
Chapter 13
Structured Populations

Abstract So far, we have treated populations as homogeneous: all individuals
were assumed to be identical with respect to reproduction and dispersal. We only
modeled the dynamics of a single density function. In reality, most populations are
heterogeneous in many ways. Individuals differ with respect to age, size, gender,
and other attributes, and their reproductive and dispersal behavior may depend on
these attributes. The nonspatial dynamics of populations with complex life cycles
have been successfully described by matrix models. In this chapter, we introduce
and study spatially explicit matrix models to generalize the simple IDE to stage-
structured populations. We present an in-depth analysis of the critical patch-size
problem and the spreading speed for these equations, including several proofs that
we omitted in the scalar case in earlier chapters. Throughout the chapter, we use a
simple two-stage model for juveniles and adults to illustrate the theory. We close
with an overview of the rich literature of applications of structured IDEs to real-
world systems, in particular to species invasions.

13.1 Matrix Models

Most populations are heterogeneous in many ways. One of the simplest structures
is to distinguish between nonreproductive juveniles and reproductive adults, but
many more complex life cycles exist. For example, plant life cycles may include a
seed bank, seedlings, and nonflowering and flowering individuals of different sizes
and ages. Since reproductive output and dispersal behavior may differ between the
different stages, we would like to include this stage-specific information into our
models so that we can make accurate predictions. The nonspatial dynamics of such
structured populations can be conveniently described by matrix models (Caswell
2001). We briefly review the most important aspects of this theory below. Then we
generalize the scalar IDE (2.1) to stage-structured IDEs, or spatially explicit matrix
models.

The different stages in the life cycle of an organism can be represented in a life-
cycle graph, where vertices represent stages and directed edges indicate possible
transitions between stages. For example, if we consider only the two stages of

© Springer Nature Switzerland AG 2019
F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary
Applied Mathematics 49, https://doi.org/10.1007/978-3-030-29294-2_13

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29294-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-29294-2_13


202 13 Structured Populations

Fig. 13.1 Representation of
a simple juvenile–adult
two-stage life cycle as a
graph.
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nonreproductive juveniles and reproducing adults, we need to specify up to four
transitions: juveniles remain juveniles if they survive but do not mature, juveniles
become adults if they survive and mature, adults remain adults if they survive, and
adults produce juveniles; see Fig. 13.1. More generally, structuring populations by
age or other relevant life-cycle stages can lead to highly complex life-cycle graphs.

Matrix models are the corresponding mathematical framework for capturing the
dynamics of structured populations (Caswell 2001). For example, the juvenile–adult
model representing the life-cycle graph in Fig. 13.1 can be written as

Jt+1 = sj (1 − g)Jt + RAt , At+1 = sj gJt + saAt , (13.1)

where Jt and At stand for the number of juveniles and adults in generation t.

Parameters sj and sa represent the probability of survival of juveniles and adults,
respectively; g indicates the probability of maturation; and R is the per capita
number of offspring for adults. In general, parameters could depend on population
density. This model can be written in matrix notation as

[
Jt+1

At+1

]
t+1

=
[
sj (1 − g) R

sjg sa

] [
Jt

At

]
. (13.2)

More generally, for a population divided into � stages, we denote the number
or density of individuals at stage i and generation t by Ni

t , i = 1, . . . , �, and the
transition (including reproduction) from stage j to stage i by bij . Then the dynamics
between generations can be written as

Ni
t+1 =

�∑
j=1

bijN
j
t (13.3)

or, in matrix notation,

Nt+1 = BNt , where N = [N1, . . . , N�]T , B = [bij ] . (13.4)

Superscript T stands for the transpose that turns the row vector into a column vector.
When the transition rates between stages are independent of population density,

the entries of matrix B are constants and model (13.4) is linear. In that case, we can
explicitly solve the recursion by taking powers of B, i.e., Nt = BtN0. To determine
the long-term behavior of this solution, we make the important assumption that the
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nonnegative matrix B is primitive, i.e., that there is some power of B where all
entries are positive (Caswell 2001). The biological meaning of this assumption is
that individuals of every stage can be produced from any stage in finitely many
time steps. This assumption can be satisfied in many applications by choosing
stages appropriately, e.g., by excluding post-reproductive stages. Mathematically,
this assumption is the crucial ingredient for proving the Perron–Frobenius theorem;
see, e.g., Caswell (2001).

Theorem 13.1 (Perron–Frobenius) Assume that B is primitive.1 Then B has a
simple, positive, strictly dominant eigenvalue with positive eigenvector. No other
eigenvalue has a nonnegative eigenvector.

The fate of the population described by the linear matrix model is completely
determined by the dominant eigenvalue, μ, of matrix B. If μ < 1, then the
population will go extinct; if μ > 1, then the population will grow indefinitely with
asymptotic growth rate μ and the population structure given by the corresponding
(right) eigenvector of B.

When the transition rates between stages depend on population density, the
elements of B = B(N) depend on the stage vector, and the model is nonlinear.
In that case, we find steady states, i.e., solutions of the equation N∗ = B(N∗); we
linearize matrix B at those states; and we determine the stability and bifurcation
behavior from the spectrum of the linearization (Caswell 2001; Cushing 2014).

To include space in matrix models, we denote by x the spatial location in some
domain of interest, Ω , and by Ni

t (x) the spatial density of individuals at stage i of
generation t . Again, we take a census of the population after the end of the dispersal
phase. The life cycle begins with the growth phase, which is described by matrix
B as above. To model dispersal, we denote by Kij (x, y) the dispersal kernel of
individuals at stage i that were produced by individuals at stage j. Then the IDE
reads

Ni
t+1(x) =

∫
Ω

�∑
j=1

Kij (x, y)bijN
j
t (y)dy . (13.5)

With the notation • for the Hadamard product of entrywise matrix multiplication,
these equations can be written more elegantly as

1The Perron–Frobenius theorem holds under the more general condition that B is irreducible. A
matrix is irreducible if it is not conjugate to a block upper-triangular matrix (Caswell 2001). A
typical example for a reducible matrix arises in populations with post-reproductive stages. Since
these stages do not contribute to reproduction, their contribution to the pre-reproductive stages
is zero. If we order the variables in the equations such that the post-reproductive stages are first,
the resulting matrix will be block upper-triangular. In terms of the life-cycle graph, a matrix is
reducible if there is a proper subset of vertices from which there are no edges (transitions) to nodes
outside that subset.
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Nt+1(x) =
∫

Ω

K(x, y) • BNt (y)dy , (13.6)

where K = [Kij ] is the matrix of dispersal kernels.
We analyze these stage-structured IDEs in two steps. We begin with the question

of extinction, persistence, and steady states on bounded domains. Then we turn to
invasions on unbounded domains.

13.2 Persistence on a Bounded Domain

We begin the analysis of IDE (13.6) on bounded domains. We study steady
states and their stability, returning to the question of finding the critical patch-
size from Chap. 3 but now for a structured population. This analysis can be seen
as generalizing both matrix models to include space and scalar spatial models to
include population structure. We present here the more formal underpinnings of the
theory that we omitted in Chap. 3. The exposition follows the work by Lutscher and
Lewis (2004).

We explicitly denote the dependence of vital rates in matrix B on spatial location
and density and write the IDE

Nt+1(x) = Q[Nt ](x) =
∫

Ω

[K(x, y) • B(Nt , y)]Nt (y)dy , (13.7)

where Ω ⊂ R
n is bounded. We work in the product space L 2 = (L2(Ω))�

of square-integrable functions and its positive cone. Accordingly, we make the
following assumptions for the rest of this chapter.

(A1) Elements of B are bounded, i.e., 0 ≤ bij (N, y) ≤ bmax < ∞ for
all i, j. Furthermore, each bij (N, y) is continuous with respect to y and
continuously differentiable with respect to N.

(A2) If bij is nonzero, then kij satisfies kij ∈ (L2(Ω))2.

The first assumption is natural for biological populations; it results from even
relatively weak self-limitation. Note that we do not assume that the per capita
production functions converge to zero. The second assumption requires that all
stages disperse. When we allow for sedentary stages, operator Q fails to be compact.
We discuss several results on noncompact operators at the end of this chapter.

Lemma 13.1 Under assumptions (A1)–(A2), operator Q : L 2 → L 2 as defined
in (13.7) is positive and completely continuous. Furthermore, Q is strongly Fréchet
differentiable at N = 0 with respect to the positive cone. Its derivative is the positive,
completely continuous linear operator given by

Q′[0]φ(x) =
∫

Ω

[K(x, y) • B(0, y)]φ(y)dy . (13.8)
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Proof The proof of this lemma follows from Sects. 17.3, 17.5, and 17.8 as well
as Theorem 17.1 in Krasnosel’skii and Zabreiko (1984); see Van Kirk and Lewis
(1997) and Lutscher and Lewis (2004). 	


The next step is to prove an analogue of the Perron–Frobenius theorem for
the linear operator Q′[0]. A linear operator is called superpositive (Krasnosel’skii
and Zabreiko 1984) if it has a simple positive dominant eigenvalue with positive
eigenfunction, and no other eigenfunction is positive. If an operator is superpositive,
then the stability of zero and the asymptotic behavior of the equation are determined
by the dominant eigenvalue and the corresponding eigenfunction. To show that
Q′[0] is superpositive, we require the following spatial version of primitivity.

(A3) Matrix B(0, y) is primitive for each y ∈ Ω . Furthermore, if bij (0, y) is
positive for some y ∈ Ω , then it is positive for all y ∈ Ω .

In biological terms, these assumptions mean that if individuals at stage j produce
individuals at stage i somewhere in the domain, then they do so everywhere,
possibly at different rates.

Theorem 13.2 Assume that (A1)–(A3) hold. In addition, assume that there are
constants 0 < κ ≤ kij ≤ κ on Ω for all pairs (i, j) for which bij is nonzero.
Then Q′[0] is superpositive.

Proof The proof of this theorem follows largely from applying the results from
Chap. 2 in Krasnosel’skii (1964). At its core is an application of the Krein–Rutman
theorem. The most important estimate is to show that there exists some constant m

such that

(κbmin)
m

∫
φ(y)dy ≤ Q′[0]mφ(x) ≤ m�(κbmax)

m

∫
φ(y)dy . (13.9)

This estimate can be obtained in several steps. First, we use primitivity of B to show
that if some power of B is positive, then so are all higher powers. Next, we use
compactness of the domain to show that some finite power of B(0, y) is positive
simultaneously for all y. Finally, we use the lower bounds on the dispersal kernels
to obtain the estimate. Then we use the results from Chap. 2 in Krasnosel’skii (1964)
together with the properties of the space L 2 to obtain the result; see Lutscher and
Lewis (2004). 	


The positivity assumption in Theorem 13.2 implies that dispersers can reach
any point in the domain from any other point within one dispersal period. This
assumption seems unreasonable for some species and certain domains. We relax
these assumptions in two steps. First, in the case where Ω is connected, we make
the following assumption.

(A4) There is a nonnegative symmetric continuous function κ such that for all
kij �= 0 we have κ(x, y) = κ(y, x) ≤ kij (x, y) ≤ κ , and there is a constant
ε > 0 such that for all x ∈ Ω the measure of the set {y ∈ Ω | κ(x, y) ≥
κ > 0} is at least ε.
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This assumption covers two important cases. If dispersal distances are small
compared to the patch-size, then kij (x, y) = 0 if |x − y| is large. Then the lower
bound has to be satisfied for y near x. On the other hand, some dispersal kernels are
zero when x = y, e.g., the Weibull kernel (see Table 3.1). In that case, the symmetry
condition implies that after two dispersal periods, individuals are back near where
they started. Hence, the lower bound condition near x = y holds after two dispersal
periods.

Proposition 13.1 Assume that Ω is connected and that (A1)–(A4) hold. Then Q′[0]
is superpositive.

In the second step, we deal with the case where Ω is a finite collection of disjoint
connected components. We write Ω = ⋃̇

γ=1,...,Γ Ωγ and assume that each Ωγ is
connected. The connectivity matrix C = (cαβ) for continuous kernels kij is given
by

cαβ =
{

1, if for some x ∈ Ωα, y ∈ Ωβ, i, j : kij (x, y)bij (0, y) > 0 ,

0, otherwise.
(13.10)

Then we need the following assumption.

(A5) Matrix C is primitive.

Assumptions (A4) and (A5) together imply that an individual at stage i and point x

can get to any other location y ∈ Ω and stage j through dispersal and production in
finitely many generations. In mathematical terms, this means that operator Q′[0] is
irreducible.

Proposition 13.2 Let Ω = ⋃̇
γ=1,...,Γ Ωγ be the disjoint union of connected

components and assume that (A1)–(A5) hold. Then Q′[0] is superpositive.

Proof The proof is tedious but not hard and has a nice biological interpretation.
The goal is to prove inequality (13.9). The idea is to find a “connecting path”: for
any two points x, y in the domain and any two stages i, j in the life cycle, there is a
sequence of points in the domain and life stages such that an individual at stage j and
location y produces an individual at stage i and location x with positive probability
in finitely many generations. Then we use compactness to find the smallest number
of generations so that such a sequence exists for all points and life stages. Details
are provided in Lutscher and Lewis (2004). 	


The theory we have developed so far implies that if the assumptions are satisfied,
then the stability of the zero solution is determined by the dominant eigenvalue of
the linearized operator at zero; see (13.8). Calculating this dominant eigenvalue for
particular examples is a different matter. The calculation can be carried out when all
the dispersal kernels are identical Laplace kernels, i.e., when dispersal behavior is
independent of stage, and when vital rates are independent of spatial location. In that
case, the calculations from Sect. 3.2 can be extended to the stage-structured model.
We present this calculation here and give a different example in the next section.
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The eigenvalue equation with B = B(0) on the domain Ω = [−L/2, L/2] is

λφ(x) = Q′[0]φ(x) =
∫ L/2

−L/2

a

2
exp(−a|x − y|)Bφ(y)dy . (13.11)

Differentiating this equality twice and substituting as in Sect. 3.2 leads to the vector-
valued boundary-value problem

φ′′(x) = −a2
(

1

λ
B − I

)
φ , φ′(±L/2) ± aφ(±L/2) = 0 , (13.12)

where I denotes the identity matrix. The exponential ansatz φ(x) = eξxψ leads to
the eigenvalue problem

ξ2ψ = −a2
(

1

λ
B − I

)
ψ . (13.13)

Hence, we can express ξ via the eigenvalues μi of B and the eigenvalue λ of Q′[0]
as

ξ2 = −a2
(μi

λ
− 1

)
. (13.14)

If the expression on the right-hand side is positive, then we get real solutions ξ =
±a

√
1 − μi/λ. Since dispersal is symmetric, the eigenfunctions of Q′[0] have to be

symmetric on [−L/2, L/2], which leads to the form

φ(x) = cosh
(
a
√

1 − μi/λ x
)

ψ . (13.15)

These solutions cannot satisfy the boundary conditions. We can rule out ξ = 0
equally easily. Therefore, the right-hand side in (13.14) must be negative, which
implies λ < μi. In particular, if the dominant eigenvalue of matrix B is less than
unity, then λ is less than unity. In biological terms, if the population goes extinct in
the nonspatial setting, then it will also go extinct in the spatial setting. Again, we
see that boundary loss reduces the overall population growth rate.

When the right-hand side of (13.14) is negative, we obtain eigenfunctions of the
form

φ(x) = cos
(
a
√

μi/λ − 1 x
)

ψ . (13.16)

For the critical patch-size, we set λ = 1, take the largest eigenvalue of B, and solve
as in Sect. 3.2 to get

L∗ = 2

a
√

μ1 − 1
arctan

(
1√

μ1 − 1

)
. (13.17)
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From the explicit expression for L∗, we conclude that if matrix B depends on a
parameter, say P , and if the dominant eigenvalue is an increasing function of that
parameter, then the critical patch-size is a decreasing function of that parameter, i.e.,
dL∗(P )/dP < 0. This relationship actually holds in much more generality when
the dispersal behavior of the different stages differs.

Lemma 13.2

1. On a fixed domain, suppose that the matrix of production rates, B(0, y;P), is
nondecreasing in P. Denote λ(P ) as the dominant eigenvalue of Q′[0]. If at
least one entry of B(0, y;P) is strictly increasing in P , then so is λ(P ).

2. Fix P and let Ω = [0, L]. Assume that the matrix of dispersal kernels is of the
form K(x, y) = K(x − y) > 0, and denote λ(L) as the dominant eigenvalue of
Q′[0]. Then λ(L) is a strictly increasing function of L.

3. If both previous conditions are satisfied, then dL∗(P )/dP < 0.

The first two statements in the lemma are proved in Lutscher and Lewis (2004). The
last statement follows from the implicit function theorem applied at the bifurcation
point where λ(L, P ) = 1. In biological terms, this result means that if at least one
of the vital rates of the population increases, then the critical patch-size decreases.

13.3 Application

We apply some of the preceding ideas to a three-stage life-cycle model for the
common lizard (Lacerta vivipara). This example was originally presented by Tricia
Morris in her honor’s thesis in 2017. The common lizard has three life stages
(Galliard et al. 2010). The early juvenile stage (E) lasts for one year. After that
year, lizards disperse to find their own territory and enter the late juvenile stage
(L), which lasts for another year. At the beginning of their third year, they turn into
adults (A) and can continue to live for several years. We denote by N = [E,L,A]T
the densities of the three stages. We consider linear, space-independent survival
probabilities sX for stage X ∈ {E,L,A} and a linear, space-independent birth term
with an average of b (female) offspring per (female) adult. We assume no mating
limitation. Then the dynamics between years can be written as

Nt+1(x) =
∫

Ω

K(x − y) • BNt (y)dy

with

K(x) =
⎡
⎣ 0 0 δ(x)

K(x) 0 0
0 δ(x) δ(x)

⎤
⎦ and B =

⎡
⎣ 0 0 b

sE 0 0
0 sL sA

⎤
⎦ .
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Here, K denotes the dispersal kernel at the end of the early juvenile phase. Since
only one of the three stages disperses, delta distributions appear at the other
stage transitions. The resulting operator is not compact. Condition (A4) on the
existence of a simultaneous positive subfunction is also violated. Nonetheless, we
can continue with the analysis by a reduction argument.

The corresponding eigenvalue problem is

λφ1(x) = bφ3(x) ,

λφ2(x) = sE

∫
Ω

K(x − y)φ1(y)dy ,

λφ3(x) = sLφ2(x) + sAφ3(x) .

Substituting the equations for φ1 and φ2 into the third equation, we find

λ2φ3(x) = sLsEb

∫
Ω

K(x − y)φ3(y)dy + λ2sAφ3(x)

and eventually

λ̃φ3(x) =
∫

Ω

K(x − y)φ3(y)dy, λ̃ = λ3 − λ2sA

sLsEb
.

This integral operator is compact and positive under the usual assumptions on K

and Ω. Hence, a dominant eigenvalue λ̃ > 0 exists. For every λ̃ > 0, the above
condition defines a unique λ > sA. The largest value of λ corresponds to the largest
value of λ̃. In particular, the persistence threshold is given by λ = 1 or λ̃ = 1−sA

sLsEb
.

Since the integral operator contains only dispersal, its dominant eigenvalue is
bounded by λ̃ ≤ 1. Hence, we require b > 1−sA

sEsL
for there to be a solution

with λ = 1. This condition means that each adult has to produce at least one
offspring that reaches adulthood for the population to persist. With the survival
probabilities estimated at sE = 27.9%, sL = 65.4%, and sA = 50.6% (Galliard
et al. 2010), we require the average number of (female) offspring to be at least
b > 2.7 for population persistence on a large enough domain. For a given b above
this threshold, we can calculate the critical patch-size. If we choose the Laplace
kernel with parameter a, we can use the results from Chap. 3 to find the critical
patch-size as

L∗ = 2

a

√
sLsEb
1−sA

− 1
arctan

⎛
⎝ 1

a

√
sLsEb
1−sA

− 1

⎞
⎠ .
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With a mean dispersal distance of a−1 = 64.7 m (Warner and Shine 2008) and
b = 3, we find a critical patch-size of L∗ = 487.88 m.

13.4 Nonlinear Analysis

In this section, we present some of the theory that allows us to prove the existence
and uniqueness of a positive fixed point. It is based on bifurcation theory and
monotone systems theory. We begin with an additional assumption on the vital rates
for large population density.

(A6) There is some matrix-valued function B(∞, y) such that

‖B(N(y), y) − B(∞, y)‖ ≤ const.

‖N‖ for large ‖N‖ . (13.18)

Lemma 13.3 Assume that (A1), (A2), and (A6) are satisfied. Then, by Sect. 3.2.1
in Krasnosel’skii (1964) and Theorem 17.2 in Krasnosel’skii and Zabreiko (1984),
operator Q has a strong asymptotic derivative at infinity. It is given by the
completely continuous operator

Q′[∞]φ(x) =
∫

[K(x, y) • B(∞, y)]φ(y)dy . (13.19)

Proposition 13.3 (Existence of Fixed Points) Assume that (A1)–(A6) hold. Sup-
pose that the spectral radius of Q′[∞] is less than one and that the dominant
eigenvalue of Q′[0] is greater than one. Then by Theorem 4.11 in Krasnosel’skii
(1964), operator Q has a positive fixed point.

Under additional assumptions about the vital rates, we can even get the unique-
ness of the positive fixed point. We have already encountered these conditions in
Chap. 4 for unstructured populations. When the population growth function was
monotone and concave down, we obtained a unique positive fixed point. The
following proposition generalizes this result to structured populations.

Proposition 13.4 (Uniqueness of Fixed Points) Let the assumptions of Proposi-
tion 13.3 be satisfied. Assume in addition that the function

N �→ B(N)N (13.20)

is increasing and that

t �→ B(tN) (13.21)

is decreasing for 0 ≤ t ≤ 1. Then Q is concave and monotone. By Theorem
6.3 in Krasnosel’skii (1964), the positive fixed point is unique. By Theorem 6.6 in
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Krasnosel’skii (1964), every solution with N0 �= 0 converges to the positive fixed
point.

The concavity condition in the preceding proposition is fairly strong, as we will
see in an example below. Weaker conditions are “strict sublinearity” (Zhao 1996)
or “strict subhomogeneity” (Zhao 2003). When the concavity conditions are not
satisfied, we can still obtain the existence of a (unique) fixed point by studying the
behavior near the bifurcation point λ = 1. In order to apply the theory, we need to
exclude the Allee effect; compare Chap. 4. The following assumption is the stage-
structured formulation that accomplishes that goal.

(A7) The production rates decrease with population density in any state; i.e., they
satisfy (∂/∂Nl)bik ≤ 0 for all i, k, l, and the inequality is strict for at least
one set i, k, l.

We present two forms of the bifurcation results: one with respect to a parameter
that affects the vital rates of the population and one with respect to domain length.
We denote the parameter by P , the dominant eigenvalue of Q′[0] by λ = λ(P ), and
the bifurcation point by λ(P ∗) = 1. Proofs of both results can be found in Lutscher
and Lewis (2004).

Lemma 13.4 (Bifurcation I) Assume that (A1)–(A7) are satisfied and that the
spectral radius of Q′[∞] is less than one, independent of P close to P ∗. Assume
that the production rates bij are nondecreasing in P and that at least one of the
rates is increasing in P. Then there is a transcritical bifurcation at P = P ∗; i.e., a
continuous branch of solutions intersects the zero solution. The nonzero solution is
positive for P > P ∗.

To present a bifurcation result with respect to domain length L, we denote λ(L)

as the dominant eigenvalue of Q′[0] and λ(L∗) = 1 as the bifurcation point. To
formulate the result, it is convenient to introduce a generalization of the dispersal
success function (see Chap. 9) to the case of structured populations. We define

sij (y) =
∫

Ω

kij (x, y)dx (13.22)

as the dispersal success function of an individual at stage i produced from an
individual at stage j.

Lemma 13.5 (Bifurcation II) Assume that (A1)–(A7) are satisfied and that the
spectral radius of Q′[∞] is less than one, independent of L close to L∗. Assume
that the dispersal success functions sij are nondecreasing in L and that at least one
of them is increasing in L. Then there is a transcritical bifurcation at L = L∗; i.e.,
a continuous branch of solutions intersects the zero solution. The nonzero solution
is positive for L > L∗.
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13.5 Example: Juveniles and Adults

We return to the example of a simple population structure of juveniles and adults
as in (13.2) and illustrate the conditions of the preceding lemmas and propositions
as well as the resulting dynamics. We take advantage of the fact that the nonspatial
model was studied in great detail by Neubert and Caswell (2000b) and that most of
its dynamic behavior is well understood.

We begin with the scenario that only offspring production is density dependent
and replace R with R(1 + J + A)−1. Writing N = (J,A)T , the resulting matrix of
vital rates and its limits at zero and infinity are

B(N) =
[
sj (1−g) R

1+J+A

sjg sa

]
, B(0) =

[
sj (1−g) R

sjg sa

]
, B(∞) =

[
sj (1−g) 0

sj g sa

]
.

(13.23)

The dominant eigenvalue, μ1, of B(0) is an increasing function of R. For R = 0,
we have μ1 = max{sj (1−g), sa} < 1 and B(∞) = B(0). When R is large enough,
we have μ1 > 1. The critical value for μ1(R

∗) = 1 is

R∗ = (1 − sa)(1 − sj (1 − g))

sj g
. (13.24)

Furthermore, with this choice of density dependence, assumptions (A1), (A3), and
(A6), as well as the assumption in Proposition 13.4, are satisfied.

We choose the domain Ω = [0, L] and let all dispersal kernels be equal to the
Laplace kernel with identical variance. Then the remaining assumptions are also
satisfied. Therefore, operator Q′[0] will have a dominant eigenvalue λ = λ(R,L).

If that eigenvalue is less than unity, then the population extinction state will be
stable. If it is greater than unity, then there will be a unique, globally stable positive
population persistence state. The condition λ(R,L) > 1 requires R > R∗ from
(13.24) and L > L∗ from (13.17).

A more interesting dynamical scenario arises when density dependence follows
the Ricker function; i.e., we replace R in (13.2) with R exp(−(J + A)). This
case is studied in detail by Lutscher and Lewis (2004). The resulting matrices,
B(0) and B(∞), are the same as in (13.23), but the monotonicity assumption in
Proposition 13.4 is not satisfied. Lemmas 13.4 and 13.5 give the local existence and
stability of a positive equilibrium near the bifurcation point. However, increasing
parameter R can destabilize the positive steady state and lead to two-cycles and
more complicated dynamic behavior. We illustrate some of these behaviors with the
simplified model where all stages have the same dispersal behavior, described by
the Laplace kernel. Hence, we study the equation
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Fig. 13.2 Left: Stable four-cycle in the nonspatial matrix model with Ricker-type density-
dependent reproduction (R = 80). Right: Stable invariant curve in the nonspatial matrix model
with density-dependent maturation (R = 70). Solid lines are juveniles; dashed lines are adults.
Circles indicate generations; connecting lines are for optical reasons only. In the right panel, the
adult density is plotted at 20 times the actual density to make it visible on this scale. Parameters
are sj = 0.5, sa = 0.1, and g = 0.4.

Nt+1(x) =
∫ L/2

−L/2

a

2
exp(−a|x − y|)B(Nt (y))Nt (y)dy , (13.25)

where B(N) is the matrix in (13.23) but with the Ricker-type growth function
R exp(−(J + A)). We fix L = 1 and illustrate how the dynamics depend on the
variance σ 2 = 2/a2 of the dispersal kernel.

We fix parameters sj = 0.5, sa = 0.1, and g = 0.4. The critical value R∗ for the
nonspatial model to allow population persistence is R∗ ≈ 3.15. When R∗ < R <

14, the nonspatial model has a unique stable persistence state. When 15 < R < 74,
we observe stable two-cycles, and for 74 < R < 100 the system shows stable
four-cycles; see left panel in Fig. 13.2.

As we turn to the spatial model, we fix R = 80. Then matrix B has the dominant
eigenvalue μ1 ≈ 4.2012. Since we fixed L = 1, we can solve relation (13.17) for
dispersal parameter a and get a critical value of a∗ ≈ 0.5697, which translates into
a critical variance of (σ 2)∗ ≈ 6.1622. When σ 2 is larger than this number, the zero
state is stable and the population will not go extinct. As σ 2 decreases, the steady-
state density increases; see top panels in Fig. 13.3. When σ 2 < 4.5, the steady
state becomes unstable and a two-cycle emerges; see bottom left panel in Fig. 13.3.
Finally, when σ 2 = 0.05, we even observe a four-cycle in the spatial model; see
bottom right panel in Fig. 13.3.
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Fig. 13.3 Dynamics of the juvenile–adult model with density-dependent reproduction for different
variances of the dispersal kernel. Top left: Stable persistence state for σ 2 = 6. Top right: Higher
population densities at steady state with σ 2 = 5. Bottom left: Two-cycle for σ 2 = 4. Bottom
right: Four-cycle for σ 2 = 0.05. For other parameters and details, see text. Solid lines represent
juvenile densities; dashed lines represent adult densities.

Another interesting phenomenon arises when maturation instead of reproduction
is density dependent (Neubert and Caswell 2000b). We keep R constant and replace
g by g exp(−(J + A)). Then the matrix and its limits at zero and at infinity are

B(N) =
[
sj (1 − ge−(J+A)) R

sjge−(J+A) sa

]
, B(0) =

[
sj (1 − g) R

sjg sa

]
, B(∞) =

[
sj R

0 sa

]
.

(13.26)

The eigenvalues of B(0) are the same as in the previous scenario, and the
eigenvalues of B(∞) are both less than unity. When R∗ < R < 49, there is a
globally stable positive state. When R > 50, however, this state is unstable and
there is a stable oscillating solution; see right panel in Fig. 13.2. This solution seems
to be periodic with period five, but it is not since we have a discrete-time system.
Instead, the solution converges to the discrete-time analogue of a periodic orbit (an
invariant closed curve). We will discuss this behavior in more detail at the beginning
of Chap. 14.

We consider the effects of space on these dynamics in exactly the same setting
as for Eq. (13.25) above: a one-dimensional habitat of length one and all dispersal
kernels identical Laplace kernels. Since the linearization of this model is the same
as above, the persistence condition is exactly as above. For 0.3 < σ 2 < 6.16,
we observe a stable persistence state. As we decrease the variance further, the
persistence state becomes unstable and an oscillating solution appears. This solution
seems very close to a period-four solution but is qualitatively very different from
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Fig. 13.4 Oscillatory dynamics of the juvenile–adult model with density-dependent maturation
for σ 2 = 0.01. The four panels show the density of juveniles (solid) and the 20-fold density of
adults (dashed) for four subsequent iterations after initial transients have disappeared. Subsequent
iterations (modulo four) are indistinguishable from these four. Parameters are sj = 0.5, sa = 0.1,
g = 0.4, R = 80, and L = 1.

the four-cycle that we observed in the previous scenario; see Fig. 13.4. Whereas
the previous four-cycle had densities alternating between high and low from one
generation to the next, this example shows two generations of high densities
followed by two generations of low densities.

13.6 Traveling-Wave Speed in Unbounded Domains

When a population can persist locally, it is expected to spread spatially. We extend
several ideas and results from the single-stage spread models in Chap. 5 to the
stage-structured case. Not only is this theory well developed mathematically, it
is also very widely and successfully applied to empirical data. We begin with a
more heuristic approach to traveling-wave speeds and include a sensitivity analysis,
which is useful and important in applications. We discuss the analysis behind the
asymptotic spreading speed in Sect. 13.8.

Based on the approaches and results in Chap. 5, we assume that the dispersal
kernels depend on distance only and are symmetric, i.e., K(x, y) = K(|x − y|),
and that vital rates are independent of spatial location. As before, we begin with the
linear model, which we can consider as the linearization of (13.7) at the zero state.
The equation reads

Nt+1(x) =
∫
R

[K(x − y) • B(0)]Nt (y)dy . (13.27)
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The traveling-wave ansatz Nt (x) = n(ξ) with ξ = x − ct and c > 0 leads to the
relation

n(ξ − c) =
∫
R

[K(ξ − η) • B(0)]n(η)dη , (13.28)

where η = y − ct. Since the equation is linear, we make the exponential ansatz

n(ξ) = e−sξ φ , (13.29)

where vector φ describes the relative abundances of the different stages in the
traveling wave. Then we arrive at the eigenvalue equation

escφ =
[∫

R

K(ν)dν • B(0)

]
φ = [M(s) • B(0)]φ = H(s)φ , (13.30)

where M denotes the matrix of moment-generating functions of the kernel matrix
K = [kij ] and H denotes the Hadamard product matrix. Alternatively, taking an
exponential transform of (13.28) leads to the same result. Hence, we are looking for
eigenvalues esc of matrix H(s).

Matrix H(s) has � eigenvalues, denoted by λi(s) with eigenvectors φi(s).
By assumption, matrix B(0) is nonnegative and primitive; by definition, M is
positive. Therefore, H is nonnegative and primitive so that the Perron–Frobenius
theorem applies. We denote by λ1(s) the dominant positive eigenvalue with positive
eigenvector φ1(s).

From any pair λi(s), φi(s) we can form a solution of Eq. (13.27) as

Nt (x) = n(x − ct) = e−s(x−ct)φ(s) = λi(s)
te−sxφi(s) . (13.31)

Since the equation is linear, every linear combination of such solutions is again a
solution. Dividing any linear combination

Nt (x) =
�∑

i=1

βiλi(s)
tφi(s)e

−sx (13.32)

by the dominant eigenvalue, we find

lim
t→∞

Nt (x)

λ1(s)t
= lim

t→∞

[
β1φ1(s) +

�∑
i=2

(
λi(s)

λ1(s)

)t

βiφi(s)

]
e−sx = β1φ1(s)e

−sx .

(13.33)

Since λ1 is the dominant eigenvalue, all the fractions in the sum above converge to
zero as t → ∞.
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We can then express the asymptotic speed of propagation via the dominant
eigenvalue λ1(s) of H and the slope of the spatial decay as

c(s) = 1

s
ln λ1(s) . (13.34)

This expression is the generalization of (5.16) to stage-structured models. In fact, in
the case of a single stage, i.e., � = 1, matrix H reduces to a single element, which is
also the “dominant eigenvalue,” and which is given by b11M(s). This is exactly the
expression in (5.16).

We have assumed that the population can persist locally; i.e., the dominant
eigenvalue of B(0) is greater than unity. We have further assumed that all dispersal
kernels are symmetric, so that each element of M is bounded below by unity.
Clearly, both matrices are nonnegative. Therefore, the dominant eigenvalue of H
is also greater than unity. Hence, c(s) > 0 and the population can spread.

Now we consider the case where the vital rates are nonincreasing functions of
density, i.e.,

B(N) ≤ B(0) . (13.35)

Then any solution of the nonlinear IDE

Nt+1(x) =
∫
R

[K(x − y) • B(Nt )]Nt (y)dy (13.36)

is bounded by the solution of the linear equation in (13.27) with the same initial
condition. Furthermore, if N0(x) ≤ β1e−sxφ1(s), then

N1(x) =
∫
R

[K • B(0)]N0(y)dy ≤ β1H(s)φ1(s)e
−sx (13.37)

≤ β1λ1(s)e
−sxφ1(s) = β1e−s(x−c)φ1(s) . (13.38)

Iteratively, we can show the inequality

Nt (x) ≤ β1e−s(x−ct)φ1(s). (13.39)

Finally, we note that any compactly supported initial condition can be bounded
above by an exponential of the form β1e−sxφ1(s) by choosing β1 large enough for
every s for which the moment-generating functions K exist. This reasoning proves
the following lemma.

Lemma 13.6 Assume that condition (13.35) holds. Then the spreading speed of the
nonlinear model is bounded above by the minimal speed of traveling waves of the
linearized equation, i.e., by

ĉ = inf
s>0

1

s
ln λ1(s) . (13.40)
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Fig. 13.5 Left: Dispersion relation c(s) from (13.34) for the juvenile–adult model. Dashed lines
indicate the minimum, c(s∗), at s∗. Right: Advancing front of juveniles (solid) and adults (dashed)
in the nonlinear model with density dependence in the growth rate. The density profile is plotted
every 10 time steps. Parameters are sj = 0.5, sa = 0.1, g = 0.4, R = 10, and σ 2 = 0.1.

For an example, we return to the juvenile–adult model from Sect. 13.5. The
matrix of vital rates is B(0) as in (13.23). Let us consider a scenario where dispersal
only happens at maturation and follows a Gaussian kernel with variance σ 2. None
of the other stages disperses. Then the dispersal matrix is given by

K(x) =
[

δ(x) δ(x)
1√

2πσ 2
exp(− x2

2σ 2 ) δ(x)

]
. (13.41)

We calculate

H(s) =
[

1 1
exp(−σ 2s2/2) 1

]
•

[
sj (1 − g) R

sjg sa

]
=

[
sj (1 − g) R

sjg exp(σ 2s2/2) sa

]
.

(13.42)

The dominant eigenvalue of H(s) is

λ1(s) = 1

2

(
sj (1 − g) + sa +

√
(sj (1 − g) − sa)2 + 4sj gReσ 2s2/2

)
. (13.43)

We plot c(s) in Fig. 13.5. With the chosen parameters, the minimum of c(s) is c∗ =
0.208 and occurs at s∗ = 4.53. The dominant eigenvalue is λ1(s

∗) = 2.56, and a
corresponding eigenvector is φ1(s

∗) = [1, 0.22]T .

To illustrate the advance of a traveling profile in the nonlinear equation, we let
reproduction depend on density as in the previous section; i.e., we replace R by
R exp(−Jt − At). We simulated the solutions of the IDE with initial conditions for
juveniles and adults equal to 0.1 times the characteristic function of the negative
half-line. Simulations develop the shape of the traveling profile after fewer than 10
iterations, and the distance per iteration is constant after 30 iterations. The resulting
speed is c = 0.198, very close to the theoretically predicted value.
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13.7 Sensitivity Analysis

As empirical measurements are always subject to various forms of error, we would
like to know how the outcome of our calculations (here the minimal traveling-wave
speed) depends on the input (here the parameters involved in our model). Answering
this question is the goal of sensitivity analysis. Sensitivity measures the absolute
change in the output quantity for a given change in the input quantity, whereas
elasticity measures its relative change (Caswell 2001). In terms of the minimal
traveling-wave speed ĉ = c∗ in (13.40) and some parameter p in the IDE, the two
quantities are

dc∗

dp
and

p

c∗
dc∗

dp
, (13.44)

respectively. The application of sensitivity analysis to spreading speeds in IDEs is
developed by Neubert and Caswell (2000a).

Let p denote a parameter in IDE (13.27), either a population dynamic parameter
in matrix B(0) or a dispersal-related parameter in matrix K. We consider the
function of two variables

c(s, p) = 1

s
ln(λ1(s, p)) . (13.45)

We denote as s∗ = s∗(p) the value of s for which the minimum in (13.40) occurs,
i.e., c∗(p) = c(s∗(p), p). Then the sensitivity of c∗ with respect to p is given by
the chain rule as

dc∗

dp
= ∂c

∂s
(s∗(p), p)

ds∗

dp
(p) + ∂c

∂p
(s∗(p), p) . (13.46)

Since c∗ is the minimum with respect to s, the first term on the right-hand side
vanishes. Hence, we get

dc∗

dp
= 1

sλ1

∂λ1

∂p
. (13.47)

In other words, the sensitivity of c∗ is a multiple of the sensitivity of λ1, the
dominant eigenvalue of H. Formulas for the sensitivity of an eigenvalue with respect
to matrix entries hij are well known. They can be expressed in terms of the right and
left eigenvectors φ1 and ψ1, respectively, as (Caswell 2001)

∂λ1

∂hij

= ψ1,iφ1,j

〈ψ, φ〉 , (13.48)
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where φ1,j indicates the j th entry of vector φ1. To find the sensitivity of c∗ with
respect to a parameter p that may appear in one or more entries hij of matrix H, we
use the chain rule again. We arrive at the following sensitivity formula.

Lemma 13.7 The sensitivity of c∗ with respect to some parameter p is given by the
expression

dc∗

dp
= 1

s∗λ1

∑
i,j

∂λ1

∂hij

dhij

dp
= 1

s∗λ1

∑
i,j

ψ1,iφ1,j

〈ψ, φ〉
dhij

dp
. (13.49)

We return to the example in Sect. 13.5 to illustrate these ideas. With parameters
as in Fig. 13.5, we obtain c∗ = 0.208 with s∗ = 4.53 and λ1 = 2.56. Matrix H and
its eigenvectors are given by

H(s∗) =
[

0.3 10
0.558 0.1

]
, φ1 =

[
0.9753
0.2208

]
, and ψ1 =

[
0.2393
0.9710

]
. (13.50)

We calculate

dc∗

dR
= 1

s∗λ1

ψ1,1φ1,2

〈ψ, φ〉 = 0.0102 (13.51)

and

dc∗

dσ 2 = 1

s∗λ1

ψ1,2φ1,1

〈ψ, φ〉
sj gs∗2

2
exp

(
σ 2s∗2

2

)
= 1.04 . (13.52)

Hence, an increase in R by a certain amount has a much smaller effect on c∗ than an
increase in σ 2 by the same amount. For example, increasing R from 10 to 10.1 and
keeping all other parameters as in the previous example increases the speed from
0.208 to 0.209. Increasing σ 2 from 0.1 to 0.2, however, increases c∗ to 0.29.

On the other hand, for the elasticities, we calculate

R

c∗
dc∗

dR
= 0.4887 and

σ 2

c∗
dc∗

dσ 2
= 0.5014 . (13.53)

Therefore, an increase of either R or σ 2 by the same percentage has almost the
same effect on the speed. For example, increasing either R or σ 2 from the previous
baseline values by 10% increases c∗ to 0.2174 and 0.218, respectively. We illustrate
these results in Fig. 13.6, where we plot the profile of juveniles after 80, 90, and 100
time steps from the same initial condition with different parameter values. The front
with increased R is steeper and reaches a higher steady-state value but spreads at
(almost) the same speed as the front for increased σ 2.
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Fig. 13.6 Increasing parameter R or σ 2 in the juvenile–adult model with density-dependent
reproduction increases the speed of spread. The density of juveniles is plotted after 80, 90, and
100 time steps, respectively, for baseline parameters from Fig. 13.5 (solid), increased reproductive
rate (dashed), and increased variance of the Gaussian dispersal kernel (dash-dot). Increases are by
10%.

13.8 Spreading Speed for Structured Populations

Mathematically speaking, traveling waves are rather special solutions of IDEs. Their
ecological interpretation is that the population is present in a very large region
behind the invasion front. The asymptotic spreading speed (Definition 5.1) is a
measure of the speed of propagation that is independent of the assumption of a
traveling-wave profile. From an ecological point of view, it is more satisfying since
it measures the spread of a population that is initially confined in space. From a
mathematical point of view, this measure is more general than a traveling-wave
speed but also more difficult to define and handle. In this section, we present the
construction and basic concepts that lead to the definition of an asymptotic spreading
speed as in Lui (1989a), but we refer to the original publication for the proofs. We
consider the particular case of monostable dynamics on a one-dimensional domain;
the general theory is given in Lui (1989a).

We study the recursion from (13.7) on the real line with spatially independent
vital rates, so that the operator becomes

Nt+1 = Q[Nt ] =
∫
R

[K(x − y) • B(Nt )]Nt (y)dy , (13.54)

where N = [N1, . . . , N�]T as before. Throughout, we assume that B is nonnegative
and primitive and that if bij > 0 for some N ≥ 0 then bij > 0 for all N ≥ 0.

Whenever bij > 0, we also assume that the corresponding dispersal kernel Kij =
Kij (x −y) is a nonnegative symmetric bounded continuous function whose integral



222 13 Structured Populations

over the entire real line is unity and whose moment-generating function exists. To
define the most important property of Q, we need to introduce an order structure on
R

� and an appropriate function space.
For n, m ∈ R

�, we define n ≥ m (n � m) if ni ≥ mi (ni > mi) for all
1 ≤ i ≤ �. Furthermore, n > m is a short notation for n ≥ m and ni > mi for at
least one i. The origin in R

� is denoted by 0. For a given vector m > 0, we define
the function space

Cm = {N | Ni : R → [0,mi] piecewise continuous2} . (13.55)

We extend the order relation to Cm by saying N ≥ Ñ (N � Ñ) if N(x) ≥ Ñ(x)

(N(x) � Ñ(x)) for all x ∈ R. We can always identify n ∈ R
� with the constant

function Ni(x) = ni . By the assumptions on the dispersal kernels, if n is a constant
function, then Q[n] is also constant.

We now make assumptions on the local population dynamics that are closely
related to those that led to the existence and uniqueness of a fixed point on a bounded
domain in Sect. 13.4.

(S1) Function N �→ B(N)N is nondecreasing for N ≥ 0.

(S2) There is a steady state N∗ > 0; i.e., N∗ = B(N∗)N∗.
(S3) For all initial conditions n ≥ 0 with n �= 0, the iteration mt+1 = B(mt )mt

converges to N∗.

With these assumptions, operator Q satisfies the following hypotheses from Lui
(1989a):

1. Q : CN∗ → CN∗ , Q[0] = 0, Q[N∗] = N∗.
2. Q commutes with translations; i.e., Q[N(· − y)](x) = Q[N](x − y).

3. Q is order preserving; i.e., if N ≥ Ñ, then Q[N] ≥ Q[Ñ].
4. Q is continuous in the topology of uniform convergence on bounded subsets of

R.
5. For any 0 � n � N∗, the iterates Q(k)[n] converge to N∗ as k → ∞.

Order-preserving operators have the following two important properties.

Lemma 13.8 (Proposition 2.1 in Lui 1989a)

1. Let R1 or R2 be an order-preserving operator. Assume that sequences {nk} and
{mk} satisfy nk+1 ≥ R1[nk] and mk+1 ≤ R2[mk], respectively. Suppose further
that R1[u] ≥ R2[u] for all u. If n0 ≥ m0, then nk ≥ mk for all k.

2. Let R be an order-preserving operator. Assume that R[n0] ≥ n0 and define
nk+1 = R[nk]. Then nk is nondecreasing in k.

2A function on some interval is piecewise continuous if the interval can be written as a finite
number of subintervals such that the function is continuous on each open subinterval and has a
finite limit at each endpoint of each subinterval.
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We now present the construction that leads to the definition of the asymptotic
spreading speed. We pick some vector 0 � m � N∗ and continuous functions φi

with the following properties:

1. φi : R → [0,mi] is nonincreasing.
2. φi(s) = 0 for s ≥ 0.

3. φi(−∞) = lims→−∞ φi(s) = mi.

Then we define a sequence of functions a(c, ·) depending on a parameter c via

ai
0(c, s) = φi(s) , (13.56)

ai
k+1(c, s) = max{φi(s), Q[ak(c, · + s + c)](0)} . (13.57)

The operator defined by the right-hand side of (13.57) is order preserving since Q
is. The following properties of the sequence ak are fairly straightforward to see.

Lemma 13.9 (Lemma 2.2 in Lui 1989a)

1. ak(c, s) is bounded between 0 and N∗.
2. ak(c, s) is nondecreasing in k and nonincreasing in c and s.

3. ak(c,−∞) exists, and ak(c,−∞) ≥ Q(k)[m].
4. ak(c,∞) = 0 for all k.

5. limk→∞ ak(c, s) = a(c, s) exists and is nonincreasing in c and s. Furthermore,
a(c,−∞) = N∗.

Before we define the asymptotic spreading speed, we give a rough illustration
of the operator defined in (13.57). Let us consider the point s = 0 and some given
element ak. Then the operator will first shift ak to the left by c units; then apply
the growth and dispersal operator Q to it, which presumably will help the species
spread back to the right again; and then evaluate the result at s = 0. If the spreading
to the right is in some sense “larger” than the shift by c to the left, then the value of
ak+1 at s = 0 will be larger than that of ak at s = 0; if it is smaller, then the reverse
will happen. Hence, we could guess that for small enough values of c, the value of
ak(c, 0) will grow with k, but for large values it might not. We could therefore try to
define the spreading speed as the value of c between these two scenarios. This idea
can be used but we have to apply it at s = ∞ rather than s = 0.

We define

c∗ := sup{c | a(c,∞) = N∗} . (13.58)

Then the following can be shown.

Lemma 13.10 (Lemmas 2.4, 2.5, 2.6, and 2.9 in Lui 1989a)

1. a(c, s) ≡ N∗ if and only if c < c∗.
2. a(c,∞) is independent of the choice of m and φi.

3. a(c,∞) = Q[a(c,∞)].
4. a(c,∞) = 0 if c > c∗.
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We can now formulate the theorem that demonstrates that c∗ is indeed the
spreading speed of operator Q; compare Chap. 5, Definition 5.1.

Theorem 13.3 (Theorems 3.1 and 3.2 and Proposition 3.3 in Lui 1989a) Let
(S1)–(S3) as well as the assumptions on K hold. Assume that Q is bounded above
by its linearization at zero, i.e., Q[N] ≤ Q′[0]N. Assume furthermore that near zero,
Q can be bounded below, e.g., Q[N] ≥ (1 − ε)Q′[0]N for ‖N‖ small enough. Pick
0 �= N0 ∈ CN∗ with compact support and define {Nt } through the recursion (13.54).
Then the following hold for any small ε > 0 :

lim sup
t→∞

max
|x|>(c∗+ε)t

Nt (x) = 0 ,

lim inf
t→∞ min|x|<(c∗−ε)t

Nt (x) = N∗ .

Finally, Theorems 3.4 and 3.5 in Lui (1989a) guarantee that the spreading speed
defined in (13.58) can be calculated by the formula in (13.40).

The original results by Lui (1989a) require that the initial condition is sufficiently
large on a sufficiently large domain. When there is no Allee effect in the IDE, the
“hairtrigger effect” (Weinberger 1982) ensures that any nonnegative, nonzero initial
condition will eventually meet these requirements. The original results also require
the kernels to have compact support. This requirement is removed by Liang and
Zhao (2007). The theory formulated by Lui (1989a) and earlier for the scalar case
by Weinberger (1982) is substantially more general than the version presented here.
We mention a few aspects. First, the formulation by Lui (1989a) is based on some
abstract operator Q and its properties. The theory is well suited to applications to
IDEs, as we saw, but not limited to those. For example, it also applies to a time-
one map of (systems of) reaction–diffusion equations. The abstract theory has since
been developed significantly further by several authors, e.g., Liang and Zhao (2010).
Second, the work in Lui (1989a) does not address the question of the existence of
traveling waves treated in the scalar case by Weinberger (1982), but many authors
since then have worked on this problem. A survey on the theory of spreading
speeds and traveling waves for monotone systems of equations can be found in Zhao
(2009). Third, the formulation by Lui (1989a) includes the case of an Allee effect,
which we excluded here in assumption (S3). As we have seen in Chap. 6, the elegant
spread speed formula (13.40) cannot be expected to hold in the presence of an Allee
effect. The asymptotic speed of spread still exists, but it may be negative and, most
important, for a population to actually spread at this speed, its initial density has
to be high enough over a large enough set. For details, see Theorems 3.1 and 3.2
in Lui (1989a). Finally, the general theory is formulated for spreading phenomena
in several spatial dimensions and not only one-dimensional space as presented
here. We then formulate a spreading speed in a given direction and consider planar
traveling waves in that direction. Amor and Fort (2009) formulate an explicit two-
dimensional model, derive the corresponding formula for the spreading speed based
on the linear conjecture, and compare how one- and two-dimensional structured and
unstructured spread rates differ.
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The aspects of IDEs for stage-structured populations presented in this chapter
are only the basics of the existing theory. Because these structured equations
can describe such rich life histories, the number of modifications and interesting
questions seems almost infinite. The following summaries are meant to point the
interested reader to the existing body of literature.

Dynamics on Bounded Domains

Fagan and Lutscher (2006) apply the theory by Lutscher and Lewis (2004) to a two-
stage model of swift fox (Vulpes velox) population dynamics to estimate the habitat
size required for conservation of the species. This application includes the scenario
that the bounded domain consists of two disjoint subdomains corresponding to two
spatially separated patches of habitat. We will investigate these ideas further in
Chap. 15 when we focus on ways to include spatial variation in IDE models.

A bifurcation theory for systems of IDEs, somewhat more abstract than the
results presented here, is developed independently in Alzoubi (2007, 2010a,b). It
is based on the general theory of global bifurcations by Rabinovitz. Another series
of papers uses the same bifurcation-theoretic approach—in addition to numerical
experiments—and expands the problems studied via IDEs in various directions
(Robertson 2009; Robertson and Cushing 2011, 2012; Robertson et al. 2012). The
authors study the question of spatial segregation between life stages in a flour beetle
population in a homogeneous habitat. They propose a dispersal kernel very different
from the kernels presented here so far. In their approach, the probability that an
individual will move to a certain location depends only on that location and not on
the individual’s initial location. This approach implies that the domain is relatively
small compared to the individual’s dispersal ability, so that individuals can reach any
location from any point within a single dispersal period. Furthermore, the authors
assume that dispersal is density dependent so that the probability of moving to
a certain location decreases with the density of individuals already there. For an
example with juveniles and adults, the authors choose

K(x, y, J,A) = 1

2
sin(x) exp(−D(sjJ (x) + saA(x)) (13.59)

on the domain Ω = [0, π ]. When D = 0, dispersal is density independent.
Increasing parameter D leads to avoidance of areas where the density is high.
It would be an interesting challenge to derive dispersal kernels for avoidance (or
attraction) from mechanistic random-walk models in the spirit of Chap. 7.

When the life cycle of an organism consists of many stages, it is typical for
dispersal to be limited to only a few stages or transitions between stages, as
discussed in Sect. 12.4. Formulating a model with nondispersing stages is fairly
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simple: the corresponding dispersal kernel is a delta distribution; see, e.g., matrix
K in (13.41). Analyzing the dynamic behavior when there are sedentary stages
is much harder. The mathematical reason for this difficulty is that the operators
involved fail to be compact, whereas many of the existing theorems about stability
and bifurcation require compactness. Corresponding results about critical patch-size
and existence of steady states can still be achieved in several cases. For example,
operator Q in (13.7) may not be compact but some iterate of it is compact if
individuals have to go through a dispersal stage after finitely many generations. In
that case, we can apply the theory to the corresponding power of Q. Alternatively,
we can sometimes decompose the operator into the sum of a compact and a nilpotent
operator and obtain the desired results. Details of these two approaches are laid
out in Lutscher and Lewis (2004). Jin et al. (2016) develop a general theory for
population persistence and extinction when the next-generation operator can be
written as the sum of a contraction and a compact operator. This theory applies to
the structured population models studied here, provided that certain conditions hold.
In particular, if we write Q as a sum of those transitions relating to reproduction
and those that relate to survival, then the part that relates to survival only is a
contraction. If all components of the part with reproduction disperse, then that part
of the operator is compact.

Spread on Unbounded Domains

We need to formulate stage-structured models because for many species, individuals
of different life-history stages exist simultaneously. The stage-structured model
projects the densities of all stages per year or some other suitable time unit. It takes
several of these time units to complete a generation. Bateman et al. (2015) introduce
the concept of a “generational spreading speed,” the distance that a population
front covers from one generation to the next. The methods are similar to the ones
introduced above, but the authors use graph reduction techniques to simplify the full
annual stage-structure dynamics to generational dynamics.

One of the biggest challenges for the mathematical theory of spread on
unbounded domains is the loss of compactness of the operator Q in model (13.54)
when some of the dispersal kernels are delta distributions. While the asymptotic
spreading speed can still be defined and can be shown to exist, including the formula
from the linearization, the proof of existence of a traveling wave in Weinberger
(1982) relies on a compactness argument. One way to prove the existence of
traveling waves is to decompose the operator into a compact operator and a
contraction if the model structure allows it. This idea is developed by Le et al.
(2011) and Lutscher and Van Minh (2013).

An abstract, very general theory of spreading speeds and traveling waves in
Banach lattices is developed by Liang and Zhao (2010). The authors replace
the requirement of compactness by the requirement that operator Q decrease the
Kuratowski measure of noncompactness of a set. This theory applies to a wide range
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of types of equations, not only IDEs. Fang and Zhao (2014) use an even weaker
compactness assumption but apply their theory to continuous-time equations only.
A more direct approach for IDEs is carried out by Meyer (2012) and Meyer and
Li (2013). These authors derive a structured IDE with infinitely many stages. Their
model is motivated by a plant species with a seed bank where seeds can lie dormant
for arbitrarily long times. They prove the existence of a spreading speed and of
traveling waves for their model. They also prove the usefulness of the linearization
formula and they consider nonmonotone growth functions. An earlier model with
infinitely many stages in a completely different context was derived by Powell et al.
(2005); see below.

In some cases, a scalar IDE may contain a time delay; i.e., the density at time
t + 1 is determined by the density not only at time t but also at previous times.
Accordingly, operator Q may depend on Nt,Nt−1, . . . . Such equations may be
reformulated as a structured model with nondispersing stages, and the existence
of spreading speeds and traveling waves may be proved in that setting (Lin and Li
2010). These authors also show the stability of the traveling-wave front.

Another dimension for structuring a population is sex. If males and females have
significantly different dispersal behavior, then distinguishing between them could
be important for correctly predicting population spread rates. Miller et al. (2011)
formulate and analyze the first two-sex model for invasions. They derive a heuristic
formula for the spreading speed and use numerical simulations to demonstrate its
validity, but a mathematical proof of its correctness is still missing.

Disease stage may constitute yet another factor of the structure of a population.
For example, Marculis and Lui (2015) formulate a model for green crab with
a juvenile, a susceptible-adult, and an infected-adult stage. The most interesting
aspect of this model in the present context is that there can be a semi-trivial boundary
state where some stages are positive (e.g., juveniles and susceptible adults), whereas
others are zero (e.g., infected adults). The existence of a semi-trivial boundary
stage violates the assumption made by Lui (1989a) that there be a unique positive
equilibrium. Numerical simulations by Marculis and Lui (2015) reveal that the
equations may support stacked waves: a traveling wave that connects the zero
state with the semi-trivial boundary state and a secondary wave that connects that
boundary state with the positive stage. The phenomenon is closely related to the
observation of traveling two-cycles in Sect. 11.4. The analysis of such stacked waves
is still wide open. Bateman et al. (2017) provide more simulation results on stacked
waves in a closely related model for green crab with a castrating parasite.

Applications to Spread and Biological Invasions

We need to formulate stage-structured models because for many species, individuals
of different life history stages exist simultaneously. There are, however, other
scenarios to which this theory applies. For example, Lui (1989b) calculates spread
rates for a population genetics model with equations for allele frequencies in the
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female and male subpopulation. He also applies the theory to an epidemic model
that tracks the progression of a disease between a host and a vector.

A stage-structured model projects the densities of all stages per year or some
other suitable time unit. It takes several of these time units to complete a generation.
Bateman et al. (2015) introduce the concept of a “generational spreading speed,” the
distance that a population front covers from one generation to the next. The methods
are similar to the ones introduced above, but the authors use graph reduction
techniques to simplify the full annual stage-structured dynamics to generational
dynamics.

Neubert and Caswell (2000a) develop the theory and apply it to two herbaceous
flowering plants with six (Dipsacus sylvestris) and eight (Calathea ovandensis)
stages. Among other things, the authors find that the speed of spread is highly
sensitive to long-distance dispersal, a phenomenon that we discussed in Sect. 12.5.
Caswell et al. (2003) expand the theory to use order statistics to calculate sen-
sitivities and apply the techniques to three bird species with three stages each,
namely Pied Flycatcher (Ficedula hypoleuca), Starling (Sturnus vulgaris), and
Sparrowhawk (Accipiter nisus). Neubert and Parker (2004) review the calculation
of spread rates and sensitivity analysis of IDEs for risk analysis of invasive species
and apply it to scotch broom.

Le Corff and Horvitz (2005) use a stage-structured IDE to study the effects on
population spread of the mixed reproductive strategy of a tropical herb (Calathea
micans) with obligate selfed or potentially outcrossed seeds and dispersal by ants.

Jacquemyn et al. (2005) study the spread of perennial tussock grass Molinia
caerulea in a heathland, in particular the effect of fire on the success of this invasive
heathland plant.

Buckley et al. (2005) develop a stage-structured model for a pine invasion in New
Zealand. They represent long- and short-distance dispersal by a mixed dispersal
kernel consisting of a Laplace and a Gaussian kernel. Based on sensitivity analysis,
they give some management recommendations on how to slow the invasion.

Vellend et al. (2006) consider the dual effect of herbivores on the spread of the
forest herb Trillium grandiflorum: deer consume the plant and thereby inhibit its
growth, but they also transport its seed and thereby facilitate its spread. Their seven-
stage IDE model illustrates how the additional dispersal mechanisms outweigh the
negative effects on population growth at low levels of herbivory and can explain
range expansion of the herb at the northern edge of its range.

Garnier and Lecomte (2006) use a stage-structured model for transgenic oilseed
rape with a combination of dispersal kernels accounting for long- and short-distance
dispersal to estimate the spread risk of feral plants. Garnier et al. (2008) measure
probabilities and distances of roadside spread and include them into their previous
model.

Jongejans et al. (2008) use a four-stage model of the thistle (Carduus nutans) and
develop a variance-decomposition method to study the relative impact of population
dynamics and dispersal mechanisms. They employ the WALD model to generate
dispersal kernels that include a distribution of seed release height and hourly wind-
speed data. In a later investigation of the same species, Shea et al. (2010) study
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several management options by comparing sensitivities of the spread rate with
respect to parameters in three different environments, one native and two invaded.
Zhang et al. (2011) follow up on this study by exploring how global warming can
speed up invasions of this thistle. Caplat et al. (2012) also use the WALD model
to generate a dispersal kernel, and they apply it to the invasion of Corsican pine in
New Zealand. Caplat and Buckley (2012), based on Buckley et al. (2005), present a
more general article on management applications of structured IDEs.

Soons and Bullock (2008) generate dispersal kernels from wind tunnel experi-
ments and wind speeds measured in the field. They study in particular the effect
of nonrandom seed release in two heathland plants, Calluna vulgaris and Erica
cinerea. These plants release their seeds only when wind speeds exceed a certain
threshold, and in particular during wind gusts. This mechanism leads to predicted
wave speeds that are twice as high as with temporally random seed release.

Bullock et al. (2008) consider a stage-structured IDE for the rare annual herb
Rhinanthus minor under four different management options (grazing versus cutting)
and calculate corresponding spread rates.

Miller and Tenhumberg (2010) study the spread of the Diaprepes root weevil
(Diaprepes abbreviatus) in Florida with a six-stage IDE. They find, among other
things, that transient speeds of range expansion at the onset of an invasion can be
higher than the asymptotic speed, and that measures to reduce the asymptotic speed
may have little or no effect on transient speeds.

Gruess et al. (2011) formulate a two-stage IDE to evaluate the relative impacts of
adult movement and juvenile dispersal, as well as harvesting, on the effectiveness
of marine reserve networks.

Travis et al. (2011) compare analytical predictions of a stage-structured IDE
with simulation results from an individual-based model for the invasive shrub
Rhododendron ponticum. They argue in particular that the two modeling approaches
should be seen as complementary and used in conjunction since each can inform the
other.

Bullock et al. (2012) use climate modeling and the WALD model to predict future
wind speeds and their variation. They then include this information in mechanistic
dispersal kernels and predict the ability of wind-dispersed plants to keep up with
climate change; see Sect. 12.3.

Matlaga and Davis (2013) use a stage-structured IDE model to estimate the
invasive potential of the engineered bioenergy crop Miscanthus × giganteus.

Lamoureaux et al. (2015) consider a seven-stage IDE for the weedy grass
Nassella trichotoma to evaluate the need for and cost effectiveness of various control
strategies of this plant.

Structured IDEs are also used to model species spread and invasions in advective
environments with asymmetric dispersal. Pringle et al. (2009) generalize some of the
ideas from Sect. 12.2 to structured populations; in particular, they characterize the
critical population growth rate for persistence under biased dispersal. Gharouni et al.
(2015) derive a three-stage model for a green crab invasion with biased dispersal.
Krkos̆ek et al. (2007) fit several dispersal kernels to the northern and southern spread
of sea otters in California. They find that heavy-tailed dispersal kernels that predict
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accelerating invasions fit the observations very well. Smith et al. (2009) reanalyze
the sea otter data but introduce spatial heterogeneity by assuming that population
vital rates differ between the northern and southern directions.

A series of papers develops models and fits data of the spread of the late blight
disease in potatoes and tomatoes and its pathogen Phytophthora infestans. The
quantity of interest is the density of lesions caused by the pathogen. These lesions
are structured by age, and their area increases with age. Lesions “disperse” through
spores that are moved by wind or splatter with rain drops. The model development
with infinitely many stages is presented by Powell et al. (2005). Several other papers
are parameterized by field experiments and study the effect of host plant diversity,
spatial scale of heterogeneity, and weather (Skelsey et al. 2005, 2009a,b, 2010).

On a much larger scale, Heavilin and Powell (2008) model the spread of pine
tree (Pinus contorta Douglas) death due to attacks from mountain pine beetle. They
structure trees as juvenile (which are not susceptible), susceptible, and infected.
Infections spread through beetle reproduction and flight. This model exhibits an
Allee effect, as a susceptible tree can fend off a small enough number of beetles. The
authors then obtain parameter estimates through a maximum likelihood procedure.
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