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Chapter 10
Scavenger Receptor and Targeting 
Strategies
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and Padma V. Devarajan

Abstract Scavenger receptors constitute a group of receptors on the cell surface that 
attach to various ligands and remove the targets that are non-self or altered. Signaling, 
transport, endocytosis, phagocytosis, and adhesion resulting in the removal of harm-
ful and degraded substances are some functions of these receptors. Scavenger recep-
tors bind a large repertoire of ligands indicating their involvement in homeostasis and 
multiple disease pathologies. In this chapter, we describe the role of scavenger recep-
tor group in the pathogenesis of infections and cancer. In addition, we present a 
variety of ligands with their scavenger receptor binding strategies through different 
examples of targeted drug delivery systems.
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AcLDL Acylated low-density lipoprotein
Aco-HSA Polyaconitylated-human serum albumin
AGE Advanced glycation end products
AgNPs Silver nanoparticles
BBB Blood–brain barrier
BSA Bovine serum albumin
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CFUs Colony-forming units
CR Cysteine rich
CXC Chemokine receptor 16
DCP Dicetylphosphate
DCs Dendritic cells
EDCs Endothelial cells
EGF Epidermal growth factor
Fe2O3 Iron oxide
FEEL Fasciclin EGF-like, and lamin-type EGF-like domains
GPI Glycosyl-phosphatidylinositol
HDL High-density lipoprotein
Hsp Heat shock proteins
LAMP  Lysosome-associated membrane glycoprotein
LCO Lithocholic oleate
LDL Low-density lipoprotein
LDLR Low-density lipoprotein receptor
LOX-1 Lectin-like oxidized LDL receptor-1
LPS Lipopolysaccharide
LTA Lipoteichoic acid
MARCO Macrophage receptor with collagenous structure
MBSA Maleylated albumin
MTX Methotrexate
NMs Nanomedicines
NK cells Natural Killer cells
OxLDL Oxidized low-density lipoprotein
PAS p-amino salicylic acid
PC Phosphatidylcholine
PG Phosphatidylglycerol
POPC Palmitoyloleoyl-phosphatidylcholine
PS Phosphatidylserine
RBCs Red blood cells
ROS Reactive oxygen species
S1-CLP Stabilin-1 interacting chitinase-like protein
SCARA-5 Scavenger receptor class A member 5
SiRNA Small interfering ribonucleic acid
SNP Single nucleotide polymorphism
SPARC Secreted protein acidic and rich in cysteine
SR Scavenger receptor
SRCL Scavenger receptors with C-type lectin
SRPSOX Scavenger receptor that binds phosphatidylserine and oxidized lipids
TAMs Tumor-associated macrophages
TiO2 Titanium dioxide
UGPR Uteroglobin-related protein
VLDL Very low-density lipoproteins
ZnO Zinc oxide
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1  Introduction

Scavenge means to clear, accordingly the role played by the scavenger receptors is 
clearing the body of a variety of moieties, for instance, modified low-density lipopro-
tein (LDL), bacteria or infected RBCs, apoptotic cells, etc. [1]. The receptor was first 
identified by Brown and Goldstein in macrophages and they observed that while the 
receptor internalized and degraded modified and oxidized low-density lipoprotein 
(OxLDL) or acetylated LDL, native LDL was spared by these receptors. Intracellular 
internalization of modified LDL may be due to foam cell formation [2]. Such foam 
cells loaded with cholesterol are integral to the atherosclerotic plaques and are also 
located in the lesions of blood vessel walls [3, 4]. While the scavenger receptors play 
a crucial physiological role, they can also perform as mediators in various patholo-
gies. This chapter details the receptor with special emphasis on exploiting the endo-
cytic property of this receptor in the targeted therapy of various diseases.

2  Scavenger Receptors

Scavenger receptors encompass a group of membrane proteins along with isoforms 
and soluble secreted extracellular domain isoforms. Although scavenger receptors 
are divided into 12 classes A-L (Fig.10.1), a term superfamily is not bestowed, as 
the receptors reveal no structural homology among the different classes [5]. They 
are more aptly termed as a supergroup [6]. Though structurally dissimilar, the 
 scavenger receptors show affinity for similar ligands comprising of polyions including 

Fig. 10.1 Schematic representation of scavenger receptor classes and their recognition domains
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lipoproteins, phospholipids, cholesterol ester, apoptotic cells, carbohydrates, 
proteoglycans, and ferritin. A structural similarity is evident among different 
members of a class. Owing to their diverse ligand binding ability, the scavenger 
receptors represent a significant part of the pattern recognition receptors [7, 8]. A 
schematic representation of scavenger receptor classes and their recognition 
domains is depicted in Fig.10.1. A major focus of this chapter is on Class A and B 
scavenger receptors, the receptors that play a role in infections and cancer.

2.1  Scavenger Receptors’ Recognition Domains

2.1.1  Class A

Class A scavenger receptor comprises of type II transmembrane proteins. A cytoplas-
mic N-terminal domain (40–55 amino acids) is linked to the transmembrane region 
(26 amino acids). The extracellular domain comprises of three domains, namely, 
α-helical coiled-coil, C-terminal cysteine-rich (CR), and collagen-like domain and 
mediates ligand recognition. The unique collagen-like domain has positively charged 
amino acid residues that bind to polyanions [9–11]. The SR-AI/II, MARCO, SCARA5, 
and SRCL are most widely studied members of this class (Fig.10.1). SR-AI and AII 
display identical affinity for collagen-rich region [12]. MARCO exhibits an extended 
collagen-rich domain and expresses cysteine-rich domain as ligand-binding site [13]. 
SCARA-5 and MARCO receptors reveal a similar ligand binding. The coiled-coil 
domain is absent in these two receptors [14]. SRCL comprises of a C-terminal 
lectin-type domain while it lacks cysteine-rich domain [15].

2.1.2  Class B

The members of this class usually contain type III transmembrane proteins of 
450–500 amino acid residues. They mainly express 2 transmembrane regions which 
contain closely placed short intracellular N- and C-terminals with the central extra-
cellular loop comprising N-linked glycosylated domain of 400–450 amino acid resi-
dues, involved in ligand recognition [6]. The CD36 and SR-BI are two major 
members, which are largely glycosylated and fatty acylated [16, 17].

The structural dissimilarity is evident among different classes of scavenger 
receptors. Class C is not expressed in humans [18]. Class D scavenger receptors 
contain lysosome-associated membrane glycoprotein (LAMP) domains and mucin- 
like domains [19], whereas lectin-like LDLR-1, the only member of class E, shows 
C-type lectin domain. The C-terminal of this domain is connected by transmem-
brane domain to the cytoplasmic domain of N-terminal [20]. Class F scavenger 
receptors revealed growth factor domains, while class G receptors exhibit along 
with a chemokine domain and a mucin-like glycosylated stem as extracellular 
domain for ligand binding [21]. Class H scavenger receptors comprise of fascillin, 
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epidermal growth factor (EGF) like, and lamin-type EGF-like (FEEL) domain [22]. 
While class I scavenger receptors consist of multiple group B cysteine-rich domains 
in their extracellular domain [23], class J contains a single transmembrane domain 
that connects the amino-terminal ligand recognition and binding ectodomain 
with a short cytoplasmic domain [24]. The class K scavenger receptor consists of 
hyaluronan binding domain [25, 26] and class L scavenger receptor consists of 
ligand- binding repeat, EGF repeat, and β propeller domain [27, 28]. A detailed 
description of these classes can be accessed from the literature [1, 5, 29].

3  Ligand Binding

Although majority of polyanionic ligands bind to scavenger receptors, their speci-
ficity depends on scavenger receptor domains. The broad range of specificity of the 
scavenger receptors prompted scientists to study the active site of these receptors. 
The positively charged C-terminal of the collagenous domain is essential for bind-
ing of ligands. Binding studies suggest that the collagenous domain is responsible 
for the broad specificity of the receptor [30]. A sticky surface is provided by the 
collagenous domain that enables selective binding of polyanions with high affinity. 
The positively charged residues of this domain are important for binding of polyan-
ions. Presence of few negatively charged residues repels polyanions with low affin-
ity and binds only those with high affinity. A direct or indirect effect on ligand 
binding is shown by other extracellular domains [31].

Although structurally homologous, SR-A1 and MARCO exhibit ligand uptake 
by discrete mechanisms. Studies suggest that removal of the cysteine-rich domain 
of MARCO curbs the internalization, whereas an enhanced uptake was seen follow-
ing CR domain deletion of SR-A1 [32]. A difference in domain charge may have 
resulted in this consequence. A negatively charged CR domain is predicted by in 
silico studies. However, some studies report a mixed positive and negative charge 
for CR domain in MARCO. Such differences in charges could impact the recogni-
tion of pathogens and particulate carriers. Ligand receptor binding of MARCO is 
dependent on metal ions like calcium. Calcium binding and reduced electrostatic 
potential at the acidic amino acids enable interaction of MARCO with polyanions 
[33]. Electrostatic potential changes can also alter the stationing of MARCO 
domains, in turn affecting ligand binding. A high affinity of CD36 of class B to 
long-chain fatty acids enables fatty acid transport [29, 34].

4  Intracellular Internalization

Scavenger receptors based on their class exhibit different endocytic mechanisms. 
While SR-A receptors follow clathrin-dependent pathways, LOX-1 proceeds via 
clathrin-independent pathways. Lipid raft-mediated mechanisms are shown by class 
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B scavenger receptors (Fig.10.2). This endocytosis diversity of scavenger receptors 
is mainly associated with their sequence diversity and a wide variety of endocytic 
motifs present in cytoplasmic domains of each scavenger receptor.

The ligand binding to scavenger receptor mediates receptor-mediated endocyto-
sis of this scavenger receptor–ligand complex, followed by intracellular trafficking 
via endosome lysosome system resulting in the metabolism of ligand. Scavenger 
receptor-mediated endocytosis of ligands stimulates the cascade of intracellular sig-
naling. This leads to apoptosis, lipid peroxidation, and endothelial cell dysfunction. 
Monocyte infiltration accompanied by differentiation, which leads to foam cell 
formation, suggest a role in atherosclerotic plaque formation [6].

4.1  Caveolae/Clathrin-Dependent Pathway

A phagocytic cascade is triggered following internalization of modified LDL by 
SR-A.  In the absence of ligands, unlike LDL receptor, the SR-A does not follow 
continuous cycling through a metabolic pathway. N-terminal cytoplasmic domain of 
SR-A contains di-leucine motif at amino acid residues 31 and 32, phosphorylation 
sites have been involved in ligand internalization and adhesion. This internalization 
of ligands follows classical coated pit pathway (Fig.10.2) [35].

Fig. 10.2 Schematic overview of scavenger receptor-mediated endocytic pathways
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4.2  Clathrin-Independent Pathway

The class E scavenger receptor LOX-1 binds to OxLDL, apoptotic bodies, and 
phospholipids and endocytoses via clathrin-independent pathway [36].

4.3  Lipid Raft Uptake

Class B scavenger receptor CD36 follows lipid rafts/caveolae-dependent pathway. 
Lipid rafts are mainly membrane domains containing lipids such as cholesterol, 
sphingolipids, glycosyl-phosphatidylinositol (GPI)-anchored proteins, and protein- 
tyrosine kinases of acylated src family. Caveolae present specialized raft subdomain 
for uptake mechanisms in some cells [37, 38].

5  Scavenger Receptor Location, Expression, and Function

Scavenger receptors are expressed mainly in endothelial cells (EDCs) and myeloid 
cells, but others are also expressed in epithelial cells. The SR-AI and AII are mostly 
expressed on macrophages, EDCs, epithelial cells, astrocytes, dendritic cells (DCs), 
mast cells, smooth muscle cells and mediates lipid metabolism, clearance of modi-
fied host components, pathogens, apoptotic cells, B cell–macrophage interactions, 
antigen presentation, binding of macrophages to extracellular matrix, and intracel-
lular signaling [39–41]. MARCO is expressed by macrophages, EDCs, DCs, and 
astrocytes. Infectious stimuli express MARCO in most tissue macrophages. In DCs, 
antitumor response induces high-level expression of MARCO. MARCO also regu-
lates the clearance of pathogens, necrotic dead cells, unopsonized particles, and 
enhances B cell–macrophage interaction [42]. SRCLI/II is mostly expressed by 
EDCs, stromal cells, astrocytes, and microglia, but not by macrophages. SRCL 
induces adherence of Lewis X-positive cells to vascular endothelium and elicits 
clearance of desialylated glycoproteins and β-amyloid [15]. Moreover, SCARA-5, 
a class A receptor is mostly expressed on epithelial cells of testis, airways, thymus, 
and adrenal glands. SCARA-5 lacks ability to recognize modified LDL and thus not 
involved in its endocytosis [14].

CD36 is mostly expressed by myeloid cells, platelets, adipocytes, and EDCs. 
Monocyte differentiation upregulates CD36 level, a mechanism similar to SR-A. The 
class B receptors induce lipid transfer activity, clearance of apoptotic cells, and 
P. falciparum-infected erythrocytes. SR-BI is found on monocytes, DCs, liver cells, 
and adrenal glands [43]. Class C is not found in humans and expressed on macro-
phages of the Drosophila and Mosquitoes [44]. The class D CD68 scavenger recep-
tor shows intracellular expression in macrophages, and surface expression on 
dendritic cells and osteoclasts [45]. Moreover, scavenger receptor class E (LOX-1) 
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is mostly found on EDCs, in various diseased conditions is expressed in smooth 
muscle cells. Furthermore, LOX-1 is involved in induction of apoptosis of EDCs, 
monocyte adhesion to EDCs, release of proinflammatory cytokines, and increase in 
ROS production [46]. The class F receptors are expressed over EDCs, macrophages 
and are involved in clearance of modified host components, antigen clearance and 
cross-presentation [47]. The class G scavenger receptors are expressed over macro-
phages, dendritic cells, and also expressed in multiple organs [48]. The class H 
scavenger receptors are mostly expressed in EDCs of liver, spleen, and lymphatic 
system, whereas macrophages only express FEEL-1. The class H facilitates lym-
phocyte adhesion and transmigration, clearance of modified lipoproteins and apop-
totic cells, induces angiogenesis, and is involved in intracellular trafficking [49]. 
However, Class I CD163 receptor is mainly expressed on myeloid cells and medi-
ates clearance of hemoglobin (Hb):haptoglobin (Hp) complexes, and aids erythro-
blast adhesion to macrophages [6]. Other classes of scavenger receptors such as 
class J, K, and L are still in research stage, in which class J is mainly expressed on 
neurons, class K on macrophages, and class L on kidney proximal tubule cells, lung, 
thyroid, gallbladder, neuroepithelium, epididymis, prostate, ovaries, uterus, and 
blood–brain barrier. They are mainly involved in the clearance of extracellular 
matrix ligands [5]. Although different types of scavenger receptors are expressed at 
the same site, they show diversity in intracellular trafficking and consequently elicit 
different responses.

6  Pathophysiological Features

SR-AI/II plays a major role in innate immunity against bacterial infections, where 
they recognize polyanionic cell wall products of bacteria including lipopolysaccha-
ride (LPS) and lipoteichoic acid (LTA). They mediate unopsonized phagocytosis of 
Gram-positive bacteria. This innate immune response stimulates scavenger receptor 
and enhances recognition and rapid internalization of pathogenic materials, thereby 
playing a role in the host defense mechanism [50].

SR-BI is involved in several processes such as apoptosis, binding and internal-
ization of pathogens, and signaling for induction of anti-inflammatory response. 
Microorganisms supported by anti-inflammatory activity of SR-BI undergo inter-
nalization via multimolecular pathways. This was elucidated based on observations 
in infectious diseases caused by Gram-positive and -negative bacteria, as also infec-
tions caused by dengue virus, hepatitis C virus, Plasmodium species, and many 
other infectious agents. SR-BI is also involved in the clearance of microbial end 
products. Binding of SR-BI to lipopolysaccharide is reported [50].

Involvement of scavenger receptors in the regulation of cancer tumor growth and 
associated immune reactions is reported. Tumor-associated macrophages (TAMs) 
show elevated levels of SR-A. An overexpression of SR-BI on cancer cell lines is 
observed. This results in increased lipid uptake in tumor cells, thus promoting 
growth [51]. Yet another interesting mechanism by which SR-BI increases tumor 
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proliferation is the intracellular signaling cascade involving activation of the PI3K/
AKT pathway, thereby causing tumor growth [52, 53].

Scavenger receptors are extensively studied in atherosclerosis, where SR-A and 
CD36 induce modified LDL uptake which is associated with foam cell formation 
[54]. On the other hand, SR-BI mediates cholesterol transport which is responsible 
for its anti-atherogenic role [55]. Although cells present in atherosclerotic lesions 
expressed LOX-1 and CD68, their exact role in response to atherogenesis is yet to 
be confirmed.

Interestingly, scavenger receptors are reported to play an important role in the 
pathophysiology of Alzheimer’s disease, where they exhibited potential endocytosis 
of β-amyloid fibrils [56].

7  Ligands

Majority of scavenger receptors are able to bind bacteria, virus, and cell surface 
components. They showed effective binding with polynucleotides, sulfated polysac-
charides, and long-chain fatty acids [40]. Almost all scavenger receptors mediate 
modified LDL uptake. The members of this supergroup such as SR-A, SR-B, and 
SR-E show efficient binding to both OxLDL and AcLDL, whereas SR-H only medi-
ate AcLDL uptake. Among all, class B receptors bind to unmodified LDL, HDL, 
and VLDL. Such differential binding dictates their functional diversity in the clear-
ance of modified LDL. The scavenger receptor expresses positively charged amino 
acids cluster (arginine or lysine) which thereby facilitates ionic interaction with 
negatively charged polyanionic ligands, lipoprotein particles, and pathogenic mate-
rials such as lipopolysaccharide and lipoteichoic acid. The ligand-binding potential 
of scavenger receptors increases with enhanced oligomer expression [29, 31, 41]. 
The numerous ligands for different scavenger receptor classes are summarized in 
Table 10.1.

Class A recognizes lipidic and apolipoprotein functionalities expressed by modi-
fied LDL [57]. This class of scavenger receptors exhibits neuronal cytotoxicity by 
mediating the uptake of β-amyloid fibrils in microglia and thereby contributes to the 
pathophysiology of Alzheimer’s disease [58]. The affinity of extracellular ligands 
biglycan and decorin to SR-A induces association of macrophages in the extracel-
lular matrix of smooth muscle cells involved in atherosclerotic plaque formation. 
Similarly, advanced glycation end products (AGE) efficiently endocytosed by SR-A 
are released during inflammation. On the other hand, SR-A also mediates uptake of 
glycated proteins such as glycated collagen IV. Expression of SR-A on adenocarci-
noma cells mediates internalization of T-cell tumor antigen and thus plays an impor-
tant role in cancer pathology. During lung inflammation, MARCO mediates uptake 
of uteroglobin-related protein-1 (UGRP-1). Besides MARCO another member of 
class A, SRCL-I recognizes Lewis-X trisaccharides with high affinity and dictates 
its role in recognizing desialylated glycoproteins. SRCL-I also recognizes β-amyloid 
peptide in Alzheimer’s patients [5].
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Table 10.1 Scavenger receptor class and their ligand molecules

Class Receptor Endogenous ligands
Pathogenic 
ligands Exogenous ligands

A SR-AI/II AcLDL, OxLDL, 
lysophosphatidylcholine, 
ApoA-I, Apo E, cholesterol, 
modified collagen type I, III, 
and IV, biglycan, decorin, 
AGE-BSA, β-amyloid fibrils, 
calreticulin, gp96, Hsp70, 
CpG DNA

N. meningitidis 
surface proteins, 
Gram-positive and 
-negative bacteria, 
C-reactive protein, 
hepatitis C virus, 
LPS, LTA

Polyacrylic acid, 
phosphatidic 
acid-modified 
albumin, calciprotein 
particles, maleylated 
LDL

A MARCO AcLDL, OxLDL N. meningitidis 
surface proteins, 
Gram-positive and 
-negative bacteria, 
LPS

TiO2, Fe2O3, Latex 
beads, and CSiO2

A SCARA5 L-ferritin, haptoglobin, 
hemoglobin

Gram-positive and 
-negative bacteria

Fe2O3

A SRCL OxLDL, β-amyloid, 
desialylated Lewis 
X-containing glycoproteins, 
Lacto-ferrin, matrix 
metalloproteinases 8, 9

Yeast, Gram- 
positive and 
-negative bacteria

Fe2O3, modified 
glycoproteins, 
modified 
polysachharides

B CD36 AcLDL, OxLDL Gram-negative 
bacteria, 
Cryptococcus 
neoformans and 
P. falciparum, 
LTA

Phosphatidylserine, 
β-glucan, A 
diacylated, 
lipopeptides

B SR-BI AcLDL, OxLDL, native LDL, 
native HDL, VLDL, apoptotic 
cells

Gram bacteria, 
M. fortuitum, 
hepatitis C virus, 
P. falciparum, 
LPS

Sulfated 
polysaccharides

D CD68/
Macrosialin

OxLDL ICAM-L 
(Leishmania 
surface protein)

Phosphatidylserine- 
rich liposomes

E LOX-1 OxLDL, acLDL, fibronectin, 
and pancreatic bile salt- 
dependent lipase Hsp60, 
Hsp70

Gram-negative 
and -positive 
bacteria

Modified LDL, 
lipoprotein particle, 
phospholipids, 
sulfated 
polysaccharides, 
poly(I), AGEs

F SRECI/II AcLDL, OxLDL, glucose- 
regulated protein 170, Hsp70, 
Hsp90, Hsp110

Gram bacteria, 
hepatitis C virus, 
fungal pathogens, 
zymogen granule 
protein 2

Carbamylated LDL, 
calreticulin

G SRPSOX/
CXCL16

OxLDL Bacteria Phosphatidylserine

(continued)

A. S. Lokhande et al.



307

Class B receptors show diverse ligand specificity where they bind native lipopro-
tein particles and hypochlorite modified LDL which are found in atherosclerotic 
lesions. CD36 present in vascular endothelial cells mediates hexarelin uptake and 
causes vasoconstriction. Furthermore, this CD36 also binds collagen type I, AGE- 
modified BSA, and β-amyloid fibrils. It also recognizes oxidized phospholipids 
expressed on apoptotic cells, thereby mediating macrophage clearance. SRBI recep-
tor of class B, binds AcLDL with greater affinity. It also mediates uptake of native 
lipoprotein particles and recognizes expressed apolipoprotein components. It also 
binds AGE-BSA and β-amyloid fibers [5, 29, 57, 58].

Class C receptor binds to AcLDL and pathogens, whereas class D (CD68) binds 
to OxLDL and negatively charged phosphatidylserine-rich liposomes. The Class E 
(LOX-1) binds to OxLDL, fibronectin, phosphatidylserine, AGE-modified protein 
and clears apoptotic cells. LOX-1 mediates Hsp70 internalization in dendritic cells, 
which is not endocytosed by class A & class B receptors. Both Class F receptors, 
SREC-I and SREC-II, are involved in the uptake of modified LDL, and mediate 
recognition of other ligands such as calreticulin, molecular chaperones, gp96, and 
tumor released heat shock proteins (Hsp70), whereas they lack recognition for 
AGE-modified proteins.

Class G (SRPSOX) receptor-like LOX1 (Class E) binds to OxLDL but not to 
AcLDL and it also acts as chemokine ligand for CXC chemokine receptor 16, 
thereby mediating adhesion of DCs to T cells and NK cells. In class H, FEEL-1 
receptor binds to extracellular SPARC (secreted protein acidic and rich in cysteine) 
glycoprotein and SI-CLP (stabilin-1 interacting chitinase-like protein) sorted in 
macrophages and Hsp70, while they show poor recognition for AGE-BSA. However, 
FEEL-2 recognizes hyaluronic acid and AGE-BSA with high affinity [5, 6, 29].

Table 10.1 (continued)

Class Receptor Endogenous ligands
Pathogenic 
ligands Exogenous ligands

H FEEL-1/
Stabilin1/
CLEVER1

AcLDL, AGE, SPARC, 
Hsp70, SICLP, Placental 
lactogen, and GDF-15

Gram-negative 
and -positive 
bacteria

Phosphatidylserine, 
heparin sulfate

H FEEL-2/
stabilin-2/
HARE

AcLDL, AGE, and GDF-15 Gram-negative 
and -positive 
bacteria

Procollagen, 
hyaluronic acid, 
phosphatidylserine, 
heparin

I CD163 Hb:Hp, TWEAK a TNF 
superfamily cytokine

Gram-positive and 
-negative bacteria

Not known

J RAGE AGEs, HMGB, S-100 protein Not known Modified AGE
K CD44 Hyaluronan, growth factors, 

cytokines, and matrix 
metalloproteinases

Bacteria, 
proteoglycans

Hyaluronic acid, 
glycosaminoglycans

L SR-L1 Cholesterol, Apo-EI Not known Not known
L SR-L2 Leptin, insulin, and amyloid β 

peptide
Not known Not known
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Scavenger receptors bind to foreign ligands including bacteria, fungi, virus, and 
parasites. In case of pathogens, their extracellular expression containing lipopoly-
saccharides, lipoteichoic acid, C-reactive protein, endotoxins, and numerous other 
surface proteins are recognized by these receptors [59]. Researchers have studied 
various other ligands based on functionality for scavenger receptor targeting, which 
is summarized in Table 10.2.

Table 10.2 List of scavenger receptor ligands based on functionality

Ligand functionality Ligands Reference

Polyacids Polyacrylic acid [60]
Polyitaconic acid [61]
Poly-D glutamic acid [62]

Phospholipids Phosphatidylserine [63]
Phosphatidylglycerol [64]
Phosphatidylinositol [37]
Phosphatidic acid [37]
Oxidized phospholipids [65]
Cardiolipin [66]

Polysaccharides Dextran sulfate [67, 68]
Heparin and heparan sulfate [69, 70]
Keratan sulfate [71]
Dermatan sulfate [72]
Chondroitin sulfate [73]
Glucoronate oligosaccharide [74]
Hyaluronate [75]
Carrageenan [68, 76]
Carboxymethyl dextran [77, 78]
Carboxymethyl cellulose [79, 80]
Fucoidan [81, 82]
Glycosaminoglycans [83]

Polynucleotides Polyinosinic acid poly (I) [84]
Poly (G), poly (G:I), polyxanthinylic acid, telomere models 
[d(G4T4)5]

[85]

Fatty acids Stearic acid [86]
Myristic acid, polyunsaturated fatty acids [87]

Inorganic particles Fe2O3 [33, 88]
TiO2, ZnO [89]
Silica [90]
Asbestos crocidolite [91, 92]

Modified Proteins Maleylated BSA [93, 94]
Malonaldehyde LDL [95]
Calciprotein [96]
Procollagen propeptides [97]
Heat shock proteins (Hsp) [98]
Major vault protein (MVP) [99]

Others Bovine sulfatides [100]
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8  Receptor-Mediated Targeting Strategies

Endocytic uptake mechanism of scavenger receptor suggests a simplistic way of 
receptor-mediated targeted drug delivery. The drug gets released intracellularly 
after efficient internalization of the ligand–receptor complex. This interaction also 
induces the cascade of inflammatory responses. Although there exist many different 
scavenger receptor classes, till date, only A and B scavenger receptors have been 
studied for nanomedicine-mediated response. These scavenger receptors serve as a 
unique nanomedicine target also for many theranostic applications. Research 
directed towards site-specific targeted drug delivery through scavenger receptor 
using various nanoformulations relies on receptor-specific ligands carrier composi-
tions mainly involving polyanions [101].

8.1  Drug–Ligand Conjugates

The chemical coupling of a suitable drug to a scavenger receptor-specific ligand such 
as maleylated albumin (MBSA) increases recognition by scavenger receptors for 
high-affinity binding, thereafter it undergoes internalization and metabolically 
degraded in lysosomes to release free drug for activity. Almost 100-fold enhanced 
efficacy was observed with such drug–ligand conjugate when studied in leishmani-
asis, tuberculosis, and neoplastic conditions. Coupling of methotrexate (MTX) to 
MBSA exhibited rapid internalization inside leishmania-infected hamster peritoneal 
macrophages and demonstrated 100-fold antileishmanial effect compared to free 
drug. It also eliminated intracellular amastigotes of L. donovani and L.  mexicana 
amazonesis. However, in case of M. tuberculosis-infected macrophages the targeting 
of anti-tubercular drug p-amino salicylic acid (PAS) and MBSA conjugate resulted 
in only 50% reduction of colony-forming units (CFUs). However, compared to free 
drug which exhibited CFU reduction of 0.5%, the enhancement in efficacy was 
nearly 100-fold. In neoplastic condition, the conjugation of drug Daunomycin with 
MBSA exhibited 100-fold cytotoxicity over free Daunomycin when tested at low 
concentration of 0.1 μM. Similar cytotoxic results were found with Doxorubicin-
MBSA conjugate when tested on human histiocytic lymphoma cells [102].

8.2  Liposomes

Negatively charged phospholipids such as phosphatidylserine (PS) and phosphati-
dylglycerol (PG) are efficiently recognized by macrophages [103]. The studies con-
firmed that negatively charged liposomes are efficiently taken up by macrophage 
scavenger receptors over neutral or cationic liposomes [104–107]. When macro-
phage cells which expressed scavenger receptor were treated with negatively 
charged PS-liposomes and neutral PC-liposomes, the former exhibited 5.3-fold 
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enhanced macrophage uptake over PC liposomes [108]. Incorporation of dice-
tylphosphate (DCP) also induced net negative surface charge over liposomes [109]. 
Polyaconitylated-human serum albumin (Aco-HSA) surface anchored liposomes 
showed effective anti-HIV 1 activity due to high uptake by scavenger receptors 
expressed on sinusoidal cells. This conjugation of Aco-HSA to liposomes enhanced 
liver uptake 17-fold, as compared with control liposomes, and the Aco-HSA lipo-
somes were mostly found in liver EDCs and kupffer cells. Further, in this study, 
reduced liver uptake (24%) of Aco-HSA was found post-injection of polyinosinic 
acid, which is a known SR ligand [110].

In case of stealth liposomes, endocytic CD163 scavenger receptor enhanced 
uptake of monoclonal antibody loaded pegylated liposomes in CD163 transfected 
cells and macrophages [111]. Palmitoyloleoyl-phosphatidylcholine (POPC)-apoE 
liposomes functionalized using different apoE proteins (apoE2, apoE3, apoE4, 
apoE165, apoE202, apoE229, and apoE259) enhanced scavenger receptor B bind-
ing affinity and were thought to regulate brain cholesterol metabolism [112]. 
Liposomes carrying fluorescently labeled cholesterol when tested on HepG2 cells 
(model system for human hepatocytes) showed 20% binding for class B scavenger 
receptor and only 10% recognition was confined to low-density lipoprotein receptor 
(LDLR) which provided additional insights for scavenger receptor-mediated uptake 
of liposomes [113]. It was reported that, in certain cells, liposome uptake is not 
inhibited by known scavenger receptor ligands suggesting their uptake was not 
scavenger receptor-mediated. PS-containing liposomes showed enhanced uptake in 
an African green monkey kidney cell line (CVI) compared to phosphatidylcholine 
(PC) liposomes, independent of inhibition by known competitors for scavenger 
receptor [polyinosinic acid or dextran sulfate]. On the other hand, in case of murine 
macrophage cell line, PS-liposome uptake was inhibited competitively by polyino-
sinic acid, but not by polycytidylic acid [114]. The liposomes for targeted scavenger 
receptor delivery in various diseased conditions are described in Table 10.3.

8.3  Nanoparticles

8.3.1  Lipoprotein Particles

In one study, it was found that OxLDL exhibited stronger CD36 binding and HDL 
has stronger SR-BI binding ability among all lipoproteins [124]. Synthesized HDL 
nanoparticles also revealed high affinity for SR-BI-rich cancer cells. Furthermore, 
HDL nanoparticles mediated delivery of siRNA to the cancer tumors overexpressed 
with SR-BI. Similarly, these HDL nanoparticles exhibited SR-BI-mediated pacli-
taxel delivery to prostate cancer cells. Such studies proved the potential of SR-BI- 
mediated targeting of nanoparticles and their subsequent involvement in many 
disease states [125]. Administration of acylated LDL particles loaded with muramyl 
tripeptide mediated antitumor efficacy through the scavenger receptors [126]. In 
one study, the antinociceptive activity of apo lipoprotein functionalized loperamide- 
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Table 10.3 Liposomes for scavenger receptor targeting

Active Ligand Study outcome Reference

Tuberculosis

Rifampicin Maleylated bovine serum 
albumin

Higher lung retention in rats 
compared to free drug

[109]

Rifampicin Tuftsin 2000-times more effective in 
lowering lung CFU compared 
to free drug

[115]

Rifampicin and 
isoniazid

Dicetylphosphate (DCP) Decreased bacterial load in 
lung, liver, and spleen

[116]

Hepatitis

No drug L-α-phosphatidylinositol 
(PI) and L-α-
phosphatidylserine (PS)

Improved antiviral efficacy by 
reducing infected cell 
cholesterol level

[117]

Leishmaniasis

Pentavalent antimony PS 16-fold more efficacy 
compared to free drug

[118]

Buparvaquone PS >90% efficacy in liver and 
spleen found

[119]

HIV

No drug PI and PS Suppressed mean viral 
secretion by 22% and 
infectivity by 55%

[117]

Iminosugar
N-butyl- 
deoxynojirimycin

PI and PS Decreased viral secretion by 
62% and infectivity by 86%

[120]

Cancer

CPX-351 (cytarabine 
and daunorubicin 5:1 
molar ratio)

PS SR-BI mediated efficient 
uptake of CPX-351 in K562 
leukemia cells

[121]

Doxorubicin Polyethylene glycol CD163-targeted pegylated 
liposomes showed 50% cell 
killing over Doxil

[111]

Atherosclerosis

Fumagillin 1,2-dipalmitoyl-sn-glycero-
3- phosphoethanolamine-N-
7-nitro-2-1, 
3-benzoxadiazol-4-yl 
(DPPE-NBD), and 
1,2-dipalmitoyl-sn-glycero-
3- phosphoethanolamine-N-
biotinyl (DPPE-Biotin)

Diminished atherosclerotic 
lesion

[122]

Dexamethasone Decadeoxyguanine linked 
to lithocholic oleate 
(LCO-dA2dG10)

Enhanced macrophage uptake [123]

loaded albumin nanoparticles was assessed. Three apo lipoproteins E3, A-I, and 
B-100 exhibited 95%, 65%, and 50% antinociceptive activity, respectively, whereas 
plain loperamide solution showed no effect, which showed uptake of such particles 
through SR-BI receptor expressed at BBB [127].
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8.3.2  Inorganic Nanoparticles

Dextran sulfate-mediated macrophage uptake of silver nanoparticles (AgNPs) 
through scavenger receptor is reported. Scavenger receptor-mediated uptake of 
AgNPs resulted in their intracellular accumulation and thereby apoptosis [128]. 
Furthermore, protein functionalization of AgNPs reduced its uptake due to decreased 
surface charge [129, 130]. Inhalation of ZnO nanoparticles induced enhanced 
expression of both SR-A and SR-B and thereby influenced atherosclerotic disease 
progression. However, TiO2 nanoparticles did not exhibit the same mechanism [89]. 
The macrophage phagocytic activity was diminished when subjected to superpara-
magnetic iron oxide nanoparticles exposure. These iron oxide nanoparticles inhib-
ited macrophage activation for M1 to M2 state and enhanced TNF-α production 
[33, 88].

8.3.3  Miscellaneous

Gadolinium-containing nanomedicines with anti-CD36 antibodies were effi-
ciently taken up by macrophages in  vitro compared to nanomedicines without 
CD36 antibodies [131]. The scavenger receptor A class member MARCO also 
exhibited interaction with carbon nanotubes [132] and polystyrene nanoparticles 
[133]. Furthermore, when scavenger receptor A was overexpressed in human 
embryonic kidney 293 (HEK293) cells, a cell line which is normally devoid of 
scavenger receptor expression, elicited enhanced uptake of amorphous silica 
nanoparticles, demonstrating role of scavenger receptor in uptake of nanomedi-
cines [101,134]. The miscellaneous nanoparticles targeting scavenger receptors 
are given in Table 10.4.

Table 10.4 Other nanosystems for scavenger receptor targeting

Nanomaterials Study outcome Reference

Inorganic

Dextran-coated superparamagnetic 
iron oxide nanoparticles (SPIO)

Promotes SPIO uptake by embryonic kidney 
cells (HEK293T) overexpressing SR-AI and 
MARCO

[33]

Silver nanoparticles Inhibition of SR-BI caused reduced uptake of 
AgNPs in endothelial and epithelial cells

[129]

Silver nanoparticles Decreased uptake in MARCO-deficient 
alveolar macrophages

[135]

Miscellaneous

Multiwalled carbon nanotubes Efficient binding to MARCO in macrophages [132]
Fluorescent labeled polystyrene 
particles

Enhanced macrophage association of 
nanoparticles through MARCO

[133]

Silica nanoparticles Enhanced nanoparticles uptake by human 
embryonic kidney 293 (HEK293) cells with 
overexpression of SR-A

[134]
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9  Clinical Trials

Although targeting to scavenger receptor is still in its nascent stage, very few scav-
enger receptor-mediated delivery systems have reached clinical trials. Herein we 
discuss such clinical studies with their outcome, demonstrating the role of scavenger 
receptors and targeting strategies. A study exploring targeting of pegylated inter-
feron α2 plus ribavirin therapy to SR-BI receptor encoded by SCARB1 gene for 
hepatitis C virus studied the association of single nucleotide polymorphism (SNP) 
of SCARB1 gene and its response to therapy, where they found SNP may increase 
antiviral therapy outcome [136, 137]. Interestingly another study was conducted to 
understand underlying molecular mechanisms causing disruption to HDL regulation 
through scavenger receptor (SR-BI) in various metabolic diseases including athero-
sclerosis, where genotype modification affects HDL metabolism and  cholesterol 
homeostasis [138]. One study was conducted to assess the role of scavenger recep-
tor ligands as biomarkers for cardiovascular disease diagnosis, where oxidized 
phospholipids and apolipoprotein B identification by antibodies can be detected to 
predict cardiovascular disease state 15 years in advance. The receptor studied here 
was CD36 [139]. Studies were also conducted for anti-hepatitis C virus efficacy 
testing of a new molecule ITX 5061 by blocking the virus uptake through scavenger 
receptor (SR-BI) expressed on hepatocytes to reduce the infection chances in liver 
transplant patients [140]. No clinical trials are however evident on scavenger 
receptor- targeted drug delivery.

10  Advantages and Limitations

Targeting scavenger receptors offers great promise for improved therapeutic effi-
cacy. This receptor has recognition specificity for pathogenic materials and plays an 
important role in various disease conditions. Intracellular delivery of actives can be 
achieved through scavenger receptor-mediated drug delivery, as the majority of 
infections are intracellular.

The major limitation of targeting these receptors is their broad ligand binding 
and recognition including both endogenous and exogenous molecules, which will 
compete for receptor-mediated endocytosis. Another major challenge is immunoge-
nicity as these receptors are involved in inflammation and expressed on immune 
cells. Furthermore, they are widely expressed on majority of cell types; hence, spec-
ificity is a challenge.

11  Future Perspectives

Recently, newer classes of scavenger receptors were found and many more are still 
to be discovered, hence targeting to these receptors can provide newer avenues in 
site-specific drug delivery. Exploitation of scavenger receptor-mediated drug delivery 
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is an option of the future. SR-BI due to its overexpression is reported as biomarker 
for human nasopharyngeal carcinoma [141]. The role of scavenger receptor as a 
biomarker for diagnosing various other disease conditions needs to be explored.

12  Conclusion

Scavenger receptors play a multifaceted and dynamic role in various cell-signaling 
pathways in the human body and are involved in metabolic regulation of macro-
phages for improved immune response. Scavenger receptors facilitate uptake of a 
broad spectrum of ligands including endogenous and foreign molecules. However, 
this receptor poses a challenge in stealth delivery of nanomedicines due to its inher-
ent ability of scavenging numerous components. Targeted drug delivery using scav-
enger receptor is still in its nascent stage and can be further exploited for the 
treatment of infections and cancer.
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