
Inferring the Synaptical Weights of Leaky
Integrate and Fire Asynchronous Neural
Networks: Modelled as Timed Automata

Elisabetta De Maria and Cinzia Di Giusto(B)

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
cinzia.di-giusto@unice.fr

Abstract. In this work we introduce a new approach to learn the synap-
tical weights of neural biological networks. At this aim, we consider net-
works of Leaky Integrate and Fire neurons and model them as timed
automata networks. Each neuron receives input spikes through its incom-
ing synapses (modelled as channels) and computes its membrane poten-
tial value according to the (present and past) received inputs. When-
ever the potential value overtakes a given firing threshold, the neuron
emits a spike (modelled as a broadcast signal over the output channel
of the corresponding automaton). After each spike emission, the neu-
ron enters first an absolute refractory period, in which signal emission
is not allowed, and then a relative refractory period, in which the firing
threshold is higher than usual. Neural networks are modelled as sets of
timed automata running in parallel and sharing channels in compliance
with the network structure. Such a formal encoding allows us to propose
an algorithm which automatically infers the synaptical weights of neu-
ral networks such that a given dynamical behaviour can be displayed.
Behaviours are encoded as temporal logic formulae and the algorithm
modifies the network weights until un assignment satisfying the specifi-
cation is found.

Keywords: Neural networks · Parameter learning · Timed automata ·
Temporal logic · Model checking

1 Introduction

In the last decades, the study of biological neurons and their interactions has
become very intensive, especially in the perspective of identifying the circuits
involved in the main vital functions, such as breathing or walking, and detecting
how they are modified in case of disease. The majority of the approaches aiming
at exploring the brain functioning mainly relies on large-scale simulations [9]. In
this paper we propose a formal approach based on the use of timed automata [2].
This formalism extends finite state automata with timed behaviours: constraints
are allowed to limit the amount of time an automaton can remain within a
particular state, or the time interval during which a particular transition may be
c© Springer Nature Switzerland AG 2019
A. Cliquet jr. et al. (Eds.): BIOSTEC 2018, CCIS 1024, pp. 149–166, 2019.
https://doi.org/10.1007/978-3-030-29196-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29196-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-29196-9_9


150 E. De Maria and C. Di Giusto

enabled. It is possible to build timed automata networks, where several automata
can synchronise over channel communications.

As far as the modelling of neuronal networks is concerned, three different and
progressive generations of networks can be found in the literature [24,26]. First
generation models handle discrete inputs and outputs and their computational
units are threshold-based transfer functions; they include McCulloch and Pitt’s
threshold gate model [25], the perceptron model [15], Hopfield networks [20], and
Boltzmann machines [1]. Second generation models exploit real valued activation
functions, e.g., the sigmoid function, accepting and producing real values: a well
known example is the multi-layer perceptron [8,29]. Third generation networks
are known as spiking neural networks. They extend second generation models
treating time-dependent and real valued signals often composed by spike trains.
Neurons may fire output spikes according to threshold-based rules which take
into account input spike magnitudes and occurrence times [26].

In this work we focus on spiking neural networks [16]. Because of the intro-
duction of timing aspects they are considered closer to the actual brain func-
tioning than other generations models. Spiking neurons emit spikes taking into
account input impulses strength and their occurrence instants. Models of this
sort are of great interest, not only because they are closer to natural neural
networks behaviour, but also because the temporal dimension allows to repre-
sent information according to various coding schemes [26,27]: e.g., the amount
of spikes occurred within a given time window (rate coding), the reception/ab-
sence of spikes over different synapses (binary coding), the relative order of spikes
occurrences (rate rank coding), or the precise time difference between any two
successive spikes (timing coding).

Several spiking neuron models, with different capabilities and complexities,
have been proposed in the literature. In [22], Izhikevich classifies spiking neuron
models according to some behaviour (i.e., typical responses to an input pattern)
that they should exhibit in order to be considered biologically relevant. The leaky
integrate & fire (LI&F) model [23], where past inputs relevance exponentially
decays with time, is one of the most employed neuron models because it is
straightforward and easy to use [22,26]. By contrast, the Hodgkin-Huxley (H-
H) model [19] is one of the most complex being composed by four differential
equations comparing neurons to electrical circuits. In [22], the H-H model can
reproduce all behaviours at issue, but the simulation process is really expensive
even for just a few neurons being simulated for a small amount of time. Our
aim is to produce a neuron model being meaningful from a biological point of
view but also suitable to formal analysis and verification, that could be therefore
exploited to detect non-active portions within some network (i.e., the subset of
neurons not contributing to the network outcome), to test whether a particular
output sequence can be produced or not, to prove that a network may never be
able to emit, to assess if a change to the network structure can alter its behaviour,
or to investigate (new) learning algorithms which take time into account.

The core of our studies is the leaky integrate & fire (LI&F) model origi-
nally proposed in [23]. It is a computationally efficient approximation of single-
compartment model [22] and is abstracted enough to be able to apply formal



Inferring the Synaptical Weights of Leaky Integrate 151

verification techniques such as model-checking. Here we work on an extended ver-
sion of the discretised formulation proposed in [13], which relies on the notion of
logical time. Time is considered as a sequence of logical discrete instants, and an
instant is a point in time where external input events can be observed, compu-
tations can be done, and outputs can be emitted. The variant we introduce here
takes into account some new time-related aspects, such as the refractory period,
a lapse of time in which the neuron cannot emit (or can only emit under some
restrictive conditions).

Our modelling of spiking neural networks consists of timed automata net-
works where each neuron is an automaton. Each neuron receives input spikes
through its incoming synapses (modelled as channels) and computes its mem-
brane potential value according to the (present and past) received inputs. When-
ever the potential value overtakes a given firing threshold, the neuron emits a
spike (modelled as a broadcast signal over an output channel of the corresponding
automaton).

As a central contribution, we exploit our automata-based modelling to pro-
pose a new methodology for parameter inference in spiking neural networks.
In particular, our approach allows to find an assignment for the synaptical
weights of a given neural network such that it can reproduce a given (expected)
behaviour.

This paper is an improved and revised version of the conference paper [10]. In
particular, the neuron model we introduce here is substantially different. In [10],
neurons need to wait for the end of some specific accumulation periods (during
which signals are received) before emitting spikes. Here, accumulation periods
are removed and neurons can receive and emit signals in an asynchronous way.
Furthermore, a unique refractory period is replaced by an absolute refractory
period, in which signal emission is not allowed, and a relative refractory period,
in which the firing threshold is higher than usual. This entails a new definition of
Leaky Integrate and Fire neuron and a new encoding into timed automata. The
examples are adapted to fit to the new model and new consistent parameters are
computed. Finally, the algorithm for parameter inference is refined in order to
avoid deadlock scenarios and a new simulation-oriented approach to implement
this algorithm is briefly introduced (see [11] for a detailed description of this
technique).

The rest of the paper is organised as follows: in Sect. 2 we recall definitions
of timed automata networks, temporal logics, and model checking; in Sect. 3
we describe our reference model, the LI&F one, and its encoding into timed
automata networks; in Sect. 4 we develop the parameter learning approach and
we introduce a case study; in Sect. 5 we give an overview of the related work.
Finally, Sect. 6 summarises our contribution and presents some future research
directions.

2 Preliminaries

In this section we introduce the formalisms we adopt in the rest of the paper,
that is, timed automata and temporal logics.



152 E. De Maria and C. Di Giusto

2.1 Timed Automata

Timed automata [2] are a powerful theoretical formalism for modelling and ver-
ifying real time systems. A timed automaton is an annotated directed (and con-
nected) graph, with an initial node and provided with a finite set of non-negative
real variables called clocks. Nodes (called locations) are annotated with invari-
ants (predicates allowing to enter or stay in a location), arcs with guards, com-
munication labels, and possibly with some variables upgrades and clock resets.
Guards are conjunctions of elementary predicates of the form x op c, where
op ∈ {>,≥,=, <,≤}, x is a clock, and c a (possibly parameterised) positive
integer constant. As usual, the empty conjunction is interpreted as true. The set
of all guards and invariant predicates will be denoted by G.

Definition 1. A timed automaton TA is a tuple (L, l0,X,Σ,Arcs , Inv), where

– L is a set of locations with l0 ∈ L the initial one
– X is the set of clocks,
– Σ is a set of communication labels,
– Arcs ⊆ L × (G ∪ Σ ∪ U) × L is a set of arcs between locations with a guard

in G, a communication label in Σ ∪ {ε}, and a set of variable upgrades (e.g.,
clock resets);

– Inv : L → G assigns invariants to locations.

It is possible to define a synchronised product of a set of timed automata that
work and synchronise in parallel. The automata are required to have disjoint
sets of locations, but may share clocks and communication labels which are used
for synchronisation. We restrict communications to be broadcast through labels
b!, b? ∈ Σ, meaning that a set of automata can synchronise if one is emitting;
notice that a process can always emit (e.g., b!) and the receivers (b?) must
synchronise if they can.

Locations can be normal, urgent or committed. Urgent locations force the
time to freeze, committed ones freeze time and the automaton must leave the
location as soon as possible, i.e., they have higher priority.

The synchronous product TA1 ‖ . . . ‖ TAn of timed automata, where TAj =
(Lj , l

0
j ,Xj , Σj ,Arcsj , Inv j) and Lj are pairwise disjoint sets of locations for each

j ∈ [1, . . . , n], is the timed automaton

TA = (L, l0,X,Σ,Arcs , Inv)

such that:

– L = L1 × . . . × Ln and l0 = (l01, . . . , l
0
n), X =

⋃n
j=1 Xj , Σ =

⋃n
j=1 Σj ,

– ∀l = (l1, . . . , ln) ∈ L : Inv(l) =
∧

j Inv j(lj),

– Arcs is the set of arcs (l1, . . . , ln)
g,a,r−→ (l′1, . . . , l

′
n) such that for all 1 ≤ j ≤ n

then l′j = lj .

Its semantics is the one of the underlying timed automaton TA with the
following notations. A location is a vector l = (l1, . . . , ln). We write l[l′j/lj , j ∈ S]



Inferring the Synaptical Weights of Leaky Integrate 153

to denote the location l in which the jth element lj is replaced by l′j , for all j in
some set S. A valuation is a function ν from the set of clocks to the non-negative
reals. Let V be the set of all clock valuations, and ν0(x) = 0 for all x ∈ X. We
shall denote by ν � F the fact that the valuation ν satisfies (makes true) the
formula F . If r is a clock reset, we shall denote by ν[r] the valuation obtained
after applying the clock reset r ⊆ X to ν; and if d ∈ R>0 is a delay, ν + d is the
valuation such that, for any clock x ∈ X, (ν + d)(x) = ν(x) + d.

The semantics of a synchronous product TA1 ‖ . . . ‖ TAn is defined as a
timed transition system (S, s0,→), where S = (L1×, . . . × Ln) × V is the set of
states, s0 = (l0, ν0) is the initial state, and →⊆ S × S is the transition relation
defined by:

– (silent): (l, ν) → (l′, ν′) if there exists li
g,ε,r−→ l′i, for some i, such that l′ =

l[l′i/li], ν � g and ν′ = ν[r],

– (broadcast): (l̄, ν) → (l̄′, ν′) if there exists an output arc lj
gj ,b!,rj−→ l′j ∈ Arcsj

and a (possibly empty) set of input arcs of the form lk
gk,b?,rk−→ l′k ∈ Arcsk

such that for all k ∈ K = {k1, . . . , km} ⊆ {l1, . . . , ln} \ {lj}, the size of K
is maximal, ν �

∧
k∈K∪{j} gk, l′ = l[l′k/lk, k ∈ K ∪ {j}] and ν′ = ν[rk, k ∈

K ∪ {j}];
– (timed): (l, ν) → (l, ν + d) if ν + d � Inv(l).

The valuation function ν is extended to handle a set of shared bounded inte-
ger variables: predicates concerning such variables can be part of edges guards
or locations invariants, moreover variables can be updated on edges firings but
they cannot be assigned to or from clocks.

Example 1. In Fig. 1 we consider the network of timed automata TA1 and TA2

with broadcast communications, and we give a possible run. TA1 and TA2 start
in the l1 and l3 locations, respectively, so the initial state is [(l1, l3); x = 0]. A
timed transition produces a delay of 1 time unit, making the system move to
state [(l1, l3); x = 1]. A broadcast transition is now enabled, making the system
move to state [(l2, l3); x = 0], broadcasting over channel a and resetting the x
clock. Two successive timed transitions (0.5 time units) followed by a broadcast
one will eventually lead the system to state [(l2, l4); x = 1]. 


To model neural networks, we have used the specification and analysis tool
Uppaal [4], which allows to design and simulate timed automata networks and
to validate networks against temporal logic formulae. All figures depicting timed
automata follow the graphic conventions of the tool (e.g., initial states are
denoted with a double circle).

2.2 Temporal Logics and Model Checking

Model checking is one of the most common approaches to the verification of
software and hardware (distributed) systems [7]. It allows to automatically prove
whether a system verifies or not a given specification. In order to apply such a



154 E. De Maria and C. Di Giusto

TA1 l1 l2
x < 2 x < 2

G : x = 1
S : a!
U : x := 0

G : x > 0
S : b!
U : −

TA2l3 l4
G : x = 1
S : −
U : −

G : true
S : a?
U : x := 0

(a) The timed automata network TA1 ‖ TA2.

[(l1, l3); x = 0]
↓

[(l1, l3); x = 1]
↓

[(l2, l3); x = 0]
↓

[(l2, l3); x = 0.5]
↓

[(l2, l3); x = 1]
↓

[(l2, l4); x = 1]
(b) A possible
run.

Fig. 1. A network of timed automata with a possible run.

technique, the system at issue should be encoded as a finite transition system and
the specification should be written using propositional temporal logic. Formally,
a transition system over a set AP of atomic propositions is a tuple M = (Q,T, L),
where Q is a finite set of states, T ⊆ Q × Q is a total transition relation, and
L : Q → 2AP is a labelling function that maps every state into the set of atomic
propositions that hold at that state.

Temporal formulae describe the dynamical evolution of a given system. The
computation tree logic CTL∗ allows to describe properties of computation trees.
Its formulas are obtained by (repeatedly) applying boolean connectives (∧, ∨, ¬,
→), path quantifiers, and state quantifiers to atomic formulas. The path quanti-
fier A (resp., E) can be used to state that all the paths (resp., some path) starting
from a given state have some property. The state quantifiers are X (next time),
which specifies that a property holds at the next state of a path, F (sometimes
in the future), which requires a property to hold at some state on the path, G
(always in the future), which imposes that a property is true at every state on
the path, and U (until), which holds if there is a state on the path where the
second of its argument properties holds and, at every preceding state on the
path, the first of its two argument properties holds. Given two formulas ϕ1 and
ϕ2, in the rest of the paper we use the shortcut ϕ1 � ϕ2 to denote the liveness
property AG(ϕ1 → AFϕ2), which can be read as “ϕ1 always leads to ϕ2 ”.

The branching time logic CTL is a fragment of CTL∗ that allows quantifica-
tion over the paths starting from a given state. Unlike CTL∗, it constrains every
state quantifier to be immediately preceded by a path quantifier.

Given a transition system M = (Q,T, L), a state q ∈ Q, and a temporal logic
formula ϕ expressing some desirable property of the system, the model checking
problem consists of establishing whether ϕ holds at q or not, namely, whether
M, q |= ϕ.



Inferring the Synaptical Weights of Leaky Integrate 155

3 Leaky Integrate and Fire Model and Mapping to
Timed Automata

Spiking neural networks [24] have been traditionally modelled as directed graphs,
where vertices represent neurons and oriented edges are the synapses. Each
neuron is a computational unit whose evolution depends on time passing by and
on the reception of signals through its ingoing synapses. The weight associated to
each synapse defines the nature of the signal: excitatory if positive, inhibitory if
negative. Input signals are, then, summed up by the neuron in a variable called
the potential. The potential accumulated decreases as time passes by and its
loss is regulated by the leak factor. As soon as the potential exceeds the firing
threshold, the neuron emits a signal called spike over all its outgoing synapses.
When the neuron fires, its potential is reset to zero and the neuron enters a
special state: the refractory period. This period is divided into two parts, the
absolute and the relative refractory period. During the former, the neuron is
completely inhibited: it ignores each incoming spike and it cannot fire. During the
latter, the neuron can receive spikes but its firing threshold is much higher than
usual. This threshold decreases with time passing by, by a threshold factor η,
until it reaches the normal value. This entails that, during the relative refractory
period, if the neuron is stimulated enough it will fire, thus resetting the potential
to zero and restarting a new refractory period (absolute and relative).

In this paper we consider discrete time. Next we give a formal definition of
Spiking Integrate and Fire Neural Networks and their dynamics.

Definition 2 (Spiking Integrate and Fire Neural Network). A spiking
integrate and fire neural network is a tuple (V,A,w), where:

– V are spiking integrate and fire neurons,
– A ⊆ V × V are synapses,
– w : A → Q∩ [−1, 1] is the synapse weight function associating to each synapse

(u, v) a weight wu,v.

Each spiking integrate and fire neuron v is characterized by a parameter tuple
(θv, θ′

v, τv, ηv, λv), where:

– θv, θ′
v ∈ N are the firing threshold for the normal and relative refractory

period respectively,
– τv ∈ N

+ is the duration of the absolute refractory period,
– ηv ∈ Q ∩ [0, 1] is the threshold factor
– λv ∈ Q ∩ [0, 1] is the leak factor.

The state of each neuron v is described by the tuple (sv, pv, fv, tv), where

– tv is a timer;
– sv ∈ {n, a, r} is the state of v, n for a neuron in a normal state, a for a neuron

in the absolute refractory period, and r for the relative one;
– pv is the potential of v;
– fv is a boolean value stating whether the neuron has fired or not.



156 E. De Maria and C. Di Giusto

A configuration C is the set of states of all neurons v ∈ V . The semantics
of the neural network is given by the set of reachable configurations from an
initial one. The initial configuration sets the state of all neurons v ∈ V to
(n, 0, 0, 0). Let C = {(sv, pv, fv, tv) | v ∈ V }, then C → C ′ if and only if
C ′ = {(s′

v, p′
v, f ′

v, t′v) | v ∈ V } and (sv, pv, fv, tv) →v (s′
v, p′

v, f ′
v, t′v) for all v ∈ V

and →v is defined as follows:

p′
v < θv

Rule 1
(n, pv, 0, tv) →v (n, p′

v, 0, tv + 1)

p′
v ≥ θv

Rule 2
(n, pv, 0, tv) →v (a, 0, 1, 0)

tv + 1 < τv Rule 3
(a, 0, fv, tv) →v (a, 0, 0, tv + 1)

tv + 1 ≥ τv Rule 4
(a, 0, 0, tv) →v (r, 0, 0, 0)

p′
v < θ′

v · ηtv+1
v θ′

v · ηtv+1
v > θv

Rule 5
(r, pv, 0, tv) →v (r, p′

v, 0, tv + 1)

p′
v < θ′

v · ηtv+1
v θ′

v · ηtv+1
v ≤ θv

Rule 6
(r, pv, 0, tv) →v (n, p′

v, 0, 0)

p′
v ≥ θ′

v · ηtv+1
v Rule 7

(r, pv, 0, tv) →v (a, 0, 1, 0)

with p′
v =

m∑

i=1

wi,v · fi + λv · pv and where i is the ith out of m input neuron

of v, wi,v is the weight of the synapse connecting i and v, and fi is the third
component in the state of neuron i in configuration C.

More in detail, Rules 1 and 2 regulate the neuron when it is not in the
refractory period (absolute or relative). In this case, at each instant, there are
two possibilities:

Rule 1: the new potential (taking into account input spikes and the leak factor) is
smaller than the firing threshold, thus the neuron remains in the normal
state, it updates its potential and the timer increases of one unit,

Rule 2: the new potential is greater than the firing threshold, thus the neuron
fires a spike (setting to 1 the boolean fv), it changes its state to the
absolute refractory period and resets the timer to 0.



Inferring the Synaptical Weights of Leaky Integrate 157

During its absolute refractory period, the neuron ignores any received spike.
The only visible change is that time passes by and the timer is incremented by
one time unit (Rule 3). When the timer is greater than τv (the duration of the
absolute refractory period), the neuron changes its state moving to the relative
refractory state and resetting all the other variables of the state (Rule 4).

Last, as far as the relative refractory period is concerned, we have that its
duration is determined by two parameters: θ′

v and ηv. We thus have three possible
scenarios:

Rule 5: The neuron can receive spikes from its input neurons but the new poten-
tial p′

v does not exceed the firing threshold θ′
v (diminished by the thresh-

old factor ηv) and θ′
v has not yet reached the normal firing threshold

(θ′
v · ηtv+1

v > θv). In this case the neuron remains in the relative refrac-
tory state, it updates its potential and increases the timer.

Rule 6: In this case the neuron potential has not yet passed the firing threshold
but the relative refractory period is terminated since θ′

v has been dimin-
ished until reaching θv. The neuron then returns in the normal state
with the updated potential and the timer is reset.

Rule 7: The new potential is bigger than the firing threshold, then the neuron
fires: f ′

v = 1 and it moves to the absolute refractory state resetting to 0
both the potential and the timer.

In a spiking integrate and fire neural network, we distinguish three disjoint
sets of neurons: Vi (input neurons), Vint (intermediary neurons), and Vo (output
neurons), with V = Vi ∪ Vint ∪ Vo. Each input neuron receives as input an exter-
nal signal. The output of each output neuron is considered as an output for the
network. We have given the definition of input generators and output consumer
in [11]. For the sake of this paper, it is sufficient to know that input generators are
encoded as timed automata that provide trains of spike. Symmetrically, output
consumers are timed automata that can in each moment receive spikes from the
connected output neurons.

The encoding of neurons is as follows (it generalises the definition given in
[10] by introducing the relative refractory period and removing the notion of
accumulation period):

Definition 3. Given a neuron v = (θv, θ′
v, τv, ηv, λv) with m input neurons, its

encoding into timed automata is N = (L,N,X, V ar,Σ,Arcs , Inv) with:

– L = {N,F,A,R} with F committed,
– X = {t}
– V ar = {p, f}
– Σ = {xi | i ∈ [1..m]} ∪ {xv},
– Arcs =

{(N, p + wi ≥ θv, xi?,∼,F) | i ∈ [1..m]}∪
{(N, p + wi < θv, xi?,∼,N) | i ∈ [1..m]}∪
{(R, p + wi ≥ f, xi?,∼,F) | i ∈ [1..m]}∪
{(R, p + wi < f, xi?,∼,R) | i ∈ [1..m]}∪



158 E. De Maria and C. Di Giusto

{(N, t = 1,∼, {t := 0, p := p · λv},N),
(F,∼, xv!, {p := 0, t := 0},A)
(A, t = τv,∼, {t := 0, f := θ′

v},R)
(R, t = 1,∼, {t := 0, p := p · λv, f := f · ηv},R),
(R,∼,∼, {t := 0},N)}

– Inv(N) = t < 1,∼ Inv(F) = true,
Inv(A) = t < τv, Inv(R) = t < 1 ∧ f > θv.

N
t < 1

F

A
t < τv

R
t < 1 ∧ f > θv

p + wi ≥ θv

xi?
−

−
xv !

p := 0, t := 0

t = τv
−

t := 0, f := θ′
v

−
−

t := 0

p + wi ≥ f
xi?
−

p + wi < θv

xi?
p := p + wi

t = 1
−

p := p · λv, t := 0

p + wi < f
xi?

p := p + wi

t = 1
−

p := p · λv, t := 0, f := f · ηv

Fig. 2. Encoding of the spiking integrate and fire neuron with absolute and relative
refractory period.

The automaton encoding of a neuron v is given in Fig. 2. We comment now on
the definition. States N,F,A,R represent, respectively, the fact that the neuron
is in the normal state, it is firing, and it is in the absolute and then relative
refractory period. Spikes are communicated through broadcast channels: each
neuron v ∈ V is associated to a channel xv. The passing of time is explicit in
the encoding, it is implemented by the self loop on state N with guard (t =
1,−, {p := p · λv, t := 0}), by the similar self loop on state R with guard (t =
1,−, {p := p · λv, t := 0, f := f · ηv}), and by the arc from state A to state R.
All other actions (arcs) are meant to be instantaneous.

The rules above are encoded into arcs in the automata in the following way:

Rule 1: it is encoded by both self loops on state N,
Rule 2: it is encoded by the arcs from N to F and from F to A. Notice that, as

state F is committed, time cannot pass by,



Inferring the Synaptical Weights of Leaky Integrate 159

Rule 3: has no counterpart in the arcs, it is represented by the invariant t < τv

on state A,
Rule 4: it is given by the arc from state A to R,
Rule 5: it is encoded by both self loops on state R,
Rule 6: it is represented by the arc from state R to N,
Rule 7: similarly as for Rule 2, it is encoded by the arcs from R to F and from

F to A.

4 Parameter Inference

In this section we focus on the Learning Problem, which consists in determining
a parameter assignment for a network with a fixed topology and a given input
such that a desired output behaviour is displayed. More precisely, we examine
the estimation of synaptic weights in a given spiking neural network and we leave
the generalisation of our methodology to other parameters for future work.

Our technique takes inspiration from the SpikeProp algorithm [5]; in a similar
way, here, the learning process is led by supervisors. Each output neuron N is
linked to a supervisor. Supervisors compare the expected output behaviour with
the one of the output neuron they are connected to (function Evaluate(N ) in
Algorithm 1). Thus either the output neuron behaved consistently or not. In the
second case, and in order to instruct the network, the supervisor back-propagates
advices to the output neuron depending on two possible scenarios:

(i) the neuron fires a spike, but it was supposed to be quiescent,
(ii) the neuron remains quiescent, but it was supposed to fire a spike.

In the first case the supervisor addresses a should not have fired message (SNHF)
and in the second one a should have fired (SHF). Then each output neuron
modifies its ingoing synaptic weights and in turn behaves as a supervisor with
respect to its predecessors, back-propagating the proper advice.

The advice back-propagation (ABP), Algorithm1, is based on a depth-first
visit of the graph topology of the network. Let Ni be the i-th predecessor of
an automaton N , then we say that Ni fired, if it emitted a spike during the
current or previous accumulate-fire-wait cycle of N . Thus, upon reception of a
SHF message, N has to strengthen the weight of each ingoing excitatory synapse
and weaken the weight of each ingoing inhibitory synapse. Then, it propagates a
SHF advice to each ingoing excitatory synapse (i.e., an arc with weight greater
than 0: Wt ≥ 0) corresponding to a neuron which did not fire recently (¬F(N )),
and symmetrically a SNHF advice to each ingoing inhibitory synapse (Wt < 0)
corresponding to a neuron which fired recently (see Algorithm2 for SHF, and
Algorithm 3 for the dual case of SNHF). When the graph visit reaches an input
generator, it will simply ignore any received advice (because input sequences
should not be affected by the learning process). The learning process ends when
all supervisors do not detect any more errors.

There are several possibilities on how to implement supervisors and the ABP
algorithm. We propose here two different techniques: the first one is model check-
ing oriented while the second one is simulation oriented.



160 E. De Maria and C. Di Giusto

Algorithm 1. The advice back-propagation algorithm.

1: function ABP
2: discovered = ∅
3: for all N ∈ Output do
4: if N /∈ discovered then
5: discovered = discovered ∪ N
6: if Evaluate(N ) = SHF then
7: SHF(N )
8: else if Evaluate(N ) = SNHF then
9: SNHF(N )

Algorithm 2. Should Have Fired algorithm.

1: procedure Should-Have-Fired(N )
2: if N ∈ discovered ∪ Output then
3: return
4: discovered = discovered ∪ N
5: for all M ∈ Pred(N ) do
6: if M /∈ Input then
7: if Wt(N ,M) ≥ 0 ∧ ¬ F(M) then
8: SHF(M)
9: if Wt(N ,M) < 0 ∧ F(M) then

10: SNHF(M)
11: Increase-Weight(N ,M)
12: return

As far as the first technique is concerned, it consists in iterating the learning
process until a desired CTL temporal logic formula concerning the output of the
network is verified. At each step of the algorithm, we make an external call to
a model checker to test whether the network satisfies the formula or not. If the
formula is verified, the learning process ends; otherwise, the model checker pro-
vides a trace as a counterexample. Such a trace is exploited to derive the proper
corrective action to be applied to each output neuron, that is, the invocation of
either the SHF procedure, or the SNHF procedure previously described (or no
procedure).

In the second technique, parameters are modified during the simulation of
the network. This entails that the encoding of neurons as automata needs to be
adjusted in order to take care of the adaptation of such parameters. Algorithm
ABP is realised by a dedicated automaton, and the role of supervisor is given to
some output consumer automata. The idea is that, if an output neuron misbe-
haves, then its corresponding output consumer sets whether it has to be treated
according to the SHF or the SNHF function. Furthermore, it signals that some
adjustments on the network have to be done. Then the functions SHF or SNHF
are recursively applied on the predecessors of the output neuron. Once there



Inferring the Synaptical Weights of Leaky Integrate 161

Algorithm 3. Abstract ABP: Should Not Have Fired advice pseudo-code.

1: procedure Should-Not-Have-Fired(neuron)
2: if N ∈ discovered ∪ Output then
3: return
4: discovered = discovered ∪ N
5: for all M ∈ Predecessors(N ) do
6: if M /∈ Input then
7: if Wt(N ,M) ≥ 0 ∧ F(M) then
8: SNHF(M)
9: if Wt(N ,M) < 0 ∧ ¬ F(M) then

10: SHF(M)
11: Decrease-Weight(N ,M)
12: return

is no more neuron to whom the algorithm should be applied (for instance all
neurons in the current run have been visited), the simulation is restarted in the
network with the new parameters.

For a detailed description of the aforementioned techniques, the reader can
refer to [11].

Example 2 (Turning on and off a diamond network of neurons). This example
illustrates how the ABP algorithm can be used to make a neuron emit at least
once in a spiking neural network having the diamond structure shown in Fig. 3.
We assume that N1 is fed by an input generator I that continuously emits spikes.
The neurons N1, N2, and N3 have the same tuple of parameters:

(θ = 0.35, θ′ = 1.75, τ = 3, η = 1, λ =
7
9
)

while N4 has the parameters:

(θ = 0.55, θ′ = 2.75, τ = 3, η = 1, λ =
1
2
).

The initial weights are:

w0,1 w1,2 w1,3 w2,4 w3,4

0.1 0.1 0.1 0.1 0.1

No neuron in the network is able to emit because all the weights of their
input synapses are equal to 0.1 and their thresholds are 0.35.

We want the network to learn a weight assignment so that N4 is able to emit,
that is, to produce a spike after an initial pause. At the beginning we expect no
activity from neuron N4. As soon as the initial pause is elapsed, we require a spike
but, as all weights are equal to zero, no emission can happen. Thus a SHF advice



162 E. De Maria and C. Di Giusto

Fig. 3. A neural network with a diamond structure (Fig. 2 in [10]).

is back-propagated to the neurons N2 and N3 and consequently to N1. The
process is then iterated until all weights stabilise and the neuron N4 is able to fire.

As far as the model checking approach is concerned, we want to test whether
N4 can fire every 20 units of time. Notice that, as we cannot write recursive
formulae, we only test if the formula is true for the first N times (N = 100 in our
tests):

EG(((O4.n4 < N) ∧ (O4.O)) ⇒ (O4.s � 20)) ∧ EF (O4.O)

where O4.n4 is the number of spikes fired by N4, O4.O states whether N4 has
fired or not, and O4.s is a clock signalling when N4 has fired. The last part of
the formula ensures that the neuron fires at least once.

The next table details the steps of the model checking approach:

Step Action Update
1 N4 falsifies the formula
2 SHF(N4) w3,4 = 0.2

w2,4 = 0.2
3 SHF(N3) w1,3 = 0.2
4 SHF(N1) w0,1 = 0.2
5 SHF(N2) w1,2 = 0.2
6 N4 falsifies the formula
7 SHF(N4) w3,4 = 0.3

w2,4 = 0.3
8 SHF(N3) w1,3 = 0.3
9 SHF(N2) w1,2 = 0.3
10 N4 falsifies the formula
11 SHF(N4) w3,4 = 0.4

w2,4 = 0.4
12 SHF(N3) w1,3 = 0.4
13 SHF(N2) w1,2 = 0.4
14 The formula is satisfied



Inferring the Synaptical Weights of Leaky Integrate 163

For the simulation approach we obtain a similar sequence of calls to the SHF
algorithm (changes in the order of calls are due to a different scheduling). The
number of steps is also different as the checks on the validation of the formula are
replaced by a simulation of the network. The obtained weights are only visible
at the end of the simulation.

Step Action
14 N4 does not behave as expected
21 SHF(N4)
21 SHF(N2)
21 SHF(N1)
21 SHF(N3)
39 N4 does not behave as expected
42 SHF(N4)
42 SHF(N2)
42 SHF(N3)
62 N4 does not behave as expected
63 SHF(N4)
63 SHF(N2)
63 SHF(N3)
83 N4 does not behave as expected
84 SHF(N4)
488 N4 behaves as expected

Summing up, with the two approaches we obtain the following weights:

Method w0,1 w1,2 w1,3 w2,4 w3,4

Model checking 0.2 0.4 0.4 0.4 0.4
Simulation 0.2 0.4 0.4 0.5 0.5

Notice that with the simulation method we obtain a set of weights that is
slightly different. This is not contradictory as the solution to the learning prob-
lem is not necessarily unique. 


5 Related Work

To the best of our knowledge, there are few attempts of giving formal models
for LI&F. Apart from the already discussed approach of [13], where the authors
model and verify LI&F networks thanks to the synchronous language Lustre,
the closest related work we are aware of is [3]. In this work, the authors propose
a mapping of spiking neural P systems into timed automata. The modelling is



164 E. De Maria and C. Di Giusto

substantially different from ours. They consider neurons as static objects and the
dynamics is given in terms of evolution rules while for us the dynamics is intrinsic
to the modelling of the neuron. This, for instance, entails that inhibitions are
not just negative weights as in our case, but are represented as forgetting rules.
On top of this, the notion of time is also different: while they consider durations
in terms of number of applied rules, we have an explicit notion of duration given
in terms of accumulation and refractory period.

As far as our parameter learning approach is concerned, we borrow inspira-
tion from the SpikeProp rule [5], a variant of the well known back-propagation
algorithm [29] used for supervised learning in second generation learning. The
SpikeProp rule deals with multi-layered cycle-free spiking neural networks and
aims at training networks to produce a given output sequence for each class of
input sequences. The main difference with respect to our approach is that we are
considering here a discrete model and our networks are not multi-layered. We
also rest on Hebb’s learning rule [18] and its time-dependent generalisation rule,
the spike timing dependent plasticity (STDP) rule [30], which aims at adjusting
the synaptical weights of a network according to the time occurrences of input
and output spikes of neurons. It acts locally, with respect to each neuron, i.e., no
prior assumption on the network topology is required in order to compute the
weight variations for some neuron input synapses. Differently from the STDP,
our approach takes into account not only recent spikes but also some external
feedback (advices) in order to determine which weights should be modified and
whether they must increase or decrease. Moreover, we do not prevent excitatory
synapses from becoming inhibitory (or vice versa), which is usually a constraint
for STDP implementations. A general overview on spiking neural network learn-
ing approaches and open problems in this context can be found in [17].

6 Conclusion

In this paper we formalised the LI&F model of spiking neural networks via timed
automata networks. We improved the neuron model proposed in [10] by relaxing
some stringent constraints related to spike emission times and by modelling a
more realistic refractory period divided into absolute and relative one. We have
a complete implementation of the proposed model and examples via the tool
Uppaal, that can be found at the web pages [6] and [12]. As for future work
concerning the modelling aspects, we plan to provide analogous formalisations
for more complex spiking neuron models, such as the theta-neuron model [14]
or the Izhikevich one [21]. We also intend to extend our model to incorporate
propagation delays, which are considered relevant within the scope of spiking
neural networks [26]. Our extension is intended to add some locations and clocks
to model synapses. We also plan to perform a robustness analysis of the obtained
model, in order to detect which neuron parameters influence most the satisfaction
of some expected temporal properties.

As a salient contribution, we introduced a technique to learn the synaptical
weights of spiking neural networks. At this aim, we adapted machine learning
techniques to bio-inspired models, which makes our work original and comple-
mentary with respect to the main international projects aiming at understanding



Inferring the Synaptical Weights of Leaky Integrate 165

the human brain, such as the Human Brain Project [9], which mainly relies on
large-scale simulations.

For our learning approach, we have focussed on a simplified type of supervi-
sors: each supervisor describes the output of a single specific neuron. However,
the back-propagation algorithm still works for more complex scenarios that spec-
ify and compare the behaviour of sets of neurons. As for future work, we intend
to formalise more involved supervisors, allowing to compare the output of sev-
eral neurons. Moreover, to refine our learning algorithm, we could exploit some
key results coming from the domain of gene regulatory networks, where some
theorems linking the topology of the network and its dynamical behaviour are
given [28].

To conclude, we intend to extend our methodology to the inference of other
crucial parameters of neural networks, such as the leak factor or the firing thresh-
old. We plan to consider the other parameters first one by one, and then all at
the same time.

Acknowledgements. We are grateful to Laetitia Laversa for her preliminary imple-
mentation work and for her enthusiasm in collaborating with us.

References

1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann
machines. In: Waltz, D., Feldman, J.A. (eds.) Connectionist Models and Their
Implications: Readings from Cognitive Science, pp. 285–307. Ablex Publishing Cor-
poration, Norwood (1988)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Aman, B., Ciobanu, G.: Modelling and verification of weighted spiking neural sys-
tems. Theor. Comput. Sci. 623, 92–102 (2016). https://doi.org/10.1016/j.tcs.2015.
11.005. http://www.sciencedirect.com/science/article/pii/S0304397515009792

4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

5. Bohte, S.M., Poutré, H.A.L., Kok, J.N., La, H.A., Joost, P., Kok, N.: Error-
backpropagation in temporally encoded networks of spiking neurons. Neurocom-
puting 48, 17–37 (2002)

6. Ciatto, G., De Maria, E., Di Giusto, C.: Additional material (2016). https://github.
com/gciatto/snn as ta

7. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

8. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303–314 (1989)

9. D’Angelo, E., et al.: The human brain project: high performance computing for
brain cells HW/SW simulation and understanding. In: 2015 Euromicro Conference
on Digital System Design, DSD 2015, Madeira, Portugal, 26–28 August 2015, pp.
740–747. IEEE Computer Society (2015). https://doi.org/10.1109/DSD.2015.80

https://doi.org/10.1016/j.tcs.2015.11.005
https://doi.org/10.1016/j.tcs.2015.11.005
http://www.sciencedirect.com/science/article/pii/S0304397515009792
https://doi.org/10.1007/BFb0020949
https://github.com/gciatto/snn_as_ta
https://github.com/gciatto/snn_as_ta
https://doi.org/10.1109/DSD.2015.80


166 E. De Maria and C. Di Giusto

10. De Maria, E., Di Giusto, C.: Parameter learning for spiking neural networks mod-
elled as timed automata. In: Anderson, P., Gamboa, H., Fred, A.L.N., i Badia,
S.B. (eds.) Proceedings of the 11th International Joint Conference on Biomedical
Engineering Systems and Technologies (BIOSTEC 2018). BIOINFORMATICS,
Funchal, Madeira, Portugal, 19–21 January 2018, vol. 3, pp. 17–28. SciTePress
(2018). https://doi.org/10.5220/0006530300170028

11. De Maria, E., Di Giusto, C.: Spiking neural networks modelled as timed automata
with parameter learning. Research report, Université Côte d’Azur, CNRS, I3S,
France, June 2018

12. De Maria, E., Di Giusto, C., Laversa, L.: Additional material (2017). https://
digiusto.bitbucket.io/

13. De Maria, E., Muzy, A., Gaffé, D., Ressouche, A., Grammont, F.: Verification of
temporal properties of neuronal archetypes using synchronous models. In: Fifth
International Workshop on Hybrid Systems Biology, Grenoble, France (2016)

14. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled
with a slow oscillation. SIAM J. Appl. Math. 46(2), 233–253 (1986)

15. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Mach. Learn. 37(3), 277–296 (1999)

16. Gerstner, W., Kistler, W.: Spiking Neuron Models: An Introduction. Cambridge
University Press, New York (2002)

17. Grüning, A., Bohte, S.: Spiking neural networks: principles and challenges (2014)
18. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)
19. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and

its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544
(1952)

20. Hopfield, J.J.: Neural networks and physical systems with emergent collective
computational abilities. In: Anderson, J.A., Rosenfeld, E. (eds.) Neurocomputing:
Foundations of Research, pp. 457–464. MIT Press, Cambridge (1988)

21. Izhikevich, E.M.: Simple model of spiking neurons. Trans. Neural Netw. 14(6),
1569–1572 (2003)

22. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans.
Neural Netw. 15(5), 1063–1070 (2004)

23. Lapicque, L.: Recherches quantitatives sur l’excitation electrique des nerfs traitee
comme une polarization. J. Physiol. Pathol. Gen. 9, 620–635 (1907)

24. Maass, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

25. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

26. Paugam-Moisy, H., Bohte, S.: Computing with spiking neuron networks. In: Rozen-
berg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 335–376.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9 10

27. Recce, M.: Encoding information in neuronal activity. In: Maass, W., Bishop, C.M.
(eds.) Pulsed Neural Networks, pp. 111–131. MIT Press, Cambridge (1999)

28. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata
networks. Adv. Appl. Math. 44(4), 378–392 (2010)

29. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. In: Anderson, J.A., Rosenfeld, E. (eds.) Neurocomputing: Foun-
dations of Research, pp. 696–699. MIT Press, Cambridge (1988)

30. Sjöström, J., Gerstner, W.: Spike-timing dependent plasticity. Scholarpedia 5(2),
1362 (2010)

https://doi.org/10.5220/0006530300170028
https://digiusto.bitbucket.io/
https://digiusto.bitbucket.io/
https://doi.org/10.1007/978-3-540-92910-9_10

	Inferring the Synaptical Weights of Leaky Integrate and Fire Asynchronous Neural Networks: Modelled as Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Temporal Logics and Model Checking

	3 Leaky Integrate and Fire Model and Mapping to Timed Automata
	4 Parameter Inference
	5 Related Work
	6 Conclusion
	References




