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Abstract The mannose family receptors are unique multidomain, multifunctional 
endocytic receptors belonging to the C-type lectin family. These receptors, although 
structurally similar, exhibit differential binding to discrete ligands. This chapter 
discusses such similarities and differences between the structures, ligands, the 
expression, and molecular trafficking among the members of mannose receptor 
family. Further, targeted drug delivery strategies in infections and cancer to the most 
widely investigated receptor of the family, the mannose receptor, are comprehen-
sively explained with examples.
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CD Cluster of differentiation
CTLD C-type lectin domain
DCs Dendritic cells
DRV Dehydration–rehydration vesicle
HIV Human Immunodeficiency Virus
IFN Interferon
IL Interleukin
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LAM Lipoarabinomannan
LPS Lipopolysaccharide
MMP Matrix metalloproteinases
MRI Magnetic resonance imaging
NPs Nanoparticles
PEG Polyethylene glycol
PLA2 Phospholipase A2

PLGA Poly (lactide-co-glycolide)
RES Reticuloendothelial system
SLA Soluble leishmanial antigen
SPIONs Superparamagnetic iron oxide nanoparticles
TAM Tumor-associated macrophages
TB Tuberculosis

1  Introduction

The C-type lectin superfamily comprising of transmembrane and soluble proteins 
like selectins, collectins, and asialoglycoprotein receptor has garnered attention 
since eons [1]. The family of mannose receptors is an integral part of the C-type 
lectin family. Multiple lectin domains in a single polypeptide structure make this 
family an unconventional member of the lectin superfamily [2]. The mannose fam-
ily receptors are involved in antigen capture, recognition of mannosylated structures 
of pathogenic cell walls and may be overexpressed in certain diseased states. 
Targeting the mannose receptor provides an attractive strategy to combat number of 
infections and certain cancers [3, 4]. A complete understanding of the receptors, 
ligands, and binding interactions is quintessential for successful targeting applica-
tions. This chapter focuses on the mannose receptor family and its physiology in 
normal state and in pathologies. Drug delivery approaches to harness targeting 
effectively in the therapy of infectious diseases and cancer are also discussed.

2  Mannose Receptor Family

The family of mannose receptors comprises of four endocytic glycoprotein recep-
tors, namely mannose receptor, M-type receptor for phospholipases A2 (PLA2R), 
DEC-205/CD205/gp200-MR6, and Endo180/uPARAP [5–8]. Mannose receptor, 
the first member of the family, was identified in the late 1970s. Multiple C-type 
lectin domains (CTLDs) in a single polypeptide backbone constitute a distinct fea-
ture of this receptor family. The members of mannose receptor family share mutual 
structural features, namely cysteine-rich domain, fibronectin type II domain, and 
CTLDs which vary from eight to ten. However, C-type lectin activity is not exhib-
ited by all members. The C-type lectin activity for interacting with mannosylated 
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moieties is displayed only by mannose receptor and Endo180. CTLD5 of PLA2R is 
involved in protein–protein interactions, a nonlectin activity. The cysteine-rich 
domain is involved in the recognition of sulfated carbohydrates whereas the fibro-
nectin type II domain internalizes collagen. A functional cysteine-rich domain for 
binding to sulfated carbohydrates like galactose is present only in the mannose 
receptor. The receptors of mannose family terminate into short cytoplasmic domains. 
The receptors are rapidly internalized inside the cell and deliver the extracellular 
content to the intracellular compartments. Delivery to intracellular locations occurs 
via interactions between the motifs of terminal cytoplasmic domains and the endo-
cytic machinery. The members of mannose family and their recognition domains 
are depicted in Fig. 15.1.

2.1  Receptor Recognition Domains

2.1.1  Cysteine-Rich Domain

Although present in all family members, the cysteine-rich domain lacks homology 
among the mannose receptor family. A 25–30% sequence identity is observed 
among the family members. Among the four receptors, only the mannose receptor 
has a functional N-terminal cysteine-rich domain which can exhibit binding to sul-
fated molecules. The receptor can bind to glycoproteins containing sulfated 
N-acetylglucosamine and sulfated galactose residues in hormones like lutropin and 
thyrotropin via this domain [9]. Binding to chondroitin sulfate A, chondroitin sul-
fate B, sulfated Lewis antigens, CD45, and sulfated transmembrane protein siaload-
hesin is also reported [10, 11]. The binding is Ca2+ independent and occurs through 
a neutral binding site. The exact mechanism of binding is beyond the purview of this 
chapter and is well explained in the literature [2, 12].

Fig. 15.1 The mannose receptor family
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2.1.2  Fibronectin Type II Domain

Fibronectin type II domain is the most conserved extracellular domain of mannose 
receptor family. This domain occurs in different proteins like matrix metalloprotein-
ases (MMP) 2 and 9 [13]. This domain mainly binds to denatured collagen. The 
collagen binding may be a result of interaction between aromatic structures of the 
hydrophobic pocket exposed by the solvent with the nonpolar collagen residues 
leading to disruption of triple helix. The conserved amino acid (Arg34 and Asp36) 
residues can play a role in stabilizing this interaction [2]. Another hypothesis sug-
gests the fibronectin type II domain can bring about N-terminal extension to bring 
the N-terminal in the vicinity of the C-terminal leading to stabilized interaction with 
collagen [14]. The binding of fibronectin type II domain of mannose receptor to 
collagen has been studied. An extended conformation at physiological pH and a 
compact conformation at acidic pH was reported. At physiological pH, a calcium- 
dependent binding was observed whereas acidic pH calcium did not affect the col-
lagen binding [15]. This behavior could play a critical role in the intracellular 
trafficking of cargo delivered through mannose receptor endocytosis.

Mannose receptor demonstrates the ability to bind to collagens I, II, III, and IV 
while exhibiting a weak binding to collagen V [16]. Fibronectin type II domain of 
M-type PLA2 expressing cells binds to collagens I and IV, while Endo180 fibronec-
tin type II domain preferentially binds to collagen V over collagens I and IV. No 
information is available regarding the ability of DEC-205 to recognize collagen, 
although this is a likely possibility.

2.1.3  C-Type Lectin Domains

CTLDs contain 120 amino acids. Noncovalent and covalent interactions between 
two antiparallel β sheets and two α helices lead to the formation of a hydrophobic 
fold. The carbohydrate interactions in functional CTLDs occur in the hydrophobic 
fold that imparts stability by hydrophobic core formation. Two disulfide bonds are 
also formed between cysteine residues. This hydrophobic fold of functional CTLDs 
permits interactions with sugars by facilitating contact with residues integral for 
coordination with Ca2+ and sugar moieties [2].

In the case of mannose receptor, the binding of terminal carbohydrate residues 
like mannose, fucose, and N-acetylglucosamine occurs in the presence of Ca2+. A 
higher affinity is demonstrated by mannose receptor CTLDs toward mannose and 
fucose whereas the binding affinity to N-acetylglucosamine and glucose is lower. 
Only the mannose receptor CTLD4 is involved in sugar binding. Similar to man-
nose receptor, CTLD2 of Endo180 shows binding dependent on Ca2+ to glycocon-
jugates, while CTLD5 of PLA2R is involved in binding to the nonglycosylated 
PLA2 ligand via Ca2+-independent pathways. Further, instead of lectin interac-
tions, CTLD5 mediates protein–protein interactions. DEC-205 is devoid of C-type 
lectin activity.
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2.2  Ligand Binding

In most multidomain receptors, domains which mediate ligand interaction are often 
stationed at a distance from the membrane. Surprisingly, among the mannose family 
receptors, CTLD4 and CTLD5 which exhibit a crucial role in binding are found in 
the central region of the mannose receptor and the PLA2 receptor, respectively. An 
extensive study of mannose receptor revealed an extracellular domain with a rigid 
and extended conformation and close interactions between neighboring CTLDs 
(CTLDs 1 and 2, CTLDs 4 and 5, CTLDs 7 and 8) with exposed flexible linker 
regions on either side of CTLDs 3 and 6 [2, 17]. CTLD5 of mannose receptor dem-
onstrates weak binding to sugars in addition to CTLD4, the principal sugar-binding 
domain. The association of these two CTLDs results in the formation of a protease- 
resistant core. Such domain disposition enables binding to multiple sugar moieties, 
enhanced binding of CTLDs, and/or modulates the rigidity of CTLDs.

Closeness of the N- and C-terminal of fibronectin type II domain brings it near 
to the other domains, as suggested by the sequence analysis. A close association of 
the cysteine-rich domain, fibronectin type II domain, and C-type lectin domains is 
seen by protease studies. Such an arrangement stabilizes the interaction with colla-
gen and projects the cysteine-rich domain away from the membrane. This projection 
is desirable for interactions of cellular sulfated glycoproteins and the domain.

Further, the ligand–receptor binding in mannose receptor is highly pH dependent. 
Mannose receptor shows poor binding of ligands at pH 5 and optimal binding at 
pH 7. Such pH dependency is prominent in ligands dissociating in the acidic endo-
somal compartments. The pH-dependent binding enables separation of the ligand 
and receptor and recycling of the free receptors to the cell surface. Additionally, the 
Ca2+ dependency in binding may aid in the endosomal dissociation [18].

2.3  Intracellular Internalization

The rapid internalization of mannose receptor family members mainly occurs via 
clathrin-mediated endocytosis. Internalization by phagocytosis is another pathway 
mediated by mannose receptor expressed on the macrophages. Under steady state, 
the cell surface receptors constitute 10–30% whereas remaining 70–90% receptors 
are intracellular.

2.3.1  Clathrin-Mediated Endocytosis

During endocytic uptake, ligands packed in clathrin-coated vesicles are internalized 
from the plasma membrane and are delivered in the endosomal system. Smaller 
particles (<0.2 μm) are taken up by this pathway. The mannose family receptors 
recycle about 10 times an hour.
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Two endocytic motifs, namely tyrosine residue-based motif and dihydrophobic 
motif, are present in the cytoplasmic domain. Although directed to the same intra-
cellular compartment, the mannose receptor and Endo180 mediate the transport via 
different motifs. Mannose receptor and PLA2R recruit tyrosine-based motif whereas 
Endo180 utilizes the dihydrophobic motif [19]. Internalization occurs from the 
clathrin-coated pits into the early endosomes. This is followed by transportation to 
late endosomes and fusion with lysosomes followed by release of cargo into the 
cytoplasm. A different destination of DEC-205 within the cells is reported. Whereas 
mannose receptor is located in the early endosomes, localization of DEC-205 is 
seen in the late endosomes [20].

2.3.2  Phagocytosis

The uptake of particles of >0.2 μm occurs via phagocytosis. Fc receptors and com-
plement receptors, the opsonic receptors, initiate phagocytosis signaling resulting in 
extension of membrane around the particle via regulation of actin cytoskeleton [21]. 
A phagosome is formed which then fuses with endosomes/lysosomes leading to 
exposure of the cargo to hydrolytic enzymes. The direct role of mannose receptor in 
phagocytosis is questionable. Phagocytic pathway may proceed upon binding to a 
mannosylated residue which may in turn activate a classical phagocytosis receptor 
[2]. As PLA2R and DEC-205 are mainly involved in uptake of macromolecules and 
are not expressed on phagocytic macrophages, their involvement in phagocytic 
machinery is unlikely. Although Endo180 is expressed on macrophages, an involve-
ment in phagocytosis analogous to the mannose receptor is not observed in vitro [19].

3  Receptor Location and Expression

Mannose receptor, a 175-kDa type I membrane glycoprotein receptor, was origi-
nally isolated in liver and alveolar macrophages [22]. The receptor is predominantly 
found in most tissue macrophages and dendritic cells (DCs). It is also located in 
endothelial cells of liver and splenic sinusoids [23]. The receptor is also expressed 
on the microvascular endothelial cells of the dermis [24], cells of Kaposi’s sarcoma 
[25], human keratinocytes [26], and retinal pigment epithelium [27]. Although ini-
tially termed as the macrophage mannose receptor, it is now designated as the man-
nose receptor, as the occurrence is not exclusively limited to macrophages. The 
involvement of mannose receptor in phagocytosis of mannosylated structures and 
pinocytosis of soluble molecules is reported. It also acts as pattern recognition 
receptor by recognizing the mannosylated ligands of microbes [28–30]. Other func-
tions of this receptor constitute improved presentation of antigens, modulation of 
cellular trafficking, and maintaining homeostasis by scavenging nonessential man-
noglycoproteins and circulating pituitary hormones like lutropin and thyrotropin. 
PLA2R is expressed on muscle cell membranes and internalizes PLA2, the lipolytic 
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enzymes required for digestion of phospholipids [5]. DEC-205 which is expressed 
by dendritic cells has shown involvement in uptake of antigens and delivery of cargo 
to T cells whereas Endo180 is an endocytic receptor involved in remodeling of cel-
lular membranes.

A comprehensive overview of the four mannose receptor family members is pro-
vided in Table 15.1.

4  Pathophysiological Features

The expression of mannose receptor is regulated by macrophage differentiation pat-
tern. Consequently, differentiated macrophages reveal abundant receptor expression 
whereas circulating monocytes do not express mannose receptor [31]. The physio-
logical status also affects the expression pattern. Anti-inflammatory molecules (cor-
ticosteroids, IL-10) [32, 33], Vitamin D3 [34], prostaglandin E [35], and Th2 
cytokines (IL-4, IL-13) upregulate the mannose receptor expression by promoting 
synthesis whereas interferon ɣ (IFN ɣ) [32], lipopolysaccharide (LPS) [36], and 
immune complexes [37] downregulate the expression by restricting the synthesis.

Binding of pathogenic mannosylated ligands to mannose receptor may induce 
interleukin (IL)-10 and curb IL-12, thereby inhibiting pathways that could enable 
protective immune responses [30]. Mannose receptor recognizes the mannosylated 

Table 15.1 Mannose receptor family

Mannose receptor PLA2R DEC-205 Endo180

Occurrence Macrophages, DCs, 
few lymphatic or 
endothelial cells

Muscle cell 
membranes

DCs, epithelia, 
B cells, bone 
marrow stroma, 
and endothelial 
cells

Fibroblastic cells, 
stromal cells, 
macrophages, and 
a subset of 
endothelial cells

Functions Antigen presentation, 
phagocytosis of 
mannosylated 
structures, homeostasis 
regulation, modulation 
of cellular trafficking

Phospholipid 
digestion, cell 
proliferation, cell 
migration, and 
hormone release

Antigen uptake, 
presentation of 
cargo to T cells

Remodeling of 
cellular 
membranes

Domain

Cysteine- 
rich

Active
Enables binding to 
sulfated carbohydrates 
like galactose

Inactive Inactive Inactive

Fibronectin 
type II

Binds to collagens I, 
II, III, and IV and 
weakly to collagen V

Binds to collagens 
I and IV

Unknown Binds to collagen 
V over collagens I 
and IV

CTLDs 8
C-type lectin activity

8
Non-lectin activity

10
No C-type lectin 
activity

8
C-type lectin 
activity
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cell walls of bacteria, fungi, viruses, or parasites, enabling their internalization in 
the cells (Fig. 15.2a). Pathogens entering the cellular environment using the man-
nose receptor portal do not evoke an immune reaction.

Although mainly associated with infections, mannose receptor also shows a 
peculiar expression pattern in cancers. The tumor site shows the presence of man-
nose receptor expressing macrophages accompanied by ligands for mannose recep-
tor like tumoral mucins [38, 39]. Tumoral mucin MUC1, a ligand of mannose 
receptor positive cancer cells, comprises of mannose and galactose residues. The 
tumor cells express abnormal quantities or irregular forms of mucins compared to 
the healthy cells [40]. The tumoral mucins can invade the immune responses occur-
ring in the tumor microenvironment by binding to mannose receptor on the DCs and 
tumor-associated macrophages (TAMs) (Fig.  15.2b) and lead to upregulation of 
IL-10 and suppression of IL-12, thus suppressing Th1-polarized responses, similar 
to that in infections.

5  Ligands

Mannose receptor binds to various endogenous ligands and acts as a homeostasis 
regulator by clearing the unwanted molecules from circulation [30, 41]. As dis-
cussed earlier, the cysteine region of mannose receptor binds to sulfated moieties 
whereas the CTLDs bind to glycoproteins rich in mannose oligosaccharides. The 
fibronectin type II domain shows collagen-specific binding. Classification of ligands 

Fig. 15.2 Recognition of (a) mannosylated pathogenic cell walls by the mannose receptor present 
on macrophages and dendritic cells in infections and (b) mannose ligands of tumoral mucins by the 
mannose receptor present on tumor-associated macrophages (TAMs) and dendritic cells in cancers
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based on binding domains is presented in Table 15.2. Utilization of mannose, the 
most popular ligand, and other ligands like sulfated residues of N-acetyl-D- 
galactosamine and mannans, etc., for targeted intracellular delivery of therapeutics/
antigens is discussed in Sect. 6.

The mannose receptor also binds to exogenous ligands from several microbes 
and enables their entry into the cell. Microbes may target the mannose receptor to 
provoke an anti-inflammatory/immune-suppressive response and cause a resistant 
infection. Mannose receptor lacks the ability to distinguish between pathogenic and 
nonpathogenic strains, thus internalizing both, unlike the Toll-like receptors [28]. 
Pathogens, such as Mycobacterium tuberculosis [44], Leishmania donovani [45], 
Trypanosoma cruzi [46], Trichinella spiralis [47], Streptococcus pneumoniae [48], 
HIV virus [49], and influenza virus [50], enter the intracellular environment aided 
by the carbohydrate ligands on their cell membranes. In the case of Mycobacterium 
tuberculosis, lipoarabinomannan (LAM), a glycolipid present in the mycobacterial 
cell wall, contains terminal mannose residues that can interact with the mannose 
receptors. The internalization of LAM-anchored polystyrene beads by mannose 
receptor mediated phagocytosis is reported. However, mannose receptors bind to 
virulent H37Rv and Erdman strains but do not bind to the avirulent H37Ra strain of 
Mycobacterium tuberculosis [44]. The biological responses attributed to LAM may 
be a result of interaction with mannose receptors or other receptors that recognize 
LAM-like CD14 receptors. In addition to bacterial and viral sugar residues,  mannose 
receptor also recognizes several fungal ligands including glycoprotein A of 
Pneumocystis carinii [51] and mannan from Candida albicans [52].

The ligands for other mannose receptor family members are relatively few. 
Pancreatic sPLA2IB is reported as the only ligand of PLA2R; however, an interspe-
cies variation in binding affinity was observed [53, 54]. Other potential ligands 
include sPLA2-V, sPLA2-IID, and sPLA2-X [55, 56]. Specific ligands for DEC-205 
are not reported. DEC-205 cysteine-rich domain does not interact with sulfated sugars 

Table 15.2 Ligands for mannose receptor based on domain structure

Domain Ligands References

Cysteine-rich domain Anterior pituitary hormone lutropin [42]
CD45 [11]
Chondroitin sulfate A and chondroitin sulfate 
B

[10]

Lewis antigenA, Lewis antigenX [10]
Sialoadhesin [11]
Sulfated D-galactose [2]
Sulfated N-acetyl-D-galactosamine [43]
Sulfated N-acetyl-D-glucosamine [2]

Fibronectin type II domain Collagen [16]
CTLDs Fucose [2]

Mannose [2]
N-acetyl-D-glucosamine [2]
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and also lacks the C-type lectin activity. Like the mannose receptor, Endo180 is also 
multifunctional and exhibits binding to a distinct set of ligands. Ca2+ - dependent 
binding of Endo180 to mannose, fucose, and N-acetylglucosamine is evident. 
Endo180 does not bind to galactose and sulfated sugars [57]. It exhibits binding to 
components of the extracellular protease systems (MMP13 and uPAR). An interac-
tion of Endo180 with collagen via the fibronectin type II domain is reported.

6  Receptor Targeting Strategies

Among the family of mannose receptors, the most extensively exploited and stud-
ied receptor for targeted drug delivery is the mannose receptor. Hence, this section 
focuses mainly on mannose receptor enabled intracellular delivery. The endocyto-
sis and phagocytosis of microbes in the macrophages occur by interaction of gly-
coproteins in the cell walls with the mannose receptor. Mannose conjugates and 
mannosylated nanocarriers target these intracellular pathogens by promoting 
uptake of the drug-loaded mannosylated constructs in the infected cells via man-
nose receptor. Nanocarrier-based strategies to target mannose receptor overexpres-
sion in tumor microenvironment are reported. Moreover, interaction of mannose 
ligands with mannose receptor expressed on macrophages/dendritic cells can lead 
to induction of immune signaling pathways, an approach of great importance in 
vaccine delivery [58]. Targeting desired cells via ligand-mediated approach can 
minimize systemic distribution and off-site toxicity. Decoration of surface of nano-
carriers with ligands with high affinity to the mannose receptor is the strategy 
employed for targeting.

6.1  Mannose Conjugates

Mannose conjugates can be prepared by reaction between mannose derivatives and 
proteins or therapeutic agents like antigens. The stability of the conjugate within the 
body and release of the therapeutic agent at the site of action depend on the bond 
between the mannose derivative and the system. Most of the strategies studied 
involve use of endogenous mannose receptor ligands. Recent studies report utiliza-
tion of synthetic ligands specific to mannose receptor expressed on macrophages or 
DCs. Polysaccharide from Bletilla striata (a glucomannan) having high affinity to 
mannose receptor expressing cells was conjugated to alendronate, a  bisphosphonate. 
The conjugate revealed inhibition of angiogenesis and elimination of TAMs leading 
to suppressed tumor progression [59]. In some instances, mannose ligand has been 
employed to act as antigen and potentiate the immunogenicity of the conjugated 
protein/peptide molecule. A mannosylated vaccine formed by conjugation of gluc-
uronoxylomannan, a polysaccharide found in Cryptococcus neoformans capsule 
and tetanus toxoid, elicited high levels of capsular antibodies [60]. Another study 
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reports coupling of heptasaccharide oligosaccharide, the immunodeterminant of 
glucuronoxylomannan with human serum albumin which resulted in induction of 
immunogenic responses [61].

6.2  Mannosylated Nanocarriers

Mannosylated nanocarriers can be prepared by coating/conjugation of mannose 
ligands to the surface of nanocarriers like liposomes or nanoparticles. Such man-
nosylated systems enable targeting to the mannose receptor and permit the delivery 
of cargo (antigen/drug) at the site of interest. Furthermore, particulate nature of the 
nanocarriers accompanied by mannose association significantly improves uptake by 
the endocytic and phagocytic pathways.

6.2.1  Mannosylated Liposomes

Liposomes have been extensively studied in the literature as carriers for drugs, pro-
teins, and even fluorescent markers. Mannosylation of liposomes enables their 
application in treatment of intracellular infections like tuberculosis (TB) and leish-
maniasis or as vaccine candidates in cancers or infections. Mannosylated liposomes 
can be prepared by using mannose lipid conjugates, covalently attaching mannose 
derivatives to liposomes, or by adsorbing the ligand on liposomal surface [3]. The 
click reaction was used for the preparation of cytotoxic mannose click conjugates 
by reaction with aminobenzoic acid derivatives [62]. In one study, mannose- 
cholesterol conjugates were synthesized by click reaction for liposomal drug deliv-
ery systems [63]. Wang et al. studied the effect of varying the chain length of the 
polyethylene glycol (PEG) linker and the optimal mannose-cholesterol conjugates 
were used for liposomal messenger RNA (mRNA) delivery [64].

Drug-related issues like toxicity and resistance in leishmaniasis have been tackled 
by treatment with mannosylated liposomes. Amphotericin B liposomes coated with 
palmitoyl mannose (Man-Lip) or 4-sulfated N-acetyl galactosamine (sulf-Lip) 
revealed rapid intracellular uptake of Sulf-Lip and higher liver and spleen Amphotericin 
B levels indicating specificity of 4-sulfated N-acetyl galactosamine to resident macro-
phages [65]. In a similar study, mannosylated Amphotericin B loaded liposomes dem-
onstrated maximum reduction in parasite load (78.8 ± 3.9%) compared to Amphotericin 
B solution (42.5 ± 1.8%) and cationic Amphotericin B loaded liposomes (61.2 ± 3.2%) 
in Leishmania donovani-infected golden hamster model [66]. Among three sugar 
grafted liposomes (mannose, glucose, and galactose), mannose liposomes loaded with 
pentamidine isethionate revealed superior reduction in parasite loads [67]. Sinha et al. 
reported reduced spleen parasitic burden with mannosylated andrographolide loaded 
liposomes when tested in  experimental hamster leishmaniasis model [68]. A succinct 
summary of other liposome-based mannose receptor targeting for intracellular infec-
tions and cancer is provided in Table 15.3.
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Table 15.3 Mannosylated liposomes for targeted delivery

Disease Active Ligand/nanosystem Study outcome Reference

Infections

Aspergillosis Hamycin Mannose Reduced fungal 
load in infected 
organs

[69]

HIV Stavudine O-palmitoylmannose- 
coated liposomes

High uptake in 
reticuloendothelial 
system (RES) 
organs such as lung, 
liver, and spleen 
and high systemic 
clearance

[70]

Leishmaniasis Benzyl derivative of 
Penicillium nigricans 
derived compound 
MT81 (Bz2MT81)

p-aminophenyl-α-D-
mannoside coupled 
liposomes

Lowering of splenic 
parasitic burden and 
reduction in 
effective dose to 
kill the splenic 
parasite

[71]

CpG-containing 
oligodeoxynucleotide

p-aminophenyl-α-D-
mannopyranoside 
coupled to liposomes

Inhibition of 
amastigote 
multiplication in 
macrophages and 
elimination of 
splenic parasite 
load in visceral 
leishmaniasis 
mouse model

[72]

Doxorubicin and IFN 
ɣ

p-aminophenyl-α-D-
mannopyranoside 
coupled to liposomes

Complete 
elimination of 
splenic parasites

[73]

Parasitic 
infection

Ciprofloxacin Mannose High uptake and 
antibacterial 
efficacy in vitro

[74]

Pneumococcal 
meningitis

Dichloromethylene 
diphosphonate

Mannose Reduced migration 
of white blood cells 
into cerebrospinal 
fluid in 
experimental 
infection models

[75]

Cancer

Drug-resistant 
colon cancer

Dihydroartemisinin 
and doxorubicin

Mannose was 
conjugated to the 
DSPE-PEG2000-NH2

Improved tumor 
inhibition and 
tackling of drug 
resistance

[76]
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Mannosylated liposomes have been reported for vaccination against infections 
and cancers. Garcon et al. covalently coupled mannosylated albumin to the surface 
of dehydration–rehydration vesicles (DRVs). These mannosylated DRVs containing 
tetanus toxoid revealed selective binding to mouse peritoneal macrophages com-
pared to nonmannosylated DRVs with an augmented immunoadjuvant activity in 
Balb/c mice [77]. In another study, liposomes coated with neoglycolipids (manno-
pentose or mannotriose) revealed high serum levels of soluble leishmanial antigen 
(SLA)-specific IgG2a antibody titer and low level of IgG1 antibody titers in com-
parison to uncoated liposomes along with a delayed footpad swelling progression 
[78]. In contrast to uncoated liposomes, subcutaneous immunization with oligo-
mannose residue coated liposomes encapsulating peptides representing epitopes of 
gp120 (a HIV1 envelope glycoprotein) induced MHC class I-restricted CD8+ cyto-
toxic T-lymphocyte response [79].

A protective immune response against cancer can be elicited by association of 
immunostimulants or immunomodulators with mannosylated antigen loaded lipo-
somes. Mannosylated liposome–plasmid DNA complex (Man-lipoplex), prepared 
as a potential DNA vaccine for melanoma, revealed greater pUb-M gene transfec-
tion into antigen-presenting cells than uncoated liposomes and demonstrated pro-
longed survival coupled with melanoma inhibition in mice model [80]. A similar 
study performed by White et al. revealed mannosylated liposomes of lipid core pep-
tide with Quil A adjuvant acted as prophylactic anticancer vaccines and protected 
mice against tumors [81].

6.2.2  Mannosylated Nanoparticles (NPs)

Mannosylated NPs are widely investigated in infections and cancers akin to the 
mannosylated liposomes. Mannosylation of polyanhydride NPs can be performed 
by techniques such as desolvation or direct coating. Iron oxide NPs may be coated 
by precipitation of iron salts by incubation with D-mannose solution or by oxidation 
of NPs followed by addition of D-mannose solution. Chemical modification of 
polymers with mannosylated ligands is also reported [3].

The mannose receptor is profusely overexpressed on the macrophages, DCs, and 
foamy cells which constitute the TB granuloma. This permits utilization of man-
nosylated NPs for targeted intracellular delivery in TB. A multilayer mannosylated 
drug delivery system for intracellular delivery of first-line antibiotics Rifampicin 
and Isoniazid has been developed [82]. Isoniazid loaded mannosylated gelatin NPs 
reduced drug hepatotoxicity and significantly decreased bacterial burden in lungs 
and spleen of infected Balb/c mice [83]. In an analogous study, licorice loaded man-
nosylated gelatin NPs revealed enhanced uptake in RAW 264.7 cells and reduced 
spleen and lung bacterial loads in Mycobacterium tuberculosis H37Rv-infected mice 
compared to untreated animals [84]. Other strategies employing mannosylated NPs 
for drug delivery in infections and cancer are enlisted in Table 15.4. A summary of 
mannosylated NPs employed as vaccine carriers is presented in Table 15.5.
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Table 15.4 Mannosylated NPs in infections and cancer

Disease Active Ligand/nanosystem Study outcome Reference

Infections

Helicobacter 
pylori infection

Acetohydroxamic 
acid

Fucose-specific 
(UEA-I) and 
mannose-specific 
(Conconavalin A) 
lectins conjugated to 
gliadin NPs

NPs inhibited binding 
of Helicobacter pylori 
to human stomach cells

[85]

HIV Didanosine Mannose conjugated 
to gelatin NPs

High macrophage 
uptake and RES 
localization

[86]

Didanosine Mannan conjugated 
to gelatin NPs

Fivefold higher 
intracellular uptake and 
greater localization in 
spleen, lymph nodes, 
and brain

[87]

Stavudine Mannose conjugated 
to gelatin NPs

High macrophage 
uptake and RES 
localization

[88]

Leishmaniasis Amphotericin B Gelatin conjugated 
to mannose via 
direct coupling or 
via PEG spacer

5.4-fold reduction in 
IC50 compared to free 
Amphotericin B 
solution in intracellular 
amastigote model

[89]

Amphotericin B 4-sulfated Sulfated 
N-acetyl 
galactosamine-
coated NPs

High RES localization 
and reduced splenic 
parasite burden

[90]

Curcumin D-mannose 
conjugated to 
chitosan NPs

Low in vitro 
cytotoxicity and 
reduced parasite loads 
in spleen

[91]

Doxorubicin 4-sulfated Sulfated 
N-acetyl 
galactosamine-
coated NPs

Enhanced intracellular 
uptake and high RES 
localization

[92]

Rifampicin D-mannose 
Mannose conjugated 
to chitosan NPs

High ex vivo uptake and 
high RES localization

[93]

TB Isoniazid Mannose-
conjugated solid 
lipid NPs

High uptake and 
reduced cytotoxicity 
in vitro

[94]

Rifabutin Mannose-coated 
solid lipid NPs

Sixfold higher uptake 
ex vivo and low 
immunogenicity 
compared to uncoated 
formulation. Prolonged 
circulation and targeted 
delivery to alveolar 
tissues

[95]

(continued)

P. Jahagirdar et al.



447

Table 15.4 (continued)

Disease Active Ligand/nanosystem Study outcome Reference

Cancers

Lung 
adenocarcinoma

Gemcitabine D-Mannose- 
conjugated solid 
lipid NPs

Improved uptake and 
high cytotoxicity in 
A549 cells with 
preferential lung 
accumulation

[96]

Lung cancer DNA Mannan-modified 
solid lipid NPs

Higher gene expressions 
compared to unmodified 
DNA loaded NPs 
suggesting applicability 
for nonviral vector gene 
delivery

[97]

Tumor Doxorubicin 4-Aminophenyl 
α-D-
mannopyranoside 
modified albumin 
NPs

Improved localization in 
brain glioma cells and 
reduction in tumor size

[98]

Doxorubicin Self-assembly of 
heptamannosylated 
β-cyclodextrin into 
NPs

Slow tumor growth in 
murine xenograft tumor 
models

[99]

Table 15.5 Mannosylated NPs-based vaccines

Antigen Ligand/nanosystem Study outcome Reference

Ag85A Mannose moiety of 
guar gum NPs

Strong systemic and mucosal immune 
response following oral administration, 
protecting the antigen from harsh gastric 
environment.

[100]

Nil Mannan-coated 
PLGA NPs

Improved dendritic cells’ maturation and 
stimulatory function.

[101]

Nil Dimannose and 
lactose decorated 
polyanhydride NPs

Surface functionalized pathogen like NPs 
revealed enhanced expression of MHC II, 
CD86 and CD40, CIRE, and mannose 
receptor on the cell surface.

[102]

Ovalbumin Mannan decorated 
polylactide-co- 
glycolide (PLGA) 
NPs

Enhanced CD4+ and CD8+ T-cell responses 
in comparison to nonconjugated NPs

[103]

Ovalbumin Mannosamine- 
coated 
polyanhydride NPs

Single subcutaneous or oral dose 
demonstrated higher and balanced IgG1 and 
IgG2a antibody responses compared to 
uncoated NPs. Oral immunization elicited 
higher levels of intestinal secretory IgA 
levels than subcutaneous immunization.

[104]

Toll-like 
receptor 7 
agonist, 
imiquimod 
(R837)

PLGA NPs coated 
with mannosylated 
cancer cell 
membrane

Enhanced uptake by DCs and delayed tumor 
development

[105]
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6.3  Miscellaneous Applications

6.3.1  Mannosylated SPIONs as MRI Contrast Agents

Superparamagnetic iron oxide nanoparticles (SPIONs) are reported as promising 
magnetic resonance imaging (MRI) contrast agents. Surface modification of 
SPIONs becomes essential owing to their drawbacks such as aggregation in water, 
chemical instability, and nonspecific targeting. To overcome these issues, SPIONs 
were coated with mannan to enable recognition by mannose receptor present on 
macrophages [106]. Mannan-coated SPIONs of 28.4 ± 7.2 nm size demonstrated 
low cytotoxicity in RAW 264.7 cells. Surface coating with mannan prevented aggre-
gation of SPIONs enabling selective delivery into antigen-presenting cells, suggest-
ing applicability as macrophage-targeted MRI contrasting agent.

6.3.2  Two-Photon Photodynamic Therapy

Photodynamic therapy combined with two-photon excitation offers a noninva-
sive alternative approach to chemo- and radiotherapy to reduce small solid 
tumors. The photosensitizer was covalently attached to mesoporous silica NPs 
followed by mannose coating. A single injection aided targeting to tumor site by 
mannose receptor and two-photon photodynamic therapy led to reduction in 
tumor size [107].

6.3.3  Biomarker for Pulmonary TB Patients

The serum and pleural concentrations of mannose receptor (CD206) were moni-
tored in pulmonary TB subjects. An increased CD206 level was observed in sera 
but not in pleura with a sensitivity of 77.3% and specificity of 86.5%. This pres-
ents a new application of mannose receptor as a biomarker of pulmonary 
TB [108].

6.3.4  Lysosomal Targeting in Storage Diseases

Therapeutic enzymes were conjugated to yeast cell wall, a natural source of 
mannose- 6-phosphate (M6P) glycan for utilization in glycogen storage diseases 
like Pompe disease. Recombinant acid α-glucosidase, a therapeutic in Pompe dis-
ease when conjugated to M6P glycans from cell wall of glyco-engineered yeast, 
revealed efficient intracellular localization and improved accumulated glycogen 
digestion [109].
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7  Clinical Studies

Although targeting to the mannose receptor has been widely investigated, very few 
mannosylated candidates have entered the clinical trials. Herein, we discuss a prom-
ising mannose-based targeted strategy DermaVir, a topical preparation for the treat-
ment of HIV/AIDS and FDA-approved radiopharmaceutical 99mTc-tilmanocept for 
sentinel lymph node mapping.

DermaVir (Genetic Immunity) is currently enrolled for Phase III clinical trials, 
set to begin in 2019. It represents topical immunotherapy for the treatment of 
HIV/AIDS comprising of plasmid DNA-based mannosylated particles [110, 111]. 
The mannosylated particles are formed by complexation of DNA with a cationic 
polymer (PEIm) while glucose present in the formulation acts as an aggregation 
inhibitor and stabilizer. The formulation when applied on the epidermal layer pen-
etrates the skin surface and triggers immune responses.

Staging of cancer progression relies on the mapping of lymph node metasta-
ses. Mapping of the sentinel lymph node requires an agent that quickly clears the 
injection site, rapidly enters, and retains in the sentinel lymph node, without 
entering the distal lymph nodes. FDA-approved 99mTc-tilmanocept by Navidea 
Biopharmaceuticals is a mannose-targeted radiopharmaceutical for the detection 
of sentinel lymph node and lymphatic mapping in tumors [112, 113]. The radio-
pharmaceutical has crossed several clinical trials [114–116] and is now employed 
for stage determination of cancers under the trade name “Lymphoseek.”

Chemically, it is 99mTc-diethylenetriaminepentaacetic acid–mannosyl–dextran 
comprising of diethylenetriaminepentaacetic acid and mannose units covalently linked 
to a 10-kDa dextran backbone. The binding occurs via the mannose residues to the 
receptors expressed by the myeloid cells. Following injection, 99mTc- tilmanocept 
enters the lymphatic channels and localizes in the sentinel lymph node by binding 
to the mannose receptor, thus enabling the mapping of lymph.

8  Advantages and Limitations Related to Specific Targeting 
through Through Mannose Receptor

As mannose receptor is predominantly located on macrophages, the abode of intra-
cellular infections, specific targeting via mannosylated conjugates and mannose 
decorated nanocarriers can improve the efficacy of therapeutics and vaccine candi-
dates. Additionally, mannose receptor mediated targeting could provide a practical 
approach for development of intracellular vaccines. Nevertheless, mannose-targeted 
vaccines would need to be coupled with other agents to enhance immune response. 
Interestingly, vaccines based on mannose receptor endocytosis may not only 
enhance immune responses against cancer and infectious diseases but could also 
find application in autoimmune disease therapeutics [58]. Surface-modified 
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mannosylated constructs could provide the additional advantage of both phagocytic 
and endocytic uptake to augment intracellular drug concentrations. However, the 
ubiquitous presence of macrophages all over the body could provide challenges in 
targeting specific macrophages through mannosylated carriers.

9  Conclusion

Targeting the mannose receptors represents an exciting therapeutic strategy for 
infections and cancers overexpressing the receptors. Extrapolating this strategy to 
vaccines provides exciting opportunities in the design of targeted therapeutics.
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