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Foreword

Integrodifference equations are relative newcomers to the world of mathematical
ecology. First emerging in the 1970s and 1980s, these discrete-time, continuous-
space models with generalized growth and dispersal components have increased
in popularity, and the number of variations has grown over time. Much of this
increase in popularity has been driven by the realization, on the biological side, that
such models can be more closely aligned with real ecological systems than can the
more traditional reaction–diffusion models. Growth is often seasonal, so discrete-
time dynamics makes sense, and dispersal is often complex and nondiffusive, so
generalized dispersal kernels give added realism. From a broader perspective, the
move toward integrodifference equations reflects a desire to forge more intimate
connections between theory and biological observation than has been previously
found. This desire, shared by ecologists and mathematicians alike, reflects the
healthy state of the field of theoretical ecology.

While originally designed to model the space-time dynamics of a single species
with discrete, nonoverlapping generations, integrodifference equations have now
been extended to cover a range of additional features, such as age-structure,
interactions between different species, stochasticity, heterogeneous environments,
and complex, multi-staged dispersal strategies, to name a few. The importance of
getting the details of ecology exactly right has grown. Ecologists are no longer
satisfied with crude caricatures of the systems they study. There is a move to ensure
that models will now provide faithful reflections of detailed and specific quantitative
hypotheses about the biological processes. Integrodifference equations have a role
to play by injecting much-needed realism into space-time models in ecology.

Although typically providing more ecological realism than reaction–diffusion
models, integrodifference models nonetheless retain many qualitative features
found in reaction–diffusion models. The critical patch-size problem, describing
the minimum area needed for population persistence, exists for both models, as
do the traveling wave and spreading speeds problems, describing the wave of
advance of invasive populations. Pattern formation via dispersal-driven instabilities
can also be found in both models, as can many other features. In other words,
integrodifference equations have much in common with parabolic partial differential
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viii Foreword

equations. Both couple growth and dispersal in a similar way, and this gives rise to
deeper mathematical properties that are shared and govern fundamental properties
of solutions. For example, under reasonable assumptions, each equation has a so-
called comparison principle, which states that the operator is order preserving:
initially ordered solutions remain ordered for all time. In turn, this feature allows
for the construction of super- and sub-solutions, which can be very useful in
determining qualitative behaviors such as population persistence or traveling waves.
Thus, the study of integrodifference equations has many mathematical features that
will resonate with researchers versed in the theory of reaction–diffusion equations.

Despite these similarities, integrodifference models also exhibit differences with
reaction–diffusion models. Many of the differences arise from the very general
natures of the growth and the dispersal models found in the integrodifference
framework. The growth term, essentially a discrete-time map, can exhibit a hump-
shaped feature, ecologically describing the process of overcompensation, which
may lead to chaos, even for a single species. This property of chaotic dynamics
cannot be found for single-species differential equation models. In fact, it is well
known that three interacting species are required before chaos can arise in a system
of differential equations. The dispersal kernel, expressed as a probability density
function, can take any number of exotic forms, including heavy tails. These can
lead to unusual outcomes, for example, giving rise to an invasion processes that
continually accelerate with time. What a wonderful mathematical playground in
which to undertake quantitative analysis!

The timing of this book is perfect. While the number of papers developing and
analyzing integrodifference equations is growing quickly, it is still just possible to
compile a reference list that includes every significant publication written in the
area. In this volume, Frithjof Lutscher has attempted the monumental task, and in
doing so has created a comprehensive survey of the field. The book is, however,
much more than a survey of integrodifference equations. There are significant new
results in the book, particularly in later sections. These new results mesh seamlessly
with existing knowledge, filling in gaps and extending analyses.

Taken in its entirety, the book provides a synthesis, a woven tapestry of ideas,
based on the mathematical structures underlying integrodifference equations, and
on the biological insights that these mathematical structures yield. Imprinted on
the book is the perspective of an applied mathematician, embracing structure and
striving for clarity of thought. As such, the book is a joy to read.

Opportunities of this type, to write a book that carves out a developing field, are
rare and valuable. When I read the book, I am glad that Frithjof Lutscher undertook
the writing because he has done a tremendous job of it. This will be the perfect text
for both graduate students who are new to the field and for seasoned researchers
who need to look up specific results. This text is timely and will define the field of
integrodifference equations for many years to come.

Pender Island, BC, Canada Mark Lewis
June 2019



Preface

Ecosystems are marvelous assemblages of individuals that grow, reproduce, interact
with one another, move about in space, and eventually die. Ecosystems also
provide essential services to humans, from oxygen production and recycling of
organic matter to food provision and pollination of agricultural crops. At the
same time, ecosystems are in peril from human activity, such as overexploitation,
landscape fragmentation, and various effects of global change. Spatial ecology
aims to understand the role that individual movement, population interaction, and
landscape characteristics play in generating the patterns of species distributions that
we observe in space and time, in particular questions of population persistence,
population spread, and stability.

Dynamic mathematical models are powerful tools for understanding natural
phenomena in the physical sciences and increasingly also in the life sciences.
Mathematical methods, from the rigor of model formulation to the depth of
analysis and the power of computation, are indispensable when dealing with the
wide range of spatial and temporal scales that are inherent in many of the most
fundamental questions of spatial ecology. Dynamical systems are also fascinating
objects to study in their own right. The interaction between dynamical systems
models and their applications in ecology and other fields is a constant source of
mutual challenges and inspiration. The vision of this book is to introduce the
reader to a class of models known as integrodifference equations and show how
the fascinating, interdisciplinary circle of observation, modeling, analysis, and
interpretation enhances ecological understanding and mathematical theory at the
same time.

Integrodifference equations are models for the temporal evolution of the density
of one or more populations from one generation to the next. These models are
tailor-made to adequately represent the dynamics of organisms with a particular
life cycle, where population growth and individual dispersal occur separated in
time but synchronized in the population. Ecological examples contain many plant
and insect species, particularly in temperate climates. Mathematically speaking,
integrodifference equations define discrete dynamical systems (recursions) on some
appropriate function space. Their mathematical analysis and ecological application
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x Preface

have seen great progress in the past three decades. This book provides the first
comprehensive introduction to the subject and serves as a reference guide to the,
by now, sizable literature on all aspects of these equations.

The book is divided into three parts:

I Basics and Foundations. Chapters 1–8 contain the most important aspects of
modeling with and analysis of integrodifference equations, using the simplest
possible scenarios. The focus is on extinction, persistence, stability, and spread
of a single species in simple landscapes. Basic ideas for numerical approaches
are provided.

II Applications and Approximations. Chapters 9–12 consider various aspects
of real-world applications. The simplifying assumptions from the first part
are modified where necessary to more adequately describe realistic situations.
Various methods of model simplification are presented.

III Extensions and Challenges. Chapters 13–17 discuss substantial and signif-
icant extensions to the simpler models in order to tackle more challenging
biological questions, such as the dynamics of stage-structured populations,
interacting populations, and spatial and temporal variation in the environment.

Throughout this book, questions of population dynamics and their application
to real-world systems motivate all models and mathematical analysis, and all
theoretical and computational results are discussed in relation to ecological theory
and implications. The greatest progress is made where ecology and mathematics
come together to inspire each other toward deeper understanding in each discipline
and their interplay.
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Part I
Basics and Foundations



Chapter 1
Models for Spatial Population Dynamics

Abstract We introduce some of the population dynamics questions that inspire
many of the models and results in this book, and we give their ecological context.
We place integrodifference equations in the context of related modeling approaches.
Finally, we outline the goals of this book, its prerequisites, and the organization of
its content.

1.1 Spatial Aspects of Population Dynamics

One fundamental question in spatial ecology is, what conditions are necessary for
a particular species to be present at a particular location? This deceptively simple
question is at the heart of modern conservation biology: how do we design nature
reserves to ensure the survival of a particular species? Its economic cousin, which
arises, e.g., in fisheries, is, how much of a population can we harvest, and where,
without jeopardizing its survival and that of others that depend on it? And a planning
perspective on the same question is, how can we design agricultural operations, and
where should we place infrastructure to minimize negative effects on ecosystems?

Another striking example of spatial processes in ecology is biological invasions,
where alien species spread into new territory and may disrupt ecosystem function,
diminish biodiversity, and require massive investments in remediation. Human
activities such as travel or international trade facilitate the arrival of alien species and
their spread in new environments. Spatial ecology aims to provide theory to predict
the speed of spatial spread of a species from the various underlying reproductive and
dispersal mechanisms. Not all invasions are detrimental—some are even intended.
The release of biological control agents against a destructive pest species can have
many advantages over the massive use of pesticides. Research is needed to predict
and assess the spread and efficiency of the agent and to optimally place its release
locations. In a world of global change, species will have to move and colonize new
territories to keep up with their preferred climatic conditions. Spatial ecology aims
to predict which species will be able to do so and to develop theory to implement
mitigation measures for those that may not.
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4 1 Models for Spatial Population Dynamics

All of these questions inherently involve considerations of space. Whether a
population persists in a given environment depends on how individuals move about,
use the available resources, and avoid existing dangers. The focus of this book
is on the level of populations, although the considerations begin at the individual
level and continue to the community level of interacting populations. The basic
processes at the individual level are survival, reproduction, and relocation in space.
On the population level, these processes interact to determine whether a population
persists in a given geographic location. Will individuals survive and reproduce
at a high enough rate? Will they move elsewhere and die or establish new local
populations and spread to other geographic locations? Will others move from
elsewhere and support a local population? Persistence versus extinction considers
population dynamics as a binary outcome only. More nuanced questions consider
other aspects of changes in spatial distribution over time. Is a population stable
over many generations? Is the population concentrated in some areas and at low
density in others? Does population density reflect the distribution of the resource
of this population? Is the population oscillating in a relatively predictable manner
over time, or potentially showing chaotic variation? Does this variation reflect
external environmental variation or is it generated by interaction and the use of
space? On the community level, interactions contribute to the increase or decline
of the populations involved. Can two or more populations that compete for the
same essential resources coexist, e.g., by employing different strategies of using
the available space? Will consumer–resource interactions destabilize populations
and trigger oscillations? How do predator and prey movement strategies shape their
spatial distribution? The sheer scope of these problems, that is, their spatial and
temporal extent, make mathematical models indispensable tools to answer some of
these questions.

1.2 Mathematical Models

Mathematical models can provide fundamental insights into the mechanisms
involved in population dynamics, may serve to process the growing amount
of available data, and allow us to test management strategies in simulations
before implementing them in the real world. The focus of this book is on the
fundamental mechanisms, but notes and reference to the other two aspects are
included throughout.

Mathematical models in the form of dynamical systems have served ecological
theory well for over a century and have spurred the development of mathematical
theory in return. Ordinary differential equations for the growth of a single nonspatial
population in continuous time date back to Verhulst (1838) and were extended
to interacting populations by Lotka (1920) and Volterra (1926). They are now
found in many textbooks in ecology as well as in mathematics. The study of
spatial aspects of population spread and population persistence began with the
work by Fisher (1937), Skellam (1951), and Kierstead and Slobodkin (1953).
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These authors combined ordinary differential equations for population genetics
and population dynamics with diffusion equations for spatial spread. The resulting
reaction–diffusion equations in continuous space and time have yielded many deep
insights into spatial phenomena in ecology as well as the mathematical structure of
infinite-dimensional dynamical systems (Cantrell and Cosner 2003).

Dynamical systems models for populations in discrete generations rose to fame
with the discovery that simple density-dependent growth functions could generate
complex and chaotic dynamic behavior (May 1975). They had been the backbone
for theoretical studies of insect host–parasitoid systems for several decades since the
foundational work by Nicholson and Bailey (1935). These difference equations are
sometimes easier to formulate, typically easier to simulate, and almost always more
difficult to analyze than their continuous-time counterparts. The two foundational
works that combine discrete-generation population dynamics with dispersal in con-
tinuous space are by Weinberger (1982) in genetics and by Kot and Schaffer (1986)
in ecology. The resulting equations were later named integrodifference equations
(IDEs) (Neubert et al. 1995). After the discovery of the mathematical phenomenon
of accelerating invasions (Kot et al. 1996), ecologists quickly embraced these
equations as their framework of choice to test models against data for species
invasions (Lewis et al. 2006). Meanwhile, mathematicians took up the challenge
of studying the qualitative behavior of these infinite-dimensional recursions.

Several precursors to IDEs exist in the literature. Slatkin (1973) formulates
an IDE model for the density of an allele in a population to study the steady-
state distribution in a cline. Roff (1974) studies the discrete-time dynamics of a
population distributed over discrete patches in space. The corresponding equations
are now commonly known as coupled map lattices and studied in many different
contexts; see de Camino-Beck and Lewis (2009) and references therein. Many
models exist for continuous-time population dynamics in discrete spatial patches.
They are sometimes known as patch models, but there does not seem to be a
common established terminology. All of these modeling approaches (Table 1.1) are
originally deterministic but have been extended to include stochastic elements.

This book provides the first comprehensive exposition and review of the mathe-
matical and ecological literature on IDEs. These equations constitute a mathematical
framework for studying and understanding how individual dispersal characteristics
and interactions within and between populations interact to generate spatio-temporal
patterns of population distribution and abundance. The particular focus is on species

Table 1.1 Classification of deterministic population dynamic models according to their represen-
tation of time and space.

No space Continuous space Discrete space

Continuous Ordinary differential Reaction–diffusion Patch
time equation equation model

Discrete Difference Integrodifference Coupled map
time equation equation (IDE) lattice
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with distinct growth and dispersal phases, which include many plant, insect, and bird
species in temperate climates. The vision of this book is to enable new opportunities
for ecology and mathematics to meet and create synergies that lead to deeper
understanding of ecological phenomena and create better tools and guidelines for
management of ecosystems.

1.3 Goals and Requirements

The first goal in writing this book is to introduce the fascinating theory of IDEs and
their intriguing applications in spatial ecology for modelers, mathematicians, and
theoretical ecologists. The literature on this subject has grown tremendously since
the foundational papers mentioned above, but it is distributed over a wide range of
journals in modeling, mathematical analysis, and ecological theory and applications.
The second goal is therefore to collect, sort, and coherently summarize the existing
literature on IDEs in spatial ecology. The third goal is to facilitate and inspire new
research projects by presenting the questions and literature in a common overarching
framework and pointing out open problems and knowledge gaps. The hope is that,
in keeping with the spirit of this book, new projects will emerge from scientific
questions, generate novel mathematics, and lead to new insights into the dynamics
of ecological systems.

Most of the material in this book has been published elsewhere before, but we
present a number of results, examples, and applications here for the first time. The
major novelty, however, is the unified presentation of the existing models, theory,
analysis, and applications. The guiding principle in the presentation is to always
begin with the simplest possible meaningful example, where many results can be
obtained explicitly. The second step is then to generalize and illustrate the robust
results that carry over from the simple example as well as the novel aspects that were
not present in the simple example. This contrast allows us to isolate mechanisms that
are responsible for certain outcomes. Some of the deeper mathematical results are
stated and illustrated, but their proofs are not included, only referenced. In doing
so, the book aims to strike a balance between completeness and accessibility. Most
chapters end with a section titled “Further Reading,” where connections to other
aspects are mentioned and some open problems are indicated.

Early versions of chapters of this book were used in topic courses in mathematics
on the graduate level. The minimal requirements for reading the basic chapters
are a strong command of differential and integral calculus, linear algebra, and
some fundamental concepts and approaches from dynamical systems and partial
differential equations. The most important of these are mentioned in Chap. 2, but no
formal definitions or proofs are provided for them. Recurring tools and techniques
from applied mathematics are linear stability analysis, Taylor series approximation,
separation of variables and Fourier analysis, and perturbation expansion. Familiarity
with at least one higher-level programming language is helpful. Simple MATLAB

code for simulating IDEs is provided, but any standard software package that has
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fast Fourier transforms implemented can be used. Some aspects of the theory are
not generally taught in a mathematics curriculum, e.g., monotone systems theory.
Many of these can be studied for a term project or in a directed reading course.

1.4 Outline of the Book

The first part of the book begins with an overview of some of the fundamental
questions of spatial ecology and outlines the mathematical background required
for understanding the material presented. Chapters 2–8 develop all aspects of the
theory of IDEs from model derivation to basic mathematical analysis and numerical
implementation. The guiding principle is to explain every new aspect with the
simplest possible example and motivate the more general study with it. Chapter
2 carefully derives the basic model, discusses its assumptions and limitations, and
summarizes some of the mathematical background required to proceed. Chapter
3 deals with the so-called critical patch-size problem, the question of how much
space a population needs to persist. Chapter 4 looks at the steady-state problem and
the spatial profile of the population distribution. Chapters 5 and 6 deal with spatial
spread and biological invasions in the absence and presence of an Allee effect,
respectively. A typical IDE contains only the outcome of the dispersal process, but
in many cases it is helpful and necessary to model the actual process itself, which
we do in Chap. 7. For illustration and practical applications, we present recipes and
a few warnings about numerical implementations of IDEs in Chap. 8.

In the second part of the book, we present many applications of the theory
from the first part to more realistic ecological problems. Including more realism
often requires modifications of the models and sometimes new theory to understand
their behavior. In Chaps. 9 and 10, we present various techniques for how to
approximate population dynamics and spatial spread characteristics when only
partial information about dispersal is available. Chapter 11 examines the intricate
shapes that the fronts of invading species can take. Chapter 12 reviews many
applications of IDEs to date, for example, to river ecosystems, to global change
scenarios, to Reid’s paradox, and more.

The third part of the book contains extensions of the theory that represent
the leading edge of the theory and its applications. Chapter 13 considers stage-
structured populations and presents the most recent literature connecting models
to data for invasive species. Chapter 14 includes the interaction of two species and
studies phenomena such as spatial pattern formation. Chapters 15 and 16 deal with
population dynamics in spatially and temporarily (stochastically) varying environ-
ments. The final chapter summarizes recent developments in various directions and
includes a review of connections of this theory to related approaches.



Chapter 2
Modeling with Integrodifference
Equations

Abstract We derive the basic integrodifference equation and discuss its two main
ingredients: the growth function and the dispersal kernel. We introduce several
ecological concepts that recur throughout this book and highlight how ecological
assumptions are reflected in the mathematical model. This detailed understanding
will allow us to formulate ecological insights from the mathematical results and
understand the limitations of these insights.

2.1 Derivation of the Basic Model

Integrodifference equations (IDEs) are best suited to describing the life cycle of
annual plants or insects, as depicted in Fig. 2.1. At the beginning of a season, seeds
germinate and seedlings grow, developing leaves, flowers, and seeds. During this
phase, plants do not move in space. Later in the season, plants release seeds that
subsequently travel to a different location, e.g., by wind or birds. As the plants
die, seeds get buried in the soil, ready to germinate at the beginning of the next
season. Similarly, many insects emerge from eggs at the beginning of a season,
developing through larval stages and pupation to the adult form. The adults then
fly, deposit eggs for the next generation, and die. One common key aspect of these
life histories is the separation of a growth phase, during which spatial dispersal is
negligible, and a dispersal phase, during which no growth occurs. Another is the
synchrony with which these processes occur in the population. And, finally, there is
no overlap between different generations. IDEs are designed to model the dynamics
of populations that satisfy these characteristics.

To formulate a mathematical model corresponding to such a life cycle, we denote
the spatial density of the population in year (or generation) t as Nt(x). The spatial
variable x is in some domain of interest, denoted by Ω . We census the population
at the beginning of the growth phase. This growth phase is modeled as a discrete
map Nt �→ F(Nt), which applies at every x ∈ Ω. There is a large body of literature
on the derivation of different forms of the growth function F and on the analysis of
the resulting dynamics of the population. We summarize the most relevant aspects
below in Sect. 2.2.
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Fig. 2.1 Schematic
description of the life cycle of
an organism with distinct
growth and dispersal phase.

growth phase

Nt (x) F(Nt (x))

Nt +1(x) = Q[Nt](x)

dispersal phase

During the dispersal phase, an individual moves from one location to another
with a certain probability. We describe the outcome of this process by a dispersal
kernel K. The probability density of an individual’s location at the end of the
dispersal phase is K(x, y), where y ∈ Ω was its location before the dispersal phase.
Alternatively, in a one-dimensional domain Ω one can think of K(x, y)�x as the
probability that an individual from location y moves to the interval [x, x + �x).

We give several examples of dispersal kernels in Sect. 2.3 below, and we return to a
more detailed mechanistic perspective on modeling the dispersal process in Chap. 7.
We assume that individuals move independently of one another.

From one census to the next, individuals first reproduce and then move. The
population density in the following generation is obtained by adding up all the
individuals present after the growth phase that arrive at a location x from any y.

This process leads to the IDE

Nt+1(x) = Q[Nt ](x) :=
∫

Ω

K(x, y)F (Nt (y), y)dy . (2.1)

Throughout, we denote by Q the next-generation operator that maps the population
density from one generation to the next.

The second argument in the growth function F indicates that the environment
may be heterogeneous so that growth conditions change in space. For example, an
extreme form of spatial heterogeneity is that of an isolated island: a single patch of
suitable habitat is surrounded by unsuitable habitat of very large extent so that no
individuals can reach the island from elsewhere. Determining the conditions under
which a population can persist on such an isolated island is an important question in
conservation ecology and a recurring theme in this book; see, e.g., Chap. 3.

Taking the census before the growth phase is a somewhat arbitrary choice. In
empirical studies, the optimal time of sampling a population is determined by
climatic conditions and morphological aspects of the organism. Taking a census
before, rather than after, the dispersal phase leads to an equation of the form

Ñt+1(x) = Q̃[Ñt ](x) := F

(∫
Ω

K(x, y)Ñt (y)dy, y

)
. (2.2)

The two formulations are equivalent under the transformation Ñ = F(N), but some
care is required to pick appropriate initial conditions (Andersen 1991; Lutscher and
Petrovskii 2008).
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We now take a closer look at the two main ingredients of an IDE, the growth
function and the dispersal kernel, and we introduce the most common examples.

2.2 Growth Functions

Several types of growth functions with particular characteristics describe the various
ecological mechanisms and processes that underlie the growth dynamics in an IDE.
They can be studied as nonspatial models for discrete-time ecological processes in
their own right. Recursion equations of the form

Nt+1 = F(Nt) (2.3)

have a long history in ecological modeling (Hassell 1975; May 1975). For a
comprehensive review and unifying approach to modeling discrete-time growth
functions, see Sandefur (2018).

Function F describes the total number or density of individuals in generation
t + 1 that are produced from individuals at generation t. Consequently, we always
require the following two properties of the growth function:

F(0) = 0, and F(N) ≥ 0 for N ≥ 0 . (2.4)

The first condition ensures that no individuals are produced where there are none
to start with. It excludes the possibility of immigration from elsewhere. The latter
condition ensures that the population remains nonnegative.

The most basic aspects of the long-term dynamics of the recursion in (2.3) are
determined by its steady states or fixed points and their stability. Steady states are
defined by

F(N∗) = N∗ . (2.5)

A steady state N∗ is locally stable if all solutions starting near N∗ stay near N∗. It is
locally asymptotically stable if, in addition, all solutions starting near N∗ converge
to N∗. Finally, N∗ is unstable if it is not stable. If the stability properties of a
fixed point change depending on parameter value, we say that the point undergoes a
bifurcation.

Linear stability analysis provides criteria for stability by expanding the right-
hand side of (2.3) in a Taylor series near a fixed point. We write Nt = N∗ + nt and
assume that |nt | is small. Then

N∗+nt+1 = Nt+1 = F(Nt) = F(N∗+nt ) = F(N∗)+F ′(N∗)nt+h.o.t. , (2.6)

where h.o.t. indicates higher-order terms in nt , here at least quadratic. After
canceling and dropping higher-order terms, we arrive at a linear equation for the
perturbation nt as



12 2 Modeling with Integrodifference Equations

nt+1 = F ′(N∗)nt . (2.7)

If |F ′(N∗)| < 1, then all solutions of this recursion converge to zero (see
(2.10) below), which implies that solutions of (2.3) that start near N∗ converge
to N∗. Hence, we have the sufficient condition that a fixed point N∗ is locally
asymptotically stable for the difference equation in (2.3) if

|F ′(N∗)| < 1 . (2.8)

Beyond approaching a stable fixed point, solutions of difference equations may
exhibit more complicated behavior, such as cyclic, quasi-periodic, or chaotic
dynamics (May 1975). We will not discuss the qualitative dynamics of difference
equations here but rather explain them and relate them to the properties of the growth
functions as they arise throughout the book. We refer the reader to some of the
many textbooks on dynamical systems that give good introductions to the study of
discrete-dynamical systems and their applications in ecology, e.g., Murray (2001),
Kot (2001), Edelstein-Keshet (2005). We will simply write “stable” for “locally
asymptotically stable” and use the long terminology only if confusion could arise
otherwise.

While the growth function determines the total number or density of individuals
generated, it is sometimes convenient to consider the per capita growth rate,
F(N)/N. It represents the number of individuals produced by a single individual.
If the per capita growth rate exceeds unity, then the population grows, if it
is less than unity, it declines. We present four important examples of growth
functions, sometimes also called updating functions, and discuss their basic dynamic
properties.

A Linear Growth Function

The linear function

F(N) = RN (2.9)

models the case that the per capita number of offspring, R, is independent of
population density. The only steady state is N∗ = 0. Recursion (2.3) with a linear
growth function has the solution

Nt = RtN0 . (2.10)

Hence, the assumption of a constant per capita growth rate leads to exponential
growth (R > 1) or decay (0 < R < 1). Negative values of R cannot occur for
the growth function but may arise as the linearization of some nonlinear updating
function at a positive steady state. Then the solutions in (2.10) show oscillations that
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decay (−1 < R < 0) or explode (R < −1). A constant per capita growth function
seems unrealistic when individuals in a population interact. We turn to nonlinear
growth functions next.

The Beverton–Holt Growth Function

For a very simple nonlinear growth function, we assume that the per capita number
of offspring decreases with population density as individuals compete for resources
such as food or space. The Beverton–Holt function,

F(N) = R

1 + κN
N , (2.11)

was originally proposed for recruitment in fish stocks (Beverton and Holt 1957). The
per capita number of offspring is inversely related to density. Parameter κ measures
the strength of density dependence.

We can reduce the number of parameters by nondimensionalizing the model. We
write Nt = N̂nt , where N̂ is a constant with the same physical dimensions as Nt

and nt is a nondimensional quantity. Then we find

nt+1 = Rnt

1 + κN̂nt

. (2.12)

Different choices of N̂ will yield different but equivalent model formulations.
Choosing N̂ = 1/κ results in a particularly simple form of the denominator,
whereas choosing N̂ = (R − 1)/κ gives a particularly simple form of the positive
fixed point, namely n∗ = 1. The latter choice requires R > 1. We will use various
forms, depending on which is most convenient, and we will still write Nt instead of
nt for the nondimensionalized model.

We study the dynamics of the (scaled) Beverton–Holt function

Nt+1 = RNt

1 + (R − 1)Nt

, R > 1 , (2.13)

in more detail. The fixed points are N∗ = 0, the extinction state or trivial state, and
N∗ = 1, the persistence state. The respective derivatives are F ′(0) = R and F ′(1) =
1/R. Hence, there is a unique, locally stable positive fixed point; the zero state is
unstable. We visualize the dynamics in a cobweb diagram in Fig. 2.2. Starting from
some initial condition N0, we find F(N0), then project onto the diagonal to find N1,
and continue by finding F(N1), and so on, see, e.g., Kot (2001).

The Beverton–Holt updating function has two important properties. First, it is
monotone increasing; i.e., if N > Ñ , then F(N) > F(Ñ). Consequently, solutions
of recursion (2.13) are monotone, either increasing (i.e., Nt+1 > Nt for all t) or
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Fig. 2.2 Growth functions and the cobwebbing process. Top left: The Beverton–Holt function
(2.13) has monotone dynamics (parameter R = 3, initial condition N0 = 0.2). Top right: The
Ricker function (2.19) with stable positive state and nonmonotone dynamics (parameter r = 1.5,
initial condition N0 = 0.2). Bottom left: The Ricker function with a stable two-cycle (parameter
r = 2.1, initial condition N0 = 0.03). Bottom right: The Allee function with a solution that
converges to the stable positive state (parameters R = 5, γ = 2, initial condition N0 = 0.5).

decreasing (i.e., Nt+1 < Nt for all t). In particular, solutions cannot oscillate.
Second, it is concave down. Consequently, there can only be one positive steady
state. When we combine the two properties, we see that the positive state is globally
asymptotically stable. Monotonicity is an important concept with far reaching
consequences in dynamical systems. We shall see in the next section that a lack
of monotonicity can lead to highly complex dynamics. In subsequent chapters, we
shall also define what it means for the next-generation operator Q to be monotone
(or order preserving) and see how important this property is in many contexts.

It turns out that we can explicitly solve the iteration in (2.13). The new variable
Ñt = 1/Nt satisfies the linear difference equation

Ñt+1 = 1

R
Ñt + R − 1

R
, (2.14)

which can be solved to obtain

Ñt = 1

Rt
(Ñ0 − 1) + 1 . (2.15)
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Inverting the solution gives

Nt = RtN0

(Rt − 1)N0 + 1
. (2.16)

The Beverton–Holt function can also be derived from a mechanistic model in
continuous time, namely the Verhulst equation

d

dt
N = rN(1 − N) . (2.17)

Separation of variables gives the solution

N(t) = ertN0

1 + (ert − 1)N0
. (2.18)

Evaluating the solution at integer times t , we obtain precisely the solution of the
Beverton–Holt map with R = er .

The Ricker Growth Function

Also in the context of fish stocks and around the same time, Ricker (1954) proposed
that the per capita growth rate decays exponentially with population density. In
nondimensional form, the updating function can be written as

F(N) = N exp(r(1 − N)) , r > 0 . (2.19)

The fixed points are N∗ = 0 and N∗ = 1, and the derivatives are F ′(0) = er

and F ′(1) = 1 − r. The zero state is unstable, but the dynamics around the positive
state can be more complicated. The positive state is globally asymptotically stable if
0 < r < 2. Solutions are monotone when 0 < r < 1 but show decaying oscillations
when 1 < r < 2; see Fig. 2.2. At r = 2, a flip bifurcation generates two-cycles
(periodic orbits of length 2), and for increasing values of r also of length 4, 8, and
so forth, eventually leading to chaotic dynamics (Kot 2001). In Chap. 4, we shall see
how these complicated dynamics can appear in spatial models.

The poster child of chaotic dynamics is the discrete logistic equation (Kot 2001).
It is typically written as F(N) = rN(1 − N). By scaling the positive steady state to
N∗ = 1, it can be written in the form

F(N) = (r + 1)N − rN2. (2.20)

Since the logistic function can take on negative values, it is not an ideal choice for
our modeling purposes. Function F is positive for 0 < N < (r + 1)/r and has its
maximum value of (r + 1)2/(4r) at (r + 1)/(2r). If this maximum is no larger than
the positive zero, then the interval [0, (r + 1)/r] is invariant under the logistic map.
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This is the case when r ≤ 3. Hence, if we limit parameter values to 0 < r < 3
and initial conditions to 0 ≤ N0 ≤ (r + 1)/r , we avoid biologically unreasonable
negative densities. The advantage of the logistic map is that a number of calculations
can be carried out explicitly. The dynamics it generates are qualitatively the same as
for the Ricker map (Kot 2001).

The difference in the qualitative behavior of solutions between the Beverton–Holt
and the Ricker dynamics can be related to their ecological interpretation in terms
of intra-specific competition. Beverton–Holt dynamics model contest competition,
where all individuals are ranked and resources are distributed according to ranking.
Ricker dynamics result from scramble competition, where resources are distributed
equally among all individuals. The latter scenario can lead to the “boom-and-
bust” behavior, where the population explodes when resources are abundant and
crashes when resources are rare. This effect is known as overcompensation. When
resources are distributed according to a ranking, overcompensation is avoided and
the population stabilizes, which is known as compensation.

An Allee Effect

An Allee effect occurs when the per capita growth rate may increase with population
density, at least in some range (Allee 1949). Some mechanisms that can lead to
an Allee effect include mate finding, group hunting, or group defense (Courchamp
et al. 2008). An Allee effect is said to be strong if a population will grow only
above a certain positive threshold and decline when below this threshold. It is said
to be weak if the population can grow even at low density, just not as fast as at
intermediate densities.

Mathematically, we can express these conditions by saying (Wang et al. 2002)

F(N) > F ′(0)N for some N , (2.21)

with F ′(0) < 1 for a strong Allee effect and F ′(0) ≥ 1 for a weak Allee effect.
We can nondimensionalize and assume that the largest fixed point is F(1) = 1.

We shall also assume that F is monotone increasing on [0, 1], so that there is no
overcompensation. A model function for the strong Allee effect is (Wang et al. 2002;
Musgrave et al. 2015)

F(N) = RNγ

1 + (R − 1)Nγ
, (2.22)

with R > γ > 1. In addition to the two steady states N∗ = 0, N∗ = 1, there is a
second positive steady state 0 < N∗

a < 1. This state represents the Allee threshold.
Populations below N∗

a will go extinct, whereas initial populations above N∗
a will

grow to N∗ = 1. The states N∗ = 0 and N∗ = 1 are locally stable; N∗
a is unstable.

The dynamics of this map are depicted in Fig. 2.2.
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2.3 Dispersal Kernels

A dispersal kernel does not describe the process of dispersal but rather summarizes
the outcome of this process. It is the probability density function of the location of
an individual after the dispersal process. In plant ecology, the dispersal kernel is also
known as the seed shadow (Neubert et al. 1995).

We denote the probability density of the location of an individual after dispersal
by K(x, y) if the location prior to dispersal was y. Naturally, K is nonnegative. If
there is no dispersal-induced mortality, a dispersal kernel in one spatial dimension
must satisfy the condition

∫
R

K(x, y)dx = 1 for all y ∈ R , (2.23)

and similarly in higher dimensions. If dispersal carries a risk of mortality or if the
domain of interest, Ω , does not represent all locations to which individuals can
disperse, then we only have the inequality

∫
Ω

K(x, y)dx ≤ 1 for all y ∈ Ω . (2.24)

For example, wind-dispersed seeds from plants on an isolated island may be carried
off the island into the water.

By far the majority of studies, analytical and empirical, consider dispersal kernels
to depend only on the distance moved. In that case, K̃(|x − y|) = K(x, y) gives the
distribution of dispersal distances. One implicitly assumes that dispersal is isotropic,
i.e., identical in all directions. Much of the empirical literature is concerned with
measuring and appropriately describing these distributions.

We mention the Gaussian and the Laplace dispersal kernels here. We will
introduce other dispersal kernels throughout (see, e.g., Table 3.1 in Chap. 3)
and devote Chap. 7 to deriving dispersal kernels from models that describe the
movement process.

Gaussian Kernel

The most widely used kernel is the Gaussian kernel or normal distribution, which,
in one spatial dimension, is given by

K(x, y) = KG(x, y) = 1√
2πσ 2

exp

(
− (x − y)2

2σ 2

)
, (2.25)
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Fig. 2.3 The Gaussian and
the Laplace dispersal kernel
for equal variance σ 2 = 1.
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with variance σ 2 and x, y ∈ R; see Fig. 2.3. The two-dimensional analogue is

K(x, y) = 1

2πσ 2 exp

(
−‖x − y‖2

2σ 2

)
, (2.26)

again with variance σ 2 but x, y ∈ R
2.

Laplace Kernel

According to a Gaussian kernel, the distance traveled decays exponentially with
the square of the distance. Many datasets on dispersal report a slower decay, e.g., in
insects (Neubert et al. 1995). An alternative dispersal kernel that respects this slower
decay and is frequently used in calculations is the Laplace kernel, also known as the
back-to-back exponential kernel. It is given by

K(x, y) = KL(x, y) = 1√
2σ 2

exp

(
−
√

2

σ 2
|x − y|

)
, (2.27)

again with variance σ 2. To simplify notation, we will also write the Laplace kernel

with dispersal parameter a =
√

2
σ 2 . The quantity 1/a has units of length and denotes

the mean absolute deviation or mean dispersal distance.
For a two-dimensional version of this kernel, we could simply replace the abso-

lute value in the exponent with the norm and adjust the scaling factor accordingly, as
we did for the Gaussian kernel (Etienne et al. 2002). However, the resulting kernel is
not the two-dimensional analogue of the Laplace kernel. It is sometimes referred to
as the negative exponential kernel (Nathan et al. 2012). We derive the correct two-
dimensional Laplace kernel in Sect. 7.2. We discuss some of the issues in comparing
dispersal in one and two dimensions in Sect. 12.7.
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Compared to the Gaussian kernel for equal variance, the Laplace kernel has a
higher density near the release point and far away: it is leptokurtic; see Fig. 2.3 and
also Table 10.1.

One of the many nice features of the Laplace kernel is that, similarly to the
Beverton–Holt growth function, it can be derived from a continuous-time process
(Neubert et al. 1995). We will delve into mechanistic movement models in detail in
Chap. 7 and derive dispersal kernels from first principles. Here we briefly explain the
ideas. We consider a single individual and make the most simple assumption that this
individual performs a random walk, uncorrelated and unbiased, in a homogeneous
landscape. This individual could be an adult insect flying around and laying eggs, or
it could be the seed of a plant sailing in the wind. The next, also very simplistic
assumption could be that there is a constant probability per unit time that the
individual stops the random walk. The adult insect lays the egg; the seed drops to
the ground. Then we write an equation for the spatial distribution of locations where
the individual stops. This distribution is the dispersal kernel that emerges from the
process of random walk and constant stopping probability. For this simple process,
it turns out to be the Laplace kernel (Neubert et al. 1995).

Deriving dispersal kernels from mechanistic movement models is one option;
another is incorporating empirical results directly. The modeling framework of IDEs
is ideally suited to utilizing certain measurements of dispersal patterns in dynamic
models. Fujiwara et al. (2006) develop estimators for the parameters of dispersal
kernels in the presence of mortality and incomplete census. Lewis et al. (2006)
provide an estimator for the moment-generating function of a dispersal kernel in
an application to predicting spread spatial rates from data. Incorporating empirical
data for the outcome of dispersal into reaction–diffusion equations for the dispersal
process is arguably more complicated.

The flexibility to accommodate a wide range of dispersal patterns in IDEs is at
the same time an appealing feature to empiricists and a challenge for analysts. It is
not easy to give general, empirically motivated conditions that a function K(x, y) of
two variables should satisfy in order to be a dispersal kernel; it seems a bit easier to
do this for the distribution of dispersal distances K̃(|x−y|). In subsequent chapters,
we will address the question of how certain characteristics of the dispersal kernel
influence the patterns observed at the population level.

2.4 Motivating Example: Dispersal on and from an Island

We close this chapter with a simplified example that illustrates several concepts
that we explore in detail in subsequent chapters. We imagine a scenario where the
suitable habitat for a population is an isolated island. It could be an actual island
surrounded by water or, more generally, an area of suitable habitat surrounded by
an unsuitable environment, such as a meadow in a forest or a park in a city. We
assume that no individuals of the population arrive from elsewhere to the island.
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In the simplest possible case, when the island is small compared to the dispersal
ability of individuals and if the island is relatively homogeneous, one could imagine
that individuals move everywhere on the island with equal probability. The kernel
describing this situation is the uniform kernel

K(x, y) = 1

|Ω| , where |Ω| =
∫

Ω

dx (2.28)

denotes the total area of the island. The resulting IDE (2.1) collapses to a nonspatial
difference equation. Even if the initial population is not spatially uniform, the
first generation is. Subsequently, population dynamics simply follow the one-
dimensional discrete map given by the averaged growth function

Nt+1 = F(Nt) := 1

|Ω|
∫

Ω

F(Nt(y))dy . (2.29)

Somewhat more interesting is the case where a certain proportion of individuals
leaves the island during dispersal. For example, wind-borne seeds are carried away
into the surrounding water. The remaining individuals distribute evenly on the
island. Then the model becomes

Nt+1 = sF (Nt ) , (2.30)

where s denotes the probability that an individual initially on the island successfully
stays on the island during one dispersal period. The probability that an individual
leaves the island is 1 − s. When F(N) = RN is the linear function, then the island
model with departure from the island becomes Nt+1 = sRNt . The trivial steady
state N∗ = 0 is stable if sR < 1 and unstable if sR > 1.

When F(N) is the (scaled) Beverton–Holt function, then the spatial model with
departure from the island also collapses to a Beverton–Holt model, multiplied by s.

The linearization of this model at the trivial state is the previous linear model. The
nontrivial steady state is given by

N∗ = sR − 1

R − 1
. (2.31)

This point is positive, and therefore biologically relevant, only if sR > 1, i.e., if the
trivial state is unstable. When the point is positive, it is stable. Hence, if we choose
s, the probability to stay on the island, as a bifurcation parameter, we observe a
transcritical bifurcation at s = 1/R; see Fig. 2.4.

In more ecological terms, if the trivial state is unstable, then a small initial
population can grow and persist on the island. A sufficient proportion of offspring
has to remain on the island for the population to be viable. This observation is, of
course, neither new nor surprising. It is also clear that the probability of staying on
the island depends on the size and shape of the island and on the movement behavior.
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Fig. 2.4 Transcritical
bifurcation in the simple
island dispersal model. When
s < 1/R, the trivial state is
stable (thick solid line); when
s > 1/R, it is unstable
(dashed line), while the
positive state is stable (thick
solid line).
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The question is how. What are the effects of the shape of the island? What are the
effects of nonuniform dispersal? What are the effects of a nonuniform population
distribution? These questions will be the focus of attention in subsequent chapters.

2.5 Further Reading

The literature on (nonspatial) difference equations in ecological applications is vast,
as is the literature on their mathematical properties. Many other discrete maps can be
derived from mechanistic growth models in continuous time. For example, Bellows
(1981) uses seven different mortality functions to derive various maps, among them
the Ricker map. Veit and Lewis (1996) use a pair-formation model together with
the Beverton–Holt model to derive an updating function with Allee effect; see
Sect. 12.6. Geritz and Kisdi (2004) use several continuous-time consumer–resource
models to derive many different updating functions and to determine ecological
conditions and scenarios for the emergence of overcompensation. Brännström
and Sumpter (2005) derive a variety of intra-specific competition models and
discuss their dynamic properties. Schreiber (2003) combines an Allee effect with
overcompensation and finds chaotic transients and extinction dynamics.

Estimating parameter values for these functions from observations can be
challenging. For example, the Beverton–Holt and the Ricker function both have
decreasing per capita reproduction rates. Even when empirical curves for these per
capita rates are available, it may be impossible to statistically distinguish between
the two alternatives. Yet, the difference in dynamical behavior between the two is
striking.

While there are many different growth functions, certain properties (e.g., mono-
tonicity) are crucial to determining the dynamic behavior. Similarly, depending
on the question that we want to study, certain properties of dispersal kernels are
crucial, whereas others have little effect. For example, we will see in Chap. 5
that the rate at which the tails of a dispersal kernel approach zero is crucial to
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determining the speed at which a population will spread in space. Accordingly,
theoretical models typically use few kernels, each representing a different set of
properties. Empirically, however, many different forms have been suggested and fit
to observations. Bullock and Clarke (2000) use an exponential and a power law
distribution to fit measurements of heather seeds (Calluna vulgaris) but conclude
that neither of them individually gives a good fit. Rather, a linear combination
between the two, a so-called mixed model, gives the best fit. We consider such mixed
kernels in Sect. 12.5. Kot et al. (1996) fit, among others, a Weibull distribution, a
gamma distribution, or a log-normal distribution to the same dataset of fruit fly
dispersal data and compare the resulting predictions for population spread rates.
We turn to the question of spatial spread in Chap. 5. Tufto et al. (2005) present the
gamma-binomial distribution that can interpolate between the Gaussian kernel and
the Laplace kernel. We use this interpolation in Sect. 10.1 to illustrate the value of
approximations.



Chapter 3
Critical Patch-Size

Abstract One of the basic questions in spatial ecology is: how much space does a
population need to persist? The critical patch-size is the size of the suitable habitat
where population gain through reproduction balances population loss through
dispersal. The question of how large a certain habitat has to be to support a
given population has important applications in conservation biology, e.g., when
designing a protected area to ensure the survival of an endangered population. The
analysis in this chapter is based on linearization, thereby implicitly assuming that the
population growth function has no Allee effect. We explicitly compute the critical
size when dispersal is described by a Laplace kernel. We then compare how different
dispersal patterns affect this critical size. At the end of the chapter, we consider the
class of separable kernels and introduce an approximation method.

3.1 Linearizing the Equation

If the habitat of a population consists of a single island or patch, denoted by Ω ,
we can expect that dispersing individuals are likely to leave this patch when it is
small and likely to remain in the patch when it is large. Since the area of a patch
grows quadratically with length or diameter and the boundary grows only linearly,
we can expect that there is a critical patch-size, below which a population will go
extinct and above which a population will persist. This critical patch-size problem
dates back to the work by Skellam (1951) and Kierstead and Slobodkin (1953)
for reaction–diffusion equations and is reviewed comprehensively by Cantrell and
Cosner (2003). For IDEs, the critical patch-size problem was first addressed by Kot
and Schaffer (1986). We begin this chapter with their ideas.

The density Nt(x) of the population satisfies IDE (2.1) on some bounded domain
of interest, Ω :

Nt+1(x) = Q[Nt ](x) =
∫

Ω

K(x, y)F (Nt (y), y)dy . (3.1)

© Springer Nature Switzerland AG 2019
F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary
Applied Mathematics 49, https://doi.org/10.1007/978-3-030-29294-2_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29294-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-29294-2_3


24 3 Critical Patch-Size

We assume that there is no Allee effect. We first define what it means for the
population to persist and then determine the conditions, on Ω , on K , and on F ,
such that the population persists.

In the absence of immigration, new individuals can only be born from existing
individuals. This fact is reflected in the property F(0) = 0; see Sect. 2.2. It implies
that N∗(x) = 0 is a fixed point of IDE (3.1). This trivial solution corresponds to
the absence of the population. If this fixed point is stable, then solutions with initial
conditions close to zero will converge to zero; if it is unstable, at least one solution
will grow. In the former case, we say that the population will go extinct, and in the
latter, we say that it can persist. Hence, we study how the stability properties of
the trivial solution depend on patch-size, dispersal behavior, and growth function.
This definition of persistence does not indicate any long-term behavior; i.e., whether
the population converges to a positive steady state or shows more complicated
dynamics. We will address these questions in subsequent chapters.

If N∗ is any steady state, we write Nt(x) = N∗(x) + nt (x), expand the
growth function in (3.1) in a Taylor series, and drop the higher-order terms; i.e.,
we approximate it by its linearization. We write

Nt+1(x) = N∗(x) + nt+1(x)

=
∫

Ω

K(x, y)F (Nt (y), y)dy

=
∫

Ω

K(x, y)

[
F(N∗(y), y) + ∂F

∂N
(N∗(y), y)nt (y) + h.o.t.

]
dy

= N∗(x) +
∫

Ω

K(x, y)R(y)nt (y)dy + h.o.t. , (3.2)

where R(y) = ∂F
∂N

(N∗(y), y). After canceling N∗(x) and the higher order terms,
we obtain a linear equation for nt in the form of an integral operator. In analogy with
the finite-dimensional case, we call the resulting operator the “derivative” of Q and
write Q′. (It turns out to be the Fréchet derivative of Q; see, e.g., Keener 2000.) Just
as in the finite-dimensional case, the derivative depends on where we linearize, here
at N∗(x). We denote this dependency as Q′[N∗]. Also as in the finite-dimensional
case, it is a linear operator, here applied to nt . We write the linearization of (3.1) at
N∗ = 0 as

nt+1(x) = Q′[0]nt (x) =
∫

Ω

K(x, y)R(y)nt (y)dy , R(y) = ∂F

∂N
(0, y) .

(3.3)
We expect the linear equation to have exponential solutions of the form nt (x) =
λtφ(x), where λ is an eigenvalue and φ an eigenfunction of the linear integral
operator in (3.3). Solutions of this form will grow, i.e., the population will persist,
if λ > 1, and they will decay, i.e., the population will decline, if 0 ≤ λ < 1. For the
solution to be biologically meaningful, we must ensure that φ is nonnegative. We
are hence led to study the eigenvalue problem
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λφ(x) = Q′[0]φ(x) =
∫

Ω

K(x, y)R(y)φ(y)dy (3.4)

in some appropriately chosen function space.
Before we turn to an example where exact persistence conditions can be obtained,

we put our calculations on a solid mathematical footing. The following theorems
summarize some of the most important properties of the linear integral operator in
(3.4) and its relation to the nonlinear IDE (3.1) for our purposes. We begin with
some abstract stability theory.

Theorem 3.1 (Compactness and Linearized Stability) Assume that Ω is
bounded and connected and that K is continuous and positive. Assume that F is
smooth and satisfies F(0, y) = 0. Then the operators in (3.1) and (3.4) are compact
in the space of continuous functions. In particular, the spectrum of (3.4) consists of
eigenvalues that can only accumulate at zero. If the spectrum is contained in the
interior of the unit circle, then N∗ = 0 is asymptotically stable for (3.1). If at least
one eigenvalue of (3.4) is outside the unit circle, then N∗ = 0 is unstable.

The proof of compactness is standard (see also Sect. 3.6), as is the statement
about the spectrum (Keener 2000). The stability and instability results can be found
as Theorems 1 and 2 in Iooss (1979). Next, we present a generalization of the
Perron–Frobenius theorem for positive matrices (Caswell 2001) and a special case
of the Krein–Rutman theorem for positive operators (Krasnosel’skii 1964). We
discuss several cases and further details at the end of this chapter. An outline of
the proof and certain extensions can be found in Chap. 13.

Theorem 3.2 (Dominant Eigenvalue) Assume that Ω is bounded and connected
and that K and R are continuous and positive. Then the integral operator in (3.4)
in the space of continuous functions has a dominant eigenvalue, i.e., a real, positive
eigenvalue that is larger in modulus than all other eigenvalues. The corresponding
dominant eigenfunction is positive.

3.2 Critical Patch-Size for the Laplace Kernel

We consider the domain of interest to be the interval Ω = [−L/2, L/2] of length
L, and we assume that the growth function is independent of space, so that R(y) =
R = F ′(0) > 0. The Laplace kernel in (2.27) is positive and continuous so that
all of the conditions in Theorem 3.2 are satisfied. Hence, we study the eigenvalue
problem

λφ(x) = R

∫ L/2

−L/2

a

2
exp(−a|x − y|)φ(y)dy , R = F ′(0) , (3.5)
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where 1/a is the mean dispersal distance. We begin with a simple observation that
holds for general dispersal kernels.

Lemma 3.1 If R(y) = R is constant, and if
∫
Ω

K(x, y)dx < 1 for some y, then
the dominant eigenvalue satisfies λ < R.

Proof From (2.24), we always have the inequality
∫
Ω

K(x, y)dx ≤ 1. We integrate
(3.5) with respect to x and use the inequality for the kernel to get

λ

∫
Ω

φ(x)dx = R

∫
Ω

∫
Ω

K(x, y)dxφ(y)dy < R

∫
Ω

φ(y)dy . (3.6)

The lemma can be extended to the case when R = R(x) is not constant. We then
obtain the upper bound λ < maxy∈Ω R(y) since K is nonnegative. ��

The integral equation in (3.5) can be turned into an equivalent second-order
differential equation. We split the integral into two parts to eliminate the absolute
value as

λφ(x) = Ra

2

[∫ x

−L/2
e−a(x−y)φ(y)dy −

∫ x

L/2
ea(x−y)φ(y)dy

]
. (3.7)

Differentiating this equation once, we obtain

λφ′(x) = −Ra2

2

[∫ x

−L/2
e−a(x−y)φ(y)dy +

∫ x

L/2
ea(x−y)φ(y)dy

]
, (3.8)

and after a second time, we get

λφ′′(x) = −Ra2φ(x) + Ra3

2

∫ L/2

−L/2
e−a|x−y|φ(y)dy . (3.9)

Substituting (3.5) for the integral and rearranging terms, we find the linear differen-
tial equation

φ′′(x) + a2
(

R

λ
− 1

)
φ(x) = 0 , x ∈

(
−L

2
,
L

2

)
. (3.10)

To solve this equation, we need to supply boundary conditions. Evaluating (3.8) at
the boundary points, we find

φ′ (−L/2) = aφ (−L/2) and φ′ (L/2) = −aφ (L/2) . (3.11)

Hence, the eigenvalue problem in (3.5) is equivalent to a regular Sturm–Liouville
problem (see, e.g., Keener (2000) for details on such problems).
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Fig. 3.1 Graphs of the left-
(solid) and right- (dashed)
hand sides of the
transcendental equation
(3.13) as a function of
1/λ > 1/R. Each intersection
corresponds to an eigenvalue
of the problem. Parameters
are R = 5 and aL = 2. The
smallest intersection point
corresponds to the largest
eigenvalue. 0 1 2 3 4 5
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Using the symmetry of the problem, we find solutions of the form

φ(x) = cos(Ax) with A2 = a2
(

R

λ
− 1

)
. (3.12)

Here, we require the relation λ < R that we proved above. Substituting this ansatz
into the boundary conditions, we find that eigenvalues of (3.5) are given by those
λ < R that satisfy the transcendental equation

tan

(
aL

√
R/λ − 1

2

)
= 1√

R/λ − 1
. (3.13)

This equation has infinitely many solutions. We illustrate these in Fig. 3.1 by plotting
both sides of (3.13) as a function of 1/λ.

The trivial solution of the IDE is stable if the dominant eigenvalue is less than
unity and unstable if it is larger. The critical patch-size corresponds to the bifurcation
point where the dominant eigenvalue equals unity. Setting λ = 1, we solve (3.13)
for L and obtain the threshold value for the critical patch-size.

Proposition 3.1 The dominant eigenvalue of (3.5) is given by the largest value of λ

that solves the transcendental equation in (3.13). The critical patch-size, L∗, is the
value of L for which the dominant eigenvalue equals one. It is given by

L∗ = 2

a
√

R − 1
arctan

(
1√

R − 1

)
. (3.14)

If the patch is shorter than L∗, then dispersal loss exceeds reproductive gain in
the patch, and the population will die out. If the patch is longer than L∗, then the
situation is reversed and the population can persist. The critical patch-size decreases
as the growth rate, R, increases or the mean dispersal distance, 1/a, decreases; see
Fig. 3.2.
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Fig. 3.2 Critical patch-size
L∗ as a function of growth
rate R according to formula
(3.14) for different values of
a = 0.1 (dashed), a = 0.5
(solid), and a = 2 (dash-dot).
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As for linear matrix population models, the dominant eigenvalue can be inter-
preted as an overall or global population growth rate (Caswell 2001). Then the
condition λ < R is the mathematical equivalent to the ecological insight that the
global growth rate on a bounded patch with loss of individuals by dispersal is always
smaller than the local growth rate at every point.

On a more technical note, we have tacitly assumed that the eigenfunction is twice
continuously differentiable. We shall not be concerned with questions of regularity
of solutions of IDEs here but instead assume the degree of differentiability necessary
for calculations. Regularity is, of course, an important question to study in (partial)
differential equations such as reaction–diffusion equations (Cantrell and Cosner
2003). Integral equations are much more “forgiving” in that the integral operator
will “smooth” out solutions (as long as the kernel is smooth enough), whereas in
differential equations, derivatives of solutions have to exist (at least in some weak
sense) for the equations to make sense.

3.3 Scaling

According to (3.13), the eigenvalues of the integral operator in (3.4) depend
only on R and the nondimensional parameter combination â = aL. Recall that
1/a has units of length. We formalize this observation by applying the same
nondimensionalization method as in (2.12) to the IDE

Nt+1(x) =
∫ L/2

−L/2
K(x, y)F (Nt (y), y)dy . (3.15)

We set x = Lw and Nt(x) = N̂nt (w), where w and nt are nondimensional
quantities. Substituting, we obtain

N̂nt+1(w) =
∫ 1/2

−1/2
K(Lw,Lz)F (N̂nt (z), Lz)d(Lz) , (3.16)
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where we wrote y = Lz. Hence, using the nondimensional growth function
F̂ (n, z) = 1

N̂
F (N̂n, Lz) and the scaled kernel K̂(w, z) = LK(Lw,Lz), we can

write IDE (3.15) in the equivalent form

nt+1(w) =
∫ 1/2

−1/2
K̂(w, z)F̂ (nt (z), z)dz . (3.17)

The substitution rules for integration ensure that the properties of the kernel remain
unchanged. For the Laplace kernel, we find

K̂(w, z) = aLe−aL|w−z| = âe−â|w−z| , (3.18)

as expected from (3.13).
Even when R(x) > 0 is not constant, one can still reduce integral equation

(3.5) to differential equation (3.10) with boundary conditions (3.11). In that case,
an explicit solution for L∗ is not available, but the resulting eigenvalue problem can
be studied analogously to eigenvalue problems that result from reaction–diffusion
equations on bounded domains, e.g., by variational methods (Cantrell and Cosner
2003).

The deeper reason for why we can reduce the integral equation to a differential
equation is that the Laplace kernel is the Green’s function of a certain differential
operator; see Chap. 7. The same idea applies to more complicated mechanistic
movement models formulated in heterogeneous domains and including boundary
conditions (Van Kirk and Lewis 1997; Musgrave and Lutscher 2014a). We return to
these questions in Chaps. 7 and 15.

The symmetry assumption on K means that movement from x to y is equally
likely as from y to x. Such an assumption seems reasonable in a homogeneous
landscape but can be violated when the environment is heterogeneous or when
dispersal is biased due to external forces. We will address some of these points
in Sects. 7.5 and 12.2 and in Chap. 15.

3.4 Effects of Dispersal Kernels on Critical Patch-Size

The Laplace kernel is one of the very few dispersal kernels for which the critical
patch-size can be calculated explicitly. How would the habitat requirement for
population persistence change if dispersal followed a different kernel? We illustrate
this question by numerically calculating and comparing eigenvalues of a number of
commonly used kernels, listed in Table 3.1.

If the growth rate R(x) = R is constant within a patch, the dominant eigenvalue
in (3.4) is given by λ = Rλ̃, where λ̃ is the dominant eigenvalue of the operator

φ �→
∫ L/2

−L/2
K(x, y)φ(y)dy . (3.19)
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Table 3.1 Dispersal kernels for comparison of critical patch-size; see Fig. 3.3 for illustration.

Name Formula Constraint

Gaussian 1√
2πσ 2

exp
(
− x2

2σ 2

)
σ 2 = 1

Laplace a
2 exp (−a|x|) a = √

2

Top-hat 1
2β

, x ∈ [−β, β] β = √
3

Tent 1
η

− |x|
η2 , x ∈ [−η, η] η = √

6

Double gamma 1
2
(k)θ

∣∣ x
θ

∣∣k−1 exp
(− ∣∣ x

θ

∣∣) k(k + 1)θ2 = 1

Double Weibull k
2θ

∣∣ x
θ

∣∣k−1 exp
(
− ∣∣ x

θ

∣∣k) θ2
(1 + 2/k) = 1

The gamma function is denoted by 
(k).

We evaluate the dominant eigenvalue of this operator numerically for several kernels
and compare. We choose symmetric kernels of the form K(x, y) = K̃(x−y). When
a kernel has only one parameter, we scale it such that the variance is equal to one.
When there are two parameters, we reduce them to a single parameter by the same
constraint.

The kernels are plotted in the left panel in Fig. 3.3; the corresponding dominant
eigenvalues λ̃ are plotted in the right panel. The differences between the dominant
eigenvalues for the Gaussian, Laplace, top-hat, and tent kernels are quite small (top
row). The double gamma kernel with k = 1 is identical to the Laplace kernel. The
Laplace kernel has the largest dominant eigenvalue for small patch-sizes. Its mass
is the most concentrated near zero. Individuals typically stay close to their previous
location and therefore many can successfully stay in a small domain.

Overall, we see that the critical patch-size is relatively insensitive to the general
shape of the kernel. Lockwood et al. (2002) study the dependence of the critical
patch-size on the kernel, and specifically on the shape of the tails of the kernels, via
the average dispersal success approximation, that we will see in Chap. 9. They arrive
at the same conclusion that the decay rate of the tail of a dispersal kernel as |x| → ∞
has insignificant effects on the critical patch-size. This conclusion, however, holds
only for symmetric dispersal. When dispersal is asymmetric, the critical patch-size
can depend quite sensitively on the shape of the tails of the dispersal kernel, as we
shall see in Sect. 12.2.

3.5 Separable Kernels

When the dispersal kernel is separable, the infinite-dimensional eigenvalue problem
collapses to a finite-dimensional problem, i.e., a matrix eigenvalue problem. Such
a simplification can offer some explicit calculations and some special insights
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Fig. 3.3 Dispersal kernels and corresponding dominant eigenvalues as function of patch-size.
Top left: Comparison of the Laplace (blue, dashed), Gaussian (blue, solid), top-hat (black, dash-
dot), and tent (black, dashed) kernels with variance σ 2 = 1. Top right: Corresponding dominant
eigenvalue λ̃. Bottom left: Double gamma kernel (black) with parameters k = 1 (solid) and k = 5
(dashed); and double Weibull kernel (blue) with parameters k = 1.5 (solid) and k = 5 (dashed).
The variance is σ 2 = 1 in all cases. Bottom right: Corresponding eigenvalues. The double gamma
kernel with k = 1 is identical to the Laplace kernel.

(Kot and Schaffer 1986; Bramburger and Lutscher 2019). We assume for a moment
that the dispersal kernel can be written as a product, K(x, y) = K1(x)K2(y). For
example, if individuals can explore the entire patch and decide where to settle based
on local habitat conditions, then K2 could be a constant and K1(x) would indicate
the probability that an individual moves to location x (Robertson and Cushing
2011). The resulting eigenvalue equation for the critical patch-size reads

λφ(x) =
∫

Ω

K1(x)K2(y)R(y)φ(y)dy . (3.20)

In this case, the problem is really only one-dimensional. Since the left-hand side of
the equation is a multiple of φ(x) and the right-hand side is a multiple of K1(x), we
may assume φ = K1 and calculate the eigenvalue as

λ =
∫

Ω

K1(y)K2(y)R(y)dy . (3.21)
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More generally, a kernel is called separable if it can be written as a finite sum of
products in the form

K(x, y) =
m∑

j=1

K
(j)

1 (x)K
(j)

2 (y) . (3.22)

In this case, any eigenfunction has to be a linear combination of the functions K
(j)

1 .
Consequently, the eigenvalue problem can be reduced to an m-dimensional linear
system and solved by matrix methods. Some kernels are separable; many others can
be approximated arbitrarily closely by a separable kernel. We give examples for
either case.

Finite Radius of Dispersal

In the simplest case, we can link a kernel of uniform dispersal to the fraction of
individuals staying on an island in the simple model in Sect. 2.4. Let us assume that
individuals on an island Ω = [−L/2, L/2] disperse uniformly with a maximum
distance Lm > L. The latter condition ensures that individuals from one end
of the island can reach the other end of the island in one dispersal period. The
corresponding kernel is the top-hat kernel as in Table 3.1 with parameter β = Lm.

Since Lm > L, we have K(x, y) = 1/(2Lm) for all x, y ∈ Ω. We can choose K1 to
be this constant and K2 = 1. Hence, the positive eigenfunction is constant and the
dominant eigenvalue is

λ = 1

2Lm

∫ L/2

−L/2
R(y)dy = L

2Lm

1

L

∫ L/2

−L/2
R(y)dy . (3.23)

This expression has a simple interpretation. The fraction L/(2Lm) is the relative
size of the domain to the dispersal area. This quantity denotes the probability of an
individual to stay on the island. The remaining expression is the spatially averaged
growth rate. The population can persist if λ > 1, i.e., if the per capita number of
offspring that stay on the island exceeds unity.

A more interesting example of a separable kernel is the cosine kernel

K(x, y) =
{

π
4Lm

cos
(

π
2Lm

(x − y)
)

, y − Lm ≤ x ≤ y + Lm ,

0 , otherwise,
(3.24)

with maximum dispersal distance Lm (Kot and Schaffer 1986). As before, we
consider the spatial domain to be the island Ω = [−L/2, L/2], and we assume
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Lm > L. We can simplify the notation by scaling space as x = 2Lmw. The domain
becomes Ω = [−l, l] with l = L/(4Lm). The resulting kernel

K(w, z) =
{

π
2 cos (π(w − z)) , z − 0.5 ≤ w ≤ z + 0.5 ,

0 , otherwise,
(3.25)

can be separated using the trigonometric identity

cos (π(w − z)) = cos (πw) cos (πz) + sin (πw) sin (πz) . (3.26)

In terms of the above notation, we have K
(j)

1 = K
(j)

2 with

K
(1)
1 (w) = √π/2 cos (πw) and K

(2)
1 (w) = √π/2 sin (πw) . (3.27)

We write an eigenfunction of (3.4) as the linear combination φ(w) = c1K
(1)
1 (w) +

c2K
(2)
1 (w). Substituting this ansatz into (3.4) leads to the matrix eigenvalue problem

λ

[
c1

c2

]
= π

2

⎡
⎢⎣

∫ l

−l
cos2 (πz)R(z)dz

∫ l

−l
cos (πz)R(z) sin (πz) dz

∫ l

−l
cos (πz)R(z) sin (πz) dz

∫ l

−l
sin2 (πz)R(z)dz

⎤
⎥⎦
[
c1

c2

]
.

(3.28)
When R(z) = R is a constant, the above integrals can be evaluated explicitly. The
off-diagonal elements are zero by symmetry. The resulting matrix is

R

4

[
2πl + sin(2πl) 0

0 2πl − sin(2πl)

]
. (3.29)

Since l = L/(4Lm) < 1/4, we have 0 < sin(2πl) < 1, so that the dominant
eigenvalue of this matrix is

λ = R

4
[2πl + sin(2πl)] . (3.30)

Hence, we can write the persistence condition λ > 1 as

R > R∗ = 4

2πl + sin(2πl)
, 0 < l < 1/4 . (3.31)

Since the denominator on the right-hand side is an increasing function of l, the
required growth rate R decreases as the patch-size L increases or the dispersal radius
Lm decreases; see Fig. 3.4.
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Fig. 3.4 The critical value
R∗ for population persistence
as a function of patch-size l

according to
expression (3.31).
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Fig. 3.5 Left: Heterogeneous growth rate profiles R(w) according to (3.32) for k = 1 (solid) and
k = 2 (dash-dot). The constant function is plotted for comparison (dashed). Right: Value of A in
formula (3.35) as a function of k with l = 0.2.

Habitat Heterogeneity

We can also explicitly evaluate the matrix entries in (3.28) for some carefully
chosen, nonconstant growth functions and explore how habitat heterogeneity affects
persistence conditions. For example, we might choose

R(z) = R̄ [1 + ε cos ((2k − 1)πz/l)] (3.32)

for parameters 0 ≤ ε ≤ 1 and k ∈ N
+. The condition on ε ensures that R(z) is

nonnegative. Parameter k determines how resources are distributed in the domain.
Small values of k correspond to fewer but wider peaks, whereas large values of
k indicate more but narrower peaks; see Fig. 3.5. The integral of R(z) over the
domain Ω = [−l, l] is equal to 2R̄l, independent of parameters ε and k. Hence,
the total growth rate over the domain is a constant. Consequently, if dispersal were
uniform, the dominant eigenvalue would be independent of parameters, according
to the expression in (3.23).
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The off-diagonal entries of the matrix in (3.28) with R(z) as in (3.32) are zero by
symmetry. The eigenvalues are the diagonal entries

λ± = R̄

4
[2πl + sin(2πl) ± 2πεA] , (3.33)

where, after some applications of trigonometric identities, we find

A =
∫ l

−l

cos(2πz) cos ((2k − 1)πz/l) dz . (3.34)

This integral can be evaluated explicitly with α = (2k − 1)π/l as

A = 2

4π2 − α2 [2π cos(αl) sin(2πl) + α sin(αl) cos(2πl)] , (3.35)

as long as α �= ±2π. From Fig. 3.5, we see that A > 0, so that λ+ in (3.33)
is the dominant eigenvalue, and it is larger than the dominant eigenvalue for
the homogeneous landscape (ε = 0). Hence, this form of heterogeneity, where
the growth rate has a global maximum at the center of the patch, increases
the population growth rate. We also see that as k increases, the gain over the
homogeneous landscape gets smaller and smaller. Hence, few and wide peaks in
R are more beneficial for the population than many and narrow peaks with the
same total growth rate. Qualitatively similar results exist even more abstractly for
reaction–diffusion models; see Sect. 2.3.1 in Cantrell and Cosner (2003).

Approximation by Separable Kernels

Many kernels are not separable but can be approximated arbitrarily closely by
separable kernels (Keener 2000). In some cases, such approximations can be
calculated explicitly. Latore et al. (1998) write the Gaussian kernel as an infinite
sum of the form (3.22) and then truncate this sum at some finite value to obtain an
approximation of the critical patch-size for the Gaussian kernel on the symmetric
domain Ω = [−L/2, L/2]. More precisely, the Gaussian kernel (2.25) can be
written as

K(x, y) = 1√
2πσ 2

e− (x−y)2

2σ2 = 1√
2πσ 2

e− x2

2σ2 e− y2

2σ2 e
xy

σ2 . (3.36)
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Using the series representation of the exponential function for the last term,

exp
(xy

σ 2

)
=

∞∑
j=0

(x/σ )j (y/σ)j

j ! , (3.37)

we can formally write the infinite sum K(x, y) =∑∞
j=0 K

(j)

1 (x)K
(j)

2 (y) , with

K
(j)

1 (x) = K
(j)

2 (x) = 1√√
2πσ 2 j !

( x

σ

)j

exp

(
− x2

2σ 2

)
. (3.38)

We truncate this infinite sum at some number m. Then the eigenfunction can be
written as the linear combination φ(x) = ∑m

j=0 cjK
(j)

1 (x) . Functions K
(j)

1 are
linearly independent. Inserting the expression into the eigenvalue equation (3.20)
with constant R(y) = R and rearranging gives the linear system for cj as

λcj = R

m∑
k=0

Kjkck , (3.39)

where

Kjk =
∫ L/2

−L/2
K

(j)

1 (y)K
(k)
2 (y)dy = 1√

2πσ 2j !k!
∫ L/2

−L/2

( y

σ

)(j+k)

exp

(
− y2

σ 2

)
dy .

(3.40)
Matrix (Kjk) is symmetric and has entries Kjk = 0 if j + k is odd.

The persistence condition λ = 1 determines the minimal growth rate required for
population persistence as R∗ = 1/λ̃, where λ̃ is the dominant eigenvalue of matrix
(Kjk). We plot R∗ as a function of patch-size in Fig. 3.6 for different values of m.

We observe that even small values of m give a very good approximation on small
domains, whereas on large domains, we need to include more and more terms to
obtain a valid approximation.

Fig. 3.6 Approximation of
the critical growth rate R∗ for
the Gaussian kernel as a
function of domain length.
The truncation values are
m = 1 (upper solid curve),
m = 3 (dashed), m = 7
(dash-dot), and m = 21
(lower solid curve).
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3.6 Further Reading

For a finite-dimensional matrix eigenvalue problem, the Perron–Frobenius theorem
states that a positive matrix has a simple, real eigenvalue with positive eigenfunc-
tion, and this eigenvalue is larger than the modulus of any other eigenvalue (Caswell
2001). It is called the dominant eigenvalue. Theorem 3.2 is the infinite-dimensional
analogue of this theorem. It is a special case of the Krein–Rutman theorem (see,
e.g., Du 2006). The most important ingredient in the proof is to show that the
integral operator is compact and positive (Krasnosel’skii 1964; Krasnosel’skii and
Zabreiko 1984). Positivity results directly from our model assumptions. We can
achieve compactness in appropriate function spaces under relatively mild conditions
on the dispersal kernel. Detailed proofs are given by Hardin et al. (1990) in the space
of continuous functions and by Van Kirk and Lewis (1997) and Lutscher and Lewis
(2004) in the space of square-integrable functions. We present most of this proof in
Chap. 13.

Many standard books provide overviews and detailed results on integral opera-
tors, e.g., Keener (2000). Several relevant cases in our context are the following.
If Ω is a bounded interval and if K is continuous on Ω × Ω , then the operator in
(3.4) is compact in the space of continuous functions on Ω by the Arzelá–Ascoli
theorem. If K(x, y) is square integrable on Ω × Ω , then the operator defined in
(3.4) is a Hilbert–Schmidt operator and is compact in the space of square-integrable
functions on Ω . The spectrum of a compact operator consists of countably many
eigenvalues that may only accumulate at zero. All nonzero eigenvalues have finite
multiplicity. Specializing even more, if we choose R(y) = R to be constant and
the dispersal kernel as positive and symmetric, i.e., K(x, y) = K(y, x) > 0, then
the operator is positive and self-adjoint. Such an operator has at least one nonzero
eigenvalue, all eigenvalues are real, and there is a dominant eigenvalue. When R(x)

is not constant but positive, then eigenvalue problem (3.4) is not symmetric but can
be transformed via

φ̃(x) = φ(x)
√

R(x) (3.41)

into the symmetric eigenvalue problem

λφ̃(x) =
∫

Ω

K(x, y)
√

R(x)R(y)φ̃(y)dy . (3.42)

The existence of (real) eigenvalues is again guaranteed. The condition R(x) > 0 on
Ω is natural for the linearization at zero, but not for the linearization at a positive
steady state, as we shall see in Chap. 4.

Symmetric (or symmetrizable) integral operators have many more useful proper-
ties. One of them is the existence of a variational characterization of the dominant
eigenvalue. Specifically, if we assume that R(y) = R is a constant and that K is
symmetric, continuous, and positive, then the dominant eigenvalue λ in (3.4) can be
obtained as
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λ = max
u∈L2(Ω),‖u‖=1

{
R

∫
Ω

∫
Ω

u(x)K(x, y)u(y)dydx

}
, (3.43)

where the maximum is taken over all square-integrable functions u on Ω with norm
equal to unity. For a proof, we refer to Chap. 11 in Keener (2000) or to Theorem 3.1
by Hutson et al. (2003). The variational formula is not usually applicable in explicit
calculations but is often helpful in proofs. We will use it in Sect. 9.2 for an estimate.

Zhou and Kot (2013) present several approximations for the dominant eigenvalue
based on approximation by orthogonal polynomials. We assume that {Xi(x)}∞i=1 is
a family of orthogonal polynomials. Then the kernel can be expanded as the double
sum

K(x, y) =
∞∑

i,j=1

AijXi(x)Xj (y) . (3.44)

Eigenvalue equation (3.4) with constant R(x) ≡ R becomes

λφ(x) = R

∞∑
i=1

⎛
⎝ ∞∑

j=1

Aij

∫
Xj(y)φ(y)dy

⎞
⎠Xi(x) . (3.45)

If we also expand the eigenfunction in terms of {Xi}, say φ(x) = ∑∞
i=1 aiXi(x),

we obtain the infinite matrix eigenvalue problem

λai = R

∞∑
k=1

⎛
⎝ ∞∑

j=1

Aij

∫
Xj(y)Xk(y)dy

⎞
⎠ ak. (3.46)

We can then truncate this system at any finite number of equations and solve for
the eigenvalue. Zhou and Kot (2013) use Legendre polynomials and realize—just as
with the approximation by separable kernels—that an expansion using the first one
or two terms is often quite good. In Chap. 9, we present an ecologically motivated
approximation, which, in some cases, is equivalent to using only the first term of the
infinite matrix problem.

Symmetric or not, there are a number of numerical methods to calculate the
dominant eigenvalue of the linear operator in (3.4). They have been collected,
reviewed, and compared recently by Kot and Phillips (2015). We touch on this
subject in Chap. 8.



Chapter 4
Positive Steady States

Abstract When a population can persist in a given region, we want to know what
the long-term dynamics of the population are. Is there a positive steady state? Is
it asymptotically stable? And what is the spatial distribution? From a management
point of view, a unique stable steady state is the simplest: Even if the population is
perturbed somewhat in one generation, it will return to its steady state over time.
But many other scenarios can arise. For example, a positive state can be unstable
and the population could cycle between different states. How does spatial dispersal
affect these dynamics? Can it stabilize or destabilize a steady state? What are the
spatial distributions throughout a cycle? In the case of an Allee effect, there could
be a positive steady state even if the trivial state is locally stable. How does spatial
dispersal affect the ability of a population to persist in that case? In this chapter, we
present some analytical methods and numerical results that explore these questions.
The effects are inherently nonlinear and therefore much harder to study completely.

4.1 The Steady-State Equation

A (nontrivial) steady state N∗(x) ≥ 0 of (2.1) satisfies the so-called Hammerstein
equation (Hammerstein 1930)

N∗(x) = Q[N∗](x) :=
∫

Ω

K(x, y)F (N∗(y), y)dy . (4.1)

While the trivial steady state always exists in the models that we consider (since
F(0) = 0), proving the existence of a positive steady state can be a challenge.
Similar to the procedure in the previous chapter, the steady-state problem (4.1)
can be reduced to and studied as a two-dimensional differential equation when
the dispersal kernel is the Laplace kernel (Sects. 4.2 and 4.5). For some separable
kernels, explicit calculations are possible in the corresponding finite-dimensional
discrete dynamical systems (Sect. 4.4). More abstract approaches are based on
monotonicity and bifurcation theory (Sect. 4.3).
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Once the existence of a nontrivial steady state is clear, the question of its stability
leads to the linear eigenvalue problem

λφ(x) =
∫

Ω

K(x, y)R(y)φ(y)dy , R(y) = ∂F

∂N
(N∗(y), y) . (4.2)

Since this equation requires the knowledge of the positive state, it can almost never
be studied explicitly but is the basis for numerical methods. In contrast to the
situation in the previous chapter, the term R(y) can be negative here, e.g., when F

is the Ricker function. If the function R(y) is negative for all y, then the eigenvalue
problem can be made symmetric by the substitution

φ̃(x) = φ(x)
√−R(x) , (4.3)

similar to the case of positive R from the previous chapter.

4.2 A Positive Steady State with the Laplace Kernel

As in the previous chapter, the Laplace kernel offers a particularly nice example
where steady states can be studied explicitly in some detail via a reduction to a
system of differential equations. We follow again Kot and Schaffer (1986). We
scale the space variable so that the domain of interest is Ω = [−1/2, 1/2], and
we consider 1/a as the scaled dispersal distance (Sect. 3.3). To simplify notation,
we write N(x) instead of N∗(x) for the steady-state density. We differentiate the
steady-state equation

N(x) =
∫ 1/2

−1/2

a

2
exp(−a|x − y|)F (N(y))dy (4.4)

twice and substitute to turn it into the differential equation

N ′′ + a2[F(N) − N ] = 0 , x ∈ (−1/2, 1/2) , (4.5)

with mixed boundary conditions

N ′(−1/2) = aN(−1/2) , N ′(1/2) = −aN(1/2) . (4.6)

Hence, the steady-state problem for the IDE is equivalent to the steady-state problem
of a reaction–diffusion equation with mixed, or Robin’s, boundary conditions. The
only difference is in the functional form of the updating function F. We use phase-
plane methods to study the existence and shape of solutions.
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We write the second-order equation in (4.5) as a first-order system in N and
N̂ = N ′, namely

N ′ = N̂ , N̂ ′ = a2[N − F(N)] . (4.7)

To account for the boundary conditions, we look for solutions that start on the line
N̂ = aN at x = −1/2 and end on the line N̂ = −aN at x = 1/2. An equilibrium of
system (4.7) necessarily satisfies N̂ = 0 and N = F(N), i.e., we retrieve the fixed
points of the corresponding nonspatial dynamics. For a linear stability analysis of
the equilibrium (N, 0), we calculate the Jacobian matrix of (4.7) as

[
0 1

a2[1 − F ′(N)] 0

]
. (4.8)

The trace of this matrix is zero; the sign of the determinant is the sign of F ′(N)−1.

Hence, the equilibrium is a saddle point when F ′(N) < 1 and a (linear) center if
F ′(N) > 1. We multiply the equation in (4.5) by N ′ and integrate to get

1

2

(
N ′)2 + a2H(N) − a2

2
N2 = constant , (4.9)

where H is an antiderivative of F , i.e., H ′ = F . This expression is a first integral
for the system. Consequently, a linear center is also a nonlinear center. Using the
first integral, we can numerically visualize the solution curves of (4.7) in the phase
plane as the level sets of (4.9).

When F(N) is the Beverton–Holt function in (2.13) with R > 1, we know that
F ′(0) > 1 and F ′(1) < 1, so that the equilibria of (4.7) are (0, 0), a center, and
(1, 0), a saddle. We can also find an antiderivative of F as

H(N) = R

R − 1

[
N − 1

R − 1
ln(1 + (R − 1)N)

]
. (4.10)

The phase-plane plot in Fig. 4.1 illustrates the center at (0, 0) and the saddle point at
(1, 0). The two straight lines from the origin correspond to the boundary conditions.
The phase-plane curves are the level sets of the first integral. Solutions of the steady-
state equation for IDE (4.4) correspond to the segments of the phase-plane curves
of ODE (4.7) that exactly connect the boundary lines while x ranges from −1/2 to
1/2. The right plot in the same figure illustrates the spatial shape of the steady state
for different values of a.

When F(N) is the Ricker function in (2.19), the analysis is very similar. The
steady states are (0, 0), a center, and (1, 0), a saddle. An antiderivative is given by

H(N) = −er(1−N)

r2
[rN + 1] . (4.11)
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Fig. 4.1 Phase plane (left plot) and solution profile (right plot) of the steady state for IDE (4.1)
with Beverton–Holt growth function. The straight lines in the left plot indicate the boundary
conditions. The bold curve segment between the two lines corresponds to the solution profile with
a = 1 in the right plot. The growth parameter is R = 5.
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Fig. 4.2 Phase plane (left plot) and solution profile (right plot) of the steady state for IDE (4.1)
with Ricker growth function. The straight lines in the left plot indicate the boundary conditions.
The bold curve segment between the two lines corresponds to the solution profile with a = 1 in
the right plot. The growth parameter is r = 3.

The plots in Fig. 4.2 illustrate the exact same behavior as with the Beverton–Holt
function in Fig. 4.1.

We already know from the analysis of the nonspatial model in Chap. 2 that the
positive state in the Beverton–Holt model is always stable, whereas the positive
state in the Ricker model can lose stability through a flip bifurcation, and cyclic or
even chaotic dynamics can result. The phase-plane equations for the steady state
of the IDE with Beverton–Holt and Ricker function are qualitatively identical, yet
we expect the stability behavior of the steady states to differ. Hence, the method
we used so far to show the existence of a positive steady state in the IDE does not
address the question of stability. Next, we outline a method to show the stability of
the positive steady state of the IDE with Beverton–Holt growth function.
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4.3 Monotone Growth Function

The explicit calculations of the positive steady state from the previous section work
for a specific kernel and for (arbitrary) growth functions. They give us insight into
the existence but say nothing about stability or uniqueness. Results in that direction
depend on properties of the growth function, in particular monotonicity, and can be
proved abstractly, independent of the particular shape of the dispersal kernel. We
illustrate some of these geometric ideas here in the space of continuous functions. A
more general, abstract setting with additional concavity conditions and details in the
case of (systems of) square-integrable functions is discussed in Chap. 13. For a more
general reference on monotone dynamical systems, see Chap. 2 in Zhao (2003), and
for positive discrete dynamical systems, see Krause (2015).

We consider the usual IDE as a dynamical system

Nt+1(x) = Q[Nt ](x) =
∫ 1

0
K(x, y)F (Nt (y))dy (4.12)

on the space C ([0, 1]) of (bounded) continuous functions on the unit interval.
(In fact, by scaling space, the interval could be of any length.) We assume
that the growth function is nonnegative and continuously differentiable and the
dispersal kernel is positive and continuous. We assume that the growth function is
independent of spatial location and write R0 = F ′(0). Theorem 3.2 guarantees the
existence of a dominant eigenvalue, λ, of the linearization of Q at zero. We denote
a (positive) dominant eigenfunction by φ, i.e.,

λφ(x) = Q′[0]φ = R0

∫ 1

0
K(x, y)φ(y)dy . (4.13)

We consider three properties of the growth function F : R+
0 → R

+
0 :

(S1) F is (globally) bounded if for all u∈R
+
0 we have F(u)≤C for some C > 0.

(S2) F is (linearly) bounded if for all u ∈ R
+
0 we have F(u) ≤ F ′(0)u.

(S3) F is monotone if u ≥ v implies F(u) ≥ F(v).

The Beverton–Holt, Ricker, and Allee functions from Sect. 2.2 all satisfy the first
condition, but only the Beverton–Holt function satisfies all three. The Ricker
function is not monotone and the Allee function is not linearly bounded.

Next, we consider functions N, N̂ ∈ C ([0, 1]) and write N ≥ N̂ if N(x) ≥ N̂(x)

for every x ∈ [0, 1]. We say that operator Q is monotone (or order preserving) if
N ≥ N̂ implies Q[N ] ≥ Q[N̂ ] in this sense. Since kernel K is positive, we find that
Q is monotone if F is. Our first result shows in particular that if F is the Beverton–
Holt function and zero is locally stable, then zero is globally stable. The second
result indicates that if the zero state is unstable, then there is at least one positive
state.
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Lemma 4.1 Assume that F satisfies properties (S2) and (S3) above, and assume
that λ < 1. Then all nonnegative solutions of (4.12) converge to zero.

Proof Since the kernel is positive, the linear boundedness of F implies the linear
boundedness of Q in the sense that Q[N ] ≤ Q′[0]N. In particular, for a dominant
eigenfunction, we have Q[φ] ≤ Q′[0]φ = λφ. By iteration, we find Qt [φ] ≤ λtφ.

Since, by assumption, we have 0 ≤ λ < 1, we find Qt [φ] → 0 as t → ∞.

For any given N0 ∈ C ([0, 1]) we can find a (multiple of a) dominant
eigenfunction with N0 ≤ φ. Then Q[N0] ≤ Q[φ] by monotonicity, and, by
iteration, this relation holds for all powers Qt. Hence, Qt [N ] → 0. ��
Lemma 4.2 Assume that F satisfies properties (S1)–(S3) above and assume that
λ > 1. Then there exists at least one positive steady-state solution of (4.12).

Proof Since, by assumption, λ > 1, we also have R0 > 1 by Lemma 3.1. For any
1 < R < R0, we can find some ε > 0 such that F(z) > Rz for 0 ≤ z < ε. Now
we can pick a dominant eigenfunction (and scale if necessary) with 0 < φ(x) < ε.

Then

Q[φ](x) ≥ R

∫ 1

0
K(x, y)φ(y)dy = R

R0
λφ(x) . (4.14)

Since λ > 1, we can choose R < R0 such that the factor λR/R0 > 1. Then
Q[φ] ≥ φ. We construct a sequence Nt via (4.12) with N0 = φ. By the choice
of R, we have N1 = Q[N0] ≥ N0. By induction, we see that Nt+1 ≥ Nt for all
t ∈ N, i.e., the sequence is monotone increasing. Since F(N) ≤ C, the sequence is
also bounded. Hence, the pointwise limit N∗(x) = limt→∞ Nt(x) exists.

Since K is continuous and the unit interval is compact, operator Q is compact
on C ([0, 1]). Compactness together with monotonicity implies that {Q[Nt ]}t , and
hence {Nt }t , converges in the space of continuous functions. By continuity of Q,
we have

Q[N∗] = Q[ lim
t→∞ Nt ] = lim

t→∞ Q[Nt ] = lim
t→∞ Nt+1 = N∗ . (4.15)

Hence, N∗ is a fixed point of Q. ��
Altogether, we have shown not only the existence of a positive fixed point but also

the convergence of small initial conditions to this point. In the same way, we can
construct a monotone decreasing sequence, {Nt }t , with N0 = C and Nt+1 ≤ Nt

for all t. Since N0 < N0, we apply monotonicity again and find Nt ≤ Nt for all
t. In particular, the sequence {Nt }t is bounded below away from zero and, hence,
converges to some positive fixed point N∗. In general, N∗ ≤ N∗. Under additional
assumptions on F , one can show that N∗ = N∗ by applying the ideas of Theorem
6.3 in Krasnosel’skii (1964) as follows.
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Lemma 4.3 Assume in addition that F is concave in the sense that for all 0 <

s < 1 and z > 0 there exists some ε > 0 such that F(sz) ≥ (1 + ε)sF (z). Then
N∗ = N∗.

Proof Since K is positive and [0, 1] is compact, concavity of F translates into
concavity of Q, i.e., for all 0 < s < 1 and N ∈ C ([0, 1]) with N(x) > 0 for
all x, there is some ε > 0 such that Q[sN ] ≥ (1 + ε)sQ[N ]. We already know that
N∗ ≤ N∗. Assume now that N∗ �≥ N∗. By positivity, there exists some 0 < s0 < 1
with N∗ ≥ s0N

∗ and N∗ �≥ sN∗ for any s > s0. Then, by monotonicity and
concavity, we have

N∗ = Q[N∗] ≥ Q[s0N
∗] ≥ (1 + ε)s0Q[N∗] = (1 + ε)s0N

∗, (4.16)

which contradicts the maximality of s0. ��

4.4 Nonmonotone Growth Function

When the growth dynamics are not monotone, a positive steady state can be
destabilized and give way to spatial patterns and more complicated temporal
dynamics. These observations go back to the work of Kot and Schaffer (1986)
and Andersen (1991), who use a discrete logistic growth function and the Ricker
function, respectively. We explain and expand some of their examples here.

We begin with the (scaled) separable cosine kernel (3.25) and write K(x, y) =
K1(x)K1(y)+K2(x)K2(y). We can assume that the population density at any given
generation is a linear combination of the two kernel functions, and we write Nt(x) =
atK1(x) + btK2(x). Substituting this ansatz into the IDE, we find

at+1K1(x)+bt+1K2(x)=
∫ l

−l

[K1(x)K1(y)+K2(x)K2(y)]F(atK1(y)+btK2(y))dy.

(4.17)
Splitting the integral into a sum and comparing coefficients for K1 and K2, we derive
the two-dimensional difference equation for at , bt as

at+1 =
∫ l

−l

K1(y)F (atK1(y) + btK2(y))dy ,

bt+1 =
∫ l

−l

K2(y)F (atK1(y) + btK2(y))dy .

(4.18)

The kernel functions are the trigonometric functions from (3.27). If F is a polyno-
mial, then we can use trigonometric identities and carry out the resulting integrations
directly. For example, with the logistic growth function F(N) = (r + 1)N − rN2,
the integrand in the equation for at becomes the trigonometric polynomial
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at

(
(r + 1)K2

1 − at rK
3
1

)
− rb2

t K
2
2K1 + bt (r + 1)K2K1 − atbt rK

2
1K2 . (4.19)

The last two terms in the sum are odd functions, so that their integral over [−l, l] is
zero. Carrying out the integration for this and the corresponding equation for bt , we
find (Kot and Schaffer 1986)

at+1 = (c1 − c2at )at − c3b
2
t ,

bt+1 = (c4 − c5at )bt ,
(4.20)

where

c1 = (1 + r)

4
[2πl + sin(2πl)] , c2 = r sin(πl)

√
π

2

[
1 − 1

3
sin2(πl)

]
,

c3 = r

3

√
π

2
sin3(πl) , c4 = (1 + r)

4
[2πl − sin(2πl)] ,

(4.21)
and c5 = 2c3.

The second equation in (4.20) ensures that b0 = 0 implies bt = 0 for all t. In
that case, the first equation becomes a logistic equation for at . Hence the dynamics
of the IDE with the cosine kernel and the logistic growth function can exhibit all
the dynamics that the nonspatial logistic equation can. At each time step, the spatial
profile is that of a cosine function. But even when b0 �= 0, the solutions may still
converge to the invariant set where bt = 0, e.g., if we can guarantee a priori that
−1 < c4 − c5at < 1 for all t > 0 (Kot and Schaffer 1986). Bramburger and
Lutscher (2019) study (4.20) in more detail and give sufficient conditions for this
convergence. Whether this equation can generate other spatial patterns that are not
concave, and what they might look like is currently unknown. It would require bt �→
0, yet the solution Nt(x) has to remain nonnegative. We turn to another example and
numerically illustrate a variety of spatial patterns emerging.

Numerical simulations of the IDE with Ricker dynamics reveal period-doubling
bifurcations and chaos (Kot and Schaffer 1986). In addition, we can observe spatial
population distributions that are not concave but exhibit several maxima and minima
(Andersen 1991). We explore some of these phenomena numerically. We recall
some dynamical properties of the nonspatial Ricker map (2.19) from Sect. 2.2. The
positive state is stable for 0 < r < 2 but becomes unstable in a flip bifurcation
at r = 2 when a stable two-cycle appears. Increasing r beyond 2.526 destabilizes
the two-cycle and, via a period-doubling bifurcation, leads to a stable four-cycle.
Increasing r even further results in a cascade of period-doubling bifurcations leading
to chaos; see Fig. 4.3. The orbit diagram in this figure displays the dynamics of the
equation after transients have disappeared. In practice, we solve the equations for
large times (e.g., t = 10,000) and then plot only the last few of them (here the
last 50).
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Fig. 4.3 Orbit diagram for the nonspatial Ricker model (2.19) from Sect. 2.2.
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Fig. 4.4 Left plot: Solutions for the IDE with Ricker dynamics approach the steady state
monotonically (r = 0.5). Right plot: Nonmonotone approach to steady state for the same model
(r = 1.5). The dispersal kernel is a Gaussian kernel with variance σ 2 = 0.1.

For comparison and exploration, we simulated the IDE with Gaussian dispersal
kernel and scaled Ricker growth function on the (scaled) domain Ω = [−1, 1].
Of the two remaining parameters, we always chose r large enough and σ 2 small
enough so that the population persisted according to the theory from the previous
chapter. When 0 < r < 1, the nonspatial model predicts monotone convergence to
steady state, and the spatial model shows the same behavior. The steady-state profile
is concave (left panel, Fig. 4.4) as we have seen before (Fig. 4.2).

When 1 < r < 2, the nonspatial model predicts an oscillatory approach to
the stable steady state. The IDE can show monotone or oscillating approaches to
the steady state (right panel, Fig. 4.4). The steady-state profile may display local



48 4 Positive Steady States

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

space x

de
ns

ity
 N

σ2=0.01

σ2=0.1

σ2=1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

space x
de

ns
ity

 N σ2=0.08

σ2=0.2

Fig. 4.5 Left plot: Steady-state profiles for the IDE with Ricker dynamics and Gaussian kernel
for different variances σ 2 as indicated. The growth rate is r = 1.8. Right plot: Steady-state profile
(dashed) and two-cycle profile (solid) for the same model with r = 2.1.

maxima near the boundary of the domain if the variance is small (Fig. 4.5). This
phenomenon can be explained by the interaction of Ricker dynamics and dispersal
loss at the boundary. As the variance decreases, fewer individuals leave the domain
at the boundary, and the overall density increases. Near the boundary, the density
is low after dispersal, and the overcompensatory dynamics produce a high density
near the boundary. Most of these individuals disperse out of the domain, but some
remain and create the little peak near the boundary.

When 2 < r < 2.5 so that the nonspatial model predicts a stable two-cycle, the
IDE can have a stable steady state or—for small enough variance—it can have a
two-cycle (Fig. 4.5). For even larger r , when the nonspatial model predicts chaotic
behavior, we observe a stable steady state in the IDE for large variance, a two-
cycle for intermediate variance (plots not shown), a four-cycle and an eight-cycle
(Fig. 4.6), and chaotic-looking patterns for even smaller variance (Andersen 1991).
The orbit diagram for the total density (i.e., the integral of N over the domain) shows
period-doubling bifurcations as the variance of the kernel decreases (Fig. 4.7).

These simulations suggest that increasing the variance, or decreasing the patch-
size, has a similar effect on the stability of steady states as decreasing the growth
parameter r. In Chap. 9 we will use approximations and explain why and to what
extent this reasoning holds. The question of how different dispersal kernels affect the
stability of steady states and the shape of their spatial profile is relatively unexplored.
Replacing the Gaussian kernel with the Laplace kernel in the simulations presented
reproduces the same dynamical behavior. Some differences do occur when the
modal dispersal distance is away from the origin (Andersen 1991).
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Fig. 4.6 Four-cycle (left) and eight-cycle (right) for the IDE with Ricker dynamics and Gaussian
kernel. The growth rate is r = 2.8. The variance is σ 2 = 0.1 (left) and σ 2 = 0.01 (right).
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Fig. 4.7 Orbit diagram for the spatial Ricker model as a function of variance for r = 2.8.

4.5 Allee Growth Function

When the growth function exhibits a strong Allee effect, i.e., F ′(0) < 1, then the
zero state is locally stable in the nonspatial model and also in the corresponding
IDE. There may or may not be a positive steady state; the linearization at zero gives
no indication. In the nonspatial model, two positive steady states generically emerge
in a saddle-node bifurcation. For the Allee growth function in (2.22), this bifurcation
happens at R = γ (Musgrave et al. 2015).

We use the phase-plane approach from above to find positive steady states for the
IDE with Laplace dispersal kernel and a growth function with strong Allee effect.
Equations (4.4) and (4.5) remain unchanged, and the expression in (4.9) is still a
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first integral. We pick the growth function F(N) = RN2(1 + (R − 1)N2)−1 from
(2.22) with R > γ = 2. The equation F(N) = N has the (stable) trivial solution,
the stable positive state N = 1, and Allee threshold Na = (R − 1)−1 < 1. In the
phase plane, we obtain the corresponding steady states (0, 0), (1, 0), and (Na, 0).

The two former states are saddles; the latter is a center. We find an antiderivative of
F as

H(N) = R

R − 1

[
N − 1√

R − 1
arctan(N

√
R − 1)

]
. (4.22)

Since the growth function has a positive state for R > 2, we could expect the IDE
to have a positive steady state in that case as well, provided that the variance of the
dispersal kernel is small enough so that most individuals remain in the domain.
Figure 4.8 reveals that this conjecture is not true. For 2 < R < R∗ ≈ 3.29,
there cannot be a connection between the two straight lines that correspond to the
boundary conditions. The stable and unstable manifolds of the saddle at (0, 0) do
not cross the N -axis in the interval (0, 1). They force all solutions that start at the
upper boundary condition to remain above the N -axis. For R > R∗, the stable and
unstable manifolds of the saddle at (0, 0) form a homoclinic loop that crosses the N -
axis. At the same time, the stable and unstable manifold of the saddle at (1, 0) cross
the two boundary conditions. All solutions that start between these two crossing
points are forced to travel from one boundary condition to the other and thereby
correspond to a steady state of the IDE (Fig. 4.9).

The critical value R∗ corresponds to the situation that the stable and unstable
manifolds form a heteroclinic connection between the saddle points (0, 0) and
(1, 0). Hence, we can calculate the critical value by insisting that the expression
in (4.9), which is constant along solutions, have the same value at those two points.
This condition can be expressed in terms of H as H(0) = H(1)−0.5 or, after some
algebraic manipulation,
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Fig. 4.8 Phase plane of the steady state for IDE (4.1) with Allee updating function (2.22) with
γ = 2. The straight lines in the left plot indicate the boundary conditions. There is no connection
between the boundary conditions for R = 3 (left plot), but there is a connection for R = 5 (right
plot).
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with Allee updating function with γ = 2. The straight lines indicate the boundary conditions. The
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The growth parameter is R = 10.

R + 1

2R
= arctan

(√
R − 1

)
√

R − 1
. (4.23)

This transcendental equation cannot be solved explicitly. Numerically, we find the
value R∗ ≈ 3.29 mentioned above.

It is somewhat surprising that, even when there is almost no dispersal-related
loss from the domain, the spatial model does not have a positive steady state for
R < R∗ ≈ 3.29, despite the fact that the nonspatial model has such a state for
R > 2. To understand this observation more fully, it is helpful to study spreading
phenomena, as we will do in Chap. 6.

4.6 Further Reading

Andersen (1991) studies a model for the processes of dispersal, germination, and
maturation in an annual plant species. He formulates two models, depending on
whether density-dependence acts on germination or maturation, and explores the
resulting difference in dynamics. He uses a double Weibull kernel that may have the
modal dispersal distance away from the origin, depending on parameter values. He
shows that the two models are equivalent and reflect only a difference in census time.
He then conducts two carefully designed numerical experiments that reveal that,
despite the equivalence of the models, the observed behavior (at census time) may
differ; see also Lutscher and Petrovskii (2008). In particular, he finds “pronounced
spatial nonuniformity” in four- and eight-cycles but not in steady states and
two-cycles.
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A two-cycle of the IDE Nt+1 = Q[Nt ] corresponds to a fixed point of the
composite operator Q ◦ Q. Accordingly, some of the techniques presented here can
be applied to study the properties of such solutions (Kot and Schaffer 1986). The
very useful reduction to a differential equation in the case of the Laplace kernel,
however, cannot be extended, since the integral cannot be eliminated. Instead,
we obtain a forward–backward integrodifferential equation, which is difficult to
analyze. There is currently no detailed analytical study of cycles of length two or
more.

A more general and abstract theory of positive discrete dynamical systems is
developed in Krause (2015). Among many other results, the existence, uniqueness,
and global stability of a positive fixed point in the case of a monotone and concave
growth function (Lemma 4.2) follows from Theorem 5.4.3 in Krause (2015).

A rigorous computational approach to the complex dynamics that can arise
under the Ricker map is based on bounds for the maximal invariant set and uses
Conley index theory to calculate basins of attraction, invariant sets, and a Morse
decomposition (Day et al. 2004; Day and Kalies 2013).

We present some ways to approximate the spatial profile of a steady state in
Chap. 9. We extend the theory presented here to stage-structured populations in
Chap. 13. Questions of existence, uniqueness, and stability of steady states recur,
explicitly or implicitly, throughout this book in many applications and extensions.



Chapter 5
The Speed of Spatial Spread

Abstract When a population can persist in a certain environment, we expect that
it will spread through that environment if it is initially spatially confined to some
small region. How fast will this spatial spread occur? How does the speed depend
on movement behavior? These questions are particularly relevant for understanding
and managing biological invasions. Spreading nonnative species can cause great
damage to existing local ecosystems, e.g., by replacing native species or introducing
pathogens. We need insights that help us decide between different management
options to slow or contain the spread of harmful species. IDEs are particularly well
suited to addressing the question of how different dispersal patterns influence the
speed of spread. We begin this chapter with two different scenarios for spatial spread
and explicit calculations for the linear growth function. We denote these as the point-
release scenario and the traveling-front scenario. Then we define the asymptotic
spreading speed and present the results for the nonlinear theory. Throughout the
chapter, we assume that there is no Allee effect; we will devote Chap. 6 to it.

5.1 Measuring Spread

Before we can investigate how fast a locally introduced population spreads, we need
to find a way to measure the rate of spread. It would be natural to try to find the
speed of the “edge” of the population distribution, where the density transitions
from positive to zero. However, we will see in our model that the population density
is typically positive everywhere from the first generation on, even if the initial
density has compact support. This phenomenon of “infinite spread” also occurs in
reaction–diffusion equations, thus has long been studied and criticized (Einstein
1906). It is also not clear whether we can expect such a sharp edge to exist in
real biological invasions. Individuals can be extremely difficult to detect at low
population densities, so that a sharp edge, even if it existed, may be impossible to
find. Instead, we consider two measures: in the point-release scenario, we track
a threshold density; in the traveling-front scenario, we track an entire solution
profile. A third measure, the asymptotic spreading speed, will be mathematically
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most satisfying, connecting the two former measures, but also analytically most
challenging to handle.

Much of the content of this chapter can be traced back to two landmark papers:
Weinberger (1982) proves the existence of an asymptotic spreading speed and
traveling waves for a large class of operators that includes the integral operator in
(5.1) below. Kot et al. (1996) highlight the value of IDEs to invasion biology by
describing the effect of different dispersal kernels on invasion speed and finding
accelerating invasions. Kot (2003) gives a first review of spread phenomena in
IDEs and relates the findings to various biological invasions. The recent book by
Lewis et al. (2016) provides an excellent introduction to many mathematical theories
(including IDEs) of biological invasions.

To consider questions of spatial spread, we envision a scenario where the
potential habitat of a population is so large compared to its actual spatial extent
that an increase in the extent is not limited by the availability of habitat. Therefore,
we consider the potential habitat to be the entire real line. For simplicity, we also
assume that the habitat is homogeneous and that dispersal is unbiased. Then the
dispersal kernel is a function of distance only, i.e., K(x, y) = K̃(x −y), where K̃ is
an even function. For notational simplicity, we drop the tilde. Hence, the IDE reads

Nt+1(x) = Q[Nt ](x) =
∫ ∞

−∞
K(x − y)F (Nt (y))dy . (5.1)

To ease notation, we frequently denote the convolution integral as K ∗ F(Nt). In
this chapter, we shall assume that there is no Allee effect so that F(N) ≤ F ′(0)N.

As we did for the question of population persistence, we begin our investigation of
spreading phenomena with the linear model

Nt+1(x) = R

∫ ∞

−∞
K(x − y)Nt (y)dy = R(K ∗ Nt)(x) , (5.2)

where many of the relevant quantities and interesting phenomena can be calculated
explicitly in special cases.

5.2 Spread from Point Release

Some biological invasions are initiated by a small number of individuals released
at a single location outside their native habitat. For example, house finches
(Carpodacus mexicanus) were illegally released in New York in the 1950s and
spread westward (Veit and Lewis 1996). Shipping points for international trade are
particularly prominent spots for invasions to emerge. The emerald ash borer (Agrilus
planipennis Fairmaire) was transported in shipping and packaging material to the
Detroit area from Asia and started spreading to many states and Canadian provinces
from there in the late 1990s (Cappaert et al. 2005).
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Mathematically, we idealize this point release of individuals by choosing a Dirac
delta distribution N0(x) = δ(x) as the initial condition. Recall that δ(x) can
formally be thought of as a limit of top-hat functions (Table 3.1) when β → 0
and the integral is constant. The delta distribution behaves particularly nicely under
convolutions in that f (x) = (f ∗ δ)(x) for all continuous functions f. More details
on distributions and their properties can be found in many textbooks, e.g., Keener
(2000).

Using the convolution property, we can calculate the solution of (5.2) with this
initial condition explicitly as

Nt(x) = RtK∗t (x) , (5.3)

where K∗t denotes the t-fold convolution integral.
While formula (5.3) is elegant in its simplicity, its usefulness is somewhat limited

because we can calculate this t-fold convolution only for a few dispersal kernels. We
give two examples that show markedly different behavior.

Point Release and the Gaussian Kernel

The t-fold convolution of a Gaussian kernel with mean zero and variance σ 2 is a
Gaussian kernel with mean zero and variance tσ 2. Therefore, if K is a Gaussian
kernel with variance σ 2, then (5.3) becomes

Nt(x) = Rt

√
2tσ 2π

e
− x2

2tσ2 , (5.4)

as illustrated in Fig. 5.1. We observe that even if the initial population is concen-
trated at a single point, the population density in the first (and every subsequent)
generation is positive everywhere. This example illustrates the phenomenon of
infinitely fast propagation. As discussed above, we cannot simply define a speed of
propagation by tracking the spatial location where the population density becomes
positive.

A detection threshold is a minimal density above which one has a reasonable
and consistent chance to detect the presence of a particular species in empirical
work. For example, the emerald ash borer lays eggs under the bark high up in trees.
The exit holes of larvae are very small. The only way to detect a small density is
to fell and debark every tree in question. While this can and has been done under
special circumstances on a small scale (Mercader et al. 2009), it is not feasible and
is obviously harmful on large scales. At higher density, the eggs will be placed lower
in the tree, and the many exit holes will be easier to spot.
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Fig. 5.1 Population spread
from a point release at x = 0
with Gaussian dispersal
kernel according to (5.3). The
intersection with the detection
threshold (horizontal line)
defines the points xt (see
text). Parameters are σ 2 = 2
and R = 1.5.
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In mathematical terms, we define Ñ as the detection threshold, and we set xt as
the rightmost location at which the population exceeds this threshold in generation
t; see Fig. 5.1. The defining equation for xt ,

Ñ = Rt

√
2tσ 2π

e
− x2

t

2tσ2 , (5.5)

can be solved (provided Ñ is small enough) to get

xt =
√

2t2σ 2 ln R − 2tσ 2 ln
(√

2tσ 2πÑ
)

. (5.6)

To calculate a speed, we recall that the population was initially located at x = 0, so
that the distance covered per unit time is given by xt/t. This number depends on the
detection threshold and changes over time, but in the limit, we obtain a speed that
depends only on the two model parameters:

lim
t→∞

xt

t
=
√

2σ 2 ln(R) =: cG . (5.7)

Hence, asymptotically, the population spreads in space with constant speed (dis-
placement per generation). In general, this speed is denoted by c; the subscript
G indicates that the expression in (5.7) is obtained specifically with the Gaussian
kernel.

Point Release and the Cauchy Kernel

The Cauchy kernel is defined as

K(x) = 1

π

β

β2 + x2 . (5.8)
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Fig. 5.2 The Gaussian
(dashed) and the Cauchy
(solid) dispersal kernel. We
set β = 0.1 and choose
σ 2 = πβ/2 such that the two
kernels agree at x = 0.
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It describes a fat-tailed distribution, where dispersal distances follow a power law
decay. Hence, they decay much more slowly than for the Gaussian or the Laplace
kernel (Fig. 5.2). This kernel has no well-defined variance. In fact, all the moments
of this distribution are infinite. Nonetheless, we can calculate the t-fold convolution
for this kernel via Fourier transforms.

Following Kot et al. (1996), we use the (scaled) Fourier transform

N̂(ω) =
∫ ∞

−∞
N(x)eiωxdx . (5.9)

The Fourier transform is particularly well suited for this situation since it turns
convolutions into multiplications via a change of variables:

K̂ ∗ K(ω) =
∫ ∞

−∞

∫ ∞

−∞
K(x − y)K(y)eiωxdydx

=
∫ ∞

−∞
K(y)eiωydy

∫ ∞

−∞
K(z)eiωzdz = K̂(ω) · K̂(ω) . (5.10)

Hence, the t-fold convolution in (5.3) becomes the product N̂t (ω) = RtK̂t (ω). So
far, the calculations are general. The challenge now is to find the inverse Fourier
transform of this expression. Numerically, this can be done using the fast Fourier
transform (FFT) and its inverse. This procedure will be the basis for one numerical
method of solving IDEs (Chap. 8). For the Cauchy kernel, the inverse can be found
analytically.

The Fourier transform of the Cauchy kernel in (5.8) is

K̂(ω) = e−β|ω| . (5.11)

Its t-fold product, K̂t (ω) = exp(−βt |ω|), is of the same form, so that the inverse
transform of N̂t (ω) = RtK̂t (ω) must be
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Fig. 5.3 Population spread from a point release at x = 0. Left plot: Spread with Gaussian
kernel (2.25). Middle plot: Spread with Cauchy kernel (5.8). Right plot: Location xt of the level
set Nt(xt ) = 0.2. Parameters are β = 0.1, σ 2 = πβ/2, and R = 1.5. Population densities are
plotted for 10 generations. We note the difference in scale on the x-axis.

Nt(x) = Rt

π

βt

β2t2 + x2 . (5.12)

The rightmost location where the population exceeds threshold Ñ is given by

xt =
√

Rtβt

Ñπ
− β2t2 . (5.13)

This expression grows faster than geometrically in time. In particular, there is
no asymptotically constant speed of spread. The distance that the population
moves per generation increases faster than linearly with each generation, so that
limt→∞ xt/t = ∞. A comparison between this behavior and the asymptotically
constant speed is illustrated in Fig. 5.3. We call this phenomenon an accelerating
invasion. As an ecological consequence, a biological invasion could speed up over
time, and its location would be much harder, if not impossible, to predict.

The difference between propagation according to the Gaussian kernel with
asymptotically constant speed and the Cauchy kernel with continuously accelerating
speed is striking. Which properties of a dispersal kernel ensure that propagation
occurs at an asymptotically constant speed? In the next section, we present a second
approach to defining and calculating a measure for spatial spread. This approach
will lead us to the criterion we seek.

5.3 Spread as Traveling Fronts

The preceding calculations for xt require an explicit solution of the IDE, but that is
generally not available. The right plot in Fig. 5.3 suggests the existence of solutions
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in the form of a traveling front,1 i.e., a fixed spatial profile that is shifted by a fixed
distance per generation. If we assume that such fronts exist, we can derive conditions
on their speed from the model parameters. A traveling front describes the density of
a species that is well established over a large area and continues to expand its range.
This situation might occur long after an initial point release (see above) or could
arise as conditions at the range boundary change, e.g., when global change opens
climatic opportunities for species to expand their ranges poleward.

We denote by N∗(x) the profile of the front in some generation and by c the
displacement per generation. Then the profile in the next generation is N∗(x − c).

We substitute this expression into the linear equation (5.2) and obtain the relation

N∗(x − c) = R

∫ ∞

−∞
K(x − y)N∗(y)dy . (5.14)

Since the equation is linear, we make the exponential ansatz N∗(x) = exp(−sx).

To mimic the simulations in Fig. 5.3, we consider a rightward-moving (c > 0),
monotone-decreasing (s > 0) profile. Substituting the exponential ansatz into
(5.14), we obtain the relationship

esc = R

∫ ∞

−∞
K(y)esydy =: RM(s) . (5.15)

Function M , defined in (5.15), is called the moment-generating function of the
kernel. By definition, it satisfies M(0) = 1. For s �= 0, the value M(s) is finite
only if the tails of the kernel decay to zero faster than exp(−sx). If M(s) is finite
for at least one nonzero value of s, we say that the kernel is exponentially bounded.
The Gaussian kernel is exponentially bounded, but the Cauchy kernel is not. This
difference will explain the different spreading behavior that we found in the previous
section.

There is an alternative way to derive relation (5.15) by a so-called exponential
transform: One multiplies both sides of (5.14) by esx and integrates with respect to
x. This latter approach has the advantage that it does not assume a particular shape
of the profile N∗(x), only that it be exponentially bounded. The former approach,
on the other hand, allows us to interpret parameter s as the steepness of the invasion
front.

1A note on terminology is in order. The terms traveling front, traveling wave, and traveling profile
may mean the same or slightly different things to different authors. Some authors use constant-
speed traveling front to be more specific. Some authors require that a traveling front be bounded,
while others require monotonicity in addition. In the linear equation that we study in this section,
one cannot expect nontrivial bounded traveling fronts. We will use the terms interchangeably and
qualify additional properties if necessary.



60 5 The Speed of Spatial Spread

We can solve (5.15) for c and obtain the dispersion relation

c = c(s) = 1

s
ln(RM(s)) , s > 0 , (5.16)

that determines the speed at which an exponential profile with parameter s travels.
Since M(0) = 1, we have c(s) → ∞ as s → 0. Consequently, a flat front will travel
fast. Typically, the moment-generating function increases at least exponentially in
s while it exists, so that c(s) is large for large values of s as well. (We give a few
examples later when we discuss approximations to the spreading speed for several
kernels; see Table 10.1.) Consequently, a steep front will travel fast. One can show
that c(s) cannot have a local maximum, so that a minimum, if it exists, must be
unique.

Lemma 5.1 Assume that K is symmetric and that the moment-generating function
M of K is defined for some positive value of s. Then the function c = c(s) from
(5.16) is defined on some (possibly unbounded) interval. Furthermore, c has no
local maximum and at most one local minimum, which—if it exists—is the global
minimum.

Proof The proof follows Weinberger (1978); see also Bourgeois (2016). Since the
kernel is nonnegative and symmetric, the moment-generating function is increasing
in s > 0. Hence, if M(s) is finite for some s > 0, then it is finite for the entire
interval [0, s].

We define the function

Ψ (s) =
∫

xesxK(x)dx∫
esxK(x)dx

.

By differentiation, we find

c′(s) = −1

s
[c(s) − Ψ (s)] and c′′(s) = 1

s2 [c(s) − Ψ (s)] − 1

s
[c′(s) − Ψ ′(s)] .

Substituting and multiplying by s2, we find (s2c′(s))′ = sΨ ′(s). We calculate

Ψ ′(s) =
∫ [x − Ψ (s)]2esxK(x)dx∫

esxK(x)dx
> 0 .

In particular, the function s2c′(s) is increasing so that 2sc′ + s2c′′ > 0. Hence, at
every critical point of c (i.e., c′ = 0), we have c′′ > 0. Therefore, there cannot be a
local maximum. If there were two local minima, then there would have to be a local
maximum in between, which is impossible. ��



5.3 Spread as Traveling Fronts 61

The slowest speed at which an exponential profile in the linear equation can
travel is

ĉ = min
s>0

1

s
ln(RM(s)) . (5.17)

We call this speed the minimal speed of a traveling front in the linear equation.
The value of ĉ can be computed explicitly for the Gaussian kernel. The moment-

generating function of the Gaussian kernel (2.25) is

M(s) = exp

(
σ 2s2

2

)
. (5.18)

The dispersion relation and its derivative are

c(s) = ln(R)

s
+ σ 2s

2
and c′(s) = − ln(R)

s2 + σ 2

2
. (5.19)

The curve c(s) is strictly convex for s > 0. Its unique minimum occurs at the critical
value s∗ = ±√ln(R)/σ 2 and is given by

ĉ = c(s∗) =
√

2σ 2 ln(R) . (5.20)

Hence, the minimal speed for the Gaussian kernel is the same as the asymptotic
speed cG that we obtained from the point-release approach in (5.7). Since the
Cauchy kernel from the previous section does not have a finite moment-generating
function, it does not produce traveling profiles with constant speed.

Many other dispersal kernels have a finite moment-generating function, at least
for s in some interval around zero. While the formula in (5.17) gives the minimal
traveling-wave speed for those kernels, the minimization usually has to be carried
out numerically. Rather than straightforward minimization, Kot et al. (1996) propose
the following parametric approach to (5.15). We consider the left and right sides
of equation (5.15) as curves in the (c, R)-plane, parameterized by s, and we ask
when they intersect. Both curves are nondecreasing and concave up. When c = 0,
there is no intersection since the left-hand side is the constant one, whereas on the
right-hand side, we have R > 1 and M(s) ≥ 1 for a symmetric kernel. As we
increase c, the expression on the left-hand side increases, whereas the right-hand
side remains the same. For large enough values of c, the curves will intersect. If the
moment-generating function grows faster than exponentially for large s, we expect
the intersection point to appear at some finite value of s. The moment-generating
function of the Gaussian kernel certainly satisfies this condition. At the smallest
value of c for which the curves intersect, the two curves will then be tangent, i.e.,
in addition to (5.15), the derivatives of both sides with respect to s are also equal.
Hence, at the minimal traveling-wave speed, ĉ, the following two equations have to
be satisfied simultaneously:
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esĉ = RM(s) , ĉesĉ = RM ′(s) . (5.21)

Dividing the second equation by the first and back-substituting gives us the
parametric representation of the slowest speed as

ĉ = M ′(s)
M(s)

, R = esM ′(s)/M(s)

M(s)
. (5.22)

With this representation, it is straightforward to plot ĉ as a function of R for a given
(exponentially bounded) dispersal kernel; see Fig. 5.4 below.

For the Gaussian kernel, (5.22) provides an easier way to calculate ĉ. Substituting
M from (5.18), we find

ĉ = σ 2s , R = eσ 2s2/2 . (5.23)

Solving the second equation for s and inserting into the first results in the expression
in (5.20).

For the Laplace kernel, the parametric approach leads to an explicit formula for
the minimal traveling-wave speed. The moment-generating function of the Laplace
kernel (2.27) with dispersal parameter a is given by

M(s) = a2

a2 − s2 , |s| < a . (5.24)

The parametric representation in (5.22) becomes

ĉ = 2s

a2 − s2
, R =

(
1 − s2

a2

)
exp

(
2s2

a2 − s2

)
. (5.25)
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Fig. 5.4 Relationship between minimal traveling-wave speed ĉ and growth rate R (left plot),
respectively, variance σ 2 (right plot), for three different dispersal kernels: Gaussian (solid), Laplace
(dashed), and top-hat (dash-dot). In the right plot, we fixed σ 2 = 1; in the left plot R = 1.2.
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We can use this representation in two ways. One is to simplify by setting s̃ = 2s2

a2−s2

or s2 = a2 s̃
2+s̃

to obtain

R = 2es̃

2 + s̃
and aĉ = 2sa

a2 − s2 = s̃a

s
=
√

s̃2 + 2s̃ . (5.26)

The expression for R is now independent of a and is an increasing function of
s̃. Hence, for each s̃ there is a unique R (numerically easy to find) that we can
substitute into the equation for ĉ to find the speed.

Another approach is to rewrite the equation for R in (5.25) as

Re2

2

2a2

a2 − s2 = exp

(
2a2

a2 − s2

)
. (5.27)

This equation can be solved using the −1-branch of the Lambert W function to
obtain s and subsequently ĉ as

ĉ = −1

a
W−1

( −2

Re2

)√√√√ 2

W−1

( −2
Re2

) + 1 . (5.28)

Details can be found in Bourgeois (2016).
In Fig. 5.4, we illustrate how the minimal traveling-wave speeds for the Gaussian,

the Laplace, and the top-hat kernel (see Table 3.1) depend on the two model
parameters: the growth rate and the variance of the kernel. The speed is increasing
in both parameters. The speed for the Gaussian kernel is slower than for the Laplace
kernel but faster than for the top-hat kernel. When the variance is fixed, the speed
for the top-hat kernel is bounded by its finite support: since no individual can move
farther than β = √

3σ 2, the distance moved per generation, ĉ, cannot exceed that
number. In the left plot, we have σ 2 = 1, so that the minimal traveling-wave speed
is bounded by

√
3 ≈ 1.732. When the growth rate is fixed, the curves for all three

kernels are very close together (right plot). The curves for ĉ as a function of R may
intersect for different kernels; see Fig. 4 in Kot et al. (1996). This phenomenon can
arise if one of the kernels is highly concentrated near zero but has bounded support,
e.g., K(x) = a − b ln |x|.

Figure 1 in Lutscher (2007) shows that the curves for ĉ as a function of σ 2 are
similar for several other kernels. In other words, the speed for the Gaussian kernel
seems to approximate the speed for other kernels with the same growth rate and
variance reasonably well. We will discuss this question further in Chap. 10 in the
context of approximations.
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5.4 Nonlinear Growth Functions

When we use a more realistic, nonlinear growth function, an explicit solution such
as (5.3) for the linear model with point release is no longer available. Which of the
results and insights from the linear theory still hold in the nonlinear case? It turns out
that all the results that can carry over do so as long as there is no Allee effect (which
we assume throughout this chapter). To begin, we consider a special class of growth
functions. We shall assume that the extinction state is unstable and that there is a
positive, globally stable steady state (which we can and shall assume to be unity).
We shall also assume that the growth function is monotone. These assumptions are
expressed as follows:

(F1) F(0) = 0 and F(1) = 1 are the only two fixed points of F.

(F2) Fixed point N = 0 is unstable and N = 1 is stable.
(F3) F is continuous and nondecreasing.
(F4) F is differentiable at zero with F ′(0) > 1 and linearly bounded, i.e., F(N) ≤

F ′(0)N.

We shall relax the monotonicity assumption in (F3) later in the chapter. We recall
that throughout the chapter, we assume that dispersal is unbiased, i.e., K(x) =
K(−x).

For the nonlinear IDE, a traveling front satisfies not only a shift condition similar
to that in (5.14) but also asymptotic conditions. Specifically, the limits at ±∞ need
to correspond to fixed points of growth function F. Hence, a traveling wave to the
right with speed c > 0 of IDE (5.1) is a function N∗(x) that satisfies the equation

N∗(x − c) = Q[N∗](x) =
∫ ∞

−∞
K(x − y)F (N∗(y))dy , (5.29)

with asymptotic conditions limx→∞ N∗(x) = 0 and limx→−∞ N∗(x) = 1.

By symmetry, if there is a rightward traveling-front solution with speed c and
asymptotic conditions as stated, then there is also a leftward traveling-front solution
with speed −c and asymptotic conditions interchanged. Under conditions (F1)–(F4),
we can get a bound for the speed of a traveling front in the nonlinear equation from
the minimal speed in the linear equation.

Lemma 5.2 Assume that the moment-generating function of K exists in some
neighborhood of zero and that the growth function satisfies F(N) ≤ F ′(0)N .
Then the minimum traveling-front speed of the nonlinear equation (5.29) is bounded
above by ĉ in (5.17), where R = F ′(0).

Proof We assume that a traveling front exists and denote it by N∗. Since F has no
Allee effect, we have the inequality

N∗(x − c) =
∫ ∞

−∞
K(x − y)F (N∗(y))dy ≤ F ′(0)

∫ ∞

−∞
K(x − y)N∗(y)dy .

(5.30)
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Taking an exponential transform on both sides leads to the bound esc ≤ F ′(0)M(s).

Therefore, the minimum c is bounded by ĉ. ��
It is much harder to show, but true, that the minimal speeds in the linear and

nonlinear case are equal and that traveling fronts for the nonlinear case exist under
certain assumptions on F and K. To proceed in this direction, we introduce a new
measure of the speed of spread, the asymptotic spreading speed. This concept is
independent of the assumption that a traveling front exists and requires no special
initial condition as in the point-release scenario. Yet, it will turn out to be closely
related to both of these.

The Asymptotic Spreading Speed

The notion of an asymptotic spreading speed (Aronson and Weinberger 1975) can
be motivated as follows. Suppose a population is newly introduced into a confined
region. This population is said to spread with asymptotic speed c∗ if an observer
who travels at some speed c > c∗ will eventually be ahead of the population
whereas an observer who travels at speed c < c∗ will eventually be surrounded by
the population. Mathematically, these considerations can be expressed as follows.

Definition 5.1 The number c∗ is called the asymptotic spreading speed if it satisfies
the conditions

lim sup
t→∞

max
|x|>(c∗+ε)t

Nt (x) = 0 , lim inf
t→∞ min|x|<(c∗−ε)t

Nt (x) ≥ β > 0 (5.31)

for any small ε > 0 and some β > 0, where N0 �≡ 0 is compactly supported and Nt

is defined by the iteration in (5.29).

A priori, it is not clear that such an asymptotic spreading speed exists. Naturally,
some conditions on the dispersal kernel and growth function are necessary. For
example, for the linear growth function and the Cauchy kernel, no asymptotic
spreading speed exists; see Sect. 5.2. In the following, we discuss the most relevant
results about the existence of an asymptotic spreading speed according to the
properties of the growth function F , always assuming that the dispersal kernel is
exponentially bounded.

Spread with Compensatory Growth

Weinberger (1982) proves the existence of a spreading speed and several of its
properties for the general recursion operator

Nt+1 = Q[Nt ] , (5.32)
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defined on a space of continuous functions on R. In particular, the theorem below
applies not only to IDEs but also to other dynamic equations, e.g., to the time-1-map
of an appropriate reaction–diffusion equation.

To state the assumptions and results, we will frequently identify a number with
a constant function. For two continuous functions, N, Ñ , we write N ≥ Ñ if
N(x) ≥ Ñ(x) for all x. We denote by C[0,1] the space of continuous functions
on R with values in the interval [0, 1]. The following theorem summarizes results
from Theorems 6.5 and 6.6 by Weinberger (1982).

Theorem 5.1 Consider the following properties of operator Q on the space C[0,1]
of continuous functions.

(i) Translation invariance: Q[N(· − a)](x) = Q[N ](x − a) for all a ∈ R.

(ii) Invariance of C[0,1]: N ∈ C[0,1] ⇒ Q[N ] ∈ C[0,1].
(iii) Fixed points: Q[0] = 0, Q[1] = 1, Q[a] > a for a ∈ (0, 1).
(iv) Monotonicity: 0 ≤ N ≤ Ñ ≤ 1 ⇒ Q[N ] ≤ Q[Ñ ].
(v) Continuity: If {fj } ⊂ C[0,1] and fj → f uniformly on compact subsets of R,

then Q[fj ] → Q[f ] pointwise as j → ∞.
(vi) Compactness: Every sequence {fj } in C[0,1] has a subsequence {fji

} such that
{Q[fji

]} converges uniformly on every bounded subset of R.

Assume that Q in (5.32) satisfies (i)–(v). Then there exists an asymptotic spreading
speed c∗ > 0 for Q. If, in addition, (vi) holds, then for every c ≥ c∗ there exists a
continuous traveling-wave solution Nt(x) = W(x − ct) of Q with W(∞) = 0 and
W(−∞) = 1. No such traveling wave exists for c < c∗.

For the purpose of this theorem, the definition of the asymptotic spreading speed
can be strengthened in that the second condition in (5.31) can be replaced by

lim
t→∞ min|x|<(c∗−ε)t

Nt (x) = lim
t→∞ max

x∈R
Nt(x) = 1 , (5.33)

provided the initial condition is bounded between zero and one. Hence, the density
converges to the positive steady state behind the front.

As stated, the preceding theorem does not give a way to calculate the spreading
speed. Weinberger (1982) gives a general construction to define c∗ and uses it in the
proof of the theorem. We present this construction in Chap. 13.8. Weinberger (1982)
uses super- and sub-solutions to prove that the asymptotic spreading speed is given
by the linearized formula from (5.17) if certain additional conditions are satisfied.
We include this statement in the next theorem, where we apply the previous theorem
to IDEs and relate the properties of the growth function F to those of operator Q.

Theorem 5.2 Consider operator Q from (5.29). Assume that K is continuous and
that its moment-generating function exists for all s ∈ R. Assume that the growth
function satisfies conditions (F1)–(F4). Then there exists an asymptotic spreading
speed, c∗, for Q. Furthermore, c∗ equals the minimal traveling-wave speed ĉ from
(5.17), where R = F ′(0). Finally, for all c ≥ c∗ there exists a monotone traveling-
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front solution of (5.29), connecting zero and one with speed c, but for c < c∗ no
such traveling-front solution exists.

Proof We will show that the assumptions on F and K guarantee that conditions (i)–
(vi) in Theorem 5.1 are satisfied for Q from (5.29). We discuss the claim ĉ = c∗
separately below.

Translation invariance follows from the properties of the convolution operator by
a change of variables. Since F is monotone increasing and has zero and one as fixed
points, the interval [0, 1] is invariant for the map F. Since K is nonnegative and
integrates to unity, Q maps functions bounded between zero and one into functions
with the same bounds.

Since K integrates to unity, constant functions are mapped to constant functions
under Q. Since F has zero and one as fixed points, the constant functions zero and
one are fixed points for Q. Since F ′(0) > 1 and since zero and one are the only
fixed points of F in [0, 1], we must have F(a) > a for all 0 < a < 1. Hence,
the same is true for constant functions under Q. Monotonicity of Q follows from
monotonicity of F since K is nonnegative.

We prove continuity of Q under the slightly stronger assumption that F is
Lipschitz. We denote by L the Lipschitz constant of F. Consider a sequence of
functions {fj } in C[0,1] that converges uniformly on compact subsets to f. Then for
every m > 0 we have the estimate

|Q[fj ](x) − Q[f ](x)| =
∣∣∣∣
∫

K(x − y)(F (fj (y)) − F(f (y)))dy

∣∣∣∣
≤
∣∣∣∣
∫

|y|>m

K(x − y)(F (fj (y)) − F(f (y)))dy

∣∣∣∣

+
∣∣∣∣
∫

|y|≤m

K(x − y)(F (fj (y)) − F(f (y)))dy

∣∣∣∣
≤ 2

∫
|y|>m

K(x − y)dy + L

∫
|y|≤m

K(x − y)|fj (y) − f (y)|dy .

Since the kernel integrates to unity, we can choose m large to make the first term
arbitrarily small. Since fj converges uniformly on compact subsets, we can choose
j large (for fixed m) to make the second term arbitrarily small. Hence, Q[fj ] →
Q[f ] pointwise.

To prove that Q is compact is a little more involved but uses some of the same
ideas (see, e.g., Bourgeois 2016). We choose a sequence {fj } in C[0,1], a compact
interval I , and some m > 0. Then we define the sequence

f̃j (x) =
∫ m

−m

K(x − y)F (fj (y))dy , x ∈ I .
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Boundedness of F gives us uniform boundedness of f̃j . Since K is continuous,
it is uniformly continuous on compact sets. Therefore, f̃j are equicontinuous. By
the Arzelà–Ascoli theorem, there is a convergent subsequence f̃ji

→ f. The same
splitting of the integral as in the proof of continuity above then gives us uniform
convergence of Q[ft ] on bounded subsets of R. ��

We have not yet proved the claim c∗ = ĉ. To show that the spreading speed
must be bounded above by the speed of the linear equation with R = F ′(0)

is fairly straightforward, but the reverse inequality is much harder; we refer to
Weinberger (1982). Both proofs rely on monotonicity, but the latter requires the
careful construction of a sub-solution (compare the proof of Lemma 4.2).

Lemma 5.3 Under the assumptions of the previous theorem, we have c∗ ≤ ĉ.

Proof If N0 is compactly supported with 0 ≤ N0(x) ≤ 1 for all x ∈ R, then for each
s > 0 one can find a constant A such that N0(x) < A exp(−sx) for all x ∈ R. The
solution of the nonlinear equation is bounded by the solution of the linear equation
because of assumption (F4):

∫
K(x, y)F (Nt (y))dy ≤ F ′(0)

∫
K(x, y)Nt (y)dy . (5.34)

Hence, the solution Nt of the nonlinear equation with initial condition N0 can-
not spread faster than the solution of the linear equation with initial condition
A exp(−sx). Choosing the value of s that corresponds to ĉ gives the stated
inequality. ��

The result that the spreading speed of the nonlinear equation is equal to the
spreading speed of the linearized (at zero) equation (which, in turn, is equal to
the minimal traveling wave speed of the linearized equation) is known as linear
determinacy (Lewis et al. 2002). The linear conjecture is the belief that a system is
linearly determinate under certain conditions (van den Bosch et al. 1990). One of
these conditions is the linear boundedness condition on the growth function, which
excludes an Allee effect. We consider an Allee effect in Chap. 6.

Spread with Overcompensatory Growth

The Ricker function in (2.19) with parameter 0 < r < 1 is monotone and satisfies
conditions (F1)–(F4). However, with 1 < r < 2, it is not monotone on the interval
[0, 1]; see Fig. 5.5. Conditions (F1), (F2), and (F4) above are satisfied, but the
second part of (F3) is not. In Chap. 2, we saw that solutions of the nonspatial model
approach the stable state N = 1 with decaying oscillations. A similar pattern can
occur for the logistic growth function in (2.20).
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N

F
(N

)

F+

F−

Fig. 5.5 Illustration of the definition of F±. The solid curve is the Ricker growth function. The
increasing portion of the Ricker function together with the dashed horizontal line is the function
F+. The dash-dot horizontal line together with the increasing beginning of the Ricker function is
F−. The thin dashed vertical lines indicate the location of the maximum (N̂ ) and its value (F̂ ).

We cannot expect the existence of a monotone traveling-front profile. Nonethe-
less, we can use Theorem 5.2 to show the existence of a spreading speed even with
nonmonotone dynamics. The fundamental idea goes back to work by Thieme (1979)
on integral equations in continuous time. Several authors apply this idea to IDEs
with nonmonotone growth functions (Hsu and Zhao 2008; Li et al. 2009; Yu and
Yuan 2012; Yi and Zou 2015). We present some of their ideas and results here.

We shall assume that the growth function satisfies (F1)–(F4) except the mono-
tonicity assumption in (F3). Instead, we assume that there exists some N̂ ∈ (0, 1)

such that F is increasing for 0 ≤ N < N̂ and decreasing for N > N̂. Furthermore,
we assume that |F ′(1)| < 1 so that the unique fixed point is stable. We define
functions F± as follows (see Fig. 5.5): We set F̂ = max{F(N)|0 ≤ N ≤ 1} =
F(N̂) and define

F+(N) = max
Ñ≤N

{F(Ñ)} , F−(N) = min{F(N), F (F̂ )} . (5.35)

Finally, we define Q± as in (5.29) with F replaced by F±, respectively.
With this construction, we can bound solutions of Nt+1 = Q[Nt ] from above

and below by solutions of Nt+1 = Q±[Nt ], respectively.

Theorem 5.3 Under the assumptions and definitions in the previous paragraph, the
following hold.

1. F± satisfy conditions (F1)–(F4).
2. Q± satisfy the assumptions of Theorem 5.2; in particular, their respective

spreading speeds c∗± exist.
3. Q has a spreading speed c∗, and c∗− = c∗ = c∗+.
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Proof We sketch the main geometric idea of the proof but refer to Hsu and
Zhao (2008), Li et al. (2009), and Yi and Zou (2015) for technical details. The
construction in Fig. 5.5 guarantees that F± satisfy the conditions of Theorem 5.2,
which implies that the respective spreading speeds, c∗±, of operators Q± exist
and are determined by the respective linearizations at zero. The construction also
shows that F+(N) = F−(N) for small enough N . The latter property implies that
(F+)′(0) = (F−)′(0) so that c∗− = c∗+.

Next, we note that F−(N) ≤ F(N) ≤ F+(N), which implies that the same
inequalities hold for the corresponding operators, i.e., Q−[N ] ≤ Q[N ] ≤ Q+[N ].
Hence, for a given initial condition, the solution with operator Q is sandwiched
between the solutions with Q− and Q+. Since the latter two spread at the same
speed, the former has to spread at that speed as well. ��

Theorem 5.2 also guarantees the existence of monotone traveling waves that
connect the zero state with the positive state for Q±. The situation for Q is a bit more
delicate. As previously discussed, one cannot expect a traveling wave, if it exists,
to be monotone. The plots in Fig. 5.6 illustrate monotone (left) and nonmonotone
(right) traveling fronts with the Ricker function for different parameter values with
a characteristic function2 as initial condition. In both cases, the profile converges to
zero ahead of the front and to the positive fixed point behind the front. A general
proof of this property and whether it holds for all c ≥ c∗ turns out to be surprisingly
difficult. The respective works by Hsu and Zhao (2008), Li et al. (2009), and Yu
and Yuan (2012), Yi and Zou (2015) each use slightly different conditions; see also
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Fig. 5.6 Illustration of monotone and nonmonotone traveling fronts in the IDE with Ricker growth
function and Gaussian dispersal kernel. Parameters are σ 2 = 0.1, r = 0.8 (left), and r = 1.8
(right). The initial condition is the characteristic function on (−∞, 0); the profile is plotted every
four time steps.

2The characteristic function or indicator function of a set takes the value one on the set and zero
everywhere else. It is often denoted by χ. We will frequently use the characteristic function of a half
line as initial conditions in numerical simulations of traveling fronts. For example, χ(−∞,0](x) = 1
if x ≤ 0 and χ(−∞,0](x) = 0 if x > 0.
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Lin (2015). The conditions in Yi and Zou (2015) are particularly simple to verify
geometrically. Their Theorem 4.1 implies the following result.

Theorem 5.4 Assume that (F1), (F2), and (F4) hold. Assume further that N = 1
is the only fixed point of F 2. Then for all c ≥ c∗, there exists a traveling wave,
N∗(x − c) = Q[N ](x), with N∗(∞) = 0 and N∗(−∞) = 1.

When the positive fixed point of the growth function is unstable, one cannot
expect a traveling wave to converge to that point. For example, the positive fixed
point of the Ricker function becomes unstable through a flip bifurcation, and a
stable two-cycle emerges. Accordingly, solutions in the spatial model may show
oscillations in the wake of an invasion front (Bourgeois 2016). We discuss and
illustrate these phenomena in Chap. 11.

5.5 Further Reading

Spreading phenomena and traveling waves were studied in reaction–diffusion
equations, starting with Fisher (1937), long before they were studied in IDEs, e.g.,
Weinberger (1978) and references therein. Spreading phenomena in continuous-
time integral models are reviewed in Metz et al. (1999). A survey that includes
continuous and discrete-time equations can be found in Zhao (2009).

The notion of the asymptotic spreading speed was also originally introduced
for reaction–diffusion equations (Aronson and Weinberger 1975). It was, however,
studied via the time-1-map, so that the continuous-time equation was transformed to
a discrete-time recursion, similar to an IDE. Subsequent work focused on discrete-
time equations and was motivated mostly by population genetics (Weinberger 1978,
1982). The traveling-front profile is unique and solutions with monotone initial data
converge to this traveling front (Lui 1982a). Solutions with compactly supported
initial data converge to a double traveling-front profile when (F1)–(F4) hold (Lui
1982b).

Weinberger (1982) originally restricts the dispersal range of any individual to
some finite limit, which would require a compactly supported dispersal kernel.
Weinberger’s proof, however, when applied to IDEs, only requires that the moment-
generating function of the dispersal kernel exist on the whole real line. Extensions
by Hsu and Zhao (2008) and Weinberger and Zhao (2010) show that the formulas
hold if the moment-generating function is finite at a single nonzero value. They
also show that the asymptotic spreading speed is infinite if the moment-generating
function is infinite for all nonzero values, thereby clarifying the behavior of spread
with heavy-tailed kernels. Continuity of the dispersal kernel is also not necessary for
these results to hold. It is usually sufficient to require that K be Lebesgue integrable
to prove the existence of traveling fronts (Hsu and Zhao 2008; Yu and Yuan 2012).

The theory of spreading speeds and traveling fronts can be formulated in any
finite space dimension. One then defines a spreading speed for any given direction
(unit vector) and planar traveling waves moving in that direction. The results by
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Weinberger (1982) and subsequent works hold in that generality. The stability of
monotone traveling wave fronts with a Gaussian dispersal kernel was investigated
in two dimensions by Lin et al. (2010) and in any finite dimension by Miller and
Zeng (2013).

Throughout this chapter, we assumed that dispersal is unbiased so that the
dispersal kernel is symmetric. Many results in this chapter carry over to asymmetric
dispersal if the direction of spread is properly accounted for (Yi and Zou 2015), but
some caution is necessary. We discuss biased dispersal in detail in Sect. 12.2.

The spreading speed is only an asymptotic quantity that we expect to observe for
large times. It is nonetheless a useful quantity for applications since it turns out that
“large” is not very large at all. In simulations, we see that a solution develops into
a traveling wave with speed close to the asymptotic spreading speed after very few
generations (e.g., less than 10 generations in Fig. 5.3). Accordingly, Watkinson et al.
(2000) use the speed formula for the linear model to estimate the expected spatial
extent of a locally introduced annual grass (Vulpia ciliata) within a time frame of
20 years. More examples can be found in Kot (2003) and Lewis et al. (2016).

The Gaussian and the Cauchy kernels represent two extremes: the tails of the
former are exponentially bounded (thin tailed), whereas the tails of the latter decay
like a power law (fat-tailed). Accordingly, the moment-generating function of the
former is well defined, whereas the latter has no finite moments of any order. More
generally, kernels whose tails decay slower than exponentially are called heavy
tailed. While their moment-generating function does not exist, their moments

∫ ∞

−∞
xnK(x)dx , n = 1, 2, 3, . . . , (5.36)

may still be finite. One example of such a kernel is the exponential square root kernel

K(x) = a2

4
exp
(
−a
√|x|

)
. (5.37)

For these heavy-tailed kernels, the population density in generation t is asymptoti-
cally distributed as (Kot et al. 1996)

Nt(x) ∼ RtK(x) , |x|, t → ∞ . (5.38)

From this explicit formula, we calculate the spatial extent of the population with the
exponential square root kernel at time t to be

xt = 1

a2

[
t ln R + ln

(
a2

4Ñ

)]2

. (5.39)

Hence, the spatial extent grows quadratically in time, and therefore the speed of
spatial spread grows linearly in time. Liu and Kot (2019) present a much more
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detailed analysis of how invasions accelerate as a function of heavy-tailed dispersal
kernels, using the theory of regular variation.

The versatility with which IDEs incorporate non-Gaussian dispersal patterns,
and the phenomenon of accelerating invasions for heavy-tailed kernels has attracted
a lot of attention among ecologists. The sensitive dependence of spread rates on
the tails of a dispersal kernel, however, poses significant challenges for empiricists.
Since it is difficult, if not impossible, to track individuals that disperse very far, it
is extremely challenging to decide the decay rate of an empirical dispersal kernel.
Pielaat et al. (2006) propose a sampling design for seed traps, optimized to estimate
invasion speeds for IDEs, i.e., for catching the density in the tails of the kernel.
Nathan et al. (2003) review methods for long-distance dispersal estimates. Bianchi
et al. (2009) point to the importance of selecting an appropriate kernel in the context
of colonization times, i.e., when calculating the time that it takes for a certain
number of individuals to arrive at one site from another.

Formula (5.17) for the minimal speed of traveling fronts in the linear equation
does not actually use the dispersal kernel but rather its moment-generating function.
Consequently, Clark et al. (2001b) derive an estimator for spread rates from
data using the empirical moment-generating function, thereby circumventing the
difficulty of having to estimate the decay rate of the tails. This idea was later
expanded by Lewis et al. (2006), who also discuss differences between one- and
two-dimensional estimates.

In reality on a bounded planet, of course, no dispersal kernel has truly heavy or
even infinite tails. Similarly, no invasion can continue forever, so that the asymptotic
speed can never be observed. Clark et al. (2001a) consider discrete individuals and
track the location of the farthest-forward individual. They obtain a finite speed
of spread even when dispersal distances are drawn from heavy-tailed kernels.
Following up, Clark et al. (2003) explore the influence of uncertainty and estimate
speeds for potentially heavy-tailed kernels. Demographic stochasticity may also
lead to bounded spread rates even for kernels that produce accelerating waves for
the deterministic mean-field model (Jacobs and Sluckin 2015).



Chapter 6
Spatial Spread with Allee Effect

Abstract Many species exhibit an Allee effect, where population growth rates
are highest at intermediate rather than low density, and small populations may
even decline. Determining the spread rates of these species turns out to be much
more difficult than the theory in the preceding chapter, where there was no Allee
effect. Mathematically, this difficulty arises since—just as in the case of steady
states—we cannot expect the linearization at zero to give useful information about
the behavior of solutions for larger density, and hence we cannot expect the
linearization-based spread formulas from the previous chapter to hold. One of the
most interesting biological results here is that with the Allee effect, a population
may spread or retreat. Hence, eradication of an invading pest species seems possible
if management measures could turn an invasion into a retreat. We begin this chapter
with a caricature model for which all relevant quantities can be explicitly calculated.
Then we present a general condition for whether a population will spread or retreat.
Finally, we present a theorem about the existence of traveling waves and the
uniqueness of their speed.

6.1 Allee Effects and Biological Invasions

Allee effects (see Sect. 2.2) are ubiquitous in nature, and some are particularly
relevant for biological invasions (Taylor and Hastings 2005; Lewis et al. 2016).
For example, healthy pine trees produce and exude resin to defend themselves
against harmful insects, such as the mountain pine beetle (Dendroctonus ponderosae
Hopkins). As long as only a few beetles attack a tree, they will die in the resin. When
a large number of beetles attack a tree, the resin is insufficient to kill all of them.
The tree succumbs and the beetles can reproduce (Powell and Bentz 2014). This is
a classical setup for an Allee effect; see also Sect. 12.6.

In the presence of an Allee effect, mathematical analysis becomes more difficult.
We already know from the nonspatial model in (2.22) and the steady-state analysis
in Sect. 4.5 that the linearization at zero may not provide information about the
existence of a positive steady state and that the eventual state of the population may
depend on the initial condition. Similarly, in the question of invasions, none of the
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explicit calculations for spread with linear equations from the previous chapter carry
over to the case with Allee effect, since the phenomenon is inherently nonlinear.

Throughout this section, we consider a strong Allee effect with a monotone
growth function. As always, we can scale steady states to be F(0) = 0, F(1) = 1,
as in (2.22). With a strong Allee effect, there is an Allee threshold Na ∈ (0, 1) with
the property (see Fig. 2.2)

(A1) F(N) < N for N ∈ (0, Na) and F(N) > N for N ∈ (Na, 1) .

For a piecewise-constant caricature Allee function, we can explicitly calculate
conditions for spread as well as the corresponding asymptotic speeds (Kot et al.
1996). In Sect. 6.3, we present a simple criterion for the direction of the traveling
wave (Wang et al. 2002). The last section is devoted to the more abstract theory of
the existence of traveling waves (Lui 1983).

6.2 A Caricature Allee Function

For an analytically tractable example, we choose the piecewise-constant growth
function (Kot et al. 1996)

F(N) =
{

0, N < Na ,

1, N ≥ Na ,
(6.1)

with Allee threshold Na ∈ (0, 1) and carrying capacity equal to unity. The
population density after the growth phase is either one or zero. As in the previous
chapter, we consider a homogeneous landscape and a symmetric dispersal kernel of
the form K(x − y).

Because of the Allee effect, we expect the initial spatial extent of a population
to determine whether the population will persist and spread or decline and retreat.
We assume that the initial population exceeds the Allee threshold exactly on
some bounded interval and calculate subsequent densities. Since the landscape
is homogeneous and the growth function is binary, we may choose N0(x) =
χ[−x0,x0](x), the characteristic function of that interval, i.e., N0(x) = 1 if x ∈
[−x0, x0] and N0(x) = 0 otherwise. Then F(N0) = N0. The density in the next
generation is

N1(x) =
∫ ∞

−∞
K(x − y)χ[−x0,x0](y)dy =

∫ x0

−x0

K(x − y)dy =
∫ x+x0

x−x0

K(y)dy .

(6.2)
By symmetry, if N1(x) ≥ Na for some x, then N1(x) ≥ Na on some interval
[−x1, x1], where x1 satisfies the implicit equation

∫ x1+x0

x1−x0

K(y)dy = Na . (6.3)
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Fig. 6.1 Expansion (left) and retraction (right) with the caricature Allee function in (6.1). The
dashed line is the density before dispersal, the dash-dot line is the profile after dispersal, and the
solid line represents the density after applying the growth function. The horizontal dashed line
indicates the Allee threshold of 0.3. We used the Laplace kernel with dispersal distance one.

After the subsequent growth phase, the population density will be F(N1(x)) =
χ[−x1,x1](x). Inductively, we obtain the extent xt+1 from xt by solving

∫ xt+1+xt

xt+1−xt

K(y)dy = Na . (6.4)

We expect that if the initial spatial extent is small, it will shrink over time (0 ≤
xt+1 < xt ) and the population will die out. If the initial extent is large enough, it
will grow over time (xt+1 > xt ) and the population will spread. These two cases
are illustrated in Fig. 6.1. We obtain the critical spatial extent where the population
remains constant by setting xt+1 = xt = xc or

∫ 2xc

0
K(y)dy = Na . (6.5)

Since the kernel is a symmetric probability density, the integral is bounded by 1/2.
Hence, we require Na < 1/2; otherwise a population cannot persist or spread.

For the Laplace kernel in (2.27) with parameter a, the integral in (6.4) can be
evaluated explicitly, but we have to distinguish two cases. When xt+1 > xt , we find

∫ xt+1+xt

xt+1−xt

K(y)dy = e−axt+1 sinh(axt ) . (6.6)

Hence, the spatial extent satisfies the difference equation

xt+1 = 1

a
ln

(
sinh(axt )

Na

)
. (6.7)
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Fig. 6.2 Illustration of the recursions of spatial extent from one generation to the next with
Laplace kernel (6.7). The plot on the left illustrates the case xt+1 > xt ≥ xc; the plot on the
right has the reversed inequalities. The mean dispersal distance is unity, and the Allee threshold is
Na = 0.3, so that xc ≈ 0.4581 (dashed vertical line).

When xt+1 < xt , it is easier to write the backward iteration

xt = 1

a
ln

(
cosh(axt+1)

1 − Na

)
. (6.8)

The critical value xc from (6.5) is given by 2axc = − ln(1 − 2Na). We illustrate the
cobweb for both of these iterations in Fig. 6.2 and the critical value as the vertical
dashed line.

We can use the same approach to calculate the asymptotic spreading speed for
the population. If the population spreads asymptotically with constant speed c∗ > 0,
then xt+1 − xt → c∗ and xt+1 + xt → ∞ as t → ∞. From (6.4), we find c∗
implicitly as

∫ ∞

c∗
K(z)dz = Na or

∫ c∗

0
K(z)dz = 1

2
− Na , (6.9)

where we used the symmetry of the kernel again. (Recall also that K is a probability
density.)

As before, the necessary condition for spread (c∗ > 0) is Na < 1/2. For certain
kernels, (6.9) can be solved for c∗. For the Gaussian (2.25) and Laplace (2.27) kernel
we obtain

c∗
Gauss =

√
2σ 2 erf−1(1 − 2Na) and c∗

Laplace = −
√

σ 2/2 ln(2Na) , (6.10)

respectively, where erf(x) is the error function. We plot the speeds for these two
kernels in Fig. 6.3 as a function of the variance (left plot). We see that the speed for
the Gaussian kernel is lower than for the Laplace kernel when the Allee threshold
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(dashed) kernels. Left plot: Speed as a function of variance when Na = 0.1 (lower curves) and
Na = 0.03 (upper curves). Right plot: The speed of spread as a function of Na with σ 2 = 0.5.

is very small, but higher when Na is large. It turns out that the value N∗
a where the

two speeds are equal is independent of the variance. It is implicitly given by

2erf−1(1 − 2N∗
a ) = − ln(2N∗

a ) . (6.11)

We find the critical value numerically as N∗
a ≈ 0.0464. Figure 6.3 also shows the

speed as a function of Na (right plot).
Several other kernels allow for an explicit calculation of c∗ from (6.9). For the

double Weibull kernel (see Table 3.1) we calculate

c∗
Weibull = θ (− ln(2Na))

1/k . (6.12)

For the Cauchy kernel (5.8), we find

c∗
Cauchy = β tan

(π

2
(1 − 2Na)

)
, (6.13)

and for the exponential square root kernel from (5.37), we can use the Lambert W
function again (see (5.28)) to find

c∗
ExpRoot = 1

a2 (−W−1(−2Na/e) − 1)2 . (6.14)

We note that both heavy-tailed kernels admit a finite asymptotic spreading speed
here because the Allee function ensures that the population occupies only a finite
region after the growth phase. In general, however, heavy-tailed kernels can generate
accelerating invasions, even with an Allee effect (Wang et al. 2002).

We can use a slight variation of the above reasoning to calculate the speed of a
(monotone) traveling wave as well. Clearly, the traveling wave profile, N∗(x), after
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the growth phase must have the form of a characteristic function, e.g., F(N∗(x)) =
χ(−∞,0]. Then

N∗(x − c) =
∫ ∞

−∞
K(x − y)F (N∗(y))dy =

∫ ∞

x

K(z)dz = 1

2
−
∫ x

0
K(z)dz .

(6.15)
After the subsequent growth phase, the profile will be the characteristic function on
(−∞, c], where c is calculated from

1

2
−
∫ c

0
K(z)dz = Na , (6.16)

which is the same as (6.9). When Na < 1/2, then c is positive and the population
advances; when Na > 1/2, then c is negative and the population retreats. For Na =
1/2, there is a constant profile with speed zero. This behavior is typical when an
Allee effect is present, as we shall see in the next section.

6.3 The Direction of a Traveling Front

We saw that the speed of a traveling front in the IDE with the caricature Allee
effect can have any sign; i.e., the front may invade or retreat or remain stationary.
Somewhat surprisingly, the direction of the front depends only on the growth
function and is independent of the dispersal kernel (as long as it is symmetric).
This result by Wang et al. (2002) generalizes the corresponding, well-known result
for a reaction-diffusion equation with strong Allee effect (Kot 2001). The proof in
the discrete-time case is much more involved. Our exposition follows Wang et al.
(2002).

Theorem 6.1 (Wang et al. 2002) Consider the IDE Nt+1(x) = (K ∗ F(Nt))(x)

with monotone growth function F and steady states N = 1 and N = 0. Assume
that there is a monotone decreasing traveling front with speed c and profile N(x),
connecting the two states; see Fig. 6.4. Furthermore, assume that F and N are real
analytic functions, that derivatives of any order of N vanish as x → ±∞, and
that the derivatives diF (N(x))/dxi are bounded uniformly in i. Then we have the
following relation for the sign of the speed of the traveling front:

sign(c) = sign

(∫ 1

0
[F(N) − N ]dN

)
. (6.17)

The integral on the right is the signed area between F(N) and N . The region
where F(N) − N is positive (negative) is indicated by a + (−) sign in Fig. 6.4. The
statement of the theorem does not require a (strong) Allee effect. However, if there
is a weak or no Allee effect, then F(N) > N for 0 < N < 1, and so the integral on
the right-hand side will be positive.
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Fig. 6.4 Illustration for Theorem 6.1. Left plot: The difference between the traveling front profile
in subsequent generations. Right plot: Growth function with strong Allee effect and illustration of
the integral in (6.17).

Proof Since the front is decreasing, we have c > 0 if and only if N(x)< N(x−c) for
all x. Since F is monotone increasing and N is monotone decreasing, the derivative

dF

dx
:= d

dx
(F (N(x)) (6.18)

is negative. Hence, we find that c > 0 if and only if [N(x) − N(x − c)] dF
dx

> 0 for
all x. In Lemma 6.1, we show the integral equality

∫ ∞

−∞
[N(x) − N(x − c)]dF

dx
dx =

∫ ∞

−∞
[N − F(N)]dF

dx
dx . (6.19)

The transformation of variables y = F(N(x)) applied to the integral on the right
results in

∫ ∞

−∞
[N − F(N)]dF

dx
dx =

∫ 1

0
[y − F−1(y)]dy . (6.20)

The graph of the function y = F(N) partitions the unit square into the gray and
white areas in the right plot in Fig. 6.4 so that

∫ 1

0
F(N)dN +

∫ 1

0
F−1(y)dy = 1 . (6.21)

A similar argument applies to the function y = N so that the expression in (6.20)
can be written as

∫ 1

0
[y−F−1(y)]dy = 1−

∫ 1

0
NdN −

(
1 −

∫ 1

0
F(N)dN

)
=
∫ 1

0
[F(N)−N ]dN .

(6.22)
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Altogether, we find that c > 0 if and only if the expression in (6.22) is positive. The
same reasoning applies for c < 0 and c = 0. Hence, the theorem is proved. ��
Lemma 6.1 Under the conditions of Theorem 6.1, integral equality (6.19) holds.

Proof We need to show the equality

∫ ∞

−∞
N(x − c)

dF

dx
dx =

∫ ∞

−∞
F(N)

dF

dx
dx . (6.23)

In the defining equation for the traveling front,

N(x − c) =
∫ ∞

−∞
K(z)F (N(x − z))dz , (6.24)

we split F(N(x − z)) into its even and odd parts with respect to z, i.e.,

Fe(x, z)= 1

2
[F(N(x−z)+F(N(x+z))], Fo(x, z)= 1

2
[F(N(x−z)−F(N(x+z))],

and obtain

N(x − c) =
∫ ∞

−∞
K(z)[Fe(x, z)+Fo(x, z)]dz =

∫ ∞

−∞
K(z)Fe(x, z)dz . (6.25)

The last equality above arises since the integral of the product of an even function
and an odd function is zero. Now we multiply the equality in (6.25) by dF/dx and
integrate. Since the integrand is of one sign, we use Tonelli’s theorem to exchange
the order of integration and obtain

∫ ∞

−∞
N(x − c)

dF

dx
dx =

∫ ∞

−∞

∫ ∞

−∞
K(z)Fe(x, z)

dF

dx
dxdz . (6.26)

Next, we expand Fe in a power series around z = 0. Because the function is even,
all derivatives of odd order vanish. The derivatives of even order at z = 0 are the
same as the derivatives of F(N(x)). Using the fact that the kernel integrates to unity,
we find that the integral above equals

∫ ∞

−∞
F(N(x))

dF

dx
dx +

∫ ∞

−∞

∫ ∞

−∞
K(z)

∞∑
i=1

z2i

(2i)!
(

d2i

dx2i
F (N(x))

)
dF

dx
dxdz .

(6.27)
It remains to show that the double integral vanishes. By Levi’s theorem, we may
interchange summation and the inner integration. Using integration by parts, we
verify that each of the inner integrals vanishes as follows. For i = 1, we calculate
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∫ ∞

−∞
d2

dx2 F(N(x))
dF

dx
dx = 1

2

(
dF

dx

)2 ∣∣∣∞−∞ = 0 . (6.28)

For i = 2, we apply integration by parts twice

∫ ∞

−∞
d4

dx4
F(N(x))

dF

dx
dx = d3F

dx3

dF

dx

∣∣∣∞−∞ −
∫ ∞

−∞
d3

dx3
F(N(x))

d2F

dx2
dx

= 0 − 1

2

(
d2F

dx2

)2 ∣∣∣∞−∞ = 0 . (6.29)

Successively, each term in the infinite sum vanishes by repeated application of
integration by parts. At this point, we have used the assumption that all derivatives
of N(x) vanish as x → ±∞ and that all derivatives of F are (uniformly) bounded.

��

6.4 General Theory

Explicit calculations for the spreading speed and traveling fronts in an IDE with
Allee growth functions are rarely possible. Abstract results about spreading prop-
erties and traveling fronts, however, appear simultaneously with those mentioned
in the previous chapter when there is no Allee effect (Weinberger 1982; Lui 1983).
Clearly, there cannot be a formula analogous to (5.17) for a spreading speed based
on the linearization at zero, but that formula can be used to bound the spreading
speed even in the case with Allee effect (Lui 1983). Since a population may retreat
and not advance, it is also clear that Definition 5.1 of the asymptotic spreading
speed cannot apply in the presence of an Allee effect. In particular, the example in
Sect. 6.2 shows that a locally introduced population with Allee effect may collapse
below the Allee threshold in finite time, but the second inequality in (5.31) requires
that the population remain above a positive threshold in the wake of the invasion
front for all times. This difficulty is reflected in the formulation of the result below.
The following theorem summarizes several aspects of the first published work on
spreading speeds and traveling waves in IDEs with Allee effect growth function.

Theorem 6.2 (Lui 1983) Consider the IDE Nt+1(x) = (K ∗ F(Nt))(x) where

(i) K is a continuous, symmetric probability distribution with finite moment-
generating function;

(ii) there is a constant C such that
∫∞
x

K(y)dy ≤ CK(x) for large x;
(iii) F is continuously differentiable with F(0) = 0 = F(1) − 1, and (A1) holds;
(iv) F ′(N) ≤ F ′(Na) for N ∈ [0, 1]; and
(v) F ′(0)N ≤ F(N) ≤ F ′(1)(N − 1) + 1 for N ∈ [0, 1].
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Then the following statements hold.

1. There exists an asymptotic spreading speed, c∗, in the following sense. If
N0(x) = 0 for x > 0 and N0(x) > Na as x → −∞, then

lim sup
t→∞

max
x>(c∗+ε)t

Nt (x) = 0 and lim inf
t→∞ min

x<(c∗−ε)t
Nt (x) = 1 .

2. A monotone traveling wave can exist for at most one speed.
3. There exists c∗ ∈ R and a family of monotone traveling waves with speed c∗.

Lui’s results are more general than we have stated here. The dispersal kernel
can have some discontinuities, and it does not have to be symmetric. When the
kernel is not symmetric, we obtain a spreading speed in each direction. The results
are not more difficult to prove, but they are more tedious to state. We consider a
particular form of asymmetry in Sect. 12.2. The condition on the moment-generating
function may be relaxed as in the previous chapter, but some boundedness condition
is necessary. When the kernel is heavy tailed, accelerating fronts do exist even with
Allee effects (Wang et al. 2002, 2013).

Condition (v) requires the graph of F to be bounded between the tangent line
at zero and the tangent line at one. Condition (iv) requires the slope of the growth
function to be maximal at the Allee threshold. These conditions can be weakened
(Pan and Zhang 2011). The two asymptotic requirements on the initial condition
make it look “wave-like.” Lui’s original formulation is for compactly supported
initial data and needs additional assumptions.

While there is no explicit formula for the speed in the presence of an Allee effect,
Lui (1983) gives an upper bound of c∗ as

c∗ ≤ max
s>0

1

s
ln

(
max
N>0

F(N)

N
M(s)

)
. (6.30)

This bound can be obtained by bounding the growth function F with a function that
is monotone and concave down. Lui constructs such a function as

F+(N) =
{

mN, 0 ≤ N ≤ Ñ,

1, N > Ñ,
(6.31)

where m = maxN>0
F(N)

N
and Ñ = 1/m (Fig. 6.5, left panel). At the point

N = 1/m where F+ is not differentiable, it can be “smoothed out” so that it
still has the required properties. Alternatively, if F is monotone and concave down
whenever it is above the diagonal, we can define F+ as above for N < Ñ and
F+ = F for N ≥ Ñ (Fig. 6.5, right panel). In the latter case, the function is
continuously differentiable. In both cases, F+ is monotone and concave down.
Hence, the spreading speed for the IDE with F+ is linearly determined and given
explicitly by the formula in (5.17), which becomes (6.30) for this example. Since
F ≤ F+, the spreading speed with function F is bounded above by the spreading
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(F ). The left panel shows the construction by Lui (1983), which has a corner. The right panel
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speed with function F+, as in Sect. 5.4. For the Allee function in (2.22) with
R > γ = 2, we can explicitly calculate

m = R

2
√

R − 1
and Ñ = 1√

R − 1
.

An upper bound for the spreading speed is then given by

c∗ ≤ max
s>0

1

s
ln

(
R

2
√

R − 1
M(s)

)
. (6.32)

To end this chapter, we relate the results about spreading speed to the obser-
vations about the existence of a positive steady state on a bounded domain from
Sect. 4.5. There, we found that for a positive steady state to exist, we need more
than just the existence of a stable positive state in the nonspatial model and a small
variance of the dispersal kernel. In fact, the condition we found was independent of
the variance of the dispersal kernel: it required the growth to be “strong enough.”
The threshold between existence and nonexistence of a positive steady state was
given by H(1)−1/2 = H(0), where H(N) is an antiderivative of F . For population
spread with an Allee effect, formula (6.17) states that a traveling front invades only
if

0 <

∫ 1

0
[F(N) − N ]dN = H(1) − H(0) − 1/2 . (6.33)

In other words, a steady state on a bounded domain can only exist if the speed of a
traveling wave on the unbounded domain is positive. Numerically, we can observe
that a locally introduced population on a bounded domain can spread in a front-like
fashion to fill the domain and establish a positive steady state.
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6.5 Further Reading

A comprehensive review of models for spatial spread with Allee effect can be found
in Taylor and Hastings (2005) and more recent results in relation to biological
invasions in Lewis et al. (2016). However, while there are many theoretical results,
there are relatively few applications of the IDE with Allee effect to real ecosystems.
We discuss some in Sect. 12.6.

Since the dynamics with strong Allee effect have two stable steady states,
the equation is sometimes called the bistable equation. In contrast, dynamics of
Beverton–Holt type have a single stable steady state and are called monostable.
Accordingly, traveling fronts are sometimes called bistable fronts and monostable
fronts, respectively. When the speed of a front is determined by the linearization
at zero (monostable equations; see previous chapter), the front is referred to as a
pulled front since the few individuals ahead of the front “pull” it along. In contrast,
in the bistable equation, there has to be sufficient growth at higher density (see
Theorem 6.1) to “push” the population forward. We sometimes speak of pushed
fronts in that case. Bistable traveling fronts in reaction–diffusion equations have
received considerably more attention than in IDEs, particularly in combustion
problems. Early references can be found in Lui (1983); for recent results and
extensions, see, e.g., Hamel (2016).

The original results by Lui (1983) were extended to multiple space dimensions
by Creegan and Lui (1984). Later, Lui (1985) showed that solutions with compact
initial data converge to a double-front profile. He also proved that solutions were
trapped by translations of the traveling front. The existence and stability of clines,
i.e., traveling fronts with speed zero, was shown in Lui (1986). More recently, Pan
and Zhang (2011) showed the existence, uniqueness, and asymptotic stability of
bistable traveling fronts for IDEs by a squeezing technique. Even more general
results that include, e.g., spatially heterogeneous environments can be found in Fang
and Zhao (2015). Similar, but independent results can be found in Coutinho and
Fernandez (2004).

The theory for the monostable equation from Chap. 5 can be applied to prove the
existence of a different kind of traveling waves in the bistable equation (Corollary
after Proposition 3 in Lui 1983). We assume that F satisfies the conditions from
Theorem 6.2. We define the function

G(N) = F(N + Na) − Na , N ∈ [0, 1 − Na] , (6.34)

and the IDE Nt+1(x) = (K ∗ G(Nt))(x). Then G(0) = 0 = G(1 − Na) − Na ,
G′(0) = F ′(Na) > 1 and G(N) ≤ G′(0)N on [0, 1 − Na]. In other words, the
IDE with growth function G satisfies all the conditions for the theory in Chap. 5.
Hence, the bistable equation has monotone traveling waves that connect Na with
one, and their minimal speed is given by the formula in (5.17) with R = G′(0). In
Sect. 11.4, we will use the idea behind the construction of G to investigate spreading
phenomena in the Ricker equation when the positive steady state is unstable.



Chapter 7
Modeling the Dispersal Process

Abstract In this chapter, we focus on the process of dispersal and use it to define
dispersal kernels based on mechanistic principles. Many empirical studies examine
how individuals move over a short period of time; a dispersal kernel describes where
individuals are after a long period of time. By modeling the dispersal process, we
can scale from short to long time. We model movement as a random walk and derive
the governing partial differential equations. Depending on the form and duration
of movement, we derive different dispersal kernels. We begin with uncorrelated
random walks on the real line and fixed or exponentially distributed durations, which
will lead us to the Gaussian and the Laplace kernel, respectively. For other durations,
we obtain various other kernels. Finally, we consider random walks on bounded
domains.

7.1 From Process to Outcome

Many empirical studies measure dispersal distances and produce histograms or
parametric fits of their distribution, e.g., in release–recapture experiments. A typical
example is the collection of wind-dispersed seeds of a single plant in an array of
seed traps (Neubert et al. 1995). The results are empirical dispersal kernels that can
be used directly in the IDE. The ease with which IDEs can accommodate different
dispersal patterns makes them appealing to the ecological community and provides
more versatility than reaction–diffusion models. For some species, however, the
dispersal outcome is difficult to observe directly, e.g., when recapturing is rare.
Instead, empiricists collect data on much smaller spatial and temporal scales, e.g., on
the speed and direction of a moving individual over a few minutes to hours (Turchin
1998). The question then is how we can scale from the process (short time and
distance) to the outcome (long time and distance). One way to make this connection
is to model the dispersal process and solve the resulting equations to derive the
dispersal kernel.

In this chapter, we model individual movement as a random walk and make
some assumptions about the stopping times of this random walk. Depending on
the type of random walk and the distribution of stopping times, we derive different
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forms of dispersal kernels. This chapter follows the pioneering work by Neubert
et al. (1995) and Van Kirk (1995). The Gaussian and the Laplace kernel can be
derived from a reaction–diffusion equation for uncorrelated random walks with
fixed and exponentially distributed stopping times, respectively. Other stopping
times, described by hazard functions, will yield different kernels.

Having a movement model to derive a dispersal kernel will also allow us to
consider dispersal processes in heterogeneous space. In this case, we cannot expect
the kernel to depend on dispersal distance only, but rather on the specific initial and
final location. Empirically measuring such kernels is extremely demanding since
we would need to release individuals from every point and in each case measure
their final density at every point. Instead, a process-based movement model will
allow us to incorporate spatially varying dispersal behavior and then obtain the
corresponding kernel.

7.2 Random Walks and the Dispersal Kernel

We describe the dispersal process as an uncorrelated random walk on a regular one-
dimensional lattice with space steps �x and time steps �t ; see Fig. 7.1 and Turchin
(1998). During each time step, an individual may move one space step to the right
with probability p+ or to the left with probability p−. With probability ps , it ends
its walk and settles. With the remaining probability, 1 − p+ − p− − ps , it does
nothing. It cannot move farther than one space step per time step. Each individual
moves independently of all other individuals.

To derive the master equation for this random walk, we denote by u(t, x)�x the
probability that the individual is in the interval of length �x around x at time t.

The master equation for u is the bookkeeping equation for all the choices that the
individual has in its walk. An individual can be at some location x at time t + �t

if it was already there at time t and did not move, if it was one step to the left and
moved to the right, or if it was to the right and moved to the left; see Fig. 7.1. In
mathematical terms, we obtain the equation

u(t + �t, x) = p+u(t, x − �x) + p−u(t, x + �x) + (1 − p+ − p− − ps)u(t, x) .

(7.1)
This master equation is suitable for simulation models but unwieldy for analytical

purposes. We continue with the assumption that the time and space steps are small
so that we can expand both sides of (7.1) in a Taylor series. For the left-hand side,

Fig. 7.1 Schematic
illustration of the lattice and
the movement probabilities
for a simple random walk.

Random walk and settling
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we find

u(t + �t, x) = u(t, x) + �t

∂

∂t
u(t, x) + O(�2

t ) , (7.2)

whereas on the right-hand side, we find terms of the form

u(t, x + �x) = u(t, x) + �x

∂

∂x
u(t, x) + �2

x

2

∂2

∂x2
u(t, x) + O(�3

x) . (7.3)

Substituting these expansions into (7.1) and combining terms, we arrive at

∂

∂t
u(t,x)= �2

x

2�t

(p−+p+)
∂2

∂x2 u(t,x)+�x

�t

(p−−p+)
∂

∂x
u(t,x)−ps

�t

u(t,x)+O(�t ,�
3
x).

(7.4)
We want to pass to a limit as �x,�t → 0. Different limits result in different

equations. The most commonly used and most successful is the parabolic limit,
where �2

x/�t converges to a finite, positive number. (We chose to expand only to
first order in t but to second order in x precisely because we had this limit in mind.)
To carry out the parabolic limit, we need to assume that the difference between the
left and right movement probability scales with the spatial step size (p−−p+ ∼ �x)
and that the settling probability scales with the time step (ps ∼ �t ). Then we obtain
the limiting reaction–diffusion–advection equation

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) − q

∂

∂x
u(t, x) − αu(t, x) , (7.5)

where the motility, the movement bias (advection), and the settling rate are

D = lim
�x,�t→0

�2
x

2�t

(p− + p+) , q = lim
�x,�t→0

�x

�t

(p+ − p−) , α = lim
�t→0

ps

�t

,

(7.6)
respectively. Clearly, D and α are positive, but q can be of any sign.

We let y be the initial location of the individual so that the initial condition is
the Dirac delta distribution u(0, x) = u(0, x; y) = δ(x − y) (Sect. 5.2). Then (7.5)
describes the probability density of the location of a single random walker as long
as it is still moving. To obtain the dispersal kernel, we “add up” the probabilities
that the walker stopped at location x. This distribution of settling locations in the
limit of large times is given by

K(x, y) =
∫ ∞

0
αu(t, x; y)dt . (7.7)

The additional argument y in u indicates the initial location. We shall omit it if no
confusion can arise.
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In two space dimensions, the analogue of (7.5) is

∂

∂t
u(t, x) = D∇2u(t, x) − q · ∇u(t, x) − αu(t, x) , (7.8)

where q is now the vector that points in the direction of the movement bias. The
definition of K remains unchanged.

Depending on the assumptions about the settling rate, we obtain different kernels
from this definition. Since space is homogeneous, we can assume that the starting
point is y = 0 and use K(x, y) = K(x − y, 0) = K̃(x − y). We will drop the tilde
when no confusion can arise.

The Laplace Kernel

In the first scenario, the settling rate α > 0 is a constant; i.e., there is an equal
probability per unit time that the individual settles. In other words, settling is a
Poisson process with mean 1/α, which is the average time that an individual moves
before it settles. We begin with an unbiased random walk so that q = 0. Equation
(7.5) has the explicit solution

u(t, x) = e−αt

√
4πDt

exp

(
− x2

4Dt

)
. (7.9)

In particular, u → 0 uniformly in x as t → ∞.

It is unwieldy to substitute the explicit solution into the definition of the kernel
(7.7). Instead, we derive an equation for K directly. We integrate both sides of (7.5)
over time from zero to infinity and find

u(∞, x) − u(0, x) = D

α

∫ ∞

0
α

∂2

∂x2 u(t, x)dt −
∫ ∞

0
αu(t, x)dt . (7.10)

The last integral in this equation is exactly the expression for the kernel in (7.7).
By the above, we have u(∞, 0) = 0 and the initial condition u(0, x) = δ(x). For
the first term on the right-hand side, we assume that we can interchange integration
with respect to t and differentiation with respect to x. We obtain the equation for K

as

− δ(x) = D

α
K ′′(x) − K(x) . (7.11)

Hence, K is the Green’s function of the differential operator 1 − (D/α)(∂2/∂x2)

and can be calculated by standard methods (Keener 2000). Using the asymptotic
boundary conditions at infinity, we write
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K(x) =
{

A exp
(−√

α/D x
)
, x > 0 ,

B exp
(√

α/D x
)
, x < 0 .

(7.12)

Continuity of K (or symmetry) requires A = B. The easiest way to find the value of
the remaining parameter is to use the integral condition (2.24). Alternatively, (7.11)
requires that K ′ have a jump of size −α/D at zero. Formally, we integrate (7.11)
over (−ε, ε) and let ε → 0 to find

− 1 = D

α
(K ′(0+) − K ′(0−)) = −2

D

α

√
α

D
A . (7.13)

Hence, A = √
α/D/2, and the kernel is the Laplace kernel

K(x) = 1

2

√
α/D exp

(
−√α/D|x|

)
. (7.14)

The variance of K is σ 2 = 2D/α; see (2.27).
From the two-dimensional random walk process with constant settling rate, we

obtain the modified Bessel function

K(x) = α

2πD
K0

(√
α

D
‖x‖
)

(7.15)

with variance σ 2 = 2D/α. Note that K0 is unbounded at the origin. The one-
dimensional Laplace kernel results as the marginal distribution along any line
through the origin (Van Kirk 1995).

So far, we have assumed an unbiased random walk (q = 0), but movement in
rivers and other advective environments is often biased. In one space dimension, the
same steps as above can be carried out for q > 0 and lead to the asymmetric Laplace
kernel (Van Kirk 1995; Lutscher et al. 2005)

K(x) =
{

A exp(a1x) , x < 0 ,

A exp(a2x) , x > 0 ,
A = a1|a2|

a1 + |a2| , (7.16)

where a1 > 0 > a2 are given by a1,2 = q±
√

q2+4αD

2D
. The variance and mean of this

kernel are σ 2 = 2D/α + q2/α2 and μ = q/α, respectively (Lutscher et al. 2010).
We illustrate the effect of movement bias on the Laplace kernel in the left plot in

Fig. 7.2. We will use this kernel to explore questions of persistence and spread in an
advective environment in Sect. 12.2.
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Fig. 7.2 Left plot: Asymmetric Laplace kernel resulting from the assumption of constant settling
rate and movement bias. Right plot: Gaussian kernel resulting from the assumption of fixed time
to settling and movement bias. Parameters are D = 0.2 and τ = 1/α = 1.

The Gaussian Kernel

In a second scenario, we assume that the settling rate is not constant but that an
individual settles after exactly τ > 0 time units have passed. Formally, we can write
the time-dependent settling rate using the delta distribution: α = α(t) = δ(t − τ).

Then the dispersal kernel is simply the fundamental solution (7.9) of (7.5) with
α = 0 at time τ , or

K(x) =
∫ ∞

0
δ(t − τ)u(t, x)dt = u(τ, x) = 1√

4πDτ
exp

(
− (x − qτ)2

4Dτ

)
,

(7.17)
with variance σ 2 = 2Dτ and mean μ = qτ. In two space dimensions, we find the
Gaussian kernel

K(x) = 1

2πDτ
exp

(
−‖x − qτ‖2

4Dτ

)
. (7.18)

The marginal distribution of the two-dimensional kernel is the one-dimensional
version.

To compare the Gaussian and the Laplace kernel, we choose the mean time before
settling in the Laplace kernel to equal the exact time before settling in the Gaussian
kernel, i.e., 1/α = τ . The two kernels have the same mean, μ = qτ = qα, but the
variance of the Gaussian kernel is smaller than that of the Laplace kernel, and the
difference increases as τ increases. The comparison in Fig. 7.2 shows that advection
has a markedly different effect on the two kernels. Whereas the Gaussian kernel
is merely shifted by the mean dispersal distance per lifetime, the Laplace kernel
retains its maximum at zero but becomes increasingly asymmetric and skewed. This
difference will have a big impact on persistence conditions and spreading speeds for
river-dwelling organisms; see Sect. 12.2.
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7.3 Straight Walks and Hazard Functions

The dispersal process constitutes a developmentally important part of the life cycle
of many species. For example, a number of aquatic organisms with sessile adult
stages produce larvae that need to mature in the water column before they have the
physical ability to settle on the benthic floor and become sessile adults (Scheltema
1986). Such developmental processes can depend on temperature and other aspects.
Accordingly, we would like to have a general, time-dependent settling rate α(t) in
(7.5) and derive the corresponding dispersal kernel from the equations as above.
We could even consider the movement parameters to depend on time as well.
Unfortunately, explicit expressions for the dispersal kernel are not available in these
cases.

As an alternative, we can replace the random walk with a straight walk at constant
speed and obtain explicit examples (Neubert et al. 1995). When an individual moves
at constant speed γ > 0, starting from x = 0 along the straight line x > 0, and stops
moving at the rate α(t), then the density function u(t, x) for this process satisfies
the equation

∂

∂t
u(t, x) + γ

∂

∂x
u(t, x) = −α(t)u(t, x) , u(0, x) = δ(x) . (7.19)

The equation can be solved by the method of characteristics to obtain

u(t, x) = δ(x − γ t) exp

(
−
∫ t

0
α(τ)dτ

)
. (7.20)

The dispersal kernel for x ≥ 0 is then

K(x) =
∫ ∞

0
α(t)δ(x − γ t)e− ∫ t

0 α(τ)dτ dt = 1

γ
α

(
x

γ

)
exp

(
−
∫ x/γ

0
α(τ)dτ

)
.

(7.21)
For symmetric dispersal from x = 0 in both directions on the real line, we divide
the expression by two and replace x by |x|.

For the constant settling rate α(t) = α we obtain the Laplace kernel, albeit with
different parameters,

K(x) = 1

2

α

γ
exp

(
−α

γ
|x|
)

. (7.22)

When the settling rate is a power function,

α(t) = k
(γ

θ

)k

tk−1, (7.23)
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the resulting kernel is the double Weibull kernel

K(x) = k

2θ

∣∣∣x
θ

∣∣∣k−1
exp
(
−|x/θ |k

)
; (7.24)

see Table 3.1 and Fig. 3.3. Similarly, the double gamma distribution from that table
can be obtained with an appropriately chosen settling rate; see Table 1 in Neubert
et al. (1995).

7.4 Ballistic Dispersal

Certain plants forcibly eject their seeds from their pods and send them in a
ballistic trajectory before they land. For example, some geraniums (e.g., Geranium
maculatum), phlox (Phlox drummondii), and touch-me-nots (Impatiens capensis)
use this mechanism, which is also referred to as “explosive dispersal” (Beer and
Swaine 1977; Stamp and Lucas 1983). This dispersal process can often be better
modeled by the physical equations of motion than by a random walk (Neubert et al.
1995).

In the simplest case, the seed is launched from the ground with speed γ > 0 and
angle θ ∈ [0, π ]. We consider the effects of gravity only and neglect air resistance.
We denote by x and y the horizontal and vertical coordinates of the location of the
seed. Then the equations of motion in the x- and y-direction are

ẍ = 0 , ÿ = −g , (7.25)

where g is the gravitational constant and a dot indicates differentiation with respect
to time. The initial conditions are x(0) = 0, y(0) = 0, ẋ(0) = γ cos(θ), and
ẏ(0) = γ sin(θ). The solutions to these equations are

x(t) = γ cos(θ)t , y(t) = γ sin(θ)t − g

2
t2. (7.26)

Hence, a seed with initial angle θ and speed γ will land at location

x(θ) = γ 2

g
sin(2θ) . (7.27)

In particular, there is a maximum dispersal distance of γ 2/g.

We can calculate the corresponding dispersal kernel from the distribution of
launch angles by a change of variables. We suppose that f = f (θ) is the distribution
of launch angles, i.e., f is a nonnegative function on [0, π ] with integral equal
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to unity. Then the probability that a seed is launched into the interval [x1, x2]
equals the probability that the seed is launched with angles in θ ∈ [0, π ], such
that x(θ) ∈ [x1, x2], or

∫ x2

x1

K(x)dx =
∫ π

0
f (θ)dθ . (7.28)

The function x = x(θ) is not globally invertible. For nonnegative x, we find

θ(x) =
{

θ1(x) = 0.5 arcsin(gx/γ 2) , θ ∈ [0, π/4] ,

θ2(x) = π/2 − 0.5 arcsin(gx/γ 2) , θ ∈ [π/4, π/2] .
(7.29)

For every x̄ ∈ (0, γ 2/g), there is an interval x1 < x̄ < x2 with xi ∈ (0, γ 2/g).

Then, by substitution, the formula in (7.28) yields

∫ x2

x1

K(x)dx =
∫ x2

x1

f (θ1(x))θ ′
1(x)dx +

∫ x1

x2

f (θ2(x))θ ′
2(x)dx . (7.30)

If the launch angles are uniformly distributed, we have f (θ) = 1/π , and we
calculate explicitly

K(x) = 1

π

1√
(γ 2/g)2 − x2

, |x| <
γ 2

g
. (7.31)

This ballistic dispersal kernel is compactly supported but it is not continuous at the
boundary of its support; in fact, it has poles at this boundary (Fig. 7.3). Its integral,
however, is finite and equals unity.

Fig. 7.3 Illustration of
ballistic dispersal. Top panel:
trajectories of seeds at
different launch angles.
Bottom panel: resulting
dispersal kernel. Parameters
are γ 2 = g = 10.
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For increased realism, we can consider a positive initial height, include air
resistance, and allow the angles to be nonuniformly distributed (Beer and Swaine
1977). When plants eject seeds from pods at different heights, we can integrate over
the distribution of launch heights as well.

7.5 Random Walks on Bounded Domains

The previous examples of dispersal kernels were derived under the assumption of
a homogeneous landscape, yet most landscapes are heterogeneous. An extreme
form of heterogeneity is that of a single isolated patch surrounded by a hostile
environment, as we encountered for the critical patch-size problem in Chap. 3.

Some dispersal processes are relatively unaffected by spatial heterogeneity. For
example, wind-dispersed seeds may be transported from an island to the surrounding
water without any special behavior at the edge. Wind patterns are, however, affected
by topography, as can be the resulting seed dispersal process (Robbins 2004). Many
other dispersal processes will strongly depend on habitat type. For example, many
butterflies prefer meadows and will enter a surrounding forest only with very small
probability. We present the derivation of kernels for movement on a single bounded
patch by Van Kirk (1995) and Van Kirk and Lewis (1999). We generalize these ideas
when we discuss persistence and spread in heterogeneous landscapes (Chap. 15).

Van Kirk (1995) assumed that inside the domain [−L/2, L/2], an individual
moves distance �x left or right with probability p+ = p− = 1/2 per time increment
�t . At the boundary point x = L/2, the individual moves back into the domain
with probability p− = 1/2. Of the remaining probability, the individual leaves the
domain with probability c�x and stays at the boundary with probability (1 − c�x);
see Fig. 7.4. Here, c ∈ [0,∞) is the rate per unit length at which the individual
leaves the domain. The master equation at the boundary takes the form

u(t + �t,L/2) = 1

2
u(t, L/2 − �x) + 1 − c�x

2
u(t, L/2) . (7.32)

Expanding the terms and sorting by like powers, we obtain

∂

∂t
u(t, L/2) = − �x

2�t

(
∂

∂x
u(t, L/2) + cu(t, L/2)

)
+ O(�t ,�

2
x) . (7.33)

Fig. 7.4 Schematic
illustration of the random
walk at a boundary point.

x=L/2Δ
x

1/2 cΔ
x
/2

Random walk at a boundary
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In the parabolic limit from (7.6), the fraction �x/�t becomes infinite. Therefore,
the expression in parentheses has to equal zero. A similar argument applies at the
boundary x = −L/2, with only the sign in the brackets changing. Hence, the
movement model on the bounded interval is given by

∂

∂t
u = D

∂2

∂x2 u − αu , x ∈ (−L/2, L/2) , (7.34)

with boundary conditions

∂

∂x
u(t,−L/2) = cu(t,−L/2) ,

∂

∂x
u(t, L/2) = −cu(t, L/2) . (7.35)

Before we calculate the dispersal kernel from this movement model, we simplify
the notation by scaling space by L and time by α to obtain the equations

∂

∂τ
u(τ, ξ) = D̃2 ∂2

∂ξ2 u(τ, ξ) − u(τ, ξ) , ξ ∈ (−1/2, 1/2) , (7.36)

with αL2D̃2 = D and boundary conditions

(1−pe)
∂

∂ξ
u(τ,−1/2) = peu(τ,−1/2) , (1−pe)

∂

∂x
u(τ, 1/2) = −peu(τ, 1/2) ,

(7.37)
where the dimensionless quantity pe = cL/(1 + cL) is the edge permeability
(Van Kirk and Lewis 1999).

Following Van Kirk and Lewis (1999), we separate variables and represent the
dispersal kernel as an infinite series. Separating variables for u(τ, ξ) = T (τ)X(ξ)

in (7.36) gives a Sturm–Liouville problem for X and a sequence of eigenvalues ν2
n

satisfying

T ′ = −(ν2
n + 1)T , X′′ = − ν2

n

D̃2
X , (7.38)

with boundary conditions (7.37) for X. The general ansatz for X gives

X(ξ) = A sin

(
νn

D̃
ξ

)
+ B cos

(
νn

D̃
ξ

)
, (7.39)

and the boundary conditions result in the system

[
(1−pe)

νn

D̃
cos
(

νn

2D̃

)
+pe sin

(
νn

2D̃

)]
A+
[
pe cos

(
νn

2D̃

)
−(1−pe)

νn

D̃
sin
(

νn

2D̃

)]
B=0 ,

[
(1−pe)

νn

D̃
cos
(

νn

2D̃

)
+pe sin

(
νn

2D̃

)]
A−
[
pe cos

(
νn

2D̃

)
−(1−pe)

νn

D̃
sin
(

νn

2D̃

)]
B = 0 .
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This system has a solution only if one of A or B is zero. Accordingly, we obtain two
sets of conditions that determine νn as

pe cos

(
νn

2D̃

)
= (1 − pe)

νn

D̃
sin

(
νn

2D̃

)
if A = 0 , (7.40)

pe sin

(
νn

2D̃

)
= −(1 − pe)

νn

D̃
cos

(
νn

2D̃

)
if B = 0 . (7.41)

Explicit solutions are available when either pe = 1 or pe = 0; for intermediate
cases, the transcendental equation has to be solved numerically. For pe = 1, we find
that A = 0 implies νn = (2n − 1)πD̃ and Xn(ξ) = cos((2n − 1)πξ), whereas
B = 0 implies νn = 2nπD̃ and Xn(ξ) = sin(2nπξ). By standard Fourier theory,
we can write the solution for u as

u(τ, ξ) =
∑
n≥1

Cne−(ν2
n+1)τ cos((2n − 1)πξ) + Sne−(ν2

n+1)τ sin(2nπξ) , (7.42)

where, using the initial condition u(0, ξ) = δ(ξ − y), the constants are

Cn = 2 cos((2n − 1)πy) , Sn = 2 sin(2nπy) . (7.43)

Term-by-term integration gives the dispersal kernel (Van Kirk 1995)

K(ξ, y) =
∑
n≥1

2

(2n − 1)2π2D̃2 + 1
cos((2n − 1)πξ) cos((2n − 1)πy)

+ 2

4n2π2D̃2 + 1
sin(2nπξ) sin(2nπy) .

(7.44)

We illustrate the kernel for hostile boundary conditions in Fig. 7.5; see also
Figs. 1 and 2 in Van Kirk and Lewis (1999). We see that the kernel is not of the

Fig. 7.5 Dispersal kernels on
the bounded domain
[−1/2, 1/2] with hostile
boundary conditions (pe = 1)
and initial location y = 0
(blue) and y = 0.3 (black)
and scaled diffusion constant
D̃ = 0.1 (solid) and D̃ = 0.2
(dashed).
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form K(x − y) but depends on both the initial and the final location. With larger
diffusion constant (dashed curves), individuals are more likely to get to the boundary
before they settle, so that the probability of staying in the domain is decreased.

7.6 Multiple Dispersal Modes

Dispersal can be a multi-stage process involving different movement modes. For
example, seeds can first be airborne and disperse with the wind, and once they
settle on the ground they can be picked up by rodents and moved farther (Powell
and Zimmermann 2004). Some stream insects, such as mayflies, drift downstream
with the water flow in their larval stage, and then mature to winged adults and
leave the water to fly and lay their eggs (Lutscher et al. 2010). Even within a river
or stream, the flow speeds at different depths differ, and individuals (or particles)
experience different movement when they change their vertical position (Lutscher
and McCauley 2013). Individuals may also choose between different movement
modes according to their internal state, e.g., they may switch between foraging and
exploration (Tyson et al. 2011). The random-walk approach from Sect. 7.2 can and
has been extended to several of these cases (Neubert et al. 1995; Skalski and Gilliam
2003; Lutscher et al. 2005).

If two or more dispersal processes happen consecutively, the derivations of the
dispersal kernel and corresponding moment-generating function are straightforward
extensions of the procedure presented earlier (Neubert et al. 1995). We consider two
stages with diffusion coefficients Di and drop-out rates αi. The movement equations
for an individual in stage i = 1, 2 are

∂

∂t
u1 = D1

∂2

∂x2 u1 − α1u1 ,

∂

∂t
u2 = D2

∂2

∂x2
u2 − α2u2 + α1u1 ,

(7.45)

with initial conditions u1(0, x) = δ(x − y) and u2(0, x) = 0. We define kernels Ki

as in (7.28) with α and u replaced by αi and ui , respectively. Since the landscape is
homogeneous, we can set y = 0 and consider Ki = Ki(x) as a function of a single
variable only. By integration, we obtain the two coupled equations

−δ(x) = D1

α1
K ′′

1 (x) − K1(x) ,

−K1(x) = D2

α2
K ′′

2 (x) − K2(x) .

(7.46)

We already know the Green’s function of the first equation from the previous
calculation as the Laplace kernel with parameter a1 = √

α1/D1. Similarly, the
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Green’s function of the second equation is the Laplace kernel with parameter a2 =√
α2/D2. Hence, the solution of the second equation in (7.46) is the convolution

(Neubert et al. 1995)

K2(x) =
∫ ∞

−∞
a2

2
e−a2|x−y| a1

2
e−a1|y|dy

=

⎧⎪⎨
⎪⎩

a2
1a2

2
2(a2

2−a2
1)

(
1
a1

e−a1|x| − 1
a2

e−a2|x|
)

, a1 �= a2 ,

a1
4 (1 + a1|x|)e−a1|x| , a1 = a2 .

(7.47)

This is our desired dispersal kernel. We illustrate the effect of the second dispersal
stage in Fig. 7.6.

The easiest way to calculate the moment-generating function is to use the
property of the exponential transform that the moment-generating function of a
convolution is the product of the moment-generating functions. With this, we find

M(s) = a2
1

(a2
1 − s2)

a2
2

(a2
2 − s2)

. (7.48)

In principle, more complicated movement equations can also be solved by
this Green’s function method, e.g., when individuals can settle from both modes,
when they can switch back and forth between modes, and when there is advection
(Lutscher et al. 2005).
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Fig. 7.6 Dispersal kernel (7.47) for the model of two subsequent dispersal stages. When the
second stage is of short duration (α2 large) and/or of little movement (D2 small), then a2 is large
and the dispersal kernel is essentially the Laplace kernel of the first dispersal mode only (see dash-
dot line for a2 = 100). As a2 decreases, the second mode becomes more important and individuals
disperse considerably further.
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When we are interested in calculating spread rates for linear models, we do not
need to know the dispersal kernel but rather its moment-generating function; see
(5.17). It can be obtained directly from the equation(s) for the kernel(s) via an
exponential transform without calculating the kernel(s) explicitly. We illustrate the
method using the preceding example.

When we multiply the first equation in (7.46) by exp(sx) and integrate with
respect to x, we obtain

−
∫ ∞

−∞
δ(x)esxdx = a2

1

∫ ∞

−∞
K ′′

1 (x)esxdx −
∫ ∞

−∞
K1(x)esxdx . (7.49)

By the properties of the delta distribution, the term on the left side equals −1. By
definition, the second term on the right becomes the moment-generating function,
M1(s), of K1; see (5.15). The first term on the right is more delicate since K ′′ is not
continuous at zero. We split the integral as

∫ ∞

−∞
K ′′(x)esxdx =

∫ −ε

−∞
K ′′(x)esxdx +

∫ ε

−ε

K ′′(x)esxdx +
∫ ∞

ε

K ′′(x)esxdx .

(7.50)
Since K decays exponentially to zero for |x| � 0, the improper integrals converge
for small enough |s|. Integrating by parts twice, we find

∫ ∞

ε

K ′′(x)esxdx = −K ′(ε)esε + K(ε)sesε +
∫ ∞

ε

s2K(x)esxdx , (7.51)

and a similar expression for the integral from −∞ to −ε. For the middle integral,
we substitute the equation to get

∫ ε

−ε

K ′′(x)esxdx = a2
1

∫ ε

−ε

(−δ(x) + K1(x))esxdx → −a2
1 (7.52)

as ε → 0, again by the properties of the delta distribution and since K1 is
continuous. Substituting back and taking the limit in (7.50) gives

∫ ∞

−∞
K ′′(x)esxdx = K(0−)−K(0+)+K ′(0−)−K ′(0+)−a2

1+s2M1(s) . (7.53)

The first two terms on the right side cancel because K is continuous. The second
two cancel with the fifth by the jump condition (7.13), so that only the last term
remains. Hence, (7.49) turns into

− 1 = a2
1s2M1(s) − M1(s) , or M1(s) = a2

1

a2
1 − s2

. (7.54)
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We have re-derived the expression for the moment-generating function of the
Laplace kernel.

There is no discontinuity in the equation for K2 in (7.46). We can take the
exponential transform and integrate by parts twice to get

− M1(s) = a2
2s2M2(s) − M2(s) . (7.55)

Solving for M2, we get the expression in (7.48) with a2
i = αi/Di as usual.

For the most general (linear) dispersal model of this kind with two modes
(or states), we assume that individuals in mode i move randomly with diffusion
coefficient Di and advection qi. They end their dispersal phase with rate αi. In
addition, they may switch from mode i to the other mode with rate βi. Then the
equations for the location of the individual in motion read (Lutscher et al. 2005)

∂

∂t
ui = Di

∂2

∂x2 ui − qi

∂

∂x
ui − (αi + βi)ui + βjuj , i �= j. (7.56)

The initial conditions

u1(0, x) = pδ(x − y) , u2(0, x) = (1 − p)δ(x − y) , (7.57)

indicate that an individual starts dispersing in mode 1 with probability p and in
mode 2 with probability 1 − p. The densities of the settling locations from state i

are

Ki(x, y) =
∫ ∞

0
αiui(t, x)dt , (7.58)

and the desired dispersal kernel is the sum K = K1 + K2.

Without loss of generality, we can set y = 0 and consider K = K(x) as
a function of a single variable only. By integration, we obtain the two coupled
equations

−pδ(x) = D1

α1
K ′′

1 (x) − q1

α1
K ′

1(x) − α1 + β1

α1
K1(x) + β2

α2
K2(x) ,

−(1 − p)δ(x) = D2

α2
K ′′

2 (x) − q2

α2
K ′

2(x) − α2 + β2

α2
K2(x) + β1

α1
K1(x) .

(7.59)
We can proceed in the same way as when finding the Green’s function. For x �=
0, we can derive a single linear fourth-order equation for K1, say, by repeated
differentiation and substitution (Lutscher et al. 2005). To solve the fourth-order
differential equation we have to find the roots of its a characteristic equation,
which is a polynomial of order four. Once we have the roots of the characteristic
polynomial, we write the solution in terms of the corresponding exponential
functions, and use the conditions at infinity as well as at zero to determine the
constants.
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Using the preceding ideas, it is much simpler to find the moment-generating
function directly. Taking the exponential transform of equations (7.59), we have

−p = D1

α1
s2M1(s) + q1

α1
sM1(s) − α1 + β1

α1
M1(s) + β2

α2
M2(s) ,

−(1 − p) = D2

α2
s2M2(s) + q2

α2
sM2(s) − α2 + β2

α2
M2(s) + β1

α1
M1(s) .

(7.60)

The solution of this system is a simple linear algebra problem that does not require
root finding. One can solve the second equation for M2 and substitute into the first to
find M1 (and thereby also M2) explicitly. The desired moment-generating function
for the process is then M = M1 + M2.

7.7 Further Reading

Modeling dispersal, deriving dispersal kernels, and estimating parameters are active
areas of research in their own right. The ideas presented here can be extended in
several directions, and many different approaches are possible. The mechanistic
underpinning of dispersal kernels may also help in selecting appropriate kernels. For
example, if empirical move-length distributions are available and several parametric
kernels produce comparably good fits, process-based criteria might help choose one
kernel over another.

We assumed spatially and temporally constant movement rates, but the
diffusion–settling equation can be formulated more generally for heterogeneous
landscapes (Turchin 1998). Even though we cannot find an explicit expression for
the resulting dispersal kernel, we can use the fact that the kernel results in the
Green’s function of a certain differential operator to prove results about the critical
patch-size and the spreading speed. We return to this issue in Chap. 15.

Chesson and Lee (2005) developed an analogous theoretical framework to derive
dispersal kernels in discrete landscapes, where individuals take steps on a finite-
dimensional integer lattice.

Additional individual-level processes can be included in the basic approach. For
example, to account for mortality during dispersal, we can include a death rate in
the dispersal equation and calculate corresponding kernels (Van Kirk 1995); see
Sect. 12.1. Another question is that of a finite time of dispersal. If individuals need
to settle within a certain time in order to survive, as certain marine invertebrates do,
then the settling rate, α(t), is zero when t is larger than this maximum time. As in the
case with dispersal-related mortality, the corresponding kernels will not integrate to
unity. The detailed consequences of these effects are future research questions.

The mechanistic approach also provides an avenue to understanding the emer-
gence of heavy-tailed kernels. For example, the moment-generating function for
the Weibull kernel (7.24) is defined only for k ≥ 1, but the kernel is defined for
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0 < k < 1 as well. Secondly, if instead of using random walks, we consider Lévy
flights as the movement process, a constant settling rate will produce the Cauchy
kernel (Lutscher et al. 2005). Yet another approach is to use fractional diffusion
equations (anomalous or super-diffusion) instead of the reaction–diffusion equations
to model movement. This approach can also result in heavy-tailed kernels (Baeumer
et al. 2007). There is empirical evidence for heavy-tailed kernels or mixed kernels;
see Sect. 12.5 (Bullock and Clarke 2000). Clark (1998) developed a two-parameter
kernel that can interpolate between the Gaussian kernel and certain heavy-tailed
kernels.

Other mechanistic models exist, in particular for seed dispersal. One of the
most prominent models is the so-called Wald analytical long-distance dispersal
(WALD) model (Skarpaas and Shea 2007). This model arises from fluid dynamics
and predicts a distribution of dispersal distances r according to

K̃(r) =
(

λ

2πr3

)1/2

exp

(
−λ(r − μ)2

2μ2r

)
, (7.61)

where μ is the mean and λ is the scale parameter. These two parameters depend
on seed release height, terminal velocity, and wind speed data. The actual kernel
is calculated by integrating over the release height and wind speed distributions
(Skarpaas and Shea 2007). Marchetto et al. (2010) use the WALD model to
estimate the effect of different spatial arrangements of plants on invasion speeds.
Bullock et al. (2012) use this approach in combination with predicted wind-speed
distributions to estimate spread rates under climate change. Caplat et al. (2012) use
perturbation analysis in conjunction with the WALD model to find sensitivities of
spread rates with respect to parameters.

Yet another aspect of dispersal aims to estimate the relative contributions of
different sources to a target population. Klein et al. (2006) show that these results
differ significantly between thin- and heavy-tailed dispersal kernels and thereby
help explain the phenomenon of accelerating invasions. Finally, Snäll et al. (2007)
propose a general statistical framework to analyze dispersal patterns and data in a
unified way.



Chapter 8
Computational Aspects

Abstract In this chapter, we present some numerical recipes to illustrate the
analytical results on IDEs obtained so far and to facilitate exploring the dynamics
beyond what can be proved analytically. Numerical simulation of IDEs is typically
simpler than for corresponding reaction–diffusion equations since only space but
not time needs to be discretized. When the IDE is in convolution form, the simplest
algorithm uses a discrete Fourier transform. In other cases, an explicit quadrature
rule can be used. Eigenvalue problems for IDEs can be approximated by matrix
eigenvalue problems and solved with existing routines. Explicit analytical results
help calibrate numerical schemes.

8.1 Numerical Methods

Numerical methods to solve IDEs are indispensable for applications where the
equations are more complex than the ones that we have investigated analytically
so far. Complex dynamic phenomena, such as cyclic and chaotic behavior with
the Ricker or logistic growth function (see Chap. 4), can easily appear in IDEs but
are almost impossible to analyze without computational help. Similarly, studying
extensions such as the inclusion of multiple interacting species or spatio-temporal
heterogeneity in later chapters often requires computational approaches. The ana-
lytical results obtained so far are useful for checking the accuracy of the numerical
methods before applying the methods to problems that are inaccessible to analysis.
The numerical methods presented here are relatively simple and are presented
without numerical error analysis or convergence estimates. They are nonetheless
widely used to explore the dynamics of IDEs even in chaotic regimes. For more
rigorous approaches, we refer to Day et al. (2004) and Day and Kalies (2013).

The models in Chaps. 3 and 4 deal with bounded domains, whereas those
in Chaps. 5 and 6 consider infinite domains. For computational purposes, these
infinite domains have to be truncated. It then becomes a question of the relative
scales of dispersal distance and patch-size. As a rule of thumb, to study spreading
phenomena, we choose the length of the domain to be large compared to the variance
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of the dispersal kernel and let the initial density be localized far away from the
boundary (or at least one of the boundary points). To study persistence phenomena,
we choose the length of the domain to be small compared to the variance of the
dispersal kernel and let the initial condition be positive everywhere.

We discuss several aspects. We begin with the standard forward-iteration scheme
based on the discrete Fourier transform (Powell 2009), which can be applied
when the integral is of convolution type. Then we mention three other ways of
computing the integral operation in an IDE. Next, we outline Nyström’s method
in connection with solving eigenvalue problems for IDEs (Zhou and Kot 2013).
The code presented in this chapter uses MATLAB/OCTAVE, but the ideas and
structure carry over easily to other programming languages. This chapter is not
an introduction to programming in general or to MATLAB in particular but rather
assumes that the reader is familiar with the basics of MATLAB or any other similarly
capable programming language. The code discussed here is available for download
from the repository https://integrodifference.frithjof.ca/.

8.2 Integration Via Fast Fourier Transform

Our first method of evaluating the integral and calculating the population density
from one generation to the next is based on a discrete fast Fourier transform (FFT),
a highly efficient numerical algorithm for evaluating convolution integrals (Brigham
2002). The application of the FFT and its inverse to IDEs and an implementation in
MATLAB are beautifully described by Powell (2009). We follow his procedure here.
The FFT method applies to convolutions, i.e., when the dispersal kernel depends
only on the (signed) distance between the initial and the final location. Hence, we
numerically solve the equation

Nt+1(x) = (K ∗ F(Nt))(x) =
∫

K(x − y)F (Nt (y))dy . (8.1)

We have already seen the usefulness of the (scaled) Fourier transform (5.9) in
Chap. 5. Here, we take the unscaled version

N̂(ω) = 1√
2π

∫ ∞

−∞
N(x)eiωxdx , (8.2)

which has the same useful property as (5.10) that it turns convolution into
multiplication, i.e.,

K̂ ∗ N(ω) = 1

2π
K̂(ω) · N̂(ω) . (8.3)

https://integrodifference.frithjof.ca/
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The inverse Fourier transform,

N(x) = 1√
2π

∫ ∞

−∞
N̂(ω)e−iωxdω , (8.4)

which we could find explicitly only in a few special cases related to linear IDEs in
Chap. 5, can then be calculated numerically.

The discrete Fourier transform and its inverse are defined for functions on some
interval with a periodicity assumption that identifies the two endpoints of the
interval. We divide the interval into 2m subintervals of length �x and get the discrete
Fourier transform as

N̂(ω) =
j=2m−1∑

j=−2m−1

N(j�x)e2π iωj�x . (8.5)

Choosing the number of subintervals to be a power of two allows us to use some
efficient algorithms.

The discrete Fourier transform and its inverse are implemented in MATLAB with
the commands fft and ifft, respectively (Powell 2009). The code in Table 8.1
defines the vector of space points (x), the Gaussian dispersal kernel (GAUSS), and
the initial density (N0) before it calculates the density after one dispersal event
(N1) and displays the two in the same plot. We point out a few details that need
to be understood to get the commands to work correctly in our setting. First, to
take advantage of integer arithmetic, the fft routine multiplies the values by the
number of subintervals. Hence, we have to divide by that number in the end. Second,
the fft routine works on the interval [0, 1] so that we have to scale by the domain
length that we are interested in. The factor dx takes care of these two scalings.
Finally, since the interval in our setting is naturally centered at x = 0, we have to
shift the result using the command fftshift. We take the real part to avoid
error messages concerning real-valued plots of complex-valued functions.

In Fig. 8.1, we observe that individuals that disperse out of the domain at the
left end reenter the domain at the right end (dashed curve). This phenomenon
arises because fft assumes periodicity. It is undesirable and even incorrect for
our application. For example, in the critical patch-size problem, individuals that
leave the domain should not return. A relatively simple remedy for this (usually)
undesired effect is to enlarge the computational domain to twice the actual domain
and to set the population density to zero outside the actual domain at every step
(Andersen 1991). The code in Table 8.2 implements this remedy. It defines a vector
(xx) of space points on [−L,L] that is twice as long as needed and a vector (PAD)
that sets the density to zero outside the domain of interest [−L/2, L/2]. This code
also implements scaled Beverton–Holt population dynamics and tracks the location
of the front (if one exists) as the most rightward point where the density exceeds the
value 0.1 by the line

Front(k) = dx*( max( find( (N>0.1) ) ) )-2*L;
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Table 8.1 MATLAB code using FFT to evaluate the convolution integral: a single dispersal event.

% Fast Fourier transform of the convolution integral
clear

% parameters
L = 10; % the domain length
sig2 = 0.5; % variance of the Gaussian kernel
a=0; % center of the initial condition

% set-up of the spatial grid
np = 2^12; % number of grid points; a power of 2
dx = L/np; % length of the subintervals
x = linspace(-L/2,L/2-dx,np); % vector of grid points
% the point x=L/2 is the same as x=-L/2

% definition of the kernel and the initial condition
GAUSS = 1/sqrt(2*pi*sig2)*exp(-x.^2/(2*sig2));
N0 = exp(-(x-a).^2/0.1);

% Taking FFT
FGAUSS = fft(GAUSS); FN0=(fft(N0));
% Multiplying and taking the inverse transform
N1 = dx*real( fftshift( ifft( FN0.*FGAUSS ) ) );

% displaying the result of one dispersal event.
plot(x,N0,‘k’,‘linewidth’,2), hold on
plot(x,N1,‘k’,‘linewidth’,2), hold on
xlabel(‘space x’,‘FontSize’,16)
ylabel(‘density’,‘FontSize’,16)

Fig. 8.1 Output of the code
in Table 8.1 with initial
condition centered at 0 (solid)
and at −4 (dashed). The
higher, narrower peaks are the
initial condition; the lower,
broader peaks are the density
after one dispersal event. The
FFT assumes periodicity, so
that individuals that disperse
out of the domain to the left
enter the domain at the right.
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Fig. 8.2 Output of the code in Table 8.2. Left plot: The density evolves according to Beverton–
Holt growth and Gaussian dispersal for 25 generations. Right plot: The actual location xt where
the population exceeds the threshold (thick line) remains slightly behind the theoretical prediction
of the asymptotic spreading speed (thin line) but is almost parallel; i.e., the numerical simulation
spreads at almost the asymptotic spreading speed.

This line should be removed when applying the code to study steady-state problems
as in Chap. 4.

Figure 8.2 shows the output of the code in Table 8.2. The plot on the left
illustrates how the density of the population grows and spreads. The plot on the
right shows the numerically calculated location of the front and compares it with the
theoretical asymptotic speed of a front starting from the same location. We see that
the actual front moves slower than the asymptotic speed by about 5%. However, the
asymptotic spreading speed is—as indicated by its name—an asymptotic quantity.
When we simulate the dynamics for 70 generations on a suitably larger domain,
the error drops below 3%. Unfortunately, running the code for 80 generations or
more brings out instabilities of the numerical procedure that are inherent in the
FFT approach. To avoid these instabilities, we can artificially set the density to zero
when it is below some small threshold. For example, replacing the line that applies
the padding with the command below allows us to run the simulations for longer
and to obtain even better approximations for the spreading speed:

N = N.*PAD.*(N>0.000000001);

The FFT approach can also be applied to simulate IDEs in two spatial dimen-
sions. The corresponding commands for the discrete Fourier transform in MATLAB

are fft2 and ifft2, respectively. The scaling has to occur in both spatial
directions. Hence, if N and GAUSS are the two-dimensional density and dispersal
kernel on a grid with cells of size dx*dy, then their convolution is calculated as

N = dx*dy*real( fftshift( ifft2( fft2(N).*fft2(GAUSS) ) ) );
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Table 8.2 MATLAB code using FFT to evaluate the convolution integral: several dispersal and
growth events.

% Simulating the IDE with scaled Beverton-Holt function
% Integral via Fast Fourier transform, padding

clear
L = 10; R0 = 1.5; sig2 = 0.1; Tsteps = 25;
np = 2^14; dx = L/np; x = linspace(-L/2,L/2-dx,np);
xx = linspace(-L, L-dx, 2*np); % double domain for padding
PAD = (abs(xx)<=L/2); % padding outside [-L/2, L/2]
GAUSS = 1/sqrt(2*pi*sig2)*exp(-xx.^2/(2*sig2));
Ninit = exp(-(xx+3).^2/0.001);

% Iterating for Tsteps generations, using FFT
FGAUSS = fft(GAUSS); % the Fourier transform
N = Ninit;
for t=1:Tsteps

N = R0*N./(1+(R0-1)*N); FN = fft(N);
N = dx*real( fftshift( ifft( FN.*FGAUSS ) ) );
N = N.*PAD;
figure(1), subplot(1,2,1), hold on
plot(xx,N,‘k’), axis([-L/2,L/2, 0, max(N)]), hold off
xlabel(‘space x’,‘FontSize’,16’)
ylabel(‘density’,‘FontSize’,16’)
Front(t) = dx*(max(find((N>0.01))))-L;

end

figure(1), subplot(1,2,2)
plot(1:length(Front),Front,‘k’,‘linewidth’,2), hold on
c=sqrt(2*sig2*log(R0));
plot(1:length(Front),Front(1)+c*(0:Tsteps-1),‘k’), hold off
xlabel(‘time t’,‘FontSize’,16)
ylabel(‘location x_t’,‘FontSize’,16)
Theoretical_speed = c
Numerical_speed = (Front(Tsteps)-Front(Tsteps-10))/10

Figure 8.3 illustrates dispersal in two dimensions and growth. The corresponding
code can be found in the repository mentioned above.

The accuracy of the discrete Fourier transform method increases as the number
of grid points increases. The number 214 used in the examples is usually a good
compromise between speed and accuracy. The plots in this book are typically done
with power 216 or 217. For one-dimensional domains, this number of grid points
still poses no problem for MATLAB on a standard PC or laptop computer. For two-
dimensional domains, the limits are tighter. A spatial resolution of 28 grid points
in each direction gives a matrix of 216 entries, which is handled very easily. A
resolution of 210 or higher leads to a significant slowing of the program.
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Fig. 8.3 Illustration of population growth and spread in a two-dimensional domain after 5
generations (left plot) and 25 generations (right plot). Dispersal follows the Gaussian kernel
in (2.26) with σ 2 = 0.1, and growth is modeled by the scaled Beverton–Holt function with
R = 1.5. The initial condition is one on [−1, 1] × [−0.1, 0.1] and zero elsewhere.

8.3 Alternative Methods of Numerical Iteration

When the integral in the IDE is not of convolution type, the Fourier transform
method from the previous section cannot be used. Even if the integral is a
convolution, certain applications prohibit the use of a large number of nodes in the
spatial grid discretization. For example, Cobbold et al. (2005) perform a numerical
bifurcation analysis of a host–parasitoid IDE model (see Sect. 14.3) with the help of
AUTO (Doedel 1981). For that purpose, the number of grid points has to be much
smaller than what the Fourier transform requires. They use direct integration via
Simpson’s rule and obtain very good accuracy with only 33 grid points. We briefly
describe a few alternatives here. The repository contains the codes corresponding to
those in Tables 8.1 and 8.2 with the alternatives implemented.

The MATLAB Command conv

MATLAB has the built-in command conv to carry out a discrete convolution that
can be used instead of fft above. When multiplying two polynomials (given as
sequences of coefficients with respect to the standard basis xk), the sequence of
coefficients of the product is the discrete convolution of the sequences of the factors.
The same discrete convolution arises from discretizing the continuous convolution
integral with an equidistant grid. However, since the degree of the product of two
polynomials is the sum of the degrees of the factors, applying the command conv
to two vectors leads to a vector whose length is the sum of the lengths of the two
vectors minus one. To apply this command to simulate the IDE, we need to pick out
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the correct portion of the resulting vector that represents the population density on
our domain of interest.

More specifically, if N0 and GAUSS are vectors of length np as above, represent-
ing the density and kernel on the domain [−L/2, L/2], then the command

N1long = dx * conv(N0,GAUSS);

produces a vector of length 2*np−1. This vector represents the population density
on the domain [−L,L]. The middle part, which represents the new population
density on [−L/2, L/2], is given by

N1 = N1long(np/2+1:np/2+np);

Selecting the middle part is the equivalent operation to the “padding” that had to be
done in the FFT method (see above). The approximation for the spreading speed in
the simple example for fft above appears to be of the same accuracy as for conv,
but the program tends to be somewhat slower.

Nyström’s Method

The idea of Nyström’s method is to turn the integral operator in the IDE into a matrix
multiplication. To that end, we discretize space with an equidistant grid and use the
trapezoidal rule to approximate the integral. More specifically, we approximate the
integral

∫ L/2

−L/2
K(x, y)N(y)dy (8.6)

with the matrix multiplication

∑
j

KijNj (8.7)

for some appropriately chosen vector (Nj ) and matrix (Kij ). We describe the
method in slightly more detail when we discuss eigenvalue problems in Sect. 8.4.
Here we give some sample code that generates the matrix entries Gij for the
Gaussian kernel:

for j=1:np
G(1,j)=exp(-(x(1)-x(j))^2/(2*sig2))/sqrt(2*pi*sig2)/2;
G(np,j)=exp(-(x(np)-x(j))^2/(2*sig2))/sqrt(2*pi*sig2)/2;

end

for i=2:np-1
for j=1:np
G(i,j)=exp(-(x(i)-x(j))^2/(2*sig2))/sqrt(2*pi*sig2);

end
end
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Integration is then approximated by the simple matrix multiplication

N1 = dx*G*N0;

The great advantage of this method over the previous two is that it can be applied to
dispersal processes that are not given by a convolution. The program requires a lot
fewer grid points than the Fourier transform to obtain similar accuracy, but it tends
to be slower than the FFT approach. There do not seem to be any stability issues.

Simpson’s Rule

When the kernel is a convolution kernel, the matrix generated in Nyström’s method
seems to store too much redundant information. The np2 entries actually contain
only 2*np different values. One can store the information required for the dispersal
kernel in a vector of length 2*np and apply other quadrature rules as well. For
example, we generate a vector GAUSSvec that evaluates the Gaussian kernel on an
equidistant grid representing the interval [−L,L] and a vector SIMwith the weights
of the formula for Simpson’s rule, i.e.,

SIM = [1 4 2 4 2 ... 4 1];

Then we approximate the integration step by

for i = 1:np
Nnew(i) = sum(SIM.*GAUSSvec(np-i+2:2*np-i+1).*N)*dx/3;

end

Since Simpson’s rule has a higher accuracy than the trapezoidal rule, fewer space
points are required to obtain comparable results to Nyström’s method above.
Implementing even higher accuracy quadrature rules to approximate the integral
is straightforward from here.

8.4 Eigenvalues for Integral Operators

The previous two sections dealt with the time-dependent problem. Here, we consider
the eigenvalue problem that appears in stability analysis, e.g., the critical patch-size
problem in Chap. 3. We present one approach used by Zhou and Kot (2013). The
goal is to find the dominant eigenvalue of the Fredholm integral equation

λφ =
∫ L/2

−L/2
K(x, y)φ(y)dy , (8.8)

where the integral kernel K is the product of the dispersal kernel and the linearized
growth rate K(x, y) = K(x, y)R(y).
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We turn this problem into a finite-dimensional matrix eigenvalue problem by
discretizing space (Nyström’s method). We divide the interval into n subintervals of
length �x = L/n with endpoints

yj = −L

2
+ j

L

n
, j = 0, . . . , n . (8.9)

Then the trapezoidal rule approximates the integral in (8.8) as

�x

2

n−1∑
j=0

[
K(x, yj )φ(yj ) + K(x, yj+1)φ(yj+1)

]
. (8.10)

We set xj = yj and define φj = φ(xj ). Then we obtain a discrete approximation to
the eigenvalue problem as

λφi =
n∑

j=0

Aijφj , (8.11)

with coefficients

Ai0 = Δx

2
K(xi, y0) ,

Aij = ΔxK(xi, yj ) , 1 ≤ j ≤ n − 1 ,

Ain = Δx

2
K(xi, yn) .

Hence, we have a finite-dimensional linear system that can be solved by standard
methods implemented in many software packages.

Zhou and Kot (2013) point out two alternative ways to use this method. Suppose
the goal is to find the persistence boundary with respect to some parameter, e.g.,
the domain length. Since the matrix entries Aij depend continuously on model
parameters, and since the eigenvalue depends continuously on the matrix entries, we
can vary the parameter in question and include a root-finding algorithm to reach the
threshold λ = 1. Alternatively, we can start by setting λ = 1 and use a root-finding
algorithm to find conditions on the parameter in question that make the determinant
of the system in (8.11) equal to zero. The latter approach requires some checking
that the solution found corresponds indeed to the dominant eigenvalue and not to
any other.
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8.5 Further Reading

Powell (2009) gives a great introduction not only to the FFT method for simulating
IDEs but also to some basic theory of IDEs, to some elementary MATLAB

commands, and to further modeling ideas. He defines and illustrates a number of
different kernels that include behavior other than simple random Gaussian dispersal.
In addition, he introduces spatial heterogeneity as well as boundary behavior.

Haefner and Dugaw (2000) illustrate the computational advantage of using FFT
for convolution integrals with a discrete-time model of quantitative genetics where
the integration is over trait space rather than physical space.

When a two-dimensional domain is very large compared to the variance of
the dispersal kernel, FFT may be computationally less efficient than discretization
and direct computation of the convolution (Slone 2011). Different scales of spatial
discretization have different effects on the accuracy of results (Bocedi et al. 2012),
depending on the computational method used (Slone 2011). The authors caution
against using coarse-grain grids and kernels since repeated convolution will amplify
discretization errors, in particular when computing large-time dynamics. Slone
(2011) develops correction equations.

Gilbert et al. (2017) develop a two-dimensional adaptive mesh solver for an IDE
that models the spread of stage-structured populations on the scale of a country
(Great Britain); this solver includes spatial heterogeneity. Their key idea is to use a
fine mesh only around the invasion front and a coarse mesh far ahead and far behind
the front.

Various numerical and approximation techniques for the eigenvalue problem are
discussed by Zhou and Kot (2013) and Kot and Phillips (2015), in particular in the
case of asymmetric kernels as they arise in the context of shifting-habitat models;
see Sect. 12.3. For an in-depth treatment of numerical aspects of linear integral
equations, see Kythe and Puri (2011).



Part II
Approximations and Applications



Chapter 9
Dispersal Success

Abstract In this chapter, we present techniques for approximating the steady-
state profile and the dominant eigenvalue of an IDE on a bounded domain. The
approximations are based on the idea that only partial information about dispersal
may be available, corresponding to two different mark-recapture experiments. The
approximations are surprisingly good when dispersal is symmetric but less reliable
when dispersal is asymmetric.

9.1 Experiments and Dispersal Characteristics

A dispersal kernel summarizes the outcome of dispersal events as probabilities of
going from any location to any other location. To find it empirically, we have to
partition the landscape into small grid cells, release marked individuals from each
cell, and record where they settle. As such, an enormous amount of experimental
data is required to find K(x, y). Even measuring dispersal distances under the
assumption that the landscape is homogeneous can be extremely tedious. We can
ask whether and how many useful insights can be obtained from an IDE when
only certain characteristics of the dispersal kernel are known. The less information
necessary to draw certain conclusions, the easier it is to obtain the required
information.

We draw our inspiration from two kinds of experiments: the point-release
experiment and the area-release experiment (described below). Each gives us only
partial information about the dispersal kernel. Based on this partial information, we
formally derive various approximations for the profile and stability of steady states
of an IDE on bounded domains. Numerical experiments will reveal how accurate
(or not) these approximations are.

In a point-release experiment, individuals are released from a single location
and later recaptured (or not) within a certain (bounded) area of interest, Ω. If
an individual is released many times from a location y or, equivalently, if many
individuals are released simultaneously and move independently, the frequency of
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their recapture within Ω gives the dispersal success function (Van Kirk and Lewis
1997)

S(y) =
∫

Ω

K(x, y)dx . (9.1)

This function measures the probability that an individual disperser stays within the
area of interest, Ω , in one dispersal phase. However, the exact settling location is
unknown. Since dispersal success is a probability, we have

0 ≤ S(y) ≤ 1 , y ∈ Ω . (9.2)

Typically, we expect an individual at the center of Ω to have a higher chance of
staying within Ω than an individual near the boundary. The spatial average of the
dispersal success function is the average dispersal success (Van Kirk and Lewis
1997)

S̄ = 1

|Ω|
∫

Ω

S(y)dy = 1

|Ω|
∫

Ω

∫
Ω

K(x, y)dxdy , (9.3)

where |Ω| = ∫
Ω

dx is the “volume” of Ω. We will frequently use the overbar to
denote the spatial average of a function. The average dispersal success is a single
number that integrates information about the movement process and the size and
shape of the patch, as we will see in illustrations below.

The average dispersal success provides a tool to explore the questions raised
at the end of Sect. 2.4: given a dispersal kernel and an area, what is the (spatially
averaged) probability that an individual that starts the dispersal process in the area
remains in the area after dispersal? In the next section, we shall see that the average
dispersal success relates the spatially explicit IDE to some approximate, spatially
implicit difference equation of the form (2.30).

In some areas of ecology, the term “dispersal success” refers to a disperser
successfully reaching and settling in a patch other than its natal patch; see the
introduction in Fagan and Lutscher (2006). The two notions should not be confused.
One can extend the concept of average dispersal success to multi-patch systems
(Lutscher and Lewis 2004) and thereby reconcile it with the more common
ecological use of the term.

In an area-release experiment, individuals are released uniformly inside the
bounded area of interest, Ω. Their density at the end of one dispersal period is
the redistribution function (Lutscher and Lewis 2004)

U(x) =
∫

Ω

K(x, y)dy . (9.4)

Here, we know the final but not the initial location of an individual. This function is
not a probability. For example, if individuals move preferentially to one particular
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Fig. 9.1 Dispersal success
function for the Laplace
kernel with effective domain
length La = L̂ = 1 (solid),
L̂ = 5 (dashed), and L̂ = 10
(dash-dot). The
corresponding values of the
average dispersal success are
S̄ = 0.368, 0.801, and 0.9,
respectively. Figure 9.2 shows
how S̄ depends on the scaled
domain length.
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location within Ω , then the redistribution function will have a peak at that location,
and the total density at that peak can exceed unity. Nonetheless, the spatial average
of the redistribution function is also the average dispersal success, i.e., Ū = S̄. If
dispersal is symmetric, i.e., K(x, y) = K(y, x), then S = U.

The dispersal success function of the Laplace kernel (2.27) with mean dispersal
distance 1/a on a bounded interval of length L can be computed explicitly as
(Van Kirk and Lewis 1997)

S(y) = U(y) = 1 − e−L̂/2 cosh (ay) , (9.5)

and the average dispersal success is

S̄ = 1 − 1 − e−L̂

L̂
, (9.6)

where L̂ = La is the effective domain length; see Fig. 9.1.
A comparison of four different dispersal kernels shows how the average dispersal

success integrates movement behavior and patch-size; see Fig. 9.2. The average
dispersal success is an increasing function of domain length. It also increases as
the probability of dispersing short distances increases. Accordingly, the average
dispersal success has been used as a measure for persistence of a population
(Lockwood et al. 2002). Under symmetric dispersal, long-distance dispersal events
do not significantly affect the average dispersal success since it is computed only
over a bounded domain. We discuss the case of biased dispersal in Chap. 12.2.

In the following two sections, we use these measures for dispersal success
to approximate the spatial distribution at steady state as well as the persistence
conditions. In particular, we give a more theoretic underpinning for the use of the
average dispersal success as a persistence measure.
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Fig. 9.2 Comparison of the average dispersal success (right plot) of four dispersal kernels (left
plot). The exponential square root kernel (dash-dot) is the most concentrated at zero and has the
highest average dispersal success; the top-hat kernel (solid, thin) is the least concentrated and has
the lowest average dispersal success. The Gaussian kernel (dashed) and the Laplace kernel (solid,
thick) are in between.

9.2 Dispersal Success Approximation of a Steady State

The dispersal characteristics S(y), U(x), and S̄ are useful for approximating steady
states and eigenvalues of IDEs since they emerge naturally from a Taylor series
expansion. We present the dispersal success approximation of a positive steady state,
originally given by Van Kirk and Lewis (1997) and extended by Lutscher and Lewis
(2004).

We denote a positive steady state of (2.1) on the bounded domain Ω by N∗ and
its spatial average by N̄∗, i.e.,

N∗(x) =
∫

Ω

K(x, y)F (N∗(y))dy , N̄∗ = 1

|Ω|
∫

Ω

N∗(x)dx . (9.7)

Assuming that N∗ and F are sufficiently differentiable, we write the first-order
Taylor polynomial for each y ∈ Ω as

F(N∗(y)) = F(N̄∗) + F ′(N̂(y))(N∗(y) − N̄∗) (9.8)

for some N̂(y) between N̄∗ and N∗(y). Substituting this expression and (9.4) into
(9.7), we obtain

N∗(x) = U(x)F (N̄∗) +
∫

Ω

K(x, y)F ′(N̂(y))(N∗(y) − N̄∗)dy . (9.9)

To obtain an equation for N̄∗, we average both sides and find
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Fig. 9.3 Comparison of the
dispersal success
approximation (dashed) with
the true steady state (solid).
We used the Beverton–Holt
updating function with R = 3
and symmetric dispersal
according to the Laplace
kernel with parameters
L̂ = La = 1, 2, 5, and 10
(from bottom up). The
corresponding values of the
average dispersal success are
S̄ = 0.3679, 0.5677, 0.8013,
and 0.900. The approximation
is more accurate for smaller
values of L̂.
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N̄∗ = S̄F (N̄∗) + 1

|Ω|
∫

Ω

S(y)F ′(N̂(y))(N∗(y) − N̄∗)dy . (9.10)

For the lowest-order approximation, we neglect the integral term and obtain
equations for the approximation, Nap(x), of the steady state and its spatial average as

Nap(x) = F(N̄ap)U(x) and N̄ap = S̄F (N̄ap) . (9.11)

For a symmetric kernel, the approximation becomes Nap(x) = F(N̄ap)S(x), which
is why it is called the dispersal success approximation.

We note that the first equation in (9.11) is exactly the steady-state equation for
the very simple spatially implicit dispersal model (2.30) from Chap. 2.

Typically, we can only neglect the integral term in (9.11) when the factor N∗(y)−
N̄∗ is small. We expect that this difference could grow large at the boundary of the
domain where N∗(y) becomes small. However, near the boundary, the factor S(y)

is small. As a result, the approximation tends to be quite accurate even if the steady
state is not close to a constant; see Fig. 9.3.

9.3 Dispersal Success Approximation of the Eigenvalue

The ideas from the previous section can also be applied to approximate the dominant
eigenvalue and corresponding left and right eigenfunctions using the dispersal
characteristics (Lutscher and Lewis 2004). We begin with the linear eigenvalue
problem (setting R = 1) and scaled eigenfunction

λφ(x) =
∫

Ω

K(x, y)φ(y)dy , φ̄ = 1

|Ω|
∫

Ω

φ(x)dx = 1 . (9.12)
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The same steps as for the steady-state approximation above lead to the approxima-
tions

λap = S̄ , φap(x) = 1

S̄
U(x) (9.13)

for the eigenvalue and the right eigenfunction. The analogous expression for the left
eigenfunction (the eigenfunction of the adjoint operator), defined by

λψ(y) =
∫

Ω

K(x, y)ψ(x)dx , (9.14)

is ψap(y) = 1
S̄
S(y).

When the dispersal kernel is symmetric, the approximation systematically
underestimates the true eigenvalue, as the following lemma by Fagan and Lutscher
(2006) shows. Ecologically, the lemma says that the approximation is conservative
in the sense that if a population can persist according to the approximation (i.e.,
λap > 1), then it can persist in the full model (i.e., λ > 1).

Lemma 9.1 Assume that K is symmetric. Then λap ≤ λ .

Proof We choose the constant function u(x) = 1√|Ω| and apply the variational
formula (3.43). By definition, u has norm one in the space of square-integrable
functions on Ω. Then

λ ≥
∫

Ω

∫
Ω

u(x)K(x, y)u(y)dydx = 1

|Ω|
∫

Ω

∫
Ω

K(x, y)dydx = S̄ = λap .

(9.15)
��

The average dispersal success approximates the dominant eigenvalue, but we
shall see later that this approximation is helpful only if the kernel is symmetric.
However, the approximation λap = S̄ does not use the dispersal success and the
redistribution functions. We present three ideas to improve the approximation by
using some of this information.

Iterated Eigenvalue Approximation

Instead of the eigenvalue equation, we consider the iterated equation for the square
of the eigenvalue (corresponding to two dispersal phases), given by

λ2φ(x) =
∫

Ω

∫
Ω

K(x, y)K(y, z)φ(z)dzdy . (9.16)
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Applying the same steps as above, we find the approximation

λ(1)
ap =

√
1

|Ω|
∫

Ω

S(y)U(y)dy . (9.17)

This expression can be written in a more insightful way in terms of the covariance
between functions S and U , namely

cov(S, U) = 1

|Ω|
∫

Ω

(S(y) − S̄)(U(y) − S̄)dy = 1

|Ω|
∫

Ω

S(y)U(y)dy − S̄2.

(9.18)
Then the expression for λ

(1)
ap becomes

λ(1)
ap = S̄

√
1 + 1

S̄2
cov(S, U) . (9.19)

When the dispersal kernel is symmetric, the redistribution function, U , equals the
dispersal success function, S, so that the covariance becomes the variance, which is
positive. The same proof as in Lemma 9.1, applied to the iterated equation, shows
that we have the same upper bound, i.e., λ

(1)
ap ≤ λ, if dispersal is symmetric. In

particular, for a symmetric kernel, we have λap ≤ λ
(1)
ap ≤ λ, so that λ

(1)
ap provides a

better approximation.

The Power Method

The power method is an iterative scheme to approximate the dominant eigenvalue
of a positive matrix; see, e.g., Zhou and Kot (2013). Given a positive matrix A,
we choose a nonnegative vector φ0 with ‖φ0‖ = 1. We define an iteration whose
vectors are all of norm one as φn+1 = Aφn/‖Aφn‖. Then the scaling factors ‖Aφn‖
converge to the dominant eigenvalue and φn to the corresponding eigenvector.

We apply the same scheme to the integral operator in (9.12). The constant
function φ0 = 1/|Ω| on Ω has L1-norm equal to unity. Taking this function as
our initial function and applying the linear dispersal operator, we find

φ1 =
1

|Ω|
∫
Ω

K(x, y)dy∫
Ω

1
|Ω|
∫
Ω

K(x, y)dydx
=

1
|Ω|U(x)

S̄
, (9.20)

so that the scaling factor with respect to the L1-norm is simply S̄ and the “approxi-
mation” to the eigenfunction is U(x). Hence, the dispersal success procedure from
above is equivalent to the first step of the power method.



126 9 Dispersal Success

We cannot calculate the second iterate without using the dispersal kernel. But we
can calculate the scaling factor in the second step using only the functions S and U.

This scaling factor is given by

∫
Ω

∫
Ω

K(x, y)
1

S̄|Ω|U(y)dydx = 1

S̄

1

|Ω|
∫

S(y)U(y)dy . (9.21)

Hence, using (9.18), we get another approximation for λ as

λ(2)
ap = S̄

(
1 + 1

S̄2
cov(S, U)

)
. (9.22)

Since λ
(1)
ap is the geometric mean of λap and λ

(2)
ap , we have the following lemma.

Lemma 9.2 If cov(S, U) > 0, then λap ≤ λ
(1)
ap ≤ λ

(2)
ap . If cov(S, U) < 0, then the

inequalities are reversed.

Weighted Averages

A completely different but ultimately equivalent approach to improving the dispersal
success approximation of λ ≈ S̄ is presented by Reimer et al. (2016). They
start with the biological interpretation of average dispersal success and reason
that the spatial average in (9.3) could be weighted by the actual distribution of
individuals in the domain instead of simply assuming a uniform distribution. The
actual distribution, of course, is not known. Instead, they choose the (scaled) average
dispersal success approximation of the steady state. In the symmetric case, they
arrive at the expression

1

|Ω|
∫

Ω

∫
Ω

K(x, y)
S(y)

S̄
dxdy = 1

S̄

1

|Ω|
∫

S2(y)dy , (9.23)

which equals λ
(2)
ap . In general, we replace the dispersal success function by the

redistribution function; see (9.11). Reimer et al. (2016) also prove the estimate
λ

(2)
ap > λap for the symmetric case, but the proof in the previous lemma via the

expression in (9.22) is much simpler than theirs.
A natural question is then whether there are other weight functions for which

the weighted average of the dispersal success function provides an even better
approximation of the dominant eigenvalue. To simplify the notation, we use the
inner product on the space of square-integrable functions, L2(Ω), namely

〈f, g〉 =
∫

Ω

f (x)g(x)dx . (9.24)
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Then we can write the (weighted) average dispersal success as

S̄ = 〈S, 1〉
〈1, 1〉 and λ(2)

ap = 〈S,U 〉
〈1, U 〉 , (9.25)

where U is the redistribution function from (9.4).
Integrating the eigenvalue equation in (9.12) with respect to x, we find

λ = 〈S, φ〉
〈1, φ〉 , (9.26)

i.e., the true eigenvalue λ is the weighted average of the dispersal success function
with the eigenfunction as weight. Hence, λ

(2)
ap results by approximating the eigen-

function φ in (9.26) by U from (9.13).

The Laplace Kernel as an Example

To illustrate the difference between the various approximations and the true
eigenvalue for the Laplace kernel, we calculate these quantities explicitly. From
the explicit expression of the dispersal success function in (9.5), we find

cov(S, S) = var(S) = 1 − 2
1 − e−L̂

L̂
+ e−L̂

2
+ 1 − e−2L̂

2L̂
− S̄2, (9.27)

where, as before, L̂ = aL is the effective domain length. In Fig. 9.4, we numerically
compare the resulting quantities

λap = S̄, λ(1)
ap = S̄

√
1 + var(S)/S̄2 , λ(2)

ap = S̄
(

1 + var(S)/S̄2
)

. (9.28)

Fig. 9.4 Comparison of the
dominant eigenvalue with the
three approximations for the
(symmetric) Laplace kernel.
The large plot shows the
dominant eigenvalue λ (solid,
thick), the average dispersal
success approximation λap
(dash-dot), and the two
approximations using the
variance λ

(1)
ap (solid, thin) and

λ
(2)
ap (dashed). The inset

shows the relative errors, i.e.,
(λ − λap)/λ and similarly for
the others.
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All three approximations underestimate the true value of the dominant eigenvalue.
The relative error is highest for intermediate domain lengths and decreases for larger
domains. Even the worst approximation is fairly accurate, lying within 5% of the
true value, as the inset plot shows.

9.4 Application to Asymmetric Dispersal

When dispersal is asymmetric, the dispersal success function does not equal the
redistribution function. The simple dispersal success approximation becomes less
accurate. The improved approximations are somewhat better but also fail eventually
when the asymmetry becomes too strong. We illustrate this behavior by using the
asymmetric Laplace kernel (7.16) that arises from a biased random walk. We recall
the definition

K(x) =
{

A exp(a1(x)) , x < 0 ,

A exp(a2(x)) , x > 0 ,
A = a1|a2|

a1 + |a2| , (9.29)

where a1 > 0 > a2 are given in terms of diffusion rate D, advection speed q, and
settling rate α as

ai = 1

2D

(
q ±

√
q2 + 4αD

)
, a1 > |a2| .

The corresponding eigenvalue problem is treated by Lutscher et al. (2005) in
their Appendix F. As in Chap. 3, the integral equation can be turned into a (non-
self-adjoint) Sturm–Liouville problem by repeated differentiation. A change of
coordinates results in a self-adjoint problem for which we can find a transcendental
equation that relates the parameters of the model to the eigenvalue λ as

tan

(
(a1 − a2)L

4

√
4Ra1|a2|

λ(a1 − a2)2
− 1

)
=
√

4Ra1|a2|
λ(a1 − a2)2

− 1 . (9.30)

Straightforward but tedious calculations give the dispersal success function and the
redistribution function for this asymmetric kernel on the interval [−L/2, L/2] as

S(y) = A

[
1

a1

(
1 − e−L̂1/2e−a1y

)
+ 1

a2

(
e−L̂2/2e−a2y − 1

)]
(9.31)

and

U(x) = A

[
1

a1

(
1 − e−L̂1/2ea1x

)
+ 1

a2

(
eL̂2/2ea2x − 1

)]
, (9.32)
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where L̂i = aiL. The average dispersal success is given by

S̄ = 1 − a1

a2 − a1

1 − eL̂2

L̂2
− a2

a2 − a1

1 − eL̂1

L̂1
. (9.33)

Accordingly, we calculate the three approximations for the dominant eigenvalue and
plot the relative errors in Fig. 9.5. The relative errors of λ

(1)
ap and λ

(2)
ap are smaller than

that of λap, but the errors of both increase as q increases and the kernel becomes
more asymmetric. The assumption that the dominant eigenfunction is close to its
spatial average is increasingly inaccurate, as we see in Fig. 9.6. The peak of the
redistribution function moves in the direction of the bias as q increases, since an
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Fig. 9.5 Absolute and relative (inset) errors of the three approximations to the dominant eigen-
value for the asymmetric Laplace kernel (9.29). Line styles are as in Fig. 9.4. Parameters of the
movement model for the dispersal kernel are D = 1, α = 1, q = 1 (left), and q = 3 (right).
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Fig. 9.6 Illustrating dispersal success and redistribution for the asymmetric Laplace kernel (9.29).
Left: Dispersal success function from (9.31) (thick) and redistribution function from (9.32) (thin).
Right: Average dispersal success from (9.33). Parameters are L = 5 (left plot), q = 1 (solid) and
q = 3 (dashed). Other parameters are D = 1 and α = 1. The corresponding coefficient values are
a1 = 1.618, a2 = −0.618 (solid), and a1 = 3.3028, a2 = −0.3028 (dashed).
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Fig. 9.7 Comparison of the
dispersal success
approximation (dashed) with
the true steady state (solid).
Dispersal according to the
asymmetric Laplace
kernel (9.29) and
Beverton–Holt updating
function with R = 10. Other
parameters are as in Fig. 9.6,
with q = 1 (top curves) and
q = 3 (bottom curves). −2 −1 0 1 2
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individual tends to settle in the direction of the bias from its original location. The
peak of the dispersal success function moves in the opposite direction for the same
reason.

Finally, we illustrate the dispersal success approximation for the steady state of
an IDE with asymmetric dispersal. We choose the scaled Beverton–Holt growth
function and the asymmetric Laplace kernel. Comparing the average dispersal
success and the true steady-state profile shows that the approximation is reasonably
good when q is small but becomes increasingly inaccurate when q is large, so that
the asymmetry of the kernel is more pronounced; see Fig. 9.7.

9.5 Further Reading

Latore et al. (1998) evaluate the density function at a single point (midpoint) in
the domain to estimate the critical patch-size directly rather than approximating the
dominant eigenvalue.

The study of the dispersal success approximation began with the steady-state
approximation for symmetric kernels by Van Kirk and Lewis (1997). The extension
to asymmetric kernels and eigenvalues was initiated by Lutscher and Lewis
(2004). They also use the average dispersal success to obtain approximations for
bifurcations from the positive steady state, e.g., when the growth function is the
Ricker function. They apply the technique to a two-stage model of juveniles and
adults; see Chap. 13. Other applications to interacting species have been equally
successful (Cobbold et al. 2005). The corresponding theory for reaction–diffusion
equations was developed by Cobbold and Lutscher (2014).

The average dispersal success can also be defined for landscapes consisting of
several spatially separated patches. For every pair of patches, Ωi,Ωj , say, we define
the probability that an individual from patch j moves to patch i in one dispersal
period, i.e.,

Sij = 1

|Ωj |
∫

Ωj

∫
Ωi

K(x, y)dxdy . (9.34)
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The result is a matrix of average dispersal success values that can be used to turn
a spatially explicit IDE on several patches into a spatially implicit matrix equation;
see Lutscher and Lewis (2004) for details.

A completely different approach of analytical approximations is taken by Kot
and Phillips (2015) and applied to IDEs in more detail by Rinnan (2017). These
approaches are based on classical and recent mathematical results in eigenvalue
approximation for matrices, and in particular on “geometric symmetrization” (Kot
and Phillips (2015) and references therein) and not on ecological ideas. The
geometric symmetrization of the integral operator

φ �→
∫ L/2

−L/2
K(x, y)φ(y)dy

is the operator

φ �→
∫ L/2

−L/2

√
K(x, y)K(y, x)φ(y)dy .

If K is symmetric, i.e., K(x, y) = K(y, x), then the geometric symmetrization is
identical to the original operator. The key insight is that the spectral radius of the
geometric symmetrization is a lower bound for the spectral radius of the original
operator, at least in the finite-dimensional matrix case (Kot and Phillips (2015) and
references therein).

Rinnan (2017) then defines the “geometric success function” and its average as

G(y) =
∫

Ω

√
K(x, y)K(y, x)dx , GS = 1

|Ω|
∫

Ω

G(y)dy .

A priori, there is no reason to believe that GS is a good approximation for the dom-
inant eigenvalue of the original IDE since the geometric symmetrization describes a
process different from the original equation. However, Rinnan (2017) shows via
numerical experiments that GS (and various other approximations derived from
iterations of it) is a very good approximation for the dominant eigenvalue that we
are looking for.

A heuristic argument for the success of the method rests on Taylor series
expansion and constitutes a fitting conclusion to this chapter. We write

K(x, y) = √K(x, y)K(x, y) = √K(x, y)K(y, x) + K(x, y)(K(x, y)−K(y, x)) .

Then the Taylor series expansion
√

x + ε ≈ √
x + ε/(2

√
x) gives

K(x, y) ≈ √K(x, y)K(y, x) + 1

2

√
K(x, y)

K(y, x)
(K(x, y) − K(y, x)) .
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Hence, geometric symmetrization can be seen as a low-order symmetric approxi-
mation to the kernel. It turns out that the symmetrization is also helpful for finding
good approximations to the steady-state profiles (Rinnan 2017). Finding a rigorous
connection between the original IDE and its symmetrization is still an open problem.



Chapter 10
Approximations for Spread

Abstract Continuing in the spirit of the previous chapter, we now aim to approx-
imate characteristics of spread to reduce data requirements or simplify numerical
effort. First, we find the kurtosis approximation for the asymptotic spreading speed
and discuss its usefulness and limitations. Next, we use an exponential transform
method to solve the linear IDE and employ the saddle-point approximation to obtain
an approximate shape for the population distribution for large times. Both methods
are based on Taylor series expansion.

10.1 Approximating the Speed

One motivation for approximating the speed of spread of a population modeled by
an IDE stems from an observation in Fig. 5.4. The plot illustrates that the rates of
spread as a function of variance are similar for different kernels, given that their tails
are exponentially bounded. Furthermore, the (small) differences in speeds between
the different kernels seem to follow a predictable pattern. We begin by applying a
Taylor series expansion to the dispersion relation for the speed of a traveling wave.
The lowest-order term gives the speed as a function of the variance of the dispersal
kernel and is exact for the Gaussian kernel. Including the next term in the expansion
results in the kurtosis approximation for the spread speed.

All results in this chapter are based on the linear IDE

Nt+1(x) = R

∫ ∞

−∞
K(x − y)Nt (y)dx = R(K ∗ Nt)(x) . (10.1)

With the localized initial condition N0(x) = δ(x), its solution is

Nt(x) = RtK∗t (x) . (10.2)

Under certain conditions, the spread rate for the linear equation equals the spread
rate for a corresponding nonlinear equation; see Chap. 5.
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When the dispersal kernel, K , has zero mean and finite variance, σ 2, then the
central limit theorem (CLT) states that its t-fold convolution, K∗t , approaches a
Gaussian distribution with zero mean and variance tσ 2. Since the speed of spread is
an asymptotic quantity (as t → ∞), we could be tempted to think that the speed of
spread with kernel K is the same as that for the Gaussian kernel with equal variance,
namely

cG =
√

2σ 2 ln(R) , (10.3)

as in (5.7). We call this value the Gaussian approximation. From an empirical point
of view, if the variance of dispersal distances is the only information available, then
cG is the best and only guess for the speed of spread.

The plots in Fig. 5.4 show that the CLT cannot be applied to determine the
asymptotic speed. In particular, if the dispersal kernel is the top-hat kernel (see
Table 3.1), then the dispersal distance per generation is limited to the length of
the support of the kernel. Therefore, the spread rate for a fixed variance has to be
bounded independently of the growth rate. However, cG in (10.3) increases without
bound in R. On the other hand, the right plot in Fig. 5.4 indicates that the speeds as a
function of σ 2 do not differ “too much” between the three kernels. In the following,
we first explain why reasoning with the CLT does not lead to the correct result and
then show how a better approximation can be obtained. The material presented here
can be found in Lutscher (2007).

Rate of Convergence

It is, of course, true that the iterated convolutions for each of the kernels used
in Fig. 5.4 converge to the Gaussian kernel, as illustrated in Fig. 10.1 (left plot);
however, the convergence is slow in the tails of the kernels (right plot). It turns out
that this convergence is simply too slow, compared to population growth, to yield
the correct spreading speed.

To explain the rate of convergence, we compare the iterates Nt = RtK∗t for
a kernel K with mean μ and variance σ 2 to those for the Gaussian kernel, G =
G(x;μ, σ 2), with the same mean and variance:

sup
x

|RtK∗t (x) − RtG∗t (x;μ, σ 2)| = Rt sup
x

|K∗t (x) − G(x; tμ, tσ 2)|

= Rt

σ
√

t
sup
y

|σ√
t K∗t (σ

√
t y + tμ) − G(y; 0, 1)| (10.4)

∼ Rt

σ
√

t

const.

σ
√

t
= Rt

σ 2t
const. (10.5)
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Fig. 10.1 Plot of K∗30 for the Gaussian, Laplace, tent, and top-hat kernels to illustrate (slow)
convergence of the CLT. Left: Only with the Laplace kernel and only near zero is there a noticeable
difference at this scale. Right: At x = −20, the absolute differences are very small (note the scale
on the y-axis) but the relative differences are clearly visible. Figure adapted from Lutscher (2007).

Equation (10.4) is obtained by standardizing the distributions via the change of
variables y = (x − tμ)/(σ

√
t) and by multiplying by σ

√
t . The rate of convergence

of the normalized distribution is on the order of 1/(σ
√

t) (see, e.g., Theorem 10,
Chap. VII, in Petrov (1975)), which leads to (10.5).

The exponential in the numerator grows much faster in t than the linear term in
the denominator. Therefore, this expression grows large with increasing t. Thus, as
t increases, the approximation becomes worse or is not applicable at all.

To be precise, the above reasoning follows the local limit theorem and not the
CLT, which deals with convergence of the cumulative density functions. To fully
understand what happens in the tails of the distribution for iterated convolutions,
we apply the theory of large deviations. This theory states that the mass of the
t th convolution outside an interval [−Ct, Ct] for any constant C > 0 will be
exponentially small. Hence, the quantities that we are trying to compare are much
smaller than their difference decays; see Lutscher (2007) for details.

The Kurtosis Approximation

The kurtosis approximation can be derived from formula (5.17) for the speed of a
traveling exponential profile, i.e.,

c(s) = 1

s
ln(RM(s)) , (10.6)

by repeated application of Taylor series expansion around s = 0. When the kernel
is symmetric with zero mean, the moments of odd order vanish and the expansion
of the moment-generating function up to order four in s is given by
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Fig. 10.2 The exact
spreading speeds (solid) and
the kurtosis approximations
(dashed) for the kernels from
Table 10.1. The
approximation is highly
accurate for the top-hat
(bottom) and tent (second
from bottom) kernels. It
overestimates the speed for
the Laplace kernel (top), but
the relative error is much
smaller than that made by the
Gaussian approximation. The
growth rate is R = 3. 0 1 2 3 4 5
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Table 10.1 Summary of dispersal kernels and their characteristic quantities.

Kernel Gaussian Laplace Top-hat Tent

Variance σ 2 2
a2

β2

3
η2

6

Excess kurtosis 0 3 −6/5 −3/5

M(s) exp( σ 2s2

2 ) 1
1−s2/a2

sinh(sβ)
sβ

2(cosh(ηs)−1)

η2s2

The excess kurtosis is defined in (10.9); the moment-generating function is denoted by M(s). When
the excess kurtosis is positive (negative), we say that the kernel is leptokurtic (platykurtic)

M(s) = 1 + σ 2

2
s2 + μ4

24
s4 , with μ4 =

∫ ∞

−∞
x4K(x)dx . (10.7)

The logarithm in (10.6) expanded to the same order gives

ln(RM(s)) = ln(R)+σ 2

2
s2+

(
μ4

24
− σ 4

8

)
s4 = ln(R)+σ 2

2
s2+εσ 4s4 , (10.8)

where

γ2 = μ4/σ
4 − 3 (10.9)

is the excess kurtosis and ε = γ2/24. For all the kernels in Fig. 10.2, this number
is small; see Table 10.1. We therefore choose ε as our small parameter and expand
terms up to order one in ε.

The expression for the dispersion relation becomes

c(s) = ln(R)

s
+ σ 2

2
s + εσ 4s3 . (10.10)
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To find its minimum, we set its derivative,

c′(s) = − ln(R)

s2 + σ 2

2
+ 3εσ 4s2 , (10.11)

equal to zero. The resulting equation is bi-quadratic. The first-order expansion for
the zero is

s2 = 1

σ 2

[
2 ln(R) − 24ε ln(R)2

]
. (10.12)

Similarly, based on (10.10), we need to expand 1/s, s, and s3. We find

s =
√

2 ln(R)

σ 2 − 12ε

√
ln(R)3

2σ 2 ,
1

s
=
√

σ 2

2 ln(R)
+ 6ε

√
σ 2 ln(R)

2
, (10.13)

and

s3 = 2 ln(R)

σ 2

√
2 ln(R)

σ 2
. (10.14)

Since the cubic term in (10.10) is multiplied by ε, we only need to calculate its zero-
order expansion. Substituting these expressions into c(s) and rearranging gives the
kurtosis approximation

c(γ2) = cG

(
1 + γ2

12
ln(R)

)
. (10.15)

The excess kurtosis of the Laplace kernel is positive, whereas, for the tent and
the top-hat kernels, it is negative. Accordingly, the kurtosis approximation predicts
that the spread speed for the Laplace kernel is higher than cG; for the other two
kernels, it is lower. Figure 10.2 compares the exact spreading speeds and the kurtosis
approximation.

Application to a Family of Kernels

We close this section by studying a family of dispersal kernels that interpolates
smoothly between the Laplace and the Gaussian kernel. The marginal distribution
of the gamma-binomial distribution (Tufto et al. 2005) with variance σ 2 and shape
parameter α is given by

KGB(x; σ, α) = 2
(α/2)(α/2+1/4)


(α)
√

πσ

∣∣∣ x
σ

∣∣∣α−1/2
K1/2−α

(√
2α

∣∣∣ x
σ

∣∣∣
)

, (10.16)
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where Kγ is the Bessel function of the second kind of order γ ; see Fig. 10.3. The
moment-generating function is

M(s) =
(

1 − σ 2s2

2α

)−α

, (10.17)

and the excess kurtosis is γ2 = 3/α. For α = 1, this kernel equals the Laplace
kernel, and as α → ∞, it approaches the Gaussian kernel. Since the variance of
this kernel is independent of the shape parameter, the Gaussian approximation is
independent of the shape parameter. The kurtosis approximation, however, reflects
the shape and provides a good approximation for the exact speed; see Fig. 10.3.

10.2 Approximating the Shape

We now present a method for approximating not only the speed but also the
evolution of the full spatial distribution of a population that is initialized at a single
location. Such an approximation is particularly important for large times, because
numerical simulations of (10.1) are prone to instabilities, as we have seen in Chap. 8.
We use an exponential transform method similar to (5.9) to solve the linear IDE in
(10.1) and employ the saddle-point approximation to obtain an approximate shape
of the population distribution for large times. At the heart of this method is, again, a
quadratic approximation. The approximate but explicit expression for the population
density can be used to calculate an approximate spread rate. In the case of the
Gaussian kernel, it gives the exact solution. The application of the saddle-point
approximation and the method of steepest descent go back to Radcliffe and Rass
(1997) and were extended later and publicized by Kot and Neubert (2008). For a
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recent application to a system of IDEs modeling the spread of a tree disease (white
pine blister rust) caused by the rust fungus Cronartium ribicola, see Leung and Kot
(2015).

Exponential Transform and the Gaussian Kernel

The exponential transform of a function N is defined as

Ñ(s) =
∫ ∞

−∞
N(x)esxdx . (10.18)

The exponential transform of the dispersal kernel is the moment-generating function
K̃(s) = M(s); see (5.15). Just like the Fourier transform, the exponential transform
turns convolution into multiplication, so that IDE (10.1) becomes

Ñt+1(s) = RM(s)Ñt (s) . (10.19)

The solution of (10.19) with initial condition N0(x) = n0δ(x) is then given by

Ñ(s) = n0R
tMt(s) . (10.20)

The exponential transform can be inverted by a contour integral, so that the solution
of IDE (10.1) is given by

Nt(x) = n0R
t

2π i

∫ b+i∞

b−i∞
Mt(s)e−sxds , (10.21)

where b is chosen such that the line of integration is within the strip of convergence
of the transform. The challenge is to calculate this inverse transform. The easiest
example is for the Gaussian kernel.

The moment-generating function is M(s) = exp(σ 2s2/2), so that the integral
becomes

∫ b+i∞

b−i∞
exp

(
t

(
σ 2s2

2
− x

t
s

))
ds =

∫ b+i∞

b−i∞
etf (s)ds . (10.22)

We expand the quadratic function f around its critical point s0 = x/(σ 2t) and get

f (s) = f (s0) + f ′′(s0)

2
(s − s0)

2 = − x2

2σ 2t2 + σ 2

2
(s − s0)

2 . (10.23)
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Substituting this expression, we simplify the integral in (10.22) to

e
− x2

2σ2 t

∫ b+i∞

b−i∞
exp

(
tσ 2

2
(s − s0)

2
)

ds . (10.24)

We can still choose b, and the choice b = s0 makes the integration relatively easy
by a change of variables since the exponent becomes real and nonpositive. We find

∫ s0+i∞

s0−i∞
e

tσ2
2 (s−s0)

2
ds = i

∫ +∞

−∞
e− tσ2

2 y2
dy = i

√
2π

σ 2t
. (10.25)

Putting everything together, we find the explicit solution

Nt(x) = n0R
t 1√

2πσ 2t
e
− x2

2σ2t . (10.26)

For kernels other than the Gaussian kernel, function f in the exponent in
(10.22) is not a quadratic. The main idea in what follows is to use the quadratic
approximation and continue with the same steps. Before we illustrate this procedure,
we take a look at what the method has to do with saddle points and steepest descent.

Saddle Points and the Method of Steepest Descent

We consider the integral in (10.22) for an arbitrary holomorphic function f (s) =
f1(x, y) + if2(x, y), where s = x + iy. The integrand becomes

etf (s) = etf1(x,y)+itf2(x,y) . (10.27)

The main idea is to choose a path of integration that concentrates most of the
contributions near a single point. Since the modulus of the integrand depends on
the real part of f only, we aim to find a critical point of the real part, f1.

Differentiating with respect to x gives

f ′(s) = f1,x(x, y) + if2,x(x, y) , (10.28)

where the second subscript indicates partial differentiation. Therefore, f ′(s) = 0
if and only if f1,x(x, y) = 0 = f2,x(x, y). By the Cauchy–Riemann equations,
f1,x = f2,y and f2,x = −f1,y . Therefore, these equalities imply f1,y = 0. Hence, s

is a critical point of f if and only if (x, y) is a critical point of f1. We compute the
Hessian, using the Cauchy–Riemann equations again, and find

H(x, y) =
∣∣∣∣f1,xx f1,xy

f1,yx f1,yy

∣∣∣∣ = f1,xxf1,yy − f 2
1,xy = −f 2

1,xx − f 2
2,xx ≤ 0 . (10.29)



10.2 Approximating the Shape 141

Hence, s is a nondegenerate critical point of f if and only if (x, y) is a saddle point
of f1.

Ideally, then, we want to choose a path of integration that follows the steepest
descent of f1 near the saddle point. At the same time, we want to keep the imaginary
part, f2, constant so that the absolute value of the integrand does not oscillate
around the path of steepest descent. Fortunately, we can reach both of these goals
simultaneously, due to the Cauchy–Riemann equations. The path of steepest descent
follows the gradient of f1. A level set of f2 is perpendicular to the gradient of f2. By
the Cauchy–Riemann equations, the gradients of f1 and f2 are perpendicular so that
the path of steepest descent is automatically a level set for the imaginary part. We
only have to be careful to pick the correct one of the two directions of the gradient
of f1.

At a critical point when f ′(s0) = 0, we write

f (s) − f (s0) = f ′′(s0)

2
(s − s0)

2 + h.o.t. (10.30)

We want to choose a path so that the first term on the right-hand side is real and
negative. In general, this choice requires careful consideration of the (complex) term
f ′′(s0) (Kot and Neubert 2008). We will, however, only need the case where s0 and
f ′′(s0) are real and f ′′(s0) is positive. Then the choice of the steepest path is simple
in that the real part of s equals s0, so that s − s0 is purely imaginary and its square
is negative.

We return to the expression in (10.21). We write the integrand as

Mt(s)e−sx = et
[
ln M(s)− x

t
s
]
= etf (s) . (10.31)

The condition for a critical (saddle) point becomes

M ′(s0)

M(s0)
= x

t
. (10.32)

Typically, there will be a unique, real root of this equation (Kot and Neubert 2008).
At the critical point, the second derivative is

f ′′(s0) = d2

ds2
ln(M(s)) = M ′′(s0)M(s0) − M ′2(s0)

M2(s0)
= M ′′(s0)

M(s0)
− x2

t2
. (10.33)

Since the moment-generating function is concave up, its logarithm has the same
property, so this second derivative is positive. We obtain the expression

∫ b+i∞

b−i∞
etf (s)ds ≈ etf (s0)

∫ b+i∞

b−i∞
etf ′′(s0)(s−s0)

2/2ds = iMt(s0)e
−s0x

√
2π

tf ′′(s0)
.
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Altogether, the approximation to the spatial profile from (10.21) becomes

Nt(x) ≈ n0R
tMt(s0)e−s0x√
2πtf ′′(s0)

. (10.34)

We illustrate this method and the excellent fit for the Laplace kernel in the next
section; more examples can be found in Kot and Neubert (2008).

The Laplace Kernel

For the Laplace kernel (2.27) with parameter a = √2/σ 2, the inverse transform can
be found explicitly in terms of Bessel functions (Kot and Neubert 2008). The exact
expression is

Nt(x) = n0R
t at+1/2

2t−1/2
(t)
√

π
|x|t−1/2Kt−1/2(a|x|) , (10.35)

where Kν(x) is the modified Bessel function of the second kind of order ν; see left
plot in Fig. 10.1.

The moment-generating function and its derivatives are

M(s) = a2

a2 − s2
, M ′(s) = M(s)

2s

a2 − s2
, M ′′(s) = M(s)

2a2 + 6s2

(a2 − s2)2
.

(10.36)

The critical value, s0, is a root of the quadratic equation s2 + 2t
x
s −a2 = 0. For each

t > 0 and x �= 0, we can choose a solution −a < s0 < a as

s0 =
⎧⎨
⎩

− t
x

−
√

t2

x2 + a2 , x < 0 ,

− t
x

+
√

t2

x2 + a2 , x > 0 .
(10.37)

When x = 0, we choose s0 = 0. The second derivative, f ′′(s0) = 2 a2+s2

(a2−s2)2 > 0, is
positive. Substituting these expressions into (10.34), we find the approximation

Nt(x) ≈ n0R
t(a2 − s2

0)

2
√

tπ(a2 + s2
0)

(
a2

a2 − s2
0

)t

e−s0x . (10.38)
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Fig. 10.4 Comparison of the exact solution and saddle-point approximation for (10.20). Left: The
approximation underestimates the exact solution slightly near the peak but provides an excellent
fit elsewhere (R = 1.2, σ 2 = 1, t = 10). Right: The approximation is much better than
the corresponding Gaussian approximation (see previous section) in the tails of the distribution;
compare Fig. 10.1 (R = 1, σ 2 = 1, t = 30).

Figure 10.4 shows that this approximation is highly accurate, not only near the
peak of the distribution, but also in the tail, where the convergence to the Gaussian
distribution is slow; compare Fig. 10.1.



Chapter 11
The Shape of Spatial Spread

Abstract In previous chapters, we studied the speed of spread and the existence of
traveling waves. In this chapter, we focus on the shape of traveling-wave profiles and
more general patterns of spatial spread. We first provide an approximation scheme,
based on asymptotic expansion, for the shape of a monotone wave. Then we explore
the existence of nonmonotone waves as well as more complicated patterns of spread
when the growth function has a stable two-cycle. We generalize the notion of the
asymptotic spreading speed and discuss dynamic stabilization.

11.1 Monotone Versus Nonmonotone Scenarios

In the study of biological invasions, the speed of spatial spread of the invading
organism is arguably the most important quantity. The theory in Chaps. 5 and 6
guarantees the existence of such a speed and, in some cases, also provides a simple
formula for it, but leaves open many questions about the shape of an invasion front.
When the growth function is monotone, the results in Chap. 5 also establish the
existence of monotone traveling waves. Information about the steepness of the wave,
say, would tell us how fast the invading population grows at any fixed location.
When the growth function is not monotone, we would like to know more about the
shape of the profile behind the initial invasion front; see Fig. 5.6. Will the profile
converge to the positive steady state, and if so how fast? But many more scenarios
could arise. Since the positive steady state of the nonspatial Ricker model may be
unstable, there is no reason to believe that a traveling profile in the spatial model
with Ricker dynamics—if it exists—would settle at that positive state. If it does
not, then what are the dynamics of the population in the wake of the invasion front?
Would a profile oscillate in ways comparable to those that we have seen in Sect. 4.4?
In this chapter, we present various approaches to answer some of these questions.

The first part of this chapter is based on the analysis of traveling waves. We
assume that there is a traveling-wave solution of speed c, i.e., a profile N that
satisfies
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N(x + c) = Q[N ](x) =
∫ ∞

−∞
K(x − y)F (N(y))dy . (11.1)

In this notation, the profile travels to the left when c > 0, so that we impose the
boundary conditions N(−∞) = 0 and N(∞) = 1. The profile travels to the right
when c < 0 and the boundary conditions are interchanged. When the dispersal
kernel is the Laplace or the exponential kernel, we can reduce this equation to
a second- or first-order delay equation, which we can study via linearization and
asymptotic expansion. This material was originally developed by Kot (1992).

In the second part, we consider the case where the positive steady state of the
nonspatial growth function is unstable and there is a stable two-cycle. We study this
case by considering the second-iterate operator Nt+2 = Q ◦ Q[Nt ]. Some aspects
of the traveling-wave analysis from the first part of this chapter can be extended
to this case. More important, the theory from Chap. 5 can be adapted to yield the
existence of generalized spreading speeds and various forms of traveling profiles
that appear after the initial invasion front and travel more slowly. This material
originates in the thesis of Bourgeois (2016). The existence of two or more distinct
traveling profiles at different speeds leads to stacked waves and the phenomenon of
dynamic stabilization.

11.2 Asymptotic Expansion of Monotone Traveling Waves

When the growth function is of Beverton–Holt type (monotone, concave down) and
the dispersal kernel is exponentially bounded, then there exist monotone traveling-
wave solutions (11.1) of the IDE for every c ≥ c∗; see Chap. 5, Theorem 5.2. We
obtain a unique (leftward-moving) solution if we fix the density at one point, e.g.,
N(0) = 1/2.

When the dispersal kernel is the Laplace kernel (2.27), we can use repeated
differentiation as in (3.7) to turn equation (11.1) into the second-order delay
differential equation

N ′′(x + c) = a2[N(x + c) − F(N(x))] . (11.2)

A constant solution of this equation satisfies N = F(N); i.e., it is a fixed point of
the nonspatial dynamics. By our assumptions on F , there are exactly two such fixed
points, namely N = 0 and N = 1, the asymptotic values of the traveling wave. We
are looking for a solution that connects these two points.

To apply asymptotic expansion, we need to identify a small parameter in the
equation. We rescale space by setting x = zc and define Ñ(x/c) = N(x). Using the
chain rule and dropping the tilde, we find the equation

1

(ac)2 N ′′(z + 1) + F(N(z)) − N(z + 1) = 0 . (11.3)
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We now consider ε = 1/(ac)2 as our small parameter. We know that the smallest
traveling-wave speed ĉ = c∗ is an increasing function of the growth rate at low
density F ′(0) for fixed a > 0. Hence, we can make ε small by making F ′(0) large.

We expand the solution N(z) of (11.3) in a perturbation series

N(z) = N(0)(z) + εN(1)(z) + ε2N(2)(z) + . . . . (11.4)

Inserting this expansion into (11.3), we obtain an infinite system of equations. The
two lowest-order equations are

N(0)(z + 1) = F(N(0)(z)) , (11.5)

N(1)(z + 1) = F ′(N(0)(z))N(1)(z) + [N(0)]′′(z + 1) . (11.6)

The lowest-order equation looks like the simple nonspatial equation. The difference
is that the equation here is meant to hold for a continuous variable z ∈ R and not
just for a discrete set z ∈ N. Fortunately, we have an explicit solution of (11.5) if F

is the scaled Beverton–Holt function (2.13), namely

N(0)(z) = Rz

1 + Rz
; (11.7)

see (2.16). This solution satisfies the two boundary conditions, N(0)(−∞) = 0 and
N(0)(∞) = 1, and the condition at zero, N(0)(0) = 1/2. It also defines a continuous
function on R. Hence, we have found an approximation to lowest order.

Comparing this lowest-order approximation to numerical simulations of the
traveling front, we see that the approximation is very good even when ε is on the
order of unity. The left plot in Fig. 11.1 shows that the two curves are virtually
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Fig. 11.1 Comparison of the numerically obtained shape of a traveling front and its lowest-order
approximation. Left: The two densities. Right: The absolute error, N(x) − N(0)(x). The growth
function is the Beverton–Holt function with R = 1.25. The dispersal kernel is the Laplace kernel
with a = 5 (left plot) and values of a as indicated (right plot).
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indistinguishable and that the absolute error, defined as N(x)−N(0)(x) (right plot),
is small for ε = 1.0139. As discussed above, ε decreases as R increases, so that the
approximation should become even better. As a decreases and dispersal distances
increase, the error increases in size and in spatial extent.

Kot (1992) proceeds to solve the equation for N(1) in (11.6) explicitly, but
the computations are lengthy and the gain is relatively small since the zero-order
approximation is already good. Instead, we consider a different example where
the calculations of the higher-order term are somewhat simpler and provide greater
improvement.

Asymptotics for the Exponential Kernel

The exponential kernel

K(x) =
{

a exp(ax) , x ≤ 0 ,

0 , x > 0 ,
(11.8)

is the (scaled) “left half” of the Laplace kernel and allows leftward spread only. The
moment-generating function is

M(s) = a

a − s
. (11.9)

The parametric representation of c according to (5.22) can be written as (compare
(5.26))

ac = 1 + s̄ , R = es̄

1 + s̄
, (11.10)

with s̄ = − s
a−s

. The defining equation for the traveling front with the exponential
kernel turns into

N(x + c) = a

∫ ∞

x

ea(x−y)F (N(y))dy . (11.11)

Differentiating once, we obtain the first-order delay differential equation

N ′(x + c) + a[F(N(x)) − N(x + c)] = 0 . (11.12)

Similar to the procedure for the Laplace kernel, we scale space by setting x = zc,
introduce the small parameter ε = 1/(ac), and expand N(z) in a perturbation series.
The two lowest-order equations are
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Fig. 11.2 Comparison of the
numerically obtained shape of
a traveling front and its two
lowest-order approximations.
The growth function is the
Beverton–Holt function with
R = 1.5. The dispersal kernel
is the exponential kernel with
a = 5.
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N(0)(z + 1) = F(N(0)(z)) , (11.13)

N(1)(z + 1) = F ′(N(0)(z))N(1)(z) + [N(0)]′(z + 1) . (11.14)

The equation for N(0) is the same as (11.5), so that we already have its solution in
(11.7). The plot in Fig. 11.2 shows that this approximation is not as close as for the
Laplace kernel in the previous section. To improve the approximation, we calculate
the term of order ε.

Substituting the expressions for N(0) and F ′(N) into (11.14), we arrive at

N(1)(z + 1) = R(1 + Rz)2

(1 + Rz+1)2 N(1)(z) + ln(R)
Rz+1

(1 + Rz+1)2 (11.15)

or, after rearranging,

(1 + Rz+1)2

Rz+1
N(1)(z + 1) = (1 + Rz)2

Rz
N(1)(z) + ln(R) . (11.16)

Hence, the expression U(z) = (1+Rz)2

Rz N(1)(z) satisfies the simple recursion relation

U(z + 1) = U(z) + ln(R) . (11.17)

To find its solution, we need an initial condition. Since N(0)(0) = N(0) = 1/2,
the requirement is N(1)(0) = 0 = U(0). Therefore, the solution for U is U(z) =
z ln(R). As before, this solution is initially only determined for z ∈ N, but we notice
that it is a continuous function for all z ∈ R.

The resulting approximation for N(x) in the original parameters is

N(x) = Rx/c

1 + Rx/c
+ 1

ac

x

c

ln(R)Rx/c

(1 + Rx/c)2
+ O(ε2) . (11.18)
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The improvement of this approximation over the previous one is obvious in
Fig. 11.2.

The approximation procedure presented here requires that we find an explicit
solution of the zero-order equation analytically. Numerical methods would only
allow us to calculate approximations defined on the integers. In particular, we cannot
easily use the method to study the shape of solutions when the growth function is
not monotone. In the following section, we take a linearization-based approach to
distinguish between monotone and nonmonotone solutions.

11.3 Traveling Waves in the Phase Plane

We return to Eq. (11.2), but now we treat it as a dynamical system in the phase
plane. We turn the second-order equation into a pair of first-order equations and let
y = x + c to obtain

N ′(y) = n(y) , n′(y) = a2[N(y) − F(N(y − c))] . (11.19)

We point out that since the equation has a delay, the phase space is really infinite
dimensional and the representation in the “phase plane” is somewhat misleading.
For example, solutions of this system can cross in the phase plane. Nonetheless, the
visualization in two dimensions turns out to be helpful.

The steady states of system (11.19) are of the form (N∗, 0), where N∗ is a
solution of F(N) = N. A traveling wave of the IDE is a heteroclinic connection
between the steady states (0, 0) and (1, 0). A necessary condition for such a
connection to exist is that (0, 0) be unstable and (1, 0) have at least one stable
direction. A monotone front requires that the eigenvalue at (1, 0) be real and
negative, whereas a front with damped spatial oscillations at (1, 0) requires it to
have nonzero imaginary and negative real part.

Figure 11.3 shows a monotone and a nonmonotone front for the IDE with Ricker
dynamics together with their phase-plane representations. In the nonspatial Ricker
model from (2.19), we have F ′(1) = 1 − r. Solutions approach one in a monotone
way when 0 < r ≤ 1 and in an oscillatory way when 1 < r < 2. When r > 2,
stability is lost, and cyclic or chaotic behavior appears. Accordingly, the lowest-
order approximation to the traveling wave from (11.5) predicts monotone traveling
fronts when 0 < r ≤ 1 and nonmonotone fronts for some 1 < r < 2. Dispersal
appears to have a dampening effect since Fig. 11.3 shows a monotone wave for some
r > 1.

To study the stability of the two steady states in the phase plane, we linearize the
traveling-wave equation. It is easier to work with (11.3). The scaling does not affect
the sign of the eigenvalue. We find the transcendental eigenvalue problem

1 − λ2

a2c2
= F ′(N∗)e−λ . (11.20)
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Fig. 11.3 Left: Traveling fronts with Ricker dynamics and a Laplace kernel can show a monotone
profile (r = 1.03, top) or damped spatial oscillations (r = 1.8, bottom). The two profiles (solid
and dashed lines) are taken 10 generations apart. Right: Phase-plane representations of the invasion
fronts. The dispersal parameter is a = 6.

Alternatively, we linearize (11.19) and scale the eigenvalue; see Chap. 4 in
Bourgeois (2016). We ask for conditions such that the parabola on the left intersects
the exponential on the right. We distinguish three cases.

Case 1: F ′(N∗) > 1

If F ′(N∗) > 1, the parabola on the left-hand side of (11.20) and the exponential on
the right cannot intersect for λ < 0. There are two positive intersections when c is
large enough but none when c is small. We illustrate this case in Fig. 11.4, top left
panel. The thick solid curve represents the right-hand side of (11.20); the thin solid
(dashed) curve represents the left-hand side for small (large) c. The critical case, in
which the curves are tangent, is given by the pair of equations

1 − λ2

a2c2
= F ′(N∗)e−λ and

2λ

a2c2
= F ′(N∗)e−λ . (11.21)

These two equations lead precisely to the defining equations for the minimal speed
of a traveling front with λ in place of s̃; see (5.26). This situation may arise at
the zero state where F ′(0) = R0 > 1. Hence, the zero state in the phase plane is
unstable precisely when the speed is at least the minimal speed. We have recovered
the result from Theorem 5.1 that there can be no biologically meaningful traveling
waves for c < ĉ.
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Fig. 11.4 Illustrating the potential roots of the eigenvalue problem in (11.20) as intersections of
curves. Top left: When F ′(0) > 1, there is a critical value for c for which a positive eigenvalue
exists. Top right: When 0 < F ′(1) < 1, there is always one positive and one negative real
eigenvalue. Bottom left: When F ′(1) < 0, there is one positive eigenvalue, and there can be up to
two negative eigenvalues. Bottom right: When F ′(1) < 0 and there are no negative eigenvalues,
there can be complex eigenvalues with negative real part. The thick (thin) curves indicate where
the first (second) condition in (11.22) is satisfied. The intersection points indicate the eigenvalues.
They all have negative real parts.

Case 2: 0 ≤ F ′(N∗) < 1

If 0 ≤ F ′(N∗) < 1, there is exactly one positive and one negative solution of
(11.20); see Fig. 11.4, top right panel. As before, the thick (thin) curve represents
the right-hand (left-hand) side. This situation arises at the positive steady state with
the Beverton–Holt function but also with the Ricker function when 0 < r < 1. The
necessary conditions for the existence of a monotone traveling wave are satisfied.

Case 3: F ′(N∗) < 0

When the slope of the updating function at the positive steady state is negative,
(11.20) always has one positive solution. When c and/or |F ′(N∗)| are small, there



11.4 Invasion Dynamics with a Two-Cycle 153

are two negative solutions; when they are large, there is no negative solution; see
Fig. 11.4, bottom left panel. As usual, the thick curve represents the exponential in
(11.20); the thin solid (dashed) curve represents the quadratic with small (large) c.

There are two negative intersections for small c. The dashed curve shows the critical
case where the curves are tangent, which leads to the pair of equations (11.21).

When there are no real negative solutions, we consider complex-valued solutions.
We write λ = α + iβ and split the equation in (11.20) into real and imaginary parts,
namely

1−α2 − β2

a2c2 = F ′(N∗)e−α cos(β) ,
2αβ

a2c2 = −F ′(N∗)e−α sin(β) . (11.22)

The bottom right panel in Fig. 11.4 illustrates the solution curves of these equations
in the complex plane. Their intersection points correspond to eigenvalues.

We return to the case of the Ricker function in Fig. 11.3. When r = 1.03, we have
F ′(1) = −0.03 < 0. As |F ′(N∗)| is small, we have two negative eigenvalues as in
the bottom left panel of Fig. 11.4. Hence, there can be a monotone traveling wave,
as observed in Fig. 11.3. When r = 1.8, we have F ′(1) = −0.8 < 0. As |F ′(N∗)|
is now much larger, we have no negative eigenvalues but complex eigenvalues with
negative real parts, as in the bottom right panel of Fig. 11.4. Hence, there cannot be
a monotone traveling wave, but there is a wave with decaying oscillations around
one, as observed in Fig. 11.3. For the existence of traveling waves, see Sect. 5.4.

11.4 Invasion Dynamics with a Two-Cycle

So far, we have assumed that the positive state N∗ = 1 is stable for the growth
dynamics. Without this assumption, there is no reason to believe that a traveling
wave could exist, since the dynamic behavior in the wake of a wave is often
determined by the stable steady states for the nonspatial equation. What can we
expect if there is no stable steady state? Kot (1992) finds a “traveling two-cycle”
in numerical simulations; see also Kot (2003). We illustrate this kind of solution to
motivate the subsequent analysis.

The Ricker map, F(N) = N exp(r(1 − N), has a globally stable two-cycle for
r = 2.2, with densities 0 < n− < 1 < n+, satisfying F(F(n−)) = F(n+) = n−.

The invasion dynamics of the spatial model are shown in the left plot in Fig. 11.5.
At the invasion front, the density increases from zero, overshoots the state N = 1,
and then shows damped spatial oscillations to that state in the wake. Somewhere
behind the invasion front, a second front alternates between increasing to n+ in even
generations (dashed) and decreasing to n− in odd generations (solid). The right plot
in Fig. 11.5 reveals that the first front with the damped oscillations travels faster
than the alternating second front that connects to n− and n+, respectively. Hence,
the term “traveling two-cycles” (Kot 1992) could be misleading because this is not a
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Fig. 11.5 Invasion dynamics with a stable two-cycle. Left: The profile of the front at odd
generations (solid) connects with the lower value of the nonspatial two-cycle, n−, whereas the
profile at even generations (dashed) connects with the higher values, n+. The two profiles are 11
generations apart. Right: Plotting the profile 20 generations apart shows that the nonmonotone first
front travels faster than the monotone second front. Parameters are r = 2.2 for the Ricker growth
function and a = 6 for the Laplace kernel. The initial condition is a step function.

Fig. 11.6 Plot of the
second-iterate map of the
Ricker function with r = 2.2.
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single profile traveling at a constant speed but rather two different objects traveling
at different speeds.

Few authors have considered this problem. Theorem 5.3 guarantees the existence
of a spreading speed even when the positive state is unstable. Hsu and Zhao (2008),
Li et al. (2009), and Yu and Yuan (2012) prove the existence of a traveling-
wave profile under some conditions, but the shape of the profile behind the initial
front is unclear. Bourgeois (2016) provides a more detailed study of the spatial
invasion dynamics with an unstable fixed point; see also Bourgeois et al. (2018)
and Bourgeois et al. (2019). We present some of these results here.

To gain some preliminary insight into the second front, we consider the iteration
of two generations. For the nonspatial Ricker model with r = 2.2, the map Nt+2 =
F(F(Nt)) has four fixed points. The fixed points of F and each of the points of the
two-cycle of F are fixed points of F ◦ F ; see Fig. 11.6. The points zero and one are
unstable, whereas n± are stable. The corresponding two-generation IDE is

Nt+2(x) = Q ◦ Q[Nt ](x) =
∫

K(x − y)F

(∫
K(y − z)F (Nt (z))dz

)
dy .

(11.23)
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We are looking for a monotone front that connects N = 1 with N = n+ or N = n−.

Such a front satisfies the equation

N(x + 2c) =
∫ ∞

−∞
K(x − y)F

(∫ ∞

−∞
K(y − z)F (N(z))dz

)
dy . (11.24)

We write the speed as 2c because we consider two generations in the equation. We
study its behavior near N = 1 by linearization. The linearized equation is

n(x + 2c) = F ′(1)2
∫ ∫

K(x − y)K(y − z)n(z)dy dz . (11.25)

Taking an exponential transform or substituting an exponential profile leads to the
dispersion relation

e2sc = (F ′(1))2M2(s) , (11.26)

where M(s) is the moment-generating function of K as usual. After taking square
roots, we find the minimal speed at which a profile in the linearized equation can
travel as

ĉ1 = 1

s
ln(|F ′(1)|M(s)) . (11.27)

For the Ricker function, we have F ′(0) = er and F ′(1) = 1 − r , so that F ′(0) >

|F ′(1)| for all r > 0. In particular, the slowest speed for a front in the linearized
equation at zero is always larger than for the linearized equation at one. For the
parameters in Fig. 11.5, the speed of the initial front is c0 = 0.67, whereas the speed
of the second front is c1 = 0.14. The plateau region at level N = 1 between the first
and second fronts grows by the difference c0 − c1 per generation. In particular, even
though the state N = 1 is unstable for the nonspatial dynamics, it appears stable
for a potentially long time in the spatial model. This same phenomenon, but in a
two-component reaction–diffusion model, has been termed dynamic stabilization
by Malchow et al. (2008).

11.5 Generalized Spreading Speeds

To study the speed of spread of the second front that we observe in the simulations
in Fig. 11.5, we generalize the definition of the asymptotic spreading speed in (5.31)
to allow for the state ahead of the front to be positive (Bourgeois 2016; Bourgeois
et al. 2018). The construction is a slight extension of the one by Weinberger (1982).

We consider an operator Q̃ that acts on continuous functions on R. We assume
that there are two constants 0 ≤ π0 < π1 < ∞ such that Q̃[πi] = πi for the
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corresponding constant functions. We denote the set of all continuous functions with
values in [π0, π1] as C[π0,π1] and define a sequence of functions by the iteration
Nt+1 = Q̃[Nt ].
Definition 11.1 The value c∗

(π0,π1)
is called the generalized asymptotic spreading

speed of Q̃ from π0 to π1 if the following conditions hold:

(i) For any N0 ∈ C[π0,π1] such that N0 − π0 has compact support,

lim
t→∞ sup

|x|≥ct

Nt (x) = π0 for all c > c∗
(π0,π1)

. (11.28)

(ii) For any N0 ∈ C[π0,π1] such that N0 − π0 �≡ 0,

lim
t→∞ inf|x|≤ct

Nt (x) = π1 for all c ∈ (0, c∗
(π0,π1)

) . (11.29)

For π0 = 0 and π1 = 1, this definition agrees with Definition 5.1; i.e., c∗
(0,1) = c∗.

If π0 = 0, we can always achieve π1 = 1 by rescaling.
The existence of a generalized spreading speed and associated traveling waves

for operator Q̃, satisfying appropriate conditions, follows from Theorem 5.1.

Theorem 11.1 Assume that operator Q̃ acts on the space of continuous functions
C[π0,π1] as follows:

(i) Translation invariance: Q̃[N(· − a)](x) = Q̃[N ](x − a).
(ii) Invariance on C[π0,π1]: N ∈ C[π0,π1] ⇒ Q̃[N ] ∈ C[π0,π1].

(iii) Fixed points: Q̃[π0] = π0, Q̃[π1] = π1, Q̃[α] > α for α ∈ (π0, π1).
(iv) Monotonicity: π0 ≤ N ≤ Ñ ≤ π1 ⇒ Q̃[N ] ≤ Q̃[Ñ ].
(v) Continuity: If {ft } ⊂ C[π0,π1] and ft → f uniformly on compact subsets of R,

then Q̃[ft ] → Q̃[f ] pointwise as t → ∞.
(vi) Compactness: Every sequence {fj } in C[π0,π1] has a subsequence {fji

} such
that {Q̃[fji

]} converges uniformly on every bounded subset of R.

Then there exists a generalized spreading speed, c∗
(π0,π1)

, for Q̃ from π0 to π1. For
all c ≥ c∗

(π0,π1)
, there exists a monotone traveling-wave solution W(x − ct) with

W(−∞) = π1 and W(∞) = π0.

Proof We construct an operator Q on C[0,π1−π0] as Q[f ] = Q̃[f + π0] − π0.

This operator inherits all the qualitative properties from Q̃, shifted to the interval
[0, π1 − π0]. Hence, it satisfies the assumptions of Theorem 5.1, which guarantees
the existence of a spreading speed and traveling waves. ��

We want to apply this theorem to the second-iterate operator

Q̃[N ](x) = Q ◦ Q[N ](x) =
∫

K(x − y)F

(∫
K(y − z)F (N(z))dz

)
dy .

(11.30)
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The following theorem gives conditions on F for the existence of a generalized
spreading speed and monotone traveling waves (Bourgeois 2016; Bourgeois et al.
2018).

Theorem 11.2 Assume that K is continuous and that its moment-generating
function is bounded for at least one nonzero value. Let F be a growth function
that satisfies the following conditions:

(i) F is bounded and continuously differentiable.
(ii) F has exactly one stable two-cycle, i.e., there exist n± such that 0 < n− <

1 < n+, F(n−) = n+ and F(n+) = n−, and all nonnegative initial conditions
converge to this two-cycle under the map Nt+1 = F(Nt).

(iii) N = 1 is the only fixed point of F on the interval [n−, n+].
(iv) F ′(1) < −1.

(v) F is nonincreasing on the interval [n−, n+].
Then, there exists a spreading speed c∗

(1,n+) for the operator Q̃ in (11.30) from one

to n+. Furthermore, for every c ≥ c∗
(1,n+), there exists a monotone traveling-wave

profile W(x − ct) with W(−∞) = n+ and W(∞) = 0.

Proof Translation invariance, continuity, and compactness of Q̃ follow from the
corresponding properties of Q. Function F maps the interval [1, n+] into [n−, 1],
and vice versa. Hence, if N ∈ [1, n+], then Q[N ] ∈ [n−, 1] and also Q(Q[N ]) ∈
[1, n+]. Therefore, C[1,n+] is invariant under Q̃. Since F(1) = 1 and F(F(n+)) =
n+, we have Q̃(1) = 1 and Q̃(n+) = n+ in the sense of constant functions. From
(iv) we have (F ◦F)′(1) > 1, and hence F(F(α)) > α for some α > 1. Since there
is no fixed point between one and n+, we must have F(F(α)) > α for α ∈ (1, n+).

The same relation holds for constant functions under Q̃. To show monotonicity,
assume that 1 ≤ N(x) ≤ Ñ(x) ≤ n+. Then by (v), we have 1 ≥ F(N(x)) ≥
F(Ñ(x)) ≥ n− and hence also 1 ≥ Q[N ] ≥ Q[Ñ] ≥ n−. But then we repeat
the argument, since F maps [n−, 1] into [1, n+], and we obtain 1 ≤ Q(Q[N ]) ≤
Q(Q[Ñ]) ≤ n+. ��

The monotonicity assumption (v) is satisfied for the Ricker function with 2 <

r < 2.2565 and for the logistic function with 2 < r < 2.2362, respectively. For
larger values of r , function F is not monotone in the interval [n−, n+]. Under certain
conditions, the existence of a generalized spreading speed for Q̃ can still be shown.
The key idea is to construct operators Q̃± that bound Q̃, just as we constructed
operators Q± that bounded Q for overcompensatory dynamics in Sect. 5.4. Details
can be found in the thesis by Bourgeois (2016) and in Bourgeois et al. (2018).

Theorem 11.2 and its generalizations to nonmonotone dynamics have an imme-
diate analogue on the interval [n−, 1]. By applying the one-step operator Q to any
solution of the two-step operator Q̃, we obtain traveling waves that connect one
to n−.
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The theorem gives the existence of a spreading speed, but no simple formula to
calculate it. In particular, it is not known whether the linear conjecture holds, i.e.,
whether the generalized spreading speed c∗

(1,n+) is determined by the linearization
at 0. Based on numerical simulations, Bourgeois (2016) conjectures that the speed
is linearly determined and that c∗

(1,n+) = ĉ1 from (11.27).

11.6 Further Reading

The dynamics of the nonspatial Ricker map range from monotone or nonmonotone
convergence to a unique positive steady state to chaotic dynamics. We only
discussed spreading phenomena in a few cases of a stable steady state or a stable
two-cycle. The ideas presented here can be and have been applied to higher-order
cycles. For example, Bourgeois (2016) uses the fourth power of operator Q to study
spreading dynamics with four-cycles; see also the discussion in Bourgeois et al.
(2018). Seemingly chaotic behavior in the wake of an invasion can be observed in
numerical simulations; see Andersen (1991) and Li et al. (2009).

Bourgeois et al. (2018) do not address the stability of the traveling profiles in the
case where the growth function has a stable two-cycle. They use step functions as
initial conditions in their simulations. The resulting shapes (e.g., Fig. 11.5) appear
to be stable in some sense since they were obtained by two independent numerical
schemes. On the other hand, Li et al. (2009) prove the existence of traveling waves
for operator Q and find a spatially oscillating profile by numerical fixed-point
iteration (see Fig. 4 in their paper). It is unclear whether this profile is stable for
the dynamics of the IDE.

Many more phenomena can occur with overcompensatory dynamics. For exam-
ple, since Q̃ has the three positive fixed points, n− < 1 < n+, and since n− and n+
are stable, there could be a bistable front connecting n− to n+. From Theorem 6.2,
we know that a bistable front of operator Q can and does exist for only one speed
c∗. The techniques in Lui (1983) unfortunately do not apply for proving uniqueness
of the speed in this case. However, Bourgeois et al. (2018) show that if the speed
is unique, then it has to be zero, i.e., the wave is a standing wave. Numerical
simulations suggest the existence of a standing wave; see Fig. 9 in Bourgeois et al.
(2018).

We can extend the phase-plane approach from Sect. 11.3 to study spreading
phenomena and dynamic stabilization as the growth parameter in the Ricker
function increases so that the nonspatial dynamics exhibit oscillations. There is
evidence for a Hopf bifurcation as the intersection points of the thin and thick curves
in the bottom right panel in Fig. 11.4 move across the imaginary line to have positive
real parts; see Fig. 4.19 by Bourgeois (2016) for an illustration and Bourgeois et al.
(2019) for more details.

The theory and examples in this chapter all assumed that the growth dynamics
have no Allee effect. Schreiber (2003) studies several nonspatial models with Allee
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effect and Ricker dynamics and finds that overcompensation and a strong Allee
effect could lead to complex extinction dynamics. Sullivan et al. (2017) combine
Allee dynamics and overcompensation with spatial spread and find pulsating
traveling waves. Otto (2017) in his PhD thesis also studies an IDE that includes an
Allee effect and overcompensation. He finds a novel type of solution that neither
spreads nor retreats but stays in place with compact support in a homogeneous
environment.



Chapter 12
Applications

Abstract The theory studied so far has considered somewhat idealized population
dynamics. In this chapter, we present various extensions of this theory to include
more realistic conditions and several applications of scalar IDEs to real biological
systems. Quite naturally, as soon as we want to model any particular scenario with
the simple IDE in (2.1), we find that the model may need to be adjusted in various
ways to more accurately describe biological reality. The first example deals with
dispersal-induced mortality. Next, we consider the effects of biased dispersal in
rivers and along coastlines in the context of the drift paradox. Closely related is
the third topic of moving-habitat models, where we incorporate certain aspects of
climate change into the equations. We then take a closer look at populations where
individuals differ in their dispersal behavior: in one extreme, some individuals could
be immobile (sessile); in the other extreme, some individuals may disperse much
farther than the majority. We discuss the latter aspects in the context of Reid’s
paradox of rapid tree migration. We take a closer look at how to model Allee effects.
Finally, we present some applications to two-dimensional domains.

12.1 Dispersal-Induced Mortality

All the dispersal kernels that we have considered so far have the property

∫ ∞

−∞
K(x, y)dx = 1 for all y , (12.1)

which reflects the assumption that there is no mortality during dispersal. On an
infinite landscape, every individual will find some new location. This assumption is
unrealistic since dispersal is generally risky. For example, wind-dispersed seeds may
land in unsuitable habitats. Dispersing animals may face dangers from predation or
human activity, or they may simply require more energy to move. It is therefore
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more realistic to assume that the dispersal success (see Chap. 9) can be less than
one, i.e.,

∫ ∞

−∞
K(x, y)dx = S(y) ≤ 1 for all y . (12.2)

A relatively simple scaling allows us to keep using the theory developed in previous
chapters. Namely, we set

K̃(x, y) = 1

S(y)
K(x, y) . (12.3)

This modified kernel has property (12.1). In a homogeneous landscape, S(y) = S̄

is a constant. To compensate for the scaling, we multiply the growth function by S̄,
i.e., we replace F(Nt(y)) by S̄F (Nt (y)). As a result, the minimal requirement for
population persistence is S̄F ′(0) > 1.

Sometimes, however, we are interested in how the detailed mechanisms of
movement and mortality affect population dynamics, such as the speed of range
expansion. As the climate changes, the length of the dispersal period during
an individual’s life cycle might increase or decrease. For example, butterflies
disperse only when the temperature is above a certain threshold. When the average
length of the dispersal phase increases, the average distance dispersed should also
increase, and the population should spread faster. On the other hand, if mortality is
associated with dispersal, then fewer individuals will survive the dispersal phase.
This mechanism should decrease the spreading speed. What then is the combined
effect of these two mechanisms on population range expansion?

The dispersal process with mortality rate β > 0 can be modeled by the reaction–
diffusion equation (see Chap. 7)

∂

∂t
u(t, x) = D

∂2

∂x2 u(t, x) − αu(t, x) − βu(t, x) , u(0, x; y) = δ(x − y) .

(12.4)

Since only surviving individuals produce offspring, the dispersal kernel is still given
by

K(x, y) =
∫ ∞

0
αu(t, x; y)dt . (12.5)

When all individuals disperse for exactly τ time units, the resulting dispersal kernel
is the modified Gaussian kernel

K(x, 0) = e−βτ

√
4πDτ

exp

(
− x2

4Dτ

)
. (12.6)
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When individuals settle at a constant rate α, we obtain the modified Laplace kernel
(Van Kirk 1995)

K(x, 0) = 1

2

α

α + β

√
α + β

D
exp

(
−
√

α + β

D
|x|
)

. (12.7)

We note that mortality enters the modified Gaussian kernel only through the scaling
factor, whereas it also affects the exponential decay rate in the modified Laplace
kernel.

We compare how the speed of spatial spread depends on the mean dispersal time
for these two kernels. We assume that the growth function has no Allee effect and
that the spreading speed is linearly determined (see Chap. 5) from the equation

Nt+1(x) = R

∫ ∞

−∞
K(x − y)Nt (y)dy . (12.8)

To make the two kernels comparable, we set α = 1/τ so that the mean dispersal
time for surviving individuals is the same for both scenarios. The values of the
dispersal success from (12.2) turn out to be

SG(y) = S̄G = e−βτ and SL(y) = S̄L = α

α + β
= 1

1 + βτ
, (12.9)

respectively, for the modified Gaussian and Laplace kernels. Accordingly, the
minimal growth rates for the population to persist and spread are

R > eβτ and R > 1 + βτ , (12.10)

respectively, for the two kernels. For fixed mean dispersal time τ , the minimum
growth rate for the modified Gaussian kernel is greater than for the modified Laplace
kernel. Conversely, for fixed growth rate R, the maximum average dispersal time is
larger for the modified Laplace kernel than for the modified Gaussian kernel.

The variance of the modified Gaussian kernel, σ 2 = 2Dτ , grows linearly with τ.

The variance of the modified Laplace kernel, σ 2 = 2Dτ/(1 + βτ), also grows with
τ but remains bounded. How do these relationships affect the spreading speed?

For the modified Gaussian kernel, we adapt the explicit expression in (5.20) and
find

c∗(τ ) =
√

2σ 2 ln(Re−βτ ) = √4Dτ(ln(R) − βτ) . (12.11)

In particular, the speed is a hump-shaped function of τ with a maximum at τ ∗ =
ln(R)/(2β). The maximum speed is c∗(τ ∗) = ln(R)

√
D/β. When individuals

disperse only for a short time, they do not move far, so the spread rate is slow. When
they disperse for a long time, mortality takes a toll and the spread rate is, again,
slow. Intermediate dispersal times give the highest speed of spread; see Fig. 12.1.
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Fig. 12.1 The speed of
spread in the presence of
dispersal-induced mortality is
a hump-shaped function of
the mean dispersal time. With
the modified Gaussian kernel
(thick curves), the population
spreads only as long as
βτ < ln(R). For the modified
Laplace kernel (thin curves),
this threshold is at
βτ = R − 1 > ln(R).

Parameters are R = 3,
D = 1, and β = 1 (solid) or
β = 0.7 (dashed). 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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For the modified Laplace kernel, we apply formula (5.17), i.e.,

c∗(τ ) = min
s>0

1

s
ln

(
R

1 + βτ − Dτs2

)
, (12.12)

to evaluate the speed numerically. As with the modified Gaussian kernel, the
speed for the modified Laplace kernel is hump shaped; see Fig. 12.1. Also, quite
predictably, the speed is no smaller than that of the modified Gaussian kernel.
Somewhat surprisingly, the maximum possible speed seems to be the same for the
two kernels and seems to occur for the same mean dispersal time.

We can prove this observation analytically by using the explicit expression for
the spreading speed for the Laplace kernel from (5.28). In terms of the −1-branch
of the Lambert W function, the speed of spread is given by

ĉ(τ ) = −
√

Dτ

1 + βτ
W−1(z)

√
2

W−1(z)
+ 1 , where z = −2(1 + βτ)

R e2 .

(12.13)
Differentiating this expression with respect to τ and using the identity W−1(z) =
zW ′−1(z)(1 + W−1(z)), we find

d

dτ
ĉ(τ ) =

√
Dτ

1+βτ

√
2

W−1
+ 1

1 + βτ
W−1(z)

(
β

(1 + W−1)(2 + W−1)
− β

1 + W−1
− 1

2τ

)
,

where W−1 = W−1(z). We require W−1 �= −1,−2. Under this assumption, the
derivative is zero if and only if W−1 satisfies the quadratic equation

W 2 + (3 + 2βτ)W + 2βτ + 2 = 0 . (12.14)
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The two solutions are W = −1, which we excluded above, and W = −2 − 2βτ.

Hence, we need to find the value of τ that satisfies

W−1

(−2 − 2βτ

R e2

)
= −2 − 2βτ . (12.15)

We recall that the defining equation for the Lambert W function is W(yey) = y for
real numbers y. Setting y = −2 − 2βτ and rewriting R e2 = e2+ln(R), we finally
find the solution τ ∗ = ln(R)/β, which agrees with the value of τ ∗ that we found
above for the Gaussian kernel.

12.2 Biased Dispersal: Streams and Rivers

Many environments are characterized by external forces that bias individual move-
ment in one direction. A prominent example is rivers, where water flow transports
individuals downstream. Coastlines with longshore current are another example,
and many more examples exist (Lutscher et al. 2010). How can populations persist
in a particular river reach if individuals are constantly at risk of being washed
out to downstream reaches? In river ecology, this question is known as the drift
paradox. Together with the corresponding questions in other systems with biased
(or asymmetric) dispersal, it has generated some fascinating mathematical modeling
and analysis.

We apply the concepts of critical patch-size and spreading speeds to some simple
models for a single population in a stream environment to address this question. It
turns out that the definition of persistence requires some subtle distinction between
local and global persistence, and that the definition of spreading speed has to include
direction. The theory presented here stems from Byers and Pringle (2006) and
Lutscher et al. (2010).

We study the linear IDE

Nt+1(x) = R

∫ ∞

−∞
K(x − y)Nt (y)dy (12.16)

to find persistence conditions and invasion speeds for the kernels that we derived
from the random-walk model with bias in Chap. 7. We begin with the Gaussian
kernel with variance σ 2 and nonzero mean μ; see (7.17):

K(x − y) = G(x − y;μ, σ 2) = 1√
2πσ 2

exp

(
− (x − y − μ)2

2σ 2

)
. (12.17)
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With initial condition N0(x) = δ(x), (12.16)–(12.17) have the solution

Nt(x) = RtG(x;μt, σ 2t) = Rt

√
2πσ 2t

exp

(
− (x − μt)2

2σ 2t

)
, (12.18)

since the convolution of two Gaussian distributions is again a Gaussian distribution
with added means and variances. The total population size,

∫
Nt(x)dx, grows when

R > 1. In fact,

∫ ∞

−∞
Nt(x)dx = Rt

∫ ∞

−∞
G(x;μt, σ 2t)dx = Rt . (12.19)

At any particular point, however, the situation is quite different. Since the landscape
is homogeneous, we may choose x = 0 and calculate

Nt(0) = Rt

√
2πσ 2t

e
− (−μt)2

2σ2 t = 1√
2πσ 2t

(
Re− μ2

2σ2

)t

. (12.20)

Hence, Nt(0) grows if and only if

R > R∗ = exp
( μ

2σ 2

)
. (12.21)

Therefore, population persistence at x = 0 and, in fact, at any given point requires
a sufficiently large growth rate or, equivalently, a sufficiently small bias, namely
|μ| < μ∗ = √2σ 2 ln(R).

Figure 12.2 illustrates how a population with 1 < R < R∗ (left plot) fails
to persist at any given point and is swept downstream even though the total
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Fig. 12.2 Illustration of population density with drift according to (12.18). Left plot: The
population grows but cannot persist at any point. Right plot: The population can persist at every
point and spread upstream. Parameters are R = 1.5, σ 2 = 1, and μ = 1.5 (left) versus μ = 0.4
(right). The bias threshold is μ∗ ≈ 0.59.
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population grows over time. When R > R∗ (right plot), the population density
increases at every point and expands in both directions. This observation suggests
that persistence at a point could be characterized by the population being able to
expand upstream, i.e., against the direction of the movement bias. It turns out that
the threshold for directional bias, μ∗, is exactly the asymptotic speed, c∗, at which
the population would spread in the absence of bias. We formalize this idea.

When movement is biased, there will be two spreading speeds in the system, one
in the direction of the bias (c+) and one against it (c−) (Lutscher et al. 2005). These
two speeds can still be characterized by the minimal speed of a traveling wave in
the linearized equation. The ansatz

Nt(x) = N(x − ct) = exp(−s(x − ct)) (12.22)

models a profile traveling to the right if c > 0 and to the left if c < 0. The profile is
decreasing if s > 0 and increasing if s < 0. If we assume that the bias is toward the
right (downstream), then a profile with s > 0 and c > 0 indicates the downstream
spread of a population. A profile with s < 0 and c < 0 indicates an upstream-
spreading profile, while s < 0 and c > 0 indicates a downstream-retreating profile.

The dispersion relation for the traveling wave is the same as before, namely esc =
RM(s), where M is the moment-generating function of the kernel. The minimal
rightward (downstream) speed, c+, is given by

c+ = min
s>0

c(s) = min
s>0

1

s
ln(RM(s)) , (12.23)

whereas the minimal leftward (upstream) speed, c−, is given by

c− = max
s<0

c(s) = max
s<0

1

s
ln(RM(s)) = − min

s>0

1

s
ln(RM(−s)) . (12.24)

If K is symmetric, then so is M , which implies that c+ = −c−.

The upstream speed is negative (so that the population spreads upstream) if
RM(s) > 1 for all s where M is defined. But if RM(s) < 1 for some s < 0,
then c− > 0, so that the population retreats downstream; see Fig. 12.3. The critical
value between spread and retreat is c− = maxs<0 c(s) = c(s∗) = 0, which arises
precisely when RM(s∗) = 1 and M ′(s∗) = 0. Hence, the condition for upstream
spread is (Lutscher et al. 2010)

R > R∗ = 1

M(s∗)
= 1

min M
. (12.25)

This quantity can be calculated much more easily than the minimum of c(s) in
general. We give three examples.
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Fig. 12.3 Illustration of the dispersion relation for a symmetric (left plot) and two asymmetric
(middle and right plots) moment-generating functions. The spreading speed in the direction of the
bias (c+) is the minimum of the curve for positive s, whereas the speed in the opposite direction
(c−) is the maximum over negative s. In all cases, c+ > 0. In the symmetric case, c− = −c+. In
the middle plot, c− < 0; in the right plot, c− > 0. The plots result from the Gaussian kernel with
variance 1 and mean 0 (left plot), 0.5 (middle), and 1 (right).

The Gaussian Kernel

We continue the above example with the Gaussian kernel and its moment-generating
function

M(s) = exp

(
σ 2s2

2
+ μs

)
. (12.26)

Its minimum occurs at s∗ = −μ/σ 2 and equals M(s∗) = exp(
μ2

2σ 2 ). Hence, the
threshold R∗ = 1/M(s∗) for upstream invasion is the same as the threshold for
persistence at x = 0 found in (12.21).

The Shifted Laplace Kernel

Next, we choose a shifted Laplace kernel with mean μ and variance σ 2, namely

K(x) = 1√
2σ 2

exp

(
−|x − μ|√

σ 2/2

)
. (12.27)

The minimum of its moment-generating function, M(s) = eμs(1 − σ 2s2

2 )−1, occurs
at

s∗ = 1

μ

⎛
⎝1 −

√
1 + 2μ2

σ 2

⎞
⎠ , (12.28)
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which gives a persistence threshold of

R∗ = σ 2

μ2

⎛
⎝
√

1 + 2μ2

σ 2
− 1

⎞
⎠ exp

⎛
⎝
√

1 + 2μ2

σ 2
− 1

⎞
⎠ . (12.29)

The Asymmetric Laplace Kernel

We return to the asymmetric Laplace kernel derived from the biased random walk
in (7.16). Its moment-generating function is (with a1 > 0 > a2)

M(s) = a1a2

(a1 + s)(a2 + s)
, s ∈ (−a1,−a2) . (12.30)

The minimum of M occurs at s∗ = −(a1 + a2)/2 and is given by (Lutscher et al.
2005)

M(s∗) = 4a1|a2|
(a1 − a2)2 . (12.31)

Instead of relating parameters back to the random walk parameters D, q, and α

in (7.16), we introduce the mean and variance of the asymmetric Laplace kernel,
namely

μ = 1

a1
+ 1

a2
= a1 + a2

a1a2
and σ 2 = 1

a2
1

+ 1

a2
2

= a2
1 + a2

2

a2
1a2

2

. (12.32)

We can express the critical growth rate in terms of μ2/σ 2, as we did in the previous
two examples, namely (Lutscher et al. 2010)

R∗ = (a1 − a2)
2

4a1|a2| = 1 − μ2

2σ 2

1 − μ2

σ 2

. (12.33)

Figure 12.4 shows the three different kernels (left plot) and compares the
threshold values R∗ for upstream invasion (right plot). The dimensionless quantity
μ2/σ 2 corresponds to the inverse squared of the coefficient of variation. The
threshold values R∗ in the case of the shifted Gaussian and Laplace kernels differ
only a little, but the upstream invasion condition for the asymmetric Laplace kernel
is substantially more restrictive.

For the asymmetric Laplace kernel, we can relate the critical threshold for
upstream invasion to the critical patch-size for persistence on a bounded domain.
The calculation of the critical patch-size for the asymmetric Laplace kernel follows
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Fig. 12.4 Left: Illustrating the three kernels with movement bias. Parameter values are μ = 2/3
and σ 2 = 10/9. Right: Threshold value R∗ for upstream invasion according to (12.25) as a
function of μ2/σ 2. Plots adapted from Lutscher et al. (2010).

the same steps as for the symmetric kernel in Chap. 3 (Lutscher et al. 2005). We
obtain the general relation between parameters and eigenvalues in (9.30). Setting
λ = 1 in that relation, we obtain an explicit expression for the critical patch-size by
solving for L as

L∗ =
4 arctan

(
1
/√

4Ra1|a2|
(a1−a2)

2 − 1
)

(a1 − a2)/
√

4Ra1|a2|
(a1−a2)

2 − 1
= 4 arctan

(
1
/√

RM(s∗) − 1
)

(a1 − a2)/
√

RM(s∗) − 1
. (12.34)

The critical patch-size approaches infinity as R approaches 1/M(s∗). In other
words, the population can spread upstream if and only if there is a finite critical
patch-size. This observation and similar results for continuous-time models can be
found in Lutscher et al. (2005, 2010). Pringle et al. (2009) study an extension to
structured populations and non-Gaussian kernels, such as the double Gaussian and
others.

Lutscher et al. (2010) also study how various assumptions of movement patterns
in streams relate to different shapes of dispersal kernels for stream insects with
winged adult stages. For example, if larvae simply drift downstream and settle at
a constant rate, their movement is described by a (one-sided) negative exponential
kernel, as in (11.8). Once they emerge as adults and fly to lay eggs, oviposition could
be modeled by a Laplace kernel. The resulting kernel from one generation to the next
is then the convolution of these two kernels. Lutscher et al. (2010) discuss several
more possible patterns. In all cases, the resulting kernel between generations is a
convolution of two or more kernels that describe each dispersal stage. The critical
patch-size for these kernels cannot be calculated explicitly. The threshold value R∗,
on the other hand, can be computed relatively easily since the moment-generating
function of the kernel is simply the product of the moment-generating functions
of each stage. Vasilyeva et al. (2016) derive and analyze a mixed continuous-
discrete model for stream populations that can incorporate more detail (in terms of
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population dynamics or even stream characteristics). Its linearization at zero reduces
to a linear IDE as studied here.

Kanary et al. (2014) apply and extend these ideas to the spread of the European
green crab (Carcinus maenas L.) along the Atlantic coast of Canada; see Sect. 12.4.
In particular, they study how the interaction between two different genotypes,
introduced in two different locations, would shape the relative densities of the two.
Marculis and Lui (2015) formulate an age-structured model for the same species
and study how a parasite as a potential biological control agent could spread in these
crabs. Gagnon et al. (2015) derive a much more complex model for the dispersal of
the green algae Codium fragile along the east coast of North America. They simulate
an individual-based model that includes buoyancy, oxygen levels, daylight, water
drift, and other aspects to estimate a dispersal kernel and then calculate the spread
rates in different directions.

Stover et al. (2014) explore how population heterogeneity with respect to
dispersal behavior affects population persistence and spread in the face of advection.
We briefly touch on these questions in Sect. 12.5. Lewis et al. (2018) study the
effect of biased dispersal on the dynamics of evolutionarily neutral variation in a
population; see also Chap. 17.

12.3 Moving-Habitat Models

Most species have a preferred or an optimal temperature range within which
they can successfully survive and reproduce. When individuals are exposed to
temperatures outside that range, higher or lower, they suffer increased mortality
and decreased reproductive output. Climate change scenarios predict that the spatial
locations of a given mean annual temperature will shift toward higher altitude or
latitude. To remain within their optimal temperature range, individuals will have to
move in space and follow their shifting habitats. Zhou and Kot (2011) formulate
the first IDE model to explore which combination of dispersal ability and growth
function would allow a population to track their optimal habitat conditions and
persist in the face of climate change. They parameterize their model for Fender’s
blue butterfly (I. icarioides fenderi). We present some of their ideas and results here.

We assume that the suitable habitat is an interval of length L that moves to
the right at some constant speed c > 0. Inside this habitat, the population grows
according to some growth function F ; outside the habitat, the environment is hostile.
Individuals move according to some dispersal kernel K = K(x − y). The equation
for the population density is (Zhou and Kot 2011)

Nt+1(x) =
∫ L/2+ct

−L/2+ct

K(x − y)F (Nt (y))dy . (12.35)
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Fig. 12.5 A population in a moving habitat may persist if the habitat moves slowly (c = 0.1, left
plot) or go extinct if the habitat moves fast (c = 0.18, right plot), according to model (12.35) with
Beverton–Holt growth function (2.13) and Gaussian dispersal kernel. Parameters are R = 1.7,
K = 50, σ 2 = 0.25, and L = 1. The suitable habitat is initially centered at x = 0. The initial
density is a Gaussian, also centered at x = 0. Densities are plotted, alternating between solid and
dashed curves, every 30 generations.

Since the habitat is moving, we cannot expect a steady-state solution. Instead, the
simulations in Fig. 12.5 show two scenarios, depending on parameter values. For
small values of c, the initial population distribution moves to the right, following
the suitable habitat, and seems to stabilize at a “traveling pulse” solution (left plot).
For large values of c, the initial distribution also travels to the right but continually
decreases in height and seems to approach zero (right plot). Hence, we expect there
to be some critical speed for habitat shift, below which the population can track its
optimal range and above which it cannot. We aim to find this threshold.

A (rightward) traveling pulse with speed c > 0 is a solution of the form

Nt(x) = P(x − ct) , (12.36)

with the property that P(±∞) = 0. Substituting this pulse solution into the IDE
above, we find the equation

P(x − c(t + 1)) =
∫ L/2+ct

−L/2+ct

K(x − y)F (P (y − ct))dy . (12.37)

The change of variables x̄ = x − c(t + 1) and ȳ = y − ct results in

P(x̄) =
∫ L/2

−L/2
K(x̄ + c − ȳ)F (P (ȳ))dȳ . (12.38)

The suitable habitat is now fixed in time at [−L/2, L/2]. Instead, the dispersal
kernel is shifted by the term +c in its argument. The situation is reminiscent of
and closely related to the model with biased dispersal in the previous section. We
want to find conditions for which (12.38) has a stable positive solution. Since this
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problem is a steady-state problem, we apply the theory from Chap. 4. We assume
that growth function F is monotone and has no Allee effect, linearize at the trivial
steady state, and obtain the existence of a stable positive steady state if the trivial
state is unstable.

The eigenvalue problem for the stability of the trivial state is

λφ(x̄) = R

∫ L/2

−L/2
K(x̄ − (ȳ − c))φ(ȳ)dȳ , (12.39)

where R = F ′(0). Unfortunately, the reduction of the integral equation with the
Laplace kernel to a differential equation (see Chap. 3) does not carry over to the
situation here when c �= 0 since no appropriate boundary conditions can be derived.
Therefore, most studies of moving-habitat models are based on numerical evaluation
or analytical approximation of the eigenvalue. An exception is the separable cosine
kernel from (3.24).

We write the cosine kernel in the form

K(x) = 1

4�
cos
( x

2�

)
for |x| ≤ �π (12.40)

and K(x) = 0 for |x| > �π. To ensure that the kernel is positive on the domain of
integration, we require

�π > L and 0 < c < �π − L . (12.41)

Just as in (3.24), this kernel is separable, and the integral eigenvalue problem (12.39)
turns into an eigenvalue problem of the 2 × 2 matrix (compare (3.29))

R

4

⎡
⎣
[

L
2�

+ sin
(

L
2�

)]
cos
(

c
2�

) [
L
2�

− sin
(

L
2�

)]
sin
(

c
2�

)
[− L

2�
− sin

(
L
2�

)]
sin
(

c
2�

) [
L
2�

− sin
(

L
2�

)]
cos
(

c
2�

)
⎤
⎦ . (12.42)

The stability boundary of the trivial state of IDE (12.38) is given when the dominant
eigenvalue of the linearization (12.39) equals one. Substituting λ = 1 into the
characteristic polynomial of the above matrix gives us the defining equation for
the stability boundary as

1 − RL

4�
cos
( c

2�

)
+ R2

16

(
L2

4�2 − sin2
(

L

2�

))
= 0 . (12.43)

To ensure that λ = 1 is indeed the dominant eigenvalue of the matrix, we require

R2

16

(
L2

4�2 − sin2
(

L

2�

))
< 1 . (12.44)
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Fig. 12.6 Critical shift speed
according to (12.45) for the
cosine kernel. The population
can persist in the moving
habitat if the shift speed is
slower than the critical speed.
The parameter is � = 1.
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We can solve this equation for speed c and obtain the critical shift speed

c∗ = L

2�
cos−1

⎛
⎝16 − R2

(
L2

4�2 − sin
(

L
2�

))

8R L
2�

⎞
⎠ . (12.45)

This formula is valid as long as the restrictions in (12.41) and (12.44) hold. If
the habitat shifts faster than this critical speed, the population will go extinct.
If the habitat shifts more slowly, then the population will persist and a positive
traveling pulse will form. The critical speed in (12.45) depends on two quantities:
the population growth rate, R, and a measure of the size of the habitat relative to
the dispersal distance, L/�. Figure 12.6 shows that the critical shift speed increases
with each of these parameters.

For kernels where no explicit calculation of the eigenvalue is possible, Zhou
and Kot (2013) present several ways to approximate the dominant eigenvalue in
(12.39) and find corresponding approximations of the critical shift speed. Kot and
Phillips (2015) apply results on eigenvalue approximation to derive bounds for
spreading speeds in moving-habitat models. Rinnan (2017) uses some of their
ideas, including symmetrization, to calculate approximate persistence conditions;
see Chap. 9. Following Zhou and Kot (2013), we present one approach based on
polynomial approximation.

If we expand a dispersal kernel in terms of the (orthogonal) Legendre polynomi-
als on the interval [−L/2, L/2], we obtain an infinite matrix eigenvalue problem;
see Chap. 3. We obtain approximations by truncating this infinite matrix at some
finite number. Since the lowest-order Legendre polynomial is a constant, truncating
at the lowest order is equivalent to the dispersal success approximation of the
eigenvalue in (9.13), i.e.,

λ ≈ R

L

∫ L/2

−L/2

∫ L/2

−L/2
K(x̄ + c − ȳ)dȳdx̄ . (12.46)

We now assume that the kernel is differentiable and expand the term under the
integral to second order to find
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λ ≈ R

L

∫ L/2

−L/2

∫ L/2

−L/2

(
K(x̄) + K ′(x̄)(c − ȳ) + K ′′(x̄)

2
(c − ȳ)2

)
dȳdx̄ .

(12.47)
The integrals can be evaluated particularly easily if the kernel is symmetric, i.e.,
K(x) = K(−x). We find

λ ≈ R

∫ L/2

−L/2
K(x̄)dx̄ + RK ′(L/2)

(
c2L + L2

12

)
. (12.48)

When the kernel is not symmetric, the expression is more complicated but still
quadratic in c (Zhou and Kot 2013). We can solve for an approximation of the
critical shift speed, c∗, by setting λ = 1. We find

(c∗)2 ≈
(

1

R
−
∫ L/2

−L/2
K(x̄)dx̄

)(
K ′
(

L

2

))−1

− L2

12
. (12.49)

There are two critical shift speeds, one in the positive and one in the negative
direction. The direction in which the habitat shifts does not matter. The two have
the same magnitude since we assumed the kernel to be symmetric.

The Gaussian kernel with zero mean is differentiable and symmetric and hence
satisfies the assumptions. The above formula applied to the Gaussian kernel with
variance σ 2 gives the expression

c∗ ≈ ±
√

2σ 3
√

2π
[
R erf

(√
2L/(4σ)

)− 1
]

R L exp(−L2/(8σ 2))
− L2

12
, (12.50)

where erf(·) denotes the error function. For the parameters in Fig. 12.5, i.e., L = 1,
R = 1.7, and σ 2 = 0.25, we find c∗ ≈ ±0.12, which is between the faster and the
slower speed chosen in the figure.

Moving-habitat models have also been studied in the framework of reaction–
diffusion equations, even prior to the work in IDEs. We refer to the references
in Zhou and Kot (2011) and Harsch et al. (2017) for this literature. Here, we
concentrate on IDEs. Fuller et al. (2015) include harvesting in the model by
Zhou and Kot (2011) and explore how the combination of a shifting climate
and exploitation by humans affects population dynamics. They parameterize their
model for black rockfish (Sebastes melanops). Harsch et al. (2014) extend many
of these ideas to species with a more complex life cycle; see Chap. 13. They
obtain systems of IDEs and study the resulting eigenvalue problems for persistence
numerically. They parameterize models for four different plant species and calculate
the sensitivity and elasticity of the critical speed to model parameters. Bouhours and
Lewis (2016) study population persistence in a moving-habitat model where habitat
size and population growth rate vary stochastically in time; see Chap. 16. Santini
et al. (2016) ask how well terrestrial mammals might be able to track climate.
They generate virtual species with realistic life histories and compare the stage-
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structured IDE models from Harsch et al. (2014) with individual-based simulation
models. Lewis et al. (2018) study how a moving habitat affects the dynamics of
neutral genetic variation within a population. Li et al. (2016a) consider a different
spatial setting for a moving habitat. Instead of a single bounded suitable patch with
abrupt edges, they assume a gradient-like environment, i.e., where habitat quality
is a nondecreasing function of space. We discuss their approach in more detail in
Chap. 15. Harsch et al. (2017) review IDE and reaction–diffusion models for moving
habitats in the context of species management and give various examples of how to
incorporate additional mechanisms, such as a shifting phenology, into IDE models
for population dynamics in moving habitats.

12.4 Sessile Stages

Many organisms that possess clearly distinct growth and dispersal phases in their
life cycle, and hence could be modeled appropriately by an IDE, exhibit overlapping
generations, so that the simple model formulation in (2.1) may not be appropriate.
We can still model the dynamics of such populations by IDEs if we write a
system of equations, one for each stage in the life cycle; see Chap. 13. Here, we
present a simpler scenario where the dynamics of a population can be captured
by a relatively small extension of IDE (2.1), namely by including a nondispersing
(sessile) component. We begin with a brief overview of several examples from the
literature and then concentrate the analysis on a few select questions.

Annual Plants with Seed Bank

Even simple annual plants typically have a seed bank, where seeds may remain
dormant and sessile in the soil for a number of years. Seeds disperse only in the
year when they are produced by the plant. We denote by Nt(x) the density of
seeds in the soil at the beginning of the growing season in year t. Seeds remain
dormant with probability 1 − g and germinate with probability g. Seeds that did not
germinate survive until the next growing season with probability s. Then the seed
density changes from year to year according to the equation

Nt+1(x) = s(1 − g)Nt (x) +
∫

K(x, y)F (gNt (y))dy , (12.51)

where F(N) denotes the number of viable seeds produced by N seedlings. Similar
and also much more elaborate IDEs for plants with seed banks have been formulated
and studied from various perspectives. Allen et al. (1996) derive several models
for a single and two competing species with nondifferentiable updating function.
Latore et al. (1998) consider a structured seed bank by keeping track of when seeds
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were produced. Mistro et al. (2005b) consider seeds that can survive at most one
year and formulate the corresponding model as a delayed IDE, where the density of
plants in year t + 1 depends on their density in years t and t − 1. Li (2012) studies
traveling waves in model (12.51), whereas Meyer (2012) and Meyer and Li (2013)
generalize these results to an infinite system for age classes of seeds. Lutscher and
Van Minh (2013) formulate a similar model and reduce it to two stages under several
simplifying assumptions. Dewhirst and Lutscher (2009) study a model similar to
(12.51) for trees in a heterogeneous landscape, where seeds that fall too close to the
parent tree are considered nondispersing.

Aquatic Organisms

Many aquatic organisms, such as mussels and barnacles, have sessile adult stages
that survive for many years and distribute their offspring in space. In addition, the
dispersal distances of adults of many other species, such as crabs, are negligible
compared to those of their offspring. Kanary et al. (2014) formulate a model for the
density of European green crab along the coast of Nova Scotia as

Nt+1(x) = p(Nt(x))Nt (x)+ s(Nt (x))

∫
K(x −y)R(Nt (y))Nt (y)dy , (12.52)

where p, s, and R denote the (potentially density-dependent) probability of adult
survival, probability of juvenile settling, and adult per capita reproduction, respec-
tively. The dispersal term contains the local conditions at the locations of departure
and arrival of the dispersal process. Kanary et al. (2014) consider a single and
two competing species. They determine conditions for spread against the dominant
current, as well as potential outcomes of competition. A corresponding stage-
structured model for the same species by Marculis and Lui (2015) tracks mobile
juveniles and sessile adults as well as a parasite infection. Gharouni et al. (2017)
apply the same ideas but include stochastic variation in the IDE. Britton-Simmons
and Abbott (2008) formulate and parameterize a model for the invasive brown algae
Sargassum muticum. These organisms usually remain attached to the substratum,
but their propagules detach and float to new locations. The authors couple the
equation for the adult density with a stochastic equation for the availability of free
space created by grazers in the system.

Birds and Mammals

In many bird and mammal species, juveniles stay with their parents until maturation,
and spatial dispersal is often driven by crowding effects in the population. Veit and
Lewis (1996) study how house finches spread westward after being released in the
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New York area. Juveniles mature within the first year; both juveniles and adults
may remain sessile or may disperse. The equation for the total density of birds in
the spring of year t is

Nt+1(x) = sa(1 − pa)Nt (x) + sapa

∫
Ka(x, y)Nt (y)dy

+ (1 − pj )F (Nt (x)) + pj

∫
Kj(x, y)F (Nt (y))dy .

(12.53)

The first line corresponds to adults that survive with probability sa and disperse
with probability pa. The second line tracks juveniles that disperse with probability
pj . Both probabilities are density dependent. Adults produce juveniles according
to growth function F. Veit and Lewis (1996) explore the consequences of an Allee
effect on spread rates; see Sect. 12.6. Some analytical aspects of this model in the
absence of an Allee effect are studied by Le et al. (2011), in particular the existence
of monotone, continuous traveling waves.

Lutscher (2008) formulates a toy model, reminiscent of the models above, to
study the effect of population density on the probability of dispersal as

Nt+1(x) = gF(Nt (x)) +
∫

K(x, y)(1 − g)F (Nt (y))dy , (12.54)

where g = g(aF (N)) is the probability of remaining sedentary. It is assumed to be
a decreasing function of population density. Parameter a measures how sensitive the
dispersal probability is to population density. The case of constant g is analyzed in
Volkov and Lui (2007), and further numerical simulations for the density-dependent
case can be found in Leo (2007).

Critical Patch-Size

The analysis of a critical patch-size in the presence of nondispersing states has
received only marginal attention (Lutscher 2008). Let us consider Eq. (12.54) with
constant g on a bounded set Ω. Linearizing the equation at the trivial solution leads
to the eigenvalue problem

λφ(x) = Qgφ(x) = gRφ(x) + (1 − g)R

∫
Ω

K(x, y)φ(y)dy , (12.55)

with R = F ′(0).

Operator Qg is not compact for g > 0, so the existence of a dominant eigenvalue
is not guaranteed by the previous theory. In the simple case, when R is constant in
space, the problem is equivalent to
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νφ(x) =
∫

Ω

K(x, y)φ(y)dy , ν = λ − gR

R(1 − g)
. (12.56)

This equation is of the form that we encountered in Chap. 3. Under the standard
assumptions on K , there is a dominant eigenvalue 0 < ν ≤ 1 with positive
eigenfunction. Accordingly, we obtain λ as

λ = νR(1 − g) + Rg . (12.57)

Clearly, λ is an increasing function of g. As the propensity to remain sedentary
increases, the likelihood of the population to persist also increases since dispersal
carries a risk of loss but remaining sedentary does not. The situation can change
when habitat quality varies temporally so that remaining sedentary can be risky
(Lutscher 2008).

In a much more general setting, Jin et al. (2016) consider questions of population
extinction and persistence in a discrete dynamical system on some Banach space
if the next-generation operator can be written as a sum of a linear contraction
and a compact operator. They show that persistence is governed by the dominant
eigenvalue of an appropriately defined operator.

The Speed of Spatial Spread

The analysis of spreading speeds and traveling waves in the presence of sessile
stages has received considerably more attention than the critical patch-size problem.
The challenge in analyzing equations with immobile individuals is that the resulting
next-generation operator fails to be compact. While the results of Weinberger (1982)
on the existence of a spreading speed still hold, proving the existence of a traveling
front requires additional arguments but can be done (Allen et al. 1996; Volkov and
Lui 2007; Le et al. 2011; Lutscher and Van Minh 2013; Li 2012; Meyer 2012; Meyer
and Li 2013; Le and van Nguyen 2017). In special cases, the profile of a traveling
front can be computed explicitly (Allen et al. 1996; Lutscher 2008).

One surprising and biologically relevant aspect is the dependence of the spread-
ing speed on parameter g, the probability of not dispersing. We study this depen-
dence under the usual conditions that (i) there is no Allee effect and (ii) the dispersal
kernel is exponentially bounded and of the form K(x, y) = K̃(x − y) with
K̃(x) = K̃(−x). Then the spreading speed of model (12.54) with constant g is
given by formula (5.17) (Weinberger 1982). To emphasize the dependence on g, we
write

ĉ(g) = inf
s>0

1

s
ln
(
R[(1 − g)M(s) + g]) , (12.58)
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where M is the moment-generating function of K̃. The following lemma is an
extension of Lemma 3.1 from Lutscher (2008).

Lemma 12.1 The spreading speed, ĉ, in (12.58) is monotonically decreasing in g,
and ĉ(1) = 0. If M(s) is defined on all of R (e.g., the Gaussian kernel), then ĉ is
continuous at g = 1. If lims→a M(s) = ∞ for some a < ∞ (e.g., the Laplace
kernel), then limg→1 ĉ(g) = ln(R)/a > 0. In the latter case, ĉ is not continuous at
g = 1.

Proof Since K̃ is even, we have M(s) > 1 for s �= 0. Since the expression inside the
logarithm in (12.58) is a decreasing function of g, so is ĉ. The statement ĉ(1) = 0
is obvious since lims→∞ 1/s = 0. Biologically, this statement simply means that
without dispersal, the population does not spread.

Now suppose that the moment-generating function of some kernel is defined and
continuous on all of R. Pick any small ε > 0. Choose ŝ such that ln(R)/ŝ < ε/2.

By continuity of the expression in square brackets, there is some g < 1 such that

1

ŝ
ln
(
R[(1 − g)M(ŝ) + g]) < ε. (12.59)

In particular, then, ĉ(g) < ε. Hence, ĉ approaches zero as g → 1.

Next, suppose that the moment-generating function is defined only for s ∈
(−a, a) and M(s) → ∞ as s → a. The infimum in (12.58) becomes a minimum
over 0 < s < a. Clearly, ĉ(g) ≥ ln(R)/a. The function s �→ ln(R)/s is
continuous and decreasing for s > 0. For any ε > 0, there is some ŝ < a such
that ln(R)/ŝ < ln(R)/a + ε. Set s̃ = ŝ+a

2 . Then there is some ε̂ > 0 such that for
g ∈ (1 − ε̂, 1] we have (1 − g)M(s̃) + g < eŝε. Now we calculate

ln
(
R[(1 − g)M(s̃) + g])

s̃
≤

ln
(
Reŝε/2

)

ŝ
<

ln(R)

ŝ
+ ε <

ln(R)

a
+ 2ε. (12.60)

This proves the claim. In particular, ĉ is not continuous at g = 1. ��

12.5 Multiple Dispersal Modes

Some empirical dispersal data exhibit patterns that are difficult to fit with the various
dispersal kernels that we have seen so far. For example, seed trap data for heather
plants reveal that a large fraction of seeds is concentrated near the release point,
while at the same time, a relatively long tail exists (Bullock and Clarke 2000). Fitting
an exponential or inverse power law kernel to the data leads to a concentration near
zero and underestimates the tail. Instead, a linear combination of two exponential
kernels captures both features. Their observation indicates that a (small) fraction of
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seeds dispersed differently from the rest. For example, these seeds may have been
moved long distances by strong but rare winds. Since we know that the behavior
of the tails of the dispersal kernel is crucial to determining the speed of spatial
spread, the question is how big the influence of a small percentage of long-distance
dispersers could be. We explore this question in the context of Reid’s paradox of
rapid tree migration (Clark et al. 1998a). Buckley et al. (2005) employ a mix of a
Gaussian and a Laplace kernel to predict the spread of pine trees (pinus nigra) in
New Zealand. Fort (2007) revisits Reid’s paradox with mixed kernels and calculates
front speeds in one- and two-dimensional models.

Reid’s Paradox of Rapid Tree Migration

In 1899, Clement Reid asked how plants that “merely scatter their seeds” could
have moved northward since the last glacial period to reach their current locations
in northern Britain (Skellam 1951). Oak trees (Quercus), for example, covered a
distance of about 1000 km. Oaks have a very high lifetime fecundity of about R0 =
107 (Clark et al. 1998a), but they also have a generation time of at least 60 years.
With the glacial period between 10,000 and 18,000 years ago, there would be no
more than 300 generations for oaks to move this distance. At a constant speed, these
data result in a speed of c ≈ 3.3 km per generation. If we assume a Gaussian
dispersal kernel with variance σ 2, the spread speed formula c∗ = √

2σ 2 ln(R0)

gives the required variance of

σ 2 = c2

2 ln(R0)
≈ 0.34 km2 (12.61)

or a mean dispersal distance of
√

2/πσ ≈ 0.47 km. Clark et al. (1998b)
empirically find a dispersal distance of 11.8 m for acorns. It is known that some
birds and mammals can transport seeds and fleshy fruit over large distances (several
kilometers) and thereby increase the spread rate, but this long transport is thought
to be very rare. What difference would such rare events make?

To model this situation, we consider a model with two dispersal kernels, K1 and
K2, that correspond to short- and long-distance dispersal, respectively. We denote
by g and 1 − g the probabilities that an organism disperses according to dispersal
kernels K1 and K2, respectively. Reproduction is unaffected by dispersal behavior.
The linear IDE becomes

Nt+1(x) = R

∫
[gK1(x − y) + (1 − g)K2(x − y)]Nt(y)dy . (12.62)

In the special case that K1(x) = δ(x) is the delta distribution, i.e., individuals do not
disperse, we recover the model from the previous section. For simplicity, we assume
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that both kernels are symmetric. The formula for the spreading speed, analogous to
(12.58), is

ĉ(g) = inf
s>0

c(s, g) = inf
s>0

1

s
ln
(
R[gM1(s) + (1 − g)M2(s)]

)
. (12.63)

The following lemma shows that, just as in Lemma 12.1, the spreading speed need
not be continuous at g = 1.

Lemma 12.2 Assume that Ki in (12.62) are even functions, and assume that their
moment-generating functions Mi(s) exist for at least one nonzero value of s. Denote
by ĉ(g) the spreading speed from (12.63) and by s∗ < ∞ the value of s that
minimizes the expression c(s, 1) = ln(RM1(s))/s. If M2(s

∗) is finite, then ĉ(g)

is continuous at g = 1. If M2(s) → ∞ as s → a for a < s∗, then ĉ(g) is not
continuous at g = 1 and limg→1− ĉ(g) = ln(RM1(a))/a.

Proof If M1(s) < M2(s) for all s where M2 exists, then the proof of Lemma 12.1
carries over with small modifications. The first part is even simpler. Suppose at first
that M2(s

∗) is finite. For every ε > 0, there is some δ > 0 such that for g ∈ (1−δ, 1],
we have |c(s∗, g)−ĉ(1)| < ε, since c(s, g) is continuous in g for every fixed s where
c is defined. Hence, limg→1− |ĉ(g) − ĉ(1)| = 0, so that the function is continuous
at g = 1.

If M2(s) ≤ M1(s) for some s, we need a lower bound to prove discontinuity.
Assume that M2(s) → ∞ as s → a < s∗. The infimum in (12.63) becomes
a minimum over (0, a). Note that ln(RM1(s))/s is decreasing on (0, a). For every
small enough ε > 0, the set [ε, a−ε] is compact. Hence, we can choose some δ > 0
such that we have |c(s, g) − c(s, 1)| < ε for all s ∈ [ε, a − ε] and g ∈ (1 − δ, 1].
Since c(s, 1) is decreasing, we have | minε<s<a−ε c(s, g) − c(a − ε, g)| < ε for
g ∈ (1− δ, 1]. As ε → 0, we have δ → 0 and hence limg→1− ĉ(g) = c(a, 1). Since
c(s, 1) is decreasing for a < s < s∗, we have c(a, 1) > c(s∗, 1) = ĉ(1), so the
function is not continuous at g = 1. ��

To apply this result to Reid’s paradox, we assume that K1 represents short-
distance dispersal as a Gaussian kernel with (small) variance σ 2

1 . If all acorns
disperse a short distance (g = 1), we find a speed of ĉ(1) = σ1

√
2 ln(R) that

occurs at s∗ = σ1
√

2 ln(R). Next, we let K2 represent long-distance dispersal as a
Laplace kernel with (large) variance σ 2

2 or parameter a = √
2/σ2. If a < s∗, then

even the tiniest fraction of long-distance dispersers will lead to a jump in the speed;
see Fig. 12.7. For small reproduction (R < e), the variance of the Laplace kernel
has to be larger than that of the Gaussian kernel for the jump in spreading speed at
g = 1 to occur. However, for high reproduction (R > e), it is not even necessary
that the variance be larger. Since the tails of the Laplace kernel naturally decay more
slowly than those of the Gaussian kernel, high reproduction is sufficient to speed up
the invasion considerably.

In a series of papers, Clark and coworkers (Clark 1998; Clark et al. 1998a,b)
carefully demonstrate that data on tree dispersal are consistent with a sufficient
fraction of seeds dispersing sufficiently long distances to explain the inferred spread
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Fig. 12.7 Illustrating
Lemma 12.2. The plot shows
the minimal speed, ĉ(g), of
model (12.62) with R = 1.5
when K1 is the Gaussian
kernel with variance
σ 2 = 0.2 and K2 is either a
Gaussian kernel with σ 2 = 1
(solid) or a Laplace kernel
with σ 2 = 1 (dash-dot) or
σ 2 = 0.4 (dashed).
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rate of trees after the last glacial period in Britain and North America. Their
approach is built around the two-parameter family of dispersal kernels

K(x) = c

2αΓ (1/c)
e−|x/α|c . (12.64)

These kernels are heavy tailed for certain parameter values (c < 1); i.e., they do
not possess a moment-generating function. In particular, their model does not have
an asymptotic spreading speed but accelerating invasions when c < 1. In the next
section, we present one mechanism for how such kernels may arise.

The spreading speed ĉ(g) in (12.63) has another surprising property: it need not
be a monotone function of g, as the following lemma shows.

Lemma 12.3 Assume that Ki in (12.62) are even functions and that their moment-
generating functions Mi(s) exist for at least one nonzero value of s. Denote by c∗

i =
mins>0 ci(s) = mins>0 ln(RMi(s))/s, i = 1, 2, the spreading speeds for g = 1 and
g = 0, respectively, and by s∗

i the argument at the minimum. If M1(s) �= M2(s) for
all s between s∗

1 and s∗
2 , then ĉ(g) is monotone in g. If M1(s̄) = M2(s̄) for some s̄

between s∗
1 and s∗

2 , then ĉ(g) is not monotone in g.

Proof Without loss of generality, we assume c∗
1 ≤ c∗

2 . For fixed s, the function
g �→ gM1(s) + (1 − g)M2(s) is nonincreasing if and only if M1(s) ≤ M2(s).

If M1(s) and M2(s) do not intersect between s∗
1 and s∗

2 , then neither do c1(s) and
c2(s). Since we assumed c∗

1 ≤ c∗
2, we have M1(s) ≤ M2(s) and c1(s) ≤ c2(s) for

all s between s∗
1 and s∗

2 . Function c(s, g) from (12.63) is convex in s for each g.

Since ci(s) are convex functions, the minimum of c(s, g) with respect to s occurs
for some s∗

g between s∗
1 and s∗

2 for each g. Then we have, for g̃ > g,

ĉ(g) = 1

s∗
g

ln
(
R[gM1(s

∗
g) + (1 − g)M2(s

∗
g)])

≥ 1

s∗
g

ln
(
R[g̃M1(s

∗
g) + (1 − g̃)M2(s

∗
g)]) ≥ ĉ(g̃). (12.65)

Hence, ĉ is nonincreasing.
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Fig. 12.8 Illustrating Lemma 12.3. The left plot shows the dispersion relations of the top-hat
kernel (dashed) and the Laplace kernel (dash-dot), as well as c(s) for the mixed kernel (solid).
Stars on the curves indicate the minima. The right plot shows ĉ(g) according to formula (12.63).
Parameters are β = 2.9 for the top-hat kernel, a = 1 for the Laplace kernel, g = 0.5, and R = 1.8.

Next, we assume that there exists some s̄ between s∗
1 and s∗

2 such that M1(s̄) =
M2(s̄). We necessarily also have c1(s̄) = c2(s̄) = c(s̄, g) for all g ∈ [0, 1]. Since
ci are convex functions with a unique minimum at s∗

i and since s̄ is between s∗
1

and s∗
2 , we must have c(s̄, g) > min(c∗

1, c∗
2) and c′

1(s̄)c
′
2(s̄) < 0. Therefore, the

derivative ∂c
∂s

(s̄, g) changes sign for g ∈ [0, 1]. By continuity, there is some ḡ such
that ∂c

∂s
(s̄, ḡ) = 0. Since for every fixed g, c(s, g) is a convex function with respect

to s, the point c(s̄, ḡ) must be the minimum. Since c(s̄, ḡ) > min(ĉ(0), ĉ(1)), we
see that ĉ(g) cannot be monotone. ��

In Fig. 12.8, we illustrate a nonmonotone curve ĉ(g) that arises when we choose
the top-hat and the Laplace kernel; see Table 10.1. The left plot shows how the
dispersion relations intersect between their minima. The right plot illustrates the
hump-shaped function ĉ(g).

Continuously Distributed Dispersal Behavior

The previous approach of combining two dispersal behaviors generalizes to a
continuous distribution of dispersal behaviors. For example, wind-dispersed seeds
experience different wind speeds and turbulences, depending on when they are
released. This situation can lead to heavy-tailed kernels (Clark et al. 1999).

We assume that the dispersal distance r (in two space dimensions) for each
individual is distributed according to a Gaussian distribution with parameter α as

f (r|α) = 1

πα2 e−r2/α2
. (12.66)
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If we denote by f̃ (α) the distribution of dispersal parameter α in the population,
then the dispersal kernel for the population is given by

K(r) =
∫

f (r|α)f̃ (α)dα . (12.67)

We write α̃ = L/α, where L is a length-scale parameter. If we assume that α̃ is
gamma-distributed as

f̃ (α̃) = α̃p−1e−α̃

Γ (p)
, (12.68)

we can explicitly evaluate the integral above and obtain (Clark et al. 1999)

K(r) = p

πL
(

1 + r2

L

)p+1 . (12.69)

This distribution tends to the Gaussian kernel as p → ∞ and to the Cauchy kernel
as p → 0.

The procedure of integrating an individual dispersal kernel over the distribution
of the dispersal parameter in the population is used by several other researchers.
Yamamura (2002) considers Gaussian dispersal with gamma-distributed settling
times in a two-dimensional environment and finds accelerating invasions. Skarpaas
and Shea (2007) consider the spread of wind-dispersed invasive weeds. They use
the WALD model (7.61) for dispersal under fixed conditions and integrate over
distributions of the physical parameters in the model to obtain a seasonal dispersal
kernel. Petrovskii and Morozov (2009) use a diffusion equation for individual
movement, resulting in a Gaussian kernel for individuals, and consider normally
distributed diffusion coefficients in the population, which leads to heavy-tailed
dispersal kernels. Stover et al. (2014) consider similar questions from the point of
view of dispersal heterogeneity: how do certain distributions of dispersal parameters
in the population affect population spread rate and critical reproduction rate in the
face of advection; see Sect. 12.2. They give expressions of the moments of the
dispersal kernel in terms of moments with which the dispersal trait is distributed in
the population. Among other things, they find that dispersal heterogeneity increases
spread rates.

12.6 Allee Effects

There are relatively few application studies of IDEs with Allee effect. Those that
exist are largely based on numerical simulations since analytical calculations are
typically impossible. In this section, we highlight some modeling aspects, analytical
results where possible, and a few numerical outcomes.
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Pair-Formation Model for an Allee Effect

Veit and Lewis (1996) study the spread of house finches in eastern North America
since 1940. In particular, they address one curious observation of this invasion:
during the first 10–20 years, the range radius expanded extremely slowly. Over the
next 10 or so years, the speed of expansion picked up, and since about 1975, the
spread has been quite fast; see Fig. 2A in Veit and Lewis (1996). In Chap. 5, we saw
that the speed of a spreading front approaches its asymptotic value fairly quickly;
see, e.g., Fig. 5.3. Why would it take so long in the case of the house finches?

Veit and Lewis (1996) argue that two factors are crucial in this slow initial
spread: an Allee effect and a density-dependent dispersal probability. They use a
mechanistic pair-formation model, similar to a chemical reaction, where one male
and one female form a pair according to the law of mass action. We use τ to denote
the continuous time variable during the breeding season. The equations for the male
(m) and female (f ) unpaired birds and the pairs (p) for the reaction m + f

ν−→ p

are

ṁ = −νmf , ḟ = −νmf , and ṗ = νmf , (12.70)

where the dot denotes the derivative with respect to τ. We denote the density of
birds at the beginning of the breeding season by N and assume a 1:1 sex ratio. Then
m(0) = f (0) = N/2 and p(0) = 0. Hence, we have m(τ) = f (τ) for all τ. We
simplify and write n = m + f for the total number of unpaired birds. Then the
equations become

ṅ = −ν

2
n2 and ṗ = −1

2
ṅ . (12.71)

Their solutions are

n(τ) = N

1 + ντ
2 N

and p(τ) = N2

4
ντ

+ 2N
. (12.72)

Only pairs that find an appropriate nesting site can breed. Veit and Lewis (1996)
choose (1 + p/p̄)−1 as the probability of finding a nesting site, where p̄ denotes
the pair density that leads to a 50% probability. If each breeding pair produces on
average c offspring, the total number of offspring produced from N individuals is

F(N) = cp

1 + p/p̄
= cN2

4
ντ∗ + 2N + N2/p̄

, (12.73)

where τ ∗ is the length of the breeding season.
To complete their model, Veit and Lewis (1996) assume that newborn birds

become mature at the end of their first year, and that adults and juveniles have
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Fig. 12.9 Illustration of the house finch model (12.53) by Veit and Lewis (1996). Left: The
nonspatial updating function Nt+1 = sNt +F(Nt ) with F as in (12.73). Right: The front location
of an invasion for different lengths of the breeding season. Parameters are c = 1.5, s = 0.67,
p̄ = 1.5, and ν = 1 and τ ∗ = 16 (dashed), τ ∗ = 26.6 (dash-dot), and τ ∗ = 80 (solid). The kernel
parameters are a = 0.47 and b = 41 for juveniles and a = 0.86 and b = 77 for adults. We chose
N∗ = 10 and tracked the level set where Nt(xt ) = 0.1.

a density-dependent probability of dispersal, given by pA(N) = pJ (N) =
min(N/N∗, 1) for some threshold density N∗. Their final model is the one in
(12.53) with growth function F in (12.73). They choose the modified Weibull kernel

K = a

2 b Γ (1/a)
exp
(
−
(x

b

)a)
, (12.74)

with different parameters for juveniles and adults. They estimate model parameters
from data and show that the rate of range expansion is close to zero because
bird densities need to build up in the first years after introduction. Then the rate
accelerates; see Fig. 12.9 here and Fig. 8A in Veit and Lewis (1996). If either of the
two components, Allee effect and density-dependent dispersal, is dropped from the
model, this accelerating effect is not present or at least not strong enough to provide
a good fit to the data. We note that the modified Weibull kernel with the parameter
estimates is not exponentially bounded, since parameters a for juveniles and adults
are both less than one. Hence, we cannot expect a constant speed of spread.

The Timing of Mate Finding and Dispersal

Hurford et al. (2006) also consider mate finding as a mechanism that can generate
a (component) Allee effect. They ask how the timing of mate finding relative to
dispersal affects the spread rate of a population. Their work is inspired by the
observation that wolves (Canis lupus) recolonized the greater Yellowstone area
fairly slowly. Slower than expected spread rates can indicate an Allee effect. Since
population density is low at the front of an invasion, mate finding could have a
particularly strong effect there. Trying to find a mate after dispersing even farther
ahead of the front could be harder than before dispersing.



188 12 Applications

Hurford et al. (2006) keep the population dynamics aspects of their model fairly
simple and concentrate on mate finding. They write the equation for the total
population as

Nt+1(x) = F(Nt(x)) + Dt(x) , (12.75)

where F describes the growth of the local density of established, nondispersing
individuals and Dt the density of new “breeding units” that establish after dispersal.
They assume that individuals disperse only if the local density reaches some critical
threshold, Nc, and that local population density will not decline below Nc once it has
reached this threshold. We assume density-independent growth below this threshold
and choose the local growth function as F(N) = min(RN,Nc).

The region where dispersers are produced is Ωt = {x | Nt(x) ≥ Nc}. We denote
the density of dispersers produced at y ∈ Ωt by Gt(y). Within a (relatively small)
local “search area” φ, the total density of dispersers is approximately φGt(y). Under
the assumption of a 1:1 sex ratio, the number of pairs formed locally before dispersal
is ψφG2

t /2, where ψ is the probability of pair formation. Pairs disperse together
according to some dispersal kernel K. The density of new breeding units is then

Dt(x) = σψ
φ

2

∫
Ωt

G2
t (y)K(x − y)dy , (12.76)

where σ is the average number of wolves in a newly formed pack.
Alternatively, if wolves disperse as individuals and form breeding pairs after

dispersal, analogous considerations lead to the term

Dt(x) = σψ
φ

2

(∫
Ωt

Gt (y)K(x − y)dy

)2

. (12.77)

The model becomes analytically tractable if we assume that the number of dispersers
produced is a constant (γ ) whenever N ≥ Nc and if we choose the Laplace kernel.
When mate finding occurs before dispersal, the complete model reads

Nt+1(x) = rNt (x) + A

∫
Ωt

a

2
e−a|x−y|dy , with A = σψφγ 2/2 . (12.78)

This model has a particular class of solutions for which one can explicitly calculate
the speed of spread. First, we assume that the region x ≤ 0 is populated by wolves
at threshold density levels and that the region x > 0 is empty, i.e., N0 = Ncχ(−∞,0],
where χ is the characteristic function. Then we calculate N1 = A exp(−ax)/2 for
x > 0. Next, we assume that at time t , we have

{
Nt(x) ≥ Nc , x < xt ,

Nt (x) = Nce−a(x−xt ) , x ≥ xt .
(12.79)



12.6 Allee Effects 189

Fig. 12.10 Illustration of the
invasion front (12.79) in
model (12.78). The front
advances by the distance
calculated in (12.81) per time
step. Behind the front, we
only plot the critical density,
Nc.
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In particular, we have Ωt = (−∞, xt ]. Then we calculate the next generation as

{
Nt+1(x) ≥ Nc , x < xt ,

Nt+1(x) = (RNc + A/2) e−a(x−xt ) , x ≥ xt .
(12.80)

In particular, we have Ωt+1 = (−∞, xt+1] for some xt+1, and Nt+1 decays
exponentially for x > xt+1 with the same rate as Nt . Hence, the invading front
has just been shifted by xt+1 − xt ; see Fig. 12.10.

We can calculate the speed explicitly from the relation Nt+1(xt+1) = Nc. The
expression is

xt+1 − xt = 1

a
ln

(
R + A

2Nc

)
. (12.81)

Corresponding calculations for the model in which pair formation occurs after
dispersal reveal that the invasion front does indeed spread more slowly under that
scenario (Hurford et al. 2006).

Minimal Founding Population Size

Dispersal typically decreases the peaks of a given population density. When the
growth function has a strong Allee effect, this decrease could push the population
density below the Allee threshold so that the population will decline in subsequent
generations, even when the initial population density was above the Allee threshold
at some location; see, e.g., Fig. 1 in Lutscher and Petrovskii (2008) or Fig. 2
in Goodsman and Lewis (2016). This effect is somewhat similar to but also
significantly different from the mechanism behind the critical patch-size in Chap. 3.
In both cases, dispersal moves individuals from locations where the population
grows to locations where it declines. In the case of the critical patch-size, population
growth and decline are determined by the local habitat quality inside versus outside
the suitable patch. In the case of the Allee effect, they are determined by whether
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the local population density is above or below the Allee threshold. Just like there
is a minimal size of suitable habitat for a population without an Allee effect to
persist, there is a minimal size of the initial population density for a population with
a strong Allee effect to persist. Goodsman and Lewis (2016) present a simple model
for a strong Allee effect and derive an explicit formula for this minimal founding
population size. We present some of their ideas here.

We choose the power function F(N) = RNγ with γ > 1 to describe population
growth. This function induces a strong Allee effect since F(N) < N for 0 < N <

Na with Allee threshold

Na =
(

1

R

) 1
γ−1

. (12.82)

We have F(Na) = Na and F(N) > N for N > Na. The zero state is locally stable;
the Allee threshold state is unstable. There is no stable positive state. As long as
we are only interested in whether the population will grow and persist or decline
and become extinct, we do not need there to be a positive stable state. (We need to
assume, however, that there is no overcompensation; see Schreiber 2003.) The IDE

Nt+1(x) = R

∫ ∞

−∞
K(x − y)[Nt(y)]γ dy (12.83)

with localized initial condition and Gaussian dispersal kernel can be solved
explicitly (Goodsman and Lewis 2016). We assume that an initial population of n0
individuals starts dispersing from x = 0 according to a Gaussian kernel, G(x; σ 2),
with variance σ 2 and mean zero. Then the first-generation density is

N1(x) = n0G(x, σ 2) . (12.84)

The expression for the second generation,

N2(x) = RN
γ

0 G(x, σ 2)γ ∗ G(x, σ 2) , (12.85)

can be simplified since the power of a Gaussian distribution is again a Gaussian
distribution and the convolution of two Gaussian distributions is again a Gaussian.
We find

G(x, σ 2)γ = 1
√

γ (
√

2πσ 2)γ−1
G(x, σ 2/γ ) , (12.86)

and therefore

N2(x) = Rn
γ

0√
γ (

√
2πσ 2)γ−1

G

(
x,

γ + 1

γ
σ 2
)

. (12.87)
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This process can be iterated to find the general solution

Nt(x) = R
γ t−1−1

γ−1 n
γ t−1

0 G

(
x,

γ t − 1

(γ − 1)γ t−1
σ 2
)

h(t) , (12.88)

where

h(t) =
t∏

i=2

⎛
⎜⎝ 1

√
γ
(

2πσ 2 γ i−1−1
(γ−1)γ i−2

)(γ−1)/2

⎞
⎟⎠

γ t−i

. (12.89)

Goodsman and Lewis (2016) derive the corresponding formula in two spatial
dimensions.

We want to find the minimal size of the founding population for the population
to eventually remain above the Allee threshold, i.e., Nt ≥ Na as t → ∞. We set the
expression in (12.88) equal to (12.82) and solve for n0. We find

n0 = Na

√
2πσ 2 γ t − 1

(γ − 1)γ t−1

1/γ t−1 (
1

h(t)

)1/γ t−1

. (12.90)

In the limit as t → ∞, we find the minimal size of the founding population as

n∗
0 = Na

∞∏
i=2

√
γ

γ 1−i

√
2πσ 2 γ i−1 − 1

(γ − 1)γ i−2

(γ−1)γ 1−i

. (12.91)

This formula is somewhat unwieldy and because of the infinite sum also numerically
tricky, but it can be simplified more and approximated as follows. First, we take
logarithms on both sides of the expression to get

ln(n∗
0) = ln(Na) + ln(γ )

2

∞∑
i=2

γ 1−i + γ − 1

2

∞∑
i=2

γ 1−i ln

(
2πσ 2 γ i−1 − 1

(γ − 1)γ i−2

)
.

(12.92)

Then we use the geometric series to see that (γ − 1)
∑∞

i=2 γ 1−i = 1. Finally, we
split the infinite sum into the finite sum from i = 2 to i = M and the infinite
sum from i = M + 1 to ∞. Since γ > 1, the term (γ i−1 − 1)/γ i−2 can be
approximated by γ for large enough i. Another application of the geometric series
and taking exponentials on both sides of the equation finally gives

n∗
0 = Na

√
2πσ 2

√
γ

1
γ−1 + 1

γ M−1

√
γ − 1

exp

(
γ − 1

2

M∑
i=2

γ 1−i ln

(
γ i−1 − 1

γ i−2

))
;

(12.93)
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see Goodsman and Lewis (2016) for the corresponding formula in two spatial
dimensions. The minimum founding population depends linearly on the Allee
threshold and the standard deviation of the Gaussian kernel. In two spatial dimen-
sions, the relationship with the variance is linear.

Goodsman and Lewis (2016) apply this formula to estimate the minimum found-
ing population size of mountain pine beetle. This forest insect experiences a strong
Allee threshold because only a large number of beetles attacking simultaneously
will overcome the defenses of the tree. A small number of attacking beetles will
be washed out by tree sap (Heavilin and Powell 2008). Goodsman and Lewis
(2016) use the previous model by Heavilin and Powell (2008), who implement the
corresponding beetle growth function as

F(N) = N2

α2 + N2 S , (12.94)

where N denotes the number of attacking beetles and S is the density of healthy
trees. For small enough N , this function is approximated by the power function
F(N) ≈ SN2/α2, so the theory derived above applies. The model by Heavilin
and Powell (2008) includes, in addition, a stage-structured description of the tree
density; see Chap. 13.

The growth function in (12.94) is also used by Schofield (2002) (see also
Barton and Turelli 2011) in a numerical comparison of continuous- and discrete-
time models for a Wolbachia infection spreading in fruit flies. Using a modified
Nicholson–Bailey IDE model, Goodsman et al. (2016) model how aggregation
of mountain pine beetle can overcome an Allee effect induced by tree defenses.
Sullivan et al. (2017) combine an Allee effect with overcompensation to obtain
pulsating traveling waves; see Chap. 6. Otto (2017) also combines an Allee effect
with overcompensation and finds nonspreading solutions.

A completely different representation of the Allee effect is used by Etienne
et al. (2002). These authors define an upper and lower threshold, N and N , for
population growth and choose N to be a linear function in the interval [N,N ] and
zero outside. They study numerically the stabilizing effect of dispersal on locally
unstable dynamics.

12.7 Dispersal and Spread in Two Dimensions

Almost all of the theory and examples presented so far were formulated in idealized
one-dimensional space. Real ecological systems are two- or three-dimensional. To
what extent and how does the theory carry over to higher dimensions, and what
needs to be considered in the application to data? The theoretical results on critical
patch-size from Chap. 3 carry over to higher dimension (Van Kirk 1995), but explicit
calculations are generally not feasible. An exception is the case where the dispersal
kernel is the Green’s function of a solvable partial differential equation (e.g., as



12.7 Dispersal and Spread in Two Dimensions 193

in Sect. 3.2). The dispersal success approximation from Chap. 9 or other higher-
order expansions provide an alternative way forward. Phillips and Kot (2015) apply
various approximation and numerical techniques to evaluate persistence conditions
on two-dimensional habitats. The theoretical results on asymptotic spreading speeds
by Weinberger (1982) and most subsequent authors are formulated in higher space
dimensions; see Chap. 5. Instead of traveling waves, we have to consider planar
traveling waves in higher dimension, i.e., waves that travel in one direction in space
and are constant in perpendicular directions. There are, however, some subtle issues
to relate dispersal data to population density or distance moved. These are addressed
by Lewis et al. (2006). We present some of their material here; see also Lewis et al.
(2016).

We consider the linear equation

Nt+1(x) = R

∫ ∞

−∞

∫ ∞

−∞
K(x − y)Nt (y)dy , (12.95)

with x, y ∈ R
2. The dispersal kernel K(x) gives the probability per unit area

of finding an individual that began dispersing at the origin. If K is isotropic,
i.e., dispersal is equally likely in all directions, then the distribution of dispersal
distances, i.e., the probability of moving a distance per unit length, is given by
K̃(r) = 2πrK(r), where r = ‖x‖. While the IDE uses K , empirical data
are typically recorded as K̃ , e.g., as histograms. We will see how K̃ arises in
calculations for the speed of planar traveling fronts.

The calculations for the point-release scenario from Sect. 5.2 with a Gaussian
kernel carry over almost verbatim to the two-dimensional case. The only difference
is that the scaling factor in the denominator does not have a square root; see (2.26).
With the initial condition N0(x) = δ(x), we find the solution of (12.95) as

Nt(x) = Rt

2πσ 2t
exp

(
−‖x‖2

2σ 2t

)
. (12.96)

Because of radial symmetry, we can define a threshold value Ñ and locations xt via
Nt(xt ) = Ñ and calculate the asymptotic speed

c∗ = lim
t→∞

‖xt‖
t

=
√

2σ 2 ln(R) . (12.97)

Figure 12.11 (left plot) shows how a level set expands over time. A planar front in
direction u is a solution of the IDE of the form

Nt(x) = W(x · u − ct). (12.98)

Hence, in direction u, the front looks like a one-dimensional profile, and in the
perpendicular direction, the density is constant in space. Figure 12.11 (right plot)
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Fig. 12.11 Level sets of
population spread in
two-dimensional space with
scaled Beverton–Holt growth
function and Gaussian
dispersal kernel. Left: A
radially symmetric initial
condition. Right: A planar
traveling wave in the
x1-direction. Parameters are
R = 1.5 and σ 2 = 0.1.
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shows how a level set of a planar wave moves over time. When we substitute an
exponential front profile, W(z) = e−sz, into IDE (12.95), we find

W(x · u − c(t + 1)) = R

∫ ∞

−∞

∫ ∞

−∞
K(x − y)W(y · u − ct)dy (12.99)

or, after some manipulation,

esc = R

∫ ∞

−∞

∫ ∞

−∞
K(z)es(z·u)dz =: RMu(s). (12.100)

We call Mu the directional moment-generating function. If K is isotropic, the speed
of the front is independent of the direction, and we can choose u = (1, 0) to simplify
calculations. We find the dispersion relation

esc = R

∫ ∞

−∞

∫ ∞

−∞
K(z)esz1 dz1dz2 = R

∫ ∞

−∞
Kx1(z1)e

sz1 dz1, (12.101)

where Kx1 denotes the marginal distribution of K in the x1-direction. The marginal
distribution of the bivariate Gaussian in (2.26) is the univariate Gaussian in (2.25).
Hence, the dispersion relations in the one- and two-dimensional cases are identical.
Therefore, the minimal speeds of a traveling wave are also identical.

Marginal distributions are not always easy to calculate. It turns out that we can
write the directional moment-generating function explicitly as

M(1,0)(s) =
∫ ∞

−∞

∫ ∞

−∞
K(r)esz1dz1dz2 =

∫ 2π

0

∫ ∞

0
K(r)esr cos θ r dr dθ

= 2π

∫ ∞

0
K(r)rI0(sr)dr =

∫ ∞

0
K̃(r)I0(sr)dr , (12.102)

where I0 is the zeroth-order Bessel function of the first kind. Hence, the distribution
of dispersal distances arises naturally in the calculation of the dispersion relation.
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Rather than choosing a particular parametric form for the dispersal kernel, Lewis
et al. (2006) give (unbiased) estimators for the directional moment-generating
function from dispersal distance data. They apply these formulas to dispersal data
of the fruit fly Drosophila pseudoobscura; see Kot et al. (1996). They find that the
spreading speed from the two-dimensional formula is higher than from the one-
dimensional formula; i.e., if the same dataset is interpreted as two-dimensional
dispersal distances, then the predicted speed is higher than when the dataset is
interpreted as one-dimensional distances. Lewis et al. (2006) also apply this theory
to teasel (Dipsacus sylvestris) via a stage-structured model; see Chap. 13.

Fort (2007) also compares spreading speeds in one and two dimensions, but in
a different way. He uses the same kernel of dispersal distances in the two cases
and proves that the speed is always slower in two dimensions. He gives an intuitive
explanation for this phenomenon. We suppose that each individual moves exactly
the same distance during one dispersal period. In one dimension, the dispersal
kernel is the sum of two delta distributions. In two dimensions, the dispersal kernel
is a “delta distribution” on a circle, so that the marginal distribution in any fixed
direction is a uniform distribution up to the maximal distance. Hence, the marginal
distribution sees most individuals make shorter moves in a given direction, and, as
a result, the spread rate is lower. Fort (2007) also considers Reid’s paradox (see
above). He chooses the short-distance dispersal kernel as a uniform distribution
with a radius of 15 m. For long-distance dispersal, he chooses a power law that he
truncates at 104 m. Without long-distance dispersal, he obtains a spread rate of up to
10 m/year, whereas when a tiny proportion of 0.002 individuals use long-distance
dispersal, the speed increases to almost 1000 m/year. This increase is on the same
order of magnitude as required to explain Reid’s paradox.

Fort et al. (2007) and Isern et al. (2008) consider an IDE for the Neolithic
transition in Europe from hunter–gatherer groups to farmers. They consider and
compare several models in two spatial dimensions with different dispersal kernels
and mechanisms. Typical parameter values, obtained from archeological records,
suggest a generation time of 32 years, a growth rate of R = 2.2 (with range [1.9,
2.6]), and a probability of moving of 0.38. They find speeds of 0.8–1.3 km/year or
up to 50 km per generation, which compares quite well with data.

Coutinho et al. (2012) model the invasion of an African blowfly species (Chry-
somya albiceps) in South America. They reduce a stage-structured model to a scalar
model with a Ricker-type growth function. With the estimated parameter values,
the steady state of the nonspatial model is unstable. They use a Gaussian dispersal
kernel. In the one-dimensional model, starting from a point-release initial condition,
they find a spreading front with a linearly determined speed of between 0.4 and
2 km/year. Since the steady state is unstable, they find an oscillating pattern behind
the front, at least for small times. The same initial conditions in two dimensions
give a radially symmetric spread pattern with the same speed. The instability leads
to concentric rings that spread outward from the center of population introduction;
see Fig. 12.12.
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Fig. 12.12 Simulation of the blowfly model by Coutinho et al. (2012). The two-dimensional IDE
has Ricker growth function F(N) = 130N exp(−0.1N) and a Gaussian dispersal kernel with
variance σ 2 = 8. The initial condition is concentrated at zero. The plot on the left is after 5
generations; the plot on the right after 12.

12.8 Further Reading

Most examples in this chapter were either scalar equations, i.e., they represent
the population as a single unstructured quantity, or they could be collapsed into
a scalar equation. Many more interesting applications arise when we study systems
of equations, either in the form of different stages of one population (see Chap. 13)
or in the form of several interacting species (see Chap. 14).

The examples of models for partially sessile populations in Sect. 12.4 are by no
means exhaustive. Many species have evolved quite particular life cycles with differ-
ent strategies for dispersal and reproduction. IDEs present a very versatile modeling
framework to adequately represent these life cycles. The potential downside is that a
plethora of models needs to be studied and analyzed. Fortunately, most of the basic
ideas of stability analysis and spreading speed analysis carry over to many model
structures relatively easily.

Fedotov (2001) studies a model where individuals first reproduce locally and
then disperse in space while their offspring remain at the location where they were
produced until the next generation. In our notation, his model reads

Nt+1(x) =
∫ ∞

−∞
K(x − y)Nt (y)dy + F(Nt(x)) . (12.103)

Fedotov (2001) uses a Hamilton–Jacobi framework to derive a formula for the speed
of traveling waves for the linearized equation. He obtains an explicit expression
when K is the sum of two delta distributions, i.e., K(x) = (δ(x − a) + δ(x + a))/2
for some fixed dispersal distance a > 0. For the same equation, Méndez et al. (2002)
show how the spreading speed depends on the dispersal kernel. They also derive an
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approximate expression for the width of the transition front when the generation
time is small.

Neubert and Parker (2004) model the local spread of scotch broom (Cytisus
scoparius) in two stages. Initially, seeds follow ballistic dispersal; see (7.31).
Subsequently, a proportion of seeds is carried by ants, with dispersal distances
chosen from a Laplace kernel. Neubert and Parker (2004) show that the resulting
two-stage kernel can be unimodal if the dispersal by ants is large compared to
ballistic dispersal, or bimodal if dispersal by ants is relatively short. They then study
a suite of increasingly complex models (including stochasticity and stage structure)
to assess the invasion risk of scotch broom and its predicted spread rate.

Mistro et al. (2005a) carefully derive and study a model for the spread of the
Africanized honey bee (Apis mellifera adansonii) in the Americas. Established
colonies of these bees tend to remain sessile but can sometimes move as a
colony, and they produce offspring that move and form new colonies elsewhere.
Furthermore, the authors explicitly include the search for high-quality habitat in the
dispersal kernel as follows. We denote by q(x) ∈ [0, 1] the habitat quality at location
x and by m some monotone bounded function on [0, 1]. For any given kernel K(x)

that depends on signed distance only, we then define the modified kernel

K [m](x, y) = K(x − y)m[q(x)]∫∞
−∞ K(z − y)m[q(z)]dz

. (12.104)

The numerator in this expression guarantees that individuals settle preferentially
in places with higher habitat quality. The denominator ensures that the expression
integrates to unity. The authors then study numerically how the different elements
of the model interact to predict the spread rate of these bees.

Drury and Candelaria (2008) study the spread of the California sea otter
(Enhydra lutris nereis) between 1914 and 1986. Otters had been almost extirpated
from the California coast, but in 1914, one population was found in Point Sur. Under
protection, this population has since spread north and south along the coast. Looking
at the spread data, there seem to be differences in spread rates in direction (north
vs. south) and time (before vs. after 1973). Drury and Candelaria (2008) formulate
and fit integrodifference models with Laplace kernels for these different cases to
data and compare them to reaction–diffusion models. They find that the IDE models
generally fit considerably better.

Rodriguez (2010) studies fish dispersal in river networks. He models “sedentary”
fish movement by a Laplace kernel with small variance and “mobile” fish dispersal
by a Laplace kernel is large variance. He estimates parameters from experiments
and indicates that such an estimate requires the release of about 4000 individuals.
He then adapts his dispersal model to allow for dispersal barriers in the river
network and discusses conditions under which passability can be reliably detected
in empirical work.

Robinet et al. (2012) present a suite of models of increasing complexity for
quantitative risk assessment for the spread of a pest species. Among others, they use
a two-dimensional IDE model and parameterize it for the western corn rootworm
(Diabrotica virgifera virgifera).



Part III
Extensions and Challenges



Chapter 13
Structured Populations

Abstract So far, we have treated populations as homogeneous: all individuals
were assumed to be identical with respect to reproduction and dispersal. We only
modeled the dynamics of a single density function. In reality, most populations are
heterogeneous in many ways. Individuals differ with respect to age, size, gender,
and other attributes, and their reproductive and dispersal behavior may depend on
these attributes. The nonspatial dynamics of populations with complex life cycles
have been successfully described by matrix models. In this chapter, we introduce
and study spatially explicit matrix models to generalize the simple IDE to stage-
structured populations. We present an in-depth analysis of the critical patch-size
problem and the spreading speed for these equations, including several proofs that
we omitted in the scalar case in earlier chapters. Throughout the chapter, we use a
simple two-stage model for juveniles and adults to illustrate the theory. We close
with an overview of the rich literature of applications of structured IDEs to real-
world systems, in particular to species invasions.

13.1 Matrix Models

Most populations are heterogeneous in many ways. One of the simplest structures
is to distinguish between nonreproductive juveniles and reproductive adults, but
many more complex life cycles exist. For example, plant life cycles may include a
seed bank, seedlings, and nonflowering and flowering individuals of different sizes
and ages. Since reproductive output and dispersal behavior may differ between the
different stages, we would like to include this stage-specific information into our
models so that we can make accurate predictions. The nonspatial dynamics of such
structured populations can be conveniently described by matrix models (Caswell
2001). We briefly review the most important aspects of this theory below. Then we
generalize the scalar IDE (2.1) to stage-structured IDEs, or spatially explicit matrix
models.

The different stages in the life cycle of an organism can be represented in a life-
cycle graph, where vertices represent stages and directed edges indicate possible
transitions between stages. For example, if we consider only the two stages of
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Fig. 13.1 Representation of
a simple juvenile–adult
two-stage life cycle as a
graph.
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nonreproductive juveniles and reproducing adults, we need to specify up to four
transitions: juveniles remain juveniles if they survive but do not mature, juveniles
become adults if they survive and mature, adults remain adults if they survive, and
adults produce juveniles; see Fig. 13.1. More generally, structuring populations by
age or other relevant life-cycle stages can lead to highly complex life-cycle graphs.

Matrix models are the corresponding mathematical framework for capturing the
dynamics of structured populations (Caswell 2001). For example, the juvenile–adult
model representing the life-cycle graph in Fig. 13.1 can be written as

Jt+1 = sj (1 − g)Jt + RAt , At+1 = sj gJt + saAt , (13.1)

where Jt and At stand for the number of juveniles and adults in generation t.

Parameters sj and sa represent the probability of survival of juveniles and adults,
respectively; g indicates the probability of maturation; and R is the per capita
number of offspring for adults. In general, parameters could depend on population
density. This model can be written in matrix notation as

[
Jt+1

At+1

]
t+1

=
[
sj (1 − g) R

sjg sa

] [
Jt

At

]
. (13.2)

More generally, for a population divided into � stages, we denote the number
or density of individuals at stage i and generation t by Ni

t , i = 1, . . . , �, and the
transition (including reproduction) from stage j to stage i by bij . Then the dynamics
between generations can be written as

Ni
t+1 =

�∑
j=1

bijN
j
t (13.3)

or, in matrix notation,

Nt+1 = BNt , where N = [N1, . . . , N�]T , B = [bij ] . (13.4)

Superscript T stands for the transpose that turns the row vector into a column vector.
When the transition rates between stages are independent of population density,

the entries of matrix B are constants and model (13.4) is linear. In that case, we can
explicitly solve the recursion by taking powers of B, i.e., Nt = BtN0. To determine
the long-term behavior of this solution, we make the important assumption that the
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nonnegative matrix B is primitive, i.e., that there is some power of B where all
entries are positive (Caswell 2001). The biological meaning of this assumption is
that individuals of every stage can be produced from any stage in finitely many
time steps. This assumption can be satisfied in many applications by choosing
stages appropriately, e.g., by excluding post-reproductive stages. Mathematically,
this assumption is the crucial ingredient for proving the Perron–Frobenius theorem;
see, e.g., Caswell (2001).

Theorem 13.1 (Perron–Frobenius) Assume that B is primitive.1 Then B has a
simple, positive, strictly dominant eigenvalue with positive eigenvector. No other
eigenvalue has a nonnegative eigenvector.

The fate of the population described by the linear matrix model is completely
determined by the dominant eigenvalue, μ, of matrix B. If μ < 1, then the
population will go extinct; if μ > 1, then the population will grow indefinitely with
asymptotic growth rate μ and the population structure given by the corresponding
(right) eigenvector of B.

When the transition rates between stages depend on population density, the
elements of B = B(N) depend on the stage vector, and the model is nonlinear.
In that case, we find steady states, i.e., solutions of the equation N∗ = B(N∗); we
linearize matrix B at those states; and we determine the stability and bifurcation
behavior from the spectrum of the linearization (Caswell 2001; Cushing 2014).

To include space in matrix models, we denote by x the spatial location in some
domain of interest, Ω , and by Ni

t (x) the spatial density of individuals at stage i of
generation t . Again, we take a census of the population after the end of the dispersal
phase. The life cycle begins with the growth phase, which is described by matrix
B as above. To model dispersal, we denote by Kij (x, y) the dispersal kernel of
individuals at stage i that were produced by individuals at stage j. Then the IDE
reads

Ni
t+1(x) =

∫
Ω

�∑
j=1

Kij (x, y)bijN
j
t (y)dy . (13.5)

With the notation • for the Hadamard product of entrywise matrix multiplication,
these equations can be written more elegantly as

1The Perron–Frobenius theorem holds under the more general condition that B is irreducible. A
matrix is irreducible if it is not conjugate to a block upper-triangular matrix (Caswell 2001). A
typical example for a reducible matrix arises in populations with post-reproductive stages. Since
these stages do not contribute to reproduction, their contribution to the pre-reproductive stages
is zero. If we order the variables in the equations such that the post-reproductive stages are first,
the resulting matrix will be block upper-triangular. In terms of the life-cycle graph, a matrix is
reducible if there is a proper subset of vertices from which there are no edges (transitions) to nodes
outside that subset.
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Nt+1(x) =
∫

Ω

K(x, y) • BNt (y)dy , (13.6)

where K = [Kij ] is the matrix of dispersal kernels.
We analyze these stage-structured IDEs in two steps. We begin with the question

of extinction, persistence, and steady states on bounded domains. Then we turn to
invasions on unbounded domains.

13.2 Persistence on a Bounded Domain

We begin the analysis of IDE (13.6) on bounded domains. We study steady
states and their stability, returning to the question of finding the critical patch-
size from Chap. 3 but now for a structured population. This analysis can be seen
as generalizing both matrix models to include space and scalar spatial models to
include population structure. We present here the more formal underpinnings of the
theory that we omitted in Chap. 3. The exposition follows the work by Lutscher and
Lewis (2004).

We explicitly denote the dependence of vital rates in matrix B on spatial location
and density and write the IDE

Nt+1(x) = Q[Nt ](x) =
∫

Ω

[K(x, y) • B(Nt , y)]Nt (y)dy , (13.7)

where Ω ⊂ R
n is bounded. We work in the product space L 2 = (L2(Ω))�

of square-integrable functions and its positive cone. Accordingly, we make the
following assumptions for the rest of this chapter.

(A1) Elements of B are bounded, i.e., 0 ≤ bij (N, y) ≤ bmax < ∞ for
all i, j. Furthermore, each bij (N, y) is continuous with respect to y and
continuously differentiable with respect to N.

(A2) If bij is nonzero, then kij satisfies kij ∈ (L2(Ω))2.

The first assumption is natural for biological populations; it results from even
relatively weak self-limitation. Note that we do not assume that the per capita
production functions converge to zero. The second assumption requires that all
stages disperse. When we allow for sedentary stages, operator Q fails to be compact.
We discuss several results on noncompact operators at the end of this chapter.

Lemma 13.1 Under assumptions (A1)–(A2), operator Q : L 2 → L 2 as defined
in (13.7) is positive and completely continuous. Furthermore, Q is strongly Fréchet
differentiable at N = 0 with respect to the positive cone. Its derivative is the positive,
completely continuous linear operator given by

Q′[0]φ(x) =
∫

Ω

[K(x, y) • B(0, y)]φ(y)dy . (13.8)
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Proof The proof of this lemma follows from Sects. 17.3, 17.5, and 17.8 as well
as Theorem 17.1 in Krasnosel’skii and Zabreiko (1984); see Van Kirk and Lewis
(1997) and Lutscher and Lewis (2004). ��

The next step is to prove an analogue of the Perron–Frobenius theorem for
the linear operator Q′[0]. A linear operator is called superpositive (Krasnosel’skii
and Zabreiko 1984) if it has a simple positive dominant eigenvalue with positive
eigenfunction, and no other eigenfunction is positive. If an operator is superpositive,
then the stability of zero and the asymptotic behavior of the equation are determined
by the dominant eigenvalue and the corresponding eigenfunction. To show that
Q′[0] is superpositive, we require the following spatial version of primitivity.

(A3) Matrix B(0, y) is primitive for each y ∈ Ω . Furthermore, if bij (0, y) is
positive for some y ∈ Ω , then it is positive for all y ∈ Ω .

In biological terms, these assumptions mean that if individuals at stage j produce
individuals at stage i somewhere in the domain, then they do so everywhere,
possibly at different rates.

Theorem 13.2 Assume that (A1)–(A3) hold. In addition, assume that there are
constants 0 < κ ≤ kij ≤ κ on Ω for all pairs (i, j) for which bij is nonzero.
Then Q′[0] is superpositive.

Proof The proof of this theorem follows largely from applying the results from
Chap. 2 in Krasnosel’skii (1964). At its core is an application of the Krein–Rutman
theorem. The most important estimate is to show that there exists some constant m

such that

(κbmin)
m

∫
φ(y)dy ≤ Q′[0]mφ(x) ≤ m�(κbmax)

m

∫
φ(y)dy . (13.9)

This estimate can be obtained in several steps. First, we use primitivity of B to show
that if some power of B is positive, then so are all higher powers. Next, we use
compactness of the domain to show that some finite power of B(0, y) is positive
simultaneously for all y. Finally, we use the lower bounds on the dispersal kernels
to obtain the estimate. Then we use the results from Chap. 2 in Krasnosel’skii (1964)
together with the properties of the space L 2 to obtain the result; see Lutscher and
Lewis (2004). ��

The positivity assumption in Theorem 13.2 implies that dispersers can reach
any point in the domain from any other point within one dispersal period. This
assumption seems unreasonable for some species and certain domains. We relax
these assumptions in two steps. First, in the case where Ω is connected, we make
the following assumption.

(A4) There is a nonnegative symmetric continuous function κ such that for all
kij �= 0 we have κ(x, y) = κ(y, x) ≤ kij (x, y) ≤ κ , and there is a constant
ε > 0 such that for all x ∈ Ω the measure of the set {y ∈ Ω | κ(x, y) ≥
κ > 0} is at least ε.



206 13 Structured Populations

This assumption covers two important cases. If dispersal distances are small
compared to the patch-size, then kij (x, y) = 0 if |x − y| is large. Then the lower
bound has to be satisfied for y near x. On the other hand, some dispersal kernels are
zero when x = y, e.g., the Weibull kernel (see Table 3.1). In that case, the symmetry
condition implies that after two dispersal periods, individuals are back near where
they started. Hence, the lower bound condition near x = y holds after two dispersal
periods.

Proposition 13.1 Assume that Ω is connected and that (A1)–(A4) hold. Then Q′[0]
is superpositive.

In the second step, we deal with the case where Ω is a finite collection of disjoint
connected components. We write Ω = ⋃̇

γ=1,...,Γ Ωγ and assume that each Ωγ is
connected. The connectivity matrix C = (cαβ) for continuous kernels kij is given
by

cαβ =
{

1, if for some x ∈ Ωα, y ∈ Ωβ, i, j : kij (x, y)bij (0, y) > 0 ,

0, otherwise.
(13.10)

Then we need the following assumption.

(A5) Matrix C is primitive.

Assumptions (A4) and (A5) together imply that an individual at stage i and point x

can get to any other location y ∈ Ω and stage j through dispersal and production in
finitely many generations. In mathematical terms, this means that operator Q′[0] is
irreducible.

Proposition 13.2 Let Ω = ⋃̇
γ=1,...,Γ Ωγ be the disjoint union of connected

components and assume that (A1)–(A5) hold. Then Q′[0] is superpositive.

Proof The proof is tedious but not hard and has a nice biological interpretation.
The goal is to prove inequality (13.9). The idea is to find a “connecting path”: for
any two points x, y in the domain and any two stages i, j in the life cycle, there is a
sequence of points in the domain and life stages such that an individual at stage j and
location y produces an individual at stage i and location x with positive probability
in finitely many generations. Then we use compactness to find the smallest number
of generations so that such a sequence exists for all points and life stages. Details
are provided in Lutscher and Lewis (2004). ��

The theory we have developed so far implies that if the assumptions are satisfied,
then the stability of the zero solution is determined by the dominant eigenvalue of
the linearized operator at zero; see (13.8). Calculating this dominant eigenvalue for
particular examples is a different matter. The calculation can be carried out when all
the dispersal kernels are identical Laplace kernels, i.e., when dispersal behavior is
independent of stage, and when vital rates are independent of spatial location. In that
case, the calculations from Sect. 3.2 can be extended to the stage-structured model.
We present this calculation here and give a different example in the next section.
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The eigenvalue equation with B = B(0) on the domain Ω = [−L/2, L/2] is

λφ(x) = Q′[0]φ(x) =
∫ L/2

−L/2

a

2
exp(−a|x − y|)Bφ(y)dy . (13.11)

Differentiating this equality twice and substituting as in Sect. 3.2 leads to the vector-
valued boundary-value problem

φ′′(x) = −a2
(

1

λ
B − I

)
φ , φ′(±L/2) ± aφ(±L/2) = 0 , (13.12)

where I denotes the identity matrix. The exponential ansatz φ(x) = eξxψ leads to
the eigenvalue problem

ξ2ψ = −a2
(

1

λ
B − I

)
ψ . (13.13)

Hence, we can express ξ via the eigenvalues μi of B and the eigenvalue λ of Q′[0]
as

ξ2 = −a2
(μi

λ
− 1
)

. (13.14)

If the expression on the right-hand side is positive, then we get real solutions ξ =
±a

√
1 − μi/λ. Since dispersal is symmetric, the eigenfunctions of Q′[0] have to be

symmetric on [−L/2, L/2], which leads to the form

φ(x) = cosh
(
a
√

1 − μi/λ x
)

ψ . (13.15)

These solutions cannot satisfy the boundary conditions. We can rule out ξ = 0
equally easily. Therefore, the right-hand side in (13.14) must be negative, which
implies λ < μi. In particular, if the dominant eigenvalue of matrix B is less than
unity, then λ is less than unity. In biological terms, if the population goes extinct in
the nonspatial setting, then it will also go extinct in the spatial setting. Again, we
see that boundary loss reduces the overall population growth rate.

When the right-hand side of (13.14) is negative, we obtain eigenfunctions of the
form

φ(x) = cos
(
a
√

μi/λ − 1 x
)

ψ . (13.16)

For the critical patch-size, we set λ = 1, take the largest eigenvalue of B, and solve
as in Sect. 3.2 to get

L∗ = 2

a
√

μ1 − 1
arctan

(
1√

μ1 − 1

)
. (13.17)



208 13 Structured Populations

From the explicit expression for L∗, we conclude that if matrix B depends on a
parameter, say P , and if the dominant eigenvalue is an increasing function of that
parameter, then the critical patch-size is a decreasing function of that parameter, i.e.,
dL∗(P )/dP < 0. This relationship actually holds in much more generality when
the dispersal behavior of the different stages differs.

Lemma 13.2

1. On a fixed domain, suppose that the matrix of production rates, B(0, y;P), is
nondecreasing in P. Denote λ(P ) as the dominant eigenvalue of Q′[0]. If at
least one entry of B(0, y;P) is strictly increasing in P , then so is λ(P ).

2. Fix P and let Ω = [0, L]. Assume that the matrix of dispersal kernels is of the
form K(x, y) = K(x − y) > 0, and denote λ(L) as the dominant eigenvalue of
Q′[0]. Then λ(L) is a strictly increasing function of L.

3. If both previous conditions are satisfied, then dL∗(P )/dP < 0.

The first two statements in the lemma are proved in Lutscher and Lewis (2004). The
last statement follows from the implicit function theorem applied at the bifurcation
point where λ(L, P ) = 1. In biological terms, this result means that if at least one
of the vital rates of the population increases, then the critical patch-size decreases.

13.3 Application

We apply some of the preceding ideas to a three-stage life-cycle model for the
common lizard (Lacerta vivipara). This example was originally presented by Tricia
Morris in her honor’s thesis in 2017. The common lizard has three life stages
(Galliard et al. 2010). The early juvenile stage (E) lasts for one year. After that
year, lizards disperse to find their own territory and enter the late juvenile stage
(L), which lasts for another year. At the beginning of their third year, they turn into
adults (A) and can continue to live for several years. We denote by N = [E,L,A]T
the densities of the three stages. We consider linear, space-independent survival
probabilities sX for stage X ∈ {E,L,A} and a linear, space-independent birth term
with an average of b (female) offspring per (female) adult. We assume no mating
limitation. Then the dynamics between years can be written as

Nt+1(x) =
∫

Ω

K(x − y) • BNt (y)dy

with

K(x) =
⎡
⎣ 0 0 δ(x)

K(x) 0 0
0 δ(x) δ(x)

⎤
⎦ and B =

⎡
⎣ 0 0 b

sE 0 0
0 sL sA

⎤
⎦ .
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Here, K denotes the dispersal kernel at the end of the early juvenile phase. Since
only one of the three stages disperses, delta distributions appear at the other
stage transitions. The resulting operator is not compact. Condition (A4) on the
existence of a simultaneous positive subfunction is also violated. Nonetheless, we
can continue with the analysis by a reduction argument.

The corresponding eigenvalue problem is

λφ1(x) = bφ3(x) ,

λφ2(x) = sE

∫
Ω

K(x − y)φ1(y)dy ,

λφ3(x) = sLφ2(x) + sAφ3(x) .

Substituting the equations for φ1 and φ2 into the third equation, we find

λ2φ3(x) = sLsEb

∫
Ω

K(x − y)φ3(y)dy + λ2sAφ3(x)

and eventually

λ̃φ3(x) =
∫

Ω

K(x − y)φ3(y)dy, λ̃ = λ3 − λ2sA

sLsEb
.

This integral operator is compact and positive under the usual assumptions on K

and Ω. Hence, a dominant eigenvalue λ̃ > 0 exists. For every λ̃ > 0, the above
condition defines a unique λ > sA. The largest value of λ corresponds to the largest
value of λ̃. In particular, the persistence threshold is given by λ = 1 or λ̃ = 1−sA

sLsEb
.

Since the integral operator contains only dispersal, its dominant eigenvalue is
bounded by λ̃ ≤ 1. Hence, we require b > 1−sA

sEsL
for there to be a solution

with λ = 1. This condition means that each adult has to produce at least one
offspring that reaches adulthood for the population to persist. With the survival
probabilities estimated at sE = 27.9%, sL = 65.4%, and sA = 50.6% (Galliard
et al. 2010), we require the average number of (female) offspring to be at least
b > 2.7 for population persistence on a large enough domain. For a given b above
this threshold, we can calculate the critical patch-size. If we choose the Laplace
kernel with parameter a, we can use the results from Chap. 3 to find the critical
patch-size as

L∗ = 2

a

√
sLsEb
1−sA

− 1
arctan

⎛
⎝ 1

a

√
sLsEb
1−sA

− 1

⎞
⎠ .
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With a mean dispersal distance of a−1 = 64.7 m (Warner and Shine 2008) and
b = 3, we find a critical patch-size of L∗ = 487.88 m.

13.4 Nonlinear Analysis

In this section, we present some of the theory that allows us to prove the existence
and uniqueness of a positive fixed point. It is based on bifurcation theory and
monotone systems theory. We begin with an additional assumption on the vital rates
for large population density.

(A6) There is some matrix-valued function B(∞, y) such that

‖B(N(y), y) − B(∞, y)‖ ≤ const.

‖N‖ for large ‖N‖ . (13.18)

Lemma 13.3 Assume that (A1), (A2), and (A6) are satisfied. Then, by Sect. 3.2.1
in Krasnosel’skii (1964) and Theorem 17.2 in Krasnosel’skii and Zabreiko (1984),
operator Q has a strong asymptotic derivative at infinity. It is given by the
completely continuous operator

Q′[∞]φ(x) =
∫

[K(x, y) • B(∞, y)]φ(y)dy . (13.19)

Proposition 13.3 (Existence of Fixed Points) Assume that (A1)–(A6) hold. Sup-
pose that the spectral radius of Q′[∞] is less than one and that the dominant
eigenvalue of Q′[0] is greater than one. Then by Theorem 4.11 in Krasnosel’skii
(1964), operator Q has a positive fixed point.

Under additional assumptions about the vital rates, we can even get the unique-
ness of the positive fixed point. We have already encountered these conditions in
Chap. 4 for unstructured populations. When the population growth function was
monotone and concave down, we obtained a unique positive fixed point. The
following proposition generalizes this result to structured populations.

Proposition 13.4 (Uniqueness of Fixed Points) Let the assumptions of Proposi-
tion 13.3 be satisfied. Assume in addition that the function

N �→ B(N)N (13.20)

is increasing and that

t �→ B(tN) (13.21)

is decreasing for 0 ≤ t ≤ 1. Then Q is concave and monotone. By Theorem
6.3 in Krasnosel’skii (1964), the positive fixed point is unique. By Theorem 6.6 in
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Krasnosel’skii (1964), every solution with N0 �= 0 converges to the positive fixed
point.

The concavity condition in the preceding proposition is fairly strong, as we will
see in an example below. Weaker conditions are “strict sublinearity” (Zhao 1996)
or “strict subhomogeneity” (Zhao 2003). When the concavity conditions are not
satisfied, we can still obtain the existence of a (unique) fixed point by studying the
behavior near the bifurcation point λ = 1. In order to apply the theory, we need to
exclude the Allee effect; compare Chap. 4. The following assumption is the stage-
structured formulation that accomplishes that goal.

(A7) The production rates decrease with population density in any state; i.e., they
satisfy (∂/∂Nl)bik ≤ 0 for all i, k, l, and the inequality is strict for at least
one set i, k, l.

We present two forms of the bifurcation results: one with respect to a parameter
that affects the vital rates of the population and one with respect to domain length.
We denote the parameter by P , the dominant eigenvalue of Q′[0] by λ = λ(P ), and
the bifurcation point by λ(P ∗) = 1. Proofs of both results can be found in Lutscher
and Lewis (2004).

Lemma 13.4 (Bifurcation I) Assume that (A1)–(A7) are satisfied and that the
spectral radius of Q′[∞] is less than one, independent of P close to P ∗. Assume
that the production rates bij are nondecreasing in P and that at least one of the
rates is increasing in P. Then there is a transcritical bifurcation at P = P ∗; i.e., a
continuous branch of solutions intersects the zero solution. The nonzero solution is
positive for P > P ∗.

To present a bifurcation result with respect to domain length L, we denote λ(L)

as the dominant eigenvalue of Q′[0] and λ(L∗) = 1 as the bifurcation point. To
formulate the result, it is convenient to introduce a generalization of the dispersal
success function (see Chap. 9) to the case of structured populations. We define

sij (y) =
∫

Ω

kij (x, y)dx (13.22)

as the dispersal success function of an individual at stage i produced from an
individual at stage j.

Lemma 13.5 (Bifurcation II) Assume that (A1)–(A7) are satisfied and that the
spectral radius of Q′[∞] is less than one, independent of L close to L∗. Assume
that the dispersal success functions sij are nondecreasing in L and that at least one
of them is increasing in L. Then there is a transcritical bifurcation at L = L∗; i.e.,
a continuous branch of solutions intersects the zero solution. The nonzero solution
is positive for L > L∗.
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13.5 Example: Juveniles and Adults

We return to the example of a simple population structure of juveniles and adults
as in (13.2) and illustrate the conditions of the preceding lemmas and propositions
as well as the resulting dynamics. We take advantage of the fact that the nonspatial
model was studied in great detail by Neubert and Caswell (2000b) and that most of
its dynamic behavior is well understood.

We begin with the scenario that only offspring production is density dependent
and replace R with R(1 + J + A)−1. Writing N = (J,A)T , the resulting matrix of
vital rates and its limits at zero and infinity are

B(N) =
[
sj (1−g) R

1+J+A

sjg sa

]
, B(0) =

[
sj (1−g) R

sjg sa

]
, B(∞) =

[
sj (1−g) 0

sj g sa

]
.

(13.23)

The dominant eigenvalue, μ1, of B(0) is an increasing function of R. For R = 0,
we have μ1 = max{sj (1−g), sa} < 1 and B(∞) = B(0). When R is large enough,
we have μ1 > 1. The critical value for μ1(R

∗) = 1 is

R∗ = (1 − sa)(1 − sj (1 − g))

sj g
. (13.24)

Furthermore, with this choice of density dependence, assumptions (A1), (A3), and
(A6), as well as the assumption in Proposition 13.4, are satisfied.

We choose the domain Ω = [0, L] and let all dispersal kernels be equal to the
Laplace kernel with identical variance. Then the remaining assumptions are also
satisfied. Therefore, operator Q′[0] will have a dominant eigenvalue λ = λ(R,L).

If that eigenvalue is less than unity, then the population extinction state will be
stable. If it is greater than unity, then there will be a unique, globally stable positive
population persistence state. The condition λ(R,L) > 1 requires R > R∗ from
(13.24) and L > L∗ from (13.17).

A more interesting dynamical scenario arises when density dependence follows
the Ricker function; i.e., we replace R in (13.2) with R exp(−(J + A)). This
case is studied in detail by Lutscher and Lewis (2004). The resulting matrices,
B(0) and B(∞), are the same as in (13.23), but the monotonicity assumption in
Proposition 13.4 is not satisfied. Lemmas 13.4 and 13.5 give the local existence and
stability of a positive equilibrium near the bifurcation point. However, increasing
parameter R can destabilize the positive steady state and lead to two-cycles and
more complicated dynamic behavior. We illustrate some of these behaviors with the
simplified model where all stages have the same dispersal behavior, described by
the Laplace kernel. Hence, we study the equation
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Fig. 13.2 Left: Stable four-cycle in the nonspatial matrix model with Ricker-type density-
dependent reproduction (R = 80). Right: Stable invariant curve in the nonspatial matrix model
with density-dependent maturation (R = 70). Solid lines are juveniles; dashed lines are adults.
Circles indicate generations; connecting lines are for optical reasons only. In the right panel, the
adult density is plotted at 20 times the actual density to make it visible on this scale. Parameters
are sj = 0.5, sa = 0.1, and g = 0.4.

Nt+1(x) =
∫ L/2

−L/2

a

2
exp(−a|x − y|)B(Nt (y))Nt (y)dy , (13.25)

where B(N) is the matrix in (13.23) but with the Ricker-type growth function
R exp(−(J + A)). We fix L = 1 and illustrate how the dynamics depend on the
variance σ 2 = 2/a2 of the dispersal kernel.

We fix parameters sj = 0.5, sa = 0.1, and g = 0.4. The critical value R∗ for the
nonspatial model to allow population persistence is R∗ ≈ 3.15. When R∗ < R <

14, the nonspatial model has a unique stable persistence state. When 15 < R < 74,
we observe stable two-cycles, and for 74 < R < 100 the system shows stable
four-cycles; see left panel in Fig. 13.2.

As we turn to the spatial model, we fix R = 80. Then matrix B has the dominant
eigenvalue μ1 ≈ 4.2012. Since we fixed L = 1, we can solve relation (13.17) for
dispersal parameter a and get a critical value of a∗ ≈ 0.5697, which translates into
a critical variance of (σ 2)∗ ≈ 6.1622. When σ 2 is larger than this number, the zero
state is stable and the population will not go extinct. As σ 2 decreases, the steady-
state density increases; see top panels in Fig. 13.3. When σ 2 < 4.5, the steady
state becomes unstable and a two-cycle emerges; see bottom left panel in Fig. 13.3.
Finally, when σ 2 = 0.05, we even observe a four-cycle in the spatial model; see
bottom right panel in Fig. 13.3.
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Fig. 13.3 Dynamics of the juvenile–adult model with density-dependent reproduction for different
variances of the dispersal kernel. Top left: Stable persistence state for σ 2 = 6. Top right: Higher
population densities at steady state with σ 2 = 5. Bottom left: Two-cycle for σ 2 = 4. Bottom
right: Four-cycle for σ 2 = 0.05. For other parameters and details, see text. Solid lines represent
juvenile densities; dashed lines represent adult densities.

Another interesting phenomenon arises when maturation instead of reproduction
is density dependent (Neubert and Caswell 2000b). We keep R constant and replace
g by g exp(−(J + A)). Then the matrix and its limits at zero and at infinity are

B(N) =
[
sj (1 − ge−(J+A)) R

sjge−(J+A) sa

]
, B(0) =

[
sj (1 − g) R

sjg sa

]
, B(∞) =

[
sj R

0 sa

]
.

(13.26)

The eigenvalues of B(0) are the same as in the previous scenario, and the
eigenvalues of B(∞) are both less than unity. When R∗ < R < 49, there is a
globally stable positive state. When R > 50, however, this state is unstable and
there is a stable oscillating solution; see right panel in Fig. 13.2. This solution seems
to be periodic with period five, but it is not since we have a discrete-time system.
Instead, the solution converges to the discrete-time analogue of a periodic orbit (an
invariant closed curve). We will discuss this behavior in more detail at the beginning
of Chap. 14.

We consider the effects of space on these dynamics in exactly the same setting
as for Eq. (13.25) above: a one-dimensional habitat of length one and all dispersal
kernels identical Laplace kernels. Since the linearization of this model is the same
as above, the persistence condition is exactly as above. For 0.3 < σ 2 < 6.16,
we observe a stable persistence state. As we decrease the variance further, the
persistence state becomes unstable and an oscillating solution appears. This solution
seems very close to a period-four solution but is qualitatively very different from
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Fig. 13.4 Oscillatory dynamics of the juvenile–adult model with density-dependent maturation
for σ 2 = 0.01. The four panels show the density of juveniles (solid) and the 20-fold density of
adults (dashed) for four subsequent iterations after initial transients have disappeared. Subsequent
iterations (modulo four) are indistinguishable from these four. Parameters are sj = 0.5, sa = 0.1,
g = 0.4, R = 80, and L = 1.

the four-cycle that we observed in the previous scenario; see Fig. 13.4. Whereas
the previous four-cycle had densities alternating between high and low from one
generation to the next, this example shows two generations of high densities
followed by two generations of low densities.

13.6 Traveling-Wave Speed in Unbounded Domains

When a population can persist locally, it is expected to spread spatially. We extend
several ideas and results from the single-stage spread models in Chap. 5 to the
stage-structured case. Not only is this theory well developed mathematically, it
is also very widely and successfully applied to empirical data. We begin with a
more heuristic approach to traveling-wave speeds and include a sensitivity analysis,
which is useful and important in applications. We discuss the analysis behind the
asymptotic spreading speed in Sect. 13.8.

Based on the approaches and results in Chap. 5, we assume that the dispersal
kernels depend on distance only and are symmetric, i.e., K(x, y) = K(|x − y|),
and that vital rates are independent of spatial location. As before, we begin with the
linear model, which we can consider as the linearization of (13.7) at the zero state.
The equation reads

Nt+1(x) =
∫
R

[K(x − y) • B(0)]Nt (y)dy . (13.27)
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The traveling-wave ansatz Nt (x) = n(ξ) with ξ = x − ct and c > 0 leads to the
relation

n(ξ − c) =
∫
R

[K(ξ − η) • B(0)]n(η)dη , (13.28)

where η = y − ct. Since the equation is linear, we make the exponential ansatz

n(ξ) = e−sξ φ , (13.29)

where vector φ describes the relative abundances of the different stages in the
traveling wave. Then we arrive at the eigenvalue equation

escφ =
[∫

R

K(ν)dν • B(0)

]
φ = [M(s) • B(0)]φ = H(s)φ , (13.30)

where M denotes the matrix of moment-generating functions of the kernel matrix
K = [kij ] and H denotes the Hadamard product matrix. Alternatively, taking an
exponential transform of (13.28) leads to the same result. Hence, we are looking for
eigenvalues esc of matrix H(s).

Matrix H(s) has � eigenvalues, denoted by λi(s) with eigenvectors φi(s).
By assumption, matrix B(0) is nonnegative and primitive; by definition, M is
positive. Therefore, H is nonnegative and primitive so that the Perron–Frobenius
theorem applies. We denote by λ1(s) the dominant positive eigenvalue with positive
eigenvector φ1(s).

From any pair λi(s), φi(s) we can form a solution of Eq. (13.27) as

Nt (x) = n(x − ct) = e−s(x−ct)φ(s) = λi(s)
te−sxφi(s) . (13.31)

Since the equation is linear, every linear combination of such solutions is again a
solution. Dividing any linear combination

Nt (x) =
�∑

i=1

βiλi(s)
tφi(s)e

−sx (13.32)

by the dominant eigenvalue, we find

lim
t→∞

Nt (x)

λ1(s)t
= lim

t→∞

[
β1φ1(s) +

�∑
i=2

(
λi(s)

λ1(s)

)t

βiφi(s)

]
e−sx = β1φ1(s)e

−sx .

(13.33)

Since λ1 is the dominant eigenvalue, all the fractions in the sum above converge to
zero as t → ∞.
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We can then express the asymptotic speed of propagation via the dominant
eigenvalue λ1(s) of H and the slope of the spatial decay as

c(s) = 1

s
ln λ1(s) . (13.34)

This expression is the generalization of (5.16) to stage-structured models. In fact, in
the case of a single stage, i.e., � = 1, matrix H reduces to a single element, which is
also the “dominant eigenvalue,” and which is given by b11M(s). This is exactly the
expression in (5.16).

We have assumed that the population can persist locally; i.e., the dominant
eigenvalue of B(0) is greater than unity. We have further assumed that all dispersal
kernels are symmetric, so that each element of M is bounded below by unity.
Clearly, both matrices are nonnegative. Therefore, the dominant eigenvalue of H
is also greater than unity. Hence, c(s) > 0 and the population can spread.

Now we consider the case where the vital rates are nonincreasing functions of
density, i.e.,

B(N) ≤ B(0) . (13.35)

Then any solution of the nonlinear IDE

Nt+1(x) =
∫
R

[K(x − y) • B(Nt )]Nt (y)dy (13.36)

is bounded by the solution of the linear equation in (13.27) with the same initial
condition. Furthermore, if N0(x) ≤ β1e−sxφ1(s), then

N1(x) =
∫
R

[K • B(0)]N0(y)dy ≤ β1H(s)φ1(s)e
−sx (13.37)

≤ β1λ1(s)e
−sxφ1(s) = β1e−s(x−c)φ1(s) . (13.38)

Iteratively, we can show the inequality

Nt (x) ≤ β1e−s(x−ct)φ1(s). (13.39)

Finally, we note that any compactly supported initial condition can be bounded
above by an exponential of the form β1e−sxφ1(s) by choosing β1 large enough for
every s for which the moment-generating functions K exist. This reasoning proves
the following lemma.

Lemma 13.6 Assume that condition (13.35) holds. Then the spreading speed of the
nonlinear model is bounded above by the minimal speed of traveling waves of the
linearized equation, i.e., by

ĉ = inf
s>0

1

s
ln λ1(s) . (13.40)
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Fig. 13.5 Left: Dispersion relation c(s) from (13.34) for the juvenile–adult model. Dashed lines
indicate the minimum, c(s∗), at s∗. Right: Advancing front of juveniles (solid) and adults (dashed)
in the nonlinear model with density dependence in the growth rate. The density profile is plotted
every 10 time steps. Parameters are sj = 0.5, sa = 0.1, g = 0.4, R = 10, and σ 2 = 0.1.

For an example, we return to the juvenile–adult model from Sect. 13.5. The
matrix of vital rates is B(0) as in (13.23). Let us consider a scenario where dispersal
only happens at maturation and follows a Gaussian kernel with variance σ 2. None
of the other stages disperses. Then the dispersal matrix is given by

K(x) =
[

δ(x) δ(x)
1√

2πσ 2
exp(− x2

2σ 2 ) δ(x)

]
. (13.41)

We calculate

H(s) =
[

1 1
exp(−σ 2s2/2) 1

]
•
[
sj (1 − g) R

sjg sa

]
=
[

sj (1 − g) R

sjg exp(σ 2s2/2) sa

]
.

(13.42)

The dominant eigenvalue of H(s) is

λ1(s) = 1

2

(
sj (1 − g) + sa +

√
(sj (1 − g) − sa)2 + 4sj gReσ 2s2/2

)
. (13.43)

We plot c(s) in Fig. 13.5. With the chosen parameters, the minimum of c(s) is c∗ =
0.208 and occurs at s∗ = 4.53. The dominant eigenvalue is λ1(s

∗) = 2.56, and a
corresponding eigenvector is φ1(s

∗) = [1, 0.22]T .

To illustrate the advance of a traveling profile in the nonlinear equation, we let
reproduction depend on density as in the previous section; i.e., we replace R by
R exp(−Jt − At). We simulated the solutions of the IDE with initial conditions for
juveniles and adults equal to 0.1 times the characteristic function of the negative
half-line. Simulations develop the shape of the traveling profile after fewer than 10
iterations, and the distance per iteration is constant after 30 iterations. The resulting
speed is c = 0.198, very close to the theoretically predicted value.
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13.7 Sensitivity Analysis

As empirical measurements are always subject to various forms of error, we would
like to know how the outcome of our calculations (here the minimal traveling-wave
speed) depends on the input (here the parameters involved in our model). Answering
this question is the goal of sensitivity analysis. Sensitivity measures the absolute
change in the output quantity for a given change in the input quantity, whereas
elasticity measures its relative change (Caswell 2001). In terms of the minimal
traveling-wave speed ĉ = c∗ in (13.40) and some parameter p in the IDE, the two
quantities are

dc∗

dp
and

p

c∗
dc∗

dp
, (13.44)

respectively. The application of sensitivity analysis to spreading speeds in IDEs is
developed by Neubert and Caswell (2000a).

Let p denote a parameter in IDE (13.27), either a population dynamic parameter
in matrix B(0) or a dispersal-related parameter in matrix K. We consider the
function of two variables

c(s, p) = 1

s
ln(λ1(s, p)) . (13.45)

We denote as s∗ = s∗(p) the value of s for which the minimum in (13.40) occurs,
i.e., c∗(p) = c(s∗(p), p). Then the sensitivity of c∗ with respect to p is given by
the chain rule as

dc∗

dp
= ∂c

∂s
(s∗(p), p)

ds∗

dp
(p) + ∂c

∂p
(s∗(p), p) . (13.46)

Since c∗ is the minimum with respect to s, the first term on the right-hand side
vanishes. Hence, we get

dc∗

dp
= 1

sλ1

∂λ1

∂p
. (13.47)

In other words, the sensitivity of c∗ is a multiple of the sensitivity of λ1, the
dominant eigenvalue of H. Formulas for the sensitivity of an eigenvalue with respect
to matrix entries hij are well known. They can be expressed in terms of the right and
left eigenvectors φ1 and ψ1, respectively, as (Caswell 2001)

∂λ1

∂hij

= ψ1,iφ1,j

〈ψ, φ〉 , (13.48)
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where φ1,j indicates the j th entry of vector φ1. To find the sensitivity of c∗ with
respect to a parameter p that may appear in one or more entries hij of matrix H, we
use the chain rule again. We arrive at the following sensitivity formula.

Lemma 13.7 The sensitivity of c∗ with respect to some parameter p is given by the
expression

dc∗

dp
= 1

s∗λ1

∑
i,j

∂λ1

∂hij

dhij

dp
= 1

s∗λ1

∑
i,j

ψ1,iφ1,j

〈ψ, φ〉
dhij

dp
. (13.49)

We return to the example in Sect. 13.5 to illustrate these ideas. With parameters
as in Fig. 13.5, we obtain c∗ = 0.208 with s∗ = 4.53 and λ1 = 2.56. Matrix H and
its eigenvectors are given by

H(s∗) =
[

0.3 10
0.558 0.1

]
, φ1 =

[
0.9753
0.2208

]
, and ψ1 =

[
0.2393
0.9710

]
. (13.50)

We calculate

dc∗

dR
= 1

s∗λ1

ψ1,1φ1,2

〈ψ, φ〉 = 0.0102 (13.51)

and

dc∗

dσ 2 = 1

s∗λ1

ψ1,2φ1,1

〈ψ, φ〉
sj gs∗2

2
exp

(
σ 2s∗2

2

)
= 1.04 . (13.52)

Hence, an increase in R by a certain amount has a much smaller effect on c∗ than an
increase in σ 2 by the same amount. For example, increasing R from 10 to 10.1 and
keeping all other parameters as in the previous example increases the speed from
0.208 to 0.209. Increasing σ 2 from 0.1 to 0.2, however, increases c∗ to 0.29.

On the other hand, for the elasticities, we calculate

R

c∗
dc∗

dR
= 0.4887 and

σ 2

c∗
dc∗

dσ 2
= 0.5014 . (13.53)

Therefore, an increase of either R or σ 2 by the same percentage has almost the
same effect on the speed. For example, increasing either R or σ 2 from the previous
baseline values by 10% increases c∗ to 0.2174 and 0.218, respectively. We illustrate
these results in Fig. 13.6, where we plot the profile of juveniles after 80, 90, and 100
time steps from the same initial condition with different parameter values. The front
with increased R is steeper and reaches a higher steady-state value but spreads at
(almost) the same speed as the front for increased σ 2.
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Fig. 13.6 Increasing parameter R or σ 2 in the juvenile–adult model with density-dependent
reproduction increases the speed of spread. The density of juveniles is plotted after 80, 90, and
100 time steps, respectively, for baseline parameters from Fig. 13.5 (solid), increased reproductive
rate (dashed), and increased variance of the Gaussian dispersal kernel (dash-dot). Increases are by
10%.

13.8 Spreading Speed for Structured Populations

Mathematically speaking, traveling waves are rather special solutions of IDEs. Their
ecological interpretation is that the population is present in a very large region
behind the invasion front. The asymptotic spreading speed (Definition 5.1) is a
measure of the speed of propagation that is independent of the assumption of a
traveling-wave profile. From an ecological point of view, it is more satisfying since
it measures the spread of a population that is initially confined in space. From a
mathematical point of view, this measure is more general than a traveling-wave
speed but also more difficult to define and handle. In this section, we present the
construction and basic concepts that lead to the definition of an asymptotic spreading
speed as in Lui (1989a), but we refer to the original publication for the proofs. We
consider the particular case of monostable dynamics on a one-dimensional domain;
the general theory is given in Lui (1989a).

We study the recursion from (13.7) on the real line with spatially independent
vital rates, so that the operator becomes

Nt+1 = Q[Nt ] =
∫
R

[K(x − y) • B(Nt )]Nt (y)dy , (13.54)

where N = [N1, . . . , N�]T as before. Throughout, we assume that B is nonnegative
and primitive and that if bij > 0 for some N ≥ 0 then bij > 0 for all N ≥ 0.

Whenever bij > 0, we also assume that the corresponding dispersal kernel Kij =
Kij (x −y) is a nonnegative symmetric bounded continuous function whose integral
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over the entire real line is unity and whose moment-generating function exists. To
define the most important property of Q, we need to introduce an order structure on
R

� and an appropriate function space.
For n, m ∈ R

�, we define n ≥ m (n � m) if ni ≥ mi (ni > mi) for all
1 ≤ i ≤ �. Furthermore, n > m is a short notation for n ≥ m and ni > mi for at
least one i. The origin in R

� is denoted by 0. For a given vector m > 0, we define
the function space

Cm = {N | Ni : R → [0,mi] piecewise continuous2} . (13.55)

We extend the order relation to Cm by saying N ≥ Ñ (N � Ñ) if N(x) ≥ Ñ(x)

(N(x) � Ñ(x)) for all x ∈ R. We can always identify n ∈ R
� with the constant

function Ni(x) = ni . By the assumptions on the dispersal kernels, if n is a constant
function, then Q[n] is also constant.

We now make assumptions on the local population dynamics that are closely
related to those that led to the existence and uniqueness of a fixed point on a bounded
domain in Sect. 13.4.

(S1) Function N �→ B(N)N is nondecreasing for N ≥ 0.

(S2) There is a steady state N∗ > 0; i.e., N∗ = B(N∗)N∗.
(S3) For all initial conditions n ≥ 0 with n �= 0, the iteration mt+1 = B(mt )mt

converges to N∗.

With these assumptions, operator Q satisfies the following hypotheses from Lui
(1989a):

1. Q : CN∗ → CN∗ , Q[0] = 0, Q[N∗] = N∗.
2. Q commutes with translations; i.e., Q[N(· − y)](x) = Q[N](x − y).

3. Q is order preserving; i.e., if N ≥ Ñ, then Q[N] ≥ Q[Ñ].
4. Q is continuous in the topology of uniform convergence on bounded subsets of

R.
5. For any 0 � n � N∗, the iterates Q(k)[n] converge to N∗ as k → ∞.

Order-preserving operators have the following two important properties.

Lemma 13.8 (Proposition 2.1 in Lui 1989a)

1. Let R1 or R2 be an order-preserving operator. Assume that sequences {nk} and
{mk} satisfy nk+1 ≥ R1[nk] and mk+1 ≤ R2[mk], respectively. Suppose further
that R1[u] ≥ R2[u] for all u. If n0 ≥ m0, then nk ≥ mk for all k.

2. Let R be an order-preserving operator. Assume that R[n0] ≥ n0 and define
nk+1 = R[nk]. Then nk is nondecreasing in k.

2A function on some interval is piecewise continuous if the interval can be written as a finite
number of subintervals such that the function is continuous on each open subinterval and has a
finite limit at each endpoint of each subinterval.
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We now present the construction that leads to the definition of the asymptotic
spreading speed. We pick some vector 0 � m � N∗ and continuous functions φi

with the following properties:

1. φi : R → [0,mi] is nonincreasing.
2. φi(s) = 0 for s ≥ 0.

3. φi(−∞) = lims→−∞ φi(s) = mi.

Then we define a sequence of functions a(c, ·) depending on a parameter c via

ai
0(c, s) = φi(s) , (13.56)

ai
k+1(c, s) = max{φi(s), Q[ak(c, · + s + c)](0)} . (13.57)

The operator defined by the right-hand side of (13.57) is order preserving since Q
is. The following properties of the sequence ak are fairly straightforward to see.

Lemma 13.9 (Lemma 2.2 in Lui 1989a)

1. ak(c, s) is bounded between 0 and N∗.
2. ak(c, s) is nondecreasing in k and nonincreasing in c and s.

3. ak(c,−∞) exists, and ak(c,−∞) ≥ Q(k)[m].
4. ak(c,∞) = 0 for all k.

5. limk→∞ ak(c, s) = a(c, s) exists and is nonincreasing in c and s. Furthermore,
a(c,−∞) = N∗.

Before we define the asymptotic spreading speed, we give a rough illustration
of the operator defined in (13.57). Let us consider the point s = 0 and some given
element ak. Then the operator will first shift ak to the left by c units; then apply
the growth and dispersal operator Q to it, which presumably will help the species
spread back to the right again; and then evaluate the result at s = 0. If the spreading
to the right is in some sense “larger” than the shift by c to the left, then the value of
ak+1 at s = 0 will be larger than that of ak at s = 0; if it is smaller, then the reverse
will happen. Hence, we could guess that for small enough values of c, the value of
ak(c, 0) will grow with k, but for large values it might not. We could therefore try to
define the spreading speed as the value of c between these two scenarios. This idea
can be used but we have to apply it at s = ∞ rather than s = 0.

We define

c∗ := sup{c | a(c,∞) = N∗} . (13.58)

Then the following can be shown.

Lemma 13.10 (Lemmas 2.4, 2.5, 2.6, and 2.9 in Lui 1989a)

1. a(c, s) ≡ N∗ if and only if c < c∗.
2. a(c,∞) is independent of the choice of m and φi.

3. a(c,∞) = Q[a(c,∞)].
4. a(c,∞) = 0 if c > c∗.
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We can now formulate the theorem that demonstrates that c∗ is indeed the
spreading speed of operator Q; compare Chap. 5, Definition 5.1.

Theorem 13.3 (Theorems 3.1 and 3.2 and Proposition 3.3 in Lui 1989a) Let
(S1)–(S3) as well as the assumptions on K hold. Assume that Q is bounded above
by its linearization at zero, i.e., Q[N] ≤ Q′[0]N. Assume furthermore that near zero,
Q can be bounded below, e.g., Q[N] ≥ (1 − ε)Q′[0]N for ‖N‖ small enough. Pick
0 �= N0 ∈ CN∗ with compact support and define {Nt } through the recursion (13.54).
Then the following hold for any small ε > 0 :

lim sup
t→∞

max
|x|>(c∗+ε)t

Nt (x) = 0 ,

lim inf
t→∞ min|x|<(c∗−ε)t

Nt (x) = N∗ .

Finally, Theorems 3.4 and 3.5 in Lui (1989a) guarantee that the spreading speed
defined in (13.58) can be calculated by the formula in (13.40).

The original results by Lui (1989a) require that the initial condition is sufficiently
large on a sufficiently large domain. When there is no Allee effect in the IDE, the
“hairtrigger effect” (Weinberger 1982) ensures that any nonnegative, nonzero initial
condition will eventually meet these requirements. The original results also require
the kernels to have compact support. This requirement is removed by Liang and
Zhao (2007). The theory formulated by Lui (1989a) and earlier for the scalar case
by Weinberger (1982) is substantially more general than the version presented here.
We mention a few aspects. First, the formulation by Lui (1989a) is based on some
abstract operator Q and its properties. The theory is well suited to applications to
IDEs, as we saw, but not limited to those. For example, it also applies to a time-
one map of (systems of) reaction–diffusion equations. The abstract theory has since
been developed significantly further by several authors, e.g., Liang and Zhao (2010).
Second, the work in Lui (1989a) does not address the question of the existence of
traveling waves treated in the scalar case by Weinberger (1982), but many authors
since then have worked on this problem. A survey on the theory of spreading
speeds and traveling waves for monotone systems of equations can be found in Zhao
(2009). Third, the formulation by Lui (1989a) includes the case of an Allee effect,
which we excluded here in assumption (S3). As we have seen in Chap. 6, the elegant
spread speed formula (13.40) cannot be expected to hold in the presence of an Allee
effect. The asymptotic speed of spread still exists, but it may be negative and, most
important, for a population to actually spread at this speed, its initial density has
to be high enough over a large enough set. For details, see Theorems 3.1 and 3.2
in Lui (1989a). Finally, the general theory is formulated for spreading phenomena
in several spatial dimensions and not only one-dimensional space as presented
here. We then formulate a spreading speed in a given direction and consider planar
traveling waves in that direction. Amor and Fort (2009) formulate an explicit two-
dimensional model, derive the corresponding formula for the spreading speed based
on the linear conjecture, and compare how one- and two-dimensional structured and
unstructured spread rates differ.
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13.9 Further Reading

The aspects of IDEs for stage-structured populations presented in this chapter
are only the basics of the existing theory. Because these structured equations
can describe such rich life histories, the number of modifications and interesting
questions seems almost infinite. The following summaries are meant to point the
interested reader to the existing body of literature.

Dynamics on Bounded Domains

Fagan and Lutscher (2006) apply the theory by Lutscher and Lewis (2004) to a two-
stage model of swift fox (Vulpes velox) population dynamics to estimate the habitat
size required for conservation of the species. This application includes the scenario
that the bounded domain consists of two disjoint subdomains corresponding to two
spatially separated patches of habitat. We will investigate these ideas further in
Chap. 15 when we focus on ways to include spatial variation in IDE models.

A bifurcation theory for systems of IDEs, somewhat more abstract than the
results presented here, is developed independently in Alzoubi (2007, 2010a,b). It
is based on the general theory of global bifurcations by Rabinovitz. Another series
of papers uses the same bifurcation-theoretic approach—in addition to numerical
experiments—and expands the problems studied via IDEs in various directions
(Robertson 2009; Robertson and Cushing 2011, 2012; Robertson et al. 2012). The
authors study the question of spatial segregation between life stages in a flour beetle
population in a homogeneous habitat. They propose a dispersal kernel very different
from the kernels presented here so far. In their approach, the probability that an
individual will move to a certain location depends only on that location and not on
the individual’s initial location. This approach implies that the domain is relatively
small compared to the individual’s dispersal ability, so that individuals can reach any
location from any point within a single dispersal period. Furthermore, the authors
assume that dispersal is density dependent so that the probability of moving to
a certain location decreases with the density of individuals already there. For an
example with juveniles and adults, the authors choose

K(x, y, J,A) = 1

2
sin(x) exp(−D(sjJ (x) + saA(x)) (13.59)

on the domain Ω = [0, π ]. When D = 0, dispersal is density independent.
Increasing parameter D leads to avoidance of areas where the density is high.
It would be an interesting challenge to derive dispersal kernels for avoidance (or
attraction) from mechanistic random-walk models in the spirit of Chap. 7.

When the life cycle of an organism consists of many stages, it is typical for
dispersal to be limited to only a few stages or transitions between stages, as
discussed in Sect. 12.4. Formulating a model with nondispersing stages is fairly
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simple: the corresponding dispersal kernel is a delta distribution; see, e.g., matrix
K in (13.41). Analyzing the dynamic behavior when there are sedentary stages
is much harder. The mathematical reason for this difficulty is that the operators
involved fail to be compact, whereas many of the existing theorems about stability
and bifurcation require compactness. Corresponding results about critical patch-size
and existence of steady states can still be achieved in several cases. For example,
operator Q in (13.7) may not be compact but some iterate of it is compact if
individuals have to go through a dispersal stage after finitely many generations. In
that case, we can apply the theory to the corresponding power of Q. Alternatively,
we can sometimes decompose the operator into the sum of a compact and a nilpotent
operator and obtain the desired results. Details of these two approaches are laid
out in Lutscher and Lewis (2004). Jin et al. (2016) develop a general theory for
population persistence and extinction when the next-generation operator can be
written as the sum of a contraction and a compact operator. This theory applies to
the structured population models studied here, provided that certain conditions hold.
In particular, if we write Q as a sum of those transitions relating to reproduction
and those that relate to survival, then the part that relates to survival only is a
contraction. If all components of the part with reproduction disperse, then that part
of the operator is compact.

Spread on Unbounded Domains

We need to formulate stage-structured models because for many species, individuals
of different life-history stages exist simultaneously. The stage-structured model
projects the densities of all stages per year or some other suitable time unit. It takes
several of these time units to complete a generation. Bateman et al. (2015) introduce
the concept of a “generational spreading speed,” the distance that a population
front covers from one generation to the next. The methods are similar to the ones
introduced above, but the authors use graph reduction techniques to simplify the full
annual stage-structure dynamics to generational dynamics.

One of the biggest challenges for the mathematical theory of spread on
unbounded domains is the loss of compactness of the operator Q in model (13.54)
when some of the dispersal kernels are delta distributions. While the asymptotic
spreading speed can still be defined and can be shown to exist, including the formula
from the linearization, the proof of existence of a traveling wave in Weinberger
(1982) relies on a compactness argument. One way to prove the existence of
traveling waves is to decompose the operator into a compact operator and a
contraction if the model structure allows it. This idea is developed by Le et al.
(2011) and Lutscher and Van Minh (2013).

An abstract, very general theory of spreading speeds and traveling waves in
Banach lattices is developed by Liang and Zhao (2010). The authors replace
the requirement of compactness by the requirement that operator Q decrease the
Kuratowski measure of noncompactness of a set. This theory applies to a wide range
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of types of equations, not only IDEs. Fang and Zhao (2014) use an even weaker
compactness assumption but apply their theory to continuous-time equations only.
A more direct approach for IDEs is carried out by Meyer (2012) and Meyer and
Li (2013). These authors derive a structured IDE with infinitely many stages. Their
model is motivated by a plant species with a seed bank where seeds can lie dormant
for arbitrarily long times. They prove the existence of a spreading speed and of
traveling waves for their model. They also prove the usefulness of the linearization
formula and they consider nonmonotone growth functions. An earlier model with
infinitely many stages in a completely different context was derived by Powell et al.
(2005); see below.

In some cases, a scalar IDE may contain a time delay; i.e., the density at time
t + 1 is determined by the density not only at time t but also at previous times.
Accordingly, operator Q may depend on Nt,Nt−1, . . . . Such equations may be
reformulated as a structured model with nondispersing stages, and the existence
of spreading speeds and traveling waves may be proved in that setting (Lin and Li
2010). These authors also show the stability of the traveling-wave front.

Another dimension for structuring a population is sex. If males and females have
significantly different dispersal behavior, then distinguishing between them could
be important for correctly predicting population spread rates. Miller et al. (2011)
formulate and analyze the first two-sex model for invasions. They derive a heuristic
formula for the spreading speed and use numerical simulations to demonstrate its
validity, but a mathematical proof of its correctness is still missing.

Disease stage may constitute yet another factor of the structure of a population.
For example, Marculis and Lui (2015) formulate a model for green crab with
a juvenile, a susceptible-adult, and an infected-adult stage. The most interesting
aspect of this model in the present context is that there can be a semi-trivial boundary
state where some stages are positive (e.g., juveniles and susceptible adults), whereas
others are zero (e.g., infected adults). The existence of a semi-trivial boundary
stage violates the assumption made by Lui (1989a) that there be a unique positive
equilibrium. Numerical simulations by Marculis and Lui (2015) reveal that the
equations may support stacked waves: a traveling wave that connects the zero
state with the semi-trivial boundary state and a secondary wave that connects that
boundary state with the positive stage. The phenomenon is closely related to the
observation of traveling two-cycles in Sect. 11.4. The analysis of such stacked waves
is still wide open. Bateman et al. (2017) provide more simulation results on stacked
waves in a closely related model for green crab with a castrating parasite.

Applications to Spread and Biological Invasions

We need to formulate stage-structured models because for many species, individuals
of different life history stages exist simultaneously. There are, however, other
scenarios to which this theory applies. For example, Lui (1989b) calculates spread
rates for a population genetics model with equations for allele frequencies in the
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female and male subpopulation. He also applies the theory to an epidemic model
that tracks the progression of a disease between a host and a vector.

A stage-structured model projects the densities of all stages per year or some
other suitable time unit. It takes several of these time units to complete a generation.
Bateman et al. (2015) introduce the concept of a “generational spreading speed,” the
distance that a population front covers from one generation to the next. The methods
are similar to the ones introduced above, but the authors use graph reduction
techniques to simplify the full annual stage-structured dynamics to generational
dynamics.

Neubert and Caswell (2000a) develop the theory and apply it to two herbaceous
flowering plants with six (Dipsacus sylvestris) and eight (Calathea ovandensis)
stages. Among other things, the authors find that the speed of spread is highly
sensitive to long-distance dispersal, a phenomenon that we discussed in Sect. 12.5.
Caswell et al. (2003) expand the theory to use order statistics to calculate sen-
sitivities and apply the techniques to three bird species with three stages each,
namely Pied Flycatcher (Ficedula hypoleuca), Starling (Sturnus vulgaris), and
Sparrowhawk (Accipiter nisus). Neubert and Parker (2004) review the calculation
of spread rates and sensitivity analysis of IDEs for risk analysis of invasive species
and apply it to scotch broom.

Le Corff and Horvitz (2005) use a stage-structured IDE to study the effects on
population spread of the mixed reproductive strategy of a tropical herb (Calathea
micans) with obligate selfed or potentially outcrossed seeds and dispersal by ants.

Jacquemyn et al. (2005) study the spread of perennial tussock grass Molinia
caerulea in a heathland, in particular the effect of fire on the success of this invasive
heathland plant.

Buckley et al. (2005) develop a stage-structured model for a pine invasion in New
Zealand. They represent long- and short-distance dispersal by a mixed dispersal
kernel consisting of a Laplace and a Gaussian kernel. Based on sensitivity analysis,
they give some management recommendations on how to slow the invasion.

Vellend et al. (2006) consider the dual effect of herbivores on the spread of the
forest herb Trillium grandiflorum: deer consume the plant and thereby inhibit its
growth, but they also transport its seed and thereby facilitate its spread. Their seven-
stage IDE model illustrates how the additional dispersal mechanisms outweigh the
negative effects on population growth at low levels of herbivory and can explain
range expansion of the herb at the northern edge of its range.

Garnier and Lecomte (2006) use a stage-structured model for transgenic oilseed
rape with a combination of dispersal kernels accounting for long- and short-distance
dispersal to estimate the spread risk of feral plants. Garnier et al. (2008) measure
probabilities and distances of roadside spread and include them into their previous
model.

Jongejans et al. (2008) use a four-stage model of the thistle (Carduus nutans) and
develop a variance-decomposition method to study the relative impact of population
dynamics and dispersal mechanisms. They employ the WALD model to generate
dispersal kernels that include a distribution of seed release height and hourly wind-
speed data. In a later investigation of the same species, Shea et al. (2010) study
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several management options by comparing sensitivities of the spread rate with
respect to parameters in three different environments, one native and two invaded.
Zhang et al. (2011) follow up on this study by exploring how global warming can
speed up invasions of this thistle. Caplat et al. (2012) also use the WALD model
to generate a dispersal kernel, and they apply it to the invasion of Corsican pine in
New Zealand. Caplat and Buckley (2012), based on Buckley et al. (2005), present a
more general article on management applications of structured IDEs.

Soons and Bullock (2008) generate dispersal kernels from wind tunnel experi-
ments and wind speeds measured in the field. They study in particular the effect
of nonrandom seed release in two heathland plants, Calluna vulgaris and Erica
cinerea. These plants release their seeds only when wind speeds exceed a certain
threshold, and in particular during wind gusts. This mechanism leads to predicted
wave speeds that are twice as high as with temporally random seed release.

Bullock et al. (2008) consider a stage-structured IDE for the rare annual herb
Rhinanthus minor under four different management options (grazing versus cutting)
and calculate corresponding spread rates.

Miller and Tenhumberg (2010) study the spread of the Diaprepes root weevil
(Diaprepes abbreviatus) in Florida with a six-stage IDE. They find, among other
things, that transient speeds of range expansion at the onset of an invasion can be
higher than the asymptotic speed, and that measures to reduce the asymptotic speed
may have little or no effect on transient speeds.

Gruess et al. (2011) formulate a two-stage IDE to evaluate the relative impacts of
adult movement and juvenile dispersal, as well as harvesting, on the effectiveness
of marine reserve networks.

Travis et al. (2011) compare analytical predictions of a stage-structured IDE
with simulation results from an individual-based model for the invasive shrub
Rhododendron ponticum. They argue in particular that the two modeling approaches
should be seen as complementary and used in conjunction since each can inform the
other.

Bullock et al. (2012) use climate modeling and the WALD model to predict future
wind speeds and their variation. They then include this information in mechanistic
dispersal kernels and predict the ability of wind-dispersed plants to keep up with
climate change; see Sect. 12.3.

Matlaga and Davis (2013) use a stage-structured IDE model to estimate the
invasive potential of the engineered bioenergy crop Miscanthus × giganteus.

Lamoureaux et al. (2015) consider a seven-stage IDE for the weedy grass
Nassella trichotoma to evaluate the need for and cost effectiveness of various control
strategies of this plant.

Structured IDEs are also used to model species spread and invasions in advective
environments with asymmetric dispersal. Pringle et al. (2009) generalize some of the
ideas from Sect. 12.2 to structured populations; in particular, they characterize the
critical population growth rate for persistence under biased dispersal. Gharouni et al.
(2015) derive a three-stage model for a green crab invasion with biased dispersal.
Krkos̆ek et al. (2007) fit several dispersal kernels to the northern and southern spread
of sea otters in California. They find that heavy-tailed dispersal kernels that predict
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accelerating invasions fit the observations very well. Smith et al. (2009) reanalyze
the sea otter data but introduce spatial heterogeneity by assuming that population
vital rates differ between the northern and southern directions.

A series of papers develops models and fits data of the spread of the late blight
disease in potatoes and tomatoes and its pathogen Phytophthora infestans. The
quantity of interest is the density of lesions caused by the pathogen. These lesions
are structured by age, and their area increases with age. Lesions “disperse” through
spores that are moved by wind or splatter with rain drops. The model development
with infinitely many stages is presented by Powell et al. (2005). Several other papers
are parameterized by field experiments and study the effect of host plant diversity,
spatial scale of heterogeneity, and weather (Skelsey et al. 2005, 2009a,b, 2010).

On a much larger scale, Heavilin and Powell (2008) model the spread of pine
tree (Pinus contorta Douglas) death due to attacks from mountain pine beetle. They
structure trees as juvenile (which are not susceptible), susceptible, and infected.
Infections spread through beetle reproduction and flight. This model exhibits an
Allee effect, as a susceptible tree can fend off a small enough number of beetles. The
authors then obtain parameter estimates through a maximum likelihood procedure.



Chapter 14
Two Interacting Populations

Abstract Most biological populations do not exist in isolation but interact with
other species in many ways that may increase or decrease their reproductive ability,
affect their survival, or alter their dispersal behavior. Species interactions can lead
to phenomena such as sustained population oscillations or competitive exclusion.
In this chapter, we present some of the spatial aspects of population interaction
in the context of IDEs. We begin with a brief background on nonspatial models
before we move to study critical patch-sizes for predator and prey systems. Some of
the most surprising and beautiful results in this section relate to dispersal-induced
pattern formation in these systems. Spatial invasion dynamics of predator and prey
show rich and complex behavior. We then present the phenomenon of anomalous
spreading speeds in mutualism systems. Finally, we consider several aspects of
persistence and invasion of competing species.

14.1 Species Interactions

Our treatment of population dynamics so far has considered only a single species.
In reality, species often interact with others, and the interactions can be beneficial
or detrimental for any of the species involved. The two types of interaction that
are typically thought to be most influential in shaping biological communities are
predation, where one species benefits from the presence of the other but the other
suffers, and competition, where both species suffer from the presence of the other.

Predators benefit from their prey, whose population growth rate they reduce.
Arguably the most salient feature of predator–prey interactions is that they provide
a mechanism for sustained population oscillations in the absence of external
forcing or stochasticity; see, e.g., Murray (2001) or Kot (2001). A special class of
predator–prey (or consumer–resource) relationships are insect host–parasitoid sys-
tems (Hassell 1978). Whereas a predator usually kills prey for its own consumption,
a parasitoid uses its host for food and shelter for its offspring but does not directly
consume the host. It is the offspring that consumes the host (Kot 2001). Insect
host–parasitoid systems often have discrete, nonoverlapping generations, e.g., many
wasp species and their hosts or the caterpillars of many moth and butterfly species.
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Nonspatial difference equations have a distinguished history in modeling these
population dynamics, starting from the pioneering work by Nicholson and Bailey
(1935). More recently, IDE models have been used to understand the importance of
space and dispersal on outbreak dynamics of forest insects (Cobbold et al. 2005).

Similar species often compete for resources, mutually inhibiting each other’s
growth. A famous early result in competition theory is the “competitive exclusion
principle,” which states that no two species can stably coexist on a single limiting
essential resource; see, e.g., Murray (2001). In reality, we observe a great variety
of similar species stably coexisting while competing for relatively few limiting
resources, e.g., plants that compete for water and nutrients (Tilman 1982). Several
proposed mechanisms that could resolve this paradox are based on spatial con-
siderations (Tilman 1982). Nonspatial discrete-time models for competition have
been studied by many, including early works by Nicholson (1954) and May (1973).
IDEs for competing species were originally formulated and analyzed by Allen et al.
(1996) and Hart and Gardner (1997) and have since received major theoretical
attention; see, e.g., Lewis et al. (2002).

Mutualism is a form of interaction where each species is beneficial to the growth
of the other(s). Compared to competition and predation, the systematic study of
(mutually) facilitative interactions in ecological theory arose much later and is
still much less developed (Boucher 1982; Kot 2001). Mathematically, however, the
structure of models with mutual facilitation is closely related to that of the stage-
structured models that we saw in Chap. 13 and—in the special case of only two
species—also to competition.

In this chapter, we study some aspects of the spatial dynamics of two interacting
populations in IDEs. We review some background theory about nonspatial models.
This material can be found in many textbooks on mathematical ecology, e.g., Allen
(2006), Edelstein-Keshet (2005), or Kot (2001). Then we select various topics from
spatial dynamics and consider how spatial aspects affect these types of interactions.

14.2 Nonspatial Models for Two Species

We denote by Nt and Pt the densities of two interacting species in generation t.

We model their respective growth functions between generations by nonnegative,
smooth functions F and G. Then we obtain the general planar discrete-time
dynamical system

Nt+1 = F(Nt , Pt ) , Pt+1 = G(Nt , Pt ) . (14.1)

We recover the respective single-species models as Nt+1 = F(Nt , 0), and similarly
for Pt . Since we consider the two species to be different, we have the additional
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property that, in the absence of immigration, F(0, P ) = G(N, 0) = 0. This
condition reflects the fact that one species cannot create another. While the juvenile–
adult model for a single species from Chap. 13 can be written in the general form
(14.1), it does not possess this latter property.

We classify the kind of interaction according to how one species affects the
growth function of the other. Specifically, we speak of

• predation of N by P if ∂F
∂P

< 0 and ∂G
∂N

> 0 ,

• (inter-specific) competition between N and P if ∂F
∂P

< 0 and ∂G
∂N

< 0 , or
• mutual facilitation between N and P if ∂F

∂P
> 0 and ∂G

∂N
> 0 .

We begin analyzing the qualitative behavior of (14.1) with the standard steps of
determining fixed points by solving the equations

N∗ = F(N∗, P ∗) , P ∗ = G(N∗, P ∗) (14.2)

and investigating their local stability via the eigenvalues of the Jacobian matrix,

J =
⎡
⎣

∂F
∂N

∂F
∂P

∂G
∂N

∂G
∂P

⎤
⎦ , (14.3)

evaluated at the fixed point. A fixed point is locally asymptotically stable if both
eigenvalues of J are inside the unit circle, which, according to the Jury conditions,
is equivalent to the following three conditions for the trace and determinant of J

(Kot 2001):

1 − trJ + det J > 0 ,

1 + trJ + det J > 0 ,

1 − det J > 0 .

(14.4)

The Jury conditions are also helpful in determining the kind of bifurcation
that may arise if model parameters are varied and cause a change in the stability
properties of a fixed point (Kot 2001). If the first of these conditions is violated
at a bifurcation point, we have an eigenvalue of +1. In the context of population
dynamics, the resulting bifurcation is often a transcritical bifurcation. If the second
condition is violated, we have an eigenvalue of −1. We may expect a flip bifurcation
in this case. Violating the third condition indicates eigenvalues with nonzero
imaginary part. This is a necessary condition for a Naimark–Sacker bifurcation, the
discrete version of a Hopf bifurcation. This latter bifurcation can produce oscillating
solutions that are frequently found in the dynamics of a predator and its prey. We
begin our exploration of coupled IDEs with such a system.
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14.3 Critical Patch-Sizes for Predator–Prey Systems

Insect host–parasitoid systems constitute the earliest and most important discrete-
time predator–prey models, dating back to the work of Nicholson and Bailey (1935);
see Kot (2001) for a comprehensive overview. The Nicholson–Bailey model is
highly unstable. In fact, every initial population will eventually collapse. Several
stabilizing mechanisms have been proposed and studied, including spatial dispersal;
see Adler (1993) for a discussion of this topic and Allen et al. (2001) for a discrete-
space simulation model. Cobbold et al. (2005) present the first IDE model for
host–parasitoid dynamics in continuous space to determine the effects of patch size
on these populations. Their model is parameterized for the forest tent caterpillar
(Malacosoma disstria) and includes a detailed discussion of the timing of parasitism
in the life cycle of the caterpillar. Bramburger and Lutscher (2019) study a predator–
prey model with the cosine kernel from (3.24) via reduction to a finite-dimensional
system. The two models make qualitatively similar predictions about the influence
of patch size and spatial dispersal on the population dynamics. Hence, these insights
are quite robust. We illustrate the theory and results with a model from Kot (1989),
which is simpler than the one by Cobbold et al. (2005). Related models appear in
Neubert and Kot (1992) and Wei and Lutscher (2013).

A standard model for prey (host, Nt ) and predator (parasitoid, Pt ) reads

Nt+1 = Nte
r(1−Nt )e−ρPt , Pt+1 = Nt

(
1 − e −ρPt

)
, (14.5)

with parameters r, ρ ≥ 0 (Beddington et al. 1975); but see May et al. (1981) for its
criticism. In the absence of the predator, the prey grows according to the (scaled)
Ricker function in (2.19). A fraction, exp(−ρP ), of prey escapes predation, whereas
the remaining fraction supports predator growth. This formulation represents a ran-
dom search pattern by the predator (May 1973). The occurrence of the exponential
functions makes explicit calculations difficult. However, the linear approximation
(1 − e −ρP ) ≈ ρP gives a qualitatively similar system where explicit calculations
are possible. With this approximation and some scaling, we arrive at the model

Nt+1 = F(Nt , Pt ) = Nte
r(1−Nt−Pt ) , Pt+1 = G(Nt , Pt ) = ρNtPt ,

(14.6)
which is one of a suite of models studied by Neubert and Kot (1992).

System (14.6) has up to three biologically relevant steady states: the trivial
extinction state (0, 0), the semi-trivial prey-only state (1, 0), and the coexistence
state

(N∗, P ∗) =
(

1

ρ
, 1 − 1

ρ

)
. (14.7)

The trivial state is unstable. The prey-only state is stable against perturbations in N

as long as 0 < r < 2 and loses stability in a flip bifurcation with a two-cycle
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Fig. 14.1 Illustration of the coexistence state and its stability region of the nonspatial predator–
prey model (14.6). Left: The solid (dashed) curve shows the prey (predator) densities from (14.7).
Right: The steady state loses stability in a transcritical bifurcation along the dashed part of the
boundary, in a flip bifurcation at the dash-dot curve, and in a Naimark–Sacker bifurcation along
the solid line.

emerging at r = 2. It is stable against perturbations in P as long as ρ < 1.

When ρ > 1, the prey-only state becomes unstable, the predator can invade, and
the coexistence state is biologically meaningful.

The Jacobian matrix at the coexistence state is given by

J =
[

1 − r/ρ −r/ρ

ρ − 1 1

]
. (14.8)

If ρ > 1, then the first Jury condition in (14.4) is satisfied. The last Jury
condition is satisfied when 0 < ρ < 2. At ρ = 2, we expect a bifurcation to
sinusoidally oscillating solutions. These indicate the onset of predator–prey cycles.
The remaining Jury condition holds if 0 < r < 4ρ/(3 − ρ). When r = 4ρ/(3 − ρ),
we expect a flip bifurcation. This scenario reflects the overcompensatory dynamics
of the Ricker function for the prey alone and can lead to extinction of the predator
(Neubert and Kot 1992). This stability analysis is summarized in Fig. 14.1.

We now introduce dispersal into the predator–prey model in (14.6) and study the
effects of patch-size and dispersal ability on the existence and stability of steady
states. We denote by Ω the spatial domain of interest and by KN and KP the
dispersal kernels of prey and predator, respectively. As in Sect. 3.3, we choose the
fixed one-dimensional domain Ω = [−1/2, 1/2] and scale the dispersal kernels
accordingly. The resulting equations are

Nt+1(x) =
∫

Ω

KN(x, y)F (Nt (y), Pt (y))dy ,

Pt+1(x) =
∫

Ω

KP (x, y)G(Nt (y), Pt (y))dy .

(14.9)

We consider the trivial extinction state, the semi-trivial prey-only state, and the
coexistence state separately.
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The Extinction State

The extinction state (0, 0) is a steady state of the model. The linearization at this
state yields the eigenvalue problem

λφ(x) = R

∫
Ω

KN(x, y)φ(y)dy ,

λψ(x) = 0 ,

(14.10)

with R = ∂F/∂N(0, 0). Since the solution for the second equation is trivial, the
stability of the extinction state reduces to the stability problem for a single species
that we studied in Chap. 3. In particular, there is a critical patch-size, above which
the prey population can grow when rare. If the prey disperses according to the
Laplace kernel with parameter aN > 0, then the critical patch-size for persistence
of the prey is given by (3.14), i.e.,

L∗
N = 2

aN

√
R − 1

arctan

(
1√

R − 1

)
. (14.11)

The Prey-Only State

When the extinction state is unstable, the system possesses a prey-only steady state
(N∗(x), 0), at least under some suitable conditions on the growth function F(N, 0);
see Chap. 4. The linearization at this state leads to the eigenvalue problem

λφ(x) =
∫

Ω

KN(x, y)[FN(N∗(y), 0)φ(y) + FP (N∗(y), 0)ψ(y)]dy , (14.12)

λψ(x) =
∫

Ω

KP (x, y)GP (N∗(y), 0)ψ(y)dy , (14.13)

where FN = ∂F/∂N , and similarly for FP and GP . We note that for a predator–
prey model, we typically have GN(·, 0) = 0. This property reflects the fact that the
predator cannot grow in the absence of the prey.

We could study stability conditions with respect to perturbations in the prey only,
i.e., perturbations of the form (φ, 0). This approach would lead to the single-species
stability considerations from Chap. 4. Instead, we are interested in perturbations
with respect to the predator so that we can answer the question of when the predator
can persist in the system. We will therefore assume that the prey-only state is stable
with respect to perturbations in the prey only. In particular, we assume that all the
eigenvalues of (14.12) with ψ = 0 are strictly inside the unit circle.
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Since the system decouples, it suffices to study (14.13) separately. If λ is
an eigenvalue of (14.13), the Fredholm alternative (Keener 2000) guarantees the
existence of a solution to (14.12) provided λ is not also an eigenvalue of Eq. (14.12)
with ψ = 0. Near the stability boundary |λ| = 1, this condition is satisfied since we
assumed that the prey-only state is stable with respect to prey-only perturbations.

The eigenvalue problem

λψ(x) =
∫

Ω

KP (x, y)ρN∗(y)ψ(y)dy (14.14)

cannot be solved explicitly because of the unknown function N∗. However, the
integral operator is positive, so that a dominant eigenvalue exists; it determines the
stability of the state (N∗, 0). Numerical results by Cobbold et al. (2005) indicate that
there is a critical patch-size, L∗

P > L∗
N , above which the predator can persist in the

system. Similar results can be found in Bramburger and Lutscher (2019). Since N∗
is positive, one can use the change of variables in (3.41) and arrive at the equivalent,
symmetric eigenvalue problem

λψ̃(x) = ρ

∫
Ω

√
N∗(x)KP (x, y)

√
N∗(y)ψ̃(y)dy , (14.15)

provided K is symmetric. This symmetrized version could be more convenient for
numerical procedures (Kot and Phillips 2015).

For explicit but approximate calculations, we obtain a tractable, spatially implicit
model by applying the averaging ideas from Chap. 9 (Cobbold et al. 2005). The
integral operator in (14.14) can be bounded below and above by replacing N∗(y)

with min(N∗(y)) and max(N∗(y)), respectively. Accordingly, the eigenvalue in
(14.14) is bounded below and above by the eigenvalues of the respective resulting
operators. Hence, by continuity, there is a constant N̄ ∈ [min(N∗(y)), max(N∗(y))]
so that the eigenvalue in (14.14) is exactly the eigenvalue of the operator with N∗(y)

replaced by N̄ . We use the average dispersal success approximation, N̄ap, from
(9.11) as an approximation for N̄ .

The explicit expression is

N̄ap = S̄N N̄aper(1−N̄ap) or N̄ap = 1 + ln S̄N

r
, (14.16)

where S̄N is the average dispersal success (9.3) for the prey species. Since S̄N < 1,
we have N̄ap < 1. The eigenvalue problem approximating (14.14) is then

λψ(x) = ρN̄ap

∫
Ω

KP (x, y)ψ(y)dy . (14.17)
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Fig. 14.2 Comparison of the approximate (curves) and exact (stars) steady-state average densities
of prey (above) and predator (below). In the absence of the predator (dashed curve in upper
plot), the prey density increases with domain length. The approximation by the average dispersal
success is very close. When the domain is long enough for the predator to persist, the prey density
decreases as the predator density increases and the upper branch of the prey density is unstable. The
approximation is less accurate. The vertical lines denote the critical patch-size for prey persistence
(dashed) and for predator persistence (dash-dot) according to the dispersal success approximation.
Parameters are r = 1, ρ = 2, aN = 5, and aP = 10.

If KP is a Laplace kernel, we obtain an explicit (approximate) critical patch-size for
the predator as

L∗
P = 2

aP

√
ρN̄ap − 1

arctan

⎛
⎝ 1√

ρN̄ap − 1

⎞
⎠ . (14.18)

We compare the exact and approximate densities and critical patch-sizes for prey
and predator in Fig. 14.2; see also Fig. 6 in Cobbold et al. (2005).

The Coexistence State

When the domain is large enough to support predator and prey, we ask whether
the coexistence state, (N∗(x), P ∗(x)), is stable or unstable and how patch-size
affects the transition to predator–prey oscillations. The eigenvalue problem at the
coexistence state is

λφ(x) =
∫

Ω

KN(x, y)[F ∗
Nφ(y) + F ∗

P ψ(y)]dy ,

λψ(x) =
∫

Ω

KP (x, y)[G∗
Nφ(y) + G∗

P ψ(y)]dy ,

(14.19)

where F ∗
N is the usual partial derivative evaluated at the coexistence state, and the

other expressions are similar; see (14.13). This eigenvalue problem is much harder
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to study than the ones before because the two equations are fully coupled. We expect
nonreal eigenvalues to appear. More important, a new phenomenon arises in that the
eigenfunction of an eigenvalue at a bifurcation point need not be of one sign when
the domain is large relative to dispersal distances. In that case, an instability can lead
to spatial pattern formation. We briefly treat the simpler case of a relatively small
domain here and devote the next section to studying pattern formation.

Aside from using numerical methods, we can calculate approximate stability
conditions for the coexistence state from the average dispersal success approxima-
tion (Cobbold et al. 2005) or exact conditions by using the separable cosine kernel
(Bramburger and Lutscher 2019). We outline some approximation ideas here.

The average dispersal success approximation of the IDE system in (14.9) with
predator–prey dynamics (14.6) is (Cobbold et al. 2005)

Nt+1 = S̄NNte
r(1−Nt )e−ρPt , Pt+1 = S̄P Nt

(
1 − e −ρPt

)
, (14.20)

where S̄N and S̄P are the average dispersal successes of the two species, respec-
tively. The approximation of the positive steady state is given by

N̄ap = 1

ρS̄P

, P̄ap = 1 − 1

ρS̄P

+ ln(S̄N )

r
. (14.21)

The stability conditions of the coexistence state for this spatially implicit model
according to (14.4) are

1 − 1

ρS̄p

+ ln(S̄N )

R
> 0 , 4 + ln(S̄N )+ r − 3r

ρS̄P

> 0 , ln(S̄N )+ r − 2r

ρS̄P

> 0 .

These conditions are the same as if we had substituted the steady-state values
in (14.19) by their average dispersal success approximations and then used the
eigenvalue approximation ideas from Sect. 9.3.

In Fig. 14.3, we illustrate how the spatially implicit stability conditions with
dispersal loss from the domain differ from the nonspatial condition in Fig. 14.1. We
also illustrate how the spatial system can have sustained oscillations of the (average)
population densities. We see that dispersal loss requires a higher predation rate for
the predator to persist in the system and allows for stable coexistence at a higher
predation rate as well. When prey growth is very small (r ≈ 0), dispersal loss from
the bounded domain makes it hard for prey and predator to persist.

14.4 Pattern Formation in Predator–Prey Systems: Theory

The phenomenon of pattern formation or, more precisely, diffusion-driven insta-
bility, was discovered by Turing in a reaction–diffusion equation for a chemical
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Fig. 14.3 Left: Comparison of the stability region for the spatially implicit predator–prey model
according to the average dispersal success approximation (thick) and the nonspatial model (thin)
as in Fig. 14.1. Dashed lines correspond to the transcritical bifurcation, dash-dot lines to the flip
bifurcation, and solid lines to the Naimark–Sacker bifurcation. Parameter values are SN = 0.95,
SP = 0.9. Stars correspond to parameter values used in the plots in the right. Right: Time series
of the averaged densities of prey (solid) and predator (dashed) of the spatially explicit IDE system
on a domain of length one. Each species disperses according to a Laplace kernel with parameters
aN = 5 and aP = 10, so that the average dispersal successes are the same as those in the plot on
the left. Population dynamics parameters are r = 1, ρ = 2.1 (top), and ρ = 2.4 (bottom).

reaction (Turing 1952). It has since been studied in many applications, from
embryo development to animal coat patterns; see Murray (2002) for an excellent
introduction to the mathematical theory, biological background, and implications.
The basic setup requires two interacting species: one is an “activator,” which
enhances growth, and the other is an “inhibitor,” which represses growth.1

In a nonspatial (well-mixed) scenario, these two species may coexist at a
(globally) stable steady state. In a spatial setting, this stable state may become
unstable if the activator acts (disperses) on a much shorter range than the inhibitor.
If a small perturbation from the steady state arises, the growth of the activator occurs
locally (since it does not spread far) before the inhibitor (which disperses far) can
catch up and keep the activator in check. As a result, the system reaches a new
stable steady state with spatially varying densities. Besides the necessary activator–
inhibitor structure,2 dispersal-driven instability requires that the dispersal ranges of
the two species differ by at least an order of magnitude.

Spatial patterns of various extent and several characteristics are frequently
observed in spatial ecology. Since prey activate predator growth and predators

1Strictly speaking, there are four possibilities: a species can activate itself and the other, it can
inhibit itself and the other, it can activate itself and inhibit the other, or it can inhibit itself and
activate the other. Classically, we speak of an activator (inhibitor) if the species activates (inhibits)
itself and the other. An activator–inhibitor system is one that consists of an activator and an
inhibitor in the classical sense.
2Diffusion-driven instability can also arise when one species activates itself and inhibits the other,
and the other species inhibits itself and activates the other. This combination is sometimes referred
to as positive feedback.
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inhibit prey growth, prey and predator are candidates for ecological analogues to
activator and inhibitor, respectively. The difficulty is that while their effect on the
other species is clear from the biological interaction, their effect on themselves
varies, depending on the population dynamics assumptions made. In particular,
the classical MacArthur–Rosenzweig model does not support dispersal-driven
instabilities (Okubo and Levin 2001). Several fairly strong assumptions, such as an
Allee effect in the prey and self-limitation in the predator, are required for predator–
prey equations to show activator–inhibitor structure (Murray 2002). It is also not
easy to confirm that the dispersal abilities of a prey and a predator differ by an
order of magnitude. For those reasons, the theory of dispersal-driven instabilities
was rarely applied in ecology. More recently, empirical observations (Rietkerk and
van de Koppel 2008) and theoretical results (Fasani and Rinaldi 2011; Alonso et al.
2002) have brought this mechanism of pattern formation back into ecological theory.

Much of the theory of dispersal-driven instabilities carries over from reaction–
diffusion equations to IDEs (Kot and Schaffer 1986; Kot 1989; Neubert et al. 1995).
It turns out that the conditions for pattern formation in IDEs are less strict than in
reaction–diffusion equations if the dispersal behavior (represented by the dispersal
kernel) has particular characteristics. In addition, novel bifurcation phenomena arise
in IDEs that cannot be observed in reaction–diffusion equations. We present some
of the main results and observations from Neubert et al. (1995).

Since we want the domain to be large with respect to the dispersal scale of at
least one of the species, we consider the IDE on the entire real line, thereby also
simplifying the analysis considerably. Hence, we begin with the system

Nt+1(x) =
∫ ∞

−∞
KN(x, y)F (Nt (y), Pt (y))dy ,

Pt+1(x) =
∫ ∞

−∞
KP (x, y)G(Nt (y), Pt (y))dy .

(14.22)

We will show in the process that pattern formation requires N and P to have a
predator–prey relation.

We assume that the nonspatial model has a coexistence state (positive steady
state)

N∗ = F(N∗, P ∗) , P ∗ = G(N∗, P ∗) (14.23)

that is locally asymptotically stable; i.e., the Jacobian matrix,

J =
⎡
⎣

∂F
∂N

∂F
∂P

∂G
∂N

∂G
∂P

⎤
⎦

|(N∗,P ∗)

=
[
a11 a12

a21 a22

]
, (14.24)



242 14 Two Interacting Populations

satisfies the Jury conditions in (14.4):

1 − (a11 + a22) + (a11a22 − a12a21) > 0 ,

1 + a11 + a22 + (a11a22 − a12a21) > 0 ,

1 − (a11a22 − a12a21) > 0 .

(14.25)

Since we are working on the entire real line, the spatially constant functions
N∗(x) = N∗, P ∗(x) = P ∗ constitute a steady state of the spatial equations (14.22).
The linearization at this state gives the equations

nt+1(x) =
∫ ∞

−∞
KN(x − y)[a11nt (y) + a12pt (y)]dy ,

pt+1(x) =
∫ ∞

−∞
KP (x − y)[a21nt (y) + a22pt (y)]dy .

(14.26)

Taking Fourier transforms as in (5.9) results in a two-dimensional system for each
mode ω separately, namely

[
n̂(ω)

p̂(ω)

]
t+1

=
[
K̂N(ω) 0

0 K̂P (ω)

] [
a11 a12

a21 a22

] [
n̂(ω)

p̂(ω)

]
t

= K̂J

[
n̂(ω)

p̂(ω)

]
t

, (14.27)

where J is the Jacobian matrix from (14.24) and K̂ is the diagonal matrix of the
Fourier transforms of the dispersal kernels. The Fourier transform of a dispersal
kernel is simply the moment-generating function from (5.15) evaluated at a purely
imaginary argument, i.e., K̂(ω) = M(iω). The stability conditions analogous to
(14.25) for system (14.27) are

1 − (K̂Na11 + K̂P a22) + K̂NK̂P (a11a22 − a12a21) > 0 ,

1 + (K̂Na11 + K̂P a22) + K̂NK̂P (a11a22 − a12a21) > 0 ,

1 − K̂NK̂P (a11a22 − a12a21) > 0 ,

(14.28)

where K̂N , K̂P depend on ω.

Before we continue, we list a few observations and make a few simplifications
with regard to the dispersal kernels. For ω = 0, matrix K̂ is the identity matrix,
so that conditions (14.28) reduce to (14.25). By assumptions and continuity, the
coexistence state is stable with respect to perturbations of small |ω|. The Fourier
transform of a symmetric dispersal kernel is real valued. We shall only consider
symmetric kernels here. Since the dispersal kernel is a probability density function,
the absolute value of its Fourier transform cannot exceed unity. Hence, we have
−1 ≤ K̂(ω) ≤ 1. It turns out that the signs of the Fourier transforms play a crucial
role in the conditions for pattern formation.

We say that pattern formation arises if least one of the conditions in (14.28) for
the spatial system is violated, while the conditions in (14.25) for the nonspatial
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system are satisfied. We derive these necessary conditions here, independent of the
particular dispersal kernels. In the next section, we illustrate sufficient conditions
that will depend on the details of the dispersal behavior. As before, we expect
different patterns to emerge from an instability depending on which of the three
conditions is violated. If the first condition is violated, we speak of a “plus-one”
bifurcation, and we expect a stable pattern to emerge. In the case of the second
condition, we speak of a “minus-one” bifurcation, and we expect a spatial pattern
with a temporal two-cycle. In the last case, we speak of a Naimark–Sacker or Hopf
bifurcation.

As a general condition, we find the requirement

a11 + a22 < 1 + det J < 2 (14.29)

by combining the first and third conditions in (14.25). For a potential instability, we
consider the three conditions in (14.28) separately.

Proposition 14.1 If 0 < K̂N, K̂P ≤ 1, then the necessary conditions for a plus-one
bifurcation are

a12 a21 < 0 and (a11 − 1)(a22 − 1) < 0 . (14.30)

Proof Condition (14.29) can be satisfied if a11, a22 ≤ 1 and at least one of these
two inequalities is strict. If, however, a11 > 1, then necessarily a22 < 1 and vice
versa. We suppose now that inequalities (14.25) are satisfied but the first inequality
of (14.28) is reversed, so that

1 − (K̂Na11 + K̂P a22) + K̂NK̂P (a11a22 − a12a21) < 0 . (14.31)

Since K̂NK̂P ≥ 0, we can substitute a11a22 − a12a21 > a11 + a22 − 1 from (14.25)
and rearrange terms to find

K̂N(1 − K̂P )a11 + K̂P (1 − K̂N)a22 > 1 − K̂NK̂P . (14.32)

If this inequality is satisfied for some a11, a22 ≤ 1, then it is satisfied for aii = 1.

However, substituting aii = 1 gives the condition

K̂P (1 − K̂N) > 1 − K̂N , (14.33)

which is impossible by the bounds on K̂P . Therefore, we cannot have a11, a22 ≤ 1
but must instead have (a11 − 1)(a22 − 1) < 0, which is the second condition in
(14.30). If we expand this condition, we find

1 − (a11 + a22) + (a11a22 − a12a21) + a12a21 < 0 . (14.34)
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Comparing with the first inequality in (14.25), we see that necessarily a12a21 < 0.

��
The first condition in (14.30) indicates that the two species have to act as predator

and prey for pattern formation to occur. The second condition states that one species
has to self-activate and the other self-inhibit. Hence, the conditions closely follow
the conditions in reaction–diffusion systems (Murray 2002). A different set of
conditions arises when the Fourier transforms of both kernels are negative.

Proposition 14.2 If −1 ≤ K̂N , K̂P < 0, then the necessary conditions for a plus-
one bifurcation are

a12 a21 < 0 and (a11 + 1)(a22 + 1) < 0 . (14.35)

As before, the two species have to act as predator and prey. The second condition is
different from the classical condition above, but again, one of the two species has to
be self-destabilizing with aii < −1. The proof of Proposition 14.2 is analogous to
the previous proof; for details, see Kot (1989). Instead, we look at the mixed case.

Proposition 14.3 If 0 < K̂N ≤ 1 and −1 ≤ K̂P < 0, then the necessary
conditions for a plus-one bifurcation are

a12 a21 < 0 and (a11 > 1 or a22 < 1) . (14.36)

If the signs of the Fourier transforms are exchanged, i.e., 0 < K̂P ≤ 1 and −1 ≤
K̂N < 0, then the indices in condition (14.36) are also exchanged.

These conditions are much less stringent than in the previous two cases. We provide
the detailed proof following Neubert et al. (1995).

Proof We suppose that the first inequality in (14.28) is violated. In the first step, we
prove that we necessarily have

K̂Na11 + K̂P a22 > K̂N + K̂p . (14.37)

We suppose that the opposite holds. Then

(1 − K̂N)(1 − K̂P ) = 1 − (K̂N + K̂P ) + K̂NK̂P

≤ 1 − (K̂Na11 + K̂P a22) + K̂NK̂P

< 1 − (K̂Na11 + K̂P a22) + K̂NK̂P det J < 0 . (14.38)

The second-last inequality follows from the stability condition det J < 1. However,
by assumption on the Fourier transforms, we have (1 − K̂N)(1 − K̂P ) > 0. Hence,
(14.37) must hold. Rearranging this condition gives

K̂N(a11 − 1) + K̂P (a22 − 1) > 0 . (14.39)
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This condition cannot be satisfied if a11 < 1 and a22 > 1. Hence, one of these two
inequalities must be reversed, which gives the second condition in (14.36).

Finally, to show that only a predator–prey relationship (i.e., a12 a21 < 0) will
allow for the first inequality in (14.28) to be reversed, we define the function

I (a11, a22) = 1 − (K̂Na11 + K̂P a22) + K̂NK̂P (a11a22 − a12a21) . (14.40)

Setting the partial derivatives to zero, we find that an extremum can occur only
at (a∗

11, a
∗
22) = (1/K̂N , 1/K̂P ). To investigate the nature of the critical point, we

compute the Hessian matrix

[
0 K̂NK̂P

K̂NK̂P 0

]
. (14.41)

At the critical point, this matrix is positive definite, so that the point is a minimum.
The function value at this minimum is I (a∗

11, a
∗
22) = −K̂NK̂P a11 a22. Hence, the

function assumes negative values only if a11 a22 < 0. ��
The case of a minus-one bifurcation is similar to the case above. We summarize

the results from Neubert et al. (1995).

Proposition 14.4

1. If 0 < K̂N, K̂P ≤ 1, then the necessary conditions for a minus-one bifurcation
are

a12 a21 < 0 and (a11 + 1)(a22 + 1) < 0 . (14.42)

2. If −1 ≤ K̂N , K̂P < 0, then the necessary conditions for a minus-one bifurcation
are

a12 a21 < 0 and (a11 − 1)(a22 − 1) < 0 . (14.43)

3. If 0 < K̂N ≤ 1 and −1 ≤ K̂P < 0, then the necessary conditions for a minus-
one bifurcation are

a12 a21 < 0 and (a11 < 1 or a22 > 1) . (14.44)

Finally, we show that no Naimark–Sacker bifurcation can occur.

Proposition 14.5 If inequalities (14.25) are satisfied, then the third inequality of
(14.28) automatically holds.

Proof Adding the first two inequalities in (14.25) results in det J > −1. Together
with the third inequality there, we find | det J | < 1. Since |K̂N |, |K̂P | ≤ 1, we have

|K̂NK̂P det J | ≤ | det J | < 1. (14.45)
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Table 14.1 Summary of necessary conditions for pattern formation.

0 < K̂N, K̂P ≤ 1 −1 ≤ K̂N , K̂N < 0 −1 ≤ K̂P < 0 < K̂N ≤ 1

Plus-one (a11 − 1)(a22 − 1) < 0 (a11 + 1)(a22 + 1) < 0 a11 > 1 or a22 < 1

Minus-one (a11 + 1)(a22 + 1) < 0 (a11 − 1)(a22 − 1) < 0 a11 < 1 or a22 > 1

The predator–prey relationship a12a21 < 0 is necessary in all cases. In the case −1 ≤ K̂N < 0 <

K̂P ≤ 1, the conditions for plus-one and minus-one are simply reversed from the ones stated in the
last column

Hence, the third inequality of (14.28) holds. ��
In summary, pattern formation requires a predator–prey relationship, i.e.,

a12a21 < 0. If the Fourier transforms of the kernels have the same sign, then the
pattern formation conditions are similar to those for reaction–diffusion equations; if
they are of opposite sign, then the conditions are much less stringent. We list these
conditions in Table 14.1. We illustrate the conditions and resulting patterns in the
next section.

14.5 Pattern Formation in Predator–Prey Systems:
Illustration

In this section, we illustrate the theoretical results from the previous section and
explore how dispersal behavior and population dynamics interact to generate spatial
patterns of various forms. We present three examples: the first two are based on the
predator–prey model in (14.6). They are a plus-one bifurcation in the absence of a
self-activator and a minus-one bifurcation (see definitions in the preceding section).
Both of these have no equivalent in reaction–diffusion equations. The third example
is a discrete-time analogue to the known reaction–diffusion predator–prey model
with Allee effect of the prey and self-limitation in the predator (Murray 2002).

To find sufficient conditions for patterns to emerge, we need to choose specific
dispersal kernels for the two species. Following Neubert et al. (1995), we shall use
various combinations of the Laplace kernel

K(x) = a

2
e−a|x| with K̂(ω) = a2

a2 + ω2
(14.46)

and the (special case of the) double gamma kernel (see also Table 3.1)

K(x) = b2

2
|x|e−b|x| with K̂(ω) = b2(b2 − ω2)

(b2 + ω2)2 (14.47)

for our illustrations. Whereas the Fourier transform of the Laplace kernel is positive,
the Fourier transform of the double gamma kernel is negative for ω > b. According
to the results from the preceding section, we consider several cases.
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The Plus-One Bifurcation

We return to the example from (14.6) with the nonspatial population dynamics

Nt+1 = Nte
r(1−Nt−Pt ) and Pt+1 = ρNtPt . (14.48)

The Jacobian matrix at the steady state (N∗, P ∗) = (1/ρ, 1 − 1/ρ) has diagonal
entries a11 = 1 − r/ρ and a22 = 1; see (14.8). Hence, there is no plus-one
bifurcation when both kernels have positive Fourier transforms (Proposition 14.1).
There can be a plus-one bifurcation when both kernels have negative Fourier
transforms and r/ρ > 2 (Proposition 14.2) or when the two Fourier transforms
have opposite signs with K̂N < 0 < K̂P (Proposition 14.3). We take a closer look
at the latter case.

We choose the Laplace kernel (with parameter a) for the predator and the double
gamma kernel (with parameter b) for the prey. Since the Fourier transforms have
opposite signs if ω > b, we expect that by choosing b small enough, the instability
condition can be satisfied. In general, for a plus-one bifurcation, we want the first
inequality in (14.28) reversed; hence, we are looking for values of ω such that the
dispersion relation

D(ω) : = 1 − K̂N

(
1 − r

ρ

)
− K̂P + K̂NK̂P

(
1 + r − 2r

ρ

)
(14.49)

is negative. The explicit expression for D with the chosen kernels becomes

1− b2(b2 − ω2)

(b2 + ω2)2

(
1 − r

ρ

)
− a2

a2 + ω2 + b2(b2 − ω2)

(b2 + ω2)2

a2

a2 + ω2

(
1 + r − 2r

ρ

)
< 0 .

(14.50)
The plots in Fig. 14.4 show the shape of the double gamma kernel for three

different values of b and the corresponding dispersion relation D . For the smallest
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Fig. 14.4 Left: Double gamma dispersal kernel for prey with parameters b = 0.8 (dashed), b =
1.35 (solid), and b = 2 (dash-dot). Right: The corresponding dispersion relation from (14.49) for
a plus-one bifurcation and the same line styles as in the left plot. The predator disperses according
to a Laplace kernel with parameter a = 10. The population dynamics parameters are r = 1 and
ρ = 1.5.
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Fig. 14.5 Example of patterns arising from a plus-one bifurcation in the predator–prey model. The
spatially homogeneous state (dashed) is unstable; the patterned state (solid) is stable. Parameters
are b = 1.3 (left column) and b = 1.0 (right column). The other parameters are as in Fig. 14.4.
The plots were obtained by simulating the IDE for 6000 time steps on a domain of length 200 from
initial conditions chosen as small random perturbations of the homogeneous steady-state values.

and largest values of b, we have min D < 0 and min D > 0, respectively. At some
intermediate value of b, the dispersion relation just touches the axis, i.e., min D = 0.

Patterns emerge when the pattern formation condition is satisfied; see Fig. 14.5. The
plots show the spatially homogeneous state (dashed) as well as the stable patterns
for two different values of prey dispersal.

The peaks of the predator population coincide with the peaks of the prey
population. The amplitude of the pattern increases as b decreases, and the period
increases slightly. At (and near) the bifurcation point, where the dispersion relation
touches the axis, we expect the period to be determined by the frequency ω∗ that
satisfies D(ω∗) = 0 and D ′(ω∗) = 0. Numerically, we find this critical value
to be b ≈ 1.35 with ω∗ ≈ 1.8. Over an interval of length 20, we calculate
20ω∗/(2π) ≈ 5.7. In the figure, we count more than 5.5 but less than 6 periods.
This agreement seems to be reasonably good.

We can push the calculations one step further to obtain relations for the
bifurcation point. For an explicit expression, we multiply (14.50) by the common
denominator and divide by b6. Then we obtain for D(ω) = 0 a cubic equation in
ω̃ = (ω/b)2, namely

ω̃3 + ω̃2
(

3 − r

ρ

)
+ ω̃

r

ρ

(
1 − a2

b2
(ρ − 1)

)
+ a2

b2

(
r

ρ
(ρ − 1)

)
= 0 . (14.51)

We note that the pattern formation condition depends only on the ratio of the
dispersal parameters a/b. The tangency condition at the bifurcation point gives us a
second equation via differentiation, namely

3ω̃2 + 2ω̃

(
3 − r

ρ

)
+ r

ρ

(
1 − a2

b2
(ρ − 1)

)
= 0 . (14.52)
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Numerically, we could solve the two conditions simultaneously, but there is
another way to proceed. Equations (14.51) and (14.52) have a very simple structure
with respect to the two parameter expressions r/ρ and (ρ − 1). We can solve for
these and obtain a parametric curve in the r-ρ parameter plane. More precisely, we

solve (14.52) for a2

b2 (ρ − 1) r
ρ

and substitute into (14.51), which can then be solved
for

r

ρ
= 2ω̃(ω̃2 − 3)

(1 − ω̃)2 . (14.53)

Substituting this expression back into (14.52) gives

a2

b2 (ρ − 1) = ω̃(ω̃ + 1)(3 − ω̃)

2(ω̃2 − 3)
. (14.54)

Hence, we obtain the parametric curve (Neubert et al. 1995)

r= ω̃

(1 − ω̃)2

[
2(ω̃2 − 3) + b2

a2 ω̃(ω̃ + 1)(3 − ω̃)

]
, ρ = 1 + b2

a2

ω̃(ω̃ + 1)(3 − ω̃)

2(ω̃2 − 3)
.

(14.55)
Plotting this curve in the stability region for the nonspatial system, we see that the
region of possible pattern formation increases as the ratio of dispersal scales a/b

increases (Fig. 14.6). Likewise, for a fixed dispersal ratio, pattern formation is more
likely when the prey growth rate is higher.
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Fig. 14.6 Illustration of the conditions for dispersal-driven pattern formation in the predator–prey
system (14.6). Patterns emerge above the dashed lines. Left: Level curves (14.55) of critical
dispersal ratios a/b for the onset of pattern formation through a plus-one bifurcation. Higher
values of the prey/predator dispersal ratio a/b enlarge the region of pattern formation. Right:
Level curves (14.65) of critical dispersal ratios aP /aN for the onset of pattern formation through a
minus-one bifurcation. Lower values of the prey/predator dispersal ratio aP /aN enlarge the region
of pattern formation. There is no pattern formation below the line r = 2ρ.
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The Minus-One Bifurcation

For a minus-one bifurcation with population dynamics as in (14.6), we choose
parameters r > 2ρ such that a11 < −1. According to Table 14.1, the necessary
conditions for a minus-one bifurcation are satisfied when the Fourier transforms of
both kernels are positive. Hence, we choose Laplace kernels (14.46) for predator
and prey with parameters aP and aN , respectively. In that case, we can calculate all
the critical values in detail. We use the general form of the Jacobian matrix as in
(14.24), since the formulas tend to be clearer and shorter.

For a minus-one bifurcation, we reverse the second inequality in (14.28), which
leads to the condition that the dispersion relation

D(ω) : = 1 + K̂Na11 + K̂P a22 + K̂NK̂P det J (14.56)

be negative. Substituting the expressions for the Fourier transforms gives the
condition

1 + a11a
2
N

a2
N + ω2

+ a22a
2
P

a2
P + ω2

+ a2
N

(a2
N + ω2)

a2
P

(a2
P + ω2)

det J < 0 . (14.57)

Multiplying by the common denominator and dividing by a2
N , we find the equivalent

quadratic inequality in ω̃ = (ω/aN)2 as

ω̃2 + ω̃

(
(1 + a11) + (1 + a22)

a2
P

a2
N

)
+ a2

P

a2
N

(1 + trJ + det J ) < 0 . (14.58)

The minimum of the quadratic occurs at

ω̃m = −1

2

(
(1 + a11) + (1 + a22)

a2
P

a2
N

)
. (14.59)

Since ω̃ = (ω/aN)2 has to be positive, and since a11 +1 is negative whereas a22 +1
is positive, we obtain a necessary condition for the relative dispersal distances as

a2
P

a2
N

< −a11 + 1

a22 + 1
=
∣∣∣∣a11 + 1

a22 + 1

∣∣∣∣ . (14.60)

The condition indicates that the dispersal distance of the prey (1/aN ) must be
smaller than that of the predator (1/aP ).

A sufficient condition for pattern formation is that the quadratic in (14.58) be
negative at ω̃m, i.e.,
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(
(a11 + 1)

aN

aP

+ (a22 + 1)
aP

aN

)2

> 4(1 + trJ + det J ) . (14.61)

This condition is satisfied when aP /aN is large and when it is small. However,
because of the previous condition, we are only interested in the case where it is
small. The right-hand side is positive by the Jury conditions for the nonspatial
system. When taking roots, we need to respect the fact that the term inside the
square on the left is negative when aP /aN is small enough. Therefore, we obtain
the equivalent inequality

(1 + a22)
a2
P

a2
N

+ 2
aP

aN

√
1 + trJ + det J + (1 + a11) < 0 . (14.62)

This condition is satisfied in the limit as aP

aN
→ 0. There is a unique positive value of

this fraction so that the inequality turns into an equality, and this is the critical ratio
of the dispersal distances needed for pattern formation. After more tedious algebra,
we find this upper bound to be

aP

aN

<

√−a12a21 − √
1 + trJ + det J

1 + a22
. (14.63)

We now return to the particular example of system (14.6). The critical value
where the dispersion relation and its derivative are zero is given by the pair of
equations

ω̃2 + ω̃

(
2 − r

ρ
+ 2

a2
P

a2
N

)
+ a2

P

a2
N

(
4 + r − 3r

ρ

)
= 0 ,

2ω̃ +
(

2 − r

ρ
+ 2

a2
P

a2
N

)
= 0 .

(14.64)

We derive parametric expressions for r and ρ as we did in the previous section,
namely

r = a2
N

a2
P

(
ω̃2 + (6ω̃ + 2)

a2
P

a2
N

+ 4
a4
P

a4
N

)
, ρ = r

2(ω̃ + 1 + a2
P /a2

N)
. (14.65)

These curves are plotted in the stability region in r-ρ space in Fig. 14.6.
The explicit expression for the critical value in terms of model parameters is

aP

aN

<
1

2

(√
r − r

ρ
−
√

4 + r − 3r

ρ

)
. (14.66)
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Fig. 14.7 Example of a pattern arising from a minus-one bifurcation in the predator–prey model.
The spatially homogeneous state (dash-dot) is unstable; the patterned state is a stable two-cycle
(solid and dashed for odd and even time steps, respectively). Parameters are aP = 1 (left column)
and aP = 0.5 (right column). Other parameters are r = 2.6, ρ = 1.2, and aN = 10. The figure
was obtained by simulating the IDE for 6000 time steps on a domain of length 200 from initial
conditions chosen as small random perturbations of the homogeneous steady-state values.

The plots in Fig. 14.7 illustrate the spatially heterogeneous two-cycle that
emerges from the minus-one bifurcation as the spatially homogeneous state (dash-
dot) becomes unstable. The peaks of the prey population correspond to the troughs
of the predator population in the same time step. The amplitude and the wavelength
of the pattern increase as the ratio of the dispersal rates decreases.

The Classical Case

We close this section by presenting a discrete-time analogue of the classical
ecological predator–prey model for pattern formation, where the prey has an Allee
effect and the predator dynamics are self-limited (Murray 2002). Our model is
purely phenomenological, driven by the attempt to mimic these properties and at
the same time keep the model complexity reasonably low.

We choose to model the nonspatial dynamics of prey (Nt ) and predator (Pt ) in
generation t as

Nt+1 = F(Nt , Pt ) = RN2
t

1 + N2
t

1

1 + Pt

, Pt+1 = G(Nt , Pt ) = ρNtPt

(1 + Pt )2
.

(14.67)
The denominator in the first fraction is a slight variant (rescaling) of the model
in (2.22) for the Allee effect. The probability of the predator consuming its prey is
given by (1+Pt )

−1, which has the same qualitative shape as the negative exponential
that we used in the previous section. May (1973) proposed this probability as a
model for a “clumped searching pattern” by the predator. Function G is the product
of the available prey at the beginning of the season, the probability of catching prey,
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Pt/(1 + Pt), and the self-limitation term (1 + Pt )
−1, which we know from the

classical Beverton–Holt updating function.
Our model has up to three steady states with P = 0, namely the trivial state

and, provided R > 2, two semi-trivial states with N± = (R ± √
R2 − 4)/2. The

trivial state is stable, while the smaller of the two semi-trivial states is unstable. The
state (N+, 0) is stable with respect to perturbations in N but unstable with respect
to perturbations in P if ρN+ > 1. In the latter case, the predator can invade from
low density.

A positive coexistence state is given by the equations

1 + N2 = R√
ρ

√
N , (1 + P)2 = ρN . (14.68)

The first of these equations has the unique solution

N =
(

R

4
√

ρ

)2/3

= √1/3 if R = 4
√

ρ

33/4 . (14.69)

For R larger than this threshold, there are two solutions of the equation for N above,
and consequently also for P. Hence, the relation between R and ρ defines a saddle-
node bifurcation curve in parameter space. We are interested only in the larger of
the two positive solutions for N since we expect the smaller one to be unstable.

The Jacobian matrix at a positive steady state (N, P ) is given by

J =
[

2
1+N2 −

√
N
ρ

P
N

1−P
1+P

]
. (14.70)

We observe that for N close enough to the bifurcation point N = √
1/3 < 1, the

top left entry in the Jacobian matrix is greater than unity. This means that the prey
is indeed an activator in the classical sense. The predator is an inhibitor because the
bottom right entry is always less than unity.

We have to verify the stability conditions. Unfortunately, this is hard or impossi-
ble to do analytically. Instead, we plot the various threshold curves in Fig. 14.8. In

Fig. 14.8 Illustration of the
stability region of
model (14.67). See text for
details.
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the region labeled I, below the dotted line, the trivial state is the only steady state. It
is globally asymptotically stable. Above the dotted line, the two semi-trivial steady
states exist. In region II, the predator cannot invade the state (N+, 0). Above the
dashed curve, as well as above the dotted line to the right of where it meets the
dashed curve, invasion is possible. In region III, however, there is no coexistence
state. In this region, the predator can invade but will then drive the prey to extinction,
and consequently itself as well. A positive coexistence state exists in regions IV and
V. In region IV, coexistence is unstable because the third Jury condition is violated.
The two populations will cycle and eventually both go extinct. Finally, region V
denotes the part of parameter space where the positive state is stable and conditions
for dispersal-driven instability are satisfied.

In region V, we have a11 > 1 and a22 < 1, so that the conditions for a
plus-one bifurcation from Table 14.1 are satisfied for kernels with positive Fourier
transform. As in the previous section, we choose Laplace kernels for both species
with parameters aN and aP for prey and predator, respectively. Reversing the first
inequality in (14.28) leads to the condition that the dispersion relation

D(ω) : = 1 − K̂Na11 − K̂P a22 + K̂NK̂P det J (14.71)

be negative. Substituting the expressions for the Fourier transforms gives the
condition

1 − a11a
2
N

a2
N + ω2

− a22a
2
P

a2
P + ω2

+ a2
N

(a2
N + ω2)

a2
P

(a2
P + ω2)

det J < 0 . (14.72)

The calculations from here on are exactly as in the case of the minus-one bifurcation
in the previous example. The quadratic inequality in ω̃ = (ω/aN)2 is

ω̃2 + ω̃

(
(1 − a11) + (1 − a22)

a2
P

a2
N

)
+ a2

P

a2
N

(1 − trJ + det J ) < 0 . (14.73)

The minimum of the quadratic occurs at

ω̃m = −1

2

(
(1 − a11) + (1 − a22)

a2
P

a2
N

)
, (14.74)

which can only be positive if

a2
P

a2
N

<
a11 − 1

1 − a22
. (14.75)

As expected, the dispersal distance of the prey (1/aN ) must be much smaller than
that of the predator (1/aP ). The same steps as in the previous example eventually
lead to the sufficient condition
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Fig. 14.9 Stable patterns for prey (solid) and predator (dashed) in model (14.67) with Laplace
dispersal kernels for both species. Parameter values are r = 3 and ρ = 2.5; see region V in
Fig. 14.8. The necessary condition for pattern formation from (14.75) is aP /aN < 0.42. The
sufficient condition from (14.76) is aP /aN < 0.11. We choose aP = 1 and aN = 10 (left plot)
and aN = 20 (right plot). The plots were obtained by iterating the spatial equation from a small
perturbation of the steady-state value for 5000 (left) or 10,000 (right) generations.

aP

aN

<

√−a12a21 − √
1 − trJ + det J

1 − a22
. (14.76)

Figure 14.9 shows the results of two numerical simulations with different ratios
of aP /aN . As the dispersal distance of the prey decreases (i.e., aN increases), more
and narrower peaks develop. We also observe that the peaks in the prey population
are not concave but rather double peaks with a small trough in between.

14.6 Spreading Phenomena in Predator–Prey Systems

We now turn to the question of how predator–prey interactions affect the spread
of one or both of these interacting species. This question relates to the spread of
invasive species, since most species consume existing resources (which results in
a predator–prey relationship) and compete with existing species (an aspect that
we will study in Sect. 14.8). There is a large body of literature for predator–prey
invasions in reaction–diffusion systems, reviewed and summarized by Lewis et al.
(2016), that reveals—mostly through numerical simulation—a treasure trove of
complex dynamical behavior. The first investigation of this question in the IDE
framework dates back to Kot (1992), who studied “waves of pursuit and evasion”
via numerical simulations. A handful of authors have studied various aspects of
predator–prey spread (Fagan et al. 2005; Dwyer and Morris 2006), but the literature
is not nearly as vast as for reaction–diffusion equations.

We saw in Chaps. 5 and 11 that, in the simplest scenario, we can think of an
invasion front as a spatial progression of a transition from an unstable to a stable
state of the system. We also saw that proofs of the existence of a spreading speed
and a traveling wave were based on some aspect of monotonicity (see also Chap. 13).
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Then it becomes clear, even from an abstract viewpoint, why the study of spreading
phenomena in predator–prey systems is so much more complicated than in single-
species models: there are more stable and unstable states and even periodic orbits
to connect, and the interactions between predator and prey are by definition not
monotone because the off-diagonal entries in the community matrix (14.3) are of
opposite sign. Hence, there have been very few analytical results in this area to date.

We explore and illustrate some of the spreading phenomena that arise in
predator–prey systems, following the work of Kot (1992). We use the (nondimen-
sional) interaction model from (14.6) and incorporate spatial dispersal as in the
previous section; i.e., we study

Nt+1(x) =
∫ ∞

−∞
KN(x − y)Nt (y)er(1−Nt (y)−Pt (y))dy ,

Pt+1(x) =
∫ ∞

−∞
KP (x − y)ρNt (y)Pt (y)dy .

(14.77)

When ρ < 1, the predator cannot persist in the system. Asymptotically, then, we
have a single equation for N , and we know that there exists a spreading speed, c∗

N ,
determined by the linearization at zero. There exist monotone traveling waves for
speeds c ≥ c∗

N if 0 < r < 1 and potentially nonmonotone waves for 1 < r < 2; see
Chap. 5. If KN is the Gaussian kernel with variance σ 2

N , then c∗
N = σN

√
2r. In the

following, we are only interested in the case ρ > 1.

Predator Invasion with Stable Coexistence

We choose parameter values r and ρ such that the coexistence state, (N∗, P ∗), is
stable for the nonspatial model; see Fig. 14.1. We expect to see a transition from zero
to this state. Indeed, Fig. 14.10 shows two traveling waves. First, the prey density
increases from zero to one, its single-species steady state. Then the predator density
increases from zero to P ∗ (with decaying oscillations), while the prey decreases to
N∗. Each wave moves at a constant speed. Since the initial prey-only wave moves
faster than the second wave with the predator, the spatial extent of the region where
we observe the unstable (1, 0) state increases over time. Eventually, the predator
seems to invade this prey-only state. We could hope to determine the speed of this
invasion by the linearization at (1, 0). When we linearize at this state, the equations
decouple, and the predator equation becomes

Pt+1(x) = ρ

∫ ∞

−∞
KP (x − y)Pt (y)dy . (14.78)

Taken independently, this equation has a spreading speed c∗
P , which, for the

Gaussian kernel, is given by c∗
P = σP

√
2 ln(ρ). For the simulations in Fig. 14.10,
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Fig. 14.10 Left: Simulation of model (14.77) for prey (top) and predator (bottom). The densities
are plotted every 20 generations. Right: Front location of the prey (solid) and predator (dashed),
obtained from tracking a level set. Parameters are r = 0.5, ρ = 1.3. Both dispersal kernels are
Gaussian kernels with variance σ 2

N = σ 2
P = 0.05.
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Fig. 14.11 Simulation of model (14.77) when the speed of the predator is limited by that of the
prey. Left: Predator dispersal is increased to σ 2

P = 0.5. Right: Predation is increased to ρ = 1.7.

All other parameters are as in Fig. 14.10.

the theoretical values c∗
N = 0.223 and c∗

P = 0.162 are in quite good agreement with
the numerical results cnum

N = 0.221 and cnum
P = 0.159.

There are obvious limits to this heuristic. If we choose σ 2
P or ρ large enough, we

can make c∗
P > c∗

N , so that the predator would spread faster than the prey, which
is biologically impossible. Figure 14.11 shows that the spread rate of the predator
is indeed limited to that of the prey in isolation. If predator dispersal has a large
variance, so that c∗

P = 0.512 > c∗
N = 0.22, we observe a monotone predator front

spreading at the speed of the prey, namely cnum
P = cnum

N = 0.220. If the growth
rate of the predator is increased, the nonspatial model exhibits decaying oscillations
to the stable coexistence state. The speed predicted from the linearization is c∗

P =
0.230. In the spatial model, we see a nonmonotone front that echoes the decaying
oscillations and that moves at (almost) the speed of the prey (cnum

P = 0.216).
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Fig. 14.12 Simulation of model (14.77) when the prey has a head start and c∗
P > c∗

N . Top: The
predator spreads quickly until it catches up with the front of the prey and then slows down to the
speed of the prey. Bottom: The location of the fronts (solid for prey and dashed for predator)
shows the two phases of predator spread. Parameters are as in the left plot in Fig. 14.11. The prey
is initially present for x < 25, the predator for x < 0.

In the previous simulations, we initialized predator and prey at the same spatial
location. Let us suppose that the prey has a head start and the predator spread rate
from (14.78) predicts c∗

P > c∗
N. Will the predator catch up with a spreading prey?

The result in Fig. 14.12 not only demonstrates that the predator will catch up with
the prey and then slow down to the speed of the prey, it also shows that the actual
speed of the predator during the catch-up phase, cnum

P = 0.490, (almost) reaches the
speed predicted by c∗

P = 0.512.

Biological Control of Invasions

While the presence of a predator reduces the growth of its prey, the numerical
simulations in the previous section indicated that it does not slow the spatial spread
of the prey. In a reaction–diffusion system, a predator may slow or reverse the spread
of its prey only if the prey exhibits an Allee effect (Owen and Lewis 2001). We
illustrate these ideas in the IDE framework.

We replace the Ricker-type growth function for the prey in system (14.77) by the
Allee growth function from (2.22). Our system becomes
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Nt+1(x) =
∫ ∞

−∞
KN(x − y)

RN2
t (y)

1 + (R − 1)N2
t (y)

e−Pt (y)dy ,

Pt+1(x) =
∫ ∞

−∞
KP (x − y)ρNt (y)Pt (y)dy ,

(14.79)

with growth parameter R > 2. The nonspatial system has three prey-only states
(0, 0), ((R − 1)−1, 0), and (1, 0); see Sect. 2.2. The predator can invade the latter
state if ρ > 1. The coexistence state is given by

N∗ = 1

ρ
, eP ∗ = R/ρ

1 + (R − 1)ρ−2 . (14.80)

This state is stable when it emerges but loses stability to a Naimark–Sacker
bifurcation as ρ increases. Further increases of ρ lead to a global bifurcation, after
which all solutions approach the trivial state. The behavior of the nonspatial model
reflects that of its continuous-time analogue in Chap. 9 of Kot (2001). For our spatial
explorations, we fix parameters R and ρ such that the coexistence state is locally
stable.

We initialize the numerical simulations by setting the prey to its positive stable
state N = 1 on the interval [−10, 10] and the predator to P = 0.1 on the interval
[−1, 1]. We choose R = 4, which is larger than the critical value for the prey to
spread in the absence of its predator; see Chap. 6. Figure 14.13 shows the location
of the fronts of the two species in the positive direction. When σ 2

P is very small,
the predator cannot catch up with the prey. We see two separate fronts. When σ 2

P is
intermediate, the predator catches up with the prey and both slow down, but continue
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Fig. 14.13 Front location of the prey (thick) and predator (thin) for model (14.79). When σ 2
P =

0.001 (solid), the predator spreads more slowly than the prey. When σ 2
P = 0.01 (dashed), the

predator catches up and slows the prey down. When σ 2
P = 0.1 (dash-dot), the predator catches

up quickly and both species retreat. Both species have a Gaussian dispersal kernel. Parameters are
σ 2

N = 0.1, R = 4, and ρ = 1.45.
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spreading. When σ 2
P is larger, both species start to retreat after the predator has

caught up with the prey. Similar and additional results in the context of reaction–
diffusion equations are synthesized by Fagan et al. (2002) and Lewis et al. (2016),
who discuss invasion theory and biological control more broadly.

Fagan et al. (2005) derive and analyze a complex IDE model for a consumer–
resource model with several stages for the recolonization of the pumice plain after
the 1980 eruption of Mount St. Helens. The prairie lupin (Lupinus lepidus) started
to recolonize the devastated areas and spread in a patchy way with high-density
core areas and low-density edge patches. Caterpillars of two moth species (Filatima
sp. and Staudingeria albipenella) are specialist herbivores on the lupins. Since
lupins at high density have a decreased nutrient content and can develop chemical
defenses against the caterpillars, the net growth rate of the moths exhibits an inverse
density dependence with lupins. Depending on parameter values, the IDE model
shows three different dynamical outputs: (1) a successful co-invasion of lupins and
moths, (2) a collapse of both species, and (3) a stationary situation, where lupins
and moths neither expand in space nor contract; see Fig. 6 in Fagan et al. (2005).

14.7 Spreading Speeds in Cooperative Systems

Mutual facilitation, the reciprocally supportive interaction between species, has
long been largely ignored in ecological theory but is increasingly recognized as
ubiquitous; see Chap. 13 in Kot (2001) and the references therein. Examples
include seed dispersal by birds, pollination of plants (Lutscher and Iljon 2013), and
intraguild mutualism between consumers (Assaneo et al. 2013).

Models for mutualism give rise to “cooperative” or “order preserving” systems:
an increase in any one of the state variables leads to an increase in the other
state variables. This property was a crucial ingredient in proving the existence of
a (joint) spreading speed of a structured population (Chap. 13) and was missing
from predator–prey interactions (Sect. 14.6) where no corresponding result holds.
The study of spreading speeds in general cooperative systems is surprisingly more
subtle than what we saw in structured populations (Weinberger et al. 2002; Li et al.
2005; Weinberger et al. 2007). There is typically more than one nontrivial steady
state to which a traveling front can connect. Furthermore, different components of
the system may spread at different speeds. Finally, one may observe an “anomalous”
spreading speed (Weinberger et al. 2007). An anomalous spreading speed occurs if
one of the species spreads faster in the system than it would in isolation and faster
than any of the other species involved. Since its discovery, this phenomenon has
been studied in reaction–diffusion equations (Holzer 2014) and has been applied to
biological invasions of a species with two morphs (Elliott and Cornell 2012). We
present some of these ideas and phenomena with simple examples but refer to the
original literature for complete statements of theorems and proofs.
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We model nonspatial population dynamics as a Beverton–Holt function (2.11)
with positive steady state C > 0, i.e.,

Nt+1 = F(Nt) = RNt

1 + (R − 1)Nt/C
, (14.81)

with R > 1. Function F is monotone in N , and the interval [0, C] is invariant
for the dynamics. Next, we assume that the parameters are nondecreasing functions
of some other population density, Ñ , i.e., R = R(Ñ) and C = C(Ñ), and write
F(N, Ñ), accordingly. The derivative of F with respect to Ñ is

∂F

∂Ñ
= 1

(1 + (R − 1)N/C)2

[
R′N

(
1 − N

C

)
+ R2N2C′

C2

]
. (14.82)

Under the monotonicity assumptions for R and C, this expression is positive for
0 ≤ N ≤ C.

We use this observation to model a mutualistic interaction between two species.
We denote their densities in generation t by Ni,t with i = 1, 2. The equations are

N1,t+1 = F1(N1,t , N2,t ) ,

N2,t+1 = F2(N1,t , N2,t ) ,
(14.83)

where F1(N1, N2) is as above, with N1 and N2 taking the roles of N and Ñ ,
respectively, and F2 has the same functional form with the roles of N1 and N2
exchanged. As an example, we choose simple linear functions for R and C. For Fi ,
we write R(Ñ) = Ri + aiÑ and C(Ñ) = 1 + biÑ . All parameters are nonnegative,
and Ri > 1.

This system has the four steady states (0, 0), (1, 0), (0, 1), and (N∗
1 , N∗

2 ), where

N∗
1 = 1 + b1

1 − b1b2
= C(N∗

2 ) > 1, N∗
2 = 1 + b2

1 − b1b2
= C(N∗

1 ) > 1. (14.84)

Since Fi are monotone in Ni , the set (0, 0) ≤ (N1, N2) ≤ (N∗
1 , N∗

2 ) is invariant for
the dynamics. By the calculation in (14.82), Fi are nondecreasing with respect to
Nj (j �= i) in this set when R′ is small enough. Then the system is cooperative.

We incorporate space and dispersal in the usual way with dispersal kernel Ki for
species Ni and write

N1,t+1(x) =
∫ ∞

−∞
K1(x − y)F1(N1,t (y),N2,t (y))dy ,

N2,t+1(x) =
∫ ∞

−∞
K2(x − y)F2(N1,t (y),N2,t (y))dy .

(14.85)



262 14 Two Interacting Populations

We explore the spreading behavior of the two species in this system. We begin by
outlining why the theory presented in Chap. 13 does not necessarily apply.

The steady states of the nonspatial system are spatially constant steady states of
system (14.85). In the sense of the order of continuous functions (Sect. 13.8), we
have

(0, 0) ≤ (0, 1) � (N∗
1 , N∗

2 ) and (0, 0) ≤ (1, 0) � (N∗
1 , N∗

2 ). (14.86)

The existence of the semi-trivial, “in-between” steady states violates one important
assumption from Chap. 13. The linearization of the system at (0, 0) is

n1,t+1(x) =
∫ ∞

−∞
K1(x − y)R1n1,t (y)dy ,

n2,t+1(x) =
∫ ∞

−∞
K2(x − y)R2n2,t (y)dy .

(14.87)

The two equations decouple, so the operator is reducible. In addition, the nonlinear
system is not bounded by its linearization at (0, 0). In that sense, an Allee-like
effect is induced by cooperation. Hence, two more assumptions from Chap. 13 are
violated. What then can we say about spread rates in the cooperative system?

The cooperative nature of the system gives the bounds F1(N1, 0) ≤
F1(N1, N2) ≤ F1(N1, N

∗
2 ). These translate into bounds on the rate at which

species N1 can spread in the system: it will spread at least (at most) at the speed
of the single population model with growth function F1(N1, 0) (F1(N1, N

∗
2 )). The

analogous reasoning holds for species N2. The spreading speeds of the single-
species models that bound the solutions of the system are linearly determined
according to the theory from Chap. 5. We denote the lower bounds as cmin

i and may
assume cmin

1 ≤ cmin
2 . If Ki are Gaussian kernels with variance σ 2

i , we have cmin
i =

σi

√
2 ln(Ri). The corresponding upper bounds are cmax

i = σi

√
2 ln(Ri + aiN

∗
j ).

We obtain two cases: (1) When cmax
1 < cmin

2 , the first species will be slower than
the second even if the second species supports the first. Consequently, there cannot
be a joint spreading speed. (2) When cmax

1 > cmin
2 , the first species in the presence

of the second could be faster than the second species on its own. Consequently,
there could be a joint spreading speed if the support of the second species is strong
enough.

The two plots in Fig. 14.14 illustrate that both cases occur. With parameters as in
the figure caption, we have cmin

1 = 0.285 < 0.333 = cmin
2 . In the left plot, we also

have cmax
1 = 0.316 < cmin

2 , whereas in the right plot, we find cmax
1 = 0.384 > cmin

2 .

On the left, species 2 spreads ahead at speed cmin
2 , and a plateau forms, into which

species 1 invades. On the right, both species spread at the same rate, namely cmin
2 .

The formation of the plateau prompts us to study the spread of one species into an
environment occupied by another, cooperating species. The semi-trivial state (0, 1)

is unstable and the coexistence state (N∗
1 , N∗

2 ) is stable for system (14.85), and there
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Fig. 14.14 Two scenarios of spread in the cooperating species model. Left: When a1 = 0.1 is
small, the upper bound of the speed of species 1 (solid) is below the lower bound of the speed of
species 2 (dashed). Species 1 is slower. Right: When a2 = 0.4 is large enough, the upper bound for
species 1 exceeds the lower bound for species 2. Both species spread at the same rate. Parameters
are R1 = 1.5, R2 = 2, a2 = 0.2, b1 = 0.4, b2 = 0.3, σ 2

1 = 0.1, and σ 2
2 = 0.08. Both kernels are

Gaussian kernels.

is no other homogeneous steady state between the two, in the sense of (14.86). We
can shift the point (0, 1) to (0, 0) by the transformation (N1, N2) �→ (N1, N2 − 1),
so that the unstable state becomes the origin and the stable point remains positive in
all components. The linearization at the unstable state is given by

n1,t+1(x) =
∫ ∞

−∞
K1(x − y)(R1 + a1)n1,t (y)dy ,

n2,t+1(x) =
∫ ∞

−∞
K2(x − y)[b̂n1,t (y) + n2,t (y)/R2]dy ,

(14.88)

with b̂ = b1(R1 − 1)/R1. This system is cooperative and reducible.
Cooperative and reducible systems with any finite number of species, truncated

so that densities remain bounded, are studied in a series of papers by Weinberger
et al. (2002), Li et al. (2005), and Weinberger et al. (2007), which also corrects
a mistake from Weinberger et al. (2002). The authors establish that there are, in
general, two spreading speeds: (1) a slowest speed, c∗, so that all components spread
at least at speed c∗ and at least one component does not spread faster, and (2) a
fastest speed, c∗

f , such that no component spreads faster and at least one component
spreads no slower. When the system is irreducible, Lui (1989a) shows that c∗ = c∗

f ;
see Chap. 13. Weinberger et al. (2007) beautifully explain which aspect of Lui’s
proof breaks down when the system is reducible. Li et al. (2005) prove that c∗ is
characterized as the slowest speed of a family of traveling waves. The calculation
of c∗ and c∗

f from formulas such as (5.17) or (13.40) is more subtle, and, in fact,
such formulas do not generally exist. To understand this last statement, we introduce
some notation.

The linearization of a cooperative, reducible system can be brought into Frobe-
nius form (for notation, see Chap. 13)

Nt+1 =
∫ ∞

−∞
K • BNt (y)dy , (14.89)
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where B is a block lower-triangular matrix with nonnegative entries. As in (13.30),
we can form matrix H(s), which is also block lower triangular. We denote the
diagonal blocks by Hii(s), with their dominant eigenvalues λi(s). We can define
numbers

c̃i = inf
s>0

1

s
ln(λi(s)) . (14.90)

These are the “component spreading speeds” at which component i would spread
if all other components were absent (Lui 1989a; Weinberger et al. 2007). Since the
system is cooperative, the maximum of these numbers is a lower bound for c∗

f .

However, it is possible that c∗
f is strictly greater than this maximum, which has been

termed an anomalous spreading speed (Weinberger et al. 2007). Before we explain
this phenomenon in detail, we mention one affirmative answer that follows from
Remark 2 after Theorem 4.1 in Weinberger et al. (2007).

Proposition 14.6 If λ1(0) > 1 and λi(0) < 1 for all i > 1, then

c∗
f = inf

s>0
ln(λ1(s))/s . (14.91)

This proposition applies to the example above, where all blocks are of size one
with λ1(0) = R1 + a1 > 1 and λ2(0) = 1/R2 < 1. Hence, the speed at which
N1 spreads into the steady state (0, 1) is given by the linearization at the unstable
state. The proposition applies more generally when one invading species spreads
into a steady state of finitely many other species that is stable in the absence of the
invader. Stability in the absence of the invader implies λi < 1 for i > 1. This insight
is relevant for many spreading phenomena, but it requires the cooperative structure.
We observed the same result numerically for the invasion of a predator into its prey
(Sect. 14.6), but the preceding proposition does not apply to that situation.

As a final aspect of our cooperative system (14.85), we illustrate how one species
can overtake another and increase the other species’ spread rate. The setup is as
before, so that species 2 in isolation spreads faster than species 1 in isolation, but
species 1 now has a head start of 50 space units. The plots in Fig. 14.15 show the
front location of species 1 (thick) and species 2 (thin). Initially, species 1 spreads
at its single-species speed cmin

1 = σ1
√

2 ln(R1), indicated by the thick dashed line.
Species 2 spreads into species 1 at the speed given by the linearization at (1, 0),
namely σ2

√
2 ln(R2 + a2), indicated by the thin dashed line. When the two fronts

meet, species 2 slows down to its single-species speed cmin
2 = σ2

√
2 ln(R2). The

first species speeds up. When the positive effect from species 2 is small (a1 =
0.1), species 1 spreads at the speed given by the linearization at (0, 1), which is
σ1

√
2 ln(R1 + a1). When the positive effect is large (a1 = 0.3), the speed of the

linearization at (0, 1) predicts a speed faster than that of species 2, which obviously
cannot be sustained ahead of the front of species 2. Hence, both spread at the same
rate.
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Fig. 14.15 Two scenarios of spread in the cooperating species model (see text for explanation).
Parameters are R1 = R2 = 1.5, a2 = 0.2, b1 = 0.4, b2 = 0.3, σ 2

1 = σ 2
2 = 0.05, and a1 = 0.1

(left) versus a2 = 0.3 (right). Both kernels are Gaussian kernels.

Anomalous Spreading Speed

We use a discrete-time version of the invasion model of two types (or morphs) from
Elliott and Cornell (2012) to explain and illustrate the ideas and mechanisms behind
an anomalous spreading speed. Elliott and Cornell (2012) assume that individuals
in a population come in two types that may differ in their growth rate and dispersal
ability. Mutations lead to changes in type. Offspring of type i are of type j �= i

with probability μi and remain type i with probability 1 − μi. A linear model that
describes this system is

N1,t+1(x) = (1 − μ1)

∫ ∞

−∞
K1(x − y)R1N1,t (y)dy + μ2

∫ ∞

−∞
K2(x − y)R2N2,t (y)dy ,

N2,t+1(x) = μ1

∫ ∞

−∞
K1(x − y)R1N1,t (y)dy + (1 − μ2)

∫ ∞

−∞
K2(x − y)R2N2,t (y)dy ,

(14.92)
where Ri > 1 describe growth and Ki dispersal of offspring from type i.

The subsequent results do not change qualitatively when dispersal behavior is
determined by the type of the offspring instead of the parent. To obtain a system
with bounded solutions, we can truncate the linear IDE at some positive density
without affecting the spreading behavior (Weinberger et al. 2007).

Here, we analyze the system in the cases where the second type does not mutate
(μ2 = 0), so that the system is in Frobenius form. In the next section, we will
study the case where the mutation rates are equal (μ1 = μ2). To allow for explicit
calculations, we shall assume Gaussian dispersal kernels with variances σ 2

i and
mean zero. The respective moment-generating functions are Mi(s) = exp(σ 2

i s2/2).

When μ2 = 0, the system is in Frobenius form (14.89), so that the results from
Weinberger et al. (2007) apply. We shall assume that μ1 is small enough that R1(1−
μ1) = R̃1 > 1. The diagonal elements of matrix H(s) are λ1(s) = R̃1M1(s) and
λ2 = R2M2(s). We define functions

ci(s) = 1

s
ln(λi(s)) . (14.93)
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Unless the dispersal kernels are degenerate, these functions are convex and have
unique minima c̃i , the component spreading speeds, at critical values s̃i < ∞. For
Gaussian kernels, the explicit expressions are

s̃1 =
√

2 ln(R̃1)/σ
2
1 and s̃2 =

√
2 ln(R2)/σ

2
2 , (14.94)

with

c̃1 =
√

2σ 2
1 ln(R̃1) and c̃2 =

√
2σ 2

2 ln(R2) . (14.95)

The system has an anomalous spreading speed if the fastest speed is faster than the
component speeds, i.e., if c∗

f > max(c̃i).

Weinberger et al. (2007) give an upper bound, c(u), for c∗
f as

c(u) = inf
s1≥s2>0

{max[c1(s1), c2(s2)]} . (14.96)

Note that the infimum is taken only over s1 ≥ s2 > 0 and not s1, s2 > 0. If we define
C1(s) = c̃1 for 0 < s ≤ s̃1 and C1(s) = c1(s) for s > s̃1, then this expression can
be simplified to

c(u) = inf
s>0

{max[C1(s), c2(s)]} . (14.97)

The larger of the two component spreading speeds is max{inf(c1(s)), inf(c2(s))},
so that the question becomes when the infimum of the maxima is larger than the
maximum of the infima. The following proposition gives exact conditions for the
upper bound to be larger than the component speeds.

Proposition 14.7 We have c(u) > max{c̃i} if and only if the following three
conditions are satisfied:

1. s̃1 < s̃2 ,
2. c1(s̃1) < c2(s̃1) ,
3. c1(s̃2) > c2(s̃2) .

If the conditions are satisfied, c(u) is given by the unique value c1(s̄) = c2(s̄) with
s̃1 < s̄ < s̃2.

Proof It is clear that if the three conditions are satisfied, then c(u) has the value
given; see Fig. 14.16 for illustration. We show that the three conditions are also
necessary. Assume that s̃1 ≥ s̃2. Then

c(u) = inf
s>0

{max(C1(s), c2(s))} ≤ max(C1(s2), c2(s2)) = max{c̃i}. (14.98)
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Fig. 14.16 Illustration of the
case where c(u) > max{c̃i} in
Proposition 14.7. The
dash-dot curve denotes C1(s),
and the star on it indicates
(s̃1, c̃1). The dashed curve
denotes c2(s), and the star is
(s̃2, c̃2). The solid curve is the
maximum of the two, and the
star on it is its minimum, c(u).

Parameters in this plot are
R1 = 1.5, R2 = 2, μ1 = 0.1,
σ 2

1 = 0.05, and σ 2
2 = 0.02.
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Hence, s̃1 < s̃2 is necessary. Now assume that the first condition is satisfied but the
second is violated. Then c(u) ≤ c1(s̃1) = c̃1, which is the opposite of the claim. The
necessity of the third condition follows by the same reasoning. ��

In the case of Gaussian kernels, we can calculate all the quantities involved
and reach further biological insights. The intersection point c1(s̄) = c2(s̄) is
characterized by

2(ln(R̃1) − ln(R2)) = s̄2(σ 2
2 − σ 2

1 ). (14.99)

Hence, the expressions (ln(R̃1) − ln(R2)) and (σ 2
2 − σ 2

1 ) must have the same sign.
The biological implication is that an anomalous spreading speed can happen only
if there is a trade-off between reproduction and dispersal ability: the type that has
the higher “self-reproductive” rate has to have the lower dispersal ability. By self-
reproductive rate we mean the number of offspring that is of the same type as the
parent (i.e., R̃1 or R2).

But we can be more precise. Condition s̃1 < s̃2 is equivalent to

ln(R̃1)

ln(R2)
<

σ 2
1

σ 2
2

. (14.100)

The third condition in Proposition 14.7 is equivalent to

ln(R̃1)

ln(R2)
> 1 − σ 2

2

σ 2
1

. (14.101)

Combined with (14.100), we find 2 − σ 2
1 /σ 2

2 < σ 2
1 /σ 2

2 , which implies σ 2
1 > σ 2

2 .

Biologically speaking, an anomalous spreading speed can arise only if the type
that has the higher dispersal ability (and lower self-reproduction) is the one that
produces mutations.
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Proposition 14.7 gives sufficient conditions for there to be no anomalous
spreading speed, but only necessary conditions for there to be one, since c(u) is
only an upper bound for c∗

f . Weinberger et al. (2007) prove the existence of an
anomalous spreading speed in a reaction–diffusion system; Holzer (2014) gives
another such example. System (14.92) with μ2 = 0 is somewhat related to the
model by Weinberger et al. (2007). We show that an anomalous spreading speed
exists in a special case.

We rewrite system (14.92) with ∗ for convolutions and with μ2 = 0 as

N1,t+1 = (1 − μ1)R1K1 ∗ N1,t ,

N2,t+1 = μ1R1K1 ∗ N1,t + R2K2 ∗ N2,t .
(14.102)

We assume Gaussian dispersal kernels, denoted by G(x; σ 2
i ), with variance σ 2

1 >

σ 2
2 , and set 1 < R1(1 − μ1) < R2, as required by the proposition. Starting with

localized initial conditions Ni,0(x) = δ(x), we can solve the system explicitly as

N1,t = (1 − μ1)
tRt

1G(x; tσ 2
1 ) ,

N2,t = Rt
2G(x; tσ 2

2 ) + μ1

t∑
j=1

(1 − μ1)
t−j−1R

t−j

1 R
j

2G(x; (t − j)σ 2
1 + jσ 2

2 ) .

(14.103)

Since all the terms in the sum are positive, N2,t is bounded below by each of them
individually, i.e.,

N2,t (x) ≥ μ1(1 − μ1)
t−j−1R

t−j

1 R
j

2G(x; (t − j)σ 2
1 + jσ 2

2 ) , 0 ≤ j ≤ t .

(14.104)

For each of these terms, we can calculate the location xt of the level set N2,t = Ñ

as in Sect. 5.2, namely

x2
t = 2σ̃ 2

[
ln
(
μ1(1 − μ1)

t−j−1R
t−j

1 R
j

2

)
− ln(Ñ

√
2πσ̃ 2)

]
, (14.105)

with σ̃ 2 = (t − j)σ 2
1 + jσ 2

2 .

Now we choose t = 2τ to be even and choose j = τ. Then the expression
becomes

x2
2τ = 2τ(σ 2

1 + σ 2
2 )
[
ln
(
μ1(1 − μ1)

τ−1Rτ
1Rτ

2

)
− ln(Ñ

√
2πσ̃ 2)

]
. (14.106)

The asymptotic speed of a level set is obtained from

x2
2τ

4τ 2 = σ 2
1 + σ 2

2

2

[
ln(R̃1R2) + 1

τ
ln(μ1/(1 − μ1)) − 1

τ
ln

(
Ñ

√
2πτ(σ 2

1 + σ 2
2 )

)]
,

(14.107)
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where R̃1 = R1(1 − μ1) as before. In the limit as τ → ∞, we find

x2
2τ

4τ 2
→ 1

2
(σ 2

1 + σ 2
2 ) ln(R̃1R2) =: c2 . (14.108)

We want to show c > max{c̃1, c̃2} with c̃i as in (14.95). We make the simplifying
assumption that c̃1 = c̃2. We substitute σ 2

1 ln(R̃1) = σ 2
2 ln(R2) and find

c2 = 1

2
σ 2

1 ln(R̃1)

(
1 + σ 2

2

σ 2
1

)(
1 + σ 2

1

σ 2
2

)
. (14.109)

After some algebra, we find that c > c̃1 = c̃2 if

(
1 + σ 2

2

σ 2
1

)(
1 + σ 2

1

σ 2
2

)
> 4 . (14.110)

This inequality is equivalent to z + 1/z > 2, which is true for all positive z �= 1. We
summarize these results as follows.

Proposition 14.8 Consider system (14.102) with Gaussian dispersal kernels with
variances σ 2

1 > σ 2
2 , mutation probability μ1 ∈ (0, 1), and growth rates R2 >

R1(1 − μ1) > 1. Assume that the component spreading speeds, c̃i , are equal. Then
the fastest speed, c∗

f , is bounded below by c from (14.109). In particular, the system
has an anomalous spreading speed since c∗

f ≥ c > c̃i .

We illustrate these results in Fig. 14.17. The plots on the left show the density
of type 2 spreading in the absence of type 1. The theoretical and numerical spread
rates are c̃2 = 0.173 and cnum

2 = 0.1716 (top) and c̃2 = 0.1533 and cnum
2 =

0.1511 (bottom). The plots on the right show both types spreading simultaneously.
The top plots illustrate the increased, anomalous spread rate when the conditions in
Proposition 14.8 hold, in particular R2 > R̃1 and σ 2

1 > σ 2
2 . Type 2 spreads faster

than type 1 and faster than in the absence of type 1. We find cnum
2 = 0.1883 and

cnum
1 = 0.17, whereas the upper bound for the anomalous speed is c(u) = 0.1886

and equals the lower bound from (14.109). The bottom plots show that if R̃1 > R2
and σ 2

1 < σ 2
2 , then the two types spread at (almost) the same rate, and that rate is the

same as for type 2 in isolation. As expected, the numerical results deviate slightly.
They give cnum

2 = 0.1522 and cnum
1 = 0.1514.

Anomalous Spread with Bidirectional Mutation

Elliott and Cornell (2012) assumed that mutation between types happens in both
directions, not just in one like in the preceding example. They found that, under
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Fig. 14.17 Illustration of
Proposition 14.8 (see text for
explanation). Density of type
1 is plotted dashed, density of
type 2 solid. Parameters for
top plots are R1 = 1.5,
R2 = 2, μ1 = 0.1, and
σ 2

1 = 0.05. Parameters for
bottom plots are R1 = 2,
R2 = 1.5, μ1 = 0.1, and
σ 2

1 = 0.01. Parameter σ 2
2 is

determined by the condition
σ 2

1 ln(R̃1) = σ 2
2 ln(R2).

Profiles are plotted every 30
time steps. Plots on the left
have initial conditions for
type 1 equal to zero. All other
initial conditions are
characteristic functions on
{x < 0}. The linear equation
is truncated so that Ni,t ≤ 1.
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certain conditions, the spread of both types together was faster than for each type
in isolation and in the absence of mutation. They called this effect an anomalous
spreading speed, but the phenomenon is slightly different from the one found
by Weinberger et al. (2007). The reaction–diffusion model by Elliott and Cornell
(2012) is irreducible, there are no semi-trivial steady states, and there are no proper
component spreading speeds. Nonetheless, the effect and the mathematics behind it
are related to the phenomenon from Weinberger et al. (2007). We reproduce some
of the results by Elliott and Cornell (2012) in our IDE model and explicitly calculate
the spread rate in some special cases.

We consider system (14.92) again, but now with μ1, μ2 ∈ [0, 1]. As before,
we could truncate the linear system at some positive density (and will do so for
numerical simulations) or think of the linear system as the linearization of some
appropriate nonlinear system at the trivial state. Neither modification will change
the spreading speed from that of the linear system.

When μ1 = μ2 = 0, the system decouples into two equations, and there are
two spreading speeds, c̃i . Under the usual conditions (see Chap. 5), these speeds are
given by

c̃i = inf
s>0

ci(s) = inf
s>0

1

s
ln(RiMi(s)) . (14.111)

With Gaussian kernels as above, we have c̃i = σi

√
2 ln(Ri) .



14.7 Spreading Speeds in Cooperative Systems 271

When μ1, μ2 ∈ (0, 1), linear system (14.92) is irreducible so that the results from
Lui (1989a) apply; see Sect. 13.8. In particular, the system has a single spreading
speed given by

c∗ = inf
s>0

c(s) = inf
s>0

1

s
ln(λ(s)) , (14.112)

where λ(s) is the dominant eigenvalue of

H(s) =
[
(1 − μ1)R1M1(s) μ2R2M2(s)

μ1R1M1(s) (1 − μ2)R2M2(s)

]
. (14.113)

We can explicitly calculate the spreading speed for this system in the special case
where the spreading speeds in isolation and the mutation rates are identical.

Proposition 14.9 Assume that Ki are Gaussian dispersal kernels with moment-
generating functions Mi(s) = exp(σ 2

i s2/2) and that Ri > 1, R1 �= R2. Assume
also that c̃1 = c̃2. Finally, assume that 0 < μ1 = μ2 =: μ < 1. Then we have the
following properties of λ and c∗:

1. If there is some s with R1M1(s) = R2Ms(s), then λ(s) = RiMi(s) .

2. The curves ci(s) = ln(RiMi(s))/s intersect exactly once for s > 0. The
intersection occurs at

s∗ =
√

2 ln(R1/R2)

σ 2
2 − σ 2

1

=
√

2 ln(R1)

σ 2
2

=
√

2 ln(R2)

σ 2
1

. (14.114)

3. We have λ(s∗) = R1 exp
(
σ 2

1 ln(R1)/σ
2
2

)
.

4. The derivative of c(s) vanishes at s∗; i.e.,

d

ds

ln(λ(s))

s
|s=s∗ = 0 . (14.115)

5. The spreading speed is given by

c∗ = λ(s∗)
s∗ =

√
σ 2

2 ln(R1)

2

(
1 + σ 2

1

σ 2
2

)
= 1

2

(√
σ 2

2

σ 2
1

+
√

σ 2
1

σ 2
2

)
c̃1 . (14.116)

6. If σ 2
1 �= σ 2

2 , then c∗ > c̃1 = c̃2 .

Proof Most of the claims are straightforward calculations; only the fourth claim
is somewhat tedious. Not all claims use all conditions. We give illustrations in
Fig. 14.18. The condition c̃1 = c̃2 implies

σ 2
1 ln(R1) = σ 2

2 ln(R2) . (14.117)
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Fig. 14.18 Left: The dispersion relation for types 1 (dash-dot) and 2 (dashed) in the absence of
mutation (μ = 0), and for the joint speed with mutation (μ > 0, solid). Right: Density profile of
type 1 (solid) and type 2 (dashed) in the absence of mutation (thick), and joint spread with mutation
(thin) after 200 generations. Parameters are R1 = 2, R2 = 1.2, σ 2

1 = 0.05. Initial conditions are
the characteristic function on {x < 0}. Densities were truncated at one.

The explicit expression for λ is

λ = 1

2

(
(1−μ)(R1M1+R2M2) +

√
(1−μ)2(R1M1−R2M2)2 + 4μ2R1R2M1M2

)
.

The first claim follows immediately. The second and third claims are simple
calculations. For the fourth claim, we need to show

λ′(s∗)s∗ = λ(s∗) ln(λ(s∗)) . (14.118)

Calculating the derivative and substituting the condition R1M1(s
∗) = R2M2(s

∗)
results in

λ′(s∗) = 1

2
(R1M

′
1(s

∗) + R2M
′
2(s

∗)) . (14.119)

Differentiating Mi gives M ′
i = σ 2

i sMi. Substituting, we find

λ′(s∗)s∗ = (s∗)2

2
(σ 2

1 + σ 2
2 )R1M1(s

∗) = (s∗)2

2
(σ 2

1 + σ 2
2 )λ(s∗) . (14.120)

Hence, it remains to show that (s∗)2(σ 2
1 + σ 2

2 ) = 2 ln(λ(s∗)). Substituting the
expression for s∗, we calculate

2 ln(λ(s∗)) = 2 ln(R1M1(s
∗)) = 2 ln(R1) + σ 2

1 (s∗)2 = σ 2
2 (s∗)2 + σ 2

1 (s∗)2 .

(14.121)
Lui (1989a) showed that λ(s)/s is a convex function. Its only critical point is at s∗.
This has to be a minimum. Hence, c∗ = λ(s∗)/s∗, which gives the expression in
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(14.116). The function f (z) = (z + z−1)/2, z > 0, has its unique global minimum
f = 1 at z = 1. Hence, whenever σ 2

1 �= σ 2
2 , we have c∗ > c̃1 = c̃2. ��

The plots in Fig. 14.18 illustrate the increase in the spread rate when there is
mutation between the two types. For the parameters chosen, we have c∗ ≈ 1.23c̃1
according to (14.116). The explicit calculation of c∗ is possible only under the quite
restrictive assumptions c̃1 = c̃2 and μ1 = μ2. It is clear from the construction
(and by continuity) that the phenomenon of an increased spreading speed with
mutation is not restricted to this case. Perhaps surprisingly, the joint spreading speed
is independent of the mutation rate(s) when 0 < μ1 = μ2 < 1. A population of two
types, one a better disperser, the other with a higher growth rate, can spread faster
than each of the types could on its own, hence the term “anomalous.”

We take a final look at the degenerate case when μ1 = μ2 = 1. Each type
produces only the other type. The system of equations can be reduced to a single
equation over two generations, namely

Ni,t+2 = R1R2K1 ∗ K2 ∗ Ni,t . (14.122)

If we write c for the speed per generation, then the dispersion relation over two
generations is given by

e2sc = R1R2M1(s)M2(s) .

For Gaussian kernels with variances σ 2
i , we can find the minimum value of c

explicitly as

c∗ = inf
s>0

1

2s
ln
(
R1R2e(σ 2

1 +σ 2
2 )s2/2

)
=
√

2
σ 2

1 + σ 2
2

2
ln(
√

R1R2) .

Hence, we find the speed by taking the arithmetic mean of the variances and
the geometric mean of the growth rates. If we impose condition (14.117) as in
Proposition 14.9, we arrive at the same expression for c∗ as in (14.116).

This degenerate case of complete mutation is not biologically relevant since
mutation rates are typically very small. It has, however, an alternative interpretation
in terms of temporal variation. Suppose a population has growth rate R1 and
dispersal kernel K1 in odd generations and growth rate R2 and dispersal kernel
K2 in even generations. Then the linear equation for the population density between
two generations is the same as in (14.122). Suppose that there is a trade-off between
growth and dispersal between the 2 years. Then the population can spread faster
when individuals choose to alternate between high and low growth rates (and
corresponding low and high dispersal) than when they behave the same way in every
generation. We consider temporal variation in more detail in Chap. 16.
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14.8 Spread of Competing Species

Competition has long been recognized as a major force shaping ecological commu-
nities. Accordingly, theoretical models for competition have been studied for a long
time. We distinguish between exploitative competition and interference competition.
In the former, competitors affect each other indirectly through their depletion of a
common limiting resource. Models for this case must include resource dynamics
and, hence, are variants and extensions of the consumer–resource models that we
discussed in Sect. 14.3. In the latter, consumers interact directly, e.g., via aggression.
In models for this case, the growth function of one species decreases with the
presence of the other species. We shall consider only the latter case here.

We can derive competition models from single-species models by including the
density of competing species in the per capita growth rate of a given species. For
example, if G(N) denotes the (decreasing) per capita growth rate of species N in
isolation and Ñ the density of a competing species, we write G(N +αÑ) for the per
capita growth rate of N in the presence of the competitor. If α > 1, then a competitor
individual has a stronger influence on the growth function than a conspecific; if
α < 1, then the competitor’s effect is weaker. When we apply this construction to
the scaled Beverton–Holt growth function, we obtain the two-species competition
model

N1,t+1 = R1N1,t

1 + (R1 − 1)(N1,t + αN2,t )
,

N2,t+1 = R2N2,t

1 + (R2 − 1)(N2,t + βN1,t )
,

(14.123)

where Ri > 1 are the maximum growth rates and α, β the intraspecific competition
coefficients.

The dynamics of this model are equivalent to those of the classical Lotka–
Volterra competition model (Kot 2001). The trivial state (0, 0) is unstable. The
semi-trivial state (1, 0) is stable if β > 1 and unstable if β < 1. Similarly, (0, 1) is
stable (unstable) if α > 1 (α < 1). The coexistence state,

(N∗
1 , N∗

2 ) =
(

1 − α

1 − αβ
,

1 − β

1 − αβ

)
, (14.124)

is biologically meaningful only if either 0 < α, β < 1 or α, β > 1. It is stable in the
former case and unstable in the latter. Hence, we have four scenarios, depending on
the interaction parameters. If 0 < α, β < 1, the coexistence state is globally stable.
The competitors have a relatively weak influence on each other. If 0 < α < 1 < β,
then (1, 0) is globally stable. The first species competitively excludes the second.
The case 0 < β < 1 < α is analogous. If α, β > 1, both semi-trivial states are



14.8 Spread of Competing Species 275

locally stable and coexistence is unstable. This case is sometimes called “founder
control.”

The question of how and to what extent spatial dispersal can allow competing
species to coexist if local dynamics predict competitive exclusion has been studied
with many different modeling approaches but received only marginal attention
within the IDE framework. Lutscher (2008) shows how coexistence can arise on
a bounded domain if the competitively superior species disperses sufficiently more
than the inferior species. High dispersal leads to high loss through the boundary,
which reduces population density at the boundary. Near the boundary, competition
pressure on the inferior species is weak so that its population can grow there. If it
disperses only a little, sufficiently many of its offspring stay within the domain, so
that the population can persist.

The question of spread of competing species has received much more attention,
in particular in the context of the spread of invasive organisms. For example, Allen
et al. (1996) and Hart and Gardner (1997) model the spread of competing plants with
IDE systems. Okubo et al. (1989) analyze the spread of gray squirrels in the presence
of red squirrels in Great Britain with a reaction–diffusion system; for a more
systematic treatment of invasions, see Lewis et al. (2016). Biologically, we would
like to know how the presence of a competitor affects the spread rate of a species, in
particular, if it can slow the spread of an invading species. Mathematically, we are
interested in asymptotic spreading speeds and traveling waves. Since there are so
many steady states of the nonspatial model, there are many possibilities for traveling
waves to connect them. The most obvious one, the connection from the trivial state
to the coexistence state (if it is stable), turns out to be surprisingly difficult to study.
Somewhat simpler is the question of one species invading an established competitor
and either coexisting with it or replacing it. In the case of founder control, there
could be bistable fronts connecting the two stable semi-trivial states.

Lewis et al. (2002) study the following spatial version of (14.123); see also Li
et al. (2005) and Weinberger et al. (2007):

N1,t+1(x) =
∫ ∞

−∞
K1(x − y)

R1N1,t (y)

1 + (R1 − 1)(N1,t (y) + αN2,t (x))
dy ,

N2,t+1(x) =
∫ ∞

−∞
K2(x − y)

R2N2,t (y)

1 + (R2 − 1)(N2,t (y) + βN1,t (y))
dy ,

(14.125)

where Ki is the dispersal kernel of species i. They consider the situation where
α < 1, so that the state (0, 1) is unstable to invasion from species N1. They then
study the existence of a spreading speed and the validity of the linear conjecture for
this invasion. Their approach is to transform the system into a cooperative system
by the change of variables (N1, N2) �→ (U1, U2) = (N1, 1 − N2) and then use the
theory for cooperative systems (Sect. 14.7).
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In the new variables, the system reads

U1,t+1(x) =
∫ ∞

−∞
K1(x − y)

R1U1,t (y)

1 + (R1 − 1)(N1,t (y) + α(1 − U2,t (x)))
dy ,

U2,t+1(x) =
∫ ∞

−∞
K2(x − y)

U2,t (y) + α(R2 − 1)U1,t (y)

1 + (R2 − 1)(βN1,t (y) + 1 − U2,t (y))
dy .

(14.126)

Since the original system is confined to the unit square (i.e., 0 ≤ N1, N2 ≤ 1),
the same is true for the new system. In that range, the new system is monotone.
Biologically, we could say that if one species competes with another, then it
“cooperates with the absence of the other.” Under the change of variables, (0, 0)

becomes (0, 1), (0, 1) becomes (0, 0), and (1, 0) becomes (1, 1). The coexistence
state, (U∗

1 , U∗
2 ), is inside the unit square as long as β < 1. Hence, if β < 1, then

(0, 0) is unstable and (U∗
1 , U∗

2 ) is stable, the system is cooperative in the ordered
rectangle spanned by these two points, and there is no other steady state in that
rectangle. If β > 1, then the point (1, 1) is stable, and there is only one boundary
equilibrium, (1, 0), inside the square spanned by (0, 0) and (1, 1). In both cases,
the theory for cooperative systems guarantees the existence of a joint asymptotic
spreading speed of U1 and U2 (Lewis et al. 2002). Hence, if U1, U2 are initially
confined to some bounded set, they will eventually spread at the same speed, c∗. In
terms of the original variables, if N1 is initially confined to some bounded set and
N2 is present only outside some bounded set, then the spread of N1 and the retreat
of N2 at the invasion front of N1 will eventually occur at that speed. We illustrate
these scenarios in Fig. 14.19. The top row shows how two competitors coexist in
the wake of the invasion (β < 1); the bottom row shows replacement of N2 by N1
(β > 1).

We aim to calculate the asymptotic speed of N1 (or U1 and U2, respectively). We
linearize the nonspatial version of (14.126) at (0, 0) and find the Jacobian matrix

B =
[

R1
1+α(R1−1)

0

∗ 1/R2

]
. (14.127)

Since the matrix is lower triangular, its eigenvalues are independent of the expres-
sion denoted by ∗. We follow the same steps as in (13.30) and define the component
spreading speeds ci as in (14.90). Since 1/R2 < 1, speed c2 is negative. Therefore,
our candidate for the spreading speed is

ĉ = inf
s>0

1

s
ln

(
R1

1 + α(R1 − 1)
M1(s)

)
, (14.128)

where M1 is the moment-generating function of dispersal kernel K1. Just as in the
preceding sections, an anomalous spreading speed could arise, so that additional
conditions are required before we can conclude that the linear conjecture holds, i.e.,
that ĉ = c∗.
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Fig. 14.19 Four possible outcomes of one species (solid) invading an established competitor
(dashed). Top row: Weak competition leads to coexistence in the wake of the invasion (β = 0.9).
Bottom row: Strong competition leads to replacement (β = 1.1). Left column: The invading
species spreads at the linearized speed (σ 2

2 = 1). Right column: The invading species spreads
faster than the linearization predicts (σ 2

2 = 50). Parameters are R1 = R2 = 1.2, α = 0.8, σ 2
1 = 1.

Initially, the invading species is present for x < 0 and the established species for x > 0. Profiles
are plotted every 100 time steps.

Theorem 14.1 (Theorem 3.1 in Lewis et al. 2002) Assume that Ki are symmetric
and continuous and have finite moment-generating functions Mi. Assume that Ri >

1, 0 < α < 1, and β > 0. Let s∗ < ∞ be the value where (14.128) attains its
minimum. If

R1

1 + α(R1 − 1)
M1(s

∗) ≥ 1 + (R2 − 1) max(αβ, 1)

R2
M2(s

∗) , (14.129)

then the spreading speed c∗ of (14.126) is linearly determined, i.e., it is equal to ĉ

in (14.128).

When we choose Gaussian dispersal kernels with mean zero and variances σ 2
i ,

we can calculate the condition of the theorem explicitly. The minimum of c1(s)

occurs at

s∗ = 1

σ1

√
2 ln

(
R1

1 + α(R1 − 1)

)
. (14.130)
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Condition (14.129) becomes

(
R1

1 + α(R1 − 1)

)2−(σ 2
2 /σ 2

1 )

≥ 1 + (R2 − 1) max(αβ, 1)

R2
. (14.131)

The simulations in Fig. 14.19 show the difference between spread at the linearly
determined speed when the above condition is satisfied (left column) and the faster,
anomalous speed when the condition is not satisfied (right column). For the chosen
parameter values, we have ĉ = 0.26. The numerically observed speeds are cnum =
0.25 (left column), cnum = 0.267 (top right), and cnum = 0.28 (bottom right).

How can the spread speed of one species depend on the dispersal behavior of
its competitor? When the established competitor disperses only short distances, its
population density will show a relatively steep transition from near carrying capacity
to near zero at the edges of its current range. The leading edge of the invading
species is inside the competitor’s range, where the competitor is near carrying
capacity, so that the invading species experiences the full force of competition. If,
however, the competitor disperses a long distance, its population density declines
more slowly near the edge of its range. The invading species does not experience
the full force of the competition and is able to invade faster.

The scenario of one species spreading into a competing species is certainly the
most relevant in the context of invasion biology. But what happens if two competing
species are released simultaneously and at the same location into previously
unoccupied habitat? Generically, one of the two will have the larger spreading speed
in isolation. We expect that species to spread and occupy the habitat more quickly,
setting the state for the previous scenario: the slower-spreading species (in isolation)
will find itself competing against an (almost) established species. If it can invade,
its spreading speed in the presence of the competitor will typically be slower than
in isolation and at least as fast as the linearization at the semi-trivial state predicts,
but not necessarily determined by it (see above). Proofs of these statements with
necessary conditions for this qualitative behavior can be found in Lin et al. (2011).
We illustrate these two phases of co-invasion in Fig. 14.20.

A number of researchers have studied various aspects of traveling waves in
competition systems. Li et al. (2005) prove that under certain conditions, the
spreading speed in a cooperative system can be characterized as the slowest speed of
traveling waves. This result carries over to the two-species competition model here
for the scenario where one species invades another. Li (2009) shows the existence of
traveling waves where two competing species invade previously unoccupied habitat
for all speeds higher than some threshold. The behavior in the wake of the wave
is left open. Lin et al. (2011) prove the existence of a wave connecting the zero
state to the coexistence state under certain conditions and with Gaussian dispersal
kernels. This wave exists for all speeds faster than the single-species spreading
speeds and converges to zero exponentially. Wang and Castillo-Chavez (2012) use
the Ricker model instead of the Beverton–Holt model for local population dynamics.
The resulting nonmonotone competition model is known as the Hassell and Comins
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Fig. 14.20 Two phases of the
co-invasion of competing
species; see text for detailed
explanation. The
faster-spreading species
(solid) slows the
slower-spreading species
(dash-dot in isolation, dashed
in competition). The setup is
as in Fig. 14.19, but initial
conditions are characteristic
functions on {x < 0} for both
species and σ 2

2 = 2. Densities
are plotted every 50
generations.
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model. They show the existence of spreading speeds and of a traveling wave of
invasion and replacement. Li and Li (2012b) also study the spatial Hassell and
Comins model of competition; they prove the existence of a traveling wave for joint
invasion. Li and Li (2012a) study the asymptotic behavior and prove uniqueness
of traveling waves in the spatial Hassell and Comins model. Pan and Yang (2014)
consider a competition model based on the logistic single-species growth model.
Pan and Lin (2014) study traveling waves in a spatial Hassell and Comins model
with history; i.e., the competition terms may depend on all past generation densities.
Lin (2015) considers traveling waves in multi-species, multi-generation models. Li
et al. (2016b) use Gaussian dispersal kernels and the interaction model in (14.125) to
study asymptotic behavior and uniqueness of traveling waves. The case of bistable
fronts, connecting the locally stable semi-trivial equilibria if the coexistence state is
unstable, is studied by Zhang and Zhao (2012).

14.9 Further Reading

Predator–Prey Systems

Predator–prey or host–parasitoid systems are fascinating to study because of
the multitude and diversity of patterns and phenomena that they support. One
aspect that we have not touched upon is the study of spreading phenomena with
nonstationary dynamics in the wake of a wave. Since local predator–prey dynamics
can show sustained oscillations or chaotic behavior, we can ask how such dynamics
spread spatially. Sherratt et al. (1997) compare the patterns in the wake of a
(one-dimensional) invasion in four different model structures: reaction–diffusion
equations, IDEs, coupled map lattices, and cellular automata. They find that all
model structures support complex patterns in the wake, and they conclude that these
phenomena are robust to model choice.
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Legaspi et al. (1998) study a complex (discrete-space) IDE simulation model
of hosts and parasitoids with three developmental stages each, in two dimensions,
via numerical simulations. Their model considers the life-cycle structure of the boll
weevil (Anthonomus grandis Boheman) and its exotic parasitoid Catolaccus grandis
(Burks). They consider management options under scenarios such as dominant wind
direction and temperature-dependent reproduction.

Allen et al. (2001) consider a discrete-space host–parasitoid system in one, two,
and three spatial dimensions. They find complex patterns such as spiral waves and
scroll waves. They explore the stabilizing effects of spatial structure by varying
model parameters across the domain, thereby coupling patches with stable and
unstable local dynamics, and they obtain globally stable densities under some
conditions. They propose the use of transfer functions to study stabilizing aspects
analytically.

White and White (2005) clarify the relationship between discrete-space models,
known as coupled map lattices but also referred to as discrete-space IDEs by Allen
et al. (2001), and (continuous-space) IDEs with regard to the respective pattern-
formation conditions. Neubert et al. (2002) relate transient dynamics of the local
model to pattern-formation conditions of the IDE model.

IDEs are used to model the transition from hunter–gatherer to farmer societies in
the neolithic period. Fort et al. (2008) argue that the modeling framework of IDEs
is better suited to this application than reaction–diffusion equations because they
can naturally include the fact that parents typically move with their children and not
away from them. The interaction between hunter–gatherers and farmers is different
from a typical predator–prey model in that each population can persist on its own.
Their interaction, however, typically leads to population growth for the farmers at
the expense of the hunter–gatherers and therefore constitutes a consumer–resource
relationship. Fort et al. (2008) formulate their model in two spatial dimensions
and calculate an expected spreading speed based on the assumption of linear
determinacy. They also estimate the time of coexistence of the two populations
during the replacement process by estimating the maximum slope of the invasion
front and inferring its width from it. Fort (2012) considers two processes of spatial
spread in the neolithic transition: the movement of individuals (demic diffusion) and
the movement of ideas (cultural diffusion). He estimates their relative impact on the
speed of the invasion front from data.

Wright and Hastings (2007) study how mechanisms that are very different
from the ones in Sect. 14.4 can generate stable spatial patterns in host–parasitoid
IDEs. They use singular perturbation theory to give conditions for abrupt spatial
transitions between two “steady states” of the local system. They find that the local
dynamics must exhibit an Allee effect of the host as well as an instability of the
coexistence equilibrium for such patterns to exist. The singular perturbation arises
from considering host dispersal on a very small scale.

Aydogmus et al. (2017) present an analytical framework to derive the so-called
Stuart–Landau equations for a single nonlocal IDE. We expect that these techniques
carry over to the case of coupled IDEs and could be employed to analyze the
amplitude of patterns in dispersal-driven instabilities.
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Predator and prey affect not only each other’s population dynamics but poten-
tially also each other’s dispersal behavior. Dwyer and Morris (2006) present
an IDE simulation model for density-dependent dispersal of predator and prey;
see Chap. 17. Another important aspect of predator–prey dynamics is landscape
structure. Hughes et al. (2015) consider a host–parasitoid IDE model in fragmented
landscapes of different characteristics. We devote Chap. 15 to questions of landscape
heterogeneity and consider their model in that context. Finally, Gouhier et al.
(2010) derive and implement a model of an aquatic ecosystem of mussels and their
succession. The model shows locally oscillatory behavior driven by disturbance and
regrowth. Gouhier et al. (2010) simulate the coupled model (a discrete-space IDE)
and observe the emergence of synchrony of these local cycles at scales much larger
than the dispersal scale of the organisms.

Cooperative Systems

The theory in Weinberger et al. (2002, 2007) covers more general systems than
what we presented here. Weinberger et al. (2002) provide constructions to deal with
the case where the equation has intermediate steady states and prove that there is a
single spreading speed. Theorem 3.1 in Weinberger et al. (2002) also shows that for
the linear conjecture to be true, the linear boundedness condition Q[N] ≤ Q′[0]N
needs to hold only in the direction of the dominant eigenvalue and not for all N;
compare Theorem 13.3. Weinberger et al. (2007) discuss an error in the proof of
Lemma 2.3 in Weinberger et al. (2002) and give additional hypotheses that can be
imposed for the results to hold.

Castillo-Chavez et al. (2013) review the literature on spreading speeds, linear
determinacy, and traveling waves in IDEs and reaction–diffusion equations for
scalar and vector-valued models with and without monotonicity.

In a “delayed” IDE, reproduction in generation t depends on the densities in
generations t and t − 1, so that

Nt+1(x) =
∫ ∞

−∞
K(x − y)F (Nt (y),Nt−1(y))dy . (14.132)

This equation can be written as a system for N1,t = Nt and N2,t = Nt−1. Under
some conditions on F , the resulting system is cooperative. Lin and Li (2010) show
the existence of a spreading speed and establish that this speed is the slowest speed
for which a monotone traveling wave solution exists. They also show that wave
fronts are stable. Pan and Lin (2011) analyze the same equation but allow for
more general growth functions. In particular, under the assumption that the growth
function be “locally monotone,” they obtain the existence of a spreading speed,
and the existence and nonexistence of monotone traveling waves, as well as their
stability.
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Ecological theory distinguishes between facultative and obligate mutualisms.
In the former, each species can grow independently, whereas in the latter, each
species requires the latter to grow. All the examples presented here treat facultative
mutualisms. Obligate mutualisms typically exhibit strong Allee-like effects, as has
been investigated in a nonspatial model for plant–pollinator systems by Lutscher
and Iljon (2013).

Competitive Systems

Lin (1995) studies a spatial genetics model for the dynamics of an advantageous
gene replacing an inferior gene. The model is an extension of a model in Weinberger
(1982) in that the densities of both genotypes are described, whereas the earlier
model had assumed that the total population density is constant, so that the density
of one genotype is simply the complement of the other. Even though the resulting
model in Lin (1995) is not monotone, the author proves the existence of traveling
waves and shows that the asymptotic spreading speed is characterized as the slowest
traveling wave speed.

Allen et al. (1996) derive a competition model for two flowering plant types.
They assume that the “relative total yield,” i.e., the sum of the yield of the two
species, is constant. Hence, as the yield of one species is increased, the other has
to decrease. Furthermore, the relative yield of each species is proportional to the
relative amount of seeds produced. For homogeneous solutions, they find exactly
the same four scenarios as we did in our competition model. Numerically, they also
show the same invasion–coexistence and invasion–replacement behavior as we did
in Fig. 14.19.

The competition model by Hart and Gardner (1997) is based on “lottery
competition,” where the density of offspring is determined by the ratio of the seeds
produced. This choice allows the authors to collapse the two equations into a single
one. For that single equation, the authors find the exact spreading speed (based on
the same arguments as in Chap. 5). They also derive a linear approximation of that
speed.

Carrillo et al. (2009) also consider a genetics model for two types: one that
reproduces sexually, while the other reproduces asexually. They show that under
some conditions, the two genotypes can coexist in an invasion front.

Kanary et al. (2014) study the competition between two variants of the green
crab, an invading species on the east coast of North America. They include pseudo-
age-structure and dispersal bias in their model and describe the feasibility or failure
of management options.

Ramanantoanina et al. (2014) (see Ramanantoanina et al. (2015) for a correction)
explore how the presence of different dispersal types affects the speed of spread
of an invasive species. They assume that individuals differ only in their dispersal
behavior so that the system effectively becomes a competition system of these
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different types. They observe that if the type with the greatest dispersal ability
is initially present only at very low density, then the overall population begins
spreading slowly but speeds up as the type with the greatest dispersal ability
becomes more prevalent. The population will eventually be spatially sorted with
the types with higher dispersal ability ahead of those with lower dispersal ability.



Chapter 15
Spatial Variation

Abstract Most landscapes are heterogeneous at many spatial scales. Heterogeneity
can reflect natural resource distribution (e.g., nutrients or temperature) or human
activity (e.g., harvesting or agricultural land use). All of these factors may affect the
local growth rate of individuals and their interactions. These effects can be modeled
by an explicit dependence of the growth function on spatial location. Spatial
heterogeneity can also affect individual dispersal patterns, either passively (e.g.,
dispersal barriers, wind direction) or actively (e.g., search for resources, avoidance
of dangers). Including spatially varying dispersal patterns in IDEs and analyzing
the resulting population dynamics poses numerous challenges. In previous chapters,
we concentrated on two kinds of landscapes: a homogeneous infinite landscape
and a single (homogeneous) bounded region. In this chapter, we present several
approaches to include more realistic spatial heterogeneity in IDEs. We begin with
models where only the growth function is affected by spatial heterogeneity and later
present ways to include heterogeneity in movement models and dispersal kernels.

15.1 Habitat Quality Function

Latore et al. (1999) propose using a “habitat quality function” to model the effect of
habitat heterogeneity on population persistence. They also introduce the notion of a
“critical habitat-size,” which generalizes that of the critical patch-size from Chap. 3.
We present some of their ideas here, in particular a special case that can be solved
explicitly and that we will extend later to include temporal variation as well; see
Chap. 16 and Zhou and Fagan (2017).

The habitat quality function, H, assigns to each location a number between zero
and one as the “quality” of the habitat at that location. It can be interpreted as the
probability that an offspring that arrives there will become established. The IDE for
the population density from one year to the next is then a slight modification of
(2.1), namely

Nt+1(x) = H(x)

∫ ∞

−∞
K(x − y)F (Nt (y))dy . (15.1)
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The growth function models population growth under ideal conditions; the dispersal
kernel remains independent of habitat quality. If habitat quality affects production
rather than establishment of offspring, we write the habitat quality function at
location y inside the integral (Zhou and Fagan 2017).

When H is constant, we have an infinite homogeneous habitat. When H is
the “uniform habitat quality function” (Latore et al. 1999), i.e., the characteristic
function of an interval, the model is equivalent to the one for the critical patch-size
in Chap. 3. When the integral of H is finite, it can be interpreted as the total habitat
quality. The critical habitat-size can then be defined as the minimal total habitat
quality that allows a population to persist.

Latore et al. (1999) propose several different habitat quality functions and
compare persistence conditions for constant total habitat quality. We present two
of their examples. The “Gaussian habitat quality function” is given by

H(x) = exp

(
− x2

2ρ2

)
. (15.2)

It models a single high-quality region in an infinite landscape without abrupt edges.
Parameter ρ2 measures the spread of the habitat. The total habitat quality equals√

2πρ2. For the “periodic habitat quality function,” we divide the interval [0, L]
into 2m subintervals, which alternate between habitat quality one (good) and zero
(bad); i.e.,

H(x) =
{

1 if x ∈
[

(n−1)L
m

,
(2n−1)L

2m

]
, n = 1, . . . , m,

0, otherwise.
(15.3)

The total habitat quality equals L/2, independent of m.

As in Chap. 3, we assume that the growth function has no Allee effect so that we
can study population persistence by determining the stability of the trivial steady
state by linearization. As usual, we say that the population persists if the trivial
solution is unstable. In the case of a Gaussian dispersal kernel and the Gaussian
habitat quality function, we can find explicit solutions of the linear equation and
determine persistence conditions analytically. For the periodic case, we use a
numerical scheme.

Gaussian Habitat Quality Function

We derive an explicit solution for the linear equation with Gaussian habitat quality

Nt+1(x) = Re
− x2

2ρ2

∫ ∞

−∞
KG(x − y; σ 2)Nt (y)dy , (15.4)
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where R = F ′(0) is the linearized growth rate and KG is the Gaussian kernel (2.25)
with mean zero and variance σ 2.

If N0(x) ≡ N̄0 is a constant, then N1(x) = RN̄0H(x); i.e., N1 is a multiple of a
Gaussian. We claim that if Nt is a multiple of a Gaussian, then so is Nt+1.

Proposition 15.1 The linear IDE in (15.4) has a solution of the form

Nt(x) = At exp

(
− x2

2ν2
t

)
, (15.5)

with

ν2
t+1 = ρ2(σ 2 + ν2

t )

ρ2 + σ 2 + ν2
t

and At+1 = AtR

√
ν2
t

σ 2 + ν2
t

. (15.6)

Proof We write Nt(x) = At

√
2πν2

t KG(x; ν2
t ). Then the convolution integral in

(15.4) is the convolution of two Gaussian kernels with zero mean, which results in
a Gaussian kernel where the two variances are simply added. Hence, we have

Nt+1(x) = Re
− x2

2ρ2 At

√
2πν2

t KG(x; ν2
t + σ 2) (15.7)

= RAt

√
ν2
t

ν2
t + σ 2

exp

(
− x2

2ρ2
− x2

2(ν2
t + σ 2)

)
(15.8)

= RAt

√
ν2
t

ν2
t + σ 2

exp

(
−x2

2

(
ν2
t + σ 2 + ρ2

ρ2(ν2
t + σ 2)

))
. (15.9)

This proves the claim. ��
Thanks to the proposition, studying the behavior of (certain) solutions of the IDE

in (15.4) reduces to studying the two-dimensional difference equations for ν2
t and

At . Moreover, the equation for ν2
t decouples and forms a monotone and bounded

iteration. In particular, it converges to the stable fixed point

ν̂2 = σ 2

2

⎛
⎝
√

1 + 4
ρ2

σ 2 − 1

⎞
⎠ . (15.10)

Eventually, then, the iteration for At is

At+1 ≈ AtR

√
ν̂2

σ 2 + ν̂2
. (15.11)
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Hence, for large t , At will increase if

R >

√
1 + σ 2

ν̂2
or ν̂2 >

σ 2

R2 − 1
. (15.12)

Substituting the expression for ν̂2 from above gives us the persistence conditions in
terms of the original parameters as

ρ2 > ρ2∗ = σ 2R2

(R2 − 1)2
. (15.13)

We summarize these calculations in the following result.

Proposition 15.2 If the habitat quality function is given by (15.2) and the dispersal
kernel is a Gaussian kernel with variance σ 2, then the population in (15.1) can
persist provided (15.13) holds. Therefore, the critical habitat-size is

√
2πρ2∗ .

The left panel in Fig. 15.1 shows the Gaussian and the uniform habitat quality
functions with the same total habitat quality. The right panel compares the critical
habitat-size as a function of growth rate for these two habitat quality functions.
For any given growth rate, the required habitat size is smaller in the uniform
case than in the Gaussian case, although the difference between the two decreases
with increasing growth rate. Hence, population persistence is more likely when the
resources are concentrated spatially than when they are spread out.

To numerically calculate the critical habitat-size for the uniform habitat quality
function, Latore et al. (1999) suggest an algorithm inspired by the power method
for matrices (see Chap. 8). The idea is to iterate the linear IDE, starting from a
very small population density, for a large number of time steps and then compare
whether the density grows or declines between the final two time steps. If the
density declines, the length is below the critical length; if it increases, it is above.
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Fig. 15.1 Left: Illustration of the uniform (solid) and Gaussian (dashed) habitat quality functions.
Right: Comparison of the corresponding critical habitat-sizes (CHS) for the uniform (solid) and
Gaussian (dashed) case. The dashed curve is given by

√
2πρ2∗ , with ρ2∗ as in (15.13). The solid

curve is obtained numerically as described in the text.
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Alternatively, we can discretize the interval (scaled to unity), write a matrix for the
discretized dispersal kernel (with scaled variance), and use standard computational
routines to calculate the dominant eigenvalue, λ = λ(L), for the linear integral
operator; see Sect. 8.4 for details. Then we use the relationship λ(L)R = 1 to find
the critical value of L for a given value of R.

Periodic Habitat Quality Function

Latore et al. (1999) use their periodic habitat quality function (15.3) to evaluate
how the critical habitat-size depends on habitat fragmentation. More specifically,
they compare the critical habitat-size under different combinations of growth rates
and number of good (and bad) patches. By construction, the total habitat quality is
exactly half of the total habitat length, independent of the number of patches into
which the habitat is divided (left panels, Fig. 15.2).

The right panel in Fig. 15.2 demonstrates that the critical habitat-size increases
as fragmentation (i.e., the number of patches) increases. It also demonstrates that
the increase is fairly moderate and levels off when R is larger but that it is almost
linear when R is smaller. To understand the reasons behind this difference, we note
that as the habitat size, L, increases, so does the distance between two adjacent
good patches, which is L/(2m). The variance of the dispersal kernel, however, is
fixed. Therefore, if L is relatively small, a large number of individuals disperse
from one good patch to the next (e.g., the bottom left panel in Fig. 15.2). If L

is relatively large, then the amount of dispersal between adjacent patches is very
small (e.g., the top left panel in Fig. 15.2). When R is small, the habitat needs to be
large, and consequently the gaps between patches are large. Because the dispersal
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Fig. 15.2 Left: Illustration of the periodic habitat quality function (15.3) with m = 3 good and
bad patches each and the Gaussian dispersal kernel with variance one (dashed). The habitat has
length L = 6 in the top panel and length L = 2 in the bottom panel. Right: Comparison of
critical habitat-sizes (CHS) for increasing fragmentation m = 1, . . . , 5 and different growth rates,
as indicated. The number of patches is discrete; the dashed lines serve only for visual structure.
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between patches is small, each patch operates essentially as an isolated patch, and
the population can persist if it can persist on each single patch. Hence, the critical
habitat-size grows almost linearly with the number of patches.

This aspect of the work by Latore et al. (1999) is closely related to our discussion
of habitat fragmentation in Sect. 3.5. There, we chose a sinusoidally varying linear
growth rate with constant integral. We evaluated the dominant eigenvalue of the
linearized IDE with the cosine kernel. We found that the dominant eigenvalue is
a decreasing function of the number of peaks of the growth rate; i.e., population
growth is highest when the resources are concentrated in one peak. The main
difference between that setup and the one here is that the total length of the habitat
was fixed. As the number of peaks increased, the width of each peak decreased,
allowing increased dispersal between adjacent peaks, rather than the decreased
dispersal that occurred, when the habitat was more fragmented.

The habitat quality functions by Latore et al. (1999) and the concept of a
critical habitat-size provide a very flexible framework for exploring various aspects
of habitat heterogeneity and population persistence. From a mathematical point
of view, the framework is only partly satisfying since almost all results require
numerical simulation. It turns out that by extending the periodic habitat quality
function to the entire infinite line, we obtain a model that is more accessible for
analyzing persistence conditions and even spreading phenomena. We consider this
scenario in the next section.

15.2 Persistence in an Infinite Periodic Habitat

The systematic study of population dynamics on infinite fragmented habitats
began with the pioneering work by Shigesada et al. (1986) for reaction–diffusion
equations. While it may seem counterintuitive that an infinite domain could be
simpler to study than a finite domain, the additional assumption of periodicity
reduces the problem on the infinite domain to one on a bounded domain with a
simple structure. We can calculate many of the interesting quantities explicitly in
special cases and thereby gain important ecological insights. The study of IDEs on
infinite periodic landscapes began with the work of Van Kirk (1995) and has since
been expanded considerably (Van Kirk and Lewis 1997; Weinberger 2002; Robbins
2004; Kawasaki and Shigesada 2007; Weinberger et al. 2008; Dewhirst and Lutscher
2009; Musgrave and Lutscher 2014a,b).

All of these works study some aspects of the population dynamics of the IDE

Nt+1(x) = Q[Nt ](x) =
∫ ∞

−∞
K(x, y)F (Nt (y), y)dy , (15.14)

where the growth function is assumed to be periodic with some positive period L in
the second variable; i.e., F(N, y) = F(N, y + L) for all y ∈ R. The corresponding
periodicity condition for the dispersal kernel is
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K(x, y) = K(x + L, y + L) for all x, y ∈ R . (15.15)

For explicit calculations, we consider a binary periodic growth function: each
period consists of one “good” patch of length L1 and one “bad” patch of length L2,
with L1 +L2 = L. The growth function is spatially constant within each patch; i.e.,

F(N, y) =
{

F1(N) , y in good patch,

F2(N) , y in bad patch.
(15.16)

We also refer to a patch with growth function Fi as type i. For the linear growth
function Fi(N) = RiN , we have a good patch if Ri > 1 and a bad patch if
Ri < 0. In the ecological literature, these patch types are also called source and
sink habitat, respectively. We shall use this terminology in the analysis below. For
a nonlinear growth function, the property Fi(N) < N for all N ≥ 0 certainly
describes a bad patch. A good patch requires Fi(N) > N for some N ≥ 0. But
what exactly constitutes a good patch and how to distinguish between “good” and
“better” in general is difficult and depends on many model aspects (e.g., whether
there is overcompensation or an Allee effect).

We first study persistence conditions in a mixed source–sink landscape and ask
which combination of good and bad patches allows the population to persist. As was
the case for the critical patch-size, the answer will depend on the dispersal behavior
of individuals. We begin with an explicit calculation in a special case that closely
mimics the procedure in Chap. 3.

The Linear Equation with the Laplace Kernel

We assume that the growth function is linear in N and piecewise constant in space;
i.e., F(N, x) = R(x)N and R(x) = Ri in patch type i. We choose the Laplace
kernel (2.27) with parameter a. In particular, we assume that the dispersal behavior
is independent of landscape quality. This assumption will be relaxed in Sect. 15.5.
Equation (15.14) becomes

Nt+1(x) =
∫ ∞

−∞
a

2
e−a|x−y|R(y)Nt (y)dy , (15.17)

which can also be interpreted as the linearization of (15.14) at N = 0 with R(x) =
∂F/∂N(0, x). We are interested in the corresponding eigenvalue problem

λφ(x) =
∫ ∞

−∞
a

2
e−a|x−y|R(y)φ(y)dy , (15.18)
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and in particular in the dominant eigenvalue. For now, we simply assume that such a
dominant eigenvalue exists; we return to the problem below. As before, we say that
the population persists if there is at least one eigenvalue |λ| > 1, and we say that the
population goes extinct if all eigenvalues satisfy |λ| < 1. Since we integrate with
respect to a continuous function, we may assume φ to be continuous even though
Rφ is not. We will, in fact, assume that φ is smooth. We return to this question in
Sect. 15.5, where we study more complicated dispersal behavior.

From a biological point of view, we can interpret the dominant eigenvalue λ as
the overall population growth rate, whereas R(x) is the local population growth rate.
From this interpretation, it is clear that λ should be bounded above and below by
the maximum and minimum of R, respectively. Mathematically, we can show that
the dominant eigenvalue is monotone in R; i.e., if R(x) ≥ R̃(x), then the dominant
eigenvalue corresponding to R is greater than or equal to that corresponding to R̃.

As in Chap. 3, we can differentiate Eq. (15.18) twice with respect to x and
substitute to arrive at the second-order differential equation

φ′′ = a2
(

1 − R(x)

λ

)
φ . (15.19)

This periodic equation is a form of Hill’s equation and therefore possesses a
countable set of real eigenvalues, 1/λ (Magnus and Winkler 1979).

For explicit calculations, we choose the interval [−L1/2, L1/2] as a good patch
of length L1 and the adjacent interval [L1/2, L1/2+L2] as a bad patch of length L2.
With these intervals as building blocks, the landscape is L-periodic; see Fig. 15.3.
With this notation, and under the assumption that the eigenfunction is L-periodic,
(15.19) can be written as the pair

φ′′ = a2 (1 − R1/λ) φ, x ∈ [−L1/2, L1/2] ,

φ′′ = a2 (1 − R2/λ) φ, x ∈ [L1/2, L1/2 + L2] ,

(15.20)

Fig. 15.3 Schematic
illustration of an infinite
periodic landscape with two
patch types (dashed). A
periodic function (solid) that
is also invariant under the
transformation x �→ −x must
have zero slope at the
midpoint of each patch.
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where φ is smooth and L-periodic. Since (15.19) is also symmetric, i.e., invariant
under the transformation x �→ −x, the derivative of φ must be zero at the midpoint
of each of the intervals; see Fig. 15.3. Hence, we can reduce problem (15.20) to

φ′′ = a2 (1 − R1/λ) φ, x ∈ [0, L1/2] ,

φ′′ = a2 (1 − R2/λ) φ, x ∈ [L1/2, L/2] ,

(15.21)

with no-flux boundary conditions φ′(0) = φ′(L/2) = 0 and smooth matching
conditions

lim
x↘ L1

2

φ(x) = lim
x↗ L1

2

φ(x) and lim
x↘ L1

2

φ′(x) = lim
x↗ L1

2

φ′(x) (15.22)

at L1/2.

By the previous consideration, the dominant eigenvalue, λ, is bounded by R2 <

λ < R1. Hence, we can write the general solution of the first equation as

φ(x) = A1 cos(ν1x) + B1 sin(ν1x) , with − ν2
1 = a2

(
1 − R1

λ

)
, (15.23)

for x ∈ [0, L1/2]. For the second equation, we obtain hyperbolic rather than
trigonometric functions, and we choose to center them at the right-hand end of the
interval; i.e.,

φ(x) = A2 cosh

(
ν2

(
L

2
− x

))
+ B2 sin

(
ν2

(
L

2
− x

))
(15.24)

for x ∈ [L1/2, L/2] with ν2
2 = a2(1 − R2/λ). The no-flux boundary conditions at

x = 0 and x = L/2 force B1, B2 = 0. The matching conditions at x = L1/2 give
conditions for Ai. Continuity of φ requires

A1 cos

(
ν1

L1

2

)
= A2 cosh

(
ν2

L2

2

)
, (15.25)

whereas continuity of φ′ requires

ν1A1 sin

(
ν1

L1

2

)
= ν2A2 sinh

(
ν2

L2

2

)
. (15.26)

These two conditions form a linear system for Ai. For a nontrivial solution, the
determinant of the coefficient matrix must vanish. This condition gives us the
relation
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ν1 tan

(
ν1L1

2

)
− ν2 tanh

(
ν2L2

2

)
= 0 . (15.27)

This relation is the analogue for infinitely many patches of (3.13) for a single patch.
Just as in Chap. 3, we can numerically calculate λ if all other parameters are given.
Alternatively, we can explicitly calculate the persistence boundary by setting λ = 1
and solving for L1 to obtain the threshold

L∗
1 = 2

a
√

R1 − 1
arctan

[√
1 − R2

R1 − 1
tanh

(
aL2

√
1 − R2

2

)]
. (15.28)

The population can persist if L1 > L∗
1. The relation between L∗

1 and the other
parameters is illustrated in Fig. 15.4. It increases with the size of bad patches, L2,
and decreases with the growth rate R2. In the limit as L2 → ∞, the critical size
approaches

L1,∞ = 2

a
√

R1 − 1
arctan

[√
1 − R2

R1 − 1

]
, (15.29)

which is the critical size of an isolated patch in an infinite but not completely
hostile environment. In the limit of a hostile environment (R2 → 0), we recover
the critical patch-size of a single patch in (3.14). Hence, if the bad patches in an
infinite landscape become completely hostile and very long, then each good patch
acts as an isolated single patch. Of course, we can also solve (15.27) for L2 to
determine the maximal length of a bad patch that allows for population persistence.
To obtain results for the ratio of good to bad patches, we scale space before solving
the equations.
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We note that whenever lengths Li occur in (15.27), they are multiplied by inverse
mean dispersal distance a. As in Chap. 3, we can scale the equations in (15.21) to
reduce the number of parameters. We set λ = 1 to study the persistence boundary.
By setting y = 2x/L, we obtain

φ′′ = a2L2

4 (1 − R1) φ , y ∈ [0, p] ,

φ′′ = a2L2

4 (1 − R2) φ , y ∈ [p, 1] ,
(15.30)

where p = L1/L denotes the fraction of good habitat. Van Kirk (1995) found a
clever substitution to reduce the number of parameters even further. By choosing

H 2 = a2L2

4

√
(R1 − 1)(1 − R2) and q2 =

√
R1 − 1

1 − R2
, (15.31)

we reduce the problem to

φ′′ = −H 2q2φ , y ∈ [0, p] ,

φ′′ = H 2φ/q2 , y ∈ [p, 1] ,
(15.32)

with only three parameters. We interpret H as the heterogeneity of the habitat
relative to dispersal ability. When organisms are highly mobile, a and therefore
also H are very small. Similarly, when Ri are both close to unity, then H is small.
Parameter q is the ratio of the quality of good patches to the quality of bad patches.
It measures habitat quality independent of dispersal ability.

Since (15.32) is of the same form as (15.21), the condition for nontrivial solutions
is of the same form as (15.27), namely

tanh

(
H

q
(1 − p)

)
= q2 tan(H qp) . (15.33)

We illustrate the persistence conditions in terms of p and q in Fig. 15.5. As
relative heterogeneity increases, a smaller percentage of good patches is required
for persistence. In particular, in a fragmented landscape consisting of sources and
sinks, a population is more likely to persist if its mean dispersal distance is smaller.
While a small dispersal distance is potentially detrimental for individuals within a
bad patch, it is crucially beneficial for individuals in good patches. When the mean
dispersal distance is large compared to the period, individuals experience only some
average growth rate, which might be insufficient for persistence. We present some
ideas of spatial averaging in Sect. 15.4. Here, we show that a population may persist
in a heterogeneous landscape even if the spatially averaged growth rate is less than
unity. This calculation follows the ideas of Van Kirk and Lewis (1997).

We solve (15.19) for R(x) as

R(x) = λ

(
1 − 1

a2

φ′′(x)

φ(x)

)
. (15.34)
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Fig. 15.5 The minimum
percentage of good habitat, p,
required for persistence in a
given landscape quality q

with fragmentation level
H = 1 (dashed), H = 2
(dash-dot), and H = 5
(solid) according to (15.33).
Higher quality and increasing
levels of (relative)
heterogeneity require a
smaller percentage of good
habitat.
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Averaging over one period on each side gives

1

L

∫ L

0
R(x)dx = λ

(
1 − 1

a2L

∫ L

0

φ′′(x)

φ(x)
dx

)
. (15.35)

Integrating by parts on the right-hand side leads to

∫ L

0

φ′′(x)

φ(x)
dx = φ′(x)

φ(x)

∣∣∣∣
L

0
+
∫ L

0

(φ′(x))2

(φ(x))2 dx . (15.36)

By periodicity, the boundary term vanishes; the remaining integral is positive.
Hence, the factor multiplying λ in (15.35) is less than unity. Therefore, we find

λ >
1

L

∫ L

0
R(x)dx . (15.37)

Hence, the overall population growth rate is greater than the average of the local
growth rates. In particular, if the average is only slightly below unity, the overall
growth rate can still be above unity.

General Persistence Conditions

In this section, we outline how to proceed in the general case, when the kernel is
not the Laplace kernel, and we justify the existence of a dominant eigenvalue that
determines persistence in the previous calculations. This section follows the ideas
from Van Kirk (1995) that were generalized in Musgrave (2013) and Musgrave and
Lutscher (2014b). We begin with operator Q from (15.14). A simple calculation
shows that under the periodicity assumption (15.15), this operator maps L-periodic
functions into L-periodic functions.
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Lemma 15.1 Let Q be defined by (15.14) and assume that (15.15) holds. Then Q

leaves the subspace of L-periodic functions on R invariant.

Proof Let N be L-periodic. Then

Q[N ](x) =
∫

K(x, y)F (N(y), y)dy

=
∫

K(x + L, y + L)F(N(y + L), y + L)dy

=
∫

K(x + L, ŷ)F (N(ŷ), ŷ)dŷ = Q[N ](x + L) , (15.38)

where ŷ = y + L results from a change of variables. ��
The dynamics of the IDE on the space of all bounded functions on R are certainly

not identical to those on the periodic functions. However, as long as we restrict our
investigation to fixed points, we may reduce the spatial domain to a single period.

Lemma 15.2 If N is an L-periodic fixed point of the operator Q in (15.14) and if
(15.15) holds, then N is precisely the L-periodic extension of a fixed point of the
operator QL, defined by

QL[N ](x) =
∫ L

0
K̂(x, y)F (N(y), y)dy , (15.39)

where

K̂(x, y) =
∑
m∈Z

K(x, y + mL) , x, y ∈ [0, L] , (15.40)

on the space of bounded functions on [0, L]. Conversely, if N is a fixed point of QL,
then its L-periodic extension to R is a fixed point of Q.

Proof The calculation is straightforward. We split the integral and use Tonelli’s
theorem so that the definition of K̂ emerges:

Q[N ](x) =
∫ ∞

−∞
K(x, y)F (N(y), y)dy

=
∑
m∈Z

∫ (m+1)L

mL

K(x, y)F (N(y), y)dy

=
∑
m∈Z

∫ L

0
K(x, z + mL)F(N(z + mL), z + mL)dz

=
∫ L

0

∑
m∈Z

K(x, z + mL)F(N(z), z)dz = QL[N ](x) . (15.41)
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This proves the claim. ��
We can now enlarge the function space of QL to the space of square-integrable

functions on [0, L] and obtain results similar to those in Chap. 13. In particular, we
get the existence of a dominant eigenvalue.

Proposition 15.3 Let the growth function be nonnegative, differentiable in both
variables, and L-periodic in the second variable. Let the dispersal kernel be positive
and continuous and satisfy the periodicity condition (15.15). Then operator QL

defined in (15.39) is completely continuous on L2[0, L]. It is Fréchet differentiable
at zero, and its derivative is the completely continuous operator

Q′
L[0]φ(x) =

∫ L

0
K̂(x, y)R(y)φ(y)dy , (15.42)

where R(x) = ∂F/∂N(0, x).

Under some additional conditions on the growth function, similar to those in
Chap. 13, the Fréchet derivative is a superpositive operator and has a dominant
eigenvalue with positive eigenfunction. Hence, the stability of the zero solution for
QL is determined by this dominant eigenvalue, and consequently the persistence of
the population described by QL is as well. What remains to see is that the behavior
of QL on the bounded domain also determines the behavior of Q on the unbounded
domain. The proof of the following theorem can be found in Sect. 4.3 of Musgrave
(2013).

Theorem 15.1 The trivial solution for Q is stable (locally asymptotically stable) if
and only if the trivial solution is stable (locally asymptotically stable) for QL.

If the growth function is also concave down in N for every x, then we obtain the
existence of a positive steady state and upward convergence toward this state from
low densities if the zero state is locally unstable. This statement follows from the
same techniques as in Sect. 13.4. The existence of steady states will be an important
ingredient when we consider spreading phenomena in the next section.

15.3 Spread in an Infinite Periodic Habitat

We expect that a species that can grow locally from low density and that disperses
to surrounding areas will spread spatially. In a homogeneous landscape, this spread
may occur in the form of a traveling wave with constant speed, as we saw in
Chaps. 5, 6, and 13. When landscape quality varies, we expect the rate of spatial
spread to increase where population growth is high and to slow down where
population growth is low, at least if dispersal is independent of landscape quality.
If dispersal behavior depends on landscape quality, the relationship between local
growth conditions and spread rate could be more complicated. In any case, we
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cannot expect a population front to move at a constant speed. However, if landscape
quality varies periodically in space, we can hope that while the local speed would
vary within each period, there could still be an analogue to the asymptotic spreading
speed (Chap. 5) that emerges on the scale of the spatial period. Simulations (see
below) and theoretical results (Weinberger 2002; Weinberger et al. 2008) show that
this is indeed the case, at least under certain conditions.

We begin with a numerical exploration in the spirit of the preceding section. We
simulate the model

Nt+1(x) =
∫ ∞

−∞
a

2
e−a|x−y|F(Nt(y), y)dy , (15.43)

where F is piecewise constant with respect to the second argument as in (15.16).
We choose F1 to be the scaled Beverton–Holt function (2.13) and F2 = 0. For
simplicity, we set L = 1 so that L1 = p ≤ 1 represents the percentage of source
habitat. We obtain the critical percentage for persistence from formula (15.33). For
the parameter values chosen in Fig. 15.6, this critical value is p∗ ≈ 0.38. When
p < p∗, the initial population can spread from its initial release location only to a
few neighboring source patches and dies out quickly. When p > p∗, the population
spreads. The population density is near zero ahead of the front and exhibits a
periodic pattern behind the front.

It is tempting to try to define a speed for this spreading process by considering
the time that it takes the profile to move by one period. In reaction–diffusion models
for spatially periodic habitats, this approach is valid (Shigesada et al. 1986). In our
setting, however, we are limited to discrete time points, and the population density
in one generation may never be an exact translation of a previous generation. If
it were, speed and landscape period would have to be rationally related. Instead,
Kawasaki and Shigesada (2007) define an “instantaneous” and an “averaged” speed.
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Fig. 15.6 Simulation of IDE (15.43) with Beverton–Holt growth in good patches and hostile bad
patches. Left: When L1 = 0.25, persistence condition (15.33) is not satisfied and the population
declines to zero. Right: When L1 = 0.7, the persistence condition is satisfied and the population
spreads (only the positive x-direction is shown). Parameters are R = 1.5, a = 10, and L = 1. The
initial profile is N0 = χ[−1,1]. The density is plotted every 10 generations (left plot) and every 55
generations (right plot).
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Fig. 15.7 Left: Spreading population front, plotted every 10 generations (top), and corresponding
front location (bottom). Right: Instantaneous (dots) and average (curve) speed. Dispersal kernel
and growth function are as in Fig. 15.6. The initial density is positive for all x < 0. Parameters are
R = 1.5, a = 5, and L1 = 0.7.

The location of the front, denoted as xt , is defined as the rightmost point where
Nt(xt ) = Ñ for some threshold value Ñ ; compare Sect. 5.2 and Fig. 5.1. The
instantaneous speed from generation t to generation t + 1 is then xt+1 − xt . The
average speed up to generation t is the mean of the instantaneous speeds up to that
time; i.e.,

ct = 1

t

t∑
t ′=1

(xt ′+1 − xt ′) = xt

t
. (15.44)

This definition assumes that the initial population front is at the origin so that x0 =
0. In Fig. 15.7, we plot snapshots of a spreading population and the location of its
front as a function of time, as well as the instantaneous and the average speed. From
the simulations it appears that the limit c̄ = limt→∞ ct exists. This would be a
candidate for the asymptotic spreading speed in periodic landscapes.

Heuristic Calculation of the Spreading Speed

We begin with the explicit example from Kawasaki and Shigesada (2007), who
study the linear IDE with Laplace dispersal kernel as in (15.17) and with piecewise-
constant growth function R(x) = Ri ≥ 0 in patch type i. By scaling space, we
may set the dispersal parameter a = 1 to simplify notation. Even though we cannot
expect densities at subsequent time steps to be spatial translations of one another, it
turns out to be helpful to emulate the ansatz from the continuous-time case and set
Nt = exp(−s(x−ct))φ(x) with some L-periodic function φ (Shigesada et al. 1986;
Kawasaki and Shigesada 2007). Substituting this ansatz into (15.17), we obtain the
relation
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escNt (x) =
∫ ∞

−∞
1

2
e−|x−y|R(y)Nt (y)dy . (15.45)

As we have seen several times already, the Laplace kernel allows us to turn the
integral equation into a differential equation. By repeated differentiation, we obtain

N ′′
t (x) = (1 − e−scR(x))Nt (x) . (15.46)

After substituting our ansatz, we find the corresponding equation for φ as

φ′′ − 2sφ′ + (s2 − 1 + e−scR(x))φ = 0 . (15.47)

As in the previous section, we need to find conditions for the existence of a nontrivial
eigenfunction φ. Since φ needs to be L-periodic, we have again a Hill’s equation
as in (15.19). Unlike in the previous case, the equation here is not symmetric with
respect to x �→ −x. Hence, we cannot reduce the equation to half a domain period
as we did in the preceding section. In this case, notation is simplified by choosing
good and bad patches in the L-periodic landscape to be located at [−L1, 0] and
[0, L2]. Hence, we study the equation

φ′′ − 2sφ′ + (s2 − 1 + e−scRi)φ = 0 for

{
x ∈ [−L1, 0) , i = 1 ,

x ∈ [0, L2) , i = 2 ,
(15.48)

and periodicity conditions

lim
x→0+ φ(x) = lim

x→0− φ(x) , lim
x→−L+

1

φ(x) = lim
x→L−

2

φ(x) , (15.49)

and similarly for φ′. Superscripts ± denote one-sided limits from the right and left,
respectively.

We write the solution of the characteristic equation of (15.48) as

s ± qi = s ±
√

1 − e−scRi (15.50)

and the general solution of the equation as

φ(x) =
{

A1e(s+q1)x + B1e(s−q1)x , x ∈ [−L1, 0) ,

A2e(s+q2)x + B2e(s−q2)x , x ∈ [0, L2) .
(15.51)

The periodic matching conditions give us relations between the coefficients. For
example, at x = 0 we require A1 + B1 = A2 + B2. Altogether, we can write the
conditions in matrix form as
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⎡
⎢⎢⎣

1 1 −1 −1
e−(s+q1)L1 e−(s−q1)L1 −e−(s+q2)L2 −e−(s−q2)L2

q1 −q1 −q2 q2

q1e−(s+q1)L1 −q1e−(s−q1)L1 −q2e−(s+q2)L2 q2e−(s−q2)L2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

A1

B1

A2

B2

⎤
⎥⎥⎦ = 0 .

(15.52)

As in the previous section, we are looking for a nonzero solution, which requires the
determinant of the matrix to vanish. This requirement establishes a relation between
the speed, c, and the steepness, s, of the profile. Tedious computations give this
dispersion relation as (Kawasaki and Shigesada 2007)

cosh(sL) = cosh(q1L1) cosh(q2L2) + q2
1 + q2

2

2q1q2
sinh(q1L1) sinh(q2L2) ,

(15.53)
where speed c is implicit in the definition of qi in (15.50).

The dispersion relation defines a function c = c(s). If c is real valued for some
positive s, then it is a candidate for the frontal speed. As in the homogeneous
landscape, we expect that the smallest such speed,

ĉ = min
s>0

c(s) , (15.54)

is the one that is actually realized from compactly supported initial data; see Chap. 5
and formula (5.17). The theory below will confirm this expectation.

Figure 15.8 shows the dispersion relation as well as the speed of spread according
to (15.54) as a function of the length of a good patch. When the good patch is so
small that persistence is impossible according to the condition in (15.33), the speed
is zero. When persistence is possible, the speed is positive, and it is an increasing
function of the length of good patches.
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Fig. 15.8 Left: The dispersion relation for the frontal speed in a periodic landscape according
to (15.53). Right: The minimal speed from (15.54) as a function of the length of good patches.
Parameters are R1 = 1.5, R2 = 0, and L = 1, unless otherwise noted.
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Spread Speed Theory

The first results on the existence of an asymptotic spreading speed and periodic
traveling waves for IDEs with spatial periodicity are due to Weinberger (2002), who
generalizes his earlier work in Weinberger (1982). The field has since expanded
considerably (Weinberger et al. 2008; Liang and Zhao 2010). More and earlier
results exist for continuous-time models with periodic spatial variation. We refer
the reader to Berestycki and Hamel (2002) and the references therein.

It is not surprising that we have to distinguish cases according to whether
the dynamics are monotone, nonmonotone, monostable, bistable, or their various
combinations, just as we did in homogeneous landscapes; see Chaps. 5, 6, and 11.
It does, however, take a bit longer to properly formulate these conditions when
the landscape is heterogeneous. Instead of (pointwise) conditions on the growth
function, we now require conditions on the IDE operator on one period of the
landscape. We formulate the simplest case of monotone, monostable dynamics here,
adapted from Weinberger (2002), and illustrate other cases with simulations and
references to the literature.

We consider the spatially periodic IDE

Nt+1(x) = Q[Nt ](x) =
∫ ∞

−∞
K(x, y)F (Nt (y), y)dy , (15.55)

where F(·, y + L) = F(·, y) and K(x + L, y + L) = K(x, y). Under these
assumptions, Q commutes with translations of multiples of L.

Since we always assume that the growth function is zero when the density is zero,
Q also has zero as a steady state. We now assume that there is a unique positive
periodic steady state N∗ of Q; i.e., Q[N∗] = N∗. We define the set

CN∗ = {N |N is continuous on R and 0 ≤ N ≤ N∗} . (15.56)

With this notation, we formulate the theorem in the monotone monostable case.

Theorem 15.2 (Weinberger 2002) Assume that Q has the following properties:

(i) Q[N(· − L)](x) = Q[N ](x − L).

(ii) Q[0] = 0, and there is exactly one positive L-periodic equilibrium Q[N∗] =
N∗.

(iii) Q leaves CN∗ invariant and is order preserving; i.e., if 0 ≤ N(x) ≤ Ñ(x) ≤
N∗(x), then 0 ≤ Q[N ](x) ≤ Q[Ñ](x) ≤ N∗(x).

(iv) 0 is unstable and N∗ is stable in the following sense: if N0 is L-periodic and
0 < N0 ≤ N∗, then the recursion Nt+1 = Q[Nt ] converges to N∗ uniformly.

(v) Q is continuous on CN∗ with respect to uniform convergence on bounded sets.
(vi) Q is compact on CN∗ .

Then Q has a spreading speed c∗ ∈ (−∞,∞] in the following sense:
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1. If c∗ < ∞, 0 ≤ N0 ≤ N∗, and N0(x) = 0 for x ≥ 0, then for every c > c∗,

lim sup
t→∞

[
sup
x>ct

Nt (x)

]
= 0 . (15.57)

2. If 0 ≤ N0 ≤ N∗ and there is a constant k > 0 such that N0(x) > 0 for x < −k,
then for every c < c∗,

lim
t→∞

[
sup
x<ct

(N∗(x) − Nt(x))

]
= 0 . (15.58)

The theorem says that if the initial density is zero on the positive half-line and
positive on some negative half-line, then an observer who travels faster than the
asymptotic speed will eventually see no population, while an observer who travels
slower than this speed will eventually see the population at its positive periodic
steady state.

The theorem as stated considers only one direction. The corresponding results in
the opposite direction follow from the coordinate change x �→ −x. The speeds in
the two directions could differ if the dispersal process is not symmetric. In particular,
if there is a strong directional bias in the dispersal process, then the spreading speed
could be negative; see Sect. 12.2.

The definition of the spreading speed here also differs slightly from the one in
Definition 5.1 in that the initial condition here is not compactly supported. It is
this version of the definition that extends to the case with Allee effect (see below).
However, the statement also holds for compactly supported initial data, as stated
in Theorems 2.2 and 2.3 by Weinberger (2002). The theory there is formulated
more generally for directional spreading speeds and “ray speeds” in any spatial
dimension, which makes the statement of the theorem more tedious.

Under the concavity conditions discussed at the end of Sect. 15.2, the assump-
tions of uniqueness of the positive steady state and of upward convergence in
Theorem 15.2 are satisfied. Hence, we obtain the existence of a spreading speed,
but the theorem does not give a concrete formula for it. If Q has a linearization at
zero and satisfies certain properties, such a formula exists.

Theorem 15.3 (Weinberger 2002) Suppose that Q satisfies the conditions of
Theorem 15.2. Suppose also that Q has a linearization at zero, denoted by Q′[0] =
Q′

0, that has the following properties:

(i) Q[N ] ≤ Q′
0[N ] for all 0 ≤ N ≤ N∗.

(ii) Q[N ] ≥ (1 − δ)Q′
0[N ] for some small δ > 0 when N ≥ 0 is small.

(iii) Q′
0 is L-periodic and strongly order preserving, and Q′

0[es|x|] exists for all s.

(iv) There is a positive, L-periodic function N such that Q′
0[N] > N.

(v) The truncated operator N �→ min{Q′
0[N ], N} satisfies the assumptions in

Theorem 15.2.

Then the asymptotic spreading speed of Q can be calculated as



15.3 Spread in an Infinite Periodic Habitat 305

c∗ = ĉ = inf
s>0

(
1

s
λ(s)

)
, (15.59)

where λ is the dominant eigenvalue of the equation

λφ(y) = esyQ′
0[e−sxφ(x)](y) . (15.60)

In particular, the spreading speed is linearly determined.

The above two theorems are stated for continuous functions, but their validity has
been extended to the case of lower semicontinuous functions in Weinberger et al.
(2008). In particular, the statements apply to the scenario of piecewise-constant
growth functions that we used to motivate and illustrate the results. We close
this section by considering appropriate analogues to traveling waves (see Chaps. 5
and 10), known as “traveling periodic waves” (Shigesada et al. 1986), “periodic
traveling waves” (Weinberger 2002), or “pulsating waves” (Berestycki and Hamel
2002); see Fig. 15.6 (right plot) and Fig. 15.7 (top left plot).

Definition 15.1 A solution, Nt , of IDE (15.55) is called a traveling periodic wave
of speed c if it has the form Nt(x) = W(x−ct, x), where W(s, x) has the following
properties:

1. For each s, the function W(x + s, x) is continuous in x.

2. For each s, the function W(s, x) is L-periodic in x.

3. For each s, the function W(s, x) is nonincreasing in s.

4. W(−∞, x) = N∗(x) and W(∞, x) = 0.

Theorem 15.4 (Weinberger 2002) Under the assumptions of Theorem 15.2, IDE
(15.55) has a traveling periodic wave of speed c if and only if c ≥ c∗.

Overcompensation

The theory in the preceding section requires the operator Q to be monotone, which
means that it does not apply to models with overcompensation, such as the Ricker
or the logistic growth function. In a homogeneous landscape, we can still define a
spreading speed when the growth function shows overcompensation and show that
this speed is still linearly determined under some conditions (Chap. 5). Weinberger
et al. (2008) extend both the theory for the monotone periodic case in Weinberger
(2002) and the nonmonotone homogeneous case in Hsu and Zhao (2008) and Li
et al. (2009), to the nonmonotone periodic case. In particular, the construction of
monotone operators Q± following (5.35) that form an upper and lower bound of the
operator Q is still valid. Furthermore, the spreading speed is linearly determined
under the conditions that we can expect from the homogeneous case. We illustrate
the ideas and results via numerical simulations.
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We consider the IDE with Ricker growth function and spatially periodic,
piecewise-constant parameter function

Nt+1(x) = Q[Nt ](x) =
∫ ∞

−∞
a

2
e−a|x−y|R(y)Nt (y)e−Nt (y)dy , (15.61)

where R(x) = Ri as in (15.16). The monotone upper and lower bounds defined in
(5.35) for the growth function can be written explicitly as

F+(N) =
{

NRe−N, N ≤ 1,

R/e, N > 1,
and F−(N) =

{
NRe−N, N ≤ R/e,

e−R/eR2/e, N > R/e.
(15.62)

We denote by N∗± the positive steady states of the corresponding operators Q± and
by N∗ a positive steady state of Q. Proving the uniqueness of the positive steady
state for Q in general is quite difficult and depends on properties of the dispersal
kernel (Weinberger et al. 2008).

When parameters Ri are small enough, Q is monotone for functions bounded
between zero and N∗(x), and N∗− = N∗+ = N∗. Hence, the theory from the
preceding section applies. There is an asymptotic spreading speed, it is given by
the linearization at zero, and there is a traveling periodic wave for each speed that is
at least as large as the asymptotic speed. The top panel in Fig. 15.9 illustrates how
the invading front very quickly approaches the periodic steady state.

When at least one of the Ri is large enough, Q is not monotone. Three ordered
steady states, N∗− < N∗ < N∗+, emerge. The density of an invading front approaches
the steady state N∗, and it stays below N∗ at all times (middle panel of Fig. 15.9).
When the growth rate(s) increase even further, the density at the front overshoots the
steady-state density, then dips below it again, and eventually approaches it (bottom
panel of Fig. 15.9)

With even higher growth rate(s), N∗ becomes unstable in what seems to be
a flip bifurcation. This behavior is expected since the nonspatial model also has
such a bifurcation; however, there have been no analytical results on the periodic
case so far. Weinberger et al. (2008) show numerical examples of a two-cycle and,
eventually, chaotic behavior. We saw in Chap. 11 that in a homogeneous landscape,
a spreading population may exhibit two phases during the invasion process with
overcompensation. At first, a nonmonotone wave spreads with the asymptotic
spreading speed and leaves in its wake the (unstable) steady-state profile. Then, a
secondary wave connects this state with the (stable) two-cycle profile, but at a slower
speed. We present some numerical evidence that the same phenomenon arises in the
periodic landscape as well.

Figure 15.10 shows that the approach to the (unstable) steady state takes many
spatial periods, during which the density varies somewhat randomly between
periods (top panel). The middle and lower panels show the density of the spreading
population at two subsequent generations. We recognize the secondary wave that
replaces the (unstable) steady-state profile with the periodic two-cycle profile. This
wave moves at a much slower speed than the first profile. By generation 200, it has



15.3 Spread in an Infinite Periodic Habitat 307

Fig. 15.9 Numerical
simulation of IDE (15.61)
with spatially periodic
piecewise-constant Ricker
growth function. The thick
curve shows the density of the
invading population front.
The dashed and dash-dot
curves correspond to the
upper and lower steady states,
N∗+ and N∗−. The thin curve is
the steady state N∗. Dispersal
parameters are L = 1,
L1 = 0.7, and a = 5. Growth
parameters are R2 = 0.9 and
R1 = 1.5 (top), R1 = 5
(middle), and R1 = 7
(bottom). The initial
condition for the invasion
front is unity for x < −10
and zero for x ≥ −10.
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barely reached the location x = 0, whereas the first profile passed that point in
generation 25.

The steady states N∗±, N∗ in all our numerical examples have the shape of
sinusoidal functions but can have much more complicated profiles in general.
Weinberger et al. (2008) show examples where N∗− has two maxima in each spatial
period, located near the boundary of the good patch and not in the center. We saw
similar shapes emerge as steady states on a single patch with Ricker dynamics in
Fig. 4.5. Much more numerical and analytical work is necessary to understand the
possible shape of periodic steady-state profiles and the convergence of spreading
profiles toward them.

When the periodic steady state is unstable, the following modification helps
visualize it numerically (Weinberger et al. 2008). Instead of IDE (15.14), we iterate

Nt+1(x) = (1 − ρ)Nt (x) + ρQ[nt ](x) (15.63)

for some 0 < ρ < 1. Clearly, the steady states of the two equations are the same.
If φ is an eigenfunction of Q′ with eigenvalue λ, then φ is an eigenfunction of the
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Fig. 15.10 Numerical
simulation of IDE (15.61)
with spatially periodic
piecewise-constant Ricker
growth function. The setup
and parameters are as in
Fig. 15.9, except here
R1 = 9.5. The positive steady
state is unstable. Top: The
first front at generation 25,
where the density increases
from zero to the unstable state
over many periods. Middle
and bottom: The second
front at generations 199 and
200, respectively, where the
positive unstable state is
replaced by a two-cycle that
moves at a much slower
speed.
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modified IDE with eigenvalue ρλ. Hence, by choosing ρ small enough, we can
stabilize the steady state. However, convergence to this state may be very slow.

Allee Effect

In a homogeneous landscape, a population with Allee effect may spread or retreat
in the form of a traveling wave; see Chap. 6. For specifically chosen parameter
values, the population may also form a standing wave (cline); see Theorem 6.1.
In a heterogeneous landscape, new phenomena arise; e.g., a “standing periodic
wave” (a traveling periodic wave with speed zero) occurs for a much larger set
of parameters. There are only a few publications that study population spread with
Allee effect in heterogeneous landscapes (Weinberger 2002; Dewhirst and Lutscher
2009; Musgrave et al. 2015). We summarize and illustrate their most important
findings here.
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The analytical results by Weinberger (2002) include the case of an Allee effect
to the extent possible. In particular, the following version of Theorem 15.2 clarifies
the existence of a spreading speed.

Theorem 15.5 (Weinberger 2002) Assume that Q satisfies the assumptions of
Theorem 15.2, except that assumptions (ii) and (iv) are replaced by, respectively,
the following:

(ii′) Q[0] = 0, and there are exactly two positive L-periodic equilibria 0 ≤
N∗

a < N∗.
(iv′) N∗

a is unstable and N∗ is stable in the following sense: if N0 is L-periodic
and N∗

a < N0 ≤ N∗, then the recursion Nt+1 = Q[Nt ] converges to N∗
uniformly.

Then there exists a spreading speed c∗ ∈ (−∞,∞] of Q in the following sense:

1. If c∗ < ∞, 0 ≤ N0 ≤ N∗, and N0(x) = 0 for x ≥ 0, then for every c > c∗,

lim sup
t→∞

[
sup
x>ct

(Nt (x) − N∗
a )

]
≤ 0 . (15.64)

2. If 0 ≤ N0 ≤ N∗ and there is a constant k > 0 such that N0(x) > N∗
a for

x < −k, then for every c < c∗,

lim
t→∞

[
sup
x<ct

(N∗(x) − Nt(x))

]
= 0 . (15.65)

Steady state N∗
a corresponds to a spatially periodic Allee threshold, but it is not

the pointwise Allee threshold of the growth function, because it includes the effects
of dispersal. There are no particular assumptions of the theorem with regard to the
stability of the zero state. For that reason, the claim is not that the population density
approaches zero far ahead of the front, but only that it remains below the spatial
Allee threshold. Likewise, since the spreading speed can be negative, it is in general
not sufficient for the population to exceed the spatial Allee threshold on a bounded
set.

We illustrate how a decrease in the available amount of good habitat can lead
from a spreading population to a stalled population and eventually a retreating
population. Our model equation is IDE (15.14) with a growth function that is
periodic and piecewise constant in space, as in (15.16). As the simplest meaningful
case, we choose F to be the Allee growth function (2.22) with γ = 2 in (good)
patches of type 1, and set F = 0 in (bad) patches of type 2. We use the Laplace
dispersal kernel and scale the period to L = 1 so that L1 denotes the percentage of
good habitat.

The plots in Fig. 15.11 show that the population can spread when the fraction
of good habitat is large enough (top panel), but stalls (middle panel) or retreats
(bottom panel) if the fraction is too small. The population density is plotted every
20 generations. In the middle panel, there is no visible change between generations.
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Fig. 15.11 Numerical
simulation of IDE (15.61)
with Allee growth function in
good patches and hostile bad
patches. Top: The population
spreads when L1 = 0.9.

Middle: The population stalls
when L1 = 0.8. Bottom: The
population retreats when
L1 = 0.65. The dashed curve
indicates the steady state
(invading front) with growth
function F+; see text for
details. Parameters are L = 1,
R = 6, and a = 5. The
population density is plotted
for t = 20, 40, 60, 80, 100. In
the middle panel, these five
curves are practically
indistinguishable. The initial
condition is zero for x > 0
and one for x < 0.
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We observe a standing periodic wave, or cline, which is a nonperiodic steady state
of Q. The bottom panel shows the slow retreat. The dashed curves in Fig. 15.11
indicate the solution at generation 100 with the monotone and concave upper bound
F+ of the Allee function F ; see (6.31). For the two upper panels, this curve is close
to the steady state. In the lower panel, the population spreads to the right with growth
function F+ but retreats to the left with Allee growth function F . When the fraction
of good habitat is very small, the population will decline uniformly in space (plot
not shown).

The standing periodic wave arises when (1) the distance from one good patch to
the next is so large that the density of individuals that can arrive in that patch does
not exceed the Allee threshold, and (2) the population can persist on an isolated
single patch (from a sufficiently high initial density). We calculate these thresholds
in a particular case. In a good patch of length L1, we choose the piecewise-constant
growth function from (6.1) with Allee threshold Na; in a bad patch of length L2,
we set the growth function to zero. We choose the Laplace dispersal kernel with
parameter a. We consider the good and bad patches in an L-periodic landscape to
be located at [−L1, 0) and [0, L2), respectively.

We find conditions under which a population that is established for x < 0 will
persist. By the growth function, the pre-dispersal density is one in occupied patches
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and zero in bad patches. If the post-dispersal density at zero exceeds the Allee
threshold, the population will not retreat. More formally, we set N(x) = 1 for
x ∈ ∪∞

n=0[−nL − L1,−nL) and zero elsewhere. The condition for persistence is
then Q[N ](0) > Na. We can calculate this condition explicitly as

Q[N ](0) =
∞∑

n=0

∫ −nL

−nL−L1

a

2
eaydy

= 1

2

∞∑
n=0

(
e−anL − e−anL−aL1

)
= 1 − e−aL1

2(1 − e−aL)
. (15.66)

Hence, Q[N ](0) > Na if and only if

L1 > L∗
1 = −1

a
ln
(

1 − 2Na

(
1 − e−aL

))
. (15.67)

As L → ∞, we obtain the persistence threshold for a single isolated patch, which
is exactly the critical spatial extent that we calculated in Chap. 6 after formula (6.8).

With the same setup, the population can spread if Q[N ](L2) > Na. This
condition can also be evaluated explicitly to get L2 < L − L∗∗

1 with

L∗∗
1 = 1

a
ln
(

1 + 2Na

(
eaL − 1

))
. (15.68)

Finally, we calculate conditions under which the positive periodic state exists and
is stable. In our setup, we require Q[1](0) > Na ; i.e., if the pre-dispersal density is
equal to one on all good patches, then the next-generation density must exceed the
Allee threshold at the boundary of a good patch. The calculations give

Q[N ](0) = sinh(aL1)

1 − e−aL
, so that L∗∗∗

1 = 1

a
arcsin

(
Na

(
1 − e−aL

))
(15.69)

is the threshold value for the positive periodic state.
We illustrate the three threshold values for L1 in Fig. 15.12. Below the solid

curve, there is no positive periodic state. The population collapses. Between the
solid and the dashed curves, the positive state exists, but a population that only
occupies the region x < 0 will retreat. Between the dashed and dash-dot curves, the
population will persist in a standing wave but not spread. Finally, above the dash-dot
curve, the population will spread.
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Fig. 15.12 The critical
values of L1 for population
retention (15.67), population
spread (15.68), and
population collapse (15.69) in
a periodic landscape with the
caricature Allee
function (6.1); see text for
explanations. The period is
L = 1.
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Fig. 15.13 Accelerating front in the IDE with a (heavy tailed) exponential square root ker-
nel (5.37) with a = 10 in a fragmented landscape; compare Fig. 15.7. The growth function is the
Beverton–Holt function with R = 1.5 in good patches and R = 0 in bad patches. Other parameters
are L1 = 0.6 and L = 1. The density in the top left panel is plotted every 20 generations.

Heavy-Tailed Kernels

In Chap. 5, we saw that when the dispersal kernel is not exponentially bounded
(heavy tailed), we may observe accelerating invasion fronts in a homogeneous
landscape. There are currently no systematic studies on how landscape heterogene-
ity may interact with heavy-tailed kernels. Simulations by Dewhirst and Lutscher
(2009) indicate that while fragmentation slows the overall speed, it does not prevent
the advancing front from accelerating.

Figure 15.13 illustrates such an accelerating front with the exponential square
root kernel (5.37). The front location grows faster than linearly in time, and the
average frontal speed appears to follow a linear increase.
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15.4 Approximations of Spread

The theory so far gives implicit expressions for persistence conditions and spread
rates in a special case (namely using the Laplace kernel and a piecewise-constant
periodic growth function); for the general case, it gives abstract results, which can be
tricky to calculate even numerically. Several authors considered approximations to
simplify the calculations involved with periodic, heterogeneous habitats. We present
two of these approaches in some detail.

Large Dispersal Scale

When the scale of dispersal is significantly larger than the scale of habitat hetero-
geneity, it seems plausible that the population dynamics depend not so much on
the exact spatial landscape configuration as on some suitably averaged quantities.
For reaction–diffusion equations, spatial averaging (“homogenization”) is a well-
developed and highly useful tool (Othmer 1983; Pavliotis and Stuart 2008). The
first application to IDEs was developed by Dewhirst and Lutscher (2009). They use
the linear IDE

Nt+1(x) =
∫ ∞

−∞
K(x − y; y)R(y)Nt (y)dy , (15.70)

where the second argument in K indicates that kernel parameters such as the
variance may depend on the location of origin of the dispersing organisms. Various
mechanisms could create such a dependence. For example, if individuals grow up
in a resource-poor environment, they simply may not have the energy to disperse
long distances, so that the variance of their dispersal kernel could be small. On the
other hand, individuals from resource-poor locations may try to disperse as far as
they possibly can to increase their chances of ending up in resource-rich locations.
In that case, the variance of their dispersal kernel could be large in resource-poor
areas.

We assume that R is L-periodic and that K is L-periodic in its second argument.
As before, we construct an exponential ansatz for a periodic traveling wave,
Nt+1(x) = Nt(x − c) = exp(−s(x − c))φ(x), with a periodic function φ. With
this ansatz, we obtain the eigenvalue problem

escφ(x) =
∫ ∞

−∞
K(x − y; y)es(x−y)R(y)φ(y)dy (15.71)

as before. The scaling x = Lw and y = Lz leads to

escφ̂(w) =
∫ ∞

−∞
LK̂(L(w − z); z)esL(w−z)R̂(z)φ̂(z)dz , (15.72)



314 15 Spatial Variation

where φ̂(z) = φ(Lz), R̂(z) = R(Lz), and K̂(·; z) = K(·;Lz). Since all functions
are now 1-periodic, we split the integral into a sum of integrals of length one. The
equation becomes

escφ̂(w) =
∫ 1

0

[ ∞∑
n=−∞

LK̂(L(w − z − n); z)esL(w−z−n)

]
R̂(z)φ̂(z)dz .

(15.73)
The sum in brackets is the Riemann-sum approximation of the integral

∞∑
n=−∞

LK̂(L(w − z − n); z)esL(w−z−n) ≈
∫ ∞

−∞
K̂(v; z)esvdv = M(s; z) .

(15.74)
Hence, in the limit as L → 0, we obtain the moment-generating function. Then we
can write (15.73) as

escφ̂(w) =
∫ 1

0
M(s; z)R(z)φ̂(z)dz . (15.75)

The right-hand side is now independent of w, so that the left-hand side has to be
independent as well. But then φ̂ is a constant and can be canceled from the equation.
We are left with the relation

esc ≈
∫ 1

0
R̂(z)M(s; z)dz . (15.76)

Hence, we arrive at the minimal speed of a traveling wave as

ĉ ≈ inf
s>0

1

s
ln

(∫ 1

0
R̂(z)M(s; z)dz

)
. (15.77)

For the case of a piecewise-constant growth function of two periodically alternating
values, the formula becomes

ĉ ≈ inf
s>0

1

s
ln (pR1M1(s) + (1 − p)R2M2(s)) , (15.78)

where p is the proportion of landscape where R̂(z) = R1 and Mi denotes the
moment-generating function of the dispersal kernel from patch type i.

To compare this approximate explicit formula with the exact implicit relation in
(15.53), we choose K(x−y; y) to be a (scaled) Laplace kernel (a = 1), independent
of the second argument. Then M1(s) = M2(s) = (1 − s2)−1, so that the preceding
formula gives
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ĉ ≈ inf
s>0

1

s
ln

(
pR1 + (1 − p)R2

1 − s2

)
. (15.79)

We can derive the same expression from the exact dispersion relation in (15.53) as
follows. When L is small, then so are L1,2. We expand the hyperbolic functions as
sinh(x) ≈ x and cosh(x) ≈ 1 + x2/2. We obtain

1 + (sL)2

2
≈
(

1 + (q1L
2
1)

2

)(
1 + (q2L

2
2)

2

)
+ q2

1 + q2
2

2
L1L2 . (15.80)

After expanding, this expression becomes

e−sc[R1L
2
1 + R2L

2
2 + (R1 + R2)L1L2] ≈ (1 − s2)L2 + O(L2

1L
2
2) . (15.81)

Since the O(L2
1L

2
2)-term is small compared to all the quadratic terms, we neglect it.

Then we divide by L2 and sort to get

esc = R1L1 + R2L2

L(1 − s2)
, (15.82)

which, with p = L1/L and 1 − p = L2/L, leads to the expression in (15.79).
The formula in (15.79) also provides a rule of thumb for the minimal fraction of

good habitat required for population persistence and spread. The numerator in the
expression must exceed unity for ĉ to be positive. If we assume that R1 > 1 > R2,
then the minimal percentage of type-1 habitat for persistence and spread is

p∗ = 1 − R2

R1 − R2
. (15.83)

Comparison with numerical simulations reveals that this approximation works very
well for the Gaussian kernel, even if the dispersal scale is comparable to the
landscape scale; see Fig. 15.14, left panel. For the Laplace kernel, the approximation
is less accurate near the persistence threshold, p∗, if the dispersal is relatively large;
see Fig. 15.14, right panel.

Collingham and Huntley (2000) simulated the spread rate of tree species on
a discrete lattice representing a fragmented landscape of favorable and hostile
patches. They found a minimum fraction of 10–40% for the persistence and spread
of the population with a growth rate of R between 1.02 and 1.09 in favorable
patches. With these values, the persistence threshold (15.83) is almost 100%, which
is clearly not realistic. However, Collingham and Huntley (2000) simulated only
long-distance dispersal between lattice points; most individuals did not disperse
outside their patch. To match their simulations, we need to include a proportion of
sessile individuals as in Sect. 12.4, e.g., model (12.54) on Ω = R, but with spatial
heterogeneity. The linearized model is
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Fig. 15.14 Comparison of the spreading speed obtained from averaging in (15.78) (dashed) with
simulation results (solid) for the Gaussian kernel (left panel) and with the exact value from (15.53)
(dash-dot) for the Laplace kernel (right panel). Parameters are (a) R1 = 2, R2 = 0, and σ 2

1,2 = 2;

(b) R1 = 2, R2 = 0, and σ 2
1,2 = 0.25; and (c) R1,2 = 1.5, σ 2

1 = 2, and σ 2
2 = 0.25. Plots adapted

from Dewhirst and Lutscher (2009).

Nt+1(x) = gR(x)Nt (x) + (1 − g)

∫ ∞

−∞
K(x − y; y)R(y)Nt (y)dy . (15.84)

We can still construct the exponential ansatz for a traveling periodic wave and the
Riemann-sum approximation to arrive at the analogous equation to (15.75), namely

escφ̂(w) = gR̂(w)φ̂(w) + (1 − g)

∫ 1

0
M(s; z)R̂(z)φ̂(z)dz . (15.85)

However, the previous argument that φ̂ has to be a constant does not apply at this
point. Under the assumption that R̂ is piecewise constant (and that R̂2 = 0 for
simplicity), Dewhirst and Lutscher (2009) proceed as follows. They write φ̂1(w) =
φ̂(w) for 0 ≤ w < p = L1/L and φ̂2(w) = φ̂(w) for p ≤ w < p = 1. These two
functions satisfy

escφ̂1(w) = gR̂1φ̂1(w) + (1 − g)R̂1

∫ p

0
M(s; z)φ̂1(z)dz ,

escφ̂2(w) = (1 − g)R̂1

∫ p

0
M(s; z)φ̂1(z)dz .

(15.86)

The first equation decouples and can be written as

(esc − gR̂1)φ̂1(w) = (1 − g)R̂1

∫ p

0
M1(s)φ̂1(z)dz , (15.87)

where M1 is the moment-generating function of K1 on favorable patches. Now the
previous argument applies: φ̂1(w) is constant and can be canceled from the equation.
What remains can be solved for c to find



15.4 Approximations of Spread 317

Fig. 15.15 Each box and
whisker plot represents
spread-rate statistics for 100
simulations in randomly
generated landscapes. The
curve indicates the theoretical
value obtained by the
averaging formula (15.78).
Parameters are R1 = 1.8 and
R2 = 0.2, and dispersal
kernels are Gaussians with
σ 2

1 = 1 and σ 2
2 = 3. Plot

adapted from Dewhirst and
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ĉ = inf
s>0

1

s
ln(gR1 + (1 − g)pR1M1(s)) , (15.88)

which implies a persistence threshold of p∗ = 1−gR1
(1−g)R1

. With R1 = 1.04 and g =
0.95, this expression yields a reasonable threshold of p∗ ≈ 23%; see Appendix 3 in
Dewhirst and Lutscher (2009) for more details.

Dewhirst and Lutscher (2009) also present a heuristic argument to apply their
averaging method to the model with the caricature Allee effect from (6.1). Since the
final formula in (15.78) contains only the percentage of each of the two habitat
types, it could potentially also apply to (certain) randomly varying landscapes.
Dewhirst and Lutscher (2009) test this idea by simulations and find that the
formula makes a reasonable prediction of the mean over many simulation runs.
For example, Fig. 15.15 shows the mean, median, percentile, and outliers of 100
simulation runs on randomly generated landscapes together with the curve given by
the homogenization approximation.

Small Landscape Variation

Gilbert et al. (2014a) consider a different small parameter, namely the spatial
variation in landscape quality and dispersal behavior. Their work is for stage-
structured models; we present the main idea for the simpler scalar case. We also
start with the linearized L-periodic equation (15.70), but instead of assuming that
L is small we assume that K and R vary only slightly around their means. More
precisely, let us denote by σ(x) the L-periodic function that indicates how a
parameter in the dispersal kernel (e.g., the variance) depends on spatial location.
We define the averages
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R = 1

L

∫ L

0
R(x)dx and K(x) = 1

L

∫ L

0
K(x; y)dy , (15.89)

and similarly for σ . The main assumption that the functions differ only slightly from
their averages can be expressed as

R(x) = R(1 + εR1(x) + O(ε2)) , σ (x) = σ(1 + εσ1(x) + O(ε2)) ,

K(x; y) = K(x)(1 + εσ1(y) + O(ε2))

(15.90)
for some small ε > 0 and functions R1 and σ1 with zero mean. We continue as
above by forming the ansatz of a traveling periodic wave with speed c = c(s, ε) and
arrive at eigenvalue equation (15.71), which we write in operator form as

esc(s,ε)φ(x) = K [φ](x) =
∫ ∞

−∞
K(x − y; y)es(x−y)R(y)φ(y)dy (15.91)

=
∫ L

0

∑
m

K(x − y + mL; y)es(x−y+mL)R(y)φ(y)dy .

The latter expression uses the L-periodicity of the functions involved, which
guarantees that we can always work on a bounded spatial domain; see (15.40).

When we substitute the expansions for R and K as above, we can write K =
K0 + εK1 + O(ε2), where

K0[ψ](x) =
∫ ∞

−∞
K(x − y)es(x−y)Rψ(y)dy and

K1[ψ](x) =
∫ ∞

−∞
K(x − y)es(x−y)R[σ1(y) + R1(y)]ψ(y)dy .

(15.92)

On the left-hand side of (15.91), we substitute the expansions

c = c(s, ε) = c0(s) + c1(s)ε + O(ε2) and φ(x) = φ0 + εφ1(x) + O(ε2) .

(15.93)
Since φ is an eigenfunction, its average, φ0, is a scalable constant.

Comparing like terms in the expansion, we find to lowest order the known
formula

c0(s) = 1

s
ln(R M(s)) , (15.94)

where M is the moment-generating function of K. The terms of order ε give the
equation

esc0φ1 − K0[φ1] = K1[φ0] − esc0c1φ0 . (15.95)
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We denote by φ∗
0 the (constant) eigenfunction of the adjoint operator K ∗

0 to the
eigenvalue esc0 with respect to the inner product on the set of square-integrable
functions on [0, L]. Taking the inner product of the left-hand side of (15.95), we
find

〈φ∗
0 , (esc0φ1 − K0[φ1])〉 = 〈(esc0φ∗

0 − K ∗
0 [φ∗

0 ]), φ1〉 = 0 . (15.96)

Hence, the inner product of φ∗
0 with the right-hand side of (15.95) is also zero. Then

we find an expression for c1 as

esc0c1 = 〈φ∗
0 ,K1[φ0]〉
〈φ∗

0 , φ0〉 . (15.97)

We claim that this expression is zero. Since φ0 and φ∗
0 are constants, we may set

them to unity. Then we have to evaluate

∫ L

0

∫ L

0

∑
m

K0(x − y − mL)es(x−y−mL)R[σ1(y) + R1(y)]dydx . (15.98)

The change of variables z = y and w = x − z gives

∫ ∞

−∞

∑
m

K0(w − mL)es(w−mL)

∫ L−w

−w

R[σ1(z) + R1(z)]dzdw . (15.99)

By construction, the integrals of σ1 and R1 over one period vanish. Hence, the entire
expression is zero. Under some additional technical assumptions that guarantee that
the minimum of c with respect to s is attained for finite s (see Appendix B in Gilbert
et al. 2014a for details), we find that the dispersion relation is given by

c(s, ε) ≈ c0(s) + O(ε2). (15.100)

In other words, if the landscape variation is of order ε, then the speed obtained from
the averaged equation is an order-ε2 approximation to the true speed.

Some landscapes show forms of heterogeneity (or fragmentation) that are not
covered by either of the two approaches to averaging. These landscapes have strong
heterogeneity on a scale that is comparable to or larger than the dispersal scale.
An example could be certain wildflowers that find good habitat only on the fringes
of agricultural fields and forests. Their good habitat patches are far apart, and the
difference between “good” and “bad” patches in terms of population reproduction
is large. The consideration of such sparse landscapes led Gilbert et al. (2014b) to
develop a different approximation technique for scalar and stage-structured IDE
models. They reduce the continuous source–sink habitat to a discrete lattice model
by averaging dispersal on each patch (similar to the ideas behind the dispersal
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success approximation in Chap. 9). Then they use a discrete version of Theorem 5.1
(also proved by Weinberger 1982) to show the existence of a spreading speed and
the validity of the linearization formula.

15.5 Spatially Varying Dispersal Behavior

So far, we have assumed that only the growth function depends on spatial location.
However, individuals also adapt their dispersal behavior to local conditions. Forag-
ing theory postulates that individuals should move faster in unsuitable habitat and
more slowly in suitable habitat. A meta-study by Crone et al. (2019) confirms this
prediction empirically for many different taxa. If given a choice, individuals should
also preferentially move toward suitable habitat. Empirical results that confirm
such habitat preference for several taxa are listed in Maciel and Lutscher (2013).
Including these and potentially other aspects of behavior in dispersal kernels poses
challenges for modeling and analysis. Several authors begin with a random-walk
model (Chap. 7), include spatial variation in the diffusion and settling parame-
ters, derive corresponding dispersal kernels, and analyze the resulting dynamics
(Van Kirk 1995; Van Kirk and Lewis 1997, 1999; Powell and Zimmermann
2004; Robbins 2004; Musgrave 2013; Musgrave and Lutscher 2014a,b; Musgrave
et al. 2015). Neupane and Powell (2015) also include temporal variability in the
settling process. We present some aspects of the work by Musgrave (2013), which
generalizes many of the results preceding it, and give an application to invasive
forest insects (Lutscher and Musgrave 2017).

Dispersal Kernels in Patchy Landscapes

We generalize random-walk models (Chap. 7) to patchy landscapes. As in
Sects. 15.2 and 15.3, we consider a one-dimensional landscape divided into patches
of two types. In a patch (interval) of type i, we write a diffusion and settling
equation with patch-dependent parameters for the density of a dispersing organism
as (compare (7.5))

∂u

∂t
= Di

∂2u

∂x
− αiu . (15.101)

We neglect dispersal-related mortality here (see Sect. 12.1), but it is included in the
model by Musgrave (2013). We need to define matching conditions for the density
at the interface between two adjacent patches. Our approach follows Ovaskainen
and Cornell (2003) and Maciel and Lutscher (2013), who include patch preference
in the movement model. For simplicity, we consider a single interface, located at
x = 0, with a patch of type 1 to the right and a patch of type 2 to the left. We denote
by �t the time step and by �i the space step in patch type i; compare Chap. 7. We
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Fig. 15.16 Schematic
illustration of the
random-walk probabilities at
an interface between two
patch types. Δ
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set �0 = (�1 + �2)/2. An individual inside a patch of type i moves left or right
with equal probability pi. An individual at the interface chooses to move into patch
type i with probability γi , where γ1 + γ2 ≤ 1; see Fig. 15.16.

The master equations for the probability of the individual’s location near the
interface are

u(t + �t, 0)�0 = (1 − γ1 − γ2)u(t, 0)�0 + p1

2
u(t, x + �1)�1

+p2

2
u(t,�2)�2 ,

u(t + �t,�1)�1 = (1 − p1)u(t,�1)�1 + γ1u(t, 0)�0

+p1

2
u(t, 2�1)�1 , (15.102)

u(t + �t,−�2)�2 = (1 − p2)u(t,−�2)�2 + γ2u(t, 0)�0 + p2

2
u(t,−2�2)�2 .

We expand the terms on the left-hand side in a Taylor series in �t and the terms
containing 2�i in a Taylor series in �i. Then we multiply the second equation by
γ1 and the third by γ2 and substitute the first equation. Eventually, we find

γ1p2�2u(t,−�2) = γ2p1�1u(t,�1) + O(�2) , (15.103)

where �2 stands for the product of any two of �1, �2, and �t . If we now assume
that �1 = �2, we multiply both sides by �1/�t , take the parabolic limit (7.6), and
arrive at

γ1D2u(t, 0−) = γ2D1u(t, 0+) . (15.104)

Here, Di are the diffusion coefficients in patch type i, and 0± indicate the one-sided
limits from the right and left, respectively. Different assumptions lead to slightly
different formulations, but we only consider (15.104) here (denoted Case M in
Musgrave (2013)). In a similar way, we can derive the continuity condition for the
flux as

D2
∂u

∂x
(t, 0−) = D1

∂u

∂x
(t, 0+) ; (15.105)

see Appendix A in Maciel and Lutscher (2013) for details.
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We write the diffusion-settling equation in a patchy periodic landscape with two
types of patches as

∂

∂t
u(t, x) = ∂2

∂x2 (D(x)u(t, x)) − α(x)u(t, x) (15.106)

with piecewise-constant functions D(x) = Di and α(x) = αi on patch type i.

At each interface, we impose matching conditions (15.104) and (15.105) or the
corresponding conditions with the one-sided limits interchanged when the patch
of type 1 (2) is on the left (right). To obtain a dispersal kernel, we impose the initial
condition u(0, x) = δ(x − y) and denote the corresponding solution as u(t, x; y).
Then the dispersal kernel is defined as in (7.7), except that the settling rate now
depends on space; i.e.,

K(x, y) =
∫ ∞

0
α(x)u(t, x)dt . (15.107)

Musgrave (2013) explicitly calculates the resulting dispersal kernel in several
cases, e.g., when there are only one or two interfaces in the entire landscape; see
also Musgrave and Lutscher (2014a). In fact, for any finite number of patches, the
kernel consists of a linear combination of exponential functions on each patch.
The coefficients for these exponentials satisfy a linear system of equations, given
by appropriate interface conditions for the kernel. These conditions are similar
to conditions (15.104) and (15.105) but also contain the settling coefficients.
Figure 15.17 shows one example of a kernel on a landscape consisting of three good
patches (low diffusion and high settling) interspersed with and surrounded by bad
patches (high diffusion and low settling). For comparison, we also plot the Laplace
kernel on a homogeneously good landscape. Musgrave (2013) and Musgrave and
Lutscher (2014a) also derive and analyze expressions for the dispersal success
function, the average dispersal success, and the mean dispersal distance in patchy
landscapes.

Fig. 15.17 Dispersal kernel
in a patchy landscape with
three good patches.
Parameters are D1 = 0.1,
D2 = 0.3, α1 = 2, α2 = 1,
and γ1 = γ2 = 1/2. The
dash-dot curve shows the
Laplace kernel with
parameters D1 and α1. Figure
adapted from Lutscher and
Musgrave (2017).
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Persistence and Spread in Patchy Landscapes

To consider the population dynamic effects of patch-dependent dispersal behavior,
we study the IDE

Nt+1(x) =
∫ ∞

−∞
K(x, y)F (Nt (y), y)dy (15.108)

on an infinite landscape of two periodically alternating patch types. The growth
function is piecewise defined as in (15.16), and the dispersal kernel is implicitly
given in (15.107), derived from the random-walk model above. We assume that
there is no Allee effect and study persistence conditions and spreading speeds based
on the linearization at zero.

It turns out that all of the theoretical analysis and explicit calculations for
persistence conditions in infinite periodic landscapes with homogeneous dispersal
behavior (Sect. 15.2) can be generalized to the case of heterogeneous dispersal
behavior here (Musgrave 2013; Musgrave and Lutscher 2014b). The key insight
that allows explicit calculations is that the kernel is again the Green’s function of a
second-order differential operator. Therefore, the eigenvalue problem for stability of
the trivial state can still be reduced to a pair of differential equations as in (15.21) but
with different values for a in the different patches and with discontinuous matching
conditions replacing the ones in (15.22). Specifically, the equations for eigenvalue
λ and eigenfunction φ are

φ′′ = a2
1 (1 − R1/λ) φ, x ∈ [0, L1/2] ,

φ′′ = a2
2 (1 − R2/λ) φ, x ∈ [L1/2, L/2] ,

(15.109)

with no-flux boundary conditions φ′(0) = φ′(L/2) = 0. We denoted ai = √
αi/Di

and Ri = F ′
i (0) with R1 > 1 > R2 ≥ 0. The interface matching conditions are

γ2α2D1φ

(
L−

1

2

)
= γ1α1D2φ

(
L+

1

2

)
,

α2D1φ
′
(

L−
1

2

)
= α1D2φ

′
(

L+
1

2

)
.

(15.110)

Following the same steps as in Sect. 15.2, we can calculate the minimal size of good
patches that allows the population to persist as

L∗
1 = 2

a1
√

R1 − 1
arctan

[
γ2a2

γ1a1

√
1 − R2

R1 − 1
tanh

(
a2L2

√
1 − R2

2

)]
. (15.111)
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Fig. 15.18 Critical length of good patches in a periodic landscape according to (15.111). Default
parameters for the solid curve are D2 = 1, L2 = 1, α1 = α2 = 1, γ1 = γ2 = 0.5, R1 = 2, and
R2 = 0. Parameter values for other curves differ only in the parameter indicated, and γ2 = 1 − γ1.

In Fig. 15.18, we illustrate that the threshold length, L∗
1, increases with the

movement rate in good patches, D1 (solid curve). The biological explanation is
the same as for the critical patch-size: as the movement rate increases, individuals
are more likely to leave the good patches and die in bad patches. Varying only
one parameter at a time, we observe that decreasing the length of bad patches, L2
(dots); decreasing the settling rate in bad patches, α2 (dash-dot); or increasing the
preference for good patches, γ1 (dashed), each decreases L∗

1. We note that increasing
the movement rate in bad patches, D2, decreases L∗

1; for illustrations, see Musgrave
(2013) and Musgrave and Lutscher (2014b).

The explicit calculations of the minimal traveling periodic wave speed from
Sect. 15.3 can be extended to the case of patch-dependent movement behavior (see
below). The theoretical results by Weinberger (2002) cannot be applied here for two
reasons. All previous theoretical work considers the density, N , to be continuous
in space, but this is generally not the case when the landscape is patchy and the
matching conditions are discontinuous. Also, numerical simulations reveal that even
if the growth function is spatially homogeneous and monotone and has N∗ = 1 as
a stable fixed point, the solution operator may not leave the set of functions CN∗ in
(15.56) invariant (Musgrave 2013). Nonetheless, numerical simulations suggest that
the linear conjecture holds for IDE (15.108). We proceed under the assumption that
it does.

Most of the steps leading to dispersion relation (15.53) between the speed and
the steepness of a traveling periodic wave, Nt(x) = e−s(x−ct)φ(x), can be extended
to our case here, but it is helpful to make several substitutions; see (Musgrave 2013)
for details. In the end, we arrive at the dispersion relation for a traveling periodic
wave

cosh(sL) = cosh(q1L1) cosh(q2L2) + q2
1 + (γ̄ q2)

2

2γ̄ q1q2
sinh(q1L1) sinh(q2L2) ,

(15.112)
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Fig. 15.19 Minimal speed of a traveling periodic wave according to (15.112). Left: Speed as a
function of movement rate in bad patches, D2, for three different lengths of bad patches. Right:
Speed as a function of patch preference, γ1, with γ2 = 1−γ1. Unless specified otherwise, parameter
values are L1 = L2 = 1, D1 = D2 = 1, α1 = α2 = 1, γ1 = γ2 = 0.5, R1 = 2, and R2 = 0.

where

q2
i =

(
ai

Di

)2 (
e−scRi − 1

)
and γ̄ = γ2

γ1
. (15.113)

The plots in Fig. 15.19 illustrate how the minimal traveling periodic wave speed
depends on model parameters. Above a certain threshold value, it is an increasing
function of the movement rate in bad patches (left plot). The threshold value arises
from the critical size of good patches (15.111). If an individual moves too slowly
in bad habitat, it will settle there and not make it across to the next good habitat.
The resulting population loss is too large for the population to persist and spread.
The traveling periodic wave speed is a hump-shaped function of the preference for
good patches (right plot). If individuals have a low preference for good patches (or
even some preference for bad patches), the persistence condition in (15.111) is not
satisfied, and the population will die out. If the preference for good patches is very
high, only a very few individuals will leave a good patch, and those few will not
be sufficient to establish a population on the next good patch, so that the population
cannot spread.

Application to Invasive Forest Insects

Lutscher and Musgrave (2017) apply the ideas and results above to study the spread
of the invasive emerald ash borer (Agrilus planipennis Fairmaire) in fragmented
landscapes. Crone et al. (2019) use a slight modification of the dispersal model
to evaluate the importance of low-quality habitat for the spread of the endangered
Baltimore checkerspot butterfly (Euphydryas phaeton). Both studies emphasize the
importance of bad (matrix) habitat for population persistence and spread and find the
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counterintuitive phenomenon that decreasing the extent of a species’ good habitat
could increase the species’ spread rate.

Emerald ash borer is a wood-boring beetle whose larvae consume the phloem
underneath the bark of ash trees, eventually killing the trees. In the attempt to control
this and other forest insect pests, we would like to know how and to what extent
silvicultural measures such as thinning or removal of host trees affect the spread
rate of the insect. We expect that the spread rate decreases with decreasing resource
density. We shall see that this reasoning may not apply when individuals can adapt
their dispersal behavior and actively seek out areas of higher resource density or
avoid areas of lower resource density.

Lutscher and Musgrave (2017) derive the following nonspatial model for emerald
ash borer eggs (Et ) and ash tree phloem (Pt ) at the beginning of generation t :

Et+1 = R

2

(
1 − e−Pt /P̄

)
sEt , Pt+1 = Pte

−wsEt . (15.114)

Here, s denotes the overwintering survival and hatching probability of eggs, the term
in brackets is the phloem-dependent probability of maturation and emergence as
adult moths, and R is the average number of eggs laid by a female moth. Parameter
P̄ measures the phloem requirement of larvae; the factor 1/2 accounts for a 1:1 sex
ratio. Phloem is depleted from year to year, where w corresponds to a consumption
rate per larvae. Ash borers can kill a tree within 4–5 years, but trees require several
decades before they are sufficiently mature for ash borers to lay eggs in. Because of
this difference in time scales, our model considers only the first stage of the invasion
of the ash borer and not the subsequent regrowth of the trees. The model shows very
simple dynamics: from a typical initial condition of high phloem levels and low
egg density, eggs initially increase each year while the phloem decreases. Once the
phloem levels are low, eggs also decrease. Lutscher and Musgrave (2017) estimate
parameter values from empirical data.

Since only the moths disperse, the spatial version of (15.114) is

Et+1(x) =
∫ ∞

−∞
K(x, y)

R

2

(
1 − e−Pt (y)/P̄

)
sEt (y)dy ,

Pt+1(x) = Pt (x)e−wsEt (x) ,

(15.115)

where K is the dispersal kernel of female ash borer moths. The model is somewhat
degenerate since it has a continuum of steady states of the form (0, P0(y)). When
linearizing at such a state, the equation for E decouples and becomes

Et+1(x) =
∫ ∞

−∞
K(x, y)

R

2

(
1 − e−P0(y)/P̄

)
sEt (y)dy . (15.116)

The initial phloem density, P0(x), can be manipulated by, say, tree removal. We want
to know how fast the insect population spreads, depending on the initial phloem
configuration. We consider a homogeneous initial phloem level as the default and
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investigate how removing phloem changes the spread rate. We remove phloem in a
“patchy” periodic way, so that the initial phloem level looks like the periodic patchy
landscape in Fig. 15.2. The difference from the previous case is that the phloem
is now a dynamic variable, whereas the landscape quality in Sect. 15.1 was fixed.
Simulations of the nonlinear model reveal that a locally introduced population of
ash borer forms two moving pulses, one in each direction, and leaves in its wake a
landscape devoid of phloem (Lutscher and Musgrave 2017); see Fig. 15.20.

It is a priori not clear that the minimal traveling wave speed of linearized equation
(15.116) will give the correct spreading speed. Musgrave and Lutscher (2014b) ran
extensive numerical simulations to support the conjecture that it does. Furthermore,
we can solve the equation for P and substitute the result into the equation for E to
obtain the delayed equation (in the nonspatial case)

Et+1 = R

2

(
1 − exp

(
−P0/P̄ exp

(
−ws

t−1∑
τ=0

Eτ

)))
sEt . (15.117)

The function F(z) = (1 − exp(− exp(−z))) z is bounded by its linearization
at zero; i.e., F(z) ≤ F ′(0)z. Based on the results on delayed equations in
homogeneous landscapes (e.g., Lin and Li 2010; see Sect. 14.9), it is plausible to
assume that the linear conjecture holds for our case. Hence, we use dispersion
relation (15.112) to calculate the minimal traveling periodic wave speed of the
linearized equation and claim that this coincides with the spreading speed.

Figure 15.20 shows that the population spread rate in a heterogeneous landscape
with lower overall resource availability can be higher than in homogeneously
good habitat if individuals move faster in low-quality habitat. Alternatively or
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Fig. 15.20 Left: A “ragged” traveling pulse of ash borer (thick) moves into and consumes phloem
(thin). Parameters as in Lutscher and Musgrave (2017). Right: Spread speed of (15.116) according
to (15.112) as a function of the size of bad patches. When the diffusion rate in bad patches is
high enough (dash-dot, thin), the spread rate can be higher in fragmented than in homogeneous
landscapes. If, in addition, the preference for good patches is high (dash-dot, thick), the population
can persist and spread at a very low resource density and the spread rate is essentially constant for
a large range of L2. Unless otherwise specified, parameters are L1 + L2 = 1, D1 = D2 = 1,
α1 = α2 = 1, γ1 = γ2 = 0.5, R1 = 2, and R2 = 0.
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additionally, a lower settling rate in bad patches can increase the spread rate. A
higher preference for good patches can allow the population to persist at very low
resource density. Together with high movement rates in bad patches, this mechanism
can lead to high spread rates at a low, patchily distributed resource density.

When the population dynamics include an Allee effect, there are no simple
formulas for persistence conditions or spread rates. Musgrave et al. (2015) study the
effects of fragmentation and differential movement on Allee dynamics by numerical
simulation. They also give some upper and lower bounds on the sizes of good and
bad patches that ensure that the population will persist and spread, that it will persist
but not spread, or that it will retreat.

Powell and Zimmermann (2004) study the spread of plant populations whose
seeds are transported by animals, e.g., harvester ants moving wild ginger seeds
and blue jays moving acorns. They also use the movement model (15.106) for
the animal vector but without patch preference and with continuous matching
conditions. Rather than deriving a dispersal kernel from the heterogeneous equation,
they use homogenization at the level of the partial differential equation and obtain
a dispersal kernel from the averaged equation. This kernel is a Laplace kernel with
appropriately averaged diffusion coefficients and settling rates. Neupane and Powell
(2015) extend the dispersal model by including a handling-time distribution of seeds
by the disperser, in particular birds.

15.6 Further Reading

There are very few explicit examples of spatially varying dispersal kernels in
heterogeneous landscapes. Weinberger et al. (2008) give the example

K(x, y) = [1 + (1/2) cos(x)] exp(|2x + sin(x) − 2y − sin(y)|) (15.118)

for a spatially varying smooth kernel, but without any mechanistic interpretation.
The approach by Mistro et al. (2005a) is different but conceptually related to
our derivation of dispersal kernels based on random walks. They consider any
dispersal kernel in a homogeneous landscape and modify it by a heuristically chosen
attraction function (12.104) that reflects habitat quality; see Sect. 12.8.

Van Kirk and Lewis (1997) pioneered the approach of deriving dispersal kernels
from diffusion equations in patchy landscapes with a simpler model than we
presented in Sect. 15.5. They also extend the ideas of average dispersal success from
Chap. 9 to an infinite periodic habitat. Lutscher and Lewis (2004) generalize their
derivations to stage-structured models and derive patch models from continuous-
space models. Botsford et al. (2001) and Lockwood et al. (2002) apply the dispersal
success ideas to calculate the requirements for the size and spacing of marine
reserves along a coastline to ensure the persistence of a harvested population.
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Samia and Lutscher (2012) study a competition model in a patchy landscape. They
show by simulation and by the average dispersal success approximation how the
outcome of competition can vary depending on the percentage of habitat where one
species has a competitive advantage. Hughes et al. (2015) study the effect of habitat
fragmentation on host–parasitoid interaction and outbreak dynamics. They consider
a two-dimensional landscape and measure fragmentation in terms of percentage of
good habitat as well as habitat arrangement (“clumping”). They compare simulation
outcomes with an approximation based on average dispersal success. Among other
things, they find that the prey might benefit from habitat loss if prey individuals are
less mobile than predators.

Westerberg and Wennergren (2003) discretize the landscape into patches and
derive discrete dispersal kernels from leaving probabilities that depend on habitat
quality. Lutscher (2008) studies spread rates in a patchy landscape with density-
dependent dispersal. Marchetto et al. (2010) explore the effect of vegetation height
on the spread of a thistle. Rather than modeling spatial variation explicitly, they
measure wind speeds in different plant arrangements and use the WALD model to
find appropriate dispersal kernels. Skelsey et al. (2010) study the effects of crop
arrangement on disease spread of potato late blight and investigate which planting
patterns could make the potatoes the least susceptible. Pittman et al. (2015) explore
management options for the potential spread of a recently developed biofuel crop.
They simulate a four-stage life-cycle model in a numerically generated neutral
fractal landscape but do not consider heterogeneity in dispersal. Ramanantoanina
and Hui (2016) simulate invasions in patchy landscapes with a mix of two dispersal
kernels. One of their results is that the spread rate decreases as the period of the
landscape increases.

On the analytical side, Ding and Liang (2015) prove the existence of spreading
speeds in a spatially periodic landscape for homogeneous but otherwise very general
kernels, e.g., kernels for which the resulting next-generation operator need not
be compact. Wu and Zhao (2018) analyze a two-species competition system in a
spatially periodic landscape. They allow a nonhomogeneous and not necessarily
continuous dispersal kernel; they only require lower semicontinuity. They prove the
existence of a spreading speed and traveling waves, as well as linear determinacy.

Pachepsky and Levine (2011) simulate population spread in a patchy landscape
with stochastic growth dynamics. They find that density dependence could slow an
invasion in a patchy landscape, in particular if individuals were assumed discrete.
This behavior is in contrast to the linear conjecture, according to which the spread
rate is determined by the low-density dynamics only.

Krkos̆ek and Lewis (2010) study an aspect of population dynamics in hetero-
geneous landscapes that we have not touched on at all. They develop a theory of
source–sink dynamics in IDEs, based on a spatial extension of R0-theory. In nonspa-
tial models, R0 is a measure of the fitness of individuals in a population. In spatially
explicit models, individual fitness may vary between locations. Reproductive output
at one location has to be discounted by the probability that the offspring will land in
a viable habitat. Krkos̆ek and Lewis (2010) apply their theory to the competition of
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quagga and zebra mussels (Dreissena) and explain how the two competing species
can coexist.

Li et al. (2015) consider a very different kind of habitat heterogeneity, namely
a gradient habitat: The growth function is monotone nondecreasing in the spatial
location and population density. The authors give conditions for the population
to spread toward better habitat and to persist (or not) on the entire domain. In a
subsequent paper, Li et al. (2016a) combine the gradient model with moving-habitat
models and analyze conditions under which a population can persist in an expanding
or contracting habitat.



Chapter 16
Temporal Variation

Abstract IDE models naturally allow a certain temporal variation within a genera-
tion since they divide each generation into separate growth and dispersal phases.
However, so far we have assumed that the growth phases in all generations are
identical and that the same holds for the dispersal phases. In realistic environments,
external conditions in subsequent generations may vary substantially so that growth
and dispersal behavior could differ. In this chapter, we present some theory on and
examples of how to formulate and analyze IDEs with a periodically or randomly
varying growth function and dispersal kernel. In the periodic case, much of the
previous theory for temporally constant environments can be applied to the period
map. In the random case, even the formulation of the problem requires substantially
different tools from the theory of stochastic processes. We focus again on the two
fundamental questions of population persistence and spread.

16.1 Nonspatial Models with Temporal Variation

We illustrate and explain some basic questions about how temporal variation
affects population dynamics by using the simple nonspatial model from (2.3). We
also introduce some terminology for subsequent spatial models. We denote the
population density in year t by Nt and the temporally varying growth function by
Ft . We study the dynamics of the equation

Nt+1 = Ft(Nt ) (16.1)

when the environment varies periodically or randomly in time.

Periodic Variation

When the environment is periodic with period T ∈ N, we can study the map of the
T th iteration
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Nt+T = G(Nt) = Ft+T −1 ◦ Ft+T −2 ◦ · · · ◦ Ft+1 ◦ Ft(Nt ) (16.2)

with the usual techniques for discrete maps. The qualitative behavior of this map is
independent of the choice of t.

For an example, we consider a two-periodic environment with growth functions

Fi(N) = RiN

1 + κiN
, i = 1, 2 , (16.3)

from (2.11) with Ri, κi > 0. Since Fi are monotone increasing and concave down,
G = F2 ◦ F1 has the same properties. Therefore, the dynamics of (16.2) are
determined by the local stability of the zero state. If the zero state is locally stable,
then it is globally stable; if it is unstable, then there is a globally stable positive
steady state; see Sect. 2.2. The linearization of G at N = 0 is given by

nt+2 = R2R1nt , (16.4)

so that the zero state is unstable if and only if R2R1 > 1. If this condition is satisfied,
the positive steady state of G is given by

N∗ = R2R1 − 1

κ1 + κ2R1
. (16.5)

The solutions of the original system, Nt+1 = Ft(Nt ), will converge to zero if
R2R1 < 1 and will approach a positive stable two-cycle, (N∗

1 , N∗
2 ), when the

inequality is reversed. One of the two states of the two-cycle is given by N∗ above
and the other by the corresponding expression with all indices exchanged.

Stochastic Variation

When the environment varies randomly, the formulation of the equations and the
terminology and techniques used to study them are based on stochastic processes
and differ considerably from the deterministic theory covered in previous chapters.
We refer to Allen (2010) or Meyn and Tweedie (2009) for a thorough introduction.

We begin with the linear model

Nt+1 = RtNt , t = 0, 1, 2, . . . , (16.6)

and follow the exposition by Lewis et al. (2016). We assume that Rt are finite
positive random variables that are independent and identically distributed (iid) with
finite positive expectation E[Rt ] = E[R0] for all t. As usual, Rt is the per capita
growth rate of the population, i.e., the average number of offspring that an individual
has in the given year, t. Since Rt are random variables, so are Nt , and we can ask
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for their expectation, denoted by E[Nt ]. Under the assumption that environmental
conditions are independent of population density, we have

E[Nt+1] = E[RtNt ] = E[Rt ]E[Nt ] . (16.7)

Hence, the expected population density satisfies a deterministic equation with
growth rate E[R0]. Its solution is explicitly given by

E[Nt ] = E[N0]E[R0]t = E[N0]et ln E[R0] . (16.8)

It will grow in time when the geometric growth rate satisfies E[R0] > 1 or the
arithmetic growth rate ln(E[R0]) > 0.

On the other hand, we can write the solution of (16.6) explicitly as

Nt = N0

t−1∏
j=0

Rj = N0 exp

⎛
⎝t

1

t

t−1∑
j=0

ln Rj

⎞
⎠ . (16.9)

Hence, the expected arithmetic growth rate is E[ln(R0)]. The process will grow to
infinity with probability one if E[ln(R0)] > 0 and decay to zero with probability
one if the reverse inequality holds. Since the logarithm is a concave function,
Jensen’s inequality states that E[ln(R0)] ≤ ln(E[R0]). Hence, it is possible that
the expectation in (16.8) is predicted to grow, whereas the actual solution in (16.9)
will decay to zero with probability one.

We present an example similar to the two-periodic example above. We assume
that the growth rate is a Bernoulli random variable that assumes values R1 and R2
with probability p and 1 − p, respectively. Clearly, the population can grow when
R1,2 > 1. However, if we choose R1 > 1 > R2 > 0, we find two threshold
probabilities. We have

ln(E[R0]) > 0 if and only if p > p∗ = 1 − R2

R1 − R2
(16.10)

and

E[ln(R0)] > 0 if and only if p > p∗∗ = − ln(R2)

ln(R1) − ln(R2)
. (16.11)

For example, choosing R1 = 2 and R2 = 1/4 gives p∗ = 3/7 < 1/2 < 2/3 = p∗∗.
For p ∈ (p∗, p∗∗), the expectation in (16.8) will grow but the solution in (16.9) will
decay to zero with probability one.

The study of nonlinear stochastic processes is more complicated. It requires
concepts and results that we cannot introduce in detail here; see, e.g., Allen
(2010) or Meyn and Tweedie (2009). Instead, we briefly discuss the results on the
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stochastic version of the Beverton–Holt equation from Ellner (1984). We present
their generalization to IDEs in Sect. 16.3.

Ellner (1984) considers model (16.1) with Ft(N) = F(N, αt ), where αt

represents parameters in F that describe the random environment in year t. He
assumes that αt are iid random variables. Then Nt is a homogeneous Markov
process. It turns out that if F has properties like the Beverton–Holt function, then
stability results similar to the deterministic case hold for the stochastic case. Of
course, instead of a stationary state, we now have a stationary distribution. More
precisely, we assume that F is differentiable, monotone increasing, concave, and
bounded for each possible random environment. Then the stochastic process Nt has
a stationary distribution, μ∗, independent of N0. There are two possibilities. The
first is μ∗({0}) = 1, which means that the entire mass of the stationary distribution
is concentrated at N = 0. In this case, the process will die out with probability one.
The second possibility is μ∗({0}) = 0, which means that the stationary distribution
is supported in (0,∞). In this case, the process will persist with probability one.
The behavior of the process is decided by the linear process nt+1 = F ′(0, αt )nt . If
E[ln(F ′(0, αt )] < 0, the process will die out with probability one. If the inequality
is reversed, the process will persist. The results in Ellner (1984) are formulated for
more general growth functions.

16.2 The Gaussian Habitat Quality Model with Temporal
Variation

We begin our study of the effects of temporal variation on population persistence in
a spatial model with an explicitly solvable model, namely the linear model in (15.4)
with Gaussian habitat quality function (Latore et al. 1999). Even with temporally
varying parameters, this model can be reduced to a two-dimensional difference
equation as in Proposition 15.1. The ideas and concepts from the preceding section
can then be applied to study the spatial problem as well.

Our model equation is

Nt+1(x) = Rte
−x2/(2ρ2

t )

∫ ∞

−∞
KG(x − y; σ 2

t )Nt (y)dy , (16.12)

where KG is the Gaussian dispersal kernel. Parameters Rt , ρ2
t , and σ 2

t depend on
time. As before, Rt is the per capita reproduction rate in year t , ρ2

t measures the
extent of the habitat in year t , and σ 2

t is the variance of the dispersal kernel in year
t. All parameters are assumed positive.

As in Proposition 15.1, model (16.12) has a solution of the form Nt =
At exp(− x2

2ν2
t

), where At and ν2
t satisfy the difference equations
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ν2
t+1 = Ft(ν

2
t ) := ρ2

t (σ 2
t + ν2

t )

ρ2
t + σ 2

t + ν2
t

and At+1 = AtRt

√
ν2
t

σ 2
t + ν2

t

. (16.13)

Function Ft is differentiable, monotone increasing, concave down, bounded, and
positive for ν2

t > 0.

Periodic Variation

When the environment is periodic, we can obtain explicit conditions for population
persistence and thereby study trade-offs between “good” and “bad” years. We
consider a two-periodic environment and denote the respective values of the
parameters by R1,2, ρ2

1,2, and σ 2
1,2, as well as functions F1,2. By the considerations in

the preceding section, the iteration for ν2
t converges to a stable two-cycle, (ν2

1∗, ν2
2∗).

Here, ν2
1∗ is the positive solution of the quadratic

(
ρ2

1 + ρ2
2 + σ 2

2

)
ν4

1∗ +
(
ρ2

1σ 2
1 − ρ2

2σ 2
2 + ρ2

1σ 2
2 + ρ2

2σ 2
1 + σ 2

1 σ 2
2

)
ν2

1∗

−
(
ρ2

1ρ2
2σ 2

1 + ρ2
1ρ2

2σ 2
2 + ρ2

1σ 2
1 σ 2

2

)
= 0

(16.14)

and ν2
2∗ = F1(ν

2
1∗). Hence, the iteration for At approaches the linear function

At+1 = AtRj

√√√√ ν2
j∗

ν2
j∗ + σ 2

j

, (16.15)

with j = 1 if t is odd and j = 2 if t is even.
According to the results from the preceding section, At will grow eventually if

and only if

R1R2 >

√√√√
(

1 + σ 2
1

ν2
1∗

)(
1 + σ 2

2

ν2
2∗

)
. (16.16)

For a temporally constant habitat with R1 = R2, σ1 = σ2, and ρ1 = ρ2, this
condition is just the persistence condition from (15.12).

We explore the persistence condition as follows. We express σ 2
1,2 = σ̄ 2 ± εσ

in terms of the mean, σ̄ 2, and deviation, εσ , and similarly for ρ2
1,2 = ρ̄2 ± ερ.

Figure 16.1 shows the contour lines of the critical value of R1R2 that guarantees
persistence according to (16.16). We observe that variation in suitable habitat size
alone (ερ > 0, εσ = 0) requires a higher growth rate for persistence, whereas
variation in dispersal distance only (ερ = 0, εσ > 0) allows for a lower growth rate.
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Fig. 16.1 Contour lines for
persistence condition (16.16)
with σ 2

1,2 = 1 ± εσ and

ρ2
1,2 = 2 ± ερ . The numbers

on the contour lines indicate
the threshold values. The
persistence threshold in the
absence of temporal variation
is R1R2 = 2.
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When both parameters vary simultaneously, the joint effect depends on the relative
strength (variation) of the two.

Stochastic Variation

Now we assume that environmental conditions vary randomly, and we describe
the corresponding growth rate, habitat size, and dispersal behavior by positive
random variables Rt , ρ2

t , and σ 2
t , each of which is assumed iid with positive

finite expectation. According to Theorem 2.2 by Ellner (1984), ν2
t converges to a

stationary distribution, supported on (0,∞).

The equation for At can be solved explicitly as

At = A0

t−1∏
j=0

Rj

√√√√ ν2
j

ν2
j + σ 2

j

, (16.17)

which gives

ln

(
At

A0

)
= t

(
E[ln(Rt )] + 1

2
E

[
ln

(
ν2
t

ν2
t + σ 2

t

)])
. (16.18)

The population eventually grows with probability one if the term on the right-hand
side is positive in the limit as t → ∞. We can write this condition suggestively as

E[ln(R0)] >
1

2
E

[
ln

(
1 + σ 2

0

ν2∗

)]
, (16.19)

where ν2∗ stands for a random variable whose distribution equals the stationary
distribution of the variables ν2

t .
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Fig. 16.2 Left: The expression ln(1 + σ 2
t /ν2

t ) from (16.18) in the periodic case (dashed) and
one realization of the corresponding stochastic case (solid). Right: Persistence threshold (16.19)
as a function of ερ for εσ = 0 (solid), εσ = 0.3 (dashed), and εσ = 0.5 (dash-dot). The plot
was obtained by simulating the stochastic process for up to 10,000 time steps and calculating the
expectation numerically.

We can evaluate this condition numerically. We use the setup that most closely
resembles the periodic model: ρ2

t , σ 2
t are Bernoulli random variables, where the two

possible values ρ2
1,2 and σ 2

1,2 appear with equal probability. We keep the mean of
each variable fixed and vary the deviation. It turns out that the resulting persistence
condition in (16.19) is exactly the same as the one in (16.16). In Fig. 16.2, we plot
one realization of the process and compare it to the periodic case (left panel). We
also plot the threshold condition from (16.19) as a function of ερ , the deviation of
ρ2. Each curve increases with ερ , indicating that persistence is harder to achieve as
the variation in ρ2 increases. However, for fixed ερ , the threshold decreases with εσ ,
indicating that persistence is easier to achieve as the variation in σ 2 increases. The
thresholds from the stochastic process and the periodic case are indistinguishable.

16.3 Persistence Under Temporal Variation

In this section, we present more formal and more general conditions for population
persistence in temporally varying environments, extending the results on population
persistence and existence of positive steady states from Chaps. 3 and 4. We focus on
random environments but mention the corresponding results for periodic variation
as well. We begin with the work by Hardin et al. (1988a), which can be considered
a spatially explicit extension of the work by Ellner (1984).

Hardin et al. (1988a) formulate their model as

Nt+1(x) = Qt [Nt ](x) =
∫

Ω

K(x, y)R(αt , y)F (Nt (y))dy . (16.20)

Environmental variation affects the dynamics via the “fertility” function R(αt , y),
where αt , t = 0, 1, 2, . . . is a sequence of random variables. Density-dependent
population limitation, modeled by F , is independent of time, as is dispersal,
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modeled by K. The habitat is a (fixed) compact subset Ω ⊂ R with nonempty
interior. The initial condition and subsequent population densities are random
functions in C+(Ω), the positive cone of continuous functions on Ω.

Hardin et al. (1988a) make the following assumptions:

(V1) Random variables αt are iid from some index set A .

(V2) Dispersal kernel K is a continuous and strictly positive function on Ω × Ω.

(V3) For each α ∈ A , function R(α, x) is in C+(Ω), and there exist positive
constants such that 0 < R ≤ R(α, x) ≤ R for all x ∈ Ω.

(V4) Function F is continuous, nonnegative, and bounded. It is differentiable at
zero, and F(0) = 0. Furthermore, F is nondecreasing, and F(x)/x is strictly
decreasing for x > 0.

The first assumption implies that temporal variations are uncorrelated. The second
condition indicates that within one dispersal period, an individual can move from
any location in the habitat to any other location. The third assumption excludes
the possibility that the population dies out in a single year. The conditions on the
density-dependent growth limitations imply that the per capita yield decreases with
density. They are satisfied by a Beverton–Hold type function; see (2.11).

Theorem 16.1 (Theorem 4.2 in Hardin et al. 1988a) Suppose that conditions
(V1)–(V4) are satisfied for (16.20) and that N0 �= 0 with probability one. Then
Nt converges in distribution to a stationary distribution μ∗, which is independent of
N0. Furthermore, we have either μ∗({0}) = 0 or μ∗({0}) = 1.

Just as in the deterministic case and in the nonspatial stochastic case, the
difference between extinction and persistence is given by the behavior of the process
at small densities. We denote by Q′

t [0] the Fréchet derivative of Qt at zero.

Theorem 16.2 (Lemma 5.1 and Theorem 5.3 in Hardin et al. 1988a) Suppose
that conditions (V1)–(V4) are satisfied. Then the limit

λ = lim
t→∞ ‖Q′

t [0] ◦ Q′
t−1[0] ◦ · · · ◦ Q′

0[0]‖1/t (16.21)

exists with probability one. Furthermore, if λ < 1, then μ∗({0}) = 1 and Nt → 0
with probability one. Alternatively, if λ > 1, then μ∗({0}) = 0.

Both of these results hold under somewhat weaker conditions and for more general
processes than the ones in (16.20) (Hardin et al. 1988a).

Hardin et al. (1988b) prove the corresponding results in T -periodic environ-
ments. They study the operator

Qt [N ] =
∫

Ω

K(x, y)Ft (n(y)) dy , (16.22)

where K denotes a dispersal kernel; Ft models reproduction in year t with Ft+T =
Ft ; and Ω is a bounded domain, as above. They consider the existence of a positive

fixed point for the period-T -map Q
T = QT −1 ◦ · · · ◦ Q0, as well as its local and
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global stability. Many of their results are contained in our Chap. 4, in particular
Sect. 4.3 for global existence.

The persistence condition λ > 1 for the stochastic process is elegant theoretically
but difficult to apply, even numerically. Jacobsen et al. (2015) present an equivalent
condition that is computationally simpler to evaluate. Their model generalizes
(16.20) in that it allows the dispersal kernel to vary in time. Their particular
motivation was to study the effect of variable flow rates on the persistence of stream
populations; see Sect. 12.2.

Consider the stochastic process

Nt+1(x) = Qt [Nt ](x) =
∫

Ω

Kαt (x − y)Fαt (Nt (y))dy, t = 0, 1, . . . ,

(16.23)
where αt are iid random variables from some index set A . We require the following
generalizations of and additions to conditions (V1)–(V4):

(V2′) For each α ∈ A , Kα is a continuous function, and there exist constants
such that 0 < K ≤ Kα ≤ K for all α.

(V4′) For each α ∈ A , Fα is a nonnegative, continuous, and increasing function
such that Fα(x)/x is decreasing and the right-sided limit F ′

α(0) exists.
Functions Fα are uniformly bounded by m > 0.

(V5) We have uniform limits Fα(x)/x → F ′
α(0) as x → 0 and uniform bounds

0 < F ≤ F ′
α(0) ≤ F .

(V6) For b = mK|Ω|, there exists infα∈A Fα(b) > 0.

(V7) There exists α∗ ∈ A such that Qα[N ] ≤ Qα∗ [N ] for all α ∈ A and
nonnegative, continuous functions N on Ω.

Theorem 16.3 (Theorems 1 and 2 in Jacobsen et al. 2015) Assume that condi-
tions (V2′), (V4′), and (V5)–(V7) are satisfied. Then Theorems 16.1 and 16.2 hold
for (16.23). Furthermore, the limit

Λ = lim
t→∞ Λ(t) = lim

t→∞

[∫
Ω

nt (x)dx

]1/t

(16.24)

exists and is independent of n0, where nt is defined by nt+1 = Q′
t [0]nt . Finally,

Λ = λ.

The theory presented thus far considered temporal variation in growth and
dispersal but assumed that the size and location of the habitat patch are fixed over
time. There are many examples of natural habitats whose size and location vary
within and between years. Wetlands are a particular example where surface area and
depth vary according to rainfall and other climatic conditions. These observations
motivate the study by Zhou and Fagan (2017), in which habitat size and location can
vary with time. The authors implement a temporally varying habitat via a habitat
quality function.

Zhou and Fagan (2017) analyze the model
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Nt+1(x) =
∫ ∞

−∞
K(x, y)Ht (y)F (Nt (y))dy , (16.25)

where Ht is the temporally varying habitat quality function (compare Sect. 15.1)
that determines the fraction of offspring produced at location y that survive to
disperse. Function Ht has to be nonnegative and bounded above by unity. When
Ht is the characteristic function of some fixed domain Ω , i.e., Ht(x) = χΩ , the
model is equivalent to the basic IDE (3.1). When a domain of fixed length moves at
constant speed, i.e., Ht(x) = χ[ct,L0+ct], we have the model from Sect. 12.3. When
the domain length, Lt , varies with time, we may write Ht(x) = χ[0,Lt ]. Zhou and
Fagan (2017) consider this setting for a population whose habitat is the surface of a
wetland. When not only the extent but also the quality vary in space and time, Zhou
and Fagan (2017) suggest Ht(x) = exp(−x2/σ 2

t ) for a single wetland, where σ 2
t

is a random variable that indicates the extent in year t. The authors also consider
more complex situations with, for example, two adjacent wetlands, modeled by a
linear combination of two Gaussian functions, where the extent of each as well as
the distance between them can vary over time.

The difficulty in analyzing model (16.25) lies in the variability of the domain with
potentially infinite extent. If the support of all functions Ht is uniformly bounded,
we can reduce model (16.25) to one on a compact set and obtain the same results as
in Hardin et al. (1988a,b). Zhou and Fagan (2017) give conditions on the dispersal
kernel and the habitat quality function under which the corresponding results hold
even on the entire real line in a T -periodic environment. In particular, they show
that, under some conditions, the stability of the zero solution is given by the spectral
radius of the period-T -operator, and that the instability of zero implies that the
(supremum norm of the) population will eventually be bounded below uniformly by
some constant. Zhou and Fagan (2017) manage to calculate persistence conditions
explicitly in two special cases. They define the “lower minimal habitat size” as an
extension of the critical patch-size (Chap. 3) to periodic environments.

16.4 An Example with the Laplace Kernel

We illustrate some of the theory from the preceding section with a simple example.
We assume that in year t , the habitat is an interval of length Lt . Inside the habitat, the
growth function is the scaled Beverton–Holt function (2.13) with parameter Rt > 1;
outside, the growth function is zero. Dispersal follows a Laplace kernel (2.27) with
parameter at that can be interpreted as the root of the ratio αt/Dt of the settling
rate and the diffusion coefficient in a random walk; see Sect. 7.2. By scaling space
in year t with Lt , we can write the equation on the fixed domain [−1/2, 1/2] with
kernel parameter ãt = atLt as
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Nt+1(x) =
∫ 1/2

−1/2

ãt

2
e−ãt |x−y| RtNt (y)

1 + (Rt − 1)Nt (y)
dy . (16.26)

In the following, we will drop the tilde to ease notation. We are interested in
population persistence. By the theoretical results in the preceding section, we need
to study the stability of the zero state. Hence, we linearize the equation at low
density. The resulting eigenvalue problem for the integral equation can be turned
into an equivalent boundary-value problem for a differential equation (Jacobsen and
McAdam 2014; Jacobsen et al. 2015), similar to the procedure in Chap. 3.

The Periodic Case

We consider a two-periodic environment, so that we have four model parameters:
a1,2 > 0 and R1,2 > 1. The eigenvalue problem for the integral equation is given by

λpφ(x) = R1R2

∫ 1/2

−1/2

∫ 1/2

−1/2

a1

2
e−a1|x−y| a2

2
e−a2|y−z|φ(z)dydz . (16.27)

To turn this equation into a boundary-value problem, we follow Jacobsen et al.
(2015). We introduce the function

ψ(x) = R1

∫ 1/2

−1/2

a1

2
e−a1|x−y|φ(y)dy . (16.28)

Then φ satisfies (16.27) exactly if φ and ψ satisfy (16.28) and

φ(x) = R2

λp

∫ 1/2

−1/2

a2

2
e−a2|x−y|ψ(y)dy . (16.29)

Differentiating twice, we find the second-order equations

φ′′ = a2
2

(
φ − R2

λp

ψ

)
and ψ ′′ = a2

1(ψ − R1φ) (16.30)

for x ∈ (−1/2, 1/2); compare (3.10). Differentiating again, these two equations can
be turned into a single fourth-order equation for φ, namely

φ(4) − (a2
1 + a2

2)φ′′ + a2
1a2

2

(
1 − R1R2

λp

)
φ = 0. (16.31)

We need to find boundary conditions. Two conditions are obtained exactly as in
(3.11) by differentiating (16.28) and (16.29) once. We find
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φ′(−1/2) = −a2φ(−1/2) , φ′(1/2) = a2φ(1/2) , (16.32)

ψ ′(−1/2) = −a1ψ(−1/2) , ψ ′(1/2) = a1ψ(1/2) . (16.33)

However, we need to find conditions for φ, not ψ. Differentiating (16.30) and
substituting the above boundary conditions results in

φ′′′(−1/2) = a1φ
′′(−1/2) + a2

2(a2 − a1)φ(−1/2) , (16.34)

φ′′′(1/2) = −a1φ
′′(1/2) − a2

2(a2 − a1)φ(1/2) . (16.35)

The equation for φ has the bi-quadratic characteristic equation r4 −ar2 +d = 0,
where

a = a2
1 + a2

2 and d = a2
1a2

2

(
1 − R1R2

λp

)
. (16.36)

Just as in Chap. 3, we have λp < R1R2, so that a > 0 and d < 0. We obtain two
real and two purely imaginary roots:

r1 =
√

a + √
a2 − 4d

2
, ir2 =

√
a − √

a2 − 4d

2
, (16.37)

and r3 = −r1, r4 = −r2. By symmetry, the eigenfunction can be written as

φ(x) = c1 cosh(r1x) + c2 cos(r2x) . (16.38)

To satisfy the boundary conditions, coefficients c1,2 have to satisfy the equations

[a2 cosh(r1/2) + r1 sinh(r1/2)]c1 + [a2 cos(r2/2) − r2 sin(r2/2)]c2 = 0 ,[
(a1r

2
1 + a2

2(a2 − a1)) cosh(r1/2) + r3
1 sinh(r1/2)

]
c1 (16.39)

+
[
r3

2 sin(r2/2) − (a1r
2
2 − a2

2(a2 − a1)) cos(r2/2)
]
c2 = 0 .

For a nonzero solution, the determinant of the coefficient matrix has to vanish. This
condition can be evaluated numerically.

We choose the same setup of a two-periodic environment as in the previous
section. We write a1,2 = ā ± εa and R1,2 = R̄ + εR. Figure 16.3 shows that
the dominant eigenvalue λp from (16.27) decreases as the variation εa in the kernel
parameter and εR in the growth rate increases. Instead of the eigenvalue itself, we
actually plot the square root of λp so that we can compare it with the average per
generation rate of increase in the stochastic model below.
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Fig. 16.3 Persistence
condition for model (16.26)
in the two-periodic and
random cases. Solid curves
show the square root of the
eigenvalue,

√
λp , in (16.27).

Stars stand for the
numerically obtained value
ΛT ≈ Λ from (16.24).
Parameters are
a1,2 = 2.7 ± εa , and
R1,2 = R̄ ± εR with εR = 0
(solid), εR = 0.5 (dashed),
and εR = 1 (dash-dot).
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The Stochastic Case

For random variation, we choose binary random variables at with values a1, a2 and
Rt with values R1, R2 with equal probability. Then we numerically solve the linear
equation

nt+1(x) = Rt

∫ 1

0

at

2
exp(−at |x − y|)nt (y)dy (16.40)

and approximate Λ from (16.24) by ΛT for some large value of T . The results
for different values of εa and εR are plotted as stars in Fig. 16.3. We note that
the expected per generation rates of increase (or decrease) in the stochastic and
periodic case are very close together. In fact, Jacobsen et al. (2015) find an even
better agreement between their numerically calculated value Λ and the analytical
expression

√
λp in a slightly different setting. We note that persistence is harder to

achieve and, in fact, fails, as the variation in each of the two parameters increases.
On a technical note, we found that the FFT algorithm from Sect. 8.2 could not

(easily) provide the same accuracy as even the simple direct integration method
from Sect. 8.3. Since the equation is linear, solutions grow or decay exponentially.
Therefore, as the number of generations in the simulation grows, the values become
either very large (if the solution is growing) or very small (if it is decaying),
so that accuracy is difficult to maintain for large times. However, since we are
interested in the limit of large times, there is some trade-off between accuracy of
the computational steps and the number of time steps that one takes. To smooth out
the results somewhat, we chose T = 2000 and averaged the value of the last 20 time
steps.
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16.5 Spread Under Temporal Variation

To study the effects of temporal variation on the spread rate of a population, we
begin with the work by Neubert et al. (2000) (they provide corrected figures in an
erratum) and study the IDE on the real line,

Nt+1(x) = Qt [Nt ](x) =
∫ ∞

−∞
Kt(x − y)Ft (Nt (y))dy . (16.41)

Before we discuss results for the stochastic case, we briefly present some explicit
results for the periodic case.

We assume that Kt and Ft are T -periodic functions of time. Furthermore,
we assume that for each t , the growth function satisfies conditions (F1)–(F4)
in Sect. 5.4. We also assume that for each t , the dispersal kernel is continuous,
symmetric, and exponentially bounded. Then the period-T operator Qt = QT −1
◦ · · ·◦Q0 satisfies the conditions of Theorem 5.1. Therefore, there exists a spreading
speed, and this speed can be characterized as the slowest traveling-wave speed.
Furthermore, the speed is linearly determined.

If we denote this speed by c∗T , where c∗ is the average speed per generation,
formula (5.17) gives the representation

c∗ = inf
s>0

1

s
ln

(
T −1∏
t=0

RtMt(s)

)1/T

= inf
s>0

1

s

1

T

T −1∑
t=0

ln(RtMt(s)) , (16.42)

where Mt is the moment-generating function of kernel Kt and Rt = F ′
t (0). We

denote by c∗
t the speed in a constant environment with conditions as in generation

t. Since the infimum of the averages is generically greater than the average of the
infima (unless the infima all occur at the same location), we have

c∗ >
1

T

T −1∑
t=0

inf
s>0

1

s
ln(RtMt(s)) = 1

T

T −1∑
t=0

c∗
t . (16.43)

Hence, the average speed per generation in the periodically varying environment is
larger than the average of the speeds, c∗

t , that would occur in each of the correspond-
ing constant environments. This statement can be strengthened as follows. Neubert
et al. (2000) define the “instantaneous speed between generations” as

c̄t = 1

s∗ ln(RtMt(s
∗)) , (16.44)

where s∗ is the argument that minimizes the expression in (16.42). Then, c̄t > c∗
t ,

which implies that the instantaneous speed between generations is greater than the
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asymptotic speed would be in an environment of constant conditions of the most
recent generation.

In the particular case that Kt are Gaussian kernels with variance σ 2
t , the proce-

dure in Sect. 5.2 gives the exact expression for the average speed per generation as

c∗ =
√

2〈σ 2
t 〉a ln(〈Rt 〉g), (16.45)

where 〈·〉a denotes the arithmetic mean and 〈·〉g the geometric mean.

Stochastic Environments

To consider spread rates for Eq. (16.41) in a stochastically varying environment, we
study again the linearized IDE with growth rate Rt = F ′

t (0). Neubert et al. (2000)
discuss the conditions for which the result is the spread rate in a corresponding
nonlinear equation. We can approach the question of spread via the expectation or
via direct calculation.

Taking expectations of Eq. (16.41) and assuming that growth and dispersal are
uncorrelated with population density, we find

E[Nt+1](x) =
∫ ∞

−∞
E[RtKt (x − y)]E[Nt(y)]dy . (16.46)

This is a deterministic equation for the “expectation wave.” According to the theory
in Chap. 5, there is a spreading speed, c∗. Formula (5.17) applies and results in the
expression

c∗ = inf
s>0

1

s
ln(E[R0M0(s)]) , (16.47)

where M0 is the moment-generating function of K0. When growth and dispersal are
uncorrelated, we obtain

c∗ = inf
s>0

1

s
ln(E[R0]E[M0(s)]) . (16.48)

Positive correlations increase the spreading speed of the expectation wave.
For direct calculations, we choose the initial profile N0(x) = exp(−sx) and

calculate

N1(x) =
∫ ∞

−∞
R0K0(x − y)e−sydy =

∫ ∞

−∞
R0K0(z)e

szdy e−sx = R0M0(s)e
−sx .

(16.49)
Iteratively, we find
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Nt(x) =
t−1∏
j=0

RjMj(s)e
−sx . (16.50)

Just as in Chap. 5, we define the extent of the population as Xt = supx{Nt(x) ≥ Ñ}
for some threshold density, Ñ . Unlike in Chap. 5, this quantity is now a random
variable. Its explicit expression is

Xt = 1

s

t−1∑
j=0

ln(RjMj (s)) − ln(Ñ)/s . (16.51)

The mean speed per generation is the random variable

Ct = 1

t
(Xt − X0) = 1

t

t−1∑
j=0

1

s
ln(RjMj (s)) . (16.52)

By the central limit theorem, Ct is asymptotically normally distributed with mean
and variance given by

μ(s) = 1

s
E(ln(R0M0(s))) and σ 2(s) = 1

ts2 Var(ln(RjMj (s))) . (16.53)

As before, the relevant speed is the minimum that occurs with respect to s; we
denote the corresponding value by s∗. Hence, the speed that we are interested in is
Ct with mean μ(s∗) and variance σ 2(s∗). As t → ∞, we find σ 2(s∗) → 0, so that

Ct → C̄ = μ(s∗) = inf
s>0

1

s
E[ln(R0M0(s))] . (16.54)

Comparing this expression for C̄ with c∗ from (16.48), we apply Jensen’s inequality
again and find C̄ ≤ c∗. In other words, the expectation wave is faster than almost
every realization of the process. While the speed converges, i.e., Ct → C̄, the spatial
extent, Xt , does not converge to X0 + C̄t. The reason for this lack of convergence
is that the variance of the expression Ct t + X0 grows linearly in t.

In Fig. 16.4, we plot the front location of two realizations of the process in an
environment that switches between two states with probability 1/2. For comparison,
we plot the front location in a two-periodic environment, as well as the average
speed per generation from (16.45). We observe that one of the stochastic realizations
is ahead of the periodic case and the other is behind, but all have the same slope.
Hence, while the speed is predictable, the location is not. The plot on the right shows
the front location (Xt ) and the average speed (Ct ) for 15 realizations of the process.
Whereas the average speeds converge, the range of front locations spreads over time.
Neubert and Parker (2004) review these results on spreading speeds in the context
of risk analysis and apply the theory to the invasion of scotch broom.
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Fig. 16.4 Left: The location of the front as a function of time in a two-periodic environment
(dashed) and two realizations in a random environment (dash-dot). The growth functions are
Beverton–Holt functions F(N) = RjN/(1 + N), and the kernels are Gaussian kernels with
variance σ 2

1,2. The solid line represents the exact average speed per generation from (16.45). Right:
The front location, Xt (top), and the average speed, Ct (bottom), for 15 realizations. Parameters
are R1,2 = 1.7 ± 0.5 and σ 2

1,2 = 0.01 ± 20%.

16.6 Further Reading

Lewis and Pacala (2000) and Lewis (2000) formulate a discrete stochastic process
for the reproduction and dispersal of individuals and analyze its spreading behavior.
They derive a set of moment equations, which turn out to be IDEs. In fact, the
equation for the first moment of the linear process is precisely the equation for
the expectation wave (16.46). They study permanence of form for the spreading
population and use moment closure techniques and comparison methods to bound
spread rates. Snyder (2003) continues this theory and shows that stochasticity can
slow invasions but concludes that the effect is relatively weak. Kot et al. (2004)
link individual-based simulations and IDEs via branching random walks to study
the effect of demographic stochasticity on the speed of invasions. They find that
stochasticity does not slow the overall asymptotic speed and that accelerating
invasions can occur with stochasticity as well.

Several authors consider the spread of structured populations in periodic and
stochastic environments. Caswell et al. (2011) extend their previous sensitivity
analysis for spread rate in structured population models (see Neubert and Caswell
2000a) to periodic and stochastic environments. Simultaneously but independently,
Schreiber and Ryan (2011) derive formulas for invasion speeds for stage-structured
IDEs in stochastic environments. They show that invasion speeds are asymptotically
normally distributed and that, as is the case for unstructured populations, the
variance decreases over time (Fig. 16.4). Increased variation in fecundity decreases
invasion speeds, but correlations between fecundity and dispersal determine by how
much. Related work for spatial integral projection models can be found in Ellner
and Schreiber (2012).

Ding et al. (2013) prove the existence of spreading speeds in time-periodic
IDEs in spatially constant or spatially periodic environments. They show that
temporal heterogeneity will slow down invasions if space is homogeneous but
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can speed up invasions if space is also heterogeneous. Jacobsen et al. (2015)
determine persistence criteria on a bounded interval with temporally varying
unidirectional flow. Bouhours and Lewis (2016) consider a moving-habitat model
with stochasticity and determine persistence conditions. Zhou and Fagan (2017)
consider temporally varying habitat size and quality and extend the theory by Hardin
et al. (1988a) to the case where the habitat may be unbounded. They give several
examples of wetland habitats that vary with seasonal rainfall, and they calculate
long-term persistence conditions. Reimer et al. (2017) compare and contrast several
approaches to determining persistence conditions of populations on a bounded
domain under stochasticity. They use individual-based model simulations, Galton–
Watson branching processes, and a deterministic IDE. They find that the critical
patch-size for the stochastic models is typically larger than that for the deterministic
model.

Several authors apply stochastic IDEs to various ecological questions and base
their investigation largely on numerical simulations. Mahdjoub and Menu (2008)
consider the question of whether and how diapause can affect the population spread
of the chestnut weevil (Curculio elephas). They consider equations for developing
individuals and individuals in diapause. Only the former disperse. They find that
prolonged diapause will reduce spread in a constant environment but can increase
spread in a temporally varying environment. Gilioli et al. (2013) model the spread of
the chestnut gall wasp (Dryocosmus kuriphilus) in Europe. They use a deterministic
IDE for short-distance dispersal, coupled with a stochastic component for long-
distance dispersal, to capture the observed stratified dispersal pattern. Gharouni
et al. (2017) formulate a three-stage model for green crab and study the effect
of stochastic variation on the spread of the crab against the dominant current.
Stochasticity may help the population spread “upstream”; see Sect. 12.2.

Jacobs and Sluckin (2015) study the effect of demographic stochasticity on
accelerating invasions. They compare individual-based simulations on a lattice with
predictions from a deterministic IDE model. When the dispersal kernel is heavy
tailed, the IDE predicts accelerating invasions, but most of the corresponding lattice
models appear to have constant-speed invasions.



Chapter 17
Further Topics and Related Models

Abstract Even though IDEs are a relatively recent modeling framework in spatial
ecology, their theory and applications contain many more aspects than can fit in a
single book. In this final chapter, we mention further topics in the study of IDEs,
some related to applications, some to the mathematical theory. We also briefly
indicate a number of closely related model formulations and techniques. Some of
these models are related in terms of the questions studied, others in terms of the
mathematical structure of the equation.

17.1 Further Topics

We begin with a collection of topics that have been explored with IDEs to some
extent but that are still far from being completely developed.

Density-Dependent Dispersal

One of the ecologically appealing features of IDEs is that the description of dispersal
is not limited to diffusion processes. A histogram of dispersal data can be translated
relatively easily into a dispersal kernel; see Lewis et al. (2006) or Lewis et al. (2016)
and Sect. 12.7. One limiting assumption is that the dispersal of each individual
is independent of all others. While this assumption seems fine in the context of
wind-dispersed seeds, it does not necessarily apply to animal dispersal, because
animals can interact with conspecifics during dispersal. Few authors propose ways
to overcome this difficulty.

The easiest way to include some form of density dependence is to make the
probability of dispersing a function of local population density. Veit and Lewis
(1996) implement this idea in their model for the spread of house finches and
explore its effects numerically. When the probability of dispersal increases with
density, the instantaneous spread rate is initially slow. It takes more generations
than without density-dependent dispersal to achieve a rate close to the asymptotic
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speed. Lutscher (2008) studies the effect of density-dependent dispersal on spread
rates more systematically. He illustrates some mathematical difficulties that can
result from this approach; e.g., the next-generation operator may not preserve
monotonicity (even for monotone growth functions) nor have an obvious invariant
domain (again, for monotone growth functions). In some special cases, Lutscher
(2008) derives explicit expressions for traveling-wave solutions. Dwyer and Morris
(2006) generalize this idea by allowing not only the probability of dispersal but also
the characteristics of dispersal (e.g., the variance of the dispersal kernel) to depend
on the population density at the point of origin of the disperser. Their numerical
simulations of spread in a consumer–resource model reveal some intriguing patterns
that still await more systematic analysis. In particular, when the dispersal distance of
the consumer depends on resource density, the instantaneous spread rate fluctuates
widely over time so that it is unclear whether an asymptotic speed exists at all.

Carrillo and Fife (2005) use a completely different strategy. They begin with a
“movement law,” a function g(x, y, [N ]) that describes the number of individuals
that move from (y, y + �y) to (x, x + �x) when the population density is given
by N(x). They then write the “balance law” for how the population density changes
due to redistribution (in the absence of birth and death) as

Nt+1(x) = Nt(x) +
∫ ∞

−∞
g(x, y, [Nt ])dy −

∫ ∞

−∞
g(y, x, [Nt ])dy. (17.1)

They derive various forms that function g could have and perform a linear stability
analysis to investigate conditions for pattern formation under congregation behavior.

Nonlocal Interaction

Our formulation of IDE (2.1) assumes that all interactions between individuals are
local. This assumption means that the growth function is evaluated only at the point
where the individuals are located. Individuals of many species interact with one
another over intermediate and even larger spatial scales. For example, trees interact
with others at some distance via an elaborate network of roots and also by shading
from their crowns.

Most reaction–diffusion equations also use local interaction terms, but a sub-
stantial theory exists for these equations with nonlocal interaction. The population
density in the per capita growth function at a particular spatial location is replaced
by a suitable average of the density in some neighborhood of that location;
see, e.g., Britton (1989). This nonlocal term makes the analysis of the reaction–
diffusion equation considerably harder since the equation will in general not have a
comparison principle.

The question of nonlocal interaction has received only marginal attention in
IDEs. Merchant (2001) considers the spread of a single species with a nonlocal
growth function. More precisely, for a given population density, Nt(x), Merchant
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(2001) defines the effective density via a “competition kernel,” C(z), that describes
how individuals at distance z affect each other as

Neff
t (x) =

∫ ∞

−∞
C(x − y)Nt (y)dy. (17.2)

The population-level IDE then reads

Nt+1(x) =
∫ ∞

−∞
K(x, y)F̃ (Neff

t (y))Nt (y)dy, (17.3)

where F̃ is the per capita growth rate. Merchant (2001) simulates and compares
deterministic and stochastic versions of this IDE and finds, among other things, that
nonlocal interactions can (i) slow the spread of the population and (ii) induce a
nonmonotone wave profile even when the function F(N) = F̃ (N)N is monotone.

Aydogmus et al. (2017) also consider nonlocal IDEs. They develop a mathe-
matical framework to determine the bifurcation behavior of such equations on a
bounded domain. More specifically, they derive the Stuart–Landau equations, which
describe the amplitude of bifurcating solutions. They use these results to study
pattern formation in a nonlocal IDE.

The question of when nonlocal models are more appropriate than local models
is, of course, one of relative spatial scales. If the spatial interaction scale is much
smaller than the dispersal scale, then a local model is appropriate; if the interaction
scale is comparable to the dispersal scale, then a nonlocal model is warranted.
Merchant (2001) finds that as the interaction scale decreases, the behavior of the
nonlocal model approaches that of the local model. The phenomenological model
by Deng et al. (2014) for pattern formation in bacterial colonies explicitly considers
two different scales: a smaller region of positive interaction and a larger region of
negative interaction. The resulting interaction kernel is a “Mexican hat” shape: it has
a positive maximum at zero, decreases to negative values for intermediate distances,
and approaches zero for large distances. In particular, since the kernel assumes
negative values, it cannot be interpreted as a dispersal kernel. Numerical simulations
reveal that the model supports the formation of branched patterns observed in
experiments.

Optimal Control for IDEs

When we apply population dynamics models to management problems, the ques-
tions often involve some aspect of optimality. For example, when harvesting a
population, we are not just concerned with setting a maximal harvesting rate to
ensure the sustainability of the population, but rather we want to find an optimal
harvesting rate that maximizes profit in the long run. While optimal control of finite-
dimensional systems is a reasonably well developed field (Lenhart and Workman
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2007), optimal control for reaction–diffusion equations is much more elaborate (see,
e.g., Kelly et al. 2016), and for IDEs, the field is still in its infancy.

Joshi et al. (2006) consider optimal harvesting strategies for a single, linearly
growing population. Their state variable is the population density, satisfying the
equation

Nt+1(x) = (1 − αt (x))

∫
Ω

K(x, y)RNt (y)dy . (17.4)

The spatially and temporally varying control αt (x) represents the percentage of
the population harvested at location x at the end of generation t. The objective
functional

J (α) =
T −1∑
t=0

∫
Ω

[
Ate

−δtαt (x)

∫
Ω

K(x, y)RNt (y)dy − Bt

2
αt (x)2

]
dx (17.5)

describes the difference between revenue and cost. The revenue consists of the
amount of population harvested, multiplied by the price factor, At , and the discount
factor, e−δt . The cost is assumed to be quadratic in the percentage harvested, and Bt

is the weight factor. The goal is to find a maximum α∗ among all possible controls
α = (α0(x), α1(x), . . . , αT −1(x)) of J , i.e.,

J (α∗) = max
α

{J (α)} . (17.6)

Joshi et al. (2006) prove that an optimal control exists, characterize it in terms of an
adjoint problem, and prove its uniqueness for sufficiently large Bt .

Joshi et al. (2007) extend these results to a nonlinearly growing population. Gaff
et al. (2007) consider optimal harvesting in the presence of a pathogen. Zhong
(2011) compares optimal harvesting of a single species in an IDE with different
order of events. Martinez (2015) extends the theory of optimal control to a pest–
pathogen system. Kura et al. (2019) formulate an optimal control problem for the
release of sterile insects to control an insect pest and prove that an optimal control
exists. They study how the optimal control depends on dispersal behavior and other
model aspects.

Evolutionary Aspects

For most of this book, we have focused on the ecological dynamics of populations
and neglected any possible evolutionary consequences of interactions. Yet, evolution
is present in most individual and population processes and should be considered
for certain aspects. Since IDEs can represent a wide range of dispersal patterns,
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a particularly intriguing question is how different dispersal patterns may affect
evolutionary processes differently.

In one of the earliest works on the evolution of dispersal in IDEs, Hardin et al.
(1990) simulate population dynamics under a few specifically chosen dispersal
kernels and measure the success of the dispersal strategy by the persistence and
density of the population. They find that a temporally constant environment favors a
“stay-in-place” strategy (represented by a delta distribution for the dispersal kernel),
whereas a temporarily varying environment favors a “go-everywhere-uniformly”
strategy (represented by a spatially uniform dispersal kernel).

Baskett et al. (2007) use a game-theoretic approach to study optimal dispersal
behavior in fragmented habitats. They consider an IDE for a marine species with
planktonic larvae in a network of reserves, represented by a one-dimensional
patchy landscape as in Chap. 15. Among other things, they find that increased
fragmentation leads to increased selection pressure for short-distance dispersal.

Lutscher (2008) studies how density-dependent dispersal evolves in a temporally
varying habitat. He uses the theory of adaptive dynamics (e.g., Geritz et al. 1998),
which is also a game-theoretic framework. Numerical simulations indicate that the
rate of density-dependent dispersal converges to an evolutionarily stable state that
decreases with the frequency of the temporal variation.

Phillips et al. (2008) study the evolution of the dispersal kernel at the front of the
cane toad (Bufo marinus) invasion in Australia and relate it to Reid’s paradox. Their
study relies on individual-based models, and while it derives a dispersal kernel, it
does not consider the corresponding IDE.

Williams et al. (2016) consider an IDE for a species spreading in a fragmented
habitat, where there is a trade-off between fecundity at low density and competition
with others at higher density. They use a game-theoretic approach and approximate
analytic solutions to find an evolutionarily stable strategy that depends on the
fragmentation level. Typically, larger gaps between patches favor competitively
superior individuals, whereas small gaps favor individuals with high fecundity.

Wang et al. (2016) study the evolution of dispersal in a spatially periodic IDE
by using tools and approaches from game theory. They consider the probability of
dispersal as the trait in question. If that probability is independent of local growth
conditions (unconditional dispersal), a population with lower dispersal probability
will invade and replace one with higher dispersal probability. Hence, the authors
recover the result that the “slower disperser wins,” which is well documented and
understood in reaction–diffusion equations (Hastings 1983; Hutson et al. 2003).
When the dispersal probability depends on local growth conditions (conditional
dispersal), the authors find that an “ideal-free strategy” is evolutionarily stable,
which is also in analogy with the reaction–diffusion case (Cosner 2014).

Marculis et al. (2017) study the dynamics of so-called neutral genetic patterns
for spreading populations. Genetic differences are considered “neutral” if they do
not affect the two basic aspects of dispersal and reproduction that are modeled in
IDEs. The entire population is divided into neutral fractions, Nt(x) = ∑k

i=1 ni
t (x),

that satisfy the equation
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ni
t+1(x) =

∫ ∞

−∞
K(x − y)F̃ (Nt (y))ni

t (y)dy, (17.7)

where F̃ is the per capita growth function. Due to the neutrality assumption, the
total density, Nt , satisfies the basic IDE (2.1) with F(N) = F̃ (N)N. Marculis
et al. (2017) show that the genetic pattern of a spreading population with a thin-
tailed kernel depends crucially on the growth function. If there is no Allee effect,
the different genetic fractions do not mix and the population is dominated by only
one such fraction at the leading edge. If there is an Allee effect, the different
genetic fractions will mix and will all be present at the leading edge of an invading
population. Lewis et al. (2018) extend this analysis to a population on a moving
patch. Goodsman et al. (2014) take a simulation approach to study a similar question
of neutral genetics during range expansion. They consider a single neutral locus with
two alleles and study the dynamics of the three resulting genotypes in a spreading
population. They track the degree of heterozygosity in the population. Their results
are largely based on stochastic simulations.

Beyond Physical Space

Throughout this book, we have considered a population density. The earliest
IDE models were formulated in terms of genetics and tracked the fraction of a
population with a certain genotype under the assumption that the population density
is spatially homogeneous and temporally constant (Slatkin 1973; Weinberger
1982; Lui 1982a,b, 1985, 1986). Their and our independent variable x represents
physical space. Many authors consider other “spaces,” even in models for ecological
processes and definitely in models for evolutionary processes. We only mention a
few examples that relate to the material presented in this work; many more might
exist.

Cuddington and Hastings (2004) consider a model for the spread of an “ecosys-
tem engineer,” i.e., a species that transforms its environment so that its reproductive
output is increased. Beavers are a well-known “engineering” species that transform
streams of running water into lakes of standing water in which they can build their
lodges and be safe from predators. But plants may also engineer their environment.
For example, Spartina alterniflora is a salt marsh grass from the Atlantic coast that
has invaded regions on the Pacific coast, where it increases sedimentation rates,
which reduces water flow, so that mudflats are eventually turned into marshes.
Cuddington and Hastings (2004) consider habitat quality level as the independent
variable, x, in a model for Spartina. Their model describes how the distribution of
area of a certain habitat quality, Ht(x), and area of a certain quality occupied by the
species, Nt(x), changes over time. If habitat quality level follows a shallow gradient,
e.g., a gradual transition from mudflat to marshland, then x can be interpreted
as physical space. The area occupied by the species grows according to habitat
quality. Habitat quality grows with the presence of the species. The authors find
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that a species that modifies its environment toward higher growth rates for itself
may invade more quickly than one that causes no modification.

Lewis et al. (2010) model the outbreak dynamics of mountain pine beetle by
considering bark area and tree vigor as independent variables. The density of trees
is structured by these two variables. The number of beetles emerging from a tree
increases with bark area but decreases with tree vigor. The probability of a tree
being killed by attacking beetles increases with the number of beetles attacking
and decreases with tree vigor. At low beetle density and high tree vigor, attacking
beetles cannot infect any trees; at high beetle density and low tree vigor, an attack
may dramatically reduce the number of healthy trees in a stand in a single year.

A number of models consider the independent “space” variable as representing a
particular individual trait. For example, quantitative genetics describes the changes
of a continuously distributed quantitative phenotypic trait value in a population. A
quantitative trait recursion typically tracks the population density, the mean, and the
variance of the trait from one generation to the next. Haefner and Dugaw (2000)
use a simple model for body size as a trait value. Individuals who are close in body
size compete more strongly than individuals whose body sizes differ considerably.
Competition can then be expressed by a convolution integral over trait space with
a certain weight function (“kernel”), so that the recursion model becomes an IDE.
Haefner and Dugaw (2000) emphasize the use of the fast Fourier transform to solve
such models numerically.

Trait values are rarely unbounded, as the quantitative genetics approach implies.
Hall et al. (2006) use a finite trait space x ∈ [−1, 1] to indicate the genotype in
a population during an invasion. The wild type corresponds to x = −1, the alien
invader to x = 1, and any hybrid to values in between. Each type has a trait-
dependent growth rate, and the offspring type is determined by some combination of
the parent types and their assumed compatibility. Model outcome varies, depending
on parameter choices, from replacement of the native to hybridization to increasing
overall diversity.

Britton (2009) studies a host–parasite model in which host and parasite can
allocate various amounts of energy into defense and attack, respectively. If these
traits are assumed continuous, a system of IDEs results. Britton (2009) analyzes
only the difference equations for discrete trait values in detail.

In a completely different context, IDEs arise in the study of directed polymers for
a suitable generating function for a logarithmically correlated random energy model
(Derrida and Spohn 1988). Webb (2011) studies traveling waves in this equation
and proves a number of convergence results.

Statistics and Estimation

Several works use stochastic IDEs in the context of weather phenomena. The
authors derive spectral methods for parameter estimation in a hierarchical Bayesian
framework. The underlying stochastic IDE is (in our notation) given by
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Nt+1(x) =
∫

Ω

K(x, y, θK)F (Nt (y), θF )dy + ηt+1(x), (17.8)

where η describes the noise and θK and θF are model parameters. Wikle (2001)
and Wikle (2002) both consider cloud intensity as their density to be modeled. They
emphasize the importance of spectral methods for dimension reduction. Xu and
Wikle (2005) build on this work to obtain “nowcasting” for rainfall activity. Wikle
and Holan (2011) use polynomial expansion to estimate parameters for Pacific
sea surface temperature. Wikle (2003) uses a reaction–diffusion equation that is
discretized in time, so that it looks similar to an IDE. Wikle and Hooten (2006)
apply these ideas to invasion biology, namely the invasion of house finches in North
America; see Sect. 12.6. Hooten and Wikle (2008) model and estimate parameters
for the invasion of the Eurasian Collared Dove (Streptopelia decaocto) of North
America. Their work is based on reaction–diffusion equations.

Dewar et al. (2009) expand on the idea of data-driven modeling with IDEs by
Wikle and coworkers (see above), who assumed that the form of the kernel was
known a priori. Dewar et al. (2009) drop this assumption and establish a novel
decomposition that allows one to estimate the shape of the kernel at the same time.
Scerri et al. (2009, 2011) continue this line of research on estimation by further
dimension reduction. Sigrist et al. (2012) apply a linear stochastic IDE to predict
rainfall, using a hierarchical Bayesian approach. Zammit-Mangion et al. (2012) use
a stochastic point process and a stochastic IDE, together with Bayesian estimation
techniques, to analyze the “Afghan war diaries.”

Ming and Albrecht (2004) mention IDEs in their work to integrate geographic
information system (GIS) into data-driven modeling of biological invasions, but
their examples focus on reaction–diffusion equations.

17.2 Related Models

IDEs model the density of a population in discrete time and continuous space.
Related models use other combinations of discrete and/or continuous descriptions
of space and time. The mathematical challenges and biological applications differ
between the various frameworks. We mention continuous-time models for spatial
ecology, some mixed continuous-discrete time models, and some discrete-space
models. Another set of very closely related models are integral-projection models,
which model stage-structured populations with continuous state variable in discrete
time. These are in fact IDEs but with a different interpretation and therefore different
properties of the “kernel” function. All the models presented here are density based.
There is a vast literature on individual-based models applied to spatial ecology.
These models are mostly used in simulation studies. Some authors compare the
results of individual-based models with corresponding IDEs, e.g., Travis et al.
(2011) for invasions.
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Models in Continuous Space and Time

Reaction–diffusion equations are the modeling framework most closely related to
IDEs in the spirit that we present here. In the simplest scenario, these continuous-
time “cousins” of IDEs track the density, u(τ, x), of a biological population as
individuals simultaneously move randomly and interact according to the equation

∂u

∂τ
= D

∂2u

∂x2 + f (x, u) , (17.9)

where D is the diffusion coefficient and f (x, ·) is the net instantaneous production
term. When f (x, u) = ru is linear and spatially homogeneous, the equation can be
solved explicitly in terms of the Gaussian kernel. The time-T -map of the solution is
an IDE that expresses u(T + 1, x) in terms of u(T , x).

The literature on reaction–diffusion equations is vast. It includes models with
nonlinear diffusion, interacting populations, and nonlocal interactions. Cantrell
and Cosner (2003) give an excellent treatment of questions in spatial ecology on
bounded domains. We are not aware of a single monograph dedicated to spreading
phenomena in reaction–diffusion equations, but Lewis et al. (2016) explain the most
important phenomena from an ecological perspective, and Zhao (2009) summarizes
the mathematics results.

Integrodifferential equations also describe the evolution of a population density
in continuous time and space. They are similar to reaction–diffusion equations,
except that the (local) diffusion operator is replaced by a nonlocal dispersal operator.
When dispersal and population dynamics are independent processes, the basic
equation reads

∂u

∂τ
= D

(∫
K(x, y)u(τ, y)dy − u(τ, x)

)
+ f (x, u) , (17.10)

but other forms are possible when dispersal and reproduction are linked (Medlock
and Kot 2003). Here, K is a dispersal kernel as in Sect. 2.3, except that it describes
instantaneous dispersal. Integrodifferential equations have not quite received the
same level of attention as reaction–diffusion equations, but many aspects have
been studied in both. One major difference for analytical purposes is that an
integrodifferential equation does not have the same strong compactness properties
as a reaction–diffusion equation.

Another closely related modeling approach consists of continuous-time integral
equations of the form (Diekmann 1978; Thieme 1979; Thieme and Zhao 2003)

u(τ, x) = u0(τ, x) +
∫ τ

0

∫ ∞

∞
F(u(τ − s, x − y), s, y) dy ds . (17.11)
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Here, the integral measures the contribution of an individual at any time prior to
τ and any location y on the density at τ and any x. These models are much less
prominent in applications to spatial ecology.

Impulsive Reaction–Diffusion Equations

An impulsive differential equation, or hybrid system, combines continuous and
discrete dynamics (Bainov and Simeonov 1993; Lakshmikantham and Simeonov
1989). A quantity of interest evolves continuously until a certain condition is
reached, at which point there is a discrete impulse to the state variables or an abrupt
change in the dynamics. This approach can be used to model seasonal dynamics of
biological populations, where the dynamics during the growing season are described
by the differential equation and then change from the end of one growing season
to the beginning of the next due to the discrete impulse (Geritz and Kisdi 2004;
Pachepsky et al. 2008).

Lewis and Li (2012) use this approach to model seasonal reproduction in a
biological species in continuous space. They denote the density of individuals in
year t = 0, 1, 2, . . . by ut (τ, x), where 0 ≤ τ ≤ T is the time within a year
of length T and x is the spatial variable. Within a given year t , organisms move
randomly and die according to the equation

∂ut

∂τ
= D

∂2ut

∂x2 − m1ut − m2u
2
t , 0 ≤ τ ≤ T , (17.12)

where m1 and m2 are the coefficients of the linear and quadratic death rates and D

is the diffusion coefficient. From the end of one season to the beginning of the next,
the population reproduces according to the map

ut+1(x, 0) = g(ut (x, T )) , (17.13)

where g is any growth function from Sect. 2.2.
A major difference between this approach and the IDE model framework is that

here, individuals can interact during the dispersal phase. The assumption behind
a dispersal kernel in an IDE is that individuals do not interact during dispersal. If
there is no interaction in the above reaction–diffusion equation (i.e., m2 = 0), the
equation can be solved explicitly in terms of the Gaussian kernel; see Chap. 7 and
Sect. 12.1. Substituting this explicit expression gives an IDE for Nt(x) = ut (x, 0).

In fact, Skellam (1951) had already thought of discrete-continuous systems.
He gives a diffusion equation for movement and an integral formulation for the
generation-to-generation steady state. Borer et al. (2007) use similar hybrid-systems
ideas in conjunction with an IDE for the competition between a perennial and
an invasive annual grass in California. They use a system of ordinary differential
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equations to describe the local dynamics during the growth phase (Fig. 2.1) and the
usual integral kernel for dispersal between two growth phases.

Vasilyeva et al. (2016) generalize the model by Lewis and Li (2012) by
introducing advection into the reaction–diffusion equation and allowing the impulse
to be nonlocal. The model by Vasilyeva et al. (2016) is inspired by the drift paradox
(Sect. 12.2). The reaction–advection–diffusion equation represents the larval stage
of a stream insect, such as a caddisfly or a mayfly, and the nonlocal reproduction
map accounts for dispersal of adult flies before ovipositioning. When predator and
prey interact in a continuous-time equation but predators reproduce only at discrete
times, we need to keep track of the location resources during the dispersal process.
Wang and Lutscher (2018) propose the first model for this scenario and analyze the
conditions for diffusion-driven instabilities. These conditions are surprisingly more
complicated than the corresponding results for reaction–diffusion equations or IDEs
(Sect. 14.4).

Discrete-Space Models

Models in discrete time and space are known nowadays as coupled map lattices.
They are used in a wide range of applications, spatial ecology being one of them.
One of the first such models, by Roff (1974), studies how dispersal in heterogeneous
landscapes may increase population persistence time. Several authors give historical
references to coupled map lattices and present them as spatially discrete versions of
IDEs, e.g., Brewster and Allen (1997). These authors study a predator–prey insect
system with stage structure; see also Legaspi et al. (1998). Gilbert et al. (2004)
use a small resolution of 2.5 km for a discrete model of horse chestnut leafminer
Cameraria ohridella in Germany and compare the model fit with different dispersal
kernels. Muthukrishnan et al. (2015) discretize the landscape and dispersal kernel
in a study on the spread of Miscanthus × giganteus along roads. Other authors
simply refer to discrete-space models as IDEs, e.g., Best et al. (2007), who simulate
a patchy moving-habitat model. Doebeli and Ruxton (1998) study stabilization via
pattern formation in discrete space. Abbott and Dwyer (2008) study the spread and
synchrony of gypsy moth (Lymantria dispar) with stochastic environmental forcing.
de Camino-Beck and Lewis (2009) study the spread of an invasive plant (scentless
chamomile, Matricaria perforata) in a stage-structured model and give references
to other recent coupled map lattice models.

Following de Camino-Beck and Lewis (2009), we illustrate this type of model in
a one-dimensional domain of discrete locations xi = ih for some cell size (scale)
h > 0. Denoting by Nt(xi) the population density in cell xi at time t, we obtain the
equation

Nt+1(xi) =
∑
xj ∈Ω

K(xi, xj )Fj (xj ) , (17.14)
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where Ω is the spatial domain of interest. In the classical case, dispersal occurs only
between nearest neighbor cells, so that K = 0 if |i − j | ≥ 2, but many other shapes
have been considered.

The results by Weinberger (1982) on spreading speeds are formulated on
continuous and discrete habitats, so that many of the insights from Chap. 5 carry
over to coupled map lattices; see also the review by Zhao (2009).

Similar to the continuous-space hybrid models mentioned above, discrete-space
hybrid models have been studied, e.g., by Elderd et al. (2013) for infections.

Integral-Projection Models

Since their first derivation and analysis (Easterling et al. 2000), integral-projection
models have become a widely used modeling framework to study structured
populations; see Ellner et al. (2016) for a comprehensive introduction and review.
The original motivation was the need to model the dynamics of continuously
structured populations. It complements the framework of matrix models (Chap. 13),
which considers discrete population structure.

We denote by z the continuous variable (e.g., size) that structures the population
and by n(t, z) the density of the population with respect to that variable at time
(generation) t. We assume that z is in some compact set Ω , e.g., z ∈ [zl, zu], where
zl and zu represent the lower and upper limits of z. The total number of individuals
at time t with size between z1 and z2 is given by

∫ z2

z1

n(t, z)dz . (17.15)

In the most general terms, a linear integral-projection model maps the density from
one generation to the next according to the IDE

n(t + 1, z) =
∫

Ω

K̃(z′, z)n(t, z′)dz′ . (17.16)

The kernel function, K̃ , is the net result of survival and reproduction and can be
written as

K̃(z′, z) = s(z′)G(z′, z) + F(z′, z) , (17.17)

where s(z′) is the probability that an individual of size z′ survives to the next time
step, G(z′, z) is the size distribution of size-z′ individuals that survive to the next
time step, and F(z′, z) is the production of size-z individuals in generation t + 1
from size-z′ individuals in generation t.

The model in (17.16) and its nonlinear extension, where K̃ depends on n(t, ·),
looks abstractly like IDE (2.1). The two have many similarities, so much so
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that Ellner et al. (2016) refer to IDEs as “spatial integral-projection models.”
However, there are also significant differences between the two model types.
The similarities are particularly obvious in the mathematical aspects of IDEs on
bounded domains. All the considerations on compactness, linearization, spectra,
and stability carry over to integral-projection models. Some of the most prominent
differences are in the shape of the “kernels” and the mathematical analysis on
unbounded domains. A dispersal kernel in an IDE can be symmetric and must satisfy
some integration constraints. A kernel function in an integral-projection model
typically has no symmetry properties and is not a probability density function. A
homogeneous spatial environment in an IDE is worthy of study, yet if a population
is “homogeneous” with respect to the structure variable, then it is unstructured and
model (17.16) collapses to a simple difference equation. The study of spread in
unbounded domains has no meaningful analogue in (17.16).

Since integral-projection models complement matrix models for studying (size-)
structured populations, it seems reasonable and natural that they could be general-
ized to spatial integral-projection models, just as matrix models were generalized
to stage-structured IDEs (Chap. 13). The first work in that direction is by Jongejans
et al. (2011), who formulate a spatial integral-projection model for an invasive thistle
and study the sensitivity of spreading speed to individual and spatial variation.



References

Abbott, K., & Dwyer, G. (2008). Using mechanistic models to understand synchrony in forest
insect populations: The North American gypsy moth as a case study. The American Naturalist,
172, 613–624.

Adler, F. (1993). Migration alone can produce persistence of host–parasitoid models. The American
Naturalist, 141, 642–650.

Allee, W. (1949). Principles of animal ecology. Christchurch: Saunders.
Allen, L. (2006). An introduction to mathematical biology. New York: Pearson.
Allen, L. (2010). An introduction to stochastic processes with applications to biology. London:

Chapman and Hall/CRC.
Allen, E., Allen, L., & Gilliam, X. (1996). Dispersal and competition models for plants. Journal of

Mathematical Biology, 34, 455–481.
Allen, J., Brewster, C., & Slone, D. (2001). Spatially explicit ecological models: A spatial

convolution approach. Chaos, Solitons & Fractals, 12, 333–347.
Alonso, D., Bartumeus, F., & Catalan, J. (2002). Mutual interference between predators can give

rise to Turing spatial patterns. Ecology, 83(1), 28–34.
Alzoubi, M. (2007). Equilibria in a dispersal model for structured populations. Turkish Journal of

Mathematics, 31, 421–433.
Alzoubi, M. (2010a). The net reproductive number and bifurcation in an integro-difference system

of equations. Applied Mathematical Sciences, 4(4), 191–200.
Alzoubi, M. (2010b). Stability and bifurcation in a system of integro-difference equations model.

Applied Mathematical Sciences, 4(64), 3175–3188.
Amor, D., & Fort, J. (2009). Fronts from two-dimensional dispersal kernels: Beyond the

nonoverlapping-generations model. Physical Review E, 80, 051918.
Andersen, M. (1991). Properties of some density-dependent integrodifference equation population

models. Mathematical Biosciences, 104, 135–157.
Aronson, D., & Weinberger, H. F. (1975). Nonlinear diffusion in population genetics, combustion,

and nerve pulse propagation. In J. Goldstein (Ed.) Partial differential equations and related
topics. Lecture notes in mathematics (vol. 446, pp. 5–49). Berlin: Springer.

Assaneo, F., Coutinho, R.M., Lin, Y., Mantilla, C., & Lutscher, F. (2013). Dynamics and
coexistence in a system with intraguild mutualism. Ecological Complexity, 14, 64–74.

Aydogmus, O., Kang, Y., Kavgaci, M., & Bereketoglu, H. (2017). Dynamical effects of nonlocal
interactions in discrete-time growth-dispersal models with logistic-type nonlinearities. Ecolog-
ical Complexity, 31, 88–95.

Baeumer, B., Kovàcs, M., & Meerschaert, M. (2007). Fractional reproduction-dispersal equations
and heavy tail dispersal kernels. Bulletin of Mathematical Biology, 69, 2281–2297.

© Springer Nature Switzerland AG 2019
F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary
Applied Mathematics 49, https://doi.org/10.1007/978-3-030-29294-2

363

https://doi.org/10.1007/978-3-030-29294-2


364 References

Bainov, D., & Simeonov, P. (1993). Impulsive differential equations: Periodic solutions and
applications. Boca Raton: CRC Press.

Barton, N., & Turelli, M. (2011). Spatial waves of advance with bistable dynamics: Cytoplasmic
and genetic analogues of Allee effects. The American Naturalist, 178, E48–E75.

Baskett, M., Weitz, J., & Levin, S. (2007). The evolution of dispersal in reserve networks. The
American Naturalist, 170, 59–78.

Bateman, A., Buttenschön, A., Erickson, K., & Marulis, N. (2017). Barnacles vs bullies: Modelling
biocontrol of the invasive European green crab using a castrating barnacle parasite. Theoretical
Ecology, 10, 305–318.

Bateman, A., Neubert, M., Krkos̆ek, M., & Lewis, M. (2015). Generational spreading speed and
the dynamics of population range expansion. The American Naturalist, 186, 362–375.

Beddington, J. R., Free, C. A., & Lawton, J. H. (1975). Dynamic complexity in predator–prey
models framed in difference equations. Nature, 255(5503), 58.

Beer, T., & Swaine, M. (1977). On the theory of explosively dispersed seeds. New Phytologist, 78,
681–694.

Bellows, T. (1981). The descriptive properties of some models for density dependence. Journal of
Animal Ecology, 50(1), 139–156.

Berestycki, H., & Hamel, F. (2002). Front propagation in periodic excitable media. Communica-
tions on Pure and Applied Mathematics, 55(8), 949–1032.

Best, A., Johst, K., Münkemüller, T., & Travis, J. (2007). Which species will successfully track
climate change? The influence of intraspecific competition and density dependent dispersal on
range shifting dynamics. Oikos, 116, 1531–1539.

Beverton, R., & Holt, S. (1957). On the Dynamics of Exploited Fish Populations. Fisheries
Investigation Series (vol. 2, no. 19). London: Ministry of Agriculture, Fisheries, and Food.

Bianchi, F., Schellhorn, N., & van der Werf, W. (2009). Predicting the time to colonization of the
parasitoid diadegma semiclausum: The importance of the shape of spatial dispersal kernels for
biological control. Biological Control, 50, 267–274.

Bocedi, G., Guy Pe’er, G., Heikkinen, R., Matsinos, Y., & Travis, J. (2012). Projecting species’
range expansion dynamics: Sources of systematic biases when scaling up patterns and
processes. Methods in Ecology and Evolution, 2, 1008–1018.

Borer, E., Hosseini, P., Seabloom, E., & Dobson, A. (2007). Pathogen-induced reversal of native
dominance in a grassland community. Proceedings of the National Academy of Sciences,
104(13), 5473–5478.

Botsford, L. W., Hastings, A., & Gaines, S. D. (2001). Dependence of sustainability on the
configuration of marine reserves and larval dispersal distance. Ecology Letters, 4, 144–150.

Boucher, D. (1982). The ecology of mutualism. Annual Review of Ecology and Systematics, 13,
315–347.

Bouhours, J., & Lewis, M. (2016). Climate change and integrodifference equations in a stochastic
environment. Bulletin of Mathematical Biology, 78, 1866–1903.

Bourgeois, A. (2016). Spreading Speeds and Travelling Waves in Integrodifference Equations with
Overcompensatory Dynamics. Master’s Thesis, University of Ottawa.

Bourgeois, A., LeBlanc, V., & Lutscher, F. (2018). Spreading phenomena in integrodifference
equations with non-monotone growth functions. SIAM Journal on Applied Mathematics, 78(6),
2950–2972.

Bourgeois, A., LeBlanc, V., & Lutscher, F. (2019). Dynamical stabilization and traveling waves
in integrodifference equations. Discrete and Continuous Dynamical Systems - Series S,

Bramburger, J., & Lutscher, F. (2019) Analysis of integrodifference equations with a separable
dispersal kernel. Acta Applicandae Mathematicae, 161(1), 127–151.

Brännström, A., & Sumpter, D. (2005). The role of competition and clustering in population
dynamics. Proceedings of the Royal Society of London B, 272, 2065–2072.

Brewster, C., & Allen, L. (1997). Spatiotemporal model for studying insect dynamics in large-scale
cropping systems. Environmental Entomology, 26(3), 473–482.

Brigham, E. (2002). The fast Fourier transform. New York: Prentice-Hall.

https://doi.org/10.3934/dcdss.2020117

https://doi.org/10.3934/dcdss.2020117


References 365

Britton, N. (1989). Aggregation and the competitive exclusion principle. Journal of Theoretical
Biology, 136, 57–66.

Britton, N. (2009). Evolution in a host–parasite system. In Biomat 2008: International Symposium
on Mathematical and Computational Biology (pp. 157–169). Singapore: World Scientific.

Britton-Simmons, K., & Abbott, K. (2008). Short- and long-term effects of disturbance and
propagule pressure on a biological invasion. Journal of Ecology, 96, 68–77.

Buckley, Y., Brockerhoff, E. G., Langer, L., Ledgard, N. J., North, H. C., & Rees, M. (2005).
Slowing down a pine invasion despite uncertainty in demography and dispersal. Journal of
Applied Ecology, 42, 1020–1030.

Bullock, J., & Clarke, R. (2000). Long distance seed dispersal by wind: Measuring and modelling
the tail of the curve. Oecologia, 124, 506–521.

Bullock, J., Pywell, R., & Coulson-Phillips, S. (2008). Managing plant population spread:
Prediction and analysis using a simple model. Ecological Applications, 18(4), 945–953.

Bullock, J., White, S., Prudhomme, C., Tansey, C., Perea, R., & Hooftman, D. (2012). Modelling
spread of British wind-dispersed plants under future wind speeds in a changing climate. Journal
of Ecology, 100, 104–115.

Byers, J., & Pringle, J. (2006). Going against the flow: Retention, range limits and invasions in
advective environments. Marine Ecology Progress Series, 313, 27–41.

Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction-diffusion equations. Mathemati-
cal and computational biology. London: Wiley.

Caplat, P., Coutts, S., & Buckley, Y. (2012). Modeling population dynamics, landscape structure,
and management decisions for controlling the spread of invasive plants. Annals of the New York
Academy of Sciences, 1249, 72–83.

Caplat, P., Nathan, R., & Buckley, Y. (2012). Seed terminal velocity, wind turbulence, and
demography drive the spread of an invasive tree in an analytical model. Ecology, 93(2), 368–
377.

Cappaert, D., McCullough, D., Polland, T., & Siegert, N. (2005). Emerald ash borer in North
America: A research and regulatory challenge. American Entomologist, 51, 152–165.

Carrillo, C., Cherednichenko, K., Britton, N., & Mogie, M. (2009). Dynamic coexistence of
sexual and asexual invasion fronts in a system of integro-difference equations. Bulletin of
Mathematical Biology, 71, 1612–1625.

Carrillo, C., & Fife, P. (2005). Spatial effects in discrete generation population models. Journal of
Mathematical Biology, 50, 161–188.

Castillo-Chavez, C., Li, B., & Wang, H. (2013). Some recent developments on linear determinacy.
Mathematical Biosciences and Engineering, 10, 1419–1436.

Caswell, H. (2001). Matrix population models. Sunderland: Sinauer Associates.
Caswell, H., Lensink, R., & Neubert, M. (2003). Demography and dispersal: Life table response

experiments for invasion speed. Ecology, 84(8), 1968–1978.
Caswell, H., Neubert, M., & Hunter, C. (2011). Demography and dispersal: Invasion speeds and

sensitivity analysis in periodic and stochastic environments. Theoretical Ecology, 4, 407–421.
Chesson, P., & Lee, C. (2005). Families of discrete kernels for modeling dispersal. Theoretical

Population Biology, 67, 241–256.
Clark, J. (1998). Why trees migrate so fast: Confronting theory with dispersal biology and the

paleorecord. The American Naturalist, 152(2), 204–224.
Clark, J., Fastie, C., Hurtt, G., Jackson, S., Johnson, C., King, G., et al. (1998a). Reid’s paradox of

rapid plant migration. Bioscience, 48(1), 13–24.
Clark, J., Horváth, L., & Lewis, M. (2001b). On the estimation of spread rate for a biological

population. Statistics & Probability Letters, 51, 225–234.
Clark, J., Lewis, M., & Horvath, L. (2001a). Invasion by extremes: Population spread with variation

in dispersal and reproduction. The American Naturalist, 157(5), 537–554.
Clark, J., Lewis, M., McLachlan, J., & HilleRisLambers, J. (2003). Estimating population spread:

What can we forecast and how well? Ecology, 84(8), 1979–1988.
Clark, J., Macklin, E., & Wood, L. (1998b). Stages and spatial scales of recruitment limitation in

southern Appalachian forests. Ecological Monographs, 68(2), 213–235.



366 References

Clark, J., Silman, M., Kern, R., Macklin, E., & HilleRisLambers, J. (1999). Seed dispersal near
and far: Patterns across temperate and tropical forests. Ecology, 80(5), 1475–1494.

Cobbold, C., Lewis, M., Lutscher, F., & Roland, J. (2005). How parasitism affects critical patch
size in a host–parasitoid system: Application to forest tent caterpillar. Theoretical Population
Biology, 67(2), 109–125.

Cobbold, C., & Lutscher, F. (2014). Mean occupancy time: Linking mechanistic movement models,
population dynamics and landscape ecology to population persistence. Journal of Mathematical
Biology, 68(3), 549–579.

Collingham, Y., & Huntley, B. (2000). Impacts of habitat fragmentation and patch size upon
migration rates. Ecological Applications, 10(1), 131–144.

Cosner, C. (2014). Reaction-diffusion-advection models for the effects and evolution of dispersal.
Discrete and Continuous Dynamical Systems - Series B, 35(5), 1701–1745.

Courchamp, F., Berec, L., & Gascoinge, J. (2008). Allee effects. Oxford: Oxford University Press.
Coutinho, R., & Fernandez, B. (2004). Fronts in extended systems of bistable maps coupled via

convolutions. Nonlinearity, 17, 23–47.
Coutinho, R., Godoy, W., & Kraenkel, R. (2012). Integrodifference model for blowfly invasion.

Theoretical Ecology, 5, 363–371.
Creegan, P., & Lui, R. (1984). Some remarks about the wave speed and travelling wave solutions

of a nonlinear integral operator. Journal of Mathematical Biology, 20, 59–68.
Crone, E., Brown, L., Hodgson, J., Lutscher, F., & Schultz, C. (2019). Faster movement in habitat

matrix promotes range shifts in heterogeneous landscapes. Ecology, 100(7), e02701
Cuddington, K., & Hastings, A. (2004). Invasive engineers. Ecological Modelling, 178, 335–347.
Cushing, J. (2014). Backward bifurcations and strong Allee effects in matrix models for the

dynamics of structured populations. Journal of Biological Dynamics, 8(1), 57–73.
Day, S., & Kalies, W. (2013). Rigorous computation of the global dynamics of integrodifference

equations with smooth nonlinearities. SIAM Journal on Numerical Analysis, 51(6), 2957–2983.
Day, S., Junge, O., & Mischaikow, K. (2004). A rigorous numerical method for the global analysis

of intfinite-dimensional discrete dynamical systems. SIAM Journal on Applied Dynamical
Systems, 3(2), 117–160.

de Camino-Beck, T., & Lewis, M. (2009). Invasion with stage-structured coupled map lattices:
Application to the spread of scentless chamomile. Ecological Modelling, 220(23), 3394–3403.

Deng, P., de Vargas Roditi, L., van Ditmarsch, D., & Xavier, J. (2014). The ecological basis of
morphogenesis: Branching patterns in swarming colonies of bacteria. New Journal of Physics,
16, 015006.

Derrida, B., & Spohn, H. (1988). Polymers on disordered trees, spin glasses, and traveling waves.
Journal of Statistical Physics, 51(5–6), 817–840.

Dewar, M., Scerri, K., & Kadirkamanathan, V. (2009). Data-driven spatio-temporal modeling using
the integro-difference equation. IEEE Transactions of Signal Processing, 57(1), 83–91.

Dewhirst, S., & Lutscher, F. (2009). Dispersal in heterogeneous habitats: Thresholds, spatial scales
and approximate rates of spread. Ecology, 90(5), 1338–1345.

Diekmann, O. (1978). Thresholds and travelling waves for the geographical spread of infection.
Journal of Mathematical Biology, 6, 109–130.

Ding, W., & Liang, X. (2015). Principal eigenvalues of generalized convolution operators on the
circle and spreading speeds of noncompact evolution systems in periodic media. SIAM Journal
on Mathematical Analysis, 47(1), 855–896.

Ding, W., Liang, X., & Xu, B. (2013). Spreading speeds of n-season spatially periodic integro-
difference equations. Discrete and Continuous Dynamical Systems - Series A, 33(8), 3443–
3472.

Doebeli, M., & Ruxton, G. (1998). Stabilization through spatial pattern formation in metapopu-
lations with long–range dispersal. Proceedings of the Royal Society of London B, 265(1403),
1325–1332.

Doedel, E. J. (1981). Auto: A program for the automatic bifurcation analysis of autonomous
systems. Congressus Numerantium, 30, 265–284.



References 367

Drury, K., & Candelaria, J. (2008). Using model identification to analyze spatially explicit data
with habitat, and temporal, variability. Ecological Modelling, 214, 305–315.

Du, Y. (2006). Order structure and topological methods in nonlinear partial differential equations.
Maximum principles and applications. Singapore: World Scientific.

Dwyer, G., & Morris, W. (2006). Resource-dependent dispersal and the speed of biological
invasions. The American Naturalist, 167(2), 165–176.

Easterling, M., Ellner, S., & Dixon, P. (2000). Size-specific sensitivity: Applying a new structured
population model. Ecology, 81, 694–708.

Edelstein-Keshet, L. (2005). Mathematical models in biology. Philadelphia: SIAM.
Einstein, A. (1906). Zur Theorie der Brownschen Bewegung. Annals of Physics, 19, 371–381.
Elderd, B., Rehill, B., Haynes, K., & Dwyer, G. (2013). Induced plant defenses, host–pathogen

interactions, and forest insect outbreaks. Ecological Applications, 110(37), 14978–14983.
Elliott, E., & Cornell, S. (2012). Dispersal polymorphism and the speed of biological invasions.

PLoS ONE, 7(7), e40496.
Ellner, S. (1984). Asymptotic behavior of some stochastic difference equation population models.

Journal of Mathematical Biology, 19, 169–200.
Ellner, S., Childs, D., & Rees, M. (2016). Data-driven modelling of structured populations. Berlin:

Springer.
Ellner, S., & Schreiber, S. (2012). Temporally variable dispersal and demography can accelerate

the spread of invading species. Theoretical Population Biology, 82(4), 283–298.
Etienne, R., Wertheim, B., Hemerik, L., Schneider, P., & Powell, J. (2002). The interaction between

dispersal, the Allee effect and scramble competition affects population dynamics. Ecological
Modelling, 148, 153–168.

Fagan, W., Lewis, M., Neubert, M., & van den Driessche, P. (2002). Invasion theory and biological
control. Ecology Letters, 5, 148–157.

Fagan, W., Lewis, M., Neubert, M., Aumann, C., Apple, J., & Bishop, J. (2005). When can
herbivores slow or reverse the spread of an invading plant? A test case from mount St. Helens.
The American Naturalist, 166, 669–685.

Fagan, W., & Lutscher, F. (2006). Average dispersal success: Linking home range, dispersal and
metapopulation dynamics to reserve design. Ecological Applications, 16(2), 820–828.

Fang, J., & Zhao, X.-Q. (2014). Traveling waves for monotone semiflows with weak compactness.
SIAM Journal on Mathematical Analysis, 46(6), 3678–3704.

Fang, J., & Zhao, X.-Q. (2015). Bistable traveling waves for monotone semiflows with applica-
tions. Journal of the European Mathematical Society, 17, 2243–2288.

Fasani, S., & Rinaldi, S. (2011). Factors promoting or inhibiting Turing instability in spatially
extended prey–predator systems. Ecological Modelling, 222, 3449–3452.

Fedotov, S. (2001). Front propagation into an unstable state of reaction-transport systems. Physical
Review Letters, 86(5), 926–929.

Fisher, R. (1937). The advance of advantageous genes. Annals of Eugenics, 7, 355–369.
Fort, J. (2007). Fronts from complex two-dimensional dispersal kernels: Theory and application to

Reid’s paradox. Journal of Applied Physics, 101, 094701.
Fort, J. (2012). Synthesis between demic and cultural diffusion in the neolithic transition in Europe.

Proceedings of the National Academy of Sciences of the United States of America, 109(46),
18669–18673.

Fort, J., Pérez-Losada, J., & Isern, N. (2007). Fronts from integrodifference equations and
persistence effects on the neolithic transition. Physical Review E, 76, 031913.

Fort, J., Pérez-Losada, J., Suñol, J., Escoda, L., & Massaneda, J. (2008). Integro-difference
equations for interacting species and the neolithic transition. New Journal of Physics, 10,
043045.

Fujiwara, M., Anderson, K., Neubert, M., & Caswell, H. (2006). On the estimation of dispersal
kernels from individual mark-recapture data. Environmental and Ecological Statistics, 13, 183–
197.

Fuller, E., Rush, E., & Pinsky, M. (2015). The persistence of populations facing climate shifts and
harvest. Ecosphere, 6(9), 153.



368 References

Gaff, H., Joshi, H., & Lenhart, S. (2007). Optimal harvesting during an invasion of a sublethal
plant pathogen. Environment and Development Economics, 12, 673–686.

Gagnon, K., Peacock, S., Yu Jin, Y., & Lewis, M. (2015). Modelling the spread of the invasive alga
codium fragile driven by long-distance dispersal of buoyant propagules. Ecological Modelling,
316, 111–121.

Galliard, J., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population
dynamics in a short lived lizard. Journal of Animal Ecology, 79, 1296–1307.

Garnier, A., & Lecomte, J. (2006). Using a spatial and stage-structured invasion model to assess
the spread of feral populations of transgenic oilseed rape. Ecological Modelling, 194, 141–149.

Garnier, A., Pivard, S., & Lecomte, J. (2008). Measuring and modelling anthropogenic secondary
seed dispersal along roadverges for feral oilseed rape. Basic and Applied Ecology, 9, 533–541.

Geritz, S., & Kisdi, É. (2004). On the mechanistic underpinning of discrete-time population models
with complex dynamics. Journal of Theoretical Biology, 228, 261–269.

Geritz, S., Kisdi, É., Meszéna, G., & Metz, J. (1998). Evolutionarily singular strategies and the
adaptive growth and branching of the evolutionary tree. Evolutionary Ecology, 12(1), 35–57.

Gharouni, A., Barbeau, M., Chassé, J., Wang, L., & Watmough, J. (2017). Stochastic dispersal
increases the rate of upstream spread: A case study with green crabs on the northwest atlantic
coast. PLoS ONE, 12(9), e0185671.

Gharouni, A., Barbeau, M., Locke, A., Wang, L., & Watmough, J. (2015). Sensitivity of invasion
speed to dispersal and demography: An application of spreading speed theory to the green crab
invasion on the northwest Atlantic coast. Marine Ecology Progress Series, 541, 135–150.

Gilbert, M., Gaffney, E., Bullock, J., & White, S. (2014a). Spreading speeds for plant populations
in landscapes with low environmental variation. Journal of Theoretical Biology, 363, 436–452.

Gilbert, M., Grégoire, J.-C., Freise, J., & Heitland, W. (2004). Long-distance dispersal and human
population density allow the prediction of invasive patterns in the horse chestnut leafminer
cameraria ohridella. Journal of Animal Ecology, 73, 459–468.

Gilbert, M., White, S., Bullock, J., & Gaffney, E. (2014b). Spreading speeds for stage structured
plant populations in fragmented landscapes. Journal of Theoretical Biology, 349, 135–149.

Gilbert, M., White, S., Bullock, J., & Gaffney, E. (2017). Speeding up the simulation of population
spread models. Methods in Ecology and Evolution, 8, 501–510.

Gilioli, G., Pasquali, S., Tramontini, S., & Riolo, F. (2013). Modelling local and long-distance
dispersal of invasive chestnut gall wasp in Europe. Ecological Modelling, 263, 281–290.

Goodsman, D., Cooke, B., Coltman, D., & Lewis, M. (2014). The genetic signature of rapid range
expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing.
Theoretical Population Biology, 98, 1–10.

Goodsman, D., Koch, D., Whitehouse, C., Evenden, M., Cooke, B., & Lewis, M. (2016).
Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecological Applications,
26, 2623–2636.

Goodsman, D., & Lewis, M. (2016). The minimum founding population in dispersing organisms
subject to strong Allee effects. Methods in Ecology and Evolution, 7, 1100–1109.

Gouhier, T., Guichard, F., & Menge, B. (2010). Ecological processes can synchronize marine
population dynamics over continental scales. Proceedings of the National Academy of Sciences
of the United States of America, 107(18), 8281–8286.

Gruess, A., Kaplan, D., & Hart, D. (2011). Relative impacts of adult movement, larval dispersal
and harvester movement on the effectiveness of reserve networks. PLoS ONE, 6(5), e19960.

Haefner, J., & Dugaw, C. (2000). Individual-based models solved using fast Fourier transforms.
Ecological Modelling, 125, 159–172.

Hall, R., Hastings, A., & Ayres, D. (2006). Explaining the explosion: Modelling hybrid invasions.
Proceedings of the Royal Society B, 273, 1385–1389.

Hamel, F. (2016). Bistable transition fronts in R
n. Advances in Mathematics, 289, 279–344.

Hammerstein, A. (1930). Nichtlineare Integralgleichungen nebst Anwendungen. Acta Mathemat-
ica, 54, 117–176.



References 369
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Symbols
∗, 54
E[·], 332
L∗, 27, 170, 207, 209, 236, 238, 294
Q, 10
Q′[0], 25
•, 203
◦, 52, 146, 332
δ(x), 55
ĉ, 61, 217
c∗, 65, 223
c∗
(π0,π1), 156

L2(Ω), 126, 204

A
Activator, 240
Advection, 89, 92, 128
African blowfly (Chrysomya albiceps), 195
Africanized honey bee (Apis mellifera

adansonii), 197
Algae

brown algae (Sargassum muticum), 177
green algae (Codium fragile), 171

Allee effect, 16, 76, 185
and biological control, 258
and competition, 262
and mutualism, 282
and overcompensation, 159
and pattern formation, 252
and spatial spread, 76, 308, 328
and steady state, 49

Annual grass (Vulpia ciliata), 72
Area release, 120
Asymmetric dispersal, 128, 165, 229

Asymptotic spreading speed, see Speed of
spread

Average dispersal success, 120
Averaging, 313

B
Baltimore checkerspot (Euphydryas phaeton),

326
Bias, 89, 128, 165
Bifurcation, 11

flip, 46
minus-one, 243
Naimark–Sacker, 233
period-doubling, 46
plus-one, 243
saddle-node, 49
transcritical, 20, 211

Biological control, 258
Biological invasion, 3, 54, 75, 260, 356
Bird

house finch, 186
Pied Flycatcher (Ficedula hypoleuca), 228
Sparrowhawk (Accipiter nisus), 228
Starling (Sturnus vulgaris), 228

Bistable, 86
Black rockfish (Sebastes melanops), 176
Boll weevil (Anthonomus grandis Boheman),

280

C
Cane toad (Bufo marinus), 353
Central limit theorem (CLT), 134
Chaotic dynamics, 15, 46, 48, 158

© Springer Nature Switzerland AG 2019
F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary
Applied Mathematics 49, https://doi.org/10.1007/978-3-030-29294-2

381

https://doi.org/10.1007/978-3-030-29294-2


382 Index

Characteristic function, 70
Chestnut weevil (Curculio elephas), 348
Cobweb diagram, 13
Coexistence, 234
Compactness, 25, 37, 66, 67, 226
Competition, 282

contest, 16
exclusion principle, 232
inter-specific, 233
intra-specific, 16
lottery, 282
model, 274
nonlocal, 351
scramble, 16
and spatial spread, 274, 329

Convolution, 54, 106
Cooperative, 260

See also order preserving, 260
Coupled map lattice, 359
Critical habitat-size, 286
Critical patch-size, 23, 27, 170, 178, 207, 209,

234

D
Density-dependent dispersal, 349
Diffusion-driven instability, see Pattern

formation
Dirac delta distribution, 55
Disease, 139, 227, 329

potato blight, 230
Dispersal kernel, 10, 17, 89, 136

asymmetric Laplace kernel, 91, 128, 169
ballistic kernel, 95
Bessel function, 91
bivariate Gaussian, 194
on a bounded domain, 98
Cauchy kernel, 56, 79, 104
density dependent, 225
double gamma kernel, 30, 246
exponential kernel, 148, 170
exponential square root kernel, 72, 79, 122,

312
exponentially bounded, 59
fat tailed, 57
Gaussian kernel, 17, 30, 35, 55, 61, 72, 78,

92, 122, 134, 136, 139, 180, 182,
185, 190, 262, 265, 287, 288, 334,
357

heavy tailed, 72, 84, 103, 183, 184, 229,
312, 348

in heterogeneous landscape, 197, 328
Laplace kernel, 18, 25, 30, 40, 62, 78, 90,

100, 121, 122, 127, 135, 136, 142,

146, 180, 182, 184, 188, 206, 212,
246, 291, 301, 340

modified Gaussian kernel, 162
modified Laplace kernel, 163
separable, 32
shifted Gaussian kernel, 165
shifted Laplace kernel, 168
top-hat kernel, 30, 32, 63, 79, 122, 134,

136, 184
uniform, 20
WALD model, 104
Weibull kernel, 30, 94, 187, 206

Dispersal mortality, 162
Dispersal success function, 120
Dispersion relation

for wave speed (see Speed of spread,
dispersion relation)

for pattern formation, 247, 250, 254
Dominant eigenvalue, 25, 37, 113, 124, 203
Dynamic stabilization, 155, 158

E
Edge permeability, 97
Eigenvalue, 25

See also Dominant eigenvalue, 25
Elasticity, 219
Emerald ash borer (Agrilus planipennis

Fairmaire), 326
Evolution, 353
Expectation, 332
Expectation wave, 345
Exponential transform, 59, 139
Extinction, 13

F
Fast Fourier transform (FFT), 106
Fender’s blue butterfly (I. icarioides fenderi),

171
Fixed point, see Steady state
Forest tent caterpillar (Malacosoma disstria),

234
Fourier transform, 57, 106
Fréchet derivative, 24
Fragmentation, 289
Fredholm alternative, 237
Fredholm integral equation, 113
Fruit fly (Drosophila pseudoobscura), 195

G
Gall wasp (Dryocosmus kuriphilus), 348
Geranium, 94
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Green crab (Carcinus maenas L.), 171, 177,
227, 230, 348

Growth function, 9, 11
Allee, 16
Beverton–Holt, 13
competition, 274
interacting species, 232
linear, 12
logistic, 15
predation, 234
Ricker, 15

H
Habitat quality function, 285

Gaussian, 286
periodic, 289
uniform, 288

Hadamard product, 203
Hassell–Comins model, 278
Heather (Calluna vulgaris), 22, 180
Hill’s equation, 292
Homogenization, 313
Host, 232
House finch (Carpodacus mexicanus), 54, 178,

186, 349, 356
Hunter–gatherer, 280

I
Ideal-free strategy, 353
iid, 332
Impulse, 358
Inhibitor, 240
Inner product, 126
Integral equation, 357
Integral-projection model, 360
Integrodifference equation (IDE), 10

delayed, 281
spatially periodic, 290, 303
system, 203, 235

Integrodifferential equation, 357
Interface, 320
Irreducible, 203

J
Jacobian matrix, 41, 233
Jury conditions, 233
Juvenile–adult model, 202

K
Krein–Rutman theorem, 25, 205
Kurtosis approximation, 135, 136, 138

L
Lambert W function, 63
Leptokurtic, 19, 136
Linear conjecture, 68
Linearization, 24
Linearized stability, 25
Lizard (Lacerta vivipara), 208
Local limit theorem, 135

M
Marine reserve, 229, 329, 353
Marsh grass (Spartina alterniflora), 355
Mate finding, 187
Matrix model, 201
Mayfly, 99
Method of steepest descent, 141
Moment-generating function, 59, 71, 136

of the asymmetric Laplace kernel, 169
of a convolution, 100, 139
derivation from movement model, 101
directional, 194
empirical, 73
expansion of, 135
of the exponential kernel, 148
and Fourier transform, 242
of the gamma-binomial distribution, 138
of the Gaussian kernel, 61, 168
of the Laplace kernel, 62, 142
matrix of, 216
of the shifted Laplace kernel, 168

Moments, 72
Monostable, 86
Monotone, 13, 43

See also Order preserving
Mountain pine beetle (Dendroctonus

ponderosae Hopkins), 75, 192, 230,
355

Moving-habitat model, 171
Mussel, 177, 281

zebra mussel (Dreissena), 330
Mutation, 265
Mutual facilitation, 233

N
Neolithic transition, 195, 280
Neutral evolution, 353
Next-generation operator, 10
Nicholson–Bailey, 234
Nondimensionalizing, 13

See also Scaling
Nonlocal interaction, 350
Nyström’s method, 112
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O
Oak (Quercus), 181
Optimal control, 352
Orbit diagram, 46
Order preserving, 43, 222, 303
Overcompensation, 16

P
Pair-formation model, 186
Parasite, 171, 177, 227, 355
Parasitoid, 231, 279, 329
Patch, 5, 10, 23, 291
Pattern formation, 240, 242

conditions, 246
Periodic habitat, 290, 299
Periodic traveling wave, 305
Perron–Frobenius theorem, 203
Persistence, 24
Persistence boundary, 114, 294
Phlox, 94
Pine trees (Pinus nigra), 181, 228
Point release, 54, 119
Prairie lupin (Lupinus lepidus), 260
Predation, 233

biological control, 258
clumped search, 253
pattern formation, 240, 246, 279
persistence conditions, 234, 329
random search, 234
spatial spread, 255, 281

Predator–prey model, 234
with Allee effect, 256

Primitive, 203
Pulsating front, 305

Q
Quantitative genetics, 355

R
Randomly varying landscape, 317
Random walk, 88

at a boundary, 96
at an interface, 321
master equation, 88
parabolic limit, 89

Reaction–diffusion equation, 357
impulsive, 358

Redistribution function, 120
Reid’s paradox, 181
River model, 165
Root weevil (Diaprepes abbreviatus), 229

S
Saddle point, 141
Scaling, 28

See also Nondimensionalizing
Scotch broom (Cytisus scoparius), 197, 228,

346
Sea otter (Enhydra lutris nereis), 197, 230
Seed bank, 176, 201, 227
Seed dispersal, 99, 104
Seed shadow, 17
Sensitivity, 219
Sessile, 93, 176
Sink habitat, 291
Source habitat, 291
Sparse landscapes, 319
Spatial variation, 285

periodic, 290
Speed of spread, 53, 55, 226, 260, 299, 303,

327, 350, 361
accelerating, 58, 283, 312
with Allee effect, 76, 187, 189, 309

bound, 85
cline, 86
direction, 80
existence, 84, 309
explicit formula, 78

anomalous, 260, 264, 265, 270
approximation, 313
asymptotic speed, 56, 78, 224

characterization, 67
definition, 65
existence, 66, 69, 224, 303, 347, 360

average speed, 300, 344, 346
of competing species, 274, 277, 282
component spreading speed, 264, 266
with dispersal bias, 167
with dispersal mortality, 163
dispersion relation, 60, 136, 155, 168, 184,

194, 217, 302, 319, 324
of the expectation, 345
Gaussian approximation, 134
generalized spreading speed, 156
with immobile individuals, 179
infinite, 71
instantaneous speed, 300, 344
joint spreading speed, 262
kurtosis approximation, 137
leftward speed, 167
linear conjecture, 68
minimal speed of a traveling front, 61, 64,

151, 155, 217
Gaussian kernel, 61, 163
Laplace kernel, 63, 164

with multiple dispersal modes, 182, 183
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with overcompensation, 68, 305
parametric representation, 62
of a predator, 257, 260, 280
of a prey, 260
rightward speed, 167
sensitivity, 220
speed of level set, 56, 58, 72, 77, 189, 268,

346
with temporal periodicity, 344
in two dimensions, 193

Stability, 11
Stacked wave, 146, 227
Stage-structured population, 202

Calathea micans, 228
Calathea ovandensis, 228
Dipsacus sylvestris, 228
herb (Rhinanthus minor), 229
Molinia caerulea, 228
Nassella trichotoma, 229
oilseed rape, 228
Rhododendron ponticum, 229
thistle (Carduus nutans), 229
Trillium grandiflorum, 228

Standing wave, 158, 308
Statistics and estimation, 355
Steady state, 11, 39, 122, 210

L-periodic, 297
Stuart–Landau equations, 280, 351
Sturm–Liouville, 26, 97, 128
Superpositive, 205
Swift fox (Vulpes velox), 225

T
Teasel (Dipsacus sylvestris), 195

Temporal variation, 331
periodic, 331
stochastic, 332

Touch-me-not, 94
Traveling front, 59

approximation, 146
bistable, 86
direction of, 80
minimal speed (see Speed of spread)
monostable, 86
phase plane, 150
pulled front, 86
pushed front, 86
rightward, 64

Traveling pulse, 172
Traveling wave, 59, 305

traveling periodic wave, 305
See also traveling front

Turing pattern, 240
Two-cycle, 15, 46, 153, 212
Two-sex model, 227

U
Updating function, 12

W
Western corn rootworm (Diabrotica virgifera

virgifera), 197
White pine blister rust, 139
Wolbachia infection, 192
Wolf (Canis lupus), 187
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