
Chapter 16
Temporal Variation

Abstract IDE models naturally allow a certain temporal variation within a genera-
tion since they divide each generation into separate growth and dispersal phases.
However, so far we have assumed that the growth phases in all generations are
identical and that the same holds for the dispersal phases. In realistic environments,
external conditions in subsequent generations may vary substantially so that growth
and dispersal behavior could differ. In this chapter, we present some theory on and
examples of how to formulate and analyze IDEs with a periodically or randomly
varying growth function and dispersal kernel. In the periodic case, much of the
previous theory for temporally constant environments can be applied to the period
map. In the random case, even the formulation of the problem requires substantially
different tools from the theory of stochastic processes. We focus again on the two
fundamental questions of population persistence and spread.

16.1 Nonspatial Models with Temporal Variation

We illustrate and explain some basic questions about how temporal variation
affects population dynamics by using the simple nonspatial model from (2.3). We
also introduce some terminology for subsequent spatial models. We denote the
population density in year t by Nt and the temporally varying growth function by
Ft . We study the dynamics of the equation

Nt+1 = Ft(Nt ) (16.1)

when the environment varies periodically or randomly in time.

Periodic Variation

When the environment is periodic with period T ∈ N, we can study the map of the
T th iteration
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332 16 Temporal Variation

Nt+T = G(Nt) = Ft+T −1 ◦ Ft+T −2 ◦ · · · ◦ Ft+1 ◦ Ft(Nt ) (16.2)

with the usual techniques for discrete maps. The qualitative behavior of this map is
independent of the choice of t.

For an example, we consider a two-periodic environment with growth functions

Fi(N) = RiN

1 + κiN
, i = 1, 2 , (16.3)

from (2.11) with Ri, κi > 0. Since Fi are monotone increasing and concave down,
G = F2 ◦ F1 has the same properties. Therefore, the dynamics of (16.2) are
determined by the local stability of the zero state. If the zero state is locally stable,
then it is globally stable; if it is unstable, then there is a globally stable positive
steady state; see Sect. 2.2. The linearization of G at N = 0 is given by

nt+2 = R2R1nt , (16.4)

so that the zero state is unstable if and only if R2R1 > 1. If this condition is satisfied,
the positive steady state of G is given by

N∗ = R2R1 − 1

κ1 + κ2R1
. (16.5)

The solutions of the original system, Nt+1 = Ft(Nt ), will converge to zero if
R2R1 < 1 and will approach a positive stable two-cycle, (N∗

1 , N∗
2 ), when the

inequality is reversed. One of the two states of the two-cycle is given by N∗ above
and the other by the corresponding expression with all indices exchanged.

Stochastic Variation

When the environment varies randomly, the formulation of the equations and the
terminology and techniques used to study them are based on stochastic processes
and differ considerably from the deterministic theory covered in previous chapters.
We refer to Allen (2010) or Meyn and Tweedie (2009) for a thorough introduction.

We begin with the linear model

Nt+1 = RtNt , t = 0, 1, 2, . . . , (16.6)

and follow the exposition by Lewis et al. (2016). We assume that Rt are finite
positive random variables that are independent and identically distributed (iid) with
finite positive expectation E[Rt ] = E[R0] for all t. As usual, Rt is the per capita
growth rate of the population, i.e., the average number of offspring that an individual
has in the given year, t. Since Rt are random variables, so are Nt , and we can ask
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for their expectation, denoted by E[Nt ]. Under the assumption that environmental
conditions are independent of population density, we have

E[Nt+1] = E[RtNt ] = E[Rt ]E[Nt ] . (16.7)

Hence, the expected population density satisfies a deterministic equation with
growth rate E[R0]. Its solution is explicitly given by

E[Nt ] = E[N0]E[R0]t = E[N0]et ln E[R0] . (16.8)

It will grow in time when the geometric growth rate satisfies E[R0] > 1 or the
arithmetic growth rate ln(E[R0]) > 0.

On the other hand, we can write the solution of (16.6) explicitly as

Nt = N0

t−1∏

j=0

Rj = N0 exp

⎛

⎝t
1

t

t−1∑

j=0

ln Rj

⎞

⎠ . (16.9)

Hence, the expected arithmetic growth rate is E[ln(R0)]. The process will grow to
infinity with probability one if E[ln(R0)] > 0 and decay to zero with probability
one if the reverse inequality holds. Since the logarithm is a concave function,
Jensen’s inequality states that E[ln(R0)] ≤ ln(E[R0]). Hence, it is possible that
the expectation in (16.8) is predicted to grow, whereas the actual solution in (16.9)
will decay to zero with probability one.

We present an example similar to the two-periodic example above. We assume
that the growth rate is a Bernoulli random variable that assumes values R1 and R2
with probability p and 1 − p, respectively. Clearly, the population can grow when
R1,2 > 1. However, if we choose R1 > 1 > R2 > 0, we find two threshold
probabilities. We have

ln(E[R0]) > 0 if and only if p > p∗ = 1 − R2

R1 − R2
(16.10)

and

E[ln(R0)] > 0 if and only if p > p∗∗ = − ln(R2)

ln(R1) − ln(R2)
. (16.11)

For example, choosing R1 = 2 and R2 = 1/4 gives p∗ = 3/7 < 1/2 < 2/3 = p∗∗.
For p ∈ (p∗, p∗∗), the expectation in (16.8) will grow but the solution in (16.9) will
decay to zero with probability one.

The study of nonlinear stochastic processes is more complicated. It requires
concepts and results that we cannot introduce in detail here; see, e.g., Allen
(2010) or Meyn and Tweedie (2009). Instead, we briefly discuss the results on the
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stochastic version of the Beverton–Holt equation from Ellner (1984). We present
their generalization to IDEs in Sect. 16.3.

Ellner (1984) considers model (16.1) with Ft(N) = F(N, αt ), where αt

represents parameters in F that describe the random environment in year t. He
assumes that αt are iid random variables. Then Nt is a homogeneous Markov
process. It turns out that if F has properties like the Beverton–Holt function, then
stability results similar to the deterministic case hold for the stochastic case. Of
course, instead of a stationary state, we now have a stationary distribution. More
precisely, we assume that F is differentiable, monotone increasing, concave, and
bounded for each possible random environment. Then the stochastic process Nt has
a stationary distribution, μ∗, independent of N0. There are two possibilities. The
first is μ∗({0}) = 1, which means that the entire mass of the stationary distribution
is concentrated at N = 0. In this case, the process will die out with probability one.
The second possibility is μ∗({0}) = 0, which means that the stationary distribution
is supported in (0,∞). In this case, the process will persist with probability one.
The behavior of the process is decided by the linear process nt+1 = F ′(0, αt )nt . If
E[ln(F ′(0, αt )] < 0, the process will die out with probability one. If the inequality
is reversed, the process will persist. The results in Ellner (1984) are formulated for
more general growth functions.

16.2 The Gaussian Habitat Quality Model with Temporal
Variation

We begin our study of the effects of temporal variation on population persistence in
a spatial model with an explicitly solvable model, namely the linear model in (15.4)
with Gaussian habitat quality function (Latore et al. 1999). Even with temporally
varying parameters, this model can be reduced to a two-dimensional difference
equation as in Proposition 15.1. The ideas and concepts from the preceding section
can then be applied to study the spatial problem as well.

Our model equation is

Nt+1(x) = Rte
−x2/(2ρ2

t )

∫ ∞

−∞
KG(x − y; σ 2

t )Nt (y)dy , (16.12)

where KG is the Gaussian dispersal kernel. Parameters Rt , ρ2
t , and σ 2

t depend on
time. As before, Rt is the per capita reproduction rate in year t , ρ2

t measures the
extent of the habitat in year t , and σ 2

t is the variance of the dispersal kernel in year
t. All parameters are assumed positive.

As in Proposition 15.1, model (16.12) has a solution of the form Nt =
At exp(− x2

2ν2
t

), where At and ν2
t satisfy the difference equations
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ν2
t+1 = Ft(ν

2
t ) := ρ2

t (σ 2
t + ν2

t )

ρ2
t + σ 2

t + ν2
t

and At+1 = AtRt

√
ν2
t

σ 2
t + ν2

t

. (16.13)

Function Ft is differentiable, monotone increasing, concave down, bounded, and
positive for ν2

t > 0.

Periodic Variation

When the environment is periodic, we can obtain explicit conditions for population
persistence and thereby study trade-offs between “good” and “bad” years. We
consider a two-periodic environment and denote the respective values of the
parameters by R1,2, ρ2

1,2, and σ 2
1,2, as well as functions F1,2. By the considerations in

the preceding section, the iteration for ν2
t converges to a stable two-cycle, (ν2

1∗, ν2
2∗).

Here, ν2
1∗ is the positive solution of the quadratic

(
ρ2

1 + ρ2
2 + σ 2

2

)
ν4

1∗ +
(
ρ2

1σ 2
1 − ρ2

2σ 2
2 + ρ2

1σ 2
2 + ρ2

2σ 2
1 + σ 2

1 σ 2
2

)
ν2

1∗

−
(
ρ2

1ρ2
2σ 2

1 + ρ2
1ρ2

2σ 2
2 + ρ2

1σ 2
1 σ 2

2

)
= 0

(16.14)

and ν2
2∗ = F1(ν

2
1∗). Hence, the iteration for At approaches the linear function

At+1 = AtRj

√√√√ ν2
j∗

ν2
j∗ + σ 2

j

, (16.15)

with j = 1 if t is odd and j = 2 if t is even.
According to the results from the preceding section, At will grow eventually if

and only if

R1R2 >

√√√√
(

1 + σ 2
1

ν2
1∗

) (
1 + σ 2

2

ν2
2∗

)
. (16.16)

For a temporally constant habitat with R1 = R2, σ1 = σ2, and ρ1 = ρ2, this
condition is just the persistence condition from (15.12).

We explore the persistence condition as follows. We express σ 2
1,2 = σ̄ 2 ± εσ

in terms of the mean, σ̄ 2, and deviation, εσ , and similarly for ρ2
1,2 = ρ̄2 ± ερ.

Figure 16.1 shows the contour lines of the critical value of R1R2 that guarantees
persistence according to (16.16). We observe that variation in suitable habitat size
alone (ερ > 0, εσ = 0) requires a higher growth rate for persistence, whereas
variation in dispersal distance only (ερ = 0, εσ > 0) allows for a lower growth rate.
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Fig. 16.1 Contour lines for
persistence condition (16.16)
with σ 2

1,2 = 1 ± εσ and

ρ2
1,2 = 2 ± ερ . The numbers

on the contour lines indicate
the threshold values. The
persistence threshold in the
absence of temporal variation
is R1R2 = 2.
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When both parameters vary simultaneously, the joint effect depends on the relative
strength (variation) of the two.

Stochastic Variation

Now we assume that environmental conditions vary randomly, and we describe
the corresponding growth rate, habitat size, and dispersal behavior by positive
random variables Rt , ρ2

t , and σ 2
t , each of which is assumed iid with positive

finite expectation. According to Theorem 2.2 by Ellner (1984), ν2
t converges to a

stationary distribution, supported on (0,∞).

The equation for At can be solved explicitly as

At = A0

t−1∏

j=0

Rj

√√√√ ν2
j

ν2
j + σ 2

j

, (16.17)

which gives

ln

(
At

A0

)
= t

(
E[ln(Rt )] + 1

2
E

[
ln

(
ν2
t

ν2
t + σ 2

t

)])
. (16.18)

The population eventually grows with probability one if the term on the right-hand
side is positive in the limit as t → ∞. We can write this condition suggestively as

E[ln(R0)] >
1

2
E

[
ln

(
1 + σ 2

0

ν2∗

)]
, (16.19)

where ν2∗ stands for a random variable whose distribution equals the stationary
distribution of the variables ν2

t .
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Fig. 16.2 Left: The expression ln(1 + σ 2
t /ν2

t ) from (16.18) in the periodic case (dashed) and
one realization of the corresponding stochastic case (solid). Right: Persistence threshold (16.19)
as a function of ερ for εσ = 0 (solid), εσ = 0.3 (dashed), and εσ = 0.5 (dash-dot). The plot
was obtained by simulating the stochastic process for up to 10,000 time steps and calculating the
expectation numerically.

We can evaluate this condition numerically. We use the setup that most closely
resembles the periodic model: ρ2

t , σ 2
t are Bernoulli random variables, where the two

possible values ρ2
1,2 and σ 2

1,2 appear with equal probability. We keep the mean of
each variable fixed and vary the deviation. It turns out that the resulting persistence
condition in (16.19) is exactly the same as the one in (16.16). In Fig. 16.2, we plot
one realization of the process and compare it to the periodic case (left panel). We
also plot the threshold condition from (16.19) as a function of ερ , the deviation of
ρ2. Each curve increases with ερ , indicating that persistence is harder to achieve as
the variation in ρ2 increases. However, for fixed ερ , the threshold decreases with εσ ,
indicating that persistence is easier to achieve as the variation in σ 2 increases. The
thresholds from the stochastic process and the periodic case are indistinguishable.

16.3 Persistence Under Temporal Variation

In this section, we present more formal and more general conditions for population
persistence in temporally varying environments, extending the results on population
persistence and existence of positive steady states from Chaps. 3 and 4. We focus on
random environments but mention the corresponding results for periodic variation
as well. We begin with the work by Hardin et al. (1988a), which can be considered
a spatially explicit extension of the work by Ellner (1984).

Hardin et al. (1988a) formulate their model as

Nt+1(x) = Qt [Nt ](x) =
∫

Ω

K(x, y)R(αt , y)F (Nt (y))dy . (16.20)

Environmental variation affects the dynamics via the “fertility” function R(αt , y),
where αt , t = 0, 1, 2, . . . is a sequence of random variables. Density-dependent
population limitation, modeled by F , is independent of time, as is dispersal,
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modeled by K. The habitat is a (fixed) compact subset Ω ⊂ R with nonempty
interior. The initial condition and subsequent population densities are random
functions in C+(Ω), the positive cone of continuous functions on Ω.

Hardin et al. (1988a) make the following assumptions:

(V1) Random variables αt are iid from some index set A .

(V2) Dispersal kernel K is a continuous and strictly positive function on Ω × Ω.

(V3) For each α ∈ A , function R(α, x) is in C+(Ω), and there exist positive
constants such that 0 < R ≤ R(α, x) ≤ R for all x ∈ Ω.

(V4) Function F is continuous, nonnegative, and bounded. It is differentiable at
zero, and F(0) = 0. Furthermore, F is nondecreasing, and F(x)/x is strictly
decreasing for x > 0.

The first assumption implies that temporal variations are uncorrelated. The second
condition indicates that within one dispersal period, an individual can move from
any location in the habitat to any other location. The third assumption excludes
the possibility that the population dies out in a single year. The conditions on the
density-dependent growth limitations imply that the per capita yield decreases with
density. They are satisfied by a Beverton–Hold type function; see (2.11).

Theorem 16.1 (Theorem 4.2 in Hardin et al. 1988a) Suppose that conditions
(V1)–(V4) are satisfied for (16.20) and that N0 
= 0 with probability one. Then
Nt converges in distribution to a stationary distribution μ∗, which is independent of
N0. Furthermore, we have either μ∗({0}) = 0 or μ∗({0}) = 1.

Just as in the deterministic case and in the nonspatial stochastic case, the
difference between extinction and persistence is given by the behavior of the process
at small densities. We denote by Q′

t [0] the Fréchet derivative of Qt at zero.

Theorem 16.2 (Lemma 5.1 and Theorem 5.3 in Hardin et al. 1988a) Suppose
that conditions (V1)–(V4) are satisfied. Then the limit

λ = lim
t→∞ ‖Q′

t [0] ◦ Q′
t−1[0] ◦ · · · ◦ Q′

0[0]‖1/t (16.21)

exists with probability one. Furthermore, if λ < 1, then μ∗({0}) = 1 and Nt → 0
with probability one. Alternatively, if λ > 1, then μ∗({0}) = 0.

Both of these results hold under somewhat weaker conditions and for more general
processes than the ones in (16.20) (Hardin et al. 1988a).

Hardin et al. (1988b) prove the corresponding results in T -periodic environ-
ments. They study the operator

Qt [N ] =
∫

Ω

K(x, y)Ft (n(y)) dy , (16.22)

where K denotes a dispersal kernel; Ft models reproduction in year t with Ft+T =
Ft ; and Ω is a bounded domain, as above. They consider the existence of a positive

fixed point for the period-T -map Q
T = QT −1 ◦ · · · ◦ Q0, as well as its local and



16.3 Persistence Under Temporal Variation 339

global stability. Many of their results are contained in our Chap. 4, in particular
Sect. 4.3 for global existence.

The persistence condition λ > 1 for the stochastic process is elegant theoretically
but difficult to apply, even numerically. Jacobsen et al. (2015) present an equivalent
condition that is computationally simpler to evaluate. Their model generalizes
(16.20) in that it allows the dispersal kernel to vary in time. Their particular
motivation was to study the effect of variable flow rates on the persistence of stream
populations; see Sect. 12.2.

Consider the stochastic process

Nt+1(x) = Qt [Nt ](x) =
∫

Ω

Kαt (x − y)Fαt (Nt (y))dy, t = 0, 1, . . . ,

(16.23)
where αt are iid random variables from some index set A . We require the following
generalizations of and additions to conditions (V1)–(V4):

(V2′) For each α ∈ A , Kα is a continuous function, and there exist constants
such that 0 < K ≤ Kα ≤ K for all α.

(V4′) For each α ∈ A , Fα is a nonnegative, continuous, and increasing function
such that Fα(x)/x is decreasing and the right-sided limit F ′

α(0) exists.
Functions Fα are uniformly bounded by m > 0.

(V5) We have uniform limits Fα(x)/x → F ′
α(0) as x → 0 and uniform bounds

0 < F ≤ F ′
α(0) ≤ F .

(V6) For b = mK|Ω|, there exists infα∈A Fα(b) > 0.

(V7) There exists α∗ ∈ A such that Qα[N ] ≤ Qα∗ [N ] for all α ∈ A and
nonnegative, continuous functions N on Ω.

Theorem 16.3 (Theorems 1 and 2 in Jacobsen et al. 2015) Assume that condi-
tions (V2′), (V4′), and (V5)–(V7) are satisfied. Then Theorems 16.1 and 16.2 hold
for (16.23). Furthermore, the limit

Λ = lim
t→∞ Λ(t) = lim

t→∞

[∫

Ω

nt (x)dx

]1/t

(16.24)

exists and is independent of n0, where nt is defined by nt+1 = Q′
t [0]nt . Finally,

Λ = λ.

The theory presented thus far considered temporal variation in growth and
dispersal but assumed that the size and location of the habitat patch are fixed over
time. There are many examples of natural habitats whose size and location vary
within and between years. Wetlands are a particular example where surface area and
depth vary according to rainfall and other climatic conditions. These observations
motivate the study by Zhou and Fagan (2017), in which habitat size and location can
vary with time. The authors implement a temporally varying habitat via a habitat
quality function.

Zhou and Fagan (2017) analyze the model



340 16 Temporal Variation

Nt+1(x) =
∫ ∞

−∞
K(x, y)Ht (y)F (Nt (y))dy , (16.25)

where Ht is the temporally varying habitat quality function (compare Sect. 15.1)
that determines the fraction of offspring produced at location y that survive to
disperse. Function Ht has to be nonnegative and bounded above by unity. When
Ht is the characteristic function of some fixed domain Ω , i.e., Ht(x) = χΩ , the
model is equivalent to the basic IDE (3.1). When a domain of fixed length moves at
constant speed, i.e., Ht(x) = χ[ct,L0+ct], we have the model from Sect. 12.3. When
the domain length, Lt , varies with time, we may write Ht(x) = χ[0,Lt ]. Zhou and
Fagan (2017) consider this setting for a population whose habitat is the surface of a
wetland. When not only the extent but also the quality vary in space and time, Zhou
and Fagan (2017) suggest Ht(x) = exp(−x2/σ 2

t ) for a single wetland, where σ 2
t

is a random variable that indicates the extent in year t. The authors also consider
more complex situations with, for example, two adjacent wetlands, modeled by a
linear combination of two Gaussian functions, where the extent of each as well as
the distance between them can vary over time.

The difficulty in analyzing model (16.25) lies in the variability of the domain with
potentially infinite extent. If the support of all functions Ht is uniformly bounded,
we can reduce model (16.25) to one on a compact set and obtain the same results as
in Hardin et al. (1988a,b). Zhou and Fagan (2017) give conditions on the dispersal
kernel and the habitat quality function under which the corresponding results hold
even on the entire real line in a T -periodic environment. In particular, they show
that, under some conditions, the stability of the zero solution is given by the spectral
radius of the period-T -operator, and that the instability of zero implies that the
(supremum norm of the) population will eventually be bounded below uniformly by
some constant. Zhou and Fagan (2017) manage to calculate persistence conditions
explicitly in two special cases. They define the “lower minimal habitat size” as an
extension of the critical patch-size (Chap. 3) to periodic environments.

16.4 An Example with the Laplace Kernel

We illustrate some of the theory from the preceding section with a simple example.
We assume that in year t , the habitat is an interval of length Lt . Inside the habitat, the
growth function is the scaled Beverton–Holt function (2.13) with parameter Rt > 1;
outside, the growth function is zero. Dispersal follows a Laplace kernel (2.27) with
parameter at that can be interpreted as the root of the ratio αt/Dt of the settling
rate and the diffusion coefficient in a random walk; see Sect. 7.2. By scaling space
in year t with Lt , we can write the equation on the fixed domain [−1/2, 1/2] with
kernel parameter ãt = atLt as
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Nt+1(x) =
∫ 1/2

−1/2

ãt

2
e−ãt |x−y| RtNt (y)

1 + (Rt − 1)Nt (y)
dy . (16.26)

In the following, we will drop the tilde to ease notation. We are interested in
population persistence. By the theoretical results in the preceding section, we need
to study the stability of the zero state. Hence, we linearize the equation at low
density. The resulting eigenvalue problem for the integral equation can be turned
into an equivalent boundary-value problem for a differential equation (Jacobsen and
McAdam 2014; Jacobsen et al. 2015), similar to the procedure in Chap. 3.

The Periodic Case

We consider a two-periodic environment, so that we have four model parameters:
a1,2 > 0 and R1,2 > 1. The eigenvalue problem for the integral equation is given by

λpφ(x) = R1R2

∫ 1/2

−1/2

∫ 1/2

−1/2

a1

2
e−a1|x−y| a2

2
e−a2|y−z|φ(z)dydz . (16.27)

To turn this equation into a boundary-value problem, we follow Jacobsen et al.
(2015). We introduce the function

ψ(x) = R1

∫ 1/2

−1/2

a1

2
e−a1|x−y|φ(y)dy . (16.28)

Then φ satisfies (16.27) exactly if φ and ψ satisfy (16.28) and

φ(x) = R2

λp

∫ 1/2

−1/2

a2

2
e−a2|x−y|ψ(y)dy . (16.29)

Differentiating twice, we find the second-order equations

φ′′ = a2
2

(
φ − R2

λp

ψ

)
and ψ ′′ = a2

1(ψ − R1φ) (16.30)

for x ∈ (−1/2, 1/2); compare (3.10). Differentiating again, these two equations can
be turned into a single fourth-order equation for φ, namely

φ(4) − (a2
1 + a2

2)φ′′ + a2
1a2

2

(
1 − R1R2

λp

)
φ = 0. (16.31)

We need to find boundary conditions. Two conditions are obtained exactly as in
(3.11) by differentiating (16.28) and (16.29) once. We find
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φ′(−1/2) = −a2φ(−1/2) , φ′(1/2) = a2φ(1/2) , (16.32)

ψ ′(−1/2) = −a1ψ(−1/2) , ψ ′(1/2) = a1ψ(1/2) . (16.33)

However, we need to find conditions for φ, not ψ. Differentiating (16.30) and
substituting the above boundary conditions results in

φ′′′(−1/2) = a1φ
′′(−1/2) + a2

2(a2 − a1)φ(−1/2) , (16.34)

φ′′′(1/2) = −a1φ
′′(1/2) − a2

2(a2 − a1)φ(1/2) . (16.35)

The equation for φ has the bi-quadratic characteristic equation r4 −ar2 +d = 0,
where

a = a2
1 + a2

2 and d = a2
1a2

2

(
1 − R1R2

λp

)
. (16.36)

Just as in Chap. 3, we have λp < R1R2, so that a > 0 and d < 0. We obtain two
real and two purely imaginary roots:

r1 =
√

a + √
a2 − 4d

2
, ir2 =

√
a − √

a2 − 4d

2
, (16.37)

and r3 = −r1, r4 = −r2. By symmetry, the eigenfunction can be written as

φ(x) = c1 cosh(r1x) + c2 cos(r2x) . (16.38)

To satisfy the boundary conditions, coefficients c1,2 have to satisfy the equations

[a2 cosh(r1/2) + r1 sinh(r1/2)]c1 + [a2 cos(r2/2) − r2 sin(r2/2)]c2 = 0 ,
[
(a1r

2
1 + a2

2(a2 − a1)) cosh(r1/2) + r3
1 sinh(r1/2)

]
c1 (16.39)

+
[
r3

2 sin(r2/2) − (a1r
2
2 − a2

2(a2 − a1)) cos(r2/2)
]
c2 = 0 .

For a nonzero solution, the determinant of the coefficient matrix has to vanish. This
condition can be evaluated numerically.

We choose the same setup of a two-periodic environment as in the previous
section. We write a1,2 = ā ± εa and R1,2 = R̄ + εR. Figure 16.3 shows that
the dominant eigenvalue λp from (16.27) decreases as the variation εa in the kernel
parameter and εR in the growth rate increases. Instead of the eigenvalue itself, we
actually plot the square root of λp so that we can compare it with the average per
generation rate of increase in the stochastic model below.



16.4 An Example with the Laplace Kernel 343

Fig. 16.3 Persistence
condition for model (16.26)
in the two-periodic and
random cases. Solid curves
show the square root of the
eigenvalue,

√
λp , in (16.27).

Stars stand for the
numerically obtained value
ΛT ≈ Λ from (16.24).
Parameters are
a1,2 = 2.7 ± εa , and
R1,2 = R̄ ± εR with εR = 0
(solid), εR = 0.5 (dashed),
and εR = 1 (dash-dot).
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The Stochastic Case

For random variation, we choose binary random variables at with values a1, a2 and
Rt with values R1, R2 with equal probability. Then we numerically solve the linear
equation

nt+1(x) = Rt

∫ 1

0

at

2
exp(−at |x − y|)nt (y)dy (16.40)

and approximate Λ from (16.24) by ΛT for some large value of T . The results
for different values of εa and εR are plotted as stars in Fig. 16.3. We note that
the expected per generation rates of increase (or decrease) in the stochastic and
periodic case are very close together. In fact, Jacobsen et al. (2015) find an even
better agreement between their numerically calculated value Λ and the analytical
expression

√
λp in a slightly different setting. We note that persistence is harder to

achieve and, in fact, fails, as the variation in each of the two parameters increases.
On a technical note, we found that the FFT algorithm from Sect. 8.2 could not

(easily) provide the same accuracy as even the simple direct integration method
from Sect. 8.3. Since the equation is linear, solutions grow or decay exponentially.
Therefore, as the number of generations in the simulation grows, the values become
either very large (if the solution is growing) or very small (if it is decaying),
so that accuracy is difficult to maintain for large times. However, since we are
interested in the limit of large times, there is some trade-off between accuracy of
the computational steps and the number of time steps that one takes. To smooth out
the results somewhat, we chose T = 2000 and averaged the value of the last 20 time
steps.
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16.5 Spread Under Temporal Variation

To study the effects of temporal variation on the spread rate of a population, we
begin with the work by Neubert et al. (2000) (they provide corrected figures in an
erratum) and study the IDE on the real line,

Nt+1(x) = Qt [Nt ](x) =
∫ ∞

−∞
Kt(x − y)Ft (Nt (y))dy . (16.41)

Before we discuss results for the stochastic case, we briefly present some explicit
results for the periodic case.

We assume that Kt and Ft are T -periodic functions of time. Furthermore,
we assume that for each t , the growth function satisfies conditions (F1)–(F4)
in Sect. 5.4. We also assume that for each t , the dispersal kernel is continuous,
symmetric, and exponentially bounded. Then the period-T operator Qt = QT −1
◦ · · ·◦Q0 satisfies the conditions of Theorem 5.1. Therefore, there exists a spreading
speed, and this speed can be characterized as the slowest traveling-wave speed.
Furthermore, the speed is linearly determined.

If we denote this speed by c∗T , where c∗ is the average speed per generation,
formula (5.17) gives the representation

c∗ = inf
s>0

1

s
ln

(
T −1∏

t=0

RtMt(s)

)1/T

= inf
s>0

1

s

1

T

T −1∑

t=0

ln(RtMt(s)) , (16.42)

where Mt is the moment-generating function of kernel Kt and Rt = F ′
t (0). We

denote by c∗
t the speed in a constant environment with conditions as in generation

t. Since the infimum of the averages is generically greater than the average of the
infima (unless the infima all occur at the same location), we have

c∗ >
1

T

T −1∑

t=0

inf
s>0

1

s
ln(RtMt(s)) = 1

T

T −1∑

t=0

c∗
t . (16.43)

Hence, the average speed per generation in the periodically varying environment is
larger than the average of the speeds, c∗

t , that would occur in each of the correspond-
ing constant environments. This statement can be strengthened as follows. Neubert
et al. (2000) define the “instantaneous speed between generations” as

c̄t = 1

s∗ ln(RtMt(s
∗)) , (16.44)

where s∗ is the argument that minimizes the expression in (16.42). Then, c̄t > c∗
t ,

which implies that the instantaneous speed between generations is greater than the
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asymptotic speed would be in an environment of constant conditions of the most
recent generation.

In the particular case that Kt are Gaussian kernels with variance σ 2
t , the proce-

dure in Sect. 5.2 gives the exact expression for the average speed per generation as

c∗ =
√

2〈σ 2
t 〉a ln(〈Rt 〉g), (16.45)

where 〈·〉a denotes the arithmetic mean and 〈·〉g the geometric mean.

Stochastic Environments

To consider spread rates for Eq. (16.41) in a stochastically varying environment, we
study again the linearized IDE with growth rate Rt = F ′

t (0). Neubert et al. (2000)
discuss the conditions for which the result is the spread rate in a corresponding
nonlinear equation. We can approach the question of spread via the expectation or
via direct calculation.

Taking expectations of Eq. (16.41) and assuming that growth and dispersal are
uncorrelated with population density, we find

E[Nt+1](x) =
∫ ∞

−∞
E[RtKt (x − y)]E[Nt(y)]dy . (16.46)

This is a deterministic equation for the “expectation wave.” According to the theory
in Chap. 5, there is a spreading speed, c∗. Formula (5.17) applies and results in the
expression

c∗ = inf
s>0

1

s
ln(E[R0M0(s)]) , (16.47)

where M0 is the moment-generating function of K0. When growth and dispersal are
uncorrelated, we obtain

c∗ = inf
s>0

1

s
ln(E[R0]E[M0(s)]) . (16.48)

Positive correlations increase the spreading speed of the expectation wave.
For direct calculations, we choose the initial profile N0(x) = exp(−sx) and

calculate

N1(x) =
∫ ∞

−∞
R0K0(x − y)e−sydy =

∫ ∞

−∞
R0K0(z)e

szdy e−sx = R0M0(s)e
−sx .

(16.49)
Iteratively, we find
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Nt(x) =
t−1∏

j=0

RjMj(s)e
−sx . (16.50)

Just as in Chap. 5, we define the extent of the population as Xt = supx{Nt(x) ≥ Ñ}
for some threshold density, Ñ . Unlike in Chap. 5, this quantity is now a random
variable. Its explicit expression is

Xt = 1

s

t−1∑

j=0

ln(RjMj (s)) − ln(Ñ)/s . (16.51)

The mean speed per generation is the random variable

Ct = 1

t
(Xt − X0) = 1

t

t−1∑

j=0

1

s
ln(RjMj (s)) . (16.52)

By the central limit theorem, Ct is asymptotically normally distributed with mean
and variance given by

μ(s) = 1

s
E(ln(R0M0(s))) and σ 2(s) = 1

ts2 Var(ln(RjMj (s))) . (16.53)

As before, the relevant speed is the minimum that occurs with respect to s; we
denote the corresponding value by s∗. Hence, the speed that we are interested in is
Ct with mean μ(s∗) and variance σ 2(s∗). As t → ∞, we find σ 2(s∗) → 0, so that

Ct → C̄ = μ(s∗) = inf
s>0

1

s
E[ln(R0M0(s))] . (16.54)

Comparing this expression for C̄ with c∗ from (16.48), we apply Jensen’s inequality
again and find C̄ ≤ c∗. In other words, the expectation wave is faster than almost
every realization of the process. While the speed converges, i.e., Ct → C̄, the spatial
extent, Xt , does not converge to X0 + C̄t. The reason for this lack of convergence
is that the variance of the expression Ct t + X0 grows linearly in t.

In Fig. 16.4, we plot the front location of two realizations of the process in an
environment that switches between two states with probability 1/2. For comparison,
we plot the front location in a two-periodic environment, as well as the average
speed per generation from (16.45). We observe that one of the stochastic realizations
is ahead of the periodic case and the other is behind, but all have the same slope.
Hence, while the speed is predictable, the location is not. The plot on the right shows
the front location (Xt ) and the average speed (Ct ) for 15 realizations of the process.
Whereas the average speeds converge, the range of front locations spreads over time.
Neubert and Parker (2004) review these results on spreading speeds in the context
of risk analysis and apply the theory to the invasion of scotch broom.
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Fig. 16.4 Left: The location of the front as a function of time in a two-periodic environment
(dashed) and two realizations in a random environment (dash-dot). The growth functions are
Beverton–Holt functions F(N) = RjN/(1 + N), and the kernels are Gaussian kernels with
variance σ 2

1,2. The solid line represents the exact average speed per generation from (16.45). Right:
The front location, Xt (top), and the average speed, Ct (bottom), for 15 realizations. Parameters
are R1,2 = 1.7 ± 0.5 and σ 2

1,2 = 0.01 ± 20%.

16.6 Further Reading

Lewis and Pacala (2000) and Lewis (2000) formulate a discrete stochastic process
for the reproduction and dispersal of individuals and analyze its spreading behavior.
They derive a set of moment equations, which turn out to be IDEs. In fact, the
equation for the first moment of the linear process is precisely the equation for
the expectation wave (16.46). They study permanence of form for the spreading
population and use moment closure techniques and comparison methods to bound
spread rates. Snyder (2003) continues this theory and shows that stochasticity can
slow invasions but concludes that the effect is relatively weak. Kot et al. (2004)
link individual-based simulations and IDEs via branching random walks to study
the effect of demographic stochasticity on the speed of invasions. They find that
stochasticity does not slow the overall asymptotic speed and that accelerating
invasions can occur with stochasticity as well.

Several authors consider the spread of structured populations in periodic and
stochastic environments. Caswell et al. (2011) extend their previous sensitivity
analysis for spread rate in structured population models (see Neubert and Caswell
2000a) to periodic and stochastic environments. Simultaneously but independently,
Schreiber and Ryan (2011) derive formulas for invasion speeds for stage-structured
IDEs in stochastic environments. They show that invasion speeds are asymptotically
normally distributed and that, as is the case for unstructured populations, the
variance decreases over time (Fig. 16.4). Increased variation in fecundity decreases
invasion speeds, but correlations between fecundity and dispersal determine by how
much. Related work for spatial integral projection models can be found in Ellner
and Schreiber (2012).

Ding et al. (2013) prove the existence of spreading speeds in time-periodic
IDEs in spatially constant or spatially periodic environments. They show that
temporal heterogeneity will slow down invasions if space is homogeneous but



348 16 Temporal Variation

can speed up invasions if space is also heterogeneous. Jacobsen et al. (2015)
determine persistence criteria on a bounded interval with temporally varying
unidirectional flow. Bouhours and Lewis (2016) consider a moving-habitat model
with stochasticity and determine persistence conditions. Zhou and Fagan (2017)
consider temporally varying habitat size and quality and extend the theory by Hardin
et al. (1988a) to the case where the habitat may be unbounded. They give several
examples of wetland habitats that vary with seasonal rainfall, and they calculate
long-term persistence conditions. Reimer et al. (2017) compare and contrast several
approaches to determining persistence conditions of populations on a bounded
domain under stochasticity. They use individual-based model simulations, Galton–
Watson branching processes, and a deterministic IDE. They find that the critical
patch-size for the stochastic models is typically larger than that for the deterministic
model.

Several authors apply stochastic IDEs to various ecological questions and base
their investigation largely on numerical simulations. Mahdjoub and Menu (2008)
consider the question of whether and how diapause can affect the population spread
of the chestnut weevil (Curculio elephas). They consider equations for developing
individuals and individuals in diapause. Only the former disperse. They find that
prolonged diapause will reduce spread in a constant environment but can increase
spread in a temporally varying environment. Gilioli et al. (2013) model the spread of
the chestnut gall wasp (Dryocosmus kuriphilus) in Europe. They use a deterministic
IDE for short-distance dispersal, coupled with a stochastic component for long-
distance dispersal, to capture the observed stratified dispersal pattern. Gharouni
et al. (2017) formulate a three-stage model for green crab and study the effect
of stochastic variation on the spread of the crab against the dominant current.
Stochasticity may help the population spread “upstream”; see Sect. 12.2.

Jacobs and Sluckin (2015) study the effect of demographic stochasticity on
accelerating invasions. They compare individual-based simulations on a lattice with
predictions from a deterministic IDE model. When the dispersal kernel is heavy
tailed, the IDE predicts accelerating invasions, but most of the corresponding lattice
models appear to have constant-speed invasions.
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