∈ R
n×n of A

• A rank-k approximation Ãk = CB+k C� ∈ R
n×n of A

• The top k eigenvectors of Ãk , stacked as columns in matrix Ṽk ∈ R
n×k ,

obtained by orthonormalizing the columns of Q̃k = CQk�
−1
k ∈ R

n×k
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Various guarantees are known for the quality of Ã depending on the type of
sampling utilized (i.e., how the indices in S are selected in step 1) and the preferred
notion of error (spectral ‖.‖2 vs Frobenius ‖.‖F vs trace ‖.‖∗ norm) [50, 54, 77, 148].
For instance:

Theorem 5.1 (Lemma 8 for q = 1 in [54]) Let ε ∈ (0, 1) and δ ∈ (0, 1) and
suppose that S contains the indices of m columns drawn i.i.d. uniformly at random
(with or without replacement). Then:

‖A− Ã‖2 ≤
(

1+ n

(1− ε)m

)
‖A− Ak‖2

holds with probability at least 1− 3δ, provided that m ≥ 2ε−2μk log (k/δ), where

μ = n

k
max

i=1,...,n
‖Vk(i, :)‖2

2

is the coherence associated with the first k eigenvectors Vk of A, and Ak is the best
rank-k approximation of A.

Guarantees independent of the coherence can be obtained for more advanced
sampling methods. Perhaps the most well-known method is that of leverage scores,
where one draws m samples independently by selecting (with replacement) the i-th
column with probability pi = ‖Vk(i, :)‖2

2/k.

Theorem 5.2 (Lemma 5 for q = 1 in [54]) Let ε ∈ (0, 1) and δ ∈ (0, 1) and
suppose that S contains the indices of m columns drawn i.i.d. with replacement
from such a probability distribution. Then:

‖A− Ã‖2 ≤ ‖A− Ak‖2 + ε2‖A− Ak‖∗
holds with probability at least 0.8− 2δ provided that m ≥ O(ε−2k log(k/δ)).

Computing leverage scores exactly is computationally prohibitive since it neces-
sitates a partial SVD decomposition of A, which we are trying to avoid in the
first place. Nevertheless, it is possible to approximate all leverage scores with a
multiplicative error guarantee in time roughly O(ek log(e)) if A has O(e) non-zero
entries. (see Algorithms 1–3 in [54]). Many variants of the above exist [77, 78], but
to the best of our knowledge, the fastest current Nyström algorithm utilizes ridge
leverage scores with a complex recursive sampling scheme and runs in time nearly
linear in n [100].

Nyström for Spectral Clustering Though initially conceived for low-rank approx-
imation, Nyström’s method can also be used to accelerate spectral clustering. The
key observation is that Uk , the tailing k eigenvectors of the graph representative
matrix R, can be interpreted as the top k eigenvectors of the PSD matrix A =
‖R‖2I − R. As such, the span of the k top eigenvectors of Ãk obtained by running
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Algorithm 3 on A is an approximation of the span of the exact spectral embedding.
Different variants of this idea have been considered for the acceleration of spectral
clustering [19, 48, 85, 86, 97, 141].

Following our taxonomy, we hereby focus on the case where we have at our
disposal n points pi in dimension d, and the similarity graph has yet to be formed.
The case where the graph is known is deferred to Sect. 5.4.

In this case, we cannot run Algorithm 3 on A = ‖R‖2I − R as the graph,
and a fortiori its representative matrix R has not yet been formed. What we can
have access to efficiently is B = s(K(S, S)) and C = s(K(:, S)), as these require
only a partial computation of the kernel and cost only O(dnm). Note that s is a
sparsification function that is applied on a subset of the kernel matrix.

The following pseudo-code exemplifies how Nyström-based techniques can be
used to approximate the first k eigenvectors Uk associated with the normalized
Laplacian matrix (i.e., here R = Ln):

Algorithm 3b. Nyström for spectral clustering [85]
Input. The set of points P, the number of desired clusters k, a sampling set S
of size m ≥ k

1. Compute the sub-matrices B=s(K(S, S)) ∈ R
m×m and C = s(K(:, S))

∈ R
n×m, where s is a sparsification function.

2. Let Dr = diag(B1) be the m×m degree matrix.
3. Compute the top k eigenvalues �k and eigenvectors Qk of D−1/2

r BD−1/2
r .

4. Set Q̃k = CD−1/2
r Qk�

−1
k .

5. Let Dl = diag(Q̃k�kQ̃�k 1) be the n× n degree matrix.

6. Compute Ũk obtained by orthogonalizing D−1/2

l Q̃k .

Output: Ũk , an approximation of the spectral embedding Uk .

This algorithm runs in O(nm max(d, k)) time, which is small when m depends
mildly on the other parameters of interest. Nevertheless, the algorithm (and others
like it) suffers from several issues:

• Algorithm 3b attempts to use Nyström’s method on A = 2I − Ln = I +
D− 1

2 s(K)D− 1
2 via the exact computation of two sub-matrices of K. In doing

so, it makes two strong (and uncontrolled) approximations. First of all, the
sparsification step (step 1 in Algorithm 3b) is applied to the sub-matrices K(S, S)

and K(:, S), deviating from the correct sparsification procedure that takes into
account the entire kernel matrix K. Second, the degree matrix D is never exactly
computed as knowing it exactly would entail computing exactly s(K), which is
precisely what we are trying to avoid. Existing methods thus rely on heuristic
approximations of the degree in order to bypass this difficulty (see steps 2 and 5
of Algorithm 3b).
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• Since we do not have direct access to the kernel matrix, we cannot utilize
advanced sampling methods such as leverage scores to draw the sampling set
S. This is particularly problematic if (due to sparsification) matrices B and C are
sparse, as for sparse matrices uniform sampling is known to perform poorly [97].
Techniques that rely on distances between columns do not fair much better.
Landmark-based approaches commonly perform better in simple problems but
suffer when the clusters are non-convex [19]. We refer the reader to the work by
Mohan et al. [97] for more information on landmark-based methods. The latter
work also describes an involved sampling scheme that is aimed at general (i.e.,
non-convex) clusters.

For the reasons highlighted above, the low-rank approximation guarantees accom-
panying the classical Nyström method cannot be directly used here. A fortiori, it is
an open question how much the quality of the spectral clustering solution is affected
by using the centroids obtained by running k-means on Ũk .

Column Sampling Akin in spirit to Nyström methods, an alternative approach
to accelerating spectral clustering was inspired by column sampling low-rank
approximation techniques [37, 43].

An instance of such algorithms was put forth under the name of cSPEC (column
sampling spectral clustering) by Wang et al. [141]. Let C = UC�CV�C be the
singular value decomposition of the n×m matrix C = s(K(:, S)). Then, matrices

�̃ =
√

n

m
�C and Ũ = CVC�+C

are interpreted as an approximation of the actual eigenvalues and eigenvectors of K
and thus Uk can be substituted by the first k columns of Ũ. This algorithm runs in
O(ndm+ nm2).

Authors in [29] propose a hybrid method, between column sampling and the
representative-based methods discussed in Sect. 5.3.3, where they propose the
following approximate factorization of the data matrix:

(p1| . . . |pn) � FZ ∈ R
d×n, (5.9)

where F ∈ R
d×m concatenates the feature vectors of m sampled points and Z ∈

R
m×n represents all unsampled points as approximate linear combinations of the

representatives, computed via sparse coding techniques [82].10 The SVD of D̃−1/2Z,
with D̃ the row-sum of Z, is then computed to obtain an approximation Ũk of Uk .
The complexity of their algorithm is also O(ndm+ nm2).

10Authors in [116] have a very similar proposition as [29], adding a projection phase at the
beginning to reduce the dimension d (see Sect. 5.3.4.2). Similar ideas may also be found in [137].
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In these methods, the choice of the sample set S is, of course, central and has
been much debated. Popular options are uniformly at random or via better-tailored
probability distributions, via a first k-means (with k = m) pass on P, or via other
selective sampling methods. Also, as with most extensions of Nyström’s method to
spectral clustering, column sampling methods for spectral clustering do not come
with end-to-end approximation guarantees on Uk .

In the world of low-rank matrix approximation the situation is somewhat more
advanced. Recent work in column sampling utilizes adaptive sampling with leverage
scores in time O(e + npoly(k)), or uniformly i.i.d. after preconditioning by a fast
randomized Hadamard transform [41, 145]. Others have also used a correlated
version called volume sampling to obtain column indices [37]. Nevertheless, this
literature extends beyond the scope of this chapter and thus we invite the interested
reader to consider the aforementioned references for a more in-depth perspective.

5.3.2 Random Fourier Features

Out of several sketching techniques one could a priori use to accelerate spectral
clustering, we focus on random Fourier features (RFF) [110]: a method that samples
in the Fourier space associated with the original feature space. Even though RFFs
have originally been developed to approximate a kernel matrix K in time linear in
n instead of the quadratic time necessary for its exact computation, they can in fact
be used to obtain an approximation Ũk of the exact spectral embedding Uk .

Let us denote by κ the RBF kernel, i.e., κ(t) = exp(−t2/σ 2), whose Fourier
transform is:

κ̂(ω) =
∫

Rd

κ(t) exp−iω�t dt. (5.10)

The above takes real values as κ is symmetric. One may write:

κ(p, q) = κ(p− q) = 1

Z

∫

Rd

κ̂(ω) expiω�(p−q) dω, (5.11)

where, in order to ensure that κ(p, p) = 1, the normalization constant is set to
Z = ∫

Rd κ̂(ω)dω. According to Bochner’s theorem, and due to the fact that κ is
positive-definite, κ̂/Z is a valid probability density function. κ(p, q) may thus be
interpreted as the expected value of expiω�(p−q) provided that ω is drawn from κ̂/Z:

κ(p, q) = Eω

(
expiω�(p−q)

)
(5.12)

Drawing ω from the distribution κ̂/Z is equivalent to drawing independently each
of its d entries according to the normal law of mean 0 and variance 2/σ 2. Indeed:
κ̂(ω) = πd/2σd exp(−σ 2ω2/4) and Z = ∫

Rd κ̂(ω)dω = (2π)d , leading to
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κ̂(ω)

Z
=
(

σ

2
√

π

)d

exp−σ 2ω2/4 .

In practice, we draw independently m such vectors ω to obtain the set of sampled
frequencies � = (ω1, . . . ,ωm). For each data point pi , and given this set of samples
�, we define the associated random Fourier feature vector:

ψ i =
1√
m
[cos(ω�1 pi )| · · · | cos(ω�mpi )| sin(ω�1 pi )| · · · | sin(ω�mpi )]� ∈ R

2m,

(5.13)

and call � = (
ψ1| · · · |ψn

) ∈ R
2m×n the RFF matrix. Other embeddings are

possible in the RFF framework, but this one was shown to be the most appropriate
to the Gaussian kernel [127]. As m increases, ψ�i ψj concentrates around its

expected value κ(pi , pj ): ψ�i ψj � κ(pi , pj ). Proposition 1 of [127] states the
tightness of this concentration: it shows that the approximation starts to be valid
with high probability for m ≥ O(d log d). The Gaussian kernel matrix is thus
well approximated as K � ���. With such a low-rank approximation � of
K, one can estimate the degrees,11 degree-normalize � to obtain a low-rank
approximation of the normalized Laplacian Ln, and perform an SVD to directly
obtain an approximation Ũk of the spectral embedding Uk . The total cost to obtain
this approximation is O(ndm+nm2). These ideas were developed in Refs. [31, 146],
for instance.

As in Nyström methods however, the concentration guarantees of RFFs for
K do not extend to the degree-normalized case; moreover, the sparsification step
1b of spectral clustering is ignored. Note that improving over RFFs in terms of
efficiency and concentration properties is the subject of recent research (see, for
instance, [81]).

5.3.3 The Paradigm of Representative Points

The methods detailed here sample in the original feature space and directly obtain
a control on the misclustering rate due to the sampling process. They are based on
the following framework:

1. Sample m so-called representatives.
2. Run spectral clustering on the representatives.
3. Lift the solution back to the entire dataset.

11An approximation of the degree di of node vi is ψ�i ψ̄ where ψ̄ =∑j ψj . All degrees can thus

be estimated in time O(nm2).
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Let us illustrate this with the example of KASP:

Algorithm 4. KASP: k-means-based approximate spectral cluster-
ing [147]
Input. A set of n points P = (p1, p2, . . . , pn) in dimension d, a number of
desired clusters k, and a number of representatives m.

1. Perform k-means with k = m on P and obtain:

(a) the cluster centroids Y = (y1, . . . , ym) as the m representative points.
(b) a correspondence table to associate each pi to its nearest representative

2. Run spectral clustering on Y to get the cluster membership of each yi .
3. Lift the cluster membership to each pi by looking up the cluster member-

ship of its representative in the correspondence table.

Output: k clusters

The complexity of KASP is bounded by12 O(mdnt + m3). For a summary
of the analysis given in [147], let us consider the cluster memberships given by
exact spectral clustering on P as well as the memberships given by exact spectral
clustering on P̃ = (p1 + ε1, . . . , pn + εn), where the εi are any small perturbations
on the initial points. Let us denote by Ln (resp. L̃n) the normalized Laplacian matrix
of the similarity graph on P (resp. P̃). The analysis concentrates on the study of the
miss-clustering rate ρ:

ρ = # of points with different memberships

n
. (5.14)

The main result, building upon preliminary work in [63], stems from a perturbation
approach and reads:

Theorem 5.3 Under the assumptions of Theorem 3 in [147]: ρ≤O
(

k

g2
0
‖Ln−L̃n‖F

)
,

where g0 is a value depending on the spectral gap. Also, under the assumptions of
Theorem 6 in [147], one has, with high probability:

‖Ln − L̃n‖F ≤ O
(
σ (2)

ε + σ (4)
ε

)
, (5.15)

with σ
(2)
ε and σ

(4)
ε the 2nd and 4th moments of the perturbation’s norms ‖εi‖2.

12It is in fact O(mdnt) for step 1, and bounded by O(dm2+m2k+mk2) for step 2. As n ≥ m and
m ≥ k, the total complexity is bounded by O(mdnt +m3).
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Combining both bounds, one obtains an upper bound on the misclustering rate that
depends on the second and fourth moments of the perturbation’s norms ‖εi‖2. The
“collapse” of points onto the m representative points, interpreted as a perturbation
on the original points, should thus tend to minimize these two moments, leading the
authors to propose distortion-minimizing algorithms, such as KASP. A very similar
algorithm, eSPEC, is described in [141].

5.3.4 Other Methods

5.3.4.1 Approximate Nearest Neighbor Search Algorithms

The objective here is to approximate the nearest neighbor graph efficiently. Even
though these methods are not necessarily based on sampling, we include them in
the discussion as they are frequently used in practice.

Given the feature vectors p1, . . . , pn ∈ R
d and a query point q ∈ R

d , the
exact nearest neighbor search (exact NNS) associated with P and q is p∗ =
argminp∈P dist(q, p), where dist stands for any distance. Different distances are
possible depending on the choice of kernel κ . We will here consider the Euclidean
norm as it enters the definition of the classical RBF kernel. Computing the exact
NNS costs O(dn). The goal of the approximate NNS field of research is to provide
faster algorithms that have the following control on the error.

Definition 5.1 Point p∗ is an ε-approximate nearest neighbor of query q ∈ R
d , if

∀p ∈ P dist(q, p∗) ≤ (1+ ε) dist(q, p).

For ε = 0, this reduces to exact NNS.

Extensions of this objective to the k-nearest neighbor goal are considered in the
NNS literature. A k-nearest neighbor graph can then be constructed simply by
running an approximate k-NNS query for each object pi . Thus, approximate NSS
algorithms are interesting candidates to approximate the adjacency matrix of the
nearest-neighbor affinity graph, that we need in step 1 of spectral clustering.
Many algorithms exist, their respective performances depending essentially on the
dimension d of the feature vectors. According to [9], randomized k-d forests as
implemented in the library FLANN [98] are considered state of the art for dimension
of around 100, whereas methods based on balanced box decomposition (BBD) [4, 7]
are known to perform well for d roughly smaller than 100. In high dimensions, to
avoid the curse of dimensionality, successful approaches are, for instance, based on
hashing methods (such as locality sensitive hashing (LSH) [5], product quantization
(PQ) [66]), or k-d generalized random forests [9]. Finally, proximity graph methods
that sequentially improve over a first coarse approximation of the k-NN graph (or
other graph structures such as navigable graphs) have received a large attention
recently and are becoming state of the art in regimes where quality of approximation
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primes (see, for instance, [8, 40, 51, 94]). Such tools come with various levels of
guarantees and computation costs, the details of which are not in the scope of this
chapter.

Experimentally, to obtain an approximate k-NN graph with a typical recall rate13

of 0.9, these algorithms are observed to achieve a complexity of O(dnα) with α

close to 1 (α � 1.1 in [40], for instance).

5.3.4.2 Feature Selection and Feature Projection

Some methods work on reducing the factor d of the complexity O(dn2) of the
kernel computation via feature selection, i.e., the sampling of features deemed more
useful for the underlying clustering task, or feature projection, i.e., the projection
on usually random subspaces of dimension d ′ < d. Feature selection methods
are usually designed to improve the classification by removing features that are
too noisy or useless for the classification. We thus do not detail further these
methods as they are not approximation algorithms per se. The interested reader
will find some entries in the literature via references [25, 35, 60, 149]. Projection
methods use random projections of the original points P on spaces of dimension
d ′ ∼ log n in order to take advantage of the Johnson–Lindenstrauss lemma of norm
conservation: the kernel computed from the projected features in dimension d ′ is
thus an approximation of the true kernel with high probability. We refer to the
works [64, 116] for more details.

5.4 Sampling Given the Similarity Graph

We now suppose that the similarity graph is either given (e.g., in cases where the
original data is a graph) or has been well approximated (by approximate k-NN
search, for instance) and concentrate on sampling-based methods that aim to reduce
the cost of computing the first k eigenvectors of R.

These methods predominantly aim to approximate R by a smaller matrix R̃ of
size m. The eigen-decomposition is done in R

m which can be significantly cheaper
when m� n. In addition, each method comes with a fast way of lifting vectors from
R

m back to R
n (this is usually a linear transformation). After lifting, the eigenvectors

of R̃ are used as a proxy for those of R.
Unlike the previous section where a strong approximation guarantee of the exact

embedding Uk by an efficiently computed Ũk was a distant and difficult goal to
achieve in itself, we will see in this section that the knowledge of the similarity

13The recall rate for a node is the number of correctly identified k-NN divided by k. The recall rate
for a k-NN graph is the average recall rate over all nodes.
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graph not only enables to obtain such strong approximation guarantees, but also
enables to control how the error on Uk transfers as an error on the k-means cost.

To be more precise, recall (5.1) defining the k-means cost f (C;X) associated
with the n points X = (x1, . . . , xn) and a centroid set C. Now, suppose that we
have identified a set of n points X̃ = (x̃1| . . . |x̃n) that are meant to approximate
the exact spectral embedding X. Moreover, let C∗ (resp. C̃∗) be the optimal set of k

centroids minimizing the k-means cost on X (resp. X̃). We will see that several (not
all) approximation methods of this section achieve an end-to-end approximation
guarantee of the form

∣∣∣f (C∗;X)
1/2 − f (C̃∗;X)

1/2
∣∣∣ ≤ ε,

for some small ε with—at least—constant probability. Such an end-to-end guarantee
is indeed more desirable than a simple guarantee on the distance between Uk and
Ũk: it informs us on the approximation quality of the attained clustering.

5.4.1 Nyström-Based Methods

The Nyström-based methods discussed in Sect. 5.3.1 are also applicable here. Let
us concentrate on the choice R = Ln to illustrate the main ideas. As explained
in Sect. 5.3.1, the tailing k eigenvectors Uk of Ln can be interpreted as the top
k eigenvectors of the PSD matrix A = 2I − Ln. As such, the span of the top-
k eigenvectors of Ãk , span(Ũk), obtained by running Algorithm 3 on A should
approximate the span of Uk . Now, how does one go from Nyström theorems such
as Theorem 5.2 to error bounds on the k-means cost function?

The first step towards an end-to-end guarantee relies on the following result:

Lemma 1 (See the Proof of Theorem 6 in [21]) Denote by C̃∗ the optimal centroid
set obtained by solving k-means on the rows of Ũk . It holds that

∣∣∣f (C∗;X)
1/2 − f (C̃∗;X)

1/2
∣∣∣ ≤ 2‖E‖F , (5.16)

where E = UkU�k − ŨkŨ�k .

This means that the error made by considering the optimal k-means solution
based on Ũk (instead of Uk) is controlled by the Frobenius norm of the projector
difference E = UkU�k − ŨkŨ�k . Furthermore, since14 ‖E‖F ≤ √

2k‖E‖2 and

14Based on three arguments: (i) for any two matrices M1 and M2 of rank r1 and r2 it holds that
rank(M1 +M2) ≤ r1 + r2, (ii) for any matrix M or rank r , ‖M‖F ≤ √r‖M‖2, and (iii) both Uk

and Ũk are of rank k.
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‖E‖2 = ‖ sin(�(Uk, Ũk))‖2, we can apply the Davis–Kahan sin � perturbation
theorem (see, for instance, Section VII of [16]) and, provided that σk − σ̃k+1 > 0,
obtain:

‖E‖F ≤
√

2k‖E‖2 ≤
√

2k
‖A− Ã‖2

σk − σ̃k+1
,

where {σi} (resp. {σ̃i}) are the singular values of A (resp. Ã) ordered decreasingly.15

The final bound is obtained by combining the above with the leverage score
sampling bound given by Theorem 5.2.

Theorem 5.4 Let Ũk be the eigenvectors obtained by running Algorithm 3 on A =
2I − Ln (with the leverage score sampling scheme for the m samples S of step 1).
Denote by C̃∗ the optimal centroid set obtained by solving k-means on the rows of
Ũk . Then, for some constant C > 1, we have

∣∣∣f (C∗;X)
1/2 − f (C̃∗;X)

1/2
∣∣∣ ≤ 2

√
2k

σk − σ̃k+1

⎛

⎝σk+1(A)+ Ck log (k/δ)

m

n∑

j=k+1

σj

⎞

⎠

with probability at least 0.8− 2δ.

Examining the above bound one notices that 2
√

2k
σk+1(A)

σk−σ̃k+1
is independent of the

number of samples. The incompressibility of this error term emanates from A being
(in general) different from its best low-rank approximation. On the other hand, all
remaining error terms can be made independent of k and n by setting

m = O

⎛

⎝k
√

k log k

n∑

j=k+1

σj

σk − σ̃k+1

⎞

⎠ .

This end-to-end guarantee is not satisfactory for several reasons. First of all, it relies
on the assumption σk > σ̃k+1, which is not necessarily true. Moreover, the Davis–
Kahan theorem could in theory guarantee ‖E‖2 ≤ ‖Ak − Ãk‖2/σk and ‖E‖2 ≤
‖A− Ãk‖2/σk , which are stronger than the bound depending on ‖A − Ã‖2 that
we used. Unfortunately, Nyström approximation theorems do not give controls on
‖Ak − Ãk‖2 nor on ‖A− Ãk‖2, impeding tighter end-to-end bounds.

5.4.2 Graph Coarsening

Inspired by the algebraic multi-grid, researchers realized early on that a natural
way to accelerate spectral clustering is by graph coarsening [38, 61, 69]. Here,

15Note that, in our setting, A = 2I− Ln and σk = 2− λk .



5 Approximating Spectral Clustering via Sampling: A Review 153

instead of solving the clustering problem directly on G, one may first reduce it to a
coarser graph Gc consisting of m � n nodes using a multi-level graph coarsening
procedure. The expensive eigen-decomposition computation is done at a lower cost
on the representative matrix of the small graph and the final spectral embedding is
obtained by inexpensively lifting and refining the result.

In the notation of [91], coarsening involves a sequence of c+ 1 graphs

G = G0 = (V0, E0, W0) G1 = (V1, E1, W1) · · · Gc = (Vc, Ec, Wc)

(5.17)

of decreasing size n = n0 > n1 > · · · > nc = m, where each vertex of G


represents one of more vertices of G
−1. To express coarsening in algebraic form,
we suppose that L(G0) = L is the combinatorial Laplacian associated with G. We
then obtain L(Gc) by applying the following repeatedly:

L(G
) = P∓
 L(G
−1)P
+

 , (5.18)

where P
 ∈ R
n
×n
−1 is a matrix with more columns than rows, 
 = 1, 2, . . . , c is

the level of the reduction, and symbol ∓ denotes the transposed pseudo-inverse. An
eigenvector ũ ∈ R

m of L(Gc) is lifted back to R
n by backwards recursion

ũ
−1 = P
ũ
,

where ũc = ũ.

Matrices P1, P2, . . . , Pc are determined by the transformation performed at each
level. Specifically, one should define for each level a surjective map ϕ
 : V
−1 → V


between the original vertex set V
−1 and the smaller vertex set V
. We refer to the
set of vertices V

(r)

−1 ⊆ V
−1 mapped onto the same vertex v′r of V
 as a contraction

set:

V
(r)

−1 = {v ∈ V
−1 : ϕ
(v) = v′r}

It is easy to deduce from the above that contraction sets induce a partitioning of
V
−1 into n
 subgraphs, each corresponding to a single vertex of V
.

Then, for any v′r ∈ V
 and vi ∈ V
−1, matrices P
 ∈ R
n
×n
−1 and P+
 ∈

R
n
−1×n
 are given by:

P
(r, i) =
⎧
⎨

⎩

1
|V (r)


−1|
if vi ∈ V

(r)

−1

0 otherwise
and P+
 (i, r) =

{
1 if vi ∈ V

(r)

−1

0 otherwise.

The preceding construction is the only one that guarantees that every L(G
) will be
the combinatorial Laplacian associated with G
 [90].

Note that from a computational perspective the reduction is very efficient and can
be carried out in linear time: each coarsening level entails multiplication by a sparse



154 N. Tremblay and A. Loukas

matrix, meaning that O(e) and O(n) operations suffice, respectively, to coarsen L
and lift any vector (such as the eigenvectors of L(Gc)) from R

m back to R
n.

5.4.2.1 Coarsening for Spectral Clustering

Using coarsening effectively boils down to determining for each 
 how to partition
G
−1 into n
 contraction sets V

(1)

 , . . . , V

(n
)

 , such that, after lifting, the first k

eigenvectors Ũk of L(Gc) approximate the spectral embedding Uk derived from
L. Alternatively, one may also solve the k-means problem in the small dimension
and only lift the resulting cluster assignments [38]. This scheme is computationally
superior but we will not discuss it here as it does not come with any guarantees.

Perhaps the most simple (and common) method of forming contraction sets is by
the heavy-edge matching heuristic—originally developed in the multi-grid literature
and first considered for graph partitioning in [69]. This method is derived based on
the intuition that the larger the weight of an edge, the less likely it will be that
the vertices it connects will reside in different clusters. We should therefore aim to
contract pairs of vertices connected by a heavy edge (i.e., of large weight) first. Let
us consider this case further. By focusing on edges, we basically constrain ourselves
by enforcing that every contraction set V

(r)

 contains either two nodes connected by

an edge or a single node, signifying that said node is chosen to remain as is in the
coarser graph. As such, we can reformulate the problem of selecting contraction sets
at each level as that of selecting the largest number of edges (to attain the largest
reduction), while also striving to make the cumulative sum of selected edge weights
as large as possible (giving preference to heavy edges). This is exactly the maximum
weight matching problem, which can be approximated in linear time [44].

A plethora of numerical evidence motivates the use of matching-based coars-
ening methods, such as the heavy-edge heuristic, for accelerating spectral clus-
tering [38, 69, 115]. From a theoretical perspective, the approximation quality of
matching-based methods was characterized in [91]. Therein, the matching was
constructed in the following randomized manner:

Algorithm 5. Randomized edge contraction (one level) [91]
Input. A graph G = (V, E)

1. Associate with each eij ∈ E a probability pij > 0.
2. While |E| > 0:

(a) Draw a sample eij from E with probability ∝ pij .
(b) Remove from E both eij as well as all edges sharing a common

endpoint with it.
(c) Construct contraction set (vi, vj ).

Output: Contraction sets
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The following approximation result is known:

Theorem 5.5 (Corollary 5.1 in [91]) Consider a graph with bounded degrees

di � n and λk ≤ mineij∈E

{
di+dj

2

}
. Suppose that the graph is coarsened by

Algorithm 5, using a heavy-edge potential such that pij ∝ wij . For sufficiently large
n, a single level, and δ > 0,

∣∣∣f (C∗;X)
1/2 − f (C̃∗;X)

1/2
∣∣∣ = O

⎛

⎝
√

1− m
n

δ

∑k

=2 λ


λk+1 − λk

⎞

⎠

with probability at least 1 − δ. Above, C̃∗ is the optimal k-means solution when
using the lifted eigenvectors of Lc as a spectral embedding.

We deduce that coarsening works better when the spectral clustering problem is easy
(as quantified by the weighted gap

∑k

=2 λ
/(λk+1 − λk)) and the achieved error is

linear on the reduction ratio 1−m/n.
There also exist more advanced techniques for selecting contraction sets that

come with stronger guarantees w.r.t. the attained reduction and quality of approx-
imation, but feature running time that is not smaller than that of spectral cluster-
ing [90]. In particular, these work also with the normalized Laplacian and can be
used to achieve multi-level reduction. Roughly, their strategy is to identify and
contract sets S ⊂ V for which x(i) ≈ x(j) for all vectors x ∈ Uk and vi, vj ∈ S.
This strategy ensures that the best partitionings of G are preserved by coarsening.
We will not expand on these methods here as they do not aim to improve the running
time of spectral clustering.

5.4.3 Other Approaches

In the following, we present two additional approaches for approximately comput-
ing spectral embeddings. The former can be interpreted as a sampling-based method
(but in a different manner than the techniques discussed so far), whereas the latter
is only vaguely linked to sampling. Nevertheless, we find that both techniques are
very interesting and merit a brief discussion.

5.4.3.1 Spectral Sparsification

This approach is best suited for cases when the input of spectral clustering is directly
a graph.16 Different from the methods discussed earlier, here the aim is to identify

16When one starts from a set of points, it is preferable to sparsify the graph by retaining a constant
number of nearest neighbors for each point. The resulting nearest neighbor graph has already O(n)

edges, which is the smallest possible.
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a Laplacian matrix L̃ of the same size as L but with fewer entries. Additionally, it
should be ensured that

1

1+ ε
x�Lx ≤ x�L̃x ≤ (1+ ε)x�Lx for all x ∈ R

n (5.19)

for some small constant ε > 0 [125]. Most fast algorithms for spectral sparsification
entail sampling O(n log n) edges from the total edges present in the graph. Different
sampling schemes are possible [72, 124], but the most popular ones entail sampling
edges with replacement based on their effective resistance. It should be noted
that though computing all effective resistances exactly can be computationally
prohibitive, the effective resistance of edges can be approximated in nearly linear
time on the number of edges based on a Johnson–Lindenstrauss argument [124].

There are different ways to use sparsification in order to accelerate spectral
clustering. The most direct one is to exploit the fact that the eigenvalues λ̃k and
eigenvectors Ũk of L̃ approximate, respectively, the eigenvalues and eigenvectors
of L up to multiplicative error. This yields the same flavor of guarantees as in
graph coarsening and ensures that the computational complexity of the partial
eigen-decomposition will decrease when e = ω(n log n). A variation of this
idea was considered in [140], though the latter did not provide a complete error
and complexity analysis. Alternative approaches are also possible. We refer the
interested reader to [136] for a rigorous argument that invokes a Laplacian solver.

Despite these exciting developments, we should mention that the overwhelming
majority of graph sparsification algorithms remain in the realm of theory. That is,
we are currently not aware of any practical and competitive implementation and thus
retain a measure of skepticism with regard to their utility in the setting of spectral
clustering.

5.4.3.2 Random Eigenspace Projection

There also exist approaches that do not explicitly rely on sampling. The key
starting point here is that, with regard to spectral clustering, one does not need the
eigenvectors exactly—any rotation of Uk suffices (indeed, k-means is an algorithm
based on distances and rotations conserve distances). Even more generally, consider
Ũk ∈ R

n×m with m ≥ k and denote:

ε = min
Q∈Q

‖UkIk×mQ− Ũk‖F ,

where Q is the space of m×m unitary matrices and Ik×m consists of the first k rows
of an m×m identity matrix.
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The following lemma (which is a generalization of Lemma 1) shows how ε can
be used to provide control on the k-means error:

Lemma 2 (Lemma 3.1 in [95])
Let C̃∗ be the optimal solution of the k-means problem on Ũk . It holds that17

∣∣∣f (C∗;X)
1/2 − f (C̃∗;X)

1/2
∣∣∣ ≤ 2ε. (5.20)

There exists (at least) two approaches to efficiently compute Ũk while controlling
ε [21, 130] (see also related work in [58]). We will consider here a simple variant of
the one proposed in [130] and further analyzed in [95]. Let G ∈ R

n×m be a random
Gaussian matrix with centered i.i.d. entries, each having variance 1

m
. Furthermore,

suppose that we project G onto span(Uk) by multiplying each one of its columns by
an ideal projector Pk defined as

Pk = U
(

Ik 0
0 0

)
U�. (5.21)

Theorem 5.6 ([95, 130]) Let C̃∗ be the optimal solution of the k-means problem on
the rows of Ũk = PkG. For every δ ≥ 0, one has

∣∣∣f (C∗;X)
1/2 − f (C̃∗;X)

1/2
∣∣∣ ≤ 2

√
k

m
(
√

k + δ), (5.22)

with probability at least 1− exp(−δ2/2).

This result means that for an ideal projector Pk , dimension m = O(k2) suffices
to guarantee good approximation (since the error becomes independent of k

and n)! A similar argument also holds when the entries of G, instead of being
Gaussian, are selected i.i.d. from {−√3, 0,+√3}with probabilities {1/6, 2/3, 1/6},
respectively [1]. This construction has the benefit of being sparser and, moreover,
is reminiscent of sampling. It should be noted that in [130], m = O(log n) was
deemed enough because one only wanted that the distance between two rows of Uk

17A remark on the definition of the k-means cost. Note that, here, the lines X̃ of Ũk are points in
dimension m ≥ k, such that the optimal centroid set C̃∗ minimizing the k-means cost on X̃ is a set
of k points in dimension m ≥ k. In this context, the notation f (C̃∗;X) is ill-defined: it is a sum of
distances between points that do not necessarily have the same dimension. We abuse notations and
give the following meaning to f (C̃;X). First, consider the matrix form of the k-means cost, as used
in the proofs of Lemmas 1 and 2: f (C;X) = ‖X − CC�X‖2

F , where X = (x1| . . . |xn)
� ∈ R

n×k

and C ∈ R
n×k is the (weighted) cluster indicator matrix associated to the Voronoi tessellation of

X given C: Ci
 = 1/
√

s
 if data point i belongs to cluster 
, and 0 otherwise, where s
 is the
size of cluster 
. Now, let C̃ ∈ R

n×k be the cluster indicator matrix associated with the Voronoi
tessellation of X̃ given C̃. One writes: f (C̃;X) = ‖X− C̃C̃�X‖2

F .
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was approximated by the distance between the same two rows of Ũk . There was in
fact no end-to-end control on the k-means error.

The discussion so far assumed that Pk is an ideal projector onto span(Uk).
However, in practice one does not have access to this projector as we are in fact
in the process of computing Uk . One may choose to approximate the action of Pk by
an application of a matrix function h on the representative matrix R [111, 129].
Assuming a point λ∗ in the interval [λk, λk+1) is known, one may select a
polynomial [122] or rational function [65, 92] that approximates the ideal low-pass
response, i.e., h(λ) = 1 if λ ≤ λ∗ and h(λ) = 0, otherwise. The approximated
projector P̃k = h(R) can be designed to be very close to Pk . For instance, in the
case of Chebyshev polynomials of order c using the arguments of [80, Lemma 1] it is
easy to prove that w.h.p. using h(R) instead of Pk does not add more than O(c−c√n)

error in (5.20). Furthermore, the operation P̃kG can conveniently be computed in
O(mce) time via this polynomial approximation.

The last ingredient needed for this approximation is λ∗, i.e., a point in the
interval [λk, λk+1). Finding efficiently a valid λ∗ is difficult. An option is to
rely on eigencount techniques [39, 105, 109] to find one in18 O(ck2(log n)(e +
n log(λn/(λk+1 − λk)))) time, which features similar complexity as the Lanczos
method (see discussion in Sect. 5.2.3). Another option is to content oneself with
values of λ∗ known only to be close to the interval [λk, λk+1), but thereby loosing
the end-to-end guarantee [130].

5.5 Sampling in the Spectral Feature Space

Having computed (or approximated) the spectral embedding X = (x1, x2, . . . , xn),
what remains is to solve the k-means problem on X, in order to obtain k centroids
together with the associated k classes obtained after Voronoi tessellation.

The usual heuristic used to solve the k-means problem, namely the Lloyd-Max
algorithm, is already very efficient as it runs in O(nk2t) time as seen in Sect. 5.2.3.
Nonetheless, this section considers ways to accelerate k-means even further. In the
following, we classify the relevant literature in five categories and point towards
representative references for each case. In our effort to provide depth (as well as

18Proof sketch: Given λ ∈ (0, λn], denote by j the largest integer such that λj ≤ λ and by Pj

the orthogonal projector on Uj . Let G ∈ R
n×m′ be a random Gaussian matrix with centered i.i.d.

entries, each having variance 1
m′ and denote by ĵ = ‖Pj G‖F . Relying on Theorem 4.1 (and the

following discussion in Section 4.2) of [109] with Eλ = 0, one has with prob. at least 1 − ε that
(1 − δ)j ≤ ĵ ≤ (1 + δ)j for all j = 1, . . . , n provided m′ ≥ 1

δ2 log n
ε

. Setting δ = 1/(2k + 3)

gives w.h.p. that 2k+2
2k+3 j ≤ ĵ ≤ 2k+4

2k+3 j for all j = 1, . . . , n provided m′ ≥ O(k2 log n). This implies

that w.h.p. for every j ≤ k + 1 it must be that round(ĵ ) = j , whereas when j > k + 1 we have
round(ĵ ) > k+ 1. Note that round(ĵ ) is the closest integer to ĵ . By dichotomy on λ ∈ (0, λn], one
thus finds a λ∗ in time O(ck2(log n)(e + n log(λn/(λk+1 − λk)))).
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breadth) of presentation, the rest of the section details only methods that belong to
the first and last categories.

• Exact acceleration of Lloyd-Max. There exists exact accelerated Lloyd-Max
algorithms, some of them based on avoiding unnecessary distance calculations
using the triangular inequality [59, 101], or on optimized data organization [67],
and others concentrating on clever initializations [6, 104]. Unlike the former
methods, the latter methods involve sampling and are discussed in Sect. 5.5.1.

• Approximate acceleration of Lloyd-Max. Approximately accelerating the
Lloyd-Max algorithm has also received attention, for instance, via approximate
nearest neighbor methods [108], via cluster closure [142], or via applying
Lloyd-Max hierarchically (in the large k context) [103]. An approach involving
sampling is introduced in [119]: it is based on mini-batches sampled uniformly
at random from X. We will not discuss further this method as it does not come
with guarantees on the cost of the obtained solution.

• Methods involving sampling in the Fourier domain. There are a few sampling-
based heuristics to solve the k-means problem that are different from the
Lloyd-Max algorithm. For instance, the work in [70] proposes to sample in the
frequency domain to obtain a sketch from which one may recover the centroids
with an orthogonal matching pursuit algorithm specifically tailored to this kind
of compressive learning task [55]. These methods are reminiscent of the random
Fourier features sketching approach introduced in Sect. 5.3.2. We will not discuss
them further.

• Methods involving sampling features. Similarly to ideas presented in
Sect. 5.3.4.2 but here specific to the k-means setting, some works reduce the
ambient dimension of the vectors, either by selecting a limited number of
features [3, 20] or by embedding all points in a lower dimension using random
projections [22, 33, 93]. The tightest results to day are a (1 + ε) multiplicative
error on the k-means cost f either by randomly selecting O(ε−2k log k) features
or by projecting them on a random space of dimension O(ε−2 log (k/ε))

(sublinear in k!). The sampling result is useless in the spectral clustering setting
as the ambient dimension of the spectral features is already k. The projection
result could in principle be applied in our setting, to reduce the cost of the k-
means step to O(tnk log k). We will nevertheless not discuss it further in this
chapter.

• Methods involving sampling points. Finally, the last group of existing methods
are the ones that solve k-means on a subset S of X, before lifting back the result
on the whole dataset. We classify such methods in two categories. In Sect. 5.5.2,
we detail methods that are graph-agnostic, meaning that they apply to any k-
means problem; and in Sect. 5.5.3 we discuss methods that explicitly rely on the
fact that the features x were in fact obtained from a known graph. We argue that
the latter are better suited to the spectral clustering problem.
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5.5.1 Clever Initialization of the Lloyd-Max Algorithm

Recall that the k-means objective on X is to find the k centroids C = (c1, . . . , ck)

that minimize the following cost function:

f (C;X) =
∑

x∈X

min
c∈C
‖x− c‖2

2. (5.23)

and that C∗ = arg minC f (C;X) is the optimal solution attaining cost f ∗ =
f (C∗;X). Recall also that the Lloyd-Max algorithm (see Algorithm 2) converges
to a local minimum of f that we will denote by Clm, for which the cost function
equals flm = f (Clm;X). It is crucial to note that the initialization of centroids Cini
in the first step of the Lloyd-Max algorithm, which usually is done by randomly
selecting k points in X, is what determines the distance |f ∗ − flm| to the optimal.
As such, significant efforts have been devoted to smartly selecting Cini by various
sampling schemes.

As usual, we also face here the usual trade-off between sampling effectively and
efficiently. The fastest sampling method is of course uniformly at random, but it
does not come with any guarantee on the quality of the local minimum Clm it leads
to. An alternative sampling scheme, called k-means++ initialization, is based on the
following more general D2-sampling algorithm.

Algorithm 6: D2-sampling
Input. X, m the number of required samples

1. Initialize B with any x chosen uniformly at random from X.
2. Iterate the following steps until B contains m elements:

(a) Compute di = minb∈B ‖xi − b‖2
2.

(b) Define the probability of sampling xi as di/
∑

i di .
(c) Sample xnew from this probability distribution and add it to B.

Output: B a sample set of size m.

k-means++ initialization boils down to running Algorithm 6 with m = k to obtain a
set of k initial centroids. Importantly, when the Lloyd-Max heuristic is run with this
initialization, the following guarantee holds:

Theorem 5.7 ([6]) For any set of data points, the cost flm obtained after Lloyd-
Max initialized with k-means++ is controlled in expectation: E(flm) ≤ 8(log k +
2)f ∗.

In terms of computation cost, D2-sampling with m = k runs in O(nkd), that is,
O(nk2) in our setting of a spectral embedding X in dimension k. This work inspired
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other initialization techniques that come with similar guarantees and are in some
cases faster [10, 12]. The interested reader is referred to the review [27] for further
analyses on the initialization of k-means.

5.5.2 Graph Agnostic Sampling Methods: Coresets

The rest of Sect. 5.5 considers sampling methods that fall in the following frame-
work: (i) sample a subset S of X, (ii) solve k-means on S, (iii) lift the result back on
the whole dataset X. Section 5.5.2 focuses on coresets: general sampling methods
designed for any arbitrary k-means problem, whereas in Sect. 5.5.3, we will take into
account the specific nature of the spectral features encountered in spectral clustering
algorithms.

5.5.2.1 Definition

Let S ⊂ X be a subset of X of size m. To each element s ∈ S associate a weight
ω(s) ∈ R

+. Define the estimated k-means cost associated with the weighted set S
as:

f̃ (C;S) =
∑

s∈S

ω(s) min
c∈C
‖s − c‖2

2. (5.24)

Definition 5.2 (Coreset) Let ε ∈ (0, 1
2 ). The weighted subset S is a ε-coreset for

f on X if, for every set C, the estimated cost is equal to the exact cost up to a relative
error:

∀C
∣∣∣∣∣
f̃ (C;S)

f (C;X)
− 1

∣∣∣∣∣ ≤ ε. (5.25)

This is the so-called strong coreset definition,19 as the ε-approximation is required
for all C. The great interest of finding a coreset S comes from the following fact.
Writing C̃∗ the set minimizing f̃ , the following inequalities hold:

(1− ε)f (C∗;X) ≤ (1− ε)f (C̃∗;X) ≤ f̃ (C̃∗;S) ≤ f̃ (C∗;S) ≤ (1+ ε)f (C∗;X).

19A weaker version of this definition exists in the literature where the ε-approximation is only
required for C∗.
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The first inequality comes from the fact that C∗ is optimal for f , the second and last
inequality are justified by the coreset property of S, and the third inequality comes
from the optimality of C̃∗ for f̃ . This has two consequences:

1. First of all, since ε < 1
2 :

f (C∗;X) ≤ f (C̃∗;X) ≤ (1+ 4ε)f (C∗;X),

meaning that C̃∗ is a well-controlled approximation of C∗ with a multiplicative
error on the cost.

2. Estimating C̃∗ can be done using the Lloyd-Max algorithm on the weighted
subset20 S, thus reducing the computation time from O(nk2) to O(mk2).

Coreset methods for k-means thus follow the general procedure:

Algorithm 7. Coresets to avoid k-means on X
Input. X, sampling set size m, and number of clusters k ≤ m.

1. Compute a weighted coreset S of size m using a coreset-sampling
algorithm.

2. Run the Lloyd-Max algorithm on the weighted set S to obtain the set of k

centroids C̃.
3. “Closest-centroid lifting”: classify the whole dataset X based on the

Voronoi cells of C̃.

Output: A set of k centroids C = (c1, . . . , ck).

Coreset methods compete with one another on essentially two levels: the coreset
size m should be as small as possible in order to decrease the time of Lloyd-Max on
S, and the coreset itself should be sampled efficiently (at least faster than running
k-means on the whole dataset!), which turns out in fact to be a strong requirement.
The reader interested in an overview of coreset construction techniques is referred
to the recent review [99], as well as Chap. 2 of this book.

5.5.2.2 An Instance of Coreset-Sampling Algorithm

We focus on a particular coreset algorithm proposed in [11] that builds upon results
developed in [45, 79]: it is not state of the art in terms of coreset size, but has the
advantage of being easy to implement and fast enough to compute. It reads:

20Generalizing Algorithm 2 to a weighted set is straightforward: in step 2b, instead of computing
the center of each cluster, compute the weighted barycenter.
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Algorithm 8: a coreset sampling algorithm [11]
Input. X, m the number of required samples, t an iteration number

1. Repeat t times: draw a set of size k using D2-sampling. Out of the t sets
obtained, keep the set B that minimizes f (B;X).

2. α ← 16(log k + 2)

3. For each b
 ∈ B, define B
 the set of points in X in the Voronoi cell of b


4. Set φ = 1
n
f (B;X).

5. For each b
 ∈ B and each x ∈ B
, define

s(x) = α

φ
‖x− b
‖2

2 +
2α

φ|B
|
∑

x′∈B


‖x′ − b
‖2
2 +

4n

|B
|

6. Define the probability of sampling xi as pi = s(xi )/
∑

x s(x)

7. S← sample m nodes i.i.d. with replacement from p and associate to each
sample s the weight ωs = 1

mps
.

Output: A weighted set S of size m.

Theorem 2.5 of [11] states:

Theorem 5.8 Let ε ∈ (0, 1/4) and δ ∈ (0, 1). Let S be the output of Algorithm 8
with t = O(log 1/δ). Then, with probability at least 1− δ, S is a ε-coreset provided
that:

m = Ω

(
k4 log k + k2 log 1/δ

ε2

)
. (5.26)

The computation cost of running this coreset-sampling algorithm, running Lloyd-
Max on the weighted coreset, and lifting the result back to X is dominated, when21

n� k, by step 1 of Algorithm 6 and thus sums up to O(nk2 log 1/δ).

Remark 1 The coreset-sampling strategy underlying this algorithm relies on the
concept of sensitivity [79]. Many other constructions of coresets for k-means
are possible [99] with better theoretical bounds then (5.26). Nevertheless, as the
coreset line of research has been essentially theoretical, practical implementations
of coreset-sampling algorithms are scarce. A notable exception is, for instance, the
work in [49] that proposes a scalable hybrid coreset-inspired algorithm for k-means.
Other exceptions are the sampling algorithms based on the farthest-first procedure, a
variant of D2-sampling that chooses each new sample to be arg maxi di instead of
drawing it according to a probability proportional to di . Once S of size m is drawn,

21To be precise, the statement holds if n ≥ O
(

k4

ε2
log k

log 1/δ

)
.
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then ∀s ∈ S, each weight ωs is set to be the cardinal of the Voronoi cell associated
with s. Authors in [113] show that such weighted sets computed by different variants
of the farthest-first algorithm are ε-coresets, but for values of ε that can be very
large. For a fixed ε, the number of samples necessary to have a ε-coreset with this
type of algorithm is unknown (see also Chap. 3 of this book).

5.5.3 Graph-Based Sampling Methods

The methods discussed so far in this section are graph agnostic both for the sampling
procedure and the lifting: they do not take into account that, in spectral clustering,
X are in fact spectral features of a known graph.

A recent line of work [52, 53, 95, 130] based on graph signal processing
(GSP) [118, 123] leverages this additional knowledge for accelerating both the
sampling and the lifting steps. For the purpose of the following discussion, denote
by z
 ∈ R

n the ground truth indicator vector of cluster 
, i.e., z
(i) = 1 if node vi is
in cluster 
, and 0 otherwise. The goal of spectral clustering is, of course, to recover
{z
}
=1,...,k .

Broadly, GSP-based methods can be summarized in the following general
methodology [130]:

Algorithm 9. Graph-based sampling strategies to avoid k-means on X
Input. X, m the number of required samples, k the number of desired
clusters

1. Choose the random sampling strategy. Either:

(a) uniform (i.i.d.) Draw m i.i.d. samples uniformly.
(b) leverage score (i.i.d.) Compute ∀xi , p∗i = ‖U�k δi‖2

2/k. Draw m i.i.d.
samples from p∗. (optional:) set the weight of each sample s to 1/p∗s .

(c) DPP Sample a few times independently from a DPP with kernel Kk =
UkU�k . (optional:) set the weight of each sample s to 1/πs .

2. Run the Lloyd-Max algorithm on the (possibly weighted) set S to obtain
the k reduced cluster indicator vectors zr


 ∈ R
m.

3. Lift each reduced indicator vector {zr

}
=1,...,k to the full graph either

with

(a) Least-square Solve (5.33) with y ← zr

.

(b) Tikhonov Solve (5.34) with y ← zr

.

(continued)
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In both cases, PS should be set to 1
N

Im if uniform sampling was cho-
sen, to diag(p∗s1

, . . . p∗sm) if leverage score sampling was chosen, and to
diag(πs1 , . . . πsm) if DPP sampling was chosen.

4. Assign each node j to the cluster 
 for which ẑ
(j)/‖ẑ
‖2 is maximal.

Output: A partition of X in k clusters

To aid understanding, let us start by a high-level description of Algorithm 9.
The indicator vectors z
 are interpreted as graph signals that are (approximately)
bandlimited on the similarity graph G (see Sect. 5.5.3.1 for a precise definition). As
such, there is no need to measure these indicator vectors everywhere: one can take
advantage of generalized Shannon-type sampling theorems to select the set S of m

nodes to measure (step 1). Then k-means is performed on S to obtain the indicator
vectors zr


 ∈ R
m on the sample set S (step 2). These reduced indicator vectors are

interpreted as noisy measurements of the global cluster indicator vectors z
 on S.
The solutions zr


 are lifted back to X as ẑ
 via solving an inverse problem taking
into account the bandlimitedness assumption or via label-propagation on the graph
structure reminiscent of semi-supervised learning techniques (step 3). As the lifted
solutions ẑ
 do not have a binary structure as true indicator vectors should have, an
additional assignment step is necessary: assign each node j to the class 
 for which
ẑ
(j)

‖ẑ
‖2
is maximal (step 4).

The rest of this section is devoted to the discussion of the three sampling schemes
as well as the two lifting procedures considered in this framework. To this end, we
will first introduce a few graph signal processing (GSP) concepts in Sec. 5.5.3.1
before discussing in Sec. 5.5.3.2 several examples of graph sampling theorems
appropriate to the spectral clustering context.

5.5.3.1 A Brief Introduction to Graph Signal Processing (GSP)

Denote by U = (u1| . . . |un) ∈ R
n×n the matrix of orthonormal eigenvectors of the

Laplacian matrix L, with the columns ordered according to their associated sorted
eigenvalues: 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. In the GSP literature [118, 123], these
eigenvectors are interpreted as graph Fourier modes for two main reasons:

• By analogy to the ring graph, whose Laplacian matrix is exactly the (symmetric)
double derivative discrete operator, and is thus diagonal in the basis formed by
the classical 1D discrete Fourier modes.

• A variational argument stemming from the Dirichlet form can be exploited
to express eigenvectors ui of L as the basis of minimal variation x�Lx =
1
2

∑
ij Wij [x(i)− x(j)]2 on G and eigenvalues λi as a sum of local variations

of ui , i.e., a generalized graph frequency.
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A graph signal z ∈ R
n is a signal that is defined on the nodes of a graph: its i-th

element is associated with node vi . Given the previous discussion, the graph Fourier
transform of z, denoted by z̃, is its projection on the graph Fourier modes: z̃ =
U�z ∈ R

n. The notion of graph filtering naturally follows as a multiplication in the
Fourier domain. More precisely, define a real-valued filter function h(λ) defined on
[0, λn]. The signal x filtered by h reads Uh(�)U�x, where we use the convention
h(�) = diag(h(λ1), h(λ2), . . . , h(λn)). In the following, we will use the following
notation for graph filter operators:

h(L) = Uh(�)U�. (5.27)

For more details on the graph Fourier transform and filtering, their various defini-
tions and interpretations, we refer the reader to [133].

Of interest for the discussion in this chapter, one may define bandlimited graph
signals as linear combinations of the first few low-frequency Fourier modes. Writing
Uk = (u1| . . . |uk) ∈ R

n×k , we have the formal definition:

Definition 5.3 (k-Bandlimited Graph Signal) A graph signal z ∈ R
n is k-

bandlimited if z ∈ span(Uk), i.e., ∃ α ∈ R
k such that z = Ukα.

To grasp why the notion of k-bandlimitedness lends itself naturally to the approx-
imation of spectral clustering, consider momentarily a graph with k disconnected
components and z
 ∈ R

n the indicator vector of cluster 
. It is a well-known
property of the (combinatorial) Laplacian that {z
}
=1,...,k form a set of orthogonal
eigenvectors of L associated with eigenvalue 0: that is, the set of indicator vectors
{z
}
=1,...,k form a basis of span(Uk). Understanding arbitrary graphs with block
structure as a perturbation of the ideal disconnected component case, the indicator
vectors {z
}
=1,...,k of the blocks should live close to span(Uk) (in the sense that
the difference between any z
 and its orthogonal projection onto span(Uk) is small).
This in turn implies that every z
 should be approximately k-bandlimited.

As we will see next, the bandlimitedness assumption is very useful because
it enables us to make use of generalized versions of Nyquist–Shannon sampling
theorems, taking into account the graph.

5.5.3.2 Graph Sampling Theorems

The periodic sampling paradigm of the Shannon theorem for classical bandlimited
signals does not apply to graphs without specific regular structure. In fact, a number
of sampling schemes have been recently developed with the purpose of generalizing
sampling theorems to graph signals [30, 109, 117, 134] (see [88] for a review of
existing schemes).

Let us introduce some notations. Sampling entails selecting a set S =
(s1, . . . , sm) of m nodes of the graph. To each possible sampling set, we associate
a measurement matrix M = (δs1 |δs2 | . . . |δsm)� ∈ R

m×n where δsi (j) = 1 if
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j = si , and 0 otherwise. Now, consider a k-bandlimited signal z ∈ span(Uk). The
measurement of z on S reads:

y = Mz+ n ∈ R
m, (5.28)

where n models measurement noise. The sampling question boils down to: how
should we sample S such that one can recover any bandlimited z given its
measurement y? There are three important components to this question: (i) how
many samples m do we allow ourselves (m = k being the strict theoretical
minimum)? (ii) how much does it cost to sample? (iii) how do we in practice recover
z from y and how much does that inversion cost?

There are a series of works that propose greedy algorithms to find the “best” set S
of minimal size m = k that embed all k-bandlimited signals (see, for instance, [131]
and references therein). These algorithms cost O(nk4) and are thus not competitive
in our setting.22 Moreover, in our case, we do not really need to be that strict on
the number of samples and can allow more than k samples. A better choice is to
use random graph sampling techniques. In the following we consider two types
of independent sampling (uniform and leverage-score sampling) as well as a more
involved method based on determinantal point processes.

Independent Sampling In the i.i.d. setting, one defines a discrete probability
distribution p ∈ R

n over the node set V. The sampling set S is then generated
by drawing m nodes independently with replacement from p. At each draw, the
probability to sample node vi is denoted by pi . We have

∑
i pi = 1 and write

P = diag(p). Under this sampling scheme, the following restricted isometry
property holds for the associated measurement matrix M [109].

Theorem 5.9 For any δ, ε ∈ (0, 1), with probability at least 1− δ:

(1− ε)‖z‖2
2 ≤

1

m
‖MP−1/2z‖2

2 ≤ (1+ ε)‖z‖2
2 (5.29)

for all z ∈ span(Uk) provided that

m ≥ 3

ε2 (νk
p)2 log

2k

δ
(5.30)

where νk
p is the so-called graph weighted coherence:

νk
p = max

i

{
p−1/2
i ‖U�k δi‖2

}
. (5.31)

This property is important as it says, in a nutshell, that any two different bandlimited
signals will be identifiable post-sampling provided the number of samples is large

22It takes longer to find a good sample than to run k-means on the whole dataset!
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enough. The concept of large enough depends on (νk
p)2: a measure of the interplay

between the probability distribution and the norms of the rows of Uk . In the uniform
i.i.d. case since pi = 1/n, one has (νk

p)2 = n maxi ‖U�k δi‖2
2, which stays under

control only for very regular graphs, but can be close to n in irregular graphs such
as the star graph. The good news is that there exists an optimal sampling distribution
(in the sense that it minimizes the right-hand side of inequality (5.30)) that adapts
to the graph at hand:

p∗i =
‖U�k δi‖2

2

k
(5.32)

In fact, in this case, (νk
p∗)

2 matches its lower bound k and the necessary number of
samples m to embed all bandlimited signals drops to O(k log k). The distribution
p∗ is also referred to by the name “leverage scores” in parts of the literature (see
discussion in Sect. 5.3.1) [41]. As such, i.i.d. sampling under p∗ will be referred to
as leverage score sampling.

Now, for lifting, there are several options.

• If one uses the unbiased decoder

ẑ = arg min
w∈span(Uk)

‖P−1/2
S (Mw− y)‖2

2 (5.33)

where P−1/2
S =MP−1/2M�, then the following reconstruction result holds [109]:

Theorem 5.10 Let S be the i.i.d. nodes sampled with distribution p and M be
the associated sampling matrix. Let ε, δ ∈ (0, 1) and suppose that m satisfies
(5.30). With probability at least 1 − δ, for all z ∈ span(Uk) and n ∈ R

m, the
solution ẑ of (5.33) verifies:

‖ẑ− z‖2 ≤ 2√
m(1− ε)

‖P−1/2
S n‖2.

This means that a noiseless measurement of a k-bandlimited signal yields a
perfect reconstruction. Also, this quantifies how increasing m reduces the error
of reconstruction due to a noisy measurement. Note that this error may be large
if there is a significant measurement noise on a node that has a low probability of
being sampled. However, by definition, this is not likely to happen.

• One can also use a label-propagation decoder reminiscent to semi-supervised
learning techniques [15, 28]:

ẑ = arg min
w∈Rn

‖P−1/2
S (Mw− y)‖2

2 + γ w�g(L)w, (5.34)

where γ is a regularization parameter, g(L) a graph filter operator as in (5.27)
with g(λ) a non-decreasing function. As g is non-decreasing, the regularization
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term of (5.34) penalizes high frequency solutions, that is, solutions that are not
smooth along paths of the graph. Theorems controlling the error of reconstruction
are more involved and we refer the reader to Section 3.3 of [109] for details.

• Other decoders [14, 106] are in principle possible, replacing, for instance, the

2 Laplacian-based regularization w�g(L)w by 
1-regularizers ‖∇w‖1, but they
come with an increased computation cost, lesser guarantees, and have not been
used for spectral clustering: we will thus not detail them further.

Let us discuss the computation costs of the previous sampling and lifting
techniques. In terms of sampling time, uniform sampling is obviously the most
efficient and runs in O(k). Leverage score sampling is dominated by the computation
of the optimal sampling distribution p∗ of (5.32), which takes O(nk) time.23 In
terms of lifting time, solving the decoder of (5.33) costs O(nk + mk2). Solving
the decoder of (5.34) costs O(et) via the conjugate gradient method, where t is the
iteration number of the gradient solver (usually around 10 or 20 iterations suffice to
obtain good accuracy when g(L) = L).

This discussion calls for a few remarks. First of all, these theorems are valid if we
suppose that z is exactly k-bandlimited, which is in fact only an approximation if we
consider z to be the ground truth indicator vectors of the k clusters to detect in the
spectral clustering context. In this case, we can always decompose z as the sum of its
orthogonal projection onto span(Uk) and its complement β: z = UkU�k z+β. (5.28)
becomes y = MUkU�k z + n where n now represents the sum of a measurement
noise and the distance-to-model term Mβ. The aforementioned theorems can then
be applied to UkU�k z. Moreover, note that the decoder of (5.34) is not only faster
than the other ones in general, it also does not constrain the solution ẑ to be exactly
in span(Uk), which is in fact desirable in the spectral clustering context: we thus
advocate for the decoder of (5.34).

DPP Sampling Determinantal point processes are a class of correlated random
sampling strategies that strive to increase “diversity” in the samples, based on
a kernel K expliciting the similarity between variables. DPP sampling has been
used successfully in a number of applications in machine learning (see, for
instance, [74]).

Denote by [n] the set of all subsets of {1, 2, . . . , n}. An element of [n] could be
the empty set, all elements of {1, 2, . . . , n} or anything in between. DPPs are defined
as follows:

Definition 5.4 (Determinantal Point Process [74]) Consider a point process, i.e.,
a process that randomly draws an element S ∈ [n]. It is determinantal if, ∀ A ⊆ S,

23Note that the complexity is different from the leverage score computation of the Nyström
techniques of Sects. 5.3.1 and 5.4.1 because, here, we suppose Uk known whereas Uk was not
known in the previous sections. With Uk known, computing the leverage scores only entails
computing the normalized energy of each line of Uk .
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P(A ⊆ S) = det(KA),

where K ∈ R
n×n, a semi-definite positive matrix 0 & K & 1, is called the marginal

kernel; and KA is the restriction of K to the rows and columns indexed by the
elements of A.

The marginal probability πi of sampling an element i is thus Kii . Consider the
following projective kernel:

Kk = UkU�k . (5.35)

One can show that DPP samples from such projective kernels are necessarily of size
k. After measuring the k-bandlimited signal z on a DPP sample S, one has the choice
between the same decoders as before (see Eqs. (5.33) and (5.34)). For instance:

Theorem 5.11 For all z ∈ span(Uk), let y = Mz+n ∈ R
k be a noisy measurement

of z on a DPP sample obtained from kernel Kk . The decoder of (5.33) with P =
diag(π1, . . . , πn) necessarily enables perfect reconstruction up to the noise level.
Indeed, one obtains:

‖ẑ− z‖2 ≤ 1
√

λmin

(
U�k M�P−1

S MUk

)‖P−1/2
S n‖2. (5.36)

Proof The proof is only partly in [131] and we complete it here. Let us write z =
Ukα. Solving (5.33) entails computing α̂ ∈ R

k s.t. ‖P−1/2
S (MUkα̂−y)‖2

2 is minimal.
Setting the derivative w.r.t. α̂ to 0, and replacing y by MUkα + n, yields:

U�k M�P−1
S MUkα̂ = U�k M�P−1

S MUkα + U�k M�P−1
S n.

Recall that S is a sample from a DPP with kernel Kk: det(MUkU�k M�) is thus
strictly superior to 0, which implies that MUk is invertible, which in turn implies
that α̂ = α + (MUk)

−1n. One thus has ‖ẑ − z‖2 = ‖α̂ − α‖2 =
∥∥(MUk)

−1n
∥∥

2 =∥∥∥(P−1/2
S MUk)

−1P−1/2
S n

∥∥∥
2
. Using the matrix 2-norm to bound this error yields

‖ẑ− z‖2 ≤
√

λmax

[(
U�k M�P−1

S MUk

)−1
]
‖P−1/2

S n‖2,

as claimed.

Several comments are in order:

• The particular choice of kernel Kk = UkU�k implies that the marginal probability
of sampling node vi , πi = ‖U�k δi‖2

2, is proportional to the leverage scores p∗i . The
major difference between the i.i.d. leverage score approach and the DPP approach
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comes from the negative correlations induced by the DPP. In fact, the probability
of jointly sampling nodes vi and vj in the DPP case is πiπj − K2

ij = πiπj −
(δ�i UkU�k δj )

2. The interaction term (δ�i UkU�k δj )
2 will be typically large if vi

and vj are in the same cluster, and small if not. In other words, different from the
i.i.d. leverage score case where each new sample is drawn regardless of the past,
the DPP procedure avoids to sample nodes containing redundant information.

• Whereas the leverage score approach only guarantees a RIP with high probability
after O(k log k) samples, the DPP approach has a stronger deterministic guaran-
tee: it enables perfect invertibility (up to the noise level) after precisely m = k

samples. The reconstruction guarantee of (5.36) is nevertheless not satisfactory:
even corrected by the marginal probabilities PS, the matrix U�k M�P−1

S MUk can
still have a very small λmin, such that reconstruction may be quite sensitive to
noise. Improving this control is still an open problem. In practice, sampling
independently 2 or 3 times from a DPP with kernel Kk creates a set S of size
2k or 3k that is naturally more robust to noise.

• Whereas independent sampling is straightforward, sampling from a DPP with
arbitrary kernel costs in general O(n3) (see Algorithm 1 of [74] due to [62]).
Thankfully, in the case of a projective kernel such as Kk , one can sample a set in
O(nk2) based on Algorithm 3 of [132].

5.6 Perspectives

Almost two decades have passed since spectral clustering was first introduced. Since
then, a large body of work has attempted to accelerate its computation. So, has the
problem been satisfactorily addressed?—or, despite all these works, is there still
room for improvement and further research?

To answer, we must first define what “satisfactorily addressed” would entail. As
we have seen, the prototypical spectral clustering algorithm can be divided into
three sub-problems: the similarity graph computation runs in O(dn2); the spectral
embedding computation runs in O(t (ek + nk2)) using an Arnoldi algorithm with t

implicit restarts and assuming that e is the number of edges; and the k-means step
runs in O(tnk2), with t now being a bound on the number of iterations of the Lloyd-
Max algorithm. Our criteria for evaluating an approximation algorithm aiming to
accelerate one (or more) of these sub-problems are two-fold:

• We ask that the approximation algorithm’s computation cost is effectively lighter
than the cost of the sub-problem(s) it is supposed to accelerate! The ultimate
achievement is an order-of-magnitude improvement w.r.t. n (or e), d and/or k,
especially when the complexity has no hidden constants (i.e., the algorithm is
practically implementable). When such a gain is not possible, a gain on the
constants of the theoretical cost is also considered worthwhile.

• The algorithm should come with convincing guarantees in terms of the quality
of the found solution. Heuristics or partially motivated methods do not cut it. We
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require that, under mild assumptions, the proposed solution is provably close to
the exact solution. Let us clarify two aspects of this statement further:

– It is difficult to concretely classify assumptions as mild, but a useful rule
of thumb is checking whether the theoretical results are meaningful for the
significant majority of cases where spectral clustering would be used.

– The control of the approximation error comes in different flavors, that we
detail here from the tightest to the loosest. The best possible error control in
our context is a control over the clustering solution itself, via error measures
such as the misclustering rate. This is unfortunately unrealistic in many cases.
An excellent alternative is the multiplicative error—considered as the gold
standard in approximation theory—over the k-means cost,24 ensuring that the
cost of the approximation is not larger than 1 + ε times the cost of the exact
solution. Next comes the additive error over the cost: ensuring that the cost
difference between approximated and exact solutions is not larger than ε. All
these error controls are referred to as end-to-end controls, and represent the
limit of what we will consider a satisfactory error control.

Reviewing the literature, we were surprised to discover that there are rarely any
algorithms meeting fully the proposed criteria: a faster algorithm with end-to-end
control over the approximation error under mild assumptions. Let us revisit one by
one the different approaches presented in Sects. 5.3, 5.4, and 5.5 examining them
in light of our criteria for success. In each category of approximation algorithms,
we order the methods according to the power of their error control.

Sampling Methods in the Original Feature Space [Sect. 5.3]

• Representative points methods as described in [63, 147] allow for an end-to-end
control on the miss-clustering rate ρ, which is unfortunately quite loose. The
constants involved in Theorem 5.3 are in fact undefined—thus potentially large—
which is problematic knowing that ρ is by definition between 0 and 1. Also, the
theorem’s assumptions include independence of the εi , which is hard to justify
in practice. On the other hand, the computation gain of such methods is very
appealing.

• Feature projection methods, where the dimension d of the original feature space
is reduced to a dimension d ′ ≤ d based on Johnson–Lindenstrauss arguments,
come with a multiplicative error control on the pairwise distances in the original
feature space, thus providing a control on the obtained kernel matrix. The impact
of this initial approximation on the final clustering result has not been studied.

• Nyström-inspired methods [19, 48, 85, 97] can be very efficient in practice espe-
cially because they do not need to build the graph. However, precisely because
they do not build the graph, these methods cannot exactly perform two key

24A control in terms of the k-means cost is usually considered as k-means is the last step of spectral
clustering. Nevertheless, recalling the minimum cut perspective of Sect. 5.2.2, the control should
arguably be in terms of rcut or ncut costs.
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parts of the prototypical spectral clustering algorithm: the k-NN sparsification
and the exact degree computation. The partial knowledge and sparsity of the
kernel matrix also makes sampling difficult, as using leverage scores sampling is
not possible anymore, whereas most other sampling schemes do not work very
well with sparse matrices and come with weak guarantees. To the extent of our
knowledge, there is also no convincing mathematical argument proving that using
these methods will yield a clustering that is of similar quality to that produced by
the exact spectral clustering algorithm.

• Sketching methods such as the random Fourier features [110] is yet another way
of obtaining a pointwise multiplicative (1 + ε) error on the Gaussian kernel
computation. RFF enable to compute a provably good low-rank approximation of
the kernel. They nevertheless suffer from the same problems as Nyström-based
techniques: without building the graph, sparsification and degree-normalization
are uncontrolled. In addition, the guarantees on the low-rank approximation of
the kernel do not transfer easily to guarantees of approximation of the spectral
embedding Uk .

• Approximate nearest neighbors methods are numerous and varied, and come with
different levels of guarantees. Practical implementations of algorithms, however,
often set aside theoretical guarantees to gain on efficiency and performances;
and comparisons are usually done on benchmarks rather than on theoretical
performances. In the best of cases, there is a control on how close the obtained
nearest neighbor similarity graph is to the exact one, but with no end-to-end
control.

Spectral Embedding Approximation Methods [Sect. 5.4]

• Random eigenspace projection is a very fast method and has been rigorously
analyzed [95, 105, 111, 130]. It is true that a successful application depends on
obtaining a good estimate of the k-th eigenvalue, which is very hard when the
k-th eigenvalue gap is relatively small. Nevertheless, our current understanding
of spectral clustering suggests that it only works well when the gap is (at least)
moderately large. As such, though there are definitely situations in which random
eigenspace projection will fail to provide an acceleration, these correspond to
cases where one should not be using spectral clustering in the first place. The
same argumentation can also be used in defense of all methods that come with
mild gap assumptions (see coarsening and spectral sparsification).

• Simple coarsening methods, such as the heavy-edge matching heuristic [69], have
nearly linear complexity, seem to work well in practice, and are accompanied
by end-to-end additive error control [91]. Nevertheless, the current analysis of
these heuristics only accounts for very moderate reductions (m ≥ n/2) and thus
does not fully prove their success: in real implementations coarsening is used in a
multi-level fashion resulting to a drastic decrease in the graph size (m = O(n/2c)

for c levels), whereas the end-to-end control only works for a single level.
• Advanced coarsening methods, such as local variation methods [90], come with

much stronger guarantees that allow for drastic size reduction and acceleration.
Yet, thus far, all evidence suggests that finding a good enough coarsening is
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computationally as hard as solving the spectral clustering problem itself. As a
consequence, it is at this point unclear whether these methods can be used to
accelerate spectral clustering.

• Spectral sparsification techniques come with excellent guarantees in theory: one
may prove that a spectral sparsifier can be computed in nearly linear time and,
moreover, the latter’s spectrum will be provably close to the original one. Yet,
we have reasons to doubt their practicality. Indeed, current algorithms are very
complex, feature impractically large constants, and are only relevant for dense
graphs. In addition, spectral sparsifiers, by definition, approximate the entire
spectrum of a graph Laplacian matrix. However, spectral clustering only needs
an approximation of a tiny fraction of the spectrum. From that perspective, it
is reasonable to conclude that without modification current approaches will not
yield the best possible approximation.

• Nyström-approximation applied directly to the Laplacian matrix is a good option,
especially when combined with leverage score sampling. Nevertheless, an end-
to-end error control has only been partially derived and is not yet satisfactory.

Sampling to Accelerate the k-Means Step [Sect. 5.5]

• Exact methods to accelerate the Lloyd-Max algorithm, may they be via avoiding
unnecessary distance calculations or via a careful initialization are always useful
and should be taken into account.

• Coresets come with the strongest guarantees: the minimum number of samples
to guarantee a (1 + ε) multiplicative error on the cost function has been well
studied. Nevertheless, practical coreset-sampling methods are scarce; and in the
best cases, the sampling cost is of the same order of the Lloyd-Max running cost
itself.

• Graph-based sampling comes with strong guarantees, but not over the k-means
cost: on the reconstruction error based on a k-bandlimited model that is only an
approximation in practice. Moreover, we interpret the reduced indicator vectors
zr

 obtained by running Lloyd-Max on the sampled set S as (possibly noisy)

measurements of z
 on S. This interpretation currently lacks solid theoretical
ground and impedes an end-to-end control of this approximation method.
Nevertheless, the leverage-score-based sampling allows for a reduction in order
of magnitude of the Lloyd-Max running cost.

• Other methods to accelerate k-means are not always appropriate to the spectral
clustering context. Spectral feature dimension reduction is unnecessary in our
context where d = k, sketching methods appropriate to distributed cases where
n is very large are not appropriate neither as the spectral features need centralized
data to be computed in any case.

In Practice The attentive reader will have remarked that, unsurprisingly, the
tighter the error control, the more expensive the computation, and vice versa. Also,
although we have put here an emphasis on the approximation error controls, it
should not undermine the fact that methods from the whole spectrum are in practice
useful, depending on the situation at hand, and specifically on the range of values of
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n, d, and k. In very large d situations, a first step of random projection (or feature
selection if some features are suspected to be too noisy) should be considered. Then,
in situations where the exact computation of the proximity graph is too expensive,
one may resort either to sketching methods or to Nyström-type methods to decrease
the cost from quadratic to linear in n, and directly obtain an approximation of
the spectral embedding without any explicit graph construction. These methods,
however, do not take into account a sparsity constraint on the proximity graph and
are usually rough on the degree correction they make.

The role of the sparsity constraint is not well understood theoretically, but seems
to be important in some practical cases [138]. In such instances, a better option is to
use approximate nearest neighbors methods to create a sparse similarity graph, and
work from there. In extremely large data, say n ≥ 108, the only workable methods
are the representative-based, with, if possible, a first k-means (or compressive k-
means [70]) to reduce n to m, or, in last resort, a uniform random sampling strategy.

In situations where one has to deal with such a large similarity graph that
Arnoldi iterations are too expensive to compute the spectral embedding (either a
graph created via approximate nearest neighbors or if the original data is a graph),
projection methods such as in [21, 130], coarsening methods such as in [90], or
Nyström-based methods are different possibilities.

Sampling methods to accelerate the last k-means step may seem to be a theoret-
ical endeavor given that the Lloyd-Max algorithm is already very efficient. Due to
the quadratic term in k, it is nevertheless in practice useful when k grows large. In
this situation, hierarchical k-means [103] is a nice option. Coresets, because they
are so stringent on the error control, have a hard time actually accelerating k-means,
unless hybrid coreset-inspired methods are envisioned [49]. Finally, graph-based
methods, because they take into account that spectral features are in fact derived
from the graph itself, enable significant acceleration and are well-suited to the
spectral clustering context.

Future Research Different directions of research could be envisioned to improve
the state of the art:

• For Nyström-inspired methods in the context of Sect. 5.3 (directly applied on
the original data) as well as the other methods based on computing a low-rank
approximation of the kernel matrix K, further work is needed to control both
the sparsification and the degree correction, in order to bridge the gap between
a provably good low-rank approximation of K to a provably good low-rank
approximation of R.

• For Nyström methods in the context of Sect. 5.4 (applied on a known or well-
approximated similarity graph), it would be interesting to extend Theorem 5.2
(for instance) to a control over ‖Ak − Ãk‖ instead of ‖A − Ã‖. This would
enable a tighter use of Davis–Kahan’s perturbation theorem in the discussion of
Sect. 5.4.1 and, in fine, a better end-to-end guarantee.

• Projection-based methods of Sect. 5.4.3.2 currently necessitate to compute a
value λ∗ known to be in the interval [λk, λk+1). The algorithm used to do so is
based on eigencount techniques that turn out to require as much computation time
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as the Lanczos iterations needed to compute Uk exactly. One should relax this
constraint to obtain end-to-end guarantees as a function of the distance between
a coarsely estimated λ∗ and the target interval.

• The derivation and analysis of randomized multi-level coarsening schemes with
end-to-end guarantees is very much an open problem. We suspect that by utilizing
spectrum-dependent sampling-schemes akin to leverage-scores one should be
able to achieve results superior to heavy-edge matching in nearly linear time.

• There is an interesting similarity between coreset techniques and the graph-
based sampling strategies discussed in Sect. 5.5.3 and it would be interesting to
investigate this link theoretically, maybe paving the way to coresets for spectral
clustering?

Finally, accelerating the prototypical spectral algorithm depicted in Algorithm 1
should not be the sole objective of researchers in this field. Indeed, taking the
graph cut point-of-view of Sect. 5.2.2, Algorithm 1 makes three insufficiently
motivated choices: (i) To begin with, the sparsification step in Algorithm 1 is
not well understood. Apart from the fact that it is always computationally more
convenient to work with a sparse similarity graph then a dense one, the precise
effect of sparsification on the clustering performance has not been analyzed. (ii)
As mentioned in Sect. 5.2.2.3, the relaxation employed by spectral relaxation is not
unique. Why should we focus our attention on this one versus another? See, for
instance, [24, 112] for recent alternative options. (iii) Finally, the use of k-means
on the spectral features is not yet fully justified. Most of the end-to-end guarantees
presented here compare the k-means cost of the exact solution to the k-means cost
of the approximate solution. Given that the very use of k-means is not theoretically
grounded, this choice of guarantee is debatable. Other options such as a control
over the rcut or ncut objectives are possible (as in [96]) and should be further
investigated.
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Chapter 6
Sampling Technique for Complex Data

A. Idarrou and H. Douzi

6.1 Context and Motivations

In the context of Big Data, the data is potentially unlimited in number. An
explosion of complex data (text, video, audio, animation, 2D/3D graphics, etc.)
due to advances in information and communication technology: Cloud computing
technology reduces storage costs and significantly improves the capacity to process
large amounts of data. However, all this data is useless if it cannot be used [37].
Most of this data is unstructured and comes from multiple sources in a variety of
formats, most of which do not conform to a consistent data model. Yet, today, it is
impossible to do without the automatic processing of increasingly voluminous and
complex data.

With the emergence of complex data, which has affected most domains of
activity, other issues are appearing and other fields of research are also emerging.
In most domains, the data to be processed to extract knowledge from them is
increasingly complex and voluminous [22]. In today’s world, we are bring to
manipulate complex data, in overabundance, too little or no structured and often
dynamic and unlimited. Specifically, processing complex data in the context of Big
Data is becoming increasingly unavoidable. Indeed, the volume of data increases by
40% each year, these data are at the service of business development of companies
and organizations. More precisely, data has now become the raw material and
the DNA of several application fields; this multiplies the need for methods and
techniques allowing access to relevant information in a targeted and efficient way.
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The advent of the Internet of Things (IoT), a booming developer field, has
challenged conventional systems of data processing non-scalar. According to the
Gartner Institute, it is planned that by 2020, more than 50 billion things will be
connected. This is a real digital revolution that will certainly change our habits and
more generally our way of life. The Internet of Things is a technique is imposed
from day by day within organizations, entreprises and also in smart homes (con-
nected Tv, connected refrigerator, etc.). This technique allows connected objects to
exchange data with each other and to communicate certain information in real time.
For example, in medical telemonitoring a large number of sensors connected to
devices (electrocardiogram, blood pressure monitor, etc.) are necessary to monitor
the condition of an elderly person, sick, or losing autonomy. The information fusion
from different sensors (or other devices) allows crossing several parameters in order
to guarantee as much as possible a resulting information that can be useful for
remotely monitoring the state of these persons. More precisely, connected objects
are able to collect data, interact with the environment, and send data in real time, so
that it can be explored, analyzed, etc. In general, complex data comes from different
sources such as sensors, drones, social networks, GPS, connected things, etc. These
data are heterogeneous, of different size and nature. Accordingly, the problem of
integration and/or data fusion arises. These data offer opportunities for success and
open up new opportunities for businesses. Using scientific techniques, data analysis
allows to detect trends and, more generally, strategic information that is often hidden
in a large amount of data. However, the problem of non-scalar data processing
involves several levels: volumetry, heterogeneity, multi-source character, size often
unknown, etc. The analysis of these data is now at the center of the concerns of
actors in most domains of activity whose predictions and perspectives are decisive.

With the appearance of data streams, another type of proliferating complex data
that has profoundly affected most areas. In these areas, data is growing faster than
our ability to explore and analyze it in real time. For example, in many sectors (road
and air traffic monitoring, detection of anomalies in industrial chains, etc.), large
data streams need to be processed in real time to provide near-immediate results. To
face up this phenomenon, several works have applied a treatment on the fly on these
data.

Exploiting in real time the full potential of the data available today becomes
a major challenge. This often leads to the adaptation and/or extension of existing
conventional methods and techniques, or to develop of new ones, especially for
analysis processes and more generally for the exploitation of mass data. The
classical approaches that have shown their effectiveness in processing scalar data
need to be rethought. In fact, the emergence of new forms of representation of
more or less complex data has shown the limits of these approaches. These must
be adapted to respond to the particularities of complex and dynamic data in order to
effectively support the expectations of the algorithms that one wish to apply on these
data. The major challenge today is therefore how to structure, explore, analyze, and
process massive data and variants over time? What methods and techniques are used
to fully and effectively exploit the value of such data?
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In this section, we focus more on works that have used sampling as a solution for
processing complex data. We are approaching a series of works in order to provide
a global vision of the issues and challenges related to the phenomenon of massive
data.

6.2 Sampling on Complex Data

6.2.1 Preambule

Using the entirety of a large mass of complex data, before analyzing and querying
it, becomes today a challange. More than this, respond to real-time queries becomes
very costly in terms of storage, computation and latency imposed by the exploration
of this data generally heterogeneous and dynamic. However, real-time query
processing has become an increased need in many domains (security, medicine,
social networks, military, aeronautics, marketing, road traffic, etc.). In a number of
activity sectors, the real challenge in the Big Data era is to be able to process and
analyze mass data from different sources in both structured and unstructured form
in real time to extract value [40]. Several works have used sampling as a solution
to overcome this problem. To perform an exploratory analysis on massive data, one
approach is to approximate the result of a query [8, 33, 35].

The objective of sampling theory is to optimize the volume of data to be analyzed
according to various criteria. In [17], in order to respond to the computational
pressures and computing power of data streams, approximate approaches have been
proposed, the most common of which is sampling: a simple and effective method.
Sampling is a technique derived from statistics that can provide information on a
large population from a representative sample of it.

Sampling can be used in large data situations to reduce the volume to be
processed. In [36], one possible approach to processing large-scale data is to
take a sample and explore it, as approximate responses are acceptable for many
data mining applications. The aim is to work on a sample which is sufficiently
representative of a population to extrapolate the result and transpose it on this
population. In these situations, the theory of inferential statistics is used to infer
laws. It is therefore a question of inducing from the sample to data set in its entirety.

In the continuous data concept, sampling is the procedure for selecting a
representative sample of these data [10] and [48]. However, using a sample to
process very large data can lead to unreliable results [34]. In this context, several
works have extended classical methods of analysis to facing up to the Big Data
phenomenon [16, 45, 57], etc. More generally, the evolution of large complex data
is generating a greater need for extending existing data analysis methods to deal
with mega-data.

Overall, two types of sampling are distinguished in the literature: probabilistic
(or random) sampling and non-probability sampling.
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6.2.2 Non-Probability Sampling

Non-probability sampling is also called empirical sampling. It is characterized by
the fact that the probabilities of inclusion of the sample elements are unknown. In
this type of sampling, subjective means are used to determine the extent to which a
sample is representative of the entire population.

6.2.3 Probability Sampling

The probability sampling technique is based on the principle of randomization,
according to which each element of the study population has a fair chance of being
included in the sample. Generally, probability sampling techniques are expensive
and time consuming than empirical techniques.

In the following sections, we describe the probability sampling methods applied
in the context of complex data.

6.2.3.1 Simple Random Sampling Technique

Simple random sampling is the most simple and understandable basic sampling
selection process. All individuals in the study population have the same chance
of being included in the sample extracted from this population. In [18], with
simple random sampling a sample is randomly selected so that each element of
the population has the same probability of being selected. This sampling technique
is appropriate when the population is relatively homogeneous (Fig. 6.1).

An advantage of simple random sampling is the ease of selecting the samples. It
is also considered a fair way to select a sample from a given data set because each

c 

Population 

Fig. 6.1 Sampling process
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element has the same probability of being selected. Consequently, a simple random
sample provides an unbiased representation of the study population.

6.2.3.2 Stratified Sampling Technique

This stratified sampling technique consists in dividing a heterogeneous population
into relatively homogeneous subgroups called strata. The choice of strata consists in
obtaining homogeneity within each stratum. In practice, this technique is complex.
On the other hand, it ensures that each subgroup of the population studied is
represented in a sample extracted from this population (Fig. 6.2). Therefore, this
method provides a representative sample.

6.2.3.3 Cluster Sampling Technique

The technique consists of subdividing a relatively homogeneous population into
clusters. Then, a number of clusters are randomly selected to represent the whole
population. The sample obtained is composed of all the units included within the
selected clusters. This sampling technique is extremely less costly as it requires a
minimum effort to construct a sample. The cluster sampling technique gives good
results when the clusters are similar and the individuals in the same cluster are
different.

As illustrated by the figure (Fig. 6.3), the population is divided into clusters that
are all essentially the same as each other. Each cluster is essentially representative
of the population as a whole (Table 6.1).

To end up this discussion, in cluster sampling, all the units of the randomly
selected clusters make up a sample, while in the stratified sampling technique; the
sample is created from the random selection of elements from all strata. Specifically,
in the cluster sampling technique, a cluster is the sampling unit instead of a single
element of the population.

0 
0 

Fig. 6.2 Stratified sampling process
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Fig. 6.3 Cluster sampling process

Table 6.1 Represents a comparative study between cluster sampling and stratified sampling

Stratified sampling Cluster sampling

Objective To increase precision and
representation

To reduce cost and improve
efficiency

Sample Randomly selected individuals are
taken from all the strata

All the individuals are taken from
randomly selected clusters

Selection Individually Collectively

Homogeneity Within group Between groups

Heterogeneity Between groups Within group

In the next section, we present an overview of the window sampling technique.

6.2.3.4 Window Sampling Technique

Windowing sampling is another technique that can reduce the amount of data to be
processed. In the literature, this technique is an appropriate solution for sampling
time-evolving data streams of unknown size. Indeed, the processing of data streams
is based on the execution of continuous queries on data that are potentially infinite
in nature. To analyze a large mass of data continuously, the windowing technique
is based on the principle of dividing these data into a succession of successive
windows. This allows, on the one hand, to adapt the processing to the unlimited
nature of the data and, on the other hand, to improve the performance of the
algorithms subsequently executed. In fact, a window is a subinterval of the data
stream, where the desired sample size is much smaller than that of this window.
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In [27], windowing techniques are used to adapt to the unlimited nature of the
data. In the literature, several works have used the technique of sliding window, the
technique of fixed window, etc. A fixed window is a subset of the set of continuous
data, whose bounds are fixed such as a window between 8 am and 6 pm from
Monday to Friday of each week, a window containing the data of a month, etc. On
the other hand, the bounds of a sliding window change over time. The windowing
technique can provide adequate solutions to maintain a random sample on a sliding
window [9] (Fig. 6.4).

A window can be either physical when it is defined by means of time intervals
(days, hours, minutes, seconds, milliseconds, etc.), or logical when defined in terms
of number of elements. The windowing technique allows an approximate response
to a query on the streaming data and allows the query to be evaluated not on the
entire history of that data, but rather on the windows of the most recent data. Applied
to this type of data, the windowing principle allows continuous queries to provide
responses over limited time periods. In [47], a continuous query on data streams at a
very high rate can only provide an answer over a necessarily limited period of time.
Consequently, queries for relatively long period data and historical data cannot be
processed. Several data streams management systems (DMFS) have been developed
as examples: Stream [7], Aurora [1], etc. These systems allow to express continuous
requests that evaluate progressively on a data stream or on parts of it. In a number of
areas where data is generated continuously and ephemeral (data circulating on social
networks, for example), processing is based on the time or order of continuous data.
The size of the window should be large enough that window sampling is relatively
representative and meaningful.

Windowing techniques allow for temporal limits on data streams. One of the
advantages of this technique is that it gives exact results to a continuous query
on the current window data. However, we cannot have the data history beyond the
window. But in the context of data flows, it is interesting to consider the history of

Fig. 6.4 Example of sliding window
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the data in the sampling process. In [26], one solution is to keep a summary of the
stream history to answer queries. Several data flow summary techniques have been
developed. Reference [14] proposed a generic and optimized method of constructing
summary from distributed data streams. The approach of [14] is based on the general
summary as defined by [17] while taking into account all data streams.

In the literature, many works have addressed data streams summary structures
[14, 17, 24, 26, 28, 31, 32], etc. The author of [17] has defined a summary of
data stream according to two views: (1) a functional view of the summary where a
summary aims to gather some of the information contained in the flow over a given
period of time, to be able to solve a particular problem during this period. (2) a more
general view where a summary aims to keep compact information on a data stream
in its entirety temporal, without considering any problem a priori. The authors of
[47] have defined a generalist summary as a data structure updated as the elements
of a data stream arrive, and allowing for a posteriori response and approximately to
queries about this data stream.

In the next section, we present an overview of the reservoir sampling technique.

6.2.3.5 Reservoir Sampling Technique

This sampling technique is particularly adapted to summarize large volumes of data
[52]. Advanced sampling to sample data stream is reservoir sampling [56] and [12].
In fact, the reservoir algorithm was designed by Alan Waterman (called algorithm R)
and then classified by [56]. The reservoir sampling requires a reservoir whose size
corresponds to the size of the resulting sample. This technique has been successfully
applied in many domains of activity: social networks (Twitter) in real time [13], text
flow [12], etc. However, defining the size of the reservoir is difficult [41]. In this
context and to address the dynamics of the data arriving with a high frequency, the
authors of [4] proposed a dynamic adjustment of the size of the reservoir while the
sampling is still in progress.

In [41], the authors proposed a sampling algorithm based on the reservoir
sampling technique. This sampling algorithm whose objective is to process data
streams without limits and which does not require to know the length of the
flow of these data or the size of the sample. However, the conventional technique
of reservoir sampling does not guarantee a sufficiently convinced number of
(statistically) tuples of each portion of data to be included in the reservoir, which
may call into question the quality of the sample [5]. To palliate this problem, the
authors of [6] have proposed a new adaptive stratified reservoir sampling algorithm
on several parts of the data to be processed. However, this algorithm uses a fixed
size tank.

Several sampling algorithms are based on reservoir sampling. One of the
advantages of reservoir sampling technique is that it reduces the load on the fly.
However, this technique is limited when the data expires in a sliding window [15].
In fact, elements that are no longer part of the current window become invalid, and if
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they belong to the sample, they must be replaced. However, this may have an impact
on the representativeness of the sample.

In fact, reservoir sampling is a family of randomized algorithms for randomly
choosing a sample, composed of k elements, from a data set of n elements (k < n),
where n is either a very large or infinite. Typically n is large enough that the entire
data set doesn’t fit into main memory.

The basic idea of the reservoir sampling algorithm is as follows:

(a) Create an array Reservoir[1..k]
(b) Reservoir[] Initialization: copy the first k DataStream elements into the Reser-

voir[]
(c) Then update Reservoir[] by randomly selecting elements from ek+1,ek+2,. . . , en

Algorithm 1 Algorithm for reservoir sampling
1: Let DataStream={e1, e2,e3, . . ., en} be a Data stream of n elements (with n very large or

infinite)
2: Reservoir[] is the output array
3: for all i ∈ [1, k]) do
4: Reservoir[i]=ei //Initialization
5: end for
6: // Iterate from the (k+1)th element to nth element
7: for all i ∈ [i, n]) do
8: j = rand() % (i+1)
9: if (0 < j ≤ k) then

10: Reservoir[j]=ei //If the randomly picked index is smaller than k, then replace
11: end if
12: end for

6.2.4 Conclusion

To end up this discussion, the sampling technique is widely used to analyze large
data. Results are then obtained with some acceptable approximation, and confidence
limits can be given to the degree of error introduced by the sampling process
[35]. However, extracting a sample sufficiently representative from a very large of
complex and dynamic data is not always trivial. Several questions can be asked
concerning the selection of this sample:

• How to construct a representative sample to ensure meaningful results?
• What is the most appropriate technique for building a sample?
• What is the optimal size of a sample?
• What is the validity period of a sample?
• How to maintain the representativeness of a sample of a large mass of complex

and evolving data over time?
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• How to apprehend the heterogeneity of the complex data of both dynamic and
multiple sources?

• How precise should the results be?
• What are the constraints to be taken into account of the fact the unlimited size of

massive data?
• and so forth

In the next section, we discuss the problem of constructing a sample of large
complex data.

6.2.5 Construction of Sample

Practically, it is not always possible to analyze a mass of large size data or of infinite
size in its entirety. Sampling is one of the most widely used techniques to overcome
this problem. This consists of using a reduced representation (sample) but producing
the same analytical results or approximate results. In the sampling process, the
construction of a significant sample is a crucial step and the representativeness of
the results depends on the quality of this sample. In the main, the method of building
a sample must be based on an approach and a strategy. In [43], the construction of
a sample is a strategic and evolving operation. In [26], the choice of a particular
summary method depends on the nature of the data to be processed and the problem
to be solved. Indeed, the results of an analysis based on a bad sample are of no
interest. On the contrary, the interpretation of these results can even have negative
and even catastrophic consequences.

In order to construct a justified and meaningful sample, it is necessary to define in
a global way the strategy, the needs but also the constraints to be taken into account.
Next, several questions need to be asked about the approach and techniques to be
used to construct a representative sample of the population to be studied. Sampling
a large mass of dynamic and evolving data over time is a very complicated task.
Adding to this is the representativeness of a sample, which is a problem underlying
the sampling of complex data flows.

The heterogeneity of complex data from multiple sources is one of the major
difficulties in sampling this type of data. In fact, the management of inconsistency
and uncertainty of data is a central step in the process of sampling massive data from
heterogeneous sources. To overcome this problem of heterogeneity, several works
have used the integration and data fusion to consolidate these data and prepare them
to facilitate their analyses and queries.
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6.2.6 Data Integration and Fusion

Data integration is an implicit problem in the problem of sampling data from
heterogeneous sources. It is a process in which heterogeneous data, from multiple
sources, is retrieved and combined as a unified form and structure. The underlying
idea is to merge these data in order to reduce both the heterogeneity of these data
and the uncertainty of the resulting data. Data fusion refers to a set of methods
and techniques for aggregating data from heterogeneous sources. It aims to obtain
the most complete information possible through complementarity and redundancy
of information from multiple sources. In [3], data fusion consists of combining
several observations of an environment or phenomenon to produce a more complete
description (Fig. 6.5).

In [11], information fusion combines information from several sources to
improve decision-making. Indeed, the large number of heterogeneous distributed
sources and the amount of complex data generated by them have made it necessary
to integrate and merge these data in order to obtain a unified and relatively complete
data. In a number of application areas where information sharing is unavoidable,
there is an increased need to consolidate and federate massive data from multiple
and heterogeneous sources at different levels: format, type, dynamic structure, etc.
Nonetheless, it is difficult to tackle the problem of the heterogeneity of complex data
in its entirety. In [53], the heterogeneity of data sources is generally classified into
two categories: (1) heterogeneity of structures and (2) heterogeneity of the content
of these data. To overcome this problem, several works have used integration as
a process to reduce this heterogeneity. In fact, integration is a solution allowing
unified access to data from multiple heterogeneous sources. This technique provides
unified access to different sources of information while masking the heterogeneity,
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Fig. 6.5 Data integration process
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autonomy, and distribution of these sources. In the literature, there are two main
approaches to data integration.

6.2.6.1 Data Warehouse Approach

The data warehouse approach consists of a materialized integration where data
from multiple heterogeneous sources are stored (after extraction, transformation,
and loading) into a data warehouse.In the context of the data warehouse approach,
the integration is a process allowing to construct a huge database called data
warehouse storing data from multiple heterogeneous sources [53]. More precisely,
data integration involves combining data from several multiple distributed sources,
which are stored using various technologies. It is a process in which heterogeneous
data is extracted and combined as an unified form and structure (Fig. 6.6).

The integration system following a data warehouse approach is composed of
three layers:

(a) Sources
It contains data that is generally heterogeneous in terms of format, structure,
semantics, etc.

(b) Data warehouse
It is a large database where data is extracted from sources, cleaned, and
transformed according to the warehouse schema and finally stored in the
warehouse.

(c) Data mart
It is a lightened extract from the data warehouse whose purpose is to focus on
a subject, a theme or a business in order to respond the needs of a user group.
In other words, data mart is a small data warehouse that satisfies the needs of a
reduced set of users.

Fig. 6.6 Data integration process: Datawarehousing
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Concretely, data warehouses have demonstrated their ability to integrate a large
quantity of data and their efficiency in querying this data. Indeed, the analysis of
stored data is based on data organization techniques in the form of multidimensional
databases. More generally, the data warehouse is recognized like the decisional
system core; it integrates and stores the data in order to become easily accessible
to the processes of decisional analyses [49]. Several works have used the data
warehouse approach to consolidate heterogeneous data [19, 37, 44, 46], etc. In
[2], the companies and the organizations resort to data warehousing systems in
order to provide decision makers a comprehensive view and synthetic information
circulating in their organizations. However, in the context of Big Data, it becomes
very difficult to manage massive data using data warehouses based on relational
databases. In fact, the emergence of new forms of complex data representation may
call into question the existing conventional systems. More precisely, conventional
data warehouses are inappropriate for complex data stream. In order to tackle this
phenomenon, integration systems must be adapted. The advent of NoSql (Not-
Only SQL) databases is an alternative solution for building multidimensional data
warehouses that can support large amounts of data available today. In Fact, NoSQL
databases are an interesting way to build multidimensional data warehouses that can
support large amounts of data [23].

In order to benefit from the advantages of cloud computing technology in terms
of computing power, response time and cost reduction, other work [51] and [39]
proposed to implement data warehouses in cloud computing.

6.2.6.2 Mediator Approach

This technique consists of a virtual integration where the data remain in the sources.
The interrogation of these data goes through a global scheme. The user feels he
is questioning a homogeneous system. Queries are expressed on the global schema,
then decomposed into subqueries (a sequence of queries) on the sources. The results
of the sources are combined to form the final result (Fig. 6.7).

In [30], mediators are intermediary modules in large-scale information systems
that link multiple sources of information to applications. In other words, a mediator
is a query interface between the user and data sources. It is a mediation system
that constitutes an architectural solution for transparent access to distributed
heterogeneous sources [42]. The first mediator architecture has been proposed in
[29], it is represented by three layers:

(a) Mediator
at the mediator level, the global schema provides a unified vocabulary for the
expression of user requests. For the description of the contents of the sources
is represented by a set of abstract views on the sources. In other words, the
mediator allows to locate the data and solve the schematic conflicts.
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Fig. 6.7 Data integration process: mediator architecture

(b) Wrappers
at the wrappers level,the requests are expressed in terms of the vocabulary of
the global schema (mediator) in queries expressed in the source language. More
precisely, the wrapper allows resolving data conflicts by presenting them in the
mediation model

(c) Sources
The sources are queried directly through the wrappers and mediator.

In reality, the mediator does not store the source data, but it has abstract views
of the data stored in the sources. To query data at the mediator level, mappings
must be defined between global schema relationships and local schema (sources)
relationships. Thus, wrappers transform responses to queries into responses that
conform to the global mediator schema. More precisely, the effective querying of
the sources is done through wrappers which translate the requests expressed by the
views into the query language specific to each of the sources (Table 6.2).

To benefit from each of the approaches, several works like [20] and [38] have
proposed to combine both approaches: data warehouse and mediator. In principle,
data warehouse tends to be faster since the view is materialized before the query
is run. The user interacts with the warehouse for a direct query of the warehouse
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Table 6.2 Represents a comparative study between data warehousing approach and mediator
approach

Parameters Warehousing approach Mediator approach

Storage of the interrogated data Data warehouse Data sources

Data query DataWarehouse or Data mart Data sources

Response time Fast Relatively long

Updating data query Complex and often long Not necessary

data or through the data mart. Mediator, on the other hand, provides up-to-date
information because data sources are directly queried and the view is not evaluated
before execution, so the response time is slower.

In the next section, we discuss the problem of representativeness of a sample in
the context of complex data.

6.2.7 A Sample Representativeness

A sample of a population is representative when it has the same characteristics
as the entire population. In other words, a representative sample can produce
representative results that can be extrapolated to the study population. And the
quality of the results of a statistical analysis of the data, strongly depends on the
representativity of the sample of the population studied. The representativeness of
a sample is fundamental to the data analysis process. Indeed, the results of the
analysis of a sample will not be justified when the sample is not representative of
the entire population to be studied. However, maintaining a representative sample in
the context of massive, dynamic, and complex data is a difficult task. In principle,
the problem of sample representativeness is underlying the sampling process.

In [50], a sample is representative of a large population when from there one can
describe this population. More precisely, a sample is representative when it comes
from a representative print [50]. Clearly, if the sample is not randomly selected, it
may not be representative of the population to be studied. In statistics, a random
sample is a sample drawn at random from a population in which all elements
have the same chance of being included in this sample. For [55], the definition of
a representative sample differs depending on whether the sample is probabilistic
or not. In [54], a sample is never representative in itself, it is representative in
relation to certain variables. In [21], a sample constructed using the quota method is
representative. Following the quota method, to construct a sample, we get to have a
representative sample [25].

With the emergence of massive data that is continuously evolving over time,
sampling techniques face a challenge. One of the major challenges is maintaining
the representativeness of the sample, due of the temporality of the data, their
evolution, and their heterogeneity. Indeed, maintaining the representativeness of a
sample is a problem that raises several questions about the order of dynamic data,
the time history of these data, the time it takes to update the sample, etc. As a result,
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there is a growing need for methods and techniques capable of processing massive
and dynamic data of very large size in a more efficient way in time and precision.

6.3 Review and Synthesis

Nowadays, it is impossible to do without the automatic processing of more and more
voluminous and complex data. The mass data processing problem is accentuated
with the advent of data, dynamic, scalable and from different sources with an infinite
size that exceeds our ability to process them in real time. The analysis of complex
large data in real time is a hot topic of growing interest in several key areas of
activity (security, military, medicine, legal, etc.) whose prediction and / or decision-
making are extremely important. In concrete terms, the processing of massive data
is a rapidly developing promising domain. It is a central focus of the concerns of the
actors of the most part of the activity domains. In a number of application areas (eg
airport security), it is necessary to analyze a large mass of complex and continuous
data in order to exploit the results in real time. Therefore, there is a need for both
tools and techniques from statistics, mathematics and automatic learning. In this
context, serveral startups has used data analysis as one of the core elements of their
strategy.

More generally, the real challenge in the era of Big Data is to be able to explore
and analyze complex and dynamic data from different sources in real time, in
both structured and unstructured form. In essence, these data are heterogeneous
in terms of type, nature, format, size, structure, etc. To overcome the problem of
heterogeneity, several works have used data fusion to reconcile and consolidate data
from heterogeneous in order to obtain a resulting and coherent data. In fact, data
fusion is the process of aggregating data from multiple sources to reduce uncertainty
about the resulting data.

In this chapter, we have discussed some sampling techniques on complex data.
For example, windowing techniques and reservoir sampling techniques. One of
the advantages of windowing techniques is that they provide exact answers to a
continuous query on the current a data window. yet, we cannot have the data history
beyond the current window. However, in continuous data analysis, we cannot do
without data (of other windows) that does not belong to the current window. The
windowing technique must be enriched with models taking into account the history
of the data but also to adapt to the data unlimited nature. This will allow to consider
the specificities of the data: dynamic and evolutive as over time, etc. Confronting the
results of successive windows may be of great importance to discuss critical issues.

Reservoir sampling has been applied successfully in many areas, such as real-
time social network feeds, for example. However, one of the limitations of this
technique is the problem of defining the size of a reservoir. In this context, a few
works have proposed a dynamic adjustment of the reservoir size while sampling is
still in progress. This allows facing up the dynamics of continuous data. Other works
have proposed sampling algorithms based on the reservoir sampling technique,
which allow for continuous processing of data of unknown size.
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In the end, the processing of complex data raises many problems related to
the exploitation of these data in real time. Not all conventional sampling tools
and techniques are adapted to the processing of complex data streams. Sampling
algorithms must evolve to taking into account the specifics of complex data streams
of unknown size. It is therefore necessary to have mathematical, statistical, and
machine learning tools capable of processing data on a large scale. Several works
have extended the methods of analysis to face up of Big Data phenomenon. On
the other hand, few works have raised the problem of data semantic heterogeneity.
Indeed, the autonomy of data sources can also lead to semantic heterogeneity.
In general, each source can use a specific vocabulary in its context, which can
lead to misinterpretation of the data generated by it. More specifically, semantic
heterogeneity can lead to ambiguities when data are interpreted by data analysis
systems. Not considering semantic heterogeneity in a data analysis system could
have a negative impact on the results. For example, the fact that a considerable
number of messages that circulate on social networks and cannot be interpreted
correctly is a handicap for social network analysis. The integration of semantic
annotation into complex data sampling process, using dedicated ontologies, could
provide a solution to this type of problem and therefore increase the relevance and
quality of the results.

Concretely, the design of sampling-based algorithms that can produce approxi-
mate responses close to the exact answer is an active research domain. This is an
opportunity for both industrialist and academic researchers. Currently, the problem
of sampling complex data streams has led to numerous investigations by researchers
in order to propose solutions taking into account the specificities of this data type.
Existing solutions today are not yet perfect, other ideas need should be explored.
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Chapter 7
Boosting the Exploration of Huge
Dynamic Graphs

F. Javier Calle, Dolores Cuadra, Jesica Rivero, and Pedro Isasi

7.1 Introduction

Almost three centuries ago, Euler published a paper in which he stated the problem
of the bridges of Königsberg with which the study of graphs began, yet they
were not named like that until a century and a half later. Since then, graphs have
been a versatile mathematical structure widely used for modeling diverse types of
real-world problems. Its many areas of application, ranging from natural sciences
(chemistry, physics, or biology) to linguistics and social sciences, entail that any
progress made in graph processing multiplies its utility since it will be reflected in
improvements over many solutions to as many problems. Consequently, there is a
great interest in developing algorithms for handling graphs efficiently.

Specifically, the classic “path search” problem over graphs or networks has been
widely analyzed and discussed for many years. Advances in computer science
and technology entailed also the evolution of both the supporting technological
resources and the requirements, forcing research on the techniques applied for its
resolution.

On the one hand, huge networks comprising thousands (even millions) of nodes
and arcs have to be observed. The size and complexity of such giant graphs brings
to mind the possibility of fragmenting and preprocessing the graph. However, our
current frequent needs regarding these problems include observing dynamic graphs,
which reduces our possibilities of preprocessing.

Indeed, these enormous networks are often subjected to frequent changes,
affecting either the cost or even the existence of both nodes and arcs. For example,
the task of routing packages through a communication network can be affected by a
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server going down, and by cost rocketing of a certain connection between two nodes
due to network saturation. Even the very definition of the service, searching a path
connecting two nodes through the network, can vary by changing one of the nodes
to be connected. Because of such dynamicity, in certain domains the validity of the
solution could be expiring in time, so the agility in both providing and applying the
solution is a strong requirement.

Classic approaches sought best path (shortest or cheapest), but the risk of
validity expiration leads to seek fast algorithms, privileging response time over cost.
Besides, in many domains, the time taken for covering a path is lower than the time
required to find a better solution. Anyhow, it will be valuable to observe algorithms
able of providing a fast solution and of refining it when more time is available.
Moreover, the solution can be refined while currently being applied. A particular
case is when the path taken loses validity (because of dynamicity). Being able of
revising that path for quickly finding a similar valid solution, instead of restarting
the path search, will be most appreciated. This is a basic feature of ant colony
optimization (ACO) algorithms [1, 2], which have been largely applied on dynamic
(yet not quite big) graphs. These methods are found on the repetition of successful
behaviors through several essays performed by a set of colony members. After a few
iterations, the solution found could be not as good as the optimum but probably good
enough and obtained in less time. Besides, such approach ensures good adaption to
changes, either for the service parameters and the network structure.

On the other hand, the path search algorithms have usually been focused as
isolated processing, performed locally on individual devices. However, there could
be found certain advantages in setting servers which use common resources for all
clients. For example, through guiding services provided to itinerant elements it will
be required finding a path connecting their position with their goal, and it also could
be useful taking into account the position of the remaining elements, sometimes
for making them come together in a point, or perhaps for avoiding saturated arcs.
Actually, not only their position but also their trajectories or recent positions could
be of use, so predictions on graph dynamicity can be attained, and also partial
solutions can be provided by another client seeking a similar or close goal.

Therefore, a certain challenge is to adapt these algorithms to be supported
by database technologies, so they can benefit from a storage of higher capacity,
durability, and range. In particular, this work presents the joint of two technologies,
databases and ACO algorithms, and explores their adaptation and evolution for
solving the current form of the need: fast search of paths through vast dynamic
graphs.

7.2 Background

Graphs are a versatile tool commonly used for representing and formalizing
problems of diverse type and nature. Over the years, and more profusely with the
involvement of computer science, there have been proposed and developed many
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algorithms for processing graphs with different aims. Specifically, there are several
approaches for path finding in graphs, of different nature and strategy. Departing
from a graph defined as set of nodes N and a set of edges E (links from ni to nj with
a cost cij, where ni, nj ∈ N), path finding problem is defined as providing a sequence
of nodes (linked by edges) connecting a start node α with a target node ω. Solutions
are paths characterized by a cost (the sum of the costs of all edges in the path), and
reducing that cost (finding better paths) is the usual goal.

As aforementioned, classic algorithms (e.g., Dijkstra, A∗ , etc.) are aimed to check
the existence of a path between two nodes, and seek the best solution (minimum
cost). These approaches are often based on the analysis of the entire graph, which is
a burden as the size of the subjected graphs grew.

Let us take Dijkstra’s, as a classic widespread solution. It is a greedy algorithm
proposed in 1959 by Edsger Dijkstra [3]. It is supported by a set of resolved nodes
with their preceding node S (initialized to ∅), and a set A containing accessible
nodes with provisional cost and preceding node (initialized to all nodes directly
connected to α by an edge, with provisional preceding node α and provisional cost
the one indicated by that edge). Until A is empty, it will remove from A the node
ni with minimum provisional cost pi, adding that node ni (with its preceding node)
to S, and analyzing every edge from ni to nj with cost cij: if nj is not in A, or if the
provisional cost of nj in A (pj) is greater than pi + cij, then it will add/update the
node nj in A, with preceding node ni and provisional cost pi + cij. After at most
x−1 iterations (where x is the cardinality of N), the set S will support the solution
for every node reachable from α (the path from α to ω will be obtained by taking
preceding nodes in S from node ω to node α).

The evolution of those algorithms sought reducing the processing time, by
applying some tactic. Among those techniques some should be highlighted, such
as preprocessing the graph, fragmenting the graph into several smaller subgraphs,
and also pruning the exploration of the graph by applying some heuristic. The
latter are techniques that sacrifice optimality and even accuracy for attaining better
response times or eventually to attain an approximate solution when exact solutions
are unreachable. They are based on certain prior knowledge, which makes them
domain specific. Though there could be cases in which the efficiency drops or even
a solution is never attained, such cases are rare, and efficiency is good on average.

Finally, when dynamicity hinders preprocessing and it is not possible to find a
seemly good heuristic, the general metaheuristic algorithms appear as a solution.
Metaheuristic are generic (domain independent) versatile techniques guiding the
solution search for finding quasi-optimal solutions with some efficiency gain and
often other advantages regarding classic algorithms, such as the ability of adapting
their operation to different scenarios, or even adaptation to changes produced in
running time. Yet they are mostly non-deterministic, and they could be showing
eventual anomalies, such behavior is really rare, and their general working is usually
advantageous.

Regarding solutions based on preprocessing, some approaches (Bast’s [4],
Delling’s [5]) create a hierarchical structure in main memory for supporting fast
exploration. An evolution of the latter [6] divides the graph into subgraphs and
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runs a preprocessing (whose result is also stored in main memory) to determine
which edges should be observed for each subgraph. More recently [7], these
authors summarize algorithms applied in route planning for transportation networks,
taking into account the resources spent in preprocessing, the space and computing
requirements, and of course the response time. Basically, the algorithms solve point-
to-point shortest path and the start point is that data fits in RAM. They assume that
while preprocessing may take a long time (e.g., hours), queries need to be fast.

On the other hand, there are also several proposals supported by secondary
storage, thus avoiding the problems caused by hardware resources constraints. Chan
[8, 9] preprocesses the graph and divides it into subgraphs to be stored in raw
files. Some works apply database technology to manage the secondary storage [10],
which will serve for keeping the graph, the results of the storage, and a cache
of solutions to frequently requested services. For example, Sankaranarayanan and
Samet [11, 12] use databases for organizing graphs into tree structures, as a result
of their preprocessing, which will enable processing huge graphs in less time.

As a conclusion, it should be pointed out that almost all similar works are sup-
ported by a costly preprocessing (several days time) performed before starting up the
service. Besides, most of those algorithm are focused on running the analysis on the
whole graph, requiring to be completely restarted whenever any structural change
is performed in the graph (dynamic graph conditions). As a good prospect for the
future, it would be advantageous to aim the development of new algorithms to local
preprocessing, thus avoid preprocessing the entire graph when any structural change
occurs. The proposal presented in [13] applies two algorithms for reducing the orig-
inal graph. This proposal solves the specific problem in a communication network,
where the response time is not the most important parameter to be optimized.

A typical dynamic graph example is that of the social networks. Regarding path
search algorithms in this domain, it should be mentioned one of the first relevant
works presented by Kleinberg [14] who performs a decentralized search observing
only local data. Some further works extending that techniques are found in [15,
16], improving performance and observing more information such as the population
distribution. Honiden [17] proposes an algorithm for vast graphs supported by
Voronoi duals (graphs enunciated by Mehlhorn [18] and Erwing [19] inspired in
classic Delaunay triangulation for Voronoi diagrams, whose size is smaller than the
original graph). The search is performed over the Voronoi duals by applying the
algorithm of Dijkstra, and the result (a path in the dual graph, not in the original
one) is used for directing a search on the original graph. Main drawback is that
Voronoi duals are created through a costly preprocessing. Recently, some proposals
are focused on applying heuristic algorithms to prove the small-world structure
in networks. The main idea shown in [20] is the calculation of the shortest path
between any two nodes of the network. In this approach, the network is huge
but the execution time is not relevant. This work deals with dynamics changes
simulating these changes in the Twitter network. In [21], the string network typology
is adapted to a small-world structure. The algorithm has a good performance but the
experimentation is carried out in networks with moderate size (20–100 nodes).
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As a nature-inspired technique [22], these algorithms are based on massive
number of simple participants working in parallel but asynchronously. They do not
require global information (could be decentralized) and, though the results come
from their joint action, their communication mechanisms are very plain.

Specifically, ants (individual agents of simple behavior seeking global achieve-
ment) mark successful behaviors using pheromone which can be noticed by other
individuals to follow (or not) such conducts [1, 2]. Hence, a simple individual can
tackle a complex task in a large environment because in fact it is only observing
local conditions, and it is not supposed to solve the problem: actually, the colony as
a whole will be providing the solution. This approach has been applied to find paths
across graphs, network routing, the traveling salesman, problem, etc.

When finding paths across graphs, an individual in a node will select an arc
among many by the calculation of their probability based on the pheromone each
arc has. On the other hand, the ants leave a slight trace of pheromone in the covered
arc when looking for food (the target), and a strong trace when going back home
(the start point). Thus, after several waves of ants, a seemly good path can be found
by following the pheromone trace. The pheromone will be dissipated in time, but
better decisions will be reinforced with new pheromone.

This method is not going to assure optimal cost path, as other classic approaches
as Dijkstra’s algorithm do. It is even not going to improve the initial response time.
But it shows other features that could involve interesting results, such as robustness
(is not crucial for an individual to get lost or collapsed), distribution, etc. Besides,
stored preprocessing (not initializing the pheromone across the network) provides a
way to the target from diverse start points, which is a very interesting added value.
Finally, and above all, it presents strong adaptation to dynamic changes: addition
or deletion of nodes or arcs will quickly be overcome, as well as the problem
recalculation of the path when deviations in its execution appear.

Its versatility has been proved in many domains and variations: vehicle routing
problem [23, 24], calculating trajectories for unmanned vehicles [25], project
management [26, 27], improvement of software quality prediction models [28],
medical risk profile recognition [29], cybersecurity in the web [30, 31], or social
networks [32], among many other fields.

Regarding its adaptation to new resources and requirements, ACO has been
adapted to exploit parallel environments [33, 34], to reduce the problem complexity
applying local search in time windows [35, 36]. Finally, regarding its performance
on dynamic scenarios, ACO has proven to be effective in facing changes [37],
though in small formalizations and showing response times still far from real-time
systems requirements.

Summarizing, the challenge is approaching an algorithm on huge dynamic
graphs. Dynamicity will lead to set local preprocessing (if any) and privilege agility:
it should be able of providing a fast first solution and refining it as more time is
available. It will be supported by database technologies, as a shared resource by
many concurrent services, so some benefits can also be explored while also new
open questions and challenges will be left for further work.
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7.3 Method Description

The aim of this work is to develop an algorithm able of proposing a path over a
big dynamic network in a short response time (privileging agility over quality of the
path). As a start point, the ACO family algorithms will be focused, because of their
quick adaptation to changes in the network. Moreover, their working consists in
progressively refining already found solutions, which suits perfectly with our goals.
However, they are not prepared to work on big networks (on the contrary, their
stochastic nature could be a strong hindrance for working on them). On the other
hand, they are also not prepared to work in several concurrent services, which can
take advantage of the processing done by another service (of different definition).
So, the algorithm needs to be evolved to meet these requirements. In this section, the
method development will be explained, leaving its formalization for a later section.

7.3.1 Ant Colony Base Algorithm

The ant colony optimization (ACO) method [2, 38] is a nature-inspired method
emulating the behavior of colonies of ants. It is based on the joint behavior of a set of
individuals that use simple rules to produce complex results through the repetition
of behaviors by many individuals. Those behaviors, initially of random nature, are
led by other individuals’ discoveries, communicated by means of pheromone marks.

Ants will leave a light trace of pheromone as they look for their target, lighter as
they move away. To avoid ants going in cycles, they can be endowed with a taboo
list containing already visited nodes, thus preventing that ant from revisiting them.
When an ant reaches the target, it will get a strong load of pheromone that will be
left as it returns back home following the same path. That is, the path followed by
the successful ant will be marked with pheromone, decreasingly from the target to
the start point. After a few ant waves, the emergent behavior could be taken as a
good result.

The proposed algorithm works on a graph, as defined at the beginning of
Sect. 7.2, and proceeds as follows:

1. Initialization: all the networks arcs are endowed with a fixed pheromone amount.
2. All ants are placed onto the starting point node.
3. Ants are activated. They will individually perform the next steps:

(a) Choose edge to follow: it will be a random choice from all available edges
departing from current node (minus those leading to nodes included in
the taboo list), but the probability of choosing any given edge will be
proportional to the amount of pheromone found on it.

(b) Update the pheromone of the chosen link (local update): the amount added
will be inversely proportional to the cost of the edge.
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(c) Update ant position, and include last visited node into the taboo list.
(d) If the ant is in target node or if it is stuck (every available link is in taboo list)

deactivate ant (end). Else, go back to step (a).

4. When every ant is deactivated, perform global and dissipation updates:

(a) Global update: for each ant in destination node and for all the links of its
path, the link pheromone is increased in some amount inversely proportional
to the path cost.

(b) Dissipation: all the links reduce their amount of pheromone in a given
percentage.

5. If the convergence conditions are not reached, go to step 1.

A first implementation of this method [39] running on a database (Oracle™ 10 g
under Solaris 10) showed bad results in comparison to Dijkstra’s classic method:
not only the latter provides optimum path while ACO does not, it also finishes faster
(only one of each eight services finished faster with ACO). In this case, the network
was big enough (2·105 nodes) for the ants to get lost, while small enough for a brute-
force search to be efficient. Anyhow, the results pointed out that the DB took much
time for operating nodes and links (DB needed tuning for improved performance,
and reducing the amount of operations was found advantageous), and that randomly
wandering ants get lost easily when working on big networks. Several changes were
added sequentially to attain better performance.

Finally, it also should be stated that the experiments were performed over a
“small” network. In fact, what is targeted is to find paths between two nodes across
hundred thousand nodes networks. If the network is small enough, it would be
no problem for the DB system to store best path between two random nodes and
quickly retrieve it when required. But such procedure is not, of course, feasible for
huge networks. The same experiments performed over a bigger network displayed
even worse results: Dijkstra’s algorithm spent nearly a minute where ACO’s barely
reached convergence.

7.3.2 First Approach: Splitting the Ants

One of the pointed burdens of the proposal is the high amount of DB updating
operations. Anytime an ant goes somewhere at least one update is performed. Thus
reducing covered surface of the network when first solution is met (any ant reaches
the target node) will reduce significantly that response time.

Through the basic approach, when first solution is found the ants should probably
had covered a circle around the origin node of radium d, being d the distance
between origin and target nodes, as depicted in Fig. 7.1a. However, placing half
of the ant set in the target node (searching for the origin node) and the other half
of the set in the origin node (vice versa), they will be covering increasingly bigger
circles until both circles get in touch, as shown in Fig. 7.1b. Then, the ant contacting
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Fig. 7.1 (a) Surface covered by the ants through the basic approach. (b) Surface covered by the
ants split into two sets

the other circle will probably follow the pheromone trace till it reaches its center,
achieving a solution. At that moment, the surface covered by the whole set of ants
will be slightly over two circles of radium d/2, which is nearly the half of the
previous. Since smaller surface will probably contain fewer nodes, the updating
operations should have been reduced significantly.

It must be noted that this variation, as explained, can be applied on non-directed
graphs. In directed graphs arcs are unidirectional, and for applying the approach it
is only required to have the ants from the source node following the arcs in direct
way; and to have the ants from the target node taking the arcs in reverse way, that
is, instead of observing arc departing from the node where they are, they have to
consider all arcs arriving to that node.

Such scope leaves some space to improvement. For example, considering two
different breeds of ants, with different pheromone traces, will enable an ant to
privilege traces of the other breed, avoiding some probability of getting lost.
Additionally, in certain domains the service definition can be partially repeated (for
example, routing services frequently heading to a reduced set of target nodes) and
splitting the ants into two colonies increases the probability of reusing the results of
one of them for another service.

7.3.2.1 Improving the Effect of the “Taboo List”

Another interesting variation affects the taboo list. When any individual is blocked
by taboo list it will be restarted. Promising individuals will probably follow
pheromone trails to be soon found at a good state, but repeating those first steps
takes time. What should actually be sought is not to prevent the ant going on loops
(because if the ant finally succeeds, those eventual loops in the final path can be
easily removed). Instead, what should be attained is preventing the ant to be taking
the same choice in the same situation. That is, the ant is allowed going to an already
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visited node, but it will be forced going to an unexplored node in the next step. Thus,
the ant can cross its own path for exploring the other side of the graph.

With this approach, the ants could go too frequently to already visited nodes
or go zigzagging around its own past steps. Thus, the new taboo list approach
is generalized to be based on a new parameter β. With this method (β-taboo)
any ant will be allowed going anywhere (including already visited nodes) only if
its β previous steps (at least) were performed to non-visited nodes. The variation
explained at the beginning of this section should be consequently named 1-taboo.

7.3.3 Second Approach: The Smell of Food

Initializing the network (removing all pheromone traces) is required for running
a new service, because deposited pheromone was intended for a specific service
(defined by start_node and target_node) and it will muddle the ants of the new
colony set for a new different service. It is quite improbable to be repeating exactly
the same service, and even to be receiving a similar service request for which all
pheromone traces from former service are useful. However, while origin nodes are
very diverse and nearly random for routing services, the target node of most services
is usually included in a small set of common targets.

Therefore, it would be of interest to keep the pheromone associated with
“commonly targeted nodes.” For achieving this, it is proposed to observe two sorts
of traces: on the one hand, pheromone traces left by ants while solving specific
services; on the other hand, persistent traces indicating closeness to a target point.
Following a nature-inspired idea, the new traces will be named “food essence” (FE),
and they are left by another type of agents (β-ants) set on the target node (food
node).

The β-ant traces not only should not be eliminated from a service to the sequent
one, but also be initialized in a preprocessing: since the target point is known before
the service request, the β-ant task could be done in advance. It should be noted
that this FE traces will present as many classes as privileged target nodes (many,
in general), and that structural changes due to dynamicity would entail updating
them. Consequently, it is necessary to restrain in some way its dissemination in
order to keep the volume of data update operations in a reasonable amount. It will
be considered an influence area around the food node, whose size will be small
regarding the graph but subject to specific analysis in each application case (part of
the method parameterization). Anyhow, as a local preprocessing, its cost will not be
high (and taken off-line, while the system is idle).

Definition 1 Food essence of node i in node j is a numerical value representing the
distance between those nodes, and noted O(i,j).

Thus, when any ant is seeking the target node i, in fact it will be searching for
any node j with O(i,j) > 0. Then, following the increasing trace of FEi, it will be
easy for it to reach the target node.
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This focus raises two issues: first, the risk of losing the adaptation to structural
changes in dynamic networks, which characterizes original ACO algorithm; second,
multiplying the pheromone data should not be a problem for a DB system suited to
manage massive storing, but losing control of the β-ant traces could imply storing
beyond technical possibilities: storing O(i,j) ∀i,j means almost as many data as the
number of nodes squared. It should be taken into account that the algorithm is aimed
to huge networks, and such line could lead to an impracticable implementation.

Regarding first problem, the combination of ACO and DB technologies will pro-
vide the solution. Proper solution from ACO algorithms is found in the pheromone
dissipation and later refreshment processes. However, dissipation is suitable for
weakening probabilities but not for a trace that is going to be followed even if it is
too weak. Thus, regarding FE traces, the traces removal will be performed through
another process, the evaporation, consisting in eliminating FE traces when required.

At first sight, any structural change along the network will unleash the review
of the O(i,j) ∀i,j assignments. However, in this proposal the events involving
such process are much more restricted than that. In fact, the evaporation and
refreshment processes must be applied on a FEi (food essence of node i) individually
whenever:

– Any node j with O(i,j) > 0 is deleted or updated.
– Any link regarding a node k with FEi,k > 0 is deleted, updated, or inserted.

If the proportion of FEi across the network is low, which should be intended
for huge networks, then the probability of FEi evaporation and refreshment will
be low as well. Last but not least, the DB provides the suitable mechanisms for
triggering these actions where those events over the FE tables occur, which means
high efficiency and low implementation effort for such operations.

Coming to the second problem, a very high volume of data in the FE tables, DB
mechanisms (such as distribution) are hardly enough to alleviate the problem and
do not shape a solid solution. Hence, a limit has to be placed to the FEi propagation
∀ target node i, fixed through some parameters defined as follows:

Definition 2 The amount of food essence of node i is the initial charge of essence
for any β-ant departing from node i, and noted O(i,i) = m. It is not obligatory to
consider a constant m value ∀ food node i (frequently used or critical food nodes
could have higher values).

Definition 3 The odor loss (k) fixes the proportion of food essence to propagate
from one node with such odor to directly linked nodes. The food essence of that
neighbor will be calculated as the food essence of its neighbor minus the product of
odor loss and the cost of the link between both nodes.

Definition 4 The food essence threshold (μ) is the minimum quantity of FE of any
kind for a β-ant to store it (lower values will not be stored).

At this point, the O(i,j) calculation can be described as the maximum of all its
candidate values. Calculating the food essence of node i in node j involves observing
one candidate value for each link in which node j takes part.
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These parameters should be valued seeking equilibrium between the algorithm
efficiency and the DB performance. High O(i,i) and k, and low μ, will increase the
proportion of nodes marked with FEi, thus easing α-ants to find a path to node i.
However, high amount of nodes marked with FE will lead to DB low performance
(depending also on the DBMS capabilities and the Hw resources).

Seeking the balance, what should be aimed is to mark some small percentage of
the nodes with each FE. On the other hand, once a node marked with FE is reached,
only the nodes arranging the best path to the target point are necessary, and none
of their surroundings. In addition, that path is available when finishing a guiding
service (after several rounds of ants).

Summarizing, what is being added to the method is that the final result of every
guiding service (the whole path provided as final solution) will be marked with its
FE, in the same way the β-ants do but ignoring the food essence threshold (μ).
Hence, yet the FE marks reach very light values, they are enough to guide the α-
ants. And much more network surface is covered with that FE by marking only a
small percentage of the total nodes.

Graphically, the resulting schema could be described as a more or less small
circle of food essence around each target node at the initial state. As the system
is in use, there will appear several radiuses departing from it, helping ants set for
further services to reach that food node. Taking a visual metaphor of food essence
in the graph, it could be seen as the main roads departing and surrounding a big
city, or the arteries in the circulatory system. Moving away from the center, where
the radiuses are distant, there will also appear strings covering the distance between
radiuses (as the minor roads reaching the main ones). The schema is depicted in
Fig. 7.2 (left), along with the roads comparison (right). Thus, after the system is in
use for some time, when any ant starts walking searching for a target node it will
be easier for it to reach a node marked with its FE. In addition, the focus preserves
its dynamic adaptation to structural changes performed over the network: whenever
a node marked with FE is affected by any change, all the FE is evaporated. Not
affected nodes will soon recover their FE, and the affected ones will fall into disuse.

Fig. 7.2 A target node, its FE circle, and FE radiuses, as main roads around a city
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Unfortunately, this new feature keeps on producing too much FE traces at
medium term: almost every new service finishes leaving some new trace. Given
that DB is crucial all along the system, and its performance should be assured, it
is necessary to add a mechanism for controlling the FE tables’ growth. A simple
mechanism consists in fixing a boundary for those tables’ volume. Hence, a new
concept is introduced:

Definition 5 The global volume of food essence threshold (υ) is the maximum
quantity of FE data to be stored (given the DBMS and Hw features).

Finally, a new process will be introduced, to eliminate the FE surplus. The
periodic evaporation will be a process checking if the υ limit has been exceeded.
In case, it will also calculate the amount of data to be deleted, and will choose
and delete the lighter FE data from the tables. Such procedure is very simple to
implement and run over a DB, by means of DB jobs, and keeps the privileges of
nodes with higher O(i,i) that will have longer radiuses and more strings. However, it
also produces some degeneration at long term. Indeed, after producing lots of paths,
evaporation could shorten even main radiuses and these will trend to disappear in
benefit of the FE circle size, which will probably be higher than fixed by μ. Current
solution consists in simply performing periodic (long term) evaporation of every
FE trace over μ. It could be proposed some advanced FE marks including their
usage frequency, so evaporation processes can be based not only in the food essence
strength, but also in their usage, thus respecting main radiuses and eliminate less
useful traces.

The approach, named SoSACO v1 (sense of smell ant colony optimization), was
implemented and evaluated [39]. First evaluation observed only services targeting
a food node (from any random start point, find a path reaching a given food
node) were observed. In these conditions, and after preliminary experimentation for
parameterizing the method in order to adapt it to the specific processing capabilities
and resources of the evaluation environment, both path quality (cost) and response
time were significantly improved. However, the strong limitations of the method
(target node is always a predefined privileged node) weaken its applicability.
Although it is true that in many domains there is a set of frequently requested nodes
(to be reached from anywhere), it is aimed to attain an algorithm capable of solving
any given service [40].

7.3.4 Third Approach: Finding a General Path Through
a Food Node

General services should be defined as a path request from a random node to another
one, with no concern to food nodes. Formerly, with the first approach (see Sect.
7.3.2), we have already focused that sort of services through a colony split into two
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Fig. 7.3 Two breeds of ants
quickly finding a path
through the same FEi

breeds, one for each node defining the service (start node and end node). Whenever
any ant reached the pheromone of the other, it had found a path.

The basis of this new approach is the same but adding one food node and
extending the success condition: whenever both breeds of ants reach traces of the
food node, a solution is found. Certainly, finding traces of the food node involves
that the ant, by following the incrementally stronger trail of food, has found a path
from its origin to the food node. Since both breeds attain such paths, by chaining
them they have jointly found a complete solution. If more time is available, that path
will be marked with pheromone and ants will be able of refining it (for improving
its quality). This idea is graphically depicted in Fig. 7.3.

Having a single food node in the entire (huge) graph could end up in many
services taking too long for finding its food traces. Because of this, the method
observes the existence of several food nodes, and the success condition is reformu-
lated to be “when both breeds of ants reach traces of the same food node.” The
individuals (ants) defined for classic ACO algorithm are of simple processing and
are not communicating with other individuals (except from the pheromone trails).
For this variation, little communication is required: there will be a small blackboard
(held by the DB, thus accessible for all ants) on which each breed of ants will be
registering which food traces has found till far. Therefore, success condition can be
quickly checked by any ant in the moment it finds a new trail. When the ant finds
FEi, it will check whether it is a new type of FE for its breed; in case it is, then it will
check if the other breed has it; otherwise, it will add to the blackboard and continue;
if the other breed has it, a solution is found.

The proliferation of FEi could entail losing efficiency, so it is important to keep
the balance between the processing capabilities and resources of the server and the
parameterization of the food nodes (number of food nodes i, initial essence, essence
loss �j,k, essence threshold μ, etc.).
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Once parameterized, there is still the need of choosing appropriate nodes to be
serving as food nodes. There could be found different criteria for this aim:

– Domain dependent: in many cases, it may be advantageous to choose nodes with
a significance in the domain (landmarks): a famous or popular person in a social
network, a crowded circus in the map of the town, or a privileged device in a
LAN.

– Graph structure: when there is no domain knowledge, the food node would
be chosen because of structural reasons: a node with outstanding connectivity
degree; a centroid (if the network topology is metrizable); or a node with high
degree of centrality in the graph [40, 41], that is, nodes with high clustering
coefficient. This criterion can be applied on either static or dynamic scenarios
while eventually changing the food node on the latter [42].

– Experience based: by inspecting the network usage some good candidates could
arise. Such food node selection can be implemented to be taken and periodically
updated automatically. For example, nodes with high transit frequency can be
good meeting points, and good candidates to be chosen as food nodes.

In the next section, the explained method will be formalized, providing more
details on formulas and agents behavior.

7.4 Method Formalization

As stated in the previous section, ACO method consists in creating a colony
(of a certain number of individual) positioned in the start node, and let each
individual wander through the network, following a probabilistic formula (Eq. (7.1),
probability of going from node i to node j, where i, j ∈ N and j is adjacent to i). This
probability is proportional to the amount of pheromone at the link τ ij multiplied by
a heuristic value ηij, and inversely proportional to the summation of that product
(τ ix·ηix) for the rest of the candidate nodes.

Equation (7.1): Next node selection probability:

p (i, j) =
[
τij

]e1 · [ηij

]e2

∑
x∈Adj(i) [τix]e1 · [ηix]e2

, where i, j ∈ N and j ∈ Adj(i) (7.1)

The amount of pheromone found at each node varies in time, due to three types of
events: (a) anytime an ant uses a link (local update); (b) anytime a complete path is
attained (global update); and (c) periodically all pheromone trails are decremented.
Local update consists in increasing the pheromone deposited just after choosing a
link, by adding a value inversely proportional to the cost assigned to the link (wij)
and proportional to a constant value (k1/1000) as shown in Eq. (7.2). Through global
update, the pheromone is increased by a constant value (k2) divided by the global
cost of the complete path found, as formalized in Eq. (7.3). Finally, pheromone
trails should be eventually removed causing unsuccessful attempts to be forgotten.
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Specifically, just before any global update, the evaporation will be applied to all
nodes in the graph, as stated in Eq. (7.4). These processes introduce some constant
values (k1, k2, and the evaporation rate ρ) as parameters of the method that should
be suited to each specific scenario through preliminary experimentation.

Eq. (7.2): Local update:

τij (t) = τij (t − 1)+ k1

1000·wij

(7.2)

Eq. (7.3): Global update:

τij (t) = τij (t − 1)+ k2

pathLength
(7.3)

Eq. (7.4): Evaporation:

τij (t) = (1− ρ) · τij (t − 1) (7.4)

7.4.1 The Food Nodes

Given a food node i∈N, its trail (odor) at another node j∈N is notated as O(i,j). The
maximum odor value is limited by parameter m, and is restricted to the food nodes
themselves, that is, O(i,i) = m ∀i∈N. Regarding the minimum odor value, any trail
below that value μ will not be recorded during the preprocessing, thus shaping a
reasonable sized smell-area S(i) around the food node i, and preventing the network
to be saturated with the odor trails.

The preprocessing is supported by an auxiliary data structure, the bag B of nodes
to be examined at any given iteration. The odor initialization algorithm starts with
B(0)≡ {i}, being i the focused food node. The preprocessing algorithm is as follows:
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Fig. 7.4 Four cases of food
essence evaporation

where k is a constant value between 0 and 1 (odor loss) and wjx is the cost of the
link between nodes j and x. Once this process ends (for each food node) it can be
identified a non-empty subset of nodes Si ⊆ N, namely the odor coverage of node i,
where nodes j ∈ Si meet O(i,j) ≥ μ.

On the other hand, if some structural change is performed in the graph (dynam-
icity) the odor trail(s) found at the elements changed must be updated. Reducing
the coverage area of the odor trail reduces the set of nodes with that benefit, but
also enhances processing time and maintenance time (in case of dynamical graphs).
The (food essence) evaporation processes will be applied, as shown in Fig. 7.4:
full evaporation (for changes inside the odor coverage of the affected node), path
evaporation (for individual element deletion), and link insertion. A fourth case will
be observed for fixing periodic evaporation procedure.

(c.1) Full evaporation: when a node nj is deleted, or a link involving a node nj is
deleted or inserted, having O(i,j) ≥ μ, the whole trace coming from it should
be removed. That is, O(i,x): = 0, ∀ nx, ∃ wj,x > 0 ∧ O(i,j) ≥ O(i,x). If that
node’s food trail is removed, the same evaporation process will be applied to
it, removing smaller food trails from its neighbors, and so on.

(c.2) Path evaporation: when the change affects a node belonging to a path, all food
traces from that point on will be removed (the rest of the path, with lower odor
than the removed node). Actually, the method prepared for the former case
(c.1) suits perfectly with this other.

(c.3) Arc insertion: elements can also be added. Since odor is propagated through
arcs, the case of interest is adding a new arc, between nodes a and b. In such
case, the lower trail of food essence of the two connected nodes min(O(i,a),
O(i,b)) should be reviewed (recalculated as the maximum between its current
trail O(i,a) and the general trail calculation O(i,a) − (k · wa,b)). In case the
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trail is changed, it must be propagated to all its neighbors with a trail lower
than that node’s.

(c.4) Periodic evaporation: this evaporation process is a periodic one, to ensure
data growth does not go beyond DB server possibilities. It introduces a new
parameter measuring the amount of FE data (υ) that can be managed without
efficiency loss. It will be fixed taking into account the server features (OS,
DBMS, Hw, etc.) or empirically, by testing its response time with different
loads of data and searching for an equilibrium (the more data, the better the
algorithm works but worse response time of the server).

7.4.2 The SoSACO Algorithm

In the previous section, the ACO methods were adapted to the specific conditions
and challenges that this new algorithm pursues, and thus some basis and techniques
supporting the SoSACO algorithm were introduced in a sometimes intuitive and
always non-formal way. This section tackles its formalization and implementation.

Let be G(t) a connected non-directed graph on which a path search (PAB) between
starting node A and destination node B is going to be performed (A,B ∈ N(t) and
A 
= B) in rtmax response time. Let be F a food node, for which the proper odor
coverage area SF is already set. Let be β the type of β-tabu to be applied.

Since there will be several breeds of ants, it is necessary to differentiate their
notation. Let be τX

ij (t) the trail of pheromone of colony X at link lij at time t, while

ρX is the evaporation rate of colony X. Let be PXY the best path found between nodes
X and Y, and PC the best path of the split colony to the intermediate node C. Let
be Ri(t) the sequence of links covered by each ant hi till time t. Finally, let be α the
total number of ants.

The proposal involves a centralized control, in charge of the initialization and
the post processing, and the algorithm defining the behavior of any generic ant. On
the one hand, the initialization phase of SoSACO involves setting up the graph,
arranging each ant, and preparing global storage of best path currently found PXY

for the relevant pairs of nodes (AB, AF, and BF), as formalized next.
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On the other hand, after setting up all the ants, each of them will start drifting
across the graph. At any iteration, any ant will first check if it is at the destination
(thus it will have found a solution). If not, it will check if the pheromone of the other
breed is firstly found (first ant finding trails of the other colony), so it will have to
split its own colony. If not, it will finally move to an adjacent node, checking then
if any odor is present. In case it is, and provided that individual has not found odor
trails before, it will have found a partial path (to the food node) and eventually a full
solution (if the other complementary partial path is already available). The described
behavior is formalized in the following algorithm:

(Eqs. (7.3) and (7.4) in Sect. 7.4);

(Eq. (7.2) in Sect. 7.4);
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Notice that anytime an ant achieves a new solution, there is a simple way to
exploit it (taking care of collisions between ants accessing the same resources):

When choosing next nodes, ants prioritize the pheromone of the other breed.
If not found nearby, they will seek odor traces (but only if they have not found
odor before). Finally, if that is not the case, they will take any node with choice
probability proportional to the trails of their own pheromone (if present; if not,
a random choice is performed). Choices based on pheromone were defined in
Eq. (7.1).

Eq. (7.1), Sect. 7.4

Eq. (7.4), Sect. 7.4

When an ant detects odor trails, it is able of finding its way to the food node by
following the increasingly strong traces of odor. The method is formalized next:

Finally, after the service is completed, the best solution found is pervaded with
radial food odor trails. Notice that, unlike the odor diffusion in preprocessing time,
this process has no minimum odor boundary.
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7.5 Summary and Challenges

This chapter has described a metaheuristic method of the ACO type aimed to
provide fast response to services requesting paths between two nodes (source and
target nodes) across a huge dynamic graph. The method has been presented through
its evolution for being adapted to the problem characteristics. Its evaluation [40]
shows that it is able of quickly providing a first response (much faster than other
methods) and then refine it in time. While the quality of the solutions provided is not
optimal, it is good enough and its agility avoids the expiration of the validity of the
solution provided in most cases. Furthermore, in those cases in which the solution
loses validity, it is able of quickly adapting to changes and of speedily producing a
similar solution.

The method counts on a preprocessing (food essence) but is locality eases
updating it whenever it loses validity. In addition, food essence trails are calculated
and set when the server is idle (not during service time), thus avoiding being a
hindrance for service processing. Anyhow, the method works without the support
of the preprocessing, so it will be always working, even in the meanwhile from the
moment the obsolete food trails are removed to the moment they are re-implanted
again (it will work slower, but the service won’t lose availability).

The method is set for handling large amount of data, for which the use of a
DB is recommended. DB technologies not only satisfy that need, but also fulfills
the need for a light communication mechanism (blackboard), and support sharing
partial results.

However, there are many challenges to make evolve the method. On the one hand,
it is subject to several parameters, which forces setting preliminary experimentation
for each implantation, aimed to discover an appropriate combination suited to the
specific environment. It would be of use to ease their finding or even to propose
a self-learning mechanism for those parameters. On the other hand, analyzing the
automatic discovery of the most appropriate food nodes for any given problem is
also very useful and challenging.
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information theory
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research, 101
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methodology, 164–165
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variance estimation, 5–6

I
Inclusion probability
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first-order, 3, 19
second-order, 3, 5, 18
selection–rejection method, 7–8
simple random sampling, 6
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Induced classification model, 83
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Multidimensional kernel density estimator, 48
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Non-convex cluster separation, 145
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Path searching methods, 205, 206
Periodic evaporation, 116, 220, 221
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Random Fourier features (RFF), 146–147, 173
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procedure, simple random sampling, 8–9
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Restricted floating object selection (RFOS)
method, 87
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Sampling algorithm, 47

draw by draw procedure, 7
sampling design, 3
unsupervised (see Unsupervised sampling)

Sampling cost, 57–59, 68, 70, 74, 174
Sampling design

central-limit theorem, 17–18
consistency, HT-variance estimator, 18
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statistical properties, 16

Sampling on complex data
construction of sample, 194
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data integration and fusion
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rejection procedure, 8–9
sampling design, 6
selection–rejection method, 7–8
stratification, 9–10

Simultaneous selection, 84, 116–118
Sketch matrices, 28
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process, 86
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first traversal (fft) algorithms)

optimization
computed distances, 55–56
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