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Abstract. Optical Coherence Tomography (OCT) is one of the most
vital tools for diagnosing and tracking progress of medication of vari-
ous retinal disorders. Many methods have been proposed to aid with the
analysis of retinal images due to the intricacy of retinal structures, the
tediousness of manual segmentation and variation from different special-
ists. However image artifacts, in addition to inhomogeneity in patho-
logical structures, remain a challenge, with negative influence on the
performance of segmentation algorithms. In this paper we present an
automatic retinal layer segmentation method, which comprises of fuzzy
histogram hyperbolization and graph cut methods. We impose hard con-
straints to limit search region to sequentially segment 8 boundaries and
7 layers of the retina on 150 OCT B-Sans images, 50 each from the
temporal, nasal and center of foveal regions. Our method shows positive
results, with additional tolerance and adaptability to contour variance
and pathological inconsistence of the retinal structures in all regions.
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1 Introduction

Segmentation using graph cut methods depends on the assignment of appropri-
ate weight during graph construction. The paths obtained by the shortest path
algorithms have no optimal way of handling inconsistencies (such as the irreg-
ularity in OCT images), as thus it sometimes obtains the wrong paths, which
we call the “wrong short-cuts”. To avoid the wrong short-cuts, we reassign the
weights to promote the homogeneity between adjacent edges using fuzzy his-
togram hyperbolization. In other words, the edges with high value get higher
weights, while those with low values become lower. The idea behind this weight
reassignment is that, the transition between layers of OCT images which are
from dark to light or vice versa are improved. This means we can better identify
the layers by searching for the changes or transitions between layer boundaries.
Additionally, we take into account the transition between the layers is in most
cases very smooth, making it quite difficult to segment the layers. Now if we re-
emphasize on this changes, such that they become clearer, this aids the algorithm
in successful segmentation and avoiding wrong short-cuts.
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Fig. 1. Illustration of the 8 boundaries and 7 retinal layers segmented in the study.
The numbers in brackets are the sequential order of the segmentation [8].

In this paper we take into account the effect of promoting continuity and discon-
tinuity, in addition to adding hard constraints based on the structure of retina
to segment 7 retinal layers including the Nerve Fibre Layer (NFL), the Gan-
glion Cell to Layer-Inner Plexiform Layer (GCL+IPL), the Inner Nuclear Layer
(INL), the Outer Plexiform Layer (OPL), the Outer Nuclear Layer to Inner Seg-
ment (ONL+IS), the Outer Segment (OS) and the Retinal Pigment Epithelium
(RPE) by detecting eight (8) layer boundaries. The locations of these layers and
boundaries in an OCT image are illustrated in Fig. 1.

This paper is organized as follows. In Sect. 2, we review background infor-
mation on the Graph-Cut segmentation method and the previous work in reti-
nal layer segmentation. Section 3 describes the proposed segmentation method.
Section 4 presents experimental results on 150 OCT images and finally conclu-
sions are drawn in Sect. 5.

2 Background

2.1 The Graph-Cut Method

Graph-Cut is an optimization method that provides solution to many computa-
tional problems including image processing and computer vision as first reported
by [23]. In the context of image processing, a graph G is a pair (ν, ε) consisting of
a node (referred to as Vertex in 3D nested grid) set ν and an edge set ε ⊂ ν x ν.
The source s and the sink t are the two main terminal nodes. The edge set com-
prises of two type of edges: the spatial edges en = (r, q), where r, q ∈ ν\{s \t},
stick to the given grid and link two neighbor grid nodes r and q except s and t;
the terminal edges or data edges, i.e. es = (s, r) or et = (r, t), where r ∈ ν\{s \t},
link the specified terminal s or t to each grid node p respectively. Each edge is
assigned a cost C(e), assuming all are non-negative i.e. C(e) ≥ 0. A cut, also
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known as the s-t cut, splits the image into two disjoint sets of s and t. It par-
titions the spatial grid nodes of Ω into disjoint groups, whereby one belongs to
source and the other belongs to the sink, such that

ν = νs

⋃
νt, νs

⋂
νt = ∅ (1)

We then introduce the concept of max-flow/min-cut [10]. The max-flow calcu-
lates the maximum amount of flow allowed to pass from the source s to the sink
t based on edges capacity, and is formulated by:

max
ps

∑

v∈ν\{s,t}
ps(v) (2)

For each cut, the energy is defined as the sum of the costs C(e) of each edge e
∈ εst ⊂ ε, where its two end points belong to two different partitions. Hence the
problem of min-cut is to find two partitions of nodes such that the corresponding
cut-energy is minimal,

min
εst⊂ε

∑

e∈εst

C(e) (3)

Additional insightful literature detailing the concept of graph-cut for image seg-
mentation can be found in [4,15,29].

2.2 Segmentation of Retinal Layers

The segmentation of retinal layers has drawn a large number of researches, since
the introduction of Optical Coherence Tomography (OCT) [13]. Manual seg-
mentation of retinal OCT images is intricate and requires automated methods
of analysis [1]. Various methods have been proposed to help with OCT image
segmentation. In particular, the main discussions are on the number of layers,
computational complexity, graph formulation and mostly now optimization and
machine learning approaches. In this regard a multi-step approach was devel-
oped by [2]. However the results obtained were highly dependent on the quality
of images and the alterations induced by retinal pathologies. A 1-D edge detec-
tion algorithm using the Markov Boundary Model [16], which was later extended
by [3] to obtain the optic nerve head and RNFL. Seven layers were obtained by
[5] using a peak search interactive boundary detection algorithm based on local
coherence information of the retinal structure. The Level Set method was used by
[19,26–28] which were computationally expensive compared to other optimiza-
tion methods. Graph based methods in [11,12,20–22] have reported successful
segmentation results, with varying success rates. Recently, [9] proposed a method
using the Fuzzy Histogram Hyperbolization (FHH) to improve the image qual-
ity, then embedded the image into the continuous max-flow to simultaneously
segment 4 retinal layers.

In recent years, researchers have been inquisitive on the use of gradient infor-
mation derived from the retinal structures. This information has been utilised
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with the Graph-Cut method, where the retinal architecture and dynamic pro-
gramming were deployed to limit the search space and reduce computational
time respectively [6]. This method was recently extended to the 3D volumetric
analysis by [24] in OCTRIMA 3D with edge map and convolution kernel in addi-
tion to hard constraints in calculating weights. The OCTRIMA 3D approach also
exploited spatial dependency between adjacent frames to reduce processing time.
Combination of methods including Edge detection and polynomial fitting [18]
and machine learning with random forest classifier [17] were yet other approaches
proposed to obtain the retinal layers from gradient information. The use of OCT
gradient information is primarily due to the transition that occurs in the vertical
direction at each layer boundary, thereby attracting segmentation algorithms to
exploit this advantage. Our method takes into account the retinal structure and
gradient information, but more importantly, the re-assignment of weights in the
adjacency matrix is paramount to the success of our graph-cut approach.

3 The Proposed Method

In this section we explain the components of our approach to segmenting 8 retinal
layer boundaries from OCT B-Scan images. A schematic representation of these
components is illustrated in Fig. 2.

3.1 Pre-processing

Like most medical images, OCT suffer from a granular pattern called speckle
noise. This noise is very common in OCT images, which has negative effects on
further processing, for example, the retinal OCT images have low Signal to Noise
Ratio (SNR) due to the strong amplitude of speckle noise. Various methods
have been used to handle the presence of noise. In this work, we pre-process
the images with a Gaussian filter to suppress the speckle noise and enhance
the retinal layer boundaries, which is important for the weight calculation in
the next stage. This also reduces false positive in the segmentation stage. An
example of a pre-processed image compared to its original is shown in Fig. 3.

3.2 Graph Formulation

In this stage we obtain the vertical gradient of the image, normalize the gradi-
ent image to values in the range of 0 to 1, and then obtain the inverse of the
normalized image gradient. Example of the gradient images are shown in Fig. 4.
The two normalized gradient images are then used to obtain two separate undi-
rected adjacency matrices, where Fig. 4(left) contains information of light-dark
transitions while Fig. 4(right) contains information for transition from dark-light.
The adjacency matrices are formulated with the following equation adapted from
[6]:

wab = 2 − ga − gb + wmin (4)
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Fig. 2. Main steps of segmentation algorithm schematic representation [8].

where wab, ga, gb and wmin are the weights assigned to the edge connecting any
two adjacent nodes a and b, the vertical gradient of the image at node a, the
vertical gradient of the image at node b, and the minimum weight added for sys-
tem stabilization. To improve the continuity and homogeneity in the adjacency
matrices they are hyperbolized, firstly by calculating the membership function
with the fuzzy sets Eq. (5) [25] and then transformed with Eq. (6).

w′
ab =

wab − wmn

wmx − wmn
. (5)

where wmn and wmx represents the maximum and minimum values of the adja-
cency matrix respectively. The adjacency matrices are then transformed with
the following equation:

w′′
ab = (w′

ab)
β (6)



Min-Cut Segmentation of Retinal OCT Images 91

Fig. 3. Image pre-processing: original image corrupted with speckle noise (left) com-
pared to filtered image by Gaussian (right) [8].

Fig. 4. Image gradients used in generating dark-bright adjacency matrix (left) and
bright-dark adjacency matrix (right) [8].

where w′
ab is the membership value from (5), and β, the fuzzifier is a constant.

Considering the number of edges in an adjacency matrix, we use a constant β
instead of calculating the fuzziness. The main reason is to reduce computational
time and memory usage. The resulting adjacency matrices are such that we
reassign the weights, and the edges with high weights get higher values while
those with low values get lower edge weights. Our motive here is that if we
re-emphasize continuity or discontinuity, the algorithm would perform better,
wherein our method we improve both by transforming the matrices. The region
of the layers get similar values, while that of the background gets lower along
the way. This is more realistic and applicable in this context (as the shortest
path is greedy search approach), because at the boundary of each layer there is
a transition from bright to dark or dark to bright, and therefore improving it
aids the algorithm in finding correct optimal solutions that are very close to the
actual features of interest.

The weight calculation is followed by several sequential steps of segmentation
that we discuss in the next few subsections. We adopt layer initialization from [6],
where two columns are added to either side of the image with minimum weights
(wmin), to enable the cut move freely in those columns. We base this initialization
from the understanding that each layer spans horizontally across the image, and
that the graph-cut method prefers paths with minimum weights. We utilize the
Djikstra’s algorithm [7] in finding the minimum weighted path in the graph,
which corresponds to layer boundaries. To segment multiple regions, we use
an iterative search in limited space because graph-Cut methods are optimal at
finding one boundary at a time. Limiting the region of search is a complex task,
it requires prior knowledge and is dependent on the structure of the features or
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regions of interest. More information on automatic layer initialization and region
limitation can be obtained from [6,14].

3.3 ILM and IS-OS Segmentation

It is commonly accepted that the NFL, IS-OS and RPE exhibit high reflectivity
in an OCT image [6,18,24]. Taking this reflectivity and the dark-bright adjacency
matrix into account, we identify the ILM and IS-OS boundaries using Dijkstra’s
algorithm [7]. More specifically, the ILM (vitreous-NFL) boundary is segmented
by searching for the highest change from dark to light, and this is because there is
a sharp change in the transition. Additionally, it is amidst extraneous features,
above it is the background region in addition to no interruption of the blood
vessels, as can be seen in the gradient image in Fig. 4(right). All of the above
reasons make it easier to segment the ILM than other layers. To segment the
IS-OS boundary, We limit the search region below ILM for the next highest
change from dark-bright. We then use the mean value of the vertical axis of the
paths obtained, as a precaution to confirm which layer was segmented, because
the ILM is above the IS-OS take (similar to [6]).

3.4 RPE and NFL-GCL Segmentation

As mentioned in the previous subsection, RPE is one of the most reflective layers.
The RPE-Choroid boundary exhibits the highest bright-dark layer transition as
can be seen in Fig. 4(left). Besides, it is better to search for the transition from
bright-dark for the RPE based on experimental results, interference of blood
vessels and the disruption of hyper-reflective pixels in the choroid region. There-
fore searching for the highest bright-dark transition is ideal for the RPE most
especially to adapt to noisy images. Now to segment the NFL-GCL boundary
we limit the search space between ILM to IS-OS and utilize the bright-dark
adjacency matrix to find the minimum weighted path. The resulting path is the
NFL-GCL boundary, as it is one of the most hyper-reflective layers. Furthermore,
the NFL-GCL and IS-OS boundaries exhibit the second highest bright-dark and
dark-bright transition respectively in an OCT image. If we limit our search
space to regions below the ILM and above the RPE, the resulting bright-dark
and dark-bright minimum paths are the NFL-GCL and IS-OS respectively. It is
also significant to note we use the paths obtained from one adjacency matrix to
limit the region on either of the matrices. This is feasible because the paths are
(x, y) coordinates and the matrices are of the same size. For example, in finding
the NFL-GCL boundary on the bright-dark adjacency matrix, we use paths of
the ILM and IS-OS obtained from the dark-bright matrix to limit the search
region.

3.5 OS and IPL to ONL Segmentation

Now that we have segmented the most prominent boundaries, we use them as
benchmarks to limit the search space in order to segment the OS-RPE, IPL-INL,
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INL-OPL, and OPL-ONL. We obtain the OS-RPE boundary by searching for
the dark-bright shortest path between IS-OS and the RPE-Choroid. As for the
remaining boundaries, we first segment the INL-OPL by searching for the short-
est path between NFL-GCL and IS-OS on the dark-bright adjacency matrix, pri-
marily because it exhibits a different transition from the IPL-INL and OPL-ONL
boundaries. Consequently, the IPL-INL and OPL-ONL boundaries are obtained
by limiting the region of path search between INL-OPL and NFL-GCL, and
INL-OPL and IS-OS regions respectively, on the bright-dark adjacency matrix.

3.6 Avoiding the Cortical Vitreous

The vitreous cortex depicts a layer-like structure, just above the ILM, which
lures the algorithm into finding unintended boundaries as illustrated in Fig. 5.
To handle this issue, we impose a hard constraint to restrict all paths between the
ILM to RPE boundaries inclusive. This is because the ILM exhibits the highest
transition from dark-bright, while the RPE exhibits the highest transition from
bright-dark. This helps the algorithm in avoiding features that imitate the retinal
structures.

Fig. 5. Error in segmentation caused by vitreous cortex at temporal region (left) and
Nasal region (right).

4 Experimental Results

The performance evaluation of our proposed method was tested on a dataset of
150 B-scan OCT images centred on the macular region. The data was collected
in Tongren Hospital with a standard imaging protocol for retinal diseases such
as glaucoma. Each B-scan image has a resolution of 512 pixels in depth and
992 pixels across section with 16 bits per pixel. Prior to segmenting the images,
we cropped 15% percent of the image height from the top to remove regions
with low signal and no features of interest. The ground truth images used in our
experiments were manually labeled under the supervision of clinical experts. We
segment seven retinal layers automatically using MATLAB 2016a software. Using
a computer with Intel i5-4590 CPU, clock of 3.3 GHz, and 8 GB RAM memory,
the average computational time was 4.25 s per image. The method obtains the
boundaries in the order from ILM(Vitreous-NFL), IS-OS, RPE-Choroid, NFL-
GCL, OS-RPE, INL-OPL, IPL-INL to OPL-ONL respectively. The locations of
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Fig. 6. Segmentation results of 8 boundaries and 7 layers. Boundaries from top to
bottom, the segmented boundaries are ILM, NFL-GCL, IPL-INL, INL-OPL, OPL-
ONL, IS-OS, OS-RPE and RPE-Choroid [8].

these boundaries and the sequential segmentation order of the 8 retinal layer
boundaries and underlying 7 layers were shown earlier in Fig. 1, and we show
output sample of results achieved in Fig. 6.

To evaluate the proposed method we calculate the Root Mean Squared Error
(RMSE), and Mean Absolute Deviation (MAD) by (7). Table 1 shows output of
the mean and standard deviation of both MAD and RMSE, for the seven layers
targeted in this study.
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MAD(GT, SEG) =

0.5 ∗
(

1
n

n∑

i=1

d(pti, SEG) +
1
m

m∑

i=1

d(psi, GT )

)

RMSE =

√√√√ 1
n

n∑

i=1

(SEGi − GTi)2

Dice =
2 | GTi ∩ SEGi |
| GTi | + | SEGi |

(7)

where SEGi is the pixel labelled as retinal Layer (foreground) by the proposed
segmentation method and GTi is the true retinal layers pixel in the manually
annotated image (ground truth) image. In computing the MAD pti and psi

represent the coordinates of the images, while d(pti, SEG) is the distance of pti
to the closest pixel on SEG with the same segmentation label, and d(psi, GT ) is
the distance of psi to the closest pixel on GT with the same segmentation label.
n and m are the number of points on SEG and GT respectively. For all layers
our method has performed well. Especially considering the low value of NFL for
both MAD and RMSE. The high value in ONL+IS is due to the presence of high
noise and lower reflectivity of the boundaries within the region, however, this is
still considerably low.

Table 1. Performance evaluation: Mean and Standard Deviation (STD) of RMSE and
MAD for 7 retinal layers on 150 SD-OCT B-Scan images (Units in pixels) [8].

RetinalLayer MeanMAD MeanRMSE STDMAD STDRMSE

NFL 0.2689 0.0168 0.0189 0.0121

GCL+IPL 0.5938 0.0432 0.0592 0.0382

INL 0.6519 0.0387 0.0792 0.0612

OPL 0.5101 0.0446 0.0410 0.0335

ONL+IS 0.6896 0.0597 0.0865 0.0329

OS 0.4617 0.0341 0.0360 0.0150

RPE 0.4617 0.0341 0.0360 0.0150

Furthermore, The retinal nerve fibre layer thickness (RNFLT), the area
between ILM and NFL-GCL, is critical in diagnosing ocular diseases, including
glaucoma. For this reason, we evaluated the RNFLT with four additional crite-
ria, namely, accuracy, sensitivity (true positive rate (TPR)), error rate (FPR)
and the Dice index (coefficient). These measurements are computed with the
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Table 2. Mean for accuracy, sensitivity, error rate and Dice coefficient of the Retinal
Nerve Fibre Layer Thickness (RNFLT) and their respective standard deviation (STD).
[8].

Criteria Mean STD

Accuracy 0.9816 0.0375

Sensitivity 0.9687 0.0473

Error Rate 0.0669 0.0768

Dice 0.9746 0.0559

Fig. 7. Box plot for values distribution of Accuracy, Dice coefficient and Sensitivity of
RNFLT from Table 2.

following equations while the Dice is computed from (7):

Accuracy =
TP + TN

(TP + FP + FN + TN)

Sensitivity(TPR) =
TP

(TP + FN)

ErrorRate(FPR) =
FP

(FP + TN)

(8)

where TP , TN , FP and FN refers to true positive, true negative, false positive
and false negative respectively. Distinctively, TP represents the number of pixels
which are part of the region that are labeled correctly by both the method and
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the ground truth. TN represents the number of pixels which are part of the
background region and labeled correctly by both the method and the ground
truth. FP represents the number of pixels labeled as a part of the region by the
method but labeled as a part of the background by the ground truth. Finally,
FN represents the number of pixels labeled as a part of the background by
the system but labeled as a part of the region in ground truth. The Mean and
standard Deviation of applying the above criteria on the achieved results for the
RNFLT are shown in Table 2, and the distribution of these values in Fig. 7.

Some of the facts we draw from the results in Table 2 and their distribution
Fig. 7 are as follows:

1. The method achieves more than 95% accuracy in most images
2. The method obtain paths very close to the actual retinal boundaries by

achieving mean sensitivity of ≈97% over 150 images, which portrays adapt-
ability to contours of the retinal layers.

3. The distribution of the dice score in Fig. 7 further attests to the statements in
2 above, i.e there is high overlap between the manual annotation and results
obtained by our method.

5 Conclusions

We have presented a comprehensive approach towards retinal OCT image anal-
ysis. Our fully automatic method is capable of segmenting 7 retinal layers across
8 layer boundaries. The core of the method is the integration of the adjacency
matrices from vertical gradients with improved weight calculation into a sequen-
tial process of the Graph-Cut framework using Dijkstra’s algorithm [7]. Categor-
ically, the sequential segmentation process is based on the unique characteristics
of reflectivity of different retinal layers and their transitions at the boundaries.
We have applied the proposed method to a dataset of 150 OCT B-scan images,
with successful segmentation results. Additionally, quantitative evaluation indi-
cates that the segmentation measurement is very close to the ground-truth.
Furthermore, it is evident prior knowledge plays an essential role in segmenta-
tion. Therefore studies on how to automatically derive this information from
images and electronic health records will be necessary because this information
can be useful in optimizing image analysis algorithms, particularly methods of
statistical based modelling.
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