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Abstract. Requests to improve the quality of software are increasing
due to the competition in software industry and the complexity of soft-
ware development integrating multiple technology domains (e.g., IoT,
Big Data, Cloud, Artificial Intelligence, Security Technologies). Measure-
ments collection and analysis is key activity to assess software quality
during its development live-cycle. To optimize this activity, our main
idea is to periodically select relevant measures to be executed (among a
set of possible measures) and automatize their analysis by using a ded-
icated tool. The proposed solution is integrated in a whole PaaS plat-
form called MEASURE. The tools supporting this activity are Software
Metric Suggester tool that recommends metrics of interest according
several software development constraints and based on artificial intel-
ligence and MINT tool that correlates collected measurements and pro-
vides near real-time recommendations to software development stake-
holders (i.e. DevOps team, project manager, human resources manager
etc.) to improve the quality of the development process. To illustrate
the efficiency of both tools, we created different scenarios on which both
approaches are applied. Results show that both tools are complementary
and can be used to improve the software development process and thus
the final software quality.

Keywords: Software engineering · DevOps team ·
Metrics combination · Metrics reuse · Metrics suggestion ·
Metrics correlation · Software quality

1 Introduction

Metrics play a crucial role to improve software quality development process that
is becoming more and more complex [1]. To select the right metrics is also of
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prime importance for a successful software development. They have a strong
impact on developers actions and decisions [16].

In order to improve the software quality, we need to introduce new metrics
with the required detail and automation. Due to the modern development prac-
tices, new tools and methods are also necessary being the traditional metrics and
evaluation methods not sufficient anymore. Even more, there is a large body of
research related to software metrics that aims to help industry while measuring
the effectiveness and efficiency of used software engineering processes, tools and
techniques to help management in decision-making [4].

To achieve software quality, it is required to integrate new metrics based on
constraints combining safety (the system always behaves as it is supposed to)
and security (authentication, data protection, confidentiality, ...) and quality of
service. Green metrics also become relevant as they contribute to the reduction
of energy consumption.

This paper focuses on the combination, reuse, suggestion and correlation of
metrics. We have developed two complementary approaches, one based on met-
rics reuse, combination and suggestion and the other on metrics correlation.
They have been implemented in two tools, Metrics Suggester and Metrics Intel-
ligence Tool (MINT). Both approaches contribute to improve software quality
development proposing new techniques for metrics application and evaluation.

Regarding the Metrics Suggester approach, it is based on the optimization
of the current measurement process which are manual and static and thus very
costly. Metrics Suggester proposes an automated analysis and suggestion app-
roach, by using the learning technique Support Vector Machine1 (SVM), based
on AI algorithms. In summary, it consists of suggesting relevant and efficient
measurement plans at runtime using a machine learning algorithm.

Regarding the MINT approach, the idea is to identify and design correlations
between metrics that contribute to the improvement of the development process
and help developers to take decisions about it. The proposed correlations cover
all aspects of the system like functional behavior, security, green computing and
timing. For instance, we have defined correlations covering different phases of
development. Techniques to correlate metrics are provided and recommendations
are given as an outcome to the developer and project manager or any other
software stakeholder. Recommendations will affect their actions and decisions.

Both techniques are original and introduce innovation with respect to classi-
cal methods. Moreover, the application to the combination of metrics regarding
software development, security and green computing is a novelty with respect to
them.

Both approaches and tools are part of the European ITEA project MEA-
SURE and they have been integrated in the project PaaS platform2. Further-
more, in order to reach that result, a close link has been defined between
academia and industry for several years strengthened by the EU HubLinked

1 http://www.statsoft.com/Textbook/Support-Vector-Machines.
2 https://itea3.org/project/measure.html.

http://www.statsoft.com/Textbook/Support-Vector-Machines
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project3 fostering the U-I relationships (Universities-Industry). In summary, the
main contributions of this paper are:

– the design of new complementary approaches to improve software quality
development process by introduction of new correlation and suggestion tech-
niques, these lasts based on AI algorithms;

– the development of techniques and tools, Metrics Suggester and MINT, for
metrics correlation, reuse, suggestion, and recommendation.

– first functional experimentation of both tools.

This paper is organized as it follows: Sect. 2 presents the related works.
Section 3 gives a view of the MEASURE global platform and presents the two
approaches and the tools, Metrics Suggester and MINT. Section 4 is devoted to
presenting the experiences that are illustrated by experiments and Sect. 5 gives
the conclusion and perspectives of our work.

2 Related Works

Many efforts have been done to define metrics for software quality [4,10,21,25].
These works can be associated with standardized quality models such as ISO
9126 quantifying properties with software metrics [5]. Learning techniques are
currently arising to effectively refine, detail and improve the used metrics and to
target more relevant measurement data. Current works such as [22], [27] and [23]
raise that issue by proposing diverse kinds of machine learning approaches for
software defect prediction through software metrics. These studies have shown
the importance of gathering information on the software engineering process
in particular to ensure its quality through metrics and measurements analysis
[10]. Thanks to that, standardization institutes worked in that way to propose
two well-known norms, ISO/IEC25010 [21] and OMG SMM [4] to guide the
measurement plan specification. These two standards have been reviewed by
the research and industrial community, and are adapted and applied in many
domains [2].

However, even if these techniques have introduced considerable progress to
improve the software quality, they have still some limitations. The measurement
plan is, in general, manually fixed by the project manager, the implementation
of the measures is dependent on the developer and reduce the scalability, main-
tainability and the interoperability of the measurement process.

For software metrics correlation, there are many works focused on the rela-
tions between internal and external software metrics. In [28], the impact of
software metrics on software quality is presented and the internal and external
attributes of a software product are studied because the relationship between
them directly affects its behaviour. The metrics are combination of these
attributes. As the number of metrics used in a software project increases, the
management and controlling of the project also increases. In [24], the authors

3 http://www.hublinked.eu/.

http://www.hublinked.eu/
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investigated the relationship between different internal and external software
metrics by analyzing a large collection of C/C++ programs submitted to a pro-
gramming competition, the Online Judge. In [19], they analyze the links between
software reliability and software complexity for evaluating the effectiveness of
testing strategies.

These works have been applied mainly to establish correlations between inter-
nal and external metrics, and to specific ones. They have been very useful for our
work published in [7] and extended in this paper. Even though our approaches
are generic and can be applied to any metric, we plan to apply our approaches
to evaluate the relation between specific and well selected metrics. Besides, the
tools we propose are part of a PaaS open source platform called MEASURE4

dedicated to host several measuring and analysis tools to enhance software engi-
neering process quality.

3 Measurement Approaches and Tools

3.1 The MEASURE PaaS Platform

The MEASURE platform provides services to (1) host, configure and collect mea-
sures, (2) store measurements, present and visualize them and (3) analyze them

Fig. 1. The MEASURE PaaS platform.

4 https://github.com/ITEA3-Measure/.

https://github.com/ITEA3-Measure/
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and provide recommendations. These measures are first defined in SMM (Struc-
tured Metrics Meta-model) standard5 using the extension of Modelio modelling
tool6 dedicated to SMM modelling. The MEASURE platform is able to col-
lect measurements (data resulting of the execution of an instantiated measure)
thanks to external measuring tools (e.g., Hawk [11] for design and modelling
related measurements, SonarQube [12] for testing related measurements, MMT7

for operation related measurements, EMIT [3] for energy consumption related
measurements, etc.) (Fig. 1).

Direct measures collect data in physical world while the derived (complex or
composed) measures are calculated using previously collected measurements as
input. Collected measurements are stored on a NoSQL database designed to be
able to process a very large amount of data. To collect measurements, the direct
measures can delegate the gathering work to existing measuring tools integrated
with the MEASURE PaaS platform.

The measurements can also be processed by analysis tools to present con-
solidated results. The analysis platform is composed of a set of tools that allow
combining and correlating measurements in a meaningful way in order to provide
suggestions and recommendations for the software developers and managers.

Finally, stored measurements and recommendations are presented directly
to the end user following a business structured way by the Decision-making
platform, with a web front-end that allows organizing measures based on
projects/software development phases and displays its under various forms of
charts.

In order to study and improve the software quality processes and ease the
tasks of project engineers and managers, we defined a methodology based on two
modules: Metrics Suggester and Metrics Intelligence. The used terminology, the
formal modelling language and our two techniques are described in the following.

3.2 A Formal Software Measurement Context

Several concepts are commonly used in the software engineering context. We
provide some measurement terminologies in the following [15,17].

Terminology

Measurand: a measurand is the measured object. In this context, it is a software
system, such as software product, in use or software resource.

Software Properties: the software properties are the measurable properties of a
software such as, for instance, complexity or performance.

5 https://www.omg.org/spec/SMM/About-SMM/.
6 https://www.modelio.org/.
7 http://www.montimage.com/products.html.

https://www.omg.org/spec/SMM/About-SMM/
https://www.modelio.org/
http://www.montimage.com/products.html
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Measurement: a measurement is defined as a direct quantification of a measured
property [9]. This is the value of an evaluation result in a single time. This is
information on the measured property, such as the percentage of the memory
used.

Measure: a measure is the definition of a concrete calculation to evaluate a
property, such as the calculation of the number of lines of code.

Metric: a metric is a measure space, in other words, the specification of a mea-
surement. This is the formal definition of a measurement of a property of a
computer object by specifying the measurand, the measure(s) and the software
property to be measured.

Measurement Plan: a measurement plan is an ordered set of metrics (simple or
complex). They are all expected to be executed at a specific time t or during a
well-defined duration and according to an ordered metrics sequence. They can
be run sequentially or in parallel.

The OMG Structured Metrics Meta-model. Our methodology is based on
the OMG SMM (Structured Metrics Meta-model) standard to formally model
our metrics in terms of measure, scope (subset of measured properties) and
measurement but also in order to easily generate the corresponding Java code
[6]. Our main purpose is to have a standard documentation on the measurement
architecture with the SMM model, which will also optimize the design phase of
the implementation of a software measurement. Indeed, this process will enable
measurement code generation from a measurement architecture model based on
SMM. This will reduce the developer’s burden of manual implementation.

SMM is a standard specification that defines a meta-model to specify a
software measurement architecture, in other words to specify a Measure Space
applied to a computer system. It defines the meta-models to express all nec-
essary concepts to specify a measurement context. A wide range of diversified
types of measures is proposed to define the dependency type between dependent
measures (as the ratio, binary or grade measure). The language allows to define
direct/indirect measures and complex metrics:

– Direct Measure: is the measure independent of other measures, thus it refers
to the simple evaluation function.

– Indirect Measure: is a measure dependent on other measures.
– Complex metric: a complex metric is a metric composed of indirect mea-

sure(s).

As an example, the Fig. 2 represents the model of the computational energy
cost metric in SMM with the Modelio tool. This complex metric (represented by
3 stack levels) depends on three other metrics, two of them are direct metrics
(represented by a microscope): the memory access count and I/O usage metrics,
and the third one is also a complex metric denoted CPU energy model. It returns
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Fig. 2. The computational energy cost metric model in SMM. (Color figure online)

a numerical value in Joule. A low energy cost means a better software. Thus, it
is. Then, the unit of measure of the computational energy cost is a Joule and
represented in the figure by the yellow symbol “{...}”. Finally, this metric is
applied on an application, which is represented by the blue target in the model.
Each component is modeled as a UML class allowing the code generation from
a SMM metric model.

We describe in the following the two approaches and tools composing our
methodology.

3.3 The Software Metrics Suggester

As previously mentioned, one of our approaches consists on suggesting relevant
and efficient software measurement plans at runtime using a machine learning
algorithm. In order to detail our methodology, we first introduce some concepts
in the following.

Basics. In our previous paper [7], we developed a supervised learning technique
based on SVM with training datasets. These datasets contain vectors labeled by
experts. In an industrial context, the labeling process can be complex, time and
resource consuming [13]. In this paper, our main objective is to automatically
generate our measurement plans from totally unlabeled data. Our goal being to
define an unsupervised learning methodology. To do so, we propose an algorithm
(Algorithm 1) based on a clustering technique. This latter allows to identify in
an automatic way the software classes of interests from unlabeled data that are
themselves automatically labeled with dummy classes.

Finally, each obtained cluster will be classified and vectors of measurements
automatically labeled to be fed as inputs to our SVM approach. In the following,
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we formally describe the detailed procedures along with a generalized classifier
for the suggestion of measurements plan.

X-means Clustering. First, while measuring a system, we have a continuous
stream S of n measurements. These measurements can be considered as events.
The concept of event is interesting since it defines a formal link between the two
methods proposed in our approach, Metric Suggester and MINT. Each event can
be represented as a data point in a space xi and can be expressed as:

{(xi)}, xi ∈ R
d, i ∈ {1, 2, ..., n} (1)

where d is the dimension number of the input space or attributes (ai), and n is
the number of samples.

Generally, we can associated low-level events with high-level or complex
events yi ∈ R by a prediction function f(xi) (Eq. (4)). However, because no
labeled event data is assumed, we decided to apply a clustering technique that
could categorize the data into classes of metrics. One famous technique com-
monly applied is the K-means algorithm [18]. Though it is very efficient in many
areas, it requires to know the value of K. In our paper, we herein suppose that
we do not know its value, that depends on the software metrics in use and the
collected data. Therefore, the X-means clustering algorithm is proposed [26].
X-means will allow us to split the input data (1) into K clusters without the
need to define the expected number of them at the first stage. The best K sub-
sets are chosen such that all points in a given subset “belong” to some center cj ,
j ∈ (1, 2, ..., k) with a low inter-cluster similarity. Basically, the algorithm aims
at minimizing the following distance objective function:

J =
k∑

j=1

n∑

i=1

|DMH(xj
i , cj)|, (2)

where |DMH(xj
i , cj)| is the Mahalanobis distance measure between a event data

point and a cluster center [8]. Later, we also use this distance measure to define
the boundaries of each rule attribute. By using the Eq. (2), we can assign the
events data points xi to the cluster whose distance from the cluster center cj
is lower of all the cluster centers and which satisfies the Bayesian information
criterion (BIC). After that, each cluster center is updated by taking the weighted
average value of event points in that cluster (3) for better clustering results.

Cjupdate =
1

|cj |
cj∑

i=1

xi (3)

Finally, class labels yi can be assigned for each event cluster automatically by
our system. Then, once this assignation is performed, the vectors are labelled
and the SVM process can be executed at runtime for beginning the measurement
plans suggestion.
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Algorithm 1. Event Clustering.

Input: Unlabeled event data-set {xi}n
i=1 ∈ R

d

Output: Labeled event data-set {(xi, yi)}n
i=1 ∈ R

d,
Clusters centers Cj

i ∈ yi

1 Initialize an empty stack ϕ ← 0
2 Define initial number of clusters K0 ← 2
3 Divide unlabeled event data-set into C1, C2, ..., Ck0 clusters using k-means with

setting k ← k0.
4 repeat

5 Divide each cluster Ci into Ck0
i sub-clusters using k-means with k ← k0.

6 Calculate BIC(Ci)

7 Calculate BIC, MNDL(Ck0
i )

8 if BIC(Ci) > BIC
′
(MNDL(Ck0

i ) > MNDL
′
(Ck0

i )) then
9 The two-divided model is preferred, and the division is continued with

Ci ← C1
i .

// push event data into the stack

10 xi → ϕ

11 Ck0
i → ϕ

12 BIC(Ci) → ϕ
13 return step 5

14 end

15 if BIC(Ci) < BIC
′
(MNDL(Ck0

i ) < MNDL
′
(Ck0

i )) then

16 Clusters Ci are no longer divided and set Ci ← Ck0
i .

17 if ϕ → 0 then
18 goto step 26
19 else

// Extract all the stacked data

20 ϕ → xi

21 ϕ → Ck0
i

22 ϕ → BIC(Ci)
23 return step 5

24 end

25 end
// Ci cluster identification becomes unique.

26 Ci ← C∗
i

// Initial k0 divided clusters become unique.

27 Cj ← C∗
j

28 until i ≤ k0;

Support Vector Machine. A support vector machine (SVM) [29] is a linear clas-
sifier defined by a separating hyperplane that determines the decision surface for
the classification. Given a training set (supervised learning), the SVM algorithm
finds a hyperplane to classify new data. Consider a binary classification prob-
lem, with a training dataset composed of pairs (x1, y1), . . . , (xl , yl), where each
vector xi ∈ Rn and yi ∈ {−1,+1}. The SVM classifier model is a hyperplane
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that separates the training data in two sets corresponding to the desired classes.
Equation (4) defines a separating hyperplane (Source [7]):

f(x) = wTx + b = 0 (4)

where w ∈ Rn and b ∈ R are parameters that control the function. Function
f gives the signed distance between a point x and the separating hyperplane.
A point x is assigned to the positive class if f(x) ≥ 0, and otherwise to the
negative class. The SVM algorithm computes a hyperplane that maximizes the
distance between the data points on either side, this distance is called margin.
SVMs can be modeled as the solution of the optimization problem given by (5),
this problem maximizes the margin between training points (Source: [7]).

min
w ,b

1
2
‖ w ‖2

subject to: yi(wTxi + b) ≥ 1, i = 1, . . . , l
(5)

All training examples labeled −1 are on one side of the hyperplane and all
training examples label 1 are on the other side. Not all the samples of the training
data are used to the determine the hyperplane, only a subset of the training
samples contribute to the definition of the classifier. The data points used in the
algorithm to maximize the margin are called support vectors.

Features and Classes. The set of measurements that is classified using SVM is
defined as a vector of features. Each feature is a field of a vector and a measure-
ment of one specific measure. Each field is unique. So a feature is a measurement
composing a vector for our classification. Further, the vectors are classified into
classes according to the feature values. Each class refers to a measured soft-
ware property, such as the maintainability or reliability. The features composing
a vector are the measurements which give information on the classes. Some of
them can give information on several classes or only one. The features are chosen
according to the metrics defined in the starting measurement plan.

The Mapping System. In order to suggest relevant and effective measurement
plans, a mapping system is defined between classes and metrics, and between
metrics and features. It aims at allowing an automate suggestion procedure.
This mapping is performed by the experts of the measured system. According
to the type of interest (in terms of numbers of vector contained) of the classes
highlighted by the SVM classification, some metrics will be added or removed
from the measurement plan. Thus, new features will be gathered and others will
no longer be.

Classes-Metrics. A relationship between a class and some metrics is needed to
measure specific targeted software properties. The classes are used for the clas-
sification of the vectors according to their features values. As above mentioned,
our classification method is to classify a vector in the class corresponding to the
property whose the values of the vector show a type of interest.
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Features-Metrics. The features values inform about the properties (classes) of
interest. There are features which give information on only one property and
others which can give information on several different properties (complex met-
rics). Some of the measures can be used by different metrics. Thus, the features
associated with a metric are the features corresponding to the measures which
composed the metric. In order to ensure the sustainability of measurement cycles
by having at each cycle an information on all measured properties, a set of met-
rics should always be gathered. This set is called mandatory features. To select
the mandatory features, we use the RFE technique, explained below, based on
SVM.

The Feature Selection. The goal of the Feature Selection (FS) process is to
select the relevant features of the raised classes. Its objective is to determine
a subset of features that collectively have good predictive power. With FS, we
aim at highlighting the features that are important for classification process.
The feature selection method is Recursive Feature Elimination (RFE) [20]. RFE
performs backward elimination that consists of starting with all the features and
test the elimination of each variable until no more features can be eliminated.
RFE begins with a classifier that was trained with all the features that are
weighted. Then, the feature with the absolute smallest weight is eliminated from
the feature set. This process is done recursively until the desired number of
features is achieved. The number of features is determined by using RFE and
cross validation together. In this process each subset of features is evaluated with
trained classifier to obtain the best number of features. The result of the process
is a classifier trained with a subset of features that achieve the best score in the
cross validation. The classifier used during the RFE process is the classifier used
during the classification process.

Measurement Plan Suggestion. Based on the classification, matching and
FS, two sets of classes are notified: the one with the most vectors called Biggest
and the other set constituted of all the other classes called Others. The Biggest
means that the corresponding property is the most interested element while the
Others means that the corresponding properties are not the elements of interest.
Thereby, our Suggestion procedure is applied for the property corresponding to
the Biggest. Indeed, the Biggest property needs a further measurement, while
the Others one no longer need it. Basically, based on the procedures Analysis
and Selection, we raise unnecessary features for the classification that should be
removed from the measurement plan. Through this method, the measurement
load is increased only on needs and decreasing due to less interested proper-
ties. This suggestion approach allows to reach a lighter, complete and relevant
measurement plan at each cycle of the software project management.

3.4 MINT- Metrics Intelligence Tool

As mentioned in our paper [7], MINT is a software solution designed to corre-
late metrics from different software development life cycle in order to provide
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Fig. 3. MINT approach overview.

valuable recommendations to different actors impacting the software develop-
ment process. MINT considers the different measurements collected by the MEA-
SURE platform as events occurring at runtime. The correlation is designed as
extended finite state machines (EFSMs) allowing to perform Complex Event
Processing (CEP) in order to determine the possible actions that can be taken
to improve the diverse stages of the software life cycle and thus the global soft-
ware quality and cost (Fig. 3).

Background

Metrics Correlation. The correlation can be defined as a mutual relationship or
association between metrics (or the values of its application). Metrics correlation
can be the basis for the reuse of metrics; it can help to predict one value from
another; it can indicate a causal relation between metrics and can establish rela-
tions between different metrics and increase the ability to measure. Examples
of correlation are: to correlate two metrics from the same development phase;
to correlate the same metric at different times; to correlate a metric (a set of
metrics) from phase X regarding metrics of phase Y. As an outcome, recommen-
dations and a selection of metrics will be proposed to the developer to improve
the software development. MINT is based on correlation techniques.

Complex Events Processing. Complex event processing (CEP) [14] technology
addresses exactly the need of matching continuously incoming events against a
pattern. Input events from data streams are processed immediately and if an
event sequence is matching a pattern, the result is emitted straight away. CEP
works very efficiently and in real-time, as there are no overheads for data storing.
CEP is used in many areas that include for instance manufacturing processes,
ICT security, etc. and is adapted in this paper for software quality assessment
process.
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Extended Finite State Machine. In order to formally model the correlation pro-
cess, the Extended Finite State Machine (EFSM) formalism is used. This formal
description allows to represent the correlation between metrics as well as the
constraints and computations needed to retrieve a meaningful recommendation
related to software quality assessment.

Definition 1. An Extended Finite State Machine M is a 6-tuple M = <
S, s0, I, O, #»x , Tr > where S is a finite set of states, s0 is the initial state, I
is a finite set of input symbols (eventually with parameters), O is a finite set
of output symbols (eventually with parameters), #»x is a vector denoting a finite
set of variables, and Tr is a finite set of transitions. A transition tr is a 6-tuple
tr =< si, sf , i, o, P,A > where si and sf are the initial and final state of the
transition, i and o are the input and the output, P is the predicate (a boolean
expression), and A is an ordered set (sequence) of actions.

Fig. 4. Example of a simple EFSM with two states (Source [7]).

We illustrate the notion of EFSM through a simple example described in
Fig. 4. The ESFM is composed of two states S0, S1 and three transitions that
are labeled with two inputs A and B, two outputs X and Y, one predicate P and
three tasks T , T ′, and T ′′ . The EFSM operates as follows: starting from state
S0, when the input A occurs, the predicate P is tested. If the condition holds,
the machine performs the task T, triggers the output X and passes to state S1. If
P is not satisfied, the same output X is triggered but the action T ′ is performed
and the state loops on itself. Once the machine is in state S1, it can come back
to state S0 if receiving input B. If so, task T ′′ is performed and output Y is
triggered.

Writing Correlation Processes

Correlation Process Inputs and Outputs. The basic idea behind MINT approach
is to specify a set of correlation rules based on the knowledge of an expert of
the software development process. These rules can rely on one or different sets
of metrics (seen as inputs) and allow different recommendations to be provided
(seen as outputs) to different kinds of actors:

– Actors from the DevOps team: Analysts, designers, modellers, architects,
developers, tester, operators, security experts, etc.

– Actors from the management plan: product manager, project manager,
responsible of human resources, responsible of financial issues etc.
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Fig. 5. Example of correlation processes (Source [7]).

The automatic generation of such rules or their continuous refinement based on
some artificial intelligence techniques is an ongoing work and out of the paper
scope.

Example of Correlation Processes. The correlation processes rely on different
measurements that are computed and collected by external tools. Some examples
of correlations are presented in the Fig. 5.

Software Modularity. The assessment of the software modularity relies on two
metrics provided by the SonarQube tool that are the class complexity and the
maintainability rating. The class complexity measure (also called cognitive com-
plexity) computes the cognitive weight of a Java Architecture. The cognitive
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weight represents the complexity of a code architecture in terms of maintain-
ability and code understanding. The maintainability rating is the ratio of time
(according to the total time to develop the software) needed to update or modify
the software. Based on these definitions, and considering that a modular code
can be more understandable and maintainable, we can correlate the two metrics
and compute the ratio R = class complexity/maintainability rating. If this ratio
is more than a specific threshold set by an expert, the recommendation “Rein-
force the modular design of your development” will be provided to the software
architect and developers.

In the initial state, we can either receive the input related the class complex-
ity denote cc or the maintainability rating denoted mr . The process accesses
respectively to the states “cc received” or “mr received”. If we receive the same
measurement related to the same metric, we update its value and loop on the
state. Otherwise, if we receive the complementary metric, we compute the ratio
R = class complexity/maintainability rating. If this ratio is less than the defined
threshold, we come back to the initial state otherwise, we raise the recommenda-
tion. Timers are used to come back to the initial state if the measurements are
too old. For sake of place, only this EFSM is presented in Fig. 7. All the others
follow the same principles (Fig. 6).

Fig. 6. Software modularity correlation processes (Source [7]).

Requirements Quality. The assessment of the requirements quality can rely on
two metrics provided by the SonarQube tool that are the total number of issues
and the total number of reopened issues. These numbers are collected during
the implementation phase and we can consider that the fact that we reopen an
issue many times during the development process can be related to an ambigu-
ous definition of the requirement that needs to be implemented. If we have a
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ratio R = number of reopened issues/number of issues that is more than a spe-
cific threshold, we can consider that the requirements are not well defined and
that the development needs more refinement about them. The recommendation
“Refine requirement definitions or provide more details” will be provided to the
requirements analyst.

Code Reliability. The assessment of the code reliability relies on two metrics
provided by the SonarQube tool that are the number of issues categorized by
severity and the reliability rating. The issues in SonarQube are presented with
severity being blocker, critical, major, minor or info and the reliability rating
are from A to E: A is to say that the software is 100% reliable and E is to
say that there is at least a blocker bug that needs to be fixed. Based on these
definitions and considering that a reliable code should be at last free of major
or critical issues, we can check that there is no major, critical nor blocker issues
and the reliability rating is < C corresponding to 1 major bug. If this condition
is not satisfied, the recommendation “There is unsolved major issues in the
code, make a code review and check untested scenarios” will be provided to the
software developers and testers.

Fig. 7. Software security correlation processes.

Software Security. The assessment of the software security relies on two metrics,
one provided by the SonarQube tool that is the security rating (denoted sr in
Fig. 7) and the other is provided by MMT that is the number of security inci-
dents (denoted si in Fig. 7). The security rating in SonarQube provide an insight
of the detected vulnerabilities in the code and are presented with severity being
blocker, critical, major, minor or no vulnerability. The number of the security
incidents provided by MMT reports on successful attacks during operation. The
evaluation of security demonstrates that if an attack is successful this means that
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the vulnerability in the code was at least major because an attacker was able
to exploit it to perform its malicious activity. Based on these definitions, and
considering that a reliable code should be at last free of major vulnerabilities,
we can check if there is a major vulnerability and that the number of attacks at
runtime are more than a threshold. If this condition is satisfied, the recommen-
dation “Check code to eliminate exploitable vulnerabilities” will be provided to
the software developers ans security experts.

Software Performance. The assessment of the software performance relies on two
metrics provided by the MMT tool that are the response time and the band-
width usage. The response time denotes the delay that can be caused by the
software, hardware or networking part that is computed during operation. This
delay is in general the same for a constant bandwidth (an equivalent number of
users and concurrent sessions). Based on this finding, we can correlate the two
metrics and compute that the response time is not increasing for during time for
the same bandwidth usage. If this response time is increasing, the recommenda-
tion “Optimize the code to improve performance and minimize delays” will be
provided.

Programmer Code Quality. The assessment of a programmer code quality can
rely on three metrics (1) number of lines of codes pushed by each developer
and provided by Git or SVN repository API, (2) the complexity of the code
computed by SonarQube and (3) the number of bugs detected in this specific
code provided by SonarQube also. This assessment can be done each time a new
code is pushed on Git or SVN (which constitutes a fourth event in the FSM
machine that specifies the correlation rule). The recommendation for developers
pushing bad code (resulting to a lot of bugs) is to have training regarding good
practices in coding or to a specific technology or library used in the development
or/and can provide a hint the project manager about the quality of developers
skills.

Project Management and Fulfillment of Deadlines. The assessment of project
management quality is generally performed by checking if the project is advanc-
ing according to the initial plans. This assessment can be done by checking the
percentage of fulfilled requirements and correlating this to the timing plan. If the
project is late a recommendation can be to add more developers in the project
or to change priorities in the development strategy, if the project is advancing
more than expected, reallocation of human resources on other projects can be
an option.

4 Experiments

Fifteen software metrics have been selected by experts of the MEASURE plat-
form8 (mainly its administrator, the project manager and tools engineers). The
list of metrics is depicted in the Table 1.
8 http://194.2.241.244/measure/.

http://194.2.241.244/measure/
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Table 1. Each metric and its assigned index during the experiments (Source [7]).

Index Metric

1 Cognitive Complexity

2 Maintainability Index

3 Code Size

4 Number of issues

5 Response Time

6 Running Time

7 Usability

8 Computational Cost

9 Infrastructure Cost

10 Communication Cost

11 Tasks

12 I/O Errors

13 Precision

14 Stability Response Time

15 Illegal Operations

Then measurements corresponding to these metrics are collected. Our app-
roach is based on the classification of the collected vectors into well-defined
classes. However, one of the novelties in that new paper compared to [7] is that
the training data set is automatically obtained using our X-means clustering
algorithm. It means that our classes are obtained from the results of the algo-
rithm. This is what we depict in the first subsection below. After that, we apply
our two techniques and tools on the data collected through the MEASURE plat-
form and detail the results.

4.1 The Training Data Set and the Classification Process

In order to obtain our clusters and then provide our classes, we have run our
X-means algorithm on a collection of 1000 vectors containing, each of them, the
measurements for the 15 metrics. As this can be noted, we here considered met-
rics defined from one single metric. Due to the management of the MEASURE
project and the dates allowing to collect some data, the schedule when these
data have been collected and the data for suggesting the measurement plans
had to be tuned. Indeed, the data corresponding to the training data set and
the ones collected for the plans suggestion were not matching exactly; and the
results when using SVM was not efficient. For these reasons, most of the data
used within the procedure of training data set has been manually changed to fit
with the platform in use during the learning approach, that is the measurement
plans suggestion process.
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Fig. 8. A visualization of our X-means clustering results.

Based on that data, our X-means approach has been successfully applied.
For that purpose, the pyclustering library has been used and configured for
our methodology9. Therefore, the tool provided four main clusters defined by
four centers. We illustrate these results in the Fig. 8. In this figure, we made
the choice to consider the two first features, i.e., ‘Cognitive Complexity’ and
‘Maintainability Index’ as the two axis. For a sake of visualization clarity, the
other axis are not illustrated.

As previously mentioned, our objective is the categorize these clusters in
terms of set of metrics. Then the above mentioned experts have analyzed the
results of our approach to finally extract the four following classes that basically
correspond to software class properties:

– Maintainability (Class 1): Cognitive Complexity, Maintainability Index,
Code Size, Number of issues.

– System Performance (Class 2): Computational Cost, Infrastructure Cost,
Communication Cost and Tasks.

– Performance (Class 3): Response Time, Running Time and I/O Errors.
– Functionality (Class 4): Usability, Precision, Stability Response Time and

Illegal Operations.

These classes and the obtained training data set is therefore used for our
learning based suggestion approach as described in the following.

9 https://github.com/annoviko/pyclustering.

https://github.com/annoviko/pyclustering
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4.2 Suggester Experiments

The suggestion process is evaluated by analyzing the new measurement plans
(MP) based on the results of the classification process. These results are used
in the feature selection process in order to identify the class of interest. The
objective is to highlight the effects of using the proposed measurement plans
and its impact on the classification of new data and on the amount of data
collected by this plan.

The used and analyzed measurement data are the measurement results pro-
vided by our industrial MEASURE platform. Data are collected at runtime from
selected features/metrics.

Setup. We herein considered the following measurement plan determined by
our experts. An initial MP can be defined by 15 features, 15 metrics and 4
software quality properties. As previously said, each metric is composed of only
one feature and the mapping between metrics and classes has been provided by
the previous step with the clustering approach.

Using the previously described plan, we considered the class with the most
predicted instances during each cycle. A huge set of 16,000,000 unclassified
vectors (unlabelled) were collected and processed (representing a collection of
diverse data during a long period of time). This data set was divided into 32

Table 2. Measurement plans used during the suggestion process and the cycles where
they were used. Metrics of the plans are represented by the indexes described in Table 1
(Source [7]).

Metrics Cycles

MP1 2, 5, 6, 7, 8 1

MP2 4, 5, 6, 12 2, 4, 17, 22, 23, 24

MP3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15 3, 5, 18

MP4 8, 9, 10, 11 6, 30

MP5 7, 8, 9, 10, 11 7, 8, 9

MP6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15 10

MP7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 11, 19, 20

MP8 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 12, 21

MP9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 13, 14, 15, 16

MP10 3, 4, 5, 6, 8, 9, 10, 11, 12 25

MP11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 26, 32

MP12 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 27

MP13 1, 3, 4, 5, 6, 8, 9, 10, 11, 12 28

MP14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 29

MP15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 31
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subsets each containing 500,000 vectors. For each period of the suggestion pro-
cess, only one subset was used as input.

The initial measurement plan used during the experiment consisted of the fol-
lowing 5 metrics: Maintainability Index, Response Time, Running Time, Usabil-
ity, Computational Cost. These metrics where selected by the experts as an
example of a measurement plan with a small number of metrics that have links
to all software quality properties. During the suggestion process a number was
assigned to each metric as depicted in Table 1.

Results. During the suggestion process, 15 metrics (Table 1) were available to
suggest new MP. Figure 9 shows how the classification of the vectors was dis-
tributed during the cycles and the percentage of the vectors assigned to each
class. From these metrics, 15 unique measurement plans were used in the sug-
gestion process. Table 2 lists the plans and in which cycle they were used.

MP1 was only used at the beginning of the process, this was the plan sug-
gested by the expert. We note that MP2 was the most used plan during the
process (6 times). This plan is composed by the metrics linked to the Perfor-
mance property and was suggested when the classification of vector to class 3
overwhelmed the other classes. This tells us that if we focus on the Performance
property then the metrics in MP2 are sufficient.

MP3 was suggested when the four classes were present in the classification
results and class 4 was the class of interest. The tool suggests to take into
consideration more than the linked metrics to the class, it seems that these
features help to the classification of class 4.

MP4 was suggested when the input vectors were only classified to class 2,
this MP2 consists of the metrics linked to that class. This happens when the
input vectors are classified to only one class, the same can be observed in cycle

Fig. 9. Classification results of each cycle. The results show the percentage in the
predictions of each cycles for the 4 classes (Source [7]).
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1 but with class 3. MP5 has only one more metric than MP4, Usability. It is
also a MP focused on System Performance property. MP11 was also suggested
when class 2 overwhelmed the number of classifications during the classification
phase.

MP7, MP8 and MP9 are very similar measurement plans. These plans have
the highest number of metrics, MP7 15 metrics and MP8&9 14 metrics. These
plans are suggested when the classification results usually have more than 2
classes. This is because the classes do not share any metric between them. A
measurement plan with the majority of the metrics is expected to classify well the
majority of the classes. MP10, MP12, MP13, MP14 and MP15 where suggested
in the same case as the previously mentioned plans but these plans where only
suggested one time during the process.

4.3 MINT Experiments

To test the efficiency of the MINT tool, we created 30 scripts enabling to gen-
erate different values for the fifteen metrics that are relevant for the correlation
processes defined in the Fig. 5. For each correlation, we created 2 scripts: one
that meets the condition that satisfies the recommendation and another that
does not satisfy it. The 10/30 scripts are summarized in Table 3.

Table 3. Experiments scripts (Source [7]).

Correlation Script Metrics constraint

Code modularity 1 Class complexity/maintainability rating >
threshold

Code modularity 2 Class complexity/maintainability rating <
threshold

Specification quality 3 Number of reopened issues/number of issues >
threshold

Specification 4 Number of reopened issues/number of issues <
threshold

Management quality 5 Issues by severity = Major or Critical Reliability
rating > 1 Major bug

Management 6 Issues by severity �= Major and �= Critical or
Reliability rating < 1 Major bug

Security 7 Security vulnerability > Major vulnerability
Security incident > threshold

Security 8 Security vulnerability < Major vulnerability or
Security incident < threshold

Performance 9 Response timet > response timet−1 bandwidtht =
bandwidtht−1

Performance 10 Response timet <= response timet−1 or
bandwidtht > bandwidtht−1
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Fig. 10. Recommendation triggered by script 1.

Each script pushes the metric values into an event bus that feeds the 5 cor-
relation processes defined in Sect. 3.4. The results correspond to the desired rec-
ommendations and the Fig. 10 displays an example of recommendation provided
by the MINT tool for a software developer.

This experiment showed the efficiency of the tool. More work is planned to
apply this tool to real datasets provided by real users in the context of the
software development process.

5 Conclusion and Perspectives

This paper present an innovative approach to enhance software quality based
on the analysis of a large amount of measurements generated during the soft-
ware development process. The analysis is performed at different phases from
the design to the operation and using different measuring tools (e.g., Hawk,
SonarQube and MMT). The approach is implemented using two tools: Metric
Suggester and MINT tools.

The Metrics Suggester tool is very valuable to reduce the energy and cost
in gathering the metrics from different software life cycle phases and allows
to reduce the number of the collected metrics according to the needs defined
as profiles or clusters. It uses the support vector machine (SVM) that allows
to build different classifications and provide the relevant measuring profile, the
MP. The algorithm used in the tool as well some experiments demonstrate the
efficiency of the tool to focus on relevant metrics depending the engineering
process needs.

MINT is a rule based engine that relies on the ESFM formalism. It acts
as a complex event processor that corrects the occurrence of measurements on
time and provides a near real-time recommendation for the software developers
and managers. The tool already integrates a set of default correlation rules that
are able to provide valuable recommendations during the software development
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and operation. The tool has been experimented using different scenarios and
demonstrates an interesting added value

The data analysis platform of the MEASURE solution integrates the two
tools and implements analytic algorithms (SVM and CEP) to correlate the dif-
ferent phases of software development and perform the tracking of metrics and
their value. Correlations cover all aspects of the system like modularity, main-
tainability, security, timing, etc. and evaluate the global quality of the software
development process and define actions (suggestions and recommendations) for
improvements. The paper present the innovation of these tools and extended
experiment according to the research paper published in [7]. More experiments
are planned in the context of MEASURE ITEA-3 project with real use cases
provided by industrial partner. We believe that these experimentation will allow
to facilitate the exploitation of the tools in industrial contexts.
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ITEA3-MEASURE started in Dec. 1st, 2015, and the EU HubLinked project started
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