
Chapter 6
Spatial Spread with Allee Effect

Abstract Many species exhibit an Allee effect, where population growth rates
are highest at intermediate rather than low density, and small populations may
even decline. Determining the spread rates of these species turns out to be much
more difficult than the theory in the preceding chapter, where there was no Allee
effect. Mathematically, this difficulty arises since—just as in the case of steady
states—we cannot expect the linearization at zero to give useful information about
the behavior of solutions for larger density, and hence we cannot expect the
linearization-based spread formulas from the previous chapter to hold. One of the
most interesting biological results here is that with the Allee effect, a population
may spread or retreat. Hence, eradication of an invading pest species seems possible
if management measures could turn an invasion into a retreat. We begin this chapter
with a caricature model for which all relevant quantities can be explicitly calculated.
Then we present a general condition for whether a population will spread or retreat.
Finally, we present a theorem about the existence of traveling waves and the
uniqueness of their speed.

6.1 Allee Effects and Biological Invasions

Allee effects (see Sect. 2.2) are ubiquitous in nature, and some are particularly
relevant for biological invasions (Taylor and Hastings 2005; Lewis et al. 2016).
For example, healthy pine trees produce and exude resin to defend themselves
against harmful insects, such as the mountain pine beetle (Dendroctonus ponderosae
Hopkins). As long as only a few beetles attack a tree, they will die in the resin. When
a large number of beetles attack a tree, the resin is insufficient to kill all of them.
The tree succumbs and the beetles can reproduce (Powell and Bentz 2014). This is
a classical setup for an Allee effect; see also Sect. 12.6.

In the presence of an Allee effect, mathematical analysis becomes more difficult.
We already know from the nonspatial model in (2.22) and the steady-state analysis
in Sect. 4.5 that the linearization at zero may not provide information about the
existence of a positive steady state and that the eventual state of the population may
depend on the initial condition. Similarly, in the question of invasions, none of the
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explicit calculations for spread with linear equations from the previous chapter carry
over to the case with Allee effect, since the phenomenon is inherently nonlinear.

Throughout this section, we consider a strong Allee effect with a monotone
growth function. As always, we can scale steady states to be F(0) = 0, F(1) = 1,
as in (2.22). With a strong Allee effect, there is an Allee threshold Na ∈ (0, 1) with
the property (see Fig. 2.2)

(A1) F(N) < N for N ∈ (0, Na) and F(N) > N for N ∈ (Na, 1) .

For a piecewise-constant caricature Allee function, we can explicitly calculate
conditions for spread as well as the corresponding asymptotic speeds (Kot et al.
1996). In Sect. 6.3, we present a simple criterion for the direction of the traveling
wave (Wang et al. 2002). The last section is devoted to the more abstract theory of
the existence of traveling waves (Lui 1983).

6.2 A Caricature Allee Function

For an analytically tractable example, we choose the piecewise-constant growth
function (Kot et al. 1996)

F(N) =
{

0, N < Na ,

1, N ≥ Na ,
(6.1)

with Allee threshold Na ∈ (0, 1) and carrying capacity equal to unity. The
population density after the growth phase is either one or zero. As in the previous
chapter, we consider a homogeneous landscape and a symmetric dispersal kernel of
the form K(x − y).

Because of the Allee effect, we expect the initial spatial extent of a population
to determine whether the population will persist and spread or decline and retreat.
We assume that the initial population exceeds the Allee threshold exactly on
some bounded interval and calculate subsequent densities. Since the landscape
is homogeneous and the growth function is binary, we may choose N0(x) =
χ[−x0,x0](x), the characteristic function of that interval, i.e., N0(x) = 1 if x ∈
[−x0, x0] and N0(x) = 0 otherwise. Then F(N0) = N0. The density in the next
generation is

N1(x) =
∫ ∞

−∞
K(x − y)χ[−x0,x0](y)dy =

∫ x0

−x0

K(x − y)dy =
∫ x+x0

x−x0

K(y)dy .

(6.2)
By symmetry, if N1(x) ≥ Na for some x, then N1(x) ≥ Na on some interval
[−x1, x1], where x1 satisfies the implicit equation

∫ x1+x0

x1−x0

K(y)dy = Na . (6.3)
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Fig. 6.1 Expansion (left) and retraction (right) with the caricature Allee function in (6.1). The
dashed line is the density before dispersal, the dash-dot line is the profile after dispersal, and the
solid line represents the density after applying the growth function. The horizontal dashed line
indicates the Allee threshold of 0.3. We used the Laplace kernel with dispersal distance one.

After the subsequent growth phase, the population density will be F(N1(x)) =
χ[−x1,x1](x). Inductively, we obtain the extent xt+1 from xt by solving

∫ xt+1+xt

xt+1−xt

K(y)dy = Na . (6.4)

We expect that if the initial spatial extent is small, it will shrink over time (0 ≤
xt+1 < xt ) and the population will die out. If the initial extent is large enough, it
will grow over time (xt+1 > xt ) and the population will spread. These two cases
are illustrated in Fig. 6.1. We obtain the critical spatial extent where the population
remains constant by setting xt+1 = xt = xc or

∫ 2xc

0
K(y)dy = Na . (6.5)

Since the kernel is a symmetric probability density, the integral is bounded by 1/2.
Hence, we require Na < 1/2; otherwise a population cannot persist or spread.

For the Laplace kernel in (2.27) with parameter a, the integral in (6.4) can be
evaluated explicitly, but we have to distinguish two cases. When xt+1 > xt , we find

∫ xt+1+xt

xt+1−xt

K(y)dy = e−axt+1 sinh(axt ) . (6.6)

Hence, the spatial extent satisfies the difference equation

xt+1 = 1

a
ln

(
sinh(axt )

Na

)
. (6.7)
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Fig. 6.2 Illustration of the recursions of spatial extent from one generation to the next with
Laplace kernel (6.7). The plot on the left illustrates the case xt+1 > xt ≥ xc; the plot on the
right has the reversed inequalities. The mean dispersal distance is unity, and the Allee threshold is
Na = 0.3, so that xc ≈ 0.4581 (dashed vertical line).

When xt+1 < xt , it is easier to write the backward iteration

xt = 1

a
ln

(
cosh(axt+1)

1 − Na

)
. (6.8)

The critical value xc from (6.5) is given by 2axc = − ln(1 − 2Na). We illustrate the
cobweb for both of these iterations in Fig. 6.2 and the critical value as the vertical
dashed line.

We can use the same approach to calculate the asymptotic spreading speed for
the population. If the population spreads asymptotically with constant speed c∗ > 0,
then xt+1 − xt → c∗ and xt+1 + xt → ∞ as t → ∞. From (6.4), we find c∗
implicitly as

∫ ∞

c∗
K(z)dz = Na or

∫ c∗

0
K(z)dz = 1

2
− Na , (6.9)

where we used the symmetry of the kernel again. (Recall also that K is a probability
density.)

As before, the necessary condition for spread (c∗ > 0) is Na < 1/2. For certain
kernels, (6.9) can be solved for c∗. For the Gaussian (2.25) and Laplace (2.27) kernel
we obtain

c∗
Gauss =

√
2σ 2 erf−1(1 − 2Na) and c∗

Laplace = −
√

σ 2/2 ln(2Na) , (6.10)

respectively, where erf(x) is the error function. We plot the speeds for these two
kernels in Fig. 6.3 as a function of the variance (left plot). We see that the speed for
the Gaussian kernel is lower than for the Laplace kernel when the Allee threshold
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Fig. 6.3 Speeds of spread for the caricature Allee function (6.1) with Gaussian (solid) and Laplace
(dashed) kernels. Left plot: Speed as a function of variance when Na = 0.1 (lower curves) and
Na = 0.03 (upper curves). Right plot: The speed of spread as a function of Na with σ 2 = 0.5.

is very small, but higher when Na is large. It turns out that the value N∗
a where the

two speeds are equal is independent of the variance. It is implicitly given by

2erf−1(1 − 2N∗
a ) = − ln(2N∗

a ) . (6.11)

We find the critical value numerically as N∗
a ≈ 0.0464. Figure 6.3 also shows the

speed as a function of Na (right plot).
Several other kernels allow for an explicit calculation of c∗ from (6.9). For the

double Weibull kernel (see Table 3.1) we calculate

c∗
Weibull = θ (− ln(2Na))

1/k . (6.12)

For the Cauchy kernel (5.8), we find

c∗
Cauchy = β tan

(π

2
(1 − 2Na)

)
, (6.13)

and for the exponential square root kernel from (5.37), we can use the Lambert W
function again (see (5.28)) to find

c∗
ExpRoot = 1

a2 (−W−1(−2Na/e) − 1)2 . (6.14)

We note that both heavy-tailed kernels admit a finite asymptotic spreading speed
here because the Allee function ensures that the population occupies only a finite
region after the growth phase. In general, however, heavy-tailed kernels can generate
accelerating invasions, even with an Allee effect (Wang et al. 2002).

We can use a slight variation of the above reasoning to calculate the speed of a
(monotone) traveling wave as well. Clearly, the traveling wave profile, N∗(x), after
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the growth phase must have the form of a characteristic function, e.g., F(N∗(x)) =
χ(−∞,0]. Then

N∗(x − c) =
∫ ∞

−∞
K(x − y)F (N∗(y))dy =

∫ ∞

x

K(z)dz = 1

2
−

∫ x

0
K(z)dz .

(6.15)
After the subsequent growth phase, the profile will be the characteristic function on
(−∞, c], where c is calculated from

1

2
−

∫ c

0
K(z)dz = Na , (6.16)

which is the same as (6.9). When Na < 1/2, then c is positive and the population
advances; when Na > 1/2, then c is negative and the population retreats. For Na =
1/2, there is a constant profile with speed zero. This behavior is typical when an
Allee effect is present, as we shall see in the next section.

6.3 The Direction of a Traveling Front

We saw that the speed of a traveling front in the IDE with the caricature Allee
effect can have any sign; i.e., the front may invade or retreat or remain stationary.
Somewhat surprisingly, the direction of the front depends only on the growth
function and is independent of the dispersal kernel (as long as it is symmetric).
This result by Wang et al. (2002) generalizes the corresponding, well-known result
for a reaction-diffusion equation with strong Allee effect (Kot 2001). The proof in
the discrete-time case is much more involved. Our exposition follows Wang et al.
(2002).

Theorem 6.1 (Wang et al. 2002) Consider the IDE Nt+1(x) = (K ∗ F(Nt))(x)

with monotone growth function F and steady states N = 1 and N = 0. Assume
that there is a monotone decreasing traveling front with speed c and profile N(x),
connecting the two states; see Fig. 6.4. Furthermore, assume that F and N are real
analytic functions, that derivatives of any order of N vanish as x → ±∞, and
that the derivatives diF (N(x))/dxi are bounded uniformly in i. Then we have the
following relation for the sign of the speed of the traveling front:

sign(c) = sign

(∫ 1

0
[F(N) − N ]dN

)
. (6.17)

The integral on the right is the signed area between F(N) and N . The region
where F(N) − N is positive (negative) is indicated by a + (−) sign in Fig. 6.4. The
statement of the theorem does not require a (strong) Allee effect. However, if there
is a weak or no Allee effect, then F(N) > N for 0 < N < 1, and so the integral on
the right-hand side will be positive.
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Fig. 6.4 Illustration for Theorem 6.1. Left plot: The difference between the traveling front profile
in subsequent generations. Right plot: Growth function with strong Allee effect and illustration of
the integral in (6.17).

Proof Since the front is decreasing, we have c > 0 if and only if N(x)< N(x−c) for
all x. Since F is monotone increasing and N is monotone decreasing, the derivative

dF

dx
:= d

dx
(F (N(x)) (6.18)

is negative. Hence, we find that c > 0 if and only if [N(x) − N(x − c)] dF
dx

> 0 for
all x. In Lemma 6.1, we show the integral equality

∫ ∞

−∞
[N(x) − N(x − c)]dF

dx
dx =

∫ ∞

−∞
[N − F(N)]dF

dx
dx . (6.19)

The transformation of variables y = F(N(x)) applied to the integral on the right
results in

∫ ∞

−∞
[N − F(N)]dF

dx
dx =

∫ 1

0
[y − F−1(y)]dy . (6.20)

The graph of the function y = F(N) partitions the unit square into the gray and
white areas in the right plot in Fig. 6.4 so that

∫ 1

0
F(N)dN +

∫ 1

0
F−1(y)dy = 1 . (6.21)

A similar argument applies to the function y = N so that the expression in (6.20)
can be written as

∫ 1

0
[y−F−1(y)]dy = 1−

∫ 1

0
NdN −

(
1 −

∫ 1

0
F(N)dN

)
=

∫ 1

0
[F(N)−N ]dN .

(6.22)
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Altogether, we find that c > 0 if and only if the expression in (6.22) is positive. The
same reasoning applies for c < 0 and c = 0. Hence, the theorem is proved. 	

Lemma 6.1 Under the conditions of Theorem 6.1, integral equality (6.19) holds.

Proof We need to show the equality

∫ ∞

−∞
N(x − c)

dF

dx
dx =

∫ ∞

−∞
F(N)

dF

dx
dx . (6.23)

In the defining equation for the traveling front,

N(x − c) =
∫ ∞

−∞
K(z)F (N(x − z))dz , (6.24)

we split F(N(x − z)) into its even and odd parts with respect to z, i.e.,

Fe(x, z)= 1

2
[F(N(x−z)+F(N(x+z))], Fo(x, z)= 1

2
[F(N(x−z)−F(N(x+z))],

and obtain

N(x − c) =
∫ ∞

−∞
K(z)[Fe(x, z)+Fo(x, z)]dz =

∫ ∞

−∞
K(z)Fe(x, z)dz . (6.25)

The last equality above arises since the integral of the product of an even function
and an odd function is zero. Now we multiply the equality in (6.25) by dF/dx and
integrate. Since the integrand is of one sign, we use Tonelli’s theorem to exchange
the order of integration and obtain

∫ ∞

−∞
N(x − c)

dF

dx
dx =

∫ ∞

−∞

∫ ∞

−∞
K(z)Fe(x, z)

dF

dx
dxdz . (6.26)

Next, we expand Fe in a power series around z = 0. Because the function is even,
all derivatives of odd order vanish. The derivatives of even order at z = 0 are the
same as the derivatives of F(N(x)). Using the fact that the kernel integrates to unity,
we find that the integral above equals

∫ ∞

−∞
F(N(x))

dF

dx
dx +

∫ ∞

−∞

∫ ∞

−∞
K(z)

∞∑
i=1

z2i

(2i)!
(

d2i

dx2i
F (N(x))

)
dF

dx
dxdz .

(6.27)
It remains to show that the double integral vanishes. By Levi’s theorem, we may
interchange summation and the inner integration. Using integration by parts, we
verify that each of the inner integrals vanishes as follows. For i = 1, we calculate
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∫ ∞

−∞
d2

dx2 F(N(x))
dF

dx
dx = 1

2

(
dF

dx

)2 ∣∣∣∞−∞ = 0 . (6.28)

For i = 2, we apply integration by parts twice

∫ ∞

−∞
d4

dx4
F(N(x))

dF

dx
dx = d3F

dx3

dF

dx

∣∣∣∞−∞ −
∫ ∞

−∞
d3

dx3
F(N(x))

d2F

dx2
dx

= 0 − 1

2

(
d2F

dx2

)2 ∣∣∣∞−∞ = 0 . (6.29)

Successively, each term in the infinite sum vanishes by repeated application of
integration by parts. At this point, we have used the assumption that all derivatives
of N(x) vanish as x → ±∞ and that all derivatives of F are (uniformly) bounded.

	


6.4 General Theory

Explicit calculations for the spreading speed and traveling fronts in an IDE with
Allee growth functions are rarely possible. Abstract results about spreading prop-
erties and traveling fronts, however, appear simultaneously with those mentioned
in the previous chapter when there is no Allee effect (Weinberger 1982; Lui 1983).
Clearly, there cannot be a formula analogous to (5.17) for a spreading speed based
on the linearization at zero, but that formula can be used to bound the spreading
speed even in the case with Allee effect (Lui 1983). Since a population may retreat
and not advance, it is also clear that Definition 5.1 of the asymptotic spreading
speed cannot apply in the presence of an Allee effect. In particular, the example in
Sect. 6.2 shows that a locally introduced population with Allee effect may collapse
below the Allee threshold in finite time, but the second inequality in (5.31) requires
that the population remain above a positive threshold in the wake of the invasion
front for all times. This difficulty is reflected in the formulation of the result below.
The following theorem summarizes several aspects of the first published work on
spreading speeds and traveling waves in IDEs with Allee effect growth function.

Theorem 6.2 (Lui 1983) Consider the IDE Nt+1(x) = (K ∗ F(Nt))(x) where

(i) K is a continuous, symmetric probability distribution with finite moment-
generating function;

(ii) there is a constant C such that
∫ ∞
x

K(y)dy ≤ CK(x) for large x;
(iii) F is continuously differentiable with F(0) = 0 = F(1) − 1, and (A1) holds;
(iv) F ′(N) ≤ F ′(Na) for N ∈ [0, 1]; and
(v) F ′(0)N ≤ F(N) ≤ F ′(1)(N − 1) + 1 for N ∈ [0, 1].
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Then the following statements hold.

1. There exists an asymptotic spreading speed, c∗, in the following sense. If
N0(x) = 0 for x > 0 and N0(x) > Na as x → −∞, then

lim sup
t→∞

max
x>(c∗+ε)t

Nt (x) = 0 and lim inf
t→∞ min

x<(c∗−ε)t
Nt (x) = 1 .

2. A monotone traveling wave can exist for at most one speed.
3. There exists c∗ ∈ R and a family of monotone traveling waves with speed c∗.

Lui’s results are more general than we have stated here. The dispersal kernel
can have some discontinuities, and it does not have to be symmetric. When the
kernel is not symmetric, we obtain a spreading speed in each direction. The results
are not more difficult to prove, but they are more tedious to state. We consider a
particular form of asymmetry in Sect. 12.2. The condition on the moment-generating
function may be relaxed as in the previous chapter, but some boundedness condition
is necessary. When the kernel is heavy tailed, accelerating fronts do exist even with
Allee effects (Wang et al. 2002, 2013).

Condition (v) requires the graph of F to be bounded between the tangent line
at zero and the tangent line at one. Condition (iv) requires the slope of the growth
function to be maximal at the Allee threshold. These conditions can be weakened
(Pan and Zhang 2011). The two asymptotic requirements on the initial condition
make it look “wave-like.” Lui’s original formulation is for compactly supported
initial data and needs additional assumptions.

While there is no explicit formula for the speed in the presence of an Allee effect,
Lui (1983) gives an upper bound of c∗ as

c∗ ≤ max
s>0

1

s
ln

(
max
N>0

F(N)

N
M(s)

)
. (6.30)

This bound can be obtained by bounding the growth function F with a function that
is monotone and concave down. Lui constructs such a function as

F+(N) =
{

mN, 0 ≤ N ≤ Ñ,

1, N > Ñ,
(6.31)

where m = maxN>0
F(N)

N
and Ñ = 1/m (Fig. 6.5, left panel). At the point

N = 1/m where F+ is not differentiable, it can be “smoothed out” so that it
still has the required properties. Alternatively, if F is monotone and concave down
whenever it is above the diagonal, we can define F+ as above for N < Ñ and
F+ = F for N ≥ Ñ (Fig. 6.5, right panel). In the latter case, the function is
continuously differentiable. In both cases, F+ is monotone and concave down.
Hence, the spreading speed for the IDE with F+ is linearly determined and given
explicitly by the formula in (5.17), which becomes (6.30) for this example. Since
F ≤ F+, the spreading speed with function F is bounded above by the spreading
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Fig. 6.5 Illustration of a function without Allee effect (F+) bounding a function with Allee effect
(F ). The left panel shows the construction by Lui (1983), which has a corner. The right panel
shows the alternative construction, which is smooth (see text).

speed with function F+, as in Sect. 5.4. For the Allee function in (2.22) with
R > γ = 2, we can explicitly calculate

m = R

2
√

R − 1
and Ñ = 1√

R − 1
.

An upper bound for the spreading speed is then given by

c∗ ≤ max
s>0

1

s
ln

(
R

2
√

R − 1
M(s)

)
. (6.32)

To end this chapter, we relate the results about spreading speed to the obser-
vations about the existence of a positive steady state on a bounded domain from
Sect. 4.5. There, we found that for a positive steady state to exist, we need more
than just the existence of a stable positive state in the nonspatial model and a small
variance of the dispersal kernel. In fact, the condition we found was independent of
the variance of the dispersal kernel: it required the growth to be “strong enough.”
The threshold between existence and nonexistence of a positive steady state was
given by H(1)−1/2 = H(0), where H(N) is an antiderivative of F . For population
spread with an Allee effect, formula (6.17) states that a traveling front invades only
if

0 <

∫ 1

0
[F(N) − N ]dN = H(1) − H(0) − 1/2 . (6.33)

In other words, a steady state on a bounded domain can only exist if the speed of a
traveling wave on the unbounded domain is positive. Numerically, we can observe
that a locally introduced population on a bounded domain can spread in a front-like
fashion to fill the domain and establish a positive steady state.
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6.5 Further Reading

A comprehensive review of models for spatial spread with Allee effect can be found
in Taylor and Hastings (2005) and more recent results in relation to biological
invasions in Lewis et al. (2016). However, while there are many theoretical results,
there are relatively few applications of the IDE with Allee effect to real ecosystems.
We discuss some in Sect. 12.6.

Since the dynamics with strong Allee effect have two stable steady states,
the equation is sometimes called the bistable equation. In contrast, dynamics of
Beverton–Holt type have a single stable steady state and are called monostable.
Accordingly, traveling fronts are sometimes called bistable fronts and monostable
fronts, respectively. When the speed of a front is determined by the linearization
at zero (monostable equations; see previous chapter), the front is referred to as a
pulled front since the few individuals ahead of the front “pull” it along. In contrast,
in the bistable equation, there has to be sufficient growth at higher density (see
Theorem 6.1) to “push” the population forward. We sometimes speak of pushed
fronts in that case. Bistable traveling fronts in reaction–diffusion equations have
received considerably more attention than in IDEs, particularly in combustion
problems. Early references can be found in Lui (1983); for recent results and
extensions, see, e.g., Hamel (2016).

The original results by Lui (1983) were extended to multiple space dimensions
by Creegan and Lui (1984). Later, Lui (1985) showed that solutions with compact
initial data converge to a double-front profile. He also proved that solutions were
trapped by translations of the traveling front. The existence and stability of clines,
i.e., traveling fronts with speed zero, was shown in Lui (1986). More recently, Pan
and Zhang (2011) showed the existence, uniqueness, and asymptotic stability of
bistable traveling fronts for IDEs by a squeezing technique. Even more general
results that include, e.g., spatially heterogeneous environments can be found in Fang
and Zhao (2015). Similar, but independent results can be found in Coutinho and
Fernandez (2004).

The theory for the monostable equation from Chap. 5 can be applied to prove the
existence of a different kind of traveling waves in the bistable equation (Corollary
after Proposition 3 in Lui 1983). We assume that F satisfies the conditions from
Theorem 6.2. We define the function

G(N) = F(N + Na) − Na , N ∈ [0, 1 − Na] , (6.34)

and the IDE Nt+1(x) = (K ∗ G(Nt))(x). Then G(0) = 0 = G(1 − Na) − Na ,
G′(0) = F ′(Na) > 1 and G(N) ≤ G′(0)N on [0, 1 − Na]. In other words, the
IDE with growth function G satisfies all the conditions for the theory in Chap. 5.
Hence, the bistable equation has monotone traveling waves that connect Na with
one, and their minimal speed is given by the formula in (5.17) with R = G′(0). In
Sect. 11.4, we will use the idea behind the construction of G to investigate spreading
phenomena in the Ricker equation when the positive steady state is unstable.
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