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Chapter 8
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Abstract Lung cancer still remains the leading cause of cancer-related deaths 
worldwide. Till now, non-small cell lung cancer (NSCLC) and small cell lung can-
cer (SCLC) have effectively responded to conventional therapy. However, because 
of cancer nature and subsequent side effects of conventional therapy, inventing 
novel drug targets for lung cancer therapies has become essential. The disease man-
agement recently has seen a paradigm shift with the advent of next-generation 
sequencing, which has extensively affected the disease prognosis and hence led to 
newer targeted therapies. Receptors particularly have played an important role as 
molecular targets and hence presented new opportunities for intracellular targeting 
of drug delivery systems. Such approach for therapy not only improves the efficacy 
of the drug but also reduces the overall systemic cytotoxicity. This chapter exten-
sively focuses on such receptors targeted for lung cancer therapy. Further, the role 
of receptors like epidermal growth factor receptor (EGFR), c-MET, and vascular 
endothelial growth factor (VEGF) has been discussed with respect to their appropri-
ate ligand(s) binding and developed nanocarrier system for targeting. In addition, 
this chapter presents the current status of clinical outcomes of conventional drugs in 
targeting these receptors and thus improving the overall survival rate in patients 
suffering from this dreaded disease.
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Abbreviations

ADC Adenocarcinomas
ALK Anaplastic lymphoma kinase
AREG Amphiregulin
ADCC Antibody-mediated cellular cytotoxicity
ATP Adenosine triphosphate
ADAM A disintegrin and metalloproteinase
BTC Betacellulin
CRR Confirmed response rate
EGF Epidermal growth factor
EPG Epigen
EPR Epiregulin
EGFR Epidermal growth factor receptor
Grb2 Growth factor receptor-bound protein 2
HAP Hypoxia-activated prodrugs
HIF-1α Hypoxia inducible factor-1α
HGF Hepatocyte growth factor
HGFR Hepatocyte growth factor receptor
HB-EGF Heparin-binding EGF
mAbs Monoclonal antibodies
MAPK Mitogen-activated protein kinase
NSCLC Non-small cell lung cancer
NRG Neuregulins
ORR Objective response rate
PI3K Phosphatidylinositol 3′-kinase
PLC Phospholipase C
PLC-γ Phospholipase C-γ
PEI Polyethylenimine
RTKs Receptor tyrosine kinases
SCC Squamous cell carcinomas
SCLC Small cell lung cancer
STATs Signal transducers and activators of transcription
SAR Structure activity relationship
ScFv Single chain variable fragment
TGF-α Transforming growth factor alpha
TKIs Tyrosine kinase inhibitors
TGFβ1 Transforming growth factor beta 1
TNFα Tumor necrosis factor alpha
VEGF Vascular endothelial growth factor
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1  Introduction

Lung cancer has been one of the major cancer types that are associated with a high- 
mortality rate, all over the globe. Lung cancer is more commonly observed in male 
patients than in females, and has a higher prevalence in the geriatric population [1]. 
Over the past century, there has been tremendous advancement in the pathophysio-
logical understanding about lung cancer. However, the major drawback associated 
with this disease is its poor prognosis, often leading to an inoperable condition. 
Nevertheless, considerable progress is being made in the development of newer 
strategies against lung cancer, especially with regard to the discovery of newer ther-
apeutic targets, development of various therapeutic molecules, either small mole-
cules or macromolecules like the antibody-based options, and also advanced 
delivery approaches like the targeted delivery systems or combinatorial therapies.

The molecular basis of lung cancer is complex and heterogeneous. Therefore, it is 
important to understand the molecular alterations at multiple levels, namely, genetic, 
epigenetic, and protein expression, and their functional significance, which may have 
the potential to impact the diagnosis, prognosis, and treatment of lung cancer. Lung 
cancers may develop through multistep processes involving several genetic and epigen-
etic alterations, particularly activation of growth-promoting pathways and inhibition of 
tumor suppressor pathways. A greater understanding of these biochemical pathways is 
thus crucial for the development of treatment strategies that can target the molecular 
aberrations underlying lung cancer, as well as their downstream pathways.

1.1  Classification of Lung Cancer

Based on their histology, the lung cancers are classified into two main types, which 
include the non-small cell lung cancer (NSCLC) and the small cell lung cancer 
(SCLC). Among these, the NSCLC is more predominant and demonstrates an 
occurrence of almost 85%, as shown in Fig. 8.1 [2]. The NSCLC is further classified 
into three major types, namely, the adenocarcinoma, the squamous cell carcinoma, 
and the large-cell carcinoma. The origin of the NSCLC is mostly epithelial, whereas 
that of the SCLC is neuroendocrine [3, 4]. The main characteristics of the different 
kinds of lung cancers with respect to their origin, occurrence, and their prominent 
features have been listed in Table 8.1.

2  Brief Overview of the Receptors Associated with Specific 
Forms of Lung Cancer

Receptor-mediated tumor targeting has received considerable attention in the field 
of anticancer therapeutics due to their specific action. Targeting the receptors, over-
expressed in cancers, has opened new opportunities for intracellular targeting of 
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drugs and delivery systems that are conjugated with targeting moieties, that is, the 
ligands. This receptor-mediated targeting of anticancer drugs, especially using 
nano-sized carrier systems, protects them from the degrading body environment and 
improves their pharmacokinetic properties by extending their circulation time 
within the body. Moreover, it also helps to overcome the systemic toxicity and 
adverse effects that arise due to the nonselective nature of most of the current anti-
cancer therapeutic agents [5].

Recently, a large number of molecular changes, such as mutations and gene 
amplifications, have been found to be responsible for tumor survival and cancer 
prognosis [6]. The targeted anticancer therapies also aim to focus on these common 
cellular modulations that take place at the molecular level. Targeting of these modu-
lations enhances the survival rates in patients, which may not be possible in 
 nonsurgical stages [7]. Personalized therapy can be used to target the cancers, 
according to the patients’ predisposition to them, according to the individuals’ 
genomic profiles, and can hence deliver appropriate drugs, at the correct dose and at 
the right time [8]. Some of the mediators that may play a predominant role in the 
treatment of lung cancer include the epidermal growth factor receptor (EGFR), the 

Fig. 8.1 Statistics for the occurrence of different types of lung cancer
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vascular endothelial growth factor (VEGF), the anaplastic lymphoma kinase 
(ALK), etc. [9]. A comprehensive list of all the prognostic factors or receptors that 
are significant during the development of lung cancer has been stated in Table 8.2.

Out of these receptors, EGFR, c-MET, and VEGFR have been discussed in 
details in relevance to lung cancer as they have been extensively studied and 
exploited for cancer therapy.

3  The EGFR Receptor

The EGFR is highly expressed in almost all types of lung cancers. The receptor has 
been extensively studied, specifically for targeting the NSCLC, since mutations of 
EGFR in SCLC patients are rare [36]. This growth factor triggers signaling through 
the EGFR receptor tyrosine kinase (RTK), which promotes cell growth and eventu-
ally leads to the metastasis of lung cancer. The strategies employed for inhibiting 
EGFR include inactivation of the TK signaling cascade or the use of antibodies to 
neutralize the EGFR and its associated ligands. There have been several reports 
about drugs and monoclonal antibodies that have been successfully used against the 
EGFR. However, the major concern with these therapies is the eventual develop-
ment of resistance by the receptor, which has necessitated combination therapies, 
using dual drug systems or drug-antibody systems [10, 37].

Table 8.1 Characteristics of various forms lung cancer

Sr. No Cancer type Characteristics

1. Small cell-lung cancer Neuroendocrine in origin
Highly metastatic and subsequent relapse observed
Rarely found in nonsmokers
Difficulty in surgical resection

2. Non-small cell lung 
cancer

Common form of lung cancer
Easily removed by surgical resection, by standard care for 
localized occurrence

(a) Adenocarcinoma Major type of NSCLC
Caused due to exposure to radiation and carcinogens
Originates from peripheral tissue of the lungs, mostly 
mucus- secreting cells
Spreads at a lower rate
Bronchioloalveolar carcinoma is adenocarcinoma

(b) Squamous cell carcinoma Second common type of NSCLC
Originates in the airway lining of the lung cells

(c) Large-cell carcinoma Difficult to treat
Originates in the central part of the lungs, may have 
neuroendocrine origin
Quick in growth and spreads rapidly
Mostly discovered at later stages

8 Lung Cancer Receptors and Targeting Strategies
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The EGFR is a 178 kDa transmembrane protein belonging to the receptor tyro-
sine kinase (RTK) family of proteins. The family consists of four members, namely, 
EGFR (Erb1, Her1), Erb2 (neu, Her2), Erb3 (Her3), and Erb4 (Her4). The receptor 
plays an important role in various cellular functions, including cell proliferation, 
survival, differentiation, and motility, and is necessary for the normal development 
of the organism [38].

3.1  Recognition Domain of the EGFR Receptor

All the aforementioned EGFR receptors share a basic structure, as depicted in 
Fig. 8.2, which consists of an extracellular binding domain that interacts with the 
ligands, the transmembrane domain traversing the lipid bilayer and the tyrosine 
kinase domain, on the cytoplasmic side, along with –COOH terminal tail containing 
several phosphorylation sites [39].

The extracellular region of the Erb family of receptors consists of 621 amino 
acids and includes two ligand-binding homologous domains (I and III) and two 
cysteine-rich domains (II and IV).

The transmembrane domain is made up of a single alpha helix containing 23 
amino acids. The cytoplasmic domain consists of 542 amino acids that form the 
juxtamembrane cytoplasmic domain, a tyrosine kinase domain, followed by the 
 carboxyl group terminal tail that encompasses multiple phosphorylation sites.  

Fig. 8.2 The general structure of EGFR comprising the ligand-binding domain, transmembrane 
domain, tyrosine kinase domain, and carboxy terminal tail

U. Koli et al.
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The intracellular domain of the receptor has 20 tyrosine residues, out of which 12 
are known to undergo phosphorylation. These phosphorylation sites serve as bind-
ing sites for the membrane-bound or soluble effector molecules, upon activation of 
the receptor.

Besides the membrane-bound forms, the Erb receptors are also found in soluble 
forms. The latter do not possess the transmembrane and the cytoplasmic domains 
and may be generated by proteolytic cleavage of the membrane-bound receptor or 
by alternative splicing [40].

Activation of the EGFR is controlled by its ligands. Upon binding with its ligand, 
a single molecule of EGFR dimerizes with another similar EGFR molecule (homodi-
merization) or with another member of the EGFR family (heterodimerization), pref-
erably Erb2. Upon activation, the cytoplasmic side having the tyrosine kinase 
domains on both members of the dimer undergoes activation and is autophosphory-
lated at selective tyrosine residues in the tail region. The autophosphorylation sites 
serve as docking sites, directly or indirectly, for small signaling molecules such as 
Grb2, Grb7, Shc, Crk PLC-γ, SRC, PI-3K, and protein phosphatases – SHP1 and 
SHP2 and E3 ubiquitin ligase Cbl. Other molecules like STAT1, STAT3, STAT5, and 
PLD participate indirectly by playing a role in signaling. The activation of EGFR 
further stimulates several other pathways, which have been summarized in Fig. 8.3.

Fig. 8.3 The EGFR signaling network. MAPK, mitogen-activated protein kinase; PI3K, phospha-
tidylinositol 3′-kinase; PLC, phospholipase C; STATs, signal transducers and activators of 
transcription

8 Lung Cancer Receptors and Targeting Strategies
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It is likely that the Erb2 receptor is necessary for the induction of tumor growth. 
The heterodimerization of Erb2 receptors with rest of the family members is an 
important mechanism for the oncogenic transformation of various types of tumors. 
This was studied using NIH3T3 cell line, which did not express any of the EGFR 
receptors. The influence of heterodimerization on tumor growth was assessed by 
transfecting various combinations of EGFR receptors in NIH3T3 cell line [41]. 
Those cells which expressed homodimers of Erb2, Erb3, and Erb4 did not induce 
any tumor growth, whereas cells which expressed only Erb1 had moderate tumori-
genic characteristics. Interestingly, the Erb2/Erb3 pair was able to induce tumor 
growth, whereas the Erb1/Erb3 and Erb1/Erb4 pairs did not. On the contrary, the 
Erb1/Erb2 heterodimer pair was able to produce an aggressive tumorigenic pheno-
type in the NIH3T3 cells. Coexpression of Erb1 and Erb2 synergistically height-
ened the cellular response of the EGFRs and increased the overall expression of the 
proliferative markers [42].

In addition to this ligand-induced dimerization model for EGFR activation, 
EGFR can be activated by another model of ligand binding, known as the “rota-
tional model.” According to this model, the EGFR exists in an inactive, unliganded 
dimeric form. Once the ligand binds to the extracellular domain, a rotation is 
induced in its transmembrane domain, in a direction parallel to the plane of the lipid 
membrane of the inactive, dimeric form. This conformational change rearranges the 
intracellular kinase domain that leads to the conversion of the inactive symmetric 
receptor to an active asymmetric form.

3.2  Binding of Ligands with EGFR

As mentioned earlier, the dimerization of EGFR receptors is due to their ligands. 
There are 11 known ligands associated with the EGFR receptors. These can be 
divided into three groups, namely, (i) those that activate ErB1, namely, the epidermal 
growth factor (EGF), the transforming growth factor (TGF)-α, amphiregulin 
(AREG), and epigen (EPG), (ii) those which are formed by ligands that are bispecific 
to ErB1 and ErB4, namely, betacellulin (BTC), heparin-binding EGF (HB-EGF), 
and epiregulin (EPR), and (iii) those which are formed by neuregulins (NRG), which 
can bind to both, ErB3 and ErB4 (NRG1 and NRG3) or only ErB4 (NRG3 and 
NRG4). There are no known ligands that bind to the Erb2 receptor, which forms 
heterodimers with the other members of the EGFR receptor family, and its overex-
pression in cells causes ligand-independent cell transformation [43].

Each of these ligands has an EGF-like core domain, consisting of ~60 amino 
acids, which is responsible for facilitating their biological activity [44]. They are 
manufactured as type 1 transmembrane precursors that are usually cleaved from the 
extracellular domain to soluble forms, which then bind to the EGFRs and activate 
them. This cleavage is promoted by the proteins of a disintegrin and metalloprotein-
ase family (ADAM), which form the soluble peptides, containing at least one EGF- 
like domain and spatially arranged cysteine residues, and are capable of EGFR 

U. Koli et al.
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activation. These soluble factors bind to the EGFRs on the cells present at a distance 
from the release site (endocrine), the neighboring cells (paracrine) or the EGFRs 
present on the same cells (autocrine). Although the separation of EGFR-specific 
ligands seems to be an important step for receptor activation, many of the ligands 
such as HB-EGF, TGF-α, AREG, and BTC, are capable of activating the EGFRs 
even when they are hitched to the plasma membrane (juxtacrine) [40].

Upon ligand binding, the activated EGFR cluster is internalized via clathrin- 
coated, receptor-mediated endocytosis, where E3 ubiquitin ligase induces lyso-
somal degradation. The internal EGFR signaling and trafficking differs according to 
the various ligands of the receptor. HB-EGF and BTC signal continuous phosphory-
lation, ubiquitination, and degradation of EGFR.  On the other hand, binding of 
TGF-α leads to temporary phosphorylation, minimum ubiquitination, and complete 
recycling of the endosomes containing the EGFRs. Inside the early endosomes, the 
TGF-α dissociates more readily from the receptor, due to the slightly acidic environ-
ment, which causes differential trafficking, and recycles the unbound EGFR back to 
the membrane [40, 45].

The EGFR receptors are internalized not only via clathrin-mediated endocytosis, 
but also via the caveolae. The mode of endocytosis is determined by the concentra-
tion of the ligand present, with a higher concentration inducing continuous phos-
phorylation and receptor degradation, leading to clathrin-independent endocytosis. 
On the other hand, lower ligand concentrations lead to clathrin-dependent endocy-
tosis, along with receptor recycling [40].

3.3  Antagonists for Ligand Binding

Over the last decade, research in targeting of lung cancer, especially the NSCLC has 
been revolving around the use of two major receptor-targeting strategies. First is the 
use of immune inhibitors, namely, the anti-EGFR antibodies that bind to the extra-
cellular domain and are highly specific for the receptor. The second strategy involves 
the use of small-molecule inhibitors that compete reversibly with the ATP to bind to 
the intracellular tyrosine kinase domain of EGFR, thus restricting autophosphoryla-
tion and blocking the downstream signaling. The mechanism of action and the bio-
logical effect of mAbs and small-molecule tyrosine kinase inhibitors (TKIs) depend 
on the route of administration, their bio-distribution, induction of EGFR downregu-
lation, and activation of other immune functions. Despite their varied mechanisms 
of action, EGFR inhibition leads to some common antitumor effects such as inhibi-
tion of cancer cell proliferation by arresting the cell cycle in G0/G1 phase, induction 
of apoptosis, reduced production of the angiogenic growth factors, prohibition of 
cellular invasion and metastasis, and sensitization of the tumors to cytotoxic drugs 
and radiotherapy [46].

Among the anti-EGFR mAbs such as cetuximab, specifically bind to the extra-
cellular region of the EGFR in its inactive form and thus obstruct the ligand-binding 
sites and block the activation of tyrosine kinase [47]. Apart from blocking the 

8 Lung Cancer Receptors and Targeting Strategies
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signaling pathways, mAbs also display antitumor action through antibody-mediated 
cellular cytoxicity (ADCC) and complement-mediated toxicity [48].

Cetuximab is one of the most extensively studied anti-EGFR antibodies for tar-
geting advanced NSCLC. It is a chimeric human murine IgG1 monoclonal antibody, 
obtained from the myeloma cell line. It consists of murine Fv EGFR-binding region 
and human IgG1 heavy and light chain Fc regions, collectively having an approxi-
mate molecular weight of 152 kDa. It binds to the ligand-binding domain III of the 
EGFR, with a high affinity (dissociation constant Kd of 1.8 nM, ~10-fold higher 
than its ligand), and thereby restricts the activation of downstream intracellular sig-
naling, particularly mitogen-activated kinases pathway, by inhibiting the receptor 
dimerization. It has been observed in certain studies that cetuximab enhances the 
cellular internalization of the receptor thereby reducing the number of receptors 
available for ligand binding [49].

Other early competitors of cetuximab included panitumumab and matuzumab. 
However, they failed in phase II clinical trials as their combination with chemo-
therapeutic agents did not demonstrate a benefit to patients compared to the chemo-
therapy alone [50]. Other antibodies targeted toward EGFR include nimotuzumab, 
pertuzumab, trastuzumab, and necitumumab. Necitumumab has been recently 
approved by the USFDA for the treatment of squamous cell lung cancer, based on 
the results of the SQUIRE trial [51]. Its role in targeting of lung cancer, as well as 
the clinical efficacy in targeting various lung cancer conditions, has been elabo-
rated [52].

Among the TKIs, gefitinib (ZD1839, Iressa), was the first drug developed to 
inhibit the EGFR. This molecule competes reversibly with ATP to bind to the intra-
cellular domain of the EGFR and blocks autophosphorylation and downstream sig-
naling. It is an orally administered, low molecular weight, anilinoquinazoline 
tyrosine kinase inhibitor. A dose of about 250 mg/day is administered for the inhibi-
tion of the EGFR and its downstream signaling processes [53]. Gefitinib selectively 
binds to the EGFR tyrosine kinases and does not inhibit serine threonine kinases 
[54]. It is capable of arresting the cell cycle in the G1 phase and it reduces the levels 
of important angiogenesis factors like the VEGF [55, 56].

Other EGFR TKIs include erlotinib, icotinib, afatinib, dacomitinib, osimertinib, 
rociletinib, brigatinib, olmutinib. Out of these, GILOTRIF (afatinib), IRESSA (gefi-
tinib), TAGRISSO (osimertinib), TARCEVA (erlotinib), VIZIMPRO (dacomitinib) 
have been approved for the first-line treatment of NSCLC with EGFR mutation.

3.4  Significant Inhibitors of EGFR

Till date, various drugs/inhibitors have been evaluated for their therapeutic effect in 
lung cancer. These have been enlisted in Table 8.3, along with their mechanisms of 
action and structures.

U. Koli et al.
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3.5  Receptor-Mediated Targeting Strategies

Although various types of lung cancers have been treated using different mAbs and 
small-molecule TKIs, new strategies for actively targeting the EGFR are being 
researched by scientists around the globe.

3.6  Prodrugs/Drug Complexes

Prodrugs are medicines or compounds that upon administration are metabolically 
converted into pharmacologically active drugs. A prodrug can be designed to selec-
tively interact with the cells or processes that are not its direct targets. It may help 
to improve the specific availability of the drug at the disease site and thus reduce the 
associated adverse effects.

Prodrugs have been widely used in targeted drug delivery systems to unload the 
cytotoxic compound into the tumor cells. They offer various strategies for their 
activation chemistry and can thus act against diverse types of cancers. The current 
trends in the development of prodrugs for cancer therapy include the use of macro-
molecules, such as drug-antibody conjugates, polymer-drug conjugates, and other 
self-assembling macromolecules, such as lipids that form liposomal or micellar 
nanoparticles. Various chemotherapeutic agents, including paclitaxel, doxorubicin, 
carboplatin, etc. have been conjugated with polymers, such as PLGA, PEG, etc. to 
synthesize prodrugs for different types of lung cancer.

The two strategies used for the conversion of prodrugs into active drugs 
include (i) passive approaches that exploit the basic physicochemical or physio-
logical changes (for e.g., reduced pH, hypoxia, overexpression of the surface 
receptor) and (ii) active strategies that utilize prodrugs that may be activated by 
a site-directed enzyme, thus aiding in specialized activation chemistry for the 
prodrug conversion.

Many enzymes are known to be upregulated in cancer. DT-diaphorase (DTD) is 
elevated in many cancers including NSCLC [70]. This is a cytosolic enzyme that 
reduces two electron containing quinone substrates and activates mytomycin C, the 
DNA cross-linker. DTD can be targeted by alkylating agents, such as RH1 that 
causes the bioreduction of the attached quinone to selectively activate the aziridine 
rings in the cancer cells [71]. Also, cytosolic phospholipase A2α, which plays an 
important role in cell cycle regulation, has been targeted by researchers. Elevated 
levels of PLA2α increase the production of eicosanoids that results in the promotion 
of tumor growth and metastatic activity of the tumor. Further, its inhibition is known 
to suppress the proliferation of tumor cells by inducing apoptosis. Subsequently, a 
nanodrug delivery system consisting of mesoporous silica nanoparticles containing 
pyrrolidone-2, and decorated by EGFR receptor-targeted antibody (EGFRAb) was 
developed. Silica nanoparticles (SN) are nontoxic and pyrrolidone-2, a potent inhib-
itor of PLA2α, blocks the production of prostaglandins E2 and leukotriene. EGFRAb 
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was employed to direct the silica nanoparticles specifically to the cancer cells. In 
vitro studies in H460 lung cancer cells showed the potency of pyrrolidone-2-loaded 
SN-EGFRAb nanoparticles, by reducing the activity of PLA2α, decreasing the lev-
els of arachidonic acid and limiting the cell proliferation. Furthermore, this nanopar-
ticulate system showed better antitumor activity (38%) with enhanced tumor 
inhibition rate in a subcutaneous model of NSCLC. Also, the EGFR antibody helped 
in targeting the nanoparticles specifically to the tumors cells as compared to the 
native nanoparticles [72].

The second approach involves the passive targeting of prodrugs to the tumor. 
This approach exploits the physicochemical characteristics of the cancer cells, such 
as the tumor microenvironment. The solid tumors in general are hypoxic due to 
deregulated cell growth and poor vascularization. Due to the hypoxic conditions, 
the cancer cells resist cell death, induce angiogenesis and interfere with energy 
metabolism of the cells. This enhances the cancer aggressiveness and metastasis. 
Under such conditions, due to falling oxygen levels, an important transcription fac-
tor called hypoxia-inducible factor-1α (HIF-1α) promotes the expression of genes 
responsible for the suppression of apoptosis, angiogenesis, invasion, and motility 
[73]. In NSCLC, HIF-1α expression causes resistance to radiotherapy, chemother-
apy, and EGFR TKIs [74–77]. Since hypoxia is connected to the resistance in 
NSCLC therapy, researchers have targeted cancers using hypoxia-activated pro-
drugs (HAP). One classic example of HAPs is that of tarloxotinib bromide, a biore-
ductive pan-EGFR inhibitor. Under hypoxic conditions, tarloxotinib undergoes 
metabolism via one-electron reduction to a fragment and releases a potent EGFR 
TKI that exerts antiproliferative activity. Tarloxotinib bromide was designed to 
release an EGFR TKI, erlotinib under hypoxic conditions. Efficient metabolism of 
tarloxotinib was demonstrated in a range of human NSCLC cell lines and it was 
shown to be more effective than erlotinib in wild-type and EGFR-mutant NSCLC 
xenografts [78, 79]. Targeting cancer with tarloxotinib/erlotinib had reached phase 
II clinical trials in patients with NSCLC; however, poor response rates led to the 
discontinuation of these trials [80].

Recently, scientists have designed and synthesized an active tumor targeting pro-
drug, gefitinib (PPG), which is a polyamine analog, for precision therapy in 
NSCLC. This macromolecule containing an EGFR TKI was not only successful in 
inhibiting the growth of PPG-sensitive PC9 cells, but was also efficient in killing the 
PPG-resistant H1650 cells [81].

3.7  Nanocarriers Targeting EGFR Receptor for Lung Cancer 
Therapy

The nanocarrier approach offers the ability to target the drugs accurately to the 
tumorous tissue, which may reduce the toxicity of chemotherapeutic agents. 
Nanoparticles can be targeted via active or passive approaches. Three types of 
nanoparticles have been explored for the treatment of lung cancer, namely, (1) 
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natural nanoparticles (2) organic nanoparticles, and (3) inorganic nanoparticles. 
Of these, many have been used to target the EGFR for specific delivery of various 
therapeutic compounds and have been listed in Table 8.4.

4  The Receptor: c-MET

c-MET receptor is overexpressed in lung cancer as an outcome of the resistance 
developed through the EGFR inhibitors, which leads to c-MET amplification. 
Therefore, c-MET is an important receptor in NSCLC. It is a transmembrane tyro-
sine kinase receptor (RTK), which is activated by the ligand, the hepatocyte growth 
factor (HGF). Activation of c-MET RTK drives a plethora of molecular events in 
the cells, thus rendering it as an ideal target for therapy. Amplification of c-MET in 
NSCLC leads to proliferation, invasion, metastasis, and angiogenesis of the can-
cerous cells. As NSCLC has a poor prognosis and is highly malignant due to the 
overexpression, amplification, and association of c-MET, the receptor can act as a 
useful target for treating this cancer type. Thus, various therapies and drugs target-
ing c-MET are currently being tested either alone or in combination with monoclo-
nal antibodies. Various monoclonal antibodies like emibetuzumab, ficlatuzumab, 
and rilotuzumab along with tyrosine kinase inhibitors, (TKI) such as crizotinib, 
tepotinib, cabozantinib, and capmatinib, are currently under evaluation. These 
studies have resulted in an improvement in the overall survival rate of NSCLC 
patients [80, 89]. Further, investigators have explored c-MET and EGFR for devel-
oping combination therapy against NSCLC, as c-MET is known to have consider-
able cross-talks with the other signaling pathways. Therefore, a comprehensive 
study of this receptor is anticipated to impart significant knowledge regarding its 
role in NSCLC [20].

4.1  Recognition Domain of c-MET

c-MET or the hepatocyte growth factor receptor (HGFR) is a protein tyrosine 
kinase like the EGFR and belongs to the family of oncogenes that regulate impor-
tant cellular processes, such as differentiation, proliferation, cell cycle, motility, 
and apoptosis [90].

c-MET is a transmembrane receptor tyrosine kinase (RTK), which is a 150-kDa 
polypeptide. Upon glycosylation, the receptor is activated and a forms 190  kDa 
glycoprotein. The receptor comprises a transmembrane β-chain (140 kDa) that is 
extracellularly attached to the α-chain (50 kDa) via a disulfide linkage. This consti-
tutes the binding site for the ligand at the N-terminal of the c-MET receptor [20, 91, 
92]. The receptor is activated by its ligand, namely, the hepatocyte growth factor 
(HGF), which is a member of the plasminogen-related growth factor family. The 
precursor of HGF is mainly produced by the cells of mesenchymal origin. There are 

8 Lung Cancer Receptors and Targeting Strategies



248

Ta
bl

e 
8.

4 
Su

m
m

ar
y 

of
 n

an
oc

ar
ri

er
s 

co
nj

ug
at

ed
 w

ith
 v

ar
io

us
 a

nt
i-

E
G

FR
 m

ol
ec

ul
es

 f
or

 th
e 

tr
ea

tm
en

t o
f 

lu
ng

 c
an

ce
r

Sr
. N

o.
N

an
op

ar
tic

le
 m

at
er

ia
l

Ta
rg

et
in

g 
m

ol
ec

ul
e

C
el

l l
in

e 
or

 a
ni

m
al

 m
od

el
R

em
ar

ks
R

ef

1
G

ol
d 

na
no

pa
rt

ic
le

s 
as

 c
on

tr
as

t 
ag

en
ts

C
et

ux
im

ab
 (

C
22

5)
 

an
d 

L
la

m
a 

he
av

y 
ch

ai
n 

va
ri

ab
le

 r
eg

io
n 

an
tib

od
y 

fr
ag

m
en

ts
 

(V
H

H
 d

om
ai

ns
)

4–
6-

w
ee

k-
ol

d 
fe

m
al

e 
at

hy
m

ic
 

nu
de

 m
ic

e 
w

er
e 

in
je

ct
ed

 w
ith

 
A

43
1 

ce
lls

 to
 d

ev
el

op
 tu

m
or

s 
ha

vi
ng

 v
ol

um
e 

of
 5

 c
c

T
he

 n
an

op
ar

tic
le

 s
ys

te
m

 a
llo

w
ed

 e
ff

ec
tiv

e 
tu

m
or

 
im

ag
in

g 
by

 c
om

pu
te

d 
to

m
og

ra
ph

y 
(C

T
) 

w
ith

 
en

ha
nc

ed
 u

pt
ak

e 
be

ca
us

e 
of

 c
et

ux
im

ab

[8
2]

2
Si

lic
a 

na
no

pa
rt

ic
le

s
A

nt
i-

E
G

FR
 

m
on

oc
lo

na
l a

nt
ib

od
y

In
 v

itr
o 

st
ud

ie
s 

(A
54

9)
 a

nd
 

B
A

L
B

/c
 n

ud
e 

m
ic

e 
in

du
ce

d 
w

ith
 A

54
9 

tu
m

or
s

Si
lic

a 
na

no
pa

rt
ic

le
s 

(~
10

0 
nm

) 
co

nt
ai

ni
ng

 m
A

b 
an

d 
m

et
hy

le
ne

 b
lu

e 
co

m
pl

ex
 w

er
e 

de
ve

lo
pe

d 
as

 
pr

ob
es

 f
or

 lu
ng

 c
an

ce
r 

de
te

ct
io

n

[8
3]

3
G

ol
d 

na
no

pa
rt

ic
le

s
C

22
5

X
en

og
ra

ft
 m

od
el

s 
pr

ep
ar

ed
 

w
ith

 n
ud

e 
m

ic
e 

in
je

ct
ed

 w
ith

 
A

54
9 

an
d 

H
12

99
 c

el
ls

G
ol

d 
na

no
pa

rt
ic

le
s 

(~
14

 n
m

) 
ef

fic
ie

nt
ly

 d
el

iv
er

ed
 

C
22

5 
an

d 
in

cr
ea

se
d 

th
e 

cy
to

to
xi

c 
ef

fe
ct

 in
 

E
G

FR
-p

os
iti

ve
 N

SC
L

C

[8
4]

4
C

hi
to

sa
n 

na
no

pa
rt

ic
le

s 
cr

os
s-

lin
ke

d 
w

ith
 γ

 
-p

ol
y(

gl
ut

am
ic

 a
ci

d)
 lo

ad
ed

 
w

ith
 D

oc
et

ax
el

C
22

5
A

54
9 

ce
lls

T
he

 d
ru

g 
de

liv
er

y 
sy

st
em

 s
ho

w
ed

 s
up

er
io

r 
an

tip
ro

lif
er

at
iv

e 
ac

tiv
ity

 o
ve

r 
un

ta
gg

ed
 d

oc
et

ax
el

 
ch

ito
sa

n 
na

no
pa

rt
ic

le
s.

 T
he

 c
el

l c
yc

le
 w

as
 a

rr
es

te
d 

in
 G

2/
M

 p
ha

se
 a

nd
 r

es
ul

te
d 

in
 th

e 
in

du
ct

io
n 

of
 

ap
op

to
si

s

[8
5]

5
PL

G
A

 N
an

op
ar

tic
le

s 
lo

ad
ed

 
w

ith
 D

oc
et

ax
el

C
22

5
A

54
9 

ce
lls

 a
nd

 x
en

og
ra

ft
 m

ic
e 

m
od

el
s 

be
ar

in
g 

A
54

9 
tu

m
or

s
Su

st
ai

ne
d 

cy
to

pl
as

m
ic

 d
el

iv
er

y 
of

 d
oc

et
ax

el
 w

as
 

ac
hi

ev
ed

[8
6]

6
L

ip
os

om
es

 lo
ad

ed
 w

ith
 

do
xo

ru
bi

ci
n

G
E

11
 (

sh
or

t p
ep

tid
e 

sp
ec

ifi
c 

to
 E

G
FR

)
A

54
9 

ce
lls

, m
al

e 
B

A
L

B
/c

 n
ud

e 
m

ic
e 

in
du

ce
d 

w
ith

 A
54

9 
tu

m
or

s
L

ip
os

om
es

 w
ith

 1
0%

 G
E

11
 h

ad
 th

e 
hi

gh
es

t t
um

or
 

ce
ll 

ki
lli

ng
 a

ct
iv

ity
 a

nd
 a

 2
.6

-f
ol

d 
lo

w
er

 I
C

50
 th

an
 

th
at

 o
f 

th
e 

no
nt

ar
ge

te
d 

ca
rr

ie
rs

. G
E

11
-m

od
ifi

ed
 

lip
os

om
es

 s
ho

w
ed

 e
nh

an
ce

d 
ac

cu
m

ul
at

io
n 

an
d 

pr
ol

on
ge

d 
re

te
nt

io
n 

in
 tu

m
or

 ti
ss

ue

[8
7]

7
1,

2-
di

st
ea

ro
yl

-s
n 

-g
ly

ce
ro

-3
- 

ph
os

ph
oe

th
an

ol
am

in
e-

N
-

(a
m

in
o(

po
ly

et
hy

le
ne

 
gl

yc
ol

)-
20

00
 (

PE
G

 2
00

0/
D

SP
E

)

H
um

an
 e

pi
de

rm
al

 
gr

ow
th

 f
ac

to
r 

(E
G

F)
A

54
9-

T
24

 h
um

an
 lu

ng
 

ad
en

oc
ar

ci
no

m
a 

ce
lls

C
el

lu
la

r 
up

ta
ke

 s
tu

dy
 r

ev
ea

le
d 

th
at

 E
G

F-
ta

rg
et

ed
 

m
ic

el
le

s 
af

fo
rd

ed
 h

ig
he

r 
in

tr
ac

el
lu

la
r 

de
liv

er
y 

of
 

pa
cl

ita
xe

l a
s 

co
m

pa
re

d 
to

 th
e 

no
nt

ar
ge

te
d 

m
ic

el
le

s 
in

 b
ot

h 
re

si
st

an
t a

nd
 s

en
si

tiv
e 

ce
ll 

lin
es

[8
8]

U. Koli et al.



249

six domains in the HGF, namely, the N-terminal domain, four kringle domains and 
the C-terminal domain, which is a catalytic domain that is structurally similar to the 
serine proteases. The HGF binds to the c-MET in 2:2 ratio, that is, two HGFs bind 
to the dimerized form of c-MET/HGFR [93], via the semaphorin domain at the 
N-terminal. The tyrosine kinase domain is located intracellularly in the β chain near 
the C-terminal end. This end is essential for binding to the substrate and subsequent 
downstream signaling [92]. The binding of the HGF to c-MET is known to activate 
several signaling cascades like the growth factor receptor-bound protein 2 (Grb2), 
mitogen-activated protein (MAP) kinase, phosphoinositol 3-kinase (PI3K), and 
phospholipase C-γ (PLC-γ). This receptor–ligand interaction is known to control 
morphogenesis, motility, mitogenesis, and proliferation in epithelial and endothelial 
cells [94, 95]. These pathways can promote cell survival and proliferation along 
with migration, motility, invasion, and angiogenesis, and can bring about transition 
of epithelial cells to mesenchymal cells [20, 96].

4.2  Interaction of the Receptor with Ligands

The receptor contains an extracellular region, the semaphorin domain that is a 
cysteine- rich immunoglobulin domain and an intracellular juxtamembrane domain, 
a tyrosine kinase catalytic domain and a carboxy terminal docking site (Fig. 8.4) 
[20, 96]. The HGF binds to the c-MET at the N-terminal domain, which is also 
known as the semaphorin domain or the sema domain. The sema domain is made up 
of seven β sheets that form a bladed propeller structure having seven arms. Here, 
the second and the third sheets bind to the active site region of the ß-chain of HGF 

Fig. 8.4 Activation of c-MET and signaling cascade associated with its activation
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[97, 98] The tyrosine kinase (TK) region is present at the C-terminal domain, which 
envelopes multiple sites for the phosphorylation of tyrosine. Upon binding with the 
c-MET receptor tyrosine kinase, the HGF activates the receptor by dimerization. 
Homodimer formation further transactivates the TK and the juxtamembrane 
domains. This cross-transactivation results in autophosphorylation of the three con-
served tyrosine residues in the activation loop of the TK domain of the c-MET 
receptor [99, 100].

Phosphorylation of the c-MET receptor can be mediated either via the HGF or 
via various RTKs. This further activates various signaling cascades, which bring 
about changes at the molecular level, through the recruitment of various proteins 
that play a role in signaling. These signaling cascades govern various biological 
actions, such as regulation of transcription and gene expression, survival, reduced 
apoptosis, and regulation of cytoskeletal function along with cell growth and dif-
ferentiation [90, 101].

However, the main difference in the expression of c-MET in normal and onco-
genic cells is that the receptor activation is mediated through the ligands only in 
case of normal cells, which does not occur in the oncogenic cells [93].

4.3  Antagonists for c-MET

The molecules that mimic the HGF are natural antagonist of c-MET. These include 
modifications of the HGF that have shown antagonistic activity against the natural 
HGF. These molecules compete for the binding site at the c-MET without bringing 
about the required conformational change required for dimerization during the recep-
tor activation. The most common molecule is the pro-HGF, which is also the precursor 
of HGF and is known to bind to the receptor without bringing about its activation. 
Further, NK2 and NK4, the HGF α-chain variants, bind to the c-MET without activat-
ing the receptor and thus act as antagonists. The NK2 and NK4 consist of a hairpin 
N-terminal domain and 2–4 kringle domains (2 in case NK2 and 4 in case of NK4) 
which compete with the HGF. NK2 may act as an antagonist or partial agonist to 
c-MET, and occurs naturally. On the other hand, NK4 is produced by the proteolytic 
digestion of HGF and has exhibited a better therapeutic value since its structure is 
similar to angiostatin that downregulates angiogenesis [89, 102, 103]. Along with 
these antagonists, there are certain c-MET decoys that have an ability to inhibit the 
receptor. The above-discussed are naturally available ligands for c-MET.

4.4  Ligands of c-MET

Most of the synthetic ligands of the c-MET receptor target the DFG motif. The DFG 
motif comprises aspartic acid (D), phenylalanine (F), and glycine (G) residues. It is 
present at the N-terminal, near the “activation loop” that covers the catalytic site, 
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the latter being important for the regulation of the receptor. A conformational 
change in the receptor modulates the kinase activity from DFG-in to DFG-out, that 
is, active to inactive state [104]. This property of the receptor has been explored for 
its inhibitory action and has resulted in three main classes of c-MET inhibitors that 
differ in their structure–activity relationship. The class of small molecules that act 
on DFG-in state are termed as Class I inhibitors, comprising small molecules like 
PF-2341066 (Pfizer) and SU11274 (Sugen) [105, 106]. The Class II or AM-like 
inhibitors bind to the inactive state of DFG-out. These are mainly derived from urea 
and are either ring-based or non-ring-based structures [107]. They interact with the 
hydrophobic pocket in the region between the hinge and the C-helix, thus assuming 
an unphosphorylated conformation of c-mET. These two classes of compounds are 
competitive ATP inhibitors. Majority of the inhibitors target via competitive inhibi-
tion; however, noncompetitive ATP inhibitors have also been explored. ARQ197 
(Tivantinib) is a small molecule that inhibits c-MET by interfering with the ATP 
binding noncompetitively. In vitro, this small molecule binds to dephosphorylated 
c-MET and is a bisindolylmaleimide. However, its exact mechanism of action still 
remains unclear, though it has been observed to be safe to the cells [108]. Various 
ligands have been explored for inhibiting the c-MET receptor and have been listed 
in Table 8.5. The inhibitors of c-MET mostly compete for ATP-binding sites either 
in a competitive or noncompetitive manner.

Table 8.5 Ligands explored for inhibition of c-MET

No. Compound Developer Mode of action
Development 
phase References

1 ARQ197 ArQule/
Daiichi 
Sankyo

Noncompetitive; selective, 
mechanism not clear. 
Administered with erlotinib 
for NSCLC

II [109]

2 PF-2341066 Pfizer ATP-competitive; c-MET and 
ALK
inhibitor

III [105]

3 PF-4217903 Pfizer ATP-competitive; selective I [110]
4 JNJ-38877605 Johnson & 

Johnson
ATP-competitive; selective; 
for solid tumors

I [111]

5 XL184/
BMS907351

Exelixis/
BMS

Nonselective inhibitor of 
tyrosine kinase, effective 
against c-MET in cases of 
NSCLC

II [112]

6 AMG102/
rilotumumab

Amgen Humanized antihuman HGF 
IgG2 for
SCLC and adenocarcinoma

II [113]

7 MetMAb Roche Humanized antihuman c-MET 
monovalent antibody, for 
NSCLC

II [114]

8 AMG-458 Amgen ATP-competitive, c-MET, and 
Ron
inhibitor

Preclinical [115]
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4.5  Receptor-Mediated Targeting Strategies

A drug’s efficiency is determined by its ability to target the specific site of action. 
Currently, various nanocarrier-based systems are being explored to enhance the 
receptor-targeting efficiency. However, only a few systems targeting c-MET have 
been designed for the therapy of lung cancers as their therapeutic status in progres-
sion of lung cancer is still being investigated.

A novel theranostic system was developed by Lu et al. wherein the researchers 
conjugated quantum dots with human single chain variable fragment (scFv) antibod-
ies. The scFv antibody targeted against c-MET was used to decorate the surface of 
PEGylated liposomes for delivering doxorubicin in in vitro and in vivo investigations. 
These liposomes could selectively deliver the drug for treating metastases of lung 
cancer [116]. Further, another system comprising an adenoviral vector, along with the 
RGD cell-penetrating peptide, induced with NK4 antagonist of HGF, in mesenchy-
mal stem cells. When this system was tested in a murine model of lung metastasis 
(C-26), it resulted in an increase in the survival rate of the treated mice. Thus, this 
drug delivery carrier was able to reduce angiogenesis in tumors and induced apopto-
sis in the tumorigenic cells, thus prolonging the survival of C-26 mice. The system 
was thus proposed for the treatment of multiple lung metastatic cancer [117]. Similar 
therapies have been used for treating solid tumors, glioblastomas, and hepatocytic 
carcinomas due to the upregulation of c-MET observed in these cancers. As c-MET 
is a pleiotropic receptor, therefore, inhibitors of c-MET give best results when used in 
combination with other receptor inhibitor drug. Thus, combination therapy can help 
to overcome the drug resistance along with arresting of metastasis.

5  VEGF (Vascular Endothelial Growth Factor)

VEGF is a heparin-binding homodimeric glycoprotein, which belongs to the family 
of growth factors. VEGF exerts its action through the interaction with two highly 
related tyrosine kinase receptors, VEGFR1 and VEGFR2, which are predominantly 
expressed in cancer cells. VEGF is the main driver of angiogenesis and is overex-
pressed NSCLC [31]. A variety of environmental factors (hypoxia), growth factors, 
and genetic/epigenetic factors (oncogenes/tumor suppressor genes) regulate the 
expression of VEGF in lung cancer. Along with cytokines and metalloproteinases, 
the transforming growth factor beta 1 (TGFβ1) and tumor necrosis factor alpha 
(TNFα) also stimulate the production of VEGF in the lung cancer cells. The NSCLC 
cells can produce and secrete VEGF, promoting the formation of pleural effusion, 
angiogenesis, and tumor metastatic progression. Current strategies of inhibiting the 
VEGF pathway include two main approaches, monoclonal antibodies for targeting 
the VEGF or VEGFRs and tyrosine kinase inhibitors. Currently, bevacizumab and 
ramucirumab have been approved for treating the NSCLC patients receiving chemo-
therapy. On the other hand, the tyrosine kinase inhibitor, nintedanib, in combination 
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with docetaxel, is the only multikinase antiangiogenic agent that has been approved 
for treating lung cancer patients with advanced adenocarcinoma, after first-line 
chemotherapy. Thus, targeting VEGF is foreseen as a promising strategy for the 
treatment and diagnosis of lung cancer [31, 118].

VEGF plays an important role in tumor development by mediating angiogenesis. 
It is highly expressed in tumor cells and has implications in both NSCLC and SCLC 
[119]. The main function of VEGF is to promote tumor growth through neoangio-
genesis, lymphangiogenesis, and lymph nodal dissemination. The structure, func-
tion, ligand binding, and recognition domain of this receptor have been elaborately 
discussed separately (Chap. 8). Here, we have discussed about the role of VEGF in 
lung cancer and how this receptor may be employed as a therapeutic target for treat-
ing lung cancer.

5.1  Natural and Synthetic Ligands for VEGFR

Various ligands have been explored for inhibiting the VEGFR. Their mode of action, 
current developmental phase, and the companies involved in their development have 
been stated in Table 8.6.

Table 8.6 Various ligands explored for inhibition of VEGF in their developmental phase for lung 
cancer [120, 121]

No. Compound Developer Mode of action
Developmental 
phase References

1 Bevacizumab Avastin; 
Genentech

Recombinant humanized 
IgG1 mAb. It blocks 
angiogenesis by inhibiting 
VEGF-A

Approved [122]

2 Ramucirumab ImClone 
Systems Inc.

Fully human IgG1 
monoclonal antibody
targeting the extracellular 
domain of VEGFR-2

Approved [123]

3 Sorafenib Bayer Inhibits RTKs including 
VEGFR

III [124, 125]

4 PTK787 
(Vatalanib)

Novartis Oral inhibitor of VEGFR-1, 
-2, and -3 tyrosine kinases

III [126]

5 Cediranib AstraZeneca Inhibits VEGFR-1 and/or 
VEGFR-2; multikinase 
inhibitor that has been 
studied as the first-line 
therapy for advanced 
NSCLC

II/III [127, 128]

6 Nintedanib Boehringer 
Ingelheim

Potent TKI having 
anti-VEGFR-2 activity

III [129]

7 Neovastat 
(AE-941)

Æterna Inhibits VEGF binding and 
VEGF TK activity

III [130]
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5.2  Receptor-Mediated Targeting Strategies

siRNA has proven to be a promising molecule for treating various cancers. However, 
the molecule requires a robust delivery carrier owing to its extreme fragility. 
Antiangiogenic therapies were designed by Kim et al., where antiangiogenic siRNA 
was conjugated with nanoparticles having polyethylenimine (PEI) core and a PEG 
shell. This was employed for downregulating VEGF expression in animal tumor 
models. This system was effective in treating lung cancer systemically and locally 
[131]. Another antiangiogenic system was designed to contain docetaxel and an anti-
VEFG intraceptor, and was further decorated with RGD peptide for cell penetration. 
This combination therapy was tested in H1299 lung cancer cells and in xenografts in 
athymic nude BALB/c mice. This combination therapy resulted in a higher inhibition 
of VEGF, promoted apoptosis and arrested angiogenesis [132]. Further, nanocarriers 
were effectively used for delivering a highly hydrophobic drug, possessing known 
multitarget antiangiogenic effects. Here, albumin nanoparticles were developed 
along with polymeric micelles and were administered together. The polymeric 
micelles resulted in a strong inhibition of angiogenesis, while the albumin nanopar-
ticles demonstrated retardation of tumor growth. Thus, the dual carriers provided a 
novel combination therapy for tumor regression [133].

6  Drug Resistance in Lung Cancer

Lung cancer is often associated with unprecedented reoccurrence of the disease, 
probably due to the ineffectiveness of the therapies, most of which are associated 
with drug resistance. Most of the EGFR-mutant NSCLCs actively respond to the 
EGFR inhibitors. But, a vast majority of these tumors ultimately become resistant 
to the drug treatment. About 50% of this resistance is due to the occurrence of a 
secondary mutation in EGFR (T790M) [134–137]. The T790M mutation mostly 
occurs due to the first-generation EGFR inhibitors. This mutation is also referred to 
as the “gatekeeper” mutation [136]. Further, this mutation also triggers MET ampli-
fication, which signals through ERBB3 and is characterized by gene amplification 
of a kinase that is not a direct or downstream target of gefitinib or erlotinib [136]. 
These findings may have important clinical implications for patients who develop 
acquired resistance to gefitinib, erlotinib, and afatinib. Hence, combination thera-
pies involving MET kinase inhibitors and irreversible EGFR inhibitors have been 
recommended for patients whose tumors become resistant to gefitinib or erlotinib 
[134]. Regales et  al. have suggested that dual targeting with cetuximab and a 
second- generation EGFR TKI can effectively overcome the T790M-mediated drug 
resistance. Though the combination of afatinib and cetuximab is associated with a 
response rate of 29% (32% among patients with EGFR T790M and 25% among 
patients without it), it is associated with side effects such as substantial skin toxicity 
(20% of grade 3 or higher) and gastrointestinal toxicity (6% of grade 3 or higher) 

U. Koli et al.



255

[135]. AZD9291 is an oral, potent, irreversible EGFR tyrosine kinase inhibitor, 
developed by AstraZeneca that is selective for the EGFR tyrosine kinase inhibitor–
sensitizing mutations and the T790M resistance mutation. The USFDA approval 
was granted to this drug after it demonstrated efficacy in 411 NSCLC patients with 
T790M mutations, who exhibited an overall objective response rate (ORR) of 59%. 
AZD9291 is a monoanilino-pyrimidine compound that is structurally distinct from 
the other third-generation EGFR TKIs and offers a pharmacologically differentiated 
profile from the previous generation EGFR TKIs. During the preclinical studies, 
this drug has been shown to potently inhibit the signaling pathways and cellular 
growth in both EGFRm+ and EGFRm+/T790M mutant cell lines, in vitro studies. 
A lower activity against was reported with this molecule in wild-type EGFR cell 
lines, translating into profound and sustained tumor regression in EGFR mutant 
tumor xenograft and transgenic models [137].

7  Combination Therapy in Lung Cancer

Lung cancer can be activated through the upregulation of multiple receptors that are 
responsible for regulating numerous pathways and hence treatments employing 
monotherapies have been observed as largely ineffective. Thus, combinatorial ther-
apies that simultaneously target different pathways have been foreseen to be prom-
ising for treating various forms of this cancer [138]. Combination therapies rely on 
combining two or more anticancer drugs with the purpose of eliminating the cancer 
cells. Such an approach is advantageous because the drug combination acts in a 
synergistic or additive manner on the key target pathways responsible for cancer 
phenotypes.

The platinum-based chemotherapy is the first-line approach for patients with 
advanced NSCLC, which results in a median overall survival rate of 8–12 months. 
Biological molecules, such as bevacizumab and cetuximab, have led to only mod-
est differences in the survival, which has necessitated newer therapeutic paradigms 
[139]. Paclitaxel/carboplatin has been regarded as a standard drug for combination 
therapies due to their frequent usage and efficacy in NSCLC patients. Lynch et al. 
assessed the activity of ipilimumab, which is an anticytotoxic T-cell lymphocyte-4 
monoclonal antibody in patients with lung cancer. A randomized phase II study 
was conducted to compare ipilimumab along with paclitaxel and carboplatin as 
compared to the drugs combination alone [140]. The study resulted in an improved 
immune-related progression-free survival rate in patients receiving ipilimumab as 
compared to those receiving the drug combination without ipilimumab (median 
12.9 vs. 9.9 months) [139, 140]. Pirker et al. conducted a phase III study to assess 
the efficacy and safety of the EGFR-targeted monoclonal antibody, cetuximab in 
combination with cisplatin/vinorelbine (CV) and compared the effects in NSCLC 
patients receiving only CV. They found that the combination of cetuximab with CV 
resulted in superior survival of the patients with advanced EGFR-detectable 
NSCLC [141].
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Another study involved combination therapy with trastuzumab and pertuzumab 
in Calu-3 and KPL-4 xenograft models. This resulted in tumor regression and a 
complete inhibition of metastatic tumor spread in animals. Pertuzumab is a HER2 
dimerization inhibitor that binds to a different epitope on HER2 than trastuzumab 
and inhibits the formation of dimers of HER2 with other HER family members, 
such as HER3 and HER1. The combination of trastuzumab and pertuzumab demon-
strated enhanced antitumor effects and promoted tumor regression in xenograft 
models of HER2-positive breast cancer and NSCLC. Although both these agents 
could actively induce ADCC, their complementary mechanisms of action resulted 
in the significantly enhanced antitumor activity [142]. Ramalingam et al. carried out 
a phase II randomized, double-blinded, and placebo-controlled study to assess the 
efficacy of vorinostat, in combination with carboplatin and paclitaxel, as a first-line 
therapy for advanced NSCLC. Vorinostat, a histone deacetylase inhibitor, exerted 
anticancer effects by both histone and nonhistone-mediated mechanisms. A con-
firmed response rate (CRR) of 34% was recorded in 94 patients and the overall 
survival increased from 9.7 months to 13.0 months [143]. A few combination thera-
pies involving mAbs are currently in various phases of clinical trials and have been 
stated in Table 8.7.

8  Clinical Studies

Over the past decades, lung cancer has been regarded as one of the leading cause of 
cancer-related mortality in both men and women. Several mutations, like the occur-
rence of inversions in the short arm of the chromosome that juxtaposes echinoderm 
microtubule-associated protein-like 4 (EML4) with ALK and produces EML4- 
ALK–fusion tyrosine kinases, substitution of threonine at 790 to methionine 
(T790M), escaping the elimination by immune system through programmed death 
(PD-1) pathway, etc., have been commonly encountered in various phases of clini-
cal studies [155–159].

Crizotinib, a multitargeted TKI was approved by the USFDA in August 2011 for 
the treatment of advanced NSCLC.  The drug exhibited activity against c-MET, 
ALK, and ROS1 in advanced NSCLC cases that were positive for the ALK rear-
rangements. About 65–74% of the patients benefitted from this therapy and demon-
strated a median progression-free survival rate of 7.7–10.9 months [155, 160]. Other 
small-molecule TKIs, such as crizotinib, imatinib, erlotinib, and gefitinib, were also 
approved for the treatment of lung cancer. But, these drugs exhibited low cerebro-
spinal fluid (CSF)-to-plasma ratios since the central nervous system (CNS) remains 
one of the dominant sites of progressive tumor burden during chemotherapy with 
crizotinib and other molecules [155, 160]. The first-generation TKI’s, gefitinib, and 
erlotinib are reversible small-molecule ATP analog, originally designed to inhibit 
the tyrosine kinase activity of the wild-type EGFR. These were found to be most 
effective in advanced NSCLC, with a median overall survival period of approxi-
mately 19–36 months. But, these first-generation TKIs were associated with side 
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effects like skin rash and diarrhea due to the inhibition of wild-type EGFR present 
in the skin and gastrointestinal organs. Furthermore, amplification in HER2 and 
c-MET, mutation in PIK3CA and BRAF, and loss of NF1, T790M were observed as 
the most common mechanisms of resistance by the tumor cells in more than 50% of 
the patients exhibiting disease progression. The T790M mutation is believed to pro-
vide resistance against the reversible first-generation TKIs through steric hindrance 
and increased affinity toward ATP. The second-generation, irreversible EGFR TKIs, 
such as afatinib and dacomitinib, have proven effective against untreated, EGFR 
mutant lung cancer. But, as a monotherapy, they have failed to overcome the T790M-
mediated resistance in patients, because the concentrations at which these irreversible 
TKIs overcome the T790M activity in preclinical trials cannot be achieved in humans 
due to the dose-limiting toxicity related to the nonselective inhibition of the wild-type 
EGFR. AstraZeneca (Macclesfield, UK) developed an oral, third-generation, irrevers-
ible, small-molecule inhibitor (AZD9291) to target the T790M-resistant mutant forms 
(EGFRm+) with selectivity over the wild-type EGFR.  AZD9291 has a chemical 
structure distinct from the other third-generation TKIs, WZ4002 and CO-1686. This 
drug acts by binding to the EGFR kinase and targeting the cysteine-797 residue in the 
ATP-binding site through the formation of an irreversible covalent bond. In the phase 
I of clinical trials, the drug was found to be 200 times more potent against the T790M 
mutant than the wild-type EGFR [156].

Several next-generation ALK inhibitors that are more potent than crizotinib, 
have entered various clinical studies and can overcome the most common mutations 
conferring resistance to ALK such as Leu1196Met. Among the eight next- generation 
ALK inhibitors that have entered the clinical trials, three molecules, namely, ceri-
tinib, alectinib, and brigatinib have demonstrated a robust activity in patients with 
ALK-positive NSCLC. Alectinib has also shown its antitumor activity in patients 
resistant to crizotinib. 125 subjects were screened during a phase II study in patients 
with NSCLC, wherein 87 ALK-positive candidates whose disease progressed after 
crizotinib, were enrolled. The results of this study showed that alectinib was effec-
tive in patients suffering from ALK-positive NSCLC and was well tolerated, result-
ing predominantly in grade 1 or 2 adverse events with improved quality of life. 
Alectinib also exhibited several potential advantages in terms of both efficacy and 
tolerability. The median duration of response was prolonged with alectinib 
(13.5 months) as compared to ceritinib (8.2 months) and brigatinib (9.3 months), 
respectively. Thus, patients who did not respond to the treatment with crizotinib 
could be treated with the aforementioned ALK inhibitors, alectinib also resulted in 
intracranial disease control in 85% and 56% of the patients, at 12 and 24 weeks, 
respectively [160].

Apart from the mutations occurring in lung cancer, tumors can also escape elimi-
nation by the immune system through the activation of inhibitory feedback loops 
(also known as immunological brakes), which are essential to avoid autoimmune 
events, and can thus bypass tumor rejection and T-cell activation. The PD-1 and 
B7.1, also known as CD80 receptors, follow this inhibitory pathway and their activa-
tion has been observed in several cancer types including the lung cancer [157–159]. 
Nivolumab is a fully human, IgG4 immune checkpoint inhibitor antibody, which 
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binds to the PD-1 receptors on activated immune cells and thereby inhibits its inter-
action with PD-L1 and PD-L2 ligands. This event attenuates inhibitory signals and 
promotes antitumor responses by the host. A phase II clinical study employing 140 
patients was conducted, in which, 117 (84%) patients were treated with nivolumab 
(Bristol-Myers Squibb, Princeton, NJ, USA), as an injectable solution (100  mg; 
10 mg/mL) for a period of 100 days. Patients received nivolumab as an intravenous 
infusion at the concentration 3 mg/kg, every 2 weeks (1 cycle) until the disease pro-
gression or unacceptable toxic effects appeared. Nivolumab showed activity in 
patients with advanced, refractory, and squamous NSCLC and was associated with a 
manageable safety profile [157].

An early phase clinical trial was initiated with an engineered, humanized IgG1 
monoclonal anti-PD-L1 antibody, atezolizumab (MPDL3280A; F Hoffmann-La 
Roche/Genentech). This antibody acts by blocking PD-L1–PD-1 and PD-L1–B7.1 
interactions, which results in the overhauling of T-cell activity and enhancing T-cell 
priming. POPLAR, a multicenter, randomized, open-label, all comer phase II trial, 
was carried out at 61 academic medical centers and community oncology practices, 
across 13 countries in Europe and North America. It was primarily designed to 
investigate the efficacy and safety of atezolizumab versus docetaxel as the second- 
line and third-line treatments in NSCLC, and to further assess the predictive value 
of PD-L1 expression level in tumor cells and tumor-infiltrating immune cells. 
Accordingly, patients received intravenous atezolizumab (1200 mg fixed dose) or 
docetaxel (75 mg/m2) every 3 weeks, on day 1 of each 3-week cycle. Docetaxel was 
given until disease progression or unacceptable toxicity was observed. No docetaxel- 
to- atezolizumab crossover was allowed. Results indicated that patients with either 
squamous or nonsquamous NSCLC showed significant improvement in their over-
all survival upon treatment with atezolizumab as compared with patients who 
received docetaxel. Also, atezolizumab was well tolerated and exhibited a safety 
profile that was consistent with the previous studies [158].

Further, a combination of immunotherapy and chemotherapy was evaluated for its 
potential to synergistically improve the anticancer activity of the individual drugs. 
Currently, the standard first-line therapy for patients with advanced nonsquamous 
NSCLC is platinum-doublet chemotherapy. With the exception of bevacizumab, the 
addition of a third agent to the platinum-doublet chemotherapy has not improved the 
progression-free or overall survival rate as compared to the platinum- doublet chemo-
therapy alone in randomized studies. A study was carried out with pembrolizumab, a 
humanized, monoclonal antibody against PD-1 that prevents PD-1 from binding to its 
ligands, PD-L1 and PD-L2. A randomized KEYNOTE-021, phase II study was car-
ried out at 26 academic medical centers in the USA and Taiwan, in patients with 
chemotherapy-naive, advanced nonsquamous NSCLC. A combination of pembroli-
zumab and pemetrexed was administered to the patients, wherein the subjects received 
four cycles of pembrolizumab (200 mg), over 30 min. Further, the chemical drug, 
pemetrexed was administered at a concentration of 500 mg/m2 over 10 min, and car-
boplatin at a dose of 5 mg/mL per min was administered over 15–60 min, intrave-
nously every 3 weeks in the order listed, followed by pembrolizumab for 24 months 
and optional indefinite pemetrexed maintenance therapy. 123 (56%) patients from the 
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USA and Taiwan met the eligibility criteria and were randomly distributed for 
different treatment regimes. 60 patients (49%) were treated with pembrolizumab 
along with carboplatin and pemetrexed, while 63 patients (51%) were treated with 
carboplatin and pemetrexed alone. Addition of pembrolizumab to carboplatin and 
pemetrexed followed by pembrolizumab for 2  years and indefinite pemetrexed 
maintenance therapy significantly improved the proportion of patients who achieved 
an objective response as compared to those receiving carboplatin and pemetrexed 
alone. The median progression-free survival time in the pembrolizumab plus 
chemotherapy group was 13 months, while the progression-free survival recorded 
in the chemotherapy group was 8.9 months [159].

9  Conclusion

Lung cancer has been a long-term challenge and still demands newer treatment 
modalities for its eradication. Availability of safe and effective treatment options 
has been hampered due to drug resistance and concurrent mutations at various 
levels. However, research over decades has offered various therapies that have 
yielded promising results in preclinical and clinical trials. Today, our understand-
ing about cancers has reached greater depths and has enabled the prognosis of vari-
ous cancer types. A greater understanding of the molecular biomarkers of lung 
cancer as well as an in-depth understanding of specific receptors overexpressed in 
this form of cancer will enable the provision of personalized therapies for eradicating 
this dreadful disease.
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