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Abstract. Squamous Cell Carcinoma (SCC) is the most common can-
cer type of the epithelium and is often detected at a late stage. Besides
invasive diagnosis of SCC by means of biopsy and histo-pathologic assess-
ment, Confocal Laser Endomicroscopy (CLE) has emerged as noninvasive
method that was successfully used to diagnose SCC in vivo. For inter-
pretation of CLE images, however, extensive training is required, which
limits its applicability and use in clinical practice of the method. To aid
diagnosis of SCC in a broader scope, automatic detection methods have
been proposed. This work compares two methods with regard to their
applicability in a transfer learning sense, i.e. training on one tissue type
(from one clinical team) and applying the learnt classification system
to another entity (different anatomy, different clinical team). Besides a
previously proposed, patch-based method based on convolutional neural
networks, a novel classification method on image level (based on a pre-
trained Inception V.3 network with dedicated preprocessing and inter-
pretation of class activation maps) is proposed and evaluated.

The newly presented approach improves recognition performance,
yielding accuracies of 91.63% on the first data set (oral cavity) and
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92.63% on a joint data set. The generalization from oral cavity to the
second data set (vocal folds) lead to similar area-under-the-ROC curve
values than a direct training on the vocal folds data set, indicating good
generalization.

Keywords: Confocal Laser Endomicroscopy · Transfer learning ·
Head and neck squamous cell carcinoma

1 Introduction

Squamous cell carcinoma (SCC) is the most common kind of cancer of the epithe-
lium, which accounts for over 90% of all cancer types in the oral cavity and
pharynx [7], as well as for almost the totality of malignancies in the larynx [24].
For SCC, the incidence rates are higher for men in their 6th and 7th decade, and
long-term tabacco and alcohol consumption are regarded as the most important
risk factors [15,30]. Only one third of the patients with head and neck cancer
is diagnosed in an early tumor stadium (T1), and thus treatment options are
reduced and the need for more radical surgical treatment is often increased [17].

The gold standard of diagnosis is the invasive biopsy of the epithelial tissue
with subsequent histopathological assessment. The biopsies and (part) resections
of mutated tissue provide information about surgical margins, i.e. healthy tissue
is biopsied to demonstrate the disease has not spread beyond the resection area.
However, due to the invasiveness a limitation in the sample size and quantity
can hinder the finding of accurate resection margins and limit monitoring of
these lesions. The resection volume is correlated with the severity of functional
disorders (e.g. concerning swallowing, speech, voice). Thus, for surgical removal
of SCC, the resection volume should be as low as reasonably possible while
completely removing the tumor. A non- or minimally invasive in-vivo charac-
terization of microstructures would be a significant asset for the early diagnosis
of SCC while at the same time reducing the aforementioned risks. Further, it
could significantly help to improve tumor follow-up monitoring of possible local
recurrence, reducing the risk accompanying unnecessary biopsies.

One non-invasive method that has successfully been used to differentiate
micro-cellular structures is Confocal Laser Endomicroscopy (CLE) [8,18,21].
For this fluorescence imaging method, laser light in the cyan color spectrum
is emitted by a laser diode and directed towards the tissue under investigation
by means of a fiber bundle, which is typically inserted into cavities of the body
using the accessory channel of an endoscope [4]. The resolution of CLE is high,
providing magnifications of up to 1000x [21] and enabling sub-cellular imaging in
real-time. A contrast agent (typically fluorescein) is applied intravenously prior
to the examination in order to stain the intercellular space and hence outline
the cell borders.

CLE is being successfully used in diagnostics of the intestine in clinical prac-
tice [18]. It was reported, that probe-based CLE (pCLE) can also successfully
be used for assessment of malignancy of SCC of the vocal folds [8,9] as well as in
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epithelium of the oral cavity [21]. However, it is also known that interpretation of
CLE images requires significant training [20]. An automatic interpretation and
classification of CLE images could thus help to spread this non-invasive method
in screening more widely, and also improve identifying the exact location of
tumor (margins) in pre- or intra-operative use.

The main research question for this work (and the preliminary work in [1])
is, how well a classification system learnt from one CLE data set (acquired in
the oral cavity) can be applied to another data set (acquired from the vocal
folds), and vice versa. Since, in both cases, epithelial tissue is investigated, a
robust algorithm should be able to apply knowledge acquired in one domain in
the other domain. This would provide a strong hint of generalization towards
other locations of the upper aero-digestive tract with similar but not identical
epithelia.

Fig. 1. Anatomical locations/examined measurement points from the oral cavity and
the upper aero-digestive and respiratory tract (adapted from [1]).

2 Related Work

Deep learning methods, such as convolutional neural networks (CNN) have
recently been used in a variety of image recognition tasks. For the application of
cancer recognition, it was shown that, given sufficient training material, they can
be used to differentiate various subtypes of skin cancer from photography images
[6]. In the field of bright light microscopy, CNN-based methods are predicted to
become the leading pattern recognition tool [31].

For the processing and analysis of CLE images, a number of algorithmic
approaches have been proposed to date. Our work group was among the first to
automatically detect malignancies using manually designed features for classifi-
cation with support vector machine (SVM) or random forest [12]. They used a
patch extraction from the round pCLE field of view to classify OSCC images from
clinically normal epithelium [12]. Using the same tool chain, Vo et al. showed
that this detection methodology is also applicable to the detection of SCC of
the vocal folds [29]. On a larger (and thus more realistic) data set of OSCC, the
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performance of these algorithms decreased, however [2]. We were able to show,
that the usage of a CNN for classification of extracted patches greatly improves
performance [2].

One major issue with most medical images is the quantity of data of a spe-
cific class for training. For deep networks, the number of parameters increases
significantly with every layer, and so does the network’s capacity to memorize
single instances. An increased quantity of parameters often has a negative effect
on generalization, and can lead to over-fitting the training data, in cases where
the training data set is limited, which is also true for our (and other authors’)
CLE data sets. One method to cope with this issue is the reduction of input
size of the network, in conjunction with patch extraction from the image and
subsequent fusion of separate classification outcomes. This has the additional
advantage, that a large portion of the area of the round CLE field of view can be
investigated. The amount of patches per image further increases the total batch
size for training of the algorithm.

Another way of approaching this issue was proposed by Murthy et al.: They
proposed a two-staged cascaded network, where the first stage would only per-
form a classification with low confidence, and the second stage would only be
trained on data that was considered difficult by the first stage [16]. For many
image recognition tasks, transfer learning from networks pre-trained on large
data bases (e.g. ImageNet) has proven to be an effective and well performing
approach. Izadyyazdanabadi et al. have used transfer learning on CLE images,
and have shown that different fine-tuned models each outperformed the same
model trained from scratch [11].

As stated, one problem for classification of pCLE images is the round field
of view (see e.g. Fig. 2). Because of this, besides patch-based methods [12,29]
that extract rectangular patches from the round image area, all image-scale
classification approaches known today use squared center crop of the overall
image, which reduces the available data for classification [2,16,27].

Since the magnification of pCLE is very high and matching with histology
images is almost impossible, image segmentation data of malignancy is hard to
derive for the expert, so data sets typically have only image labels. Differentia-
tion of diagnostic vs. non-diagnostic (e.g. artifact-tainted) image parts, however,
can be performed by a CLE expert. This sub-image classification can be done
supervised (as proposed by Stoeve et al. for motion artifacts [27]), or also weakly
supervised (as proposed by Izadyyazdanabadi et al.) [10]. Even for the case of
malignancy classification, however, a sub-image classification would be interest-
ing for the observer, as it helps interpretation of the image and the classification
result.

3 Material

For this work we used CLE sequences from four anatomical locations (see Fig. 1):
Our original data set consists of images from three clinically normal sites within
the oral cavity and, additionally, data from a verified SCC lesion site. Our sec-
ondary data set was recorded on epithelium of the vocal cords.
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All images were acquired using a pCLE system (Cellvizio, Mauna Kea Tech-
nologies, Paris, France). Written informed consent was obtained from all patients
prior to the study. Also prior to the study, approval was granted by the respec-
tive institutional review board. Research was carried out in accordance with the
Code of Ethics of the World Medical Association (Declaration of Helsinki) and
the ethical guidelines of the Friedrich-Alexander-Universität Erlangen-Nürnberg.

Fig. 2. Selected CLE Images acquired from the oral cavity (OC). First and third row
show images from clinically normal regions, second and fourth row show images from
lesion sites later diagnosed as OSCC.

3.1 Oral Cavity (OC)

For this study, we included 116 image sequences from 12 subjects with histo-
pathologically verified HNSCC in the oral cavity that were recorded at the
Department of Oral and Maxillofacial Surgery (University Hospital Erlangen).
The study was approved by the IRB of the University of Erlangen-Nürnberg
(reference number: 243 12 B).

The investigation was conducted chair-side on conscious patients prior to
histo-pathological assessment and surgical procedure for removal of the tissue.
Imaging was performed on three non-affected sites, i.e. the alveolar ridge, the
lower inner labium and the hard palate (see Fig. 1). Oetter et al. conducted a
CLE expert recognition assessment based on a subset of the data set used in this
work (95 CLE sequences) and found an accuracy of 92.3% [21].
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3.2 Vocal Cords (VC)

The promising results in other anatomical areas motivated the acquisition of
CLE images for diagnosis of SCC of the vocal folds, which is the most prevalent
form of cancer of the laryngeal tract [23]. When first symptoms occur, the pri-
mary investigation method is white light endoscopy, which is however known to
be insufficient for diagnosis, since a great number of non-malign alterations with
similar appearance in endoscopy exists [8]. In the vocal cord area, the motiva-
tion for non-invasive micro-structural analysis, as provided by CLE, is even more
striking, since extensive sampling of tissue by means of biopsy can cause func-
tional problems such as voice modifications or chronic hoarseness [5]. Besides its
limitations, it was successfully shown that – given sufficient training – human
experts are able to classify SCC from CLE image sequences successfully, with
accuracies between 91.38% and 96.55% [9]. Goncalves et al. found a significant
training effect (as described by Neumann [20]) when judging CLE images on a
single still image base. On a similar, different data set with 7 patients, they found
accuracies by Ear, Nose and Throat (ENT) specialists to be between 58.1% and
87.1%, where the non-CLE experienced doctors had a mean accuracy of 67.7%
and those with profound CLE experience one of 82.2% [8].

For this work, 73 image sequences from five patients were recorded. All
patients underwent biopsy subsequent to CLE and were diagnosed with SCC
of the vocal folds using the gold-standard of histo-pathology. The images of this
data set have been acquired during micro-laryngoscopy at the Department of
Otorhinolaryngology, Head and Neck Surgery (University Hospital Erlangen).
The study was approved by the IRB of the University of Erlangen-Nürnberg
(reference number: 60 14 B). For each patient, the contra-lateral vocal cord that
was in each case macroscopically unaffected was also recorded, building a data
set representing presumably healthy tissue of the vocal folds. For one patient
(patient 5, see Fig. 3), no sequences with histo-pathology-confirmed SCC were
available when this data set was created.

All images were pre-selected by a clinical expert in CLE imaging. This was
done to remove diagnostically useless images, e.g. when the probe was not in
contact with the tissue. After this cleaning step, the total number of images of
this data set is 4,425. Vo et al. have done previous investigations on this data
set, and found accuracies in grading of between 86.4% and 89.8% [29] using a
patch-based method where they found best results for a support vector machine
classifier with a feature set based on gray-level co-occurrence matrices [12].

3.3 Image Quality and Artifact Occurrence

As described by Neumann et al. and also Izadyyazdanabadi et al., CLE images
are tainted by a range of deteriorations that impede image quality [11,19]. A
significant part of images within the CLE sequences show low signal to noise
ratios, which renders them unusable for either human or algorithmic evaluation.
The reasons behind are manifold: the concentration of contrast agent might be
insufficient in the tissue under the probe, the contact to the tissue might be lost,
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Fig. 3. Selected CLE Images acquired from the vocal fold area. In the top row, presum-
ably healthy images are depicted that were taken from the clinically normal contralat-
eral vocal cord of patients with epithelial cancer one of the both vocal cords (shown in
the bottom row). Note that for patient 5, only images showing clinically normal tissue
were available.

or the tissue perfusion with blood containing contrast agent might be too low.
All of these factors can rarely be determined in retrospect. We found that low
signal to noise ratio seems to be correlated with SCC image sequences. However,
for the sake of robustness we assume that this is a non-causal relationship. Thus,
very noisy images that were judged to be of no diagnostic use were removed from
the data sets after manual inspection.

Comparing the images in Figs. 2 and 3, for clinically normal (and presumably
healthy) tissue we find a large difference in contrast for some regions. While for
images acquired from the alveolar ridge (rows 1 and 3, columns 5–6 in Fig. 2) and
the vocal folds (top row in Fig. 3), contrast is generally good and cell outlines
can be clearly spotted for most images, we find a much broader spread in image
quality for images acquired at the hard palate and the lower inner labium (rows
1 and 3, columns 1–4 in Fig. 2).

In CLE images, the raw pixel value represents the optical (fluorescent)
response to the laser light excitation. The optical receiver and analog to dig-
ital converter of the CLE scanner in use have a broad dynamic response. Thus,
all images presented in this work and also in the CellVizio software are automat-
ically compressed in their value range to fit the 8 bit gray level range of today’s
screens and to increase contrast for the viewer. The median raw pixel value,
however, is indicative of the amount of fluorescent light that was picked up by
the scanner, and as such also related to the signal-to-noise-ratio of the image.
We use median, as it is more robust to the (typically sparsely distributed) very
bright areas representing micro-vessels filled with contrast agent, as e.g. in row
2, column 4 of Fig. 2. We evaluated the median raw pixel value on images for
all anatomical regions separately (see Fig. 4). For images acquired from the hard
palate and the lower inner labium, we find a significantly different distribution
than for both other anatomical locations, in that the prevalence of images with
low median value (and thus likely low SNR) is much higher for these regions. In
contrast, the vocal fold and alveolar ridge area both have a rather low amount
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Fig. 4. Normalized histogram of the median value for the different classes of clinically
normal tissue from both data sets. Due to the wide range of pixel values, the histogram
is given at log scale (from: [1]).

of noisy images. This underlines our visual observation derived from the repre-
sentative images in Fig. 2.

This difference can likely be attributed to the different anatomical properties
of the tissue at the respective locations: Epithelium exposed to higher mechanical
stress (in our case: usually due to chewing), is known to have a higher degree of
cornification [26]. The vocal cords, due to not being exposed to mechanical stress,
consist of multiple layers of uncornified squamous epithelium [25]. The alveolar
ridge, located in the vestibule and outside of the oral cavity proper (where food
is grinded and predigested), is normally not subject to high levels of mechanical
stress. The hard palate, in contrast, is part of the chewing process and known
to have a high degree of cornification [14]. The inner lip (labium), also located
in the vestibule, is generally not considered a cornified epithelium. The images
in our oral cavity data set, however, were taken at the intersection of mucous
epithelial tissue in the vestibule and the skin-covered outer lip, which has an
epidermal layer which is associated with a high level of cornification [25].

4 Methods

In this paper, we want to compare two methods of detection that differ sig-
nificantly in their structure. Firstly, we assess a patch-based method using a
CNN for individual classification of the patches (see Fig. 5 and [2] for further
details). The patch classification is projected on the originating image coordi-
nates, thereby deriving a probability map PMppf . Subsequently, the maps are
fused to a single scalar for each class, denoted as image probability Pppf . We
denote this approach patch probability fusion (ppf). The approach is subject to
the supposition that image labels can always be assumed to be also correct for
individual patch labels, which, in our experience, holds true for a vast majority
of images in our data set, since rarely the actual margin of a tumor is shown
within an image with normal tissue structure in one part and malignant struc-
tural changes in the other.
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Secondly, we perform a classification on image level, where a preprocessed
complete image is fed through a deep network based on the stem of an Inception
V.3 network [28] which will be described in detail in Sect. 4.3.

4.1 Experimental Setup

We performed five data experiments for this study:

Algorithmic Generalization. One major question is, how well the algorithms
work on both data sets, when trained and evaluated on the same data set (using
leave-1-patient-out (LOPO) cross-validation). This experiment aims to give us
hints about algorithmic robustness.

1 (OC) Training on 11 patients of the OC data set, test on 1 patient (LOPO
cross-validation).

2 (VC) Training on 4 patients of the VC data set, test on 1 patient (LOPO
cross-validation).

The results given for these experiments represent an evaluation on the concate-
nated result vector of all cross-validation steps.

Medical Data Generalization. Since in both data sets, epithelium was
scanned using the same technology, we assumed that classification knowledge
acquired from one domain could generalize to the other domain.

3 (OC/VC) Training on all patients of the OC data set, test on all patients of
the VC data set.

4 (VC/OC) Training on all patients of the VC data set, test on all patients of
the OC data set.

Finally, we concatenated both data sets and performed yet another LOPO cross-
validation on the joint data set.

5 (OC+VC) Training on 16 patients of the concatenated data set, test on 1
remaining patient (LOPO cross-validation).

4.2 Training of the Patch Classifier

We trained the patch classification network for a fixed number of 60 epochs,
using an 3-fold augmented data set with random rotations of multiples of π/2
on patch level. All network weights have been initialized randomly. We used
cross-entropy loss with the ADAM optimizer (learning rate: 10−2).
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Fig. 5. Overview of the patch probability fusion (ppf) method [2]. Patches are extracted
from the image, classified by a DNN using two layers of convolutional, pooling and
finally two fully connected (FC) layers and subsequently probabilities are fused to a
per-image probability.

4.3 Whole Image Classification with Activation Maps

Especially in the medical domain, two important requirement towards exam-
ination methodology are predictability and transparency. This contrasts with
deep networks, essentially representing a complex function with unknown con-
tent and trained numerically. Therefore, insight into the method is difficult to
attain. Especially since for domains where image quantity is low, overfitting
plays an important role, medical experts and authorities may demand insights
into intermediate classification results. As such, the aforementioned patch prob-
ability fusion (ppf) approach gives insights into classification results of differ-
ent areas of the image, but its receptive field is also limited to the patches it
classifies. The human expert, however, will always assess the whole image, and
consequently also the labels are (for our data set) given only on image level.

One hint towards understanding image-level classification was given by
Oquab et al. [22], a method that is commonly denoted as weakly-supervised
learning. Their idea was to use a convolutional neural network that consists only
of convolutional layers and pooling/striding operations. This leaves intact the
localization of the image. Next, a global pooling operation is employed, resulting
in an 1× 1×C image, where C is the number of channels/filters of the previous
layer. Then, a final fully connected layer creates the mapping towards the output
classes (see classification branch in Fig. 6). This approach has some nice prop-
erties: Since all operators are agnostic of the position on the actual image and
all image regions are included into the final classification with equal weight, it is
ensured that similar structures are recognized equally and a certain translational
robustness can thus be expected. During inference, a second branch is added to
the network prior to the average pooling layer, which maps the activations of
said layer to class activity maps for each class, that can be easily visualized and
gives insights into possible interpretations of the recognition.

Weakly supervised classification is especially useful, if only image-labels are
available, but information about the subparts of the image would be informative.
In our database of CLE images, we have these image-level class labels, as no
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further annotation was made available or is feasible to perform, since structures
acquired during CLE image acquisition are hard to be identified exactly in the
H&E-stained histology images that were taken as diagnostic samples from the
same area.

Fig. 6. Overview of the proposed whole image classification approach. Preprocessed
images are fed through the stem of a pre-trained Inception V.3 network, then a con-
volutional (Conv) layer, a global average pooling (GAP) operation and finally a fully
connected (FC) layer are attached. During inference, a class activation map is derived.

For the case of CLE the round circle of view is a challenge for image-level
algorithms, due to steep edges on the corner. To circumvent this, we employ
a preprocessing scheme described in Sect. 4.4 which ensures similar statistical
probabilities across the whole image.

Still, since the newly created border area does not contain useful information,
we aim to limit the networks attention to the area inside of the circle. For this,
we suggest to use masking operations within the network, preceding the global
average pooling (GAP) layer. The masking operation cuts position-dependent
fragments out of the original image, that are due to the nature of being located
just before the GAP layer, however, no longer dependent on the actual position.

We denote the respective previous layer of a network to be U with its elements
ui,j,c. The average pooling operation FGAP : U → V, with U ∈ R

W×H×C ,V ∈
R

1×1×C and W × H being the spatial resolution of the network and vC being
the elements of V is defined as:

vc =
1

W · H

W∑

j

H∑

i

uc(i, j) (1)

In order to restrict the attention of the algorithm to areas that have a valid
image, we apply a masked average pooling operation FMAP : U → V′ with
V′ ∈ R

1×1×C the elements of the resulting vector v′
c as:

v∗
c =

1
∑W

i

∑H
j δ(i, j)

W∑

j

H∑

i

δ(i, j) · uc(i, j) (2)
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with:

δ(i, j) = σ

(
r2 −

(
j − H

2

)2

−
(

i − W

2

)2
)

(3)

where r is a constraining radius of the field of view, and σ(x) is the step
function.

We attach the aforementioned masked global average pooling operation at an
intermediate endpoint of Szegedy’s Inception V.3 model [28], denoted as 6b (see
Fig. 6). In previous experiments, we found this layer to be a good compromise
between complexity, generalization and performance. After the masked GAP
operation, we attach a fully connected layer to retrieve a mapping to two output
classes. Finally, a softmax operator is used to derive probabilities on image level.
The network is trained using binary cross-entropy as loss function.

During inference, a second branch (entitled ’activation map generation’ in
Fig. 6) is added just before the GAP operation, starting with a fully connected
layer with shared weights to the fully connected layer in the classification branch.
After the softmax, a class activation map of size 17 × 17 can be retrieved.

4.4 Preprocessing of the Image Classifier

To avoid problems in optimization due to the steep edges of the round field of
view of pCLE images, we performed a circular extrapolation, as described in the
following steps:

– Transformation of the image using a linear to polar transformation.
– Concatenation of the image in polar representation with its flipped version

(along the distance axis).
– Transformation into the linear domain.
– Cropping of the square representing the original image coordinates.

This creates a mirroring around the circle that is defined using the radius in the
linear to polar transformation. An example preprocessed image can be seen in
Fig. 6.

4.5 Training of the Whole Image Classifier

Using Inception V.3 [28] as its base topology, the network capacity of the image
classifier is significantly higher than that of the patch classifier. To leverage
transfer learning, we initialize this network stem with pre-trained values acquired
on the ImageNet database. With this, we try to benefit from the knowledge about
shapes that can be derived from the real-world images used for pre-training this
stem. We assume that this knowledge generalizes better than any conclusions
that the model would derive from CLE data, so we train the stem with a reduced
learning rate (10−4 vs. 10−6).

In order to avoid overfitting, we make use of an early stopping mechanism.
For this, two patients of the training data set (for the VC data set: 1 patient, due
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to its smaller size) are used as validation set. The training is initially run for 2
epochs. After the third and every following epoch, the classifier is evaluated for
performance on the validation data set. In case of performance decrease, coeffi-
cients from the last epoch are restored and training is stopped. We allow for a
maximum of 10 epochs, which was in practice never reached in our experiments.
We assume that a validation on a different patient should allow to draw con-
clusions about overfitting within the same data collective. Further, we arbitrary
rotation (before the preprocessing) as augmentation during training.

5 Results

Overall Results

Both algorithmic approaches seem to be applicable to both data sets with overall
comparable results. The image-based classification yields better results for the
oral cavity data set (AUC of 0.9687 vs. 0.9550, see Table 1), while the overall
results are similar for the vocal cords data set (AUCs of 0.9484 vs. 0.9550).

For the medical data generalization task, which was the main research ques-
tion in this work, we find a good performance for both algorithms when trained
on the OC data set and applied on the VC data set. In contrast, the generaliza-
tion from vocal folds to oral cavity performs significantly worse, and even more
so for the whole image classification method.

Not surprisingly, we find that the overall performance of both approaches
benefits from the larger (joint) data set in the OC+VC experiment.

Table 1. Results of all image and patch based (ppf) tests. For the cross validation
cases OC, VC and OC+VC, the results were calculated on the concatenated result
vector of all cross validation steps.

Condition Accuracy (%) Precision (%) Recall (%) ROC AUC (%)

ppf image ppf image ppf image ppf image

OC 88.34% [2] 91.63 % 85.40% 91.06% 91.10% 91.43% 0.9550 0.9687

VC 91.39 % 89.97% 93.64% 93.66% 92.03% 89.50% 0.9484 0.9550

OC/VC 89.45 % 86.33% 87.47% 82.33% 96.37% 98.58% 0.9548 0.9644

VC/OC 68.53% 61.68% 60.81% 55.60% 95.63% 97.43% 0.8484 0.7694

OC+VC 90.81% 92.63% 90.12% 92.89% 92.59% 93.04% 0.9697 0.9762

Single Patient Results

Investigating single patient results, we find significant differences between indi-
vidual patients. Where overall accuracies of some patients were approaching
perfect recognition, others showed mediocre performance – this is most striking
in the VC data set (see Fig. 7).
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Fig. 7. Accuracy for all patients with both classes of the vocal fold data set.

Fig. 8. Accuracy for all patients of the oral cavity data set. While for most patients,
image level recognition and ppf method have similar results, patient 6 shows signifi-
cantly improved results for the proposed approach.

We further find that classification results on one particular patient in cross
validation (patient 6, see Fig. 8) benefit significantly from the whole image app-
roach in both, the OC and the OC+VC experiment. This seems to be of strong
influence on the overall increased performance for this condition. In the image
probabilities produced by both approaches for this patient, we find that the ppf
approach produces a significant amount of false positives (Fig. 9, Pppf > 0.5
in clinically normal images), resulting in a low accuracy of 65.93%. While this
might seem like a training anomaly at first, it is present in both, the concate-
nated OC+VC data set as well as the OC data set alone. In contrast, for the
whole image recognition method, the accuracy for this patient is 91.91%.

6 Discussion

The results indicate that the recognition worked overall well for both methods.
Both methods were applicable on both data sets, with slight advantages for the
image level recognition proposed in this work. The prediction from VC data
set to the OC data set, however, did not lead to satisfactory results. While
differences in data set size might account for some loss of generalization, it is
presumably not the only reason that the classifier trained on the VC data set
shows significantly decreased performance on the OC data set. The much lower
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Fig. 9. Comparison of results for both algorithmic approaches for patient 6 of the OC
data set. As the histogram indicates, a high number of false positives is produced by
the patch-based approach, leading to a decreased accuracy (65.93% vs. 91.91%). (Color
figure online)

precision (see Table 1) in this experiment suggests the interpretation, that the
underlying image material also differs significantly, which is backed up by our
visual and statistical analysis from Sect. 3.3. Further, the anatomical differences
(especially w.r.t cornification of tissue) influence these images in an explicable
manner. With this, we would expect that a classification system trained on
uncornified epithelial tissue would likely not be applicable directly to cornified
epithelial tissue. Since the OC data set contains both tissue manifestations,
the observed generalization (cf. Table 1) to the VC data set that contains only
uncornified epithelium appears likely.

While images acquired from patient 6 (as depicted in Fig. 9) are certainly
not showing perfectly ordered epithelial tissue, they represent a physiological
variation. In this case, the whole image approach with its much wider algorithmic
receptive field can make use of the overall image information and classify most
images correctly. The distribution also shows a difference between a final softmax
(as in the image level classification) and an averaging over different softmax
outputs: the amount of samples with low confidence scores is extremely limited
in the upper plot, while the averaging by the ppf method in the lower plot
generates a more widespread distribution. The color-coded class map in Fig. 9(b)
also indicates that, while certain low-contrast parts of the image are assigned
higher class probabilities for carcinoma in the whole image approach, they do not
influence the overall probability (color coded in the background of the image).

Furthermore, as both algorithmic approaches profit from an enhanced data
set, it is obvious that the limited size of our current data set cannot provide
a final answer to the question of algorithmic generalization. The whole image
approach introduced in this paper, however, has the much higher algorithmic
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capacity and should thus be able to adjust to a wider range of physiological
alterations, as could be expected when the data set further increases.

While our approach is related to weakly supervised image segmentation, it
is important to state that we did not aim to segment the image between cancer
and healthy regions. The reason to use this architecture was rather to give more
insights into image cues, used by the method for the image classification. This
shows also the close relation between both methods compared in this work: Both
perform averaging of some kind of class maps on the complete image, while the
GAP-based global feature averaging can encode a much broader scope on image
level, as the final mapping to the output classes is only performed with the
final fully connected layer. It is worth pointing out that without this layer, both
approaches are similar (if we ignore the different filter layers). While patch based
approaches usually have a higher flexibility in handling (such as, e.g. for class
distribution equalization during training), the image-based approaches with an
average pooling layer have a higher computational performance.

A major limitation of our study is that we do not have histo-pathological
proof for any of our clinically normal CLE images, since extraction of tissue from
clinically normal regions would be ethically questionable, and histo-pathology
confirmed squamous cell carcinoma for all patients in our data set. However,
we are confident that a larger data set that our research group is preparing to
record will also include verified healthy tissue.

It must be stated, however, that it is questionable if a negative diagnosis for
SCC can be retrieved using CLE alone. CLE has a limited penetration depth,
and thus tumors that spread within the submucosa could be invisible for CLE.
A combination with other methods, such as Raman spectroscopy [13] or Optical
Coherence Tomography [3] could yield improved results.

The results of this study imply that our method could generalize well for
all kinds of epithelial cancer diagnosis where CLE is applicable. This would,
however, obviously be a too broad statement given the limited amount of patient
data available for this work. Our future work will thus focus on the acquisition
of a larger and more diverse data set. The fact that the concatenated data set
improved performance for both domains indicates that an enlarged data set will
improve performance as well as robustness.

7 Summary

In this work we evaluated two approaches for automatic classification of confocal
laser endomicroscopy images for the detection of head and neck squamous cell
carcinoma, with a focus on the ability to generalize knowledge learnt from one
anatomical location (oral cavity) to another (vocal folds).

The patch-based classification approach and the newly introduced whole
image classification system both show good performance when evaluated on the
same entity. The image-based classification system showed better performance
(accuracy of 91.63% vs. 88.34%) on one of the data sets, whereas results on the
other data set were similar.
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The generalization tasks, where a classification system learnt from CLE
images of the oral cavity was applied on vocal fold CLE images, showed promis-
ing results. Concatenation of both data sets led to an overall improved accuracy
of 92.63% with the image classification system. We expect that a further increase
of data amount will significantly improve performance on this recognition task.
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