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Abstract. Getting access to real medical data for research is notoriously dif-
ficult. Even when data exist they are usually incomplete and subject to
restrictions due to confidentiality and privacy. Synthetic data (SD) are best
replacements for real data but must be verifiably realistic. There is little or no
investigation into systematically achieving realism in SD. This work investi-
gates this problem, and contributes the ATEN framework, which incorporates
three component approaches: (1) THOTH for synthetic data generation (SDG);
(2) RA for characterising realism is SD, and (3) HORUS for validating realism
in SD. The framework is found promising after its use in generating the realistic
synthetic EHR (RS-EHR) for labour and birth. This framework is significant in
guaranteeing realism in SDG projects. Future efforts focus on further validation
of ATEN in a controlled multi-stream SDG process.
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1 Introduction

The McGaw-Hill dictionary of Scientific and Technical Terms describes Synthetic Data
as any production data applicable to a given situation that are not obtained by direct
measurement [1]. Prior to [2] the domain of statistics, especially population statistics,
primarily viewed synthetic data to be larger datasets that result from merging two or
more smaller datasets [3, 4]. The earliest direct reference to synthetic data is a 1971
article describing creation of tables of synthetic data for use in testing, modifying, and
solving problems with marketing data [5]. Other works present methods for creating
fully synthetic data based on observed statistics [6, 7]; predicting and testing obser-
vational outcomes [8]; and generation driven by probability models for use in simu-
lations [9]; and forecasting [10]. The reasons for generating synthetic data include
software testing [11–14], population synthesis [15], hypotheses testing or generation of
seed data for simulations [16, 17]. Recently, the major reason for generating synthetic
data is limiting the release of confidential or personally identifiable information
inherent to the use of real data sources [13, 18–20]. Some synthetic data generation
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(SDG) approaches use real data either directly, or as seed data in their SDG methods
[11, 21, 22]. Caution should be used prior to release of such synthetic datasets as a
poorly designed or inappropriate model can still carry the risk of exposing confidential
or personally identifiable information. Most contemporary research works have focused
heavily on data anonymization, that is, isolating and replacing personally identifiable
data with the concomitant goal of maintaining integrity of the data that an organisation
may wish, or be required, to publish [23]. Anonymization has been dogged by modern
methods for re-identification of anonymised data using a person’s linkages to publicly
available personal information sources, such as the electoral roll and newspaper articles
[24–26]. As a result, some SDG methods also risk suffering inverse methods and re-
identification attacks that ultimately breach personal privacy.

It is not enough to generate random data and hope it will be suitable to the purpose
for which it will be used [27]. The data values may be required to fall within a defined
set of constraints. For example, the heart rate should be a numerical value that falls
within healthy resting (60–100), exercising (100–160) or disease state (40–60 or 160+)
ranges. Some projects require increasingly more complicated datasets where not only
the values of single attributes must be valid, but all values and interrelationships must
be indistinguishable from observed data [28, 29]. This is where the problem of realism
becomes imperative, yet it remains unexplored in current SDG literature [30]. The
common sense implication of the term realistic is as [31] succinctly puts it: synthetic
data that becomes “sufficient to replace real data”. The property of realism brings a
greater degree of accuracy, reliability, effectiveness, credibility and validity [22]. Most
researchers recognise the need for realism [18, 22, 31], however many leave realism
unexplored in their works with only two authors giving some attention to it [18, 19]. In
both cases this was vague and limited only to hinting that the aim of realism was that
the synthetic data should be a representative replacement for real data [19], and
comparably correct in size and distribution [18]. Neither handled validation of realism
in the synthetic data they created. The lack of research attention makes it difficult to
imbue realism into SDG methods, and to verify success in doing so. Realism should
only be asserted if it has been verified [32, 33]. Scientific endeavours should always be
concerned with testing and verification, yet few published approaches present sys-
tematic ways for validation [34, 35]. We find many SDG methods that claim success in
the absence of a systematic ways of scientific validation [12, 36–38]. Some form of
validation is necessary to support claims for realism in resulting synthetic data [32, 38,
39]. Otherwise, reliability of the approach must be questioned [40]. This work
addressed these challenges and hereby presents the ATEN framework that allows
realism to be inherent in SDG methods while also incorporating validation of realism in
the resulting synthetic data.

The rest of this chapter is organised as follows: First, a review of related works
focusing on SDG methods and realism is presented. Second, the ATEN framework and
its component approaches, namely, THOTH, RA and HORUS, are covered in detail.
Third, the ATEN framework is evaluated by applying it to the case of generating the
synthetic electronic healthcare record (EHR) for labour and births. Fourth and finally,
the chapter is concluded and summarised.
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2 Related Works

A literature search was conducted to identify works describing methods or approaches
for synthetic data generation (n = 7,746). This collection was reduced to works that
also used the terms realistic (n = 290) or realism (n = 6) in describing either the need
or purpose for synthetic data, their method, or the resulting synthetic dataset. The
resulting collection included works that identified realism as a primary concern in the
generation of synthetic data generally [12, 22, 41], or that discussed developing syn-
thetic data that would be sufficient to replace, or be representative of, real data [13, 19,
31, 42]. Due to the low number of works that identified realism as a factor in synthetic
data, a random selection of excluded works was included. This review found that one
third of SDG articles focused on common goals, namely, authenticity [11], accuracy
with respect to real structures [21], and the replacement of real data [43]. A key
observation is the conspicuous absence, in the literature, of an investigation of realism
for synthetic data, along with the lack of rigorous explanation of the approaches used to
produce what authors claim to have been realistic datasets. In the absence of a clear
definition and framework for realism in the context of SDG, any process seeking to
verify and validate realism in synthetic data is severely challenged.

Works in the literature present common narrative for describing their SDG problem
justification, operational method, and claimed results. This narrative consists of a
common sequence of themes, each presented with two components. The themes are
presented in Table 1. For the justification theme, research challenges include limited
available data [44, 45] and privacy protection [37, 43]. Uses include testing of learning
algorithms [45], enabling release of data [43], and prediction [37]. The operation theme
includes SDG inputs such as network structures [45], observational statistics [44], and
configuration files [37]. Methods ranged from random selection [45] and change
behaviour modelling [37], to stochastic simulation using Markov models [44]. The
result theme covers actions such as the use of benchmark and performance test sim-
ulation [45], comparative graphs [44], and performance analysis [46] used to assess
published SDG methods. Resemblance to real networks [45], model advantages and
capabilities [44] and likeness of the synthetic data to the synthetic scenario [37] were
all reasons claimed by authors for claiming their SDG method was promising or
successful.

Table 1. The common SDG narrative.

Narrative
themes

Narrative components

Justification It is difficult because of [some difficulty] to get real data for [some use], so
we developed a new method to generate synthetic data for this purpose

Operation Our method uses [some input] to generate the synthetic data using [some
method]

Result We performed [some action] and believe that the synthetic data created by
our method is promising for [some reason]
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SDG approaches set the goal of simply producing synthetic data that is a suitable
replacement for real data. The focus is heavily weighted toward the outcome, the
synthetic data. Validation of realistic aspects of synthetic data tended to be absent or
singular or simplistic, ranging from direct comparisons between either the entire dataset
or fields within the synthetic data to observations drawn from the real data [22], or
graphical and statistical comparisons between the two [21, 44, 47]. The majority did
not discuss validation at all [36, 48, 49]. Disclosure of the validation approach in
research work completes and improves understandability of their work. It would also
allow researchers to adequately assess whether or not a project met its goal; and the
success claimed is truly justified [50]. This characteristic ensures that SDG experiments
can be independently verified to the same standard as other scientific endeavours.

3 ATEN: The Framework for Realistic Synthetic Data
Generation

It is common to see methodologies with multiple separate, combined, or sequential
components presented as a framework [51]. This section presents the ATEN framework
shown in Fig. 1. The ATEN framework is a synthesis of three interdependent com-
ponent approaches, THOTH, RA, and HORUS which, when used together infuse
realism into synthetic data. Each component of the ATEN framework seeks to answer
the related questions in Table 2. The sections that follow describe in detail each of the
components of ATEN.

Fig. 1. The ATEN framework [52].
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3.1 THOTH: The Enhanced Generic Approach to SDG

A review of the way authors described data generation approaches yielded a generic
four-step SDG approach, which incorporates the minimum common structural elements
shared by all SDG methods. The approach is presented as a waterfall model, primarily
due to its cumulative and sequential nature. Thus, the next phase is undertaken solely
through completion of the previous [53]. Verification, a required step of any scientific
endeavour but one rarely seen in the context of SDG, can only occur during limited
opportunities at the end of each step of the approach [53] and after the SDG operation
is complete. The following paragraphs present the four-step SDG approach.

1. Identify the need for synthetic data: This step involves recognising both the need
and justification, or reason, for creating synthetic data. The most commonly
expressed justification across the contemporary literature was that the synthetic data
being created was necessary to replace real data containing personally identifiable,
sensitive or confidential information.

2. Knowledge gathering: This step can involve a number of sub-steps assessing the
requirements for the synthetic dataset being created. It usually begins with analysis
of the data to be generated, identifying such things as necessary fields to be gen-
erated, the scope, and any constraints or rules to be imposed.

3. Develop the method or algorithm: It is not unusual for researchers to identify
common solutions that have become preferred for a given research method or field;
a method or algorithm that has drawn significant focused attention or is considered
more reliable to producing a particular outcome. Many of these algorithms have
operational steps or processes requiring focused attention, or for which data must be
properly prepared. Developing the generation solution is as important as the need,
and the level of attention paid during this step has a direct relationship to the quality
of the output.

4. Generate the synthetic data: The process of generation involves presenting any seed
data, conditional requirements, rules, and constraints to the generation algorithm
that will perform the processes that output synthetic data.

This four-step approach represents a simple method, which are favoured due to its
usefulness, reduced complexity, and experiment time; all of which reduces cost [54–
57]. However, the approach suffers the waterfall model weakness; flowing unidirec-
tionally, lacking flexibility, meaning any change in requirements or issues identified
necessitate expensive and time consuming redevelopment and retesting [58]. For this
reason, a more adaptable and agile approach to SDG development should be encour-
aged. Pre-planning and preparation may mitigate the weaknesses of the generic SDG
waterfall model. This is where THOTH will assist. THOTH encourages the synthetic

Table 2. ATEN component aims.

THOTH How should we generate this synthetic data?
RA What knowledge is necessary to achieve realism in the synthetic data?
HORUS When THOTH operates using RA’s knowledge, was realism achieved in the

resulting synthetic data?
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data creator to perform decisive steps prior to engaging in the generation process.
THOTH begins with characterisation, that is, identifying the level of synthetic-ness
desired in the data to be generated. The synthetic-ness required of generated data can
range from anonymisation of personally identifiable components in real data, through
to truly synthetic data relying on no personally identifiable information during the
creation process. The five primary characterisation types are shown in Table 3.

The characterisation level provides an element that aids in the second step, selection
of the classification, or generation model, from the following five categories of syn-
thetic generation methods: (i) data masking models that replace personally identifiable
data fields with generated, constrained synthetic data [13, 43, 59], (ii) those that embed
synthetic target data into recorded user data in a method known as Signal and Noise
[11, 18, 60], (iii) Network Generation approaches that deliver relational or structured
data [21, 41, 45], (iv) truly random data generation approaches like the Music
Box Model [61], and (v) probability weighted random generation models like the
Monte Carlo [12], Markov chain [61], and Walkers Alias methods [62].

When combined with the generic SDG approach discussed earlier, the resulting
THOTH-enhanced generic approach is shown in Fig. 2. With these steps complete, the
synthetic data creator engages the remaining steps from the generic SDG approach
described previously. However, they are beginning with an additional level of wisdom
that comes from knowing where they are going (the level of synthetic-ness required of
their efforts) and the framework for how they are going to get there (the informed
selection of a generation model).

Table 3. Characteristics of synthetic data.

Truly synthetic
data

Data generated where no confidential or sensitive data has been directly
used. Approaches may rely on algorithms that populate a dataset with
generic seed data based on statistical probability, or acute randomness.
An example of Truly Synthetic Data can be seen in CoMSER [62]

Fully synthetic
data

Data generated using real data in the knowledge discovery (pre-
generation) phase, but where no real data carries across into the synthetic
dataset. Examples include capturing and breaking up real-world data into
elemental components, rebuilding these into entirely new rows of data.
Another uses the real data to construct a database architecture, populating
that database with synthetic data based on observation [12]

Partially
synthetic data

Datasets containing some form of synthetic data intermixed or
aggregated with unaltered real data. An example is the Outbreak-
Detection system using simulated ‘signals’ superimposed on real
background ‘noise’ [63]

Anonymised-
only data

Projects that identify and replace, remove, or scramble sensitive fields
within a dataset, leaving the remaining fields unchanged

Real data Real or observed data in which no attempt has been made to anonymise,
conceal or synthesise any values
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Summary of THOTH: We found a generic four-step waterfall approach is common to
most SDG methods. This approach moves through identifying a need for synthetic
data, gathering knowledge necessary to its generation, developing or customising an
algorithm or generation method common to their domain or solution needs, before
generating the synthetic data. Incorporation of THOTH benefits the researcher, pro-
viding greater awareness of their requirements and guiding the direction of the overall
synthetic data generation approach.

3.2 RA: Characterising Realism for SDG

RA provides a structured approach to identifying and characterising realism elements,
or knowledge, for use in SDG. The RA process, including the steps of enhanced
knowledge discovery, are shown in Fig. 3 and described in Table 4. RA identifies
extrinsic and intrinsic knowledge following a logical progression of steps, with
increased focus on elements drawn from [64–67]. The following subsections present
the processes used within the KDD data mining in Step 5 of Table 4.

Fig. 2. THOTH integrated into the generic approach to SDG [52].

Fig. 3. Overview of the RA approach to realism in SDG [52].
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RA: Extrinsic Knowledge
Extrinsic knowledge is the sum of quantitative and qualitative properties found in the
real data to be synthesised. To be a suitable replacement, the synthetic data will need to
adhere to these properties.

Quantitative Characteristics: Real or observed data may in itself be statistical, and
therefore quantitative, such as patient demographic data shown later in Fig. 10. Even if
it is not, it is often possible to identify quantitative knowledge, for example; consider
generating a synthetic version of a spreadsheet of people who voted at a selection of
polling booths, as the real data cannot be made public for privacy and confidentiality
reasons. On the surface this may appear to be qualitative data however it would be
possible to draw a number of statistical representations from it, such as: (a) how many
people of each genealogical nationality voted in (b) each hour, (c) the percentage that
were male, (d) the percentage of the overall population as found in census data voted in
each polling booth, and so on.

Qualitative Characteristics: The qualitative characteristics of real or observational
data should be identified and documented for any SDG project, but especially for those

Table 4. Enhanced KDD process following the RA approach [52].

Step Activity Tasks

1 Develop and document
information (overlaps with
THOTH)

Relevant prior knowledge
Understanding of application domain, and
Goal(s) of KDD process

2 Collect raw data (overlaps with
THOTH)

Selecting relevant datasets on which discovery is
to be performed

3 Refining and cleansing of raw
data

Cleanse and pre-process data to eliminate noise,
and
Remove incomplete or inconsistent data

4 Create target data Integrate data from multiple sources
Transform raw data
Project data by identifying useful features for
representing the data, and
Reduce variables to those that are necessary for
KDD process

5 KDD and data mining Identify data mining method to search for patterns
within the target data (summarisation,
classification, regression, clustering, web mining
and others as described in Fayyad et al. [64])
Perform concept hierarchy analysis, formal
concept analysis, rule identification methods used
in HORUS

6 Interpret and evaluate mined
patterns

Identify truly interesting and useful patterns

7 Presentation Make knowledge available for use in synthetic
data generation
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projects seeking realistic synthetic data. One example of qualitative characteristics may
be to identify and describe the database schema. The database schema explains how the
data is structured [68]. In the relational database example this includes expression of
the tables, the fields within those tables, constraints such as those identifying the
primary key or limiting field values along with any referential integrity constraints, or
foreign keys [68].

Summary: Extrinsic Knowledge: These quantitative and qualitative observations of
real data, once identified and documented, represent the characteristics that should be
created and validated in synthetic data. This is especially true if authors present that
there is a requirement for, or claim of, realism.

RA: Intrinsic Knowledge
Knowledge Discovery in Databases: While traditional methods of data mining often
involved a manual process of scouring through databases in search of previously
unknown and potentially useful information, these processes can be slow and an
inefficient use of time [64, 66, 67]. Modern approaches, where the human is accen-
tuated by machine learning or neural network algorithms are considered more expe-
dient for realising insights from today’s extremely large datasets [64, 66, 67].

Concept Hierarchies: Concept Hierarchies (CH) are a deduction of attribute-oriented
quantitative rules drawn from large to very large datasets [69]. CH allow the researcher
to infer general rules from a taxonomy, structured as general-to-specific hierarchical
trees of relevant terms and phrases. For example: “bed in ward in hospital in health
provider in health district” [67, 69, 70]. Developing a concept hierarchy involves
organizing levels of concepts identified within the data into a structured taxonomy,
reducing candidate rules to formulas with a particular vocabulary [69]. CH are used by
RA to identify an entity type, the instances of that entity and how they relate to each
other; they help to ensure identification of important relationships in the data that can
be used to synthesise meaningful results [71].

Once the concept hierarchy tree is identified, a second pass across the source data is
performed to provide an occurrence count for each concept. This second pass allows
the researcher to enhance the concept hierarchy with statistical knowledge to improve
accuracy of the generation model.

Formal Concept Analysis: Formal Concept Analysis (FCA) is a method of repre-
senting information that allows the researcher to easily realise concepts observed
recognised from instances of relationships between objects and attributes. For example:
occurrences of different nosocomial infections across the wards of a hospital. FCA
starts with a formal context represented as a triple, where an object {G} and attribute
{M} are shown with their incidence or relationship {I} [72]. A table is created dis-
playing instances where a relationship exists between the object and its corresponding
attribute(s).

Concept creation, represented as rules, occurs from the context table. For example,
one might seek to identify the smallest or largest concept structures containing one
particular object.

The second step to FCA involves creating the concept lattice. A concept lattice is a
mapping of the formal context, or intersections of objects and attributes. The concept
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lattice allows easy identification of sets of objects with common attributes as well as the
order of specialisation of objects with respect to their attributes [73].

Characteristic and Classification Rules: [69] provides a set of strategies that can be
used to learn characteristic and classification rules from within a dataset. These rules
can be applied as constraints during generation, and later as tools to compare against
the resulting synthetic data to validate its accuracy and realism.

Characterisation Rules: The development of characteristic rules entails three steps.
First, data relevant to the learning process is collected. All non-primitive data should be
mapped to the primitive data using the concept hierarchy trees as shown in Fig. 5 (e.g.
Forceps would be mapped to Assisted, Elective would map to Caesarean and so on).
Second, generalization should be performed on components to minimize the number of
concepts and attributes to only those necessary for the rule we are working to create. In
this way, the name attribute on a patient record would be considered too general and
not characteristic to a set of data from which we could make rules about the treatment
outcomes for a particular ethnicity. The final step transforms the resulting general-
ization into a logical formula that identifies rules within the data. These rules are the
sum of four elements, where if the values of any three of those elements are found to be
consistent to the rule for a given instance in the dataset, the fourth element will always
be true.

Classification Rules: Classification knowledge discovery discriminates the concepts of
a target class from those of a contrasting class. This provides weightings for the
occurrence of a set of attributes for the target class in the source dataset, and accounts
for occurrences of attributes that apply to both the target and contrasting class. To
develop a classification rule, first the classes to be contrasted, their attributes and
relevant data must be identified. Attributes that overlap form part of the generalisation
portion of the target class only. Attributes specific to a target class form the basis of
classification rules.

RA: Summary
The RA enhanced and extended KDD method identifies realistic properties from real
data, providing improved input data quality and constraints that improve the output of
generation algorithms used to create synthetic data. An obvious benefit is that gener-
ation methods using this knowledge should deliver data that is an accurate replacement
for real data. Another benefit is a set of knowledge and conditions that can be used in
validation of realism in the data created. Its use for this last purpose is discussed in the
next section.

3.3 HORUS: An Approach to Validating Realism

One of ancient Egypt’s earliest precursor national gods, Horus, was revered as the god
of the sky; that which contains both the sun and the moon. In the same way, the Horus
approach to realism validation draws on both THOTH’s enhanced generic SDG and
RA’s enhanced KDD approaches, effectively containing both the sun and moon as a
means to validate for realism in synthetic data.
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The validation approach incorporates five steps that analyse separate elements of
the SDG method and resulting synthetic data. These steps are identified as the smaller
square boxes in Fig. 4, with their descriptions below. Collectively, the five steps
provide the information necessary for confirmation of whether synthetic data is con-
sistent with and compares realistically to real data that the SDG model seeks to
emulate.

Input Validation: Input validation concerns itself only with that knowledge coming
from the generation specification in the form of data tables and statistics. The input
validation process verifies each item, confirming that the right input data in the correct
form is being presented to the generation engine, thus ensuring smooth operation of the
data synthesis process [74]. Input validation is intended to prevent corruption of the
SDG process [75].

Realism Validation 1: The first realism validation process verifies concepts and rules
derived from the HCI-KDD process, along with any statistical knowledge that has been
applied. Realism validation reviews and tests both the premise and accuracy of each
rule to ensure consistency with the semantics of any data or guidelines used in their
creation.

Method Validation: Method validation reviews the efforts of others inside and outside
of the research domain. Attention is drawn to methodological approaches common for
that domain, as well as methods other domains have employed for similar types of
SDG. Evaluating the entire scope of method application ensures that which is chosen
should be the most appropriate for the particular need and solution. Method validation
also seeks to verify that the algorithm being used is correctly and completely con-
structed, and free of obvious defect [76].

Validation is not a search for absolute truth, more correctly, and in this instance, it is
a search to establish legitimacy [76]. Table 5 provides the six key questions that should
be asked of any SDG methodology the researcher may propose to use.

Fig. 4. HORUS approach to realism validation, showing touch points with THOTH and RA
[52].
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Output Validation: Output validation evaluates the output data and verifies its basic
statistical content. This step demonstrates the difference between the two terms: vali-
dation and verification. Validation ensures the model is free from known or detectable
flaws and is internally consistent [76]. Verification establishes whether the output, or
predictions, of the SDG model are consistent with observational data. The output
validation step ensures that the synthetically generated data conforms to the quantita-
tive and qualitative aspects derived during the knowledge discovery phase.

Realism Validation 2: The second realism validation process undertakes the same tests
as the first, except that tests are now performed against the synthetic dataset. This test
aims to ensure synthetic data is consistent with the knowledge (rules, constraints and
concepts) previously derived from the input data and used in creation of the synthetic
data. The second realism validation step is the most important for establishing, and
justifying, any claim that this synthetic data presents as a realistic and proper substitute
for the real data it was created to replace.

3.4 Summary: Benefits of the ATEN Framework

There are a number of ways that ATEN benefits those engaging in SDG. First, it is a
complete SDG lifecycle that considers every element before, during and after data
generation. Second, it encourages more complete level of self-documentation than most
presented in the SDG literature. The third benefit is cumulative from the first two, in
that when applied during an SDG project, THOTH and RA provide the necessary
knowledge to validate realism using HORUS. ATEN supports claims of success,
realism, and enables repeatability. All of which are fundamental to the scientific
method. Works found in the literature do not conform to the ATEN Framework, as
significant gaps are evident in most SDG literature. The framework provides for
additional knowledge discovery and documentation processes, which could be auto-
mated. However, this is dependent on the type of data being analysed, generation
method, synthetic data sought, and the use to which that data will be applied. The
knowledge discovery component leads to greater accuracy and help to support vali-
dation of realism.

Table 5. Method validation questions [77].

Validation
type

Validation focus

Conceptual Does the theoretical model adequately represent the real world?
Internal Is the algorithm and computer code that employs it free from error?
External Does the algorithm and computer code adequately and accurately represent

the real world?
Alignment How does this model’s output compare to that of other models?
Data How does the synthetic data compare to real observed data?
Security Have there been any undocumented changes or manipulations to the model or

code that may contribute to or alter the results?
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4 Evaluating the ATEN Framework: The Labour and Birth
EHR

This section evaluates ATEN by applying it to the domain of midwifery. While ATEN
is intended to be generally applicable for use with any defined group of patients and
chosen health problem or disease that has a Caremap, for the purposes of evaluating the
ATEN framework, this work now focuses on the problem of generating the RS-EHR
for only the delivery episodes for female patients who are giving birth in the Counties
Manukau District Health Board (CMDHB) catchment area of Auckland in New
Zealand. The practical advantages, to the authors, of focusing on delivery episodes for
the purpose of this evaluation only are that: (1) deliveries take relatively short periods
of time; (2) comprehensive statistics are readily available that cover a long period of
time; (3) clinical guidelines as well as locally specified midwifery practice protocols
derived from localisation of international clinical practice guidelines are widely
available; (4) the delivery episode can range from being very simple to being very
complex with a wide variety of complicating factors that include the health of the
mother and that of the baby; and, (5) the authors had ready access to midwives on a
regular basis throughout this research work. The rest of this section presents the pro-
totype system, results of evaluation, and discussion of these results.

The labour and birth EHR contains a record of the labour and birth events starting
at onset of labour and ending when delivery is complete and the new child is presented
to her parents. To generate the labour and birth EHR in such a way that realism is
achieved we apply the ATEN framework’s components: THOTH, RA and HORUS.
The next sections present this application, which leads to the synthetic labour and birth
EHR that has the realistic properties that are guaranteed by the ATEN Framework.

THOTH is a combination of the generic method for SDG, combine with the pre-
planning elements that characterise and classify the synthetic data being sought, in this
case, the synthetic labour and birth EHR. Table 6 summarises the application of
THOTH to the labour and birth scenario leading to the ingredients, method and context
for the generation of the synthetic labour and birth EHR. In the context of the labour
and birth EHR, the characterisation (truly synthetic data) was selected to meet with the
ideal that we do not rely on access to the real EHR in the context of our generation
approach. This ensures the highest degree of patient privacy as, unlike most other
methods in this domain, no real patient records are necessary to this generation
approach.

Analysis of SDG literature demonstrated that a probability weighted random
generation approach was more likely to generate the synthetic records required. Also,
other methods including the data masking and the signal and noise models required
access to some amount of real (seed) EHR data, which discounted their use in this
example.

RA is the knowledge discovery and characterisation approach seeking to identify
realistic elements of the data gathered during THOTH. Application of RA specifically
to the Labour and Birth problem required identification of the care process (Caremap)
for labour and birth, as well as its concepts and contexts.
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Extrinsic Knowledge Quantitative Properties: The quantitative properties in the
domain of midwifery included a range of demographic statistics regarding the mother
and baby. Essentially they were not as simple as looking at the examples in blue
contained in Fig. 10, presented later in this section, and saying that 22% of mothers were
European, or that 24% of mothers were aged between 20–24 years. There were inter-
relationships between these values that also needed to be modelled, including that of the
24% of mothers between 20 and 24 years of age, only 8% were identified as European.
Other statistics included how many mothers delivered naturally versus by caesarean
section, and the spread of clinical interventions across ethnicity, age, and gestation.

Qualitative Properties: A range of qualitative properties were assessed within the
knowledge gathered for generating midwifery EHRs. These included the structure of
the source data being used, as well as the structure and appearance of how the synthetic
data should be presented on generation. A truncated example of how demographic data
was structured in one midwifery EHR system is shown in Table 7. Other qualitative
aspects might include: (a) logical internal consistence between the dates reported in
different fields (last menstrual period, estimated due date, and so on), (b) whether fields
have been misappropriated as placeholders for other data types, and (c) the com-
pleteness of fields within the dataset.

Table 6. Application of THOTH in the context of midwifery EHR generation.

Aspect of THOTH Application to Labour & Birth context

Identify Midwifery EHR in the context of the Labour
and Birth event

Characterisation Truly Synthetic Data
Classification (method/algorithm) Probability Weighted Random Generation
Knowledge Gathering
(used in data/knowledge-driven
generation algorithm)

Clinical Practice Guidelines & organisational
caremaps
Ministry of Health (MoH) Labour and Birth
statistics
Expert Clinical Knowledge from Midwives and
Obstetricians
Population (census) demographic data
Clinical Vocabulary
Clinical Notes Library (authored by midwives)

Table 7. Application of THOTH in the context of midwifery EHR generation [52].

Patient
PK patientID INT

title TEXT(10)
lastName TEXT(30)
firstName TEXT(30)
dateOfBirth DATETIME
gender CHAR(10)
ethnicity CHAR(20)
primaryLanguage VARCHAR(100)
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Intrinsic Knowledge Concept Hierarchy for Labour and Birth Domain: An extract
focusing on child birth from the concept hierarchy (CH) developed for the labour and
birth domain is presented in Fig. 5. The general term Childbirth breaks down into the
two modes by which birth occurs, Caesarean and Vaginal. As an example; Caesarean
births break down even further into the two specific types that occur, the elective or
requested/planned caesarean and the emergency caesarean. In this way we are moving
from the most general concept at the top to the most specific at the bottom. This is
extended with the addition of quantitative statistics (in brackets) identified from the
Ministry of Health (New Zealand) source data.

The CH provides structural understanding of primary or significant concepts, from
most general to most specific, within the domain being modelled. In RA, is also used to
provide statistical understanding of the incidence of each concept. The CH provides
constraints, or weights, that are applied during the generation phase, as well as forming
one component used to verify statistical accuracy, and in turn realism, within the
resulting synthetic data.

Constraining Rules: Characteristic Rule: Fetal heart monitoring is used in midwifery
to assess the health, and stress being suffered, by the baby. In the domain of midwifery,
we found that only those pregnancies clinically described as low risk receive inter-
mittent fetal heart monitoring. However, clinical practice guidelines (CPGs) necessitate
continuous monitoring for a higher risk pregnancy. Properties of this rule would be
expressed as the sum of the four elements. The characteristic rule expressed in the
conditional formula is shown in Fig. 6 containing the values: Sex: Female, Pregnant:
Yes; Pregnancy Status: Low Risk; Fetal Heart Monitoring: Intermittent in Labour.
This rule was validated against, and found to be consistent with, the CPGs for several
hospital birthing facilities in New Zealand.

Fig. 5. Concept hierarchy enhanced with statistics [52].
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Classification Rule: The CPGs for Labour and Birth provide that where an expectant
mother has had a previous caesarean birth, she may elect in this subsequent birth to still
(safely) attempt a vaginal birth (known in medical terms as a VBAC - vaginal birth
after caesarean). However, where she has had two or more previous caesarean births
the obstetric team will counsel her to only have a caesarean birth due to considerations
of risk and safety for both mother and baby that result from the previous caesarean
scars and potential stress on the uterus. Figure 7 provides an example of a classification
rule showing that 100% of patients undergo a caesarean procedure for the current birth
if two or more of their previous births have also been by caesarean section. This rule
was successfully validated against the MoH Labour and Birth statistics, with the
finding that it was true in operation across all births that occurred in New Zealand for
that year.

Characterisation rules describe reduced collections of generalised attributes for a
class occurring together in the dataset; where for any query of the dataset specifying n-
1 attributes from the rule, the remaining attribute is the only one that can be true.

Classification rules describe specific collections of attributes that differentiate one
class from one or more remaining classes; where the target class is the only response
for a query against the dataset specifying all of the attributes defined in the rule. These
rules are used to constrain generation, ensuring consistency between real-world and the
synthetic. They are used during validation to identify instances where synthetic records
may be inconsistent, for example, if the midwifery patient being generated was male.

Formalisation of Labour and Birth CPG into Labour and Birth Caremaps
The core set of constraints in the CoMSER Method [62] are CPGs, Health Incidence
Statistics (HIS), patient demographic statistics and the Caremap, all formalised in an
integrated way into the state transition machine (STM) following the process shown in
Fig. 8 [51]. The STM is the constraint enforcement formalism for generating the RS-
EHR entries satisfying the constraints.

∀χ (midwiferyPatient(x) → ((Sex(x) = female) ^ (Pregnant(x) = Yes) ^ (pregnancyStatus(x) 
= Low Risk) ^ (fetalHeartMonitoring(x) = Intermittent)))

Fig. 6. Example of a characteristic rule [52].

∀χ (modeOfDelivery(x) → ((Multip(x) = Yes) ^ (Primip(x) = No) ^ (previousDeliv-
ery=CSect<2(x) = No) ^ (previousDelivery=CSect>=2(x) = Yes[d:100%])))

Fig. 7. Example of a classification rule [52]
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Figure 9 presents the UML State Diagram (USD) for the State Transition Machine
(STM) that integrates the core constraints for generating the RS-EHR for delivery
episodes within the Counties Manukau District Health Board (CMDHB) of Auckland,
New Zealand (NZ).

The transition from one state to the next is determined by the pseudo-random
selection of one state in the STM in which is stored the health incident prevalence
constraint that is formally specified as the 2-tuple, <P, O>, such that P is the total
number of patients who are known to enter the state according to statistics within the
CMDHB catchment area, and O is the number of patients expressed as a percentage of
the immediately preceding parent state. The caremap formalised by the STM in Fig. 9,
covers the midwifery delivery event, which is also referred to, in this work, as the
delivery episode. The caremap begins temporally at the point where the pregnant
patient is established as ‘in labour’. It follows the sequence of possible states, that is,
clinical events or decisions or both, consistent with the locations, interventions and
outcomes that are currently available to the patient or her treating clinicians until the
birth process concludes in one of the possible outcomes. Thus, the Caremap and hence
its STM form the basis of the integrated constraint framework and also the basis for the
algorithm for the RS-EHR generation.

In validating the midwifery RS-EHR, HORUS was applied, adhering to the steps as
presented in Fig. 4. The following subsections describe the results observed.

Input Validation: In creating the midwifery EHRs for the Labour and Birth event we
used CPGs along with treatment and outcome statistics. Input validation necessitated
ensuring statistics could be located or extracted that correctly applied to each part of the
processes described in the CPGs. Also, cross-validation of those statistics was per-
formed through comparison against more than one source. Where any difference in
terminology existed between input datasets, clinicians were involved to ensure these
data were correctly linked together [62].

Fig. 8. UML activity diagram: process of creating and integrating constraints into State
Transition Machine for the midwifery Caremap [62].
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Realism Validation 1: The first realism validation process verified both the premise
and accuracy of each rule, ensuring consistency with the semantics of knowledge used
in their creation, such as the CPGs discussed in the Input Validation example above.

They were tested in real circumstances to ensure they were not rendered irrelevant
through interaction with the original source or observed data. Where any knowledge is
at issue, the researcher should return to the knowledge discovery phase.

Method Validation: Method validation for these midwifery EHRs concluded that the
use of caremaps extended with descriptive rules and statistics, presented as State
Transition Machines, and a probability weighted generation model were appropriate
given the available input knowledge, purpose and output data required of the CoMSER
model.

Output Validation: As one example of output validation, statistical values from within
the synthetic data were validated and verified against those identified in the knowledge
gathered prior to generation. This comparison is shown as the orange line in Fig. 10,
demonstrating that the values contained in the CoMSER synthetic midwifery records
were consistent with the MoH statistics used in their production.

Fig. 9. UML State Diagram that integrates constraints for generating the RS-EHR for delivery
episodes within the CMDHB catchment area of NZ [62].

514 S. McLachlan et al.



Realism Validation 2: In the example of RS-EHR, if a synthetic patient were to be
treated in a manner contradictory to the principles or application of a CPG, this could
invalidate the entire dataset. In the same instance, if seeking validation by clinicians, it
may be necessary to present the synthetic EHR in a clinician-familiar manner.

Using the caremap STM in Fig. 9, the prototype system was used to generate
midwifery RS-EHR for 1000 synthetic patients. Figure 11 presents a sample RS-EHR
that has been generated by the CoMSER Method prototype. It should be noted that the

Fig. 10. A comparative quantitative example using patient demographics from the Ministry of
Health (NZ) statistics with output validation from our prototype RS-EHR. (Color figure online)

Fig. 11. Sample realistic synthetic EHR generated by CoMSER.
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column in the screenshot entitled “Node” indicates either the state or the transition in
the STM from which the synthetic entry has been generated. The column has been
inserted only for debugging purposes and may or may not be meaningful to the
clinician.

A convenience survey of clinicians from New Zealand’s midwifery discipline was
conducted to assess the realistic characteristic of synthetic records generated using the
CoMSER prototype application. The survey instrument used a forced choice Likert
scale in which the clinician examined clinical and temporal notes independently and
jointly. The realism survey questions posed to midwife clinicians is found in Table 8.

A total of n = 45 randomly selected records were examined (15 records each by 3
clinician experts) in answering whether the synthetic EHR possessed the same qualities
as the clinician would expect to find in actual EHR. The results of this survey
demonstrate that clinical and temporal notes, when examined independently, were
identical in 93% (Q1) and 93% (Q2) of the records respectively, while 87% (Q3) of the
records were identical when examined jointly. In assessing inter-rater reliability among
the experts, inconsistencies between the RS-EHR and the actual EHR were identified in
0% (Expert 1), 7% (Expert 2), and 33% (Expert 3) of the records. This survey,
involving practicing midwife clinicians, indicates that realism is found in the majority
of clinical notes and temporal information, when examined independently and jointly,
in synthetic EHRs produced by the CoMSER prototype application. This analysis
substantiates our claim that the characteristic of realism does exist in the majority of
RS-EHRs developed through the CoMSER method, thus demonstrating the promising
usefulness for secondary use.

Table 8. Realism survey [62].

Ref Survey response prompt Aspect evaluated

Q1 After reviewing the record of a randomly
selected patient, I find the clinical notes
for the record identical to the notes a
clinician would expect to find in an
actual patient EHR

Realistic property for clinical notes

Q2 After reviewing the record of a randomly
selected patient, I find the temporal
(day/time) information identical to what
the clinician would expect to find in the
actual patient EHR

Realistic property for the temporal model

Q3 After reviewing the record of a randomly
selected patient, I find the clinical notes
and temporal (day/time) information,
when read together, has neither conflicts
nor inconsistencies as would be expected
in the actual patient EHR

Realistic property for the entire RS-EHR
and hence for clinical logic flow (all
constraints taken together)
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Summary of Application of ATEN Framework
This section has presented application of the ATEN framework to the generation of the
synthetic EHR for the labour and birth domain. The most significant challenge in RS-
EHR generation is ensuring that the generated RS-EHR is realistic. The prototype
system for generating RS-EHR for midwifery uses an integrated constraints framework,
which is formalised using the State Transition Machine (STM). The guideline-based
Caremap for the labour and birth domain for which the RS-EHR is to be generated is
embodied within the STM. Computations that makeup the RS-EHR are driven by STM
execution using pseudo-random transition selection within defined frequency distribu-
tions based on local HIS. The quality of the generated RS-EHR is guaranteed by
recognition and use of direct interaction with experienced and practising midwives. The
development of methods and techniques for measuring the extent of realistic properties
of the generated RS-EHR was necessary. Generating RS-EHRs using publicly available
health statistics and CPGs ensures patient privacy and confidentiality while also bene-
fiting many uses including: research, software development and training. The ATEN
framework provided a structured approach that ensured procedural steps and docu-
mentation were not overlooked, and that validation was a consideration from inception
through prototype production to evaluation of the resulting synthetic EHR.

While all random number generation methods apply statistics and therefore can be
considered as applying the statistics in generation that the researcher intends to find in
the result, most still have some variation from true. Many set only one or two
parameters (for example, heads or tails), which simplifies their models and limits
potential variation in the expected result. Ours set a large number of constraints that all
had to be within statistical limits, such as: age, ethnicity, age at pregnancy, age at
pregnancy by ethnicity, the type of birth, incidence of each node in the caremap, and
the overall patient outcomes. There were more than 15 variables, some interrelated,
being handled by the SDG algorithm. Each to be statistically similar at the end of the
generation cycle. Validation using HORUS has shown that the prototype system
designed with THOTH and RA has achieved the realism that the overall ATEN
framework sets out to produce.

5 Discussion and Future Work

ATEN provides a comprehensive way to achieve realistic synthetic data through three
inter-dependent approaches, THOTH, RA, and HORUS, that respectively cover (1) a
generic approach to SDG with enhancement (THOTH); (2) knowledge discovery (RA);
and (3) validation of realism in the resulting synthetic data (HORUS). To the best of
our knowledge, no other work in this domain has produced a generic model for SDG, a
framework for realism, or a unified approach to validation of synthetic data.

The main benefit of THOTH is the guarantee of a best plan for the generation
method, as well as ensuring best preparation of the knowledge elements and techniques
to be used in creation of synthetic data. The THOTH approach is easily implemented
and comes with little resource overhead. A limitation of THOTH is the unidirectional
linear nature of its waterfall-type model, however classification and characterisation
may greatly mitigate the effects of this limitation.
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With adherence to THOTH, RA benefits through assurance as to the quality of
synthetic data being created. This is achieved through establishment of elements and
characteristics that define realism for the generation project; the extrinsic quantitative
and qualitative properties, and intrinsic knowledge aspects that inhabit the input data.
Another benefit of RA is that as additional items of input or seed data are introduced,
the statistics, knowledge, constraints, and rules become further refined, increasing the
potential accuracy and realism of resulting synthetic data. A limitation that arises is that
it is presently conducted manual, requiring the researcher to possess an eye for detail
along with sound logic, analytical, and problem solving skills.

HORUS benefits through being an inherently straight-forward model for validation
and verification of synthetic data. HORUS identifies rules, constraints, or data that may
be causing issues; reducing the accuracy, realism, and utility of synthetic data being
delivered. It is possible that fewer SDG iterations may be required, significantly
reducing the time taken to produce accurate and realistic synthetic data. No directly
comparable works were located during this research. However, the closest relatable
work encountered was that of [35], whose work presented four separate approaches to
validation of synthetic data produced in the domain of computational modelling. Each
of these approaches appears, even in that authors’ own summation, not to be repre-
sentative of a single validation solution. The strength of HORUS is that it represents a
single operational validation solution. HORUS has a significant limitation in that it is
wholly dependent on having already engaged RA to identify the statistics, knowledge,
and rules that will be significant in assuring that the synthetic data is suitably repre-
sentative. Another limiting issue is that the case study conducted in this work identified
that where the extrinsic quantitative aspects of the synthetic data are found wanting,
continued engagement in the HORUS validation approach looking at the intrinsic
knowledge, rules and constraints may be of little additional benefit until those extrinsic
issues are resolved.

There are a number of avenues open for future work, including use of ATEN
during the entire lifecycle of a significant real-life SDG project. This would necessitate
the considered operation of a new SDG project where every element was documented
rigorously, and where two streams are conducted concurrently. This new project due to
the incompleteness of every SDG project reviewed during this research. In the first, or
normal stream, the SDG project would operate in the manner that the majority do now,
following the SDG generic approach described in Fig. 2. No input or other validation
steps would be taken and realism would be given no more consideration than it is in the
majority of SDG cases reviewed. In the second stream, another researcher would
collect the same input materials and documentation from the first and use them to
follow the complete and validated SDG approach described in this work. The second
researcher would ameliorate his input materials and generation method through oper-
ation of ATEN. Both synthetic datasets could then be validated using HORUS. Another
avenue for future work would be development of machine learning models to automate
some or all of the KDD and validation.
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6 Summary and Conclusion

This chapter has presented and demonstrated the ATEN framework, a triangle of three
interdepended approaches: THOTH, RA and HORUS. The triangle is one of the
strongest structures seen in engineering and nature. The components communicate with
their adjacent neighbours; each enhanced through interaction with and engagement of
its counterparts. THOTH provides framework and approach knowledge that improves
RA, RA provides the extrinsic and intrinsic knowledge to seed HORUS, and the results
of engaging HORUS either identify where an issue may exist in the first two and
therefore target where additional work is required, or confirms their successful oper-
ation and therefore justify the claim of realism in the synthetic data.

The approach proposed in this work, first, draws on, expands and enhances
established methods to result in a complete end-to-end validation solution. This ensures
a complete analysis of the source data leading to useful knowledge, which greatly
improves the generation method leading to better realism in synthetic data. Second, the
knowledge gathered prior to synthetic data generation provides a solid base with which
to validate the synthetic data, ensuring its ability to actually replace real data. Third, the
approach presented here is simple, intuitive and not overly burdensome, with many of
the component steps being activities that data synthesisers may already be undertaking
in an albeit unstructured or unconsidered way.
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