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Abstract  Fluorescence is a powerful tool in biochemistry, biophysics, forensic sci-
ence, and biotechnology. Two main principal properties for any fluorophore, bright-
ness and photostability, are fundamentally important to achieve a high level of 
sensitivity for detection. Therefore, improvements in the technique are strongly 
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encouraged and pursued, such as new developments in terms of the technique sen-
sitivity, the range of fluorophores, their stability, and the versatility of the experi-
mental setups that help move this particular scientific research in biosensing and 
molecular imaging forward. Therefore, a new avenue is based on the use of plas-
monic nanostructures in the enhancement of the collective photo-physical proper-
ties including their absorption and fluorescence, known as “plasmon-enhanced 
fluorescence.” Such plasmonic enhancement is due to the localized surface plasmon 
resonance at the metal surface, which leads to increasing the exciton radiative 
recombination rate in the fluorophore and thereby improves the signal obtained and 
increases sensitivity. In addition, the plasmonic enhancement might depend on sev-
eral parameters such as nanoparticle size and shape, metal type, and the spectral 
overlap in the absorption spectra and the type and the separation distance between 
both plasmonic nanoparticle and the fluorophore. Throughout this chapter, previous 
approaches are discussed, which are devoted to tracking the influence of plasmonic 
nanostructures on the photoluminescence of the fluorophores especially the hybrid 
nanocomposites based on plasmonic/quantum dots including semiconductor and 
carbon-based nanoparticles. In addition, the possible applications of metal-enhanced 
fluorescence nanohybrids in the biological and medical applications such as imag-
ing and biosensing techniques.

Keywords  Metal-enhanced fluorescence · Plasmonic nanostructures · 
Fluorophores · Carbon dots · Quantum dots · Hybrid nanocomposites · Biosensing 
· Biomedical imaging

12.1  �Introduction

Fluorescence spectroscopy is a widely employed technique for chemical analysis, 
biochemistry, biophysics, forensic science, biosensing, and biotechnology because 
of its inherent high sensitivity, and its large linear concentration ranges, often sig-
nificantly larger than in absorption methods, but the latter find more applicability as 
relatively few species exhibit fluorescence (Skoog et  al. 2017; Lakowicz 2013). 
Recently fluorescence has become a primary methodology in life sciences because 
of its sensitivity, ease of use, and versatility (Xie et al. 2008). It has been used as an 
imaging tool in the clinical diagnosis and monitoring processes in biological sys-
tems (Bardhan et al. 2009).

Particularly, molecular fluorescence is a luminescence process that occurs when 
an atom or molecule relaxes to its ground state, after being excited, by emitting 
light. A molecule that is capable of fluorescence is called a fluorophore. When light 
from an external source interacts with the fluorophore, the fluorophore absorbs the 
light energy, resulting in a higher energy state. As the excited fluorophore is unsta-
ble at higher energy states, it relaxes from its higher energy state to a meta-stable 
state via small non-radiative transitions and then finally releases its excess energy 
from the meta-stable excited state to the ground state via a radiative transition 
through the process of emission of light. The light energy emitted by a fluorophore 
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is always longer in wavelength than the light energy absorbed, due to some non-
radiative energy loss during its transition to the ground state. Therefore, a lot of 
studies have been performed to achieve high fluorescence yields (Xie et al. 2008).

The understanding of the interaction of light with matter allows us to design and 
apply the mechanism into applications. Thus, it is necessary to properly understand 
how the light interacts with the matter and then design structures that allow opti-
mum conversion of light into the specific application (Piccione et al. 2014). A wide 
range of methods has been developed for enhanced fluorescence to increase the 
sensitivity of fluorescence, such as optical fiber fluorescence detectors. Of all the 
methodologies, metal-enhanced fluorescence (MEF) has been the most widely 
investigated and explored. The attractive changes in fluorescent properties of fluo-
rophores due to this MEF include increased rates of excitation, increased quantum 
yields, and decreased fluorescence lifetimes with an increased photostability. The 
presence of these metallic structures in the vicinity of the fluorophore can alter the 
optical properties of the fluorophore by increasing the excitation field depending on 
the distance between the metal nanoparticle and fluorophore (Geddes 2013).

Advancement in nanotechnology allows us to create nanoscale structures (Aslan 
et al. 2005; Rosi and Mirkin 2005; Katz and Willner 2004). As the size of the metal 
is reduced too much smaller than the wavelength of the incoming light, a localized 
collective oscillation of electrons occurs in metals (Lakowicz et al. 2004; Stoermer 
and Keating 2006). This is now commonly known as localized surface plasmon 
resonance (LSPR). This phenomenon has opened diverse opportunities in technol-
ogy advancement, ranging from arts, science, medical, and engineering (Geddes 
et al. 2005; Touahir et al. 2010).

This chapter is devoted to exploring the photo-physical properties of plasmonic 
nanostructure based on the LSPR, in addition to the factors that determine the 
strength of LSPR such as the density of electrons, the effective electron mass, the 
shape, and size of the charge distribution. Furthermore, the influence of the LSPR 
on the fluorescence properties of the fluorophores such as organic dyes, quantum 
dots, and carbon dots has been demonstrated. In addition, the required criteria to 
achieve the metal-enhanced fluorescence phenomena has been discussed. Finally, 
an overview of the achieved work was done by our research group and others regard-
ing using of engineered hybrid nanocomposites to achieve a MEF mechanism and 
their possible applications in the biomedical field such as biosensing and bioimaging.

12.2  �Plasmonic Nanoparticles

12.2.1  �Surface Plasmon

Surface plasmons originate from free collective charge oscillations on metallic sur-
faces. There are two types of plasmon modes on metallic surfaces, namely localized 
surface plasmons (LSPR) (Haes and Van Duyne 2002; Hutter and Fendler 2004; 
Willets and Van Duyne 2007) and propagating surface plasmons also referred to as 
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surface plasmon polaritons (SPP). LSPR are observed at an optical wavelength for 
subwavelength-sized particles, while surface plasmon polaritons are observed on 
flat or corrugated continuous surfaces (Pitarke et al. 2006).

�Localized Surface Plasmon Resonance

LSPR is a subfield of plasmonics that is associated with resonances due to noble 
metal nanostructures which cause spectral absorption, scattering peaks, and strong 
electromagnetic (EM-field) near-field enhancements (Haes and Van Duyne 2002). 
Localized surface plasmon can be excited directly by an incident light beam. The 
oscillating electromagnetic field associated with the incident light interacts with the 
conduction electrons in the metal particle and displaces them with respect to the 
ionic lattice of the metal (see Fig. 12.1) (Mayer and Hafner 2011). Upon displace-
ment of the electrons, an attracting force arises that pulls the electrons back into 
equilibrium. Thus the metal nanoparticle can be seen as an oscillating system, where 
the light represents an external force, which drives an oscillator. As a typical oscil-
lating system, metallic nanoparticles exhibit resonance frequencies (Hutter and 
Fendler 2004; Willets and Van Duyne 2007). The resonance frequency (or reso-
nance wavelength) is dependent on the size, the shape, the metal used, and the 
dielectric environment surrounding the metal nanoparticle. Highest fields at the sur-
face of nanoparticles can be observed when the incident light has the same wave-
length as the resonance wavelength (Haes and Van Duyne 2002).

Fig. 12.1  Localized surface plasmon resonance (LSPR) of noble metal (Ag, Au) nanoparticles, a 
collective electron density oscillation caused by the electric field component of incoming light. 
(Reprinted with a Copyright permission from Anna Zielińska-Jurek 2014)
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The interaction between those metal nanoparticles and the incoming light results 
can result in absorption of energy by the nanoparticles (generation of heat) or elastic 
scattering of light back to space (Mie 1908). Mie theory describes the EM-field 
enhancement within and out of the spherical particle and allows calculation of the 
scattering cross section σ sca, absorption cross section σ abs, and extinction cross sec-
tion σ ext. The scattering cross section describes the ability to scatter the incident 
light into different directions with respect to the incident plane wave, while the 
absorption cross section describes the absorption of energy within the particle. The 
extinction cross section, also called the total cross section, is given as the sum 
of both:

	 σ σ σext abs sca= + 	 (12.1)

In case of the spherical particles, both of σ sca, and σ abs are given by:

	
σ α πabs dkIm ka Im g= [ ] = × [ ]4 3

	
(12.2)
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Where k = 2π / λ, α is the dipole polarizability that equal to 4πgd a3, and gd is the 
asymmetrical term for a dipole that equals to ɛi - ɛm/ɛi + χɛm. In addition, χ is a shape-
dependent parameter which equals to 2 for a sphere and can be larger (smaller) for 
other shape. This means that the extinction cross section (σ ext) as a function of 
LSPR frequency could be given by:
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Where V0 is the volume of spherical shape that equal to 4πR3/3. The optical cross 
section against the actual physical geometrical cross section of the sphere, a dimen-
sionless optical efficiency is used:
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This presents a problem in identifying small particles from a background with 
larger particle sizes. By changing the property of the LSPR of the metal nanoparti-
cle, the optical efficiencies can be tuned and it is possible to achieve absorption 
efficiency larger than 1 (Nagel and Scarpulla 2010), i.e., more energy is being 
absorbed per unit area. This is beneficial for applications such as where the heat 
energy absorbed is used to convert to another useful energy form such as electricity 
for solar cell or water splitting.
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�Factors that Affect the Localized Surface Plasmon Resonance

The oscillation frequency of the surface plasmon band (SP) is determined by four 
factors: the density of electrons, the effective electron mass, the shape, and size of 
the charge distribution. The frequency and width of SPR depend on the size and 
shape of the metal nanoparticles as well as on the dielectric constant of the metal 
itself and the surrounding medium (Kreibig and Vollmer 1995; Link and El-Sayed 
2003). The extreme sensitivity of LSPR to the particle size and shape makes it an 
attractive research subject because the resonance wavelength can be tuned to fit a 
specific wavelength of interest. The absorption and scattering cross section of the 
spherical particles is dependent on their size with scattering which becomes domi-
nant as the size increases as shown in Fig. 12.2. For gold nanoparticles, it is found 
that diameter D is lower than 20 nm, and the absorption channel is dominant. As the 
size increases, the scattering becomes dominant (Tesler et  al. 2011). Simulation 
based on the Mie theory and experiment results showed that increasing the size also 
causes red-shifting and broadening the LSPR spectrum due to phase retardation 
effects and presence of higher order mode. The strength and the distance of the 
induced electric field also increased when the particle gets larger (Hutter and Fendler 
2004; Willets and Van Duyne 2007; Yeshchenko et al. 2012).

For an asymmetrical shaped particle, the effects of L-SPR become more com-
plex. Some additional parameters to consider are the axis at which the size increases, 
and the direction and polarization of the incident light. For example, the SPR 
absorption in spherical Au and Ag NPs occurs at about 520 and 410 nm, respec-

Fig. 12.2  Localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) depen-
dent on the particle size. (Reprinted with a Copyright permission from Emam et al. 2017a)
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tively (Fig. 12.3a). This absorption is absent for clusters (i.e., << 2 nm), as well as 
bulk Au. In the case of rod-shaped Au NPs, two absorption bands have been obtained 
(Emam et al. 2015). The first one which appears at ~ 520 nm corresponds to the 
oscillation of the electrons perpendicular to the long rod axis and is called trans-
verse localized surface plasmon absorption (T-LSPR), which is insensitive to the 
nanorod length but coincides with the LSPR band of the spherical-like shapes 
(Emam et al. 2015; Henson et al. 2009). In addition, the second absorption band 
known as the longitudinal LSPR band that appears at a lower energy is caused by 
the oscillation of the free electrons along the long rod axis (Fig. 12.3b). Such band, 
the LSPR, is very sensitive to the aspect ratio (length/width) of the rods where a 
redshift occurs as the aspect ratio increases (Emam et al. 2015).

Other than the major change in the extinction spectrum across different shapes, 
a tremendous increase of electric field enhancement is found at the sharp edges. 
With this objective in mind, highly complex asymmetrical structures such as 
nanorice and nanostars deposition (Brand et  al. 2006; Liu et  al. 2013; Wu et  al. 
2009; Homan et  al. 2011) are usually polycrystalline (Rodríguez-Oliveros and 
Sánchez-Gil 2012; Kumar et al. 2007) and become a subject of huge interest. For an 
example the LSPR band of triangular-shaped plasmonic nanoparticles split into 
three bands, longitudinal mode, transverse bands (i.e., in-plane dipole resonance 

Fig. 12.3  Schematic representation of SPR excitation for spherical and rod-like shapes of gold 
nanoparticles. (Reprinted with a Copyright permission from Jayabal et al. 2015)
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mode), and quadrupole bands (i.e., in-plane quadrupole and out-of-plane quadru-
pole resonances modes), as shown in Fig. 12.4 (Jin et al. 2001, 2003; Millstone et al. 
2005; Callegari et al. 2003; Sherry et al. 2006). In such case, the maximum enhance-
ment for the dipole resonance is at the tips. While for the quadrupole resonance, the 
regions for localized field enhancement are allocated at the sides. Afterward, the 
quadrupole band decayed away from the surface much faster than the dipole band 
around the particles tips, as shown in Fig. 12.4 (Kelly et al. 2003).

It is well-known that the dielectric constant of the surrounding media such as 
solvent or capping materials affects the SPR of metallic nanoparticles. Such an 
effect was attributed to the alteration in the ability of the surface to accommodate 
the electron density of the nanoparticles (Eustis and El-Sayed 2006; Jain et  al. 
2007). However, the capping material is the most important in determining the shift 
of the plasmon resonance. It is possible to shift away from the resonance peak from 
the interband transition by choosing an appropriate embedding medium. The dielec-
tric constant of the surrounding medium determines the value 𝜖 and therefore the 
wavelength at which the resonance occurs. Medium with the higher dielectric func-
tion will cause further redshift to the resonance peak. Consequently, any chemically 

Fig. 12.4  (a) Extinction efficiency of silver nanoparticles in vacuum with same volume as of a 
50-nm radius sized sphere but different shapes. The simulated electoral field contour map for cor-
responding (b) sphere, (c) cube, and (d) pyramid. (Reprinted with a copyright permission from 
Haes et al. 2005)
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bonded molecules can detect the change in the electron density on the surface, 
which results in a change in the position of surface plasmon absorption band (Eustis 
and El-Sayed 2006). In metal nanoshell, the core material could be dielectric or 
semiconducting, whereas the shell material could be metallic nanoparticles. In these 
hybrid nanostructures, the SPR is strongly dependent on the relative thickness of the 
nanoparticle core and its metallic shell. Therefore, the position of the plasmon band 
can be tuned anywhere across the visible or infrared regions of the optical spectrum, 
by varying the core and shell thicknesses as shown in Fig. 12.5 (Jain et al. 2007; 
Oldenburg et al. 1998; Yu et al. 2017; Prodan et al. 2003; Jain et al. 2008; Ghosh 
Chaudhuri and Paria 2011).

Whereas, in the case of alloyed nanostructures, the position of the SPR absorp-
tion band is linearly dependent on their chemical composition (Link et al. 1999). 
Therefore, a strong redshift SPR band could be observed upon mixing of plasmonic 
nanostructures with other materials (e.g., magnetic or semiconducting materials) 
within the same nanoobject (Ghosh Chaudhuri and Paria 2011; Shi et al. 2006; Lee 
and El-Sayed 2006; Barcaro et al. 2015; Ferrando et al. 2008). As reported by Girgis 
et al. and Emam et al., this redshift in Au-Co compared to pure gold nanoparticles 
is due to the homogeneous mixture of the metal-metal bond between the alloys and 
constitutes such as gold and cobalt leading to the formation of an intermetallic or 
alloyed structure. In this case, Co2+ ions were diffused into the gold nanoparticles 
host crystal (Girgis et al. 2012), as shown in Fig. 12.6. Consequently, the alteration 
in the SPR for the host crystal gold nanoparticles via electronic charging or loss of 

Fig. 12.5  Redshift in the absorption spectra of silica-gold core-shell nanoparticles with increasing 
in the gold nanoshells on silica nanoparticles. (Reprinted with permission from Lien et al. 2014)
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continuous density of states causing a plasmon band shift (Emam et al. 2015; Xu 
et al. 2007; Boyer et al. 2010).

12.3  �Metal-Enhanced Fluorescence

The fluorescence emission of fluorophores can be enhanced by attaching them to 
materials that exhibit plasmon resonance, commonly known as metal-enhanced 
fluorescence (MEF) (Geddes 2010, 2013; Geddes and Lakowicz 2002; Xie et al. 
2006; Deng et al. 2013). This is also sometimes referred to as plasmon-enhanced 
fluorescence (PEF) (Bauch et al. 2014; Gandra et al. 2014; Feng et al. 2015). In 
MEF, the emission is enhanced owing to a strong localized field enhancement that 
is near the metal surface because the surface plasmons are being excited by the 
light. Through the interaction of the fluorophore molecule with the metal surface, 
decay rates for the fluorophore are altered which leads to fluorescence enhancement 
(Morton et al. 2011). The strength of the MEF depends mainly on spectra overlap-
ping of the excitation and emission of the fluorophores to the plasmon resonance 
wavelength of the metal (Geddes 2010; Chen et al. 2007; Bharadwaj and Novotny 
2007; Emam et al. 2017b), location of hot spots (Yuan et al. 2013), and the metal-
fluorophore distance (Gandra et  al. 2014; Emam et  al. 2017b; Zhou et  al. 2014; 
Mishra et al. 2013).

There are two main processes that give rise to MEF: First of them is the external 
E-field that influences the molecules and the second one is based on the emission of 
radiation influenced by local field environment. When a fluorophore is in the vicin-
ity of a plasmon resonating nanoparticle, the fluorophore will experience the E-field 
generated by the nanoparticle. Those enhanced electric fields increase the amount of 
energy absorbed by the fluorophore known as excitation enhancement. The rate of 

Fig. 12.6  (a) Redshift surface plasmon absorption band in case of spherical gold-cobalt nanoal-
loys compared to pure gold nanoparticles (b) Blue shift in the surface plasmon absorption band in 
case of rod-like shape of gold-cobalt alloyed nanoparticles. (Reproduced with permission from 
Emam et al. 2015)
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the enhanced excitation field (𝐸ex) can be expressed into the following 
relationship:
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Where (𝑥𝑑, 𝜆𝑒𝑥) is the electric field at the position and wavelength of excitation, 
ǔ5D; is the emitters (fluorophore in this case) orientation, and 𝐸i is the incident free 
space electric field without the presence of nanospheres. In MEF, the electromag-
netic coupling between the fluorophore and the nanoparticle plasmon also causes an 
increase in the radiative decay rate of the molecule at the emission wavelength or 
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the quantum yield and lifetime of the fluorophore as follow:

	

Q
k

Q
knr

m

nr r

m r r m nr nr

0
0

0

0

0

=
+( )

↔ =
+( )

+ + +( )
Γ

Γ

Γ Γ

Γ Γ Γ
,

, , , 	

(12.7)

	

τ τ0
0

0

1 1
=

+( )
= ↔ =

+ + +( )Γ Γ Γ Γ Γr nr
m

m r r m nr nrk

Q

k, , , 	

(12.8)

Where 𝑄𝑚 is the modified quantum yield due to MEF, the subscript ǔ5A; represents 
a modified term due to the plasmon coupling. The ability to modify the quantum 
yield of the fluorophores is an important benefit for MEF because fluorophores with 
poor quantum yields can be improved externally through coupling with SPR gener-
ated by the metal (see Fig. 12.7).

In such case, the final emission will be enhanced, which is given by:

	
E

Q

Qm
m=
0 	

(12.9)

Together, the new excitation and decay rate increased the rate of total fluores-
cence emission (EF), and is related by the following relationship:

	 E E EF Ex Em= 	 (12.10)

It is worth emphasizing that from the above equations, the MEF is primarily due to 
(1) E-field enhancement which boosts the excitation rate of the fluorophores, and (2) 
the addition of new radiative decay channels that improve the emission rates and quan-
tum yields. In the case where the fluorophore has an intrinsic high quantum yield, the 
emission enhancement will not be significant. Several parameters and criteria must be 
taken into consideration to be useful in the fabrication and engineering of metal-
enhanced fluorescence-based hybrid nanocomposites. These parameters include (i) 
the degree of spectral overlaps between the emission spectra of the fluorophore and 

12  Plasmonic Hybrid Nanocomposites for Plasmon-Enhanced Fluorescence and Their…



470

LSPR spectra (Geddes 2010; Chen et al. 2007; Lakowicz 2005) and (ii) the fluoro-
phores should all be located at region of “hot spots” where electric field generated by 
SPR is the highest (Aslan et al. 2005; Yuan et al. 2013; Hrelescu et al. 2011; Fales et al. 
2011). Finally, metal-fluorophore distance is widely recognized that the MEF is highly 
dependent on the distance between the fluorophores and the metal nanoparticles. 
Quenching occurs when the fluorophores are too close to the metal and facilitate non-
radiative energy transfer and dissipation of energy in the fluorophore-metal system 
(Gandra et al. 2014; Zhou et al. 2014; Mishra et al. 2013; Ray et al. 2006a; Dragan 
et al. 2012), (See Fig. 12.8). At distance below the optimum enhancement, the enhance-
ment factor follows a ǔ5F;−6. Whereas when the distance gets further away, the dipole 
near-field of the SPR drops ∝ 1/ǔ5F;3 (or 1/r5 for quadrupole) and thus weakened the 
enhancement (Zhou et al. 2014; Chatterjee et al. 2011). However, an optimum distance 
appears to depend on the surrounding medium and the plasmonic structures (Eustis 
and El-Sayed 2006; Zhou et al. 2014; Chatterjee et al. 2011; Dulkeith et al. 2005). For 
example, Li et al. demonstrated that the magnitude of the fluorescence enhancement in 
C-dots/Ag@SiO2 hybrid nanocomposites increases as a function of metal-fluorophore 
distance by the adjusting of the silica spacer thickness (Li et al. 2012).

12.4  �Engineered Hybrid Nanocomposites for MEF Effect

Since the discovery of metal-enhanced fluorescence (MEF), it has been receiving huge 
attention and soon becomes a very active research field. Leading by recent technology 
push from advancement in nanofabrication and characterization techniques, various 
fabrication techniques, materials, and structures have been explored progressively to 
obtain better MEF structures. Gold and silver are the primary candidates of interest due 
to their SPR in visible and NIR regions. Regardless, both metals can offer large 

Fig. 12.7  A simplified Jablonski diagram showing the additional decay routes in both of presence 
and absence of plasmonics nanostructures. (Adopted from Bauch et al. 2014)
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enhancement factors, and the signal is usually homogeneous throughout the substrate, 
which is important for biosensing and bioimaging applications (Deng et al. 2013).

In this section, an overview of the achieved work was done by our research group 
and others regarding using of engineered hybrid nanocomposites to achieve MEF 
mechanism. First of these studies is that achieved by Ragab et al. (Gadallah et al. 
2013). They investigated the plasmonics effects of Ag NPs on the collective optical 
properties of fluorescein dye at different v/v ratios. In such study, a remarkable 
enhancement in the absorption and emission of fluorescein dye with an enhance-
ment factor about threefold has been detected, as shown in Fig. 12.9. In addition, a 
significant increase in the rate of radiative decays was detected (Gadallah et  al. 
2013). These obtained enhancement mechanisms are attributed to a modification of 

Fig. 12.8  A simplified schematic diagram shows the possible plasmonic enhanced fluorescence 
mechanisms (a) Quenching and (b) Enhancement
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the local density of EM-modes in the vicinity of Ag nanoparticles at energies reso-
nant with surface Plasmon (Xu et al. 2004).

In other studies, the influence of plasmonic nanostructures such as Au and Ag 
NPs has been investigated on the photo-physical properties of the semiconductor 
quantum dots such as CdSe and CdTe nanocrystals (Ragab et al. 2014a, b; Giba 
et al. 2015; Rady 2018). Ragab and co-workers demonstrated the influence of plas-
monic silver nanostructures on the photo-physical properties especially the emis-
sive (i.e., steady-state and upconversion) and laser spectroscopic properties of CdTe 
NCs (Ragab et  al. 2014a, b; Giba et  al. 2015). They reported in their studies a 
remarkable enhancement in the emission efficiencies upon the addition of Ag NPs 
at different CdTe:Ag NPs v/v ratios up to 11-fold, followed by a reduction in the 
radiative lifetimes (see Fig. 12.10) (Ragab et al. 2014a). This enhancement effect 
was attributed to energy transfer between the resonant (coupling) plasmonic field of 
Ag NPs and CdTe excitonic energy state. Although, no significant change in the 
upconversion spectrum either in the presence or absence of Ag NPs; an increase in 
both the absorption and emission rate of CdTe QDs was noticed.

Furthermore, Mansour et  al. developed chemically a type of Plasmonic/
Semiconductor such as Au/CdSe heterostructures of controlled morphology and 
their hybrid nanocomposites with graphene (Rady 2018; Mansour et  al. 2017). 
Based on the photo-physical measurements, the presence of plasmonic nanocrystals 
such as Au NPs in direct contact with the semiconductor quantum dots such as CdSe 
QDs could enhance the optical absorptivity but quench their photoluminescence 
properties due to the charge transfer from the conduction band of the semiconductor 
to the Fermi level of the metallic part as shown in Fig. 12.11 (Mansour et al. 2017; 
Hsieh et al. 2007; Pons et al. 2007).

Fig. 12.9  (a) Absorption and (b) emission spectra of fluorescein dye, silver nanoparticles, and 
fluorescein: silver nanoparticles mixtures. (Reprinted with a copyright permission from Gadallah 
et al. 2013)
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In contrast, besides the increase in the optical absorptivity, a remarkable enhance-
ment of the quantum efficiency has been observed for the Au/CdSe heterostructures 
in presence of graphene (about ~ 4.5 to 12 fold intensity in the emission intensity) 
as shown in Fig. 12.12. This might be because the rate of the electron transfer from 
graphene to the metal is faster than that from semiconductor to the metal achieving 
the MEF effect in hybrid nanostructures based on metal/semiconductor heterostruc-
tures such as Au/CdSe tetrapods (see Fig. 12.13) (Rady 2018).

Finally, Emam et al. developed a novel fluorescent hybrid nanocomposite as an 
alternative to plasmonic/cadmium-based quantum dots such as plasmonic/C-dots. 
These hybrid nanocomposites include C-dots/Au and C-dots/Ag nanohybrids that 

Fig. 12.10  PL of CdTe:Ag nanohybrids at different concentrations of Ag nanoparticles. (Reprinted 
with a copyright permission from Ragab et al. 2014a)

Fig. 12.11  (a) PLE spectra of Au/CdSe tetrapod-like shape heterostructure, (b) fluorescence 
quenching mechanism in Au/CdSe. (Reused from Rady 2018)
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are chemically prepared via microwave irradiation (MWI) method (Emam et  al. 
2017b; 2018). Remarkable enhancements in the collective optical properties and 
parameters such as absorptivity and fluorescence quantum yield (FL-QY), accom-
panied with the reduction in the rate of electron-hole recombination were observed 
for the hybrid nanostructure compared to pure C-dots (Emam et al. 2017b; 2018) as 
shown in Figs. 12.14 and 12.15 and Table 12.1.

This enhancement is due to enhancing the incident excitation field via L-SPR in 
metallic part, which leads to increasing the exciton radiative recombination rate in 
the carbon dots, which is dependent on the spectral overlap in the absorption spectra. 

Fig. 12.12  PLE spectra of Au/CdSe tetrapod-like shape heterostructure in presence of rGO. 
(Reused from Rady 2018)

Fig. 12.13  Schematic diagram for PLE enhancement mechanism in Au/CdSe tetrapod hetero-
structure upon their loading on rGO. (Reused from Rady 2018)
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Fig. 12.14  Absorption spectra for each of (a) naked C-dots, Ag, and Au NPs, respectively. (b) 
C-dots, C-dots/Ag, and C-dots/Au nanohybrid, and (c) naked C-dots, C-dots/PEI, C-dots/PEI/Ag, 
and C-dots/PEI/Au nanohybrids. (Reprinted with a copyright permission from Emam et al. 2017b)

Fig. 12.15  Effect of plasmonic NPs on the PLE features of C-dots; (a) in the presence or (b) in the 
absence of spacer (i.e., PEI) upon excitation at steady-state condition (i.e., 366 nm). (c) Spectral 
overlapping between PLE spectra C-dots (black line) and the adsorption spectrum of Ag NPs 
(green line). (Reprinted with a copyright permission from Emam et al. 2017b)

Table 12.1  Influence of plasmonic nanoparticles (Au and Ag NPs) on the PLE properties of 
C-dots in presence or absence of polymeric spacer (i.e., PEI) (Emam et al. 2017b)

Sample
At λex

(a) 366 nm
QY/QYDye (d) (steady-state) FWHM (e) (steady-state)I(b) I/I0

(c)

C-dots (I0) 4223.69 – 22.468 33.60484
C-dots/Au 4683.54 1.11 36.40 86.74477
C-dots/PEI/Au 7403.64 1.75 55.52 30.56937
C-dots/Ag 1833.45 0.434 8.723 2.5756916
C-dots/PEI/Ag 9134.23 2.16 77.213 17.44447

Reprinted with a copyright permission from Emam et al. (2017b)
(a)λex: excitation wavelength. (b)λem: PLE wavelength. (c)I/I0: relative enhancement factor. (d)QY/
QYDye: relative quantum yield. (e)FWHM: full width at half-maximum
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This plasmonic enhancement was more pronounced in the case of C-dots/Ag than 
that of C-dots/Au nanohybrids, due to low intrinsic loss and the degree of the over-
lap between the absorption spectra of AgNPs and C-dots. Furthermore, picosecond 
decay measurements show a decreased lifetime of C-dots in the presence of  the 
plasmonic effect, due to the increased rates of radiative decay (see Fig. 12.16).

As shown in Fig. 12.17, the possible interactions between plasmonic material 
and fluorophores could be summarized as follows: (i) the excitation field can be 
enhanced through a coupling between the surface plasmon (SP)-assisted generated 
local field into the incident field. In such a case, plasmonic nanostructure could act 
as an optical concentrator for the incident source, resulting in a remarkable enhance-
ment of optical absorption; furthermore, (ii) plasmonic nanostructures could be 
used as an excitation source to excite the fluorophore, as long as their SP energy is 
much higher than the band-gap emission of fluorophores (Achermann 2010; Sun 
et al. 2009; Hwang et al. 2009). Finally, iii) conversely to the previous pathway, PLE 
could be enhanced via an efficient energy transfer between the fluorophores and the 
plasmonic nanostructures when the exciton energy is greater than SP energy, which 
attributed to exciton-SP quadrupole interaction (Achermann 2010; Zhou et al. 2011; 
Cheng et al. 2010). Depending on the band structures of fluorophores (i.e. HOMO 
& LUMO) and plasmonic particles (i.e. Fermi level & Wave function), the PLE 
quenching or enhancement could be achieved (Deng et al. 2013; Achermann 2010; 
Sun et al. 2009; Hwang et al. 2009; Shevchenko et al. 2008; AbouZeid et al. 2011; 
Liaw et al. 2014; Zhang et al. 2007). If the C-dots based on fluorophores are located 
in a close proximity to the metallic surface, a non-radiative dumping is due to either 
energy transfer between the C-dots and the metal or the electron transfer from 
C-dots to the metal (Fig. 12.17a) (Emam et al. 2017b, 2018). Whereas the C-dots/

Fig. 12.16  Effect of plasmonic nanostructures (i.e., Ag and Au) on the radiative decay of the 
C-dots in presence (a) and absence (b) of dielectric polymeric spacer. (Reprinted with a copyright 
permission from Emam et al. 2018)
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Fig. 12.17  Schematic diagram for (a) enhancement and (b) quenching mechanism C-dots/plas-
monic. (Reprinted with a copyright permission from Emam et al. 2017b)

plasmonic hybrid nanostructures are separated with a dielectric spacer such as poly-
mer (i.e., distance increase), light–mater interactions will be enhanced near the 
metal surface based on the enhancement of local fields associated with the SP of the 
metallic part. This effect could enhance the fluorescence of the C-dots based on 
fluorophore part as significantly shown in Fig. 12.17b (Hsieh et al. 2007; Pons et al. 
2007; Ran et al. 2014).

12.5  �Biomedical Applications of Engineered Metal-Enhanced 
Fluorescence Nanosystems

12.5.1  �Biosensing

During the last decade, metal-enhanced fluorescence (MEF)-based engineered 
hybrid nanocomposites have been used in the fabrication of biosensor nanosystems 
to improve the sensitivity of fluorescence detection to detect molecules/moieties 
(Lee et al. 2011; Xu et al. 2017; Jeong et al. 2018) and heavy metals (Peng et al. 
2018) at ultra-low concentrations. Along with signal enhancement, this promising 
technology allows advanced biological analysis for specified biomarkers and bioim-
aging on an adequate design.
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As previously mentioned above, the MEF process depends on several critical 
parameters to induce desirable effects, consequently introducing a new trend in fluo-
rescence detection. Therefore, it is essential to use brighter and more photostable 
fluorophores to achieve a high level of sensitivity of the biosensor. In MEF-based 
biosensors, the presence of metal near the fluorophore increases the rate of excitation 
and emission by opening additional electron configurations of fluorophores. In addi-
tion, it increases the photostability and emissive properties (i.e. fluorescence quan-
tum yield, FLQY) of fluorophores compared to other conventional fluorophore-based 
biosensor (Feng et al. 2015; Emam et al. 2017b; Li et al. 2012; Emam et al. 2018; 
Khurgin et al. 2007; Lakowicz et al. 2008; Ray et al. 2006b). Furthermore, MEF-
nanosystems provide an advantageous method for fabrication of biosensing plat-
form. Such platform that can combine between the sensing transducers fluorophores 
and a plasmonic-based amplifier for the resultant signal within a single system, com-
pared to traditional biosensors (see Fig. 12.18). Thus, these features explain why 
MEF is beneficial for fluorescence-based detection, and the robust platform based on 
MEF is a promising tool for producing effective biosensors (Jeong et al. 2018).

Mei and Tang developed a biosensor based on multilayered hybrid nanocompos-
ites for DNA detection using layer-by-layer (LbL) deposition technique. In such 
configuration, a layer of colloidal gold nanorods (AuNRs) was deposited on a glass 
substrate via solvent evaporation to be used as a nano-antenna for DNA detection 
and propagate the L-SPR for achieving MEF effect (Jeong et al. 2018; Mei and Tang 
2016). Then another layer of fluorophore materials (i.e., dye) was loaded onto the 
AuNRs layers (see Fig.  12.20). A remarkable enhancement in the fluorescence 
intensity upon the attachment of DNA onto the AuNRs array chip as analyst is due 
to the MEF effect (Mei and Tang 2016).

In other configuration, which developed by Feng et al. based on using of func-
tional materials such as polyelectrolyte to be a building block for fabrication of 
multilayered MEF-based biosensor. In such configuration, a layer of plasmonic 
nanostructures (i.e. AuNRs) was deposited onto a glass substrate using LbL tech-
nique, followed by loading of upconversion nanoparticles (i.e. lanthanide-doped 
NPs) as fluorophores. To achieve the MEF phenomena, the plasmonic AuNRs were 
separated from fluorescent lanthanide-doped NPs via deposition polyelectrolyte as 
a dielectric spacer as shown in Fig. 12.19b (Feng et al. 2015). Feng et al. reported 
that by modulation of the aspect ratio of AuNRs, the LSPR wavelength within the 
NIR region ~ 980  nm matches with the excitation wavelength of upconverted 
nanoparticles resulting in a remarkable fluorescence enhancement up to 22.6-fold 
with 8-nm spacer thickness. This proposed MEF-based biosensor configuration was 
a unique platform for bioimaging applications (Feng et al. 2015).

Moreover, a new type of biosensing platform, MEF-based biosensor, is developed 
by Ji and co-worker (Ji et al. 2016). In this biosensing system, Ag zigzag nanorod 
arrays were formed via LbL techniques using oblique angle deposition (see Fig. 12.19c) 
and were studied to determine whether it is suitable for MEF applications. By chang-
ing the fold number—the morphology of the Ag zigzag shape—a 14-fold and 28-fold 
enhancement factor is achieved for biotin-neutravidin, and the hybridization of two 
single-stranded oligonucleotides with 33-base detection was obtained (Ji et al. 2016). 
In addition, the limit of sensitivity was increased to 0.1 pM of targeted analyte.
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In other applications of biosensing, nanosystem based on detection of contami-
nants such as heavy metal (i.e., Pb2+, Cd2+, Cu2+, Zn2+, and Cr3+ etc.…) has been 
demonstrated by Peng and co-workers (Peng et  al. 2018). In such study, silica 
nanoparticles (SiO2) are used to enhance the fluorescence properties of SGT1-SGT3 
dyes and improve the detection sensitivity limits of SGTs-SiO2 for heavy metal ions 
up to 1.81 and 0.0532 nM for Hg2+, and Cd2+, respectively.

Finally, Emam et al. developed a novel fluorescent and less toxic hybrid nano-
composites based on plasmonic/C-dots such as C-dots/PEI/Au and C-dots/PEI/Ag 
nanohybrids. These hybrid nanocomposites are prepared via chemical routes based 
on microwave irradiation method and physical conjugation of plasmonic nanostruc-
tures to PEI-coated C-dots (Emam et al. 2017b, 2018). A remarkable enhancement 
in the collective photo-physical properties (i.e., molar absorptivity and fluorescence 
quantum yield (FL-QY)). In addition, their approach allows the fabrication of engi-
neered multi-modal hybrid nanocomposites based on MEF mechanism to be used in 
a wide range of applications such as chemical/biological sensing, probing, and ther-
anostics (i.e. therapy and imaging), as shown in Fig. 12.20 (Emam et al. 2017b).

Fig. 12.19  Schematic diagram for fabrication MEF control via layer-by-layer (LbL) deposition. 
(a) The ordered gold nanorod (GNR) array chip for DNA detection upon hybridization. (b) 
Fluorescence enhancement of upconversion NPs (UCNPs) using polyelectrolyte multilayer depo-
sition. (c) MEF of zigzag Ag nanorod arrays. (Reprinted with a copyright permission from Jeong 
et al. 2018, Mei and Tang 2016, Feng et al. 2015, Ji et al. 2016)
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Fig. 12.20  Bright field (a, e, and i), phase contrast (b, f, and j), and fluorescence images (c, g, and 
k) of HepG-2 cells after 24-h incubation, and the intensity histogram (d, h, and l) of fluorescence 
images. (a, b, and c) for C-dots. (e, f, and g) for C-dots/PEI/Au nanohybrids. (i, j, and k) for 
C-dots/PEI/Ag nanohybrids. (Reprinted with a copyright permission from Emam et al. 2017b)
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12.6  �Conclusion

In conclusion, we introduced an overview about the optical properties of plasmonic 
nanomaterials and the parameters that affect the strength of the localized surface 
plasmon resonance (L-SPR), in addition to the required criteria to achieve success-
ful metal-enhanced fluorescence (MEF) effect. Furthermore, in this chapter, we 
introduce a survey about our recent research works which was done regarding use 
of engineered hybrid nanocomposites to achieve MEF mechanism that opens new 
doors for multi-functional materials in so many applications such as chemical anal-
ysis, biosensing, biomedical imaging, and early diagnosis of cancers.
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