
Víctor Méndez Muñoz · Donald Ferguson ·
Markus Helfert · Claus Pahl (Eds.)

8th International Conference, CLOSER 2018
Funchal, Madeira, Portugal, March 19–21, 2018
Revised Selected Papers

Cloud Computing
and Services Science

Communications in Computer and Information Science 1073

Communications
in Computer and Information Science 1073

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, and Xiaokang Yang

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, NY, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Víctor Méndez Muñoz •

Donald Ferguson • Markus Helfert •

Claus Pahl (Eds.)

Cloud Computing
and Services Science
8th International Conference, CLOSER 2018
Funchal, Madeira, Portugal, March 19–21, 2018
Revised Selected Papers

123

Editors
Víctor Méndez Muñoz
Escola d’Enginyeria
Bellaterra, Barcelona, Spain

Donald Ferguson
Columbia University
New York, USA

Markus Helfert
Dublin City University
Dublin 9, Ireland

Claus Pahl
Free University of Bozen-Bolzano
Bolzano, Bolzano, Italy

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-29192-1 ISBN 978-3-030-29193-8 (eBook)
https://doi.org/10.1007/978-3-030-29193-8

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-29193-8

Preface

This book includes extended and revised versions of selected papers from the 8th
International Conference on Cloud Computing and Services Science (CLOSER 2018),
held in Funchal, Madeira, Portugal, during March 19–21, 2018.

CLOSER 2018 received 94 paper submissions from 33 countries, of which 10%
were included in this book. The papers were selected by the event chairs. Their
selection is based on a number of criteria that include the classifications and comments
provided by the Program Committee members, the session chairs’ assessment and also
the program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers having at least 30% new material.

CLOSER 2018, focused on the emerging area of Cloud Computing, inspired by
some of the latest advances that concern the infrastructure, operations, and available
services through the global network. Furthermore, the conference considers the link to
Service Science as essential, acknowledging the service-orientation in most current
IT-driven collaborations. The conference is nevertheless not about the union of these
two (already broad) fields, but rather focuses on Cloud Computing. We included the
related and emerging topic of Services Science’s theory, methods, and techniques to
design, analyze, manage, market, and study various aspects of Cloud Computing.
Service Science focuses on the intersection between technology and business and helps
to understand a range of service systems, as well as how these evolve to create value.

This year’s edition includes papers that cover a wide range of topics and challenges,
including Measuring Cost in Cloud Migration projects and Cost-efficient Datacentre
Consolidation. In order to design and architect cloud system, topics of architecting
Microservices, Optimising Quality of Services, and interoperability issues are dis-
cussed. Furthermore, papers on service Development on the Cloud and Model-based
Generation of Self-Adaptive Cloud Services have been included. Finally emerging and
important topics of Malicious Behavior Classification and Energy-Efficient
Ge-Distributed Data Centres are discussed.

We would like to thank all the authors for their contributions and also to the
reviewers who have help ensure the quality of this publication.

March 2018 Donald Ferguson
Víctor Méndez Muñoz

Markus Helfert
Claus Pahl

Organization

Conference Co-chairs

Markus Helfert Dublin City University, Ireland
Claus Pahl Free University of Bozen-Bolzano, Italy

Program Co-chairs

Víctor Méndez Muñoz IUL, S.A., Universitat Autönoma de Barcelona (UAB),
Spain

Donald Ferguson Columbia University, USA

Program Committee

Alina Andreica Babes-Bolyai University, Romania
Claudio Ardagna Universita degli Studi di Milano, Italy
Amelia Badica Faculty of Economics and Business Administration,

University of Craiova, Romania
Marcos Barreto Federal University of Bahia (UFBA), Brazil
Simona Bernardi Universidad de Zaragoza, Spain
Nik Bessis Edge Hill University, UK
Ivona Brandić Vienna UT, Austria
Iris Braun Dresden Technical University, Germany
Andrey Brito Universidade Federal de Campina Grande, Brazil
Ralf Bruns Hannover University of Applied Sciences and Arts,

Germany
Anna Brunstrom Karlstad University, Sweden
Rebecca Bulander Pforzheim University of Applied Science, Germany
Tomas Bures Charles University in Prague, Czech Republic
Manuel Capel-Tuñón University of Granada, Spain
Eddy Caron École Normale Supérieure de Lyon, France
John Cartlidge University of Bristol, UK
Roy Cecil IBM Portugal, Portugal
Rong Chang IBM T. J. Watson Research Center, USA
Augusto Ciuffoletti Università di Pisa, Italy
Daniela Claro Universidade Federal da Bahia (UFBA), Brazil
Thierry Coupaye Orange, France
Tommaso Cucinotta Scuola Superiore Sant’Anna, Italy
Tarcísio da Rocha Universidade Federal de Sergipe, Brazil
Mohanad Dawoud Istanbul Technical University, Turkey
Eliezer Dekel Huawei Technologies, Israel
Frédéric Desprez Antenne Inria Giant, France

Patrick Dreher North Carolina State University, USA
Vincent Emeakaroha Cork Institute of Technology, Ireland
Ruksar Fatima KBN College of Engineering, India
Tomás Fernández Pena Universidad Santiago de Compostela, Spain
Mike Fisher BT, UK
Geoffrey Fox Indiana University, USA
Somchart Fugkeaw University of Tokyo, Japan
Fabrizio Gagliardi Barcelona Supercomputing Centre, Spain
Antonio García Loureiro University of Santiago de Compostela, Spain
Chirine Ghedira IAE - University Jean Moulin Lyon 3, France
Lee Gillam University of Surrey, UK
Katja Gilly Miguel Hernandez University, Spain
Jose Gonzalez de Mendivil Universidad Publica de Navarra, Spain
Dirk Habich Technische Universität Dresden, Germany
Mohamed Hussien Suez Canal University, Egypt
Ilian Ilkov IBM Nederland B.V., The Netherlands
Anca Ionita University Politehnica of Bucharest, Romania
Hiroshi Ishikawa Tokyo Metropolitan University, Japan
Ivan Ivanov SUNY Empire State College, USA
Martin Jaatun University of Stavanger, Norway
Keith Jeffery Independent Consultant (previously Science

and Technology Facilities Council), UK
Yiming Ji University of South Carolina Beaufort, USA
Ming Jiang University of Sunderland, UK
Xiaolong Jin Chinese Academy of Sciences, China
Carlos Juiz Universitat de les Illes Balears, Spain
Péter Kacsuk MTA SZTAKI, Hungary
David Kaeli Northeastern University, USA
Yücel Karabulut Oracle, USA
Attila Kertesz University of Szeged, Hungary
Carsten Kleiner University of Applied Sciences and Arts Hannover,

Germany
Ioannis Konstantinou NTUA, Greece
Nane Kratzke Lübeck University of Applied Sciences, Germany
Kyriakos Kritikos ICS-FORTH, Greece
Ulrich Lampe TU Darmstadt, Germany
Riccardo Lancellotti University of Modena and Reggio Emilia, Italy
Donghui Lin Kyoto University, Japan
Shijun Liu School of Computer Science and Technology,

Shandong University, China
Xiaodong Liu Edinburgh Napier University, UK
Francesco Longo Università degli Studi di Messina, Italy
Simone Ludwig North Dakota State University, USA
Glenn Luecke Iowa State University, USA
Shikharesh Majumdar Carleton University, Canada
Ioannis Mavridis University of Macedonia, Greece

viii Organization

Víctor Méndez Muñoz IUL, S.A., Universitat Autönoma de Barcelona (UAB),
Spain

Andre Miede Hochschule für Technik und Wirtschaft des Saarlandes,
Germany

Mohamed Mohamed IBM Research, Almaden, USA
Hidemoto Nakada National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Philippe Navaux UFRGS - Federal University of Rio Grande Do Sul,

Brazil
Mats Neovius Äbo Akademi University, Finland
Jean-Marc Nicod Institut FEMTO-ST, France
Bogdan Nicolae IBM Research, Ireland
Mara Nikolaidou Harokopio University of Athens, Greece
Emmanuel Ogunshile The University of the West of England, UK
Enn Ounapuu Tallinn University of Technology, Estonia
Tolga Ovatman Istanbul Technical University, Turkey
Claus Pahl Free University of Bozen-Bolzano, Italy
Michael Palis Rutgers University, USA
Mike Papazoglou Tilburg University, The Netherlands
Nikos Parlavantzas IRISA, France
David Paul The University of New England, Australia
Agostino Poggi University of Parma, Italy
Antonio Puliafito Universià degli Studi di Messina, Italy
Rajendra Raj Rochester Institute of Technology, USA
Arcot Rajasekar University of North Carolina at Chapel Hill, USA
Arkalgud Ramaprasad University of Illinois at Chicago, USA
Manuel Ramos-Cabrer University of Vigo, Spain
Christoph Reich Hochschule Furtwangen University, Germany
Daniel Rodriguez-Silva Gradiant, Spain
Pedro Rosa UFU - Federal University of Uberlandia, Brazil
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Evangelos Sakkopoulos University of Piraeus, Greece
Elena Sanchez-Nielsen Universidad De La Laguna, Spain
Patrizia Scandurra University of Bergamo, Italy
Erich Schikuta Universität Wien, Austria
Lutz Schubert Ulm University, Germany
Stefan Schulte Technische Universität Darmstadt, Germany
Rami Sellami CETIC, Belgium
Wael Sellami Higher Institute of Computer Sciences of Mahdia,

Tunisia
Giovanni Semeraro University of Bari Aldo Moro, Italy
Carlos Serräo ISCTE - Instituto Universitário de Lisboa, Portugal
Armin Shams Sharif University of Technology, Iran
Keiichi Shima IIJ Innovation Institute, Japan
Adenilso Simäo Universidade de São Paulo, Brazil

Organization ix

Frank Siqueira Universidade Federal de Santa Catarina, Brazil
Josef Spillner Zurich University of Applied Sciences, Switzerland
Ralf Steinmetz Technische Universität Darmstadt, Germany
Yasuyuki Tahara The University of Electro-Communications, Japan
Cedric Tedeschi IRISA - University of Rennes 1, France
Gilbert Tekli Nobatek, France
Joe Tekli Lebanese American University (LAU), Lebanon
Guy Tel-Zur Ben-Gurion University of the Negev (BGU), Israel
Rafael Tolosana-Calasanz University of Zaragoza, Spain
Michele Tomaiuolo University of Parma, Italy
Orazio Tomarchio University of Catania, Italy
Slim Trabelsi SAP, France
Francesco Tusa University College London, UK
Geoffroy Vallee Oak Ridge National Laboratory, USA
Robert van Engelen Florida State University, USA
Bruno Volckaert Ghent University, Belgium
Mladen Vouk N.C. State University, USA
Bo Yang University of Electronic Science and Technology

of China, China
George Yee Carleton University, Canada
Michael Zapf Georg Simon Ohm University of Applied Sciences,

Germany
Wolfgang Ziegler Fraunhofer Institute SCAI, Germany

Additional Reviewers

Sonja Bergstraesser TU Darmstadt, Germany
Belen Bermejo University of the Balearic Islands, Spain
Alexander Froemmgen TU Darmstadt, Germany
Cedric Hebert SAP Labs France, France
Alexis Huf Federal University of Santa Catarina, Brazil
Menelaos Katsantonis University of Macedonia, Greece
Christian Koch Technische Universität Darmstadt, Germany
Alfonso Panarello Universià degli Studi di Messina, Italy
Benedikt Pittl University of Vienna, Austria
Daniel Presser Universidade Federal de Santa Catarina, Brazil
Eduardo Roloff UFRGS, Brazil
Giuseppe Tricomi Università degli studi di Messina, Italy

Invited Speakers

Mike Papazoglou Tilburg University, The Netherlands
Tobias Hoellwarth EuroCloud Europe, Austria
Péter Kacsuk MTA SZTAKI, Hungary
Lee Gillam University of Surrey, UK

x Organization

Contents

CELA: Cost-Efficient, Location-Aware VM and Data Placement
in Geo-Distributed DCs . 1

Soha Rawas, Ahmed Zekri, and Ali El Zaart

Will Cloud Gain an Edge, or, CLOSER, to the Edge. 24
Lee Gillam

Model-Based Generation of Self-adaptive Cloud Services. 40
Stefan Kehrer and Wolfgang Blochinger

A Record/Replay Debugger for Service Development on the Cloud. 64
M. Subhi Sheikh Quroush and Tolga Ovatman

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 . . . 77
Michael P. Papazoglou and Andreas S. Andreou

Interoperability Between SaaS and Data Layers: Enhancing
the MIDAS Middleware. 102

Elivaldo Lozer Fracalossi Ribeiro, Marcelo Aires Vieira,
Daniela Barreiro Claro, and Nathale Silva

Continuous Architecting with Microservices and DevOps: A Systematic
Mapping Study . 126

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 152
Gabor Kecskemeti, Andras Markus, and Attila Kertesz

Optimising QoS-Assurance, Resource Usage and Cost of Fog
Application Deployments . 168

Antonio Brogi, Stefano Forti, and Ahmad Ibrahim

Right Scaling for Right Pricing: A Case Study on Total Cost of Ownership
Measurement for Cloud Migration. 190

Pierangelo Rosati, Frank Fowley, Claus Pahl, Davide Taibi,
and Theo Lynn

Malicious Behavior Classification in PaaS . 215
Cemile Diler Özdemir, Mehmet Tahir Sandıkkaya, and Yusuf Yaslan

Author Index . 233

CELA: Cost-Efficient, Location-Aware VM
and Data Placement in Geo-Distributed DCs

Soha Rawas(&), Ahmed Zekri(&), and Ali El Zaart(&)

Department of Mathematics and Computer Science,
Beirut Arab University, Beirut, Lebanon

{srawas,a.zekri,Elzaart}@bau.edu.lb

Abstract. Geo-distributed data centres (DCs) that recently established due to
the increasing use of on-demand cloud services have increasingly attracted cloud
providers as well as researchers attention. Energy and data transmission cost are
two significant problems that degrades the cloud provider net profit. However,
increasing awareness about CO2 emissions leads to a greater demand for cleaner
products and services. Most of the proposed approaches tackle these problems
separately. This paper proposes green approach for joint management of virtual
machine (VM) and data placement that results in less energy consumption, less
CO2 emission, and less access latency towards large-scale cloud providers
operational cost minimization. To advance the performance of the proposed
model, a novel machine-learning model was constructed. Extensive simulation
using synthetic and real data are conducted using the CloudSim simulator to
validate the effectiveness of the proposed model. The promising results approve
the efficacy of the CELA model compared to other competing models in
reducing network latency, energy consumption, CO2 emission and total cloud
provider operational cost.

Keywords: Carbon footprint � Energy-efficient � Latency �
Geo-distributed data centres

1 Introduction

Cloud computing plays a significant role in today’s network computing by delivering
virtualized resources as pay-as-you-go services over the Internet. However, the growing
demand for cloud computing services has led to the establishment of geo-distributed
DCs worldwide with thousands of computing and storage nodes to ensure availability
and disaster recovery. Consequently, this led to a radical increase in the DCs’ energy
consumption, turning it into high operational cost rates, low profits for Cloud providers,
and high carbon non-environment friendly emissions [1]. Figure 1 displays the Synapse
Energy Economics CO2 price/Ton forecast that will be applied all over the world by the
beginning of 2020 [2]. Moreover, increasing awareness about CO2 emissions leads to a
greater demand for cleaner products and services. Thus, many companies have started to
build “green” DCs, i.e. DCs with on-site renewable power plants to reduce the CO2
emission which leads to operational cost minimization [3].

© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 1–23, 2019.
https://doi.org/10.1007/978-3-030-29193-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_1

An important fact is that the carbon emission rate varies from one DC to another
based on the different energy sources used to power-on the cloud DC resources (such as
coal, oil, and other renewable and non-renewable resources) [4]. Moreover, the CO2
emission of DC is closely related to electricity cost paid by cloud provider since it
depends on the sources used to produce electricity [5]. Therefore, selecting a proper
data centre for customer’s requests dispatching attract research attention and have
become an emergent issue for modern geo-distributed cloud DCs in big data era.

The modern geo-distributed data centres proposed as a new platform idea are inter-
connectedwith cloud users via the Internet. One of themost challenging problems for this
environment is network latency when serving user request. Studies show that minimizing
latency leads to less bandwidth consumption [6]. This consequently improves the pro-
vider revenue by minimizing the Wide Area Network (WAN) communication cost.
Latency, which refers to the time required to transfer the user request from user’s end to
the DC, is also taken into consideration for Service Level Agreement (SLA) and Quality
of Service (QoS) purposes. Bauer et al. [7] show that Amazon Company can undergo 1%
sales reduction for a 100-millisecond increase in service latency.

Inspired by the heterogeneity of DCs, carbon emission rate and their modern
geographical distribution, this paper studies the virtual machine (VM) placement and
the physical machine selections that result in less energy consumption, less CO2
emission, and less access latency while guaranteeing the QoS. The main contributions
of this study are as follows:

1- Cost-Efficient, Location-aware VM placement model (CELA) to beneficially affect
the cloud user and the cloud service provider.

2- Investigate the initial placement of offline and online user request to enable the
tradeoff among the latency, energy consumption of the physical machines, and the
CO2 emission rate in geo-distributed cloud DCs.

3- Intelligent machine-learning method to improve the performance of the proposed
CELA model.

4- Comprehensive analysis and extensive simulation to study the efficacy of the
proposed model using both synthetic and real DCs workload.

Fig. 1. 2016 CO2 Price/Ton forecast by Synapse extracted from [2].

2 S. Rawas et al.

The rest of the paper is organized as follows: Sect. 2 studies the related work con-
cerning theVMplacementmethods in geo-distributed data centres. Section 3 presents the
problem statement and the proposed model. Section 4 presents the proposed online and
offline VM policies. Section 5 presents the performance metrics that have been used to
evaluate the proposed model. Section 6 models the intelligent machine-learning method
for normalized weight prediction. Section 7 presents the evaluation method using
CloudSim simulation toolkit. Section 8 concludes the paper and presents future work.

2 Related Work

With the increase of distributed systems, the problem of resource allocation attracted
researchers from its different views inspired by the heterogeneity of the modern large-
scale geo-distributed data centres.

Khosravi et al. [4] propose a VM placement algorithm in distributed DCs by
developing the Energy and Carbon-Efficient (ECE) Cloud architecture. This architecture
benefits from distributed cloud data centres with different carbon footprint rates, Power
Usage Effectiveness (PUE) value, and different physical servers’ proportional power by
placing VM requests in the best-suited DC site and physical server. However, the ECE
placement method does not address the network distance and considers that the dis-
tributed DCs are located in the same USA region where the communication latency and
cost are negligible. Chen et al. [6] modeled the VM placement method in terms of
electricity cost and WAN communication cost incurred between the communicated
VMs. Ahvar et al. [8] addressed the problem of DCs selection for inter- communicated
VMs to minimize the inter-DCs communication cost. Malekimajd et al. [9] proposed an
algorithm to minimize the communication latency in geo-distributed clouds. Jonardi
et al. [10] considered the time-of-use (TOU) electricity prices and renewable energy
sources when selecting DCs. Fan et al. [5] modeled the VM placement problem using
the WAN latency, network, and servers’ energy consumption factors.

The proposed model is different from the aforementioned ones since it jointly
considers the energy consumption of the servers, CO2 emission rate of DCs, and WAN
link access latency and its cost when cloud provider take a decision in DCs selection.

3 System Model

In this section, we describe CELA, a Power and Cost aware Virtual Machine placement
model for serving users’ request in geo-distributed cloud environment. CELA performs
user request by weighting each request’s effect on three important metrics that increase
the providers as well as the cloud users cost: carbon emission rate, energy consump-
tion, and access latency.

3.1 Motivation and Typical Scenario

With more than 900 K servers, Google has 13 data centres distributed within 13
countries around the world (Google). While Amazon Application Web Services

CELA: Cost-Efficient, Location-Aware VM and Data Placement 3

(AWS) has 42 data centres within 16 geographical regions with more than 1.3 million
servers [11]. Consequently, the operating cost has become a predominant factor to the
cloud services deployment cost.

The worldwide distribution of DCs provides the fact that different geographical
regions mean different energy sources (coal, fuel, wind, solar energy, etc.). DC’s CO2
emission rate depends on the used electricity driven by these energy sources to run the
physical machines [12]. Additionally, PUE can be considered as an effective parameter
to perform the VM placement. It indicates the energy efficiency of the DC [4]. Pro-
portional power of physical machines is another important parameter. Selecting proper
physical machines to process user’s request has a great impact on energy consumption
[1]. Network latency and latency cost (lc) have a great impact on cloud QoS and
increases the cloud provider operational cost.

Considering these important parameters, the CELA model aims to select the best
suited DC site and physical servers to increase the environmental sustainability and
minimize the cloud provider’s operating cost.

3.2 Cloud Model Architecture

This section presents the cloud architecture model that captures the relationship
between cloud users and geo-distributed cloud environment. Figure 2 encapsulates a
simple abstract model representing the relation between the following two main sides:
Users side and the Cloud side.

1- User Side: Cloud Users send their Service Request to the Cloud side. The requested
services may be an application of any type such as: data transmission (uploading or
downloading), web application, data or compute-intensive applications.

Online Request
Service Reqm

.

.

.

Service Req3
Service Req2
Service Req1

User Request Analyzer

VM Global Manager

Cloud Side

User Side

CELA Agent

……..
CPU
RAM

Storage

h1 h2 hh

CPU
RAM

Storage

CPU
RAM

Storage
….

DC1 (PUE1 , cf1)

VM Local Manager

CPU
RAM

Storage

h1 h2 hh

CPU
RAM

Storage

CPU
RAM

Storage
….

DCD (PUED , cfD)

VM Local Manager

Geo-Distributed CSP

Offline Request
Service Req1
Service Req2
Service Req3

.

.

.
Service Reqm

Cloud Users

Fig. 2. Cloud model architecture based from [13].

4 S. Rawas et al.

Cloud Users’ requests can be Online or Offline Request. The Online Request is an
expensive Service Request with high priority. This type of users’ request is processed
by the Cloud instantaneously. The Offline Request, on the other hand, are handled as
batches by the Cloud side.

2- Cloud Side: This side presents the cloud infrastructure and it is made up of the
following two main sub components:

a- CELA Agent: The CELA is a cloud service provider’s (CSP) broker that acts as
an intermediary between the cloud user and the CSP services. The goal of this agent
is to redirect the user request to the nearest DC site that process requested services in
a greener and minimum operational cost without scarifying cloud QoS. It contains
the following sub components:

• User Request Analyzer (URA): its functions are
– For each user’s Service Request (Reqi), it allocates the proper VM (VMi)

to serve the cloud users.
– Interprets and analyzes the requirements of submitted requested services

(in terms of CPU, RAM, Storage, Bandwidth …) to find the proper VMs
that serves the requested services.

– Finalizes the SLAs with specified prices and penalties depending on user’s
QoS requirements.

• VM Global Manager: Global cloud resources manager
– Receives the set of VMs from URA. It interacts with Geo-Distributed

CSP VM Local Managers to check each DC PUE, carbon footprint
emission rate (cf), and latency cost (lc) to take the best VM placement
decision on the DC site selection (lc and cf illustrated in Sect. 3.3).

– Observes energy consumption caused by VMs placed on physical
machines and provides this information to the DC site VM Local Manager
to make optimization and energy-efficient management decisions.

– Provides the VM Local Manager of the selected DC site that should
process the cloud user’s request with the VM placement decision policy
(as proposed in Sect. 4).

b- Geo-Distributed CSP: A service provider has geo-distributed DCs. Each DC has
heterogeneous computing and storage resources as well as different utilities and
energy sources. Each DC contains an essential node called VM Local Manager.
The VM Local Manager applies VM management and resource allocation policies as
suggested by the VM Global Manager. Moreover, it calculates energy and carbon
emission rate of DC resources to provide this information to the VMGlobal Manager.

3.3 Problem Formulation

Table 1 summarizes the various notations used in the proposed VM placement problem
formulation.

CELA: Cost-Efficient, Location-Aware VM and Data Placement 5

Preliminaries
To model the VM placement method, a number of factors are considered, these
parameters demonstrated as preliminaries before proceeding in complete formulation.

Power Consumption Model
In this paper, the energy consumption and saving predicted as used in [13]. A linear
power model verifies that the servers’ power consumption is almost linearly with its
CPU utilization. This relationship could be illustrated using the following equation:

P uð Þ ¼ Pidle þ Pfull � Pidle
� � � u ð1Þ

where Pidle is server power consumption with no load, Pfull is fully utilized server
power consumption, and u is the amount of CPU utilization.

Therefore, the power consumption of a server/host hj holding a number of VMs v
on data centre site i during the slot time [0, T] is denoted as P h i;jð Þ

� �
. Noting that each

host can hold more than one VM: h i;jð Þ ¼
Pv

k¼1 VMk;i;j and each VM is executed at

only one host such that:
PD

i¼1

Ph
j¼1 VMk;i;j ¼ 1; 8VMk.

Table 1. Problem formulation notations.

Notation Description

D Number of DC sites
H Number of hosts at each DC
V Total number of VMs on host hj
Pidle Server power consumption with no load
Pfull Fully utilized server power consumption
U Amount of CPU utilization
PUEi The power usage effectiveness of DC site i
UnitTransferCost ue; dcið Þ the unit transfer cost of between DC site dci and cloud user

ue; $/GB
ComCost flowSizedk ue; dcið Þð Þ the communication cost for a flow size of data dk from user

ue served by DC site dci
flowSizedk ue; dcið Þ flow size of data dk from user ue served by DC site dci
CostCO2Emission Total CO2 emission cost; $
CostCommunication Total communication cost; $
UnitEmissionCostCO2 CO2 emission cost per ton; $/Ton
CF Total CO2 emission at a time interval [0, T]; Ton
cfj DC site i CO2 emission rate; Ton/MWh
Users Total number of users requesting cloud services at time t
data Set of requested user’s services data
pdk ðue; dciÞ is 1 if data dk is placed in server hj in DC dci; otherwise,

it is 0

6 S. Rawas et al.

Power Usage Effectiveness (PUE)
PUE is the most popular measure of data centre energy efficiency. It was devised by the
Green Grid consortium [5]. It is a metric used to compares different DC designs in
terms of electricity consumption [4]. The PUE of DC i is calculated as follows:

PUEi ¼ dciTotalPowerConsumption
dciITDevicesPowerConsumption

ð2Þ

where dciTotalPowerConsumption; is the total amount of energy consumed by DC
facilities such the cooling system, the IT equipment, lightning, etc. The
dciITDevicesPowerConsumption is the power drawn due to IT devices equipment.

Network Model
Figure 3 shows the network model for the data transmission between the cloud users
who are graphically at the same region, and the DC site that is similar to the one
presented in [5, 13]. Therefore, we assume that each user ue is connected by a WAN
link. These links cost the cloud provider whose bill is based on the actual usage over a
billing period [6]. The unit cost of data transfer between the DC site dci and cloud user
ue is denoted as UnitTransferCost(ue,dci) in $/GB. However, the cost of intra-DC
communication is ignored since it is very low compared with WAN transfer cost [5].
Therefore, the communication cost for a flow size of data dk (GB) from user ue served
by DC site dci is calculated as follows (see Fig. 4):

ComCost flowSizedk ue; dcið Þð Þ ¼ UnitTransferCost ue; dcið Þ � flowSize dkð Þ ð3Þ

Fig. 3. Users connected to DC through WAN extracted from [5, 13].

CELA: Cost-Efficient, Location-Aware VM and Data Placement 7

Carbon Footprint Emission Rate (cf)
DC carbon footprint emission rate is measured in g/kW. It depends on the DC energy
sources and electricity utilities. Therefore, the carbon footprint emission rate of DC i
operated using l number of energy sources (such as, coal, gas, others) is computed as
follows [12]:

cfi ¼
Pl

k¼1 Ei;k � crkPl
k¼1 Ei;k

ð4Þ

where Ei;k is the electricity generated by energy source k (such as coal), and crk is the
carbon emission rate of the used utility k.

Modeling of the Optimization Problem
The CELA aim to minimize the total cost through minimizing the weighted sum of the
two main objectives: carbon emission cost, and network communication cost. Refers to
the symbol definitions in Table 1 and preliminaries model as discussed in the previous
sections, the CELA problem can be formulated as follows:

minimize
CostCO2Emission

CostComm

� �
ð5Þ

CostCO2Emission ¼ CF � UnitEmissionCostCO2 ð6Þ

CF ¼
XD
i¼1

PUEi � cfi �
Xh
j¼1

P hi;j
� � ð7Þ

CostCommunication ¼
XD
i¼1

Xusers
e¼1

Xdata
k¼1

ComCost flowSizedk ue; dcið Þð Þ ð8Þ

subject to:

XD
i¼1

Xh
j¼1

pdk hj; dci
� � ¼ 1; 8dk ð9Þ

Fig. 4. User (ue) sends data (dk) to DC (dci) Scheme extracted from [5].

8 S. Rawas et al.

XD
i¼1

Xh
j¼1

vcorei;jð Þ � hostcorei;jð Þ ð10Þ

XD
i¼1

Xh
j¼1

vrami;jð Þ � hostrami;jð Þ ð11Þ

XD
i¼1

Xh
j¼1

vstoragei;jð Þ � hoststoragei;jð Þ ð12Þ

XD
i¼1

Xh
j¼1

vbandwidthi;jð Þ � hostbandwidthi;jð Þ ð13Þ

Equation 5 presents the CELA optimization model. Equation 6 shows that the total
CO2 emission cost is equal to the CO2 unit emission cost per ton multiplied by the total
DCs’ CO2 emission for time interval [0, T]. Equation 7 calculates the total carbon
footprint (CF) of cloud provider that depends on a number of factors as illustrated
above. Equation 8 represents the communication cost. It depends on users’ flow size as
well as the unit cost of data transfer from cloud users’ location to selected DC’s site.
Equation 9 mandates that a user request is executed at only one DC. Equations (10, 11,
12, 13) dictates that the resources requirements of the mapped VMs on a physical
server cannot exceed the total capacity of the server.

4 CELA Heuristics for VM Placement

We propose different VM placement algorithms for the LECC agent that is aware of
energy consumption, PUE, CO2 emission rate (cf) and network latency cost (lc). More
specifically the LECC agent follow the following methodology.

In this section, different VM placement policies for the CELA agent are proposed.
More specifically the CELA agent follow the following methodology:

1. Select the DCs location from given set of D available DCs. The main goal of this
step is to satisfy the CELA multi-objective optimization functions, i.e. minimize the
total cost: carbon emission cost and network communication cost the form the
CELA model (Eq. 5). To satisfy this goal, CELA agent should select the DCs with
minimum PUE, cf, and lc using Eq. 14.

minimumða1 � PUE � cf þ a2 � lcÞ ð14Þ

where a1&a2 are constant normalized weights used for weighting the two sub-
objectives such that a1 þ a2 ¼ 1 (Sect. 6 demonstrates how these weights are
calculated using intelligent machine learning model).

2. Apply energy efficient VM placement policies in the selected DCs based on cloud
user’s request type.

CELA: Cost-Efficient, Location-Aware VM and Data Placement 9

4.1 Offline MF-CELA

Offline-CELA VM placement: indicates offline VM placement such that the requested
services requirements are prior known by the CELA Global Manager.

Assume that D is the total number of DC sites and each DC site has h number of
servers, such that h varies between DCs. At a certain time t, CELA agent tries to
optimally place the user VMs. For the offline cloud user’s requested services, we
propose the MF-CELA VM placement algorithm (see Algorithm 1 below). It is a
greedy method that selects a DC site with minimum communication latency cost,
minimum PUE and minimum CO2 emission rate. In addition, the algorithm tries to
minimize the number of selected active servers.

The URA module in the CELA agent receives the users requests and produces the
proper VMs; the VM Global Manager utilizes the information given by the CSPs VM
Local Manager to take the best DC site selection that has the minimum (a1 * PUE *
cf + a2 * lc) (line 2). Then, it feeds the selected DC site VM Local Manager with
Most-Full VM placement policy decision. The VM Local Manager sorts the host lists
in an ascending order to its Utilization (line 4). If the selected host hj has enough
resources for VM accommodation (line 6–8), hj will be a destination for vmu.

4.2 Online BF-CELA

Online-CELA VM placement: indicates online and continuous VM placement during
the run-time of the DCs. The user’s requests are coming one by one, such that the
CELA Global Manager has no prior information about the requested services
requirements.

BF-CELA method is also a greedy algorithm (see Algorithm 2 below) that uses the
Best Fit method for VMs placement and servers selections after locating DC sites with
minimum communication latency cost, PUE and CO2 emission rate (line 2).

10 S. Rawas et al.

We adapted the Best-Fit VM placement strategy so that the VM Local Manager
sorts the list of host in an ascending order to its Availability (line 5). If the selected host
hj has enough resources for VM accommodation (line 6–9), hj will be a destination for
vmu.

4.3 Online BF-SLA-CELA

The aim of the BF-SLA-CELA algorithm is to provide a trade-off between SLA
violations and energy saving to minimize the penalties cost for SLA violations per
active host.

CELA: Cost-Efficient, Location-Aware VM and Data Placement 11

As Algorithm 3 shows, the main difference between BF-CELA and BF-SLA-CELA
is that the algorithm will use a margin of x MIPS (line 7) that minimizes the SLA
violation penalties cost and contributes to revenue maximization.

5 Performance Metrics

This section presents the performance parameters that will be used to measure the
effectiveness of the proposed CELA model.

Makespan: Makespan indicates the finishing time of the last task requested by cloud
customer. It represents the most popular optimization criteria that reflect the cloud QoS.

Makespan ¼ maximumt2tasks ftf g ð15Þ

where ft denotes the finishing time of task t.

Active Servers (AS): Minimizing the number of active servers by utilizing the acti-
vated ones is an important criterion for cloud service providers. It leads to maximum
profit through serving cloud user’s requests with minimum number of resources
without degrades the cloud QoS. AS counts the number of active servers that used to
complete a bunch of task per time slot.

AS ¼
XD
i¼1

Xh
j¼1

ðAhjiÞ ð16Þ

where Ahji denotes the activated hosts in distributed DC sites D.

SLAH: SLAH is the SLA violation per active host. It is the percentage of time an
active host experiences 100% utilization of CPU. The SLAH can be calculated as
follows [4]:

SLAH ¼ 1
h

Xh
j¼1

ViolationTime hj
ActiveTime hj

ð17Þ

where h, ViolationTime hj, and ActiveTime hj is the total number of hosts, the hj SLA
violation time, and active time respectively.

Electricity Cost: The Electricity Cost metric calculates the average amount of elec-
tricity cost per day. Equation 18 illustrates the calculation:

CostElectricity ¼
XD
i¼1

f iE � Ei � PUEi ð18Þ

where f iE;Ei;PUEi is the electricity price, energy consumption and the PUE at DC i
respectively.

12 S. Rawas et al.

Revenue: The Revenue metric calculates the average profit per day. The cloud pro-
vider Revenue per day calculated using the following equation:

Revenue ¼ TotatlIncome � CostElectricity � CostCO2 � CostPenalties � Costcommunication
ð19Þ

where Total Income is the VMs income. CostElectricity, CostCO2, Costcommunication cal-
culated using Eqs. 18, 6, and 8 respectively. The CostPenalties calculated as follows:

CostPenalties ¼ RF � SLAH ð20Þ

6 Weight Prediction Model

The normalized weights of Eq. 14 are important factors that contribute in finding an
optimal solution to the VM placement problem. While deciding among the multiple
normalized weights (a1 & a2), each one can be in conflict with the other. We applied
machine learning (ML) techniques to determine optimal values for the parameters.
Figure 5 illustrates the basic schema of the proposed methodology to find the CELA-
NWPM model. The following sections describe the process of finding the weights.

6.1 Phase 1

The first phase of the proposed prediction model represents collecting the training data
set to build the ML model. The training set extracted according to the probabilistic
dependencies among CELA parameters. The structure of the data set parameters are
extracted knowledge and simulation results. For forecasting of the input data, we use
real DCs cloud management information as represented in Table 2. This information
provides key insights to find the important attributes that could affect the normalized
weights decision.

Training Data Set Train ML Classifier
Algorithm Create CELA-NWPM

Online Data

Data to
Predict

Predict
ed

Data

Optimized CELA
Solution

Phase1 Phase2

Phase3

Fig. 5. CELA-NWP model scheme.

CELA: Cost-Efficient, Location-Aware VM and Data Placement 13

6.2 Phase 2

In this phase, a classification algorithm is used to learn the relationship between the
training set attributes collected at the first phase. To model a finer predictor, we need to
use a suitable ML classifier with light computations. There are many classification
methods represented in literature such as: Kernel Estimation, Decision Trees, Neural
Networks and Linear classifiers [26]. However, when building an intelligent ML
predictor model, it is always important to take into account the prediction accuracy. In
that case, finding the best algorithm to build our CELA- NWPM intelligent predictor
depends on the accuracy and reliability of the prediction model (Sect. 7.1 illustrates the
used ML classifier type).

6.3 Phase 3

Using the learned CELA-NWPM model, we are able to predict the CELA normalized
weights. When VMs request is made, the CELA-NWPM intelligent predictor
responsible of providing the normalized weights of the CELA objective function to
execute the requested VMs using the cost efficient DCs. It should return the normalized
weights that will provide the optimum performance of the proposed CELA model.

7 Performance Evaluation

To validate the effectiveness of the proposed model, we have extended the CloudSim
Toolkit to enable CELA VM placement policies testing. CloudSim is an open source
development toolkit that supports the development of new management policies to

Table 2. Machine learning data set specifications extracted from [2, 5, 14–17].

Type Specifications

Workload 1-Planetlab [14]
2-Random Workload using Uniform
Distribution

Workload size (number of tasks/per day) 1000–5000
VMs file size (MB) 0.05–1500
VMs EC2 (XSmall, Small, Medium, Large)
PMs HP Proliant G3, G4, and G5

IBM server X3470, 3480, 5670, 5675 [15]
Locations 4 different zones (US, Asia, Australia,

Brazil)
Management system MF-CELA, BF-CELA & BF-SLA-CELA
PUE 1.1–2.1 [16]
CO2 emission rate (Ton/MWh) 0.1–0.7 [17]
CO2 emission cost ($/Ton) 20–120 [2]
WAN communication distance and price ($/
GB)

0.09–0.25 [5]

14 S. Rawas et al.

improve the cloud environment from its different levels [18]. To model the CELA VM
placement methods, we utilized CloudSim 3.0.3 by modifying the DC broker algorithm
that plays the role of mediator between the cloud user and service provider.

7.1 Simulation Setup

We conducted experiments on Intel(R) core(TM) i7 Processor 3.4 GHz, Windows 7
platform using NetBeans IDE 8.0.2 and JDK 1.8. Our simulation has two different
scenarios. Scenario1 is a synthetic one that randomly modelled the cloud-computing
environment to measure the effectiveness of the CELA model in terms of AS and
Makespan. In this scenario, we modelled the offline IaaS environment and applied the
offline-CELA approach. Scenario 2 modelled the online SaaS dynamic environment. It
applied the online-CELA dynamic approach to measure the efficacy of the proposed
model with respect to CO2 emission, Electricity Cost, Revenue and more performance
metrics as discussed in Sect. 5.

CO2 Emission Rate and PUR Data
To approximate the DC’s CO2 emission rate, we used the information extracted from
the U.S. Energy Information website [17]. Its cost is taken as 20$/Ton as suggested by
latest study of US Government on CO2 emission economic damage [19]. While the
PUE value for distributed DCs is generated randomly in the range of [1.3, 1.8] based on
the Amazon and Google latest PUE readings and work studied by Sverdlik [25].

Approximating Latency with Distance
Since there is no general analytical model for the delay in the network, we use geo-
graphical distance to approximate the network latency between a user and geo-
distributed DCs. Although distance is not an ideal estimator for network latency, it is
sufficient to determine the relative rank in latency from end-user to DCs as indicated in
[5]. Moreover, we use the WAN Latency Estimator [21] to estimate the network
latency in milliseconds.

CELA Normalized Weight Prediction
To model the CELA-NWPM intelligent predictor, we used the open source ML tool
Weka [22]. Weka is an advanced tool designed by the University of Waikato to provide
data mining and ML tasks. It contains a large number of ML classifiers. We have tested
several Weka’s embedded ML algorithms to select an accurate predictor model. The
accuracy of the results was calculated using the Mean Absolute Error (MAE) formula.
MAE is an ML classifier metric that measures the average magnitude of the errors in a
set of forecast.

Our training data set consisted of more than 4500 instances. 70% of data used as
training set and the rest used as testing set. In this paper, our approach applies the
machine learning k-nearest neighbor technique (k-NN) [23] to the workload data set to
train the CELA-NWPM model. The k-NN method is a supervised learning algorithm
that helps to classify the ML data set in different classes. It provides good prediction
using a distance metric.

CELA: Cost-Efficient, Location-Aware VM and Data Placement 15

7.2 Experimental Results

Scenario 1
To evaluate the Offline-CELA policies, we modelled an IaaS cloud environment with 4
DCs sites (in 4 different geographical regions such as USA, Europe, Brazil, and Asia).
The aim of this scenario is to strike a trade-off among the latency of data access and the
energy consumed by the DCs that is evaluated using the workload Makespan and AS
metrics respectively. Therefore, two different tests are conducted: one to measure the
effectiveness of CELA model in data placement, while the other to study the overall
performance of the CELA model on QoS.

Table 3 shows the relationship between DCs distributed sites PUE, CO2 rate
emission, number of servers in each DC, and average distance between the DCs sites
and end users based on [17, 19, 21, 24, 25]. To measure effectively the AS metric, two
different cloud environments are tested. One considered hosts are homogeneous of
Type 1 (as shown in Table 4), and use small VM instance type (as shown in Table 5).
The other are considered heterogeneous hosts of types: Type 1 and Type 2 (as shown in
Table 4) and four different VM types (as shown in Table 5). The number of hosts for
each DC varies within the range [220:440]. We assume that hosts will consume the full
system power when the server is on. We use SIGNIANT Flight pricing model as
transferring WAN pricing cost [24].

Table 3. Geo-distributed DCs specifications based from [17, 19, 21, 24, 25].

DC dc1 dc2 dc3 dc4

PUE 1.3 1.7 1.65 1.5
CO2 tons/MWh 0.864 0.350 0.466 0.678
Average distance (miles) 10500 6500 2200 8400
Average latency (milliseconds) 190 120 45 150
WAN transfer cost (S/GB) 0.181 0.08 0.01 0.138

Table 4. Host’s type and specifications extracted from [15].

Host’s type Specifications

Type 1 HP ProLiant ML110 G4 (1 x [Xeon 3040 1860 MHz, 2 cores], 16 GB)
Type 2 HP ProLiant ML110 G5 (1 x [Xeon 3075 2660 MHz, 2 cores], 16 GB)

Table 5. Amazon EC2 VM(s) specification extracted from [16].

VM instance
type

Cores MIPS RAM
(MB)

Bandwidth
(Mbps)

Storage
(GB)

Price/hour
(Euro)

Extra small 1 500 613 100 0.633 0.02
Small 1 1000 1740 100 1.7 0.047
Medium 1 1500 1740 100 0.85 0.148
Large 1 2000 870 100 3.75 0.2

16 S. Rawas et al.

Makespan. The algorithm used to compare the Makespan metrics is MF-ECC and
MF-Random. MF-ECC, a Most Full Energy and Carbon-aware VM placement method
and similar version to MF-CELA without considering network latency for DC site
selection. In the other hand, MF-Random select DCs randomly and apply the MF VM
placement policy for host selection. The objective of this experiment is to find the effect
of using network latency as an important factor when choosing DCs to execute users’
request.

Figures 6a and 6b show the workload Makespan improvement achieved by the
location aware MF-CELA algorithm over MF-ECC, and MF-Random methods using 3
different numbers of VMs request as shown in Table 6. Taking the transferring cost
into consideration, our MF-CELA algorithm significantly outperforms the MF-ECC in
achieving high cloud QoS with approximate 25% rate of Makespan enhancement.
However, it is clearly reveal the unstable performance of MF-Random method due to
the nature of random selection.

AS. This experiment compares MF-CELA with Simple-CELA, BF-CELA, LF-CELA,
and FF-CELA. All are a similar version to MF-CELA in DCs selections. However,
Simple, BF, LF, and FF are VM placement methods that chooses, as the host for a VM,
the host with less PEs in use, the best fit host in terms of available MIPS, the least full
host in terms of available MIPS, and the first fit host in terms of available MIPS
respectively.

Fig. 6a. Workload Makespan in different number of cloudlets and VMs - homogenous
environment.

Table 6. Cloud resources based from [13].

Simulation type Number of VMs Number of cloudlets

Small 500 1000
Medium 1000 2000
Large 1500 3000

CELA: Cost-Efficient, Location-Aware VM and Data Placement 17

Figure 7a demonstrates that MF-CELA VM placement method reduces energy
consumption with an average of 50% compared to Simple-CELA and LF-CELA
algorithms and using 3 different numbers of VMs request as shown in Table 4.
Although the result shows that FF-CELA and BF-CELA contribute to energy saving
same as MF-CELA, however, this will not be the case when heterogeneous cloud
environment is considered as shown in Fig. 7b Note that, in this experiment, the
number of activated hosts is taken as a measure for energy consumption.

Fig. 6b. Workload Makespan in different number of cloudlets and VMs – heterogeneous
environment.

Fig. 7a. AS in different number of cloudlets and VMs – homogenous environment.

Fig. 7b. AS in different number of cloudlets and VMs – heterogeneous environment.

18 S. Rawas et al.

Scenario 2
This section evaluates the Online-CELA proposed policies. We employed real Plan-
etlab traces to emulate the online SaaS cloud environment. The SaaS cloud environ-
ment was modelled with 4 DCs sites. The DCs distributed sites PUE, CO2 rate
emission, and average distance between the DCs sites and end users are the same as
indicated in Table 3. However, hosts are considered heterogeneous of type Type 1 and
Type 2 as indicated in Table 4. According to the linear power model (Eq. 1), and real
data from SPECpower benchmark (Standard Performance Evaluation Corporation,
2017), Table 7 presents the hosts power consumption at different load levels.

Four different VM types are used inspired by Amazon EC2. Table 5 displays the
characteristics of VM instances and their hourly price. To generate a dynamic work-
load, Planetlab benchmark workload is employed to emulate the SaaS VM requests.
Each VM runs application with different workload traces. Each trace is assigned to a
VM instance in order. We choose 3 different workload traces from different days of the
Planetlab project. The simulation represents one-day simulation time. The algorithm
runs every 300 s.

BF-CELA and BF-SLA-CELA VM placement algorithms are compared to two
different competing algorithms FF-CELA and Simple-CELA. Both are a version of
CELA model, i.e. they use the same method of CELA to select DC sites. However, the
first one applies First Fist algorithm for host selection, and the other applies the Simple
policy.

To find the importance of considering the PUE, CF, and network latency factors in
DC site selection, BF-LCC and BF-LEC are used. Both are other versions of BF-
CELA. However, in DC site selection, the first one (Best Fit Location Carbon and
Cost-aware) does not consider the PUE, while the second (Best Fit Location Energy
and Cost-aware) ignores the carbon emission rate factor.

Power Consumption. Figure 8a illustrates the efficiency of the proposed CELA
methods in comparison with FF and Simple algorithms using 3 different workload
traces and different number of VM requests per day. As results reveal, BF-CELA and
BF-SLA-CELA algorithms reduce energy with an average of 20% and 15%
respectively.

Table 7. HP servers host load to energy (Watt) mapping table extracted from [15].

Server type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP G5 93.7 97 101 105 110 116 121 125 129 133 135

CELA: Cost-Efficient, Location-Aware VM and Data Placement 19

Electricity Cost. Figure 8b show the effect of energy reduction on electricity cost.
Since BF-CELA algorithm has lower power consumption as shown in Fig. 8a, this
directly affects the electricity cost. Based on the information extracted from the U.S.
Energy Information website [17], we consider energy price in the range of [4, 20]
Cent/KWh. To calculate the electricity cost at four different DCs, we use the average
(12 Cent/KWh) as an electricity price. It was predictable that CELA algorithms will
outperform other placement methods. Figure 8b proves the importance of energy
reduction on minimizing the electricity cost. In general, BF-CELA and BF-SLA-CELA
improved the cloud provider electricity cost with an average of 17% as shown in
Fig. 8b.

Carbon Footprint. Figure 8c studies the importance of using the CF and PUE factors
in CELA model in reducing the CO2 footprint under different number of workload
traces. BF-CELA and BF-SLA-CELA compared to BF-LEC (non-carbon efficient),
BF-LCC (non-power efficient), FF-CELA and Simple-CELA (carbon and power effi-
cient). Based on Fig. 8c, BF-CELA and BF-SLA-CELA decrease the CO2 emission
with an average of 16% and 29% compared to other competing VM placement algo-
rithms. Considering the algorithms behaviour, we can conclude that the PUE and CF
factors play an important role and lead to significant reduction in energy and CO2
emission.

Fig. 8a. VM placement algorithms power consumption extracted from [13].

Fig. 8b. VM placement algorithms electricity cost.

20 S. Rawas et al.

SLAH. Figure 8d highlights the importance of BF-SLA-CELA in reducing the SLA
violation without ignoring energy saving to minimize the penalties cost. The experi-
ments show 54% as an average reduction in SLA violation compared to BF-CELA and
FF-CELA algorithms.

Revenue. To calculate the net Revenue per day, the penalties for missing VM SLA are
taken as 10% refund. Figure 8e illustrates the importance of CELA model on
increasing the cloud provider net profit. As Fig. 8e shows, BF-CELA and BF-SLA-
CELA algorithms outperform other competing VM placement algorithms.

Fig. 8c. VM placement algorithms’ carbon footprint.

Fig. 8d. Average percentage of SLAH violation.

Fig. 8e. VM placement algorithms net revenue.

CELA: Cost-Efficient, Location-Aware VM and Data Placement 21

8 Conclusion and Future Work

This paper investigates different parameters that affects the cloud provider decision in
VM and data placement in geo-distributed DCs. The proposed and implemented CELA
model strike the trade-off between WAN latency, DC CO2 emission rate, PUE, and
energy consumption to find a suitable host machine to process cloud user request. The
main aim of CELA model aim is to improve cloud system QoS, minimize its opera-
tional cost and assure cloud environmental sustainability. The performance of CELA
model that modeled as a multi-objective optimization problem advances using an
intelligent machine learning prediction model.

CELA-NWP aim to find the best weighting between the multi-objectives that
guides the cloud provider to DC selection. Different VM placement approaches are
implemented and evaluated to solve the problem of CELA model. To validate the
effectiveness of the proposed mode, extensive simulations are conducted. The exper-
imental results show the importance of CELA model in DCs selection and cloud
provider net profit improvement. This is beside its great effect in optimizing DCs
energy consumption. As future directions, our aim is to extend the CELA model to
handle the cost of moving data inside the modern high-performance network DCs that
cause the main source of power consumption.

References

1. Al-Dulaimy, A., Itani, W., Zekri, A., Zantout, R.: Power management in virtualized data
centers: state of the art. J. Cloud Comput. 5(1), 6 (2016)

2. Luckow, P., et al.: Spring 2016 National Carbon Dioxide Price Forecast (2016)
3. Rawas, S., Itani, W., Zaart, A., Zekri, A.: Towards greener services in cloud computing:

research and future directives. In: 2015 International Conference on Applied Research in
Computer Science and Engineering (ICAR), pp. 1–8. IEEE, October 2015

4. Khosravi, A., Andrew, L.L.H., Buyya, R.: Dynamic VM placement method for minimizing
energy and carbon cost in geographically distributed cloud data centers. IEEE Trans.
Sustain. Comput. 2(2), 183–196 (2017)

5. Fan, Y., Ding, H., Wang, L., Yuan, X.: Green latency-aware data placement in data centers.
Comput. Netw. 110, 46–57 (2016)

6. Chen, K.Y., Xu, Y., Xi, K., Chao, H.J.: Intelligent virtual machine placement for cost
efficiency in geo-distributed cloud systems. In: 2013 IEEE International Conference on
Communications (ICC), pp. 3498–3503. IEEE, June 2013

7. Bauer, E., Adams, R.: Reliability and availability of cloud computing. Wiley, Hoboken
(2012)

8. Ahvar, E., Ahvar, S., Crespi, N., Garcia-Alfaro, J., Mann, Z.A.: NACER: a network-aware
cost-efficient resource allocation method for processing-intensive tasks in distributed clouds.
In: 2015 IEEE 14th International Symposium on Network Computing and Applications
(NCA), pp. 90–97. IEEE, September 2015

9. Malekimajd, M., Movaghar, A., Hosseinimotlagh, S.: Minimizing latency in geo-distributed
clouds. J. Supercomput. 71(12), 4423–4445 (2015)

22 S. Rawas et al.

10. Jonardi, E., Oxley, M.A., Pasricha, S., Maciejewski, A.A., Siegel, H.J.: Energy cost
optimization for geographically distributed heterogeneous data centers. In: 2015 Sixth
International Green Computing Conference and Sustainable Computing Conference (IGSC),
pp. 1–6. IEEE, December 2015

11. AWS Global Infrastructure (2017). https://aws.amazon.com/about-aws/global-infrastructure/.
Accessed Jan 2017

12. Zhou, Z., et al.: Carbon-aware load balancing for geo-distributed cloud services. In: 2013
IEEE 21st International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 232–241. IEEE, August 2013

13. Rawas, S., Zekri, A., El Zaart, A.: Power and cost-aware virtual machine placement in geo-
distributed data centers. In: CLOSER, pp. 112–123 (2018)

14. Planet lab traces. https://www.planet-lab.org. Accessed Jan 2017
15. Standard Performance Evaluation Corporation (2017). http://www.spec.org. Accessed Jan

2017
16. Google Data Centers. Google Inc. (2017). https://www.google.com/about/datacenters/

efficiency/internal/. Accessed Mar 2017
17. EIA, US Energy Information Administration (2017). http://www.eia.gov/. Accessed Mar

2017
18. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit

for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

19. Thang, K.: Estimated social cost of climate change not accurate, Stanford scientists say
(2015). Accessed 5 June 2016

20. Google Inc. https://www.google.com/about/datacenters/inside/locations/index.html. Acces-
sed Jan 2017

21. Wan Latency Estimator. http://wintelguy.com/wanlat.html. Accessed Feb 2017
22. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA

data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
23. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor

classification. J. Mach. Learn. Res. 10(Feb), 207–244 (2009)
24. Signiant organization. (2017). http://www.signiant.com/products/flight/pricing/
25. Sverdlik, Y.: Survey: industry average data center pue stays nearly flat over four years. Data

Center Knowl. 2(06) (2014)
26. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial

overview. Neuroimage 45(1), S199–S209 (2009)

CELA: Cost-Efficient, Location-Aware VM and Data Placement 23

https://aws.amazon.com/about-aws/global-infrastructure/
https://www.planet-lab.org
http://www.spec.org
https://www.google.com/about/datacenters/efficiency/internal/
https://www.google.com/about/datacenters/efficiency/internal/
http://www.eia.gov/
https://www.google.com/about/datacenters/inside/locations/index.html
http://wintelguy.com/wanlat.html
http://www.signiant.com/products/flight/pricing/

Will Cloud Gain an Edge, or, CLOSER,
to the Edge

Lee Gillam(&)

Department of Computer Science, University of Surrey, Guildford, UK
l.gillam@surrey.ac.uk

Abstract. This paper accompanies a keynote speech given at the 8th Interna-
tional Conference on Cloud Computing and Services Science, CLOSER 2018.
The keynote offered an overview of ‘traditional’ and ‘new’ Cloud Computing,
and what we might appreciate of each. In respect to ‘traditional’, issues of
performance and energy efficiency, and the potential conflict between these,
were discussed, as well as how these were still relevant to ‘new’ Cloud. Key to
the ‘new’ Cloud is the advent of so-called function-as-a-service and edge, to
which these issues of performance and lessons learned from energy efficiency
can be applied. Important to this is to establish what we mean by edge as
distinct from other things as may be similarly referred to. The relevance of new
Cloud, then, to Connected and Autonomous Vehicles offers for an industry
vertical that could exploit such formulations, and attempts to do this will lead to
a variety of technical and research questions. Also, with a person in America
having been killed by a vehicle acting autonomously near to the timing of
this talk, safety concerns should never be far from thinking in addressing
such questions.

1 Introduction

The notion of what we may now consider as traditional cloud emerged from utility-
based computing following on from work undertaken by Sun with network.com and
IBM with compute-on-demand back in 2005 and - since 2006 - is an area in which
Amazon has emerged as a market leader. Cloud standards exist, with the principal
defining standard from the National Institute of Science and Technology that identified
the three service models of software, platform, and infrastructure (abbreviated to SPI,
and all ‘as a service’), four delivery models, and five key characteristics – the 3-4-5 [1].
The ISO definitions of ISO/IEC 17788 followed later. Cloud, delivered as public, is
mostly composed of large, economically efficient, and so easily maintained but still
expensive, data centers. Major providers tend to have relatively small numbers of
geographical regions in which these things exist, and bringing them together gives the
providers a good economic advantage in being able to support large user numbers
within large setups at an incrementally small cost. As the likes of Geoffrey Moore
would identify, a Big Four exists; variously with Amazon as the biggest of these and
made up by the likes of Microsoft, IBM and Google; some might suggest Alibaba as
being most ready to displace one of these.

© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 24–39, 2019.
https://doi.org/10.1007/978-3-030-29193-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_2

Each of these has brought similar innovations around service delivery, and so in
addition to virtual machines (VMs) each now offers containers - and all support Docker
– as well as functions. Docker, of course, leads to a lock-in to a particular kernel, in
contrast to the operating system independence achieved with virtualization and the use
of virtual machines. However, there is advantage to be had in the size of what results
from this, and flexibility remains in container contents. For functions, it is necessary to
commit to a programming language that is supported by the system being used (i.e. the
vendor) and define broad characteristics of execution such as the maximum usable
memory and runtime; multiple approaches, with no emergent or de facto standard, exist
across providers. Containers and functions can both be useful components in the
delivery of microservices.

As well as SPI, then, some will offer container-as-a-service and function-as-a-
service. Largely, these are subtypes of the existing service models. And beyond these,
we also now encompass notions of “edge” computing, which may cover a number of
possibilities and the location of the edge acts as both a defining characteristic and an
implication for the kinds of capabilities offered and to whom.

Edges, along with functions and containers, offers an idea of how computing can be
(re-)distributed, with distributed computing approaches resurgent. Where the traditional
cloud consolidated systems into big data centers run by large corporate entities, the
same kinds of capabilities are now being pushed back out towards where people and
the devices that need the computational power are. A Big Four exploiting the oppor-
tunities this offers is yet to emerge, although the current Big Four in cloud are all
revealing certain edge offerings and time will tell which has traction. However,
opportunities would seem to exist for others, and with consideration for certain kinds of
edges it may be that telecommunications companies are well placed to be at the
forefront.

The keynote, and this accompanying paper, comprises four parts and covers
research addressed in relatively recent work [2–10]. First, we further clarify this tra-
ditional cloud, in particular with respect to performance variation and implications
related to energy efficiency. Second, in new cloud, we look to how some of this
influences so-called serverless compute, and how performance becomes important
again. With the multiplicity of possible edges, we identify a specific edge of interest,
and the potential this offers. Third, in respect to an application area, we consider
connected and autonomous vehicles, with reference to an active research project.
Finally, we pose a number of technical/research challenges that emerge from these
considerations.

2 Traditional Cloud

Traditional cloud provides for the illusion of infinite capacity, and proving – through
usage – that it is not could be expensive. In such a cloud, it is possible to provision
significant amounts of compute resource to undertake work for a desired period of time,
as long as somebody is prepared to pay the bill.

The biggest cloud provider by various measures is Amazon Web Services. In 2014,
AWS’ scale, at a time when they were offering 11 regions and 28 availability zones, was

Will Cloud Gain an Edge, or, CLOSER, to the Edge 25

projected at 2.8 to 5.6 million servers [11]. At the start of 2018, AWS had 18 regions
with 54 availability zones, and five more regions coming. At the upper end of Morgan’s
estimate, this is some ten million servers. By 2012, AWS already boasted storing a
trillion objects in S3, with that number doubled by April 2013, implying much greater
numbers now. At such scale, significant economies have to exist in managing it in order
to deploy and maintain large numbers of servers in those regions, variously spread
around the world. Cloud datacentres also have a large physical footprint. According to a
report by Greenpeace, [12] Microsoft’s Illinois datacentre is some 700,000 square feet –
the compares to football club Manchester United’s pitch size of 80,000 square feet:
multiple football pitches, then, per DC.

With regions at distance from many, one limiting factor on usage is latency.
A company called Datapath has several images of latency figures measured from
various location to AWS. In one example latency map1, from a location in the US,
latencies range from 37 ms on the east coast to 66 ms on the west, and moving further
away from there, to 166 ms somehow on the west coast of Africa. Such times are worth
noting when working, as will be addressed later, with edge – these are the latencies to
beat.

If latency is an important factor, which it is to a reasonable extent for websites
already, likely latencies will limit the regions usable, and potentially the availability
zones, to use. Since Cloud pricing tends to be region-specific, latency may also result in
a commitment to price. In AWS, it is very typically cheaper to run in the eastern US
than in any other location. However, availability of suitable resources within a latency
threshold then becomes a factor. The best resources may be further away, with higher
latency but, when latency is a dictating factor, architecting an application carries
dependencies on the capabilities available within this latency; and available resources
at low latencies that are less effective may already cost more. It is necessary, then, to
consider latency against cost and capability; the latter relates to availability of the
hardware most adept for the application. Table 1 shows regions by date from US East,
built first in 2006, through to Asia Pacific, Sydney in 2012, and the availability of CPU
models related to a single instance type within those: an instance type may be backed
by multiple models at the same price; sometimes, there is a one-to-one correspondence
between CPU model and instance type - at least for a time – but not always over time.

Different CPU models will offer for different performance, and different regions
will provide different proportions of CPU models backing the instance type. Some
regions may not have any servers containing a particular CPU model. If a certain model
was best for your workloads, you’d prefer to avoid regions that cannot offer those. But
performance is not simply a matter of better or worse. CPU models that provide for
better integer performance, for example, may offer worse floating point performance.

Figure 1 shows results from several benchmarks run on CPU models backing such
instances. Benchmarks cover integer, floating point, and memory bandwidth – the latter
being most visibly impacted by contention. The red box follows performance of the
Intel Xeon 5430; the orange box follows performance of the Intel Xeon 2650. If the
workload is integer oriented, the 5430 offers better performance, at the same price, than

1 Viewable at: https://cdn-images-1.medium.com/max/1000/1*jBdZHhe_Ow6o5p9ZepVBMw.jpeg.

26 L. Gillam

the 2650. However, for floating point the 2650 is better at the same price. The workload
will dictate the hardware that is better for it, and as a consequence the cost will differ –
you pay more for it to run for longer meaning, essentially, you’re paying more for
worse service.

A given user, then, has a variety of potential trade-offs for cost-efficient work in
cloud. Starting from latency, suitable hosting locations are suggested and this offers an
initial price range. The amount and type of computational power is then a concern: this
is a performance determination related to price for suitable resources. The reverse route
would be to consider which availability zones offer suitable resources, and see whether
this provides for acceptable latency. The resulting location selection isn’t the final issue
since potential availability of suitable resources doesn’t guarantee availability when
needed, nor the ability to specify these; this provides for a kind of instance lottery –

knowledge of the prior probability may help, but variation on cost should also be
factored in. Since what is available appears also to differ by user, with users apparently
mapped to a subset of possible resources, each user has to conduct their own analysis.
Each user, then, incurs costs in performance determination ahead of time, and poten-
tially also during live use. And, of course, the composition of the infrastructure changes
over time, so it is not possible to assume that doing this once for a user fixes it for all
time.

It is important to note, then, that obtaining cost efficient performance in the cloud
carries costs and requires some technical exploration, with heterogeneity in hardware a
significant factor – and one relatively rarely accounted for in experimental findings:
much work on cloud performance tends to assume homogeneity and that variations
simply aggregate out. Through suitable investigation, however, a decent amount of
cost-efficient performance may be gained.

Table 1. Proportion of CPU models backing a first generation EC2 instance type across
multiple regions and availability zones [13], as made available to one user. Note, in particular, the
absence of certain models over time.

Region AZ E5430 E5-2650 E5645 E5507

US East, N. Virginia, 2006
[year Region started] -
Cheapest

us-east-1a 31% 0 25% 44%
us-east-1b 5% 59% 29% 7%
us-east-1c 0 47% 52% 1%
us-east-1d 18% 31% 44% 7%

EU West, Dublin, 2007 eu-west-1a 4% 75% 19% 2%
eu-west-1b 28% 0 44% 28%
eu-west-1c 4% 0 63% 33%

US West, N. California, 2009 us-west-1b 0 0 13% 87%
us-west-1c 8% 0 18% 74%

SA, San Paulo, 2011 sa-east-1a 0 81% 19% 0
sa-east-1b 0 86% 14% 0

US West, Oregon, 2011 us-west-2b 0 73% 27% 0
Asia Pacific, Sydney, 2012 ap-southeast-2a 0 64% 36% 0

ap-southeast-2b 0 75% 25% 0

Will Cloud Gain an Edge, or, CLOSER, to the Edge 27

Furthermore, it is not possible to eliminate resource uncertainty: some instances
may simply suffer from severely hampered performance: one instance performed the
Povray benchmark in 1379 s, some thirteen standard deviations from the mean. An
unwitting user would be paying rather more for such bad performance! On occasion, it
may not even be possible to obtain certain CPU models, or even instance types, as may
be preferred, if they are all committed to other users – although this at least demon-
strates that it is an illusion of infinite resources. Also, one predominating reason for
resource uncertainty is contention. When other virtual machines are running or being
started alongside your own on a shared host – with smaller virtual machine instance
types much more likely to run on such shared resources that much larger - increases in
runtimes will happen at certain times with rises for a period and eventually falls back to
certain levels - depending on the other workloads that are contending. Sometimes this
can appear particularly noisy. Using a dedicated host, and placing competing work-
loads onto it, such effects are readily demonstrable by measuring runtimes in one
instance when loads are run on other instances: as expected, we see rises of a certain
size, a return to expected performance when no other loads are run, and some sub-
stantially longer runtimes such as an example shift from 75 s to almost 350 s when
large amounts of competition exist, as shown in Fig. 2.

Fig. 1. Variations in performance of 5 benchmarks – two for integer, two floating point, and one
memory bandwidth - for a single AWS instance type. Note, specifically, positions of E5430
outlined in red, and E5-2650 outlined in orange, with respect to each other and other CPU
models. Figure is modified from [5]. On all but the centre chart, where lines are dashed, the left
side of the chart represents better performance (Color figure online)

28 L. Gillam

The idea that a cloud service brokerage could reduce some of the difficulties of
assuring performance may be appealing. However, exploration of creation of such a
broker identified significant profitability issues for such an endeavour, making it dif-
ficult to sustain [2]. Such a broker would have to operate with high volume, low profit
margin, opportunities. The advent of per-second billing in a number of cloud providers
makes such an opportunity small and fast diminishing. This view also tends to con-
tradict research elsewhere on cloud brokerage, but largely since such research has
tended to avoid considering broker profitability, the cost of setting up an organization,
or the running costs. It also doesn’t tend to consider the costs of transactions over an
exchange, or the willingness of users to pay for such a service over and above what
they’re getting from a cloud provider. Various research ideas will appear appealing
until tested against operational realities.

2.1 Energy

Computational performance, of course, carries implications to the amount of energy
used. Ignoring cost, it may be possible to achieve equivalent performance on two
different systems with different amounts of energy, provided that addition of energy

Fig. 2. Effects of running benchmarks in 15 other instances on a dedicated host, evidenced by
variations in runtimes in an instance running pbzip2 (16 m4.large instances in total). Baseline
performance (periods 1, 3, 5) exists when no benchmarks are run; other times are when others are
running pbzip2 (2), sa-learn (4), one STREAM (6) and 2 STREAM (7) processes.

Will Cloud Gain an Edge, or, CLOSER, to the Edge 29

relates to additional capability – e.g. higher CPU frequencies or additional cores. Since
runtime is variable with hardware due to heterogeneity, it is necessary to determine the
amount of power required to deliver a particular runtime on some given hardware,
assuming it can be delivered at all. And, at the same time, best performance might not
be the most energy efficient performance.

Within a data center, the highest cost for server use tends to be defrayed by the first
paid-for work the server is doing, with additional work then at marginal cost. There are
various figures for how much energy a server consumes whilst merely switched on -
anything from ten to seventy percent of the maximum. And whilst having the server do
more work improves the cost justification for the provider, this is potentially to the
detriment (in risking contention) of the consumer (user) - the less loaded the server, the
lower the runtimes and the less the user pays, and this is also the worst arrangement for
the provider. There appears to be an incentive, then, for unscrupulous providers to offer
instances with worse performance! Workload consolidation also appears geared towards
providing worse performance. Ironically, much research on datacentre efficiency
involves consolidation without any consideration for how much this would annoy users
due – vitally – to the detrimental impact on performance (i.e. the amount of work done is
considered as constant and unaffected, and so the associated price is also considered
constant because the effects of contention are not appreciated). Worse still, similar
workloads are more likely to create contention, and if there is a ‘best’ CPU for some
work then either seeking for these ‘best’ or consolidating all such work to the same
server(s) through migration, further increases the likelihood of detriment. If you are the
owner of those workloads, you then carry a higher risk of becoming your own noisy
neighbour and, moreover, being the cause of your own increases in costs. Unconsoli-
dated work, then, should be better for the user. For the provider - with an assumption of
contention-free processing - consolidation through migration carries cost in requiring
duplicate resource during the period of migration, and produces network traffic. The
time required for migration, of course, varies with the amount of data on disk, and in
memory pages, that needs to be transferred. Merely to maintain the status quo on energy
efficiency, the costs of such additional resource use must first be recouped and this is
only achievable if (i) servers without loads are powered down and switched off for a
sufficient period, and/or (ii) more work is done using less energy for a sufficient period at
the target. Clearly, with contention, (ii) is rather less likely AND the user is less happy.
Much research on consolidation also ignores such costs, effects, or both.

If energy being deployed to support migration is unrecoverable, there’s little to gain
from migrating. Consider, for example, if the workload migrated would have completed
quickly, potentially even before migration is complete – cost would have been incurred
without any opportunity for benefit. Additionally, if we assume that cloud providers are
buying energy in contracts for fixed amounts, there may be little incentive for such
actions in the first place. As such, assumptions that providers of cloud systems want to
do this may not always be correct. But assuming that there is a motivation for such
activity, it would make sense to account first for energy efficiency absent powering
down. For a given workload, we can create an ordering of preferred machines, and only
offer migration as an option when a preferred machine is the target – so the workload
would run for a shorter time, and we carry an assumption that such running is more
energy efficient; in reality, this may not be true. Already, though, if we were migrating

30 L. Gillam

towards longer runtimes, energy use carries longer durations, and the user is less likely
to be happy, so even this assumption is useful. If, additionally, contention is avoidable,
and runtimes don’t lead to large amounts of redundant migrations, at minimum costs
would be recovered. This is the basis of a method we refer to as Consolidation with
Migration Cost Recovery (CMCR) [7]. In CMCR, running workloads can only be
migrated where greater efficiency is assured (or, at least, assumed). We then look to an
offset in time where the cost of migration has been recovered - from which point it is
assumed to become more energy efficient. This attends to both costs and (avoidance of)
effects of migration, albeit with assumptions regarding inspectability of workloads in
contrast to the supposed opaqueness of VMs.

Experimental work for CMCR addressed nine scheduling approaches, multiple
mechanisms for scheduling and consolidation, and its omission, and over 12,000
heterogeneous hosts, that being the size of a small data center, for some 25 million
virtual machines characterizing tasks from the Google workload trace data, and also
five settings on minimum elapsed runtimes to avoid large numbers of migrations for
short-lived workloads [5]. Migration rounds were considered every five minutes in an
otherwise on-demand setting, and only for hosts that were less than twenty percent
utilized. One shortcoming of using Google trace data is that it doesn’t contain CPU
information. Usefully, however, we were able to infer this through an alignment of
workload types to distributions from the aforementioned performance evaluations, so
could infer hardware that would map from runtimes to the Google data. With mappings
from priorities in workloads to povray, NAMD, and STREAM, we obtained the
machine rankings needed. With skewed lognormal distributions for CPU models -
mostly good performance but with a long tail of bad performance – it becomes possible
simply to read a CPU model for each Google workload, and determine feasibility for
migration. Such mapping is certainly imperfect, but useful absent suitable data.

Findings confirmed, as might be expected, that effective VM allocation is initially
quite advantageous – again making certain assumptions of inspectability of workloads,
in contrast to the opaqueness of VMs. Of course, more consolidation would tend to be
indicated when loads are distributed across larger numbers of servers, so VM allocation
approaches that produce a narrower distribution already reduce the potential for con-
solidation, and consideration of longer runtimes then reduces the number of candidates
for migration.

Such an approach remain susceptible to the existence of substantial variations in
workload over time – without additional information, and even greater inspectability, it
will be unclear when an application is running at maximal demand, or whether its
requirements will shift – e.g. from integer to floating point performance.

3 New Cloud

Serverless computing is now posed as a means to address much computational work.
That which is presented as function-as-a-service is not far removed from what the likes
of Google were doing a decade previously with Google App Engine: it’s a platform,
running some code for a small aspect of work, with limited configurability of under-
lying resources, and constrained in maximum runtime. Where cloud providers have

Will Cloud Gain an Edge, or, CLOSER, to the Edge 31

moved to per-second billing (some with a one minute initial run cost), function billing
can be at the hundred milliseconds level (rounded) and priced based on a combination
of runtime and memory usage.

An application, then, must be decomposed into sets of individually runnable
functions. Functions allied to a persistent storage capability may also be referred to as
microservices. The result of such decomposition is that complex relationships will exist
between functions with some dependent on others, and with coordination or orches-
tration of these becoming an issue.

Underlying such offerings, of course, are servers that still carry the same kinds of
hardware variability discussed above. AWS Lambda, for example, runs functions in
containers, and these containers run inside virtual machines. As such, hardware per-
formance carries directly through to application performance, along with any natural
variation. With function invocation times rounded up to the nearest hundred millisec-
onds, very minor variations will carry no impact. But when the spreads on runtime are
much more varied this should offer concerns both to how much it’s costing and to how
well an application as a whole is performing. If a very frequently used function was
inefficiently implemented, or runs on hardware least suitable for it, the effect of this may
become amplified. Not only is performance being lost, but increased costs are incurred
on every single function invocation, and a complex application may have parts further
dependent on this. The need to consider suitable performance should not be overlooked.

If we look under the hood of a function in AWS Lambda, for a Python (2.7)
runtime2, we will see a python runtime launched against something called bootstrap.py.

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
COMMAND
490 1 1.3 0.3 212024 15372 ? Ss 16:49 0:00
/usr/bin/python2.7 /var/runtime/awslambda/bootstrap.py
490 7 0.0 0.0 117208 2476 ? R 16:49 0:00 ps
auxw

We can also uncover information about the CPU and operating system:

model name : Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz
cpu MHz : 2900.066
cache size : 25600 KB
Linux ip-10-23-17-3 4.4.35-33.55.amzn1.x86_64 #1 SMP …
x86_64 x86_64 x86_64 GNU/Linux

Here, we have a dual core system running at 2.9 GHz, and with understanding of
the characteristics of performance of c4 benchmarks with respect to workloads it
should be possible to infer performance expectations. Others3 have seen functions
being backed by a 2.8 GHz E5-2680, which implies a c3 instance. Different instance

2 Arbitrary applications cannot be ‘installed’ as root, but pre-built applications can be loaded into and
run on the container’s file system provided that no further privileges are needed. As such, it is
possible to find out more about the working environment.

3 http://zqsmm.qiniucdn.com/data/20150416152509/index.html.

32 L. Gillam

http://zqsmm.qiniucdn.com/data/20150416152509/index.html

types and, again, different hardware may be backing functions, and so performance of
functions will be determined to some extent by that. In addition, since we can run
certain pre-built applications from functions, the STREAM benchmark can tell us how
much memory bandwidth is available, as shown in Fig. 3, and hopefully this is
coincident with the amount of memory that’s requested/allocated to a function.

3.1 Edge

Having considered performance for functions, we turn our attention to edge computing.
However, there are multiple possible edges covering:

• the (local) ‘network’ edge, sometimes considered as coincident with devices that
connect some number of sensors, although an example of something similar can be
a mobile phone as this offers an aggregation whilst providing local compute
capability

• a ‘customer’ edge or edge router, which is a device at the edge of some customer’s
network, assuming that such a perimeter is readily identifiable

• a ‘provider’ edge, at the edge of some provider’s network, although where that is
may be hard to demonstrate in practice

The edge of interest here is the one that relates an edge data center, with a correlate
in content delivery networks – a more local data centre. More specifically, such a data
centre offering a few racks of so-called multi-access or mobile edge computing
(MEC) [14], making it a more local data center in very close proximity to the radio
access network (RAN) enabling connectivity for mobile telecommunications, e.g.
alongside a (5G) evolved Node B (eNB).

In principle, work that may have been offloaded to a more distant cloud datacentre
can instead be offloaded to this edge, offering potential for much lower response times.
According to the specification, a MEC server allows for virtual machines to be run, so
should also be able to support containers that could in turn run functions. This, then,
provides for similar capabilities to traditional clouds at the edge of the mobile network.
Functions at the edge, then, offer for fast execution, and being close to where the work
is being done implies additional gains from low latency. However, concerns would
exist with respect to capacity – especially in contrast to large cloud datacenters. Of
course, edge servers are also still hardware, and so are similarly susceptible to hardware
variations as discussed above.

Fig. 3. Results for memory bandwidth available to the function according to a run of STREAM.

Will Cloud Gain an Edge, or, CLOSER, to the Edge 33

It is important, here, to distinguish such edges from other proximate notions.
Firstly, we have to discount the notion of fog due to confusion over what fog means per
se, with several possibilities offered up by the Open Fog Consortium. This was pre-
viously clear: fog extended cloud to some edge and was additional to cloud; this was
reinforced with examples of distributed applications that had both cloud components
and fog components: “A has one Cloud component, and two Fog components [..] B has
one cloud component, one component in the Core, and a Fog component” [15].
However, various Open Fog documents present fog as between clouds and things,
including cloud or in cloud and all of them are potentially equally valid and equally
invalid at the same time. Moreover, the Open Fog consortium say that fog is often
erroneously called edge computing, so even if we’re not sure about how it fits with
cloud, it’s not supposed to be thought of as a competing notion for edge.

Next, we distinguish it from a notion of cloudlets, from CMU, as between mobile
device and cloud4 –It is certainly relatable, since it is considered as a data-center-in-a-
box5. This notion doesn’t yet seem to expose an integration with telecommunications.
Interestingly, however, CMU formed an Open Edge Computing initiative in 2015, and
the most tangible development from there to date seems to be OpenStack++, which
allows for migrations between OpenStack clusters. Edges need virtual machine man-
agement, and some treatment of things moving from one eNB to another: what was
important, from the perspective of data or state, needs to be migrated to follow. These
are, modulo telecommunications, similar.

Finally, consider that migrations may occur between heterogeneous hardware. Such
a migration requires consideration of the impact to performance of this heterogeneity,
not least to request a suitable resource to continue work at the same rate. The time
required for the migration to happen is also important in offering for handover without a
break in service. And these factors become critically important if large numbers of users
are moving quickly between edges as they would for our considered application area.

4 New Cloud for Connected and Autonomous Vehicles

Along with the internet of things, as includes the internet of tractors, internet of kettles,
and internet of fridges, we can consider the internet of vehicles, and the application area
likely to provide substantial challenge in satisfying computational needs exists in
respect to Connected and Autonomous Vehicles (CAV).

A number of advantages are suggested for CAV in being able to do something
about, for example:

• 8 m accidents every year with 1.3 million fatalities and 7 million injuries
• ninety billion hours in traffic jams
• substantial CO2/NO2 emissions plus a variety of particulates

4 This should also be distinguished from the notion of a cloudlet in the CloudSim simulator, where it is
a task.

5 For some, though, the large boxes with data centres in are called ‘containers’, not to be confused with
those used in e.g. Docker - in case the current terminology is at risk of being in any way clear.

34 L. Gillam

In principle, then, offering for CAV would allow us to make the world a better
place, or at least improve the environment. Various and numerous companies are
investing in this area, which offers for a rich set of research questions, including but not
limited to:

• can cars become fully independent?
• what technologies are needed in order to support CAV?
• how will humans and vehicles interact with each other and their environment?

Assistive driving technologies already exist in many vehicles, with anti-lock
braking systems a very common example but also with adaptive cruise control. But it is
a long way from these to fully autonomous driving. There is also a significant risk if
any of such technology goes wrong.

An example CAV is offered by Waymo, which reportedly generates a gigabyte of
data every second - two petabytes per car per year assuming just 600 hours use per
year. Simply archiving, and paying for storage, of this volume of data over a network
offers some a technical challenge, but with an estimate of two billion total vehicles by
2020, the totality of such data could be much more significant and with obvious peak
times of such data being generated. And this only from cars. Of course, some data may
be processed on board the vehicle and may not be needed elsewhere. Furthermore, data
produced and consumed by such vehicles would vary both by time and by road
conditions: for example, in traffic jams, with large numbers of static users, more
demand would exist in specific locations on information services.

As part of a programme of research in the UK run by the EPSRC and Jaguar
Landrover, the University of Surrey is contributing to a five year research project called
Cloud Assisted Real time methods for Autonomy (CARMA). CARMA is investigating
the advantages of MEC with 5G and cloud, and the challenges of security, perfor-
mance, and latency that emerge. The three key parts of the architecture are, of course,
(i) cloud; (ii) edges, and for that we consider MEC as discussed above; and (iii) ve-
hicles, as shown in Fig. 4.

There is a growing need for computational capability to support CAV. The mul-
tiplicity of sensor streams, including RADAR and LIDAR, and interpretation of these
for object identification and classification already requires energy be provided for
computation. And more compute power means greater levels of energy consumption –

a particular challenge, in terms of range maintenance, for electric vehicles. Undertaking
some of that processing at edge or in cloud implies power consumption in moving data
over the network. And, perhaps, for analytical capabilities that cannot be provided on
the vehicle. In addition, some of that analysis will carry tight deadlines on its com-
pletion, emphasizing again the importance of low latency (and edge). Where higher
latencies can be tolerated, cloud can be used. And, of course, in terms of maintenance it
is easier to update computational capability on edges and in cloud than it is to update
every vehicle. However, edge largely comes into its own in respect to cooperation
amongst vehicles, sharing information that may not otherwise be available to any
individual. Low latency is again emphasized as, except when traffic is stationary,
information for close-proximity contexts has a limited period of relevance - vehicles
may have moved a moderate distance over marginally longer time periods, at which

Will Cloud Gain an Edge, or, CLOSER, to the Edge 35

point some data regarding highly transient objects may no longer be accurate (e.g.
position, speed, direction). Maintenance of such information is variously specified by
ETSI as a local dynamic map (LDM), a multi layered data-oriented system where
information can be overlaid on a standard 2D road map from a particular provider, with
layers of increasingly transient information for such facts as:

• where road infrastructure such as traffic lights are
• locations of roadworks
• locations of accidents
• ambient conditions, such as the existence of fog (not to be confused)
• where (other) vehicles are

Fig. 4. The logical architecture of CARMA.

36 L. Gillam

• and highly transient information such as the location of people, dogs, cats and other
animals that it is important to account for.

With all such information available about a particular geographical area at an edge,
it can be broadcast to interested parties. Such information would address things both
within and beyond sensor ranges. Appropriately capable systems are required to sup-
port this, with decisions needing to be made in real-time about how such capabilities
are being run depending on where the available compute power is.

Major cloud providers are already offering (limited numbers of) exemplars for
connected vehicles, which are predominantly vehicle-to-cloud (V2C). There are
examples for driving behaviour evaluation, geo-fence entry and exit, and sharing of data
from sensors for tyres, engine speeds, and a multitude of other characteristics as would
relate to diagnostics. But the only examples to date that have added edge are IBM’s
Edge Analytics, an Edge Agent on a Raspberry Pi and the DGLux tool, and the AWS
Connected Vehicle Solution [16] with multiple vehicle services and a hint of inclusion
of AWS Greengrass (albeit with minimal description about its purpose or integration).
Nevertheless, these will be worth keeping an eye on. The key question for these
examples, still, is the anticipated location of the edge. If it is simply on the vehicle,
offering simply a little more on-bard compute power and requiring energy from the
vehicle, as it appears to be in the AWS example, it remains V2C. The IBM example is
indicated as “on premise”, suggesting again remaining V2C. However, it doesn’t require
much to consider locating these edges appropriately and considering them as a proxy for
(VMs on) a MEC server. Presently, though, this would emphasise the drawbacks of such
examples only providing for limited cloud-like capabilities. Both examples offer for use
of MQTT messages, but neither readily provides for pluggable persistence or other
services as would be expected in cloud. Of course, the more cloud-like these edges need
to be, the more capable the servers have to be, and to go with that the greater the number
of vehicles, the greater the need for scale in order to support meaningful quality of
service. Large numbers of fast moving mobile users with various demands for low-
latency will certainly challenge provision of such supporting infrastructures.

5 Concluding Remarks

In summary, traditional cloud is established and unlikely to disappear any time soon.
The need for computation and storage at scale shows no sign of diminishing. However,
the purported need to address requirements for latency lower than can be provided by
such clouds makes consideration of edge important for certain use cases, allied to
function-as-a-service to retain low total execution times for self-contained capabilities.
Edge does, though, have to achieve latencies in the low tens of milliseconds, at most, to
be beneficial and allow time for computation.

The nature of such an edge is important to establish: here, it is a small datacentre – a
few racks of multi-access edge computer (MEC) servers located suitably geographi-
cally proximate to a large enough geographical area to be useful by many people, and
in very close proximity to the RAN (eNBs), offering cloud-like capabilities. As such. it
would be a simple modification to consider MEC as standing for multi-access edge

Will Cloud Gain an Edge, or, CLOSER, to the Edge 37

cloud. Similar neighboring edges will be needed to account for people moving quickly
between them and with state and data shadowing their movements.

We expect such edges, then, to support functions and/or containers along with
virtual machines. Functions, being relatively short-lived and doing small pieces of
work also bring new complexity in supporting their execution as well as in service
coordination and orchestration. However, smaller self-contained capabilities will move
more readily in networks, which will be important for moving such capabilities across
edges.

Cloud-connected vehicles represents an area of significant and growing interest,
although with relatively few concrete exemplars. Numerous challenges exist and are
likely to remain valid for some time, some of which likely make for very interesting
future research and development activities:

• for providers, what kinds of hardware should be provided, and how can we cope
with securing and updating for remote locations?

• which are the optimal locations for such edges?
• how will providers support migration of data, state, and applications?
• how do we cope with heterogeneous hardware, and across telecommunications

providers?
• are current approaches to information security sufficient for such formulations?
• what quality of service can be provided for, and will there be performance

guarantees?
• how much will the use of such systems cost, and who will pay?
• will end users have access, or will this be reserved for corporate uses?
• how do we cope with variability in capability, including outages?

And finally, and importantly for understanding such a future market: will the
resulting Big Four providers be telecommunications companies, cloud companies, or
require combination, even integration, of these?

Acknowledgments. The author is grateful to the CLOSER organisers for the invitation to give a
keynote, and to the audience for remaining for its duration. The author is additionally grateful to
Drs. O’Loughlin and Zakarya for their significant contributions through doctoral research to
performance evaluation and energy efficiency, respectively. Work on CARMA is supported by
EPSRC and Jaguar Land through grant EP/N01300X/1 as part of the Towards Autonomy: Smart
and Connected Control (TASCC) Programme.

References

1. Mell, P., Grance, P.: NIST Definition of Cloud Computing. NIST (2011)
2. O’Loughlin, J., Gillam, L.: A performance brokerage for heterogeneous clouds. Future

Gener. Comput. Syst. 87, 831–845 (2018)
3. O’Loughlin, J., Gillam, L.: Sibling virtual machine co-location confirmation and avoidance

tactics for public infrastructure clouds. J. Supercomput. 72(3), 961–984 (2016)
4. O’Loughlin, J., Gillam, L.: Addressing issues of cloud resilience, security and performance

through simple detection of co-locating sibling virtual machine instances. In: 5th International
Conference on Cloud Computing and Services Science (CLOSER 2015) (2015)

38 L. Gillam

5. O’Loughlin, J., Gillam, L.: Performance evaluation for cost-efficient public infrastructure
cloud use. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2014. LNCS, vol.
8914, pp. 133–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14609-6_9

6. Zakarya, M., Gillam, L.: Managing energy, performance and cost in large scale
heterogeneous datacenters using migrations. Future Gener. Comput. Syst. 93, 529–547
(2019)

7. Zakarya, M., Gillam, L.: Energy efficient computing, clusters, grids and clouds: a taxonomy
and survey. J. Sustain. Comput. Inf. Syst. 14, 13–33 (2017)

8. Zakarya, M., Gillam, L.: An energy aware cost recovery approach for virtual machine
migration. In: Bañares, J.Á., Tserpes, K., Altmann, J. (eds.) GECON 2016. LNCS, vol.
10382, pp. 175–190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61920-0_13

9. Stevens, A., et al.: Cooperative automation through the cloud: the CARMA project. In:
Proceedings of 12th ITS European Congress (2017)

10. Gillam, L., Katsaros, K., Dianati, M., Mouzakitis, A.: Exploring edges for connected and
autonomous driving. In: IEEE INFOCOM Workshops: CCSNA 2018 (2018)

11. Morgan, T.P.: A rare Peek Intro The Massive Scale of AWS (2014). https://www.
enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/

12. Greenpeace: Make IT Green: Cloud Computing and its Contribution to Climate Change,
Greenpeace (2010)

13. O’Loughlin, J., Gillam, L.: Should infrastructure clouds be priced entirely on performance?
An EC2 case study. Int. J. Big Data Intell. 1(4), 215–229 (2014)

14. ETSI. Mobile Edge Computing (MEC). Introductory Technical White Paper, ETSI (2014)
15. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of

things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC 2012, New York, USA, pp. 13–16 (2012)

16. Senior, S., Rec, C., Nishar, H., Horton, T.: AWS Connected Vehicle Solution: AWS
Implementation Guide (2017). https://s3.amazonaws.com/solutions-reference/connected-
vehicle-cloud/latest/connected-vehicle-solution.pdf

Will Cloud Gain an Edge, or, CLOSER, to the Edge 39

http://dx.doi.org/10.1007/978-3-319-14609-6_9
http://dx.doi.org/10.1007/978-3-319-61920-0_13
https://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
https://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws/
https://s3.amazonaws.com/solutions-reference/connected-vehicle-cloud/latest/connected-vehicle-solution.pdf
https://s3.amazonaws.com/solutions-reference/connected-vehicle-cloud/latest/connected-vehicle-solution.pdf

Model-Based Generation of Self-adaptive
Cloud Services

Stefan Kehrer(B) and Wolfgang Blochinger

Parallel and Distributed Computing Group, Reutlingen University,
Alteburgstrasse 150, 72762 Reutlingen, Germany

{stefan.kehrer,wolfgang.blochinger}@reutlingen-university.de

Abstract. An important shift in software delivery is the definition
of a cloud service as an independently deployable unit by following
the microservices architectural style. Container virtualization facilitates
development and deployment by ensuring independence from the runtime
environment. Thus, cloud services are built as container-based systems
- a set of containers that control the lifecycle of software and middle-
ware components. However, using containers leads to a new paradigm
for service development and operation: Self-service environments enable
software developers to deploy and operate container-based systems on
their own - you build it, you run it. Following this approach, more and
more operational aspects are transferred towards the responsibility of
software developers. In this work, we propose a concept for self-adaptive
cloud services based on container virtualization in line with the microser-
vices architectural style and present a model-based approach that assists
software developers in building these services. Based on operational mod-
els specified by developers, the mechanisms required for self-adaptation
are automatically generated. As a result, each container automatically
adapts itself in a reactive, decentralized manner. We evaluate a proto-
type, which leverages the emerging TOSCA standard to specify opera-
tional behavior in a portable manner.

Keywords: Microservices · Container · Self-adaptation ·
Model-based deployment · DevOps · TOSCA

1 Introduction

Today’s business requires fast software release cycles. To this end, DevOps and
continuous delivery have been introduced, which aim at bridging the gap between
development and operations by employing automation and self-service tools.
Microservices are an evolving architectural style for building and releasing soft-
ware in line with the DevOps paradigm [1,17]. Microservices are autonomous
and independently deployable [12].

However, the autonomous nature of microservices challenges their develop-
ment: More and more operational aspects have to be ensured by software devel-
opers thus leading to a transfer of responsibility - or how Amazon calls it: “you
c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 40–63, 2019.
https://doi.org/10.1007/978-3-030-29193-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_3

Model-Based Generation of Self-adaptive Cloud Services 41

build it, you run it” [15]. This is also enabled by technological advances such
as container virtualization [9,17]: Cloud services are commonly built as a set of
containers, which provide a portable means to deploy services to state of the
art container runtime environments such as Marathon1 on Apache Mesos2 and
Kubernetes3.

Container-based systems define a context for the software and middleware
components required and control their lifecycle: Containers define how to start
these components, how to update components at runtime, and how to stop com-
ponents before termination. Consequently, software developers have to imple-
ment container-based systems including operational behavior. Because contain-
ers interact with each other, every container has to be configured with spe-
cific runtime parameters as well as endpoint information. This configuration
of containers might be applied during the deployment of a service. However,
in a dynamic environment such as the cloud, runtime parameters have to be
adapted dynamically. Furthermore, endpoint information will likely change at
runtime, e.g., if a container has to be restarted. Thus, configuration is stored in
the environment4, i.e., configuration stores are used to store required runtime
parameters and container registries are used to find other containers. Following
this approach, software developers have to wire their implementation with tech-
nologies provided by the runtime environment. Besides adding more complex-
ity, this leads to heterogeneous implementations of configuration and lifecycle
management. Moreover, technological dependencies on configuration stores and
registries provided by the runtime environment decrease the portability benefit
inherent to containers.

To cope with the challenges described above, we present a novel model-based
approach that eases the development of self-adaptive cloud services. Our app-
roach enables software developers to specify operational behavior of cloud ser-
vices based on higher-level models and automatically generates the mechanism
required for self-adaptation. We transform a supplied cloud service into a self-
adaptive one by automatically adding runtime behavior to its containers at a
technical level. As a result, each container adapts itself to changes in the con-
tainer runtime environment in a reactive, decentralized manner. This transfor-
mation is provided as a service to developers and thus decouples environment-
specific technologies from software development. In particular, we make the fol-
lowing contributions:

– We present a concept for self-adaptive cloud services based on container vir-
tualization in line with the microservices architectural style.

– We introduce a model-based approach to assist software developers in creating
these self-adaptive cloud services.

– We provide a transformation method, which describes the steps of generating
self-adaptive cloud services at a conceptual level.

1 https://mesosphere.github.io/marathon.
2 https://mesos.apache.org.
3 https://kubernetes.io.
4 https://12factor.net/config.

https://mesosphere.github.io/marathon
https://mesos.apache.org
https://kubernetes.io
https://12factor.net/config

42 S. Kehrer and W. Blochinger

– We report on an implemented prototype based on the TOSCA standard and
state of the art technologies, which automates the transformation method.

– We evaluate our approach by measuring the transformation time as well as
the overhead related to an exemplary self-adaptive cloud service.

This work is based on previous research contributions that have been pub-
lished in the paper AutoGenIc: Automated Generation of Self-configuring
Microservices [6], which has been presented at the 8 th International Conference
on Cloud Computing and Services Science (CLOSER). We expand our former
work by presenting a concept for self-adaptive cloud services in line with the
microservices architectural style and state-of-the-art container runtime environ-
ments. Moreover, we discuss our extended model-based approach and show how
to implement self-adaptive cloud services.

The paper is structured as follows. In Sects. 2 and 3, we describe the microser-
vices architectural style and a motivating scenario for our work. Section 4
presents our concept for self-adaptive cloud services based on container virtual-
ization. Section 5 gives an overview of the AutoGenIc approach. In Sect. 6, we
discuss a transformation method, which describes the required steps to automate
the generation of self-adaptive cloud services. Further, we present and evaluate
an implemented prototype in Sects. 7 and 8. Section 9 reviews related work. In
Sect. 10, we conclude our work.

2 Microservices

A microservice is built around a business capability and implements the user-
interface, storage, and any external collaborations required [10]. Microservices
combine concepts from distributed systems and service-oriented architecture
leading to several benefits [12]. For instance, microservices can be implemented
with different technologies enabling a best-of-breed approach. Thus, new tech-
nologies can be adopted and old technologies can be replaced much faster. Com-
posing a system out of many small services also provides benefits for deployment
and management: It allows to deploy and scale every microservice independently
[11]. Typically, software containers are used to package and deploy microservice
components [16]. A topology model or template, which describes the contain-
ers a microservice is composed of and their relationships, enables automated
deployment [7].

However, the benefits of microservices come with the cost of operational
complexity [4]. The autonomous nature inherent to microservices requires appli-
cation developers to take responsibility for operational aspects such as dynamic
configuration [8]. To this end, the Twelve-Factor App5 principles propose to
store these information in the runtime environment. Technologies such as con-
figuration stores and registries are used to store configuration values and enable
dynamic bindings among containers. Employing technologies like Consul6, Etcd7,
5 https://12factor.net.
6 https://www.consul.io.
7 https://github.com/coreos/etcd.

https://12factor.net
https://www.consul.io
https://github.com/coreos/etcd

Model-Based Generation of Self-adaptive Cloud Services 43

or Zookeeper8 is a common practice for developing microservices [21]. They pro-
vide a scalable medium to store configuration information. Thus, microservices
are designed as self-adaptive entities, which automatically adapt to changes such
as container failures or configuration changes in the environment as well as var-
ious management operations.

3 Motivation

In this section, we introduce a cloud service, which is used as a motivating
example for our work. The topology of this service is composed of four contain-
ers interacting with each other (cf. Fig. 1): The wordpress container provides an
Apache HTTP server running a WordPress installation. The mysql container
runs a MySQL database. To answer user requests, the wordpress container con-
nects to the mysql container and retrieves data stored in the relational database.
Frequently requested results are cached by the memcached container, which runs
a Memcached9 installation. Memcached is an in-memory object caching system.
The memcached container is queried by the wordpress container before sending
a read request to the mysql container. Additionally, a separate backup container
periodically stores backups of the MySQL database by connecting to the cor-
responding container. This service thus implements the user-interface, storage,
and other technical requirements related to a specific business capability in line
with the microservices architectural style [10].

For configuration purposes, every container of the formerly described cloud
service requires its runtime parameters and endpoint information to interact with
other containers in the topology. To access their runtime parameters, containers
connect to a configuration store provided by the runtime environment. Similarly,
every container connects to a container registry to access endpoint information
of other containers (cf. Fig. 1). Whenever a runtime parameter or endpoint infor-
mation changes in the environment, a container itself is responsible for reacting
to this change. Furthermore, containers might exit with failures and have to be
replaced by new containers. In this case, containers should automatically detect
this new container and resume normally. This kind of self-adaptation ensures
self-healing services and thus minimizes downtimes, accordingly.

However, to ensure self-adaptation, software developers have to wire their
implementations with operational technologies provided by the runtime envi-
ronment. We identified several problems with this approach: (1) APIs of the
configuration store and the registry have to be used by software developers.
Every time the operations personnel decides to choose another technology, soft-
ware developers have to be instructed and existing implementations have to be
modified. (2) The logical name of required containers has to be defined and
known by software developers. (3) Storing endpoint information of containers,
which are only used internally, in a central registry may lead to conflicts with
other deployments and breaks the microservice paradigm, e.g., if another service
8 https://zookeeper.apache.org.
9 https://memcached.org.

https://zookeeper.apache.org
https://memcached.org

44 S. Kehrer and W. Blochinger

Fig. 1. Cloud services interact with their runtime environment for adapting their run-
time behavior in a dynamic and decentralized manner.

requester receives the endpoint information of our MySQL database. This infor-
mation should be kept private and not exposed to other services. (4) Moreover,
portability is limited, i.e., services cannot be deployed to a runtime environment
that does not provide the required technologies.

In general, software developers are confronted with environment-specific tech-
nologies to enable dynamic adaptation of their services. Technological dependen-
cies on specific configuration stores or registries counteract the portability benefit
of using container virtualization.

4 Self-adaptive Cloud Services

We introduce a novel concept for self-adaptive cloud services, which is compatible
with state of the art container runtime environments. These container runtime
environments provide tools for deploying and managing services or the corre-
sponding containers, respectively. Each service can be composed of one or more
containers [3]. Typical management tasks (such as scaling a service) can be eas-
ily automated by means of a container runtime environment. For example, new

Model-Based Generation of Self-adaptive Cloud Services 45

containers are added or existing containers are removed automatically by mon-
itoring the workload of a service. However, to enable these features, containers
have to be designed and built including operational behavior. In the following,
we present an operational model for services, define the terms management and
adaptation in this context, and derive the requirements that have to be fulfilled
by self-adaptive cloud services.

Figure 2 shows the operational model that outlines how cloud services are
deployed and managed by state of the art container runtime environments. These
systems typically provide an interface for software developers to easily deploy a
service by means of a service bundle. Since services are constructed as indepen-
dently deployable units, a service bundle contains all the required artifacts to
deploy a single service. An important part of the service bundle is the topology
model describing the topology of containers and related artifacts (e.g., container
images). The topology model contains all information required to automatically
deploy a corresponding service to a target runtime environment.

A deployment system processes requests by deploying a set of containers in
line with the specification of the service bundle. A monitoring system monitors
the load of the running service and provides input to an application controller.
Additionally, the runtime environment provides a configuration store and a con-
tainer registry. Since services store their configuration in the environment (See
footnote 4), configuration stores are used to store runtime parameters and reg-
istries are used to find other containers. As we can see in Fig. 2, this poses much
more requirements on software developers than simply specifying the required
containers and their relationships for deployment purposes. Developers also have
to consider operational aspects of individual containers such as dynamic config-
uration and container removal (cf. Sect. 2).

Figure 2 depicts two loops: A management loop that ensures container man-
agement, which is performed by the application controller, and an adaptation
loop that ensures the adaptation of software and middleware components oper-
ated in containers. Whereas the management loop is ensured by the container
runtime environment, containers have to ensure the adaptation of software and
middleware components based on environmental changes. As we can see, the
management of these services boils down to simply deploying and terminating
containers at the right moment. However, adaptation in response to changes ini-
tiated by management actions has to be ensured by software developers, who
build these containers. Thus, each container has to fulfill the following require-
ments:
– Start and configure software and middleware components when the container

is started.
– Register itself with the container registry to be available for other containers,

which are part of the cloud service topology.
– Detect changes of runtime parameters in the configuration store and adapt

to these changes.
– Detect changes in the container registry and adapt to these changes.
– Gracefully shutdown software and middleware components before container

removal.

46 S. Kehrer and W. Blochinger

Fig. 2. Operational model of a typical container runtime environment.

Whereas starting and configuring software and middleware components can
be defined in a build specification such as a Dockerfile, all other aspects require
an environment-specific implementation. We introduce a novel entity per con-
tainer that addresses these requirements: The so-called container supervisor. A
container supervisor resides inside a container, controls the lifecycle of provided
software and middleware components, and orchestrates their lifecycle according
to events in the environment. These events might be changes in the configura-
tion store or container registry as well as signals send by the container runtime
environment. At a technical level, a container supervisor is a supervisor process
running inside a container. It is started as the root process10 of the container
and controls the lifecycle of all other processes. Further, the root process receives
and dispatches signals from the container runtime environment11.

Figure 3 shows two exemplary container supervisors, which ensure runtime
adaptation in an event-based and decentralized manner. We can see two con-
tainers namely wordpress container and mysql container (cf. Sect. 3). Both con-
tainers are connected to a configuration store and a container registry provided
by the container runtime environment (analogously to Fig. 1). In the following,
we discuss a series of timely ordered events and the corresponding adaptation
mechanisms performed by both container supervisors.

10 A root process is a process with UNIX PID 1.
11 For example, POSIX signals are an inter-process communication mechanism typi-

cally used in Unix-like operating systems and employed by state of the art container
runtime environments.

Model-Based Generation of Self-adaptive Cloud Services 47

Fig. 3. Exemplary self-adaptation process of WordPress container using a container
supervisor.

First, the wordpress container is deployed. Directly after container startup,
its container supervisor stores the required configuration values in the configu-
ration store 1 and starts the Apache HTTP server 2 . When the web server has
been started successfully, the container supervisor registers its endpoint infor-
mation in the container registry 3 . At some point in time, the deployment of the
mysql container is processed by the deployment system. In this case, the con-
tainer supervisor of mysql container executes the local container startup. This
includes running the MySQL database. Thereafter, it also registers itself in the
container registry 4 . The wordpress container detects this change and triggers a
wrapper process, which employs the endpoint information of the mysql container
5 , loads configuration values from the configuration store 6 , and finally exe-
cutes a configuration script with the required inputs, i.e., endpoint information
and configuration values 7 . Steps 5 – 7 are executed whenever the endpoint
information of mysql container changes, e.g., due to a container restart. At the
end of its lifecycle, a container receives a termination signal from the container
runtime environment. In this case, the container supervisor removes its entries
from the container registry 8 , 9 and gracefully stops the running software and

48 S. Kehrer and W. Blochinger

middleware components. Note that this kind of event-based self-adaptation is
agnostic to the deployment order and thus allows for arbitrary container restarts
at runtime.

Reactive self-adaptation as described above enables self-adaptive and self-
healing cloud services contributing to service availability. However, to make use
of these benefits, software developers have to wire their implementation with
technologies provided by the runtime environment. Besides adding more com-
plexity, this leads to heterogeneous implementations of adaptation mechanisms.
Moreover, developers are confronted with a bunch of operational technologies to
implement the required behavior, which decreases software development times.

5 Automated Generation of Self-adaptive Cloud Services

We propose the automated generation of self-adaptive cloud services
(AutoGenIc) to assist software developers in considering operational aspects.
We aim at providing a means for software developers to take responsibility for
operational aspects of their service in line with the “you build it, you run it”
principle. We identified two fundamental design guidelines for such an approach:
(1) Software developers have to be enabled to control the lifecycle of their ser-
vice and its components by simple means. (2) Technological considerations of
operational aspects should be hidden from software developers to enable porta-
bility and operational flexibility with respect to the runtime environment and
tool support.

AutoGenIc is an approach to decouple service development from
environment-specific technologies provided by operations personnel. Our goal is
to design a self-service tool for software developers, which supports closer coop-
eration among developers and operational personnel in the sense of DevOps [5]:
Developers are able to consider operational aspects of their services by simple
means and operations personnel contributes the technological requirements of
the runtime environment, which are automatically added to each service (cf.
Fig. 4).

Fig. 4. Overview of the AutoGenIc approach based on [6].

Our approach follows the microservices architectural style. Microservices are
defined as independently deployable units. Thus, we assume some kind of service

Model-Based Generation of Self-adaptive Cloud Services 49

bundle, which describes all service components and specifies their relationships
among each other. A topology model describes the topology of software contain-
ers and related artifacts. The service bundle contains all information required to
automatically deploy a corresponding cloud service to a runtime environment.

To model the behavior of a self-adaptive service, we utilize the existing topol-
ogy model, which is part of every service bundle. We enable developers to anno-
tate each container specified in the topology model with a lifecycle and a con-
figuration model. Each model contains one or more operations. These operations
are defined by a name and specify an implementation artifact as well as inputs.
The implementation artifact refers to an executable artifact contained in the
container (e.g., a script) that must be invoked to execute the operation at a
technical level. The inputs can be defined as key-value pairs, which are passed
to the implementation artifact upon execution. This leads to two types of oper-
ations:

– A lifecycle operation is bound to an operational event with predefined
semantics. We define three predefined lifecycle operations: create, start, and
stop. Create is employed to instantiate a container, start is executed after a
container instance has been created, and stop before a container is terminated
by the runtime environment.

– A configuration operation is an operation without predefined semantics.
These operations are specified by software developers. A configuration oper-
ation is executed whenever a specified input value changes.

Lifecycle operations specify the artifacts that have to be executed to create,
start, or stop a container. The create operation specifies the container image that
should be used for deployment purposes, whereas start and stop can be used to
specify an application-specific script. Configuration operations can be employed
to model any kind of adaptation behavior. In case of our exemplary cloud ser-
vice, a shell script for connecting to the MySQL database might be specified as
implementation artifact of the configure db operation attached to the wordpress
container (cf. Fig. 5). Additionally, we enable the use of functions to specify
input values for configuration operations. Functions can be used to reference
dynamic attribute values of entities in the topology model, e.g., IP addresses of
modeled containers. Referring to our exemplary service, the configure db oper-
ation specifies an input named mysql ip with the function getIPAddress() that
retrieves the IP address of the mysql container (cf. Fig. 5).

A core idea of the AutoGenIc approach is to automatically bind lifecycle
and configuration operations modeled by developers to runtime events. There-
fore, each container is automatically enhanced with a container supervisor as
described in Sect. 4. The container supervisor ensures event dispatching and
implements the operations specified in the lifecycle and configuration models as
follows. Create and start are triggered during the deployment process. In case of
the stop operation, a termination signal sent by the runtime environment is used
as trigger. Configuration operations, on the other hand, are executed whenever
their input values change. Since these input values are stored in the runtime envi-
ronment, a corresponding event-trigger has to be registered to this change event

50 S. Kehrer and W. Blochinger

Fig. 5. Service components with configuration models attached based on [6]. Addition-
ally, each component relates to a lifecycle model, which is not shown here but attached
in an analogous manner.

in the environment. The callback of this event-trigger is given by the implemen-
tation artifact specified for the corresponding configuration operation. A simple
example is the configuration of the WordPress container. In this case, reconfig-
uration is only required if the IP address of the MySQL container changes. This
enables reactive configuration and dynamic bindings among containers.

The topology model enhanced with the proposed lifecycle and configuration
models, which is part of every service bundle, is passed to a component that
we call AutoGenIc Nexus (cf. Fig. 4). AutoGenIc Nexus takes a developer-
supplied service bundle as input and generates a self-adaptive service bundle
as output. The transformation applied adds self-adaptation mechanisms to each
container at a technical level based on the operations specified in the lifecy-
cle and configuration models. AutoGenIc Nexus is maintained by operations
personnel and provided as a self-service tool to software developers. It encapsu-
lates the specifics of the target runtime environment. This might be the access
mechanisms of the configuration store and the container registry used in the run-
time environment (e.g., APIs) as well as event-dispatching mechanisms to trigger
developer-supplied implementation artifacts. The selection of these technologies
is an operational decision and thus should be handled transparently to software
development. The runtime environment specification has to be considered during
the implementation of the AutoGenIc Nexus (cf. Sect. 7.3).

Implemented once, the AutoGenIc Nexus provides a self-service tool for
developers, which generates self-adaptive service bundles targeted to a spe-
cific runtime environment without any knowledge on operational technologies
employed. The self-adaptive service bundle contains all required information
to deploy a cloud service in an automated manner (cf. Fig. 4). This approach

Model-Based Generation of Self-adaptive Cloud Services 51

ensures the separation of concerns principle in the DevOps context in line with
our design guidelines defined above.

Following our model-based approach, service bundles can be developed inde-
pendently of the runtime environment. This leads to several benefits compared
to service adaptation at the programming level, i.e., directly implementing the
API of a configuration store or container registry and wiring POSIX signals: (1)
Different technologies can be used to implement the required adaptation behav-
ior depending on the target runtime environment; (2) Developers do not have to
build triggers for lifecycle and configuration operations by wiring APIs. Config-
uration operations are executed whenever their input values change; (3) Logical
identifiers of containers are only used in the model and not in the containers
themselves leading to higher reusability. Further, these identifiers are private to
the topology model of a single service and thus cannot be used by other services.
Note that this is an important requirement, e.g., to prevent direct database
access from outside the service [15].

6 Transformation Method

The transformation method specifies the steps to transform an existing service
bundle including its lifecycle and configuration models into a self-adaptive ser-
vice bundle. This method describes the transformation performed by the Auto-
GenIc Nexus at a conceptual level to guide the runtime-specific implementation
by operations personnel. Accordingly, our method describes the transformation
independently of (1) the modeling language used for topology, lifecycle, and
configuration models, (2) the container format employed for virtualization, (3)
operational technologies in the target runtime environment, and (4) the container
supervisor and its event-dispatching mechanisms used to build event-triggers. As
a result, our method supports the multitude of combinations, which can be found
in practice. Figure 6 depicts the transformation method. We describe its steps
in the following.

Assumptions: This method requires a service bundle that contains a topol-
ogy model enhanced with lifecycle and configuration models. Moreover, build
specifications for each container are assumed to be part of the service bundle.

Step 1: Scan Topology Model & Build Specifications

We assume that each container specified in the topology model links its lifecycle
and configuration model as well as a build specification. Whereas the models
describe the desired adaptation behavior, the build specification can be used
to derive the current runtime behavior of the container. In this step, lifecycle
and configuration models as well as container build specifications are scanned
to derive a set of Transformation Requirements (TR). TRs describe the require-
ments that have to be addressed during the transformation and are provided as
input to the next steps. Scanning the lifecycle and configuration models leads to
the following TRs:

52 S. Kehrer and W. Blochinger

Fig. 6. Steps of the transformation method based on [6]

– A StartRequirement is derived from a start operation in the lifecycle model.
The implementation artifact defined by the operation has to be executed
when a container has been successfully created and initialized.

– A StoreKeyValueRequirement describes a key-value pair, which is used as
input for a specific configuration operation in the configuration model. This
key-value pair has to be stored in the runtime environment during deployment
(e.g., by using a configuration store).

– A KeyWatchRequirement describes the requirement to watch the value of a
specific input key stored in the environment. Whenever the value related to
this key changes the corresponding configuration operation, which is specified
in the configuration model, has to be executed.

– An AttributeWatchRequirement describes the requirement to watch the value
of a defined attribute such as the IP address of a specific container. When-
ever this value changes the corresponding configuration operation, which is
specified in the configuration model, has to be executed.

– A TerminationRequirement is derived from a stop operation in the lifecycle
model. The implementation artifact defined by the operation has to be exe-
cuted before a container is forcefully terminated by the runtime environment.

Scanning the build specifications additionally leads to the following TR:

– An EntryPointRequirement describes the entrypoint of a container. This is
an executable to be run at container startup [22].

Model-Based Generation of Self-adaptive Cloud Services 53

TRs allow the automated construction of a new container image (cf. Sect. 6),
which fulfills the same functional requirements as the developer-supplied con-
tainer image, but additionally ensures the modeled self-adaptation mechanisms.

Step 2: Create Event-triggers & Callback-Operations

In this step, the TRs derived have to be addressed. Therefore, implementation
artifacts provided by developers have to be bound as callbacks to change events
in the environment. Environment-specific event-dispatching mechanisms are
employed for this purpose. At the same time, functional aspects of a developer-
supplied container should be retained.

StartRequirements can be addressed by simply executing the corresponding
implementation artifact at container startup.

StoreKeyValueRequirements are addressed by an initial setup process exe-
cuted at each container’s startup. This setup process stores the required inputs
in the environment. After the initial setup process, each container runs the exe-
cutable captured in its EntryPointRequirement.

KeyWatchRequirements as well as AttributeWatchRequirements have to be
met by installing an event-trigger for the corresponding configuration opera-
tion, which executes the implementation artifact specified whenever input val-
ues change. The implementation of event-triggers depends on the technologies
employed in the target runtime environment. This includes mapping the schema
of operational data structures as well as defining access methods and protocols
for the configuration store and the container registry.

TerminationRequirements are bound to the termination signal, which is sent
by the container runtime environment before termination.

This step results in a set of technological artifacts, which ensure dynamic
adaptation of each container with respect to the target runtime environment.
The generated technological artifacts automatically trigger the implementation
artifacts supplied by the developer either upon operational events (for lifecy-
cle operations) or every time an input value changes in the environment (for
configuration operations).

Step 3: Create Build Specifications

To combine the developer-supplied container image with the technological arti-
facts generated in Step 2, a new build specification is created for each container
specified in the topology model. This build specification is built on top of the
existing build specification that defines the developer-supplied service. A build
specification template may be used, which contains settings required accord-
ing to the runtime environment specification, e.g., commands to install required
software.

Step 4: Create Self-adaptive Service Bundle

Since lifecycle and configuration operations are now managed by the correspond-
ing container itself, these operations are not required in the topology model
anymore. Only the create operation is still required and links the newly created
container image. In this step, a new service bundle is generated, which provides a

54 S. Kehrer and W. Blochinger

portable means to deploy the generated self-adaptive cloud service to the target
runtime environment.

Step 5: Build Container Images

Finally, the container images of the newly generated build specifications captured
in the self-adaptive service bundle have to be built. Besides creating container
images, they have to be pushed to an artifact repository (cf. Fig. 6), which can
be accessed during deployment.

Automated Deployment

The generated service bundle provides a means to automatically deploy the gen-
erated self-adaptive cloud service to the target runtime environment. Therefore,
container images can be retrieved from the artifact repository (cf. Fig. 6) speci-
fied in the service bundle.

7 Prototypical Implementation

In this section, we present an AutoGenIc Nexus prototype. The transformation
method describes how to generate a self-adaptive service bundle for the target
runtime environment at a conceptual level. Hence, we have to make four deci-
sions with respect to a prototypical implementation: First, we have to specify the
modeling language used for topology, lifeclycle, and configuration models. Pos-
sible options are any custom modeling language supporting our assumptions,
domain-specific languages of container orchestration tools such as Kubernetes
and Marathon as well as the TOSCA standard [13]. Secondly, we have to choose
a container format such as Docker, Application Container (appc) Specification12,
or the specification of the Open Container Initiative (OCI)13. Thirdly, we have
to define the operational technologies of the target runtime environment. Typi-
cal examples are Consul, Etcd, ZooKeeper, SkyDNS14, Eureka15, and Doozer16.
Finally, a container supervisor is required. A container supervisor can be built
from scratch by combining a process supervisor (e.g., Supervisord17) with clients
of the configuration store/container registry provided by the target runtime envi-
ronment. Alternatively, ContainerPilot18 can be used.

In this section, we describe a prototype employing the emerging TOSCA
standard as modeling language, which also contains a format for service bun-
dles. We rely on the TOSCA standard because it provides a language to specify
topology models of cloud services in a portable manner and concepts to specify
dependencies in the model. The TOSCA concept of Lifecycle Operations already

12 https://github.com/appc/spec.
13 https://www.opencontainers.org.
14 https://github.com/skynetservices/skydns.
15 https://github.com/Netflix/eureka.
16 https://github.com/ha/doozerd.
17 http://supervisord.org.
18 https://github.com/joyent/containerpilot.

https://github.com/appc/spec
https://www.opencontainers.org
https://github.com/skynetservices/skydns
https://github.com/Netflix/eureka
https://github.com/ha/doozerd
http://supervisord.org
https://github.com/joyent/containerpilot

Model-Based Generation of Self-adaptive Cloud Services 55

provides us with compatible modeling constructs to specify lifecycle and con-
figuration operations. Further, we employ Docker19 as container virtualization
technology, Consul as configuration store and container registry, and Contain-
erPilot (See footnote 18) as container supervisor. We describe TOSCA and a
TOSCA-based service bundle of our exemplary cloud service in the following.
Moreover, we present an exemplary runtime environment specification. On this
basis, we present the implementation of our prototype.

7.1 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
aims at standardizing a modeling language for portable cloud services [13].
Therefore, cloud services are captured as topology graphs modeled in form of a
Topology Template. The nodes in the topology are modeled as Node Templates.

Fig. 7. TOSCA artifacts and lifecycle operations based on [6].

Since a Topology Template is an abstract description of a service topology,
Deployment Artifacts such as container images (e.g., Docker Images) are linked
to Node Templates as depicted in Fig. 7. Node Templates also define Lifecy-
cle Operations. These Lifecycle Operations are implemented by Implementation
Artifacts such as shell scripts (cf. Fig. 7).

Additionally, TOSCA provides a type system that allows the definition of
custom types such as Node Types or Artifact Types. These type definitions
and the Topology Template are captured in a so-called Service Template. A
TOSCA orchestrator processes a Service Template to instantiate nodes. Mod-
eling a TOSCA-based cloud service results in a self-contained, portable service
model called Cloud Service ARchive (CSAR) that can be used to deploy service
instances in all TOSCA-compliant environments. The CSAR contains the Service
Template and related Deployment Artifacts as well as Implementation Artifacts.

19 https://docker.com.

https://docker.com

56 S. Kehrer and W. Blochinger

Integrating TOSCA and Containers has been addressed by recent research [2,7].
In the Simple Profile in YAML V1.0 [14], TOSCA provides modeling constructs
for containers as well as TOSCA Functions. TOSCA functions allow referenc-
ing values of entities in the Topology Template, which have to be resolved at
runtime.

7.2 TOSCA-based Service Bundle

In this section, we describe a TOSCA-based service bundle of our exemplary
cloud service described in Sect. 3. This service bundle will be used as exemplary
input for our prototypical implementation. Note that we only present represen-
tative parts of the service bundle.

We use a CSAR as service bundle, which contains a description of the service
topology by means of a Topology Template. The Topology Template specifies
Node Templates for the containers, namely wordpress, memcached, mysql, and
backup. Listing 1.1 shows the Node Template of wordpress. It specifies its Deploy-
ment Artifact, which is a Docker Image (cf. Listing 1.1, line 6–9). This Docker
Image is provided to the Create Operation to instantiate the node (cf. Listing 1.1,
line 12–13). To specify our configuration models, we append an additional Life-
cycle Interface named Configure for configuration operations (cf. Listing 1.1,
line 14–22). These Lifecycle Interfaces provides the information required by the
AutoGenIc Nexus.

The configure db Operation specifies an Implementation Artifact /config-
ure.sh, which requires four input values. The host of the database is specified
with a TOSCA Function (cf. Listing 1.1, line 18). A TOSCA Function specifies
an input value that depends on runtime information. In this case, the IP address
of mysql is required to connect to the database.

Container images only capture file system changes and thus do not provide
information on how they have been created. They are constructed of a set of
layers each described by a corresponding build specification such as a Dockerfile.
However, the TOSCA standard does not allow the definition of build specifica-
tions describing the construction of container images. To resolve this issue, we
introduced the concept of Contained Nodes [7] to model build specifications for
each Node Template. Therefore, a container Node Template such as wordpress
links a contained Node Template (cf. Listing 1.1, line 3). The wordpress build
Node Template specifies the build specification of the corresponding wordpress-
custom Docker Image (cf. Listing 1.2, line 4–9). Here, the build specification is
a Dockerfile.

The containers memcached, mysql, and backup are modeled in an analogous
manner and specify their lifecycle and configuration operations as explained
above.

Model-Based Generation of Self-adaptive Cloud Services 57

1 wordpress:

2 ...

3 contains: [wordpress_build]

4 ...

5 artifacts:

6 wp_image:

7 file: wordpress-custom

8 type: tosca.artifacts.Deployment.Image.Container.Docker

9 repository: custom_repository

10 interfaces:

11 Standard:

12 create:

13 implementation: wp_image

14 Configure:

15 configure_db:

16 implementation: /configure.sh

17 inputs:

18 DB_HOST: { get_attribute: [mysql, ip_address] }

19 DB_USER: myuser

20 DB_PASSWORD: pw

21 DB_NAME: mydb

22 ...

Listing 1.1: wordpress Node Template in YAML based on [6].

7.3 Runtime Environment Specification

The target runtime environment addressed by our prototype is a TOSCA-based
container runtime environment from previous work [7], which can be used to
deploy a TOSCA-based service bundle on Apache Mesos (See footnote 2). We
selected Consul to store configuration and endpoint information in the environ-
ment, which provides both a key-value store to store configuration data and
container discovery mechanisms. The Consul ecosystem provides a rich set of
tools to access stored data. To enable self-adaptive cloud services, we have to
additionally select technologies used to bind configuration operations to events.
We chose ContainerPilot, which is an open-source project developed by Joyent.
ContainerPilot resembles the UNIX concept of process supervision by provid-
ing a supervisor middleware for processes running inside a software container.
Besides, it provides integration with service discovery tooling, which we apply
to bind event-triggers to configuration operations. ContainerPilot is configured
by passing a configuration file, which contains the processes to be run. A Docker
Registry20 is employed as artifact repository, i.e., to push and retrieve container
images (cf. Fig. 6).

20 https://hub.docker.com/ /registry.

https://hub.docker.com/_/registry

58 S. Kehrer and W. Blochinger

1 wordpress_build:

2 ...

3 artifacts:

4 build_spec:

5 file: artifacts/wordpress/Dockerfile

6 type: cst.artifacts.Deployment.BuildSpec.Docker

7 properties:

8 image_name: wordpress-custom

9 repository: custom_repository

10 interfaces:

11 Standard:

12 create:

13 implementation: build_spec

Listing 1.2: wordpress build Node Template in YAML based on [6].

7.4 Implementation

In this section, we outline how we implemented our prototype in Java. There-
fore, we describe the implementation counterparts of step 1–5 defined by the
AutoGenIc method (cf. Sect. 6).

Step 1: Scan Topology Model & Build Specifications. A TOSCA Parser
loads the TOSCA-based service bundle and transforms the Service Template into
an internal object. Our RequirementScanner derives TRs (also represented as
Java objects) from the Topology Template. Moreover, the RequirementScanner
scans the Dockerfiles linked in the Service Template to identify EntryPointRe-
quirements.

Step 2: Create Event-Triggers & Callback-Operations. We employ Con-
tainerPilot version 3.1.1 as container supervisor for each container. The key-
value pairs described by StoreKeyValueRequirements are stored in Consul with
an initial setup process executed on container startup. Implementation arti-
facts defined by start and stop operations in the lifecycle model are bound to
the corresponding operational events. Moreover, the executable captured in an
EntryPointRequirement is executed after the initial setup process. KeyWatchRe-
quirements and AttributeWatchRequirements require the installation of event-
triggers. This is not supported by ContainerPilot. Technically, we register sepa-
rate background processes in the ContainerPilot configuration file. These back-
ground processes run Consul watches with the Consul command line tool, which
can be used to get informed whenever a value changes. We use Consul watches to
trigger envconsul21 whenever an input value of a configuration operation changes
in Consul. Envconsul can be used to launch a subprocess with environment vari-
ables read from Consul. Here, envconsul executes the implementation artifact

21 https://github.com/hashicorp/envconsul.

https://github.com/hashicorp/envconsul

Model-Based Generation of Self-adaptive Cloud Services 59

of the corresponding configuration operation and provides the inputs as envi-
ronment variables. The resulting technological artifacts are a ContainerPilot
configuration file and scripts for the initial setup process.

Step 3: Create Build Specifications. To create build specifications, we use
a file template for each Dockerfile, which installs a Consul client, envconsul,
and ContainerPilot. Additionally, we add the artifacts generated in Step 2. The
generation of build specifications is implemented based on Apache FreeMarker22,
which is an open-source template engine.

Step 4: Create Self-Adaptive Service Bundle. A new contained Node Tem-
plate is added to each container Node Template, which is built on top of the
developer-supplied contained Node Template and links the generated build speci-
fication. Besides, the Deployment Artifacts of the container Node Templates are
updated with the name of the new container images. The generated Service
Template is added to a newly generated service bundle, which contains all build
specifications and technological artifacts required to build the container images.

Step 5: Build Container Images. To build container images, we assume a
Docker Engine running on the host that provides the AutoGenIc Nexus as a
service to developers. We connect to the Docker Engine by using the Docker-
Client23 library developed by Spotify. Docker-Client connects to the Docker
Engine via the default UNIX domain socket provided to control Docker-specific
functionality. We build the required container images described by the gener-
ated build specifications and push them to the artifact repository specified in
the Topology Template.

8 Evaluation

To evaluate our prototype, we employ the service bundle of our motivating
example (cf. Sect. 7.2). We present two experiments with respect to the auto-
mated generation of an exemplary self-adaptive cloud service using the proto-
type and analyze the resulting overhead. In the baseline experiment, we build all
developer-supplied container images specified in the service bundle and measure
the total generation time. We define the total generation time as the accumulated
time, which is required to build these container images and to push the generated
container images to the artifact repository. In the transformation experiment,
we run the prototype to generate a self-adaptive service bundle and measure
the total transformation time. We define the total transformation time as the
elapsed time from the start of the prototype to the point, where all steps of
the transformation method have been successfully completed. This also includes
pushing the generated container images to the corresponding artifact repository.

We executed our experiments on a CentOS 7 virtual machine with 2 vCPUs
clocked at 2.6 GHz, 4 GB RAM, and 40 GB disk running in our OpenStack-
based cloud environment. The virtual machine provides an OpenJDK Runtime
22 http://freemarker.org.
23 https://github.com/spotify/docker-client.

http://freemarker.org
https://github.com/spotify/docker-client

60 S. Kehrer and W. Blochinger

Environment 1.8.0 and Docker Engine 1.12.6. For building container images, we
rely on the Docker Engine API v1.24. As artifact repository, we run a private
Docker Registry v2.6 on localhost. We executed ten independent runs of each
experiment and measured the total generation time and the total transformation
time, respectively.

In the baseline experiment, we build a single container image for each con-
tainer. These container images are built based on the build specification specified
in the service bundle. However, all container images require base images from
the DockerHub. The wordpress container requires downloading php:5.6-apache24

with 377.7 MB, memcached requires debian:stretch-slim25 with 55.24 MB, mysql
requires oraclelinux:7-slim26 with 117.6 MB, and backup requires python:2.7.14-
jessie27 with 679.3 MB. To ensure that we measure the total generation time
without caching, we cleared the Docker cache and the Docker Registry before
every run. In this context, caching of container images relates to the interme-
diate layers stored by Docker to speed up future build processes. Based on the
measurements, we calculated an average total generation time of 882 ± 38 s.

In the transformation experiment, we ran our prototype to measure the
total transformation time. Therefore, all required container images are built and
pushed to the artifact repository. This includes the developer-supplied container
images as well as container images generated. Again, we cleared the Docker
cache and the Docker Registry before every run. Based on the measurements,
we calculated an average total transformation time of 1349 ± 16 s.

The transformation adds an average overhead in size of 67.8 MB per container
image. This is largely related to ContainerPilot and Consul-specific tooling. Note
that the container images built in the baseline experiment are not self-adaptive.
Additional manual effort would be required to enable the same features, thus
also leading to larger image sizes.

In summary, the transformation applied by our prototype results in an aver-
age overhead of 467 s. However, we enable software developers to implement their
cloud services independently of operational technologies, which saves time dur-
ing development. Moreover, our model-based approach leads to several benefits
such as portability of service implementations and the separation of concerns for
software developers and operations personnel (cf. Sect. 5).

The overhead measured is basically related to building additional container
images, which include the required self-adaptation mechanisms. Note that the
measurements depend on the size of required and generated container images, the
network bandwidth for downloading the required base images, and the location
of the artifact repository. Thus, the reported values may be different in a real
world scenario. Additionally, we identified several opportunities to speed up the
transformation performance such as building container images concurrently and

24 https://hub.docker.com/ /php.
25 https://hub.docker.com/ /debian.
26 https://hub.docker.com/ /oraclelinux.
27 https://hub.docker.com/ /python.

https://hub.docker.com/_/php
https://hub.docker.com/_/debian
https://hub.docker.com/_/oraclelinux
https://hub.docker.com/_/python

Model-Based Generation of Self-adaptive Cloud Services 61

storing required software packages locally. Obviously, caching techniques offer
another opportunity for performance tuning.

9 Related Work

The microservices architectural style proposes decentralized management and
prefers choreography over orchestration [4,12,18,23]. Our concept of self-
adaptive cloud services enables dynamic and decentralized adaptation and does
not rely on centralized orchestration. We argue that state of the art container
runtime environments provide the required management functionality and com-
plement their operational principles with decentralized, event-based adaptation
managed by a container supervisor.

Several approaches exist to build cloud services with decentralized adaptation
capabilities. The authors of [20,21] propose an architecture for self-managing
cloud-native applications, which enables scalable and resilient self-managing
applications in the cloud. They employ distributed in-memory key-value stores
as means to communicate changes among components. With respect to the oper-
ational principles employed, their approach is similar to ours. However, our
model-based approach contributes to the ease of development of self-adaptive
cloud services. Thus, developers are relieved of the burden of wiring their imple-
mentations with APIs of operational technologies. The authors of [19] present
a solution to the service discovery problem based on Serf28. Their approach
proposes an additional Serfnode container, which manages a required container
instance. In contrast, we introduce a container supervisor that manages the
lifecycle of a single container. Whereas Serfnodes do not require building new
container images, they require extra configuration and only solve the service
discovery problem. Moreover, the presented solution does not provide the same
abstraction level compared to our model-based approach, which uses lifecycle
and configuration models to define operational behavior at a higher level.

Microservice chassis29 such as Spring Cloud30 might be used at the program-
ming level to implement self-adaptive services. However, microservice chassis are
bound to a specific programming language and are limited to supported oper-
ational tooling. Netflix Prana31 provides a side car for services based on the
NetflixOSS32 ecosystem. This enables the use of Java-based NetflixOSS libraries
for microservices written in other programming languages. Registrator33 enables
service discovery features for Docker containers by watching the runtime envi-
ronment. All these technologies provide alternatives to some operational aspects
addressed by our approach. However, they are restricted to a specific runtime

28 https://www.serf.io.
29 http://microservices.io/patterns/microservice-chassis.html.
30 http://projects.spring.io/spring-cloud.
31 https://github.com/Netflix/Prana.
32 https://netflix.github.io.
33 https://github.com/gliderlabs/registrator.

https://www.serf.io
http://microservices.io/patterns/microservice-chassis.html
http://projects.spring.io/spring-cloud
https://github.com/Netflix/Prana
https://netflix.github.io
https://github.com/gliderlabs/registrator

62 S. Kehrer and W. Blochinger

environment, operational technologies, or a programming language. On the con-
trary, we address the portability issue (cf. Sect. 3) by proposing a model-based
approach.

10 Conclusion and Future Work

In this paper, we present a method to generate self-adaptive cloud services by fol-
lowing a model-based approach. We thus decouple software developers and oper-
ations personnel by separating their concerns and contribute to the portability
of cloud services. A novel self-service tool for software developers automatically
transforms a supplied service bundle to a self-adaptive service bundle, which is
specifically suited for the targeted runtime environment, and thus also enables
flexibility for operations personnel with respect to technological decisions and
changes. Furthermore, the transformation method captures the steps to gener-
ate self-adaptive cloud services in a reusable manner and can be employed to
guide environment-specific implementations of the AutoGenIc Nexus concept.
We validated our approach by implementing a prototype based on the TOSCA
standard and state of the art technologies.

In the future, we plan to add user interfaces, which allow developers to recon-
figure the runtime parameters of their cloud services. This allows rapid changes
if the source code does not have to be refactored. Every change is directly prop-
agated by the configuration store (e.g., Consul) and triggers the defined callback
operation in a reactive and decentralized manner in line with the microservices
architectural style. Moreover, we plan to investigate how the concepts presented
here can be beneficially employed for migrating legacy applications to the cloud.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: a synergy between TOSCA and Docker
for orchestrating multicomponent applications. Softw. Pract. Exp. 48(11), 2061–
2079 (2018)

3. Burns, B., Oppenheimer, D.: Design patterns for container-based distributed sys-
tems. In: Proceedings of the 8th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud), pp. 108–113. USENIX (2016)

4. Fowler, M.: Microservices Resource Guide (2017). https://martinfowler.com/
microservices/

5. Hüttermann, M.: DevOps for Developers. Apress (2012)
6. Kehrer, S., Blochinger, W.: Autogenic: automated generation of self-configuring

microservices. In: Proceedings of the 8th International Conference on Cloud Com-
puting and Services Science, CLOSER, vol. 1, pp. 35–46. INSTICC, SciTePress
(2018). https://doi.org/10.5220/0006659800350046

7. Kehrer, S., Blochinger, W.: TOSCA-based container orchestration on mesos. Com-
put. Sci. Res. Dev. 33(3), 305–316 (2018)

https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://doi.org/10.5220/0006659800350046

Model-Based Generation of Self-adaptive Cloud Services 63

8. Kookarinrat, P., Temtanapat, Y.: Design and implementation of a decentralized
message bus for microservices. In: 2016 13th International Joint Conference on
Computer Science and Software Engineering (JCSSE), pp. 1–6, July 2016

9. Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years
of cloud computing - a systematic mapping study. J. Syst. Softw. 126, 1–16 (2017)

10. Lewis, J., Fowler, M.: Microservices a definition of this new architectural term
(2014). https://martinfowler.com/articles/microservices.html

11. Leymann, F., Breitenbücher, U., Wagner, S., Wettinger, J.: Native cloud applica-
tions: why monolithic virtualization is not their foundation. In: Helfert, M., Fer-
guson, D., Méndez Muñoz, V., Cardoso, J. (eds.) CLOSER 2016. CCIS, vol. 740,
pp. 16–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62594-2 2

12. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol
(2015)

13. OASIS: Topology and orchestration specification for cloud applications (TOSCA)
version 1.0, committee specification 01 (2013). http://docs.oasis-open.org/tosca/
TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

14. OASIS: TOSCA simple profile in YAML version 1.0, committee specification
01 (2016). http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/
cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html

15. O’Hanlon, C.: A conversation with werner vogels. Queue 4(4), 14:14–14:22 (2006)
16. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-

of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586

17. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science,
CLOSER 2016, vols. 1 and 2, pp. 137–146. SCITEPRESS - Science and Technology
Publications, Lda (2016)

18. Schermann, G., Cito, J., Leitner, P.: All the services large and micro: revisiting
industrial practice in services computing. In: Norta, A., Gaaloul, W., Gangadha-
ran, G.R., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9586, pp. 36–47. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-50539-7 4

19. Stubbs, J., Moreira, W., Dooley, R.: Distributed systems of microservices using
docker and serfnode. In: 2015 7th International Workshop on Science Gateways,
pp. 34–39, June 2015

20. Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., Edmonds, A.: An archi-
tecture for self-managing microservices. In: Proceedings of the 1st International
Workshop on Automated Incident Management in Cloud, AIMC 2015, pp. 19–24.
ACM, New York (2015)

21. Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., Bohnert, T.M.: Self-
managing cloud-native applications: design, implementation, and experience.
Future Gener. Comput. Syst. 72(Suppl. C), 165–179 (2017)

22. Turnbull, J.: The Docker Book: Containerization is the new virtualization. James
Turnbull (2014)

23. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 32(3–4), 301–310
(2017)

https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-319-62594-2_2
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1007/978-3-662-50539-7_4

A Record/Replay Debugger for Service
Development on the Cloud

M. Subhi Sheikh Quroush and Tolga Ovatman(B)

Department of Computer Engineering, Istanbul Technical University,
Maslak, 34469 Istanbul, Turkey

{sheikhquroush,ovatman}@itu.edu.tr

Abstract. Cloud based software development platforms are continu-
ously becoming more powerful and penetrate towards the daily routines
of modern developers. This paper presents a debugging approach that
can be used in cloud based service development platforms where devel-
oper is working on relatively small sized scripts to be hosted on multi-
tenant cloud platforms. Presented remote debugging approach utilizes
record/replay technique to re-execute and record the variable evalua-
tions whenever an exception is thrown during the developed service’s
run-time. Additionally, an alternative recording scheme is also proposed
that involves only recording external data accesses. Memory and run-
time overhead of proposed approaches show that remote debugging app-
roach can be useful especially when the minimal recording scheme is
applied.

Keywords: Cloud based development ·
Remote service debugging · Record/replay debugging

1 Introduction

Latest improvements in cloud computing paradigm is significantly effecting soft-
ware development technologies as well. Through the last decade as the on premise
services continue to shift towards the cloud systems, substantial effort has been
paid to offer the related development tools and technologies as online services
as well1. Additionally, competent online services offer their users the ability to
develop their own scripts to customize the behavior of their services as well2.

In this paper, we extend the study in the 8th International Conference on
Cloud Computing and Services Science [11] and present a debugger based on
record/replay approach to be used in during the development of the remote
services. Our scope is limited to systems where the service to be developed and
the development environment is hosted in separate systems. A typical example
that we also use as a test bed is development of application specific services

1 E.g. codeanywhere.com, koding.com, etc.
2 E.g. force.com.

c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 64–76, 2019.
https://doi.org/10.1007/978-3-030-29193-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_4&domain=pdf
http://orcid.org/0000-0001-5918-3145
http://codeanywhere.com/
https://www.koding.com/
http://force.com/
https://doi.org/10.1007/978-3-030-29193-8_4

A Record/Replay Debugger for Service Development on the Cloud 65

where the development environment is presented to the user online over a web
browser but the developed service is hosted on the cloud.

Performing debugging during the web service interaction is cumbersome since
it requires an interactive tracking session where the developer needs to watch
remote but yet interdependent variables and control flows. Record/replay debug-
ging can be of use in such scenarios by letting the developer to be able to record
and replay the erroneous flows and variables evaluations that has been triggered
by the remote calls to the web service. Without using such an approach, devel-
opers dig into the error logs performing a postmortem analysis which becomes
a needle in a haystack problem most of the time.

Record/replay debugging has been applied on the domain of web applications
in the past; in such a study an interactive user interface is used for capturing
and replaying web application executions [5]. In our study we have shifted the
focus on the applicability of the approach on web services being used in a cloud
based platform.

Fig. 1. Architectural representation of the remote debugging approach [11].

An architectural diagram of the developed system is presented in Fig. 1.
Throughout this paper, we are going to provide a detailed overview of the remote
debugging engine as well as insights on reducing the overhead produced by the
approach. For instance, instead of performing a full recording of the variable eval-
uations, performing a minimized recording it is possible to significantly decrease
the overhead of the remote debugging engine. During the minimized recording
session only the evaluations of the variables that are affected by external data
access like a database query or REST service calls. We also compare the perfor-
mance gain of minimized recording compared to the full recording arguing on
the advantages and disadvantages of adopting such an approach.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work in the literature, Sect. 3 presents an outline of remote debugging approach
and Sect. 4 examines the implementation details of the remote debugging engine.
Section 5 presents the execution time and memory consumption overhead of the
approach and Sect. 6 concludes the study and provide future directions.

66 M. S. Sheikh Quroush and T. Ovatman

2 Related Work

This paper presents a remote web service debugging approach by using a
record/replay technique on the remote server where web service is being
hosted. In a conventional record/replay debugger, debugging information is saved
together with the run-time trace of the buggy code. A similar record/replay app-
roach by Brian Burg et al. records the inputs, the variables which are related to
the system state and the web calls for the web applications. During the debug-
ging session, a user interface is presented to the developer for the current state
of the program using the stored data [5].

Another record/replay based tool TRACR [13], contains live editing features
on Javascript code. During the debugging process developer can change debugged
code and see the result without repeating web application run. This is also a
feature of the remote debugging system that we present in this study.

Another tool to debug web based software is Fiddler [12], which uses the client
side to analyze the web services responses. Unlike this approach, our approach
uses the server side information associated with the request from the client to
debug the web service.

A very prominent drawback of the record/replay technique is the amount
of information that has to be stored during the execution of the software to
be debugged. Reducing the number of statements that the developer can check
during the debugging is a possible approach to deal with this problem. In our
study we choose to perform the storage operation lazily, whenever an exception
occurs; that way we only produce the debugger overhead for buggy scripts.

Execution history, storing the values that cause the error is used by the
developer to understand the root cause of the error during debugging process.
History recording operation can be performed using the statistical debugging.
In statistical debugging, location of the error is detected by finding the probable
error automatically as in the case of the HOLMES framework [6]. Path profiles
give the developer extra information about the execution that leads to the error.

Holmes framework do not use extra resources until an error comes floating.
In case of an error, Holmes updates the application to detect the error. Our
approach is similar to HOLMES to optimize the performance by recording the
execution only if the service is throwing an exception. After tan exception is
thrown, debugging engine repeats the execution of the service to record all the
details.

HOLMES combines static analysis information of the debugged program with
the information collected from the bug reports to specify the programs parts that
are most probably related to the errors. Such fault localization approaches are
not being used by our approach.

In the literature, slicing techniques are also used to selectively debug exe-
cution paths. For instance, Cheng Zang et al. separated the slicing operation
to offline and online slicing to make the slicing operation faster [14]. In their
study a forward slice from root cause and a backward slice from the bug site is
extracted, defining the scope to validate a fix. Offline slicing operations involve

A Record/Replay Debugger for Service Development on the Cloud 67

time consuming techniques like static analysis and the results of the analysis are
stored in the database and loaded into the memory when necessary.

We record the erroneous executions the let the developer use the recording
data later and to test the scripts without the limitation of waiting the permission
from the user to start the remote debugging.

JavaScript’s built-in reflection capabilities are used by James Mickens to
provide a debugging environment that can work remotely [9]. In Mickens’ study
user may choose to avoid executing the debugging on the server side. In this
situation the debug server sends test scripts to the client to execute and send
the result back to the server to get reports about the error.

Proposed remote debugging engine also provides step backwards feature
which is called time-travel debugging in the literature. A similar time-traveling
debugger is implemented by taking snapshots of the program state at regular
intervals and recording all non-deterministic environmental interactions [1,2].
The minimal recording approach in our study uses similar concepts by storing
the variable value only when it is related to system state.

There also exists a vast amount of work on using historical execution informa-
tion and execution traces to debug a program [7,10] but to the best of authors’
knowledge the area of using such debuggers in remote debugging is an open area
of research.

3 Remote Debugging Approach

The target platform that we design and develop the remote debugging approach
is a web based development platform where developers can implement full stack
but yet simple business solutions that can be hosted in a multi-tenant cloud
environment. Developers can design and express data models, develop scripts
to provide services and design web based user interfaces by an online editor
provided by the platform3. The behavior associated with the web elements and
the web services to be hosted by the platform can be defined using MVEL
scripting language [4].

MVEL has largely been inspired by the Java syntax, but has some funda-
mental differences aimed at making it more efficient as an expression language,
such as operators that directly support collections, arrays and string matching,
as well as regular expressions. MVEL is used to evaluate expressions written
using Java syntax.

For a typical development session on the cloud, the developer that uses the
cloud platform designs and expresses all the artifacts required by the service
development. These artifacts include MVEL scripts that are used to define the
operation of the web service or the behavior of the user interface components.
Normally, developer tests the written service functionally by executing the ser-
vice in a test environment provided by the cloud platform. In cases where the
testing of web service is unsuccessful because of a defect, the debugging of the

3 Imona Cloud: https://www.imona.com/.

https://www.imona.com/

68 M. S. Sheikh Quroush and T. Ovatman

service becomes an issue because the development and the execution is done in
different machines. Usually developer relies on logging in order to understand
what went wrong on the remote machine which is cumbersome compared to a
traditional local debugging process.

At this point, remote debugging comes into action to let the developer execute
and debug the MVEL script under development line by line interactively on the
server side. A sample development session in the web client using MVEL scripts
can be seen in Fig. 3.

A natural objective in providing a remote debugging environment is to be
able to let the developer use traditional debugging features such as breakpoints,
stepping over, stepping inside a function. However there are some fundamental
differences between debugging in local and remote. One of those differences is
the possibility of a changes in the state of the server during the debugging
session. This situation is an issue in practice because the service is executing in
a multi-tenant environment where the external data elements used in the service
can be modified between the erroneous execution and the debugging session. To
overcome this problem an approach might be to save the state in the server at
each state and let the developer decide the level to keep this extra debugging
information.

Another important issue in remote debugging arises after the patch for the
bug has been applied. Since the state of the server might also change during the
patching process developers need a tool to help them to make sure that the issue
is solved by the patch. By saving the system state in each service, developer can
use the saved input values that causes the error and re-run the program with the
saved values and debug the code again to make sure that the code is working
after the patch.

The proposed approach is heavyweight for complicated software that might
involve thousands lines of code and hundreds of variables but when it comes to
more simplistic environments that limit the developer to implement basic ser-
vices, the outcome of a powerful debugging tool makes it preferable for small scale
service development. To decrease the overhead produced by the remote debugger
we have developed a reduced level of state information recording, namely ’min-
imal recording’. As seen in Fig. 2, developer can use minimal recording level to
decrease the amount of state information to be saved by the debugging engine.

Currently the remote debugging engine supports only two modes of state
recording but it is possible to develop more granular levels to fine tune the
overhead of the remote debugging. Next subsections define the two modes of
state recording in a more detailed fashion.

3.1 Full Recording

During a full recording session, the remote debugging engine running on the
server executes the web service by storing the variable evaluations during all the
assignment statements. Variable evaluations will be stored as tuples containing
line number of the assignment, the variable name and its value. Hence, at any
time, the developer can choose and replay the erroneous execution by selecting
it from the list of execution records as seen in Fig. 2.

A Record/Replay Debugger for Service Development on the Cloud 69

Fig. 2. Selecting the type of recording session and web service to be debugged. Bordered
window on the right shows the list of recorded debugging sessions [11].

For each debugging session, the execution engine saves the requests that were
sent by the client to the server. The developer may replay the recorded debugging
session later by using the remote debugging system. When the developer replays
an execution, the platform will get the saved data according to its time and
display them in the variable table as seen in Fig. 5.

Fig. 3. MVEL script development window and variable evaluations table (on the
right) [11]

70 M. S. Sheikh Quroush and T. Ovatman

At every step of the execution the debugging client will update the variable
values in the table and the corresponding line will be highlighted. Even though
full recording produces a significant amount of overhead, it might be necessary
to store the whole environment to be able to store the data retrieved by database
query or a service call during the debugging session.

3.2 Minimal Recording

During minimal recording sessions, the platform saves the variable values only
for external data access such as getting the data from a database query or a
web service call. By saving the input parameters for the web service, evaluations
of the local variables can be recalculated on the client side and do not need to
be persisted during a recording session. This way the overhead produced by the
debug session recording can be reduced.

During replaying of a debugging session with minimal recording, the lines
that contain external data access will be updated by the recorded history. Oth-
erwise the related line will be executed directly and the variable values will be
updated from the execution result.

4 Implementation of the Remote Debugging Engine

To be able to provide debugging extensions on top of MVEL scripting language
we have used MVEL API to handle compiled MVEL script and develop com-
ponents that hold debugging information to be annotated to compiled compo-
nents. To demonstrate the internal structure of the debugging engine better we
are going to use a case study web service. Our case study web service (named
getEmployees()) will be used to retrieve and process a list of employees that
belongs to a company using the services developed on the cloud platform in a
multi-tenant way. So the list of employees is retrieved from a shared database
where many services have the potential to change the employee list during debug-
ging sessions.

If the web service being executed runs without any exceptions, remote debug-
ger doesn’t keep track or persist any information about the run-time variable
evaluations but it stores the input parameters provided by the developer (for
instance the department name of the employee). If a buggy web service is being
executed that causes an exception during run-time, remote debugger is going to
use the persisted inputs to re-execute the service using the same set of input
parameters and store the recording details line by line from the beginning.

4.1 Internals of the Remote Debugging Engine

MVEL code in Fig. 4 can be used to demonstrate the basic functionality of the
remote debugger. Conceptually the code mimics a trivial script that repeat-
edly obtain a list of employees from the service’s database and iterate over the

A Record/Replay Debugger for Service Development on the Cloud 71

employees. The code example contains different kinds of variable assignments,
loops and nested scopes for demonstration purposes.

Remote debugging engine supports the following statements in a typical
MVEL script:

1 var x = 0 ;
2 var i = 0 ;
3 f o r (i = 0 ; i < 10 ; i++) {
4 x = x + 1 ;
5 y = 1 ;
6 y = 2 ;
7 var employees = query (” from employee ”) ;
8 var employee = nu l l ;
9 f o r (employee : employees) {

10 var y = 0 ;
11 var name = employee . name ;
12 i f (employee . name . equa l s (”name2 ”)) {
13 x = 20 ;
14 y = 25 ;
15 } e l s e {
16 y = y + 1 ;
17 }
18 y = y + 1 ;
19 employee . s a l a r y = 200 ;
20 }
21 z = 1 ;
22 z = 2 + x ;
23 z = 3 ;
24 y = 3 ;
25 x = x + 1 ;
26 }
27
28 y = z / 0 ;
29
30 return x ;

Fig. 4. A sample trivial MVEL code.

– Line 1 - AssignmentNode: Represents a value assignment to a primitive vari-
able.

– Line 3 - ForNode: Represents a for loop, which may include scoped variable
assignments.

– Line 8 - DeclTypedVarNode: Represents a value assignment to an object.
Debugger needs to evaluate and keep track of all property assignments in this
case.

– Line 9 - ForEachNode: Represents a different type of for loop.
– Line 12 - IfNode: Represent a decision node and related alternative decision

path nodes (e.g. else)

72 M. S. Sheikh Quroush and T. Ovatman

– Line 19 - DeepAssignmentNode: Represents a value assignment to an object
field.

We’d like to draw attention to some special elements and how we store the
related debugging information.

A special case exists for DeclTypedVarNode and DeepAssignmentNode. Since
these kind of assignments change the object altogether, debugging engine needs
to persist the whole object (not just the changed property). We store the object
in json serialized format in such cases. A sample persisten debugging trace can
be seen in Fig. 5.

Fig. 5. The variables values table.

MVEL API [3] provides functionality to compile a script expression by
expression and keep the execution status in a context with the function pre-
sented in Fig. 6.

1 pub l i c s t a t i c S e r i a l i z a b l e compi leExpress ion (S t r ing expres s ion ,
2 ParserContext ctx) {
3 re turn opt imizeTree (new Express ionCompi ler (exp r e s s i on)
4 . compi le (ctx)) ;
5 }

Fig. 6. compileExpression function in MVEL API.

By processing the context of the execution status, debugging engine at the
server side is going to inject the variable evaluations to the context and use them
at the client side to provide a similar execution flow that resembles the one that
caused the exception at the server side.

Another important case is handling nested scopes especially for looping and
branching statements. For looping statements, debugger stores the details of the

A Record/Replay Debugger for Service Development on the Cloud 73

execution in a data structure that contains the iteration count, related scope
variables and latest executed statement in the loop. When the debugger enters
the loop it will push the iterated object to the execution stack to keep track of
the latest iterated object in the looping scope.

For instance in Fig. 4 there exists three nested scopes defined by lines 3, 9
and 12. During the execution, debugger initially pushes the local variables to the
stack when the loop in line 3 is hit. Afterwards in line 9, the second nested scope
is encountered so a special data structure for the for loop in the current scope
is prepared and pushed to stack. Mentioned data structure involves contains
current iteration count, related scope variables and latest executed statement.
Finally at line 12–15 a branching statement adds another scope, making the
debugger push additional data to stack for the loop in line 9. Pushed data con-
tains current employee object being iterated as well.

For instance in a plain debugging session, developer may step through all
these scopes and end up in line 16 where he reaches the latest statement in
the innermost scope. When the developer decides to continue by choosing a
conventional ’step’ option then the debugger will pull a node from the stack and
process it. For this case, the popped statement is going to include the latest
executed statement and scope of the for loop in line 9.

When the developer presses on the step back button remote debugger will
search in the recorded data for the latest value of the variable in the current line
and update it in the right menu (the variables table) and the move the active
line to the previous line. This feature works only with the full recording feature.

4.2 Remote Debugging Client

Remote debugging client uses the web services provided by the server side exten-
sions to MVEL executing engine to provide basic debugging functionality to
developers. In its current form remote debugger provides step by step execution
both in forward and in reverse directions and variable evaluations for the current
line being executed.

Another conventional functionality provided by the debugger is inserting and
removing breakpoints. Two rest services of the debugging engine can be used to
add and remove breakpoints. When the developer presses the continue button
in the debugging session the debugger will complete the execution line by line
until it reach the breakpoint line.

5 Evaluation

To evaluate the overhead produced by remote debugging, we prepared sample
web services to measure the effect of three different metrics:

1. m1: Execution time overhead with respect to number of database queries/ser-
vice calls

2. m2: Execution time overhead with respect to distinct variable assignments

74 M. S. Sheikh Quroush and T. Ovatman

(a) m1 (b) m2

(c) m3

Fig. 7. Execution time overhead of remote debugging.

3. m3: Execution time overhead with respect to number of variables
4. m4: Memory consumption overhead with respect to distinct variable assign-

ments
5. m5: Memory consumption overhead with respect to number of variables

Our experimentation environment consists of a client and a server machine
that reside in the same local network to eliminate the latency introduced by net-
work access. Client computer consists of 8 gigabytes of memory and a 4 core 2.20
Ghz processor where server contains 32 GB memory and double 4 core 3.5 Ghz
processors. The only application stack hosted by the server is debugged devel-
opment environment server and a single developer runs the proposed debugging
approach at a time. MySQL 5.7 is used in database operations required by the
proposed debugging approach and the debugging application is hosted as an
add-on to the development platform that is hosted in an Apache Tomcat 7.0.82
application server.

In Fig. 7 we compare the execution time of the sample web service without
any recording options towards the overhead presented by the full and minimal
recording for the debugging session. To eliminate the effect of environmental
factors on the execution we repeat the experiment 20 times and present the
error rate as well in the figure.

In Fig. 7(a) it can be seen that with the increasing amount of external data
queries, minimal recording method performs better than the full recording as
expected. Of course in this experiment an additional work of loops and operations
over variables keeping the query results is present causing the grap between the
full and minimal recording.

A Record/Replay Debugger for Service Development on the Cloud 75

(a) m4 (b) m5

Fig. 8. Memory overhead of remote debugging.

In Fig. 7(b) and (c) we repeated our experiments for m2 and m3 using the
same experimentation environment. For m2 the full recording method perfor-
mance decreases as number of variable assignments increases. Minimal record-
ing performs significantly better in this case. For m3, changing the number of
variables does not affect the performance of the full recording because the plat-
form stores the data for assignments instead of declared variables. The minimal
recording is not affected as well.

In Fig. 8 we present the additional memory needed by the remote debugger
for full and minimal recording. In (a) we continuously increase the number of
distinct variable assignments since assignment produce extra overhead during
the service execution recording. For the full recording, extra overhead produced
by the approach goes up to 52 KBytes for up to 10 assignments. Overhead is
less than 20 KBytes if minimal recording is used.

Please note that the memory overhead is produced only for the programs that
throw an exception at run-time, during the recording for the debugging session.
In addition, it is possible to fight with this overhead by periodically persisting
the recorded data to be sent to client altogether later for the debugging session.

In Fig. 8(b) we see that no additional memory overhead is produced by intro-
ducing variables into the script. This is due to the fact that variable evaluations
are the main elements that produce debugging data for the recorded session.

6 Conclusion and Future Work

This paper introduces a record/replay debugging approach that can be used in
debugging services developed on the cloud. Remote debugging engine is inte-
grated to a cloud based system where developers can implement services on a
remote server over web browsers. We also present a minimal recording option
where only the variable evaluations affected by external data queries such as web
service calls and/or database operations are recorded.

Remote debugger lets the developer debug step by step (either forward or
backward) the original interactions that caused the bug present in the service
being developed. Lightweight recording sessions produce more scalable debug-
ging sessions in terms of run-time efficiency. Backward stepping option is another

76 M. S. Sheikh Quroush and T. Ovatman

important feature of the remote debugger bringing the presented debugger one
step closer to be a time-travel debugger. Step back feature is enabled since all
the information related with variable evaluations are recorded for an erroneous
execution.

Our approach can be improved in a variety of different directions. A promising
field to further improve the minimal recording memory footprint is to store delta
differences of only the variables that are related to the error [8]. The impact of
the proposed approach on programmer productivity is another possible area of
research.

References

1. Barr, E.T., Marron, M.: Tardis: affordable time-travel debugging in managed run-
times. In: ACM SIGPLAN Notices, vol. 49, pp. 67–82. ACM (2014)

2. Barr, E.T., Marron, M., Maurer, E., Moseley, D., Seth, G.: Time-travel debugging
for Javascript/Node.js. In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 1003–1007. ACM
(2016)

3. Brock, M., various contributors: MVEL API Javadoc. http://javadox.com/org.
mvel/mvel2/2.2.1.Final/org/mvel2/package-summary.html. Accessed 28 July 2018

4. Brock, M., various contributors: MVEL-MVFLEX expression language. https://
github.com/mvel/mvel. Accessed 28 July 2018

5. Burg, B., Bailey, R., Ko, A.J., Ernst, M.D.: Interactive record/replay for web
application debugging. In: Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology, pp. 473–484. ACM (2013)

6. Chilimbi, T.M., Liblit, B., Mehra, K., Nori, A.V., Vaswani, K.: Holmes: effective
statistical debugging via efficient path profiling. In: IEEE 31st International Con-
ference on Software Engineering, ICSE 2009, pp. 34–44. IEEE (2009)

7. Engblom, J.: A review of reverse debugging. In: System, Software, SoC and Silicon
Debug Conference (S4D), pp. 1–6. IEEE (2012)

8. Hammoudi, M., Burg, B., Bae, G., Rothermel, G.: On the use of delta debugging to
reduce recordings and facilitate debugging of web applications. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, pp. 333–344.
ACM (2015)

9. Mickens, J.: Rivet: browser-agnostic remote debugging for web applications. In:
USENIX Annual Technical Conference, pp. 333–345 (2012)

10. Pothier, G., Tanter, É.: Back to the future: omniscient debugging. IEEE Softw.
26(6), 78–85 (2009)

11. Quroush, M.S.S., Ovatman, T.: Debugging remote services developed on the cloud.
In: Proceedings of the 8th International Conference on Cloud Computing and Ser-
vices Science, CLOSER 2018, Funchal, Madeira, Portugal, 19–21 March 2018, pp.
426–431 (2018). https://doi.org/10.5220/0006691604260431

12. Telerik: Fiddler web debugging. http://www.telerik.com/fiddler. Accessed 17 Jan
2018

13. Troberg, A., et al.: Improving Javascript development productivity by providing
runtime information within the code editor (2015)

14. Zhang, C., Lu, L., Zhou, H., Zhao, J., Zhang, Z.: MoonBox: debugging with online
slicing and dryrun. In: Proceedings of the Asia-Pacific Workshop on Systems, p.
12. ACM (2012)

http://javadox.com/ org.mvel/mvel2/2.2.1.Final/org/mvel2/package-summary.html
http://javadox.com/ org.mvel/mvel2/2.2.1.Final/org/mvel2/package-summary.html
https://github.com/mvel/mvel
https://github.com/mvel/mvel
https://doi.org/10.5220/0006691604260431
http://www.telerik.com/fiddler

Smart Connected Digital Factories:
Unleashing the Power of Industry 4.0

Michael P. Papazoglou1(&) and Andreas S. Andreou2

1 European Research Institute in Service Science (ERISS), Tilburg University,
5000 LE Tilburg, The Netherlands

mikep@uvt.nl
2 Department of Electrical Engineering/Computer Engineering and Informatics,
Cyprus University of Technology, P.O. Box 50329, CY3603 Limassol, Cyprus

andreas.andreou@cut.ac.cy

Abstract. Recent initiatives such as the Industrial IoT, or Industry 4.0, as it has
been dubbed, are fundamentally reshaping the industrial landscape by promot-
ing connected manufacturing solutions that realize a “digital thread” which
connects all aspects of manufacturing including all data and operations involved
in the production of goods and services. This paper focuses on Industry 4.0
technologies and how they support the emergence of highly-connected,
knowledge-enabled factories, referred to as Smart Manufacturing Networks.
Smart Manufacturing Networks comprise an ecosystem of connected factory
sites, plants, and self-regulating machines able to customize output, and allocate
resources over manufacturing clouds optimally to offer a seamless transition
between the physical and digital worlds of product design and production.

Keywords: Manufacturing networks � Industry 4.0 � Industrial internet �
Cloud manufacturing � Digital twins � Smart manufacturing networks �
Product and manufacturing network lifecycle

1 Introduction

Today, manufacturing is transforming from mass production to an industry charac-
terized by mass customization. Not only must the right products be delivered to the
right person for the right price, the process of how products are designed and delivered
must be at a new level of sophistication.

Currently, manufacturing is becoming network centric with dynamic, complex
interconnected supply and production chains. Traditionally linear supply chains are
transformed into highly interconnected, continually changing systems that integrate
information seamlessly to advance production and distribution. This implies a focus on
core technologies and critical assets with Original Equipment Manufacturers moving
toward digitally integrated systems and factories, autonomously running entire pro-
duction processes, global outsourcing of product component fabrication, and a strategy

This paper is partially funded by the European union’s H2020 project Dossier-Cloud – project id
#692251.

© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 77–101, 2019.
https://doi.org/10.1007/978-3-030-29193-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_5

that can more readily incorporate ecosystem partners and evolve to a more optimal state
over time. We call this interconnected, open ecosystem a Manufacturing Network [1].

A manufacturing network integrates data from diverse sources and locations to
drive the physical act of production and distribution. The result can be a “digital-twin”
model of the connected ‘smart’ factory of the future where computer-driven systems
create a virtual copy of the physical world and help make decentralized decisions with
much higher degree of accuracy [2]. The digital-twin approach enables manufacturers
to overlay the virtual, digital product on top of any physical product at any stage of
production on the factory floor and analyze its behavior. This approach allows man-
ufacturers to have a complete digital footprint of the entire manufacturing process -
spanning product, production, and performance - so that product designers and engi-
neers can make informed choices about materials and processes using visualization
tools, e.g., 3D CAD/CAM tools, during the design stages of a digital product and
immediately see the impact on a physical version of the product. This capability of
digital products can be extended across multiple factories.

In networked manufacturing, we are moving from a push-driven model to a pull-
driven model with the consumer becoming much more of a driver in the supply chain
and where production systems are more flexible in terms of handling smaller volumes
and individualized product portfolios that are part of discrete manufacturing [3].

The digital twin approach in networked manufacturing connects the digital to the
physical world allowing visibility in the operations of production systems and manu-
facturing plants. It focuses more holistically on how end-to-end transparency can
provide instant visibility across multiple aspects of the production chain all at once.
This provides insights into critical areas by enabling firms to track material flow,
synchronize production schedules, balance supply and demand, and production. There
is also the increased demand for the individualization of mass production where
manufacturers need to meet customer expectations for individualized products and
need to collaborate with them and external stakeholders to design and manufacture
these individualized products.

Industry 4.0 sets the foundations for completely connected factories that are
characterized by the digitization and interconnection of supply chains, production
equipment and lines, and the application of the latest advanced digital information
technologies to manufacturing activities. Industry 4.0 can be perceived as the rapid
transformation of industry, where the virtual world of information technology (IT), the
physical world of machines, and the Internet meet, driving access to manufacturing
data sources and systems. Paired with powerful tools, such as visualization, scenario
analysis, and predictive learning algorithms, this access to data is fundamentally
changing how manufacturers operate.

This paper examines the concept of manufacturing in the connected factories of the
future and its enabling technologies. It first introduces the concept of Industry 4.0, and
overviews standards and recent architectural developments. It then explains how Industry
4.0 technologies have the ability to efficiently extract meaningful data and insights from
manufacturing systems and processes, and transform traditional plants into smart col-
laborative digital factories. This new direction is highly connected to knowledge-enabled
factories, referred to as Smart Manufacturing Networks, where devices, production
equipment, production services and processes spanning factories and firms are

78 M. P. Papazoglou and A. S. Andreou

inter-connected - offering decision-making support on the basis of real-time production
data – produce on-demand and are continuously monitored, and optimized.

The paper is organized as follows: Sect. 2 discusses the transition to Industry 4.0 by
first outlining its basic characteristics and then focusing on the key enablers that
facilitate moving to smart manufacturing. Section 3 describes security issues, outlines
related standards and their role in support of Industry 4.0 and closes with presenting
reference architectures and models. Section 4 makes a brief introduction to smart
products and smart machines, while Sect. 5 focuses on Smart Manufacturing Networks
analyzing their characteristics, the transformation roadmap, the digital product lifecy-
cle, the knowledge related to product/production processes, and the digital twin life-
cycle. Finally, Sect. 5 provides our conclusions.

2 Making the Transition to Industry 4.0

The Fourth Industrial Revolution – also known as Industry 4.0 – represents a paradigm
shift to “decentralized” smart manufacturing and production, where intelligent
machines, systems and networks are capable of autonomously exchanging and
responding to information to manage and coordinate industrial production processes
through edge analytics. It is rapidly transforming how companies interact with cus-
tomers, develop and manufacture new products, and conduct operations by helping
integrate systems across production chains.

2.1 Essential Characteristics of Industry 4.0

Currently, there is no consensus regarding the definition of Industry 4.0, rather it has a
different meaning for each company depending on the company’s production-domain
and specific strategy. Moreover, this meaning is highly variable depending on the
business process affected - manufacturing, logistics, and the like [2]. Nevertheless,
Industry 4.0 in all of its forms and guises is marked by a shift toward a digital-to-
physical connection.

Industry 4.0 demands production processes that are much more flexible as well as
new machine-to-machine capabilities. It is not enough to have machines that flexibly
and easily interconnect with each other; they also have to be geared towards adjusting
production dynamically. Industry 4.0 - or Industrial Internet - offers new opportunities
to harness manufacturing data so that manufacturers can use knowledge-based and
advanced analytics techniques to structure, cross-correlate and gain insights from
manufacturing data that originates from multiple systems, equipment, devices, sensors
and processes. Subsequently, it automates and guides manufacturing accordingly to
optimize planning and scheduling to produce higher quality manufactured products.

The definition of Industry 4.0 in this paper covers six important properties:

1. Digitization of all physical assets and processes: The first main characteristic of
Industry 4.0 is the digitization of all physical assets and processes. Manufacturers
expand their existing range of products with complete digital product descriptions
as well as developing the capabilities they need to provide services and solutions

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 79

that supplement their traditional product offerings, e.g., embedded systems, sensors,
aftercare and product support, etc., ensuring that customer needs are met while
boosting the performance of the core product.

2. Integration of vertical and horizontal value chains: To enable production, vertical
integration of production activities within smart factories, from product design and
development and the various shop floor applications, devices, IoT, robot and
equipment, is necessary. Furthermore, the increased data being generated
throughout the plant floor also need to be accessible within higher-level enterprise
systems, placing a new emphasis on seamless vertical network integration. Only by
turning this data into meaningful information at the enterprise level can relevant
production and business decisions be taken.
Horizontal integration is combined with vertical integration to offer the prospect of
coordination of orders, materials’ flow and production data, with all geographically
dispersed entities, e.g., customers, distributors and channel partners, materials and
sub-product suppliers, contract manufacturers, and technology solution providers,
to achieve end-to-end, holistic integration through the entire value chain.

3. Control and Visibility: As products move from ideation and development to end of
life, the wealth of data produced at every stage of the manufacturing lifecycle can
create a product’s “digital thread,” which denotes the aggregated, product-specific
data stream that combines information from a variety of systems and sources.
Purpose of the digital thread is to improve design and manufacturing processes by
enabling real-time, data-driven actionable insights and decision-making, and control
capabilities.
Visibility denotes the ability to combine business transactional data with manu-
facturing operational data to gain full visibility and control and improve decision
making and action taking. It can include visibility from order entry to inventory to
finished product. It also includes real-time tracking and monitoring to prevent raw
material, human or machine deviations or failures.

4. Actionable insights: The convergence of the IoT, processes and analytics is gen-
erating a new world of big data, which is enabling new capabilities such as tailored
customer offerings, predictive solutions, streamlining production processes and
adaptation to changes. The use of detailed analysis of manufacturing and sensor
data from the plants combined with other critical data elements sets the foundation
for greater optimization of overall business and control, better manufacturing and
operations planning, greater improvement of production processes and product
quality, and more efficient maintenance of production assets.

5. Human-centered automation: Industry 4.0 will lead to a structural shift towards an
integrated digital and human workforce where the focus is on improving the user
experience, so that information is presented in the context of manufacturing tasks
performed, leading to better decision-making and new possibilities for
improvement.

6. Creation of innovative digital business models and strategic value propositions:
Digitization is eroding traditional barriers to entry in many sectors, creating
opportunities for new product types and new value propositions through increased
networking with customers and partners.

80 M. P. Papazoglou and A. S. Andreou

2.2 Key Enablers

Technologies such as IoT, Cyber-Physical Systems (CPS) and automation, big data and
analytics, augmented reality, as well as new user interfaces, sit at the heart of Industry
4.0 and all of them run on the cloud. These technologies enable not just the creation of
new value networks, but will also usher in a transition from product-as-a-service to
anything-as-a-service models. Their purpose is to move discrete manufacturing activ-
ities towards the seamless collaborative and distributed sharing of smart manufacturing.
Key enablers for Industry 4.0 include the following technologies:

Big Data Analytics. Industry 4.0 involves data analytics operations as a means of
extracting knowledge that drives process optimizations. Gathering plant and supply
chain data through a network of sensors and then processing such big data generates
new insights, supports decision-making and helps to influence new product designs,
streamlines system performance, and maximizes profitability. Some of these operations
require advanced analytics that fall in the realm of deep learning and artificial intelli-
gence. This is for example the case with the detection of failure modes in predictive
maintenance, where sensors monitoring the operating temperature in mechanical
components can track any abnormalities or deviations from an established baseline.
This allows manufacturers to proactively address undesired behavior before crippling
system failures can develop, which would otherwise lead to plant downtime and lost
production revenue.

Augmented/Virtual Reality (AR/VR) and Novel User Interfaces. Product and user
experience concepts are typically envisioned and shaped through sketching and CAD
modeling and a broad range of options is visualized through virtual means.

AR/VR can change the way engineers design products, test scenarios and designs
by using live demos and full immersion before the products are made. AR/VR offer the
tools that have the ability to view accurate representations of finished products in real-
world scenarios, review and evaluate concepts and alternatives, tweak and adjust and
modify designs. AR supported CAD packages allow projection of objects on a real
setting viewed for example through the camera of a smart device, as well as rotations in
three dimensions, thus enabling the viewing of a designed object from any desired
angle, even from the inside looking out on top of a live scenery.

VAR/AR can streamline development, especially when paired with prototyping
methods. The result is a reduced technical risk, rapid repetition design cycles and
ultimately innovative customized products.

Cyber-Physical Systems. These bring the virtual and physical worlds together using
capabilities such as sensing, communication and actuation, to create a networked
environment in which intelligent objects communicate and interact with each other.
CPSs are transforming the manufacturing industry into its next generation through a
closer relationship between the cyber computational space and the physical factory
floor, enabling monitoring, synchronization, decision-making and control [4, 5].

Internet of Things. IoT has enabled devices and sensors of all kinds to connect with
the Internet and each other to create, share, and analyze information, all without human
intervention.

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 81

Industry 4.0 has taken IoT even further and applied it on a much grander scale
leading to innovations like the smart factory and predictive technology. By outfitting
industrial machines with sensors and equipping employees all across the supply and
delivery chains with the tools to monitor and respond to the output from these sensors,
manufacturers can streamline all production and business operations. Sensors along the
production line lead to early detection of potential breakdowns. By relying on pre-
dictive maintenance to fix problems before they occur, companies avoid costly
downtimes and breaks in production. All these applications improve efficiency, mini-
mize unnecessary expenses, and maximize quality.

The purpose of IoT is “to connect objects”, while CPSs aim “to integrate the cyber
and physical worlds”. Together, they construct a virtual world where sensors, con-
trollers, and other devices are all connected through the network (the IoT-side), and
implement this virtual world to the physical world by controlling and coordinating the
things connected to this virtual world (the CPS-side).

Cloud-Computing. Cloud-based computing is an essential element of the smart
manufacturing revolution. There are two types of possible cloud computing adoptions
in the manufacturing sector, (i) Cloud-based manufacturing solutions with direct
adoption of some Cloud computing technology, and (ii) Cloud-centered manufacturing
- the manufacturing version of cloud computing.

Cloud-based solutions with direct adoption of some cloud computing technology
target scalability; operational efficiency; the ability to leverage infinitely scalable
computational resources on an on-demand, pay-as-you-go basis; application and
partner integration; data storage and management; analytics; and enhanced security.
They address isolated problems and fixes and unlike cloud-centered manufacturing
they do not offer a more holistic approach.

Cloud-centered (or cloud) manufacturing, extends the concept of virtualization to a
shared diversified collection of manufacturing resources e.g., machine tools and fac-
tories, offers those resources - primarily in the form of SaaS model - and deploys them
at scale to form production lines in response to customer-demand. This manufacturing
paradigm allows manufacturing service providers to engage in new, flexible arrange-
ments leading to better utilization of manufacturing capabilities and aims to provide
heightened levels of quality and value for consumers of third-party manufacturing
services.

Fog Computing. Fog (or edge) computing is heralded by many as the next big thing
in the world of Industry 4.0. Fog computing instead of transporting all data over the
network and then processing it in the cloud, performs operations on critical data close
to the IoT device (endpoint) and application, processing IoT data from a myriad of
sensors much faster but also without wasting bandwidth.

“Edge analytics” greatly reduces the amount of raw data that must be stored on
servers, either on premises or in the cloud, and reduces the amount of network traffic
being generated [6]. Collecting and analyzing data close to the endpoints means that
action can take place locally in real or near-real time. In this way, only meaningful
information needs to be backhauled to the datacenter or cloud for storage, bench-
marking or advanced statistical analysis.

82 M. P. Papazoglou and A. S. Andreou

Another important way fog computing will impact modern manufacturing is by
facilitating integration - whether of widespread supply chains or of the data streaming –
on the basis of IoT-enabled production-equipment on the factory floor [7]. Intelligently
integrating data streams from numerous partners, platforms, and devices is challenging
enough, but is much more difficult to achieve inside companies’ own data centers as
opposed to in well-networked data centers operating in the cloud.

Bringing it all Together. The merging of the above technologies, as well as the fusion
of business processes and manufacturing processes, are leading the way to the new
concept of smart factory [8]. The smart factory will enable highly customized and
bespoke products to be produced at acceptable unit costs, using autonomous self-
optimizing manufacturing processes and with much lower levels of emissions and
environmental impact. The landscape of the smart factory will feature complex and
extensive networks linking suppliers, manufacturers and customers.

3 Security, Standards and Reference Models

3.1 The Security Conundrum

Inadequately protected networks, data, processes and operations, and potential
manipulation of the plants, pose huge threats to industrial plants and businesses. They
are open to a range of attacks and cybercrimes, and threatened by interference, dis-
ruption or denial of process controls, theft of intellectual property, the loss of sensitive
corporate data, hostile alterations to data, and industrial espionage [9]. Once attackers
gain access to a critical application, they can manipulate machines or manufacturing
processes remotely. The fact is that most existing industrial facilities were neither
designed for connecting to the Internet nor developed with a special focus on IT
security.

To assure adequate security, manufacturers must adapt by building in defensive
measures to legacy equipment and systems that are now connected. Firms must, for
one, ensure the security of the software, infrastructures, application and computer
systems used. For another, they must deal with the effects of possible cyber-attacks on
the operational safety of devices and plants that are connected to the Internet. This is
exacerbated by the fact that firms open up their networks and systems for customers,
suppliers and partners [10].

One approach of defense is to insert security measures into application programs,
known as “security by design” [10]. Computational intelligence will play an important
role by tracking, identifying, and analyzing digital security threats. This can be
accomplished by strengthening applications and embedded systems and enabling them
to self-protect against tampering, reverse-engineering, and malware insertion. Another
solution could be online detection of threats, using machine learning and data analytics
techniques for cybersecurity [11]. For instance, we can analyze the normal behavior for
privileged users, privileged accounts, privileged access to machines and authentication
attempts, and then identify deviations from the normal profile.

An innovative and customized encryption approach to support secure collaborative
product development has been recently introduced [12]. Its goal is to maintain the

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 83

security of the sensitive information in CAD models while sharing other information of
the models in the cloud for effective collaboration. In addition, an approach that
complements perimeter security by limiting and protecting information flows to
internal and subcontracted factory floor devices has been introduced in [13].

Two security frameworks have been recently introduced to combat manufacturing
cyber security threats. The NIST Cybersecurity Framework provides organizations
with a structure to outline their current state of cybersecurity, considers cybersecurity
risks as part of an organization’s risk management processes and strengthen their
security posture [14]. The Industrial Internet Consortium’s ‘Industrial Internet of
Things, Security Framework’ (IISF) identifies and positions security-related architec-
tures, designs and technologies, as well as procedures relevant to trustworthy Industrial
Internet of Things systems [15].

3.2 The Role of Standards

The ability of disparate systems to exchange, understand, and exploit product, pro-
duction, and business data rests critically on standards. The Industry 4.0 developmental
stage requires an unprecedented degree of system integration across domain borders,
hierarchy borders and lifecycle phases. Today there exist several standards that can be
used in the context of Industry 4.0. The standards landscape upon which future smart
manufacturing systems can rely comprises integration standards within and across three
manufacturing lifecycle dimensions [16]: product, production system, and business.

The standards in support of Industry 4.0 facilitate the delivery and exchange of
manufacturing data, connect enterprise operations to plant operations, control systems
and actual production and establish repeatable processes with common terminology
and understandings of functionality.

Standards that Define Equipment Hierarchy. These standards include the ISA-95
(isa-95.com) standard that was developed to automate the interfaces to connect
enterprise application systems with the control systems that operate a manufacturing
plant’s equipment. The ISO 15746 (www.iso.org/standard/61131.html) standard
facilitates the integration and interoperability of process control and optimization
capabilities for manufacturing systems that are based on the ISA 95 hierarchy. The IEC
62264 standard (www.iso.org/standard/57308.html) describes the manufacturing
operations management domain and its activities, and the interface content and asso-
ciated transactions within the Manufacturing Operations Management and Business
Planning and Logistics view of ISA-95. The emerging IEC 62890 (www.vde-verlag.de/
standards/1800343/e-din-en-62890-vde-0810-890-2017-04.html) defines standards for
lifecycle management for systems and products used in industrial process measure-
ment, control and automation, and is applicable to hardware and software of
automation products and systems.

Standards that Model Manufacturing Processes. The most prominent of these
standards is SCOR (www.supply-chain.org), a process reference model that identifies
and promotes standardized methods for representing business processes and process
interactions and easy communication between manufacturers and their partners.

84 M. P. Papazoglou and A. S. Andreou

http://www.iso.org/standard/61131.html
http://www.iso.org/standard/57308.html
http://www.vde-verlag.de/standards/1800343/e-din-en-62890-vde-0810-890-2017-04.html
http://www.vde-verlag.de/standards/1800343/e-din-en-62890-vde-0810-890-2017-04.html
http://www.supply-chain.org

Product Model and Data Exchange Standards. These include the ISO-1030 and the
AutomationML standards. The ISO-10303 standard (www.steptools.com) describes
how to represent and exchange digital product information to enable companies to have
a proven single definition for all product information related to individual products
throughout their lifecycle, independent of changes in process and information tech-
nology. And finally, the AutomationML data format (www.automationml.org), stan-
dardized in IEC-62714, is an open, neutral, XML-based, data exchange format which
enables transfer of engineering data of production systems in a heterogeneous engi-
neering tool landscape.

3.3 Reference Models

A reference architecture provides common and consistent definitions in the system of
interest, its decompositions and design patterns, and a common vocabulary to discuss
the specification of implementations so that options may be compared. A neutral ref-
erence architecture model is essential for further standards work in Industry 4.0 [15].
The two most popular reference smart manufacturing models are summarized below.

Reference Architecture Model for Industry 4.0. RAMI 4.0 [17] provides a common
understanding of the relations existing between various individual components for
Industry 4.0 by setting a comprehensive framework for the conceptual and structural
design of Industry 4.0 systems.

RAMI 4.0 describes a reference architecture model in the form of a three-
dimensional coordinate model that describes all the important aspects of Industry 4.0.
The three-dimensional coordinate model of RAMI 4.0 includes three dimensions:
Layers, Life Cycle and Value Stream, and Hierarchy Levels, as shown in Fig. 1.

The six layers of the vertical axis define the structure of the IT representation of an
Industry 4.0 component. This axis represents the business applications, the functional
aspects, information handling, communication and integration capability, and ability of
the asset to implement Industry 4.0 features.

The Business Layer is composed of the business strategy, business environment,
and business goals. This layer models the rules which the system has to follow,
orchestrates services in the Functional Layer, provides a link between different business
processes and receives events for advancing the business processes.

The Functional Layer is responsible for production rules, actions, processing, and
system control. It also facilitates users as per product features like cloud services
(restore/backup functionality). This layer provides a formal description of functions, a
platform for horizontal integration of the various functions, and run-time and modelling
environment for services which support business processes and applications.

The Information Layer structures data in an organized fashion. Its purpose is to
provide information about the total number of sales, purchase orders info, suppliers,
and location info. It carries information about all products and materials that are
manufactured in the industry. It also gives information on the machines and compo-
nents that are used to build products.

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 85

http://www.steptools.com
http://www.automationml.org

The Communication Layer provides standardized communication between the
integration and information layers. It also provides services for control of the Inte-
gration Layer.

The Integration Layer deals with the effective processing of information and can be
considered as a link between the physical and digital worlds. Interaction with humans
also takes place at this layer, for instance via the use of Human Machine Interfaces.

The Asset Layer describes physical components such as motors, machines, docu-
ments, software applications, spare parts, system users, customers, suppliers, service
providers, or any other physical entity.

The left horizontal axis of RAMI 4.0 represents the Life Cycle of facilities and
products, based on IEC 62890 for life-cycle management. This axis offers potential for
improvement throughout the life cycle of products, machines, factories, software, or
even a factory.

The right horizontal axis of RAMI 4.0 represents different functions within fac-
tories based on Hierarchy Levels from IEC-62264 standards series for enterprise IT and
control systems. The hierarchy levels within IEC-62264 are based on the classic ISA-
95 standard. In order to represent the Industry 4.0 environment, these functions have
been expanded to include workpieces, labelled “Product”, “Field & Control Devices”,
“Enterprises”, and the connection to the Internet of Things and Services, labelled
“Connected World”.

The Industrial Internet Reference Architecture (IIRA). IIRA is an open architec-
ture for industrial internet systems to drive interoperability, to map applicable tech-
nologies, and to guide technology and standard development [15]. IIRA is not a
standard, rather it provides guidelines on how a safe, secure and resilient architecture
can help realize the vision behind the Industrial Internet. The IIRA contains

Fig. 1. Reference architecture model for Industry 4.0.

86 M. P. Papazoglou and A. S. Andreou

architectural concepts, vocabulary, structures, patterns and a methodology for
addressing design concerns. It defines a framework by adapting architectural approa-
ches from the ISO/IEC/IEEE 42010-2011 Systems and Software Engineering -
Architecture description standard. The IIRA framework includes viewpoints, lifecycle
process, and industrial sectors.

At the core of IIRA are viewpoints (See Fig. 2) which identify the relevant
stakeholders of Industrial Internet systems, determine the proper framing of concerns
and enable architects and engineers to identify and resolve key design issues. These
viewpoints provide a kind of checklist that breaks down the system design require-
ments into four categories, which include business, usage, functional and implemen-
tation elements. The Business Viewpoint identifies business stakeholders, their business
vision, values and objectives. The Usage Viewpoint addresses the expected system
usage and is represented as sequences of activities involving users that deliver intended
functionality. The Functional Viewpoint focuses on the functional components in an
Industrial Internet system, their structure and interrelation, the interfaces and their
interactions, and the relation and interactions of the system with external elements in
the environment. Finally, the Implementation Viewpoint focuses on technologies for
implementing functional components. The IIRA also addresses specific system con-
cerns, such as integration, interoperability and composability, connectivity, analytics
and data management.

Fig. 2. The Industrial Internet Reference Architecture (IIRA).

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 87

As shown in Fig. 2, IIRA through its viewpoints provides guidance to System
Lifecycle Processes from Industrial Internet system conception, to design, implemen-
tation, evolution and disposal. Its viewpoints offer a framework to system designers to
think iteratively through important common architectural issues in industrial internet
system creation. It also suggests common approaches (concepts and models) as views
in each of these viewpoints to aid the identification and resolution of important
architectural issues. IIRA is not a description of a system lifecycle process, which
varies from one industrial sector to another. Rather, as shown in Fig. 2, this reference
architecture is a tool for system conceptualization highlighting important system
concerns that may affect the system lifecycle process.

IIRA purposely starts from a generic framework and seeks common architecture
patterns to ensure wide applicability to Industrial Internet applications across a variety
of Industrial Sectors (see Fig. 2). For this reason, the IIRA general framework stays at
a high level in its architecture descriptions, and its concepts and models are at a high
degree of abstraction. The application of this general architecture framework, as a
reference architecture, to real-world usage scenarios transforms and extends the
abstract architectural concepts and models into detailed architectures addressing the
specificity of the Industrial Internet usage scenarios, e.g., manufacturing, transporta-
tion, logistics, etc. In this manner, the IIRA guides the next level of architecture and
system design.

The general consensus was that certain aspects of IIRA and RAMI 4.0 intersect
with each other, but more work is needed to precisely identify interoperability features
between them.

4 Smart Products and Smart Machines

Industry 4.0 is progressively transitioning conventional factories to smart products and
services, and networked production machines to enable the holistic digitalization of a
supply chain, and an ecosystem of connected digital factories.

Products in Industry 4.0 are ‘smart’ - with embedded sensors for real-time data
collection for measuring product state and environment conditions – connected, and
incorporate communication capabilities. Smart products include self-management via
the ability to monitor themselves and their environments and can enable remote con-
trol, optimization, and processing capabilities. Every smart product holds data about
operating conditions, current use and product status. This data provides a virtual copy
of each smart product. Such information is collected, updated and evaluated throughout
the life of the product as needed, from product design, production to actual customer
use and all the way to recycling. Connectivity provides smart products with the ability
for machine-to-machine communication, and embedded interfaces enable interaction
with human users.

Factory floor machines will evolve their level of intelligence in order to accom-
modate more knowledge-based processing and predictive planning. The term “smart
machine” implies a machine that is better connected and can communicate with other
machines and users, is more knowledgeable, flexible, more efficient and safer. The
application of smarter control mechanisms to robots and artificial intelligence (AI)-

88 M. P. Papazoglou and A. S. Andreou

enabled machines will differentiate Industry 4.0 manufacturing. To date, robots have
been restricted to repeatable step-based tasks without autonomy or self-control, or have
been deployed in a restricted scope and not on the main assembly line. Industry 4.0
smart robots will work hand-in-hand with humans using human–machine interfaces.

Machine-to-machine communication can be considered the integral technology of
the Internet of Things. Through advanced embedded sensor and actuator applications
technology, the entire production floor can relay meaningful information, forming the
interface between the physical and the virtual worlds. This provides a level of trans-
parency that enables huge improvements in manufacturing performance. Other
important aspects of smart machines include their ability to self-monitor and monitor
the devices they are connected to, and ability to adapt on-demand. A smart machine is
also capable of participating in predictive maintenance practices while minimizing its
own environmental footprint and total cost of ownership.

5 The Advent of Smart Manufacturing Networks

Traditionally, manufactures structured their supply chains around siloed functions such
as planning, sourcing, manufacturing, or distribution where the manufacturing site is
typically not completely integrated. Stakeholders often have little, if any, visibility into
other processes, which limits their ability to react or adjust their activities. In addition,
many aspects of the production process, including design, manufacturing, and supply,
are increasingly outsourced and remain widely fragmented. To succeed, firms need to
eliminate these boundaries, by converging plant-level and enterprise networks and
creating integrated, end-to-end production networks that are “always-on”.

Today, the trend is for networks of smaller, more nimble factories that are better
able to customize production for specific regions and customers that will eventually
replace large, centralized plants. This gives rise to the concept of Smart Manufacturing
Networks (SMNs) [1], which epitomizes smart connected factories. SMNs require
reconfiguring supply chains to integrate innovative and disruptive technologies and
capabilities that align with overall business strategy. These technologies form the
foundation of Industry 4.0 and are coupled with a trend towards highly customizable
products that have smarter, dependable, and secure plug and play integration of digital
and physical components.

5.1 Smart Manufacturing Network Characteristics

SMNs focus more holistically on how a network that consists of a permanent or
temporal coalition of interoperating production systems - belonging to geographically
dispersed manufacturing sites and factories - can better achieve joint production
objectives. It also focusses on how this coalition can integrate manufacturing data from
a variety of diverse sources, locations and manufacturing operations across connected
manufacturing sites to drive physical production [1]. In the realm of Industry 4.0, an
area of significant focus in SMNs is not only on the product, but on how the SMN
capabilities integrate to enable the act of production.

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 89

On the technical level, an SMN comprises production systems of geographically
dispersed enterprises (supplier networks, external support firms, and outside service
organizations) that collaborate in a shared value-chain to design and jointly produce a
physical end product. Parts of this product can be manufactured by dispersed sub-
contractors running their own production systems in an end-to-end, plug and produce
manner. In this way, a specialist factory can fill excess capacity by collaborating with
other such like entities, increasing flexibility and reducing costs whilst improving
quality of the product for the end consumer.

Production advantages in an SMN are not limited solely to one-off production
conditions, but can also be optimized according to a global network of adaptive and
self-organizing production units belonging to more than one operator [8]. Digital twins
are used in an SMN during the development of a product or when planning production.
They make the development process more efficient, improve quality and help to share
information between stakeholders. By combining digital twins of a product and the
production line, new production processes can be virtually tested and optimized before
any physical work can start. In addition, when digital twin information (in the form of
abstract knowledge types and structures, see Sect. 5.4) is shared with partners, they are
better able to optimize and align their processes.

SMNs couple data and services with a wide range of performance metrics, and can
achieve visibility across the extended manufacturing network such that critical man-
ufacturing operations are intercepted, analyzed and executed by applying the best
manufacturing practices.

High levels of automation come as standard in an SMN: this is made possible by a
flexible network of production systems which, using Industry 4.0 technologies (see
Sect. 2.2), can, to a large extent, automatically control and coordinate production
processes.

SMNs are increasingly dynamic and complex, and require increasingly more
sophisticated information integration. Two important elements of an SMN are vertical
and horizontal integration (see Sect. 2.2).

Vertical integration means that demand changes that are recorded in enterprise-
level systems can be fed into manufacturing schedules to ensure quantities of products
manufactured are more closely aligned with demand for leaner and more efficient
manufacturing. Shop-floor machinery is now powered by embedded sensors and
control mechanisms that allow via IoT for in-progress production adjustments on the
factory floor.

Smart Manufacturing Networks accentuate the shift in horizontal integration
towards a flexibly defined extended enterprise thus supporting the evolution into
dynamic, global, production networks. Such manufacturing networks enable manu-
facturers to focus on core competences yet allowing them to offer customized products
in any market. A true Smart Manufacturing Network can integrate data from system-
wide physical, operational, and human assets to drive manufacturing, maintenance,
production planning, scheduling and digitization of operations across the entire man-
ufacturing network.

To achieve their purpose, SMNs rely on domain-specific manufacturing knowledge
(see Sect. 5.4). We refer to the collective manufacturing knowledge in an SMN as
manufacturing smartness. Manufacturing smartness signifies the ability of an SMN to:

90 M. P. Papazoglou and A. S. Andreou

1. gain line of sight and provide unobstructed visibility of dispersed production data
and coordinated production operations across the entire SMN,

2. optimize use of dispersed data, resources and (human)-expertise,
3. provide help and guidance for making efficient and effective holistic decisions, and
4. plan a coordinated response to individual and collective manufacturing needs.

SMNs aim to improve manufacturing by connecting people to the right informa-
tion, over the right device at the point of need and cross company boundaries to include
suppliers, maintenance partners, and distribution chains. The human role will progress
from operators of the machines (“human-in-the-loop”) to partners of the machines
(“human-in-the-mesh”) with the potential for humans and machines to operate more
seamlessly and systems to interconnect better than ever before (see Sect. 2.2).

Every SMN could look different due to variations in line layouts, products,
automation equipment, and other factors. Despite all potential differences, the com-
ponents needed to enable a successful SMN are largely universal, and each one is
important: data, technology, manufacturing knowledge and processes, security and
people engagement.

In the following, we examine first the concept of digital transformation, digital
product lifecycle, and then focus on the concept of manufacturing smartness and the
process of managing an entire SMN.

5.2 Digital Transformation Roadmap

According to expert reports [18], manufacturing companies expect by the year 2020 to
reduce operational costs by 3.6% p.a., while increasing efficiency by 4.1% annually
(see Fig. 3). High levels of cost reduction are expected in every industry sector (e.g.,
aerospace, automotive, industrial manufacturing, metals, etc.).

Fig. 3. Industry 4.0 induced reduction of operational per industry sector (source: [18]).

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 91

Industry 4.0 will lead us not only to greater industrial productivity, but also to
greater commercial creativity by driving digital transformation. Transforming to a
digital Industry 4.0 manufacturing model requires a re-estimation of manufacturing
sector capacities, processes, operations, policies and frameworks [19].

Digital transformation in the context of Industry 4.0 is the profound transformation
of manufacturing and organizational activities, processes, competencies and models to
fully leverage the changes and opportunities of a mix of digital technology innovations
and their accelerating impact across production and manufacturing, with present and
future shifts in mind. Technology innovations - including cloud computing and plat-
form technologies, big data and analytics, mobile solutions, social and collaborative
systems, IoT, and AI (see Sect. 2.2), are fueling and accelerating a new era of digital
business transformation. Digital transformation in the Industry 4.0 era and the digiti-
zation of the enterprise lead to huge leaps in performance and improve digital rela-
tionships with customers who contribute to the productivity of the organization.

Many industrial firms have already begun digitizing their business, but often the
process has started in organizational silos, rather than following a holistic approach.
This will eventually lead to pitfalls. Instead, firms need to take the time to evaluate their
maturity level in all areas of Industry 4.0 and develop a digital transformation
roadmap. A typical digital transformation roadmap may include the following steps:

Readiness Check and Digital Maturity Assessment: Companies need to determine their
current business position and then start their digitalization initiative. They need to
conduct a readiness check to determine the following five aspects: viability of business
model, human expertise and cultural adoption readiness, technology-levels (the current
state or their organization’s technology), sophistication levels of data health, and
sophistication of processes. This should be followed by undertaking a comprehensive
digital maturity assessment in all areas of Industry 4.0 to understand their current
strengths and weaknesses throughout all relevant assessment domains (business model,
digital practices, management practices and digital capabilities, and which
systems/processes they may need to integrate into future solutions). Companies like
PWC and CapGemini have developed maturity models to assess how well companies
are positioned for digital success [18, 20].

Identifying Opportunities and Threats: Once organizations have a clear perspective on
their digital maturity, they need to explore the corporate environment for opportunities
and threats triggered by the digital transformation. They need to look into altering
customer demands, competition dynamics and digital best practices across all relevant
business domains. Opportunities and threats will need to consider five strategic
dimensions: business model, human expertise, technology, data health and processes.

Defining Digital Vision and Agenda: Based on the identified opportunities and threats,
manufacturing firms need to develop a clear digital vision. This vision needs to provide
a comprehensive view on how the firm aims to conduct digital business. A recent trend
is for an industry to forge technology partnerships to create a rich ecosystem to achieve
their digital ambitions. These partnerships set the stage for open innovation platforms
and some manufacturers are already envisioning future as a continuous process of

92 M. P. Papazoglou and A. S. Andreou

breaking out of traditional molds to spark new ways of producing and moving goods
and services, better, faster, and with increasing efficiency.

Prioritization of Transformation Business Segments and Piloting: The next step after
defining the digital agenda is to prioritize specific business segments for transformation
and select within these pilots based on the perceived business benefits and ease of
implementation. Digital transformation introduces complex, systemic challenges,
which manufacturers can address by architecting initiatives to connect disparate
operations and siloed systems and processes, starting with smaller, focused,
department-level pilots and growing them gradually to a unified end-to-end manu-
facturing ecosystem. The complexity of the implementation will depend on the required
level of integration with the existing core business processes and systems. Pilots can
help address these issues by targeting a confined scope, but highlighting the end-to-end
concept of Industry 4.0.

During this step it is important to pick the right projects. Possible options include
vertical integration within one or two manufacturing sites including digital engineering
and real-time data integrated manufacturing planning. This can be followed by gradual
horizontal integration with selected key suppliers. For instance, enhanced track and
trace capabilities and dynamic connections with Enterprise Resource Planning systems
at the enterprise-level can make it possible to apply data analytics to optimize supply
chain planning end-to-end.

Developing a Digital Transformation Blueprint and Adoption Strategy: Once the
transformation domains and pilot initiatives have been selected, prioritized, success-
fully performed and completed, a digital roadmap has to be created containing trans-
formation details for each of the preceding steps and lessons learned. The digital
roadmap provides a comprehensive plan designed to achieve value specific to manu-
facturing organization outcomes, inclusive of an adoption roadmap, benefit estimate,
actions that will deliver those benefits, and monitoring of those benefits. The roadmap
will also identify opportunities to improve user experience of the most widely-used
manufacturing processes services. The digital transformation journey has to build on a
consistent vision shared by all relevant stakeholders. Cultivating a digital environment
can only happen with committed leadership. As a result, the digital factory strategy
must be placed squarely at the center of the C-suite agenda and become a top priority.

5.3 Digital Product Lifecycle

In discrete manufacturing every manufactured product passes through a standard
lifecycle on its path from product concept, through engineering development, to pro-
duction. The digital product lifecycle in discrete manufacturing usually encompasses
the following stages.

Product Ideation/Analysis: This stage includes interaction with customers, and
brainstorming, collaboration and ‘ideation’ of a digital product potential and possibility
with product designers and strategists. Objective is to determine and analyze the dif-
ferent product characteristics usually by improving an existing product or design a new
product from scratch and variants as part of requests for quote for customized products.

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 93

Product Design: covers the techniques, digital tools and expanded mind-set used to
design, simulate, and plan a product in an SMN setting. Its objective is to provide a
virtual version of a product and all of its variations that can be run through wider
ranging tests. The concept of a digital twin is central to product design as it includes
design and engineering details describing the product’s geometry, materials, compo-
nents and behavior, individual parts and assemblies that make up the product. A digital
twin of a connected product can provide insight into how the product is behaving in the
field, helping to steer product design and provide intelligence for successful service
calls. During product design engineering teams see not just static mock-ups of a
product or system (the traditional 3D digital mock-up driven by CAD), but rather
provide insights into its physical behavior, like stress and vibration, as well as behavior
associated with software and control systems. A product is first visualized with an
engineering design, followed by the creation of a Bill of Materials (BOM). The BOM is
a list of parts and materials needed to make a product and shows “what product” to
make, not “how” to make it.

Product Planning: During this stage, the design concepts are turned into product
requirements and production plans. Planning enables manufacturers to manage man-
ufacturing data, process, resource, and plant data in an integrated product and pro-
duction environment. Planning bridges the connection between the product centric
view of building a product and the plant centric view of building a product in the plant.
Planning enables the development of three models critical to manufacturing:

• Manufacturing process model that provides an accurate description as to how the
product will be produced.

• Production facility model that provides a full digital representation of the produc-
tion and assembly lines needed to make the product.

• Production facility automation model that describes how the automation and
industrial control systems, such as Supervisory Control and Data acquisition
(SCADA) systems, Distributed Control Systems (DCS), and other control system
configurations, such as skid-mounted Programmable Logic Controllers (PLC), will
support production.

Planning consists of detailed plans explaining the manufacturing process. Within
these plans resides in-depth information on the above three models including
machinery, plant resources, equipment layout, configurations, tools, and instructions. It
also provides a bill of manufacturing processes that contains components and sub-
assemblies and the recipes of operations and resources needed to build the product and
stations and cells with the list of operations that can be performed at a particular factory
floor station.

Production Execution and Management: Production execution oversees production
operations, including functions to control material and product flow between equip-
ment. It includes digitally controlled/sensed equipment, factory floor
tools/systems/software, infrastructure systems, and simulations used to optimize pro-
duction and product quality. It supports production schedule execution and product
tracking against scheduled completion times, with adjustments to optimize efficiencies.

94 M. P. Papazoglou and A. S. Andreou

Service and Maintenance: Services are seen as an approach to create competitive
advantage and market differentiation [21]. The process through which this is achieved
is commonly known as servitization. With servitization traditional products can
incorporate additional value services, such as maintenance, upgrades in functionality,
condition monitoring, remote communications to resolve issues from a distance, con-
sumption monitoring, pushing information to line workers, production outputs, etc.
Servitisation is being accelerated by the IoT sensors that can collect huge volumes of
data which can be used to improve product quality, reliability, and customer
satisfaction.

5.4 Manufacturing Smartness

Currently, manufacturing knowledge is not completely captured in a digital, searchable
form in all phases of the manufacturing lifecycle. For example, design drawings,
process capability graphs, equipment pictures, manufacturing operation tables, pro-
duction schedules, statistical-process data interpretations, and engineering change
requests are not fully integrated. Furthermore, engineering knowledge is embedded in
various stages in the product lifecycle in forms of rules, logical expressions, predictive
models, statistics, and information extracted from sensors, such as production,
inspection, product use, supplier networks, and maintenance [22]. To circumvent this
problem, manufacturing knowledge must be captured, streamlined, structured, inter-
related, and curated by means of a formal manufacturing knowledge model.

An SMN can efficiently elicit knowledge from distributed resources and form a
coherent body of knowledge that can be analyzed by automated tools to create insights
that are used by analysts, engineers and customers alike to optimize product design and
production processes. In the following we focus on product, production and quality
knowledge related to product/production processes in an SMN setting.

Product structure knowledge should provide a hierarchical classification of the
items which form a product. Product knowledge should include all the details about
individual parts which compose a product, as well as their attributes and their relations
with each other, and is typically released in the form of assemblies, sub-assemblies and
components that are organized in a function-oriented structure.

Production knowledge is typically related to the parts in a specific order that can be
sourced and combined to manufacture a product. It describes numerous plant level
activities and workflows involving equipment (definition, usage, schedule, and main-
tenance), materials (identification, properties, location, and status), personnel (qualifi-
cations, availability, and schedule) and the interaction between them. The production
knowledge model is driven by production schedules containing production work orders
that are sent to production. These describe the manufacturing operation sequences
coupled with manufacturing task time, space, tooling and other resources that include
material, equipment, or personnel needed to manufacture the product.

Quality assurance knowledge helps streamline production and ensure that the final
products meet the company’s quality criteria and ensure customers receive products
free from defects and meet their needs. Quality Assurance knowledge includes
knowledge about the following aspects of manufacturing:

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 95

• Customer experience and responsiveness: includes knowledge and metrics about
on-time delivery of a completed product on the schedule that was committed to
customers.

• Quality manufacturing: includes knowledge and metrics about yield, which is the
percentage of products that are manufactured correctly, and specifications regarding
the manufacturing process and metrics about customer rejects and returns.

• Production performance: regards knowledge about the collection of activities that
analyze and report performance including production unit cycle times, resource
utilization, equipment utilization, equipment performance, procedure efficiencies
and production variability. Production performance knowledge typically relies on
production throughput, capacity utilization, and production attainment.

In a recent development the authors describe how manufacturing smartness in an
SMN is captured in a digital, formal manufacturing knowledge model that classifies it,
and encapsulates it in five inter-connected, programmable abstract knowledge types,
referred to as manufacturing blueprint images [23]. Manufacturing blueprint images (or
simply blueprints) represent and inter-link product data, product and manufacturing
process information (both its content and context), product portfolios and product
families, manufacturing assets (personnel, plant machinery and facilities, production
line equipment), production processing requirements and production workflows. The
blueprint images below are programmable abstract knowledge types that classify
product and production knowledge achieving separation of production concerns.

Supplier Blueprint: defines a partner firm’s business and technical details in an SMN
constellation, such as production capabilities, production capacity details, and stake-
holder roles.

Product Blueprint: this knowledge type is the “digital record” of a product, which is
continuously updated as the product itself passes through its life cycle. The Product
Blueprint defines the details of a standard or configurable product, product hierarchy,
product parts, materials, and product-related data, such as machine parameters or
customer order data, machine and tool data, personnel skills, and all entities necessary
to faithfully represent a complete product and ease production work. Such information
helps the manufacturer understand how the product behaves in different production
environments and provides traceability from inception to retirement.

Services Blueprint: defines and represents all services corresponding to a product (e.g.
maintenance, repair, upgrades, spare parts, etc.).

Production Plan Blueprint: defines standard assembly and production solutions, as
well as a suitable production plan via a workflow linking the events of discrete
activities associated with all aspects of actual production on the factory-floor. It
facilitates planning at all levels - plant, region, division and enterprise. It empowers
local planners to “own” their production schedules, while allowing line planners to
view both individual plant schedules and the aggregate production schedule across all
plants.

96 M. P. Papazoglou and A. S. Andreou

Quality Assurance Blueprint: ensures process efficiency and asset utilization, process
performance, equipment health, and energy consumption levels. It defines process
performance and product quality metrics (KPIs) to monitor production operations and
solve operation problems across supply and production-chains.

The five manufacturing blueprints described above enable the sharing of a common
understanding of manufacturing information among people and software tools; enable
the reuse and extension of manufacturing knowledge; make assumptions regarding the
manufacturing domain explicit; separate manufacturing from operational knowledge;
can be combined in end-to-end constellations describing entire supply chains and
process; and can, finally, enable the analysis of manufacturing knowledge leading to
improved decision making. The five manufacturing blueprints are generic in nature to
ensure wide applicability to Industrial Internet applications across a variety of Indus-
trial Sectors. They can be extended and specialized to address sector-specific
requirements. The previous characteristics are necessary to realize Industry 4.0 tenets.

Blueprint images can be stored in a marketplace repository (see Fig. 4), are dis-
coverable, can be queried, compared, interrelated and composed pair-wise into end-to-
end constellations defining a composite digital product and its component parts, as well
as its associated production plans and schedule.

5.5 Digital Twin Lifecycle

A significant emerging trend in SMNs is the unified, end-to-end digital twin lifecycle
that extends from digital product design through production execution, and production
monitoring.

To illustrate the SMN digital twin lifecycle process we consider a scenario in which
an OEM outsources a portion of its manufacturing operations to either a single or
multiple manufacturing partners who manufacture the necessary product parts and then
ship them for final processing and assembly at the OEM’s facility. In this scenario, we
assume that the OEM can obtain a digital representation of components through an
industry domain-specific digital marketplace repository (see Fig. 4) and augment them
via value-added digital services to meet specific customer needs.

The digital marketplace provides domain-specific manufacturing service offerings
rich in diversity and a shared, secure, open-access infrastructure, and functionality to
ease service interoperation and composability, and to allow users or a variety of third
parties to develop customized solutions.

To effectively deal with heterogeneity manufacturing partners can harmonize their
offerings by describing them in a common standardized knowledge model (see
Sect. 5.4) and by storing them in the marketplace repository for discovery purposes.
The repository provides harmonized digital services that can be combined with other
such services to perform a desired task. Production units will then become modules,
featuring ‘Plug & Produce’, enabling fast reconfiguration and optimization of pro-
duction lines. Figure 4 also shows the SMN digital twin lifecycle stages, which
include:

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 97

SMN Analysis and Configuration: During this stage, the OEM identifies manufactur-
ing options and allocates the production of product parts to potential external partners
selected from the marketplace in Fig. 4 that were chosen for outsourcing purposes. By
examining entries in the marketplace repository, an OEM determines which product
parts can be produced by a third-party supplier. It then assesses the selected partners by
examining key indicators, such as manufacturing and engineering capabilities, design
and innovation skills, costs, ability to scale, capacity utilization, and the policies of the
potential partner. At this stage, the OEM uses simulation and visualization tools to
estimate and display alternative network configurations with regards to partners,
variants, partner availability, quantities and delivery dates to determine the partners that
can jointly contribute to the construction of the final product. In this way, a final set of
partners is determined and the SMN is fully configured (see Fig. 4).

SMN Process Design: This stage enables the digitalization of a broad spectrum of
production-related functions, including advanced planning and scheduling, quality
management and manufacturing intelligence to coordinate processes and systems
within and across factories and standardize production across the entire SMN. This
stage connects the automation layer with product planning and design, enabling
companies to execute according to the plan and schedule. This affords improving the
full product and production lifecycle.

Design provides end-to-end visibility into production operations and quality
management, connecting the automated operations, equipment, and systems on the
shop floor to the decision makers in product development, manufacturing engineering,
production and enterprise management. With full visibility into production, decision

Fig. 4. SMN digital twin lifecycle stages.

98 M. P. Papazoglou and A. S. Andreou

makers can readily identify areas to be improved within both the product design and
associated manufacturing processes, and make the necessary operational adjustments
for smoother and more efficient production.

In this stage, it is possible to distribute workloads across multiple suppliers. This
phase adopts a vertical slicing (decomposition) of the OEM production process into
outsourced parts manufacturer processes, which need to be synchronized and
coordinated.

During SMN Design a digital “thread” of local processes and data flows continu-
ously, creating a virtual replica of a manufacturing process that reveals significant
insights. Results of this stage are apportioned and stored in the five blueprints described
in Sect. 5.4. A detailed example of how this procedure is performed can be found in
[23].

SMN Commissioning: is the stage that involves testing the entire production system,
including equipment, plant and facility, and handing off the production system for
operation. This could be performed on the basis of information contained in the five
blueprints in Sect. 5.4.

SMN commissioning covers the digitally enabled tools, technologies, and work
concepts that aid in the execution of manufacturing, processing, or assembly of a
product. Technologies that influence execution and processing include digitally
controlled/sensed equipment, shop floor tools/systems/software, infrastructure systems,
and simulations used to optimize production and product quality. SMN commissioning
provides up-to-date visibility of all Work in Process (WIP) orders for product lines and
production areas.

After commissioning, the production system enters operations and maintenance - a
steady state of tactical operations and strategic maintenance activities.

SMN Monitoring: provides real-time visibility, enables traceability of both materials
and products throughout their lifecycles, optimizes workflow to ensure lower lead
times, facilitates corrective actions for defective products, and optimizes plant opera-
tions for effective use of resources and assets. It detects abnormal conditions, machine
failures or KPI deviations, e.g., by inspecting end-to-end Quality Assurance and Pro-
duction Plan blueprints in an SMN, changing consumer demands, laws and regulations
(e.g., carbon emission). Its aim is to monitor production processes and either auto-
matically correct them or provide insights to human operators to improve product
design and processes, discover deficiencies though analytics and simulation, and
provide support to operators for correcting and improving process activities to ensure
that the processes supporting a given manufacturing task are performing in accordance
with service-level objectives.

During this stage, IoT-based systems distributed throughout the plant floor can
capture data along a wide array of dimensions, from behavioral characteristics of the
production machinery to characteristics of works in progress (thickness, hardness,
torque, and so on) and environmental conditions within the factory itself. By combing
performance data from the sensors with predictive analytics simulations, engineers can
examine and address performance issues, foresee the need for product maintenance or
repair, and ensure that future versions of the product are optimized for day-to-day
operating conditions

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 99

6 Conclusions

Industry 4.0 is driven by disruptive technologies which promote connected manufac-
turing solutions that link the supply chain directly to the production line by triggering
integrated, automated, autonomous manufacturing processes that make better use of
raw materials, and human resources to produce higher-quality products at reduced
costs. This is made possible by workpieces and means of production which are digitally
networked and are able to communicate. This end-to-end digitization and integration
are improving process efficiency, quality management, and productivity, along with
real-time insights into the whole manufacturing landscape, building a digital business
model that supports data-driven decision-making and integrated platform-based
services.

A critical element is the evolution of Industry 4.0 toward a connected, smart, and
highly efficient manufacturing network ecosystem that integrates data and processes
from many different sources and locations to drive the physical act of production and
distribution. This gives rise to the concept of a Smart Manufacturing Network that
extends the vertical integration of all corporate functions to the horizontal dimension,
knitting together relevant stakeholders - the suppliers of raw materials and parts,
external support firms, outside service organizations, the production process itself, and
finally the customer - through a network of sensors and digital services managed
through an overarching knowledge-driven environment and data analytics engine. The
result can be a virtual world, which mirrors and informs the physical world by repli-
cating what is happening on the factory floor.

References

1. Papazoglou, M.P., van den Heuvel, W.-J., Mascolo, J.E.: A reference architecture and
knowledge-based structures for smart manufacturing networks. IEEE Softw. 32(3), 61–69
(2015)

2. i-Scoop: Digital Twins – Rise of the digital twin in industrial IoT and Industry 4.0. https://
www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-
innovation/digital-twins/. Accessed 07 Sept 2018

3. Economist Intelligence Unit.: Networked manufacturing: the digital future (2014). https://
www.eiuperspectives.economist.com/sites/default/files/EIU%20-%20Siemens%20-%
20Networked%20manufacturing%20The%20digital%20future%20WEB.pdf. Accessed 07
Sept 2018

4. Yu, C., Xu, X., Lu, Y.: Computer-integrated manufacturing, cyber-physical system and
cloud manufacturing – concepts and relationships. Manuf. Lett. 6(11), 5–9 (2015)

5. Adamson, G., Wang, L., Moore, P.: Feature-based control and information framework for
adaptive and distributed manufacturing in cyber physical systems. J. Manuf. Syst. 43(2),
305–315 (2017)

6. Peralta, K., et al.: Fog computing based efficient IoT scheme for the Industry 4.0. In: IEEE
International Workshop of Electronics, Control, Measurement, Signals & Their Application
to Mechatronics, San Sebastian, Spain, pp. 1–6. IEEE (2017)

7. Ezell, S., Swanson, B.: How cloud computing enables modern manufacturing. In: ITIF:
Information Technology and Innovation Foundation, American Enterprise Institute (2017)

100 M. P. Papazoglou and A. S. Andreou

https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
https://www.eiuperspectives.economist.com/sites/default/files/EIU%20-%20Siemens%20-%20Networked%20manufacturing%20The%20digital%20future%20WEB.pdf
https://www.eiuperspectives.economist.com/sites/default/files/EIU%20-%20Siemens%20-%20Networked%20manufacturing%20The%20digital%20future%20WEB.pdf
https://www.eiuperspectives.economist.com/sites/default/files/EIU%20-%20Siemens%20-%20Networked%20manufacturing%20The%20digital%20future%20WEB.pdf

8. MacDougall, W.: INDUSTRIE 4.0: smart manufacturing for the future. In: Germany Trade
and Invest, Gesellschaft für Außenwirtschaft und Standortmarketing mbH, Berlin, July 2014

9. Brandner, M.: Why in Industry 4.0 manufacturing needs to be better prepared for cyber
attacks. IoT News, July 2016

10. He, H., et al.: The security challenges in the IOT enabled cyber-physical systems and
opportunities for evolutionary computing & other computational intelligence. In: Congress
on Evolutionary Computation (CEC), Vancouver, Canada, pp. 1015–1021. IEEE (2016)

11. Thames, L., Schaefer, D. (eds.): Cybersecurity for Industry 4.0: Analysis for Design and
Manufacturing. SSAM. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50660-9

12. Cai, X.T., Wang, S., Lu, X., Li, W.D.: Customized encryption of CAD models for cloud-
enabled collaborative product development. In: Thames, L., Schaefer, D. (eds.) Cyberse-
curity for Industry 4.0. SSAM, pp. 35–57. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-50660-9_2

13. Wegner, A., Graham, J., Ribble, E.: A new approach to cyberphysical security in Industry
4.0. In: Thames, L., Schaefer, D. (eds.) Cybersecurity for Industry 4.0. SSAM, pp. 59–72.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50660-9_3

14. NIST Smart Manufacturing Workshop, April 2016. https://www.nist.gov/document/nist-sm-
workshopappmarketplacepdf. Accessed 07 Sept 2018

15. The Industrial Internet of Things, Reference Architecture V1.80, January 2017. www.
iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf. Accessed 07 Sept 2018

16. Lu, Y., Morris, K.C., Frechette, S.: Current standards landscape for smart manufacturing
systems. NIST Interagency/Internal Report (NISTIR) – 8107, February 2016

17. Hankel, M., Rexroth, B.: The Reference Architectural Model Industrie 4.0 (RAMI 4.0).
https://www.zvei.org/en/press-media/publications/the-reference-architectural-model-
industrie-40-rami-40/. Accessed 07 Sept 2018

18. PWC: 2016 Global Industry 4.0 Survey, Industry 4.0: Building the Digital Enterprise.
https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-yo
ur-digital-enterprise-april-2016.pdf. Accessed 07 Sept 2018

19. Salkin, C., Oner, M., Ustundag, A., Cevikcan, E.: A conceptual framework for Industry 4.0.
Industry 4.0: Managing the Digital Transformation. SSAM, pp. 3–23. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-57870-5_1

20. Maihöfer, J.: Industry 4.0 Maturity Model – Mirroring today to sprint into the future,
CapGemini, February 2018. https://www.capgemini.com/consulting/2018/02/industry-4-0-
maturity-model-mirroring-today-to-sprint-into-the-future/. Accessed 07 Sept 2018

21. Raddats, C., et al.: Motivations for servitization: the impact of product complexity. Int.
J. Oper. Prod. Manag. 36(5), 572–591 (2016)

22. Feng, S.C., et al.: Towards knowledge management for smart manufacturing. ASME J. Com-
put. Inf. Sci. Eng. 17(3), 031016 (2017)

23. Papazoglou, M.P., Elgammal, A., Krämer, B.: Collaborative on-demand product-service
systems customization lifecycle. CIRP J. Manuf. Sci. Technol. (2018, in press). https://doi.
org/10.1016/j.cirpj.2018.08.003

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 101

http://dx.doi.org/10.1007/978-3-319-50660-9
http://dx.doi.org/10.1007/978-3-319-50660-9_2
http://dx.doi.org/10.1007/978-3-319-50660-9_2
http://dx.doi.org/10.1007/978-3-319-50660-9_3
https://www.nist.gov/document/nist-sm-workshopappmarketplacepdf
https://www.nist.gov/document/nist-sm-workshopappmarketplacepdf
http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.zvei.org/en/press-media/publications/the-reference-architectural-model-industrie-40-rami-40/
https://www.zvei.org/en/press-media/publications/the-reference-architectural-model-industrie-40-rami-40/
https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf
https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf
http://dx.doi.org/10.1007/978-3-319-57870-5_1
https://www.capgemini.com/consulting/2018/02/industry-4-0-maturity-model-mirroring-today-to-sprint-into-the-future/
https://www.capgemini.com/consulting/2018/02/industry-4-0-maturity-model-mirroring-today-to-sprint-into-the-future/
http://dx.doi.org/10.1016/j.cirpj.2018.08.003
http://dx.doi.org/10.1016/j.cirpj.2018.08.003

Interoperability Between SaaS and Data
Layers: Enhancing the MIDAS

Middleware

Elivaldo Lozer Fracalossi Ribeiro(B), Marcelo Aires Vieira,
Daniela Barreiro Claro, and Nathale Silva

FORMAS (Formalisms and Semantic Applications Research Group),
LaSiD–DCC–IME, Computer Science Graduate Program (PGComp),

Federal University of Bahia, Salvador, Bahia, Brazil
elivaldolozerfr@gmail.com, mairesweb@gmail.com,

dclaro@ufba.br, silva.nathale@gmail.com

http://formas.ufba.br/

Abstract. Nowadays, the volume of digital data grows exponentially. As
a result, many organizations store and provide their data in cloud com-
puting services. While Software as a Service (SaaS) is a typical model
for application delivery, Data as a Service (DaaS) and Database as a
Service (DBaaS) are models to provide data and database management
systems on demand, respectively. Heterogeneity of these services makes
it difficult to automate communication among them. In these cases, SaaS
applications require additional efforts to access those data. Besides that,
the lack of standardization from DaaS and DBaaS generates a prob-
lem of communication among cloud layers. In this paper, we propose
an enhancing version of MIDAS (Middleware for DaaS and SaaS) that
provides interoperability between Services (SaaS) and Data layers (DaaS
and DBaaS). Our current version of MIDAS is concerned with (i) present-
ing a Description Logic representation of the middleware and (ii) detail-
ing the Web Crawler. Experiments were carried out to evaluate execution
time, overhead, interoperability, and correctness. Results demonstrated
our effectiveness on addressing interoperability concerns in cloud com-
puting environments.

Keywords: Cloud computing · Interoperability · Middleware · DaaS ·
DBaaS

1 Introduction

The advance of the Web has increased the data volume digitally generated and
stored, with an estimated total of 40 trillion gigabytes in 2020 [5]. Because these
data need to be stored and available both to consumers and to organizations,

The authors would like to thank FAPESB (Foundation for Research Support of the
State of Bahia) for financial support.

c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 102–125, 2019.
https://doi.org/10.1007/978-3-030-29193-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_6

Interoperability Between SaaS and Data Layers 103

data management have been facing some challenges to handle the variety and
amount of data. Cloud computing fills some of these requirements, once it pro-
vides services with high availability and data distribution, with minimal man-
agement effort or service provider interaction [10]. By 2020, nearly 40% of data
available will be managed and stored by a cloud computing provider [5].

Cloud computing provides resources as services (e.g., applications, platforms,
hardware). These services are organized into levels to be consumed on demand by
users in a scheme of pay-per-use [2]. The most common service model is Software
as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS) [10]. Besides these, others commonly used are Data as a Service (DaaS),
and Database as a Service (DBaaS). SaaS is cloud applications made available to
end users via the Internet. DaaS provides data on demand through application
programming interfaces (APIs). DBaaS provides database management systems
(DBMS) with mechanisms for organizations to store, access and manipulate their
databases [6]. Although confusing, DaaS and DBaaS are different concepts [19].

Both social networks and portable devices (e.g., smartphones, and laptops)
generate a huge volume and variety of data due to the growth of the Internet of
Things [2]. Data are stored in non-structured (e.g., text), semi-structured (e.g.,
XML, JSON), and structured format (e.g., Relational Database). Governments,
institutions, and companies make their data available to users (public or private)
on the Internet through DaaS [4].

However, access to different DaaS and DBaaS by SaaS applications needs,
in the most of the cases, substantial efforts. This problem occurs because of
the lack of interoperability (standardization) between cloud levels [8,15,18]. For
instance, if demographic researchers need to make studies about census data
provided by governments in different DaaS (and/or DBaaS), they will face the
difficult to process these data due to the lack of standards and consequently no
interoperability between SaaS and DaaS (and/or DBaaS). To accomplish this
interoperability issue, a middleware is presented by [12], called MIDAS (Middle-
ware for DaaS and SaaS).

MIDAS is responsible for mediating the communication between different
SaaS, DaaS, and DBaaS [12]. MIDAS makes possible that SaaS applications
retrieve data seamlessly from various cloud data sources since MIDAS mediates
all communication between SaaS and DaaS/DBaaS. This version guarantees
access to DaaS regardless any modification made in the API.

We proposed a new version of MIDAS to provide a transparent interoperabil-
ity among different cloud layers. MIDAS 1.8 [12] dealt with two important issues:
(i) a formal description of our approach and (ii) a join clause to manipulate dif-
ferent data (DaaS and DBaaS) into a single query. Some minor improvements
were made in order to adjust MIDAS, such as (i) recognization of different data
query structures sent by SaaS, such as SQL and NoSQL queries; (ii) manipulate
different DaaS and DBaaS from statements such as join (SQL) and lockup (Mon-
goDB); (iii) manipulate different data models returned by DaaS and DBaaS, such
as JSON, XML, CSV, and tables; and (iv) return the result into the required
format by SaaS, such as JSON, XML, and CSV.

104 E. L. F. Ribeiro et al.

In this paper, we present some improvements to generating MIDAS 1.9: (i)
description of the formal model by Description Logic (DL); and (ii) an in-depth
presentation of our Web Crawler.

Some experiments were performed in [12] to evaluate the MIDAS approach,
considering four issues: Functional, execution time, overhead, and interoperabil-
ity. In this paper, we improved our set of experiments to evaluate the novel
version of MIDAS and our web crawler. Our results are effective, thus providing
a relevant result to the interoperability domain.

The remainder of this paper is organized as follows: Sect. 2 presents the most
relevant related works; Sect. 3 describes our current version of MIDAS; Sect. 4
formalizes our middleware; Sect. 5 provides a set of experiments to validate our
approach; Sect. 6 presents our results, and Sect. 7 concludes with some envision-
ing work.

2 Related Works

Some close works have discussed the lack of interoperability. In medical field,
authors in [11] propose a solution for heterogeneous DBaaS that share medical
data between different institutions. However, this approach handles data that
follows the Health Level Seven (HL7) standards, thus minimizing efforts regard-
ing heterogeneity.

Authors in [7] present a framework to solve problems in Big Data systems
on oil and gas domain. Their goal was to automate the transfer of information
between projects, identifying similarities and differences. Their framework han-
dles only one data source per query, not allowing to merge data from more than
one source.

Considering a non-domain-specific interoperability solution, there are two
related work [14,17]. These proposals do not deal with different types of NoSQL,
nor envision to handle NewSQL approaches. Besides, they manipulate data
sources without joining, and they do not work with data provided by DaaS.
It is noteworthy that manipulating both DaaS and DBaaS is one of the main
advantages of our proposal.

The cloud Interoperability Broker (CIB) is a solution to interoperate different
SaaS [1]. This work was evaluated in a dataset through an actual application,
but unlike our proposal, they do not consider the interoperability between SaaS
and DaaS.

Works in (MIDAS 1.8) [12] has some limitations: (i) The formal model is not
standardized; (ii) the Web Crawler architecture is presented without details; and
(iii) experiments do not evaluate the Web Crawler.

Thus, to the best of our knowledge, this is the first middleware that interop-
erates SaaS with DaaS and/or DBaaS in cloud environments.

3 The Current MIDAS

The MIDAS architecture is depicted in Fig. 1. This new approach is composed
of seven components (Query Decomposer, Query Builder, Data Mapping, Data

Interoperability Between SaaS and Data Layers 105

Fig. 1. Current MIDAS architecture.

Join, Dataset Information Storage - DIS -, Web Crawler, Formatter and Fil-
tering), in addition to the SaaS application, and DaaS/DBaaS providers. The
following subsections describe those components in details.

3.1 Request Module

Request Module contains two components. Query Decomposer receives a
query from SaaS (SQL or NoSQL) and maps the query to an internal struc-
ture. For instance, SQL structure such as, “SELECT city1, city2 FROM cities”
is decomposed by the Query Decomposer into two arrays: One for SELECT
clause and the other for FROM clause. The process is analogous to queries with
limit, order by, etc. This ensures that Query Builder will create the DaaS/DBaaS
request regardless of the API, since MIDAS will create a standardized request.

Query Builder receives the query decomposed and builds a query to
DaaS and/or DBaaS. DIS data is required to create the URLs to access the
DaaS/DBaaS. After that, the Query Builder sends the query to the DaaS/DBaaS
provider. This component accesses multiple DaaS in a single query if the query
has a join statement (such as SQL join or MongoDB aggregation).

106 E. L. F. Ribeiro et al.

3.2 Data Module

Unlike previous MIDAS version [12], Data Module is also made up of two com-
ponents. Data Mapping identifies and obtains data from different DBaaS. This
component generates a DaaS from a DBaaS based on a manual data dictionary.
It identifies a DBaaS from which data is stored and it obtains the request data.
DBaaS can be tables, columns, graphs, key-values or documents.

Data Join runs only when SaaS submits queries with the clause join. This
component aims to receive data and connects to attributes in the query (SQL
join or NoSQL lookup).

3.3 Dataset Information Storage (DIS)

Dataset Information Storage (DIS) persists the information about DaaS
APIs. This component works similarly to its previous version [16].

3.4 Web Crawler

The Crawler aims to maintain DIS information up-to-date, considering that
DaaS providers can change their parameters. DaaS is not standardized thus
it can modify frequently. Besides, SaaS provider can now indicate the desired
format to return its result. This component was scheduled to search for different
information from values in DIS. When DIS information is different from DaaS,
new recorder is updated into DIS.

Our Crawler performs two actions: (i) It inserts into DIS the parameters of
DaaS not yet used by MIDAS; and (ii) it identifies changes in the parameters
already used, keeping DIS updated. In other words, even a single DaaS on all
DaaS in DIS is updated with the Crawler.

Figure 2 presents the Web Crawler architecture. Initially, spiders are initial-
ized (in Initialize spider) depending on the task: Update information (i) on a
single DaaS or (ii) on all DaaS present in DIS. Afterward, data is extracted from
the APIs page(s) (in Extract data). The extraction process aims to find the
elements, validating them and sending them to the last subprocess (in Format
results), which is responsible for formatting data and entering the information
into DIS. Any errors during the steps that prevent DIS upgrade are stored in
the Crawler log file.

The Crawler has two JSON files: (i) and (ii) configuration. Log file contains
the log of each execution of the Crawler, storing when and which DaaS was
handled. Errors encountered during execution are also stored, allowing later
identification. Configuration file contains elements that guide and navigate the
Crawler between web pages, to assist the extraction of data.

A Web Crawler execution script was inserted in MIDAS for control tasks
(update on a single DaaS or all DaaS in DIS). This script can be executed by
receiving a specific DaaS to be updated. If no DaaS is informed, the Crawler
updates the information for all DaaS in DIS (Algorithm 1).

Interoperability Between SaaS and Data Layers 107

Fig. 2. Overview of Web Crawler architecture.

Algorithm 1. Web Crawler.

1: procedure crawl(specificDaaS, DIS)
2: if specificDaaS != NULL then
3: URL ← Configuration(specificDaaS)
4: A ← AccessDaaS(URL)
5: E ← FindOneElement(A)
6: DIS ← E
7: else � No DaaS passed as parameter
8: for all daas in DIS do
9: crawl(daas, DIS)

10: return DIS

In Fig. 1, Web Crawler is positioned at the edge of the MIDAS, since it
communicates with components external to the middleware (e.g., DaaS API).
With the insertion of the Web Crawler, DIS maintenance has become automated
and periodic, since Crawler updates the information when necessary.

3.5 Result Module

After submission of data from DaaS to MIDAS, the previous version of our
middleware [12] had only one component: result formatter. In this version, we
separate the module into two components to detail the flow of data. Formatter
and Filtering are responsible for formatting, associating, and selecting data
before returning to SaaS. Components receives either data from DaaS and DBaaS
and performs the merge of such data, regardless the model.

108 E. L. F. Ribeiro et al.

Figure 3 illustrates the MIDAS execution sequence for a SQL query with
the join statement that accesses one DaaS and two DBaaS. In this example,
SaaS sends a SQL query to MIDAS, which performs the decomposition (Query
Decomposer) and forwards it to the Query Builder. Query Builder accesses the
DIS and classifies the data as one DaaS (daas1) and two DBaaS (dbaas1 and
dbaas2). Query Builder builds the request to DaaS and asks the Data Mapping to
connect to both DBaaS to get the rest of the data (since the query performs the
join between DaaS and DBaaS). Each provider executes the request and returns
the result to the Result Formatter (daas1, dbaas1, and dbaas2). Each provider
returns the result in csv, table and document format, respectively. Formatter and
Filtering receives the data, performs the join, formats the return, and forwards
to the SaaS.

Fig. 3. MIDAS execution sequence among one DaaS and two DBaaS through a join
statement [12].

4 Formal Model of MIDAS

The formal model aims to detail the communication among middleware mod-
ules, facilitating future improvements. The formalization is based on canonical
models [13], sets of keys/values and Description Logic (DL). Firstly, we perform
a “general description” of the middleware and then, we described it by DL.

MIDAS can be described in three macro components: mDIS, mSaaS, and
mDaaS. The mDIS component is a canonical representation for DaaS in DIS. The
mSaaS component is responsible for mapping the query submitted by SaaS into
a set of URLs (where each URL performs the query on a DaaS). Finally, mDaaS
aims to map the DaaS returns on results to be sent to SaaS. Thus, we can sum-
marize that MIDAS internal model (MIDASql) is given by MIDASql = (mDIS,
mSaaS, mDaaS).

Interoperability Between SaaS and Data Layers 109

4.1 General Description

Each component is formed by a set of elements, to organize the internal structure.
Figure 4 depicts a general view of MIDAS. In addition, it is observable now how
each element is composed. Each cardinality between sets (represented in capital
letter) and individuals (represented in lower case).

Fig. 4. General view of MIDAS.

For each DaaS, DIS stores 9 data in key-value format: domain, search path,
query, sort, limit, dataset, records, fields, and format, in which not all are manda-
tory. A set of k (K) maps a specific DaaS (called daas), since each k maps a key,
and i maps the value of k. For instance, we can have a DaaS that returns data
only in csv format. In this case, k= format; and i = csv. As DIS stores 9 data (in
key-value format) for each DaaS, we always have daas (specific DaaS) with 9 k,
where K represent information about access and manipulation of daas.

We emphasize that: (i) Nroot names mDIS, in order to identify the element;
(ii) mDIS is formed by several daas (in which DAAS is the set of all daas); (iii)
a daas (individual) is formed by a set of keys k (where K is a set of k); and (iv)
as some k are optional, each key k contains 0 (k optional) or 1 (k mandatory)
value i. The cardinality of each element is described: (i) mDIS contains between
1 and d daas; (ii) each daas contains exactly 9 k (domain, search path, query,
etc.); and (iii) each k contains 0 or 1 i (where i maps the value of k). Finally, just
as mDIS has a name that identifies it, the other elements also have (Nrootdaas

and Nrootk name DAAS and K, respectively).
The mSaaS model converts the query (sent by SaaS) into a set with n (n≥ 1)

URLs to be submitted to DaaS, where n indicates the number of related tables
in the query. The first level clauses c1 identify (i) the related tables individually
and (ii) operations common to all tables (e.g., limit). The second level clauses
c2 contain the attributes of c1: for each query (individual per related table) and
common operations. Level v stores information about each c2.

110 E. L. F. Ribeiro et al.

Assuming a query with join of n tables, mSaaS generates n elements in level
c1 (q1, q2, . . ., qn, param) where, in level c2 the element ‘qi’ gather informa-
tion about the i-th relation and ‘param’ stores information about the clauses
join, order by and limit. Each ‘qi’ has exactly 3 elements (Projection, Selection,
and Dataset), while ‘param’ has exactly 5 elements (OrderBy, Limit, Typejoin,
CondJoin, and Return).

Thus: (i) Nroot identify the mSaaS model; (ii) mSaaS contains n+1 (q1, q2,
. . ., qn, param) first level clauses c1 (where C1 is a set of c1); (iii) each c1 contains
3n+5 (‘Projection’, ‘Selection’, and ‘Dataset’ for each relation qi + ‘OrderBy’,
‘Limit’, ‘TypeJoin’, ‘CondJoin’, and ‘Return’ for param, i.e., 3n+5) second level
clauses c2 (where C2 is a set of c2); and (iv) each c2 contains between 0 and w
values v (where v is an information about some of the related tables or some
operation, depends on c2). Finally, just as mSaaS has a name that identifies
it, the other elements also have (Nrootc1 and Nrootc2 name levels C1 and C2,
respectively).

Finally, the mDaaS maps the DaaS returns to SaaS. For this, mDaaS gener-
ates a return for each previously generated URL by mSaaS. If there is no join
clause in the query, that is, n = 1, then mDaaS only converts the DaaS return to
the desired SaaS format. If there is a join (n>1), then the joins are mapped into
pairs. In the latter case, the number of elements depends on the return of the
DaaS and the information stored in mSaaS (e.g., limit). Thus: (i) Nroot names
mDaaS, to identify the element; (ii) mDaaS contains the number of association
conditions (cj) between 0 and p, where CJ is a set of cj; (iii) each cj contains the
number of lists (l) between 0 to h lists, where l is a list with all the attributes
that contain cj and L is a set of l; and (iv) each list l contains between 0 and m
values a, where a is a attribute of the same tuple in which cj is part. Finally, just
as mSaaS has a name that identifies it, the other elements also have (Nrootcj and
Nrootl). As stated, cj is a value that the join condition assumes in the specific
relation, in order to generate the return.

One of the limitations of the canonical model is the static view presented,
since the model represents concepts and not the relationship between them. For
this, we modeled the MIDAS with Description Logic.

4.2 MIDAS in Description Logic

Description Logics (DL) is a knowledge representation language to formal-
ize knowledge bases. DL models concepts, individuals, and their relationships.
The classification (of a specific language) is based on their expressiveness. For
instance, LA is a DL that allows atomic negation, intersection, universal restric-
tions, and existential quantification [3].

MIDAS was modeled with SHOIN (D) since this DL offers all the necessary
operators: Concept, rule, universal (�), empty (⊥), negation (¬), intersection
(�), union (�), universal restriction (∀), existential restriction (∃), hierarchy (
and ≡), collection of individuals ({a1, . . . , an}), inverse properties, cardinality
restrictions (≤ and ≥), data type, and transitivity [9].

Interoperability Between SaaS and Data Layers 111

A knowledge base contains information for a specific domain. DL divides
the knowledge into intentional and extensional to better structure the modeling.
Intentional knowledge (known as TBox) represents the general characteristics
of the concepts. On the other hand, extensional knowledge (known as ABox)
represents a specific knowledge about each individual that is part of the domain.
An example of TBox is “man ≡ person � ¬ woman”1, while an example of ABox
is “man(John)”2 [3,9].

Definition 1 (MIDAS internal structure). MIDAS internal structure
(MIDASql) is defined as “MIDASql ≡ mDIS � mSaaS � mDaaS”, where: mDIS
is the canonical model of DaaS presented in DIS; mSaaS is the canonical model
that maps the query (sent by SaaS); and mDaaS is the canonical model that
maps DaaS return(s). An individual belongs to only one canonical model “mDIS
� mSaaS � mDaaS 	 ⊥”.

In the following subsections, each canonical model (mDIS, mSaas, and
mDaaS) is detailed in DL.

Definition 2 (mDIS). The canonical model that stores DIS information
(mDIS) is a tuple “mDIS ≡ ∃NAME.String � DAAS”, where: a literal name
(NAME) must exist for the canonical model; and DAAS is a set of daas models.

Definition 3 (daas). Daas is an element in DAAS (“daas 	 DAAS”) and it
stores information about a specific DaaS. It is defined as “daas ≡ ∃NAME.String
� K”, where: a literal name (NAME) must exist for each daas; and K is a set of
9 parameters (k) present in DIS for each DaaS (this is, “=9k 	 daas”). Since
DIS is formed by at least one DaaS (that is, there must be at least one daas in
DAAS), we define “≥1daas 	 mDIS”.

Definition 4 (k). A key k (“k 	 K”) stores one specific information about a
specific DaaS. This item can be described as “k ≡ ∃NAME.String � i”, where:
a literal name (NAME) must exist for each key k; and i is the value of each k.
Since the value i about k can be empty or atomic, we define “≥0i � ≤1i 	 k”.

Considering a hypothetical DIS with two DaaS (NYC and v8), part of the
canonical model mDIS can be seen in Fig. 5: The main node stores the beginning
of subtrees, where each subtree stores the information about a particular DaaS.
Each node of level i stores information on the k level, immediately above.

Definition 5 (mSaaS). The canonical model of mSaaS converts a query (sub-
mitted by SaaS) in a set with n URLs, where n is the number of related tables
in the query. mSaaS can be defined as “mSaaS ≡ ∃NAME.String � C1”, where:
a literal name (NAME) must exist for the mSaaS model; and C1 is a set of
first-level clauses (c1) to map queries and operations.

1 That is, a man is a person who is not a woman.
2 That is, John is a man.

112 E. L. F. Ribeiro et al.

Fig. 5. Example of mDIS for two DaaS [12].

Definition 6 (c1). A first-level clause c1 (“c1 	 C1”) is a information about
related tables or operations common to all tables. This item can be described as
“c1 ≡ ∃NAME.String � C2”, where: a literal name (NAME) must exist for each
clause c1; and C2 is a set of second-level clause to store information about a
specific query or a specific operation. We consider “NAME ≡ {q1, q2, . . ., qn,
param}”, where qi is an i-th related table and param is a node for storing data
about join, order by and limit.

Definition 7 (c2). A second-level clause c2 (“c2 	 C2”) contain informations
about c1. This item can be described as “c2 ≡ ∃NAME.String � V”, where: a
literal name (NAME) must exist for each clause c2; and V is a set of values
(v) for each c2. We consider that: (i) if c1 represents a query qi, then NAME
indicates the attributes of qi, where “NAME ≡ {Projection, Selection, Dataset}”;
however (ii) if c1 represents param, then “NAME ≡ {OrderBy, Limit, TypeJoin,
CondJoin, Return}”.

Definition 8 (v). A value v (“v 	 V”) is an element representing information
about c2, with V being empty, atomic, or multivalued. Thus, we define “V ≡ {v1,

Fig. 6. Example of mSaaS (a); for query without join/aggregation in SQL/NoSQL (b)
[12].

Interoperability Between SaaS and Data Layers 113

Fig. 7. Example of mSaaS (a); for query with join/aggregation in SQL/NoSQL (b)
[12].

. . ., vw}”, where vi is the i-th value about c2, and w is the number of values v in
the set V.

For instance, mSaaS presented in Fig. 6(a) is the mapping of queries pre-
sented in Fig. 6(b); while mSaaS presented in Fig. 7(a) is the mapping of queries
presented in Fig. 7(b).

It is necessary to transform both canonical models into a set of URLs to
submit to DaaS. Data from DaaS is received through a URL, MIDASql pro-
vides a mechanism to convert mDIS and mSaaS into a set of URLs, the function
“generateURLs()”. Our function has the following prototype: “URLs genera-
teURLs(mDIS, mSaaS)”. This means that, given a mDIS and a mSaaS, gen-
erateURLs() must returns a set of URLs, where: each URL is a concatenation
sequence of mDIS and mSaaS elements; and the number of URLs is equal to the
number of query relations (n, n ≥ 1), i.e., each qi (in mSaaS) generates URLi. For
this, we assume that: “+” is an operator that concatenates two strings (literals
or variables); and ch(p) is a function that returns the contents of the child(ren)
of p node.

Thus, considering DSname = ch(qi.dataset), the URLi is generated according
to Fig. 8.

Some observations are important within the function generateURLs(),: (i)
when ch(p) does not return any element, the corresponding line p in URLi

must be disregarded; (ii) multivalued result of ch(p) is separated by commas;

114 E. L. F. Ribeiro et al.

Fig. 8. Concatenations from to generate URLi [12].

Fig. 9. Example of mDIS for query in Fig. 7(b) [12].

(iii) the last two lines occur only for n = 1 (1 dataset); and (iv) for n ≥ 2
(more than 1 dataset), ch(qi.Projection) must initially include the corresponding
ch(param.CondJoin) if the join criterion is not part of the projection attribute
set (e.g., if ch(param.CondJoin) /∈ ch(qi.Projection)).

Given the mDIS of Fig. 9 and the mSaaS shown in Fig. 6(a), the genera-
teURLs() generates the following URL: URL1 = <http://w7.com/api/w/?dsw=
w7&rcw=name,age& q=age=10&sort=name&rows=10>.

On the other hand, given the same mDIS from the previous example (Fig. 9)
and the mSaaS shown in Fig. 7(a), the generateURLs() generates the following
URLs: URL1 = <http://w7.com/api/w/?dsw=x7&rcw=b1,name,age&qw=b1
=’queens’>; and URL2 = <http://vz.com/api/v/?dsv=vz&rcv=b2,phone>.

For each generated URL, the corresponding DaaS returns the request dataset.
Before sending the results to SaaS, MIDAS performs some operations to format
the data, such as join, order by, and limit, if applicable. This treatment is carried
out employing the canonical model mDaaS.

Definition 9 (mDaaS). The canonical model of mDaaS maps the return(s) of
DaaS. The mDaaS can be defined as “mDaaS ≡ ∃NAME.String � CJ”, where:
a literal name (NAME) must exist for the mDaaS model; and CJ is a set of
distinct values of CondJoin (cj) in the corresponding relation.

Interoperability Between SaaS and Data Layers 115

Definition 10 (cj). An information cj (“cj 	 CJ”) is a value that the condition
of the join (CondJoin) assumes in a specific relation. This item can be defined
as “cj ≡ ∃NAME.String � L”, where: a literal name (NAME) must exist for
each cj; and L is a set of lists (l) with all attributes that contain cj. Since not
every query has clause join, we make cj optional by doing “≥0cj 	 mDaaS”.

Definition 11 (l). Finally, a list l (“l 	 L”) stores all elements of the same
tuple in which cj is part, in the same order of occurrence of the relation (con-
sidering from left to right). We define “l ≡ {a1, . . ., am}”, where ai is the i-th
value to each l, and m is the number of values a in l. Since not every query has
clause join, we make l optional by doing “≥0l 	 cj”.

Considering that the query in Fig. 7(b) (with join) returns the two sets of data
presented in Fig. 10(b), the canonical models (mDaaS) are shown in Fig. 10(a).

Fig. 10. Example of mDaaS (a); for DaaS returns (b) [12].

Once the mDaaS has been generated, the join can be done. The next step
depends on the value of ch(param.TypeJoin). For this, in addition to the func-
tions already mentioned, we assume that: lch(p) is a function that returns the
last child of a p node; and con(p1, p2) is a function that connects the node p1

to node p2.
If ch(param.TypeJoin) = ‘left outer’, the join is performed as follows:

(a) ∀cj1 ∈ ch(q1D) e ∀cj2 ∈ ch(q2D), con(lch(q1D.cj1), ch(q2D.cj2)), ∀cj1 =
cj2;

(b) case cj1 /∈ ch(q1.P rojection), then (i) con(q1D, ch(q1D.cj1)) is performed
and (ii) cj1 is removed;

(c) if there is ch(param.OrderBy), this node is sorted;
(d) if there is ch(param.Limit), this must be the total of ch(q1D); and finally
(e) q1D is converted to ch(param.Return) and it is sent to SaaS.

Considering the mDaaS of Fig. 10(a), the execution is described in Fig. 11.
Therefore, in order to map and describe MIDAS formally, we have the expres-

sions for the TBox in Table 1.

116 E. L. F. Ribeiro et al.

Fig. 11. Example of the execution of mDaaS after left outer join [12].

Table 1. Table with DL expressions of TBox.

1. MIDASql ≡ mDIS � mSaaS � mDaaS 13. c1 � C1

2. mDIS � mSaaS � mDaaS � ⊥ 14. c2 ≡ ∃NAME.String � V

3. mDIS ≡ ∃NAME.String � DAAS 15. c2 � C2

4. daas ≡∃ NAME.String � K 16. V ≡ {v1, . . ., vw}
5. daas � DAAS 17. mDaaS ≡ ∃NAME.String � CJ

6. =9k � daas 18. cj ≡ ∃NAME.String � L

7. k ≡ ∃NAME.String � i 19. cj � CJ

8. k � K 20. l ≡ {a1, . . ., am}
9. ≥1daas � mDIS 21. l � L

10. ≥0i � ≤1i � k 22. ≥0cj � mDaaS

11. mSaaS ≡ ∃NAME.String � C1 23. ≥0l � cj

12. c1 ≡ ∃NAME.String � C2

5 Evaluation

We performed a set of five experiments to evaluate MIDAS. These experiments
delimit the relationship between SaaS and DaaS/DBaaS.

Firstly, we evaluate the overhead of our middleware (E1). We submitted
100 queries directly to both DaaS and DBaaS and, we compared the results
with MIDAS access. Queries were performed to return 100, 1000, and 10000
records. Secondly, we evaluate whether the query language (SQL and NoSQL)
influences the access time to different data sources (DaaS and DBaaS) (E2).
Through MIDAS, we have submitted 100 queries: (i) With MongoDB to DaaS;
(ii) SQL to DaaS; (iii) MongoDB to DBaaS; and (iv) SQL to DBaaS. Thirdly, we
evaluate the interoperability of our proposal (E3). In this experiment, we submit
100 queries to more than one data source: (i) 2 DBaaS; (ii) 2 DaaS; and (iii) 1
DaaS and 1 DBaaS. Fourthly, we evaluated the correctness of the data obtained

Interoperability Between SaaS and Data Layers 117

from the Crawler (E4). Finally, the Crawler execution time was explored during
the data extraction process (E5) with the same DIS of E4.

5.1 Our Case Study

Our current MIDAS is based on open source technologies that are found in any
cloud with PHP support. It was developed in Heroku cloud3 because it is an
open cloud with sufficient storage space and a complete Platform as a Service
(PaaS) for our project. To simulate a SaaS provider, we develop a Demographic
Statistics by NY Hospital’s web application based on PHP. This web application
is hosted in Heroku SaaS instance, and it can be accessed at <https://midas-
middleware.herokuapp.com/>.

Regarding DaaS service level, three different DaaS providers are carried to
perform experiments E1, E2, and E3:

– P1: Transportation Sites: 18 attributes and 13600 instances;
– P2: Hospital General Information: 29 attributes and 4812 instances, and
– P3: Demographic Statistics By Zip Code: 46 attributes and 236 instances.

Experiments E4 and E5 uses a DIS with the following DaaS:

– P1: Times Square Hotels: 15 attributes and 41 instances;
– P2: Health and Hospitals Corporation Facilities (HHC): 18 attributes and 78

instances;
– P3: Borough Enrollment Offices: 15 attributes and 13 instances;
– P4: Directory Of Homebase Locations: 15 attributes and 28 instances;
– P5: For Hire Vehicles (Active Drivers): 7 attributes and 183000 instances;
– P6: Medallion Drivers (Active): 6 attributes and 183000 instances;
– P7: NYC Wi-Fi Hotspot Locations: 29 attributes and 3179 instances;
– P8: For Hire Vehicles (Active and Inactive Vehicles): 23 attributes and 111000

instances;
– P9: Integrated Property Information System: 38 attributes and 15900

instances; and
– P10: Demographic Statistics By Zip Code: 46 attributes and 236 instances.

The same dataset provided by DaaS were persisted into two DBaaS: P1

in JawsDB4 and P2 in mLab5. DBaaS are based on MySQL and MongoDB,
respectively. The choice for MySQL and MongoDB was motivated by being free
databases and by being the most widely used Relational and NoSQL, respec-
tively6. Our application (simulating SaaS) performs a join between P2 and P3.

3 https://www.heroku.com/.
4 https://www.jawsdb.com/.
5 https://www.mlab.com/.
6 According to ranking https://db-engines.com/en/ranking.

https://midas-middleware.herokuapp.com/
https://midas-middleware.herokuapp.com/
https://www.heroku.com/
https://www.jawsdb.com/
https://www.mlab.com/
https://db-engines.com/en/ranking

118 E. L. F. Ribeiro et al.

5.2 Experiments

In the first experiment, we submitted 100 queries to both data sources (DaaS
and DBaaS) with and without MIDAS. We vary the number of records returned
(100, 1000, and 10000). This allows evaluating the influence of MIDAS on the
communication between SaaS and DaaS/DBaaS. For this, in the first experiment
we submit:

– 100 queries directly to DaaS provider;
– 100 queries to DaaS provider through MIDAS;
– 100 queries directly to DBaaS provider; and
– 100 queries to DBaaS provider through MIDAS.

As stated, we evaluated whether the query language influences the access
time depending on the data source.

In the second experiment we submit:

– 100 MongoDB queries to the DaaS provider through MIDAS;
– 100 SQL queries to the DaaS provider through MIDAS;
– 100 MongoDB queries to the DBaaS provider through MIDAS; and
– 100 SQL queries to the DBaaS provider through MIDAS.

Our third experiment evaluates the interoperability of MIDAS. We estimate
the average execution time required for MIDAS to relate data from different
sources, through the join (or aggregation) statement. The association of the
data was made through a zip code field. having in dataset P1 the attribute as
Zip and in the dataset P2 the attribute as Zip Code. For this, we submit:

– 100 queries with join statement to two DaaS providers through MIDAS;
– 100 queries with join statement to two DBaaS providers through MIDAS; and
– 100 queries with join statement to one DaaS and one DBaaS providers through

MIDAS.

In the fourth experiment, we create a DIS with 10 DaaS and we run the Algo-
rithm 1 for each DaaS. It was checked whether the results were compatible with
the data exposed in DaaS API. The recall was calculated by the ratio between
the retrieved information (RetInf) and the relevant information (RelInf), i.e.
recall = RetInf

RelInf .
Finally, in the fifth experiment, the Crawler updated each of the 10 DaaS

individually. For each DaaS, the test was performed sequentially six times, with
the assurance that the information in the DIS (for each DaaS) was current.
After collection, the mean time of each DaaS was calculated disregarding the
first execution, since it was an execution with time differing from the others.

6 Results

In this section, we present the results of our experiments, and we discuss them.

Interoperability Between SaaS and Data Layers 119

Fig. 12. Return time (y-axis) for each of the 100 queries submitted (x-axis) with a
limit of 100 records.

Fig. 13. Return time (y-axis) for each of the 100 queries submitted (x-axis) with a
limit of 1000 records.

6.1 Results from Experiment 1

The results obtained from experiment 1 were classified based on the value
assigned to the query limit. This value defines the number of records returned
and it was restricted up to 100, 1000 and 10000 data records.

Firstly, we submitted 100 queries to return 100 data records. In this case,
Fig. 12 shows the average of the execution time:

– 694.88 ± 36.86 ms for queries without MIDAS to DaaS;
– 827.14 ± 121.78 ms for queries through MIDAS to DaaS;
– 186.78 ± 5.98 ms for queries without MIDAS to DBaaS; and
– 190.05 ± 9.28 ms for queries through MIDAS to DBaaS.

Secondly, we submitted 100 queries to return 1000 data records. In this case,
Fig. 13 shows the average of execution time:

– 981.09 ± 61.03 ms for queries without MIDAS to DaaS;

120 E. L. F. Ribeiro et al.

Fig. 14. Return time (y-axis) for each of the 100 queries submitted (x-axis) with a
limit of 10000 records.

– 1037.75 ± 109.85 ms for queries through MIDAS to DaaS;
– 196.62 ± 5.31 ms for queries without MIDAS to DBaaS; and
– 236.56 ± 43.99 ms for queries through MIDAS to DBaaS.

Finally, we submitted 100 queries to return 10000 data records. In this case,
Fig. 14 shows the average of execution time:

– 1628.34 ± 165.79 ms for queries without MIDAS to DaaS;
– 1739.71 ± 225.21 ms for queries through MIDAS to DaaS;
– 426.29 ± 128.76 ms for queries without MIDAS to DBaaS; and
– 888.16 ± 95.24 ms for queries through MIDAS to DBaaS.

Regarding the overhead caused by MIDAS, we can observe that the average
differences of direct queries to DaaS and DBaaS, respectively, when compared
to the access through MIDAS were: (i) 19.03% and 1.75%, for 100 data records;
(ii) 5.77% and 20.31%, for 1000 data records; and (iii) 6.84% and 108.35%, for
10000 records. Time values are affected by (i) data traffic on the Internet and
(ii) MIDAS infrastructure. Some adjustments are been provided to enhace this
algorithm.

6.2 Results from Experiment 2

In this experiment, we combine two query languages (SQL and NoSQL) with
both sources (DaaS and DBaaS).

As Fig. 15 shows, the following averages of execution time were obtained:

– 1665.78 ± 165.50 ms for MongoDB queries through MIDAS to DaaS;
– 1878.23 ± 230.59 ms for SQL queries through MIDAS to DaaS;
– 938.92 ± 63.05 ms for MongoDB queries through MIDAS to DBaaS; and
– 955.36 ± 87.81 ms for SQL queries through MIDAS to DBaaS.

We can observe that: (i) For access to DaaS, SQL queries were 12.75% slower;
while (ii) for DBaaS access, SQL queries were 1.75% slower. The time difference
between the two types of queries is minimal. Consequently, no losses associated
with choosing the query language.

Interoperability Between SaaS and Data Layers 121

Fig. 15. Return time (y-axis) for each of the 100 queries submitted (x-axis) from
different languages to different data sources.

6.3 Results from Experiment 3

In this experiment, we performed a query with join statements that access two
different DaaS, two different DBaaS and one DaaS with one DBaaS.

Figure 16 depicts the average of the execution time.

– 106037.99 ± 7053.01 ms for two DaaS providers;
– 30919.58 ± 6837.21 ms for two DBaaS providers; and
– 30899.90 ± 7108.21 ms for one DaaS and one DBaaS

Fig. 16. Return time (y-axis) for each of the 100 queries (x-axis) with join (or aggre-
gation) statement.

In this experiment, we can observe that (i) the average query time to 2 DBaaS
is 0.06% slower than 1 DaaS and 1 DBaaS queries; and (ii) the average query
time to 2 DaaS is 242.95% slower than 2 DBaaS queries and 243.17% slower
than 1 DaaS and 1 DBaaS queries, respectively. When using DaaS, the time
values are greater than those presented by DBaaS. This is because DBaaS have
mechanisms/structures (such as relational databases) to optimize data handling,
different from DaaS.

122 E. L. F. Ribeiro et al.

Fig. 17. Information about P3 before (left) and after (right) of Crawler execution.
Featured for the three modified sections.

6.4 Results from Experiment 4

In this experiment, Crawler execution resulted in the change of 3 DaaS (P1, P2,
and P3): precisely the DaaS present from MIDAS 1.8. Since this information was
manually included, there was no change since our previous MIDAS version.

For instance, P1 with 14 attributes was changed into 26 after the Crawler
execution. Besides that, in P2, the extraction increased attributes from 18 to 27.

The P3 had attributes been added, updated and removed. This implies the
maintenance of access to the data. Figure 17 compares DIS with P3 data before
and after Crawler execution. In this way, it is possible to observe which param-
eters have updated (a), added (b) and removed (c).

Note that all parameters have been entered, changed or deleted correctly
from our Crawler.

6.5 Results from Experiment 5

In the experiment 5, Fig. 18 shows the execution time for each of the 10 DaaS
present in DIS.

The averages obtained vary between 25.6 and 29.6 s. The data extraction
process has little variation times (standard deviation of 1.29 s), because the data
scraping process occurs with little variation between distinct DaaS (some ele-
ments are extracted from Ajax requests, without the need to manipulate elements
HTML).

Interoperability Between SaaS and Data Layers 123

Fig. 18. Average Crawler execution time in the 10 DaaS.

6.6 Discussions

Our case study evaluates MIDAS through its overhead and different languages
and data sources.

Despite the fact that the execution time was proportional to the submitted
query, in the first experiment the results show that MIDAS inputs an extra
overhead regarding direct queries. This depreciation was expected because of
the new layer introduced between SaaS and DaaS. It is noteworthy that network
bandwidth, cloud providers, and latency might also influence those results.

Considering DBaaS, we observed that the result from a direct access is more
rapid than through MIDAS. In fact, MIDAS deals with DBaaS as a DaaS,
through the Data Mapping component.

The second experiment states that the query language (e.g., SQL, NoSQL)
does not influence the query performance or the return time with both data
(e.g., DaaS, DBaaS).

The third experiment, the join clause has a complexity O(n2) (where 2 is
the number of data sources). All the same, we can state that the benefits of our
approach to interoperate different data sources outperforms the time spent on
gathering the results.

In relation to experiment 4 and 5, the variation of the average execution time
is observed. This is because the amount of data manipulated varies according
to DaaS. There is also the scenario where the Crawler detects that there are
no changes once the data is up to date. With an average time of 26 s for each
DaaS, an excessively populated DIS is indicative of how the effectiveness of the
Crawler can be improved.

The sequential execution of a given DaaS tends to have a decreasing average
time since some data is cached during successive executions. However, external
interferences during Crawler execution (such as broadband connection noise)
tend to influence time. Additionally, changing HTML layout of pages would

124 E. L. F. Ribeiro et al.

make the data extraction process difficult, as some markup elements are used
during the process.

All data sources were public and open.

7 Conclusions and Future Work

In this paper, we propose a new version of MIDAS to address issues little explored
in the previous version, such as the formal model, and Web Crawler. SaaS appli-
cations continue to query DaaS or DBaaS datasets transparently despite the
complexity of dealing with interoperability problem in cloud environments.

Our results show that MIDAS delivered the expected results in both scenar-
ios, despite different query languages and data sources.

As a future work, we intend to continue improving MIDAS by adding new
characteristics, such as (i) recognization of SPARQL queries and other types of
NoSQL; (ii) automate the Crawler for searching novel DaaS and disambiguate
data from heterogeneous data sources, and (iii) provide the ABox and evaluate
the formalization of MIDAS.

References

1. Ali, H., Moawad, R., Hosni, A.A.F.: A cloud interoperability broker (CIB) for data
migration in SaaS. In: 2016 IEEE International Conference on Cloud Computing
and Big Data Analysis (ICCCBDA), pp. 250–256, July 2016. https://doi.org/10.
1109/ICCCBDA.2016.7529566

2. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010). https://doi.org/10.1145/1721654.1721672

3. Baader, F.: A new description logic with set constraints and cardinality constraints
on role successors. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI),
vol. 10483, pp. 43–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66167-4 3

4. Barouti, S., Alhadidi, D., Debbabi, M.: Symmetrically-private database search in
cloud computing. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 1, pp. 671–678. IEEE (2013)

5. Gantz, J., Reinsel, D.: The digital universe in 2020: big data, bigger digital shadows,
and biggest growth in the far east. IDC iView - IDC Analyze the Future, pp. 1–16
(2012)

6. Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Pro-
ceedings of the 18th International Conference on Data Engineering, pp. 29–38.
IEEE (2002)

7. Igamberdiev, M., Grossmann, G., Selway, M., Stumptner, M.: An integrated multi-
level modeling approach for industrial-scale data interoperability. Softw. Syst.
Model. 17, 1–26 (2016)

8. Loutas, N., Kamateri, E., Bosi, F., Tarabanis, K.: Cloud computing interoperabil-
ity: the state of play. In: 2011 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 752–757. IEEE (2011)

9. Lutz, C., Wolter, F.: The data complexity of description logic ontologies. Log.
Methods Comput. Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:7)2017

https://doi.org/10.1109/ICCCBDA.2016.7529566
https://doi.org/10.1109/ICCCBDA.2016.7529566
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1007/978-3-319-66167-4_3
https://doi.org/10.1007/978-3-319-66167-4_3
https://doi.org/10.23638/LMCS-13(4:7)2017

Interoperability Between SaaS and Data Layers 125

10. Mell, P., Grance, T., et al.: The NIST definition of cloud computing. Computer
Security Division, Information Technology Laboratory, National Institute of Stan-
dards and Technology Gaithersburg (2011)

11. Park, H.K., Moon, S.J.: DBaaS using HL7 based on XMDR-DAI for medical infor-
mation sharing in cloud. Int. J. Multimedia Ubiquit. Eng. 10(9), 111–120 (2015)

12. Ribeiro, E.L.F., Vieira, M.A., Claro, D.B., Silva, N.: Transparent interoper-
ability middleware between data and service cloud layers. In: Proceedings of
the 8th International Conference on Cloud Computing and Services Science
(CLOSER 2018), pp. 148–157. INSTICC, SciTePress (2018). https://doi.org/10.
5220/0006704101480157

13. Schreiner, G.A., Duarte, D., Mello, R.D.S.: SQLtoKeyNoSQL: a layer for relational
to key-based NoSQL database mapping. In: Proceedings of the 17th International
Conference on Information Integration and Web-based Applications & Services, p.
74. ACM (2015)

14. Sellami, R., Bhiri, S., Defude, B.: ODBAPI: a unified REST API for relational and
NoSQL data stores. In: 2014 IEEE International Congress on Big Data (BigData
Congress), pp. 653–660. IEEE (2014)

15. Silva, G.C., Rose, L.M., Calinescu, R.: A systematic review of cloud lock-in solu-
tions. In: 2013 IEEE 5th International Conference on Cloud Computing Technology
and Science (CloudCom), vol. 2, pp. 363–368. IEEE (2013)

16. Vieira, M., et al.: Enhancing MIDAS towards a transparent interoperability
between SaaS and DaaS. In: Anais do XIII Simpósio Brasileiro de Sistemas de
Informação, Lavras, pp. 348–355. SBC, Porto Alegre (2017). https://sol.sbc.org.
br/index.php/sbsi/article/view/6062

17. Xu, J., Shi, M., Chen, C., Zhang, Z., Fu, J., Liu, C.H.: ZQL: a unified middleware
bridging both relational and NoSQL databases. In: 2016 IEEE 14th International
Conference on Dependable, Autonomic and Secure Computing, 14th International
Conference on Pervasive Intelligence and Computing, 2nd International Confer-
ence on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 730–737. IEEE (2016)

18. Zeidler, C., Asghar, M.R.: Towards a framework for privacy-preserving data sharing
in portable clouds. In: Helfert, M., Ferguson, D., Méndez Muñoz, V., Cardoso, J.
(eds.) CLOSER 2016. CCIS, vol. 740, pp. 273–293. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62594-2 14

19. Zheng, Z., Zhu, J., Lyu, M.R.: Service-generated big data and big data-as-a-service:
an overview. In: 2013 IEEE International Congress on Big Data, pp. 403–410, June
2013. https://doi.org/10.1109/BigData.Congress.2013.60

https://doi.org/10.5220/0006704101480157
https://doi.org/10.5220/0006704101480157
https://sol.sbc.org.br/index.php/sbsi/article/view/6062
https://sol.sbc.org.br/index.php/sbsi/article/view/6062
https://doi.org/10.1007/978-3-319-62594-2_14
https://doi.org/10.1007/978-3-319-62594-2_14
https://doi.org/10.1109/BigData.Congress.2013.60

Continuous Architecting
with Microservices and DevOps:
A Systematic Mapping Study

Davide Taibi1(B) , Valentina Lenarduzzi1(B) , and Claus Pahl2(B)

1 Tampere University, Tampere, Finland
{davide.taibi,valentina.lenarduzzi}@tut.fi

2 Free University of Bozen-Bolzano, Bolzano, Italy
claus.pahl@unibz.it

Abstract. Context: Several companies are migrating their information
systems into the Cloud. Microservices and DevOps are two of the most
common adopted technologies. However, there is still a lack of under-
standing how to adopt a microservice-based architectural style and which
tools and technique to use in a continuous architecting pipeline.

Objective: We aim at characterizing the different microservice archi-
tectural style principles and patterns in order to map existing tools and
techniques adopted in the context of DevOps.

Methodology: We conducted a Systematic Mapping Study identifying
the goal and the research questions, the bibliographic sources, the search
strings, and the selection criteria to retrieve the most relevant papers.

Results: We identified several agreed microservice architectural prin-
ciples and patterns widely adopted and reported in 23 case studies,
together with a summary of the advantages, disadvantages, and lessons
learned for each pattern from the case studies. Finally, we mapped the
existing microservices-specific techniques in order to understand how to
continuously deliver value in a DevOps pipeline. We depicted the current
research, reporting gaps and trends.

Conclusion: Different patterns emerge for different migration, orches-
tration, storage and deployment settings. The results also show the lack
of empirical work on microservices-specific techniques, especially for the
release phase in DevOps.

Keywords: Cloud-native · Microservice · DevOps · Migration ·
Orchestration

1 Introduction

Software is becoming more complex and development processes are evolving
to cope with the current fast-changing requirements imposed by the market,
with short time-to-market and quickly evolving technologies. Continuous soft-
ware engineering, and in particular DevOps, tries to address these aspects, sup-
porting developers with a set of continuous delivery practices and tools to contin-
uously deliver value, increasing delivery efficiency and reducing the time intervals
c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 126–151, 2019.
https://doi.org/10.1007/978-3-030-29193-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_7&domain=pdf
http://orcid.org/0000-0002-3210-3990
http://orcid.org/0000-0003-0511-5133
http://orcid.org/0000-0002-9049-212X
https://doi.org/10.1007/978-3-030-29193-8_7

Continuous Architecting with Microservices and DevOps 127

between releases [3]. However, traditional monolithic architectures are not easily
applicable to this environment and new architectural styles need to be consid-
ered. In order to adopt DevOps, the architectural style adopted must be designed
with an agile focus; for this purpose, the Microservices [10] architectural style is
suitable for this continuous architecture setting.

Microservices are relatively small and autonomous services deployed indepen-
dently, with a single and clearly defined purpose [10]. Because of their indepen-
dent deployability, they have a lot of advantages for continuous delivery. They
can be developed in different programming languages, they can scale indepen-
dently from other services, and they can be deployed on the hardware that best
suits their needs. Moreover, because of their size, they are easier to maintain
and more fault-tolerant since the failure of one service will not break the whole
system, which could happen in a monolithic system [12].

DevOps (Development and Operations) is a set of continuous delivery prac-
tices aimed at decrease the delivery time, increasing the delivery efficiency and
reducing time among releases while maintaining software quality. It combines
software development, quality assurance, and operations [3]. DevOps includes a
set of steps of the development process (plan, create, verify, package) and of the
operational process (release, configure, monitor), combining the activities com-
monly performed by the development teams, quality assurance and operations
teams. In order to adopt the DevOps practices, the architectural style of the
system must be design with an agile focus and the microservice architectural
style is one of the most suitable architectural style to cope with them [2].

Despite both the microservice architectural style and DevOps being widely
used in industry, there are still some challenges in understanding how to develop
such kinds of architectures in a continuous software engineering process [2]. In
this work, we extend our previous mapping study on architectural patterns for
microservices [16].

The goal of this work is two-fold: First we aim to characterize the differ-
ent microservice architectural styles reported in the literature both as propos-
als and case studies on implementations. Then we aim to map the reported
microservices-based techniques that can be applied to the DevOps pipeline in
order to identify existing gaps. Therefore, we designed this work as a Systematic
Mapping Study [13,19]. A previous systematic mapping has been published by
Pahl and Jamshidi [11] aimed at classifying and comparing the existing research
body on microservices mainly considering non peer-reviewed content from web
blogs. Our study differs in the following ways:

– Focus: We focus on suggested architectural style definitions, emerging pat-
terns and mapping microservices development to the DevOps pipeline, while
[11] focused on initially characterizing the available body of research and [16]
focused only on architectural styles.

– Comprehensiveness: We included results from eight bibliographic sources and
papers from the citations of the retrieved papers [19] to increase the paper
base. Moreover, we included papers published up to 2016;

128 D. Taibi et al.

– Systematic approach: We conducted a Systematic Mapping Study implement-
ing the protocol defined in [13], followed by a systematic snowballing process
using all references found in the papers [19];

– Quality Assessment : Although this is not a Systematic Literature Review [8],
we include only peer-reviewed contributions or non peer-reviewed papers only
in case the number of their citations in peer-reviewed ones is higher than the
average citations.

The contribution of our study can be summarise as follows:

– Classification of the existing microservice architectural styles and patterns;
– Analysis of advantages and disadvantages of different architectural style prin-

ciples and patterns based on their implementations reported in the literature;
– Classification of microservice techniques for DevOps;
– Identification of research gaps and trends.

The paper is structured as follows. In Sect. 2 we describe the methodology
used. Section 3 shows the results obtained. In Sect. 4 we discuss the results.
Section 5 identifies threats to validity. Section 6 end with some conclusions.

2 Methodology

We used the protocol defined by Petersen [13] in combination with the systematic
snowballing process [19].

2.1 Goals and Research Questions

We define our research goals as follows:

Goal 1: Analyze the architectural style proposals
for the purpose of comparing them and related implementations
with respect to their advantages and disadvantages
in the context of cloud-native software implementation.

Goal 2: Characterize microservices-specific techniques
for the purpose of mapping them to the DevOps process
with respect to identifying and comparing different techniques for different
stages
in the context of cloud-native software implementation. Regarding G1, we
derived the following research questions:

– RQ1: Which are the different microservices-based architectural styles?
– RQ2: What are the differences among the existing architectural styles?
– RQ3: Which advantages and disadvantages have been highlighted in

implementations described in the literature for the identified architec-
tural styles?

Regarding G2, we derived the last research question:
– RQ4: What are the different DevOps-related techniques applied in the

microservices context?

Continuous Architecting with Microservices and DevOps 129

2.2 Search Strategy

Bibliographic Sources and Search Strings. We identified the relevant works
in eight bibliographic sources as suggested in [9]: ACM Digital Library, IEEE
Xplore Digital Library, Science Direct, Scopus, Google Scholar, Citeeser library,
Inspec and Springer Link. We defined the search strings based on the PICO
terms of our questions [9] using only the terms Population and Intervention. We
did not use the Outcome and Comparison terms so as not to reduce research
efficiency of the selected search strings (Table 1). We applied the following queries
adapting the syntax to each bibliographic source:
RQ1-3: (microservice* OR micro-service*) AND (architect* OR migrat* OR
modern* OR reengineer* OR re-engineer* OR refactor* OR re-factor* OR
rearchitect* OR re-architect* OR evol*).
RQ4: (microservice* OR micro-service*) AND (DevOps OR Develop* OR
Creat* OR Cod* OR verif* OR test* OR inspect* OR pack* OR compil* OR
archiv*; releas* OR configur* OR deploy* OR monitor* OR performance* OR
benchmark*).

The symbol * allows to capture possible variations in search terms such as
plural and verb conjugation.

Table 1. Search strings - PICO structure [16].

Population Intervention - terms

P: microservice microservice*; micro-service*

I: DevOps;
architecture;
migration

architect*; migrat*; modern*; evol*; reengineer*; re-engineer*;
refactor*; re-factor*; rearchitect*; re-architect*; DevOps;
Develop*; Creat*; Cod*; verif*; test*; inspect*; pack*; compil*;
archiv*; releas*; configur*; deploy*; monitor*; performance*;
benchmark;

Inclusion and Exclusion Criteria. We defined the selection criteria based
on our RQs considering the following inclusion criteria:

General Criteria: We only included papers written in English. Moreover, we
excluded papers that were not peer-reviewed. However, we also considered non
peer-reviewed contributions if the number of citations in peer-reviewed papers
was higher than average. The number of unique citations was extracted from
the eight bibliographic sources removing non peer-reviewed ones. The selected
works cover a maximum of two years and we can therefore not expect a high
number of citations. For this reason, works with a high number of citations can
be considered very relevant even if they are not peer-reviewed.

Selection by Title and Abstract: We removed all papers that do not contain
any references to microservices or that use the term microservices for different
purposes or in different domains (i.e. electronics, social science...);

130 D. Taibi et al.

Selection by Full Papers: We excluded papers that do not present any evi-
dence related to our research questions or papers using microservices with-
out any clear reference to the adopted architectural style, and microservices-
based implementations that do not report any advantages and disadvantages
of using microservices. For the first three RQs, we considered proposals of
microservices-based architectural styles, implementations of microservices-based
cloud systems, migrations of monolithic systems into cloud-native microservices-
based systems, papers reporting advantages and disadvantages of microservices-
based architectural styles. For RQ4, we considered papers on DevOps techniques
applied in the context of microservices-based systems, and papers on project
planning, coding, testing, release, deployment, operation and monitoring tech-
niques applied in the context of microservices-based systems.

Search and Selection Process. The search was conducted in October 2017
including all the publications available until this period. Applying the searching
terms we retrieved 2754 unique papers.

Testing Inclusion and Exclusion Criteria Applicability: Before applying the
inclusion and exclusion criteria, we tested their applicability [9] to a subset of 30
papers (10 papers per author) randomly selected from the retrieved ones. For 8
of the 30 selected papers, two authors disagreed and a third author was involved
in the discussion to clear the disagreements.

Applying Inclusion and Exclusion Criteria to Title and Abstract: We applied the
refined criteria to remaining papers. Each paper was read by two authors and
in case of disagreed and a third author was involved in the discussion to clear
the disagreements. For seven papers we involved the third author. Out of 2754
initial papers, we included 85 by title and abstract.

Backward and Forward Snowballing: We performed the backward and forward
snowballing [19], considering all the references presented in the 85 papers (858
references) and evaluating all the papers that reference the retrieved ones result-
ing in one additional relevant paper. We applied the same process as for the
retrieved papers. The new selected studies were included in the aforementioned
12 papers, in order to compose the final set of publication.

Fulfill Reading: After the full reading of the 97 papers performed by two of the
authors, the paper identification process resulted in 40 peer-reviewed papers and
2 non peer-reviewed ones. The two works ([S1] and [S2]) added from the gray lit-
erature have a dramatically high number of citations compared to the remaining
works, with 18 and 25 citations, resp. (average number of citations = 4.21). The
related citations are reported together with the full references in the Appendix.

In case of [S2], we also attributed to the same work the citations obtained
for [14], since this website was published with the same information two months
later.

Continuous Architecting with Microservices and DevOps 131

Table 2. The papers selection process [16].

Selection process #considered
papers

#rejected
papers

Validation

Paper extracted from
the bibliographic
sources

2754 10 random papers independently
classified by three researchers

Sift based on title and
abstract

2669 Good inter-rater agreement on first
sift (K-statistic test)

Primary papers
identified

85

Secondary papers
inclusion

858 855 Systematic snowballing [19] including
all the citations reported in the 85
primary papers and sifting them based
on title and abstract

Full papers considered
for review

88 Each paper has been read completely
by two researchers and 858 secondary
papers were identified from references

Sift based on full
reading

46 Papers rejected based on inclusion and
exclusion criteria

Relevant papers
included

42

The selection process resulted in 42 accepted papers published from 2014 to
2016. Although the term microservice was introduced in 2011, no publications
were found from 2011 to 2013. More than 65% of these papers were published
at conferences, while another 23% were accepted at workshops. Only 7% of the
papers were published as journal articles, and nearly 5% are non peer-reviewed
websites (gray literature) (Table 2).

3 Results

We now summarize the pros and cons of microservice-based solutions based
on their importance, considering the concerns mentioned most frequently in the
papers as being important. We analyze the most common architectural style prin-
ciples and patterns that emerged from the papers, also including their reported
advantages and disadvantages. Moreover, we report on DevOps-related tech-
niques applied. We first report on the principles of microservices architectural
styles, as reflected by the literature, and then we extract and categorize the
patterns defined in the surveyed literature.

We consider an architectural style as a set of principles and coarse-grained
patterns that provide an abstract framework for a family of systems. An archi-
tectural style consists of a set of architectural principles and patterns that are
aligned with each other to make designs recognizable and design activities repeat-
able: principles express architectural design intent; patterns adhere to the prin-
ciples and are commonly occurring (proven) in practice.

132 D. Taibi et al.

3.1 General Advantages and Disadvantages of Microservices
and Principles of the Architectural Style

The most common advantages of microservice architectures that are highlighted
in the selected works are the following:

– Increased Maintainability. All the paper reported microservices-based imple-
mentations as the most important considered characteristic.

– Write Code in Different Languages. Underlines benefits of using different
languages, inconsistent with monolithic applications [S13], [S34], [S11].

– Flexibility. Every team can select their own technology based on their needs
[S30], [S14], [S38]

– Reuse. The creation of a component with shared features increase reusability
by reducing maintenance effort since the shared component will be updated
only once and the maintenance of the shared microservices, including all the
related changes will be reflected by any connected microservices [S34], [S12].

– Ease of Deployment. The independent deployment ease the whole develop-
ment and deployment processes since each microservice can be deployed sep-
arately. Therefore, developers of one microservice do not need to recompile
and re-deploy the whole system [S30]

– Physical Isolation. This is the key for scaling, provided by microservices archi-
tectural style [S3] and [S38].

– Self-Healing. Previous safe microservice versions can replace failing services
[S7], [S30].

– Application Complexity. Components application are commonly less complex
and easier to manage thanks to the application decomposition into several
components [S29]. Process mining could be highly beneficial in this context
[18]

– Unlimited Application Size. Microservices has theoretically no size limitation
that affect monolithic applications [S13].

These can be considered to form the principles of the architectural style as they
are agreed advantages. On the other hand, several papers identified a set of
issues and potential disadvantages to be consider during the development of a
microservices-based application:

– Testing Complexity. More components and patterns of collaborations among
them increase the testing complexity [S21], [S24], [S26], [S31], [S37], [S28].

– Implementation Effort. Paired with development complexity, implementing
microservices requires more effort than implementing monolithic applications
[S28], [S30], [S38].

– Network issues. Endpoints are connected via a network. Therefore, the net-
work must be reliable [S41], [S14].
• Latency. Network latency can increase the communication time between

microservices [S14], [S11], [S9].
• Bandwidth. Communication often depends on the network, implementa-

tions must consider bandwidth for normal and high peak operation.

Continuous Architecting with Microservices and DevOps 133

– User Authorization. The API exposed by the microservices need to be pro-
tected with a shared user-authentication mechanism, which is often much
more complex to implement than monolithic solutions [S14].

– Time on the Market. Monolithic solutions are easier and faster to develop.
In the case of small applications, with a small number of users (hundreds
or thousands), the monolith could be a faster and cheaper initial approach.
A microservices-based solution could be considered in a second time once
performance or other requirements grows [S11].

– Continuously Deploy Small Incremental Changes. The simplified deployment
allows changing one issue at time and immediately deploy the system [S37].

– Independent Monitoring. A microservices architecture helps independently
visualize the “health status” of every microservice in the system simplifying
the identification of problems and speeding-up the resolution time [S37].

– Automation Requirement. A full DevOps stack is fundamental to manage
the whole system and automate the whole process. Without the adoption of
DevOps the system development would be much slower with microservices
than with monolithic systems [S37].

– High Independence. Maintaining microservices as highly decoupled is critical
to preserve independence and independent deployability.

– Development Complexity. Microservices require experienced developers and
architects that design the system architecture and coordinate teams. Learning
microservices require much longer than monolithic systems [S30].

– Increased memory consumption. If each service runs in its own virtual
machine, as is the case at Netflix, then there is the overhead of M times
as many virtual machine instances are created [S2].

3.2 Microservice-Based Architectural Patterns

In this section, we aim to answer RQ1, RQ2, and RQ3. From the selected works,
three commonly used architectural patterns emerge. In this classification, we
attribute to the different patterns the papers reporting the usage of a specific
style and those where the patterns can be clearly deduced from the description.

We report the results in three Sections that classify the architectural patterns
emerging from this review: In the next sub-sections, we identify and describe
orchestration and coordination-oriented architectural patterns, patterns reflect-
ing deployment strategies and storage options.

The API-Gateway Pattern

Concept: Microservices can provide their functions in the form of APIs, and
other services can make use of them by directly accessing them through an
API. However, the creation of end-user applications based on the composition
of different microservices requests a server-side aggregation mechanism. In the
selected papers, the API-Gateway resulted as a common approach (Fig. 1).

Origin: The API-Gateway is an orchestration style that resembles more SOA
principles than REST ones without including the Enterprise Service Bus (ESB).

134 D. Taibi et al.

Fig. 1. The API-Gateway architectural pattern [16].

Goal: The main goal is to improve system performance and simplify interactions,
therefore decreasing the number of requests per client. It acts as an entry point
for the clients, carrying out their requests to the connected services, connecting
the required contents, and serving them to the clients [S2].

Properties: The API-Gateway does not provide support for publishing, promot-
ing, or administering services at any significant level. However, it is responsible
for the generation of customized APIs for each platform and for optimizing com-
munications between the clients and the application, encapsulating the microser-
vices details. It allows microservices to evolve without influencing the clients. As
an example, merging or partitioning two or more microservices only requires
updating the API-Gateway to reflect the changes to any connected client. In the
example depicted in Fig. 1, the API-Gateway is responsible for communicating
with the different front-ends, creating a custom API for each client so that the
clients can see only the features they need, which simplifies the creation of end-
user applications without adding the complexity of exposing and parsing useless
information.

Evolution and Reported Usage: The API-Gateway was named by Richardson
[S2]. Ten works implemented different cloud applications based on this pattern
reporting several API-Gateway specific advantages [S3], [S2], [S12], [S11], [S14],
[S31], [S21], [S34], [S39], and [S37]:

– Ease of Extension. Implementing new features is easier compared to other
architectures since API-Gateway can be used to provide custom APIs to the
connected services. Therefore, if a services changes, only the API-Gateway
needs to be updated and the connected services to the API-gateway will
continue to work seamlessly [S14], [S3]

– Market-centric Architecture. Services can be easily modified, based on market
needs, without the need to modify the whole system. [S14]

– Backward Compatibility. The gateway guarantees that existing clients are not
hampered by interface endpoint changes on service version changes [S34].

However, disadvantages have also been observed for this architectural pat-
tern:

Continuous Architecting with Microservices and DevOps 135

– Potential Bottleneck. The API-Gateway layer is the single entry point for all
requests. If it is not designed correctly, it could be the main bottleneck of the
system [S14], [S39].

– Implementation complexity. The API-Gateway layer increases the complexity
of the implementation since it requires implementation of several interfaces
for each service [S14], [S34].

– API reused must be considered carefully. Since each client can have a custom
API, we must keep track of cases where different types of clients use the
same API and modify both of them accordingly in case of changes to the API
interface [S34].

– Scalability. When the number of microservices in a system explodes, a more
efficient and scalable routing mechanism to route the traffic through the ser-
vices APIs, and better configuration management to dynamically configurate
and apply changes to the system will be needed [S37].

The Service Registry Pattern

Concept: The communication among multiple instances of the same microservice
running in different containers must be dynamically defined and the clients must
be able to efficiently communicate to the appropriate instance of the microser-
vice. Therefore, in order to connect to an existing service, a service-discovery
mechanism is needed [S2].

Origin: Richardson also proposed differentiating between “Client-Side” and
“Server-Side” patterns [S2]. With client-side patterns, clients query the Service
Registry, select an available instance, and make a request. With server-side pat-
terns, clients make requests via a router, which queries the Service Registry and
forwards the request to an available instance. However, in the selected works, no
implementations reported its usage.

Goal: Unlike the API-Gateway pattern, this pattern allows clients and microser-
vices to talk to each other directly. It relies on a Service Registry, as depicted in
Fig. 2, acting in a similar manner as a DNS server.

Properties: The Service Registry knows the dynamic location of each microser-
vice instance. When a client requests access to a specific service, it first asks the
registry for the service location; the registry contacts the microservice to ensure
its availability and forwards the location (usually the IP address or the DNS
name and the port) to the calling client. Finally, unlike in the API-Gateway
approach, the clients communicate directly with the required services and access
all the available APIs exposed by the service, without any filter or service inter-
face translation provided by the API-Gateway.

Evolution and Reported Usage: A total of eleven papers implemented this pat-
tern. Ten of the selected work make a complete usage of the Service Registry
style [S13], [S25], [S10], [S9], [S24], [S26], [S30], [S16], and [S38] while [S23]

136 D. Taibi et al.

Fig. 2. The service registry architectural pattern.

proposes a small variant, implementing the Service Registry by means of an
NoSQL database. O’Connor et al. [S36] report on a case study of a partial
migration where a legacy SOA system provided some services in connection with
new microservices. In this case, the legacy system was accessed like any other
microservice. The Service Registry contained the addresses of all microservices
and all services provided by the legacy system.

This architectural pattern has several advantages:

– Increased Maintainability. All the papers reported an increased maintainabil-
ity of the systems.

– Ease of Communication. Services can communicate with each others directly,
without interpretation [S25], [S36].

– Health Management. Resilient and scalable mechanisms provide health man-
agement and out-scaling functions for atomic and composed services [S7].

– Failure Safety. In the case of failure, microservices can be easily restarted,
due to their stateless properties [S7].

– Software Understandability. Services are relatively small and easy to under-
stand [S1], [S2]

– Ease of Development. Smaller services are easier to develop [S1], [S2]
– Ease of Migration. Existing services can be re-implemented with microser-

vices, replacing the legacy service by changing its location in the Service Reg-
istry that will start to dynamically serve all microservices instances instead
of statically pointing to the legacy system [S36].

Several papers also identified disadvantages for this pattern:

– Interface design must be fixed. During maintenance, individual services may
change internally but there could be a need to also update the interface,
requiring adaptation of all connected services. They recommend keeping the
interface definition as stable as possible in order to minimize the influence in
case of interface changes [S38].

– Service Registry Complexity. The registry layer increases implementation
complexity as it requires several interfaces per service [S16].

Continuous Architecting with Microservices and DevOps 137

– Reuse. If not designed correctly, the service registry could be the main bot-
tleneck of the system [S25].

– Distributed System Complexity. Direct communication among services
increases several aspects: Communication among Services [S2], Distributed
Transaction Complexity [S2], Testing of distributed systems, including shared
services among different teams can be tricky [S2].

The Hybrid Pattern

Concept and Origin: This pattern combines the power of the Service Registry
pattern with that of the API-Gateway pattern, replacing the API-Gateway com-
ponent with a message bus.

Goal and Properties: Clients communicate with the message bus, which acts as
a Service Registry, routing the requests to the requested microservices. Microser-
vices communicate with each other through a message bus, in a manner similar
to the Enterprise Service Bus used in SOA architectures.

Evolution and Reported Usage: Six works implemented this pattern [S27], [S33],
[S32], [S35], [S4] and [S3] reporting the following advantages:

– Easy of Migration. This pattern ease the migration of existing SOA based
applications, since the ESB can be used a communication layer for the
microservices that gradually replace the legacy services.

– Learning Curve. Developers familiar with SOA can easily implement this
pattern with a very little training.

and a disadvantage:

– SOA Issues. The pattern does benefit from the IDEAL properties of microser-
vices and from the possibility to independently develop different services with
different teams, but has the same ESB-related issues as in SOA.

3.3 Deployment Strategies/Patterns

As part of the architectural patterns, we now describe the different deploy-
ment strategies (also referred to as deployment patterns) that emerged from our
mapping study. Please note that here we only report on microservices-specific
deployment strategies not directly related to DevOps, while DevOps automated
deployment approaches are reported in Section III.D.

The Multiple Service per Host Pattern

Principle: In this strategy, multiple services and multiple services run on the
same host.

138 D. Taibi et al.

Reported Usage: Four of the selected works implemented this approach [S19],
[S33], [S30], and [S7] without specifying whether they deployed the services into
containers or VMs. Fifteen works adopted the same pattern by deploying each
service into a container [S10], [S25], [S35], [S9], [S8], [S11], [S34], [S32], [S36],
[S38], [S37], [S40], [S16], [S41], and [S22]. Richardson refers to this sub-pattern
as “Service instance per container pattern” [S2]. Two works implemented this
pattern deploying each microservice into a dedicated virtual machine [S27] and
[S31]. This pattern is also called “Service instance per virtual machine” [S2].

Despite reporting on the adoption of these patterns, only a few papers discuss
their advantages such as:

– Scalability. Easy scalability to deploy multiple instances at the same host.
– Performance. Multiple containers allow rapid deployment of new services

compared to VMs [S40], [S34], [S10].

The Single Service per Host Pattern

Principle and Properties: In this pattern [S2], every service is deployed in its
own host. The main benefit of this approach is the complete isolation of ser-
vices, reducing the possibility of conflicting resources. However, this dramatically
reduces performance and scalability.

Reported Usage: This pattern has not been implemented or referenced in the
selected works.

3.4 Data Storage Patterns

Like any service, microservices need to store data. Sixteen implementations
reported on the data storage pattern that they adopted. Among these papers,
we identified three different data storage patterns that are also described by [S1],
[S24], and [S3]. Although it is recommended to adopt Object Relational Map-
ping approaches with NoSQL databases [S1], the patterns identified are also
applicable for relational databases.

The Database per Service Pattern

Principle and Properties: In this pattern, each microservice accesses its private
database. This is the easiest approach for implementing microservices-based sys-
tems, and is often used to migrate existing monoliths with existing databases.

Reported Usage: In the selected works, six adopted this pattern [S23], [S12],
[S36], [S24], [S11], and [S26]. This pattern has several advantages:

– Scalability. The database can be easily scaled in a database cluster whithin a
second moment [S24], in case the service need to be scaled.

– Independent Development. Separate teams can work independently on each
service, without affecting other teams in case of changes to the DB schema.

– Security Mechanism. Access to other microservices or corruption of data not
needed is avoided since only one microservice can access a schema.

Continuous Architecting with Microservices and DevOps 139

The Database Cluster Pattern

Principle and Properties: The second storage pattern proposes storing data on a
database cluster. This approach improves the scalability of the system, allowing
to move the databases to dedicated hardware. In order to preserve data consis-
tency, microservices have a sub-set of database tables that can be accessed only
from a single microservice; in other cases, each microservice may have a private
database schema. This pattern was described by Richardson [S2].

Reported Usage: The pattern was implemented by [S27], [S6], and [S15] by using
a separated DB schema for each service. [S15] also proposed it for replicating
the data across the DBs of each service.

This pattern has the advantage of improving data scalability. It is recom-
mended for implementations with huge data traffic while it could be useless in
the case of a limited number of users and data traffic. Disadvantages:

– Increased Complexity through the cluster architecture.
– Risk of Failure increases because of the introduction of another component

and the distributed mechanism.

Shared Database Server

Principle and Properties: This pattern is similar to the Database Cluster Pat-
tern, but, instead of using a database cluster, all microservices access a single
shared database.

Reported Usage: Six implementations adopted this pattern [S13], [S39], [S25],
[S18], [S30], and [S16]. All these implementations access to the data concurrently,
without any data isolation approach.

The main advantage reported is the simplicity of the migration from mono-
lithic applications since existing schemas can be reused without any changes.
Moreover, the existing code base can be migrated without the need to make
important changes (e.g., the data access layer remains identical).

3.5 DevOps and Microservices

Now, we change focus from microservices as an architectural style with principles
and patterns to the relevance of the style as a continuous architecting solution.

In this section, we answer RQ4, reporting the main DevOps related to tech-
niques proposed and applied in conjunction with microservices, summarizing
their advantages and disadvantages. The section is structured as follows: After a
description of the papers reporting on the application of microservices-based
implementations applying the DevOps pipeline (partially or completely), we
describe the techniques related to each DevOps step: planning, coding, testing,
release, deployment, operation, monitoring.

140 D. Taibi et al.

DevOps and Microservices. Chen et al. [S8] propose a set of tactics for
adopting DevOps with microservices-based implementations. Adopting a set of
tools enables (1) continuous integration, (2) test automation, (3) rapid deploy-
ment and robust operations, (4) synchronized and flexible environment. Their
proposal is to keep four quality characteristics under control (availability, modifi-
ability, performance, and testability) by means of a set of tactics. As an example,
they propose checking availability by monitoring the system by detecting excep-
tions, reconfiguring clusters automatically in case of failures or lack of resources,
creating active redundancy (by means of Zookeeper [1]) and rolling back deployed
services in case of failure.

Planning and Coding Techniques. This section includes all techniques and
tools for code development, including requirement elicitation, software architec-
tures, and coding techniques. As for the architectural styles, we refer to the
discussion about the previously described patterns reported in Sects. 3.2 and
3.3. In order to cope with continuously changing requirements whilst ensuring
complexity and keeping product evolution under control, Versteden et al. [S16]
propose a semantic approach combining microservices and the semantic web.
The approach is based on the sharing of a set of ontologies among developers so
that they can develop microservices that talk about the same content in the same
way. Moreover, this also supports the semantics discoverability of microservices.

Considering the coding activities, Xu et al. [S40] propose “CAOPLE”, a new
programming language for microservices based on an agent-oriented conceptual
model of software systems. This programming language allows defining high-
level microservices with the aim of easily developing large connected systems
with microservices running in parallel, thus reducing communication overhead
among microservices and supporting flexible development.

Testing Techniques. (1) Testing is one of the most challenging issues when
building a microservice architecture. A microservice architectural style intro-
duces several new components into the applications, and more components mean
more chances for failure to occur. Automated testing, as one of the main steps of
DevOps, has advanced significantly and new tools and techniques continue to be
introduced to the market. Therefore, testing a microservices-based application
is more complicated because of several issues:

– Because of the language independence of microservices, the testing tools need
to be agnostic to any service language or runtime [S42].

– Testing must focus on failure-recovery logic and not on business logic, due to
the rapidly evolving code [S42].

– Existing SOA testing methods are commonly not suitable for microservices,
since they do not address the two issues aforementioned [S42].

Of the selected papers, seven propose new testing techniques for microservices.
However, no implementations report the usage of these techniques.

Continuous Architecting with Microservices and DevOps 141

Testing can be divided into several levels, including unit tests, integration
tests, system tests and acceptance tests. As for acceptance tests and system
level tests, Rahman et al. [S18] and [S17] propose automating acceptance tests
for microservices based on the Behavior-Driven Development (BDD). Since inte-
gration, system, and acceptance tests usually need access to the production file
system, the network, and the databases, they propose running the tests in the
developer’s local environment by means of a subset of replicated Docker con-
tainers replicating the whole system, including all microservices running in the
production environment. They propose running the large test suites in parallel
with multiple docker containers deployed on the local development machine so as
to allow developers to (1) continue testing on the latest data used in production
(2) continuously run the complete test suites. Unfortunately, they report that
running the entire test suite is time consuming and becomes infeasible when the
test suite grows. Despite the approach working perfectly for small projects, in big
projects the developers’ workstations have very high hardware requirements to
run the whole system with all microservices and the development environment,
making this approach inapplicable in a real development environment.

Savchenko and Radchenko [S22] propose a model of validation of microser-
vices that can be executed on local developer machines and in a test environment,
before deploy the microservice in production. The model is compliant with the
ISO/IEC 29119 [5] and it is based on five steps:

1. Define the interface of every microservice
2. Write unit-tests for each microservice
3. If the unit tests are passed successfully, the microservice can be packed into

a container and a set of container self-tests can be executed to ensure that
all interfaces defined in the first step are working.

4. If the self-test is passed, then the microservice can be deployed in a test envi-
ronment and functional integration tests, load integration tests, and security
integration tests can be performed.

5. If all tests in the previous step are passed, the microservice can be deployed
in the production environment.

Meinke and Nycander [S20] propose a learning-based testing technique based
on a Support Vector Machine (SVM). Thy propose to monitor the inputs of
each microservice and to validate the output with a model checker and learn
how to interpret the results by means of a SVM based on a stochastic equiva-
lence checker. This model is applicable to high-load systems where statistically
significant results can be used as training data. It is claimed to be more robust
than manual checks since it can test more conditions. However, non-deterministic
conditions cannot be verified with this approach, even though they are very rare.

Heorhiadi et al. [S42] propose a network-oriented resiliency testing method
to continuously test high-level requirements. They propose a two-level testing
platform composed of two layers. The first layer composed by network prox-
ies, used to control the communication among microservices, logging any data
and reporting communications. The second layer responsible to check the results

142 D. Taibi et al.

based on the execution graph, to run the test cases, and, in case of failure, to
deploy a new microservice through a “Failure orchestrator”. This allows creat-
ing and testing long and complex chains of assertions, and validating complex
processes. However, the system graph must be provided continuously updated.

Only [S42] has been validated internally by the authors on small sample
projects, while the other approaches are only proposals not supported by empir-
ical validations. The applicability of the proposed testing techniques to existing
large-scale systems therefore needs to be validated.

In conclusion, we can claim that, based on the analysis of the reported test-
ing techniques of microservices-based systems, there are no common validation
models that support continuous integration of microservices.

Release Techniques. No release techniques have been proposed or reported
in the selected works.

Deployment Techniques. In the selected works, only one work [S31] proposes
a technique and a tool for automatic deployment of microservices, assuming the
use of reconfigurable microservices. Their tool is based on three main compo-
nents: (1) An automatic configuration of distributed systems in OpenStack [4]
which, starting from a partial and static description of the target architecture,
produces a schema for distributing microservices to different machines and con-
tainers; (2) A distributed framework for starting, stopping, and removing ser-
vices; and (3) A reconfiguration cordinator which is in charge of interacting the
automatic configuration system to produce optimized deployment planning.

Operation and Monitoring Techniques. Monitoring cloud services is diffi-
cult due to the complexity and distributed nature of the systems. Anwar et al.
[S5] highlight the complexity of monitoring task, in particular with microservices-
based implementations monitored with OpenStack, reporting that 80% of the
commonly collected data are useless, thus collecting only 20% of the actual data
would allow analyzing smaller datasets, which are often easier to analyze.

Monitoring is a very important operation at runtime, especially for detect-
ing faults in existing services and taking appropriate actions. In this direction,
Rajagopalan et al. [S19] propose an autonomous healing mechanism to replace
faulty microservices during runtime, in the production environment. They pro-
pose comparing the dependency graphs of previous versions of microservices and,
in case of failures, replacing the existing microservice by re-deploying the pre-
vious version. Despite reducing performance, this approach increases the proba-
bility of returning the correct result.

Bak et al. [S21] describe a microservices-based implementation of a dis-
tributed IoT case study where they defined an approach for detecting opera-
tional anomalies in the system based on the context. They propose an algorithm
for detecting records not conformant to the expected or normal behavior of
the data, continuously monitoring the various devices and sensors, and dynam-
ically building models of typical measurements according to the time of the

Continuous Architecting with Microservices and DevOps 143

day. Their anomaly detection approach is based on the analysis of performances
and supposed malfunctions. As for failure detection, they also defined a root
cause algorithm to understand if some devices crash when located in specific
geographic areas because of errors in the data collected from sensors, or crash
when connecting to certain devices.

Toffetti et al. [S7] also adopt a self-healing technique in their implementation,
simply restarting faulty microservices that return unexpected values or that raise
any exceptions, in order to provide the most reliable result.

4 Discussion

Most of the implementations reported in the papers are related to research pro-
totypes, with the goal of validating the proposed approaches (Table 4). Only
six papers report on implementations in industrial context. Regarding the size
of the systems implemented, all the implementations are related to small-sized
applications, except [S38] that reports on the migration of a large scale system.
Only four implementations report on the development language used ([S11], [S32]
Java/NodeJS, [S34] php/NodeJS/Python, [S13] php).

4.1 Architecture and Deployment Pattern Applications

Several patterns for microservice-based systems emerged from existing imple-
mentations (Table 3). We can associate some patterns with specific application
settings such as a monolith-to-microservice or SOA-to-microservice migration.

Migration: Several implementations report the usage of hybrid systems, aimed
at migrating existing SOA-based applications to microservices. Maintenance,
and specially independent deployment and the possibility to develop different
services with different non-interacting teams, are considered the main reasons
for migrating monoliths to microservices. The flexibility to write in different lan-
guages and to deploy the services on the most suitable hardware is also consid-
ered a very important reason for the migration. Reported migrations from mono-
lithic systems tend to be architected with an API-Gateway architecture, proba-
bly due to the fact that, since the systems need to be completely re-developed
and re-architected, this was done directly with this approach. Migrations from
SOA-based systems, on the other hand, tend to have a hybrid pattern, keeping
the Enterprise Service Bus as a communication layer between microservices and
existing SOA services. Based on this, the Enterprise Service Bus could re-emerge
in future evolutions of microservices.

Deployment: Another outcome is that deployment of microservices is still
not clear. As reported for some implementations, sometimes microservices are
deployed in a private virtual machine, requiring complete startup of the whole
machine during the deployment, thus defeating the possibility of quick deploy-
ment and decreasing system maintainability due to the need for maintaining a
dedicated operating system, service container, and all VM-related tasks.

144 D. Taibi et al.

Table 3. Classification of advantages and disadvantages of the identified patterns [16].

Pattern Advantages Disadvantages

Orchestration &

coordination

General - Increased maintainability - Development, Testing, Complexity

- Can use different languages - Implementation effort

- Flexibility - Network-related issue

- Reuse

- Physical isolation

- Self-healing

API gateway - Extension easiness - Potential bottleneck

- Market-centric architecture - Development complexity

- Backward compatibility - Scalability

Service registry - Increased maintainability -Interface design must be fixed

- Communic., developm.,

migration

- Service registry complexity

- Software understandability - Reuse

- Failure safety - Distributed system complexity

Hybrid - Migration easiness - SOA/ESB integration issues

- Learning curve

Deploy Multiple service

per host

- Scalability

- Performance

Single service

per host

- Service isolation - Scalability

- Performance

Data storage DB per service - Scalability - Data needs to be splitted

- Independent development - Data consistency

- Security mechanism

DB cluster - Scalability - Increase complexity

- Implementation easiness - Failure risks

Shared DB

server

- Migration easiness - Lack of data isolation

- Data consistency - Scalability

Table 4. The implementations reported in the selected works [16].

Research prototype Validation-specific
implementations

Industrial
implementations

Websites - [S11], [S39] - [S15], [S24], [S26],
[S31]

- [S13], [S32]

Services/API - IOT integration [S33] - [S9], [S10], [S14],
[S16], [S23], [S37], [S36]

- [S21], [S34]

Others - Enterprise measurement
system [S4]

- Benchmark/Test
[S35], [S41], [S42]

- Mobile dev.
platform [S38]

- IP multimedia system
[S25]

- Business process
modelling [S12]

- Deployment
platform [S30]

4.2 DevOps Link

Taking into account the continuous delivery process, the DevOps pipeline is only
partially covered by research work. Considering the idea of continuous architect-
ing, there is a number of implementations that report success stories regarding
how to architect, build, and code microservice-based systems, but there are no

Continuous Architecting with Microservices and DevOps 145

reports on how to continuously deliver and how to continuously re-architect exist-
ing systems. As reported in our classification schema of the research on DevOps
techniques (Table 5), the operation side, monitoring, deployment, and testing
techniques are the most investigated steps of the DevOps pipeline. However,
only few papers propose specific techniques, and apply them to small example
projects. Release-specific techniques have not been investigated in our selected
works. No empirical validation have been carried out in the selected works.
Therefore, we believe this could be an interesting result for practitioners, to
understand how existing testing techniques can adopted in industry.

Table 5. DevOps techniques classification schema.

Proposed technique

Planning - Semantic models [S16]

Coding - Agent-oriented programming language [S40]

Testing - BDD automated acceptance test [S17], [S18]

- SVM learning-based testing [S20]

- Validation on developers’ machine [S22]

- Resiliency test of high-level requirements [S42]

Release

Deployment - Automated deployment [S31]

Monitoring - Self-healing to replace faulty MS [S7], [S19]

Operation - Context-based anomalies detection [S21]

4.3 Research Trends and Gaps

Industry First: Different research trends have emerged in this study. First of all,
we can see that microservices come from practitioners and research comes later,
so reports on existing practices are only published with delay. From the architec-
tural point of view, the trend is to first analyze the industrial implementations
and then compare them with previous solutions (monolithics or SOA).

Style Variants: A new microservice architectural styles variant was proposed
by researchers ([S24] and [S26]), applying a database approach for microservice
orchestration. However, because they have just been published, no implemen-
tations have adopted these practices yet. Also in this case, we believe that an
empirical validation and a set of benchmarks comparing this new style with
existing one could be highly beneficial for researchers and practitioners.

Despite the increasing popularity of microservices and DevOps in industry,
this work shows the lack of empirical studies in an industrial context reporting
how practitioners are continuously delivering value in existing large-scale sys-
tems. We believe that a set of studies on the operational side of the DevOps

146 D. Taibi et al.

pipeline could be highly beneficial for practitioners and could help researchers
understand how to improve the continuous delivery of new services.

We can compile the following research gaps and emerging issues:

– Position Papers and Introduction to microservices. An interesting outcome of
this work, obtained thru the reading of the whole literature is the tendency of
publishing several position papers, highlighting some microservices properties
or reporting about potential issues, without any empirical evidence.

– Comparison of SOA and Microservices. The differences have not been thor-
oughly investigated. There is a lack of comparison from different points of
view (e.g., performance, development effort, maintenance).

– Microservices Explosion. What happens once a growing system has thou-
sands/millions of microservices? Will all aforementioned qualities degrade?

– DevOps related techniques. Which chain of tools and techniques is most suit-
able for different contexts?

– Negative Results. In which contexts do microservices turn out to be counter-
productive? Are there anti-patterns [6,15,17]?

4.4 Towards an Integrated Microservice Architecture
and Deployment Perspective

Further to the discussion of trends and gaps that we have provided in the previ-
ous subsection, we focus a short discussion here on an aspect that has emerged
from the discussion of DevOps and Microservices in the section before. Automa-
tion and tool support are critical concerns for the deployment of microservices
for instance in the form of containers, but also the wider implementation of
microservice architectures in a DevOps pipeline with tool support for continu-
ous integration and deployment.

In [7], the success of mmicroservices is linked to the evolution of technology
platforms.

– Containerization with LXC or Docker has been the first wave, enabling the
independent deployment of microservices.

– Container orchestration based on Mesos, Kubernestes or Docker Swarm
enables better management of microservices in distributed environments.

– Continuous delivery platform such as Ansible or Spinnaker have also had its
impact as our DevOps discussion shows.

Currently, further technologies are finding their way into architecting soft-
ware:

– Serverless computing fociussing on function-as-a-service solutions that allow
more fine-grained service functions without the need to be concerned with
infrastructure resources.

– Service meshes address the need fully integrated service-to-service communi-
cation monitoring and management.

This indicates that as the technology landscape evolves, we can expect new
patterns to emerge. Thus pattern identification will remain a task for the future.

Continuous Architecting with Microservices and DevOps 147

5 Threats to Validity

Different types of threats to validity need to be addressed in this study.
Construct validity reflects what is investigated according to the research ques-

tions. The terms microservices, DevOps, and all sub-terms identified in Table I
are sufficiently stable to be used as search strings. In order to assure the retrieval
of all papers on the selected topic, we searched broadly in general publication
databases, which index most well-reputed publications. Moreover, we included
gray literature if their citations were higher than the average, in order to con-
sider relevant opinions reported in non-scientific papers. Reliability focuses on
whether the data are collected and the analysis is conducted in a way that can
be repeated by other researchers with the same results. We defined search terms
and applied procedures that can be replicated by others. Since this is a map-
ping study and not a systematic review, the inclusion/exclusion criteria are only
related to whether the topic of microservices is present in a paper [9].

Internal validity is concerned with data analysis. Since our analysis only uses
descriptive statistics, the threats are minimal.

External validity is about generalization from this study. Since we do not
draw any conclusions about mapping studies in general, external validity threats
are not applicable.

6 Conclusion

In this work, we conducted a systematic mapping study on micro-services-based
architectural style principles and patterns, also looking at techniques and tools
for continuously delivering new services by applying the DevOps approach when
implementing micro-services-based systems.

As main outcome we identified several research gaps, such as the lack of
comparison between SOA and Microservices, the investigation of consequences
of microservices explosion and the high interest in exploring microservices in
DevOps settings. Most of the selected works were published at workshops or
conferences, which confirms the novelty of this topic and the interest in con-
ducting this mapping study.

We have used architectural patterns to identify common structural prop-
erties of microservice architectures. Three orchestration and data-storage pat-
terns emerged that appear to be widely applied for microservices-based sys-
tems. Although some patterns were clearly used for migrating existing mono-
lithic applications (service registry pattern) and others for migrating existing
SOA applications (hybrid pattern), adopting the API-Gateway pattern in the
orchestration layer in order to benefit from microservice architectures without
refactoring a second time emerges as a key recommendation. Overall, a 3-layered
catalog of patterns comes out with patterns for orchestration/coordination and
storage as structural patterns and for deployment alternatives.

Independent deployability, being based on strong isolation, and easing the
deployment and self-management activities such as scaling and self-healing, and

148 D. Taibi et al.

also maintainability and reuse as classical architecture concerns are the most
widely agreed beneficial principles.

DevOps in the contest of microservices is an hot topic being frequently dis-
cussed online among practitioners, despite small number of works, probably
because of its novelty. Work in this topic is mainly covering testing and monitor-
ing techniques, while there are not yet papers on release techniques. Nonetheless,
the independent deployability property often cited requires microservices to be
mapped to a continuous architecting pipeline. Therefore, we believe DevOps
would need more empirical validation in the context of microservices.

A further analysis regards the notion of a architecture style itself in case
of continuous architecting. The latter becomes an integral element of software
architecture these days. Correspondingly, an architectural style requires to cover
continuous architecting activities as well in addition to purely development stage
regards such as system design usually focused on in architectural styles.

A The Selected Studies

[S1] Lewis, J. and Fowler, M. 2014. Microservices.
http://martinfowler.com/articles/microservices.html.

[S2] Richardson, C. 2014. Microservice Architecture http://microservices.io.
[S3] Namiot, D. and Sneps-Sneppe, M. 2014. On micro-services architecture. Inter-

national Journal of Open Information Technologies V.2(9).
[S4] Vianden, M., Lichter, H. and Steffens, A. 2014. Experience on a Microservice-

Based Reference Architecture for Measurement Systems. Asia-Pacific Software
Engineering Conference.

[S5] Anwar, A., Sailer, A., Kochut, A., Butt, A. 2015. Anatomy of Cloud Monitoring
and Metering: A Case Study and Open Problems. Asia-Pacific Workshop on
Systems.

[S6] Patanjali, S., Truninger, B., Harsh, P. and Bohnert, T. M. 2015. CYCLOPS: A
micro service based approach for dynamic rating, charging & billing for cloud.
Conference on Telecommunications.

[S7] Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F. and Edmonds. A. 2015.
Architecture for Self-managing Microservices. Int. Workshop on Automated Inci-
dent Mgmt in Cloud.

[S8] Chen, H.M., Kazman, R., Haziyev, S.,Kropov, V. and Chtchourov, D. 2015.
Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform. Symp.
on Reliable Distr Syst Workshop.

[S9] Stubbs, J., Moreira, W. and Dooley, R. 2015. Distributed Systems of Microser-
vices Using Docker and Serfnode. Int. Workshop on Science Gateways.

[S10] Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M. and Steinder, M.
2015. Docker containers across multiple clouds and data center. Utility and Cloud
Computing Conference.

[S11] Villamizar, M., Garcas, O., Castro, H. et al. 2015. Evaluating the monolithic and
the microservice architecture pattern to deploy web applications in the cloud.
Computing Colombian Conference

[S12] Alpers, S., Becker, C., Oberweis, A. and Schuster, T. 2015. Microservice Based
Tool Support for Business Process Modelling. Enterprise Distributed Object
Computing Workshop.

http://martinfowler.com/articles/microservices.html
http://microservices.io

Continuous Architecting with Microservices and DevOps 149

[S13] Le, V.D., Neff, M.M., Stewart,R.V., Kelley, R., Fritzinger, E., Dascalu, S.M.
and Harris, F.C. 2015. Microservice-based architecture for the NRDC. Industrial
Informatics Conference.

[S14] Malavalli, D. and Sathappan, S. 2015. Scalable Microservice Based Architecture
for Enabling DMTF Profiles. Int. Conf. on Network and Service Management.

[S15] Viennot, N., Mathias, M. Lécuyer, Bell, J., Geambasu, R. and Nieh, J. 2015.
Synapse: A Microservices Architecture for Heterogeneous-database Web Appli-
cations. European Conf. on Computer Systems.

[S16] Versteden, A., Pauwels, E. and Papantoniou, A. 2015. An ecosystem of user-
facing microservices supported by semantic models. International USEWOD
Workshop.

[S17] Rahman, M. and Gao, J. 2015. A Reusable Automated Acceptance Testing Archi-
tecture for Microservices in Behavior-Driven Development. Service-Oriented Sys-
tem Engineering Symp.

[S18] Rahman, M., Chen, Z. and Gao, J. 2015. A Service Framework for Parallel Test
Execution on a Developer’s Local Development Workstation. Service-Oriented
System Engineering Symp.

[S19] Rajagopalan, S. and Jamjoom, H. 2015. App-Bisect: Autonomous Healing for
Microservice-based Apps. USENIX Conference on Hot Topics in Cloud Comput-
ing.

[S20] Meink, K. and Nycander, P. 2015. Learning-based testing of distributed microser-
vice architectures: Correctness and fault injection”. Software Engineering and
Formal Methods workshop.

[S21] Bak, P., Melamed, R., Moshkovich, D., Nardi, Y., Ship, H., Yaeli, A. 2015. Loca-
tion and Context-Based Microservices for Mobile and Internet of Things Work-
loads. Conference Mobile Services.

[S22] Savchenko, D. and Rodchenko, G. 2015. Microservices validation: Methodology
and implementation. Ural Workshop on Parallel, Distributed, and Cloud Com-
puting for Young Scientists.

[S23] Gadea, C., Trifan, M., Ionescu, D., Ionescu, B. 2016. A Reference Architecture
for Real-time Microservice API Consumption. Workshop on CrossCloud Infras-
tructures & Platforms.

[S24] Messina, A., Rizzo, R., Storniolo, P., Urso, A. 2016. A Simplified Database Pat-
tern for the Microservice Architecture. Adv. in Databases, Knowledge, and Data
Applications.

[S25] Potvin, P., Nabaee, M., Labeau, F., Nguyen, K. and Cheriet, M. 2016. Micro
service cloud computing pattern for next generation networks. EAI International
Summit.

[S26] Messina, A., Rizzo, R., Storniolo, P., Tripiciano, M. and Urso, A. 2016. The
database-is-the-service pattern for microservice architectures. Information Tech-
nologies in Bio-and Medical Informatics conference.

[S27] Leymann, F., Fehling, C., Wagner, S., Wettinger, J. 2016. Native cloud applica-
tions why virtual machines, images and containers miss the point. Cloud Comp
and Service Science conference.

[S28] Killalea, T. 2016. The Hidden Dividends of Microservices. Communications of
the ACM. V.59(8), pp. 42-45.

[S29] M. Gysel, L. Kölbener, W. Giersche, O. Zimmermann. “Service cutter: A sys-
tematic approach to service decomposition”. European Confeence on Service-
Oriented and Cloud Computing.

150 D. Taibi et al.

[S30] Guo, D., Wang, W., Zeng,G. and Wei, Z. 2016. Microservices architecture based
cloudware deployment platform for service computing. Symposyum on Service-
Oriented System Engineering. 2016.

[S31] Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J. and Montesi, F. 2016. Self-
Reconfiguring Microservices”. Theory and Practice of Formal Methods.

[S32] Gadea, M., Trifan, D. Ionescu, et al. 2016. A microservices architecture for col-
laborative document editing enhanced with face recognition. SAC.

[S33] Vresk, T. and Cavrak, I. 2016. Architecture of an interoperable IoT platform
based on microservices. Information and Communication Technology, Electronics
and Microelectronics Conference.

[S34] Scarborough, W., Arnold, C. and Dahan, M. 2016. Case Study: Microservice
Evolution and Software Lifecycle of the XSEDE User Portal API. Conference on
Diversity, Big Data & Science at Scale.

[S35] Kewley, R., Keste, N. and McDonnell, J. 2016. DEVS Distributed Modeling
Framework: A Parallel DEVS Implementation via Microservices. Symposium on
Theory of Modeling & Simulation.

[S36] O’Connor, R., Elger, P., Clarke, P., Paul, M. 2016. Exploring the impact of situ-
ational context - A case study of a software development process for a microser-
vices architecture. International Conference on Software and System Processes.

[S37] Jaramillo, D., Nguyen, D. V. and Smart, R. 2016. Leveraging microservices archi-
tecture by using Docker technology SoutheastCon.

[S38] Balalaie, A., Heydarnoori, A. and Jamshidi, P. 2015. Migrating to Cloud-Native
architectures using microservices: An experience report. European Conference
on Service-Oriented and Cloud Computing.

[S39] Lin, J. Lin, L.C. and Huang, S. 2016. Migrating web applications to clouds with
microservice architectures. Conference on Applied System Innovation.

[S40] Xu,C., Zhu, H., Bayley, I., Lightfoot, D., Green, M. and Marshall P. 2016.
CAOPLE: A programming language for microservices SaaS. Symp. on Service-
Oriented System Engineering.

[S41] Amaral, M., Polo, J., Carrera, D., et al. 2015. Performance evaluation of microser-
vices architectures using containers. Int. Symp. on Network Computing and
Applications.

[S42] Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., and Sekar, V. 2016.
Gremlin: Systematic Resilience Testing of Microservices. International Confer-
ence on Distributed Computing Systems.

References

1. Apache ZooKeeper: https://zookeeper.apache.org/
2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables

DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)
3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architects Perspective, 1st edn.

Addison-Wesley Professional, Boston (2015)
4. Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.:

Automatic deployment of services in the cloud with aeolus blender. In: Barros, A.,
Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp.
397–411. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-
0 28

5. ISO/IEC/IEEE 29119 Software Testing (2014). http://www.
softwaretestingstandard.org/

https://zookeeper.apache.org/
https://doi.org/10.1007/978-3-662-48616-0_28
https://doi.org/10.1007/978-3-662-48616-0_28
http://www.softwaretestingstandard.org/
http://www.softwaretestingstandard.org/

Continuous Architecting with Microservices and DevOps 151

6. Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture
migration. Softw. Pract. Exp. 47(9), 1159–1184 (2017)

7. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

8. Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature
Reviews in Software Engineering (2007)

9. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55(12), 2049–2075 (2013)

10. Lewis, J., Fowler, M.: MicroServices (2014). www.martinfowler.com/articles/
microservices.html

11. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: International
Conference on Cloud Computing and Services Science (2016)

12. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Technol. 18(2), 17 (2018)

13. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: EASE (2008)

14. Richardson, C.: Decomposing Applications for Deployability and Scalability,
Microservices (2014). https://www.infoq.com/articles/microservices-intro

15. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2017)

16. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a
systematic mapping study. In: International Conference on Cloud Computing and
Services Science, pp. 221–232 (2018)

17. Taibi, D., Lenarduzzi, V.: On the definition of microservices bad architectural
smells. IEEE Softw. 35(3), 56–62 (2018)

18. Taibi, D., Systä, K.: From monolithic systems to microservices: a decomposition
framework based on process mining. In: 8th International Conference on Cloud
Computing and Services Science, CLOSER (2019)

19. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: EASE 2014 (2014)

www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
https://www.infoq.com/articles/microservices-intro

Towards Pricing-Aware Consolidation
Methods for Cloud Datacenters

Gabor Kecskemeti1 , Andras Markus2, and Attila Kertesz2(B)

1 Department of Computer Science, Liverpool John Moores University,
Liverpool, UK

g.kecskemeti@ljmu.ac.uk
2 Software Engineering Department, University of Szeged,

Dugonics ter 13, Szeged 6720, Hungary
Markus.Andras@stud.u-szeged.hu, keratt@inf.u-szeged.hu

Abstract. Cloud Computing has become the major candidate for com-
mercial and academic compute infrastructures. Its virtualized solutions
enable efficient, high-rate exploitation of computational and storage
resources due to recent advances in data centre consolidation. Resources
leased from these providers are offered under many pricing schemes which
are often times influenced by the utilised consolidation techniques. In this
paper, we provide a foundation to understand the inter-relationship of
pricing and consolidation. This has a potential to reach additional gains
for the providers from a new angle. To this end we discuss the introduc-
tion of a pricing oriented extension of the DISSECT-CF cloud simulator,
and introduce a simple consolidation framework that allows easy exper-
imentation with combined pricing and consolidation approaches. Using
our generic extensions, we show several simple but easy to combine pric-
ing strategies. Finally, we analyse the impact of consolidators on the
profitability of providers applying our simple schemes with the help of
real world workload traces.

Keywords: Cloud computing · Provider pricing ·
Datacentre consolidation · Simulation

1 Introduction

In the last decade Cloud Computing has become mature enough to attract a
vast number of infrastructure providers, both in the commercial and academic
area. Its virtualized data centre management techniques enable the sharing and
on-demand access of software and hardware. In the last five years multi-objective
optimization techniques have been developed for data centre consolidation [11] to

The research leading to these results was supported by the Hungarian Government and
the European Regional Development Fund under the grant number GINOP-2.3.2-15-
2016-00037 (“Internet of Living Things”). This paper is a revised and extended version
of the conference paper presented in [14].

c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 152–167, 2019.
https://doi.org/10.1007/978-3-030-29193-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_8&domain=pdf
http://orcid.org/0000-0001-5716-8857
http://orcid.org/0000-0002-9457-2928
https://doi.org/10.1007/978-3-030-29193-8_8

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 153

exploit most of the available cloud resources, but the complexity and uncertainty
of cloud application workloads represent a burden for further improvements.

The commercial utilization of cloud data centres has also evolved in the past
decade, and as a result various provider pricing schemes have appeared that
tinges the similarities and differences of cloud providers on the market. In a
former work we already developed a model for cloud service pricing based on
schemes of the major cloud infrastructure providers [17], and made it avail-
able for experimentation with IoT Cloud applications in the extended ver-
sion of the DISSECT-CF simulator [13]. In this work we further extend the
capabilities of this simulation environment by generalising the pricing schemes
allowing their easy extensibility and combination. Furthermore, we discuss a
framework for introducing advanced consolidation techniques into the simula-
tions enabling experimentation about the influences of consolidators on provider
pricing. Our goal is to enable research on novel, pricing-aware data-centre man-
agement approaches.

The main contributions of this paper are (i) the generic architecture for
pricing as well as for consolidator algorithms, and (ii) their evaluation with 7
different pricing strategies in combination with a simple consolidator technique
using real world workload traces. Our proposal is made available through the
revised and extended version of the open-source DISSECT-CF simulator.

The remainder of the paper is as follows: in Sect. 2, we introduce related
approaches by discussing surveys addressing data centre consolidation. In Sect. 3
we summarize the pricing models made available in the DISSECT-CF simulator,
and in Sect. 4 we show how to apply them in consolidator algorithms. Section 5
presents the performed measurements highlighting the trade-offs of profit gains
and load balancing. Finally we conclude our paper in Sect. 6.

2 Related Work

Efficient data centre management is crucial for beneficial cloud computing solu-
tions. Such consolidation techniques are highly studied, even comparative sur-
veys are available in this research field, such as the ones authored by Ahmad
et al. [10] and Filho et al. [11]. Ahmad et al. summarized that migration and
dynamic voltage frequency scaling approaches are the most common solutions
for server consolidation. They compared 10 consolidation frameworks that can be
used to improve the power management and load balance of data centres that
can have an effect on application performance. They also argue that specific
solutions exist for bandwidth and storage optimization. The conclusions of their
investigations are that application profiling may help in workload prediction,
which is crucial for more efficient migration solutions, but it is still not possi-
ble to accurately predict application demands, which calls for more lightweight
migration techniques. Related to application profiling, we also proposed a solu-
tion for workload prediction based on trace file information in a previous work
[12].

Filho et al. [11] also presented a survey, in which they summarize virtual
machine placement and migration techniques and concerns based on 10 related

154 G. Kecskemeti et al.

IaaSService

RepositoryPM Controller VM Scheduling

IoT Controller

IoT Metering

IoT Pricing Cloud Pricing

Infrastructure Management

Cost Modeling

Virtual Machine Network Node

Physical MachineSensor Infrastructure Simulation

Resource Spreader

Resource Consumption

Resource Scheduler

Energy Metering

Power State Aggregator

Consumption ModelUnified Resource Sharing Energy Modelling

TimedDeferred Event

Event System

Consolidator

Fig. 1. The architecture of the DISSECT-CF simulator based on [14].

surveys in the field published between 2013 and 2017. They further reviewed 50
works to perform a more detailed analysis than presented in the earlier surveys.
They argued that multi-objective optimizations are needed to achieve more accu-
rate results, but they increase the problem complexity at the same time. This
survey also highlighted the need for business-aware solutions. To reduce the costs
of customers and to achieve higher revenue of providers, cost-aware and profit-
aware VM placement strategies may be used. Following this recommendation,
in this work we investigate different pricing schemes of cloud providers, and
combine them with server consolidation techniques to gain higher profits.

Datacenter consolidation techniques are generally analyzed by means of sim-
ulations. Abdullah et al. [9] proposed a heuristic approach for the dynamic server
consolidation evaluated using the CloudSim toolkit, and Kertesz et al. also used
this framework in [15] to validate an energy efficient virtual machine placement
solution. Though similar approaches manage to improve certain properties of
cloud data centres, they do not consider provider pricing schemes for consolida-
tion.

3 Our Proposed Cost Model for Cloud Datacentre
Management

DISSECT-CF is a compact open source [2] simulator focusing on the internals of
IaaS systems. Figure 1 presents its architecture including our latest extensions

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 155

(denoted with grey colour). There are six subsystems (encircled with dashed
lines) implemented, each responsible for a particular functionality: (i) event sys-
tem – the primary time reference; (ii) unified resource sharing – models low-level
resource bottlenecks; (iii) energy modelling – for the analysis of energy-usage
patterns of resources (e.g., NICs, CPUs) or their aggregations; (iv) infrastruc-
ture simulation – for physical/virtual machines, sensors and networking; (v)
cost modelling – for managing IoT and cloud provider pricing schemes, and (vi)
infrastructure management – provides a cloud like API, cloud level scheduling
and consolidation, and IoT system monitoring and management.

In a recent work [17], we introduced the following new components to model
IoT Cloud systems: Sensor, IoT Metering and IoT Controller. Sensors are essen-
tial parts of IoT systems, and usually they are passive entities (actuators could
change their surrounding environment though). Their performance is limited by
their network gateway’s (i.e., the device which polls for the measurements and
sends them away) connectivity and maximum update frequency. Our network
gateway model builds on DISSECT-CF’s already existing Network Node model,
which allows changes in connection quality as well. In our model, the Sensor
component is used to define the sensor type, properties and connections to a
cloud system. IoT Metering is used to define and characterize messages coming
from sensors, and the IoT Controller is used for sensor creation and management.

To incorporate cost management, we enabled defining and applying provider
pricing schemes both for IoT and cloud part of the simulated environments.
These schemes are managed by the IoT and Cloud Pricing components of the
Cost modeling subsystem of DISSECT-CF, as shown in Fig. 1.

3.1 Configurable Cost Models Based on Real Provider Schemes

In order to enable realistic datacentre consolidation simulations, we considered
four of the most popular, commercial cloud providers, namely: Amazon, MS
Azure, IBM Bluemix and Oracle. Most providers have a simple pricing method
for VM management (beside thaditional virtual machines, some provide contain-
ers, compute services or application instances for similar purposes). The pricing
scheme of these providers can be found on their websites. We considered the
Azure’s application service [5], the Bluemix’s runtime pricing sheet under the
Runtimes section [4], the Amazon EC2 On-Demand prices [1], and the Oracle’s
compute service [6] together with the Metered Services pricing calculator [7].
The cloud-related cost is based on either instance prices (Azure and Oracle),
hourly prices (Amazon) or the mix of the two (Bluemix) provider uses both type
of price calculating. For example, Oracle charges depending on the daily uptime
of our application as well as the number of CPU cores used by our VMs.

Figure 2 shows the XML structure and the cost values for the applied cate-
gories we designed to be used in the simulator. This configuration file contains
some providers (for example the amazon element starting in the second line),
and the defined values are based on the gathered information from the providers’
public websites discussed before. We specified 3 different sizes for applicable VMs
(named small, medium and large).

156 G. Kecskemeti et al.

Fig. 2. Cost model of Cloud providers based on [14].

This XML file has to contain at least that size category to be used for the
experiments. As we can see from the fourth line to the seventh line, a cate-
gory defines a virtual machine with the given ram and cpucores attributes, and
we state the virtual machine prices with the instance-price and hour-per-price
attributes. If we select the amazon provider with small category, then in the
scenarios a virtual machine will have 1 CPU core and 2 GB of RAM, and the
usage of this virtual machine will cost 0.296 Euro per hour.

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 157

Fig. 3. Consolidation related extension of DISSECT-CF based on [14].

4 Consolidator Algorithms

Data-centre consolidation techniques are heavily used in commercial clouds. Con-
solidation is built on the migration capabilities of virtual machines, where vir-
tualised workload is moved around in the data-centre according to the cloud
operator’s goals. In the past years, there were several approaches proposed for
consolidating the virtualised workloads of clouds. Most of them were evaluated
with simulations. When analysing cost models, the effects of consolidation could
not be avoided. Although, the foundations for these consolidator algorithms were
laid down in our DISSECT-CF simulator from the beginning [13]. Even with the
addition of more precise live-migration modelling [16], the consolidation algo-
rithms were not present in the simulator.

There are two distinct approaches possible to implement a consolidation
algorithm in DISSECT-CF: (i) create an alternative physical machine (PM)
controller which utilizes consolidator related techniques as well or (ii) create an
independent consolidator which builds on top of the other infrastructure man-
agement components of the simulator. While both approaches could apply the
same policies and enact the same goals of a cloud provider, they should be imple-
mented differently. In the first case, the PM controller should extend its possible
actions from switching on/off PMs to migrating VMs as well. In the second case,
the consolidator is dedicated to only decide on migration related actions. This
is beneficial as the consolidator algorithm could collaborate with multiple PM
controller strategies without the need for a complete rewrite of the consolida-
tion approach. As this second approach is more generic, thus we present it in
this paper in more detail. Note, the source of the presented approach is publicly
available in the source repository of DISSECT-CF [2].

Figure 3 shows how the extension was implemented. The main addition of the
simulator is the Consolidator class, which is to be extended by any new con-
solidation policies in the future. This abstract class handles the basic connection

158 G. Kecskemeti et al.

of the future consolidators to the IaaSService by monitoring the VM related
activities on the cloud. It is also responsible for managing the frequency with
which the consolidation policy is run (to be implemented by third parties in the
doConsolidation() function). In general, it ensures that the custom consolida-
tor policy is only invoked if there are any VMs in the cloud at any particular
time. To do so, the consolidator monitors the PMs and observes how they are
managed by PM controllers and utilised by the VM schedulers.

The simulator also offers a consolidation policy called SimpleConsolidator.
This policy packs the VMs to the smallest amount of PMs as follows.

1. Creates an ordered list (P := {p1, p2, ...pn}) of the PMs (e.g., p1) currently
running in the IaaS (where the number of running PMs in the IaaS is n). This
list has the least used PMs in the front and the heaviest used ones at the tail:
u(p1) ≤ u(p2) ≤ ... ≤ u(pn). Where we denote the utilisation of a PM with
the function : u : P → R. Note: the utilisation is determined solely on the
resource allocations for the VMs hosted on each PM and it is not dependent
on the instantaneous resource usage of any of the VMs in the cloud.

2. Picks the least used not yet evaluated PM (pi). If there are no more PMs to
evaluate, we terminate the algorithm.

3. Picks a VM (vx) hosted by pi. Where vx ∈ h(pi) and the function h : P → 2V

defines the set of VMs which are hosted by a particular PM. This set is a
subset of all VMs (V) in the IaaS service.

4. Picks the heaviest used (but not completely utilised) and not yet tested PM
(pk). Where we have the following limits for k: i + 1 ≤ k ≤ n.

5. Checks if the new PM has enough free resources to host the VM: rf (pk, t) ≥
r(vx, t), where rf : P ×R → R

3 and r : V ×R → R
3. The rf function tells the

amount of free resources available at the specified host at the specified time
instance t. Also, the r function tells the amount of resources needed by the
virtual machine at the specified time instance. The resource set is modelled
by a triplet of real numbers: (i) number of CPU cores, (ii) per core processing
power and finally (iii) memory.

– If the check was successful, then the VM is requested to be migrated from
the host pi to pk. Then continue on with a new VM pick.

– If the check fails, we repeat with all untested PMs. If no more PMs are
around to test, we pick another VM from the list of h(pi). If there are no
more VMs to pick, we return to step 2.

Thus we can summarize the algorithm as packing the VMs to the heaviest loaded
PMs with a first fit approach. This approach is efficient with the PM controller
called SchedulingDependentMachines which switches off all unused machines
once they become freed up (in this case once all their VMs migrate away).

5 Evaluation

During our implementation and evaluation, where applicable, we used publicly
available information to populate our experiments. In the next subsection we
introduce the applied workloads, then discuss the proposed algorithms and sce-
narios, and the achieved results.

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 159

5.1 Workloads

Though virtual machine management log-based traces would be the best candi-
dates for analysing cloud characteristics, traces collected from other large-scale
infrastructures like grids could also be appropriate. Generally two main sources
are used for this purpose: the Grid Workloads Archive (GWA [3]) and the Par-
allel Workloads Archive [8]. For this study we used traces downloadable from
GWA (namely: AuverGrid, DAS2, Grid5000, LCG, NorduGrid and SharcNet).

We used the JobDispatchingDemo from the DISSECT-CF examples
project1, to transform the jobs listed in the trace to VM requests and VM
activities. This dispatcher asks the simulator to fire an event every time when
the loaded trace prescribes. Also, the dispatcher maintains a list of VMs avail-
able to serve job related activities (e.g., input & output data transfers, cpu and
memory resource use). Initially the VM list is empty. Thus the job arrival event
is handled with two approaches: (i) if there is no unused VM in the VM list
that has sufficient resources for the prescribed job, then the dispatcher creates
a VM according to the resource requirements of the job; alternatively, (ii) if
there is an unused VM with sufficient resources for the job, then the job is just
assigned to the VM. In the first approach, the job’s execution is delayed until
its corresponding VM is spawned. In both cases, when the job finishes, it marks
the VM as unused. This step allows other jobs to reuse VMs pooled in the VM
list. Finally, the VMs are not kept for indefinite periods of time, instead they
are kept in accordance with the billing period applied by the cloud provider.
This ensures, that the VMs are held for as long as we paid for them but not any
longer. So if there is no suitable job coming for a VM within its billing period,
then the VM is terminated and it is also removed from the VM list.

5.2 Scenarios

In the following we list the pricing strategies available at the moment. They are
applicable alone or in combination as required.

S1 - Fixed Pricing. It uses a constant price for every VM request. This pricing
strategy does not consider any factors in its price:

Mfix = mc, (1)

where Mfix is the price (i.e money) returned, and mc is the constant base
price which is configurable for every simulation.

S2 - Resource Constraints Aware Pricing. It implements a linear rela-
tionship between the price of a VM and the amount of resources the VM
needs. The higher the resource needs are, the more the user should pay.

Mrcaw(rcores, rmem, rproc) =

mc
rcpu ∗ rproc ∗ rmem

rMAX
cpu ∗ rMAX

proc ∗ rMAX
mem

,
(2)

1 https://github.com/kecskemeti/dissect-cf-examples.

https://github.com/kecskemeti/dissect-cf-examples

160 G. Kecskemeti et al.

where the triple < rcores, rmem, rproc > represents the resources requested by
the customer for its VM. The triple < rMAX

cpu ∗rMAX
proc ∗rMAX

mem > represents the
properties of the largest resource amount any PM has in the cloud provider.
Note that all the resource values are represented as the provider sees them fit,
for the purpose of the paper we assumed they are all positive real numbers
(e.g., rcores ∈ R

+). Thus, this pricing model, charges mc if the user requests
the largest still serviceable resource set.

S3 - Quantized Pricing. It applies a pricing strategy similar to Mrcaw. But
instead of scaling the price by a continuous function, we apply a transfor-
mation which transforms (T : R3 → R

3) the original request from the user
to some preset values. When defining a quantized pricing, one must define
this transformation only, then we can apply the Mrcaw model to find out the
actual price.

Mquant(rcores, rmem, rproc) =
Mrcaw(T(rcores, rmem, rproc))

(3)

This is the technique that is used by most of cloud providers nowadays. In
those cases, the providers are often restricting the amount of resources one
can request as well. An example transformation function could be:

Tex =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if rmem <= 2 ∧ rcores <= 1
r′
mem = 2, r′

cores = 1, rproc = 1
if 2 < rmem <= 8 ∧ 1 < rcores <= 2
r′
mem = 8, r′

cores = 2, rproc = 1
otherwise
r′
mem = 32, r′

cores = 8, rproc = 1

(4)

The simulator implements a pricing model which can be configured to load a
particular transformation function for a particular cloud provider. The limits
for the transformation functions are stored in an XML file representing certain
commercial provider cost models. Later in the measurements we apply the
cost model presented in Sect. 3.

S4 - PM Utilization Aware Pricing. This strategy also offers a linear pric-
ing approach. In contrast to the resource constraints aware pricing model,
this time, we adjust the price based on the number of PMs in use at cloud
provider:

Mutaw = mc
|PU |
|P | , (5)

where the PU is the set of PMs that host any VMs: PU = {∀px ∈ P : u(px) 	=
0}. Thus the more exploited the cloud provider is, the more the user should
pay.

S5 - Load Dependent Pricing. This works similarly to the PM utilization
aware pricing. At the cost of additional monitoring requirements, it imple-
ments the same policy with a more fine grained utilization calculation:

Mld = mc

∑
∀p∈P R(p)

∑
∀p∈P RMAX(p)

, (6)

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 161

where R(p) represents the average amount of resources utilised in the last hour
from particular physical machine, while RMAX(p) defines the total amount
of resources the PM could offer in the same hour. Thus, this pricing model
considers how well the VMs actually use the resources and if the VMs are
not highly used (even though they are hosted at the cloud at the moment),
then the prices will be lowered (this will attract further users and enable the
provider to use under provisioning for those VMs that are just paid for but
not used at the moment).

S6 - Reliability Aware Pricing. It alters the price based on the ratio of suc-
cessfully and unsuccessfully hosted VMs at the cloud. A VM is classified
unsuccessfully hosted if it is terminated because of a physical machine fail-
ure, and not because of a user’s request.

Mrel = mc
|Vf |
|V | , (7)

where Vf is the set of VMs which failed due to a hardware issue at the provider
side.

S7 - Profit Margin Focused Pricing. It tries to price resources so the profit
margin index (i) of the cloud provider stays in a predefined range (i.e. Imin <
i < Imax).

Mmargin(t0) = mc (8)

Mmargin(tx) =

Mmargin(tx−1) ·

⎧
⎪⎨

⎪⎩

0.9, if i(tx) < Imin

1.1, if i(tx) > Imax

1, otherwise
,

(9)

where the function i(t) determines the current (or at a given time, represented
by t) profit margin index of a provider. This technique tries to adopt the prices
to make sure the provider is profitable even in competitive environments.

5.3 Results

As mentioned before, we investigated how policies considering pricing informa-
tion can affect consolidation processes. We used 6 different trace files from real
world distributed systems to simulate load on the cloud datacentres we aim to
consolidate. We also designed 7 different strategies to perform cost-aware con-
solidation. We have performed numerous experiments by executing the above
listed strategies for all previously mentioned trace files. Tables 1 and 2 depict
detailed measurement results fro energy consumption for the different workloads
represented by different trace files. As we can see from the results, the consol-
idation algorithms succeeded to balance the load over the system, and in most
cases energy and money can be saved by applying them. In the following we
highlight the most interesting results.

Concerning experiments run on the Grid5000 load, Figs. 4 and 5 depict
the tradeoff of energy gains and runtime expansions for the given strategies

162 G. Kecskemeti et al.

Table 1. Energy consumption results (kWh) for different trace files I.

Nordugrid Grid5000 LCG

Strategy Con. Non-Con. Con. Non-Con. Con. Non-Con.

S1 453020 527342 295080 303445 7629 9431

S3 453020 527342 295080 303445 7629 9431

S5 453376 527901 295621 303037 7632 9401

S2 + S6 453020 527342 295080 303445 7629 9431

S3 + S4+ S7 453020 527342 295080 303445 7629 9431

S5 + selling 444932 520222 288947 296573 7524 9296

Table 2. Energy consumption results (kWh) for different trace files II.

Sarchnet DAS2 Auver

Strategy Con. Non-Con. Con. Non-Con. Con. Non-Con.

S1 443357 490289 167445 169614 107801 113066

S3 443357 490289 167445 169614 107801 113066

S5 443887 487880 167482 169616 107803 113066

S2 + S6 443357 490289 167445 169614 107801 113066

S3 + S4 + S7 443357 490289 167445 169614 107801 113066

S5 + selling 440110 486964 162884 165033 105174 110438

(“S2 + S6” means we applied both strategies, “S5 + selling” means we applied
the S5 strategy and sold the shut down PMs to gain money). By migrating cer-
tain VMs to other physical machines to balance the load, we managed to reduce
the power consumption, however the migration processes took some time which
appears in the overall runtime. From the results we can see that the S6 strategy
is the most efficient for reducing power consumption, and still it is the fastest
solution.

Concerning experiments run on the NorduGrid load, Figs. 6 and 7 depict the
tradeoff of energy gains and runtime expansions for the same strategies. From
these results we can see that we managed to save more energy with all strategies
compared to the previous Grid5000 cases.

Figures 8 and 9 depicts the results of our S3 strategy that enables to load and
apply different provider pricing schemes. From these results we can see that the
highest energy gains could be achieved with the Amazon pricing scheme for this
load condition, while the worst result came from applying the Oracle pricing.

We also experienced that the load types represented by the traces highly
affect the results. Figure 10 presents measurements performed under different
load conditions with the combined S2 + S6 strategy. The depicted balance repre-
sents the possible gains of using consolidation in terms of cost (i.e. money) and
energy.

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 163

Fig. 4. Energy consumption of experiments with the Grid5000 trace based on [14].

Fig. 5. Runtime of experiments with the Grid5000 trace based on [14].

164 G. Kecskemeti et al.

Fig. 6. Energy consumption of experiments with the NorduGrid trace.

Fig. 7. Runtime of experiments with the NorduGrid trace.

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 165

Fig. 8. Energy consumption of experiments with Grid5000 for different cloud provider
pricing with the S3 strategy based on [14].

Fig. 9. Runtime of experiments with Grid5000 for different cloud provider pricing with
the S3 strategy based on [14].

166 G. Kecskemeti et al.

Fig. 10. Load and energy balance for different load conditions with the S2+ S6 strategy
based on [14].

6 Conclusions

In the recent years Cloud Computing has become the primary choice for a vast
number of infrastructure providers for virtualized data centre management. Dat-
acenter consolidation techniques are widely used to exploit most of the available
hardware resources, therefore this field is also highly studied.

In this paper we proposed a novel approach to earn additional gains in this
field: we combined consolidation techniques with provider pricing schemes, which
have also evolved rapidly due to the emerging competition of cloud providers.

For main contribution of this work, first we introduced a provider pricing
model to the DISSECT-CF cloud simulator, then developed novel consolidator
algorithms using this model. We also evaluated the proposed algorithms with
7 strategies for cost-aware data centre consolidation using real world workload
traces.

Our results have shown that proper selection of the applied pricing method
can affect the quality of data centre consolidation, and further cost and power
consumption saving can be achieved using our new approach.

Software Availability
This paper described the behaviour and features of DISSECT-CF version 0.9.8.
Its source code is open and available (under the licensing terms of the GNU
LGPL 3) at the following website:
https://github.com/kecskemeti/dissect-cf

https://github.com/kecskemeti/dissect-cf

Towards Pricing-Aware Consolidation Methods for Cloud Datacenters 167

References

1. Amazon pricing. https://aws.amazon.com/ec2/pricing/on-demand/
2. DISSECT-CF. https://github.com/kecskemeti/dissect-cf. Accessed Jan 2018
3. Grid Workloads Archive. http://gwa.ewi.tudelft.nl/. Accessed Sept 2018
4. IBM Bluemix pricing sheet. https://www.ibm.com/cloud-computing/bluemix.

Accessed Jan 2018
5. MS Azure price calculator. https://azure.microsoft.com/en-gb/pricing/

calculator/. Accessed Jan 2018
6. Oracle pricing. https://cloud.oracle.com/en US/opc/compute/compute/pricing.

Accessed Jan 2018
7. Orcale Metered Services pricing calculator. https://shop.oracle.com/cloudstore/

index.html?product=compute. Accessed Jan 2018
8. Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

Accessed Sept 2018
9. Abdullah, M., Lu, K., Wieder, P., Yahyapour, R.: A heuristic-based approach for

dynamic VMS consolidation in cloud data centers. Arab. J. Sci. Eng. 42(8), 3535–
3549 (2017). https://doi.org/10.1007/s13369-017-2580-5

10. Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Yousafzai, A., Xia,
F.: A survey on virtual machine migration and server consolidation frame-
works for cloud data centers. J. Netw. Comput. Appl. 52(Suppl. C), 11–
25 (2015). https://doi.org/10.1016/j.jnca.2015.02.002. http://www.sciencedirect.
com/science/article/pii/S1084804515000284

11. Filho, M.C.S., Monteiro, C.C., Inacio, P.R., Freire, M.M.: Approaches
for optimizing virtual machine placement and migration in cloud envi-
ronments: a survey. J. Parallel Distrib. Comput. 111(Suppl. C), 222–
250 (2018). https://doi.org/10.1016/j.jpdc.2017.08.010. http://www.sciencedirect.
com/science/article/pii/S074373151730240X

12. Kecskemeti, G., Kertesz, A., Nemeth, Z.: Cloud workload prediction by means of
simulations. In: ACM International Conference on Computing Frontiers 2017, CF
2017, pp. 279–282 (2017). https://doi.org/10.1145/3075564.3075589

13. Kecskemeti, G.: DISSECT-CF: a simulator to foster energy-aware scheduling in
infrastructure clouds. Simul. Model. Pract. Theory 58P2, 188–218 (2015). https://
doi.org/10.1016/j.simpat.2015.05.009

14. Kecskemeti, G., Markus, A., Kertesz, A.: Cost-efficient datacentre consolidation for
cloud federations. In: Proceedings of the 8th International Conference on Cloud
Computing and Services Science, CLOSER 2018, Funchal, Madeira, Portugal, 19–
21 March 2018, pp. 213–220 (2018). https://doi.org/10.5220/0006775302130220

15. Kertesz, A., Dombi, J.D., Benyi, A.: A pliant-based virtual machine scheduling
solution to improve the energy efficiency of IaaS clouds. J. Grid Comput. 14(1),
41–53 (2016). https://doi.org/10.1007/s10723-015-9336-9

16. Maio, V.D., Kecskemeti, G., Prodan, R.: An improved model for live migration
in data centre simulators. In: 2016 IEEE/ACM 9th International Conference on
Utility and Cloud Computing (UCC), pp. 108–117, December 2016

17. Markus, A., Kertesz, A., Kecskemeti, G.: Cost-aware IoT extension of DISSECT-
CF. Future Internet 9(3) (2017). https://doi.org/10.3390/fi9030047. http://www.
mdpi.com/1999-5903/9/3/47

https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/kecskemeti/dissect-cf
http://gwa.ewi.tudelft.nl/
https://www.ibm.com/cloud-computing/bluemix
https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/calculator/
https://cloud.oracle.com/en_US/opc/compute/compute/pricing
https://shop.oracle.com/cloudstore/index.html?product=compute
https://shop.oracle.com/cloudstore/index.html?product=compute
http://www.cs.huji.ac.il/labs/parallel/workload/
https://doi.org/10.1007/s13369-017-2580-5
https://doi.org/10.1016/j.jnca.2015.02.002
http://www.sciencedirect.com/science/article/pii/S1084804515000284
http://www.sciencedirect.com/science/article/pii/S1084804515000284
https://doi.org/10.1016/j.jpdc.2017.08.010
http://www.sciencedirect.com/science/article/pii/S074373151730240X
http://www.sciencedirect.com/science/article/pii/S074373151730240X
https://doi.org/10.1145/3075564.3075589
https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/10.5220/0006775302130220
https://doi.org/10.1007/s10723-015-9336-9
https://doi.org/10.3390/fi9030047
http://www.mdpi.com/1999-5903/9/3/47
http://www.mdpi.com/1999-5903/9/3/47

Optimising QoS-Assurance, Resource
Usage and Cost of Fog

Application Deployments

Antonio Brogi1, Stefano Forti1(B), and Ahmad Ibrahim2

1 Department of Computer Science, University of Pisa, Pisa, Italy
{brogi,stefano.forti}@di.unipi.it

2 School of Computer Science, University of Birmingham, Birmingham, UK
a.ibrahim@bham.ac.uk

Abstract. Identifying the best application deployment to distribute
application components in Fog infrastructures – spanning the IoT-to-
Cloud continuum – is a challenging task for application deployers. Indeed,
it requires fulfilling all application requirements, whilst determining a
trade-off among different objectives (i.e., QoS assurance, Fog resource
consumption and cost), resulting in a complex and time-consuming
decision-making process to be tuned manually. In this paper, we present
a simple multi-objective optimisation scheme that permits selecting
the best placement of application components, balancing the trade-off
among QoS-assurance, Fog resource consumption and monthly deploy-
ment costs. We exploit our prototype, extended with parallel Monte
Carlo simulations, and a motivating example to show how IT experts
can benefit from our approach.

Keywords: Fog computing · Application deployment ·
Multi-objective optimisation · Cost models · Monte Carlo method

1 Introduction

Fog computing [5] aims at moving computation closer to the source of IoT data
by relying on a multitude of heterogeneous devices (e.g., personal devices, gate-
ways, micro-data centres, embedded servers) spanning the continuum from the
Cloud to the IoT1. Meanwhile, modern applications are made from a set of
independently deployable components (or services, or micro-services) that inter-
act together and must meet some requirements. The interactions (component-
component or component-Things) may have firm Quality of Service (QoS)
requirements – latency, bandwidth – to be fulfilled for the application to work
as expected [16].

1 Hereinafter, the word Things is used to refer to IoT devices, both sensors and actu-
ators.

c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 168–189, 2019.
https://doi.org/10.1007/978-3-030-29193-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_9

Optimising QoS-Assurance, Resource Usage 169

Deployment of Fog applications requires placing their components (e.g., con-
trol loops, operational support, business intelligence) over the available infras-
tructure that consists of Cloud, Fog and IoT devices (spread over a possibly large
geographical area, and inter-connected via heterogeneous communication tech-
nologies), based upon specific application and user requirements. Determining
eligible deployments of multi-component applications to given Fog infrastructure
is proved to be NP-hard [7].

Naturally, financial considerations play a role too in deployment selection
as industry and businesses usually aim at maximising their revenues, whilst
minimising deployment operational costs [39]. If Cloud offerings are limited to
a few large providers, Fog computing envisions many other small and medium
players (e.g., single Fog node or Things owners) that will offer virtual instances
or IoT capabilities at different pricing schemes, making it more challenging to
identify cost-effective deployments among the possible ones.

Overall, there is a need for tools that can actually support application deploy-
ment to the Fog and that should feature (i) QoS-awareness to achieve latency
reduction, bandwidth savings and to enforce business policies, (ii) context-
awareness to suitably exploit local and remote resources, (iii) cost-awareness
to enact cost-effective deployments.

To support all these objectives, we developed a prototype (FogTorchΠ) [7–
9] that given a Fog infrastructure (1) determines application deployments that
meet all (hardware, software IoT and QoS) requirements, (2) estimates their
QoS-assurance and Fog resource consumption by simulating latency and band-
width variations of communication links as per given probability distributions,
and (3) estimates the monthly cost of application deployments over the input
infrastructure. It is worth noting that, even after a set of eligible deployments
has been identified, the application deployers still have to identify a best can-
didate deployment. Trading-off among different metrics like QoS assurance, Fog
resource consumption and cost can make this complex decision making process
time-consuming and difficult to be tuned manually (since some constraints are
orthogonal to each other). Indeed, suppose application deployers aim at min-
imising deployment cost and Fog resource consumption for a given application
deployment. Such preferences may lead their choice to a candidate deployment
that minimises the two considered metrics, missing to actually guarantee a good
level of compliance to QoS-requirements (i.e., QoS-assurance). With the sup-
port of trade-off analysis tools, application deployers might discover some other
eligible deployments that can provide a more balanced compromise between all
considered metrics.

In this paper, we extend the work of [9] – in which we introduced a cost model
to estimate monthly deployment cost of Fog applications – so to include a simple
multi-objective optimisation scheme that permits selecting the best placement
of application components, balancing the trade-off among QoS-assurance, Fog
resource consumption and monthly costs. With respect to [9] we also extended
FogTorchΠ to perform parallel Monte Carlo simulations when estimating deploy-
ment QoS-assurance, thus taming the complexity of the described algorithms.

170 A. Brogi et al.

We show, over a motivating example, how these extensions of our methodology,
particularly the multi-objective optimisation, can further help IT experts (or
new businesses coming onto the Fog market) in deciding how to distribute appli-
cation components to Fog infrastructures in a QoS-, context- and cost-aware
manner.

The rest of this paper is organised as follows. After introducing a moti-
vating example of a smart building application (Sect. 2), we briefly describe
FogTorchΠ (Sect. 3) and present the cost model extension (Sect. 4). Then, we
discuss multi-objective optimisation (Sect. 5), present the results obtained by
applying the extended version of FogTorchΠ methodology to the motivating
example (Sect. 6), and discuss some related work (Sect. 7). Finally, we draw some
concluding remarks (Sect. 8).

2 Motivating Example

A simple Fog application (Fig. 1) manages fire alarm, heating and A/C systems,
interior lighting, and security cameras of a smart building and is made from
three microservices:

– IoTController, directly controlling the connected cyber-physical systems,
– DataStorage, storing all sensed data for future use and employing machine

learning techniques to update sense-act rules at the IoTController so to opti-
mise heating and lighting management based on previous experience and/or
on people behaviour, and

– Dashboard, aggregating and visualising collected sensor data and videos, as
well as providing an interface to users interacting with the application.

Fig. 1. Fog application of the motivating example as in [9].

Each microservice is an independently deployable component of the appli-
cation [37] and has some hardware and software requirements to be fulfilled in

Optimising QoS-Assurance, Resource Usage 171

order to function properly (the grey box associated with each component). Hard-
ware requirements are expressed in terms of the virtual machine (VM) types2

that will host the component once deployed. Table 1 lists all VM types used in
this example and the corresponding hardware specification.

Table 1. Hardware specification for different VM types [9].

VM type vCPUSs RAM (GB) HDD (GB)

Tiny 1 1 10

Small 1 2 20

Medium 2 4 40

Large 4 8 80

Xlarge 8 16 160

Furthermore, end-to-end communication links supporting component-
component interactions need to feature suitable latency and bandwidth (e.g.,
the latency between IoTController and DataStorage should be less than 160 ms
and the free bandwidth should be at least 0.5 Mbps download and 3.5 Mbps
upload3). Finally, interactions between the IoTController and Things are sub-
ject to similar constraints, and also specify the expected sampling rate for the
component to query Things at runtime.

System integrators in charge of deploying the smart building application for
one of their customers have two Cloud data centres, three Fog nodes and nine
Things (Fig. 2) available in the target infrastructure. The deployed application
will have to utilise the Things connected to Fog 1 and the weather station 3 at
Fog 3. For the system integrators, deploying components to Fog 2 involves no
additional cost since their customers own that node, and can use it free of charge.

All Fog and Cloud nodes are associated with their pricing schemes. Those
scheme consider the possibility of either buying a ready-made instance of a cer-
tain VM type (e.g., a small instance at Cloud 2 costs e25 per month) as well
as the possibility of assembling on-demand instances (by selecting the required
number of cores and the needed amount of memory and storage to support a
given component).

Fog nodes offer software capabilities with limited hardware resources (i.e.,
RAM, HDD, CPUs), as indicated in Fig. 2. Cloud nodes also offer software capa-
bilities and we assume that they offer potentially unbounded hardware resources
(under the assumption that one can always purchase extra or larger instances
on-demand).

QoS profiles of the available communication links4 are listed in Table 2. They
are based on real data5 and represented as probability distributions to account
2 Adapted from OpenStack Mitaka flavours: https://docs.openstack.org/.
3 Arrows on the links in Fig. 1 indicate the upload direction.
4 Arrows on the links in Fig. 2 indicate the upload direction.
5 Satellite: https://www.eolo.it/, 3G/4G: https://www.agcom.it, VDSL: http://www.

vodafone.it.

https://docs.openstack.org/
https://www.eolo.it/
https://www.agcom.it
http://www.vodafone.it
http://www.vodafone.it

172 A. Brogi et al.

Fig. 2. Fog infrastructure of the motivating example as in [9]. (Color figure online)

for QoS variations. Green color links at Fog 2 initially feature a 3G Internet
access. We assume Fog and Cloud nodes are able to access directly connected
Things as well as Things (or the data they produce) at neighbouring nodes via
a specific middleware layer (through the associated communication links) which
is in accordance with the current technical proposals (e.g., [5] and [40]).

Table 2. QoS profiles of communication links as in [9].

Dash Type Profile Latency Download Upload

3G 54 ms 99.6%: 9.61 Mbps
0.4%: 0 Mbps

99.6%: 2.89 Mbps
0.4%: 0 Mbps

4G 53 ms 99.3%: 22.67 Mbps
0.7%: 0 Mbps

99.4%: 16.97 Mbps
0.6%: 0 Mbps

VDSL 60 ms 60 Mbps 6 Mbps
Fibre 5 ms 1000 Mbps 1000 Mbps

WLAN 15 ms 90%: 32 Mbps
10%: 16 Mbps

90%: 32 Mbps
10%: 16 Mbps

98%: 4.5 Mbps
2%: 0 MbpsSatellite 14M 40 ms 98%: 10.5 Mbps

2%: 0 Mbps

The system integrators, planning to sell the deployed solution for e1, 500 a
month, set the limit of the monthly deployment cost at e850. On the other hand,
the customer is willing to pay them only if the application can comply to the
specified QoS requirements at least 98% of the time. Then, interesting questions
for the system integrators before the first deployment of the application are, for
instance:

Optimising QoS-Assurance, Resource Usage 173

Q1(a) — Is there any eligible deployment of the application reaching the
needed Things at Fog 1 and Fog 3 , and meeting the financial (at most e850
per month) and QoS-assurance (at least 98% of the time) constraints men-
tioned above?
Q1(b) — Which eligible deployment represent the most balanced trade-off
optimising QoS-assurance, Fog resource consumption and monthly deploy-
ment cost of the smart building application?

Suppose that with an extra monthly investment of e20, system integrators
can exploit a 4G connection at Fog 2. Then:

Q2 — Does the upgrade from 3G to 4G at Fog 2 make it possible to determine
a deployment with better trade-off on QoS-assurance, Fog resource consump-
tion and monthly deployment cost?

In Sect. 6, we will show how the FogTorchΠ – suitably extended with the
cost model described in Sect. 4 – can be exploited, along with multi-objective
optimisation techniques, to obtain answers to all the above questions.

3 Overview of FogTorchΠ

FogTorchΠ [8] is an open-source Java prototype6 that permits describing Fog
infrastructures and applications so to determine QoS-, context-, and cost-
aware application deployments. Before detailing the cost-aware extension to
FogTorchΠ, we summarise the overall functioning of our prototype. FogTorchΠ
takes as input:

1. a Fog infrastructure I, with the specification of the Fog and Cloud nodes avail-
able for deployment (each with its hardware, software and IoT capabilities),
the probability distributions of the network QoS (viz., latency, bandwidth)
featured by end-to-end communication links interconnecting such nodes7, and
the cost for purchasing sensed data and Cloud/Fog virtual instances,

2. a multi-component application A, specifying all hardware (i.e., CPU, RAM,
storage), software (i.e., OS, libraries, frameworks) and IoT requirements (i.e.,
which type of Things to exploit) of each component, and the minimum
QoS (i.e., latency and bandwidth) needed to suitably support component-
component and component-Thing interactions at runtime,

3. a Things binding ϑ, mapping each IoT requirement of an application compo-
nent to an actual Thing in I, and

4. a deployment policy δ(γ), white-listing the nodes where component γ of A can
be deployed8 in accordance to security or business-related considerations.

6 Available at https://github.com/di-unipi-socc/FogTorchPI/tree/multithreaded/.
7 Actual implementations in Fog landscapes can rely on monitoring tools (e.g., [6],

[22]) to update the information available on I.
8 When δ is not specified for a component γ of A, γ can be deployed to any compatible

node in I.

https://github.com/di-unipi-socc/FogTorchPI/tree/multithreaded/

174 A. Brogi et al.

Fig. 3. Pseudocode of the parallel version of the Monte Carlo simulation in
FogTorchΠ [9].

Based on such input, FogTorchΠ determines all eligible deployments of the
components of A to Cloud or Fog nodes in I. An eligible deployment Δ maps each
component γ of A to a Cloud or Fog node n of I so that (1) n ∈ δ(γ) and it meets
the hardware and software requirements of γ, (2) hardware resources are enough
to deploy all components of A simultaneously mapped to n, (3) Things exploited
by γ (and specified in ϑ) are reachable from n, and (4) component-component and
component-Thing interactions mapped to the same end-to-end communication
link do not exceed the available bandwidth and meet their latency requirements.

FogTorchΠ relys on the Monte Carlo method [21] to estimate the QoS-
assurance of output deployments, by aggregating the eligible deployments
obtained when varying the QoS of communication links according to the asso-
ciated probability distributions for latency and bandwidth. Figure 3 lists the
pseudocode of FogTorchΠ functioning. First, an empty dictionary D is created
(line 2) to contain key-value pairs 〈Δ, counter〉, where the key (Δ) represents
an eligible deployment and the value (counter) keeps track of how many times
Δ will be generated during the Monte Carlo simulation. Then, at the beginning
of each run of the simulation, a new state Is of the infrastructure is sampled
based on the probability distributions of the QoS of the communication links in
I (line 4).

The function FindDeployments(A, Is, ϑ, δ) (line 5) employs an exhaustive
(backtracking) search [7] to determine the set E of eligible deployments Δ of
A to Is, i.e. deployments of A that meet all hardware, software, IoT, and QoS
requirements in that particular state of the infrastructure. In order to tame the
worst-case exponential complexity of such search step, the current version of
FogTorchΠ features a multi-thread implementation of the for loop of lines 3–7,
which assigns n/w runs to each of the w threads available on the system and
executes them in parallel afterwards [10].

The objective of the Monte Carlo step is to look for eligible deployments in
different underlying network conditions. At the end of each run, the set E of eligi-
ble deployments of A to Is is used to update D. The function UnionUpdate(D,

Optimising QoS-Assurance, Resource Usage 175

E) (line 6) updates D by adding deployments 〈Δ, 1〉 discovered during the last
run (Δ ∈ E \ keys(D)) and by incrementing the counter of those deployments
that had already been found in a previous run (Δ ∈ E ∩ keys(D)).

After the simulation has run for a significantly large number of times
(n ≥ 100, 000), the QoS-assurance of each deployment Δ ∈ keys(D) is obtained
by dividing the counter associated to Δ by n (lines 8–10). Thus, the QoS-
assurance is the percentage of runs a certain deployment Δ was output by Find-
Deployments(A, Is, ϑ, δ). Such percentage offers an estimate on how likely Δ
is to satisfy all QoS constraints of A, against variations in the communication
links as per their historical behaviour. Finally, dictionary D is output (line 11).

Each output deployment Δ also contains information about its Fog resource
consumption, which is computed during the search as the aggregate percentage
averaging RAM and HDD consumed over the set F of all Fog nodes9:

1
2

(∑
γ∈A RAM(γ)∑
f∈F RAM(f)

+

∑
γ∈A HDD(γ)∑
f∈F HDD(f)

)

The next section details the cost model exploited by FogTorchΠ, which per-
mits predicting the monthly deployment cost of output deployments. As for
the resource consumption, FindDeployments(A, Is, ϑ, δ) computes and asso-
ciates each eligible deployment Δ with an estimate of its monthly cost10, which
we detail in the next section.

4 Cost Model

Our cost model [9] extends to Fog computing previous efforts in Cloud VM
cost modelling [20], and includes software costs, and costs typical of the IoT
[39]. With respect to related work, which – to the best of our knowledge – only
exploited linear cost models based on unit cost for different types of hardware
resource, we also consider the possibility of purchasing bundle offers at the IoT,
the Cloud and the Fog layer (i.e., for data, hardware and software).

A hardware offering H, available at any Cloud or Fog node n, can be either
a default VM (Table 1) featuring a fixed monthly price or an on-demand VM,
assembled by selecting any amount of processors (CPU), memory (RAM) and
storage (HDD). By assuming that R = {CPU,RAM,HDD} is the set of
resources considered when assembling on-demand instances, our cost model esti-
mates the monthly cost for a hardware offering H at node n as

p(H,n) =

⎧
⎨
⎩
c(H,n) if H is a default VM∑
ρ∈R

[H.ρ × c(ρ, n)] if H is an on-demand VM

9 FogTorchΠ permits to compute Fog resource consumption also on a specified subset
of Fog nodes F ⊂ F .

10 Cost computation is performed on-the-fly. This is done during the search step, con-
sidering the possibility to rely on the cost prediction as a heuristic to lead backtrack-
ing towards best candidate deployments.

176 A. Brogi et al.

where c(H,n) is the monthly cost of a default VM H at Fog or Cloud node n,
whilst H.ρ indicates the amount of resource ρ ∈ R used by11 the on-demand VM
represented by H, and c(ρ, n) is the unit monthly cost at n for resource ρ.

Analogously, a software offering S at any Cloud or Fog node n can be either
a ready-made bundle or an on-demand subset of the software capabilities offered
by n (each purchasable as a separate item). The monthly cost for S at node n
is estimated as

p(S, n) =

⎧
⎨
⎩
c(S, n) if S is a bundle∑
s∈S

c(s, n) if S is on-demand

where c(S, n) is the price for the software bundle S at node n, and c(s, n) is the
monthly cost of a single software s at n.

Finally, in Sensing-as-a-Service [41] scenarios, a Thing offering T exploiting
an actual Thing t can be made available at a monthly subscription fee (i.e.,
covering a certain amount of data exchanges) or through a pay-per-invocation
mechanism (i.e., per exchanged message) [34]. Hence, the cost for offering T at
Thing t can be estimated as

p(T, t) =

{
c(T, t) if T is subscription based
T.k × c(t) if T is pay-per-invocation

where c(T, t) is the monthly subscription fee for T at t, while T.k is the number
of monthly invocations expected over t and c(t) is the cost per invocation at t
(including Thing exploitation and/or data transfer costs).

In what follows, we assume that Δ is an eligible deployment for an application
A to an infrastructure I, as defined in Sect. 3. In addition, let γ ∈ A be a
component of the considered application A, and let γ.H, γ.Σ and γ.Θ be its
hardware, software and Things requirements, respectively. By summing up all
the presented pricing schemes, the monthly cost for a given deployment Δ can
be first approximated as:

cost(Δ,ϑ, A) =
∑
γ∈A

[
p(γ.H,Δ(γ)) + p(γ.Σ,Δ(γ)) +

∑

r∈γ.Θ

p(r,ϑ(r))
]

This first estimate of the monthly deployment cost, however, does not feature
a way to match application (hardware, software and IoT) requirements to “best”
(Cloud, Fog and IoT) offerings at chosen nodes or Things. Particularly, it may
lead the choice always to on-demand and pay-per-invocation offerings when the
application requirements do not match exactly default or ready-made offerings,
or when a Cloud provider does not offer a particular VM type (e.g., starting its
offerings from medium). This may incur in overestimating monthly deployment
costs.

11 Bounded by the maximum amount purchasable from any chosen Cloud or Fog
provider.

Optimising QoS-Assurance, Resource Usage 177

As an example, consider the infrastructure of Fig. 2 and this hardware
requirements r = {CPU : 1, RAM : 1GB, HDD : 20GB} of a component to be deployed
to Cloud 2. Since no exact matching between the requirement and an offering
at Cloud 2 exists, this first version the current cost model selects an on-demand
instance, and estimates a cost of e3012. However, Cloud 2 also provides a small
instance that can accommodate the component requirements at a (lower) cost
of e25.

Indeed, larger VM types always satisfy smaller hardware requirements, bun-
dled software offerings may satisfy multiple software requirements at a lower
price, and subscription-based Thing offerings can be more or less convenient
depending on the number of invocations on a given Thing. Therefore, some
mechanism must be adopted to choose the “best” offering that can fulfil all soft-
ware, hardware and Thing requirements of an application component. In what
follows, we propose a small refinement to our cost model, necessary to capture
this important aspect.

A requirement-to-offering matching policy pm(r, n) matches hardware or soft-
ware requirements r of a component (r ∈ {γ.H, γ.Σ}) to the estimated monthly
cost of the offering that will support them at Cloud or Fog node n, and a Thing
requirement r ∈ γ.Θ to the estimated monthly cost of the offering that will
support r at Thing t.

Overall, this refinement to our cost model permits estimating the monthly
cost of Δ including a cost-aware matching between application requirements and
infrastructure offerings (for hardware, software and IoT), that are chosen as per
pm. Hence, we get:

cost(Δ,ϑ, A) =
∑
γ∈A

[
pm(γ.H,Δ(γ)) + pm(γ.Σ,Δ(γ)) +

∑

r∈γ.Θ

pm(r,ϑ(r))
]

The cost-aware version of FogTorchΠ, including the described cost model,
exploits a best-fit lowest-cost policy for choosing hardware, software and Thing
offerings. Indeed, it selects the cheapest between the first default VM (from
tiny to xlarge) that can support γ.H at node n and the on-demand offering
built as per γ.H. Similarly, software requirements in γ.Σ are matched with the
cheapest compatible version available at n, and Thing per invocation offer is
compared to monthly subscription so to select the cheapest13 offering possible.
The requirement-to-offering matching policy used in FogTorchΠ can be defined
formally as:

pm(H, n) = min{p(H,n) | H ∈ {default VMs, on-demand VM} ∧ H |= H}

pm(Σ, n) = min{p(S, n) | S ∈ {on-demand, bundle} ∧ S |= Σ}

12 e30 = 1 CPU × e4/core + 1 GB RAM × e6/GB + 20 GB HDD × e1/GB.
13 Other policies are also possible such as, for instance, selecting the largest offering that

can accommodate a component, or always increasing the component’s requirements
by some percentage (e.g., 10%) before selecting the matching.

178 A. Brogi et al.

pm(r, t) = min{p(T, t) | T ∈ {subscription, pay-per-invocation} ∧ T |= r}
where O |= R reads as offering O satisfies requirements R.

It is worth noting that the proposed cost model is general enough to include
both IaaS and PaaS Cloud offerings since it separates the cost of purchasing
virtual instances from the cost of purchasing software. Furthermore, even if we
referred to VMs as the only deployment unit for application components, a
straightforward extension to the model can account for other types of virtual
instances (e.g., containers).

5 Multi-objective Optimisation

Exploiting the cost model of Sect. 4, it is naturally possible to minimise the
obtained estimate for the monthly deployment cost and choose a candidate
application deployment accordingly. However, decision makers in Fog applica-
tion deployment processes (like the system integrators in Sect. 2), have often
to determine a best placement of application components as a trade-off among
various – sometimes orthogonal – requirements and metrics.

As described in Sects. 3 and 4, FogTorchΠ methodology enables to predict
QoS-assurance, Fog resource consumption and monthly cost of eligible appli-
cation deployments, i.e. those meeting application hardware, software and QoS
constraints. Each of the mentioned metrics represents an objective that applica-
tion deployers aim at optimising along with the others. Indeed, we are facing a
multi-objective optimisation (MOO) problem [18].

MOOs are generally defined as

min
Δ

F (Δ) = [f1(Δ), f2(Δ), · · · , fm(Δ)]

subject to : Δ ∈ D

where fi(·) denote a set objective functions and D denote a feasible design space
in which F (·) should be optimised. Usually, as it can be in our Fog application
deployment scenarios, no solution Δ exists that minimises all set objectives at
the same time. In this situations, Pareto optimal solutions are looked for. A
solution is Pareto optimal when it is not possible to improve (at least) one
objective function without making another worst. The set of all Pareto optimal
solutions forms a so-called Pareto frontier.

A common aggregation technique to solve MOOs and to determine the best
trade-off among all set objectives is the linear weighted sum method [35]. Such
strategy allows to convert MOOs into single objective problems by linearly com-
bining their (normalised) objective functions. As we will show over our moti-
vating example in the next section, this permits to determine a best solution
deployment, also accounting for the user preferences specified for some of the
objectives (e.g., the minimum QoS-assurance of 98% and the maximum monthly
cost of e850 required by system administrators) which specify the feasible design

Optimising QoS-Assurance, Resource Usage 179

space D. Last but not least, under the assumptions that functions weights are
positive, the found solution is Pareto optimal.

Therefore, in this work, similarly to [26], given a deployment Δ, we will try
to optimise the objective function

r(Δ) =
∑
fi∈F

ωi · ̂fi(Δ)

where F is the set of m metrics to be optimised, ωi is the weight14 assigned to
each metrics (so that

∑m
i=1 ωi = 1) and ̂fi(Δ) is the normalised value of the

objective function fi(·) for deployment Δ, which – given the set D of candidate
deployments – is computed as:

– ̂fi(Δ) = fi(Δ)−mind∈D{fi(d)}
maxd∈D{fi(d)}−mind∈D{fi(d)} when the fi(Δ) is to be maximised, and

skip
– ̂fi(Δ) = maxd∈D{fi(d)}−fi(Δ)

maxd∈D{fi(d)}−mind∈D{fi(d)} when fi(Δ) is to be minimised.

Since, in this case, we assumed that the higher the value of r(Δ) the better
is deployment Δ, we will choose Δ such that r(Δ) = maxΔ∈D{r(Δ)}.

Considering our problem, deployers will most probably aim at maximis-
ing QoS-assurance, whilst minimising monthly deployment costs (in which we
include the cost for the 4G connection at Fog 2 when needed). However, different
system integrators may want to either maximise or minimise the Fog resource
consumption of their deployment, i.e. they may look for Fog-ward or for Cloud-
ward deployments. Hence, in the next section, we will consider both situations
and compare the results obtained when trying to maximise Fog resource usage
(i.e., Fog-ward deployments) to those obtained when trying to minimise it (i.e.,
Cloud-ward deployments).

6 Motivating Example (Continued)

In this section, we discuss the results of running the cost-aware version of
FogTorchΠ over the smart building example of Sect. 2. We rely on the linear
weighted sum method presented in Sect. 5 to answer all questions coming from
the system integrators.

FogTorchΠ outputs the eligible deployments (as per Sect. 3) along with their
predicted QoS-assurance, Fog resource consumption and monthly deployment
cost (as per Sect. 4). Table 3 lists all eligible deployments output15 by FogTorchΠ,
entries indicated with a ∗ are only output when 4G is available at Fog 2.

Figure 4 shows a 3D-plot of the same output deployments along the predicted
metrics (i.e., the objective functions) that FogTorchΠ can estimate for them.
14 For the sake of simplicity, we assume here ωi = 1

|F | = 1
m

, which can be tuned
differently depending on the needs of the application operator.

15 Results and Python code to generate 3D plots as in Figs. 4, 5 and 6 are
available at: https://github.com/di-unipi-socc/FogTorchPI/tree/costmodel/results/
SMARTBUILDING18/.

https://github.com/di-unipi-socc/FogTorchPI/tree/costmodel/results/SMARTBUILDING18/
https://github.com/di-unipi-socc/FogTorchPI/tree/costmodel/results/SMARTBUILDING18/

180 A. Brogi et al.

Table 3. Eligible deployments generated by FogTorchΠ for Q1 and Q2 as in [9].

Dep. ID IoTController DataStorage Dashboard

Δ1 Fog 2 Fog 3 Cloud 2

Δ2 Fog 2 Fog 3 Cloud 1

Δ3 Fog 3 Fog 3 Cloud 1

Δ4 Fog 2 Fog 3 Fog 1

Δ5 Fog 1 Fog 3 Cloud 1

Δ6 Fog 3 Fog 3 Cloud 2

Δ7 Fog 3 Fog 3 Fog 2

Δ8 Fog 3 Fog 3 Fog 1

Δ9 Fog 1 Fog 3 Cloud 2

Δ10 Fog 1 Fog 3 Fog 2

Δ11 Fog 1 Fog 3 Fog 1

Δ12∗ Fog 2 Cloud 2 Fog 1

Δ13∗ Fog 2 Cloud 2 Cloud 1

Δ14∗ Fog 2 Cloud 2 Cloud 2

Δ15∗ Fog 2 Cloud 1 Cloud 2

Δ16∗ Fog 2 Cloud 1 Cloud 1

Δ17∗ Fog 2 Cloud 1 Fog 1

Before continuing, we recall the questions posed by the system integrators in
Sect. 2:

Q1(a) — Is there any eligible deployment of the application reaching the needed
Things at Fog 1 and Fog 3 , and meeting the financial (at most e850 per month)
and QoS-assurance (at least 98% of the time) constraints mentioned above?
Q1(b) — Which eligible deployment represent the most balanced trade-off opti-
mising QoS-assurance, Fog resource consumption and monthly deployment cost
of the smart building application?
Q2 — Does the upgrade from 3G to 4G at Fog 2 make it possible to determine
a deployment with better trade-off on QoS-assurance, Fog resource consumption
and monthly deployment cost?

Figure 5 shows the feasible space for questions Q1(a) and Q1(b), as defined
by the QoS-assurance and budget constraints declared by the system integrators.
Only Δ2, Δ3, Δ4, Δ7 and Δ10 meet those constraints. Analogously, Fig. 6 shows
the feasible space for Q2, obtained when upgrading Fog 2 to 4G, and also includes
Δ16 as feasible.

The answer to question Q1(a) is positive. Indeed, FogTorchΠ outputs eleven
deployments (Δ1 — Δ11 in Table 3) which are in the feasible solution space,
determined as per the algorithms of Sect. 3.

Optimising QoS-Assurance, Resource Usage 181

Fig. 4. FogTorchΠ output deployments and predicted metrics.

Fig. 5. Feasible space for Q1(a)–(b) as in [9]. Colormap refers to Fog resource
consumption.

182 A. Brogi et al.

Fig. 6. Feasible space for Q2 as in [9]. Colormap refers to Fog resource consumption.

It is worth recalling that we consider remote access to IoT devices connected
to Fog nodes from other Cloud and Fog nodes. Indeed, some output deployments
map components to nodes that do not directly connect to all the bound Things.
As an example, in the case of Δ1, IoTController is deployed to Fog 2 but
the required Things (fire sensor 1, light control 1, thermostate 1, video camera 1,
weather station 3) connected to Fog 1 and Fog 3, which are still reachable with
suitable network QoS (viz., latency and bandwidth).

To answer questions Q1(b) and Q2 we employ the multi-criteria optimisa-
tion methodology described before. Table 4 shows the values of the single objec-
tives, and of the aggregate Fog-ward (i.e., rF (Δ)) and Cloud-ward (i.e., rC(Δ))
objective functions, which the system integrators are trying to optimise, when
deploying the smart building application.

In the Fog-ward case, when looking for the best trade-off among QoS-
assurance, resource consumption and cost, the most promising deployment is
always Δ7, i.e., the one with the highest value for rF (Δ). In the Cloud-ward
case, when the upgrade to 4G is not considered, Δ7 still represents the best
candidate deployment. These considerations all together answer Q1(b).

The 4G upgrade at Fog 2, which makes it possible to enact also Δ16, is
not worth the investment when looking for Fog-ward deployments due to the
much lower score achieved in the ranking with respect to Δ7. Conversely, when
upgrading to 4G in the Cloud-ward case, despite investing e20 more every
month, Δ16 is the best option (actually leading to e50 of monthly savings with
respect to Δ7). These considerations all together answer Q2.

Optimising QoS-Assurance, Resource Usage 183

Table 4. Ranking of eligible deployments.

Dep. ID IoTController DataStorage Dashboard QoS Cost Resources rF (Δ) rC(Δ)

Δ2 Fog 2 Fog 3 Cloud 1 98.6% e798.7 48.4% 0.42 0.22

Δ3 Fog 3 Fog 3 Cloud 1 100% e829.7 48.4% 0.65 0.45

Δ4 Fog 2 Fog 3 Fog 1 100% e844.7 59.2% 0.67 0.33

Δ7 Fog 3 Fog 3 Fog 2 100% e801.7 59.2% 0.81 0.48

Δ10 Fog 1 Fog 3 Fog 2 100% e809.7 59.2% 0.79 0.45

Δ16∗ Fog 2 Cloud 1 Cloud 1 98.6% e727.7 (+20) 5.4% 0.33 0.67

In [9], Δ2 and Δ16 were chosen by the system integrators, in the 3G and
4G scenario respectively. However, their goal in [9] was to minimise deployment
costs and Fog resource consumption (going Cloud-ward), only guaranteeing QoS-
assurance above 98% (without trying to maximise it). Here, we are instead look-
ing for the most balanced trade-off among the predicted metrics (which are all
weighted equally16) and Δ7 clearly constitutes a better compromise towards this
end, guaranteeing 100% QoS-assurance and costing only a few euro more than
Δ2, despite using 10% more Fog resources.

7 Related Work

Few approaches have been proposed so far to specifically model Fog infrastruc-
tures and applications, as well as to determine and compare eligible deployments
for an application to a Fog infrastructure under different metrics. On the other
hand, the problem of deciding how to deploy multi-component applications has
been extensively studied in Cloud scenarios. Projects like SeaClouds [12], Aeo-
lus [19] or Cloud-4SOA [14], for instance, proposed model-driven optimised plan-
ning solutions to deploy software applications across different (IaaS or PaaS)
Clouds. [32] proposed to use OASIS TOSCA [13] to model IoT applications in
Cloud+IoT scenarios. Also, solutions to automatically provision and configure
software components in Cloud (or multi-Cloud) scenarios are currently used by
the DevOps community to automate application deployment or to lead deploy-
ment design choices (e.g., Puppet [2] and Chef [1]). However, only few efforts
in Cloud computing considered non-functional requirements by-design [15,36] or
uncertainty of execution (as in Fog nodes) and security risks among interactive
and interdependent components [28,48].

Fog introduces new problems with respect to the Cloud paradigm, mainly
due to its pervasive geo-distribution and heterogeneity, need for QoS-awareness,
dynamicity and support to interactions with the IoT, that were not taken into
account by previous works (as reported in [3,44,47]).

16 By tuning ωi differently and by considering the Cloud-ward case, we can obtain the
same results of [9], e.g. assigning weight 0.50 to both resource consumption and cost,
and 0.0 to QoS-assurance Δ2 is ranked 0.34 whilst Δ7 scores 0.22.

184 A. Brogi et al.

[42] was among the first attempts to evaluate service latency and energy
consumption of the new Fog paradigm applied to the IoT, as compared to
traditional Cloud scenarios. The model of [42], however, deals only with the
behaviour of software already deployed over Fog infrastructures and simulates it
mathematically.

Also investigating this new lines, [27] proposed a Fog-to-Cloud search algo-
rithm as a first way to determine an eligible deployment of (multi-component)
DAG applications to tree-like Fog infrastructures. Their placement algorithm
proceeds Edge-ward, i.e. it attempts the placement of components Fog-to-Cloud
by considering hardware capacity only. An open-source simulator – iFogSim –
has been released to test the proposed policy against Cloud-only deployments.
Building on top of iFogSim, [33] refines the Edge-ward algorithm to guarantee
the application service delivery deadlines and to optimize Fog resource exploita-
tion. Limiting their work to linear application graphs and tree-like infrastructure
topologies, [46] used iFogSim to implement an algorithm for optimal online place-
ment of application components, with respect to load balancing. An approximate
extension handling tree-like application was also proposed. Recently, exploiting
iFogSim, [25] proposed a distributed search strategy to find the best service
placement in the Fog, which minimises the distance between the clients and the
most requested services, based on request rates and available free resources. Their
results showed a substantial improvement on network usage and service latency
for the most frequently called services. [29] proposed a (linearithmic) heuristic
algorithm that attempts deployments prioritising placement of smaller applica-
tions to devices with less free resources. Along the same line, [43] proposed an
Edge-ward linearithmic algorithm that assigns application components to the
node with the lowest capacity that can satisfy all application requirements.

Cost is an important parameter in choosing an eligible deployment, yet pric-
ing models for the Fog are still to be developed. In the case of Cloud scenarios,
pricing models are well established (e.g., [20,39] and references therein) yet they
do not consider costs generated by the usage of IoT devices. Cloud pricing models
are generally divided into two types, pay per use scheme and subscription-based.
For both types, the total cost of deployment is calculated based on user require-
ments (e.g., the number of CPU cores, VM types, time duration, type of instance
(reserved or pre-emptible). Since multiple offers among cloud providers can sat-
isfy user needs, a cloud broker can be needed to choose a best VM instance(s)
based upon the pricing model [20]. In the case of IoT, the providers normally pro-
cess data coming from the IoT devices and sell the processed information as value
added service to the users. IoT providers can sometime federate their services
and create new offers for the end-users [39]. Depending upon data demand end-
users can estimate the total cost of using IoT services by comparing pay-per-use
and subscription-based offers. A cost model that considers various parameters
(e.g., the type and number of sensors, number of data request and uptime of
VM) to estimate the cost of running an application for IoT+Cloud scenario over
a certain period of time was proposed in [34]. In Fog scenario, however, there is

Optimising QoS-Assurance, Resource Usage 185

a need to compute IoT costs at a finer level, also accounting for data-transfer
costs (i.e., event-based).

Trade-off analysis is needed to allow application deployers to identify the best
candidate deployment and prioritise some metrics over the rest. The principles
of Pareto optimality are widely used in this regard [18]. Such optimization has
been applied in the cloud to optimize resource utilization and Virtual machine
placement [24,50]. It is also employed in Fog scenario to address other challenges
[4,30,38]. For instance, [30] used multi-objective optimization to extend iFogSim
[27] to support the automated gateways selection and fog devices clustering.
[4,38] applied the optimization principle for virtual machine (VM) placement
and resource utilization on fog nodes to satisfy the application requirement. To
summarise, most of the surveyed approaches focussed on one among Cloud, Fog
or IoT, or mainly considered linear cost models based on unit cost for different
types of hardware resource. Our attempt is, to the best of our knowledge, the
first to model costs in the Fog scenario that extends Cloud pricing schemes to
the Fog layer, integrates them with costs of IoT deployments and at the same
time enable the trade-off analysis between different metrics.

Inspired by our work on FogTorchΠ methodologies [7,8,10], Xia et al. [49] pro-
posed a backtracking solution to minimise the average response time of deployed
IoT applications. Two new heuristics were devised. The first one sorts the nodes
considered for deploying each component in ascending order with respect to the
(average) latency between each node and the IoT devices required by the com-
ponent. The second one considers a component that caused backtracking as the
first one to be mapped in the next search step. Despite discussing improved
results on latency with respect to exhaustive backtracking and first-fit strate-
gies, no prototype implementations were released. Finally, FogTorchΠ was also
modularly extended by De Maio et al. to simulate mobile task offloading in Edge
computing scenarios [17].

8 Concluding Remarks

In this paper, we extended the work presented in [9] by illustrating how the
proposed cost model for Fog application deployments can be used in a multi-
objective optimisation framework to determine deployments that achieve a
best trade-off among predicted QoS-assurance, Fog resource consumption and
monthly deployment cost.

Indeed, finding a good compromise among those (often orthogonal) objectives
is not a trivial task to be accomplished without actual support or, worst, by
trial-and-error. By means of a lifelike motivating example, we have shown how
our prototype, FogTorchΠ, can help (multi-component) application deployers to
determine such optimal trade-off according to their preferences. The deployment
resulting from the multi-objective optimisation are clearly QoS- (i.e., accounting
for variations in the QoS of communication links), context- (i.e., exploiting the
contextually available resources), and cost-aware (i.e., considering Cloud, Fog
and IoT related costs).

186 A. Brogi et al.

We envision the possibility of exploiting such optimisation methodology to
evaluate, at design time, the feasibility of different application deployments,
whilst taming the complexity, scale and intrinsic heterogeneity of Fog infrastruc-
tures. Furthemore, new businesses coming to market can use tools like FogTorchΠ
not only to decide on where to deploy their application components but also to
design their SLAs and billing schemes for the services they will offer.

We see three main directions for future work:

– since security represents a concern that should be addressed by-design at all
architectural levels of Fog computing [40], we aim at devising a novel method-
ology to perform quantitative assessments of the security level of Fog applica-
tion deployments and to show how it can synergically work with FogTorchΠ,

– by approximating the estimate of the proposed objectives (in particular of the
QoS-assurance) and by envisioning the possibility for application components
to be deployed in different flavours (like in Osmotic Computing [45]), we aim
at exploiting other optimisation frameworks such as bio-inspired or swarm
intelligence techniques, and

– finally, to assess our predictive analyses in support of Fog application deploy-
ment we aim at using them in available simulation environments for the man-
agement of Fog applications (e.g., [23,27,31] and, if possible, in experimental
testbed settings (e.g., using as a starting point the Fog application of [11]).

References

1. Opscode. Chef. http://www.opscode.com/chef/
2. Puppetlabs. Puppet. http://puppetlabs.com
3. Arcangeli, J.P., Boujbel, R., Leriche, S.: Automatic deployment of distributed soft-

ware systems: definitions and state of the art. J. Syst. Softw. 103, 198–218 (2015)
4. Aryal, R.G., Altmann, J.: Dynamic application deployment in federations of

clouds and edge resources using a multiobjective optimization AI algorithm. In:
Third International Conference on Fog and Mobile Edge Computing, FMEC 2018,
Barcelona, Spain, 23–26 April 2018, pp. 147–154 (2018). https://doi.org/10.1109/
FMEC.2018.8364057

5. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for
internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and
Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–
186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4 7

6. Breitbart, Y., Chan, C.Y., Garofalakis, M., Rastogi, R., Silberschatz, A.: Effi-
ciently monitoring bandwidth and latency in IP networks. In: Proceedings IEEE
INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 2, pp. 933–942. IEEE (2001)

7. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4(5), 1185–1192 (2017). https://doi.org/10.1109/JIOT.
2017.2701408

8. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, prob-
ably. In: Rana, O., Buyya, R., Anjum, A. (eds.) Proceedings of 1st IEEE Inter-
national Conference on Fog and Edge Computing (ICFEC), Madrid, pp. 105–114,
May 2017. https://doi.org/10.1109/ICFEC.2017.8

http://www.opscode.com/chef/
http://puppetlabs.com
https://doi.org/10.1109/FMEC.2018.8364057
https://doi.org/10.1109/FMEC.2018.8364057
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/ICFEC.2017.8

Optimising QoS-Assurance, Resource Usage 187

9. Brogi, A., Forti, S., Ibrahim, A.: Deploying Fog applications: how much does it cost,
by the way? In: Proceedings of the 8th International Conference on Cloud Com-
puting and Services Science - vol. 1: CLOSER, pp. 68–77. INSTICC, SciTePress
(2018). https://doi.org/10.5220/0006676100680077

10. Brogi, A., Forti, S., Ibrahim, A.: Predictive analysis to support fog application
deployment. In: Buyya, R., Srirama, S.N. (eds.) Fog and Edge Computing: Prin-
ciples and Paradigms. Wiley, Hoboken (2018)

11. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: an active learning
lab with fog computing. In: 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC), pp. 79–86. IEEE (2018)

12. Brogi, A., et al.: SeaClouds: a European project on seamless management of multi-
cloud applications. ACM SIGSOFT SEN 39(1), 1–4 (2014)

13. Brogi, A., Soldani, J., Wang, P.W.: TOSCA in a nutshell: promises and perspec-
tives. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS,
vol. 8745, pp. 171–186. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44879-3 13

14. Corradi, A., Foschini, L., Pernafini, A., Bosi, F., Laudizio, V., Seralessandri, M.:
Cloud PaaS brokering in action: the Cloud4SOA management infrastructure. In:
VTC 2015, pp. 1–7 (2015)

15. Cucinotta, T., Anastasi, G.F.: A heuristic for optimum allocation of real-time
service workflows. In: 2011 IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 1–4. IEEE (2011)

16. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize
its potential. Computer 49(8), 112–116 (2016)

17. De Maio, V., Brandic, I.: First Hop Mobile Offloading of DAG Computations (2018,
in press)

18. Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search
Methodologies. Springer, Boston, MA (2014). https://doi.org/10.1007/978-1-4614-
6940-7 15

19. Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.:
Automatic deployment of services in the cloud with aeolus blender. In: Barros, A.,
Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp.
397–411. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-
0 28

20. Dı́az, J.L., Entrialgo, J., Garćıa, M., Garćıa, J., Garćıa, D.F.: Optimal allocation
of virtual machines in multi-cloud environments with reserved and on-demand
pricing. Future Gener. Comput. Syst. 71, 129–144 (2017)

21. Dunn, W.L., Shultis, J.K.: Exploring Monte Carlo Methods. Elsevier, Amsterdam
(2011)

22. Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P., Lynn, T.: A survey of
cloud monitoring tools: taxonomy, capabilities and objectives. J. Parallel Distrib.
Comput. 74(10), 2918–2933 (2014)

23. Forti, S., Ibrahim, A., Brogi, A.: Mimicking FogDirector application management.
Comput. Sci. Res. Dev. 34(2–3), 151–161 (2018)

24. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci.
79(8), 1230–1242 (2013)

25. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement pol-
icy for performance optimization in fog computing. J. Ambient Intell. Humanized
Comput. 10(6), 2435–2452 (2019). https://doi.org/10.1007/s12652-018-0914-0

https://doi.org/10.5220/0006676100680077
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-3-662-48616-0_28
https://doi.org/10.1007/978-3-662-48616-0_28
https://doi.org/10.1007/s12652-018-0914-0

188 A. Brogi et al.

26. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container orchestration: a
case study in multi-cloud microservices-based applications. J. Supercomput. 74(7),
2956–2983 (2018)

27. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling
and simulation of resource management techniques in internet of things, edge and
fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017). https://
doi.org/10.1002/spe.2509

28. Haithem, M., Mokhtar, S., Jaber, K.: Security-aware SaaS placement using swarm
intelligence. J. Softw. Evol. Process 30(8), e1932 (2018). https://doi.org/10.1002/
smr.1932. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1932

29. Hong, H.J., Tsai, P.H., Hsu, C.H.: Dynamic module deployment in a fog computing
platform. In: 2016 18th Asia-Pacific Network Operations and Management Sym-
posium (APNOMS), pp. 1–6, October 2016. https://doi.org/10.1109/APNOMS.
2016.7737202

30. Kimovski, D., Ijaz, H., Surabh, N., Prodan, R.: An Adaptive Nature-inspired Fog
Architecture. CoRR abs/1803.03444 (2018)

31. Lera, I., Guerrero, C.: YAFS - Yet Another Fog Simulator (for python). https://
yafs.readthedocs.io/en/latest/

32. Li, F., Vögler, M., Claeßens, M., Dustdar, S.: Towards automated IoT application
deployment by a cloud-based approach. In: SOCA 2013, pp. 61–68 (2013)

33. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application mod-
ule management for fog computing environments. ACM Trans. Internet Technol.
(TOIT) 19(1), 9 (2018)

34. Markus, A., Kertesz, A., Kecskemeti, G.: Cost-aware IoT extension of
DISSECT-CF. Future Internet 9(3), 47 (2017). https://doi.org/10.3390/fi9030047.
http://www.mdpi.com/1999-5903/9/3/47

35. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimiza-
tion: new insights. Struct. Multi. Optim. 41(6), 853–862 (2010)

36. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-Clouds: Managing Performance Inter-
ference Effects for QoS-Aware Clouds. Association for Computing Machinery, Inc.,
April 2010

37. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc., Sebastopol (2015)

38. Nguyen, D.T., Le, L.B., Bhargava, V.: Price-based resource allocation for edge
computing: a market equilibrium approach. CoRR abs/1805.02982 (2018)

39. Niyato, D., Hoang, D.T., Luong, N.C., Wang, P., Kim, D.I., Han, Z.: Smart data
pricing models for the internet of things: a bundling strategy approach. IEEE Netw.
30(2), 18–25 (2016)

40. OpenFog: OpenFog Reference Architecture (2016)
41. Perera, C.: Sensing as a Service for Internet of Things: A Roadmap (2017).

Lulu.com
42. Sarkar, S., Misra, S.: Theoretical modelling of fog computing: a green computing

paradigm to support IoT applications. IET Netw. 5(2), 23–29 (2016)
43. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in

fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 1222–1228, May 2017. https://doi.
org/10.23919/INM.2017.7987464

44. Varshney, P., Simmhan, Y.: Demystifying fog computing: characterizing architec-
tures, applications and abstractions. In: 2017 IEEE 1st International Conference
on Fog and Edge Computing (ICFEC), pp. 115–124, May 2017. https://doi.org/
10.1109/ICFEC.2017.20

https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/smr.1932
https://doi.org/10.1002/smr.1932
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1932
https://doi.org/10.1109/APNOMS.2016.7737202
https://doi.org/10.1109/APNOMS.2016.7737202
https://yafs.readthedocs.io/en/latest/
https://yafs.readthedocs.io/en/latest/
https://doi.org/10.3390/fi9030047
http://www.mdpi.com/1999-5903/9/3/47
http://lulu.com/
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/ICFEC.2017.20
https://doi.org/10.1109/ICFEC.2017.20

Optimising QoS-Assurance, Resource Usage 189

45. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

46. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5, 2514–2533 (2017). https://
doi.org/10.1109/ACCESS.2017.2665971

47. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Comput. 21(2), 16–24 (2017). https://
doi.org/10.1109/MIC.2017.36

48. Wen, Z., Ca�la, J., Watson, P., Romanovsky, A.: Cost effective, reliable and secure
workflow deployment over federated clouds. IEEE Trans. Serv. Comput. 10(6),
929–941 (2017)

49. Xia, Y., Etchevers, X., Letondeur, L., Coupaye, T., Desprez, F.: Combining hard-
ware nodes and software components ordering-based heuristics for optimizing the
placement of distributed IoT applications in the fog. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pp. 751–760. ACM (2018)

50. Xu, J., Fortes, J.A.: Multi-objective virtual machine placement in virtualized data
center environments. In: IEEE/ACM GreenCom and CPSCom, pp. 179–188. IEEE
(2010)

https://doi.org/10.1109/ACCESS.2017.2665971
https://doi.org/10.1109/ACCESS.2017.2665971
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36

Right Scaling for Right Pricing:
A Case Study on Total Cost of Ownership

Measurement for Cloud Migration

Pierangelo Rosati1(&), Frank Fowley1, Claus Pahl2, Davide Taibi3,
and Theo Lynn1

1 Irish Centre for Cloud Computing and Commerce,
Dublin City University, Dublin, Ireland

{pierangelo.rosati,frank.fowley,theo.lynn}@dcu.ie
2 Faculty of Computer Science, Free University of Bozen-Bolzano,

Bolzano, Italy
claus.pahl@unibz.it

3 Laboratory of Pervasive Computing, Tampere University of Technology,
Tampere, Finland

davide.taibi@tut.fi

Abstract. Cloud computing promises traditional enterprises and independent
software vendors a myriad of advantages over on-premise installations including
cost, operational and organizational efficiencies. The decision to migrate soft-
ware configured for on-premise delivery to the cloud requires careful technical
consideration and planning. In this chapter, we discuss the impact of right-
scaling on the cost modelling for migration decision making and price setting of
software for commercial resale. An integrated process is presented for mea-
suring total cost of ownership, taking in to account IaaS/PaaS resource con-
sumption based on forecast SaaS usage levels. The process is illustrated with a
real world case study.

Keywords: Cloud migration � Total cost of ownership � Pricing �
Architecture migration � Software producer

1 Introduction

Cloud computing is increasingly the computing paradigm of choice for enterprises
worldwide. Cloud computing is particularly attractive from a business perspective since
it requires lower upfront capital expenditure, and improves operational and organiza-
tional efficiencies and agility [4, 9, 39, 45]. Similarly, from a technical perspective, the
benefits of the cloud are well documented including on-demand and self-service
capabilities, resource pooling and rapid elasticity [4]. However, the success of cloud
computing investments highly depends on accurate and efficient decision making; the
implications of investment decisions need to be quantifiable to allow a comparison of
alternatives, both from the consumer’s and from the vendor’s perspective [27].

Cloud computing adoption may generate significant challenges particularly for
software producers (SPs) offering a Software-as-a-Service (SaaS) model. SPs typically

© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 190–214, 2019.
https://doi.org/10.1007/978-3-030-29193-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_10

migrate their software to a third-party platform (Infrastructure-as-a-Service – IaaS – or
Platform-as-a-Service – PaaS) and their customers access it from this new multi-tenant
architecture. In a cloud environment both SPs and their customers are typically charged
on a pay-per-use or subscription basis. Furthermore, SPs do not have control of cus-
tomers’ service usage; in such a context, it is crucial for SPs to identify the right
architectural configuration to meet service level agreement (SLA) obligations at the
minimum cost. Being charged on a per-use basis also represents a radical change in the
producers’ cost and revenue models and introduces additional uncertainty in cash flow
forecasting [15]. Furthermore, the actual cost of the migration process might be sub-
stantial for SPs and for their legacy customers, while nonexistent for cloud-native SPs.
According to the Cloud Native Computing Foundation, modern cloud-native systems
have the following properties:

• Container-packaged;
• Dynamically managed by a central orchestrating process;
• Microservice-oriented.

Cloud-native architectures have technical advantages in terms of isolation and
reusability, thus reducing cost for maintenance and operations. PaaS clouds with their
recent support for containerized micro-service architectures are the ideal environments
to create cloud-native systems. While the service and payment/revenue model are the
same in both migrated and native scenarios, the total cost of ownership (TCO) is
substantially different due to the migration costs. Rationally, SPs should offer their
software at a higher price to compensate for their migration costs, however this may not
always be competitively feasible or desirable.

While architectural challenges in migration have been addressed [7, 33, 49, 57, 58],
research exploring the link between cloud architecture and TCO, and therefore on
pricing cloud services from an SP perspective is lacking. The main objective of this
chapter is to extend our previous work [53] exploring the impact of two cloud archi-
tectural options, IaaS (basic virtualization) and a range of PaaS-related technology
options on SPs’ operating costs. We present an initial process for architecture-related
cost estimation and informing pricing strategy.

This chapter is organized as follows. Section 2 reviews related work and presents
the cloud migration context. Section 3 introduces the overall process. Section 4 focuses
on the I/PaaS-based architecture cost calculation. In Sect. 5, we validate and illustrate
our contribution using a case study. Section 6 presents different pricing structures
available for SPs. The chapter concludes with a summary of contributions and sug-
gestions for future research.

2 Architecture Migration Context

2.1 Context and Related Work

Cloud computing has attracted significant attention from the research community.
Despite this, most of the research focuses on technical aspects with a limited number of
studies examining the business implications of cloud adoption [36, 65]. This is

Right Scaling for Right Pricing 191

somewhat surprising given the significant changes that cloud computing can generate
in organizations’ processes and business model, particularly for SPs [16]. Even more
surprising is the lack of studies linking the value generated by cloud investments to the
technical aspects of the services adopted or provided. This chapter aims to fill this gap
by focusing on the impact of architectural decisions on the TCO of cloud services that
SPs consume (i.e. I/PaaS) in order to provide SaaS services to their customers.

Traditionally, enterprise software was licensed under a packaged, perpetual or
server license, and customers were typically required to purchase technical support and
maintenance packages for a predefined period [21]. The cost of software development,
production and marketing was offset against the license fees, typically paid upfront by
the customer. The introduction of cloud computing accelerated the adoption of two new
licensing models: subscription and utility-based licensing. The former involves an
enterprise customer purchasing a license for a pre-defined time period whereas the
latter involves charging the customer on a pay-per-use basis. Key advantages for the
enterprise customer include (i) less upfront expenditure in licensing and (ii) no addi-
tional fees for fixes, upgrades or feature enhancements [21]. The shift from a product
orientation to a service orientation is a significant disruption for SPs, not only from a
strategic perspective but also from a cost- and revenue- recognition perspective, and
requires in many instances a significant business model readjustment [14]. For
example, cost and revenues are spread over time and producers do not receive addi-
tional fees for upgrades. Obviously, the impact of such discontinuities and shifts are not
experienced by cloud-native SPs such as start-ups. Indeed, Giardino et al. [23] observe
that cloud computing is particularly beneficial for start-up companies since it signifi-
cantly lowers the initial investment in IT infrastructure.

It is now generally accepted that cloud computing generates a wide range of
benefits and estimating the overall value generated by these type of investments is
receiving growing attention from both consumers and providers [52]. Academic
research has proposed a number of different approaches to estimate the business value
of information technology (IT) [52]. The need for robust methodologies to assess the
value generated by IT investments is driven by a trend towards value-based manage-
ment, a managerial approach finalized to maximize shareholder value [5]. Value
assessment techniques can be both ex-ante and ex-post [51], but it is clear that a proper
ex-ante evaluation can better inform investment decision-making therefore potentially
maximizing the return on investment or avoiding losses.

Farbey et al. [20] and Farbey and Finkelstein [19] classify value assessment
methodologies in two categories:

• Quantitative/comparative methods: these typically leverage accounting method-
ologies to translate costs and benefits of IT investments in economic terms therefore
allowing comparison between alternative investments. As such, these methods are
also referred to as “objective” methods;

• Qualitative/exploratory methods: these mostly focus on the opportunities and
threats that an IT investment may bring to some stakeholders. The aim in this case is
to obtain an agreement over objectives through a process of exploration. These
methods are also referred to as “subjective” methods given the high degree of
subjectivity they may include.

192 P. Rosati et al.

Tables 1 and 2 provides a summary of different methodologies for each category as
proposed by Farbey et al. [20] and Farbey and Finkelstein [19].

For the purpose of this chapter, we focus on quantitative methods since these are
the most used in practice. Among them, TCO, CBA and ROI are the most widely
adopted while others like ROM, Boundary Values, Spending Ratios and Information
Economics are not frequently adopted due to a perceived lower level of analysis [51] or
subjectivity [63].

Despite the wide range of benefits that the adoption of cloud computing may
generate for organizations, cost savings, rather than strategic return-on-investment, still
represents a major factor in cloud adoption [8, 11] and TCO is de facto the most
adopted costing model in both research and practice [52, 56]. TCO has been defined as

Table 1. Quantitative/Comparative methods (adapted from [51]).

Method Detail Process management Data Features

Total cost of
ownership
(TCO)

Very
detailed

Accounting and costing
staff

Cost accounting
and work study
method

Focus on cost savings

Return on
investment
(ROI)

High Calculation by
professionals; cash flows
as the aggregation of
tangible cost and
benefits

Cost
accounting;
direct and
objective costs

Future uncertainty is
considered; middle to
high cost of
implementation

Cost-benefit
analysis

High Carried out by experts;
money values for
decision makers by
incorporating surrogate
measures

Cost and benefit
elements
expressed in
monetary value
form

Cost-effective solutions;
includes “external” and
“soft” costs and benefits;
numbers more important
than process; high
implementation cost

Return on
management
(ROM)

Low Calculation by
professionals;
manipulates accounting
figures to estimate the
value added by
management

Accounting
totals (e.g. total
revenue, total
labor cost)

Ex-post only; no cause
and effect relations can
be postulated; focus on
management activities;
low implementation cost

Boundary
values and
spending
ratios

Low Top-down approach;
senior stakeholders
involved; calculation by
professionals

Ratios of
aggregated
numbers (e.g.
IT expense per
employee)

Supporting
benchmarking analysis;
low implementation cost

Information
economics
(IE)

Very
detailed

Many stakeholders
involved; detailed
analysis required

Ranking and
rating of
objectives, both
tangible and
intangible

All options are
comprehensively dealt
with; complex to
implement

Right Scaling for Right Pricing 193

“a procedure that provides the means for determining the total economic value of an
investment, including the initial capital expenditures (CapEx) and the operational
expenditures (OpEx)” [22]. The metering nature of cloud computing provides the
perfect basis for extremely low-granularity TCO analysis and the opportunity to
reimagine how the business value of IT is measured in both research and practice [52].
Despite its apparently simplicity and the availability of different online tools offered by
cloud service providers, ex-ante TCO estimation is not straightforward due to the
presence of long-term and hidden costs of operating in the cloud which tend to be
ignored or underestimated [32]. TCO estimation frameworks used for traditional

Table 2. Qualitative/Exploratory methods (adapted from [51]).

Method Detail Process
management

Data Features

Multi-
Objective,
Multi-Criteria
(MOMC)

Any
level

Top-down;
consensus
seeking; all
stakeholders
involved; best
choice is
computed

Priorities are
stated by
stakeholders;
subjective
evaluations of
intangibles

Ex-ante; good for
extracting software
requirements;
process is more
important than
numbers; selection
of (a) preferred set
of design goals,
(b) best design
alternative; high
implementation
cost

Value
analysis

Any
level;
usually
very
detailed

Iterative process;
senior to middle
management
involved;
variables
identified with
Delphi method

Indirect;
subjective
evaluations of
intangibles;
utility scores

Ex-ante; iterative
and incremental
process; focus
more on added
value than cost
saving; process is
more important
than numbers; high
implementation
cost

Critical
success
factors
(CSFs)

Short
list of
factors

Senior
management
define CSFs

Interview or
self-expression;
quick process
but requires
senior
management
time

Ex-ante; highly
selective; high
implementation
cost

Experimental
methods

From
detailed
to
abstract

Management
scientists working
with stakeholders

Exploratory;
uncertainty
reduction

Ex-ante

194 P. Rosati et al.

on-premise infrastructure need to be adapted to the cloud world to reflect different cost
drivers [46, 62]. Rosati et al. [52] further highlight significant methodological flaws in
current TCO estimation frameworks which tend to focus merely on operational cost
and usually consider a small number of cost drivers.

From an SP perspective, this represents a major concern. Being both cloud con-
sumers and cloud providers, properly mapping the costs of the cloud represents the
basis for adequate and effective pricing strategies. SPs price their SaaS services in
many ways [12]. Even though monthly or annual subscription fees is the most common
pricing structure, other structures include, for example, transaction based revenue (i.e.
customers are charged based on the number of transactions they perform) and premium
based revenue (users are charged for premium versions besides the free versions) [13,
16, 48]. Irrespective of the pricing structure an SP adopts, a reliable estimate of the
infrastructure costs it has to sustain to provide the service is required in order to ensure
the existence of adequate margins [37]. This process has become more and more
important for SPs due to increasing competition in the cloud environment, where SPs
are sometimes forced to deliver services whose costs exceed revenues [17].

Strebel and Stage [56] applied a TCO-based decision model for business software
application deployment while running simulations on hybrid cloud environments. They
found that the cost-effectiveness of cloud services, from a user perspective, is positively
related to the cloud-readiness of business applications and processes. The decision
model they proposed was limited to a comparison of operational IT costs, such as
server and storage expenses, and the external provisioning by means of cloud com-
puting services. Li et al. [41] focused on the provider perspective. They formulated a
TCO model to calculate set-up and maintenance costs (e.g. costs of hardware, software,
power, cooling, staff and real-estate) of a cloud service and identified the factors
involved in the utilization cost. This model consists of the total cost of all servers and
resources used to provide the service. Cloud implementation and operating costs were
divided into eight different categories that mainly represent fixed costs, such as set-up
and maintenance costs that providers need to bear during the whole lifecycle. Han [25]
presents a cost comparison between virtual managed nodes and local managed servers
and storage, but neglects important cost components like licensing, training, and
maintenance. Finally, Walterbusch et al. [62] presents a comprehensive TCO model for
the three main cloud service models (i.e. IaaS, PaaS and SaaS), and map into their
model different cost components across four phases of cloud computing i.e. initiation,
evaluation, transition, operation. Costs related to system failure, backsourcing or dis-
carding are listed but not included in the model since they are, by their nature, con-
tingent on situation contexts and therefore difficult to translate in a mathematical
formula.

Despite the large number of studies on software architecture-related factors for
consideration in migration, and, likewise, the large number of studies related to TCO
for cloud computing, there is a lack of papers seeking to estimate the TCO for cloud
migration in conjunction with architecture concerns. The extant literature is typically
focused on ex-post calculation of costs and profits independently from the wider sit-
uational context, and typically considers only cloud operational cost. For example,
Andrikopoulos et al. [2] proposes a decision support system which includes a cost
calculator based on per-use cost components only. Jinesh [35] presents a TCO

Right Scaling for Right Pricing 195

estimation of migrating to Amazon Web Services (AWS) that includes per-use charges
only. Similarly, Anwar et al. [3] examine cost-aware cloud metering for scalable
services.

2.2 Two Migration Business Cases

Cloud computing adoption can dramatically change a company’s business model and
internal organization, and requires investing a significant amount of resources in the
migration process. In such a context, an ex-ante evaluation of costs and potential
benefits that such an investment may generate is crucial for effective decision-making.
In this chapter, we consider two discernible business cases:

• The migration of existing legacy software and associated customers with perpetual
licenses;

• Adoption of cloud-native software by new customers with no existing economic
relationship with the SP.

In the first case, there is a significant post-migration discontinuity in the vendor-
customer relationship and the nature of the billing. From the customer perspective, the
business case can be made by comparing the as-is and the to-be solution, however this
is anything but a trivial process [32]. There may be time, effort and additional hidden
costs related to the migration that needs to be included in the ex-ante evaluation and
recovered by both SPs and their customers [32]. In the second case, customers can
make their choice on the basis of the perceived value of the service per se. In both cases
a key consideration for SPs is the amount of cost they can sustain to generate a positive
margin on their sale over a defined time period.

TCO is used to estimate the cost of cloud investments from the initial sourcing
through to the end of the cloud usage, whether that is the backsourcing of information,
or the client switching to other services or providers. While the measured nature of the
cloud allows for a detailed ex-post cost analysis, ex-ante cost estimation can be
complicated due to the uncertainty associated with multi-tenancy and resource pooling.
Similarly, while there are clear cost savings in cloud computing there are also intan-
gible cost components which are more difficult to estimate [32].

By its very nature, cloud computing enables enterprise customer scale up and down
on-demand without the ties associated with a substantial upfront investment. Thus,
forecasting the customer lifetime (and associated value) for a cloud customer can be
difficult. Suddenly, they can leave or radically modify their usage, since switching costs
in the cloud are significantly lower than on-premise. Notwithstanding this, enterprise
customers and SPs require a practical approach to measuring cloud TCO.

3 Integrated Migration Framework and Process

Typically, a cloud migration is organized around an architectural transformation of the
legacy system, independent of cost and pricing considerations. We propose an inte-
grated process for migration planning and pricing:

196 P. Rosati et al.

Step 1: Analyze and model – Use a set of migration patterns to determine structural
cloud architecture aspects;

Step 2: Right-scaling – Conduct a feasibility study to size the predicted workload to a
machine (configuration) profile based on analysis of direct operational costs
driven by predicted usage and experimental consumption figures;

Step 3: Right-pricing – Determine pricing for the software service based on the TCO
calculation generated from the feasibility study.

3.1 Step 1: Analyze and Model

In the analysis and modelling step, we examine both the pre-migration context (in-
cluding migration concerns) and use a set of migration patterns to determine structural
cloud architecture aspects. This phase is not relevant in the context of native cloud
software. For each use case, we examine the context as per Pahl et al. [49], namely:

• Setting/Application – description of the sector and classification of the application
in question;

• Expectation/Drivers – the drivers and a distinction of migration benefits and
expectations that potential users are aware of (their vision);

• Ignorance – factors that have been overlooked;
• Concerns – specific problems/constraints that need to be addressed.

We then conduct a multi-level analysis of requirements e.g. technology review,
business analytics, migration and architecture and test and evaluation. Once this pre-
liminary contextual analysis is completed, a set of cloud migration patterns, processes
and issues as presented by Jamshidi et al. [34] and Taibi et al. [57] can be used to
inform a detailed migration plan.

3.2 Step 2: Right-Scaling of SaaS Software

SPs seeking to migrate to the cloud need to find the right architectural configuration to
meet the necessary service level agreement (SLA) obligations at the minimum cost.
Therefore, a key question for a decision maker is:

How many components can I host on a fixed cloud compute resource with a pre-defined latency
performance target for a forecasted number of users of a particular application with a fore-
casted mix of application operation usage?

Changes in usage require changes in the number and/or configuration of cloud
resources used, which may result in additional costs. Estimation of the expected usage
level or patterns is needed to predict when scaling, and related additional costs, may
occur.

Furthermore, storage and networking charges are akin to commodities that can be
consumed on a per-unit of usage basis. The compute costs are more difficult to predict
since they are determined by the users’ use of the application. In this chapter, we
consider a virtual SLA-backed service that is not entirely fixed in terms of computa-
tional and storage resources allocated. Finally, the actual capacity of the offered cloud
service may fluctuate over time affecting potential economies of scale and application

Right Scaling for Right Pricing 197

performance. Only the cloud service provider, and not the SP, can monitor the
underlying service availability thus, the first problem is right-scaling i.e., to size a
predicted workload to a machine (configuration) profile. This requires usage prediction
to configure IaaS or PaaS through an experimental pre-migration feasibility study, and
represents the basis for an accurate estimation of operational costs. For SPs, right-
scaling reduces overprovisioning and therefore usage cost of their cloud infrastructure.

3.3 Step 3: Right-Pricing of SaaS-Delivered Products

Monetization refers to how organizations capture value i.e. when, what and how value
is converted into money [6]. Despite the fact that how SPs price and monetize their
cloud offering is beyond the scope of the TCO process adopted in this chapter, it is
important to understand as the TCO represents a critical component of SPs’ pricing
decision. A monetization framework for SPs usually comprise three models, namely:

• Architecture model: the source and target architecture need to be considered
together with planned changes in functional or non-functional properties;

• Cost model: the expected direct operational costs need to be estimated including
basic infrastructure and platform costs, additional features for external access and
networking, internal quality management, and development and testing costs, and
mapped into the TCO estimation;

• Revenue model: expected revenues based on a selected pay-per-use or subscription
model.

From an SP perspective, the relationship between cloud cost and price (P) can
represented as follows:

P ¼ TCO� 1þ lð Þ ð1Þ

Where l represents the percentage of profit the producer aims to obtain. Under-
standing how SaaS usage translates in to IaaS costs is of primary importance for SPs
since the SaaS income should cover the corresponding infrastructure costs. The
interplay between these three models ultimately determines the attractiveness of the
cloud offering of an SP in the marketplace. In this context, relevant questions to
consider are:

• Which factors are static and might be considered as a baseline for the cost
calculation?

• What are the additional costs for scaling up beyond the baseline?
• What is the best combination of cost and revenue model that maximize profit in the

short- and long-term?

3.4 Total Cost of Ownership and Cost Factors

TCO, in a strict sense, is the sum of the initial investment required to purchase an asset
(CapEx) plus the operating costs that the cloud generates (OpEx). When choosing
among alternatives, SPs should look at both components of TCO to evaluate the

198 P. Rosati et al.

investment properly. Migration costs tend to be omitted in cloud TCO estimations even
though they can be substantial and change the overall return on investment. TCO
calculation can be formalized as follows:

TCO ¼ CapExþOpEx ð2Þ

In the context of our study, OpEx includes fixed (e.g. location and size) and
variable (i.e. usage) IaaS cost components while CapEx includes migration and
implementation costs (e.g. development and testing, project management etc.).
Walterbusch et al. [62] provide a comprehensive list of cost components that may be
considered for estimating TCO of SP cloud migration.

In order to estimate the cost associated with the expected SaaS usage, we consider
costs at the SP level. In terms of IaaS operational costs for an SP we focus on compute,
storage and network resources since they usually represent the most significant cost
components. IaaS costs can be categorized as either (i) fixed (size of the
reserved/allocated resources, availability, location, and other supplemental and/or
premium services) or (ii) variable (i.e., usage of all respective IaaS resources). Like
other fixed cost factors, reconfiguration is possible, but not considered in this chapter.
Availability is considered as a contractually guaranteed property and it is also assumed
to be fixed.

4 I/PaaS Cost Calculation Process

The nature of the cloud makes it difficult to determine the input variables of the TCO
model, but, as we will see, architecture quality concerns such as performance and
availability can drive this process. Cloud architecture qualities, and corresponding
costs, can be influenced by compute, storage and network resources. Therefore, a
reliable TCO estimation requires at least two mappings from SaaS (service provided) to
I/PaaS (service consumed): (i) map SaaS to I/PaaS metrics in order to link expected
(SLA) and actual level of quality; and (ii) map SaaS to I/PaaS usage patterns in order to
link SaaS usage variation to the required level of I/PaaS resources. Figure 1 summa-
rizes the cost estimation process that we will now apply.

4.1 Cost Estimation Process

In a cloud migration scenario, an SP needs to migrate the system architecture of the
target on-premise software product and change the corresponding cost and revenue
models at the same time. As highlighted before, the new models heavily depend on
expected or predicted usage, both of which are difficult to estimate. In fact, any

Fig. 1. Costing SaaS usage - estimation process [53].

Right Scaling for Right Pricing 199

estimation of SaaS usage volumes will determine IaaS usage requirements but cus-
tomers’ usage can be subject to temporary peaks that might generate spikes in costs due
to ineffective IaaS usage.

Estimation complexity varies between the two business cases identified earlier, i.e.
migrated or cloud-native application. Usage patterns of the existing customer base can
be determined with reasonably high accuracy, as opposed to the future behavior of an
unknown customer cohort in the cloud-native scenario. The initial two phases relate to
usage estimation at both the SaaS and IaaS level. SaaS usage can be mapped onto IaaS
by experimental means using feasibility studies or other mechanisms. A third phase is
concerned with IaaS cost estimation, which is driven by the usage estimation and SLA
obligations. IaaS configuration heuristics can be used to identify the most efficient
infrastructure configuration. The fourth and final phase is related to pricing the SaaS
service based on the outcome of the previous stages.

4.2 Architecture Selection and Cost/Revenue Prediction

From an SP perspective, the list of selection criteria of a cloud provider includes both
fees and the associated billing model. Many IaaS providers offer monthly basic sub-
scription fees with additional fees for premium services such as scalability, access
monitoring (e.g., IP endpoint, network bandwidth), and advanced self-management.
An SP requires a clear comparison of costs and revenues resulting from the cloud
adoption. This has to be an “apples to apples” comparison [32]. Even though we
primarily discuss IaaS, similar assumptions can be made for PaaS services. PaaS-level
costs need to address both development and deployment and need to be aligned with
SaaS-level income. In order to determine a profitable and sustainable pricing model, the
following steps need to be taken:

• Estimation of the TCO of consumed cloud services on the basis of the expected
usage of the provided SaaS service;

• Estimation of the expected level of revenues on the basis of expected usage of
suitable fees level;

• A sensitivity analysis of I/PaaS costs to potential changes in SaaS usage;
• Assessment of the alignment of the selected pricing model with the market strategy

of the SP;
• Assessment of the sustainability of the selected pricing model both in the short- and

long-term.

4.3 Assumptions – Resource Cost Modeling and Right-Scaling

In order to make this more practically relevant, we can look at the different resource
types and compare them in terms of utilization and cost fluctuations in common
deployments (and resulting impact on cost estimation). Cost modeling for compute
versus storage services are fundamentally different. Storage usage is more predictable
and current cloud service pricing models support a commodity-style costing. Compute
usage and related cost is more complicated to predict since it can fluctuate significantly
over time and contributes disproportionately to the achievement of economies of scale.

200 P. Rosati et al.

SPs need to make configuration assumptions which may or may not prove to be
accurate. Scenario analysis may help to achieve better estimation.

For illustration purposes, a simple initial configuration of IaaS resources could be
based on 80% reserved and 20% on-demand instances. This combines reliable core
provisioning without overprovisioning for extra demand (in which case on-demand
instances are acquired). The benefits of this strategy are:

• 60–80% utilization of used instances is achievable if the reserved instances deal
with peak demand;

• Up to 50% cost reduction compared to on-demand instances only.

Another factor impacting resource requirement is the nature of the architecture.
Stateless, loosely-coupled architectures help accommodate extra demand and enable
scalability by just using additional resources on-demand without much start-up costs
(transfer of state to other resources).

4.4 An Exemplar Costing Model

In order to understand pricing models of IaaS and PaaS providers, we report exemplar
categories and common pricing models (Table 3). This is largely built on Microsoft
Azure pricing information, but is typical of other providers. Relevant costing models
focus primarily on storage in GB and transactions (read/write). A proper estimation of
IaaS costs associated with a SaaS application provisioning is needed in order to
(i) select the technically best option, and (ii) estimate the costs for hosting the SaaS
application, for example, in a PaaS cloud. Quality concerns other than the expected
workload (e.g. availability expectations, failover strategy etc.) have to be considered in
the process as well. Effectively, the estimation process needs to include the number of
storage units and total size as an input, and the costs, estimated over a defined period,
with predicted growth, and for different replication options as an output.

A further complication is that pricing models between platform providers are dif-
ficult to compare due to different definitions of price components. Consequently, a
formal and clear estimation framework for an economic evaluation of different solu-
tions to deliver a SaaS service is needed.

5 Illustration and Validation – Case Study

We now illustrate the estimation process presented in Sect. 4 using a case study. The
estimation process was applied to an SP migrating a legacy client-server on-premise
single-tenant enterprise application to the cloud by re-designing, re-engineering and
recoding the system as a cloud application. The SP is a small-medium enterprise which
provides a document management application. Its application has over 1,000 existing
client installs and in this case study, we present the TCO estimation of migrating 240 of
these to the new cloud platform over a 3-year period. The main business requirements
for the SP to adopt the cloud were (i) to pursue flexibility across different devices and
situational contexts, and (ii) to increase the customer base through efficient entry in to
new geographical markets. The solution requires meeting high-volume data storage and
processing needs.

Right Scaling for Right Pricing 201

5.1 Application Overview

The case site is a small-to-medium sized SP that overs document management services
to the logistics sector. The application is a Document Management System (DMS),
which enables a user to scan paper documents from enterprise-grade scanners and save
them on a cloud store as electronic images. Documents are classified under custom
types, such as invoice or delivery docket, and specific metadata templates are used to
store search-able tagged data against the documents for future retrieval and reporting.
The SP wishes to deploy the software in the cloud and due to the commercially
sensitive nature of the documents being scanned, data location is major concern.
The SP does not have enough information on the cost of migration and cloud
deployment specifically to inform a migration decision and/or pricing strategy.
Specifically:

• Technology review - the SP has network concerns regarding the upload and
download data transfer speeds and services for in-cloud document processing.

Table 3. Storage cost component (adapted from [53]).

Component Description

Region A region is a set of datacenters deployed within a latency-defined perimeter
and connected through a dedicated regional low-latency network

Replication Cloud providers usually create multiple copies of each database in order to
ensure durability and high availability. Cloud users can choose the replication
option that best fits its needs but each option come with different a different
price. Sample configurations include:
• Local Redundant – a number of copies are stored in the same data-center and
region of the storage account, but across different fault or upgrade domains

• Zone Redundant – a number of copies are stored in different data-centers,
which have slightly less throughput than Local redundancy

• Geo Redundant – a number of copies are stored in different data-centers, with
a back-up, separate multiple saves in a specific secondary region to allow to
recover from potential region failure

• Read-Only Geo Redundant – Similar to geo redundancy with read access to
secondary data

All replication operations are done asynchronously
Size Storage cost is positively related with the volume of data stored in a database
Transactions Storage cost depends on the number of transactions - i.e. read/write blob

operations – performed in each database. The higher the number of
transactions, the higher the cost

Data
transfer

Storage cost is positively related with volume of data being transferred
from/to the database. However, the cost of data transfer is usually charged
only when data is moved out from the geographical region where it was
stored. In-region transfers are usually free

202 P. Rosati et al.

• Business analysis – the SP has concerns about security and data privacy regulations
e.g. GDPR.

• Migration and architecture – the preferred solution is a two-stage incremental
migration plan (IaaS and PaaS) to migrate document scanning, storage and pro-
cessing to a scalable cloud architecture.

• Test and evaluation – scalability, performance, integration and security must meet
agreed criteria.

A summary migration plan with stepwise migration from on-premise via IaaS into a
PaaS cloud could be implemented as follows:

1. IaaS Compute Architecture: The application can be packaged in-to VMs. License
fees for components of the application are incurred as usual. The business problem
is scaling out; adding more VMs means adding more license fees for every repli-
cated component. From a technical point of view, multiple copies of data storage
that are not in sync might cause integrity problems.

2. DaaS Storage: Refactor and extract storage i.e. use a virtual data-as-a-service
(DaaS) solution for storage needs. This alleviates the technical integrity problem
cited above.

3. PaaS Cloud Data Storage: Package the whole DBMS into a single virtual machine.
This alleviates the business license fee problem for the DBMS and simplifies data
management, but other license fees may still occur.

4. Full Application Migration: Migrate to a PaaS service. Apart from solving technical
problems, this significantly mitigates the licensing fees issue.

Ultimately and for the purposes of this case, the application has been redesigned
and coded specifically to run as a cloud application on the Microsoft Azure public
cloud platform.

5.2 TCO Calculation

The TCO is made up of the implementation costs of the new cloud application and the
cloud charges incurred in running the new system on Microsoft Azure. Estimated
implementation costs (CapEx) were classified into seven implementation phases:
Business Analysis, Cloud Architecture Design, Data Design, Security Framework
Design, Development and Test (see Table 10), Performance and Costs Analysis (see
Tables 11, 12 and 13). It should be noted that the calculations do not include the
operational costs of migrating the customers to the new cloud web application.

The application is a multi-process system since it comprises a web server compute
resource and a separate image processing compute resource. However, the functional
dependency between these do not need to be considered in the TCO analysis since the
image processing worker VM acts completely asynchronously to the web server role
web requests which continue regardless of the state of the image processor. Therefore,
we have calculated the multi-tenant VM requirements based on a simple linear mul-
tiplication of the CPU load per tenant.

IaaS usage charges (OpEx) are estimated considering the two most relevant cost
components:

Right Scaling for Right Pricing 203

• A cloud data store – made up of a NoSQL Table structure (using the Microsoft
Azure Table service) and an object store (using the Microsoft Azure Blob Storage
service). Table and blob storage are platform services that allow a more fine-grained
costing. As such, these need to be considered on an individual service base.

• A cloud compute architecture – made up of a separate compute resource for the web
server of the web application (Web Role Virtual Machine), and a separate compute
component for carrying out the image processing functions, such as barcode reading
(Worker Role Virtual Machine).

Our calculation is based on the Microsoft Azure services pricing reported in
Tables 4, 5, and 6. In order to forecast the usage of cloud storage resources, we used
actual historical data over an eleven-month period from an existing average-sized
tenant with a typical application usage pattern. To estimate the computing resources
required, we monitored the usage and performance statistics during a snapshot of the
operational use of the application by the same typical user. Tables 7, 8, and 9 sum-
marize the usage profile adopted in the calculation.

Table 4. Blob storage prices (adapted from [53]).

Service Redundancy Cool tier price General purpose price

Price per GB/Month space Local € 0.013 € 0.020
Geo € 0.025 € 0.041

Price per 10,000 transactions Local € 0.084 € 0.003
Geo € 0.169 € 0.003

Price per GB data access write Local € 0.002 -
Geo € 0.004 -

Table 5. Table storage prices (adapted from [53]).

Redundancy Price

Price per Entity/GB/Month Local redundant € 0.059
Geo redundant € 0.085

Price per 10,000 transactions (PUT) Local redundant € 0.003
Geo redundant € 0.003

Table 6. Compute prices (adapted from [53]).

VM
type

No. of CPU
cores

Annual cost
Azure VM (€)

VM
type

No. of CPU
cores

Annual cost
Azure VM (€)

a1 1 598.18 d4 8 8,936.93
a2 2 1,205.28 d1 v2 1 1,107.07
a3 4 2,401.63 d2 v2 2 2,232.00
a4 8 4,812.19 d3 v2 4 4,464.00
d1 1 1,107.07 d4 v2 8 8,936.93
d2 2 2,232.00 d5 v2 16 17,873.86
d3 4 4,464.00 d2 v3 2 1,589.18

204 P. Rosati et al.

Table 7. Usage profile of a typical tenant (adapted from [53]).

Items Size

Total number of scanned documents per annum 145,853
Average number of document table entities per month 14,675
Number of peak entities per day 3,551
Number of peak entities per hour 1,137
Average table entity size (in bytes) 2,160
Average scanned image file size (in Kilobytes) 666
Average template file size (in bytes) 2,200

Table 8. Forecasted input parameters (adapted from [53]).

Per tenant End of year
1 2 3

Number of documents 176,105 352,210 528,314
Document table size (in Gigabytes) 0.380 0.761 1.141
Number of image blobs 176,105 352,210 528,314
Image blobs size (in Gigabytes) 117 235 352
Document template file blobs 2 3 6
Total template blob storage (in bytes) 4,400 8,800 13,200

Table 9. Summary parameter values (adapted from [53]).

Workload %

Web role peak CPU load 67.1%
Web role average CPU load 31.5%
Worker role peak CPU load 24.3%
Worker role average CPU load 10.4%

Table 10. Migration and implementation costs (adapted from [53]).

Implementation phase Cost (€)

Implementation consultancy costs – business analysis (Contract hours) 16,078
Implementation consultancy costs – security design (Contract hours) 27,237
Implementation consultancy costs – design and development (Contract hours) 80,662
Project management and implementation design (Staff Salaries) 16,265
Development and Testing (Staff Salaries) 17,465
Non-staff or non-contractor costs (Cloud Testbed subscription, test equipment,
travel)

10,940

Total 168,647

Right Scaling for Right Pricing 205

5.3 Experimentation – Usage and Cost

Table 10 summarizes the estimated implementation and migration costs for the SP
(€168,647). The most significant cost component, which represents 47.83% of the
overall migration costs, is by far consultancy costs for design and development, fol-
lowed by security design (16.15%). Such a significant amount of upfront migration
costs further highlights the need to include such costs into TCO estimation to inform
both adoption and pricing decisions.

Tables 11, 12, and 13 summarize IaaS usage costs estimated as a linear combi-
nation of usage parameters and price of each service. Note that these
pragmatic/empirical observations stem from experiments in a live feasibility study and
have been implemented on the basis of the following assumptions:

Table 11. Blob storage costs (adapted from [53]).

Costs per tenant Space cost (€) Transactions cost (€)
Redundancy Local Geo Local Geo

End year 1 8.87 17.80 1.48 2.97
End year 2 26.60 53.41 1.48 2.97
End year 3 44.33 89.02 1.48 2.97

Data access write
cost (€)

Total cost (€)

Redundancy Local Geo Local Geo
End year 1 1.48 2.96 11.83 23.73
End year 2 4.43 8.87 32.52 65.25
End year 3 7.39 14.78 53.21 106.77

Note: Blob storage costs for template files were ignored due to their negligible
amount.

Table 12. Table storage costs (adapted from [53]).

Costs per
tenant

Space Cost
(€)

Transactions
Cost (€)

Total Cost
(€)

Redund. LR GR LR GR LR GR
End year 1 0.13 0.19 0.05 0.05 0.19 0.25
End year 2 0.40 0.58 0.05 0.05 0.46 0.63
End year 3 0.67 0.97 0.05 0.05 0.73 1.02

Note: LR (Local Redundant); GR (Geo Redundant); Redund.
(Redundancy)

206 P. Rosati et al.

• The existing deployment does not include any data caching which would obviously
reduce the CPU overhead and data storage access costs.

• There is no optimization of the queries to the table service to optimize CPU load
over the TCO estimation period.

• There is no performance tuning on the application and/or on the platform during the
TCO estimation period.

• There is no smoothing effect of multiple tenants sharing the same application
compute resources.

The use case we present in this chapter involves a significant image-processing
component resulting in high upload- and download- volumes and the in-cloud pro-
cessing of images. The most critical challenge at the architectural level was to select the
optimal Virtual Machine type from the available types on the Microsoft Azure plat-
form; we carried out a benchmark study of the performance of the different “flavors” of
the role VMs when running the data layer functions of the new application. The costs
presented in Tables 11, 12, and 13 are based on the D2-V3 VM type which represented

Table 13. Compute costs (adapted from [53]).

End
year

Clients
migrated

Number of VMs
(WeR)

Number of VMs
(WoR)

Storage costs
(LR) (€)

1 80 6 2 946
2 80 18 4 3,548
3 80 30 6 7,805

Storage costs
(GR) (€)

Compute costs
(WS) (€)

Compute costs
(IP) (€)

1 80 1,898 9,536 3,179
2 80 7,118 28,606 6,357
3 80 15,660 47,676 9,536

Note: WeR (Web Role); WoR (Worker Role); LR (Local Redundant); GR (Geo Redundant); WS
(Web Server VMs); IP (Image Processing VMs).

Fig. 2. Compute usage over a twenty-minute monitoring period [53].

Right Scaling for Right Pricing 207

the best trade-off between TCO and SLA requirements on the basis of the average
tenant usage.

Among different TCO components, compute is by far the most significant
(€129,701), and also the most fluctuating resource (see Fig. 2). As such, its efficient
and effective usage should be the main concern of the SP. Storage, as predicted, is
relatively stable and predictable with essentially fixed costs (see Fig. 3), and accounts
for a very tiny portion of the TCO (€293.31 – 0.001%). The heavy image processing
results in higher-than-normal network bandwidth and storage requirements. As a
consequence, the observations should also hold for applications with less data volume
and would thus cover the majority of typical transactional business applications.

6 Right-Pricing of SaaS Service

Once a SP has established the costs of cloud delivery including compute, storage, and
migration, if appropriate, the price can be determined using Eq. 1 as outlined in
Sect. 3.3.

At this point in time, the SP typically must decide on their pricing strategy driven
by their overall strategic objectives i.e. determine the value for l. The selection of an
appropriate pricing strategy is increasing seen as a source of competitive advantage
thus right-pricing is crucial for the SP, in the cloud or otherwise [30].

There are a number of pricing strategies that the SP can choose from, the most
common strategies being variants or combinations of cost-based, demand-driven or
value-based, and competition-oriented [29, 38]. Cost-based strategies determine the
price level using cost accounting. Harmon et al. [26] suggest that these approaches are
short-term, tactical in nature, and place the interests of the seller over the interests of the
buyer leading to overpricing in weak markets and underpricing in strong markets. In
contrast, demand-driven or value-based costing recognizes the price that a customer is
willing to pay, mostly, depends on the customer’s value requirements, not the SP. For
Harmon et al. [26], the goal of value-based pricing is to enable more profitable pricing
by capturing more value which in turn should input, if not determine, the level of

Fig. 3. Storage usage over a twenty-minute monitoring period [53].

208 P. Rosati et al.

product (development) costs that the company is willing to incur or not. While com-
mentators suggest that this is the best overall approach to take [29, 31], it is not without
drawbacks. Hinterhuber [29] notes the difficulty in obtaining and interpreting the
necessary data to measure customer value and that in some cases, value-based pricing
can lead to relatively high prices. Competition-oriented pricing is based on anticipated
or observed price levels of competitors for determining price points [29]. The weakness
in competition-based pricing is that again customer willingness to pay or costs are not
necessarily taken in to account [29]. Each of these pricing strategies are prevalent in
cloud computing [1]. It should be noted that profitability may or not be a goal in initial
pricing strategies. SPs may offer unprofitable software services (including zero pricing)
for a variety of reasons in order to drive market expansion or maintain customer
satisfaction levels [30, 59]. As such, l may be negative. For each pricing strategy
outlined, TCO remains a useful calculation and indeed can help address the drawbacks
in each strategy.

For our purposes, right pricing is combinatorial approach taking in to account the
costs of cloud deployment but also scalability. Scalability, in this context, represents
future customer demand. l therefore becomes a variable that can be used to support the
testing all pricing strategies at different levels through scenario analysis or even lean
startup methodologies. Additionally, once a pricing strategy has been decided, a
specific pricing structure must be agreed e.g. pay-per-use, annual or monthly sub-
scription per user etc.

7 Conclusions and Future Developments

Our literature review highlighted a clear lack of processes integrating software archi-
tecture and costing within a cloud migration scenario. This chapter aims to fill such a
gap by investigating the link between architectural decisions and the impact on costing
in cloud migration and therefore making an initial contribution in this context [42].
Specifically, we have identified the major determinants of SaaS usage costs and inte-
grated them into one single process to estimate the corresponding I/PaaS costs. This
would represent the basis for defining the pricing a SaaS licensing model, and ulti-
mately impact the profit margins of an SP. Due to the differences in factors and account
types between the IaaS/PaaS providers, a generic, formalized model cannot exist. Thus,
our aim was to identify the factors influencing this calculation and to illustrate this
through a real-life case study.

As no single formula to easily determine right-scaling and right-pricing was
identified in our literature review, in this chapter we propose an initial process for
estimating operating costs and dependencies, and architecture-related costs.

Cloud adoption, like all technology investments, results in direct tangible costs
such as cloud resources but also in intangible costs, e.g., change management, vendor
management, risk mitigation etc. [47]. In our case study, we have moved beyond
merely operating costs by including some of these indirect cost components. However,
our example does not aim to provide a comprehensive list of such costs. Furthermore,
the research presented in this chapter is subject to a series of limitations which curtail
its generalizability, but it also presents avenues for future research. First, we have

Right Scaling for Right Pricing 209

focused on a business-to-business SP targeting small and medium enterprises, and to a
single cloud service provider. As such, our conclusion is not directly generalizable to
business-to-consumer SPs. Further studies may account for more complex models
suitable for larger and more mature organizations or may seek to compare functionality,
quality and costs across multiple providers [24].

Second, we did not consider recent developments in cloud architectures like con-
tainer technology and microservices architectures, which are an increasing feature in
the enterprise cloud and enabling new provisioning and payment models, new services
like serverless computing (also referred to as ‘function-as-a-service’), which will rad-
ically change how SPs conceptualize costs and pricing. The adoption of serverless
computing, for example, is growing significantly in order to increase efficiencies and
provisioning speeds. This relatively new paradigm of cloud computing envisages a
model of computing where effectively all resources are pooled including hardware,
operating systems and runtime environments [28]. As a result, an SP only concerns
themselves with relatively lightweight, single purpose stateless functions that can be
executed on demand without consuming any resources until the point of execution. The
serverless paradigm introduces greater separation of concerns between cloud service
providers and SPs to the extent that much more responsibility is transferred to the cloud
service provider. In addition, the SP benefits from much less complexity but also
benefits from a lower cost of deployment related to the lightweight nature of functions
and by cloud service pricing driven at the level of execution runtime for computer code
rather than how long an instance is running [18]. The market for serverless computing
is expected to grow to US$7.72 billion by 2021 [44]; as such, it is not surprising that
many of the major cloud service providers have entered the market including AWS
(Lambda), Microsoft (Azure Function), Google (Cloud Function), and IBM (Bluemix
OpenWhisk). Research on serverless computing is at a very early stage of development
and is primarily based on AWS Lambda [43]. While most of the research is focused on
use cases, Lynn et al. [43] report a small number of studies that report cost efficiencies
resulting from serverless implementations [40, 60, 61]. Given the novelty of serverless
computing, the novelty of serverless pricing models, emerging use cases, and the dearth
of research on business value and serverless migration, this area would seem to be a
fruitful area for research moving forward. As other novel cloud services emerge, there
will be a need for business value research, and TCO research specifically, not least fog
computing [10], edge computing [54], cloud service brokerage and enterprise app
marketplaces [50], quantum computing as a service [55], and self-organizing self-
managing heterogeneous clouds [64].

Our work shows that there is a need for an integrated perspective accommodating
architecture and cost in order to provide a clear basis for service pricing and revenue,
and that the traditional TCO approaches cannot be applied without adaptation. Even
though this chapter focuses on TCO, the same need for adaptation applies to other
value assessment methodologies. As such, they present additional avenues for future
research. Our chapter also highlights the need for collaboration between business,
accounting and computer science researchers. As businesses become more and more
reliant on cloud computing, such a collaboration is essential for providing a compre-
hensive understanding of the financial implications of adopting specific software
architectures in the cloud computing context. This likely requires not only adaptation in

210 P. Rosati et al.

common activity-based and resource-based costing methodologies but also in software
and systems design.

Acknowledgements. The research work described in this chapter was supported by the Irish
Centre for Cloud Computing and Commerce, an Irish National Technology Centre funded by
Enterprise Ireland and the Irish Industrial Development Authority.

References

1. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing models: a
survey. Int. J. Grid Distrib. Comput. 6(5), 93–106 (2013)

2. Andrikopoulos, V., Song, Z., Leymann, F.: Supporting the migration of applications to the
cloud through a decision support system. In: IEEE Sixth International Conference on Cloud
Computing (2013)

3. Anwar, A., Sailer, A., Kochut, A., Schulz, C.O., Segal, A., Butt, A.R.: Cost-aware cloud
metering with scalable service management infrastructure. In: IEEE 8th International
Conference on Cloud Computing, pp. 285–292 (2015)

4. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)
5. Arnold, G., Davies, M.: Value-Based Management: Context and Application. Wiley, New

York (2000)
6. Baden-Fuller, C., Haefliger, S.: Business models and techno-logical innovation. Long Range

Plan. 46(6), 419–426 (2013)
7. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microservices

migration patterns. Softw. Pract. Exp. 48, 1–24 (2018)
8. Bain and Company: The Changing Faces of the Cloud (2017). http://www.bain.com/

publications/articles/the-changing-faces-of-the-cloud.aspx. Accessed 28 Jan 2018
9. Berman, S.J., Kesterson-Townes, L., Marshall, A., Srivathsa, R.: How cloud computing

enables process and business model innovation. Strategy Leadersh. 40(4), 27–35 (2012)
10. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of

things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, pp. 13–16 (2012)

11. CFO Research: The Business Value of Cloud Computing: A Survey of Senior Finance
Executives. CFO Publishing (2012). http://lp.google-mkto.com/rs/google/images/CFO%
2520Research-Google_research%2520report_061512.pdf. Accessed 20 Jan 2018

12. Cusumano, M.A.: The changing labyrinth of software pricing. Commun. ACM 50(7), 19–22
(2007)

13. Cusumano, M.A.: The changing software business: moving from products to services.
Computer 41(1), 20–27 (2008)

14. DaSilva, C.M., Trkman, P., Desouza, K., Lindic, J.: Disruptive technologies: a business
model perspective on cloud computing. Technol. Anal. Strateg. Manag. 25(10), 1161–1173
(2013)

15. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: IEEE
International Conference on Advanced Information Networking and Applications, pp. 27–33
(2010)

16. D’souza A., Kabbedijk, J., Seo, D., Jansen, S., Brinkkemper, S.: Software-as-a-service:
implications for business and technology in product software companies. In: Pacific Asia
Conference on Information Systems (2012)

17. Durkee, D.: Why cloud computing will never be free. Commun. ACM 53(5), 62–69 (2010)

Right Scaling for Right Pricing 211

http://www.bain.com/publications/articles/the-changing-faces-of-the-cloud.aspx
http://www.bain.com/publications/articles/the-changing-faces-of-the-cloud.aspx
http://lp.google-mkto.com/rs/google/images/CFO%252520Research-Google_research%252520report_061512.pdf
http://lp.google-mkto.com/rs/google/images/CFO%252520Research-Google_research%252520report_061512.pdf

18. Eivy, A.: Be wary of the economics of “serverless” cloud computing. IEEE Cloud Comput.
4(2), 6–12 (2017)

19. Farbey, B., Finkelstein, A.: Evaluation in software engineering: ROI, but more than ROI.
Working Paper Series - Department of Computer Science University College London – LSE,
(2000). http://is.lse.ac.uk/all_wp.htmS

20. Farbey, B., Land, F., Targett, D.: How to Assess Your IT Investment: A study of Methods
and Practice. Butterworth-Heinemann, Oxford (1993)

21. Ferrante, D.: Software licensing models: what’s out there? IT Prof. 8(6), 24–29 (2006)
22. Filiopoulou, E., Mitropoulo, P., Tsadimas, A.: Integrating cost analysis in the cloud: a SoS

approach. In: 11th International Conference on Innovations in Information Technology
(IIT) (2015)

23. Giardino, C., Bajwa, S.S., Wang, X., Abrahamsson, P.: Key challenges in early-stage
software startups. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP,
vol. 212, pp. 52–63. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2_5

24. Gilia, P., Sood, S.: Automatic selection and ranking of cloud providers using service level
agreements. Int. J. Comput. Appl. 72(11), 45–52 (2013)

25. Han, Y.: Cloud computing: case studies and total costs of ownership. Inf. Technol. Libr. 30
(4), 198–206 (2011)

26. Harmon, R., Demirkan, H., Hefley, B., Auseklis, N.: Pricing strategies for information
technology services: a value-based approach. In: Hawaii International Conference on System
Sciences (HICSS), pp. 1–10 (2009)

27. Heilig, L., Voß, S.: Decision analytics for cloud computing: a classification and literature
review. In: Bridging Data and Decisions, pp. 1–26 (2014)

28. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H.: Serverless computation with openlambda. Elastic 60, 1–7 (2016)

29. Hinterhuber, A.: Customer value-based pricing strategies: why companies resist. J. Bus.
Strategy 29(4), 41–50 (2008)

30. Hinterhuber, A., Liozu, S.M.: Is innovation in pricing your next source of competitive
advantage? Bus. Horiz. 57, 413–423 (2014)

31. Ingenbleek, P., Debruyne, M., Frambach, R.T., Verhallen, T.M.: Successful new product
pricing practices: a contingency approach. Mark. Lett. 14(4), 289–305 (2003)

32. ISACA: Calculating Cloud ROI: From the Customer Perspective (2012). https://www.isaca.
org/knowledge-center/research/researchdeliverables/pages/calculating-cloud-roi-from-the-
customer-perspective.aspx. Accessed 20 Jan 2018

33. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE
Trans. Cloud Comput. 1(2), 142–157 (2013)

34. Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud migration patterns: a multi-cloud
service architecture perspective. In: International Workshop on Engineering Service
Oriented Applications – WESOA 2014 (2014)

35. Jinesh, V.: Migrating your existing applications to the AWS cloud. A Phase-driven
Approach to Cloud Migration (2010). http://docs.huihoo.com/amazon/aws/whitepapers/
Migrating-your-Existing-Applications-to-the-AWS-Cloud-October-2010.pdf. Accessed 21
Jan 2018

36. Karunakaran, S., Krishnaswamy, V., Rangaraja, P.S.: Business view of cloud: decisions,
models and opportunities–a classification and review of research. Manag. Res. Rev. 38(6),
582–604 (2015)

37. Laatikainen, G., Ojala, A.: SaaS architecture and pricing models. In: IEEE International
Conference on Services Computing (SCC), pp. 597–604 (2014)

38. Lehmann, S., Buxmann, P.: Pricing strategies of software vendors. Bus. Inf. Syst. Eng. 1(6),
452–462 (2009)

212 P. Rosati et al.

http://is.lse.ac.uk/all_wp.htmS
http://dx.doi.org/10.1007/978-3-319-18612-2_5
https://www.isaca.org/knowledge-center/research/researchdeliverables/pages/calculating-cloud-roi-from-the-customer-perspective.aspx
https://www.isaca.org/knowledge-center/research/researchdeliverables/pages/calculating-cloud-roi-from-the-customer-perspective.aspx
https://www.isaca.org/knowledge-center/research/researchdeliverables/pages/calculating-cloud-roi-from-the-customer-perspective.aspx
http://docs.huihoo.com/amazon/aws/whitepapers/Migrating-your-Existing-Applications-to-the-AWS-Cloud-October-2010.pdf
http://docs.huihoo.com/amazon/aws/whitepapers/Migrating-your-Existing-Applications-to-the-AWS-Cloud-October-2010.pdf

39. Leimbach, T., et al.: Potential and Impacts of Cloud Computing Services and Social
Network Websites. Science and Technology Options Assessment (STOA) (2016). http://
www.europarl.europa.eu/RegData/etudes/etudes/join/2014/513546/IPOL-JOIN_ET(2014)
513546_EN.pdf. Accessed 15 Aug 2016

40. Leitner, P., Cito, J., Stöckli, E.: Modelling and managing deployment costs of microservice-
based cloud applications. In: Proceedings of the 9th International Conference on Utility and
Cloud Computing, pp. 165–174 (2016)

41. Li, X., Li, Y., Liu, T., Qiu, J., Wang, F.: The method and tool of cost analysis for cloud
computing. In: IEEE International Conference on Cloud Computing, pp. 93–100 (2009)

42. Li, H., Zhong, L., Liu, J., Li, B., Xu, K.: Cost-effective partial migration of VoD services to
content clouds. In: IEEE International Conference on Cloud Computing, pp. 203–210 (2011)

43. Lynn, T., Rosati, P., Lejeune, A., Emeakaroha, V.: A preliminary review of enterprise
serverless cloud computing (function-as-a-service) platforms. In: IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 162–169 (2017)

44. Market and Markets: Function-as-a-Service Market by User Type (Developer-Centric and
Operator-Centric), Application (Web & Mobile Based, Research & Academic), Service
Type, Deployment Model, Organization Size, Industry Vertical, and Region - Global
Forecast to 2021 (2017). https://www.marketsandmarkets.com/Market-Reports/function-as-
a-service-market-127202409.html. Accessed 2 Aug 2018

45. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing - the
business perspective. Decis. Support Syst. 51(1), 176–189 (1999)

46. Martens, B., Walterbusch, M., Teuteberg, F.: Costing of cloud computing services: a total
cost of ownership approach. In: 45th Hawaii International Conference on System Science
(HICSS), pp. 1563–1572 (2012)

47. Misra, S.C., Mondal, A.: Identification of a company’s suitability for the adoption of cloud
computing and modelling its corresponding return on investment. Math. Comput. Model. 53
(3), 504–521 (2011)

48. Ojala, A.: Software renting in the era of cloud computing. In: IEEE 5th International
Conference on Cloud Computing (CLOUD), pp. 662–669 (2012)

49. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration approaches.
In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40651-5_18

50. Paulsson, V., Morrison, J., Emeakaroha, V., Lynn, T.: Cloud service brokerage: a systematic
literature review using a software development lifecycle. In: 22nd Americas Conference on
Information Systems (AMCIS) (2016)

51. Ronchi, S., Brun, A., Golini, R., Fan, X.: What is the value of an IT e-procurement system?
J. Purchasing Supply Manag. 16(2), 131–140 (2010)

52. Rosati, P., Fox, G., Kenny, D., Lynn, T.: Quantifying the financial value of cloud
investments: a systematic literature review. In: IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 194–201 (2017)

53. Rosati, P., Fowley, F., Pahl, C., Taibi, D., Lynn, T.: Making the cloud work for software
producers: linking architecture, operating cost and revenue. In: 8th International Conference
on Cloud Computing and Services Science (CLOSER) (2018)

54. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE
Internet Things J. 3(5), 637–646 (2016)

55. Singh, H., Sachdev, A.: The quantum way of cloud computing. In: International Conference
on Optimization, Reliability, and Information Technology (ICROIT), pp. 397–400 (2014)

56. Strebel, J., Stage, A.: An economic decision model for business software application
deployment on hybrid cloud environments. Multikonferenz Wirtschaftsinformatik, MKWI
(2010)

Right Scaling for Right Pricing 213

http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/513546/IPOL-JOIN_ET(2014)513546_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/513546/IPOL-JOIN_ET(2014)513546_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/513546/IPOL-JOIN_ET(2014)513546_EN.pdf
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
http://dx.doi.org/10.1007/978-3-642-40651-5_18

57. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating to
microservices architectures: an empirical investigation. IEEE Cloud IEEE Cloud Comput.
J. 4(5), 22–32 (2017)

58. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic
mapping study. In: 8th International Conference on Cloud Computing and Services Science
(CLOSER) (2018)

59. Terho, H., Suonsyrjä, S., Karisalo, A., Mikkonen, T.: Ways to cross the rubicon: pivoting in
software startups. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES
2015. LNCS, vol. 9459, pp. 555–568. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-26844-6_41

60. Villamizar, M., et al.: Cost comparison of running web applications in the cloud using
monolithic, microservice, and AWS lambda architectures. SOCA 11(2), 233–247 (2017)

61. Wagner, B., Sood, A.: Economics of resilient cloud services. In: IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 368–374
(2016)

62. Walterbusch, M., Martens, B., Teuteberg, F.: Evaluating cloud computing services from a
total cost of ownership perspective. Manag. Res. Rev. 36(6), 613–638 (2013)

63. Willcocks, L.P.: Evaluating the outcomes of information systems plans managing
information technology evaluation—techniques and processes. In: Strategic Information
Management: Challenges and Strategies in Managing Information Systems, pp. 271–294
(2001)

64. Xiong, H., et al.: CloudLightning: a self-organized self-managed heterogeneous cloud. In:
Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 749–
758 (2017)

65. Yang, H., Tate, M.: A descriptive literature review and classification of cloud computing
research. Commun. Assoc. Inf. Syst. 31(1), 35–60 (2012)

214 P. Rosati et al.

http://dx.doi.org/10.1007/978-3-319-26844-6_41
http://dx.doi.org/10.1007/978-3-319-26844-6_41

Malicious Behavior Classification in PaaS

Cemile Diler Özdemir(B), Mehmet Tahir Sandıkkaya, and Yusuf Yaslan

Computer Engineering Department, Istanbul Technical University,
Sarıyer, 34469 Istanbul, Turkey

{ozdemirc,sandikkaya,yyaslan}@itu.edu.tr

Abstract. PaaS delivery model let cloud customers share cloud provider
resources through their cloud applications. This structure requires a
strong security mechanism that isolates customer applications to prevent
interference. For concurrent configurations of common providers, cloud
applications are mostly deployed as server side web applications that
share a common thread pool. In this paper, a malicious thread behavior
detection framework that utilizes machine learning algorithms is pro-
posed to classify whether the cloud platform executes a malicious flow in
the currently active thread. The framework uses CPU metrics of worker
threads and N-Gram frequencies of basic, privacy-friendly user opera-
tions as its features during machine learning phase. The proof of concept
results are evaluated on a real-life cloud application scenario using Ran-
dom Forest, Adaboost and Bagging ensemble learning algorithms. The
scenario results indicate that the malicious request detection accuracy of
the proposed framework is up to 87.6%. It is foreseen that better feature
selection and targeted classifiers may end up with better ratios.

Keywords: Cloud security · PaaS · Malicious behavior ·
Machine learning

1 Introduction

The popular cloud computing concept permits cloud customers, which are mostly
small to medium enterprises, rapidly enable an Internet-based service for their
users on the resources of the cloud provider. This minimum-effort on-demand
approach is highly adopted for the past ten years; therefore a Cisco report indi-
cates that cloud data center workloads will be tripled from 2015 to 2020 [13].
On the other hand, there are still some prospective customers who have secu-
rity concerns. Also, cloud providers are always in a quest for better security
mechanisms to protect their valuable resources [2].

Most of the common PaaS providers offer web application platforms to their
customers. The reason for that is twofold: First, many customers require web-
oriented services to provide to their users. Second, there exists a well-known
technology for this; therefore, adoption is considerably easy. As a result, this
strategy is beneficial both for the PaaS providers and the PaaS customers. Since
popular scripting languages (such as Ruby and Python) as well as virtualized
c© Springer Nature Switzerland AG 2019
V. M. Muñoz et al. (Eds.): CLOSER 2018, CCIS 1073, pp. 215–232, 2019.
https://doi.org/10.1007/978-3-030-29193-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29193-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-29193-8_11

216 C. D. Özdemir et al.

platforms (such as Java and .NET) are commonly used in web development in
recent years, providers build their servers on these popular technologies. Cloud
customers can quickly customize their existing web applications, then deliver
them to the providers to be served in the cloud. Thus, deploying many cloud
applications is straight-forward when PaaS is built on top of web application
servers.

The common benefit of rapid adoption to the cloud comes with a major flaw.
Different cloud customers share PaaS platform resources (the most important
resource is probably being the memory space from security perspective) and it
requires isolation between customer applications to prevent interference between
different applications. This interference can occur unconsciously or maliciously.
For instance, a faulty application can consume most of the memory or CPU on
the provided platform for many customers. Therefore, other customers are influ-
enced; even there is no conscious attack to the PaaS platform. In addition, it is
possible that maliciously acting customers can execute code to attack other cus-
tomers or to the platform. Availability, confidentiality and integrity of PaaS are
threaten for these reasons [12]. PaaS providers need a strong security mechanism
to protect and isolate their customer applications and the platform itself.

Theoretically, a cloud application provision platform could be designed with
different approaches. For instance, each cloud application may be a separate oper-
ating system process or each cloud application may reside in its own operating
system for better isolation. On the other side of the spectrum, a cloud applica-
tion may be organized as a single uninterrupted thread —as in cooperative fibers
instead of preemptive threads. Both ends of the spectrum are acceptable when
the crucial point is satisfied; the flow of execution must be as defined as the cloud
customer programmed. The sole difference is, placing each cloud application in
a separate operating system is extremely expensive in one hand and leaving the
control of whole execution to cloud customer is too risky for the cloud provider
on the other hand. The cloud providers are trying to balance the ease of adoption
and lesser security risk for their resources when they choose their designs.

Currently, PaaS customers are limited to web applications due to leading
PaaS providers Google1, Heroku2 and Amazon3. This approach has the advan-
tage of rapid adoption as discussed before. Moreover, the providers may limit
customer applications’ access to trivial resources such as files or sockets via care-
fully set up permissions. However, memory and CPU are shared among multiple
threads in web applications as well as per-request user behavior cannot be traced
[17]. This vulnerability is left behind as a trade-off for ease of adoption instead
of isolating memory and CPU via process containers [16].

The aim of this paper is to propose a security mechanism that can classify
malicious flow of execution independent of the underlying approach; being a
thread, a process or a separate operating system by observing simple, basic
privacy-friendly access sequences of a task and the respective CPU metrics. This

1 https://cloud.google.com/appengine/.
2 https://www.heroku.com/.
3 https://aws.amazon.com/elasticbeanstalk/.

https://cloud.google.com/appengine/
https://www.heroku.com/
https://aws.amazon.com/elasticbeanstalk/

Malicious Behavior Classification in PaaS 217

is done by carefully setting entry and exit points for critical provider resources
and observing them. In case of anomalies, these entry or exit points could also be
used to terminate the execution of the malicious thread. Entry or exit points are
not chosen to be resource specific, but rather operation specific. As a result, the
detection mechanism cannot collect private data of the cloud customers; but only
a statistical view of sequential resource access operations. This statistical view
is enriched using machine learning techniques, then classified to detect malicious
or benign behaviors.

1.1 Comparison with Other Security Mechanisms

Many intrusion detection mechanisms have been proposed for the security of
PaaS clouds; including host based intrusion detection systems [1], network based
intrusion detection systems [8], distributed intrusion detection systems [18] and
hypervisor based intrusion detection systems [7]. One may note, aforementioned
security mechanisms are not designed to isolate threads running on the same
web application server. Intrusion detection systems are designed to detect intru-
sions from outside of a pre-defined secure perimeter, which does not exist in the
cloud deployments. Further, the mentioned systems focus on network perimeter,
operating system or virtualized set of operating systems rather than monitoring
thread behavior. Therefore, they cannot consider isolation of customer applica-
tions hosted in the same process virtual machine.

Besides, it should be noted that an intrusion detection system could be ben-
eficial in a PaaS deployment. Figure 1 presents PaaS service model in a layered
approach. It can be observed that the customer has the responsibility only for
the application and data layers. The bottom layers are managed by the cloud
provider. Recalling where intrusion detection systems are affective, it is obvious
that the cloud provider can effectively deploy an intrusion detection system to
protect all resources from third parties. However, it will hardly help to protect
the cloud applications or the underlying platform from another cloud applica-
tion.

Apart from intrusion detection systems, there are other widely used security
mechanisms in PaaS. These are either hardware or software based isolation mech-
anisms. Software mechanisms may isolate threads, processes or virtual machines
of different users [3]. For instance, Heroku uses container-based isolation which
groups operating system processes by kernel namespaces and resource allocations
to isolate from other groups. Docker4 is one of the most popular open-source
container platform providers, which has been adopted by many PaaS providers.
In addition, Cloud Foundry5 also isolates its tenants using user-based isolation
mechanisms. It is a traditional and widely used technique that each application
runs as a different user within the operating system. However, sharing the same
process virtual machine environment by multiple users requires runtime isolation
mechanisms [23].

4 https://www.docker.com/.
5 https://www.cloudfoundry.org/.

https://www.docker.com/
https://www.cloudfoundry.org/

218 C. D. Özdemir et al.

Fig. 1. The PaaS deployment model: The physical computer resides a hypervisor to
monitor the operating systems through system virtual machines. This level of abstrac-
tion is mostly known as IaaS. On top of operating systems, many process virtual
machine instances could be run. Each of these process virtual machines (E.g. JVM)
may isolate an application, but not the threads within the same application. This level
of abstraction is mostly known as PaaS. The process virtual machine may be configured
as a web application server and the threads may belong to different cloud applications
of different cloud customers [14].

Another widely used security mechanism that could be relevant might be
virus or malware scanners. As malware scanners also seek for malicious behavior
of executable files, historically they do this search mostly offline, simply via pat-
tern matching. For sure, malwares evolved in time and their current codebase
are so complex to be matched by patterns. Modern malware scanners search for
malicious behavior by emulating malware behavior in a sandbox —still offline,

Malicious Behavior Classification in PaaS 219

before actually executing the file. This is conceptually different than cloud appli-
cations executed on a PaaS deployment. The application is paid to run as a web
application within the same process scope with others. Moreover, cloud users
may misbehave or feed malicious input that cannot be detected by offline checks.
Therefore, the detection must be at runtime on the cloud.

1.2 Contributions

Note that, this paper is an extended version of authors’ previously published
work [14].

This paper presents a runtime-based security framework for multitenant PaaS
providers to detect malicious behaviors using machine learning. The main con-
tributions of this paper are summarized as follows:

– Thread behavior detection framework : A thread behavior detection framework
is proposed. The functionality of this framework could be easily integrated
into cloud applications through the provided PaaS platform. The framework
is designed for PaaS providers which have many customer web applications
in the same application server. In this deployment scenario, customers’ web
applications reside on the same process virtual machine, which is a single
process from the operating system’s perspective. The proposed framework
is effective within this process virtual machine. It measures worker threads’
CPU usage metrics and resource access sequence during a task to reason
about an anomaly.

– Well-selected privacy-friendly metrics: The selected metrics that are required
to classify the malicious execution are observable in the runtime. The collected
features are independent from underlying mechanisms, yet dependent on the
flow of the execution to complete a task. Being independent from threads,
operating systems, programming languages or cloud infrastructures has two
advantages. First, this approach does not leak any personally identifiable
information. Second, it is adaptable to almost any architecture. Therefore,
the features that are collected without any dependency are used to classify
malicious or benign behaviors in a PaaS cloud.

Based on our contributions, things that makes the proposed security mech-
anism unique and novel are: First, the proposed mechanism does not assume
there exists a secure perimeter as in intrusion detection systems. Therefore, it
does not monitor network activity or collect any feature from network interfaces.
The main focus is the current running thread. Second, the proposed mechanism
does not make the assumption that every execution of an application are identi-
cal. Each execution of a cloud application may be radically different than others
and only one of them may cause trouble in runtime. Regular malware scanners
are far from detecting such cases even though they inspect customer code line
by line.

The rest of this paper is organized as follows: Sect. 2 spots some light to the
historical and recent studies on the topic. The proposed security mechanism is

220 C. D. Özdemir et al.

presented in the following Sect. 3. The experimental setup of the study is detailed
in Sect. 4. Section 5 describes the selected feature set and classification algorithms
applied to the extracted data. The results of the experiments are presented in
Sect. 6. Finally, Sect. 7 concludes the paper and presents a discussion on the
results.

2 Related Work

Many malicious behavior detection systems exist in the literature that utilizes
machine learning algorithms [6,12]. Most of these are focused on intrusion detec-
tion systems to protect a perimetrized computer network infrastructure. There-
fore, they mostly rely on categorizing transported packets by identifying their
headers or part of their contents. These models generally extract the feature
vector from data, packets, user input command sequences, log files, low-level
system information and CPU/memory usage [22]. As a result, they might have
a huge feature set that may probably cause privacy issues when used all together.
Besides, as mentioned before, these intrusion detection systems differ from the
proposed mechanism as they always assume a trusted perimeter to be protected.
They hardly detect malicious activity that originates from the insiders. Note
that, in PaaS deployments, the providers are willingly to accept the customers
as tenants, thus insiders. Then, malicious activities may originate from these ten-
ants or tenants’ users. Therefore, an intrusion detection system cannot detect
malicious user behavior after the request is once accepted to access internal
resources. In practice, an intrusion detection system may exist independent of the
proposed mechanism and controlled by the PaaS provider to protect the whole
PaaS deployment against third party attackers; e.g. denial-of-service attackers.

Another protection mechanism that is worthy of mentioning for operating
systems is malware scanners. These approach is beneficial when the user of a
program is known beforehand. In that case, the program execution could be
emulated offline, right before the program actually executes. Then, application’s
execution is permitted if the emulation does not match any known malicious
pattern. During intelligent malware scanning, application programming interface
(API) calls and machine instructions are widely used features [4]. Pirscoveanu
et al. [15] used sequence, frequency and count of the windows platform system
calls as main features to classify with Random Forest algorithm. This study
can classify several malwares simultaneously with this approach. Fan et al. [6]
also used API calls as features of their Malicious Sequential Pattern Malware
Detection (MSPMD) framework. They applied modified Generalized Sequential
Pattern algorithm for sequence mining with All-Nearest-Neighbor classifier to
Windows Portable Executable (PE) samples. Uppal et al. [21] applied N-Gram
algorithm to extract features from API sequences. Shabtai et al. [19] move to
a lower level and utilized machine instruction data to extract features with N-
Gram pattern from opcodes. Then, several classification algorithms are applied
to extracted feature vector to detect unknown malicious applications. The given
list of malware detection studies are close to the proposed approach as they

Malicious Behavior Classification in PaaS 221

monitor user behavior from their resource access then classify them. Still, they
should go through the all code sequence to extract information about examined
application. On the other hand, the proposed application collects information in
runtime when resource access happens.

The main feature enrichment algorithm used in this study is N-gram. N-Gram
algorithm has a history in prediction models as it is suitable for sequential data.
Su et al. [20] utilized N-Gram model to predict future requests of users. This prob-
abilistic prediction model aims to make best estimate for the users’ next actions
based on previous actions. Su et al.’s study does neither have a security focus nor
they try to estimate malicious requests. Still, it is foreseen that N-Gram predic-
tion model is adaptable to predict malicious behavior of users. Supporting that, N-
Gram is applied to API calls and machine instructions data in the security domain
[19,21]. These studies can provide only system level detection and prevention in
the cloud deployments.

Malicious thread execution detection in PaaS clouds is a necessity even
though the mentioned malware detection techniques’ results are favorable. This
necessity is a result that the proposed system covers an unexplored area for
cloud computing security and may lead to cost benefits for cloud providers. The
framework runs in the PaaS provider side, together with PaaS customers’ cloud
applications. This framework monitors thread behavior and collected informa-
tion is analyzed offline to train a classifier that is used for runtime decision
making afterwards.

3 Proposed Mechanism

The proposed mechanism is designed to cover the widest possible range of sce-
narios offered in the current PaaS ecosystem. Current PaaS providers offer their
computational resources to their customers through threads as they offer web
application provisions. The customers sometimes reside in the same process vir-
tual machine. In that case, there is a risk of interference as they share the same
process scope. Either the customers’ cloud applications may interfere or the
cloud applications may access provider’s resources without permission. In such
an adversarial model, the aim of the proposed method is not completely iso-
late cloud customers’ access to the platform resources. The aim of the proposed
model is to determine if the cloud customer is acting maliciously. This malicious
act can occur consciously or unconsciously. An unconscious malicious act may
occur as a result of an error or even if the customer application is programmed
correctly, customer’s user may misbehave. The aim is to detect the anomalous
flow of execution independent from how the unwanted flow occurs. The mali-
ciously acting threads can be stopped or at least kept away from accessing more
resources right after they are classified as malicious by the proposed security
framework.

Checkpoints are used to enable control over threads. As stopping threads
prematurely could cause security problems on its own, the framework waits for
the thread stop itself for a while after marking it as malicious. If the thread does

222 C. D. Özdemir et al.

not stop in the given interval, framework waits for the thread to be trapped in
one of the checkpoints, then the execution is interrupted. Checkpoints are the
methods where the application accesses any provider resources. Access to each
PaaS resource is wrapped in a separate method. This could be easily managed
through aspects [10]. Checkpoints are defined in enter and exit of resource con-
suming system methods and are identified using aspects because of its numerous
advantages. First, time consumption of each resource access can be collected
per-request without affecting privacy of the customers. The only leaked data is
the sequence of the resource access and the time consumption in each resource.
Second, the checkpoints are programmed to disrupt the execution of a thread if
its behavior after it is classified as malicious by the framework. This is beneficial
because the threads cannot request any more resources if they are classified as
malicious.

The anatomy of a web application server must be noted to better describe
the proposed mechanism. A web application server is not different from a reg-
ular web server when compared by its input and output. The difference lies
how it responds to requests internally. For each request it receives, instead of a
static file to respond back, it executes an application and responds the output
of that application. Simply, a web application server stitches the input and out-
put streams of applications to web requests and responses. The web application
might be designed dynamic and behave dynamically with respect to user input
carried on user requests. Then, a web application might produce several dynamic
responses. From the operating system perspective, a web application server is a
single process. It holds a pool of threads. When it receives a request, it chooses
a random thread from the pool, dispatches relevant user and execution flow to
thread and waits for the execution to conclude. Then, the thread is sent back to
the pool to serve another user for another execution.

The framework focuses on web application users’ request based analysis as the
main execution cycle takes place on a request-oriented execution. Fundamentally,
the mechanism distinctively analyses each worker thread per request of each
user, so even capable of classify one-time unconscious malicious activity of a
trustworthy user. This feature of the proposed mechanism is especially useful
in the scenario of adversaries capture someone’s credentials then logged into an
application to cause harm.

Proposed mechanism detects maliciously acting threads on the cloud plat-
form using machine learning techniques. First, classification features are selected
to be measured by proposed framework. Instant CPU usage and cumulative CPU
usage per request are two attributes of the feature vector. Moreover, feature
vector contains three more attributes per request. These attributes are resource
access duration, resource access type and resource access sequence. Access type
feature is mapped to CRUD (create, read, update, delete) functions and contains
information about requested function. Sequence feature holds order of requested
functions. It is so informative to have sequence of these operations to obtain
frequency of the operation and transaction between each operation.

Malicious Behavior Classification in PaaS 223

Note that, collection of the mentioned data is a time and resource consuming
process. The framework performs some optimizations to enhance data collection,
such as using running averages instead of storing each value separately or setting
up epochs for cumulative metrics. Otherwise, data collection itself turn out to
be the main consumption of resources. Moreover, privacy of the cloud customer
or user is considered during data collection. Proposed mechanism observes only
thread behavior and collects processor usage and requested operation sequences
on runtime. Finally framework classifies malicious behavior of the cloud cus-
tomer or user using collected feature vector. It is considered that, for the cloud
customer, this feature set is far less invasive than a malware analysis tool that
inspects each line of code or an intrusion detection system that inspects each
packet separately. The cloud user’s privacy concerns mostly rely on their rela-
tionship with the cloud customer. Still, it could be considered that a cloud user
who is willing to use cloud customer’s application in the cloud is probably signed
a service level agreement to support this privacy decision.

Proposed mechanism processes the collected data using N-Gram algorithm
to enrich the feature set. N-Gram represents a contiguous sequence of N items
from a given list of items and predicts the next item. In natural language pro-
cessing these items can be letters or words, in speech recognition items can be
phonemes and in malware analysis they can be system calls or machine instruc-
tion sequence. In the proposed mechanism, operation sequence is one the fea-
tures that is beneficial to be enriched and the set of operations is represented as
O = {Create, Read, Update, Delete}. Table 1 represents sample tokenized opera-
tion sequences data and their types to visualize structure of the train data. This
sequence data is represented as string and these tokens are converted into a set of
new attributes using Weka NGramTokenizer API with the values Nmin = 1 and
Nmax = 5. After this filtering process, new feature vector has 132 new attributes
according to occurrence frequency of the transactions between each operation
from the sequence text data. Operation transactions are visualized in Fig. 3.

Many classification algorithms are utilized with the enriched feature set where
some of them stand out. The classifiers performed better with the training data
after feature vector measured and tokenized with the N-Gram. In order to detect
malicious thread, different classification algorithms have been evaluated. After
the comparison of test results, Random Forest classifier is integrated into pro-
posed framework as the most accurate classifier.

Classification is made in the proposed framework based on the aforemen-
tioned trained classifiers. Proposed framework uses runtime observation to clas-
sify a request. Figure 2 shows classification process of runtime observations. Pro-
posed framework is integrated into an experimental cloud web application that
is explained in detail in Sect. 4. Note that, the proposed behavior based system
does not require a heavy signature database. The framework could be integrated
into a PaaS deployment easily with previously known good parameters, then
updated accordingly.

224 C. D. Özdemir et al.

Fig. 2. The overall architecture of the proposed framework for malicious thread behav-
ior detection. The framework extracts four features from any PaaS web application
server deployment in a cost-effective and privacy-friendly way. The collected metrics
are: instant CPU share of a thread in the web application server, CPU share of a thread
over a period of time, a thread’s access type (create, read, update, delete) to critical
resources (databases, files, sockets, etc.) and finally the duration of this access. These
features are enriched with N-Gram algorithm based on access sequence during training
phase. In the test phase, a thread’s behavior is classified as benign or malicious based
on trained knowledge [14].

4 Experimental Setup

The proposed mechanism is tested on a demo cloud system that contains an event
ticketing application connected to a relational database. Conventional paths of
usage are recorded and repeated with Apache JMeter to reproduce a set of
regular requests. Realistic attack scenarios are considered and also added to
the query set of JMeter. Experimental ticketing cloud application is composed
of basic user operations that may be mapped to CRUD (create, read, update,
delete) operations on a database. These four main operations are: add, delete,
read, and update. Depending on the payload of the request an event, a user,
a ticket may be added, read, updated or deleted from the cloud application.
The application also includes many meta elements such as text, graphics, audio,
and video. Training set contains add, delete, read and update functions either
as a regular or a malicious operation. Regular requests are defined as common
user behavior depending on cloud application’s scope and goal. On the other
hand, malicious operations are selected from a wide set of possibilities. Among
many other possibilities, an unexpected content may be added to the database,
whole table may be dropped, a large set of bogus data may be inserted. The
attack scenarios are produced by considering cross-site scripting, SQL-injection,
database modification and file system access scenarios.

The final set contains ten sets that include nearly 1% malicious requests and
the total number of queries is 100 000. Each experiment is conducted with 10 000

Malicious Behavior Classification in PaaS 225

requests of which nearly 100 of the requests are malicious. Each experiment is
repeated 10 times. In the final set, there are exactly 1000 malicious requests and
99 000 regular requests. The results are presented as the average of 10 indepen-
dent experiments.

Note that, it is assumed that, a PaaS customer’s cloud application reside in a
JVM and deployed the proposed framework. This is amongst the most common
approaches in the current PaaS deployments. Therefore, utilizing Java in the
experiments is realistic even though the proposed mechanism could be adopted
to other systems as well. Java Management Extensions (JMX) is utilized to
measure processor shares, memory and average time consumption for a user
request.

5 Used Feature Set and Classification Algorithms

In this paper, N-Gram feature extraction algorithm is applied to feature set and
its brief description is given in Subsect. 5.1. After the feature extraction, ensemble
learning algorithms, Random Forest, Bagging and AdaBoost, are run on the data
to evaluate their accuracy in proposed framework. These classification algorithms
are described respectively in Subsects. 5.2, 5.3 and 5.4.

5.1 N-Gram Features

N-Gram models sequence of n elements, which is usually sequential tokens such
as letters, words or phonemes. Though, this paper utilizes N-Gram probabilistic
model to predict the type of the next operation Xi based on previous operation
sequence Xi−(n−1),Xi−(n−2), . . . Xi−1. Likelihood of the next element in the
sequence is symbolized as P (Xi | Xi−(n−1),Xi−(n−2), . . . Xi−1) and it is based
on (n − 1) order Markov model.

The proposed framework uses Weka API’s NGramTokenizer filter to the col-
lected operation sequence data to enrich the sequence information to be used
in the classifiers feature sets. NGramTokenizer’s output is a new features vector
that contains probability of each gram. An example data is shown in Table 1.
N-Gram splits the given sequence data with the minimum and maximum grams.
The frequencies and transitions of each operation that illustrated in Fig. 3 is cal-
culated. When N-Gram is configured with larger n values, it stores more context
with larger sequence information. Storing more context provides better predic-
tion but it requires more memory usage and time consumption. However, pre-
diction gets worse with the small N while memory usage and time consumption
decrease. Eventually, N is given with the interval of [1, 5] that provides reason-
able efficiency of prediction accuracy, time consumption and memory usage in
the proposed framework during training phase.

226 C. D. Özdemir et al.

Fig. 3. Transitions, St→St+1, between states. States represent resource access types
and transitions can be evaluated with this state machine [14].

Table 1. Sample data is shown below for N-Gram classification. N-Gram classifies
regular or malicious threads only by the sequence of their access types. It does not check
which resource threads access or for how long. It also does not check the parameters of
the operations. Such information is fed into the classification model by other features.

Operation sequence Request type

Read → Read Regular

Read → Read → Add → Update Regular

Delete → Delete → Delete Malicious

Update Regular

5.2 Random Forest Classifier

Random Forest is an ensemble learning method that grows many random classi-
fication or regression trees. Trees vote for the most popular class and the result
is the combination of these tree predictors. One advantage of Random Forest
is it runs efficiently on large datasets. Moreover, Random Forest algorithm has
randomness in tree construction which minimizes the correlation. This property
is especially useful when dealing with several execution traces in which some of
them could be malicious. In addition, Random Forest algorithm does not overfit
to data [5]. Rapidly increasing cloud data traffic requires memory and time effi-
cient algorithms to run with big data. These characteristics make random forest
algorithm applicable to classify malicious behavior in cloud deployments. The
pseudo code of the random forest algorithm is given in Algorithm 1.

Malicious Behavior Classification in PaaS 227

Algorithm 1. Random Forest generates ensemble of trees using randomly selected

instances and features.
1: procedure RandomForest
2: f ← features
3: N ← number of trees
4: H ← ∅
5: for i = 1 to T do
6: ni ← bootstrap samples from original data
7: gi ← growTree(ni, f)
8: H ←H ∪ gi

9: procedure GrowTree(n,f)
10: fi ← subset of f
11: best split among fi
12: return tree

5.3 Bagging

Bagging [11], also called Bootstrap Aggregating, is an ensemble technique that
uses classifiers trained on instances generated by randomly drawn examples,
with replacement. Therefore, each classifier in the ensemble is obtained with a
different random sampling of the training dataset. The final decision is given by
majority vote over individual classifiers’ outputs.

5.4 AdaBoost

H(x) = sign

(
T∑

t=1

αtht(x)

)
(1)

AdaBoost, short for Adaptive Boosting, is a successful boosting algorithm
that constructs a strong classifier H(x) as linear combination of weak classifiers
ht(x) shown in Eq. 1. Prediction of the class label H(x) is made by calculating
the weighted average of the weak predictions ht(x). The weight, αt, is based on
the classifier’s error rate which infers the number of misclassified instances over
the training set divided by the training set size.

Adaboost algorithm is known to be used effectively in intrusion detection
systems as it has low computational complexity, high detection rate, and low
false-alarm rate [9]. Therefore, it is chosen as one of the candidate classifiers to
compare its accuracy in the proposed framework.

6 Experimental Results

Each published result is obtained after ten-fold cross validation for statistical
correctness. Experimental results are evaluated based on the percentage of incor-
rectly classified instances, precision values, recall values and F-measure. These

228 C. D. Özdemir et al.

measurements are calculated with respect to the True Positive (TP), False Pos-
itive (FP), True Negative (TN) and False Negative (FN) rates as shown on the
confusion matrix presented in Table 2.

Misclassified =
FP + FN

FP + TP + FN + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F–Measure = 2 × Precision × Recall

Precision + Recall
(5)

Percentages of incorrectly classified instances are calculated according to
Eq. 2. Sequentially, precision, recall and F-Measure calculations are shown in
Eqs. 3, 4 and 5, respectively.

Table 2. Confusion matrix legend.

Predicted

Malicious Regular

Actual Malicious TP FN

Regular FP TN

Table 3. Classifiers’ result without resource access sequence data [14].

Random forest Bagging AdaBoost

Misclassified % 0.888 0.9111 0.986

Precision 0.6204 0.6164 0.5133

Recall 0.299 0.242 0.291

F-Measure 0.4011 0.3457 0.3690

Table 3 shows used classifiers’ results without resource access sequence enrich-
ment with N-Gram algorithm. Operation sequence feature is not evaluated in
these experiments. This feature set has processor usage, resource usage dura-
tion and operation types of the user’s execution. However, these operations of
user’s are not sequenced. Therefore, classifiers cannot reason about their order,
but only if they appear in a malicious act or not. Random Forest classification
results on this dataset have a large number of incorrectly classified instances. In
addition, Bagging and AdaBoost algorithms with J48 decision tree base classifier
do not obtain better accuracy than Random Forest algorithm.

Table 5 shows classification results with N-Gram feature extraction. Oper-
ation sequence features are filtered with the values Nmin = 1 and Nmax = 5

Malicious Behavior Classification in PaaS 229

and feature extraction process in framework is shown in Fig. 2. After enriched
feature extraction, the new feature vector includes the processor usage, resource
usage duration, operation types of the user’s execution and generated N-Gram
features that includes the sequence of executed operations.

It is clear that Table 5 includes more accurate results than Table 3 for all
classifiers as expected for the same classification instances. The number of mis-
classified instances drop off to 162 from 888 after the operation sequence feature
is added.

Table 4. Confusion matrix of the proposed framework. The proposed framework runs
Random Forest classifier with N-Gram feature extraction into feature set [14].

Predicted

Malicious Regular

Actual Malicious 876 124

Regular 38 98962

Table 5. Classifiers’ results enhanced with N-Gram feature extraction [14].

Random forest Bagging AdaBoost

Misclassified % 0.162 0.192 0.2

Precision 0.9584 0.9646 0.9381

Recall 0.876 0.839 0.857

F-Measure 0.9153 0.8968 0.8954

Among the classifiers, Random Forest algorithm gets the most accurate and
promising results as presented in Table 5. Only 162 instances are labeled incor-
rectly out of 100 000. 38 of regular instances out of 99 000 are classified as mali-
cious. This means, only 38 valid requests among 100 000 requests will be stopped
as a result of suspicion. This is a low false-alarm rate for cloud providers and it is
hoped to be enhanced further in the future. 124 malicious instances out of 1000
are classified as regular request. This accuracy rate is not stellar; but promising
for future studies. It is foreseen that better approaches to detect malicious behav-
ior may help to decrease false negative rate. Table 4 shows the overall confusion
matrix of Random Forest algorithm with enriched N-Gram feature extraction.
Precision result given in Table 5 indicates that, a malicious predicted instance is
classified correctly with the probability of 0.95 by the proposed framework. This
result could be misleading as most of the requests are benign and the experi-
mented data is unbalanced. The recall value, which may indicate this unbalanced
classification, shows that a malicious request is detected by the proposed frame-
work with the probability of 0.87. Since classes are unbalanced F-Measure is
evaluated as the main success criteria of the framework to inspect if it is close to
its best value at 1. F-Measure value, being 0.91, indicates that proposed frame-
work is unbalanced, yet accurate on both malicious and regular classes.

230 C. D. Özdemir et al.

7 Discussion and Conclusion

A malicious behavior detection framework to be used in PaaS clouds by the cloud
providers is proposed in this study. This presented approach utilizes machine
learning techniques and especially beneficial in the concurrent multitenant PaaS
ecosystem. Cloud customers share the resources of the cloud providers within
the same process scope in the current ecosystem. This multitenant approach
may lead to possible security flaws that may be rooted from cloud customers
that share the same cloud provider or from cloud customers’ users. Therefore,
misbehavior must be detected efficiently. The proposed framework obtains a
pseudo-isolation by monitoring threads’ flow detecting malicious behavior. This
has the benefit for all stakeholders in the cloud ecosystem. The cloud providers
can protect their resources. The cloud customers can rely on the providers. The
cloud users can trust that their privacy will not be violated. The proposed frame-
work is deployed in the web application level and it can be integrated into any
web application server in the PaaS cloud. The proof of concept implementation
is realized in a standard JVM with an open source web application server with
no source code modifications.

Many machine learning techniques that are good candidates for behavioral
calassification are tested and combined in the proposed framework. N-Gram
algorithm is utilized as it is helpful to filter the operation sequence to enrich
and extract additional sequence features. Measured features are extended with
the additional extracted features. Then, the proposed framework classifies the
requests as benign or malicious using the combined measured metrics. This struc-
ture builds the classification module of the framework and it is built based on
the training data. It is observed that, the Random Forest classifier is capable of
detecting a malicious request with a probability of 0.87 in this setup.

One of the main flaws of the proposed framework may be the precision of
measurements. More precise measurements may lead to better results. Moreover,
it could be foreseen that features may be enriched better with better reasoning
of the underlying nature of the problem. Then, better classifiers could be found
based on selected feature vector. In the near future improved malicious behav-
ior detection frameworks may appear based on more precise measurements and
better enriched feature sets. Furthermore, under different configurations of cloud
deployments machine learning algorithms or parameters may require to be pol-
ished.

References

1. Arshad, J., Townend, P., Xu, J.: An abstract model for integrated intrusion detec-
tion and severity analysis for clouds. In: Cloud Computing Advancements in
Design, Implementation, and Technologies, vol. 1 (2012)

2. Banerjee, C., Kundu, A., Basu, M., Deb, P., Nag, D., Dattagupta, R.: A ser-
vice based trust management classifier approach for cloud security. In: 2013 15th
International Conference on Advanced Computing Technologies (ICACT), pp. 1–5.
IEEE (2013)

Malicious Behavior Classification in PaaS 231

3. Bazm, M.M., Lacoste, M., Südholt, M., Menaud, J.M.: Side Channels in the
Cloud: Isolation Challenges, Attacks, and Countermeasures, March 2017. https://
hal.inria.fr/hal-01591808. Working paper or preprint

4. Bazrafshan, Z., Hashemi, H., Fard, S.M.H., Hamzeh, A.: A survey on heuristic mal-
ware detection techniques. In: 2013 5th Conference on Information and Knowledge
Technology (IKT), pp. 113–120. IEEE (2013)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Fan, Y., Ye, Y., Chen, L.: Malicious sequential pattern mining for automatic mal-

ware detection. Expert Syst. Appl. 52, 16–25 (2016)
7. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-

tecture for intrusion detection. In: NDSS, vol. 3, pp. 191–206 (2003)
8. Hamad, H., Al-Hoby, M.: Managing intrusion detection as a service in cloud net-

works. Int. J. Comput. Appl. 41(1), 35–40 (2012)
9. Hu, W., Hu, W., Maybank, S.: Adaboost-based algorithm for network intrusion

detection. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(2), 577–583 (2008)
10. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.

(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

11. Mamitsuka, N.A.H., et al.: Query learning strategies using boosting and bag-
ging. In: Machine Learning: Proceedings of the Fifteenth International Conference
(ICML 1998), vol. 1 (1998)

12. Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey
of intrusion detection techniques in cloud. J. Netw. Comput. Appl. 36(1), 42–57
(2013)

13. Networking, C.V.: Ciscoglobal cloud index: forecast and methodology, 2015–2020.
White paper (2017)

14. Özdemir, C.D., Sandıkkaya, M.T., Yaslan, Y.: Classifying malicious thread behav-
ior in PaaS web services. In: Proceedings of the 8th International Conference on
Cloud Computing and Services Science - vol. 1: CLOSER, pp. 418–425. INSTICC,
SciTePress (2018). https://doi.org/10.5220/0006688204180425

15. Pirscoveanu, R.S., Hansen, S.S., Larsen, T.M., Stevanovic, M., Pedersen, J.M.,
Czech, A.: Analysis of malware behavior: type classification using machine learning.
In: 2015 International Conference on Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA), pp. 1–7. IEEE (2015)

16. Sandikkaya, M.T., Harmanci, A.E.: A security paradigm for paas clouds. Proc.
Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 16(2), 345–356 (2015)

17. Sandıkkaya, M.T., Ödevci, B., Ovatman, T.: Practical runtime security mecha-
nisms for an aPaaS cloud. In: Globecom Workshops (GC Wkshps), pp. 53–58.
IEEE (2014)

18. Sanjay Ram, M.: Secure cloud computing based on mutual intrusion detection
system. Int. J. Comput. Appl. 1(2), 57–67 (2012)

19. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., Elovici, Y.: Detecting unknown
malicious code by applying classification techniques on opcode patterns. Secur. Inf.
1(1), 1 (2012)

20. Su, Z., Yang, Q., Lu, Y., Zhang, H.: Whatnext: a prediction system for web requests
using n-gram sequence models. In: Proceedings of the First International Confer-
ence on Web Information Systems Engineering, vol. 1, pp. 214–221. IEEE (2000)

21. Uppal, D., Sinha, R., Mehra, V., Jain, V.: Malware detection and classifica-
tion based on extraction of API sequences. In: 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pp. 2337–
2342. IEEE (2014)

https://hal.inria.fr/hal-01591808
https://hal.inria.fr/hal-01591808
https://doi.org/10.1007/BFb0053381
https://doi.org/10.5220/0006688204180425

232 C. D. Özdemir et al.

22. Wu, S.X., Banzhaf, W.: The use of computational intelligence in intrusion detection
systems: a review. Appl. Soft Comput. 10(1), 1–35 (2010)

23. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 990–1003. ACM (2014)

Author Index

Aires Vieira, Marcelo 102
Andreou, Andreas S. 77

Barreiro Claro, Daniela 102
Blochinger, Wolfgang 40
Brogi, Antonio 168

Forti, Stefano 168
Fowley, Frank 190

Gillam, Lee 24

Ibrahim, Ahmad 168

Kecskemeti, Gabor 152
Kehrer, Stefan 40
Kertesz, Attila 152

Lenarduzzi, Valentina 126
Lynn, Theo 190

Markus, Andras 152

Ovatman, Tolga 64
Özdemir, Cemile Diler 215

Pahl, Claus 126, 190
Papazoglou, Michael P. 77

Rawas, Soha 1
Ribeiro, Elivaldo Lozer Fracalossi 102
Rosati, Pierangelo 190

Sandıkkaya, Mehmet Tahir 215
Sheikh Quroush, M. Subhi 64
Silva, Nathale 102

Taibi, Davide 126, 190

Yaslan, Yusuf 215

Zaart, Ali El 1
Zekri, Ahmed 1

	Preface
	Organization
	Contents
	CELA: Cost-Efficient, Location-Aware VM and Data Placement in Geo-Distributed DCs
	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Motivation and Typical Scenario
	3.2 Cloud Model Architecture
	3.3 Problem Formulation

	4 CELA Heuristics for VM Placement
	4.1 Offline MF-CELA
	4.2 Online BF-CELA
	4.3 Online BF-SLA-CELA

	5 Performance Metrics
	6 Weight Prediction Model
	6.1 Phase 1
	6.2 Phase 2
	6.3 Phase 3

	7 Performance Evaluation
	7.1 Simulation Setup
	7.2 Experimental Results

	8 Conclusion and Future Work
	References

	Will Cloud Gain an Edge, or, CLOSER, to the Edge
	Abstract
	1 Introduction
	2 Traditional Cloud
	2.1 Energy

	3 New Cloud
	3.1 Edge

	4 New Cloud for Connected and Autonomous Vehicles
	5 Concluding Remarks
	Acknowledgments
	References

	Model-Based Generation of Self-adaptive Cloud Services
	1 Introduction
	2 Microservices
	3 Motivation
	4 Self-adaptive Cloud Services
	5 Automated Generation of Self-adaptive Cloud Services
	6 Transformation Method
	7 Prototypical Implementation
	7.1 Topology and Orchestration Specification for Cloud Applications (TOSCA)
	7.2 TOSCA-based Service Bundle
	7.3 Runtime Environment Specification
	7.4 Implementation

	8 Evaluation
	9 Related Work
	10 Conclusion and Future Work
	References

	A Record/Replay Debugger for Service Development on the Cloud
	1 Introduction
	2 Related Work
	3 Remote Debugging Approach
	3.1 Full Recording
	3.2 Minimal Recording

	4 Implementation of the Remote Debugging Engine
	4.1 Internals of the Remote Debugging Engine
	4.2 Remote Debugging Client

	5 Evaluation
	6 Conclusion and Future Work
	References

	Smart Connected Digital Factories: Unleashing the Power of Industry 4.0
	Abstract
	1 Introduction
	2 Making the Transition to Industry 4.0
	2.1 Essential Characteristics of Industry 4.0
	2.2 Key Enablers

	3 Security, Standards and Reference Models
	3.1 The Security Conundrum
	3.2 The Role of Standards
	3.3 Reference Models

	4 Smart Products and Smart Machines
	5 The Advent of Smart Manufacturing Networks
	5.1 Smart Manufacturing Network Characteristics
	5.2 Digital Transformation Roadmap
	5.3 Digital Product Lifecycle
	5.4 Manufacturing Smartness
	5.5 Digital Twin Lifecycle

	6 Conclusions
	References

	Interoperability Between SaaS and Data Layers: Enhancing the MIDAS Middleware
	1 Introduction
	2 Related Works
	3 The Current MIDAS
	3.1 Request Module
	3.2 Data Module
	3.3 Dataset Information Storage (DIS)
	3.4 Web Crawler
	3.5 Result Module

	4 Formal Model of MIDAS
	4.1 General Description
	4.2 MIDAS in Description Logic

	5 Evaluation
	5.1 Our Case Study
	5.2 Experiments

	6 Results
	6.1 Results from Experiment 1
	6.2 Results from Experiment 2
	6.3 Results from Experiment 3
	6.4 Results from Experiment 4
	6.5 Results from Experiment 5
	6.6 Discussions

	7 Conclusions and Future Work
	References

	Continuous Architecting with Microservices and DevOps: A Systematic Mapping Study
	1 Introduction
	2 Methodology
	2.1 Goals and Research Questions
	2.2 Search Strategy

	3 Results
	3.1 General Advantages and Disadvantages of Microservices and Principles of the Architectural Style
	3.2 Microservice-Based Architectural Patterns
	3.3 Deployment Strategies/Patterns
	3.4 Data Storage Patterns
	3.5 DevOps and Microservices

	4 Discussion
	4.1 Architecture and Deployment Pattern Applications
	4.2 DevOps Link
	4.3 Research Trends and Gaps
	4.4 Towards an Integrated Microservice Architecture and Deployment Perspective

	5 Threats to Validity
	6 Conclusion
	A The Selected Studies
	References

	Towards Pricing-Aware Consolidation Methods for Cloud Datacenters
	1 Introduction
	2 Related Work
	3 Our Proposed Cost Model for Cloud Datacentre Management
	3.1 Configurable Cost Models Based on Real Provider Schemes

	4 Consolidator Algorithms
	5 Evaluation
	5.1 Workloads
	5.2 Scenarios
	5.3 Results

	6 Conclusions
	References

	Optimising QoS-Assurance, Resource Usage and Cost of Fog Application Deployments
	1 Introduction
	2 Motivating Example
	3 Overview of FogTorch
	4 Cost Model
	5 Multi-objective Optimisation
	6 Motivating Example (Continued)
	7 Related Work
	8 Concluding Remarks
	References

	Right Scaling for Right Pricing: A Case Study on Total Cost of Ownership Measurement for Cloud Migration
	Abstract
	1 Introduction
	2 Architecture Migration Context
	2.1 Context and Related Work
	2.2 Two Migration Business Cases

	3 Integrated Migration Framework and Process
	3.1 Step 1: Analyze and Model
	3.2 Step 2: Right-Scaling of SaaS Software
	3.3 Step 3: Right-Pricing of SaaS-Delivered Products
	3.4 Total Cost of Ownership and Cost Factors

	4 I/PaaS Cost Calculation Process
	4.1 Cost Estimation Process
	4.2 Architecture Selection and Cost/Revenue Prediction
	4.3 Assumptions – Resource Cost Modeling and Right-Scaling
	4.4 An Exemplar Costing Model

	5 Illustration and Validation – Case Study
	5.1 Application Overview
	5.2 TCO Calculation
	5.3 Experimentation – Usage and Cost

	6 Right-Pricing of SaaS Service
	7 Conclusions and Future Developments
	Acknowledgements
	References

	Malicious Behavior Classification in PaaS
	1 Introduction
	1.1 Comparison with Other Security Mechanisms
	1.2 Contributions

	2 Related Work
	3 Proposed Mechanism
	4 Experimental Setup
	5 Used Feature Set and Classification Algorithms
	5.1 N-Gram Features
	5.2 Random Forest Classifier
	5.3 Bagging
	5.4 AdaBoost

	6 Experimental Results
	7 Discussion and Conclusion
	References

	Author Index

