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Abstract. The early diagnosis of colorectal cancer (CRC) tradition-
ally leverages upon the microscopic examination of histological slides by
experienced pathologists, which is very time-consuming and rises many
issues about the reliability of the results. In this paper we propose using
Convolutional Neural Networks (CNNs), a class of deep networks that
are successfully used in many contexts of pattern recognition, to auto-
matically distinguish the cancerous tissues from either healthy or benign
lesions. For this purpose, we designed and compared different CNN-based
classification frameworks, involving either training CNNs from scratch
on three classes of colorectal images, or transfer learning from a different
classification problem. While a CNN trained from scratch obtained very
good (about 90%) classification accuracy in our tests, the same CNN
model pre-trained on the ImageNet dataset obtained even better accu-
racy (around 96%) on the same testing samples, requiring much lesser
computational resources.

Keywords: Colorectal cancer · Histological image analysis ·
Convolutional Neural Networks · Deep learning · Transfer learning ·
Pattern recognition

1 Introduction

Colorectal carcinoma (CRC) is one of the most diffused cancers worldwide and
one of the leading causes of cancer-related death. Based on most recent epidemio-
logical studies, this type of cancer is particularly frequent in the highly-developed
countries, especially Europe, and it is associated with very high mortality rates
compared to other tumors [9]. Hence, the early diagnosis and differentiation of
CRC is crucial for the survival and well-being of a large number of patients.

The primary diagnosis of CRC is traditionally performed by means of
colonoscopy, that is the endoscopic examination of the large and the distal part
of the small bowel. During this procedure, the surgeon will typically perform a
biopsy on the suspicious colorectal lesions, which implies the resection of a thin
sample of tissue for histopathological evaluation (see Fig. 1).

The samples, fixed and stained by means of Hematoxylin and Eosin (H&E),
are then visually examined by a pathologist, either directly under the microscope,
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Fig. 1. Primary diagnosis of CRC. (a) Suspicious lesions and polyps are resected during
colonoscopy. (b) The bioptic samples are fixated and stained (e.g. by H&E) to highlight
tissue architecture.

or on a computer monitor. In the latter case, the physical slide is first digitalised
by a scanner in the form of a so-called virtual slide or whole-slide-image (WSI), a
very large multi-resolution zoomable image file, and then visualised on a screen
by means of specific viewing software.

The presence and level of malignancy is assessed by observing the organisa-
tional changes in the tissues, which are highlighted by the two stains. As shown
in Fig. 2, normal colon tissues have a well-defined organisation, with the epithe-
lial cells forming glandular structures and the non-epithelial cells (i.e. stroma)
lying in between these glands. The main benign precursor of CRC, adenoma,
is characterised by enlarged, hyper-chromatic and elongated nuclei arranged in
a typically stratified configuration, characterised by either tubular or villous
(finger-like) tissue architecture. Adenocarcinomas, on the other hand, produce
abnormal glands that infiltrate into the surrounding tissues.

Traditional visual examination has two major drawbacks, that are widely
pointed out by literature. First, it is time-consuming, especially for large image
datasets. Second, it is highly subjective, which translates into large variability,
both inter and intra observer [2]. To solve these drawbacks, there are growing
efforts towards the automatisation of the analysis flow and the development
of computer-aided diagnostic techniques. The major directions of the research
efforts were mainly two in the last few years: (i) automated segmentation, aimed
at partitioning the heterogeneous colorectal samples into regions of interest that
are homogeneous in terms of tissue architecture. (ii) automated classification,
aimed at partitioning the homogeneous tissue regions into a number of histo-
logical categories, either normal or malignant, leveraging quantitative features
extracted from the image. In both the tasks, the large intra-class image vari-
ability is the main challenge to be tackled. This work focuses on the automated
classification task, targeting the three histological categories that are most rele-
vant for CRC diagnosis: (i) healthy tissue, (ii) adenocarcinoma, (iii) tubulovillous
adenoma (see Fig. 2).
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Fig. 2. Examples of histological H&E images of colorectal tissues (cropped patches),
respectively from healthy samples, adenocarcinoma and tubulovillous adenoma.

Recent literature on automated classification of histological images has been
extensive not only on colon but also on brain, breast, prostate and lungs can-
cer applications. These works generally propose solutions based on automated
texture analysis, where a limited set of local descriptors (for example, statistical
features based on grey level co-occurrence matrix, GLCM, local binary patterns,
LBP, Gabor and wavelet transforms, etc.) are computed from the input images
and then fed into a classifier. The texture descriptors, eventually encoded into a
compact dictionary of visual words, are used as input of machine learning tech-
niques such as Support Vector Machines (SVM), Random Forests or Logistic
Regression classifiers [4]. In spite of the good level of accuracy obtained by some
of these works, the dependence on a fixed set of handcrafted features is a major
limitation to the robustness of the classical texture analysis approaches. First,
because it leverages upon a priori knowledge about the image characteristics
that are best suited for classification, which is not obvious for all types of can-
cers. Second, because it puts severe constraints to the generalisation and transfer
capabilities of the proposed classifiers, especially in the presence of inter-dataset
variability.

As an answer to such limitations, deep learning (DL) architectures, and more
specifically Convolutional Neural Networks (CNNs), have now become a major
trend [6,7]. In CNNs a number of convolutional and pooling layers learn by
backpropagation a set of features that are best for classification, thus avoid-
ing the extraction of handcrafted texture descriptors. Nonetheless, the need of
computational resources and the necessity of extensively training the networks
with a huge number of independent samples are open issues in histopathology,
and put limits to the usability of this approach in the everyday clinical setting.
Transfer learning techniques (i.e applying CNNs pre-trained on a different type
of images, for which large datasets are available) might be a promising solution
to this problem [13], which deserves better investigations.

In this work, we apply a CNN-based approach to automatically differenti-
ate healthy tissues and tubulovillous adenomas from cancerous samples, which
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is a challenging task in histological image analysis. For this purpose, we fully
train a CNN on a large set of colorectal samples, and assess its accuracy on
a completely independent test set. This technique is experimentally compared
with two different transfer learning approaches, both leveraging upon a CNN
pre-trained on a completely different classification problem. The first approach
uses the pre-trained CNN to extract a set of discriminative features that will
be fed into a separate SVM classifier. The second approach fine-tunes on CRC
histological images only the last stages of the pre-trained CNN. By doing so, we
investigate and discuss the transfer learning capabilities of CNNs in the domain
of CRC classification.

This paper revises and extends [10]. In this version we provide a better intro-
duction to histopathological image analysis, ameliorated pictorial representations
of the proposed methodologies, as well as a new section on the visualisation and
exploitation of the CNN outcome for CRC tissue classification.

2 Materials and Methods

2.1 Image Dataset

The dataset used in this study was extracted from a public repository of H&E
stained whole-slide images (WSIs) of colorectal tissues, that can be freely down-
loaded from [1], together with their anonymised clinical information.

In order to obtain a statistically significant dataset in terms of inter-subjects
and inter-class variability, we selected 27 WSIs, obtained from univocal subjects
(i.e. one WSI per patient). As a WSI is typically very wide, it may contain
different types of tissues (e.g. healthy and cancerous portions). Hence, the orig-
inal WSI cannot be given a unique histological label. With the supervision of a
pathologist, we identified on each WSI large regions of interest (ROIs) that are
homogeneous in terms of tissue architecture (see example of Fig. 3). Hence, each
ROI can be univocally associated to one out of the three tissue subtypes: (i) ade-
nocarcinoma (AC); (ii) tubuvillous adenoma (TV) and (iii) healthy tissue (H).
Then, the obtained ROIs were cropped into a total number of 13500 1089×1089
patches (500 per patient), at a 40x magnification level, without applying any
data augmentation.

The original image cohort was randomly split into two disjoint subsets, one
for training and one for testing purposes, respectively containing 9000 and 4500
patches. In order to ensure a complete independence of the two sets, the training
and testing patches belong to different subjects. More specifically, 18 patients
were used to generate the training patches, and 9 for the testing patches.

The random sampling was stratified, so that both the training and the testing
set are balanced among the three classes of interest (H, AC and TV). Hence, the
accuracy assessment was not affected by class prevalence.

Before being fed into the CNN, each patch was down sampled by a factor
five, that was empirically set as a trade-off between computational burden of the
processing and architectural detail of the images. To compensate for possible
color inconsistencies, all the patches were normalised by mean and standard



118 F. Ponzio et al.

Fig. 3. Identification and annotation of homogeneous ROIs from a colorectal whole
slide image (WSI).

Fig. 4. CRC classification by means of CNN: schematic representation. Homogeneous
ROIs are cropped into small non-overlapping patches, that are fed into the CNN after
normalisation by mean and standard deviation on the training set. The output of the
CNN is a probability map of the input patch into one three tissue classes: healthy,
adenocarcinoma or tubulovillous adenoma.

deviation, computed over the whole training dataset. A pictorial representation
of the patches preparation and classification process is shown in Fig. 4.

2.2 Convolutional Neural Network: Architecture and Training
Paradigm

Convolutional Neural Networks (CNNs) consist of a sequence of multiple locally
connected trainable stages, aimed at learning the image representation at a pro-
gressively increasing level of abstraction, and of two or more fully-connected
layers as the last step, aimed at learning the class partitioning task like a tradi-
tional multi-layer perceptron.
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The locally connected part of a CNN implements two main types of building
blocks:

1. Convolutional (CONV) blocks basically act like kernel filters with trainable
parameters, performing a 2D convolution operation on the input image. Based
on the value of these parameters, a filter is able to detect different types
of local patterns. After convolution, typically the stage applies a non-linear
transfer function, such as Rectified Linear Unit (ReLU).

2. Pooling (POOL) blocks perform a non-linear down-sampling of the input,
typically applying a max function. Down-sampling has the two-fold effect of
reducing the number of parameters of the network that need to be learned
(and hence of controlling overfitting), as well as of introducing space invari-
ance into the image representation.

The higher the number of CONV and POOL layers in a CNN, the higher
the depth of the network, and the higher the level of detail that can be achieved
by the hierarchical representation of the image. Hence, deeper networks are usu-
ally able to achieve much better classification performance that their shallow
counterparts. Nonetheless, a higher depth also translates into a higher number
of parameters that need to be learned, and hence into a much higher computa-
tional cost of the training process.

The training paradigm of the CNN is usually a classic backpropagation
scheme: that is, an iterative process involving multiple passes of the whole input
dataset until convergence of the optimisation algorithm. At each training step,
the whole dataset flows from the first to the last layer in order to compute a clas-
sification error, quantified by a loss function. Such error flows backward through
the net, and at each training step the model parameters (i.e. the weights of the
network) are tuned in the direction that minimises the classification error on the
training data.

In our work we used a VGG16 CNN model [12], that ensured the best compro-
mise between representation capabilities (and hence, depth) and computational
costs of the training. The model is schematically reported in Fig. 5.

VGG16 model was successfully applied to a large number of computer vision
tasks. In spite of its large depth (16 layers, including convolutional and fully-
connected stages), its architecture is very simple and repetitive. More specifically,
the model consists of a linear sequence of 13 3 × 3 CONV layers, that can be
conceptually grouped into 5 macro-blocks, each ending with a 2×2 POOL, and of
3 fully-connected (FC) layers as final classification stage. All the non-linearities
are ReLU, except for the last fully-connected layer (FC3), that is a softmax
activation function. The convolution stride and the padding are fixed to 1 pixel
and the max pooling stride to 2. Differently from the original VGG16 model, we
modified the architecture by implementing a final FC3 stage of 3 units, matching
the number of categories targeted by our research problem. The output values of
this final stage can be interpreted as the probability of the input patch belonging
respectively to the healthy, the adenocarcinoma or the tubulovillous adenoma
class.
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Fig. 5. CNN architecture (VGG16 model).

The net was developed within Keras framework [3] and trained with a classic
backpropagation paradigm. More specifically, we applied a stochastic gradient
descent (SGD), implemented with a momentum update approach [11] as itera-
tive optimisation algorithm to minimise the categorical cross-entropy function
between the three classes of interest (H, AC and TV).

The monitoring of the training process and the optimisation of the hyper-
parameters of the net leverage upon 10% of the training set, that were appointed
as independent validation data and excluded from the training per se. This
validation set was solely used to compute the validation accuracy metric upon
which the training process is optimised. Based on validation, we set the learning
rate (LR) to 0.0001, the momentum (M) to 0.9 and the batch size (BS) to 32.

To reduce overfitting, the learning process implemented a early stopping
strategy (i.e., the training is stopped when validation accuracy does not improve
for 10 subsequent epochs), as well as a progressive reduction of LR each time
the validation accuracy does not improve for 5 consecutive epochs [14].

The CNN was trained for 30 epochs on the training set, which lasted 8 h
on Linux Infiniband-QDR MIMD Distributed Shared-Memory Cluster provided
with single GPU (NVIDIA Tesla K40 - 12 GB - 2880 CUDA cores).
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Fig. 6. Training vs validation loss per epoch (a) and training vs validation accuracy
per epoch (b). Figure from [10].

As shown by the trend of loss and accuracy curves on both the training and
validation datasets (see Fig. 6(a) and (b), respectively), the model converged
quite quickly. Indeed, while training accuracy was still increasing, the value of
validation accuracy saturated within 15 epochs. The decay speed of the valida-
tion loss curve indicates that the learning rate was appropriate. On top of that,
validation and training accuracy were fairly similar. This reasonably rules out
overfitting.

2.3 Transfer Learning from Pre-trained CNN

CNNs are cascades of trainable filter banks, where the first blocks of filters are
devoted to the detection of low-level features (i.e. edges or simple shapes), and
the following ones are activated by high-level semantic aggregations of the previ-
ous patterns, that are more problem-specific. Hence, while the top-most blocks
are generally tailored to a specific classification task, the lower-level features
can be ideally generalised to a large number of applications. This concept is at
the basis of transfer learning techniques, that leverage CNNs pre-trained on a
very large set of examples, with significant variability of image characteristics,
to solve a different classification problem.

In our work, we used a pre-trained CNN model with the same architec-
ture and topology of the one used for full training on colorectal cancer images
(VGG16, shown in Fig. 5). The model was pre-trained on the ImageNet dataset,
from the Large Scale Visual Recognition Challenge 2012 (ILSVRC-2012). This
dataset contains 1.2 million photographs depicting 1000 different categories of
natural objects. Hence, the training images are completely different from our spe-
cific target, in terms of imaging technology, image content as well as of number
of categories of the classification problem.

Figure 7 shows two different transfer learning strategies that we implemented
and compared:

(a) CNN as a fixed feature generator. The CRC patches are given as input to the
pre-trained CNN only for inference. The output of the convolutional blocks
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Fig. 7. Transfer learning approaches. (a) Pre-trained CNN as a fixed feature generator.
(b) Fine tuning of pre-trained CNN. Figure from [10].

are fed into a separate machine learning framework, consisting of a feature
reduction stage and a supervised classifier.

(b) Fine-tuning the CNN. The CNN model is re-trained on our training set of
histological images, keeping all the parameters of the low-level blocks fixed
to their initial value. Hence, only the weights of the top-most layers are
fine-tuned for colorectal cancer classification.

As a preliminary step to both the two approaches, we analysed the dis-
criminative capabilities of the features generated by all the major blocks of the
pre-trained CNN, as follows. We randomly selected a small subset of the training
images (500 per class) and fed them into the pre-trained CNN for inference. The
output of each successive macro-block of the CNN was then analysed, to assess
the degree of separation of samples belonging to the three different classes. As
a trade-off between thoroughness and computational burden of the investiga-
tion, we analysed the intermediate output of the CNN only at the end of the
pooling layers (i.e. POOL1 to 5, as represented Fig. 8). As POOL layers apply
a dimensionality reduction operation, their output are expected to have lower
redundancy compared to CONV layers.

The degree of class separation was assessed by means of t-Distributed
Stochastic Neighbour Embedding (t-SNE) [8], a non-linear dimensionality reduc-
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Fig. 8. Using the pre-trained CNN to generate discriminative features. The output of
the five macro-blocks of the CNN are analysed by means of t-SNE, to assess the class
separability obtained by each of the five feature vectors in a reduced 3-dimensional
feature space. For example, features extracted from POOL3 (bottom-right) ensure
much better class separation than features extracted from POOL2 (bottom-left).

tion algorithm that is used for the visualisation of high-dimensional datasets in
a reduced 3-dimensional space. More specifically, t-SNE represents each high-
dimensional object (in our case, the feature vector obtained at the output of
a POOL layer) by means of a three-dimensional point in a Cartesian space, so
that similar feature vectors are represented by nearby points and dissimilar vec-
tors by distant points. The distance between different categories of points in the
Cartesian space drawn by t-SNE provides a qualitative measure of class separa-
bility in the original feature space. Hence, by repeating the analysis for all the
five feature vectors, we were able to establish which of the five POOL blocks
ensures the best image representation for our specific classification problem (see
the examples at the bottom of Fig. 8). In our experiments, POOL3 outperformed
all the other blocks.
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Fig. 9. Sequential forward procedure to select the optimal number of principal com-
ponents for PCA. Figure from [10].

Pre-trained CNN as a Fixed Feature Generator
As a first transfer learning methodology, the output of the most discriminative
POOL layer of the pre-trained CNN (POOL3, in our case) was used to generate
a feature vector for colorectal tissue classification. The feature vector was fed
into the machine learning framework represented by Fig. 7(a), that consists of a
feature reduction followed by a classification step.

(a) Feature Reduction. To reduce further the dimensionality and redundancy of
the data and prevent overfitting we applied Principal Component Analy-
sis (PCA). PCA applies an orthogonal transformation of the original fea-
tures into a reduced number of so-called principal components, that are
linear combinations of the original characteristics. As PCA works towards
the minimisation of the correlation between the features, the new descrip-
tors are expected to be the most representative for the classes of interest.
In our work, we empirically set the optimal number of principal compo-
nent by implementing a sequential forward procedure. More specifically, we
computed the mean classification accuracy on the training set at increas-
ing number of principal components (step of 50) and selected the minimum
number of principal components after which the classification accuracy had
started decreasing. As shown in the graph of Fig. 9, this value was found to
be 250).

(b) Classification. The final classification into the three categories of interest (H,
AC, TV) was performed by a Support Vector Machine (SVM) with Gaus-
sian radial basis function kernel. The hyper-parameters of the kernel were
set by means of a Bayesian Optimisation (BO) algorithm [5], implementing
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a 10-fold cross-validation on the training images. In our preliminary exper-
iments, BO was found to provide much better and faster results compared
to classic methods based on grid search or heuristic techniques.

Fine-Tuning of Pre-trained CNN
As a second transfer learning methodology, we adapted the pre-trained VGG16
net to our specific classification task, using it as a standalone feature extractor
and classifier. For this purpose, we first initialised all the weights of the network
to the values learned on the ImageNet dataset, as represented in Fig. 7(b). Then,
we started a backpropagation algorithm on our CRC dataset, keeping the weights
of the first blocks of the net frozen. More specifically, we froze all the weights
up-to the most discriminative pooling layer (POOL3), as determined by t-SNE.
The rationale of this strategy is trying to maintain the low-level features, that
are expected to describe the most generic and generalisable details (e.g. edges
and simple shapes), as they were learned from the ImageNet. Hence, all the
computational efforts can be focused on the top-most layers, which are expected
to learn high-level task-specific features for colorectal image classification.

3 Results and Discussion

The classification accuracy was assessed on the colorectal dataset described in
Sect. 2.1. As already pointed out, the test dataset is completely independent from
the one used for training the network and optimising the classification param-
eters and it is balanced among the three categories of interest. The accuracy
of the system was assessed at two different levels of abstraction (per patch and
per patient, respectively). For this purpose, in [10] we introduced the following
performance metrics.

(a) Patch score: (SP ), defined as the fraction of patches of the test set that were
correctly classified:

SP =
NC

N
,

where NC is the number of patches correctly classified and N the total
number of patches in the test set.

(b) Patient score: (SPt), defined as the fraction of patches of a single patient
that were correctly classified (i.e. per-patient patch score), averaged over all
the patients in the test set:

SPt =
∑

i SP (i)
NP

,

where SP (i) is the patch score of the i− th patient and NP the total number
of patients in the test set.

The patch and patient scores obtained for the three classification frameworks
described in Sect. 2 are reported in Table 1. More specifically, in the first row (full-
train-CNN ) we report the values of the CNN fully trained on CRC samples. In
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the second row (CNN+SVM ) we refer to the SVM, with pre-trained CNN used as
fixed feature generator. Finally, in the last row (fine-tune-CNN ) we quantify the
accuracy of the pre-trained CNN with fine-tuning of the stages after POOL3.
The first column of the table reports the patch score SP , that is a value in
[0, 1] range, and the second column the patient score SPt as mean± standard
deviation.

Table 1. Patch and patient scores on the test set. Table from [10].

SP SPt

full-train-CNN 0.9037 0.9022 (± 0.0155)

CNN+SVM: 0.9646 0.9667 (± 0.0082)

fine-tune-CNN 0.9682 0.9678 (± 0.00092)

From the values in Table 1 we can observe that all the proposed classifica-
tion frameworks obtained very good accuracy (above 90%), both in terms of
patch and patient scores. Hence, our experiments confirm the promising results
obtained by CNNs in other contexts. The patch-wise accuracy (SP ) was very
similar to the patient-wise accuracy (SPt), with a very small standard deviation
of the latter value, suggesting a good robustness of the classification frameworks.
Hence, the CNN-based classifiers cope well with inter-patient variability, that is
a typical challenge of histopathological image analysis.

The same conclusions hold if we analyse the per-class accuracy values, that
are reported in the form of 3×3 confusion matrices in Fig. 10. From such results
we can easily gather that the performance of the classification frameworks was
fairly homogeneous for the three classes of interest (H, AC and TV).

Fig. 10. Patch-wise confusion matrices for (a) CNN fully trained on CRC samples,
(b) SVM with pre-trained CNN as fixed features generator, (c) pre-trained CNN with
fine-tuning of the stages after POOL3 block. Figure from [10].

The most interesting point arising from our results is that both the transfer
learning methodologies overcome the accuracy obtained by the CNN fully trained
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on colorectal samples by almost 7%. More specifically, the pre-trained CNN with
fine-tuning of the blocks following POOL3 obtained the best accuracy values
among all the tested methodologies. This is quite surprising, given that the
dataset used for the training (i.e. ImageNet) was extremely different from the
one used for testing the network.

From this result we can draw the following considerations.

Fig. 11. Mean accuracy in relation to the first block till back-propagation is continued.
Figure from [10].

Most probably, even though the full training seemed to converge well and
without overfitting on the training images (see the graph in Fig. 6), our CRC
training sample is not large enough to burst the generalisation capability of the
CNN. The full training methodology works best only with a very large cohort of
training examples, especially in the presence of very high inter-class variability.
On the other hand, obtaining much larger training dataset is not always viable,
especially in a clinical context.

In spite of the fact that the pre-training was performed on a completely
different dataset (i.e. the ImageNet, which contains photographs of every-day
objects and natural scenes, and not histological samples), the low-level features
learned by the first stages of a CNN can be successfully generalised to the context
of CRC image classification. Hence, as a matter of fact the CNNs are capable
of extracting useful semantic knowledge from totally different domains. This
partially avoids the computational problems and overfitting risks associated with
full-training. Indeed, fine-tuning a pre-trained CNN took only two hours against
the eight taken by full-training on the same hardware.
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To investigate further on these findings, we run few additional experiments
on fine-tuned CNNs by changing the starting block for the backpropagation
algorithm. The results of this experiment are reported in Fig. 11, where we show
the patch score obtained on the test set at different configurations of the fine-
tuning. More specifically, POOL-i in the x-axis means that only the weights after
the i-th POOL block were learned on the CRC training set, while all the rest
of the parameters were frozen to the values learned on the ImageNet. Likewise,
FC means that only the fully-connected stage of the network was re-trained.

The trend of the patch score values suggests that the maximum accuracy is
reached when the CNN is fine-tuned after POOL3, which confirms the quali-
tative results of t-SNE. On top of that, we can observe that fully-training the
network obtains more or less the same results than training only the last fully-
connected stage. This further confirms that colorectal tissue classification can
be performed successfully using CNNs, transferring features that were learned
from the ImageNet.

4 Exploitation and Visualisation

The outcome of a CNN can be exploited in many ways in histopathology, that go
beyond simply labeling a colorectal image patch into a certain class or another. In
this section, we show how the analysis and visualisation of the network response
during the inference process can benefit the histological assessment of colorectal
images.

More specifically, we describe and exemplify two different types of visuali-
sations, namely attention heat-maps and activation maps. Both the maps were
built on top of the CNN that provided the best classification results in our
experiments (i.e. a VGG16 model pre-trained on ImageNet and fine-tuned on
colorectal samples).

As the name attention heat-map suggests, this map serves the specific purpose
of driving the observer’s attention towards the areas of the slide that mostly
deserve it, i.e. the potentially cancerous ones. As we discussed is Sect. 2, the
output layer of our CNN implements a three-dimensional softmax. Hence, when
a histological image is given as input to the CNN, the value returned by each
of the three output units can be interpreted as the probability of this image
being a healthy tissue, adenocarcinoma, or tubulovillous adenoma, respectively.
Taking this into consideration, we implemented a visualisation framework that
exploits the value of the output unit associated to the adenocarcinoma class
to generate the attention heat-map for CRC assessment, as follows. First, the
input WSI is cropped into patches, and given as input to the CNN for inference.
Then, by aggregating the CNN outcome of each patch, a heat-map of the same
size of the input WSI is built, where the saturation of the red color in each
pixel is proportional to the likelihood of cancer in that pixel, as predicted by
the CNN. Hence, the most intensely red areas are the ones that should catch
the pathologist’s attention during the slide assessment. In Fig. 12 we show an
example of such heat-map, where the input WSI is the same that was shown in
Fig. 3.
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Fig. 12. Attention heat-map for colorectal cancer assessment. The intensity of the red
color is proportional to cancer probability, as obtained from the CNN output layer.

Fig. 13. Activation maps for (a) adenocarcinoma and (b) healthy colorectal patches.
The colormap is proportional to the level of activation of the POOL3 layer (blue: lowest
activation, red: highest activation). (Color figure online)

Besides the output stage of the CNN, even the hidden layers can be a very
useful source of information. As discussed in Sect. 2, the hidden layers of the
CNN are filter banks that are triggered by local patterns in the image. Hence,
visually representing the response of such filters into so-called activation maps
can provide interesting insights into the architectural characteristics of a tissue
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that are mostly responsible for the image being classified into one histological
class or the other. For example, in Fig. 13 we show the activation maps of the
POOL3 layer (i.e. the most class-discriminative of our CNN model, as demon-
strated in Sect. 2), for input patches belonging respectively to adenocarcinoma
(a) and healthy (b) class. More specifically, the color of each pixel in the activa-
tion maps is proportional to the level of activation of the POOL3 layer during
the inference, with blue color associated to the lowest activation and red to the
highest.

As we can easily gather from Fig. 13, POOL3 activation maps capture very
well the dysplasia of the colonic glands in the adenocarcinomas (a). Very inter-
estingly, the highest activations are actually localised where the dysplasya is
more pronounced. On the other hand, the activation maps of the healthy slides
(b) highlight the regularity of normal colonic glands.

5 Conclusions

This work leverages Convolutional Neural Networks, a powerful class of deep
learning architectures, to automatically classify colorectal histological slides. Our
specific target is the primary diagnosis of colorectal cancer. Hence, we address
three main histological classes: healthy tissue, adenocarcinoma or tubulovillous
adenoma.

To seek a solution to our problem, we investigated both training a CNN
from scratch on a large dataset of pre-annotated images of colorectal samples,
as well as transfer learning methodologies leveraging upon CNNs pre-trained on
the ImageNet.

According to our experiments, full training obtained satisfactory results (i.e.
accuracy in the order of 90%). Nonetheless, this solution was costly both in terms
of computational resources as well of number of annotated samples required for
the training. Quite surprisingly, transfer learning largely outperformed the full
training approach, obtaining classification accuracy above 96% with much lesser
training time. This proves that the low-level features learned by the CNNs can
be successfully generalised to very different classification problems, such as col-
orectal image classification, and offers a promising solution to cases with limited
availability of training samples per class. In the future, we plan to investigate
more thoroughly on this aspect.

As we show in our work, besides classifying an input patch into a certain
class or another, the outcome of a CNN can be exploited in many ways in clinics.
The analysis and visualisation of the filters’ response at different depth of the
network, as well as of the probability map provided by the final softmax layer,
provide useful insights into the patterns that most triggered the classification
outcome, possibly guiding the pathologists towards local architectural alterations
otherwise difficult to spot.
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