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Preface

This volume contains the papers presented at the 27th International Conference on
Case-Based Reasoning (ICCBR), which was held during September 8–12, 2019, at the
European Academy of Otzenhausen, in Otzenhausen, Germany. ICCBR is the premier
annual meeting of the Case-Based Reasoning (CBR) research community. The theme
of ICCBR 2019 was Explainable AI (XAI). Explanation has been a core aspect of CBR
since its very beginning, and it has been exciting to see the growing emphasis on XAI
from the broader AI community.

This year marked the return of the conference to Otzenhausen, site of the first
ICCBR in 1993. Previous ICCBRs, including the merged European Workshops and
Conferences on CBR, were as follows: Otzenhausen, Germany (1993); Chantilly,
France (1994); Sesimbra, Portugal (1995); Lausanne, Switzerland (1996); Providence,
USA (1997); Dublin, Ireland (1998); Seeon Monastery, Germany (1999); Trento, Italy
(2000); Vancouver, Canada (2001); Aberdeen, UK (2002); Trondheim, Norway
(2003); Madrid, Spain (2004); Chicago, USA (2005); Fethiye, Turkey (2006); Belfast,
UK (2007); Trier, Germany (2008); Seattle, USA (2009); Alessandria, Italy (2010);
Greenwich, UK (2011); Lyon, France (2012); Saratoga Springs, USA (2013); Cork,
Ireland (2014); Frankfurt, Germany (2015); Atlanta, USA (2016); Trondheim, Norway
(2017); and Stockholm, Sweden (2018).

ICCBR 2019 received 46 submissions from 17 countries, spanning Europe, North
America, Asia, and Oceania. Each submission was reviewed by three Program
Committee members. Papers for which the reviewers did not reach consensus were
referred to members of the ICCBR Advisory Council for meta-review. Of the 46
submissions, 15 (33%) were selected for oral presentation, and 11 (24%) were selected
for poster presentation.

ICCBR 2019 began as the community assembled in Otzenhausen on the afternoon
of September 8. The only formal activity on that day was for the Doctoral Consortium
(DC) participants, who met their mentors for the first time and prepared for their
upcoming presentations. The DC provides opportunities for PhD students to share and
obtain mutual feedback on their research and career objectives with senior CBR
researchers and peers. After the DC session, all conference attendees gathered together
for a barbecue.

The first full day of the conference was devoted to workshops and the DC. There
were five workshops in all: Process-Oriented Case-Based Reasoning; Case-Based
Reasoning in the Health Sciences; Case-based Reasoning and Deep Learning;
Explainable Knowledge in Computational Design, Media, and Teaching; and XCBR:
Case-based Reasoning for the Explanation of Intelligent Systems. While many activ-
ities proceeded in parallel, the first XCBR workshop session was held as a plenary
event to set the stage for the conference theme of Explainable AI. This joint XCBR
workshop session featured an inspiring invited speaker, David Aha, of the
Naval Research Laboratory, in Washington, DC. There was an afternoon break for a



“Walk & Talk” social program, culminating in a visit to a nearby historic Celtic
Village. Then, it was back to the workshops and DC, until it was time for dinner.
Dinner was followed by a showing of the entries in the Third ICCBR Video
Competition.

The workshops and DC concluded on the morning of Day Two. The afternoon
commenced with the invited talk, “Mapping the Challenges and Opportunities of CBR
for Explainable AI,” by Belén Díaz Agudo, of the Complutense University of Madrid.
Next came a panel discussion, in which those who had attended the first ICCBR in
Otzenhausen, in 1993, were invited to reminisce, reflect upon progress over the past 26
years, and prognosticate advances for the next 26 years. The panel was followed by the
first oral presentations of the main technical track. The Conference Dinner was held in
the evening.

Day Three began with the invited talk, “Some Shades of Grey! Interpretability and
Explanatory Capacity of Deep Neural Networks,” by Andreas Dengel, of the German
Research Center for Artificial Intelligence (DFKI), in Kaiserslautern. The main tech-
nical track then continued throughout most of the day. Between the main technical
track presentations and dinner, there was a Poster and Demo session. Prior to this
session, the presenters of posters and demos each had three minutes to pitch their work
at a plenary session, facilitating later discussion and networking.

Daniele Magazzeni, of King’s College London, opened the final day of the
conference with his invited talk, “Model-Based Reasoning for Explainable AI as a
Service.” This was followed by the final oral presentations in the main technical track.
ICCBR 2019 then concluded with a Community Meeting and lunch. The community
looks forward to ICCBR 2020 in Salamanca, Spain.

We gratefully acknowledge the support of the following people, without whose
contributions ICCBR 2019 would not have been possible. Local chairs Ralph
Bergmann and Klaus-Dieter Althoff did a fine job of arranging the splendid conference
facilities and social events. Ralph Bergmann also managed the registration process and
kept us all within budget. Workshop chairs Hayley Borck and Stelios Kapetanakis
planned a lively workshop program of five individual workshops. To all of the orga-
nizers of these individual workshops, we also extend our heartfelt thanks. Publicity
chairs Viktor Eisenstadt and Pascal Reuss managed the conference website and our
social media presence. Antonio Sánchez-Ruiz and Michael Floyd chaired the DC,
providing invaluable support to the next generation of CBR researchers. Brian Schack
and Devi Ganesan chaired the Third ICCBR Video Competition, which, in addition to
its entertainment value, aims to provide educational material for students and outreach
to the general public. Our sponsorship chair, Michael Cox, raised much-needed funding
to subsidize costs for student attendees.

We extend our gratitude to the members of the ICCBR Advisory Council, Agnar
Aamodt, David Aha, Belén Díaz Agudo, Peter Funk, Mehmet Göker, and Ramon
López de Mántaras, for their sage advice and unwavering support. We would also like
to thank the Program Committee and additional reviewers, who thoughtfully assessed
the submissions and did an excellent job of providing constructive feedback to the
authors.
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Finally, we are very grateful for the support of our sponsors, who, at the time of
printing, included the Artificial Intelligence Journal (AIJ), Springer, the Knexus
Research Corporation, the Norwegian University of Science and Technology (NTNU),
Ohio University, the University of Trier, the University of Hildesheim, and the
Norwegian Open AI Lab.

September 2019 Kerstin Bach
Cindy Marling
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Mapping the Challenges and Opportunities
of CBR for eXplainable AI

Belén Díaz Agudo

Department of Software Engineering and Artificial Intelligence,
Complutense University de Madrid, Madrid, Spain

Abstract. The problem of explainability in Artificial Intelligence is not new but
the rise of the autonomous intelligent systems has increased the necessity to
understand how an intelligent system achieves its solution, makes a prediction
or a recommendation or reasons to support a decision in order to increase
transparency and users’ trust in these systems. The CBR research community
has a great opportunity to provide general methods of self-understanding and
introspection on other AI systems, not necessarily case-based. CBR provides a
methodology to reuse experiences in interactive explanations and can exploit
memory-based techniques to generate explanations to different AI techniques
and domains of applications. This talk will review the state of the art of XCBR,
the synergies with the XAI community, and will give the opportunity to review
the underlying issues like confidence, transparency, justification, interfaces,
personalization and evaluation of explanations. It will include a review of the
lessons learnt at the XCBR workshop and the challenges and promising research
lines for CBR research related to the explanation of intelligent systems.



Some Shades of Grey! Interpretability
and Explanatory Capacity of Deep Neural

Networks

Andreas Dengel

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI),
Kaiserslautern, Germany

Abstract. Based on the availability of data and corresponding computing
capacity, more and more cognitive tasks can be transferred to computers, which
independently learn to improve our understanding, increase our problem-solving
capacity or simply help us to remember connections. Deep neural networks in
particular clearly outperform traditional AI methods and thus find more and
more areas of application where they are involved in decision-making or even
make decisions independently. For many areas, such as autonomous driving or
credit allocation, the use of such networks is extremely critical and risky due to
their black box character, since it is difficult to interpret how or why the models
come to certain results. The paper discusses and presents various approaches
that attempt to understand and explain decision-making in deep neural networks.



Model-Based Reasoning for Explainable AI
as a Service

Daniele Magazzeni

Department of Informatics, King’s College London, UK

Abstract. As AI systems are increasingly being adopted into application solu-
tions, the challenge of providing explanations and supporting interaction with
humans is becoming crucial. Partly this is to support integrated working styles,
in which humans and intelligent systems cooperate in problem-solving, but also
it is a necessary step in the process of building trust as humans migrate greater
responsibility to such systems. In this talk we discuss progress made in
Explainable Planning, particularly in scenarios involving human-AI teaming,
and we present recent advances in using model-based reasoning for designing
Explainable AI as a Service.
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Comparing Similarity Learning
with Taxonomies and One-Mode

Projection in Context of the
FEATURE-TAK Framework

Oliver Berg3, Pascal Reuss1,2(B), Rotem Stram1,3, and Klaus-Dieter Althoff1,2

1 German Research Center for Artificial Intelligence, Kaiserslautern, Germany
reusspa@uni-hildesheim.de

2 Institute of Computer Science, Intelligent Information Systems Lab,
University of Hildesheim, Hildesheim, Germany

3 Department of Computer Science, Technical University of Kaiserslautern,
Kaiserslautern, Germany
http://www.dfki.de/

http://www.uni-hildesheim.de/

Abstract. This paper describes the learning of new similarity values
for existing measures within the framework FEATURE-TAK. Mainte-
nance of similarity measures is not easy, especially when having a semi-
automated approach to relieve the knowledge engineer. Based on the
extension of the vocabulary, the newly added values have to be integrated
into the similarity measures with an initial similarity value to be useful.
We describe the extension of the similarity measures with automated
taxonomy extension and one-mode projections and present a compre-
hensive evaluation and comparison between the different approaches to
highlight the advantages and short comings.

Keywords: Case-based reasoning · Similarity measures ·
Knowledge modeling · One-mode projection

1 Introduction

To solve occurring problems in areas like monitoring, maintenance and oper-
ation one requires knowledge of the situation and how to resolve the issue.
Knowledge can be approximated through storing data of a past problem descrip-
tion together with context information and executed solutions, which forms a
so-called case [1]. Case-based Reasoning (CBR) then tries to solve new prob-
lems through noticing similarities with previously solved problems and adapt-
ing their known solutions, as such modelling human reasoning [8]. This indi-
cates that similarity of problem descriptions remains pivotal to finding adequate
solutions. The quality of retrieved reference cases thus highly depends on the
defined similarity measures. Exact similarity measures frequently rely on use
c© Springer Nature Switzerland AG 2019
K. Bach and C. Marling (Eds.): ICCBR 2019, LNAI 11680, pp. 1–16, 2019.
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case specific variables and expert understanding of how an application oper-
ates. This dependence on expert knowledge imposes restrictions to completeness
and performance of any CBR implementation. To this end, the Framework for
Extraction, Analysis, and Transformation of UnstructuREd Textual Aircraft
Knowledge (FEATURE-TAK) is being developed, which aims at automating
knowledge acquisition, specifically in the aviation domain. From problem fault
descriptions in free-text form as provided by aviation maintenance personnel, it
retrieves keywords, phrases and synonyms/hypernyms for specific attributes to
enrich the systems vocabulary and allow for a more refined context description.
As of now, FEATURE-TAK employs keywords and synonym structure for local
(attribute level) similarity approximation for individual attribute values, and
sensitivity analysis for global (case-level) similarity approximation for similarity
of complete case descriptions. Similarity of single attributes is aggregated and
weighted to build up complete case similarities [9,10].

Local similarity operates on mostly non-numeric symbol attribute descrip-
tions (phrases from text) as opposed to numeric values. This makes attribute
similarity difficult to infer in a non-binary - not only attribute value equal to
or unequal to value X - manner. The approach currently employs taxonomies,
as such extracting dependent symbols to then infer level-based similarity prop-
erties. This assesses similarity only for related keywords, which greatly reduces
the actual number of at-all-similar relations. In its current implementation it
presents major implications regarding modelling assumptions and does not gen-
erally capture all attribute dependencies as it relies on synonyms and hypernyms.
The compromise is intentional though, because synonym-hypernym-connections
enable taxonomies in the first place and any taxonomy related implementation of
similarity will likely continue to employ synonyms/hypernyms. Global similarity
on the other hand weights single attributes through sensitivity analysis based on
relevance for solving cases. This allows the system to build averages used to cal-
culate the global similarity value for comparing different cases. As this presents
a primarily novel technique, it relies on mostly project-specific configuration and
uses fewer well-established procedures.

Overall case-similarity should take the total case description into account.
These local measures are then being weighted and combined into a final global
similarity, being in return utilized to rank the solutions and return the most
likely solution back to the system user. Exact local measures, weighting and
ranking implementations are an act of great balance, as it is both delicate and
non-deterministic which dependencies are impacting problem transference and to
what degree. Therefore, a projection-based similarity procedure [12,13] is being
incorporated into the framework’s local similarity assessment to add compari-
son between not directly related keywords. This Weighted One-Mode Projection
(WOMP) has proven successful in prior experiments [12] but was not tested on
real-world application data yet. This paper specifically displays the outcome of
properly integrating it into FEATURE-TAK, evaluating performance inside the
framework and act as a starting point to incorporate further concepts.
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In Sect. 2 we describe briefly the framework FEATURE-TAK, the WOMP
and its integration into the framework. Section 3 describes the evaluation setup
and the results of the comparison between the taxonomy similarity learning and
the one mode projection learning. Section 4 closes with a discussion and outlook.

2 Weighted One Mode Projection in FEATURE-TAK

This section gives a brief overview of the FEATURE-TAK framework and then
describes the Weighted One Mode Projection and its integration in the frame-
work. This transitions into Sect. 3 with the description of the evaluation setup,
the results, and their interpretation.

2.1 FEATURE-TAK

Based on established procedures, namely the myCBR toolkit [4,6,11] and the
agent-based SEASALT architecture [3], the FEATURE-TAK framework has
been developed to support knowledge engineers in querying data that is orga-
nized in structured and unstructured format and with highly domain-specific
information. Technical maintenance data is frequently available in attribute-
value pairs, whereas logbook entries and feedback only exist in free-text for-
mat. Thus, a hybrid representation, combining attribute-value and textual
representation, is implemented by accounting for attributes specified from
meta-information surrounding a case description and incorporating informa-
tion entities from text; further detail regarding input- and attribute data in
[9]. FEATURE-TAK processes said free-text input, applying natural language
processing (NLP) techniques alognside CBR to extract keywords, phrases and
synonyms to comprise attribute values of a predefined case-structure. In addition
to known CBR procedures, some novel automated knowledge transformation is
added. The framework consists of five layers: Data-, Agent-, NLP-, CBR- and
Interface Layer. Inside the agent layer, multiple agents provide functionality in
form of designated tasks based on given input data and the required CBR data
structure. The tasks are regrouped and separated into sub-steps. From a given
free-text input file together with provided mapping-, abbreviation and white-
/black-list files the data sets are transformed into the internal representation
format. This process adapts dynamically to available input information. The
mapping file is in the XML format and describes which information in the initial
data are to be mapped to which attributes in the case structure. Exact transfor-
mation is based on the mapping information, which results in a case structure
with precisely defined 71 - possibly sparse - attributes. [9] The agents in the
framework are responsible for performing the tasks within FEATURE-TAK and
are implemented as follows:

– The Preprocessing Agent (Task 0) is a prerequisite for the subsequent
stages as it prepares the input data through part-of-speech (POS) tagging
and abbreviation identification.
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– The Collocation Agent (Task 1) extracts phrases as recurring word com-
binations based on standard English grammar and domain-specific patterns.

– The Keyword Agent (Task 2) extracts keywords via stop-word elimina-
tion, lemmatization and single word abbreviation replacement, returning the
word’s base form.

– The Synonym Agent (Task 3) identifies synonyms and hypernyms con-
sidering word context and -sense, thus utilizing the POS information and
provided black- and whitelists.

– The Vocabulary Manager (Task 4) adds phrases, keywords and syn-
onyms/hypernyms to the CBR system’s vocabulary.

– The Similarity Manager (Task 5) sets similarity values for concepts,
extending attribute similarity measures to compare overall cases with each
other, and respectively utilizes taxonomies on top of generated phrases, key-
words and synonyms/hypernyms to further infer attribute value proximity.

– The ARM Agent (Task 6) searches for association rules in word occurrences
within and across data sets, where - depending on data set size and perfor-
mance constraints - either the Apriori [2] or the FP-Growth [5] algorithm
with a high confidence of 0.9 being used to only allow rules found to be true
most of the time.

– The Clustering Agent (Task 7) generates a case from each corpus of input
data with an associated cluster (based on aircraft type and component, where
components are specified with a unique digit called Air Transport Association
(ATA) chapter) to persist it into the case bases.

– The Sensitivity Agent (Task 8) finally generates global similarity measure-
ment between complete cases by incrementally approximating weight vectors
over the set of attributes for each case cluster, resulting in a global relevance
weight matrix [14].

As such, starting from the sparse 71-attribute-representation with only
directly extracted values set, the pre-processing agent is engaged and subse-
quently the agents are traversed as described above. Note that tasks 0–3 are
executed in strict sequence on the previous task’s respective output, and only
then slight branching is being undergone. From there, with a concise vocabulary
description, similarity between values of a given attribute is aggregated, whereas
global case similarity through the sensitivity analysis operates on subsets of data
in form of generated case clusters as well as internal attribute similarity approx-
imation [9].

2.2 Integration of the Weighted One-Mode Projection

An alternative to manually described similarity matrices and also taxonomies
is the more general usage of projections of bipartite graph structures. Complex
network analysis is, generally speaking, an emerging field regarding modelling
relationship. In this context, bipartite graphs present a particular type of graph
that consists of two distinct populations of nodes between which, but not within
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which, nodes are connected. This type of graph can be nicely used to model real-
world systems such as for example describe personal preference [16] or depict
co-authorship in scientific publishing [7]. These scenarios all have two groups of
nodes interacting with each other, following the example of scientific publishing,
for example “authors” and “papers”. To find relations between entities within
one of the two populations, a simple One-Mode Projection (OMP) or if weighted
a Weighted One-Mode Projection (WOMP) can be calculated. Following the
co-authorship analogy above, this would find relations or “similarity” between
authors based on their collaboration in scientific publications. Regarding how the
projection is calculated, Fig. 1 provides a simple example: The idea is that for
each element in one population la ∈ L, one considers each other element lb ∈ L
that can be reached via one or more elements rj ∈ R of the opposing population.
Considering only reachability, one obtains a simple one-mode projection, while
counting the number of common elements in R results in a weighted one-mode
projection. We assume projections to be calculated on the set L for simplicity
reasons, projecting R can be done by simply inverting symbols in the notation
[15].

Fig. 1. Illustration of a bipartite graph and respective OMP/WOMP [12]

All of these approaches do however preserve the inherent projection problem
of symmetry. Assuming symmetry in similarities cannot always be guaranteed to
appy to real-world examples, as was stated in [12]. The so far discussed solutions
all produce a single projected edge between any two entities la, lb in population
L based on common properties through connections via a number of entities
of the opposing population R. The resulting edge in the projection graph is not
directed, la is as similar to lb as is lb to la. Also, for any rj that holds only a single
connection to L, this connection cannot be properly represented in the projection
graph’s edge weights. Thus, the approach motivated by [12] is based on the idea
introduced by [16] of nodes holding resources being distributed throughout the
network. One assumes a bipartite graph with weighted edges, unweighted edges
would correspond to all edges having a weight of 1.
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The procedure then calculates resources to be distributed (visualized in
Fig. 2). For each node li ∈ L one aggregates all weights wij of edges starting
in li and ending in all rj ∈ R to obtain the node’s weight WL

i as its held aggre-
gated resources (Fig. 2(a)). Similarly, WR

j is later calculated by aggregating all
resource shares wL→R

ij as they are propagated from L → R (Fig. 2(c)). Please
note that notation is critical here: All wij , wL→R

ij and wR→L
ij refer to weights of

the same edge connecting li and rj , with the former of the three considering the
original weights as of the initial weighted bipartite graph, while the latter two
are being calculated by the depicted procedure.

WL
i =

|R|∑

j=1

wij , wL→R
ij =

wij

WL
i

, WR
j =

|L|∑

i=1

wL→R
ij , wR→L

ij =
wL→R

ij

WR
j

(1)

To then obtain the final projection graph, one sums up all edges connecting
any pair of nodes (la, lb) via nodes rj ∈ R of the opposing population. However,
this shall result in a pair of directed weighted edges of weights wab and wba. The
difference in weights is achieved by not summing up all available edge weights
between la and lb, but rather by following along the respective wL→R

ab and wR→L
ab

according to the inherent direction (a ⇒ b or b ⇒ a), in which pij ∈ {0, 1} is
used as indication of whether or not li and rj share a connection. The resulting
network is then the projection graph (not bipartite anymore) of the original
(weighted) bipartite graph. This projection graph does not contain normalized
edge weights. To obtain fixed weights in the interval [0, 1], [12] proposes to utilize
normalized weights ŵL→L

ab obtained by aggregating all incoming weights wL→L
ab

that lead into lb and normalize by dividing though the aggregate (called wL→L
bb ).

wL→L
ab =

|R|∑

j=1

paj · pbj · (wL→R
aj + wR→L

bj ), ŵL→L
ab =

wL→L
ab

wL→L
bb

(2)

With FEATURE-TAK operating on symbol attribute descriptions retrieved
from free-text descriptions from maintenance operators, exact similarity rela-

Fig. 2. Algorithmic workings of asym. WOMP with resource distribution [12]
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tions between the retrieved keyword attribute values is non-trivial to infer. The
goal of the current taxonomy-based similarity assessment algorithm is to posi-
tion keywords alongside generated synonyms in a taxonomy structure that also
builds on top of specific similarity values provided by domain experts and cap-
tures new concepts in this environment. The subsequently presented projection
implementation has a different approach in that it specifically does not rely on
manual similarity measures but rather derives relations between keywords by
their co-occurrence in desired diagnosis results alone.

The projection operates on a bipartite graph of two populations:

– Population L, for which the one-mode projection graph is to be calculated,
consists of keywords and synonyms being allowed values for a given symbol
attribute description.

– Population R, which accounts for co-occurrence of to-be-projected attribute
values, consists of all viable diagnoses (/ solutions) for the persisted case
description.

A keyword/synonym li and diagnosis rj are connected if there exists at least
one case with diagnosis being rj that also contains the keyword/synonym li.
The bipartite graph is weighted, such that the value of an edge represents the
number of cases with the respective diagnosis in which the respective keyword
also occurred. As such, the final projection graph strongly connects keywords
together if and only if they co-occur in many cases with the same diagnoses.
Keywords and synonyms may - and probably will - occur in multiple cases with
possibly multiple different diagnoses and as such will be projected with the
procedure of [12] according to how a keyword’s “resources” are shared across
multiple diagnoses. Similarly to taxonomies, one receives separate bipartite- and
projection graphs for each of FEATURE-TAK’s symbolic attributes.

Regarding nodes in population R, current data does not persist proper sym-
bolic diagnosis classes. This is resolved by pattern-matching a case’s solution-
recommendation attribute, resulting in a class label out of the set of labels of
“UNKNOWN”, “FIX”, “REPLACE”, “RESET”, “DISPATCH” and “MISC”.

The implemented asymmetric weighted one-mode projection algorithm is
being split up into two parts, approximately depicting Eqs. 1 and 2, respectively.
Firstly, resources for L- and R-vertices as well as the edges are being composed,
which is done in a bipartite graph object. Inside the bipartite graph object, a
composeResources() function is being called with vertex- and edge-array-lists
being completed. It then assigns resources to each vertex li ∈ L, edge wL→R

ij ,
vertex rj ∈ R and edge wR→L

ij in precisely this order. Note that the depicted
procedure resembles the algorithm as mathematically proposed rather closely.
Secondly, the actual traversal of the bipartite structure according to Eq. 2 is
done to obtain the projected resource distribution relations.

Inside FEATURE-TAK’s architecture, local similarity assessment is done in
the SimilarityManager (task 5) and as such can expect to utilize all transformed
results from tasks 0 to 3 and an initially set (synonym) attribute and similarity
value from task 4. The current taxonomy-based similarity procedure is imple-
mented in a single function addSynonymSimilarity inside the task directory and
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engaged by the respective task (5) agent object in the framework. It ultimately
manipulates the taxonomy structure for the newly added synonyms (where appli-
cable) and outputs an integer count of how many synonyms got connected. Sim-
ilarly, projections would result in a secondary addProjectionSimilarity function
called by the task agent.

Concerning general implementation architecture, the projection objects and
graph structures are as of now disconnected from the framework’s overall struc-
ture as best they can. With one of the intended benefits of a projection-based
similarity computation being that of a more holistic, loosely coupled execution
of similarity computation, this becomes easier to achieve with a separate imple-
mentation. This does, however, not necessarily go as well regarding integration
in the object- and file formats defined in the underlying myCBR-framework. The
framework is already used for internal case representations and similarity func-
tion specifications as well as persisted attributes and project-file formats. As is,
the projection part of the framework does not implement interfaces of myCBR.

3 Evaluation

3.1 Similarity Matrix Computation and Modelling Assumptions

The presented projection approach is tested by loading project file informa-
tion from project-files into memory. Then for each (symbolic) problem descrip-
tion attribute (system, status, function, location) taxonomy similarity values
are calculated for each attribute value pair and the bipartite graph is composed
based on vertices created from symbolic attribute values and calculates similarity
through projection methods to compute the similarity matrix across all allowed
symbolic values for each similarity function (taxonomy, simple OMP, normal-
ized asymmetric WOMP), finally persisting similarity matrices to CSV files. This
reuses components of the myCBR framework as they had been used in the frame-
work FEATURE-TAK as well, though it omits actually executing FEATURE-
TAK itself. It rather operates in an “offline” mode, not relying on having to
execute all agents and waiting for feedback which itself does not provide results
to similarity measures. The framework FEATURE-TAK is meant to analyze
maintenance data and enrich the underlying CBR system; inspecting similarity
computation assumes the CBR system to be up-to-date to allow disregarding
the multi-agent system toolchain and operate on the CBR data directly. This
approach is valid as long as no intermediate FEATURE-TAK-specific informa-
tion and data structures are required. Specifically, synonym information would
be easily extractable from these data structures.

Regarding modelling diagnosis classes, the class labels are constructed by
keyword-matching according to the depicted keywords in Table 1.

The attribute “sol recommendation” is being checked for an exact match
of a part of the string-value and if the word(s) occur within the string the
corresponding class label is assigned. Slight exceptions to this procedure are
UNKNOWN (which requires not part of the value but the complete value to fit
the word) and MISC (which is assigned if none of the other class labels can be
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Table 1. Diagnosis class labels as manually assigned to case instances

Solution class label String words

UNKNOWN (precisely) “ unknown ”, “none”

FIX “fix”, “de-ice”

REPLACE “replace”, “interchange”, “swap”, “change”

RESET “reset”, “re-power”, “install new”

DISPATCH “dispatch”, “defer”

MISC (none of the above)

assigned, thus acting as a default label for attribute values not captured with
the generated rules).

The generated output as of the implementation of similarity computation
based on respective in- and outputs consists of a total of 20 CSV files. For each
of the four problem fault description attributes (“function”, “location”, “status”,
“system”) as well as for each similarity computation method (taxonomy, simple-
and weighted OMP, stock- and normalized asymmetric WOMP) a separate sim-
ilarity matrix was generated. Note that the only formal similarity matrices are
the ones of taxonomy and normalized asymmetric WOMP similarity, as no non-
normalized matrix representation allows for entries in the diagonal to have sim-
ilarities of 1 as they do not contain normalized values. As projections by them-
selves do not capture self-similarities of attributes, these needed to be added after
computations have already been executed. All non-normalized quasi-similarity
matrices do, however, show the intermediate relations depicted throughout the
projection process, which helps quantify the projection performance on the given
case instances. The taxonomy similarity matrices shall provide a baseline against
which to compare projection similarity measures.

3.2 Evaluation Results

As can be seen in Table 2, which shows excerpts of the “location” attribute
taxonomy similarity values, taxonomies in FEATURE-TAK produce similarity
matrices which hold similar non-zero entries across rows and columns.

The location attribute was chosen as an example due to the feasible amount of
75 attributes as well as it being well populated with taxonomy similarity mea-
sures other than 1 and 0.8 (synonym relations). For distributions of (non-)zero
entries and other characteristics across similarity matrices, see Table 4.

Considering the same attribute matrix but with entries calculated via projec-
tions the “location” attribute produces only two similarity values, thus Table 3
shows another excerpt of the projection similarity matrix that contains more non-
zero entries. Note that the two attributes “side” and “forward”: Both are approx-
imately - but not exactly - equally similar to each other (simside→forward =
0.015, simforward→side = 0.017). Compare this however to the attributes “aft”
and “forward”: With simforward→aft = 0.004, forward is much less similar to
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Table 2. Excerpt of prob fault description location taxonomy.csv

Attribute value d d w D f w u u u u c i c b l l m c b m

door 1 0 0 0 0 0 0.8 0.8 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

deck 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

washstand 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Door Right 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fore 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

washbowl 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

upper [...] door #1 0.8 0 0 0 0 0 1 0.8 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

upper [...] door #2 0.8 0 0 0 0 0 0.8 1 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

upper [...] door #3 0.8 0 0 0 0 0 0.8 0.8 1 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

upper [...] door #4 0.8 0 0 0 0 0 0.8 0.8 0.8 1 0.5 0 0 0 0 0 0.8 0.5 0 0.8

cabin work station 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 1 0 0 0 0 0 0.5 0.5 0 0.5

incline 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

cargo 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

bathroom 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

lav 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

level 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

main [...] door #1 0.8 0 0 0 0 0 0.8 0.8 0.8 0.8 0.5 0 0 0 0 0 1 0.5 0 0.8

cookhouse 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0.5 1 0 0.5

basin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

main [...] door #4 0.8 0 0 0 0 0 0.8 0.8 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 1

aft than the other way around (simaft→forward = 0.014). This can be explained
with forward being more closely related to other more impactful attributes (like
“side”and “right”), while aft distributes its similarity over mostly shared “main
deck left hand door #[1,3,4]” attributes.

Considering all the different matrix similarity representation formats, the dif-
ferent produced matrices show how the similarity computation proceeds across
multiple stages. For illustration purposes, Fig. 3 shows original taxonomy sim-
ilarity matrix, WOMP and both stock- and normalized asymmetric WOMP
similarity matrices, with coloring indicating strength of similarity values. The
matrices are excerpts of the problem fault description status attribute example,
which is more densely populated with also different WOMP values (see Table 4
for more detail). All matrices apply on the same attribute pairs.

Figure 3 illustrates that distinct different relations exist between taxonomy-
and projection measures. While the taxonomy relies on nodes modeled by domain
expert and taxonomy similarities, the projection builds up over multiple stages
from the symmetric WOMP of the bipartite graph, which is then traversed asym-
metrically and normalized. Note that the asymmetric (non-normalized) WOMP
is not computed from the simpler WOMP directly, but the properties as of the
symmetric WOMP carry over into the asymmetric representation.
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Table 3. Projected normalized asymmetric similarity values

Attribute value m m m s m m s w u u f u c r s s a

main [...] #1 1 0 0.015 0 0 0.014 0 0 0 0 0.009 0 0 0 0 0 0.012

main [...] #2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

main [...] #3 0.020 0 1 0 0 0.020 0 0 0 0 0.014 0 0 0 0 0 0.017

side 0 0 0 1 0 0 0 0 0 0 0.015 0 0 0.016 0 0 0

middle 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

main [...] #4 0.020 0 0.020 0 0 1 0 0 0 0 0.014 0 0 0 0 0 0.017

side of meat 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

washbasin 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

upper [...] #2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

upper [...] #3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

forward 0.004 0 0.005 0.017 0 0.005 0 0 0 0 1 0 0 0.015 0 0 0.004

upper [...] #4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

crew rest [...] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

right 0 0 0 0.019 0 0 0 0 0 0 0.015 0 0 1 0 0 0

sanitary 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

storey 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

aft 0.020 0 0.020 0 0 0.020 0 0 0 0 0.014 0 0 0 0 0 1

The displayed taxonomy excerpt contains 1.0 entries on the diagonal indi-
cating self-similarity, but also in other non-diagonal entries where attributes
have been connected via parent nodes of value 1.0 (e.g. “problem” and “inac-
tive”). The 0.8 values indicate similarity between synonyms (e.g. “inactive” and
“stuck”). The entries of value 0.3 are connected via weaker parent nodes, result-
ing in smaller similarity (e.g. “inactive” and “unserviceable”).

On the projection side of things, one can observe that more entries are set to 0
(attributes not similar). Few entries have values (number of common neighbors in
R-population) greater than 1. The continued asymmetric projection still captures
higher values for entries with values greater than 1 in the previous weighted pro-
jection, where the asymmetry and weighting across complete attribute similar-
ity values introduce further deviation. The final normalized asymmetric WOMP
then contains entries generally being very small in similarity value. Relations
from the previous non-normalized asymmetric WOMP largely persist, but are
heavily scaled down, which gets further amplified for larger similarity matrices.
Manually inserting self-similarity properties through 1.0 entries in the diagonal
appear disproportional to other similarity values. As Fig. 3 shows, though for-
mats of both taxonomy- and projection similarity build on fundamentally similar
ideas, they yield different values through different ways of reasoning. This leaves
open the question of how well these different measures are comparable not from
a conceptual standpoint but from an application and data-oriented one.

To additionally compare not only representations across the same attribute,
but also overall shape and how many actual similarity relations are contained
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Fig. 3. Comparing similarity matrix representations of the “status” attribute

in the presented similarity matrices, Table 4 shows an overview of how many
entries of a particular type of similarity value are in different similarity matri-
ces across multiple attributes. For all four problem fault description attributes,
the taxonomy and asymmetric projection matrices are covered as well as the
intermediate symmetric weighted projection. The numbers for the asymmetric
projection holds for both the normalized and not normalized matrices, thus it
is only listed once. The symmetric projection is included to give an intuitive
understanding of how many occurrences of attributes overlap in the resulted
projection, to which the simple non-weighted projection does not provide addi-
tional insight, thus it is excluded from the overview.

Inspected matrix properties are the number of total entries and non-zero (as
similarity is always positive this depicts all entries of sima→b > 0) as well as non
self-similar values (thus excluding entries d on the diagonal). For taxonomies
it is also interesting how many non-intrinsically related similarity values - in
the sense of values not specifically assigned by domain experts directly or the
framework FEATURE-TAK implicitly through synonym structures - exist, thus
only entries of similarity 0.8 are excluded further from the measure to exclude
synonym relations. This does also neglect valid taxonomies just happening to
return a similarity of 0.8 without the prior use of synonym constructs, but after
manually inspecting the taxonomy similarity table and operation of FEATURE-
TAK, this possibility was estimated to be unlikely. Note that domain experts
specify intermediate nodes, which as such not necessarily depict attribute val-
ues expected to occur in real cases, and as such they needed not be inspected
separately from formally calculated similarity values. For the intermediate sym-
metric weighted projection, an important measure is that of similarity relations
depicted through values greater than 1, because these correspond to multiple
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Table 4. Similarity matrices statistics across attributes

Attribute Taxonomy N. Asym. WOMP Symmetric WOMP

Function
(65× 65, 4225 entries)

>0: 577 >0: 133 >0: 68

>0, ¬d: 512 >0, ¬d: 68 >0, >1: 6

>0, ¬d, ¬0.8: 0
Location
(75× 75, 5625 entries)

>0: 967 >0: 177 >0: 102

>0, ¬d: 892 >0, ¬d: 102 >0, >1: 0

>0, ¬d, ¬0.8: 498
Status
(137× 137, 18769 entries)

>0: 4151 >0: 669 >0: 532

>0, ¬d: 4014 >0, ¬d: 532 >0, >1: 66

>0, ¬d, ¬0.8: 3082
System
(979× 979, 635209
entries)

>0: 22827 >0: 22373 >0: 21576

>0, ¬d: 22030 >0, ¬d: 21576 >0, >1: 62

>0, ¬d, ¬0.8: 21386

common neighbors across attributes pairs, which in return allows to draw con-
clusions towards respective influences on the distribution of similarity in the
normalized asymmetric projection values.

As seen in the left-most column of Table 4, the different attributes are very
different in size with problem-fault-description-system being by far the largest
of the four and the others being approximately of the same size with just -
status being noticeably larger. As can be seen in the second and third column
for taxonomy- and (normalized) asymmetric WOMP respectively, the attributes
are more or less sparse depending on the type of values considered. Taxonomy
values are largely zero with function, location, status and system having 14%,
17%, 22% and 4% non-zero entries, respectively. Compare this to 3%, 3%, 4% and
4% non-zero values for the asymmetric projection, which is considerably more
sparse (except for the largest “system”-matrix). Though “status” is denser than
“location” still being denser then “function” with taxonomies, this gets reduced
to an even 3–4% across all attributes for projections. This drop is even more
severe considering not only non-zero values but also values not equal to 0.8. Here,
taxonomies maintain 0%, 9%, 16% and 3% similarity values with “location”
keeping many-, while “status” and “system” keep most values. Problem fault
description “function” only contains values of self- or synonym-similarity.

Considering weighted projections, both “function” and “status” hold a fair
share of values larger than one, which allows for a more varying degree of sim-
ilarity in the asymmetric projections, as opposed to larger matrices such as
with “system” with fewer overlapping neighbors. In order to compare similar-
ity measures of projections to their established taxonomy counterparts, a Mean
Squared Error (MSE) estimation summing up the squared difference in values
for all entries in both matrices was intended to be done, comparing the overall
deviation in values between the taxonomy similarity matrix and the normalized
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asymmetric WOMP similarity matrix of each attribute separately. This however
resulted in incredibly large deviations, because those similarity matrices do not
overlap in most - if not all - non-zero values. Upon closer inspection as to why
the values mostly do not overlap, it was found that the synonym structure as
well as keywords related over said synonyms frequently happen to be conceptu-
ally related, without being used interchangeably in cases with similar solutions.
What this means is that the taxonomies capture (pre-)defined classes of con-
cepts, while projections rather capture concepts of different keywords used in
similar situations in a scenario more closely related to the solution procedure of
the case (as they get connected over solution classes).

4 Discussion and Outlook

The evaluation addresses inadequate symmetric self-similarity and small similar-
ity values for sparse data as major issues. Regarding symmetric self-similarity,
projections do not yield similarities of 1 for attributes to themselves. After hav-
ing normalized all other non-self similarities, the similarities of attributes to
themselves can be set to 1 manually, but they are not a result of the projec-
tion procedure itself, because the projection accounts only for co-occurrences of
attribute values. The procedure of traversing the right-population has as conse-
quence that any traversal is related to the resource being distributed to different
solution classes, thus even adjusting for traversing all edges of the bipartite graph
from a left-node to itself results in related twisted aggregated values due to WR

being typically non-zero, which is correlated to wR→L. While taxonomy simi-
larity has attribute self similarity as inherent property, projections do not. This
technically violates the fundamental notion of similarity, and requires manual
adaptation if used on its own. Furthermore, as could be seen in Fig. 3, the differ-
ent intermediate similarity matrices of symmetric-, asymmetric non-normalized-
and asymmetric normalized WOMP have very different scaling across similar-
ity values. When compared with similarity values in the taxonomy similarity
matrix being nicely distributed over the interval [0, 1], the values of the final
normalized asymmetric WOMP are incredibly small and - not counting self-
similarity - rarely exceed a similarity of 0.1. This trait, however, is not shared
across the intermediate representations, where the non-normalized matrix con-
tains what seems like more adequate values, which can be larger than 1. Note
that the basic normalization idea of [12] still applies, but it seems to not scale
well in application, especially with a small number of connections between the
populations of the bipartite graph as a result of a low number of cases.

A solution to this could be a logarithmic function, which maps normalized
projection-based similarity values to a range incorporating also similarities closer
to 1. Compared to a baseline of no mapping, this logarithmic mapping would
ensure that for small projection similarities their output similarity value in the
similarity matrix would be larger - e.g. attain a value of 1 for a value of 1 in
the normalized projection similarity and setting larger values to exactly 1. The
steepness of the initial logarithmic incline for very small values and how quickly
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the maximum similarity should be attained depends on the number of input cases
and distribution of attributes and attribute co-occurrences within the attribute
descriptions. A further study inspecting different parameters and their influence
would be worthwhile.

With projections being more of an extension to - rather than a substitution
of - taxonomy relations, under the given analysis and computations it seems
that a combined application of projections as well as taxonomies is more likely
to succeed as compared to utilizing projections on their own. How exactly both
procedures get interconnected in the application architecture of FEATURE-TAK
and how nicely the different components extend already implemented function-
ality was sketched but can at this point only be estimated. The idea of combining
projections with taxonomies works intuitively from an ideological point of view
- with both incorporating expert knowledge in a network structure, while result-
ing in different sets of similarity relations - where the combination procedure
requires further planning.

Possible future work includes incorporating projections more closely into
FEATURE-TAK’s workflow and implementing projection similarity measures in
myCBR as the underlying CBR framework. The maintenance procedure for con-
tinuous operation of FEATURE-TAK allowing scaling across longer framework
runs is considerably easier for taxonomies than for projections, but trade-offs in
complexity can be expected by batch-updating the bipartite graph.
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Abstract. Explanations in recommender systems are essential to
improve user confidence in the recommendation. Traditionally, recom-
mendation algorithms are based on ratings or additional information
about the item features or the user profile. But some of these approaches
are implemented as black boxes where this information is not available to
provide the explanations. In this work, we propose a case-based approach
to support this kind of black-box recommenders in order to find explana-
tory examples. It is a knowledge-light approach that only requires the
information extracted from the interactions between users and items. As
these interaction graphs can be analyzed through social network anal-
ysis, we propose the use of link prediction techniques to find the most
suitable explanatory cases for a recommended item.

Keywords: Explanations · Interaction graphs · Recommender systems

1 Introduction

The Internet is a tool where people can access to a huge amount of information, to
find or consume products. Amazon or eBay are examples of popular online shops
where users can get new products of all types. Netflix or Spotify are examples
of platforms where users consume products online –TV series and movies or
music, respectively. However, the supply of products is so large that users have
difficulties to find the most suitable products to them. This is the origin of
recommender systems, which help users with this task. Therefore, the Internet
is a medium to increase the development of recommender systems technology [2].

Sometimes, users do not trust in recommender systems because they do not
know how they work. Recommender systems usually work as a black box system
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from the user’s perspective. Due to this suspicion, some users reject the recom-
mendations provided by these systems. Therefore, explanations in recommender
systems are necessary to improve users’ trust. If a user understands why an item
was recommended to her thanks to an explanation, this user will consider this
item as a promising candidate for being consumed [29].

Case-based explanations focus primarily on similar cases employed to perform
the recommendation. They provide users with the cases that are most similar to
the new case that needs to be explained. These similar cases are considered as
cases for comparison [30]. From the point of view of recommender systems, it is
an item-based style explanation, since it uses items to justify a recommendation
[25]. The main advantage of this approach is that it allows users to assess the
quality of the recommendation by comparing items that ideally should be related
to the user’s criteria.

Our proposal in this work is to provide explanatory cases using the interac-
tion graphs that we employed to perform recommendations in previous works.
These works [5,17,18] proposed a novel approach to make recommendations
when we lack information about the users, items, ratings or other additional
information. The classic techniques that recommender systems implement usu-
ally work with user preferences and ratings. For example, collaborative filtering
uses the ratings to find similar users or similar items and produce the recom-
mendations [1,9,28]. In the case of content-based approaches, systems just take
into account item descriptions [2]. But, in certain scenarios, this information is
not available and traditional techniques cannot be applied. The proposed graph-
based methods have advantages over these traditional techniques since they just
require information about which user interacted with which item. We represent
these interactions between users and items into two graphs: an user-based graph
and an item-based graph. We employ these graphs in combination with link
prediction techniques as a way to make recommendations. Link prediction is a
technique from social network analysis that predicts the existence of links that
will appear in a graph over time or links that have disappeared [12,21,22,32]. We
can see a recommendation as a link prediction problem [7,8,33]. We represent
users and items as nodes in a graph and a link is formed when a user interacts
with an item. If we can predict that a link will appear, we can provide this item
as a suitable recommendation for this user.

In this paper, we use link prediction techniques to find explanatory items
that are related to the recommended item according to the interaction graph.
This way, we are able to provide an explanation using these related cases, taking
into account the previous interactions carried out by this user with these similar
items. Therefore, explanations are personalized to the user because they are
based on her previous interactions and the recommendations performed by the
system, which are used as cases for explanation.

One of the main advantages of the proposed technique is that it is completely
independent of the recommendation algorithm and we are able to provide expla-
nations assuming that the recommender system is a black box. Figure 1 provides
an overview of the proposed approach. It only requires the set of user-item
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Fig. 1. General overview of the case-based explanation approach using interaction
graphs

interactions as input, which is the minimum information required by any recom-
mender system. This way, we can provide explanation examples for recommen-
dations where the ratings, item or user features are not required at all, and we
do not need to know the underlying recommender algorithm. Moreover, we can
provide explanations with a positive or negative perspective, showing examples
of why an item is interesting to the user or not.

The following sections describe our approach and its evaluation in depth.
Section 2 relates a revision of works about explanation systems for recommenda-
tions. Section 3 describes our CBR approach and the link prediction metrics that
we evaluated. Next, Sect. 4 contains the evaluation of our approach, where we
demonstrate the effectiveness of our proposal in comparison with a content-based
approach. We analyze the dataset and we describe the methodology carried out.
Finally, in Sect. 5 we conclude and present the future work.

2 Related Work

The interest in recommender systems has grown in the last years due to the
growth of online shops and entertainment platforms. These systems must help
users to find interesting products and, at the same time, must retain users in
order to continue using them. Explanations are necessary because users should
trust in recommender systems to have a good experience in these platforms. So,
recent research in recommender systems has been focused on explanations.

In the research of related work about explanations, we have found several
surveys and classifications of explanations in recommender systems [3,6,11,14,
24,25,29,30], which stress the importance of explanations and describe the main
features of explanations systems. In this section, we are going to describe some
of these approaches, taking into account the most relevant ones.
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The work in Herlocker et al. [15] is one of the pioneers in explanations for
recommender systems. In this work, they propose many different types of visu-
alizations to explain recommendations in MovieLens, like visualizations with
tables, ratings or histograms. The work in [13] makes several proposals of expla-
nations for MovieLens and compare them with the previous work. These propos-
als include new ways of visualizing explanations, with charts and personalized
tag clouds. One of the most complete approaches is the work in [20], where they
describe a mobile application that recommends and provides explanations about
clothing. It is a flawless example because it includes text explanations with tem-
plates, visual explanations, different points (positive or negative) of view and
possibility of user interaction. Another interesting approach is the work in [31],
where an innovative explanation system is introduced. It shows personalized tags
with a positive or negative perspective that is represented with different colors
and sizes. The work in [27] is an explanation system based on matrix factorization
to provide transparency to users. In [26], authors proposed an explanation sys-
tem that personalizes explanations for recommendations using social elements.
The target of these explanations are groups of users and they try to satisfy all
of its members with text and visual approaches. In [19], we have one exam-
ple of a very recent explanation approach. It describes an explanation method
for hybrid recommender systems that includes personalization with different
styles: user-based, item-based, content-based, social-based and item popularity.
Another explanation method published recently is the work in [16], where the
explainability is improved combining factorization results with templates. In the
work of Musto et al. [23], an algorithm-independent and domain-independent
framework that generates explanations based on natural language is presented.
It uses Linked Open Data (LOD) to create these explanations.

Link prediction techniques, which are one of the pillars of our current work,
are described in several paper reviews [12,21,22,32]. Moreover, there are some
approaches that use these methods on graphs to make recommendations. The
work in [7] describes a recommender system based on interaction graphs to make
recommendations based on collaborative filtering. In [33], personal recommen-
dations are presented using bipartite network projection. The work in [8] uses
link prediction techniques on an user-item graph to make recommendations in
User-Generated Content systems (UGCs) as Youtube or Flickr. Regarding expla-
nations, there are few approaches in the field. For example, the work described
in [4] proposes a model based on graphs and link prediction techniques to predict
new links in the social network. They make recommendations and provide an
explanation thanks to the reason that describes why the link was created. How-
ever, there is still more work to do with these techniques and other unexplored
ones in the field of explanations for recommendations.

There are two types of link prediction techniques [32]: learning-based and
similarity-based methods. Learning-based methods use machine learning tech-
niques to establish if two non-connected nodes have probabilities to be linked
in the future, whereas similarity-based methods use similarities between two
nodes to determinate if this pair of nodes should be linked. In our work we will
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use similarity-based methods because we think that they are the most suitable
approach for a case-based reasoning system.

3 Explanations Based on Interaction Graphs

Generally speaking, recommendation systems have information about the inter-
actions that are carried out in the platform. This information can be represented
as a tuple R = (t, u, i, x), where t is the timestamp when the interaction hap-
pened, and u is the user that interacted with item i. Finally, x represents addi-
tional information associated with the interaction. In many cases, x is the rating
that u gives to i, but there are other types of interactions, such as if u watched
the movie i, read the book i, or listened to the song i. With the information
about the interactions, we can build an adjacency matrix A = {Aui}, where an
element Aui is equal to 1 if user u has interacted with i.

Taking into account the adjacency matrix, we can represent the interactions
as a non-weighted bipartite graph. In this graph, nodes represent users belonging
to the user set U or items that belong to the item set I. Next, we can apply
a network projection to convert the original graph into a non-bipartite graph.
From our interaction graph we can generate both an item-based graph, and a
user-based graph. Figure 2 shows how a bipartite network projection works. In
our case, we are interested in the item-based graph because it will allow us
to collect similar items to the recommended one in order to find explanatory
cases for the user. The item-based graph is formed by nodes that belong to I.
Links are created between two nodes when at least one user has interacted with
both items. Additionally, the original non-weighted graph is transformed into a
weighted graph to avoid losing information. The weight of a link represents the
number of common different users that have interacted with both items.

The main idea of our explanation method is to use the item-based graph
in order to find the most relevant explanatory items using link prediction tech-
niques. Therefore, we can consider two nodes as pairwise relevant if the proba-
bility of linking these nodes is high.

If we consider the items that a concrete user has interacted with as its per-
sonal explanatory case-base, we can also consider the recommended item from
any recommendation algorithm as the query of an explanatory CBR system.
This way, using the item-based graph and link prediction techniques, we can
find the most relevant explanatory cases for that recommendation according to
the previous user interactions. Next section describes and formalizes the app-
roach.

3.1 The Case-Based Explanation System

The proposed explanatory CBR approach does not take into account the recom-
mendation algorithm. It only requires information about the user-item interac-
tions and, therefore, it is algorithm independent.
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u1 u2 u3 u4 u5 u6 u7 u8

i1 1 0 0 1 0 0 0 0
i2 1 1 0 0 0 0 0 0
i3 0 0 1 0 1 1 0 0
i4 0 1 0 1 0 0 0 0
i5 0 0 1 0 1 0 0 1
i6 0 0 0 0 0 1 1 1

Fig. 2. Example of bipartite network projection from the adjacency matrix (on top).

The main knowledge container of this CBR system is the item-based graph
specified before. It will serve as the case base containing the explanatory exam-
ples. The graph is defined from the adjacency matrix A as G = 〈I, L〉, where
items I are the nodes and the links L = {(i, j, w)} represent the interactions
of users with two different items i and j, where the weight w is the number
of common different users that have interacted with both items. This graph is
considered as the global container of cases from which we can define the personal
case base for every user u. A case base for user u is composed by any previous
item i that u has interacted with:

CBu = {i ∈ Iu} (1)
Iu = {i ∈ I} : Aui �= 0 (2)

Now, given a recommended item ir for a target user u, we retrieve all the
cases in the personal case base CBu and we compute the link prediction from
any item i ∈ CBu to ir. The link prediction represents the probability of cre-
ating a new link from i to ir, and therefore, the probability of choosing the
recommended item ir because user u has already interacted with i. Thus, to
explain the recommendation ir we will present to the user the previous cases i
that obtain the highest link prediction1.
1 We are assuming link prediction metrics as similarity measures, although in our

approach they are not normalized to [0,1] because we only need the resulting score
to rank and compare items.
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Fig. 3. Global scheme of the CBR explanation system [33]

The link prediction techniques that we use in our approach are the similarity-
based methods. They allow us to get a score that denotes the likeness between
two items according to the interactions carried out by users with the items.
Similarity-based metrics, at the same time, can be classified into four groups [32]:
Node-based metrics take into account the node properties to find the similarities;
Neighbour-based metrics use the information about the node’s neighbourhood,
N(i), that is defined as any other item j that a user has also interacted with;
Path-based metrics take into account the paths that join two nodes; and, random
walk-based metrics that make social simulations through transition probabilities
between nodes and neighbours.

In this work we have focused on node-based and neighbour-based techniques.
Therefore, we have to reformulate the definition of the user case base to include
the node’s neighbourhood N(i) as follows:

CBu = {Ci : i ∈ Iu} (3)
Ci = 〈i ,N(i)〉 (4)

N(i) = {j ∈ I : (i, j) ∈ L} (5)

This way, the cases Ci obtained by the link prediction function may explain
the recommendation to the user not only through the corresponding item i, but
also by presenting the associated neighborhood of items N(i).

Finally, we only need to define the link prediction function as follows:

lpu(Ci, ir) : [CBu × I] → R (6)

Figure 3 illustrates the structure of the case base CBu and the main schema
of the proposed explanation system. In the next section, we discuss the different
link prediction techniques that we could apply to relate the items in our graph.

3.2 Link Prediction Similarity Measures

To compute the score between a pair of nodes (i, j) that expresses the probabil-
ity of linking from i to j, we have made a variation of the classic link prediction
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metrics. The metrics used in this work are the same that we used in our previ-
ous graph-based recommender approaches [5,17,18] and are detailed in [21,32].
Most of the metrics can be defined into two versions: weighted and unweighted.
Moreover, most of the metrics are not normalized: they do not lie in the range
[0,1]. This is not a problem in our approach because we only need the score to
rank similar items.

Before discussing the link prediction metrics, we need to introduce a specific
notation to clarify the following discussion.

– N(i) represents the neighbours of node i.
– |N(i)| represents the number of neighbours (or node degree) of node i.
– Lij represents the weight w of the link between nodes i and j.
– W (i) =

∑
Lix : x �= i ∈ I represents the weighted node degree of node i, which

means the sum of the weights in the links directly connected with node i.

Next, we detail the link prediction metrics considered for our explanation
system:

Edge Weight (EW). This metric measures the similarity between two nodes
as the weight of the link between them. Lij = 0 represents node i and node j
are not connected. An unweighted version of this metric exists (Lij = 1 if the
link exists; 0 otherwise) but we have not used it because it is too simple.

EW (i, j) = Lij

Common Neighbours (CN). Using this metric, the similarity between two
nodes is the number of neighbours they have in common. The rationale behind
this metric is that the greater the intersection of the neighbour sets of any two
nodes is, the greater the chance of a future association between them. Weighted
Common Neigbours (WCN) is the weighted version of this metric.

CN(i, j) = |N(i) ∩ N(j)|

WCN(i, j) =
∑

z∈N(i)∩N(j)
Liz + Ljz

Jaccard Neighbours (JN). This metric is an improvement of CN(i, j) as
it measures the number of common neighbours of i and j compared with the
number of total neighbours of both nodes. It does not have a weighted metric
version.

JN(i, j) =
|N(i) ∩ N(j)|
|N(i) ∪ N(j)|
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Adar/Adamic (AA). This metric also measures the intersection of neighbour-
sets of two nodes in the graph, but emphasizing in the smaller overlap. The
weighted version of this metric is Weighted Adar/Adamic (WAA).

AA(i, j) =
∑

z∈N(i)∩N(j)

1
log|N(z)|

WAA(i, j) =
∑

z∈N(i)∩N(j)

Liz + Ljz

log(1 + W (z))

Preferential Attachment (PA). It is based on the consideration that nodes
create links, with higher probability, with those nodes that already have a larger
number of links. The probability of creating an link between nodes i and j
is computed as the product of the degree of the nodes i and j, so the higher
the degree of both nodes, the higher is the probability of linking. This metric
has the drawback of leading to high probability values for highly connected
nodes to the detriment of the less connected ones in the network. Weighted
Preferential Attachment (WPA) is the weighted version of the previous one. It
is an improvement of PA, where the link weights are taken into account when
computing the degree of nodes i and j.

PA(i, j) = |N(i)| · |N(j)|

WPA(i, j) = W (i) · W (j)

Once we have described the link prediction techniques that we could apply to
find explanatory cases, next section presents a comparative evaluation of their
performance.

4 Evaluation

We have designed our evaluation to be applied in a Matrix Factorization rec-
ommender system. Our graph-based explanation approach addresses the matrix
factorization system as a black box system. It generates the explanations finding
the most similar cases to the recommended one in order to show to the user an
explanation like: “This product X was recommended to you because it is similar
to the product Y, which you have liked”. We have chosen a Matrix Factoriza-
tion system because we need to use the rating predicted by it to evaluate our
approach.

One of the main advantages of our method is its decoupling from the recom-
mendation algorithm and its low requirements regarding input data. It does not
require information about the features of users or items unlike standard content-
based strategies. Content-based strategies are the obvious alternative for finding
explanatory cases for a recommended item, and therefore, our baseline to com-
pare with.
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In order to compare graph-based and content-based approaches we can mea-
sure the quality of the explanatory cases obtained in both approaches. Our
hypothesis is that our graph-based approach is able to find explanatory cases
with a relevance to the target user similar to the cases obtained by content-based
strategies, which are much more knowledge demanding.

The comparison of the explanatory cases obtained by both graph-based and
content-based approaches is performed by calculating the error between the rat-
ing predicted for the recommended item and the actual rating of the explanatory
cases. Here, we assume that the user should rate the explanatory cases with a
similar rating value than the predicted for the recommended item.

In Sects. 4.1 and 4.2, we describe the details of the dataset and the evaluation
process, respectively. In Sect. 4.3, we discuss the results.

4.1 Data

To perform this evaluation, we use the 100K MovieLens dataset2. It includes
100K ratings in tuple form R = (t, u, i, x), where u is the user, i is the movie
that u has watched, x is the rating that u has provided to i and t is the timestamp
when u rated i.

From this dataset we are able to build the adjacency matrix to create the
interaction graph. It is important to note that this interaction graph does not
require any further information about users, item’s features, or even ratings. In
this adjacency matrix, Aui = 1 if user u has rated the movie i.

To implement the content-based approach, we need to enrich the representa-
tion of the items from the MovieLens dataset in order to include their features.
To do that, we decide to use the IMDB dataset3, which provides a knowledge-
rich description of the movies, like genres, directors or stars. However, not all of
the movies in MovieLens dataset are in IMDB dataset. For this reason, we have
to filter the dataset in order to get just the movies that appear in both datasets.
The resulting dataset, denoted as A, is split into the training set At with the
90% of the ratings, and the evaluation set Ae with the 10% of the ratings.

Before performing the comparative evaluation of both graph-based and
content-based approaches, we have analyzed the datasets. We have followed the
model proposed in [10] to make this descriptive analysis. The analysis of the
dataset Ae (Table 1) revealed that it has a bias because the number of items for
each rating value is clearly unbalanced.

In order to evaluate the impact of this bias in both approaches, we will
perform an additional evaluation using stratified evaluation sets Be, generated
from the previous Ae. In each stratified evaluation set, the number of items for
each rating value is equally distributed. This way, each Be will contains 35 items
for each rating value as it is the lowest value for 2.5 stars rating.

2 https://grouplens.org/datasets/movielens/100k/.
3 https://www.imdb.com/.

https://grouplens.org/datasets/movielens/100k/
https://www.imdb.com/
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Table 1. Descriptive analysis of the datasets used for the evaluation. ML is the original
Movielens dataset.

Metric ML A At Ae Be

# Ratings 100,000 11,477 10,330 1,147 280

# Items 1,682 164 164 145 109

# Users 943 587 584 394 134

Density 0.06 0.12 0.11 0.02 0.02

Items

Maximum # ratings per item 583 329 305 30 10

Median # ratings per item 27 43.5 39 5 2

Average # ratings per item 59.45 69.98 62.99 7.91 2.57

Minimum # ratings per item 1 1 1 1 1

Users

Maximum # ratings per user 737 128 113 15 11

Median # ratings per user 65 12 11 2 1

Average # ratings per user 106.05 19.55 17.69 2.91 2.09

Minimum # ratings per user 20 1 1 1 1

Ratings

% Ratings ≥ 4 55.38 52.54 52.66 51.44 37.50

% Ratings < 4 44.62 47.46 47.34 48.56 62.50

4.2 Experimental Setup

In order to evaluate our case-based explanation approach, we have implemented
a recommender system based on Matrix Factorization and we use cross valida-
tion with the training and evaluation sets previously described. For each recom-
mended item ir for a target user u in the evaluation set, we obtain a set with the
most suitable explanatory cases through any of the link prediction techniques
that we detailed before: CN, EW, AA, JN, PA, WCN, WAA, WPA. Analo-
gously, we obtain a set of explanatory cases using a content-based approach,
that selects the most similar items according to the list of binary movie features.
The similarity is computed using three different algorithms: Euclidean, Cosine
and Jaccard.

To compare both sets of explanatory cases, we compute the Root Mean
Square Error (RMSE) between the predicted rating for ir and the rating of
the explanatory cases.

Additionally, we analyzed the impact of the number of explanatory cases
presented to the user. To do that, the size of the set of explanatory cases is
controlled with a k parameter, which ranges from 1 to 10. In this case, we
will remove from the evaluation the users who did not rate enough items to
complete the set of explanatory cases with size k. For example, if a target user
ut watched 6 movies, the set with the 7 top-most similar cases recovered to
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Table 2. Results from evaluation with original evaluation set (Ae).

k 1 2 3 4 5 6 7 8 9 10

AA 1.095 0.865 0.792 0.769 0.747 0.723 0.702 0.686 0.678 0.664

CN 1.035 0.821 0.750 0.713 0.683 0.666 0.649 0.640 0.636 0.635

EW 1.087 0.878 0.797 0.754 0.734 0.706 0.679 0.666 0.651 0.639

JN 0.961 0.734 0.658 0.624 0.599 0.573 0.562 0.549 0.540 0.534

PA 1.126 0.897 0.806 0.789 0.782 0.762 0.741 0.728 0.718 0.706

WAA 1.113 0.968 0.908 0.855 0.822 0.794 0.775 0.747 0.723 0.705

WCN 1.113 0.968 0.907 0.855 0.821 0.796 0.778 0.749 0.723 0.704

WPA 1.115 0.970 0.910 0.852 0.821 0.793 0.779 0.747 0.723 0.703

Cosine 0.973 1.036 1.064 1.078 1.087 1.100 1.101 1.104 1.108 1.111

Euclidean 0.966 1.032 1.063 1.079 1.092 1.092 1.099 1.100 1.102 1.105

Jaccard 0.974 1.037 1.064 1.078 1.087 1.099 1.101 1.104 1.109 1.111

explain a recommendation would be incomplete. Therefore, we will not use ut

to compute the RMSE for k ≥ 7.
We run two different experiments, using the original evaluation set Ae and

with stratified evaluation set Be. Because Be is created randomly, choosing 35
items from Ae for each rating value, we repeated the evaluation process using
the stratified dataset 100 times, using 100 different evaluation sets Be created
randomly.

4.3 Results

Table 2 reports the results using the original evaluation set Ae. Each column
represents the average RMSE between the recommended items and the set of
the corresponding k explanatory cases. The best result for each k is emphasized.

From these results we can remark that our item graph-based approaches
always get better results than the content-based ones. The difference is more
noticeable as long as k grows.

When comparing only the item graph-based approaches, the best results are
achieved using the Jaccard Neighbours (JN) similarity measure, which represents
the rate of common neighbours between two items.

It is worth noting that the average RMSE with the set of explanatory cases
is reduced as long as the number of cases k grows, in contrast with the content
based approaches.

Table 3 shows the average results from evaluations performed using stratified
evaluation sets Be. Taking into account this evaluation we can conclude that,
again, item graph-based approaches always get better results than content-based
algorithms. The difference is also more noticeable when k grows. This fact reveals
that the proposed approaches are not affected by the bias in the dataset.

As in the previous experiment, the best results are achieved by the approach
that uses JN. The average RMSE with the set of explanatory cases is improved
as long as the number of cases k grows.
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Table 3. Average results from the 100-fold evaluation with stratified evaluation sets
(Be).

k 1 2 3 4 5 6 7 8 9 10

AA 1,164 0,947 0,861 0,839 0,817 0,796 0,774 0,764 0,754 0,738

CN 1,084 0,893 0,811 0,761 0,739 0,721 0,696 0,695 0,695 0,698

EW 1,142 0,938 0,863 0,827 0,802 0,766 0,743 0,736 0,714 0,702

JN 1,004 0,748 0,673 0,643 0,629 0,597 0,584 0,573 0,566 0,566

PA 1,182 1,000 0,902 0,883 0,873 0,852 0,835 0,819 0,809 0,793

WAA 1,156 1,061 1,002 0,944 0,922 0,894 0,874 0,838 0,810 0,790

WCN 1,149 1,054 0,994 0,937 0,917 0,890 0,873 0,837 0,807 0,787

WPA 1,152 1,065 1,011 0,940 0,921 0,889 0,873 0,837 0,812 0,789

Cosine 1,117 1,130 1,125 1,125 1,125 1,120 1,129 1,125 1,121 1,121

Euclidean 1,090 1,105 1,102 1,110 1,105 1,106 1,106 1,111 1,112 1,112

Jaccard 1,052 1,052 1,054 1,067 1,084 1,097 1,100 1,099 1,102 1,100

We would like to highlight that the weighted versions of the link predic-
tion similarity metrics employed in our approach generally perform worse than
the non-weighted versions, in contrast with the results obtained in a previous
work [5]. In that work, the item-based approach was employed to recommend
items to a target user and the weighted metrics performed the best results. How-
ever, the domain and datasets were completely different (online judges), so we
should repeat these experiments in different domains.

We can conclude that in all of the experiments carried out, our graph-based
approaches are better than the content-based methods in order to choose the best
cases employed to explain the recommendation performed by a recommender
system. The exception occurs when we try to explain the recommendation with
only one case (k = 1). Comparing the results with the evaluation datasets Ae

and Be, we conclude that the one with stratified evaluation set is worse than
the one that uses original evaluation set. This makes sense, because we have
removed the bias.

5 Conclusions and Future Work

The trust on recommender systems can be enhanced by providing explanations
to the users. In this work we have detailed a case-based explanation approach
for recommender systems that relies on the interaction graph model that can
be inferred for every recommendation system. This approach uses a set of items
previously consumed by the user as an explanation for the recommended item.

We highlight two main advantages of our approach. On the one hand, it is
independent of the algorithm employed by the recommendation system. On the
other hand, it does not need any additional information to provide an explana-
tion because it is based on the past experiences of the users, modelled in the
interaction graph.



30 M. Caro-Martinez et al.

Our approach has been evaluated against a knowledge-rich content-based
approach and the results revealed that the sets of the explanatory cases selected
by our approach are, in general, more accurate with the preferences of the user
who is being recommended.

In this approach we use an item-based interaction graph. However, in our pre-
vious works using this interaction models, we also employed user-based approach
as a method to perform a recommendation. We plan to adapt this user-based
interaction graphs in order to generate explanations based on similar users and
their common tastes.

Finally, our approach has demonstrated a good performance in our offline
experimental evaluation. However, it should be tested by real users, who should
evaluate if the explanations provided are useful and if they enhance their expe-
rience with the recommendation system. This is one of the most important lines
of our future work.
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Abstract. Formal Concept Analysis is a mathematical approach which
enables formalisation of concepts as basic units of human thinking and
analysing data in the object-attribute form. In this paper, we propose
the use of FCA as a general resource for explanations and apply it to
explain the results of recommender systems. Our method is reusable and
applicable to different domains. We define different types of explanations
by travelling the lattice structure and analyse how the lattice metrics can
be used to characterise the different types of user profiles.

Keywords: Explanations · Explainable artificial intelligence ·
Formal concept analysis · Recommender systems

1 Introduction

Explainable artificial intelligence and case based explanations have become
active areas of research in the last few years [13,21,26]. In recommender sys-
tems, explanations are essential to improve user trust and persuasion [12,19]
and there are different approaches that have been reviewed elsewhere [6,25].

The term explanation can be interpreted in two different ways: in AI in
general and in recommender systems in particular [1,4,24]. First interpretation
refers to transparency and deals with explanations as part of the reasoning pro-
cess itself and with the goal of understanding how the reasoning process works.
The other interpretation deals with justification or attempting to make a cer-
tain reasoning process, or its result, understandable to the user. Recommenda-
tions resulting from content-based strategies are more comprehensible for users,
because they are based on the explicit user profiles. The content filtering app-
roach creates a profile for each user or product to characterise its contents and
recommends a similar product that matches the user profile. Most of the content-
based recommenders typically generate case-based explanations presenting the
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items that are most similar to a new user profile, and the similarity and dis-
similarity knowledge between the user profile preferences (query) and the item
set and the user’s experiences (likes or dislikes) [10,16,18,20,28]. This is related
to the view of CBR systems as self explainable systems because having cases
as precedents of similar problem solving experiences are by themselves useful
pieces of knowledge to explain the system outputs [15]. Most of the approaches
using explanatory cases do not explain how the system has reached its solu-
tion. However, the usefulness of explanatory cases as a support or justification
of the results has been demonstrated [24]. Note also that many authors [9,22]
agree that displaying the best case is not always sufficient explanation. That is
especially true when the goal of the explanation is to provide transparency and
when the solution is not a simple reuse of a similar experience but it emerges
from complex retrieval and adaptation processes. In this situation specific expla-
nation knowledge, apart from the cases, is required [2,17,22], and explanations
may make explicit details about the features that the query has in common with
the retrieved cases, why some similarities and differences are more relevant than
others for the solution and why the system performs a certain adaptation. When
recommender systems use the collaborative filtering approach, the system does
not use an explicit user profile because the recommendation algorithm relies
only on user ratings. Collaborative filtering identifies new user-item associations
and predicts users preferences as a linear, weighted combination of other user
preferences. Collaborative filtering is more flexible and generally more accurate
than content-based techniques [3]. However, it suffers from the self explanatory
capability as it lacks from explicit profiles. Other related algorithms like matrix
factorization also suffers the same problem.

In this paper, we propose a general approach for explanations in recommender
systems using Formal Concept Analysis (FCA). We study how the use of FCA
helps in finding the knowledge structure of a recommender system and how this
knowledge is useful as the explanation knowledge in the system. Note that the
sense of the term explanation here refers to justification, as it attempts to make
the result of a recommender systems understandable to the user. We propose
different approaches that vary in the way we apply FCA and travel the lattice.
We propose building the user profile lattice with the user personal best rated
items. This lattice can be used itself to explain the user profile, and the diversity
of her preferences, and let her refine her ratings or understand why a certain
item has been recommended. Besides, we also explore how the dependencies
between attributes and the maximal groups of items are useful as explanation
knowledge in different ways: item-style, property-style and dependency style. We
first review the related work in Sect. 2. Section 3 introduces the basics of FCA.
Section 4 describes the explanation algorithm and Sect. 5 evaluates the structural
properties of profile lattices. Section 6 concludes the paper and outlines the future
work.
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2 Related Work

Case based explanations have become an active area of research in the last
few years [21]. Even if most of the approaches use explanatory cases that do
not explain how the AI system has reached its solution (i.e. transparency), the
usefulness of explanatory cases as a support or justification of the results of a
twin black-box AI system has been demonstrated [24]. Applying explanations in
recommendation systems is an important area of research in this type of systems.
The main problem with recommendation systems is that users do not know
why a product has been recommended to them. Recommender systems that use
explanations improve user confidence in those recommendations [25]. In addition,
users consume more products that are the result of the recommendations that
are explained to them [12].

In previous work [8] we have proposed the use of FCA to help knowledge
acquisition and refinement and to help the CBR processes. We studied how
the use of FCA can support the task of discovering knowledge embedded in a
case base. FCA application provides an internal sight of the case base conceptual
structure and allows finding regularity patterns among the cases. Moreover, FCA
lattice supports classification based retrieval processes and extracts dependence
rules between the attributes describing the cases, that is useful to guide the
query formulation process. Given a query, the concept lattice allows accessing
all the cases that share properties with the query at the same time so that they
are grouped under the same concept. In [7] we used FCA to elicit knowledge
from the case based including dependencies between attributes. In the proposed
general explanation framework we also explore these dependencies and the maxi-
mal groups of items are useful as explanation knowledge. Since its origin in early
80s [27] FCA has became a popular human-centred tool for knowledge repre-
sentation, data analysis and knowledge discovery with numerous applications.
Ontology engineering and big data and their analysis attracted the attention of
some researchers using FCA to find the pattern structure and its visualisation
[23]. We are not aware of any work using FCA to generate explanations.

3 Formal Concept Analysis

FCA is a mathematical approach to data analysis based on the lattice theory
of Birkhoff [5]. It provides a way to identify maximal groupings of objects with
shared properties, and enables formalisation of concepts as basic units of human
thinking and analysing data in the object-attribute form. This is a clear charac-
teristic of recommender systems where there are items described by properties.
Even for collaborative filtering approaches based on collecting ratings there are
object-attribute knowledge about the items.

FCA application provides with a conceptual hierarchy, because it extracts
the formal concepts and the hierarchical relations among them, where related
items are clustered according to their shared properties. The lower in the graph,
the more characteristics can be said about the items; i.e. the more general con-
cepts are higher up than the more specific ones. In this paper, we propose using
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Table 1. Sample set G with 6 movies

Movie Id. Movie title Director Genre Actors Year

223 Clerks Kevin Smith Comedy Jason Mewes
Jeff Anderson

1994

231 Dumb & Dumber Peter Farrelly Comedy Lauren Holly
Teri Garr

1994

235 Ed Wood Tim Burton Biography,
Comedy Drama

Johnny Deep
Martin Landau

1994

110 Braveheart Mel Gibson Biography,
Drama, History,
War

Mhairi Calvey
James Robinson

1995

151 Rob Roy Michael Caton-Jones Adventure,
Biography

Liam Neeson
Eric Stoltz

1995

1 Toy Story John Lasseter Adventure,
Animation,
Comedy,
Family, Fantasy

Tom Hanks Jim
Varney

1995

this conceptual structure as the knowledge base of an explanation framework for
recommender systems. In the proposed general explanation framework we also
explore dependencies between attributes and metrics on the lattices as explana-
tion knowledge (see Sect. 4.2).

We first briefly review the basics of the FCA technique. See [8] for a descrip-
tion of our previous work on FCA to elicit knowledge from CBR systems. We
refer the interested reader to [11,23] for a complete description on FCA and its
applications.

A formal context is defined as a triple 〈G,M, I〉 where there are two sets G
(of objects) and M (of attributes), and a binary (incidence) relation I ⊆ GxM ,
expressing which attributes describe each object (or which objects are described
using an attribute), i.e., (g,m) ∈ I if the object g carries the attribute m, or m
is a descriptor of the object g. With a general perspective, a concept represents a
group of objects and is described by using attributes (its intent) and objects (its
extent). The extent covers all objects belonging to the concept while the intent
comprises all attributes (properties) shared by all those objects. With A ⊆ G
and B ⊆ M the following operator (prime) is defined as:

A′ = {m ∈ M |(∀g ∈ A)(g,m) ∈ I} B′ = {g ∈ G|(∀m ∈ B)(g,m) ∈ I}

A pair (A,B) where A ⊆ G and B ⊆ M , is said to be a formal concept of the
context 〈G,M, I〉 if A′ = B and B′ = A. A and B are called the extent and the
intent of the concept, respectively.

It can also be observed that, for a concept (A,B), A′′ = A and B′′ = B, which
means that all objects of the extent of a formal concept, have all the attributes
of the intent of the concept, and that there is no other object in the set G having
all the attributes of (the intent of) the concept.
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Fig. 1. Example of applying FCA: cross table

Example. We illustrate how to apply FCA to a set G of objects containing
6 movies. The set is described in Table 1, where the selected attributes are the
columns in the table. The binary (incidence) relation I ⊆ GxM is represented
by the cross table in Fig. 1. Figure 2 shows the Hasse diagram of the concept lat-
tice resulting of the FCA application1. Each node represents a formal concept of
the context, and the ascending paths of line segments represent the subconcept-
superconcept relationship. The lattice contains exactly the same information
that the cross table (Fig. 1), so the incidence relation I can always be recon-
structed from the lattice.

In Fig. 2 the attributes from the intent are inside grey box labels and the
objects from the extent are inside white box labels. A lattice node is labelled
with the attribute m ∈ M if it is the upper node having m in its intent; and a
lattice node is labelled with the object g ∈ G if it is the lower node having g
in its extent. Using this reduced labelling, each label (attribute or object name)
is used exactly once in the diagram. If a node C is labelled by the attribute
m and the object g then all the concepts more general than C (above C in the
graph) have the object g in their extents, and all the concepts more specific than
C (below C in the graph) have the attribute m in their intents. This way, the
intent of a concept in a Hasse diagram in Fig. 2 can be obtained as the union
of the attributes in its grey-boxed label and attributes in the grey-boxed labels
of the concepts above it in the lattice. Conversely, the extent of a concept is

1 Conexp tool (https://sourceforge.net/projects/conexp/).

https://sourceforge.net/projects/conexp/
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Fig. 2. Example of applying FCA: Hasse diagram of the Lattice.

Table 2. Dependency rules examples extracted from lattice in Fig. 2

GEN: Drama → GEN: Biography

GEN: Adventure → YEAR: 1995

YEAR: 1994 → GEN: Comedy

ACT: Liam Neeson, ACT: Eric Stoltz , DIR: Michael CatonJones → GEN: Biography, YEAR: 1995

ACT: Mhairi Calvey, ACT: James Robinson, GEN: War , GEN: History, DIR: Mel Gibson → GEN:

Drama, YEAR: 1995

ACT: Martin Landau, ACT: Johny Depp, DIR: Tim Burton → GEN: Drama, YEAR: 1994

obtained as the union of the objects in its white-boxed label and objects in the
white-boxed labels of the concepts below it in the lattice.

Besides the hierarchical conceptual clustering of the objects, FCA cap-
tures knowledge about the co-appearance or associations between attributes.
A dependence rule [8] between two attribute sets (written M1 → M2, where
M1,M2 ⊆ M) means that any object having all attributes in M1 has also all
attributes in M2. We can read the dependence rules in the graph as follows:

– Each line between nodes labelled with attributes means a dependence rule
between the attributes from the lower node to the upper one.

– When there are several attributes in the same label it means that there is a
co-occurrence of all these attributes for all the objects in the sample and we
can infer co-dependence rules.

For example, in the lattice of Fig. 2 we find a dependence between nodes E and
B meaning that, in the set of items used to build the lattice, all the Drama
movies are also Biographies (GEN: Drama → GEN: Biography). Table 2 shows
some of the dependency rules.

The operation classify(i) returns the formal concept C in the lattice that
recognises all the attributes that describe i. For example, given a movie m
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with known attributes [GEN: Comedy , ACT: Tom Hanks], m is classified in
the concept A because it is the lower concept where all the given attributes are
fulfilled. The concept J does not recognise the individual as an instance because,
even if it has the attribute [ACT: Tom Hanks], there are other required attributes
[GEN: Fantasy , GEN: Family , GEN: Animation,..] that m should fulfil.

4 FCA-Based Explanation Algorithm

A collaborative filtering approach recommends items based on users’ past
behaviour and ratings. However, it lacks from an explicit aggregated model of
the user preferences and the capability of explaining their results. We propose
building the user profile lattice with the user personal best rated items. This
lattice can be used as a model to explain the user profile and the diversity of her
preferences. This explanation allows the self-comprehension of the user profile
based on her ratings (Sect. 4.1) or understanding why a certain movie has been
recommended (Sect. 4.2). The explanation lattice is computed for each user and
it is reused for different recommendations.

Our approach to generate explanations is general and applicable to differ-
ent recommendation domains. It uses a set of the user ratings and the item
properties to generate the FCA lattice based on the best rated items, and gen-
erates personalised explanations for each particular user profile. The FCA-based
explanation algorithm (see Algorithm 1) allows us to organise the knowledge on
the user preferences and obtain the vocabulary to explain the user profile and,
according to this profile, why an item has been recommended using either the
item-style explanation, which includes the similar items rated by the user; the
property-style explanation, which describes the properties from the formal con-
cepts; and the dependency-style explanation, that includes the description of the
association rules elicited by the FCA. The general process runs as follow:

Step 1 Selection of the Mu (attributes) and Gu (items) sets used to build the
lattice (details of selection strategies selg and selm in Sect. 5.2).

Step 2 Apply FCA and evaluate and refine the resulting lattice.
Step 3 Choose between explaining the user profile (details in Sect. 4.1) or

explain a specific recommendation (rec), so we classify rec to gener-
ate more specific explanations (details in Sect. 4.2).

Step 4 Explanations are generated from textual templates filled with the cor-
responding elements obtained while travelling the lattice item-style,
property-style, dependency-style.

The different styles of explanations can be combined. In the property-style
explanation we show the intent of the formal concepts that explains the prop-
erties that make these items be grouped together. In the item-style explanation
we show the extent of the formal concepts. It shows items that are somehow
similar according to the maximal groups. Association (or dependency) rules are
very interesting pieces of knowledge, difficult to see at first sight from the items,
and very useful for explanations.
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Algorithm 1. Travelling the lattice to build Explanations
Input: Gu, Mu, Iu, rec, selg, selm
Output: Expl-item, Expl-property, Expl-dependency

1 Gu
′ = selg(Gu)

2 Mu
′ = selm(Mu)

3 Ret = FCA(Gu
′,Mu

′, Iu)
4 Cr ← Ret.classify(rec) ‖ TOP
5 Expl-item ← {traverseLevels(Cr.extent) }
6 Expl-property ← {traverseLevels(Cr.intent) ) }
7 Expl-dependency ← {obtainRules(Ret) }

Table 3. Example of selected best rated items for user u

Movie Id. Movie title Director Genre Actors Year Rating

594 Snow White

and the Seven

Dwarfs

William

Cottrell

Animation, Family, Fantasy,

Musical

Adriana Caselotti

Lucille La Verne

1937 5.0

596 Pinocchio Norman

Ferguson

Animation, Family, Fantasy,

Musical

Mel Blanc

Cliff Edwards

1940 4.5

588 Aladdin Ron

Clements

Adventure, Animation,

Comedy, Family, Fantasy,

Musical, Romance

Robin Williams

Scott Weinger

1992 5.0

364 The Lion King Roger

Allers

Adventure, Animation,

Drama, Family, Musical

Matthew Broderick

Niketa Calame

1994 5.0

317 The Santa

Clause

John

Pasquin

Comedy, Drama, Family,

Fantasy

Judge Reinhold

Peter Boyle

1994 3.5

34 Babe Chris

Noonan

Comedy, Drama, Family Miriam Margolyes

Roscoe Lee Browne

1995 4.0

158 Casper Brad

Silberling

Comedy, Family, Fantasy Eric Idle

Cathy Moriarty

1995 3.0

48 Pocahontas Mike

Gabriel

Adventure, Animation,

Drama, Family, History,

Musical, Romance

Christian BaleIrene

Bedard

1995 5.0

We have generated a user profile using the items in Table 3. The correspond-
ing lattice is shown in Fig. 3 and it will be used as running example in the
following subsections.

4.1 Explanation of the User Profile

The user profile and the corresponding explanations are personalised for each
user because the item set G′

u used to generate the lattice are selected from the
user ratings. In the example, Table 3 represents the selected best rated items
and attributes for a certain user G′

u and M ′
u. We apply FCA and generate the

corresponding lattice (Fig. 3). According to the general Algorithm1 described
in Sect. 4 we propose a property-style explanation that travels the lattice, level
by level, from top to bottom. Note that the label [GEN: Family , LAN: English]
in the TOP concept means that all the movies in G′

u have these properties
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Fig. 3. User profile lattice Ret = FCA(G′
u, M ′

u, Iu) with G′
u M ′

u and Iu in Table 3

Table 4. Example Property-style explanations for the user profile in Fig. 3

Level 0 “All your high scored movies share GEN: Family LAN: English”

Level 1 “Most of your high scored movies are GEN: Drama or GEN: Comedy”

“Would you like to see them?” (item-style)

“Your movies in GEN: Drama are: 590, 364, 317, 34, 48” (Extent of concept)

“Your movies in GEN: Comedy are: 588, 317, 34, 158” (Extent of concept)

“Most of your high scored movies are COUN: USA”

“Would you like to see them?” (item-style)

“Most of your high scored movies are YEAR: 1995”

“Would you like to see them?” (item-style)

Level 2 “Some of your high scored movies are GEN: Musical, GEN: Animation or GEN: Fantasy”

and, therefore, all the concepts below TOP inherit the property. The property-
style explanation can be combined with item-style explanations by retrieving
the extent of a certain concept. In the example, the user chooses when to see
the specific items. The textual explanation generated for this user profile will
employ different templates for each level in the lattice of Fig. 3, as described in
Table 4.

In addition to property-style explanations we can also use complementary
dependency-style explanations, which provide association between attributes in
G′

u. Dependency-style explanations are very useful to help the user to understand
her profile and refining the scoring if the user disagrees with any of the extracted
rules. Note that transitivity could be applied between rules and that some of the
explanations are redundant with respect to the property-style explanations on
the same lattice. Table 5 shows some examples of dependency rules between
attributes in the lattice of Fig. 3 and the corresponding textual explanations.
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Table 5. Dependency-style explanations generated for the user profile in Fig. 3

GEN: Comedy → GEN: Family, LAN: English

“All your high scored movies that have GEN: Drama have also GEN: Family and LAN: English”

GEN: Animation, GEN: Musical → COUN: USA

“All your high scored movies that have GEN: Animation and GEN: Musical have also COUN: USA”

GEN: Adventure → GEN: Animation, GEN: Musical

“All your high scored movies that have GEN: Adventure have also GEN: Animation and GEN: Musical”

GEN: Romance → GEN: Adventure

“All your high scored movies that have GEN: Romance have also GEN: Adventure”

GEN: Drama → GEN: Family

“All your high scored movies that have GEN: Drama have also GEN: Family”

. . .

Note that the textual templates for explaining dependency rules fill the gaps
using the rule (Left/Right) Hand Sides (L/R)HS): “All your high scored movies
that have” LHS “have also” RHS.

4.2 Explaining a Recommendation

Besides explaining user profiles, the FCA lattice can be used to explain a rec-
ommendation, i.e, why a particular item has been recommended over others.
Step 3 in Algorithm 1 classifies an item rec in the lattice by its properties. Then,
we build an item-style or property-style explanation using the concept Cr that
recognises the object rec.

As we described in Sect. 3, rec is classified in the lattice –classify(rec)–
if any of lattice concepts recognises all rec properties. In [7] we proposed a
classification based retrieval method, where a partially defined query is classified
in the FCA lattice that organise the case base. We proposed a query completion
process based and the use of dependency rules that helps to complete the query
towards similar cases. We cannot apply this method here because rec is not a
partially defined query, but a complete individual with all its properties. Note
that the classification process fails if none of the formal concepts recognises all
the properties in rec.

An easy approach would be rebuilding the FCA lattice using {Gu ∪ r} and
generating the explanations using Algorithm1. Depending on the size of the for-
mal context and the optimisation of the FCA implementation that could become
inefficient. As an alternative, we propose using each property separately, com-
pleting with dependency rules when possible and generating partial explanations.
For example, if the recommender systems recommends item 223, whose proper-
ties are [GEN: Comedy , YEAR: 1995 , (...)], we can generate the explanations
detailed in Table 6 using the properties one by one.

5 Evaluation

In order to evaluate the possibilities of the FCA lattice to provide explanations
we have analysed several descriptive metrics. These metrics let us conclude the
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Table 6. Explanations of a recommendation based on properties of the proposed item.

“This movie is recommended to you because of the GEN: Comedy property” (property-style)

“The recommended movie shares the property GEN: Comedy with 588, 317, 34, 158” (Extent of concept)

(item-style)

“The recommended movie shares the property YEAR: 1995 with 34, 48, 158” (Extent of concept)

(item-style)

feasibility of the method for a real dataset and discuss the potential quality of
the explanations according to them. Concretely, we have combined two popular
datasets. The first of them is the MovieLens dataset [14]. This dataset contains
100,000 ratings made by users in the MovieLens recommendation system. The
second dataset contains the features of 5000 movies extracted from IMDB2.
The features of the movies used in the evaluation are: genres, directors, actors,
screenwriters and the decade in which they were released. The metrics defined
to analyse the lattice are:

Num. Nodes (N) represents the number of nodes in the lattice. It includes
top and bottom nodes. We can measure the number of nodes with respect to
the number of items used to generate the lattice. It allows us to measure the
proportion between the nodes in the lattice and the number of items used to
generate it.

Level Width (LW ) is the highest number of nodes in a lattice level. It repre-
sents the maximum width of the lattice.

Depth (D) measures the length of the longest path from bottom to top of the
lattice. Width and depth allow to study the distribution and the diversity/ho-
mogeneity of the attributes in the items of the user’s profile.

Branch Factor (BF ) measures the average number of children for the nodes
in the lattice.

First, we have analysed the global behaviour of the lattices when varying the
number of movies used to create them. Later, we have studied the behaviour of
the lattices when using two different approaches for selecting the movies. Next,
we discuss both evaluations and their impact in the quality of the explanations.

5.1 Global Behaviour of the FCA Lattices

This first evaluation aims to explore the features of the lattices with respect to
the number of movies used to create them. This way we can figure out the optimal
number of movies required to create the lattice that provides the explanations
and analyse the global behaviour of lattices regarding diversity, homogeneity
and complexity. To perform this evaluation we have chosen randomly 100 users
and generated their lattices with a fixed number of movies (from 2 to 75). These
movies are the best rated by the user. Then for each number of movies we average
the results of the 100 users.

2 https://www.imdb.com/.

https://www.imdb.com/
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Fig. 4. Lattice properties analysis w.r.t. the number of movies |G′
u| (x-axis)

Figure 4 summarises our findings. The first chart (Fig. 4(a)) shows the rela-
tionship between the number of nodes of the lattices and the items used to create
them. As expected, the lattice grows as the number of items increases. However,
it saturates around |G′

u| ∼ 20 and starts decreasing. This way, we can conclude
that it is the optimal size to compute the user’s lattice.

Then, Figs. 4(c) and (d) describe the behaviour of the width and depth met-
rics. The decrease of the lattice size as the number of items is greater than
approximately 20, makes this ratio to slightly slow down after that value in the
case of the width metric. The depth metric stabilises completely for large lat-
tices. As this metric is associated to homogeneity of the user preferences, results
clearly denote that larger profiles are more heterogeneous because they became
wider but depth value is stabilised. If we analyse the width/depth ratio we can
clearly obtain that conclusion. For example, lattices built with |G′

u| = 20 items
are on average 3 times wider.

Finally, Fig. 4(b) shows the branch factor. Here we can a observe a behaviour
similar to the depth ratio. Increasing the number of items does not imply a linear
raise of the complexity of the lattices, i.e., the number of intermediate nodes
representing shared properties does not raise proportionally.

Once we have analysed the global behaviour of the lattices we can evaluate
the item selection strategies used to create them.
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Table 7. Averaged results of the selection strategies.

Metric selbestg sel20g

Num. Nodes/Num. Movies 3.711 3.611

Depth/Num. Movies 0.270 0.336

Width/Num. Movies 1.078 1.101

Branch factor/Num. Movies 0.087 0.111

5.2 Item Selection Strategies

Before applying FCA we select the item’s attributes and the subset of movies
from the user’s profile that will be analysed. It is the first step of the general
process outlined in Sect. 4 and represented as the selm and selg functions in
Algorithm 1.

The selection of the item’s attributes (selm) is a simple process that depends
on the domain. In our example we can discard the id and title attributes as they
cannot be used to classify the movies in the lattice.

However, there are several alternatives for selecting the movies used to com-
pute the FCA lattice (selg strategy). As we have concluded from the previous
evaluation, 20 is approximately the optimal number of movies to generate the
FCA lattice. Therefore, we could select the 20 movies with the maximum score,
select them randomly, use a stratified selection according to the rating values,
etc. On the other hand, we could ignore this fixed number of items and imple-
ment an alternative with all the items with a high score. In order to evaluate
the impact of this selection method we have computed the previous metrics for
every user but selecting items according to the following strategies:

selbestg : Select all the items with score >= 4 stars.
sel20g : Select the 20 items with the maximum scores.

From selbestg and sel20g , we are able to compute two lattices, respectively, for
each user. Our goal to compare the properties of both lattices using the previous
metrics. However, we cannot compare them directly as the number of items
used to generate the lattices ((|G′

u|)) is different. Therefore, we will normalise
every metric (nodes, wide, depth and branch factor) according to the number
of movies. Again, we have randomly chosen 100 users that have watched more
than 20 movies. The mean number of movies rated by these 100 users is 40.20.

To summarise the achieved results, we have averaged every metric for the
whole set of users. Results are shown in Table 7. Analysing this table we can
conclude that both approaches got very similar results. To analyse the non-
aggregated results we have generated the graphs in Fig. 5. Here, we compare the
difference obtained by every metric, once has been normalised, between the pair
of lattices generated for each user. Therefore, every column represents sel20g −
selbestg . Columns have been ordered according to the difference value to be able
to compare which is the the winning strategy. Beginning with the number of
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Fig. 5. Differences in the evaluation of every user using both selection strategies (sel20g −
selbestg ). Every metric has been previously normalised w.r.t. the number of movies.

nodes shown in Fig. 5(a), it is slightly balanced to the selbestg method (there
are more negative values). It means that this selection strategy provides items
that generate larger lattices. Regarding the width of the lattices, Fig. 5(b), it is
quite balanced. However, Fig. 5(c) shows that the sel20g method obtains deeper
lattices, associated to homogeneous profiles. It makes sense as this strategies
retrieves the best rated items for the user, and they are usually quite similar.
Finally, we cannot conclude any significant result regarding the branch factor
because the magnitude of the differences is too low.

6 Conclusions and Future Work

In this paper, we have proposed the use of Formal Concept Analysis to help
finding the knowledge structure of the user profiles in recommender systems and
how to use this knowledge as explanation knowledge for the system. We have
proposed a FCA-based explanation approach to organise the knowledge about
users’ preferences in a lattice that helps to obtain the vocabulary to explain why
an item is recommended using other either similar items (item-style explana-
tions) that the user has rated or similar properties (property-style explanations)
with the best rated items for that user. Additionally, the user profile lattice itself



Explanation of Recommenders Using Formal Concept Analysis 47

can be employed as a form of scrutability of the recommender system, where the
user understands which profile is inferred by the system according to her ratings.

We have analysed a set of user profile lattices according to their structural
properties and the next step is to evaluate the explanations with real users.
Besides, the study of lattice metrics and properties opens a line of future work
where we plan to study further the different types of user profiles in terms of
their rating behaviours, both in quantity and distribution of the rating values.
Our hypothesis is that the number of ratings and the distribution of the rating
values would affect the structural properties of the user profile lattice. For this
reason we should test with different methods to refine the way the set of items
(G′

u) employed to generate the user profile are chosen. Similarly, we would like
to test different ways to select the set of properties (M ′

u) that will be used to
generate the lattice and, therefore, the explanations.
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Abstract. This paper introduces FLEA-CBR, an alternative approach
for composition of case-based reasoning (CBR) processes. FLEA-CBR
extends the original 4R (Retrieve, Reuse, Revise, Retain) CBR cycle with
a flexible order of execution of its main steps. Additionally, a number of
combinatorial features for a more comprehensive and enhanced compo-
sition can be used. FLEA is an acronym for Find, Learn, Explain, Adapt
and was initially created to solve the restrictiveness issues of case-based
design (CBD) where many existing approaches consist of the retrieval
phase only. However, the methodology can be transferred to other CBR
domains too, as its flexibility allows for convenient adaptation to the
given requirements and constraints. The main advantages of FLEA-CBR
over the classic 4R cycle are the ability to combine and activate the main
steps in desired or arbitrary order and the use of the explainability fea-
ture together with each of the steps as well as a standalone component,
providing a deep integration of Explainable AI (XAI) into the CBR cycle.
Besides the CBR methods, the methodology was also conceptualized to
make use of the currently popular machine learning methods, such as
recurrent and convolutional neural networks (RNN, ConvNet) or gen-
eral adversarial nets (GAN), for all of its steps. It is also compatible
with different case representations, such as graph- or attribute-based.
Being a template for a distributed software architecture, FLEA-CBR
relies on the autonomy of implemented components, making the method-
ology more stable and suitable for use in modern container-based envi-
ronments. Along with the detailed description of the methodology, this
paper also provides two examples of its usage: for the domain of CBR-
based creativity and library service optimization.

Keywords: CBR cycle · Distributed CBR · Explainable AI ·
Adaptation · Case-based design · Artificial neural network ·
Software architecture
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1 Introduction

In case-based reasoning (CBR), the historical development of the research area
established the 4R cycle [2], that consists of the consecutive steps Retrieve,
Reuse, Revise, and Retain, as the main underlying structure for implemented
and theoretical approaches that explicitly identify themselves or were designated
by researchers as CBR-based. Quickly after its introduction in 1994, the 4R cycle
became a widely accepted synonym for case-based reasoning and is referenced
nowadays in nearly every CBR-related research work.

Generally, two types of such CBR research works exist nowadays: one-step-
specific and generative application. The works of the first type deal with only
one of the R-steps (where Retrieve and Reuse make up the majority) and are
rarely created for one specific domain, providing improvement of a universally
applicable method. In contrast to the first type, the generative application of
the CBR cycle is usually conceptualized for a specific domain (often including
the related domains as well), taking the CBR cycle as a whole and using all of
the R-steps to build a CBR-based solution for a specific problem of the domain.
Sometimes this type is combined with other AI methods providing the so-called
hybrid approaches. Both types have in common that they do not try to modify
the complete CBR cycle and adapt it to own purposes, instead the 4R cycle is
used “as is”. These modifications, however, exist and make up the third, very
rare, type of CBR-related research: the explicit modifications of the classic CBR
cycle. The reasons for development of such modifications are different, but can
mostly be narrowed to the (partial) incompatibility of the application domain
in question to the original order of execution of 4R and/or to the restrictions of
the domain that allow for execution of a subset of the four R-steps only.

In this work, we present FLEA-CBR, a methodology for modification of the
original CBR cycle, whose aim is to bring more flexibility to the cycle structure
and to offer an alternative underlying approach for systems where the four R-
steps may not or cannot be applied subsequently in the original order. FLEA
is an acronym for Find, Learn, Explain, and Adapt. These four components
represent the main functionalities of the methodology. Main features of FLEA
are the possibility of standalone usage of the components as well as the arbitrary
combination of them and the deep integration of Explainable AI (XAI) into the
cycle making it an equivalent step among the already existing ones. FLEA was
conceptualized for the domain of case-based design (CBD), however, its flexibility
allows for application to other domains as well. The only requirement is that the
case representation types of the domain(s) are compatible with FLEA-CBR.

This paper is structured as follows: first, we present work related to the
research topic of this paper, i.e., the modifications of the 4R CBR cycle. We
show differences between hybrid CBR approaches and cycle modifications and
present an overview of selected modifications. In the following Sect. 3, FLEA-
CBR’s core components and features are presented in detail. In Sect. 4, existing
and theoretical example usages of FLEA-CBR are presented for the domains of
CBR-based creativity and library service optimization respectively. Finally, an
outlook to the future of the methodology concludes this work in Sect. 5.
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2 Related Work

The explicit modifications of the original order of execution of the four R-steps
have a long tradition in CBR, being present after the 4R cycle started to gain
its popularity. However, it is important to mention that this rare type of CBR-
related research should not be confused with the hybrid CBR approaches, i.e.,
those that combine CBR with other machine learning techniques or related meth-
ods. The examples of such hybrid approaches can be found in combination with
deep learning [6], genetic algorithm optimization [21], or support vectors [11].
Additionally, an overview of such combinations [28] provides an entry point
to start research into these approaches. The hybrid approaches mostly do not
change or adapt the cycle itself, whereas the CBR cycle modifications explicitly
edit the 4R cycle: for example, an additional step can be appended or prepended
to the cycle, or one or more of the existing steps can be replaced by other steps,
combined into a single step, or managed by an additional non-CBR module,
such as an artificial neural network (ANN). The following Table 1 provides a
comparison of selected CBR cycle modifications that either explicitly identify
themselves as a ‘modification’ or provide enough evidence to count as such, i.e.,
edit the cycle as described above. The approaches that were proposed as modi-
fied CBR cycles, but in fact are hybrid systems, were not considered. Besides the
descriptions of the respective approaches and the corresponding cycle modifica-
tions, this comparison also provides information on suitability of the approach
for universal use and if it implements explainability features.

Table 1. An overview of selected CBR cycle modifications. U stands for the universal
type of use, DB for domain-bound use. XAI stands for explainability/explainable AI.

Description Publication Modification U/DB XAI

CBR-based recipe
recommender system

Skjold and
Øynes [36]

Second Retrieve in
ephemeral case base betw.
Reuse and Revise

DB No

Recipe generation with
CBR and deep learning

Grace et al. [16] Dual-cycle CBR DB No

CBR real-time planning
for industrial systems

Navarro et al.
[25]

Starts with learning
(Revise+Retain)

DB No

Decision support with
neocortex imitation

Hohimer et al.
[18]

Exec. order: Reason, Retain,
Review, Revise

U No

Tagging+ retrieval of
similar code passages

Roth-Berghofer
and Bahls [34]

Explain +Customize replace
Reuse+Revise

DB Yes

Reorganization of the
case bases

Finnie and Sun
[14]

Repartition betw. Reuse and
Revise

U No

Maintenance of CBR
systems

Reinartz et al.
[29]

Review and Restore after
Retain

U No

Oceanography forecasts
with CBR and ANN

Lees and
Corchado [23]

ANN governs Reuse and
Revise

DB No
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Interpreting the Table 1, we can conclude that certain similarities between
hybrid approaches and cycle modifications exist, in some cases it is also hard
to tell if the given approach is of hybrid type or an explicit modification. Both
types are mostly used for a specific domain or task. The universal approaches
contained in Table 1, such as the neocortex imitation [18], the intermediate reor-
ganization of case bases [14], or the 6R cycle [29] that adds the maintenance steps
Review and Restore to 4R, build the minority. Another example is the real-time
intelligent decision support [12], which, however, was not included in the com-
parison, as it makes the human operator responsible for Retain and provides no
adaptation, restricting the CBR process to the retrieval phase only.

The obvious problem of cycle modifications is that no methodology exists
that is universal as well as flexible in terms of execution order. Other problem is
the lack of XAI features. The only exception is the approach [34] that, however,
provides explanations only for results of the retrieval phase.

3 FLEA-CBR

This section describes the FLEA-CBR methodology in detail and compares it to
the 4R cycle in terms of flexibility and universality of use. First, the problem of
non-flexibility of the 4R cycle will be described, after that an overview and each
of the R-steps will be compared to its approximate counterpart of FLEA-CBR.

3.1 Problem Description

During the last decades, the 4R cycle (see Fig. 1) became an ubiquitous part
of case-based approaches that mostly improve one of the R-steps or apply the
cycle to the given domain to produce a complete CBR-based solution to the given
problem space (see also Sect. 1). However, one of the main problems of the 4R
cycle is that it requires the consecutive execution of the R-steps in order to work
properly and to be used for the problem space as a suitable solution approach.
This problem also precludes the 4R cycle from being more universal and forces
the applications to follow the only available order (Retrieve → Reuse → Revise
→ Retain) and to be non-flexible in terms of selection of the currently required
step. This issue is also valid for the contemporary alternatives to the 4R cycle,
such as the cycles presented by Hunt [20] or in Leake’s work [22]. Changing the
order of execution might result in reassessment of the complete approach and
in the subsequent decision of the developers of the system to use methods other
than case-based. A number of modified execution orders and the nevertheless
existing problems and issues were already listed in Sect. 2.

A major technical flexibility problem of the 4R cycle and the majority of its
modifications is that the retrieval step is required in all application cases and all
other steps depend on its results. While many problems of many domains can
be solved with this order and restrictions (for example, in the classic domains
of CBR, such as mechanical engineering tools diagnosis or medical applications
[19]), other domains, especially those that make use of creativity (for example,
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architecture or game development), may require other, more complex and custom
orders that may not look reasonable to humans but are completely understand-
able and executable by the machines.

Another main structure-related issue is that, while being simulated from
human thinking and reasoning abilities, the 4R cycle and its contemporary alter-
native cycles also follow the human methods of experience-based decision mak-
ing. This is reasonable if the computer should make decisions that the humans
can relate to, but computers are generally more flexible in that regard and should
not be restricted to one order only and should be able to decide autonomously
which order is the most suitable for the current problem space. Therefore, espe-
cially case-based reasoning should provide more high-level features, for example
to mix the steps and allow for repeating of some, if necessary.

Fig. 1. FLEA-CBR in direct comparison with the 4R cycle.

3.2 Overview and Background

To overcome the issues described above and to make it possible for affected
domains to make more use of CBR, we developed the methodology FLEA-CBR
that introduces flexibility to the usage of the CBR features and allows for mix-
ing, repeating, sequencing, or cycling (further referred as FLEA’s core features)
of the steps Find, Learn, Explain, and Adapt (further referred as FLEA’s core
components). FLEA-CBR was created in research context of MetisCBR [7], a
framework for distributed case-based decision support during the early concep-
tual phases in architecture, that can find similar spatial configurations and con-
textually explain the retrieval results, suggest the next design step, and evolve
the current design state to show how it can look in the future.

In the following sections the four core features of FLEA-CBR are described
first, after that the four core components are presented. In Fig. 1, a high-level
overview of FLEA-CBR and its direct comparison to the 4R cycle are available.
Figure 2 demonstrates examples of core feature usages. Figures 3 and 4 contain
feature usages for real domains.



54 V. Eisenstadt et al.

Fig. 2. Core features of FLEA-CBR.

3.3 Core Features

Mixing. This feature is crucial for FLEA-CBR’s flexibility advantage as it
allows for breaking the original 4R order and mix the mains steps in the order
that is necessary for the domain or just for trying out and find the best option.
Mixing can be done by a human operator as well as by a machine, e.g., a ‘par-
ent’ CBR cycle. In Sect. 4, all examples are mixed and demonstrate how this
action provides the FLEA-CBR implementation with the flexibility advantage.

Repeating. The goal of this functionality is to allow for continuous re-execution
of a step with a predefined or arbitrary count of executions, e.g., to try other
configuration options or different methods within one cycle run. This feature
makes the CBR process with FLEA more fine-grained and exact, but also versa-
tile in terms of selection of the most suitable method. This core feature can be
executed with specific high-level frameworks, such as Keras [9] for deep learning.
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Sequencing. This feature introduces the possibility of summarizing of
(repeated) steps into sequences that can be used for similar domains or tasks.
Unlike repeating, the sequences are more symbolic, i.e., do not contain infor-
mation about exact methods or approaches applied, and can consist of different
steps. This gives the system designers freedom to decide which methods are the
most suitable, but preclude them from changing the execution order, transfer-
ring only the structure of the sequence. Along with Mixing, Sequencing bears a
close resemblance to the original 4R cycle.

Sub-cycling. This feature introduces FLEA-CBR sub-cycles that can be used
to encapsulate certain sequences and use the final outcome only in the parent
cycle. Sub-cycles’ goal is to increase the likelihood of possibly useful outcomes
that, however, might be helpful or reused later in the parent process. That is,
the sub-cycles can be skipped or executed asynchronously. Furthermore, sub-
cycles can also be configured by the parent cycle. Technically, sub-cycles were
added to the FLEA-CBR features in order to add a higher compatibility to the
modern microservices-based software architectures. They can be executed in a
dedicated container with methods that totally differ from other sub-cycles in
terms of execution time or system resources usage.

3.4 Find

FLEA-CBR’s Find step is the approximate equivalent of the Retrieve phase of
the 4R cycle. Its main task is to search in the given collection of the domain cases
(the case base) for entries with the highest similarity to the received problem
description (query). However, generally, Find differs from Retrieve in the way
that it can receive queries or requests from other FLEA-CBR modules or sub-
cycles and forward them to modules other than Reuse in the format suitable for
this module or sub-cycle.

Beyond the retrieval of the most similar cases, Find can also be used for look-
ing for contextual connections between a subset of the data collection entries in
order to provide the user or a FLEA-CBR application with information about
how these entries, i.e., cases, are related to each other. In theory, it is also possible
to integrate Find as a simple full text or image search engine to perform a com-
mon precision-recall-based information retrieval process, however, the modules
that receive the results should be able to work with them, e.g., infer similarity
values when necessary. All the retrieval methods described above can be com-
bined and/or executed consecutively using the Repeating feature.

Context of Usage. When used as an intermediate step between other steps
or modules, it is advisable to provide the FLEA-CBR sequence that contains
Find with information on the execution context, e.g., the domain, in order to
select the most suitable retrieval or matching method. This information can be
received from the Learn or Explain component. Similarly to Retrieve, Find can
also be used as an entry point to the case-based reasoning process.
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3.5 Learn

The Learn step of the methodology was developed to enrich the FLEA-CBR-
based approaches and applications with abilities of making reasonable conclu-
sions based on features of the cases and predicting contextual and relational
connections between them, but also to implement the retaining techniques that
govern how and why the cases should be saved in the application’s case col-
lections. Therefore, the Learn step can also be seen as an approximate further
development of 4R cycle’s Retain and a high-level interface for gathering and
combining the learning strategies and case preservation methods. To accomplish
these tasks, Learn is conceptualized to make use of the modern deep learning
methods, such as recurrent neural networks based on LSTM [17] or GRU [8],
convolutional neural networks, or Generative Adversarial Networks (GAN) [15].
However, the established CBR learning methods such as Instance-Based Learn-
ing [4] can be used as well. A combination by using a subset of these technologies
is possible too, e.g., in the Repeating feature (see Sect. 3.2).

Context of Usage. Learn can be used in context of classification of cases into
different categories for later saving in this category’s case base (if the application
or approach make use of distributed architecture with multiple case bases). It
can also be used in the CBRs usual context of judging if the case is save-worthy
or not. On application’s entry point level Learn can separate the initial case set
into different clusters based on separations conducted for similar case sets. Inter-
mediately, Learn can function as a bridge between other modules (i.e., activated
each time after Find, Explain, or Adapt) to draw conclusions from the results
of the respective step and inform the subsequent module about its findings in
order to influence its behavior and produce a more reasonable outcome.

3.6 Explain

The current development of the research area of artificial intelligence emphasizes
the increasing requirement of the AI systems to include a component or module
that implements an algorithm that is able to explain the behavior and decisions
of the system during the current operation. Based on this increasing need, a
research area of Explainable AI (XAI) has emerged and resulted in a number of
corresponding research initiatives, such as the well-known DARPA Explainable
AI program and a multitude of thematic workshops, such as IJCAI XAI work-
shops [5] or the XCI workshop [27]. One of the most recent research works, a
comprehensive guide to XAI in machine learning applications by Molnar [24],
shows the future directions of XAI and provides instructions and best practices
for its implementation. Furthermore, a survey on XAI [3] can be examined.

In case-based reasoning, the requirement for proper explanations was exam-
ined before the 4R cycle was first introduced [1]. However, the development of the
XAI area in CBR concentrated mostly on simplistic explanations (i.e., the why-
and how-explanations), as pointed out in foundational issues of explanations
in CBR [33]. The cognitive explanations, that extend their explanation space
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beyond the simplistic questions and whose task is, inter alia, to provide answers
to the questions of relations between results of operations (e.g., retrieval) or con-
textual connections between concepts, were rarely implemented. This problem
extends to the most systems and approaches from other AI domains. Being very
complex systems (which especially relates to the decision support systems), they
are not always able to explain their behavior to the user. The reasons for this
are either the non-transparent reasoning process, which could be implemented
on purpose this way (e.g., in a black-box API), or a system design that does
not allow for explanation interfaces to be implemented and/or connected. The
latter problem is more common: many systems were constructed without having
in mind the importance of an explicit explanation module, i.e., conceptualized
and implemented before XAI emphasized the importance of such functionalities.

With FLEA-CBR’s Explain, we intend to provide the systems that use the
methodology as their underlying structure, with a high-level approach that can
combine, select, and apply different types of explanations in order to compose
an algorithm that can give insights into the behavior of this system. As a stan-
dalone component, Explain is the main structural difference between 4R and
FLEA-CBR. Its inclusion in the methodology as a particular step of the rea-
soning process is based on the XAI importance described above. The main goal
of Explain is to build connections that can provide a structure for exchange of
explainable data between the modules and sequences of a FLEA-CBR imple-
mentation and the user. In particular, we differentiate between the internal and
external types of explanations that can be handled and produced by Explain:

– Internal – This type of explanations is intended for internal use between the
components. The data transferred within these explanations does not have
to be human-readable, as its goal is to provide the receiving module with a
foundation for its reasoning process.

– External – The explanation data of this type is delivered to the user providing
her with the corresponding information. It is up to the system designer as
well as depends on the domain how the explanations will be presented. Many
of the systems use textual explanations (e.g., Roth-Berghofer and Bahls [34],
see Sect. 2), however, graphical or audiovisual explanations can be produced
too. The most important fact to have in mind is that XAI is a matter of
user experience and system usability too, therefore, explanations should be
designed in a way that is most familiar to the target group.

Both explanation types can be final as well as temporal. The final expla-
nations provide a finite state where the expression or data cannot be modified
anymore and represents the final output of the Explain module implementation.
This type can be used for static modules that do not update their state with
new results, i.e., do not run iteratively to improve the results, e.g., use only the
Mixing feature (see Sect. 3.3). In contrast to the final ones, the temporal expla-
nations can be changed over time and are more suitable for systems that are
able to run iteratively or apply a number of concurrent processes. Hence, the
temporal type allows for continuous update of explanations making the systems
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more dynamic and their mode of operation more asynchronous. Such approaches
would most likely use either Sequencing or Repeating features for their systems.

Context of Usage. The necessity to use Explain can be found at any point
in the runtime of the system where a component needs to send or receive data
required for justification or transparency of its actions. In structural CBR sys-
tems, for example, local similarities on the attribute level can be used to produce
a detailed transparency report that makes clear how the overall similarity value
for the case has been calculated. This report can be filled iteratively with tem-
poral explanations constructed for different similarity measures. In textual CBR
systems, Explain can be used for labeling of the most important text passages
providing, for example, the Learn module with information about those pas-
sages in order to learn the class of the text or transfer the labeling information
to the current domain. As a standalone component, Explain can also be used
separately, e.g., to explain differences between selected cases.

3.7 Adapt

Adaptation of selected cases, being a core feature of case-based reasoning, has
also found its way to FLEA-CBR. Similarly to Find and Learn, the step Adapt
inherits the original task of its approximate 4R equivalent Reuse, i.e., the modifi-
cation of cases according to the adaptation rules, and extends it with additional
operations to catch up with the currents trends in AI. Adapt unifies methods
for both transformation-based and generative adaptation [37] together with the
data augmentation, completion, and generation approaches.

Additionally, Adapt is responsible for automatic revision of transformed
cases, i.e., it imitates the Revise step of the 4R cycle in order to rate the helpful-
ness of adaptation and to decide if the transformation has a potential to solve the
given problem. For this special case, a combination of Adapt and Explain seems
reasonable: with Explain’s abilities to construct a human-readable expression an
explanation can be delivered to the user informing her about possible solution
transformation and application.

Context of Usage. Besides the classic usages of Reuse named above, Adapt can
be used for the currently very frequently executed tasks of data augmentation
and data generation. Both tasks are required in applications where the available
amount of data is small and can be extended and/or enhanced with augmentation
or generation to produce the amount required for application to work properly
or to be able to conduct experiments with a prototype of the approach.

4 Example Usages

The following examples intend to demonstrate how the dynamic structure of
FLEA-CBR would (in theory and practice) outperform the static structure of
4R on problem spaces that are suitable for solving with the CBR methods.
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4.1 CBR and Creativity

The first example and at the same time the showcase of FLEA-CBR is the
problem space of the CBR and creativity domain. Among the CBR community,
this notation normally subsumes the application of CBR to the human creativity-
related tasks, such as architecture [31] and computer-aided design (CAD) [26]
(both are usually summarized as case-based design, CBD), cooking [10], knitting
[30] or similar domains. The common problem space of all these sub-domains of
CBR-based creativity can be narrowed to the following characteristics:

1. The complexity of cases – Mostly, the cases available in the case bases of the
creativity domain applications and approaches have a complex, very often
nested, attribute-value-based structure. Knowledge described with these cases
is comprehensive and many cases differ only in small details. An example of
such case is a CAD model that consists of many parts combined together or a
floor plan with many differently shaped rooms. As a result of such complexity,
the 4R cycle may take a very long time to finish its process.

2. Adaptation is not available – The use of CBR knowledge containers (case
bases, adaptation knowledge, similarity measures, vocabulary) [32] qualifies
an approach as CBR-based. However, quite often the adaptation knowledge is
not available in CBR creativity applications due to the lack of the adaptation
feature. Such approaches are often restricted to retrieval only leaving the user
without creative solution recommendations or an adaptation to the styles of
other designers (style transfer).

FLEA-CBR’s ability to run tasks in parallel and partially can solve such
problems without being modified or adapted specifically, the only important
fact to have in mind is that a suitable configuration of FLEA-CBR is required.

For example, using a configuration with the Sub-cycling feature, the FLEA-
CBR-based application can divide the execution of the whole cycle into separate
sub-cycles in order to provide each of these sub-cycles with a part or a layer of
the complex case. The sub-cycles would run concurrently and asynchronously
and speed up the process, without waiting for the previous process to finish. For
each part or layer a modification of the case into other representation can be
provided as well using it as input for an adaptation approach that can work with
this type of data. More specifically, the Generative Adversarial Nets (GAN) [15],
as an artificial neural network type that was specifically created for generation
of objects that would appear real to a human and also accepted as such, can
be used as an adaptation approach for creativity cases, provided that it receives
input data in the proper format. As adaptation knowledge the data transferred
with Learn from other domains and accepted generated objects can be used.
Additionally, Learn can suggest the proper next actions of the current creativity
process. In Fig. 3, an example implementation of FLEA-CBR for the creativity
domain is shown. This example is based on the only existing and evaluated
[13,35] implementation of FLEA-CBR: namely, in the framework MetisCBR for
support of floor plan design process (see also Sect. 3.2). The figure demonstrates
the current state and the planned further development of the framework.
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Fig. 3. FLEA-CBR implementation in MetisCBR [7]. The modules that are currently
in early stage of development are represented with a slight transparency. The dark
gray group with Learn and Adapt, that produces possible design evolutions with GAN,
represents the Sub-cycling feature. The double Find group represents Repeating.

4.2 Library Service Optimization

The second example demonstrates how the optimization of the scientific library
service process can be achieved with a FLEA-CBR-based software architecture.
For demonstration purposes, an everyday process of recording of bibliographic
items, e.g., scientific monographies, and the following item borrowing process
from the library’s stock will be used. We do not assume a specific case repre-
sentation, but the case itself, i.e., the bibliographic item to be recorded, can be
incomplete or in foreign language. The general tasks of the planned system in
this particular case can be summarized as follows:

1. Automatic translation of the item – If the item is not in the language(s) of
library’s country then it should be translated for correct keyword extraction
and, if required, transliterated to be readable by the library staff and users.

2. Looking for similar items in case bases of items – This task subsumes the
search for similar items and the subsequent completion of the given item, if
some information is missing.

3. Entry and search in the knowledge graph – Usually, a catalogue search would
be used instead, however, taking the current scholarly information processing
trends into account, we replace it with a knowledge graph.

Additionally, the XAI features, that provide the results of the tasks named
above with human-understandable justifications to receive confirmations or cor-
rections from the user and to proceed with the next step, can also be used.

The task of the FLEA-CBR implementation is to guide the human opera-
tor during the item recording process: suggest the best way of transliteration
based on the item’s language, fill up the missing information based on similar
previous cases, insert information into the knowledge graph, suggest catalogue
categories and a signature, and track the item’s status (borrowed, not returned
etc.). Figure 4 demonstrates the possible FLEA-CBR configuration for this use
case.
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Fig. 4. FLEA-CBR configuration example for a library service optimization. The pink
group represents the Sequencing feature where information about incomplete parts
can be transferred from other librarian records categories (e.g., periodical publications).
The green group represents Sub-cycling, i.e., searching and status tracking of the record.
(Color figure online)

5 Conclusion and Future Work

In this paper, we presented FLEA-CBR, an alternative approach to the well-
established 4R (Retrieve, Reuse, Revise, Retain) cycle. FLEA-CBR’s core com-
ponents Find, Learn, Explain, and Adapt can be executed in order desired or
suitable for the current domain or task, unlike the 4R steps that require the exe-
cution in the predetermined order, starting with Retrieve. FLEA-CBR’s goal is
to solve this flexibility issue, that the 4R itself and its contemporary alternatives
and modifications possess. Furthermore, the FLEA methodology makes the XAI
component an equivalent and ubiquitous part of the CBR cycle. Additionally,
FLEA-CBR offers a number of features that extend the flexibility of the cycle:
Mixing, Sub-cycling, Sequencing, and Repeating. The suitability of FLEA-CBR
for use as the underlying structure for CBR approaches was demonstrated in an
evaluated existing approach for CBR-based creativity and a theoretical appli-
cation for the library service domain. Future plans for FLEA-CBR include, for
example, an implementation of a symbolic programming framework for proto-
typing of applications that are based on the methodology and conducting of new
experiments for existing implementations to further confirm the methodology’s
suitability for use as the underlying software architecture.
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Abstract. The transition from traditional paper based systems for
recruitment to the internet has resulted in companies in getting a lot
more applications. A majority of these applications are often unstruc-
tured documents sent over email. This results in a lot of work sorting
through the applicants. Due to this, a number of systems have been
implemented in an effort to make the screening phase more efficient.
The main problems consist of extracting information from resumes and
ranking the candidates for positions based on their relevance.

We develop a system that can learn how to rank candidates for a posi-
tion based on knowledge obtained from earlier screening phases. This
Candidate Ranking System (CRS) is based on Case-based Reasoning,
combined with semantic data models. The systems performance is eval-
uated in conjunction with a large international Job company and a soft-
ware company in an actual recruitment process.

Keywords: Candidate ranking · Human resources · Recruitment

1 Introduction

Traditionally recruitment has been separated into to the following three main
steps: (i) Sourcing, (ii) Screening, and (iii) Selection. The sourcing step is where
the candidate list gets filled with potential candidates. The sourcing step has
traditionally been solved in a passive way, by using ads in papers and more
recently over the internet. However exceptions include the use of recruitment
agencies as some of these tend to actively seek out candidates via their online
persona. Screening is the second step of the recruitment process. This is also the
step that we want to focus on in this study.

The screening step is where you have a group of candidates for a job and you
want to sort them from most suitable to least suitable. In the area of screen-
ing there are several assessment suites and tests that can be performed, each of
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these claiming that they can tell something about how the candidate will per-
form. We will however mostly stick to a slightly earlier phase of the screening,
before resources are spent requesting tests. In the job market today, many of
the job-applications come in as emails containing CV, cover letter and an appli-
cation text. Some companies offering attractive positions can get hundreds of
applications, some of which are not even relevant. This is where we would like
to put our focus, using Case-based Reasoning to do some pre-screening in order
to reduce the human resource usage.

2 Related Work

A body of work already exist on the screening process. In addition to different
approaches to this there are also existing semantic resources available to help
recruiters and automatic systems. This section covers the relevant existing body
of work, as well as relevant semantic resources.

2.1 Existing Approaches to Screening

Kessler et al. has over the course of several studies developed the “E-Gen” sys-
tem, a Natural Language Processing (NLP) and Information Retrieval (IR) sys-
tem [12–15]. The system uses Support Vector Machines (SVM) to analyse the
content of a candidate’s email.

Faliagka et al. [10] uses analytical hierarchy process (AHP) to rank candidates
based on information from Linkedin and text mining on personal blogs. In [8]
they take this further, comparing a set of learning to rank methods in their
ability to predict relevance for candidates compared to a human recruiter. In [6]
they add a taxonomy to distinguish between certain ICT skills.

Gil et al. [17] presented a solution based on machine learning. Their solution
is able to approximate a function for determining the distance between two
resumes or a resume and a job description. They define the distance as a set
of replacement, deletion and insertion costs on the attributes in a resume. The
attributes are identified using the International Standard of Occupations (ISCO)
taxonomy. Machine learning is used to train a model of these (replacement,
deletion, and insertion costs), by comparing a resulting list with a list created
by a human recruiter.

Kmail et al. [16] uses NLP and semantic resources to extract and relate can-
didate concepts from job descriptions and resumes. Another approach is intro-
duced in [18]. It introduces an “Emotional Aptitude Evaluation Module”. The
idea is to measure the applicants’ emotional intelligence based on their twitter
posts.

A CBR approach is presented in [21]. In their approach they represent jobs
and job seekers as a set of attributes (Gender, Age, Race, State/geographic loca-
tion, Qualification, Grade point average, etc.). A feature vector representation
approach with feature similarity is used. The system was tested by a selection of
employers and they were asked to fill out a questionnaire. The results from the
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questionnaire showed that the employers think that they could be more effective
using the proposed system.

In the study by Salazar et al. [20], a CBR system using an ontology as
representation is proposed. The study explores the use of the HR-XML standard
for representing CVs. In their system, the CBR is implemented as an agent in
a multiagent environment. They use a small part of HR-XML to represent a
candidate’s CV and job offers. This limits their systems ability to do detailed
comparisons.

Siting et al. [22] survey different recommendation-system approaches applied
in the job domain. These range from systems using collaborative recommenda-
tion that recommends jobs that similar profiles have liked, to bilateral recom-
mendation systems that are able to provide recommendation to both job seeker
and employer. The systems covered in this study are mostly approaches used in
the early job portals in combination with information retrieval techniques.

2.2 Existing Semantic Resources

There are several existing ontologies defining information relevant for the job
market. Among these is the European Skills, Competences, Qualifications and
Occupations (ESCO) ontology has been specifically developed to aid in develop-
ing suggestion systems, job search algorithms and job matching algorithms. This
ontology includes modules that contain elements such as occupations, knowl-
edge, skills, competencies and qualifications. These modules are combined with
the hierarchy specified in the ISCO to form a useful ontology that can be used
for classification purposes.

The data model of ESCO is structured into three main pillars: (i) The
occupations pillar; (ii) The knowledge, skills and competencies pillar; and (iii)
The qualifications pillar. The three pillars are interlinked. Skills can be both
attributed to an occupation as required skills, and to a qualification. This makes
it easy to query for skills required for a certain occupation, and also makes it
easy to query for occupations that require a certain skill.

The occupations pillar should not be confused with jobs, jobs are not covered
by ESCO. An occupation is a grouping of jobs that require the same type of
skills and involve similar tasks, while a job is a set of tasks and duties meant
to be executed by one person [19]. Each occupation is linked to their own set of
metadata as well as as an ISCO-08 code. The ISCO-08 code can be used as a
hierarchical structure for the occupations pillar.

The ISCO standard divides all occupations into ten major groups. In the
current version of the ESCO classification [19], ISCO provides the top four levels
for the occupations pillar. ESCO occupations are located at level five and lower.

The skills pillar consists of both knowledge, skills and competencies. There
are in total 13,492 skill concepts in ECSO v1. The ESCO classification uses
the following definitions for skill, knowledge and competence, taken from [4]:
Knowledge) The body of facts, principles, theories and practices that is related
to a field of work or study. Knowledge is described as theoretical and/or factual,
and is the outcome of the assimilation of information through learning; Skill)
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The ability to apply knowledge and use know-how to complete tasks and solve
problems. Skills are described as cognitive (involving the use of logical, intuitive
and creative thinking) or practical (involving manual dexterity and the use of
methods, materials, tools and instruments); and Competence) The proven ability
to use knowledge, skills and personal, social and/or methodological abilities in
work or study situations, and professional and personal development.

Like for the competence pillar, each skill concept in the skill pillar con-
tains a set of useful metadata that both describe the skill and its context. The
data includes the type of skill and a relation to a broader skill. The relation-
ship between knowledge, skills and competences has been captured to a certain
degree.

In addition to the meta-data mentioned above, skills are assigned a reusabil-
ity level. The reusability level can be either transversal, cross-sector, or sector-
specific. Transversal skills are relevant to a broad range of occupations and are
often referred to as core skills. Cross-sector skills are relevant across several eco-
nomic sectors, but not as general as the transversal. A sector-specific skill is used
in a specific sector, but can be used in a many occupations within that sector.

The skills hierarchy is divided into five major categories: thinking; language;
application of knowledge; social interaction; attitudes and values. Dividing the
skills into this hierarchy makes it easier to use ESCO in certain situations, such
as in a CV creation situation.

The qualifications pillar is intended to become a comprehensive listing of
all the qualifications that are relevant for the European labour market. ESCO
includes qualifications both directly and indirectly. The indirect-inclusion is
based on data gathered from EU countries’ national qualification databases.
Some occupations can have mandatory skills on a national level or skills that
are optional.

3 Design and Implementation

The implementation presented here approaches the screening problem by imple-
menting a CBR system for ranking candidates applying for jobs. The section
details the case representation, the similarity functions, and gives a brief overview
of the implemented CBR cycle. MyCBR is used for implementation1.

3.1 Case Representation

The case-base is represented uses an object-oriented representation. The chosen
representation has full support in the MyCBR Framework and is based on two
main types of relations (is-a, part-of ).

The representation is divided into concepts, attributes and relations. In our
representation we have six concepts: Skill, Language, Education, Occupation,
Candidate, and Job. Each of these concepts have their own set of attributes.
Figure 1 depicts the case representation.
1 http://www.mycbr-project.org/index.html.

http://www.mycbr-project.org/index.html
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Fig. 1. A diagram of the case representation

The concepts used to build the case representation reflect the main part of the
information gathered from candidates linked to the information made available
by the ESCO Ontology described above. As an example, each instance of the
Skill concept will have been reported in as part of our data collection and it
will have a link to a ESCO skill resource URI, if the skill exist in the ESCO
Ontology.

3.2 Similarity Functions

The case representation consists of several concepts, each of these concepts has
a set of attributes. These attributes are of varying importance when it comes
to identifying the concept itself. Due to this, each concept has its own global
similarity measure, also called an amalgamation function. Each of these amal-
gamation functions will be used to collect the similarity of each of the concept’s
attributes into a global similarity measure.

In Fig. 2 the amalgamation function of the Skill concept is depicted. The
purpose of this function is to combine the two local similarity function of Skills
attributes. Skill contains two string attributes, each of these use a cosine string
similarity function. Cosine similarity was chosen to limit the variables involved in
the systems performance, allowing focus on the gains from lazy learning (CBR).
Techniques such as NLP would potentially improve the system overall. From the
SkillAmalgamation function you can see that the skill attributes are weighted
differently, with name being twice as important as broaderSkill. From ESCO
we have that each Skill can have a broader-skill, this broader-skill property
is shared by many similar skills, some more similar than others, therefore the
broaderSkill attribute gets a lower weight.
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Candidate Skillpart-of Name: String

BroaderSkill: String

SkillAlmalgamation StringSimilarityCandidateAlmalgamation

SkillAlmalgamation

Amalgamation: 
WeightedAverage
Name: 1.0
BroaderSklll: 0.5

Similarity function Similarity functionSimilarity functionSimilarity function

Fig. 2. Amalgamation function combining local similarity measures using weighted
average

Local Similarities. The concepts in the case representation (see Fig. 1) each
have their own set of attributes. The attributes consist of the types String,
Symbol, Integer and using a concept as an attribute. The attributes with Integer
as type is part of the solution concept. We do not include the solution itself into
the similarity measure during retrieval. The other attribute types are String,
Symbol and Concept, String attributes use a string similarity function based on
cosine similarity with trigrams. Concepts used as attributes will convey their
local similarity measures through their amalgamation function.

For some of our attributes we setup and configure unique symbolic similarity
function. This is true for the degreeLevel attribute of the education concept, a
screendump of this symbolic function can be seen in Fig. 3.

We structured the symbolic function for the degree level to prefer job queries
looking for lower degrees when a similar level is not available. In the event that
a company is looking for a Phd to fill a vacancy they will generally have a
slightly different approach compared to when looking for a Master’s candidate.
For instance: grades and academic accomplishments will usually not be used
to differ between Phd level candidates, while this can still be important when
looking at candidates at the Master’s level. We decided to reflect this in our
symbolic function by making it asymmetric and weighting BSc and MSc closer
compared to the Phd level.

When modeling the symbolic similarity function of the level of language
competency it decided to give solutions with a higher competency criteria a
slight bias, should the queried level not exist. This is reflected in the symbolic
function seen in Fig. 4.

Fig. 3. A screendump of the MyCBR Workbench modeling the degree level symbolic
function



70 E. Espenakk et al.

Fig. 4. A screendump of the MyCBR Workbench modeling the language level symbolic
function

Table 1. Amalgamation function
Education concept

Attribute Weight

Disipline 1.0

Degree level 0.5

School 0.25

Table 2. Amalgamation function
Skill concept

Attribute Weight

Name 1.0

BroaderSkill 0.5

Table 3. Amalgamation function
Language concept

Attribute Weight

Name 1.0

LanguageLevel 0.75

Table 4. Amalgamation function
Occupation concept

Attribute Weight

Name 1.0

BroaderOccupation 0.5

Global Similarities. All the concepts in our representation that has more than
one attribute requires some form of global similarity measure. The global simi-
larity measure is used to combine the local similarities, in this project weighted
average has been used with adequate results. Each of the concepts will have their
own set of tweaked weights, this weight is based on the current knowledge of the
authors as well as some testing in MyCBR Workbench.

The Education concept has three attributes, (degree level, discipline, and
school). Discipline was found to be the most important attribute, with degree
level coming in second. School could be important for some companies, therefore
it is left in the model. Table 1 displays a table of the weights in the education
amalgamation function.
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Table 2 describe the skill amalgamation function. The BroaderSkill
attribute has only one third of the total weight. This way a similar skill name will
have much higher priority than one that only matches a broader skill, and the
instance where both name and broader match have the highest similarity. Both
the skill name and the broader skill use our default string similarity function.

Finally, Tables 3 and 4 describe the amalgamation functions for the Language
concept and Occupation concept, respectively.

3.3 The CBR Cycle

This implementation follows the traditional four step CBR process of: Retrieve,
Reuse, Revise, and Retain [1].

Retrieval is carried out using the similarities described above. It is implemented
using the MyCBR library.

Reuse is carried out as a process that resembles direct reuse but with some
simple adaption rules.

When the adaptation starts the first step involves stripping the case for
superfluous attributes. As an example, if we query for a job with the skills
“Programming” and “User interface design”, if the closest case also contains a
entry for Language “English, Native or bilingual proficiency” then the adaption
will remove this superfluous language attribute. This leaves the two skills and
their respective weights.

attributes
Insert missing 

attributes
Apply default weights 

to new attributes
Case

Adapted 
case

Fig. 5. Diagram of the adaption behaviour

The adaptation mechanism deals with models, it takes as input the model
used as the query and the model retrieved. It follows the behaviour in Fig. 5.
If the case being adapted has a low similarity, below 50% then the adaptor
attempts to query ESCO for suggestions. This is only possible if the job query
has an ESCO occupation as part of the experience job criteria.

Revision. The revision phase of the CBR system has been separated out from
the core implementation and is implemented client-side. The revision process
itself has borrowed some ideas from the Conversational CBR retrieval/query
building phase. We hypothesised that this is a good solution considering that
in a sense our cases are “filter settings/ranking strategies” and to improve/edit
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a ranking strategy requires some visual feedback in how the list of ranked can-
didates change depending on the strategy used. Therefore a “Conversational”
approach is implemented to guide the users into creating or editing a case, which
is the strategy/weights used to rank the candidates for the relevant job position.

Retention. In the initial training and experimentation phase of this project,
the size of the case base is not expected to be issue. Thus, all revised and
validated cases that are not already 98% equal to an already existing case are
being retained.

4 Test and Evaluation

The evaluation plan includes training the system, testing it on real world recruit-
ment data, and comparing the results with the results of a human expert. This
method of evaluation has been used with other studies [6,7,9,11,18], all of these
focusing on ranking/screening candidates in recruitment. Mentioned by [16], the
weakness of this is that candidates selected by the human expert does not nec-
essarily represent the best list. To explore this further, an additional informal
experiment has been designed, inspired by the Turing test [23].

The Turing test inspired experiment is simple, human recruiter is given a
job description and some lists of candidates. They are then asked to rank these
lists based on the suitability of their proposed candidates and also with a focus
on the list’s ranking. Participants in a Turing test does not know if they are
chatting with an AI, in our test the recruiters do not know which of the lists are
created by an algorithm.

The experiments are all carried out in cooperation with a large international
company working with job listing and career information, denoted job company ;
and a national software company as part of their recruitment process, denoted
business. The collection module was integrated into the platforms of two com-
panies. Combined a total of 476 candidates were collected using the collection
module, distributed in two separate databases.

4.1 Setup

The ranking system is evaluated against data collected from real and simulated
recruitment scenarios. The system compares against the information retrieval
ranking algorithm Okapi BM25, as suggested in [11]. The Okapi BM25 is a good
baseline for determining the performance of learning techniques as this is one of
the common bag of words based information retrieval techniques. Okapi BM25
is readily available, provides consistent results and has been used as a baseline
in previous studies.

In a study by Arnulf et al. [2], it was found that the layout of CVs had
a measurable degree of influence on the decision of recruiter. They found that
for the same candidate, when their resume was structured in a formal way the
candidate was twice as employable as compared to when their resume had a
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more creative layout. Because our system does have access to the same layout
information we have decided to remove resumes that do not follow the formal
layout described in [2].

We have also decided to remove information about gender, age and ethnicity
to limit the amount variables. The field study [3] found indications of a gender
bias in resume evaluation. Findings from the study [5] indicates the existence of
an ethnicity bias in the screening of resumes.

In order to have expertise evaluation, we contacted and chose a variety of
recruiters that had experience with screening and scoring candidates. However,
there’s not a single answer key for each scoring. We therefore asked each of the
evaluators to write down which list they found most relevant. In addition, they
should also write a comment to justify their selection. The last step we asked
them for was to give us their subjectively opinion of how many of the candidates
from each list they found to be relevant for the job position.

4.2 Experiment 1

A set of 40 jobs where taken from job company’s platform. These jobs were
selected within categories matching the most common education fields among
the candidates collected through the job company. From the set of 40 jobs, a
subset of 20 was chosen at random. The training module was then used by a
recruiter to create job queries and revise these according to the criteria found in
the 20 job ads.

The data-set used consists of four job positions selected by the authors from
the list of 20 jobs not used in training the system. For each job position we picked
30 applicants out of the 476 candidates harvested through the job company.
Resulting in four screening packages, each containing a job ad bundled with 30
applicants.

The four screening packages were distributed to four recruiters, each recruiter
belonging to a different company. From each of these screening packages a list
was produced by respective recruiter ranking the top 5 of the 30 applicants in
regards to the bundled job ad.

The same screening packages were also evaluated by our CRS, BM25 and
Random. Producing a total of four top 5 applicant lists per each of the four
jobs. A fifth list was added, this list was the top 5 applicants produced by the
recruiter and rearranged by the CRS. The resulting set of 4 jobs each bundled
with 5 different lists of top 5 screened applicants formed our evaluation packages.

The evaluation packages were sent out to the 4 companies participating in
the experiment. Each company were sent 3 of the 4 evaluation packages, the
excluded package containing the applicant list produced by a recruiter in the
company. Each of the Evaluation packages were bundled with a link to an online
form, enabling several recruiters from each company to participate.

An evaluation consisted of ranking the 5 lists of screened candidates from
best to worst, taking into consideration both the quality of the candidates and
the internal ranking in the list itself.
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Fig. 6. Results of the different ranking approaches

4.3 Experiment 2

Our business contact agreed to facilitate a real world recruitment scenario for
us. To this end they gave us access to the applicants for a position that they
were hiring for, the job description and the shortlist of top 25 candidates that
resulted after screening the 170 applicants. The job in question is a “Business
Intelligence Consultant” position.

The candidate ranking system was trained using a six month old recruitment
scenario in which the business hired a Data Analyst. The authors manually filled
in the resumes into the data collection module. Four months later the business
was hiring again, this time for a Business Intelligence Consultant. The authors
manually filled in the candidates CVs into the data collection module.

The original plan included using the entire corpus of 170 applicants in order
to measure precision and recall for top25. However due to time constraints a
compromise was made and only the top 25 candidates were used. To compensate,
the focus was shifted to the ordering of the list. The order of applicants in the
resulting lists are compared using both Spearman correlation and Discounted
Cumulative Gain (DCG). Using DCG the order of the most relevant candidates
account for more score than the rest.

5 Results and Discussion

5.1 Experiment 1

The combined results from all the evaluations can be seen in Fig. 6. As we
expected, the random list did not get favoured in any evaluation, we also
expected the HR list and the HR-CRS list to be relatively close. The combined
results seem to indicate that human recruiters would not necessarily prefer lists
created by other recruiters when stacked up against the CRS and Okapi. We
see that our CRS was placed first of the five lists (CRS, HR, BM25, CRS-HR,
Random) in 7 out of 14 evaluations for 4 different job cases, each of these cases
containing a list created by a unique human recruiter. In second place, we had
the HR.

The evaluators were asked in their opinion the number of relevant candidates
in each list. The number of relevant candidates over 14 evaluations: CRS with
53, HR with 52, BM25 came out a bit lower with 40 relevant.
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5.2 Experiment 2

Since the Spear-man Correlation coefficient does not distinguish the distance
between two positions in the ranking, we opted to utilize Discounted Cumulative
Gain. This method allows for several shades of relevance. The top 10 candidates
of the 25 had been called in for interviews. These were given a descending rank
from 10 to 1. The remaining 15 would account for 1 each.

Fig. 7. The correlation between Okapi BM25 and the Recruiter

Figure 7 shows the spearman correlation between the recruiter and Okapi
BM25. As we can see from the figure, Okapi shows in several cases to be close
for some positions. However, the coefficient turned out to be 0.1284. Comparing
the results with the CRS, we see from Fig. 8 that the correlation is stronger. The
CRS achieved a score of 0.65.

Fig. 8. The correlation between CRS and the Recruiter

Based on the correlation, we see that the CRS using CBR with modest train-
ing and näıve case adaptation is able to produce promising results when com-
pared to Okapi BM25. From Fig. 9 we see that the CRS scored a 80% versus the
BM25 score of 60%, the CRS was able to rank applicants deemed suitable by
the recruiter higher than BM25.
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Fig. 9. Discounted Cumulative Gain: Okapi BM25, CRS and Recruiter

6 Conclusion and Future Work

In this research we have developed, deployed, and evaluated our Candidate Rank-
ing System based on CBR. We have evaluated the system by comparing it to
Okapi BM25 as a baseline. The results gathered running our experiments show
the CRS consistently outperforming Okapi BM25. The amount of data gathered
is not ideal for drawing conclusions based on statistical significance. However
the results were produced with only a modest amount of training and using a
näıve case adaptation implementation. This shows promise for using lazy learn-
ing based techniques in candidate ranking applications. Lazy learning techniques
also have the advantage of not requiring a large amount of data to train upfront.

Though our CRS system achieved a higher overall evaluation than that of
the human experts. The results if anything, indicates that the evaluators did not
distinguish the lists produced by HR from the ones produced by CRS.

For future work we would like to look at the case description used in our
implementation, which does not consider directly the seniority of the position or
the company hiring. Expanding the case description would increase the system’s
ability to locally optimise. The current implementation requires integration in
the recruitment process. As a part of future work an approach using NLP to
extract information from CV’s could be used. A comparison of different case
adaptation techniques as the current adaptation is quite näıve.
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profiling system for ranking candidates answers in human resources. In: Meersman,
R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 625–634. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88875-8 86
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14. Kessler, R., Torres-Moreno, J.M., El-Bèze, M.: E-gen: automatic job offer process-
ing system for human resources. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI
2007. LNCS (LNAI), vol. 4827, pp. 985–995. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-76631-5 94
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Abstract. In machine learning and numerical optimization, there has
been an ongoing debate about properties of local optima and the impact
of these properties on generalization. In this paper, we make a first
attempt to address this question for case-based reasoning systems, more
specifically for instance-based learning as it takes place in the retain
phase. In so doing, we cast case learning as an optimization problem,
develop a notion of local optima, propose a measure for the flatness or
sharpness of these optima and empirically evaluate the relation between
sharp minima and the generalization performance of the corresponding
learned case base.

1 Introduction

Powered by a number of recent empirical successes, the field of deep learning
has become one of the most noticed sub-fields of artificial intelligence during
the past few years. Training deep neural networks means solving a complex,
non-convex optimization problem. Interestingly, gradient-based optimization of
such networks takes place in an over-parameterized setting, where the target
function has, in general, a vast number of local and multiple global optima.
All of them minimize the train error, but typically many of them generalize
poorly. Consequently, just minimizing the train error is merely adequate, since
a poorly chosen minimum may bring about bad performance on independent
test data. It has been generally accepted that the generalization capabilities
do implicitly depend on the algorithm used for minimizing the train error –
since that algorithm determines which minimum it gets attracted by – and it is
an ongoing debate to which extent properties of the attained minimum can be
indicative for generalization.

In this paper, we transfer these thoughts to case-based reasoning. After pro-
viding some background and pointers to related work in Sect. 2, we start by
searching for a related (optimization) problem in CBR and find one in the retain
phase where case base editing and maintenance can naturally be cast as a dis-
crete NP-hard optimization problem. Put simply, the question addressed here
is which cases from a given set of train cases shall be retained in the case base
c© Springer Nature Switzerland AG 2019
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and which not, while optimizing some objective function. In Sect. 3, we model
this problem formally and, for measuring an edited case base’s competence, we
derive an error function around which we center our further analyses made in this
paper. As a first contribution, we then develop four variants of two hill-climbing
case base editing algorithms (FHC and MHC) which, by design, are attracted
by a local optimum of the hitherto derived objective function. The second main
contribution of this paper follows in Sect. 4. There, we aim at characterizing an
edited case base configuration (and, hence, a possibly attained minimum in the
error landscape) as being “flat” or “sharp”. In so doing, we derive an appropriate
measure of sharpness which, informally speaking, approximates gradient infor-
mation in the near neighborhood of the edited case base to the extent that this is
feasible in the given non-continuous optimization task. The last part of the paper
(Sect. 5) is devoted to an empirical evaluation of our approach using a large set
of established classification problems. To this end, our hypothesis is that there
is some correlation between the sharpness of a case base configuration as defined
before and the generalization capabilities of the resulting case-based classifier. A
secondary objective also covered in our evaluation concerns the actual empirical
power of the hill-climbing case base editing schemes that we proposed in Sect. 3.

2 Background and Related Work

We start by providing some general basics as well as a nearly chronological, brief
survey on related work on issues that relate to maintaining case bases. We then
adopt an optimization point of view and briefly introduce some foundations on
function minimization including the notion of sharp and flat minima.

2.1 Case Base Maintenance and Instance-Based Learning

Case base maintenance (CBM [10]) is known for addressing two goals in case-
based reasoning: (1) controlling the number of cases in the case base and, hence,
avoiding a performance degradation due to outrageous growth and (2) assuring
a high competence of the case base. As a matter of fact, CBM is probably that
component of the CBR realm that bears the strongest1 relation to learning in
the classical machine learning sense. Issues of case base maintenance arise early
in almost any CBR system which is why this sub-field of CBR has attracted
so much attention during the past decades. Starting with the initial proposal of
the nearest neighbor rule [3] several authors subsequently aimed at reducing the
size of the set of stored instances [5,6,18]. Later, Aha and varying co-authors
proposed the family of instance-based learning algorithms (IBL [1]) where new
instances are stored subject to different criteria, as well as subtractive counter-
parts (e.g. [9]). Other approaches more intensively focused on the location of
retained instances, such as preferably keeping those near the center of clusters

1 Though learning can take place also in one of the other knowledge containers of a
CBR system, e.g. when learning similarity measures or adaption knowledge.
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rather than near to decision borders [20]. Another piece of work which – at least
from the algorithm’s name – suggests to be related to the algorithms we intro-
duce in Sect. 3.4 seems to be random mutation hill-climbing [15]. However, as
it turns out our algorithmic approach differs in various ways, most importantly
as we do not fix the case base size beforehand, such that the remaining com-
monality is the hill-climbing nature of the procedure. The family of decremental
reduction optimization procedures (DROP [19]) takes the opposite approach and
iteratively decides which cases to delete from a case base without deteriorating
competence (cf. Sect. 3.4.3 for more details on this). In another line of research,
Smyth and varying co-authors approached the problem of case base size limi-
tation using the notion of coverage and reachability of cases [16], concepts that
were later exploited by the COV-FP [17] and ICF [2] algorithms. Finally, the idea
that case base maintenance represents an optimization problem with multiple
goals to be pursued simultaneously appears most pronounced in [14].

2.2 Sharp and Flat Minima of an Error Function

Given some real-valued function f over some domain X, f is said to have a
minimum at m ∈ X, if there exists some ε > 0 such that f(m) ≤ f(x)∀x ∈
X with dX(x,m) < ε where dX measures the distance of x and m. The idea
of characterizing minima as sharp or flat has received much attention in the
literature especially in the context of the recent rise of deep learning systems
[4,8,12], but dating back at least to the seminal work of Schmidhuber [7]. A
flat minimum mf is said to be a point where the function f varies slowly in a
relatively large neighborhood of mf . By contrast, a sharp minimum ms is a point
where the function f increases rather strongly in the near vicinity of ms. While
exact numerical values for measuring the sharpness of a minimum would strongly
depend on the scaling of the function f and its inputs as well as on the definition
of what a large neighborhood or near vicinity means, it is intuitive that the large
sensitivity of a sharp minimum (little changes to ms yield strong changes to f)
may negatively impact the generalization capabilities of the system. Even if an
exact numerical score of the sharpness of a minimum may not be as informative
in itself, it still may be important when selecting between different minima,
e.g. two minima m1 and m2 with f(m1) = f(m2), but with strongly different
levels of sharpness. Figure 1 aims at visualizing this issue conceptually in a one-
dimensional space [8]: The function f to be minimized (as it may stem from a
set of given training samples) is shown with a solid line, whereas the ground
truth g, i.e. the true relation to be learned as it may be represented by a (large)
independent set of test data, is depicted with a dashed line. While both, the
flat and the sharp minimum have the same training performance, the testing
performance, i.e. the generalization capability, of ms is much worse.

3 Case Base Maintenance as Optimization Problem

In what follows, we aim at an in-depth analysis of what it means for a CBR
system to “learn cases” (or to delete some), bridging the gap to issues such as
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Fig. 1. Visualization of Sharp vs. Flat Minima: The abscissa shows the domain of the
search space, the ordinate shows the value of the error function.

optimization, minima found during optimization, generalization, and analyzing
the implications for (more or less) established CBM strategies.

3.1 Case Base Editing Problem

Let us denote the set of all cases as M and, as usual, each case c = (p, s) ∈ M
be composed of a problem part p ∈ P and a solution part s ∈ S, i.e. M = P ×S.
Now assume, we are given a set T ⊂ M of training cases. Then, the case base
editing problem we are focusing on means finding a case base S as a subset of
T that features as much of the following properties as possible:

– S ⊂ T , i.e. S should be a (desirably small) subset of T for reasons of retrieval
efficiency

– S should be as competent as possible where competence is typically measured
as its problem-solving capability on a disjoint set U ⊂ M of test cases (i.e. T ∩
U = ∅)

From a global point of view, this setting gives rise to 2|T | possible configurations
for the resulting case base S since each c ∈ T can be either contained or not
contained in S, yielding the power set P(T ) of T as the search space. Needless
to say, that any CBM strategy described in the literature performs some kind of
search through that space P(T ), being guided either heuristically or by certain
performance criteria.

Definition 1 (Case Base Configuration). Given training cases T any non-
empty subset S ⊂ T represents a valid case base configuration (CBC) in the
context of case base editing, i.e. S ∈ P(T ).

Accordingly, searching the whole space of all case base configurations is
intractable in general, except for toy problems. However, this setting allows us
to develop an intuition for local versus non-local changes to a case base.

Definition 2 (Case Editing Operator). Given some case base configuration
S and a case c ∈ T , the case editing operator E : P(T ) × T → P(T ) returns a
new case base configuration S ′ such that

S ′ =

{
S \ {c} if c ∈ S
S ∪ {c} else
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Clearly, the change that E introduces to S is the smallest one possible – we
could also say, it is a local change to S –, since only the membership of a
single case c is swapped. By contrast, any case base S1 can be changed to any
S2 by applying a sequence of such atomic operations where the length of that
sequence is, informally, given by the Hamming distance of S1 and S2. Note that
Definition 2 is not tailored to data sets where a case is contained multiple times
in S.

3.2 Introspective Problem-Solving Quality

Different authors have employed different measures for the problem-solving qual-
ity of an edited case base. For example, Lupiani et al. [14] define a multi-objective
error function combining error, noise, and redundancy which is to be minimized
by an evolutionary algorithm, while Smyth and McKenna [16] center compe-
tence around the notion of coverage and reachability. A widespread measure for
estimating the problem-solving capability of a case base S is the leave-one-out
error (or accuracy) where each case c is used as query once using S \{c} as leave-
one-out case base (LOO [11,19]). Throughout the rest of this paper, we stick to
a slight modification of this established measure for case base competence due
to its simplicity and due to the fact that no further knowledge is needed (e.g. for
generating sample solutions) which eases the empirical evaluation.

Definition 3 (Leave-One-Out Train Error of a Case Base Configura-
tion). For a training set of cases T = {c1, . . . , c|T |} with each case ci = (pi, si)
consisting of a problem and solution part and for a given case base configuration
S, the leave-one-out train error is defined as

E
loo
T (S) =

1
|T | ·

|T |∑
i=1

1 − Correct(Adapt(Retrieve(S \ {ci}, pi), pi), si) (1)

In that definition, the Retrieve function performs case-based retrieval over the
leave-one-out case base S \ {ci} using pi as query. To this end, no restrictions
on the retrieval algorithm or the used similarity measures or the value of k in
case of a k-nearest neighbor retrieval are made. The Adapt function takes the set
of nearest neighbors returned by the retrieval and performs adaptation to form
a single unique suggested solution or does nothing, if no adaption knowledge
is available or necessary. Finally, that returned solution is checked against the
solution si of case ci whose problem part pi was used as query in the first place. If
function Correct finds that both solutions are identical (or sufficiently identical),
it returns 1, otherwise 0. In fact, we will focus on classical classification domains
in the remainder of this paper such that indeed no adaptation will be performed
and the correctness check is simplified to the matching of class labels. Also note,
the small difference to the standard LOO definition for case base competence is
that our measure iterates not just over the case base itself, but over all cases in
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the training set expecting to have a larger sample of the entire problem space
M. This is in compliance with the representative assumption for the competence
of case bases first proposed in [16].

3.3 Local Optima in Case Base Editing

The search space P(T ) of case base configurations comprises |T | dimensions,
along each of which only two values are possible (case is “in” or “out”). As a
consequence, a case base configuration S is a local optimum (minimum) in the
error landscape of P(T ), if

∀c ∈ T : E
loo
T (S) ≤ E

loo
T (E(S, c)) (2)

since E(S, c) on the right-hand side refers to a case base that represents a minimal
adaptation to S. Accordingly, a strict minimum is attained, if we replace the
less-equal sign by a strict less. Certainly, P(T ) is full of configurations S where
switching on/off a single case no further reduces the value of the error; in that
case S is a local minimum. Switching on/off a number of cases simultaneously
might, however, still bring about improvements. This is exactly what Lupiani
et al. [14] are exploiting using evolutionary algorithms where a “more global”
search through P(T ) can be done using crossover. By contrast, the hunt for a
global optimum (or a nearly optimal local one) is not our primary concern in
this paper. Instead, we are more interested in characterizing the properties of
different local minima. Therefore, in the next section, we suggest a number of
case base editing schemes, that are based on E

loo
T and that will, by definition,

find various local minima easily.

3.4 Hill-Climbing Case Base Editors

For analyzing the properties of local minima in case base editing more thor-
oughly, it is comfortable to have access to a way for generating such optima
easily. Thus, we suggest a set of greedy algorithms for case base editing, which
are – because they are hill-climbers – designed to converge to local optima in the
error landscape quickly. Besides, we also review a set of well-established case base
editing methods from the literature and discuss whether they yield local optima
of E

loo
T as well. We developed these algorithms mainly for reasons of analyzing

sharp/flat minima of the error function, being aware that they are unlikely to
yield a global optimum in the search landscape (unlike e.g. [14]). However, their
empirical performance matches up to the performance of a number of established
CBM methods that we implemented for the purpose of further analysis.

3.4.1 First Improvement Hill-Climber (FHC)
This algorithm is called FHC< and, similarly as IB2 or CNN (cf. Sect. 3.4.3),
starts out with an empty case base configuration S = ∅. It then iterates over all
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cases c in T and checks for the first case to fulfill the following condition:

E
loo
T (E(S, c)) < E

loo
T (S), (3)

i.e. the first case whose addition to or removal from the current case base config-
uration S reduces the leave-one-out train error over T . If such a case c is found,
the case editing operator E either adds or removes c to/from S (depending on
whether it was already contained or not). This procedure is repeated until there
is no more case in T for which Eq. 3 becomes true. Algorithm 1 shows pseudo-
code for an implementation of FHC<.

Input: training set T ⊂ M, Output: case base configuration S (S ⊆ T )
Strict variant FHC< Modification for non-strict variant FHC≤
1: S ← ∅, stop ← false
2: while stop = false do
3: stop ← true
4: for c ∈ T do 4: ...
5: if E

loo
T (E(S, c)) < E

loo
T (S) 5: if E

loo
T (E(S, c)) < E

loo
T (S) or

6: then (Eloo
T (E(S, c)) = E

loo
T (S) and c /∈ S)

7: S ← E(S, c) 6: then ...
8: stop ← false
9: quit for loop
10: return S

Algorithm 1: First Improvement Hill-Climber (variants FHC< and FHC≤)

A variation of FHC< is attained, if we replace the strict inequality in Eq. 3
by a less-equal comparison; this variant is named FHC≤ accordingly. Clearly,
FHC≤ will in general add more cases to the case base than FHC<. It is also
obvious that both variants will, due to their hill-climbing nature, be attracted
by a local optimum in the error landscape according to Eq. 3. From an algo-
rithmic point of view, one should take care that FHC≤ does not get trapped
in an endless loop due to the addition/removal of some “irrelevant” case whose
presence/absence does not alter E

loo
T . To this end, we decided to allow for a

non-strict comparison for the addition of a case and retain a strict change of the
error for removing a case (see right part of Algorithm 1).

3.4.2 Maximum Improvement Hill-Climber (MHC)
The main difference between FHC< and the maximum improvement hill-climber
MHC< introduced next lies in the selection of the next case that is added to
or removed from the current case base configuration S. While FHC< picks the
first case c ∈ T whose de/activation brings about an improvement of the train
error E

loo
T , MHC< performs an entire sweep over T and selects that c∗ that

yields the largest improvement.
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So, while the pseudo-code in Algorithm 2 seems quite compact, it hides part
of its complexity in the arg min operator in line 4. Despite having a larger com-
plexity in its outer while loop, MHC< will on average terminate faster than
FHC< as it requires less iterations of that outer while loop because each one
yields the maximal possible reduction of the train error. Consequently, it tends
to create smaller case bases and terminate faster. Again, a less strict variant of
MHC< is realized, if the inequality is replaced by a less-equal in line 5 (called
MHC≤). Finally, it is trivial to see that both MHC variants do always end up
in a local minimum of the error landscape of E

loo
T . As a side note we remark

that MHC is nearly2 insensitive to the “presentation order” of cases which is a
criticism to most of the established case base maintenance algorithms [14].

Input: training set T ⊂ M, Output: case base configuration S (S ⊆ T )
Strict variant MHC< Modification for non-strict variant MHC≤
1: S ← ∅, stop ← false
2: while stop = false do
3: stop ← true
4: c∗ ← arg minc∈T E

loo
T (E(S, c)) 4: ...

5: if E
loo
T (E(S, c∗)) < E

loo
T (S) 5: if E

loo
T (E(S, c∗)) < E

loo
T (S) or

6: then (Eloo
T (E(S, c∗)) = E

loo
T (S) and c /∈ S)

7: S ← E(S, c∗) 6: then ...
8: stop ← false
9: return S

Algorithm 2: Maximum Improvement Hill-Climber (MHC< and MHC≤)

3.4.3 Related Case Base Editing Schemes
As mentioned, we incorporate a set of well-known case base editing methods into
our further analyses. We highlight each of them with some remarks, emphasizing
that this list is not complete and could easily be extended by many further
algorithms from the realm of case base maintenance.

CNN (condensed nearest neighbor [6]) might be called one of the forefathers of
CBM. It starts with an empty case base, makes multiple passes over T and
copies a case c from T to S, if it finds that c cannot be solved by S. CNN has
inspired various alternative and more sophisticated case base editing rules. In
its original form it aims at finding a subset S of T that is as consistent as T .
Formally, CNN minimizes, starting with an empty case base configuration,
an error function that is similar to E

loo
T , but not defined in a leave-one-out

manner. As a consequence and due to the fact that CNN can just add cases
to S and not remove them (like FHC or MHC), the output of CNN will in
general not correspond to a local minimum of E

loo
T as defined above.

2 There remains some sensitivity to the presentation order since in line 4 multiple
cases c may reduce E

loo
T equally in which case one of those cases must be selected,

e.g. randomly or by some convention.



On the Generalization Capabilities of Sharp Minima 87

RNN is an extension of the aforementioned CNN which adds a case removal
phase during which cases are deleted from S whose removal does not impair
the problem-solving competence of S on all cases from T [5]. The output of
RNN might in general be expected to be closer to an optimum of E

loo
T than

CNN’s output. However, RNN is not an optimizer of E
loo
T since case addition

and removal are strictly split into two separate phases and because the error
is not measured in a leave-one-out manner.

IBL Algorithms denote instance-based learning algorithms [1]. IB2, as one
instance of this family of algorithms, iterates over T and adds a case c to
S, if c’s problem part would not be solved correctly by the cases in S. As
a consequence, it is susceptible to noise, but it can also be termed a greedy
algorithm in the sense that it tries to add as little cases as possible.

DROP Algorithms denote decremental reduction optimization procedures
[19]. Different variants exist; DROP1 starts out with a case base S that is set
to the full set of train cases, S = T . Then, it iteratively removes individual
cases from T whose deletion does not worsen the leave-one-out performance
over S (note, not over T ). DROP2 is an extension of DROP1 whose leave-one-
out performance is measured over the whole set T . Insofar, DROP2 comes
close to our FHC and MHC algorithms, except for its inability to re-add
cases after having deleted them. Moreover, DROP2 employs also a specialized
preference heuristic regarding which cases to remove first, namely those which
have the smallest similarity to their “nearest enemy” (which means a case in
T whose solution does not match or cannot be adapted). As a consequence,
DROP2 is more likely than all other algorithms listed here to yield a local
optimum in the sense that we defined in Sect. 3.3.

4 Sharpness of a Case Base Configuration

In the preceding section, we have formalized case base editing as an optimization
problem where we (a) defined an error measure E over the training set that
relates to the leave-one-out competence of the system over a training set T and
(b) proposed discrete editing operations (case editing operator E) for searching
for a minimum of E

loo
T . All these steps were necessary to path the way for a

further analysis of local optima in the error landscape that we are intending
to describe now. Additionally, for performing the actual search, we suggested
two hill-climbing algorithms (FHC and MHC, more specifically four variants
of them) which are, by definition, designed to find local optima for E.

4.1 Characterizing Flat and Sharp Case Base Editing Optima

As described in Sect. 2.2, a sharp minimum ms of some function f over domain
X is characterized by the observation that f changes rapidly in the near vicinity
o ms. We have also highlighted that in related research fields sharp minima are
known to correspond to models with poor generalization capabilities.

The case base editing problem, as defined in Sect. 3.1 is, however, of discrete
nature. Instead of the mentioned numeric domain X, for a given set of training
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cases T , the search space contains the 2|T | elements of T ’s power set P(T ). One
might say, the space to be searched is |T |-dimensional with two possible values
in each dimension. Acknowledging this and aiming at establishing a notion of
the vicinity around some minimum, we thus define:

Definition 4 (Vicinity of a Case Base Configuration). Given a set of
training cases T and a case base configuration S with S ⊆ T , the vicinity of S
is defined as

VT (S) = {E(S, c)|c ∈ T }
Hence, the vicinity of a case base configuration contains all |T | case bases

that are formed, if we either leave out exactly one c ∈ S from S or if we add
exactly one case from T \S to S. If S is known to be a local optimum (e.g. as the
result of applying FHC or MHC, cf. Sect. 3.4), then by construction it holds
that the leave-one-out train error for S is smaller than or equal to the error for
any case base configuration within the vicinity set V(S).

The vicinity definition allows us to derive a numeric estimation of the sharp-
ness of some case base configuration – a notion that of course covers local optima
of case base editing as well.

Definition 5 (Sharpness of a Case Base Configuration). Given a set of
training cases T and a case base configuration S with S ⊂ T , the sharpness of
S is defined as

ST (S) =

√√√√ 1
|T |

∑
V ∈VT (S)

(
E
loo
T (V ) − E

loo
T (S)

)2

So, essentially the sharpness of some case base configuration mirrors how
much isolated modifications to the case base (by including/removing a single
case) influence the leave-one-out problem solving capabilities of S.

4.2 Discussion of the Sharpness Measure

Using a root mean square definition instead of, for example, a sum over dif-
ferences in Definition 5 serves two purposes. On the one hand, it allows for
adequately assessing the level of sharpness of case base configurations S that are
not local minima, i.e. where the inner difference is not guaranteed to be posi-
tive. On the other hand, it puts an emphasis on those case base configurations
within the vicinity set VT (S) where the addition/removal of a single case has
an above-average impact on the change in the error. It is also worth mentioning
that calculating ST (S) is computationally costly with an effort of O(|T |3) given
that a simple linear retrieval is used in Eq. 1.

While we have focused on a set of training cases T so far, we shall now put
our attention more to an independent, held-out set U of test cases, i.e. U � M
and T ∩U = ∅. Accordingly, our interest will be on the test error that some case
base configuration S yields when its problem-solving capabilities are tested on
U . Hence, in analogy to Definition 3 we define:
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Definition 6 (Test Error of a Case Base Configuration). For a test set of
cases U = {c1, . . . , c|U|} with each case ci = (pi, si) consisting of a problem and
solution part and for a given case base configuration S, the test error is defined
as

EU (S) =
1

|U| ·
|U|∑
i=1

1 − Correct(Adapt(Retrieve(S, pi), pi), si)

Our conjecture is that the sharpness of a case base configuration is related
to the testing performance of this case base. Thus, besides the actual value
of the train error, the sharpness might help us in assessing the generalization
capabilities of a case base configuration.

5 Empirical Evaluation

The first goal of our experimental evaluation is to empirically investigate the
correlation between sharpness and test error, i.e. answering the question to what
extent sharpness is suitable as a predictor of the generalization capability. In the
second part of the evaluation, we aim at an empirical analysis of the four hill-
climbing CBM variants proposed in Sect. 3.

We selected 21 classification domains from the UCI Machine Learning Repos-
itory [13] with varying amounts of case data, classes, and numbers and types of
features. In all experiments, we split the available data set into two disjoint sets
T and U where for the number of cases in the training set we focused on three
settings (|T | being 50, 75, and 100, respectively). For k, as the number of nearest
neighbors to be considered during retrieval we focused on k = 1 and k = 3.

5.1 Correlation Between Sharpness and Generalization

In machine learning, the training error is usually assumed to be strongly corre-
lated to the error on an independent test set, except if overfitting has occurred.
This general observation is also true for instance-based learning systems, express-
ing itself in a positive sample Pearson correlation coefficient rx,y, where here x
stands for the train error E

loo
T (S) of a specific case base configuration and y for

the test error EU (S) that S yields on an independent test set.
To this end, the interesting question is whether the sharpness ST (S) of a

case base configuration S (cf. Definition 5) is also correlated with EU (S). In
order to answer this question, we generated a large number of random case base
configurations with random sizes by randomly adding any c ∈ T to S or not.
For each domain, we processed 1000 such random case bases and determined
x = E

loo
T (S), y = EU (S), as well as sharpness values z = ST (S) (for brevity, we

use x, y, and z as shorthand notation, subsequently). In so doing, we found that
case base configurations with high sharpness tend to yield a higher test error,
and vice versa. More specifically, the Pearson correlation rz,y is nearly identical
to rx,y (see Table 1). In other words, the measure of sharpness introduced above
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Table 1. Average Pearson correlations over all classification domains. For all settings
examined, the correlation between train and test error can be improved (gain in brack-
ets), when adding sharpness information to the train error.

|T | = 50 |T | = 75 |T | = 100

rx,y rz,y rx+z,y rx,y rz,y rx+z,y rx,y rz,y rx+z,y

k = 1 0.608 0.624 0.675 (+0.066) 0.628 0.644 0.701 (+0.073) 0.647 0.646 0.697 (+0.050)

k = 3 0.652 0.617 0.687 (+0.034) 0.688 0.646 0.697 (+0.009) 0.706 0.685 0.728 (+0.021)

is approximately as meaningful in assessing the generalization capability of a
case base configuration as its leave-one-out train error.

Most interestingly, if we additively combine the train error E
loo
T (S) and the

sharpness ST (S) and determine the correlation of ET + ST with EU , i.e. rx+z,y,
we find that this is even higher than the correlation of both components alone
(cf. Table 1). This is a strong indication that the sharpness can be helpful in
estimating the generalization capabilities of the system. Figure 2 visualizes the
gain in correlation for all the domains and all variations of k and |T | considered.
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Fig. 2. Each data point represents the average over 1000 random case base config-
urations for one domain. The value on the abscissa refers to the average train-test
correlation rx,y, the value on the ordinate to the average sharpness-enhanced correla-
tion rx+z,y. Points above the identity function thus refer to runs where the incorpo-
ration of sharpness information brought about a better estimate of the generalization
capabilities.

5.2 Hill-Climber Variants and Their Optima

Different optimization algorithms yield different minima. Depending on their
nature they may tend to end up in rather flat or sharp local minimum of the
error landscape. Given our observations reported in the preceding section, we
conjecture that the sharpness of attained minima may help in evaluating the
generalization capabilities of different algorithms. Besides this, we also want to
empirically compare the performance of our proposed FHC and MHC variants
with established CBM algorithms.
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For this series of experiments, we applied all of the algorithms outlined above
for each of the 21 classification domains, repeating this entire procedure 500 times
for randomly re-initialized sets T of training cases (for both, |T | = 50 as well as
|T | = 100, keeping k = 1 throughout).

First, we report the performance of the greedy case base editing schemes
FHC and MHC in order to convey a feeling of their performance. As can be
seen from Table 2, all four variants perform well, specifically MHC≤ features the
best average test error while at the same time utilizing only less than one third
of the cases given as input in T . Domain identifiers are specified in a footnote3.

Table 2. For each of the case base editing algorithms and for each of the considered
domains two performance measures are given (averaged over 500 experiment repeti-
tions, i.e. as many random sets T of train cases): the test error EU (S) of the learned
case base configuration S as well as the achieved case base compactification in percent,
i.e. 100%· |S|

|T | . The table reports results for |T | = 50 and k = 1, plus an average µ50 over

all domains. Additionally, in the last line the average µ100 for |T | = 100 is reported.
For each domain, the two top-performing algorithms are highlighted. The first column
contains domain identifiers (see footnote for plain text names).

Dom. CNN RNN IB2 DROP1 DROP2 FHC< FHC≤ MHC< MHC≤

A .415 53.1 .422 49.6 .420 47.1 .430 9.4 .376 17.3 .355 22.2 .350 54.8 .360 13.6 .340 32.9

B .067 22.0 .072 18.7 .090 19.4 .204 13.2 .078 21.5 .104 17.4 .063 55.0 .115 11.3 .085 26.1

C .354 49.4 .361 43.9 .381 40.9 .355 7.2 .312 14.5 .288 14.7 .294 53.8 .282 9.0 .289 32.0

D .344 47.6 .352 44.0 .356 43.3 .446 9.5 .346 18.2 .336 25.9 .308 67.0 .344 14.5 .322 42.7

E .604 70.6 .606 64.1 .608 62.2 .625 9.7 .600 18.5 .597 19.8 .592 50.4 .598 13.9 .592 31.9

F .258 41.5 .268 34.9 .278 36.1 .315 15.6 .238 17.6 .222 25.7 .211 68.1 .224 21.5 .215 37.9

G .209 38.1 .222 30.7 .236 32.7 .250 9.0 .168 12.4 .164 19.1 .159 62.4 .150 10.2 .156 27.5

H .380 53.3 .386 45.9 .398 41.1 .361 8.2 .323 13.7 .305 12.6 .328 53.5 .298 6.5 .319 28.3

I .365 55.3 .363 41.4 .368 49.8 .538 17.5 .434 39.1 .466 23.8 .420 54.4 .487 16.9 .447 36.6

J .278 43.6 .289 36.8 .305 33.2 .321 7.7 .229 13.4 .208 14.1 .209 46.2 .209 10.2 .204 23.4

K .090 17.9 .094 14.6 .101 15.1 .147 11.6 .073 12.7 .073 15.3 .067 46.6 .076 13.0 .068 23.4

L .298 41.3 .281 21.7 .359 36.8 .318 9.5 .294 33.1 .236 13.1 .243 50.4 .236 9.7 .240 27.4

M .321 46.7 .322 43.1 .331 39.7 .441 11.1 .370 21.6 .382 19.1 .351 51.4 .381 12.5 .355 33.1

N .356 51.6 .363 44.0 .373 39.3 .374 7.7 .333 14.3 .314 14.4 .317 50.5 .312 10.3 .311 26.8

O .035 11.7 .036 10.1 .040 10.7 .114 8.1 .035 12.9 .038 13.4 .026 35.4 .043 9.3 .039 12.2

P .543 73.2 .542 66.2 .563 62.9 .644 18.2 .606 27.4 .600 20.6 .583 56.4 .604 16.3 .589 36.9

Q .317 48.4 .323 44.9 .335 41.5 .441 12.0 .372 22.7 .366 18.0 .325 59.1 .366 9.5 .344 40.1

R .300 50.0 .306 43.0 .316 42.7 .465 15.8 .332 24.4 .351 27.3 .309 66.3 .355 20.3 .327 44.3

S .324 49.2 .332 41.6 .345 40.2 .429 11.2 .316 16.6 .308 19.2 .298 59.4 .311 14.0 .298 36.4

T .088 18.4 .094 14.9 .096 16.1 .137 11.8 .094 14.9 .074 16.6 .068 42.2 .078 13.4 .071 18.2

U .584 72.0 .590 65.2 .592 64.5 .658 12.2 .580 18.2 .560 30.4 .553 62.3 .566 25.6 .553 42.3

µ50 .311 45.5 .315 39.0 .328 38.8 .382 11.3 .310 19.3 .302 19.2 .289 54.5 .305 13.4 .294 31.5

µ100 .305 43.6 .309 36.1 .326 36.5 .380 7.9 .290 16.4 .275 14.5 .267 56.7 .276 8.5 .267 31.0

3 A-Balance, B-BanknoteAuth, C-Cancer, D-Car, E-Contraceptive, F-Ecoli, G-
Glass, H-Haberman, I-Hayes, J-Heart, K-Iris, L-MammogrMass, M-Monks, N-
Pima, O-QualBankruptcy, P-TeachAssistEval, Q-TicTacToe, R-UserKnowledge, S-
VertebralCol, T-Wine, U-Yeast.
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Fig. 3. Each data point stands for an average over the set of domains we considered
and visualizes the correlation between the leave-one-out train error and the sharpness-
enriched train error information with the generalization error measured on an inde-
pendent test set U . The plot refers to the setting of k = 1 with |T | = 100, where for
DROP1/2 only those runs were considered that yielded a case base configuration S
that is a local optimum of E

loo
T .

We emphasize, however, that this comparison is of course not comprehensive;
implementing other powerful case base editing algorithms from the literature
(cf. Sect. 2) and matching our hill climbers’ performance with those is an open
topic for future work. Nevertheless, the numbers reported allow for concluding
that FHC and MHC might be qualified as usable algorithms for case base
maintenance.

Second, the hill climbing case base optimizers are designed to attain a local
optimum of E

loo
T . Incidentally, some of our established case base editing algo-

rithms do so, too, at least in some cases. Specifically, IB2 and CNN never con-
verge to a local optimum of E

loo
T , but RNN (0.01%), DROP1 (4.3%), and DROP2

(24.7%) do so occasionally. The numbers in brackets refer to the share of the
21.000 experimental runs during which the respective algorithm attained an opti-
mum. To this end, Fig. 3 indicates that algorithms with a small sum of the train
error and the sharpness (i.e. flat minima) correspond to smaller test error and,
hence, better generalization than those that yield sharper minima. In particular,
the train error alone is only of little use in predicting the test error (gray data
points).

6 Conclusion

In this paper, we have made a first attempt to investigate the presence and
properties of sharp/flat minima in an error landscape of a case base mainte-
nance scenario. We observed that sharp case base configurations feature poorer
generalization properties than those that correspond to flat regions in the domain
of the error function. Our analyses came along with two new case base mainte-
nance procedures which, being hill-climbing optimizers, are by design attracted
by local optima of the error function. We empirically found that their general
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performance is competitive in terms of case base competence and compactifica-
tion and that the sharpness of local minima can be used to better predict the
generalization error. An interesting avenue for future work is to design case base
editing methods that incorporate sharpness information instantaneously, when
adding or removing cases, and hence can be guided to attain flatter minima.
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Abstract. Determining when to trust black box systems is a well-known
challenge. An important factor affecting users’ trust is confidence in sys-
tem solutions. Previous case-based reasoning (CBR) research has devel-
oped criteria for assigning confidence to the solutions of a CBR system.
This paper investigates whether such analysis, coupled with factors such
as CBR system competence, can be used to predict confidence in the
outputs of a black box system, when the black box and CBR systems
are provided with the same training data. The paper presents initial
strategies for using CBR confidence to predict black box system con-
fidence. An evaluation explores the ability of the strategies to provide
useful information and suggests future questions.

Keywords: Case base competence · Case-based reasoning ·
Neural network · Explainable artificial intelligence · Confidence ·
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1 Introduction

Advances in machine learning, and in particular in deep networks, have led
to widespread applications of AI systems with powerful performance achieved
through methods that are largely opaque to their human users. Such systems,
often referred to as black box systems, accept an input and propose an out-
put without an account of how the output was generated. This can be especially
troubling when the black box systems, despite overall strong performance, some-
times perform unexpectedly. For example, it is well known that deep networks
may exhibit unexpected behaviors on adversarial examples; two images that a
human sees as identical may receive different classifications [20,29]. Such behav-
ior and the inability to explain the performance of black box systems has been
widely acknowledged as a concern for confidence in their conclusions, which can
limit the domains to which they are applied. This in turn has led to an outpour-
ing of research on explainable AI (e.g., [2]), including in the context of case-based
reasoning [1].

Explanation of black box systems has a long history of combining the black
box systems with more interpretable methods. For example, one approach is
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to use interpretable ML methods, such as decision trees, to build a model of
the black box system reasoning that can then be used to explain predictions.
However, as rules become more complex they become less interpretable, and
it may be difficult to capture the black box system’s behavior with sufficient
fidelity (e.g., [10]). From the early days of case-based reasoning, the ability to
explain CBR system reasoning by reference to prior cases has been seen as an
important benefit [15]. This makes it appealing to combine case-based reasoning
with black box systems, to increase explainability of black box system behavior.
For example, Shin et al. [27] propose a CBR/neural network hybrid in which
neural-network-generated features are used to retrieve relevant cases, with the
goal of explainability. Nugent and Cunningham propose a general framework for
case-based explanation of behavior of black box systems [22]. In their approach
an artificial case base, seeded with cases generated by the black box system, is
used to determine local feature salience, which is used in turn to guide retrieval
of real cases as the basis for explanations to increase user confidence in black box
system conclusions. Keane and Kenny provide an extensive survey of research
on “twinning” CBR and neural network systems to provide explanations [14].

This paper brings together CBR and black box systems in a different way,
for a task complementary to the explanation task per se: to assess confidence in
black box solutions. In the presented approach, COBB (Case-based cOnfidence
for Black Box), both the CBR system and black box system have access to the
same training data (or subsets of each other’s data); each functions in parallel.
However, the goal of the CBR system processing is not to provide the solution,
but instead, to ascribe confidence to the black box system output. That con-
fidence judgment can be directly provided to a user, as a unitary confidence
judgment, and the confidence (not the solution itself) can explained in terms
of characteristics derived from the CBR system. Thus in contrast with, e.g.,
Nugent and Cunningham: The role of the CBR system is not to replicate the
black box system performance, but to provide an independent view, based on the
same data, as a “second opinion” based on a more intelligible process that can
be examined to assess its conclusions. The confidence information can then be
used, for example, to decide when to expend scarce resources on evaluating solu-
tions (e.g., in a financial system, presenting the problem to a human expert, or
presenting the case retrieved by COBB as the basis of independent assessment).

An important question for such paired systems is how much their value
depends on the relative performance of the CBR and black box systems. The
primary use case for the COBB approach is situations in which in general, black
box system solutions have higher confidence. Were that not the case, the CBR
system, not the black box, should be the primary reasoning system. We discuss
this question in more detail in Sect. 6.1.

Given that the CBR system and black box system are independent, with
the CBR system potentially having lower accuracy, a natural question is the
extent to which the CBR system can ascribe confidence to the black box system
results. The answer is twofold. First, for assessing confidence, independence of
the two systems can be a benefit to give a true second opinion. On the other
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hand, a premise of the approach is that the world basically conforms to the
CBR hypothesis that “similar problems have similar solutions,” so black box
system behavior that conflicts with that premise—as manifested by the CBR
system—should be ascribed lower confidence.

This paper proposes and evaluates three potential methods for predicting
confidence of a black box system based on a CBR system. The first method pro-
posed is based on a näıve analysis of the relationship between CBR confidence,
black box confidence, and the distance between the two solutions. The second
method combines several predictors in order to determine the confidence in the
black box solution. The third method builds on the extensive work of Cheetham
on CBR confidence by applying his confidence indicators approach to the black
box system outputs.

Experimental results show that the method with the best overall quality was
the second method. It generally had better overall quality than the other two,
and for large testing sets had very good quality. The paper closes with directions
for extending this work.

2 Previous Work

CBR Confidence Models: In seminal work, Cheetham proposed the development
of confidence models for case based reasoning. His goal was twofold: to provide
information to help predict whether a solution had low error, and to determine
whether the output of the CBR system should be used for a given task. His
approach [5,7] explores incorporating a measure of quantitative values for confi-
dence and an error factor into each score. Reilly et al. [26] developed an explicit
model of confidence for case-based conversational recommender systems.

Neural Network Confidence Models: Previous work has explored using confi-
dence intervals to determine prediction intervals for Neural Networks (e.g., [4]).
We note, however, that use of confidence intervals is different from determining
the confidence in a system in the sense pursued by Cheetham. Confidence inter-
vals “are enclosed in prediction intervals and are concerned with the accuracy
of our estimates” [4], whereas confidence in Cheetham’s (and our) sense is “the
degree of belief in the correctness of the result of a CBR system” [7]. Additional
approaches for confidence measures of neural networks with confidence inter-
vals have emphasized the use of maximum likelihood error [24] and confidence
intervals in classifier models [30].

CBR Integrations: There is a long history of CBR integrations with other types
of systems [18], including for black box systems such as neural networks, in
which the two systems contribute jointly to problem-solving. For example, in the
medical domain to classify skin lesions, a convolutional neural network was used
to get features, where those features were passed into the CBR to get retrieved
case and output [21]. The proposed integration differs, however, in that the goal
is for CBR to contribute to assessment of the other system rather than to the
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problem-solving process itself. This work is an instance of twinning of CBR and
black box systems, such as ANNs [14].

3 Black Box Confidence

3.1 The Notion of Confidence of a Black Box System

Developing an approach to assessing black box system confidence by CBR
depends first on understanding what “confidence” should represent. The term
confidence has been used in CBR to refer to the “degree of belief” that the
CBR system’s solution is correct [5]. This is a fuzzy notion for which values in
the range [0, 1] indicate “percentage belief” in the CBR solution. We distinguish
this notion from that of trust; confidence is a technical property of our system,
whereas trust is a psychological property of humans using a system [17]. This
notion of confidence is well understood for CBR systems [7], and can augment
the assessments that could be done by examining the CBR system’s internal
process of retrievals and adaptation.

Black box systems are widely used, with applications for high-stake scenarios.
Unfortunately, it is impossible to examine the internals of a black box system in
order for a user to develop a level of trust in it (by definition). Thus it would be
useful to be able to evaluate a level of confidence in a black box’s solution to a
problem.

A simple first approach for black box confidence would be to use a global
measure of the black box system’s performance, such as its accuracy, to ascribe
a level of confidence in the system’s solutions. This approach is not satisfactory,
however, because the global accuracy provides no per-case information. Based
on it, equal confidence would be ascribed to all solutions—which would provide
no guidance on which solutions to verify or perhaps reject.

Given the ability to ascribe confidence to CBR solutions, it is appealing to
use confidence in a CBR system to assist with determining confidence in the
black box. We can twin a CBR system with our black box, training the two on
the same set of training cases, for each to provide solutions to each problem.
To account for differences in system characteristics, the confidence in the CBR
system’s solution can then be combined with information from other properties
of the CBR and black box systems in order to calculate the confidence in the
black box’s solution.

In the following sections, we discuss potential predictors for black box confi-
dence. Using these predictors, we present three methods for determining confi-
dence in a black box system’s solution.

3.2 Distance from CBR System Solution

A simple indicator for confidence in a black box solution is the distance of that
solution to the solution provided by the CBR system itself. We assume that
the solution space has some distance metric normalized to the interval [0, 1].
Applying this involves complexities discussed in Sect. 3.6.
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3.3 CBR Confidence

As mentioned previously, confidence in a CBR system’s solution is well under-
stood. We follow Cheetham’s approach for calculating the CBR confidence [5–
7]. His method involves constructing fuzzy preference functions which map the
CBR system’s solutions to confidence in those solutions. His approach first sets
a confidence scale mapping intervals of error in the CBR solution to confidence
intervals. We use his scale, where the Fuzzy Linguistic Term good has a con-
fidence interval of 1–0.75 and an error of less than 5%, the term questionable
has a confidence interval of 0.75–0.5 and an error between 5% and 10%, and
the term poor has a confidence interval 0.5–0.0 and an error greater than 10%.
(Here, “confidence interval” refers to the range of values our “fuzzy” confidence
can have. This is distinct from the statistical notion of “confidence interval”).

The next step is to pick a few statistical indicators of confidence [6]. We
select the following indicators (Cheetham proposes both positive and negative
indicators, but we consider only positive):

– Similarity between the given problem case and the most similar retrieved case
with the best solution

– Sum of all the similarity scores between the problem case and the k -closest
retrieved cases with the best solution

– Number of cases with the best solution out of the k closest retrieved cases
– Percentage of the k closest retrieved cases that have the best solution
– Average similarity score between the problem case and the k closest cases

with the best solution

As suggested by Cheetham, we then use the C4.5 algorithm to construct
a decision tree for predicting whether a solution will be correct, based on the
values of the indicators. We select the indicators highest in the tree as the most
important indicators. The goal is to choose the indicators best at predicting a
correct CBR solution, because “the more likely the solution is to be correct the
higher our confidence should be” [6].

For each selected indicator, we construct a fuzzy preference function mapping
that indicator value to confidence in the CBR system’s solution. To do this, we
treat each case in the training set as a test case (temporarily removing each
in turn from the case base). For each training case, we calculate the value of
the indicator and the error in the CBR system’s proposed solution. Similarly
to Cheetham, we plot the indicator values against the error, and fit a cubic
regression to the resulting plot using NumPy [23]. We then construct a piecewise
linear function from this regression by obtaining the straight lines that meet at
the extrema and inflection points.

We next compose the piecewise function (mapping indicator values to error)
with the confidence scale (mapping error to confidence) to construct the fuzzy
preference function (mapping indicator values to confidence). The details are
spelled out by Cheetham in [5], and involve identifying key indicator values at
which we are in a different error interval, and hence in a different confidence
interval.
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We then can determine the confidence in a CBR solution by calculating the
selected indicators for a particular solution, for each fuzzy preference function,
taking the confidence value for the value of its respective indicator, and taking
the mean of these confidences as the final confidence value.

3.4 CBR Competence

The CBR system’s competence, the “the range of target problems that a given
system can solve” [28], may be another predictor of black box confidence. If
the training data is insufficient for CBR coverage of the problem space, it is
plausible that it could be insufficient for the black box as well. We follow Smyth
and McKenna’s model of CBR competence in which the competence of a CBR
system depends on the density and distribution of cases in the case base and the
strength of the CBR system’s retrieval and adaptation.

3.5 Black Box Accuracy

We also expect higher confidence in the black box when the black box itself
globally performs well. As a global measure of our black box’s performance
we use its accuracy, i.e. the percent of its own training cases for which the
fully-trained black box can successfully provide a solution (within an acceptable
threshold). This can be estimated, for example, by leave-one-out testing.

3.6 Proposed Methods for Estimating Black Box Confidence

Given the predictors for black box confidence (black box accuracy, CBR compe-
tence, confidence in the CBR solution, and distance between the CBR solution
and black box solution), we propose three ways to combine them to determine
confidence in the black box solution. As emphasized before, each method pro-
duces a fuzzy confidence value within [0, 1] which represents the degree of belief
that the black box’s solution is correct.

Näıve Method: Our first approach is based on the insight that if we are very con-
fident in the CBR system’s solution and the distance between the two solutions
is small, we should also be very confident in the black box system’s solution.
Similarly, when we are very confident in the CBR system’s solution and the
distance between the two solutions is large, we should doubt the black box’s
solution. When we doubt the CBR system’s solution and the distance between
the two solutions is small, we expect again to doubt the black box’s solution.
Following this reasoning, we might infer that the confidence of the black box’s
solution is given by a formula such as:

confBB = |confCBR − distance| (1)

That is, confidence in the black box’s solution is the distance between CBR
confidence and solution distance, both scaled to [0, 1].
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However, there is a problem with this confidence formulation: If we have low
confidence in the CBR system and there is a large distance between the two
solutions, this method predicts that we will have high confidence in the black
box. This is not necessarily the case, because the distant black box solution
could still easily be far from the actual solution. In addition, this formula does
not make use of the black box accuracy or CBR competence, both of which
should affect the confidence in our black box’s solution. Because of these issues,
we do not expect this method to predict black box confidence well, but we will
test it as a simple baseline.

Cheetham’s Fuzzy Preference Method: This method provides the most natural
extension of CBR confidence to black box confidence. We can simply apply
Cheetham’s method for determining confidence in a CBR solution to the black
box’s solution. We use the same confidence scale as for our CBR confidence.
For our indicators of black box confidence, we pick the confidence in the CBR
system’s solution for the same problem and the distance between the black box
and CBR solutions. We again construct fuzzy preference functions mapping these
indicators to black box confidence (using the training set), and then average the
outputs of these fuzzy preference functions for a given black box solution.

Note that we cannot use accuracy or competence as indicators here, because
Cheetham’s method requires that indicator values vary per problem case
(whereas accuracy and competence are system-global properties). So, like the
Näıve Method, this method also does not make use of the black box accuracy or
the CBR competence. Rejecting accuracy and competence as indicators on their
own is also justified pragmatically by the fact that they provide no comparative
information: They give no indication of which solutions might require further
verification.

Weighted Average Method: Unlike the previous two methods, this approach
attempts to make use of all of our confidence predictors. Each of our predic-
tors is on the same interval [0, 1], and we can propose a weighted average:

confBB =
w1 × (1− distance) + w2 × confCBR + w3 × compCBR + w4 × accBB

w1 + w2 + w3 + w4
(2)

where distance is the distance between the two solutions, confCBR is our con-
fidence in the CBR solution, compCBR is our CBR competence, and accBB is
our black box accuracy. Note that we use 1 − distance because the relation-
ship between the CBR and black box confidences strengthens as the distance
decreases.

For any domain, weights may be set by hill climbing (see Sect. 4). For con-
creteness, in our evaluation, hill climbing resulted in the following weights, which
define what we henceforth refer to as the Weighted Average method:

w1 = 3.0 (for 1 − distance)
w2 = 0.25 (for confCBR)
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w3 = 1.5 (for compCBR)
w4 = 3.0 (for accBB)

Although the w2 value is comparatively small, its inclusion as a nonzero value
improves overall performance, showing that confCBR provides useful informa-
tion.

4 Evaluating Methods for Black Box Confidence

4.1 Assessing Quality of Confidence Predictions

In order to evaluate how well the proposed methods predict black box confidence,
we propose a measure of confidence function quality. This measure is founded
on the principle that ideally, confidence should be high if and only if error in the
black box solution is low. Hence, a method for determining black box confidence
is “good” if it assigns high confidence whenever there is low error in the solution,
and low confidence whenever there is high error in the solution. We propose that
the quality of a black box confidence predictor is the degree to which the black box
confidence prediction decreases monotonically with black box system error. We
consider the ability of the measure to properly rank cases by confidence as more
important than the particular score it assigns, which could be normalized or
scaled to fit domain expectations. The primary goal is to be able to assess which
solutions should be ascribed more confidence than others, to identify those which
might deserve more scrutiny. Spearman’s rank correlation coefficient provides a
method to assess the ability of the measure to properly order solutions, i.e., to
determine the correlation of the measure’s assessment with the actual ordering
by accuracy [9].

We evaluate the quality of a confidence method as follows. First, we use it
to compute the confidence in the black box solution for each problem in the
testing set, and also determine the error in the black box system’s solution for
each problem in the testing set. We then rank the test problems from lowest
confidence to highest confidence and rank the problems again from highest error
to lowest error. We then computes the Spearman correlation coefficient ρ for
these rankings.

A ρ value of 1 implies that, for that confidence method, black box confidence
increases monotonically with reverse-ranked error. That is, black box confidence
decreases monotonically with error. Similarly, a ρ value of −1 implies that black
box confidence increases monotonically with error. We interpret the strength of
this correlation using the table suggested by Akoglu [3] for Spearman coefficients.
Using this table, one may say that the confidence method is “good” whenever
we have a ρ value that corresponds to a strong correlation.

4.2 Experimental Questions

Given our measure of black box confidence quality, we can begin to experi-
mentally evaluate the methods for black box confidence prediction. Three key
questions are:
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1. How effectively do the methods predict confidence in the black box system’s
solution? How do they compare with baselines of using CBR confidence alone
or random confidence assignment?

2. Are the methods able to ascribe confidence successfully even when the black
box’s accuracy is very low?

3. When the black box outperforms the CBR (as is likely to be the case if the
black box system is used instead of relying on CBR alone), is CBR confidence
a better or worse predictor of black box confidence?

We perform an evaluation addressing questions 1 and 2 in this paper. We do
not answer question 3, but we include a discussion of how this could be done in
Sect. 6.1.

The first two questions directly deal with the quality of our black box con-
fidence methods. In order to evaluate Question 1, we first establish baseline
methods against which to compare. The baselines are:

– CBR Confidence: This baseline simply returns the confidence in the CBR
system’s solution in lieu of confidence in the black box.

– Random Confidence: This baseline returns a randomly generated confidence
value on the interval [0, 1].

5 Testing Confidence Methods with COBB

5.1 Overview of COBB System Design

Our testbed system, COBB (Case-based cOnfidence for Black Box), pairs a CBR
system and a black box system to predict confidence in the black box system
using the methods outlined in Sect. 3.6.

Our particular CBR system is a simple domain-independent retrieval system;
it returns the closest case as a solution, with no adaptation. Feature weights
were determined by hand, with no attempt to fine-tune weight values. A case is
considered to solve a problem c if its solution is within a certain threshold of the
solution for c (this threshold is used in competence calculations).

Our black box system is a multi-layer perceptron regressor provided by the
SciPy ‘scikit-learn’ package [13,25]. In order to handle non-numerical attribute
values during training, any non-numerical value from a training case is converted
using one-hot encoding. If a non-numerical value is encountered during testing
that was not seen in the training set, our one-hot encoding codes it as a sequence
of zeroes. The COBB system does not rely on any particular properties of this
regressor, so is fully general for other black box systems.

5.2 Test Domains

We test COBB with four regression datasets from the UCI Machine Learning
Repository [11]: Computer Hardware (7 numerical attributes, 2 text attributes,
209 total cases), Student Portuguese Performance (SPP) [8] (16 numerical
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attributes, 17 text attributes, 649 total cases), Airfoil (5 numerical attributes,
0 text attributes, 1503 total cases), and SML (23 numerical attributes, 2
text attributes, 4137 total cases). For each domain, we perform 10-fold cross-
validation on the domain dataset. For each fold, we train both the CBR and the
black box on that fold.

To these domains we apply black box systems of varying accuracies, ranging
from very high to very low. The average accuracy (across 10-fold cross-validation)
of each black box’s domain is as follows: Computer Hardware at 23.7%, SPP at
97.6%, Airfoil as 9.4%, and SML at 70.2%. We treat the Computer Hardware and
Airfoil domains as examples for which black box accuracy is low, and similarly
the SPP and SML domains as examples for which accuracy is high.

5.3 Results for Quality of Confidence Methods

For each domain and each confidence method, we compute the Spearman corre-
lation function1 to obtain the ρ value per fold. We then take the mean of the ρ
values across the folds, and calculate a 95% confidence interval for the mean of
the ρ values.

Figure 1 shows the mean Spearman ρ values (across 10-fold cross-validation)
along with their confidence intervals for each of our domains.2 We also include the
mean Spearman ρ values and confidence intervals for our two baseline methods,
CBR confidence in lieu of black box confidence and random confidence.

To assess the results, first, we compare our confidence methods to the base-
lines. As shown, the Näıve Method has positive correlation but low quality on
the Computer Hardware and SPP domains. The Fuzzy preference method, on
the other hand, has higher quality than the base methods on the Airfoil and
SPP domains. The Weighted Average method performed consistently well across
domains, maintaining a higher quality than both CBR Confidence and Random
Confidence. Interestingly, in the SML domain all three methods have higher
quality than Random Confidence, but match the quality of just using CBR con-
fidence.

Next, we compare the quality of the confidence methods with each other.
For the Computer Hardware and SPP domains, the weighted average method
outperforms the Näıve and Fuzzy Preference confidence methods. Within the
Airfoil domain, on the other hand, the Weighted Average and Fuzzy Preference
confidence methods have roughly the same quality, and this quality is far higher
than that for the Näıve method. Surprisingly, in the SML domain all three
methods have roughly the same quality.

For the SML domain, the mean ρ values for all three methods are in the
“very strong” range (using [3]). In addition, this domain is the only one in which
CBR Confidence (on its own) has very strong quality. In the Airfoil domain, only
the Weighted Average and Fuzzy Preference methods have mean ρ values in the
“very strong” range, whereas the Näıve method has weak negative correlation.

1 Using SciPy [13].
2 Plotted using the Matplotlib package [12]).
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(a) Domain Computer Hardware (b) Domain SPP

(c) Domain Airfoil (d) Domain SML

Fig. 1. Spearman ρ values for each confidence method, for each domain.

For the other two domains, we obtain mean ρ values in the weak and moderate
range for all three confidence methods. We suspect that this discrepancy is due
to how well the black box and CBR systems are paired for each domain, but
future work is needed to evaluate this.

6 Discussion

6.1 Answering the Experimental Questions

The previous results suggest preliminary answers to questions 1 and 2 from
Sect. 4.2.

Question 1 asks how successfully the three methods predict confidence in the
black box solution. The experiments suggest that the Weighted Average method
and Fuzzy preference method can give high quality predictions. Compared to
the baselines of CBR confidence or random assignment, the Weighted Average
method has consistently higher quality, whereas the Fuzzy Preference method
only has higher quality in certain domains. The Näıve method has poor quality
across our domains and fails to compete with the Weighted Average method in
any domain except SML.
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Question 2 asks whether the confidence methods can still have high quality
even when the black box system has low accuracy. As mentioned in Sect. 5.2,
the Airfoil domain black box system has very poor accuracy. The Weighted
Average and Fuzzy Preference methods give good results in the Airfoil domain
despite low black box accuracy.

Question 3 asks whether the CBR confidence has better or worse quality (as a
black box confidence method) when the black box outperforms the CBR system.
Answering this question requires considering instances in which CBR accuracy is
low and black box accuracy is high. Tests on the current datasets did not produce
any such situations. We intend to address this and further analyze results for
the prior questions using additional datasets in future work.

6.2 Reflecting on Assumptions Made in COBB

An initial hypothesis for this paper was that CBR confidence could be a good
predictor of black box confidence. Surprisingly, in our experiments, CBR con-
fidence by itself had almost no monotonic correlation with error, except in the
SML domain. However, when combined with other predictors (as in the Weighted
Average method), CBR confidence is a useful predictor. So we must revise the
initial hypothesis: The individual indicators combined provide a good prediction
of black box confidence.

We previously mentioned the potential problem of the Näıve method that
it does not apply when our confidence in the CBR is low and there is a large
distance between the two solutions. Because the quality of our Näıve method
is consistently low across all domains except SML, we conclude that the Näıve
method is not a useful approach.

7 Explaining Confidence with COBB

The confidence judgments of COBB can be treated as standalone confidence
judgments to aid a user determining trust in black box system conclusions, in
the tradition of the confidence literature. However, the information developed
by COBB can also be used to provide users with useful explanations of the
confidence judgment, in two ways:

– Direct explanation from cases: When COBB retrieves a case for a similar
problem, and low confidence suggests that additional scrutiny is needed, that
case may be presented to the user either as substantiation (if its solution
is in agreement) or as a conflict for the user to examine. Depending on the
domain, presentation of the case could be paired with traditional information
sources in explainable CBR to help the user assess the proposed conflicting
solution (e.g., visualizations of attributes [19]). Bracketing cases, the most
similar cases with and without the same solution [16], could be presented as
well. The key added benefit from COBB compared to normal presentation of
a retrieved case is that the user’s attention need only be drawn to problems
likely to be worthy of scrutiny.
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– Explanations based on confidence indicators: The values for the specific con-
fidence indicators from Sect. 3.3 can be presented to the user as additional
data for assessing the overall confidence judgment.

8 Conclusion

We have proposed three methods for determining the confidence of a black box
system using a paired CBR system. These methods make use of various pre-
dictors of black box confidence (i.e. distance between systems’ solutions, CBR
confidence, CBR competence, and black box accuracy).

We have also provided a test for quality of a black box confidence method.
Applying this test to COBB, the black box confidence method with the best
quality in general was the Weighted Average method. In certain domains, the
Fuzzy Preference method has nearly as high quality as the Weighted Average
method. As expected, the Näıve method has low quality in almost all domains
(although in one domain it performs just as well as the former methods). We also
noted that there is one domain in which both the Weighted Average and Fuzzy
Preference methods are high-quality confidence methods, despite poor black box
accuracy.

We see multiple future steps. In addition to performing evaluations on addi-
tional domains, we intend to incorporate both negative and positive indicators
into the CBR confidence calculation. Some neural network systems output a
value characterizing strength of a prediction; the quality of this self-assessment
could be compared with that of the methods here, and could also be used as an
additional input to the calculations of the weighted method. A more substantial
extension would involve systematic study of the methods applied to different
CBR and black box systems with varying competences and accuracies. This
would enable experimentally answering questions such as Question 4.2. A fun-
damental question is how closely paired the CBR and black box systems must be
for the approach to be useful. For practical application, we intend to explore the
feasibility of using an initial calibration phase to determine domain suitability
for the COBB approach.

COBB can explain its confidence assessment in terms of confidence indica-
tors, as well as presenting cases for user examination when the CBR confidence
assessor detects potential problems. A future topic is analyzing the value of
explanations aimed directly at confidence.

The COBB approach was envisioned for situations in which a black box
system is more accurate, motivating its use as the primary system but also raising
the need for confidence assessment and explanation. An interesting question is
whether, when the CBR system is more accurate, the black box system could
help in assessing the CBR system confidence. The COBB approach could also be
applied to two CBR systems that are independent (e.g., due to different similarity
metrics) in parallel, with each assessing confidence in the other, explaining its
confidence assessment, and presenting both conclusions to the user or to be
combined in an overarching system. This could provide the basis for an approach
to system- or user-mediated ensemble reasoning in CBR.
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Abstract. Autonomous agents should formulate and achieve goals with mini-
mum support from humans. Although this might be feasible in a perfectly static
world, it is not as easy in the real world where uncertainty is bound to occur.
One approach to solving such a problem is to formulate goals based on cases
that explain discrepancies observed in the environment. However, in an
uncertain world, multiple such cases often apply (i.e., as alternative explana-
tions). Moreover, agents in the real world often have limited resources to
achieve their missions. So, it is risky to generate and achieve goals for every
applicable explanatory case. Our solution to these problems is to down-select the
retrieved cases based on probabilities derived using Bayesian inference, then to
monitor the selected cases’ validity based on observed evidence. We evaluate
the performance of an agent in an underwater mine clearance domain and
compare it to another agent that selects a random case from the candidate set.

Keywords: Case selection � Case-base explanation � Explanation patterns

1 Introduction

Agents in a mine clearance domain must perform critical surveillance tasks with high
accuracy in waters where communication and observability are limited. Due to
unpredictable and dangerous events such as explosions in unexplored areas, intelligent
behavior is required to understand and respond to the environment. In this domain,
explanation is useful for both monitoring the environment and engendering trust in
human operators who have only intermittent contact with the agent. Trust is not
investigated in this paper. However, we consider the problem of selecting an
explanatory case from a candidate set of applicable cases for a deliberative mine
hunting agent that must respond to the discrepancies.

Our agent for this domain is called GATAR (Goal-driven Autonomy for Trusted
Autonomous Reasoning) [1]. GATAR plans to achieve its goals, then executes each
step in this plan after checking to confirm that its preconditions are met. The actions
and the postconditions constitute GATAR’s expectations about the world. When they
do not match the current observations of the world, GATAR tries to recognize the
cause of the discrepancy and predict its effects on the agent’s goals. However, when
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there are multiple cases that might explain a discrepancy, GATAR intelligently selects
a case based on the observations it possesses. Furthermore, it also forms expectations
based on the selected explanatory case to monitor its validity. These cognitive capa-
bilities provide three benefits: first, they help GATAR to intelligently respond to such
events and prevent their recurrence; second, they help GATAR adapt its reasoning
behind explanation selection to observed evidence; third, they help GATAR commu-
nicate the rationale behind its behavior to third parties. This third benefit is critical to
building trust when working with humans [2]. While the GATAR agent is the primary
focus of this paper, we expect lessons learned and results to be generalizable; we expect
intelligent explanation-based behavior with deliberately selected goals to be useful in
other critical domains like surveillance, medicine and autonomous driving.

A different approach to responding to discrepancies would be to generate contin-
gent plans in advance that cover all possibilities. Unfortunately, this is computationally
intractable in most domains and handling all contingencies for an unexpected event can
be overwhelming. Our approach requires additional domain knowledge, but any
specific domain of interest, an abstract case-base of explanations defined by domain
experts can be retrieved and adapted to explain a discrepancy.

We present a Bayesian approach to select an explanation among the candidate
explanatory cases retrieved from the case base. Moreover, expectations are extracted
from the selected explanation to monitor its viability. Here explanation provides a
causal basis for goal generation and enables creation of communicative rationales for
goal changes to third parties. This approach follows Goal Directed Autonomy (GDA)
principles [3–7], in which agents respond to discrepancies (i.e., agent expectation
failures) by generating explanations and generating goals based on those explanations.

In Sect. 2, we describe the representation of the explanatory cases, their retrieval,
selection, goal formulation and GATAR’s algorithmic approach to a discrepancy.
A description of the domain, possible explanatory cases in the domain, and their
retrieval are followed in Sect. 3. Section 4 presents the working example of the
GATAR agent in a sample scenario. Evaluation and empirical results are presented in
Sects. 5 and 6. Related work is illustrated in Sect. 7. Finally, the conclusion completes
the paper in Sect. 8.

2 Case-Based Explanation Patterns

In our work, we use case-based explanations [8–10]. Each case in the case-base is an
abstract explanation pattern (XP) [11, 12] engineered for a specific domain (see
Fig. 1). An XP is a data structure that represents a causal relationship between two
states and/or actions; each action/state is abstractly defined with variables to be adapted
during or after case retrieval. In GATAR, an action or state is referred to as a node and
different types of nodes are described based on their role in an XP.

• Explains node: A discrepancy/unknown state that is observed;
• Pre-XP node: Action/state that is observed along with the explains node;
• XP-asserted node: Action, state or XP contributing to the explanation’s cause.
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2.1 GATAR’s Algorithm to Respond to the Discrepancies

Algorithm 1 represents GATAR’s approach toward identifying and responding
to a discrepancy. Given a plan p ¼ \a1. . .an[ to achieve goals from agenda
Ĝ ¼ g1. . .gmf g, whenever its current observations ðscÞ do not match the expectations
ðseÞ; a discrepancy is detected. These observations ðscÞ are obtained (line 1) from the
successor function (c) that takes in the current state ðscÞ and action ða1Þ [13]. Since,
GATAR is currently executing a1; its plan is updated to the set of remaining actions
(line 2). GATAR then adds to its expectations ðseÞ the preconditions ðaþ

1 Þ and effects
ða�1 Þ of the current action (line 3). When expectations differ from observations (line 4),
the algorithm tries to explain this discrepancy from the case base (lines 5–8). First,
a candidate set of explanations c ¼ v1. . .vkf g is retrieved from the case-base
c ¼ v1. . .vk. . .vlf g of explanations. An explanatory-case ðvsÞ is selected from these
candidates by applying Bayesian inference (line 5). Next, additional expectations are
extracted from the XP-asserted nodes of the selected explanation and added to the
current set of GATAR’s expectations (line 6). This facilitates monitoring the validity of
the explanatory case. The interpretation function (beta) sets a new current goal set to
respond to the discrepancy (line 7) (see [32]). Finally, the new goals ðgcÞ are added to
the goal agenda ðĜÞ (line 8).

Fig. 1. The explanation pattern (XP) causal structure in which XP-asserted nodes (e1, e2, e3)
form an antecedent, and a consequent is made up of pre-XP nodes (p1, p2, p3) and an explains
node (E); XP-asserted nodes thus cause the associated explains and pre-XP nodes.
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2.2 Retrieving, Reusing and Revising Explanation Patterns
from a Case Base

Case-based reasoning follows a four-step process to retrieve, reuse, revise and retain
cases [14–16] (see Fig. 2). In the current work, we assume that all cases are defined by
domain experts, so we do not consider retention. The following describes how XPs are
retrieved, reused and revised.

A set of abstract XPs is retrieved when an unpredicted state or action observed by
the agent unifies with each explains node of an XP in the case-base. If the unification
turns out to be successful then the pre-XP nodes of the corresponding case are unified
with the observations of the corresponding states or actions, if they turn out to be
successful then the specific XP is retrieved. The retrieved abstract XP is reused by
binding variables in the antecedent to values found during unification of the conse-
quent. However, if the XP-asserted nodes in the reused XP contain hypothetical
information they can be revised when the new knowledge is obtained from further
observations. We now describe our approach to selecting an explanation from a
retrieved candidate set.

2.3 Probabilistic Selection of Explanation Patterns from a Candidate Set

In our work, we use Bayesian inference to select an explanation from the candidate set
of retrieved explanations. Bayesian inference takes prior knowledge about the
parameter and uses newly collected data or information to update the prior beliefs [17].
The agent uses its observations of states/actions as new information in updating its
prior beliefs. Bayes equation adapted to the explanation patterns is given as follows:

P XPjevidenceð Þ ¼ P evidencejXPð Þ � P XPð Þ
PðevidenceÞ

Best Case

Candidate Selec on

Fig. 2. The CBR process with candidate selection (adapted from [14])
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P evidencejXPð Þ ¼ no: of times the evidence obtained given explanation
total no: of times evidences obtained given explanation

P XPð Þ ¼ no: of times the explanation is selected
total no: of times the explanation is in a candidate set

P evidenceð Þ ¼ no: of times the evidence is obtained
total no: of times evidence is in a candidate set

Each XP-asserted node is considered as an evidence, so Bayes equation is applied
for every XP-asserted node. The probability of the explanation given all evidence is

PðXPjevidence1::nÞ ¼ PðXPjðevidence1 \ evidence2. . .evidencenÞÞ

For all the explanations, the one with the highest PðXPjevidence1::nÞ is the one to be
selected. However, since our explanations are designed manually by domain experts,
we assume the domain experts provide the expected values for different prior proba-
bilities i.e. P XPð Þ;Pðevidence1::nÞ, before the mission starts. Moreover, if there is no
evidence obtained then an explanation having the highest PðXPÞ among the candidate
cases is selected. Finally, goals are formulated and the XP monitored to check validity.

2.4 Goal Formulation and Monitoring Explanation Patterns

Goal formulation is essential for an intelligent agent to respond to discrepancies [18,
19]; in GATAR, we perform formulation by preventing the recurrence of one or more
explanation antecedent nodes. Antecedent nodes may include actions and/or states;
therefore, when GATAR wishes to prevent an undesired consequent from recurring, it
considers the elimination of antecedent actors or objects that participate in antecedent
states as potential goals. The potential goals are generated using the removal mapping
function that takes in the actors or objects and outputs the goals that eliminate them.

Monitoring a selected explanation is essential for an intelligent agent to adapt its
beliefs and misclassifications. In our work, each node in the XP-asserted nodes of the
selected XP is added to the agent’s expectations. These nodes constitute the evidence.
Whenever the evidence matches the agent’s observations of the world, the agent
changes its beliefs. However, when the evidence contradicts the agent’s observations,
the selected XP is switched with the next probable explanation.

3 Underwater Mine Clearance Domain

Our approach is implemented in a limited mine clearance domain [20], which is
simulated using MOOS-IVP [21], software that provides complete autonomy for
marine vehicles. Figure 3 shows the simulation of the mine clearance domain with a
GATAR agent directing a Remus unmanned underwater vehicle. The Q-route is a safe
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passage for ships to enter and leave the port and is represented as a rectangular area in
Fig. 3. GA1 and GA2 are the two octagonal areas where mines are expected to exist,
while the triangular objects are the mines. The goals of the agent are to survey and clear
mines in GA1 and GA2. These goals are given to the agent after a reconnaissance
mission performed by a different agent across the whole sea route. The Remus has a
sonar sensor with a specific width of ten units and a length of five units to detect mines.

3.1 Discrepancies in Underwater Mine Clearance Domain

In the underwater mine clearance domain, several events often co-occur simultane-
ously, and many events cannot be predicted based on knowledge available to an agent.
These events might affect the agent itself or the mission of the agent. Explanations help
the agent to recognize these events and respond to them. We will look at several
uncertain events that might happen.

Events in this domain include minelaying, sensor failure, and reconnaissance
failure. Minelaying events occur when an enemy ship, aerial vehicle, or fishing vessel
lays traps to hurt friendly ships. Removing such mines within areas GA1 and GA2 is an
explicit goal for GATAR in the above scenario. Sensor failure event indicates that a
faulty GATAR’s sensor is responsible for a misclassification of mine, and the failure of
proper reconnaissance mission indicates that an agent prior to GATAR did not identify
mines which in turn failed its mission. We will look at some of the explanations in the
next section that sheds some knowledge on the discrepancies that happen in this
domain.

3.2 Plausible Explanations in Underwater Mine Clearance Domain

In GATAR, explanations are retrieved by a version of the Meta-AQUA component
[22], a story understanding system that tries to explain discrepancies in a story through

Fig. 3. Underwater Mine Clearance domain with two clearance areas in the Q-route. (labelled
items in this figure match later figures)
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use of case-based explanations. We have integrated this system with the MIDCA
(Metacognitive Integrated Dual Cycle Architecture) component [23], a cognitive
architecture that perceives and acts directly on the world, to examine the interaction
between explanation generation (by Meta-AQUA) and goal formulation (provided by
MIDCA); for the purposes of this paper, we refer to the combined system as the
GATAR agent.

As mentioned earlier, each explanation in our case-base is abstractly designed by
the domain experts to cover the possible discrepancies in the underwater mine clear-
ance domain. We will look at one of the detailed candidate explanatory case that can
occur for a discrepancy of detecting multiple mines at a location.

Figure 4 represents an abstract XP structure, which explains that an enemy ship laid
the mines in the clear-area and hence the UUV (unmanned underwater vehicle)
detected multiple mines. UUV is an abstraction for GATAR, while Clear-area is an
abstraction for areas that are not expected to have mines. As described earlier the XP
structure is in the form of an antecedent causing consequent. The consequent contains
the explains node “hazard-detection(uuv, mine)” to represent the discrepancy of
detecting a mine by the UUV, while the Pre-XP nodes “at-location(mine, clear-area)”
and “hazard-checked(mine, clear-area)” are the observational support to the discrep-
ancy. These Pre-XP nodes thus convey that a mine is already checked prior to the
currently detected mine, and implicitly conveys that multiple mines exist.

The antecedent contains the XP-asserted nodes of mine laying activity by the
enemy-ship in the clear-area represented by the action “mine-layer(enemy-ship, clear-
area)” and the mine pattern being circular is represented by state “mine-pattern(circular,
clear-area)”. Whenever this XP is retrieved the abstracted variables will be replaced by
the observations. For example, UUV will be replaced by GATAR, clear-area will be
replaced by all the areas in the domain except GA1 and GA2.

In a similar structure there are multiple explanations for multiple discrepancies that
might happen in the domain. Below are the high-level descriptions of those explana-
tions along with their responsive behaviors in Table 1.

Fig. 4. XP Structure that describes enemy ship caused multiple mines
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4 Example of Selecting a Case-Based Explanation

An example scenario from the underwater mine clearance domain can help us
understand the application of selecting explanations from the candidate set by GATAR.
Moreover, this will also give an idea of how such an application can improve the
performance of GATAR.

Figure 5 represents the example scenario in the underwater mine clearance domain,
where there are four minefields: first, at GATAR’s transit to the Q-route; second, at the
GA1; third, at GATAR’s area of transit from GA1 to GA2; and fourth, at the GA2.
However, GATAR has a mission to clear the second and fourth minefields, so any
mines encountered in the first and the third minefields are discrepancies.
When GATAR encounters the first mine in the first minefield, it retrieves a candidate
set of explanatory cases. Table 2 shows this set of explanatory cases retrieved as well
as the respective selection probabilities.

Table 1. Explanations for the discrepancies along with the behaviors

Explanation Discrepancy Behavior

Fisher-XP: Fisher-vessel laid
a single mine

Single mine detected at
the clear-area

Remove the single mine (Q-route)
and report existence of fishing vessel

Sensor-XP: GATAR’s
sensor failure

Single mine detected at
the clear-area

Recalibrate the sensor and continue
the mission

Tide-XP: Mines drifted from
expected regions GA1 or
GA2 with tides

Single or multiple mines
detected at clear-area

Clear the mines and continue the
mission

Reconnaissance-XP:
Reconnaissance failed

Multiple mines detected
in the clear area

Survey and clear the mines in the
whole Q-route

Enemy-Ship-XP: Enemy
ship laid the circular pattern
of mines

Multiple mines detected
in the clear area

Survey region covering circular area
with calculated radius & clear mines

Enemy-Aerial-XP: Aerial
vehicle laid the line pattern
of mines

Multiple mines detected
in the clear area

Survey region across line region
with statistically calculated slope &
clear mines

Fig. 5. A scenario where mines are laid by an aerial vehicle
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These probability values were chosen to match typical values in the domain. Since
Fisher-XP is the only explanation with evidence, the probability to select an expla-
nation is 0.5 and the probabilities of the Sensor-XP and Tide-XP are 0.14 and 0.08
respectively. Thus Fisher-XP is selected due to its higher probability and the table is
updated.

Table 3 shows the updated probabilities calculated using the Bayesian inference as
described in the Sect. 2.3. Furthermore, a goal is generated to report the existence of a
fisher vessel laying mines after the mission. Finally, the evidence is added to GATAR’s
expectations i.e. there is only one mine in the transit area to the Q-route.

When GATAR encounters another mine in the same area, its expectation of a single
mine is violated, and it retrieves another set of candidate explanatory cases to explain
the discrepancy. Since the previously selected explanation is not valid, it updates its
probabilities and drops the goal to report about the fisher vessel. Similarly, as described
above, GATAR selects the explanation that an aerial vehicle laid the mines, updates its
probabilities, formulates goals to report about the vehicle and finally generates an
expectation that the mines exist in a straight line.

After clearing all the mines from GA1, GATAR encounters mines in the third
minefield, selects the explanation that themines exist in a straight line, clears all themines
in theQ-route, and updates its probabilities. Finally, it returns to theGA2 and clears all the
mines in the GA2. Later after the mission GATAR reports the existence of the aerial
vehicle and its behavior to the base which is outside the scope of the paper. However, in
this scenario, GATAR intelligently made the Q-route safe for the ships to traverse.

Table 2. Probabilities of the retrieved explanations

Explanation (XP) P
(XP)

P (XP | evidence)

Fisher-XP: Fisher vessel laid a single mine 0.20 P (XP | single-mine) = 0.5
Sensor-XP: GATAR’s sensor failure 0.14 No evidence obtained regarding damage of

sensor
Tide-XP: Mines drifted by the tides from
the mine expected regions (GA1 or GA2)

0.08 No evidence obtained regarding tides and
the mines not at expectedminefield locations

Table 3. Probabilities after selecting the explanation

Explanation (XP) P
(XP)

P (XP | evidence)

Fisher-XP: Fisher vessel laid a single
mine

0.207 P (XP | single-mine) = 0.509

Sensor-XP: GATAR’s sensor failure 0.138 No evidence obtained regarding damage of
sensor

Tide-XP: Mines drifted by the tides from
the mine expected regions (GA1 or GA2)

0.079 No evidence obtained regarding tides and
the mines not at expected minefield
locations
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5 Experimental Setup

As previously mentioned, GATAR retrieves explanatory cases that explains any dis-
crepancies. A case-base of ten abstract explanatory cases are used to cover all the
behaviors of the GATAR agent in this domain. From the set of the retrieved cases it
selects an applicable explanation by applying Bayesian inference. Furthermore, the
antecedents of the candidate explanations are monitored to update the beliefs of the
agent. GATAR’s ability to the above intelligent behavior is evaluated by number of
ships that traverse the Q-route without hitting mines. Moreover, the performance of
GATAR is compared to a random agent. The random agent is like the GATAR agent in
retrieving a candidate set of explanatory cases. However, it differs from GATAR in the
selection process. It selects a random explanation from the candidate set to respond to a
discrepancy. The experiment is laid out in terms of two scenarios that are differentiated
by the placement of mines. Each scenario has three groups of three ships that start at a
specific location and ends across the other side of the Q-route at another specific
location. The first group will start with incremental delays while the second and third
groups will start with a constant delay of 0.25 and 0.50 min respectively following the
first group. The agent has the goals to clear mines in the areas GA1 and GA2.

Figure 6 represents the experimental setup of both scenarios 1 and 2. In the first
scenario, an aerial vehicle laid mines in a line pattern in the areas of transit, GA1, GA2
and the transit area between GA1 and GA2. The setup gives the agent a proper
evidence that an aerial vehicle laid the mines while pursuing its goals. In the second
scenario, an enemy ship laid the mines in the area between GA1 and GA2, while the
aerial vehicle laid the mines at transit, GA1 and GA2. The first scenario tests GATAR’s
ability to select the correct explanation by obtaining evidence while the second scenario
tests GATAR’s ability to switch explanations to clear mines between GA1 and GA2
when the evidence implies an explanation that an aerial vehicle is laying mines.

Fig. 6. (Left) Scenario 1 – mines laid by an aerial vehicle. (Right) Scenario 2 – mines laid by
both an aerial vehicle and an enemy ship.
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6 Empirical Results

Figure 7 shows the comparison of the performance with GATAR and the random agent
in the scenario 1. The X-axis shows the starting time, in increments of 0.25 min, for the
first group of ships after the agent’s mission starts. The Y-axis is the average number of
ships that successfully traversed through the Q-route. The experiment runs five times
for every time delay and for every agent and then averaged for each experiment.
GATAR outperforms the random agent at every time interval greater than 0.25.

When we look closely into results with a delay of 0.25 min, when the first group of
ships start, both the agents are still in their transit to the GA1. By the time the third
batch of ships start, both the agents cleared mines in GA1 and are in transit to Q-route.
This implies that a delay of 0.25 min is not long enough for both agents to clear enough
mines in the Q-route for any ship to survive. However, at an interval of 0.5 min of time,
both the agents could clear mines in GA1 as well as some on their transit to GA2 before
the third group of ships started, which signifies the steep increase in the curve. The
random agent underperforms because of the failure to select the correct explanation
leading to a different behavior.

At 0.75 interval of time, the GATAR agent could successfully clear GA1 and some
mines on its transit to the GA2 by the time the second group of ships start.
The GATAR agent completely clears all the mines in the Q-route before the third batch
of ships start. The random agent underperformance is due to its wrong choice in
behavior. Finally, at 1.25 interval of time, GATAR could completely clear all the mines
in the Q-route, so all the ships survived. Even at 2.5 intervals of time, the random agent
could not clear all the mines because of its selection of behaviors that ignore the mines
on their transit to the Q-route.

Fig. 7. Performance of the GATAR and the random agent in scenario 1
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Figure 8 compares the performance of GATAR and the random agent in scenario 2.
The experiment pattern follows the same as described above. GATAR outperforms the
random agent at every interval of time greater than the 0.75. In this scenario, GATAR
clears the mines in GA1 and when it happens to identify a mine between GA1 and GA2
in Q-route, it generates a behavior to traverse in a line based on the prior evidence it
obtained. After observing that the pattern is not a line, the GATAR agent changes its
behavior to a deep search pattern. Later it continues to clear the mines in GA2.

At 0.25 min of time, the random agent happens to select a behavior to clear only
the mines that it came across during two of the five random runs before the third group
of ships started. This resulted in clearing a mine at the upper part of the circle of mines
between the areas GA1 and GA2 in the Q-route, which allowed one of the ships to
survive. However, this is not the case with GATAR where all ships sank at time .25. At
1.25 min, GATAR clears all mines in the Q-route which allowed all ships to traverse
the route. At a delay of 2.5 min of time, the random agent seems to complete all its
goals before the ships start. However, because of its wrong choice of explanations, the
formulated goals could not allow for safe passage for all the ships.

7 Related Work

Explanation patterns were introduced by Schank in 1982 [8] and were later used in the
story understanding systems SWALE [24, 25] and AQUA [26]. SWALE is a case-
based approach to explanation of discrepancies in a story that retrieves, adapts and
stores explanation patterns. SWALE demonstrated an early technique for ruling out
competing explanations using memory knowledge. AQUA (Asking Questions and
Understanding Answers) operates by first questioning missing knowledge in a story,
then using explanation patterns to understand the answers.

Fig. 8. Performance of the GATAR and the random agent in scenario 2

Probabilistic Selection of Case-Based Explanations 121



Gentner and Forbus in [27], present the MAC/FAC approach, which closely aligns
to our approach. It is a two-phase retrieval process to improve the performance of the
retrieval process. MAC (Many are chosen) refers to using flat structures to eliminate
irrelevant cases outright while FAC (Few are chosen) refers to applying computa-
tionally complex algorithms to rank the cases from MAC. Our approach aligns closely
with the two-phase retrieval process, where we select a candidate set of XP’s using
explains and Pre-XP nodes and apply probabilities to select a single XP. Moreover,
Morwick and Leake in [28], show a performance increase in having such two-phase
retrieval approach.

Roth-Berghofer et al’s [29] work on classifying explanations and their use-cases
according to the user’s intentions is one of the theoretical research directions towards
explanations in case-based reasoning (see also [30]). This paper introduces the concept
of “explanation goals” that are used to decide when and what the system should explain
to users based on their expectations. In future research, we will investigate application
of these techniques to prevent the system from repeatedly explaining the same type of
unexpected events to a user who is already familiar with them. This paper also talks
about different kinds of explanations and classifies them into four different knowledge
containers, all of which are used to generate explanations based on the user’s goals or
intentions.

In [2], a robot adapts its behavior to gain trust in human machine teaming using the
approach of case-based reasoning. In addition, Floyd and Aha [31] presented an
approach to explain such adaptations based on an operator’s feedback, and evaluated
their system based on how closely the explanations aligned with the operator’s feed-
back. Our interest in generating explanations of the intelligent behavior of an agent
aligns closely with the interests of this paper.

8 Conclusion

In this paper we discussed a probabilistic approach of selecting an explanatory case
from the candidate set of retrieved cases for the discrepancy. Moreover, we have also
presented an approach to monitor the selected case, which helps GATAR to adapt its
beliefs and switch cases if a selection error occurs. Finally, the results show that the
performance of GATAR is better than the random agent. The causal structure of
explanations helps GATAR communicate and justify its behavior to human users.

In some cases, there can be more than one explanation relevant to a discrepancy. For
example, if both an enemy ship and an aerial vehicle laid mines in the same area then it
would be incorrect to choose one explanation. In future research, we would like to
reason about the probability of co-occurrence of causal events leading to discrepancies.

We also acknowledge that our current explanatory cases will provide only abstract
mine patterns which are evenly spaced or uniformly distributed. However, the real
world contains noise leading to misclassification of the evidence. In the future, we
would like to use statistical learning algorithms to predict mine patterns as well as their
distributions. Furthermore, GATAR should reason about the tradeoff between the time
required to clear the mines in GA1 and GA2 and the time to pursue its additional goals
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from the selected explanatory case. We expect that such reasoning will improve
GATAR’s performance.

Moreover, we also want GATAR to explain the rationale behind its intelligent
behavior to the human operator and obtain some feedback related to the hypothetical
evidence. This will improve the quality of explanatory cases selected from the case-base.

Finally, we want GATAR to reason about the tradeoff between immediately for-
mulating goals from a selected explanatory case and formulating goals after obtaining
evidence. We expect this functionality to help GATAR to adapt after selection failures.
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Abstract. This paper presents a method to discover initial global sim-
ilarity weights while developing a case-based reasoning (CBR) system.
The approach is based on multiple feature relevance scoring methods
and the relevance of features within each scoring method. The objective
of this work is to utilize the characteristics of a dataset when creating
similarity measures. The primary advantage of this method lies in its
data-driven approach in the absence of domain knowledge in the early
phase of a CBR system development. The results obtained based on the
experiments on multiple public datasets show that the method improves
the performance of similarity measures for a CBR system in discrimi-
nating relevant similar cases. Evaluation of the results is based on the
method suitable for unbalanced datasets.

Keywords: Global similarity weights · Feature weights · CBR ·
Case-based reasoning

1 Introduction

Case-based reasoning [1] (CBR) is a problem solving methodology based on past
experiences. It is based on the assumption that similar problems have similar
solutions. With this assumption, a CBR system is designed to retrieve similar
cases for a new problem. The solution of the retrieved cases are used to solve
the new problem. Hence, it becomes a key to retrieve the correct and relevant
cases. This paper proposes a data-driven approach to address this issue in the
early phases of a CBR system development, where the domain knowledge might
not be initially available.

When developing CBR systems today, we often have access to datasets con-
taining experiences. Those experiences are often structured for various purposes
and not necessarily all information are relevant to represent a case. The relevant
attributes can often be determined in collaboration with experts or using data
driven approaches, while the definition of initial similarity measures are more
challenging. This task has been addressed by researchers before, and learning or
deriving similarity measures is an active field in CBR research [11,27].
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In this paper we will investigate whether we can derive global similarity
measures from a given dataset. In paper [22] similarity measures have been
learned using feedback and similarity teacher. Local similarity measures as well
as the learning of comprehend similarity measures have been obtained using
Artificial Neural Networks is presented in [2,12].

However, deriving the weights for global similarity measures from a given
dataset is a novel approach and has the potential to improve building initial
CBR systems. In this paper, we will address how those similarity measures can
be automatically defined and we show how the proposed methods works on open
datasets.

The hypothesis of the paper is using an ensemble of feature relevance scoring
methods to discover initial feature weights for a CBR system. This can be used
in early phases of a CBR system development, where the researcher has little or
no guidance for the domain knowledge.

The paper is organised as follows: Sect. 2 discusses the related work about
finding feature weights, Sect. 3 presents the core of the paper, how to discover
feature weights using a data-driven approach. Section 4 provides the details of the
experiments’ setup, datasets used, and evaluation process. Section 5 presents the
experimental results. Section 6 is dedicated to the interpretation of the results
and its relevance to our hypothesis. The last section concludes the paper and
projects the future work.

2 Related Work

Extracting feature weights is a well known research problem area since multiple
decades [4]. Multiple methods and references are mentioned in the paper that
are used in feature weight extraction. In another paper [5] Aha and Goldstone
demonstrate that the feature weights in the similarity setting are context depen-
dent, with the help of 40 human subjects in their experiment. Thus, a universal
algorithm for feature weight extraction might not be possible in this context.

The work in [8] describes the challenges involved with the symbolic features
to be used for k-NN, and claims that the weighted k-NN is advantageous in
simplicity, training speed, and perspicuity. The paper [21] is focused on learning a
non-symmetric local similarity metrics, which is based on the learning approach.

Stahl and Gabel [23] discusses the challenges involved in developing a CBR
system and points out that the required knowledge, many a times, is unavail-
able during the developmental phase. He also describes optimising the similarity
measures with the help of a similarity teacher, which might not be available in
the initial phases of the development.

Cost and Salzberg [8] discusses the importance of k-NN for classification
tasks, where features have symbolic values. It also presents the experimental
results based on three techniques PEBLS, back propagation, and ID3 for the
comparison. Novakovic et al. [17] compare six feature ranking methods and their
experimental results, which shows that different ranking methods assigns differ-
ent ranks to the features. This supports our hypothesis that using ensemble of
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multiple methods could provide improvement in discovering the correct feature
weights.

Prati’s paper [19] investigates and proposes a general framework for ensem-
ble feature ranking based on different ranking aggregation methods. It suggests
that the ensemble feature ranking improves the quality of feature ranks. It also
elucidates on the merits and demerits of using score aggregation versus rank
aggregation for discovering the feature weights.

Multiple papers have presented the evaluation of feature weights based on
mean absolute error, mean squared error, or accuracy [21,23,25]. However, when
datasets are unbalanced, these evaluation methods might not be suitable, due to
the well known issues of class-imbalance and accuracy paradox [26]. Thus, for the
evaluation of the results, we have used the F1-scores and 10-fold cross-validation,
based on the confusion matrix.

3 Relevance-Based Feature Weights

This section presents our approach for discovering global similarity weights for
a given classification dataset. It is primarily based on the scores from multiple
feature relevance scoring methods.

The global similarity function is the weighted sum of all the local similarity
scores. The global similarity function used in this paper is shown in Eq. 1, where
wi is the weight of the feature i. The sim(Q,C) describes the global similarity
function between a query Q and a case C. Further, for each attribute i a local
similarity function is defined as simi(q, c), where q is the attribute value from
the query and c is the respective attribute value from the case. The result of
this global similarity function is a similarity score in the range [0,1]. The paper
is focused on data-driven approach to discover the value of wi for the feature i.

sim(Q,C) =
1

∑
wi

.
n∑

i=1

wi.simi(q, c) (1)

3.1 Proposed Method

We will refer to “feature relevance scoring methods” as “scoring methods”,
and “feature relevance scores” as “scores” going forward.

The entire method is described as a flowchart shown in Fig. 1. The process
of discovering feature weights starts by selecting a classification dataset, a set
of scoring methods, and percentage of features to be used. The percentage of
features, percent, defines the proportion of features that are considered in the
feature weight computation. Thus, a percent = 100 refers to all the features,
while a percent = 25 refers to 25% of features with highest ranks, by each
scoring method.

The scores are computed for all the features over each scoring method. How-
ever, only the percent of features with highest scores in each scoring method
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Fig. 1. Flow chart of the proposed method for discovering the subset features and their
weights for a given dataset and featuring scoring methods.

are considered. It is represented as max number of features shown in Eq. 2.
The top max number of features are sorted in descending order with respect
to their scores.

The following procedure is executed for each scoring method. A rank, as
per Eq. 2, is assigned to each feature. A feature with a highest score receives
the highest rank which is equal to the value of max number of features. The
rank of the lowest scoring feature is assigned to 1. Additionally, in case of a
collision with equal scores, the rank of the previous feature (in descending order)
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is assigned to the colliding feature. While the succeeding non-colliding feature
receives a rank with respect to its position in descending order.

rank = {x ∈ N | 1 ≤ x ≤ max number of features} (2)

Once the ranks are computed for all the scoring methods, they are summed
up with respect to each feature and stored in a ranksum vector. The size of
ranksum vector is assigned to the variable N , in Eq. 3.

Finally, the computation of the feature weight is performed as shown in Eq. 3.
The Weight(f) represents the weight of the feature f . These feature weights are
used as global similarity weights for the respective CBR system.

Weight(f) =

[
(
N − 1

)
·
( ranksum(f) − min(ranksum)

max(ranksum) − min(ranksum)

)
]

+ 1 (3)

3.2 Relevance-Based Feature Weighting Algorithm

In this section we present the relevance-based feature weighting algorithm. The
Algorithm 1 requires three parameters: the target classification dataset, a list of
scoring methods, and the percentage of features to be considered. These param-
eters are defined as arguments for the function computeFeatureWeights. This
function returns a map of feature weights where the feature names are the keys.

The ranks for the features are computed for every scoring method, and are
stored in the variable featurerank. The ranks are assigned in the descending
order per scoring method, thus the most relevant feature gets the highest rank.
If multiple features possess the same score then all of them are assigned with
the same rank whereas the subsequent feature gets a rank with respect to its
position in the descending order. The algorithm computes the sum of all the
ranks with respect to each feature and stores it in the variable ranksum.

In the last step of the algorithm, the value for N is the number of unique
features in the ranksum. And, the min() and max() functions provide the mini-
mum and maximum values. Once the feature weights are successfully computed,
they are used as feature weights in modeling the global similarity function.

The size of the final feature list and hence the attributes that receive a global
weight depends on multiple factors, such as:

– the value of the percent variable,
– the relevance of a feature for the classification,
– the number of scoring methods used,
– the scores from various scoring methods
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Algorithm 1. Relevance-based feature weighting algorithm
Input: Dataset
Input: methods ← feature relevance scoring methods
Input: percent ← percentage of features to be considered per method
Output: Weights

1 Weights ← computeFeatureWeights(Dataset,methods, percent)
2 Function computeFeatureWeights(Dataset, methods, percent):
3 featurerank ← getRanks(Dataset,methods, percent)
4 ranksum ← sum(featurerank) // per feature

5 Weights ← 0
6 N ← size(ranksum) // N scaling factor

7 for feature do

8 Weights(feature) ← [N − 1] · [ ranksum(feature)−min(ranksum)
max(ranksum)−min(ranksum)

] + 1

9 end

10 return Weights

One of the inherent properties of this algorithm is that it also performs feature
selection, which could be influenced in multiple ways. Two of the primary ways
are by changing the value of percent or by varying the number of scoring methods
to be used in the algorithm.

4 Experiments

In this section we present a set of experiments where we used openly available
datasets to evaluate our method. The criteria for the considered datasets were
that they fit a classification task, have different numbers of features as well as a
variation of cases vs. the number of features.

The experimental setup uses myCBR tool [24] including its workbench and
REST API module. The myCBR tool is used for modeling similarity, generating
ephemeral case bases, and performing retrievals. The evaluation of the experi-
mental results are based on 10-fold cross-validation.

The following subsections briefly describe datasets, feature relevance scoring
methods, and confusion matrices used in our experiments.

4.1 Datasets

Table 1 lists four public datasets used in our experiments. They are available on
“UCI Machine Learning Repository”1. The chosen datasets are for multivariate
classification tasks and consist of features of type categorical, numerical, or a
combination of both. One can see that the number of cases and target classes
vary, and therewith pose different challenges for a CBR classifier.

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Table 1. Description of the datasets used in the experiment

Sln. Dataset Task type Data types Samples Features Missing
values

Target
classes

1 Car evaluation [6] Multivariate
classification

Categorical 1728 6 0 4

2 Pima Indians
Diabetes [28]

Multivariate
classification

Float, Integer 768 8 0 2

3 Tic-Tac-Toe
Endgame [3]

Multivariate
classification

Categorical 958 9 0 2

4 Zoo [10] Multivariate
classification

Categorical, Integer 101 17 0 7

4.2 Feature Relevance Scoring Methods

To get the feature relevance scores we used Orange [9], an open source tool. With
the help of Rank widget, Orange version 3.20.1, the scores from the six scoring
methods are obtained at the default settings for each dataset. As described in
Sect. 3, one can use multiple scoring methods, for the experiments we used the
default six scoring methods from the tool. A brief description of these scoring
methods are as follows:

– Information Gain [16]: measures the gain in information entropy by using
a feature with respect to the class.

– Gain Ratio [20]: a ratio of the information gain and the attribute’s intrinsic
information, which reduces the bias towards multi-valued features that occurs
in the information gain.

– Gini [7]: is a measure commonly used in decision trees to decide what is
the best attribute to split the current node for an efficient decision tree con-
struction. It is a measure of statistical dispersion and can be interpreted as
a measure of impurity for a feature or the inequality among values of a fre-
quency distribution.

– Chi2 [18]: this method evaluates each feature individually by measuring the
chi-squared statistic with respect to the class.

– ReliefF [15]: this method uses the ability of an attribute to distinguish
between classes on similar data instances.

– FCBF [29]: (Fast Correlation Based Filter) entropy-based measure, which
also identifies redundancy due to pairwise correlations between features.

4.3 Confusion Matrix

The results of the retrievals are represented as a confusion matrix (CM). For
instance, a retrieval result for 26 classes of a dataset can be represented using a
CM as shown in Eq. 4, where A,B, ..., and Z are the class labels. An element of
this matrix, Φ (a positive integer value (Z≥0)), is the number of times a query
resulted in a class pair. A class pair represents the location of an element in
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a CM, and is represented by lower subscripts of Φ as Φtp. Where, t represents
the true class and p represents the predicted class. Additionally, the t and p
represents the rows and columns of the CM, respectively.

CM =

⎡

⎢
⎢
⎣

ΦAA ΦAB ... ΦAZ

ΦBA ΦBB ... ΦBZ

. . . .
ΦZA ΦZB ... ΦZZ

⎤

⎥
⎥
⎦ (4)

4.4 Confusion Matrix for k-Fold Cross-Validation

A CM is constructed with respect to each dataset before the evaluation process
begins and is initialized to 0 (element-wise).

When a query is executed, the CMinit is updated as shown in Eq. 5 with
respect to the true and predicted class labels.

CMquery = CMinit[predicted class][true class] + 1 (5)

Thereafter, according to the Eq. 6, the confusion matrix CMk for kth itera-
tion of the k-fold cross-validation is computed. In this equation, the variable M
represents the total number of query cases in the kth iteration.

CMk =
M∑

m=1

CMquerym
(6)

Finally, the confusion matrix for the entire k-fold cross-validation is computed
as shown in Eq. 7. Thus, at the end of all k iterations the CMk−fold contains all
predictions with respect to the entire case base.

CMk−fold =
k∑

i=1

CMk (7)

The experiments performed in this paper are with percent values equal to
50, 75, and 100.

4.5 Evaluation

For the process of evaluation, we create a case base for each dataset where all
the features are included. The local similarity measures are modeled using the
interquartile ranges for a numerical feature (see [27] for details), and pair-wise
similarity for a categorical feature. As a baseline system each dataset has been
provided to a CBR engineer to model the global and local similarities manually.
Additionally, a equal weighted global similarity function is implemented for each
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these datasets. The basis for the evaluation of the experimental results is a
confusion matrix generated from 10-fold cross-validation as per Eq. 7 and the
F1-scores.

The datasets selected for the experiments are unbalanced, thus we use F1-
score as an evaluation measure. The F1-scores are computed for 10 runs over
the 10-fold cross-validation confusion matrices. The computation of F1-scores
are based on the Eq. 8.

F1 score = 2 · precision · recall

precision + recall
(8)

5 Results

This section presents the results obtained from the experiments described in the
previous sections.

The naming convention used for representing a global similarity function is
<name> <percentage>. Where the <name> describes the type of similarity
function, explained as below:

– manual *: global similarity function with manually modeled feature weights,
based on domain knowledge.

– eq *: global similarity function with equal feature weights.
– rank *: global similarity function with discovered feature weights, which uses

sum of ranks for weight computation.
– score *: global similarity function with discovered feature weights, which

uses sum of scores for weight computation.
– info gain *, gain ratio *, gini *, chi sq *, relief f *,andfcbf *: global

similarity functions for the individual scoring methods, described in Sect. 4.2.

The <percentage> or * is a place holder for percentage of features selected,
per scoring method, that was used for weight computation. The percentages
considered for this paper are 50%, 75%, and 100% (all). All the features with
respect to various global similarity functions are same for a given percentage
value.

Figure 2 presents the confusion matrices for of the Zoo dataset. Each
confusion-matrix is obtained based on 10-fold cross-validation for a global sim-
ilarity function. The title of each matrix describes the name of the dataset and
the global similarity function used for the retrieval. Likewise, the y-axis repre-
sents the true class labels (label of the query case), and the x-axis represents
the predicted class labels (label of the retrieved case). The Zoo dataset poses
the most challenging classification task since the classifier needs to distinguish
7 different classes while only having 101 cases available, which leads to very low
support cases during the evaluation. However, the general trend shows that the
more features are included, the better the classifier is performing. This can be
seen in Fig. 2 where there are less misclassifications in the first row (all features
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Fig. 2. Zoo dataset confusion matrices after one run of 10-fold cross validation with
respect to the global similarity functions.

included in the global similarity function), compared to the second row (75% of
features included) and third row (50% of features included).

Figure 3 presents the F1-score distributions for the 10-fold cross-validation,
where none of the individual scoring methods perform consistently across all
the datasets. Thus, in absence of domain knowledge our approach for predict-
ing global similarity weights (rank all) performs reasonably well across all the
datasets.

Figure 4 presents the F1-score distributions with respect to the reduced fea-
ture percentages for all the four datasets. In this figure each row contains three
sub-plots with respect to the percent values. The F1-scores are obtained based
on 10-fold cross-validation for each global similarity function. The title of each
plot describes the name of the dataset.

6 Discussion

The results are in accordance with the hypothesis of this paper: we can use
distributions and statistical relationships within a dataset to define an initial
global similarity measure. Our method can help to identify whether all or only
a subset of features is necessary to carry out the desired classification task.
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Fig. 3. Box-plots of evaluation metrics for 10-fold cross-validation over 10 runs. The
plots are for datasets: Car, Diabetes, Tic Tac Toe, and Zoo respectively. All the plots
are plotted with respect to the aforementioned global similarity functions, based on:
manual, equal-weighted, rank, score, and the individual scoring methods.

As the paper describes a method for discovering feature weights based on
the data-driven approach with a possibility of feature reduction. The F1-score
distributions in Fig. 4 shows whether a reduction of features has an effect on
the retrieval. Since the entire approach of generating the similarity measures
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Fig. 4. Box-plots of F1-scores for 10-fold cross-validation with varying percent values.
The plots are for datasets: Car, Diabetes, Tic Tac Toe dataset, and Zoo respectively.
All the plots are plotted with respect to the aforementioned global similarity functions,
on the x-axis.

is automatic, we can now gradually reduce the number of features (selecting
smaller steps than presented here) and therewith find the best possible system,
before discussing the details with domain experts. This will save effort and has
the advantage of collaborating and incrementally improving a CBR system.
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The proposed method of the paper does not challenge the similarity mod-
eling based on the domain knowledge. With one exception of the Zoo dataset,
the manual knowledge engineering performed better than the automatic one
- obviously, because a knowledge engineer can encode domain characteristics
and is not dependent on the distribution within the dataset. However, in the
absence of the correct domain knowledge, the presented approach holds better
than equally weighted features. A similar pattern occurs when the number of
features are reduced. As the features of the datasets are highly representative
of the class, the significant difference might not be noticeable for the selected
datasets.

In general, we can see that the global similarity function based on the rank
and feature relevance scores are higher than the global similarity functions based
on equal weights. However, the global similarity function based on manual mod-
eling of the local and global similarities outperforms the automatically created
CBR systems, except in the case of Zoo dataset. This is an expected outcome
as the manual modeling is based on the domain knowledge.

In the absence of publicly available reference CBR systems we could not
perform any comparison or bench-marking of our results. In order to allow other
researchers comparisons with their work, we share our projects used in this
paper2.

7 Conclusion and Future Work

We have presented our method for discovering feature weights for modeling
global similarity function for a CBR system using a data-driven approach. This
method is well suited in the initial phases of a CBR system development. This
method also provides an opportunity for the developer of the CBR system to
discuss the setup with domain experts and present comparisons of the results to
them in various configurations. Moreover, the feature selection is also supported
and it’s results can be compared against multiple choices of the percent values,
as proposed in the paper. We comment that the method brings reduction in
time of the development and prototyping phase of a CBR system. The approach
does not involve iterations of learning, thus reduces the chances of over-fitting,
which is also supported by the use of ensemble of multiple feature relevance scor-
ing methods. With the publishing of the developed case bases and its similarity
functions, the experiments become fully reproducible and can serve as reference
implementations in the future.

Inspired by the results of the present method, we would use the approach
over multiple other public datasets, and publish them to be used by researchers
of CBR community. The future work in continuation with paper is to research on
discovering the local similarities for symbolic features. Additionally, we currently
apply this approach to the dataset of our ongoing research described in the
paper [13,14], where a more complex dataset has been presented and different
application scenarios are discussed.
2 https://github.com/ntnu-ai-lab/cbr-benchmark-projects.

https://github.com/ntnu-ai-lab/cbr-benchmark-projects
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9. Demšar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res.
14, 2349–2353 (2013). http://jmlr.org/papers/v14/demsar13a.html

10. Forsyth, R.: Zoo database (1990). https://archive.ics.uci.edu/ml/datasets/Zoo
11. Gabel, T.: On the use of vocabulary knowledge for learning similarity measures. In:

Althoff, K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) WM
2005. LNCS (LNAI), vol. 3782, pp. 272–283. Springer, Heidelberg (2005). https://
doi.org/10.1007/11590019 32
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Abstract. Matrix factorization is an advanced recommendation strat-
egy based on characterizing both items and users on a vector of latent
factors inferred from rating patterns. These vectors represent, somehow,
a characterization of the user preferences in a lower dimensionality space.
Although matrix factorization is more accurate that other recommenda-
tion strategies, the main problem associated with this approach is that
the discovered factors are opaque and difficult to explain to the final
user. In this paper we propose a personalized case-based explanation
strategy that uses the latent factors to find similar explanatory cases
already rated by the user.

Keywords: Case-based explanation · Personalised explanation ·
Matrix factorization

1 Introduction

Recommender systems are typically based on one of two strategies. The content
filtering approach creates a profile for each user or product to characterize its
contents and recommends a similar product that matches the user profile. For
example, a movie profile could include attributes regarding its genre, year, direc-
tor, actors, and so forth. An alternative approach is collaborative filtering that is
more flexible and generally more accurate than content-based techniques. Col-
laborative filtering relies only on user ratings and analyzes relationships between
users and items, or between items to identify new user-item associations [1]. Rec-
ommendations resulting from content-based strategies are more comprehensible
for users, as they are based on the explicit user preferences.

Since its success during the Netflix prize challenge the matrix factorization
algorithm [2] has became one of the most successful algorithms to generate per-
sonalized recommendations. Matrix factorization is an advanced strategy that
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Table 1. Recommended movie using matrix factorization

Movie Id. Movie title Year Director Stars Predicted

223 Clerks 1994 Kevin Smith Jason Mewes
Jeff Anderson

4.042

attempts to merge the content and collaborative information in a single model
based on characterizing both items and users on a vector of factors inferred from
the ratings patterns. Although these vectors represent, somehow, a character-
ization of the user preferences, they are opaque collections of numeric values
computed by the algorithm. In this paper we propose using these vectors to
define a personalized similarity metric between items for every user. Case-based
explanations focus primarily on finding explanatory cases that are similar to the
recommended item [20]. Then, we use these cases to interpret the opaque output
of the matrix factorization recommendation algorithm.

From the point of view of recommender systems, we propose an item-based
explanation, since it uses items to justify a recommendation [16]. The main
advantage of this approach is that it allows users to assess the quality of the
recommendation by comparing items, that ideally should be similar according to
the user’s criteria. The main challenge of these case-based explanation strategies
is to find a similarity metric that matches the user’s criteria. Current content-
based approaches [13] are based on the comparison of item’s features, leaving
aside the user’s interpretation of these features. Therefore, in this paper we
use the vectors of factors that characterize the user preferences to compute a
similarity metric that finds related items in order to explain the recommendation.

Let’s motivate our approach with an example. Given a user that has rated
several movies in a dataset, the matrix factorization algorithm recommends
“Clerks”. Table 1 shows its features and Table 2 shows the most similar rated
movies using as similarity metric the cosine of the vectors of factors extracted
from the matrix factorization.

Here, “The usual suspects” is the most similar but there is not a clear intu-
ition about the reasons for this similarity from the point of view of the canonical
content-based distance. According to that distance, “The usual suspect” won’t
be chosen as an item for comparison as there are no common features between
both movies (leaving aside the year). However, our hypothesis is that the vector
of factors resulting from the matrix factorization is able to capture relations that
make sense from the user’s point of view. For example, the user may like politi-
cally incorrect movies and the matrix factorization has captured that factor, and
therefore making both movies similar.

Section 2 reviews the related work in explanations in recommender systems.
Section 3 explains the matrix factorization method. Section 4 describes how to
define a personalized similarity metric between items for every user that is used
to retrieve the explanatory cases. Section 5 evaluates the similarity metric asso-
ciated to our case-based explanation model demonstrating how to get relevant
explanatory cases without additional knowledge on the item features. Section 6
concludes the paper and describes the ongoing lines of work.
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Table 2. Most similar movies according to the vectors of factors resulting from the
matrix factorization

Movie Id. Movie title Year Director Stars Rating Similarity

50 The Usual Suspects 1995 Bryan Singer Kevin Space

Kevin Pollak

5.0 0.796

163 Desperado 1995 Robert Rodriguez Quentin

Tarantino

Salma Hayek

5.0 0.750

596 Pinocchio 1940 Norman Ferguson Mel Blanc

Cliff

Edwards

5.0 0.665

151 Rob Roy 1995 Michael Caton-Jones Liam Nesson

Eric Stoltz

5.0 0.646

101 Bottle Rocket 1996 Wes Anderson Andrew
Wilson Lumi
Cavazos

5.0 0.465

2 Related Work

Using explanations in recommendation systems is an important area of research
in this type of systems. One of the main problems with recommendation sys-
tems is that users do not know why a product has been recommended to them.
Recommender systems that use explanations improve user confidence in those
recommendations [20]. In addition, users consume more products resulting from
a explainable recommendation process [7].

Nowadays there are many works that apply explanations in recommender
systems. In a previous work [3], we carried out an in-depth study of the expla-
nation systems applied to recommendation systems. As a result of this study,
we developed a theoretical model to classify the explanation systems according
to their characteristics. According to this model, explanation systems employ
different methods to obtain the knowledge needed to generate explanations. The
model we present in this paper is knowledge-light and the only knowledge con-
tainer employed is the algorithm, and more precisely, the similarity between
items and the user’s experiences.

In [12] we find explanation system for movie recommendation systems based
on the similarity between plots. Movie similarity is based on the characteristics
that are in common between the characters and the interactions of the characters
in the plot. The IMVEX system [5] is a rule-based system that personalizes
the explanations for different types of users. The knowledge base used is the
user profile. The system developed by [11] shows an explanation system for
a recommendation system for groups, based on the similarity of preferences
among the members of the group. In [17], we found a system that displays the
recommendations along with the characteristics that have been involved in the
selection of the best candidates for the recommendation. Another example of a



Personalized Case-Based Explanation 143

system that takes into account similarities between user preferences and item
characteristics is the framework presented in [23].

We are particularly interested in experience-based explanations, which use
the past actions of the user and her history of interactions as a source of
knowledge to generate explanations. CBR-based explanations are an example
of experience-based explanations. There are different works based on CBR. The
work in [4] reviews classic systems that use CBR as a way to find similar cases
that are used as an explanation of recommendations. In [19], the attribute with
the highest weight in the similarity metric is selected in order to find the similar
cases that may be of interest to the user as an explanation of the recommenda-
tion. In [8] we found a case-based system to explain the detection of healthcare-
associated infections. The work in [15] describes a case-based recommender sys-
tem for hotels, where cases are obtained from users’ reviews. The explanations
of the recommendations are based on features obtained from this information.
The PSIE (Personalized Social Individual Explanation) approach [18] includes
explanations to group recommender systems and social explanations with the
aim of inducing a positive reaction to users in order to improve their perception
of the recommendations. In [14] we found a CBR system that uses the difference
between the query and the case descriptions to explain all recommendations.

Finally, there are some works to explain recommendations provided by sys-
tems based on latent factors. This is due to the fact that these systems work very
well, but they are difficult to explain. In [10] the authors describe the TriRank
system, which extracts information from the reviews to improve the transparency
of the recommender system. Another work that tries to explain the recommenda-
tions obtained from matrix factorization is [24]. The explanation model consists
of determining which movies have influenced the rating predicted by the matrix
factorization algorithm. In [21], authors propose a method called Tree-enhanced
Embedding Method (TEM) that uses embedding-based and tree-based models
to extract explanations of recommenders systems based on collaborative filtering
and latens factors.

In the following section we explain how a recommendation system based on
matrix factorization works. In addition, we explain what information we will be
able to use from this algorithm to generate the explanations.

3 Recommendation Using Matrix Factorization

Matrix factorization is one of the most commonly used methods for creating a
latent factor model applied to recommendation systems. To create the model,
the algorithm uses a R ∈ R

U×I matrix that contains the ratings that users (U)
have made on a set of items (I). The main problem with the R matrix is that
it is very sparse, that is, it only contains a small part of the ratings. The goal
of matrix factorization is to complete the R matrix by relating users to items
through latent factors of N dimensionality.
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To do this, we apply the Simons Funk’s model [6]. We define P ∈ R
U×N

matrix, which relates each user from U to the factor dimensions (N), and Q ∈
R

I×N matrix, which relates the set of items I to each factor dimension (N).
This way, a user u ∈ U is associated with a vector pu ∈ P that measures the
preferences of the user on items according to the corresponding latent factors. On
the other hand, an item i ∈ I is associated with a vector qi ∈ Q that measures
how the item is reflected according to the latent factors. The dot product of both
vectors will give us the user’s u rating prediction (r′

ui) of item i, as illustrated
in Fig. 1:

r′
ui = puqTi (1)

Fig. 1. Matrix factorization general schema.

A recommender system uses a R′UxI matrix, which contains the estimations
for each user and each item. This matrix is the result of multiplying P and QT

matrices.

R′ = PQT (2)

From this matrix we will obtain the items that will be recommended to a
specific user. To learn the values of P and Q the system minimizes the error
between the rating prediction and the known ratings. In our learning process we
use the stochastic gradient descent method. In this process, the algorithm runs
through the known rating set (rui ∈ R). For each rating, the system computes
the error between this rating and its prediction.

eui = rui − puqTi (3)
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Once the error is known, the values of pi and qu are modified by a magnitude
proportional to γ in the opposite direction of the gradient. The new values will
be:

qi ← qi + γ · (eui · pu − λ · qi) (4)
pu ← pu + γ · (eui · qi − λ · pu) (5)

Once we have described the general schema of the matrix factorization rec-
ommendation technique, following sections will depict our proposal for using the
Q matrix to find explanatory cases, because this matrix captures user preferences
through the factor vectors.

4 Retrieval of Explanatory Cases Using the Q Space

Case-based explanation requires a set of similar items that will be presented as
explanatory examples. These items must be similar to the item recommended
by the system according to the user preferences. As we described in the previous
section, P matrix describes users as factor vectors, meanwhile, Q matrix contains
factor vector representations for every item, both of them using a N dimensional
space. The dot product of user and item vectors, puqTi computes the estimated
rating for a user u and item i. This way, pu contains the description of the user,
and qi a general description of the item according to the preferences of all the
users in the dataset. As the goal of the explanation process is to obtain expla-
nation items in a personalized way for each user, we need initially to transform
the Q matrix to represent the items according to the concrete user u. To do so,
we transform the Q matrix into a collection of vectors where each N-dimensional
vector represents the description of an item qi multiplied by the user preferences
pu:

Qu = {qu1 , . . . , quM} (6)
where qui = puqi

Here, qi ∈ R
N and M = |I| is the number of items in the dataset. This

collection of vectors summarizes the user u preferences, where several factor
vectors are more discriminant that others. The example in Fig. 2 shows that the
vectors represented in columns 1, 12 and 14 are the most discriminant in order
to compute the predicted rating of an item. It is important to note that these
vectors are personalised for every user as it is the result of multiplying Q by pu.
Therefore, the Qu matrix is completely different for every user.

This fact is illustrated by Fig. 3, which shows the factor value distribution
of the Qu vectors for two different users given the same set of movies. We can
clearly observe that the characterization of both users is different, allowing us
to use Qu as a description of the user’s profile. However, the characteristics of
the matrix factorization algorithm does not provide a symbolic description of
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Fig. 2. Visualization of the Qu matrix capturing the user preferences in a collection of
M vectors (number of items) with dimension N (in this example M = 20 ×N = 14).

these factors that could be used to explain the results. We cannot even have an
intuition of what these vectors exactly mean for each user, as they are numeric
values computed by the algorithm. But we can exploit this Qu matrix to define
a personalized similarity metric between items for every user.

Matrix Qu describes the items according to the user rating patterns. But,
to generate the explanations using a case-based approach, the system will only
use the items that the user has previously rated. That is, the system filters the
items that the user has not rated yet from the Qu matrix. The result is a new
matrix Qu′:

Qu′ = {qui ∈ Qu : rui �= ∅} (7)

Now, we can define a similarity metric over this space to calculate the sim-
ilarity between two items according to the user’s perception. We propose using
the cosine similarity function to compare qui vectors of each item. The benefit of
using this similarity function is that it does not take into account vector magni-
tudes, which allows item comparison without having to obtain a prior knowledge
about the latent factors for each user:

simQu

(i, rec) = cos(qui , qurec) =
qui · qurec

|qui | · |qurec|
(8)

Once the similarity metric is defined over the R
N vector factors space, the

set of explanatory cases is obtained by selecting the most similar rated items.
The explanatory case set (Exp) includes the k items of Qu′ that are more similar
to the recommended item (rec) as described in Algorithm 1.

5 Evaluation

We have described a case-based explanation model where the explanatory exam-
ples are retrieved from the Qu matrix that captures the user preferences in a
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Fig. 3. Factor value distribution of the Qu vectors that summarizes two users’ profiles
(preferences) with dimension N = 14. Top figure corresponds to the matrix shown in
Fig. 2.

N-dimensional space. To evaluate our model we will prove that the explanatory
examples retrieved using simQu

are more relevant to the user than the items
that we would retrieve using simI , that is, a content-based approach that can
compute the similarity for every pair of items. A benefit of our approach is that
it is knowledge-light, in opposition to the classical content-based approach using
I.

Our experiments demonstrate that our model provides personalized results
without requiring any knowledge about the items’ description. It overcomes one
of the main problems associated with content-based approaches, namely that
they require gathering external information that might not be available. Our
model does not need the I description matrix, but only the R matrix that
includes the users’ ratings.
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Algorithm 1. Computation of the explanatory cases set
Input: R, P, Q, u, rec, k
Output: Exp

1 pu ← P [u]
2 rui ← R[u, i]
3 Qu ← {puq1, . . . , puqm : qi ∈ Q}
4 Qu′ ← {qui ∈ Qu : rui �= ∅}
5 Exp ← {}
6 while k > 0 do
7 Exp ← Exp ∪ {i : argmax

qui ∈Qu′
sim(qui , qurec)}

8 Qu′ ← Qu′ \ qui
9 k ← k − 1

10 end
11 return Exp

5.1 Datasets

To test our hypothesis we have used the popular movie domain. In this evaluation
we used two public datasets. The first one is the 100k MovieLens dataset [9],
which contains 100,000 ratings made by users in the MovieLens recommendation
system. This dataset will be used by the matrix factorization algorithm. The
second dataset contains the features of 5,000 movies [22]. These descriptions
have been extracted from IMDB1. More concretely, the movie features that we
used in the evaluation are: genres, directors, actors, screenwriters and the decade
in which the movies were released. This second dataset let us to compare the
quality of our examples compared to a classical content-based approach.

In the evaluation we selected the movies that both datasets have in common.
The final dataset used for the evaluation contains 11,477 ratings made by 587
users on 164 movies. 90% of the dataset has been used to train the P and Q
matrices of the recommender system. Regarding the sparsity of the training
matrix, it represents the 11% of the complete matrix. The remaining 10% of
the dataset has been used to perform the evaluation. Moreover, in order to
perform a stratified evaluation according to the rating values, we have created
another dataset where each fold has the same rating value. To create the stratified
dataset, we have selected 34 items for each rating value2. We have made this
selection randomly, and we have repeated it 100 times. Then, we have got 3400
items for each rating value. This second evaluation set will verify that the system
works better by eliminating the bias of the most popular ratings.
1 https://www.imdb.com/.
2 This is the highest possible value as the dataset only contains 34 items rated with

2.5 as shown in Table 5.

https://www.imdb.com/
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5.2 Methodology

As we have explained before, in this evaluation we try to demonstrate that the
items we recover using the simQu

metric are more relevant as a personalized
explanation of a recommendation. To prove it, we have to compare the retrieved
examples to those cases we would retrieve using a classical content-based app-
roach.

In order to define a content-based similarity metric using the I matrix we
need a binary representation of the item description, where each vector posi-
tion represents if the item has that description feature or not. To build these
descriptions we have converted the multivalued features of the film descriptions
(genres, directors, actors, ...) into binary values. This way we avoid the bias of
knowledge-rich approaches that use more elaborated metrics to compute these
multivalued features. Another advantage is that we could use the same cosine
metric to compare both item descriptions in Qu and I:

simQu

(i, rec) = cos(qui , qurec) (9)
simI(i, rec) = cos(I[i], I[rec]) (10)

To estimate the quality of the recovered explanatory cases, we are going to
compare them with the recommended item. Our evaluation metric will com-
pute the Root Mean Square Error (RMSE) between the estimated rating r′

ui

for the recommended item and the average of the actual user ratings for the k
explanatory cases, either retrieved using simQu

or simI . In the evaluation we
used different k values, with k ∈ {1, 2, 3, 5, 10}.

The intuition behind this evaluation is that, given a recommended item to
be explained, the explanatory cases should have a real rating given by the user
similar to the estimated rating provided by the recommender system for the
recommended item. As we are using a stratified evaluation, this approach let us
validate if the proposed method could be useful to explain both positive (high
estimated rating) and negative recommendations (low estimated rating).

5.3 Results

Table 3 shows the RMSE values that we have obtained using both similarity
metrics. We observe that the use of the simQu

metric to retrieve the explanatory
cases decreases the RMSE value. In other words, the rating given by the user to
the cases that are recovered with the descriptions of qui are more similar to the
rating estimated for the recommended item than using binary descriptions in a
content-based style. The third column shows the improvement percentage using
the methodology proposed in this paper. In the table we see that the best result
is with the value of k = 1 where the improvement is 5.5%.

The corresponding results of the stratified evaluation are shown in Table 4.
We observe again the best results with low k values. The explanation for this
behaviour, both in the complete and the stratified dataset, is the highest perfor-
mance of the simQu

metric when presenting few explanatory cases. On the other
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Table 3. RMSE using the complete evaluation set.

k simI simQu

Improvement (%)

1 1.211 1.144 5.53
2 1.194 1.144 4.16
3 1.189 1.136 4.47
5 1.190 1.143 3.94
10 1.179 1.148 2.67

Table 4. RMSE using the stratified dataset.

k simI simQu

Improvement (%)

1 1.229 1.125 8.47
2 1.208 1.139 5.71
3 1.211 1.134 6.34
5 1.199 1.146 4.42
10 1.180 1.148 2.71

Fig. 4. Graphical representation of the improvement percentage of the simQu

met-
ric with respect to the content-based approach simI . Left heatmap corresponds to
the results of the complete dataset shown in Table 5, whereas heatmap on the right
corresponds to the stratified dataset detailed in Table 6. Red cells represent negative
improvement (content-based approach is better than latent factors metric). (Color
figure online)
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hand, as the number of explanatory cases increases, the content-based approach
is able to leverage its worse performance.

Next, Tables 5 and 6 show the results segmented by the rating value3. As a
general result, we can conclude that the latent factors obtain better results than
the content-based approach. The corresponding improvements (in percentage)
are illustrated by Fig. 4. This figure let us observe that the similarity metric
based on the vector of factors is not only able to explain a movie that the user
may like (high predicted ratings), but also to explain why the user won’t like a
move. It is specially remarkable for those movies with a very low rating, where
our approach achieves the highest performance. This figure also illustrates the
behaviour of the proposed similarity metric when presenting to the user few
explanatory cases, that was summarized by Tables 3 and 4.

Table 5. Detailed RMSE using the complete dataset segmented by the rating value.

Rating Size k = 1 k = 2 k = 3 k = 5 k = 10

simI simQu
simI simQu

simI simQu
simI simQu

simI simQu

1 37 1.18 0.77 1.08 0.83 1.10 0.85 1.07 0.89 0.99 0.93

2 85 1.04 1.09 0.99 1.02 1.02 0.98 0.98 0.97 0.98 0.97

2.5 34 1.09 0.91 1.03 0.95 1.06 0.93 0.98 0.94 0.99 0.92

3 295 0.98 0.89 0.95 0.87 0.93 0.87 0.94 0.89 0.93 0.89

3.5 95 0.84 0.84 0.81 0.81 0.82 0.81 0.86 0.84 0.86 0.84

4 304 0.90 0.88 0.93 0.91 0.91 0.89 0.92 0.90 0.91 0.90

4.5 66 0.97 0.94 1.05 0.91 1.02 0.92 1.00 0.96 0.94 0.93

5 219 1.06 1.03 1.03 0.98 1.02 0.99 1.01 0.97 1.00 0.98

Table 6. Detailed RMSE using the stratified dataset segmented by the rating value.

Rating Size k = 1 k = 2 k = 3 k = 5 k = 10

simI simQu
simI simQu

simI simQu
simI simQu

simI simQu

1 3400 1.18 0.77 1.08 0.83 1.10 0.85 1.07 0.89 0.99 0.93

2 3400 1.04 0.99 1.00 1.01 1.02 0.98 0.97 0.97 0.98 0.97

2.5 3400 1.09 0.91 1.03 0.95 1.06 0.93 0.98 0.94 0.99 0.92

3 3400 0.98 0.88 0.94 0.87 0.93 0.87 0.93 0.89 0.93 0.89

3.5 3400 0.83 0.85 0.81 0.81 0.82 0.80 0.86 0.84 0.86 0.84

4 3400 0.92 0.90 0.93 0.93 0.91 0.91 0.92 0.92 0.92 0.91

4.5 3400 0.99 0.95 1.06 0.91 1.02 0.92 1.01 0.96 0.94 0.93

5 3400 1.05 1.02 1.02 0.97 1.02 0.98 1.01 0.97 1.00 0.97

3 Ratings 0.5 and 1.5 have been removed due to the low number of items.
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6 Conclusions and Future Work

Case-based explanation approaches in recommender systems typically use previ-
ous items rated by the user in order to explain a recommendation. The novelty
of the approach described in this paper is that it infers a similarity measure from
the vector of factors obtained by the matrix factorization algorithm and uses this
similarity measure to capture the preferences of the user from previous rating
patterns (cases). We have proposed a case-based explanation model where the
explanatory cases are retrieved from the Qu matrix, computed by the matrix
factorization algorithm, instead of using an item description space, as the Qu

captures the user preferences in a N-dimensional space.
Matrix factorization decomposes the user-item interaction matrix into the dot

product of two lower dimensionality matrices, P and Q, using N latent features.
This way, each row in P represents the strength of the associations between a
user and the latent features. Similarly, each row in Q represents the strength
of the associations between an item and the latent features. In this paper we
propose combining both P and Q matrices to get a personalized representation
of the items in a lower dimensional space according to the user preferences.
Although these vectors of latent features are not easy to understand and they
cannot be directly exploited to explain the recommendation, we propose to use
them in a case-based explanation style. We use the personalized Qu matrix in
order to find those past items rated by the user that are related to the current
recommendation in that latent factor space.

The empirical evaluation that we have conducted compares the quality of the
explanatory cases obtained by our proposal with a canonical content-based app-
roach. Results reveal a clear improvement specially remarkable for explanatory
cases with low ratings. This way, we can provide explanations with a positive
or negative perspective, showing examples of why an item is interesting to the
user or not. The similarity metric based on the latent factors also achieves good
results when proposing explanation based on very few items.

As future work we would like to evaluate this approach with real users and
to compare our similarity metric to retrieve the explanatory cases with other
similarity distances. We also plan to evaluate this approach using an external
recommender system acting as a black box. This way, we do not need to know
the underlying recommender algorithm, and compute the Q matrix to obtain
explanatory examples instead of using this matrix to provide recommendations.

We would also explore the possibility of associating a semantic description to
the latent feature vectors that capture the user preferences. If we could correlate
these vectors to a semantic description of the items or the user’s profile we could
provide a more detailed explanation about the recommended item. However,
as explained in this paper, this correlation is not intuitive and very difficult to
obtain.
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Abstract. This paper proposes a theoretical analysis of one approach to the
eXplainable AI (XAI) problem, using post-hoc explanation-by-example, that
relies on the twinning of artificial neural networks (ANNs) with case-based
reasoning (CBR) systems; so-called ANN-CBR twins. It surveys these systems
to advance a new theoretical interpretation of previous work and define a road
map for CBR’s further role in XAI. A systematic survey of 1,102 papers was
conducted to identify a fragmented literature on this topic and trace its influence
to more recent work involving deep neural networks (DNNs). The twin-systems
approach is advanced as one possible coherent, generic solution to the XAI
problem. The paper concludes by road-mapping future directions for this XAI
solution, considering (i) further tests of feature-weighting techniques, (ii) how
explanatory cases might be deployed (e.g., in counterfactuals, a fortori cases),
and (iii) the unwelcome, much-ignored issue of user evaluation.

Keywords: CBR � Explanation � Artificial neural networks � XAI �
Deep learning

1 Introduction

As AI systems impact our everyday lives, jobs, and leisure time, the issue of explaining
how these systems actually work has become more acute, the so-called eXplainable AI
(XAI) problem. In the last few years, almost every major AI/ML conference has targeted
this problem either as a major theme or as a focus for thematic workshops (e.g., NIPS-
16, IJCAI-17, IJCAI/ECAI-18, IJCNN-17, ICCBR-18, ICCBR-19) along with the
emergence of meetings dedicated solely to it (FAT-ML, FAT*19; see [1]), as well as
being a regulatory focus for government (e.g., GDPR in the EU [2, 3]). This paper
surveys one particular solution to the XAI problem, where an opaque, black-box AI
system is explained by a more interpretable, white-box AI system; the so-called twin-
systems approach [4]. This survey is used to advance a new theoretical interpretation of
previous work and define a road map for CBR’s further role in XAI. Specifically, we
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review the pairing of artificial neural networks1 (ANNs) with case-based reasoning
(CBR) systems where the explanatory cases of the latter are used to interpret the opaque
outputs of the former; so-called ANN-CBR twins (e.g., see Fig. 1). We have discovered
a fragmented literature on this topic that deserves to be brought together, if only to avoid
unnecessary re-invention. In the next sub-section, we lay out our orientation to “ex-
planation” and the motivation for the present systematic survey.

1.1 “Explanation” Needs Explanation

As an area, XAI has many issues; foremost amongst these, perhaps, is some clarity on
what “explanation” actually means. Several recent XAI reviews have pointedly noted
the lack of clear definitions for the notions of explanation, interpretability and trans-
parency [5–10], echoing long-standing discussions in CBR [11, 12], recommender
systems [13], Philosophy [14–16] and Psychology [17]. While the exact meaning of
these terms remains a matter of debate, these reviews make useful taxonomic dis-
tinctions. For example, Sørmo et al.’s [11] review reports the distinction between
explaining how the system reached some answer (which they call transparency) and
explaining why the answer is good (justification). More recently, this distinction is
echoed by dividing interpretability into (i) transparency (or simulatability) which tries
to reflect how the AI system produced its outputs, and (ii) post-hoc interpretability
which is more about why the AI reached its outputs, providing some after-the-fact

Neural 
Network

CBR 
System

Case 
Base

Query
Floorspace:1058 ft2

Location: Kevin St.  

Price: ???

Price: 250,000

Explanation
Floorspace:1030 ft2

Location: Kevin St.  

Price: 240,000

Fig. 1. A simple ANN-CBR twin-system (adapted from Kenny and Keane [4]); a query-case
posed to an ANN gives an accurate, but unexplained, prediction for a house price. The ANN is
twinned with the CBR system (both use the same dataset), and its feature-weights are analyzed
and used in the CBR system to retrieve nearest-neighbor cases to explain the ANN’s prediction.

1 Here, ANN is used to label all neural network techniques; older neural networks will be labelled as
multi-layered perceptrons (MLP) and newer deep learning techniques will be called “deep neural
networks” (DNNs; following [5]).
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rationale/evidence for system outputs [7]. CBR systems are notable in this respect,
through their use of examples/cases/precedents to explain system outputs [7, 10–12, 18,
19]. So, here, when a CBR system’s cases are used to explain an ANN’s opaque
predictions, it is classed as “post-hoc explanation-by-example”. As such, twin-systems
are just one possible solution to interpretability in the XAI problem, but one that
deserves more attention.

1.2 Motivation for a Systematic Review

There are several reasons why a systematic review of ANN-CBR twins for XAI is both
timely and necessary. First, if citation patterns are any indication, there is clear evidence
that the literature on twin-systems is fragmented. For instance, many recent reviews of
XAI make little or no reference to key twin-systems papers in the CBR literature [1, 6,
7], while referencing papers outside CBR canon [20, 21]. Second, if we do not know the
literature on this CBR-solution to XAI then, arguably, we are doomed to re-invent its
findings and mistakes. Third, the XAI area requires a systematic, general framework to
bring the literature together and focus future efforts. As Pedreschi et al. [22] point out
“the state of the art to date still exhibits ad-hoc, scattered results, mostly hardwired to
specific models…[and]… a widely applicable, systematic approach has not emerged
yet”. The twin-systems idea represents one possible general solution to a broad class of
systems. Fourth, a systematic survey should allow us to know where we currently stand,
and then to strategically road map future directions for this XAI solution.

2 Defining ANN-CBR Twins

ANN-CBR twin-systems can be found at the intersection between research on ANNs
[23, 24], CBR [25–27], and hybrid systems [28–30] when explanation is important.

Artificial Neural Networks (ANNs). Biologically inspired, these AI systems typically
consist of layers of nodes with non-linear activation functions and a bias term, which
are connected by weights [23, 24]. Here, we distinguish between traditional neural
networks of the multilayer perceptron (MLP) or backpropagation (BP) variety, and
deep neural networks (DNNs) which include a wide variety of techniques; such as,
recurrent neural networks (RNNs), convolutional neural networks (CNNs) and gen-
erative adversarial networks (GANs) [31–34]. MLPs typically consist of three layers,
an input feature layer, a hidden layer (aka, its latent features), and an output layer. At
their simplest, these ANNs learn an input-output mapping over a training set, so that
when a test-case is presented, its features are used to accurately predict/classify at the
MLP output layer. Significantly, the model’s learning of an input-output mapping
depends on modifying the weights connecting the nodes in these layers and the bias
terms within the nodes. DNNs are a menagerie of many different techniques; notably,
they advance beyond MLPs by being able to learn features in unstructured data (such as
images or video). However, the non-linear nature of all of these ANNs make them
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difficult to interpret and poor at explaining their outputs [35–37]. Attempts to make
ANNs more interpretable use many different “explanation methods” that are often
specific to a given architecture (see reviews [5, 9, 37]). Arguably, DNNs are even less
interpretable than MLPs, because of their complexity and difficulties in surfacing their
extracted features. Currently, major efforts at “explaining” DNNs hinge on visualizing
what specific neurons have learned or indicating “where the DNN is looking” in an
image using saliency maps [36–40]. However, these methods are often quite specific to
particular DNN-techniques and do not reflect the model’s “reasoning process” [83]. So,
a key question for the field is whether any approach can explain all ANNs – both MLPs
and DNNs – in a general, unified way [5]; arguably, ANN-CBR twins are one possible
solution [4].

Case-Based Reasoning (CBR). These systems perform a type of reasoning from
examples or cases using a retrieval, reuse, revise, and re-train cycle [25–27, 41]. At its
simplest, in CBR, when a query-case is presented the most similar cases to it are
retrieved before being adapted (or used directly) to make a prediction/classification.
Typically, the retrieval step finds cases by matching the features of the query-case and
cases in the case base using k-nearest neighbor (k-NN). Retrieval accuracy (and, hence,
the success of the system) can depend heavily on the weights given to these features,
weights that reflect their importance in the domain. Notably, CBR is claimed to have a
“natural” transparency as its reasoning-from-precedent or reasoning-from-example
parallels what human experts sometimes do [18, 25]; though these claims have
not always been extensively user-tested [11]. Accordingly, CBR has a substantial
literature on explanation [11, 12, 19], as does its sister area of recommender systems
[13, 42].

ANN-CBR Twins. These systems are a special-case of a hybrid system, that combines
ANN and CBR modules, when both accuracy and interpretability are primary
requirements of the overall system. Though ANNs and CBR were coupled as early
hybrid systems [43–45], it is not really until the late-1990s that “true” twins emerge
[20, 46–54]. Figure 1 shows one simple example of an ANN-CBR twinning. The task,
here, is the prediction of house prices, where one has some dataset of training examples
(i.e., a case base of prior cases) describing houses and their prices from previous years.
The ANN accurately learns to predict the price of unseen houses (i.e., query-cases)
having computed the input-output mapping from house-features to their price using the
training set. To explain the ANN’s prediction, its feature-weights are (in some way)
extracted and used in the CBR’s k-NN retrieval-step, to identify a nearest-neighbor
case (or cases) to “explain” the ANN’s prediction. In essence, the explanation step is
asserting: price-x is predicted, because these other houses, that have very similar fea-
tures, have these prices (that are close to the predicted one). Of course, the success of
this whole enterprise depends on a number of factors: (i) the ANN has to be reasonably
accurate in its predictions, (ii) the feature-weights extracted from the ANN have a high
fidelity to the ANN’s function (iii) the nearest neighbors found do not bear an overly
complex relationship to the query-case (iv) and the user has sufficient expertise to
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easily relate these explanatory nearest neighbors to the query case (e.g., as in Figs. 1
and 2; see also [11]) and so on.

Definition of ANN-CBR Twin. Accordingly, we can define an ANN-CBR twin-
system, precisely, as a system with:

• Two Techniques. A hybrid system in which (at least) two techniques2 – ANN (MLP
or DNN) and CBR techniques (notably, k-NN) – are combined to meet system
requirements of accuracy and interpretability.

• Separate Modules. Where these techniques are run as separate modules, indepen-
dently but, as it were, side-by-side.

• Common Dataset. The two techniques are run on the same dataset (i.e., they are
twinned by this common usage).

• Feature-Weight Mapping. Some description of the ANN’s functionality, typically
described as its feature-weights, that “reflect” what the ANN has learned, is mapped
to the k-NN retrieval step of the CBR-system.

• Bipartite Division of Labor. In the ANN and CBR modules, the former delivers
predictions and the latter provides interpretability, explaining the ANN’s outputs
(for classification or regression).

As we shall see in our subsequent survey, though this is quite a simple definition, it
excludes many hybrid systems that combine ANNs and CBR, as well as many CBR
systems that do explanation without any ANN-aspect. For example, there are many
systems that combine ANNs and CBR in a pipelined way where the ANN is used to
extract features or feature weights that then improve the CBR’s performance, using
both MLPs [55–57] and DNNs [58]; these are not twin-systems because the CBR
module is making the predictions (though the ANN improves these predictions), and
the CBR system is not explaining the ANN’s predictions. Similarly, there are some
systems that use ANN and CBR modules in a single system, where both make pre-
dictions [59–61]. For instance, several agent-based systems for predicting oceano-
graphic events (e.g., sea temperature, oils spills, red tides) alternate between ANN and
CBR sub-systems, where the predictions from both are monitored to ensure continuing
accuracy over time [59–61]; here, both systems are tasked with accuracy and the CBR
sub-system is not specifically tasked with explanation (i.e., there is no mapping of
feature weights). In the next section, we survey the somewhat abandoned regions of the
hybrid-systems literature, relating to true ANN-CBR twins that specifically address
explanation.

At this point some brief caveats are perhaps required. First, it should be said that
there are domains in which k-NNs are more accurate than ANNs, where twin-systems
will clearly not apply. More subtly it could be argued that if the ANN is accurate and its
weights are used in the CBR system to make the same prediction and retrieve
explanatory cases, then surely the ANN is redundant (or we should just pipeline it).

2 Note, there are many other systems that combine CBR with other techniques, that are not considered
here (e.g., with Genetic Algorithms, Rule-Based systems, Bayesian techniques).

How Case-Based Reasoning Explains Neural Networks 159



This scenario could arise but we believe that the CBRs will, typically, lack the accuracy
of the ANNs, and their predictions will be proximate (depending on choice of k).

3 A Systematic Review: Methodology

A systematic search of the literature on ANN-CBR twins for explanation was done with
a number of top-down searches using relevant keywords, supplemented by bottom-up,
citation-based searches from key papers (see Table 1). In total 1,102 papers were
checked (title and abstract) and filtered down to 379 papers; from this latter set a close
reading of 90 papers was carried out to identify all the ANN-CBR twins in the
literature.

3.1 Method: Search Procedure

Five systematic searches were carried out on https://scholar.google.com between Jan-
uary 6th, 2019 and March 24th, 2019: four top-down searches using keywords and one
bottom-up search through papers that cited key articles (as it seemed to have the best
coverage over Scopus/WoS). Table 1 shows the string searches used in each of the top-
down searches with (i) the number of results considered in a given search (ii) the
unique papers selected across these searches that were considered further (N = 379).
From the latter set, a final set of papers (N = 90) were selected to be read in full to
determine if the paper described a twin-system, as defined (see Fig. 1 for PRISMA flow
chart). In all searches, review papers were excluded as we sought original system
papers.

Table 1. Five distinct searches performed in GoogleScholar (Jan–Mar, 2019) showing the
keywords used, the number of results checked and the total number of unique papers that were
identified for closer reading.

Search terms # Paper-results
relevance checked

Unique papers selected
for reading

“hybrid systems for explanation”
“survey” “review”

1 200 12

“hybrid” “CBR” “explain”
“explanation”

2 250 211

“ANN” “CBR” “explanation” 3 100 79
“NN” “Neural Network” “CBR”
“explanation”

4 200 57

None (Manual check of citations to
8 key papers)

5 352 20

Totals 1,102 379
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3.2 Results Summary

In total 1,102 distinct GoogleScholar results were initially checked and filtered down to
379 potentially relevant papers, that were downloaded and examined for evidence of
being twin-systems. From this set, only 90 were read in full to see if they match the
twin-system definition. Of these 90 papers, only 34 were identified as true ANN-CBR
twin-systems (n.b., only 21 of these papers report unique systems). Many systems
combine ANN and CBR techniques, but fail to meet some key property of the twin-
system definition (e.g., they were a pipeline, they did not work over the same dataset,
or explanation was not a major concern). There was some indication that the top-down
searches identified a fairly complete set of relevant papers because (i) many of the same
papers recurred across searches, (ii) several, apparently, plagiarized papers were found,
where the same paper was published with non-overlapping author names [62, 63], and
(iii) many of the papers found in top-down searches cited the key papers on the
twinning topic in the bottom-up search. The character and profile of the identified
papers is discussed as a history in the next section.

4 A History of ANN-CBR Twins

Our survey of the landscape of ANN-CBR twins reveals a fragmentary and subdued
development of the twinning idea. A close reading of 90 articles on hybrid ANN-CBR
systems that made some mention of explanation, found only 34 papers (21 unique
systems) that were true twin-systems. The remaining papers tend to be ANN-CBR
pipelines where the ANN is used to compute features and/or feature-weights that are
then used in the CBR’s k-NN for predictive purposes. Even though the idea of com-
bining ANN and CBR is first referenced in 1989 [43, 44], it is not until 1999 that the
first true twin-systems emerge [20, 46]. From this beginning, there is a very modest
development of the idea over the intervening 20 years. Indeed, citation patterns are
quite inconsistent and lookbacks from more recent papers are patchy. The history

Fig. 2. PRISMA flow diagram for our systematic review of twin-systems literature.

How Case-Based Reasoning Explains Neural Networks 161



divides into three distinct periods: (i) a major piece of work by a Korean Group in the
late-1990s (with a parallel proposal in the USA), (ii) a significant addition by an Irish
Group through the mid-2000s and, then (iii) more recent work in deep learning that
revisits related approaches, often with no or poor reference to the prior literature.

4.1 Korean Developments (1999–2007): Feature-Weighting Tests
of Twins

Around 1999, a South Korean group working at the Korean Advanced Institute of
Science and Technology (KAIST), explored a range of feature-weighting techniques in
comparative tests of the twin-system idea, in a framework they called “Memory Based
Neural Reasoning” [46–54]. Shin and colleagues [46, 47, 51] paired MLPs with CBR
operating over the same dataset, proposing that this hybrid system “can give example-
based explanations together with prediction values of the neural network” [47, p. 637].
Initially, they tested these twin-systems on a semiconductor-yield dataset before
moving on to tests on many benchmark datasets (e.g., Iris and Wisconsin Diagnostic
Breast Cancer datasets) for classification and regression tasks. In this work, they per-
form competitive tests of four different feature-weighting schemes for capturing the
MLPs activation patterns (i.e., sensitivity, activity, relevance and saliency). For
example, in sensitivity a feature’s weight is calculated by taking the absolute difference
between the normal prediction of the MLP and its prediction with that input feature set
to zero; this is repeated and summed for the entire training set, and the final figure is
then divided by the number of instances in the training data to normalize it for the final
feature-weight value [46]. For each weighting scheme, the feature-weights were used in
the k-NN to retrieve cases, noting which matched the prediction for the query-case.

There are three significant contributions in this Korean work: (i) the researchers
explicitly talk about a division of labor, where the ANN provides accuracy, using its
feature-weights, and the CBR system provides explanations using nearest-neighbor
cases, (ii) they recognize that there are many different ways to describe the ANN (i.e.,
different feature-weighting methods) that need to be tested3, and (iii) they understand
that there are two classes of feature-weighting methods (global and local).

Shin and colleagues [46, 47, 51] appear to be the first in the literature, to explicitly
pair ANNs and CBR systems in a twinned way for purposes of explanation and to
perform comparative tests of different feature-weighting schemes. Shin and colleagues
[46, 47] proposed that the sensitivity and activity measures seemed to perform best,
(though conclusions are different for different datasets) arguing that their fidelity to the
function being computed by the MLP was better. Park et al. [51] extend the earlier tests
with a new feature-weighting scheme based on the important distinction between
global and local weighting schemes. Global feature-weighting assumes the input space
is isotropic, deriving a single ubiquitous feature-weight vector for the entire domain
(i.e., weights do not change for different query cases), whereas local feature-weighting
weights each specific query-case (and sometimes each training case) differently to help
case retrieval. Park et al. [51] find that local-weighting schemes perform markedly

3 A fact overlooked in most papers, even very recent ones.
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better than global-weighting methods, presumably because the former captures infor-
mation about a specific area of the input space for a given query in a more fine-grained
way. However, their local-weighting technique is not applicable to post-hoc explana-
tions in MLPs, as it is specifically trained to generate query-specific feature-weight-sets
rather than giving predictions. Hence, it cannot be considered to be a twin-system;
however, it does show the potential for local-weighting methods. Later work extends
global weighting schemes to datasets having symbolic feature-values [53, 54]. Overall,
the global methods tend to produce very similar results for different values of k but the
results from local methods are found to be demonstrably better.

These nine Korean papers did not attract huge levels of attention; together they
have a total of 269 GoogleScholar citations (M = 30, Max = 91, Min = 5). Indeed,
many of these citations are not specifically to the twinning idea, but reference other
aspects of the work (e.g., the domains used). However, more recently, several papers
have referenced their work. Weber et al. [64] claim a philosophic overlap with the
Korean work in an ANN-CBR hybrid; yet the details of the feature-weighting used are
not clear. Peng and Zhuang [65] propose a different feature-weighting scheme for an
ANN-CBR twinning, that replaces feature-values of a case using the MLPs weights
(but does not reference the Korean work). However, it is only in the last few years, that
the Korean work has been seriously revisited. Biswas and colleagues [66–68] revisited
the sensitivity measure and several limitations of earlier weighting schemes; they
transform the MLP into an AND/OR graph from which weights are extracted for use in
the CBR system. On applying this graph technique to several new domains, they find
that it does better than other methods. Biswas et al. [68] also revisit global weighing-
techniques in the context of class-imbalanced datasets, showing that a cost-sensitive
learning algorithm displays improvements for such datasets. Finally, recently, the
global-local distinction has been raised in XAI in deep learning [5, 6], without refer-
encing the Korean work.

4.2 A Parallel Discovery in L.A.: Caruana et al. [20]

Around the same time as the Korean Group’s work, another group working at UCLA
reported an extension to an earlier system [69] that provided case-based explanations
([20] cited 33 times in GoogleScholar). Caruana et al. [20] describe a system for
medical domains in which a “non-case-based learning method” (an MLP) could gen-
erate a distance metric over a training set, that could then be used to find an explanatory
case that was most similar to a query-case. Caruana et al.’s MLP predicted pneumonia
mortality and proposed case-based explanations based on a query-case’s hidden-layer
activation-vector (i.e., its latent features), by computing the Euclidean distance between
the query-vector and all training-cases, thus enabling them to find the explanatory cases
with the most similar latent features. The paper does not provide detailed results on the
success of this method and neither does it report user trials, though it does discuss the
issues surrounding how cases might be deployed to explain the ANN’s predictions (for
recent related work see [70]). Caruana et al.’s [20] feature-weighting method differs
from those examined by the Korean group, that were based on input space weightings
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rather than latent space weightings (as well as being a local-weighting technique). This
latent-space approach has not been pursued actively, perhaps, because it appears to be
less transparent than input-space approaches (see [4]). Recently, in the deep learning
literature reviews of XAI, [20] is regularly cited as the case-based explanation paper [7,
12, 71, 72], in the absence of references to the Korean work that, arguably, is more
complete; a fact that, perhaps, indicates some discontinuities in the XAI literature.

4.3 An Irish Departure (Mid-2000s): Local Feature-Weighting Tests
of Twins

The next major step in the development of the twinning idea came in the mid-2000s,
from a group of Irish researchers, largely, at University College Dublin [73–77]. This
group also saw a role for CBR in explaining the opaque, but accurate outputs of MLPs,
arguing that “the use of actual training data, cases from the case base, as evidence in
support of a particular prediction, is a powerful and convincing form of explanation”
(p. 164, [75]). The Irish researchers, who did not cite the Korean work, proposed a new
and intriguing local feature-weighting method [74–76]. Nugent and Cunningham [74]
were concerned with capturing the function being computed by MLPs in the local
region around a given query-case for a blood-alcohol dataset. So, they systematically
perturbed the features of the query-case, queried labels for these perturbed cases from
the MLP, and then built a linear model from the results of these tests. The coefficients
of this linear model were then used to weight the k-NN search in the CBR system that
shared its case-base with the MLP’s training set. Nugent et al. [76, 77] also considered
more complex use of cases than just providing nearest neighbors, by selecting a fortori
cases; the idea being to use a case that is closest to the decision boundary for the query-
case, which may not, necessarily, be the nearest neighbor. Finally, [73] did user tests to
show that the retrieved cases have some explanatory value in these domains.

There are, at least, three significant contributions from this work: it explores (i) a
very different approach to the computation of local feature-weights which, in contrast
to the Korean local-weighting method, can be used for post-hoc explanations, (ii) a
more complex scheme for selecting explanatory cases, beyond the simple use of nearest
neighbors, (iii) it showed that this type of twin-system had some validity for human
users by using case-based explanations over feature-based ones.

These five papers have received moderate attention in the literature; between them
they have a total of 236 GoogleScholar citations (M = 47, max = 99, min = 8).
However, few of these citations are about the twin-systems idea (i.e., often about user
tests). Notably, though the linear-model idea has advanced significantly in the literature
on interpretable classifiers [78, 79], few papers specifically cite this Irish work. For
instance, the Local Interpretable Model-Agnostic Explanations (LIME) [79] technique
also perturbs query-cases to build local linear models but does not cite [74]. Although,
Olsson et al. [80] do, in a related approach to case similarity using logistic regression –

the principle of interchangeability – and the notion of local accuracy to handle the
identification of explanatory cases. More recently, there is some recognition of these
papers in reviews [10, 81] but for the most part they are passed over [6, 7, 37, 72] with
all CBR-solutions being attributed to Caruana et al. [20] and Kim, Rudin and Shah [21].
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4.4 Recent DNN-CBR Twinning

We have already established that there is a disconnect between more recent DNN
research and the older twin-system literature in CBR. Yet, in the last two decades, a
huge amount of work has been done on different ways to describe the functions of
opaque ANN and ML systems. Recently, the focus of some of this work has shifted to
the case-based explanation-by-example of DNNs. For instance, Chen et al. [82] and Li
et al. [83] both build CBR into the DNN architecture itself, mainly to avoid the need for
post-hoc explanations. Although these are not twin-systems, they do combine CBR and
ANN techniques for the purpose of interpretability and explanations (though they fail
to cite much of the previous work done). A review by Gilpin et al. [37] proposes that
DNNs have often been explained by using simpler “proxy systems”4 of which they
identify four types: linear models [79], decision trees [84], automatic rule extraction
[78], and saliency mapping [85–87]. Two of these approaches – linear models and
saliency mapping – have resonances with the twin-systems literature reviewed here.

Linear Models: As in Nugent and Cunningham’s work, a currently popular approach
to explaining ANNs (and indeed any ML model) is to use local linear models built by
perturbing an input in the neighborhood of a query. LIME [79] is the prime example of
this approach, in finding relative feature-weightings for a given query-case. Recently,
LIME has been used in comparative tests of several twin-systems ([4] influenced by
Nugent and Cunningham) and was not appreciably better than global-weighting
techniques (including the sensitivity method used by the Korean group).

Saliency Mapping: Another popular technique looks at the contribution of inputs to an
ANN’s output, deriving saliency maps by backpropagating contribution scores from a
given activation in the network (usually in the output layer), to a previous layer (usually
the input one). Amongst others, these methods include Layer-wise Relevance Propa-
gation [85], Integrated Gradients [86], and DeepLIFT [87]. This saliency mapping is
typically used to highlight important pixels in a CNN’s classification of an image,
however it has other uses and has recently been applied to MLP-CBR and CNN-CBR

Query Nearest Neighbours of Query

Ground Truth: 6 
Prediction: 0

Ground Truth: 0 
Prediction: 0

Fig. 3. In a CNN-CBR twin-system, the CNN classifies an image of the number “6” as “0”. An
explanation using nearest-neighbor cases from its CBR twin, shows the training-data used to
model the CNN function in this area of the latent space was labelled as “0” but looks like “6”; so
the model miss-classifies the query as it “looks like” these training cases (adapted from [4]).

4 The proxy system is meant to behave similarly to the black-box system but is simpler for explanatory
purposes (so, the CBR in ANN-CBR twin is one type of proxy model).
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twin-systems (notably, with multiple fully connected dense layers using image transfer
learning [88]) in comparative tests (see [4] and also Fig. 3).

Other DNN Options: There are also a handful of other DNN options that are arguably
twin-systems though of quite a different ilk. Work on the extraction of prototypes from
the analysis of DNNs have been cast as case-based approaches, though with a Bayesian
aspect [21, 83]. These proposals look like a different type of twinning – Bayesian-CBR
twins – that perhaps have other precursors in the CBR literature [89, 90]. Another
approach tries to map the layers of a DNN onto particular exemplar cases using Deep k-
Nearest neighbors (DkNN) [71, 91, 92]. However, it still remains to be seen whether
these are to be accommodated as twin-systems.

5 Future Directions: Road Mapping

In the present paper, we have reviewed the history of how CBR has been used in a
twinning fashion to explain the outputs of ANNs. The significance and importance of
this survey is that it shows there are generalizations about XAI to be gleaned from the
twin-systems approach. Such generalizations may help us avoid the current scattered
fragmentary development of XAI solutions [5]. This review also suggests a research
road map for future work in this area, along at least three paths:

• Feature-Weighting Schemes. It is clear that there is a large space of feature-
weighting schemes that could be explored (especially, more recent ones in DNNs);
this exploration needs to be done in a controlled and comparative fashion to
determine which ones are best for which domains and tasks.

• The Deployment of Cases. CBR work has shown in twin-systems there are many
different ways cases can be used for explanation (e.g., a fortiori usage, counter-
factual cases, near misses, nearest unlike neighbors and so on; more needs to be
done on these ideas in the context of ANNs, and especially DNNs).

• The Embarrassment of User Testing. In all the papers we examined we found less
than a handful (i.e., <5) that performed any adequate user testing of the proposal
that cases improved the interpretability of models; this gap needs to be rectified.

In conclusion, notwithstanding the citation gaps in the literature, it is clear that there
are many fruitful directions in which the CBR-twin idea can be taken to answer the
interpretability problems we currently face in XAI.
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Abstract. Smart agriculture has emerged as a rich application domain for
AI-driven decision support systems (DSS) that support sustainable and respon-
sible agriculture, by improving resource-utilization through better on-farm,
management decisions. However, smart agriculture’s promise is often challenged
by the high barriers to user adoption. This paper develops a case-based reasoning
(CBR) system called PBI-CBR to predict grass growth for dairy farmers, that
combines predictive accuracy and explanation capabilities designed to improve
user adoption. The system provides post-hoc, personalized explanation-by-ex-
ample for its predictions, by using explanatory cases from the same farm or
county. A key novelty of PBI-CBR is its use of Bayesian methods for case
exclusion in this regression domain. Experiments report the tradeoff that occurs
between predictive accuracy and explanatory adequacy for different parametric
variants of PBI-CBR, and how updating Bayesian priors each year reduces error.

Keywords: CBR � Bayesian analysis � Smart agriculture �
Case exclusion � XAI

1 Introduction

Although the promise of artificial intelligence (AI) in smart agriculture is usually
advertised as increasing productivity, in the future it may become increasingly about
improving sustainability [1, 2]. As climate change accelerates, what AI may actually
deliver is a precision agriculture that allows farmers to measure, balance, and predict the
outcomes of farm management-decisions in ways that mitigate the environmental impact
of these activities. However, this future depends on the development of AI-enabled
decision support systems (DSS) that are both predictively accurate (e.g., in predicting
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grass growth), and explainable to the end user (i.e., farmers) to encourage adoption and
usage. In this paper, an existing DSS called PastureBase Ireland (PBI) is extended by
using case-based reasoning (CBR) techniques; the so-called PBI-CBR system. This new
DSS predicts grass growth for dairy farmers and offers explanations designed to improve
user adoption. As such, the system is an instance of eXplainable AI (XAI), providing
post-hoc, personalized explanation-by-example for its predictions, based on location
(using cases from the same or nearby farms). One key novelty of PBI-CBR is its use of
what we refer to as Bayesian Case-Exclusion, which excludes outlier cases from the
prediction process using prior beliefs about data distribution(s), reducing error and
improving explanations. In the remainder of this introduction, the sustainability context
for this work is briefly described, before outlining the structure of the paper.

1.1 Context: Agriculture, Sustainability and AI

Concerns about the impact of agriculture on climate change and the development of
sustainable models are growing [2]. The agricultural sector and consumers are faced
with varying views from climate change denial, to proposals that animal agriculture is
responsible for 18–51% of greenhouse grass emissions [29, 30]. However, there is
perhaps a middle ground that is exemplified by the work here.

Recently, an argument has emerged arguing for a quick move to sustainable
farming systems [5]; the so-called agroecology perspective. For example, in the dairy
sector this agroecology view has proposed a move to pasture-based systems, where
animals are predominantly fed on grass outdoors rather than on meal and supplements
indoors. The pasture-based proposal has the potential to be sustainable, in part, by
using grass as a carbon sink and extending the grazing season (reducing slurry emis-
sions) [11]. Furthermore, humans have limited capacity to digest grass, as it is a non-
edible protein, so it is not consuming a food people could eat [28]. However, these
initiatives depend on precision technology, using AI, to monitor variables such as
climate and grass growth.

This paper considers a CBR system1 that supplements an existing DSS used by
several thousand Irish dairy farmers (i.e., PBI), which predicts grass growth in the
coming week for a specific farm and offers personalized explanations (see Sects. 4 and
5). However, as we shall see, there are significant challenges in handling the data noise
which arises in this domain, especially against the backdrop of increasing climate
disruption. Finally, for the sake of brevity, note that we only consider the retrieval step
of CBR for this current iteration of PBI-CBR.

1.2 PastureBase Ireland for Dairy Farmers (PBI)

Smart agriculture often depends upon providing new DSSs for farmers to aid them in
making complex decisions about how to manage their farm for productivity and sus-
tainability [2]. These systems have three main challenges. First, they must be predictively

1 Several other approaches such as linear regression, neural networks, SVMs and tree algorithms were
also tested alongside this CBR system. The CBR system’s accuracy equalled or bettered these other
systems.
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accurate. Second, they need to be easy to use and interpretable for end users, to
encourage adoption and continued use. Third, they need to be able to support decision
making in the context of increasing climatic disruption, where the climate in past years
may not be indicative of climate in future years. The present work extends an existing
DSS called PBI used in the grass-fed, pasture-based dairy farming systems in Ireland.

PastureBase Ireland. Since 2013, Ireland’s national agricultural research organization
Teagasc, have provided PastureBase Ireland (PBI, https://pasturebase.teagasc.ie) as a
grassland management system to provide information and advice for Irish dairy farmers.
PBI has 6,000+ users out of *18,000 dairy farmers in Ireland. Among other features,
the PBI database has weekly records of grass covers for individual farms from 2013 to
present. A grass cover for a farm is principally, the amount of grass available on that
farm for cows to eat; formally, it is a measure of biomass in grass on the farm above
ground level or a height of 4 cm. PBI allows farmers to enter this grass cover data for
each field/paddock of their farm in a given week, using their own measurements/
estimates, thus allowing them to budget grass-availability for their herd. Our system,
PBI-CBR, uses the grass growth rates calculated by PBI from this grass cover data to
predict grass growth rates on a farm from one week to the next, a critical part of the grass
budgeting process. Note, farmers vary in how regularly they use PBI; there are*2,000
active users defined as those entering [ 20 grass covers a year.

Feed Forecasting and Grass Wedges. Among other variables, the feed needs for a
dairy herd depends on the size of one’s farm, the size of the herd, and the status of the
herd (e.g., lactating animals). PBI takes these variables and forecasts the feed needs for
a farm. PBI accounts for both rotational grazing and set stocking, in which the farmer
grazes certain paddocks while resting others (which may be grazed later or cut for

Fig. 1. A grass wedge as seen by farmer-users of PBI: The green columns represent each
field/paddock on a farm, and the red line the target pre-grazing yield each paddock should be at
before beginning rotational grazing. The y-axis is kilograms of dry matter per hectare, and the x-
axis shows the farm’s paddocks. The width of each paddock’s green bar represents its total area.
The Days Last Event number refers to when the paddock was last grazed. (Color figure online)
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silage). PBI allows farmers to modify variables such as rotation length and paddock
status (e.g., is it currently being grazed), while producing a number of reports to show
the effect of changing variables. Figure 1 shows all paddocks on a farm and the grass
available in each paddock, measured in kilograms of dry matter per hectare (kg DM/ha;
grass weight changes with moisture content, so dry weight is used). The red-line shows
the target pre-grazing yield for each paddock, which can move up and down as the
farmer changes variables (e.g., size of herd). If the red-line is below the top of a green-
bar, then more grass is available than is currently needed (it could be cut for silage or
meal supplementation reduced). However, if the red-line is above a green-bar then
there is not enough grass to begin rotational grazing, and some meal supplementation
may be required. These calculations are critical to the sustainability of the farming
enterprise; stated simply, grass is inexpensive and meal supplements are the opposite.
Also, meal requires transportation and possibly importation, so it entails increased
carbon costs.

Grass Growth Prediction. Management decisions are largely based on grass growth,
which varies based on soil/grass type, farming practices, climatic factors etc. In PBI,
the farmer estimates a grass cover in paddocks and a calculation is done to determine
the average growth rate since the previous grass cover. PBI-CBR aims to predict
growth rates using machine learning (ML), by forecasting the growth-rate in the
coming week using previous cases. Note, Teagasc currently uses a mechanistic model
(a.k.a. a first-principles model) called the Moorepark St. Gilles Grass Growth model
(MoST) that can predict growth-rates and continues to be tested [4]. However, key
parameters of this model are not available for all farms (e.g., soil maps). A future
system may combine PBI-CBR and MoST to make predictions, alternating between
both models.

The PBI Dataset. We used the PBI dataset recorded from thousands of private farms
in Ireland between 2013–2017. The primary feature of concern is the average grass
growth rate for a farm since the last grass cover recorded, but location features (Farm
ID-anonymized and County) are also important for explanation purposes. Ideally, to
explain a prediction our system aims to provide an explanatory case from the same
farm, but a case from a nearby farm in the same county is also acceptable. This was the
advice given by the domain experts running the current system, although ultimately this
proposal needs to be user tested.

1.3 Outline of Paper

Section 2 discusses noise in the PBI dataset used here and how a Bayesian approach is
both useful and intuitive for case exclusion. Section 3 describes Experiment 1 (Expt. 1)
which compares four systems on accuracy and explanatory success, and the tradeoff
between both measures. Section 4 describes Expt. 2 which shows how updating priors
using Bayesian analysis can improve prediction accuracy, possibly providing a means
to deal with climate change in DSSs for this domain. Section 5 reviews relevant
previous work in the area before final conclusions in Sect. 6.
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2 Noise: The Gold-Standard and Working-Farm Datasets

We believe that this grass-growth domain is representative of the datasets and problems
that AI will face in many smart agriculture contexts, especially in being highly noisy.
The data is gathered by end users (farmers) and, as such, is understood to contain
errors, miss-recordings, adjustments, and estimates. For example, some of the
recordings in the dataset are based on physical measurements with a device, whereas
others are estimates from visual inspections. This inherent noise has profound impli-
cations for how prediction and explanation need to be handled in this domain. On the
one hand, we need a systematic way to remove possibly-poor cases. On the other hand,
we need to keep as many cases as possible, because each additional case has potential
to improve the system’s accuracy and interpretability. Indeed, case exclusion could also
affect the tradeoff between predictive accuracy and explanatory adequacy. Our solution
to these noise issues is to use one dataset to clean another; to use a gold-standard
dataset gathered under controlled conditions by researchers (with is idealized but noise-
free) to clean a working-farm dataset gathered by farmers as part of their daily work
(which is noisy). Technically, we use a gold-standard set of historical grass-growth
measurements to give a prior belief about the distribution of grass growth each week,
which in turn allows us to exclude cases from the working-farm case-base that may
contain errors; what we call Bayesian Case-Exclusion. As we shall see, this solution
seems to exclude noisy cases while retaining enough high-quality ones to maintain
accurate predictions and explanations. Next, we describe these two datasets and how
the working-farm case-base was built.

Fig. 2. The gold-standard dataset of grass growth measurements from 1982–2010 at Teagasc,
Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
[7], where the distribution of grass growth each week of the year is given as box plots.
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2.1 A Gold-Standard Dataset: Teagasc Grass Growth (1982–2010)

The gold-standard dataset of grass-growth measurements we used covers 28 years of
carefully-controlled, weekly measurements in which samples taken by researchers from
the same pasture were cut, dried and weighted on a weekly basis at the Teagasc
Moorepark Dairy Research Centre, Fermoy, Co. Cork (a major location for dairy
farming). These measurements are somewhat idealized as they come from one location,
which was not grazed (i.e., the livestock’s impact – such as urine and trampling – on
grass growth was excluded). However, they are very accurate and can thus serve as a
good benchmark for determining outlier cases in the PBI dataset.

2.2 Case Definition and Case-Base Construction

The dataset used to construct the working-farm case-base came from the weekly grass
covers entered by farmers in PBI. This dataset’s growth rates were calculated using the
grass covers recorded by farmers showing the estimate of grass available on a given
farm for a given day. Some of these grass covers are known to be in-error; for example,
often multiple entries are made on the same day, where the last entry of the day was the
intended record. For the years 2013–2017, this dataset had 99,087 grass cover-records,
that reduced to 92,635 when these same-day entries were removed. These grass cover-
records are the raw data from which the cases used in PBI-CBR were generated to
create the working-farm case-base.

Case Generation. Let a farm’s data be f ¼ x1; x2; . . .xnf g; where xi is a grass cover-
record for a single day, and n the total number of grass covers recorded (note the grass
covers are in chronological order). The features of xi used to generate a case (Ci) in the
case-base are the average growth rate since the previous grass cover (gr), the week
(wk), month (mth), and season (seas) in which the grass cover was recorded. Weather
data (wi) at the county level was scraped from Met Éireann (www.met.ie), and added as
an average from xi until xiþ 1. The weather information in wi is the maximum daily
temperature (maxt), the average soil temperature 10 cm below the surface (soilt) on a
given day, and the average global radiation (grad) in a given day. Finally, gr from xiþ 1

is also added to Ci as the target feature for prediction. Thus, a case is represented as:

Ci xi;wi; xiþ 1ð Þ ¼ xi gr;wk;mth; seasð Þ;wiðmaxt; soilt; gradÞ; xiþ 1 grð Þ ð1Þ

Case Base Construction. Taking the raw-data grass cover-records (N = 92,635) the
cases as defined in (1) were constructed. However, given that the system has to predict
one week ahead, only those cases where the target xiþ 1 grð Þ was recorded 5–9 days
after xi were included in the case base. Also, cases from January and December were
excluded (as they tend to show zero growth), though they might be appropriate in a
final deployed system. Finally, only those cases with accurate historical weather
information until the next grass cover were considered (weather is a crucial factor in
growth predictions). These steps resulted in a working-farm case-base of N = 20,760
cases for use in experimental tests. Note, in each system variant (except for the
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Control) the number of cases in this working-farm case-base is reduced further by the
respective method(s) used.

2.3 The Current Experiments

In the remainder of this paper, two experiments are reported that test several variants of
the Bayesian Case-Exclusion idea. In Expt. 1, we examine what happens in this pre-
dictive CBR-system when cases are not excluded (Control), versus experimental
systems in which we use the gold-standard dataset’s distributions in different ways to
modify or exclude cases (the Exclude-2sd, Exclude-3sd and Transform-3sd systems;
see Sect. 3). These experimental system-variants examine performance when cases are
transformed with reference to the gold-standard distributions or when cases are ex-
cluded a pre-defined number of standard deviations away from the means in the gold-
standard distributions. The transformation system enables greater retention of cases, in
turn helping with explanations. In Expt. 2, we explore Adaptive Bayesian Case-
Exclusion, where priors derived from the gold-standard distributions are updated year-
on-year, to see if performance improves (see Sect. 4).

3 Experiment 1: Bayesian Case-Exclusion

PBI-CBR is a CBR system for predicting grass growth, using the growth rates cal-
culated from each farm. Two different datasets are used in the experiments, the gold-
standard Teagasc data (1982–2010) and the PBI dataset (2013–2017), where the former
is used to transform or exclude cases from the latter when making predictions for a
particular farm in a given week of a given year. Hence, the gold-standard dataset is our
“prior” belief (in Bayesian parlance), which is used to make probabilistic inferences in
how to handle noise. In the working-farm case-base, the current week is used to predict
one week ahead, allowing a farmer to make informed management decisions. In
general, for this prediction, a mean squared error (MAE) of � 10 kg DM/ha/day is
sufficient. The main problem is the noise in the working-farm case-base, hence we use
Bayesian Case-Exclusion to exclude outlier cases when making predictions. PBI-CBR
also explains predictions using post-hoc, personalized explanation-by-example by
referencing nearest neighboring cases from the same farm or county. So, the tests
involve two measures: (i) predictive accuracy, as MAE for the growth-rate prediction
measured in kg DM/ha/day, (ii) explanatory success, as the percentage of times
nearest-neighbor cases are found from either the same-farm or same-county to the test-
cases in the k nearest neighbors retrieved (a measure recommended by experts).
However, it should be noted again that the “success” of these explanations is dependent
on future user testing. Crucially, we tested four variants of the system:

• Control. A basic system that uses all the cases in the working-farm case-base
(N = 20,760; see Sect. 2.2); this case base was built mostly from the PBI dataset
(from 2013–17) and, accordingly, is quite noisy and has many outliers.
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• Exclude-2sd. A Bayesian system that excludes cases two-standard deviations away
from the weekly, mean growth-rates of the gold-standard dataset (see Fig. 2). The
rationale being that grass growth in a given week approximates a normal distri-
bution (verified by plotting thousands of growth rates in histograms) and using the
properties of such a distribution can aid in making probabilistic assumptions for
how to exclude cases. Formally, the data for growth rate (GR) in a given week
across all years in the gold-standard dataset approximates GR�Nðlg; r2gÞ, where N
is a normal distribution with parameters lg and rg for the mean and standard
deviation, respectively. All cases outside lg � 2rg are excluded (as well as other
query-cases), thus excluding cases with *5% probability of occurring. This step
reduces the working-farm case-base by 42% (N = 12,042 cases).

• Exclude-3sd. This is identical to the Exclude-2sd system but lg � 3rg is used to
exclude cases, thus excluding cases with *0.3% probability of occurring. This
reduces the working-farm case-base by 21% (N = 16,443 cases).

• Transform-3sd. This is a Bayesian system that transforms the growth-rates of cases
using the gold-standard distributions. That is, the distribution of growth in a given
week from the gold-standard dataset [GR�Nðlg; r2gÞ] is used to transform the
growth-rate values of cases for the same week in the working-farm case-base, to fit
to the parameters lg and r2g. Formally, to transform the growth-rate (grÞ in a grass
cover x in any given week of the year we use:

ygr ¼ xgr � l
� �� rg

r
þ lg ð2Þ

where xgr is the growth rate in grass cover x, ygr is the transformed growth rate of xgr,
l and r are the mean and standard deviation for the overall growth rate in that week
in the working-farm case-base, respectively, and lg and rg are the mean and
standard deviation for the overall growth rate in that week in the gold-standard
dataset, respectively. The intuition being that the gold-standard dataset is closer to
the ground-truth, hence if it is used to transform the growth rates (in the working-
farm case-base), the overall deviation from the ground truth will reduce. Note, in this
system cases that fall outside lg � 3rg after the transformation are still excluded,
and, so, the working-farm case-base is reduced by 2% (N = 20,282 cases).

As we shall see, exclusion methods improve prediction accuracy, with varying
levels of explanatory success. The transform system retains as many cases as possible,
aiding accuracy and explanatory success. Indeed, there are indications that the trans-
formed case-base is closer to the ground truth as the correlation of Pearson’s r between
maxt and growth-rate across all cases increases from r ¼ 3:92 to r ¼ 5:11 after
transformation, reflecting known dependencies between temperature and grass-growth
(\5 °C grass does not grow, from 5–10 °C it grows with temperature [4]).

Predicting Grass Growth for Sustainable Dairy Farming 179



3.1 Method: Procedure and Measures

For each system variant Monte Carlo cross-validation was used with 30 resampling
iterations, each time taking 80/20% data for training and testing, respectively. An
unweighted k-NN algorithm with Euclidean distance was used for case retrieval, with
the averaged value of all nearest neighbors’ target-growth-rates used as the prediction.
Selected values of k ranging from 5-1000 were tested for each system variant to
observe effects on prediction and explanatory outcomes. For each evaluation of k for
each system, three measures were taken: (i) the MAE (ii) the %Farm-Retrieval-Suc-
cess, the percentage of times the k-nearest-neighbors contained a case from the same
farm as the query, and (iii) the %County-Retrieval-Success, the percentage of times the
k-nearest-neighbors contained a case from the same county as the query.

3.2 Results and Discussion

Figure 3a shows the results of running the system variants – Control, Exclude-2sd,
Exclude-3sd, Transform-3sd – for all values of k in three graphs, one for each measure:
MAE, %Farm-Retrieval-Success (%FRS), and %County-Retrieval-Success (%CRS).
Across all systems, MAE is worst for the lowest and highest k with some improvement
in between (k = 20–35). With regard to %FRS all system variants are very similar,
though success does change for different values of k. For all systems, %FRS is very
poor for low values of k, but beyond k = 50 it rises to*80%; showing that only higher
values of k deliver enough cases from the same farm to explain the predictions made.
For all systems, %CRS is much better, as it starts high (*80%) for low values of k and
rapidly reaches *100%; showing that finding explanatory cases for a prediction from
the same county is a common occurrence. However, the differences between the system
variants are, perhaps, more interesting.

Overall, the Control system, which includes all cases, does the worst; it never gets
lower than a MAE of 15 kg DM/ha/day (recall, acceptable error is � 10 kg
DM/ha/day). Similarly, the two exclusion-systems – Exclude-2sd and Exclude-3sd – do
not reach the acceptability threshold. Overall, Bayesian Case-Exclusion does much
better than the Control, but only Exclude-2sd with k = 35 has the somewhat acceptable
MAE of *10.01 kg DM/ha/day. Overall, the Transform-3sd system is the best with a
MAE \10 kg DM/ha/day for all values of k (note, many current mechanistic models
have MAEs of *10–20 kg DM/ha/day, showing the potential for AI solutions in this
domain).

Finally, the best system is Transform-3sd; in Fig. 3a, comparing the 1st and 2nd

graphs, we can see the tradeoff between MAE and %FRS for all values of k. The 1st
graph shows that the lowest error (MAE = 8.6 kg DM/ha/day) occurs at k * 35, but at
this level %FRS is poor at *7% (see 2nd graph). Accordingly, k = 1000 is required to
improve %FRS to *85%. However, even at this value for k, an acceptable MAE is
achieved (*9.8 kg DM/ha/day), making Transform-3sd the only system that suc-
cessfully balances the tradeoff between accuracy and explanation. Note, with additional
data from a given farm, it should be possible to improve this tradeoff even further.

180 E. M. Kenny et al.



4 Experiment 2: Updating Priors Year-on-Year

In Expt. 1 Bayesian exclusion or transformation of cases from the working-farm case-
base gave improved performance. However, these systems exclude cases using
parameters from the gold-standard dataset, gathered between 1982 and 2010. Recently
climate change appears to be impacting the distribution for grass growth. For example,
in the hot Irish summer of 2018 grass-growth stopped during July (normally it is
*100 kg DM/ha/day). In Expt. 1, this not considered, but Expt. 2 rectifies this by
combining the two datasets to update Bayesian priors year-on-year by Bayesian
analysis (e.g., see [3]) to estimate the unknown distributions of grass growth each week
with a view to making predictions in 20172 (the final year’s data). Hence, Expt. 2 has

(a) Experiment 1 (b) Experiment 2
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Fig. 3. The tradeoff between error and explanation. (a) Expt. 1 shows that as the value for
k approaches 1000, more explanatory cases are retrieved, but the MAE for all systems also
increases. Transform-3sd has the best MAE of *8.6 kg DM/ha/day at k * 35, but same-farm
explanatory success is low at *7%; however, at k = 1000, the tradeoff is balanced, with the
MAE still acceptable and %FRS at *85%. (b) Expt. 2 shows MAE is improved for almost every
update-variant, although the improvement in the transform-system is minimal; explanatory
success and MAE are similar to Expt. 1, but poorer, likely due to less training data. Finally, note
the log scale on the x-axis.

2 Predictions could only be made for 2017 because the earlier years of the PBI dataset (2013–2016)
have too few cases, as the DSS was in its early years of adoption.
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six versions of PBI-CBR, three systems from in Expt. 1 (Exclude-2sd, Exclude-3sd,
Transform-3sd) and three variants of these in which priors were updated (Update-
Exclude-2sd, Update-Exclude-3sd, Update-Transform-3sd). The updating procedure
used is described next.

4.1 Updating Priors in Exclusion and Transformation Systems

To perform Bayesian updating, we take priors from the gold-standard dataset and then
progressively use each year’s data from the PBI-dataset to update them. First, take the
gold-standard dataset and, binning all its data into weeks, for any given week, let the
growth rate (GR) approximate a normal distribution GR�Nðl; r2Þ, where l and r2 are
its mean and variance, respectively. In 2013, all the data for this week was processed
into cases (see Sect. 3). Then, we proceed with transformation or exclusion methods on
these cases depending on the system variant (as in Expt. 1), which gives the new data
D ¼ fC1;C2. . .Cng where n is the number of cases. Take the prior to be l�N l0; r

2
0

� �
;

where the value r0 is initially chosen as 4
3 and l0 is initially chosen as l. Here the value

for r2 is assumed to remain fixed4. Bayes rule shows that the posterior (for a given
week) is proportional to the likelihood times the prior, in addition, because r2 and r20 are
known we can ignore the constant of proportionality and derive that the posterior lp is:

lp �N
r2

r2 þ r20n
l0 þ

r20
r2 þ r20n

n�x;
r2r20

r2 þ r20n

� �
ð3Þ

where �x is the empirical mean of the growth rates in the cases of D, for a full derivation
and explanation the reader is referred to [3]. Although in CBR the word “Bayesian”
usually infers the use of Bayesian networks, in this experiment it is used in a more
traditional sense and refers to the estimation of an unknown distribution (a.k.a. the
posterior) of grass growth using a prior belief (a.k.a. the prior) and a sample of data
from the new year (i.e., the likelihood).

Using Eq. (3) we update values for l0 and r20, the new value of l0 was then used to
update the original l from the gold-standard dataset, which was used with r2 (the fixed
variance from the gold-standard dataset) to repeat the whole process in 2014 for the
same week. This process is repeated for all weeks of each year until the end of 2016
when all training data was collected. The latest priors in each week were again used to
exclude or transform cases in 2017 for evaluation5. All evaluations were carried out on
2017 because there was insufficient training data in previous years to ensure adequate
evaluations (2017 has *40% of usable cases), though the years prior to 2017 were all
used in the year-on-year updating to acquire the training data.

3 The relatively large value of 4 was chosen to represent that we are not highly certain of the validity of
the gold standard prior mean when compared to a typical dairy farm pasture.

4 The variance r2 wasn’t adapted; if it changes it could lead to an unfair evaluation as updated-
variants may differ a lot in the amount of data excluded compared to non-updated variants.

5 Note, for transform methods some knowledge about a given week’s data distribution would need to
be inferred if we were doing this in a live-system for formula (2) to be used.
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4.2 Case-Base Sizes After Transformation or Exclusion

Expt. 2 has six system variants, the Exclude-2sd, Exclude-3sd and Transform-3sd
systems from Expt. 1, and matched versions of these systems, which used the updating
methods described above called Update-Exclude-2sd, Update-Exclude-3sd and
Update-Transform-3sd. In the updated variants, several aspects change, so the number
of cases after transformation or exclusion vary slightly: Exclude-2sd (N = 12,042),
Update-Exclude-2sd (N = 12,183), Exclude-3sd (N = 16,443), Update-Exclude-3sd
(N = 16,379), Transform-3sd (N = 20,282), and Update-Transform-3sd (N = 20,120).

4.3 Method: Procedure and Measures

For each system variant the respective case base was split in a *60/40% ratio of
training and testing cases, respectively; the former coming from the PBI data from
2013–2016 and the latter from 2017. Crucially, note that results will be different from
identical systems in Expt. 1 because of the different ratio for splits. For case retrieval,
an unweighted k-NN was again used with Euclidean distance for selected values for
k ranging from 5-1000. The same three measures were used as in Expt. 1: Mean
Absolute Error (MAE), %Farm-Retrieval-Success (%FRS), and %County-Retrieval-
Success (%CRS).

4.4 Results and Discussion

Figure 3b shows the results of running the six system variants – Exclude-2sd, Exclude-
3sd, Transform-3sd, Update-Exclude-2sd, Update-Exclude-3sd and Update-Trans-
form-3sd – for all values of k in three graphs, one for each measure: MAE, %FRS, and
%CRS. In general, the shape of the results replicates many of the findings of Expt. 1.

Regarding MAE, as before the transformation-versions do better than the exclusion-
versions, the error decreases in order from exclude-3sd to exclude-2sd to transform-3sd;
k = 75 is optimal for all systems, doing better than the lower and higher values of
k. Overall the MAE scores (and explanation-success scores) are not as good as in Expt.
1, perhaps, reflecting the different ratios in the training and testing splits (i.e., they were
80/20% in Expt. 1 and *60/40% in Expt. 2); note, the evaluation dataset is reduced to
one-year in Expt. 2 (i.e., 2017), whereas it is across all 5 years in Expt. 1 (2013–17).

Expt. 2 shows that systems with Bayesian updating (Update-Exclude-2sd, Update-
Exclude-3sd and Update-Transform-3sd) do better than systems without updating
(Exclude-2sd, Exclude-3sd, Transform-3sd) at nearly every value of k, though the
improvements are relatively modest, particularly in the transform version (see Fig. 3b).

Regarding explanation measures (%FRS, %CRS) the overall curve-shapes are
similar to those in Expt. 1, with maximum values being %FRS = 68% and %CRS =
100%, in contrast to %FRS = 85.94% and %CRS = 99.98% in Expt. 1. Acceptable
tradeoffs for accuracy and explanation are achieved for both of the transform systems
(Transform-3sd, Update-Transform-3sd) in that at k = 1000 the MAE is *9.95 kg
DM/ha/day with *67.5% explanatory-success rate for same-farm cases in both sys-
tems. These systems would likely improve if training and testing splits were more
favorable as in Expt. 1.
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5 Related Work

This work impinges on many areas, though the most relevant literatures are arguably in
case-based maintenance, Bayesian CBR, and explanation in CBR DSSs for smart
agriculture. Here we review the relevant literature and discuss its relevance to this
work.

Case base maintenance (i.e., case base editing/deleting/exclusion/inclusion etc.) is a
notable area of research for the CBR community [19]. However, the most popular
methods have tended to focus on classification [16, 20–25], as opposed to regression
[17]. Redmond and Highley [17] did try to convert Edited Nearest Neighbors [22] to
handle regression by assigning two hyperparameters for agree and accept thresholds,
but they acknowledge that applying the classification algorithms to regression is dif-
ficult. Our method requires no hyperparameters, though it does require the specification
of a prior(s). Furthermore, most of the literature on case base maintenance is concerned
with deleting cases to optimize case-bases; here we have used the phrase “case
exclusion” rather than “case deletion” because we believe it is important to retain cases
for future use. For instance, cases deemed outliers with extreme environmental con-
ditions may be useful if climate change results in these extreme conditions becoming
common or more data becomes available (e.g., soil type) identifying them as non-
outlier data.

Much work has been done using Bayesian methods in CBR systems. Nikpour et al.
[8] used Bayesian posterior distributions to modify case descriptions and dependencies
in a model, showing the capability of such an approach to increase similarity assess-
ment. Moreover, the vast majority of work combining CBR and Bayesian methods has
involved combining Bayesian Networks with CBR systems, for which there are many
architectures and approaches [27]. However, beyond the combination of Bayesian
methods and CBR, these systems have little in common with the present work, which
uses prior distributions for case exclusion. The best algorithm for a particular problem
regarding case base maintenance will likely always depend on the domain in question
[19], but here we present a novel option.

XAI within CBR has been shown to be important in intelligent systems [9, 31, 32],
with some consideration of smart agriculture [10]. Additionally, it has been argued that
recommender systems should play a central part in smart agriculture [12], and CBR is a
popular approach for such systems [6]. Pu and Chen [26] have conducted user studies
showing that designers should build trusted interfaces into recommender systems due
to the high likelihood users will return. As smart agriculture arguably requires a rec-
ommender component [12], and it suffers from a user retention issue; this is of par-
ticular relevance. Moreover, in understanding the effects of environmental changes,
Cho et al. [12] note that global warming and pollution have made environmental and
agricultural modelling difficult, thus suggesting the use of a recommender system to
support users, but no specific instances are described. Moreover, Holt [14] suggested
that CBR could be used to help farm management decisions. CBR gives a unique
ability to offer intuitive exemplar-based explanations, and user studies have shown it
potentially superior to rule-based explanations [13], frameworks have been proposed
for CBR XAI [18], but to the best of our knowledge no instance in smart agriculture
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has been proposed until the present paper. Branting et al. [10] did use CBR in the
agricultural advisory system CARMA (which also produces explanations), but it only
forms part of the consultation process, whilst our solution appears to be the first pure
CBR approach.

6 Conclusions and Future Research

We have shown that a CBR system can be used for decision support in dairy farming to
predict a key aspect of the enterprise accurately, while also providing case-based
explanations that are personalized for a specific farm. To deal with noise in the dataset,
we have used historical distributions based on accurate research measurements to
determine what cases should or should not be included in the predictive model (i.e., our
Bayesian exclusion approach). Furthermore, we have shown that transforming key-
attributes of cases based on a goal-standard distribution (that is closer to a ground truth)
can improve accuracy, and that using Bayesian analysis for updating priors year-on-
year also improves performance. By our knowledge, all of this work is novel.

These systems have the ability to improve the sustainability of grasslands for dairy
farming into the future. Accordingly, for us, the key question for future research is
whether these techniques can continue to deliver accurate predictions in the face of
climate change. One would hope that these CBR systems can maintain predictive
accuracy by selectively picking useful cases from historical datasets (e.g., as soon as
the data is available, we plan to test PBI-CBR against the extreme weather of 2018).
So, though we may experience significant climate shifts, there will always be a case
somewhere in the historical record that can provide accurate predictions.
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Abstract. In process-oriented case-based reasoning, similarity-based
retrieval of workflow cases from large case bases is still a difficult issue
due to the computationally expensive similarity assessment. The two-
phase MAC/FAC (“Many are called, but few are chosen”) retrieval has
been proven useful to reduce the retrieval time but comes at the cost
of an additional modeling effort for implementing the MAC phase. In
this paper, we present a new approach to implement the MAC phase
for POCBR retrieval, which makes use of the StarSpace embedding
algorithm to automatically learn a vector representation for workflows,
which can be used to significantly speed-up the MAC retrieval phase.
In an experimental evaluation in the domain of cooking workflows, we
show that the presented approach outperforms two existing MAC/FAC
approaches on the same data.

Keywords: Process-oriented case-based reasoning ·
MAC/FAC retrieval · Graph embeddings

1 Introduction

As more and more workflows are supported and executed electronically, the
amount of available data in process repositories as well as the procedural knowl-
edge gathered through past problem-solving experience increases. Such work-
flows can represent business processes, scientific experiments, repair instruc-
tions, or activities from daily life such as cooking recipes. It is valuable to reuse
this procedural knowledge since creating workflows from scratch is typically a
complex and time-consuming task [18]. Process-Oriented Case-Based Reasoning
(POCBR) [2,15] can be used for retrieving, reusing, revising, and retaining pro-
cedural experiential knowledge represented as workflows. A case base in POCBR
specifies best-practice workflows that can be (re-)used in similar situations. A
critical factor for the performance of a CBR system is the efficiency of case
retrieval [7]. The retrieval time is of importance due to its impact on the user’s
system acceptance as well as being a requirement in time critical environments
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where decisions need to be made within clearly defined time boundaries. How-
ever, obtaining an acceptable retrieval time is particularly difficult for POCBR,
as cases in POCBR are usually represented by semantically labeled graphs lead-
ing to a similarity assessment that requires a kind of inexact sub-graph matching,
which is computationally expensive [2,12,16].

POCBR research has addressed the issue of efficient retrieval [5,11,12,17]
through a two-phase retrieval following the MAC/FAC (“Many are called, but
few are chosen”) [9] principle. The retrieval is divided into two phases: The first
phase (MAC) utilizes a simplified and often knowledge-poor similarity measure
for a fast pre-selection. The second phase (FAC) then applies the computation-
ally intensive graph-based similarity measure to the results of the MAC phase.
This method improves the retrieval performance, if the MAC stage efficiently
selects a small number of relevant cases. However, there is a risk that the MAC
phase reduces the retrieval quality, as it might disregard highly similar cases
due to its simplified assessment of the similarity. As a consequence, the retrieval
approach for the MAC phase must be designed very carefully. Today, existing
approaches [5,12] are based on a manually designed simplified domain specific
case representation as well as a related method for the pre-selection of cases,
which leads to a significantly increased development effort for the CBR system.
The cluster-based retrieval approach introduced by Müller and Bergmann [17]
avoids this additional effort but only works well for case bases with a strong
cluster structure.

The aim of this paper is to present a novel approach for the design of a MAC
phase for POCBR, which automatically learns an appropriate simplified case
representation in the form of workflow embeddings. Thereby, we avoid the man-
ual domain modeling for the MAC phase. For learning workflow embeddings, we
investigate the general-purpose neural embedding model StarSpace [22], which
has shown impressive performance on many different tasks such as text classifica-
tion, entity ranking, and also graph embeddings. We aim at applying StarSpace
to entities, which are workflows described by sets of linked task and data nodes.

The next section introduces previous work on POCBR, including semantic
workflow representation, similarity assessment, and MAC/FAC approaches for
POCBR. In Sect. 3, we present our approach for learning workflow embeddings
and their use for retrieval in the MAC phase. An experimental evaluation of our
approach in the domain of cooking recipes is presented in Sect. 4. Finally, Sect. 5
concludes the results and discusses future work.

2 Foundations and Previous Work

Process-Oriented Case-Based Reasoning [2,15] deals with the integration of CBR
with Process-Aware Information Systems (PAISs) [8]. An example of a certain
type of PAISs are workflow management systems [8]. Using POCBR, workflow
developers are supported with best-practice workflows from a case base during
their development process. Thus, POCBR supports the development of work-
flows as an experience-based activity [2,15]. POCBR methods require an appro-
priate case representation for workflows as well as a similarity measure that
assesses the suitability of a workflow for a new problem situation.
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2.1 Semantic Workflow Representation

In general, workflows are used for the automation of a defined sequence of tasks
that can exchange inputs and outputs in order to achieve an overarching cor-
porate objective [10]. Therefore, the ordering of tasks is modeled through struc-
tures such as sequences, parallel (AND split/join) as well as alternative (XOR
split/join) and loops, which result together in the so-called control-flow. Addi-
tionally, tasks consume inputs and produce outputs, both of which can be phys-
ical or virtual in nature, and, along with their relationship between tasks, they
form the data-flow.

In order to represent workflows, we use semantically labeled directed graphs
named NEST graphs by Bergmann and Gil [2]. A NEST graph is a quadruple
G = (N,E, S, T ) where N is a set of nodes and E ⊆ N ×N represents the edges
between nodes. Semantic descriptions S : N ∪ E → Σ can be used for semantic
enrichment of nodes or edges. Semantic descriptions are based on a semantic
meta data language Σ and are domain-dependent. Additionally, each node and
edge is annotated with a type T : N ∪E → Ω. The set Ω is predefined for nodes
(e.g., task and data nodes) and edges (e.g., control-flow and data-flow edges).

In this paper, we use the well-known cooking domain to illustrate our app-
roach and to perform an experimental evaluation. Thus, workflows are cooking
recipes, tasks represent cooking steps, and data items take the role of ingredi-
ents. Figure 1 shows an example of a NEST graph representing a simple sand-
wich recipe, consisting of three task nodes (cooking steps) and four data nodes
(ingredients).

workflow
node (cooking step) (ingredient)

Fig. 1. Exemplary cooking workflow for a sandwich dish
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In the cooking domain, the semantic meta data language is defined by taxo-
nomic ontologies, one for ingredients and one for cooking steps. These ontologies
are complete in the sense that all items occurring in the recipes are also included
in the ontology. Figure 2 illustrates a fraction of the used ingredients taxonomy.

ingredients

...

non
vegetarian

liquid

oil drink

olive
oil

sesame
oil water ...

0.001

0.01 0.01

0.8

...

egg meat

vegetable
oil

egg
white

... egg
yolk

0.20.8 0.5

Fig. 2. Part of the data taxonomy showing the modeled similarity between ingredients

2.2 Similarity Assessment

Based on the NEST graph format, an assessment of the similarity between work-
flows through consideration of its constituents as well as the link structure is
possible. Therefore, the local similarity of nodes and edges is defined based on
the semantic meta data language simΣ : Σ×Σ → [0, 1]. For task and data nodes,
the taxonomies are used to derive their similarity using a taxonomic similarity
measure that is based on the assignment of similarity values to the inner nodes
of the taxonomy [4]. Building on that, the global similarity between a query
workflow QW and a workflow from the case base CW is calculated by a type-
preserving, partial, injective mapping function m from the nodes and edges of
QW to those of CW . With respect to a mapping m, the local similarities are
aggregated, leading to a similarity value simm(QW,CW ) based on which the
overall workflow similarity sim(QW,CW ) is determined by the best possible
mapping m as follows (see [2] for more details):

sim(QW,CW ) = max {simm(QW,CW ) | admissible mapping m} (1)

Thus, computing the similarity between a query and a single case requires solv-
ing an optimization problem, for which we have proposed to use A∗ search.
Bergmann and Gil also developed a parallelized version of the A∗ search, which
is complete but still not sufficiently fast for large case bases.
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2.3 MAC/FAC Retrieval for POCBR

To overcome the issue of long retrieval times in POCBR, two-phase MAC/FAC
retrieval approaches for workflows have been introduced [5,11,12]. The major
difficulty with MAC/FAC retrieval in general is the definition of the filter con-
dition of the MAC stage. Since cases that are not selected by the MAC stage
will not appear in the overall retrieval result, the completeness of the retrieval
can be easily violated if the filter condition is too restrictive. Hence, retrieval
errors, i.e., missing cases will occur. On the other hand, if the filter condition is
less restrictive, the number of pre-selected cases may become too large, resulting
in a low retrieval performance. To balance retrieval error and performance, the
filter condition should be a good approximation of the similarity measure used
in the FAC stage, while at the same time it must be efficiently computable to
be applicable to a large case base in the MAC stage.

Bergmann and Stromer [5] addressed this problem by adding a feature-based
domain specific case representation of workflows, which simplifies the original
representation while maintaining the most important properties relevant for sim-
ilarity assessment. The MAC stage then selects cases by performing a similarity-
based retrieval using an appropriately modeled similarity measure. The number
of cases selected in the MAC phase can be controlled by a parameter called filter
size FS, i.e., the MAC stage retrieves the FS -most similar cases using feature-
based retrieval. The choice of the filter size determines the behavior of the overall
retrieval method with respect to retrieval speed and error in the following man-
ner: the smaller the filter size, the faster the retrieval but the larger the retrieval
error will become.

In order to avoid the additional modeling effort for the feature-based repre-
sentation, Müller and Bergmann [17] developed a MAC/FAC approach that is
based on the structuring of the case base into clusters of similar cases. There-
fore, a binary cluster-tree is learned, which hierarchically partitions the case base
into sets of similar cases. Traversing the cluster-tree allows finding clusters with
cases similar to the query, thus reducing the number of required similarity com-
putations. Again, a filter size parameter FS is used to determine the number of
cases transferred to the FAC phase. This algorithm did not reach quality and
retrieval speed of the feature-based MAC/FAC approach, but shows acceptable
performance if the case base has a clear cluster structure.

3 Learning Workflow Embeddings for MAC Retrieval

We now present our approach for the design of a MAC phase for POCBR retrieval
that avoids the manual construction of a simplified representation and a related
similarity measure. The main idea is to automatically transform the original
semantic workflow representation by use of an embedding method.

As workflows are represented as graphs, graph embedding techniques [6] are
useful, as their main purpose is to address the complexity problems of many
graph analytic methods by converting the graph data into a low dimensional
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space. The transformation is performed such that the graph structural informa-
tion and the graph properties are preserved as best as possible. Thus, we expect
that graph embeddings are also helpful for designing a MAC retrieval approach
for POCBR. There is already a large range of graph embedding methods reported
in the literature [6], which enable to learn embeddings for nodes, edges, or whole
graphs or sub-graphs. We decided to chose a recently proposed algorithm called
StarSpace [22], a general purpose neural embedding model, which provides an
efficient strong baseline on various tasks. In particular, it can be used for the
embedding of multi-relational graphs.

In the remainder of this section, we first introduce the general StarSpace
algorithm before we describe how we apply it to learn workflow embeddings
as simplified representations of POCBR cases. Afterwards, the straightforward
application during the MAC retrieval phase is explained.

3.1 Embedding Learning with StarSpace

StarSpace embeds entities of different types into a single, fixed-length dimen-
sional space with the result of having entity representations that are comparable
to each other. It learns to rank a set of entities, documents, or objects given
a query entity, document, or object, where the query is not necessarily of the
same type as the items in the set [22]. As we will further see, this is an important
property explored in our application.

The basic concept of StarSpace is that it learns embeddings for entities that
consist of one or more features. As we will see, in our case a feature is a node, an
edge, or a whole workflow. The algorithm maintains a dictionary D of features
and assigns to each feature an embedding vector, which is stored in an embedding
matrix F ∈ R|D|×d, where |D| is the number of features and d is the size of the
dimension of the embedding space. Each row Fi is the embedding for a feature
i. An entity a is embedded by a vector representing the sum of the embeddings
Fi of the features i it consists of so that a =

∑
i∈a Fi.

To learn the embeddings for each feature, StarSpace compares the similarity
of two entities a and b that are provided from the set of training data E+ against
randomly generated entities, which constitute the set of negative examples E−.
The goal is that entities, which are labeled as similar based on the training
data E+ will be rated higher by a margin h than randomly generated samples
from E−. During learning, the following ranking loss function L is minimized by
stochastic gradient descent:

∑

(a,b)∈E+

b−∈E−

Lbatch(sim(a, b), sim(a, b−
1 ), . . . , sim(a, b−

k )) (2)

The similarity function sim can be cosine or dot product, while cosine usually
leads to better results. The margin ranking loss for sim(a, b) and sim(a, b−) is
calculated by max{0, h − sim(a, b) + sim(a, b−)}.
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How exactly positive training examples are generated from the set E is task-
specific. StarSpace provides a large number of options, which makes StarSpace
a general-purpose embedding approach. Since a straightforward word embed-
ding approach to transform the labels of the graph components into a bag of
words leads to less promising results in our previous experiments, we apply
the multi-relational knowledge graph approach for generating training exam-
ples. This option enables to learn embeddings of a graph represented as triples
(h, r, t) consisting of a head concept h, a relation r, and a tail concept t.

3.2 Learning Embeddings for Workflow Graphs

In order to learn embeddings for workflow graphs, a workflow becomes an entity
in StarSpace that is described by a set of tasks and data nodes, each of which
are features for which an embedding vector is learned. Also the main workflow
node (i.e., the top node in Fig. 1) is a feature of the workflow entity.

To construct the training input for StarSpace, all NEST graphs from the
case base are serialized into a triple format similar to the Turtle notation for
RDF graphs1. This representation fully represents the semantic workflow and
can be used for learning embeddings by StarSpace. The following triples can be
extracted from the workflow example depicted in Fig. 1:

Sandwich Recipe hasTask spread
Sandwich Recipe hasInput pain de mie
Sandwich Recipe hasInput sandwich sauce
Sandwich Recipe hasTask d i s p e r s e
Sandwich Recipe hasInput d i l l
Sandwich Recipe hasInput sandwich d i sh
Sandwich Recipe hasTask s e t

Moreover, we can add further triples that represent the connections between
tasks and data nodes:

pain de mie dataf low spread
sandwich sauce dataf low spread
pain de mie dataf low s e t
d i l l data f low d i s p e r s e
sandwich d i sh dataf low d i s p e r s e
d i s p e r s e dataf low sandwich d i sh
sandwich d i sh dataf low s e t
s e t dataf low sandwich d i sh
spread con t r o l f l ow d i s p e r s e
d i s p e r s e c on t r o l f l ow s e t

1 https://www.w3.org/TR/2014/REC-turtle-20140225/.

https://www.w3.org/TR/2014/REC-turtle-20140225/
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Based on this data, we can use the method proposed by StarSpace to learn
multi-relational graphs. For this purpose, each triple (h, r, t) results in two train-
ing examples: the left entity (h) is predicted based on the relation (r) and the
right feature vector (t) and the right entity (t) is predicted based on the left
(h) and the reverse relation (r) feature vector. Since we are only interested in
the prediction of workflow graphs based on their task and data nodes, we have
adapted the training such that only triples with hasTask and hasInput relations
are used and we set the main workflow node as the label to predict. In other
words, by using the relation feature and the feature of the task or data node, we
try to predict the workflow. The learning algorithm of StarSpace then optimizes
our feature vectors accordingly.

As a result of the learning phase, StarSpace produces feature vectors for
each node of each workflow in the case base. Please note that equivalent nodes
in different cases (e.g., nodes referring to the same ingredient or the same cooking
step) are represented only once, thus have the same embedding vector. However,
each workflow in the case base has its own main workflow node. We use the
embedding vector learned for this main workflow node as workflow embedding
representation of the case to be used in the MAC phase of the POCBR retrieval.

3.3 Plausibility of Similarities of Learned Embeddings

As a side effect of the described learning approach, all items of the task and
data ontology used as semantic annotation for the nodes in the case workflows
also occur as features in the StarSpace dictionary and thus have an embed-
ding vector attached. Consequently, their similarity can be assessed by using
the similarity measure for which StarSpace performs its optimization, i.e., the
cosine similarity. In order to check whether the resulting similarity values are
plausible, we performed a spot-checking of selected ingredient pairs. We com-
pared the similarity value resulting from the embedding with the similarity value
determined using the ingredient taxonomy (see Fig. 2), i.e., the local node simi-
larity measure used in the graph-based similarity measure of the FAC phase (see
Sect. 2.1.). Table 1 illustrates selected similarity comparisons with value ranges
adjusted to the interval [0, 1]. For all three pairs of ingredients, which all have a
relatively high similarity according to the manually modeled similarity measure,
the learned embedding similarity is also quite high, which is a first indication
that both measures are inline with each other. This observation could also be
made for many more similarity pairs that we have checked in a random fashion
but certain negative examples could also be found. In total, however, this inspec-
tion is a first hint that the embedding approach is able to learn useful similarity
knowledge.
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Table 1. Comparing selected similarity values

Query Result Embedding 
Similarity

Taxonomic 
Similarity

Egg White Egg Yolk 0.854 0.8

Coconut Pineapple 0.705 0.6

Bananas Strawberries 0.695 0.6

3.4 Embedding-Based Workflow Retrieval

Using the learned workflow embeddings, the implementation of the MAC
retrieval stage is quite straightforward and similar to the approach used for the
feature-based MAC/FAC approach [5]. Prior to retrieval, the workflow embed-
dings must be learned for each case in the case base in an offline-phase. MAC
retrieval then simply performs a linear search for the FS -most similar cases
using the workflow embedding representation and the similarity measure used
by StarSpace, i.e., the cosine measure. Thus, the parameter FS is the filter size
for the MAC phase.

In this process, however, one aspect is less obvious, i.e., how the embedding
vector of the query is determined. Typically, a query is not an already existing
workflow in the case base, but a new workflow or even only a partial workflow,
just consisting of a small number of nodes and edges. Consequently, there is no
workflow embedding vector for the main workflow node of the query available, as
this node does not exist in the StarSpace directory. To construct the embedding
vector for the query, we make use of the StarSpace property that all items are
embedded in the same common embedding space; there is no difference between
different types of features. Given this, we construct the embedding vector of the
query using the bag of features approach, i.e., by adding the embedding vectors
of the task and data nodes the query consists of. This can be done at least for
those nodes that previously occurred in the case base and that are thus also
present in the dictionary of StarSpace.

As an example, consider we would use the workflow from Fig. 1 as a query.
The resulting query embedding q would be determined as follows:

q = Fspread + Fdisperse + Fset + Fpain de mie + Fsandwich sauce + Fdill

+Fsandwich dish

4 Experimental Evaluation

In this section, we present the evaluation setup and the results. To determine
the suitability of our approach, we compare our results with the MAC/FAC
retriever by Bergmann and Stromer [5] and with the results of the cluster-based
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retriever by Müller and Bergmann [17]. For this purpose, we implemented the
presented approach in the POCBR component of the CAKE framework2. We
used the StarSpace implementation available at GitHub3 and integrated it into
the CAKE framework. The StarSpace implementation is started via a command
line statement.

4.1 Hypotheses

In our experimental evaluation, we investigate the following hypotheses:

H1 The embedding-based retriever provides at least as good results as the
MAC/FAC retriever using the feature-based representation in the MAC
phase [5].

H2 The embedding-based retriever achieves better results than the cluster-based
retriever [17] for case bases without cluster structure.

The first hypothesis expresses the expectation that the embedding-based
retriever is as good as the feature-based retriever although no manual modeling
effort has been invested. This leads to a significant benefit, since manual knowl-
edge modeling is often complex and time-consuming. The second hypothesis
claims that the embedding-based retriever is independent of the case distribu-
tion and thus more universally applicable compared to the alternative approach,
which also avoids manual modeling of the MAC phase.

4.2 Experimental Setup

The evaluation is conducted on a case base with 1529 case workflows and 200
query workflows, taken from the extraction of case workflows from cooking
recipes from Allrecipes4 by Schumacher et al. [20]. The case workflows in the
case base and the query workflows are the same as those used in the evaluation
of the cluster-based retriever – named as CB-I [17] – and the MAC/FAC retriever
using the feature-based representation [5]. Each workflow case contains 11 nodes
on average and a corresponding taxonomic ontology of 208 individual ingredients
and 225 cooking preparation steps is used. For learning our embedding model,
the 1529 case workflows are serialized into 18.169 triples that represent part-of
(hasTask or hasInput) edges. For simplicity reasons, parallel (AND) and alter-
native (XOR) sequences are disregarded as training data. Since our embedding
model that learned on the completed graph structure has performed slightly
worse than those only learned on triples with hasTask and hasInput relations,
we only discuss results for our best model learned on this smaller training data
set.

As a starting point for hyper-parameter optimization, the default settings are
used. We adjusted the values of the margin to 0.35, the embedding’s dimension
2 http://procake.uni-trier.de.
3 https://github.com/facebookresearch/StarSpace.
4 https://allrecipes.com/.

http://procake.uni-trier.de
https://github.com/facebookresearch/StarSpace
https://allrecipes.com/
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size to 200, the number of training epochs to 200, and the similarity measure to
cosine. These changes are based on manual inspections of nearest neighbor results
by using the projection of individual workflow cases from the case base and thus
maximizing the similarity to the case itself and magnifying the selectivity to
other workflow cases. The StarSpace learning phase only took approximately
4 min on a PC with an Intel i9-7900X CPU @3.30 GHz and 64 GB RAM running
Linux Ubuntu.

In order to assess the validity of the two hypotheses, we evaluate the retrieval
time (MAC+FAC phase) and the retrieval quality for various parameter combi-
nations. For retrieval quality, we use the same quality criterion (see Formula 3) as
in previous work by Müller and Bergmann [17]. For this purpose, it is examined if
workflow cases from the set of the k-most similar case workflows (MSC(QW, k))
that are retrieved by the A∗ parallel retriever (i.e., the gold standard without
any MAC pre-selection), are also retrieved by the MAC/FAC retriever under
investigation. If not all case workflows are contained in the result list (RL) of
the corresponding MAC/FAC approach, the quality decreases proportional to
the similarity of this workflow to the query. Thus, if a highly similar case is
omitted, the negative impact on the quality is stronger than if a case with a low
similarity is missing.

quality(QW,RL) = 1 − 1
|RL| ·

∑

CW∈{MSC(QW,|RL|) \ RL}
sim(QW,CW ) (3)

4.3 Experimental Results

We compared the three MAC/FAC approaches using different numbers of case
workflows to be retrieved (k) and using different filter sizes (FS ) for the MAC
phase. We show the retrieval time in seconds and the quality value according to
Formula 3. All results are average values over all queries.

Table 2 shows the results of the comparison of the feature-based retriever with
our embedding-based approach. Each row in the table represents one particular
parameter setting. Please note that the k-value is the same for both retrievers
in a row (so both have to solve the same retrieval task) but the used filter size
parameter is different and optimized for each of the two approaches. In partic-
ular, we have chosen the FS value for the embedding-based retriever in a way
that the achieved retrieval quality is quite the same as what is achieved by the
feature-based retriever. In addition, we illustrate the number of matches (Hits)
without considering the corresponding rank. When we investigate the retrieval
time, we can see that the embedding-based retriever is as fast as the feature-
based retriever for larger values of k but clearly faster for small values of k. Thus,
Hypothesis H1 is clearly confirmed. With respect to the complete A∗ parallel
retriever (its retrieval time is shown in the right column of Table 2), we achieve
a speedup of a factor 2.3 to 10.8. When looking at the results in more detail, we
can see that the embedding-based retriever requires a significantly higher filter
size to achieve the same quality values. Thus, it does not approximate the FAC
similarity as well as the feature-based retriever, which leads to more irrelevant
cases among within the list of top-ranked cases resulting from the MAC phase.
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However, the speed-up in MAC similarity assessment is so large that we can
compensate this by affording a larger filter size, thereby shifting retrieval effort
from the MAC phase to the FAC phase. Overall, this seems to be an effective
approach in our experiments.

Table 2. Comparison of the feature-based and the embedding-based retriever

Feature Graph MAC-FAC Embedding Graph MAC-FAC A* Parallel

FS k Hits Quality Time FS k Hits Quality Time Time

5 5 2.37 0.79 0.166 25 5 2.44 0.79 0.083
0.896

50 5 4.69 0.98 0.262 250 5 4.61 0.97 0.251

10 10 5.24 0.80 0.190 50 10 5.75 0.81 0.126
0.982

80 10 9.48 0.98 0.336 300 10 9.26 0.97 0.340

25 25 14.37 0.82 0.259 100 25 15.77 0.84 0.228
1.098

100 25 23.17 0.97 0.465 350 25 22.75 0.97 0.469

To compare the embedding-based retriever with the cluster-based retriever,
we report the values for k, FS, quality, and retrieval time as published in [17].
To compensate for the improved hardware capabilities under which we measure
the results of the embedding-based approach, we adjust the previously reported
time values by a factor of 0.80556. This value is carefully determined based on
the average improvement of the A∗ parallel and the feature-based MAC/FAC
retriever. The results are shown in Table 3. Please note that in this experiment,
the filter size is the same for both approaches. The results clearly demonstrate
that the embedding-based retriever outperforms the cluster-based approach in
retrieval time and quality in all examined parameter settings. Since the case base
used for evaluation throughout the whole experiment has no cluster structure,
Hypothesis H2 is clearly confirmed.

Table 3. Overview of results between the cluster-based and the embedding-based
approach

Cluster Graph 

MAC-FAC

Embedding Graph

MAC-FAC

FS k Quality Time Quality Time

10 10 0.60 0.199 0.65 0.066

50 10 0.70 0.261 0.81 0.126

100 10 0.77 0.321 0.89 0.181

25 25 0.61 0.254 0.69 0.101

50 25 0.67 0.300 0.75 0.166

100 25 0.74 0.371 0.84 0.228

50 50 0.65 0.338 0.74 0.169

100 50 0.72 0.420 0.81 0.308
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Fig. 3. Retrieval time and quality for all retrievers with k = 10

Finally, we summarize our results in a way that allows to compare all three
MAC/FAC retrieval approaches. In Fig. 3, we present a plot that characterizes
each retrieval approach as it directly relates retrieval time and retrieval quality
for various values of FS. The value of k is fixed to 10 for this comparison. As
shown by the plots, the embedding-based MAC/FAC retriever provides the high-
est quality in relation to retrieval time but does not fully reach the perfect quality
value of 1 such as the feature-based approach. Hence, the speed advantage of the
embeddings used to compensate for the poorer quality through increasing the
filter size comes to an end at high-quality values because the marginal utility
of an increased filter size diminishes. However, the loss of quality in this range
is so small that it does not justify the effort involved in implementing a manu-
ally designed feature-based approach. Figure 3 also clearly shows the impressive
advantage of the embedding-based retriever over the cluster-based approach.

5 Conclusion, Related and Future Work

We presented a new MAC/FAC approach for the retrieval of semantic workflows
in POCBR, which is based on a novel general-purpose neural embedding app-
roach. It enables to learn a vector representation for workflows that can be effi-
ciently compared using the cosine similarity measure. The fact that this embed-
ding approach is able to embed features of different kinds in the same embedding
space allows us to efficiently determine also an embedding for a query workflow
for which an embedding vector cannot be determined in advance. We could show
that the presented approach achieves a performance, which is comparable to a
feature-based MAC/FAC retrieval that works with manually modeled case rep-
resentation and similarity measures for the MAC phase. As a result, an efficient
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MAC phase is now available fully automatically by means of machine learning
and comes at no cost (except for the offline computation time to be invested
for training). The only previously available alternative approach to construct a
MAC phase through learning is clearly outperformed in terms of retrieval time
and quality.

To our knowledge, the use of neural embedding approaches for implementing
the MAC phase in CBR has not yet been discussed in the literature before. Most
similar is probably our work on retrieval of argumentation graphs [3] in which
we use word embeddings as local similarity measures within a graph similarity
measure but also as similarity measure for the MAC phase of retrieval. Not for
MAC/FAC retrieval, but for case indexing in general, Metcalf and Leake [14]
proposed several embedding techniques, include a knowledge graph embedding
method in the domain of medical cases. In addition, the use of neural embedding
approaches has been recently discussed in the CBR literature primarily for local
similarity measures in textual CBR applications (see e.g., [1,21]).

In future work, we aim to extend our experimental evaluation by using case
bases from other domains and including workflow cases with higher complexity.
Given the fact that the current embedding approach is not particularly designed
to predict the modeled graph-based similarity measure, we still see potential for
further improvements. Thus, we aim to investigate the idea to train a siamese
network on top of an embedding network using the graph-based similarity values
of case pairs from the case base. Furthermore, we propose to examine how the
graph structure (e.g., data-flow and control-flow edges) and semantic annota-
tions (e.g., amounts of ingredients) could be better considered during learning.
An promising approach that will be considered in future work is presented by Li
et al. [13]. Thereby, we hope to improve prediction of the current MAC phase,
which would lead to further improvements in retrieval time and quality. In addi-
tion, we will explore the idea of an incremental MAC/FAC approach [19], which
successively increases the filter size based on an analysis of the FAC similarity
of the found cases.
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Abstract. The case adaptation process in case-based reasoning is often
modeled as having two steps: enumerating differences between a new
problem and the problem part of a retrieved case and then applying
an adaptation rule for each difference. This model is sufficient when (1)
predefined adaptation rules exist for all differences the system encoun-
ters, and (2) adaptation rules are sufficiently independent that interac-
tions are not a major issue. This paper presents an approach to handling
case adaptation when these assumptions fail. It proposes an approach,
RObust ADaptation (ROAD), that uses heuristics to guide multi-step
adaptations, with each adaptation chosen in the context of adaptations
applied previously. To reduce the potential for accumulated degradation
of solution quality from long adaptation chains, it performs incremental
retrieval of new source cases along the adaptation path, resetting the
partially modified case to the “ground truth” of existing cases when an
existing case is nearby. An evaluation supports the benefits of the model
and illuminates some tradeoffs.

Keywords: Adaptation rule interactions · Case adaptation ·
Differential adaptation · Adaptation path

1 Introduction

The case-based reasoning (CBR) case adaptation process modifies the solution of
a retrieved case to fit a new problem [10]. Because case adaptation provides the
flexibility to apply retrieved cases to new situations, case adaptation is funda-
mental to the performance of CBR systems. The case adaptation process is com-
monly driven by a list of differences between the new problem and the problem
of the retrieved case, with adaptation rules retrieved according to the differences
to adapt. Models of the adaptation process often assume that a suitable adap-
tation rule will be available for each difference the system may have to adapt,
making adaptation for each difference a one-step process. However, in practice
it may be infeasible to provide a CBR system with adaptation rules for every
possible difference. Generating adaptation rules by hand is costly, and it may be
difficult or impractical to anticipate or capture a sufficiently extensive rule set.
Another issue is the potential need to address multiple differences between old
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and new problems. Rules may be tailored for specific differences, but the num-
ber of potential difference combinations aggravates the rule generation problem.
In practice, CBR systems often address the problem of multiple differences by
treating the effects of differences along particular problem features as indepen-
dent and decomposing the difference set by generating a list of differences to
adapt in turn, applying one rule per difference.

For numerical problems, the decomposition approach has been formalized by
Fuchs et al. as differential adaptation [4], which models case adaptation as the
application of a sequence of adaptation operators. This paper is in the spirit of
that work, but adopts a search-based framework for adaptation generation that
is appropriate for symbolic domains as well and can pursue multiple alterna-
tive adaptation paths. It proposes ROAD (RObust ADaptation), a search-based
model of the adaptation rule application process that applies a flexible chaining
process and integrates ongoing retrievals to help guard against the degradation
of adaptation performance that can occur for long adaptation paths [9].

The paper begins by considering general issues for applying sequences of
adaptation rules. It then proposes a search-based model, guided by similarity. It
identifies a potential pitfall when similarity does not match adaptability (cf. [12]),
and proposes addressing it by ongoing retrievals that “reset” the state of the
adaptation sequence to a known case. Resetting also provides a potential solution
to solution quality degradation over long chains. An evaluation illustrates the
benefits of the multi-step approach and path resetting, while illustrating tradeoffs
based on adaptation rule specificity and reach.

2 Models of Applying Multiple Case Adaptation Rules

We begin by presenting three models of adaptation rule combination: adaptation
by multiple independent one-step adaptation rules, adaptation by multi-step
adaptation paths, and ROAD—robust adaptation by dynamically adjusted and
reset adaptation paths.

Adaptation by Multiple Independent One-Step Adaptation Rules: It is
common for CBR systems to adapt a collection of differences by selecting adap-
tation rules for each one, applying each one, and combining the results. Given a
set of independent features fi of a case, and corresponding differences di between
the value of the feature in the input problem and a retrieved case to adapt, and
a collection of adaptation rules ri, with each ri applicable to difference di, the
adaptation combination process combines the independent component results.
For example, for a regression task (e.g. real estate appraisal), combination might
simply sum the price effect of each difference.

The one-step approach assumes that there will be an adaptation rule suitable
for each difference. However, this may not be the case. For example, if no suffi-
ciently similar case is available, extensive adaptation may be required to bridge
the distance between cases, with no predefined rules that bridge the gap. When
a limited set of rules is available, a multi-step adaptation may be the only way
to address certain feature differences, even for a single feature.
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Fig. 1. Adapting from Solution A to Solution C through adaptation path (f, g).

Adaptation by Multi-step Adaptation Paths: Path-based adaptation dis-
cards the assumption that there will exist an adaptation rule that directly
addresses a given difference. Instead, the system may have rules that incre-
mentally provide the desired solution. In the cooking domain, to change a recipe
for regular pancakes to buttermilk pancakes, a cook might first adapt to use
buttermilk (by replacing the leavening with buttermilk and baking soda) and
then, if buttermilk is not available, adapt by substituting regular milk and vine-
gar for the buttermilk. This generates an adaptation path, the composition of a
sequence of adaptation rules resulting in intermediate solution states (Fig. 1).

An adaptation path is a sequence of triples (ci, ai, ci+i), where ci is a case
to adapt, ai is an adaptation rule, and ci+1 is the result of applying ai to ci.
In our formulation, as in that of D’Aquin, Lieber, and Napoli [2] and Leake
and Schack [8], the adaptation rule modifies both the solution and the problem
description, to keep the problem and solution descriptions consistent for a new
complete case. As this case does not correspond to a situation encountered in
the world, we call it a ghost case [8]. The adaptation path retains provenance
information about how each case in the sequence is derived, which could be
used, e.g. for estimating result quality [9]. In an adaptation path, differences are
not assumed to be independent; adaptations are performed in a sequence. Issues
with interaction problems are handled when the CBR cycle revision step repairs
the candidate solution [10].

In the adaptation path model of D’Aquin, Lieber, and Napoli, a similar-
ity path is built first and then a corresponding adaptation path to modify the
source solution to the target solution. Badra, Cordier, and Lieber [1] present
an algorithm building an adaptation path by which the query is modified to
match at least one case from the case base. Inspired by differential calculus, the
differential adaptation model of Fuchs et al. [4] uses partial derivatives to make
small variations in the problem and solution. Adaptation knowledge is generated
by computing derivatives of every solution feature with respect to every prob-
lem feature. Differential adaptation can be applied to any numerical task domain
provided that the dependencies between descriptors can be computed. Under dif-
ferential adaptation, small-step adaptation is preferable to big-step adaptation
as the former introduces less error using derivatives. This assumption motivates
their multi-step differential adaptation.

Robust Adaptation by Dynamically Adjusted and Reset Adaptation
Paths: The ROAD approach to adaptation paths is based on three principles.



On Combining Case Adaptation Rules 207

First, rather than dividing difference identification and adaptation into separate
steps, after every adaptation rule application it re-assesses differences and selects
the next adaptation rule to apply. Incremental choices of each adaptation rule are
made in the context of the previous adaptations. Second, ROAD can simultane-
ously pursue multiple potential adaptation paths, enabling exploiting alternative
adaptations and comparing competing alternatives. Third, ROAD’s adaptation
process is coupled to the case base: As adaptation proceeds, if an incremental
solution is similar to an existing case, ROAD can “reset” the adaptation path
to proceed from the existing case. This substitution effectively restarts solu-
tion generation from a known solution in the case base, reducing the required
adaptation. In the common situation of imperfect adaptation knowledge, this is
expected to increase solution quality.

3 Issues for Adaptation Paths and ROAD

Compared to applying single adaptations, adaptation path composition increases
adaptation flexibility and coverage. However, moving from single adaptations to
adaptation paths complicates multiple parts of the case adaptation process:

1. Estimating adaptability: CBR commonly uses similarity as a proxy for adapt-
ability. This assumption has been questioned [12], leading to methods for
adaptation-guided retrieval [3,7,11,12]. However, when adaptation could in
principle involve long sequences of adaptation steps, estimating adapta-
tion cost could require consideration of many possible alternatives, making
adaptation-guided retrieval extremely expensive.

2. Guiding path construction: If many alternative adaptation sequences could be
considered, how to select them becomes important for adaptation efficiency
and quality (e.g., if some rules are known to be more reliable than others or
shorter paths are more desirable for quality [9]).

3. Terminating unpromising paths: When a path is judged to be unpromising
(e.g., because its length suggests risk of excessive quality loss or explainabil-
ity), it may be appropriate to terminate; heuristics are needed to determine
when to terminate.

4. Handling adaptation interactions: If adaptations may interact, the choice
of adaptations must be sensitive to side-effects of previous adaptations. In
principle, in fully understood domains, it would be possible to use standard
AI methods to manage such interactions. However, CBR is often applied to
domains that are poorly understood or imperfectly formalized. An adapta-
tion approach practical for such domains must use other methods. This paper
presents heuristic-based methods.

The ROAD model of dynamically adjusting and resetting adaptation paths raises
additional issues:

1. Determining a strategy for exploring alternative adaptation paths: When mul-
tiple paths are pursued, any search strategy could be used to manage the
choice of partial paths to extend (e.g., best-first, breadth-first).
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Algorithm 1. ROAD Overall Procedure
Input:
CB: case base
target: the input query
settings parameters: from section 5.1
rules: adaptation rules

Output: a prediction for the solution of the target case
sourceCases ← intialRetrieval(CB, target, k)
paths = new priorityQueue()
paths.addAll(createPathsFrom(sourceCases))

finishedPaths = [] � building k paths
while not paths.isEmpty() do

p ← paths.pop()
resetIfDecay(resetByDecay, CB, p)
resetIfConflict(resetByConflict, CB, target, p, paths, finishedPaths)
step(path, rules)
if done(path, maxLen) then

finishedPaths.add(path)
else

paths.add(path)

solutions = []
for all path in finishedPaths do

solutions.add(path.head.solution)

prediction ← average(solutions)
return prediction

2. Reconciling path intersections: If two adaptation paths lead to generating the
same (or a nearby) ghost case, various strategies could be used for merging
those results in the final path, such as selecting the single “best” path leading
to the point of overlap or retaining both paths.

3. Resolving path conflicts and path reinforcements: If the overlapping ghost
cases have different (similar) solutions, the conflict could be evidence for
reducing (increasing) path reliability.

4. Determining when to reset the search: As described in Sect. 4.5, when the
ghost cases in a path are similar to stored cases it may be beneficial to reset
the path by replacing the ghost case with a new retrieval. This requires deter-
mining criteria for resetting the search.

4 ROAD’s Strategies for Building Adaptation Paths

ROAD builds adaptation paths by a search process. Given a target problem p, the
process begins by retrieving one or more most similar cases as a starting point.
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The starting point may be reset by new retrievals as the process progresses. The
goal is to generate an adaptation path from the initial case to one applicable to
the new situation, while minimizing a cost function f : P → R

+. The function f
could reflect criteria such as minimizing solution error, minimizing path length
(as a proxy for minimizing error, or for increasing explainability of the solution
derivation), minimizing adaptation cost (i.e., path construction cost), or domain-
specific criteria such as, in case-based planning, minimizing the execution cost of
the generated plan. For example, for numerical domains, Fuchs et al. [4] propose
building the adaptation path by hill climbing using the derivative to reflect
the relationship between the variation of problem features and the variation of
solution values.

ROAD uses four categories of strategies, for: (1) avoiding prohibited regions,
(2) extending a single adaptation path, (3) initializing and pursuing multiple
paths, and (4) preserving the reliability of paths.

4.1 Avoidance of Prohibited Regions (Dead Zones)

ROAD supports the avoidance of generation of ghost cases in certain regions of
the problem space. We call these regions dead zones. For example, in the housing
price prediction domain, local housing codes may prohibit houses in a certain
area. Rather than allowing case adaptation to hypothesize ghost cases in that
area, ROAD’s can be provided with a test function to reject ghost cases there.
This has two motivations. First, for an adaptation rule to hypothesize a case
in such a region shows that the rule is missing portions of the relevant context;
thus it might be expected to be less reliable in that region, making it reasonable
to favor a path with all steps within the realm of possibility. Second, if the CBR
system will present the adaptation path to the user as an explanation for its
result, presenting an impossible intermediate step might undermine confidence
in the explanation.

We note that this prohibition is not required and might sometimes be unde-
sirable. For example, for a domain in which solutions are hard to generate but
easy to evaluate, the path might not be important to trust, and enabling adap-
tation to hypothesize impossible ghost cases might lead to creative solutions.

4.2 Extending a Single Adaptation Path

An adaptation path is extended by adapting the case at the head of the path,
using an adaptation rule, and appending the triple of the original case, the
rule, and the ghost case generated by adaptation to the path. Because multiple
adaptation rules may apply to a single case, heuristics are needed to select the
adaptation rule to apply. Our implementation of ROAD searches by a modified
best-first process, favoring adaptation rules that result in cases most similar to
the target case.

Inspired by Fuchs et al. [4], ROAD extends paths by a best-first process, but
it differs in three respects. First, Fuchs et al. only addressed regression tasks,
requiring the generation of differential numerical adaptation operators, with the
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sequence of chosen operators always generating the correct adaptation. ROAD,
addresses adaptation for non-regression as well as regression tasks, and does not
assume that a best-first process will necessarily produce the best path. Second,
ROAD supports the simultaneous pursuit of multiple paths, with back-tracking
as needed and with the ability to block consideration of portions of the candidate
adaptation space (dead zones). Third, as described below, rather than simply
applying the sequence of chosen adaptations, ROAD monitors the ongoing results
of partial adaptations to potentially re-start adaptation from a nearby case.

When extending a path, ROAD first retrieves all adaptation rules applicable
to the case at the head of the path. The rules are then applied, with the results
ranked by applying the cost function (e.g., closeness of the problem of the new
ghost case to the target problem). The rule with the best result is chosen and
applied to the head (ties are broken arbitrarily). If the result has already been
considered along an adaptation path, or if the result is impossible in the task
domain (falls in a dead zone), then the next best rule is chosen.

4.3 Heuristics for Initializing and Pursuing Multiple Paths

We considered three methods for the initial retrieval of source cases to use to
initialize paths: (1) using 1-nn to retrieve one case and start one path from it,
(2) using k-nn to retrieve k cases and starting one path from each of the k cases,
and (3) using a k-nn to retrieve k cases but starting paths from a subset of
those k cases selected for diversity. We expect (2) to perform better than (1) as
combining solutions from multiple paths averages out errors in individual paths.
We expect (3) to increase efficiency by reducing the number of paths considered
by (2), with little quality loss because similar cases result in less independent
paths–they involve similar adaptation steps toward the target–and less potential
benefit from an ensemble of solutions. However, a tradeoff is that we would
expect substantially non-similar cases to result in lower performance. Selecting
the diverse cases from the k nearest neighbors balances similarity and diversity.
ROAD uses method (3).

ROAD stores all paths in a priority queue. In every iteration, the path with
the highest priority is removed from the queue, extended, assigned a new priority,
and added back to the queue. Using a priority queue ensures that computational
resources are shared among all paths. In ROAD, the priority of a path is defined
as the inverse of the path length. Alternatively, the priority can be defined by
the distance between the head and the target case, or confidence of a path.

4.4 Path Termination and Resetting as a Heuristic for
Maintaining/Increasing Path Reliability

One source of confidence in the results of case-based reasoning is that con-
clusions are derived from similar prior cases known to have correct solutions.
In imperfectly understood domains, adaptation rules are generally imperfect, so
adaptation is not guaranteed to generate correct solutions. Repeated application
of unreliable adaptation rules may compound errors; in some contexts, reliability
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Fig. 2. Illustration of path resetting

may be estimated by assigning a confidence decay rate to each adaptation rule
and combining the decay effects of multiple rules [9].

ROAD uses several simple methods to reduce the chance of compound error.
First, its greedy search process is aimed at finding a short adaptation path to the
target (though as with any greedy search, the shortest path is not guaranteed).
ROAD can limit adaptation path length. It also uses a novel method, path
resetting, described in the following section, to bring the speculative path from
adaptations back to case knowledge grounded in experience.

4.5 Resetting a Ghost Case with a Nearby Retrieval

ROAD’s resetting process is triggered when heuristics suggest a potential solu-
tion quality problem. Resetting moves the focus from the current ghost case to
a similar case in the case base. We note that changing to this case can result in
a shorter adaptation path from a prior case, even when the previous case most
similar to the source case was retrieved initially. Figure 2 presents an intuitive
example. In the figure, C0 and C1 are cases in the case base, with C0 the initial
retrieval to solve target case T . The solid arrows represent adaptation steps,
with G1, G2 and G3 ghost cases produced by adaptation.

Because C1 is farther away from T than C0 (the dashed arc), C0 is initially
used as the source case for an adaptation path. By greedy search, C0 is adapted
to G1. The path further expands to G2. Notice that even though C1 is farther
from T than C0, it is closer to G3 than C0. The solution of T can be predicted by
either continuing adapting the path C0 −G1 −G2, which may have accumulated
error due to imperfect adaptation rules, or “resetting” the path to C1 (with C1’s
correct solution) and extending from there. The dashed arrow represents the
reset to continue the path from C1.

ROAD triggers resetting in two conditions:

– Cumulative quality decay: Input cases are associated with a perfect reliability
score; a decay function decreases reliability based on each adaptation rule
applied, with reset triggered when reliability drops below a threshold.

– Conflicting adaptation paths: When the ghost cases at the heads of two adap-
tation paths are within a preset similarity threshold but their solution dif-
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ference exceeds a difference threshold, the conflict puts their reliability in
question. Because ROAD allows multiple adaptation paths to start from dif-
ferent (nearby) cases, ROAD only resets if the new solution difference exceeds
their original solution difference. ROAD resets the path whose head is farthest
from the target case.

5 Evaluation

Our evaluation addressed the following questions:

1. How does the use of single adaptation paths vs. multiple adaptation paths
affect solution accuracy?

2. What are the tradeoffs between one-step adaptation and multi-step adapta-
tion, for varying degrees of case base sparsity around a target, and how is
this affected by rule specificity?

3. How do rule specificity and locality affect the ROAD’s performance?
4. How does resetting paths affect performance compared to not resetting?
5. How does the combined effect of multiple adaptation paths, multi-step adap-

tation, and resetting affect solution accuracy?

5.1 Experimental Design

Task and Data: We tested the performance of ROAD for an automobile price
prediction task, using the Kaggle automobile dataset [6]. The original dataset
contains 205 cases, each with 26 features. We removed the first two features
because they concern insurance risk rather than attributes of a car and cases
with missing features, leaving 193 cases. Every case has 10 nominal features and
13 numerical features, plus price as the solution.

Adaptation Rule Generation: Case adaptation rules were generated automati-
cally for this task using a method based on the case difference heuristic [5], with
specifics as described in Schack and Leake [8].

Their method generated adaptation rules that were considered applicable
only when all nominal features in the source case used for learning were also
present in the case to adapt. Such rules have high specificity (which corresponds
to low generality). An alternative approach is to generate rules whose applica-
bility is based on a smaller set of features, or even just one feature, making them
more generally applicable (low specificity). Our rule generation procedure can
be tuned to record only a subset of the features. A parameter rule specificity
(rspec) governs the fraction of the original features retained in the adaptation
rule (both in antecedents and in the features to adapt). The specific features for
a given rule are chosen at random.

Similarity Criteria: Similarity of nominal features is 1 if the features are iden-
tical and otherwise 0; all numerical features are assigned equal weight and are
normalized by the range of feature values.
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Controlling for Case Base Sparseness: In general, the need for case adaptation
depends on the density of the case base: When the case base is dense, with
a high probability of nearby similar cases for any input problem, adaptation
will be less crucial than when the case base is sparse and distant cases must
be brought to bear. To study this effect, experiments were done both with the
original case base, and with varying levels of case deletion in the neighborhood
of the target case. Testing each target case, 0, 10, 25, 50, 75, 100, 125, and 150
cases around the target are removed from the case base to simulate situations
where an initially retrieved source case is at a certain distance from the target.

Experimental Parameters: Parameters regulate adaptation rule generation and
adaptation path building for each experiment. Performance is measured by the
relative error of price. Each experiment is carried out 100 times, with 10-fold
cross validation for each trial. Cases are considered solved when either (1) no
adaptation results in a ghost case closer to the target, or (2) the path length
limit is reached. Settings for all experiments are listed in Table 1. Experimen-
tal conditions are determined by the following parameters (1–4 affect system
behavior; 5–7 affect adaptation rule generation):

1. k: Number of cases retrieved as path starting points (also k in baseline k-nn)
2. MaxLen: Maximum allowed path length
3. ResetByDecay: reliability threshold for resetting path due to reliability

decay. In the experiments, the decay is simply a constant value subtracted
from the initial reliability

4. ResetByConflict: Enables/disables resetting when paths disagree
5. Rcount: the number of rules to generate
6. Rspec: The level of rule specificity. For example, rspec = 0.1 if 10% of all

feature differences are included in the antecedents of the rules.
7. RuleGenDist: the distance between pairs of cases generating rules. For

example, if ruleGenDist = 0.1, rules are generated from cases whose differ-
ence is less than 10% of the maximum possible difference. Small ruleGenDist
values correspond to generated rules covering only small intercase differences.

5.2 Experimental Results

Question 1: Single Adaptation Path vs. Combined Results of Multiple
Adaptation Paths: To assess the value of combining the results of multiple
adaptation paths from multiple starting points, we compared results when start-
ing adaptations from a single case (experiments #3 and #5) and from five cases
(#1 and #8), adapting each, and averaging the solutions, for two levels of rule
specificity. Figure 3 shows that using multiple adaptation paths lowered error at
both levels of specificity.1

1 In the experimental comparisons, when cases have been removed, all differences are
statistically significant (p < .05), except for: Fig. 4(a) when more than 75 cases
removed, Fig. 4 (b) when more than 25 have been removed, Fig. 5(b), which has no
significant difference, and Fig. 6 (b), when fewer than 150 cases removed.
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Table 1. Experimental parameter settings

# k maxLen resetByDecay resetByConflict rcount rspec ruleGenDist

1 5 9 true true 300 1.0 1.0

2 5 9 true false 300 1.0 1.0

3 1 9 true false 300 1.0 1.0

4 1 1 true false 300 1.0 1.0

5 1 9 true false 300 0.5 1.0

6 1 9 false false 300 0.5 1.0

7 1 1 false false 300 0.5 1.0

8 5 9 true true 300 0.5 1.0

9 1 9 true false 300 1.0 0.2

10 1 1 true false 300 1.0 0.2

11 1 9 true false 300 0.8 0.2

12 1 1 true false 300 0.8 0.2

13 5 9 false true 300 0.5 1.0

14 5 9 false false 300 0.5 1.0

Fig. 3. Error rate with increasing case base sparsity near target. Dashed red is one-path
adaptation; solid blue is five-path adaptation. (Color figure online)

Question 2: Tradeoffs of One-Step Adaptations and Adaptation Paths:
To assess the tradeoffs between one-step adaptations and adaptation paths,
we compared the performance of ROAD for one-step adaptation (experiment
#4) and adaptation limited to nine adaptation steps (experiment #3), with
adaptation rules reflecting the standard configuration of case difference heuris-
tic rule generation (all differences reflected in the rules, for a rule set includ-
ing both rules for short (ruleGenDist = 0.2) and long distance adaptations
(ruleGenDist = 1.0)). As shown in Fig. 4(a), ROAD with the longer path length
limit has lower error than ROAD with one-step adaptation. It might be expected
that with a lower limit on distance covered, ROAD with longer path length limit
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Fig. 4. Error rate with increasing case base sparsity near target. Dashed red is one-step
adaptation; solid blue has max of nine adaptation steps. (Color figure online)

will generate a longer path, which reduces path reliability and decreases benefit
over one-step adaptation.

To illustrate the effect of rule distance coverage on the benefit of path-
based adaptation, Fig. 4(b) compares experiments #9 (maxLen = 9) and #10
(maxLen = 1) for a lower distance maximum (ruleGenDist = 0.2). Results are
similar, with slightly higher error for rules with lower distance coverage when the
region around the target case is less sparse. This suggests that the compounding
of error from rules with less distance coverage may decrease the benefit of ROAD
with long paths. For both levels of rule specificity, the error rate with adaptation
paths increases more slowly than with one-step adaptation.

One interesting phenomenon observed in Fig. 4(b) is that for experiment #9,
the error rate increases as the number of cases removed increases from 0 to
100, but decreases when the number of cases removed is 125 and 150. As more
cases are removed, the initial retrieved cases become farther from the target
case. Adaptation paths have to cover a larger distance (measured by similarity
measure) to produce a ghost case close to the target case, and are therefore
more prone to decay in reliability. As even more cases are removed, the initial
retrieved case may reside on the boundary of the case space while the target
case is in the middle. In such situations, an adaptation path often has only
one direction to work toward the target case, therefore leading to slightly less
error. This phenomenon can be observed in experiments #9, #10, #11, #12. A
common characteristic of these experiments is that ruleGenDist is set to 0.2,
meaning the rules only cover small feature differences.

Question 3: Sensitivity of Result Quality to Adaptation Rule Speci-
ficity and Locality: To assess the dependence of ROAD on adaptation rule
characteristics, we tested the effect of two factors: rule specificity and locality.

Rule Specificity: To test the effect of rule specificity on the benefit of longer paths
compared to one-step adapations, we compared experiments #5 (maxLen = 9)
and #7 (maxLen = 1), both of which use low specificity rules (rspec = 0.5)
but allow non-local rules (ruleGenDist = 1.0). Non-local rules enable one-step



216 D. Leake and X. Ye

Fig. 5. Error rate with increasing case base sparsity near target. Dashed red is one-step
adaptation; solid blue has max of nine adaptation steps. (Color figure online)

adaptations to bridge long problem differences. Results are shown in Fig. 5(a).
Here one-step adaptations outperform longer paths, which contrasts with Fig. 4,
which shows ROAD with long paths consistently outperforms one-step adapta-
tions for more specific rules. Our explanation is that decreasing rule specificity
broadens rule applicability, and therefore increases average path length as more
applicable rules are available to apply. For example, the average path length is
2.5 when rspec = 1.0, and 7.3 when rspec = 0.5. Decreasing rule specificity
also decreases rule accuracy, and longer paths compound error. This nullifies the
benefit of longer paths seen in the previous experiment.

Rule Locality: In our tests, the rule generation distribution parameter determines
the maximum distance between the pair of cases from which an adaptation is
generated, determining rule locality. To illustrate the effect of rule locality, we
compared experiment #11 (maxLen = 9) and #12 (maxLen = 1) in Fig. 5(b),
for rspec = 0.8 and ruleGenDist = 0.2. ruleGenDist is set to 0.2 to favor
generation of local adaptation rules, while rspec of 0.8 increases rule reliability. A
local rule generation distribution limits one-step adaptation, because single rules
cover shorter distances than paths with multiple rules. Here the performance of
ROAD closely matches that of one-step adaptation for all sparsity levels.

Question 4: Effect of Path Resetting: We proposed two triggers for adap-
tation path resetting: (1) When a cumulative measure of path reliability drops
below a threshold, or (2) when the solutions of two paths disagree. We conducted
experiments to assess the benefit of resetting under each strategy. Figure 6(a)
shows the error as a function of increased sparsity near the adaptation target,
with and without resetting at the decay threshold (experiments #5 and #6).
Resetting results in a substantial drop in error. Figure 6(b) shows the error as
a function of increased sparsity near the adaptation target, with and without
resetting for conflicts (experiments #13 and #14). Here resetting benefits as
well, but less uniformly.
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Fig. 6. Error rate with increasing case base sparsity near target. Dashed red is without
resetting; solid blue is with resetting. (Color figure online)

Fig. 7. Error rate with increasing case base sparsity near target. Dashed red is single
case retrieval with at most one adaptation; solid blue is ROAD with combined methods.
(Color figure online)

Question 5: Combined Effect: A final question is the combined effect when
the individual aspects of ROAD are combined. Figure 7 compares accuracy for
basic adaptation—a single adaptation path, at most one adaptation applied, no
resetting—with ROAD using five paths, a maximum of nine adaptation steps,
and both resetting mechanisms. It compares these for two types of adaptation
rules generated from random case pairs, complete rules (rSpec = 1 and rule-
GenDist= 1), in Fig. 7(a), and partial rules (rSpec = 0.5 and ruleGenDist = 1) in
Fig. 7(b). (These respectively compare the results of experiments #1 and #4,
and #6 and #8; note differing scales because rule characteristics heavily influ-
ence accuracy.) The experiments show substantial benefits for the full ROAD
configuration, especially with partial rules.

6 Conclusion

This paper presented ROAD, a model of robust adaptation. ROAD uses heuris-
tics to guide generation of multi-step adaptation paths and resets points along
the adaptation path to nearby previous cases when path reliability decays or
when multiple adaptation paths suggest conflicting results. The resetting pro-
cess is a novel way to help ground uncertain adaptation in the real experience of
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the case base. Evaluations support the benefit of the approach, and especially the
benefit of resetting. The evaluation demonstrated, as expected, that the benefit
of ROAD depended on case base sparsity: If cases are available near a target,
there is less need for extensive adaptation. Future work includes extending test-
ing to additional domains and rule sets, to further study the effects of case base
and adaptation rule characteristics. It also includes refining the heuristics used
to guide the adaptation process, for example, by alternative search strategies
and bidirectional search, and further investigation of “dead zones,” regions in
which no real cases exist but for which ghost cases might be hypothesized.
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Abstract. Argumentation is an important sub-field of Artificial Intelli-
gence, which involves computational methods for reasoning and decision
making based on argumentative structures. This paper contributes to
case-based reasoning with argument graphs in the standardized Argu-
ment Interchange Format by improving the similarity-based retrieval
phase. We explore a large range of novel approaches for semantic textual
similarity measures (both supervised and unsupervised) and use them in
the context of a graph-based similarity measure for argument graphs. In
addition, the use of an ontology-based semantic similarity measure for
argumentation schemes is investigated. With a range of experiments we
demonstrate the strengths and weaknesses of the various methods and
show that our methods can improve over our previous work. Our code is
publicly available on GitHub.

Keywords: Argument graph similarity · Semantic textual similarity ·
Argument retrieval

1 Introduction

Argumentation is an increasingly important sub-field of Artificial Intelligence
(AI). It involves various computational methods for reasoning and decision mak-
ing, which are not only based on individual facts, but on coherent argumenta-
tive structures. The German special research program Robust Argumentation
Machines (RATIO)1 aims at developing new methods for extracting arguments
from documents as well as new semantic models and ontologies for the deep
representation of arguments which allows argument-based reasoning for various
kinds of real-world problem solving. The major challenge is the development of
so-called argumentation machines [27], which are specialized in reasoning with
arguments. An argumentation machine could find supporting and opposing argu-
ments for a user’s topic or it could synthesize new arguments for an upcoming,
1 http://www.spp-ratio.de/home/.
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not yet well explored topic. Thereby it could support researchers, journalists,
and medical practitioners in various tasks, overcoming the very limited support
provided by traditional search engines used today.

In the ReCAP project [6], which is part of the RATIO program, we aim
at combining methods from case-based reasoning (CBR), information retrieval
(IR), and computational argumentation (CA) to contribute to the foundations
of argumentation machines. In previous work [5], we developed an initial ver-
sion of a similarity measure for arguments represented as argument graphs [7]
for the purpose of case-based argument retrieval. This similarity measure was
inspired by our own previous work on process-oriented CBR (POCBR), in which
the similarity of graphs is assessed that represent semantically annotated work-
flows [4]. Argument graphs, however, are largely based on textual representations
of claims and premises and thus require the use of textual similarity measures,
thereby pushing this work closer to the sub-field of textual CBR [35]. While
in our previous work, we only apply a standard word embedding technique for
the assessment of local textual similarities, the aim of this paper is to explore a
larger range of new approaches for semantic textual similarity measures (both
supervised and unsupervised) used in the context of a graph-based similarity
measure for argument graphs. In addition the use of an ontology-based semantic
similarity measure for argumentation schemes is investigated.

Next, we present the foundations and related work in the field. Section 3 intro-
duces our general approach for argument graph similarity as well as the spectrum
of semantic textual similarity measures and the argumentation scheme similar-
ity, which are the major contributions of this paper. The various methods and
selected combinations of them are systematically evaluated in Sect. 4. Finally,
Sect. 5 concludes the paper.

2 Foundations and Related Work

In the field of CA, an argument consists of a set of premises and a claim together
with a rule of inference which concludes the claim from the premises. A premise
can support or oppose a claim as well as an inference step. Together premises,
claims, and inference steps form an argument graph. The Argument Interchange
Format (AIF) standardizes such a graph representation for arguments [15] to be
used in CA. In Fig. 1 an example of an argument graph in AIF format is given.
Claims and premises are represented as information nodes (I-nodes), depicted as
rectangular boxes which are related to each other via scheme nodes (S-nodes),
depicted as rhombuses. In the example there are two arguments for a claim
related to health insurance. The opposing argument has a single premise, whereas
the supporting argument has two distinct premises. Argumentation schemes,
corresponding to archetypical forms of arguments, are annotated as types of
an argument. Here, the supporting argument has a type of Position to Know.
The opposing argument has the type Default Conflict. There are many different
argumentation schemes which cover diverse facets of argumentation [34], such
as Argument from Positive Consequence, Argument from Expert Opinion, or
Argument from Cause to Effect.
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Fig. 1. Example of an argument graph in AIF format from the Microtexts corpus [25]

While argument mining methods [22] aim at converting natural language
argumentative texts into such argument graphs, our work aims at supporting the
reasoning with such graphs. Several formal argumentation frameworks currently
exist which are based on formal logic, but we believe that they are of limited use
for future argumentation machines that reason with real-world arguments [12].
Thus, we propose CBR as it does not require a complete and consistent domain
theory and is able to make use of vague information. Thereby, we continue the
traditional path for the use of textual CBR [35] in the context of argumentation
for legal reasoning [3,11] and aim at linking it with ideas from POCBR and
novel semantic text similarity approaches.

Existing work on CBR for legal argumentation is based on a model of legal
argument. Cases are represented based on hierarchically structured factors or
issues [29], which are used during similarity-based retrieval. A factor is simi-
lar to an argument or premise. The similarity of two arguments is defined by
the commonalities and differences of the factors. CATO extends those argument
graphs with intermediate factors, forming a factor hierarchy [1]. Branting [11]
proposes case-based adaptation in legal reasoning by reusing and adapting justi-
fications to create new arguments. Interestingly, similar ideas have been recently
established in the field of CA such as the “recycling” of arguments for synthesis
of claims [8].

3 Argument Graph Retrieval Using Semantic Textual
Similarities

We now describe our approach to the representation of cases in the form of
semantically labeled argument graphs, we recapitulate the basic approach for
similarity assessment [5], and introduce the main enhancements by semantic
textual similarity measures and the argumentation scheme ontology.

3.1 Argument Graph Representation

We developed a case representation using argument graphs, which is based on the
graph representation of AIF. It is similar to text reasoning graphs [31] for rep-
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resenting causal information, but argument graphs contain in addition semantic
information in different forms. Formally, an argument graph is a semantically
labeled directed graph and represented as a tuple A = (N,E, τ, λ, t) [4]. N is
the set of nodes and E ⊆ N × N is the set of directed edges connecting two
nodes. τ : N → T assigns each node a type and λ : N → L assigns each node a
semantic description from a language L. t ∈ L describes the overall topic of the
argument represented in the graph. The types T follow the AIF standard [15]
so that a node can either be an I-node with natural language propositional con-
tent or an S-node characterized by the respective argumentation scheme. The
mapping function λ is used to link a semantic representation to a node. For an I-
node n, λ(n) is the original textual representation (possibly after the application
of traditional pre-processing such as stopword removal) together with a seman-
tic representation of this text in the form of a vector, produced by a sentence
encoder (see Sect. 3.3). For an S-node n, λ(n) corresponds to an argumentation
scheme identifier, from an ontology of argumentation schemes constructed fol-
lowing the classification as proposed by Walton [33]. The argumentation scheme
ontology is further used to define a local similarity measure for comparing two
S-nodes, as described in Sect. 3.4. Finally, the overall topic t of an argument
graph corresponds to the concatenated textual contents of all I-nodes as well as
their semantic vector representation.

For retrieval, a case base of argument graphs is assumed, which could result
from argument mining or from the manual transformation of text corpora. In
our work, we also consider a query to be an argument graph or a fraction of it.
In particular, a query can also consist only of a single I-node.

3.2 Argument Graph Similarity and Retrieval

The general principle of argument graph similarity and retrieval introduced by
Bergmann et al. [5] has been adopted from POCBR [4] and follows the local-
global principle [28]. The global similarity is computed from local node and
edge similarities. The local node similarity simN (nq, nc) of a node nq from the
query argument graph QA and a node nc from the case argument graph CA is
computed as follows:

simN (nq, nc) =

⎧
⎪⎨

⎪⎩

simI(nq, nc), if τ(nq) = τ(nc) = I-node
simS(nq, nc), if τ(nq) = τ(nc) = S-node
0, otherwise

(1)

Approaches for concrete I-node and S-node similarity functions simI and simS

are the main contribution of this paper and introduced in the next subsections.
The similarity of two edges simE(eq, ec) is the average of the similarities of their
endpoints l and r respectively:

simE(eq, ec) = 0.5 · (simN (eq.l, ec.l) + simN (eq.r, ec.r)) (2)

To construct a global similarity value, an admissible mapping m is applied which
maps nodes and edges from QA to CA, such that only nodes of the same type
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(I-nodes to I-nodes and S-nodes to S-nodes) are mapped. Edges can only be
mapped if the nodes they link are mapped as well by m. For a given mapping
m let sni be the node similarities simN (ni,m(ni)) and sei the edge similarities
simE(ei,m(ei)). The similarity for a query graph QA and a case graph CA given
a mapping m is the normalized sum of the node and edge similarities.

simm(QA,CA) =
sn1 + · · · + snn + se1 + · · · + sem

nN + nE
(3)

Finally, the similarity of QA and CA is the similarity of an optimal mapping m,
which can be computed using an A∗ search [4].

sim(QA,CA) = max
m

{simm(QA,CA) | m is admissible} (4)

For similarity-based retrieval of argument graphs from a case base a linear
retrieval approach should be avoided due to unacceptable retrieval times caused
by the complexity of A∗ search as well as the complexity of the involved node
similarity measures. Thus, we propose a MAC/FAC (many are called, but few
are chosen) approach [17], which divides the retrieval into an efficient pre-filter
stage (MAC phase) and the subsequent FAC phase, in which only the a few
filtered cases are assessed using the complex similarity measure. We proposed a
MAC/FAC approach for argument graphs in which the MAC phase is imple-
mented as a linear similarity-based retrieval of the cases based only on the
semantic similarity of the topic vector t [5]. The filter selects the k most similar
cases, which are passed over to the FAC phase which implements the ranking
by a linear assessment of the cases using the graph-based similarity as described
above.

3.3 Semantic Textual Similarity Measures for I-Node Similarity

The quality of the overall similarity assessment heavily depends on the applied
node similarity measures. In our previous work we only employed Word2vec
Skip-gram [23] embeddings aggregated with an arithmetic mean and compared
with a cosine similarity. In this paper we investigate a larger, more diverse set
of novel methods for semantic textual similarity based on neural networks. The
approaches include unsupervised word and sentence embeddings and their com-
bination as well as supervised sentence embeddings which are trained on a large
amount of training data. There are also other methods available like SIF [2] or
Skip-Thought vectors [19] which however will not be evaluated here.

Unsupervised Word Embeddings. Word embeddings are distributed repre-
sentations of words, which means each word is associated with a word vector.
Word vectors capture the semantics of a word, in the sense that similar words
have similar word vectors. Word embedding models are trained on textual data
in an unsupervised manner. The models rely on the distributional hypothesis,
namely that words in similar contexts share meaning.
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Word2vec Skip-gram (WV) [23] trains word vectors based on the prediction
of context words. The model architecture employs a softmax classificator and
maximizes the log likelihood of the word vectors based on (word, context) pairs.
Words appearing in similar contexts have therefore similar word vectors. For per-
formance reasons the softmax is replaced by either a hierarchical softmax or an
alternative negative sampling objective [24]. The fastText (FT) embedding [9] is
based on the Skip-gram model. In addition it uses subword information as each
word is represented as the sum of its character n-grams together with the word.
A vector for n-grams is learned which allows to build word representations for
previously unseen words. GloVe (GL) [26] learns word vectors from global cor-
pus statistics directly, in contrast to Skip-gram’s context window approach. An
objective function based on ratios of co-occurrence probabilities is maximized.

In order to assess the similarity of I-nodes, the individual embeddings of
the words in the node’s text have to be aggregated to an overall node embed-
ding, based on which the similarity can be assessed, e.g. by a cosine measure.
Traditional unsupervised aggregation methods for this task include arithmetic
mean (xa), median (xm), geometric mean (xg), min pooling (minx), max pooling
(max x) and p-means (xp) [30].

Unsupervised Sentence Embeddings. Sentence embedding methods are an
alternative approach that can be applied to assess the similarity of the I-nodes
based on their text. As they work on sentences rather than on words, no aggrega-
tion is needed. The Distributed Memory Model of Paragraph Vectors (DV) [21]
is such a method trained similarly to word2vec’s CBOW model [23], but with an
additional vector representing the sentence as a whole. Embeddings for previ-
ously unseen sentences are inferred by backpropagation on the paragraph vector
keeping all other parameters fixed.

Supervised Sentence Embeddings. While the previous embedding
approaches are purely unsupervised, several approaches exist which aim at
improving the similarity assessment including to a certain degree also super-
vised learning, thereby accepting the additional effort caused by labeled train-
ing data. InferSent [16] is one such approach trained on the Stanford Natural
Language Inference corpus [10]. During training a shared BiLSTM encodes two
sentences and the encoded sentence pair is further enhanced with additional fea-
tures, such as the absolute difference of both sentences and their element-wise
product, before it is passed through a feed-forward network for classification.
After training the BiLSTM yields a 4096 dimensional vector for a sentence. Uni-
versal Sentence Encoder [13] trains a sentence encoder on multiple unsupervised
and supervised tasks. The transformer-based variant (USE-T) uses a transformer
encoder [32]. Deep Average Network-based Universal Sentence Encoder (USE-
D) uses a Deep Average Network encoder [18] instead, which averages unigram-
and bigram-embeddings and passes the averaged value through a feed-forward
network. The output of both networks is a 512 dimensional vector, representing
a sentence.
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Combining Different Embeddings. The various embeddings just described
can also be combined, following the idea that each embedding type captures
different kinds of information [30]. The concatenation of two embeddings A
and B is denotated by A ⊕ B, resulting in an embedding with dimension
dim(A) + dim(B). For example WV ⊕ FT is the concatenation of WV and
FT embeddings.

Similarity Measures for I-Nodes. In order to assess the similarity of I-nodes,
a similarity measure is required which compares the computed embedding vec-
tors of the nodes. Traditionally, the cosine similarity is used in semantic textual
similarity tasks, but various alternative approaches exist. The MaxPool-Jaccard
approach applies the fuzzy Jaccard index to max pooled word embeddings and
has recently demonstrated a significant benefit in semantic textual similarity
tasks [37]. In addition, the DynaMax-Jaccard approach was proposed, which is
a completely unsupervised and non-parametric similarity measure that dynam-
ically extracts and max-pools good features.

Finally, I-node similarity can be computed using the Word Mover’s Dis-
tance (WMD) [20] which computes the distance of two sentences by a mapping
between the word embeddings of the sentences. An optimal mapping is found
by taking into account the distances of the words in a word embedding space, so
that each word in one sentence needs to travel the lowest distance to the words
in the other sentence.

Please note that WMD, DynaMax and MaxPool do not operate on the rep-
resentation of the whole node text but on the representation of the individual
words. As such they combine aggregation and similarity assessment.

3.4 Ontology-Based Similarity Measure for S-Node Similarity

We now introduce an approach with which we aim to improve the similarity
assessment of argument graphs by considering the semantics of the argumenta-
tion schemes used in the S-nodes of the graph. In our previous work [5] we only
used two different schemes and an exact match similarity. We now introduce a
more fine grained representation and created an ontology consisting of 38 argu-
mentation schemes which are arranged in a taxonomy based on a classification
of argumentation schemes [33]. Figure 2 shows an excerpt of this ontology.

The similarity between two schemes can then be computed by using an edge-
count based approach. Wu and Palmer introduce a similarity measure simwp

that considers the depth of schemes S1, S2 and the closest common predecessor
scheme Sx of S1 and S2. The Wu and Palmer similarity of two argumentation
schemes S1 and S2 [36] is given by

simwp(S1, S2) =
2Nx

N1 + N2
(5)

where N1, N2 and Nx describe the depth of the schemes S1, S2 and Sx respec-
tively in terms of edges from root element to scheme. Wu and Palmer similarity
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Fig. 2. Excerpt from the argumentation scheme ontology based on a classification of
argumentation schemes [33]

assumes that schemes located deeper in the ontology are more specific and there-
fore more similar.

4 Experimental Evaluation

Given the various approaches described so far for I-node similarity as well as
the advanced approach for S-node similarity, we now want to experimentally
evaluate the benefit of them. Thus, we performed a systematic evaluation to
test how well the various approaches are able to retrieve and rank cases in a
way that is in line with the assessment of a human expert. Our code is publicly
available on GitHub2.

4.1 Hypotheses

The following four hypotheses are subject of this evaluation and relate to the
quality of the ranking produced by the argument graph similarity.

– H1: The simple approach based on WV embeddings, mean aggregation, and
cosine similarity as investigated in previous work [5] can be improved by some
of the newly investigated methods.

– H2: The concatenation of embeddings achieves a higher quality than a single
embedding.

– H3: Supervised sentence embeddings achieve a higher quality than unsuper-
vised embeddings.

– H4: The use of argumentation scheme similarity improves the quality.

4.2 Experimental Setup

For the evaluation we rely on various pre-trained word embeddings and sentence
encoder models. Word2vec GoogleNews3 vectors are trained on the Google News
2 https://github.com/MirkoLenz/ReCAP-Argument-Graph-Retrieval.
3 https://code.google.com/archive/p/word2vec/.

https://github.com/MirkoLenz/ReCAP-Argument-Graph-Retrieval
https://code.google.com/archive/p/word2vec/
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dataset on about 100B tokens. GloVe4 is trained on the Common Crawl dataset
on 840B tokens. fastText5 vectors are trained on Wikipedia and Common Crawl.
The dimensionality of all word embeddings is 300. The Paragraph Vector model
was trained by us on the english Wikipedia dump with 1M tokens. The Universal
Sentence Encoder models6,7 are trained on multiple unsupervised and supervised
tasks, such as predicting context sentences [19] and classification on the SNLI
corpus. InferSent8 is trained on the SNLI corpus as well. We evaluate the model
in version 1.

For the evaluation of the retrieval we choose the annotated corpus of argu-
mentative microtexts [25] following the work in [5]. This corpus consists of 112
argument graphs with a total of 576 I-nodes and 443 S-nodes. For this paper,
we refined these argument graphs by introducing a more fine-grained annota-
tion of the S-nodes by argumentation schemes based on the ontology developed.
These refinements were made by two students who were experienced in AIF and
the OVA+ modelling tool9. For our evaluation, we used the same 24 queries
from 6 topics as in our previous work. However, due to the introduction of the
more detailed argumentation scheme representation, a new reference ranking
was needed. It was produced by the same experienced students who refined the
representation of the cases.

In our experiments, we used various combinations of the similarity methods
proposed for retrieval of cases. In each experiment all 24 queries are used and
the resulting k = 10 most similar cases are considered. We assessed the relevance
of the cases (i.e. whether a case deals with the same topic as the query) as well
as the ranking of the cases. Thereby, the similarity measures are evaluated by
means of various metrics. Precision (P) measures the fraction of relevant cases
retrieved within the set of 10 most similar cases. Due to the size of the reference
rankings in our experiment, the upper limit for P achievable is 0.717. Recall (R)
measures the fraction of relevant cases retrieved. P and R are set-based,i.e., the
ranking quality itself is not assessed.

Average Precision (AP) measures the quality of the ranking by averaging the
precision at all relevant positions. Thus, AP is the area under the precision-recall
curve. A high AP value indicates that relevant elements are ranked high as well.

Normalized Discounted Cumulative Gain (NDCG) assesses that elements
with a high relevance appear early in the ranking. NDCG is computed as the
normalized sum of all relevance values in the result giving lower positions in the
ranking less weight. It is noteworthy that for NDCG non-relevant elements in
the ranking have no influence on the metric.

Correctness (CR) and Completeness (CP) [14] explicitly assess how well the
ordering of the ranking produced by similarity matches the ordering of the refer-

4 https://nlp.stanford.edu/projects/glove/.
5 https://fasttext.cc/.
6 https://tfhub.dev/google/universal-sentence-encoder-large/3.
7 https://tfhub.dev/google/universal-sentence-encoder/2.
8 https://github.com/facebookresearch/InferSent.
9 http://ova.arg-tech.org/.

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder/2
https://github.com/facebookresearch/InferSent
http://ova.arg-tech.org/
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ence ranking. CP measures the percentage of pairs of the reference ranking that
are included the produced ranking. CR measures concordance/disconcordance of
the orderings of those pairs, resulting in a value from [−1, 1] with higher values
indicating higher concordance. It is important to note that CR values are only
meaningful if also the CP value is high. Thus we only interpret CR values if the
CP value is above 0.9.

In the following we always report values averaged over all queries. In addition,
we show the average retrieval time in seconds on a 2014 MacBook Pro 15” with
a 2.8 GHz Intel Core i7 processor and 16 GB RAM.

4.3 Results and Discussion

In the following experiments the similarity measures for I-nodes are evaluated.
Only stopword removal is consistently performed in all conditions as this was
the most successful pre-processing approach in our previous work. The S-node
similarity measure is evaluated lastly.

The first experiment evaluates WV embeddings together with the cosine
measure as in our previous work, but using various aggregation functions. The
results are shown in Table 1, while the abbreviations are used as introduced in
Sects. 3.3 and 4.2.

Table 1. Results of retrieval with WV and cosine using different aggregation functions.

Aggregation method Time P R AP NDCG CR CP

xa 10.625 0.692 0.965 0.924 0.834 0.106 0.956

xm 11.021 0.675 0.943 0.903 0.844 0.139 0.907

xg 6.311 0.017 0.021 0.003 0.053 − 0.0

minx 10.515 0.604 0.84 0.798 0.856 0.171 0.744

maxx 12.687 0.588 0.827 0.786 0.866 0.127 0.696

x2 9.663 0.65 0.908 0.836 0.825 0.14 0.846

x3 8.059 0.654 0.913 0.876 0.849 0.146 0.876

x5 9.932 0.608 0.853 0.805 0.84 0.064 0.734

x10 8.831 0.575 0.81 0.746 0.843 0.174 0.676

x1000 6.969 0.479 0.667 0.584 0.802 0.184 0.471

xa ⊕ xm 11.676 0.692 0.965 0.923 0.835 0.115 0.948

xa ⊕ xm ⊕ x2 ⊕ x3 11.52 0.692 0.965 0.918 0.841 0.116 0.952

Arithmetic mean performs best regarding the unranked measures P and R
and also w.r.t. AP. For the ranked measures, max pooling led to the best NDCG
value, but for a significantly lower recall. Median achieves best results for the
ranked measure correctness among all aggregations with a completeness above
0.9. We systematically evaluated also concatenations of aggregation functions
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without being able to outperform the individual methods. The two best con-
catenation results are shown in the last two rows of Table 1.

Next we evaluate all unsupervised and supervised embedding methods using
cosine similarity. Word embeddings are aggregated using arithmetic mean. The
concatenation of the unsupervised embeddings have also been evaluated system-
atically, while only the best results are reported. Table 2 shows the results.

Table 2. Results of retrieval with different embedding methods using cosine and arith-
metic mean.

Embedding method Time P R AP NDCG CR CP

DV 12.132 0.675 0.942 0.888 0.854 0.148 0.9

FT 11.312 0.675 0.943 0.909 0.847 0.141 0.914

GL 12.201 0.667 0.929 0.876 0.809 0.044 0.897

WV 10.625 0.692 0.965 0.924 0.834 0.106 0.956

DV ⊕ WV 11.737 0.696 0.97 0.934 0.855 0.097 0.958

DV ⊕ FT ⊕ WV 12.489 0.671 0.938 0.905 0.846 0.085 0.904

InferSent 40.125 0.683 0.95 0.915 0.864 0.184 0.908

USE-D 8.92 0.704 0.982 0.951 0.841 0.099 0.977

USE-T 13.785 0.713 0.994 0.972 0.848 0.12 0.992

All methods achieve a high recall and completeness. Among the unsupervised
methods WV achieves the best results w.r.t. the unranked measures. DV and
concatenations including DV achieve the best ranked results NDCG and CR.
The supervised methods further improve the results. USE-D and USE-T yield
the highest P, R, and AP scores. InferSent was best w.r.t. the ranked measures,
but was even worse than WV concerning P and R. This indicates that super-
vised methods can actually learn useful signals for semantic textual similarity.
Hypothesis H3 can thus be accepted.

The impact of the similarity measure on the retrieval quality was evaluated
next. WV with arithmetic mean is used as sentence embeddings. Table 3 shows
the results for the different similarity measures.

Table 3. Results of retrieval with WV while using different similarity measures.

Similarity method Time P R AP NDCG CR CP

Cosine 10.625 0.692 0.965 0.924 0.834 0.106 0.956

DynaMax-Jaccard 12.276 0.692 0.964 0.934 0.877 0.274 0.936

MaxPool-Jaccard 9.725 0.417 0.58 0.548 0.846 0 .34 0 .365

WMD 88.377 0.683 0.953 0.913 0.859 0.226 0.932
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Table 4. Results of retrieval with different embedding methods using DynaMax-
Jaccard.

Method Time P R AP NDCG CR CP

DV 11.241 0.633 0.888 0.842 0.867 0.286 0.767

FT 10.497 0.696 0.971 0.93 0.868 0.256 0.956

GL 12.664 0.688 0.959 0.917 0.868 0.217 0.918

WV 12.276 0.692 0.964 0.934 0.877 0.274 0.936

DV ⊕ FT 13.236 0.688 0.959 0.914 0.869 0.277 0.918

DV ⊕ GL 14.077 0.667 0.931 0.891 0.883 0.274 0.812

DV ⊕ WV 13.58 0.667 0.929 0.893 0.862 0.258 0.85

FT ⊕ GL 16.772 0.675 0.943 0.907 0.872 0.278 0.899

FT ⊕ WV 12.17 0.696 0.970 0.924 0.862 0.27 0.943

GL ⊕ WV 15.25 0.679 0.949 0.903 0.867 0.192 0.853

DV ⊕ FT ⊕ GL 17.902 0.663 0.926 0.886 0.881 0.328 0.815

DV ⊕ FT ⊕ WV 15.251 0.692 0.964 0.922 0.875 0.307 0.943

DV ⊕ GL ⊕ WV 15.55 0.679 0.947 0.905 0.877 0.304 0.872

FT ⊕ GL ⊕ WV 16.721 0.671 0.938 0.897 0.873 0.264 0.832

DV ⊕ FT ⊕ GL ⊕ WV 18.551 0.679 0.948 0.908 0.868 0.222 0.888

Cosine and DynaMax-Jaccard perform comparably well only on the unranked
measures, while DynaMax-Jaccard significantly improves the ranking results
NDCG and CR compared to cosine. WMD achieves nearly comparable results,
but leads to very high retrieval times and is thus not competitive. MaxPool-
Jaccard is very poor on R and CP and thus not useful.

Since the DynaMax-Jaccard similarity performed best we evaluated the
various unsupervised embeddings methods and their combinations again. The
supervised methods could not be evaluated here, since DynaMax-Jaccard works
on word embeddings and supervised methods yield sentence embeddings. The
results are shown in Table 4.

Interestingly FT embeddings perform now best w.r.t. the unranked mea-
sures and are also very high in AP. Overall concatenations are able to improve
the ranking quality. DV ⊕ FT ⊕ WV yields the strongest CR and very high
NDCG and can even improve over the results of the supervised methods using the
cosine measure. Therefore hypothesis H2 can be accepted at least for DynaMax-
Jaccard. It is noteworthy that all metrics show slightly higher values than for
cosine, especially correctness and NDCG (compare Tables 2 and 4). This indi-
cates that DynaMax-Jaccard generally leads to an improved ranking.

The use of argumentation schemes for retrieval is evaluated next. Super-
vised embeddings are compared using cosine, unsupervised embeddings using
DynaMax-Jaccard. Concerning S-node similarity, three variants are included:
no S-node similarity (always 1), exact match similarity using the argumentation
scheme labels at the S-nodes and the ontology similarity (see Sect. 3.4). Table 5
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Table 5. Results of retrieval with including argumentation scheme similarity and
selected embedding methods

Embedding Schemes Time AP NDCG CR CP

USE-T No 13.785 0.972 0.848 0.12 0.992

USE-T Exact Match 15.541 0.925 0.843 0.136 0.992

USE-T Onto. Sim 14.127 0.938 0.847 0.132 0.992

WV No 12.276 0.934 0.877 0.274 0.936

WV Exact Match 13.659 0.906 0.853 0.161 0.936

WV Onto. Sim 10.677 0.902 0.851 0.174 0.936

DV ⊕ FT ⊕ WV No 15.251 0.922 0.875 0.307 0.943

DV ⊕ FT ⊕ WV Exact Match 19.83 0.908 0.859 0.252 0.943

DV ⊕ FT ⊕ WV Onto. Sim 27.096 0.905 0.861 0.216 0.943

Table 6. Evaluation of the approach used in [5] compared to the best new methods.

Method Time P R AP NDCG CR CP

Paper [5] 10.625 0.692 0.965 0.924 0.834 0.106 0.956

USE-T 13.785 0.713 0.994 0.972 0.848 0.12 0.992

WV 12.276 0.692 0.964 0.934 0.877 0.274 0.936

WV ⊕ FT ⊕ DV 15.251 0.692 0.964 0.922 0.875 0.307 0.943

presents the results. Since the argumentation schemes are used only in the FAC
phase only the ranked metrics are affected and reported.

For USE-T, the use of the argumentation scheme labels slightly improves
the ranking CR. The ontology-based similarity measures does not lead to an
improvement for any embedding, it even worsens the ranking results. Thus,
hypothesis H4 has to be rejected.

To come to a concluding assessment of hypothesis H1, we compare the three
best methods, USE-T, WV, and DV⊕FT⊕WV against the approach in [5] (see
Table 6). Again the supervised embedding is compared using cosine similarity
and unsupervised embeddings using DynaMax-Jaccard. Argumentation schemes
are not used.

All three methods clearly improve on the baseline. USE-T has best P, R, AP
as well as CP and can reach also near the precision limit of 0.717. WV achieves
very good results with minimal complexity. DV ⊕ FT ⊕ WV achieves the best
CR score. Hypothesis H1 can thus be clearly accepted. Concerning the retrieval
time, the new best methods are clearly more time consuming (up to 50 %), but
we consider this as acceptable given the resulting quality improvements.
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5 Conclusion and Future Work

In this work we investigated new methods from semantic textual similarity for
improved case-based argument retrieval and demonstrated significant improve-
ments over our own previous results [5]. Unsupervised word embeddings and
concatenations achieve a good ranking quality using the DynaMax-Jaccard sim-
ilarity measure and can improve clearly on the cosine similarity measure. Super-
vised methods achieve the best results using the unranked metrics and the high-
est completeness measures. The similarity measures for argumentation schemes
cannot further improve these results. A possible reason could be that the use
of schemes yields in too many constraints when performing the graph mapping
and thus impairing the results.

In future work we want to improve the ranking quality of supervised methods
as well as explore more advanced ontological similarity measures by automatic
linking with domain specific ontologies. Another line of work would be to extend
the argument retrieval task to new benchmark corpora and in particular corpora
in German language. A big challenge is addressing semantic similarity for the
German language as most recent methods have been mainly investigated and
optimized for the English language. Additionally, we will look at reducing the
computational complexity of the mapping algorithm, especially the A* search.
Finally, we intend to move further on to the adaptation of argument graphs by
transferring compositional adaptation methods from POCBR.
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Abstract. This paper describes an approach to case-based reasoning
by which the case base is enriched at reasoning time. Enrichment results
from the local application of variations to seed cases: new hypotheti-
cal cases are created which get closer and closer to the target problem.
The creation of these hypothetical cases is based on structures associ-
ated to the problem and solution spaces, called variation spaces, that
enable defining a language of adaptation rules. Ultimately reaching the
target problem (exactly or nearly) allows the system to deliver a solu-
tion. Application of the proposed approach to machine translation shows
behind state-of-the-art, but promising results.

Keywords: Analogical reasoning · Case base enrichment ·
Case-based machine translation · Case-based reasoning

1 Introduction

In machine learning, some techniques are used to enrich the training set in order
to improve the accuracy of a learning system. This is called data augmentation.
It can be done using general transformations (flipping, rotating, etc. images when
this does not affect the class in image classification, see for example Taylor and
Nitschke [17]), adding some controlled noise (like Gaussian noise on images, see
Hussain et al. [7]), or by analogical reasoning (see, e.g. Couceiro et al. [2]).

While case-based reasoning (CBR, Richter and Weber [16]) usually requires
less data than most current machine learning techniques, the enrichment of the
case base can be useful. In this paper, we propose to perform the enrichment of
the case base in a “case-based way”: the case base is enriched with new source
cases that are “around” the target problem. This constitutes a local enrichment
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of the case base, computed on-line, at the time of problem-solving. The case
base is enriched with the help of learned adaptation rules: given a source case,
another source case closer to the target problem is generated thanks to such a
rule. The process can be repeated, though each application of a rule may degrade
the generated case, in the sense that it is less and less likely to be a licit case.

To deal with this issue, the notion of penalized case is introduced: this is
a hypothetical case, whose likelihood to be licit is characterized by a number
that penalizes the re-usability of the case. Therefore, the enriched case base is a
set of penalized cases: the cases to be reused are the ones which offer the best
compromise between the similarity to the target problem and their penalties.

Section 2 presents general definitions. The notions of penalized cases are pre-
sented in Sect. 3. The notions of variations between problems and between solu-
tions are defined in Sect. 4, with some strong assumptions that make the general
ideas easier to understand. Section 5 is the core of the paper: it presents the
approach for local enrichment of the case base. It presents a first approach con-
sisting in generating from the case base all the penalized cases with a penalty
under a given threshold. Since this approach leads to a combinatorial explosion
of the case base, a more practical approach is presented afterwards. They show
how case-based translation (Lepage and Lieber [13]) can be performed thanks to
the approach of local enrichment of the case base. The results are demonstrative
and promising.

2 Preliminaries

2.1 Notations and Assumptions on Case-Based Reasoning

Let P and S be two given sets, called the problem space and the solution space.
A problem is by definition an element x of P and a solution, an element y of S.
A relation � on P ×S is assumed to exist and x � y is read “x has for solution
y” or “y is a solution to x”. A case is a pair (x, y) ∈ P ×S such that x � y. The
case base CB is a finite and nonempty set of cases. A source case is an element
(xs, ys) of CB. CBR aims at solving a new problem xt called the target problem
with the help of the case base. It usually consists of the following steps:

– Retrieval (aka “retrieve” in Aamodt and Plaza [1]) selects a subset of CB;
– Adaptation (aka “reuse”) proposes a plausible solution yt to xt, using the

retrieved source cases;
– Learning (aka as “revise” and “retain”) consists in validating/correcting yt

(for example, with the help of a human expert) and in storing the newly
formed case (xt, yt) in the case base, if this storage is judged appropriate.

It is worth noting that, for many applications, yt is only a plausible solution: CBR
often functions as a hypothetical reasoning process whose use is motivated by
the incompleteness of the knowledge of the relation �. The term “hypothetical
case” stands for any pair (x, y) ∈ P × S, though this notion is generally used
when a solution y to x is plausibly inferred. By contrast, if (x, y) is a case—and
thus, x � y—it is called a licit case to stress its certainty.
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In some applications, other knowledge containers are used (Richter and
Weber [16]): the domain knowledge, the retrieval knowledge, and the adaptation
knowledge (AK). These four knowledge containers are interrelated. In particular,
there are studies on learning AK using CB presented further.

2.2 Analogies

An analogy is a quaternary relation on a set U denoted by A : B :: C : D for
(A,B,C,D) ∈ U4, that is to be read “A is to B as C is to D”. It satisfies the
following postulates (for any (A,B,C,D) ∈ U4):1

(reflexivity of conformity) A : B :: A : B;
(symmetry of conformity) if A : B :: C : D then C : D :: A : B;
(exchange of the means) if A : B :: C : D then A : C :: B : D.

A ratio is an expression of the form P : Q (“P is to Q”), the relation :: (“as”)
is called conformity. Thus, analogy is a conformity of ratios.2

Classical examples of analogies are as follows:

–(geometrical analogy) Here the ratio is division, conformity is equality, and
U = R \ {0}. This analogy is defined by A : B :: C : D if A

B = C
D .

–(arithmetic analogy) Here the ratio is subtraction, conformity is equality, and
U = R. This analogy is defined by A : B :: C : D if A − B = C − D.

–(analogy on tuples) If an analogy is defined on each set Ui (1 ≤ i ≤ n) and
U = U1 × U2 × . . . × Un then the following analogy can be defined on U :
A : B :: C : D if for every i, Ai : Bi :: Ci : Di.

–(analogies on strings) Let dist be the LCS distance.3 The Parikh vector of a
string is the tuple of the number of occurrences of each character in the string.
A ratio P : Q between two strings P and Q can be defined as the difference
of their Parikh vectors (arithmetic analogies on tuples) plus the LCS distance
between them. However, this ratio does not entail the exchange of the means
because dist(A,B) = dist(C,D) does not imply dist(A,C) = dist(B,D)
in general. To define an analogy it is necessary to state: A : B :: C : D if
A : B = C : D and A : C = B : D.

An analogical equation is an expression of the form A : B :: C : y, where y is
the unknown. Solving it amounts to find the set of y such that the analogy holds.
It may have 0, 1 or several solutions, depending on the type of analogies: for
geometrical analogies on R\{0} and arithmetic analogies on R, every analogical
equation has exactly one solution. By contrast, with analogies on strings as
defined above, an analogical equation may have 0, 1 or several solutions.
1 Some authors consider that analogy requires additional postulates (Lepage [10]).

However, only these three postulates are used in this paper.
2 When conformity is an equivalence relation, reflexivity and symmetry are straight-

forward. But conformity is not necessarily an equivalence relation.
3 The LCS (“longest common subsequence”) distance is an edit distance based on the

character insertion and character deletion edit operations, with a cost of 1 for both.
In other terms, if P and Q are two strings and L is the LCS of P and Q, then
dist(P, Q) = (|P | − |L|) + (|Q| − |L|).
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3 Penalized Cases and Penalized Case Bases

The enrichment of the case base presented here is based on hypothetical reason-
ing: it generates hypothetical cases (x, y), i.e., the assertion “x � y” is uncertain.
Thus, a hypothetical case is less trustworthy than a licit case (such as a source
case), and thus, the former has to be penalized in the reasoning. Two hypotheti-
cal cases have different penalties if one of them is more uncertain than the other.
The notion of penalty as a way to model uncertainty is introduced for this pur-
pose. The penalties are associated to hypothetical inferences: the more uncertain
the inference, the higher the inference cost, that is the additional penalty associ-
ated with the inference. Finally, the notion of penalized case is introduced: they
are triples (x, y, π) where x ∈ P, y ∈ S and π is a penalty. An enriched case base
is actually a set of penalized cases, i.e., a penalized case base.

3.1 Uncertainty and Penalties

Hypothetical reasoning leads to uncertain results. In this paper, uncertainty of
an event is measured by an uncertainty penalty (or, simply, a penalty) π ∈ [0,∞]
such that the higher π is, the less certain the event is. The penalty of an event
that is certain is π = 0. The penalty of an impossible event is π = ∞.4

Remark 1: If two penalties π1 and π2 are associated to the same event, with
π1 < π2, the lower penalty—associated to the higher certainty—is kept. In other
words, if π is associated to an event e, then every π′ ≥ π can also be associated
to e.

3.2 Cost Associated to a Hypothetical Inference

Let ϕ0 be a piece of knowledge whose uncertainty (to be consistent with the real
world) has an uncertainty penalty π0. From ϕ0, a new piece of knowledge ϕ1

can be produced by a hypothetical inference hypo. Since hypo is hypothetical,
it adds some uncertainty, thus an uncertainty penalty π1 associated to ϕ1 can
be computed as π1 = π0 + c where c > 0 measures the additional uncertainty
of hypo. c is assumed to be computed on the basis of hypo by a function called
cost: c = cost(hypo).5 In summary:

4 If uncertainty is modeled thanks to a probability measure, it is possible to associate
to a probability P ∈ [0; 1] a penalty π = − log P ∈ [0; ∞]. If uncertainty is thought of
as a measure of the gap to consistency with the real world, it is possible to associate a
distance to it. Then, by definition, licit cases have a penalty of 0. The representation
of uncertainty by penalties is chosen in this paper for generality of expression.

5 Once again, costs could be associated to probabilities: cost(hypo) could be defined
by − log P (ϕ2 | ϕ1), where P (ϕ2 | ϕ1) is the probability of ϕ2 being true given that
ϕ1 is. But they can also be associated to distance. cost(hypo) could be defined
as dist(ϕ1, ϕ2) which expresses the additional uncertainty on ϕ2 when inferred
from ϕ1.
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if π0 is an uncertainty penalty associated to ϕ0

and ϕ1 is inferred from ϕ0 by the hypothetical inference hypo
then π1 = π0 + cost(hypo) is an uncertainty penalty associated to ϕ1

(1)

Now, if ϕ0, ϕ1, . . . , ϕn are pieces of knowledge, ϕ0 being certain (it can
be associated to an uncertainty penalty π0 = 0) and ϕi being produced by a
hypothetical inference hypoi (1 ≤ i ≤ n), then, according to (1), the uncertainty

penalty πn =
n∑

i=1

cost(hypoi) can be associated to ϕn.

In particular, let us consider the simple approach to CBR consisting in
retrieving a source case (xs, ys) and in reusing (without modification) ys as
a plausible solution to the target problem xt (yt = ys). If retrieval is based
on a distance function dist, then it is reasonable to assume that the higher
dist(xs, xt) is, the more uncertain the assertion xt � yt is, and the higher the
cost of this inference. For this reason, dist(xs, xt) can be used to measure the
cost of this inference: this is how the distance function is interpreted and used
in the rest of the paper.

Remark 2: If an uncertain piece of knowledge ϕ is inferred by two hypothetical
inferences, leading to two penalty values π1 and π2, then, following Remark 1, ϕ
is associated to the penalty min(π1, π2).

3.3 Penalized Cases

In this paper, every hypothetical case (x, y) ∈ P ×S is either a licit case (x � y)
or not (x �� y): there is no gradual distinction between licit and illicit cases.
By contrast, a hypothetical case is more or less certain to be a licit case. So,
hypothetical cases should be preferred on the basis of their respective chances of
being licit. A penalized case is a triple (x, y, π) with (x, y), a hypothetical case
and π, a penalty measuring the uncertainty that x � y. The estimation of π is
made on the basis of an inference that was applied to generate the hypothetical
case (x, y). If π = 0, then (x, y, π) = (x, y, 0) is assimilated to the case (x, y).

A penalized case base PCB is a finite set of penalized cases (xs, ys, πs) ∈
P × S × [0,∞]. In particular, CB is a penalized case base with penalties set to 0.

When a penalized case base PCB is used, instead of a classical case base, how
does it affect the CBR process? An answer is to take into account the penalties
of the case by adding them to the cost of the inference. For example, since dist
is interpreted as a cost of the simple CBR inference based on the retrieval of a
single source case and reusing it as such (cf. Sect. 3.2), this approach to CBR
consists in selecting the (xs, ys, πs) ∈ PCB which minimizes dist(xs, xt) + πs.

4 Problem and Solution Variations

4.1 Definitions

Intuitively, the variation from a problem xi to a problem xj , denoted by
−−→
xixj

in this paper, encodes the information necessary to transform xi into xj . More
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formally, a triple (ΔP,+,−→· ) called the problem variation space and satisfying
the following postulates is assumed to exist:

(i) (ΔP,+) is a commutative group. Its identity element is denoted by
−→
0 ; the

inverse of −→u ∈ ΔP is denoted by −−→u .6

(ii) −→· is an onto mapping (xi, xj) ∈ P2 �→ −−→
xixj ∈ ΔP: for each −→u ∈ ΔP, there

exists (xi, xj) ∈ P2 such that −→u =
−−→
xixj .

(iii) For every xi, xj , xk ∈ P,
−−→
xixj +

−−→
xjxk =

−−→
xixk.

(iv) For each xi ∈ P and −→u ∈ ΔP, there exists at most one xj ∈ P such that−−→
xixj = −→u . This xj , when it exists, is denoted by tr−→u (xi) (tr stands for
“translation”, borrowing the term from the field of vector spaces).

From these postulates, the following properties can be deduced:

−−→
xixj =

−→
0 iff xi = xj (2)

−
−−→
xixj =

−−→
xjxi (3)

if
−−→
x1x2 =

−−→
x3x4 then

−−→
x1x3 =

−−→
x2x4 (4)

for every xi, xj , x1, x2, x3, x4 ∈ P.
There are many ways of defining ΔP and the mapping −→· . They depend

partly upon the problem space P. For example:

– If P is an affine space of dimension n on R, ΔP can be the vector space
R

n associated with P:
−−→
xixj = (xj1 − xi1, x

j
2 − xi2, . . . , x

j
n − xin) and tr−→u is the

translation operator of vector −→u . This example explains the notations chosen
in this paper.

– More generally, if P is defined by attribute-value pairs, the problem of defining−−→
xixj can be reduced to the problem of defining the variation from xi to xj for
each attribute. This is considered in particular in d’Aquin et al. [4].

In the same way and with the same notations, a solution variation space
(ΔS,+,−→· ) can be defined.

4.2 Adaptation Knowledge Learning Expressed
in Terms of Variations

The seminal paper of Hanney and Keane [6] presents the main principles of
the AK learning issue. They are reformulated below, thanks to the notions of
variations introduced above.

6 (ΔP, +) being a commutative group means that ΔP is a set, that + is an associative
and commutative operation on ΔP, and that every −→u ∈ ΔP has an inverse element
−−→u (meaning −→u + (−−→u ) =

−→
0 ).
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From the case base, the multiset7

TS =
{{(−−→

xixj ,
−−→
yiyj

) ∣∣∣ (xi, yi), (xj , yj) ∈ CB, with xi �= xj
}}

is computed. This multiset is used in the training of a supervised learning process
(the inputs of the examples are the

−−→
xixj , the outputs are the

−−→
yiyj). The learned

model is used as adaptation knowledge.
Several studies have followed this scheme, and a few examples are given

below. In Craw et al. [3], a variety of learning techniques are used, in particular
decision tree induction and ensemble learning. In d’Aquin et al. [4], frequent
closed itemset extraction in used. The expert interpretation enables to produce
adaptation rules to be added to AK. In Jalali et al. [8], an ensemble approach pro-
vides adaptation rules for a nominal representation (feature-value pairs, where
values are categories).

An example of adaptation learning approach suited for discrete representa-
tions is as follows. First, a triple (−→u ,−→v , c) ∈ ΔP×ΔS×[0,∞[ such that −→u �= −→

0
can be seen as an adaptation rule (for (x, y, π), a penalized case and xt ∈ P):

if
−→
xxt = −→u then yt = tr−→v (y) is a plausible solution of xt, with penalty π + c

(recall that yt = tr−→v (y) iff
−→
yyt = −→v ). Among the (−→u ,−→v , c) ∈ ΔP ×ΔS × [0,∞[

(−→u �= −→
0 ), the ones that are selected are the ones which are the most supported

by the training set. More formally, let supp (−→u ,−→v ) (the support of the ordered
pair (−→u ,−→v )) be the multiplicity of (−→u ,−→v ) in TS. In other terms:

supp (−→u ,−→v ) =
∣∣∣
{

((xi, yi), (xj , yj)) ∈ CB2
∣∣∣
−−→
xixj = −→u ,

−−→
yiyj = −→v

}∣∣∣

Hence, the adaptation knowledge learning process consists in computing the pairs
(−→u ,−→v ) such that their support is above a given threshold τsupp. It is assumed
here that τsupp ≥ 2. The value of the support is used on the basis of the following
heuristics: the higher the support is, the less the application of the adaptation
rule adds uncertainty. Therefore, a value c is computed thanks to a decreasing
function f : N \ {0, 1} → R by c = f(supp (−→u ,−→v )). For our experiments, we
have chosen f(n) = 1/n. Finally, the rule (−→u ,−→v , c) is added to AK.

With this adaptation knowledge learning approach, it is noteworthy that
for each learned adaptation rule (−→u ,−→v , c) there is another learned adaptation

rule (−−→u ,−−→v , c). Indeed,
(−−→
xixj ,

−−→
yiyj

)
occurs in the multiset TS with the same

multiplicity as
(−−→
xjxi,

−−→
yjyi

)
.

7 A multiset is denoted with double braces; for example M = {{a, a, b, c, c, c}} contains
a with multiplicity 2, b with multiplicity 1 and c with multiplicity 3. Thus the
cardinality of M is |M | = 2 + 1 + 3 = 6.
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4.3 Variation-Based Analogies

Let us consider the relation on problems defined, for A,B,C,D ∈ P, as follows:

A : B :: C : D if
−−→
AB =

−−→
CD

It satisfies the postulates of analogy. An analogy on S can be defined likewise.
Therefore, using the problem variation space and the solution variation space,

an analogy on P and an analogy on S can be built, and thus, the approach to
CBR based on the following principle (called extrapolation in Lieber et al. [14]
and used in Lepage and Denoual [12] and Lepage and Lieber [13]) can be applied:

– Given a target problem xt, a triple ((x1, y1), (x2, y2), (x3, y3)) ∈ CB3 is

retrieved such that x1 : x2 :: x3 : xt in the problem space (i.e.,
−−→
x1x2 =

−−→
x3xt).

– Then, the analogical equation y1 : y2 :: y3 : y in the solution space is
solved, and the solution of this equation is given as a plausible solution to xt

(in the framework of the postulates given below, this solution, when it exists,

is unique, and verifies y = tr−→v (y3) with −→v =
−−→
y1y2).

4.4 Analogy-Based Variations

In the domain of strings, it is possible to define a vector corresponding to a ratio
as follows (using the notion of ratios introduced in Sect. 2.2):

−−→
AB = A : B.

However, as mentioned in Sect. 2.2, the definition of a ratio alone does not make
an analogy. In such a domain, we impose for (A,B,C,D) ∈ P4:

−−→
AB =

−−→
CD if A : B :: C : D, i.e., if A : B = C : D and A : C = B : D

In other words, in such a domain, we implement the extrapolation approach
mentioned at the end of Sect. 4.3 by restricting ourselves to the use of variations
such that both

−−→
AB =

−−→
CD and

−→
AC =

−−→
BD hold at the same time. This ensures

that the postulates of analogy are verified for the used variations.

5 CBR by Local Enrichment of the Case Base

The enrichment of the case base consists in adding to the original case base CB
some (penalized) cases inferred from CB. The inferences considered in this paper
consist in applying the learned adaptation rules (−→u ,−→v , c) ∈ AK. In theory, all
the penalized cases that can be so inferred can enrich CB: this is considered in
Sect. 5.1. However, this leads usually to a penalized case base that is too large. In
Sect. 5.2, a local enrichment is proposed that consists in adding to CB penalized
cases that are “around” the target problem.
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5.1 Theoretical View: Global Enrichment of CB

The principle of global enrichment of CB is simple: it consists in computing all
the penalized cases (x, y, π) that can be inferred from CB by application of one
or several adaptation rules, with the constraint π ≤ τpenalty, where τpenalty is a
given threshold.

The size of the enriched case base, PCB, can be estimated as follows. Let
p = |AK| and d =

⌊
τpenalty/min{c | (−→u ,−→v , c) ∈ AK}⌋. If no hypothetical case

(x, y) is generated twice in the process, then |PCB| = |CB| × pd+1−1
p−1 , assuming

p �= 1. Therefore, |PCB| / |CB| = O(pd). For example, using p = 10 adaptation
rules having the same cost c = 1, if τpenalty = 3, the size of PCB is about a
thousand times the size of CB. This illustrates the fact that this global enrichment
of the case base approach produces a case base whose size is, for most CBR
applications, too large, which motivates the local enrichment of the case base.

5.2 Practical View: Local Enrichment of CB

The principle of local enrichment is based first on the choice of seed cases, i.e.,
cases from CB that are chosen to produce penalized cases to be added to the
case base. If (xs, ys) is a seed case, then a penalized case (x, y, π) is produced by
a gradient descent starting from (xs, ys, 0), by decreasing dist(x, xt) + π, each
step corresponding to the application of an adaptation rule. The penalized case
(x, y, π) to be added to the case base thus constitutes a local optimum of the set
of cases generated from the seed case (xs, ys).

The selection of the set of seed cases SC can be done following several strate-
gies, such as the following ones:

– The simplest strategy consists in taking all the source cases: SC = CB. This
has the advantage of simplicity, but may lead to considerable growth of the
case base (the enriched case base size, |PCB|, will be between |CB| and 2|CB|).

– If the size of the case base is too large already, only a few additional cases
should be added and the following solutions can be proposed:

• Choose SC by a random sampling from CB;
• Choose SC as the k nearest neighbors of xt, e.g. according to dist.

6 Applications

In the remainder of the paper, we present two applications of local enrichment
of the case base during case-based reasoning. Both examples create strings in a
second domain (the solution space) that correspond to strings in a first domain
(the problem space). The first application is a theoretical example: the problem
space and the solution space are formal languages. The second application is
actual machine translation: the problem space and the solution space are actual
natural languages: French and English.
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6.1 Machine Translation of Formal Languages

The first example shows how local enrichment of the case base can be used to
translate from a regular language into a context-free language. The languages
we use are the prototypical examples of these families of formal languages,
i.e., the problem space and the solution space are P = {(ab)n | n ∈ N} and
S = {AnBn | n ∈ N}, respectively. Let us suppose that our case base con-
tains only the three smallest nonempty members of each of these languages:
CB = {(ab,AB), (abab,AABB), (ababab,AAABBB)}.

From such a case base, in the problem space, one variation with a support
greater than 1 is extracted. It corresponds to the ratio ab : abab = abab :
ababab.8 This variation in the problem space corresponds to a variation in the
solution space: AB : AABB = AABB : AAABBB. Of course, these variations
have their corresponding inverse variations in the problem and solution spaces.

An actual trace of the system is given in Fig. 1 for the translation of the
string (ab)6. We choose to select all cases in the case base as seed cases, i.e.,
SC = CB. The seed cases are sorted by distance to the target problem. Their LCS
distance to the target problem is given by δ in Fig. 1. Starting from the problems
in the seed cases, applying the variation has the effect of enriching the case base
with cases of the form ((ab)n, AnBn) from n = 4 to 6, one after another. This is
indeed an induction over n for (ab)n and AnBn simultaneously in both spaces.

During enrichment, the distance from the new source problems to the target
problem decreases down to 2. The distance of 0 is not mentioned, as it means
that the new source problem is indeed the target problem, for which a solution
has been found.

Such an example can be easily amended to translate from a regular language
into a context-sensitive language (like {AnBnCn | n ∈ N}), or a context-free
language into a context-sensitive language. Changing the direction of translation
is also possible: from context-free to regular, etc.

6.2 Machine Translation of Natural Languages

The second application deals with machine translation of natural languages. We
use French–English as the language pair and data from the Tatoeba Corpus9 as
our bilingual corpus. There are important remarks to make on this domain.

Nature of the Data: strings of characters. This implies again that variations are
defined as in Sect. 4.4. The case base consists of sentence pairs which are in a
translation relation. We retain sentences of less than 10 words in length and select
90 % of them for training and the other 10 % for testing. This makes 109,390
sentence pairs in total in the training set. The average length of a sentence
in French is 6.9 ± 1.8 words and 6.6 ± 1.6 in English. Such sentence pairs are
illustrated in Fig. 2. Notice that the sentences are lowercased and tokenized.
8 Note that this is the equality of two ratios. Of course, it is also an analogy by itself

(ab : abab :: abab : ababab), but this is not what is meant here.
9 https://tatoeba.org/ and http://www.manythings.org/anki/.

https://tatoeba.org/
http://www.manythings.org/anki/
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Fig. 1. Trace for the translation from a regular language into a context-free language.
The target problem is (ab)6. It is correctly translated into A6B6 after enrichment of the
case base. The problem space is on the left, the solution space in the middle. The case
base and its enrichment are shown on the right. The distance to the target problem
is denoted by δ. New source problems, solutions and cases are boldfaced; old ones are
grayed out.
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Size of the Case Base. For case-based reasoning, the case base here is quite large:
109,390 cases. However, in the field of machine translation, on the contrary, it
is considered rather small.

Nature of the Ratios: they are defined as in Sect. 2.2 (analogies on strings) as
we deal with strings. A ratio is a vector made of the difference between the
Parikh vectors of the two strings considered, plus an extra dimension with the
LCS distance between the two strings. Notice again that the equality between
ratios does not imply the existence of an analogy, contrary to arithmetic or
geometric analogies on numbers or tuples: dist(A,B) = dist(C,D) does not
imply dist(A,C) = dist(B,D). Also, conformity is not transitive, so it is not
an equivalence relation.

Nature of the Variations: Analogical Clusters. Because of the nature of the ratios
and the nature of conformity, variations are defined as sets of ratios in which any
pair of ratios is an analogy. We use the tools10 described in Fam and Lepage [5] to
extract all analogical clusters containing at least 2 ratios from the case base in the
problem and the solution spaces. As a note, the use a more semantically justified
distance, instead of the purely formal LCS distance, is of course worth exploring:
a distance associated with the cosine similarity of distributional semantics can
produce semantically justified analogies (Lepage [11]) and could hence allow to
produce semantic variations.

Number of Variations: It is rather large: almost 8 million analogical clusters were
extracted in French, more than half a million in English. The extraction of such
variations from an actual corpus is time-consuming. For efficiency, we retain only
the first 3,000 largest analogical clusters in number of ratios. Three examples of
analogical clusters are given in Fig. 3. Typically, variations reflect grammatical
oppositions. In the examples of Fig. 3, affirmative/negative, masculine/feminine
and insertion of the adverb just.

As an example, the translation process of the tokenized sentence vous êtes
vraiment trop tatillon . from French into English is given in Fig. 4. The seed
problems are the 5 most similar French sentences in the case base. The process

Fig. 2. French and English example sentences, i.e., problems and solutions, in the case
base for case-based machine translation

10 https://lepage-lab.ips.waseda.ac.jp/ > Kakenhi 15K00317 > Tools.

https://lepage-lab.ips.waseda.ac.jp/
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Fig. 3. Three analogical clusters which stand for variations in the solution space

takes three steps corresponding to each block of sentences in Fig. 4. The distance
to the target problem is given on the left. Notice the infelicitous enrichment of
the case base with an invalid sentence: you really not ’re finicky .

An example of a variation applied in the problem and solution spaces during
the above translation process is shown in Fig. 5. It corresponds to a variation
applied on the fourth seed case (boldfaced) in Fig. 4. As a result, the case base
is enriched with the first case marked as a new case in the above table (δ = 4).11

Fig. 4. Translation process of a French sentence into English

The standard metric BLEU (Papineni et al. [15]) is used for the evaluation
of the accuracy of a machine translation output against a given reference set.
BLEU scores range from 0 to 1; the higher, the better. The system described

11 Remember that LCS distance is used: dist(très, trop) = 4 (two deletions and two
insertions), not 2 (two substitutions) as would be the case with Levenshtein distance.
.
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Fig. 5. Variation in the problem and solution spaces resulting in the enrichment of the
case base

above achieves a BLEU score of 0.51 in translating the 10,998 sentences in the
test set. Although the differences in scores are statistically significant, this is a
reasonable score when compared with the scores of two much more elaborated
systems, a neural system (OpenNMT12), and a statistical system (GIZA++,
Moses, KenLM, MERT13), which achieve 0.60 and 0.65 respectively, on exactly
the same data.

7 Conclusion, Discussion and Related Work

In this paper, we proposed a new approach to case-based reasoning which con-
sists in enriching the case base while performing reasoning. Enrichment results
from the application of adaptation rules to seed cases, i.e., cases taken from the
case base as starting points. New cases are created, which get closer and closer
to the target problem, but they get penalties characteristic of the uncertainty
brought by the application of the adaptation rules. Adaptation rules are given
by variations in the problem space and variations in the solution space. The
last variations should approach the target problem itself, so that corresponding
variations in the solution space will produce (hypothetical) solutions to the tar-
get problem. We implemented such a new approach and illustrated it with two
applications which shared the fact that the solution and problem spaces were
spaces of strings of characters: formal and natural languages.

The notion of penalized case is similar to the notion of ghost case introduced
by D. Leake and B. Schack [9], a ghost case being a hypothetical case generated
by adaptation. The main difference between these notions is the use of penalty
values when reasoning with penalized cases. Although the aim of both works
are quite opposite (case base enrichment versus case base contraction), they use
these similar notions in similar ways: in [9], it is argued that ghost cases are used
to compensate for the lack of expressiveness of the case base and this argument
can be reused in the current work.

The general framework can be adapted to various scenarios. Several points
can be adapted to the specificity of the domains at hand. For instance, the
selection of the seed cases can be performed in various ways suggested in Sect. 5.2,
at random or according to some selection method specific to the domain.

Our approach to case-based reasoning can be seen as a variant of gradient
descent or hill climbing. Similarly, our approach exhibits the risk of reaching
12 http://opennmt.net.
13 http://www.statmt.org.

http://opennmt.net
http://www.statmt.org
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local minima (or maxima) instead of global minima (or maxima). Here, the
landscape is shaped by the variations observed between the cases present in the
initial case base. This issue of local optimality can be partially addressed by
considering several branches generated from each seed case: instead of a single
path approaching the target problem, a tree can be generated rooted at this seed
case, whose breadth should be controlled to avoid an explosion of the enriched
case base size. This way, several new cases can be generated from a single seed
case. The precise study of this idea remains to be done.

From a theoretical viewpoint, the approach is presented in a very constrained
framework, in particular for the definition of variations. This makes the expla-
nations simpler, but, in particular for the considered applications in machine
translation, some of these constraints do not hold. Thus, a theoretical study on
less constrained variation spaces must be carried on.
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2 IRIT, Université de Toulouse, Toulouse, France

Abstract. An analogical proportion is a quaternary relation that is to
be read “a is to b as c is to d”, verifying some symmetry and permuta-
tion properties. As can be seen, it involves a pair of pairs. Such a relation
is at the basis of an approach to case-based reasoning called analogical
extrapolation, which consists in retrieving three cases forming an analog-
ical proportion with the target problem in the problem space and then
in finding a solution to this problem by solving an analogical equation
in the solution space. This paper studies how the notion of competence
of pairs of source cases can be estimated and used in order to improve
extrapolation. A preprocessing of the case base associates to each case
pair a competence given by two scores: the support and the confidence
of the case pair, computed on the basis of other case pairs forming an
analogical proportion with it. An evaluation in a Boolean setting shows
that using case pair competences improves significantly the result of the
analogical extrapolation process.

Keywords: Analogical proportion · Analogical inference ·
Case-based reasoning · Competence · Extrapolation

1 Introduction

In a recent paper [16], the authors have advocated that reasoning about cases
(or case-based reasoning, CBR [20,21]) may not be only based on similarity-
based reasoning, looking for the nearest solved cases, but may also use analogical
proportions for extrapolation purposes. Extrapolation is based on analogical
inference, that uses triples of cases (a, b, c) for building the solution of a fourth
(new) case d through an adaptation mechanism. An illustration of this is given
in [2] where in three distinct situations (problems) the recommended actions
(solutions) are respectively to (a) serve tea without milk without sugar, (b) serve
tea with milk without sugar, (c) serve tea without milk with sugar, while in a
fourth situation (d) that makes an analogical proportion with the three others,
the action to do would be “serve tea with milk and with sugar”.

Usually, several triples (a, b, c) in the case base can be used for predicting the
solution of the fourth case d and predictions may diverge. In fact, it has been
c© Springer Nature Switzerland AG 2019
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established for Boolean features that such an inference makes no error (thus all
the triples agree on the same prediction) if and only if the function that associates
the solution to the description of a case is an affine Boolean function [6]. This
is why, when the function is not assumed to be affine, a voting procedure is
organized between the predicting triples.

Such a procedure is quite brute-force, and did not take really lesson from
the case base. Indeed, it may happen that some triples in the case base fail to
predict the correct answer of another case of the case base. In this paper, we
propose to take into account this kind of information for restricting the number
of triples used for making a prediction in a meaningful way.

The paper is organized as follows. The next section provides the neces-
sary background on analogical proportions and the notations about CBR used
throughout the paper. Section 3 discusses how to restrict the set of triples allowed
to participate to a given prediction. Section 4 reports experimentations showing
the gain in accuracy of the new inference procedure. Section 5 discusses related
work, before concluding.

2 Preliminaries

This section presents first the formal framework of this study: the nominal repre-
sentations and, more specifically, the representation by tuples of Boolean values.
Then, it recalls some notions and gives some notations about analogical propor-
tions and about case-based reasoning.

2.1 Nominal Representations and Boolean Setting

Feature-value representations are often used in CBR (see, e.g., [14]). A nominal
representation is a feature-value representation where the range of each feature
is finite (and, typically, small). More formally, let U1, U2, . . . , Up be p finite
sets and U = U1 × U2 × . . . × Up. A feature on U is one of the p projections
(x1, x2, . . . , xp) ∈ U �→ xi ∈ Ui (i ∈ {1, 2, . . . , p}).

A Boolean representation is a nominal representation where U1 = U2 =
. . . = Up = B, where B = {0, 1} is the set of Boolean values: the value “false” is
assimilated to the integer 0, and “true” is assimilated to 1. The Boolean operators

¬, ∧ and ∨ are defined, for a, b ∈ B, by ¬a = 1 − a, a ∧ b =

{
1 if a = b = 1
0 otherwise

,

a∨b = ¬(¬a∧¬b), and a ≡ b = (¬a∨b)∧ (¬b∨a). An element of Bp is denoted
without commas and parentheses, e.g., 01101 stands for (0, 1, 1, 0, 1).

2.2 Analogical Proportions

Given a set U , an analogical proportion on U is a quaternary relation on U ,
denoted by a: b:: c: d for (a, b, c, d) ∈ U4, and satisfying the following postulates
(for a, b, c, d ∈ U):
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(Reflexivity) a: b:: a: b.
(Symmetry) If a: b:: c: d then c: d:: a: b.
(Exchange of the means) If a: b:: c: d then a: c:: b: d.

In the Boolean case, an analogical proportion is a quaternary connective that
can be defined as [19]:

a: b:: c: d def= (a ≡ b ∧ c ≡ d) ∨ (a ≡ c ∧ b ≡ d)

This expression can be equivalently written [17,19]:

a: b:: c: d = (¬a ∧ b ≡ ¬c ∧ d) ∧ (¬b ∧ a ≡ ¬d ∧ c)

This makes clear that “a is to b as c is to d” is understood as “a differs from
b as c differs from d and b differs from a as d differs from c”. Therefore, the set of
(a, b, c, d) ∈ B

4 such that a: b:: c: d is {0000, 0011, 0101, 1111, 1100, 1010}. In the
nominal representation, the 4-tuples (a, b, c, d) in analogical proportion have one
of the three following forms [4]: (s, s, s, s), (s, t, s, t) and (s, s, t, t) for s, t ∈ Ui.
Note that it amounts to make the following expression true: ((a = b) ∧ (c =
d)) ∨ ((a = c) ∧ (b = d)), which generalizes the Boolean case.

Given a finite U = U1 ×U2 × . . .×Up the following analogical proportion can
be defined:

a: b:: c: d def= a1: b1:: c1: d1 ∧ a2: b2:: c2: d2 ∧ . . . ∧ ap: bp:: cp: dp

Given a, b, c ∈ U , solving the analogical equation a: b:: c: y aims at finding
the y ∈ U such that this relation holds. In a nominal representation, such an
equation has 0 or 1 solution. More precisely:

– If a = b, the solution is y = c.
– If a = c, the solution is y = b.
– Otherwise, a: b:: c: y has no solution.

2.3 Notations and Assumptions on CBR

Let P and S be two sets. A problem x is by definition an element of P and a
solution y, an element of S. If a ∈ P ×S, then xa and ya denote its problem and
solution parts: a = (xa, ya). Let � be a relation on P × S. For (x, y) ∈ P × S,
x � y is read “x has for solution y” or “y solves x”. A case is a pair (x, y)
such that x � y. The aim of a CBR system is to solve problems, i.e., it should
approximate the relation �: given xtgt ∈ P (the target problem), it aims at
proposing ytgt ∈ S such that it is plausible that xtgt � ytgt. For this purpose,
a finite set of cases, called the case base and denoted by CB, is used. An element
of CB is called a source case. Besides the case base, other knowledge containers
are often used [20], but they are not considered in this paper.

The classical way of defining a CBR process consists in selecting a set of k
source cases related to xtgt (retrieve phase) and solve xtgt with the help of the
retrieved cases (reuse phase). Other steps are considered in the classical 4 Rs
model [1], but not in this paper. In [16], three approaches are presented for
k ∈ {1, 2, 3}. The approach for k = 3, called analogical extrapolation, is recalled
in the next section.
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3 Improving Extrapolation Thanks to Case Pair
Competence

This section presents the proposed approach. First, it is shown how a notion of
competence associated to case pairs can be used to improve extrapolation, an
approach to CBR based on analogical proportions. Then, this notion of compe-
tence is formally defined. Finally, strategies for exploiting case pair competence
are described.

3.1 Principles

The analogical proportion-based inference principle [23] can be stated as follows
(using the notations on CBR introduced above; a = (xa, ya), b = (xb, yb), c =
(xc, yc) and d = (xd, yd) are four cases):

xa: xb:: xc: xd holds
ya: yb:: yc: yd holds

In order to solve a new problem xtgt, this leads to look for all triples of
source cases (a, b, c) such that xa: xb:: xc: xtgt holds and such that the equation
ya: yb:: yc: y is solvable. Let T be the set of all these triples. Then the implemen-
tation of this inference pattern uses a vote among all triples of T and chooses
the solution y found for the largest number of triples. This is the principle called
analogical extrapolation (or, simply, extrapolation) in [16].

In the following, we assume for simplicity that all the features are nominal
(e.g., Boolean). When there is only one feature for the solutions, the problem-
solving task is a classification task (finding the class ytgt ∈ S to be associated
with xtgt). When there are several features, one can handle them one by one
only if they are logically independent, otherwise the vote should be organized
between the whole vectors describing the different solutions. In the following, we
assume independence, and we consider one of the components yi of a solution y
(thus, the index i is useless: yi is denoted by y).

Still, one may wonder if all triples of T involved in a vote for making a
particular prediction have the same legitimacy. Indeed, one may take lesson
from T by observing that if one wants to predict a solution for one problem
taken from T from the rest of the examples, there may exist triples that make
a wrong prediction, as suggested in [18]. The situation may be better analyzed
in terms of pairs, as shown now.

Indeed look at Table 1. It exhibits three Boolean pairs such that a: b:: c: d and
a′: b′:: c: d hold in all columns, except the last one (column ‘sol’, as solution).
Note that the ‘D’ columns (first two columns, ‘D’ as in disagreement) show the
possible patterns expressing that a and b differ in the same way as c and d and
as a′ and b′.1 The ‘A’ columns (as in agreement) show all the ways a and b agree,
1 D(0/1) indicates the disagreement between a and b (respectively between c and d

and between a′ and b′) when the former is equal to 0 and the latter is equal to 1.
D(1/0) is the reverse disagreement.
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Table 1. Double pairing of pairs (a, b), (c, d) and (a′, b′): Analogy breaking on sol.

D(0/1) D(1/0) A(0, 0, 0) A(0, 0, 1) A(0, 1, 0) A(0, 1, 1) A(1, 0, 0) A(1, 0, 1) A(1, 1, 0) A(1, 1,1) sol

a 0 1 0 0 0 0 1 1 1 1 0

b 1 0 0 0 0 0 1 1 1 1 1

c 0 1 0 0 1 1 0 0 1 1 0

d 1 0 0 0 1 1 0 0 1 1 1

a′ 0 1 0 1 0 1 0 1 0 1 0

b′ 1 0 0 1 0 1 0 1 0 1 0

while c and d agree, and a′ and b′ also agree, maybe in different manners.2 If
we take out the value of d in the column ‘sol’ and we try to predict it from
the other values from this column, the equation a: b:: c: y yields the good result
(i.e., 0: 1:: 0: y gives y = 1, i.e., the value of d in the table, column ‘sol’), while
the equation a′: b′:: c: y gives a wrong result (i.e., 0: 0:: 0: y gives y = 0, whereas
d = 1 in the table, column ‘sol’).

So, for each pair, like (a, b) or (a′, b′) in the table, one may count the numbers
of times where the pairs leads to a correct and to a wrong prediction for an
example taken from the case base. This provides a basis for favoring triples
containing pairs leading often to good predictions, in the voting procedure.

The above idea of looking at pairs of cases can be related to the reading of a
pair of cases (a, b) as a potential rule expressing either that the change from xa

to xb explains the change from ya to yb, whatever the context (encoded by the
features where the two examples agree), or that the change from xa to xb does
not modify the solution (if ya = yb). This view of pairs as rules has already been
proposed in CBR for finding adaptation rules [7,8,11] and later in an analogical
proportion-based inference perspective in [3,5].

So, roughly speaking, we are interested in a preprocessing process, in order
to discover analogy breakings in T . By an analogy breaking, we mean the exis-
tence of a quadruple of cases (a, b, c, d) such that (i) xa: xb:: xc: xd holds, while
(ii) ya: yb:: yc: yd does not hold. If some analogy breaking(s) can be found in T ,
this means that the partially unknown Boolean function associating to a prob-
lem a solution (or a class) cannot be affine [6]. In such a situation, analogical
inference cannot be blindly applied with any triple, and we should take into
account the analogy breaking(s), by introducing some further restrictions in the
choice of the suitable triples.

More precisely, the idea is to make a preliminary preprocessing of the pairs
(a, b) ∈ CB2, by associating with each of them a competence. The intuition behind
this notion is that the more a case pair is competent for solving problems, the
more it can play a role during the voting and selection process. To assess the
competence of a pair (a, b) ∈ CB2, it has to be compared to other pairs (c, d) ∈ CB2

such that the triple (a, b, c) can be used to solve the problem xd by extrapolation.
When the outcome y of the extrapolation is equal to yd, then it increases the

2 In Table 1, A(u, v, w) means that a = b = u, c = d = v and a′ = b′ = w.
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competence of the case pair (a, b). Otherwise, it lowers it. The definition of
competence is detailed in the next section.

The case pair competence can be used at problem-solving time according to
different strategies. Section 3.3 presents some of these strategies that are exper-
imentally evaluated in a Boolean setting in Sect. 4.

3.2 Case Pair Competence: Definition

Let (a, b) be a pair of source cases: a = (xa, ya) ∈ CB and b = (xb, yb) ∈ CB.
The competence of the pair (a, b) is defined by two scores: the support and the
confidence of (a, b), defined below following the principle presented above.

First, let SolvableBy(a, b) be the set of source case pairs (c, d) �= (a, b) such
that the triple (a, b, c) can be used to solve xd by extrapolation: xa: xb:: xc: xd

and the equation ya: yb:: yc: y is solvable (and so, its solution y is unique in a
nominal representation). Formally:

SolvableBy(a, b) =
{

(c, d) ∈ CB2
(c, d) �= (a, b), xa: xb:: xc: xd

and the equation ya: yb:: yc: y is solvable

}

In other words, SolvableBy(a, b) is the set of source case pairs such that c
can be adapted into a solution of xd using (a, b) as an adaptation rule (without
considering the trivial case when (a, b) = (c, d)). The support of (a, b), supp(a, b),
is simply the number of such pairs:

supp(a, b) = |SolvableBy(a, b)|

Among the (c, d) ∈ SolvableBy(a, b) some leads to a correct solution (y = yd)
and some does not. The formers constitute the following set:

CorrectlySolvableBy(a, b) =
{
(c, d) ∈ SolvableBy(a, b) | ya: yb:: yc: yd

}
For example, if supp(a, b) = 6 and |CorrectlySolvableBy(a, b)| = 4, it

means that (a, b), considered as a rule, has been tested 6 times on the case
base and has given 4 correct answers. Thus, the proportion of correct answers is
4/6 = 2/3. This proportion is called the confidence of (a, b), denote by conf(a, b).
A special case has to be considered when supp(a, b) = 0. This means that the
“adaptation rule” (a, b) cannot be tested on the case base. In such a situation,
the value of the confidence is set to 0.5 (better than a confidence of, say, 3/7 for
which the rule fails more often then it succeeds and worse then a confidence of
4/7 for which it succeeds more often then in fails). To summarize, the confidence
of a pair (a, b) is:

conf(a, b) =

⎧⎨
⎩

|CorrectlySolvableBy(a, b)|
supp(a, b)

if supp(a, b) �= 0

0.5 otherwise
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3.3 Using Case Pair Competence for Selection and Vote Strategies

Given a target problem xtgt, extrapolation consists in retrieving triples
(a, b, c) ∈ CB3 such that xa: xb:: xc: xtgt and in adapting this triple by solving
the equation ya: yb:: yc: y for each such triples (the triples (a, b, c) for which the
equation has no solution are not considered). So, the result of extrapolation is
the set R of ((a, b, c), y) ∈ CB3 × S, y being the result of the extrapolation of
(a, b, c) in order to solve xtgt. Now, the question is how to consider all these solu-
tions y to propose a sole solution ytgt of xtgt. Four strategies for that purpose
are detailed below.

The first one, called withoutComp, just makes a vote on all values of y,
regardless of the competences. The proposed solution is thus

ytgt = argmax
ŷ

|{((a, b, c), y) ∈ R | y = ŷ}|

This is the strategy used in [16] and the baseline for the evaluation.
The second strategy, called allConf, considers all the ((a, b, c), y) ∈ R and

makes a vote weighted by the confidence:

ytgt = argmax
ŷ

∑
((a,b,c),y)∈R,y=ŷ

conf(a, b)

The third strategy, called topConf, considers only the ((a, b, c), y) ∈ R with
the highest confidence, then makes a vote among them. Formally:

with confmax = max {conf(a, b) | ((a, b, c), y) ∈ R}
and R∗ = {((a, b, c), y) ∈ R | conf(a, b) = confmax}

ytgt = argmax
ŷ

|{((a, b, c), y) ∈ R∗ | y = ŷ}| (1)

The fourth strategy, called topConfSupp, is similar to the previous one,
except that it uses both the confidence and the support to make a preference.
More precisely, it is based on the preference relation � on case pairs defined
below (for (a, b), (a′, b′) ∈ CB2):

(a, b) � (a′, b′) if
conf(a, b) > conf(a′, b′) or
(conf(a, b) = conf(a′, b′) and supp(a, b) ≥ supp(a′, b′))

In other words, confidence is the primary criterion, but in case of equality, the
higher the support is, the more competent the case pair (a, b) is considered. For
instance, if conf(a, b) = conf(a′, b′) = 0.75, supp(a, b) = 8 and supp(a′, b′) = 4,
then (a, b) gives the good answer in 6 situations over 8, whereas (a′, b′) gives the
good answer in 3 situations over 4. In this example, (a, b) is strictly preferred to
(a′, b′) —(a, b) 
 (a′, b′). Now, let R∗ be the set of ((a, b, c), y) ∈ R such that
(a, b) is maximal for �. Then, ytgt results from a vote, as described above in
Eq. (1).

The interest of considering a triple (a, b, c) in the voting procedure at the end
of the inference process is evaluated in terms of the competence of the pair (a, b).
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Since analogical proportions are stable under central permutation, one might
think of considering the pair (a, c) as well. Preliminary investigations using dif-
ferent combinations (minimum, maximum, sum or product of the confidences of
(a, b) and (a, c)) have not shown any clear improvement with respect to the sim-
ple use of the competence of (a, b); it is why we have restricted ourselves to this
latter type of competence assessment. However, these preliminary investigations
were only based on the allConf strategy, so it deserves to be reconsidered: this
constitutes a future work.

4 Evaluation

The objective of the evaluation is to study the impact of the strategies for case
pair selection and vote presented before on various types of Boolean functions.

4.1 Experiment Setting

In the experiment, P = B
8 and S = B. � is assumed to be functional: � = f,

meaning that y is a solution to x if y = f(x).
The function f is randomly generated using the following generators that

are based on two normal forms, with the purpose of having various types of
functions:

DNF f is generated in a disjunctive normal form, i.e., f(x) is a disjunction of
ndisj conjunctions of literals, for example f(x) = (x1 ∧ ¬x7) ∨ (¬x3 ∧ x7 ∧
x8) ∨ x4. The value of ndisj is randomly chosen uniformly in {3, 4, 5}. Each
conjunction is generated on the basis of two parameters, p+ > 0 and p− > 0,
with p++p− < 1: each variable xi occurs in the disjunct in a positive (resp.
negative) literal with a probability p+ (resp., p−). In the experiment, the
values p+ = p− = 0.1 were chosen.3

Pol f is generated in polynomial normal form: it is the same as DNF, except that
the disjunctions (∨) are replaced with exclusive or’s (⊕). As only positive
literals occur in the polynomial normal form, the parameter p− = 0.

The case base CB is generated randomly, with the values for its size:
|CB| ∈ {32, 64, 96, 128}, i.e. |CB| is between 1

8 and 1
2 of |P| = 28 = 256. Each

source case (x, y) is generated as follows: x is randomly chosen in P with a
uniform distribution and y = f(x).
3 A generator CNF, generating formulas in CNF (conjunctive normal form: conjunc-

tion of disjunctions of literals) could also have been considered. However, this does
not add anything new since it is dual with the DNF generator for two reasons. First,
the drawn inferences are code-independent, meaning that replacing the attributes
by their negations does not change the result of the inference, in particular, for
a, b, c, d ∈ B, a: b:: c: d iff ¬a: ¬b:: ¬c: ¬d. Second, if f is obtained from the DNF gen-
erator then ¬f can be put easily in a function g written in CNF using De Morgan
laws, and the distribution of g obtained this way would be the same as the distribu-
tion from a CNF generator with the same parameters.
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Fig. 1. Error rate function of |CB|, for each generator (DNF at the left, Pol at the right).

Let #tgt pb be the number of target problems posed to the system, #ans be
the number of (correct or incorrect) answers (#tgt pb− #ans is the number of
target problems for which the system fails to propose a solution), and #corr ans
be the number of correct answers. For each selection and vote strategy, the
following scores are computed:

The error rate %err is the average of
(

1 − #corr ans

#ans

)
× 100 ∈ [0, 100].

The answer rate %ans is the average of the ratios
#ans

#tgt pb
×100 ∈ [0, 100].

If the system always gives an answer (correct or not) then %ans= 100.

The average is computed on 1 million problem solving for each function
generator, requiring the generation of 1420 f for each of them. The average com-
puting time of a CBR session (retrieval and adaptation for solving one problem)
is about 2ms on a current standard laptop. From a complexity point of view,
using a hashtable representing the differences within case pairs in CB allows to
reduce the complexity of the retrieval step to O(|CB|2) in the worst case (and
frequently closer to O(|CB|) in practice), in addition to an offline part in O(|CB|2)
to generate the hashtable [16].

For the sake of reproducibility, the code for this experiment is available
at https://tinyurl.com/analogyCBRTests.

4.2 Results

Table 2 presents the error rate and the answer rate for the different case selection
and vote strategies for the two different generators with an application on the
different case base sizes. Error rate curves are given in Fig. 1.

Given a function generator and a case base size, the answer rate is the same
for the four strategies because all case pair selection strategies provide results

https://tinyurl.com/analogyCBRTests
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Table 2. %err and %ans for the different selection and vote strategies for the different
generators.

|CB| = 32 |CB| = 64 |CB| = 96 |CB| = 128

%err %ans %err %ans %err %ans %err %ans

DNF withoutComp 15.1 97.5 10.1 100.0 8.4 100.0 7.7 100.0

allConf 15.1 8.8 7.0 6.3

topConf 15.5 8.0 4.9 3.1

topConfSupp 16.4 6.9 3.3 1.7

POL withoutComp 20.6 95.8 13.7 100.0 10.5 100.0 8.8 100.0

allConf 20.1 10.8 6.9 4.9

topConf 20.1 8.2 3.1 1.2

topConfSupp 21.5 6.3 1.6 0.5

for a problem that could be solved, without using competences, by withoutComp
(i.e. if a triple was found to solve a case xtgt by the withoutComp strategy, this
triple is considered by the three case pair selection strategies and either it will
participate in solving xtgt or it exists another “better” triple according to the
selection procedure. The answer rate is high for all the methods: over 96% for
|CB| = 32 and 100% for |CB| ≥ 64.

Except for |CB| = 32, which seems to be a too small training data set for
computing competences, the error rate shows that the hypothesis of pair selection
improves the precision. For both generators, all pair selection strategies give
better results than the baseline (withoutComp). However, the improvement is
rather different depending of the selection strategy: the more the selection of
pairs is constrained, the more the error rate decreases. allConf decreases the
error rate a little bit, topConf decreases the error rate a little bit more, and the
best results are given by topConfSupp.

The benefit of all strategies is related to the case base size: the more the
case base contains cases for competence acquisition, the better the results are.
Comparing to the baseline, the benefit of the best selection strategy topConfSupp
is noteworthy. Even if the error rate is already rather good with the baseline, and
especially with a 100% answer rate, topConfSupp improves it, making it close
to a 100% of correct answers. For DNF, according to the size of the case base (64,
96 and 128), the error rate %errdecreases from 10.1 to 6.9 (decreasing of 32%),
from 8.4 to 3.3 (decreasing of 61%) and from 7.7 to 1.7 (decreasing of 78%). For
Pol, the results are even more impressive: according to the size of the case base
(64, 96 and 128), the error rate %errdecreases from 13.7 to 6.3 (decreasing of
54%), from 10.5 to 1.6 (decreasing of 85%), and from 8.8 to 0.5 (decreasing of
94%).

So, these first experimental results show that from a given case base size, the
topConfSupp strategy overcomes all others and decreases drastically the error
rate, while using less triples.
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5 Discussion and Related Work

In this section, the approach presented in this paper is compared to related work
in CBR according to two viewpoints: the notion of competence in CBR and the
adaptation knowledge learning approaches.

Competence in CBR. In [16], three types of CBR processes are distinguished, in
particular extrapolation, that retrieves and reuses cases by triples and approx-
imation, that retrieves and reuses cases by singletons. It is argued here that
previous researches on competence are related to approximation, whereas the
work presented in this paper considers a notion of competence related to extrap-
olation.

The notion of competence in CBR is used in general for the purpose of case
base maintenance, either for deleting the least competent cases [22] or adding
the most competent ones [24]. In these previous studies, competence is assessed
to individual source cases, in relation to other cases from the case base. In par-
ticular, in the seminal paper [22], the competence of cases is assessed by putting
source cases into categories (from pivotal cases who are the most competent ones
to auxiliary cases), these categories being defined with the help of the binary
relation of adaptability between a case and a problem. Thus, this notion of
competence is linked with the approximation process (considering individually
source cases).

By contrast, the current paper is concerned by competence related to the
extrapolation process: cases are retrieved by triples. The competence of a triple
(a, b, c) ∈ CB3 is reduced to the competence of a pair (a, b) ∈ CB2, which is related
to the set of the other pairs (c, d) ∈ CB2. A common point of these two notions
of competence is that the competence of an object (an object being a case for
approximation and a case pair for extrapolation) is not an intrinsic property of
the object, but is related to other objects (from CB or CB2).

A minor difference between previous studies on competence and the one
defined in this paper is related to the use of competence: case base maintenance
for the formers and problem-solving for the latter.

Relations with adaptation knowledge learning. The work presented in this paper
has strong links with the issue of adaptation knowledge learning (AKL). The
adaptation considered here is the one that follows the retrieval of a sole case (i.e.,
it is a single case adaptation). Such an adaptation has profit of the adaptation
knowledge AK, that can be informally defined by:

AK = “How does the solution changes when the problem changes.”

The approach generally applied for AKL is modelled in the seminal work of
Hanney and Keane [11]. It uses the case base for learning adaptation knowledge
according to the following principle. A set TS of source case pairs (a, b), with a �=
b, is built, either by considering all the distinct pairs from CB or by considering
only the pairs (a, b) where a and b are judged as enough similar, according to
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some criterion. Then, TS is used as training set of a supervised learning process:
for each pair (a, b) the input of an example is the pair (xa, xb) and its output
is the pair (ya, yb). The supervised learning process provides a model of this
knowledge AK, used by the adaptation process.

Several works are based on this general scheme. In [13], AK consists in the
representation of “adaptation cases”. In [7], different techniques are used, in
particular, decision tree induction and ensemble learning techniques. In [8] the
frequent closed itemset extraction is used. The expert interpretation following
this extraction produces adaptation rules to be added to AK. In [10], similar
techniques as in [8] are used (formal concept analysis and frequent closed itemset
extraction are similar data-mining techniques), but, in this work, negative cases
(i.e., pairs (x, y) ∈ P×S such that y is not a correct solution of x) are used, which
improves significantly the results of the learning process. In [12], an ensemble
approach provides adaptation rules with categorical features.

The work presented in this paper could also be considered as an AKL app-
roach. In fact, in this paper, the term of adaptation rule for considering a case
pair (a, b) has been used. Let us make this idea more accurate. Let ∼ be the
relation defined, for (a, b) and (a′, b′), two case pairs, by:

(a, b) ∼ (a′, b′) if xa: xb:: xa
′
: xb

′
and ya: yb:: ya

′
: yb

′

For analogical proportions on nominal representations defined in Sect. 2.2, ∼ is
an equivalence relation.4 Thus, solving a problem xtgt by extrapolation from
a triple (a, b, c) ∈ CB3 or from a triple (a′, b′, c) ∈ CB (with the same c) such
that (a, b) ∼ (a′, b′) will give the same result: extrapolation is independent from
the choice of a representative of the equivalent class of (a, b) for ∼. Such an
equivalence class C� can be used as an adaptation rule (where c is the retrieved
case and xtgt is the problem to be solved):

with (a, b) arbitrarily chosen in C�

if xa: xb:: xc: xtgt and ya: yb:: yc: y has a solution
then this solution is a plausible solution to xtgt

Thus, the set of equivalent classes of the restriction of ∼ to CB2 gives a set of
candidate adaptation rules, but all these rules are not equivalently interesting:
some gives more plausible results than the other ones. So, a criterion has to be
defined for making a preference between these rules and, if it is decided to apply
all of them, to do so by making a weighted vote (the more an adaptation rule is
preferred, the higher its weight in the vote should be).

A simple way of doing this (used, e.g., in [8]) consists in using the cardi-
nality of C�. This can be related to the notion of competence of a case pair: if
(a, b) ∈ C� then |C�| = supp(a, b)×conf(a, b). One limitation of this approach is

4 Reflexivity and symmetry are direct consequences of the postulates with the same
names. By contrast, there exist analogical proportions for which transitivity does
not hold [15].
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that it counts only the examples (supporting the rule), not the counterexamples
(penalizing the rule). By contrast, the approach presented in this paper takes
into account counterexamples. For example, if conf(a, b) = 1/3, then, for each
example of the rule, there are two counterexamples, so, even if supp(a, b) is large,
the rule associated to (a, b) is, at best, questionable.

Another difference with the work of [8] is that, in [8], when several case pairs
have the same variations only on a subset of the features, they are still used to
build an adaptation rule. For example, if (a, b) and (a′, b′) are two source case
pairs such that for most attributes i, xai : x

b
i :: x

a′
i : xb

′
i , the rules built on these

common attributes are considered, neglecting the other attributes. In a formal
framework in which analogies are rare (for example, when there are features
with real number values), it could be justified to replace the exact analogical
proportion with a gradual analogical proportion [9] in the approach described in
this paper. Studying it constitutes a potential future work.

This discussion shows how some ideas related to AKL from the case base can
be easily reformulated in the framework of analogical proportions: the links so
established between these two fields is therefore potentially fruitful.

6 Conclusion

Classical case-based reasoning relies on the individual similarities of the problem
at hand with each already solved problem that is known. We have shown that
it may be also of interest to consider triples of cases (a, b, c) in order to equalize
the change from a to b with the change from c to the problem to be solved
with its tentative solution. This is the basis of analogical extrapolation based on
analogical proportions. Still it has been observed that some triples may lead to
wrong inferences.

In this paper, we have proposed to discriminate triples according to an eval-
uation of the “competence” of the pairs involved in the triples. Indeed an ana-
logical proportion “a is to b as c is to d” can be viewed as establishing a parallel
between two pairs. The differences between the components of a pair of problems
are naturally related to the differences between solutions, but this relation may
depend on the context expressed by the component values that do not change.
We have shown that it was possible, at least to some extent, to evaluate the
competence of pairs for selecting “good” triples and improving analogical infer-
ence results. This contributes to confirm the interest of analogical extrapolation
for case-based reasoning.

Several future works follow these studies.
The first one has been mentioned at the end of Sect. 3. It consists, when

choosing a triple (a, b, c), in considering not only the competence of the pair
(a, b) but also the competence of the pair (a, c). Preliminary studies with the
strategy allConf where carried out that does not give significant changes in the
result. However, this may be different for the other strategies, and this remains
to be studied.

Another future work will be to transfer contributions from the adaptation
knowledge learning field to improve furthermore the performance of analogical
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extrapolation (cf. Section 5). In particular, a promising direction of work is the
use of a base of negative cases, as it has been used in [10].

The representation framework of this research is the one of nominal repre-
sentations, especially the Boolean setting. Another research direction would be
to study how the idea of case pair competence introduced here can be handled
in practice when numerical representations are used.

A related future work concerns the evaluation in various settings: this could
use benchmarks as the ones developed in the machine learning community. Actu-
ally, in [4], a work similar to analogical proportion in CBR has been evaluated
with such benchmarks with good results, and the idea could be to extend this
work by using the notion of case pair competence.

Finally, the competence of case pairs can be used in order to associate to
a solution proposed by extrapolation an indication of its plausibility, according
to the following idea: the higher are the competences of the case pairs used for
giving a solution, the more plausible the proposed solution is. This can be used
in order to combine analogical extrapolation with other approaches to CBR that
also provides an indication of plausibility.
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Abstract. One of the most challenging goals in the game industry is to
design games which are difficult enough to be a fun challenge but not
so hard to provoke frustration among a wide range of different types of
players. Dynamic difficulty adjustment (DDA) is a set of techniques used
to customize the difficulty of a game according to the skill level of the
player so that the game can keep the player “flowing”.

In this paper, we present a novel DDA architecture that we implement
using case-based reasoning and we integrate into a Tetris game. In par-
ticular, we dynamically change the difficulty of the game by selecting the
next piece the player has to place on the board to make the current game
more similar to one of the “good” games in our case base. Games are
modeled using time series representing the evolution of different game
features and evaluated by the players according to their level of enter-
tainment. This way, we alter the difficulty of the game so that it evolves
similarly to other previous good games and we expect the current player
also experience the same flow.

Keywords: Dynamic difficulty adjustment · Flow ·
Case-based reasoning · Video games · Tetris

1 Introduction

Video games are part of daily life for many of us. Although the main goal of a
video game is entertainment, they have also been used successfully with other
goals such as learning or even health but, regardless of the goals, games have
to entertain to keep the players engaged. Entertainment can be measured by
the level of immersion of the player within the game [23,24], where immersion
is a state of consciousness in which awareness of physical self is lost by being
in an artificial environment [19]. Csikszentmihalyi [8] used the term flow to
describe this state of optimal or “peak” experience. To achieve it, players should
perceive challenges that enhance their skills, clear goals to overcome and receive
immediate feedback about their actions. Moreover, the challenges in the game

This work has been partially supported by the Spanish Committee of Economy and
Competitiveness (TIN2017-87330-R) and the UCM (Group 921330).

c© Springer Nature Switzerland AG 2019
K. Bach and C. Marling (Eds.): ICCBR 2019, LNAI 11680, pp. 266–280, 2019.
https://doi.org/10.1007/978-3-030-29249-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29249-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-29249-2_18


Towards Finding Flow in Tetris 267

should be at the “right” difficulty level so that the players feel challenged but
not overwhelmed [3,5].

Nowadays, most of the game content is static and created during the devel-
opment phase of video game production. Game designers try to anticipate all
the possible ways to play the game, so the players never get into scenarios with
obstacles that are too difficult or too easy for them. Due to the complexity of
this task, game designers value the feedback provided by the players, because it
helps them to distinguish excessively difficult tasks from good challenges [20].
However, computer games can also benefit from a certain level of “intelligence”
to decide what to do in those scenarios the game designers could not antici-
pate, and provide appropriate responses to changing circumstances in realistic
environments [6].

Dynamic difficulty adjustment (DDA) can be used to automatically alter the
difficulty of the game based on the performance of the player [14,17,25]. There
exist different player modeling techniques to recognize typical user behaviors
and personalize the game experience for different player profiles. In particular,
several researchers have successfully applied various machine learning techniques
to automatically model different types of players [10,11,16,21].

In our previous work regarding DDA and Tetris [1], we used case-based rea-
soning to predict the skill level of the player dynamically, and then we made the
game easier for newbie and average players by providing easy-to-place next pieces
now and then. Our experiments showed that players perceived these games as
more entertaining as long as they did not realize we were modifying the difficulty
of the game.

In this paper we propose a different approach, instead of helping the players
depending on their skill level, we try to improve the player experience by altering
the game in such a way that it evolves similarly to some of the “good” games in
our case base. The characterization of a game is based on time series representing
the evolution of game features such as the score, the height of the board or
the number of “holes”, and evaluated by the players according to their level of
entertainment. By making the current game similar to one of the previous good
games, we expect the current player to experience a similar state of flow. The
main contributions of this work are: (1) a general DDA architecture that can be
used in different games, (2) the implementation of this architecture using case-
based reasoning (CBR) on game features collected in a time window, and (3) a
mechanism to alter the difficulty of Tetris taking into account both the current
game state and the player profile.

The paper continues as follows. Section 2 provides an overview of The Flow
Theory, particularly in the context of video games. Section 3 describes the spe-
cific version of Tetris used in our work. Next, Sect. 4 explains the features we use
to characterize Tetris games and how we transform that data into cases. Section 5
explains our DDA architecture and how its different components work to adjust
the difficulty of a game dynamically. After that, Sect. 6 describes some experi-
ments performed with new players and our results. Finally, the paper closes with
related work, conclusions, and future work.
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2 The Flow Theory

According to Nakamura and Csikszentmihalyi [18], entering flow depends on
creating the perfect balance between the perceived challenges of the task at
hand and their own perceived skills. More concretely, they stated that “It is the
subjective challenges and subjective skills, not objective ones, that influence the
quality of a person’s experience.”. So to enter flow, one must have confidence in
his ability to complete the task at hand. Attention also plays an essential role in
achieving a long-lasting flow feeling. That is why it is crucial to have clear goals
(they add direction and structure to the task) and immediate feedback (to be
able to adjust performance and maintain flow).

There are eight emotions a person might experience while doing a task
(Fig. 1). The state of flow happens when the task at hand is exciting and challeng-
ing, but achievable, between the emotions of control and arousal. These feelings
intensify when challenges and skills move away from the player’s average levels.
Moreover, the challenges present in an activity need to grow in difficulty as the
person masters his skills; otherwise, the task stops being entertaining. That is
why it is so difficult to achieve and maintain that state of equilibrium over time.

Fig. 1. The emotions a person might experience while doing a task [18].

In the context of video games, dynamic difficulty adjustment techniques can
be used to maintain the player in that state of equilibrium as the player pro-
gresses in the game and masters his abilities, so that the challenges in the game
(enemies or puzzles) evolve at the same rate. In this work, we propose to sub-
tly modify the difficulty of the game so that different game parameters change
similarly as they did in previous games that were rated as good by the players.

3 Tetris Analytics

Tetris is a very popular video game in which the player must place different
tetromino pieces that fall from the top of the screen in a rectangular game
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Fig. 2. Tetris analytics screen capture and Tetris pieces names.

board. When a row of the game board is complete, i.e. it has no holes, the row
disappears, all pieces above drop one row, and the player is rewarded with some
points. As the game progresses, the new pieces fall faster and faster, gradually
increasing the difficulty, until a piece is placed such that it exceeds the top of
the board and the game ends. The goal of the game is to complete as many lines
as possible to increase the score and make room for the next pieces. Although
the game is quite simple to play, it is also very difficult to master and hard to
solve from a computational point of view [2].

In our experiments, we use Tetris Analytics (Fig. 2), a version of the game
implemented in Java that looks like ordinary Tetris game from the point of view
of the player, but internally provides extra functionality to extract, store and
reproduce game traces. From these traces, we can select the most significant
features to characterize the playing style of each player, determine her skill level
and dynamically adjust the difficulty of the game.

Each time a new piece appears on the top of the board, players have to make
two different decisions. The first one, that we call tactical, is to decide where to
settle the piece, that is, its final location. The second decision involves all the
specific moves (side-to-side and rotations) required to lead the piece to that final
location.

Currently, we only consider the tactical decisions to define the skill level of
the player in this paper, but we are aware that we could also extract valuable
information from the particular moves (looking at parameters like speed, cadence
and moves undone) we plan to extend our work to consider them in the future.

4 Game Features and Cases

Tetris Analytics provides the infrastructure to extract different game features
both on-line during the game and off-line from the game traces. Since we only
consider the tactical decisions of the player, we only analyze the game state when
a new piece is settled in its final location. We extract the following features:
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Fig. 3. Feature evolution of an average player.

– Number of piece from the beginning of the game. It represents the current
time in the game.

– Current score obtained by the player after placing the current piece.
– Number of holes or empty spaces under other pieces in the same column.

Good players tend to compact the pieces to ease the completion of new lines.
– Board height or the highest row occupied by a piece in the board. Good

players tend to play most of the game in the lowest half of the board because
each time they complete a line, the height of the board decreases by one unit.

– Piece type among the 7 different pieces available in the game (Fig. 2).

For example, Fig. 3 shows the evolution of these features in a particular game.
This player was able to settle 90 pieces before the end of the game (x-axis). The
yellow line describes the evolution of the score that grows slightly with each new
piece and more abruptly when a new line is completed. The red line represents
the height of the board (1 to 20). During most of the game the player plays in
the lower half of the board, but at the end the height grows really fast probably
because the pieces fall too fast. Similarly, the blue line represents the number of
holes in the board and during the last quarter of the game increases very fast.

Once the game ends, we split the time series into non-overlapping chunks
of 10 pieces to create cases (see [1] for other case representations). Therefore, a
case represents the evolution of a game during a small time window. Each case
contains the following features:

– Number of the piece counting from the beginning of the game.
– Time series with the evolution of the score.
– Time series with the evolution of the number of holes.
– Time series with the evolution of the board height.
– Skill level of the player.
– How good the game is.

The last 2 features can only be computed when the game ends. Regard-
ing the skill level, we differentiate 3 different skill levels depending on the final
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game score: newbie (0–2999), average (3000–5499) and expert (5500 or more).
Although the score frontier between categories is somewhat arbitrary, the sepa-
ration of players into three groups according to their skill level is quite common
in video games.

When the game ends, we ask the player to evaluate the sentence It was a good
game with a Likert scale of 5 values where 1 is strongly disagree and 5 is strongly
agree. We use a simple and open question to evaluate the level of satisfaction
and general positive or negative feeling about the game. We consider good game
as only those with a score of 4 or 5. Then we annotate that score in all the cases
extracted from that game.

In order to retrieve similar cases from the case base we use a linear combi-
nation of the similarities between the time series, that are compared using an
Euclidean distance:

simc(c1, c2) = α1 × simts(c1.score, c2.score) +
α2 × simts(c1.holes, c2.holes) +
α3 × simts(c1.height, c2.height)

simts(r, s) = 1 −
√
√
√
√

n∑

i=1

(ri − si)2

where the weights (α1, α2, α3) can be tuned to give more or less importance to
each feature and n is the size of the time series containing the evolution of the
player in a time range. The most significant feature in the similarity measure is
the game score (α1 = 0.70), followed by the number of holes (α2 = 0.25) and
finally the board height (α3 = 0.05). These weights were computed using an
exhaustive grid search with increments of 0.05.

The case base has 266 games with 22497 tactical moves; each one classified
adequately with the player profile based on the total score of each match. Since
each case contains the evolution of the player in 10 consecutive tactical moves,
we have a total of 2249 cases in our case base. From all the games, 38% are
newbies, 47% are averages, and 15% are experts. The average duration time of a
newbie game is 53.5 tactical moves with a standard deviation of 13.3. For average
games is 93.9 tactical moves with a standard deviation of 11.6. Experts have a
game-time duration of 132.0 tactical moves with 8.1 of standard deviation.

Additionally, players with better skill set give higher flow score to the games
they play. The average flow score for newbies is 3.19, for averages 3.61, and
experts 4.00.

As we will explain in the following Section, the case base is used to solve
two different problems: to predict the player profile or skill level, and to decide
whether or not to alter the difficulty of the game. In both cases, we only construct
cases every ten pieces, and we only consider cases from the same instant in the
game. Note that the same values of the score, the board height, and the number
of holes have very different meanings depending on the instant of the game when
they are measured.
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5 DDA System Architecture

Our DDA architecture consists of three main modules (Algorithm 1). The first
one decides whether or not to alter the difficulty based on the evolution of
the game during the last time window. The second module analyzes the perfor-
mance of players to predict their profile dynamically. The third module takes into
account both the evolution of the game and the profile of the player, to decide
how to alter the difficulty of the game. When the DDA system is not active, or
it decides not to change the difficulty, the game goes on as it is designed.

while game is active do
game step;
if DDA is active and is time to intervene then

get latest performance of the player;
predict player profile;
if player has low-average skill level then

compare if player is doing better or worse against past games with
same skill level;
if player is doing worse then

return helpful behavior;
else

return random behavior;
end

else
return random behavior;

end

else
return random behavior;

end

end
Algorithm 1: DDA system architecture flow.

In the following sections we explain our current implementation of these
modules in the context of Tetris.

5.1 To Adjust or Not to Adjust the Difficulty

The DDA system decides to weather help the player or not every 10 pieces. This
time threshold helps to provide some inertia to the decisions, so the system is not
activating and deactivating too frequently. The 10 pieces time window it is also
essential to measure the evolution of the game and compare it with other game
fragments from our case base. Moreover, our current implementation of DDA
only changes the difficulty of the game in one direction: to make it easier. We
plan to extend it soon also to increase the difficulty of the game, so it becomes
more challenging for expert players.
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In order to decide whether or not to help the player, we create a query with
the evolution of the score, board height and number of holes during the last 10
pieces or tactical decisions. Then, we retrieve the most similar case from the case
based using the similarity measure described in Sect. 4 and considering only the
cases extracted from “good” games (those evaluated by players with a score of
4 or 5).

The module will decide to help the player if she is performing worse than the
situation described in the retrieved case. In particular, the module will make the
game easier for the next 10 pieces if at least 2 of the following conditions are
met:

– The average score is less than the average scores in the retrieved case
– The average number of holes is greater than the average number of holes in

the retrieved case
– The average board height is greater than the average board height in the

retrieved case

Note that our approach could be easily extended to make the game more
difficult if the player is performing better than the situation described in the
retrieved case.

5.2 Predicting the Player Profile

As we explained in Sect. 4, we distinguish 3 different player profiles or skill levels
(newbie, average and expert) depending on the final score of the game. Being able
to predict the skill level of the player during gameplay is a challenge though.
In our previous work [1], we presented a CBR approach based on comparing
the evolution of the 3 game features during the last 10 tactical decisions with
a case base created from previous games. The skill level is predicted using k-
Nearest Neighbor and a majority vote. We also use an inertia function that
forbids extreme prediction changes from newbie to expert or vice versa.

5.3 Changing the Game Difficulty

The mechanisms available to change the difficulty of the game are different in
each game. In Tetris there are two obvious ways to adjust the difficulty of the
game: either to alter the speed of the falling pieces or to change the type of piece
to appear next. We use the second approach because it is more difficult to detect
and, from previous experiences, we know some players are not happy when they
realize we modify the difficulty of the game for each player.

In our previous work, when we wanted to make the game easier we provided
easy-to-place next pieces for the current board configuration. We computed all
the possible ways to place each type of piece in the board and then ranked
each piece according to a measure that takes into account the game score, the
number of holes and the board height after settling that piece in the best possible
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Table 1. Rank of easiest piece to settle by profile. See Fig. 2.

Profile 1 2 3 4 5 6 7

Expert T J L Z S I O

Average T L J I S Z O

Newbie I J O T L Z S

position, according to that measure. Then, we randomly selected one of the three
best pieces as the next piece for the player.

In this work, we consider not only the current board configuration but also
the player profile to select the next piece. We have realized that different players
play better with some types of pieces. For example, Table 1 shows the Tetris
pieces ordered by how easy it is to settle in a good place for our 3 player profiles.
If a piece is at the end of the rank, it does not mean that the profile never settles
it well or that the game is never going to give that piece to the player. For
the reader that has previously played Tetris it may seem counter-intuitive that
pieces like O-block or I-block are harder to place than a T-block or a L-block, for
average and expert players. The rationale is that the more curves a piece has,
the easier it is for the player to identify where to optimally place it, in terms of
the number of holes and the board height. For example, in Fig. 2 you may see
3 possible locations where you would put the piece T-block. But if instead of a
T-block, the piece falling is a I-block, you may think of more than three places
to settle the piece, and that would make it harder for the player to identify the
best place.

In order to rank the types of pieces for each profile, we analyzed 11600 tactical
decisions from previous games. We considered a tactical decision to be correct
if the piece was settled in one of the best 3 final positions according to our
heuristic. Then we computed the percentage of pieces of each type that each
player profile placed correctly (see Table 2). At this point, we have two sets of
good pieces: (1) the 3 best pieces for the current board, according to the value of
the resulting board after settling that piece in the optimum place, and (2) the 3
best pieces for current player profile. If the intersection of the sets is not empty,
we randomly select one piece from the intersection. If there is no intersection,
we randomly select one of the pieces from the first set. In any case, it is always
important to add some randomness to the choice of the next piece so it is not
easy for the player to detect strange patterns or pieces that appear much more
often than others.
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Table 2. Percentage of times a profile places a piece in a good location.

Piece name Optimal Moves % Correctness

Expert Average Newbie General

I 78.7 79.1 83.3 79.1

T 86.3 83.3 75.0 84.4

O 75.1 74.9 76.7 75.1

Z 83.2 75.4 69.5 78.9

S 83.1 77.6 67.5 80.0

J 84.3 82.1 77.6 83.0

L 84.0 82.5 73.2 82.9

6 Experiments and Results

We experimented to test whether our approach raises the satisfaction of the
player compared to the original game. The level of flow during a game is a very
complex and subjective feeling that depends on several factors, some of them
external to the game itself. For these reasons, we need additional tests to verify
our findings.

We asked 26 people with different levels of experience to play Tetris 6 times.
Half of the games were the original version of Tetris and the other half games
with our DDA systems active. Although Tetris is a very famous game and most
of the people already knew how to play, we decided to rule out the first two
games of each player to remove the effects due to the warm-up phase. After
discarding the first two games of each player, we classified 104 games according
to their final score. From these data we found 42 games correspond to newbie
players, 60 games to average players and only two games to an expert player.

Players did not know the specific goal of our experiment; they only knew that
we were interested in measuring their flow level in different games. After each
game ended, the players had to evaluate the sentence It was a good game with a
Likert scale of 5 values were one means strongly disagree, and five means strongly
agree. We use a simple and open statement to evaluate the level of satisfaction
of the player to collect their general impression if they have had a positive or
negative feeling.

Figure 4 shows the distribution of flow levels in games with and without DDA.
In other words, the chart shows the number of games vs. each possible flow level
score (1–5). Most of the games with DDA (green bars) have a score of 4 or 5
while most of the games without DDA (red bars) obtain a score of 3 and 4. In
particular, 70% of the games with DDA were evaluated as good (rating 4 or 5)
while this percentage goes down to 50% for games without DDA.

As a collateral effect, DDA also influenced the game scores. The average final
rate for regular games was 2775 and for games with DDA 3413 (22.9% higher).
However, this is an expected result because we are making the games easier.
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Fig. 4. Distribution of player’s flow levels with and without DDA. (Color figure online)

When we implement DDA to make the game behavior also more difficult and
not only easier, we expect this difference in the final scores will decrease.

We computed the average and standard deviation of the flow level scores for
games with and without DDA. Without DDA the average rate is 3.27, while this
value goes up to 3.63 for games with DDA active. Even though, we know we
have a positive impact on players experience, the difference it is not statistically
significant under a student’s t-test. Seeing that, we decided to analyze both
sub-groups more in-depth.

We characterized the player’s behavior in good and bad games. We consider a
game is a good one if the player gives it a rating of 4 or 5 in the user experience
questionnaire, and a bad game gets a score of 1 or 2. We grouped the data
per profile, good/bad games, and non-DDA/DDA, and then applied k-means
clustering to the resulting subset. The idea is to analyze the average behavior of
each player profile in a specific scenario through the centroids of the resulting
clusters.

Figure 5 shows newbie’s behavior when DDA occurs or not and how they rate
their game experience. The red dotted line represents the bad games and the blue
line the good games. The left figure has non-DDA games. Here we can observe
that the bad games board height rise dramatically for this type of players, which
might result in a high stress or frustration level. In the right side, we can see the
good and bad DDA games. The bad games rise quite rapidly, but these do not
increase as fast as non-DDA ones. Regarding the good DDA games, we can see
time ranges were the variable rises, then lowers down, and then rises again; for
example, the first 30 tactical moves.

Figure 6 shows the behavior of average players for games with and without
DDA. The dotted red line represents the evolution of the board height variable
for the games classified as bad, whereas the blue line is for the good games. In the
left figure, we have the games without DDA, where we observe that the variable
in the bad games is quite fluctuating. Between movement 30 and 50, the variable
drops by approximately half the value it reached in the tactical movement 20.
Players with a certain level of ability tend to like games that challenge them
and does not have moments where it is too easy since it becomes boring. In
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Fig. 5. Board height of Newbies player’s games filtered by good/bad games and
DDA/non-DDA. The left image shows the regular/non-DDA games filtered by good
and bad games. The right image shows the DDA games filtered by good and bad games.

the right figure, we see the opposite behavior. The board height variable of the
bad games with DDA goes up approximately half of the board and does not go
back down for quite some time. This means that the game is not able to identify
that although the player had a certain skill level, he still needs help at certain
times. Having a game that creates a constant feeling of anxiety because it is
too complicated is not optimal for the player’s experience either. In contrast,
for both cases of games with and without DDA, it is observed that the blue line
rises a bit at the beginning but tends to fluctuate between tactical movements
20–80. In this interval of time, we see that the player tries to decrease the height
of the board, and in some moments, he achieves it.

Fig. 6. Board height of Average player’s games filtered by good/bad games and
DDA/non-DDA. The left image shows the normal/non-DDA games filtered by good
and bad games. The right image shows the DDA games filtered by good and bad games.
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A key conclusion of this clustering analysis is that both in newbies and aver-
age players the evolution of good games, with and without DDA, are quite
similar, while the evolution of bad games is more dissimilar when comparing
bad games with and without DDA. This not only reminds us of famous Leo
Tolstoy quote “All happy families are alike; each unhappy family is unhappy in
its own way”, but also shows us that our DDA technique does not fully capture
the desired evolution represented in good cases, and introduces new types of bad
cases. As future work we plan to use the results of this analysis to find new ways
of reproducing the flow of good games.

7 Related Work

There is much interest in how dynamic difficulty adjustment improves the user
experience. Mainly, machine learning techniques are used to adjust the game
based on players performance creating complex behaviors [4,9,12,13,22]. Lopes
and Bidarra [15] surveyed the state of art of adaptivity in games and simulations,
from both academia and industry. They concluded that games and simulations
adaptivity is establishing itself as a rapidly maturing field and that the advances
show good results in adapting to an optimal challenge level and active states like
fun, frustration, predictability, anxiety or boredom.

Missura and Gärtner [17] used a simple game where the player shoots down
alien spaceships while those shoot back. They aimed to employ dynamic difficulty
adjustments by grouping players into different profiles and supervised prediction
from short traces of gameplay. Each game had a limit of 100 s. The first 30 s were
used to acquire data, and the rest of the game, they adjust the aliens’ spaceships
speed based on the player’s performance. We used this paper as inspiration. From
the beginning of each game in Tetris Analytics, we wait for at least ten tactical
moves, and then we start evaluating the player’s performance. This interval of
time to gather data about the player’s behavior gives us the opportunity to
assess the evolution of the player in a time range and increase the accuracy of
the player profiling model. Once we determine the skill level of the player, the
game decides whether to help him or not.

Furthermore, Arzate and Ramirez [7] describe a theoretical analysis on
approaches of the Theory of Flow [18] in the video games domain and cate-
gorize them into four groups. One of them is mapping antecedents of flow to
features of the game. In our work, we try to identify how the feature’s behavior
we monitored in Tetris Analytics can affect flow in games, and try to recreate
this behavior in the current one.

8 Conclusions and Future Work

In this paper, we present a DDA approach to adjust a game based on a player’s
performance during gameplay. We use a game called Tetris Analytics for our
experiments, which is like a simple Tetris game from the players’ point of view,
but it allows us to monitor and extract variables related to player performance
and game state. The primary objective of the player during gameplay is to avoid



Towards Finding Flow in Tetris 279

the pieces reaching the top of the board by doing lines. Eventually, the pieces go
down so fast that the player is not able to position them in the right spot, the
pieces will reach the top of the board, and the player will lose. With the data
extracted from player behavior and game state, we create a case base and use it
with a DDA system that helps us improve player satisfaction.

Our experiments showed that players enjoy more games where the DDA sys-
tem is active than when it is not. The players scored good in the user satisfaction
questionnaire in most of the DDA games. Plus, the average total score of DDA
games is higher than in regular games. Unfortunately, this improvement is not
statistically significant between non-DDA and DDA games, which is our goal.
However, we discovered several scenarios were players do not feel the challenge is
at their level of expertise, e.g., when the game is too hard all the time, or when
the game it is hard in a time range, and next is too easy. In the latter scenario,
the player might lose interest when the game suddenly becomes too easy.

As future work, we would like to explore other options on how to recreate an
ideal flow experience using previous games. At the moment, we only make the
game easier for newbies and averages players, but we also want to make it harder
if the game is starting to be too easy. Moreover, we would like to confirm the
flow feeling of the player with standardized flow questionnaires and biometric
data gathering. And create a general DDA architecture that other games can
use improve users experience.
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Abstract. The Y-Balance Test (YBT) is a dynamic balance assessment
commonly used in sports medicine. In this research we explore how data
from a wearable sensor can provide further insights from YBT perfor-
mance. We do this in a Case-Based Reasoning (CBR) framework where
the assessment of similarity on the wearable sensor data is the key chal-
lenge. The assessment of similarity on time-series data is not a new topic
in CBR research; however the focus here is on working as close to the raw
time-series as possible so that no information is lost. We report results
on two aspects, the assessment of YBT performance and the insights
that can be drawn from comparisons between pre- and post- injury
performance.

Keywords: Wearable sensors · Y Balance Test · Time series data

1 Introduction

This research addresses the challenge of assessing human physical activity as
measured using wearable sensors. We focus on the Y Balance Test (YBT) a
test for assessing dynamic balance used in clinical and research settings [9]. We
address two tasks, the task of scoring performance based on the sensor data (a
regression task) and a classification task that identifies abnormal performance.
We also seek to provide insight into how performance on a test is abnormal.

The YBT produces a normalised reach score which quantifies performance
(Sect. 3). Our first objective is to see if we can estimate this directly from the
sensor data. We report on what data streams from the sensor are most effective
for this. This regression task is performed using k-Nearest Neighbour (k-NN) and
we analyse a number of similarity mechanisms for identifying neighbours. The
motivation for our first objective is to eliminate the manual task of measuring
the reach distance.

In the second part of our evaluation, we examine data from six athletes recov-
ering from a concussion. We explore the hypothesis that an in-depth analysis of
the YBT sensor data provides insight into the extent to which the individual
has recovered from the concussion. While the results we report are preliminary,
this seems a promising strategy.
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This paper is structured as follows. The next section provides an overview of
relevant research on similarity measures for time-series. The Y Balance Test is
described in Sect. 3. Our evaluation is presented in Sect. 4 and conclusions and
directions for future work are presented in Sect. 5.

2 Similarity Measures for Time-Series

In reviewing relevant research on similarity measures it is worth separating
research in a CBR context from the wider research in this area. In the next
subsections we review the dominant methods for measuring similarity on time-
series before focusing on CBR research on time series at the end of this section.

2.1 Dynamic Time Warping

To find the distance between two time series, the Euclidean distance formula
is an obvious choice. But when dealing with time series data where the series
may be displaced in time, the Euclidean distance may be large when the two
series are similar, just off slightly on the time line (see Fig. 1(a)). To tackle this
situation Dynamic Time Warping (DTW) offers us the flexibility of mapping the
two data series in a non-linear fashion by warping the time axis [15]. It creates a
cost matrix where the cells contain the distance value of the corresponding data-
points and then finds the shortest path through the grid, which minimizes the
total distance between them. Sakoe-Chiba [23] global constraint is introduced to
the model to increase its performance and reduce time complexity.

The following are the steps DTW executes to find the optimum mapping
path with forward Dynamic Programming (DP), which provides us with the
minimum distance:

– Let t and r be two time-series vectors; then define D(i, j) as the DTW distance
between t(1 : i) and r(1 : j), with the mapping path starting from (1, 1) to
(i, j).

– With initial condition as D(m,n) = |t(m) − r(n)|, recursively calculate:

D(i, j) = |t(i) − r(j)| + min

⎧
⎨

⎩

D(i − 1, j)
D(i − 1, j − 1)

D(i, j − 1)

⎫
⎬

⎭
(1)

– The minimum distance then is D(1, 1).

Simply said, we will construct a matrix D of dimensions m × n (where m and n
are the sizes of time-series vectors t and r), and then insert the value of D(1, 1)
by using the initial condition. Using the recursive formula the whole matrix gets
filled one element at a time, either following a column-by-column or row-by-row
order. When completed, the minimum cost or distance between t and r will be
available at D(m,n). Thus, the computational complexity of DTW is O(mn)
when the time-series are unidimensional.
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Fig. 1. An example of DTW non-linearly mapping two time-series displaced in time,
with Sakoe-Chiba global constraint.

In many cases, DTW may not provide the best mapping as required as it
strives to find the minimum distance which can result in forming an unwanted
path, which does not assist in discriminating two time-series belonging to differ-
ent classes. Fixing this issue requires limiting the possible warping paths utilizing
a global constraint. Sakoe-Chiba band (Fig. 1(d)), is one of the simplest and most
popular global constraints applied to DTW. The warping path then is limited to
the zone that falls under the band indices. Initially, when we restrict our algo-
rithm with no warping allowed, the data points are linearly mapped between the
two data series based on the common time axis value. As seen in Fig. 1(b), the
algorithm does a poor job of matching the time series. But when we grant the
DTW algorithm the flexibility of considering a warping window, the algorithm
performs remarkably well when mapping the data-points following the trend of
the time series data, which can be visualized in Fig. 1(c).

2.2 Symbolic Aggregate approXimation

Several symbolic representations of a time series data have been developed in
recent decades with the objective of bringing the power of text processing algo-
rithms to bear on time series problems. Keogh et al. provide an overview of these
methods in their 2003 paper [16].

Symbolic Aggregate Approximation (SAX) is one such algorithm that
achieves dimensionality and numerosity reduction and provides a distance mea-
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sure that is a lower bound on the distance measures on the original series [16].
In this case numerosity reduction refers to a more compact representation of the
data.

Piecewise Aggregate Approximation. SAX uses Piecewise Aggregate
Approximation (PAA) in its algorithm for dimensionality reduction. The fun-
damental idea behind the algorithm is to reduce the dimensionality of a time
series by slicing it into equal-sized fragments which are then represented by the
average of the values in the fragment.

PAA approximates a time series X of length n into vector X̄ = (x̄1, x̄2, ..., x̄m)
of any arbitrary length m � n, where each of xi is computed as follows:

x̄i =
m

n

n
m i∑

j= n
m (i−1)+1

xj (2)

This simply means that in order to reduce the size from n to m, the original time
series is first divided into m fragments of equal size and then the mean values for
each of these fragments are computed. The series constructed from these mean
values is the PAA approximation of the original time series. There are two cases
worth noting when using PAA. When m = n the transformed representation is
alike to the original input, and when m = 1 the transformed representation is
just the mean of the original series [14]. Before the transformation of original
data into the PAA representation, SAX also normalizes each of the time series
to have a mean of zero and a standard deviation of one, given the difficulty of
comparing time series of different scales [13,16] (Fig. 2).

Fig. 2. Symbolic Aggregate Approximation; The raw time-series in (a) will be repre-
sented by the sequence ‘abfedbc’ in (c) [17].

After the PAA transformation of the time series data, the output goes
through another discretization procedure to obtain a discrete representation of
the series. The objective is to discretize these levels into a bins of roughly equal
size. These levels will typically follow a Gaussian distribution so these bins will
get larger away from the mean. The breakpoints separating these discretized bins
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form a sorted list B = β1, ..., βa−1, such that the area under a N(0, 1) Gaussian
curve from βi to βi+1 = 1

a . β0 and βa are defined as −∞ and ∞ respectively [16].
When all the breakpoints are computed, the original time series is discretized

as follows. First, the PAA transformation of the time series is performed. Then
each of the PAA coefficients less than the smallest breakpoint β1 is mapped
to the symbol s1, and all coefficients between breakpoints β1 and β2 (second
smallest breakpoint) are mapped to the symbol s2, and so on, until the last
PAA coefficient gets mapped. Here, s1 and s2 belongs to a set of symbols S =
(s1, s2, ..., sm) to which the time series is mapped by SAX, where m is the size
of symbol pool.

SAX also has a sliding window implemented in its algorithm, the size of
which can be adjusted. It extracts the symbols present in that window frame
and creates a word, which is just the concatenated sequence of symbols in that
frame. This sliding window is then shifted to the right and another word is
extracted corresponding to the new frame. This goes on until the window hits
the end of the time series, yielding a“bag-of-words” representing the series.

Once the data is converted to this symbolic representation, one can use this
bag-of-words representation for calculating the distance between two time series
using a string distance metric such as Levenshtein distance [27].

2.3 Symbolic Fourier Approximation

SFA was introduced by Schäfer et al. in 2012 as an alternative method to
SAX built upon the idea of dimensionality reduction by symbolic representa-
tion. Unlike SAX which works on the time domain, SFA works on the frequency
domain. In the frequency domain, each dimension contains approximate infor-
mation about the whole time series. By increasing the dimensionality one can
add detail, thus improving the overall quality of the approximation. In the time
domain, we have to decide on a length of the approximation in advance and a
prefix of this length only represents a subset of the time series [24].

Discrete Fourier Transform. In contrast to SAX which uses PAA as its
dimensionality reduction technique, SFA, focusing on the frequency domain, uses
the Discrete Fourier Transform (DFT). DFT is the equivalent of the continuous
Fourier Transform for signals known only at N instants by sample times T ,
which is a finite series of data.

Let X(t) be the continuous signal which is the source of the data. Let N
samples be denoted x[0], x[1], ..., x[N − 1]. The Fourier Transform of the original
signal, X(t), would be:

F (ωk) �
N−1∑

n=0

x(tn)e−jωktn , k = 0, 1, 2, ..., N − 1 (3)

Simply stated, DFT analyzes a time domain signal x(n) to determine the
signal’s frequency content X[k]. This is achieved by comparing x[n] against sig-
nals known as sinusoidal basis functions, using correlation. The first few basis
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functions correspond to gradually changing regions and describe the coarse dis-
tribution, while later basis functions describe rapid changes like gaps or noise.
Thus employing only the first few basis functions yields a good approximation
of the time series [24].

The DFT Approximation is a part of the preprocessing step of SFA algo-
rithm, where all time series data are approximated by computing DFT coeffi-
cients. When all these DFT coefficients are calculated, multiple discretisations
are determined from all these DFT approximations using Multiple Coefficient
Binning (MCB) as shown in Fig. 3. MCB helps in mapping the coefficients to
their symbols, and concatenates it to form an SFA word. Thus, this converts the
time series into its symbolic representation.

Fig. 3. Symbolic Fourier Approximation; The raw time-series will be represented by
the sequence ‘afdb’ [17].

As in SAX, there is a sliding window present here which serves the same
purpose of extracting a word representing the data in that frame. Thus, the
output of SFA for a given source time series is a bag-of-words symbolically
representing the entire series in lower dimension.

2.4 Time-Series Similarity in CBR

Research on temporal analysis within the CBR community has been strongly
influenced by the Temporal Abstractions (TA) methodology. The idea with TA
is to map low-level temporal data into higher level concepts that are meaningful
for the domain in question [25]. This idea has its roots in the The Knowledge
Level [21] view of Artificial Intelligence which fits well with the CBR paradigm.
There has been significant research on TA in CBR with a particular focus on
applications in medical decision support [19,20].
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The objective with TA is to produce a high-level symbolic representation
of the time-series that will reduce the dimension of the data by providing a
high-level abstraction that fits with a feature-value case representation [19]. The
attractiveness of TA for early CBR research was two fold, it delivered a feature
value representation and it avoided the computational problem of dealing with
the raw data. It is worth saying that while SAX and SFA also produce symbolic
representations the motivations are different as the objective is not to produce
knowledge level representations.

On the question of computational tractability, early work by Penta et al. [22]
recognised the benefit of using DTW to quantify similarity on time-series for
CBR but dismissed it as an option because of the computational cost.

More recently Elsayed et al. [5] did use DTW in CBR to classify pseudo-
times-series in medical image analysis. This shows that the computational cost
of DTW is no longer an issue. Bregón et al. [2] also report good results using
DTW with CBR on a fault classification problem.

3 Y Balance Test

The Y Balance Test (YBT) is the most common dynamic balance assessment
used within the sports medicine clinical context [6]. It requires an individual to
transition from a position of bilateral to unilateral stance, perform a maximal
reach excursion with the non-stance limb in three standardised directions (ante-
rior; posteromedial; posterolateral), while maintaining controlled balance [6] (see
Fig. 4). The individual is then required to return to the starting position in a
controlled manner. A trial is deemed a fail if they remove their hands from their
hips, make contact with the ground, weight bear through the slider, raise the
stance leg heel or kick the slider forward for extra distance. Participants typi-
cally complete four practice trials prior to completion of three recorded trials in
each direction (randomized order), bilaterally [6].

The traditional balance ‘score’ is obtained by manually measuring the dis-
tance the individual reaches outside of their base of support and normalising
it to their leg length, allowing for appropriate comparison between individuals.
Previous research has demonstrated the ability of this protocol to identify dif-
ferences in dynamic performance between control and pathological groups, in
conditions such as acute lateral ankle sprain [4] and anterior cruciate ligament
injuries [7].

It has also been suggested that the YBT may have a role in evaluating con-
cussed athletes. It can provide a means to challenge the sensorimotor subsystems
of injured athletes, highlighting deficits that may increase their risk of sustaining
further injury [10].

Johnston et al. have shown that a very good assessment of YBT performance
can be obtained from a single wearable sensor [9]. “Normal” and “abnormal”
balance performance can be assessed with a moderate level of accuracy.
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Fig. 4. A demonstration of the YBT test in operation.

3.1 The Datasets

The data set consists of data collected from two cohorts:

1. 29 young healthy adults (aged 23.3 ± 2.1 years; height 174.7 ± 9.2 cm; weight
71.6 ± 13.3 kg; left leg length 95.4 ± 4.8 cm; right leg length 95.5 ± 5.1 cm)
were tested on one occasion in a university biomechanics laboratory.1 In our
evaluation we use 21 subjects for training and model/parameter selection and
8 for testing. For each subject there are 18 samples (3 trials, 3 directions, and
2 stances). So we have 378 training samples and 143 test samples (one sample
is missing). The length of the time-series ranges from 114 to 645 data-points,
having an average of ≈298 ticks.

2. Six elite rugby union players (aged 21±1.5 years; height 182±6.3 cm; weight
91 ± 15.4 kg; right leg length 95 ± 4.2 cm; left leg length 95 ± 4.22 cm) were
baseline tested as part of a wider study protocol, as described in Johnston
et al. [12]. These six athletes later went on to sustain a concussive injury,
and were follow-up tested using the inertial sensor quantified YBT 48-hours
post-injury and at the point of medical clearance to return to full contact
training (RtP). The length of the time-series here ranges from 158 to 648
data-points, having an average of ≈345 ticks. Reliability control data was
also obtained from two healthy young adults who were repeat tested on two
occasions, separate by 7–10 days, as described in [11].

Ethical approval was sought and obtained from the university research ethics
board, and all participants provided informed consent prior to completion of
the testing protocol. Additional consent was provided from the young healthy
participants (dataset 1) to allow open-access publication of the dataset.

1 This dataset is available at http://mlg.ucd.ie/ybt.

http://mlg.ucd.ie/ybt
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3.2 Sensor Methods

The sensor used was a Shimmer3 sensor2 that returns 10 data streams; accelerom-
eter, gyroscope and magnetometer in three dimensions and an altimeter to pro-
vide the 10th data stream. The altimeter data was not used in our study; how-
ever pitch, roll and yaw were derived from the other data streams to provide 12
streams in all. The sensor was mounted at the level of the 4th lumbar vertebra,
in line with the top of the iliac crests using a custom-made elastic belt. The
sensor was configured to collect tri-axial accelerometer data (±2g) and tri-axial
gyroscope data (±500◦/s) at a sampling frequency of 51.2 Hz during each YBT
reach excursion. The data collection procedure was consistent with previously
describe methods [11,12].

4 Evaluation

In this evaluation we consider two questions:

1. Can we score YBT performance without actually measuring the reach?
2. Does a visual inspection of the sensor plots offer insights into performance?

For the first question we need to determine which data streams from the
sensor are predictive of performance (Sect. 4.1) and identify which similarity
measures are best for this task (Sect. 4.2). We take the tasks in this order, first
we identify the best data streams then we tackle the similarity measures.

4.1 Feature Selection

The first task was to identify which subset of the 12 data streams would be
effective for the regression task. A meta-analysis by Mitsa [18] states that when it
comes to time-series classification, 1-NN-DTW is challenging to beat. Therefore,
we employ k-NN-DTW to evaluate the features (i.e. data streams) individually,
based on its prediction capability of the reach distance.

The results in terms of Mean Absolute Percentage Error (MAPE) are shown
for each of the 12 time-series in Fig. 5. The results show that the Z-axis of the
accelerometer proves to be most informative, with Y and Z-axes of the magne-
tometer being the next best features. A magnetometer is sensitive to external
disturbances such as the earth’s magnetic field, the location of the experiment,
or electrical systems present in proximity, therefore ‘Accel Z’ is selected as the
single best feature because it is robust to such interference.

Next we use a Forward Sequential Search strategy [1] to see if adding other
features (i.e. time-series) will improve accuracy. It is clear from the results shown
in Fig. 6 that the impact is minimal. Adding two features (Mag Y and Mag X)
reduce the MAPE from 6.24 cm to 6.04 cm.

2 http://www.shimmersensing.com.

http://www.shimmersensing.com
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Fig. 5. Feature selection over the performance of k-NN-DTW in predicting reach
distance using only one dimension.

Fig. 6. Performance of kNN-DTW model when a combination of features is given.

4.2 Comparing Similarity Measures

We move on now to consider the performance of the other similarity measures
(SAX and SFA) compared with DTW3. Given the results of the feature selection
analysis we consider the Accel Z time series only.

As explained in Sect. 2, both SAX and SFA turn time-series matching into
a sequence matching problem. So we have some choices on how we measure
sequence similarity. Here we consider two options, standard Edit Distance (Lev-
enshtein Distance) [3] and the Wagner-Fischer algorithm [26]4 (Fig. 7).

3 Similarity computation with DTW between two time-series of unequal length is
handled by padding the shorter time-series with zeroes.

4 Edit Distance and Wagner-Fischer measures requires no size matching as it handles
the unequal length of the sequences.
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Fig. 7. Evaluation of models with 10-fold cross-validation over ‘Accel Z’ in the train
set, and MAPE score as its evaluation metric.

The Wagner-Fischer algorithm is more nuanced than standard Edit Distance
as it allows for different penalties for insertion, deletion and substitution and for
distances within the alphabet to be included in the penalty score. For example,
the underlying implementation of Edit distance measures the distance between
“boat” and “coat” as 1, and the distance between “coat” and “goat” is also com-
puted as 1, because these strings are only one edit away. Whereas, the Wagner-
Fischer algorithm measures the distance between “coat” and “goat” as four
because ‘g’ is 4-steps away from ‘c’ in the alphabet series.

We compare the three methods (DTW, SAX and SFA) used in time series
regression in a k-NN model. k-NN-SAX and k-NN-SFA were evaluated on both
vanilla Edit distance and Wagner-Fischer version with custom penalties. We
report two sets of results, results on the training data (21 subjects) which we are
using for model and parameter selection and results on the test data (8 subjects)
which gives us an estimate of generalisation accuracy.

Figure 8 illustrates the performance of the kNN-models on the reach estima-
tion task. Our conclusions are as follows:

1. k-NN-DTW beats SAX and SFA on this reach estimation task. This is con-
sistent with earlier work that shows that DTW will beat SFA and SAX when
similarity depends on the overall signal rather than local features [17].

2. Edit Distance performs better than Wagner-Fischer when used with SAX and
SFA. This may be because of overfitting in the parameter setting process.

4.3 Insights

Our next objective is to see if the sensor data offers any insight into recovery
from concussion. The second dataset (Sect. 3.1) contains sensor readings from
six athletes who suffered concussions. There are readings, Pre-, Post-injury and
on Return-to-Play (RtP) with three readings (i.e. trials) for each category. The
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Fig. 8. Performance of the models over ‘Accel Z’ in the test set, with MAPE score as
its evaluation metric.

Post-injury measurements were taken immediately after injury when athletes
were excluded from playing due to concussion. Thus the RtP signals should be
similar to the Pre- data and not the Post-.

As a baseline we have data on ‘healthy’ subjects which shows us what nor-
mal variations between test sessions should look like. The first two plots in Fig. 9
show data on two such subjects. The data shows two sets of three repetitions
measured one week apart. It is clear from the plots that the strategies are rea-
sonably consistent, Subject 6 has a steady acceleration while subject 11 increases
acceleration through the movement and then slows sharply.

The next two plots in the Figure present the picture for two of the con-
cussed athletes. The plots for the four other concussed athletes are shown in the
Appendix. The signals for the concussed athletes were selected as follows:

– We take each of the three RtP examples and calculate the similarity to the
three Pre and three Post examples.

– We present the RtP signal and its closest match (Pre- or Post-) and all the
non matching signals for comparison.

We would like to see RtP signals that are similar to the Pre-injury signals. We
have this for Athlete 517 and not for Athlete 400. Athlete 517 has an RtP signal
similar to his Pre-injury performance and different to his Post- signal (shown
in red). By contrast the signal for Athlete 400 looks like his Post-injury signal.
While it would be expected that both athletes dynamic balance performance
should have returned to baseline levels at the point of ‘clinical recovery’ (return to
play), concussion presentation is multi-factorial and variable in nature, where no
two injured athletes present the same. Furthermore, there is increasing evidence
that neuromuscular control deficits may persist beyond resolution of symptoms,
increasing their risk of future injury [8]. This may help explain why athlete 400s
RtP signal looked most similar to their post-injury signal, while athlete 517
appeared to have returned to pre-injury levels of performance.
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Fig. 9. A comparison between ‘healthy’ subjects and two subjects who suffered con-
cussion (standing on non-dominant leg, anterior reach, Accel Z data).

5 Conclusion

Our analysis shows that using k-NN with DTW on the Accelerometer Z-axis
data is effective for predicting performance on the YBT.

While the analysis relating to concussion is preliminary, we feel that the
sensor data can have a role is assessing recovery from concussion. The strat-
egy would be to gather ‘healthy’ baseline data during the pre-season training
period, and use this to help determine when an athlete may have fully recovered
post-injury. This approach may help health care professionals identify players
who have not fully recovered post-concussion, facilitating the implementation of
additional rehabilitation strategies to aid in the reduction of future re-injury.
Due to the large degree of inter-subject variability within the data, our analysis
suggests that this pre/post injury comparison needs to be player specific, and
cannot be generalised between subjects.

Acknowledgments. This publication has resulted from research supported in part
by a grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3872
and is co-funded under the European Regional Development Fund.
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Appendix

See Fig. 10.

Fig. 10. A comparison between the rest four athletes in the dataset who suffered
concussion. (Standing on non-dominant leg, anterior reach, Accel Z data.)
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Abstract. Case-base maintenance method aims at maintaining a com-
pressed case-base which is useful for solving future problems effectively.
In this paper, we propose an optimization formulation to arrive at a
compressed case-base that can find a solution for the rest of the cases in
the case-base that involves compositional adaptation process. The objec-
tive of the optimization problem is to minimize the footprint set size and
maximize the quality of solutions that can be adapted from the footprint
set. We empirically studied the proposed formulation on four different
datasets and the results show that the proposed model is effective and
overcomes the limitation of the existing optimal footprint method in
compositional adaptation applications.

Keywords: Case-base maintenance · Optimal method ·
Footprint-based competence model · Compositional adaptation

1 Introduction

Case-Based Reasoning (CBR) [1] is an artificial intelligence based problem solv-
ing paradigm where new problems are solved based on past experiences. Case-
base maintenance is a sub-field in CBR which aims at maintaining a compressed
case-base by retaining cases which are useful for solving future problems effec-
tively. The initial works on case-base maintenance concentrated on removing
noisy and redundant cases. The first approach towards this kind of data reduc-
tion is the Condensed Nearest Neighbor algorithm [13]. This method does not
guarantee a minimal set but it is robust to noise. In [2], Smyth et al. proposed a
case competence model which identifies a compressed case-base called footprint
set. While the algorithm proposed in [2] to arrive at the footprint set attempts at
maximizing the competence of the compressed case-base, it does not guarantee
an optimal footprint set. In [12], Mathew et al. proposed an optimal method
to identify the footprint set which aims at maximizing the effectiveness and
minimizing the size of the footprint set. However, all these approaches assume
that the adaptation process involves the adaptation of the solution of a single
c© Springer Nature Switzerland AG 2019
K. Bach and C. Marling (Eds.): ICCBR 2019, LNAI 11680, pp. 297–313, 2019.
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case to arrive at a solution of its target case. This kind of adaptation is called
single case adaptation. In certain applications, the adaptation process is more
involved and is referred to as compositional adaptation [3] which means that
the combined solution of multiple cases can be adapted to obtain the solution
of the target case. The first approach towards case-base maintenance of compo-
sitional adaptation applications is proposed in [9]. This work proposed a case
competence model to identify useful cases that can be retained when the adapta-
tion process involves either single case adaptation or compositional adaptation.
However, this approach does not guarantee a minimal size footprint set. In this
paper, we propose an optimal method to identify a footprint set that can be
applied in compositional adaptation applications.

We propose a convex optimization formulation to identify a footprint set
from a case-base that involves compositional adaptation. The objective of the
optimization function is to minimize the cardinality of the footprint set and
maximize the quality of solutions that can be adapted from the footprint set to
solve the rest of the cases in the case-base. To the best of our knowledge, this is
the first-of-its-kind approach to identify optimal compression of case-base during
case-base maintenance of compositional adaptation applications. The structure
of this paper is as follows. Section 2 provides an overview of single case and
compositional adaptation process and reviews the literature on case-base main-
tenance models. Section 3 presents the proposed optimization formulation for
case-base maintenance of compositional adaptation applications. We discuss the
experimental results in Sect. 4 and conclude in Sect. 5.

2 Background

This section provides an overview of single case and compositional adaptation
process, literature in case-base maintenance, previous approaches in case-base
maintenance of compositional adaptation applications and optimal footprint
method for case-base maintenance in single case adaptation.

2.1 Single Case and Compositional Adaptation

In single case adaptation, the solution of a single case is retrieved and adapted
to solve a target problem [14,15]. For example, in a cooking recipe application,
suppose the case-base contains a recipe for potato fry. Let the new query be a
recipe for fish fry and this new problem is similar to the problem recipe for potato
fry. Then the solution of potato fry recipe can be adapted by substituting potato
with fish for the recipe for fish fry. Here a single case is adapted to arrive at a
solution for the query and this kind of adaptation is called single case adaptation.

In compositional adaptation, the solution for a query is obtained by adapting
the combined solution of solutions of multiple cases that are similar to the query.
For example, in a recipe recommendation application, suppose the case-base
contains the recipe for potato fry and cauliflower fry. Let the new query be a
recipe for elephant yam fry and this query is similar to the cases recipe for potato
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fry and recipe for cauliflower fry. Then the solution of elephant yam fry recipe
can be adapted from the combined solution of cases in the case-base such as
recipe of potato fry and recipe of cauliflower fry. In [16], Müller et al. propose a
CBR system which decomposes the cooking recipes in the case-base into reusable
streams and the reusable streams of multiple recipes that are similar to the target
query are adapted to retrieve the solution. Another compositional adaptation
application is the CBR system for predicting pollution levels [19], which predicts
the pollution level of the target problem as the mean of the pollution levels of
the top-k similar cases. In medical diagnosis, [18] studied the compositional
adaptation approach during the multiple disorder situation. Arshadi et al. [17]
applied compositional adaptation for designing tutoring library which adapts
from the multiple solutions retrieved in the past for similar queries for the user’s
search topic.

2.2 Case-Base Maintenance

The impact of utility of a case-base in Case-Based Reasoning depends on its size
and growth. The efficiency of a case-base is adversely affected when it contains
a large number of cases that are not useful to solve new problems. Hence, it is
desirable to weed out such cases. The goal of case-base maintenance process is
to retain only the useful cases and improve the efficiency of the case-base. On
reducing the size of case-base, the initial works are concentrated on removing
noisy and redundant cases. The noise reduction in the case-base increases the
accuracy and the elimination of redundant cases improves the retrieval efficiency
[20]. The first approach towards this kind of data reduction is the Condensed
Nearest Neighbor algorithm [13]. This method does not guarantee a minimal set
but it is robust to noise. A case competence model is proposed by Smyth et al. in
[4] to direct the learning and deletion of cases in the case-base. Here, the authors
proposed case deletion policies which maximizes the competence of the case-
base while minimizing its size. In [5], Smyth et al. proposed a case competence
model which identifies the competent cases for the competence directed case-base
maintenance. This model measures the case competence based on the range of
target problems that each case solves. Footprint-based retrieval [2] is an efficient
retrieval approach in Case-Based Reasoning, which guides the search procedure
using a case competence measure called relative coverage [2]. This approach
identifies a competent subset of a case-base called the footprint set for case-
base maintenance. However, the relative coverage measure used in this approach
covers only the situation where a single retrieved case is adapted to solve a
problem. The relative coverage is used to order cases based on their individual
contribution in arriving at a solution for other cases.

Case-Base Maintenance of Compositional Adaptation Applications.
The footprint-CA algorithm proposed by Mathew et al. in [9] reports the first
approach towards case-base maintenance of compositional adaptation applica-
tions. This approach uses a measure called retention score [9,10] to estimate the
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retention quality of cases in the case-base when the adaptation process can be
either single case or compositional adaptation. A generalized version of reten-
tion score called weighted retention score is proposed in [11], which considers the
problem solving ability of cases that are involved in arriving at a solution for a
target problem. The retention score is a special case of weighted retention score.
We first discuss the formulation of scores such as retention score and weighted
retention score, and then the footprint-CA algorithm.

The retention quality of a case depends on the set of problems that it solves
and the number of other cases that are required to solve this set of problems.
As we want to reduce the size of case-base, we would like to retain fewer good
retention quality cases that cover more useful cases. If the solutions of a set
of cases can be adapted to arrive at a solution for the target problem, then
this target problem is said to be solved by this set of cases. The formulation of
retention score uses the following terminologies such as covered cases and support
cases. The covered cases of a case c (i.e. CoveredCases(c)) include all cases that
c can be used to solve either on its own, or in conjunction with other cases. The
support cases of a case ci to solve the problem cj (SupportCases(ci, cj)) is a set of
cases that the case ci requires to solve cj . ReachabilityCA of a case c is the set of
all cases that are involved in arriving at a solution of c. Let the combined solution
of cases c1 and c2 can arrive at a solution for the case c3, and also the solution for
c3 can be obtained from the case c4. Then ReachabilityCA(c3) = {{c1, c2}, {c4}}.
The retention score of a case c is high if

1. it can solve several cases that have high retention scores
2. the number of support cases needed to solve these covered cases is few
3. the retention scores of these support cases are high

The first criterion captures the coverage of a case and it also ensures that the
covered cases should have high retention score for the corresponding case to have
a high retention score. Thus, this criterion assigns a high retention score to a
case if its covered cases are very important. For example, let CoveredCases(c1) =
{c3, c4}, then the importance to retain c1 in the case-base depends on the impor-
tance of c3 and c4. The second criterion is based on the idea that if a case requires
many support cases to solve its covered case then its support cases should also
be retained in the case-base. The third criterion ensures that the effective cost
of retaining the support cases in conjunction with c is low. The formulation of
retention score (RS) is given in Eq. 1.

RSk+1(c) =
∑

ci∈CoveredCases(c)

⎛

⎜⎜⎝RSk(ci)
∑

C
′∈ReachabilityCA(ci)

c∈C
′

min
cj∈C′ and cj �=c

(RSk(cj))

|C′|

⎞

⎟⎟⎠ (1)

where RSk+1(c) is the retention score of a case c at (k + 1)th iteration. This
formulation is a recursive formulation similar to PageRank [21] where the notion
of circularity of PageRank is substituted by the revised notion of circularity as
discussed in the criteria of retention score. The set C

′ is a set of cases which
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contain c such that C′ can solve ci. All cases in C
′ except c are the support cases

of c. The denominator handles the situation when a case does not require any
support cases to solve the corresponding covered case.

For the first iteration of the retention score estimation, the retention score
(RS0) of a case c can be estimated as,

RS0(c) =
∑

ci∈CoveredCases(c)

⎛

⎜⎜⎝CoverageScore(c, ci)
∑

C
′∈ReachabilityCA(ci)

c∈C
′

1
|C′|

⎞

⎟⎟⎠ (2)

where CoverageScore is defined as,

CoverageScore(c, ci) =
1

1 + |{Cj : Cj ∈ ReachabilityCA(ci) and c �∈ Cj}| (3)

For each covered case ci in Eq. 2, the CoverageScore of c captures the individual
contribution of c in solving ci. The contribution of c in solving ci is high if c
is involved in all solutions of ci, and the individual contribution of c to solve
ci is less when ci can be solved without using c also. The denominator of Eq. 2
ensures that the retention score increases with decrease in the number of support
cases that c requires to solve ci and vice versa. As cardinality of C′ decreases,
the number of support cases decreases.

The weighted retention score measure [11] captures the problem solving ability
of each set of cases that solves a target problem. The ReachabilityCA set of a case
c contains sets of cases where the cases in each set can arrive a solution for c.
The problem solving ability is defined for each set of cases in the ReachabilityCA

set and it is the extent to which the adapted solution obtained from each set
of cases in the ReachabilityCA set is close to its desired solution. The idea of
weighted retention score is that “A case has high weighted retention score if
it covers many cases that have high retention score with high problem solving
ability, and it solves each covered case with the support of less number of cases,
and the minimum of the retention scores of the support cases is high”. The
weighted retention score formulation is given below.

WRSk+1(c) =

∑

ci∈CoveredCases(c)

⎛

⎝WRSk(ci)
∑

C
′∈ReachabilityCA(ci)c∈C

′
w(C′, ci)

min
cj∈C′ and cj �=c

(WRSk(cj))

|C′|

⎞

⎠

(4)

where the weight w(C′, t) for a target problem t is the problem solving ability
of C′ in solving t where C

′ ∈ ReachabilityCA(t). This formulation is the same as
the retention score measure when the problem solving ability of all set of cases
that are involved in arriving at its solution are one. Hence this measure is a more
generalized formulation.
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In footprint-CA algorithm, the cases are ordered in the decreasing order
based on retention score or weighted retention score and the footprint-CA set
is initialized to an empty set. Each case is added to the footprint-CA set in
the sorted order if its solution cannot be adapted using the subset of cases in
the footprint-CA set. This algorithm is given in Algorithm1. This algorithm is
a greedy algorithm and it ensures that the cases with high retention score or
weighted retention score are added first to the footprint set.

Algorithm 1. FootprintCA algorithm
Input: Cases sorted based on retention score, Output: FootprintCA

Cases ← Sorted cases according to their retention score
FootprintCA ← {}
Changes ← true
while Changes do

Changes ← false
for each c ∈ Cases do

if none of the composite solution of c is a subset of FootprintCA then
Changes ← true
Add c to FootprintCA

Optimal Footprint Method for Case-Base Maintenance. The optimal
footprint method proposed by Mathew et al. [12] for case-base maintenance aims
at identifying a minimal size footprint set with maximum ability to obtain solu-
tions that are close to the desired solution of target problems in single case adap-
tation settings. This method addresses the limitation of the footprint approach
in [2] that this method (i) does not guarantee to obtain a minimum size footprint
set, (ii) does not consider the problem solving ability of cases in the footprint
set to arrive at solution of rest of the cases in the case-base. The goal of optimal
footprint method is to estimate an optimal footprint set (Footprintopt ⊆ C) as
representatives such that

1. Footprintopt can solve all cases in C with high solution quality
2. Footprintopt size is minimal

In this approach, a problem solving ability matrix is constructed in which the
ij th value indicates the extent to which the case ci is able to arrive at a solution
for the case cj . Let it be denoted as P (ci, cj). A loss function of a case ci is
defined with respect to the optimal footprint set (Footprintopt) as 1 − P (cj , ci)
where cj can obtain solution for ci. If a case ci can be solved by more than one
case in Footprintopt, the maximum problem solving ability is taken. The loss
function of a case ci is defined mathematically as,

lossci = 1 − max
cj∈C

P (cj , ci) ∗ xcj (5)

where xcj indicates whether the case cj is an element of Footprintopt or not.

xci =

{
1 if ci ∈ Footprintopt,
0 otherwise.

(6)
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The objective of the proposed optimization formulation by Mathew et al. [12]
is to minimize the footprint size and the overall loss of all cases in the case-
base, and the footprint set is constrained to obtain solution for all cases in the
case-base. The objective function and constraints are defined as.

min
∑

ci∈C

(lossci + xci) (7a)

subject to
∑

ci∈C

Covci = |C|, (7b)

xci ∈ {0, 1} ∀1 ≤ i ≤ n. (7c)

where Cov is a vector, which indicates whether a case ci can be solved by the
footprint Footprintopt or not. This formulation is defined only for the case when
the solution of a single case is adapted to arrive at a solution of target case
(i.e. the single case adaptation process). The definition of loss function does not
capture compositional adaptation process where the solutions of multiple cases
are adapted to arrive the solution of the target case.

3 Proposed Optimization Formulation

In this section, we discuss the proposed optimization formulation to identify the
optimal footprint set for compositional adaptation applications. First we intro-
duce the preliminary definitions and then discuss the optimization formulation.

3.1 Preliminary Definitions

Let C be a set of cases in the case-base. We define a binary vector x such
that x =< xci >ci∈C, where each element xci corresponds to a case ci ∈ C

and it indicates that whether the case ci is present in the optimal footprint set
(Footprint-CAopt) or not, i.e.,

xci =

{
1 if ci ∈ Footprint-CAopt,

0 otherwise.
(8)

Consider the set of cases C ′ such that C ′ ∈ ReachabilityCA(ci). The solutions
of a set of cases in C ′ can be used to arrive at a solution for the case ci. The
extent to which each set C ′ in the ReachabilityCA(ci) arrives at a solution for
ci is captured by the problem solving ability. It is denoted as P(C′, ci) and its
properties are given below.

1. 0 ≤ P(C′, ci) ≤ 1
2. P(C′, ci) = 1 if C′ = {ci}

The objective of the proposed formulation is to minimize the footprint set
and maximize the problem solving ability of footprint set. The vector x captures
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the presence of each case in the footprint set. In order to represent the second
criterion, we define the problem solving ability of footprint cases to arrive at
a solution for each case in the case-base. We denote the maximum problem
solving ability of the footprint set to arrive at a solution for the case ci as
MAX PSAFP (ci). This term considers the maximum problem solving ability
due to the reason that the solution for a case can be obtained by multiple sets
of cases in the footprint set. For example: Let the footprint cases be c1, c2, c3
and the ReachabilityCA(c4) = {{c1, c3}, {c2}}. The cases {c1, c3} together solve
the case c4 with the problem solving ability 0.8 and the case {c2} solves c4 with
problem solving ability 0.5. Then the MAX PSAFP (c4) = 0.8. The properties of
(MAX PSAFP ) are,

1. For each case ci ∈ C, MAX PSAFP (ci) ranges between 0 and 1
2. If a case ci is present in the footprint set, then MAX PSAFP (ci) is 1.
3. If the cases in the footprint set cannot obtain a solution for a case ci, then

MAX PSAFP (ci) is 0.

Mathematically, the MAX PSAFP of a case ci is defined as

MAX PSAFP (ci) = max
C′∈ReachabilityCA(ci)

P (C′, ci) ∗ I(C′) (9)

where P (C′, ci) is the problem solving ability of the set of cases C
′ to arrive at

a solution for ci and I(C′) is an indicator function which returns 1 if all cases
in C

′ are elements of footprint set otherwise it returns 0. More precisely, I(C′)
is defined as

I(C′) =

{
1 if all cases in C

′ are elements of footprint set
0 Otherwise

(10)

In order to capture the above indicator function by the optimization solver, the
indicator function I(C′) can be re-written as

I(C′) = max

(
0,

( ∑

cj∈C′
xcj

)
− |C ′| + 1

)
(11)

In Eq. 11, if all cases in C
′ are not elements of footprint set, the second term

returns a negative value and due to the max term this function will return zero.
If all cases in C

′ are elements of footprint set, then the second term will be one.
Using the formulation of I(C′) in Eq. 11, MAX PSAFP (ci) is re-written as

MAX PSAFP (ci) = max
C′∈ReachabilityCA(ci)

(
0,

(
P (C ′, ci)∗

( ∑

cj∈C′
xcj−|C ′|+1

)))

(12)
Let Cov = <Covci>ci∈C be a vector, which indicates whether a case ci can

be solved by the footprint Footprint-CAopt or not. Mathematically, it is defined
as,

Covci =

{
1 if ci can be solved by Footprint-CAopt

0 otherwise
(13)
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3.2 Optimization Formulation

The objective of our proposed method is to arrive at an optimal footprint set
(Footprint-CAopt) for compositional adaptation applications which satisfies the
following criteria.

1. minimize the size of Footprint-CAopt

2. maximize the problem solving ability of the footprint set Footprint-CAopt

3. it should be possible to arrive at solutions for the rest of the cases in the
case-base by adapting the solutions of cases in the Footprint-CAopt

The first criterion can be recorded by the binary vector x and the summation
of this vector results in the footprint set size. The second criterion is captured
by the term MAX PSAFP (ci), i.e., the maximum problem solving ability of the
footprint set to arrive a solution of the case ci. These two factors are repre-
sented in the objective function of the following optimization formulation and
the third criterion is captured by the constraint 14b. We define the optimization
formulation as

min
∑

ci∈C

α ∗
(
1 − MAX PSAFP (ci)

)
+ (1 − α) ∗ xci (14a)

subject to
∑

ci∈C

Covci = |C|, (14b)

xci ∈ {0, 1}∀1 ≤ i ≤ n. (14c)

Here, α is the trade-off parameter between footprint set size and problem solving
ability and 0 ≤ α ≤ 1. The constraints of the above formulation are linear
and convex. However, the formulation is concave due to the max term in the
calculation of MAX PSAFP (ci). A similar concave formulation was encountered
in the optimization formulation [12] discussed in Sect. 2.2 due to the max term.
In [12], Mathew et al. uses an equivalent linear function of max term by using
a binary variable. The equivalent linear function to find the value of y which is
equal to max(v1, v2, . . . , vn) is given below where vi is an integer for all 1 ≤ i ≤ n.

y ≥ vi ∀1 ≤ i ≤ n, (15a)
y ≤ vi + 1 − di ∀1 ≤ i ≤ n, (15b)
n∑

i=1

di = 1, (15c)

di ∈ {0, 1} ∀1 ≤ i ≤ n, (15d)

where the constraint 15a assigns a lower bound for y which will be equal to
the max(v1, v2, . . . , vn). In constraint 15b, the binary variable d finds an upper
bound for y. The constraints 15c and 15d ensure that only one value of d is 1
and remaining are 0. The vi value corresponds to di = 1 acts as the upper bound
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for y variable as per constraint 15b. All these constraints together find a feasible
solution only when di = 1 for the vi with maximum value.

Using this idea, the equivalent formulation of MAX PSAFP (ci) in Eq. 12 can
be written as,

MAX PSAFP (ci) ≥
(

P (C ′, ci) ∗
( ∑

cj∈C′
xcj − |C ′| + 1

))
,

∀C ′ ∈ ReachabilityCA(ci), 1 ≤ i ≤ n (16a)

MAX PSAFP (ci) ≤
(

P (C ′, ci) ∗
( ∑

cj∈C′
xcj − |C ′| + 1

))
+ 1 − dj ,

∀C ′ ∈ ReachabilityCA(ci), 1 ≤ i ≤ n, (16b)
MAX PSAFP (ci) ≥ 0 ∀1 ≤ i ≤ n (16c)
n∑

i=1

di = 1, (16d)

di ∈ {0, 1} ∀1 ≤ i,≤ n. (16e)

Using this equivalent formulation of MAX PSAFP (ci), the convex optimiza-
tion formulation of our proposed solution is given below.

min
∑

ci∈C

α ∗
(
1 − MAX PSAFP (ci)

)
+ (1 − α) ∗ xci (17a)

subject to
∑

ci∈C

Covci = |C|, (17b)

xci ∈ {0, 1} ∀1 ≤ i ≤ n, (17c)

MAX PSAFP (ci) ≥
(

P (C ′, ci) ∗
( ∑

cj∈C′
xcj − |C ′| + 1

))
,

∀C ′ ∈ ReachabilityCA(ci), 1 ≤ i ≤ n,
(17d)

MAX PSAFP (ci) ≤
(

P (C ′, ci) ∗
( ∑

cj∈C′
xcj − |C ′| + 1

))
+ 1 − dj ,

∀C ′ ∈ ReachabilityCA(ci), 1 ≤ i ≤ n,
(17e)

MAX PSAFP (ci) ≥ 0 ∀1 ≤ i ≤ n (17f)
n∑

i=1

di = 1, (17g)

di ∈ {0, 1} ∀1 ≤ i,≤ n. (17h)

This is a mixed integer programming problem, and the objective function and
constraints are linear and convex.
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Fig. 1. A sample case-base network

Table 1. ReachbilityCA and problem solv-
ing ability of cases in the ReachbilityCA set
of each case to arrive a its solution

Case (c) ReachabilityCA(c) Problem solving ability

c1 {{c2}} P ({c1}, c1) = 1,

P ({c2}, c1) = 0.9

c2 {{c1}} P ({c1}, c2) = 0.1,

P ({c2}, c2) = 1

c3 {{c1, c2}} P ({c1, c2}, c3) = 1,

P ({c3}, c3) = 1

c4 {{c1, c2}, {c3}, {c5}} P ({c1, c2}, c4) = 0.9,

P ({c3}, c4) = 0.5,

P ({c4}, c4) = 1,

P ({c5}, c4) = 0.1

c5 {{c1}, {c1}} P ({c1}, c5) = 0.8,

P ({c4}, c5) = 1,

P ({c5}, c5) = 1

For example, consider a sample case-base which contains cases C =
{c1, c2, c3, c4, c5}. We draw a case-base network in Fig. 1 where an edge from
case c1 to case c2 means the solution of c1 can be adapted to arrive at a solu-
tion for the case c2 and the edge weight indicates the problem solving ability
of c1 to find solution for c2. In this network the solution for the case c3 can
be obtained by the combined solution of the cases c1 and c2. This is indicated
by the arc joining the edges (c1, c3) and (c2, c3) and it is an example of com-
positional adaptation. The ReachabilityCA of all cases in this network and the
problem solving ability of the elements in the ReachabilityCA of each case to
arrive at its solution are listed in Table 1. In this table, we have included the
problem solving ability of each case to arrive at its own solution which is marked
as 1, i.e., P ({ci}, ci) = 1 ∀ ci ∈ C.

Using the details in Table 1, we obtain the optimal footprint set
(Footprint-CAopt) based on the proposed formulation. This footprint set is com-
pared with the Footprint-CA sets obtained using retention score and weighted
retention score. The footprint set comparison is listed in Table 2. In this table,
the column Total MAX PSAFP stands for the summation of MAX PSAFP of all
cases in the case-base and the column Objective value stands for the value of the
objective function in the proposed formulation with respect to the corresponding
footprint set. In this example, we can observe that the footprint set size obtained
using optimal footprint method is minimum with maximum Total MAX PSAFP

and this results in minimum objective value compared to other methods.

4 Experimental Evaluation

We evaluate the proposed methods on prediction datasets which are available in
UCI Repository [6] such as housing, auto MPG, hardware, and automobile. The
goal of these datasets is to predict the housing price, fuel consumption, estimated
relative performance, and automobile price respectively. These datasets are pre-
processed by removing the data instances with unknown values, and the feature
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Table 2. Comparison of footprint size and total MAX PSAFP for the example in Fig. 1

Method Footprint set Total MAX PSAFP Objective value

Footprint-CAopt {c1, c2} 4.7 2.3

Footprint-CAWRS {c1, c4, c3} 4.1 3.9

Footprint-CARS {c1, c3} 3.4 3.6

values are normalized between 0 and 1. We considered only numeric features in
all these datasets. The dataset statistics are summarized in Table 3.

Table 3. Dataset statistics

Dataset #instances #features

Housing 506 13

Auto MPG 392 7

Hardware 209 7

Automobile 194 12

We construct a case-base out of each dataset and identify the footprint set.
Each instance in the dataset is considered as case; the feature values of each data
instance are part of the problem component of the case and the target value is
considered as its solution component. We say a case (or data instance) c1 solves
another case c2 when the problem components of c1 and c2 are similar and the
solution adapted using c1’s solution is close to the solution of c2. The similarity
of problem components are estimated using the k -nearest neighbor algorithm [8].
The solution for the target case is adapted from the solutions of k -nearest cases
by taking average of its target value. The closeness of the predicted solution to
its actual solution is validated by keeping an acceptable prediction error (APE)
[7] fixed at 5% where APE is defined as,

APE =
|yactual − ypredict|

yactual
(18)

where yactual is the actual solution of ci and ypredict is the estimated solution
predicted by the set of cases in C

′ ∈ ReachabilityCA(ci). For each case in the
case-base, we obtain the ReachabilityCA set and the problem solving ability of
elements in its ReachabilityCA to arrive at its solution. The k -nearest cases of
a case ci are considered as a set of cases (say C

′). This set is an element of
ci’s ReachabilityCA set if the value predicted using the k -nearest cases is within
the acceptable prediction error. The problem solving ability of each element
in the ReachabilityCA(ci) set to find solution for the case ci (P (C′, ci) where
C

′ ∈ ReachabilityCA(ci)) is measured as,

P (C′, ci) =
1

1 + (yactual − ypredict)2
(19)
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We estimate the Footprint-CAopt set using the proposed optimization formu-
lation. Footprint-CAopt is compared with the footprint sets obtained using
greedy algorithms such as retention score based footprint (Footprint-CARS) and
weighted retention score based footprint (Footprint-CAWRS). For each dataset,
we constructed case-base using 2-nn and 3-nn. We report the footprint set size
and sum of MAX PSAFP values of all cases in the case-base for all three foot-
print sets. The results obtained for the case-base constructed using 2-nn and 3-nn
are given in Tables 4 and 5 respectively. The objective of the proposed formula-
tion is obtain a footprint set with minimum size and maximum ability to find
solution for the rest of the cases in case-base (total MAX PSAFP ) that is close
to its desired solution. In Table 4, we can observe that the total MAX PSAFP is
highest for the Footprint-CAopt in all datasets. In housing dataset, the optimal
footprint has the minimum size and maximum total MAX PSAFP value. For
the remaining datasets, retention score based footprint set size is the minimum.
However, its total MAX PSAFP value is much smaller than that of optimal
footprint set.

Table 4. Comparison of footprint size and Total MAX PSAFP over different datasets
for k = 2
Dataset Footprint-CAopt Footprint-CAWRS Footprint-CARS

Footprint

size

Total

MAX PSAFP

Footprint

size

Total

MAX PSAFP

Footprint

size

Total

MAX PSAFP

Housing 362 465.75 365 455.62 366 444.27

Auto MPG 271 353.32 270 348.77 268 335.35

Hardware 143 177.82 143 176.39 142 172.36

Automobile 129 184.1 128 181.82 127 177.94

Table 5. Comparison of footprint size and total MAX PSAFP over different datasets
for k = 3
Dataset Footprint − CAopt Footprint − CAWRS Footprint − CARS

Footprint

size

Total

MAX PSAFP

Footprint

size

Total

MAX PSAFP

Footprint

size

Total

MAX PSAFP

Housing 393 467.26 394 464.39 399 458.03

Auto MPG 296 365.51 296 359.49 299 348.82

Hardware 159 186.36 159 183.27 154 181.13

Automobile 139 186.36 138 184.45 137 179.21

In Table 5, we report the footprint set size and total MAX PSAFP values
obtained for all datasets when the case-bases are constructed using 3-nn. The
optimal footprint sets score the highest total MAX PSAFP values for all datasets
and lowest footprint set size for housing and auto MPG datasets.

We analyze the trade-off between the size and the problem solving ability
of footprint set. The α parameter in Eq. 17a of the optimization formulation is
varied between 0 to 1 for this analysis. At α = 0, we obtain a footprint set which
is optimized only based on size and at α = 1, the footprint set will be optimized
only based its problem solving ability. We illustrate the trade-off analysis in
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Fig. 2. Trade-off between footprint size and MAX PSAFP for all datasets when case-
bases are constructed using 2-nn

Fig. 3. Trade-off between footprint size and MAX PSAFP for all datasets when case-
bases are constructed using 3-nn

Figs. 2 and 3 for all four datasets when case-bases are constructed using 2-nn
and 3-nn respectively. We report the footprint set size as the percentage of cases
identified as cases in the footprint set. We can observe that the percentage of
cases in the footprint set increases with an increase in α. For α > 0.5, footprint
set size increased substantially and at α = 1 all the cases in the case-base are
marked as footprint cases in all datasets for both 2-nn and 3-nn. The total
MAX PSAFP represents the overall problem solving ability of footprint cases.
This value increases with an increase in the value of α. The overall problem
solving ability of footprint cases is highest at α = 1 for all datasets and at this
α value all cases in the case-base are footprint cases.

The performance generalization of the proposed method is studied by ana-
lyzing the prediction performance of the footprint set. We split each dataset into
5-fold train-test split and obtained the footprint sets from the train data. Each
footprint set is used for training and the prediction performance is evaluated over
the test data using mean squared error (MSE). The average footprint set size
and the mean squared error over the test data when trained with footprint sets
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Table 6. Average footprint size and MSE analysis over test data when trained with
footprint sets- Footprint-CAopt, Footprint-CAWRS and Footprint-CARS

Dataset Footprint size Mean squared error

Footprint-

CAopt

Footprint-

CAWRS

Footprint-

CARS

Footprint-

CAopt

Footprint-

CAWRS

Footprint-

CARS

Housing 337.6 339.0 340.0 22.3 23.27 24.82

Auto MPG 233.2 234.8 238.0 9.0 9.18 9.22

Hardware 154.6 154.8 154.8 363.04 365.17 367.12

Automobile 123.2 123.6 124.4 6.89 7.38 7.42

such as Footprint-CAopt, Footprint-CAWRS and Footprint-CARS are reported in
Table 6. We can observe the size and mean squared error of Footprint-CAopt is
the lowest for all datasets. The improvements of Footprint-CAopt are statistically
significant in paired t-test for all datasets with p-value less than 0.1.

Table 7. Run time analysis

Dataset Time in seconds

Footprint-CAopt Footprint-CAWRS Footprint-CARS

Housing 5.79 0.24 0.18

Auto-MPG 4.6 0.15 0.39

Hardware 2.63 0.1 0.08

Automobile 2.47 0.11 0.09

In Table 7, we report the time taken to arrive at all footprint sets such as
Footprint-CAopt, Footprint-CAWRS and Footprint-CARS . The machine in which
we run the program is configured with i7 processor, 1.9 GHZ, 16 GB RAM and
SSD harddisk. In this analysis, we can observe as expected that the optimal
footprint is taking more time compared to other greedy algorithms. However,
the optimal footprint set is obtained within a few seconds for all datasets.

5 Conclusion

In this paper, we propose an optimization formulation to arrive at an optimal
footprint set for the compositional adaptation applications of which single case
adaptation is a special case. The proposed formulation minimizes the size of the
footprint set as well as maximizes the ability of footprint set to arrive at a solu-
tion close to the desired solution for the rest of the cases in the case-base. The
trade-off analysis between the footprint set size and its performance are illus-
trated using the proposed formulation. In the future, we would like to extend the
evaluation to more complex domains with more complex compositional adapta-
tion approaches.
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Abstract. The imitation of human playing style has been gaining rele-
vance in both the Artificial Intelligence for Games research community
and the Digital Game industry over the last decade, achieving a special
importance in recent years. The goal of these virtual players is to deceive
real players and be perceived just as another human player. Although this
challenge can be addressed using different Imitation Learning techniques,
classic supervised learning approaches do not usually work well due to the
violation of the independent and identically distributed assumption for
random variables. No regret algorithms in online learning settings seem
to outperform previous approaches. In this work we describe an inter-
active and online case-based reasoning system in which the bot gives
control to the human player when it reaches game states that are not
well represented by cases in its case base, and regains control when the
game states are known again. Results show that (1) the amount of human
intervention decreases rapidly, (2) the case base needed to achieve reason-
able imitation is considerable smaller than that used in a non-interactive
approach (3) the resulting agent outperforms other agents using non-
interactive CBR.

Keywords: Interactive online learning ·
Learning from demonstration · Human behavior imitation ·
Case-based reasoning · Interactive entertainment

1 Introduction

One of the main challenges in Artificial Intelligence (AI) has always been to build
agents that mimic human behavior. Researchers are always looking for problems
that are demanding but feasible at the same time, in order to advance in their
mission of resembling human intelligence in a computer. For this reason, digital
games are popular testbeds and several competitions on developing believable
characters have emerged during the last decade [8].

There is a widespread assumption in the Digital Game industry that wher-
ever there is a machine-controlled character, the game experience will benefit
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if it behaves in a less “robotic” way. In fact, if virtual players (bots) play in a
more “human” way, real players perceive the game to be less predictable, more
replayable, and more challenging than if the bots were hand-coded [24]. For this
reason, player modeling in video games has been an increasingly important field
of study, not only for academics but for professional developers as well [29].

These human-like computer bots can come in handy in a wide variety of
scenarios, from enriching the game experience to helping video game developers
in the production stage. Regarding the game experience, these agents can be used
to create more believable enemies in action games to confront the human player,
but also to collaborate with him or to illustrate how to succeed in a particular
game level, helping the players who get stuck. It is reasonable to think that
these computer-played sequences will be more meaningful if the bots imitate the
playing style of other human players.

Virtual players can also be used during the testing stage of the video game
development process, not only to check whether the game crashes or not, but to
verify if the levels have the right difficulty or to find new ways to solve puzzles.
This application could be especially useful in games with a strong focus in the
procedural content generation, where it is virtually impossible for human testers
to cover all the content than can be generated. Finally, the creation of behaviors
for non-player characters (NPCs) is a complex task that requires the collabora-
tion among programmers and game designers. Different approaches have been
proposed to create these behaviors without technical knowledge using program
by demonstration [23] or temporal difference reinforcement learning [7].

Despite the popularity of the Turing test, there is no rigorous standard to
determine how human is an artificial agent in a video game [6]. Furthermore,
there is not a clear concept about what a believable AI should achieve, and its
expected behavior will vary strongly depending on what it is supposed to imitate:
to emulate the behavior of other players or to create lifelike characters [12].

Previous works addressed the problem of imitating human players using dif-
ferent supervised learning approaches. Neuroevolution [14] has been used in Ms.
Pac-Man as it had been used successfully in other game domains [17], and more
recently case-based reasoning [15] has been proposed due to its capacity for imi-
tating spatially-aware autonomous agents in a real-time setting [1], obtaining
promising results when imitating human players with different playing styles.
In all these approaches the problem of violating the independent and identi-
cally distributed (i.i.d.) assumption for random variables in supervised learning
is faced, because the “training set” (the traces of examples used in the training)
and the “test set” (how the agent actually plays) does not come from the same
distribution. These agents apparently achieved very good results (high accuracy,
recall, and f-score) but they performed far worse when acting on their own.

In this work we describe an interactive and online case-based reasoning
(CBR) system in which the bot gives control of the character to the human
player when the bot reaches game states that are not well represented by cases
in its case base, and regains control when the game states are known again. This
way, the human player acts like an instructor that teaches the CBR system how
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to correct its bad decisions and come back to well-known game states. Results
show that the amount of human intervention decreases rapidly, the case base
needed to achieve reasonable imitation is considerable smaller than that used in
a non-interactive approach and the resulting agent outperforms a non-interactive
one. In order to evaluate the “humanness” of the bot, standard low level met-
rics such as accuracy or recall have been proven to be ineffective to determine
whether two behaviors are similar or not when these are stochastic or require
memory of past states [16], so we use a set of high level metrics [15] that are
able to capture to some extend different styles of play and skill levels of different
players.

The rest of the paper is structured as follows. Next section summarizes the
related work in the field. Section 3 describes the internals of the game framework
that we use in our experiments. The following two sections describe the inter-
active online CBR agent and the role of the human expert during the training
process. Sections 6 and 7 detail the setup of the experiments and the promising
results that we have obtained. Finally, we close the paper with some conclusions
and future lines of research.

2 Related Work

Several works regarding the imitation of behavior in video games can be found in
the scientific literature, for imitating human players and also script-driven char-
acters. The behavior of an agent can be characterized by studying all its proactive
actions and its reactions to sequences of events and inputs over a period of time,
but achieving that involves a significant amount of effort and technical knowl-
edge [28] in the best case. Machine Learning (ML) techniques can be used to
automate the problem of learning how to play a video game either progressively
using players’ game traces as input, in direct imitation approaches, or using some
form of optimization technique such as Evolutionary Computation or Reinforce-
ment Learning to develop a fitness function that, for instance, “measures” the
human likeness of an agent’s playing style [25].

Traditionally, several ML algorithms, like ANNs and Naive Bayes classifiers,
have been used for modeling human-like players in first-person shooter games
by using sets of examples [4]. Other techniques based on indirect imitation like
dynamic scripting and Neuroevolution achieved better results in Super Mario
Bros than direct (ad hoc) imitation techniques [17].

Case-based reasoning has been used successfully for training RoboCup soccer
players, observing the behavior of other players and using traces taken from the
game, without requiring much human intervention [3]. Related to CBR and
Robotic Soccer, Floyd et al. [1] also noted that when working in a setting with
time constraints, it is very important to study what characteristics of the cases
really impact the precision of the system and when it is better to increase the size
of the case base while simplifying the cases. Furthermore, they described how
applying preprocessing techniques to a case base can increase the performance
of a CBR system by increasing the diversity of the case base.
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About how the cases for the case base are obtained, we follow a similar
approach as the described by Lam et al. [10], as the cases are generated in an
automated manner by recording traces of the player that will be imitated as pairs
of scene state (scene as a representation of the player’s point of view) - player’s
outputs. Floyd and Esfandiari [2] incorporated active learning with learning by
observation studying how to create sequences of problems to show to the expert.
Finally, Lamontagne et al. [11] also studied how the cases could be built from
sequential traces during game demostrations in Pac-Man.

Concerning human-like agents, there have been several AI competitions
including special tracks for testing the human likeness of agents using Turing-like
tests. One of these competitions is the Mario AI Championship1, which included
a “Turing test” track where submitted AI controllers compete with each other
for being the most human-like player, judged by human spectators [26]. The
BotPrize competition [8] focuses on developing human-like agents for Unreal
Tournament, encouraging AI programmers to create bots which cannot be dis-
tinguished from human players. Finally, Ms Pac-Man vs Ghosts, the framework
that we use for this work, has been used in different bot competitions during
the last years [13]. After some years discontinued, it returned in 20162 to be
celebrated yearly [27].

The problem of violating the i.i.d. assumption in imitation learning has been
addressed before with no regret algorithms in online learning settings resulting
in algorithms like SMILe and DAgger proposed by Ross et al. [21,22] which
outperform previous approaches like Searn [9] in the Super Tux Kart and Super
Mario Bros video games. However, these methods have limitations when the
demonstrator is a human player. Because of this, more recently, Packard and
Ontañón presented SALT, which main idea is to let the learning agent play until
it has moved out of the space for which it has training data, giving the control
to the expert at this point to show the agent how to get back into this space,
turning the learning process into an i.i.d. task allowing the use of supervised
learning algorithms [18]. Further on, they extended this approach studying its
efficiency in environments where the amount of training data the learning agent
is allowed to request from the expert is limited [19]. These methods inspired the
interactive-CBR system described in this work.

Finally, about the use of Pac-Man as test bed for imitation learning, it should
be noticed that, during decades, it has been considered a promising platform for
research due to its many characteristics that make it stand out from other games.
Thus, there have been nearly 100 different approaches covering a wide selection
of techniques used to develop controllers for Pac-Man or the ghosts, including
Rule-based and finite state machines, tree search and Monte Carlo, evolutionary
algorithms, neural networks, neuro-evolution and reinforcement learning [20].

1 http://www.marioai.org/.
2 http://www.pacmanvghosts.co.uk/.

http://www.marioai.org/
http://www.pacmanvghosts.co.uk/
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Fig. 1. A screenshot of Ms. Pac-Man vs. Ghosts

3 Ms. Pac-Man vs. Ghosts

Pac-Man is an arcade video game produced by Namco and created by Toru
Iwatani and Shigeo Fukani in 1980. Since its launch it has been considered as
an icon, not only for the video game industry, but for the 20th century popular
culture [5]. In this game, the player has direct control over Pac-Man (a small
yellow character), pointing the direction it will follow in the next turn. The level
is a simple maze full of white pills, called Pac-Dots, that Pac-Man eats gaining
points. There are four ghosts (named Blinky, Inky, Pinky and Sue) with different
behaviors trying to capture Pac-Man, causing it to lose one life. Pac-Man initially
has three lives and the game ends when the player looses all of them. In the maze
there are also four special pills, bigger than the normal ones and named Power
Pellets or Energizers, which make the ghosts “edible” during a short period of
time. Every time Pac-Man eats one of the ghosts during this period, the player
is rewarded with several points.

Ms. Pac-Man vs Ghosts (see Fig. 1) is an implementation of Pac-Man’s sequel
Ms. Pac-Man in Java designed to develop bots to control both the protagonist
and the antagonists of the game. This framework has been used in several aca-
demic competitions during the recent years [27] to compare different AI tech-
niques. Some of these bots are able to obtain very high scores but their behavior
is usually not very human. For example, they are able to compute optimal routes
and pass very close to the ghosts while human players tend to keep more distance
and avoid potential dangerous situations.

The Ms. Pac-Man vs. Ghosts API represents the state of the game as a graph
in which each node corresponds to a walkable region of the maze (which visually
is a 2 × 2 pixels square). Each node can be connected to up to other four nodes,
one in each direction (north, east, south and west), and can contain a Pac-Dot,
a Power Pellet, one or more ghosts, Ms. Pac-Man herself or nothing at all (i.e.
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the node represents an empty portion of the maze). The full graph representing
the state of the first level of the game contains 1293 nodes.

The framework provides a few examples of simple bots that can be used as
entry points for developing new ones. Among the controllers included for the
ghosts there is the StarterGhosts controller with which the ghosts have a simple
behavior: if the ghost is edible or Ms. Pac-Man is near a Power Pellet, they
escape in the opposite direction. Otherwise, they try to follow Ms. Pac-Man
with a probability of 0.9, or make random movements with a probability of 0.1.
Visually, this makes the controller to appear like having 2 different states: they
try to reach Ms. Pac-Man unless they are edible (or Ms. Pac-Man is very close
to a Power Pellet) in which case they will try to escape. We use this controller
for the ghosts because it has a behavior that is neither too complex nor too
simple, enriching the game space states with slight variations depending on Ms.
Pac-Man’s situation and some minor random decisions.

4 The CBR Agent

It is interesting to note that even a classic arcade game such as Pac-Man hides a
very high dimensional feature space that is a challenge for ML algorithms. The
full state representation of the game contains 256 different parameters and the
player can perform 5 possible actions at each game step (move left, right, up,
down or neutral). Typically, an averaged-skill human player needs between 1200
to 1800 game steps to complete one level of the game, and the trace of a game
contains thousand of pairs (state, action).

Next, we summarize the CBR system that we use as the basis to implement
the interactive system that we describe in the following section (see [15] for more
details). Cases describe pairs (state, action) where the state is represented using
the following abstract features:

– distances to the closest Pac-Dot in each direction (p).
– distances to the closest Power Pellet in each direction (pp).
– distances to the closest ghosts in each direction (g).
– time (game steps) the nearest ghost will remain edible in each direction (eg).
– direction chosen by the player in the previous game step (la).
– direction chosen by the player in the current game step (a).

The first 4 features are four-dimensional vectors containing scalar values (dis-
tance or time) for each direction. The last 2 features are categorical variables
with 5 possible values: left, right, up, down, neutral (neutral means to main-
tain a direction than makes unable to transition to another node of the maze,
i.e. the agent is stuck in a corner without selecting a really possible direction).
The remaining edible time in each direction is a scalar value ranging from 0
(the closest ghost via that direction is not edible) and 200 (Ms. Pac-Man has
just eaten a Power Pellet). The direction chosen in the previous game step is
important so the bot is not purely reactive (decisions based only on the cur-
rent game state) and contains a simple internal state describing where it comes
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from. Although limited and short-term, this memory-based representation has
an important impact in the performance of the bot.

The similarity between cases is computed as a linear combination of the
similarities between the vectors which, in turn, is computed as the inverse of the
euclidean distance. This way, we can weight the contribution of each feature to
the final similarity value. The action chosen in each game state is decided by a
majority vote using the 5 most similar cases in the case base, and in case of ties
the nearest neighbor is chosen.

5 The Interactive-CBR Agent

The CBR virtual agent described in the previous section suffers a problem that,
in fact, is common to other agents trained from human traces using supervised
learning algorithms. When the agent makes a mistake, i.e. selects a wrong action,
it is likely to reach a new game state that is more different from the ones rep-
resented in its case base. This is so because we consider an action to be wrong
if it was never selected in that game state by the human player the CBR agent
learned from. This way, the CBR agent is more likely to make another mistake
that will take it to another game state even more different from the ones in its
memory, increasing the probability of making new mistakes again.

Since we cannot prevent the CBR agent from making mistakes from time to
time, we introduce the role of a human expert or demonstrator that will teach
the CBR agent how to recover from those mistakes in real time and come back
to familiar situations. Once the game state is a situation that the CBR agent
recognizes (because its case base contains similar game states), the agent can
regain control of the game and keep playing. The intuition behind this approach
is that the more strategies the CBR agent learns to recover from mistakes, the
less long-time and therefore fatal mistakes will make.

A simplified flow diagram of the system is presented in the Fig. 2. Note that
both the CBR agent and the human expert can start playing the game. Besides,
the CBR agent can begin with an empty case base or using cases extracted offline
from previous games.

This approach is similar to SALT but introduces different policies to those
presented by Packard and Ontañón [18] based on the average similarity of the
case retrieval and the coefficient of a linear regression as detailed below.

In order to prevent continuous changes between the CBR agent and the
human expert we consider some minimum time thresholds. In particular, when
the human expert receives control of the game will play for at least 4 s, and
when the CBR agent takes control of the game will play for at least 2 s. Those
thresholds can be adjusted for each game and expert. In fact, performing our
experiments we learned that 2–4 s is probably too short, especially at the begin-
ning of training, where the CBR agent gives up control often, creating a stressful
situation for the expert. It is also important to stop the game until the human
expert is ready to take control. And provide visual feedback to let the human
player who is in control at all times. In order to do it, we change the color of
Ms. Pac-Man depending on who is currently playing.
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Fig. 2. Simplified flow diagram of the Interactive-CBR system.

When the CBR agent is playing, it retrieves the most similar cases to the
current game state from the case base and selects the following actions according
to a majority vote. It also stores the similarity values of the most similar retrieved
cases for the last 5 s of the game (125 similarity values). Using this window of
similarities, the agent computes 2 different values: the average similarity and the
coefficient of a linear regression. This last coefficient can be used to know whether
the similarities are growing (positive) or decreasing (negative) during the last
seconds of the game. That is, if the CBR agent is going towards a better known
set of game states or, on the contrary, is getting lost in less familiar situations.
Whenever the average similarity is too low or the slope of the linear regression
is too negative, the CBR agent gives control of the game to the human expert.
It is important to mention that there is no learning when the agent plays.

When the human expert plays, the CBR agent incorporates new cases to the
case base. It also retrieves the most similar case in the case base to the current
situation, even though the next action will be performed by the human expert.
This is because it is necessary to update constantly the window of similarities
of the last seconds of the game to decide when to take back control. When the
average similarity value exceeds a threshold, the game states are familiar again
and the CBR agent can play once again.

This way, the CBR system learns using an interactive approach and we expect
the human player to intervene less frequently and for shorter periods of time.

6 Experimental Setup

We have performed 2 different experiments to test the system. In the first one,
the interactive CBR agent begins with an empty case base and the human player
starts playing the game. The interactive CBR agent learns how to play switching
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control of the game with the human expert from time to time for 20 full games. In
the second experiment we study whether our interactive learning approach can
improve the imitative capacity of a CBR agent that has been previously trained
offline with the traces of 100 full games played by the same human player.

To evaluate the performance of the CBR agent we use both low level stan-
dard classification measures such as accuracy, recall and f-score, and high level
measures characterizing the style of play. To compute the accuracy, recall and
f-score we compare in how many game states the bot chooses the same action
the human player chose in the original game. This is equivalent to relocating
Ms. Pac-Man every time the bot makes a mistake, and it is a standard approach
in learning by imitation [17] because just one different decision can produce a
completely different game in a few game cycles.

On the other hand, the high level measures describe different ways to play
the game and were detailed in a previous work [15], although we have added two
new ones for these experiments (craving and hungry):

– Score: the final game score.
– Time: the duration of the game in game steps.
– Restlessness: number of direction changes per second.
– Recklessness: average distance to the closest ghost.
– Aggressiveness: number of ghosts eaten.
– Clumsiness: number of game steps in which the player is stuck against a wall.
– Survival : the number of lives left when the player completes the first level or

0 if the player dies before.
– Craving : average time elapsed between a Power Pellet is eaten and the first

edible ghost is eaten.
– Hungry : average time between two eaten Power Pellets.

We compute the average values of these high level metrics for each player
after playing 100 new games: the human player, the CBR agent that learns
offline from the traces of the human player, and the Interactive CBR agent that
learns online with the human player. This way we can compare the performance
of the interactive CBR agent and the offline CBR agent with respect to the
actual human player we aspire to imitate.

7 Results and Discussion

In the first experiment, after 20 games, the case base is filled up with 11,313 cases.
Figure 3 shows that, as we expected, the amount of human intervention rapidly
decreases during the experiment. Blue and red bars represent, respectively, the
amount of time played by the human player and the CBR agent. Different games
are marked using white and grey vertical columns.

During the first games, the human player plays most of the time but after 6
games the situation starts to change. From the ninth game, where the case base
of the agent already has 7,588 cases, the games are mainly played by the agent.
At this point, the CBR agent is capable of covering the most part of the maze
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Fig. 3. Game steps distribution between human and the CBR agent play. (Color figure
online)

Fig. 4. CBR agent’s case base size evolution during the test session.

and the similarities of the cases retrieved only fall in very specific situations (e.g.
a corner with more than one ghost near, or ghosts in the middle of a corridor
Ms. Pac-Man is facing straight). In particular the eighteenth game (g17 in the
Fig. 3) is entirely played by the CBR agent.

Figure 4 shows the number of cases in the case base during the experiment.
As the amount of human intervention decreases over time, so does the velocity
of gathering new cases.

Concerning the improvement in the ability of the CBR agent to imitate the
playing style of the human player, we set the agent to play 100 new games by
itself and measure the high level features explained in Sect. 6. Figure 5 shows the
average percentage difference between the values obtained by the human player
in 100 games and the values obtained by the CBR agent after each training
game. The difference suffers a significant fall until the ninth game, where the
average difference is bellow 30%. From there, the decrease is more discrete until
reaching an average difference of 25.72% after the twentieth game.

The temporary increase after the third game is related with the capacity
of the bot at this point to gain points eating pills, but it never tries to eat
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Fig. 5. Evolution of the average percentage difference between the high level parame-
ters obtained by a human player and the ones obtained by the CBR agent every game
finished (less is better).

any ghost. The capacity of going towards edible ghosts seems to be replicated
after the fourth game, but this specific behavior is not good enough until the
sixth game (after games 4 and 5, many times the agent goes towards the ghosts
without considering if they are edible or not).

From a simple phenomenological evaluation we can highlight some clear land-
marks: after one game (with 1,450 cases in the case base) the CBR agent seems
to have learned up to three different game openings depending on the closest
pills distribution but it also gets stuck easily and doesn’t evade any ghost. At the
end of the third game, with 3,583 cases in the case base, the agent has learned
to clean the top region of the maze but still does not have knowledge enough to
face the ghosts (they still eat Ms. Pac-Man easily). Advancing until the end of
the fifth game, with 5,849 cases in the case base, the agent starts to run away
from the closest non-edible ghost, and sometimes it goes towards the closest
edible ghosts and eats it. It also seems to replicate little micro-errors typical of
human players. From this point on, the impact of the learning seems to focus on
solving particular situations like escaping from more than one ghost in corners,
or learning to avoid a ghost to eat a pill that is behind it.

Comparing the performance of this online interactive approach with our non-
interactive approach, we can see an important improvement in terms of the
behavior of the CBR agent. Table 1 shows the percentage differences between
the high level measures obtained by the human player, and the ones obtained by
the interactive CBR after some training games. The closer to 0% is the value,
the more similar is the behavior of the bot with respect to the human player
(e.g. the interactive CBR agent after the first game obtained a Survival value of
100.0% because it is unable to complete the first level).

The last column of the table shows the values obtained by a not interactive
CBR agent that has been trained offline with the traces of 100 complete games
played by the human player. The not interactive CBR agent achieves an average
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Table 1. Percentage differences (less is better) of the high level metrics for the inter-
active CBR agent (ICBR n stands for the interactive CBR agent after game n). The
last column shows the values for the not interactive CBR agent trained offline with the
traces of 100 games.

HL parameter ICBR 1 ICBR 5 ICBR 10 ICBR 15 ICBR 20 Offline CBR 100

Score 96.15% 51.28% 3.77% 13.20% 5.41% 40.95%

Time 66.36% 30.42% 2.51% 14.63% 3.18% 18.30%

Restlessness 75.96% 6.11% 14.02% 22.95% 22.14% 13.01%

Recklessness 3.01% 12.36% 16.74% 3.56% 5.35% 24.92%

Aggressiveness 100.00% 65.90% 29.27% 17.14% 25.21% 47.13%

Clumsiness 91.21% 40.05% 42.28% 69.00% 63.82% 55.51%

Survival 100.00% 100.00% 99.56% 91.70% 79.48% 100.00%

Craving 100.00% 25.35% 16.60% 0.07% 6.02% 23.72%

Hungry 100.00% 59.77% 21.71% 26.12% 20.90% 55.85%

Avg 81.41% 43.47% 27.38% 28.71% 25.72% 42.15%

percentage difference of 42.15%, while this value is obtained with the interactive
approach after only 5 games (43.47%).

Regarding the size of the case bases, the not interactive CBR agent has
127.310 cases extracted from the traces of 100 games, although the agent obtains
similar values with the traces of 60 games (≈75,000 cases). Yet, the interactive
CBR agent achieves a similar performance after only 5 games with a case base
of 5,849 cases. Moreover, after 20 cases, the case base of the interactive agent
contains only 11,313 cases and, however, it is able to replicate much better the
style of play of the human player.

Finally, the evaluation using the low level metrics is not very interesting, as
we showed in [15], because we obtain very high values of accuracy, recall and
f-score (greater than 0.96), even after the first training game when the CBR
agent’s capacity to mimic the human style of play is very poor (1,450 cases in
the case base). This is probably because the levels are mazes and most of the
time Ms. Pac-Man just goes through corridors following the same direction.

Relative to the second experiment, the interactive CBR agent starts with
a case base containing 127,310 cases extracted from the traces of 100 games
previously played by the human player. As we expected, the system gives control
to the human expert in very specific moments and the segments played by the
human expert only last 4 s (the minimum amount of time the system forces the
human player to intervene). The human expert intervenes an average of 2 times
per game in this experiment and this number does not seem to evolve in contrast
to the first experiment.

Table 2 shows the percentage differences of the high level metrics in this
second experiment, and the impact of adding the new cases interactively is clearly
visible. After 5 games, the case base contains 1000 new cases (a 0.78% of the
total) and the agent improves from 42.15% to 34.05%. After 12 games, the case
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Table 2. Percentage differences (less is better) of the high level metrics of the CBR
agent trained offline with the traces of 100 games and then trained online interactively
for another 25 games.

127,310 cases 1000 new cases 2500 new cases 5000 new cases

Avg diff 42.15% 34.05% 27.32% 24.64%

base contains 2500 new cases (1.92% of the total) and the agent improves to
27.32%. After 25 training games, the case base only contains 5000 new cases
(3.78% of the total) and the style of play is only 24.64% different from the style
of the human player.

8 Conclusions

The creation of believable non-player characters in video games is a very impor-
tant research topic. There is a widespread assumption that agents that behave
in a more human way create richer game experiences for the players and increase
their engagement. As part of our research on imitation of human playing style
in video games, we propose a new online and interactive case-based reasoning
agent that improves to a great extend our previous not interactive approaches.

The interactive CBR agent achieves a much higher level of “humanity” with
less games and much smaller case bases. This is due to the quality of the cases
which are incorporated using the interactive approach. Since the CBR bot only
acquires new cases when it reaches game states that are not well known, the
cases represent more relevant and interesting experiences. Moreover, when the
human expert takes control, the CBR agent learns how to get back to familiar
game states from which the agent can play again. That is, in some way, that the
CBR agent is learning strategies to correct mistakes and we believe this is very
important feature of our approach.

On the other hand, the interactive learning approach forces the human expert
to be present and intervene during the whole training session. And the continuous
switches between the agent and the human expert can be an stressful experience
for the human. We have identified some important visual helps in the game to
make more evident who is controlling Ms. Pac-Man and we plan to adjust the
minimum time intervals so the training process will be easier for the expert.

Moreover, we have showed that the interactive approach can also be used in
improve the behavior of other agents trained offline from the traces of games
played by human players. This result makes us optimistic about the potential
of mixed approaches in which the human expert only needs to intervene during
part of the training process.

In the future work, we will study how to allow the expert to rectify behaviors
learned by the agent by mistake. Currently, it is the CBR bot who decides when
to give up control of the game to the human, but the expert should also be able
to take back control of the game when the agent is not behaving as expected.
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Congreso de la Sociedad Española para las Ciencias del Videojuego, 29 June 2016,
Barcelona, Spain, pp. 113–124 (2016)

15. Miranda, M., Sánchez-Ruiz, A.A., Peinado, F.: A CBR approach for imitating
human playing style in Ms. Pac-Man video game. In: Cox, M.T., Funk, P., Begum,
S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 292–308. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01081-2 20
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Abstract. One of the goals of a recommender system is to minimize
the cognitive load on the user and hence we cannot expect the users
to give extensive feedback. The lesser the feedback, the lesser we know
about the preferences of the user to make useful recommendations. This
work aims to make the most use of user-provided feedback with the help
of the hidden evidence in the casebase. The evidence for each product
is acquired based on the relation among the products in the domain.
The effectiveness of our approach is demonstrated through evaluation on
three product domains.

Keywords: Conversational Case-Based Recommender Systems ·
Preference-based feedback · Evidence-Based Retrieval ·
Dominance relations · Trade-offs

1 Introduction

The advent of mobile and internet technologies has led to a vast amount of
information readily available making collaborative filtering approaches to rec-
ommender systems effective. Even with such proliferation of data, there are still
domains where details about a user are not adequate. Say for example, in a real
estate business, it is highly unlikely that a user would make enough purchases to
capture the preferences of the user beforehand. In domains such as these, even
highly sophisticated methods are bound to fail due to the lack of data about
the user and her preferences, this condition is a well-known issue in data-driven
approaches, called the cold-start problem [1]. Case-based reasoning approaches
to recommender systems come to rescue when there is no sufficient data about
the user. They can be used to provide support in initial stages of collaborative
filtering based approaches. When the user has some idea about what to buy,
case-based recommender systems provide a way to specify their preferences and
proceed with the shopping.

It is unrealistic to expect the customer/user to know everything about the
product she wishes to buy. The user may have some criteria regarding the pur-
chase but she may not be in a position to express it exactly. When a customer
c© Springer Nature Switzerland AG 2019
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goes shopping from an off-line store, the sales representative converses with the
user and tries to understand the needs of the user and helps the user identify
the various products available in the store that could satisfy the needs of the
customer. Conversational Case-Based Recommender Systems (CCBR-RSs) aims
to simulate the job of a sales representative in an online setting. A CCBR-RS
engages the user in a conversation by which the user preferences are captured and
it facilitates the user to iteratively modify the query such that she can identify
the product of her interest.

The idea of utilizing the relationship among the products in the recommen-
dation has been used in literature [7,9,11]. All these works build on the trade-off
relation that one product has over the other. The empirical results from these
works suggest the need for considering the relationship between the products in
the process of recommendation. In this work, we motivate the need for looking
at the conversation with the user as a process of aggregating evidence against
each product. The products that have accumulated higher positive evidence will
be recommended at each interaction cycle. It can be compared to the act of the
sales representative who observes the preference choices of the user and when he
gets enough evidence that the user would be interested in a particular product
he would recommend that product. We use leave one out methodology [12] to
measure the efficiency of the CCBR-RS in terms of the average number of cycles
taken for a successful recommendation. The lesser the cycle lengths the efficient
the system. The paper is structured as follows. First, we provide the background
and works related to this work from literature in Sect. 2. Our contribution is
detailed in Sect. 3. The empirical evaluation of our idea and the results are given
in Sect. 4 followed by discussion in Sect. 5 and conclusion in Sect. 6.

2 Background and Related Works

The two major approaches in CCBR-RSs are Navigation by asking and Navi-
gation by proposing [2]. Since the process of conversation with the user can be
seen as the user navigating through the product space, hence the name. In the
systems based on navigating by asking, the user is asked about the specifics of
the feature values at each interaction. In navigation by proposing, the system
proposes a set of products to the user and expects feedback from the user in
the form of critiques, ratings and preference-based feedback. In preference-based
feedback, the user is presented with the set of products and the user just has
to pick one product as her preferred product. Among the feedback mechanisms,
preference-based feedback poses lesser cognitive load on the user as pointed out
in the work by Smyth [4].

We restrict our focus to navigation by proposing with preference-based feed-
back as it poses less cognitive load on the user in terms of the feedback the
user had to provide. The interaction with the system is two-phased; the rec-
ommendation phase and the feedback phase. The interaction with the system
starts by the user giving a query. The query is mostly a set of feature values.
For example, in the camera domain, the query could look like {500$, 5MP}. The
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user need not give her preferences on all of the features in the domain. We alter-
nate between (a) Recommendation phase, where the system recommends a set of
products based on the query/feedback, and (b) Feedback phase, where the user
selects one of the recommended products(preference feedback). The preference
feedback in the feedback phase becomes the query for the next recommenda-
tion phase. This interaction cycle stops either when the user accepts one of the
product as her product of desire or when the user gives up on her search.

In some domains like the camera domain, the features of the products can
be classified as More is Better (MIB) and Less is Better (LIB). For example,
when two products are similar to each other across all features except the price
feature, people tend to choose the one with the lesser price, hence it is an LIB
feature. Similarly, among two products with the same feature values except for
the feature Zoom, people tend to prefer the product with more Zoom, making
it an MIB feature. The usefulness of a product to the given query is computed
using the similarity formulation detailed out in the work by Sekar et al. [11]. The
utility for each feature is computed separately and combined together based on
Multi-Attribute Utility Theory (MAUT) [10]. We have categorized the works
from literature into three categories, we do realise that the categories are not
mutually exclusive.

2.1 Query Expansion

The earliest of the works in CCBR-RSs focused on helping a user articulate
her preferences in the form of a query. The idea from the work by McGinty
et al. [3] in More Like This (MLT) is to use the preference-based feedback (user
preferred product from a set of recommended products) as the query for the next
interaction cycle. The authors point out the drawback with such an approach as
every feature value in the preference feedback may not be representative of the
user’s preferences. The drawback in MLT is overcome in weighted MLT (wMLT)
by assigning weights to the features. Higher preference is given to the feature
value that is preferred over the other feature values. For example, if the user
prefers a product that is of a specific manufacturer ‘X’ and rejects products of
other manufacturers, then we can assume that the user prefers ‘X’ over the other
manufacturers.

The work by Mouli et al. [9] points out that preferences to feature values
cannot be decided without taking other feature values into account as the fea-
tures of a domain are not independent of each other. For the example considered
before, the reason why the user preferred the product manufactured by ‘X’ maybe
because it is the cheapest among all products. They propose a way of learning
the feature weights by posing the task as a constrained optimization problem.

2.2 Profiling Users and Products

Learning user preferences is a common task in all the CCBR-RSs. The work by
McSherry [7] emphasise on the different compromises a user would be willing
to make in choosing a product. The author proposes to maximize the success
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rate by proposing products with different compromise assumptions to the user
given query. The assumption is that each user may have different preferences for
compromises, hence if we can cover all the different options by recommending
appropriate products, then we can maximise the success of the recommender
system.

Anbarasu et al. in their works ([13] and [11]) bring out the idea of profiling
the products in the casebase. The task of profiling the products can be done as
a preprocessing step. In the work [13] MLT Trade-off Matching (MLT TM), the
authors argue that compromises are dynamic as it deals with the gap between
what the user wants and what the product could provide, but trade-offs are
inherent to casebase. Given a pair of products, the relationship between them is
expressed in terms of the trade-offs. They argue that given a pair of products, it
may never be the case that one product completely dominates the other product.
There would be a set of features in one product which would dominate the same
set of features in the other product and vice versa. The action of choosing one
product over the other is seen as the task of choosing a set of feature values in
one product over the set of feature values in other product. The trade-offs the
user is willing to make is identified and products that make trade-offs that are in
line with the user’s preference of trade-offs are recommended to the user. They
propose a representation for trade-offs and define a similarity measure over a
pair of trade-offs, we make use of their representation scheme and the similarity
measure in our work, the details of which are explained in our Approach Section.

2.3 Coverage and Diversity

The principle of similar problems have similar solutions in a recommendation
setting may prove to be ineffective. For example, consider the case when a user
searches for a product and if all the products recommended have same specifica-
tions except for the colour of the product. The recommendation may be useful
to the user in the later stages of the recommendation process but may not be
helpful in the initial stages as in the initial stages it is highly likely that the
users search for all alternatives before settling for a product. If the only differ-
ence in the products recommended together is the colour than any one of the
products could be representative of all the recommended products. McSherry in
Coverage-Optimized Retrieval [8] details several criteria under which the set the
recommended products could be used to maximally cover the casebase so as to
improve the success rate of the recommender system.

Diversity has been long considered as one of the ways to improve the efficiency
of the system [5,6]. It has been noted in the work by McGinty et al. [6] MLT
Adaptive Selection (MLT AS) that users tend to be involved in two phases in a
shopping exercise. The two phases are Refine phase and Refocus phase. In the
Refine phase, the user tends to exploit a small neighbourhood of the search space
to identify the products of their desire. In refocus phase, the users tend to explore
the options that are diverse to the products that they have been considering. The
authors show empirically that introducing diversity methodically in the process
of recommendation can result in better efficiency of the CCBR-RS. The authors
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use a greedy approach to select products that are maximally similar to the query
and at the same time maximally diverse to each other.

2.4 Comparison to Related Works

The central theme of our work is that we consider the conversation process as
accumulating evidence from the user against each product in the domain. Every
product preferred or rejected by the user has an effect on each product in the
domain either in a positive or a negative way. The work by McGinty et al. [3] in
MLT and wMLT is equivalent to accumulating evidence on the level of features.
The preference feedback is used to aggregate the evidence that a particular
feature (or the feature value) may be important to the given user. The feature
weights can be seen as the strength of evidence for the features. In our work we
have aggregated the evidence of the products rather than the features, so the
drawbacks as discussed in the work by Mouli et al. [9] due to feature dependency
will not affect our system. The work by Anbarasu et al. [13] is equivalent to the
task of collecting evidence for a product in terms of the trade-offs that it make
with the other products, the idea which we have incorporated in our system.

3 Approach

The feedback provided by the user in each interaction cycle gives us direct evi-
dence for the products viewed by the user. We formulate ways in which the
feedback provided on a minimal set of products is propagated to the rest of the
products in the domain. The aggregated evidence against each product is then
used to predict the usefulness of the product.

3.1 Evidence

Let us assume we have transaction data, where a list of products bought together
is called a transaction. If from all the transactions we come to know that, in 50%
of the times bread is brought along with butter then in a new transaction if we
come to know that bread is purchased then we can say that the evidence that
butter would be purchased is 50%. Unlike the case of working with a transac-
tional dataset, we work on a setting where we have no data on the transactions
of any users. When a user is given a choice between bright and pastel coloured
dress if the user prefers a dark one we assume it as evidence for the desirability
of bright coloured dress in general. In predicting the usefulness of an item, the
evidence that we have collected based on the user’s preference choice will be
used.

Dominant and dominated products: When a user is given a choice
between a pair of products, we term the one she chooses as the dominant product.
The product that is chosen over is called the dominated product.

Given a product domain, we can safely assume that the product with the
highest utility to the user dominates every other product in the domain. For
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Fig. 1. Precedence graph of product p1

example consider a small product domain with 5 products p1, p2, p3, p4 and
p5. Let p1 be the product that has the highest utility to the user, then we can
represent it as a precedence graph as shown in Fig. 1. Based on the precedence
graph we can form the pairs (p1, p2 ), (p1, p3 ), (p1, p4 ) and (p1, p5 ). In each
of these pairs, p1 is the dominant product. Each pair is a relation from the
dominant/preferred product to the dominated/rejected product.1 We term this
relation dominance relation. The set of all dominance relations of a product p
is termed Product’s Dominance Pairs (PDRp). The set of products that domi-
nate in any of the pairs from PDRp is denoted by PPp (Preferred Products in
dominance relation pairs of p). The set of products that are dominated in any
of the pairs from PDRp is denoted by RPp (Rejected Products in dominance
relation pairs of p). For the precedence graph shown in Fig. 1, PDRp1 = {(p1,
p2 ), (p1, p3 ), (p1, p4 ), (p1, p5 )}, PPp1 = {p1} and RPp1 = {p2, p3, p4, p5}.
Similarly, for each product, given the precedence graph for that product, we can
form dominance pairs where the dominance relation among the products is fixed
accordingly. These pairs are obtained off-line and are used in similar ways like
the transaction dataset for assigning evidence for the products, the details of
which we explain in the coming Section.

3.2 Predicting the Usefulness of a Product

Given a CCBR-RS, in each interaction cycle, the preference feedback (preferred
product) from the user is used to form relation pairs. Each pair consists of the
preferred product and one of the rejected products. These pairs are aggregated
over interaction cycles. In a given interaction cycle, we try to predict the use-
fulness of a product based on the dominance relations that we have aggregated
so far. The set of aggregated dominance pairs are termed User’s Dominance
Relations (UDR). UDR is aggregated during runtime. The set of products that
dominate in any of the pairs from UDR is denoted by UPP (User Preferred
Products). The set of products that are dominated in any of the pairs from
UDR is denoted by URP (User Rejected Products). Consider the products p1,
p2, p3 and p4. Say the products p1 and p2 are shown to user and the user
prefers product p1. Product p1 is dominant and product p2 is dominated. For
the example taken, UDR = {(p1, p2 )}, UPP = {p1} and URP = {p2}. Having

1 We use the terms dominant and preferred; dominated and rejected interchangeably.
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known this information, can we predict what product the user will prefer if she
is given the choice between product p3 and p4?

Coarse Hypothesis: The dominance relation between two pairs of products
are similar if they involve similar dominant and dominated products.

For the example that we have taken, based on our hypothesis, if products p3
and p1 are similar; and the products p4 and p2 are similar, then the dominance
relation between p3 and p4 will be similar to the dominance relation between p1
and p2 (p3 will dominate p4 ). Now that we have the user’s dominance relations
and the dominance relations for each product, we can predict the usefulness of
each product based on our hypothesis.

The similarity between two dominance relations R and S, denoted by
domSim is given in Eq. 1, where sim is the similarity between two products.
Rd, Rr and Sd, Sr denotes dominant and rejected products of R and S respec-
tively (The subscripts d and r stands for dominant and rejected respectively).
Let DSim be the similarity between two sets of dominance relations. The simi-
larity between the sets of dominance relations is as given in Eq. 2.

domSim(R,S) = sim(Rd, Sd) + sim(Rr, Sr) (1)

DSim(PDRp, UDR) =

∑

R1∈PDRp

∑

R2∈UDR

domSim(R1, R2)

|PDRp| ∗ |UDR| (2)

Let us assume that the aggregated pairs for a given user are UDR = {(p2,
p4 ), (p2, p5 )} where UPP = {p2} and URP = {p4, p5}. If the user’s target
product is p1, then her set of dominance relations would be similar to the set
of dominance relations in PDRp1. The DSim(PDRp1, UDR) for the example
would be (sim(p1, p2)+sim(p2, p4)+sim(p1, p2)+sim(p2, p5)+...+sim(p1, p2)+
sim(p5, p4) + sim(p1, p2) + sim(p5, p5))/(4 ∗ 2). It has to be noted that the pre-
ferred product in the dominance relations belonging to the set PDRp is always
p. PPp = {p} and |PDRp| = 1. The rejected products in the dominance relations
belonging to the set PDRp are all the products in the domain except the product
p itself. So for a product p to be more useful to the given user, its similarity to
all the products that are preferred by the user should be high and the similarity
of all the products rejected by the user with products other than p should be
high. Based on this observation, we can see that the formulation simplifies to the
formulation given in Eq. 3. We term our method Evidence-Based Retrieval
(EBR).

The more a product is similar to the user preferred product and the lesser
it is similar to the user rejected products, the more evident it is that it will
be preferred by the user. The positive part of the formulation adds up to the
evidence for the product. The negative part can be seen as negative evidence
for the product. The α and β controls the preference given to positive negative
evidence respectively. The simplified formulation can also be directly derived
from the main formulation(see AppendixA for details).
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DScore(p, UPP,URP ) = α ∗

∑

a∈UPP

sim(p, a)

|UPP | − β ∗

∑

b∈URP

sim(p, b)

|URP | (3)

3.3 Evidence from Trade-Offs

In the work by Anbarasu et al. [13], the trade-offs a user makes in choosing
one product over the other is captured as the preference of the user and is used
to predict if a given product would be useful to that user. A product may not
dominate the other product on all the features. When a user selects one product
over the other, it is equivalent to choosing the set of features on which that
product is better over the set of features on which the dominated product is
better. This information is captured in the form of trade-offs. When comparing
two products, the one with a higher value for an MIB feature is considered to
dominate the one with lesser value, it is the other way around for an LIB feature.
In our previous section we considered dominance at the product level, trade-offs
captures dominance at the feature level.

Consider two pairs of products that are similar to each other. Let us say, we
have two pairs of cameras{(C1, C2),(C3, C4)}, assume all of them are similar
to each other and let C1, C3 be the preferred products. Say, in the first pair C1
is preferred over C2 because of higher zoom over lower cost and in the second
pair C3 is preferred over C4 because of higher resolution over lower price. Even
though the similarity between C1 and C3; and the similarity between C2 and
C4 may be high, the dominance relations (C1, C2) and (C3, C4) are not similar
as one may be willing to pay more for extra zoom but may not be willing to
pay more for the extra resolution. This is because the hypothesis we assumed in
Sect. 3.2 does not take the trade-off information into consideration.

Revised Hypothesis: The dominance relation between two pairs of products
are similar if they involve similar dominant and dominated products, provided
the trade-off relations between the pairs are also similar.

In the revised hypothesis, we consider the contribution of the trade-off infor-
mation as evidence for selecting a product. We use the same representation
scheme for trade-offs and the similarity between the trade-offs as in [13]. The
representation used in [13] uses symbols to indicate this choice. In their work,
“1” is used to indicate dominant features of user selected product, “−1” for
dominated features and “0” for features where both the products have the same
value. The trade-off choice of choosing a product ‘a’ over ‘b’ is indicated as Tab.
Given two trade-offs, the ratio of the number of matching symbols to the total
number of features is taken as the similarity between the trade-offs. The similar-
ity between trade-offs is as given in Eq. 4, where T1 and T2 are the trade-offs and
1(T1a = T2a) is an indicator function that gives a value 1 if both the values are
same, 0 otherwise. Table 1 shows the representation of trade-offs, TAB : Camera
A is preferred over Camera B; TCB : Camera C is preferred over Camera B. The
last row shows the similarity computations between TAB and TCB .



Exploiting Hidden Evidence in Case Base 337

Table 1. Trade-off representation and similarity between trade-offs

Price($) Resolution(MP) Zoom(X)

Camera A 500 10 12

Camera B 500 12 10

Camera C 700 12 12

TAB 0 −1 1

TCB −1 0 1

tradSim(TAB , TCB) (0 + 0+ 1)/3= 0.33

tradSim(T1, T2) =

∑

a∈Attributes

1(T1a = T2a)

|Attributes| (4)

Each pair in UDR has the information on what product is preferred over
what other product. We can thus arrive at a trade-off for each dominance pair,
these are the trade-offs the user has made. If a product p is compared with
the rejected product in each dominance pair, we can arrive at a set of trade-
offs, these are the trade-offs the prospective buyer of product p will make. We
can compare these trade-offs to arrive at the evidence for product p through
the trade-offs, we term it trade-off evidence. The trade-off evidence score for
a product p is given in Eq. 5. The revised hypothesis is used to combine the
dominance evidence scores and trade-off evidence scores for each product, as
given in Eq. 6. The combined score is used to rank the products in the domain.
The γ value decides the preference given to dominance evidence and trade-off
evidence scores.

Tscore(p, UDR) =

∑

R∈UDR

tradSim(TRdRr
, TpRr

)

|UDR| (5)

Score(p, UPP, URP, UDR) = γ ∗ Dscore(p, UPP, URP ) + (1 − γ) ∗ Tscore(p, UDR)
(6)

3.4 Recommendation Process

The following are the steps in the recommendation process

Step 0 : For each product p in the domain arrive at the product dominance pairs
PDRp based on dominance assumption. The ways in which these dominance
pairs could be arrived at may be different. Based on domain knowledge one can
come with appropriate ways to identify the dominance pairs. In our experiments
we assumed that if a product is deemed to be the most useful to a customer then
it would dominate every other product in the domain, which is a very general
assumption
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Step 1 : The preferences of the user are taken as the initial query. The preferences
could be on one or many of the features.

Step 2 : The k top similar products are recommended to the user. The preference
feedback of the user is collected.

Step 3 : The user dominance pairs UDR is arrived by assuming the preferred
product as the dominant product and each of the rejected product as the dom-
inated product. The UDR pairs are compared against PDRp to get the domi-
nance evidence for each product.

Step 4 : The list of trade-offs the user makes on the rejected products is com-
pared against the list of trade-offs a particular product p would make on the
rejected products to get the trade-off evidence for the product p. We have used
the dominance and trade-off evidence in our experiments, one may come up with
several ways in which the evidence for each product can be accumulated.

Step 5 : The products in the domain are ranked based on the evidence collected
against each product and the top k products are listed to the user.

Step 6 : The preference feedback of the user becomes the new query and the UDR
and the trade-offs lists are updated appropriately in each interaction cycle. The
system alternates between the recommendation phase and feedback phase until
the user is satisfied with a recommended product or gives up the search.

4 Evaluation and Results

Our goal is to improve the efficiency of the CCBR-RSs so that the cognitive load
on the user is reduced. The measure we used to evaluate is the total number of
interaction cycles before success. We followed the evaluation scheme used in
previous works [3,9,11–13]. We simulate the user with an artificial agent that
selects the product at each interaction cycle as the preference feedback. Before
a conversation instance, a product is selected randomly and is left out from the
case base. The product that is most similar to the left out product is fixed as
the target. The aim is to start with a subset of the feature values of the left our
product as the initial query and converse until the target product appears in the
recommendation set. In each interaction cycle, out of the recommended products
the agent selects the product that is most similar to the left out product as the
preference feedback. The number of cycles taken to reach the product of desire
is used as the measure of the efficiency of the system. We simulate easy, medium
and hard queries by forming queries with a varying number of features namely
5, 3 and 1 respectively. The more the feature values we know about the left out
product the easier it becomes to identify the target.

We use three datasets, camera, used cars and pc datasets [14] which have 210,
956 and 120 cases. We report the average over 1000 conversation instances for
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each query type namely easy, medium and hard queries. We compared our work
(EBR) with a method from each category we outlined in Sect. 2. Query expan-
sion based on preference-based feedback [3] (MLT), a work that uses diversity
scheme [6] (MLT AS) and a recent work that uses trade-off relationship among
data [13] (MLT TM). We have reported the results for the best combination of
parameter values. The parameter values that gave the best results for camera
and pc datasets are α = 0.5; β = 0.5 and γ = 0.8; the best results for Car
dataset are α = 0.5; β = 0.5 and γ = 0.9. If we recall, 1-γ is the preference given
to trade-off evidence. The dominance evidence seems to be more important than
the evidence from trade-offs. The information on the preferences given to the
evidence may be given by the domain expert. The results are shown in Tables 2,
3 and 4.

Table 2. Efficiency in Camera dataset (the lesser the average cycle length the better)

Query size MLT MLT AS MLT TM EBR

1 11.41 6.90 6.28 5.13

3 9.54 5.89 5.45 4.64

5 6.42 4.04 3.94 3.59

Table 3. Efficiency in Car dataset (the lesser the average cycle length the better)

Query size MLT MLT AS MLT TM EBR

1 24.42 14.32 12.14 9.28

3 19.18 10.91 9.64 7.55

5 15.12 8.08 7.53 5.85

Table 4. Efficiency in PC dataset (the lesser the average cycle length the better)

Query size MLT MLT AS MLT TM EBR

1 8.29 6.09 5.50 4.08

3 6.14 4.22 3.96 3.20

5 3.67 2.19 2.19 1.97

The results are tested for statistical significance (paired t-test with p < 0.05).
The results that are significantly better than the rest of the methods are high-
lighted. EBR has performed better than all the other methods. It can be seen
that there is a significant reduction in the average cycle length across all dat-
sets and all query sizes. The average reduction in cycle length across camera,
car and pc datasets when compared against MLT TM are 13%, 22% and 18%
respectively. The average reduction in cycle length across query sizes 1, 3 and 5
when compared against MLT TM are 22%, 18% and 13%. Across all datasets the
trend is that harder queries require more cycle lengths but interestingly the per-
centage of reduction in cycle lengths by employing EBR is larger for the harder
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queries. Increasing cycle lengths mean more feedback from the user. Since EBR
uses user’s feedback to aggregate evidence, the increased feedback due to longer
cycle lengths results in better efficiency.

5 Discussion

The results are significantly better than those of the works from the literature.
However, the intent of this work is not to come up with the best in class recom-
mender system but to introduce the idea of looking at the casebase as one unit
that has intricate relation among the cases that can be utilized to get the most
from the feedback provided to the case-based reasoning system. The evidence
collected through interaction is bound to have noise. One has to find ways in
which the noise can be reduced to achieve better performances. In our work,
we can assume that users may not make informed decisions in the initial stages
so the feedback may not be as useful as in the later stages of recommendation
cycle. A decay mechanism that gives more importance to the feedback received
in the later stages than to the feedback in the early stages of recommendation
cycle could be employed. It should also be noted that the noise in feedback tends
to propagate across interaction cycles resulting in lesser efficiency. During the
evaluation, we assume that the artificial agent makes optimal choices. Optimal
choices mean less noise in feedback. In reality, users tend to make sub-optimal
choices, our model needs to be robust enough to accommodate such sub-optimal
behaviour from the users.

6 Conclusion

In this work, we have successfully demonstrated the idea of viewing the task of
conversation with the user as the task of accumulating evidence for each product.
We show empirically that the relationship among the products can be utilized to
build an efficient recommender system by evaluating our system on three real-
world datasets. Our future work would involve filtering noise from the feedback,
identifying evidence that could be of help in the process of recommendation and
considering higher order relationship among products to exploit the most out of
the user provided feedback.

A Appendix

The terms in the formulations are same as mentioned before in the paper. The
expansion of Eq. 2 is given below where R1d, R2d represents the dominant prod-
ucts of relations R1 and R2 respectively. Similarly R1r, R2r represents the dom-
inated products of relations R1 and R2

DSim(PDRp, UDR) =

∑

R1∈PDRp

∑

R2∈UDR

(sim(R1d, R2d) + sim(R1r, R2r))

|PDRp| ∗ |UDR|
(7)
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The equation is split into two parts the first one is

∑

R1∈PDRp

∑

R2∈UDR

sim(R1d,R2d)

|PDRp|∗|UDR|

and the second part is

∑

R1∈PDRp

∑

R2∈UDR

sim(R1r,R2r)

|PDRp|∗|UDR| Each of them is dealt with
separately. We name the first part as Positive evidence score and the second one
as Negative evidence score.

When comparing PDRp with UDR, it can noticed that the dominant product
of all the relations in PDRp is always p. PPp = {p}. The dominant products in
the relations from UDR is from the set UPP .

Positive evidence score:

∑

R1∈PDRp

∑

R2∈UDR

sim(R1d,R2d)

|PDRp|∗|UDR|

∝ ∑

R1∈PDRp

∑

R2∈UDR

sim(R1d, R2d)

∝ |PDRp| ∗ ∑

R2∈UDR

sim(p,R2d) [p is the only dominant product in PDRp]

∝ ∑

d∈UPP

sim(p, d) [UPP : Set of products preferred by the user]

The dominated products in the relations of PDRp contains all products
except the product p. If P is the set of all the products in the domain, then the
dominated products in the relations of PDPp can be represented as P − p.

Negative evidence score:

∑

R1∈PDRp

∑

R2∈UDR

sim(R1r,R2r)

|PDRp|∗|UDR|

=

∑

x∈P−p

∑

R2∈UDR

sim(x,R2r)

|PDRp|∗|UDR| [P-p: Dominated products in PDRp]

∝ ∑

x∈P−p

∑

y∈URP

sim(x, y) [URP : Set of products rejected by the user]

Let X =
∑

x∈P

∑

y∈URP

sim(x, y)

∑

x∈P−p

∑

y∈URP

sim(x, y) = X − ∑

y∈URP

sim(p, y)

Negative evidence ∝ X − ∑

y∈URP

sim(p, y)

∝ − ∑

y∈URP

sim(p, y)

Positive evidence ∝ ∑

d∈UPP

sim(p, d)

Negative evidence ∝ − ∑

y∈URP

sim(p, y)

The rank of a product is determined by its Positive and Negative evidence
scores, we normalise the Positive evidence and Negative evidence scores to lie
between 0 to 1 and combine them to give a combined score. The preference given
to the evidence scores are controlled by α and β values
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DScore(p, UPP,URP ) = α ∗
∑

a∈UPP

sim(p,a)

|UPP | − β ∗
∑

b∈URP

sim(p,b)

|URP |
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Abstract. We analyse three decades of case-based reasoning (CBR)
research to better understand the health of CBR and its relationship to
adjacent research fields. We identify two largely separate CBR commu-
nities, one based on the research published at mainstream CBR venues
(ICCBR, ECCBR etc.), the other encompassing CBR work with no direct
connection to these venues. We analyse their scale, impact, and focus,
and the potential to bring them closer together in the future.

1 Introduction

This year the case-based reasoning community returns to Otzenhausen, Ger-
many, 26 years after the first European Workshop on Case-Based Reasoning
[14], which many regard as the formative event in the history of CBR. The
1993 Otzenhausen meeting led to a long-running series of workshops and confer-
ences, as EWCBR became ECCBR, and later merged with ICCBR. Returning
to Otzenhausen is a natural time for community reflection and the purpose of
this paper is to support this by analysing more than 600,000 articles, including
CBR papers, their referenced and citing papers, and other (non-CBR) papers by
CBR authors. It echoes, and expands upon, similar analyses carried out in the
past [5–7], while at the same time introducing new ideas about how we might
evaluate the state of CBR today.

During ICCBR community meetings, one frequent topic for discussion con-
cerns the existence of another CBR community without a close connection to
mainstream CBR venues. This discussion often arises in the context of how we
might increase the size of ICCBR, attract additional submissions, and other-
wise further accelerate the development of CBR. We investigate whether such
a community exists – spoiler, it does! – and we compare and contrast the scale
of activity across both communities: their output and impact; the topics they
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emphasise; the most influential ideas that have emerged etc.1. Our aim is to bet-
ter understand the similarities and differences between both communities and
to identify opportunities to bring them closer together in the future.

In the next section we will describe our main publication dataset and how
we distinguish between the two CBR communities mentioned above. Subsequent
sections examine publication output, community dynamics, and citation impact.
We also describe the results of a topic modelling and citation analysis in order
to identify the principal research themes, and the most influential papers, which
have emerged from the last three decades of research, and more recently.

2 Datasets and Communities

This work begins with a dataset provided by Semantic Scholar (SS2), which pro-
vides publication meta-data and citation data for more than 46 m publications,
primarily from the fields of computer science and health science.

2.1 The CBR Dataset

We select a CBR dataset of 675,118 papers by 1,042,490 unique authors from
the following subsets of SS data:

• Vp, the set of venue papers; papers published at I/ECCBR and EWCBR.
• Sp, the set of papers returned in an SS search for CBR papers3.
• Cp, the full set of CBR papers (Cp = VP ∪ Sp).
• Lp, the set of linked papers that cite, or are cited by, papers in Cp.
• Rp, the set of related (non-CBR) papers by authors of papers in Cp.

There are corresponding sets (Va, Sa, Ca, La, Ra) for the authors of these
papers. As summarised in Fig. 1(a), there are 8,223 unique CBR papers in
Cp, 66,941 linked papers, and 632,770 papers (606,165 + 2,012 + 6,211 + 18,382)
authored by CBR authors. The corresponding data for authors is in Fig. 1(b).

1 We will avoid the temptation to name-check individual researchers, on the grounds
that such rankings can end up as distractions to the central argument.

2 SS is an open, research-article search engine; see https://www.semanticscholar.org.
3 We identified candidate papers based on a set of strong (e.g. case-based reasoning,

derivational analogy), moderate (e.g. case adaptation, case based), and weak (CBR,
case retrieval, case learning) search terms, and a scoring metric to identify CBR
papers with a high degree of accuracy. Due to space restrictions it is not possible to
provide a complete account of the terms and weightings used. The process involved
considerable trial and error and validation tests were performed to ensure good
precision and recall during the final dataset preparation.

https://www.semanticscholar.org
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Fig. 1. Venn diagrams of the various datasets and subsets of data used in this study.

2.2 A Tale of Two Communities

A central idea in this work is that the CBR field is shared by two largely separate
communities. We refer to CBR researchers connected to the mainstream venues4

as the inside community, and to CBR researchers without a direct connection
to the mainstream venues as the outside community.

More precisely, a CBR paper, p, is in the set of inside papers, Ip, if and only
if p is co-authored by a venue author. And a CBR author, u, is in the set of
inside authors, Ia, if and only if u is an author of an inside paper; see Eqs. 1 and
2. Notice, that Va ⊂ Ia; an inside author does not have to be a venue author, but
they must co-author with a venue author. Thus, inside authors are connected to
the mainstream venues by venue authors, but they do not necessarily need to
publish in the mainstream venues themselves.
4 We use the term ‘mainstream’ to refer to ICCBR/ECCBR/EWCBR, but only as

a convenience, and without attempting to impugn the many other research venues
where CBR papers appear.
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Ip = {pεCp | ∃uεAuthors(p) ∧ uεVa} (1)

Ia = {uεCa | ∃pεIp ∧ uεAuthors(p)} (2)

Conversely, a CBR paper, p, is an outside paper if it is not in the set Ip, and
u is an outside author if u is an author of an outside paper; see Eqs. 3 and 4.

Op = Cp \ Ip (3)

Oa = {uεCa | ∃pεOp ∧ uεAuthors(p)} (4)

Figure 1(c, d) summarises the number of papers and authors in these inside
and outside sets, and the relationships between them. Notice in Fig. 1(c) how the
inside papers are a superset of the venue papers (Vp ⊂ Ip). Notice too that the
inside and outside papers are mutually exclusive (Ip ∩ Op = φ), but the inside
and outside author sets are not (Ia ∩Oa �= φ). In Fig. 1(d) there are 218 authors
who are both inside and outside authors.

Each one of these 218 authors is an author of an inside paper but they
are not venue authors – they have co-authored with a venue author, but only
outside the core venues – and each is also a co-author of an outside paper. For
example, an author might have been a co-author of a non-venue, inside paper, as
a PhD student, then went on to bring their CBR expertise to another group in
the outside community, where they also published, becoming an outside author.
They are interesting authors because they represent a point of contact between
both communities, and may play an important role in creating more contact
between these communities in the future. But they are also rare, emphasising
the conspicuous lack of connection between both communities.

The scale of the two communities is also worth noting. At the start of this
study it was not clear whether the outside community would prove to be more
than a limited body of CBR work. Instead we find a significant body of CBR
research that is even larger than that of the inside community. The outside
community spans a similar period of time but has >35% more papers, and >2x
the number of unique authors, when compared to the inside community.

2.3 Inside/Outside Venues

Why are there two, mostly separate, communities? To explore this further, Fig. 2
shows the number of CBR papers at the top-25 most frequently targeted inside
and outside venues; for reasons of clarity the mainstream venues have been omit-
ted, as they tend to dominate, making other venues more difficult to compare.
We can see that the most popular (non-mainstream) venue for CBR research is
Expert Systems with Applications, with just over 150 CBR papers during the last
30 years, the vast majority of which (≈80%) have come from the outside com-
munity. In contrast, FLAIRS, IJCAI, and AAAI are more frequent targets for
the inside community. These are the types of venues – AI, ML, expert systems
etc. – that one might expect for CBR publications.

More revealing is a similar plot in Fig. 3, but this time focusing on the non-
CBR papers published by the inside and outside authors. Now there is a clearer
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Fig. 2. Top publication venues (excluding I/ECCBR/EWCBR) for inside and outside
papers.

division between the top inside and outside venues. The former, as was the case
for CBR output, targets mostly AI/ML related venues (AI Magazine, ECAI,
RecSys etc.), but the latter targets PloS One, Physics Review, the Journal of
Biochemistry, and Applied Materials etc. This suggests that while inside authors
are mostly AI/ML researchers, outside authors are much more likely to be biol-
ogists, physicists, material scientists, and chemists.

The inside community is a community of AI/ML researchers with a focus on
CBR, whereas outside researchers come from many different areas, scientific and
commercial, using CBR as a technology to solve challenging problems in their
home domains. To put this another way, the inside community is about a related
set of topics (AI, ML, CBR), whereas the outside community is about many
different topics. As such, we might expect the former to be more coherent and
less fragmented than the latter. If so, then there should be a stronger community
effect for the inside community when it comes to citation impact.

3 Publications, Authors, and Impact

Next we examine the output and impact of these communities, by looking at
the volume of publications per annum, the number of active authors, and the
citation impact that their work is having.
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Fig. 3. Top publication venues for non-CBR papers produced by inside and outside
authors.

3.1 Publication Output

Figure 4(a) shows the cumulative number of CBR publications produced; for
reference, we also show the cumulative output of the mainstream venues. There
has been a steady output from each community but since 2009 the total number
of CBR papers produced by the outside community has surpassed that of the
inside community, a trend that continues to this day.

Approximately 50% of the inside and outside output is made up of application
papers; see Fig. 4(b)5. CBR has always been an application-oriented field and
this is in contrast with a much lower, but growing, fraction of application papers
among the non-CBR papers in our dataset, also shown.

3.2 New, Returning, and Churning Authors

While both communities are broadly similar in terms of their publication out-
put, differences begin to emerge when we look at their respective author-bases.
Figure 5 shows: (a) the cumulative number of active authors per year; (b) the
fraction of new authors per year; (c) the fraction of returning authors; and (d)
the fraction of churning/lost authors.

Compared to the inside community, the outside community is characterised
by higher levels of new authors and lower levels of returning authors, suggesting

5 We determine application papers based on the presence of keywords such as ‘appli-
cation’, ‘domain’, ‘deploy’, for example, in the title or abstract.
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Fig. 4. The (a) cumulative number of CBR papers published per year and (b) the
fraction of application-oriented papers per year.

that many outside authors are engaged in CBR research for a shorter period
of time. In fact, on average inside authors publish CBR papers over a 5-year
period, compared a 3-year period for outside authors; just over 20% of inside
authors remain CBR-active for more than 5 years, compared to <10% for outside
authors. This is consistent with the idea that the inside community is focused
on advancing the fundamentals of CBR – with its researchers engaged for the
long-term – while the outside community is a community of practice, with less
long-term investment in CBR by its researchers.

Fig. 5. The (a) cumulative number of publishing CBR authors per year; (b) the fraction
of new authors per year; (c) the fraction of churning/lost authors per year; (d) the
fraction of returning authors per year.
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3.3 Citations and Impact

Another difference between the communities is revealed when we consider cita-
tion impact. Figure 6(a) shows a significant citation benefit for inside papers
compared to outside papers. From an early point in the development of CBR,
inside papers have tended to attract more citations than the outside papers.

Figure 6(b) shows that ≈50% of the citations to CBR papers by the inside
community come from other CBR papers, compared to just over 25% for the
outside community. Once again, this difference is consistent with the notion
that CBR papers by the inside community are more likely to make a central
CBR contribution, attracting CBR cites, whereas CBR papers by the outside
community are more likely to use CBR in the service of some other task.

(a) Cumulative citations per year. (b) Fraction of cites from CBR papers.

Fig. 6. A citation analysis summary for inside and outside communities.

Figure 6(b), also shows the extent to which one community cites their own
work versus the work of the other. We refer to inside papers citing inside papers,
and outside papers citing outside papers, as home cites. Conversely, inside papers
citing outside papers, and outside papers citing inside papers, are away cites.
Figure 6(b) shows that the inside community benefits from a much higher pro-
portion of away cites (≈25%) than the outside community (≈12%). In other
words, outside papers are more likely to cite inside papers than the other way
around. All other things being equal, this may suggest a discoverability issue for
the outside community, which contributes to its lower citation impact; fostering
greater links between the community may help to address this.

Figure 7 looks at a number of summary impact metrics, and inside papers
continue to benefit. They attract more cites per paper. The time to the first cita-
tion is shorter (they are more discoverable). Their citation half-life6 is longer, and
the number of years to peak-cites7 is greater. Inside papers enjoy a more immedi-
ate, significant and sustained impact, compared with outside papers, indicating,
as predicted, the inside community benefits from a stronger community effect.
6 The number of years it takes to accumulate 50% of their cites.
7 The time it takes for the paper to have its best citation year.
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Fig. 7. Summary impact metrics for inside/outside papers.

4 The Evolution of Research Topics

To explore the themes from the last three decades of research we construct topic
models for the inside and outside papers by transforming titles and abstracts into
term-based representations, using tokenisation, lemmatisation, and stemming.
Latent Dirichlet Allocation (LDA) [2] is applied to the resulting document-term
matrix to produce a document-topic matrix (encoding the probability distribu-
tion of the topics per document) and a topic-term matrix (encoding the proba-
bility distributions of the terms per topic). We cluster the papers based on their
dominant topics, and use t-SNE (t-distributed stochastic neighbour embedding,
[10]) to produce the 2D topic maps shown in Figs. 8 and 9.

In these visualisations each paper is represented by a disc, with papers from
the same topic grouped together by t-SNE, and coloured similarly. Distance
denotes similarity, the radius of each disc is proportional to the number of cita-
tions attracted by the paper, and the opacity of the disc is proportional to the
recency of the paper (more recent papers are more opaque). Finally, each topic
is labeled using the top terms from the LDA probability distributions.

Fig. 8. The inside topics discovered from the inside papers. (Color figure online)
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Fig. 9. The outside topics discovered from the outside papers. (Color figure online)

Although there is no direct mapping between inside and outside topics –
inside topic i is not related to outside topic i – there are clearly similarities
between the areas explored by both communities, reflecting common themes
within CBR research (similarity and retrieval, learning and adaptation, predic-
tion classification, recommendation etc.) But there are differences too. Planning
and strategy games (inside topic 1 ), learning and analogy (inside topic 3 ), and
maintenance and competence (inside topic 9 ) are important themes within the
inside community, but they are less evident among the outside topics. Conversely,
the outside topics exhibit a greater emphasis on certain application themes –
medical data-mining (outside topic 1 ), software engineering and estimation (out-
side topic 7 ), and (example-based) translation (outside topic 13 ) – which are
less well represented by the inside papers.

Figure 10(a–f) summarises aspects of each of these topics; remember inside
topic i has no relationship to outside topic i. The inside/outside topics are similar
in terms of their fractions of papers and application papers. Outside topics tend
to peak sooner (≈8.5 years) and more recently (≈2013) versus ≈11.5 years and
2007 for inside papers, respectively. The citation benefit for inside papers persists
across topics too: inside topics enjoy more cites per paper, and a higher (topic-
based) h-index in almost all cases.

There is obviously more that could be explored with respect to the evolu-
tion of CBR research topics. It would be interesting, for example, to pay more
attention to recent, emerging topics, by building our topic models over a sub-
set of recent papers, or to try and predict future topics. Alternative approaches
to clustering papers could also be considered, for example by using co-citation,
rather than term-overlap, as a measure of inter-paper similarity. For now we will
leave these as open ideas for future work.
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Fig. 10. Summary of various aspects of the inside and outside topics.

5 Influential Papers

In any research area there are some papers that stand out as particularly impor-
tant to the evolution of the field. Sometimes they are breakthrough papers that
introduce new or improved techniques, or even new research directions. Some-
times they are survey papers that bring together a body of research, perhaps
reframing it, or integrating it with relevant ideas from other fields. Here we seek
to identify the most influential CBR papers, over the past three decades of CBR
research, as well as those that have emerged more recently.

5.1 Link Analysis and Influence Metrics

Important papers tend to stand out as being among the most cited works in
a field, but citation count alone is not always sufficient to identify the most
influential articles. In recent years, link analysis techniques have been used to
evaluate the importance of nodes in a graph, based on various features of network
topology. For example, algorithms such as PageRank [3] and HITS [8] consider
a node to be important if it is connected to other important nodes. It is common
to use these ideas to reveal influential papers in a citation graph, where the nodes
are papers and the edges are the citation links between them [4].

We build a single citation graph based on all of the CBR papers (from both
communities) and implement three different scoring metrics: (1) the number of
cites that the paper has attracted; (2) the PageRank score of paper; and (3) the
HITS authority score. Each metric generates a single score for a paper, which
we convert into a rank, and then we calculate the sum of these ranks to generate
an overall ranking; using ranks is a simple but effective way to combine these
scores in a scale-free manner.
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Fig. 11. Top-25 most influential CBR papers (inside & outside communities).

5.2 Seminal CBR Papers

Figure 11 shows the top-30 papers based on this overall ranking. Each bar cor-
responds to a single paper and shows its ranking across all 3 metrics. Outside
papers are indicated with an asterisk prefixing their title on the x-axis. Over
one-third of the publications are survey papers or introductory books, including
4 of the top-5 [1,9,11–13]. Only 5 (16%) of the most influential papers come from
the outside community and most of the top-30 come from the very early years
of CBR research; the mean publication year is 1997. This is not so surprising, as
many of these papers established the foundations of the field, and their impact
has been building over a long period of time, but it begs the question as to where
future influential papers are likely to come from.

5.3 Emerging Influencers

To shed some light on this, Fig. 12 presents a similar set of ranking results, but
focusing on the most influential CBR papers just from the last decade (2009–
2019). There are far fewer survey papers – notwithstanding that the top ranked
paper is a survey of CBR in health sciences – and there is an abundance of outside
papers; 15 of the top 30 are outside papers. Perhaps the outside community will
prove to be more influential over the coming years.

There is also evidence of a number of increasingly important and novel appli-
cation domains among these more recent papers. For example, 7 of the papers
focus on healthcare and clinical applications (from classical diagnosis and clas-
sification to duty rostering), 5 of the papers focus on financial applications
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Fig. 12. Top-25 most influential recent (>2008) CBR papers (inside & outside com-
munities).

(including bankruptcy and business closure prediction), 3 consider the applica-
tion of CBR to workflows, while others explore applications in cloud computing,
cost estimation, and optical networks.

Before concluding, it is worth highlighting another factor that distinguishes
the inside and outside communities: location. To date, mainstream CBR venues
have taken place in Europe and the US only, which may limit the interest of
researchers from wider afield. This deserves further analysis than is possible
here, but when we look at locations of the authors of these recent and influential
papers we find, in a large majority of the cases, that the outside authors are
based outside of Europe and the US; among the 15 outside papers, only 3 are
from Europe or the US, with the rest from China, India, Korea, Pakistan, and
Australia. This might be a sign that ICCBR needs to start looking further afield
for future conference locations? It also points to a set of authors who may be
well positioned to help organise and even host future ICCBR events.

6 Conclusions

The aim of this paper has been to examine the last three decades of CBR
research. The data supports the existence of two significant but largely separate
communities of CBR researchers: an inside community of AI/ML researchers,
focusing on core techniques and applications, and an outside community of prac-
titioners, focusing on a diverse tasks and applications from a variety of scientific
and commercial domains.



356 B. Smyth

The outside community is larger, but its members remain CBR authors for a
shorter period of time. Many outside authors may be “passing through”, lever-
aging CBR ideas in their research for a limited period of time only. The outside
community’s output lags behind that of the inside community in terms of cita-
tions, but this may be a consequence of the lack of connection between both
communities and, the lack of citations from inside papers to outside papers, in
particular. Despite this the outside community produces influential CBR papers,
especially when we consider recent research.

One conclusion to draw from this is that it is worthwhile creating stronger
links between both communities. Encouraging outside researchers to become
involved in mainstream venues, may help to promote and sustain CBR within the
outside community. Improving the flow of information between both communities
will improve discoverability, especially for the work of the outside community.
Furthermore, the outside community appears to be especially well positioned
with respect to novel application domains for CBR, which may introduce new
research challenges and themes to the inside community.

Precisely how we might bring about this increased engagement between the
communities is a matter for the CBR community as a whole. There are some
practical things that can be considered in the short-term, from inviting senior
outside authors to present at ICCBR, to encouraging targeted sessions or work-
shops on emerging themes that are associated with the outside community.
Longer-term actions might require other forms of outreach: involving outside
researchers in ICCBR’s programme and organising committees; encouraging host
bids from locations that are well represented by the outside community (e.g.
China, India, etc.). Whatever the approach, the good news is that, success will
strengthen the field of CBR, helping to sustain the next 30 years of research.
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Abstract. We build on recent work on the application of case-based
reasoning to help marathon runners to plan and pace their races. We
apply related ideas to the domain of ultra running (typically >100 km
routes across mountainous or desert terrain). This new domain intro-
duces its own distinct challenges: distance and terrain make for a more
physically demanding and less predictable event; weather can play a very
significant role in how competitors perform; and, unlike road marathons,
race routes and distances vary from year to year, making it more diffi-
cult to compare race records. We evaluate case-based methods for pace
prediction and pacing recommendation for runners in the Ultra Trail du
Mont Blanc (UTMB), one of the world’s toughest ultra-marathons.

Keywords: Case-based reasoning · Marathon running ·
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1 Introduction

These days, almost everything we do generates a data record that is stored
somewhere [7]. Privacy issues aside, this affords new opportunities when it comes
to better understanding how people live, work, and play [16,19]. One particularly
exciting opportunity relates to personal health and exercise. Certainly there are
many reasons to prioritise a more active lifestyle in today’s sedentary world [6,8,
15], and recently researchers have begun to turn their attention to many aspects
of this challenging task. There are numerous examples of different ways in which
sensors, mobile technology, and machine learning techniques have been used to
encourage, enable, and otherwise support more active lifestyles, even helping
elite athletes to train and compete more effectively [1,2,4,10,11,17,18,25].

Endurance sports represent an especially rich domain for this type of research
for a number of reasons: large amounts of data are generated as people train and
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compete; they are increasingly popular events, which brings many first-time
competitors, who stand to benefit from more personalised advice and support.

In this work we explore whether case-based reasoning (CBR) techniques can
be used to support ultra-marathon runners to better plan their racing strategies.
We extend recent work on CBR in marathon running [20–23] to show how it
can be adapted from fixed-length (42.2 km), mostly flat, road-races to much
longer, more open-ended mountain races, involving elevation changes of tens
of thousands of metres, and where weather and sheer time-on-feet (>24 h) can
play a critical role in performance. In line with the work of [20–23] our aim is
to support ultra-marathoners by helping them to determine a challenging but
achievable finish-time, and by recommending a pacing strategy with which they
can achieve this time.

In the next section we will briefly summarise related work in the area and
contrast this work on ultra-marathon prediction with the recent work on predic-
tion in road marathons [20–23] on which it is based. We use the famous UTMB
(Ultra Trail de Month Blanc) as a real-world case-study, evaluating the effec-
tiveness of our approach on race-data from more than a decade of races.

2 Related Work

This work sits at the intersection between personal sensing, machine learning,
and connected health. An explosion of wearable sensors and mobile devices has
created a tsunami of personal data [7], and the promise that it can be harnessed
to help people to make better decisions and live healthier and more productive
lives [9,16]. Indeed, within the case-based reasoning community there has been
a long history of applying case-based, data-driven methods to a wide range of
healthcare problems [5]. The world of sports and fitness has also embraced this
data-centric vision, as teams and athletes endeavour to harness the power of
data to optimise the business of sports and the training of athletes [13,14].

2.1 CBR for Marathon Races

Recently there has been a surge of interest in using mobile sensors and ML tech-
niques to better support elite and recreational athletes as they train and com-
pete, from classifying activities [4], fitness estimation [1,2], to supporting injury
recovery [11], and even the generation of personalised training plans [10,18].

There is a body of work that uses linear models to predict future race-times
based on previous race-times; e.g. [3]. Less well developed, however, is the trans-
lation of a goal-time into a specific race strategy, and a concrete set of pacing
recommendations, which is relevant to this work. The most directly relevant
research is [20–23], which considered goal-time prediction and pacing recom-
mendation, but for road marathons rather than ultra races. In short, [20–23]
demonstrated how to predict race-times and pacing plans for a runner by adapt-
ing the race-times and pacing plans of runners who had run similar races (with
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respect to finish-time and pacing) to the target runner in the past. The basic
idea was presented and validated in [21] and further improved upon in [22] by
using more sophisticated representations of a runner’s racing history.

2.2 From Road Marathon to Ultra-marathon

We will use the aforementioned work as a starting point for the present work
on ultra-marathons, but first it is worth highlighting a number of important
features which distinguish ultra marathons from road marathons as follows:

1. Ultra-marathons are significantly longer and more arduous than conventional
road marathons. Technically speaking an ultra marathon is any race that is
greater than the conventional marathon distance (42.2 km), but in practice
many of the better known races are >100 km, extending over multiple days,
and covering challenging, if not down-right hostile, mountainous or dessert
terrain. This makes ultra marathons a more challenging prediction task than
road races; this is further compounded by the much smaller number of com-
petitors (100’s) participating in ultra-races versus the thousands or even tens
of thousands who participate in marathons.

2. External factors, especially weather, play a much more important role in ultra-
marathon performance, compared with conventional road-races. For example,
48 h in the Alps can see conditions varying from the full heat of the summer
to torrential rain and wind, to full-on blizzard conditions over high mountain
passes. Once again, this adds to the unpredictability of a race, such as the
UTMB, and makes accurate prediction that bit more challenging again.

3. Road marathons tend to follow the same route year after year, with the same
evenly-spaced timing stations. This greatly simplifies the representation of
race records and makes it straightforward to compare race records across
the years, an important factor in many machine learning approaches, and
especially for case-based reasoning. In contrast, dynamic external conditions
mean frequent route changes in ultra marathons so that the course and length
of races such as the UTMB can vary from year to year. And this in turn can
impact on the location of the timing stations so that the timed segments
also vary from year to year, making it more difficult to compare like-with-like
across the years.

Thus, when it comes to modeling and predicting performance in ultra-
marathon races, such as the UTMB, these considerations introduce signifi-
cant additional complexity compared with more stable and predictable road
marathons. In what follows we will describe how we have adapted the approach
described by [21] to cope with these complexities, describing how we compare
non-identical race records during case similarity assessment and retrieval, and
an initial attempt to introduce the effects of weather as part of the adaptation
stage.
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2.3 The Ultra Trail du Mont Blanc

The UTMB takes place annually in late August or early September in Cha-
monix in France. The UTMB course follows the route of the Tour du Mont
Blanc through France, Italy and Switzerland1. It has a distance of approximately
171 km (106 mi), and a total elevation gain of around 10,040 m (32,940 ft). It is
widely regarded as one of the most difficult foot races in the world, and one
of the largest, with more than 2,500 participants. Entry is based on a points-
based qualification standard, which runners meet by participating in a range of
qualifying races over the previous two years. Runners range in age and ability,
and each year approximately one-third of starters fail to finish within the 46.5 h
time-limit; while the race winners will typically complete the course in just over
20 h, most will take 32–46 h to finish, and will have run through two nights in
the mountains.

Fig. 1. The 2019 UTMB course map.

1 The Tour du Mont Blanc is one of the most popular long-distance walks in Europe. It
circles the Mont Blanc massif and is normally walked in a counter-clockwise direction
in 11 days; https://en.wikipedia.org/wiki/Tour du Mont Blanc.

https://en.wikipedia.org/wiki/Tour_du_Mont_Blanc
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Fig. 2. The 2019 UTMB elevation profile, stages, and aid stations.

The route map and profile for the 2018 race is shown in Figs. 1 and 2, high-
lighting the race’s significant elevation gains, and the various stages and aid
stations along the way. While most of these stages remain fixed from year to
year, it is not unusual for there to be some route changes based on conditions
in the mountains. On average, a typical year’s course will have approximately
24 stages but the exact stages will vary from year to year with between 1 and 5
route changes in a given year.

The UTMB race data used in this study covers the years 2003–2017, inclusive,
but excluding 2010 and 2012; the 2010 race was canceled due to a large mudslide
and the 2012 race was significantly truncated, by about 70 km, due to adverse
weather conditions. Each race record includes details on the participant (gender,
age category, nationality, team etc.) plus timing, distance, and elevation data for
the race stages. In total there are 19,579 race records for 15,144 unique runners.
However, in what follows we will focus on runners who have at least two race
records and there are only 1,266 such runners, with 3,222 race records in total.

3 Pace Prediction and Planning for Ultra Races

For endurance events such as the marathon, race planning plays an important
role in race outcome. Runners need to have a target finish-time in mind in order
to plan how they will pace and fuel their race. Runners who are overly ambi-
tious run the risk of hitting the wall or “blowing up” late in the race, while those
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that are too conservative may fail to maximise their performance. In an ultra-
marathon like UTMB, such matters are even more important because poor pac-
ing choices will be compounded by the distance. In this section we will describe
how we use a case base of UTMB race cases to support runners with two impor-
tant pieces of information as they plan their race:

1. A Pacing Prediction, p – a predicted overall, average race-pace; thus p ∗ d
is their estimated finish-time (in minutes) for a race of a given distance, d.
We use average race-pace rather than finish-time because the route and route
distance will vary from year to year.

2. A Pacing Plan, P – a sequence of recommended paces, for each stage of the
race, based on distance, terrain, and weather, to provide the runner with a
more fine-grained pacing plan in order to achieve it.

We convert race records into a case base of race cases, retrieving and adapting
similar cases in order to generate these predictions and pacing plans as discussed
in the following section.

3.1 Case Representation

The work of [21] represented each marathon race as a sequence of 9 split-times
based on 5 km stages/segments (plus the final 2.2 km segments), and we follow a
similar approach for the UTMB data, but using a greater number of split-times
that are less regularly spaced and less consistent year on year, due to stage
changes. We convert these raw split-times, and the final finish-time, into mean
segment paces (measured in minutes per km). In this way, each raw race record
is converted in to a pacing record with one average pace per race segment.

Drawing on the work of [21], these race records are converted into cases by
pairing a personal-best (PB) race record, for a runner r (PB(r, ui)) with some
previous non-PB (nPB) race (nPB(r, uj)), for the same runner. Here ui and uj

refer to particular ultra-marathon races and, for the avoidance of doubt, the PB
race for r is that race with the fastest mean pace2. Thus, in general, a runner
with n race records will be represented by n − 1 cases, each with the same PB
race but different non-PB races; see Eq. 1.

cij(r, ui, uj) =
〈
nPBi(r, ui), PB(r, uj)

〉
(1)

In this way, each case represents a runner’s progression and we will use these
cases as the basis for pacing prediction and recommendation in a manner that
is similar to the approach taken by [21], but with some important differences, as
described in the next section.

2 Note we do not use the fastest finish-time because race length tends to vary from
year to year depending on conditions and stages and hence mean race pace serves
as a more realistic measure performance.
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3.2 Case Retrieval

Retrieval is a three-step process, as shown in Algorithm 1; this is a version of
the approach used by [21] that has been adapted for UTMB. Given a query
race record (q)—that is a runner, a finish-time/average pace, and a nPB pacing
profile—we first filter the available cases (CB) based on their mean paces, so that
we only consider cases for retrieval if their mean paces are within p minutes/km
of the query mean pace. This ensures that we are basing our reasoning on a set
of cases that are comparable in terms of performance and ability.

Algorithm 1. Outline CBR Algorithm.
Data: Given: q, query race record; CB, case base; k, number of cases to be

retrieved; p, mean pace threshold, w, linear weather model.
Result: pb, predicted finish-time; pn, recommended pacing profile.
begin

C = {c ε CB : pace(q) − p < pace(nPB(c)) < pace(q) + p}
C = {c ε C : c.gender == q.gender}
if len(C) ≥ k then

shared = segs(q) ∩ segs(nPB(c))
R = sortk(sim(q, c, shared) ∀ c ε C)
R′ = adapt(R, w)
pb = predict(q, R′)
pn = recommend(q, R′)
return pb, pn

else
return None

end

end

Next, we filter on the basis of gender, only considering cases for retrieval
if they have the same gender as the query runner. The reason for this is that
physiological differences between men and women have a material impact on
marathon performance [24] but the effect is even more pronounced in ultra races
[12]; the marathon gender gap is about 12% but this increases to about 20% at
UTMB and similar races.

Finally, we perform a standard, distance-weighted kNN retrieval over the
remaining candidate cases C, comparing q’s pacing profile to their nPB profiles.
These pacing profiles are real-valued vectors and we use a simple cosine-based
similarity metric for similarity assessment. Importantly, and unlike the work
of [21,23], this similarity is computed only over race segments that are shared
between the query race and each of the candidate cases. Thus, in the case where
there are routing differences between the query and candidate cases we simply
ignore these differences on the basis that, on average, they are likely to be few
in number relative to the shared segments; it is left as a matter for future work
to explore alternative ways to account for such differences. In any event, once
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we have calculated the case similarities we select the top k most similar as the
retrieved cases, R.

3.3 Adapting for Weather

Prior to making a pacing prediction from the retrieved cases we adapt the pacing
of the races to account for local weather conditions. To do this we trained a
linear regression model to relate mean race temperature to mean race paces. The
resulting model provides a pace adjustment factor with which we can increase
or decrease a given pace based on the temperature that prevailed when it was
run. In effect this allows us to normalise paces for an average race temperature
(22 ◦C), slowing paces for warmer races and improving the pacing associated
with cooler races; the model operates in the range 17 ◦C to 30 ◦C.

3.4 Predicting a PB Pace

Given a set of adapted, similar cases, R′, we need to estimate the best achievable
mean pace for q. Each case in R′ represents another runner with a similar nPB to
q, but who has gone on to achieve a faster personal best at UTMB. The intuition
is that, since these PBs were achievable by similar runners, then a similar PB
should be achievable by the query runner.

For the purpose of this work, the predicted PB pace for the query runner
is a function of the personal best paces of the retrieved cases using one of two
simple strategies:

1. Fastest PB – uses the PB pace of the single retrieved case with the fastest
PB pace; we can view this as an optimistic prediction strategy as it assumes
the query runner will perform in a way that is similar to the best performing
runner among our retrieved cases.

2. Mean PB – uses the mean PB pace of the k retrieved cases; this is a more
realistic strategy as it assumes the query runner will perform in a manner
that is similar to the average runner among our retrieved cases.

PBbest(q, C) = w(q, Cbest) • pace(Cbest(PB)) (2)

PBmean(q, C) =
∑

∀iε1..k w(q, Ci) • pace(Ci(PB))
k

(3)

With each approach the predicted PB paces are weighted based on the rela-
tive difference between the query runner’s pace and the corresponding nPB pace
of a retrieved case; see Eq. 4. This adapts the PB paces based on whether they
were achieved by similar runners with slightly slower or faster nPB paces. The
resulting pace prediction

w(q, c) =
q(nPB).meanpace

c(nPB).meanpace
(4)

Finally, since the resulting pace prediction has been normalised for weather,
it will need to be adjusted for weather conditions on the target race day, using
the same weather model.
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3.5 Recommending a Pacing Plan

While supporting a runner with a realistic predicted pace for their race is useful,
it is just as important, and arguably more practical, to provide the runner with
a granular pacing plan so that they can adjust their pacing on a stage by stage
basis. Once again we use two different strategies:

1. Fastest Profile – recommend the segment paces, from the fastest case, for
those segments that are shared with the query runner’s upcoming race.

2. Mean Profile – recommend the average shared segment paces for the k
retrieved cases.

In this way, the query runner will be recommended a pacing plan, based
on the PBs of runners of similar ability (similarly paced past races). There are
a couple of important caveats to note. First, as with the PB pace predictions,
these paces will need to be adjusted for the target race conditions using the linear
weather model. Also, the pacing plan will only contain pace recommendations
for segments that are shared with the target race route, but since the retrieved
cases can come from a variety of past years, in practice, the number of missing
segments is kept to a minimum.

3.6 Discussion

So far we have discussed an approach to predicting PB performance (mean race-
pace) and recommending tailored pacing plans for UTMB participants by reusing
and adapting the PB performances of a set of similar runners who have run
similar UTMB races to the target runner in the past. We have proposed two
different approaches: (1) an optimistic approach that focuses on the fastest PB
in the set of similar cases; an (2) a more conservative approach that considers an
average of all the PBs in the similar cases. This is based closely on the approach
described by [21] but has been adapted for the unique features of ultra-marathon
races: we have focused on pacing rather than finish-times because races tend to
vary in distance and duration; we take account of route differences by focusing
on common/shared race segments; and we incorporate a simple, linear weather
model to adapt pacing based on changes in local weather conditions.

4 Evaluation

In this section we evaluate these prediction and recommendation approaches,
examining their ability to make accurate pacing predictions and to recommend
high-quality pacing plans.

4.1 Dataset and Methodology

To evaluate these methods we use the race data from UTMB (2003–2017) as
mentioned earlier. Because our case base relies on runners who have at least 2
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UTMB race records, this limits our dataset to 1,266 runners, from which we can
produce a case base of 3,222 cases.

We adopt the approach taken by [21], using a standard leave-one-out method-
ology, with each case treated as a query runner, predicting their overall race-pace
and recommending a pacing plan, and then comparing the prediction and pacing
plan to the actual PB race of the target runner. For predictions we will calculate
an error score, based on the difference between the predicted and actual pace.
For the recommended pacing plans, we will calculate their cosine similarity with
the actual PB pacing profile; we are using pacing similarity as a proxy for recom-
mendation quality, which is not unreasonable. These error rates and similarities
are then averaged, across all target/query runners, to produce overall results.

4.2 Prediction Error: On the Importance of k and Weather

To begin with we will examine the relationship between the prediction error
and k (the number of cases retrieved), in order to determine a suitable k for
the remainder of this evaluation. We will also examine whether the weather
adjustment leads to improved prediction accuracy.

The results are shown in Fig. 3(a, b) for the Fastest PB and Mean PB strate-
gies. In Fig. 3(a) we see that the Fastest PB strategy is not as effective as the
Mean PB strategy. For the former, not only are the error rates poorer for each
value of k, they deteriorate as k increases. In contrast, the Mean PB strat-
egy benefits from gradually improving error rates as k increases. Incidentally
we chose to limit k to a maximum of 20 cases given the size of the case base
available.

It is not surprising that the Fastest PB strategy performs poorly with increas-
ing k. Increasing the number of retrieved cases provides a larger set of cases from
which to select a fastest one, and so we can expect it to produce more and more
ambitious pace predictions as k increases. In contrast, the error rate of the more
realistic predictions of the Mean PB approach drops to about 6% for k ≥ 10. In
subsequent sections will focus on the Mean PB strategy with k = 20.

Figure 3(b) shows the average prediction error with (Weather) and without
(Std) the weather adaptation. The adaptation improves prediction error for both
prediction strategies, but more so for Mean PB, a relative improvement of just
over 8.5%, compared to only 5% for Fastest PB. Although a relatively modest
improvement in prediction error it must be acknowledged that this was achieved
using a straightforward adjustment, based on a simple linear weather model,
and using only temperature. Obviously there is an opportunity to improve this
approach significantly by including other relevant factors (wind, humidity, pre-
cipitation etc.). Nevertheless the improvement we see here bodes well for a more
sophisticated model to offer further prediction benefits in the future.

4.3 Prediction Error by Gender, Age, and Ability

Next we consider how prediction error varies with gender, age, and ability and
the results are presented in Fig. 4, based on the age categories used by UTMB
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Fig. 3. The average error for predictions by Fastest PB and Mean PB strategies based
on (a) different values of k and (b) the application of a weather adjustment.

(23–39, 40–49, 50–59, and 60–69) and a set of pacing ranges (<9 mins/km, 9–
11 mins/km, 11–13 mins/km, 13–15 mins/km, and 15–17 mins/km) as shown.

Fig. 4. The average error for pacing predictions (MeanPB strategy and k = 20) based
on male & female runners with different (a) age groups and (b) ability levels.

The results show more accurate pacing predictions for women than for men,
regardless or age or ability, which is consistent with similar results found by [21]
for road marathons. Figure 4(a) suggests that prediction error improves with
increasing age, for men and women, although there are not enough female run-
ners in the older age-groups to demonstrate this conclusively. This suggests that
older runners are more predictable, perhaps because they are less ambitious with
their targets and therefore less likely to “blow up” during the race.

A similar trend is seen in Fig. 4(b) for ability: slower runners are more pre-
dictable than faster runners. This contrasts with the findings of [21] for road
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marathons, where faster runners were more predictable than slower runners,
and is worthy of further research in order to determine the possible cause of this
difference.

4.4 Recommendation Similarity by Gender, Age, and Ability

In a similar fashion we evaluate the accuracy of the pacing plans recommended
to runners by comparing their recommended segment/stage paces to the actual
paces run by the runner during their PB race; as mentioned earlier, we calculate
an overall cosine similarity score between the recommended and actual plans.
The results are presented in Fig. 5, comparing runners based on their age cate-
gory and ability levels; once again note that there are not enough older female
runners to generate reliable cosine similarities for older age groups.

Fig. 5. The average pacing plan similarity for plans (MeanPB strategy and k = 20)
based on male & female runners with different (a) age groups and (b) ability levels.

The results indicate that recommendation quality does not depend critically
on age or ability. In each case we see that pacing plans are suggested that are
very similar (>0.98) to the actual pacing profile the runner achieved in their
PB. A word of caution here. We do need to remember that this is not quite the
complete picture because there can be missing race stages due to changes in the
UTMB course from year to year. This means that the recommended plans cover
most (typically >80%) but not all of the race segments in a given year.

Nevertheless the high similarity levels tell us that the recommended plans
are very close to the actual PB pacing profiles, and there is no reason to expect
that missing stages would be any different. It would be possible to “fill in” these
gaps by recommending an average (grade-adjusted) pace to the target runner.

5 Discussion

These results suggest that the ideas proposed by [20–23] for marathon runners
may also prove effective for other forms of endurance activities. The prediction
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errors in this work (≈7% on average) are similar to, but not as good as, those
reported by [21]. Follow-up work in [22] provided a number strategies for signif-
icantly reducing error-rates, which should also be applicable in this work.

Although not reported here, for reasons of space, we have also evaluated
these techniques on a datset from the 100-mile Western States ultra marathon3.
It is a similar event to UTMB, in distance and terrain, which takes place in
California’s Sierra Nevada every June. Using a dataset of approximately 4,000
race records (for 2008–2018), and a similar number of race stages to the UTMB,
we found similar patterns of results for prediction error and pacing similarity.
However the actual prediction errors (≈9%) and recommendation similarities
(≈0.95) were not as good as those found for UTMB; once again women were
more predictable than men.

A lack of data is likely the primary reason for these lower accuracy and
similarity rates, highlighting one of the main shortcomings with the approach
outlined here. The work of [21] leveraged large datasets of 10,000’s of runners
to make very accurate predictions and recommendations for marathon runners.
This volume of data is just not available for ultra races, which are much more
selective and do not (yet) appeal to most people, even serious runners. However,
it may be possible to overcome this data sparsity challenge if we can use race
records from other events as the basis of our ultra marathon predictions. For
example, many ultra marathon runners also run road marathons and their PB
marathon times are likely to be strong predictors of their ultra-marathon times.
Indeed, as mentioned previously, in order to qualify for events such as UTMB
runners must accumulate enough points across two years of mountain races and
their performance in these races could also be used in our race cases.

6 Conclusions

Our aim in this work has been to examine whether the case-based marathon
prediction techniques in [20–23] can be generalised for other types of endurance
events and specifically ultra marathons. There are many reasons to suspect
that such events will prove to be more challenging than more conventional road
marathons – increased distances, challenging terrain, changing routes, the impact
of weather, fewer race records to learn from – but the results presented in this
paper are promising. Although not as good as the results presented in [20–23] the
ability to predict ultra marathon pacing with an error rate of just ≈7% should
prove to be useful, certainly for non-elite, recreational runners, if one can call
any UTMB participant a ‘recreational’ runner!

Many opportunities exist for future work. Paired-race case representations
could be extended to capture richer representations of runner history using
the techniques outlined in [22]. Additional event-types could be incorporated
to address the data-sparsity issues that are inherent in ultra marathon running,
relative to more popular event-types such as marathons, half-marathons and

3 https://www.wser.org.

https://www.wser.org
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triathlons. And, more sophisticated models of weather conditions and terrain
could be developed better normalise performance across the years.

References

1. Abut, F., Akay, M.F., George, J.: Developing new VO2max prediction models from
maximal, submaximal and questionnaire variables using support vector machines
combined with feature selection. Comput. Biol. Med. 79, 182–192 (2016)

2. Akay, M.F., Zayid, E.I.M., Aktürk, E., George, J.D.: Artificial neural network-
based model for predicting VO2max from a submaximal exercise test. Expert Syst.
Appl. 38(3), 2007–2010 (2011)

3. Bartolucci, F., Murphy, T.B.: A finite mixture latent trajectory model for modeling
ultrarunners’ behavior in a 24-hour race. J. Quant. Anal. Sports 11(4), 193–203
(2015)

4. Berlin, E., Laerhoven, K.V.: Detecting leisure activities with dense motif discovery.
In: The 2012 ACM Conference on Ubiquitous Computing, Ubicomp 2012, Pitts-
burgh, PA, USA, 5–8 September 2012, pp. 250–259 (2012)

5. Bichindaritz, I., Montani, S., Portinale, L.: Special issue on case-based reasoning
in the health sciences. Appl. Intell. 28(3), 207–209 (2008)

6. Bramble, D.M., Lieberman, D.E.: Endurance running and the evolution of homo.
Nature 432, 345–352 (2004)

7. Campbell, A.T., et al.: The rise of people-centric sensing. IEEE Internet Comput.
12(4), 12–21 (2008)

8. Dearden, P.: Game, set and mismatch. EMBO Rep. 8(3), 219 (2007)
9. Ellaway, R.H., Pusic, M.V., Galbraith, R.M., Cameron, T.: Developing the role

of big data and analytics in health professional education. Med. Teach. 36(3),
216–222 (2014)

10. Fister, I., Rauter, S., Yang, X.S., Ljubič, K., Fister, I.: Planning the sports training
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Abstract. Deep Learning methods have shown a rapid increase in popu-
larity due to their state-of-the-art performance on many machine learning
tasks. However, these methods often rely on extremely large datasets to
accurately train the underlying machine learning models. For supervised
learning techniques, the human effort required to acquire, encode, and
label a sufficiently large dataset may add such a high cost that deploying
the algorithms is infeasible. Even if a sufficient workforce exists to create
such a dataset, the human annotators may differ in the quality, consis-
tency, and level of granularity of their labels. Any impact this has on
the overall dataset quality will ultimately impact the potential perfor-
mance of an algorithm trained on it. This paper partially addresses this
issue by providing an approach, called NOD-CC, for discovering novel
object types in images using a combination of Convolutional Neural Net-
works (CNNs) and Case-Based Reasoning (CBR). The CNN component
labels instances of known object types while deferring to the CBR com-
ponent to identify and label novel, or poorly understood, object types.
Thus, our approach leverages the state-of-the-art performance of CNNs
in situations where sufficient high-quality training data exists, while min-
imizing its limitations in data-poor situations. We empirically evaluate
our approach on a popular computer vision dataset and show significant
improvements to object classification performance when full knowledge
of potential class labels is not known in advance.

Keywords: Deep learning · Novel object discovery ·
Computer vision · Convolutional Neural Networks

1 Introduction

Deep Learning has seen rapid advancement in recent years, setting benchmarks
for many machine learning tasks in the areas of computer vision, natural lan-
guage processing, and game AI. While these deep neural networks are fundamen-
tally the same as the perceptrons [14] of the late 1960s, they leverage dramatic
improvements in the availability of computational resources and training data
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to significantly outperform their predecessors. In particular, the field of com-
puter vision has benefited from the application of Convolutional Neural Net-
works (CNNs) [6] that are able to use massive image datasets to learn relevant
image features rather than relying on hand-engineered feature sets. Additionally,
this field has been able to utilize a seemingly endless streams of crowdsourced
labeled images from sources like Facebook, Instagram, Twitter, and Reddit.

However, the ability of these deep learning architectures to learn is directly
tied to the availability of high-quality, human-labeled data to use during training
[16]. If training data is either rare or low-quality, deep learning systems will have
difficulty accurately learning from the data. In the case of rare data, it may be
possible to gather more data over time as more images become available (e.g.,
as a new model of mobile phone is released, when a new species is discovered
and documented). The more difficult long-term problem is the quality of data, as
demonstrated by the age-old idiom “garbage in, garbage out”. In some situations,
this can be erroneous labels being given to training instances. For example, if an
annotator labels an image of a car as a tree, the learning system will attempt
to learn based on that erroneous data. Similarly, an annotator may only label a
subset of objects in complex scenes. In a bedroom scene, the annotator may label
bedclothes, pillows, and nighstands, but treat other objects as background, like
alarm clocks or lamps. Furthermore, the system’s learning will be constrained by
the level of granularity used during labeling and the annotator’s term preference.
For example, the choice of whether to use a high-level label such as animal or pet,
limit the classification granularity of a vision system compared to using lower-
level labels such as cat, European cat, or Russian Blue cat. These issues are
compounded by the fact that, given the scale of datasets used by Deep Learning
systems, it is impractical for a single annotator to label an entire dataset. Instead,
the annotation work is generally crowdsourced from hundreds or thousands of
human annotators. It is unlikely that all of these annotators will be consistent,
error-free, and complete in the labels they provide. Thus, the overall quality
of the labeled datasets, and ultimately the potential performance of a machine
learning system trained on the datasets, is bound by the quality of the human
annotators.

We propose a method, called Novel Object Discovery Using Convolutional
Neural Networks and Case-Based Reasoning (NOD-CC), for object discovery and
classification in images that leverages the high-end performance of CNNs while
reducing their reliance on large sources of pre-labeled training data. Instead,
NOD-CC attempts to classify an input image using a trained CNN, but can
dynamically switch to using a case-based classification approach if the CNN is
not confident in its prediction. The primary motivation of this approach is that
while CNNs require a large collection of training images of each object type to
learn successfully, a CBR system can be used to learn using as few as one training
instance. Thus, the CBR component can be used to discover novel object types
and provide classification of those types until such time as there are sufficient
training examples to retrain the CNN.
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In our previous work [23], we demonstrated how CBR can leverage the auto-
mated feature extraction capabilities of CNNs, and perform novel object dis-
covery and classification. In that work, which we will refer to as Novel Object
Discovery using Case-Based Reasoning (NOD-CBR), the convolutional layers of
a CNN (i.e., the CNN architecture excluding the fully-connected neural network
layers) are used to convert input images into a feature vector representation.
That feature vector representation, and optionally any detectable object parts
that are visible, is used to retrieve similar cases and determine if an object of
that type has been encountered previously. NOD-CC significantly extends NOD-
CBR and provides the following key contributions:

– A hybrid architecture that includes both the NOD-CBR system as well as a
fully functional CNN (i.e., a CNN that performs object classification rather
than purely feature extraction).

– An architecture that provides both the high-end performance of CNNs as well
as the lazy, data-poor learning capabilities of CBR.

– A series of decision algorithms that can dynamically select whether to use the
CNN or CBR components of our architecture to perform object classification.

– An online method for object classification, novel object discovery, novel object
labeling, and learning.

– An empirical evaluation that demonstrates the utility of NOD-CC when the
full set of object types is not known in advance.

The remainder of this paper describes how NOD-CC combines Convolutional
Neural Networks and Case-Based Reasoning to classify images while also per-
forming novel object discovery. Section 2 provides an overview of similar research
in both Deep Learning and CBR. Section 3 describes our hybrid architecture that
combines CNNs and CBR for object classification and discovery. Our empirical
evaluation is presented in Sect. 4, and provides evidence to support our claims of
the utility of NOD-CC. Finally, in Sect. 5 we summarize our findings and identify
important future research directions.

2 Related Work

The intersection of CBR and CNNs has been previously examined in the domains
of Human Activity Recognition (HAR) and medicine. In many HAR settings,
usage of high-fidelity wearable sensors for movement are used for feature extrac-
tion [20], and to further train classifiers for new users [19]. Using multi-channel
medical device EEG signals, researchers have also conducted analysis on pat-
terns of electrical signals from the brain to set a baseline for seizure detection
[24], and then using a case base of seizure-like data to classify unseen patients
[15]. The usage of actigraphy sensors provided large amounts of medical data
that can be used to predict sleep patterns, sleep quality, and sleep activity using
Deep Learning techniques such as Multilayer Perceptrons, Convolutional Neural
Networks, and many variants of Recurrent Neural Networks [21]. By leveraging
this high-quality sensor data, it is possible to preserve existing patient privacy
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in medical information while training an initial model, or fine tuning a model
for new or changed data [18].

CBR has also seen a wide array of uses for image processing in medical
domains [17]. Despite the wide usage and success of CBR in a variety of medical
domains (e.g., [7,10,12]), most applications require hand-crafted features (e.g.,
[1,11,13]) generated by Subject Matter Experts (SMEs), a practice which does
not scale to the Exascale-level computation and learning that Deep Learning
making possible [8].

A similar application of CBR to our novel object detection system is a website
classifier on sites by using image data from the websites instead of the textual
data [11]. Although this work also uses the feature vector from later stages of
a Convolutional Neural Network, this was used to classify the images from the
website into existing categories without leaving the possibility for novelty. Also
different from other previous works is that our system’s novel object detection
system performs unsupervised learning in an online, incremental manner, not
doing offline dataset analysis to search for out of distribution classes.

3 Hybrid CNN-CBR Architecture

Our approach, Novel Object Discovery Using Convolutional Neural Networks
and Case-Based Reasoning (NOD-CC), is a hybrid of two learning and classifi-
cation methods (Fig. 1). The Convolutional Neural Network component (labeled
as CNN) is intended to classify images of object types for which sufficient train-
ing instances are available. Additionally, it converts raw images into feature
vectors for use by the Case-Based Reasoning component (labeled as CBR). The
CBR component is intended to learn from and classify object types that are not
classifiable by the CNN. A meta-algorithm, labeled as Controller, determines
whether the classification from the CNN or CBR component is used to provide
final image classification. In the following sub-sections, we will provide details
about each of the three primary components: CNN, CBR, and Controller.

Input Image

ClassificationCBR

Classification

Parts Detector
(optional)

Controller
Classification

CNN

Extracted
Features

Parts

Fig. 1. Architecture of the NOD-CC image classification system. The classifications
are shown in green and are produced by the three decision algorithms shown in blue.
The inputs to the decision algorithms are shown in yellow, the input image in orange,
and the optional parts detector in red. (Color figure online)
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3.1 Convolutional Neural Network Component

When used for object classification, a Convolutional Neural Network takes as
input an image and outputs a classification for what type of object is visible in the
input. CNNs contain two primary stages: convolutional and pooling layers, and
fully-connected layers. The convolutional and pooling layers take the raw image
input and extract a feature vector containing the relevant features that were
learned during training. For example, these features may include the presence
(or absence) of certain edges, shapes, or complex geometric objects (composed of
many shapes). This feature vector is used as input to the fully-connected layers,
which then use the feature vector to determine a classification for the image. In
NOD-CC, the feature vector computed by the convolutional and pooling layers
is also provided to the CBR component. This is done to leverage the ability of
CNNs to automatically learn and perform feature extraction, and avoids any
manual feature engineering for the CBR component.

NOD-CC is agnostic to the particular CNN architecture used; since all CNNs
can produce an intermediate feature vector (which can be provided to the CBR
component) and a classification, any architecture can be used. In our work, we
use the Inception-v3 architecture [22]. We selected this architecture based on
it having been shown to achieve similar classification performance compared to
more computationally expensive architectures such as ResNet [5] and ResNeXt
[25]. An additional benefit of using the Inception-v3 architecture is that it allows
the possibility of future extensions of NOD-CC, as part of future work, to use a
hierarchical image grammar. This would allow not only novel object discovery
but also hierarchical class relationships between classes (e.g., that a novel object
type is a subclass of an existing object type). Inception-v3 facilitates this by
using a set of auxiliary classifiers, used to combat the vanishing gradient problem
during training, that could be used to facilitate predictions at multiple levels of
granularity.

3.2 Case-Based Reasoning Component

Although CNNs can achieve high accuracy when classifying objects in images,
their performance is dependent on the set of class labels (i.e., object types)
contained in the training data. If the training data contains images labeled with
the set of labels L = {l1, . . . , ln}, a CNN (and most other learning algorithms)
will only be able to classify those n object types. Any images of objects with
a label lm (where lm /∈ L) will either be misclassified as one of the labels in
L or unclassified (i.e., the CNN will output a low confidence for all labels such
that an unknown output is produced). This issue is particularly problematic
for CNNs since they require a large set of example images labeled as lm before
they be accurately trained to predict that object type. CBR, on the other hand,
likely does not have the same peak classification performance on massive image
datasets but is capable of one-shot learning. Once a single image with label lm
is encountered, it can be stored as a case and reused to classify other instances
of that object type.
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For the CBR component of NOD-CC, we use our previous case-based novel
object discovery approach, NOD-CBR [23]. NOD-CBR stores each training
image Ii ∈ I (where I is the set of all images) as a case Ci in the case base CB
(Ci ∈ CB). Cases are encoded as triplets containing the feature vector represen-
tation of the image Fi, a set of detectable image parts Pi, and the ground truth
object label li: Ci = 〈Fi, Pi, li〉. Using case-based reasoning nomenclature, the
feature vector and parts set of the image are the problem, and the class label is
the solution.

Recall from the previous subsection that the convolutional and pooling layers
of the CNN component convert a raw input image into a feature vector Fi =
〈f1, . . . , fv〉 ∈ F (where v is an integer value defined by the CNN architecture
and F is the set of all feature vectors). Thus, both the CBR component and
the fully-connected layers of the CNN component use an identical feature vector
representation as produced by the convolutional and pooling layers mapping
from images to features: features : I → F .

Each case also contains the set of parts Pi ⊂ P that are detectable in the
input image, where P is the set of all parts that may be detected. These parts
are generic lower-level structures of an image, like hands, feet, wheels, or wings.
Since parts are generic, different objects types can share parts (e.g., both dogs
and cats have legs, heads, ears, tails). However, even images of the same object
type may have different detectable parts based on variations in pose, occlusion,
or photographic style. For example, in Fig. 2, the cats do not have an identical set
of detectable parts due to different poses and image framing. Our work assumes
the presence of a parts extractor that returns the set of detected parts in an
image: parts : I → P. However, as we will discuss shortly, while our approach
can leverage parts information it is not necessary for classification (i.e., it can
classify using only the feature vector).

The NOD-CBR object discovery and classification algorithm is shown in
Algorithm 1. While full details of the algorithm are described in our previous
work [23], we will provide a brief overview of its reasoning process. The algo-
rithm takes as input an image Iin, a case base of training images CB, the k
value to use when retrieving similar cases from the case base, the threshold λf

used to determine if two images have similar features, and the threshold λp used
to determine if two images have similar parts. The output is the class label for
the image. Given an input image, the algorithm will extract the feature vector
representation (i.e., from the CNN component) and the set of detectable parts
(i.e., from the parts extractor). If the either the case base is empty (Lines 4–5),
no cases are sufficiently similar to the input image’s feature vector representation
(Lines 7–9, based on a threshold λf ), or there are cases with similar feature vec-
tors but their detectable parts are not similar (Lines 11–17, based on a threshold
λp), then NOD-CBR generates a new label for the input image. In that situation,
it believes the image to be of a newly discovered object type. Otherwise (Line
19), it uses the class label from the most similar retrieved case. In all situations,
a new case is retained and added to the case base (Line 20).
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Fig. 2. The variation in pose of the two cats, as well as the framing of the picture
can drastically effect the observable parts. The cat on the left in the so-called catloaf
position is hiding his legs under his torso, and the way the picture is framed does not
show its tail, while the cat on the right has all major parts visible.

An advantage of this approach is that it can start from a variety of initial case
base configurations: an empty initial case base if no prior knowledge exists, a case
base containing cases for all images used to train the CNN, or a sampling of cases
of each object type if the full training set is too large. It should also be noted
that while the generateLabel() function in Algorithm 1 will generate a unique
label for a newly discovered object type, it will likely not be a meaningful class
label (e.g., returning the label object5849 rather than lion). However, images
with newly generated labels (i.e., the newly discovered object types) could be
presented to a human expert, either online or offline, to receive more meaningful
object labels.

3.3 Controller Component

The CNN component and CBR component both output a classification for the
input image. However, there is no guarantee that they will predict the same
object type. The role of the controller is to receive as input the predictions from
both components and output a final predicted class label.

In our work, we use three different Controller strategies:

– Always CNN: The classification output by the CNN component is used
regardless of the the CBR component’s classification. This is equivalent to
the CNN component operating in isolation.

– Always CBR: The classification output by the CBR component is used
regardless of the the CNN component’s classification. This is equivalent to
the CBR component operating in isolation.



380 J. T. Turner et al.

Algorithm 1. NOD-CBR algorithm for image classification and novel
object discovery

Function: classify(Iin, CB, k, λf , λp) returns lin

1 Fin ← features(Iin);
2 Pin ← parts(Iin);
3 lin = ∅;
4 if CB = ∅ then
5 lin ← generateLabel();

6 else
7 topK ← retrieveTopK(Fin, CB, k, λf );
8 if topK = ∅ then
9 lin ← generateLabel();

10 else
11 nn = ∅; nnSim = −1;
12 foreach Ci ∈ topK do
13 sim ← partSim(Pin, Ci.Pi);
14 if sim > nnSim and sim > λp then
15 nn = Ci; nnSim = sim;

16 if nn = ∅ then
17 lin ← generateLabel();

18 else
19 lin ← nn.li;

20 CB ← CB ∪ 〈Fin, Pin, lin〉 ;
21 return lin;

– Conditional CBR: The classification of the CNN component is used unless
the CNN has low confidence in its prediction. This occurs when none of the
class labels are above an abstention threshold λa. In situations where the
CNN does not output a class label, the prediction of the CBR component is
used.

4 Evaluation

Our empirical evaluation demonstrates the object discovery and classification
performance of NOD-CC when the complete set of object types that will be
encountered at run-time is not known in advance. More specifically, the following
hypotheses are evaluated:

H1: The CNN component will be unable to correctly classify any object types
not present in the training set.
H2: The CBR component, NOD-CBR, will outperform the CNN component
when the training images do not contain instances of all object types that may
be encountered at run-time.
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H3: NOD-CC will achieve higher classification performance than the CNN com-
ponent alone when the training images do not contain instances of all object
types that may be encountered at run-time.
H4: NOD-CC will achieve higher classification performance than NOD-CBR
alone when the training images do not contain instances of all object types that
may be encountered at run-time.

4.1 Dataset

The image dataset used during our evaluation is the publicly available PASCAL-
Part dataset [2], a subset of the images from the Visual Object Classes Challenge
2010 dataset [3]. The dataset contains images with 20 coarse-grained ground
truth object types: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
dining table, dog, horse, motor bike, person, potted plant, sheep, sofa, train, and
tv monitor. Additionally, each image has between 0 and 24 annotated detected
parts. However, as discussed previously, images may differ on the number of
annotated parts based on the quality and properties of each image.

Other properties of the PASCAL-Part dataset that make it appropriate for
this evaluation include the variation between scale, orientation, pose, lighting,
and ambient setting of the objects. The images include many complex, real-
world environments so there is a high-degree of image clutter, object occlusion,
and background scenes. For example, one image of a person is in a forested
environment where less than 10% of the visible pixels are of the person, while in
another a person takes up 90% of the visible pixels but is partially occluded by
the water they are swimming in.

Our current work is focused on classifying a single object type in each image.
To facilitate this, we filtered the PASCAL-Part dataset to only the images that
contain a single class label, thereby reducing the dataset from 10,103 images to
4,737. While this may seem like a limitation of our approach, many computer
vision applications first propose sub-regions of a cluttered image to classify (e.g.,
the region proposal stage of a Region-Based Convolutional Neural Network [4]),
and then provide at most a single object label for each sub-region (i.e., a tra-
ditional CNN classification). Additionally, even though each image only con-
tains a single labeled object, nearly all of the images contain a variety of unla-
beled background objects. Since the size of the filtered PASCAL-Part dataset is
quite small by Deep Learning standards, the CNN component used in our work,
the Inception-v3 architecture, was pretrained on the much larger Open Images
v4 dataset [9] and then fine-tuned using the filtered PASCAL-Part dataset. It
should be noted that there is no overlap between the images contained in the
two datasets (i.e., pretraining on Open Images v4 will not provide any images
from the testing sets we use).

For our experiments, we used the filtered PASCAL-Part dataset to create 20
experimental datasets. The original dataset comes pre-partitioned into training
and testing sets. For each of the 20 experimental datasets, 5 of the 20 object types
were selected at random (such that no two experimental datasets used the same
set of 5 object types). All images of the 5 selected object types were removed
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from the training set but left in the testing set. Thus, all testing sets contain
images of all 20 object types, but the training sets only contained images of
15 object types. These experimental datasets were partitioned in advance, such
that all experimental variations would work on an identical set of datasets.

4.2 Scoring Metrics

Our previous work [23] demonstrated the ability of NOD-CBR, when starting
from an empty case base, to discover and classify novel object classes. More
specifically, we evaluated its ability to maximize class purity (i.e., provide the
same generated label to images of the same object type) while minimizing the
divergence in the number of discovered classes from the true number of classes
(i.e., not over-partitioning the data). Given that we have previously demon-
strated the efficacy of NOD-CBR on these tasks, our evaluation will measure
the performance of our hybrid NOD-CC architecture’s classification performance
when class labels from the testing set are not present in the training set (i.e.,
novel object types are encountered at run-time).

For each testing image provided to NOD-CC, there are four possible ways in
which the classification prediction of NOD-CC can align with the image’s ground
truth label, ordered from best to worst:

1. Correct: The class label predicted by NOD-CC matches the ground truth
class label. This is the ideal situation and is considered to be a 100% match.
C represents the percentage of testing instances labeled correctly.

2. Known Novel: NOD-CC correctly predicts that the class label was not one
of the class labels in its training set. Since a random guess would correctly
predict a novel class 25% of the time (since 5 of 20 classes are not in the train-
ing set), we consider this to be a 25% match. KN represents the percentage
of testing instances labeled as known novel.

3. Abstention: NOD-CC does not have enough confidence in any of its poten-
tial predications, so it abstains from making a prediction. Since guessing a
class label randomly would provide the correct prediction approximately 5%
of the time (since there are 20 classes), we consider an abstention to be a
5% match. Essentially, this prevents NOD-CC from being forced to provide
a random guess to boost its accuracy and allows it to abstain when it is
unsure. A represents the percentage of testing instances that were abstained
from labeling.

4. Incorrect: NOD-CC predicts a known class label (i.e., a class label present
in the training set) but it does not match the ground truth class label. This
is incorrect and considered to be a 0% match. I represents the percentage of
testing instances labeled incorrectly.

During each evaluation, each image in the testing dataset is used as input to
NOD-CC and a comparison between the predicted class and ground truth class
label is used to calculate our scoring metrics: accuracy (ρA), precision (ρP ),
recall (ρR), and F1 score (F1). Although the F1 score calculation uses the well-
established equation, we use modified accuracy, precision, and recall functions
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based on the previous discussions of the four ways NOD-CC’s classification can
align with the ground truth classification. These metrics have a new term W
introduced that provides weighted credit based on the correctness of the predic-
tion (i.e., Correct, Known Novel, Abstention, or Incorrect). Thus, more correct
prediction types are preferred using these metrics.

W = 1.00 × C + 0.25 × KN + 0.05 × A + 0.00 × I

ρA =
W × (TP + TN)

TP + TN + FP + FN
F1 = 2

ρP × ρR
ρP + ρR

ρP =
W × TP

TP + FP
ρR =

W × TP

TP + FN

For every class label in the dataset (all training classes unseen at training time
are considered to be of a single class labeled as Novel Class), we compute the
accuracy (ρA), precision (ρP ), recall (ρR), and f-score (F1). For each experimen-
tal run (i.e., providing the testing instances from a single experimental dataset to
Algorithm 1) the mean of each of the class-level metrics is computed. We further
vary our experiments by randomizing the order in which testing instances are
provided to Algorithm 1. This is important since it is a learning algorithm (i.e.,
new cases are stored) so the order of testing instances may impact performance.
For each of the 20 experimental datasets, 20 random orderings were used. This
resulted in 400 total experimental runs (20 datasets × 20 orderings) and the
reported results are the averages of the metrics over all 400 runs.

4.3 Always CNN Variant

As a baseline, we evaluated the Always CNN variant of NOD-CC (i.e., when
the CBR component is ignored). The abstention parameter λa was determined
through cross-validation on the entire dataset, such that the F1 was maximized.
Recall that the Always CNN variant is unable to learn online; it is only able
to abstain from providing a label. Assuming a perfectly balanced set of classes,
since the CNN is only trained on 15 classes with the remainder only appearing
in the testing set, its maximum accuracy is bounded as: max(ρA) = (1520 ×
100%) + ( 5

20 × 5%) = 76.3%. In reality, due to the imbalance of the datasets
the true maximum accuracy was lower - 63.9% in our experiments. We report an
additional metric, Relative Mean Accuracy (RMA), that measures the fraction of
max(ρA) that was achieved. We also report the minimum (Min. ρA), maximum
(Max. ρA), median (Med. ρA) and standard deviation (σ ρA) of the accuracy
(i.e., when examining each experimental run individually). The performance of
Always CNN is shown in Table 1.

One item of note in these baseline results is that the precision is significantly
higher than the recall. This is intuitive in a system that uses a threshold to
determine confidence in classifications (i.e., λa); the system only provides clas-
sifications when it is confident in its predictions and thereby lowers the number
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Table 1. Performance of the various NOD-CC configurations

Variant ρA ρP ρR F1 RMA Min. ρA Max. ρA Med. ρA σ ρA

Always CNN 42.99 61.31 37.98 44.32 67.27 25.98 61.27 41.80 9.15

Always CBR
w/ Parts

58.45 54.30 59.66 56.18 81.70 43.49 68.93 61.33 6.57

Always CBR
w/o Parts

49.82 49.77 49.41 48.21 69.67 37.49 63.44 59.78 7.27

Conditional
CBR w/
Parts

59.90 56.52 60.98 58.17 83.77 54.00 64.12 60.35 2.66

Conditional
CBR w/o
Parts

53.73 51.39 53.75 52.44 75.15 49.84 61.91 55.23 2.67

of false positives. In these results, as expected, the Always CNN approach is
never able to correctly label unknown classes, providing evidence to support H1.

4.4 Always CBR Variant

As an additional control, we use the Always CBR variant of NOD-CC (i.e.,
the CNN always abstains, so only CBR is used). This variant was evaluated
both with observable parts information (i.e., a parts detector component was
available) and without. When parts are not available, Algorithm1 only uses the
image features during retrieval. For these experiments, the CBR component was
initially given a case base containing all training instances.

Always CBR has a higher theoretical maximum accuracy than Always
CNN because it has the ability to label an image as a novel class rather than
abstaining: max(ρA) = (1520 × 100%) + ( 5

20 × 25%) = 81.3%. Based on the class
imbalance of the datasets, the true maximum accuracy was determined to be
71.5%. Similar to with Always CNN, this was used to calculate the RMA. The
results are shown in Table 1.

Although the availability of detectable object part information is beneficial,
Always CBR is able to outperform Always CNN even without parts. The
only metric Always CNN performs better on is precision. As we mentioned
previously, this is a result of the CNN algorithm being able to abstain, thereby
lowering its false positive rate. Overall, the results demonstrate the benefits
CBR can provide when the full set of object classes is not known in advance.
Even considering the performance of these approaches relative to their maximum
accuracy (i.e., RMA), Always CBR still outperforms Always CNN. These
results provide evidence to support H2.
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4.5 Conditional CBR Variant

In this variant, we use both the CBR and CNN components (i.e., our full archi-
tecture). As described previously, the classification from the CNN is used unless
the CNN abstains. If the CNN does abstain, the CBR component is used for clas-
sification. We use the same configurations (i.e., λa threshold and initial case base)
for the CNN and CBR components as described in the previous experiments.
Similar to the Always CBR variant, we evaluate the Conditional CBR both
with and without parts information. The results are shown in Table 1. Across
all metrics, except precision, both variants of Conditional CBR outperform
Always CNN. This demonstrates that the ability of CBR to dynamically detect
and learn from previously unseen class types provides significant benefit to the
CNN component. In situations where the CNN abstains, the CBR component is
able to provide assistance. This provides support for H3.

When comparing Always CBR to Conditional CBR, the Conditional
CBR variants outperform across all five core metrics (accuracy, precision, recall,
f-score, and RMA). This includes both the variants that use parts information
as well as those that do not. The results show that the Conditional CBR per-
formance has fewer extreme results (i.e., minimums and maximums closer to the
mean) and significantly lower standard deviation. This is beneficial because it
provides both improved performance as well as less uncertainty about the poten-
tial performance on an unknown dataset. Additionally, these results demonstrate
the combination of both the CNN and CBR components are necessary for maxi-
mum performance; neither module is sufficient for novel object discovery on their
own. These results provide support for H4.

5 Conclusions and Future Work

In this work we described NOD-CC, a hybrid architecture that uses Case-Based
Reasoning and Convolutional Neural Networks to discover novel object types
during the image classification process. NOD-CC leverages the automated fea-
ture extraction and image classification performance of CNNs while minimiz-
ing their requirement for large, pre-labeled training datasets by using CBR’s
instance-based learning capabilities. NOD-CC can be used with any CNN imple-
mentation so it is not tied to a specific CNN architecture, training methodology,
or parameter selection. This is particularly important given the rapid advance-
ment in the field of CNNs.

Additionally, NOD-CC can use detected object parts to further improve its
performance, although it performs well even if such additional information is
unavailable. We evaluated our approach on a publicly available image dataset
and showed NOD-CC had improved performance over a CNN or CBR module
alone. Our results demonstrated that NOD-CC was able to discover previously
unknown classes of objects (i.e., not represented in training data), learn from a
single instance of the novel object type, and classify future instances of those
objects. Additionally, NOD-CC performed these tasks without compromising
the discriminatory power of the CNN.
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Future work will involve using the WordNet hierarchy in conjunction with
the hierarchical multi-class capabilities afforded by Inception-style architectures
in order to perform hierarchical clustering of classes. Thus, a novel class could
be placed in a hierarchy relative to known classes, possibly revealing a parent-
child relationship. For example, if an image dataset contained labeled images
of balloons and baskets, it could be learned that they are related to a newly
discovered object type, an image of a hot air balloon. Similarly, textual relations
between the known class labels could be used to generate a more semantically
meaningful label for the novel object type (e.g., balloon basket). We also wish
to investigate additional methods for using CBR for classification. Even in our
dynamic approach described in this paper, we set an abstaining threshold λa for
detection to be used unilaterally across all classes. There is an intuitive reason
to believe that a CBR system (i.e., a meta-algorithm) for determining when to
deploy a second CBR system (i.e., an image classifier) may be useful in this
effort.
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Abstract. This paper investigates automatic adaptation of scientific
workflows in process-oriented case-based reasoning with the goal of pro-
viding modeling assistance. With regard to our previous work on the
adaptation of business workflows, we discuss the differences between the
workflow types and the implications for transferring the approaches to
scientific workflows. An experimental evaluation with RapidMiner work-
flows demonstrates that the approaches can significantly improve work-
flows towards a given query while mostly maintaining their executability
and semantic correctness.
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1 Introduction

In the age of big data, data mining is essential for exploiting the potentials hidden
in data. However, defining a suitable data analysis procedure is a very challeng-
ing task that requires significant expertise. In e-Science, scientific workflows [23]
are an established means for this purpose since they describe at a more abstract
level how to address a concrete problem in terms of required data, composition
of suitable processing steps, and the selection of good parameter settings. In
addition, workflows are a means to document an important step of scientific
discovery in a way that reproducibility and reliability of results are improved.
Besides their use in natural sciences, their potentials have been recently recog-
nized in the Digital Humanities (DH), where the data mostly consists of text
documents which must be processed by natural language and text mining pro-
cedures [11,12]. A major obstacle, which currently prevents their wider usage
in DH as well as in other fields, is the lack of comprehensive modeling support
for scientific workflows that particularly targets the needs of researchers who are
not experts in software development and workflow modeling. Scientific Work-
flow Management Systems (SciWFMs) such as KEPLER [14], Taverna [22],
RapidMiner [17], or WINGS [7] are very helpful in this respect as they already
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support the construction and execution of scientific workflows by an integrated
visual development environment. Nevertheless, workflow construction remains
a demanding and time-consuming task, in particular for complex data analysis
that require combinations of many processing steps [5].

An important line of research aims at supporting the development of scientific
workflows by reuse of best-practice workflows [5,8] from a repository [6]. Case-
Based Reasoning (CBR) has already been proposed to support the reuse of sci-
entific workflows [1,4,7], however previous work mainly focused on the retrieval
of reusable workflows, leaving the necessary adaptation up to the user. In this
paper, we now address the adaptation of scientific workflows in a case-based man-
ner. For this purpose, we build upon our previous work in Process-Oriented CBR
(POCBR) [18] in which we developed various adaptation methods for business
workflows, mostly demonstrated in the field of cooking recipes [19–21]. In par-
ticular, we investigate the transferability of these approaches to the considerably
more complex domain of scientific workflows. This includes the representation
of scientific workflows, the learning phase for adaptation knowledge from a case
base, as well as the actual adaptation methods using this learned knowledge.
Further, we implemented and evaluated the methods for adapting data mining
workflows in the SciWFM RapidMiner [17].

The next section reviews related work in the field and analyzes the differences
between business and scientific workflows. Section 3 investigates the implications
of these differences and presents the results in terms of adaptation approaches
that can deal with scientific workflows. Section 4 shows the implementation of
the presented approaches for RapidMiner workflows and presents the results of
an experimental evaluation. Section 5 concludes with an outlook at future work.

2 Foundations and Related Work

In the following, we briefly survey existing work on modeling support for scien-
tific workflows, we briefly summarize our own work on POCBR which we aim
at transferring to scientific workflows, and we discuss the differences between
business and scientific workflows.

2.1 Modeling Support for Scientific Workflows

Scientific workflows are executable descriptions of automatable scientific pro-
cesses such as computational science simulations and data analyses [23]. They
consist of a collection of various tasks representing data processing activities
such as data import, pre-processing, or modeling together with the parameters
used during the execution of these tasks. Also the data items being processed
as well as the usage of the data as input or output to the tasks is modeled as
part of a scientific workflow. Due to the complexity involved in the creation
of scientific workflows, several methods have been proposed to support users
in doing so. For instance, an approach by Jannach et al. [9] supports the user
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with context-sensitive recommendations of single processing steps and parame-
ter settings for the current workflow under construction, based on the analysis
of a large workflow repository. Kietz et al. [10] propose a planning approach for
the automatic composition of RapidMiner workflows, correctness-checking, and
quick-fixes using an ontology of available computational steps, parameters, and
constraints. The SciWFM WINGS [7] also uses planning and semantic reasoning
to automatically create workflows based on high-level user requests.

While these approaches require either a fully specified domain model appro-
priate for planning or a huge number of workflow instances to learn from
by induction, CBR has also been used to support workflow development. For
instance, Leake and Kendall-Morwick [13] consider execution traces of work-
flows as cases. The approach extracts tasks from retrieved cases for extending
the current workflow under construction. The approach by Chinthaka et al. [4]
uses keyword descriptions of inputs and outputs provided by the user for finding
the best-matching workflow. If necessary, an adaptation process tries to extend
the workflow with single tasks to better fulfill the user’s requirements. In our
own work, we addressed the retrieval of semantically labeled workflow graphs as
a starting point for reuse [16]. In general, previous case-based approaches in the
field of scientific workflows mainly focused on retrieval and did not yet address
extensive adaptation in a fully automatic manner.

2.2 Process-Oriented Case-Based Reasoning

Our previous work on POCBR already dealt with the adaptation of business
workflows. We developed methods for substitutional adaptation by generaliza-
tion and specialization [20] and two methods for structural adaptation, namely
operator-based adaptation [21] and workflow streams adaptation [19]. The meth-
ods are currently restricted to business workflows and have been intensively
investigated only in the field of cooking recipes. In this paper, we focus on adap-
tation by generalization and specialization and on workflow stream adaptation.

Adaptation by Generalization and Specialization. Using generalized cases
[3] is an established approach that allows to represent a set of cases by a single
generalized case, leading to a reduced case base and increased coverage. When
applied to workflow cases, workflow components such as task and data objects
are generalized to a common object that has certain properties that hold for all
subsumed objects. During the specialization process, either the original or other
available specializations can be inserted to better fulfill a given query.

Adaptation with Workflow Streams. Workflow stream adaptation is a com-
positional adaptation approach [24] which decomposes the workflow cases of the
case base into meaningful sub-workflows (referred to as workflow stream) that are
stored as adaptation knowledge. A retrieved workflow is adapted with respect to
a query by incrementally replacing its own workflow streams with more suitable
streams from the adaptation knowledge.
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Learning Adaptation Knowledge. Since the presented adaptation methods
require a significant amount of domain-specific adaptation knowledge, the devel-
oped methods automatically learn required knowledge (generalized workflows
and workflow streams) from the workflow repository, i.e., the case base. Hence,
we distinguish between a learning phase of adaptation knowledge and a problem
solving phase in which for a given query the best matching workflow is adapted
such that it matches the particular problem scenario at best. By applying the
learned adaptation knowledge between different cases, a larger solution space is
covered.

2.3 Differences Between Business and Scientific Workflows

There are significant differences between business workflows and scientific work-
flows, which prevent the direct application of the developed adaptation methods.

Business workflows aim at automating organizational processes, which are
mainly executed by humans, supported by certain resources including application
programs. While the goal of a business workflow is already determined before the
workflow is executed, the goal of a scientific workflow is to validate hypotheses
of a researcher based on available data. These scientific goals are experimental
and exploratory and thus vary more frequently. While business workflows are
executed under the control of the involved humans, scientific workflows are exe-
cuted fully automatically by a computer [15]. Consequently, they depend more
strongly on proper parameter settings.

Control-flow and data-flow orientation are discussed as main differences
between business and scientific workflows [1,15]. In business workflows, control-
flow patterns such as AND, XOR, and LOOPS are commonly used. Data-flow
is modeled separately or implicitly due to its subordinate significance [15]. In
scientific workflows, data-flow is of primary importance since the control-flow,
respectively the execution order of the computational steps, results implicitly
from the given data-flow. A computational step can only be executed after the
required data has been generated by the previous steps, hence the workflow is
data-driven. However, some SciWFMs also enable to explicitly define control-
flow between computational steps or to use control-flow patterns.

Many SciWFMs such as KEPLER [14], Taverna [22], or RapidMiner [17] use
certain interfaces (referred to as ports) for restricting the data-flow between com-
putational steps to ensure that only valid data is exchanged. Port connections
are not used in business workflows, which is thus a further significant difference.

3 Adaptation of Scientific Workflows

This section outlines the representation of scientific workflows as semantic graphs
before the substitutional and structural adaptation approaches are described. We
keep those descriptions on an informal level as the full algorithmic details1 would
exceed the space limitation of this paper.
1 Lukas Malburg formally described the approaches in his master thesis “Adaptation

of Scientific Workflows by Means of POCBR” submitted 2019 at Trier University.
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3.1 Graph Representation and Semantic Similarity

To represent workflows, we use semantic graphs [1]. Figure 1 depicts such a graph
of a scientific workflow from the data mining domain. In a semantic graph,
semantic descriptions and specific types are assigned to each node and edge.
Semantic descriptions are based on a semantic metadata language. For scien-
tific workflows, we use object-oriented descriptions to represent heterogeneous
parameters and values of computational steps. The computational steps of a sci-
entific workflow are represented as task nodes in the graph. Data nodes between
task nodes represent the data that is exchanged between computational steps.
To represent port connections, corresponding information is added to the seman-
tic descriptions. In the example graph, the semantic descriptions of data nodes
comprise information about the labels of connected input and output ports. For
example, it is stated that data object Table Data is produced by the task Import
Data at the output port table data and that the same data object is consumed
by the task Discretize at the input port table data.

Import
Data Discretize ID 3

Table Data Table Data
(2) Tree Model

type:      import_data
name:    Import Data
param.: {file: \\data.csv}

type:      discretize_by_size
name:    Discretize
param.: {size_of_bins: 200}

data_type:    table_data 
output_port: table data
input_port:   training set

data_type:    tree_model
output_port: model
input_port:   model

data_type:    table_data
output_port: table data
input_port:   table data

type:      id_3
name:    ID 3
param.: {criterion: accuracy}

Export
Model

type:      export_model
name:    Export Model
param.: {file: \\model.ser}

Fig. 1. Graph representation of a scientific workflow

In a scientific workflow graph, the data nodes reflect the state changes of
processed data and thus have to be distinct. For instance, the task Discretize
produces an output of the same data type but in an altered state. Hence, data
nodes Table Data and Table Data (2) are represented as distinct nodes. In busi-
ness workflows (cf. the cooking workflows used in our previous work [19,20]),
each data node is unique, too, but state changes of data are typically not repre-
sented. Due to this difference, the usage of data-flow edges between data nodes
and task nodes differs in the graph representation. While a data node can be
linked with various task nodes as input or output in a business workflow graph,
we restrict the connection of a data node such that it can only be connected
as output of one task node and as input of another task node in a scientific
workflow graph.

Task nodes are also semantically enriched by semantic descriptions that con-
tain, for example, the type of the computational step, the name, and defined
parameters. Even though control-flow is secondary for scientific workflows, we
explicitly represent the control-flow between task nodes by selecting one valid



Adaptation of Scientific Workflows by Means of POCBR 393

execution order of tasks. By this means, we take into account SciWFMs such as
RapidMiner that allow for defining control-flow.

Analogous to previous work (cf. [19,20]), we use the semantic similarity mea-
sure by Bergmann and Gil [1] to assess the similarity between two graphs. The
measure uses subgraph matching and applies heuristic search to find the best
possible, injective, partial mapping m between the nodes and edges of the query
workflow QW and those of the case workflow CW :

sim(QW,CW ) = max{simm(QW,CW ) | mapping m} (1)

During the search, each mapping of two nodes or edges is rated by local similarity
functions simm → [0, 1]. Following the local-global principle, similarities between
a pair of mapped nodes or edges is assessed by comparing the attribute values of
their semantic descriptions with each other. Such similarities are then aggregated
to similarities of mapped nodes or edges, which, in turn, are aggregated to the
global similarity value of two graphs.

3.2 Substitutional Adaptation by Generalization and Specialization

The adaptation by generalization and specialization is used to substitute task
nodes in a scientific workflow graph. In the learning phase, the workflows in
the case base are generalized. In the problem solving phase, a retrieval is per-
formed in the generalized case base for the best-matching generalized workflow.
Subsequently, the generalized workflow is specialized in regards to the query.

classification

bayes tree

nominal tree nominal/numerical tree

ID 3 ... C 4.5 ...

0.4

0.9 0.6

0.8 0.75...
Naive Bayes Naive Bayes

(Kernel)
CHAID

Fig. 2. Excerpt of a task taxonomy

Generalization. The generalization requires ontological information about the
tasks. In particular, a taxonomy of all types of tasks is required. In such a hier-
archy, the generalization considers the types along the path from a concrete
type (i.e., a leaf node) towards the root as possible generalizations [20]. Figure 2
depicts an excerpt of an exemplary task taxonomy. In the taxonomy, the gen-
eralized class bayes subsumes the concrete tasks Naive Bayes and Naive Bayes
(Kernel) and has assigned a semantic similarity value of 0.9 that holds for all
subsumed tasks, i.e., for both naive bayes implementations. The values were
determined manually considering the meta data of tasks. In contrast to business
workflows, the generalization of scientific workflows primarily relates to tasks
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since data types depend on tasks and thus cannot be adapted independently. In
order to generalize a task node in a workflow graph, several conditions must be
satisfied. In previous work [20], two similarity thresholds have been proposed for
business workflows to assess whether task nodes are suitable for generalization.
The first similarity threshold �W ∈ [0, 1] prevents workflows from being gener-
alized that are considered too heterogeneous. A second threshold is defined for a
measure that takes into account the taxonomic structure of the tasks to prevent
over-generalization. For scientific workflows, this parameter is not required, since
port connections of tasks are considered as constraints instead. Two tasks from
different workflows are considered to be generalizable, if they have equal port
connections, i.e., if the specifications of connected ports are identical. Further-
more, it is required that the generalized task is able to consume and produce
the same data items. For each inner node (representing a generalized task type)
in the taxonomy, we determine the common port specifications of the subsumed
tasks and assign them to the inner node. A task is incrementally generalized
until no more common port specifications exist. The constraint of common port
connections ensures that each specific task is able to consume and produce the
same data as its siblings in the taxonomy. Thus, in the specialization phase,
each specific child of a generalized task can be selected for substitution and it
is ensured that no structural changes (e.g., adaptation of the data-flow) to the
workflow are required.

ModelModel

ID 3 ...... Naive
Bayes ......

Model

Classification ......

Table DataTable Data

Fig. 3. Exemplary generalization of tasks

Figure 3 illustrates an exemplary generalization process. In the given exam-
ple, two similar workflow graphs W and W1 are compared with a similarity
sim(W,W1) ≥ �W . The task node ID 3 of workflow W is mapped to the task
node Naive Bayes of workflow W1. Both tasks consume and produce the same
data. Assuming that the tasks have the same port connections and that the gen-
eralized task type Classification is a common ancestor of both tasks (see Fig. 2)
that is able to consume and produce the corresponding data, the task ID 3 can
be generalized to Classification.

Specialization. The specialization process is similar to the process applied to
business workflows (cf. [20]). For each generalized task in a retrieved generalized
workflow, the most suitable specializations are inserted with respect to the given



Adaptation of Scientific Workflows by Means of POCBR 395

query. If a generalized task is used in the query workflow, an arbitrary specific
task is selected during the specialization of business workflows. However, to
ensure the executability of scientific workflows, already known specializations are
preferred over unknown specializations. Hence, during generalization all original
tasks are stored for each generalized task. If a known specialization exists, it
is chosen as specialization. Otherwise, an arbitrary specialization is selected. In
this event, the task is pre-initialized with known default parameter settings.

3.3 Structural Adaptation with Workflow Streams

The adaptation with workflow streams exploits the structure of workflows to
define the borders of substitutable and meaningful sub-workflows that we call
workflow streams. For this purpose, the approach poses the requirement of block-
orientation (cf. [19]) on the representation of workflow graphs. In a nutshell,
block-orientation restricts the control-flow in a graph in such a way that only a
single start and end node is allowed and that all task nodes must be connected by
control-flow edges. For workflow representations without an explicit definition of
the control-flow, which is often the case for scientific workflows, the control-flow
must be made explicit to be block-oriented.

A workflow stream is considered as a sub-workflow that produces a partial
output of a workflow. A task that produces such a data object is referred to
as producer (or creator). Due to the different representation of data objects
in scientific workflow graphs (cf. Sect. 3.1), the definition of a producer differs
from our previous approach. In business workflow graphs, types of data nodes are
always considered different. Since data objects are stateful in scientific workflows,
several data nodes may exist with an equal data type. Thus, producers are
identified by looking at the input and output data types. A task is considered as
producer, if it produces at least one data object of a type that is different from
all of its input data types.

Workflow Stream Partitioning. A block-oriented scientific workflow can be
partitioned into workflow streams similarly to a business workflow. Based on the
identified producers P ⊆ T from all tasks T in the workflow, the workflow is
partitioned into a set of workflow streams such that each task t ∈ T is exactly
assigned to one stream. A workflow stream S is constructed for each producer
p ∈ P . The producer p constitutes the end task node in the control-flow of the
stream S. A task t ∈ T \ P is part of the stream S,

– if t is a predecessor of p in the control-flow,
– if t is not already part of another stream,
– and if t is connected to an equal data node the producer p or another task of

stream S is connected to (cf. definitions of data-flow connectedness in [19]).

In such a partitioning, each task is exactly assigned to one workflow stream.
Figure 4 illustrates the partitioning of two scientific workflows. All workflow
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Fig. 4. Partitioning of scientific workflows

streams are marked with dashed rectangles. The producers in the example work-
flow A are Import Data and ID 3. The example demonstrates that streams do
not only produce partial outputs, but also consume data (see stream 3).

Workflow Stream Substitution. For the problem-solving phase, we assume
that the available workflows in the case base have been decomposed into workflow
streams in a learning phase beforehand. A workflow from the case base can be
adapted w.r.t. a given query workflow by replacing its workflow streams with
other available streams that better fulfill the requirements of the query. For this
purpose, the workflow to be adapted is decomposed into streams and for each
stream a search for the best substitute stream candidate is performed. This
search process applies the semantic graph similarity outlined in Sect. 3.1 to find
the best workflow streams with respect to a given query.

Two streams are regarded as substitutable, if they consume and produce the
same data. More precisely, a stream S1 is substitutable by a stream S2, if all the
data objects in S1 that are consumed or produced by a task of another stream
are identical to those data objects of S2. Such data nodes are also referred to as
data anchors and the corresponding task is named consumer or producer anchor,
respectively. In Fig. 4, data anchors are marked with symbols.

Due to the availability of port connections in scientific workflows, a further
condition is proposed to define substitutable streams. If the set of data anchors
of two streams S1 and S2 is not identical, it is checked for each unmatched
data anchor of stream S1 whether the other stream S2 contains a consumer or
producer anchor with an unused port that is suited to consume or produce the
data anchor of S1. For instance, in the example given in Fig. 4, Stream 2 of
Workflow B is substitutable by Stream 2 of Workflow A, assuming that both
tasks C 4.5 and ID 3 have equal output port specifications. In this event, the
unused port of ID 3 is used to produce the data object Table Data (2).
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3.4 Combined Adaptation

Both adaptation approaches can also be used in combination. By this means,
the coverage of the solution space can be increased, which has been investigated
in previous work [2]. For the combined adaptation, the case base is first general-
ized to learn generalized workflow streams. Then, retrieval is performed and the
best-matching generalized workflows are adapted. First, structural adaptation
substitutes generalized workflow streams that best match the given query. Sub-
sequently, substitutional adaptation specializes the adapted workflow to produce
concrete and executable workflows.

4 Implementation and Experimental Evaluation

We fully implemented the described approaches in the POCBR component of the
CAKE framework2 such that it can adapt RapidMiner workflows. The following
section outlines the implementation with a particular focus on the semantic
graph representation as prerequisite of adaptation. Subsequently, we present the
evaluation setup and discuss the results.

4.1 Implementation of the RapidMiner Domain

We developed a plugin for the RapidMiner environment [17] that allows for
automatically exporting workflows to XML and extracting meta data about
available workflow components. Essentially, the knowledge model is based on
these meta data that comprise various information about each available task
such as textual descriptions, parameters, value ranges, default settings, input

Fig. 5. Screenshot of a RapidMiner workflow

2 See http://procake.uni-trier.de.

http://procake.uni-trier.de
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Fig. 6. Semantic graph of a RapidMiner workflow

and output ports, and data types. Figure 5 illustrates a data mining workflow
that reads and discretizes a data set, learns an ID3 decision tree, and performs
a cross validation to measure the model performance. Some tasks (in the follow-
ing referred to as complex tasks) such as the Cross Validation enclose further
tasks as sub-workflows. Figure 6 shows the semantic graph representation of the
overall workflow, which is similar to the graph depicted in Fig. 1. It should be
noted that only the semantic description of the complex task is shown in the
figure. Sub-workflows of a complex task are represented as semantic graphs that
are referenced in the corresponding semantic description. In the given example,
both graphs are listed as references in the subworkflows attribute of the semantic
description. Hence, when computing the similarity between two complex tasks,
referenced sub-workflows are also compared according to their order in the sub-
workflows attribute using new instances of the graph similarity measure. By this
means, they contribute to the semantic similarity of complex tasks. Moreover,
during the similarity computation of the higher-level workflow graph, workflow
components can also be mapped between the higher-level graph and the sub-
workflow graphs. Consequently, a retrieval with a query that does not contain
sub-workflows can still find similar workflows that contain similar components
nested in sub-workflow structures. To represent data-flow connections to and
from workflow or sub-workflow input and output ports, auxiliary tasks referred
to as IO anchors are added to the graphs (see symbols in Fig. 6).

The presented adaptation approaches can be applied for this graph repre-
sentation. An exception are io anchors, which are not adapted by the meth-
ods to ensure that existing data-flow connections are retained. Regarding the
requirement of block-orientation for the adaptation with workflow streams, sub-
workflows can be adapted separately, since IO anchors ensure that their inter-
faces to other workflows are considered.
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4.2 Hypotheses and Evaluation Setup

To evaluate the adaptation methods, we perform adaptation experiments with
executable RapidMiner workflows and constructed queries. With respect to the
average query fulfillments, we investigate the following hypotheses:

H1 Each adaptation method provides at least as good results as the sole
retrieval.
H2 The structural adaptation method outperforms the substitutional adapta-
tion method.
H3 The combined adaptation method provides better results as both, the struc-
tural and the substitutional adaptation method.
H4 The adaptation methods produce executable and semantically correct work-
flows.

As evaluation criteria, we measure the query fulfillment, which is determined
by the semantic similarity between the query and the adapted workflow graphs
(see Sect. 3.1). Furthermore, we assess the quality, which is determined by exe-
cutability and semantic correctness of the adapted workflows.

For the experiments, we created a case base of 20 data mining workflows as
follows: First, we selected three sub-trees of the task taxonomy that subsume
classification and clustering tasks (e.g., ID3 or k-Means), validation tasks (e.g.,
cross or split validation), and performance measuring tasks (e.g., accuracy or
cluster distance). Subsequently, we randomly selected one concrete task from
each of the sub-trees and constructed an executable workflow containing these
tasks by adding required data processing tasks. All workflows are created for
the same data set to allow for a broader applicability of adaptation knowledge.
Figure 5 depicts one of the created workflows. Similarly, we created 10 queries,
which are different from one another and from the workflows in the case base,
by randomly selecting one task from each of the three sub-trees, including gen-
eralized tasks (i.e., inner tree nodes). Such a query is a partial, non-executable
workflow whose tasks are not connected with each other. Here, additionally
required data processing tasks are not included.

For each query, a retrieval of the k top-ranked workflows is performed in the
case base. Workflows with an identical similarity value are considered equally
ranked. Subsequently, adaptation is performed on the top-k workflows and the
query fulfillment is measured. The workflows with the highest query fulfillment
are selected for further examination. We checked the syntactic correctness by
converting the graph into the XML format, the executability by importing (the
XML) and executing the workflow in RapidMiner, and the semantic correctness
by manual examination after successful execution.

As baseline for the query fulfillment, a retrieval without adaptation is con-
ducted. For the structural adaptation approach, retrieval is performed and the k
top-ranked workflows are adapted w.r.t. the query. For the substitutional adap-
tation approach, the case base is generalized first, a retrieval is performed with
the generalized workflows, and the k top-ranked workflows are specialized. Due
to a rather narrow scope of the workflows, the threshold �W = 0 is used for the
generalization. In a third experiment, the combined adaptation is evaluated.
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4.3 Results

Table 1 summarizes the measured query fulfillments for plain retrieval, i.e., the
baseline, (row “w/o”) and for the performed adaptations. An empty space in
the table indicates that the measured value is equal to the baseline. For k > 1
the highest value is taken, since adaptability among the workflows may vary. A
cross mark beside a value indicates that none of the k top-ranked workflows is
executable or semantically correct. In each of these events, the error is caused by
missing pre-processing tasks for converting the data set into a format required by
the requested classification or clustering task (e.g., discretization). We found no
case, where an adapted workflow was executable but not semantically correct.
The results of structural adaptation show that adaptation of the first ranked
workflows by retrieval does not necessarily lead to the highest possible simi-
larity, which is only reached with k ≥ 3. In the experiments with the substi-
tutional adaptation, the generalized workflows ranked highest by retrieval are
also best suited for adaptation regarding each query. The query fulfillments do
not increase for higher k values. Both adaptation methods outperform the sole
retrieval, which confirms Hypothesis H1. No significant differences in the results
of structural and substitutional adaptation could be observed in the experiments.
Thus, Hypothesis H2 cannot be confirmed. For k = 1, the combined approach
achieved the best results on average, followed by the substitutional and struc-
tural approaches. Hence, Hypothesis H3 is confirmed. However, comparing these
similarities with those obtained without adaptation, all approaches yield to sig-
nificantly (p < 0.05) higher values on average.

Table 1. Maximum query fulfillments of k top-ranked adapted workflows

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg

w/o 0.82 0.60 0.85 0.85 0.91 0.81 0.78 0.85 0.71 0.72 0.79

struct. k = 1 1.00 1.00 ✗ 1.00 0.86 ✗ 0.86

k = 2 1.00 1.00 1.00 1.00 ✗ 1.00 0.91 0.86 ✗ 0.91

k ≥ 3 1.00 0.69 1.00 1.00 1.00 ✗ 1.00 0.91 0.86 ✗ 0.92

subst. k ≥ 1 1.00 0.68 1.00 1.00 ✗ 1.00 0.91 0.91 0.91

comb. k ≥ 1 1.00 0.69 1.00 1.00 1.00 ✗ 1.00 0.91 1.00 ✗ 0.94

The results also show some differences between the queries. In the events,
where adaptation does not exceed retrieval (Q5 and Q8) or where adapted work-
flows are not executable (Q6 and Q10), queries contain combinations of tasks
for which no or at least no applicable adaptation knowledge is available. For
example, in Q6, an ID3 decision tree is requested that requires discretized data,
but a discretization task is not part of the query. All the adapted workflows
contain the requested tasks but no discretization task since it is not requested.
Consequently, Hypothesis H4 is only partially confirmed.
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5 Conclusions

This work investigates the application of adaptation in POCBR for the com-
plex domain of scientific workflows. In a first step, we determine differences
between business and scientific workflows. These differences affect the adaptation
methods that are already used to adapt business workflows. Thus, we present
a modified approach for structural adaptation with workflow streams and for
substitutional adaptation by generalization and specialization. We implement
both adaptation methods in the CAKE framework for adapting RapidMiner
workflows. Both adaptation methods show promising results in the experimen-
tal evaluation as they are able to significantly increase the query fulfillment.

Due to the differences between business and scientific workflows and the more
complex domain of scientific workflows, further advancements in the adaptation
approaches are necessary to improve executability and semantic correctness of
adapted workflows. At present, adaptation only ensures the syntactic correct-
ness and does not consider or adapt parameter settings of tasks. For future
work, several ideas for improving the adaptation methods exist. The structural
adaptation can be improved by adding an insert capability and by including
finer-grained adaptation components such as those presented in our operator-
based adaptation approach. Moreover, it can be investigated how dependencies
of tasks can be determined for a given data set. For this purpose, the coverage of
adaptation can be computed by applying the entire adaptation knowledge to the
workflows in the case base. The resulting sets of executable and non-executable
workflows can then be analyzed regarding the dependencies of tasks to derive,
which adaptation components are compatible with each other.

Further, we plan to expand the evaluation to more complex, user-generated
workflows and we will integrate the adaptation methods within our plugin for
the RapidMiner environment in order to support their use in a convenient way.
By this means, a further step towards the interactive adaptation of workflows
for providing modeling assistance can be made.
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