
A Rating Tool for the Automated
Selection of Software Refactorings

that Remove Antipatterns to Improve
Performance and Stability

Nikolai Moesus1, Matthias Scholze1, Sebastian Schlesinger2,
and Paula Herber3(B)

1 QMETHODS – Business & IT Consulting GmbH, Berlin, Germany
{nikolai.moesus,matthias.scholze}@qmethods.com

2 Software and Embedded Systems Engineering, Technische Universität Berlin,
Berlin, Germany

sebastian.schlesinger@tu-berlin.de
3 Embedded Systems Group, University of Münster, Münster, Germany

paula.herber@uni-muenster.de

Abstract. Antipatterns are known to be bad solutions for recurring
design problems. To detect and remove antipatterns has proven to be a
useful mean to improve the quality of software. While there exist sev-
eral approaches to detect antipatterns automatically, existing work on
antipattern detection often does not solve the detected design problems
automatically. Although there exist refactorings that have the potential
to significantly increase the quality of a program, it is hard to decide
which refactorings effectively yield improvements with respect to perfor-
mance and stability. In this paper, we present a rating tool that makes
use of static antipattern detection together with software profiling for
the automated selection of refactorings that remove antipatterns and
are promising candidates to improve performance and stability. Our key
idea is to extend a previously proposed heuristics that utilizes software
properties determined by both static code analyses and dynamic soft-
ware analyses to compile a list of concrete refactorings sorted by their
assessed potential to improve performance with an approach to identify
refactorings that may improve stability. We do not impose an order on
the refactorings that may improve stability. We demonstrate the practi-
cal applicability of our overall approach with experimental results.

Keywords: Software refactoring · Performance ·
Stability antipattern detection

1 Introduction

Performance and stability issues are a common reason why software needs refac-
toring. However, due to the variety of possible causes for performance and stabil-
ity issues, finding appropriate refactorings is a complicated task. To tackle this
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problem, antipattern detection as well as measurement-based performance engi-
neering have been proposed. Antipattern detection is a static analysis that aims
at detecting code flaws and violations against good practice [22]. While antipat-
tern detection often succeeds in detecting critical code sections that cause per-
formance bottlenecks, it tends to yield a great number of proposed refactorings
of which only a very small fraction can be considered relevant for performance.
To resolve all proposed issues is therefore neither efficient nor feasible. Addi-
tionally, a bad performing piece of code that gets only rarely called usually is
not the cause of severe performance problems. Measurement-based performance
engineering relies on dynamic analysis techniques that are applied when the pro-
gram under development is running [37]. Those analyses generate huge amounts
of heterogeneous data like response times, function call durations, stack traces,
memory footprints or hardware counters. To find the important chunks of infor-
mation that help solving performance issues takes time and also requires skill
and experience. Hence, manually searching for an appropriate refactoring is an
expensive task.

This paper is an extended version of [25]. There, we have presented a novel
approach for the automated selection of refactorings that are promising candi-
dates to improve performance. In this paper, we provide the following extensions
compared to [25]: First, we discuss not only performance, but also antipatterns
and refactorings that concern the stability of a program. Second, we have added
a more extensive discussion of the antipatterns considered in our rating tool,
and justified the decision for the antipattern detection tool PMD [6]. Third, we
have added a section about the implementation of our rating tool. Fourth and
finally, we have added a more detailed discussion of our experimental results.
The key idea of our approach is to use both static and dynamic analyses and
combine the results to generate a heuristics that determines those refactorings
that are most promising with respect to performance. The major contributions
are twofold: First, to quantify the expected effect of a refactoring, we present a
novel rating function that incorporates the analysis data from both static and
dynamic analysis, and thus enables us to heuristically assess the effectiveness of
concrete refactorings. The output is a list of proposed refactorings sorted by their
potential to yield a strong positive effect on performance, together with a list
of refactorings that may improve stability. The reasoning behind our heuristics
is to assess which portions of source code get executed frequently, such that a
refactoring there pays off more than anywhere else. We combine this with a fac-
tor that provides an estimate for the general effectiveness of a given refactoring,
independent of its position in the code. Second, we present an evaluation of the
general effectiveness of a given set of refactorings that are generally assumed to
improve performance, independent of their use in a concrete program. To achieve
this, we have implemented micro benchmarks and measured their effectiveness
with respect to the execution time and memory consumption. We use the results
from our micro benchmarks together with static and dynamic code properties
in our ranking function to provide a heuristics that automatically assesses the
expected effect of a concrete refactoring in a given program.
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To demonstrate the practical applicability of our approach, we present the
results from two experiments. In the first experiment, we have intentionally
manipulated a given example program such that it contains typical antipatterns
and investigate the impact on performance and how high the rule violations are
rated by our heuristics. In the second experiment, we apply our rating func-
tion to a given program, implement the top rated refactorings and examine the
performance improvement.

The rest of this paper is structured as follows: In Sect. 2, we introduce the
preliminaries that are necessary to understand the remainder of this paper. In
Sect. 3, we discuss related work. In Sect. 4, we present our approach for the auto-
mated selection of refactorings. In Sect. 5, we briefly discuss our implementation
of the rating tool and micro benchmarks, and we present micro benchmark results
as well as our case studies and experimental results. We conclude in Sect. 6.

2 Background

In this section, we introduce the preliminaries that are necessary to understand
the remainder of this paper, namely software performance, stability, antipatterns
and refactorings.

2.1 Performance

In the field of software, the notion of performance comprises multiple run time
aspects [30], all of them classified as non-functional properties. In this paper,
we focus on execution time as measure for performance. In a complex software
system with multiple components, execution times of single services sum up to
the overall execution time.

Performance plays an important role in every software. This is not necessar-
ily apparent as long as the performance is sufficient, e.g. due to modern CPUs,
high speed connections or efficient operating systems. From a users perspective,
sufficient performance often is taken for granted and is barely noticed, but a
lack of performance jeopardizes the success of an application as users become
frustrated and search for alternatives. In the case of simulation software, per-
formance sets boundaries to the level of detail or other functional aspects of a
simulation because too complex calculations might literally never finish.

To measure the execution time of a software technically no more than a
subtraction of two timestamps is necessary. However, a lack of accuracy of the
hardware or operating system that takes the timestamps may be a problem.
Because it is not possible to increase the time measurement accuracy a common
work-around is the utilization of performance benchmarks.

2.2 Stability

The term software stability refers to either absence of failures or consistency of
source code over time [10,31]. In this paper, we use the former definition and
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when speaking of a stable software we think of a program that does not crash or
erroneously abort user actions, that does not require restarts due to increasing
memory consumption or illegal states, and that can handle any possible input
in a reasonable manner. A lack of stability results from bugs or design flaws in
any part of the software system.

Stability plays a comparatively important role as performance and is likewise
taken for granted by users. A software that frequently crashes and perhaps even
looses data is frustrating and can cause great damage. Therefore, an unreliable
software should not be used in a production environment.

To measure the stability of software is a difficult task especially in complex
programs. Common metrics are the number of failures in a time period and time
between failures [24]. The technical measurements is complicated since the most
appropriate time unit is CPU time, which is hard to take at an arbitrary moment
when a failure occurs. Furthermore, to carry out a measurement, the software
under test must be used for a representative time under realistic conditions in
order to obtain valid statistics. However, there exist methods that we can make
use of to detect potential threats to stability in the source code of a program.

2.3 Software Antipatterns

Software design patterns describe good solutions to recurring problems in an
abstract and reusable way. A software antipattern is very similar, only that it
describes a bad, unfavored solution [21]. The motivation to write those down is
to prevent their use and to provide appropriate refactorings into better designs.
An example for an antipattern described in [32] is The Ramp, where tasks have
an increasing execution time due to a growing list that has to be searched but
is never cleaned up.

Listing 1.1. Example Performance Antipattern.

1 St r ing [ ] p = { ”These” , ” are ” , ” s epara te ” , ” par t s ” } ;
2 S t r ing s t r = p [ 0 ] ;
3 for ( int i = 1 ; i < p . l ength ; ++i ) {
4 s t r = s t r + ” ” + p [ i ] ;
5 }

Performance antipatterns are the class of patterns that lead to bad perfor-
mance. As an example for a performance antipattern in the programming lan-
guage Java, consider Listing 1.1. In this example, strings are concatenated with
the ‘+’ operator. The reason why using the + operator as shown is considered
an antipattern is based on the internal implementation in Java. The + opera-
tor is natively overloaded for String, although in Java operator overloading in
general is not possible. However, this piece of syntactic sugar brings along a dis-
advantage concerning performance. Because objects of String are immutable,
the additional characters cannot simply be appended. Instead, internally a Java
StringBuilder object is allocated, concatenates the strings in its char buffer
and returns the new immutable string. If such procedure is repeated in a loop
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as shown in Listing 1.1, each iteration allocates and dismisses a StringBuilder
and an intermediate string. It is veiled from the programmer that there lies an
inefficiency in the simple + syntax. The example demonstrates the low degree of
complexity of the antipatterns we deal with. Refactorings for this kind of antipat-
tern are often relatively simple as well. Also, they are mostly predetermined and
barely a subject to situational alternation.

2.4 Software Refactorings

A software refactoring is a change in source code that keeps the external behav-
ior of a software unaffected but yet improves the internal design or other non-
functional properties [13]. Examples for refactorings are splitting up large classes
into multiple units, increasing encapsulation of classes or replacing inefficient
operations. Refactoring is a structured process with specified steps and a defined
goal. For many situations there is a refactoring that describes a sequence of steps
and things to take care of in order to achieve a certain goal, which is better code.
Due to the structured procedure, refactorings are an elegant way of improving
software, in contrast to uncoordinatedly changing something in the code.

A refactoring may be a large scale operation that affects several units and
takes much effort to fully implement. In this paper, we focus on micro refactorings
[26], which affect only a few lines of code and are realizable in a short time or even
automatically. Concerning performance, micro refactorings can have noticeable
benefits, especially in often called functions or inside frequently executed loops.
Therefore, micro refactorings have the potential of an excellent cost-benefit ratio.

The proposed performance refactoring for the example in Listing 1.1 is to
allocate only one StringBuilder outside the loop and use it instead of the +
operator, such that no temporary objects accumulate.

3 Related Work

In [33,34], the authors present approaches to automatically detect software
design patterns based on static information extracted from Java bytecode. The
model uses a directed graph representation of the class diagram and utilizes
matrices to calculate similarities between modeled design patterns and the soft-
ware. The approach is extended to distinguish between design patterns with a
similar structure in [34]. By taking the version history into account the source
code before the introduction of the design pattern is inspected for code smells.
Depending on the formerly present smells the correct design pattern is deter-
mined. However, they focus on the detection of classical design patterns [14] and
are not concerned with their effect on performance. It is also possible to detect
patterns in source code with formal methods as suggested in [36]. There, the
authors examine class relations in a formal concept analysis to detect repeating
patterns without the need of prior pattern knowledge. The analysis is expensive,
though, and is not feasible for a large code base. Additionally, the impact of the
detected patterns on performance is not considered.
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According to the survey on design pattern detection presented in [29], the
majority of published approaches combines structural and behavioral analyses of
the software. Although behavioral analyses are not necessarily implemented as
dynamic analyses, for example, the approach introduced in [20] uses static and
dynamic analyses similar to how we use them: The static analysis provides a
set of design pattern candidates, which is narrowed down in a dynamic analysis.
For each design pattern they prepare a set of rules concerning the interaction
of classes and discard every candidate that violates any of the rules. Slightly
different is the approach of building call graphs during the dynamic analysis
as presented in [35]. The authors search both abstract syntax graphs and call
graphs for design patterns and rate each candidate. The combination of both
ratings helps to determine actual design patterns. Although both approaches
combine static and dynamic analyses, they again only detect patterns and are
not concerned with their effect on performance.

In [4], the authors detect design patterns in a graph representation according
to a meta model specifically designed for this purpose. They develop a domain
specific language that allows precise definitions of patterns with inheritance
between them to ease the creation of variants. They achieve a high detection
precision but again, they are not concerned with the effect on performance.

An approach to detect performance antipatterns and suggest refactorings
is proposed in [1,2]. However, they work on software architectural models, and
propose refactorings within the model, possibly even before the software is imple-
mented, while we focus on implementations.

In [7], the authors achieve a rating of performance antipatterns based on their
so called guiltiness. The algorithm that calculates the guiltiness requires a com-
plete set of antipatterns and the set of performance requirements for the system as
input. Each antipattern and requirement is associated to one or more system enti-
ties, e.g. a processor. Depending on to what extend a requirement is not fulfilled
the associated system entities spread the guilt among all their associated antipat-
terns while taking into account the antipattern’s estimated impact on the respec-
tive system entity. Although this approach succeeds in selecting the most effective
performance antipatterns, it requires an expensive modeling step to capture the
component model, as the software needs to be transformed into a Palladio Com-
ponent Model (PCM) [3] to carry out the antipattern detection and a performance
assessment, which is necessary to estimate an antipattern’s impact.

In [8], the authors propose assembly code optimization by means of static
antipattern detection and dynamic value profiling. They use a knowledge
database for assembly antipatterns that have shown bad performance in micro
benchmarks and attempt to find those with a static analyzer. The dynamic
analysis benefits from very low instrumentation cost on the assembly level and
captures data like cache miss rate. Although this approach is closely related to
ours in many ways, e.g. the focus on micro refactorings, it utilizes the dynamic
analysis as independent addition instead of combining its yield with the results
from static analyses, and it does not target a high-level programming language,
which is often preferrable for software evolution and maintenance.
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In [23], the authors present a machine learning system that examines exe-
cution traces of the software under test and calculates new input values for the
next execution that are most promising to uncover a performance bottleneck.
Finally, an analysis of the captured execution traces is carried out and a ranked
list with presumed performance bottlenecks is compiled. Even though in our
approach we utilize very different techniques, the result, namely an ordered list
of specific performance issues, is similar. However, they do not automatically
propose a solution to the detected performance issue.

In [11], the authors use supervised learning to train a model that finds
antipatterns and rates their severity. This relieves them from the necessity to for-
malize the antipatterns in order to perform the detection. However, they rely on
external detection algorithms to support the generation of training data, which
is tedious work. Additionally, they do not focus on performance and therefore
propose no measure to determine the impact of antipatterns on performance.

To the best of our knowledge, no existing approach enables the automatic
selection of refactorings that are most promising to increase performance.

4 Automated Selection of Refactorings

Static code analyses for antipattern detection issue too many alleged defects in a
not prioritized fashion, rendering the information hard to work with efficiently.
Dynamic software analyses, on the other hand, yield a lot of heterogeneous
data which is not easy to interpret and will not directly lead to a refactoring
proposition in the source code. Apparently, both techniques have their individual
disadvantages.

To overcome these problems, we propose an approach for the automated
selection of refactorings that utilizes software properties determined by both
static code analyses and dynamic software analyses. By combining the best out
of both worlds into one heuristics, we compile a list of concrete refactorings
sorted by their assessed potential to improve performance and stability.

Our key idea is that with the help of dynamically retrieved runtime infor-
mation we rank statically detected antipatterns by their importance regarding
the expected impact on performance and stability. By connecting runtime data
with specific antipatterns in the code, we derive a precise recommendation which
refactorings are most promising to improve the performance and stability.

Figure 1 shows our overall approach. In the top left, a static analysis takes the
software source code and a set of antipattern detection rules as input to produce
an unordered list of antipatterns, e.g. the undesired use of the ‘+’ operator. In
the bottom left, a dynamic analysis examines the software while it is executed
in its runtime environment consuming some input data. Various performance
measures are the output of this process, e.g. the execution time. In the final
step, we introduce a rating function, which uses the dynamic performance mea-
sures together with a factor that measures the general effectiveness of a given
refactoring to assign a severity value to each statically detected antipattern.
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Fig. 1. Automated selection approach [25].

As a result, we get an ordered list where the top entries represent the antipat-
terns along with their proposed refactorings that have the highest potential of
improving performance. Thus, there is no more need to manually handle neither
the performance measures nor the huge amount of antipatterns. Instead, it is
possible to deal with the most promising refactorings and defer the revision of
the others.

Concerning stability antipatterns, making up a meaningful order by means of
dynamic analysis results is hardly possible. The certainty that a specific antipat-
tern may cause severe stability issues does not necessarily mean that a specific
occurrence causes any harm. None of the available measures seems appropriate
to make a profound and reliable assessment of severity. Additionally, stability is
not measurable like performance. It is much harder to say if an improvement set
in after a couple of refactorings, in order to evaluate the quality of an antipat-
tern selection process. Values like downtime of a server application or failure rate
cannot easily be measured in a micro benchmark. For these reasons, we separate
stability antipatterns from the others and put them into an individual list where
no particular order is assumed.

To realize our goal of automatically selecting refactorings, there are multiple
challenges to face. The large amount of static detection rules has to be checked
for those which may have a positive effect on performance or stability. The many
different available runtime parameters have to be evaluated in consultation with
an experienced performance engineer in order to find those that point to potential
performance leaks. Finally, we aim at defining a parameterized rating function
that is capable of melting all information into one value to allow sorting between
the statically detected antipatterns.
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4.1 Assumptions and Requirements

Our approach is applicable to all kinds of programming languages for which the
corresponding static and dynamic analyses are available. There are, however,
differences in how complicated it is to obtain runtime information and how many
sophisticated tools there are for a certain technology. Thus, for practical reasons,
we decide to tailor our approach to the widely used programming language Java.

Our approach relies on finding antipatterns with a static analysis and there-
fore is limited to what can be found this way. To be able to analyze even large
code bases we are restricted to detection tools that are very fast. Characteristic
for antipatterns found by those tools is that they are relatively simple and often
concern only a single operation that is empirically known to be less efficient than
some other operation, e.g. the + operator that concatenates strings. Significant
savings are expected especially if antipatterns occur in loops or frequently called
functions. Note that more complex causes for performance issues, like memory
leaks, inefficient or unnecessarily large database requests or too frequent remote
service calls, are hardly detectable by a static analyses in a fail-safe fashion.
Expensive techniques, e.g. symbolic execution, would be required, but they still
cover only a small part of the considered domain. Additionally, a high rate of false
positives must be prevented because the acceptance of a tool and the confidence
in its well-functioning would diminish rapidly.

Considering this, we expect our approach to work best for applications where
the same source code is executed very often and thus the achievable perfor-
mance improvement of refactoring antipatterns is high. This decisive criterion is
assumed to hold for large business applications, e.g. server software or micro ser-
vices that get thousands of similar request a second. Nevertheless, our approach
works for other software as well, just with smaller performance gains.

Note that for the static antipattern detection, we require access to the source
code, while for the dynamic analysis a runtime environment, and realistic input
data must be available.

4.2 Rating Criteria

We aim at ordering the detected performance antipatterns according to their
severity, i.e., their potential of improving performance. To achieve this, we deter-
mine some rating criteria. Those may be either static properties, e.g., the location
in the source code where an antipattern is detected together with its loop depth,
or properties that can be obtained through dynamic analysis, e.g., the execution
time and frequency of the surrounding method.

Static Properties. The core of our static analysis is the static antipattern
detection, which provides a list of antipatterns together with their location in the
code. As an additional static property we use the loop depth at the corresponding
program location as a rating criterion, i.e. within how many layers of loops
a specific antipattern is nested. We choose this property because source code
within loops has the potential of being executed very often. If an antipattern
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represents an inefficiency, the many repeated executions give it a higher impact
on performance and therefore it is more important to refactor.

Note that we do not use the actual amount of executions of a loop or the
nesting depth of a given antipattern. To determine the actual amount of execu-
tions of a loop for arbitrary inputs is an undecidable problem, thus we cannot
use this information as rating criterion. How deep an antipattern is nested in
arbitrary control flow structures, i.e., the nesting depth, is easy to determine.
One could argue that source code within, e.g., an if-statement is executed less
often. However, we have no evidence that control flow structures other than
loops form a reliable correlation that can be used as basis for a rating.

Runtime Properties. An important runtime property is the total execution
time of a method. It is defined as the sum of all execution times of a method in
a given program run. Therefore, it gives an impression on how much time the
program spends in a specific method. The time spent in subroutines is counted
towards the respective subroutine but not the calling method. Thereby, we get
a correlation between the time spent and a very limited number of code lines. A
high total execution time indicates that either some very expensive operations
are performed or the number of executions must be high, e.g. due to a loop. In the
second case an antipattern in this method has a higher impact on performance.

Another interesting property is the call count, i.e. how often a method is
called during runtime. Using the same reasoning as above, we consider antipat-
terns in frequently called methods to have a higher impact on performance.

The third runtime property is the memory consumption of a method. To cap-
ture the memory consumption of a given method in Java, we use the suspension
count. As Java is a memory-managed language, the garbage collector suspends
the currently executed method from time to time. The suspension count tells how
often the garbage collector suspended a certain method to perform a collection.
We choose this property as indicator for high memory consumption with the rea-
soning that if a method suffers suspensions disproportionately often, it probably
allocates a lot of memory. The claimed correlation is based on the assumption
that a garbage collection takes place whenever all memory is used up, which sta-
tistically happens more often in allocation intensive methods. Although different
implementations of garbage collectors behave very differently in many ways, the
assumption that more suspensions by the garbage collector indicate a higher
memory consumption presumably holds. Note that for many other languages
there exist profiling tools like Google’s gperftools for C or the Memory Profiler
for Python, which report the memory consumption of each method in a given
program. Our rating function can easily be adapted to include these measures
instead of the suspension count.

A runtime property that we leave out is the increase of execution time under
increasing load. If a method takes significantly more time just because the sys-
tem is under load, this indicates that the method contains some operation that
impairs the performance. Often, the problem is about waiting time that is spent
e.g. for synchronization between multiple threads [16]. We still do not consider
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this property for two reasons. First, none of our antipatterns causes waiting
times. Second, measuring the increase of execution time under increasing load
in a completely automated fashion is very complicated, e.g., because a dedicated
testing environment for the measured software is required. For the same reasons
we do not utilize synchronization and waiting times. Neither do we consider the
API breakdown, because the information which component takes the most time
is not detailed enough to form a connection with specific antipattern occurrences.

Antipattern Properties. As a further important rating criterion, we use the
properties of the antipattern itself. We expect some antipatterns to bring high
performance gains through refactoring while others yield only small improve-
ments. To assess the general effectiveness of a given set of refactorings, we have
implemented a micro benchmark for each class of antipattern and its refactored
counterpart in a before-afterwards fashion (cf. Sect. 5). In doing so, we evaluate
the effectiveness of each refactoring and thus can derive meaningful weights for
our rating function.

Note that we have the choice to utilize either the relative improvement after
the refactoring or the absolute improvement. As we are mostly interested in
a positive effect on the performance of the whole software it makes sense to
consider the absolute gain. The relative improvement is only of limited meaning
because an operation that takes quasi no time has few saving potential even
if it can be made faster by a factor of 50. Therefore, we select the absolute
effectiveness of refactorings as rating criterion.

4.3 Rating Function

Our final goal is to provide a heuristics for the prioritization and selection of
antipatterns regarding their negative impact on performance for a given program.
To achieve this, we present a novel rating function that can be used as a heuristics
to estimate the severity of a detected antipattern in terms of the expected effect
of refactoring the antipattern on performance. Note that our rating function
does not rank stability antipatterns, but adds the corresponding refactorings to
the recommended refactorings in an unsorted list. Our rating function is based
on the various criteria discussed above and forms the heart of innovation in our
approach as it actually combines the statically and dynamically obtained data.

We define our rating function, which determines the expected effectiveness
of refactoring a given antipattern AP , as follows:

severity = exec · (calls + b · loop) · ft,AP

+ (β · susp + 1) · (calls + b · loop) · fm,AP

where exec is the total execution time, susp the suspension count, calls the
call count, loop the loop depth, ft,AP an antipattern time factor and fm,AP

an antipattern memory factor. The antipattern time and memory factors ft,AP

and fm,AP capture the general effectiveness of refactoring the antipattern AP.
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We have determined these factors using micro benchmarks. The idea behind this
is as follows: If the execution time of a single piece of code only consisting of a
given antipattern can be reduced by a factor of 10 using the proposed refactoring
for this antipattern, we assess the general effectiveness of this refactorings to have
a time factor of ft,AP = 10. If, for the same experiment, the memory consumption
is reduced to 50%, the memory factor of this refactoring is fm,AP = 2. We
describe our micro benchmarks to determine the time and memory factors for a
given set of antipatterns in Sect. 5 and present the resulting factors in Table 3.
To fine-tune our rating function, we introduce the weighting factors b and β,
where b weights the relative relevance of the loop depth compared to the call
count, and β the relative relevance of memory consumption compared to the
execution time. The user can use these factors to adjust the rating function to
her need, emphasizing the importance of the loop depth compared to the call
count by raising b, or putting additional importance on memory consumption
compared to the execution time by increasing β.

The ratio behind our rating function is to identify antipatterns that are at
locations in the source code that are executed very often. Refactorings at those
locations have a larger potential of improving performance than elsewhere and
should receive a higher rating. If, e.g., the execution time of a method is high,
it is probable that this method is either called very often or contains a loop
with many runs. If an antipattern is located in such a method with a high call
count, we assume that it is executed often. Consequently, in this case the term
exec · calls becomes large and leads to a higher rating. If on the other hand
the call count is low but the antipattern lives within a loop, we likewise assume
many executions. This time the term exec · loop becomes large and again leads
to a higher rating. When merged together under the premise that either of the
two cases should result in a higher rating, we get the term exec · (calls+ b · loop)
in the rating function. The weighting factor b can be used to normalize the loop
depth with respect to the call count (the loop depth is typically between 0 and
4, while the call count has much larger numbers), and to express a domain-
or application-specific relevance of loop depth and call count. In applications
or domains where the loop depth is not expected to significantly influence the
performance, b can be reduced, and vice versa. The antipattern time factor ft,AP

gives an estimate for the general impact of the antipattern on execution time and
is therefore multiplied. Altogether, this yields the first summand of the rating
function.

The derivation of the second summand is very similar. For methods that get
frequently suspended for garbage collection we assume a higher memory con-
sumption. This leads to the term susp · (calls+ b · loop). We again multiply with
the antipattern memory factor fm,AP to take the general impact of the antipat-
tern on memory consumption into account. A particularity of the suspension
count is that for most methods it simply is zero, since overall garbage collection
kicks in relatively seldom. Because we do not want to zero out the whole impact
on memory, we add the constant one and get (susp + 1).
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Finally, we put together the two terms, each representing an independent
indication of a high impact on performance. Since execution times can easily
grow large while the suspension count keeps low, the weighting factor β should
be used to align the magnitude. In addition, the software developer can increase
β to search for refactorings that are promising to reduce the memory consump-
tion, and decrease β to focus on refactorings that are promising to reduce the
overall execution time. Note that in (β · susp + 1) the constant one is not scaled
by β. The reasoning is that in case of zero suspensions the summand should have
little influence and only break the tie between otherwise similarly rated antipat-
terns. If scaled, the second summand could grow significantly large, although
the suspension count is zero and there actually is no evidence for a high memory
consumption.

4.4 Weight Determination

To normalize the loop depth with respect to the call count and the memory
suspensions with respect to the execution time, we determine initial values of
the weighting factors b and β. As mentioned above, they can be adjusted to
fine-tune the ranking function to certain domains or to a desired performance
goal.

The weighting factor b defines the relation between call count and loop depth.
To scale the loop depth range of 0 to 4 such that it matches the magnitude of
call counts common for the current antipattern selection process, we choose

b =
1

Nm

∑

methods

calls

with Nm as the number of methods. In other words, we choose b such that it
equals the average call count of a method. In our experiments, the call count
average is a multiple of the median. Thus, the loop depth has an adequate effect
on the antipatterns rating but the extreme call counts still surpass the loop
depth in effect. Note that b has to be calculated once in an antipattern selection
process.

The weighting factor β defines the relation between execution time and sus-
pension count:

β = α ·
∑

methods

exec

∑
methods

susp

In other words, β equals the total execution time divided by the total suspension
count. The idea is to calculate the average of how much time corresponds to one
suspension and scale the suspension count accordingly. The factor α can be
used to reduce the suspension counts influence because it is suspected to be less
reliable and accurate than the execution time, as the numbers generally are very
low and a proper statistical distribution sets in very late. In our experiments, we
use α = 0.2. The weighting factor β has to be calculated once per antipattern
selection process.
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4.5 Selection of Detection Tools and Rules

In this subsection, we justify our decision for the tool we use for the antipattern
detection and how we select the detection rules.

As stated above, the common tools for static analysis of Java source code
that are available for selection are PMD, Checkstyle and FindBugs [22]. They
are freely accessible and come each with a predefined list of detection rules.

An important difference between the tools are their respective lists of pre-
defined rules. To get an overview, we thoroughly inspected the several hundred
rules with their descriptions and examples. Finally, we come to the conclusion
that PMD is suited best for our purpose. Compared to the others, it has the
most rules for performance antipatterns and a fair amount of stability rules.

Checkstyle has a stronger focus on coding style and an overall smaller set of
rules. It offers hardly any performance or stability antipattern detection rule that
PMD does not offer. Therefore its additional use would not be very beneficial
for our cause.

FindBugs does not work with source code but with Java byte code and there-
fore requires Java class files to operate. Its focus mostly is, like the name sug-
gests, finding bugs and not detecting performance antipatterns. Regardless, it
has a rules section dedicated to performance. But still, those rules do not add
much new to what we get from PMD. Moreover, the mentioned rules concern
only very specific inefficiencies and we estimate the potential to really improve
performance to be relatively low.

Based on the inspection of all PMD rules we compose two subsets. One
set focuses on performance and the other on stability. This first selection is
performed only on the textual documentation of the rules [27]. It is notable
that most of the more than 150 rules do not concern performance or stability
issues. However, there actually is one category called Optimization. But not all
performance relevant rules are in there. In particular, the category String and
StringBuffer also contains some important rules. In Table 1 all selected rules are
listed.

5 Evaluation

We have implemented our approach in Java. We perform the static code analysis
with PMD [6], which uses detection rules to find patterns in the source code.
Compared to other tools like Checkstyle [5] and FindBugs [28], PMD has more
rules for performance antipatterns and thus is best suited for our approach.
For the recording of runtime properties, we use the monitoring tool Dynatrace
AppMon [9]. It is widely used in practice and provides all the dynamic properties
we need.

In this section, we first present our micro benchmarks and experimental eval-
uation of the general effectiveness of a given set of refactorings independent of a
concrete program. Then, we demonstrate two experiments we have conducted in
order to evaluate our approach for the automated selection of refactorings that
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Table 1. Selected PMD detection rules.

Performance rules

BooleanInstantiation Avoid to instantiate Boolean objects

AvoidUsingShortType short requires cast to int before arithmetics

FinalFieldCouldBeStatic static members save memory

OptimizableToArrayCall Allocate proper array size in toArray

IntegerInstantiation Avoid to instantiate Integer objects where possible

ByteInstantiation Avoid to instantiate Byte objects where possible

ShortInstantiation Avoid to instantiate Short objects where possible

LongInstantiation Avoid to instantiate Long objects where possible

AvoidInstantiatingObjectsInLoops Check if repeated allocation is required

SimplifyStartsWith Replace str.startsWith("x") with

str.charAt(0) == ’x’

UseStringBufferForStringAppends Avoid using + operator iteratively for strings

UseArraysAsList Use Arrays.asList wrapper instead of copying all data

AvoidArrayLoops Prefer System.arraycopy over manual copying

UnnecessaryWrapperObjectCreation Avoid intermediate instances of Integer etc

AddEmptyString Do not use + "" to cast to string

RedundantFieldInitializer Spare initializations to Java default values like

int a = 0

ExceptionAsFlowControl Use exceptions for exceptional situations, not control

flow

AvoidThrowingNewInstanceOfSameException Avoid re-creating exceptions with new

StringInstantiation Avoid to instantiate String objects with new

InefficientStringBuffering Avoid using + operator with StringBuilder

UnnecessaryCaseChange Prefer equalsIgnoreCase over case changing

UseStringBufferLength Prefer StringBuilder.length over toString

AppendCharacterWithChar Append single char with append(’x’)

ConsecutiveAppendsShouldReuse Put consecutive append in a single instruction

UseIndexOfChar Search for single char with indexOf(’x’)

InefficientEmptyStringCheck Prefer isWhitespace in a loop over trim

InsufficientStringBufferDeclaration Initialize StringBuilder with appropriate size

UnnecessaryConversionTemporary Avoid intermediate instances of Integer etc

Stability rules

ReturnFromFinallyBlock Avoid return inside a finally block

AvoidThreadGroup Avoid the not thread-safe class ThreadGroup

CloseResource Do not forget to close resources after opening them

MissingBreakInSwitch Do not forget break in switch-statements

SingletonClassReturningNewInstance Do not make getInstance create new instances

PreserveStackTrace Do not dump exceptions stack trace

AvoidCatchingThrowable Do not catch the too general Throwable

AvoidCatchingNPE Do not hide NullPointerException by catching it

AvoidLosingExceptionInformation Use return values of functions without side effects

UseEqualsToCompareStrings Use equals to compare strings contents

UselessOperationOnImmutable Use return values of functions without side effects
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are promising to have a high impact on the performance of a given program. As
a case study, we use STATE, a SystemC to Timed Automata Transformation
Engine written in Java and developed at TU Berlin [17–19]. Although this is not
the class of software our approach is designed for and thus the performance gain
is small, the obtained findings demonstrate the practical applicability of our app-
roach. Furthermore, we show some example output and give a first impression
of the potential of our approach.

We carried out all experiments on an Intel(R) Core(TM) i7-2620M CPU
@ 2.7 GHZ, 2 Core with 8 GB RAM running the Microsoft Windows 10 Pro
operating system. We use the Oracle JVM version 8.

5.1 Micro Benchmarks

We have implemented micro benchmarks to determine the general effectiveness
of a given set of antipatterns independent of a concrete program. We measure
the effectiveness in terms of time and memory factors ft,AP and fm,AP , which
represent the relative severity of the various antipatterns. Since we are interested
in the relative effectiveness of performance refactorings, only the relation between
the performance of code containing the antipattern and code containing the
refactored version is important and the absolute results do not matter.

Challenges of Java Micro Benchmarks. Micro benchmarks are not easy to
design, especially in a language like Java. There are some general pitfalls and
some that stem from how Java and its virtual machine work [15].

The first thing to go wrong is that something completely different is mea-
sured than what was intended. A naive example is a benchmark to measure some
arithmetical operation that writes each result to the console. What impacts the
performance in such a setting is mostly the output and not the actual arith-
metics. To avoid this, we put only the absolutely necessary operations into the
measurement code.

The accuracy of the CPU clock is by far not high enough to capture times in
the magnitude of CPU cycles. Thus, we nest the operations we want to measure
into a simple, repeating loop. The repetition count must be high enough to reach
overall computation times where the accuracy is sufficiently good.

A Java specific pitfall is the just-in-time compiler (JIT compiler), which
automatically compiles frequently executed portions of the program while leaving
the rest for interpretation as usual. This can corrupt a measurement because half
of the executions are interpreted and the other half compiled. We encounter this
challenge with a so called warm-up. This means that we run the benchmark code
20000 times before the actual measurement is started. This guarantees that the
JIT compiler translates the benchmark code and we measure only the compiled
version.

Another general difficulty is the compiler optimization in benchmarks. As
the executed code does not fulfill any contentual purpose the compiler may find
out and optimize it away, rendering the whole benchmark useless. To solve this
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problem, we always return a number that in some way contains values involved in
the measured code. Like this, we avoid optimization with a negligible overhead.

The garbage collection in Java is another mechanism we take into account
with our micro benchmark design. If, for example, a garbage collection is per-
formed during a benchmark the execution time increases significantly. Hence,
before each measurement, we demand a garbage collection to happen to achieve
similar starting conditions. Actually, the JVM cannot be forced to carry out a
garbage collection but according to our experiments it always obeys. Thus, if a
garbage collection takes place, it is because so much memory was consumed.

When taking a measurement, the result is subject to deviations. Therefore,
we repeat the measurement several times. In a series there probably are outliers,
e.g., due to some irregular background process on the machine that executes the
benchmarks. For this reason we discard the extreme values and take the average
over the remaining as final outcome.

Micro Benchmark Implementation. We have implemented the micro bench-
marks as an Apache Tomcat servlet [12]. This allows a user friendly control in
the web browser through a simple HTML interface. To cover all PMD per-
formance rules, we have implemented 20 benchmark pairs, each consisting of
one benchmark for the antipattern and one for its refactored version. The core
of each benchmark is a specific function that executes an antipattern or its
refactored counterpart in a loop with a certain repetition count N , in our case
N = 100000. Around this benchmark function the measurement process is built
up. One benchmark measurement consists of two parts of which the first mea-
sures memory consumption and the second measures execution time.

For the memory consumption, we take the difference in heap size of the JVM
before and after the benchmark function. Because in Java garbage collection can
happen at any time, it has to be considered for the measurement, otherwise the
alleged memory consumption even may become negative. To solve this problem,
we use a callback function, which is triggered by each garbage collection run and
which records how much space got cleared. We use this to calculate the memory
consumption as follows:

memConsumption =

(heapAfter +
∑

GCRuns

collected) − heapBefore

We repeated this process 50 times before taking the average, which we con-
sider the true memory consumption. First experiments showed that the callback
function does not reliably execute timely before the measurement in which it
was triggered is over. Therefore, after every measurement we schedule a wait of
(100 ms) to catch late coming garbage collections and assign the numbers to the
appropriate measurement.

For the execution time measurement, we take the difference in the system
time before and after the benchmark function. To achieve a reliable value we
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calculate an average over 50 measurements, where we discard the lowest and
highest four values beforehand. In order to accomplish an even more reliable
result we calculate such an average for ten different cases, where in each case the
repetition count is modified according to repCount = i · N with i = 1, 2, ..., 10.
In doing so, we get a series of supposedly equidistant execution time averages.
We calculate the distance between every two successive results, which repre-
sents the increase in time for another N runs. Over these distances we take the
average and finally consider it the true execution time of N runs of the bench-
marked antipattern or its refactored counterpart. The deviation of the minimal
distance and the maximal distance from the average indicate the quality of the
measurement, with a low deviation confirming the outcome.

Results and Interpretation. The results from our micro benchmarks are
shown in Table 3. Note that benchmarks marked with * were executed with
N = 1000 due to long execution times. The table comprises short, descriptive
names for the benchmarks and the corresponding average times and the aver-
age memory consumptions as described above. The time factor describes by
what factor the execution time changed in the refactored version compared to
the antipattern, with a high value indicating that the refactoring is effective.
The time saving describes the absolute gain in execution time achieved by the
refactoring. Analogously, the values are calculated for memory consumption.

The time factors are in a range of 0.8 to 21497.92, i.e., some refactorings even
have a negative impact while others are incredibly effective. The time savings
are in a range of −0.16 to 4275.11 ms per 100k repetitions and it is notable that
a high factor does not necessarily appear together with a high absolute saving.
Regarding memory consumption, the factor range is 0.21 to 10086.67 and the
savings range is −0.09 to 198.17 MB per 100k repetitions. For those pairs where
the refactored version consumes no memory the factor becomes NaN.

The results fit well with the expectations we had based on the antipattern
description. For example, we now have evidence that performing arithmetics
with the short type takes additional execution time due to the internal type
casts but saves memory. In conclusion, we are very confident that our effort to
design good benchmarks payed off by providing useful results that we can use
in the rating function to distinguish between more or less severe antipatterns.

The measurements taken with the micro benchmarks are not only good for
determining the antipattern factors used in the rating function. They have a
value in themselves because the effectiveness of refactoring the antipatterns gets
quantified in a relative and an absolute way. The results show that there are sev-
eral refactorings that reduce execution time or memory consumption by large
factors. At the same time, we get an overview of how much can be saved through
refactoring this kind of antipatterns. While for some the savings are close to zero,
for others they are multiple seconds per 100k calls. Those values suggest that in
general our approach of refactoring this kind of statically detectable antipatterns
has some effect, as long as not every occurrence is considered but only system-
atically selected ones. The results from our micro benchmarks also provide a
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valuable insight to the general effectiveness of performance refactorings and can
be used by further research on antipatterns and performance refactorings.

5.2 Rating Tool Chain

As preparation for the rating tool, we have configured the data sources, namely
PMD and Dynatrace AppMon, to capture the required data. We have explored
the output formats of the data sources in order to finally design and implement
the rating tool itself.

The rating tool that we have implemented is the core component of the rat-
ing tool chain. It comprises routines to read all data required for the rating
function from PMD, Dynatrace AppMon and the benchmarks. It uses a data
model that we have designed to represent the collected information in a consis-
tent way, finally applies the rating function, sorts the antipatterns according to
their severity and writes an output file with the most important information.

Configure and Operate PMD. A XML file is required to configure PMD
to use a certain set of detection rules. Therefore, we have composed such a
file containing all rules selected according to Sect. 4.5. When executed, PMD
analyses the requested source code and writes an output XML file. It contains
a violation element for each detected antipattern with information about the
affected code lines, the violated rule and which class and method it occurred in.

Implement Loop Depth Detection. We use the loop depth in the rating for-
mula. An easy way to reliably identify the loop depth is traversing an abstract
syntax tree (AST), especially easier than parsing the pure source code. Fortu-
nately, PMD internally uses an AST and even offers an API to hook into its
traversal. The API is originally meant to enable writing custom detection rules
but can be misused for our purpose of compiling a list containing all the loops.

Hence, we have implemented a custom PMD rule that detects loop depth.
In order to store the information and because the rating tool works with XML
anyway, we have enabled the custom PMD rule to write another XML file. We
have designed the loop depth file to contain method elements which contain
loop elements that hold all required data. PMD constructs an AST for each
compilation unit separately. This brings up the problem of when to finalize the
loop depth file, i.e. to close the last XML element, flush the data and close the
file handle because we never know if a next unit follows or not. As a work-around
we have introduced an empty file with a name such that it gets sorted to the
last position by the file system. When coming across, it triggers the loop depth
rule to finalize the XML file.

Configure and Operate Dynatrace AppMon. The setup of Dynatrace App-
Mon involves some configuration in the client which we do not be explained in
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detail. The placement of the Java agent that collects data in the software under
test simply requires including a specific argument in the launch call. The rest is
taken care of automatically.

In Dynatrace AppMon there are so called dashboards where the user can
arrange various information to be displayed. For those dashboards a REST API
is offered through which the information is made accessible. Consequently, we
have arranged a dashboard containing all the required data and have prepared
a REST request that makes Dynatrace AppMon write that data into another
XML file. The generated XML file contains the method call count, the total
execution time and the suspension count for all recorded methods.

Usually, Dynatrace AppMon aims for very little overhead but it also can
be configured to record many to all method calls for the cost of performance.
In our development environment we record every method call to quickly build
up an extensive data set, but in a production environment it is important that
the monitoring overhead does not grow too large. Hence, in production it is not
feasible to record the full method call information but only a small part of it.
Still, if the monitoring is carried out for a longer time, sufficiently detailed values
emerge.

Implement the Rating Tool. For the core part of our implementation we
have chosen Java as programming language because this whole story already
takes place in the Java world. We have not bothered to put some shiny little
GUI together and rely on the command line. The required invocation arguments
are the XML files with the analysis data.

The data model that we use to bring all information together consists of
three classes. On highest level there is SourceFile, where the file path and the
contained methods are stored. In the middle, there is Method where call count,
execution time and suspension count are stored. Additionally, a list of antipat-
terns found inside the method is maintained. The third class is Antipattern
and represents exactly one occurrence of an antipattern. The violated detection
rule, the source code line and the loop depth are stored there. After the severity
has been calculated, it is kept there as well.

As the input data comes from different sources, the information is not
encoded in a uniform manner. For example does the Dynatrace AppMon output
not contain the source files where the listed methods are implemented, although
it contains most other information considering the methods. Therefore, the cor-
responding source files are extracted from the PMD output. On the other hand,
the loop depth XML only contains the source files and tells from where to where
the loops reach.

The largest part of the rating tool takes care of importing the information
from XML files and populating the internal data structures. The actual appli-
cation of the rating function is handled in only 23 lines of code, including the
sorting of antipatterns by severity. The results are written as simple text format,
where the top most entry represents the top rated antipattern.



48 N. Moesus et al.

Table 2. Experiments with STATE [25].

Average time Absolute diff Relative impact

Original 2232.47 ms - -

Injected 2242.03 ms +9.56 ms 0.428%

Refactored 2218.07 ms −14.4 ms 0.645%

5.3 Experimental Evaluation

We have evaluated our approach with the software STATE [17,19] in version
STATE-2.1. It is licensed as open source under the GNU General Public License
version 3 and consists of approx. 30,000 lines of code in 285 classes. We chose
one of the shipped examples from STATE to do our measurements, namely
b transport.

Experiment 1: Antipattern Injection. In our first experiment, we have injected
some antipatterns in the source code of STATE, measured their impact on per-
formance and evaluated how they get rated by our ranking tool. To achieve this,
we have duplicated the STATE source code. Then, in one copy we have manip-
ulated two methods by replacing all occurrences of StringBuilder with the
less efficient + operator. In this process, we have altered about 60 lines of code
and replaced in total 49 calls to append. The rest of the source code remains
unchanged.

Our expectation is that the manipulated copy runs slower, i.e. the mea-
sured execution times are increased. We base this expectation on the benchmark
results where the string concatenation antipattern showed strong impact on per-
formance. Another expectation is that the introduced antipatterns get ranked
high in a follow up analysis of the manipulated copy, because they were injected
into a prominent method and have large antipattern factors.

The upper two rows of Table 2 show the execution times of the original
STATE version compared to the worsened version where we have injected
antipatterns. The average execution time of the original STATE software is
2232.47 ms. The average execution time of the worsened version with antipat-
terns injected is 2242.03 ms, resulting in an absolute difference of 9.56 ms. Thus,
the refactoring of the injected antipatterns, i.e. the restoration of the original
state, achieves a performance improvement of 0.428%. The subsequent rating
tool analysis reveals that the injected antipatterns are found by our tool. The
24 occurrences appear among the 26 top rated antipatterns.

According to our expectation, the STATE version with antipatterns injected
shows worse performance than the original. The execution time difference of
about half a percent is small, but we have to keep in mind that STATE has very
different characteristics to a large-scale server software or micro service, where
our approach is supposed to exploit its full potential. Considering this, half a
percent is already a good result, especially in relation to the very low effort it
takes to implement some simple, local refactorings.
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Table 3. Micro benchmarks for antipatterns [25].

Micro benchmark Avg time

[ms]

Avg

mem

[kB]

Time

factor [1]

Time

saving

[ms/100k]

Mem

factor [1]

Mem

saving

[MB/100k]

StringBuilder using equals(””) 1.30 4133 30.62 1.24 24.52 3.96

StringBuilder using length() == 0 0.04 140

Concatenate 10 strings with plus

operator

74.42 246622 2.09 40.70 5.06 198.17

Concatenate 10 strings with

StringBuilder

37.21 48900

Multiple append in multiple

statements

9.22 60202 0.99 −0.05 1.00 −0.09

Multiple append in only one statement 9.28 60215

Instantiate Boolean object 0.05 140 1.25 0.01 NaN 0.14

Reference pooled Boolean 0.04 0

Arithmetics with short 0.05 17 1.25 0.01 0.21 −0.07

Arithmetics with integer 0.04 82

Instantiate object with final member * 23.45 553 1.01 22.95 1.02 0.01

Instantiate object with static final

member *

23.18 544

Call toArray with empty array 0.86 6471 0.84 −0.16 1.00 0.00

Call toArray with correctly sized array 1.02 6471

Create many small objects 0.44 2740 2.10 0.23 3.42 1.94

Create separate data arrays 0.21 802

Check first char with startsWith 0.04 0 0.80 −0.01 NaN 0.00

Check first char with charAt(0) 0.05 0

Copy array iteratively into List * 50.30 40539 10962.82 4275.11 1313.69 37.92

Wrap array with asList 0.39 2623

Copy array iteratively into array 10.02 15 1.02 0.16 1.07 0.00

Copy array with copyarray 9.86 14

Convert to string with + ”” 4.12 12732 1.15 0.53 2.31 7.22

Convert to string with toString 3.59 5510

Instantiate with explicitly initialized

member *

27.47 570 1.08 182.75 1.01 0.01

Instantiate with implicitly initialized

member *

25.32 565

Throw an exception * 30.35 1068 21497.92 2579.63 10086.67 1.06

Set flag and check if it’s set 0.12 9

Create string with new 0.57 1876 14.25 0.53 NaN 1.88

Create pooled string with quotes 0.04 0

Check string equality casting both

upper case

12.70 20872 2.76 8.10 NaN 20.87

Check string equality ignoring case 4.60 0

Append character with double quotes 4.17 2366 2.47 2.48 1.45 0.74

Append character with single quotes 1.69 1629

Search character with double quotes 0.93 0 1.02 0.02 NaN 0.00

Search character with single quotes 0.91 0

Check if string is empty with trim 1.00 2408 25.00 0.96 NaN 2.41

Check is string is empty with loop 0.04 0

Initialize StringBuilder too short 4.46 33252 1.17 0.64 1.18 5.09

Initialize StringBuilder sufficiently

large

3.82 28163
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[ 3280529 ] exec= 97.00 | susp= 0 | c a l l s =13595 | loop=0
Antipattern ’ AppendCharacterWithChar ’ in method ’ t oS t r i ng ’ at
l i n e 288 in f i l e Locat ion . java

[ 2592057 ] exec= 1674.51 | susp= 3 | c a l l s= 5 | loop=1
Antipattern ’ Avo idIns tant ia t ingObject s InLoops ’ in method ’
p a r s ePa r a l l e l ’ at l i n e 123 in f i l e UppaalXMLManager . java

[ 1548647 ] exec= 1504.23 | susp= 0 | c a l l s= 5 | loop=1
Antipattern ’ AppendCharacterWithChar ’ in method ’ embed ’ at l i n e
103 in f i l e ParallelUppaalXMLEmbedder . java

[ 1280611 ] exec= 58.58 | susp= 0 | c a l l s= 8770 | loop=0
Antipattern ’ AppendCharacterWithChar ’ in method ’ t oS t r i ng ’ at
l i n e 221 in f i l e Trans i t i on . java

[ 1280611 ] exec= 58.58 | susp= 0 | c a l l s= 8770 | loop=0
Antipattern ’ AppendCharacterWithChar ’ in method ’ t oS t r i ng ’ at
l i n e 222 in f i l e Trans i t i on . java

Fig. 2. Extract of rating tool results for STATE [25].

Experiment 2: Performance Refactorings. In our second experiment, we have
performed a preliminary analysis of STATE with the rating tool and subse-
quently refactored the top rated antipatterns. Afterwards, we measured if the
performance was improved by the refactorings. With our approach, we get a
list of detected antipatterns sorted according to their assigned ratings. Figure 2
shows the first five lines of the output file slightly shortened. The large number in
square brackets is the rating assigned to the antipattern. The other information
helps to comprehend the rating and to find the antipattern in the source code.

In our experiment, we have implemented the proposed refactorings for 17 of
the top rated 19 antipatterns. Two antipatterns remain untreated. One is an
unavoidable object instantiation inside a loop and the other would require a
StringBuilder to prepend text, which it is not intended for. Apart from the 17
refactorings the source code remains unchanged.

Our expectation is that the refactored version runs faster than the original,
i.e. the measured execution times are reduced. Although the analyzed software
is not in our target domain of large-scale server software, this experiment shows
exactly how our approach is meant to be used in practice.

The last row of Table 2 shows the results for our second experiment. The
average execution time of the refactored version of STATE is 2218.07 ms. Com-
pared to the original version, this results in a difference of 14.40 ms. Thus, the
refactoring of the 17 top rated antipatterns achieves an overall performance
improvement of 0.645%.

Overall, we can see our expectation satisfied, since the refactored version
effectively executes faster than the original STATE. Again, slightly more than
half a percent is a small performance improvement but the same argumentation
as above holds and we still consider the result a success. It shows that the
rating tool succeeds in proposing refactorings that improve performance and
suggests that its application on a server software or micro service can yield great
performance gains with a small refactoring effort.
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5.4 Added Values of Automated Refactoring Selection

In order to justify a technique that basically combines two well-known tech-
niques, we aim at giving evidence that it is in some way superior to just using
the others. In fact, with two experiments we have shown that our approach adds
additional value to the static and dynamic analysis.

Using solely PMD detects many antipatterns but the vast majority of them
does not need be taken care of. A PMD analysis of the STATE source code that
already only considers the performance antipatterns selected in the course of
this paper yields 843 issues. Of those, only 339 received a rating greater than
zero and promise a positive effect on performance through refactoring at all.
But even that number is high and resolving all issues means a significant effort
with a questionable cost-benefit ratio. In contrast, refactoring 17 of the highest
rated antipatterns is an easy task and very promising at the same time. Hence,
by using solely PMD either lots of unimportant refactorings are implemented,
which is mostly squandered effort, or they are ignored all together, which wastes
a good opportunity to improve performance.

Dynatrace AppMon On the other hand, using solely Dynatrace AppMon
to capture runtime properties leaves one with a bunch of information without
any concrete instruction on what to do. Experience in the topic may help to
follow unwritten heuristics to find spots where improvements can be realized.
But additional to the required, extensive know-how the process of investigation
takes precious time. Furthermore, it is crucial that after locating a suspicious
method the occurrence of an antipattern is recognized and detected with the eye.
Hence, by using solely Dynatrace AppMon one is dependent on an experienced
performance engineer who has the time and capability to manually search for
conspicuous runtime data and antipatterns in the source code.

Dynatrace AppMon certainly is a very sophisticated monitoring and analysis
tool which provides many opportunities of using broad data to manually find
performance issues. However, many projects do not have access to this com-
mercial software. But even tools with much less functional scope, where manual
performance tweaking may be very hard, can provide data appropriate to our
approach. Thus, with the automated selection of refactorings we enable projects
with no budget for performance engineering to relatively easy achieve a measur-
able boost.

6 Conclusion

In this paper, we have proposed a novel approach to combine static and dynamic
software analyses to automatically select refactorings that improve the perfor-
mance and stability of a given program. Our major contributions are twofold:
First, we have presented a rating function for antipatterns, which assesses their
respective potential to improve performance and stability through refactoring
based on both static and dynamic properties. Second, we have implemented
micro benchmarks that assess the general effectiveness of a given set of perfor-
mance antipatterns independent of a specific program. Our benchmarks clearly
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show that the antipatterns actually have an effect on performance, although the
effects vary. Due to the mostly small savings, in the majority of cases a refactor-
ing is only reasonable if the antipattern is executed frequently, e.g. in a loop or
frequently called method. This illustrates the importance of a feasible approach
to select the most effective refactorings in a given program.

We have implemented our approach for the automated selection of refactor-
ings that are most promising to improve the performance and stability of a given
program using PMD [6] for static code analyses and Dynatrace AppMon [9] for
dynamic software analysis to capture performance measures. The result is a list
of recommended refactorings ordered by effectiveness.

We have demonstrated the practical applicability of our approach with a
sample software that consists of 30,000 lines of code. Although our approach
works best for large scale server software, it still yields some improvement for
our much smaller case study from a totally different domain. We therefore assess
the potential in a large scale server software as high, especially due to the good
cost-benefit ratio.

Our approach enables us to select only the most important antipatterns out of
the huge amount of antipatterns that are typically provided by static antipattern
detection tools. At the same time, it drastically reduces the cost of interpreting
data delivered by dynamic analyses. Due to the automated interpretation and
the precisely recommended refactorings, little expertise is required.

In future work, we plan to carry out a field experiment in which we improve
the performance of a large scale server software. Furthermore, we plan to inves-
tigate more complex refactorings. As this is the intended area of application, an
evaluation of the yielded benefits from such a field experiment will greatly show
the true potential of the approach and where tweaks still are necessary. The cur-
rently included static analysis only detects single operations for which there are
more efficient alternatives. This is on a very small scale and therefore requires
a great many of repetitions to become effective. A future task is to extend the
static analysis with sophisticated techniques already found in the literature, e.g.
symbolic execution. This will be very beneficial since more antipatterns become
detectable in the static analysis, especially such that have a larger potential for
improvement per execution.
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