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Abstract. Autonomous agents should formulate and achieve goals with mini-
mum support from humans. Although this might be feasible in a perfectly static
world, it is not as easy in the real world where uncertainty is bound to occur.
One approach to solving such a problem is to formulate goals based on cases
that explain discrepancies observed in the environment. However, in an
uncertain world, multiple such cases often apply (i.e., as alternative explana-
tions). Moreover, agents in the real world often have limited resources to
achieve their missions. So, it is risky to generate and achieve goals for every
applicable explanatory case. Our solution to these problems is to down-select the
retrieved cases based on probabilities derived using Bayesian inference, then to
monitor the selected cases’ validity based on observed evidence. We evaluate
the performance of an agent in an underwater mine clearance domain and
compare it to another agent that selects a random case from the candidate set.

Keywords: Case selection � Case-base explanation � Explanation patterns

1 Introduction

Agents in a mine clearance domain must perform critical surveillance tasks with high
accuracy in waters where communication and observability are limited. Due to
unpredictable and dangerous events such as explosions in unexplored areas, intelligent
behavior is required to understand and respond to the environment. In this domain,
explanation is useful for both monitoring the environment and engendering trust in
human operators who have only intermittent contact with the agent. Trust is not
investigated in this paper. However, we consider the problem of selecting an
explanatory case from a candidate set of applicable cases for a deliberative mine
hunting agent that must respond to the discrepancies.

Our agent for this domain is called GATAR (Goal-driven Autonomy for Trusted
Autonomous Reasoning) [1]. GATAR plans to achieve its goals, then executes each
step in this plan after checking to confirm that its preconditions are met. The actions
and the postconditions constitute GATAR’s expectations about the world. When they
do not match the current observations of the world, GATAR tries to recognize the
cause of the discrepancy and predict its effects on the agent’s goals. However, when
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there are multiple cases that might explain a discrepancy, GATAR intelligently selects
a case based on the observations it possesses. Furthermore, it also forms expectations
based on the selected explanatory case to monitor its validity. These cognitive capa-
bilities provide three benefits: first, they help GATAR to intelligently respond to such
events and prevent their recurrence; second, they help GATAR adapt its reasoning
behind explanation selection to observed evidence; third, they help GATAR commu-
nicate the rationale behind its behavior to third parties. This third benefit is critical to
building trust when working with humans [2]. While the GATAR agent is the primary
focus of this paper, we expect lessons learned and results to be generalizable; we expect
intelligent explanation-based behavior with deliberately selected goals to be useful in
other critical domains like surveillance, medicine and autonomous driving.

A different approach to responding to discrepancies would be to generate contin-
gent plans in advance that cover all possibilities. Unfortunately, this is computationally
intractable in most domains and handling all contingencies for an unexpected event can
be overwhelming. Our approach requires additional domain knowledge, but any
specific domain of interest, an abstract case-base of explanations defined by domain
experts can be retrieved and adapted to explain a discrepancy.

We present a Bayesian approach to select an explanation among the candidate
explanatory cases retrieved from the case base. Moreover, expectations are extracted
from the selected explanation to monitor its viability. Here explanation provides a
causal basis for goal generation and enables creation of communicative rationales for
goal changes to third parties. This approach follows Goal Directed Autonomy (GDA)
principles [3–7], in which agents respond to discrepancies (i.e., agent expectation
failures) by generating explanations and generating goals based on those explanations.

In Sect. 2, we describe the representation of the explanatory cases, their retrieval,
selection, goal formulation and GATAR’s algorithmic approach to a discrepancy.
A description of the domain, possible explanatory cases in the domain, and their
retrieval are followed in Sect. 3. Section 4 presents the working example of the
GATAR agent in a sample scenario. Evaluation and empirical results are presented in
Sects. 5 and 6. Related work is illustrated in Sect. 7. Finally, the conclusion completes
the paper in Sect. 8.

2 Case-Based Explanation Patterns

In our work, we use case-based explanations [8–10]. Each case in the case-base is an
abstract explanation pattern (XP) [11, 12] engineered for a specific domain (see
Fig. 1). An XP is a data structure that represents a causal relationship between two
states and/or actions; each action/state is abstractly defined with variables to be adapted
during or after case retrieval. In GATAR, an action or state is referred to as a node and
different types of nodes are described based on their role in an XP.

• Explains node: A discrepancy/unknown state that is observed;
• Pre-XP node: Action/state that is observed along with the explains node;
• XP-asserted node: Action, state or XP contributing to the explanation’s cause.
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2.1 GATAR’s Algorithm to Respond to the Discrepancies

Algorithm 1 represents GATAR’s approach toward identifying and responding
to a discrepancy. Given a plan p ¼ \a1. . .an[ to achieve goals from agenda
Ĝ ¼ g1. . .gmf g, whenever its current observations ðscÞ do not match the expectations
ðseÞ; a discrepancy is detected. These observations ðscÞ are obtained (line 1) from the
successor function (c) that takes in the current state ðscÞ and action ða1Þ [13]. Since,
GATAR is currently executing a1; its plan is updated to the set of remaining actions
(line 2). GATAR then adds to its expectations ðseÞ the preconditions ðaþ

1 Þ and effects
ða�1 Þ of the current action (line 3). When expectations differ from observations (line 4),
the algorithm tries to explain this discrepancy from the case base (lines 5–8). First,
a candidate set of explanations c ¼ v1. . .vkf g is retrieved from the case-base
c ¼ v1. . .vk. . .vlf g of explanations. An explanatory-case ðvsÞ is selected from these
candidates by applying Bayesian inference (line 5). Next, additional expectations are
extracted from the XP-asserted nodes of the selected explanation and added to the
current set of GATAR’s expectations (line 6). This facilitates monitoring the validity of
the explanatory case. The interpretation function (beta) sets a new current goal set to
respond to the discrepancy (line 7) (see [32]). Finally, the new goals ðgcÞ are added to
the goal agenda ðĜÞ (line 8).

Fig. 1. The explanation pattern (XP) causal structure in which XP-asserted nodes (e1, e2, e3)
form an antecedent, and a consequent is made up of pre-XP nodes (p1, p2, p3) and an explains
node (E); XP-asserted nodes thus cause the associated explains and pre-XP nodes.
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2.2 Retrieving, Reusing and Revising Explanation Patterns
from a Case Base

Case-based reasoning follows a four-step process to retrieve, reuse, revise and retain
cases [14–16] (see Fig. 2). In the current work, we assume that all cases are defined by
domain experts, so we do not consider retention. The following describes how XPs are
retrieved, reused and revised.

A set of abstract XPs is retrieved when an unpredicted state or action observed by
the agent unifies with each explains node of an XP in the case-base. If the unification
turns out to be successful then the pre-XP nodes of the corresponding case are unified
with the observations of the corresponding states or actions, if they turn out to be
successful then the specific XP is retrieved. The retrieved abstract XP is reused by
binding variables in the antecedent to values found during unification of the conse-
quent. However, if the XP-asserted nodes in the reused XP contain hypothetical
information they can be revised when the new knowledge is obtained from further
observations. We now describe our approach to selecting an explanation from a
retrieved candidate set.

2.3 Probabilistic Selection of Explanation Patterns from a Candidate Set

In our work, we use Bayesian inference to select an explanation from the candidate set
of retrieved explanations. Bayesian inference takes prior knowledge about the
parameter and uses newly collected data or information to update the prior beliefs [17].
The agent uses its observations of states/actions as new information in updating its
prior beliefs. Bayes equation adapted to the explanation patterns is given as follows:

P XPjevidenceð Þ ¼ P evidencejXPð Þ � P XPð Þ
PðevidenceÞ

Best Case

Candidate Selec on

Fig. 2. The CBR process with candidate selection (adapted from [14])
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P evidencejXPð Þ ¼ no: of times the evidence obtained given explanation
total no: of times evidences obtained given explanation

P XPð Þ ¼ no: of times the explanation is selected
total no: of times the explanation is in a candidate set

P evidenceð Þ ¼ no: of times the evidence is obtained
total no: of times evidence is in a candidate set

Each XP-asserted node is considered as an evidence, so Bayes equation is applied
for every XP-asserted node. The probability of the explanation given all evidence is

PðXPjevidence1::nÞ ¼ PðXPjðevidence1 \ evidence2. . .evidencenÞÞ

For all the explanations, the one with the highest PðXPjevidence1::nÞ is the one to be
selected. However, since our explanations are designed manually by domain experts,
we assume the domain experts provide the expected values for different prior proba-
bilities i.e. P XPð Þ;Pðevidence1::nÞ, before the mission starts. Moreover, if there is no
evidence obtained then an explanation having the highest PðXPÞ among the candidate
cases is selected. Finally, goals are formulated and the XP monitored to check validity.

2.4 Goal Formulation and Monitoring Explanation Patterns

Goal formulation is essential for an intelligent agent to respond to discrepancies [18,
19]; in GATAR, we perform formulation by preventing the recurrence of one or more
explanation antecedent nodes. Antecedent nodes may include actions and/or states;
therefore, when GATAR wishes to prevent an undesired consequent from recurring, it
considers the elimination of antecedent actors or objects that participate in antecedent
states as potential goals. The potential goals are generated using the removal mapping
function that takes in the actors or objects and outputs the goals that eliminate them.

Monitoring a selected explanation is essential for an intelligent agent to adapt its
beliefs and misclassifications. In our work, each node in the XP-asserted nodes of the
selected XP is added to the agent’s expectations. These nodes constitute the evidence.
Whenever the evidence matches the agent’s observations of the world, the agent
changes its beliefs. However, when the evidence contradicts the agent’s observations,
the selected XP is switched with the next probable explanation.

3 Underwater Mine Clearance Domain

Our approach is implemented in a limited mine clearance domain [20], which is
simulated using MOOS-IVP [21], software that provides complete autonomy for
marine vehicles. Figure 3 shows the simulation of the mine clearance domain with a
GATAR agent directing a Remus unmanned underwater vehicle. The Q-route is a safe
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passage for ships to enter and leave the port and is represented as a rectangular area in
Fig. 3. GA1 and GA2 are the two octagonal areas where mines are expected to exist,
while the triangular objects are the mines. The goals of the agent are to survey and clear
mines in GA1 and GA2. These goals are given to the agent after a reconnaissance
mission performed by a different agent across the whole sea route. The Remus has a
sonar sensor with a specific width of ten units and a length of five units to detect mines.

3.1 Discrepancies in Underwater Mine Clearance Domain

In the underwater mine clearance domain, several events often co-occur simultane-
ously, and many events cannot be predicted based on knowledge available to an agent.
These events might affect the agent itself or the mission of the agent. Explanations help
the agent to recognize these events and respond to them. We will look at several
uncertain events that might happen.

Events in this domain include minelaying, sensor failure, and reconnaissance
failure. Minelaying events occur when an enemy ship, aerial vehicle, or fishing vessel
lays traps to hurt friendly ships. Removing such mines within areas GA1 and GA2 is an
explicit goal for GATAR in the above scenario. Sensor failure event indicates that a
faulty GATAR’s sensor is responsible for a misclassification of mine, and the failure of
proper reconnaissance mission indicates that an agent prior to GATAR did not identify
mines which in turn failed its mission. We will look at some of the explanations in the
next section that sheds some knowledge on the discrepancies that happen in this
domain.

3.2 Plausible Explanations in Underwater Mine Clearance Domain

In GATAR, explanations are retrieved by a version of the Meta-AQUA component
[22], a story understanding system that tries to explain discrepancies in a story through

Fig. 3. Underwater Mine Clearance domain with two clearance areas in the Q-route. (labelled
items in this figure match later figures)
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use of case-based explanations. We have integrated this system with the MIDCA
(Metacognitive Integrated Dual Cycle Architecture) component [23], a cognitive
architecture that perceives and acts directly on the world, to examine the interaction
between explanation generation (by Meta-AQUA) and goal formulation (provided by
MIDCA); for the purposes of this paper, we refer to the combined system as the
GATAR agent.

As mentioned earlier, each explanation in our case-base is abstractly designed by
the domain experts to cover the possible discrepancies in the underwater mine clear-
ance domain. We will look at one of the detailed candidate explanatory case that can
occur for a discrepancy of detecting multiple mines at a location.

Figure 4 represents an abstract XP structure, which explains that an enemy ship laid
the mines in the clear-area and hence the UUV (unmanned underwater vehicle)
detected multiple mines. UUV is an abstraction for GATAR, while Clear-area is an
abstraction for areas that are not expected to have mines. As described earlier the XP
structure is in the form of an antecedent causing consequent. The consequent contains
the explains node “hazard-detection(uuv, mine)” to represent the discrepancy of
detecting a mine by the UUV, while the Pre-XP nodes “at-location(mine, clear-area)”
and “hazard-checked(mine, clear-area)” are the observational support to the discrep-
ancy. These Pre-XP nodes thus convey that a mine is already checked prior to the
currently detected mine, and implicitly conveys that multiple mines exist.

The antecedent contains the XP-asserted nodes of mine laying activity by the
enemy-ship in the clear-area represented by the action “mine-layer(enemy-ship, clear-
area)” and the mine pattern being circular is represented by state “mine-pattern(circular,
clear-area)”. Whenever this XP is retrieved the abstracted variables will be replaced by
the observations. For example, UUV will be replaced by GATAR, clear-area will be
replaced by all the areas in the domain except GA1 and GA2.

In a similar structure there are multiple explanations for multiple discrepancies that
might happen in the domain. Below are the high-level descriptions of those explana-
tions along with their responsive behaviors in Table 1.

Fig. 4. XP Structure that describes enemy ship caused multiple mines
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4 Example of Selecting a Case-Based Explanation

An example scenario from the underwater mine clearance domain can help us
understand the application of selecting explanations from the candidate set by GATAR.
Moreover, this will also give an idea of how such an application can improve the
performance of GATAR.

Figure 5 represents the example scenario in the underwater mine clearance domain,
where there are four minefields: first, at GATAR’s transit to the Q-route; second, at the
GA1; third, at GATAR’s area of transit from GA1 to GA2; and fourth, at the GA2.
However, GATAR has a mission to clear the second and fourth minefields, so any
mines encountered in the first and the third minefields are discrepancies.
When GATAR encounters the first mine in the first minefield, it retrieves a candidate
set of explanatory cases. Table 2 shows this set of explanatory cases retrieved as well
as the respective selection probabilities.

Table 1. Explanations for the discrepancies along with the behaviors

Explanation Discrepancy Behavior

Fisher-XP: Fisher-vessel laid
a single mine

Single mine detected at
the clear-area

Remove the single mine (Q-route)
and report existence of fishing vessel

Sensor-XP: GATAR’s
sensor failure

Single mine detected at
the clear-area

Recalibrate the sensor and continue
the mission

Tide-XP: Mines drifted from
expected regions GA1 or
GA2 with tides

Single or multiple mines
detected at clear-area

Clear the mines and continue the
mission

Reconnaissance-XP:
Reconnaissance failed

Multiple mines detected
in the clear area

Survey and clear the mines in the
whole Q-route

Enemy-Ship-XP: Enemy
ship laid the circular pattern
of mines

Multiple mines detected
in the clear area

Survey region covering circular area
with calculated radius & clear mines

Enemy-Aerial-XP: Aerial
vehicle laid the line pattern
of mines

Multiple mines detected
in the clear area

Survey region across line region
with statistically calculated slope &
clear mines

Fig. 5. A scenario where mines are laid by an aerial vehicle
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These probability values were chosen to match typical values in the domain. Since
Fisher-XP is the only explanation with evidence, the probability to select an expla-
nation is 0.5 and the probabilities of the Sensor-XP and Tide-XP are 0.14 and 0.08
respectively. Thus Fisher-XP is selected due to its higher probability and the table is
updated.

Table 3 shows the updated probabilities calculated using the Bayesian inference as
described in the Sect. 2.3. Furthermore, a goal is generated to report the existence of a
fisher vessel laying mines after the mission. Finally, the evidence is added to GATAR’s
expectations i.e. there is only one mine in the transit area to the Q-route.

When GATAR encounters another mine in the same area, its expectation of a single
mine is violated, and it retrieves another set of candidate explanatory cases to explain
the discrepancy. Since the previously selected explanation is not valid, it updates its
probabilities and drops the goal to report about the fisher vessel. Similarly, as described
above, GATAR selects the explanation that an aerial vehicle laid the mines, updates its
probabilities, formulates goals to report about the vehicle and finally generates an
expectation that the mines exist in a straight line.

After clearing all the mines from GA1, GATAR encounters mines in the third
minefield, selects the explanation that themines exist in a straight line, clears all themines
in theQ-route, and updates its probabilities. Finally, it returns to theGA2 and clears all the
mines in the GA2. Later after the mission GATAR reports the existence of the aerial
vehicle and its behavior to the base which is outside the scope of the paper. However, in
this scenario, GATAR intelligently made the Q-route safe for the ships to traverse.

Table 2. Probabilities of the retrieved explanations

Explanation (XP) P
(XP)

P (XP | evidence)

Fisher-XP: Fisher vessel laid a single mine 0.20 P (XP | single-mine) = 0.5
Sensor-XP: GATAR’s sensor failure 0.14 No evidence obtained regarding damage of

sensor
Tide-XP: Mines drifted by the tides from
the mine expected regions (GA1 or GA2)

0.08 No evidence obtained regarding tides and
the mines not at expectedminefield locations

Table 3. Probabilities after selecting the explanation

Explanation (XP) P
(XP)

P (XP | evidence)

Fisher-XP: Fisher vessel laid a single
mine

0.207 P (XP | single-mine) = 0.509

Sensor-XP: GATAR’s sensor failure 0.138 No evidence obtained regarding damage of
sensor

Tide-XP: Mines drifted by the tides from
the mine expected regions (GA1 or GA2)

0.079 No evidence obtained regarding tides and
the mines not at expected minefield
locations

118 V. R. Gogineni et al.



5 Experimental Setup

As previously mentioned, GATAR retrieves explanatory cases that explains any dis-
crepancies. A case-base of ten abstract explanatory cases are used to cover all the
behaviors of the GATAR agent in this domain. From the set of the retrieved cases it
selects an applicable explanation by applying Bayesian inference. Furthermore, the
antecedents of the candidate explanations are monitored to update the beliefs of the
agent. GATAR’s ability to the above intelligent behavior is evaluated by number of
ships that traverse the Q-route without hitting mines. Moreover, the performance of
GATAR is compared to a random agent. The random agent is like the GATAR agent in
retrieving a candidate set of explanatory cases. However, it differs from GATAR in the
selection process. It selects a random explanation from the candidate set to respond to a
discrepancy. The experiment is laid out in terms of two scenarios that are differentiated
by the placement of mines. Each scenario has three groups of three ships that start at a
specific location and ends across the other side of the Q-route at another specific
location. The first group will start with incremental delays while the second and third
groups will start with a constant delay of 0.25 and 0.50 min respectively following the
first group. The agent has the goals to clear mines in the areas GA1 and GA2.

Figure 6 represents the experimental setup of both scenarios 1 and 2. In the first
scenario, an aerial vehicle laid mines in a line pattern in the areas of transit, GA1, GA2
and the transit area between GA1 and GA2. The setup gives the agent a proper
evidence that an aerial vehicle laid the mines while pursuing its goals. In the second
scenario, an enemy ship laid the mines in the area between GA1 and GA2, while the
aerial vehicle laid the mines at transit, GA1 and GA2. The first scenario tests GATAR’s
ability to select the correct explanation by obtaining evidence while the second scenario
tests GATAR’s ability to switch explanations to clear mines between GA1 and GA2
when the evidence implies an explanation that an aerial vehicle is laying mines.

Fig. 6. (Left) Scenario 1 – mines laid by an aerial vehicle. (Right) Scenario 2 – mines laid by
both an aerial vehicle and an enemy ship.
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6 Empirical Results

Figure 7 shows the comparison of the performance with GATAR and the random agent
in the scenario 1. The X-axis shows the starting time, in increments of 0.25 min, for the
first group of ships after the agent’s mission starts. The Y-axis is the average number of
ships that successfully traversed through the Q-route. The experiment runs five times
for every time delay and for every agent and then averaged for each experiment.
GATAR outperforms the random agent at every time interval greater than 0.25.

When we look closely into results with a delay of 0.25 min, when the first group of
ships start, both the agents are still in their transit to the GA1. By the time the third
batch of ships start, both the agents cleared mines in GA1 and are in transit to Q-route.
This implies that a delay of 0.25 min is not long enough for both agents to clear enough
mines in the Q-route for any ship to survive. However, at an interval of 0.5 min of time,
both the agents could clear mines in GA1 as well as some on their transit to GA2 before
the third group of ships started, which signifies the steep increase in the curve. The
random agent underperforms because of the failure to select the correct explanation
leading to a different behavior.

At 0.75 interval of time, the GATAR agent could successfully clear GA1 and some
mines on its transit to the GA2 by the time the second group of ships start.
The GATAR agent completely clears all the mines in the Q-route before the third batch
of ships start. The random agent underperformance is due to its wrong choice in
behavior. Finally, at 1.25 interval of time, GATAR could completely clear all the mines
in the Q-route, so all the ships survived. Even at 2.5 intervals of time, the random agent
could not clear all the mines because of its selection of behaviors that ignore the mines
on their transit to the Q-route.

Fig. 7. Performance of the GATAR and the random agent in scenario 1
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Figure 8 compares the performance of GATAR and the random agent in scenario 2.
The experiment pattern follows the same as described above. GATAR outperforms the
random agent at every interval of time greater than the 0.75. In this scenario, GATAR
clears the mines in GA1 and when it happens to identify a mine between GA1 and GA2
in Q-route, it generates a behavior to traverse in a line based on the prior evidence it
obtained. After observing that the pattern is not a line, the GATAR agent changes its
behavior to a deep search pattern. Later it continues to clear the mines in GA2.

At 0.25 min of time, the random agent happens to select a behavior to clear only
the mines that it came across during two of the five random runs before the third group
of ships started. This resulted in clearing a mine at the upper part of the circle of mines
between the areas GA1 and GA2 in the Q-route, which allowed one of the ships to
survive. However, this is not the case with GATAR where all ships sank at time .25. At
1.25 min, GATAR clears all mines in the Q-route which allowed all ships to traverse
the route. At a delay of 2.5 min of time, the random agent seems to complete all its
goals before the ships start. However, because of its wrong choice of explanations, the
formulated goals could not allow for safe passage for all the ships.

7 Related Work

Explanation patterns were introduced by Schank in 1982 [8] and were later used in the
story understanding systems SWALE [24, 25] and AQUA [26]. SWALE is a case-
based approach to explanation of discrepancies in a story that retrieves, adapts and
stores explanation patterns. SWALE demonstrated an early technique for ruling out
competing explanations using memory knowledge. AQUA (Asking Questions and
Understanding Answers) operates by first questioning missing knowledge in a story,
then using explanation patterns to understand the answers.

Fig. 8. Performance of the GATAR and the random agent in scenario 2
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Gentner and Forbus in [27], present the MAC/FAC approach, which closely aligns
to our approach. It is a two-phase retrieval process to improve the performance of the
retrieval process. MAC (Many are chosen) refers to using flat structures to eliminate
irrelevant cases outright while FAC (Few are chosen) refers to applying computa-
tionally complex algorithms to rank the cases from MAC. Our approach aligns closely
with the two-phase retrieval process, where we select a candidate set of XP’s using
explains and Pre-XP nodes and apply probabilities to select a single XP. Moreover,
Morwick and Leake in [28], show a performance increase in having such two-phase
retrieval approach.

Roth-Berghofer et al’s [29] work on classifying explanations and their use-cases
according to the user’s intentions is one of the theoretical research directions towards
explanations in case-based reasoning (see also [30]). This paper introduces the concept
of “explanation goals” that are used to decide when and what the system should explain
to users based on their expectations. In future research, we will investigate application
of these techniques to prevent the system from repeatedly explaining the same type of
unexpected events to a user who is already familiar with them. This paper also talks
about different kinds of explanations and classifies them into four different knowledge
containers, all of which are used to generate explanations based on the user’s goals or
intentions.

In [2], a robot adapts its behavior to gain trust in human machine teaming using the
approach of case-based reasoning. In addition, Floyd and Aha [31] presented an
approach to explain such adaptations based on an operator’s feedback, and evaluated
their system based on how closely the explanations aligned with the operator’s feed-
back. Our interest in generating explanations of the intelligent behavior of an agent
aligns closely with the interests of this paper.

8 Conclusion

In this paper we discussed a probabilistic approach of selecting an explanatory case
from the candidate set of retrieved cases for the discrepancy. Moreover, we have also
presented an approach to monitor the selected case, which helps GATAR to adapt its
beliefs and switch cases if a selection error occurs. Finally, the results show that the
performance of GATAR is better than the random agent. The causal structure of
explanations helps GATAR communicate and justify its behavior to human users.

In some cases, there can be more than one explanation relevant to a discrepancy. For
example, if both an enemy ship and an aerial vehicle laid mines in the same area then it
would be incorrect to choose one explanation. In future research, we would like to
reason about the probability of co-occurrence of causal events leading to discrepancies.

We also acknowledge that our current explanatory cases will provide only abstract
mine patterns which are evenly spaced or uniformly distributed. However, the real
world contains noise leading to misclassification of the evidence. In the future, we
would like to use statistical learning algorithms to predict mine patterns as well as their
distributions. Furthermore, GATAR should reason about the tradeoff between the time
required to clear the mines in GA1 and GA2 and the time to pursue its additional goals
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from the selected explanatory case. We expect that such reasoning will improve
GATAR’s performance.

Moreover, we also want GATAR to explain the rationale behind its intelligent
behavior to the human operator and obtain some feedback related to the hypothetical
evidence. This will improve the quality of explanatory cases selected from the case-base.

Finally, we want GATAR to reason about the tradeoff between immediately for-
mulating goals from a selected explanatory case and formulating goals after obtaining
evidence. We expect this functionality to help GATAR to adapt after selection failures.
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