
Chapter 11
The Shape of Spatial Spread

Abstract In previous chapters, we studied the speed of spread and the existence of
traveling waves. In this chapter, we focus on the shape of traveling-wave profiles and
more general patterns of spatial spread. We first provide an approximation scheme,
based on asymptotic expansion, for the shape of a monotone wave. Then we explore
the existence of nonmonotone waves as well as more complicated patterns of spread
when the growth function has a stable two-cycle. We generalize the notion of the
asymptotic spreading speed and discuss dynamic stabilization.

11.1 Monotone Versus Nonmonotone Scenarios

In the study of biological invasions, the speed of spatial spread of the invading
organism is arguably the most important quantity. The theory in Chaps. 5 and 6
guarantees the existence of such a speed and, in some cases, also provides a simple
formula for it, but leaves open many questions about the shape of an invasion front.
When the growth function is monotone, the results in Chap. 5 also establish the
existence of monotone traveling waves. Information about the steepness of the wave,
say, would tell us how fast the invading population grows at any fixed location.
When the growth function is not monotone, we would like to know more about the
shape of the profile behind the initial invasion front; see Fig. 5.6. Will the profile
converge to the positive steady state, and if so how fast? But many more scenarios
could arise. Since the positive steady state of the nonspatial Ricker model may be
unstable, there is no reason to believe that a traveling profile in the spatial model
with Ricker dynamics—if it exists—would settle at that positive state. If it does
not, then what are the dynamics of the population in the wake of the invasion front?
Would a profile oscillate in ways comparable to those that we have seen in Sect. 4.4?
In this chapter, we present various approaches to answer some of these questions.

The first part of this chapter is based on the analysis of traveling waves. We
assume that there is a traveling-wave solution of speed c, i.e., a profile N that
satisfies
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N(x + c) = Q[N ](x) =
∫ ∞

−∞
K(x − y)F (N(y))dy . (11.1)

In this notation, the profile travels to the left when c > 0, so that we impose the
boundary conditions N(−∞) = 0 and N(∞) = 1. The profile travels to the right
when c < 0 and the boundary conditions are interchanged. When the dispersal
kernel is the Laplace or the exponential kernel, we can reduce this equation to
a second- or first-order delay equation, which we can study via linearization and
asymptotic expansion. This material was originally developed by Kot (1992).

In the second part, we consider the case where the positive steady state of the
nonspatial growth function is unstable and there is a stable two-cycle. We study this
case by considering the second-iterate operator Nt+2 = Q ◦ Q[Nt ]. Some aspects
of the traveling-wave analysis from the first part of this chapter can be extended
to this case. More important, the theory from Chap. 5 can be adapted to yield the
existence of generalized spreading speeds and various forms of traveling profiles
that appear after the initial invasion front and travel more slowly. This material
originates in the thesis of Bourgeois (2016). The existence of two or more distinct
traveling profiles at different speeds leads to stacked waves and the phenomenon of
dynamic stabilization.

11.2 Asymptotic Expansion of Monotone Traveling Waves

When the growth function is of Beverton–Holt type (monotone, concave down) and
the dispersal kernel is exponentially bounded, then there exist monotone traveling-
wave solutions (11.1) of the IDE for every c ≥ c∗; see Chap. 5, Theorem 5.2. We
obtain a unique (leftward-moving) solution if we fix the density at one point, e.g.,
N(0) = 1/2.

When the dispersal kernel is the Laplace kernel (2.27), we can use repeated
differentiation as in (3.7) to turn equation (11.1) into the second-order delay
differential equation

N ′′(x + c) = a2[N(x + c) − F(N(x))] . (11.2)

A constant solution of this equation satisfies N = F(N); i.e., it is a fixed point of
the nonspatial dynamics. By our assumptions on F , there are exactly two such fixed
points, namely N = 0 and N = 1, the asymptotic values of the traveling wave. We
are looking for a solution that connects these two points.

To apply asymptotic expansion, we need to identify a small parameter in the
equation. We rescale space by setting x = zc and define Ñ(x/c) = N(x). Using the
chain rule and dropping the tilde, we find the equation

1

(ac)2 N ′′(z + 1) + F(N(z)) − N(z + 1) = 0 . (11.3)
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We now consider ε = 1/(ac)2 as our small parameter. We know that the smallest
traveling-wave speed ĉ = c∗ is an increasing function of the growth rate at low
density F ′(0) for fixed a > 0. Hence, we can make ε small by making F ′(0) large.

We expand the solution N(z) of (11.3) in a perturbation series

N(z) = N(0)(z) + εN(1)(z) + ε2N(2)(z) + . . . . (11.4)

Inserting this expansion into (11.3), we obtain an infinite system of equations. The
two lowest-order equations are

N(0)(z + 1) = F(N(0)(z)) , (11.5)

N(1)(z + 1) = F ′(N(0)(z))N(1)(z) + [N(0)]′′(z + 1) . (11.6)

The lowest-order equation looks like the simple nonspatial equation. The difference
is that the equation here is meant to hold for a continuous variable z ∈ R and not
just for a discrete set z ∈ N. Fortunately, we have an explicit solution of (11.5) if F

is the scaled Beverton–Holt function (2.13), namely

N(0)(z) = Rz

1 + Rz
; (11.7)

see (2.16). This solution satisfies the two boundary conditions, N(0)(−∞) = 0 and
N(0)(∞) = 1, and the condition at zero, N(0)(0) = 1/2. It also defines a continuous
function on R. Hence, we have found an approximation to lowest order.

Comparing this lowest-order approximation to numerical simulations of the
traveling front, we see that the approximation is very good even when ε is on the
order of unity. The left plot in Fig. 11.1 shows that the two curves are virtually
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Fig. 11.1 Comparison of the numerically obtained shape of a traveling front and its lowest-order
approximation. Left: The two densities. Right: The absolute error, N(x) − N(0)(x). The growth
function is the Beverton–Holt function with R = 1.25. The dispersal kernel is the Laplace kernel
with a = 5 (left plot) and values of a as indicated (right plot).
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indistinguishable and that the absolute error, defined as N(x)−N(0)(x) (right plot),
is small for ε = 1.0139. As discussed above, ε decreases as R increases, so that the
approximation should become even better. As a decreases and dispersal distances
increase, the error increases in size and in spatial extent.

Kot (1992) proceeds to solve the equation for N(1) in (11.6) explicitly, but
the computations are lengthy and the gain is relatively small since the zero-order
approximation is already good. Instead, we consider a different example where
the calculations of the higher-order term are somewhat simpler and provide greater
improvement.

Asymptotics for the Exponential Kernel

The exponential kernel

K(x) =
{

a exp(ax) , x ≤ 0 ,

0 , x > 0 ,
(11.8)

is the (scaled) “left half” of the Laplace kernel and allows leftward spread only. The
moment-generating function is

M(s) = a

a − s
. (11.9)

The parametric representation of c according to (5.22) can be written as (compare
(5.26))

ac = 1 + s̄ , R = es̄

1 + s̄
, (11.10)

with s̄ = − s
a−s

. The defining equation for the traveling front with the exponential
kernel turns into

N(x + c) = a

∫ ∞

x

ea(x−y)F (N(y))dy . (11.11)

Differentiating once, we obtain the first-order delay differential equation

N ′(x + c) + a[F(N(x)) − N(x + c)] = 0 . (11.12)

Similar to the procedure for the Laplace kernel, we scale space by setting x = zc,
introduce the small parameter ε = 1/(ac), and expand N(z) in a perturbation series.
The two lowest-order equations are
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Fig. 11.2 Comparison of the
numerically obtained shape of
a traveling front and its two
lowest-order approximations.
The growth function is the
Beverton–Holt function with
R = 1.5. The dispersal kernel
is the exponential kernel with
a = 5.
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N(0)(z + 1) = F(N(0)(z)) , (11.13)

N(1)(z + 1) = F ′(N(0)(z))N(1)(z) + [N(0)]′(z + 1) . (11.14)

The equation for N(0) is the same as (11.5), so that we already have its solution in
(11.7). The plot in Fig. 11.2 shows that this approximation is not as close as for the
Laplace kernel in the previous section. To improve the approximation, we calculate
the term of order ε.

Substituting the expressions for N(0) and F ′(N) into (11.14), we arrive at

N(1)(z + 1) = R(1 + Rz)2

(1 + Rz+1)2 N(1)(z) + ln(R)
Rz+1

(1 + Rz+1)2 (11.15)

or, after rearranging,

(1 + Rz+1)2

Rz+1
N(1)(z + 1) = (1 + Rz)2

Rz
N(1)(z) + ln(R) . (11.16)

Hence, the expression U(z) = (1+Rz)2

Rz N(1)(z) satisfies the simple recursion relation

U(z + 1) = U(z) + ln(R) . (11.17)

To find its solution, we need an initial condition. Since N(0)(0) = N(0) = 1/2,
the requirement is N(1)(0) = 0 = U(0). Therefore, the solution for U is U(z) =
z ln(R). As before, this solution is initially only determined for z ∈ N, but we notice
that it is a continuous function for all z ∈ R.

The resulting approximation for N(x) in the original parameters is

N(x) = Rx/c

1 + Rx/c
+ 1

ac

x

c

ln(R)Rx/c

(1 + Rx/c)2
+ O(ε2) . (11.18)
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The improvement of this approximation over the previous one is obvious in
Fig. 11.2.

The approximation procedure presented here requires that we find an explicit
solution of the zero-order equation analytically. Numerical methods would only
allow us to calculate approximations defined on the integers. In particular, we cannot
easily use the method to study the shape of solutions when the growth function is
not monotone. In the following section, we take a linearization-based approach to
distinguish between monotone and nonmonotone solutions.

11.3 Traveling Waves in the Phase Plane

We return to Eq. (11.2), but now we treat it as a dynamical system in the phase
plane. We turn the second-order equation into a pair of first-order equations and let
y = x + c to obtain

N ′(y) = n(y) , n′(y) = a2[N(y) − F(N(y − c))] . (11.19)

We point out that since the equation has a delay, the phase space is really infinite
dimensional and the representation in the “phase plane” is somewhat misleading.
For example, solutions of this system can cross in the phase plane. Nonetheless, the
visualization in two dimensions turns out to be helpful.

The steady states of system (11.19) are of the form (N∗, 0), where N∗ is a
solution of F(N) = N. A traveling wave of the IDE is a heteroclinic connection
between the steady states (0, 0) and (1, 0). A necessary condition for such a
connection to exist is that (0, 0) be unstable and (1, 0) have at least one stable
direction. A monotone front requires that the eigenvalue at (1, 0) be real and
negative, whereas a front with damped spatial oscillations at (1, 0) requires it to
have nonzero imaginary and negative real part.

Figure 11.3 shows a monotone and a nonmonotone front for the IDE with Ricker
dynamics together with their phase-plane representations. In the nonspatial Ricker
model from (2.19), we have F ′(1) = 1 − r. Solutions approach one in a monotone
way when 0 < r ≤ 1 and in an oscillatory way when 1 < r < 2. When r > 2,
stability is lost, and cyclic or chaotic behavior appears. Accordingly, the lowest-
order approximation to the traveling wave from (11.5) predicts monotone traveling
fronts when 0 < r ≤ 1 and nonmonotone fronts for some 1 < r < 2. Dispersal
appears to have a dampening effect since Fig. 11.3 shows a monotone wave for some
r > 1.

To study the stability of the two steady states in the phase plane, we linearize the
traveling-wave equation. It is easier to work with (11.3). The scaling does not affect
the sign of the eigenvalue. We find the transcendental eigenvalue problem

1 − λ2

a2c2
= F ′(N∗)e−λ . (11.20)
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Fig. 11.3 Left: Traveling fronts with Ricker dynamics and a Laplace kernel can show a monotone
profile (r = 1.03, top) or damped spatial oscillations (r = 1.8, bottom). The two profiles (solid
and dashed lines) are taken 10 generations apart. Right: Phase-plane representations of the invasion
fronts. The dispersal parameter is a = 6.

Alternatively, we linearize (11.19) and scale the eigenvalue; see Chap. 4 in
Bourgeois (2016). We ask for conditions such that the parabola on the left intersects
the exponential on the right. We distinguish three cases.

Case 1: F ′(N∗) > 1

If F ′(N∗) > 1, the parabola on the left-hand side of (11.20) and the exponential on
the right cannot intersect for λ < 0. There are two positive intersections when c is
large enough but none when c is small. We illustrate this case in Fig. 11.4, top left
panel. The thick solid curve represents the right-hand side of (11.20); the thin solid
(dashed) curve represents the left-hand side for small (large) c. The critical case, in
which the curves are tangent, is given by the pair of equations

1 − λ2

a2c2
= F ′(N∗)e−λ and

2λ

a2c2
= F ′(N∗)e−λ . (11.21)

These two equations lead precisely to the defining equations for the minimal speed
of a traveling front with λ in place of s̃; see (5.26). This situation may arise at
the zero state where F ′(0) = R0 > 1. Hence, the zero state in the phase plane is
unstable precisely when the speed is at least the minimal speed. We have recovered
the result from Theorem 5.1 that there can be no biologically meaningful traveling
waves for c < ĉ.
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Fig. 11.4 Illustrating the potential roots of the eigenvalue problem in (11.20) as intersections of
curves. Top left: When F ′(0) > 1, there is a critical value for c for which a positive eigenvalue
exists. Top right: When 0 < F ′(1) < 1, there is always one positive and one negative real
eigenvalue. Bottom left: When F ′(1) < 0, there is one positive eigenvalue, and there can be up to
two negative eigenvalues. Bottom right: When F ′(1) < 0 and there are no negative eigenvalues,
there can be complex eigenvalues with negative real part. The thick (thin) curves indicate where
the first (second) condition in (11.22) is satisfied. The intersection points indicate the eigenvalues.
They all have negative real parts.

Case 2: 0 ≤ F ′(N∗) < 1

If 0 ≤ F ′(N∗) < 1, there is exactly one positive and one negative solution of
(11.20); see Fig. 11.4, top right panel. As before, the thick (thin) curve represents
the right-hand (left-hand) side. This situation arises at the positive steady state with
the Beverton–Holt function but also with the Ricker function when 0 < r < 1. The
necessary conditions for the existence of a monotone traveling wave are satisfied.

Case 3: F ′(N∗) < 0

When the slope of the updating function at the positive steady state is negative,
(11.20) always has one positive solution. When c and/or |F ′(N∗)| are small, there
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are two negative solutions; when they are large, there is no negative solution; see
Fig. 11.4, bottom left panel. As usual, the thick curve represents the exponential in
(11.20); the thin solid (dashed) curve represents the quadratic with small (large) c.

There are two negative intersections for small c. The dashed curve shows the critical
case where the curves are tangent, which leads to the pair of equations (11.21).

When there are no real negative solutions, we consider complex-valued solutions.
We write λ = α + iβ and split the equation in (11.20) into real and imaginary parts,
namely

1−α2 − β2

a2c2 = F ′(N∗)e−α cos(β) ,
2αβ

a2c2 = −F ′(N∗)e−α sin(β) . (11.22)

The bottom right panel in Fig. 11.4 illustrates the solution curves of these equations
in the complex plane. Their intersection points correspond to eigenvalues.

We return to the case of the Ricker function in Fig. 11.3. When r = 1.03, we have
F ′(1) = −0.03 < 0. As |F ′(N∗)| is small, we have two negative eigenvalues as in
the bottom left panel of Fig. 11.4. Hence, there can be a monotone traveling wave,
as observed in Fig. 11.3. When r = 1.8, we have F ′(1) = −0.8 < 0. As |F ′(N∗)|
is now much larger, we have no negative eigenvalues but complex eigenvalues with
negative real parts, as in the bottom right panel of Fig. 11.4. Hence, there cannot be
a monotone traveling wave, but there is a wave with decaying oscillations around
one, as observed in Fig. 11.3. For the existence of traveling waves, see Sect. 5.4.

11.4 Invasion Dynamics with a Two-Cycle

So far, we have assumed that the positive state N∗ = 1 is stable for the growth
dynamics. Without this assumption, there is no reason to believe that a traveling
wave could exist, since the dynamic behavior in the wake of a wave is often
determined by the stable steady states for the nonspatial equation. What can we
expect if there is no stable steady state? Kot (1992) finds a “traveling two-cycle”
in numerical simulations; see also Kot (2003). We illustrate this kind of solution to
motivate the subsequent analysis.

The Ricker map, F(N) = N exp(r(1 − N), has a globally stable two-cycle for
r = 2.2, with densities 0 < n− < 1 < n+, satisfying F(F(n−)) = F(n+) = n−.

The invasion dynamics of the spatial model are shown in the left plot in Fig. 11.5.
At the invasion front, the density increases from zero, overshoots the state N = 1,
and then shows damped spatial oscillations to that state in the wake. Somewhere
behind the invasion front, a second front alternates between increasing to n+ in even
generations (dashed) and decreasing to n− in odd generations (solid). The right plot
in Fig. 11.5 reveals that the first front with the damped oscillations travels faster
than the alternating second front that connects to n− and n+, respectively. Hence,
the term “traveling two-cycles” (Kot 1992) could be misleading because this is not a
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Fig. 11.5 Invasion dynamics with a stable two-cycle. Left: The profile of the front at odd
generations (solid) connects with the lower value of the nonspatial two-cycle, n−, whereas the
profile at even generations (dashed) connects with the higher values, n+. The two profiles are 11
generations apart. Right: Plotting the profile 20 generations apart shows that the nonmonotone first
front travels faster than the monotone second front. Parameters are r = 2.2 for the Ricker growth
function and a = 6 for the Laplace kernel. The initial condition is a step function.

Fig. 11.6 Plot of the
second-iterate map of the
Ricker function with r = 2.2.
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single profile traveling at a constant speed but rather two different objects traveling
at different speeds.

Few authors have considered this problem. Theorem 5.3 guarantees the existence
of a spreading speed even when the positive state is unstable. Hsu and Zhao (2008),
Li et al. (2009), and Yu and Yuan (2012) prove the existence of a traveling-
wave profile under some conditions, but the shape of the profile behind the initial
front is unclear. Bourgeois (2016) provides a more detailed study of the spatial
invasion dynamics with an unstable fixed point; see also Bourgeois et al. (2018)
and Bourgeois et al. (2019). We present some of these results here.

To gain some preliminary insight into the second front, we consider the iteration
of two generations. For the nonspatial Ricker model with r = 2.2, the map Nt+2 =
F(F(Nt)) has four fixed points. The fixed points of F and each of the points of the
two-cycle of F are fixed points of F ◦ F ; see Fig. 11.6. The points zero and one are
unstable, whereas n± are stable. The corresponding two-generation IDE is

Nt+2(x) = Q ◦ Q[Nt ](x) =
∫

K(x − y)F

(∫
K(y − z)F (Nt (z))dz

)
dy .

(11.23)
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We are looking for a monotone front that connects N = 1 with N = n+ or N = n−.

Such a front satisfies the equation

N(x + 2c) =
∫ ∞

−∞
K(x − y)F

(∫ ∞

−∞
K(y − z)F (N(z))dz

)
dy . (11.24)

We write the speed as 2c because we consider two generations in the equation. We
study its behavior near N = 1 by linearization. The linearized equation is

n(x + 2c) = F ′(1)2
∫ ∫

K(x − y)K(y − z)n(z)dy dz . (11.25)

Taking an exponential transform or substituting an exponential profile leads to the
dispersion relation

e2sc = (F ′(1))2M2(s) , (11.26)

where M(s) is the moment-generating function of K as usual. After taking square
roots, we find the minimal speed at which a profile in the linearized equation can
travel as

ĉ1 = 1

s
ln(|F ′(1)|M(s)) . (11.27)

For the Ricker function, we have F ′(0) = er and F ′(1) = 1 − r , so that F ′(0) >

|F ′(1)| for all r > 0. In particular, the slowest speed for a front in the linearized
equation at zero is always larger than for the linearized equation at one. For the
parameters in Fig. 11.5, the speed of the initial front is c0 = 0.67, whereas the speed
of the second front is c1 = 0.14. The plateau region at level N = 1 between the first
and second fronts grows by the difference c0 − c1 per generation. In particular, even
though the state N = 1 is unstable for the nonspatial dynamics, it appears stable
for a potentially long time in the spatial model. This same phenomenon, but in a
two-component reaction–diffusion model, has been termed dynamic stabilization
by Malchow et al. (2008).

11.5 Generalized Spreading Speeds

To study the speed of spread of the second front that we observe in the simulations
in Fig. 11.5, we generalize the definition of the asymptotic spreading speed in (5.31)
to allow for the state ahead of the front to be positive (Bourgeois 2016; Bourgeois
et al. 2018). The construction is a slight extension of the one by Weinberger (1982).

We consider an operator Q̃ that acts on continuous functions on R. We assume
that there are two constants 0 ≤ π0 < π1 < ∞ such that Q̃[πi] = πi for the
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corresponding constant functions. We denote the set of all continuous functions with
values in [π0, π1] as C[π0,π1] and define a sequence of functions by the iteration
Nt+1 = Q̃[Nt ].
Definition 11.1 The value c∗

(π0,π1)
is called the generalized asymptotic spreading

speed of Q̃ from π0 to π1 if the following conditions hold:

(i) For any N0 ∈ C[π0,π1] such that N0 − π0 has compact support,

lim
t→∞ sup

|x|≥ct

Nt (x) = π0 for all c > c∗
(π0,π1)

. (11.28)

(ii) For any N0 ∈ C[π0,π1] such that N0 − π0 
≡ 0,

lim
t→∞ inf|x|≤ct

Nt (x) = π1 for all c ∈ (0, c∗
(π0,π1)

) . (11.29)

For π0 = 0 and π1 = 1, this definition agrees with Definition 5.1; i.e., c∗
(0,1) = c∗.

If π0 = 0, we can always achieve π1 = 1 by rescaling.
The existence of a generalized spreading speed and associated traveling waves

for operator Q̃, satisfying appropriate conditions, follows from Theorem 5.1.

Theorem 11.1 Assume that operator Q̃ acts on the space of continuous functions
C[π0,π1] as follows:

(i) Translation invariance: Q̃[N(· − a)](x) = Q̃[N ](x − a).
(ii) Invariance on C[π0,π1]: N ∈ C[π0,π1] ⇒ Q̃[N ] ∈ C[π0,π1].

(iii) Fixed points: Q̃[π0] = π0, Q̃[π1] = π1, Q̃[α] > α for α ∈ (π0, π1).
(iv) Monotonicity: π0 ≤ N ≤ Ñ ≤ π1 ⇒ Q̃[N ] ≤ Q̃[Ñ ].
(v) Continuity: If {ft } ⊂ C[π0,π1] and ft → f uniformly on compact subsets of R,

then Q̃[ft ] → Q̃[f ] pointwise as t → ∞.
(vi) Compactness: Every sequence {fj } in C[π0,π1] has a subsequence {fji

} such
that {Q̃[fji

]} converges uniformly on every bounded subset of R.

Then there exists a generalized spreading speed, c∗
(π0,π1)

, for Q̃ from π0 to π1. For
all c ≥ c∗

(π0,π1)
, there exists a monotone traveling-wave solution W(x − ct) with

W(−∞) = π1 and W(∞) = π0.

Proof We construct an operator Q on C[0,π1−π0] as Q[f ] = Q̃[f + π0] − π0.

This operator inherits all the qualitative properties from Q̃, shifted to the interval
[0, π1 − π0]. Hence, it satisfies the assumptions of Theorem 5.1, which guarantees
the existence of a spreading speed and traveling waves. ��

We want to apply this theorem to the second-iterate operator

Q̃[N ](x) = Q ◦ Q[N ](x) =
∫

K(x − y)F

(∫
K(y − z)F (N(z))dz

)
dy .

(11.30)
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The following theorem gives conditions on F for the existence of a generalized
spreading speed and monotone traveling waves (Bourgeois 2016; Bourgeois et al.
2018).

Theorem 11.2 Assume that K is continuous and that its moment-generating
function is bounded for at least one nonzero value. Let F be a growth function
that satisfies the following conditions:

(i) F is bounded and continuously differentiable.
(ii) F has exactly one stable two-cycle, i.e., there exist n± such that 0 < n− <

1 < n+, F(n−) = n+ and F(n+) = n−, and all nonnegative initial conditions
converge to this two-cycle under the map Nt+1 = F(Nt).

(iii) N = 1 is the only fixed point of F on the interval [n−, n+].
(iv) F ′(1) < −1.

(v) F is nonincreasing on the interval [n−, n+].
Then, there exists a spreading speed c∗

(1,n+) for the operator Q̃ in (11.30) from one

to n+. Furthermore, for every c ≥ c∗
(1,n+), there exists a monotone traveling-wave

profile W(x − ct) with W(−∞) = n+ and W(∞) = 0.

Proof Translation invariance, continuity, and compactness of Q̃ follow from the
corresponding properties of Q. Function F maps the interval [1, n+] into [n−, 1],
and vice versa. Hence, if N ∈ [1, n+], then Q[N ] ∈ [n−, 1] and also Q(Q[N ]) ∈
[1, n+]. Therefore, C[1,n+] is invariant under Q̃. Since F(1) = 1 and F(F(n+)) =
n+, we have Q̃(1) = 1 and Q̃(n+) = n+ in the sense of constant functions. From
(iv) we have (F ◦F)′(1) > 1, and hence F(F(α)) > α for some α > 1. Since there
is no fixed point between one and n+, we must have F(F(α)) > α for α ∈ (1, n+).

The same relation holds for constant functions under Q̃. To show monotonicity,
assume that 1 ≤ N(x) ≤ Ñ(x) ≤ n+. Then by (v), we have 1 ≥ F(N(x)) ≥
F(Ñ(x)) ≥ n− and hence also 1 ≥ Q[N ] ≥ Q[Ñ] ≥ n−. But then we repeat
the argument, since F maps [n−, 1] into [1, n+], and we obtain 1 ≤ Q(Q[N ]) ≤
Q(Q[Ñ]) ≤ n+. ��

The monotonicity assumption (v) is satisfied for the Ricker function with 2 <

r < 2.2565 and for the logistic function with 2 < r < 2.2362, respectively. For
larger values of r , function F is not monotone in the interval [n−, n+]. Under certain
conditions, the existence of a generalized spreading speed for Q̃ can still be shown.
The key idea is to construct operators Q̃± that bound Q̃, just as we constructed
operators Q± that bounded Q for overcompensatory dynamics in Sect. 5.4. Details
can be found in the thesis by Bourgeois (2016) and in Bourgeois et al. (2018).

Theorem 11.2 and its generalizations to nonmonotone dynamics have an imme-
diate analogue on the interval [n−, 1]. By applying the one-step operator Q to any
solution of the two-step operator Q̃, we obtain traveling waves that connect one
to n−.
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The theorem gives the existence of a spreading speed, but no simple formula to
calculate it. In particular, it is not known whether the linear conjecture holds, i.e.,
whether the generalized spreading speed c∗

(1,n+) is determined by the linearization
at 0. Based on numerical simulations, Bourgeois (2016) conjectures that the speed
is linearly determined and that c∗

(1,n+) = ĉ1 from (11.27).

11.6 Further Reading

The dynamics of the nonspatial Ricker map range from monotone or nonmonotone
convergence to a unique positive steady state to chaotic dynamics. We only
discussed spreading phenomena in a few cases of a stable steady state or a stable
two-cycle. The ideas presented here can be and have been applied to higher-order
cycles. For example, Bourgeois (2016) uses the fourth power of operator Q to study
spreading dynamics with four-cycles; see also the discussion in Bourgeois et al.
(2018). Seemingly chaotic behavior in the wake of an invasion can be observed in
numerical simulations; see Andersen (1991) and Li et al. (2009).

Bourgeois et al. (2018) do not address the stability of the traveling profiles in the
case where the growth function has a stable two-cycle. They use step functions as
initial conditions in their simulations. The resulting shapes (e.g., Fig. 11.5) appear
to be stable in some sense since they were obtained by two independent numerical
schemes. On the other hand, Li et al. (2009) prove the existence of traveling waves
for operator Q and find a spatially oscillating profile by numerical fixed-point
iteration (see Fig. 4 in their paper). It is unclear whether this profile is stable for
the dynamics of the IDE.

Many more phenomena can occur with overcompensatory dynamics. For exam-
ple, since Q̃ has the three positive fixed points, n− < 1 < n+, and since n− and n+
are stable, there could be a bistable front connecting n− to n+. From Theorem 6.2,
we know that a bistable front of operator Q can and does exist for only one speed
c∗. The techniques in Lui (1983) unfortunately do not apply for proving uniqueness
of the speed in this case. However, Bourgeois et al. (2018) show that if the speed
is unique, then it has to be zero, i.e., the wave is a standing wave. Numerical
simulations suggest the existence of a standing wave; see Fig. 9 in Bourgeois et al.
(2018).

We can extend the phase-plane approach from Sect. 11.3 to study spreading
phenomena and dynamic stabilization as the growth parameter in the Ricker
function increases so that the nonspatial dynamics exhibit oscillations. There is
evidence for a Hopf bifurcation as the intersection points of the thin and thick curves
in the bottom right panel in Fig. 11.4 move across the imaginary line to have positive
real parts; see Fig. 4.19 by Bourgeois (2016) for an illustration and Bourgeois et al.
(2019) for more details.

The theory and examples in this chapter all assumed that the growth dynamics
have no Allee effect. Schreiber (2003) studies several nonspatial models with Allee
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effect and Ricker dynamics and finds that overcompensation and a strong Allee
effect could lead to complex extinction dynamics. Sullivan et al. (2017) combine
Allee dynamics and overcompensation with spatial spread and find pulsating
traveling waves. Otto (2017) in his PhD thesis also studies an IDE that includes an
Allee effect and overcompensation. He finds a novel type of solution that neither
spreads nor retreats but stays in place with compact support in a homogeneous
environment.
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