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Abstract  Nanobiotechnology application, at the interface of nanocarrier and thera-
peutic enzyme, holds great promises in the nanomedicine. In this direction, gold 
nanocarriers contribute a plethora of nanobiotechnological applications due to their 
unique properties. The salient features of gold nanoparticle include high catalytic 
activity, unique optical properties, ease of surface functionalization, biocompatibil-
ity and long-period stability. The potential use of gold nanoparticle in conjunction 
with therapeutic enzymes can be further extended for curing many dreadful 
diseases.
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We reviewed the suitability of gold nanocarrier-bound therapeutic enzyme deliv-
ery in biomedical modality, in particular to therapeutic application. The major 
health issues such as cancer, cardiovascular disease and brain disease are regulated 
with the intervention of gold nanoparticle-bound therapeutic enzyme delivery. Gold 
nanocarrier-bound therapeutic enzyme has increased the pharmacokinetic and phar-
macodynamic correlation in drug delivery. Therapeutic fungal asparaginase cova-
lently immobilized on the surface of gold nanoparticles demonstrated higher 
cytotoxicity effect against lung cancer and ovarian cell lines. It is further demon-
strated that the gold nanoparticle-bound asparaginase has increased its bioavailabil-
ity up to 85% more against lung cancer. The serratiopeptidase-bound gold 
nanoparticle has considerably increased anti-inflammatory response. The present 
chapter is concluded with recent literature discussion that gold nanoparticle-bound 
therapeutic enzyme has broadened the scope of traditional therapeutics to effective 
therapeutic enzyme delivery.

Keywords  Nanogold · Biogenic methods · Therapeutic enzyme · Enzyme as a 
drug · Bioconjugation · Stability · Applications · Cell lines · Drug delivery · 
Anti-inflammatory · Cancer

3.1  �Introduction

Nanomaterials, in particular gold nanoparticles, have gained attention due to the 
simplicity in its mode of action, ease of surface modifications, a plethora of appli-
cations such as data storage, environment, especially in medical biotechnology as 
nanocarrier for enzyme immobilizations and for drug delivery (Chamundeeswari 
et al. 2018; Golchin et al. 2018; Kaphle et al. 2018; Dykman and Khlebtsov. 2017; 
Verma 2017a, b, c, d; Gupta et al. 2016; Shankar et al. 2015; Kumar et al. 2014a, 
b; Sharma et al. 2014a, b; Verma et al. 2013a, b, c, d). Drug delivery is a fascinating 
field of scientific research in nanobiotechnology. Drug delivery is defined as the 
process for the release of biologically active medicament at a definite speed and at 
a destined location (Xin et  al. 2017). Functionalized gold nanocarriers present 
huge probabilities for multiple, locus-specific drug delivery to the disease locus as 
their diminutive size can effectively penetrate across obstacles through small capil-
laries into individual cells. Specifically, gold nanoparticles have revealed great 
capacity to be used as drug delivery platforms (Pelaz et al. 2017). Gold nanopar-
ticles have tremendous potential to deliver multiple drug molecules, recombinant 
proteins, vaccines and nucleotides into their targets effectively. Targeted/localized 
drug delivery is possibly achieved through active or passive approaches. Active 
targeting is based on conjugating the therapeutic agent or carrier system to a cell- 
or tissue-specific ligand, whereas passive targeting is based on a therapeutic agent 
that passively reaches out to a localized organ for efficient biomedical application 
such as target tumours by incorporation in the macromolecule or nanoparticle 
(Daraee et al. 2016).
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Gold nanoparticles have always been considered as potential target for localized 
drug delivery applications in the field of biomedicine (Baskar et  al. 2018). 
Nanocarriers have unique physicochemical characteristics such as definite size, 
surface area to mass ratio, chemical stability with high reactivity and functionalized 
structure with admirable biocompatibilities (Kong et al. 2017). Today, nanocarriers 
can serve as drug depots exhibiting prolonged-release kinetics and long persistence 
at the target site. Nanotechnology-based biomedicines have improved the pharma-
cokinetic and pharmacodynamic potential of different drug molecules which are 
capable of targeted/localized drug delivery applications such as early detection of 
cancer lesions, determination of molecular signatures of the tumour by non-invasive 
imaging and, most importantly, molecular-targeted cancer therapy and cardiovascu-
lar and neurodegenerative disease treatments (Pietro et al. 2017). Biocompatibility 
of gold nanoparticles, with ease of their biological and chemical nature, mimics the 
function of some enzymes including superoxide dismutase, esterase, peroxidase 
and glucose oxidase for various therapeutic applications such as tissue regeneration 
(Golchin et al. 2018). Localized delivery of drug-coated nanoparticles and emer-
gence of such nanotherapeutics/diagnostics based on therapeutic enzymes provides 
the way for deeper understanding of human longevity and human ills that include 
genetic disorders, cancer and cardiovascular disease (Peer et al. 2007).

The present article is focussed on the applications of gold nanoparticle-mediated 
therapeutic enzyme delivery. Various physicochemical and biological methods of 
gold nanoparticle synthesis, biotechnology of therapeutic enzyme production, strat-
egies of robust nanocarrier-enzyme bioconjugate development and biomedical 
applications of the gold nanocarrier-bound therapeutic enzyme are critically 
discussed.

3.2  �Synthesis of Gold Nanoparticles

Various methods such as the Turkevich method, Brust-Schiffrin method, seeding 
growth method and biological method have been employed for the synthesis of gold 
nanoparticles (Herizchi et  al. 2016; Rawat et  al. 2016; Abdulghani and Hussain 
2014; Singh et al. 2013; Siti et al. 2013; Bisker et al. 2012; Chithrani et al. 2010; 
Akbarzadeh et  al. 2009; Mohanpuria et  al. 2008; Brust et  al. 1994; Turkevich 
et al. 1951).

Various chemical and physical methods of gold nanoparticle synthesis are most 
commonly used. However, these chemical methods involve the use of expensive and 
hazardous chemicals under extreme reaction conditions (Ahmed et  al. 2015a; 
Ahmed et al. 2015b; Krishnaswamy et al. 2014; Kumar et al. 2011a, b). In addition, 
these nanoparticles may have harmful effects in biomedical applications (Noruzi 
et al. 2011; Shankar et al. 2004a, b). To overcome these problems, green synthesis 
of nanoparticles is an emerging field of research in the current era (Kulkarni and 
Muddapur 2014; Mittal et al. 2013). Hence, there is a growing need to develop eco-
friendly and cost-effective procedures for the synthesis of nanoparticles. The inherent, 
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clean, nontoxic and environment-friendly ability of microorganisms and plant sys-
tems to synthesize the gold nanoparticles is particularly important in the advance-
ment of nanobiotechnology (Mohanpuria et al. 2008).

Recently, plants are commonly employed for the synthesis of gold nanoparticle 
(Table 3.1A). The biosynthesis of gold nanoparticles using plants and plant extracts 
is a very important aspect due to lack of pathogenicity and their diversity (Chandran 
et al. 2014). Green synthesis of nanoparticles uses extracts of various plants such as 
Aloe vera (Chandran et al. 2006), Pogostemon benghalensis ( Paul et al. 2015), Salix 
alba (Ul et al. 2015), Solanum nigrum (Muthuvel et al. 2014), Terminalia arjuna 

Table 3.1A  List of different plants employed for the synthesis of gold nanoparticles

Name of plants Size of gold nanoparticles References

Gymnocladus assamicus 4–22 nm Tamuly et al. (2013a, b)
Cacumen platycladi Variable Wu et al. (2013)
Pogostemon benghalensis 13 nm Paul et al. (2015)
Mangifera indica 6–18 nm Yang et al. (2014)
Coriandrum sativum 6–57 nm Narayanan and Sakthivel (2008)
Nerium oleander 2–10 nm Tahir et al. (2015)
Butea monosperma 10–100 nm Patra et al. (2015)
Arachis hypogaea 110–130 nm Raju et al. (2014)
Solanum nigrum 50 nm Muthuvel et al. (2014)
Hibiscus cannabinus 10–13 nm Bindhu et al. (2014)
Sesbania grandiflora 7–34 nm Das and Velusamy (2014)
Salix alba 50–80 nm Ul et al. (2015)
Eucommia ulmoides NA Guo et al. (2015)
Galaxaura elongata 3–77 nm Abdel-Raouf et al. (2017)
Ocimum sanctum 30 nm Philip et al. (2011)
Torreya nucifera 10–125 nm Kalpana et al. (2014)
Olea europaea 50–100 nm Khalil et al. (2012)
Rosa indica 23–60 nm Manikandan et al. (2014)
Pistacia integerrima 20–200 nm Islam et al. (2015)
Terminalia arjuna 60 nm MohanKumar et al. (2013)
Euphorbia hirta 6–71 nm Annamalai et al. (2013)
Morinda citrifolia 12–38 nm Suman et al. (2014)
Ziziphus mauritiana 20–40 nm Sadeghi (2015)
Aloe vera 2–8 nm Chandran et al. (2006)
Cassia auriculata 15–25 nm Kumar et al. (2011a, b)
Hibiscus rosa-sinensis 16–30 nm Philip (2010)
Ananas comosus 10–11 nm Bindhu et al. (2014)
Sapindus mukorossi 9–19 nm Reddy et al. (2013)
Prunus domestica 14–26 nm Dauthal and Mukhopadhyay (2012)
Magnolia kobus 5–300 nm Song et al. (2009)
Coleus amboinicus lour 9–31 nm Narayanan and Sakthivel (2010)
Gnidia glauca 50–150 nm Ghosh et al. (2012)

NA: not available
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(MohanKumar et  al. 2013), Piper pedicellatum (Sujitha and Kannan 2013), 
Terminalia chebula (Tamuly et al. 2013a, b), Citrus reticulata and Citrus sinensis 
(Mittal et  al. 2013), Mangifera indica (Philip et  al. 2011), Murraya koenigii 
(Das et al. 2011), Zingiber officinale (Kumar et al. 2011a, b), Cymbopogon citratus 
(Parida et  al. 2011; Smithaa et  al. 2009), Coriandrum sativum (Narayanan and 
Sakthivel 2008), Azadirachta indica (Shankar et al. 2004a, b) and Medicago sativa 
(Gardea-Torresdey et al. 2002). Plant extracts may act as both reducing agent and 
stabilizing agent in the synthesis of nanoparticles. In view of its simplicity, the use 
of plant extract for reducing metal salts to nanoparticles has attracted considerable 
attention (Mittal et al. 2013). Large-scale biosynthesis of nanoparticles is a main 
factor in green syntheses in which suitability of the reagents plays an important role 
(Chandran et al. 2014). Gold nanoparticles are rapidly synthesized using aqueous 
leaf extracts of Acalypha indica and Azadirachta indica as novel sources of bio-
reductants (Krishnaraj et al. 2014). Biosynthesis of gold nanoparticles using leaf 
extracts of Zingiber officinale, which acted as a reducing and capping agent, was 
also reported (Singh et al. 2011). The use of plants and plant extracts for the prepa-
ration of gold nanoparticles is more advantageous. It does not require elaborate 
processes such as intracellular synthesis and multiple purification steps.

The biological method for the synthesis of nanoparticles by using microbes like 
bacteria, fungi, actinomycetes, yeast and algae is providing a wide range of resources 
for the synthesis of nanoparticles (Table 3.1B). Use of diverse microorganisms such as 
Bacillus marisflavi (Nilofar and Shivangi 2016), Bacillus subtillus (Reddy et al. 2010), 

Table 3.1B  List of different microorganisms employed for the synthesis of gold nanoparticles 
with different sizes

Type Name Size References

Bacteria Bacillus subtilis 5–25 nm Reddy et al. (2010)
Pseudomonas aeruginosa 5–30 nm Husseiny et al. (2007)
Escherichia coli 25–33 nm Du et al. (2007)
Rhodopseudomonas capsulata 10–20 nm Shiying et al. (2007)
Stenotrophomonas maltophilia 40 nm Nangia et al. (2009)
Brevibacterium casei 10–50 nm Kalishwaralal et al. (2010)
Bacillus licheniformis 10–100 nm Kalishwaralal et al. (2009)
Pseudomonas veronii 5–25 nm Baker and Satish (2015)
Klebsiella pneumoniae 35–65 nm Malarkodi et al. (2013)
Marinobacter pelagius 20 nm Sharma et al. (2012)
Geobacillus sp. 5–50 nm Correa-Llantén et al. (2013)
Bacillus marisflavi 14 nm Nilofar and Shivangi (2016)

Fungi Rhizopus oryzae 9–10 nm Mukherjee et al. (2002)
Fusarium oxysporum 8–40 nm Das et al. (2012)

Algae Shewanella algae 10 nm Ogi et al. (2010)
Sargassum wightii 8–12 nm Singaravelu et al. (2007)
Chlorella vulgaris NA Xie et al. (2007)
Galaxaura elongate 3–77 nm Abdel-Raouf et al. (2017)

NA: not available
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Bacillus licheniformis (Kalishwaralal et al. 2009), Pseudomonas veronii (Baker and 
Satish 2015), Galaxaura elongata (Abdel-Raouf et  al. 2017), Chlorella vulgaris 
(Xie et al. 2007), Trichoderma asperellum and Trichoderma reesei (Vahabi et al. 
2011; Mukherjee et al. 2008), Fusarium oxysporum (Das et al. 2012), endophytic 
fungus Verticillium sp. (Bharde et al. 2006) and Rhizopus oryzae (Mukherjee et al. 
2002) was employed for the synthesis of gold nanoparticles. It is a relatively new 
area of research with considerable prospects that can be used either extracellularly 
or intracellularly due to their innate potential. Mukherjee et al. (2002) also demon-
strated that fungi secrete a significantly higher amount of proteins than bacteria; this 
would amplify the productivity of nanoparticle synthesis. Further, it is environmen-
tally acceptable, economic, time saving and easily scaled up. Due to this ability to 
adapt to extreme conditions, these fungi can be used as a potential resource for 
biosynthesis of nanoparticles.

It can be inferred from the above-stated various methods of gold nanoparticle 
synthesis that the biological route provides an attractive possibility for the scale-up 
of gold nanoparticle production.

3.3  �Biotechnology of Therapeutic Microbial Enzymes

Enzymes are the excellent biocatalysts that catalyse complex chemical reactions 
under appropriate physiological conditions. Enzymes possess a unique chiral-
selective property, a prerequisite step for enantiomerically pure pharmaceutical 
drug production (Mane and Tale 2015; Bankar et al. 2009; Underkofler et al. 1957). 
Use of enzymes as drug target exhibits advantages over conventional drugs due to 
their unique target specificity and multiple substrate conversion (SKumar and 
Abdulhameed 2017). Therapeutic enzymes are obtained from bacteria, fungi and 
yeast (Table  3.2). Microbial enzyme production offers cost-effective technology 
that has a potential profitable market (Mane and Tale 2015; Gurung et al. 2013; Teal 
and Wymer 1991). Nowadays therapeutic enzymes are used for treating a diverse 
spectrum of life-threatening diseases such as cancer and gastrointestinal disorders 
and enzyme replacement therapy. Thus, therapeutic enzymes served as oncolytics, 
thrombolytics or anticoagulants and anti-inflammatory agents (Mane and Tale 2015; 
Gurung 2013; Gurung et al. 2013; Vellard 2003; Ozcan et al. 2002; Gonzalez and 
Isaacs 1999).

3.3.1  �Different Types of Therapeutic Enzymes

Specificity of therapeutic enzymes makes them the most desirable therapeutic 
agents for the treatment of various diseases. Digestive and metabolic enzymes can 
be used either alone or in combination with other therapies for treating a variety of 
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diseases safely (Mane and Tale 2015; Kaur and Sekhon 2012; Sabu 2003; Vellard 
2003; Cooney and Rosenbluth 1975).

Demands of therapeutic enzymes are growing rapidly due to massive biomedical 
applications. At present, the most prominent medical uses of microbial enzymes are 
the removal of dead skin and burns by proteolytic enzymes and clot busting by fibri-
nolytic enzymes (Singh et  al. 2016). For example, a good agent for thrombosis 
therapy is nattokinase, a potent fibrinolytic enzyme (Sumi et al. 1987). Enzymes, 
namely, L-asparaginase, L-glutaminase, L-tyrosinase and galactosidase, are used as 
antitumour agents, and streptokinase and urokinase act as anticoagulants. Acid pro-
tease, dextranase and rhodanase may be used to treat alimentary dyspepsia, tooth 
decay and cyanide poisoning, respectively (Okafor, 2007). Microbial lipases and 
polyphenol oxidases are involved in the synthesis of diltiazem intermediate 
(2R,3S)-3-(4-methoxyphenyl)methyl glycidate and 3,4-dihydroxylphenyl alanine 
(DOPA, for treatment of Parkinson’s disease), respectively (Faber 1997). Tyrosinase, 
an important oxidase enzyme, is involved in melanogenesis and in the production of 
L-DOPA. Dopamine, a potent drug to control the myocardium neurogenic injury 
and for the treatment of Parkinson’s disease, is produced using L-DOPA as a precur-
sor (Zaidi et  al. 2014; Ikram-ul-Haq and Qadeer 2002). Chitosanase catalyses 
hydrolysis of chitosan to biologically active chitosan oligosaccharides, which are 
used as antimicrobial and antioxidant, in lowering blood cholesterol and high blood 
pressure, controlling arthritis, protecting against infections and improving antitumour 

Table 3.2  List of therapeutically important microbial enzymes employed for drug delivery

Microbial enzyme/source Applications References

Nattokinase/Bacillus subtilis Cardiovascular 
disorder 
treatment

Dabbagh et al. (2014 )and Hsia et al. 
(2009)

Uricase/Aspergillus flavus Gout treatment Terkeltaub (2009)
Superoxide 
dismutase/Mycobacterium sp., 
Nocardia sp.

Anti-
inflammatory 
action

Ethiraj and Gopinath (2017) and Kaur 
and Sekhon (2012)

Serratiopeptidase/Serratia 
marcescens

Glucosidase/Aspergillus niger Cancer treatment Ahmed et al. (2017), Dubey et al. 
(2015), Sharma et al. (2014), Yu et al. 
(2013), Kaur and Sekhon (2012), Jain 
et al. (2012), Para et al. (1984), Spiers 
and Wade (1976 )and Peterson and 
Ciegler (1969)

L-Methionase/Pseudomonas sp.

Arginase/Bacillus subtilis, E. coli

Asparaginase/E. coli

Glutaminase/E. coli, Bacillus 
subtilis

Tyrosinase/Streptomyces 
glaucescens, Erwinia herbicola

Staphylokinase/Staphylococcus 
aureus, Streptococci sp.

Anticoagulant 
action

Vakili et al. (2017), Kaur and Sekhon 
(2012), Zaitsev et al. (2010) and 
Banerjee et al. (2004)Streptokinase/Streptococci sp.

Urokinase/Bacillus subtilis
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properties (Thadathil and Velappan 2014; Zhang et al. 2012; Ming et al. 2006; Kim 
and Rajapakse 2005).

3.3.2  �Therapeutic Enzyme Production

In the pharmaceutical industry, bioprocessing of enzymes for use as drugs is an 
important aspect that is now being capitalized at every research and development 
centre across the globe (Cassileth 1998). Microbial therapeutic enzymes offer eco-
nomic feasibility. That is why the use of microbial enzymes is increasing day by day 
(Gurung et al. 2013). Various methods involving fermentation technology are avail-
able for the production of microbial enzymes (Sabu et  al. 2000). These include 
solid-state fermentation and submerged fermentation. On commercial scale, these 
methods are utilized for mass production of therapeutic enzymes than liquid cul-
tures in huge bioreactors (Lozano et  al. 2012). These important enzymes can be 
produced by different methods of fermentation. On an industrial scale, liquid cul-
tures in huge bioreactors are preferred for producing therapeutic enzymes in bulk. 
Other processes like solid-state fermentations and submerged fermentations are also 
widely used for the production of therapeutic enzymes (Sabu 2003). Large-scale 
productions of microbial therapeutic enzymes using various production techniques 
and downstream processing have been reported (Sabu et al. 2005; Sabu 2003).

Gold nanoparticle was employed for some enzyme deliveries such as superoxide 
dismutase, esterase, peroxidase and glucose oxidase for various therapeutic applica-
tions (Golchin et al. 2018). It is very pertinent that only a few therapeutic enzymes 
have been explored for gold nanoparticle-mediated drug delivery so far. Thus, it can 
be inferred that many therapeutic enzymes have to be employed for nanocarrier-
mediated drug delivery.

3.4  �Methods for Developing Robust Gold Nanocarrier 
for Therapeutic Enzyme Delivery

Therapeutic enzymes are susceptible to denaturation under harsh environmental 
conditions (Abraham et al. 2014; Puri et al. 2013; Verma and Kanwar 2010, 2012; 
Verma et al. 2009, 2011, 2012). In order to make a robust and biocatalytic stable 
enzyme, enzymes need protection and cost-effective recyclability by immobilizing 
the suitable inert carrier (Verma et al. 2016). Nanomaterials possess many physico-
chemical advantages over their bulk materials. Immobilization of enzymes on the 
nanoparticles holds a great promise to improve their functionality and biocatalytic 
potentials. Nano-immobilization methods are generally categorized into four types, 
namely, (1) electrostatic adsorption, (2) conjugation of the ligand on the nanoparti-
cle surface, (3) conjugation to a small cofactor molecule that the protein can recog-
nize and bind to and (4) direct conjugation to the gold nanoparticle surface (Fig. 3.1; 
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Verma et  al. 2016; Verma and Barrow 2015; Puri et  al. 2013; Yeh et  al. 2012; 
Ackerson et al. 2010; Aubin and Hamad 2008). Each of these techniques has its pros 
and cons (Table 3.3; Kanwar and Verma 2010; Kanwar et al. 2008; Kanwar et al. 
2007a,b; Kanwar et al. 2006; Kanwar et al. 2005). Thus, sometimes a combination 
of these nano-immobilization techniques is employed in order to get robust gold 
nanoparticle conjugates.

Fig. 3.1  Schematic of four methods of enzyme nano-immobilization with gold nanoparticle

Table 3.3  Pros and cons of the enzyme nano-immobilization methods

Type of 
immobilization 
method Advantages Disadvantages References

Adsorption 
method

Simple and chemical 
free method, no 
confirmation of the 
enzyme

Weak bonding may cause 
enzyme leakage 
(desorption) from the 
nanocarrier

Verma et al. (2016), 
Kanwar and Verma 
(2010), Kanwar et al. 
(2007a, b)

Entrapment 
method

Enzyme protection, 
ease of separation

Possibility of enzyme 
leakage, low enzyme 
loading

Kadri et al. (2018) and 
Verma et al. (2016)

Cross-linking 
method

High enzyme loading, 
strong binding

Possibility of alteration in 
enzyme active site, loss of 
enzyme activity

Velasco-Lozano et al. 
(2016) and Verma and 
Barrow (2015)

Covalent binding 
method

Strong enzyme 
binding, leakage-free 
enzyme binding

Chemical modification of 
enzymes, enzyme 
denaturation

Kumar et al. (2014a, b), 
Abraham et al. (2014) 
and Verma et al. 
(2013a, b, c, d)
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Among different nanoparticles (fullerenes, single-walled and multiwalled car-
bon nanotubes, magnetic nanoparticles, modified silicon nanowires, dendrimers and 
quantum dots), only gold nanoparticles can be marked as the most used and wide-
spread for biomedical applications (Zhang et al. 2015). Besides the common prop-
erties typical for nanomaterials, the main specific characteristics of gold 
nanostructures are its stability for a long period of time, easy surface functionaliza-
tion, biocompatibility, unique optical properties and high catalytic activity provid-
ing the successful use of gold nanoparticles (Yu et al. 2016). Gold nanoparticles can 
be attached to those functional groups which have positive charge because of nega-
tive charge on their surface. Likewise, the presence of six free electrons in the con-
duction band of gold nanoparticles makes them potential candidates to bind with 
reactive functional groups like thiols and amines. Silica, aluminium oxide and tita-
nium oxides facilitate the attachment of different functional groups on the surface 
of gold nanoparticles (Sharma et al. 2015; Sharma et al. 2010; Kim et al. 2010; Sun 
et al. 2008; Tkachenko et al. 2004). Thus, gold nanoparticles can be easily tagged 
with various proteins and biomolecules that are rich in amino acids (Giljohann et al. 
2010; Eustis and El-Sayed 2005). Therapeutic and diagnostic efficiency can strongly 
be influenced by changing the surface characteristics of nanoparticles such as size, 
shape and surface charge which in turn change cellular uptake and functional sur-
face area (Jazayeri et al. 2016).

The conjugation of different functionalized groups to nanoparticles is prerequi-
site for improving stability, functionality and biocompatibility (Delong et al. 2010). 
It has also been reported that it is possible to control the interactions of gold 
nanoparticles with cell membranes in order to improve their cellular uptake while 
minimizing their toxicity by rigid change of the surface charge densities (Lin et al. 
2010). Physical and chemical interactions are used for attaching functional groups 
(DNA, RNA, enzymes, peptides, bovine serum albumin, polyethylene glycol and 
proteins) to gold nanoparticles’ surface (Cho et  al. 2012; Lee et  al. 2008). Non-
covalent interaction between functional groups and gold nanoparticles depends on 
three phenomena: (a) ionic attraction between the negatively charged gold and the 
positively charged functional group, (b) hydrophobic attraction between the func-
tional group and the gold surface and (c) dative binding between the gold conduct-
ing electrons and functional group. Covalent interactions between functional groups 
and nanoparticle surface are achieved in a number of ways like (i) through chemi-
sorption via thiol derivatives, (ii) through the use of bifunctional linkers and (iii) 
through the use of adapter molecules like streptavidin and biotin (Delong et  al. 
2010). Other functional groups like citrate, tannic acid and polyvinylpyrrolidone 
can be capped to gold nanoparticles (Marcelo et al. 2015; Senoudi et al. 2014; Mirza 
and Shamshad 2011).

Gold nanoparticles are useful for important biomedical applications including 
targeted drug delivery, cellular imaging and biosensing (Hwang et al. 2012; Hong 
et al. 2012; Giljohann et al. 2010; Huang and El-Sayed 2010). In a recent study, 
therapeutic fungal asparaginase was covalently immobilized on the surface of gold 
nanoparticles or nanoporous gold nanoparticles (Baskar et al. 2018). Immobilized 
gold nanoparticle was further targeted for drug delivery with respect to cancer treat-
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ment. It has been demonstrated that the synthesized gold nanobiocomposite of 
asparaginase can be used as an effective anticancer drug with increased bioavail-
ability against lung cancer.

Gold nanoparticles proved robust nanocarriers for neurotrophin peptides (Patrizia 
et al. 2017). The immobilization of neurotrophin peptide was achieved by direct 
physisorption and lipid bilayer-mediated adsorption methods. The nano-
bioconjugates were characterized by UV-vis spectroscopy, X-ray photoelectron 
spectroscopy, dynamic light scattering, zeta-potential analyses and atomic force 
microscopy. Both peptide- and lipid-dependent features were identified to have a 
modulation in the peptide coverage of nanoparticles as well as in the cellular uptake 
of nerve growth factors and brain-derived neurotrophic factors. Robust hybrid gold 
peptide nanointerface demonstrated a promising approach to neurotrophin for 
crossing blood-brain barriers. Gold nanocarrier provided new multipotential ther-
apeutic nanoplatform for the treatment of central nervous system disorders.

Gupta et al. (2016) reported a new generation of surface ligands based on a com-
bination of short oligo(ethylene glycol) chains and zwitterions capable of providing 
non-fouling characteristics while maintaining colloidal stability and functionaliza-
tion capabilities. Moreover, conjugation of gold nanoparticles with avidin helped in 
the development of a universal toolkit for further functionalization of 
nanomaterials.

Muthurasu and Ganesh (2016) prepared glucose oxidase-stabilized gold nanopar-
ticles by changing the pH and showed feasibility of employing such nanocarrier as 
an ideal sensor for dual-mode sensing of glucose. Gold nanoparticles were able to 
detect glucose at a low concentration with high sensitivity, good stability and repro-
ducibility suggesting promising applications in the field of nanobiosensors.

Malda et al. (2010) developed a conjugate of gold nanoparticle and therapeuti-
cally important superoxide dismutase at specific physiochemical reaction condition. 
Binding of enzyme-nanoparticle was confirmed by gel electrophoreses. Superoxide 
dismutase is a metalloenzyme that catalysed the dismutation of superoxide radicals 
into hydrogen peroxide and oxygen. Reactive oxygen species, such as superoxide 
radicals, are the root cause to pathogenesis of several diseases, such as familial 
amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Down syn-
drome and several neurological disorders (Halliwell and Gutteridge 2012; Pissuwan 
et al. 2007). Gold nanoparticle-superoxide dismutase enzyme conjugates proved its 
therapeutic potential in the prevention of oxidative damage from superoxide radi-
cals (He et al. 2013; Zhao et al. 2012).

Synthesis of gold nanoparticles using the therapeutic enzyme serratiopeptidase 
was done at 25 °C and physiological pH 7 (Venkatpurwar and Pokharkar 2010). The 
formation of serratiopeptidase-reduced gold nanoparticles was confirmed by 
UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction and 
Fourier transform infrared spectroscopy. This study successfully demonstrated that 
physiological condition is an important process parameter for the controlled synthe-
sis of highly stable gold nanoparticles with respect to retention of biocatalyst activ-
ity. Researchers further confirmed use of gold nanoparticle as a carrier for 
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serratiopeptidase led to an improved anti-inflammatory response (Venkatpurwar 
and Pokharkar 2010).

It is inferred from the above-stated studies that the binding of gold nanocarrier 
either non-covalently or covalently to therapeutically important enzyme depends on 
the immobilization reaction conditions and enzyme stability. This is a very critical 
step to immobilize fragile enzyme on the non-functionalized surface of gold 
nanoparticle. Robust gold nanocarrier immobilized enzyme successfully demon-
strated various biomedical applications such as neurological and inflamma-
tory issues.

3.5  �Potential Applications of Gold Nanocarriers 
in Enzyme-Mediated Drug Delivery

Gold nanoparticle-based targeted drug deliveries have considerable applications to 
overcome the limitations in traditional therapeutics (Daraee et al. 2016). For exam-
ple, antineoplastics, antiviral drugs and various other types of drugs are manifestly 
stuck due to their inability to cross the blood-brain barrier. Nanoparticle application 
to deliver drugs across this barrier is enormously promising. Researchers have 
reported that nanoparticles can cross several biological barriers for sustained deliv-
ery of therapeutic agents for difficult-to-treat diseases like brain tumours (Nazir 
et al. 2014; Hainfeld et al. 2013).

The potential of nanomedicine with respect to targeted drug delivery has 
improved with the ease of nanoformulation technique and widened the scope of 
delivering a range of drugs. Nanomedicine has developed novel diagnostic and 
screening techniques that have extended the scope of molecular diagnostics. They 
have been used in vivo to protect the drug entity in the systemic circulation, restrict 
access of the drug to the chosen sites and deliver the drug at a controlled and sus-
tained rate to the site of action, minimizing undesirable side effects of the drug and 
allowing for more efficient use of the drug (Bosio et al. 2016).

Today, therapeutic enzymes are considered as one of the most promising applica-
tions in the pharmaceutical field. It has been reported by various researchers that 
enzymatic biocatalyst properties improved considerably by enzyme immobilization 
on nanomaterials, thereby increasing its stability and reusability and most impor-
tantly enhancing their targeting/localization to specific cell and tissues (Golchin 
et al. 2018; Xin et al. 2017). Gold nanoparticle-based therapeutic biocatalyst pro-
vides new tools for the diagnosis and treatment of old and newly emerging patholo-
gies and presents distinctive modality for therapeutic delivery (Table 3.4; Golchin 
et al. 2018). Thus, gold nanoparticle-based therapeutic enzymes represent a highly 
promising alternative for treating a variety of pathologies by localized drug delivery 
approach.

Asparaginase obtained from Aspergillus terreus is a potent drug for the treatment 
of cancer and has antineoplastic or cytotoxic chemotherapy effect (Baskar and 
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Renganathan 2012). Malignant cells lack asparagine synthase and employ the free 
circulating asparagine for its growth. Asparaginase converts the free circulating 
asparagine into aspartic acid and ammonia thereby lacking the asparaginase and 
leading to the death of tumour cells. So, research have been carried out across globe 
to target better asparaginase delivery system by immobilizing asparaginase on to 
gold nanoparticles followed by procedure of asparaginase gold nano-bioconjugate 
as potential drug candidate for curbing cancer, by testing against lung cancer cell 
line and ovarian cancer cell line.

Researchers studied gold nanoparticle-mediated delivery of fungal asparaginase 
against cancer cells (Baskar et al. 2018). The fungal asparaginase immobilized on 
gold nanoparticles showed efficient drug delivery in cancer treatment. Fourier trans-
form infrared spectroscopy and nuclear magnetic resonance analysis of the synthe-
sized asparaginase gold nano-bioconjugate showed that primary amines, secondary 
amines and allylic carbon are the main functional groups concerned with binding of 
asparaginase onto gold nanoparticles. Increment in the specific enzyme activity of 
asparaginase was recorded from crude (252.05 U/mg) to gold nano-bioconjugate 
(364 U/mg). Protein concentration was also increased from 0.018 mg/ml in crude 
asparaginase to 0.332 mg/ml in gold nano-bioconjugate. Nano-bioconjugate cyto-
toxicity effect was also observed to be higher against lung cancer cell line A549 

Table 3.4  List of gold nanoparticle-immobilized therapeutic enzymes

Nanocarrier
Therapeutic 
enzyme/peptide

Type of 
immobilization 
method Application References

Gold 
nanoparticle

Asparaginase Covalent 
binding method

Anticancerous 
activity

Baskar et al. 
(2018)

Gold 
nanoparticle

Neurotrophin 
peptides

Adsorption 
method

Promising drugs in 
neurodegenerative 
disorders

Patrizia et al. 
(2017)

Gold 
nanoparticle

Glucose oxidase Biosensing Muthurasu and 
Ganesh (2016)

Gold 
nanoparticle

Superoxide 
dismutase

Adsorption 
method

Prevention of 
oxidative damage 
from superoxide 
radicals

Malda et al. 
(2010)

Gold 
nanoparticle

Serratiopeptidase Adsorption 
method

Strong anti-
inflammatory 
response

Venkatpurwar 
and Pokharkar 
(2010)

Gold 
nanoparticle

Serratiopeptidase Covalent 
binding method

Anti-inflammatory 
activity

Venkatpurwar 
and Pokharkar 
(2010)

Silica-coated 
gold 
nanoparticles

Oxidase and 
peroxidase

Adsorption 
method

Antibacterial 
properties

Tao et al. 
(2015)

Gold 
nanoparticle 
nanocomposite

Peroxidase Covalent 
binding method

Anticancerous 
activity

Maji et al. 
(2015)
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than ovarian cancer cell line A2780. Finally, authors demonstrated that synthesized 
gold asparaginase nano-bioconjugate can be used as an effective anticancer drug 
and for targeted drug delivery with its increased bioavailability against lung cancer 
cell line (A549), given that toxicity is 84.51% (Baskar et al. 2018).

Serratiopeptidase, a proteolytic endopeptidase bioenzyme, is recognized as one 
of the most important therapeutic enzymes having anti-inflammatory activity 
(Salamone and Wodzinski 1997). Traditionally, therapeutic enzyme delivery is lim-
ited due to their poor uptake and vulnerability to degradation inside the gastrointes-
tinal tract. For efficient drug delivery, nanoparticles such as gold nanoparticle 
complex have immense potential in the therapeutic perspective of biomedicine for-
mulation. With this, the prerequisite is the nanocarrier which plays an important role 
in the bioavailability of the pharmaceutically active compound, efficiently improv-
ing absorption across the gastrointestinal mucosa (Dykman and Khlebtsov 2017).

Venkatpurwar and Pokharkar (2010) have reported the synthesis of gold nanopar-
ticle using a therapeutic enzyme serratiopeptidase at physiological conditions which 
retained enzyme activity, and serratiopeptidase-capped gold nanoparticle complex 
led to improved therapeutic benefit. Characterization of synthesized gold nanopar-
ticles has been reported using UV-visible spectroscopy, transmission electron 
microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. 
Synthesized nanoparticle stability was assessed at ambient temperature up to 
6 months. The retention of enzymatic activity was confirmed by in vitro enzymatic 
activity and in  vivo anti-inflammatory activity of synthesized serratiopeptidase-
capped gold nanoparticle complex. The tri-functional role of serratiopeptidase was 
reported, such as reduction, stabilization and therapeutic activity, finally demon-
strating the gold nanoparticles as a nanocarrier for the immobilization and efficient 
and improved delivery of a therapeutic enzyme for an oral administration with 
improved therapeutic benefit (Venkatpurwar and Pokharkar 2010).

Tao et al. (2015) studied the bifunctionalized mesoporous silica-supported gold 
nanoparticles that showed intrinsic oxidase and peroxidase catalytic activities for 
antibacterial applications for their targeted delivery. Gold nanoparticles have exhib-
ited both oxidase and peroxidase mimicking activities imparting end reactions as 
reactive oxygen species (ROS). Antibacterial properties proved against both Gram-
negative and Gram-positive bacteria.

Superoxide dismutase is an important metalloenzyme and antioxidant defence 
against free radicals. It catalyses the dismutation of superoxide radicals into hydro-
gen peroxide and oxygen. Also, catalase is classified under a therapeutic enzymatic 
group supporting the cell from oxidative damage by reactive oxygen species 
(Golchin et al. 2018). Reactive oxygen species, such as superoxide radicals, have 
received great attention due to their involvement in the pathogenesis of various dis-
eases, such as Alzheimer’s disease, Down syndrome, cataract, familial amyotrophic 
lateral sclerosis, Parkinson’s disease, cardiac myocytes and several neurological 
disorders. Superoxide dismutase enzymes have vast physiological importance and 
therapeutic benefit in the prevention of the oxidative damage from superoxide radi-
cals (He et al. 2013; Zhao et al. 2012). Malda et al. (2010) have synthesized gold 
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nanoparticle-iron-bound enzyme that demonstrated vast efficacy of gold colloid 
nanoparticle-bound superoxide dismutase protein.

Maji et al. (2015) have developed the new nanostructured hybrid as a mimetic 
enzyme for in vitro detection and therapeutic treatment of cancer cells. For targeted 
drug delivery application in the emerging field of nanobiotechnology, an artificial 
therapeutic enzyme conjugate was prepared by the immobilization of gold nanopar-
ticles on mesoporous silica-coated nanosized reduced graphene oxide conjugated 
with folic acid, a cancer cell-targeting ligand. In vitro experiments with bioconju-
gate hybrid using human cervical cancer cells led to an enhanced cytotoxicity to 
Henrietta Lacks (HeLa) cells. In the case of normal cells (human embryonic kidney 
HEK 293 cells), the treatment with the hybrid and H2O2 showed no obvious dam-
age, proving selective killing effect of the hybrid to cancer cells. Hybrid therapeutic 
enzyme bioconjugate with peroxidase activity has dual applications: firstly, detec-
tion (selective quantitation and colorimetric) of cancer cells and, secondly, cancer 
therapy by activating oxidative stress. Both detection and therapeutic processes are 
selective to cancer cells, indicating high specificity and robustness of the hybrid 
(gold nanoparticle) conjugate proved as a promising candidate for clinical cancer 
diagnostics and treatment and their targeted drug delivery approach (Nasrabadi 
et al. 2016).

It can be inferred from few of the above-discussed studies of nanocarrier-bound 
therapeutic enzyme delivery that nanocarrier-based approach such as gold 
nanoparticle-immobilized enzymes represents an important modality within thera-
peutic and diagnostic biomedical applications including cancer, cardiovascular dis-
eases and brain diseases.

3.6  �Conclusion

Gold nanoparticles offer an excellent platform for biomedical applications due to 
their unique physical and chemical properties. Amongst the various physicochemi-
cal and biological methods of gold nanoparticle syntheses, the biological route has 
become most fascinating due to total avoidance of toxic chemical and ambient reac-
tion conditions and more biocompatibity of the gold nanoparticles, since delivery of 
enzyme as drug along with the antimicrobial property of gold nanocarrier adds 
additional double effects on various health ailments. Very few therapeutic microbial 
enzymes are used till date, and more research on gold nanocarrier-bound therapeu-
tic important enzyme is the need of the hour.

The selection of the most appropriate methods for robust gold nanocarrier design 
needs a thorough understanding of non-covalent and covalent interactions at the 
interface of different types of therapeutic enzymes and different functionalized gold 
nanoparticles. It is inferred that gold nanocarrier-bound limited therapeutic enzyme 
has shown promising results in the treatment of central nervous system disorders. 
To sum up, gold nanocarrier-mediated delivery of therapeutic enzymes holds a great 
potential for biomedical applications.
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