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Abstract  The World Health Organization reports that millions of deaths occurring 
worldwide are because of infectious diseases caused by bacteria, viruses, fungi and 
parasites. The existing therapeutics is not adequate enough to fight against these 
diseases and their prolonged uses have led to the development of drug-resistant 
strains which are even more difficult to control. Hence, the need for an alternative 
approach is growing. Development of nanotechnology, especially nanostructured 
particles and formulations, is providing new opportunities to combat these infec-
tious diseases more effectively. Nanomaterials have unique physicochemical 
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properties like tuneable size, large surface to volume ratio, high reactivity, biocom-
patibility and functionalizable surface area. These properties are applied to facilitate 
the applications of antimicrobial drugs, thereby overcoming some of the limitations 
of traditional antimicrobial therapeutics. Moreover, the therapeutic effect and drug 
delivery approach of these nanomaterials have emerged as an innovative and prom-
ising alternative that enhance therapeutic effectiveness against pathogenic microor-
ganisms and minimize undesirable side effects of the drugs. In order to enumerate 
the antimicrobial effect of these nanomaterials, this chapter is designed to discuss 
commonly used nanomaterials such as lipid vesicle dendrimers, polymeric and inor-
ganic nanoparticles, carbon nanostructures, quantum dots, electrospun nanofibres, 
nanoclays, etc. against infectious diseases.

Keywords  Antimicrobial · Dendrimers · Lipid vesicles · Nanoclays · Nanofibers · 
Quantum dots

5.1  �Introduction

Microorganisms, as the name suggest, are microscopic living organisms that are 
visible with the help of aided microscopic devices. They have inhabited on earth for 
more than 3.5 billion years and are regarded as the first form of life on the planet. 
Most of these microorganisms are unicellular (single-celled) such as bacteria but 
few are multicellular such as algae and fungi. They survive in different environ-
ments and their habitat ranges from ice cold climate to hot springs, deserts to marshy 
lands and skin surfaces to the gut. Though they are omnipresent, their presence in 
the environment may be beneficial or harmful to others. The association of useful 
microorganisms such as bacteria and fungi with humans is as old as the civilization. 
Their important role in different nutrient cycles, decomposition of harmful chemical 
pollutants and wastes, fermentation, digestion of food and protection from harmful 
microbes in the body, production of vaccines and antibiotics, genetic engineering 
and biotechnology is effectively utilized in different applications for the benefit of 
humans (Tortora et al. 2004). Similar is the case with pathogenic (harmful) micro-
organisms that cause infections and diseases such as dysentery, diarrhoea, tubercu-
losis and cholera in humans. These pathogenic microorganisms have received 
significant attention due to their harmful effects leading to suffering and death in 
humans. In 2015, the World Health Organization (WHO) estimated that 3.2 million 
deaths worldwide were due to respiratory infections and 1.4 million deaths due to 
diarrhoeal diseases and tuberculosis each (WHO 2015). The report briefly showed 
the magnitude of threat these pathogenic microbes are causing to the human popula-
tion and how important it is to control their growth through therapeutic approaches. 
Moreover, the emergence of antimicrobial resistance (AMR) strains of bacteria, 
fungi and parasites is becoming a serious threat to public health leading to disease 
severity and their treatment (Roca et  al. 2015). Globally, it is found that around 
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700,000 deaths occur each year due to resistance to antimicrobial drugs by emerging 
strains of mutant microorganisms. It is estimated that such AMR strains of organ-
isms would be accountable for the death of around 10 million people worldwide by 
2050 (Robinson et al. 2016). In order to conquer deaths caused by infectious dis-
eases and avoid the emergence of any resistant strains, researchers worldwide are 
looking for alternatives that can be used against a broad range of microbial popula-
tions. New alternatives to antibiotics have been identified till date including anti-
bodies, probiotics, bacteriophages, vaccines and antibiofilm peptides that can be 
used against infectious diseases (Czaplewski et  al. 2016; François et  al. 2016; 
Ploegmakers et al. 2017; Wang et al. 2016). In addition to these, various nanostruc-
tures and nanoformulations with existing drugs were found to be effective against 
different infectious diseases (Malmsten 2014; Karaman et al. 2017; Raghunath and 
Perumal 2017). These nanostructures interact physiochemically with the cells and 
cellular organelles for effective therapeutic treatment (Nel et al. 2009). These phys-
iochemical interactions lead to reorientation of the metabolic pathways inside the 
cells disturbing the biological mechanisms like protein folding, membrane dynam-
ics, enzyme catalysis and DNA replication. which inhibit microbial growth (Moyano 
and Rotello 2011; Dewan et al. 2014). Additionally, the generation of reactive oxy-
gen species (ROS), metal-ion release, nanoparticle internalization into cells and 
direct mechanical destruction of the cell wall and/or membrane by the nanomateri-
als contribute to the disruption/deaths of microorganisms (Pelgrift and Friedman 
2013). Irrespective of the mechanism of microbial cell death, nanomaterials are 
giving hopes for an alternative to age-old therapeutic agents used till date. The use 
of different nanostructures such as liposomes, dendrimers, quantum dots, nanoclays 
and other nanoparticles serves a dual purpose against infectious diseases: firstly, 
they themselves possess therapeutic properties that inhibit the proliferation of 
microbial growth and secondly, they aid drug delivery by transporting drugs to the 
target site of action which otherwise was not possible directly. In this chapter, the 
therapeutic potential of nanomaterials such as lipid vesicles, dendrimers, polymeric 
and inorganic nanoparticles, nanofibres, nanoclays, quantum dots and carbon nano-
materials is discussed along with brief description of the diseases caused by 
microbes such as bacteria, fungi, protozoa and viruses and their existing 
therapeutics.

5.2  �Microbial Diseases and Their Existing Therapeutics

Most people link microorganisms as disease-causing agents, but not all microorgan-
isms are harmful (Tortora et al. 2004). The beneficial processes of microbes include 
decomposition of dead plants and animals; protection against harmful pathogens by 
altering the pH, acidity level, releasing toxins and regulating and stimulating the 
immune system (Calder and Field 2002; Reid and Burton 2002). On the contrary, 
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harmful microbes cause diseases in humans by defeating the immune system and 
eliciting their harmful effect. The mechanisms followed by these microorganisms to 
cause illness in humans are either through rapid multiplication inside the host that 
disrupts the normal function of the organs or destruction of metabolic machinery of 
the cells/tissues by the production of toxins (Fauci 2004). Several microorganisms 
responsible for causing diseases in humans are species of bacteria, fungi, protozoa 
and viruses that enter the body by contact (infected skin, mucous membranes and 
body fluids), contaminated food and water, blood and vectors such as fleas, mites, 
ticks and mosquitoes. Common diseases such as pneumonia, bronchitis, whooping 
cough and tuberculosis (affecting the respiratory tract); typhoid fever, cholera, botu-
lism, peptic ulcer, dysentery and food poisoning (affecting gastrointestinal tract); 
urinary tract infections; and skin infections are mostly caused by bacterial species 
of Streptococcus, Staphylococcus, Enterococcus, Haemophilus, Enterobacter, 
Mycobacterium, etc. Moreover, diseases such as aspergillosis, candidiasis, ring-
worm and some skin infections are caused by fungi species, namely, Aspergillus, 
Candida, Tinea and Cryptococcus, whereas malaria is caused by a protozoon, 
Plasmodium. However, infections like common cold, influenza, meningitis, enceph-
alitis, chikungunya, chicken pox and AIDS are caused by viruses (Goering 
et al. 2018).

In order to combat any infection, the defence mechanism of our body is immedi-
ately elicited. It is well known that the T-cells are responsible for antimicrobial 
activity by producing lymphokines at the site of infection (Reinhardt et al. 2001). 
Failure of this internal defence system against microorganisms leads to infection, 
and then therapeutic treatment is required. Conventionally, the use of plant extracts, 
aromatic herbs, essential oils, etc. occurring naturally had been in use as antimicro-
bial agents to treat a number of infectious diseases around the world, but the discov-
ery of antibiotics leads to a new therapeutic treatment approach (Khan et al. 2009; 
Solórzano-Santos and Miranda-Novales, 2012). Antibiotics are metabolites pro-
duced by certain microorganisms naturally or their semisynthetic derivatives, which 
inhibit the growth of certain other microorganisms. The first discovered antibiotic 
penicillin produced by a fungus Penicillium chrysogenum was extensively used dur-
ing World War II to control the spread of infectious diseases. Since then, several 
other antibiotics, namely, actinomycin, erythromycin, rifamycin, streptomycin, tet-
racycline and vancomycin produced by species Streptomyces; bacitracin and poly-
myxin by Bacillus; and cephalosporin by Cephalosporium, are till date being used 
for the treatment of different infections caused by bacteria (Finch et al. 2010). In 
cases of fungal infections, the treatment regimen is often difficult to formulate 
because human cells, also being eukaryotic are susceptible to harm. In order to cir-
cumvent this, antibiotics such as amphotericin B; nystatin; griseofulvin in combina-
tion with synthetic imidazoles, triazoles and their derivatives; and pyrimidine 
analogues are commonly used (Denning and Hope 2010). However, antiviral drugs 
such as acetaminophen and ibuprofen against common cold and flu; acyclovir, 
valaciclovir, etc. against herpes virus; human recombinant interferon alpha and 
PEGylated interferon alpha against hepatitis B; and zidovudine, didanosine, tenofo-
vir disoproxil, etc. against HIV hinder the ability of these viruses to reproduce and 
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control their spread (De Clercq 2004). In addition to these, combined drug therapies 
are used to treat diseases caused by protozoa, for example, metronidazole and iodo-
quinol against amoebiasis; amphotericin B and chlorpromazine against amoebic 
meningoencephalitis; artemisinin and metal-based therapy against malaria, try-
panosomiasis and leishmaniasis (Sayang et al. 2009; Navarro et al. 2010).

Although good medical progress was made during the last century in developing 
antibiotics and chemically derived synthetic analogues, infections still remain a 
major public health problem worldwide. This problem is further aggravated by the 
emergence of antimicrobial resistance (AMR) strains that occurred due to prolonged 
exposure to similar drugs, administered in different ways and diseases worldwide. 
Though the mechanism of development of AMR is not fully understood, several 
mechanisms have been described, including the acquisition of antibiotic resistance 
genes via the transfer of genetic elements or mutations leading to altered expression 
of redox-active proteins, altered drug metabolism either by substitution or degrada-
tion, changing the chemical composition of cell wall leading to decreased permea-
bility of drugs, etc. (Yelin and Kishony 2018), as well as the formation of biofilms 
(Peng et  al. 2017). The well-known mechanism of development of AMR strains 
(schematically represented in Fig. 5.1) includes: (i) the formation of modified cell 
walls that restrict the penetration of drugs into the cell, (ii) production of chemically 
active molecules that conjugate with the drug molecules and render them inactive, 
(iii) increased channel activity that pumps out the drug molecules and (iv) produc-
tion of modified binding receptors that are unable to bind to the drug molecules.

The emergence of AMR strains of microorganisms is becoming a serious threat 
to human population in the twenty-first century which demands for a new treatment 
regimen so that millions of deaths can be avoided in the future. This is possible only 
through the synthesis or discovery of active novel molecules and their encapsulation 
within nanomaterials so that the drug can reach the cellular organelles where patho-
gens reside and kill the pathogens without harming the patients (Ogawa et al. 2018).

Fig. 5.1  Mechanism of antimicrobial resistance. (Adopted from Singh et al. 2014)
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5.3  �Nanostructured Materials as Antimicrobial Agents

Nanostructured materials are seen as medical alternatives to antibiotics due to the 
capability to tailor them for specific diseases and site-specific targeted delivery. It is 
obvious that for pharmaceutical agents to render their therapeutic effect, the pri-
mary targets must be within cells and tissues so that selective subcellular delivery is 
likely to have greater benefit. Several organic and inorganic nanomaterials are cur-
rently in clinical and preclinical stages that have potential therapeutic effects. The 
nanomaterials with their noble properties such as size, surface to volume ratio, reac-
tivity, biocompatibility and tunability offer biologically active domain for site-
specific targeting, drug delivery, biocompatible coatings, etc. which can be 
engineered for healthcare applications (Fig. 5.2). Most engineered nanomaterials 
acting as drug delivery system and as therapeutic agents against infectious diseases 
are liposomes, dendrimers, polymeric nanoparticles, carbon nanostructures, quan-
tum dots, electrospun nanofibres, nanoribbons, core-shell nanoparticles, etc. and are 
discussed in the following sections.

Fig. 5.2  Properties of nanostructured materials that make it potent antimicrobial agents
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5.3.1  �Lipid Vesicles

Lipid vesicles are composed of either mono- or bilayers of phospholipids with size 
ranging between 50 and 100 nm. The bilayer structures of phospholipids are known 
as liposomes and the monolayered ones are called micelles, whereas solid lipid 
nanoparticles (SLNs) are composed of a solid lipid core encapsulated with drugs 
and the nanocapsules consist of a liquid core with shell-type surface (Fig. 5.3).

The structural morphology of these lipid vesicles enables them to encapsulate a 
wide variety of hydrophilic and hydrophobic diagnostic or therapeutic agents, pro-
viding a good drug payload per particle and protecting the encapsulated drugs from 
metabolic processes. It is important to note that drug entrapped in these vesicles is 
bioavailable with or without stimulus such as pH and temperature. Moreover, the 
ability of accumulated lipid vesicles to increase the local bioavailable drug concen-
trations and their therapeutic outcome can only be enhanced when the rate of release 
of entrapped drug from these nanostructures is optimized (Johnston et al. 2006).

Conventional vesicles suffered drawbacks because of their rapid degradation fol-
lowing plasma protein adsorption. The next generation of these vesicles were 
designed to overcome this drawback by coating the surface with polymer deriva-
tives such as polyethylene glycol (PEG) or carbohydrates. These sterically stable 
nanostructures have been shown to favourably work as drug delivery vehicles that 
withstand the metabolic processes and perform drug release in a controlled manner 
(Torchilin 2005). The mechanism of drug delivery using these lipid vesicles into the 
cell is performed in stages (Fig. 5.4); in the first stage, the nanovesicle-cell interac-
tion occurs where they nonspecifically or specifically bind to the cell surface. Non-
specific adsorption occurs by simply an electrostatic and/or hydrophobic interaction 
between the two, while specific adsorption is a receptor-ligand or an antigen-
antibody interaction between the two surfaces of the cell and the nanovesicle. 
Irrespective of whether the binding is specific or nonspecific, the nanovesicle is 
internalized into the cell by endocytosis. This is followed by the enzymatic diges-
tion of the liposome in the intracellular compartment such as endosome, phagosome 
or acidosome, accompanied by the intracellular distribution of drugs to the cytosol 
(Daraee et al. 2016).

Fig. 5.3  Structure of lipid vesicles such as liposomes, micelle, solid lipid nanoparticles and nano-
capsules containing entrapped drugs
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Liposomes were the first vesicular structure to be explored by encapsulating anti-
biotics and bioactive molecules to increase the therapeutic dose of the formulation, 
circulation time and bioavailability as compared to the free drug (Pinto-Alphandary 
et  al. 2000; Barratt 2003). Mikasome, an amikacin liposomal formulation, was 
found to be more potent than the free drug against murine tuberculosis (Donald 
et al. 2001). Similarly, pulmonary administration of solid lipid nanoparticles con-
taining rifabutin was reported to enhance antibacterial activity of Mycobacterium 
tuberculosis in a murine model (Gaspar et al. 2017). Improved bioavailability of 
kaempferol, a flavonoid compound, was achieved when loaded into lecithin/chito-
san nanoparticles that proved to be potent against a pathogenic fungus Fusarium 
oxysporum (Ilk et al. 2017). Additionally, liposomes loaded with antibiotics have 
demonstrated excellent transportation capability and severalfold increase in potency 
in both in vitro and in vivo studies against Pseudomonas, Salmonella, Streptococcus 
and others (Pushparaj Selvadoss et al. 2018; Lakshminarayanan et al. 2018). Similar 
drug transportation potential was also seen in other lipid-based vesicular structures; 
i.e., dehydroascorbic acid (DHA)-coupled polymeric nanomicelles encapsulating 
itraconazole were effectively transported across the blood-brain barrier that showed 
high efficacy in a murine model of Cryptococcus neoformans infection of the cen-
tral nervous system (Shao et al. 2015). The enrofloxacin-loaded docosanoic acid 
solid lipid nanoparticles with different physicochemical properties were developed 
to enhance intracellular activity against Salmonella and were considered to be a 
promising drug carrier (Xie et al. 2017). The antibiofilm activity of liposomal levo-
floxacin and lysozyme improved severalfold against lung infection caused by 
S. aureus in rats (Gupta et al. 2018). Additionally, lipid nanocapsule loaded with 

Fig. 5.4  Mechanism of drug delivery using nanovesicles with possible causes of microbial cell 
death. (Adopted from Çağdaş et al. 2014)
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antipsychotic agents such as chlorpromazine and thioridazine improved its overall 
uptake in bacteria and effectively inhibited proliferation of gram-positive S. aureus 
and gram-negative E. coli, P. aeruginosa, Klebsiella pneumoniae and Acinetobacter 
baumannii bacteria in vitro (Nehme et al. 2018).

Liposomes loaded with bioactive lipids, cinnamon oil, chitosan, peptides, etc. 
have been found to be effective in different strains of bacterial populations along 
with those of resistant strains (Cui et  al. 2016; Poerio et  al. 2017; Pu and Tang, 
2017). Essential oils, such as eucalyptus or rosemary oils, loaded with solid lipid 
nanoparticles were able to promote wound healing in rats and found to be effective 
against S. aureus and Streptococcus pyogenes (Saporito et al. 2018). Moreover, anti-
microbial suspension of triclosan and α-bisabolol encapsulated in chitosan-coated 
nanocapsule inhibiting a pathogenic strain of P. aeruginosa resistant to triclosan 
became susceptible to a dose nearly eightfold smaller and was thus used commonly 
in wound dressing (Marchi et al. 2017).

Furthermore, liposomal formulations seemed superior for the treatment of fungal 
and parasitic diseases compared to their free drug counterpart. In many examples, 
the toxicity of the antibiotic was dramatically reduced which enable larger amounts 
of drug targeting to the infected tissues. This increased the efficacy of the treatment 
by increasing the therapeutic index of liposomal formulation and reducing the side 
effects. An excellent example to compliment the above statement is the liposomal 
formulation of amphotericin B, which is the leading drug against leishmaniasis and 
other fungal infections. The liposome encapsulation reduced its toxicity by 50–70-
fold, which allowed more than fivefold administration as compared to conventional 
treatment. The nanoliposome formulations such as AmBisome® and DepoCyt[e] 
are today marketed as the most effective treatment for leishmaniasis and other fun-
gal infections which are FDA approved (Sundar and Prajapati 2012). Besides 
AmBisome®, other formulations of amphotericin B lipid nanostructures were 
reported to be effective in amoebic meningitis, candidiasis and invasive fungal 
infections, even in immune-compromised patients (Ringden et al. 1991; Cornely 
et al. 2007). Nanomicelles of amphotericin B and sodium deoxycholate sulphate 
when used as aerosol inhalation for lung infection were reported to inhibit 
Cryptococcus neoformans and Candida albicans and were also found to signifi-
cantly improve antileishmanial activity (Usman et al. 2018). Another liposomal for-
mulation under investigation is buparvaquone that has an immunomodulatory effect 
on the host cells and is highly effective at low doses in eliminating Leishmania 
infantum parasites (da Costa-Silva et al. 2017).

Several other liposomal formulations have also been reported as effective antivi-
ral agents; for example, polyunsaturated endoplasmic reticulum liposomes, com-
monly known as PERL, target the cholesterol synthesis within infected cells in a 
large number of viral systems, including hepatitis C virus (HCV), hepatitis B virus 
(HBV) and HIV (Pollock et al. 2010). The matrix 2 protein ectodomain segments 
(M2eA) corresponding to the H1N1, H5N1 and H9N2 influenza strains were formu-
lated using a novel liposome-based vaccine technology and were evaluated as 
potential immunogens which could be used for the development of influenza vac-
cine (Ernst et al. 2006). At the moment, a number of liposome formulations are in 
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clinical trials as an adjuvant for prophylactic as well as therapeutic vaccines against 
malaria, influenza, tuberculosis (TB), human immunodeficiency virus (HIV) and 
dengue fever, whereas Cervarix®, Inflexal®, Epaxal® and Gardasil® are commer-
cially available liposome vaccines against infection by human papilloma virus 
(HPV), influenza virus and hepatitis A virus, respectively (Bernasconi et al. 2016). 
Polymeric nanocapsules consisting of protamine and arginine-rich polymers were 
recently reported to elicit higher protective immune response as recombinant hepa-
titis B surface antigen in mice model which may become an alternative antigen 
delivery vehicle (Peleteiro Olmedo et al. 2018).

5.3.2  �Dendrimers

Dendrimers are hyperbranched monodispersed macromolecules with low polydis-
persity with micelle-like behaviour and nano-reservoir properties (Fig.  5.5a). 
Dendrimer is a three-dimensional globular structure consisting of a central core, an 
interior dendritic structure (the branches) and an exterior surface with functional 
groups, all made up of polymers (Svenson and Tomalia 2012). They differ from 
classical polymers in two main characteristics: firstly, they are never synthesized by 
polymerization reactions, instead a step-by-step process, affording to a perfectly 
defined and highly reproducible structure, and secondly, they have a highly branched 

Fig. 5.5  Structures of (a) dendrimer with a core and polymer chain, (b) polymeric nanoparticles 
with hydrophilic and hydrophobic core and (c) inorganic nanoparticles
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3D architecture due to the use of at least one type of branching units as building 
blocks for their synthesis. Their peculiar structure, reasonable cost of manufacture, 
toxicological profile and biocompatibility distinguished them from other nanosized 
species used for polyvalent or multivalent drug discovery/delivery.

Most commonly used polymers for the synthesis of dendrimers are polyamido-
amine (PAMAM) and polypropylene imine (PPI). Both PAMAN- and PPI-derived 
dendrimers have been reported to possess therapeutic value in treating viral and 
bacterial diseases as well as inflammation (Gong et  al. 2002; Chauhan and Jain, 
2003). Though dendrimers are known to possess therapeutic properties, they are 
highly toxic. In order to reduce their cytotoxicity, they are often modified with PEG, 
carbohydrates, hydroxyl or carboxyl groups to improve their surface activities, as 
well as their biological and physical properties (Gajbhiye et al. 2007; Ziemba et al. 
2011; Kolhatkar et al. 2007).

The antimicrobial potential of dendrimers depends largely upon the type and size 
of the attached functional groups. Smaller dendrimers are effective, as bulkier den-
drimers are unable to pass through the cell membrane and have difficulty in reach-
ing the target site for the anticipated antimicrobial action (Sadegh-Hassani and 
Nafchi 2014). Amino-terminated PAMAM was found to possess strong antibacte-
rial activity as compared to hydroxyl-PAMAM and carboxyl-PAMAM.  This is 
because the protonated amino group on PAMAM promotes the disruption of the 
bacterial membrane through electrostatic interaction (Xue et al. 2015). Thus, anti-
microbial activity of dendrimers is mostly due to their cationic interaction with the 
negatively charged bacterial cells. These interactions increase internalization of 
dendrimers and destroy the membrane proteins which disturb the potassium ion 
distribution around the bacterial cells. The disturbance caused by the dendrimers 
completely disintegrates the bacterial membrane causing a bactericidal effect (Chen 
and Cooper 2002; Cheng et al. 2007). Biocompatible phloroglucinol succinic acid 
dendrimers were reported to possess an inhibitory effect against a number of gram-
positive and gram-negative bacteria (Kumar et al. 2015). Another class of amine- 
and ammonium-terminated carbosilane cationic dendrimers has demonstrated 
antimicrobial activity against both gram-positive and gram-negative bacteria 
(Ortega et al. 2008). Carbosilane dendrimers and dendrons functionalized with gua-
nidine were found to be microbicidal against E. coli, Staphylococcus aureus and 
methicillin-resistant S. aureus bacteria and against Acanthamoeba polyphaga 
(Heredero-Bermejo et al. 2018). Additionally, hyperbranched PAMAM functional-
ized with N-diazeniumdiolate nitric oxide, a nitrous oxide (NO) donor, proved 
effective against common dental pathogens (Yang et al. 2018). Moreover, the con-
jugated polyglycerols with O-carboxymethylated chitosan and boron suppressed 
the proliferation of S. aureus and Pseudomonas aeruginosa (de Queiroz et al. 2006). 
Additionally, the poly(quaternary ammonium) polymers were engineered for anti-
bacterial specificity and their ability to delay the development of bacterial resis-
tance. These linear poly(quaternary ammonium) homopolymers and block 
copolymers showed structure-dependent antibacterial specificity toward gram-
positive and gram-negative bacterial species by mimicking the behaviour of surface-
presented polycationic biocides (Ji et al. 2017).
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As an antifungal agent, PPI was shown to improve the solubility of clotrimazole 
and enhance its antifungal activity against species of Candida (Winnicka et  al. 
2011). Dendrimeric lipopeptides were reported to cause morphological changes in 
fungal cells and inhibit the enzyme activity of 1,3-β-d-glucan synthase in Candida 
(Janiszewska et  al. 2012). The development of dendrimeric peptides (multiple 
strand protein conjugates) with lysine core was also found to be potent against a 
number of bacterial species (Tam et  al. 2002; Scorciapino et  al. 2012) and effi-
ciently kill gram-negative bacteria including the two of the most problematic 
multidrug-resistant bacteria worldwide P. aeruginosa and Acinetobacter baumannii 
(Siriwardena et al. 2017). The central role of peptides in eliciting immune response 
and development of vaccines against infectious diseases including viral diseases are 
emerging which can be the most cost-effective methods of improving public health. 
Induction of immune responses by DNA vaccines formulated with dendrimer and 
poly-methyl methacrylate (PMMA) was strong and effective in inducing specific 
antibody and cellular responses thereby reducing the parasite Leishmania in mice 
model (Tabatabaie et  al. 2018). Additionally, the DNA vaccines based upon 
PAMAM-lysine elicited a predominant antibody response with an increase in the 
production of interleukins (IL-2) to provide protection against Schistosomiasis 
japonica infection (Wang et al. 2014).

5.3.3  �Polymeric Nanoparticles

Polymeric nanoparticles (PNPs) are one of the most studied organic nanostructures 
for application in nanomedicine because it is prepared from either natural or semi-
synthetic polymers. Due to their synthetic precursors, they can entrap drug mole-
cules in its lipid core or may be covalently bonded to the drugs (Fig. 5.5b). These 
PNPs are stable, biodegradable and biocompatible and can be easily distributed in 
the living system due to their building block similarity with biological components. 
The drug or bioactive molecules in PNP are either dissolved or entrapped or encap-
sulated or attached to a nanoparticle matrix which can thus improve the diagnosis 
and treatment of a wide range of diseases, ranging from cancer, viral infections and 
cardiovascular diseases to pulmonary and urinary tract infections (Hajipour et al. 
2012). In the polymeric antimicrobial drug delivery systems, drug molecules can be 
incorporated in the core of the particles or covalently or non-covalently bonded on 
the surface of polymeric nanocarriers or encapsulated in the PNPs (Michalak 
et al. 2016).

Another group of PNPs include nanohydrogels which are extraordinary nano-
structures that have the capability to hold a large quantity of water within them. 
These substances with high water content are synthesized from cross-linked poly-
mers that also have the ability to deliver various drugs or a variety of therapeutic 
agents in the living system. The first well-known hydrogel developed for biomedi-
cal applications was polyhydroxyethyl methacrylate that enabled self-regulated 
drug delivery systems (Lee et al. 2013). The polymer-based nanoparticles’ applica-
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tions include drug delivery, wound healing (Greenhalgh and Turos 2009) and anti-
microbial activity (Torus et al. 2007). These nanostructures being synthesized using 
non-biodegradable polymers, such as poly(methyl methacrylate) (PMMA), poly-
acrylamide, polystyrene and polyacrylates (Torus et  al. 2007; Bettencourt and 
Almeida 2012; Vijayan et al. 2013) suffer from their disadvantageous traits such as 
chronic toxicity and inflammatory reactions, leading to a shift towards biodegrad-
able polymers. Biodegradable polymers include synthetic polymers such as 
poly(lactide) (PLA), poly(lactide-co-glycolide) copolymers (PLGA), poly(ε-
caprolactone) (PCL) and poly(amino acids) in addition to natural polymers such as 
chitosan, alginate, gelatin and albumin (Elsabahy and Wooley 2012; Zhang 
et al. 2013).

Generally, PNPs may interact with the bacterial cell wall either via passive or 
active targeting. Passive targeting is based on particle size and the ability of particles 
to disturb the cell wall of bacterial membrane and damaging it. For active targeting 
of PNPs, the surface of polymeric nanoparticles is usually functionalized with spe-
cific antibodies and aptamer bacteriophage proteins that provide specific identifica-
tion of the pathogens and interaction between the particles and pathogens. The 
reported studies revealed that both the active and passive targeting strategies to 
deliver antimicrobial agents with PNPs improve their activities compared to their 
free form (Kavruk et al. 2015; Barreras et al. 2016). To date, a significant number of 
reports on the activity of antibiotic-conjugated polymeric nanoparticles against var-
ious infections, including those caused by drug-resistant pathogens, have been pub-
lished. The most common is chitosan nanoparticle either alone or loaded with 
different metal ions such as copper, manganese, zinc, iron and silver that caused an 
inhibitory effect in numerous gram-positive and gram-negative bacteria including 
multidrug-resistant strains (Qi et al. 2004; Du et al. 2009; de Paz et al. 2011; Cremar 
et al. 2018). The cationic chitosan nanoparticles interact with the anionic surfaces of 
the microbial cell membrane thereby hindering microbial activity. Chitosan 
nanoparticle being a biocompatible antioxidant possesses an inhibitory effect 
against Candida albicans (Mubarak Ali et  al. 2018) and Fusarium oxysporum 
(Dananjaya et al. 2017). However, in pulmonary infection associated with P. aeru-
ginosa, tobramycin alginate/chitosan nanoparticles demonstrated DNA degradation 
and improved nanoparticle penetration (Deacon et al. 2015). A similar effect was 
reported using nanohydrogels, for example, ZnO nanoparticles incorporated in 
nanohydrogel particles made out of sodium alginate/gum acacia and cross-linker 
glutaraldehyde ensured their gradual and sustained release and demonstrated desired 
level of antibiotic activity against P. aeruginosa (Chopra et al. 2015). Moreover, 
delivery of levofloxacin, a fluoroquinolone antibiotic scarcely efficient in intracel-
lular infections, entrapped within polysaccharide nanohydrogels efficiently 
increased the antibacterial activity of the formulation against P. aeruginosa and 
S. aureus (Montanari et al. 2014). However, biocompatible PNPs composed of chi-
tosan/sodium tripolyphosphate (TPP) and encapsulated with mercaptosuccinic acid 
(MSA) acted as spontaneous nitric oxide (NO) donors, with free NO release show-
ing a significant decrease in the percentage of macrophage infected with amasti-
gotes of Trypanosoma cruzi (Seabra et al. 2015).
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Furthermore, antibacterial property of PMMA containing silver nanofibre was 
reported against E. coli and S. aureus, where release of biocidal Ag+ ions from 
polymer matrix embedded with silver bromide nanoparticles was able to kill both 
airborne and waterborne bacteria and also resisted the formation of biofilms (Kong 
and Jang 2008; Sambhy et al. 2006). Furthermore, drug-loaded PNPs offer added 
advantages with the ability of stimuli-responsive release of drugs, for example, 
levofloxacin-loaded PNPs and ciprofloxacin-loaded PNPs against biofilm cells of 
E. coli (Cheow et  al. 2010; Singh et  al. 2018). Another drug-encapsulated, pH-
responsive, surface charge-switching poly(d,l-lactic-co-glycolic acid)-b-poly(l-
histidine)-b-poly(ethylene glycol) nanoparticles were able to potentially treat 
gram-positive, gram-negative and polymicrobial infections associated with acidity 
(Radovic-Moreno et  al. 2012). Similarly, nystatin-loaded PLGA and PLGA-
glucosamine nanoparticles exhibited higher antifungal activity (Mohammadi 
et al. 2017).

5.3.4  �Inorganic Nanoparticles

Inorganic nanoparticles, including gold, silver and oxides of iron, titanium, zinc or 
silicon, and ceramic nanoparticles such as silica and alumina are continuously being 
investigated in both preclinical and clinical studies for the treatment, diagnosis and 
detection of many diseases (McCarthy and Weissleder 2008; Na et  al. 2009; 
Giljohann et al. 2010; Huang et al. 2011; Li et al. 2012). Many inorganic metals 
such as platinum (e.g. cisplatin, carboplatin, oxaliplatin), gold, silver and copper 
had been in clinical use for centuries, but the understanding of their antimicrobial 
effect is only a few decades old due to recent studies in their nanoscale dimensions 
(Zhang and Lippard 2003; Harper et al. 2010). The significant changes in the prop-
erty of materials that exist in their nanoscale dimension compared to their bulk 
counterparts are the only reason for their exploration in the field of nanomedicine. 
It is established that as the size of the material decreases, the proportion of surface 
atoms increases, thereby increasing the reactivity of these surface atoms (Hanemann 
and Szabó, 2010). Inorganic nanoparticles are currently explored for their potential 
use both as therapeutics and drug delivery agents because of the advantage of chem-
ical and mechanical stability as well as surface functionalization with tunable par-
ticle size and morphology. Another reason for which inorganic nanoparticles have 
emerged as potential antimicrobial agents is their relatively low cost, low toxicity 
and biocompatibility (Huh and Kwon 2011). Silver nanoparticles are known to pos-
sess antibacterial and antiviral properties that even acts against HIV and hepatitis 
viruses (Galdiero et al. 2011). Similar is the case with multivalent gold nanoparti-
cles (Bowman et al. 2008). Recently, nanostructured oxides consisting of two or 
more metallic components forming core-shell architecture such as Ag-SiO2, Fe3O4/
TiO2 and Ag/Fe3O4 demonstrated promising results due to their unique physio-
chemical properties (Cioffi et al. 2005; Chen et al. 2008; Banerjee et al. 2011). The 
monometallic gold and silver and bimetallic gold-silver nanoparticles with biologi-
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cal activity against five opportunistic Candida strains demonstrated high antifungal 
activity against C. parapsilosis, C. krusei, C. glabrata, C. guilliermondii and 
C. albicans (Gutiérrez et al. 2018). In malaria, metal-chelating agents seem to be 
promising therapeutic adjuvants for treatment against severe Plasmodium falci-
parum infection, and ferroquine, an iron-chloroquine derivative, has been found 
active against both chloroquine-susceptible and chloroquine-resistant P. falciparum 
and P. vivax strains (Sekhon and Bimal 2012).

In general, the inorganic nanoparticles may be engineered to evade the patho-
genic system by varying their size and composition (Fig. 5.5c). They may be porous 
and act as a reservoir to physically encage and protect an entrapped molecular pay-
load from degradation or denaturisation, or may allow surface interaction to hold 
the drug molecule just as ligand binding (Roy et al. 2003). Like their organic thera-
peutic counterparts, inorganic therapeutics can benefit from being formulated as a 
nanoparticle delivery system to improve their biological performance by enhancing 
pathological targeting, drug loading and immune system evasion (Farokhzad and 
Langer 2009; Peer et al. 2007). Certain inorganic nanoparticles can respond to spe-
cific external stimuli such as magnetic fields or near-infrared light to facilitate on-
demand drug release (Timko et al. 2014). The advantage of using these inorganic 
nanomaterials as antimicrobial agents is that they contain mineral elements essen-
tial to humans and exhibit strong activity even when administered in small amounts. 
Inorganic nanoparticles are particularly interesting because they can be prepared 
with tuneable morphology. It has already been established that the antibacterial 
activity of inorganic nanostructures is directly influenced by different structural 
morphologies (Zhang et al. 2007; Talebian et al. 2013).

Several metal (Au and Ag) and metal oxide (ZnO, CuO, NiO, Sb2O3, MgO, 
Gd2O3, SnO2, WO3, ZrO2, Fe2O3, TiO2, CeO2, Al2O3, Bi2O3, etc.) nanoparticles have 
been shown to inhibit the growth of different gram-positive and gram-negative bac-
teria by changing the membrane permeability, altering metabolic pathways, affect-
ing DNA replication followed by altering transcription and translation processes 
and most importantly by increasing the intracellular level of metal ions (Applerot 
et al. 2012; Zhou et al. 2012, Horie et al. 2012). Though the exact mechanism of 
antimicrobial activity caused by these metallic nanoparticles is not completely 
understood, there are strong evidences that the inhibition is caused by the genera-
tion of reactive oxygen species (like hydroxyl radicals or superoxide anions or 
hydrogen peroxide), or oxidative stress or free metal ion toxicity arising from the 
dissolution of metals from the surface of the nanoparticles or the combination of 
one or more processes that disrupts the normal metabolic activities of the organism 
thereby killing them. Furthermore, morphological and physicochemical character-
istics of the nanometals have been proven to exert an effect on their antimicrobial 
activities. The positive surface charge of the metal nanoparticles facilitates their 
binding to the negatively charged surface of the bacteria which may result in an 
enhancement of the antimicrobial activity (Dutta et al. 2012; Dizaj et al. 2014; Tee 
et al. 2016; Raghunath and Perumal, 2017). The mechanism of antimicrobial action 
of metals and metal oxides is schematically represented in Fig. 5.6.
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Additionally, in the quest to fight AMR, inorganic nanomaterials have emerged 
as promising candidates since they possess greater durability, lower toxicity, higher 
stability and selectivity and above all their inhibitory effect against a wide range of 
multidrug-resistant strains (Pelgrift and Friedman, 2013). Moreover, the antifungal 
activity of gold, silver and zinc oxide nanoparticles was hugely effective in control-
ling the growth of Aspergillus, Candida, etc. (Nasrollahi et  al. 2011; Wani and 

Fig. 5.6  An overview of the antimicrobial mechanism of inorganic nanoparticles. (Printed with 
permission from Raghunath and Perumal 2017)
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Ahmad, 2013; Kairyte et al. 2013). In the fight against parasitic diseases such as 
malaria, leishmaniosis, schistosomiasis and toxoplasmosis, nanoparticles of silver, 
gold, titanium oxide, alumina, selenium and zinc oxide were able to control the 
proliferation and binding of the parasite to the host (Allahverdiyev et  al. 2011a, 
2011b; Soflaei et al. 2014; Marimuthu et al. 2011; Nadhman et al. 2014, Gogoi, 2017).

5.3.5  �Carbon Nanostructures

Carbon nanostructures consist of many forms of nanocarbon that can be divided 
into three groups depending on their dimensions: (i) zero-dimensional (0D) such as 
fullerene, carbon dots, and nanodiamonds; (ii) one-dimensional (1D) such as carbon 
nanotubes (CNT), including single and multiwalled CNTs; and (iii) two-dimensional 
(2D) such as graphene and layered graphene sheets or nanoribbons (Aguilar, 2012). 
These carbon nanostructures find application in different emerging areas due to 
their unique properties and are known to exhibit significant antimicrobial properties 
(Dizaj et al. 2014).

Fullerenes are spherical cage-like nanostructures made exclusively of carbon 
atoms (e.g. C60, C70). Their unique hollow shape and structural analogy with cel-
lular vesicles make it an excellent drug delivery agent (Tripathi et  al. 2015). 
Fullerenes display diverse biological activity, which arises from the fact that it can 
act either as an electron acceptor or donor. Fullerenes when irradiated with ultravio-
let or visible light can convert molecular oxygen present within the cells into highly 
reactive singlet oxygen that can damage cellular membranes, inhibit the activity of 
various enzymes or may even lead to DNA cleavage. The photodynamic therapy 
(PDT) induced by fullerenes conjugated with photosensitizers had been exploited to 
control the growth of a broad spectrum of bacteria and fungi (Huang et al. 2010). 
For example, the cationic-substituted fullerene derivative when illuminated with 
white light effectively killed gram-positive (S. aureus), gram-negative bacteria 
(E. coli) and fungus (C. albicans) (Mizuno et al. 2011). A similar effect was reported 
with fullerenes bearing cationic charges from the addition of potassium iodide and 
irradiated with ultraviolet A (UVA) or white light killing A. baumannii, methicillin-
resistant S. aureus and fungal yeast C. albicans in infected mouse (Zhang et  al. 
2015). The fullerene-mediated PDT of mice infected with P. mirabilis revealed 82% 
survival compared to 8% survival without treatment, whereas mice infected with 
highly virulent P. aeruginosa survived up to 60% when PDT was combined with an 
antibiotic, tobramycin (Lu et al. 2010). It has also been found that fullerene PDT is 
effective in healing wounds infected with pathogenic gram-negative bacteria 
(Sharma et al. 2011). Functionalized fullerenes with polycationic conjugates and 
stable synthetic bacteriochlorins allowed PDT to treat infections in animal models 
(Hamblin 2016). Additionally, biocompatible composites containing polysaccha-
rides (cellulose, chitosan and γ-cyclodextrin) and fullerene derivatives substantially 
increased the composite’s ability to reduce the growth of antibiotic-resistant bacte-
ria such as vancomycin-resistant Enterococcus (Duri et al. 2017) (Fig. 5.7).
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Carbon nanotubes (CNTs) are nanosized hollow cylindrical form of carbon 
formed by a single cylindrically shaped graphene sheet (single-walled carbon nano-
tubes, referred usually to as SWCNT) or several graphene sheets arranged 
concentrically (multiwalled carbon nanotubes, referred to as MWCNT). The anti-
microbial activity of SWCNTs is attributed to severe membrane damage that leads 
to cell death. Studies revealed that SWCNTs proved to be potent bactericidal against 
gram-positive and gram-negative bacteria than MWCNTs because SWCNTs could 
penetrate into the cell wall better than MWCNTs due to their smaller diameter 
which initiated better interaction with the cell surface (Kang et al. 2007; Yang et al. 
2010; Dong et al. 2012). CNTs coated with silver exhibited antimicrobial activity 
against mucoid and nonmucoid strains of P. aeruginosa. The mechanism of bacteri-
cidal effect was attributed to cell membrane integrity, downregulation of virulence-
gene expression and induction of oxidative stress (Dosunmu et  al. 2015). 
Additionally, improved bactericidal activity of PEGylated silver-coated SWCNT 
than their non-PEGylated counterparts was reported against Salmonella enterica 
serovar Typhimurium (Park et al. 2018). However, MWCNTs coated with silver and 
iron nanoparticles proved to be effective antimicrobial in water treatment (Ali et al. 
2017) and the composites of lignin MWCNTs with polyvinyl alcohol for applica-
tions in wound dressings, scaffolds and antimicrobial textiles (Lee et al. 2018).

Compared with fullerenes and CNTs, graphene (an atom-thick sheet of graphite) 
and graphene oxide (an oxidized form of graphene) nanosheets present extraordi-

Fig. 5.7  Carbon nanostructures based on their dimensions
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nary physicochemical properties which are responsible for their antimicrobial activ-
ities. The inhibitory effect of graphene on bacteria E. coli, S. aureus and P. aeruginosa 
and fungi C. albicans, Aspergillus niger and A. flavus has been reported in several 
studies (Palmeiri et  al. 2018; Nguyen et  al. 2019). Moreover, the photothermal 
effect of graphene oxide (GO) as antibacterial (against S. aureus, P. aeruginosa), 
antifungal (against Saccharomyces cerevisiae and Candida utilis) and in controlling 
the wound infection using near-infrared laser was also investigated and demon-
strated promising result (Khan et al. 2015). Though the antimicrobial efficacy of 
graphene and GO is impressive, it is found to be toxic to mammalian cells. In order 
to reduce toxicity and increase the efficiency of GO, surface modification and func-
tionalization with inorganic nanostructures, biomolecules and polymers are done 
and found to be effective against multidrug-resistant bacteria (Yousefi et al. 2017). 
The synergistic effect of nanomaterials such as metals, metal oxides and polymers 
with graphene-based nanostructures for stability and biocompatibility has a wide 
range of applications in antibacterial packaging, wound dressing and water disin-
fection (Ji et al. 2016). GO nanocomposites with metallic nanoparticles such as Ag, 
Au, Cu, Mg and Fe exhibit improved antibacterial as well as antifungal activity as 
compared to GO due to lower cytotoxicity (Li et al. 2013; Cui et al. 2014; Ji et al. 
2016). Graphene nanocomposites containing poly-N-vinyl carbazole (PVK) showed 
higher bacterial toxicity against gram-negative bacteria E. coli and Cupriavidus 
metallidurans and gram-positive bacteria B. subtilis and Rhodococcus opacus. The 
nanocomposite encapsulated the bacterial cells, which led to reduced microbial 
metabolic activity and cell death (Carpio et al. 2012). Graphene-based nanomateri-
als functionalized with metal nanoparticles, photocatalysts, polymers and biocidal 
compounds were tailored for antimicrobial activities, used for water disinfection 
and for the development of antimicrobial polymeric membranes (Zhu et al. 2017). 
A potent bacterial effect was also reported when metal oxide nanoparticles were 
grown on the surface of chitosan-modified GO (Chowdhuri et al. 2015) and with 
chitosan-iron oxide-coated GO nanocomposite hydrogel (Konwar et  al. 2016). 
Recently, the antiviral effect of silver nanoparticle-modified GO nanocomposites 
against porcine epidemic diarrhoea virus (PEDV) prevented the entry of the virus 
into the host cells and enhanced the production of interferon-α (IFN-α) and IFN-
stimulating genes (ISGs), which directly inhibit the proliferation of the virus (Du 
et al. 2018).

Though a thorough understanding of the antimicrobial mechanism of graphene-
based nanomaterials is still in its infancy, the physicochemical interaction between 
graphene and microbes is proposed to fall under any of the three categories, namely, 
(a) nano-knives derived from the action of sharp edges, (b) oxidative stress-mediated 
with/without the production of reactive oxygen species and (c) wrapping or trapping 
bacterial membranes derived from the flexible thin-film structure of graphenes (Zou 
et al. 2016).
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5.3.6  �Quantum Dots

Quantum dots (QDs) are semiconductor nanostructure with diameters in the range 
of 2–10 nm. These nanostructures emit light of varied colours depending on their 
size and shape. Due to their glowing properties, QDs are commonly used in imag-
ing, sensors and biology (Frecker et al. 2016). A good number of researches have 
also established QDs as antimicrobial agents. These include QDs of inorganic heavy 
metal origin such as cadmium tellurium (CdTe), cadmium selenide (CdSe), cad-
mium sulphide (CdS), zinc oxide (ZnO) and carbon dots (C-dots) and their func-
tionalized derivatives. Antibacterial activity of CdTe, CdSe and CdS QDs against 
E. coli was reported in a number of studies (Lu et al. 2008; Li et al. 2009). These 
QDs were investigated to understand its antimicrobial property; experiments indi-
cated that the QDs bind with bacteria and impair the functions of cell’s oxidative 
system via reactive oxygen species (ROS)-mediated pathway and Cd2+ ion release. 
The ROS and released Cd2+ ions lead to downregulations of antioxidative genes, and 
decreases of antioxidative enzyme activities, oxidative damage of protein and lipid 
and glutathione depletion were responsible for the QDs’ cytotoxicity (Lu et  al. 
2008; Li et al. 2009). Besides, CdTe, CdSe and CdS and ZnO QDs proved to be 
effective against Listeria monocytogenes, Salmonella enteritidis and E. coli when 
bound in polystyrene film or suspended in polyvinylpyrrolidone gel (Jin et al. 2009). 
Quantum-sized silver nanoparticles stabilized with polyvinylpyrrolidone (PVP) 
inhibited the growth of C. albicans that was resistant to conventional antifungal 
drugs (Selvaraj et al. 2014). Similarly, the germicidal effect of different QDs coated 
with indolicidin was observed against S. aureus, P. aeruginosa, E. coli, and 
Klebsiella pneumonia (Galdiero et al. 2016). Furthermore, the nanocomposites of 
QDs such as chitin-CdTe films and CdSe QD-ZnO exhibited excellent antibacterial 
activity against gram-positive and gram-negative bacteria (Wansapura et al. 2017; 
Mahmoodi et al. 2018). Research showed that conjugation of QDs with different 
nanomaterials enhanced their antimicrobial activity; for example, the germicidal 
action of MWCNTs was reported to be poor against different bacterial strains, but 
when MWCNTs were conjugated with CdS and Ag2S QDs, its antimicrobial activ-
ity improved severalfold (Neelgund et al. 2012). Similarly, gold-carbon dot (Au-C-
dot) nanoconjugate exhibited a profound effect on the susceptibility of a fungus, 
C. albicans (Priyadarshini et al. 2018).

C-dots, graphene and graphene oxide QDs (GOQDs) are known to be “safe” 
carbon nanomaterials and an effective antimicrobial agent. Their mechanism of 
microbial cell death is linked to the peroxidase-like activity that catalyzes the 
decomposition of H2O2, generating free radical, •OH.  Since the •OH has higher 
antibacterial activity, the conversion of H2O2 into •OH improves the antibacterial 
performance. This property of graphene QDs is effective against both gram-negative 
(E. coli) and gram-positive (S. aureus) bacteria and in wound healing (Sun et al. 
2014). The photoexcitation of graphene QDs (GQDs) leads to the generation of 
ROS which is found to inhibit E. coli and methicillin-resistant S. aureus (Ristic 
et al. 2014). GQDs doped with nitrogen and functionalized with an amino group 
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serving as a photosensitizer in photodynamic therapy had superior ability to gener-
ate ROS as compared to unmodified GQDs, which were able to completely elimi-
nate multidrug-resistant species (Kuo et  al. 2018). Similarly, sulphur- and 
nitrogen-doped C-dots demonstrated improved antibacterial activity against gram-
negative, gram-positive and drug-resistant bacterial strains (Travlou et  al. 2018). 
Moreover, antibiotic attached to C-dots proved to be an effective nanocarrier for 
controlled drug release and high antimicrobial activity against both gram-positive 
and gram-negative bacteria (Thakur et al. 2014). Similar antibacterial activity was 
observed against P. aeruginosa when C-dots were doped with gallium (Kumar et al. 
2017). Antiviral activity of C-dots was achieved with surface functionalization with 
2,2′-(ethylenedioxy)bis(ethylamine) (EDA) and 3-ethoxypropylamine (EPA). Both 
EDA and EPA C-dots effectively inhibited the binding of two strains of human 
norovirus-like particles (VLPs) to histo-blood group antigen (HBGA) receptors on 
human cells (Dong et al. 2017).

5.3.7  �Electrospun Nanofibres

Polymer fibre materials that are shrunk from micrometre to submicron or nanometre 
scale show amazing characteristics such as large surface area to volume ratio, flex-
ibility in surface functionalities and higher mechanical performance (stiffness and 
tensile strength). These superior properties make the polymer nanofibres (NF) opti-
mal candidates for many applications such as filtration membranes, catalytic nano-
fibres, fibre-based sensors and tissue engineering scaffolds (Jayakumar et al. 2010; 
Ma and Hsiao 2018; Haider et al. 2018). In order to synthesize these nanofibres, 
several processing techniques such as drawing, template synthesis, phase separa-
tion, self-assembly and electrospinning have been used (Huang et al. 2003). Among 
these techniques, electrospinning has gained popularity recently due to the produc-
tion of polymer fibres with diameters varying from 3 nm to 5 μm. Electrospinning 
provides multiple desirable features for wound dressings, including high absorptiv-
ity due to high surface-area-to-volume ratio, high gas permeation and conformabil-
ity to a contour of the wound bed (Lalani and Lui 2012). The attractive feature of 
electrospinning is the simplicity and inexpensive nature of the setup; the typical 
electrospinning setup consists of a syringe pump, a high-voltage source and a col-
lector. The working principle of electrospinning was nicely reviewed by Pham et al. 
(2006). This approach has been used successfully to spin a number of synthetic and 
natural polymers such as cellulose, poly(acrylonitrile), poly(caprolactone), 
poly(methyl methacrylate), poly(vinyl alcohol) and polyimide fibres into nanofibres 
applied in the fields of biomedicine (wound healing) and biotechnology (Haider 
et al. 2018).

The electrospun polymeric nanofibres loaded with silver (Ag) nanoparticles, chi-
tosan and their composites have demonstrated excellent antimicrobial activity 
against bacteria, fungi and parasitic diseases. Electrospun antimicrobial polyure-
thane nanofibres containing Ag indicated high bactericidal effect against E. coli and 
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S. typhimurium (Sheikh et al. 2009). Nanofibre mats loaded with Ag nanoparticles 
(~25-nm diameter) enveloped in chitosan and cross-linked with glutaraldehyde 
showed superior properties and synergistic antibacterial effects (Abdelgawad, et al. 
2014). The electrospun cellulose acetate containing Ag nanoparticles on their sur-
face when irradiated with UV exhibited strong antimicrobial activity (Son et  al. 
2006). Similarly, the electrospun cellulose nanofibre mats decorated with silver ion 
inactivated E. coli (Reiger et  al. 2016). Antimicrobial nanofibrous membranes 
developed from electrospun polyacrylonitrile nanofibres with diameters of ∼450 nm 
loaded with Ag nanoparticles demonstrated a convenient and cost-effective approach 
to develop antimicrobial nanofibrous membranes that would be particularly suitable 
for the filtration of water and/or air (Zhang et al. 2011). Additionally, the chitosan-
based nanofibres such as a mixture of poly(lactide-co-glycolide) (PLGA) and chito-
san when electrospun yielded cylindrical and narrow-diameter (356 nm) polymeric 
fibres. The PLGA-chitosan mats were then functionalized with graphene oxide and 
decorated with silver nanoparticles, effectively inactivating both gram-negative 
(E. coli and P. aeruginosa) and gram-positive (S. aureus) bacteria (De Faria et al. 
2015). Chitosan nanofibres electrospunned with poly(ethylene oxide) and silver 
nitrate, as a co-electrospinning polymer and silver nanoparticle precursor, revealed 
antibacterial activity (Annur et al. 2015), Similarly, the electrospun fibrous mem-
brane of zwitterionic poly(sulfobetaine methacrylate) (PSBMA) known for its 
superhydrophilic and ultralow biofouling properties makes it a promising material 
for superabsorbent and non-adherent wound dressings. Bacterial adhesion studies 
using gram-negative P. aeruginosa and gram-positive S. epidermidis showed that 
the PSBMA electrospun membrane was highly resistant to bacterial adhesion. 
Moreover, the Ag-impregnated electrospun PSBMA membrane proved microbici-
dal against both S. epidermidis and P. aeruginosa (Lalani and Lui 2012). Furthermore, 
the antimicrobial peptide pleurocidin is known for broad microbial inhibition and 
thermal/pH tolerance when incorporated with poly(vinyl alcohol) electrospun nano-
fibre showing higher inhibition efficiency than free pleurocidin against E. coli 
(Wang et al. 2015).

However, for fungal infections, clotrimazole-loaded microemulsion (a mixture 
of polyvinyl alcohol and chitosan) containing nanofibre mats demonstrated muco-
adhesive properties against oral candidiasis and is now developed as an alternative 
for oral applications (Tonglairoum et al. 2015). Polylactic acid films coated by elec-
trospinning with a formulation containing chitosan demonstrated excellent antifun-
gal activities against Aspergillus brasiliensis, Fusarium graminearum, Penicillium 
corylophilum (Mitelut et al. 2017). Similarly, electrospun poly(lactic acid) (PLLA) 
nanofibre membranes loaded with bovine lactoferrin (bLF) membranes display 
antifungal activity against A. nidulans by inhibiting spore germination and mycelial 
growth (Machado et al. 2018). Moreover, the sustained release of a cellulose acetate 
solution containing artemisinin, an antimalarial drug, developed from electrospin-
ning of poly(vinyl pyrrolidone) confirmed the higher bioactivity of the released 
drug from the composite (Shi et al. 2013). Recently, electrospun core/shell nanofi-
bres containing different percentages of artemisinin were developed as new systems 
for drug administration in malaria. The core consisted of hyperbranched 

B. L. Rajak et al.



169

poly(butylene adipate) and poly(vinylpirrolidone) as shell material, and a controlled 
proliferation of malarial parasites (P. falciparum) was reported in this study 
(Bonadies et al. 2017)

Though electrospinning is well known for its simplicity and cost-effective setup, 
its disadvantage lies in the production of fine fibres and low yield (Sarkar et  al. 
2010). A recently developed method known as Forcespinning® (FS) has shown the 
capability to produce fine fibres from melt and solution through centrifugal spinning 
(Padron et al. 2013). The FS method does not require electricity and broadens the 
choice of materials to be spun into fibres (Padron et al. 2013; Rane et al. 2013). The 
process is highly controllable at the industrial scale and has shown production rates 
of up to hundreds of metres per minute. Previous FS studies have successfully pro-
duced wound dressings composed of cellulose acetate fibres embedded with silver 
nanoparticles (AgNPs) and ternary composite fibre dressings such as pullulan/tan-
nic acid/chitosan fibre and polyvinyl alcohol/chitosan/tannic, all of which showed 
antimicrobial activity (Xu et al. 2015, 2016). Recently, chitosan binary nonwoven 
fine fibre composite scaffolds composed of chitosan/cinnamaldehyde (CA) and chi-
tosan/AgNPs were produced using FS technology. Cinnamaldehyde and silver are 
known to possess strong antimicrobial properties and therefore its effect in these 
binary composites exhibited improved antimicrobial activity against S. aureus 
(Cremar et al. 2018).

5.3.8  �Other Potential Nanomaterials Effective 
Against Microorganisms

Continuous research for the development of new nanomaterials that are potent anti-
microbial agent has grown severalfold. Many nanomaterials such as nanodiamonds, 
nanoribbons, nanopowders and nanoclays have shown their advantages over exist-
ing nanomaterials against infectious diseases as well as against multidrug-resistant 
(MDR) species. For example, the advantage of nanodiamonds (diamond nanopar-
ticles) is that they are completely inert, optically transparent and biocompatible as 
compared to other carbon-based materials such as fullerenes and carbon nanotubes. 
Although the in vivo toxicity of nanodiamonds (ND) against bacteria and biofilm 
formation depends on their surface characteristics (Wehling et al. 2014) and func-
tionalization (Turcheniuk et al. 2015), they have been found to be non-cytotoxic to 
a variety of cell types and have been thus used in a number of biomedical applica-
tions (Liu et al. 2007; Marcon et al. 2010; Mochalin et al. 2012). Moreover, func-
tionalized NDs with hydroxyl, amine, carboxyl, saccharides, etc. have found to be 
an effective antimicrobial and antibiofilm agent (Khannal et  al. 2015; Szunerits 
et al. 2016). The powdered nanoparticles (nanopowder) of Au, Ag, Al2O3, Co3O4, 
CuO, Fe2O3, Fe3O4, MgO, ZnO, NiO SiO2, graphene, etc. and their doping on 
hydroxyapatite powders have demonstrated pathogenic effect against bacteria and 
fungi (Sygnatowicz et al. 2010; Stanić et al. 2010; Marriappan et al. 2017). The 
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nanopowders were obtained by conventional techniques such as nanoprecipitation, 
emulsion-diffusion and double emulsification, but recently, with the emergence of 
electrospraying technique, developing micro- and nanosized particles containing 
bioactive compounds is booming. Electrospraying improved nanoparticle produc-
tion such as scalability, reproducibility and encapsulation with biodegradable poly-
mers obtained from food products (proteins, carbohydrates), such as chitosan, 
alginate, gelatin, agar, starch or gluten (Tapia-Hernandez et al. 2015). Thus, electro-
sprayed nanoparticles and nanofibres are both employed as natural or synthetic car-
riers for the delivery of entrapped drugs, growth factors, health supplements and 
vitamins and as antimicrobial agents (Sridhar et  al. 2015; Rodríguez-Tobías, 
et al. 2016).

Furthermore, nanoclays (nanoparticles of layered mineral silicates) have also 
been found to be of good importance in polymer nanocomposites and as drug deliv-
ery carriers. Depending on the chemical composition and nanoparticle morphology, 
nanoclays such as commercially available montmorillonite and naturally occurring 
cloisite have been effective against gram-positive and gram-negative bacteria (Hong 
and Rhim, 2008). A similar and improved efficiency of cetyltrimethylammonium 
bromide (CTAB)-modified montmorillonite with poly(butylene adipate-co-
terephthalate) nanocomposite films and organo-modified Algerian montmorillon-
ites with poly(ε-caprolactone) was reported to be biodegradable (Mondal et  al. 
2014; Yahiaoui et al. 2015). The incorporation of biodegradable natural and poly-
meric materials with nanoclays and their ability to retard microbial spoilage makes 
them an ideal material for food packaging (Mondal et al. 2014; Jiménez et al. 2016).

5.4  �Potential Toxicity of Nanomaterials

Advancement in nanoscience and nanotechnology led to the development of nano-
materials and nanostructures which have been seen as novel alternatives to antibiot-
ics in infectious diseases. However, these nanomaterial-based antimicrobial agents 
suffer from potential biological toxicity, poor degradation and other secondary pol-
lution. For example, most of the semiconductor QDs made of heavy metal ions (e.g. 
Cd2+) are responsible for their potential toxicity and their practical applications. 
Studies on a series of aqueous synthesized QDs, i.e. CdTe, CdTe/CdS core-shell 
structures and CdTe/CdS/ZnS core-shell-shell structures, revealed cytotoxicity is 
caused by an increase in the intracellular level of Cd2+ ions released from the QDs 
(Chen et al. 2012). The knowledge on the potential application of some of the metal 
oxide nanoparticles such as CuO, ZnO, Sb2O3, Mn3O4 and Co3O4 is limited because 
of their toxicity to mammalian cells at higher concentrations (Gajewicz et al. 2015; 
Ivask et al. 2015; Hou et al. 2018). It has been proposed that functionalization, ion 
doping and polymer conjugates of these metal oxide nanoparticles could be helpful 
to decrease the associated toxicity. Additionally, the toxicity of CNT samples was 
found to be dependent on its composition along with its geometry and surface func-
tionalization. Several studies have suggested that well-functionalized CNTs are safe 
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to animal cells, while raw CNTs or CNTs without functionalization show severe 
toxicity to animal or human cells at even moderate dosage (Khalid et  al. 2016). 
Other nanomaterials such as dendrimers, C-dots and fullerenes have been found to 
be cytotoxic. According to the reports, neurological and respiratory damage, circu-
latory problems and some other toxicity effect of nanoparticles are the main con-
cerns with the use of nanoparticles (Elsaesser and Howard 2012; Dijaz et al. 2014). 
However, several types of nanoparticles such as TiO2 and ZnO appear to be non-
toxic with beneficial health effects; hence, few have been approved by the Food and 
Drug Administration and are commercially available (Elsaesser and Howard 2012). 
The cytotoxicity of some nanomaterials demands further research in functionaliza-
tion and require alternative synthesis processes such that they are harmful to the 
microbes and not to the mammalian cells. The most common methods for nanopar-
ticle synthesis were chemical and physical that is costly and potentially harmful to 
the environment. An alternative approach known as “green synthesis” is actively 
pursued nowadays for an efficient, inexpensive and environmentally safe method 
for producing nanoparticles with specified properties that are biocompatible and 
degradable (Marakov et al. 2014; Praveen et al. 2016). The area of green synthesis 
is rapidly gaining importance due to its growing success and ease of formation of 
nanoparticles. Presently, the potential of bio-organisms ranges from simple pro-
karyotic bacterial cells to eukaryotic fungus and even plants.

5.5  �Conclusion and Future Prospects

Nanomaterials are showing promising solutions against infectious diseases due to 
their peculiar size, shape, chemical composition, surface structure, charge, solubil-
ity and their interactions with biomolecules and cells. It is well known that biologi-
cal transport processes, anatomically and down to the cellular and subcellular levels, 
are affected by the physical attributes of the nanoparticles, including their size, 
shape and flexibility, as well as their chemical characteristics, including the pres-
ence of active ligands for recognition by and triggering of biological receptors. 
Therefore, it is of critical importance to utilize procedures that prepare nanostruc-
tures with high degrees of uniformity and with control over their physical and chem-
ical traits. Though nanomaterials have excellent therapeutic importance, they suffer 
from the disadvantages of high cytotoxicity, biodegradation or agglomeration which 
is a major concern. Thus, understanding the nanoparticle and biological interface/
interactions though complicated is very essential, especially considering the toxic-
ity fears that currently exist in the field of nanomedicine field. There is a need for a 
set of design controls to study the nano-biointeractions including studies compris-
ing of both the material properties and biological compositions such as analysis of 
transport kinetics, clearance, gene expression variations, chemical functionality, 
surface charge, biomolecular signalling and toxicity. Mostly, inorganic nanoparti-
cles and dendrimers suffer from this problem. Thus, there exist opportunities in 
tailoring these nanoparticles such that minimum harm is caused to the human cells 
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without losing their antimicrobial effect. Another area of concern is the stability of 
the nanomaterials in biological fluids and to withstand the acidic pH of the stomach 
when administered orally. Liposomes and dendrimers are also susceptible to enzy-
matic degradation in the gastrointestinal tract. Here the needs of nanocapsules 
which can withstand the acidic pH are in demand for oral administration. These 
formulations should be mechanically and sterically stable such that they can survive 
these conditions and deliver the encapsulated drug via the normal absorption pro-
cess. Additionally, the passage of therapeutic agents across the blood-brain barrier 
in neurological infections is a great challenge which can be accomplished by the use 
of nanomaterials. Nanomaterials can be engineered for treating diseases such as 
cerebral malaria, meningitis and encephalitis. Recent research in the field of multi-
metal oxides still demands extensive exploration since the combined effect of two 
or more particles can be better. Moreover, different nanomaterials are yet to be 
explored against infections of bacteria, fungi, viruses and parasites, where some 
may be more effective and safe than the one existing at present. To conclude, it can 
be stated that the application of nanomaterials against diseases is enormous with 
innumerable options of synthesizing and tailoring the particles. In view of designing 
these particles against different diseases, the most important concern must be that it 
should be safe for its therapeutic application in humans with minimum side effects.
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