
Marten van Sinderen
Leszek A. Maciaszek (Eds.)

13th International Conference, ICSOFT 2018
Porto, Portugal, July 26–28, 2018
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 1077

Communications
in Computer and Information Science 1077

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, and Xiaokang Yang

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, NY, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Marten van Sinderen • Leszek A. Maciaszek (Eds.)

Software Technologies
13th International Conference, ICSOFT 2018
Porto, Portugal, July 26–28, 2018
Revised Selected Papers

123

Editors
Marten van Sinderen
Information Systems Group
University of Twente
Enschede, The Netherlands

Leszek A. Maciaszek
Wrocław University of Economics
Wrocław, Poland

Macquarie University
Sydney, Australia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-29156-3 ISBN 978-3-030-29157-0 (eBook)
https://doi.org/10.1007/978-3-030-29157-0

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-29157-0

Preface

The present book includes extended and revised versions of a set of selected papers
from the 13th International Conference on Software Technologies (ICSOFT 2018),
held in Porto, Portugal, during 26–28 July, 2018.

ICSOFT 2018 received 130 paper submissions from 28 countries, of which 14% are
included in this book. The papers were selected by the event chairs and their selection
is based on a number of criteria that include the classifications and comments provided
by the Program Committee members, the session chairs’ assessment and also the
program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers having at least 30% new material.

The purpose of the ICSOFT conferences, including its 13th edition in 2018, is to
bring together researchers, engineers, and practitioners interested in software
technologies. The conference solicits papers and other contributions in themes ranging
from software engineering and development via showcasing cutting edge-software
systems and applications to addressing foundational innovative technologies for
systems and applications of the future. The papers were presented in one of three
conference areas: “Software Engineering and Systems Development”, “Software
Systems and Applications”, and “Foundational and Trigger Technologies”.

The papers included in this book align with the purpose of ICSOFT conferences,
with the following main topics covered: software quality (11, 19), empirical software
engineering (7, 10), software testing (8, 12, 17), requirements engineering (13, 18),
software development (3, 5, 16), software architecture (2, 4, 6), and model transfor-
mation and refinement (9, 14).

We would like to thank all the authors for their contributions and the reviewers for
ensuring the quality of this publication.

July 2018 Marten van Sinderen
Leszek Maciaszek

Organization

Conference Chair

Leszek Maciaszek Wrocław University of Economics, Poland
and Macquarie University, Sydney, Australia

Program Chair

Marten van Sinderen University of Twente, The Netherlands

Program Committee

Markus Aleksy ABB Corporate Research Center, Germany
Waleed Alsabhan KACST, UK
Soumyadip Bandyopadhyay BITS Pilani K K Birla Goa Campus, India
Wolfgang Bein University of Nevada, Las Vegas, USA
Fevzi Belli Izmir Institute of Technology, Turkey
Jorge Bernardino Polytechnic Institute of Coimbra - ISEC, Portugal
Mario Berón Universidad Nacional de San Luis, Argentina
Thomas Buchmann University of Bayreuth, Germany
Andrea Burattin University of Innsbruck, Austria
Nelio Cacho Federal University of Rio Grande do Norte, Brazil
Jose Calvo-Manzano Universidad Politécnica de Madrid, Spain
Gerardo Canfora University of Sannio, Italy
Ana Cavalli TELECOM SudParis, France
Rui César das Neves Directorate-General of Health, Portugal
Marta Cimitile Unitelma Sapienza, Italy
Rem Collier University College Dublin, Ireland
Agostino Cortesi Università Ca’ Foscari di Venezia, Italy
Lidia López Cuesta Universitat Politècnica de Catalunya, Spain
Boguslaw Cyganek AGH University of Science and Technology, Poland
Sergiu Dascalu University of Nevada, Reno, USA
Sergio de Cesare University of Westminster, UK
Cléver Ricardo de Farias University of São Paulo, Brazil
Jaime Delgado Universitat Politècnica de Catalunya, Spain
Steven Demurjian University of Connecticut, USA
Chiara Di Francescomarino FBK-IRST, Italy
Philippe Dugerdil Geneva School of Business Administration, University

of Applied Sciences of Western Switzerland,
Switzerland

Morgan Ericsson Linnaeus University, Sweden
Jean-Rémy Falleri Bordeaux INP, France

João Faria FEUP - Faculty of Engineering of the University
of Porto, Portugal

Luis Fernandez Sanz University of Alcala, Spain
Kehan Gao Eastern Connecticut State University, USA
Felix Garcia Clemente University of Murcia, Spain
Mauro Gaspari University of Bologna, Italy
Hamza Gharsellaoui Khurmah University College, Taif University,

Saudi Arabia
Paola Giannini University of Piemonte Orientale, Italy
John Gibson Mines-Telecom - Telecom SudParis, France
Gregor Grambow Hochschule Aalen, Germany
Christiane Gresse von

Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Hatim Hafiddi INPT, Morocco
Slimane Hammoudi ESEO, MODESTE, France
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Pedro Henriques University of Minho, Portugal
Jose Herrera Universidad del Cauca, Colombia
Mercedes Hidalgo-Herrero Universidad Complutense De Madrid, Spain
Jose R. Hilera University of Alcala, Spain
Andreas Holzinger Medical University Graz, Austria
Jang-Eui Hong Chungbuk National University, South Korea
Shihong Huang Florida Atlantic University, USA
Ivan Ivanov SUNY Empire State College, USA
Judit Jasz University of Szeged, Hungary
Lingxiao Jiang Singapore Management University, Singapore
Bo Jørgensen University of Southern Denmark, Denmark
Maria Jose Escalona University of Seville, Spain
Hermann Kaindl Vienna University of Technology, Austria
Dimitris Karagiannis University of Vienna, Austria
Carlos Kavka ESTECO SpA, Italy
Dean Kelley Minnesota State University, USA
Chris Kemerer University of Pittsburgh, USA
Foutse Khomh École Polytechnique, Canada
Mieczyslaw Kokar Northeastern University, USA
Jitka Komarkova University of Pardubice, Czech Republic
Jun Kong North Dakota State University, USA
Martin Kropp University of Applied Sciences Northwestern

Switzerland, Switzerland
Winfried Kühnhauser Ilmenau University of Technology, Germany
Rob Kusters Open Universiteit Nederland, The Netherlands
Wing Kwong Hofstra University, USA
Giuseppe Lami Consiglio Nazionale delle Ricerche, Italy
Konstantin Läufer Loyola University Chicago, USA
David Lorenz Open University, Israel
Ivan Lukovic University of Novi Sad, Serbia

viii Organization

Stephane Maag Telecom SudParis, France
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Eda Marchetti ISTI-CNR, Italy
Katsuhisa Maruyama Ritsumeikan University, Japan
Manuel Mazzara Innopolis University, Russia
Tom McBride University of Technology Sydney, Australia
Francesco Mercaldo National Research Council of Italy (CNR), Italy
Antoni Mesquida Calafat Universitat de les Illes Balears (UIB), Spain
Gergely Mezei Budapest University of Technology and Economics,

Hungary
Mattia Monga Università degli Studi di Milano, Italy
Antao Moura Federal University of Campina Grande (UFCG), Brazil
Antonio Muñoz University of Malaga, Spain
Takako Nakatani The Open University of Japan, Japan
Elena Navarro University of Castilla-La Mancha, Spain
Joan Navarro La Salle - Universitat Ramon Llull, Spain
Viorel Negru West University of Timisoara, Romania
Paolo Nesi University of Florence, Italy
Jianwei Niu University of Texas at San Antonio, USA
Rory O’Connor Dublin City University, Ireland
Claus Pahl Free University of Bozen-Bolzano, Italy
Marcos Palacios University of Oviedo, Spain
Vincenzo Pallotta HEIG-VD (Swiss Applied Science University, Vaud),

Switzerland
Luis Pedro University of Aveiro, Portugal
Jennifer Pérez Universidad Politécnica de Madrid (UPM), Spain
Dana Petcu West University of Timisoara, Romania
Giuseppe Polese Università Degli Studi Di Salerno, Italy
Roman Popp Vienna University of Technology, Austria
Rosario Pugliese Universita’ di Firenze, Italy
Traian Rebedea University Politehnica of Bucharest, Romania
Michel Reniers Eindhoven University of Technology, The Netherlands
Werner Retschitzegger Johannes Kepler University, Austria
Colette Rolland Université De Paris1 Panthéon-Sorbonne, France
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Gustavo Rossi Lifia, Argentina
Matteo Rossi Politecnico di Milano, Italy
Stuart Rubin University of California San Diego, USA
Chandan Rupakheti Rose-Hulman Institute of Technology, USA
Gunter Saake Institute of Technical and Business Information

Systems, Germany
Krzysztof Sacha Warsaw University of Technology, Poland
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Davide Sangiorgi Università di Bologna, Italy

Organization ix

Elad Schiller Chalmers University of Technology, Sweden
Lionel Seinturier University of Lille, France
Istvan Siket Hungarian Academy of Science, Research Group on

Artificial Intelligence, Hungary
Harvey Siy University of Nebraska at Omaha, USA
Michal Smialek Warsaw University of Technology, Poland
Yeong-Tae Song Towson University, USA
Cosmin Spahiu University of Craiova, Romania
Anongnart Srivihok Kasetsart University, Thailand
Miroslaw Staron University of Gothenburg, Sweden
Ketil Stølen SINTEF, Norway
Hiroki Suguri Miyagi University, Japan
Bedir Tekinerdogan Wageningen University, The Netherlands
Claudine Toffolon Université du Maine, France
Joseph Trienekens Open University Heerlen, The Netherlands
Michael Vassilakopoulos University of Thessaly, Greece
Dessislava Vassileva Sofia University st. Kliment Ohridski, Bulgaria
László Vidács University of Szeged, Hungary
Sergiy Vilkomir East Carolina University, USA
Jie Wang Indiana University Northwest, USA
Dietmar Winkler Vienna University of Technology, Austria
Andreas Winter Carl von Ossietzky University Oldenburg, Germany
Jinhui Yao Xerox Research, USA
Murat Yilmaz Çankaya University, Turkey
Jingyu Zhang Macquarie University, Australia

Additional Reviewers

Mohammed Alharbi Florida Atlantic University, USA
Doina Bein California State University, Fullerton, USA
Yann Ben Maissa INPT, Morocco
Dominik Bork University of Vienna, Austria
Juan Chagüendo Benavides Universidad Carlos III de Madrid, Spain
Alexandru Cicortas West University Timisoara, Romania
Estrela Cruz Instituto Politécnico de Viana do Castelo, Portugal
Teerath Das Gran Sasso Science Institute, Italy
Victoria Döller University of Vienna, Austria
German-Lenin

Dugarte-Peña
Carlos III University of Madrid, Spain

Gencer Erdogan SINTEF, Norway
Aritra Ghosh Florida Atlantic University, USA
Vladimir Ivancevic University of Novi Sad, Serbia
Vimal Kunnummel University of Vienna, Austria
Christian Muck University of Vienna, Austria
Francesco Nocera Polytechnic University of Bari, Italy
Dara Nyknahad University of Nevada, Las Vegas, USA

x Organization

Hui Song SINTEF, Norway
Michael Walch University of Vienna, Austria

Invited Speakers

Gian Pietro Picco University of Trento, Italy
Jan Mendling Vienna University of Economics and Business, Austria
Tobias Hoellwarth EuroCloud Europe, Austria
Miguel P. Correia Universidade de Lisboa, Portugal

Organization xi

Contents

Software Engineering and Systems Development

Using Semantic Metrics to Predict Mutation Equivalence 3
Amani Ayad, Imen Marsit, Nazih Mohamed Omri, JiMeng Loh,
and Ali Mili

A Rating Tool for the Automated Selection of Software Refactorings
that Remove Antipatterns to Improve Performance and Stability 28

Nikolai Moesus, Matthias Scholze, Sebastian Schlesinger,
and Paula Herber

Model-Based On-the-Fly Testing of Web Applications
and Multilingual Websites . 55

Winfried Dulz

On the Impact of Order Information in API Usage Patterns 79
Ervina Çergani and Mira Mezini

A Practical Approach for Constraint Solving in Model Transformations 104
Youness Laghouaouta and Pierre Laforcade

An Integrated Requirements Engineering Framework for Agile Software
Product Lines . 124

Hassan Haidar, Manuel Kolp, and Yves Wautelet

Systematic Refinement of Softgoals Using a Combination of KAOS
Goal Models and Problem Diagrams . 150

Nelufar Ulfat-Bunyadi, Nazila Gol Mohammadi, Roman Wirtz,
and Maritta Heisel

Simplifying the Classification of App Reviews Using Only
Lexical Features . 173

Faiz Ali Shah, Kairit Sirts, and Dietmar Pfahl

Smart Measurements and Analysis for Software Quality Enhancement 194
Sarah Dahab, Stephane Maag, Wissam Mallouli, and Ana Cavalli

Modular Programming and Reasoning for Living with Uncertainty 220
Naoyasu Ubayashi, Yasutaka Kamei, and Ryosuke Sato

Software Systems and Applications

Empowering Continuous Delivery in Software Development:
The DevOps Strategy . 247

Clauirton Siebra, Rosberg Lacerda, Italo Cerqueira,
Jonysberg P. Quintino, Fabiana Florentin, Fabio B. Q. da Silva,
and Andre L. M. Santos

Can Commit Change History Reveal Potential Fault Prone Classes?
A Study on GitHub Repositories . 266

Chun Yong Chong and Sai Peck Lee

An Agent-Based Planning Method for Distributed Task Allocation 282
Dhouha Ben Noureddine, Atef Gharbi, and Samir Ben Ahmed

Automatic Test Data Generation for a Given Set of Applications Using
Recurrent Neural Networks . 307

Ciprian Paduraru, Marius-Constantin Melemciuc,
and Miruna Paduraru

Guiding the Functional Change Decisions in Agile Project:
An Empirical Evaluation . 327

Asma Sellami, Mariem Haoues, Nour Borchani, and Nadia Bouassida

Wise Objects for IoT (WIoT): Software Framework and Experimentation . . . 349
Ilham Alloui, Eric Benoit, Stéphane Perrin, and Flavien Vernier

A Software Product Line Approach to Design Secure Connectors
in Component-Based Software Architectures. 372

Michael Shin, Hassan Gomaa, and Don Pathirage

Towards an Automatic Verification of BPMN Model Semantic Preservation
During a Refinement Process . 397

Yousra Bendaly Hlaoui, Salma Ayari, and Leila Jemni Ben Ayed

Author Index . 421

xiv Contents

Software Engineering and Systems
Development

Using Semantic Metrics to Predict
Mutation Equivalence

Amani Ayad1, Imen Marsit2, Nazih Mohamed Omri2, JiMeng Loh1,
and Ali Mili1(&)

1 New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
mili@njit.edu

2 University of Monastir, 5000 Monastir, Tunisia

Abstract. Equivalent mutants are a major nuisance in mutation testing because
they introduce a significant amount of bias. But weeding them out is difficult
because it requires a detailed analysis of the source code of the base program and
the mutant. In this paper we argue that for most applications, it is not necessary to
identify equivalentmutants individually; rather it suffices to estimate their number.
Also, we explore how we can estimate their number by a cursory/automatable
analysis of the base program and the mutant generation policy.

Keywords: Redundancy � Mutant equivalence � Mutant survival ratio �
Software metrics

1 Equivalent Mutants

Mutation is used in software testing to analyze the effectiveness of test data or to
simulate faults in programs, and is meaningful only to the extent that the mutants are
semantically distinct from the base program [1–4]. But in practice mutants may
sometimes be semantically equivalent to the base program while being syntactically
distinct from it [5–11]. The issue of equivalent mutants has mobilized the attention of
researchers for a long time. Yet, in a recent survey of mutation testing [12], Papadakis
et al. cite the problem of mutation equivalence as one of the outstanding/unresolved
issues in mutation testing.

Given a base program P and a mutant M, the problem of determining whether M is
equivalent to P is known to be undecidable [13]. If we encounter test data for which P
and M produce different outcomes, then we can conclude that M is not equivalent to P,
and we say that we have killed mutant M; but no amount of testing can prove that M is
equivalent to P. In the absence of a systematic/algorithmic procedure to determine
equivalence, researchers have resorted to heuristic approaches. In [7], Gruen et al.
identify four sources of mutant equivalence: the mutation is applied to dead code;
the mutation alters the performance of the code but not its function; the mutation alters
internal states but not the output; and the mutation cannot be sensitized; we argue that

This paper is an extended version of the paper titled: Impact of Mutation Operators on Mutant
Equivalence, by I. Marsit, M. N. Omri, J. M. Loh and A. Mili. Proceedings, ICSOFT 2018, Madrid,
Spain, July 2018, pages 55–66. This paper extends the original by justifying the definition of the
metrics and by showing the details of the regression model.

© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 3–27, 2019.
https://doi.org/10.1007/978-3-030-29157-0_1

http://orcid.org/0000-0002-6578-5510
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_1

the metrics we discuss in this paper reflect some of the conditions mentioned in the
work of Gruen et al.; but they also reflect other conditions of equivalence. In [14] Offutt
and Pan argue that the problem of detecting equivalent mutants is a special case of a
more general problem, called the feasible path problem; also they use a constraint-
based technique to automatically detect equivalent mutants and infeasible paths.
Experimentation with their tool shows that they can detect nearly half of the equivalent
mutants on a small sample of base programs. Program slicing techniques are proposed
in [15] and subsequently used in [16, 17] as a means to assist in identifying equivalent
mutants. In [18], Ellims et al. propose to help identify potentially equivalent mutants by
analyzing the execution profiles of the mutant and the base program. Howden [19]
proposes to detect equivalent mutants by checking that a mutation preserves local
states, and Schuler et al. [20] propose to detect equivalent mutants by testing auto-
matically generated invariant assertions produced by Daikon [21]; both the Howden
approach and the Daikon approach rely on local conditions to determine equivalence,
hence they are prone to generate sufficient but unnecessary conditions of equivalence; a
program P and its mutant M may well have different local states but still produce the
same overall behavior; the only way to generate necessary and sufficient conditions of
equivalence between a base program and a mutant is to analyze the programs in full (vs
analyze them locally). In [22], Nica and Wotawa discuss how to detect equivalent
mutants by using constraints that specify the conditions under which a test datum can
kill the mutant; these constraints are submitted to a constraint solver, and the mutant is
considered equivalent whenever the solver fails to find a solution. This approach is as
good as the generated constraints, and because the constraints are based on a static
analysis of the base program and the mutant, this solution has severe effectiveness and
scalability limitations. In [23] Carvalho et al. report on empirical experiments in which
they collect information on the average ratio of equivalent mutants generated by
mutation operators that focus on preprocessor directives; this experiment involves a
diverse set of base programs, and is meant to reflect properties of the selected mutation
operators, rather than the programs per se. In [24] Kintis et al. put forth the criterion of
Trivial Compiler Equivalence (TCE) as a “simple, fast and readily applicable tech-
nique” for identifying equivalent mutants and duplicate mutants in C and Java pro-
grams. They test their technique against a benchmark ground truth suite (of known
equivalent mutants) and find that they detect almost half of all equivalent mutants in
Java programs. In [12] Papadakis et al. present a sweeping survey of mutation testing,
spanning several decades, and covering all aspects of the practice; they conclude by
discussing outstanding research issues, and cite mutant equivalence and mutant
redundancy as important venues for future research.

It is fair to argue that despite several years of research, the problem of automatically
and efficiently detecting equivalent mutants for programs of arbitrary size and com-
plexity remains an open challenge. In this paper we adopt an orthogonal approach,
based on the following premises:

• For most practical applications of mutation testing, it is not necessary to identify
equivalent mutants individually; rather it is sufficient to know their number. If we
generate 100 mutants and we want to use them to assess the quality of a test data set,

4 A. Ayad et al.

then it is sufficient to know how many of them are equivalent: if we know that 20 of
them are equivalent, then the test data will be judged by how many of the remaining
80 mutants it kills.

• Even when it is important to identify individually those mutants that are equivalent
to the base, knowing their number is helpful: as we kill more and more non-
equivalent mutants, the likelihood that the surviving mutants are equivalent rises as
we approach the estimated number of equivalent mutants.

• For a given mutant generation policy, it is possible to estimate the ratio (over the
total number of generated mutants) of equivalent mutants that a program is prone to
produce, by static analysis of the program. We refer to this parameter as the ratio of
equivalent mutants (REM, for short); because mutants that are found to be distinct
from the base program are said to be killed, we may also refer to this parameter as
the survival rate of the program.

This paper represents an extended version of the paper titled Impact of Mutation
Operators on Mutant Equivalence [25]; in [25] we focus on how the choice of mutation
operators affects the REM of a program; whereas in this paper, we focus on the details
of how we derive a regression model of the REM for a fixed mutant generation policy.
The question of how the choice of mutation operators affects the regression model is
addressed, as an extension of the core statistical model.

In Sect. 2, we argue that, for a given mutant generation policy, what determines the
REM of a program P is the amount of redundancy of program P; based on this
conjecture, we claim that if we can quantify the redundancy of a program, we can find
statistical relations between the redundancy metrics of a program and its REM. In
Sect. 3, we present a number of entropy-based measures of program redundancy, and
put forth analytical arguments to the effect that these are reliable indicators of the
preponderance of equivalent mutants in a program. In Sect. 4, we report on an
empirical study that bears out our analysis; specifically, we find significant correlations
between the redundancy metrics and the REM’s of sample benchmark programs, and
we derive a regression model that has the REM as dependent variable and the
redundancy metrics as independent variables. In Sect. 5 we turn our attention to the
other source that may determine the survival rate in a mutation experiment, namely the
mutant generation policy. We conclude in Sect. 6 by summarizing our main results and
sketching directions for future research.

2 The Key to Immortality

2.1 Equivalence and Redundancy

The agenda of this paper is not to identify and isolate equivalent mutants, but instead to
estimate their number. To estimate the number of equivalent mutants, we consider
question RQ3 raised by Yao et al. in [5]: What are the causes of mutant equivalence?
For a given mutant generation policy, this question can be reformulated more precisely
as: what attribute of a program makes it likely to generate more equivalent mutants?

Using Semantic Metrics to Predict Mutation Equivalence 5

We formulate this question in more precise terms: what attribute makes a program
P prone to maintain the same function despite the application of a mutation? Given that
mutations are intended to simulate faults, we can reformulate this question as: what
attribute makes a program P prone to maintain the same function despite the presence
of a fault? A program that maintains the same function despite the presence of a fault is
known as a fault-tolerant program. Hence this question can be reformulated as: what
attribute makes a program P fault tolerant? We know the answer to this question:
redundancy. Hence if only we could find a way to quantify the redundancy of a
program, we could conceivably relate it to the rate of equivalent mutants generated
from that program. But the ratio of equivalent mutants of a program does not depend
exclusively on the program, it also depends on the mutation generation policy; in
Sect. 5, we discuss the impact of the mutation generation policy on the REM; in the
meantime, we assume that we have a default/fixed mutation generation policy, and we
focus on the impact of the program’s redundancy metrics.

Because our measures of redundancy use Shannon’s entropy function [26], we
briefly introduce some definitions, notations and properties related to this function,
referring the interested reader to more detailed sources [25]. Given a random variable X
that takes its values in a finite set, which for convenience we also designate by X, the
entropy of X is the function denoted by H(X) and defined by:

H Xð Þ ¼ �
X
xi2X

p xið Þ log p xið Þð Þ;

where pðxiÞ is the probability of the event X ¼ xi. Intuitively, this function measures (in
bits) the uncertainty pertaining to the outcome of X, and takes its maximum value
HðXÞ ¼ logðNÞ when the probability distribution is uniform, where N is the cardinality
of X.

We let X and Y be the two random variables; the conditional entropy of X given Y
is denoted by HðXjYÞ and defined by:

H XjYð Þ ¼ H X; Yð Þ � H Yð Þ;

where HðX; YÞ is the joint entropy of the aggregate random variable ðX;YÞ. The
conditional entropy of X given Y reflects the uncertainty we have about the outcome of
X if we know the outcome of Y. If Y is a function of X, then the joint entropy H X; Yð Þ
is equal to H Xð Þ, since the outcome of Y is determined by that of X, hence the
conditional entropy of X given Y can simply written as:

H XjYð Þ ¼ H Xð Þ � H Yð Þ:

6 A. Ayad et al.

All entropies (absolute and conditional) take non-negative values. Also, regardless
of whether Y depends on X or not, the conditional entropy of X given Y is less than or
equal to the entropy of X (the uncertainty on X can only decrease if we know Y).
Hence for all X and Y, we have the inequality:

0� HðXjYÞ
HðXÞ � 1:0:

3 Analytical Study

In this section, we review a number of entropy-based redundancy metrics of a program,
reflecting a number of dimensions of redundancy. For each metric, we discuss, in turn:

• How we define this metric.
• Why we feel that this metric has an impact on the rate of equivalent mutants.
• How we compute this metric in practice (by hand for now).

Because our ultimate goal is to derive a formula for the REM of the program as a
function of its redundancy metrics, and because the REM is a fraction that ranges
between 0 and 1, we resolve to let all our redundancy metrics be defined in such a way
that they range between 0 and 1.

3.1 State Redundancy

What is State Redundancy? State redundancy is the gap between the declared state of
the program and its actual state. Indeed, it is very common for programmers to declare
much more space to store their data than they actually need, not by any fault of theirs,
but due to the limited vocabulary of programming languages. An extreme example of
state redundancy is the case where we declare an integer variable (entropy: 32 bits) to
store a Boolean variable (entropy: 1 bit). More common and less extreme examples
include: we declare an integer variable (entropy: 32 bits) to store the age of a person
(ranging realistically from 0 to 128, to be optimistic, entropy: 7 bits); we declare an
integer variable to represent a calendar year (ranging realistically from 2018 to 2100,
entropy: 6.38 bits).

Definition: State Redundancy. Let P be a program, let S be the random variable that
takes values in its declared state space and r be the random variable that takes values
in its actual state space. The state redundancy of Program P is defined as:

H Sð Þ � HðrÞ
HðSÞ

Using Semantic Metrics to Predict Mutation Equivalence 7

Typically, the declared state space of a program remains unchanged through the
execution of the program, but the actual state space (i.e. the range of values that
program variables may take) grows smaller and smaller as execution proceeds, because
the program creates more and more dependencies between its variables with each
assignment. Hence we are interested in defining two versions of state redundancy: one
pertaining to the initial state, and one pertaining to the final state.

SRI ¼ H Sð Þ � HðrIÞ
HðSÞ ;

SRF ¼ H Sð Þ � HðrFÞ
HðSÞ ;

where rI and rF are (respectively) the initial state and the final state of the program,
and S is its declared state. Since the entropy of the final state is typically smaller than
that of the initial state (because the program builds relations between its variables as it
proceeds in its execution), the final state redundancy is usually larger than the initial
state redundancy.

Why is State Redundancy Correlated to Survival Rate? State redundancy measures
the volume of data bits that are accessible to the program (and its mutants) but are not
part of the actual state space. Any assignment to/modification of these extra bits of
information does not alter the state of the program. The more extra bits there are, the
more likely it is for a mutant to affect those and keep relevant bits unaffected, hence
producing an equivalent mutant.

How do we Compute State Redundancy? We must compute the entropies of the
declared state space (H Sð Þ), the entropy of the actual initial state (HðrIÞ) and the
entropy of the actual final state (HðrFÞ). For the entropy of the declared state, we
simply add the entropies of the individual variable declarations, according to the fol-
lowing table (for Java) (Table 1):

For the entropy of the initial state, we consider the state of the program variables
once all the relevant data has been received (through read statements, or through
parameter passing, etc.) and we look for any information we may have on the incoming

Table 1. Entropies of basic variable declarations.

Data type Entropy (bits)

Boolean 1
Byte 8
Char, short 16
Int, float 32
Long, double 64

8 A. Ayad et al.

data (range of some variables, relations between variables, assert statements specifying
the precondition, etc.); the default option being the absence of any condition. When we
automate the calculation of redundancy metrics, we will rely exclusively on assert
statements that may be included in the program to specify the precondition. Another
source of information on the entropy of the initial actual state of the program: any
exception handling statement that is invoked if the precondition of the program is not
satisfied; right after the exception handling statement, we know with certainty that the
negation of the exception’s condition holds; this can be used to characterize the entropy
of the initial actual state.

For the entropy of the final state, we take into account all the dependencies that the
program may create through its execution. When we automate the calculation of
redundancy metrics, we may rely on any assert statement that the programmer may
have included to specify the program’s post-condition; we may also keep track of
functional dependencies between program variables by monitoring what variables
appear on each side of assignment statements. As an illustration, we consider the
following simple example:

public void example(int x, int y)
{assert (1<=x && x<=128 && y>=0);
long z = reader.nextInt();
// initial state
Z = x+y; // final state
}

We find:

• H Sð Þ ¼ 32þ 32þ 64 ¼ 128 bits:
Entropies of x, y, z, respectively.

• H rIð Þ ¼ 10þ 31þ 64 ¼ 105 bits
Entropy of x is 10, because of its range; entropy of y is 31 bits because half the
range of int is excluded.

• H rFð Þ ¼ 10þ 31 ¼ 41 bits:
Entropy of z is excluded because z is now determined by x and y.

Hence

SRI ¼ 128� 105
128

¼ 0:18;

SRF ¼ 128� 41
128

¼ 0:68:

Using Semantic Metrics to Predict Mutation Equivalence 9

3.2 Non Injectivity

What is Non Injectivity. A major source of program redundancy is the non-injectivity
of program functions. An injective function is a function whose value changes
whenever its argument does; and a function is all the more non-injective that it maps
several distinct arguments into the same image. A sorting routine applied to an array of
size N, for example, maps N! different input arrays (corresponding to N! permutations
of N distinct elements) onto a single output array (the sorted permutation of the
elements). To introduce non-injectivity, we consider the function that the program
defines on its state space from initial states to final states. A natural way to define non-
injectivity is to let it be the conditional entropy of the initial state given the final state: if
we know the final state, how much uncertainty do we have about the initial state? Since
we want all our metrics to be fractions between 0 and 1, we normalize this conditional
entropy to the entropy of the initial state. Hence we write:

NI ¼ HðrI jrFÞ
HðrIÞ :

Since the final state is a function of the initial state, the numerator can be simplified
as H rIð Þ � H rFð Þ: Hence:

Definition: Non Injectivity. Let P be a program, and let rI and rF be the random
variables that represent, respectively its initial state and final state. Then the non-
injectivity of program P is denoted by NI and defined by:

NI ¼ H rIð Þ � HðrFÞ
HðrIÞ :

Why is Non-injectivity Correlated to Survival Rate? Of course, non-injectivity is a
great contributor to generating equivalent mutants, since it increases the odds that the
state produced by the mutation be mapped to the same final state as the state produced
by the base program.

How do we Compute Non-injectivity? We have already discussed how to compute the
entropies of the initial state and final state of the program; these can be used readily to
compute non-injectivity. For illustration, we consider the sample program above, and
we find its non-injectivity as:

NI ¼ 105� 41
105

¼ 0:61:

10 A. Ayad et al.

3.3 Functional Redundancy

What is Functional Redundancy? A program can be modeled as a function from
initial states to final states, as we have done in Sects. 3.1 and 3.2 above, but can also be
modeled as a function from an input space to an output space. To this effect we let X be
the random variable that represents the aggregate of input data that the program
receives (through parameter passing, read statements, global variables, etc.), and Y the
aggregate of output data that the program delivers (through parameter passing, write
statements, return statements, global variables, etc.).

Definition: Functional Redundancy. Let P be a program, and let X be the random
variable that ranges over the aggregate of input data received by P and Y the random
variable that ranges over the aggregate of output data delivered by P. Then the
functional redundancy of program P is denoted by FR and defined by:

FR ¼ HðYÞ
HðXÞ :

Why is Functional Redundancy Related to Survival Rate? Functional redundancy is
actually an extension of non-injectivity, in the sense that it reflects not only how initial
states are mapped to final states, but also how initial states are affected by input data
and how final states are projected onto output data. Consider for example a program
that computes the median of an array by first sorting the array, which causes an increase
in redundancy due to the drop in entropy, then returning the element stored in the
middle of the array, causing a further massive drop in entropy by mapping a whole
array onto a single cell. All this drop in entropy creates opportunities for the difference
between a base program and a mutant to be erased, leading to mutant equivalence.
Consider for example that if the program P sorts the array in increasing order and the
mutant M sorts it in decreasing order (and if the array size is odd, or the median is
duplicated) then M and P are equivalent.

How do we compute Functional Redundancy? To compute the entropy of X, we
survey all the sources of input data into the program, including data that is passed in
through parameter passing, global variables, read statements, etc. Unlike the calculation
of the entropy of the initial state, the calculation of the entropy of X does not include
internal variables, and does not capture initializations. To compute the entropy of Y,

Using Semantic Metrics to Predict Mutation Equivalence 11

we survey all the channels by which the program delivers output data, including data
that is returned through parameters, written to output channels, or delivered through
return statements. For illustration, we consider the following program:

public void example(int u, int v)
{assert (v>=0);
int z = 0;
while (v!=0) {z=z+u; v=v-1;}
return z;
}

We compute the entropies of the input space and output space:

• H Xð Þ ¼ 32þ 31 ¼ 63 bits.
Entropy of u, plus entropy of v (which ranges over half of the range of integers).

• H Yð Þ ¼ 32 bits.

Hence,

FR ¼ 32
63

¼ 0:51:

3.4 Non Determinacy

What is Non Determinacy? In all the mutation research that we have surveyed,
mutation equivalence is equated with equivalent behavior between a base program and
a mutant; but we have not found a precise definition of what is meant by behavior, nor
what is meant by equivalent behavior. We argue that the concept of equivalent
behavior is not precisely defined: we consider the following three programs,

P1: {int x,y,z; z=x; x=y; y=z;}
P2: {int x,y,z; z=y; y=x; x=z;}
P3: {int x,y,z; x=x+y;y=x-y;x=x-y;}

We ask the question: are these programs equivalent? The answer to this question
depends on how we interpret the role of variables x, y, and z in these programs. If we
interpret these as programs on the space defined by all three variables, then we find that
they are distinct, since they assign different values to variable z (x for P1, y for P2, and
z for P3). But if we consider that these are actually programs on the space defined by

12 A. Ayad et al.

variables x and y, and that z is a mere auxiliary variable, then the three programs may
be considered equivalent, since they all perform the same function (swap x and y) on
their common space (formed by x, y). Consider a slight variation on these programs:

Q1: {int x,y;{int z; z=x; x=y; y=z;}}
Q2: {int x,y;{int z; z=y; y=x; x=z;}}
Q3: {int x,y; x=x+y;y=x-y;x=x-y;}

Here it is clear(er) that all three programs are defined on the space formed by
variables x and y; and it may be easier to be persuaded that these programs are
equivalent.

Rather than making this a discussion about the space of the programs, we wish to
turn it into a discussion about the test oracle that we are using to check equivalence
between the programs (or in our case, between a base program and its mutants). In the
example above, if we let xP, yP, zP be the final values of x, y, z by the base program
and xM, yM, zM the final values of x, y, z by the mutant, then oracles we can check
include:

O1:{return xP==xM && yP==yM && zP==zM;}
O2:{return xP==xM && yP==yM;}

Oracle O1 will find that P1, P2 and P3 are not equivalent, whereas oracle O2 will
find them equivalent. The difference between O1 and O2 is their degree of non-
determinacy; this is the attribute we wish to quantify.

Whereas all the metrics we have studied so far apply to the base program, this
metric applies to the oracle that is being used to test equivalence between the base
program and a mutant. We want this metric to reflect the degree of latitude that we
allow mutants to differ from the base program and still be considered equivalent. To
this effect, we let rP be the final state produced by the base program for a given input,
and we let rM be the final state produced by a mutant for the same input. We view the
oracle that tests for equivalence between the base program and the mutant as a binary
relation between rP and rM . We can quantify the non-determinacy of this relation by
the conditional entropy H rM jrPð Þ: Intuitively, this represents the amount of uncertainty
(or: the amount of latitude) we have about (or: we allow for) rM if we know rP. Since
we want our metric to be a fraction between 0 and 1, we divide it by the entropy of rM .
Hence the following definition.

Using Semantic Metrics to Predict Mutation Equivalence 13

Definition: Non Determinacy. Let O be the oracle that we use to test the equiva-
lence between a base program P and a mutant M, and let rP and rM be, respectively,
the random variables that represent the final states generated by P and M for a given
initial state. The non-determinacy of oracle O is denoted by ND and defined by:

ND ¼ HðrM jrPÞ
HðrMÞ :

Why is Non Determinacy Correlated with Survival Rate? Of course, the weaker the
oracle of equivalence, the more mutants pass the equivalence test, the higher the ratio
of equivalent mutants.

How do we Compute Non Determinacy? All equivalence oracles define equivalence
relations on the space of the program, and HðrM jrPÞ represents the entropy of the
resulting equivalence classes. As for HðrMÞ, it represents the entropy of the whole
space of the program. For illustration, let the space of the program be defined by three
integer variables, say x, y, z. Then HðrMÞ ¼ 96 bits. As for HðrM jrPÞ, it will depend
on how the oracle is defined, as it represents the entropy of the resulting equivalence
classes. We show a few examples below:

Explanation: Oracle O1 is deterministic (assuming the space is made up of x, y, z
only), hence its equivalence classes are of size 1; the corresponding conditional entropy
is zero, and so is ND. Oracles O2, O3, O4 check for two variables but leave one variable
unchecked, leading to a conditional entropy of 32 bits and a non-determinacy of 0.33
(32/96). Oracles O5, O6, O7 check for one variable but leave two variables unchecked,
leading to a conditional entropy of 64 bits and a non-determinacy of 0.66 (64/96). Oracle
O8 returns true for any rM . Hence knowing that a mutant passes this test does not inform
us on any of xM, yM, nor zM. Total uncertainty is 96, hence ND = 1.

Table 2. Non determinacy of sample oracles.

O# Oracle
O1 xP==xM&&yP==yM&&zP==zM 0 bits 0.0
O2 xP==xM&&yP==yM 32 bits 0.33
O3 xP==xM&&zP==zM 32 bits 0.33
O4 yP==yM&&zP==zM 32 bits 0.33
O5 xP==yM 64 bits 0.66
O6 yP==yM 64 bits 0.66
O7 zP==zM 64 bits 0.66
O8 true 96 bits 1.00

14 A. Ayad et al.

Imagine now, for the sake of illustration, that we have a single integer variable, say
x. Then we can define the following oracles, in the order of decreasing strength, and
increasing non-determinacy.

The interpretation of rows O1 and O8 is the same as the table above. For O7, for
example, consider that if we know that xM satisfies oracle O7, then we know the
rightmost bit of xM, but we do not know anything about the remaining 31 bits; hence
the conditional entropy is 31 bits, and the non-determinacy is 0.969, which is 31/32.
Oracle O2 informs us about the 12 rightmost bits of xM hence leaves us uncertain
about the remaining 20 bits. The non-determinacy of the other oracles can be inter-
preted likewise.

4 Empirical Study

4.1 Experimental Conditions

In order to validate our conjecture, to the effect that the survival rate of mutants
generated from a program P depends on the redundancy metrics of the program and the
non-determinacy of the oracle that is used to determine equivalence, we consider a
number of sample programs, compute their redundancy metrics then record the ratio of
equivalent mutants that they produce under controlled experimental conditions, for a
fixed mutant generation policy. Our hope is to reveal significant statistical relationships
between the metrics (as independent variables) and the ratio of equivalent mutants (as a
dependent variable). Because we currently compute the redundancy metrics by hand,
we limit ourselves to programs that are relatively small in size.

We consider functions taken from the Apache Common Mathematics Library
(http://apache.org/); each function comes with a test data file. The test data file includes
not only the test data proper, but also a test oracle in the form of assert statements, one
for each input datum. Our sample includes 19 programs.

Table 3. Non determinacy of sample integer oracles.

O# Oracle
O1 xP==xM 0 bits 0.000
O2 xP % 4096 == xM % 4096 20 bits 0.625
O3 xP % 1024 == xM % 1024 22 bits 0.687
O4 xP % 64 == xM % 64 26 bits 0.812
O5 xP % 16 == xM % 16 28 bits 0.875
O6 xP % 4 == xM % 4 30 bits 0.937
O7 xP % 2 == xM % 2 31 bits 0.969
O8 True 32 bits 1.000

Using Semantic Metrics to Predict Mutation Equivalence 15

http://apache.org/

We use PITEST (http://pitest.org/), in conjunction with maven (http://maven.
apache.org/) to generate mutants of each program and test them for possible equiva-
lence with the base program. The mutation operators that we have chosen include the
following:

• Op1: Increments_mutator.
• Op2: Void_method_call_mutator,
• Op3: Return_vals_mutator,
• Op4: Math_mutator,
• Op5: Negate_conditionals_mutator,
• Op6: Invert_negs_mutator,
• Op7: Conditionals_boundary_mutator.

Of course, we realize that the ratio of equivalent mutants may depend on the choice
of mutation operators; but because the focus of this section is to analyze how the ratio
of equivalent mutants depends on the base program and the oracle used for determining
equivalence, we use a fixed set of mutants for the time being, and postpone the analysis
of the impact of mutant operators to Sect. 5.

When we run a mutant M on a test data set T and we find that its behavior is
equivalent (per the selected oracle) to that of the base program P, we may not conclude
that M is equivalent to P unless we have some assurance that T is sufficiently thorough.
In practice, it is impossible to ascertain the thoroughness of T short of letting T be all
the input space of the program, which is clearly impractical. As an alternative, we
mandate that in all our experiments, line coverage of P and M through their execution
on test data T equals or exceeds 90%. This measure also reduces the risk of having
mutants that are equivalent to the base program by virtue of the mutation being applied
to dead code. In our experiment, most instances had a line coverage of 100%, in fact.

In order to analyze the impact of the non-determinacy of the equivalence oracle on
the ratio of equivalent mutants, we revisit the source code of PITEST to control the
oracle that it uses. As we discuss above, the test file that comes in the Apache Common
Mathematics Library includes an oracle that takes the form of assert statements in Java
(one for each test datum). These statements have the form:

Assert.assertEqual(yP,M(x))
where x is the current test datum, yP is the output delivered by the base program P for
input x, and M(x) is the output delivered by mutant M for input x. For this oracle, we
record the non-determinacy (ND) as being zero. To test the mutant for other oracles, we
replace

AssertEqual(yP,M(x))
with
AssertEquivalent(yP,M(x))

16 A. Ayad et al.

http://pitest.org/
http://maven.apache.org/
http://maven.apache.org/

for various instances of equivalence relations. If the space of the base program includes
several variables, we use some of the oracles listed in Table 2, and we take note of their
non-determinacy. Also, if yP and M(x) are integer variables, then we use some of the
equivalence relations discussed in Table 3, and we take note of their non-determinacy.

4.2 Raw Data

The raw data that results from this experiment is displayed in Table 4. This table also
shows (in the last row) the correlations between the redundancy metrics and the ratio of
equivalent mutants, as defined in our experiment.

Table 4. Raw data, REM vs Redundancy metrics.

Function loc Oracle SRi SRf FR NI ND COV S/T REM

gcd 56 Equal 0.89 0.94 0.50 0.49 0 90 16/103 0.155
Eq%2 0.98 22/103 0.214
Eq%4 0.95 19/103 0.184
Eq%16 0.94 16/103 0.155

muland check 42 Equal 0.862 0.931 0.50 0.43 0 95 6/43 0.14
Eq%2 0.98 6/43 0.14

fraction 68 Equal 0.88 0.961 0.33 0.66 0 96 22/95 0.234
dEq 0.5 23/95 0.242
dEq%2 0.84 26/95 0.273

reduced fraction 26 Equal 0.86 0.98 1.00 0.77 0 96 17/46 0.37
dEq 0.5 19/46 0.413

erfInv 88 Equal 0.62 0.63 1.00 0.03 0 99 9/126 0.071
ebeDiv 20 Equal 0.89 0.90 0.50 0.10 0 97 1/13 0.077
getDist 19 Equal 0.89 0.90 0.50 0.10 0 97 1/17 0.059
ArRealVec 12 Equal 0.90 0.95 0.90 0.48 0 97 2/10 0.020
ToBlocks 42 Equal 0.89 0.90 1.00 0.08 0 95 3/31 0.097
getRowM 27 Equal 0.88 0.95 0.98 0.59 0 95 7/23 0.304
orthogM 87 Equal 0.91 0.93 0.75 0.28 0 100 20/151 0.132
Equals 31 Equal 0.85 0.94 0.20 0.56 0 90 6/21 0.286
Density 18 Equal 0.88 0.96 0.25 0.23 0 95 5/30 0.167
Abs() 20 Equal 0.89 0.93 0.50 0.33 0 96 2/20 0.10
Pow 55 Equal 0.51 0.61 0.67 0.20 0 97 6/52 0.115
setSeed 17 Equal 0.80 0.90 1.00 0.51 0 100 4/16 0.25
Asinh 17 Equal 0.89 0.91 1.00 0.15 0 97 13/82 0.159
Atan 143 Equal 0.90 0.92 0.40 0.08 0 97 14/136 0.103
nextPrime 35 Equal 0.793 0.896 0.40 0.5 0 94 3/58 0.05

Eq%2 0.96 34/58 0.58
Correlations vs REM 0.055 0.31 0.14 0.65 0.43

Using Semantic Metrics to Predict Mutation Equivalence 17

4.3 Statistical Analysis

Table 5 shows a matrix of scatter plots between each pair of the metrics and the REM.
For example, in the bottom row of scatter plots, the y-axis is the REM (S/T), and the x-
axis are, going from left to right, for metrics SRI, SRF, FR, NI and ND. On inspection
of the plots, each of the metrics seems to show some positive correlation with S/T, the
strongest being NI. We note that the ND values are confined to 0 or values very close to
1. In our models below, we assume a linear relationship, even though there is no data
with moderate values of ND. Finally, we also note that SRI and SRF appear to be
highly correlated. Inclusion of both variables in a model can result in unstable esti-
mates. However, it turns out (see below) that both variables are not included in the final
model.

Since the response, REM, is a proportion, we use a logistic linear model for the
survival rate so that the response will be constrained to be between 0 and 1. More
specifically, the logarithm of the odds of equivalence REM

1�REM

� �
is a linear function of the

predictors:

log
REM

1� REM

� �
¼ aþ b� X:

For any model M consisting of a set of the covariates X, we can obtain a residual
deviance D(M) that provides an indication of the degree to which the response is
unexplained by the model covariates. Hence, each model can be compared with the null
model of no covariates to see if they are statistically different. Furthermore, any pair of
nested models can be compared (using a chi-squared test).

We fit the full model with all five covariates, which was found to be statistically
significant, and then successively drop a covariate, each time testing the smaller model
(one covariate less) with the previous model. We continue until the smaller model was
significantly different, i.e. worse than the previous model. Using the procedure
described above, we find that the final model contains the metrics FR, NI and ND, with
coefficient estimates and standard errors given in the table below:

Metric Estimate Standard error P value

Intercept −2.765 0.246 �0.001
FR 0.459 0.268 0.086
NI 2.035 0.350 �0.001
ND 0.346 0.152 0.023

Hence, the model is

log
REM

1� REM

� �
¼ �2:765þ 0:459� FRþ 2:035� NIþ 0:346� ND:

18 A. Ayad et al.

Each of the estimates are positive, hence, the survival rate increases with each of
the three metrics. An increase in FR of 0.1 results in an expected increase in the odds
by a factor of exp(0.1 � 0.459), or approximately 5%. Similarly increases of 0.1 in NI
and ND each yields an expected increase of 22% and 3.5% respectively in the odds of
survival.

The sequence of models we tested, including their residual deviances, as well as the
results of comparisons between them, are shown in the table below:

No. Model Deviance Degrees of
freedom

Test P value

1 Null model 122.856 26
2 SRI, SRF, FR, NI,

ND
42.888 21 Models 2 and 1 �0.001

3 SRF, FR, NI, ND 57.447 22 Models 3 and 2 0.0001
4 SRI, FR, NI, ND 57.484 22 Models 4 and 2 0.0001
5 FR, NI, ND 57.74 23 Models 5 and 3 0.588
6 NI, ND 60.667 24 Models 6 and 5 0.087
7 FR, NI 62.955 24 Models 7 and 5 0.022

For the training data, the mean square error of the survival rate is 0.0069 and the
mean absolute error is 0.049. We re-checked the analysis by performing take-one-out
cross-validation, i.e., we removed each row of data in turn, fit the list of models from
our previous analysis on the remaining data, then used the fitted models to predict the
data point that was removed. For each model, the error is the difference between the
predicted value from that model, and the actual value. The mean squared and absolute
errors of 0.0087 and 0.057 respectively for the above final model were the smallest out
of the list of models.

The plot below shows the relative errors of the model estimates with respect to the
actuals; virtually all the relative errors are within less than 0.1 of the actuals.

Using Semantic Metrics to Predict Mutation Equivalence 19

5 Impact of Mutation Generation Policy

5.1 Analyzing the Impact of Individual Operators

For all its interest, the regression model we present above applies only to the mutant
generation policy that we used to build the model. This raises the question: how can we
estimate the REM of a base program P under a different mutant generation policy?
Because there are dozens of mutation operators in use by different researchers and
practitioners, it is impossible to consider building a different model for each combi-
nation of operators. We could select a few sets of operators, that may have been the
subject of focused research, or have a documented practical value [2–4, 26] and derive
a specific estimation model for each. While this may be interesting from a practical
standpoint, it presents limited interest as a research matter, as it does not enhance our

Table 5. Scatter plot, redundancy metrics and ratio of equivalent mutants

20 A. Ayad et al.

understanding of how mutation operators interact with each other. What we are
interested to understand is: if we know the REM’s of a program P under individual
mutation operators op1; op2; . . .; opn, can we estimate the REM of P if all of these
operators are applied jointly?

Answering this question will enable us to produce a generic solution to the auto-
mated estimation of the REM of a program under an arbitrary mutant generation policy:

• We select a list of mutation operators of interest (e.g. the list suggested by Laurent
et al. [27] or by Just et al. [2], or their union).

• Develop a regression model (similar to the model we derived above) based on each
individual operator.

• Given a program P and a mutant generation policy defined by a set of operators, say
op1; op2; . . .; opn, we apply the regression models of the individual operators to
compute the corresponding ratios of equivalentmutants, sayREM1;REM2; . . .;REMn.

• Combine the REM’s generated for the individual operators to estimate the REM
that stems from their simultaneous application.

5.2 Combining Operators

For the sake of simplicity, we first consider the problem above in the context of two
operators, say op1; op2. Let REM1;REM2 be the REM’s obtained for program P under
operators op1; op2. We ponder the question: can we estimate the REM obtained for P
when the two operators are applied jointly? To answer this question, we interpret the
REM as the probability that a random mutant generated from P is equivalent to P. At
first sight, it may be tempting to think of REM as the product of REM1 and REM2 on
the grounds that in order for mutant M12 (obtained from P by applying operators
op1; op2) to be equivalent with P, it suffices for M1 to be equivalent to P (probability:
REM1), and for M12 to be equivalent to M1 (probability: REM2). This hypothesis yields
the following formula of REM:

REM ¼ REM1 � REM2:

But we have strong doubts about this formula, for the following reasons:

• This formula assumes that the equivalence of P to M1 and the equivalence of M1 to
M12 are independent events; but of course they are not. In fact we have shown in
Sect. 4 that the probability of equivalence is influenced to a considerable extent by
the amount of redundancy in P.

• This formula ignores the possibility that mutation operators may interfere with each
other; in particular, the effect of one operator may cancel (all of or some of) the
effect of another, or to the contrary may enable it.

• This formula assumes that the ratio of equivalent mutants of a program P decreases
with the number of mutation operators; for example, if we have five operators that
yield a REM of 0.1 each, then this formula yields a joint REM of 10�5. We do not
see why that should be the case; in fact we suspect that the REM of combined
operators may be larger than that of individual operators.

Using Semantic Metrics to Predict Mutation Equivalence 21

• This formula also assumes that if a mutant by itself has an REM of 0, then any set of
operators that includes it also has an REM of zero; but that is not consistent with our
observations: it is very common for single operators to produce an REM of zero by
themselves, but a non-trivial REM once they are combined with another.

For all these reasons, we expect REM1 � REM2 to be a loose (remote) lower bound
for REM, but not be a good approximation thereof. Elaborating on the third item cited
above, we argue that in fact, whenever we deploy a new mutation operator, we are
likely to make the mutant more distinct from the original program, hence it is the
probability of being distinct that we ought to compose, not the probability of being
equivalent. This is captured in the following formula:

1� REMð Þ ¼ 1� REM1ð Þ 1� REM2ð Þ;

which yields:

REM ¼ REM1 þREM2 � REM1REM2:

In the following sub-section we test our assumption regarding the formula of a
combined REM.

5.3 Empirical Validation

In order to evaluate the validity of our proposed formula, we run the following
experiment:

• We consider the sample of seventeen Java programs that we used to derive our
model of Sect. 4.3.

• We consider the sample of seven mutation operators that are listed in this paper.
• For each operator Op, for each program P, we run the mutant generator Op on

program P, and test all the mutants for equivalence to P. By dividing the number of
equivalent mutants by the total number of generated mutants, we obtain the REM of
program P for mutation operator Op.

• For each mutation operator Op, we obtain a table that records the programs of our
sample, and for each program we record the number of mutants and the number of
equivalent mutants, whence the corresponding REM.

• For each pair of operators, say (Op1, Op2), we perform the same experiment as
above, only activating two mutation operators rather than one. This yields a table
where we record the programs, the number of mutants generated for each, and the
number of equivalent mutants among these, from which we compute the corre-
sponding REM. Since there are seven operators, we have twenty one pairs of
operators, hence twenty one such tables.

• For each pair of operators, we build a table that shows, for each program P, the
REM of P under each operator, the REM of P under the joint combination of the
two operators, and the residuals that we get for the two tentative formulas:
F1: REM ¼ REM1REM2;
F2: REM ¼ REM1 þREM2 � REM1REM2:

22 A. Ayad et al.

At the bottom of each such table, we compute the average and standard deviation of
the residuals for formulas F1 and F2.

• We summarize all our results into a single table, which shows the average of
residuals and the standard deviation of residuals for formulas F1 and F2 for each (of
21) combination of two operators.

5.4 Analysis

The final result of this analysis is given in Table 6. The first observation we can make
from this table is that, as we expected, the expression F1: REM1REM2 is indeed a lower
bound for REM, since virtually all the average residuals (for all pairs of operators) are
positive, with the exception of the pair (Op1, Op2), where the average residual is
virtually zero. The second observation is that, as we expected, the expression F2:
REM1 þREM2 � REM1REM2 gives a much better approximation of the actual REM
than the F1 expression; also, interestingly, the F2 expression hovers around the actual
REM, with half of the estimates (11 rows) below the actuals and half above (10 rows).
With the exception of one outlier (Op4, Op5), all residuals are less than 0.2 in absolute
value, and two thirds (14 out of 21) are less than 0.1 in absolute value. The average
(over all pairs of operators) of the absolute value of the average residual (over all
programs) for formula F2 is 0.080.

We have conducted similar experiments with three and four operators, and our
results appear to confirm the general formula of the combined REM for N operators as:

REM ¼ 1�
YN

i¼1
1� REMið Þ:

Still, this matter is under further investigation.

Table 6. Testing tentative formulas.

Operator pairs Residuals, F1 Residuals, F2 Abs(Residuals)
Average Std dev Average Std dev F1 F2

Op1, op2 0.1242467 0.1884347 −0.016362 0.0459150 0.1242467 0.0163621
Op1, op3 −0.0008928 0.0936731 0.0241071 0.0740874 0.0008928 0.0241071
Op1, op4 0.3616666 0.4536426 0.1797486 0.5413659 0.3616666 0.1797486
Op1, op5 0.1041666 0.2554951 0.0260416 0.3113869 0.1041666 0.0260416
Op1, op6 0.0777777 0.2587106 0.0777777 0.2587106 0.0777777 0.0777777
Op1, op7 0.0044642 0.0178571 −0.0625 0.25 0.0044642 0.0625
Op2, op3 0.1194726 0.122395 0.0658514 0.1397070 0.1194726 0.0658514
Op2, op4 0.1583097 0.1416790 −0.124639 0.2763612 0.1583097 0.1246387
Op2, op5 0.1630756 0.1588826 0.0535737 0.1469494 0.1630756 0.0535737
Op2, op6 0.2479740 0.4629131 0.0979913 0.332460 0.2479740 0.0979913
OP2, op7 0.1390082 0.1907661 −0.053526 0.2445812 0.1390082 0.0535258
Op3, op4 0.1601363 0.1411115 0.1436880 0.3675601 0.1601363 0.1436880

(continued)

Using Semantic Metrics to Predict Mutation Equivalence 23

6 Concluding Remarks

6.1 Summary

The presence of equivalent mutants is a constant source of aggravation in mutation
testing, because equivalent mutants distort our analysis and introduce biases that pre-
vent us from making assertive claims. This has given rise to much research aiming to
identify equivalent mutants by analyzing their source code or their run-time behavior.
Analyzing their source code usually provides sufficient but unnecessary conditions of
equivalence (as it deals with proving locally equivalent behavior); and analyzing run-
time behavior usually provides necessary but insufficient conditions of equivalence
(just because two programs have comparable run-time behavior does not mean they are
functionally equivalent). Also, static analysis of mutants is generally time-consuming
and error-prone, and wholly impractical for large and complex programs, and for large
numbers of mutants.

In this paper, we submit four simple premises for the study of equivalent mutants:

• First, for most practical purposes, determining which mutants are equivalent to a
base program (and which are not) is not important, provided we can estimate their
number.

• Second, even when it is important to single out equivalent mutants, knowing their
number can greatly facilitate the task of singling them out; it could in fact be
automated.

• Third, what makes a program prone to produce equivalent mutants is the same
attribute that makes it fault tolerant, since fault tolerance is by definition the
property of maintaining correct behavior in the presence of faults. The attribute that
makes programs fault tolerant is well-known: redundancy. Hence we can estimate
the ratio of equivalent mutants of a program by analyzing/quantifying its level of
redundancy.

Table 6. (continued)

Operator pairs Residuals, F1 Residuals, F2 Abs(Residuals)
Average Std dev Average Std dev F1 F2

Op3, op5 0.0583333 0.0898558 −0.0447916 0.1019656 0.0583333 0.0447916
Op3, op6 0.0166666 0.1409077 −0.0083333 0.0845893 0.0166666 0.0083333
Op3, op7 0.0152173 0.0504547 −0.0642468 0.2496315 0.0152173 0.0642468
Op4, op5 0.5216666 0.4221049 0.2786375 0.4987458 0.5216666 0.2786375
Op4, op6 0.3166666 0.2855654 0.1347486 0.4101417 0.3166666 0.1347486
OP4, op7 0.3472951 0.3530456 0.125903 0.3530376 0.3472951 0.125903
Op5, op6 0.075 0.1194121 −0.003125 0.1332247 0.075 0.003125
Op5, op7 0.078125 0.1760385 −0.0669642 0.2494466 0.078125 0.0669642
Op6, op7 0.0349264 0.0904917 −0.0320378 0.2735720 0.0349264 0.0320378
Averages 0.1487287 0.0297332 0.1488137 0.0802188

24 A. Ayad et al.

• Fourth, it may be possible to estimate the ratio of equivalent mutants of a program
for an arbitrary set of mutation operators, assuming we have a regression model for
estimating the REM of a program for each individual operator.

6.2 Assessment and Threats to Validity

Even though much of this paper is devoted to the derivation of a regression model that
determines the REM of a program from an analysis of its redundancy metrics, we do
not consider that the statistical model per se is the main contribution; rather the main
contribution of this work is the premise that the REM can be derived from a static
analysis of the redundancy metrics of the base program, and a static analysis of the
mutant generation operators.

Another interesting contribution of this paper is the formula that it proposes for the
REM of a set of mutation operators as a function of the REM’s obtained for individual
operators. We strongly suspect that this formula is valid not only for individual
mutation operators, but for sets of operators. Even though the empirical data of Sect. 5
appears to bear out our formula, and even though other experiments we ran for three
and four operators appear to support this formula

REM ¼ 1�
YN

i¼1
1� REMið Þ;

we feel that we need further analytical and empirical evidence to confidently adopt it.
The quantitative approach we advocate to the study of equivalent mutants appears

to be useful for a broader quantitative analysis of mutation testing. In addition to
providing a basis for the study of mutant equivalence, the REM also enables us to
analyze the redundancy of a set of mutants: if we generate 100 mutants and find that the
REM is 0.2, then we can infer that 80 mutants are not equivalent to P. What remains to
be investigated is whether the remaining 80 mutants are distinct from each other or
whether some of them are equivalent to each other. A test data set may kill all 80
mutants, but whether it is a good test data set or not depends on whether the 80 mutants
it killed are distinct from each other (in which case this is a good test set), or say they
are partitioned into two classes of 40 equivalent mutants each (in which case the test
data set is as good as if it killed just two mutants). Using the REM, we can estimate the
number of equivalence classes of the set of mutants that are distinct from P.

Threats to the validity of our study include the fact that it fails to take into account
mutations that are applied to dead code. This is inherent to our approach, in that it is
based on an analysis of the functional properties of the program at hand, whereas dead
code is essentially a structural attribute of the program. We address this issue partially
by monitoring the line coverage provided by the test data: we exclude from our
statistical analysis any execution that does not ensure a line coverage greater than or
equal to 90%; but only 100% coverage ensures the absence of dead code.

Using Semantic Metrics to Predict Mutation Equivalence 25

6.3 Research Prospects

Our future research plan includes the following directions:

• The design of a Java compiler than parses Java code and computes the redundancy
metrics.

• The Use of this compiler to build statistical models for the derivation of the REM of
a base program, for a predefined catalog of mutant generators.

• Integration of these statistical models into a tool that takes a program and a mutant
generator selection as input, and returns the list of mutants generated from the
program by the selected generator, along with an estimate of the REM.

• Along with the generated mutants, the tool estimates the number of mutants that are
equivalent to the base program.

• Among those mutants that are not equivalent to the base program, the tool estimates
the number of equivalent classes (modulo semantic equivalence).

• For a given number of killed mutants by some test data set T, the tool estimates the
number of equivalence classes that have been covered (that have at least element
that has been killed). This can be used as a more precise measure of mutation score.

On the conceptual side, we envision to further investigate the relation between the
RFEM’s generated by a set of mutants and those computed for individual mutants
deployed in isolation.

Acknowledgement. This research is partially supported by a grant to the last author from the
(US) National Science Foundation, number DGE 1565478.

References

1. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649–678 (2011)

2. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are mutants a valid
substitute for real faults in software testing. In: Foundations of Software Engineering, Hong
Kong, China (2014)

3. Andrews, J.H., Briand, L.C., Labiche, I.: Is mutation an appropriate tool for testing
experiments. In: International Conference on Software Testing, St. Louis, MO, USA (2005)

4. Namin, A.S., Kakarla, S.: The Use of mutation in testing experiments and its sensitivity to
external threats. In: ISSTA 2011, Toronto, Ontario, Canada (2011)

5. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn mutation operators using
human analysis of equivalence. In: Proceedings, International Conference on Software
Engineering, Hyderabad, India (2014)

6. Schuler, D., Zeller, A.: Covering and uncovering equivalent mutants. J. Softw. Test.
Verification Reliab. 23(5), 353–374 (2012)

7. Gruen, B.J., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: MUTATION
2009. Denver CO., USA (2009)

8. Just, R., Ernst, M.D., Fraser, G.: Using state infection conditions to detect equivalent
mutants and speed up mutation analysis. In: Dagstuhl Seminar 13021: Symbolic Methods in
Testing, Wadern, Germany (2013)

26 A. Ayad et al.

9. Just, R., Ernst, M.D., Fraser, G.: Efficient mutation analysis by propagating and partitioning
infected execution states. In: ISSTA 2014, San Jose, CA, USA (2014)

10. Wang, B., Xiong, Y., Shi, Y., Zhang, L., Hao, D.: Faster mutation analysis via equivalence
modulo states. In: ISSTA 2017, Santa Barbara, CA, USA (2017)

11. Papadakis, M., Delamaro, M., Le Traon, Y.: Mitigating the effects of equivalent mutants
with mutant classification strategies. Sci. Comput. Program. 95(12), 298–319 (2014)

12. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M.: Mutation testing
advances: an analysis and survey. In: Advances in Computers (2019)

13. Budd, T.A., Angluin, D.: Two notions of correctness and their relation to testing. Acta
Informatica 18(1), 31–45 (1982)

14. Offutt, J.A., Pan, J.: Automatically detecting equivalent mutants and infeasible paths.
J. Softw. Test. Verification Reliab. 7(3), 164–192 (1997)

15. Voas, J., McGraw, G.: Software Fault Injection: Inoculating Programs Against Errors.
Wiley, New York (1997)

16. Harman, M., Hierons, R., Danicic, S.: The relationship between program dependence and
mutation analysis. In: MUTATION 2000, San Jose, CA, USA (2000)

17. Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to assist in the detection of
equivalent mutants. J. Softw. Test. Verification Reliab. 9(4), 233–262 (1999)

18. Ellims, M., Ince, D.C., Petre, M.: The Csaw C mutation tool: initial results. In: MUTATION
2007, Windsor, UK (2007)

19. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans. Softw.
Eng. 8(4), 371–379 (1982)

20. Schuler, D., Dallmaier, V., Zeller, A.: Efficient mutation testing by checking invariant
violations. In: ISSTA 2009, Chicago, IL, USA (2009)

21. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. IEEE Trans. Softw. Eng. 27(2), 99–123
(2001)

22. Nica, S., Wotawa, F.: Using constraints for equivalent mutant detection. In: Workshop on
Formal Methods in the Development of Software (2012)

23. Carvalho, L., Guimaraes, M.A., Fernandes, L., Al Hajjaji, M., Gheyi, R., Thuem, T.:
Equivalent mutants in configurable systems: an empirical study. In: VAMOS 2018, Madrid,
Spain (2018)

24. Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Le Traon, Y., Harman, M.: Detecting trivial
mutant equivalences via compiler optimizations. IEEE Trans. Softw. Eng. 44(4), 308–333
(2018)

25. Marsit, I., Omri, M.N., Loh, J.M., Mili, A.: Impact of mutation operators on mutant
equivalence. In: ICSOFT, Madrid, Spain (2018)

26. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423
(1948)

27. Laurent, T., Papadakis, M., Kintis, M., Henard, C., Le Traon, Y., Ventresque, A.: Assessing
and improving the mutation testing practice of PIT. In: ICST, Vasteras, Sweden (2018)

Using Semantic Metrics to Predict Mutation Equivalence 27

A Rating Tool for the Automated
Selection of Software Refactorings

that Remove Antipatterns to Improve
Performance and Stability

Nikolai Moesus1, Matthias Scholze1, Sebastian Schlesinger2,
and Paula Herber3(B)

1 QMETHODS – Business & IT Consulting GmbH, Berlin, Germany
{nikolai.moesus,matthias.scholze}@qmethods.com

2 Software and Embedded Systems Engineering, Technische Universität Berlin,
Berlin, Germany

sebastian.schlesinger@tu-berlin.de
3 Embedded Systems Group, University of Münster, Münster, Germany

paula.herber@uni-muenster.de

Abstract. Antipatterns are known to be bad solutions for recurring
design problems. To detect and remove antipatterns has proven to be a
useful mean to improve the quality of software. While there exist sev-
eral approaches to detect antipatterns automatically, existing work on
antipattern detection often does not solve the detected design problems
automatically. Although there exist refactorings that have the potential
to significantly increase the quality of a program, it is hard to decide
which refactorings effectively yield improvements with respect to perfor-
mance and stability. In this paper, we present a rating tool that makes
use of static antipattern detection together with software profiling for
the automated selection of refactorings that remove antipatterns and
are promising candidates to improve performance and stability. Our key
idea is to extend a previously proposed heuristics that utilizes software
properties determined by both static code analyses and dynamic soft-
ware analyses to compile a list of concrete refactorings sorted by their
assessed potential to improve performance with an approach to identify
refactorings that may improve stability. We do not impose an order on
the refactorings that may improve stability. We demonstrate the practi-
cal applicability of our overall approach with experimental results.

Keywords: Software refactoring · Performance ·
Stability antipattern detection

1 Introduction

Performance and stability issues are a common reason why software needs refac-
toring. However, due to the variety of possible causes for performance and stabil-
ity issues, finding appropriate refactorings is a complicated task. To tackle this
c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 28–54, 2019.
https://doi.org/10.1007/978-3-030-29157-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_2

A Rating Tool for the Automated Selection of Software Refactorings 29

problem, antipattern detection as well as measurement-based performance engi-
neering have been proposed. Antipattern detection is a static analysis that aims
at detecting code flaws and violations against good practice [22]. While antipat-
tern detection often succeeds in detecting critical code sections that cause per-
formance bottlenecks, it tends to yield a great number of proposed refactorings
of which only a very small fraction can be considered relevant for performance.
To resolve all proposed issues is therefore neither efficient nor feasible. Addi-
tionally, a bad performing piece of code that gets only rarely called usually is
not the cause of severe performance problems. Measurement-based performance
engineering relies on dynamic analysis techniques that are applied when the pro-
gram under development is running [37]. Those analyses generate huge amounts
of heterogeneous data like response times, function call durations, stack traces,
memory footprints or hardware counters. To find the important chunks of infor-
mation that help solving performance issues takes time and also requires skill
and experience. Hence, manually searching for an appropriate refactoring is an
expensive task.

This paper is an extended version of [25]. There, we have presented a novel
approach for the automated selection of refactorings that are promising candi-
dates to improve performance. In this paper, we provide the following extensions
compared to [25]: First, we discuss not only performance, but also antipatterns
and refactorings that concern the stability of a program. Second, we have added
a more extensive discussion of the antipatterns considered in our rating tool,
and justified the decision for the antipattern detection tool PMD [6]. Third, we
have added a section about the implementation of our rating tool. Fourth and
finally, we have added a more detailed discussion of our experimental results.
The key idea of our approach is to use both static and dynamic analyses and
combine the results to generate a heuristics that determines those refactorings
that are most promising with respect to performance. The major contributions
are twofold: First, to quantify the expected effect of a refactoring, we present a
novel rating function that incorporates the analysis data from both static and
dynamic analysis, and thus enables us to heuristically assess the effectiveness of
concrete refactorings. The output is a list of proposed refactorings sorted by their
potential to yield a strong positive effect on performance, together with a list
of refactorings that may improve stability. The reasoning behind our heuristics
is to assess which portions of source code get executed frequently, such that a
refactoring there pays off more than anywhere else. We combine this with a fac-
tor that provides an estimate for the general effectiveness of a given refactoring,
independent of its position in the code. Second, we present an evaluation of the
general effectiveness of a given set of refactorings that are generally assumed to
improve performance, independent of their use in a concrete program. To achieve
this, we have implemented micro benchmarks and measured their effectiveness
with respect to the execution time and memory consumption. We use the results
from our micro benchmarks together with static and dynamic code properties
in our ranking function to provide a heuristics that automatically assesses the
expected effect of a concrete refactoring in a given program.

30 N. Moesus et al.

To demonstrate the practical applicability of our approach, we present the
results from two experiments. In the first experiment, we have intentionally
manipulated a given example program such that it contains typical antipatterns
and investigate the impact on performance and how high the rule violations are
rated by our heuristics. In the second experiment, we apply our rating func-
tion to a given program, implement the top rated refactorings and examine the
performance improvement.

The rest of this paper is structured as follows: In Sect. 2, we introduce the
preliminaries that are necessary to understand the remainder of this paper. In
Sect. 3, we discuss related work. In Sect. 4, we present our approach for the auto-
mated selection of refactorings. In Sect. 5, we briefly discuss our implementation
of the rating tool and micro benchmarks, and we present micro benchmark results
as well as our case studies and experimental results. We conclude in Sect. 6.

2 Background

In this section, we introduce the preliminaries that are necessary to understand
the remainder of this paper, namely software performance, stability, antipatterns
and refactorings.

2.1 Performance

In the field of software, the notion of performance comprises multiple run time
aspects [30], all of them classified as non-functional properties. In this paper,
we focus on execution time as measure for performance. In a complex software
system with multiple components, execution times of single services sum up to
the overall execution time.

Performance plays an important role in every software. This is not necessar-
ily apparent as long as the performance is sufficient, e.g. due to modern CPUs,
high speed connections or efficient operating systems. From a users perspective,
sufficient performance often is taken for granted and is barely noticed, but a
lack of performance jeopardizes the success of an application as users become
frustrated and search for alternatives. In the case of simulation software, per-
formance sets boundaries to the level of detail or other functional aspects of a
simulation because too complex calculations might literally never finish.

To measure the execution time of a software technically no more than a
subtraction of two timestamps is necessary. However, a lack of accuracy of the
hardware or operating system that takes the timestamps may be a problem.
Because it is not possible to increase the time measurement accuracy a common
work-around is the utilization of performance benchmarks.

2.2 Stability

The term software stability refers to either absence of failures or consistency of
source code over time [10,31]. In this paper, we use the former definition and

A Rating Tool for the Automated Selection of Software Refactorings 31

when speaking of a stable software we think of a program that does not crash or
erroneously abort user actions, that does not require restarts due to increasing
memory consumption or illegal states, and that can handle any possible input
in a reasonable manner. A lack of stability results from bugs or design flaws in
any part of the software system.

Stability plays a comparatively important role as performance and is likewise
taken for granted by users. A software that frequently crashes and perhaps even
looses data is frustrating and can cause great damage. Therefore, an unreliable
software should not be used in a production environment.

To measure the stability of software is a difficult task especially in complex
programs. Common metrics are the number of failures in a time period and time
between failures [24]. The technical measurements is complicated since the most
appropriate time unit is CPU time, which is hard to take at an arbitrary moment
when a failure occurs. Furthermore, to carry out a measurement, the software
under test must be used for a representative time under realistic conditions in
order to obtain valid statistics. However, there exist methods that we can make
use of to detect potential threats to stability in the source code of a program.

2.3 Software Antipatterns

Software design patterns describe good solutions to recurring problems in an
abstract and reusable way. A software antipattern is very similar, only that it
describes a bad, unfavored solution [21]. The motivation to write those down is
to prevent their use and to provide appropriate refactorings into better designs.
An example for an antipattern described in [32] is The Ramp, where tasks have
an increasing execution time due to a growing list that has to be searched but
is never cleaned up.

Listing 1.1. Example Performance Antipattern.

1 St r ing [] p = { ”These” , ” are ” , ” s epara te ” , ” par t s ” } ;
2 S t r ing s t r = p [0] ;
3 for (int i = 1 ; i < p . l ength ; ++i) {
4 s t r = s t r + ” ” + p [i] ;
5 }

Performance antipatterns are the class of patterns that lead to bad perfor-
mance. As an example for a performance antipattern in the programming lan-
guage Java, consider Listing 1.1. In this example, strings are concatenated with
the ‘+’ operator. The reason why using the + operator as shown is considered
an antipattern is based on the internal implementation in Java. The + opera-
tor is natively overloaded for String, although in Java operator overloading in
general is not possible. However, this piece of syntactic sugar brings along a dis-
advantage concerning performance. Because objects of String are immutable,
the additional characters cannot simply be appended. Instead, internally a Java
StringBuilder object is allocated, concatenates the strings in its char buffer
and returns the new immutable string. If such procedure is repeated in a loop

32 N. Moesus et al.

as shown in Listing 1.1, each iteration allocates and dismisses a StringBuilder
and an intermediate string. It is veiled from the programmer that there lies an
inefficiency in the simple + syntax. The example demonstrates the low degree of
complexity of the antipatterns we deal with. Refactorings for this kind of antipat-
tern are often relatively simple as well. Also, they are mostly predetermined and
barely a subject to situational alternation.

2.4 Software Refactorings

A software refactoring is a change in source code that keeps the external behav-
ior of a software unaffected but yet improves the internal design or other non-
functional properties [13]. Examples for refactorings are splitting up large classes
into multiple units, increasing encapsulation of classes or replacing inefficient
operations. Refactoring is a structured process with specified steps and a defined
goal. For many situations there is a refactoring that describes a sequence of steps
and things to take care of in order to achieve a certain goal, which is better code.
Due to the structured procedure, refactorings are an elegant way of improving
software, in contrast to uncoordinatedly changing something in the code.

A refactoring may be a large scale operation that affects several units and
takes much effort to fully implement. In this paper, we focus on micro refactorings
[26], which affect only a few lines of code and are realizable in a short time or even
automatically. Concerning performance, micro refactorings can have noticeable
benefits, especially in often called functions or inside frequently executed loops.
Therefore, micro refactorings have the potential of an excellent cost-benefit ratio.

The proposed performance refactoring for the example in Listing 1.1 is to
allocate only one StringBuilder outside the loop and use it instead of the +
operator, such that no temporary objects accumulate.

3 Related Work

In [33,34], the authors present approaches to automatically detect software
design patterns based on static information extracted from Java bytecode. The
model uses a directed graph representation of the class diagram and utilizes
matrices to calculate similarities between modeled design patterns and the soft-
ware. The approach is extended to distinguish between design patterns with a
similar structure in [34]. By taking the version history into account the source
code before the introduction of the design pattern is inspected for code smells.
Depending on the formerly present smells the correct design pattern is deter-
mined. However, they focus on the detection of classical design patterns [14] and
are not concerned with their effect on performance. It is also possible to detect
patterns in source code with formal methods as suggested in [36]. There, the
authors examine class relations in a formal concept analysis to detect repeating
patterns without the need of prior pattern knowledge. The analysis is expensive,
though, and is not feasible for a large code base. Additionally, the impact of the
detected patterns on performance is not considered.

A Rating Tool for the Automated Selection of Software Refactorings 33

According to the survey on design pattern detection presented in [29], the
majority of published approaches combines structural and behavioral analyses of
the software. Although behavioral analyses are not necessarily implemented as
dynamic analyses, for example, the approach introduced in [20] uses static and
dynamic analyses similar to how we use them: The static analysis provides a
set of design pattern candidates, which is narrowed down in a dynamic analysis.
For each design pattern they prepare a set of rules concerning the interaction
of classes and discard every candidate that violates any of the rules. Slightly
different is the approach of building call graphs during the dynamic analysis
as presented in [35]. The authors search both abstract syntax graphs and call
graphs for design patterns and rate each candidate. The combination of both
ratings helps to determine actual design patterns. Although both approaches
combine static and dynamic analyses, they again only detect patterns and are
not concerned with their effect on performance.

In [4], the authors detect design patterns in a graph representation according
to a meta model specifically designed for this purpose. They develop a domain
specific language that allows precise definitions of patterns with inheritance
between them to ease the creation of variants. They achieve a high detection
precision but again, they are not concerned with the effect on performance.

An approach to detect performance antipatterns and suggest refactorings
is proposed in [1,2]. However, they work on software architectural models, and
propose refactorings within the model, possibly even before the software is imple-
mented, while we focus on implementations.

In [7], the authors achieve a rating of performance antipatterns based on their
so called guiltiness. The algorithm that calculates the guiltiness requires a com-
plete set of antipatterns and the set of performance requirements for the system as
input. Each antipattern and requirement is associated to one or more system enti-
ties, e.g. a processor. Depending on to what extend a requirement is not fulfilled
the associated system entities spread the guilt among all their associated antipat-
terns while taking into account the antipattern’s estimated impact on the respec-
tive system entity. Although this approach succeeds in selecting the most effective
performance antipatterns, it requires an expensive modeling step to capture the
component model, as the software needs to be transformed into a Palladio Com-
ponent Model (PCM) [3] to carry out the antipattern detection and a performance
assessment, which is necessary to estimate an antipattern’s impact.

In [8], the authors propose assembly code optimization by means of static
antipattern detection and dynamic value profiling. They use a knowledge
database for assembly antipatterns that have shown bad performance in micro
benchmarks and attempt to find those with a static analyzer. The dynamic
analysis benefits from very low instrumentation cost on the assembly level and
captures data like cache miss rate. Although this approach is closely related to
ours in many ways, e.g. the focus on micro refactorings, it utilizes the dynamic
analysis as independent addition instead of combining its yield with the results
from static analyses, and it does not target a high-level programming language,
which is often preferrable for software evolution and maintenance.

34 N. Moesus et al.

In [23], the authors present a machine learning system that examines exe-
cution traces of the software under test and calculates new input values for the
next execution that are most promising to uncover a performance bottleneck.
Finally, an analysis of the captured execution traces is carried out and a ranked
list with presumed performance bottlenecks is compiled. Even though in our
approach we utilize very different techniques, the result, namely an ordered list
of specific performance issues, is similar. However, they do not automatically
propose a solution to the detected performance issue.

In [11], the authors use supervised learning to train a model that finds
antipatterns and rates their severity. This relieves them from the necessity to for-
malize the antipatterns in order to perform the detection. However, they rely on
external detection algorithms to support the generation of training data, which
is tedious work. Additionally, they do not focus on performance and therefore
propose no measure to determine the impact of antipatterns on performance.

To the best of our knowledge, no existing approach enables the automatic
selection of refactorings that are most promising to increase performance.

4 Automated Selection of Refactorings

Static code analyses for antipattern detection issue too many alleged defects in a
not prioritized fashion, rendering the information hard to work with efficiently.
Dynamic software analyses, on the other hand, yield a lot of heterogeneous
data which is not easy to interpret and will not directly lead to a refactoring
proposition in the source code. Apparently, both techniques have their individual
disadvantages.

To overcome these problems, we propose an approach for the automated
selection of refactorings that utilizes software properties determined by both
static code analyses and dynamic software analyses. By combining the best out
of both worlds into one heuristics, we compile a list of concrete refactorings
sorted by their assessed potential to improve performance and stability.

Our key idea is that with the help of dynamically retrieved runtime infor-
mation we rank statically detected antipatterns by their importance regarding
the expected impact on performance and stability. By connecting runtime data
with specific antipatterns in the code, we derive a precise recommendation which
refactorings are most promising to improve the performance and stability.

Figure 1 shows our overall approach. In the top left, a static analysis takes the
software source code and a set of antipattern detection rules as input to produce
an unordered list of antipatterns, e.g. the undesired use of the ‘+’ operator. In
the bottom left, a dynamic analysis examines the software while it is executed
in its runtime environment consuming some input data. Various performance
measures are the output of this process, e.g. the execution time. In the final
step, we introduce a rating function, which uses the dynamic performance mea-
sures together with a factor that measures the general effectiveness of a given
refactoring to assign a severity value to each statically detected antipattern.

A Rating Tool for the Automated Selection of Software Refactorings 35

Fig. 1. Automated selection approach [25].

As a result, we get an ordered list where the top entries represent the antipat-
terns along with their proposed refactorings that have the highest potential of
improving performance. Thus, there is no more need to manually handle neither
the performance measures nor the huge amount of antipatterns. Instead, it is
possible to deal with the most promising refactorings and defer the revision of
the others.

Concerning stability antipatterns, making up a meaningful order by means of
dynamic analysis results is hardly possible. The certainty that a specific antipat-
tern may cause severe stability issues does not necessarily mean that a specific
occurrence causes any harm. None of the available measures seems appropriate
to make a profound and reliable assessment of severity. Additionally, stability is
not measurable like performance. It is much harder to say if an improvement set
in after a couple of refactorings, in order to evaluate the quality of an antipat-
tern selection process. Values like downtime of a server application or failure rate
cannot easily be measured in a micro benchmark. For these reasons, we separate
stability antipatterns from the others and put them into an individual list where
no particular order is assumed.

To realize our goal of automatically selecting refactorings, there are multiple
challenges to face. The large amount of static detection rules has to be checked
for those which may have a positive effect on performance or stability. The many
different available runtime parameters have to be evaluated in consultation with
an experienced performance engineer in order to find those that point to potential
performance leaks. Finally, we aim at defining a parameterized rating function
that is capable of melting all information into one value to allow sorting between
the statically detected antipatterns.

36 N. Moesus et al.

4.1 Assumptions and Requirements

Our approach is applicable to all kinds of programming languages for which the
corresponding static and dynamic analyses are available. There are, however,
differences in how complicated it is to obtain runtime information and how many
sophisticated tools there are for a certain technology. Thus, for practical reasons,
we decide to tailor our approach to the widely used programming language Java.

Our approach relies on finding antipatterns with a static analysis and there-
fore is limited to what can be found this way. To be able to analyze even large
code bases we are restricted to detection tools that are very fast. Characteristic
for antipatterns found by those tools is that they are relatively simple and often
concern only a single operation that is empirically known to be less efficient than
some other operation, e.g. the + operator that concatenates strings. Significant
savings are expected especially if antipatterns occur in loops or frequently called
functions. Note that more complex causes for performance issues, like memory
leaks, inefficient or unnecessarily large database requests or too frequent remote
service calls, are hardly detectable by a static analyses in a fail-safe fashion.
Expensive techniques, e.g. symbolic execution, would be required, but they still
cover only a small part of the considered domain. Additionally, a high rate of false
positives must be prevented because the acceptance of a tool and the confidence
in its well-functioning would diminish rapidly.

Considering this, we expect our approach to work best for applications where
the same source code is executed very often and thus the achievable perfor-
mance improvement of refactoring antipatterns is high. This decisive criterion is
assumed to hold for large business applications, e.g. server software or micro ser-
vices that get thousands of similar request a second. Nevertheless, our approach
works for other software as well, just with smaller performance gains.

Note that for the static antipattern detection, we require access to the source
code, while for the dynamic analysis a runtime environment, and realistic input
data must be available.

4.2 Rating Criteria

We aim at ordering the detected performance antipatterns according to their
severity, i.e., their potential of improving performance. To achieve this, we deter-
mine some rating criteria. Those may be either static properties, e.g., the location
in the source code where an antipattern is detected together with its loop depth,
or properties that can be obtained through dynamic analysis, e.g., the execution
time and frequency of the surrounding method.

Static Properties. The core of our static analysis is the static antipattern
detection, which provides a list of antipatterns together with their location in the
code. As an additional static property we use the loop depth at the corresponding
program location as a rating criterion, i.e. within how many layers of loops
a specific antipattern is nested. We choose this property because source code
within loops has the potential of being executed very often. If an antipattern

A Rating Tool for the Automated Selection of Software Refactorings 37

represents an inefficiency, the many repeated executions give it a higher impact
on performance and therefore it is more important to refactor.

Note that we do not use the actual amount of executions of a loop or the
nesting depth of a given antipattern. To determine the actual amount of execu-
tions of a loop for arbitrary inputs is an undecidable problem, thus we cannot
use this information as rating criterion. How deep an antipattern is nested in
arbitrary control flow structures, i.e., the nesting depth, is easy to determine.
One could argue that source code within, e.g., an if-statement is executed less
often. However, we have no evidence that control flow structures other than
loops form a reliable correlation that can be used as basis for a rating.

Runtime Properties. An important runtime property is the total execution
time of a method. It is defined as the sum of all execution times of a method in
a given program run. Therefore, it gives an impression on how much time the
program spends in a specific method. The time spent in subroutines is counted
towards the respective subroutine but not the calling method. Thereby, we get
a correlation between the time spent and a very limited number of code lines. A
high total execution time indicates that either some very expensive operations
are performed or the number of executions must be high, e.g. due to a loop. In the
second case an antipattern in this method has a higher impact on performance.

Another interesting property is the call count, i.e. how often a method is
called during runtime. Using the same reasoning as above, we consider antipat-
terns in frequently called methods to have a higher impact on performance.

The third runtime property is the memory consumption of a method. To cap-
ture the memory consumption of a given method in Java, we use the suspension
count. As Java is a memory-managed language, the garbage collector suspends
the currently executed method from time to time. The suspension count tells how
often the garbage collector suspended a certain method to perform a collection.
We choose this property as indicator for high memory consumption with the rea-
soning that if a method suffers suspensions disproportionately often, it probably
allocates a lot of memory. The claimed correlation is based on the assumption
that a garbage collection takes place whenever all memory is used up, which sta-
tistically happens more often in allocation intensive methods. Although different
implementations of garbage collectors behave very differently in many ways, the
assumption that more suspensions by the garbage collector indicate a higher
memory consumption presumably holds. Note that for many other languages
there exist profiling tools like Google’s gperftools for C or the Memory Profiler
for Python, which report the memory consumption of each method in a given
program. Our rating function can easily be adapted to include these measures
instead of the suspension count.

A runtime property that we leave out is the increase of execution time under
increasing load. If a method takes significantly more time just because the sys-
tem is under load, this indicates that the method contains some operation that
impairs the performance. Often, the problem is about waiting time that is spent
e.g. for synchronization between multiple threads [16]. We still do not consider

38 N. Moesus et al.

this property for two reasons. First, none of our antipatterns causes waiting
times. Second, measuring the increase of execution time under increasing load
in a completely automated fashion is very complicated, e.g., because a dedicated
testing environment for the measured software is required. For the same reasons
we do not utilize synchronization and waiting times. Neither do we consider the
API breakdown, because the information which component takes the most time
is not detailed enough to form a connection with specific antipattern occurrences.

Antipattern Properties. As a further important rating criterion, we use the
properties of the antipattern itself. We expect some antipatterns to bring high
performance gains through refactoring while others yield only small improve-
ments. To assess the general effectiveness of a given set of refactorings, we have
implemented a micro benchmark for each class of antipattern and its refactored
counterpart in a before-afterwards fashion (cf. Sect. 5). In doing so, we evaluate
the effectiveness of each refactoring and thus can derive meaningful weights for
our rating function.

Note that we have the choice to utilize either the relative improvement after
the refactoring or the absolute improvement. As we are mostly interested in
a positive effect on the performance of the whole software it makes sense to
consider the absolute gain. The relative improvement is only of limited meaning
because an operation that takes quasi no time has few saving potential even
if it can be made faster by a factor of 50. Therefore, we select the absolute
effectiveness of refactorings as rating criterion.

4.3 Rating Function

Our final goal is to provide a heuristics for the prioritization and selection of
antipatterns regarding their negative impact on performance for a given program.
To achieve this, we present a novel rating function that can be used as a heuristics
to estimate the severity of a detected antipattern in terms of the expected effect
of refactoring the antipattern on performance. Note that our rating function
does not rank stability antipatterns, but adds the corresponding refactorings to
the recommended refactorings in an unsorted list. Our rating function is based
on the various criteria discussed above and forms the heart of innovation in our
approach as it actually combines the statically and dynamically obtained data.

We define our rating function, which determines the expected effectiveness
of refactoring a given antipattern AP , as follows:

severity = exec · (calls + b · loop) · ft,AP

+ (β · susp + 1) · (calls + b · loop) · fm,AP

where exec is the total execution time, susp the suspension count, calls the
call count, loop the loop depth, ft,AP an antipattern time factor and fm,AP

an antipattern memory factor. The antipattern time and memory factors ft,AP

and fm,AP capture the general effectiveness of refactoring the antipattern AP.

A Rating Tool for the Automated Selection of Software Refactorings 39

We have determined these factors using micro benchmarks. The idea behind this
is as follows: If the execution time of a single piece of code only consisting of a
given antipattern can be reduced by a factor of 10 using the proposed refactoring
for this antipattern, we assess the general effectiveness of this refactorings to have
a time factor of ft,AP = 10. If, for the same experiment, the memory consumption
is reduced to 50%, the memory factor of this refactoring is fm,AP = 2. We
describe our micro benchmarks to determine the time and memory factors for a
given set of antipatterns in Sect. 5 and present the resulting factors in Table 3.
To fine-tune our rating function, we introduce the weighting factors b and β,
where b weights the relative relevance of the loop depth compared to the call
count, and β the relative relevance of memory consumption compared to the
execution time. The user can use these factors to adjust the rating function to
her need, emphasizing the importance of the loop depth compared to the call
count by raising b, or putting additional importance on memory consumption
compared to the execution time by increasing β.

The ratio behind our rating function is to identify antipatterns that are at
locations in the source code that are executed very often. Refactorings at those
locations have a larger potential of improving performance than elsewhere and
should receive a higher rating. If, e.g., the execution time of a method is high,
it is probable that this method is either called very often or contains a loop
with many runs. If an antipattern is located in such a method with a high call
count, we assume that it is executed often. Consequently, in this case the term
exec · calls becomes large and leads to a higher rating. If on the other hand
the call count is low but the antipattern lives within a loop, we likewise assume
many executions. This time the term exec · loop becomes large and again leads
to a higher rating. When merged together under the premise that either of the
two cases should result in a higher rating, we get the term exec · (calls+ b · loop)
in the rating function. The weighting factor b can be used to normalize the loop
depth with respect to the call count (the loop depth is typically between 0 and
4, while the call count has much larger numbers), and to express a domain-
or application-specific relevance of loop depth and call count. In applications
or domains where the loop depth is not expected to significantly influence the
performance, b can be reduced, and vice versa. The antipattern time factor ft,AP

gives an estimate for the general impact of the antipattern on execution time and
is therefore multiplied. Altogether, this yields the first summand of the rating
function.

The derivation of the second summand is very similar. For methods that get
frequently suspended for garbage collection we assume a higher memory con-
sumption. This leads to the term susp · (calls+ b · loop). We again multiply with
the antipattern memory factor fm,AP to take the general impact of the antipat-
tern on memory consumption into account. A particularity of the suspension
count is that for most methods it simply is zero, since overall garbage collection
kicks in relatively seldom. Because we do not want to zero out the whole impact
on memory, we add the constant one and get (susp + 1).

40 N. Moesus et al.

Finally, we put together the two terms, each representing an independent
indication of a high impact on performance. Since execution times can easily
grow large while the suspension count keeps low, the weighting factor β should
be used to align the magnitude. In addition, the software developer can increase
β to search for refactorings that are promising to reduce the memory consump-
tion, and decrease β to focus on refactorings that are promising to reduce the
overall execution time. Note that in (β · susp + 1) the constant one is not scaled
by β. The reasoning is that in case of zero suspensions the summand should have
little influence and only break the tie between otherwise similarly rated antipat-
terns. If scaled, the second summand could grow significantly large, although
the suspension count is zero and there actually is no evidence for a high memory
consumption.

4.4 Weight Determination

To normalize the loop depth with respect to the call count and the memory
suspensions with respect to the execution time, we determine initial values of
the weighting factors b and β. As mentioned above, they can be adjusted to
fine-tune the ranking function to certain domains or to a desired performance
goal.

The weighting factor b defines the relation between call count and loop depth.
To scale the loop depth range of 0 to 4 such that it matches the magnitude of
call counts common for the current antipattern selection process, we choose

b =
1

Nm

∑

methods

calls

with Nm as the number of methods. In other words, we choose b such that it
equals the average call count of a method. In our experiments, the call count
average is a multiple of the median. Thus, the loop depth has an adequate effect
on the antipatterns rating but the extreme call counts still surpass the loop
depth in effect. Note that b has to be calculated once in an antipattern selection
process.

The weighting factor β defines the relation between execution time and sus-
pension count:

β = α ·
∑

methods

exec

∑
methods

susp

In other words, β equals the total execution time divided by the total suspension
count. The idea is to calculate the average of how much time corresponds to one
suspension and scale the suspension count accordingly. The factor α can be
used to reduce the suspension counts influence because it is suspected to be less
reliable and accurate than the execution time, as the numbers generally are very
low and a proper statistical distribution sets in very late. In our experiments, we
use α = 0.2. The weighting factor β has to be calculated once per antipattern
selection process.

A Rating Tool for the Automated Selection of Software Refactorings 41

4.5 Selection of Detection Tools and Rules

In this subsection, we justify our decision for the tool we use for the antipattern
detection and how we select the detection rules.

As stated above, the common tools for static analysis of Java source code
that are available for selection are PMD, Checkstyle and FindBugs [22]. They
are freely accessible and come each with a predefined list of detection rules.

An important difference between the tools are their respective lists of pre-
defined rules. To get an overview, we thoroughly inspected the several hundred
rules with their descriptions and examples. Finally, we come to the conclusion
that PMD is suited best for our purpose. Compared to the others, it has the
most rules for performance antipatterns and a fair amount of stability rules.

Checkstyle has a stronger focus on coding style and an overall smaller set of
rules. It offers hardly any performance or stability antipattern detection rule that
PMD does not offer. Therefore its additional use would not be very beneficial
for our cause.

FindBugs does not work with source code but with Java byte code and there-
fore requires Java class files to operate. Its focus mostly is, like the name sug-
gests, finding bugs and not detecting performance antipatterns. Regardless, it
has a rules section dedicated to performance. But still, those rules do not add
much new to what we get from PMD. Moreover, the mentioned rules concern
only very specific inefficiencies and we estimate the potential to really improve
performance to be relatively low.

Based on the inspection of all PMD rules we compose two subsets. One
set focuses on performance and the other on stability. This first selection is
performed only on the textual documentation of the rules [27]. It is notable
that most of the more than 150 rules do not concern performance or stability
issues. However, there actually is one category called Optimization. But not all
performance relevant rules are in there. In particular, the category String and
StringBuffer also contains some important rules. In Table 1 all selected rules are
listed.

5 Evaluation

We have implemented our approach in Java. We perform the static code analysis
with PMD [6], which uses detection rules to find patterns in the source code.
Compared to other tools like Checkstyle [5] and FindBugs [28], PMD has more
rules for performance antipatterns and thus is best suited for our approach.
For the recording of runtime properties, we use the monitoring tool Dynatrace
AppMon [9]. It is widely used in practice and provides all the dynamic properties
we need.

In this section, we first present our micro benchmarks and experimental eval-
uation of the general effectiveness of a given set of refactorings independent of a
concrete program. Then, we demonstrate two experiments we have conducted in
order to evaluate our approach for the automated selection of refactorings that

42 N. Moesus et al.

Table 1. Selected PMD detection rules.

Performance rules

BooleanInstantiation Avoid to instantiate Boolean objects

AvoidUsingShortType short requires cast to int before arithmetics

FinalFieldCouldBeStatic static members save memory

OptimizableToArrayCall Allocate proper array size in toArray

IntegerInstantiation Avoid to instantiate Integer objects where possible

ByteInstantiation Avoid to instantiate Byte objects where possible

ShortInstantiation Avoid to instantiate Short objects where possible

LongInstantiation Avoid to instantiate Long objects where possible

AvoidInstantiatingObjectsInLoops Check if repeated allocation is required

SimplifyStartsWith Replace str.startsWith("x") with

str.charAt(0) == ’x’

UseStringBufferForStringAppends Avoid using + operator iteratively for strings

UseArraysAsList Use Arrays.asList wrapper instead of copying all data

AvoidArrayLoops Prefer System.arraycopy over manual copying

UnnecessaryWrapperObjectCreation Avoid intermediate instances of Integer etc

AddEmptyString Do not use + "" to cast to string

RedundantFieldInitializer Spare initializations to Java default values like

int a = 0

ExceptionAsFlowControl Use exceptions for exceptional situations, not control

flow

AvoidThrowingNewInstanceOfSameException Avoid re-creating exceptions with new

StringInstantiation Avoid to instantiate String objects with new

InefficientStringBuffering Avoid using + operator with StringBuilder

UnnecessaryCaseChange Prefer equalsIgnoreCase over case changing

UseStringBufferLength Prefer StringBuilder.length over toString

AppendCharacterWithChar Append single char with append(’x’)

ConsecutiveAppendsShouldReuse Put consecutive append in a single instruction

UseIndexOfChar Search for single char with indexOf(’x’)

InefficientEmptyStringCheck Prefer isWhitespace in a loop over trim

InsufficientStringBufferDeclaration Initialize StringBuilder with appropriate size

UnnecessaryConversionTemporary Avoid intermediate instances of Integer etc

Stability rules

ReturnFromFinallyBlock Avoid return inside a finally block

AvoidThreadGroup Avoid the not thread-safe class ThreadGroup

CloseResource Do not forget to close resources after opening them

MissingBreakInSwitch Do not forget break in switch-statements

SingletonClassReturningNewInstance Do not make getInstance create new instances

PreserveStackTrace Do not dump exceptions stack trace

AvoidCatchingThrowable Do not catch the too general Throwable

AvoidCatchingNPE Do not hide NullPointerException by catching it

AvoidLosingExceptionInformation Use return values of functions without side effects

UseEqualsToCompareStrings Use equals to compare strings contents

UselessOperationOnImmutable Use return values of functions without side effects

A Rating Tool for the Automated Selection of Software Refactorings 43

are promising to have a high impact on the performance of a given program. As
a case study, we use STATE, a SystemC to Timed Automata Transformation
Engine written in Java and developed at TU Berlin [17–19]. Although this is not
the class of software our approach is designed for and thus the performance gain
is small, the obtained findings demonstrate the practical applicability of our app-
roach. Furthermore, we show some example output and give a first impression
of the potential of our approach.

We carried out all experiments on an Intel(R) Core(TM) i7-2620M CPU
@ 2.7 GHZ, 2 Core with 8 GB RAM running the Microsoft Windows 10 Pro
operating system. We use the Oracle JVM version 8.

5.1 Micro Benchmarks

We have implemented micro benchmarks to determine the general effectiveness
of a given set of antipatterns independent of a concrete program. We measure
the effectiveness in terms of time and memory factors ft,AP and fm,AP , which
represent the relative severity of the various antipatterns. Since we are interested
in the relative effectiveness of performance refactorings, only the relation between
the performance of code containing the antipattern and code containing the
refactored version is important and the absolute results do not matter.

Challenges of Java Micro Benchmarks. Micro benchmarks are not easy to
design, especially in a language like Java. There are some general pitfalls and
some that stem from how Java and its virtual machine work [15].

The first thing to go wrong is that something completely different is mea-
sured than what was intended. A naive example is a benchmark to measure some
arithmetical operation that writes each result to the console. What impacts the
performance in such a setting is mostly the output and not the actual arith-
metics. To avoid this, we put only the absolutely necessary operations into the
measurement code.

The accuracy of the CPU clock is by far not high enough to capture times in
the magnitude of CPU cycles. Thus, we nest the operations we want to measure
into a simple, repeating loop. The repetition count must be high enough to reach
overall computation times where the accuracy is sufficiently good.

A Java specific pitfall is the just-in-time compiler (JIT compiler), which
automatically compiles frequently executed portions of the program while leaving
the rest for interpretation as usual. This can corrupt a measurement because half
of the executions are interpreted and the other half compiled. We encounter this
challenge with a so called warm-up. This means that we run the benchmark code
20000 times before the actual measurement is started. This guarantees that the
JIT compiler translates the benchmark code and we measure only the compiled
version.

Another general difficulty is the compiler optimization in benchmarks. As
the executed code does not fulfill any contentual purpose the compiler may find
out and optimize it away, rendering the whole benchmark useless. To solve this

44 N. Moesus et al.

problem, we always return a number that in some way contains values involved in
the measured code. Like this, we avoid optimization with a negligible overhead.

The garbage collection in Java is another mechanism we take into account
with our micro benchmark design. If, for example, a garbage collection is per-
formed during a benchmark the execution time increases significantly. Hence,
before each measurement, we demand a garbage collection to happen to achieve
similar starting conditions. Actually, the JVM cannot be forced to carry out a
garbage collection but according to our experiments it always obeys. Thus, if a
garbage collection takes place, it is because so much memory was consumed.

When taking a measurement, the result is subject to deviations. Therefore,
we repeat the measurement several times. In a series there probably are outliers,
e.g., due to some irregular background process on the machine that executes the
benchmarks. For this reason we discard the extreme values and take the average
over the remaining as final outcome.

Micro Benchmark Implementation. We have implemented the micro bench-
marks as an Apache Tomcat servlet [12]. This allows a user friendly control in
the web browser through a simple HTML interface. To cover all PMD per-
formance rules, we have implemented 20 benchmark pairs, each consisting of
one benchmark for the antipattern and one for its refactored version. The core
of each benchmark is a specific function that executes an antipattern or its
refactored counterpart in a loop with a certain repetition count N , in our case
N = 100000. Around this benchmark function the measurement process is built
up. One benchmark measurement consists of two parts of which the first mea-
sures memory consumption and the second measures execution time.

For the memory consumption, we take the difference in heap size of the JVM
before and after the benchmark function. Because in Java garbage collection can
happen at any time, it has to be considered for the measurement, otherwise the
alleged memory consumption even may become negative. To solve this problem,
we use a callback function, which is triggered by each garbage collection run and
which records how much space got cleared. We use this to calculate the memory
consumption as follows:

memConsumption =

(heapAfter +
∑

GCRuns

collected) − heapBefore

We repeated this process 50 times before taking the average, which we con-
sider the true memory consumption. First experiments showed that the callback
function does not reliably execute timely before the measurement in which it
was triggered is over. Therefore, after every measurement we schedule a wait of
(100 ms) to catch late coming garbage collections and assign the numbers to the
appropriate measurement.

For the execution time measurement, we take the difference in the system
time before and after the benchmark function. To achieve a reliable value we

A Rating Tool for the Automated Selection of Software Refactorings 45

calculate an average over 50 measurements, where we discard the lowest and
highest four values beforehand. In order to accomplish an even more reliable
result we calculate such an average for ten different cases, where in each case the
repetition count is modified according to repCount = i · N with i = 1, 2, ..., 10.
In doing so, we get a series of supposedly equidistant execution time averages.
We calculate the distance between every two successive results, which repre-
sents the increase in time for another N runs. Over these distances we take the
average and finally consider it the true execution time of N runs of the bench-
marked antipattern or its refactored counterpart. The deviation of the minimal
distance and the maximal distance from the average indicate the quality of the
measurement, with a low deviation confirming the outcome.

Results and Interpretation. The results from our micro benchmarks are
shown in Table 3. Note that benchmarks marked with * were executed with
N = 1000 due to long execution times. The table comprises short, descriptive
names for the benchmarks and the corresponding average times and the aver-
age memory consumptions as described above. The time factor describes by
what factor the execution time changed in the refactored version compared to
the antipattern, with a high value indicating that the refactoring is effective.
The time saving describes the absolute gain in execution time achieved by the
refactoring. Analogously, the values are calculated for memory consumption.

The time factors are in a range of 0.8 to 21497.92, i.e., some refactorings even
have a negative impact while others are incredibly effective. The time savings
are in a range of −0.16 to 4275.11 ms per 100k repetitions and it is notable that
a high factor does not necessarily appear together with a high absolute saving.
Regarding memory consumption, the factor range is 0.21 to 10086.67 and the
savings range is −0.09 to 198.17 MB per 100k repetitions. For those pairs where
the refactored version consumes no memory the factor becomes NaN.

The results fit well with the expectations we had based on the antipattern
description. For example, we now have evidence that performing arithmetics
with the short type takes additional execution time due to the internal type
casts but saves memory. In conclusion, we are very confident that our effort to
design good benchmarks payed off by providing useful results that we can use
in the rating function to distinguish between more or less severe antipatterns.

The measurements taken with the micro benchmarks are not only good for
determining the antipattern factors used in the rating function. They have a
value in themselves because the effectiveness of refactoring the antipatterns gets
quantified in a relative and an absolute way. The results show that there are sev-
eral refactorings that reduce execution time or memory consumption by large
factors. At the same time, we get an overview of how much can be saved through
refactoring this kind of antipatterns. While for some the savings are close to zero,
for others they are multiple seconds per 100k calls. Those values suggest that in
general our approach of refactoring this kind of statically detectable antipatterns
has some effect, as long as not every occurrence is considered but only system-
atically selected ones. The results from our micro benchmarks also provide a

46 N. Moesus et al.

valuable insight to the general effectiveness of performance refactorings and can
be used by further research on antipatterns and performance refactorings.

5.2 Rating Tool Chain

As preparation for the rating tool, we have configured the data sources, namely
PMD and Dynatrace AppMon, to capture the required data. We have explored
the output formats of the data sources in order to finally design and implement
the rating tool itself.

The rating tool that we have implemented is the core component of the rat-
ing tool chain. It comprises routines to read all data required for the rating
function from PMD, Dynatrace AppMon and the benchmarks. It uses a data
model that we have designed to represent the collected information in a consis-
tent way, finally applies the rating function, sorts the antipatterns according to
their severity and writes an output file with the most important information.

Configure and Operate PMD. A XML file is required to configure PMD
to use a certain set of detection rules. Therefore, we have composed such a
file containing all rules selected according to Sect. 4.5. When executed, PMD
analyses the requested source code and writes an output XML file. It contains
a violation element for each detected antipattern with information about the
affected code lines, the violated rule and which class and method it occurred in.

Implement Loop Depth Detection. We use the loop depth in the rating for-
mula. An easy way to reliably identify the loop depth is traversing an abstract
syntax tree (AST), especially easier than parsing the pure source code. Fortu-
nately, PMD internally uses an AST and even offers an API to hook into its
traversal. The API is originally meant to enable writing custom detection rules
but can be misused for our purpose of compiling a list containing all the loops.

Hence, we have implemented a custom PMD rule that detects loop depth.
In order to store the information and because the rating tool works with XML
anyway, we have enabled the custom PMD rule to write another XML file. We
have designed the loop depth file to contain method elements which contain
loop elements that hold all required data. PMD constructs an AST for each
compilation unit separately. This brings up the problem of when to finalize the
loop depth file, i.e. to close the last XML element, flush the data and close the
file handle because we never know if a next unit follows or not. As a work-around
we have introduced an empty file with a name such that it gets sorted to the
last position by the file system. When coming across, it triggers the loop depth
rule to finalize the XML file.

Configure and Operate Dynatrace AppMon. The setup of Dynatrace App-
Mon involves some configuration in the client which we do not be explained in

A Rating Tool for the Automated Selection of Software Refactorings 47

detail. The placement of the Java agent that collects data in the software under
test simply requires including a specific argument in the launch call. The rest is
taken care of automatically.

In Dynatrace AppMon there are so called dashboards where the user can
arrange various information to be displayed. For those dashboards a REST API
is offered through which the information is made accessible. Consequently, we
have arranged a dashboard containing all the required data and have prepared
a REST request that makes Dynatrace AppMon write that data into another
XML file. The generated XML file contains the method call count, the total
execution time and the suspension count for all recorded methods.

Usually, Dynatrace AppMon aims for very little overhead but it also can
be configured to record many to all method calls for the cost of performance.
In our development environment we record every method call to quickly build
up an extensive data set, but in a production environment it is important that
the monitoring overhead does not grow too large. Hence, in production it is not
feasible to record the full method call information but only a small part of it.
Still, if the monitoring is carried out for a longer time, sufficiently detailed values
emerge.

Implement the Rating Tool. For the core part of our implementation we
have chosen Java as programming language because this whole story already
takes place in the Java world. We have not bothered to put some shiny little
GUI together and rely on the command line. The required invocation arguments
are the XML files with the analysis data.

The data model that we use to bring all information together consists of
three classes. On highest level there is SourceFile, where the file path and the
contained methods are stored. In the middle, there is Method where call count,
execution time and suspension count are stored. Additionally, a list of antipat-
terns found inside the method is maintained. The third class is Antipattern
and represents exactly one occurrence of an antipattern. The violated detection
rule, the source code line and the loop depth are stored there. After the severity
has been calculated, it is kept there as well.

As the input data comes from different sources, the information is not
encoded in a uniform manner. For example does the Dynatrace AppMon output
not contain the source files where the listed methods are implemented, although
it contains most other information considering the methods. Therefore, the cor-
responding source files are extracted from the PMD output. On the other hand,
the loop depth XML only contains the source files and tells from where to where
the loops reach.

The largest part of the rating tool takes care of importing the information
from XML files and populating the internal data structures. The actual appli-
cation of the rating function is handled in only 23 lines of code, including the
sorting of antipatterns by severity. The results are written as simple text format,
where the top most entry represents the top rated antipattern.

48 N. Moesus et al.

Table 2. Experiments with STATE [25].

Average time Absolute diff Relative impact

Original 2232.47 ms - -

Injected 2242.03 ms +9.56 ms 0.428%

Refactored 2218.07 ms −14.4 ms 0.645%

5.3 Experimental Evaluation

We have evaluated our approach with the software STATE [17,19] in version
STATE-2.1. It is licensed as open source under the GNU General Public License
version 3 and consists of approx. 30,000 lines of code in 285 classes. We chose
one of the shipped examples from STATE to do our measurements, namely
b transport.

Experiment 1: Antipattern Injection. In our first experiment, we have injected
some antipatterns in the source code of STATE, measured their impact on per-
formance and evaluated how they get rated by our ranking tool. To achieve this,
we have duplicated the STATE source code. Then, in one copy we have manip-
ulated two methods by replacing all occurrences of StringBuilder with the
less efficient + operator. In this process, we have altered about 60 lines of code
and replaced in total 49 calls to append. The rest of the source code remains
unchanged.

Our expectation is that the manipulated copy runs slower, i.e. the mea-
sured execution times are increased. We base this expectation on the benchmark
results where the string concatenation antipattern showed strong impact on per-
formance. Another expectation is that the introduced antipatterns get ranked
high in a follow up analysis of the manipulated copy, because they were injected
into a prominent method and have large antipattern factors.

The upper two rows of Table 2 show the execution times of the original
STATE version compared to the worsened version where we have injected
antipatterns. The average execution time of the original STATE software is
2232.47 ms. The average execution time of the worsened version with antipat-
terns injected is 2242.03 ms, resulting in an absolute difference of 9.56 ms. Thus,
the refactoring of the injected antipatterns, i.e. the restoration of the original
state, achieves a performance improvement of 0.428%. The subsequent rating
tool analysis reveals that the injected antipatterns are found by our tool. The
24 occurrences appear among the 26 top rated antipatterns.

According to our expectation, the STATE version with antipatterns injected
shows worse performance than the original. The execution time difference of
about half a percent is small, but we have to keep in mind that STATE has very
different characteristics to a large-scale server software or micro service, where
our approach is supposed to exploit its full potential. Considering this, half a
percent is already a good result, especially in relation to the very low effort it
takes to implement some simple, local refactorings.

A Rating Tool for the Automated Selection of Software Refactorings 49

Table 3. Micro benchmarks for antipatterns [25].

Micro benchmark Avg time

[ms]

Avg

mem

[kB]

Time

factor [1]

Time

saving

[ms/100k]

Mem

factor [1]

Mem

saving

[MB/100k]

StringBuilder using equals(””) 1.30 4133 30.62 1.24 24.52 3.96

StringBuilder using length() == 0 0.04 140

Concatenate 10 strings with plus

operator

74.42 246622 2.09 40.70 5.06 198.17

Concatenate 10 strings with

StringBuilder

37.21 48900

Multiple append in multiple

statements

9.22 60202 0.99 −0.05 1.00 −0.09

Multiple append in only one statement 9.28 60215

Instantiate Boolean object 0.05 140 1.25 0.01 NaN 0.14

Reference pooled Boolean 0.04 0

Arithmetics with short 0.05 17 1.25 0.01 0.21 −0.07

Arithmetics with integer 0.04 82

Instantiate object with final member * 23.45 553 1.01 22.95 1.02 0.01

Instantiate object with static final

member *

23.18 544

Call toArray with empty array 0.86 6471 0.84 −0.16 1.00 0.00

Call toArray with correctly sized array 1.02 6471

Create many small objects 0.44 2740 2.10 0.23 3.42 1.94

Create separate data arrays 0.21 802

Check first char with startsWith 0.04 0 0.80 −0.01 NaN 0.00

Check first char with charAt(0) 0.05 0

Copy array iteratively into List * 50.30 40539 10962.82 4275.11 1313.69 37.92

Wrap array with asList 0.39 2623

Copy array iteratively into array 10.02 15 1.02 0.16 1.07 0.00

Copy array with copyarray 9.86 14

Convert to string with + ”” 4.12 12732 1.15 0.53 2.31 7.22

Convert to string with toString 3.59 5510

Instantiate with explicitly initialized

member *

27.47 570 1.08 182.75 1.01 0.01

Instantiate with implicitly initialized

member *

25.32 565

Throw an exception * 30.35 1068 21497.92 2579.63 10086.67 1.06

Set flag and check if it’s set 0.12 9

Create string with new 0.57 1876 14.25 0.53 NaN 1.88

Create pooled string with quotes 0.04 0

Check string equality casting both

upper case

12.70 20872 2.76 8.10 NaN 20.87

Check string equality ignoring case 4.60 0

Append character with double quotes 4.17 2366 2.47 2.48 1.45 0.74

Append character with single quotes 1.69 1629

Search character with double quotes 0.93 0 1.02 0.02 NaN 0.00

Search character with single quotes 0.91 0

Check if string is empty with trim 1.00 2408 25.00 0.96 NaN 2.41

Check is string is empty with loop 0.04 0

Initialize StringBuilder too short 4.46 33252 1.17 0.64 1.18 5.09

Initialize StringBuilder sufficiently

large

3.82 28163

50 N. Moesus et al.

[3280529] exec= 97.00 | susp= 0 | c a l l s =13595 | loop=0
Antipattern ’ AppendCharacterWithChar ’ in method ’ t oS t r i ng ’ at
l i n e 288 in f i l e Locat ion . java

[2592057] exec= 1674.51 | susp= 3 | c a l l s= 5 | loop=1
Antipattern ’ Avo idIns tant ia t ingObject s InLoops ’ in method ’
p a r s ePa r a l l e l ’ at l i n e 123 in f i l e UppaalXMLManager . java

[1548647] exec= 1504.23 | susp= 0 | c a l l s= 5 | loop=1
Antipattern ’ AppendCharacterWithChar ’ in method ’ embed ’ at l i n e
103 in f i l e ParallelUppaalXMLEmbedder . java

[1280611] exec= 58.58 | susp= 0 | c a l l s= 8770 | loop=0
Antipattern ’ AppendCharacterWithChar ’ in method ’ t oS t r i ng ’ at
l i n e 221 in f i l e Trans i t i on . java

[1280611] exec= 58.58 | susp= 0 | c a l l s= 8770 | loop=0
Antipattern ’ AppendCharacterWithChar ’ in method ’ t oS t r i ng ’ at
l i n e 222 in f i l e Trans i t i on . java

Fig. 2. Extract of rating tool results for STATE [25].

Experiment 2: Performance Refactorings. In our second experiment, we have
performed a preliminary analysis of STATE with the rating tool and subse-
quently refactored the top rated antipatterns. Afterwards, we measured if the
performance was improved by the refactorings. With our approach, we get a
list of detected antipatterns sorted according to their assigned ratings. Figure 2
shows the first five lines of the output file slightly shortened. The large number in
square brackets is the rating assigned to the antipattern. The other information
helps to comprehend the rating and to find the antipattern in the source code.

In our experiment, we have implemented the proposed refactorings for 17 of
the top rated 19 antipatterns. Two antipatterns remain untreated. One is an
unavoidable object instantiation inside a loop and the other would require a
StringBuilder to prepend text, which it is not intended for. Apart from the 17
refactorings the source code remains unchanged.

Our expectation is that the refactored version runs faster than the original,
i.e. the measured execution times are reduced. Although the analyzed software
is not in our target domain of large-scale server software, this experiment shows
exactly how our approach is meant to be used in practice.

The last row of Table 2 shows the results for our second experiment. The
average execution time of the refactored version of STATE is 2218.07 ms. Com-
pared to the original version, this results in a difference of 14.40 ms. Thus, the
refactoring of the 17 top rated antipatterns achieves an overall performance
improvement of 0.645%.

Overall, we can see our expectation satisfied, since the refactored version
effectively executes faster than the original STATE. Again, slightly more than
half a percent is a small performance improvement but the same argumentation
as above holds and we still consider the result a success. It shows that the
rating tool succeeds in proposing refactorings that improve performance and
suggests that its application on a server software or micro service can yield great
performance gains with a small refactoring effort.

A Rating Tool for the Automated Selection of Software Refactorings 51

5.4 Added Values of Automated Refactoring Selection

In order to justify a technique that basically combines two well-known tech-
niques, we aim at giving evidence that it is in some way superior to just using
the others. In fact, with two experiments we have shown that our approach adds
additional value to the static and dynamic analysis.

Using solely PMD detects many antipatterns but the vast majority of them
does not need be taken care of. A PMD analysis of the STATE source code that
already only considers the performance antipatterns selected in the course of
this paper yields 843 issues. Of those, only 339 received a rating greater than
zero and promise a positive effect on performance through refactoring at all.
But even that number is high and resolving all issues means a significant effort
with a questionable cost-benefit ratio. In contrast, refactoring 17 of the highest
rated antipatterns is an easy task and very promising at the same time. Hence,
by using solely PMD either lots of unimportant refactorings are implemented,
which is mostly squandered effort, or they are ignored all together, which wastes
a good opportunity to improve performance.

Dynatrace AppMon On the other hand, using solely Dynatrace AppMon
to capture runtime properties leaves one with a bunch of information without
any concrete instruction on what to do. Experience in the topic may help to
follow unwritten heuristics to find spots where improvements can be realized.
But additional to the required, extensive know-how the process of investigation
takes precious time. Furthermore, it is crucial that after locating a suspicious
method the occurrence of an antipattern is recognized and detected with the eye.
Hence, by using solely Dynatrace AppMon one is dependent on an experienced
performance engineer who has the time and capability to manually search for
conspicuous runtime data and antipatterns in the source code.

Dynatrace AppMon certainly is a very sophisticated monitoring and analysis
tool which provides many opportunities of using broad data to manually find
performance issues. However, many projects do not have access to this com-
mercial software. But even tools with much less functional scope, where manual
performance tweaking may be very hard, can provide data appropriate to our
approach. Thus, with the automated selection of refactorings we enable projects
with no budget for performance engineering to relatively easy achieve a measur-
able boost.

6 Conclusion

In this paper, we have proposed a novel approach to combine static and dynamic
software analyses to automatically select refactorings that improve the perfor-
mance and stability of a given program. Our major contributions are twofold:
First, we have presented a rating function for antipatterns, which assesses their
respective potential to improve performance and stability through refactoring
based on both static and dynamic properties. Second, we have implemented
micro benchmarks that assess the general effectiveness of a given set of perfor-
mance antipatterns independent of a specific program. Our benchmarks clearly

52 N. Moesus et al.

show that the antipatterns actually have an effect on performance, although the
effects vary. Due to the mostly small savings, in the majority of cases a refactor-
ing is only reasonable if the antipattern is executed frequently, e.g. in a loop or
frequently called method. This illustrates the importance of a feasible approach
to select the most effective refactorings in a given program.

We have implemented our approach for the automated selection of refactor-
ings that are most promising to improve the performance and stability of a given
program using PMD [6] for static code analyses and Dynatrace AppMon [9] for
dynamic software analysis to capture performance measures. The result is a list
of recommended refactorings ordered by effectiveness.

We have demonstrated the practical applicability of our approach with a
sample software that consists of 30,000 lines of code. Although our approach
works best for large scale server software, it still yields some improvement for
our much smaller case study from a totally different domain. We therefore assess
the potential in a large scale server software as high, especially due to the good
cost-benefit ratio.

Our approach enables us to select only the most important antipatterns out of
the huge amount of antipatterns that are typically provided by static antipattern
detection tools. At the same time, it drastically reduces the cost of interpreting
data delivered by dynamic analyses. Due to the automated interpretation and
the precisely recommended refactorings, little expertise is required.

In future work, we plan to carry out a field experiment in which we improve
the performance of a large scale server software. Furthermore, we plan to inves-
tigate more complex refactorings. As this is the intended area of application, an
evaluation of the yielded benefits from such a field experiment will greatly show
the true potential of the approach and where tweaks still are necessary. The cur-
rently included static analysis only detects single operations for which there are
more efficient alternatives. This is on a very small scale and therefore requires
a great many of repetitions to become effective. A future task is to extend the
static analysis with sophisticated techniques already found in the literature, e.g.
symbolic execution. This will be very beneficial since more antipatterns become
detectable in the static analysis, especially such that have a larger potential for
improvement per execution.

References

1. Arcelli, D., Berardinelli, L., Trubiani, C.: Performance antipattern detection
through fUML model library. In: Proceedings of the 2015 Workshop on Challenges
in Performance Methods for Software Development, pp. 23–28. ACM (2015)

2. Arcelli, D., Cortellessa, V., Trubiani, C.: Antipattern-based model refactoring for
software performance improvement. In: Proceedings of the 8th international ACM
SIGSOFT conference on Quality of Software Architectures, pp. 33–42. ACM (2012)

3. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

A Rating Tool for the Automated Selection of Software Refactorings 53

4. Bernardi, M.L., Cimitile, M., Di Lucca, G.A.: A model-driven graph-matching app-
roach for design pattern detection. In: 2013 20th Working Conference on Reverse
Engineering (WCRE), pp. 172–181. IEEE (2013)

5. Burn, O.: Checkstyle (2017). http://checkstyle.sourceforge.net/index.html
6. Copeland, T., Le Vourch, X.: PMD (2017). https://pmd.github.io/
7. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively

identify “Guilty” performance antipatterns. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12029-9 26

8. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.:
Exploring application performance: a new tool for a static/dynamic approach. In:
Proceedings of the 6th LACSI Symposium. Los Alamos Computer Science Institute
(2005)

9. Dynatrace: Dynatrace AppMon (2017). https://www.dynatrace.com/
10. Fayad, M.E., Altman, A.: Thinking objectively: an introduction to software stabil-

ity. Commun. ACM 44(9), 95 (2001)
11. Fontana, F.A., Zanoni, M.: Code smell severity classification using machine learn-

ing techniques. Knowl.-Based Syst. 128, 43–58 (2017)
12. Foundation, A.S.: Apache Tomcat (2017). http://tomcat.apache.org/
13. Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional, Massachusetts (1999)
14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co. Inc,
Boston (1995)

15. Goetz, B.: Anatomy of a flawed microbenchmark (2005). https://www.ibm.com/
developerworks/java/library/j-jtp02225/

16. Grabner, A.: Performance analysis: how to identify synchronization issues
under load? (2009). https://www.dynatrace.com/blog/performance-analysis-how-
to-identify-synchronization-issues-under-load/

17. Herber, P., Fellmuth, J., Glesner, S.: Model checking SystemC designs using timed
automata. In: International Conference on Hardware/Software Codesign and Inte-
grated System Synthesis (CODES+ISSS), pp. 131–136. ACM press (2008)

18. Herber, P., Glesner, S.: A HW/SW co-verification framework for SystemC. ACM
Trans. Embed. Comput. Syst. 12, 61 (2013)

19. Herber, P., Pockrandt, M., Glesner, S.: STATE-A SystemC to timed automata
transformation engine. In: 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015 IEEE 12th International Conference on Embed-
ded Software and Systems (ICESS), 2015 IEEE 17th International Conference on
High Performance Computing and Communications (HPCC), pp. 1074–1077. IEEE
(2015)

20. Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic design pattern detec-
tion. In: 2003 11th IEEE International Workshop on Program Comprehension, pp.
94–103. IEEE (2003)

21. Long, J.: Software reuse antipatterns. ACM SIGSOFT Softw. Eng. Notes 26(4),
68–76 (2001)

22. Louridas, P.: Static code analysis. IEEE Softw. 23(4), 58–61 (2006)
23. Luo, Q., Nair, A., Grechanik, M., Poshyvanyk, D.: Forepost: finding performance

problems automatically with feedback-directed learning software testing. Empir.
Softw. Eng. 22(1), 6–56 (2017)

http://checkstyle.sourceforge.net/index.html
https://pmd.github.io/
https://doi.org/10.1007/978-3-642-12029-9_26
https://www.dynatrace.com/
http://tomcat.apache.org/
https://www.ibm.com/developerworks/java/library/j-jtp02225/
https://www.ibm.com/developerworks/java/library/j-jtp02225/
https://www.dynatrace.com/blog/performance-analysis-how-to-identify-synchronization-issues-under-load/
https://www.dynatrace.com/blog/performance-analysis-how-to-identify-synchronization-issues-under-load/

54 N. Moesus et al.

24. Lyu, M.R.: Software reliability engineering: a roadmap. In: 2007 Future of Software
Engineering, pp. 153–170. IEEE Computer Society (2007)

25. Moesus, N., Scholze, M., Schlesinger, S., Herber, P.: Automated selection of soft-
ware refactorings that improve performance. In: Proceedings of the 13th Interna-
tional Conference on Software Technologies, ICSOFT 2018, Porto, Portugal, 26–28
July 2018, pp. 67–78 (2018)

26. Owen, K.: Improve the smell of your code with microrefactorings (2016). https://
www.sitepoint.com/improve-the-smell-of-your-code-with-microrefactorings/

27. PMD: PMD Rulesets index (2017). https://pmd.github.io/pmd-5.8.1/pmd-java/
rules/index.html

28. Pugh, B., Hovemeyer, D.: FindBugs (2015). http://findbugs.sourceforge.net/
29. Rasool, G., Streitfdert, D.: A survey on design pattern recovery techniques. IJCSI

Int. J. Comput. Sci. Issues 8(2), 251–260 (2011)
30. Reitbauer, A., Grabner, A., Kopp, M.: Java Enterprise Performance: [Performance

und Skalierbarkeit von Java-Enterprise-Anwendungen verstehen und managen].
Press, Entwickler (2011)

31. Rutter, T.: Stable vs stable: what ‘stable’ means in software (2010). https://
bitdepth.thomasrutter.com/2010/04/02/stable-vs-stable-what-stable-means-in-
software/

32. Smith, C.U., Williams, L.G.: New software performance antipatterns: more ways to
shoot yourself in the foot. In: International CMG Conference, pp. 667–674 (2002)

33. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern
detection using similarity scoring. IEEE Trans. Softw. Eng. 32(11), 896–909 (2006)

34. Washizaki, H., Fukaya, K., Kubo, A., Fukazawa, Y.: Detecting design patterns
using source code of before applying design patterns. In: 2009 Eighth IEEE/ACIS
International Conference on Computer and Information Science, ICIS 2009, pp.
933–938. IEEE (2009)

35. Wendehals, L.: Improving design pattern instance recognition by dynamic analy-
sis. In: Proceedings of the ICSE 2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, pp. 29–32 (2003)

36. Wierda, A., Dortmans, E., Somers, L.J.: Detecting patterns in object-oriented
source code - a case study. In: ICSOFT (SE). pp. 13–24. INSTICC Press (2007)

37. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engi-
neering. In: 2007 Future of Software Engineering, FOSE 2007, pp. 171–187. IEEE
(2007)

https://www.sitepoint.com/improve-the-smell-of-your-code-with-microrefactorings/
https://www.sitepoint.com/improve-the-smell-of-your-code-with-microrefactorings/
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
http://findbugs.sourceforge.net/
https://bitdepth.thomasrutter.com/2010/04/02/stable-vs-stable-what-stable-means-in-software/
https://bitdepth.thomasrutter.com/2010/04/02/stable-vs-stable-what-stable-means-in-software/
https://bitdepth.thomasrutter.com/2010/04/02/stable-vs-stable-what-stable-means-in-software/

Model-Based On-the-Fly Testing of Web
Applications and Multilingual Websites

Winfried Dulz(B)

TestUS Consulting, Nuremberg, Germany
dulz@testus.eu

Abstract. This paper examines techniques for the model-based test-
ing of web applications and multilingual websites. For this purpose, the
simple web game application GuessNumbers is used to explain the essen-
tial steps for a model-based test process that applies statistical usage
models to generate appropriate test suites. We also discuss methods for
performing on-the-fly testing by means of an executable usage model.
Model-based techniques that provide graphical representations of usage
models make it easy to set the test focus on specific regions of the sys-
tem under test that shall be tested. In addition, adapted profiles support
the selective generation of test suites. We also show how generic usage
models that are adapted to specific environments during the test execu-
tion, enable multilingual websites to be tested. Using the TestPlayer tool
chain, a model-based testing approach is easily done.

Keywords: Model-based testing · Statistical usage model ·
Test suite generation · On-the-Fly testing · Website testing · Selenium

1 Introduction

Developing complex software and embedded systems usually consists of a series
of design, implementation and test phases. Due to the increasing complexity of
networked systems, for example for IoT (Internet of things) applications, model-
based development approaches are becoming increasingly popular. Each software
engineering step is guided by a suitable method and is usually supported by a
special tool.

1.1 Model-Based Testing

One method in which the test cases are generated from a model is called Model-
based Testing [1,2]. The relationship between a model that describes those parts
of a given SUT (system under test) that need to be tested in order to generate
(automatically) test cases derived from the (graphical) model is illustrated in
Fig. 1. In general, a distinction is made between

– system specifications, which describe functional or non-functional aspects of
the SUT and

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 55–78, 2019.
https://doi.org/10.1007/978-3-030-29157-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_3

56 W. Dulz

Fig. 1. General approach of model-based testing [20].

– usage models that model the usage behavior of the possible users or user
classes of the system when they interact with the SUT in different ways.

Test cases, which are generated from a system specification [3] are often used
in the so-called component or unit test. Usage models are mostly applied to
generate test cases for the system or acceptance test.

Since complete testing of real systems is not feasible in practice, a suitable set
of test cases must be selected to achieve a specific test objective. With the help
of statistical usage models, also called Markov chain usage models (MCUM) [4],
[5], individual test cases or complete test suites can (automatically) be derived
by traversing the MCUM.

Markov chains are graphical models to define all possible usage steps and
scenarios on a given level of abstraction as shown in Fig. 2. MCUM are used to
represent

– usage states for modeling the user behavior during the interaction with the
system, as well as

– state transitions to specify the reaction of the system on a user’s interaction.

The probability that a particular user interaction triggers an event ej is called
transition probability and is given behind a colon, e.g. e4 : 0.3 to change from
Usage State A into Usage State B (Fig. 2). By adjusting the probability values
of the usage distribution, i.e. the operational usage profile [6], it is easy to specify
a varying usage behavior for different user classes. In this way, the test engineer
can automatically create distinct test cases for different system users.

A test case is given by a statistical traversal of the Markov chain begin-
ning in the Start State and ending in the final Stop State, considering the
probabilities of the selected usage profile.

A test suite is a set of test cases to achieve a specific test objective, e.g. to
cover all usage states or to traverse all transitions at least once during the test

Model-Based On-the-Fly Testing 57

Fig. 2. Statistical Markov chain usage model for modeling the usage behavior of system
users [20].

execution. How to derive the usage distribution for a Markov chain usage model
in a more systematic way is discussed in [4,7–10].

The main goals when using a MCUM for statistical test case generation can
be summarized in

– automatic generation of sufficient many test cases
– calculation of meaningful metrics for the test suite
– determine stopping criteria for terminating the test execution.

Computations for statistical usage models are the result of years of work
by many different people and summarized by Stacy Prowell in [11]. Kirk Sayre’s
research provided many new and useful analytical results, and provided stopping
criteria for statistical testing [12]. Walter Gutjahr demonstrated how a statistical
usage model could be modified to bias test generation toward low-use critical
function, and how the bias could be removed in the results [13].

In a recent contribution to ICSOFT 2018, Dulz presented a tool environment
based on Eclipse and the TestUS1 tool TestPlayer for performing model-based
testing of web applications. The key conclusions of the paper are [20]:

– Model-based techniques that use graphical usage models are helpful for even
inexperienced test engineers to prepare and perform their tests.

– Graphical usage models facilitate the setting of the test focus on those areas
of the SUT that need to be tested.

– Generic usage models, which can be adapted to different languages during
the test execution, allow the testing of multilingual websites.

In this paper, we extend the approach in [20] by applying an executable user
model for performing on-the-fly tests. This means that the transitions between
usage states create executable test steps that directly test the SUT without first
generating an abstract test-suite.
1 https://www.testus.eu/.

https://www.testus.eu/

58 W. Dulz

1.2 Automated Statistical Testing

Given the promising properties and results of statistical usage models, there is
a demand to provide a suitable tool environment for automating the test case
generation and test execution process. As far as we know, there are just two
other tools besides the TestPlayer c©, developed by TestUS2 that are focused on
the testing with statistical usage models.

A more scientifically oriented research platform called JUMBL3 [14] was devel-
oped at the SQRL (Software Quality Research Laboratory, University of Knoxville
Tennessee) and the commercial tool MaTeLo [15] is licensed by ALL4TEC4.

Compared to the other tools, the TestPlayer provides additional graphical
representations to evaluate the properties of automatically generated test suites
and to decide which and how many test cases are needed to achieve a particular
test objective [16].

Fig. 3. A versatile tool environment consisting of the TestPlayer and Eclipse [20].

As illustrated in Fig. 3, the Eclipse modeling platform is well suited for com-
piling an executable test suite and for performing the test execution after the
TestPlayer has generated an abstract test suite from a given usage model and
additional test requirements.

In the next sections we take a closer look on the underlying test case genera-
tion processes. Using a simple web game application and the corresponding usage
2 https://www.testus.eu/.
3 http://jumbl.sourceforge.net.
4 http://www.all4tec.net/.

https://www.testus.eu/
http://jumbl.sourceforge.net
http://www.all4tec.net/

Model-Based On-the-Fly Testing 59

model, we demonstrate how typical tasks in modeling, test case generation, analy-
sis and the selection process can be performed. We will also examine some metrics
that will enable us to control the selection of the test suite and to decide which test
cases are best suited to meet certain test requirements to test game.

2 Automatic Test Suite Generation

Fig. 4. The graphical TestPlayer model editor.

The TestPlayer can be executed in any modern web browser via a graphical user
interface based on RESTful web technologies. Specific elements in the TestPlayer
Dashboard allow a comfortable and user-friendly control of all sub-tasks, which
must be performed for statistical usage tests.

2.1 Creation of a Usage Model

Usage models can be created in the Model editor section of the TestPlayer dash-
board by means of a graphical editor that is based on draw.io5 (Fig. 4).

In the following, we will briefly present the web game Guess Numbers6

(Fig. 5), which serves as a running example to explain the basic approach. The
goal is to find a secret random number between 1 and 100, on the condition
that the player has a maximum of 7 attempts. The game widgets consist of an
information field, a numerical input field, an input button, a reset button and a
result output.

60 W. Dulz

Fig. 5. Web game GuessNumbers: Entering a number in the input field.

Fig. 6. Result of a guess attempt.

Fig. 7. Successful guess attempt and output of the guess statistics.

The diagrams in Figs. 6 and 7 illustrate how the game GuessNumbers behaves
when the button Test the number is pressed. The numerical input field Input
a number is used by the player to enter the next number. If the number entered is
not equal to the random number searched for, the result output below the input
field and the information field above provide information about what the player
has to do next. If the hidden number is found, the guess statistics summarizing
the guess attempts so far are displayed. Pressing Reset will reset the guess
statistics to their initial values.

A corresponding statistical usage model, which serves as the basis for the
TestPlayer to automatically generate test cases, is shown in Fig. 8.

After starting the game in start state [, usage states Input a number, Test
the number and Reset can be selected next, indicated by the state transitions
(e1, p1), (e2, p2) and (e3, p3) respectively. When the player makes a new guess

5 https://about.draw.io/.
6 https://testus.eu/GuessNumbers/.

https://about.draw.io/
https://testus.eu/GuessNumbers/

Model-Based On-the-Fly Testing 61

Fig. 8. Statistical usage model for the web game GuessNumbers.

attempt usage state Input a number follows usage state Test the number and
transition (e8, p8) is selected. It is also possible to return to the same usage state
Test the number or Reset, which is achieved by the transitions (e10, p10) and
(e11, p11) respectively. Finally, when the correct number is found the final state
] is reached from usage state Test the number via transition (e7, p7).

The generic probabilities p1 up to p11 at the edges behind the input events
define the transition probabilities for selecting the respective input event e1
up to e11. Prior to the generation of the test cases, the TestPlayer replaces the
generic values by concrete probability values that either originate from a given
test profile or are calculated based on a uniform geometric distribution.

2.2 Creation of a Usage Model

In the TestPlayer Dashboard section Model Settings the essential parameters for
the automatic generation of test cases and test suites can be specified. These
include

– Models: file name of the usage model
– Model start state: name of the start state of the usage model
– Model end state: name of the final state of the usage model
– Profile usage: declaration, whether a statistical usage profile (yes) or a

uniform distribution (no) will be employed for the generation algorithm of
the test cases

– Profiles: file name of the statistical usage profile.

2.3 Automatic Generation of Test Cases

By applying the given usage model, the TestPlayer Dashboard offers simple user
interactions to automatically generate test suites that have specific characteris-
tics, i.e.

– complete coverage of all usage states
– coverage of all possible transitions between the usage states
– coverage of all loop-free paths between the start state [and the final state],

i.e. no transition is selected twice within the same test case.

62 W. Dulz

The default number of test cases that are generated by the TestPlayer is 100
but can easily be changed within the Testcase definitions. Test suites that
possess the specific characteristics defined above arise by reduction with respect
to the given coverage and sort criteria. In this way, test suites with different
properties [17] can be created automatically.

Figure 9 shows a single test case from a test suite consisting of eight test
cases, which achieves a coverage of all transitions of the usage model in Fig. 8.
The test suite was generated using the sort criterion length, i.e. the eight test
cases were selected from 100 statistically generated test cases after all test cases
were sorted according to their length.

Fig. 9. Test case visualization for the web game GuessNumbers (Color figure Online)

Test cases are visualized by highlighting the relevant states and transitions
(bold orange coloring) and show the already achieved coverage of usage states
or state transitions (represented by a light orange coloring). The number behind
the colon of the click events indicates how often the specified state transition
is performed during the execution of the test case. In the case of longer loops
during the execution of test cases, a single transition can be traversed several
times.

In addition to the graphical representations, the TestPlayer provides a textual
description of the generated test suite. Textual variants of the test suite are
intended for documentation purposes as well as to export test cases for the test
execution using a JSON-like notation.

The JSON-like test suite description is as follows (see [20]):

– a test suite T consists of test cases TC1 · · ·TCm notated as
[[TC1], [TC2], · · · [TCm]]

– a test case T consists of test steps TS1 · · ·TSn notated as
[[TS1], [TS2], · · · [TSn]]

– a test step TS consists of usage states USfrom and USto and the transition
event E notated as [USfrom, E, USto]

A concrete test step example for the test case visualization in Fig. 9 looks as
follows:

["Input a number", "e4", "Test the number"]

Model-Based On-the-Fly Testing 63

The complete test case visualized in Fig. 9 in the JSON-like description is as
follows:

[
["[", "e1", "Input a number"],
["Input a number", "e4", "Test the number"],
["Test the number", "e7", "]"]

]

How to use a test suite in the JSON-like representation for an automated test
execution process is discussed in the next section.

2.4 Graphical Representation of the Test Suite Metrics

Once a test-suite has been generated, specific metrics can be used to graphically
analyze and evaluate its properties and to assess the quality of the test suite.

Metric SSP compares the probability distribution of usage states in statis-
tical equilibrium for the usage model and the relative frequencies of the corre-
sponding usage states in the generated test suite. As can be seen in Fig. 10, the
theoretical probability values for the individual usage conditions of the MCUM
are well mapped in the test suite.

Fig. 10. Steady state probabilities of the MCUM vs. relative frequencies of the test
suite.

64 W. Dulz

In addition, the TestPlayer offers further metrics, which are discussed in more
detail in [17]:

– SSV : comparison of the average number of test cases that are necessary to
visit a usage state once in the usage model and during the test execution

– KL: visualization of the Kullback/Leibler divergence and the mean weighted
deviation [16] between the usage model and the test suite

– SSP.N , SSV.N , KL.N : corresponding metrics for test suites that cover all
nodes of the usage model

– SSV.T , KL.T : corresponding that for test suites that cover all transitions of
the usage model.

3 Eclipse for the Automated Test Suite Execution

Eclipse is an open source programming environment for modeling and developing
all kinds of (application) software, which fits ideally into the comprehensive test
framework. There exist plug-ins for all common programming approaches, e.g.

– Java: applications, client/server side programming, Android, · · ·
– PHP : server side programming
– JavaScript/CSS/HTML5: web applications
– JUnit: white box unit tests of Java components
– Selenium: software-testing framework for web applications

Automated testing of web applications requires additional drivers to provide
the ability to automatically access the respective web browser. We use the test
automation framework Selenium7, which can be easily integrated into an Eclipse-
based test environment and offers a common Java API for the main web browsers
(Fig. 11).

Before testing a web application, the test engineer must first select the
type of the web browser to start the correct driver. Concrete values for the
driver are FirefoxDriver() for the Mozilla web browser and ChromeDriver()
for the Google web browser. The web application can then be started via the
startApp(String URL) method for the given URL and subsequently automati-
cally tested using the previously generated test cases, as shown in Fig. 11. During
the test specific methods from the Selenium API are used to navigate inside the
web application, such as byID(String ID) for clicking an HTML element with
the given identifier ID or byTag(String tag) for clicking the next HTML ele-
ment with the given HTML tag. For web applications to be tested automatically,
a testing interface must be provided that simulates the state-based logic of the
Markov chain. For this purpose, each test step describes a state transition that
implements the desired test request.

The Java switch() statement in Fig. 12 implements a typical programming
pattern that is performed during the execution of a given test suite.

String keyclicks provides single transition events key that trigger the test
step. To control the duration of the corresponding display action, the time-
controlled method Thread.sleep(time) is used in addition. The IDs that are
7 https://www.seleniumhq.org/.

https://www.seleniumhq.org/

Model-Based On-the-Fly Testing 65

Fig. 11. Elements of the Selenium web driver Java API for Eclipse [20]

used as input parameters for method byID() are the corresponding HTML id
attributes in the index.html file for the web game, e.g.

<button id="ResetButton" class="sbtn"

type="button" onclick="reset();">Reset

</button>

When testing web game GuessNumbers using the test suite shown in Fig. 13,
test results are logged in the Eclipse console window and show which transition
event of the usage model from Fig. 8 has been executed by each test case (Fig. 14).

66 W. Dulz

Fig. 12. Main Java switch() for executing a single test step.

The particular challenge in testing GuessNumbers is to guess the hidden
random number at the end. Since the used TestPlayer generation strategy length
tries to create test cases with minimum length in order to satisfy the state
coverage criterion, the generated test suite is too short for finding the hidden
random number.

A first solution to overcome this problem is using a more complex test suite,
i.e. the TestPlayer sorting strategy add.prob (additive probability) is applied
instead, which produces longer test cases that have a better chance of guessing
the secret number. Other sorting strategies that are provided in the TestPlayer
Strategies section are

– unsorted: test cases are generated randomly for a given usage profile
– frequency: test case list is sorted by the relative frequency of the test cases
– length: test case list is sorted by the length of the test cases
– multiplicative probabilities: test case list is sorted by the occurrence

probability of the test cases
– additive probabilities: test case list is sorted by the additive probabilities

of all test steps
– complexity: test case list is sorted by the complexity of the test cases

In this way test suites, which have quite different properties are created
automatically and are discussed in more detail in [17].

The result is as expected, i.e. the second test case of a test suite consisting
of two longer test cases now contains the line You have found the searched
number (Fig. 15).

Model-Based On-the-Fly Testing 67

Fig. 13. Test suite that covers all states of the web game GuessNumbers in Fig. 8.

4 Model-Based On-the-Fly Testing

Another approach to the problem of not being able to guess the hidden number
is to apply an executable Markov chain usage model for performing on-the-fly
testing. That means the transitions between the usage states implement exe-
cutable test steps that directly test the IuT, i.e. the web game, without first
generating an abstract test suite.

The principle techniques for on-the-fly testing can be classified into
specification-based and usage-based approaches. In [18] formal model programs
are written in the high level specification language AsmL. On-the-fly testing is
presented as a method in which test derivation from a model program and test
execution are combined into a single algorithm. On the other hand, in [19] use
case diagrams containing functional and non-functional requirements are trans-
formed into a statistical usage model. Test cases and the evaluation of test ver-
dicts are interpreted on-the-fly during the execution of a TTCN-3 test suite,
providing an executable usage model.

In this paper we applied the second approach and implemented a simple Java
pattern (Fig. 16) to provide an executable MCUM consisting of

– an enumeration State that contains all usage states defined by the identifier
set Si (i = 1, 2, · · ·),. . .

– an implementation of an abstract method doTransition() that is executed
during state transitions and
• performs state dependent test step operations
• provides next usage state Sj (j = 1, 2, · · ·) as output.

68 W. Dulz

Fig. 14. Test results logged in the Eclipse console window.

Guided by the Java pattern it is easy to provide a solution for on-the-fly testing
for the web game GuessNumbers and the corresponding usage model in Fig. 8.

A Java code block that realizes usage state Start by implementing
the abstract methods doTransition() is given in Fig. 17. Code blocks for
InputState, TestState and Reset are implemented in an analog way. Here,
Start, N1, N2, N3 and Stop are state identifiers representing the usage states
[, Input a number, Test the number, Reset and] respectively. The choice,
which usage state will be selected next depends on the given usage profile, i.e.
the actual values of the generic probabilities p1, · · · , p11. The implementation
pattern is always the same:

1. Summarize the given probabilities for all outgoing probabilities leaving the
usage state, e.g. sum=p1+p2+p3 for usage state [

2. Generate a random number p=Math.random() in the interval [0,1]
3. Compare the values of the probabilities against the random number, e.g.

if(p < p1/sum), if(p < (p1 + p2)/sum) and do some actions that are related
to the selected test step, e.g. MCUM.clickByID("InputButton") that per-
forms an automated click on the selected HTML element given by the
attribute id="InputButton".

Model-Based On-the-Fly Testing 69

Fig. 15. Test results indicating a successful guess attempt.

The output statements MCUM.tc.write() also record the test steps for gen-
erating test cases on-the-fly. The output format has the same JSON-like syntax
as explained in subsection Automatic Generation of Test Cases.

The advantage is that a replay option is given to test the web game later
with the same test cases to reproduce a comparable behavior of the IuT.

The diagram in Fig. 18 shows the main loop for on-the-fly testing of the
usage model given in Fig. 8. Each test case starts in State.Start and will end
in State.Stop that sets the Boolean MCUM.finish to true. At the end of the
test the generated test cases are saved in a text file test cases.timestamp.txt
and can be re-used for a subsequent replay. In addition, a second file,
On-the-fly.timestamp.txt, logs the test result and records whether the hidden
numbers were guessed.

5 Model-Based Testing of Multilingual Websites

So far, we have shown how simple web applications can be tested by means
of model-based testing. Now we are going a step further and focus on testing
multilingual websites. For this purpose, a suitable usage model must first be

70 W. Dulz

Fig. 16. Java pattern to implement an executable MCUM.

Fig. 17. Java code implementing usage state [of the MCUM in Fig. 8.

Model-Based On-the-Fly Testing 71

Fig. 18. Main loop for on-the-fly testing of an executable MCUM.

created. In the following, we will explain how the TestUS8 homepage can be
tested (see also [20], where we used a slightly different usage model from a
previous version of the website).

5.1 Language-Dependent Usage Models

The corresponding usage model of the website is given in Fig. 19.

Fig. 19. Usage model of the TestUS home page.

The TestUS homepage always starts in the usage state Welcome. From there,
you can reach the main usage states At a First Glance, Advanced Testing,
Information, TestPlayer Login and Language Switch. The main usage states
8 https://testus.eu.

https://testus.eu

72 W. Dulz

correspond to the selection menus in the top menu bar of the TestUS homepage.
From the main usage states, you get to the other usage states of the website, e.g.

Welcome provides access to

– Model-based Testing and
– Statistical Test Case Generation

· · ·
TestPlayer Login offers the access to

– Sign-Up and
– Login

and Language Switch switches the representation language of the website
between English and German.

A typical test case generated automatically by the TestPlayer looks like the
one that is shown Fig. 20. After changing the language from English to German

Fig. 20. Test case for testing the English version of the TestUS homepage.

by clicking on the language switch of the website a different usage model must
be used to create correct test cases in German. The English test case (Fig. 20)
has changed now to the German one in Fig. 21. The main differences between

Fig. 21. Test case for testing the German version of the TestUS homepage.

the two usage models are the different names of the usage states in the selected
language. The structure and the generic transition events are not affected by
this change.

Model-Based On-the-Fly Testing 73

5.2 Generic Usage Model

For that reason, it makes sense to provide a usage model containing generic state
names that can be mapped to concrete names of the respective languages during
the test execution. This task can be performed by the TestPlayer that can add
generic state names Ni (i = 1, · · ·) to an incomplete usage model. The result is
a generic usage model having 20 generic usage states N1 to N21 and 62 generic
transition events e1 to e62.

The concrete English test case in Fig. 20 can now be derived from following
generic one in Fig. 22.

Fig. 22. Generic test case for multilingual testing of the TestUS homepage.

To test websites successfully with the presented techniques, individual HTML
elements must be labeled with unique identifiers. Therefore, the HTML source
code of the English, respectively German TestUS homepage contain HTML
markups and identifiers that are composed of the generic state names and a
label for the language that is used. During the test execution, the test system
must switch to the other language when the language switch is detected inside
a test case. The Java code in Fig. 23 shows how Eclipse is performing this task.

For websites to be tested automatically, a testing interface must be provided
that simulates the state-based logic of the usage model. In analogy to Fig. 12,
we use a Java switch() statement consisting of 62+1 entries for the generic
transition events and an additional default entry to react when an invalid input
occurs.

The Eclipse Run Configuration can be set via the parameter s (scroll mode)
to indicate whether the individual pages should be scrolled during testing of the
website. This feature is used for controlling the run-time of the test execution. In
case of a lengthy test suite, e.g. for a desired transition coverage, the scroll mode
can be switched off to get a quick overview of the behaviour of the website.
When the scroll mode is activated the duration of the display and the scroll
action are time-controlled via the class attribute mainTime and the sleep method
Thread.sleep().

The Java code fragment in Fig. 24 shows the actions that are triggered when
selecting theTestUSLoginpagewithin a test case,which is indicatedby the generic

74 W. Dulz

Fig. 23. Java code for switching the language during the test.

state name N21. When the generic transition event e21 appears in a test case the
TestPlayer Login item is clicked automatically in the selected web driver by per-
forming themethodclickLinkByPartialText(N21 Text), which iswrapping the
Selenium code driver.findElement(By.partialLinkText(N21 Text)). String
variable N21 Text is set by the actual language condition and contains the Log-
in string either in English or German (see Fig. 23). After a predefined timeout of
mainTime, which controls the web page display time, the JavaScript engine of the
web browser must execute the JavaScript code window.scrollBy(0,50) to scroll
down by 50 pixels. When the bottom part of the web page is reached, the browser
scrolls automatically to the top of the web page by executing the JavaScript code
window.scrollTo(0,0).

5.3 Test Focusing by Means of Adapted Usage Profiles

Of special importance for the validation of the SuT (System under Test) are
customer-specific usage profiles that focus the test execution on selected usage
states or sets of usage states. This is achieved by

– avoiding a transition (Si, Sj) that is starting in usage state Si and ending
in usage state Sj by setting the corresponding probability value p(Si, Sj) to
zero, i.e. p(Si, Sj) = 0

– forcing a transition (Si, Sj) by setting the corresponding probability value
p(Si, Sj) to one, i.e. p(Si, Sj) = 1.

Model-Based On-the-Fly Testing 75

Fig. 24. Java code for testing the TestUS Login page.

The result is an adapted usage profile that is used to generate the test-suite.
In this way, you can easily describe various user classes that visit the website in
different ways. A test case, which must be performed during the test procedure
due to special safety requirements, is often referred to as the happy path. The
implementation of a happy path can also be easily realized with the concept of
adapted usage profiles.

Figure 25 shows an accumulated test case for an adapted test suite that
focuses only on those visitors of the TestUS website (Fig. 19) who access the top
menu At a First Glance and Fig. 26 contains a test case visualization that is
automatically provided by the TestPlayer when generating the test suite.

Fig. 25. Test case for an adapted test suite focusing on usage state At a First Glance

of the usage model in Fig. 19.

The corresponding usage profile is as follows:
p1=1, p2=1, p37=0, p38=0, p40=0, p43=0

76 W. Dulz

Fig. 26. Visualization of the test case in Fig. 25.

6 Conclusion and Final Remarks

This paper presents various techniques that allow to prepare and perform model-
based on-the-fly testing of web applications and multilingual websites by using
the TestPlayer tool chain.

For this purpose, the essential steps for a model-based test process which
applies statistical usage models for the generation and evaluation of suitable
test suites are explained on the basis of the simple web game application
GuessNumbers.

Compared to a conventional test project, in which test cases are prepared in a
tabular format, for example, a model-based test project requires the development
of a test model. This model represents the usage behavior from a test perspective
and contains all scenarios, constraints and dependencies that are relevant for
testing.

Model-Based On-the-Fly Testing 77

Modeling can involve considerable effort, especially if the input documents
do not have the required level of detail and frequent requests are required. On
the other hand, this is an excellent way to identify errors and inconsistencies at
an early stage before the implementation phase.

Thus, this initial investment helps to avoid serious problems in later phases
of the project and to significantly improve the maintainability of the tests.

The key insights from our projects in recent years and this paper can be
summarized as follows:

– Due to many successive development cycles, more and more functions must
be tested. The increasing testing effort can only be managed by automated
testing and model-based testing techniques.

– A model-based tester uses models to control test design and analysis and takes
advantage of models for other test activities such as test case generation and
test report generation.

– Avoid the reuse of a model that has also been used for code generation. If both
the code and the tests are generated from the same model, no deviations will
be detected. Instead, try to create a specific model from the test perspective.

– Model-based techniques that use graphical representations of usage models
can help even inexperienced test engineers prepare and perform their tests.
Graphical usage models facilitate the setting of the test focus on those areas
of the SUT that need to be tested.

– Adapted profiles support the selective generation of test suites. Based on
adapted profiles different user groups that interact with the SUT can be
distinguished by different test suites that are used during the test execution.
How to systematically derive an adapted profile is explained in more details
in [10].

– The Eclipse modeling framework in combination with the TestPlayer tool
chain provides a versatile tool environment for model-based testing of web
applications and websites. Nevertheless, the TestPlayer is independent of spe-
cial application areas and can be used in many different ways.

References

1. El-Far, I.K., Whittaker, J.A.: Model-based software testing. In: Marciniak, J.J.
(ed.) Encyclopedia on Software Engineering. Wiley, New York (2001)

2. Legeard, B., Utting, M.: Practical Model-Based Testing. Elsevier, Amsterdam
(2007)

3. Rosaria, S., Robinson, H.: Applying models in your testing process. Inf. Softw.
Technol. 42, 815–824 (2000)

4. Whittaker, J.A., Poore, J.H.: Markov analysis of software specifications. ACM
Trans. Softw. Eng. Methodol. 2(1), 93–106 (1993)

5. Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical testing of software based on
a usage model. Softw. Pract. Exp. 25(1), 97–108 (1995)

6. Musa, J.D.: The operational profile. In: Özekici, S. (ed.) Reliability and Mainte-
nance of Complex Systems. NATO ASI Series (Series F: Computer and Systems
Sciences), vol. 154, pp. 333–344. Springer, Heidelberg (1996). https://doi.org/10.
1007/978-3-662-03274-9 18

https://doi.org/10.1007/978-3-662-03274-9_18
https://doi.org/10.1007/978-3-662-03274-9_18

78 W. Dulz

7. Walton, G., Poore, J.: Generating transition probabilities to support model-based
software testing. Softw. Pract. Exp. 30(10), 1095–1106 (2000)

8. Poore, J., Walton, G., Whittaker, J.: A constraint-based approach to the represen-
tation of software usage models. Inf. Softw. Technol. 42(12), 825–833 (2000)

9. Takagi, T., Furukawa, Z.: Constructing a usage model for statistical testing with
source code generation methods. In: Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC 2004) (2004)

10. Dulz, W., Holpp, S., German, R.: A polyhedron approach to calculate probability
distributions for Markov chain usage models. Electron. Notes Theor. Comput. Sci.
264(3), 19–35 (2010)

11. Prowell, S.: Computations for Markov chain usage models. Technical report, Soft-
ware Engineering Institute, Carnegie-Mellon University, Pittsburgh, USA, 2000.
UT-CS-03-505 (2000)

12. Sayre, K., Poore, J.: Stopping criteria for statistical testing. Inf. Softw. Technol.
42(12), 851–857 (2000)

13. Gutjahr, W.: Importance sampling of test cases in Markovian software usage mod-
els. Probab. Eng. Inf. Sci. 11, 19–36 (1997)

14. Prowell, S.J.: JUMBL: a tool for model-based statistical testing. In: HICSS, pp.
3–37 (2003)

15. Dulz, W., Zhen, F.: MaTeLo - statistical usage testing by annotated sequence dia-
grams, Markov chains and TTCN-3. In: IEEE International Conference on Quality
Software (QSIC 2003), pp. 336–342 (2003)

16. Dulz, W.: A comfortable testplayer for analyzing statistical usage testing strategies.
In: ICSE Workshop on Automation of Software Test (AST 2011), Honolulu, Hawaii
(2011)

17. Dulz, W.: Model-based strategies for reducing the complexity of statistically gen-
erated test suites. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2013.
LNBIP, vol. 133, pp. 89–103. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-35702-2 7

18. Veanes, M., Campbell, C., Schulte, W., Kohli, P.: On-The-fly testing of reactive
systems. Technical report, Microsoft Research, Redmond, WA, USA, 2005. MSR-
TR-2005-05 (2005)

19. Dulz, W.: On-the-fly testing by using an executable TTCN-3 Markov chain usage
model. In: Maciaszek, L.A., González-Pérez, C., Jablonski, S. (eds.) ENASE 2008.
CCIS, vol. 69, pp. 17–30. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14819-4 2

20. Dulz, W.: A versatile tool environment to perform model-based testing of web
applications and multilingual websites. In: 13th International Conference on Soft-
ware Technologies (ICSOFT 2018), pp. 45–56 (2018)

https://doi.org/10.1007/978-3-642-35702-2_7
https://doi.org/10.1007/978-3-642-35702-2_7
https://doi.org/10.1007/978-3-642-14819-4_2
https://doi.org/10.1007/978-3-642-14819-4_2

On the Impact of Order Information
in API Usage Patterns

Ervina Çergani(B) and Mira Mezini(B)

Software Technology Group, Technische Universität Darmstadt, Darmstadt, Germany
{cergani,mezini}@st.informatik.tu-darmstadt.de,ecergani@gmail.com

Abstract. Many approaches have been proposed for learning Applica-
tion Programming Interface (API) usage patterns from code reposito-
ries. Depending on the underlying technique, the mined patterns may
(1) be strictly sequential, (2) consider partial order between method
calls, or (3) not consider order information. Understanding the trade-
offs between these pattern types with respect to real code is important
in many applications (e.g. misuse detection), given that APIs often have
usage constraints, such as restrictions on call order. API misuses, i.e.,
violations of these constraints, may lead to software crashes, bugs and
vulnerabilities.

In this paper, we present the results of a work that addresses this need.
We have constructed a benchmark based on an episode mining algorithm
that can be configured to learn three type of patterns: sequential, par-
tial, and no-order patterns. We use the benchmark in two ways. First,
we use it to empirically study the different types of the mined API usage
patterns based on three well-defined metrics: expressiveness, consistency
and generalizability. Second, we evaluate the effect of the different pat-
tern types within the real application context of using them as an input
to a misuse detector. We run the benchmark on two existing datasets
consisting of: (1) 360 C# code repositories, and (2) four Java projects.
We use the C# data set to empirically study the resulting API usage
patterns, and the Java data set to evaluate the effect of different pattern
types on the application context of misuse detection. For this purpose,
we build EMDetect for detecting API misuses in Java projects.

Our results show practical evidence that not only do partial-order
patterns represent a generalized super set of sequential-order patterns,
partial-order mining also finds additional patterns missed by sequence
mining, which are used by a larger number of developers across code
repositories. Additionally, our study empirically quantifies the impor-
tance of the order information encoded in sequential and partial-order
patterns for representing correct co-occurrences of code elements in real
code. On the application context of misuse detection, our results show
that sequential-order patterns perform better in terms of precision by
ranking true positives higher in the top findings, while partial-order pat-
terns perform better in terms of recall by being able to find more misuses
in the source code. Last but not least, our benchmark can be used by
other researchers to explore additional properties of API patterns, and
for building-up other applications based on API usage patterns.

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 79–103, 2019.
https://doi.org/10.1007/978-3-030-29157-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_4

80 E. Çergani and M. Mezini

Keywords: API usage pattern types · API misuse detection ·
Events mining · Empirical study · Benchmark

1 Introduction

Application Programming Interfaces (APIs) provide effective means for code
reuse. Client developers of an API must be aware on how to correctly use it
in order to avoid errors. An API usage pattern encodes a set of API methods
that are frequently used together, optionally complemented by constraints like
the order in which methods must be called. API patterns are used as the basis
for various applications such as API documentation generation [21], automated
code completion [25], bug or anomaly detection [39], and code search [41].

Many techniques have been proposed to learn three kinds of patterns from
code repositories [34]: (1) No-order patterns are unordered sets of frequently
used methods (e.g.,[22,23]) and encode that calls of methods, say a, b, and c,
frequently co-occur in code, but do not include information about the order of
calls. (2) Sequential-order patterns (e.g., [29,33]) additionally encode facts such
as that a has to be called before b, and b before c. (3) partial-order patterns
(e.g., [25]) are modeled as graphs and can encode e.g., that a must be called
first, but how b or c are called afterwards is irrelevant.

However, so far, we lack systematic studies of the tradeoffs between the dif-
ferent types of patterns in representing source code in practice. A comparison
of different pattern types with regards to some pre-defined metrics is challeng-
ing, because each approach in the literature uses a different learning technique
with configurations specific to its data set (e.g., frequency threshold), a different
representation for usage examples and patterns, and might even be specifically
tied to a particular programming language or input form (e.g., source code vs.
bytecode).

In previous work [10], which this paper extends, we address this challenge
and present the first empirical comparison of API pattern types in representing
API usages in the wild. In this work, we go one step further and analyze the
effectiveness of the different pattern types in the context of a particular appli-
cation of mined usage patterns, that of misuse detection. Incorrect usages of an
API, or API misuses, are violations of usage constraints of the API. API misuses
lead often to software crashes, bugs, and vulnerabilities in the source code.

To provide a fair setting, we build a benchmark for performing our empirical
comparisons. The benchmark includes the following components:

1. Two data sets to provide support for two different programming languages,
(a) the C# data set consisting of 360 open-source Github repositories with
over 68M lines of code [30]. This data set is used in previous work [10] to
perform the empirical comparison between the different pattern types. (b)
The Java data set (MUBench [8]) used as the ground-truth to compare the
different pattern types within the application context of misuse detection.

2. An adaptation of the established mining algorithm, called episode mining [1],
to the domain of mining code patterns. This algorithm is selected because

On the Impact of Order Information in API Usage Patterns 81

it can be customized to mine all three types of patterns, thus enabling a
fair and systematic comparison of them. Episode mining is a well-known
machine learning technique used to discover partially ordered sets of events
from a stream, called episodes (patterns in our terminology). In our setting,
events are method declarations or invocations (cf. Sect. 3.2). We can mine all
three pattern types by adjusting certain parameters of the episode mining
algorithm.

3. Three metrics: expressiveness, consistency, and generalizability, on which we
base our empirical comparison between the different pattern types [10]. We
summarize the observations we make in the study and derive implications
from our observations, which can help in building better applications of mined
API usage patterns.

4. A misuse detector (EMDetect) in order to evaluate the effectiveness of the
different pattern types and the validity of the implications we derive from the
comparison of pattern types [10] in a real application context. We compare
the pattern types in terms of both, precision and recall.

5. We make our experimental infrastructure as a benchmark publicly available1,
so that can be used by other researchers to evaluate additional metrics for
API usage pattern types and to building other applications based on API
usage patterns.

The rest of this paper is organized as follows: Sect. 2 discusses related work
of different API usage patterns learning approaches, other empirical studies that
have also studied API usages, and a description of four misuse detectors from
the literature that we use to compare our results of EMDetect with. Section 3
describes the episode mining algorithm that we use for learning API usage pat-
terns, how we adapt it for learning patterns from source code, and a descrip-
tion of our misuse detector. Section 4 continues with the experimental setups by
describing: the data sets, analyses of the threshold values used by the mining
algorithm, the three metrics we base our comparison of the different pattern
types, and the experiments performed to evaluate our misuse detector. After
that, we present the results of our evaluations of the comparison of the different
pattern types in representing source code, the implications that we derive from
this comparison and evaluate pattern types performance in the special context
of a misuse detector, respectively in Sects. 5, 6 and 7. At the end we discuss
threats to validity and conclusions in Sects. 8 and 9 respectively.

2 Related Work

Here, we present existing API usage mining techniques and representations, dis-
cuss other studies that have investigated API usages in practice, and present
four state of the art API misuse detectors from the literature which we use to
compare the performance of EMDetect with.

1 http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

http://www.st.informatik.tu-darmstadt.de/artifacts/patternTypes/

82 E. Çergani and M. Mezini

2.1 API Usage Representations

API usage representations can be divided into three types: no-order, sequential-
order, and partial-order.

No-order Patterns: The simplest form of learning API usage patterns is to look
at frequent co-occurrences of code elements, while ignoring the order they occur
in. Frequent item-set mining is an example in this category and variations of it
have been commonly used [19,22,23].

Sequential-order Patterns: To take code semantics into account, many API usage
representations consider order information. For example, calling the constructor
of an API type must happen before calling any of its methods. The patterns
mined by sequence mining encode strict sequential order between code elements
in a pattern. Existing approaches are based on, but not limited to, using informa-
tion from the API’s source code [3,39], API documentation [42], program control-
flow structure [32], and program execution traces [12,29]. Statistical models have
also been used to predict the next code element (e.g. method call), given a cur-
rent context (e.g., sequences of already seen method calls). Examples include
n-gram language models [33] or statistical generative models [28]. Additionally
after identifying sequences, some techniques rely on clustering to build pattern
abstractions [9,37,41].

Partial-order Patterns: This pattern type allows more flexibility in representing
code semantics, e.g., that code elements b and c must occur after code element a,
but that their order (b before or after c) is not relevant. Graph-based techniques
like GraLan [24], GraPacc [25], and JSMiner [26] represent source code in a
graph to identify frequent sub-graph patterns. Automata-based techniques or
Finite State Machine (FSM) represent code as a set of states (e.g. method calls)
and a transition function between the states. The framework by Acharya et al. [4]
extract API usage patterns directly from client code. This framework is based
on FSMs for generating execution traces along different program paths. In their
terminology, partial-order expresses choices between alternative code elements.
In our terminology, a partial-order pattern includes strict and/or unordered pairs
of code elements.

2.2 Empirical Studies of API Usages

Researchers have extracted API usages through mining software repositories and
studied the characteristics of these usages or used them in various applications.
Usage patterns are explored in [15] from the Java Standard API with an early
version of the Qualitas Corpus which contains 39 open source Java applications.
A study on a larger corpus (5,000 projects) on usages of both core Java and
third-party API libraries is performed in [31]. The diversity of API usages in
object-oriented software is empirically analyzed in [18]. In their context, diversity
is defined as the different statically observable combinations of method calls on

On the Impact of Order Information in API Usage Patterns 83

the same project. Multiple dimensions of API usages are explored in [11], such
as the scope of projects and APIs, the metrics of API usages (e.g., number of
project classes extending API classes), the API’s metadata, and project versus
API-centric views.

The empirical study on API usages presented in [40], focuses on how different
types of APIs are used. Our work is mainly concerned with API patterns instead
of single usages. Furthermore, most of previous work focuses on comparing one
learning technique with other learning techniques that mine the same pattern
type. For example, the framework presented in [29] is used to evaluate three
mining approaches that learn all sequences of API method calls. Instead, we
focus on understanding the trade-offs between different pattern types.

The work in [34] provides a more comprehensive survey on API property
inference and discusses over 60 techniques developed for mining frequent API
usage patterns. Overall, existing studies focus on different aspects of API usages,
but do not analyze the differences between API usage pattern types. Our work
fills this gap and investigates the trade-offs between different API usage pattern
types in practice with respect to three metrics: expressiveness, consistency, and
generalizability, and in the misuse detection application context.

2.3 API Misuse Detectors

Given that we use MUBench as our ground-truth for evaluating the performance
of our detector in Sect. 7, we also compare its results with the four state of the
art detectors evaluated by Amann et al. [6] using the same framework.

GrouMiner [27]: Tranforms source code into directed acyclic graphs, where
method calls, field accesses and control structures are represented by nodes,
and control-/data dependencies by directed unlabelled edges.

GrouMiner uses sub-graph smining to learn patterns, and then detects viola-
tions of these patterns as potential misuses. GrouMiner detects: missing method
calls, misplaced method calls, missing control sequences.

JADET [39]: Encodes call-order relation in each API usage as pairs. It’s purpose
is to identify missing pairs, but it fails in identifying violation of patterns con-
taining only one pair. TIKANGA [38] is based on the same algorithm, but encodes
API usages using temporal properties (CTL). JADET and TIKANGA detect: missing
and misplaced method calls.

DMMC [20]: Transforms source code into sets of method calls that are called
on the same receiver type. It outputs potential misuses using the ratio of the
number of equal usages over the number of usages with exactly one additional
method call. DMMC detects only missing method calls, since it does not consider
order information.

84 E. Çergani and M. Mezini

3 API Pattern Mining and Misuse Detection

We briefly overview the episode mining algorithm and then explain how we use
it to mine patterns from open-source C# GitHub repositories and Java projects,
in three steps: (a) generate an event stream by transforming source-code into a
stream of events, (b) apply episode mining algorithm to mine API usage patterns,
and (c) filter the resulting partial-order patterns. After that we explain how we
use the learned API usage patterns for detecting potential API misuses in the
source code.

3.1 Episode Mining Algorithm

To support the detection of sequential-order, partial-order, and no-order pat-
terns in source code, we use the episode mining algorithm [1] for the following
reasons. First, it facilitates the comparison of different pattern types, since it
provides one configuration parameter for each type. The other option would be
to use different learning algorithms, one per pattern type. In this case, ensuring
the same baseline for the empirical comparisons will be difficult, since each algo-
rithm might use different configurations and input formats. Second, it is a general
purpose machine learning algorithm, which has performed well in other applica-
tions: text mining [2], positional data [13], multi-neuronal spike data [1]. Third,
the implementation of the episode mining algorithm [1] is publicly available.

The term episode is used to describe a partially ordered set of events. Fre-
quent episodes can be found in an event stream through an Apriori-like algo-
rithm [5]. Such an algorithm exploits principles of dynamic programming to
combine already frequent episodes into larger ones [16]. The algorithm alternates
episode candidates generation and counting phases so that infrequent episodes
are discarded due to the downward closure lemma [1]. The counting phase tracks
the occurrence of episodes in the event stream using Finite State Automaton
(FSA). More specifically, at the k-th iteration, the algorithm generates all pos-
sible episodes with k events by self-joining frequent episodes from the previous
iteration consisting of k−1 events each. The resulting episodes are episode candi-
dates that need to be verified in the subsequent counting phase. A given episode
is frequent if it occurs often enough in the event stream. A user-defined frequency
threshold defines the minimum number of occurrences for an episode to be fre-
quent. An entropy threshold determines whether there is sufficient evidence that
two events occur in either order or not. All frequent episodes that fulfill the
minimum frequency and entropy threshold are outputted by the algorithm in
a given iteration k, and all infrequent episodes are simply discarded. The next
iteration begins with generating candidate episodes of size k + 1.

The entropy threshold is specific to partial-order patterns. It has a value
between 0 and 1, inclusive. A value of 0 means that no order will be mined, result-
ing in no-order patterns. A value of 1 means a strict ordering of events, result-
ing in sequential-order patterns. Values between 0 and 1 result in partial-order
patterns, with varying levels of strictness. We mine the three pattern types by
adjusting the configuration parameter of the episode mining algorithm: NOC for

On the Impact of Order Information in API Usage Patterns 85

No-Order Configuration, SOC for Sequential-Order Configuration, and POC for
Partial-Order Configuration. More details about the algorithm can be found in
the work by Achar et al. [1].

3.2 Mining API Usage Patterns

Event Stream Generation. In our context, an event is any method declaration
or method invocation. To transform a repository of source code into the stream
representation expected by the episode mining algorithm, we iterate over all
source files and traverse each Abstract Syntax Tree (AST) depth-first. Whenever
we encounter a method declaration or method invocation node in the AST, we
emit a corresponding event to a stream. We use a fully-qualified naming scheme
for methods to avoid ambiguous references. The following is how we deal with
the two types of nodes we are interested in:

– Method invocation is the fundamental information that represents an API
usage, for which we want to learn patterns. While a resolved AST might
point to a concrete method declaration, we generalize this reference to the
method that has originally introduced the signature of the referenced method,
i.e., a method that was originally declared in an interface or an abstract
base class. The reason is that the original declaration defines the contract
that all derived classes should adhere to, according to Liskov’s substitution
principle [17]. Assuming that this principle is universally followed, we can
reduce noise in the dataset by storing the original reference.

– Method declarations represent the start of an enclosing method context that
groups the contained method calls. We emit two different kind of events
for the encountered method declaration. Super Context: If a method over-
rides another one, we include a reference to the overridden method, i.e., the
encountered method overrides a method in an abstract base class. This serves
as context information that might be important for the meaning of a pattern.
First Context: Following the same reasoning as for super context, we include
a reference to the method that was declared in an interface that originally
introduced the current method signature, which could be further up the type
hierarchy of the current class.

In both cases, method declaration or invocation, the generated events have the
following format: [RT:QT] [T].M([PT] [PT] ...), where RT is the return type,
M is the method name, QT is the fully qualified name of it’s declaring type and T
is it’s simple name. For constructor calls, we use the label of the form ctor as
method name. We use the declaring type in the event signature to abstract over
the different static receiver types. The PT label stands for parameter types, in
order to distinguish overloaded methods by their parameter entities.

We apply heuristics to optimize the event stream generation. (1) We fil-
ter duplicated source code, e.g., projects that include the same source files in
multiple solutions or that add their references through nested submodules in the
version control system. (2) We ignore auto-generated source code (e.g., UI classes

86 E. Çergani and M. Mezini

generated from XML templates), since they do not reflect human written code.
(3) We ignore references in the data set that point to unresolved types or type
elements. These cases indicate transformation errors of the original dataset, that
were caused by -for example- an incomplete class path. (4) We do not process
empty methods, nor include their method declarations in the event stream.

In addition to the heuristics mentioned above, in previous work [10] we also
ignore methods of project-specific APIs (i.e., declared within the same project)
to avoid learning project-specific patterns. The reason for this is because in [10],
the goal is to learn general patterns that have the potential to be re-used across
contexts, while in this work we mine patterns and detect misuses on a per project
basis in order to also be able to detect misuses that come from project-specific
APIs.

Learning API Usage Patterns. We feed the generated event stream to the episode
mining algorithm after fixing the threshold values: frequency and entropy (as
evaluated in Sect. 4.2). An episode, outputted by the mining algorithm, rep-
resents a partially ordered sets of events as a graph with labelled nodes and
directed edges. Nodes represent a method declaration or a method invocation,
and the directed edges represent the order in which they are called in the source
code.

Figure 1 shows episode representations for the different pattern types. A no-
order pattern would present the method calls as a set, as shown in Fig. 1(c). Two
sequential-order patterns would be needed to present the two valid sequences
presented by the partial-order pattern, respectively shown in Figs. 1(a) and (b).
Note that methods m2() and m3() can occur in either order as defined by the
partial-order pattern.

Filtering Episodes. In order to optimize the episodes outputted by the episode
mining algorithm to the special context of misuse detection, we apply two heuris-
tics. First, we ignore sub-episodes, e.g., episodes that are part of some other
larger episodes. Given that episode mining is an apriori-based algorithm, a sub-
episode (a → b) might be part of another episode (a → b → c), if the later
occurs frequently enough according to the frequency and entropy thresholds.
The (a → b) constraint is a redundant constraint already included into the
(a → b → c) constraint, that’s why we filter it out. Second, while SOC and
NOC generate episode candidates that are either sequences or sets of events
respectively, POC might generate episode candidates from all three types, since
it contains the sequential and no-order types as special cases. In case all the
episode candidates in POC are considered frequent episodes during the count-
ing phase, then all of them are outputted by the algorithm. This implies that in
every iteration (i.e, pattern size), POC might output redundant patterns con-
taining the same set of events but differ in the order information. For illustration,
assume that POC generates episode candidates in iteration 3 by combing the
following patterns from iteration 2: a → b and a → c. The episode candidates
in iteration 3 will be: a → b → c and a → c → b as sequences, and a →
(b, c) as partial-order, all possible orderings between the two newly connected

On the Impact of Order Information in API Usage Patterns 87

T.m1()

T.m2()

T.m3()

T.m4()

T.m1()

T.m2()

T.m3()

T.m4()

(a) Sequential-order patterns

T.m1()

T.m2() T.m3()

T.m4()

(b) Partial-order pattern

T.m1()

T.m2()

T.m3()

T.m4()

(c) No-order pattern

Fig. 1. Episode representations for different pattern types.

events b and c. The partial-order episode a → (b, c) represents both a → b
→ c and a → c → b. However, if all three episode candidates turn out to be
frequent in the subsequent counting phase, the two other sequences will also be
carried over to the next iteration. These redundant patterns are meaningless for
source code representation though and we filter them out in each iteration.

3.3 Detecting API Misuses

Given the graph representation of the patterns we learn, we use the algorithm
presented by Amann et al. [7] for detecting and ranking potential API misuses
found in source code. The detection algorithm takes as input the set of learned
patterns, the target source code, where we detect potential API misuses, and
outputs a ranked list of potential misuses. In a nutshell, the algorithm works as
follows. More details about the detection algorithm can be found in the work by
Amann et al. [7].

1. The detection algorithm checks and discovers for each pair of a pattern
and target source code, full occurrences (instances) and partial occurrences
(potential misuses).

2. Potential misuses that are subgraphs of instances of another pattern are fil-
tered out, since they represent alternative correct usages of the same API.
Hence they don’t represent an API misuse.

3. After identifying all potential misuses in the target source code, the detection
algorithm ranks the findings using different ranking strategies. Some of these
ranking strategies come from the literature [14,20,27,35,36,38,39], and others

88 E. Çergani and M. Mezini

are generated as combinations of the individual ranking factors by multiplica-
tion. The following ranking factors are considered: pattern support, number
of pattern violations, the pattern uniqueness factor, violation support and the
violation overlap. Since it is unclear which of these strategies is useful, they
are evaluated empirically.

4. To avoid reporting duplicate misuses (i.e. usages that violate alternative cor-
rect usages of the same API), the algorithm filters out misuses involving a
method call that is part of another misuse listed with a higher rank.

4 Experimental Setup

This section describes the data sets we use, presents the analyses of the frequency
and entropy thresholds for the episode mining algorithm, defines the metrics for
the empirical comparison between the different pattern types, and present the
setup we use to assess EMDetect ability to detect API misuses in the different
mining configurations.

4.1 Data Sets

C# Data Set. We use an established dataset that consists of a curated collection
of 2, 857 C# solutions extracted from 360 GitHub repositories [30] with a total
of 68M lines of source code covering a wide range of applications and project
sizes that provide many examples for API usages. The data set uses a specialized
AST-like representation of source code with fully-qualified type references and
elements. This relieves us from the burden of compiling it to get resolved typing
information and makes it easier to transform the source code into the event
stream.2

We find 138K type declarations in the dataset that extend a base class or
implement an interface. These type declarations contain 50K method declara-
tion (first context plus super context), which override or implement a method
declaration introduced in a dependency. The same dependency can be used in
other projects, so focusing on these reusable methods provides valuable con-
text information for the API usages. We find 2M method invocations across all
method bodies of the data set.

Java Data Set. For evaluating EMDetect in terms of both precision and recall, we
need an annotated data set of correct and incorrect API usages. To the best of
our knowledge, such a data set does not exist for C# code, that’s why we need to
extend our benchmark [10] to support another programming language for which
there exists a ground-truth of known API misuses. We chose to use MUBench [8]
as our ground-truth, which contains API method call misuses with examples of
correct usages, derived from the fix of the corresponding misuse. The API method
call misuses come from real-world Java projects. Furthermore, MUBench comes

2 We use the visitors in the dataset for the transformation.

On the Impact of Order Information in API Usage Patterns 89

with MUBenchPipe [6], a public automated benchmarking pipeline built on top
of MUBench. MUBenchPipe reveals us from the burden of preparing the target
projects and executing the detector, since everything is already integrated into
the automated, publicly available pipeline.

4.2 Frequency and Entropy Thresholds

The episode mining algorithm uses two thresholds: frequency and entropy. The
threshold values directly impact the number of patterns learned (higher threshold
values means stronger evidence in the source code that a given pattern occurs),
and as a consequence also the performance of the misuse detector (according to
the patterns learned, the detector may or may not identify misuses in the source
code). In this section, we show how we empirically evaluate the effects of the
threshold values on the application context of misuse detection. Details about
the threshold analyzes for the empirical comparison of the different patterns
types can be found in [10].

In the application context of misuse detection, we empirically evaluate the
effect of frequency and entropy thresholds on the performance of EMDetect in
terms of: (1) The number of misuses detected, based on the ground truth of
known method call misuses that we have on the Java projects. (2) The perfor-
mance of the ranking algorithm (presented in Sect. 3.3) on ranking true positives
on top of the list of findings.

Initial Analyzes: Given that we have to analyze the findings of the detector
manually, we perform our analyzes for the frequency and entropy thresholds
on one Java project from MUBench. For this we chose the one with the highest
number of the method call misuses. After fixing the Java project (initial) on
which we perform our threshold analyzes on, we choose an arbitrary value for
the frequency threshold, and analyze the effect of different entropy thresholds on
the performance of the detector. After defining the optimal entropy threshold,
we repeat our analyzes to study the effect of the different frequency values. Our
analyzes reveal an optimal frequency threshold of 20, and entropy threshold of
0.4 for the initial project we perform our analyzes on.

Automating for Different Projects. Since different projects have different sizes
(number of events), the frequency threshold highly influences the number of
patterns learned in each project. For this reason, we decided to automate the
calculation of the frequency threshold according to the project sizes. For this
we considered the total number of events, the number of unique events, and the
average occurrences of events in each of the projects. According to our analyzes,
the best function for this calculation resulted the one that compares a target
project with the initial project, on the average occurrence of events. The function
used for calculating frequency threshold in every project:

frequency =
(

1 +
avg.Target

avg.Initial

)
∗ InitialFreq (1)

90 E. Çergani and M. Mezini

where avg.Target and avg.Initial is the average occurrence of events in the target
and initial project respectively, and InitialFreq is the frequency threshold used
in the initial project. The output of this function we round up to the 5th closest
integer, for example if the function outputs either 22.2 or 24.8 they are both
rounded up to 25.

4.3 Metrics for Pattern Comparison

We define the following metrics to quantify different properties of the mined
patterns in our empirical comparison of different pattern types.

Expressiveness. Using a formal language terminology, an API usage pattern can
be seen as a grammar rule of a language over an alphabet of method declara-
tion/invocation (events). The more words the sub-language it defines has, the
more expressive a pattern is. A sequential-order pattern (a → b → c) when seen
as a grammar rule defines a language with a single word {abc}. A partial-order
pattern (a → (b, c)) defines a language with two words, {abc, acb}. A no-oder
pattern (a, b, c) defines a language with six words {abc, acb, bac, bca, cab, cba}.
The expressiveness of a pattern type is determined by the number of patterns
(grammar rules) it defines, and how well these patterns abstract over the variety
of concrete API usages observed in source code.

To investigate how the three configurations (SOC, POC, and NOC) compare
to each other in terms of expressiveness, we calculate three metrics for each
configuration pair (c1, c2): (a) exact(c1,c2) is the number of patterns that
are exactly the same in c1 and c2; (b) subsumed(c1,c2) = (x,y) is a pair
that represents the number of patterns x learned by c1 that subsume y patterns
learned by c2. We say that a pattern p1 subsumes a pattern p2 iff they relate
the same set of events and all words defined by p2 are also defined by p1, e.g. the
grammar rule of a no-order pattern (a, b, c) subsumes both the grammar rules
(a → (b, c)) and (a → b → c) from the partial and sequential-order patterns
respectively; (c) new(c1,c2) is the number of patterns learned by c1 that include
events for which c2 does not learn any pattern.

Consistency. The three pattern types differ in the extent to which they pre-
serve code structure. While no-order patterns cannot represent any structure,
sequential-order patterns can encode an absolute order of events, and partial-
order patterns can even represent complex control flow that is imposed by control
structures like if. We establish the consistency metric as a way to quantify how
important the order information encoded by sequential-order and partial-order
patterns is in practice. The metric takes values in]0.0, 1.0], and is defined as the
ratio of number of occurrences of a pattern p and the number of co-occurrences of
events in p regardless of their order. A high consistency emphasizes the impor-
tance of the encoded order. A low consistency means that in most cases, the
respective code elements occur in an order different to the one encoded in the
pattern, suggesting that the structural information encoded by the pattern is
irrelevant.

On the Impact of Order Information in API Usage Patterns 91

Generalizability. Finding instances of a pattern in multiple contexts indicates
that the pattern represents an abstraction over a set of similar API usages, e.g.,
used by multiple developers. On the other hand, a very local pattern might sug-
gest that it does not generalize beyond a specific context, e.g., it might only
be used by a specific developer. To quantify the generalizability of a pattern,
we count the number of contexts in which we can observe it at two different
levels of granularity that complement each other: (a) The method declaration
level measures whether instances of a pattern are found within a single method
declaration (the latter refers to the highest declaration in the type hierarchy
that originally introduced the current method signature) or across method dec-
larations (method-specific versus cross-method pattern). (b) The code repository
level measures whether instances of a pattern are found in one or in multi-
ple repositories (repository-specific versus cross-repository pattern). Knowledge
about the generalizability of patterns is important for judging the versatility of
the pattern in later applications.

4.4 EMDetect Experimental Setup

We evaluate EMDetect performance on both precision and recall. For the evalu-
ations, we use an entropy threshold of e = 0.4, and varying frequency threshold
according to project sizes as presented in Sect. 4.2. We run the experiments
using MUBenchPipe [6], a public automated benchmarking pipeline built on
top of MUBench [8], containing the ground-truth data set. Since the patterns
mined by the episode mining configurations consist of events that correspond
to method calls and method declarations only, we run EMDetect on a subset of
projects from MUBench that contain API method call misuses. Since we com-
pare the performance of EMDetect with state of the art detectors presented in
Sect. 2.3, we apply a second filter on the projects to select the one that are also
used by Amann et al. in [6]. This left us with a total of four Java projects. The
first author reviewed the detector findings, in order to decide whether the find-
ings correctly identify misuses. We introduce the experiments in more detail in
the following paragraphs.

Recall. We run EMDetect on four projects from MUBench (containing API
method call misuses and used in [6]), and on the different mining configura-
tions. Following the same evaluation logic as in [6], we detect violations on a
per-project basis. Then, we manually review all potential hits. As the ground
truth, we use the known API method call misuses from MUBench. We report the
number of misuses identified by each of our mining configurations. This gives us
the recall of the detector with respect to known misuses and, at the same time,
crosscheck which of the mining configurations’ findings are also identified by the
other configurations and/or by the state of the art detectors.

Precision. We run the detector on the four projects from MUBench, to mine
patterns and detect violations on a per-project basis, and on the different mining
configurations. Since EMDetect reports several hundreds of violations, reviewing

92 E. Çergani and M. Mezini

all violations of all mining configurations and on four projects is practically
infeasible. Therefore, we review the top-20 findings per configuration on each of
the projects, as determined by the ranking algorithm to identify true and false
positives. The new true positives found that are not part of the ground-truth,
are candidates to be included in MUBench.

5 Empirical Comparison of Pattern Types

This section presents the results of our experiments for the empirical comparison
for the different pattern types. In the empirical comparison, all experiments
are performed with a frequency threshold of 345. For POC, we use an entropy
threshold of 0.72 (as evaluated in [10]). First, we show statistics about the learned
patterns, and then study them along the dimensions presented in Sect. 4.3.

5.1 Pattern Statistics

Our approach learns patterns with up to 7 events in each configuration in the
C# data set, and with up to 8 events in the Java data set. The number of
patterns learned decreases for larger pattern sizes with the same ratio in each
configuration. Almost all mined patterns (97%) involve 5 events or less. The
result matches the intuition that it is less probable that many developers write
large code snippets in exactly the same way.

All the patterns learned, 75% in C# and 99% in Java, involve interactions
between events from multiple API types (across configurations). In C# data set,
only 28% of the patterns with 2–4 events involve interactions between events from
a single API type, while all patterns with 5 or more events involve multiple API
types. The maximum number of API types involved within a pattern is 5 types
in C# and 6 types in Java code. In C# data set patterns involving two API
types make the majority (40%), while in Java data set this majority is made by
patterns involving 4 and 5 API types with 80%.

5.2 Evaluation Results

This section presents an overview of the empirical comparison for the differ-
ent pattern types in terms of the three predefined dimensions: expressiveness,
consistency and generalizability. The experimental results are presented for the
C# data set, and the number of patterns learned by each configuration are:
POC 1, 234, SOC 1, 204 and NOC 981. For more details, please refer to [10].

Expressiveness. Quantifies the richness of the language corresponding to a
pattern type, whose grammar rules are the mined patterns.

POC vs. SOC. 70% of the patterns learned by the partial order configuration
(exact(POC,SOC) = 858), define a strict order between the events. This met-
ric defines the following observation.

On the Impact of Order Information in API Usage Patterns 93

Observation 5.1
Most of the API usage patterns define in the wild strict-order between events
(70%), while the other 30% abstract over different API usage variants.

Furthermore, subsumed(POC, SOC) = (260;346). The 260 partial-order
patterns encode 572 different sequences, i.e., the 346 sequences mined by
SOC plus 226 others. Recall that multiple sequential-order patterns can be rep-
resented by a single partial-order pattern. Finally, new(POC, SOC) = 116,
meaning that for the events included in 116 partial-order patterns, there are no
sequences learned by SOC. From these results, we can conclude that:

Observation 5.2
The API usage specifications encoded by partial-order patterns fully represent
the specifications encoded by sequential-order patterns. Furthermore, they
learn 116 additional patterns of events for which sequence mining cannot learn
any sequence for.

NOC vs. POC. 20% of the patterns learned by partial-order configuration, define
no-order between events: exact(NOC, POC) = 248. Recall that no-order pat-
terns are mined in POC when the involved events occur often enough in either
order.

Observation 5.3
In 20% of the cases, partial-order patterns encode events that occur in either
order in the wild.

Furthermore, subsumed(NOC, POC) = (716; 986). Note that one no-order
pattern simplifies several partial-order patterns that misses order information.
Finally, new(NOC, POC) = 17. These patterns are missed by POC because
either: (a) none of the sequences between the events occur frequently enough,
recall that sequences are a special case of partial-order patterns, and/or (b) there
is not enough evidence in the source code that events occur frequently enough in
either order (specified by entropy threshold). From these results we can conclude
that no-order patterns represent a superset of partial-order patterns.

NOC vs. SOC. Since NOC learns only set of events and SOC learns only strict-
order sequences, there are no overlap between the patterns learned by these two
configurations. We find that subsumed(NOC, SOC) = (853; 1,204). Note
that multiple sequential-order patterns can be simplified into a single no-order
pattern by removing order constraints. Finally, new(NOC, SOC) = 128.

Observation 5.4
No-order patterns match all sequential-order patterns; furthermore, the no-
order configuration learns 128 additional patterns for which sequential-order
configuration could not learn any sequence for.

94 E. Çergani and M. Mezini

Consistency. Based on the expressiveness dimension results, one may con-
clude that no-order patterns define a richer language compared to the other two
types. The question raises: Why should one use expensive mining approaches
(sequence or partial mining), if we can learn a richer language from source code
using less computationally expensive mining approaches such as frequent item-
set mining? However, this would be a valid conclusion, only if the words in the
language mined by NOC are valid, i.e., the order between events in a pattern does
not really matter. To analyze this, we investigate the consistency of the mined
sequential and partial-order patterns with co-occurrences of events in code.

Our results reveal high consistency in sequential (avg. 0.9) and partial-order
patterns (avg. 0.96). This suggests that order information encoded in both
sequential and partial-order patterns is crucial for the correct co-occurrences
of events in the wild, and simplifying them into no-order patterns will result in
losing important order information between events.

Observation 5.5
Partial and sequential-order mining learn important order information regard-
ing co-occurrences of events within a pattern.

Based on this observation, we will perform the empirical evaluation of
EMDetect in Sect. 7 only on sequential and partial-order patterns, since no-order
patterns do not encode any code structure which is crucial for source code rep-
resentation.

Generalizability. Here, we present the generalizability metric results on two
granularity levels as explained in Sect. 4.3: method declaration and code reposi-
tory.

Method Declaration. Our results empirically show that most of the patterns
learned (98%) by each configuration, are used across method declarations. If
a pattern occurs across method declarations, it means that it generalizes to
different implementation tasks.

Observation 5.6
Most of the patterns learned find applicability to a large variety of implemen-
tation tasks.

Next we analyze if the patterns learned are used by multiple developers, or
if they represent specific coding styles for a given repository and its developers.

Code Repository. Our results show that the patterns learned by POC and
SOC have almost the same percentage of generalizability (48% vs. 47%), regard-
less of their size. This means that more than half the patterns mined by each
configuration are learned from API usages from the same repository. While such
repository-specific patterns are useful to the developers of that particular repos-
itory, they may reflect a very specific way of using certain API types, which may

On the Impact of Order Information in API Usage Patterns 95

not be useful to a general set of developers. On the other hand, NOC learns
slightly more general patterns (58%). However, recall that these more generaliz-
able patterns come at the cost of missing order information between events.

Observation 5.7
No-order patterns tend to be more generalizable (58%) compared to sequential
and partial-order patterns (47% and 48%), which tend to be over-specified due
to the order constraints they encode.

We analyzed the patterns learned exclusively by POC (new(POC,SOC)),
and found that 114 out of 116 patterns are general patterns used across repos-
itories. To find out why most of the patterns learned exclusively by POC are
general patterns, we check if there is any relation between generalizability and
pattern-order. We find that strict-order patterns (exact(POC, SOC)) are less
generalizable (37%) compared to patterns that contain partial-order between
events (subsumed - 62%, and new - 98%). This confirms our hypothesis that there
is a relation between generalizability and pattern-order. Furthermore, most of
the patterns (90%) learned exclusively by POC include method calls only from
the standard library, which further explains their generalizability.

Across configurations, the percentage of general patterns learned is higher for
smaller patterns, and significantly decreases for bigger patterns. Furthermore,
for patterns with 6-events and more, we learn only repository-specific patterns.
Specifically, around 70% of general patterns (independent of the configuration)
are 2 and 3-event patterns. Most of the patterns with 4-events or more are
repository-specific patterns. This makes sense since the probability that multiple
developers with different coding styles and different application domains writing
a similar and long piece of code is very low.

Observation 5.8
Small code patterns of 2 and 3 events are more generalizable compared to
larger code patterns of 4 or more events that mainly encode constraints of
API usages from a single repository.

We further analyzed the repository-specific patterns and found that 93% of
them are learned from testing code, and they include API types that refer to an
old version of a common assembly that is used in no other repository. Filtering
out testing code may help mining algorithms learn only general patterns. An
empirical validation of this hypothesis, however, needs to be performed in the
future.

Remark: For the sake of completeness, we experimented with other threshold
values (frequency and entropy), and analyzed the generalizability of the patterns
across repositories. The results we received did not show higher generalizabil-
ity ratios in neither of the pattern types, compared to the ones presented above.
This confirms the correctness of the threshold values selected as presented in [10].

96 E. Çergani and M. Mezini

6 Implications

Based on the pattern statistics (Sect. 5.1) and results in Sect. 5.2, we derive the
following:

Implication 1 (derived from Sect. 5.1). Mining techniques based on frequency
occurrence of source code in code bases are unlikely to learn large code patterns
(more than 7 method calls using our concrete parameters), since it is less probable
that developers write large code snippets exactly in the same way. If the main goal
is to learn large code patterns, then other techniques need to be considered.

Implication 2 (derived from Sect. 5.1). Code analyses techniques should consider
interactions between objects of different API types, while extracting facts from
source code. Even though these analyses are expensive since data-flow depen-
dencies need to be considered, they are important in mining relevant patterns
from source code.

Implication 3 (derived from Observations 5.1 and 5.5). While covering a good
amount of usages seen in source code, sequential-order mining may lead to false
positives in applications such as misuse detection. For example, if the pattern
is a → (b, c), but a strict-order pattern has only learned a → b → c and the
code written by the developer is a → c → b. On the other hand, while no-order
mining might seem to learn a larger variety of API usages in source code, it might
result in false negatives in such applications. Following the same example, the
developer might have written b → a → c, and a no-order pattern cannot detect
that b and c should occur strictly after a. We can conclude that, partial-order
mining learns better API usage patterns for such applications.

Implication 4 (derived from Observation 5.2). Partial-order mining might be
more appropriate for learning API usage patterns in applications such as code
recommendation since multiple sequences can be represented by a single partial-
order pattern, decreasing the total number of patterns that need to be part of
the model. In sequence mining, multiple patterns need to be recommended to the
developer for the same set of events and might even risk missing valid sequences
if they do not occur frequently enough in the training source code.

Implication 5 (derived from Observation 5.5). Before deciding which mining app-
roach to use in a specific application, developers need to know their trade-offs in
terms of order information and computation complexity. Sequential and partial-
order mining are computationally expensive approaches but learn important order
information about the co-occurrence of events in a pattern, while no-order mining
approaches do not require expensive computations but on the other hand do not
learn any order information about the co-occurrence of events in a pattern.

Implication 6 (derived from Observation 5.8). If the main goal is to learn large
code patterns (4–7 events), then recommenders should focus on a repository-
specific mining approach and produce catered recommendations to the reposi-
tory’s developers. However, if the goal is to learn general patterns that can be
used by many developers, then researchers should know that they might end up
mining small patterns (2 and 3 events).

On the Impact of Order Information in API Usage Patterns 97

Table 1. Precision measured in the top-20 findings.

Precision Recall

Detector True positives % True positives %

EMDetectPOC 3 3.8% 8 42.1%

EMDetectSOC 12 15% 5 26.3%

DMMC 2 3.3% 3 15.8%

JADET 4 7.7% 8 42.1%

GROUMiner 3 3.3% 7 36.8%

TIKANGA 2 5% 2 10.5%

7 EMDetect Evaluation Results

In this section, we present the results of our experiments for comparing sequen-
tial and partial-order patterns in the application context of API method call
misuse detection. We use our misuse detector (EMDetect) to compare the pat-
tern types in terms of both precision and recall. The experiments in this section
are performed on the Java data set, using MUBench [8] as a ground-truth of
correct and in-correct API usages for evaluating the detector performance. For
the sake of completeness, we compare the performance of EMDetect also with
the other 4 misuse detectors studied by Amann et al. [6]. For evaluating the
detectors, we consider the same set of projects as used in [6] and select the ones
that contain API method call misuses. This let us with a total of 4 Java projects
to perform our evaluations on: bcel, chensum, jigsaw and testing.

7.1 Precision

The first part of Table 1 summarizes the results of measuring the detectors’
precision in their top-20 findings.

Observation 7.1
EMDetectPOC report 80 violations in the top-20 findings in four projects.
Among these violations, we find three true positives, two of which were previ-
ously unknown. This results in precision of 3.8%, which exceeds the precision
of 2 of the detectors from the literature.

Observation 7.2
EMDetectSOC report 80 violations in the top-20 findings in four project.
Among these violations, we find 12 true positives, 9 of which were previously
unknown. This results in precision of 15%, which exceeds the precision of all
detectors from the literature.

98 E. Çergani and M. Mezini

The two observations above show that EMDetectSOC performs better in
terms of precision compared to EMDetectPOC , by ranking more true positives
in the top-20 findings. This comes due to: (1) higher number of patterns learned
by POC compared to SOC as we found in Observation 5.2, and (2) missing
of the order information between some of the events in partial-order patterns.
The higher number of patterns means that more false positives are ranked in the
top-20 findings, while the missing of the order information impacts the matching
algorithm, which is based on nodes (method calls) and edges (order information).

7.2 Recall

For measuring the detectors’s recall, we use 19 publicly available method call
misuses from the four filtered projects from MUBench. The last part of Table 1
summarizes the results.

Observation 7.3
EMDetectPOC identifies 8 out of the 19 known misuses, which results in recall
of 42.1%. This result exceeds the recall of three out of four detectors from the
literature, except for JADET, which performs the same.

Observation 7.4
EMDetectSOC identifies 5 out of the 19 known misuses, which results in recall
of 26.3%. This result exceeds the recall of two out of four detectors from the
literature.

The two observations above show that EMDetectPOC performs better in
terms of recall compared to EMDetectSOC , by finding more known misuses
from our ground-truth data set. This comes due to the fact that POC abstracts
over several usages in the source code, which increases the patterns support. On
the other hand SOC learns only sequences of method calls and, when a given
sequence does not occur often enough, it is missed by the learning algorithm.

EMDetectPOC correctly identifies three misuses that EMDetectSOC does
not identify, and one misuse that none of the detectors from the literature nor
EMDetectSOC identifies. EMDetectPOC misses 8 misuses that one of the detec-
tors from the literature finds. Three of these misuses are missed, because the
projects contain few usage examples compared to the frequency threshold used
by MUDetect for the pattern mining algorithm. Four of these misuses are missed
because they contain a missing call in case an exception occurs. Since MUDetect
does not handle exception conditions (it only identifies if a method is missing or
not in the target code), it fails in identifying such cases. One of these misuses is
missed due to the matching algorithm.

On the Impact of Order Information in API Usage Patterns 99

7.3 Discussion

Our evaluation results in the application context of misuse detection show that
EMDetectSOC performs better in term of precision by ranking true positives
higher in the top-20 findings, while EMDetectPOC outperforms EMDetectSOC

in terms of recall, since it is able to abstract over several API usages with low
occurrence making SOC fail in learning such patterns.

Compared to the other four detectors from the literature, we can conclude
that EMDetectSOC outperforms all of them in terms of precision by at least 2
times, and EMDetectPOC performs better (DMMC, GrouMiner and Tikanga)
or the same (JADET) in terms of recall. Depending on whether we give higher
priority to either precision or recall, we can decide on the mining approach to use,
either POC or SOC. Our results also show that it is possible to outperform other
detectors in the literature with a general purpose machine learning approach
(EMDetect) that does not require much domain-specific tuning.

8 Threats to Validity

Internal Validity. We generate the event stream based on static analyses, not
on dynamic execution traces. Even though this may not represent valid execution
traces, it does represent how the code is written by developers. In this paper, we
focus on learning code patterns to represent source code as it is written in code
editors. Also, our event stream considers only intra-procedural analysis since we
are interested to learn patterns that occur within methods.

The episode mining algorithm learns only injective episodes, where all events
are distinct, i.e., the algorithm does not handle multiple occurrences of the same
event in a pattern. For example, method invocations: IEnumerator.MoveNext()
or StringBuilder.Append() are usually called multiple times in the code. The
patterns we learn contain a single instance of such events. While this is a limita-
tion, it is also an advantage in terms of pattern generalizability. Specifically, the
mined pattern would not have a strict number of occurrences that would lead
to mismatches because of the difference in the number of occurrences.

The algorithm relies on user-defined parameters: frequency-threshold,
entropy-threshold. While the configuration parameter depends on the type of
patterns one is interested in, deciding on adequate frequency and entropy thresh-
olds is not an easy task, which affect the results. We mitigate this threat by
empirically evaluating the thresholds and choosing the best combination of fre-
quency and entropy thresholds for the given data set (cf. Sect. 4.2).

The episode mining algorithm is available only in a sequential (non-
parallelized) implementation, hence is inefficient. However, this paper does not
advocate using episode mining per se, but rather uses it as a baseline for com-
paring different configurations. This limitation can be improved by parallelizing
the algorithm’s implementation.

External Validity. We learn code patterns only for method declarations and
invocations, excluding all other code structures such as loops, conditions, excep-
tions etc. This is because the focus of this paper is on comparing different code

100 E. Çergani and M. Mezini

pattern types (sequential, partial, and no-order), instead of specifically learning
complex patterns that include all code structures. Since learning code patterns
while considering other code structures is important for supporting certain devel-
opment tasks, we plan to enrich the code patterns that we learn with additional
code structures. This requires modifying our event stream generation, which is
an engineering task rather than a conceptual limitation.

Finally, we analyze the trade-offs between different pattern types based on
two data sets. We also use a single learning algorithm that we configure to pro-
duce different pattern types. However, we cannot generalize our results beyond
our current datasets and learning algorithm.

9 Conclusions

In this paper, we extend the benchmark presented in [10] for analyzing the
trade-offs between different pattern types (sequential, partial and no-order) with
respect to real code. The extended benchmark consist of the following compo-
nents: (1) Two data sets providing support for two different programming lan-
guages, C# and Java. (2) An adaptation of an event mining algorithm to the
special context of pattern mining for software engineering. (3) Three well defined
metrics, on which we base the empirical comparison between the different pat-
tern types. (4) EMDetect to evaluate the effectiveness of the different pattern
types within the application context of misuse detection.

Our empirical investigation shows that there are different types of patterns
learned in code repositories. While there are tradeoffs between pattern types in
terms of expressiveness, consistency and generalizability, they are comparable in
terms of the patterns size and number of API types. Our results empirically show
that the sweet spot in representing source code are partial-order patterns, which
are a superset of sequential-order patterns, without losing valuable information
like no-order patterns. Partial-order mining learns additional patterns compared
to sequence mining, which generalize across repositories. In the application con-
text of misuses detection, this results in better performance of partial-order
patterns (EMDetectPOC) in terms of recall, but very low precision compared to
sequential-order patterns (EMDetectSOC). Compared to other detectors from
the literature, (EMDetectSOC) outperforms all of them in terms of precision,
and (EMDetectPOC) performs the same (compared to Jadet) or better (com-
pared to three others) in terms of recall in the typical per-project setting.

Our findings are useful indications for researchers who work with code pat-
terns in applications of code recommendation and misuse detection.

References

1. Achar, A., Laxman, S., Viswanathan, R., Sastry, P.: Discovering injective episodes
with general partial orders. Data Min. Knowl. Disc. 25, 67–108 (2012)

2. Achar, A., Sastry, P.: Statistical significance of episodes with general partial orders.
Inf. Sci. 296, 175–200 (2015)

On the Impact of Order Information in API Usage Patterns 101

3. Acharya, M., Xie, T.: Mining API error-handling specifications from source code.
In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 370–384.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0 25

4. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code: from usage scenarios to specifications. In: European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 25–34 (2007)

5. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD, pp. 207–216 (1993)

6. Amann, S., Nguyen, H.A., Nadi, S., Nguyen, T.N., Mezini, M.: A systematic
evaluation of static API-misuse detectors. IEEE Trans. Softw. Eng. 1–1 (2018).
abs/1712.00242

7. Amann, S.: A systematic approach to benchmark and improve automated static
detection of Java-API misuses. Ph.D. thesis, Darmstadt University of Technology,
Germany (2018)

8. Amann, S., Nadi, S., Nguyen, H.A., Nguyen, T.N., Mezini, M.: Mubench: a bench-
mark for API-misuse detectors. In: International Conference on Mining Software
Repositories, pp. 464–467 (2016)

9. Buse, R.P., Weimer, W.: Synthesizing API usage examples. In: Proceedings of the
34th International Conference on Software Engineering, pp. 782–792. IEEE Press
(2012)

10. Çergani, E., Proksch, S., Nadi, S., Mezini, M.: Investigating order information in
API-usage patterns: a benchmark and empirical study. In: International Conference
on Software Technologies, ICSOFT 2018, Porto, Portugal, 26–28 July 2018, pp. 91–
102 (2018)

11. De Roover, C., Lammel, R., Pek, E.: Multi-dimensional exploration of API usage.
In: 2013 IEEE 21st International Conference on Program Comprehension (ICPC),
pp. 152–161. IEEE (2013)

12. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties
from dynamic traces. In: ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 339–349 (2008)

13. Haase, J., Brefeld, U.: Mining positional data streams. In: Appice, A., Ceci, M.,
Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS
(LNAI), vol. 8983, pp. 102–116. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17876-9 7

14. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules
and detecting violations in large software code. In: ACM SIGSOFT Software Engi-
neering Notes, pp. 306–315 (2005)

15. Ma, H., Amor, R., Tempero, E.: Usage patterns of the java standard API. In:
Software Engineering Conference 2006, pp. 342–352 (2006)

16. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov. 1, 259–289 (1997)

17. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River (2003)

18. Mendez, D., Baudry, B., Monperrus, M.: Empirical evidence of large-scale diversity
in API usage of object-oriented software. In: Source Code Analysis and Manipula-
tion, pp. 43–52 (2013)

19. Michail, A.: Data mining library reuse patterns using generalized association rules.
In: International Conference on Software Engineering, pp. 167–176 (2000)

20. Monperrus, M., Mezini, M.: Detecting missing method calls as violations of the
majority rule. ACM Trans. Softw. Eng. Methodol. (TOSEM) 22(1), 7 (2013)

https://doi.org/10.1007/978-3-642-00593-0_25
https://doi.org/10.1007/978-3-319-17876-9_7
https://doi.org/10.1007/978-3-319-17876-9_7

102 E. Çergani and M. Mezini

21. Montandon, J.E., Borges, H., Felix, D., Valente, M.T.: Documenting APIs with
examples: lessons learned with the APIMiner platform. In: WCRE, pp. 401–408
(2013)

22. Negara, S., Codoban, M., Dig, D., Johnson, R.E.: Mining fine-grained code changes
to detect unknown change patterns. In: International Conference on Software Engi-
neering, pp. 803–813 (2014)

23. Nguyen, A.T., et al.: API code recommendation using statistical learning from fine-
grained changes. In: ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 511–522 (2016)

24. Nguyen, A.T., Nguyen, T.N.: Graph-based statistical language model for code. In:
International Conference on Software Engineering, pp. 858–868 (2015)

25. Nguyen, A.T., et al.: Graph-based pattern-oriented, context-sensitive source code
completion. In: International Conference on Software Engineering, pp. 69–79 (2012)

26. Nguyen, H.V., Nguyen, H.A., Nguyen, A.T., Nguyen, T.N.: Mining interprocedu-
ral, data-oriented usage patterns in javascript web applications. In: International
Conference on Software Engineering, pp. 791–802 (2014)

27. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-
based mining of multiple object usage patterns. In: Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 383–392.
ACM (2009)

28. Pham, H.V., Vu, P.M., Nguyen, T.T., et al.: Learning API usages from bytecode:
a statistical approach. In: International Conference on Software Engineering, pp.
416–427 (2016)

29. Pradel, M., Bichsel, P., Gross, T.R.: A framework for the evaluation of specifica-
tion miners based on finite state machines. In: IEEE International Conference on
Software Maintenance, pp. 1–10 (2010)

30. Proksch, S., Amann, S., Nadi, S., Mezini, M.: A dataset of simplified syntax trees
for c#. In: International Conference on Mining Software Repositories, pp. 476–479
(2016)

31. Qiu, D., Li, B., Leung, H.: Understanding the API usage in java. Inf. Softw. Tech-
nol. 73, 81–100 (2016)

32. Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of func-
tion precedence protocols. In: International Conference on Software Engineering,
pp. 240–250 (2007)

33. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language
models. In: ACM SIGPLAN Notices, pp. 419–428 (2014)

34. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Automated
API property inference techniques. IEEE Trans. Softw. Eng. 39, 613–637 (2013)

35. Thummalapenta, S., Xie, T.: Alattin: Mining alternative patterns for detecting
neglected conditions. In: International Conference on Automated Software Engi-
neering, pp. 283–294 (2009)

36. Thummalapenta, S., Xie, T.: Mining exception-handling rules as sequence asso-
ciation rules. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 496–506. IEEE Computer Society (2009)

37. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and
high-coverage API usage patterns from source code. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, pp. 319–328. IEEE Press
(2013)

38. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage.
Autom. Softw. Eng. 18(3), 263–292 (2011)

On the Impact of Order Information in API Usage Patterns 103

39. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, pp. 35–44 (2007)

40. Zhong, H., Mei, H.: An empirical study on API usages. IEEE Trans. Softw. Eng.
45, 319–334 (2018)

41. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 15

42. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from nat-
ural language API documentation. In: International Conference on Automated
Software Engineering, pp. 307–318 (2009)

https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15

A Practical Approach for Constraint
Solving in Model Transformations

Youness Laghouaouta(B) and Pierre Laforcade

Computer Science Laboratory of Le Mans University, Le Mans, France
{youness.laghouaouta,pierre.laforcade}@univ-lemans.fr

Abstract. In model transformation scenarios, expressing a Constraint
Satisfaction Problem (CSP) is a complex and error prone activity. Indeed,
transformation techniques do not provide fully integrated supports for
solving constraints, and external solvers are not well adapted. This
chapter presents a practical approach for constraint solving in model
transformations. The base principle is to consider a pattern matching
problem as a high level specification of a CSP. Besides, a transformation
infrastructure that underpins the conceptual proposal can be generated
in a semi-automatic manner. This infrastructure provides support for
pattern specification, match model search, and transformation into valid
target models. An application case extracted from the Escape It! serious
game has been selected to illustrate our contribution.

Keywords: Model driven engineering · Model transformation ·
Pattern matching · Constraint satisfaction problem

1 Introduction

In Model Driven Engineering (MDE), the primary focus is on models rather
than computing concepts. Models represent all artifacts handled by a software
development process and can be used as first class entities in dedicated model
management operations (e.g. model transformation, model composition, model
validation. . .).

The model transformation operation is a pillar of MDE. It underpins the
automatic generation of target models from source ones (i.e. generally higher
level models). The managed models conform to the metamodels that define the
structure and well-formedness rules. Besides, a transformation specification/defi-
nition includes descriptions of how constructs of source metamodels can be trans-
formed into constructs of target metamodels [15]. Several related techniques have
been proposed to provide developers with supports to implement transformation
scenarios (e.g. [6,11,16]).

The obtained target models have to conform to the structuring defined by
the implied metamodel and satisfy all the related constraints. In practice, con-
straints cannot be expressed by means of metamodel constructs and require the
use of additional formalisms (e.g. OCL [17]). Likewise, model transformation
c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 104–123, 2019.
https://doi.org/10.1007/978-3-030-29157-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_5

A Practical Approach for Constraint Solving in Model Transformations 105

techniques are not well supported for enforcing all constraints. Indeed, develop-
ers are constrained to use external constraint solvers or libraries.

However, expressing a Constraint Satisfaction Problem (CSP) is a complex
and error prone activity. This is due to the fact that constraint solvers support
numeric values while model transformations are expressed by means of model
elements. Hence, developers are faced with the two domains divergence and have
to establish and manage non evident mappings between these domains.

Our contribution is then a practical constraint solving approach for model
transformations. The objective is to allow enforcing constraints on target models
while simplifying the expression of the constraint based problem. To this aim, a
CSP is considered as a pattern matching problem specified by means of model
elements. Besides, the pattern matching is included in a global process that
allows producing the expected target models of a given transformation scenario.
In [13], we have presented the base principles of the proposed approach and
provided the primary results. The current chapter extends this work and focuses
on parametric patterns.

The remainder of this chapter is structured as follows. In Sect. 2, we present
the context of this research work and motivate the need for a practical constraint
solving approach for model transformations. Section 3 gives a global overview
of the proposed approach, while Sect. 4 focuses on implementation details. In
Sect. 5, we demonstrate the soundness of our approach using an illustrative trans-
formation scenario. Section 5 lists related work. Finally, Sect. 6 summarizes this
chapter and presents future work.

2 Motivation

This research work is conducted in the context of the Escape it! project. The
objective is to develop a serious game to train visual skills of children with ASD
(Autistic Syndrome Disorder). Given the specific needs of autistic children, it
was crucial to involve ASD experts in the first development stage. The aim is
to guarantee that the proposed game fits to ASD characteristics while being
individually adaptive to each child.

MDE provides principles and techniques that allow domain experts to take
part of the design activity and guide the development of the game. Indeed, the
domain elements (i.e. children profiles, game components and game scenarios)
can be expressed in a high level of abstraction so that the implication of domain
experts does not require a technical background. Also, model transformations
make it possible to deal with the scenarization process (i.e. the other alterna-
tive would be to design and implement all possible configurations of scenarios).
Indeed, the profile model and game component model can be transformed to
automatically produce adapted scenarios. These latter are used to validate the
domain elements and rules that are relevant for the generation of scenarios and
will subsequently form a basis for real exploitation within the game.

In [12], we have proposed a metamodel for structuring all the dimensions
related to the game. As for the generation of scenarios adapted to children pro-
files, it is implemented as a model transformation written in Java/EMF [20].

106 Y. Laghouaouta and P. Laforcade

Certainly, the proposed implementation allows optimizing the validation task
so that game scenarios are generated in demand and without additional effort.
However, the problem arises when domain experts suggest alterations of the
domain rules that drive the generation.

The identification of transformation fragments impacted by an expressed
change is a complex task. Indeed, the way the transformation is specified does
not reveal mappings between each experts direction/requirement (i.e. consid-
ered here as a constraint) and the transformation fragments that allow building
target models. In addition, the experts directions/requirements are not easy to
implement even when the transformation is specified from scratch. Several con-
straints are expressed in order of priority and they are global constraints that
are attached to a set of model elements and not to separated ones. In fact, the
proposed model transformation uses an external constraints solving library to
tackle some very specific generation steps.

As a feedback from the co-design sessions conducted with ASD experts, we
realize that MDE provides support for adaptive generation of scenarios and
allows varying situations proposed to domain experts without significant effort.
However, the proposed implementation of the production of learning scenar-
ios is problematic (i.e. especially when changes are expressed). Hence, we have
exploited other model transformations languages/supports (i.e. ETL language
[11] and the meta-language Melange [3]) to express the generation of scenarios.

Although ETL allows specifying the transformation in a much more struc-
tured way compared to Java/EMF (e.g. rules, operations, pre and post blocks),
the lack of a CSP support raises a significant issue. As for Melange (i.e. a lan-
guage workbench that allows expressing operational semantics by augmenting
meta-classes with behaviors), the generation concern is specified in a modular
manner which helps to identify the components (e.g. metaclasses, operations)
related to an expressed change. Also, it is possible to reuse existing Java libraries
for CSP solving. However, like the Java/EMF transformation, it is not easy to
express the directions/requirements of ASD experts by means of a CSP. This is
due to the divergence between domains of values supported by the CSP solver
(essentially integer and real values) and the concerned model elements.

The next section details our proposal for a model transformation approach
that facilitates the expression of the implied CSP. Our goal is to deal with the
objectives below:

1. the generation of target models by transforming source ones.
2. the specification of constraints applied to target models in a simple manner

and constraint solving.
3. the modification or reconfiguration of the transformation in case of constraint

changes.

We have to notice that details concerning the last objective are out of the
chapter scope.

A Practical Approach for Constraint Solving in Model Transformations 107

3 Global Overview

This section explains how a model transformation implying constraint solving
can be considered as a pattern matching problem. We give the base principles
of our approach and present an illustrative example. Thereafter, we detail the
structuring of patterns.

3.1 Base Principles

Basically, a CSP is defined as a set of variables, variable domains (i.e. possible
values for each variable) and a set of constraints. A solution is an assignment
of values to each variable that satisfies every constraint. As for graph pattern
matching, it is based on (sub)graph isomorphism and requires finding an image
(i.e. match) of a given graph (i.e. pattern graph) in another graph (i.e. source
graph) [14].

In the literature, several works address the joint use of CSP and pattern
matching [14,19,21]. Essentially, the graph pattern matching is expressed and
resolved as a CSP. The aim is to improve matching performance by exploiting
the rich and advanced research work done in the CSP field. In order to obtain
the CSP equivalent of a pattern matching problem, some mappings have been
established between concepts of the two domains [19]:

– CSP variables correspond to the objects of the pattern graph.
– variable domains correspond to the source graph objects to be matched into.
– constraints correspond to the restrictions that apply to a graph morphism.

Our approach is based on a reverse use of these matches. The base principle
is to consider a pattern matching problem as a high level specification of a CSP.
Hence, a CSP problem over a model can be directly expressed by means of model
elements rather than establishing non evident matches to basic variable domains
supported by CSP solvers (e.g. integers, reals).

Figure 1 gives a global overview of our approach. A model transformation that
implies constraint solving is decomposed into two steps: a pattern matching step
and a transformation step. The idea is to express all constraints to enforce on
target models through a relevant pattern. A found match is then transformed
into valid target models. Therefore, the expression of the pattern has to consider
the following requirements:

– although the pattern is expressed by means of source model elements, it has
to ensure the satisfaction of all constraints related to target models.

– a match model has to be sufficient enough to ensure a complete generation
of target models.

Furthermore, the expression of a pattern is decomposed into two parts. The
structure part refers to the elements to be matched into source models, while
the constraint part refers to the different constraints that force the identifica-
tion of a match model. This decoupling makes it possible to associate multiple

108 Y. Laghouaouta and P. Laforcade

constraints (i.e. classed by order of priority) to the same pattern. Also, variation
of a constraint does not affect the transformation because this latter is specified
using the pattern structure.

Fig. 1. Global overview of the transformation process [13].

3.2 Illustrative Example

The transformation scenario we have chosen to illustrate the base principles
of our proposal consists in producing a piling up of triangles. These triangles
are matched from those belonging to the source model (see Fig. 2). This latter
contains a set of squares with a colored background with numbered triangles of
different areas. Each produced triangle must preserve the same area of its source
equivalent and have the background color of the container square. Besides, the
produced model must include as many triangles as source squares.

As for constraints to be satisfied by the target model, they are listed by order
of priority:

1. the piling up must be coherent (i.e. the area of the contained triangle must
be less than the container one) and the target triangles must have different
color.

2. the piling up must be coherent (if constraint 1 could not be satisfied).

For this transformation scenario, the pattern structure consists of an ordered
set of three triangles (i.e. because the source model contains three squares).
Each one can match one of the source triangles. As for the constraints part, it
specifies that the piling up must be coherent and triangles must have different
colors. The less prioritized constraint allows producing a coherent piling up of
triangles regardless their colors. We have to notice that the two constraints have
to be satisfied by target models, but they cannot be directly applied on the

A Practical Approach for Constraint Solving in Model Transformations 109

pattern structure elements. In fact, other source constraints are derived from
the expressed ones to specify the validation logic of a model matched using the
pattern structure. The relevant mappings are given below:

Fig. 2. Simple application example.

– the piling up must be coherent: the matched triangles are in descending order
of area.

– target triangles must have different color: the matched triangles must belong
to different squares.

The matching process uses the source constraints to search for a valid model.
If no match is found (e.g. considering that triangles 1 and 5 have the same
area), models matched using the pattern structure are validated against the less
prioritized constraint. Once a valid match occurs, the transformation is applied
on each matched triangle for copying it and assigning the background color of
its container. We have to notice that squares are not matched by the pattern.
They are derived from matched triangles.

3.3 Configuration Metamodel

As discussed before, the pattern specification (i.e. structure and constraints
parts) underpins the proposed transformation approach. The relevant informa-
tion is considered as a configuration for generating the transformation infras-
tructure. It is stored in a model that conforms to the metamodel depicted in
Fig. 3.

110 Y. Laghouaouta and P. Laforcade

Fig. 3. Configuration metamodel.

A configuration references different models (i.e. source models, target models
and the implied metamodels). As for the pattern structure, a configuration is
defined by multiple role types. Each one can be considered as an abstraction
of a set of concrete roles (i.e. pattern elements used to match source model
elements) sharing same characteristics or managed as a set. Indeed, a RoleType
is characterized by the number of concrete roles and it references a specific source
model element type. The number of concrete roles can be fixed (expressed using
the nbRoles attribute) or parametric (expressed using the nbRolesP reference).

For example, the pattern depicted in Fig. 2 can be expressed by one Role-
Type instance. This latter references the model element type corresponding to
triangles, while the number of concrete roles is parametric and corresponds to
the number of source squares. Therefore, the declared role type is an abstraction
of three concrete roles and each of them is used to match a unique triangle of
the source model.

As for to the pattern constraints part, a configuration expresses if a match
model is validated against one constraint level (SimpleConstraint) or multiple
and prioritized constraints (PrioritizedConstraint). A constraint is characterized
by a name that gives an idea of the validation logic. One can note that the
complete constraints specification (i.e. by means of conditions for example) is
not covered by the proposed metamodel. Indeed, the configuration model does
not ensure the generation of the entire transformation infrastructure. This latter
includes resources that have to be manually completed by developers. The next
section details these aspects by presenting the infrastructure generation process.

4 Transformation Infrastructure

In this section, we detail the generation process of the infrastructure supporting
our approach for CSP solving in model transformations (see Fig. 4).

A Practical Approach for Constraint Solving in Model Transformations 111

4.1 Generate Configuration

The first step to produce the transformation infrastructure is the generation of
the configuration. For that, we provide developers with a GUI allowing them to
specify all paths of the managed models and metamodels to which they conform.
A configuration model can then be automatically generated. It includes the input
information as well as other automatically derived data (e.g. metamodels URIs,
model elements types).

Fig. 4. Process for generating the transformation infrastructure [13].

4.2 Complete Configuration

Recaling from Sect. 3.3, the configuration model has to be completed with the
pattern structure and the constraints type (i.e. simple or prioritized). To make
this task easier for developers, we have associated a textual concrete syntax to
the configuration metamodel and implemented a dedicated XText editor [1].

4.3 Generate Infrastructure

Once the configuration is completed, developers can ask for the automatic gener-
ation of the transformation infrastructure. This is concretely done by associating
a specific EPL pattern [9] to each constraint level (i.e. in case of prioritized con-
straints).

EPL is a language that provides support for the specification and detection
of structural patterns in models that conform to diverse metamodels [9]. Essen-
tially, an EPL pattern consists of a set of typed roles used to capture adequate
combinations from source models and a match condition to evaluate the validity
of a combination. In our case, typed roles are derived from RoleType instances

112 Y. Laghouaouta and P. Laforcade

(i.e. with respect to nbRoles, nbRolesP, type and refModel values) while the
match condition is viewed as a boolean operation that references a considered
constraint.

Besides, the sequencing of the patterns execution is described as an ANT-
based Epsilon workflow [8]. For each EPL pattern, a dedicated target and task
pair is generated. Besides, depends properties of each generated target are spec-
ified in order to prohibits the execution of a successor pattern (i.e. with respect
to constraints priority which is derived from the order of declaration) if a match
has already been found for the current pattern.

These details are hidden from developers by separating the patterns (i.e. gen-
erated automatically) from some required resources to be completed (i.e. trans-
formation, validation, domain restrictions and metaclasses operations). Figure 5
depicts details of the patterns execution activities.

Fig. 5. Patterns execution.

4.4 Complete Resources

Since the generated EPL patterns have the same structure (i.e. derived from
the configuration model), a developer needs to provide only one specification for
transforming match models. The transformation is specified by means of EOL
operations [10] that are applied to match model elements in order to produce
valid target models.

Regarding constraints, they are expressed in the validation resource. Indeed,
for each constraint, a specific EOL operation is generated and it allows accessing
the match model elements. The generated operations must be implemented by
the developer in order to express the validation logic (i.e. when a model captured
by pattern roles is considered to be a valid match).

A Practical Approach for Constraint Solving in Model Transformations 113

Domain restriction resources make it possible to refine the constraints spec-
ification. Unlike the validation which applies on an entire match model, the
restriction concerns only one single role (e.g. do not capture a triangle if its
area exceeds a threshold). Finally, the remaining resource allows the developer
to assign operations to metaclasses. These operations can be called from other
resources.

4.5 Generate Targets

In order to encapsulate the patterns execution details, the transformation infras-
tructure includes a launch configuration that allows automatically calling the
ANT workflow and therefore producing the target models. Nevertheless, chang-
ing the source models implies the synchronization of the transformation infras-
tructure. Indeed, the ANT workflow and the launch file have to be regenerated
in order to reference the new models paths. In addition, the patterns have to be
adapted with respect to the resolved values of parametric numbers of concrete
roles. The different resources remain unchanged because they are independent
from the managed models and the number of concrete roles.

The way in which the transformation infrastructure is structured brings fur-
ther benefits. When a constraint changes, the transformation resource is not
impacted. Besides, the operations associated to the implied metaclasses can be
reused when changing the pattern structure or the transformation scenario as
long as the same metamodels are involved.

5 Application

This section is dedicated to the application of the proposed approach. First,
we briefly present the serious game that motivates the overall proposal and we
describe the selected application case. Then, we illustrate each step of the process
of generating the transformation infrastructure.

5.1 Application Case

The application context is the Escape it! project which aims to develop a mobile
learning game (i.e. a serious game with learning purposes) dedicated to chil-
dren with ASD (Autistic Syndrome Disorder). The game intends to support the
learning of visual skills and it will be used both to reinforce and generalize the
learning skills. These skills will be initiated by “classic” working sessions with
tangible objects. The proposed serious game is based on a minimalist “escape-
room” gameplay. The child (player) has to drag objects, sometimes hidden, to
their correct locations in order to unlock the room’s door and get to the next
level.

The global domain elements required for the generation of game sessions are
structured into three related parts: game description elements, profile-related

114 Y. Laghouaouta and P. Laforcade

elements, and scenario elements. The required constructs have been defined by
a dedicated metamodel [12].

The game description model describes all the real game elements (e.g. skills,
resources or exercisers, in-game objects. . .). As for the profile model, it represents
a player’s (child’s) profile. These models are transformed into a game scenario.
This latter is built after three steps.

– objective scenario: it is related to the selection of the visual performance skills
in accordance with the current child profile.

– structural scenario: it refers to the selection of learning game exercises (i.e.
scenes where game levels will take place). This scenario extends the previous
one. It is generated from knowledge domain rules stating the relations between
scenes and the targeted skills they can deal with.

– features scenario: it expresses the additional inner-resources/fine-grained ele-
ments to be associated to each selected scene (e.g. objects appearing in a
scene, their positions. . .). The features scenario includes components of pre-
vious scenarios. It specifies the overall information required by a game engine
to drive the set-up of a learning game session.

In [13], we have selected the generation of objective scenarios as an illus-
trative application case (top part of Fig. 6). This chapter extends the applica-
tion scope by presenting the way structural scenarios can be generated using
the proposed constraint solving approach. The selected transformation scenario
(bottom part of Fig. 6) takes as input the objective scenario presented in [13]
as well as an extended version of the game description model that includes the
structural dimension (i.e exercises). The managed models conform to the meta-
model depicted in Fig. 7. It is worth noting that the presented metamodel is an
excerpt of the global one that defines all the game constructs [12].

Fig. 6. Selected transformation scenario.

A Practical Approach for Constraint Solving in Model Transformations 115

Fig. 7. Excerpt of the “Escape It!” metamodel.

The expression of the game description model is based on ASD experts
requirements. It expresses four visual performance skills B3-B4-B8-B25 (respec-
tively matching object to object, matching object to image, sorting categories of
objects, making a seriation) and their dependency relations. The game descrip-
tion model expresses also the different supported scenes organized into themes.
Figure 8 shows an excerpt of this model that focuses on exercisers. Relations
between scenes and the targeted skills are depicted with dashed lines.

Fig. 8. Game description model.

116 Y. Laghouaouta and P. Laforcade

The structural scenario is generated from the objective scenario depicted in
Fig. 9. It includes a possible combination of skills to be trained by the child.
We recall that the corresponding fictive child profile as well as details about the
generation process are given in [13]. The number of targeted scenes to be added
to the structural scenario has to be equal to the number of the targeted skills.
Besides, each selected scene corresponds to one of the selected targeted skills (i.e.
based on the targets reference). In addition, the domain experts have expressed
some constraints to enforce on the generated structural scenario. They are listed
by priority order:

1. all scenes must be different and belong to the same theme.
2. all scenes must be different (no constraints on themes).
3. all scenes must belong to the same theme.

5.2 Infrastructure Generation

In order to perform the described transformation scenario, we start by generating
the relevant configuration. This latter can be completed by defining the pattern
structure and identifying constraints through a dedicated Xtext editor (Fig. 10).

For the presented application case, the pattern comprises three role types.
The first one allows matching an ObjectiveScenario, the second role type corre-
sponds to the targetedSkill instances to be matched, and the last one corresponds
to the selected scenes. The two last roles are related to a parameter (i.e. paramet-
ric number of roles) to express the need to match all targeted skills belonging to
the source objective scenario and the same number of scenes. Indeed, each pair of
TargetedSkill and Scene elements is viewed as the source equivalent of a targeted
scene (TargetedScene) to be generated. As for the constraints presented above,
they are expressed as prioritized constraints while greatest priority is given to

Fig. 9. Objective scenario [13].

A Practical Approach for Constraint Solving in Model Transformations 117

the first declared one. Aside from the pattern structure and constraints parts,
all other elements are automatically generated.

Fig. 10. Configuration model.

Once the configuration model is completed, the transformation infrastruc-
ture can be generated (see Fig. 11). Recalling from Sect. 4.3, an EPL pattern
is automatically generated for each constraint level and the related details are
hidden from developers by separating patterns and the required resources. For
the application example, three EPL patterns are generated respectively for the
aforementioned constraints (cf. Sect. 5.1). Listing 1 illustrates an excerpt of the
pattern generated for constraint 2 (i.e. all scenes must be different). For conve-
nience, the excerpt focuses on the pattern structure and the resources invocation.
Some code fragments (e.g variables declaration, stop searching, randomness. . .)
have been removed to simplify the pattern’s interpretation.

As for the domain restriction resource, it is possible to specify guard condi-
tions in order to restrict the possible elements to be caught by a role. Given that
the restriction mechanism is not applicable for the selected application case, the
generated operations remains unchanged and they allow capturing all possible
elements (cf. Listing 2).

118 Y. Laghouaouta and P. Laforcade

Listing 3 depicts an excerpt of the validation resource. Three operations are
automatically generated with respect to the constraints names. We complete
these operations with action blocks that express the specific validation logic for
models matched by the pattern (the added code is underlined). For example, the
second operation implements the validation logic for constraint 2 (i.e. all scenes
must be different). The first statement verify if the matched targeted skills are
all different (i.e. because EPL allows matching the same element multiple times)
while the second one is applied on the matched scenes. Also, the For statement
verify if each matched scene is compatible with one of the targeted skills. the
targets() operation implements this behavior and it is expressed in the context
of the Scene metaclass (i.e. metaclass operations resources).

As for allDifferent(), it is a predefined operation. Indeed, we defined a list
of operations (e.g. followingNotMatch(), sort(), randSequence(). . .) which are
automatically added to the operations resource.

pattern Pattern
r0 : m1! Objec t iveScenar io

guard : r0 . Object iveScenar ioDomainRestr i c t ion () ,
r1 : m1! Targe t edSk i l l

guard : r1 . TargetedSk i l lDomainRestr i c t ion () ,
r2 : m1! Targe t edSk i l l

guard : r2 . TargetedSk i l lDomainRestr i c t ion () ,
r3 : m1! Targe t edSk i l l

guard : r3 . TargetedSk i l lDomainRestr i c t ion () ,
r4 : m1! Targe t edSk i l l

guard : r4 . TargetedSk i l lDomainRestr i c t ion () ,
r5 : m2! Scene

guard : r5 . SceneDomainRestr ict ion () ,
r6 : m2! Scene

guard : r6 . SceneDomainRestr ict ion () ,
r7 : m2! Scene

guard : r7 . SceneDomainRestr ict ion () ,
r8 : m2! Scene

guard : r8 . SceneDomainRestr ict ion () ,
{
match : cont inue and

va l idatePatterndS (r0 , Sequence{r1 , r2 , r3 , r4 } , Sequence{r5 , r6 , r7 , r8 })
onmatch

{
// code fragment depends on the matching mechanism (a l l p o s s i b l e match , f i r s t

match , random match)
// the cont inue boolean i s used to stop search ing f o r p o s s i b l e combinations .
}
do{
// code fragment depends on the matching mechanism
transformPattern (r0 , Sequence{r1 , r2 , r3 , r4 } , Sequence{r5 , r6 , r7 , r8 }) ;
}

}

Listing 1. Excerpt of the EPL pattern generated for constraint 2.

operat ion m1! Objec t iveScenar io Object iveScenar ioDomainRestr i c t ion () : Boolean{
return true ;
}
operat ion m1! Targe t edSk i l l TargetedSk i l lDomainRestr i c t ion () : Boolean{
return true ;
}
operat ion m2! Scene SceneDomainRestr ict ion () : Boolean{
return true ;
}

Listing 2. Domain restriction resource.

A Practical Approach for Constraint Solving in Model Transformations 119

Fig. 11. Transformation infrastructure.

operat ion val idatePatterndSuT (r0 : m1! Object iveScenar io , r1 : Sequence , r5 :
Sequence) : Boolean{

// code fragment implementing the con s t r a i n t 1
}
operat ion va l idatePatterndS (r0 : m1! Object iveScenar io , r1 : Sequence , r5 :

Sequence) : Boolean{
i f (not a l l D i f f e r e n t (r1)) return f a l s e ;
i f (not a l l D i f f e r e n t (r5)) return f a l s e ;
f o r (i in Sequence { 0 . . r1 . s i z e () −1}){

i f (not r5 . get (i) . t a r g e t s (r1 . get (i))){
return f a l s e ;

}
}
return true ;

}
operat ion val idatePatternuT (r0 : m1! Object iveScenar io , r1 : Sequence , r5 :

Sequence) : Boolean{
// code fragment implementing the con s t r a i n t 3

}

Listing 3. Validation resource.

As for the transformation resource (see Listing 4), we completed it with
actions to be applied on the match model in order to produce a valid struc-
tural scenario. Basically, a new StructuralScenario element is created as a target
equivalent of the matched objective scenario. In addition, for each targeted skill,
the compatible scene is selected (with respect to the sequencing order), and both
elements are used to create a new TargetedScene element.

120 Y. Laghouaouta and P. Laforcade

operation transformPattern(r0 : m1!ObjectiveScenario,r1 : Sequence ,r5 : Sequence){
var ss=createStructuralScenario(r0);
for(i in Sequence{0..r1.size()−1}){

ss.targetedscene.add(createTargetedScene(r1.get(i),r5.get(i)));
}

}
operation createStructuralScenario(p0 : m1!ObjectiveScenario) : m1!StructuralScenario {

var ss= new m1!StructuralScenario;
p0.eContainer().pedagogicalscenario=ss;
return ss;

}
operation createTargetedScene(p0 : m1!TargetedSkill,p1 : m3!Scene) : m1!TargetedScene {

var ts= new m1!TargetedScene;
ts.targetedskill=p0;
ts.scene=p1;
return ts;

}

Listing 4. Transformation resource.

Figure 12 depicts the generated structural scenario. The selected scenes are
compatible with the targeted skills. However, the proposed skills do not belong
to the same theme. In fact, no combination of possible skills allows enforcing the
first constraint. For that, the transformation generates a scenario with respect
to a less prioritized constraint (i.e. constraint 2). Indeed, the selected scenes are
all different but they belong to two themes.

Fig. 12. The generated structural scenario.

6 Related Work

Our approach for constraint solving is based on expressing constraints to enforce
on target models by means of source model elements. This proposal is inspired
from graph transformations techniques where constraints on the involved graphs
can be expressed through application conditions [4]. Besides, the proposed trans-
formation process (i.e. including the match and transformation steps) is similar
to the application of graph transformations. For these latter, the source graph
fragments concerned with the application of a transformation are first deter-
mined with respect to the LHS (Left Hand Side) graph. Then, the matched
fragments are replaced with the structure of the RHS (Right Hand Side) graph.

The main difference is the way the pattern is defined. In fact, the pattern
structure is separated from constraints. This allows expressing different and pri-
oritized constraints for the same pattern. Besides, it is much easier to express

A Practical Approach for Constraint Solving in Model Transformations 121

complex constraints within our approach (e.g. textual syntax, feature navigation,
predefined operations. . .). In contrast, for graph transformations the pattern is
defined as one block (i.e. the LHS graph) and constraints are expressed like
sub-graphs.

Several proposals have addressed the problem of directly enforcing con-
straints on target models. Petter et al. [18] have proposed an implementation
to extend the QVT-Relations language [16] with constraint solving capabilities.
However, the proposal focuses on constraints related to attribute values and
disregards global constraints.

Other related works address the automatic generation of models. In this case,
models are not considered as targets of applying model transformations but are
viewed as valid instances of constrained metamodels [7]. Cabot et al. [2] have
proposed an approach where metamodels and OCL constraints are translated
into a CSP and a dedicated solver allows producing a valid instance. Based on
similar principles, Ferdjoukh et al. [5] have proposed an approach for model
generation while dealing with performance.

In the limited scope of the presented application case, we have experimented
the use of model generation techniques to perform the transformation scenario.
The idea was to express the source models information, the way to construct the
target model and the expert requirements, as OCL constraints. Hence, a model
generation support (we chose Grimm [5]) can be used to deal with the generation
of the expected scenario. However, the tool failed because it does not support
some essential OCL operations.

7 Conclusion

This chapter presents a practical approach for constraint solving in model trans-
formations. The base principle is to consider a pattern matching problem as a
high level specification of a CSP. Besides, a transformation infrastructure that
underpins the conceptual proposal can be generated in a semi-automatic man-
ner. Indeed, this infrastructure provides support for pattern specification, match
model search, and transformation into valid target models. An application case
extracted from the Escape It! serious game has been selected to illustrate these
tasks.

The way the pattern definition is carried out offers some benefits. By decou-
pling the pattern structure from the validation constraints, it is possible to
associate multiple constraints to a same pattern and therefore allows specify-
ing shared transformation rules for all validation constraints. In addition, the
proposal supports parametric patterns. Hence, the same pattern definition can
be used in various transformation scenarios even if involving slightly different
match models.

The integration of our proposal in the co-design framework for the presented
serious game opens up many perspectives. The future work deal with two main
issues: (i) the cognitive effort to be implicated by the domain expert in order to
specify/interpret the pattern and (ii) the change impact analysis of domain rules.

122 Y. Laghouaouta and P. Laforcade

To address the first issue, we are exploring a new approach to express the con-
straint satisfaction problem by means of target model elements. The correspond-
ing source pattern can be automatically generated by exploiting some relevant
information (i.e. source-target mappings, one time or multiple match. . .). As for
the change of domain rules, the regeneration of the transformation infrastructure
must consider the extent of the variation expressed by the expert (e.g. adding a
constraint must imply changing the validation resource without impacting the
transformation and operations resources).

References

1. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd., Birmingham (2016)

2. Cabot, J., Claris, R., Riera, D., et al.: Verification of UML/OCL class diagrams
using constraint programming. In: First International Conference on Software Test-
ing Verification and Validation, ICST 2008, pp. 73–80. IEEE (2008)

3. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.M.: Melange: a
meta-language for modular and reusable development of dsls. In: Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering,
pp. 25–36. ACM (2015)

4. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H.: Constraints and applica-
tion conditions: from graphs to high-level structures. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–
303. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 21

5. Ferdjoukh, A., Baert, A.E., Chateau, A., Coletta, R., Nebut, C.: A CSP approach
for metamodel instantiation. In: 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, pp. 1044–1051. IEEE (2013)

6. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MODELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006).
https://doi.org/10.1007/11663430 14

7. Kleiner, M., Del Fabro, M.D., Albert, P.: Model search: formalizing and automating
constraint solving in MDE platforms. In: Kühne, T., Selic, B., Gervais, M.-P.,
Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 173–188. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13595-8 15

8. Kolovos, D., Rose, L., Garcia-Dominguez, A., Paige, R.: The epsilon book (2017)
9. Kolovos, D.S., Paige, R.F.: The epsilon pattern language. In: 9th IEEE/ACM Inter-

national Workshop on Modelling in Software Engineering, MiSE@ICSE 2017, pp.
54–60. IEEE (2017)

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 11

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9 4

12. Laforcade, P., Laghouaouta, Y.: Supporting the Adaptive Generation of Learn-
ing Game Scenarios with a Model-Driven Engineering Framework. In: Pammer-
Schindler, V., Pérez-Sanagust́ın, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.)
EC-TEL 2018. LNCS, vol. 11082, pp. 151–165. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98572-5 12

https://doi.org/10.1007/978-3-540-30203-2_21
https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/978-3-642-13595-8_15
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-319-98572-5_12
https://doi.org/10.1007/978-3-319-98572-5_12

A Practical Approach for Constraint Solving in Model Transformations 123

13. Laghouaouta, Y., Laforcade, P., Loiseau, E.: A pattern-matching based approach
for problem solving in model transformations. In: Proceedings of the 13th Interna-
tional Conference on Software Technologies, ICSOFT 2018, Portugal, pp. 113–123.
SciTePress, Setúbal (2018). https://doi.org/10.5220/0006847901130123

14. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Math. Struct. Comput. Sci. 12(4), 403–422 (2002)

15. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electron. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

16. OMG: Meta object facility (mof) 2.0 query/view/transformation specification
(2008)

17. OMG: Object constraint language 2.4 specification (2014)
18. Petter, A., Behring, A., Mühlhäuser, M.: Solving constraints in model transforma-

tions. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 132–147. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02408-5 10

19. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT
1998. LNCS, vol. 1764, pp. 238–251. Springer, Heidelberg (2000). https://doi.org/
10.1007/978-3-540-46464-8 17

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

21. Taentzer, G., Ermel, C., Rudolf, M.: The AGG approach: language and tool envi-
ronment. In: Handbook of graph grammars and computing by graph transforma-
tion, vol. 2, 551–603 (1999)

https://doi.org/10.5220/0006847901130123
https://doi.org/10.1007/978-3-642-02408-5_10
https://doi.org/10.1007/978-3-540-46464-8_17
https://doi.org/10.1007/978-3-540-46464-8_17

An Integrated Requirements Engineering
Framework for Agile Software Product Lines

Hassan Haidar1(&), Manuel Kolp1, and Yves Wautelet2

1 UCLouvain, LouRIM/CEMIS, Louvain-la-Neuve, Belgium
{hassan.haidar,manuel.kolp}@uclouvain.be

2 KULeuven, FEB, Leuven, Belgium
yves.wautelet@kuleuven.be

Abstract. Requirements engineering (RE) techniques play a determinant role
within Agile Product Lines development methods; these notably allow to
establish the relevance to adopt or not the product line approach for software-
intensive systems production. This paper proposes an integrated goal and
feature-based meta-model for agile software product lines development. The
main objective is to permit the sepecification of the requirements that precisely
capture stakeholder’s needs and intentions as well as the management of product
line variabilities. Adopting practices from requirements engineering, especially
goal and feature models, helps designing the domain and application engi-
neering tiers of an agile product line. Such an approach allows a holistic per-
spective integrating human, organizational and agile aspects to better understand
product lines dynamic business environments. It helps bridging the gap be-
tween product lines structures and requirements models, and proposes an inte-
grated framework to all actors involved in the product line architecture. In this
paper we show how our proposed metamodel can be applied to the requirements
engineering stage of an agile product line development mainly for feature-
oriented agile product lines such as our own methodology called AgiFPL.

Keywords: Agile product line engineering � Requirements �
Engineering goal model � Feature � Feature model � AgiFPL

1 Introduction

“Agile Product Lines Engineering” has been proposed as an approach that deals with
the growing complexity of information systems and the handling of competitive and
changing needs of the IT production industry [1]. This approach offers better support
for reusable and evolving software artefacts and helps managing changes in require-
ments, promoting product quality, decreasing development costs and reducing time to
market. Thus, the main goal of this approach is to ensure better systematic development
of a family of software systems by identifying and managing their similarities and
variations [2]. Successful adoption of an agile product line methodology requires a
deep organizational mind shift since, in fact, all software engineering processes are
affected from requirements to maintenance and evolution activities.

© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 124–149, 2019.
https://doi.org/10.1007/978-3-030-29157-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_6

Agile Product Lines Engineering has emerged as the result of merging both the
“Agile techniques” and “Product Lines Engineering (PLE)” approaches [3]. By using
the term “Agile Product Lines”, we refer to Product Lines development methodologies
compliant with agile principles. These have organized agile software development
activities and practices in ways that prescribe the workflows that should be performed
and explain how the products should be produced and handled, along these flows. The
flow of activities respects agile principles. In our research works and related projects,
we consider that the agility attribute of Agile Product Lines methodologies concern the
software development process (and not the developed product).

According to [4], software development methodologies consist of two integral
parts. The first one is a modeling language and the second one is a process. Thus, it is
clear that any proposed methodology uses to handle, on the one hand, a requirements
engineering perspective (including modeling and other related tasks) and, on the other
hand, the dynamic perspectives such as development, implementation, or maintenance,
etc. Since one of our major goals is to propose a complete methodology, we therefore
take into account these two parts.

Requirements engineering (RE) – more precisely here, Goal-Oriented Require-
ments Engineering (GORE) – and Feature Modeling including elicitation, analysis,
specification, verification, and management [5], plays a determinant role when defining
a new Agile Product Lines methodology and making the decision to adopt (one of)
them to meet the business goals of an organization. Compared with RE for a single
custom-built system, RE for a software-intensive systems family focuses more on
systematic reuse, not only from the technical perspective, but from the organizational,
and process perspectives as well [6]. Therefore, many crucial decisions have to be
made during the requirements engineering stages that influence the structure, devel-
opment, and implementation of an agile product line.

Managing product line requirements is non-trivial since they reflect stakeholders’
diverse perspectives, have complex configuration dependencies (e.g., requires, uses,
excludes, extends, …), and are expressed in various forms (e.g., textual, goals) and at
different granularity levels (e.g., features, qualities) [7]. We have recently proposed an
integrated goal and feature-based metamodel for managing requirements phases of
Agile Product Line in [8]. The aim was to allow analysts and developers to produce
specifications that precisely capture the stakeholder’s needs and intentions as well as to
manage product line variabilities. In addition, our motivation was to understand and
build an efficient structure of the requirements engineering of a feature-oriented product
line in an agile context with the research question of building a RE approach for an
agile product line to efficiently represent stakeholders’ intentions and goals, as well as
product line variabilities and communalities.

In [8], we have defined and formalized a specific metamodel for describing product
lines using the Z specification language [9]. The present paper extends the contribu-
tions of [8] by defining how the metamodel can be applied to requirements engineering
stages of an agile product line methodology called AgiFPL that has been introduced in
[10]. The metamodel application process starts (1) by specifying the concerned
requirements processes of the methodology; (2) detailing the integration of the meta-
model with these processes; (3) validating on a real-world case study; and (4) com-
paring our proposal to existing approaches. This paper focuses on the first two points,
the other ones are left for future work.

An Integrated Requirements Engineering Framework 125

Our method, called AgiFPL (Agile Framework for managing evolving Product
Lines) is a feature-oriented approach involving two classical tiers of product line
engineering: Domain Engineering and Application Engineering.

The domain engineering deals with all the aspects of managing reusable assets
(artifacts), while the application engineering aims at developing a specific product for a
particular stakeholder. Therefore, requirements engineering approaches have to cope
with the different organizational levels and architectural complexity. Specifically, for
product lines, requirements engineering, captures both commonality and variability
among product line members [11]. Our proposed metamodel follows a holistic
approach that allows the modeling of the organizational and operational context of a
product line within a flexible and rapidly evolving environment. It offers thus a better
understanding of the representation of product lines requirements and their stake-
holders’ requirements.

The remainder of the paper is structured as follows. Section 2, briefly reviews the
literature about RE for agile product lines and some related work. Section 3 presents
our research method and describes the main concepts of our metamodel. Section 4
presents the integration of our proposed metamodel to our AgiFPL methodology.
Section 5 highlights an example of application of our proposal. Section 6 concludes the
paper.

2 Related Work

Research works such as [12–15] have demonstrated the difficulty of integrating agile
methods with product line engineering due to the plan-driven and sequential nature of
product line approaches versus the iterative and flexible nature of agile frameworks.
However, they have highlighted that adding agility to product line engineering is not
only possible but can also be highly beneficial [14]. This paper focuses on the
requirements engineering part of this particular integration issue; we hereafter present
how the requirements engineering stage has been considered in the existent agile
product line approaches.

Generally speaking, both agile methods and software product line approaches
recognize that changes to the requirements during the product development are going
to occur inevitably. However, they handle different strategies to deal with the
requirements and the occurred changes.

Table 1 compares how agile methods and product line approaches take in charge
“Requirements”, “Architecture”, and “Reuse”. Change management strategies for
Agile methods deal with occurred changes to requirements by focusing on incremental
development and close interactions with stakeholders mainly through the product
owner role [16]. These agile methods consider organizations as complex adaptive
systems in which requirements are emergent rather than pre-specifiable, therefore,
project teams rarely perform comprehensive requirements’ elicitation, specification,
analysis, validation, or even management activities [17]. On the contrary, the strategies
to deal with requirements in product line approaches focus on finding solutions to meet
stakeholders’ needs by customizing the core assets [2, 5, 18] and concerned teams give
importance to the process of formal and written specification and documentation.

126 H. Haidar et al.

In fact, they try to predict changes in the beginning of the process and maintain the
variability models (such as Feature Models) as core assets. Therefore, requirements
engineering in product line approaches is done by defining the product line scope [19].
In order to define the domain scope, first, the right products for the domain have to be
targeted, and second, factors used to know similar systems (i.e. communalities) and
future market demands must be determined. Too large or small scope will deteriorate
the capabilities of product line approaches to achieve variabilities and desired econo-
mies. Requirements and their changes in product line approaches are carried out
through analysis, careful predications and smart selections [5]. If a customer’s desired
product is out of the product line scope, then, the cost associated with amending and
revising the core assets to meet their needs will be higher than the cost of products in
the scope. Thus, the clients have to whether accept the high cost or modify their initial
requirements in order to gain benefits such as better maintainability and faster delivery
[12]. In addition, stakeholders’ collaboration is managed through “customer interface
management practice”. A number of customer representatives (e.g. domain experts,
product managers, etc.) have explicitly assigned roles and responsibilities and act as a
bridge that connect stakeholders and development teams [20, 21].

On their side, agile methods emphasize on simplicity. They call for removing or not
taking into account architectural features that are not of immediate interest for the
current iteration [24]. However, product line approaches consider the “mass produc-
tion” principal which requires the definition and maintenance of a product line archi-
tecture in order to satisfy the general requirements of the product line and the individual
requirements of products by explicitly recognizing a set of variation points required to
support the family of products within the scope of the targeted domain [25].

Table 1. Agile methods versus product line approaches.

Agile methods Product line approaches

Requirements Emphasis on quick response to
requirements’ changes with short
iterations and small increments for
the application. Direct stakeholders
collaboration; stakeholders (i.e.
owner, etc.) have to participate in
the whole software project lifecycle

Domain requirements and
application requirements are both
engineered. Indirect stakeholders’
collaboration using well-trained
customer (and user) representatives

Architecture Minimal emphasis on the
application architecture features
beyond the immediate iteration

Domain and Application
architecture are both engineered

Reuse Optimistic use of COTS;
Applies streamlined domain
engineering activity without
emphasis on development of
reusable artifacts

Special emphasis on maturity and
reliability of COTS
Foundation of the method is “re-
using core assets (i.e. artifacts)
defined in domain engineering tier”

An Integrated Requirements Engineering Framework 127

Agile methods can make opportunistic reuse of existent artifacts and pre-developed
software components in an application development. In fact, agile methods apply
streamlined domain engineering activity without emphasis on development of reusable
core assets [26]. However, as said, the software product line engineering paradigm
separates two main processes: Domain Engineering and Application Engineering.

The domain engineering process is fundamentally dedicated for establishing the
reusable artifacts and thus defining the commonality and the variability of the product
line. The application engineering process is essentially dedicated for developing a single
product from reusable artifacts created within the domain engineering process [5].

After reviewing some foundations of agile methods and product line approaches, it
appears that classical product line approaches have to deal with the increasing rapid
pace of changing requirements to satisfy market needs as well as to be within the
framework of existing and changing norms and standards which lead to an increasing
need for rapid development and adaptability [27].

Due to their actual benefits, agile methods could help product line teams and
companies to deal with the highlighted issue and thus being agile. In fact, if the known
requirements, on the basis of which the product line development teams perform the
project scoping are not sufficiently detailed for a thorough analysis, agile methods can
be applied. Indeed, further these allow to elicit requirements and/or manage changes in
the already identified ones. Agile methods may also help these teams (in both domain
engineering and application engineering tiers) to produce prototypes swiftly and
modify them quickly according to any occurred change in requirements. In addition,
applying agile methods may clarify gradually the targeted scope [14, 28]. Therefore,
integrating requirements engineering practices as well as development practices from
agile methods could enhance product line approaches.

Several concrete methods and models that integrate agile methods and product line
approaches are available. Each proposed method combines product line engineering
with selected agile approaches and techniques [28]. Since the main target of this paper
is to propose a requirements engineering framework for agile product lines, hereafter,
we identify the requirements engineering techniques by surveying some relevant agile
product line approaches.

Babar et al. [29] have promoted the integration of agile software development and
product line engineering as means of reducing time-to-market, increasing productivity,
and improving quality. They establish a phase called “Exploration before agile product
development” as requirements engineering process. This process uses the “Product
Roadmaps” in order to perform a “Feature Analysis” and thus define the “Product
Backlog” that contains “Feature Description”. Based on the “Product Backlog”, the
“Sprint Backlog” for the implementation is structured.

Ghanam et al. [30] have introduced an agile product line method (i.e. Test Driven
Development (TDD)) that emphasizes on writing tests before writing code as a means
of ensuring the satisfaction of customer requirements, and reinforcing good design
habits. To satisfy the customer requirements, they have proposed “Acceptance Tests”
in order to identify what features are to be delivered by the implemented product lines.
Acceptance tests are considered as “executable specifications” and they are usually
written in a format accessible to both technical and non-technical audiences; they can
always be a reference of what was requested by the customer, what has been done so
far and what is to be done next.

128 H. Haidar et al.

O’Leary et al. [31] have proposed an agile process model for deriving products in
software product line engineering. The model was developed through industry-based
case study research. The requirements engineering activities are done during the phase
“Preparing for Derivation”. In this phase the requirements are determined, prioritized,
and assigned to development iterations. The purpose of this phase is to achieve
agreement among all the stakeholders on the product requirements.

Díaz et al. [32] have introduced an agile product line approach called “Agile
Product-Line Architecting (APLA)” that integrates a set of mechanisms in order to
support agile architecting of the Product lines. The APLA process has been deployed in
Scrum [33] by the smooth integration of its mechanisms in this agile method.
According to the APLA process, the first task consists of capturing the requirements of
the “Software Product Line Owner” from the product vision (i.e. features). These
features can be decomposed into a list of “user stories (US)” and “tasks” known as
“Software Product-Line Backlog”. In addition, Santos Jr. and Lucena Jr. [34] have
presented the ScrumPL approach that supports iterative domain and application engi-
neering based on Scrum.

Table 2 summarizes the requirements engineering approaches/tools and activities
used within the identified publications that propose agile product lines models or
approaches. These works underline the need for a performant requirements engineering
framework that ensure the agile transformation while preserving existing software
product lines. To answer that, we try here to propose a convenient framework that can
be applied to requirements engineering stage of feature-oriented agile product lines.

3 A Metamodel for Agile Product Lines

A framework for managing the requirements stage of Agile Product Lines should serve
the analysis of software product lines processes, the definition of a (conceptual) process
language, and the implementation of software processes using tools [35]. In this sec-
tion, before detailing our metamodel itself; we first present how it was crafted. How-
ever, the implication on Agile-Product-Lines’ processes analysis, design and
implementation will be discussed in future work.

Table 2. RE Tools/approach and activities, identified in studied agile product line approaches.

RE approach/tools RE activities

- Structured text
- Use cases
- Features
- Orthogonal variability models
- User stories

- Plan and elicit
- Model and analyze
- Communicate and agree
- Realize and evolve

An Integrated Requirements Engineering Framework 129

According to [36], the procedure for constructing metamodels that support Life
Cycle Management adopts the following steps:

• Define domain and disciplines;
• Produce domain model of software engineering concepts;
• Select notations;
• Define artifacts types;
• Define the software engineering process models;
• Select tools, techniques and utilities.

Based on the approach presented in [36] and to target the research question mentioned
above, the proposed metamodel is based on the comprehensive analysis of common
data types, representation schemes and relationships that exist in Agile Product Lines
approaches and then represented through a Unified Modeling Language (UML) class
diagram [37]. Three major steps are taken (iteratively):

– Step 1: identification of the basic RE concepts of Agile Product Lines
methodologies;

– Step 2: Analysis of the relationships between concepts. Four types of relationships
– are used, namely generalization, composition, aggregation and association. The

existence of relationships between concepts needs to be identified and their types
distinguished;

– Step 3: Formal expression of the metamodel according to the basic concepts and
relationships gathered in the first steps, including UML class diagram graphical
representation.

As stated above, our motivation is to understand and build an efficient structure of the
requirements engineering of a feature-oriented product line in an agile context. This
leads us to define a goal and feature-oriented specification to provide modeling con-
structs that permit:

– Representations of stakeholder’s intentions and goals;
– Variability, commonality and technical elements of the agile product line;
– Requirements artifacts and their relationships used by agile teams.

The proposed metamodel defines two main perspectives. The first one is the pro-
duct line engineering perspective itself, in which goal (i.e. Family goal model) and
feature models provide different variability perspectives and the rationale of the vari-
ability. The second one is the agile development perspective, in which the agile
requirements artifacts and goal models provide an exhaustive structure for the imple-
mentation of product line’s features and products derivation.

Standard goal model frameworks like i* [38, 39] can represent intentional variability,
but lack mechanisms for representing differences between intentional spaces of various
systems (i.e., product line variability in the intentional space). Therefore, Asadi et al. [40]
have introduced the notion of family goal model to extend standard goal modeling
techniques, which we apply in this paper to iStar 2.0 [41], the second version of i*.

130 H. Haidar et al.

Our metamodel connects family goal models and features models through map-
pings. They provide bidirectional relationships and traceability links between high-
level stakeholders’ business objectives, which are described by goal models and
implementation units enclosed within features in feature models. In addition, we seek
to support the stakeholders of a product line, especially in the application engineering
tier, through iStar 2.0 models, which provide a graphical and comprehensive vision of
the stories and their relationships. Our proposed model connects Backlog items (i.e.,
user stories,…), and family goal models by mappings performed through heuristics
rules proposed in [42] and [18].

Figure 1 introduces the main entities and relationships of our metamodel. We
subdivide it into four sub-models:

• The Organizational sub-model, describing the members (i.e. actors, teams, …) of
the product line, their organizational roles, responsibilities, capabilities and
relationships;

• The Goal-oriented sub-model, describing the intentions of the product line stake-
holders and generating a stakeholder’s view of feature models;

• The Feature-oriented sub-model, illustrating the product line variability;
• The Agile requirements artifacts sub-model defining the requirements artifacts used

by agile teams, as well as the relationships among these artifacts.

The primitives of our framework are also of different types. We classify them as:

• Meta-concepts: Goal, Feature, Actor, User Story …
• Meta-relationships: Qualifies, Refines, Composition, Aggregation, Generalization

…
• Meta-attributes: Power, Motivation …
• Meta-constraints: implications between features located in different parts of the

feature hierarchy.

All meta-concepts, meta-relationships and meta-constraints have the following
mandatory meta-attributes: Name and Description. Name allows unambiguous refer-
ence to the instance of the meta-concept and Description provides a precise and
unambiguous description of the corresponding instance of the meta-concept. The
description should contain sufficient information for a formal specification to be
derived for use in requirements specifications for a future product or application of the
product line.

Figure 1 insists on meta-concepts and meta-relationships. Meta-attributes and meta-
constraints are formalized with the Z state-based specification language [9]. We use Z
since it provides sufficient modularity, abstraction and expressiveness to describe the
requirements engineering aspects of agile product line and the wider context in which
they are used in a consistent and structured way. In addition, Z offers a pragmatic
approach to specifications by allowing a clear transition between specification and
implementation of product lines’ applications. Moreover, it is widely adopted in the
software development industry and academia.

This paper details next the organizational, goal-oriented, feature-oriented sub-
models and their integration, and the user story concept. It also discusses their rele-
vance for agile product lines requirements engineering.

An Integrated Requirements Engineering Framework 131

3.1 Organizational Sub-model

The main entities and relationships of the organizational sub-model defined in our
metamodel are presented on the right corner of the bottom of Fig. 1. The Organiza-
tional sub-model, describes the members (i.e. actors, teams, …) of the product line,
their organizational roles, responsibilities, capabilities and relation-ships. In fact, this
sub-model identifies the relevant Actors of the product line, the Roles they occupy, the
Capabilities they possess, and the Dependum for which Actors depend on one another.

Actor
Most of stakeholders are represented as actors. Actors can be human, organizations,
technical systems (i.e. hardware, software), or any combination thereof. Actors are
active, autonomous entities that aim at achieving their goals by exercising their know-
how in collaboration with other actors. According to the iStar 2.0 language, two types
of actors can be distinguished [41, 46]:

• Role: an abstract characterization of the behavior of a social actor within some
specialized context or domain of endeavour.

• Agent: an actor with concrete, physical manifestations, such as a human indi-
vidual, an organization, or a department.

Actor’s intentionality is made explicit through the actor boundary, which is a
graphical container for their intentional elements.

Fig. 1. Requirements-oriented meta-model for agile product lines [8].

132 H. Haidar et al.

The Actor schema above shows the Z formal specification of the Actor concept.
The first part of the specification represents the definition of types. The Actor speci-
fication first defines the type Name (which represents the Name attribute) by writing
[Name]. This declaration introduces the set of all names, without making assumptions
about the type (i.e. whether the name is a string of characters and numbers, or only
characters,…). The type [Actor_Type] is defined as being either a Role or an Agent or
even just an Actor.

More complex and structured types are defined with specific schemata. For instance,
the Actor schema is partitioned horizontally into two sections:

• The declaration section introduces a set of named, typed variable declarations;
• The predicate section provides predicates that constrain values of the variables. We

use identifiers e.g. “(c1)” to refer to predicate, i.e. constraint (c1) of the schema.

In essence an Actor of an agile product line wants to fulfil the product line Goals as
well his/her own Goals. In fact, an Actor possesses his/her specific Capabilities and
owns a set of Resources. Each Actor applies plans that are part of his/her Capabilities
and uses Resources in order to achieve the Goal that he/she wants. As the Actor is
present in a rapid and flexible environment, he/she takes into account the changing
Intentional Elements related to the product line as well as the ones related to specific
customers’ needs, in order to adapt its behavior to environmental circumstances.
Considering these changes is crucial when eliciting product line requirements as well as
stakeholders (i.e. product owner, etc.) requirements. Since an Actor can be also a Role
or an Agent, two different types of actor links exist:

• is-a: represents the concept of generalization or specification. Only Roles can be
specialized into Roles, or general Actors into general Actors. However, Agents
cannot be specialized via is-a, as they are concrete instantiations;

• participates-in: represents any kind of association, other than generalization or
specialization, between two Actors. No restriction exists on the type of actors linked
by this association. Note that every Actor can participates-in multiple other Actors.

An Integrated Requirements Engineering Framework 133

Thus, a is-a relationship applies only between pairs of Roles or pairs of Actors. There
should be no is-a cycles. In addition, there should be no participate-in cycles. A pair of
Actors can be linked by at most one actor link. It is not possible to connect two actors
via both is-a and participates-in. An Actor can (sometimes, has to) cooperate with
another Actor to fulfil common Goals to the Roles that each of these Actors occupies.

Role
As stated above, an organizational Role of the product line is an abstract characteri-
zation of expected behavior of an Actor within some specified context of the product
line. An Actor can occupy multiple Roles and multiple Actors can occupy a Role.

The following Role schema shows the Z formal specification of Role concept
within a product line. Each Role requires a set of Capabilities to fulfil or contribute to
Goals for which it is responsible. An Actor can occupy the Role only if it possesses the
required Capabilities (c4). Moreover, to entering Roles, Actors should be able to leave
Roles at runtime (c5).

Roles are responsible for Goals (c6) and can control their fulfilment. This control
procedure requires that a single Actor can never occupy distinct Roles that are
responsible of and control the fulfilment of the Goal (c7). In addition, Roles can have
different levels of authority. Consequently, a Role can have authority on other Roles.
The authority on relationship specifies the hierarchical structure of the product line.

Dependum
In social models such as iStar 2.0, dependencies represent social relationships. A de-
pendency is defined as a relationship with five arguments:

• Depender is the actor that depends for something (the dependum) to be provided;
• DependerElmt is the intentional element within the depender’s actor boundary

where the dependency starts from, which explains why the dependency exists;

134 H. Haidar et al.

• Dependum is an intentional element that is the object of the dependency;
• Dependee is the actor that should provide the dependum;
• DependeeElmt is the intentional element that explains how the dependee intends to

provide the dependum.

Dependencies link the dependerElmt within the depender actor to the dependum,
outside actor boundaries, to the dependeeElmt within the dependee actor.

The type of the dependum specializes the semantics of the relationship:

• Goal: the dependee is expected to achieve the goal, and is free to choose how;
• Quality: the dependee is expected to sufficiently satisfy the quality, and is free to

choose how;
• Task: the dependee is expected to execute the task in a prescribed way;
• Resource: the dependee is expected to make the resource available to the depender.

The Dependum schema above shows the formal specification of the Dependum.
Resource dependency allows us to represent any specialization of the Resource concept
as a Dependum. For example, a Role (r1) might depend on another Role (r2) for an
Authorization. This has implication on the authority on relationship, as this dependency
means that r2 must have authority on r1 (i.e. c11). In addition, the constraint (c11)
demonstrates that the existence of a Resource Dependum among Roles has implications
on the Input and Postcondition of Tasks accomplished by Actors that occupy these
Roles.

An Integrated Requirements Engineering Framework 135

3.2 Goal Sub-model

Intentional elements are the actors’ needs. As such, they model different kinds of
requirements and are central to our proposal. The following elements are considered as
Intentional Elements (Family Goal Model Elements) in this work:

• Goal: a state of affairs that the actor wants to achieve and that has clearly cut criteria
of achievement;

• Quality: an attribute for which an actor desires some level of achievement;
• Task: an action that an actor wants to be executed, usually with the purpose of

achieving some goal;
• Resource: a physical or informational entity that the actor requires in order to

perform a task.

The Family Goal Model schema below highlights the formal specification of the
Family Goal Model adopted in our proposal. Constraint (c12) states that Goals and
Tasks must have a non-empty status. In addition, if there is a set of Tasks (tset), such
that the Goal is a subset of tset, then the Goal is fulfilled (c13). Moreover, a Goal is a
Requirement if there is some Agent Actor act which occupies a Role which in turn is
responsible for the Goal (c14). A Goal is an Expectation, if there is some specific Role
that is responsible for the Goal (c15).

136 H. Haidar et al.

Several types of link exist in order to connect intentional elements. These links are:
refinement, needed-by, contribution and qualification.

Refinement is an n-ary relationship relating one parent to one or more children. An
intentional element can be the parent in at most one refinement relationship. There are
two types of refinement – applied to any kind of parent (i.e. Goal or Task) – that define
the logical operator relating the parent with the children:

• AND-refinement: the fulfillment of all the n children (n � 2) makes the parent
fulfilled;

• Inclusive OR: the fulfillment of at least one child makes the parent fulfilled.

The Needed-By relationship links a task with a resource and indicates that the actor
needs the resource in order to execute the task. The Contribution links represent the
effects of intentional elements on qualities, and are essential to assist analysts in the
decision-making process among alternative goals or tasks. Contribution links lead to
the accumulation of evidence for qualities. The Qualification relationship relates a
quality to its subject (i.e. a task, goal, or resource).

In our proposal the goal model called Family Goal Model, represents the intentional
space of a domain for which the product line is developed. The adopted goal-oriented
approach helps to build artifacts that represent stakeholders’ objectives and strategies.

3.3 Feature Sub-model

As stated above, our proposal offers feature-oriented design and implementation for
which feature models are a standard visual representation. Feature models support a
natural description of a wide range of variability schemata.

Several definitions to what domain experts call “feature” exist in the literature (see
[43]). Due to the lack of space, we will not list them here and adopt the following
definition of the term feature based on [43]: A feature is a characteristic or end-user-
visible behavior of a software system. Features are used in product line engineering to
specify and communicate commonalities and differences of the products between
stakeholders, and to guide structure, reuse, and variation across all phases of the
software life cycle [19].

A feature model is a tree of which nodes are labelled with feature names. It also
proposes various parent-child relationships between features and their constraints. In
fact, if a feature f is a child of another feature p, f can be selected only when p is also
selected. Typically, a feature model includes mutual relations between features. In
addition, Mandatory and Optional features are distinguished within the feature model.
Note that in our proposal we focus on Boolean features identified by a name. In
principle, non-Boolean features or attributes of features may also be of interest in
distinguishing applications of the product line. In this paper, we cover essentially
Boolean features; non-Boolean features will be studied in future work.

An Integrated Requirements Engineering Framework 137

The Feature Model schema above formalizes the Feature Model concepts. All
feature names from the set F of feature names are interpreted as propositional variables,
p, f and fi represents members of F. Each edge in the tree is defined by exactly one
feature constraint, that is, by a declaration of one of the feature constraint types
mandatory, optional, alternative, or “or”. A mandatory feature definition between a
parent feature and a child feature corresponds to a logical equivalence. That is,
whenever the parent feature is selected, so must the child and vice-versa (c17). An
optional feature corresponds to implication. The implication states that the parent
feature may be chosen independently from the child feature, but the child feature can
only be chosen if the parent feature is selected (c18). The alternative constraint defines
a one-out-of-many choice. The definition of the constraint (c19) has the parent feature
as first parameter and a non-empty set of child features as second parameter. This
constraint is a disjunction in which, at least, one child feature is selected when the
parent is chosen. In addition, we ensure for each pair of child features that no two child
features are selected together. An unrestricted choice or “or” defines a some-out-of-
many choice. Again, the constraint (c20) has a non-empty set of child features as
second parameter. The selection of parent feature is equivalent to a disjunction of the

138 H. Haidar et al.

child features. Additionally, a set of cross-tree constraints may be defined in the feature
model. The corresponding propositional formula of the feature constraints and the
cross-tree constraints are conjoined resulting in one logic formula that represents the
semantics of the whole feature model.

4 User Story Concept

Our proposed metamodel focuses on agile perspectives. Relevant agile requirements
artifacts thus play, a core role within the proposal. This section details the user story
concept, which the proposed metamodel integrates. User stories are considered here
due to their wide use and to take profit from their effectiveness. Leffingwell [44] and
Chon [22], consider them as an increasingly popular textual notation to capture
requirements in agile software development. User stories are statements that use a
simple template such as “As a ⟨role⟩, I want ⟨goal⟩, [so that ⟨benefit⟩]”.

The User Story schema above formalizes the User Story (li) concept. Let
U = {l1, l2,…} a set of user stories in a project. A user story l is a 4-tuple li= ⟨ri, mi,
Ei, fi⟩ where r is the role, m is the means, E = {e1, e2,…} is a set of ends, and f is the
format. In addition, a means m is a 5-tuple m = ⟨s, av, do, io, adj⟩ where s is a
“subject”, av is an “action verb”, do is a “direct object”, io is an “indirect object”,
and adj is an “adjective” (io and adj may be null).

A user story l1 is an exact duplicate of another user story l2 when they are identical
(c21). The constraint (c22) indicates that a user story l1 duplicates the request of l2,
while using a different text (i.e. Semantic Duplicate). (c23) denotes two or more user
stories that have the same end, but achieve this using different means. (c24) represents
the case in which two or more user stories use the same means to reach different ends.
For the case where two or more user stories with different roles, but same means and/or
ends we formalize the constraint (c25). When there is a strong semantic relationship
between two user stories, it is important to add explicit dependencies to the user stories,
although this breaks the independent criterion (c26). Uniformity in the context of user
stories means that a user story format is consistent with the one of the majority of user
stories in the same set. Therefore, the format f1 of an individual user story l1 is
syntactically compared to the most common format fstd to determine whether it adheres
to the uniformity criterion (c27).

An Integrated Requirements Engineering Framework 139

In some cases, it is necessary that one user story l1 be completed before the
developer can start on another story l2. Formally, the predicate has-Dep(l1, l2) holds
when l1 causally depends on l2 (c28). Moreover, an object of one user story l1 can
refer to multiple other objects of stories in U, indicating that the object of l1 is a parent
or superclass of the other objects. Formally, predicate has-is-a-Dep(l1, l2) is true when
l1 has a direct object superclass dependency based on the sub-class do2 o do1 (c29).

Implementing a set of user stories U should lead to a feature-complete application.
While user stories should not thrive to cover 100% of the application’s functionality
preemptively, crucial user stories should not be missed, for this may cause a show
stopping feature-gap. The predicate void-Dep(l1) holds when no story l2 satisfies a
dependency for l1’s direct object (c30).

140 H. Haidar et al.

In a nutshell, our proposed metamodel offers a better understanding of the repre-
sentation of product lines requirements and their stakeholders’ requirements. In addi-
tion, it takes inspiration from research in GORE frameworks such as iStar 2.0 [41], and
from feature-oriented modeling [19], related to agile requirements practices like user
stories [22, 23, 44, 45].

5 The AgiFPL Methodology

This section illustrates how our proposed metamodel can be adopted for the require-
ments engineering stage of agile product lines, when using methodology called AgiFPL
[10]. Like classical agile product lines methodologies, AgiFPL is a feature-oriented
approach involving two classical tiers of product line engineering: Domain Engineering
and Application Engineering.

AgiFPL also considers two spaces: the Problem and Solution ones. The problem
space calls attention to the perspective of stakeholders and their problems, require-
ments, and views of the entire domain and individual products. The solution space
represents the developers’ and vendors’ perspectives [19]. The Solution Space is not
targeted in this work since our proposed metamodel is designed essentially for the
requirements engineering concerned by the Problem Space.

Integrating our proposed metamodel to AgiFPL allows modelling and managing
intentions, goals, variabilities and commonalities of the product lines. For example, the
“Family Goal Models” of our proposed metamodel will guide the development of
variability of the product line in the domain engineering, while they are used for the
configuration of products in the application engineering. Note that in this paper we will
not present all processes of AgiFPL. However, we will detail the processes that concern
the requirements engineering in both tiers of the methodology (i.e. Domain require-
ments engineering process and Application requirements engineering process).

Fig. 2. Problem space of domain engineering in AgiFPL [8].

An Integrated Requirements Engineering Framework 141

Figure 2 illustrates the problem space of the Domain Engineering tier. The figure
depicts the main steps of the RE process followed in the domain engineering. Based on
the strategy of a software vendor who decides to adopt AgiFPL, Domain Experts and
concerned teams apply our proposed metamodel as follows:

1. Execute a sub-process for modeling the family goal models. (i.e. goal-oriented
requirements engineering);

2. Apply the stated practices and rules of our proposal in order to generate the cor-
respondent feature models (specifies and design the desired domain – i.e. Domain
Design & Feature Backlog);

3. Prioritize the identified features of the designed domain and then document the
required user stories (apply the correspondent agile requirements practices – i.e.
Stories Backlog, tests, …).

Figure 3 presents the problem space of the Application Engineering tier. The
concerned requirements engineering process of this tier starts with the goals and the
intentions of a specific product owner. These personal goals and intentions are studied,
modelled and realized according to our proposed metamodel. For this stage, we pro-
pose two optional ways.

Based on the goals and intentions of the “App i Owner” and the context of the
“Line i”, the “Line i Team” has to choose the way that best fits the context:

1. In the case where the “line team” has to develop new reusable artefacts that do not
exist within the common assets, the team applies the same process used for the
domain-engineering phase;

2. In the case where some stakeholders’ goals do not affect the product line, have not
equivalent features in the common assets and concern a specific product, the “Line
Team” produces directly the User Stories and their Backlogs.

Fig. 3. Problem space of application engineering in AgiFPL [8].

142 H. Haidar et al.

Making the relevant decisions for each tier allows analysts and developers of an
agile product line to efficiently represent stakeholders’ intentions and goals on the one
hand and product line variabilities and communalities on the other hand. AgiFPL is
thus an agile methodology designed to improve the agility within the software product
lines and effectively meet any new emerged business expectations. Its main goal is to
move teams from the classical approach to a more evolved APLE framework.

6 Applying the Proposed Metamodel

A simple and short example related to an e-commerce product line is outlined below to
describe and show the applicability of our proposed metamodel. The e-commerce case
study is available in the SPLOT repository (Software Product Lines Online Tools –

http://www.splot-research.org/).
We first design the family goal model related to the case study and then follow the

practices of our proposed metamodel to generate the correspondent feature model. Due
to the lack of space, we only present the application of Goals and Features sub-models,
the mapping from the goal model to its correspondent feature model and an example of
user story.

Figure 4 shows a concrete “Family Goal Model” of the “Order Process” related to
the e-commerce case study (modeled using iStar 2.0). It represents the intentional
elements and relations. For example, the goal <Item_Available> can be achieved by
<Prepare_and_Package_Item>, by <Obtain_From_Stock>, and by <Aquire_From_
Supplier>. In addition, satisfactions of the tasks <Obtain_From_Stock>, and
<Aquire_From_Supplier> lead to satisfaction and dissatisfaction of the quality
<Avoid_Unsold_Stock>. In fact, if the “sales department” adopts a “Make to Stock”
strategy, it could lead to unsold items. However, adopting “Make to Order” strategy
will help to avoid a stock of unsold items.

According to our proposed framework, to represent a mapping we should develop a
mapping relation (U) for each mapped task. For example, the Approve Order (AO) task
is mapped to the Automatic Approval, and Manual Approval features. Therefore, the
mapping relation created is the following:

UAO ðApprove Order; Automatic Approval;Manual Approvalf gÞ:

Moreover, the Receive e-Payment (REP) task is mapped to Debit Card Payment,
Credit Card Payment, and Payment Gateway. Thus, the mapping relation created is the
following:

UREP ðReceive e-Payment; Debit Card Payment;Credit Card Payment; Paymentf
GatewaygÞ:

An Integrated Requirements Engineering Framework 143

http://www.splot-research.org/

Once the “explicit mapping” between tasks in the family goal model and features in
feature model is executed, we can start an “implicit mapping” between intermediate
tasks, goals, and features. The implicit mapping is performed between “intentional
relations” in family goal models and “feature relations” in feature models. For example,
following our proposed metamodel, we can infer that the goal Payment Managed (PM)
in the family goal model (see Fig. 4) is implicitly mapped to the feature Payment
Management (PMa) (see Fig. 5).

Note that, if a feature is mapped to more than one goal or/and task, then the
corresponding feature appears in the mapping relations of all those goals or/and tasks.

Figure 5 shows the corresponding feature model of the family goal model presented
in Fig. 4. The obtained feature model is represented using a tree graphical notation that
could be translated into propositional logic. In addition, the feature model is generated
according to the rules and practices of our proposed metamodel.

Based on the illustrated example, it was shown that the modeled family goal model
of “Order Processes” (i.e. Figure 4) captures the intentional variability and describes
the intentions behind existing features in the product line of e-commerce. Hereafter, we
present some mappings as follows:

Order Processes (G-OP) = Order Management
Order Approved (G-OA) = Order Preparation
Payment Managed (G-PM) = Payment Management
Item Available (G-IA) = Item Preparation
Check Correctness of Order (T-CCO) = Order Confirmation (FC ˅ MC ˅ EC)
Obtain From Stock (T-OFS) = TFW
Acquire From Supplier (T-AFS) = BI
Apply Discount (T-AS) = (CoP ˅ PD)

Fig. 4. A FGM for “Order Processes” modeled from the e-commerce case study [8].

144 H. Haidar et al.

Finally, as an illustration of user stories generated according to our proposed
metamodel from the correspondent features, <Invoicing> could be realized by several
user stories, such as: As ⟨Accountant⟩, I want to ⟨Generate and Send Invoices⟩, so that
⟨the Invoice can be paid⟩.

7 Conclusion

Approaches that combine agility attribute with software product lines have been pro-
posed to practitioners and researchers. Being agile while preserving a software product-
line structure implies the adopted Agile Product Line approach conforms to agile
values and principles. Requirements engineering issues are main elements to consider
when integrating agility to software product lines. Collaborating with customers and
responding quickly to changes are principals that have to be supported by any proposed
(agile) process. Thus, any Agile Product Line approach should assign a high priority to
satisfy customers through early and continuous delivery of valuable software from the
start, in addition to accommodate any changing requirements, even coming late in the
process.

Following these guidelines, our previous research has proposed an integrated and
consistent metamodel for software analysts and developers who adopt agile product
line approaches. The main contribution presented in [8] allows capturing intentional
variability and describing goals behind existing features in the agile product line.
Therefore, by using family goal models we can ensure that existing features and
variability relations in feature models are aligned with intentional variability in the
family goal models. In addition, we can trace back differences in products from dif-
ferences in the intentions of stakeholders. Moreover, applying intentional elements

Fig. 5. Correspondent feature model [8].

An Integrated Requirements Engineering Framework 145

within agile product lines not only facilitates identifying features in domain engi-
neering, but also eases the selection of features based on stakeholder’s intentions and
needs in the application engineering.

While our previous research has described the metamodel from a practical point of
view, this paper, has extended [8] with relevant literature review that lead us to define
theoretically the metamodel. This extended paper compares how agile methods and
product-line approaches take in charge “Requirements”, “Architecture”, and “Reuse”.
It studies also the requirements engineering approaches, tools or practices within the
identified publications that propose agile product lines models or approaches. Identi-
fying and studying RE techniques of relevant agile product lines approaches has helped
us to propose a powerful, convenient, and performant framework that can be applied to
the requirements engineering stage of feature-oriented agile product lines. By sum-
marizing the RE Tools/approach and activities identified in studied agile product line
approaches, we could point out that each approach covers partially the agile values and
principles related to RE. However, in our framework, we aim to cover all the agile
values and principles (i.e., values 2 and 3, and principles 1, 2, 7 and 8 of the agile
manifesto) by modeling the organizational and operational context of the domain and
application engineering tiers within the environment of a product line. The framework
allows capturing intentional variability and describing the intentions behind existing
features in the agile product line.

Our future priorities aim to develop a procedure to discover inconsistencies in
mapping results (i.e., generated goal models and/or generated feature models. We will
aim at extending the validation technique to cover other properties such as for example
safe composition (i.e., for all goal models modeled within the application engineering
tier, they have at least one correspondent feature model and vice versa).

References

1. da Silva, I.F., da Mota Silveira Neto, P.A., O’Leary, P., de Almeida, E.S., de Lemos Meira,
S.R.: Agile software product lines: a systematic mapping study. Softw.: Pract. Exp. 41(8),
899–920 (2011)

2. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2001)

3. Díaz, J., Pérez, J., Alarcón, P.P., Garbajosa, J.: Agile product line engineering - a systematic
literature review. Softw.: Pract. Exp. 41(8), 921–941 (2011)

4. Asadi, M., Ramsin, R.: MDA-based methodologies: an analytical survey. In: Schieferdecker,
I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 419–431. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69100-6_30

5. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Berlin (2005)

6. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software engineering.
IEEE Softw. 15(6), 37–45 (1998)

146 H. Haidar et al.

http://dx.doi.org/10.1007/978-3-540-69100-6_30

7. Alves, V., Niu, N., Alves, C.F., Valença, G.: Requirements engineering for software product
lines: a systematic literature review. Inf. Softw. Technol. 52(8), 806–820 (2010)

8. Haidar, H., Kolp, M., Wautelet, Y.: Formalizing agile software product lines with a RE
metamodel. In: 13th International Conference on Software Technologies, ICSOFT 2018,
pp. 90–101. SciTePress, Porto (2018)

9. O’Regan, G.: Z formal specification language. In: O’Regan, G. (ed.) Mathematics in
Computing: An Accessible Guide to Historical, Foundational and Application Contexts,
pp. 109–122. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4534-9_6

10. Haidar, H., Kolp, M., Wautelet, Y.: Agile product line engineering: the AgiFPL method. In:
12th International Conference on Software Technologies, ICSOFT 2017, pp. 275–285.
SciTePress, Madrid (2017)

11. Borba, C., Silva, C.: A comparison of goal-oriented approaches to model software product
lines variability. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 244–
253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04947-7_30

12. Tian, K., Cooper, K.: Agile and software product line methods: are they so different. In: 1st
International Workshop on Agile Product Line Engineering (2006)

13. Carbon, R., Lindvall, M., Muthig, D., Costa, P.: Integrating product line engineering and
agile methods: flexible design up-front vs. incremental design. In: 1st International
Workshop on Agile Product Line Engineering (2006)

14. Boehm, B.W.: Get ready for agile methods, with care. IEEE Comput. 35(1), 64–69 (2002)
15. Navarrete, F., Botella, P., Franch, X.: How agile COTS selection methods are (and can be).

In: Proceedings of the 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, Porto, Portugal, pp. 160–167. IEEE Computer Society (2005)

16. Noor, M.A., Rabiser, R., Grünbacher, P.: Agile product line planning: a collaborative
approach and a case study. J. Syst. Softw. 81(6), 868–882 (2008)

17. Schön, E.-M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a
systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017)

18. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation.
Computer 34(9), 120–122 (2001)

19. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37521-7

20. Northrop, L., Clement, P.C.: A framework for software product line practice, version 5.0.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=495357. Accessed 23 Nov
2018

21. Irshad, M., Petersen, K., Poulding, S.: A systematic literature review of software
requirements reuse approaches. Inf. Softw. Technol. 93(C), 223–245 (2018)

22. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co., Boston (2004)

23. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans, S.: Bridging user story sets with the
use case model. In: Link, S., Trujillo, Juan C. (eds.) ER 2016. LNCS, vol. 9975, pp. 127–
138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47717-6_11

24. van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71437-8

25. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process.
Addison-Wesley Professional (2012)

An Integrated Requirements Engineering Framework 147

http://dx.doi.org/10.1007/978-1-4471-4534-9_6
http://dx.doi.org/10.1007/978-3-642-04947-7_30
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7
https://resources.sei.cmu.edu/library/asset-view.cfm%3fassetID%3d495357
http://dx.doi.org/10.1007/978-3-319-47717-6_11
http://dx.doi.org/10.1007/978-3-540-71437-8
http://dx.doi.org/10.1007/978-3-540-71437-8

26. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story models. In:
Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H.,
Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07881-6_15

27. Broy, M.: Domain modeling and domain engineering: key tasks in requirements engineering.
In: Münch, J., Schmid, K. (eds.) Perspectives on the Future of Software Engineering.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37395-4_2

28. Klünder, J., Hohl, P., Schneider, K.: Becoming agile while preserving software product
lines: an agile transformation model for large companies. In: Proceedings of the 2018
International Conference on Software and System Process, Gothenburg, Sweden, pp. 1–10.
ACM (2018)

29. Babar, M.A., Ihme, T., Pikkarainen, M.: An industrial case of exploiting product line
architectures in agile software development. In: Proceedings of the 13th International
Software Product Line Conference, San Francisco, California, USA, pp. 171–179. Carnegie
Mellon University (2009)

30. Ghanam, Y., Park, S., Maurer, F.: A test-driven approach to establishing & managing agile
product lines. In: Proceedings of the 5th Software Product Line Testing Workshop (SPLiT
2008) in Conjunction with SPLC 2008, Limerick, Ireland (2008)

31. O’Leary, P., McCaffery, F., Thiel, S., Richardson, I.: An agile process model for product
derivation in software product line engineering. J. Softw. Maint. Res. Pract. 24(5), 561–571
(2012)

32. Díaz, J., Pérez, J., Garbajosa, J.: Agile product-line architecting in practice: a case study in
smart grids. Inf. Softw. Technol. 56(7), 727–748 (2014)

33. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River (2002)

34. dos Santos Jr., A.F., Lucena Jr., V.F.: SCRUMPL - software product line engineering with
scrum. In: Proceedings of ENASE 2010 - Conference on Evaluation of Novel Approaches to
Software Engineering, Setubal, Portugal, pp. 239–244. SciTePress (2010)

35. Kuhrmann, M., Tiessler, M.: Crafting a Method Engineering Metamodel – Approach,
Methods, Results. TU München, Garching (2014)

36. Engels, G., Sauer, S.: A meta-method for defining software engineering methods. In: Engels,
G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations
and Model-Driven Engineering. Lecture Notes in Computer Science, vol. 5765, pp. 411–
440. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17322-6_18

37. OMG: Unified Modeling Language (OMG UML) - version 2.5.1. Technical report (2017)
38. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds.): Social Modeling for Requirements

Engineering. MIT, Cambridge (2011)
39. Mouratidis, H., Kolp, M., Faulkner, S., Giorgini, P.: A secure architectural description

language for agent systems. In: Proceedings of the 4th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 578–585. ACM, The Netherlands (2005)

40. Asadi, M., Gröner, G., Mohabbati, B., Gasevic, D.: Goal-oriented modeling and verification
of feature-oriented product lines. Softw. Syst. Model. 15(1), 257–279 (2014)

41. Dalpiaz, F., Franch, X., Horkoff, J.J.C.: iStar 2.0 Language Guide (v3) 2016. https://arxiv.
org/pdf/1605.07767v3.pdf. Accessed 14 Oct 2018

42. Jaqueira, A., Lucena, M., Alencar, F.M.R., Castro, J., Aranha, E.: Using i* models to enrich
user stories. In: Proceedings of the 6th International i* Workshop 2013, Valencia, Spain,
pp. 55–60. CEUR-WS.org (2013)

148 H. Haidar et al.

http://dx.doi.org/10.1007/978-3-319-07881-6_15
http://dx.doi.org/10.1007/978-3-642-37395-4_2
http://dx.doi.org/10.1007/978-3-642-17322-6_18
https://arxiv.org/pdf/1605.07767v3.pdf
https://arxiv.org/pdf/1605.07767v3.pdf

43. Haidar, H., Kolp, M., Wautelet, Y.: Goal-oriented requirement engineering for agile software
product lines: an overview. LouRIM Working Paper Series, February 2017. http://hdl.
handle.net/2078.1/185846

44. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley Professional, Boston (2011)

45. Wautelet, Y., Heng, S., Kiv, S., Kolp, M.: User-story driven development of multi-agent
systems: a process fragment for agile methods. Comput. Lang. Syst. Struct. 50, 159–176
(2017)

46. Kolp, M., Do, T., Faulkner, S.: Introspecting agent-oriented design patterns. In: Chang, S.K.
(ed.) Handbook of Software Engineering and Knowledge Engineering: Recent Advances:
Recent Advances, vol. 3, pp. 151–177. World Scientific Publishing (2005)

An Integrated Requirements Engineering Framework 149

http://hdl.handle.net/2078.1/185846
http://hdl.handle.net/2078.1/185846

Systematic Refinement of Softgoals Using
a Combination of KAOS Goal Models

and Problem Diagrams

Nelufar Ulfat-Bunyadi(B), Nazila Gol Mohammadi, Roman Wirtz,
and Maritta Heisel

University of Duisburg-Essen, Duisburg, Germany
{nelufar.ulfat-bunyadi,nazila.golmohammadi,roman.wirtz,maritta.heisel}@uni-due.de

Abstract. Softgoals are goals that do not have a clear-cut criterion for
their satisfaction (in contrast to so-called hardgoals). They are consid-
ered to be satisfied when there is sufficient positive and little negative
evidence for this claim. Thus, they are expected to be satisfied within
acceptable limits rather than absolutely. Examples of such softgoals are
quality attributes such as safety, security, and trustworthiness. In a pre-
vious paper, we showed how the systematic refinement of goals can be
supported by combining KAOS goal models and problem diagrams that
are created based on the Six-Variable Model. Therein, we mainly focussed
on hardgoals. In this paper, we show how the systematic refinement of
softgoals can be supported. We mainly focus on security as a softgoal and
show how it can be refined in a systematic way. However, our method
can be used in the same way to systematically decompose other soft-
goals as well. The benefit of our method is that it results not only in
detailed security requirements but helps also in making expectations to
be satisfied e.g. by sensors, actuators, other systems, and users explicit.

Keywords: Softgoal · Goal refinement ·
KAOS goal model · Problem diagram · Security goal ·
Security concern · Security requirement · Assumption · Expectation

1 Introduction

In goal modelling, two types of goals are frequently distinguished: softgoals and
hardgoals [1]. In contrast to hardgoals, softgoals are goals that do not have a
clear-cut criterion for their satisfaction. A softgoal is considered to be satisfied
(or, more precisely, ‘satisficed’) when there is sufficient positive and little nega-
tive evidence for this claim [2]. Quality attributes such as safety, security, and
trustworthiness are typical softgoals.

KAOS is a goal-oriented requirements engineering methodology that was
developed by van Lamsweerde [3]. In a KAOS goal model, multi-agent goals are
refined until they can be assigned to single agents, i.e. either to the software-to-
be or to agents in the software’s environment (e.g. sensors, actuators, devices,
c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 150–172, 2019.
https://doi.org/10.1007/978-3-030-29157-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_7

Systematic Refinement of Softgoals 151

users). As regards the refinement of goals in KAOS goal models, van Lamsweerde
[3] suggests some heuristics to support this task. One heuristic consists in asking
HOW questions (e.g. How can a goal G be satisfied? Is this subgoal sufficient or
is there any other subgoal needed for satisfying G?). Another heuristic is called
Split responsibilities. According to this heuristic, a goal is refined into subgoals
by requiring the subgoals to involve fewer potential agents in their satisfaction
than the parent goal. However, these are only heuristics. A systematic approach
for achieving such a refinement and arriving at such subgoals is not provided.

In a previous paper [4], we presented a method that fills this gap and supports
the systematic refinement of goals in KAOS goal models using an extension (the
so-called Six-Variable Model [5]) that was originally made to problem diagrams
[6] but is also useful for goal modelling. However, therein, we mainly focussed on
hardgoals. In this paper, we therefore want to show how the systematic refine-
ment of softgoals in KAOS goal models can be supported. Decomposing softgoals
is more difficult than decomposing hardgoals, because softgoals do not have a
have a clear-cut criterion for their satisfaction. For softgoals such as safety, secu-
rity, and trustworthiness, the decomposition is not straightforward. Security,
for example, is frequently decomposed into the three subgoals confidentiality,
integrity, availability. However, simply stating that the confidentiality, integrity,
and availability of an asset must be protected (e.g. “The user data should be
confidential.”) is not useful, since such requirements are not verifiable. They are
too high-level and imprecise. Therefore, we suggest following a different approach
in this paper. We identify security concerns of different stakeholders regarding
the assets shown in problem diagrams. These concerns refer to confidentiality,
integrity, and availability, but on a much more detailed level. Then, we define
security requirements that address these concerns. All the security requirements
contribute to satisfying the security softgoal. Thus, our method can be consid-
ered rather as a bottom-up approach than a top-down approach. We will mainly
focus on security as a softgoal and show how it can be refined in a systematic
way. However, our method can be used in the same way for other softgoals as
well.

The paper is structured as follows. In Sect. 2, we first introduce the funda-
mentals of our work. In Sect. 3, we present our method. In Sect. 4, we illustrate
its application using an example from the insurance domain. In Sect. 5, we dis-
cuss related work. Finally, in Sect. 6, we provide a conclusion and an outlook on
future work.

2 Fundamentals

KAOS goal models and problem diagrams are both based on the well-known sat-
isfaction argument developed by Zave and Jackson [7]. This commonality facil-
itates combining them and transferring or using concepts like the Six-Variable
Model (defined for problem diagrams) for goal models as well to overcome short-
comings like the lack of support for a systematic refinement of goals. In this
section, we first introduce briefly the satisfaction argument, KAOS goal models,

152 N. Ulfat-Bunyadi et al.

problem diagrams, and the Six-Variable Model. Then, we describe how these
were used in our previous method [4].

The Satisfaction Argument. According to Zave and Jackson [7], a system consists
of the so-called machine (i.e. the software-to-be) and its environment (i.e. a part
of the real world). The current behaviour of the environment is unsatisfactory.
The objective of software development is to develop a software that will be
inserted into this environment to achieve that the behaviour is satisfactory then.
There are three types of statements about the machine, the environment, and
the system: the specification S, the domain knowledge D, and the requirements
R. Based on these statements, the satisfaction argument is defined as follows:
S,D � R. The argument says that, if a software is developed which satisfies
S and is integrated into an environment as described by D, and S and D are
consistent with each other, then R is satisfied.

KAOS Goal Models. Van Lamsweerde [3] calls S software requirements and
R system requirements. As regards the domain knowledge D, he distinguishes
between: domain properties (facts about the environment) and assumptions
(about the environment). Assumptions are in turn divided into domain hypothe-
ses (to be satisfied by the entire environment) and expectations (to be satisfied
by single agents in the environment).

A KAOS goal model is an AND/OR graph. An example is shown in Fig. 10.
As nodes of the graph, goals (hardgoals and softgoals), domain properties, and
domain hypotheses can be modelled. Goals that are further refined are so-called
multi-agent goals (i.e. several agents are responsible for satisfying them). Goals
that are not further refined (i.e. leaves of the graph) are single-agent goals.
This means they are assigned to single agents who are responsible for satisfy-
ing them. Single-agent goals assigned to the software-to-be represent software
requirements. Single-agent goals assigned to the environment represent expecta-
tions. The AND/OR-refinement relationships between the nodes in the graph
show which subgoals need to be satisfied and which domain properties and
domain hypotheses need to be valid to satisfy a parent goal. Thus, the goal
refinement structure in KAOS goal models reflects Zave and Jackson’s satisfac-
tion argument.

Problem Diagrams. Problem diagrams have been introduced by Jackson as part
of the problem frames methodology [6]. According to this methodology, first,
a context diagram is created showing the machine in its environment. Then,
the overall software development problem is decomposed into sub-problems, and
each sub-problem is documented in a problem diagram.

The problem diagram notation is shown in Fig. 1. The software-to-be is mod-
elled as the so-called machine domain. The environment is represented in terms
of so-called problem domains which are material or immaterial objects in the
environment that are relevant for the machine for satisfying the requirements.
Between problem domains, machine domain, and requirements, three types of
relationships can be modelled. Interfaces exist between machine domain and

Systematic Refinement of Softgoals 153

problem domains or among problem domains. At the interfaces, phenomena (e.g.
events, states, values) are shared. Sharing means that one domain controls a phe-
nomenon, while the other observes it. At interfaces, not only the phenomena are
annotated but also an abbreviation of the domain controlling them followed by
an exclamation mark (e.g. CM!). A requirement is connected to problem domains
by means of a requirement reference or a constraining reference. A requirement
reference expresses that the requirement refers to phenomena of the domain,
while a constraining reference expresses that the requirement constrains (i.e.
influences) them. An example of a problem diagram is shown in Fig. 6.

While problem diagrams show what the software development problem is,
the context diagram shows where the software development problem is located.
The context diagram shows the environment of the machine in terms of problem
domains and how the machine domain is related to them. Thus, it does not
contain any requirement. It serves as a foundation for decomposing the overall
software development problem into sub-problems and creating problem diagrams
for each sub-problem. An example of a context diagram is shown in Fig. 5.

The Six-Variable Model. The Six-Variable Model extends the well-known Four-
Variable Model [8] which defines the content of software documentation (e.g. of
documentations to be created during requirements engineering). A control sys-
tem typically consists of some control software that uses sensors and actuators
for monitoring and controlling certain quantities (variables) in the environment.
During requirements engineering, four types of variables and the relationships
between them should be documented: monitored variables m (environmental
quantities that the software monitors through input devices like sensors), con-
trolled variables c (environmental quantities that the software controls through
output devices like actuators), input variables i (data items that the software
needs as input), and output variables o (quantities that the software produces
as output).

However, it is not always possible to monitor/control exactly those vari-
ables one is interested in. Then, sensors and actuators are selected which moni-
tor/control a different set of variables which are related to the ones of real inter-
est. The Six-Variable Model demands that the variables of real interest are doc-
umented as well beside the classical four variables m, c, i, and o (see Fig. 1). The
two newly introduced variables are the so-called referenced and desired variables
r and d. Referenced variables are environmental quantities that should originally
be observed in the environment, i.e. before deciding which sensors/actuators to
use for monitoring/controlling. Desired variables are environmental quantities
that should originally be influenced in the environment.

Sometimes there is not only one sensor or one actuator between the envi-
ronmental domain and the machine domain but a chain of sensors or a chain of
actuators. Then, there are not only 4 + 2 variables to be documented but even
4+n variables. Jackson [6] calls problem domains like the sensors/actuators con-
nection domains and allows for omitting them from a problem diagram when
they are considered to be reliable. However, if they are unreliable, they should
be modelled explicitly in the diagrams.

154 N. Ulfat-Bunyadi et al.

Control
machine

Monitored
domain

REQ

Controlled
domain

SE!{i}

CM!{o}

Sensor
MD!{m} MD!{r}

Actuator
CD!{d}AC!{c}

Used sensors/
actuators/

other systems

Requirement
in environment

Software-to-be
Problem
domains

in environment

Legend:

Machine
domain

Problem
domain

InterfaceRequirement Requirement
reference

Constraining
reference

r: referenced variables
d: desired variables
m: monitored variables
c: controlled variables
i: input variables
o: output variables

Fig. 1. The Six-Variable Model (taken from [5]).

For problem diagrams created based on the Six-Variable model, the domain
hypotheses (DH), expectations (Exp), and software requirements (SOF) can be
made explicit as shown in Fig. 2. DH-MD is a hypothesis about the monitored
domain, which needs to be true. Exp-SE is an expectation to be satisfied by the
sensors, Exp-AC is an expectation to be satisfied by the actuators, and Exp-
CD is an expectation to be satisfied by the controlled domain. SOF represents
the software requirements which are to be satisfied by the control machine. The
requirements REQ can only be satisfied, if DH-MD is valid and Exp-SE, SOF,
Exp-AC, and Exp-CD are satisfied. This is expressed by the following satisfaction
argument: DH-MD,Exp-SE, SOF,Exp-AC,Exp-CD � REQ.

DH-MD: m
actually
reflects r

r m

Control
machine

Monitored
domain

REQ

i

o

Sensor m r

Actuator c
Controlled

domain d

Exp-SE: i
actually

corresponds
to m

i m

Exp-AC: o
actually

results in c

o
c Exp-CD: d is

actually
achieved by c

c d

SOF:
produce o

from i

o
i

Fig. 2. Assumptions in the Six-Variable Model (taken from [5]).

Systematic Refinement of Softgoals 155

Systematic Goal Refinement in KAOS using the Six-Variable Model. As
described above, KAOS goal models and problem diagrams have in common
that they are both based on the satisfaction argument. As shown in Fig. 3, we
exploit this commonality for refining goals in KAOS goal models in a system-
atic way. For each high-level goal in a KAOS goal model, we suggest creating
a problem diagram based on the Six-Variable Model. The benefit of problem
diagrams which are created based on the Six-Variable Model is that the six
variables are made explicit therein. This information is missing in KAOS goal
models. Based on the six variables, the expectations, domain hypotheses, and
domain properties can be made explicit more easily because they are actually
statements describing the relation between two or more variables. For example,
the relation between r and m is usually a domain hypothesis, if r and m are
different (e.g. if a variable m is monitored which is only an estimation of r). The
problem diagram thus results in a decomposition of the high-level goal (G2.2 in
Fig. 3) into software requirements, expectations, and domain hypotheses. This
decomposition can then also be modelled in the KAOS goal graph.

G2

G2.1 G2.2

SofReq Exp-SE DH

Machine

G2.2

Env. Mon.Sensor

Env. Con.Actuator

Machine

DHExp-
SE

Exp-
AC

Exp-
EC.

SofReq

Exp-AC Exp-EC

Sensor Actuator Env. Con.

G0

G1

… …

KAOS Goal Model Problem Diagram based on Six-Variable Model

G2.2

Fig. 3. Combination of KAOS goal models and problem diagrams (taken from [4]).

3 Our Method

Security requirements arise because stakeholders assert that some objects (tan-
gible or intangible) have direct or indirect value. Objects valued in this way are
called assets (cf. [9]) and the stakeholders want to protect them from harm, for
example, from being destroyed, stolen, revealed, or modified. Thus, they have
security concerns regarding these assets. To address these concerns, security

156 N. Ulfat-Bunyadi et al.

lanretxe in
pu

t
dohte

m st
ep

s
/tupni ou

tp
ut

Step 1:
Create
context
diagram

Step 4:
Refine

problem
diagram and

concerns

Step 2:
Create

problem
diagram

Step 3:
Identify
security

concerns

Context
diagram

ex
te

rn
al

in

pu
t

m
et

ho
d

st
ep

s
in

pu
t/

ou

tp
ut

Step 5:
Create

information
flow graph

Step 6:
Identify

vulnerabilities
& unwanted

incidents

Step 7:
Identify
controls

Vulnerabilities &
unwanted
incidents

Expertise of
risk expert

Step 8:
Define security
requirements &

assign
responsibilities

Security
requirements

Information
flow graph

Information
flow graph

KAOS goal model

Problem
diagram (PD)

PD with
security

concerns

Refined PD
with

security
concerns

Controls

Fig. 4. Overview of our method.

requirements must be defined which restrict the number of cases in which the
above-mentioned undesirable outcomes can take place.

The method that we present in the following supports developers in elicit-
ing the security concerns of stakeholders on different levels of granularity and
addressing them by defining detailed security requirements. These detailed secu-
rity requirements contribute all to satisfying the security softgoal. Figure 4 pro-
vides an overview of our method showing the steps to be performed as well as
input and output of these steps. In the following, we describe each step in detail.

Step 1: Create Context Diagram. As a first step, the requirements engineer
creates a context diagram. Note that according to Jackson’s problem frames
method [6], a context diagram shows the machine domain and the problem
domains in its environment. However, we allow also for creating context diagrams
that show only the environment, i.e. without the machine domain. Such context
diagrams help nevertheless to understand the context (i.e. the environment and
the problem that shall be solved) first, before delving into details of the solution
(the software).

Systematic Refinement of Softgoals 157

Step 2: Create Problem Diagram. Based on the context diagram, the require-
ments engineer creates a problem diagram which contains the machine domain
as well as the overall functional requirement to be satisfied by the system (i.e. the
machine and its environment). This problem diagram either contains the same
problem domains as the ones shown in the context diagram, or it may contain
more detailed problem domains as well as more detailed phenomena.

Step 3: Identify Security Concerns. The requirements engineer presents the
problem diagram from Step 2 to the stakeholders (e.g. the client, system users)
to show them which phenomena (data, events, values) are exchanged between
the machine domain and problem domains. Based on this high level problem
diagram, the requirements engineer elicits a first set of security concerns that
are either related to phenomena or to problem domains in the diagram. These
concerns can be documented in the problem diagram as simple comments. To
express whose concern they are, an abbreviation indicating the corresponding
stakeholder can be added to the ID (identification number) of the concern.

Step 4: Refine Problem Diagram and Security Concerns. During this step, the
requirements engineer decomposes the software development problem shown in
the problem diagram from Step 2 and creates problem diagrams for each sub-
problem based on the Six-Variable Model. This means that he/she first answers
the question which problem domains are relevant in the real world because prop-
erties of them need to be observed or changed. This results in the real world
problem domains that need to be modelled and the r and d variables. Then,
the requirements engineer reflects on the way these domains are connected to
the machine and tries to make all connection domains explicit. The connection
domains are added to the model together with their interfaces. As mentioned
before, there may be chains of sensors or chains of actuators that connect the
machine to the real world domains. In this way, the Six-Variable Model forces
developers (i) to model the referenced and desired variables in the environment
which are otherwise often neglected in documentation and (ii) to make connec-
tion domains and phenomena at their interfaces explicit, since they may also
represent assets and may thus be attacked. Together with the stakeholders, the
requirements engineer then refines the security concerns in the refined problem
diagrams and adds newly identified concerns, if necessary. It may be the case
that the same security concern occurs in several problem diagrams but relates
to different phenomena or problem domains in these problem diagrams.

Step 5: Create Information Flow Graph. During this step, the requirements
engineer uses the problem diagrams from Step 4 (that show the six variables) to
create a so-called information flow graph which shows how phenomena are pro-
cessed in the problem diagrams and how they are related to each other (i.e. how
certain phenomena result in other phenomena after being processed). We intro-
duced the information flow graph in previous work [10]. To create the informa-
tion flow graph, the requirements engineer must start with the problem domains
whose phenomena are referenced by the requirement in a problem diagram and

158 N. Ulfat-Bunyadi et al.

must follow the flow of phenomena from there until arriving at the problem
domain(s) which is/are constrained by the requirement. The problem domains
are modelled as rectangles (representing the nodes of the graph) and phenomena
are annotated at arrows (edges) between them. This step is performed for all
problem diagrams and results in one overall information flow graph.

Step 6: Identify Vulnerabilities and Unwanted Incidents. For each security con-
cern shown in the problem diagrams from Step 4, the requirements engineer
analyses how the concern could become true, i.e. he/she looks at the informa-
tion flows in the information flow graph created in Step 5 to identify unwanted
incidents in which this concern would actually become true. Each node and edge
of the information flow graph is analysed by the requirements engineer to iden-
tify unwanted incidents and the vulnerabilities of the system that are exploited
therein. For this step, the participation of a risk or domain expert is necessary.
Identified vulnerabilities and unwanted incidents (possibly including their con-
sequences) can simply be documented as a table or, for example, using so-called
threat diagrams as suggested by Lund et al. [11].

Step 7: Identify Controls. To address the unwanted incidents from Step 6, the
requirements engineer identifies controls during this step. Controls may refer
to hardware or software. One control may address several unwanted incidents.
Again, knowledge from a risk or domain expert is necessary for performing this
step. The controls and the unwanted incidents they address can again be docu-
mented simply as a table or, for example, using so-called treatment diagrams as
suggested by Lund et al. [11]. If the requirements engineer needs more support
in performing Steps 6 and 7, any risk assessment method (such as CORAS [11])
can be applied as well.

Step 8: Define Security Requirements and Assign Responsibilities. Based on the
identified unwanted incidents, vulnerabilities, and controls for addressing the
unwanted incidents, security requirements are defined by the requirements engi-
neer using the following pattern (which is based on the patterns provided by
Wirtz et al. [10]):

Ensure that the risk for [unwanted incident] caused by exploitation of
[vulnerability] is reduced to an acceptable level by applying [control].

However, other patterns for documenting security requirements might be used
as well as long as they document the identified controls. Then, the responsibilities
for realising the controls must be assigned. Sometimes it is the responsibility of
the software-to-be, sometimes of other parts of the system to realise them. There-
fore, we assign the responsibilities for realising the controls to the corresponding
parts of the system during this step. This results in software requirements (when
the software-to-be is responsible) and in expectations (when other parts of the
system are responsible). We suggest documenting these assignments in a KAOS
goal model in the following way. The controls from Step 7 are modelled as goals

Systematic Refinement of Softgoals 159

refining the security softgoal. The software requirements and expectations, which
need to be satisfied for each control, are modelled as responsibility assignments
for corresponding agents in the goal model.

Benefit of the Method. The benefit of our method is that it (i) helps in identifying
the security concerns of different stakeholders, (ii) supports the identification of
vulnerabilities, unwanted incidents, and controls which result in a set of detailed
security requirements and (iii) facilitates the assignment of responsibilities for
satisfying these security requirements. In this way, the security softgoal is decom-
posed in a systematic way. If all agents (i.e. the software/machine and all other
parts of the system) satisfy the goals assigned to them, the security softgoal can
be considered to be satisfied.

4 Application Example

To illustrate our method, we use a system that supports the usage-based auto-
mobile insurance. This example stems from EU project RestAssured1 and is
described in [12]. The system is called PAYD, which stands for “Pay As You
Drive”. This means that the policy premium is determined based on the way the
driver drives. To this end, telemetric data is collected during the ride (e.g. dis-
tance travelled, date, time, speed, direction, and location). The following stake-
holders are involved in this scenario:

– A driver desires an insurance product and wishes to directly engage with and
provide information to an insurance service provider.

– The insurance service provider engages a telematics service provider to man-
age the delivery of driver data streams to the insurance service provider.

– The telematics service provider is the provider of streamed telematic data
from the driver’s connected car to the insurance service provider. A connected
car is a car that is connected to the Internet e.g. by a 3G or 4G mobile
gateway and thus provides for interconnectivity to other devices and sensors
via technologies such as WiFi and Bluetooth (cf. [12]).

– Both, the insurance service provider and the telematics service provider indi-
vidually engage cloud infrastructure and cloud platform providers as part of
their infrastructure that support the insurance service provided by the insur-
ance service provider to the driver.

– The Infrastructure as a Service (IaaS) Providers provide untrusted cloud
infrastructures to the insurance service provider and to the telematic service
provider.

– The Platform as a Service (PaaS) Providers provide untrusted cloud plat-
forms to the insurance service provider and to the telematic service provider.

1 https://restassuredh2020.eu.

https://restassuredh2020.eu

160 N. Ulfat-Bunyadi et al.

Telematics service
provider Car

Insurance service
provider Driver

D! {driving
instructions}

D! {driver information}

T! {evaluated
driving information}

C! {driving information}

Fig. 5. Context diagram for PAYD.

Step 1: Create Context Diagram. Figure 5 shows the environment without the
machine. Important problem domains in the environment are the car driver
and the car, as well as the insurance service provider and the telematics service
provider. The driver provides driving instructions to the car. Driving information
of the ride (e.g. distance travelled, date, time, speed, direction, and location,
etc.) is sent to the telematics service provider who evaluates this information
and sends only evaluated information (i.e. not the raw data) to the insurance
service provider. The insurance service provider also receives driver information
of the driver (e.g. name, age, address, payment information, etc.).

Step 2: Create Problem Diagram. The problem diagram created based on the
context diagram from Step 1 is shown in Fig. 6. Note that the problem dia-
gram contains some details which are different to the context diagram since it is
more concrete. This diagram includes the PAYD machine domain, details about
its environment, and the overall functional requirement G0: “Provide PAYD
insurance”. We use the abbreviation G0 since it is a high level requirement and
therefore represents a goal. Instead of the car domain, the domain “gateway
in car” is shown, instead of the telematics service provider, a telematics com-
ponent is shown, and instead of the insurance service provider, an insurance
component is shown. The PAYD machine transfers the data it receives from the
telematics component to the insurance component. The telematics component
receives the driver information and detailed driving information (i.e. measured
speed, distance travelled, etc.) from the car’s gateway. The telematics provider
evaluates this raw data and provides evaluated information (e.g. a score) to the
PAYD machine. The PAYD machine transfers this data to the insurance compo-
nent of the insurance service provider. The insurance component provides then
an insurance which corresponds to the evaluated driving information received
from the PAYD machine. Note that the telematics component and the insurance
component represent other systems that we use, since they are services.

Step 3: Identify Security Concerns. Figure 7 shows the first set of security con-
cerns that have been identified for the high level problem diagram. As part of
the ID of a security concern, we indicate the stakeholder whose concern it is by
means of an abbreviation (e.g. D stands for driver, TSP for telematics service

Systematic Refinement of Softgoals 161

Telematics
component

Gateway
in car

Insurance
component

Driver

D! {driver information,
driving information}

P! {evaluated
driving information}

G! {driver information,
speed, distance
travelled, etc.}

PAYD
G0: Provide

PAYD
insurance.

T! {evaluated
driving information}

D! {driver information,
driving behaviour}

IC! {premium according
to driving behaviour}

Fig. 6. Problem diagram for G0.

provider, and ISP for insurance service provider). Most of these concerns are
security concerns of the driver (SC1-D to SC5-D); some are the concerns of the
telematics service provider and of the insurance service provider (SC6-TSP and
SC7-ISP). The driver is concerned whether his/her driving behaviour will be
monitored correctly, i.e. he/she is concerned that incorrect monitoring data is
delivered (SC1-D). The driver is concerned about insecure transmission of data
from the car’s gateway to the telematics component which may cause that some-
one else sees his/her data (SC2-D). He/she is also concerned that there is some
non-authorised access to the his/her data in the telematics component (SC3-D),
about the insecure storage and processing of data in the telematics and insur-
ance components (SC4-D), and about the possibility that incorrect data is sent
from the telematics service provider to the insurance service provider (SC5-D).
The telematics service provider and the insurance service provider are both con-
cerned about the security compliance with local regulations (e.g. GDPR) and
ISO 27000 (SC6-TSP and SC7-ISP).

Step 4: Refine Problem Diagram and Security Concerns. We decompose the
overall software development problem “Provide PAYD insurance” (shown as G0
in Fig. 7) into the following three subproblems: G1: “Store data”, G2: “Calculate
premium”, and G3: “Display stored information to driver”. In the following, we
focus on G1. Figure 8 shows the detailed problem diagram for G1 which was
created based on the Six-Variable Model. The two real world domains are the
driver and the car. Phenomena of the driver are referred by the requirement.
Further connection domains, not considered so far, are the card reader and the
car sensors. The driver puts his/her insurance card into the card reader which
transfers the driver’s profile to the gateway. Similarly, sensors in the car monitor
speed, distance travelled, etc. and provide the measured values to the gateway.
The gateway transfers all this data to the telematics component. Regarding the
telematics component, we made the database used by the component explicit
since it is a cloud-based database and there is a high risk of attacks. The same

162 N. Ulfat-Bunyadi et al.

Telematics
component

Gateway
in car

Insurance
component

Driver

D! {driver information,
driving information}

P! {evaluated
driving information}

G! {driver information,
speed, distance
travelled, etc.}

PAYD
G0: Provide

PAYD
insurance.

T! {evaluated
driving information}

D! {driver
information,
driving
behaviour}

I! {premium according
to driving behaviour}

SC6-TSP: Security compliance with local
regulations (e.g. GDPR) and ISO 27000.

SC5-D: Incorrect data is sent to insurance
company.

SC7-ISP: Security compliance with local
regulations (e.g. GDPR) and ISO 27000.SC3-D: Non-authorized access to driver’s data

in telematics component.

SC1-D

SC2-D

SC1-D: Driving behaviour is not monitored
correctly (incorrect monitoring data is
delivered).

SC2-D: Insecure transmission causes that
someone else sees driver’s data.

SC4-D: Insecure storage and processing of data
in telematics and insurance component.

SC3-D,
SC4-D,
SC6-TSP

SC4-D,
SC7-ISP

SC5-D

Fig. 7. Problem diagram and security concerns.

holds for the cloud-based database used by the insurance component. Further-
more, we added the telematics analyst to the diagram since he/she has access
to the telematics component for the purpose of analysis. As shown in Fig. 8, the
identified security concerns can now be better assigned to the phenomena they
refer to due to the more detailed information resulting from the application of the
Six-Variable Model. Some concerns have been decomposed or refined, while oth-
ers are newly identified concerns. For example, SC1-D from Fig. 7 was refined
and resulted in SC1-D (incorrect monitoring) and SC2-D (incorrect transmis-
sion of monitored data) in Fig. 8. Similarly, SC4-D from Fig. 7) was decomposed
into SC5-D (insecure data storage) and SC6-D (insecure data processing) in
Fig. 8. SC8-D in Fig. 8 is completely new, since the diagram shows now that
the driver enters his/her driver information by inserting his/her insurance card
into a card reader. This new information in the diagram raised a new concern

Systematic Refinement of Softgoals 163

Telematics
component

Gateway
in car

Insurance
component

Driver

P! {evaluated
driving information}

G! {driver
profile,
speed,

distance
travelled, etc.}

PAYD

G1: Store
data.

TC! {evaluated
driving information}

D! {driver information,
driving behaviour}

Telematics database
(cloud-based)

Insurance database
(cloud-based)

Telematics
analyst

CarCar
sensors

Card
reader

D! {insurance card}
CR! {driver profile}

C! {speed, braking
maneuvers, etc.}CS! {speed, distance

travelled etc.}

TC! {driver profile,
speed, distance
travelled, etc.}

IC! {evaluated driving information}

TA! {analyse data}

D! {driving instructions}

IC! {evaluated information stored}

Software-to-be Used sensors, actuators, other systems Problem domains
in environment

Require-
ment

SC9-TSP: Security compliance with local regulations (e.g.
GDPR) and ISO 27000.

SC10-ISP: Security compliance with local regulations (e.g.
GDPR) and ISO 27000.

SC4-D: Non-authorized access to driver’s data in
telematics component.

SC1-D: Incorrect monitoring (incorrect information is
delivered).

SC3-D: Insecure transmission causes that someone else
sees driver’s data.

SC5-D: Insecure storage of data in telematics and
insurance component.

SC2-D: Incorrect transmission of monitored data
(altered/incorrect information is delivered).

SC6-D: Insecure processing of data in telematics and
insurance component.

SC8-D: The driver is concerned about what will happen
when someone takes his/her insurance card for driving.

SC1-D

SC2-D

SC4-D

SC8-D

SC7-D

SC3-D

SC10-ISP

SC9-TSP

SC7-D

SC11-ISP: Cloud-based data storage is insecure.

SC12-ISP: Cloud-based data processing is insecure.

SC13-TSP: Cloud-based data storage is insecure.

SC14-ISP: Cloud-based data processing is insecure.

SC6-D,
SC9-TSP,
SC14-TSP

SC5-D,
SC9-TSP,
SC13-TSP

SC5-D,
SC10-ISP
SC11-ISPSC6-D,

SC10-ISP,
SC12-ISP

SC7-D: Incorrect data is sent to insurance company.

Fig. 8. Detailed problem diagram and further security concerns.

of the driver (SC8-D). SC11-ISP, SC12-ISP, SC13-TSP, SC14-TSP are also new
concerns which are modelled because the diagram shows that both, the telem-
atics provider and the insurance provider, engage cloud infrastructures for the
services they provide. They are both concerned that cloud-based data storage
and processing could be insecure.

Step 5: Create Information Flow Graph. Figure 9 shows the information flow
graph created for the detailed problem diagram for G1 from Step 4. It shows
how the information flows from problem domain to problem domain. Note that
the information flow graph contains the information that has been made explicit
in Step 4 using the Six-Variable Model. Without this information, important

164 N. Ulfat-Bunyadi et al.

Gateway in car

Card reader

Car

Car sensors

Driver

D! {insurance card}

CR! {driver profile}

C! {speed, braking maneuvers, etc.}

CS! {speed, distance travelled, etc.}

Telematics
component

(cloud-based)

Insurance
component

(cloud-based)

TC! {evaluated driving information}

G! {driver profile, speed, distance travelled, etc.}

Telematics database
(cloud-based)

Insurance database
(cloud-based)

TDB! {telematic data}

TC! {queries}

IDB! {insurance data}

IC! {queries}

PAYD

P! {evaluated driving information}

Telematics
Analyst

TC! {analyse data}

D! {driving instructions}

Fig. 9. Information flow graph for the detailed problem diagram.

problem domains and information flows would have been omitted or overseen,
e.g. the car, car sensors, the card reader, the cloud-based databases. Then, they
would also not have been considered in the next steps of the security analysis.

Step 6: Identify Vulnerabilities and Unwanted Incidents. Table 1 shows the list of
identified vulnerabilities, unwanted incidents, and consequences for the informa-
tion flow graph from Step 5. A security concern in Fig. 8 is, for example, SC8-D:
“The driver is concerned about what will happen if someone misuses his/her
insurance card for driving”. This concern could become true if the card of the
driver was stolen and used by someone else (unwanted incident I-1). The vul-
nerability that is exploited in this case is that the users’ insurance cards are the
only means for identifying users. No other stronger credentials are used like, for
example, fingerprints or PIN numbers. Another security concern is, for example,
SC3-D. The driver is concerned that the transmission of his/her data from the
gateway to the telematics component is insecure and someone else sees his/her
data. This concern could become true in two cases (two unwanted incidents): (i)
the card reader could be manipulated by someone to retrieve the card data (I-2)
and (ii) the data could be manipulated in the car’s gateway (I-3). V-2 and V-3
are the vulnerabilities that are exploited in these cases.

Step 7: Identify Controls. Table 2 contains the controls identified for the
unwanted incidents from Step 6. I-1 can, for example, be addressed by using
additional credentials like a PIN or fingerprints. I-2 can be addressed by using
better hardware (card readers) to avoid skimming attacks.

Systematic Refinement of Softgoals 165

Table 1. Identified vulnerabilities and unwanted incidents (result of Step 6).

Unwanted incident Vulnerabilities

I-1: The insurance card of the driver
is stolen and another driver
misuses his/her card

V-1: Cards are the only means for
using the service; no other
stronger credentials like
fingerprints, PIN numbers, etc.
are used

I-2: Card reader is manipulated by
someone to retrieve the card
data

V-2: Insufficient hardware security

I-3: The software in the car is
manipulated and thus
monitored data is incorrect

V-3: Software updates can be
performed by any garage

I-4: Driver profile and driving
information (i.e. speed, distance
travelled, etc.) are manipulated
in the car’s gateway

V-4: Insufficient hardware and
software security

I-5: Data sent from the car’s
gateway is manipulated or is
read by an unauthorized party

V-5: Insecure transmission channel

I-6: Telematics component is
accessed and the telematics
data of the driver is accessed
and processed by an
unauthorized party

V-6: Telematics component is
deployed to insecure cloud
infrastructure and has weak
access control mechanisms

I-7: Telematics database, i.e. cloud
database used by telematics
service provider, is compromised

V-7: Telematics data is deployed in
an insecure cloud database

I-8: Insurance component receives
incorrect data from the
telematics component

V-8: Telematics component can be
compromised either through
cloud component issues or
through the telematics analyst
or other unauthorized accesses
that are possible

I-9: Insurance component is
accessed and the driver
insurance information is
accessed and processed by an
unauthorized party (e.g. IaaS
provider, PaaS provider as
black hat actors)

V-9: Insurance component is
deployed to insecure cloud
infrastructure and has weak
access control mechanisms

I-10: Insurance database, i.e. cloud
database used by insurance
service provider, is compromised
(e.g. IaaS provider, PaaS
provider as black hat actors)

V-10: Insurance data of the driver and
of the insurance company are
deployed in an insecure cloud
database

166 N. Ulfat-Bunyadi et al.

Table 2. Controls and addressed unwanted incidents (result of Step 7).

Identified controls Unwanted incidents

C-1: Use additional credentials for card I-1

C-2: Improve hardware security to avoid
skimming attacks

I-2

C-3: Allow only car manufacturers to update the
software in cars

I-3

C-4: Implement secure checksums and black
chain mechanisms

I-4

C-5: Implement strong encryption mechanism
(e.g. homomorphic/ polymorphic
encryptions)

I-5, I-7, I-10

C-6: Implement appropriate access controls (e.g.
sticky policies, etc.)

I-6

C-7: Implement enclaves and database
encryption mechanisms. Secure enclaves
give a secure processing possibility (e.g.
using SGX secure enclaves for insurance and
telematics components and databases)

I-6, I-7, I-8, I-9, I-10

C-8: Improve access rights management for
telematics analyst (i.e. restrict access rights)

I-8

Step 8: Define Security Requirements. Based on the security requirement pat-
tern, we are able to define more detailed security requirements of the following
type:

Ensure that the risk for I-1 (“The insurance card of the driver is stolen
and another driver misuses his/her card.”) caused by exploitation of
V-1 (“Cards are the only means for using the service; no other stronger
credentials like fingerprints, PIN numbers, etc. are used.”) is reduced to an
acceptable level by applying C-1 (“Use additional credentials for card.”).

Based on the information flow graph in Fig. 9, we are able to assign the
responsibilities for realising the controls identified in Step 7 to different parts
of the system. Table 3 documents whether a control results in requirements for
the PAYD machine or in expectations for other parts of the system and who is
responsible for satisfying the expectations and requirements. Based on this table,
we create the KAOS goal model depicted in Fig. 10 which shows the controls
as subgoals of the security softgoal in an AND-refinement and responsibility
assignments for the controls. Some agents are shown several times, because they
have several responsibilities.

Systematic Refinement of Softgoals 167

5 Related Work

With regard to our method, there are mainly three areas of related work that
we discuss in the following.

First, several existing approaches show that it is beneficial to combine
(KAOS) goal models and problem diagrams (cf. [13–16]). We exploit the same
benefits in our method. However, none of these methods focuses on softgoals as
we do.

Second, there are several goal-oriented approaches that support the refine-
ment of the security goal and the derivation of security requirements from these
subgoals. Elahi and Yu [17], for example, extend i* goal models to allow for
modelling trust relationships among actors and malicious behaviour. They sug-
gest replacing the trusted parties (actors) in the goal model with a correspond-
ing malicious counterpart and analysing how the capabilities and permissions
granted to this party can be abused by him/her for malicious purposes. Moura-
tidis and Giorgini [18] extend the Tropos methodology to enable modelling secu-
rity constraints on dependencies between actors. Similar to the Tropos method-
ology, first, the environment is analysed in terms of actors and their dependencies
on each other. Then, the software-to-be is considered as a further actor and some
of the goals of the other actors are delegated to it. In SecureTropos [18], security
constraints on the dependencies between actors are also modelled. They are then
assigned to the goals of the actor they restrict and are further analysed/refined.
Finally, tasks for the software-to-be are identified to guarantee the security con-
straints. Meland et al. [19] integrate threat modelling into the socio-technical
security modelling language STS-ml. Using these modelling elements, threats
and their impact on the goal model can be made explicit. Meland et al. provide
also tool support for analysing the impact of a threatening event on the rest of
the goal model.

All these approaches identify and analyse vulnerabilities only based on the
goal model and the relationships between actors that are documented therein.
In contrast to that, we use detailed problem diagrams for identifying security
concerns of stakeholders and the information flow graph for identifying vulnera-
bilities which contain both far more (and more detailed) information about the
data exchanged between the software and its environment than goal models.
Thus, our analysis yields a more detailed and complete vulnerability analysis
which results in a more complete set of identified unwanted incidents and cor-
responding security requirements to address them. Furthermore, our method is
more stakeholder-centric, since we focus on the security concerns of different
stakeholders and derive from them security requirements and expectations.

Third, there are several problem-based approaches that support the elic-
itation of detailed security requirements. However, they do not focus on the
security concerns of different stakeholders and thus do not provide support in
making them explicit in problem diagrams and in deriving security requirements
from them. Furthermore, they do not make responsibility assignments explicit
as we do. Nevertheless, we elaborate on them in the following.

168 N. Ulfat-Bunyadi et al.

Table 3. Controls and Assigned Responsibilities (result of Step 8).

Controls Expectation
on/Requirement for

Responsible for Satisfaction

C-1: Use additional
credentials for card

- Expectation on insurance
card

Insurance service provider

C-2: Improve hardware
security to avoid skimming
attacks

- Expectation on card reader Insurance service provider

C-3: Allow only car
manufacturers to update the
software in cars

- Expectation on car Car manufacturer

C-4: Implement secure
checksums and black chain
mechanisms

- Expectation on gateway Car manufacturer

C-5: Implement strong
encryption mechanism (e.g.
homomorphic/ polymorphic
encryptions)

- Expectation on gateway Car manufacturer
- Expectation on telematics
component and telematics
database

Telematics service provider

- Requirement for PAYD We (as developers of PAYD)

- Expectation on insurance
component and insurance
database

Insurance service provider

C-6: Implement appropriate
access controls (e.g. sticky
policies, etc.)

- Expectation on telematics
component

Telematics service provider

C-7: Implement enclaves and
database encryption
mechanisms. Secure enclaves
give a secure processing
possibility (e.g. using SGX
secure enclaves for insurance
and telematics components
and databases)

- Expectation on telematics
component and telematics
database

Telematics service provider

- Requirement for PAYD We (as developers of PAYD)

- Expectation on insurance
component and insurance
database

Insurance service provider

C-8: Improve access rights
management for telematics
analyst (i.e. restrict access
rights)

- Expectation on telematics
component

Telematics service provider

Faßbender et al. [20] describe a method for deriving security requirements from
functional requirements which are documented in problem diagrams. Based on
these problem diagrams, assets (i.e. problem domains which are considered to be
assets) as well as possible attackers and their abilities are identified. For each asset,
a so-called access graph is created which shows the access flows from and to this
asset. For example, if problem domain A is referred by the requirement RQ1 and
problem domain B is constrained by RQ1 in a problem diagram, then a direct
access flow (i.e. an edge) is modelled between the problem domains A and B and
this edge is annotated with RQ1. Then, another type of graph is created for each

Systematic Refinement of Softgoals 169

G4.1: Use
additional

credentials for
insurance card.

Insurance
card

G4: Ensure secure
transmission,

processing, and
storage of all data.

G4.2: Improve
hardware security
to avoid skimming

attacks.

G4.4: Implement
secure checksums

and black chain
mechanisms.

G4.5: Implement
strong encryption

mechanism.

G4.6: Implement
appropriate

access controls.

G4.7: Implement
secure enclaves and
database encryption

mechanisms.

G4.8: Improve
access rights

management for
telematics analyst.

Card
reader

Car gateway

Insurance
component

Insurance
database

Telematics
component

Telematics
database

PAYD

Insurance
component

Insurance
database

Telematics
component

Telematics
database

PAYD

Legend:

responsibility
assignment

Name

agent

Name

(hard-)goal AND-refinement OR-refinement

Name

softgoal

G4.3: Allow only
car manufacturers

to update car
software.

Car

Fig. 10. KAOS goal model showing the refinement of the security softgoal (result of
Step 8).

asset that visualizes the information flows from attackers to this asset and vice
versa. Since these graphs contain the information where an asset might be threat-
ened by an attacker, the requirements engineer and a security expert can check
based on these graphs whether the original functional requirements related to this
asset must be augmented with security requirements or not. ProCOR [10] is a risk
management process. Similar to the method of Faßbender et al. [20], it supports

170 N. Ulfat-Bunyadi et al.

the elicitation of security requirements based on functional requirements that are
documented in problem diagrams. In addition, ProCOR comprises risk estima-
tion and risk evaluation steps. Lin et al. [21] propose so-called abuse frames to
analyze security requirements from an attacker’s point of view. Abuse frames are
similar to problem frames (which are patterns of recurring software development
problems defined by Jackson [6]). However, instead of describing what the machine
should do, they describe how an attacker could misuse the machine. Thus, abuse
frames are useful for analysing security from an attacker’s point of view. Haley
et al. [22] propose a framework for security requirements elicitation and analysis.
Based on functional requirements that are documented as problem diagrams, secu-
rity constraints are defined, i.e. constraints on the functional requirements that are
needed to satisfy security goals. To validate that the defined security requirements
satisfy the security goals, satisfaction arguments are constructed. The construc-
tion of these satisfaction arguments may fail, which reveals that either the security
requirement cannot be satisfied in the modelled environment or that the environ-
ment does not contain sufficient information to develop the argument. Problem
diagrams and security requirements are then revisited to resolve these problems.

6 Conclusion

The systematic refinement of softgoals is difficult because there is no clear-cut
criterion for their satisfaction. To refine the security softgoal, we suggest iden-
tifying the security concerns of stakeholders based on problem diagrams. Prob-
lem diagrams show different types of phenomena and problem domains. This
enables stakeholders to raise their concerns over them. From the detailed prob-
lem diagrams, the information flow graph can be derived. This graph allows for
identifying vulnerabilities and corresponding unwanted incidents which in turn
allows for defining controls to address them. For realising the controls, different
parts of the system are usually responsible. Our method allows for assigning and
documenting these responsibilities. In this way, our method results not only in
detailed security requirements (which capture the relationship between a vul-
nerability, an unwanted incident, and a corresponding control) but also in a
further decomposition of these security requirements into requirements for the
machine (the software-to-be) and expectations to be satisfied by other parts of
the system. By means of the documentation that is created using our method,
these requirements and expectations are backward traceable to the security con-
cerns from which they originate. This information is helpful when changes occur,
for example, when it turns out that an expectation cannot be satisfied. Then,
it is backward traceable which security concerns are affected and can possibly
not be addressed or must be addressed in a different way. Without using the
problem diagrams (for eliciting security concerns and deriving finally security
requirements), a decomposition of the security softgoal in the KAOS goal model
would have been difficult due to the lack of guidance regarding the systematic
refinement of softgoals. The method that we presented in this paper can be used
in the same way for other quality attributes (softgoals) as well. We used KAOS

Systematic Refinement of Softgoals 171

goal models in our method. Yet, it is possible to use other goal models (e.g. i*
goal models) instead. It might then be necessary to extend these goal models,
for example, in order to be able to model expectations.

In future work, we want to extend our method with an approach for the
detailed quantitative risk analysis and evaluation that needs to be performed as
a next step after having applied our method. Furthermore, we plan to perform
a comparative evaluation with student groups to compare our method with the
KAOS methodology.

Acknowledgment. Research leading to these results received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
number 731678 (RestAssured).

References

1. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of RE 2001, pp. 249–263. IEEE Computer Society (2001)

2. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1), 31–37 (1999)

3. Van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, Hoboken (2009)

4. Ulfat-Bunyadi, N., Gol Mohammadi, N., Heisel, M.: Supporting the systematic
goal refinement in KAOS using the Six-Variable Model. In: Proceedings of ICSOFT
2018, pp. 136–145 (2018)

5. Ulfat-Bunyadi, N., Meis, R., Heisel, M.: The six-variable model - context modelling
enabling systematic reuse of control software. In: Proceedings of ICSOFT 2016,
pp. 15–26 (2016)

6. Jackson, M.: Problem Frames - Analysing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

7. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

8. Parnas, D., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

9. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: The effect of trust assump-
tions on the elaboration of security requirements. In: Proceedings of RE 2004, pp.
102–111 (2004)

10. Wirtz, R., Heisel, M., Meis, R., Omerovic, A., Stølen, K.: Problem-based elicitation
of security requirements - the ProCOR method. In: Proceedings of ENASE 2018,
pp. 26–38. SciTePress (2018)

11. Lund, M., Solhaug, B., Stolen, K.: Model-Driven Risk Analysis – The CORAS App-
roach. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-12323-8

12. RestAssured Consortium: Deliverable D8.1: First Validation Plan (2017). https://
restassuredh2020.eu/wp-content/uploads/2018/07/D8.1.pdf

13. Bleistein, S., Cox, K., Verner, J.: Requirements engineering for e-business systems:
integrating Jackson problem diagrams with goal modelling and BPM. In: Proceed-
ings of APSEC 2004, pp. 410–417. IEEE Computer Society (2004)

https://doi.org/10.1007/978-3-642-12323-8
https://restassuredh2020.eu/wp-content/uploads/2018/07/D8.1.pdf
https://restassuredh2020.eu/wp-content/uploads/2018/07/D8.1.pdf

172 N. Ulfat-Bunyadi et al.

14. Mohammadi, N.G., Alebrahim, A., Weyer, T., Heisel, M., Pohl, K.: A framework
for combining problem frames and goal models to support context analysis during
requirements engineering. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 272–288. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40511-2 19

15. Dao, T., Lee, H., Kang, K.: Problem frames-based approach to achieving quality
attributes in software product line engineering. In: Proceedings of SPLC 2011, pp.
175–180. IEEE Computer Society (2011)

16. Han, D., Xing, J., Yang, Q., Li, J., Zhang, X., Chen, Y.: Integrating goal models
and problem frames for requirements analysis of self-adaptive CPS. In: Proceedings
of COMPSAC 2017, pp. 529–535. IEEE Computer Society (2017)

17. Elahi, G., Yu, E.: Trust trade-off analysis for security requirements engineering.
In: Proceedings of RE 2009, pp. 243–248 (2009)

18. Giorgini, P., Mouratidis, H.: Secure tropos: a security-oriented extension of the
tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(2), 285–309 (2007)

19. Meland, P., Paja, E., Gjære, E., Paul, S., Dalpiaz, F., Giorgini, P.: Threat analysis
in goal-oriented security requirements modelling. Int. J. Secur. Softw. Eng. 5(2),
1–19 (2014)

20. Faßbender, S., Heisel, M., Meis, R.: Functional requirements under security Pres-
SuRE. In: Proceedings of ICSOFT-PT 2014, pp. 5–16 (2014)

21. Lin, L., Nuseibeh, B., Ince, D.C., Jackson, M., Moffett, J.D.: Analysing security
threats and vulnerabilities using abuse frames. Technical Report No. 2003/10,
October 2003, The Open University, United Kingdom (2003)

22. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: Security requirements engineering:
a framework for representation and analysis. IEEE Trans. Softw. Eng. 34(1), 133–
153 (2008)

https://doi.org/10.1007/978-3-642-40511-2_19

Simplifying the Classification of App
Reviews Using Only Lexical Features

Faiz Ali Shah(B), Kairit Sirts, and Dietmar Pfahl

Institute of Computer Science, University of Tartu, Tartu, Estonia
{shah,kairit.sirts,dietmar.pfahl}@ut.ee

Abstract. User reviews submitted to app marketplaces contain infor-
mation that falls into different categories, e.g., feature evaluation, feature
request, and bug report. This information is valuable for developers to
improve the quality of mobile applications. However, due to the large vol-
ume of reviews received every day, manual classification of user reviews
into these categories is not feasible. Therefore, developing automatic
classification methods using machine learning approaches is desirable.
In this study, we address the problem of automatic classification of app
review sentences (as opposed to full reviews) into different categories. We
compare the simplest textual machine learning classifier using only lexi-
cal features – the so-called Bag-of-Words (BoW) approach – with more
complex models used in previous work adopting rich linguistic features.
We find that the performance of the simple BoW model is very com-
petitive and has the advantage of not requiring any external linguistic
tools to extract the features. Moreover, we experiment with deep learning
based Convolutional Neural Network (CNN) models that have recently
achieved state-of-the-art results in many classification tasks. We find
that, on average, the CNN models do not perform significantly better
than the simple BoW model. Finally, the manual analysis of misclas-
sification errors and data annotations suggests that classifying review
sentences in isolation does not always contain enough information to
make a correct prediction. Thus, we suggest that adopting neural mod-
els to incorporate additional contextual knowledge might improve the
classification performance.

Keywords: App review classisfication · Bag-of-Words · CNN

1 Introduction

App marketplaces such as PlayStore and AppStore offer apps to its users sup-
porting virtually all kinds of services and businesses [1]. These marketplaces
provide users a central place to download apps and submit their feedback on
them in the form of ratings and reviews. The app market is highly competi-
tive. Therefore, app developers constantly look for information that helps them
improve the quality of their apps [22]. User reviews contain information such as

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 173–193, 2019.
https://doi.org/10.1007/978-3-030-29157-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_8

174 F. A. Shah et al.

feature requests, bug reports, and feature evaluations, making them an extremely
valuable source for app developers to improve the quality of their apps [13].

Developers receive a large number of reviews every day making manual classi-
fication of reviews an arduous task. In past research, supervised machine learning
methods have been used for automatic classification of app reviews into different
categories [7,13]. The study of Maalej et al. [13] performed automatic classifica-
tion at review level. However, multiple types of information can be mentioned in
a single review or a review can contain information that is not informative for
app developers. Therefore, other studies have performed automatic classification
of reviews at sentence-level [7].

The study by [7] used natural language processing (NLP) tools, such as tag-
gers and parsers, to extract features for classifying review sentences. However,
the review-level classification results of [13] suggest that extracting such com-
plex features might not be necessary and comparable classification results could
be obtained by using only simple lexical Bag-of-Words (BoW) features. The
BoW model, if its performance is on par with more complex feature sets, is an
attractive approach for a non-expert because it does not require using any ded-
icated natural language processing tools. This perspective motivates us to find
an answer to the following research question:

RQ1: When classifying app review sentences, how does a model with simple
BoW features compare with a model using more complex linguistic features
extracted via external NLP tools?

To answer RQ1, we use the dataset of Gu and Kim [7] and train a Maximum
Entropy (MaxEnt) model using both feature sets: BoW features and the set of
linguistic features proposed by [7]. Our results show that the simple BoW is very
competitive, both in terms of feature extraction and computational complexity,
for review sentence classification.

Recently, deep learning based models have gained popularity among
researchers as they have an ability to learn useful feature representations auto-
matically from a large corpus of labeled data without manual feature engineer-
ing effort. Specifically, a deep learning model known as Convolutional Neural
Network (CNN) has recently achieved encouraging results for various text clas-
sification tasks [10]. A recent study of [4] suggests researchers to always compare
computationally expensive models with their simple and efficient counterparts.
Following this suggestion, we were interested in comparing the powerful deep
learning CNN model with the simple BoW model. We formulate the second
research question (RQ2) as follows:

RQ2: How does the deep learning based CNN classifier compare with the simple
BoW model for app review sentence classification?

To answer RQ2, we experiment with CNN-based models for review sentence
classification, adopting the model proposed by Kim [10]. A comparison of the
CNN model performance with that of the MaxEnt model with BoW features
shows that on average, the CNN-based model performs slightly worse than the
BoW model. However, for the review sentence types feature request and bug

Simplifying the Classification of App Reviews Using Only Lexical Features 175

report, which are the most informative sentence types to software developers,
CNN-based models obtain the highest precision.

In this study, we first extend our previous work [19] with an analysis of the
misclassification errors made by the BoW model and the annotated data. We
observe that the largest proportion of confusions between the model predictions
and the annotations occur between the three most meaningful sentence types
(Feature Evaluation, Feature Request and Bug Report) and the sen-
tence type Other, which is a residual category containing sentences that did
not fit to any other category. By analyzing the annotated data in the light of
these errors, we observe that in some cases individual sentences alone do not
contain enough information to make the correct categorization decision. Thus,
we suggest that for better app review sentence classification the context in terms
of other sentences in the review should be taken into account.

Secondly, we performed more rigorous experiments with our lexical models
as follows:

– We performed an additional analysis using MaxEnt models with 1 to 3 word
n-gram features.

– For CNN models, we adopted early stopping to avoid overfitting and we re-
evaluated the CNN results in this new setting.

– We now report standard deviations for all results observed in model perfor-
mance over ten independent runs.

Finally, the related work section has been revised and updated to include the
most recent work.

The rest of the paper is structured as follows. Section 2 summarizes the
related work. In Sect. 3, we describe the dataset used for this study. In Sect. 4, we
provide the description of the features and models used in this study. Section 5
details the experimental setting. Section 6 presents the results followed by a dis-
cussion in Sect. 7. In Sect. 8, threats to validity are examined. Conclusions are
presented in Sect. 9.

2 Related Work

Maalej and Nabil [13] experimented with different classification models to classify
reviews into feature requests, bug reports, ratings, and user experiences. They
experimented with various features, including BoW. Similarly to us, they trained
their models on the whole dataset of different apps. However, they evaluated
their models on review-level, which fails to properly handle those reviews that
simultaneously belong to several different categories.

McIlroy et al. [15] addressed this problem by performing multilabel classifi-
cation of reviews, so that each review could be assigned several labels. However,
their approach does not indicate, which sentence in the review is related to which
label.

Other research has operated on sentence level. The most relevant for our
work is SUR-Miner, a system proposed by Gu and Kim [7] that classifies review

176 F. A. Shah et al.

sentences into feature evaluation, bug report, feature request, praise, and other.
They used a MaxEnt model for the classification task with a rich set of lexical
and linguistic features extracted with NLP tools. We adopt their dataset and
compare their linguistic feature set to the simpler BoW model. Whereas they
trained a separate model for each app, we train a single model incorporating
sentences of all apps, thus building a more general model with a larger training
set, which has an additional advantage that it is not dependent on the existence
of the labeled sentences of the apps that the model is applied to.

Chen et al. [1] proposed the system AR-Miner to help developers filter out
informative reviews. Their system classifies review sentences into two classes:
informative and non-informative. The study of Panichella et al. [18] first used
AR-Miner to filter out non-informative review sentences and then categorized
informative review sentences based on user intentions, i.e., information seeking,
information giving, feature request, problem discovery, and others, and trained a
learner, which relies on a large number of heuristic linguistic patterns, to auto-
matically classify review sentences into those categories. In the same direction,
the study of Sorbo et al. [21] proposed a tool, SURF, which uses a two-level
classification approach. At the first level, similar to [18], review sentences are
classified based on the user intentions and then on the second level the sentences
are grouped into different review topics such as resources, security, pricing, GUI,
download, model, company, updates/versions, feature/functionality, contents or
app. In a recent study by Gao et al. [5], the review topics extracted using the
SURF tool were further analyzed to get an insight about salient topics (i.e.,
review topics with significantly lower ratings (i.e. salient topic), abnormal topics
(review topics having a swift increase in volume during a time period), correla-
tion between two topics, and casual factors to rating or review quantity changes.

The study by Lu et al. [12] focuses on non-functional features. They automati-
cally classified app reviews at sentence-level into four types of quality attributes:
reliability, usability, portability, performance, and two additional classes func-
tional requirements, and others. Iacob and Harrison [8] developed a system called
MARA that used predefined linguistic patterns for finding feature requests from
app reviews, later the system was extended to also find bug reports [9].

For general overviews about app store analysis for software engineering and
opinion mining from app user reviews see [6,14].

3 Dataset and Preprocessing

In our study, we used the app review dataset contributed by Gu and Kim [7].
The dataset contains labeled review sentences of 17 apps belonging to different
app categories, such as games, communication, books, and music. Each review
sentence is assigned a label from a set of mutually exclusive types, which are:
(a) Feature Evaluation (E), (b) Feature Request (R), (c) Bug Report
(B), (d) Praise (P), and (e) Other (O). Table 1 presents the definition and a
sample of review sentences for each type.

Simplifying the Classification of App Reviews Using Only Lexical Features 177

Table 1. Definition of five review sentence types used by Gu and Kim [7].

Sentence type Definition Examples

Praise (P) Expressing emotions with
specific reasons

Excellent!

I love it!

Amazing!

Feature Evaluation (E) Expressing opinions about
specific features

The UI is convenient

I like the prediction text

Bug Report (B) Reporting bugs, glitches or
problems

It always force closes when
I click the “.com” button

Feature Request (R) Suggestion or new feature
requests

It’s a pity it doesn’t
support Chinese

Other (O) Other categories defined in [17] I’ve been playing it for
three years

Table 2 shows the distribution of sentence types in each app category. It is
apparent that the distribution of sentence types is highly skewed. The high-
est number of sentences belongs to the category Other followed by the cate-
gory Praise. The numbers of other three sentence types—Feature Evalua-
tion, Feature Request and Bug Report—are significantly smaller. How-
ever, these are the sentence types we are most interested in because they more
likely contain useful information that help developers to improve their app.

The user review texts contain many typos and contractions that can make
automatic classification of app review sentences a difficult task. To address this
issue, we used a collection of 60 types and contractions1 identified by Gu and
Kim [7] to correct the words in the dataset. During this cleaning process, we
replaced the common typos and contractions, e.g. “U” is replaced with “you”
and “Plz” is replaced with “Please” etc.

4 Classification Models

This section describes the models designed to answer our research questions
RQ1 and RQ2. We describe in detail the textual features we use to train MaxEnt
models for review sentence classification. Then, we explain the CNN architecture
that combines automatic feature extraction and classifier to classify the same set
of review sentences.

4.1 Word N-Grams (BoW)

Word n-grams, also called Bag-of-Words (BoW), is a very simple feature extrac-
tion method without much manual effort. For instance, 1 to 2 word n-grams of

1 https://guxd.github.io/srminer/appendix.html.

https://guxd.github.io/srminer/appendix.html

178 F. A. Shah et al.

Table 2. App-wise distribution of sentence types in the dataset of Gu and Kim [7].

App name App category Review types

E R B P O Total

chase mobile finance 372 152 120 304 1051 1999

duolingo education 370 20 121 614 874 1999

swiftkey productivity 385 98 177 463 876 1999

google playbook books 254 152 198 413 982 1999

yelp food 435 44 54 348 1118 1999

google map map 354 273 141 312 919 1999

text plus social 354 138 75 537 1013 2117

wechat social network 231 132 71 612 953 1999

google calender productivity 466 119 463 109 842 1999

spotify calender music 231 87 90 714 877 1999

yahoo weather weather 493 71 85 508 842 1999

temple run 2 game 234 48 17 877 877 2053

medscape medical 464 82 83 522 848 1999

espn sports 472 287 128 161 951 1999

camera360 photography 178 67 24 928 928 2125

imdb entertainment 361 115 194 363 966 1999

kakotalk communication 220 69 77 768 865 1999

Total 5874 1954 2118 8553 15782 34281

a sentence ‘plz fix it’ are: ‘plz’, ‘fix’, ‘it’, ‘plz fix’, ‘fix it’. In this approach, first,
a dictionary is created from a sequence of words called n-grams occurring in the
training corpus. Then, a feature vector for each review sentence is created that
stores the frequency of each n-gram in that sentence.

Lexical features are important in characterizing review sentence types. For
instance, the words “awesome” and “great” are mostly used to praise the app.
Similarly, the words “bug”, “crash”, and “plz fix” represent bug reports.

While Maalej and Nabil [13] used BoW features to classify app user reviews,
we applied the same features on the sentence level. Although user reviews are
longer and thus contain more information, we believe that review sentences are
more specific and most of them contain enough lexical information to classify
them correctly.

4.2 Character N-Grams (BoC)

Character n-grams, also called Bag-of-Characters (BoC), are simple lexical fea-
tures, analogous to word n-grams. Character n-gram features of a sentence are
all n-consecutive letter sequences (without spaces) in the tokens of the given sen-
tence. For example, the 3-grams for the sentence “The UI is Ok” are The, heU,

Simplifying the Classification of App Reviews Using Only Lexical Features 179

eUI, UIi, Iis, isO, and sOk. They have been used successfully in many applica-
tions such as malicious code detection and duplicate bug report detection [7].

4.3 Linguistic Features

We extracted the same set of linguistic features as proposed by Gu and Kim [7].
In addition to these linguistic features, Gu and Kim’s feature set also includes
the BoC features explained in the previous section.

Linguistic features can be useful because review sentences in each category
often follow a distinct structural pattern. For instance, for aspect evaluation, the
sentence structure tends to have a pattern like “The search (noun) works pretty
nice (adjective)” or “It’s perfect (adjective) for storing notes (noun)”. While for
feature request, sentence structure often follows the patterns such as “please add
look up feature” or “it could be improved by adding more themes”.

Part of Speech (POS): POS tags indicate the type of each word in a sentence.
For example, POS tags for the sentence “The user interface is elegant.” are
“Determiner Noun Noun Verb Adjective”. We extracted the PTB POS tags2

with NLTK3 and used the concatenation of POS tags of all the words in a
sentence as a feature.

Constituency Parse Tree: Constituency parse tree represents the grammat-
ical structure of a sentence. Figure 1 shows the constituency parse tree for a
sample review sentence generated using Stanford CoreNLP library.4 The parse
tree shows that the sentence (S) consists of a noun phrase (NP) and a verb
phrase (VP). The VP is further decomposed into an adjective phrase (ADJP).
The parse tree of a sentence is traversed in breadth first order and the first five
nodes are stored. The concatenation of non-terminal labels of these five nodes is
then used as a feature.

Fig. 1. Constituency parse tree for a review sentence “the user interface is not very
elegant”. The feature extracted from this tree is “ROOT-S-NP-VP-DT-NN” [19].

2 https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html.
3 http://www.nltk.org/.
4 https://stanfordnlp.github.io/CoreNLP/.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.nltk.org/
https://stanfordnlp.github.io/CoreNLP/

180 F. A. Shah et al.

Semantic Dependency Graph (SDG): SDG is a directed graph that shows
the dependency relations between words in a sentence. Nodes in the graph rep-
resent words labeled with POS tags and edges represent dependency relations
between words. Figure 2 shows the dependency graph of a sample sentence gen-
erated using spaCy5 library. The word is is the ROOT node of the sentence
as it does not have any incoming edges. The root has three dependents with
the following relationships: a noun subject (nsubj) interface, a negation modifier
(neg) not, and adjectival complement (acomp) elegant. The child node interface
has two children: a determiner (det) the and a noun compound modifier (nn)
user. To extract the feature, the SDG is traversed in a breadth first order and
the dependency relations labeling the edges and the POS tags of the words in
the nodes are concatenated. Leaf nodes that are not directly connected to the
ROOT node are ignored. For example, the textual feature extracted from SDG
of a sentence shown in Fig. 2 is “VBZ-nsubj-NN-neg-ADV-acomp-JJ”.

Fig. 2. Semantic Dependence Graph of a sample review sentence “the user interface
is not elegant”. The feature extracted from this SGD is “VBZ-nsubj-NN-neg-ADV-
acomp-JJ” [19].

Fig. 3. CNN model architecture for sentence classification (Figure taken from [10]).

5 https://spacy.io/.

https://spacy.io/

Simplifying the Classification of App Reviews Using Only Lexical Features 181

Trunk Words. The trunk word feature is simply the root word of a SDG. For
instance, the trunk word of the sentence “The user interface is not elegant” is is.

4.4 Convolutional Neural Networks (CNNs)

CNN-based classification models have shown encouraging results on various tex-
tual classification tasks [2,10]. We adopt the CNN architecture proposed by Kim
[10] to classify review sentences.

The architecture of the model is illustrated in Fig. 3. The first layer of the net-
work embeds words into low dimensional vectors. The second layer performs con-
volutions over the embedded word vectors using multiple filter sizes. The output
of these convolutions are max pooled into a long feature vector in the third layer.
The fourth layer is a dense layer with dropout applied. Finally, the results are
classified using a softmax layer. For more details see [10].

Because neural network models have a large number of trainable parameters,
they typically require large training sets to learn properly.However,when the avail-
able training sets are not very large, as is the case in this study, initializing CNN-
based model with pre-trained word embedding vectors, obtained from a unsuper-
vised neural language model might help to improve model performance [10,20].

Therefore, we train CNN-models both with and without pre-trained word
embeddings to assess the effect of using the externally trained word vectors for
classifying app review sentences. We use the 300-dimensional Word2Vec embed-
dings [16] trained on 100 billion words from Google News.6

The words that are absent in the vocabulary of pre-trained embeddings are
initialized randomly. In particular, we experiment with two different models:

– CNN (static): The CNN model is initialized with the pre-trained word vec-
tors but all words including the ones that are randomly initialized are kept
static and are not updated during training.

– CNN (non-static): Same as CNN (static) but the pre-trained vectors are
fine-tuned during model training for our classification task.

In our previous paper [19], we also reported results for the CNN model that did not
use pretrained embeddings and where all embeddings were initialized randomly.
Because adopting early stopping to avoid overfitting improved the results for both
static and non-static CNN while the results with the randomly initialized CNN
remained the same, we omitted experiments with the randomly initialized CNN
in this paper, but the interested reader can find them in [19].

5 Experimental Setup

We trained and tested all models on the dataset described in Sect. 3. We compared
all classification models on the test set by computing precision, recall, and f1-score
for each review sentence type.

6 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/

182 F. A. Shah et al.

For all experiments, labeled review sentences of all apps were merged into one
dataset (see Table 2). We trained 10 instances of each model to ensure that the
impact on accuracy due to variation in the data has been taken into account.

For each training instance, 80% of the data was randomly sampled as training
set and 20% as test set without fixing the seed value. During each run, a model was
trained on the training set and evaluated on the test set. The prediction accuracy
of the ten evaluations were averaged and reported as the final performance.

We trained three MaxEnt models by extracting the different feature sets from
review sentences. Two of the models are the same that we presented previously in
[19]. The other two models are variations of the BoW model, one of them using
higher order word n-grams and the other using only the character n-grams used
in [7].

1. The unigram Bow model - BoW(1) [19];
2. The BoW model with word unigrams, bigrams and trigrams - BoW(3). This

model is essentially as simple as the unigram BoW model and the training takes
only slightly longer;

3. All features used in the study of Gu and Kim [7], which includes character n-
grams of 2 to 4 characters and linguistic features - BoC+L [19];

We used the scikit-learn python library7 to train, tune and evaluate the MaxEnt
models. The regularization hyper-parameter C was fine-tuned separately for each
model by performing 5-fold cross-validation on 80% of the randomly sampled data.
For the BoW(1) model, the regularization weight was fixed to 0.856 and for the
models with character n-grams and Gu’s features: BoC and BoC+L, C was fixed
to 0.09 and 1.0, respectively. For the model with BoW(3) features, C was fixed to
0.4 and the parameter “class-weight” was set to “balanced” to adjust the weight
of each class so that would be inversely proportional to their class frequencies. All
the experiments were run on a CPU cluster (2 x Intel(R) Xeon(R) CPU E5-2660
v2 @ 2.20 GHz) with resources of one compute node and 16 GB RAM.

For the CNN model, we used a freely available implementation of [10]8 based
on TensorFlow9 library in Python. For each CNN model, the 80% training sample
is further split into 70% training and 10% validation set. The model is evaluation
on the validation set after every 100 updates. We stopped the training when the
average f1-score of the relevant classes (i.e., E, B, and R) on development set had
not improved further during the next 1000 steps, compared to its last best perfor-
mance. The best performing model was used for the evaluation on the test set. The
hyperparameters used in the CNN model are: rectified linear units (ReLU), filter
windows of sizes 2, 3 and 4 with 128 feature maps for each filter. The dropout
rate of 0.6 and L2 regularization parameter of 0.1 was chosen by performing 5-
fold cross-validation on a training set. We used a batch size of 256 and trained the
models for 50 epochs. The model was trained with Adam optimizer.

7 http://scikit-learn.org/stable/.
8 https://github.com/dennybritz/cnn-text-classification-tf.
9 https://www.tensorflow.org/.

http://scikit-learn.org/stable/
https://github.com/dennybritz/cnn-text-classification-tf
https://www.tensorflow.org/

Simplifying the Classification of App Reviews Using Only Lexical Features 183

Table 3. The classification performance of all models on all sentence types. In each row,
the best result for MaxEnt and CNN models is in bold.

Sentence type MaxEnt CNN

BoW(1) BoW(3) BoC+L Static Non-static

Feature Evaluation (E)

Precision 77.4±1.4 75.4± 1.2 77.0± 1.0 78.2±2.1 76.2± 3.2

Recall 63.6± 1.5 68.1± 1.7 68.5±1.1 65.0± 2.1 71.0±2.2

F1-score 69.8± 1.3 71.6± 1.3 72.5±0.8 69.9± 0.8 73.5±1.1

Feature Request (R)

Precision 71.2± 3.8 63.4± 1.7 73.9±3.1 74.9±5.3 73.8± 3.0

Recall 57.8± 2.1 71.0±2.4 59.1± 2.5 60.7± 2.9 63.6±4.1

F1-score 63.8± 2.3 67.0±1.5 65.6± 2.0 66.9± 2.2 68.2±1.6

Bug Report (B)

Precision 73.0± 2.8 67.1± 2.5 76.1±2.3 74.3±3.3 72.4± 3.3

Recall 57.4± 1.6 68.9±2.2 60.7± 2.6 64.5±4.2 62.7± 5.9

F1-score 64.2± 1.6 67.9±1.6 67.5± 1.8 68.9±2.5 67.0± 3.2

Average (E+R+B)

Precision 73.9± 1.7 68.7± 1.0 75.7±1.6 75.8±2.0 74.2± 2.4

Recall 59.6± 1.1 69.3±1.1 62.7± 1.0 64.9± 1.8 65.8±2.8

F1-score 65.9± 1.3 68.8±0.8 68.5± 1.0 69.8±1.4 69.5± 1.4

Praise (P)

Precision 83.1± 1.0 81.9± 0.7 85.8±0.7 80.1± 1.6 80.9±0.9

Recall 85.7± 1.3 88.0±1.2 87.1± 0.7 85.9±1.5 84.0± 2.3

F1-score 84.4± 0.6 84.8± 0.7 86.5±0.5 82.9±0.7 82.4± 0.7

Others (O)

Precision 78.2± 0.7 82.7±0.6 80.0± 0.8 84.8±1.4 84.0± 1.9

Recall 85.9± 0.9 80.7± 0.5 86.9±0.5 86.4± 2.1 87.0±1.7

F1-score 81.9± 0.6 81.6± 0.4 83.3±0.5 85.6±0.7 85.4± 0.6

Overall average (E+R+B+P+O)

Precision 76.6± 1.2 74.1± 0.7 78.6±0.9 78.5±1.3 77.5± 1.5

Recall 70.1± 0.7 75.3±0.7 72.5± 0.6 73.4± 1.2 73.7±1.4

F1-score 72.8± 0.9 74.6± 0.7 75.1±0.6 75.6±1.0 75.3± 1.0

6 Results

In this section, we present the results for research questions RQ1 and RQ2. The
classification accuracies of all models for all sentence types are shown in Table 3.
The average performance (i.e., precision, recall and f1-score) for sentence types
Feature Evaluation (E), Feature Request (R) and Bug Report (B) is
separately shown as these categories are expected to give the most interesting

184 F. A. Shah et al.

information for app improvement. The first three columns present the results of
the MaxEnt models. The last two columns give the results of the static and non-
static CNN models. In each row, the best results for the MaxEnt and CNN models,
respectively, are printed in bold font. The results averaged over all sentence types
are shown in the last row of Table 3.

In the following, we answer the research questions. RQ1 is concerned with
the performance comparison of the three MaxEnt models (the first four columns
in Table 3). The first two models only use simple BoW (i.e., word n-grams) fea-
tures, while the last model uses both character n-grams and, in addition, linguis-
tic features (see Sect. 4.3). On average over all sentence types on MaxEnt models,
the model with linguistic features (BoC+L) obtained the best precision and f1-
score while the model with only BoW features (i.e. 1 to 3 word n-gram features)
achieves the best recall. However, the difference in f1-scores between the BoC+L
and BoW(3) models is less than one standard deviation and thus not statistically
significant.

Regarding the model performances for the relevant sentence types E, R and B,
the average recall of the model with BoW(3) features is better than the recall of
the BoC+L model with linguistic features by 6.6 % points. However, the model
with linguistic features has the best precision compared to the other models. In
terms of f1-score, the BoW(3) model is the best with 68.8, but the difference to
BoC+L with linguistic features is non-significant.

In relation to RQ1, we conclude that the simple MaxEnt model with 1 to 3 word
n-gram features is computationally the fastest (see Table 4) and as competitive as
the MaxEnt model with complex linguistic features.

Table 4. Runtime of different classification models [19].

Model Average runtime for one run

MaxEnt BoW(1) 9 mins

MaxEnt BoW(3) 12 mins

MaxEnt BoC+L 22 mins

CNN (non-static) 142 mins

CNN (static) 554 mins

RQ2 studies the performance of deep learning based CNN model in comparison
with the MaxEnt model with BoW features. Although the static CNN seems to
obtain better precision and the non-static models obtains higher recall, the per-
formance of the individual model runs varies a lot and thus, the differences are
not statistically significant. Thus, in terms of overall averages, the performance of
both the static and the non-static CNN models are on the same level.

On average, for the informative sentence types (i.e. E, R and B), the CNN
(static) model is slightly better than both BoW(1) and BoW(3) in terms of f1-
score, but these differences are again not statistically significant. When comparing

Simplifying the Classification of App Reviews Using Only Lexical Features 185

the CNN (static) model to the BoW(3) model, the CNN (static) model obtains
higher precision whereas the BoW(3) model has a better recall.

Hence, we conclude with regards to RQ2 that the CNN models (static and
non-static) achieve competitive performance in comparison to the MaxEnt models
(BoW(1) and BoW(3)) but the superiority of one or the other approach is not
clear. However, it is possible that with a larger training set, the CNN models would
gain a clearer advantage over the simple MaxEnt models with BoW features.

7 Discussion

The results presented in Sect. 6 indicate that the model performance for automatic
classification of review sentences might have potential for improvement, especially
with regards to sentence types that contain useful information for developers (i.e.
Feature Request (R), Feature Evaluation (E) and Bug Report (B)). To
investigate issues affecting model performance, we first performed an error anal-
ysis of the BoW(3) model predictions. Then, we analyzed a random sample of
annotated reviews from Gu’s dataset to better comprehend the overall procedure
that was used to annotate reviews.

Since our first objective is to understand the reasons behind the prediction
errors made by the model, we started our analysis by looking at the confusion
matrix (shown in Table 5) of the reviews used for evaluation in one of the exper-
imental runs. Each column of the confusion matrix in Table 5 represents the
instances of a predicted sentence type while each row represents the instances of a
true (annotated) sentence type. All correct predictions are located in the diagonal
of the confusion matrix. The confusion matrix clearly shows that the classification
model is seriously confused about the prediction of a large number of review sen-
tences labeled as Other (O). For instance, 26% (107 out of 411) of the sentences
with the true label Other are wrongly predicted as Bug Report while 22.5%
(86 out of 382) of sentences with the true label Bug Report have been missed as
they have been falsely predicted as type Other. Similar percentages of misclas-
sifications also occur for the Feature Request sentence type.

Table 5. The confusion matrix of model predictions on reviews in the evaluation-set.

Predicted label
E R B P O Total

True label

E 845 29 22 86 209 1191
R 24 295 14 10 76 419
B 16 11 265 4 86 382
P 45 5 3 1537 139 1729
O 202 117 107 205 2445 3076

Total 1132 457 411 1842 2995 6979

The classification performance presented in the form of the confusion matrix
indicates that a significant number of sentences annotated as Other overlaps

186 F. A. Shah et al.

with sentences annotated as with other classes Feature Evaluation, Feature
Request, Bug Report and Praise. A manual analysis of misclassified review
sentences in each sentence type can help to investigate the reasons for these mis-
classifications. Therefore, we manually analyzed the false positives (FPs) and false
negatives (FNs) of the sentences annotated asBugReport because this class has
the largest proportion of misclassifications regarding sentence type Other (the
number of instances analyzed are highlighted in Table 5).

It seems reasonable to assume that review sentences labeled as Feature
Evaluation, Bug Report or Feature Request should mention a functional
or non-functional aspect of an app. Based on the definitions of the sentence types
given in Table 1, this assumption should hold for review sentences labeled as Fea-
ture Evaluation and Feature Request in Gu’s dataset. With sentence type
Bug Report the definition given in Table 1 is not so clear as it also includes
glitches and problems which might be general and not specific to a particular
aspect of an app. Indeed, the examples of some FNs (Sentence#1 to Sentence#5)
presented in Table 6 show that there are sentences annotated as Bug Reports
that describe general problems or glitches that the model predicts as belonging
to the class Other. Similarly, the examples of FPs given in Table 6 (Sentence#6
to Sentence#10) show that there are very similar sentences that have been anno-
tated as Others but that the model has predicted as belonging to the class Bug
Report. These examples demonstrate that differences between sentences belong-
ing to classes BugReport andOther are not always clear and this also confuses
the model.

Another possibility is that the sentences annotated as Bug Reports in fact
contained more specific complaints about the app compared to sentences labeled
as Others, which would become evident if the rest of the app review from where
the sentence was taken from would be considered. Consider any of the sentences
#1 to #5 in Table 6. It is possible that a previous review sentence or sentences
might describe more specifically what problem has been referred to. However, by
considering these sentences in isolation from the rest of the review it is impossible
to tell whether they are part of more specific complaints or not. We suggest that
for many of these sentences, the correct type of these sentences remains ambiguous
when treated in isolation without the context of the rest of the review.

In order to better understand how widespread the problem of ambiguity is for
the given dataset, we selected a stratified random sample of 200 review sentences
from Gu’s dataset for manual re-annotation analysis. We started with the basic
intuition that in order for the review sentences of type Feature Request, Fea-
ture Evaluation and Bug Report to be useful they must contain an app fea-
ture. Thus, we first counted the number of review sentences in each sentence type
in which a functional or a non-functional aspect has been mentioned. The sum-
mary of this analysis is shown in Table 7, showing that on average 24% of review
sentences belonging to these three types do not contain any aspect information
(although there were none of such sentences of type Feature Request in this
random sample). In our opinion, the review sentences that belong to type Bug
Report but not mentioning any aspect term should be labeled as type Other

Simplifying the Classification of App Reviews Using Only Lexical Features 187

Table 6. Examples of false negatives (FNs) and false positives (FPs) from sentence
type ’B’.

Sent# Review sentence True
label

Pred
label

False negatives (FNs)

1 Unfortunately stop B O

2 CAN YOU FIX THAT PROBLEMS? B O

3 I’d love to give this a 5 star again but not until that’s fixed B O

4 I uninstalled it because of this same glitch before B O

5 blank screen B O

False positives (FPs)

6 It won’t work offline anymore O B

7 Can’t remove it O B

8 The keyboard stals open on my lock screen O B

9 I can only bookmark the pages O B

10 fix it O B

Table 7. Analysis of randomly selected 200 review sentences mentioning functional
aspect, non-functional aspect, or no aspect.

Sentence type #Functional aspect #Non-functional aspect #No aspect Total

E 11 14 9 34

R 12 0 0 12

B 2 5 5 12

Subtotal 25 19 14 58

P 1 0 49 50

O 16 9 67 92

Total 42 28 130 200

while the review sentences belonging to type Feature Evaluation that do not
mention any aspect information should be either labeled as type Other (in the
case of negative or neutral sentiment) or type Praise (in the case of positive sen-
timent).

Next, in order to quantify our disagreement with Gu’s annotations, the first
author of this paper manually re-annotated the same 200 randomly selected review
sentences according to the principles describe above, and in the following we refer
to these as Shah’s annotation. The number of disagreements between Gu’s anno-
tation and Shah’s annotation are presented in the form of a confusion matrix in

188 F. A. Shah et al.

Table 8. Comparison of Shah’s annotation against Gu’s annotation.

Shah’s label
E R B P O Total

Gu’s label

E 24 0 1 8 1 34
R 0 12 0 0 0 12
B 0 0 7 0 5 12
P 1 0 0 46 3 50
O 9 5 7 12 59 92

Total 34 17 15 66 68 200

Table 8. We show the examples of a few disagreements (Sentence#1 to Sentence#5
in Table 9) to demonstrate the annotation differences that stem from our strict cri-
teria about the presence of an aspect term in sentences of types Bug Report and
Feature Evaluation.10 Moreover, in Gu’s annotations, the review sentences in
which user praises the whole app with words: “helpful”, “useful” and “effective”
are labeled as Feature Evaluation, however, in Shah’s annotation we labeled
them as type Praise (look at sentence#3 and sentence#5 in Table 9). Overall,
35% of review sentence annotated by Gu as type Other were relabeled as one of
the other four types (Feature Evaluation, Feature Request, Bug Report
orPraise) in Shah’s annotation, some examples are shown in Table 9 (sentence#6
to sentence#10). Regardless of these disagreements, we cannot rule out the pos-
sibility that annotators who labeled the reviews in Gu’s dataset might have taken
into account the context information when they annotated these review sentences.
Since the dataset we received from the authors only contains the review sentences
without the context information, we did not have access to this context informa-
tion during our manual annotation.

The next logical step in the light of this knowledge would be to re-annotate the
whole dataset using the principles described. The sentence types Feature Eval-
uation, Feature Request and BugReport must contain a functional or non-
functional aspect term. Those sentences that do not contain an aspect term should
be annotated asPraisewhen the sentiment of the sentence is positive towards the
app and the categoryOther should contain all the remaining sentences. However,
as the dataset is quite large we were not able to carry out the full re-annotation
at this point and thus, we can only hypothesize what effect such re-annotation
could have on the machine learning classifiers. We hypothesize that after such re-
annotation there boundaries between the three classes containing aspect terms
and the Other class are more clear and that would improve the performance of
the machine learning classifiers.

Our previous analysis (see examples in Tables 6 and 9) suggested that context
information might be important for classification of reviews at sentence-level. To
illustrate this idea, we present two sample reviews in Table 10. In the table, the first
sentence of Review#1 has a negative sentiment word “issue” that, when looking at

10 There are no examples from the sentence type Feature Request because all sen-
tences in our sample annotated with that type contained an aspect term.

Simplifying the Classification of App Reviews Using Only Lexical Features 189

Table 9. Example of annotations on which Gu and Shah have disagreements.

Sent# Sentence text Gu’s
label

Shah’s
label

1 Keeps crashing B O

2 I’ve tried more than five times it got stuck at 2% 58%
75% what shall i do?

B O

3 It is very helpful! E P

4 it works great! E P

5 Effective! E P

6 Can’t make a deposit after last update O B

7 It is so prone to mistakes and if we do not double
check the dates, we would end up missing the events

O B

8 WoW! O P

9 Is it possible to ad emojis and a name ’taging’
functionality (similar to facebook/instagram) within
the ap’s yelp talk forum?

O R

10 My husband and I frequently sync calendars which is
fuss free

O E

the sentence in isolation, hints that the sentence belongs to typeBugReport but
the word and sentence level information is in fact Feature Request. Similarly,
in the second review example, the second sentence without wider context would
be too vague to consider as Bug Report as it does not contain an aspect term.
However, the first sentence helps to resolve the coreference and disambiguate the
correct sentence type as Bug Report.

All examples in Table 9 could be annotated and classified on the review level.
However, in this paper we addressed the review classification problem on sentences
level because some reviews can address several aspect types. According to [15]
between 22% and 30% of app reviews raise multiple issues in the same review.
Although these numbers cannot be directly generalized to our setting because [15]
quantified the amount of multi-labeled reviews using an annotation set consisting
of 14 different labels as opposed to only 5 labels in our dataset, they suggest that
the issue of multiple labels per review cannot be overlooked. On the other hand, as
we have shown in our discussion, strictly sentence level analysis does not solve the
problem either because the meaning of a sentence and to which category it belong
might be dependent on the contextual sentences in the review. Thus, we propose
that further studies should explore categorizing review sentences in the context of
the rest of the review.

One option to utilize the context information would be to adopt neural models.
Over the past few years, researchers have successfully utilized the context infor-
mation in neural models using the attention mechanisms [3,11] in which the model
is allowed to focus to contextual information (i.e., previous and next sentences) of

190 F. A. Shah et al.

the source sentence before generating a prediction. For instance, [23] improved the
performance for automatic classification of reviews (i.e., Yelp, IMDB and Ama-
zon) with neural networks by utilizing the word level and sentence level context
information. In conclusion, we suggest that future research in app review classi-
fication should adopt datasets annotated on the sentence level within the context
of the whole review and experiment with incorporating this context information
into CNN models or other neural text classification models.

Table 10. Context information is useful in predicting the correct type of a review sen-
tence.

Review# Review text

1 The main issue I have with this app is that there isn’t a ’keep me
logged in’ feature. Please add and I will reward you greatly (with 5
stars)

2 I cannot view my XLS files on iPad.
Please fix this ASAP.
Thanks

8 Threats to Validity

The review dataset used in this study has been collected from PlayStore and was
manually labeled by [7]. We do not know the extent to which the results of our
study are sensitive to the annotators and annotation guidelines used to label this
data. Moreover, the nature or language characteristics of the reviews in other app
marketplaces may be different to that of PlayStore. Therefore, we do not claim the
generalizability of our results to reviews from other platforms like, e.g., AppStore.

The CNN-based model has a large number of hyperparameters that can
be tuned to potentially improve the performance. This set of hyperparameters
includes the size of the embeddings, number and sizes of filters, the choice of the
optimizer with its parameters, various options for regularization, etc. Tuning all
these hypermarameters is unfeasible in practice. Thus, we tuned the drop-out rate
and the strength of the L2-regularization. Still, tuning other hyperparameters as
well might improve the model performance.

Previous studies have shown that tuning the word vectors to the particular
classification task (non-static CNN) improves model performance [10] but in our
experiments the performance difference between static and non-static CNN is not
significant. One possible reason for this can be that the textual domain of Google
News is too different from the texts of app reviews and thus embeddings trained
on Google News has not given a good enough starting point for our model. It is
possible that word embeddings pre-trained on a large amount of app reviews would
perform better in our case.

The number of examples for each sentence type in the dataset are imbalanced.
To tackle this imbalance, we experimented with random oversampling and random

Simplifying the Classification of App Reviews Using Only Lexical Features 191

undersampling techniques in MaxEnt models but did not observe any improve-
ments in F1-score. Many other techniques exist to handle class imbalance and thus
it is possible that using one of those would have made a difference. Also, we did
not apply the class balancing techniques to neural models where they potentially
could have improved the results.

The manual analysis presented in Sect. 7 was performed by only one person and
thus might be biased. We tried to address this problem by having the re-labeling
decisions reviewed by the other two co-authors. There were only two cases where
the decisions were needed to be changed. This happened in agreement among all
three authors.

9 Conclusion

We explored the power of simple lexical features in classifying app review sen-
tences. For that, we compared the simple Bag-of-Words feature representation
with a more complex feature set proposed in previous work extracted using various
NLP tools. We found that, on average, the simple BoW model performs as well as
the model with complex linguistic features. Considering that software developers
and software engineering researchers are typically not experts in NLP tools, this
is a desirable result. We also experimented with deep learning based CNN models
which have become very popular due to their ability to learn complex feature rep-
resentations from simple lexical inputs as well as their good performance in many
tasks. In our study, we did not observe any significant advantage of using computa-
tionally more expensive CNNs over its simpler BoW counterpart. However, from
the manual analysis of annotated reviews and classification errors, we gather that
context knowledge could be useful for the classification of review sentences. There-
fore, including context information, for instance using attention mechanisms in
neural models, might help in improving the classification performance.

Acknowledgments. We are grateful to Xiaodong Gu for sharing the review dataset
for this study. This research was supported by the institutional research grant IUT20-55
of the Estonian Research Council and the Estonian Center of Excellence in ICT research
(EXCITE).

References

1. Chen, N., Lin, J., Hoi, S.C.H., Xiao, X., Zhang, B.: AR-miner: mining informative
reviews for developers from mobile app marketplace. In: Proceedings of the ICSE
2014, pp. 767–778. ACM Press (2014)

2. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493–2537 (2011)

3. Du, J., Gui, L., Xu, R., He, Y.: A convolutional attention model for text classifi-
cation. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC 2017.
LNCS (LNAI), vol. 10619, pp. 183–195. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73618-1 16

https://doi.org/10.1007/978-3-319-73618-1_16
https://doi.org/10.1007/978-3-319-73618-1_16

192 F. A. Shah et al.

4. Fu, W., Menzies, T.: Easy over hard: a case study on deep learning. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, pp. 49–60. ACM, New York (2017). https://doi.org/10.1145/
3106237.3106256, http://doi.acm.org/10.1145/3106237.3106256

5. Gao, C., Zeng, J., Lo, D., Lin, C.Y., Lyu, M.R., King, I.: Infar: insight extraction
from app reviews. In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pp. 904–907. ACM, New York (2018). https://doi.
org/10.1145/3236024.3264595, http://doi.acm.org/10.1145/3236024.3264595

6. Genc-Nayebi, N., Abran, A.: A systematic literature review: opinion mining studies
from mobile app store user reviews. J. Syst. Softw. 125, 207–219 (2017)

7. Gu, X., Kim, S.: What parts of your apps are loved by users? In: 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 760–770, November 2015. https://doi.org/10.1109/ASE.2015.57

8. Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from
online reviews. In: Proceedings of the 10th Working Conference on Mining Software
Repositories, pp. 41–44. IEEE Press (2013)

9. Iacob, C., Harrison, R., Faily, S.: Online reviews as first class artifacts in mobile app
development. In: Memmi, G., Blanke, U. (eds.) MobiCASE 2013. LNICST, vol. 130,
pp. 47–53. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05452-0 4

10. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the EMNLP 2014, pp. 1746–1751. ACL (2014)

11. Liu, T., Yu, S., Xu, B., Yin, H.: Recurrent networks with attention and convolutional
networks for sentence representation and classification. Appl. Intell. 48(10), 3797–
3806 (2018)

12. Lu, M., Liang, P.: Automatic classification of non-functional requirements from
augmented app user reviews. In: Proceedings of the 21st International Confer-
ence on Evaluation and Assessment in Software Engineering, EASE 2017, pp. 344–
353. ACM, New York (2017). https://doi.org/10.1145/3084226.3084241, http://
doi.acm.org/10.1145/3084226.3084241

13. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On auto-
matically classifying app reviews. In: Proceedings of RE 2015, pp. 116–125. IEEE,
August 2015

14. Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M.: A survey of app store analysis
for software engineering. IEEE Trans. Softw. Eng. 43(9), 817–847 (2017)

15. McIlroy, S., Ali, N., Khalid, H., Hassan, A.E.: Analyzing and automatically labelling
the types of user issues that are raised in mobile app reviews. Empir. Softw. Eng.
21(3), 1067–1106 (2016)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: Pro-
ceedings of RE 2013, pp. 125–134 (2013)

18. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.C.:
How can i improve my app? Classifying user reviews for software maintenance and
evolution. In: Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), ICSME 2015, pp. 281–290. IEEE Computer
Society, Washington, D.C. (2015). https://doi.org/10.1109/ICSM.2015.7332474,
http://dx.doi.org/10.1109/ICSM.2015.7332474

https://doi.org/10.1145/3106237.3106256
https://doi.org/10.1145/3106237.3106256
http://doi.acm.org/10.1145/3106237.3106256
https://doi.org/10.1145/3236024.3264595
https://doi.org/10.1145/3236024.3264595
http://doi.acm.org/10.1145/3236024.3264595
https://doi.org/10.1109/ASE.2015.57
https://doi.org/10.1007/978-3-319-05452-0_4
https://doi.org/10.1145/3084226.3084241
http://doi.acm.org/10.1145/3084226.3084241
http://doi.acm.org/10.1145/3084226.3084241
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/ICSM.2015.7332474
http://dx.doi.org/10.1109/ICSM.2015.7332474

Simplifying the Classification of App Reviews Using Only Lexical Features 193

19. Shah, F.A., Sirts, K., Pfahl, D.: Simple app review classification with only lexical
features. In: Proceedings of the 13th International Conference on Software Tech-
nologies, ICSOFT, vol. 1, pp. 112–119. INSTICC, SciTePress (2018). https://doi.
org/10.5220/0006855901460153

20. Socher, R., Lin, C.C.Y., Ng, A.Y., Manning, C.D.: Parsing natural scenes and nat-
ural language with recursive neural networks. In: Proceedings of the 28th Inter-
national Conference on International Conference on Machine Learning, ICML
2011, pp. 129–136. Omnipress, Madison (2011). http://dl.acm.org/citation.cfm?
id=3104482.3104499

21. Sorbo, A.D., Panichella, S., Alexandru, C.V., Visaggio, C.A., Canfora, G.: Surf:
summarizer of user reviews feedback. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pp. 55–58, May 2017.
https://doi.org/10.1109/ICSE-C.2017.5

22. Villarroel, L., Bavota, G., Russo, B., Oliveto, R., Di Penta, M.: Release planning
of mobile apps based on user reviews. In: Proceedings of the ICSE 2016, pp. 14–24.
ACM (2016)

23. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1480–1489 (2016)

https://doi.org/10.5220/0006855901460153
https://doi.org/10.5220/0006855901460153
http://dl.acm.org/citation.cfm?id=3104482.3104499
http://dl.acm.org/citation.cfm?id=3104482.3104499
https://doi.org/10.1109/ICSE-C.2017.5

Smart Measurements and Analysis
for Software Quality Enhancement

Sarah Dahab1 , Stephane Maag1 , Wissam Mallouli2(B) ,
and Ana Cavalli1

1 SAMOVAR, Telecom SudParis, Université Paris-Saclay, Saint-Aubin, France
{sarah.dahab,stephane.maag}@telecom-sudparis.eu
2 Montimage Research and Development, Paris, France

{wissam.mallouli,ana.cavalli}@montimage.com

Abstract. Requests to improve the quality of software are increasing
due to the competition in software industry and the complexity of soft-
ware development integrating multiple technology domains (e.g., IoT,
Big Data, Cloud, Artificial Intelligence, Security Technologies). Measure-
ments collection and analysis is key activity to assess software quality
during its development live-cycle. To optimize this activity, our main
idea is to periodically select relevant measures to be executed (among a
set of possible measures) and automatize their analysis by using a ded-
icated tool. The proposed solution is integrated in a whole PaaS plat-
form called MEASURE. The tools supporting this activity are Software
Metric Suggester tool that recommends metrics of interest according
several software development constraints and based on artificial intel-
ligence and MINT tool that correlates collected measurements and pro-
vides near real-time recommendations to software development stake-
holders (i.e. DevOps team, project manager, human resources manager
etc.) to improve the quality of the development process. To illustrate
the efficiency of both tools, we created different scenarios on which both
approaches are applied. Results show that both tools are complementary
and can be used to improve the software development process and thus
the final software quality.

Keywords: Software engineering · DevOps team ·
Metrics combination · Metrics reuse · Metrics suggestion ·
Metrics correlation · Software quality

1 Introduction

Metrics play a crucial role to improve software quality development process that
is becoming more and more complex [1]. To select the right metrics is also of

Supported by the ongoing European project ITEA3-MEASURE started in Dec. 1st,
2015, and the EU HubLinked project started in Jan. 1st, 2017.

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 194–219, 2019.
https://doi.org/10.1007/978-3-030-29157-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_9&domain=pdf
http://orcid.org/0000-0003-4253-1857
http://orcid.org/0000-0002-0305-4712
http://orcid.org/0000-0003-2548-6628
http://orcid.org/0000-0003-2586-9071
https://doi.org/10.1007/978-3-030-29157-0_9

Smart Measurements and Analysis for Software Quality Enhancement 195

prime importance for a successful software development. They have a strong
impact on developers actions and decisions [16].

In order to improve the software quality, we need to introduce new metrics
with the required detail and automation. Due to the modern development prac-
tices, new tools and methods are also necessary being the traditional metrics and
evaluation methods not sufficient anymore. Even more, there is a large body of
research related to software metrics that aims to help industry while measuring
the effectiveness and efficiency of used software engineering processes, tools and
techniques to help management in decision-making [4].

To achieve software quality, it is required to integrate new metrics based on
constraints combining safety (the system always behaves as it is supposed to)
and security (authentication, data protection, confidentiality, ...) and quality of
service. Green metrics also become relevant as they contribute to the reduction
of energy consumption.

This paper focuses on the combination, reuse, suggestion and correlation of
metrics. We have developed two complementary approaches, one based on met-
rics reuse, combination and suggestion and the other on metrics correlation.
They have been implemented in two tools, Metrics Suggester and Metrics Intel-
ligence Tool (MINT). Both approaches contribute to improve software quality
development proposing new techniques for metrics application and evaluation.

Regarding the Metrics Suggester approach, it is based on the optimization
of the current measurement process which are manual and static and thus very
costly. Metrics Suggester proposes an automated analysis and suggestion app-
roach, by using the learning technique Support Vector Machine1 (SVM), based
on AI algorithms. In summary, it consists of suggesting relevant and efficient
measurement plans at runtime using a machine learning algorithm.

Regarding the MINT approach, the idea is to identify and design correlations
between metrics that contribute to the improvement of the development process
and help developers to take decisions about it. The proposed correlations cover
all aspects of the system like functional behavior, security, green computing and
timing. For instance, we have defined correlations covering different phases of
development. Techniques to correlate metrics are provided and recommendations
are given as an outcome to the developer and project manager or any other
software stakeholder. Recommendations will affect their actions and decisions.

Both techniques are original and introduce innovation with respect to classi-
cal methods. Moreover, the application to the combination of metrics regarding
software development, security and green computing is a novelty with respect to
them.

Both approaches and tools are part of the European ITEA project MEA-
SURE and they have been integrated in the project PaaS platform2. Further-
more, in order to reach that result, a close link has been defined between
academia and industry for several years strengthened by the EU HubLinked

1 http://www.statsoft.com/Textbook/Support-Vector-Machines.
2 https://itea3.org/project/measure.html.

http://www.statsoft.com/Textbook/Support-Vector-Machines
https://itea3.org/project/measure.html

196 S. Dahab et al.

project3 fostering the U-I relationships (Universities-Industry). In summary, the
main contributions of this paper are:

– the design of new complementary approaches to improve software quality
development process by introduction of new correlation and suggestion tech-
niques, these lasts based on AI algorithms;

– the development of techniques and tools, Metrics Suggester and MINT, for
metrics correlation, reuse, suggestion, and recommendation.

– first functional experimentation of both tools.

This paper is organized as it follows: Sect. 2 presents the related works.
Section 3 gives a view of the MEASURE global platform and presents the two
approaches and the tools, Metrics Suggester and MINT. Section 4 is devoted to
presenting the experiences that are illustrated by experiments and Sect. 5 gives
the conclusion and perspectives of our work.

2 Related Works

Many efforts have been done to define metrics for software quality [4,10,21,25].
These works can be associated with standardized quality models such as ISO
9126 quantifying properties with software metrics [5]. Learning techniques are
currently arising to effectively refine, detail and improve the used metrics and to
target more relevant measurement data. Current works such as [22], [27] and [23]
raise that issue by proposing diverse kinds of machine learning approaches for
software defect prediction through software metrics. These studies have shown
the importance of gathering information on the software engineering process
in particular to ensure its quality through metrics and measurements analysis
[10]. Thanks to that, standardization institutes worked in that way to propose
two well-known norms, ISO/IEC25010 [21] and OMG SMM [4] to guide the
measurement plan specification. These two standards have been reviewed by
the research and industrial community, and are adapted and applied in many
domains [2].

However, even if these techniques have introduced considerable progress to
improve the software quality, they have still some limitations. The measurement
plan is, in general, manually fixed by the project manager, the implementation
of the measures is dependent on the developer and reduce the scalability, main-
tainability and the interoperability of the measurement process.

For software metrics correlation, there are many works focused on the rela-
tions between internal and external software metrics. In [28], the impact of
software metrics on software quality is presented and the internal and external
attributes of a software product are studied because the relationship between
them directly affects its behaviour. The metrics are combination of these
attributes. As the number of metrics used in a software project increases, the
management and controlling of the project also increases. In [24], the authors

3 http://www.hublinked.eu/.

http://www.hublinked.eu/

Smart Measurements and Analysis for Software Quality Enhancement 197

investigated the relationship between different internal and external software
metrics by analyzing a large collection of C/C++ programs submitted to a pro-
gramming competition, the Online Judge. In [19], they analyze the links between
software reliability and software complexity for evaluating the effectiveness of
testing strategies.

These works have been applied mainly to establish correlations between inter-
nal and external metrics, and to specific ones. They have been very useful for our
work published in [7] and extended in this paper. Even though our approaches
are generic and can be applied to any metric, we plan to apply our approaches
to evaluate the relation between specific and well selected metrics. Besides, the
tools we propose are part of a PaaS open source platform called MEASURE4

dedicated to host several measuring and analysis tools to enhance software engi-
neering process quality.

3 Measurement Approaches and Tools

3.1 The MEASURE PaaS Platform

The MEASURE platform provides services to (1) host, configure and collect mea-
sures, (2) store measurements, present and visualize them and (3) analyze them

Fig. 1. The MEASURE PaaS platform.

4 https://github.com/ITEA3-Measure/.

https://github.com/ITEA3-Measure/

198 S. Dahab et al.

and provide recommendations. These measures are first defined in SMM (Struc-
tured Metrics Meta-model) standard5 using the extension of Modelio modelling
tool6 dedicated to SMM modelling. The MEASURE platform is able to col-
lect measurements (data resulting of the execution of an instantiated measure)
thanks to external measuring tools (e.g., Hawk [11] for design and modelling
related measurements, SonarQube [12] for testing related measurements, MMT7

for operation related measurements, EMIT [3] for energy consumption related
measurements, etc.) (Fig. 1).

Direct measures collect data in physical world while the derived (complex or
composed) measures are calculated using previously collected measurements as
input. Collected measurements are stored on a NoSQL database designed to be
able to process a very large amount of data. To collect measurements, the direct
measures can delegate the gathering work to existing measuring tools integrated
with the MEASURE PaaS platform.

The measurements can also be processed by analysis tools to present con-
solidated results. The analysis platform is composed of a set of tools that allow
combining and correlating measurements in a meaningful way in order to provide
suggestions and recommendations for the software developers and managers.

Finally, stored measurements and recommendations are presented directly
to the end user following a business structured way by the Decision-making
platform, with a web front-end that allows organizing measures based on
projects/software development phases and displays its under various forms of
charts.

In order to study and improve the software quality processes and ease the
tasks of project engineers and managers, we defined a methodology based on two
modules: Metrics Suggester and Metrics Intelligence. The used terminology, the
formal modelling language and our two techniques are described in the following.

3.2 A Formal Software Measurement Context

Several concepts are commonly used in the software engineering context. We
provide some measurement terminologies in the following [15,17].

Terminology

Measurand: a measurand is the measured object. In this context, it is a software
system, such as software product, in use or software resource.

Software Properties: the software properties are the measurable properties of a
software such as, for instance, complexity or performance.

5 https://www.omg.org/spec/SMM/About-SMM/.
6 https://www.modelio.org/.
7 http://www.montimage.com/products.html.

https://www.omg.org/spec/SMM/About-SMM/
https://www.modelio.org/
http://www.montimage.com/products.html

Smart Measurements and Analysis for Software Quality Enhancement 199

Measurement: a measurement is defined as a direct quantification of a measured
property [9]. This is the value of an evaluation result in a single time. This is
information on the measured property, such as the percentage of the memory
used.

Measure: a measure is the definition of a concrete calculation to evaluate a
property, such as the calculation of the number of lines of code.

Metric: a metric is a measure space, in other words, the specification of a mea-
surement. This is the formal definition of a measurement of a property of a
computer object by specifying the measurand, the measure(s) and the software
property to be measured.

Measurement Plan: a measurement plan is an ordered set of metrics (simple or
complex). They are all expected to be executed at a specific time t or during a
well-defined duration and according to an ordered metrics sequence. They can
be run sequentially or in parallel.

The OMG Structured Metrics Meta-model. Our methodology is based on
the OMG SMM (Structured Metrics Meta-model) standard to formally model
our metrics in terms of measure, scope (subset of measured properties) and
measurement but also in order to easily generate the corresponding Java code
[6]. Our main purpose is to have a standard documentation on the measurement
architecture with the SMM model, which will also optimize the design phase of
the implementation of a software measurement. Indeed, this process will enable
measurement code generation from a measurement architecture model based on
SMM. This will reduce the developer’s burden of manual implementation.

SMM is a standard specification that defines a meta-model to specify a
software measurement architecture, in other words to specify a Measure Space
applied to a computer system. It defines the meta-models to express all nec-
essary concepts to specify a measurement context. A wide range of diversified
types of measures is proposed to define the dependency type between dependent
measures (as the ratio, binary or grade measure). The language allows to define
direct/indirect measures and complex metrics:

– Direct Measure: is the measure independent of other measures, thus it refers
to the simple evaluation function.

– Indirect Measure: is a measure dependent on other measures.
– Complex metric: a complex metric is a metric composed of indirect mea-

sure(s).

As an example, the Fig. 2 represents the model of the computational energy
cost metric in SMM with the Modelio tool. This complex metric (represented by
3 stack levels) depends on three other metrics, two of them are direct metrics
(represented by a microscope): the memory access count and I/O usage metrics,
and the third one is also a complex metric denoted CPU energy model. It returns

200 S. Dahab et al.

Fig. 2. The computational energy cost metric model in SMM. (Color figure online)

a numerical value in Joule. A low energy cost means a better software. Thus, it
is. Then, the unit of measure of the computational energy cost is a Joule and
represented in the figure by the yellow symbol “{...}”. Finally, this metric is
applied on an application, which is represented by the blue target in the model.
Each component is modeled as a UML class allowing the code generation from
a SMM metric model.

We describe in the following the two approaches and tools composing our
methodology.

3.3 The Software Metrics Suggester

As previously mentioned, one of our approaches consists on suggesting relevant
and efficient software measurement plans at runtime using a machine learning
algorithm. In order to detail our methodology, we first introduce some concepts
in the following.

Basics. In our previous paper [7], we developed a supervised learning technique
based on SVM with training datasets. These datasets contain vectors labeled by
experts. In an industrial context, the labeling process can be complex, time and
resource consuming [13]. In this paper, our main objective is to automatically
generate our measurement plans from totally unlabeled data. Our goal being to
define an unsupervised learning methodology. To do so, we propose an algorithm
(Algorithm 1) based on a clustering technique. This latter allows to identify in
an automatic way the software classes of interests from unlabeled data that are
themselves automatically labeled with dummy classes.

Finally, each obtained cluster will be classified and vectors of measurements
automatically labeled to be fed as inputs to our SVM approach. In the following,

Smart Measurements and Analysis for Software Quality Enhancement 201

we formally describe the detailed procedures along with a generalized classifier
for the suggestion of measurements plan.

X-means Clustering. First, while measuring a system, we have a continuous
stream S of n measurements. These measurements can be considered as events.
The concept of event is interesting since it defines a formal link between the two
methods proposed in our approach, Metric Suggester and MINT. Each event can
be represented as a data point in a space xi and can be expressed as:

{(xi)}, xi ∈ R
d, i ∈ {1, 2, ..., n} (1)

where d is the dimension number of the input space or attributes (ai), and n is
the number of samples.

Generally, we can associated low-level events with high-level or complex
events yi ∈ R by a prediction function f(xi) (Eq. (4)). However, because no
labeled event data is assumed, we decided to apply a clustering technique that
could categorize the data into classes of metrics. One famous technique com-
monly applied is the K-means algorithm [18]. Though it is very efficient in many
areas, it requires to know the value of K. In our paper, we herein suppose that
we do not know its value, that depends on the software metrics in use and the
collected data. Therefore, the X-means clustering algorithm is proposed [26].
X-means will allow us to split the input data (1) into K clusters without the
need to define the expected number of them at the first stage. The best K sub-
sets are chosen such that all points in a given subset “belong” to some center cj ,
j ∈ (1, 2, ..., k) with a low inter-cluster similarity. Basically, the algorithm aims
at minimizing the following distance objective function:

J =
k∑

j=1

n∑

i=1

|DMH(xj
i , cj)|, (2)

where |DMH(xj
i , cj)| is the Mahalanobis distance measure between a event data

point and a cluster center [8]. Later, we also use this distance measure to define
the boundaries of each rule attribute. By using the Eq. (2), we can assign the
events data points xi to the cluster whose distance from the cluster center cj
is lower of all the cluster centers and which satisfies the Bayesian information
criterion (BIC). After that, each cluster center is updated by taking the weighted
average value of event points in that cluster (3) for better clustering results.

Cjupdate =
1

|cj |
cj∑

i=1

xi (3)

Finally, class labels yi can be assigned for each event cluster automatically by
our system. Then, once this assignation is performed, the vectors are labelled
and the SVM process can be executed at runtime for beginning the measurement
plans suggestion.

202 S. Dahab et al.

Algorithm 1. Event Clustering.

Input: Unlabeled event data-set {xi}n
i=1 ∈ R

d

Output: Labeled event data-set {(xi, yi)}n
i=1 ∈ R

d,
Clusters centers Cj

i ∈ yi

1 Initialize an empty stack ϕ ← 0
2 Define initial number of clusters K0 ← 2
3 Divide unlabeled event data-set into C1, C2, ..., Ck0 clusters using k-means with

setting k ← k0.
4 repeat

5 Divide each cluster Ci into Ck0
i sub-clusters using k-means with k ← k0.

6 Calculate BIC(Ci)

7 Calculate BIC, MNDL(Ck0
i)

8 if BIC(Ci) > BIC
′
(MNDL(Ck0

i) > MNDL
′
(Ck0

i)) then
9 The two-divided model is preferred, and the division is continued with

Ci ← C1
i .

// push event data into the stack

10 xi → ϕ

11 Ck0
i → ϕ

12 BIC(Ci) → ϕ
13 return step 5

14 end

15 if BIC(Ci) < BIC
′
(MNDL(Ck0

i) < MNDL
′
(Ck0

i)) then

16 Clusters Ci are no longer divided and set Ci ← Ck0
i .

17 if ϕ → 0 then
18 goto step 26
19 else

// Extract all the stacked data

20 ϕ → xi

21 ϕ → Ck0
i

22 ϕ → BIC(Ci)
23 return step 5

24 end

25 end
// Ci cluster identification becomes unique.

26 Ci ← C∗
i

// Initial k0 divided clusters become unique.

27 Cj ← C∗
j

28 until i ≤ k0;

Support Vector Machine. A support vector machine (SVM) [29] is a linear clas-
sifier defined by a separating hyperplane that determines the decision surface for
the classification. Given a training set (supervised learning), the SVM algorithm
finds a hyperplane to classify new data. Consider a binary classification prob-
lem, with a training dataset composed of pairs (x1, y1), . . . , (xl , yl), where each
vector xi ∈ Rn and yi ∈ {−1,+1}. The SVM classifier model is a hyperplane

Smart Measurements and Analysis for Software Quality Enhancement 203

that separates the training data in two sets corresponding to the desired classes.
Equation (4) defines a separating hyperplane (Source [7]):

f(x) = wTx + b = 0 (4)

where w ∈ Rn and b ∈ R are parameters that control the function. Function
f gives the signed distance between a point x and the separating hyperplane.
A point x is assigned to the positive class if f(x) ≥ 0, and otherwise to the
negative class. The SVM algorithm computes a hyperplane that maximizes the
distance between the data points on either side, this distance is called margin.
SVMs can be modeled as the solution of the optimization problem given by (5),
this problem maximizes the margin between training points (Source: [7]).

min
w ,b

1
2
‖ w ‖2

subject to: yi(wTxi + b) ≥ 1, i = 1, . . . , l
(5)

All training examples labeled −1 are on one side of the hyperplane and all
training examples label 1 are on the other side. Not all the samples of the training
data are used to the determine the hyperplane, only a subset of the training
samples contribute to the definition of the classifier. The data points used in the
algorithm to maximize the margin are called support vectors.

Features and Classes. The set of measurements that is classified using SVM is
defined as a vector of features. Each feature is a field of a vector and a measure-
ment of one specific measure. Each field is unique. So a feature is a measurement
composing a vector for our classification. Further, the vectors are classified into
classes according to the feature values. Each class refers to a measured soft-
ware property, such as the maintainability or reliability. The features composing
a vector are the measurements which give information on the classes. Some of
them can give information on several classes or only one. The features are chosen
according to the metrics defined in the starting measurement plan.

The Mapping System. In order to suggest relevant and effective measurement
plans, a mapping system is defined between classes and metrics, and between
metrics and features. It aims at allowing an automate suggestion procedure.
This mapping is performed by the experts of the measured system. According
to the type of interest (in terms of numbers of vector contained) of the classes
highlighted by the SVM classification, some metrics will be added or removed
from the measurement plan. Thus, new features will be gathered and others will
no longer be.

Classes-Metrics. A relationship between a class and some metrics is needed to
measure specific targeted software properties. The classes are used for the clas-
sification of the vectors according to their features values. As above mentioned,
our classification method is to classify a vector in the class corresponding to the
property whose the values of the vector show a type of interest.

204 S. Dahab et al.

Features-Metrics. The features values inform about the properties (classes) of
interest. There are features which give information on only one property and
others which can give information on several different properties (complex met-
rics). Some of the measures can be used by different metrics. Thus, the features
associated with a metric are the features corresponding to the measures which
composed the metric. In order to ensure the sustainability of measurement cycles
by having at each cycle an information on all measured properties, a set of met-
rics should always be gathered. This set is called mandatory features. To select
the mandatory features, we use the RFE technique, explained below, based on
SVM.

The Feature Selection. The goal of the Feature Selection (FS) process is to
select the relevant features of the raised classes. Its objective is to determine
a subset of features that collectively have good predictive power. With FS, we
aim at highlighting the features that are important for classification process.
The feature selection method is Recursive Feature Elimination (RFE) [20]. RFE
performs backward elimination that consists of starting with all the features and
test the elimination of each variable until no more features can be eliminated.
RFE begins with a classifier that was trained with all the features that are
weighted. Then, the feature with the absolute smallest weight is eliminated from
the feature set. This process is done recursively until the desired number of
features is achieved. The number of features is determined by using RFE and
cross validation together. In this process each subset of features is evaluated with
trained classifier to obtain the best number of features. The result of the process
is a classifier trained with a subset of features that achieve the best score in the
cross validation. The classifier used during the RFE process is the classifier used
during the classification process.

Measurement Plan Suggestion. Based on the classification, matching and
FS, two sets of classes are notified: the one with the most vectors called Biggest
and the other set constituted of all the other classes called Others. The Biggest
means that the corresponding property is the most interested element while the
Others means that the corresponding properties are not the elements of interest.
Thereby, our Suggestion procedure is applied for the property corresponding to
the Biggest. Indeed, the Biggest property needs a further measurement, while
the Others one no longer need it. Basically, based on the procedures Analysis
and Selection, we raise unnecessary features for the classification that should be
removed from the measurement plan. Through this method, the measurement
load is increased only on needs and decreasing due to less interested proper-
ties. This suggestion approach allows to reach a lighter, complete and relevant
measurement plan at each cycle of the software project management.

3.4 MINT- Metrics Intelligence Tool

As mentioned in our paper [7], MINT is a software solution designed to corre-
late metrics from different software development life cycle in order to provide

Smart Measurements and Analysis for Software Quality Enhancement 205

Fig. 3. MINT approach overview.

valuable recommendations to different actors impacting the software develop-
ment process. MINT considers the different measurements collected by the MEA-
SURE platform as events occurring at runtime. The correlation is designed as
extended finite state machines (EFSMs) allowing to perform Complex Event
Processing (CEP) in order to determine the possible actions that can be taken
to improve the diverse stages of the software life cycle and thus the global soft-
ware quality and cost (Fig. 3).

Background

Metrics Correlation. The correlation can be defined as a mutual relationship or
association between metrics (or the values of its application). Metrics correlation
can be the basis for the reuse of metrics; it can help to predict one value from
another; it can indicate a causal relation between metrics and can establish rela-
tions between different metrics and increase the ability to measure. Examples
of correlation are: to correlate two metrics from the same development phase;
to correlate the same metric at different times; to correlate a metric (a set of
metrics) from phase X regarding metrics of phase Y. As an outcome, recommen-
dations and a selection of metrics will be proposed to the developer to improve
the software development. MINT is based on correlation techniques.

Complex Events Processing. Complex event processing (CEP) [14] technology
addresses exactly the need of matching continuously incoming events against a
pattern. Input events from data streams are processed immediately and if an
event sequence is matching a pattern, the result is emitted straight away. CEP
works very efficiently and in real-time, as there are no overheads for data storing.
CEP is used in many areas that include for instance manufacturing processes,
ICT security, etc. and is adapted in this paper for software quality assessment
process.

206 S. Dahab et al.

Extended Finite State Machine. In order to formally model the correlation pro-
cess, the Extended Finite State Machine (EFSM) formalism is used. This formal
description allows to represent the correlation between metrics as well as the
constraints and computations needed to retrieve a meaningful recommendation
related to software quality assessment.

Definition 1. An Extended Finite State Machine M is a 6-tuple M = <
S, s0, I, O, #»x , Tr > where S is a finite set of states, s0 is the initial state, I
is a finite set of input symbols (eventually with parameters), O is a finite set
of output symbols (eventually with parameters), #»x is a vector denoting a finite
set of variables, and Tr is a finite set of transitions. A transition tr is a 6-tuple
tr =< si, sf , i, o, P,A > where si and sf are the initial and final state of the
transition, i and o are the input and the output, P is the predicate (a boolean
expression), and A is an ordered set (sequence) of actions.

Fig. 4. Example of a simple EFSM with two states (Source [7]).

We illustrate the notion of EFSM through a simple example described in
Fig. 4. The ESFM is composed of two states S0, S1 and three transitions that
are labeled with two inputs A and B, two outputs X and Y, one predicate P and
three tasks T , T ′, and T ′′ . The EFSM operates as follows: starting from state
S0, when the input A occurs, the predicate P is tested. If the condition holds,
the machine performs the task T, triggers the output X and passes to state S1. If
P is not satisfied, the same output X is triggered but the action T ′ is performed
and the state loops on itself. Once the machine is in state S1, it can come back
to state S0 if receiving input B. If so, task T ′′ is performed and output Y is
triggered.

Writing Correlation Processes

Correlation Process Inputs and Outputs. The basic idea behind MINT approach
is to specify a set of correlation rules based on the knowledge of an expert of
the software development process. These rules can rely on one or different sets
of metrics (seen as inputs) and allow different recommendations to be provided
(seen as outputs) to different kinds of actors:

– Actors from the DevOps team: Analysts, designers, modellers, architects,
developers, tester, operators, security experts, etc.

– Actors from the management plan: product manager, project manager,
responsible of human resources, responsible of financial issues etc.

Smart Measurements and Analysis for Software Quality Enhancement 207

Fig. 5. Example of correlation processes (Source [7]).

The automatic generation of such rules or their continuous refinement based on
some artificial intelligence techniques is an ongoing work and out of the paper
scope.

Example of Correlation Processes. The correlation processes rely on different
measurements that are computed and collected by external tools. Some examples
of correlations are presented in the Fig. 5.

Software Modularity. The assessment of the software modularity relies on two
metrics provided by the SonarQube tool that are the class complexity and the
maintainability rating. The class complexity measure (also called cognitive com-
plexity) computes the cognitive weight of a Java Architecture. The cognitive

208 S. Dahab et al.

weight represents the complexity of a code architecture in terms of maintain-
ability and code understanding. The maintainability rating is the ratio of time
(according to the total time to develop the software) needed to update or modify
the software. Based on these definitions, and considering that a modular code
can be more understandable and maintainable, we can correlate the two metrics
and compute the ratio R = class complexity/maintainability rating. If this ratio
is more than a specific threshold set by an expert, the recommendation “Rein-
force the modular design of your development” will be provided to the software
architect and developers.

In the initial state, we can either receive the input related the class complex-
ity denote cc or the maintainability rating denoted mr . The process accesses
respectively to the states “cc received” or “mr received”. If we receive the same
measurement related to the same metric, we update its value and loop on the
state. Otherwise, if we receive the complementary metric, we compute the ratio
R = class complexity/maintainability rating. If this ratio is less than the defined
threshold, we come back to the initial state otherwise, we raise the recommenda-
tion. Timers are used to come back to the initial state if the measurements are
too old. For sake of place, only this EFSM is presented in Fig. 7. All the others
follow the same principles (Fig. 6).

Fig. 6. Software modularity correlation processes (Source [7]).

Requirements Quality. The assessment of the requirements quality can rely on
two metrics provided by the SonarQube tool that are the total number of issues
and the total number of reopened issues. These numbers are collected during
the implementation phase and we can consider that the fact that we reopen an
issue many times during the development process can be related to an ambigu-
ous definition of the requirement that needs to be implemented. If we have a

Smart Measurements and Analysis for Software Quality Enhancement 209

ratio R = number of reopened issues/number of issues that is more than a spe-
cific threshold, we can consider that the requirements are not well defined and
that the development needs more refinement about them. The recommendation
“Refine requirement definitions or provide more details” will be provided to the
requirements analyst.

Code Reliability. The assessment of the code reliability relies on two metrics
provided by the SonarQube tool that are the number of issues categorized by
severity and the reliability rating. The issues in SonarQube are presented with
severity being blocker, critical, major, minor or info and the reliability rating
are from A to E: A is to say that the software is 100% reliable and E is to
say that there is at least a blocker bug that needs to be fixed. Based on these
definitions and considering that a reliable code should be at last free of major
or critical issues, we can check that there is no major, critical nor blocker issues
and the reliability rating is < C corresponding to 1 major bug. If this condition
is not satisfied, the recommendation “There is unsolved major issues in the
code, make a code review and check untested scenarios” will be provided to the
software developers and testers.

Fig. 7. Software security correlation processes.

Software Security. The assessment of the software security relies on two metrics,
one provided by the SonarQube tool that is the security rating (denoted sr in
Fig. 7) and the other is provided by MMT that is the number of security inci-
dents (denoted si in Fig. 7). The security rating in SonarQube provide an insight
of the detected vulnerabilities in the code and are presented with severity being
blocker, critical, major, minor or no vulnerability. The number of the security
incidents provided by MMT reports on successful attacks during operation. The
evaluation of security demonstrates that if an attack is successful this means that

210 S. Dahab et al.

the vulnerability in the code was at least major because an attacker was able
to exploit it to perform its malicious activity. Based on these definitions, and
considering that a reliable code should be at last free of major vulnerabilities,
we can check if there is a major vulnerability and that the number of attacks at
runtime are more than a threshold. If this condition is satisfied, the recommen-
dation “Check code to eliminate exploitable vulnerabilities” will be provided to
the software developers ans security experts.

Software Performance. The assessment of the software performance relies on two
metrics provided by the MMT tool that are the response time and the band-
width usage. The response time denotes the delay that can be caused by the
software, hardware or networking part that is computed during operation. This
delay is in general the same for a constant bandwidth (an equivalent number of
users and concurrent sessions). Based on this finding, we can correlate the two
metrics and compute that the response time is not increasing for during time for
the same bandwidth usage. If this response time is increasing, the recommenda-
tion “Optimize the code to improve performance and minimize delays” will be
provided.

Programmer Code Quality. The assessment of a programmer code quality can
rely on three metrics (1) number of lines of codes pushed by each developer
and provided by Git or SVN repository API, (2) the complexity of the code
computed by SonarQube and (3) the number of bugs detected in this specific
code provided by SonarQube also. This assessment can be done each time a new
code is pushed on Git or SVN (which constitutes a fourth event in the FSM
machine that specifies the correlation rule). The recommendation for developers
pushing bad code (resulting to a lot of bugs) is to have training regarding good
practices in coding or to a specific technology or library used in the development
or/and can provide a hint the project manager about the quality of developers
skills.

Project Management and Fulfillment of Deadlines. The assessment of project
management quality is generally performed by checking if the project is advanc-
ing according to the initial plans. This assessment can be done by checking the
percentage of fulfilled requirements and correlating this to the timing plan. If the
project is late a recommendation can be to add more developers in the project
or to change priorities in the development strategy, if the project is advancing
more than expected, reallocation of human resources on other projects can be
an option.

4 Experiments

Fifteen software metrics have been selected by experts of the MEASURE plat-
form8 (mainly its administrator, the project manager and tools engineers). The
list of metrics is depicted in the Table 1.
8 http://194.2.241.244/measure/.

http://194.2.241.244/measure/

Smart Measurements and Analysis for Software Quality Enhancement 211

Table 1. Each metric and its assigned index during the experiments (Source [7]).

Index Metric

1 Cognitive Complexity

2 Maintainability Index

3 Code Size

4 Number of issues

5 Response Time

6 Running Time

7 Usability

8 Computational Cost

9 Infrastructure Cost

10 Communication Cost

11 Tasks

12 I/O Errors

13 Precision

14 Stability Response Time

15 Illegal Operations

Then measurements corresponding to these metrics are collected. Our app-
roach is based on the classification of the collected vectors into well-defined
classes. However, one of the novelties in that new paper compared to [7] is that
the training data set is automatically obtained using our X-means clustering
algorithm. It means that our classes are obtained from the results of the algo-
rithm. This is what we depict in the first subsection below. After that, we apply
our two techniques and tools on the data collected through the MEASURE plat-
form and detail the results.

4.1 The Training Data Set and the Classification Process

In order to obtain our clusters and then provide our classes, we have run our
X-means algorithm on a collection of 1000 vectors containing, each of them, the
measurements for the 15 metrics. As this can be noted, we here considered met-
rics defined from one single metric. Due to the management of the MEASURE
project and the dates allowing to collect some data, the schedule when these
data have been collected and the data for suggesting the measurement plans
had to be tuned. Indeed, the data corresponding to the training data set and
the ones collected for the plans suggestion were not matching exactly; and the
results when using SVM was not efficient. For these reasons, most of the data
used within the procedure of training data set has been manually changed to fit
with the platform in use during the learning approach, that is the measurement
plans suggestion process.

212 S. Dahab et al.

0.2 0.4 0.6 0.8 1 1.2 1.4
·104

200

400

600

800

1,000

1,200

Cognitive Complexity metric

M
ai
nt
ai
na

bi
lit
y
In
de

x
m
et
ri
c

Fig. 8. A visualization of our X-means clustering results.

Based on that data, our X-means approach has been successfully applied.
For that purpose, the pyclustering library has been used and configured for
our methodology9. Therefore, the tool provided four main clusters defined by
four centers. We illustrate these results in the Fig. 8. In this figure, we made
the choice to consider the two first features, i.e., ‘Cognitive Complexity’ and
‘Maintainability Index’ as the two axis. For a sake of visualization clarity, the
other axis are not illustrated.

As previously mentioned, our objective is the categorize these clusters in
terms of set of metrics. Then the above mentioned experts have analyzed the
results of our approach to finally extract the four following classes that basically
correspond to software class properties:

– Maintainability (Class 1): Cognitive Complexity, Maintainability Index,
Code Size, Number of issues.

– System Performance (Class 2): Computational Cost, Infrastructure Cost,
Communication Cost and Tasks.

– Performance (Class 3): Response Time, Running Time and I/O Errors.
– Functionality (Class 4): Usability, Precision, Stability Response Time and

Illegal Operations.

These classes and the obtained training data set is therefore used for our
learning based suggestion approach as described in the following.

9 https://github.com/annoviko/pyclustering.

https://github.com/annoviko/pyclustering

Smart Measurements and Analysis for Software Quality Enhancement 213

4.2 Suggester Experiments

The suggestion process is evaluated by analyzing the new measurement plans
(MP) based on the results of the classification process. These results are used
in the feature selection process in order to identify the class of interest. The
objective is to highlight the effects of using the proposed measurement plans
and its impact on the classification of new data and on the amount of data
collected by this plan.

The used and analyzed measurement data are the measurement results pro-
vided by our industrial MEASURE platform. Data are collected at runtime from
selected features/metrics.

Setup. We herein considered the following measurement plan determined by
our experts. An initial MP can be defined by 15 features, 15 metrics and 4
software quality properties. As previously said, each metric is composed of only
one feature and the mapping between metrics and classes has been provided by
the previous step with the clustering approach.

Using the previously described plan, we considered the class with the most
predicted instances during each cycle. A huge set of 16,000,000 unclassified
vectors (unlabelled) were collected and processed (representing a collection of
diverse data during a long period of time). This data set was divided into 32

Table 2. Measurement plans used during the suggestion process and the cycles where
they were used. Metrics of the plans are represented by the indexes described in Table 1
(Source [7]).

Metrics Cycles

MP1 2, 5, 6, 7, 8 1

MP2 4, 5, 6, 12 2, 4, 17, 22, 23, 24

MP3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15 3, 5, 18

MP4 8, 9, 10, 11 6, 30

MP5 7, 8, 9, 10, 11 7, 8, 9

MP6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15 10

MP7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 11, 19, 20

MP8 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 12, 21

MP9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 13, 14, 15, 16

MP10 3, 4, 5, 6, 8, 9, 10, 11, 12 25

MP11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 26, 32

MP12 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 27

MP13 1, 3, 4, 5, 6, 8, 9, 10, 11, 12 28

MP14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 29

MP15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 31

214 S. Dahab et al.

subsets each containing 500,000 vectors. For each period of the suggestion pro-
cess, only one subset was used as input.

The initial measurement plan used during the experiment consisted of the fol-
lowing 5 metrics: Maintainability Index, Response Time, Running Time, Usabil-
ity, Computational Cost. These metrics where selected by the experts as an
example of a measurement plan with a small number of metrics that have links
to all software quality properties. During the suggestion process a number was
assigned to each metric as depicted in Table 1.

Results. During the suggestion process, 15 metrics (Table 1) were available to
suggest new MP. Figure 9 shows how the classification of the vectors was dis-
tributed during the cycles and the percentage of the vectors assigned to each
class. From these metrics, 15 unique measurement plans were used in the sug-
gestion process. Table 2 lists the plans and in which cycle they were used.

MP1 was only used at the beginning of the process, this was the plan sug-
gested by the expert. We note that MP2 was the most used plan during the
process (6 times). This plan is composed by the metrics linked to the Perfor-
mance property and was suggested when the classification of vector to class 3
overwhelmed the other classes. This tells us that if we focus on the Performance
property then the metrics in MP2 are sufficient.

MP3 was suggested when the four classes were present in the classification
results and class 4 was the class of interest. The tool suggests to take into
consideration more than the linked metrics to the class, it seems that these
features help to the classification of class 4.

MP4 was suggested when the input vectors were only classified to class 2,
this MP2 consists of the metrics linked to that class. This happens when the
input vectors are classified to only one class, the same can be observed in cycle

Fig. 9. Classification results of each cycle. The results show the percentage in the
predictions of each cycles for the 4 classes (Source [7]).

Smart Measurements and Analysis for Software Quality Enhancement 215

1 but with class 3. MP5 has only one more metric than MP4, Usability. It is
also a MP focused on System Performance property. MP11 was also suggested
when class 2 overwhelmed the number of classifications during the classification
phase.

MP7, MP8 and MP9 are very similar measurement plans. These plans have
the highest number of metrics, MP7 15 metrics and MP8&9 14 metrics. These
plans are suggested when the classification results usually have more than 2
classes. This is because the classes do not share any metric between them. A
measurement plan with the majority of the metrics is expected to classify well the
majority of the classes. MP10, MP12, MP13, MP14 and MP15 where suggested
in the same case as the previously mentioned plans but these plans where only
suggested one time during the process.

4.3 MINT Experiments

To test the efficiency of the MINT tool, we created 30 scripts enabling to gen-
erate different values for the fifteen metrics that are relevant for the correlation
processes defined in the Fig. 5. For each correlation, we created 2 scripts: one
that meets the condition that satisfies the recommendation and another that
does not satisfy it. The 10/30 scripts are summarized in Table 3.

Table 3. Experiments scripts (Source [7]).

Correlation Script Metrics constraint

Code modularity 1 Class complexity/maintainability rating >
threshold

Code modularity 2 Class complexity/maintainability rating <
threshold

Specification quality 3 Number of reopened issues/number of issues >
threshold

Specification 4 Number of reopened issues/number of issues <
threshold

Management quality 5 Issues by severity = Major or Critical Reliability
rating > 1 Major bug

Management 6 Issues by severity �= Major and �= Critical or
Reliability rating < 1 Major bug

Security 7 Security vulnerability > Major vulnerability
Security incident > threshold

Security 8 Security vulnerability < Major vulnerability or
Security incident < threshold

Performance 9 Response timet > response timet−1 bandwidtht =
bandwidtht−1

Performance 10 Response timet <= response timet−1 or
bandwidtht > bandwidtht−1

216 S. Dahab et al.

Fig. 10. Recommendation triggered by script 1.

Each script pushes the metric values into an event bus that feeds the 5 cor-
relation processes defined in Sect. 3.4. The results correspond to the desired rec-
ommendations and the Fig. 10 displays an example of recommendation provided
by the MINT tool for a software developer.

This experiment showed the efficiency of the tool. More work is planned to
apply this tool to real datasets provided by real users in the context of the
software development process.

5 Conclusion and Perspectives

This paper present an innovative approach to enhance software quality based
on the analysis of a large amount of measurements generated during the soft-
ware development process. The analysis is performed at different phases from
the design to the operation and using different measuring tools (e.g., Hawk,
SonarQube and MMT). The approach is implemented using two tools: Metric
Suggester and MINT tools.

The Metrics Suggester tool is very valuable to reduce the energy and cost
in gathering the metrics from different software life cycle phases and allows
to reduce the number of the collected metrics according to the needs defined
as profiles or clusters. It uses the support vector machine (SVM) that allows
to build different classifications and provide the relevant measuring profile, the
MP. The algorithm used in the tool as well some experiments demonstrate the
efficiency of the tool to focus on relevant metrics depending the engineering
process needs.

MINT is a rule based engine that relies on the ESFM formalism. It acts
as a complex event processor that corrects the occurrence of measurements on
time and provides a near real-time recommendation for the software developers
and managers. The tool already integrates a set of default correlation rules that
are able to provide valuable recommendations during the software development

Smart Measurements and Analysis for Software Quality Enhancement 217

and operation. The tool has been experimented using different scenarios and
demonstrates an interesting added value

The data analysis platform of the MEASURE solution integrates the two
tools and implements analytic algorithms (SVM and CEP) to correlate the dif-
ferent phases of software development and perform the tracking of metrics and
their value. Correlations cover all aspects of the system like modularity, main-
tainability, security, timing, etc. and evaluate the global quality of the software
development process and define actions (suggestions and recommendations) for
improvements. The paper present the innovation of these tools and extended
experiment according to the research paper published in [7]. More experiments
are planned in the context of MEASURE ITEA-3 project with real use cases
provided by industrial partner. We believe that these experimentation will allow
to facilitate the exploitation of the tools in industrial contexts.

Acknowledgment. This work is partially funded by the ongoing European project
ITEA3-MEASURE started in Dec. 1st, 2015, and the EU HubLinked project started
in Jan. 1st, 2017.

References

1. Akbar, M.A., et al.: Improving the quality of software development process by
introducing a new methodology-AZ-model. IEEE Access 6, 4811–4823 (2018).
https://doi.org/10.1109/ACCESS.2017.2787981

2. Alshayeb, M., Shaaban, Y., AlGhamdi, J.: SPMDL: software product metrics def-
inition language. J. Data Inf. Qual. 9(4), 20:1–20:30 (2018). https://doi.org/10.
1145/3185049

3. Bagnato, A., da Silva, M.A.A., Abherve, A., Rocheteau, J., Pihery, C., Mabit,
P.: Measuring green software engineering in the MEASURE ITEA 3 project. In:
Condori-Fernández, N., Procaccianti, G., Calero, C., Bagnato, A. (eds.) Proceed-
ings of the 3rd International Workshop on Measurement and Metrics for Green and
Sustainable Software Systems, MeGSuS 2016, Co-Located with 10th International
Symposium on Empirical Software Engineering and Measurement (ESEM 2016),
Ciudad Real, Spain, 7 September 2016. CEUR Workshop Proceedings, vol. 1708,
pp. 33–42. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1708/paper-06.pdf

4. Bouwers, E., van Deursen, A., Visser, J.: Evaluating usefulness of software metrics:
an industrial experience report. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th
International Conference on Software Engineering, ICSE 2013, San Francisco, CA,
USA, 18–26 May 2013, pp. 921–930. IEEE Computer Society (2013). https://doi.
org/10.1109/ICSE.2013.6606641

5. Carvallo, J.P., Franch, X.: Extending the ISO/IEC 9126-1 quality model with
non-technical factors for cots components selection. In: Proceedings of the 2006
International Workshop on Software Quality, WoSQ 2006, pp. 9–14. ACM,
New York (2006). https://doi.org/10.1145/1137702.1137706. http://doi.acm.org/
10.1145/1137702.1137706

6. Dahab, S.A., Maag, S., Hernandez Porras, J.J.: A novel formal approach to auto-
matically suggest metrics in software measurement plans. In: 2018 13th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE). IEEE (2018)

https://doi.org/10.1109/ACCESS.2017.2787981
https://doi.org/10.1145/3185049
https://doi.org/10.1145/3185049
http://ceur-ws.org/Vol-1708/paper-06.pdf
https://doi.org/10.1109/ICSE.2013.6606641
https://doi.org/10.1109/ICSE.2013.6606641
https://doi.org/10.1145/1137702.1137706
http://doi.acm.org/10.1145/1137702.1137706
http://doi.acm.org/10.1145/1137702.1137706

218 S. Dahab et al.

7. Dahab, S.A., Silva, E., Maag, S., Cavalli, A.R., Mallouli, W.: Enhancing software
development process quality based on metrics correlation and suggestion. In: Pro-
ceedings of the 13th International Conference on Software Technologies, ICSOFT
2018, Porto, Portugal, 26–28 July 2018, pp. 154–165 (2018)

8. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis dis-
tance. Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)

9. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach.
CRC Press, Boca Raton (2014)

10. Fenton, N.E., Pfleeger, S.L.: Software Metrics - A Practical and Rigorous Approach,
2nd edn. International Thomson, Boston (1996)

11. Garćıa-Domı́nguez, A., Barmpis, K., Kolovos, D.S., da Silva, M.A.A., Abherve, A.,
Bagnato, A.: Integration of a graph-based model indexer in commercial modelling
tools. In: Baudry, B., Combemale, B. (eds.) Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Systems,
Saint-Malo, France, 2–7 October 2016, pp. 340–350. ACM (2016). https://doi.org/
10.1145/2976767. http://dl.acm.org/citation.cfm?id=2976809

12. Garćıa-Munoz, J., Garćıa-Valls, M., Escribano-Barreno, J.: Improved metrics han-
dling in SonarQube for software quality monitoring. In: Omatu, S., et al. (eds.)
Distributed Computing and Artificial Intelligence, 13th International Conference.
AISC, vol. 474, pp. 463–470. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-40162-1 50

13. Ge, Z., Song, Z., Ding, S.X., Huang, B.: Data mining and analytics in the process
industry: the role of machine learning. IEEE Access 5, 20590–20616 (2017)

14. Grez, A., Riveros, C., Ugarte, M.: Foundations of complex event processing. CoRR
abs/1709.05369 (2017). http://arxiv.org/abs/1709.05369

15. Group, O.M.: Structured Metrics Metamodel (SMM) (October), pp. 1–110 (2012)
16. Hauser, J., Katz, G.: Metrics: you are what you measure!. Eur. Manag. J. 16,

517–528 (1998)
17. ISO/IEC: ISO/IEC 25010 - systems and software engineering - systems and soft-

ware quality requirements and evaluation (square) - system and software quality
models. Technical report (2010)

18. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

19. Kevrekidis, K., et al.: Software complexity and testing effectiveness: an empirical
study. In: 2009 Annual Reliability and Maintainability Symposium, RAMS 2009.
IEEE (2009)

20. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extrac-
tion techniques in machine learning. In: Science and Information Conference (SAI),
pp. 372–378. IEEE (2014)

21. Kitchenham, B.A.: What’s up with software metrics? - A preliminary mapping
study. J. Syst. Softw. 83(1), 37–51 (2010). https://doi.org/10.1016/j.jss.2009.06.
041

22. Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble
learning on selected features. Inf. Softw. Technol. 58, 388–402 (2015). https://doi.
org/10.1016/j.infsof.2014.07.005

23. Malhotra, R.: A systematic review of machine learning techniques for software fault
prediction. Appl. Soft Comput. 27(C), 504–518 (2015). https://doi.org/10.1016/j.
asoc.2014.11.023

https://doi.org/10.1145/2976767
https://doi.org/10.1145/2976767
http://dl.acm.org/citation.cfm?id=2976809
https://doi.org/10.1007/978-3-319-40162-1_50
https://doi.org/10.1007/978-3-319-40162-1_50
http://arxiv.org/abs/1709.05369
https://doi.org/10.1016/j.jss.2009.06.041
https://doi.org/10.1016/j.jss.2009.06.041
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1016/j.asoc.2014.11.023

Smart Measurements and Analysis for Software Quality Enhancement 219

24. van der Meulen, M., Revilla, M.A.: Correlations between internal software metrics
and software dependability in a large population of small C/C++ programs. In:
ISSRE 2007, The 18th IEEE International Symposium on Software Reliability,
Trollhättan, Sweden, 5–9 November 2007, pp. 203–208 (2007)

25. Papadopoulos, L., Marantos, C., Digkas, G., Ampatzoglou, A., Chatzigeorgiou,
A., Soudris, D.: Interrelations between software quality metrics, performance and
energy consumption in embedded applications. In: Stuijk, S. (ed.) Proceedings of
the 21st International Workshop on Software and Compilers for Embedded Sys-
tems, SCOPES 2018, Sankt Goar, Germany, 28–30 May 2018, pp. 62–65. ACM
(2018). https://doi.org/10.1145/3207719.3207736

26. Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estima-
tion of the number of clusters. In: ICML, vol. 1, pp. 727–734 (2000)

27. Shepperd, M.J., Bowes, D., Hall, T.: Researcher bias: the use of machine learning
in software defect prediction. IEEE Trans. Software Eng. 40(6), 603–616 (2014).
https://doi.org/10.1109/TSE.2014.2322358

28. Shweta, S.S., Singh, R.: Analysis of correlation between software complexity met-
rics. IJISET Int. J. Innovative Sci. Eng. Technol. 2(8), 902–905 (2015)

29. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York
(1998)

https://doi.org/10.1145/3207719.3207736
https://doi.org/10.1109/TSE.2014.2322358

Modular Programming and Reasoning
for Living with Uncertainty

Naoyasu Ubayashi(B), Yasutaka Kamei, and Ryosuke Sato

Kyushu University, Fukuoka, Japan
{ubayashi,kamei,sato}@ait.kyushu-u.ac.jp

Abstract. Embracing uncertainty in software development is one of the
crucial research topics in software engineering. In most projects, we have
to deal with uncertain concerns by using informal ways such as docu-
ments, mailing lists, or issue tracking systems. This task is tedious and
error-prone. Especially, uncertainty in programming is one of the chal-
lenging issues to be tackled, because it is difficult to verify the correctness
of a program when there are uncertain user requirements, unfixed design
choices, and alternative algorithms. If uncertainty can be dealt with mod-
ularly, we can add or delete uncertain concerns to/from code whenever
they arise or are fixed to certain concerns. This paper proposes a new
programming and reasoning style based on Modularity for Uncertainty.
The iArch-U IDE (Integrated Development Environment) is developed to
support uncertainty-aware software development. The combined usage of
a type checker and a model checker in iArch-U plays an important role
in verifying whether or not some important properties are guaranteed
even if uncertainty remains in a program. Our model checker is based on
LTSA (Labelled Transition System Analyzer) and is implemented as an
Eclipse plug-in. Agile methods embrace change to accept changeable user
requirements. On the other hand, our approach embraces uncertainty to
support exploratory software development.

Keywords: Uncertainty · Known Unknowns · Partial model ·
Modular uncertainty representation · Modular reasoning ·
Type checking · Model checking · State explosion problem

1 Introduction

Embracing uncertainty in software development is one of the crucial research top-
ics in software engineering [35,40,42,45,56]. Garlan, D. discusses the future of
software engineering from the viewpoint of uncertainty [22]. He claims that soft-
ware engineering is founded on a computational myth that no longer fully serves
its purpose: that the computational environment is predictable and in principle
fully specifiable, and that the systems that compute in those environments can
in principle be engineered so that they are trouble-free. He argues that we must
embrace uncertainty within the engineering discipline of software engineering.

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 220–244, 2019.
https://doi.org/10.1007/978-3-030-29157-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_10

Modular Programming and Reasoning for Living with Uncertainty 221

Uncertainty is an unavoidable problem in actual software development
projects. Most developers suffer from many kinds of uncertainties: it is uncertain
when user requirements change; functional specifications cannot be finalized at
the initial requirements elicitation phase; and there are multiple design choices
due to non-functional requirements such as performance. From our experience,
we consider that many developers encounter the situations in which design alter-
natives cannot be determined or should be delayed to the later development
phases. However, many developers tend to believe that uncertainty is not a prob-
lem of software technologies but a problem of software processes or operations.
This may be a kind of myth in software development. Indeed, most developers
consider that uncertainty is the target of risk management and cannot be dealt
with without handling by non-technical activities using spread sheets, infor-
mal documents, mailing lists, or issue tracking systems. These tasks for dealing
with uncertainty are tedious and error-prone. Is uncertainty really non-technical
management issues? Can uncertainty really not be dealt with as programming
language theories such as modularity, compilation, or formal verification? This
paper is motivated by our experience in software development.

This paper, an extended version of our early works [49]1, shows that uncer-
tainty is the target of compilation and verification by introducing the notion
of modularity into the world of uncertainty. Modularity is one of the important
principles in software engineering [38]. Unfortunately, the state-of-the-art module
mechanisms do not regard an uncertain concern as a first-class software module.
Modularity for Uncertainty is one of the challenges to be tackled by the software
engineering research community. If uncertainty can be dealt with modularly,
we can add or delete uncertain concerns to/from code whenever these concerns
arise or are fixed to certain concerns. Agile methods embrace change to accept
changeable user requirements. Our approach embraces uncertainty to support
exploratory software development. Our approach consists of three key ideas: (1)
modular programming for uncertainty; (2) modular reasoning for uncertainty;
and (3) automated tool support for managing when and why uncertain concerns
arise or are resolved. By introducing (1), we can add or delete uncertainty as a
module whenever an uncertain concern appears or disappears. By introducing
(2), we can check whether some important properties such as functionality and
deadlock freedom are guaranteed even if uncertainty exists. We can postpone the
decision for dealing with uncertainty to the later software development phase if
selection of uncertain alternatives does not affect the correctness of the prop-
erties. By introducing (3), a part of traditional risk management tasks can be
replaced to automated tool support by integrating version control systems with
(1) and (2).

1 We focused on the design and implementation of an uncertainty-aware model checker
in our previous work [49]. In this paper, we discuss on not only uncertainty-aware
reasoning including the model checker but also uncertainty-aware programming by
extending our preliminary work [20,21,52]. We show the world of uncertainty-aware
software development and demonstrate the effectiveness of our approach using a
concrete usage scenario.

222 N. Ubayashi et al.

This paper is structured as follows. We survey the definition of uncertainty
and related work in Sect. 2. We clarify what kind of problems exist in traditional
approaches in Sect. 3. Three key ideas consisting of Modularity for Uncertainty
are provided in Sects. 4, 5, and 6. The overview of iArch-U, an IDE (Integrated
Development Environment) supporting our approach, is illustrated in Sect. 6.
We discuss on the originality and the applicability of our approach in Sect. 7.
Concluding remarks are provided in Sect. 8.

2 Related Work

We classify the definition of uncertainty. After that, we show the state-of-the-art
research on uncertainty.

2.1 Taxonomic Classification

Uncertainty is an abstract concept. Many people might feel that definition of
uncertainty is uncertain. Although it is not easy to define uncertainty explicitly,
there is a consensus of its definition in the research community. We show the
representative definitions in this section.

There are three types of phenomena affecting software development: Known
Knowns, Known Unknowns, and Unknown Unknowns [10]. The Known Knowns-
type corresponds to the development in which uncertainty does not exist. Many
studies on this type have been conducted in traditional software engineering
research. In the Known Unknowns-type, there are uncertain issues in the process
of software development. However, these issues are known and shared among the
stakeholders including developers and customers. For example, there are alterna-
tive requirements although it is uncertain which alternative should be selected.
On the other hand, in the Unknown Unknowns-type, it is uncertain what is
uncertain. This type is difficult to be dealt with, because it is unpredictable
what kind of issues will appear in the future. Due to this reason, current state-
of-the-art research mainly focuses on Known Unknowns-type uncertainty. Our
motivation is to introduce the modularity into Known Unknowns.

Perez-Palacin and Mirandola [39] provide a systematic review on uncer-
tainty and summarize as follows: The most used definitions of uncertainty sim-
ply distinguish between natural variability of physical processes (i.e., aleatory
or stochastic uncertainty) and the uncertainties in knowledge of these pro-
cesses (i.e., epistemic or state-of-knowledge uncertainty). They propose the
three-dimension classification consisting of Location, Level, and Nature by refer-
ring [51]. Location is categorized into Context, Structural, and Input parameters.
Context uncertainty is an identification of the boundaries of a model (or design).
Structural uncertainty is contained in a system model itself. The last uncertainty
is caused by the vague input parameter values from the real world. Level is cat-
egorized into four orders. In the first order of uncertainty, the subject lacks
knowledge about something but a developer is aware of such lack (i.e., Known
Unknowns). The second order indicates lack of knowledge and lack of awareness

Modular Programming and Reasoning for Living with Uncertainty 223

(i.e., Unknown Unknowns). The third order indicates lack of process to find out
the lack of awareness. The fourth order indicates uncertainty about orders of
uncertainty. Nature is categorized into Aleatory and Epistemic. In [39], Source
of Uncertainty is categorized into the followings: (1) Simplifying assumptions;
(2) Model drift; (3) Noise in sensing; (4) Future parameter value; (5) Human
in the loop; (6) Objectives; (7) Decentralization; (8) Execution context/Mobility;
(9) Cyber-physical system; (10) Automatic learning; (11) Rapid evolution; (12)
Granularity of models; and (13) Different sources of information. For example,
Human in the loop is classified as Context (Location), 1st/2nd/3rd/4th (Level),
and Aleatory/Epistemic (Nature) by using the three-dimension classification
in [39]. Uncertain requirements from a stakeholder are labeled as Human in
the loop in which the location is Context (uncertain whether the requirements
should be included in a system), the level is the 1st order (Known-Unknowns),
and the nature is epistemic (the future decisions of the stakeholder are unknown).
Although the main target of the three-dimension classification is self-adaptive
systems, it is well-formed and applicable to other application domains.

2.2 State-of-the-Art Research on Uncertainty

Recently, uncertainty has attracted a growing interest among researchers. Most
of the state-of-the-art studies focus on Known Unknowns. As a representative
work, a method for expressing Known Unknowns using a partial model is pro-
posed in [16,18]. A partial model is a single model containing all possible alter-
native designs of a system and is encoded in propositional logic. We can check
whether or not a model including uncertainty satisfies some interesting proper-
ties. The idea of partial model fits the needs in industry, because alternatives
can be represented as a single model. For this reason, our approach is based on
the partial model as shown in Sect. 4.

Research themes spread over uncertainty of requirements modeling [43,50],
software architecture [2,13,15,31], model transformations [11,17], programming
[20], testing [10], verification [23,33], and performance engineering [8,25,36,46].
In [43], a partial model is applied to uncertainty in requirements to address
the problem of specifying uncertainty within a requirements model, refining
a model as uncertainty reduces, providing meaning to traceability relations
between models containing uncertainty, and propagating uncertainty-reducing
changes between related models. In [2,13,15,31], uncertainty is explored in terms
of software architecture. Letier, E et al. present a support method for eval-
uating uncertainty, its impact on risk, and the value of reducing uncertainty
in requirements and architecture [32]. In [44], a method for change propaga-
tion in the context of model uncertainty is proposed. Most of these studies
focus on epistemic uncertainty. Uncertain< T >, a simple probabilistic pro-
gramming language for letting programmers without statistics expertise eas-
ily and correctly compute with estimates [4]. Uncertain< T > deals with
aleatory uncertainty. Elbaum, S. and Rosenblum, D. S. explore how uncertainty
affects software testing [10]. Uncertainty in self-adaptive systems is explored
in [5,12,14,39,53,54]. Performance and reliability analysis under uncertainty
is explored in [8,25,36,46]. Uncertainty has been well studied in the field of

224 N. Ubayashi et al.

formal methods. PRISM [26], a probabilistic symbol model checker, can deal
with aleatory uncertainty. Three-valued logic consisting of True, False, and
Undefined can represent epistemic uncertainty as in VDM (Vienna Develop-
ment Method) [19].

Although there are many studies for dealing with uncertainty, none of the
state-of-the-art studies regard an uncertain concern as a first-class software mod-
ule. However, the research on uncertainty-aware module mechanism is important
to relax the problems pointed out in Sect. 1.

Lesson Learned
State-of-the-art studies focus on Known Unknowns and the idea of partial
model representing alternatives fits our needs. It is valuable to provide an
uncertainty-aware module mechanism based on the partial model in order
to support Known Unknowns.

3 Towards Conquering Uncertainty

It is important to deal with Known Unknowns efficiently in software develop-
ment as shown in Sects. 1 and 2. Unfortunately, awkward approaches tend to
be used in actual development from our experience. In this section, we explore
the traditional approaches for conquering uncertainty and show what kind of
problems they contain. After that, we show a way for us to go. Below, we use
the term uncertainty as Known Unknowns.

3.1 Pitfalls in Traditional Approaches

When we have to manage unknown API usages, unknown code snippets,
unknown return values, and unsure program implementation, we tend to tem-
porally avoid uncertain concerns only using simple language constructs such as
comments or conditional statements because current programming languages do
not provide a mechanism for describing an uncertain concern as a first-class soft-
ware module. That is, we temporally comment out the target statements to skip
an uncertain concern or insert a superfluous if statement to be able to select
an alternative uncertain choice. After that, we have to test the program. These
comments and conditional statements make difficult to understand the program
code, because they impede the separation of concerns in terms of modularity.
We explain in details why these traditional approaches are insufficient to deal
with uncertainty.

Usage of Comments. This approach is easy to use and most developers prefer
it. However, it becomes difficult to maintain the program after a long period of
time because the reason of code modification may be forgotten. Meaningless
defects may be injected when another developer returns this modification back
to the original code.

Modular Programming and Reasoning for Living with Uncertainty 225

Usage of Conditional Statements. This approach is often used to deal with
uncertainty in terms of behavioral aspects. It is determined by a runtime option
which code is executed. If uncertainty is fixed to be certain, complex code mod-
ification such as removal of if-else statements is needed. This kind of code mod-
ification is not only troublesome but also error-prone.

Usage of Preprocessor. C preprocessor is convenient to deal with conditional
compilation, although it is not always supported in other programming languages
such as Java. This approach is not only easy to modify but also understandable.
In the field of SPL (Software Product Lines) [7], conditional compilation is often
used to configure a product from a feature model [28]. However, the statements
of conditional compilation invade the separation of concerns. It tends to be
extremely difficult to understand the combination of uncertain concerns if the
number of the conditions increases. Modification places scatter over source code.
It is not easy to manage uncertainty using this approach.

Usage of AOP. Using AOP (Aspect-Oriented Programming) [29,30], crosscut-
ting concerns can be separated from the primary concerns. The former and the
latter correspond to uncertain code and the original code, respectively. However,
we have to write multiple aspects corresponding to each alternative and weave
the aspect respectively in order to test all of uncertain alternatives. It is not easy
to manage these alternatives.

Usage of Version Control Systems. Currently, usage of version control sys-
tems such as Git is one of the standard practices of software engineering. A
common practice when dealing with uncertainty is to use multiple branches.
When a developer is uncertain about the right way to implement a feature,
he or she can branch from the master and develop the own code. When the
uncertainty is resolved, the developer merges the new branch with the master.
Someone claims that program modifications using comments are needless and
we can go back to the original code anytime from the current code. However,
there is a pitfall in this scenario. It is difficult to manage which branch deals
with uncertainty without some kind of supporting facilities. It is necessary to
write the understandable comments when the developer commits the code. If
there are no useful commit comments, it difficult to manage uncertainty.

3.2 Way for Us to Go

The exploratory modification process shown above may be repeated again and
again until all uncertain concerns are fixed. If an uncertain concern crosscuts
over multiple places in a program, the number of comments or conditional state-
ments increases and the version control of the modified code becomes tremen-
dously complex. Moreover, we may have to return all of the modified portions
to the original code or one of the final decided code if the uncertain concern is

226 N. Ubayashi et al.

fixed to be certain. This task is error-prone. It may become a cause of a mean-
ingless defect. Many developers have an experience of encountering this kind of
problems. Although the approaches above might not cover all patterns for con-
quering uncertainty, the methods can be considered representative approaches
in real software development.

As pointed out in this section, programming under uncertainty is not yet
appropriately supported. It would be preferable to be able to modularize uncer-
tain concerns and check whether the important properties concerning to the
requirements and designs are satisfied even if there are uncertain concerns. We
can continue the development if the properties hold, because the decision can be
deferred. To relax the problems pointed out in this section, we propose Modu-
larity for Uncertainty. As repeatedly stated, we focus on Known Unknowns.

Our Contributions
Modularity for Uncertainty can conquer Known Unknowns. Our approach
consists of three key ideas: 1) modular programming for Known Unknowns;
2) modular reasoning for Known Unknowns; and 3) tool support for man-
aging when and why Known Unknowns arise or are resolved.

4 Modular Programming for Uncertainty

In this section, we introduce an interface-based module mechanism for describing
uncertainty. The interface called Archface-U [20,21], an architectural interface
for uncertainty, plays an important role not only in uncertainty descriptions but
also modular reasoning and uncertainty management. Although we use Java as
the target programming language in this paper, the proposed concept itself can
be applied to other languages.

4.1 Why Interface?

It is a difficult question whether an uncertain concern should be described as
an interface or a group of code fragments such as function, class, method, or
aspect. Many people might regard only the latter as a module. However, this
paper adopts the former approach as a module mechanism. The former does not
include an instance of uncertain descriptions but only declares an annotation
indicating uncertainty. As mentioned in Sect. 3, many developers use comments
or conditional statements to temporarily remove or change uncertain concerns.
In this case, uncertain concerns still remain in the original code. Someone may
consider that uncertainty can be represented with an abstract method which
is implemented if needed or undefined otherwise. It is possible to represent an
uncertain concern by using an abstract method if the code location of the concern
is already known before programming. However, we have to modify the structure
of existing programs to introduce an abstract method if the concern unexpectedly

Modular Programming and Reasoning for Living with Uncertainty 227

arises during programming. Moreover, we have to remove the abstract method
after the uncertain concern is fixed to be certain.

Our approach does not invade the existing programs but introduce an inter-
face annotating uncertain concerns. We only have to add or remove an interface
when uncertainty appears or disappears. By only looking at the interface and the
corresponding code region, we can understand which portion of code is uncertain.
The conformance between the interface and the code is checked by our compiler
(to be exact, type checker). Moreover, important properties such as deadlock
freedom can be verified only referring the information described in the interface
by using our model checker. Nevertheless, these properties are guaranteed in the
code if the conformance check is passed by our type checker. Below, we explain
in details how to realize this module and verification mechanism.

4.2 Archface-U in a Nutshell

We introduce Archface-U, an interface mechanism for dealing with uncertainty.
Archface-U is an extension of Archface [47,48] to support uncertainty. Archface-
U, which supports component-and-connector architecture [1], consists of two
kinds of interface: component and connector. The former declares a class struc-
ture (basically same to a Java interface) and the latter defines how to coordinate
components.

Syntax. For reader’s understandability, we use a simple example to explain
the language syntax of Archface-U as shown in Fig. 1. This example is a printer-
scanner system, a well-known parallel system that falls into a deadlock [34]. Two
processes P and Q acquire the lock from each of the shared resources, the printer
and the scanner, and then releases the locks.

In Archface-U, the symbols
{}

and
[]

represent alternative and optional,
respectively. These symbols are introduced to represent Known Unknowns—
Known which kind of alternatives exists, but Unknown which should be selected.
Optional is syntactical sugar, because optional can be expressed using alternative
(e.g, {A, }). A component is basically the same with ordinary Java interface.
A return value or arguments in a method signature can be also specified as
alternative. For example, the following declaration is available. In this case, it is
uncertain whether the argument setting is needed.

{public void utility();, public void utility(int setting);}

A connector, which is specified using the notation similar to FSP (Finite State
Processes) [34], defines the message interactions among components. FSP is
based on process algebra [37] and generates finite LTS (Labelled Transition
Systems). An arrow in FSP indicates a sequence of actions. For example, GET
(List 1, line 19) shows that the action scanner.get is executed after the action
printer.get is executed.

Our notation has an expressive power equal to a partial model that compactly
yet precisely encodes the entire set of possible models [16]. The GET (List 2, line
14–15) represents the following four behavioral models.

228 N. Ubayashi et al.

Fig. 1. Archface-U description (Printer-scanner system).

1) P:printer.get -> scanner.get 2) P:scanner.get -> printer.get

Q:printer.get -> scanner.get Q:scanner.get -> printer.get

3) P:printer.get -> scanner.get 4) P:scanner.get -> printer.get

Q:scanner.get -> printer.get Q:printer.get -> scanner.get

In case of List 2, the combination is more complex because of the two optional
methods utility (line 03, 08, 16–17). The partial model consists of 16 behavioral
models (16 = 4 * 2 * 2). A developer has to take into account huge number of
variabilities even if a small program as in List 1 and 2. Introducing the notation
of Archface-U, we can represent variabilities compactly.

Pluggable Interface. In Archface-U, uncertain concerns are defined as a sub
interface as shown in List 2. By extending the existing interface, we can introduce
uncertainty modularly. In List 2, it is uncertain how to acquire printer and
scanner resources in two processes, P and Q. Additionally, it is uncertain whether

Modular Programming and Reasoning for Living with Uncertainty 229

Fig. 2. Pseudo Java code before/after uncertainty appears

or not optional utility functions of a scanner and a printer (e.g., setting of the
image gray level) are available in this system. We only have to define a sub
interface or delete it when we want to add or remove uncertainty.

4.3 Usage Scenario

We show a typical usage scenario using Archface-U in order to demonstrate the
merits of introducing our approach.

Situation. Alice, a developer, is writing a Java program as shown in List 3
(Fig. 2). List 3 is the pseudo code that omits the details. Assume that Alice
becomes aware of the existence of two uncertain concerns: (1) “I cannot have

230 N. Ubayashi et al.

confidence in the order of the get operations between two processes P and Q—It
is uncertain which algorithm must be selected”; and (2) I am uncertain whether
exceptional side effects occur if the utility method is appended to the Printer
class or the Scanner class in order to support user’s new requirements. The
situation of (1) happens when we design an algorithm. On the other hand, (2)
happens when we adopt an agile software process. What should Alice do to deal
with these uncertainties without using awkward approaches such as comments
or superfluous if statements?

Annotating Uncertainty. Alice only has to modify Archface-U as shown in
List 2 and change the implementing interfaces as shown in List 4. The line marked
with ‘*’ indicates the code that must be modified. On the other hand, the line
marked with ‘#’ indicates the code that may be added to List 3 if Alice wants to
add the code fragments implementing the optional method utility. Minimum
code modifications are 3 lines (List 4, line 01, 07, and 14). By only specifying
optional or alternative to the Archface-U definition (List 2), the utility code
region (List 4, line 11) and the message interaction for get and copy operations
(List 4, line 17) are annotated as uncertain concerns. The link from Archface-U
to this code region is guaranteed by type checking explained in details in Sect. 5.
Be careful that line 11 and 17 in List 4 must be consistent: utility has to
be called if utility is defined in the Scanner class implementing uScanner.
Otherwise, utility must not be called. This verification is also performed by
the Archface-U type checker.

Checking Properties. Using the uncertainty-aware model checker given in
Sect. 5, important behavioral properties can be checked. In case of (1), Alice is
notified that a deadlock may happen and she understands that this uncertainty
has to be fixed immediately. Alice has to delete line 14 and 15 in List 2. The
order of get in two processes P and Q must be the same. On the other hand, in
case of (2), no counterexamples are generated from the model checker. Alice can
postpone the implementation of the utility methods to the later software devel-
opment phase. In List 4, Alice does not have to implement the utility method
in the Printer class. Be careful that this model checking is performed at not the
code level (List 4) but the Archface-U description level (List 2). Nevertheless, we
can guarantee that the code (List 4) satisfies the above properties, because the
type checker verifies whether the code simulates one of the possible behavioral
models specified in FSP. For this reason, the implementation of the utility
methods can be optional in List 4. Currently, only the behavioral properties
represented by LTL (Linear Temporal Logic) are available in our verification
mechanisms. Counterexamples help both debugging and a better understanding
of the impact of uncertain features.

Managing Uncertainty. By checking the code difference between Archface-
U modifications, Alice can manage what kind of uncertainty arises and how to

Modular Programming and Reasoning for Living with Uncertainty 231

resolve it as shown in Sect. 6. For example, if line 08 in List 2 is removed and this
Archface-U is committed into Git at some point, not only Alice but also Bob, a
maintenance programmer, can trace that uncertainty about the utility method
was resolved at that time even if time passes. This trace can be automatically
performed if Alice only writes Archface-U definitions.

Cost for Writing Archface-U. Alice in this scenario can get valuable help by
writing Archface-U. Someone might consider that the cost of writing Archface-U
is an obstacle to software development productivity. However, all programmers
write a Java interface when they make a Java program. Our approach adds only
alternative/optional syntax and FSP descriptions to the ordinary Java interface.
Additional cost is considered relative low.

Modular Programming for Uncertainty
Our approach does not invade the existing programs but introduce an inter-
face called Archface-U annotating uncertain concerns. We only have to mod-
ify Archface-U descriptions when uncertainty appears or disappears. By only
looking at the Archface-U and the corresponding code region, we can under-
stand which portion of code is uncertain.

5 Modular Reasoning

Without modular reasoning about uncertainty, a developer has to rely on global
reasoning to check whether some properties are satisfied. In this section, we show
the Archface-U-based verification in details.

5.1 Uncertainty-Aware Verification

We can use the verification power provided by partial model. The behavioral cor-
rectness of a program is guaranteed modularly using our compiler (type checker)
and model checker. Figure 3 illustrates the verification process. The type checker
based on the refinement calculus focusing on simulation checks the conformance
between Archface-U and its code. The model checker verifies the behavioral prop-
erties such as a deadlock by only using the information described in Archface-U.
Integrating type checker and model checker, we can verify behavioral proper-
ties at the code level. ΦM and Φp in Table 1 [16] correspond to logical formula
expressing a partial model generated from Archface-U and the properties to be
checked.

In this paper, we provide two types of true-false decisions for a property p:
(1) verified by type checking; and (2) verified by model checking. Φp corresponds
to the consistency among code or user-defined properties. When a property p is
True, we can continue to develop even if uncertainty exists. When a property p
is Maybe, we have to take care of the corresponding properties as a development
risk. In other cases, we have to reconsider the code.

232 N. Ubayashi et al.

Fig. 3. Modular reasoning for Known Unknowns [49].

Table 1. Checking property on partial model [16].

ΦM ∧ Φp ΦM ∧ ¬Φp Property p

SAT SAT Maybe

SAT UNSAT True

UNSAT SAT False

UNSAT UNSAT (error)

5.2 Type Check

Basic Idea. Uncertainty is a target of compilation. Our type checker verifies
(1) whether a partial model ΦM generated from Archface-U satisfies a property
Φp such as consistency; and (2) whether code is a subset of the partial model
ΦM (or whether code simulates one of the behavioral models contained in the
partial model). It is important that (1) is performed by only Archface-U defini-
tions. If code conforms to Archface-U in terms of (2), Φp is also satisfied in the
code. That is, the verification of Φp results in modular interface checking. All
of the code files are needed for property checking without an interface mecha-
nism provided by Archface-U. Fixing the inter-model/code inconsistency is an
important problem [9]. Our approach can verify inconsistency among code files
by type checking even if uncertainty exists. For example, our compiler generates
an error message if a method is defined in a component interface and its call is
not appeared in the connector interface.

Archface-U and Partial Model. In our compiler, Archface-U is translated
into a partial model as shown in Fig. 3. The followings is the translation algo-
rithm for Archface-U containing Alternative uncertainty.

Modular Programming and Reasoning for Living with Uncertainty 233

Fig. 4. Partial model generation (Left: Alternative, Right: Optional) [49].

STEP 1. Divide a connector interface including Alternative to a set of con-
nector interfaces represented by original Archface-U that does not contain
uncertainty. Each Archface-U description represented by LTS is translated
into a state transition model. The upper part of Fig. 4 (left) shows the result
of transformation in case of C1 → {U1, U2} → C2. The number in Fig. 4
(left) indicates a state.

STEP 2. State transition models generated in STEP 1 are merged into a state
transition machine as shown in the lower part of Fig. 4 (left). This state
transition model is a partial model. Mandatory edges and nodes appeared in
all state transition models are represented by solid lines. Other non-common
edges and nodes are represented by dashed lines. After generating a partial
model, it can be translated into logical formula.

The algorithm in case of Optional uncertainty is basically the same to the above
algorithm as illustrated in Fig. 4 (right side). In case of C1 → [U1] → C2, this
Optional uncertainty is translated into two state transition models as shown
in the upper part of Fig. 4 (right side). This procedure corresponds to STEP
1 in Alternative uncertainty. After that, these two models are merged into a
state transition machine as shown in the lower part of Fig. 4 (right side). This
procedure corresponds to STEP 2 in Alternative uncertainty. C2 is represented
by two dashed lines, because the source of transition C (state number 3) is
different from that of transition D (state number 2).

Features of Our Type Checker. Our type checker consists of a partial model
generator, a refinement verifier, and a consistency verifier. The partial model
generator creates a partial model, a set of possible behavior models from FSPs
containing alternative and optional descriptions extended by Archface-U. The
refinement verifier checks whether the code simulates one model included in the
generated partial model. In List 3, a sequence printer.get → scanner.get →
scanner.scan → printer.print → methodX → printer.put → scanner.put sim-
ulates the sequence 1 (Fig. 5) generated from the Archface-U definitions (List 1

234 N. Ubayashi et al.

Fig. 5. Partial model and Java program [49].

and 2). The call of methodX does not violates an LTS defined by FSP in Lists 1
and 2. As a result, properties satisfied by the LTS are also held in the code that
passes compile check. The consistency verifier checks the inconsistency not only
among Archface-U definitions but also among code files. An error is generated
if a method is defined in a component interface and its call does not appear
in the connector interface. Our approach can verify the inconsistency even if
uncertainty exists.

Our compiler adds only type checking embracing uncertainty to the origi-
nal Java compiler. Compiled code is executable, because Archface-U is just a
constraint to the code. Program behavior is also guaranteed, because the code
simulates just one of the possible models described in Archface-U.

5.3 Model Checking Embracing Uncertainty

Behavioral properties represented by LTL can be automatically verified using
existing model checkers. In our uncertainty-aware model checker, LTSA (LTS
Analyzer)2 is used as a model checking engine because Archface-U is based on
FSP supported by LTSA. Optional and Alternative are translated into ordinary
FSP descriptions as shown in Fig. 6.

If a property is verified by LTSA and the type check is successfully passed,
the program satisfies the property too. Although we used LTSA, our approach
takes a standard approach and can be implemented with other popular off-the-
shelf checkers such as FDR (Failures Divergences Refinement)3, a refinement
checker for the process algebra CSP (Communicating Sequential Processes) [27].

5.4 Usage Scenario

We explain our verification process using a printer-scanner system as an example.
There are four possible resource acquisition sequences as shown in Fig. 5. These
cases are generated from a partial model described as Archface-U (List 2).

2 http://www.doc.ic.ac.uk/ltsa/, Last accessed 18 November 2018.
3 https://www.cs.ox.ac.uk/projects/fdr/, Last accessed 18 November 2018.

http://www.doc.ic.ac.uk/ltsa/
https://www.cs.ox.ac.uk/projects/fdr/

Modular Programming and Reasoning for Living with Uncertainty 235

Fig. 6. Expansion of uncertain FSP [49].

Type Checking. Type check is passed if the code simulates one of the four
possible resource acquisition sequences in Fig. 5. The Java code (List 3) simulates
the sequence 1 and the type check is passed.

Model Checking and Counterexample Generation. As shown in Fig. 3,
each behavioral model of a partial model is converted into the corresponding
FSP description. Behavioral properties represented by LTL can be automatically
verified using our model checker. If counterexamples are not generated by our
model checker, Alice can select any sequence (either of 1, 2, 3, or 4 is OK). Alice
can proceed development even if uncertain concerns exist, because the code
simulating any sequence is correct. Of course, List 3 simulating the sequence 1 is
correct. Unfortunately, counterexamples are generated in case of the sequences
3 or 4 and these counterexamples show that the acquisition order must be the
same. Alice is notified that uncertainty specified in Archface-U (List 2) may
cause a deadlock although the code (List 3) is correct. Alice cannot embrace
uncertainty in this scenario.

Archface-U Modification for Resolving Uncertainty. Alice should not
modify List 3 but change List 2 to remove the alternatives of get operation
orders. After that, Alice has to run the model checker again and confirm that no
counterexamples are generated. As explained here, Alice can resolve uncertain
concerns and can make a correct program before debugging and testing.

5.5 State Explosion Problem

State explosion is a crucial problem when applying model checking to a real
project. Especially, it is difficult to apply model checking to source code even if
several tools such as CBMC (Bounded Model Checker for C and C++)4 and Java
Pathfinder5 are already provided. On the other hand, in our approach, model
4 http://www.cprover.org/cbmc/, Last accessed 18 November 2018.
5 https://github.com/javapathfinder/, Last accessed 18 November 2018.

http://www.cprover.org/cbmc/
https://github.com/javapathfinder/

236 N. Ubayashi et al.

checking is performed in terms of only FSP descriptions in Archface-U. Code
is not the direct target of model checking. As a result, the number of states is
reduced. Nevertheless, as repeatedly claimed, code can be indirectly verified by
the model checker if the code conforms to its Archface-U via type checker. Our
approach mitigates the problem of state explosion by integrating type checking
with model checking.

Modular Reasoning for Uncertainty
The behavioral correctness of a program is guaranteed modularly using
uncertainty-aware type checker and model checker even if the program con-
tains uncertainty. Our verification mechanism is based on partial model.
Integrating type checker and model checker, we can not only verify behav-
ioral properties at the code level but also avoid the state explosion problem.

6 Tool Support

The iArch-U IDE [52] is an Eclipse-based tool chain supporting Modularity for
Uncertainty. In this section, we illustrate the tool overview of the iArch-U IDE.

The iArch-U IDE is open source software and can be downloaded from
GitHub6. Referring the tutorials and technical documents provided in our
GitHub repository, iArch-U tool features can be understood in details.

6.1 Overview

The overview of iArch-U is illustrated in Fig. 7. The iArch-U IDE consists of the
tool components below. In this paper, we focused on the design and implemen-
tation of iArch-U/Compiler and iArch-U/MC.

iArch-U/MEditor (Model Editor). This is a UML model editor that can
specify uncertain concerns. Using this model editor, a developer can spec-
ify optional/alternative in class diagrams and sequence diagrams. That is, an
optional method or an alternative method call sequence can be modeled. Type
checking is also available for these diagrams. Both type checking for a model and
code are passed, they are consistent and traceable. Archface-U can be automat-
ically generated from these diagrams.

iArch-U/CEditor (Code Editor). This is a code editor for Java programs.
Basically, this editor provides the same functionality with the standard Eclipse
Java editor.

iArch-U/IEditor (Interface Editor). This is an editor for writing Archface-
U descriptions.
6 http://posl.github.io/iArch/, Last accessed 18 November 2018.

http://posl.github.io/iArch/

Modular Programming and Reasoning for Living with Uncertainty 237

Fig. 7. iArch-U overview (cited from http://posl.github.io/iArch/).

iArch-U/Compiler: This is an Archface-U compiler that adds only type check-
ing embracing uncertainty to the original Java compiler. Compiled code is exe-
cutable. The design and implementation of the type checker is shown in Sect. 5.

iArch-U/MC (Model Checker). This is an uncertainty-aware model checker
based on LTSA. The design and implementation of the model checker is shown
in Sect. 5.

iArch-U/UT (Unit Test): This is a JUnit-based unit testing tool. Using this
unit testing support integrated with JUnit7 and AspectJ8, we can execute run-
time testing when we want to check properties that cannot be checked statically.
Test case drivers are automatically generated as aspects from the Archface-U
optional/alternative descriptions. By weaving an aspect, we can test each alter-
native.

iArch-U/UM (Uncertainty Management). This is a Git-based uncertainty
management support. We can trace when and why uncertain concerns arise or
are resolved by analyzing git commits history.

6.2 Eclipse-Based User Interface

Figure 8 shows a snapshot of the iArch-U IDE. In Fig. 8, the user interface of
iArch-U/MC is shown as an example. Using iArch-U/MC, we can explore which
7 https://junit.org/, Last accessed 18 November 2018.
8 https://www.eclipse.org/aspectj/, Last accessed 18 November 2018.

http://posl.github.io/iArch/
https://junit.org/
https://www.eclipse.org/aspectj/

238 N. Ubayashi et al.

Fig. 8. iArch-U/MC: Uncertainty-aware model checker [49].

uncertainty can be permitted by interactively modifying not program code itself
but Archface-U descriptions and checking the behavioral correctness.

6.3 Implementation

The iArch-U IDE is implemented as an Eclipse plug-in. Archface-U is defined as a
DSL (Domain-Specific Language) by using Xtext9. Type checker is implemented
by using APIs for analyzing AST (Abstract Syntax Tree) provided in JDT (Java
Development Tools). Model editor is implemented by using EMF (Eclipse Mod-
eling Framework)10 and Graphiti (Graphical Tooling Infrastructure)11.

iArch-U: An IDE for Uncertainty-aware Software Development
The iArch-U IDE supporting Modularity for Uncertainty consists of UML
model editor, Java program editor, Archface-U compiler (type checker),
LTSA-based model checker, JUnit-based testing support, and Git-based
uncertainty management support. This Eclipse-based IDE is open source
software and can be downloaded from GitHub.

7 Discussion

In this section, we discuss on the originality and the applicability of our idea
from several viewpoints.
9 https://eclipse.org/Xtext/, Last accessed 18 November 2018.

10 https://www.eclipse.org/modeling/emf/, Last accessed 18 November 2018.
11 https://www.eclipse.org/graphiti/, Last accessed 18 November 2018.

https://eclipse.org/Xtext/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/graphiti/

Modular Programming and Reasoning for Living with Uncertainty 239

First of all, we have to discuss on the generality of our approach. Uncertainty
is an abstract concept. It arises in many different domains/applications/contexts.
We cannot provide a generic approach that can deal with uncertainty in every
shape and form and in every context. Many people might consider that uncer-
tainty has to be studied in a specific problem context since there is no generic
solution that can handle uncertainty at an abstract level and be applicable to
every problem context. Although uncertainty has many aspects as shown in
Sect. 2, some kinds of Known-Unknowns represented by optional and alternative
can be dealt with generally as demonstrated in this paper.

In our approach, uncertainty is encapsulated into an interface description.
There might be many opinions about this policy. As shown in Sect. 4, we con-
sider that temporary code patching is crucial in handling the uncertainty. It is
not preferable to define an uncertain concern as a solid module (e.g., function,
method, etc.) because such a module should be defined in terms of software
architecture. The purpose of tradition encapsulation [38] is completely different
from that of our approach. The former deals with uncertainty forecasted at the
beginning of a design. The latter deals with uncertainty fluently appearing in
the process of programming due to several reasons. We feel that uncertainness is
often vague in most cases. In our approach, uncertainty is introduced as a plug-
gable interface. We consider that the notion of fluent modularization is needed.
Our usage of the word “modularity” is slightly different from a tradition defini-
tion: a module should have a substantial instance such as classes, functions, and
aspects. However, we consider it is valuable to introduce the notion of fluency in
the world of modularity in some contexts such as uncertainty. As explained in
Sect. 3, uncertainty can be represented using AOP. However, we have to write
multiple aspects corresponding to each alternative and weave the aspect respec-
tively in order to test all of uncertain alternatives. We introduced Archface-U to
manage these alternatives easily.

Someone might consider that Archface-U is similar to variability modeling in
SPL [3]. How different is our approach from SPL? If there is no difference, we
can deal with uncertainty by only using SPL technologies. Indeed, uncertainty
in structural aspects (a component interface in Archface-U) can be represented
by defining uncertain features in a feature model. Although it is difficult to
represent behavioral aspects of uncertainty (a connector interface in Archface-U)
in a feature model, there are studies on behavioral variability [6,24,55]. Our most
important contribution is to introduce the interface-based variability to the world
of SPL. As claimed in this paper, this interface enables the valuable integration
of code-conformance check via type checker, model checking taking into account
abstraction, and uncertainty-aware code localization (traceable to an uncertain
code region). Only using current SPL technologies, it is not easy to integrate
important facilities mentioned above. Moreover, our idea can be basically applied
to SPL by not limiting to variability in uncertain concerns. Similarity to SPL
comes from the characteristics of Known Unknowns in which uncertainty is a
subset of variability. Although the interface mechanism of Archface-U can be
applied to SPL, the process of SPL is different from that of uncertainty-aware

240 N. Ubayashi et al.

software development. The former focuses on generating a product from a set
of features represented by optional and alternatives. Product structure does not
basically change through a software development, although product regeneration
may occur several times to deal with small changes. On the other hand, our
approach focuses on the management of uncertainty frequently appearing or
disappearing in a software development. Product generation is out of scope. The
main concern is to verify whether some important properties are guaranteed
even if uncertainty exists and to decide whether resolution of uncertainty can
be postponed. For this reason, modular reasoning realized by type checking and
model checking is important.

Lastly, we discuss on the extension to probabilistic descriptions. As explained
in Sect. 2, there are two types of uncertainty: aleatory and epistemic. The former
is supported by probabilistic programming or model checking such as Uncertain
< T > or PRISM. Our approach supporting the latter case provides a module
mechanism for expressing state-of-knowledge uncertainty. Our approach can be
applied to probabilistic programming and model checking by adding probability
to connector’s arrows. As the next step, we plan to integrate our model checker
with LTSA-PCA (Probabilistic Component Automata) [41] to support aleatory
uncertainty.

8 Conclusions—Can We Live with Uncertainty?

Garlan, D. claims that embracing uncertainty within the discipline of software
engineering causes a shift in perspective along important dimensions: (1) From
correctness to utility; (2) From open-loop to closed-loop; and (3) From precise to
approximate [22]. This paper focused on only the static aspect of uncertainty—
Archface-U is statically applied to the code. However, in principle, Archface-U
can be applied to the existing programs dynamically although further research
is needed—e.g., prototype-based Archface-U. The aspect of utility or approxima-
tion can be introduced to an application at run-time by dynamically adding or
deleting uncertain constraints represented by Archface-U.

Acknowledgments. We thank Syunya Nakamura, Keisuke Watanabe, and Takuya
Fukamachi for their great contributions. They were students of Naoyasu Ubayashi. This
work was supported by JSPS KAKENHI Grant Numbers JP26240007.

References

1. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of the
16th International Conference on Software Engineering (ICSE 1994), pp. 71–80
(1994)

2. Autili, M., Cortellessa, V., Di Ruscio, D., Inverardi, P., Pelliccione, P., Tivoli, M.:
Integration architecture synthesis for taming uncertainty in the digital space. In:
Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp.
118–131. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34059-
8 6

https://doi.org/10.1007/978-3-642-34059-8_6
https://doi.org/10.1007/978-3-642-34059-8_6

Modular Programming and Reasoning for Living with Uncertainty 241

3. Ba̧k, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wa̧sowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 15(3), 811–845 (2016)

4. Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain< T >: a first-order type
for uncertain data. In: Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
2014), pp. 51–66 (2014)

5. Cheng, S.-W., Garlan, D.: Handling uncertainty in autonomic systems. In: Pro-
ceedings of the International Workshop on Living with Uncertainties (IWLU 2007)
(2007)

6. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transfer 14(5),
589–612 (2012)

7. Clements, P., Northrop, L.: Software Product Lines. Addision-Wesley, Boston
(2001)

8. Devaraj, A., Mishra, K., Trivedi, K.S.: Uncertainty propagation in analytic avail-
ability models. In: Proceedings of the Symposium on Reliable Distributed Systems
(SRDS 2010), pp. 121–130 (2010)

9. Egyed, A., Letter, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: Proceedings of the 23rd International
Conference on Automated Software Engineering (ASE 2008), pp. 99–108 (2008)

10. Elbaum, S., Rosenblum, D.S.: Known Unknowns: testing in the presence of uncer-
tainty. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014), pp. 833–836 (2014)

11. Eramo, R., Pierantonio, A., Rosa, G.: Uncertainty in bidirectional transforma-
tions. In: Proceedings of the 6th International Workshop on Modeling in Software
Engineering (MiSE 2014), pp. 37–42 (2014)

12. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: Proceedings of the 8th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2011), pp. 234–244 (2011)

13. Esfahani, N., Razavi, K., Malek, S.: Dealing with uncertainty in early software
architecture. In: Proceedings of the 20th International Symposium on the Founda-
tions of Software Engineering (FSE 2012), pp. 21:1–21:4 (2012)

14. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

15. Esfahani, N., Malek, S., Razavi, K.: GuideArch: guiding the exploration of archi-
tectural solution space under uncertainty. In: Proceedings of the 35th International
Conference on Software Engineering (ICSE 2013), pp. 43–52 (2013)

16. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and rea-
soning with uncertainty. In: Proceedings of the 34th International Conference on
Software Engineering (ICSE 2012), pp. 573–583 (2012)

17. Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of models con-
taining uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P.
(eds.) MODELS 2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41533-3 41

18. Famelis, M., Ben-David, N., Sandro, A.D., Salay, R., Chechik, M.: MU-MMINT:
an IDE for model uncertainty. In: Proceedings of the 37th International Conference
on Software Engineering (ICSE 2015), Demonstrations Track, pp. 697–700 (2015)

https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-41533-3_41

242 N. Ubayashi et al.

19. Fitzgerald, J., Larsen, G.P.: Modeling Systems, Practical Tools and Techniques in
Software Development. Cambridge University Press, Cambridge (1998)

20. Fukamachi, T., Ubayashi, N., Hosoai, S., Kamei, Y.: Conquering uncertainty in
Java programming. In: Proceedings of the 37th International Conference on Soft-
ware Engineering (ICSE 2015), Poster Track, pp. 823–824 (2015)

21. Fukamachi, T., Ubayashi, N., Hosoai, S., Kamei, Y.: Modularity for uncertainty.
In: Proceedings of the 7th International Workshop on Modelling in Software Engi-
neering (MiSE 2015), pp. 7–12 (2015)

22. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of
FSE/SDP Workshop on Future of Software Engineering Research (FoSER 2010),
pp. 125–128 (2010)

23. Ghezzi, C., Sharifloo, A.M.: Quantitative verification of non-functional require-
ments with uncertainty. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier,
J., Walkowiak, T. (eds.) Dependable Computer Systems. AINSC, vol. 97, pp. 47–
62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21393-9 4

24. Ghezzi, C., Sharifloo, A.M.: Verifying non-functional properties of software product
lines: towards an efficient approach using parametric model checking. In: Proceed-
ings of the 15th Software Product Line Conference (SPLC 2011), pp. 170–174
(2011)

25. Goseva-Popstojanova, K., Kamavaram, S.: Assessing uncertainty in reliability of
component-based software systems. In: Proceedings of the 14th International Sym-
posium on Software Reliability Engineering (ISSRE 2003), pp. 307–320 (2003)

26. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). https://doi.org/
10.1007/11691372 29

27. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

28. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE
Softw. 9(4), 58–65 (2002)

29. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

30. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

31. Lago, P., Vliet, H.: Explicit assumptions enrich architectural models. In: Proceed-
ings of the 27th International Conference on Software Engineering (ICSE 2005),
pp. 206–214 (2005)

32. Letier, E., Stefan, D., Barr, E.T.: Uncertainty, risk, and information value in soft-
ware requirements and architecture. In: Proceedings of the 36th International Con-
ference on Software Engineering (ICSE 2014), pp. 883–894 (2014)

33. Llerena, Y.R.S.: Dealing with uncertainty in verification of nondeterministic sys-
tems. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014), pp. 787–790 (2014)

34. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs, 2nd edn.
Wiley, Hoboken (2006)

35. Massey, A., Rutledge, R., Antón, A., Swire, P.: Identifying and classifying ambigu-
ity for regulatory requirements. In: Proceedings of the 22nd International Require-
ments Engineering Conference (RE 2014), pp. 83–92 (2014)

https://doi.org/10.1007/978-3-642-21393-9_4
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/3-540-45337-7_18

Modular Programming and Reasoning for Living with Uncertainty 243

36. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Architecture-based reliability eval-
uation under uncertainty. In: Proceedings of the 7th International ACM Sigsoft
Conference on the Quality of Software Architectures (QoSA 2011), pp. 85–94 (2011)

37. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

38. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

39. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a axonomy and an example of availability evaluation. In: Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering (ICPE
2014), pp. 3–14 (2014)

40. Raccoon, Dog: Unknownness. ACM SIGSOFT Softw. Eng. Notes 38(5), 8–17
(2013)

41. Rodrigues, P., Lupu, E., Kramer, J.: LTSA-PCA: tool support for compositional
reliability analysis. In: ICSE Companion 2014 Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE 2014), pp. 548–551 (2014)

42. Rosenblum, D.: Probability and uncertainty in software engineering. In: Keynote
Talk at the 2013 National Software Application Conference (NASAC 2013) (2013).
http://www.slideshare.net/dsrosenblum/nasac-2013

43. Salay, R., Chechik, M., Horkoff, J., Sandro, A.D.: Managing requirements uncer-
tainty with partial models. Requirements Eng. 18(2), 107–128 (2013)

44. Salay, R., Gorzny, J., Chechik, M.: Change propagation due to uncertainty change.
In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 21–36.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-1 3

45. Sommerville, I.: Integrated requirements engineering: a tutorial. IEEE Softw.
22(1), 16–23 (2005)

46. Trubiani, C., Meedeniya, I., Cortellessa, V., Aleti, A., Grunske, L.: Model-based
performance analysis of software architectures under uncertainty. In: Proceedings
of the 9th International ACM SIGSOFT Conference on the Quality of Software
Architectures (QoSA 2013), pp. 69–78 (2013)

47. Ubayashi, N., Nomura, J., Tamai, T.: Archface: a contract place where architec-
tural design and code meet together. In: Proceedings of the 32nd International
Conference on Software Engineering (ICSE 2010), pp. 75–84 (2010)

48. Ubayashi, N., Ai, D., Li, P., Li, Y., Hosoai, S., Kamei, Y.: Abstraction-aware
verifying compiler for yet another MDD. In: Proceedings of the 29th International
Conference on Automated Software Engineering (ASE 2014), pp. 557–562 (2014)

49. Ubayashi, N., Kamei, Y., Sato, R.: iArch-U/MC: an uncertainty-aware model
checker for embracing known unknowns. In: Proceedings of the 13th International
Conference on Software Technologies (ICSOFT 2018), pp. 176–184 (2018)

50. Uchitel, S., Kramer, J., Magee, J.: Modelling undefined behaviour in scenario syn-
thesis. In: Proceedings of the 2nd International Workshop on Scenarios and State
Machines: Models, Algorithms, and Tools at ICSE 2003 (2003)

51. Walker, W.E., et al.: Defining uncertainty. A conceptual basis for uncertainty man-
agement in model-based decision support. Integr. Assess. 4(1), 5–17 (2003)

52. Watanabe, K., Ubayashi, N., Fukamachi, T., Nakamura, S., Muraoka, H., Kamei,
Y.: iArch-U: interface-centric integrated uncertainty-aware development environ-
ment. In: Proceedings of the 9th International Workshop on Modelling in Software
Engineering (MiSE 2017) (Workshop at ICSE 2017), pp. 40–46 (2017)

53. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: Relax: a lan-
guage to address uncertainty in self-adaptive systems requirement. Requirements
Eng. 15(2), 177–196 (2010)

http://www.slideshare.net/dsrosenblum/nasac-2013
https://doi.org/10.1007/978-3-642-37057-1_3

244 N. Ubayashi et al.

54. Yang, W., Xu, C., Liu, Y., Cao, C., Ma, X., Lu, J.: Verifying self-adaptive appli-
cations suffering uncertainty. In: Proceedings of the 29th International Conference
on Automated Software Engineering (ASE 2014), pp. 199–210 (2014)

55. Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Towards a UML profile for software product
lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-1 10

56. Ziv, H., Richardson, D.J., Klösch, R.: The uncertainty principle in software
engineering (1996). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.
8700

https://doi.org/10.1007/978-3-540-24667-1_10
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.8700
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.8700

Software Systems and Applications

Empowering Continuous Delivery in Software
Development: The DevOps Strategy

Clauirton Siebra1,2(&), Rosberg Lacerda2, Italo Cerqueira2,
Jonysberg P. Quintino2, Fabiana Florentin3, Fabio B. Q. da Silva4,

and Andre L. M. Santos4

1 Informatics Center, Federal University of Paraiba, Joao Pessoa PB, Brazil
clauirton@ci.ufpb.br

2 CIn/Samsung Laboratory of Research and Development,
UFPE, Recife PE, Brazil

{rll,iac2,jpq}@cin.ufpe.br
3 SIDI/Samsung, Campinas, SP, Brazil

f.florentin@samsung.com
4 Centro de Informática, Universidade Federal de Pernambuco, Recife PE, Brazil

{fabio,alms}@cin.ufpe.br

Abstract. Continuous Delivery refers to a software development practice
where members of a team frequently integrate their work, so that the process of
delivery can be easily conducted. However, this continuous integration and
delivery requires a reliable collaboration between development and IT operation
teams. The DevOps practices support this collaboration since they enable that
the operation staff making use of the same infrastructure as developers for their
systems work. Our study aims at presenting a practical DevOps implementation
and analyzing how the process of software delivery and infrastructure changes
was automated. Our approach follows the principles of infrastructure as code,
where a configuration platform – PowerShell DSC – was used to automatically
define reliable environments for continuous software delivery. In this context,
we defined the concept of “stage for dev”, also using the Docker technology,
which involves all the elements that enable members of a team to have the same
production environment, locally configured in their personal machines and thus
empowering the continuous integration and delivery of system releases.

Keywords: Continuous delivery � DevOps � Software deployment

1 Introduction

The lifecycle of an application involves teams that usually work in distinct areas and
have incompatible goals. For example, while the development team wants agility; the
operation team is more focused on stability issues. In such domains, applications are
manually handed over between these teams with minimal communication. Such sep-
aration between entities, which are in fact dependent, translates into an increased time
to market and negatively impacts the software quality, decreasing the actual value of
the product [1].

© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 247–265, 2019.
https://doi.org/10.1007/978-3-030-29157-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_11

The fundamental conflict in the software process environment is between devel-
opers, which have to produce changes at a rapid pace; and IT Operators, which have to
maintain infrastructure configuration and availability along these changes. The term
DevOps, which is a blend of the Developers and Operations words, is a concept that
assists to facilitate these changes [2]. It builds a living bridge between development and
operations and gives them an opportunity to work and collaborate effectively and
seamlessly. According to Loukides [3], DevOps is a culture, movement or practice that
emphasizes the collaboration and communication of both software developers and
other information technology (IT) professionals while automating the process of
software delivery and infrastructure changes. It aims at establishing a culture and
environment where building, testing, and releasing software, can happen rapidly,
frequently, and more reliably.

Previous works on DevOps [4, 5] are mainly focused on propose conceptual
frameworks, which intend to create a consensus to the own DevOps definition and their
features. Some elements such as the culture of collaboration, automation and moni-
toring; emerged from these works and seem to be the basis for the implementation of
DevOps environments. However, while DevOps is becoming very popular between
software practitioners; there is still a lack in discussions on frameworks that support its
implementation and reports of real experiences that could assist development teams in
adopting the DevOps principles [6, 7].

The first focus of this work was on the automation dimension, where the definition
of practices related to infrastructure as code creates the basis for an automated process
of continuous integration and delivery [8]. Handling infrastructure as code, the fol-
lowing benefits can be obtained [9]:

• A code can be thoroughly tested to reproduce infrastructure consistently at scale;
• Developers could be provided with a simulated production environment, which

increases testability and reliability;
• Infrastructure code can be versioned;
• Infrastructure can be provisioned and configured on demand;
• Proactive recovering from failures can be carried out by continuous monitoring of

the environment for violations, which can trigger automatic execution of scripts for
rollback or recovery.

Our approach followed the principles of infrastructure as code, where a configu-
ration platform, PowerShell DSC (Desired State Configuration) was used to automat-
ically define reliable environments for continuous software delivery. This initial
environment was designed to work on virtual machines. Differently, our current study
shows this approach running together with Docker [10]. Docker is a tool designed to
easily create, deploy, and run applications by using containers, which allow developers
to package up an application with all of the parts it needs, such as libraries and other
dependencies, and ship it all out as one package. In this way, our main aim was to
define an environment model, which we call “stage for dev”, which involves all the
elements that enable members of a team to have the same production environment,
locally configured in their personal machines and thus empowering the continuous
integration and delivery of system releases. Furthermore, we also present the current
discussions regarding the integration of Docker with PowerShell DSC, which is being
conducted in the Windows platform.

248 C. Siebra et al.

The remainder of this paper is structured as follows: Sect. 2 summarizes the studies
on the automation dimension of DevOps, where the focus is on the infrastructure as
code aspects and their implementations. Section 3 presents how DevOps concepts were
implemented in our organization and the lessons learned from this experience. Sec-
tion 4 extends this idea, considering the use of the Docker technology. Section 5
summarizes the current discussions about infrastructure as code, which focus on the
integration of Docker and PowerShell DSC. Finally, Sect. 6 concludes this work,
stressing the challenges of DevOps implementation and future works that we intend to
carry out.

2 Structure as Code

The creation of a DevOps environment is based on principles such as culture of
collaboration [11–15], measurement of development efforts [16–18] and monitoring of
system health [11, 17, 18]. However, according to Ebert et al. [19], the most important
shift over the adoption of DevOps is to treat infrastructure as code, since infrastructure
can be shared, tested, and version controlled. Furthermore, development and produc-
tion could share a homogenous infrastructure, reducing problems and bugs due to
different infrastructure configurations. This section discusses the main ideas of this
approach and resources that support it.

2.1 Basic Concepts

Infrastructure as Code (IaC) is a DevOps principle used to address problems regarding
the manual process of configuration management by means of automatic provision and
configuration of infrastructural resources. In this way, the IaC concept is used to
describe the idea that almost all actions performed to the infrastructure can be auto-
mated. Like any code, developers could create automation logic for different tasks such
as to deploy, configure and upgrade computational systems and infrastructures. Patterns
to use the infrastructure as code were proposed in [20] and they can be summarized as:

• Automate Provisioning: automate the process of configuring environments to
include networks, external services, and infrastructure;

• Behavior-Driven Monitoring: automate tests to verify the behavior of the
infrastructure;

• Immune System: deploy software one instance at a time while conducting behavior-
driven monitoring. If an error is detected during the incremental deployment, a
Rollback Release must be initiated to revert changes;

• Lockdown Environments: lock down shared environments from unauthorized
external and internal usage, including operations staff. All changes must be ver-
sioned and applied through automation;

• Production-Like Environments: development and production environments must be
as similar as possible.

Empowering Continuous Delivery in Software Development 249

These patterns show that DevOps pushes automation from the development to the
infrastructure. Compared with manual infrastructure provisioning, for example, con-
figuration management tools can reduce production provisioning and configuration
maintenance complexity while enabling recreation of the production system on the
development machines. As discussed in [19], tools are a major DevOps enabler and
they are mandatory in automating these and other patterns and tasks. In fact, DevOps
considers deliveries with short cycle time. This feature comes from one of the
Lean/Agile principles, which stands for “Build incrementally with fast integrated
learning cycles”. Thus, such a strategy requires a high degree of automation, so that it is
fundamental the appropriate choice of tools. See a list of tools in [19].

2.2 Tools for Configuration Management

Configuration management tools are the main resources to implement IaC strategies.
Such tools aim at replacing error-prone shell scripts, which are employed to manage the
state of machines or environments where development codes are going to execute.
Shell scripts are potentially complex to maintain and evolve, since they are neither
modular nor reusable. Thus, the aim of approaches for configuration management was
to provide languages to specify configuration properties without the limitations (low
modularity and reusability) of shell scripts. Three examples of these languages, which
follow different implementation strategies, are:

• Puppet: domain specific language implemented in a common programming lan-
guage (originally Ruby, but with newer versions in C++ and Clojure);

• Chef: uses an existing language (Ruby) for writing system configuration “recipes”;
• CFEngine: domain specific language also implemented in a common programming

language (C).

These languages are often declarative. This means, they describe the desired state
of the system rather than a way to achieve it. There are other languages such as Nix,
which is a purely functional programming language with specific properties for con-
figuration; and IBM Tivoli System Automation for Multiplatforms. These languages
have similar features but may present particular purposes. The IBM approach, for
example, facilitates the automatic switching of users, applications and data from one
database system to another in a cluster.

Puppet, Chef and CFEngine are the most popular configuration management
alternatives. Therefore, it is important to understand some slight differences among
them [21]. Chef and Puppet are very similar since they are based on Ruby. However,
Chef seems to present fewer security vulnerabilities than Puppet. Both languages are
more “Ops-friendly” due to its model-driven approach. They also present a relatively
small learning curve. Differently, CFEngine is more “Dev-friendly” and its learning
curve is steep. However, as an advantage, CFEngine has a dramatically smaller
memory footprint, runs faster and has far fewer dependencies since it was developed
with C. For configuration information, CFEngine uses its own declarative language to
create “promises,” or policy statements. Puppet, on the other hand, uses a Ruby
Domain-Specific Language (DSL) to create its manifests. So those with some Ruby
experience may find themselves in more familiar territory with Puppet.

250 C. Siebra et al.

A comparison among these and several other open-source configuration manage-
ment approaches can be seen in [22].

2.3 Frameworks

As applications need to be developed and tested in production like environments, some
organizations are using strategies such as virtualization and more recently container-
ization [23] to make such environments portable. However, these approaches are also
hard to use when they are manually maintained. This scenario motivated the creation of
frameworks for setup of more complex development environments.

Two popular examples of frameworks are Vagrant and Docker. Vagrant [24] is a
management and support framework to virtualization of development environments.
Instead of running all projects locally on a unique computer, having to rearrange the
different requirements and dependencies of each project, this framework allows run-
ning each project in its own dedicated virtual environment. Docker [10] is a container-
based approach that provides virtualization at the operating system level and uses the
host kernel to run multiple virtual environments.

A difference between these approaches is associated with their performances. As
discussed in the previous paragraph, Docker relies on containerization, while Vagrant
utilizes virtualization. In this latter approach, each virtual machine runs its own entire
operating system inside a simulated hardware environment provided by special pro-
grams. Thus, each virtual machine needs a dedicated amount of static resources (CPU,
RAM, storage), generating an overhead of such resources. Approaches based on
containerization present a higher performance since containers simply use whatever
resources it needs. This means, there is no overhead of resources. Based on this
discussion, Docker is lighter than Vagrant. A deeper study in such approaches shows
that both have advantages and disadvantages, so that the final decision must be based
on the particular features of each project.

There is another important difference between these approaches. Vagrant cannot
create virtual machines or containers without virtualization platforms [21] such as
VirtualBox, VMware or Docker. Differently, Docker can work without Vagrant. In
order, the main advantage of vagrant is that it provides an easy mechanism to reproduce
environments. These frameworks can also be used together with configuration man-
agement tools/languages to implement more powerful IaC environments. Some
examples are given in the next section.

2.4 Tools in Practice

The previous section showed that there are several options regarding frameworks and
configuration management tools to support the implementation of the infrastructure as
code principles. However, the literature presents few contributions regarding their
practical use and the focus of this literature is on the specification of extensions that
could improve the limitations of current tools rather than descriptions of real case
studies. The work of Hüttermann [25], for example, integrates Vagrant and Puppet and
uses them to create a topology for IaC consisting of Vagrant and Puppet artefacts that
are continuously built and stored in a version control system. While Vagrant allows the

Empowering Continuous Delivery in Software Development 251

building of lightweight and portable virtual environments, based on a simple textual
description; Puppet uses a declarative syntax to describe the desired state of a target
environment and allows this description to be executed to create that state on a target
machine. Hummer and colleagues [26] propose and evaluate a model-based testing
framework for IaC, where an abstracted system model is used to derive state transition
graphs. The resulting graph is then used to derive test cases. Their prototype extends
the Chef IaC tool. However the authors comment that their approach is general and
could be applied to other tools, such as Puppet. The work of Artac et al. [27] discusses
several technologies involved in supporting IaC. Its main focus is on the
OASIS TOSCA, which is an industrial practice language for automated deployment of
technology independent and multi-cloud compliant applications.

In order, the majority of examples regarding IaC are focused on Cloud environment
and they are related to specific features of such domain. For example, Zhu et al. [28]
report results from experiments on reliability issues of cloud infrastructure and trade-offs
between using heavily-baked and lightly-baked images. Their experiments were based
on Amazon Web Service (AWS) OpsWorks APIs (Application Programming Inter-
faces) and they also used the Chef configuration management tool. Several other works
regarding IaC in the Cloud domain are discussed in the literature, such as in [18, 29].

The work of Spinellis [30] is another example of a study that discusses popular
tools in the DevOps domain, which include CFEngine, Puppet and Chef. This work
stresses the main function of such tools, which is to automate a system’s configuration
so that users write rules expressing how an IT system is to be configured and the tool
will set up the system accordingly. Wettinger et al. [13] also show that the DevOps
community focuses on providing pragmatic solutions for the automation of application
deployment. Then, the communities affiliated with some of the DevOps tools, such as
Chef or Puppet, to provide artefacts to build deployment plans for certain application
tasks. Thus, these two previous works [13, 30] confirm the trend to some specific tools
(Chef and Puppet) and their relation to aspects of automation. Unfortunately, the
scientific literature does not discuss the use and evaluation of such tools in a DevOps
context, including the Docker technology, considering real development cases. This is
the major contribution of our work, as detailed in the next sections.

3 DevOps Implementation: Case Study 1

This section is divided into four parts. We first describe the object of this case study,
which is a real application that we call Xsolution (pseudo name due to commercial
issues). Next we describe the original strategy to deploy this application and the metrics
that characterize the problems of such a strategy. Then, we present the implementation
of our infrastructure as code approach, which is based on the PowerShell DCS, and
how this new strategy significantly improved our deployment process. Finally, we
stress the advantages of this approach when it is compared to other ways to implement
infrastructure as code solutions, such as Chef and Puppet.

252 C. Siebra et al.

3.1 Tools in Practice

Xsolution is a client-server solution that requires the deployment of a server and mobile
modules to execute. The abstract architecture of this application is illustrated in Fig. 1.

Each of the components in this figure (Smartphone, Web server, Internet Infor-
mation Service – IIS, App Server, API Server, DB Server and SQL Server) requires a
specific configuration before the deployment of the application. This configuration used
to be manually carried out by the IT team by means of an internal home-made
deployment guide that describes all the process (step-by-step), as better detailed in
Sect. 3.2.

In order, to prepare the required resources that will support Xsolution, or any other
application with this architecture (Fig. 1), the next actions must be carried out:
(1) Installation of packages; (2) Database installation; (3) Installation of Web appli-
cation requirements; (4) Installation of Web application; (5) Configuration of the
Admin Web Applications; (6) Configuration of the log of errors; and (7) Mobile Web
site configuration. Each of these actions has multiple steps and the traditional approach
to carry out this process is to follow guides that describe these steps. This approach is
described in the next section.

Fig. 1. The high-level architecture of Xsolution (adapted from [8]).

Empowering Continuous Delivery in Software Development 253

3.2 Manual Deployment Process

The manual deployment of Xsolution and other applications of our company, used to be
manually carried out by a group of IT collaborators. In this strategy, each application
had an associated deployment guide, which describes all the details to prepare the
resources and environment to run this application. The internal deployment guide of
Xsolution, for example, is a document with about 60 pages. It is important to under-
stand how this manual process used to be carried out, so that we could have an idea
about its complexity and the reasons it is a so time-consuming and error-prone activity.

The first step in this manual process is the installation of packages. Basically the
idea is to create the directory structure, which will contain the admin front-end Web
build files (related to user interface configuration), admin back-end Web build files,
mobile android application, back-end mobile build files, database structure creation
scripts, database initial seed script, and mobile user front-end Web build files. The
second step is the database installation. Xsolution, for example, supports both Active
Directory users (through Windows authentication) and SQL Server users (with custom
login and password). The deployment team must also configure the IIS (Internet
Information Service) to delegate the anonymous authentication configuration to Xso-
lution. However the main aim of this step is the creation of the database structure,
which involves several details. For example, the structure must only be created in the
first application deployment and the database scripts depend on the country where the
application will be hosted. In fact, there are a significant number of details that must be
observed in this process. These details are described in the guide, such as:

“if you update the database adding more values for some Enumeration, you must perform the
Recycle of the Application Pools related to the App Server and API Server. This is necessary
because the Enumerations present in this table are cached in memory when the application
starts, rather than updated if changes were made in the database.”

This type of conditional actions increases the complexity of the configuration and
they are usually a common source of errors since they are not part of the normal
configuration flow. The use of further support tools, such as the SQL Server man-
agement studio to support the database backup procedures, is also described in the
guide. In addition, there are also issues when databases are updated. For example:

“If you are upgrading the version of the database, you must sequentially run all scripts of the
current version to the version you want. If just a script is ignored, the next scripts after that may
not run correctly.”

The third step is the installation of the Web application requirements. This step
generally involves the installation of several third-party resources, which act as the
Front-end Admin Web, Back-end Admin Web and Mobile User Web. For example, the
Xsolution requires the installation of the next components: (1) NET Framework 4.5;
(2) Internet Information Services 7.5 or 10; (3) ASP.NET; (4) Windows Management
Framework 3.0; and (5) IIS URL Rewrite 2.0 module. Each of these components also
has their own installation details, which must be observed by the deployment team. For
example, the IIS module has its own manual (24 pages) with instructions about the
reverse proxy configuration using an IIS server. One of the functions of the IIS is to
capture the application log. This task is customized and also presents a set of con-
figurations to properly work according to the features of each Web application.

254 C. Siebra et al.

The version of components is another point to observe. Xsolution, for example,
allows the use of Windows Server 2008 R2 Service Pack 1 or Windows Server 2016.
Depending on the choice, particular details must be observed along the configuration
process. The configuration process also has an influence from local laws. For example,
due to the new national legislation for Internet (Law No. 12,965 - Internet Civil
Landmark) [31], information about the user access to the application needs to be stored
for a period of six months. The information required is the IP, the username, the date and
time of login. Thus, the components must be configured to maintain such information.

The fourth step is the installation of the own Web application, which involves the
creation of the application pool, the choice of Website locations and the assignment of
each site to a specific application pool. In order, application pools are processing
groups based on specific administrative preferences that isolate Website processes from
other website processes on the server, offering strong performance and security ben-
efits. Again, there are several details in this configuration. For example, the Admin
Front-end Web and Admin Back-end Web applications could be in the same appli-
cation pool, but it is strongly recommended that the Back-end Mobile application stays
in a separate application pool. Thus, the configuration of two Web servers is required.

The fifth step is the configuration of the Admin Web application. There are several
technical details in this step, which are related to authentication options, the configu-
ration of mobile responses and database access permissions. In fact, there are a sig-
nificant number of parameters (about 50) that must be set and the deployment team
must understand these parameters and know the best way to set them.

Finally, the sixth and seventh steps are respectively related to the configuration of
the error log and mobile Website. Similarly to the other steps, the guide brings several
details and customization options.

This description illustrates just part of the tasks and details regarding the manual
deployment process. We can easily observe that this process is prone to errors since it is
long and has several details. Furthermore, it is hard to identify which configuration was
not properly performed when an error occurs.

To demonstrate these problems and characterize this process in terms of software
engineering metrics, we carried out a simple quantitative analysis of this process using
Xsolution as our object of study. According to the schedule and documents from the
Xsolution project, the deployment stage of each Xsolution release took about 16 h in
the best case. This means when the process was performed without errors. Then, if we
had 3 sprints per month, a collaborator should be allocated to this task over 6 days
(8 h/day) to each new version.

At each new sprint, all the guide items were executed, starting from the first step;
while the own guide was also reviewed or updated along with each sprint. This ensures
a current and future process free of failures. If any error was identified, all the process
was again started from the initial configuration. Thus, the final deployment could spend
much more than 16 h.

3.3 Infrastructure as Code Implementation

The infrastructure as code to support the deployment was implemented in our orga-
nization as a form to avoid the limitations of the previous manual approach (Sect. 3.2).
Furthermore, this approach allows that solutions can be deployed in any environment
without the expertise required by the manual approach.

Empowering Continuous Delivery in Software Development 255

Our strategy is based on the PowerShell DSC (Desired State Configuration), which
is a script language that enables the definition of a set of deployment actions. Our
experiments showed that several of the previous deployment actions could be auto-
mated with this language, such as: (1) install or remove server roles and features;
(2) manage registry settings; (3) manage files and directories; (4) start, stop, and
manage processes and services; (5) manage local groups and user accounts; (6) install
and manage packages such as .msi and .exe; (7) manage environment variables; (8) fix
a configuration that has drifted away from the desired state; and (8) discover the actual
configuration state on a given node. Furthermore, DSC is a platform build into Win-
dows, so that it is a natural choice for development projects in such platform.

The use of PowerShell DSC involved three phases in our experiments. In the first
phase (authoring phase), the DSC configuration was created by means of the Power-
Shell Integrated Scripting Environment (ISE), which is an authoring tool for DSC
configurations. These configurations are translated to one or more MOF files, which
contain the necessary information for the configuration of the nodes. MOF (Managed
Object Format) is a schema description language used for specifying the interface of
managed resources, such as storage, networking, etc.). Thus, they are basically made
up of a series of class and instance declarations. A MOF file used in the Xsolution
deployment, for example, accounts for the configuration of roles and service roles
during the installation of the Web application requirements (step 3 discussed in
Sect. 3.2). A server role is a set of software programs that, when installed and properly
configured, allows a computer to perform a specific function for multiple users or other
computers within a network.

Role services are software programs that provide the functionality of a role. In a
manual way, the deployment team must access several configuration pages and check a
set of options indicated by the manual. Differently, the use of MOF scripts is simple
and powerful at the same time since we do not need to indicate any path for the system
variables. The own DSC framework already identifies such variables and set them. This
process is completely transparent to human operators. However, this configuration was
simple because the DSC framework has the “WindowsFeature” as one of its 12 built-in
configuration resources. In order, a DSC resource is a Windows PowerShell module,
which contains both the schema (the definition of the configurable properties) and the
implementation (the code that does the actual work specified by a configuration) for the
resource. A DSC resource schema can be defined in a MOF file, and the implemen-
tation is performed by a script module. Other examples of built-in resources that were
used in our study are:

• DSC File Resource: provides a mechanism to manage files and folders on the target
node;

• DSC Package Resource: provides a mechanism to install or uninstall packages, such
as Windows Installer and setup.exe packages, on a target node;

• DSC Service Resource: provides a mechanism to manage services on the target
node.

256 C. Siebra et al.

The use of the infrastructure as code had a huge impact in our deployment effi-
ciency. The deployment time for each release was decreased to 30 min. Thus, if we had
3 sprints per month, just 90 min will be spent in this process for each new version.
Furthermore, all the process is automatic, so that it can be quickly executed from the
beginning and the deployment team abandoned both the use of the guide (Sect. 3.2)
and its update. Modifications are now carried out in the own scripts and maintained by
version control programs.

3.4 Lessons Learned

Some lessons were learned along this first case study with DSC and some of them
support previous finds from the literature. DSC enables IT teams in deploying several
times their configuration without risks of breaking the infrastructure. Thus, DSC
supports the DevOps principle of continuous deployment. We observed two important
DSC features that optimize this process of continuous deployment:

• Only settings that do not match will be modified when the configuration is applied.
The remainder configurations are skipped so that we obtain a faster deployment
time;

• The definition of the configuration data and configuration logic are separated and
well-defined. This strategy supports the reuse of configuration data for different
resources, nodes and configurations.

A useful DSC strategy is to record errors and events in logs that can be viewed in
the Event Viewer application. This function was important mainly at initial phases of
the development since the composition of configuration scripts was challenging for
members of our team. Thus, the use of logs has facilitated the identification and solving
of issues.

DSC provides a declarative syntax to express configurations for infrastructure and
information systems. This DSC feature accounts for creating a transparent process,
where the IT team do not necessarily have to know how DSC will provide a specific
feature or software installation because the declarative syntax is similar to an INI type
expression, specifying what should be present on the node, as discussed in [22].

DSC has two modes of operation: push and pull. The pull mode has its scalability
as the primary advantage and it seems to be the most used DSC mode. In fact, a single
pull server can provide DSC configurations to many connected nodes with the addi-
tional benefit of specifying how often the LCM (Local Configuration Manager) on each
node should check back with the pull server enforcing a configuration. However, as our
task is focused on deployment, whose configuration is applied once for a long period,
the push mode was chosen since we do not need periodic configuration checks. Fur-
thermore, the push mode is more appropriate when environments have high security
restrictions.

Empowering Continuous Delivery in Software Development 257

Finally, we used the ability of DSC to create new resources for configurations that
are not provided as a built-in resource. This process was straightforward and the
resultant resources could be reused in several parts of the deployment script. Thus, this
feature was very useful to a complete automation of our deployment process and we
also contributed to the open source DSC official repository, which is maintained by
Microsoft.

4 The Docker Extension: Case Study 2

4.1 Initial Setup

The previous case study was based on an infrastructure that uses virtualization.
However, the aspects of a containerization technology, such as Docker, must be
considered as an additional way to facilitate continuous delivery. Containers provide a
mechanism for logical packaging in which applications could be abstracted from the
environment in which they actually run.

The principal motivation to use containerization in our environment was to enable
applications to be easily and consistently deployed, regardless of the type of host (e.g.
physical machines, virtual machines, private or public clouds). These hosts become in
fact predictable environments, which maintain a default configuration pattern, which
we call stage for dev. Using containers together with our strategy to Infrastructure as
Code, we could go beyond the process of software delivery. In order, rather than
delivering the software together with a script to configure the infrastructure, we can
instantiate a container, configure the infrastructure in this instance and then delivering a
container with the software and its infrastructure ready in terms of configuration. In this
way, we could save resources, facilitate the delivery management, provide scalability
and portability. In brief, the next definitions of Docker are used in our work:

• Images: a template, sometimes also called recipe, which is used to create containers.
An important part of these images is composed of a set of steps that account for
installing and running a particular software;

• Containers: they are created from the instructions defined within the source image.
Containers act like a compact virtual machine regarding their applications and they
share the operating system;

• Client: a client is the interface of the Docker API, which is used to access the
Docker daemon. The implementation of a daemon only makes sense if it is going to
run in a different machine than the client;

• Host: this component is represented by a physical or virtual machine, where the
daemon is running, and contains cached images as well as runnable containers
created from images.

258 C. Siebra et al.

Docker follows a client-server architecture, which uses a remote API to create
containers based on Docker images. Containers and images have a similar relationship
than objects and classes of the object-oriented programming. Thus, we defined our
templates (images) to be later instantiated in several containers. The images of our
project are used to create four containers:

• Gateway container: contains the gateway module, which is based on a functionality
called Reverse proxy;

• Web container: contains the web, web_backend, site and helper modules;
• MobileBackend container: contains the mobile_backend module;
• SQL container: contains the database module.

While these containers support the main idea of portability, its integration in our
DSC based approach enables that their configuration can also evolve together with the
needs of the applications in development. Next section describes the workflow of a
traditional Docker application and how/where our approach works in this workflow.

4.2 Workflow

The typical Docker workflow allows creating images, pulling images, publishing
images, and running containers. The next schema (Fig. 2) illustrates these actions.

This schema shows that images are built from Dockerfiles, which in our approach
will be evolved by means of DSC updates. These files have the instructions regarding
the configuration of containers. Furthermore, Dockerfiles may also contain instructions
on how to pull an image from Docker repositories. After the creation of an image in the
host environment, we can run such image to create the containers, which are in fact an
isolated runtime environment with applications and other configurations that are
specified in the image. In our case, we have three images: Dockerfile_Iis (Xsolu-
tionWeb and XsolutionBackend containers), Dockerfile_IisHttps (XsolutionGatway
container) and Dockerfile_Database (XsolutionSQL). These containers can be started
and stopped and restarted similarly to virtual machines. A container can be committed
to making a new image that can be later used to create containers from it. This must be
indicated in its configuration. In our case, for example, after the start of a general
container, the DSC PowerShell script is executed in each container and these four

Fig. 2. Schema of the Docker workflow.

Empowering Continuous Delivery in Software Development 259

images can be generated. New images can also be pulled from repositories, while our
images can also be pushed to such repositories. This is a possible strategy to share and
reuse images already specified by the own team, or other teams around the world when
these repositories are global.

4.3 The Docker and PowerShell DSC Integration

As illustrated in the previous schema (Fig. 2), the Dockerfile represents the main form
to build Docker images by means of commands for installing and configuring the
environment. Together with such files, other files located in the same directory could be
incorporated as part of this build process. Our project extension was focused on how
DSC scripts could be used to automate the evolution of containers that are created from
Dockerfiles. In this scenario, the scripts could be evolved by the own development
team, together with the application code and its needs.

The next execution sequence is used in our project to promote this extension. First,
the Dockerfile is edited, acting as a template to define a Docker image. Then, this image
is instantiated to create one or more containers. Each container has a LCM, which is the
DSC engine that runs on every host and accounts for parsing and enacting configu-
rations that are sent to such host. In other words, the LCM executes DSC scripts. The
configurable feature of LCM, by means of a meta-configuration, is fundamental in this
process. We observed that several options for configuration are related to global
behaviors. However, we can also identify individual behaviors by means of a con-
figuration ID, which could identify, for example, an image in particular.

An important investigation is on the integration of host configurations into the
container image. To that end, the Dsc-Service must be installed in the Windows so that
we can work with the DSC strategy. In this process, we observed that the build script of
Docker must download any DSC resource that is required for configuration. Then, the
Dockerfile can add this resource and its directories to the image before the configu-
ration is applied.

Another important activity in this process was the management and evolution of the
meta-configuration. A possible approach to this management is to divide the meta-
configuration into two parts. The first part accounts for building the image. The second
part is more related to the instantiation of this image, or the creation of containers. To
that end, the Dockerfile must contain the reference to a script that applies the static
configuration to the LCM. After that, other commands can be used to instantiate the
containers based on an image.

4.4 Discussion

Using Docker containers together with our DSC-based approach for configuration, we
have tested with success our infrastructure on different types of hosts such as Windows
Server 2012 and Windows Server 2016. This means, even with different hosts features,
the containers were able to create a unique stage for dev that was used by all indi-
viduals involved in the development/deployment of the applications.

260 C. Siebra et al.

Along the process, our developers needed to integrate their codes in a branch to try
their execution, which usually raised several problems related to the versions of APIs of
service and outdated databases. Furthermore, the entire environment needed to be
replicated to avoid problems with services or application instances that were offered to
other developers.

The team also had problems, before the stage for dev, regarding the identification of
the right moment to delegate the maintenance of the code related to the infrastructure
(infra-code) to the development team. This problem appeared when the DevOps team
had an infrastructure script almost concluded, but the evolution of the Xsolution was
still generating new modifications in this script configuration. In order, when the dev
team was evolving the Xsolution code in a specific sprint, this used to generate a
demand for the infrastructure evolution, which was carried out by the operation team.
However, this infrastructure evolution should finish before the next development sprint,
so that they could use a complete and functional infra-code. After the conclusion of the
stage of dev, which integrated the Docker containers with DSC, the concept of
Infrastructure as Code was included in the process of development and this team could
evolve both the application code and the infrastructure together.

The main restrictions of our experiment were related to aspects of security. These
restrictions had a significant impact on the development of our solution. The main
examples were:

• No application server could have access to the Internet;
• The communication between the machines should be carried out via just one port

(port 80) and no further ports could be liberated;
• No network shared directory could be created;
• We should consider that all machines only had the operating system installed. From

this scenario, any required modification should be exclusively carried out by the
deployment scripts.

Due to these restrictions, libraries (e.g. non-native PowerShell resources) or
embedded tools (e.g. Java Runtime Environment or the URL module for IIS) needed to
be sent together with the deployment package. Furthermore, we also concluded that the
push mode to deployment is more appropriate to very restrictive environments. In fact,
the pull model requires the use of a server that is responsible for providing the con-
figurations (MOF files), or the creation of a shared network directory to maintain these
files. Thus, due to our restrictions regarding security, we could not implement any of
these approaches.

An important lesson learned was to realize that the bakery model [32] was the
correct choice to manage the containers. According to [32], “A bakery is a form of
infrastructure entity that embodies the process of acquiring, building and releasing
machine images to allow repeatable deployments of working code. The output of a
bakery is a baked image that is used to spin off instances of machines (VMs or
containers) in any compatible infrastructure. The compatible infrastructure represents
the required environment in the form of hypervisors or container engines that support
the deployment of these baked images”. Thus, the bakery output, which is represented
by baked images, is compatible with several types of infrastructures. This feature
reduces the need for seamlessly tailored images built for each type of infrastructure.

Empowering Continuous Delivery in Software Development 261

In our project, we used the bakery strategy to deliver the “ingredients and the
recipe” rather than delivering the image already ready to use. This means, we deliver a
Dockerfile, which comes from the official Microsoft image (microsoft/iis), and then we
execute the DSC script. The main reason to use this strategy is the size of the final
image, which is around 11 GB.

5 The Current State of PowerShell DSC and Docker

The Windows Server 2016 was the first version in this platform to natively offer
support to Docker. However, PowerShell DSC and Docker use to be discussed in the
opposite site when the Infrastructure as Code is considered. According to Stoneman
[33], DSC works with scripts which declaratively specify the final state of a host. This
specification is modular and contains different types of components in different
packages, which can be obtained from the Microsoft and related community. Thus,
using PowerShell DSC we can write a single script to define the state of a particular
type of machine. According to its use, DSC is employed for one-time configuration or
configurations that periodically verify if hosts are still correctly set up. Thus, when
virtual machines have their correct state modified, scripts can automatically return this
state to the correct one.

The idea of Docker is to maintain the host as light as possible. To that end, the main
strategy is to install the base OS and Docker tools so that they support the opera-
tionalization of applications inside Docker containers on the host. Initially, Docker was
developed to use Linux features that provide ways to isolate processes running on its
core. Thus, containers could share the same kernel with other Linux processes,
avoiding complex strategies (e.g. hypervisor) to separate the containers applications
from the host’s computer resources.

To follow this Linux strategy, Windows Server 2016 introduced containers as a
new layer of virtualization, whose aim was to create a compatible management layer
based on Docker. Two initial ideas of containers are Windows and Hyper-V Containers,
whose primary interface managements were implemented in PowerShell. However,
according to Dille [34], although this interface module was implemented in the Pow-
erShell way, it did not relate to the management concepts of Docker. New releases of
this approach show that the trend is to have Docker as the primary management tool
while the PowerShell module for containers should be redesigned and adapted to this
situation. This is still an ongoing process, but as described in the experiences of Dille
[34], “After investing a few hours of testing and playing around with Dockerfiles as
well as the build and push commands, I am amazed by the current state of the
implementation of containers on Windows. Microsoft has managed to bring the
management experience of Docker on Linux to Windows Server. This will make con-
tainers on Windows Server part of a huge community”.

262 C. Siebra et al.

6 Conclusion

This work provides an initial analysis on the use and advantages of applying an
infrastructure as code strategy for deployment, based on the PowerShell DSC and its
integration with Docker. In fact, specialized forums and the software engineering
community comment on this lack. We could find comments such as “I’ve never seen
anyone with a robust production environment using DSC exclusively yet, however
there are plenty of examples of Puppet/Chef environments”. Furthermore,
PowerShell DSC and Docker are technologies that are separately discussed. While
PowerShell DSC is presented as great for automating the setup of complex compo-
nents; Docker is showed as great for building small, lean components. Thus, this paper
is an initial academic contribution to show in practice as these two technologies could
work together since most of the information presented on this subject is from different
blogs and sites of the Internet.

Our analysis with PowerShell DSC and Docker was based on a case study, which
used a real market application as an object. The quantitative analysis of the efficiency of
the approaches shows that the use of these technologies offers the appropriate resources
to the automation of the deployment process. Our future researches intend to carry out a
better quantitative analysis (e.g. development time) since the infrastructure as code is in
fact being implemented in our organization. Thus, several quantitative and qualitative
data is going to be generated regarding the real advantages of this deployment
approach.

References

1. Humble, J., Farley, D.: Continuous delivery: reliable software releases through build, test,
and deployment automation. Addison-Wesley Professional, Boston (2010)

2. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
technical and social challenges along the way. Inf. Softw. Technol. 57(1), 21–31 (2015)

3. Loukides, M.: What is DevOps? Infrastructure as Code. O’Reilly Media, Sebastopol (2012)
4. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In: Lassenius, C., Dingsøyr,

T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 212–217. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18612-2_19

5. Hosono, S.: A DevOps framework to shorten delivery time for cloud applications. Int.
J. Comput. Sci. Eng. 7(4), 329–344 (2012)

6. Erich, F., Amrit, C., Daneva, M.: Report: Devops literature review. University of Twente,
Technical report (2014)

7. Dyck, A., Penners, R., Lichter, H.: Towards definitions for release engineering and DevOps.
In: Proceedings of the IEEE/ACM 3rd International Workshop on Release Engineering
(2015)

8. Siebra, C. et al.: From theory to practice: the challenges of a DevOps infrastructure as code
implementation. In: Proceedings of the 13th International Conference on Software
Technologies (ICSOFT) (2018)

Empowering Continuous Delivery in Software Development 263

http://dx.doi.org/10.1007/978-3-319-18612-2_19

9. Punjabi, R., Bajaj, R.: User stories to user reality: a DevOps approach for the cloud. In: IEEE
International Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), Bangalore, pp. 658–662 (2016)

10. Miell, I., Sayers, A.H.: Docker in Practice. Manning Publications Co., New York (2016)
11. Bang, S.K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of modern Web

applications: knowledge, skills, and abilities for DevOps. In: Proceedings of the 2nd Annual
Conference on Research in Information Technology (RIIT 2013), pp. 61–62. ACM,
New York (2013)

12. DeGrandis, D.: Devops: so you say you want a revolution? Cutter Bus. Technol. J. 24(8),
34–39 (2011)

13. Wettinger, J., Breitenbücher, U., Leymann, F.: Devopslang – bridging the gap between
development and operations. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC
2014. LNCS, vol. 8745, pp. 108–122. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44879-3_8

14. Tessem, B., Iden, J.: Cooperation between developers and operations in software
engineering projects. In: Proceedings of the 2008 International Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 105–108 (2008)

15. Walls, M.: Building a DevOps Culture. O’Reilly Media, Sebastopol (2013)
16. Liu, Y., Li, C., Liu, W.: Integrated solution for timely delivery of customer change requests:

a case study of using devops approach. Int. J. U- E-Serv. Sci. Technol. 7, 41–50 (2014)
17. Shang, W.: Bridging the divide between software developers and operators using logs. In:

Proceedings of the 34th International Conference on Software Engineering, pp. 1583–1586.
IEEE Press, New York (2012)

18. Bruneo, D., et al.: Cloudwave: where adaptive cloud management meets DevOps. In:
Proceedings of the IEEE Symposium on Computers and Communications, pp. 1–6. IEEE
Press, New York (2014)

19. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3), 94–100
(2016)

20. Duvall, M.P.: Continuous Delivery Patterns and AntiPatterns in the Software LifeCycle
(2011)

21. Younge, A.J., et al.: Analysis of virtualization technologies for high performance computing
environments. In: IEEE International Conference on Cloud Computing, pp. 9–16 (2011)

22. O’Connor, R., Elger, P., Clarke, P.: Continuous software engineering – a microservices
architecture perspective. J. Softw. Evol. Process 29(11), e1866 (2017)

23. Scheepers, M.J.: Virtualization and containerization of application infrastructure: a
comparison. In: Proceedings of the 21st Twente Student Conference on IT, pp. 1–7 (2014)

24. Peacock, M.: Creating Development Environments with Vagrant. Packt Publishing Ltd.,
Birmingham (2015)

25. Hüttermann, M.: Infrastructure as Code. In: DevOps for Developers. Apress, Berkeley
(2012)

26. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing idempotence for infrastructure
as code. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275, pp. 368–388.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45065-5_19

27. Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., Tamburri, D.: Devops: introducing
infrastructure-as-code. In: Proceedings of the 39th IEEE International Conference on
Software Engineering Companion, pp. 497–498 (2017)

264 C. Siebra et al.

http://dx.doi.org/10.1007/978-3-662-44879-3_8
http://dx.doi.org/10.1007/978-3-662-44879-3_8
http://dx.doi.org/10.1007/978-3-642-45065-5_19

28. Zhu, L., Xu, D., Xu, X., Tran, A.B., Weber, I., Bass, L.: Challenges in practicing high
frequency releases in cloud environments. In: Proceedings of the 2nd International
Workshop on Release Engineering, Mountain View, USA, pp. 21–24 (2014)

29. Scheuner, J., Leitner, P., Cito, J., Gall, H.: Cloud work bench–infrastructure-as-code based
cloud benchmarking. In: Proceedings of the IEEE 6th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 246–253 (2014)

30. Spinellis, D.: Don’t install software by hand. IEEE Softw. 29(4), 86–87 (2012)
31. Tomasevicius Filho, E.: Marco Civil da Internet: uma lei sem conteúdo normativo. Estudos

Avançados 30(86), 269–285 (2016). (in Portuguese)
32. Juneja, V.: The Bakery Model for Building Container Images and Microservices.

TheNewStack (2016). https://thenewstack.io/bakery-foundation-container-images-
microservices. Accessed 20 Oct 2018

33. Eagles, H.: DevOps Technology in a Windows World (2016). https://blogs.technet.
microsoft.com/uktechnet/2016/05/24/devops-technology-in-a-windows-world/. Accessed 28
Sept 2018

34. Dille, N.: Build, Ship, Run Containers on Windows Server 2016 TP5 with Docker.
Automation, DevOps and Containerization (2016). https://dille.name/blog/2016/06/08/build-
ship-run-containers-with-windows-server-2016-tp5/. Accessed 22 Oct 2018

Empowering Continuous Delivery in Software Development 265

https://thenewstack.io/bakery-foundation-container-images-microservices
https://thenewstack.io/bakery-foundation-container-images-microservices
https://blogs.technet.microsoft.com/uktechnet/2016/05/24/devops-technology-in-a-windows-world/
https://blogs.technet.microsoft.com/uktechnet/2016/05/24/devops-technology-in-a-windows-world/
https://dille.name/blog/2016/06/08/build-ship-run-containers-with-windows-server-2016-tp5/
https://dille.name/blog/2016/06/08/build-ship-run-containers-with-windows-server-2016-tp5/

Can Commit Change History Reveal
Potential Fault Prone Classes? A Study

on GitHub Repositories

Chun Yong Chong1(&) and Sai Peck Lee2

1 School of Information Technology, Monash University Malaysia,
Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia

chong.chunyong@monash.edu
2 Department of Software Engineering,

Faculty of Computer Science and Information Technology,
University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract. Various studies had successfully utilized graph theory analysis as a
way to gain a high-level abstraction view of the software systems, such as
constructing the call graph to visualize the dependencies among software
components. The level of granularity and information shown by the graph
usually depends on the input such as variable, method, class, package, or
combination of multiple levels. However, there are very limited studies that
investigated how software evolution and change history can be used as a basis to
model software-based complex network. It is a common understanding that
stable and well-designed source code will have less update throughout a soft-
ware development lifecycle. It is only those code that were badly design tend to
get updated due to broken dependencies, high coupling, or dependencies with
other classes. This paper put forward an approach to model a commit change-
based weighted complex network based on historical software change and
evolution data captured from GitHub repositories with the aim to identify
potential fault prone classes. Four well-established graph centrality metrics were
used as a proxy metric to discover fault prone classes. Experiments on ten open-
source projects discovered that when all centrality metrics are used together, it
can yield reasonably good precision when compared against the ground truth.

Keywords: Software fault identification � Software change coupling �
Commit change data � Mining software repositories � Complex network

1 Introduction

In recent years, research in software engineering in the aspect of representing software
systems using complex networks has started to emerge with the aim to gain a high-level
abstraction view of the analysed software systems [1, 2]. Representing software sys-
tems using complex networks allows software maintainers to gain more insights on the
studied software by discovering unique or recurring structural patterns, detecting
abnormalities and outliers, or even predicting future evolution trends [3]. For instance,
the work by Zimmermann and Nagappan [4] has shown that it is possible to predict

© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 266–281, 2019.
https://doi.org/10.1007/978-3-030-29157-0_12

http://orcid.org/0000-0003-1164-0049
http://orcid.org/0000-0002-4551-430X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_12

software defects using graph theory metrics to reveal some extra-deterministic infor-
mation of the software that are otherwise hidden from software maintainers, such as
fault prone software components.

However, the ways to represent software-based complex networks are generally not
standardized across multiple studies due to the fact that different studies might be
addressing some specific issues at different levels of granularity, i.e. package level [5],
class level [6, 7], or code level [8]. While most of the existing studies focus on utilizing
source code as the main source of information to form a software-based complex
network, there is a lack of studies that attempt to harness the data and metadata that are
available on source code management systems (SCMS).

Software engineering and big data researchers have been drawn into using SCMS
such as GitHub due to its integrated social features and the metadata that can be
accessed through its API [9]. Much research including qualitative and quantitative
studies have been conducted on GitHub. In qualitative studies, the research focus on
analyzing software developers’ behavior, in an attempt to identify the traits and
characteristics of software developers in successful software development [10]. On the
other hand, quantitative studies focus on using commit change data to understand the
evolution of a software, and to construct software bug predictors to facilitate its
maintenance in the GitHub environment [11]. Due to the vast amount of data available
for projects hosted on GitHub, it is easy to retrieve commit change related information
of a particular software. Various studies have found the frequency of software change,
especially pre or post-release, is positively correlated to its fault proneness [12]. Hence,
by studying the commit change requests in GitHub, researchers are able to discover and
study recurring patterns of fault prone software components.

However, based on our knowledge through literature review, there is no study that
attempts to fully exploit the commit change data mined from SCMS by creating a
commit change-based complex network to reveal the co-change behavior of software
components from a graph theory point-of-view. We argue that a complex network
modelled based on the commit change data of software systems can aid in the iden-
tification of bug prone components by applying relevant graph theory metrics. Graph
theory metrics such as degree centrality, closeness centrality, and clustering coefficient
had been proven to be correlated to the quality of software systems [6]. Hence,
applying this set of well-established graph theory metrics on the proposed commit
change-based complex network can reveal bug or fault prone classes and other inter-
dependent classes that are strongly related to the faulty class, i.e. when ClassA is
changed, there is a high probability that ClassB will need to be changed as well.

This paper is an extension of our previous work [13]. In our previous work, we only
focus on using community detection techniques to reveal potential fault prone classes,
and use another proxy metric, namely change burst metric proposed by [12] as a
benchmark. In this extended work, we propose a new way to utilize historical software
change and evolution data as an input to model a commit change-based weighted
complex network. Through the application of well-established graph centrality metrics,
potential fault prone classes are identified. We then construct our own ground truth by
parsing the issue tracker report of each test subjects to see if the identified classes are
indeed being recognized as faulty by the users or developers of the project. In this way, it
creates a more reliable benchmark to evaluate the accuracy of our proposed approach on

Can Commit Change History Reveal Potential Fault Prone Classes? 267

ten open source projects hosted on GitHub. Experiments show that there is no single
graph theory metric that perform consistency better than others. Instead, when all metrics
are used together, the proposed method achieve reasonably good precision. This paper is
organized as follows: Sect. 2 discusses the background and related works in utilizing
complex network analysis to study the structure of software, as well as works on change
coupling metrics to identify potential fault prone software components. Section 3 pre-
sents the proposed approach to model a commit change-based weighted complex net-
work. Section 4 presents the experimental design, along with the execution of the
experiment. Section 5 gives an overall discussion based on the results obtained in the
previous section, followed by concluding remarks and potential future work.

2 Related Works

There are several features in graph theory that can be used to analyze the structure and
behavior of software systems. Recent studies of representing objected-oriented soft-
ware systems as complex networks revealed that many of them share some global and
fundamental topological properties such as scale free and small world [14–18]. The
scale free characteristic in software systems can be interpreted as the level of reuse of
important classes, or the number of dependencies between classes, while software-
based networks that exhibit small world property signify that the cohesion strength
among software components are strong from a graph theory’s point of view. Thus,
complex networks and graph theory analysis are excellent in evaluating the impact of a
particular class with respect to the whole system.

Before applying graph theory metrics onto a software system to be analyzed, one
must construct its complex network in advance. An object-oriented software is typi-
cally composed of multiple classes. At the source code level, classes in object-oriented
software may contain data structures, objects, methods, and variables. Two classes can
be considered related if there are actions such as passing of messages. Due to multiple
ways of representing nodes and edges, there is a need to perform an in-depth review on
existing works that model software systems using complex networks.

2.1 Modelling Software-Based Complex Network

The work by Myers [8] proposed a method to model software systems using complex
network by analyzing the interdependencies of source code. A software collaboration
graph based on the calling of methods by one another is used to analyze the structure and
complexity of software systems. The work by Myers is later extended in the work by
LaBelle et al. [19] andHyland-Wood et al. [5] to include the usageof classes andpackages.

On the other hand, the work by Oyetoyan et al. [20] proposed an approach to
investigate the relationship between cyclic dependencies and software maintainability.
Cyclic dependency graphs are used in this work, where classes are represented as nodes
and relationships between classes are represented as edges. The authors examined the
change frequency of software components in multiple releases and identified if the
classes involved in circular dependencies are more prone to changes. Based on their
finding, the authors discovered that circular dependencies are positively correlated to
change frequency, and it will adversely affect the maintainability of software systems.

268 C. Y. Chong and S. P. Lee

The work by Valverde and Solé [21] discussed the usage of two graphs, namely
Class Graph and Class-Method Graph, to analyze the global structure of software
systems. Class Graph is derived based on UML class diagrams, where classes are
represented as nodes, while relationships among classes, such as dependency and
association, are depicted as edges between nodes. Class-Method Graph is modeled
based on source code using the similar concept. For both types of graphs, the com-
plexity of nodes and edges is ignored mainly because the authors assumed that internal
complexities do not change the global structure of a software.

On the other hand, the work by Zhang et al. [22] proposed to construct a software-
based network to analyze the modularity of the examined software. The authors use
dynamic execution traces of software to construct a dynamic software network model
and attempt to identify the most important node by evaluating the community structure
of the software-based network. The experiment results show that the proposed method
is reliable and competent enough to software developers to identify refactoring
opportunities.

Based on these studies, it is obvious that there are various ways to represent
software-based complex network mainly because different studies are addressing dif-
ferent issues at varying levels of granularity. Since the focus of this paper is to identify
bug or fault prone software components, information related to the evolution of soft-
ware components such as change history can be useful to model a software-based
complex network. It is widely acknowledged that software components constantly
undergoing changes are more likely to be fault prone due to their unstable structure.
Hence, by studying the commit change in SCMSs such as GitHub, one can attempt to
discover and learn recurring patterns of bug or fault prone software components.

2.2 Change Metric to Identify Bug or Fault Prone Software Components

Studies have found that apart from using popular source code metrics in software bug
prediction, change metrics are equally good, if not better, in identifying bug or fault
prone software components when compared to code metrics [12, 23, 24]. Change
coupling, which is one of the most widely used change metrics, was defined in [25] as
the situation associated with recurrent co-changes of software components found in the
software evolution or change history. In other words, change coupling between any two
classes is measured by observing their co-change or co-evolve patterns over a period of
development history [26, 27]. According to the work by Zimmermann et al. [28], the
authors treat change coupling as association rules. The association rule defines that if
given a situation where when class A is changed, class B is also changed in response to
that action, that will result in the association rule of A) B.

Various research studies were conducted to analyze the relationships between all
the software components, evolution patterns, and relevant information mined from
SCMSs such as GitHub and Subversion [29, 30] in order to capture the co-changing
behavior. Experimental results had shown that by studying co-change patterns among
software components, developers can actually identify hidden dependencies that are not
revealed by traditional static code metrics and it can be used to form the basis of bug
prediction model [28, 31, 32].

Can Commit Change History Reveal Potential Fault Prone Classes? 269

Meanwhile, Nagappan et al. [12] proposed a new code change metric, called the
change burst metric, which is capable of accurately predicting fault prone software
components in software projects with high frequency of changes. The authors define
change burst as a sequence of consecutive changes in a fixed interval of time, i.e. pre-
release or post-release of a major software version. If the amount of change burst is
relatively high on a piece of code, it could indicate that the code is not tested or
designed properly, causing developers to issue emergency post-release patch to fix the
issue. With precision and recall exceeding 90% when tested on Windows Vista, the
authors have shown that code change metrics can outperform conventional source code
metrics for predicting defects in large-scale commercial software.

The work by Guerrouj et al. [33] investigate how lexical smells are correlated to
change proneness and fault proneness of three open-source software projects. Lexical
smells is defined as recurring poor practices in the naming, documentation, and choice
of identifiers during the implementation of software artifacts [34]. The authors attempt
to validate their finding by cross-checking if the artifacts with lexical smells were also
mentioned in the change logs in the BugZilla or JIRA issue tracking systems of the
inspected software. Experiments show that classes with high design and lexical smells
tend to change more frequently and is strongly correlated to fault proneness.

Based on the discussed literature, utilizing data mined from software repositories
can be a promising way to study the inherent complexity and co-change behavior of
software systems. In this paper, an approach to model a commit change-based weighted
complex network is proposed. The proposed commit change-based network is capable
of revealing extra-deterministic information about the fault proneness of software
components with the aid of graph theory metrics such as degree centrality and
betweenness centrality. After applying relevant graph metrics, one can identify the
important nodes in the network, or in this context, classes that change frequently (due
to the fact that the network is modelled based on commit change data of software
components) throughout a fixed period of software development lifecycle. The infor-
mation derived from graph theory analysis can be used to supplement the raw commit
change data mined from SCMS to aid in identifying bug-prone software components.
The contribution of this paper can be summarized as follows:

1. A novel way to model a commit change-based weighted complex network
2. A way to identify classes that change frequently in order to reveal potential bug prone

classes, based on the modelled commit change-based weighted complex network.
3. Evaluation of the proposed approach using ten open-source projects archived in

GitHub repositories.

3 Proposed Approach

A complex network, G ¼ ðV ;EÞ, is made up of a set of nodes V, and a set of edges
E�V � V that connect pairs of nodes. In general, a complex network can either
directed or undirected. In both directed and undirected networks, edges may be
associated with weights to denote the similarity of a pair of nodes connected by an
edge or the cost of traveling through that particular edge. In a directed network

270 C. Y. Chong and S. P. Lee

G ¼ ðV ;EÞ, ði; jÞ 2 E signifies that there is an edge in E that is linking node i to node j
where i is the origin and j is the terminus. On the other hand, in an undirected network
Gu ¼ ðV ;EÞ, if ði; jÞ 2 E, then edge ðj; iÞ 2 E as well because the origin and terminus
are not specified in an undirected network.

Both directed and undirected networks can be represented by their own adjacency
matrix A. The matrix A is a Vj j � Vj j matrix where the rows and columns represent the
nodes of the network. In an undirected network, the entry Aij ¼ 1, if ði; jÞ 2 E;
8i; j 2 1; � � � ; Vj j. Value 0 indicates that there is no relationship in between nodes i and
j. Meanwhile for a directed network, the value Aij represents the weight associated with
edge ði; jÞ. The value of adjacency matrix A is symmetric for an undirected network
such that Aij ¼ Aji. In a directed network, however, the relation Aij is asymmetrical.

In OO software systems, objects and classes are normally related through different
kinds of binary relationships, such as inheritance, composition and dependency. Thus,
the notion of associating graph theory to represent large OO software systems and to
analyze their properties, be it structural complexity or maintainability, is feasible.

In this paper, an approach to model a commit change-based weighted complex
network is proposed. Table 1 illustrates an example where there exist four commit
changes over a period of time. For each commit, all the affected files or classes
(including add a new line of codes, modify existing code, or removal of code) are listed
in the table. For example, in Commit #1120, three classes, namely A.java, B.java, and
G.java were affected. Based on the information provided in Table 1, a way to model the
associated weighted complex network is proposed. Figure 1 illustrates an example of
the proposed approach to create a commit change-based weighted complex network.

Table 1. Example of four commit changes and classes affected by each commit change. Source
[13].

Commit #1120 Commit #1121 Commit #1122 Commit #1123

Affected classes A.java A.java A.java C.java
B.java G.java H.java F.java
G.java F.java H.java

Fig. 1. Example of commit change-based weighted complex network. Source [13].

Can Commit Change History Reveal Potential Fault Prone Classes? 271

The proposed approach takes into consideration any kind of changes, including
adding one or many lines of code, modifying one or many lines of code, and removing
one or many lines of code. Based on the commit change information shown in Table 1,
a weighted complex network that resembles the interaction of commit changes among
all classes is created. Classes that are affected by the same commit change are linked
together with edges, while the frequency of co-changes is used as a basis to calculate
the weights of edges. For example, Commit #1120 affects three classes, namely A.java,
B.java, and G.java. Hence, edges are created to connect all these three classes affected
by the same commit change #1120. As for the frequency of co-changes, Class A.java
and G.java were both affected in Commit #1120 and Commit #1121. Hence, a value of
2 is assigned to the edge connecting node A and G.

Once the target software is modelled into its respective weighted complex network,
we can then analyze it using graph theory metrics that are correlated to fault proneness
of software systems. Before choosing the appropriate metrics, we need to define the
characteristics of complex network that are capable of revealing fault proneness of
software components.

3.1 Centrality Measures Correlated to Fault Proneness of Software

The work by Zimmermann and Nagappan [4] had shown that graph centrality metrics
can be a reliable tool to identify fault prone classes. In general, centrality metrics are
used to identify important nodes that exert a certain level of influence on the studied
graph. From a commit change-based graph, centrality can help in identifying the pieces
of code that are target of numerous co-change dependencies. There are several com-
monly used centrality metrics.

Degree centrality measure the frequency of co-change between two or more classes.
Two classes with high degree centrality indicates that there exist many dependencies in
between themselves and they are more fault prone than others [4].

Closeness centrality on the other hand, is calculated as the inverse of the sum of
length of the shortest path between the inspected node and all the other nodes in the
network. From a commit change graph point-of-view, measuring the closeness cen-
trality of a class can help identify the co-change frequency of all other classes in the
software against the inspected class. A class with high closeness centrality indicates
that it is central (important) to the software, and closer to all other nodes (high tendency
to change when other classes are change as well). Similarly, a class with high closeness
centrality indicate that it is more fault prone than others.

Eigenvector centrality on the other hand, measure the influence of a class in the
commit change graph. A weightage score is assigned to all the classes based on the
assumption that classes that are connected to “important classes” will contribute more to
the score. Important classes in this context are classes with high co-change behavior (high
degree centrality score). A class with high eigenvector score means that it is connected to
many other classes who themselves have high co-change tendencies as well.

Finally, the betweenness centrality measure the amount of shortest path between
other classes that pass through the inspected class. Zimmermann and Nagappan had
shown that classes with high betweenness centrality are more likely to be faulty due to
the higher probability of fault propagation.

272 C. Y. Chong and S. P. Lee

Hence, in this work, we had chosen the four centrality metrics, namely degree,
closeness, eigenvector, and betweenness as the proxy measure to identify fault prone
classes due to evidence from prior research.

We utilize the NetworkX to build the commit change-based complex network and
use NetworkX’s built-in functions to calculate the centrality score of each node in the
network. For all unique classes mined from the commit history, a table is created to
show the corresponding centrality score for each classes. Each of these centrality metric
sheds light on how important that class is in the repository. All the scores are nor-
malized between the range of zero and one. Using the package matplotlib, each of these
metrics are then represented in the form of heat map for each repository. This help in
providing a visual aid to spot classes with high centrality score and their commit
change-based relationships with other classes. Figure 2 shows an example of visual-
ization for all four centrality score for a python-based open source project, called flask.

Fig. 2. Heat map for the closeness, degree, betweenness and eigenvector centrality score of
project “flask”.

Can Commit Change History Reveal Potential Fault Prone Classes? 273

4 Experiment Setup

In order to facilitate reproducibility and follow up research, the tool that we used to
extract relevant commit change information from GitHub repository is made available
to the public [35]. The shell script provides users a way to extract co-change behaviour
from any GitHub repository and return the query in a csv format which contains three
columns, which are “weight”, “source”, and “target” respectively. Users can specify the
target repository by changing the “repository name” variable. The code also provides a
way to specify the range of dates for inspection by modifying the “SINCE” and
“UNTIL” variable. The output can be easily exported to NetworkX for further analysis.

Ten open-source software systems written in Java and Python are chosen in this
study. The sizes of the software systems vary from 34 to 2422 files to reflect some
representative distribution on the population of open-source software systems. Table 2
shows additional information about the chosen projects.

The duration where we captured the commit change data from the selected projects
are from 1st January 2016 to 1st January 2018. The number of commit changes varies
according to different project, ranging from 2243 to 22040 changes identified during
the 2-year period.

4.1 Creation of Commit Change-Based Network and Identification
of Fault Prone Classes

Next, based on the proposed approach discussed in Sect. 3, a commit change-based
network is created for each of the selected project. Nodes are represented as .java
source file (for Java projects) or .py source file (for Python projects), while edges
between the nodes are the commit change relationship among those source files. In
order to simplify the notion of source file type (.py for Python, .java for Java), we use
the term “classes” to refer as the source file for both languages. The commit change-
based network is created using NetworkX.

Table 2. Summary of chosen projects.

Name Programming
language

Number of
source file

Number of commit
changes

Number of
nodes/edges

Zappa Python 34 15491 29/16024
requests Python 35 4584 30/3378
flask Python 155 3107 155/1615
tornado Python 115 2243 110/3791
keras Python 184 12083 180/8711
scrappy Python 291 5328 248/2241
ZeroNet Python 311 7010 234/2059
ExoPlayer Java 813 22040 813/232358
pipenv Python 823 12371 464/49440
fastjson Java 2422 9663 1560/21589

274 C. Y. Chong and S. P. Lee

Referring to Table 2, the last column shows the total number of nodes and edges
formed in the commit change-based weighted complex network using the proposed
approach. The number of commit change for a project does not correlate directly to the
number of edges. For instance, it can be observed that during the 2-year inspection
period, there were 7010 commit changes on ZeroNet project, but the commit change-
based network only contains 2059 edges. This is because there are plenty of commit
change that modified the same sets of classes, and there are plenty of commit change
that only modified one class. Hence, the number of edges is lesser than the total number
of commit changes. On the other hand, there are also cases where the number of edges
is more than the number of commit changes, such as the one observed from the
ExoPlayer project. From the two-year inspection period, a total of 22040 commit
change request were made on ExoPlayer but the total number of edges of the commit
change network is recorded as 232358. Upon further inspection, we found that on
average at least 8 classes were modified for each commit change request. Hence, the
number of edges formed for the commit change-based network is much larger than the
total number of commit change requests.

Once the network is created, we utilized the built-in plugin from NetworkX to
compute the centrality score for each of the nodes. In order to identify classes that has
the highest probability to be fault or error prone, we examine the nodes which have the
highest centrality score for each category under degree centrality, betweenness cen-
trality, eigenvector centrality, and closeness centrality. We attempt to experiment using
3 different cut-off points at the 85th percentile, 90th percentile, and 95th percentile. As
such, nodes with the highest centrality score at different percentile will be flagged as
fault or error prone.

4.2 Identification of Ground Truth

Next, in order to evaluate the accuracy of the proposed approach, we will need to
identify the ground truth, i.e. files that are indeed recognized as faulty by the developers
or users of the selected projects.

We follow the approach used by Guerrouj et al. [33] to identify the ground truth.
First, issue reports from each of the examined projects which are hosted on Github
were extracted. Both open and closed issues were extracted. Next, a simple text parser
was used to identify the frequency of source file name or classes that were being
mentioned in all the published issue reports. For instance, the file flask-handler.py was
mentioned in the issue report #2700 in the flask project. Source file or classes that are
frequently mentioned in the issue reports are assumed to be faulty and are used as the
ground truth in this paper.

We then cross-check to see if source file or classes with high centrality scores
(degree, closeness, betweenness, and eigenvector) were also mentioned in the issue
report of the inspected software (ground truth). This will allow us to check if the
calculated centrality score can be a good proxy measure to identify fault or bug prone
classes. The following is the summary of the steps taken to conduct the experiment in
this work.

Can Commit Change History Reveal Potential Fault Prone Classes? 275

For each project,

1. Download the commit change log from 1st Jan 2016–1st Jan 2018
2. Identify the list of classes modified under each commit change request.
3. Based on the approach proposed in Sect. 3, construct a commit change-based

network.
4. Use NetworkX to visualize and calculate the degree, closeness, betweenness, and

eigenvector centrality score of each node in the network.
5. Identify the nodes with highest centrality score and flagged them as fault prone

classes.
6. Run the text parser to identify files or classes that are frequently mentioned in the

issue report and use them as ground truth.
7. Crosscheck the list of identified classes in Step 5 with the ground truth in Step 6 and

calculate the precision and recall of the proposed method.

4.3 Experiment Results

As mentioned in Sect. 4.1, in order to capture the list of classes with the highest
centrality score, we attempt to experiment using 3 different cut-off points at the 85th
percentile, 90th percentile, and 95th percentile.

However, we are unsure if there is one single centrality metrics that can accurately
predict fault or bug prone classes. Hence, for each project, we ran the experiments 5
times:

1. Using degree centrality alone to predict fault prone classes
2. Using closeness centrality alone to predict fault prone classes
3. Using betweenness centrality alone to predict fault prone classes
4. Using eigenvector centrality alone to predict fault prone classes
5. Combine four centrality metrics to predict fault prone classes

It is important to note that for each of the five settings mentioned above, we had to
run it for 3 times using 3 different cut-off points at 85th, 90th, and 95th percentile.
Table 3 shows the experiment results.

To recall, there are a total of 5 different experiment setting for each of the selected
project - using four centrality metrics on its own individually, and a mixture of all the
metrics. For all 5 different settings, we ran the experiment for 3 times using three
percentile cutoff points at 85th percentile, 90th percentile, and 95th percentile. For each
cut-off point, the collection of classes or files that falls into the kth percentile will be
flagged as fault or bug prone. In order to find out the best performing centrality metric,
we do a simple cross-check between the flagged classes against the ground truth
(discussed in Sect. 4.2) and calculate the precision and recall.

Precision and recall that score more than 70% are highlighted in Table 3. Looking
at each individual repository, the precision of the proposed method varies accordingly
to the size of the project. For small project such as Zappa, the precision of the method is
relatively high in all 5 different settings. Whereas, other smaller project such as flask
and requests also demonstrate similar behavior but the precision of all combined
centrality metrics performed at a consistently high level. In general, when the condition

276 C. Y. Chong and S. P. Lee

to label the classes as faulty or not becomes more stringent, i.e. higher percentile cut-off
point, the precision of the proposed approach improve as well. This is an expected
behavior at the cost of lower recall value.

For other medium-sized projects (number of files in the range of 100–300), there
doesn’t seem to have any centrality metrics that stands out in term of precision, except
for the combined one: (tornado, 75), (Zero-Net, 75), (scrappy, 80). It is interesting to
see that for keras (184 files), there is no single setting that achieve precision of 70% of
above. Upon further investigation, we found that keras project has significantly more
commit change requests (12083 times) throughout the two-year inspection period when
compared to other medium-sized project. With the high commit change request, it also
resulted in a commit change-based network that consist of relatively high edge count
(8711). It could mean that with large volume of commit change request, the probability
of noises (preventive maintenance update) is higher as well, causing the proposed
approach to mis-label those files as faulty.

For large-sized projects such as pipenv, ExoPlayer, and fastjson, the accuracy of the
proposed approach is even lower. Only pipenv with degree centrality and the combined
centrality metrics achieve 75% precision. Once again, we observed that the combined
centrality metric recorded higher precision score when compared to each centrality
metric on its own.

Table 3. Summary of experiment results.

Project (# of files) Degree Closeness Betweenness Eigenvector Combined

flask
(71)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.577 0.294 0.56 0.274 0.667 0.314 0.577 0.294 0.833 0.196

90th 0.611 0.216 0.701 0.235 0.625 0.196 0.625 0.196 0.833 0.098

95th 0.875 0.137 0.667 0.118 0.75 0.118 0.625 0.098 1 0.02

requests
(35)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.231 0.313 0.565 0.271 0.455 0.208 0.8 0.167 0.75 0.063

90th 0.706 0.25 0.733 0.229 0.6 0.187 0.187 0.187 0.75 0.063

95th 0.667 0.125 0.667 0.125 0.75 0.125 0.875 0.146 1 0.063

scrappy
(291)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.318 0.246 0.302 0.228 0.289 0.193 0.342 0.228 0.471 0.140

90th 0.48 0.211 0.44 0.193 0.36 0.158 0.343 0.211 0.5 0.105

95th 0.462 0.105 0.385 0.088 0.461 0.105 0.538 0.123 0.8 0.070

tornado
(115)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.591 0.342 0.591 0.342 0.524 0.289 0.619 0.342 0.75 0.237

90th 0.75 0.316 0.667 0.316 0.5 0.184 0.714 0.263 0.667 0.105

95th 0.875 0.184 0.857 0.158 0.714 0.132 0.857 0.158 0.667 0.053

pipenv
(823)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.192 0.111 0.2 0.118 0.268 0.192 0.19 0.111 0.192 0.111

90th 0.75 0.044 0.18 0.101 0.268 0.192 0.188 0.198 0.192 0.106

95th 0.192 0.111 0.23 0.121 0.667 0.118 0.176 0.102 0.75 0.044

Zero-Net
(311)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.364 0.355 0.314 0.244 0.371 0.289 0.343 0.267 0.5 0.111

90th 0.524 0.244 0.385 0.222 0.417 0.222 0.333 0.2 0.75 0.067

95th 0.583 0.155 0.417 0.111 0.5 0.133 0.333 0.2 0.667 0.044

(continued)

Can Commit Change History Reveal Potential Fault Prone Classes? 277

We also discovered that the recall rate of the proposed method is very low across all
projects and experiment setting. In general, in works related to fault detection, precision
of the proposed method is more important than recall because we will always like to
strive for less False Positives (mistakenly identify a class as being buggy but in fact
they are not) rather than having more False Negatives (missed identifying a class as
being not buggy but in fact they are bug or error prone).

To put it in the context of software development and maintenance, getting a False
Positive is very costly because if a class is being flagged as being faulty, developers or
maintainers will need to diagnose and re-test the flagged component rigorously in order
to pinpoint the issue. If it is in fact a false alarm, it will be extremely costly in term of
time and monetary value. On the other hand, a False Negative can be less costly if there
are already some basic quality assurance in place such as testing, issue tracking, and
manual inspection.

We position the proposed approach as an alternative way to help developers to
uncover bug prone classes that are otherwise hidden from the developers. Hence,
precision is more important in this context. Classes that are obviously bug or error
prone will be able to pick up easily by experienced software developers and testers.
Hence, we argue that having a low recall is acceptable in this context when compared
to having a low precision score.

Table 3. (continued)

Project (# of files) Degree Closeness Betweenness Eigenvector Combined

Zappa
(34)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.996 0.317 0.996 0.317 0.978 0.172 0.998 0.317 0.993 0.085

90th 0.996 0.317 0.987 0.085 0.973 0.101 0.998 0.317 0.993 0.085

95th 1 0.075 0.993 0.075 0.973 0.098 1 0.075 1 0.075

ExoPlayer
(813)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.133 0.218 0.13 0.218 0.213 0.336 0.126 0.2 0.231 0.136

90th 0.146 0.154 0.146 0.154 0.25 0.264 0.112 0.118 0.305 0.1

95th 0.147 0.082 0.172 0.09 0.327 0.173 0.172 0.091 0.533 0.073

keras
(184)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.297 0.25 0.316 0.273 0.278 0.227 0.278 0.227 0.35 0.159

90th 0.375 0.204 0.375 0.205 0.25 0.136 0.417 0.227 0.308 0.091

95th 0.5 0.136 0.462 0.136 0.333 0.091 0.5 0.136 0.5 0.091

fastjson
(2422)

Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.106 0.61 0.107 0.61 0.116 0.658 0.106 0.61 0.233 0.585

90th 0.115 0.488 0.157 0.61 0.147 0.561 0.160 0.61 0.265 0.537

95th 0.218 0.415 0.269 0.512 0.218 0.415 0.21 0.415 0.424 0.341

Average Percentile Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

80th 0.381 0.306 0.408 0.289 0.416 0.288 0.438 0.276 0.530 0.182

90th 0.545 0.244 0.477 0.235 0.439 0.220 0.408 0.253 0.556 0.136

95th 0.552 0.152 0.512 0.153 0.569 0.151 0.529 0.154 0.734 0.087

278 C. Y. Chong and S. P. Lee

5 Conclusion and Future Work

While a lot of research were conducted in both software-based network analysis and
software change coupling metrics, we found that there is a lack of studies that
attempted to combine both approaches to identify potential fault prone software
components. In this paper, we have proposed a novel way to model commit change-
based weighted complex network based on historical data mined from GitHub. Ten
open-source projects were chosen to evaluate our proposed approach. In order to
identify potential fault prone classes, we decided to use three well-established graph
theory metrics that have been proven to correlate with the structural stability of soft-
ware components such as the degree centrality, closeness centrality, betweenness
centrality, and eigenvector centrality. To validate the accuracy of our proposed
approach, create our ground truth (classes that are indeed recognized as faulty by users
or developers) by using a simple text parser to capture the name of classes that were
mentioned in the published issue report on GitHub. When the chosen centrality metrics
were used on its own to identify fault prone classes, the proposed approach achieved
mediocre precision and recall. It is when all the chosen metrics were combined and the
condition to identify fault prone classes is more stringent (95th percentile), the precision
and recall of the proposed approach improved significantly. Although we had achieved
reasonably good precision score when combining all centrality metrics, recall is
mediocre across all experiment setting. The calculation of precision and recall relies
heavily on the issue log (used as ground truth) found in each repository. If the project
community is not active in reporting bugs or errors, it might affect the precision of the
proposed method.

As part of the future work, we plan to expand the proposed approach by utilizing
more graph theory metrics such in order to improve the richness of the graph theory
analysis results. With the aid of more graph metrics, we can then experiment the
proposed approach on larger-scale open-source or commercial software systems.
Besides that, it is also worth investigating if there are any specific centrality metric that
is more well-suited to be used to identify fault prone classes on a specific domain of
software project.

Acknowledgement. This work was carried out within the framework of the research project
FP001-2016 under the Fundamental Research Grant Scheme provided by Ministry of Higher
Education, Malaysia.

References

1. Ma, Y.T., He, K.Q., Li, B., Liu, J., Zhou, X.Y.: A hybrid set of complexity metrics for large-
scale object-oriented software systems. J. Comput. Sci. Technol. 25, 1184–1201 (2010)

2. Concas, G., Marchesi, M., Murgia, A., Tonelli, R., Turnu, I.: On the Distribution of Bugs in
the Eclipse System. IEEE T Softw. Eng. 37, 872–877 (2011)

3. Turnu, I., Concas, G., Marchesi, M., Tonelli, R.: The fractal dimension of software networks
as a global quality metric. Inform. Sci. 245, 290–303 (2013)

Can Commit Change History Reveal Potential Fault Prone Classes? 279

4. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency
graphs. In: Proceedings of the 30th International Conference on Software Engineering,
pp. 531–540. ACM (2008)

5. Hyland-Wood, D., Carrington, D., Kaplan, S.: Scale-free nature of java software package,
class and method collaboration graphs. In: Proceedings of the 5th International Symposium
on Empirical Software Engineering, Rio de Janeiro, Brasil (2006)

6. Chong, C.Y., Lee, S.P.: Analyzing maintainability and reliability of object-oriented software
using weighted complex network. J. Syst. Softw. 110, 28–53 (2015)

7. Chong, C.Y., Lee, S.P.: Automatic clustering constraints derivation from object-oriented
software using weighted complex network with graph theory analysis. J. Syst. Softw. 133,
28–53 (2017)

8. Myers, C.R.: Software systems as complex networks: structure, function, and evolvability of
software collaboration graphs. Phys. Rev. E 68, 046116 (2003)

9. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.: An in-
depth study of the promises and perils of mining GitHub. Empirical Softw. Eng. 21(5),
2035–2071 (2016)

10. Begel, A., Bosch, J., Storey, M.A.: Social networking meets software development:
perspectives from GitHub, MSDN, stack exchange, and TopCoder. Softw. IEEE 30, 52–66
(2013)

11. Gousios, G., Pinzger, M., Deursen, A.V.: An exploratory study of the pull-based software
development model. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 345–355. ACM, Hyderabad (2014)

12. Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B.: Change bursts as defect
predictors. In: 2010 IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE), pp. 309–318. IEEE (2010)

13. Chong, C.Y., Lee, S.P.: A commit change-based weighted complex network approach to
identify potential fault prone classes. In: 13th International Conference on Software
Technologies, pp. 471–482 (2018)

14. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry in OO programs.
Commun. ACM 48, 99–103 (2005)

15. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-laws in a large object-oriented
software system. IEEE Trans. Softw. Eng. 33, 687–708 (2007)

16. Louridas, P., Spinellis, D., Vlachos, V.: Power laws in software. ACM Trans. Softw. Eng.
Methodol. 18, 1–26 (2008)

17. Pang, T.Y., Maslov, S.: Universal distribution of component frequencies in biological and
technological systems. Proc. Nat. Acad. Sci. 110(15), 6235–6239 (2013)

18. Baxter, G., et al.: Understanding the shape of Java software. In: Sigplan Notices, vol. 41,
pp. 397–412 (2006)

19. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source software.
arXiv preprint arXiv:cs/0411096 (2004)

20. Oyetoyan, T.D., Falleri, J.R., Dietrich, J., Jezek, K.: Circular dependencies and change-
proneness: an empirical study. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 241–250 (2015)

21. Valverde, S., Solé, R.V.: Hierarchical small worlds in software architecture. arXiv preprint
arXiv:cond-mat/0307278 (2003)

22. Zhang, B., Huang, G., Zheng, Z., Ren, J., Hu, C.: Approach to mine the modularity of
software network based on the most vital nodes. IEEE Access (2018)

23. Muthukumaran, K., Choudhary, A., Murthy, N.L.B.: Mining GitHub for novel change
metrics to predict buggy files in software systems. In: 2015 International Conference on
Computational Intelligence and Networks, pp. 15–20 (2015)

280 C. Y. Chong and S. P. Lee

http://arxiv.org/abs/cs/0411096
http://arxiv.org/abs/cond-mat/0307278

24. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceedings of the
31st International Conference on Software Engineering, pp. 78–88. IEEE Computer Society
(2009)

25. Wiese, I.S., Kuroda, R.T., Re, R., Oliva, G.A., Gerosa, M.A.: An empirical study of the
relation between strong change coupling and defects using history and social metrics in the
apache aries project. In: Damiani, E., Frati, F., Riehle, D., Wasserman, Anthony I. (eds.)
OSS 2015. IAICT, vol. 451, pp. 3–12. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-17837-0_1

26. Ambros, M.D., Lanza, M., Robbes, R.: On the relationship between change coupling and
software defects. In: 2009 16th Working Conference on Reverse Engineering, pp. 135–144
(2009)

27. Ajienka, N., Capiluppi, A.: Understanding the interplay between the logical and structural
coupling of software classes. J. Syst. Softw. 134, 120–137 (2017)

28. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide
software changes. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 563–572. IEEE Computer Society (2004)

29. Kagdi, H., Gethers, M., Poshyvanyk, D.: Integrating conceptual and logical couplings for
change impact analysis in software. Empirical Softw. Eng. 18, 933–969 (2013)

30. Yang, X., Lo, D., Xia, X., Sun, J.: TLEL: a two-layer ensemble learning approach for just-
in-time defect prediction. Inf. Softw. Technol. 87, 206–220 (2017)

31. Xia, X., Lo, D., Pan, S.J., Nagappan, N., Wang, X.: HYDRA: massively compositional
model for cross-project defect prediction. IEEE T. Softw. Eng. 42, 977–998 (2016)

32. Huang, Q., Xia, X., Lo, D.: Supervised vs unsupervised models: a holistic look at effort-
aware just-in-time defect prediction. In: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 159–170 (2017)

33. Guerrouj, L., et al.: Investigating the relation between lexical smells and change-and fault-
proneness: an empirical study. Softw. Qual. J. 25, 641–670 (2017)

34. Arnaoudova, V., Di Penta, M., Antoniol, G.: Linguistic antipatterns: what they are and how
developers perceive them. Empirical Softw. Eng. 21, 104–158 (2016)

35. Chong, C.Y.: 01 January 2019. https://github.com/chongchunyong/Commit-Change-based-
WCN

Can Commit Change History Reveal Potential Fault Prone Classes? 281

http://dx.doi.org/10.1007/978-3-319-17837-0_1
http://dx.doi.org/10.1007/978-3-319-17837-0_1
https://github.com/chongchunyong/Commit-Change-based-WCN
https://github.com/chongchunyong/Commit-Change-based-WCN

An Agent-Based Planning Method
for Distributed Task Allocation

Dhouha Ben Noureddine1,2(B), Atef Gharbi1, and Samir Ben Ahmed2

1 LISI, National Institute of Applied Science and Technology, INSAT,
University of Carthage, Tunis, Tunisia

dhouha.bennoureddine@gmail.com, atef.elgharbi@gmail.com
2 FST, University of El Manar, Tunis, Tunisia

samir.benahmed@fst.utm.tn

Abstract. In multi-agent systems, agents should socially cooperate
with their neighboring agents in order to solve task allocation problem in
open and dynamic network environments. This paper proposes an agent-
based architecture to handle different tasks; in particular, we focus on
planning and distributed task allocation. In the proposed approach, each
agent uses the fuzzy logic technique to select the alternative plans. We
also propose an efficient task allocation algorithm that takes into con-
sideration agent architectures and allows neighboring agents to help to
perform a task as well as the indirectly related agents in the system. We
illustrate our line of thought with a Benchmark Production System used
as a running example in order to explain better our contribution. A set of
experiments was conducted to demonstrate the efficiency of our planning
approach and the performance of our distributed task allocation method.

Keywords: Multi-agent system · Software architecture ·
Distributed task allocation · Planning · Fuzzy logic

1 Introduction

Nowadays, task allocation in Multi-Agent System (MAS) is a noteworthy
research issue. Task allocation problem can be defined as that when an agent
has a task which it cannot attain independently, the agent then tries to find
other agents which contain the proper resources, and assigns the task or part
of the task, to those agents. That’s why, they need to be cooperative with their
neighboring agents to process tasks and accomplish their objectives. The social
cooperation is a crucial challenge in the software engineering fields, especially
in the distributed artificial intelligence and MAS [5]. This challenge developed
with the progress of the applications, e.g. in wireless ad-hoc networks [6], service-
oriented MAS [7], multi-robot system in healthcare facilities [8], file sharing in
P2P systems [9], social networks [10], etc. So, cooperation can provide apprecia-
ble convenience for these applications by promoting joint goals.

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 282–306, 2019.
https://doi.org/10.1007/978-3-030-29157-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_13

An Agent-Based Planning Method for Distributed Task Allocation 283

More and more attention has been paid to distributed task allocation
approaches. Early researches used centralized approaches (such in [17]) to gener-
ate a plan for cooperating all the agents by using a central server able to gather
the whole system information. This type of approaches can be a proficient solu-
tion in a small network because the central planner has a global view of the
whole system and it affects the appropriate tasks to the agents. In such case,
communication overhead could be decreased during allocation processes. On the
flip side, it also has important disadvantages. First, in some systems, it is hard to
have such a central controller. Second, when the central planner is out of order
or cracked by some attackers task allocation will endure a major inconvenience
in this system.

Other researches pointed out the distributed task allocation approaches
(e.g. [15]) as a solution to avoid the risks of deficiencies of the centralized
approaches. The distributed task allocation approaches are widely used for inter-
active MAS, semantic web and grid technologies. However, the decentralized
approaches are more scalable and robust but the communication overhead rises.

In this paper, we propose an agent-based architecture to manage tasks and
control embedded systems at run-time. We firstly, introduce multi-agent plan-
ning in which each agent uses the fuzzy logic technique to select plans. The
originality in this approach is that our agents evaluate plans based on their goal
achievement satisfaction, which is represented as degrees of membership for each
individual agent, their aggregate then represents the satisfaction of the overall
goal. Proving that our approach performs better than the central planning pro-
cesses in other systems. We then propose the distributed task allocation solution
which is allowing agents to request help from neighbors, this would be done by
allocating tasks to different agents who may be able each, to perform different
subsets of those tasks. We use to highlight the performance of our solution using
the provision of a benchmarking scenario.

The remainder of this paper is organized as follows. Section 2 provides some
current related research in this field. Section 3 introduces the benchmark produc-
tion system used in our approach. After that, in Sect. 4 a software architecture
of MAS will be depicted in detail. Section 5 defines our planning method and
demonstrates the simulation and analysis about the quality and performance of
our method. Then, a distributed task allocation approach is illustrated as well
as its related experiments in Sect. 6. Finally, we discuss and conclude our work
in Sect. 7.

2 Related Work

In the literature, the proposed architectures solving the task allocation can be
classified into centralized or decentralized. [17] proposed a centralized approach,
therefore, they supposed that there is a central planner to allocate tasks to
agents. Their main goal was to find a solution with a small team cost and each
objective to be allocated to the correct number of various agents. Despite the
centralized approaches have the main advantage of computing a global plan

284 D. Ben Noureddine et al.

dependent on all accessible data, their main drawback, however, is the fact that
being a single point of failure.

The decentralized architecture dodges this issue, there is no centralized con-
troller and rather the task allocation process was contributed by all agents.
The distributed task allocation approach additionally has the benefit of scala-
bility and robustness. In the multi-agent network, the task allocation remains
a complex problem. Many parameters have to be taken into accounts, such as
communication protocols, resource sharing, synchronization or the evolution of
the priorities assigned to each task, etc. These different parameters are posi-
tioned as strong constraints when we consider that they evolve as and when the
missions unfold. This raises the question of the effectiveness of a planning or
the relevance of a dynamic allocation solution without prior planning. We will
send the interested reader back to [15] and [16] for a categorization around dif-
ferent axes such as self-organization, the formalization of coordination and the
composition of teams of agents.

Some researchers [18–20] proposed other task allocation approaches in multi-
agent network environments including the negotiation-based approaches. [20]
introduced a method with uncertain negotiation deadlines. Thereafter, [22] pro-
posed an approach based on negotiation for task allocation by taking into account
the uncertain factors such as the deadline and the reserve price. Nevertheless,
the negotiation for task allocation in most open, dynamic and distributed envi-
ronments, practically, takes into consideration more than two uncertain factors.
In [23], the authors expanded more uncertainty factors, like resource competi-
tion, deadline, reserve price and cost under the assumption of a global view of
each resource consumer.

In [21], the authors developed a market-based approach for allocation tasks
in the environment that is in reality an approach based on multi-resource negoti-
ation. In their method, the consumer gets the required resources through negoti-
ating with providers for each of the needed resources independently. Against our
approach, the separate negotiations always result in a large number of Manager
being selected to finish a task, and this may result in communication overload
among the chosen managers.

[14] proposed a Greedy Distributed Task allocation Protocol (GDAP) in
social networks. There are a few angles at which GDAP is like our approach, e.g.,
there is no central controller in GDAP, which implies every agent just has local
view and agents are connected as a social network which is similar to the one
proposed in our approach. However, this protocol just enables neighboring agents
to help with a task which may result in a high probability of abandon of tasks
when neighbors can’t provide sufficient and adequate resources. In this paper,
our approach [4] is proposed which allows agents to allocate tasks not only to
their neighbors yet, in addition, to submit incomplete tasks to their neighbors
for reallocation. Along these lines, the agents can have more opportunities to
accomplish a solution to their tasks. Given the characteristics of existing multi-
agent task allocation approaches, there remains an important opportunity to
develop cost-effective and communication economical decentralized methods to

An Agent-Based Planning Method for Distributed Task Allocation 285

task allocation in the multi-agent systems. Although additional assumptions
like partial observability, and heterogeneity, can additional make difficult this
problem. In this paper, we propose a decentralized planning algorithm [4] to the
following hypothesis: (i) there are no environmental uncertainties, and (ii) each
agent has a full observation of all tasks and the state of other agents.

A combinatorial auction-based algorithm CBBA [24] proposed to solve task
allocation problem. This algorithm used combinatorial auctions, where groups of
tasks are produced. CBBA has displayed better execution than single-item auc-
tions and has created good results against optimal centralized approaches [25].
A second combinatorial auction-based algorithm was developed by [27] similar
to CBBA. However, the baseline of this algorithm performs, empirically, better
than the baseline CBBA algorithm [26], with the approach of [27] showing a
greatly improved achievement rate with different numbers of tasks and agents,
and different network topologies. However, the papers mentioned do not examine
handling of uncertainty of the method of [27], as well as CBBA’s.

3 Benchmark Production System

We explain our approach using a simple current example called RARM [11] which
is implemented in our previous work [1,2,4]. The RARM presented in Fig. 1 is
composed of two inputs and one output conveyors, a servicing robotic agent and
a processing-assembling center. Workpieces to be treated come irregularly one
by one. The workpieces of type A are delivered via conveyor C1 and workpieces
of type B via conveyor C2. Only one workpiece can be on the input conveyor.
A robotic agent R transfers workpieces one after the other to the processing
center. The next workpiece can be put on the input conveyor when it has been
emptied by the robotic agent. The technology of production requires that firstly
an A-workpiece is inserted into the center M and treated, then a B-workpiece is
added to the center, and finally the two workpieces are assembled. Afterwards,
the assembled product is taken by the robot and put above the C3 conveyor of
output. The assembled product can be transferred on C3 only when the output
conveyor is empty and ready to receive the next produced one.

3.1 Sensing Input

Formally, the statement of benchmark production system is defined like this:
RARM = {position, A-workpiece, B-workpiece, AB-workpiece, conveyor, states,
processing center, robotic agent} where each variable is defined by his values as
follows:

– A set of positions {p1, p2, . . . }: the variable position is used to localize the
workpiece A, B or AB and p1, p2, ..., pi present the values of the variable
position;

– A set of robotic agents {r1, r2, . . . }: the variable robotic agent transfers a
workpiece one after one to be processed and r1, r2, ... ri present the values of
the variable robotic agent;

286 D. Ben Noureddine et al.

A

Conveyor C1

ABConveyor C3

B

Conveyor C2

Position p1

Position p2

Position p3 Position p4

Posit
ion

p5

Posit
ion

 p6

Robot r
Processing unit

M

Fig. 1. The benchmark production system RARM.

– A set of workpieces of type A {a1, a2, . . . }: a1, a2, ..., ai present the values of
the variable A-workpiece;

– A set of workpieces of type B {b1, b2, . . . }: b1, b2, ..., bi present the values of
the variable B-workpiece;

– A set of workpieces of type AB {ab1, ab2, . . . }: ab1, ab2, ..., abi present the
values of the variable AB-workpiece;

– A set of conveyors {C1i, C2i, C3i}: the variable conveyor and his values C1i

(resp. C2i, C3i) is responsible for transferring set of workpieces of type A
(resp B, AB);

– A set of processing center M {M1, M2, . . . }: first one A-workpiece is inserted
into the variable processing center M and processed, then one B-workpiece
is added into the center M , and last both workpieces are assembled.

The set of the variable states is {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, s13, s14, s15, s16} where:

– s0 (resp. s6, s15) is meaning a workpiece of type A (resp. B, AB) is at position
p1 (resp. p3, p5);

– s1 (resp. s7, s16) is meaning a workpiece of type A (resp. B, AB) is at position
p2 (resp. p4, p6);

– s2 (resp. s8, s14) is meaning a workpiece of type A (resp. B, AB) is taken by
the robotic agent r near to the position p2 (resp. p4, p5) of the conveyor C1
(resp. C2, C3);

– s3 (resp. s9, s13) is meaning a workpiece of type A (resp. B, AB) is taken by
the robotic agent r near to the processing unit;

– s4 (resp. s10, s12) is meaning a workpiece of type A (resp. B, AB) is put in
the processing unit M .

An Agent-Based Planning Method for Distributed Task Allocation 287

The robot-like agent connects directly to the environment via sensors. So,
these sensing inputs present the observations of RARM in our approach. It is
defined as follows:

1. Is there an A-workpiece at the extreme end of the position p1? (sens1)
2. Is C1 in its extreme left position? (sens2)
3. Is C1 in its extreme right position? (sens3)
4. Is there an A-workpiece at the unit M? (sens4)
5. Is C2 in its extreme left position? (sens5)
6. Is C2 in its extreme right position? (sens6)
7. Is there a B-workpiece at the extreme end of the position p3? (sens7)
8. Is there a B-workpiece at the unit M? (sens8)
9. Is C3 in its extreme left position? (sens9)

10. Is C3 in its extreme right position? (sens10)
11. Is there a AB-workpiece at the unit M? (sens11)
12. Is the robotic agent arm in its lower position? (sens12)
13. Is the robotic agent arm in its higher position? (sens13)

3.2 Action Output

The system can be controlled using the following actuators:

1. move the conveyor C1 (act1);
2. move the conveyor C2 (act2);
3. move the conveyor C3 (act3);
4. rotate robotic agent (act4);
5. move elevating the robotic agent arm vertically (act5);
6. pick up and drop a piece with the robotic agent arm (act6);
7. treat the workpiece (act7);
8. assembly two pieces (act8).

The set of actions is {C1 left, C1 right, R1 left, R1 right, C2 left,
C2 right, R2 left, R2 right, C3 left, C3 right, R3 left, R3 right, take1,
take2, take3, load1, load2, load3, put1, put2, put3, process1, process2} where:

– C1 left (resp. C1 right) is meaning a workpiece of type A is moving to the
left of conveyor C1 from position p1 (resp. p2) to position p2 (resp. p1);

– C2 left (resp. C2 right) is meaning a workpiece of type B is moving to the
left of conveyor C2 from position p3 (resp. p4) to position p4 (resp. p3);

– C3 left (resp. C3 right) is meaning a workpiece of type AB is moving to the
left of conveyor C3 from position p5 (resp. p6) to position p6 (resp. p5);

– R1 left (resp. R1 right) is meaning the robotic agent taking a workpiece
of type A is moving to the left (resp. to the right) from the position p2 of
conveyor C1 (resp. the processing unit M) to the processing unit M (resp.
the position p2 of conveyor C1);

288 D. Ben Noureddine et al.

– R2 left (resp. R2 right) is meaning the robotic agent taking a workpiece
of type B is moving to the left (resp. to the right) from the position p4 of
conveyor C2 (resp. the processing unit M) to the processing unit M (resp.
the position p4 of conveyor C2);

– R3 left (resp. R3 right) is meaning the robotic agent taking a workpiece of
type AB is moving to the left (resp. to the right) from the the processing
unit M (resp. position p2 of conveyor C3) to the position p2 of conveyor C3)
(resp. the processing unit M);

– take1 (resp. take2, take3) is meaning the operation of taking a workpiece of
type A (resp. B, AB);

– load1 (resp. load2,load3) is meaning the fact of loading a workpiece of type
A (resp. B, AB);

– put1 (resp. put2, put3) is meaning the operation of putting a workpiece of
type A (resp. B, AB);

– process1 (resp. process2) is meaning the fact of processing a workpiece of
type A (resp. B).

4 Agent Architecture

We propose an agent architecture to control embedded systems at runtime. The
agent checks the evolution of the environment and reacts when new events occur.

4.1 Formal Specification

We use the state machine to define the dynamic behavior of an intelligent agent
controlling the planning. In the state machine, states, inputs and outputs are
enumerated. The state machine can be defined as a graph of states and transi-
tions. It treats many events that may execute by detecting them and responding
to each one appropriately. We describe a state machine SMi as follows:

SMi = (Si, Si0, Ii, Oi, P recondi, Postcondi, ti)

– Si = {si1, .., sip}: the set of states;
– Si0 the initial state;
– Ii = {Ii1, .., Iim}: the input events;
– Oi = {Oi1, .., Oik}: the output events;
– Precondi: the set of conditions to be verified before the activation of a state;
– Postcondi: the set of conditions to be verified once a state is activated;
– ti : Si × Ii → Si: the transition function.

Figure 2 shows a conceptual model for a state machine where we define the
classes State machine, State, Transition, Event and Condition. The class State
Machine composed by the classes State and Transition. The class Transition is
doubly associated linked to the class State as long as the transition is considered
as an association between two states. Each transition has an event that is consid-
ered as a trigger to fire it and a set of conditions to be verified. This association
between the class Transition and the two classes Event and Condition exists
and it’s modeled by the aggregation relation.

An Agent-Based Planning Method for Distributed Task Allocation 289

State machine

listStates
initialState
inputEvent
outputEvent

+ nextState ()
+ setStates ()
+ setInputEvt ()
+ setOutputEvt ()
+ setInitialState ()
+ addState ()
+ removeState ()
+ connectState ()
+ disconnectState ()

State

stateID
listEvents
listConditions

+ setInputEvt ()
+ setOutputEvt ()
+ setInputCond ()
+ setOutputCond ()
+ addEvent ()
+ removeEvent ()
+ addCondition()
+ removeCond ()

Event

eventID
immediate

+ setDescription ()
+ getDescription ()

Condition

conditionID

+ setDescription ()
+ getDescription ()

*1

Transition

transitionID
eventID
conditionID
initialStateID
targetStateID

+ setEvent ()
+ setCondition ()
+ addEvent ()
+ removeEvent ()
+ addCondition()
+ entry ()
+ exit()

*

*

*

*

1

1

1

1

from

to

Fig. 2. The state machine model.

4.2 Conceptual Architecture for MAS

A conceptual architecture was proposed for MAS. It consists of four parts: (i)
the Event Queue which saves different input events that may happen in the
system, (ii) the Software Agent which reads an input from the event queue and
reacts accordingly, (iii) the set of state machines, and (iv) each state represents
a specific information about the system.

The agent using state machine determines the new state of the system to
perform depending on the event inputs and the conditions to be satisfied. This
approach provides coming characteristics: (i) The design of the agent is general
enough to adapt to different sorts of embedded-software based application. Con-
sequently, the agent is uncoupled from the application and from its components.
(ii) The agent is independent of the state machine: it grants to change the struc-
ture of the state machine without changing the implementation of the agent. This
guarantees the agent keeps on working accurately even if there should arise an
occurrence of the modification of state machines.

In the following algorithm, the symbol Q is an event queue which holds
incoming event instances, ev refers to an event input, Si represents a State
Machine, and si,j a state related to a State Machine Si. The internal behavior
of the agent is defined as follow:

1. the agent reads the first event ev from the queue Q;
2. searches from the top to the bottom in the different state machines;
3. within the state machine SMi, the agent verifies if ev is considered as an

event input to the current state si,j (i.e. ev ∈ I related to si,j). In this case,
the agent searches the states considered as successor for the state si,j (states
in the same state machine SMi or in another state machine SMl);

4. the agent executes the operations related to the different states;
5. repeats the same steps (1–4) until no more event exists in the queue to be

treated.

290 D. Ben Noureddine et al.

First, the agent evaluates the pre-condition of the state si,j . If it is false, then
the agent exits, else the agent determines the list of tasks to be executed. Then,
it evaluates the post-condition of the state si,j and generates errors whenever it
is false.

5 Multi-agent Planning

We are interested in the use of reflection capabilities and multi-agent interaction
protocols for the task allocation. If we place ourselves in an open and loosely
coupled framework, it is difficult for a set of agents to combine their actions to
reach a goal that it be explicitly described at the system level or implicitly from
the local goals of agents.

We will propose an approach to deal with this problem. It suggests a decen-
tralized algorithm for task allocation in complex MAS based on multi-agent
planning in which each agent uses the fuzzy logic technique to select plans. The
originality in this approach is that our agents evaluate plans based on their goal
achievement satisfaction, which is represented as membership degrees for each
individual agent, their aggregate then represents the satisfaction of the over-
all aim. This approach successes to make the collaboration and communication
between agents superb and it performs better than the central planning pro-
cesses in other systems. As it’s known the task allocation problem in teams is
one of optimally assigning tasks in a team plan to agents to maximize overall
team utility.

In this approach, our agents use their introspection and intercession abilities
to indicate in runtime what they can do, what they cannot do and why? And
change their actions so that they are adaptable.

5.1 Policy

The most approaches concerning planning use a single-agent procedure, in which
one agent executes the entire search process, developing the complete action
plan to do the task at hand. We are inspired by these approaches to propose our
contribution, in which every agent belonging to our system can make a decision
by following a simple policy. This policy aids the agent to select a suitable plan
of actions to carry out, which led us to solve many issues regarding the openness
of the MASs and more precisely the task allocation problems.

We use conjunction operators for fuzzy relationship in [2,4], to make the agent
expresses more objectively the decision about the evaluation of a plan (list of
events). It is very feasible to apply a membership function in fuzzy mathematics
to calculate and assess the satisfaction degree of the plan. So, we consider G
the problem goal, it is the union of individual goals of all agents denoted by gi,
which are flexible propositions.

G = ∪i=1..ngi (1)

An Agent-Based Planning Method for Distributed Task Allocation 291

These goals can be accomplished with a satisfaction degree. The form of a
flexible proposition is (ρ φ1, φ2, ..., φj κi), where φi ∈ φ and κi are elements of
totally ordered set, K, which presents the truth degree of the proposition. K is
composed of a finite number of membership degrees, k↑, k1, ..., k↓, where k↑ ∈
K and k↓ ∈ K, representing respectively total falsehood and total truth. When
dealing with a flexible proposition with a truth value of k↑ or k↓, the boolean style
¬ (ρ φ1, φ2, ..., φj) or (ρ φ1, φ2, ..., φj) is adopted. The flexible proposition [12] is
described by a fuzzy relation, R, which is defined as a membership function μR(.):
Φ1*Φ2*...*Φj → K, where Φ1*Φ2*...*Φj is the Cartesian product of the subsets
of Φ in the current proposition state. Especially, if each agent accomplishes its
individual objectives with a specific satisfaction degree, the public goals of the
problem are achieved. The satisfaction degree of a multi-agent flexible planning
problem is characterized as the conjunction of the satisfaction degrees of each
action and goal.

μG = ∧i=1..nμR(i) (2)

The function μG [4] signifies how well a given plan is satisfying and can
be considered as a value between 0 and 1, 1 represents totally satisfied and 0
represents not satisfied by any means. In our approach, each plan alternative
is related to a satisfaction degree. That implies each value is the metric that
gives the way to choose a plan among various alternatives. Having the improved
mean values calculated, the alternative plan alongside these values are sent to
the current state machine. The alternative plan, the need, the objective, and the
corresponding values reach the decision-making mechanism first. These values
are used by the decision-making mechanism to compare the satisfaction degrees
for each alternative plan to find the most satisfactory and acceptable one. The
one with the highest satisfaction degree is considered as the most satisfactory
plan alternative.

Running Example
Giving (S, A, Gs) where S = {si|i = 1 ... n} is a set of states, A = {Ci left,
Ci right, Ri left, Ri right, takei, loadi, puti, processi|i = 1 ... n} is a set of
actions, and Gs is the problem goal. if s0 and g = {workpiece in the processing
unit}. Let:
– π0: (C2 left, take2, load2, process2)
– π1: (load1, put1, process1, C1 right)
– π2: (C1 left, take1, load1, put1, process1, C1 right)

We solve multi-agent planning problems by distributed flexible constraint
satisfaction problem (CSP) technique [13] and make a trade-off between plan
length and the compromise decisions made. The quality of a plan is measured
by its satisfaction degree and its length, where the shorter of two plans is better
under the same satisfaction degrees. In this example, the definitions of K and L
are: K = {k↑, k1, k2, k↓}, L = {l↑, l1, l2, l↓}.

The multi-agent planning problem is helpful to robot-like agents like in this
example. If any actions ∈ {Ci left, Ci right, Ri left, Ri right, takei, loadi,

292 D. Ben Noureddine et al.

puti, processi|i = 2 ... n} will damage the plan, leading to a satisfaction degree
l2, any plan not beginning with C1 left will result in a satisfaction degree l2
because it is not applicable to s0, and when any action is applicable to s0 and
the resulting state is a goal state then the result will be a satisfaction l1. We
obtain π0 which is a plan of 4 steps with satisfaction l2 as follows:

– C2 left has a satisfaction degree l2
– take2 has a satisfaction degree l2
– load2 has a satisfaction degree l2
– process2 has a satisfaction degree l2

In addition, we obtain π2 which is a plan of 6 steps with satisfaction l↑ as
follows:

– C1 left has a satisfaction degree l↑
– take1 has a satisfaction degree l↑
– load1 has a satisfaction degree l↑
– put1 has a satisfaction degree l↑
– process1 has a satisfaction degree l↑
– C1 right has a satisfaction degree l↑

Then π0 is not a solution because although it is applicable to s0, the resulting
state is not a goal state; π1 is not a solution because it’s not applicable to s0;
π2 is the most appropriate solution.

5.2 Experimental Evaluation

We have evaluated our approach to prove, on the one hand, how our software
agent having distinctive capacities such as it can perform, simulate the behavior
of the agent. On the other hand, to prove how the performance of the robotic
agents was impacted by varying their satisfaction degree and the plan length. In
order to show the feasibility of our approach, we have presented experimental
results on preliminary tests focusing on the analysis of the planning performance
using the satisfaction degree by simulating RARM.

The results obtained when running our architecture were shown in Fig. 3.
Therefore, we have compared their performance on a set of plans for the RARM
state-transitions. Since the second plan of 2 steps with maximum satisfaction
degree l2, the fifth plan of 15 steps with satisfaction l↑. So, it is often possible
to find short, satisfactory plans quickly during the decision-making mechanism.
The quality of a plan is its satisfaction degree combined with its length, where
the shorter of two plans with equivalent satisfaction degrees is better.

These results are demonstrative of the capacity to dynamically treat working
conditions among various conveyors, a service robot and a treating-assembling
center after some time, assumes a basic role in the determination of actions
during the planning. Additionally, the choice of process flexibility was affected by
the making decisions. The breakdown of an individual robotic agent impacts in

An Agent-Based Planning Method for Distributed Task Allocation 293

Fig. 3. The experimental results collected the length of the plan and his satisfaction
degree [4].

the whole team as a result of the satisfaction degree of the plan which selects the
most satisfactory alternative plan depending on the software agent architecture.
At the point when the architecture is tested on the multi-robot system RARM,
there are a few critical functions that have been performed. The related issues
are planning and intelligent decision making.

6 Distributed Task Allocation Approach

To solve the task allocation problem, many researchers have proposed various
methods of single-agent planning. Recently other researchers are interested in
multi-agent planning (including our approach), they hence focus on a set of het-
erogeneous agents that work together to develop a course of action that satisfies
the purpose of the team. Therefore, multi-agent planning defines a social app-
roach to planning by which multiple intelligent entities work together to solve
planning tasks that they are not able to solve by themselves, or to at least
accomplish them better by cooperating [28].

6.1 Problem Definition

The social task allocation problem that will be depicted in this section, it can
be defined as an agent not satisfactory to complete a task by itself and it needs
the collaboration from other agents to achieve an action or service. We denote
A = {a1, ..., am} a set of agents, that require resources to achieve tasks; and
R = {r1, ..., rk} a set of resources types available to A. Each agent a ∈ A controls
a fixed amount of resources for every resource type in R, which is defined by a
resource function: rsc: A × R → N . Moreover, we suppose agents are connected
by a social network as discussed before in [3,4].

294 D. Ben Noureddine et al.

We define T = {t1, t2, ..., tn} a set of needed tasks at such an agent social
network. Each task t ∈ T is then defined by a 3-tuple {u(t), rsc(t), loc(t)}, where
u(t) is the utility gained if task t is accomplished, rsc: T ×R → N is the resource
function that specifies the amount of resources required for the accomplishment
of task t and loc: T → A is the location function that defines the locations (i.e.,
agents) at which the tasks arrive in the social network. An agent a is the location
of a task t, i.e. loc(t) = a, is called this task manager. Each task t ∈ T needs
some specific resources from the agents to complete the task. A task allocation
is defined as the exact assignment of tasks to agents.

A task plan of agent consists of a list of actions to be taken in order. Each
action is an attempt to acquire a particular resource, by asking the agent asso-
ciated with that resource for permission to use the resource. A task agent builds
a plan by maximizing the satisfaction degree described in the Sect. 5. At each
timestep, a task agent performs the action presently prescribed by its plan. It
does this by contacting the agent associated with the targeted resource, and
asking it whether it may take the resource.

Now we formally define the important components of the problem:

– Social network: an agent social network SN = (A,AE) is an undirected
graph, where A is a set of agents and AE is a set of edges connecting two
agents ai and aj significant that it exists a social connection between these
two agents.

– Each agent a ∈ A is composed of 4-tuple {AgentID(a), Neig(a), Resource(a),
State(a)}, where AgentID(a) is the identity of agent a, Neig(a) is a set
indicating the neighbors of agent a, Resource(a) is the resource which agent
a contains, and State(a) demonstrates the state of agent.

– Multi-agent planning problem: we denote π a plan which is described by a
5-tuple {T, P (t), E(t), G, μt}, where T is a set of tasks, P (t) is the set of
action (task) preconditions, E(t) is the set of task effects, G is the problem
goal and μt the satisfaction degree of a multi-agent flexible planning problem
introduced in Sect. 5.

– Task allocation: we consider a set of tasks T = {t1, t2, ..., tn}, a set of
agents A = {a1, ..., am}, a set of plans π = {π1, ..., πm}, and a set of resources
R = {r1, ..., rk} in a social network SN , a task allocation is a mapping φ:
T × A × R × π → SN .

– Three types of agents to control system in our software agent archi-
tecture = {Manager, Participant, Mediator}. Manager is the agent which
requests help for its task, Participant is the agent which accepts and per-
forms the announced task and Mediator is the agent which receives another
commitment of the agent for help to discover participants.

– Three states = {Busy, Committed, Idle}. In a complex system, an agent can
be only in one of the three states at any timestep. When an agent is a Manager
or Participant, the state of that agent is Busy. When an agent is a Mediator,
the agent is in Committed state. An agent in Idle state is available and not
assigned or committed to any task.

– Resource Announce Message: it is a message sent from agent ai to agent aj

for building up neighborhood is 3-tuple described formally as {AgentID(ai),

An Agent-Based Planning Method for Distributed Task Allocation 295

TaskID(tai
), Resource(tai

)}, where AgentID(ai) represents the ID of the
agent ai, TaskID(tai

) is the ID of the task of the agent ai and Resource(tai
)

represents the resource required for the task tai
.

– Propose Message: it is sent from agent aj to agent ai for proposing a task to be
achieving is 4-tuple described formally as {AgentID(aj), Resource(aj), Exe-
cute(aj), Utility(aj)}, where AgentID(aj) represents the identity of the agent
which proposes the resource type it contains which is defined as Resource(aj),
Execute(aj) represents the execution time, and Utility(aj) represents the
utility.

– Contract : it is sent from agent ai to the chosen agent aj after satisfying
with resource proposal of the neighbors aj , the contract is defined as 4-
tuple {AgentID(ai), AgentID(aj), TaskID(tai

), Resource(ai)}, where Agen-
tID(ai) represents the identity of the agent which sends the contract to the
agent with the identity AgentID(aj), TaskID(ti) represents the ID of the
appropriate task to do to Resource(ai).

– Commitment : it is sent from agent ai to the agent aj after selection a par-
tial fulfilled task aj , the commitment is defined as 4-tuple {AgentID(ai),
AgentID(aj), TaskID(tai

), rsc(tai
)1}, where rsc(tai

)1 is a subset of rsc(tai
),

which contains the unfulfilled required resources, AgentID(ai) represents the
identity of the agent which sends the commitment to the agent with the iden-
tity AgentID(aj), TaskID(ti) represents the ID of the partial fulfilled task to
do.

6.2 The Principle of Distributed Task Allocation

As we indicated before, we propose a software agent architecture to manage
the openness and to guarantee a coherent behavior of the MAS, in our case
the multi-robot system. Accordingly, we propose a distributed task allocation
approach, which is allowing agents to request help from neighbors, this would be
done by allocating tasks to different agents who may be able each, to perform
different subsets of tasks. Moreover, each neighbor selects the most appropriate
tasks due to the single-agent planning described in the Sect. 5.

So, we illustrate the following idea: we suppose that Neig(ai) stores only
directly linked neighboring agents of agent ai where at each timestep, these task
neighboring agents perform the action presently prescribed by their most satisfy-
ing tasks. The task neighboring agents do this by contacting the agent associated
with the targeted resource, and asking it whether it may take the resource.

To make our task allocation approach efficient, it is supposed that only an
Idle agent can be assigned to a new task as a Manager or a partial fulfilled task
as a Participant, or Committed to a partial fulfilled task as a Mediator. A partial
fulfilled task is a task, for which a full group is in formation procedure and has
not yet formed. We present our approach which describes an interactive model
between agents detailed as follows:

– When a Manager denoted by aMn ought to apply distributed task allocation,
it then sends resource announce message to all its neighbors
ResAnnounceMess = <AgentID(aMn), TaskID(tMn), Resource(tMn)>;

296 D. Ben Noureddine et al.

– These neighboring agents receiving the ResAnnounceMess sent by aMn,
• If (state(neighboring agent) = Idle) Then the neighboring agent aj

applies the single-agent planning to select the most appropriate tasks
and then sends a propose message
ProposeMess = <AgentID(aj), Resource(aj), Execute(aj), Utility(aj)>.

• Else (state(neighboring agent) = Busy) the neighboring agent aj refuses
and sends the following message RefuseMess = <AgentID(aj)>.

– After answering the resource announce message sent by aMn

• If (aMn is satisfied with many resource proposals of the neighbor) Then
aMn will pick the agent having the highest utility, denoted by aj , and the
state of aj will be changed to Busy. In case the aMn finds many agents
having the highest utility then it chooses the agent aj proposing the least
execution time with a most appropriate task.

• Else the aMn is satisfied with only one resource of the neighbor, then the
aMn will choose this agent without any utility consideration.

Manager aMn sends a contract to the chosen agent aj composed of 4-tuple,
Contract = <AgentID(aMn), AgentID(aj), TaskID(tMn), Resource(aMn)>.

– After obtaining the answer from its different cooperative neighbors, aMn then
compares the available resources from its neighbors, i.e. Resoneig(aMn), with
the resources required for its task tMn, namely rsc(tMn)
(Here, Resoneig(aMn) =

⋃
aj∈Neig(aMn)

Resource(aj)). This comparison
would result in one of the following two cases:
1. If (rsc(tMn) ⊆ Resoneig(a)) Then aMn can form a full group for task

tMn directly with its neighboring agents which they apply the policy of
single-agent planning.

2. Else (Resoneig(a) ⊂ rsc(tMn)), in this condition, aMn can only form a
partial group for task tMn. It then commits the task tMn to one of its
neighbors. The commitment selection is based on the number of neighbors
each neighbor of aMn maintaining. The more neighbors an agent has, the
higher probability that agent could be selected as a Mediator agent to
commit the task tMn.

– After selection, aMn commits its partial fulfilled task tMn to the Mediator
agent, denoted as aMd. A commitment consists of 4-tuple,
Commitment = <AgentID(aMn), AgentID(aMd), TaskID(tMn), rsc(tMn)1 >,
where rsc(tMn)1 contains the unfulfilled required resources. Afterwards, aMd

subtracts 1 from Nmax and attempts to discover the agents with available
resources from its neighbors. If any agents satisfy resource requirement, aMd

will send a response message, RespMess, back to aMn. The agent aMn then
directly makes contract with the agents which satisfy the resource requirement
and have an appropriate plan of tasks. If the neighboring agents of aMd cannot
satisfy the resource requirement either, aMd will commit the partial fulfilled
task tMn to one of its neighbors again.

– This process will continue until all of the resource requirements of task tMn

are satisfied, or the Nmax reaches 0, or there is no more Idle agent among the
neighbors. Both of the last two conditions, i.e. Nmax = 0 and no more Idle

An Agent-Based Planning Method for Distributed Task Allocation 297

agent, demonstrates the failure of task allocation. In these two conditions,
aMn disables the assigned contracts with the Participant s, and the states of
these Participant are reset to Idle.

– When finishing an allocation for one task, the system is restored to its original
status and each agent’s state is reset to Idle.

Figure 4 illustrates briefly a simple example of interaction scenario between
a Manager, Mediator and Participants.

Fig. 4. The interaction process between Manager, Mediator and 4 Participants.

The following algorithm gives the pseudocode of the distributed task alloca-
tion algorithm employed by each Manager, Mediator and Participant.

Algorithm Communicate()

begin

switch (role)

case Manager:

switch (step)

case 0: // send a request to all neighbors Agents

for j = 1 to NbA do

send(ResAnnounceMes(Agents[j]));

step++;

298 D. Ben Noureddine et al.

break;

case 1: // Receive accept/refusal from neighbors Agents reply ← receive();

if (reply = ProposeMess(Agents[j]))

send(Contract(Agents[j]));

Res=Res+Res(Agents[j]);

Nb++;

if (Nb = NbA)

if (Res = Resource)

step ← 4; (execute step)

else

step ++;

break;

case 2: // choose the Mediator Agent

Max ← Neig(Agents[1])

Mediator ← 1

for j = 2 to NbA do

if Neig(Agents[j]) > Max ;

Mediator ← j

send(Commitment(Agents[Mediator]));

step++;

case 3: // wait the response from the Mediator Agent

reply ← receive();

if (reply = ResMess(Agents[Mediator]))

for j = 1 to list(Agents[Mediator]) do

send(Contract(Agents[j]));

Res += Res(list(Agents[Mediator]))

if (Res = Resource)

step ← 4; (execute step)

else

step ← 5; (cancel step)

break;

case 4:

for j = 1 to length(list(Agents)) do

send(Execute(list(Agents[j]));

step ← 0;

role ← participant;

break;

case 5:

step ← 0;

role ← participant;

break;

End switch

case Mediator:

switch (step)

case 0: // wait a message from the Manager Agent

An Agent-Based Planning Method for Distributed Task Allocation 299

reply ← receive();

if (reply = Commitment)

step++;

break;

case 1: // send a request to all neighbors Agents

for j = 1 to NbA do

send(ResAnnounceMes(Agents[j]));

step++;

break;

case 2: // Receive accept/refusal from neighbors Agents reply ← receive();

if (reply = ProposeMess(Agents[j]))

Res=Res+Res(Agents[j]);

Nb++;

if (Nb = NbA)

step ← 3; (inform the manager)

break;

case 3: // inform the manager Agent

send(ResMess(Manager));

break;

End switch

case Participant:

switch (step)

case 0: // wait a message from the Manager Agent

reply ← receive();

if (reply = ResAnnounceMes(Manager))

if (state = IDLE)

send(ProposeMess(Manager));

step++;

else

step ← 0;

break;

case 1: // wait a CONTRACT from the Manager Agent

reply ← receive();

if (reply = CONTRACT(Manager))

state = BUSY

step++;

break;

case 2: // Receive accept/refusal from neighbors Agents reply ← receive();

if (reply = Execute(Manager))

ExcuteTask();

state = IDLE

step← 0;

break;

End switch

end

300 D. Ben Noureddine et al.

6.3 Experiments

We have simulated our distributed task allocation algorithm in different net-
works. To test the efficiency of our algorithm, we compare it with the Greedy Dis-
tributed Allocation Protocol (GDAP) [14]. In this subsection, we briefly define
GDAP. Then, we introduce the experiment environment’ settings. And we depict
in the last sub-subsection the results and the relevant analysis.

GDAP is selected to manage task allocation problem in agent social networks.
It’s described briefly in [14] as follows: All Manager agents a ∈ A try to find
neighboring contractors (the same as Participant in this paper) to help them do
their tasks Ta = {ti ∈ T |loc(ti) = a}. They start offering the most efficient task.
Among all tasks offered, contractors select the one having the highest efficiency
and send a bid to the related manager. A bid consists of all the resources the agent
is able to supply for this task. If sufficient resources have been offered, the manager
selects the required resources and informs all contractors of its choice. When a task
is allocated, or when a manager has received offers from all neighbors but still
cannot satisfy its task, the task is removed from its task list. And this is the main
disadvantage of GDAP that it only relies on neighbors which may cause several
unallocated tasks due to limited resources, that is exactly what our approach tries
to solve.

Experimental Settings. We have been implementing our distributed task allo-
cation algorithm and (GDAP) in JAVA and we have been testing them. There are
two different settings used in our experiment. The first setup has been done in the
Small-world networks in which most neighbors of an agent are also connected to
each other. The second setup has been done in the Scale free networks.

Setting 1: is shown in Table 1. We assume that tasks are distributed uniformly
on each Idle agent and resources are normally allocated to agents. The only
changing variable in this setting is the average number of neighbors. This setting
intends to represent the influence of neighbors’ number on the performance of
both our algorithm and GDAP.

Table 1. The details of Setting 1.

Setting Quantity

Number of agents 40

Number of tasks 20

Number of different resource’s types 5

Average number of resources required by each task 30

Setting 2: is shown in Table 2. We fix the average number of neighbors at 10,
the ratio between the number of agents and tasks at 5/3 and the resource ratio
at 1.2. The tasks are uniformly distributed. This setting is defined to show the

An Agent-Based Planning Method for Distributed Task Allocation 301

Table 2. The details of Setting 2.

Setting Quantity

Number of agents varies from 100 to 2000

Number of different resource types 20

Average number of resources required by each task 100

scalability of both our proposed algorithm and GDAP in a large scale networks
with a fixed average number of neighbors.

The algorithms have been evaluated according to two criteria in this experi-
ment; the Utility Ratio and the Execution Time, where:

UtilityRatio =
∑

Successful − completed − tasks

Total − of − tasks
(3)

The unit of Execution Time is millisecond. For simplicity, we suppose that
once a task has been allocated to a Participant, the Participant would success-
fully finish this task without failure.

Experiment Results and Analysis from Setting 1: We would like to test
in this experiment the influence of different average number of neighbors on
both algorithms. We notice in Fig. 5 that the Utility Ratio of our algorithm in
different networks is more reliable than the GDAP algorithm. For the reason that
the distribution of tasks in GDAP is only depending on the Manager neighbors,
contrary to ours, in the case of need, other agents are allocated (i.e. not only the
neighbors).

We can mention another factor to compare both approaches which is the
network type. The results of GDAP in a small world network is higher than
in a scale free network, and this could be explained by the fact that the most
agents have a very few neighbors in the small network. Opposingly to that, in the
scale free network when the average number of neighbors increases, the GDAP
performance decreases. Which leads to say that this factor does not affect the
performance of our algorithm as we take into consideration enough neighbors to
obtain satisfactory resources for processing its tasks without reallocating tasks
further.

Figure 6 presents the Execution Time of two algorithms in different networks
depending on the average number of neighbors. The Execution Time of our
algorithm is higher than that of GDAP since during execution, the agents in
our algorithm reallocate tasks when resources from neighbors are unsatisfying.
Furthermore, we note that the results of GDAP in a small world network is
higher than in a scale free network, but compared to our algorithm are still
lower and this is because it considers only neighbors which could decrease the
time and communication cost during task allocation process.

302 D. Ben Noureddine et al.

Fig. 5. The Utility ratio of the GDAP and our algorithm depending on the average
number of neighbors in different type of networks [4].

Fig. 6. The Execution time in millisecond of the GDAP and our algorithm depending
on the average number of neighbors in different type of networks [4].

Experiment Results and Analysis from Setting 2: We would like to test
the scalability of both GDAP and our algorithm in different large network scales
like applications running on the internet. The Fig. 7 presents the Utility Ratio
of GDAP which is constantly descending while that of our algorithm can save
the stability and it is higher than GDAP with the increase of number of agents
and simultaneously the number of tasks in a large network scale. In fact, we

An Agent-Based Planning Method for Distributed Task Allocation 303

Fig. 7. The Utility ratio of the GDAP and our algorithm depending on the number of
agents in different type of networks [4].

Fig. 8. The Execution time in millisecond of the GDAP and our algorithm depending
on the number of agents in different type of networks [4].

can explain this by the proportional rise of the network scale, the tasks and the
resource types.

Moreover the condition in small world network is better than that in scale
free network. And this is justified by the same reason described above, that in
scale free network, several agents only have a few neighbors which is not good
for GDAP. Compared with GDAP, our algorithm is more competitive and it is
favoured from task reallocation.

304 D. Ben Noureddine et al.

Figure 8 presents the Execution Time of our algorithm and GDAP in dif-
ferent network types. GDAP spends less time when there are more agents in
the network. This is because there are more tasks despite the average number
of neighbors is fixed. Accordingly, more reallocation steps cannot be avoided
towards allocating these tasks, that leads to soaring in time and overhead com-
munication. Furthermore, the graphs show that the GDAP and our algorithm
almost behaves linearly and the time consumption of GDAP keeps a lower level
than ours. This can be supposedly interpreted that GDAP only relies on neigh-
boring agents.

7 Conclusion

We have proposed a software agent architecture to manage services and control
embedded systems at run-time to perform self-adaptation. These architecture
served us to propose a single-agent planning method that aids agent to make a
convenient decision and compose better his services during the communication
with others. An important originality of our method is the integration of the
fuzzy logic technique to select good plans in the planning phase. This method
leads us to spread more in the planning filled in dynamic MASs and we have
introduced a distributed multi-task allocation approach based on a pertinent
policy to solving problems of task allocation in dynamic environment. All the
results are applied in this phase to a particular benchmark production system.

Although our approach overcomes many dilemmas, which exist in some cur-
rent related works, due to its decentralization and reallocation features, it still
has many deficiencies. They will be faced in near future work, that will focus,
on the one hand, on assessing the mechanism’s ability to deal with larger state
action spaces than the one exemplified in this paper and review the perfor-
mance benefits compared to the heavier-weight alternative solutions. On the
other hand, we will focus on making the agent more intelligent and learner by
utilizing some multi-agent learning methods. Indeed, the sending of the mes-
sage can be expensive and it is not possible to broadcast all resource announce
messages to all neighbors at each timestep. In fact, agents will be capable to
autonomously determine which messages to send, to whom, and at what point
in their execution is. In this context, communication should be seen as a task to
do in the own decision of the agent that it will deal with both the actions and
the possible interactions. We also plan, in the future, to enhance our approach
by considering that each agent in the system has multiple resources instead of
only one.

References

1. Gharbi, A., Ben Noureddine, D., Ben Halima, N.: Building multi-robot system
based on five capabilities model. In: 12th International Conference on Evaluation
of Novel Approaches to Software Engineering, Barcelona, Spain, pp. 270–275 (2015)

An Agent-Based Planning Method for Distributed Task Allocation 305

2. Ben Noureddine, D., Gharbi, A., Ben Ahmed, S.: An approach for multi-robot
system based on agent layered architecture. Int. J. Manag. Appl. Sci. (IJMAS)
2(12), 135–143 (2016)

3. Ben Noureddine, D., Gharbi, A., Ben Ahmed. S.: Multi-agent deep reinforcement
learning for task allocation in dynamic environment. In: 12th International Con-
ference on Software Technologies, Madrid, Spain, pp. 17–26 (2017)

4. Ben Noureddine, D., Gharbi, A., Ben Ahmed, S.: A social multi-agent cooperation
system based on planning and distributed task allocation: real case study. In: 13th
International Conference on Software Technologies, Porto, Portugal, pp. 483–493
(2018)

5. Jennings, N.R., Sycara, K., Wooldridgse, M.: A roadmap of agent research and
development. Auton. Agents Multi-agent Syst. 1, 7–38 (1998)

6. Mejia, M., Peña, N., Muñoz, J.L., Esparza, O., Alzate, M.: DECADE: distributed
emergent cooperation through adaptive evolution in mobile ad hoc networks. Ad
Hoc Netw. 10, 1379–1398 (2012)

7. Del Val, E., Rebollo, M., Botti, V.: Promoting cooperation in service-oriented MAS
through social plasticity and incentives. J. Syst. Softw. 86, 520–537 (2013)

8. Das, G.P., McGinnity, T.M., Coleman, S.A., Behera, L.: A distributed task allo-
cation algorithm for a multi-robot system in healthcare facilities. J. Intell. Robot.
Syst. 84, 1–26 (2014)

9. Sun, Q., Garcia-Molina, H.: SLIC: a selfish link based incentive mechanism for
unstructured peer-to-peer networks. In: 24th International Conference in Dis-
tributed Computing Systems, Tokyo, Japan, pp. 506–515 (2004)

10. Wei, G., Zhu, P., Vasilakos, A.V., Mao, Y., Luo, J., Ling, Y.: Cooperation dynamics
on collaborative social networks of heterogeneous population. IEEE J. Sel. Areas
Commun. 31, 1135–1146 (2013)

11. Hruz, B., Zhou, M.: Modeling and Control of Discrete-event Dynamic Systems
with Petri Nets and Other Tools. Springer, London (2007). https://doi.org/10.
1007/978-1-84628-877-7

12. Miguel, I., Jarvis, P., Shen, Q.: Flexible graphplan. In: 14th European Conference
on Artificial Intelligence, Berlin, Germany, pp. 4506–4514 (2000)

13. Miguel, I., Giret, A.: Feasible distributed CSP models for scheduling problems.
Eng. Appl. Artif. Intell. 21(5), 723–732 (2008)

14. Weerdt, M.D., Zhang, Y., Klos, T.: Distributed task allocation in social networks.
In: 6th International Conference on Autonomous Agents and Multi-agent Systems
Distributed Computing Systems, Honolulu, Hawaii, USA, pp. 500–507 (2007)

15. Farinelli, A., Farinelli, R., Iocchi, L., Nardi, N.: Multi-robot systems: a classification
focused on coordination. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(5),
2015–2028 (2004)

16. Dudek, G., Jenkin, M., Milios, E.: A taxonomy of multirobot systems. In: Robot
Teams: From Diversity to Polymorphism, pp. 3–22 (2002)

17. Zheng, X., Koenig, S.: Reaction functions for task allocation to cooperative agents.
In: 7th International Conference on Autonomous Agents and Multiagent Systems,
Estoril, Portugal, pp. 559–566 (2008)

18. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra,
C.: Automated negotiation: prospects, methods and challenges. Group Decis.
Negot. 10(2), 199–215 (2001)

19. Fatima, S.S., Wooldridge, M.: Adaptive task and resource allocation in multi-agent
systems. In: 5th International Conference on Autonomous Agents, Montreal, QC,
Canada, pp. 537–544 (2001)

https://doi.org/10.1007/978-1-84628-877-7
https://doi.org/10.1007/978-1-84628-877-7

306 D. Ben Noureddine et al.

20. Gatti, N., Giunta, D., Marino, S.: Alternating-offers bargaining with one-sided
uncertain deadlines. An efficient algorithm. Artif. Intell. 172(8), 1119–1157 (2008)

21. An, B., Lesser, V., Sim, K.M.: Strategic agents for multi-resource negotiation.
Auton. Agent Multi Agent Syst. 23(1), 114–153 (2011)

22. An, B., Gatti, N., Lesser, V.: Bilateral bargaining with one-sided two-type uncer-
tainty. In: The International Joint Conference on Web Intelligence and Intelligent
Agent Technology, DC, USA, pp. 403–410 (2009)

23. An, B., Lesser, V., Irwin, D., Zink, M.: Automated negotiation with decommitment
for dynamic resource allocation in cloud computing. In: 9th International Confer-
ence on Autonomous Agents and Multiagent Systems, Toronto, ON, Canada, pp.
981–988 (2010)

24. Choi, H.-L., Brunet, J., How, J.P.: Consensus-based decentralization auctions for
robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

25. Cramton, P., Shoham, Y., Steinberg, R.: An overview of combinatorial auction.
ACM SIGecom Exch. 7(1), 3–14 (2007)

26. Whitbrook, A., Meng, Q., Chung, P.W.H.: A novel distributed scheduling algo-
rithm for time-critical, multi-agent systems. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Hamburg, Germany, pp. 6451–6458 (2015)

27. Zhao, W., Meng, Q., Chung, P.W.H.: A heuristic distributed task allocation
method for multivehicle multitask problems and its application to search and res-
cue scenario. IEEE Trans. Cybern. 46(4), 902–915 (2016)

28. Weerdt, M.D., Clement, B.: Introduction to planning in multiagent systems. Mul-
tiagent Grid Syst. 5(4), 345–355 (2009)

Automatic Test Data Generation
for a Given Set of Applications

Using Recurrent Neural Networks

Ciprian Paduraru1(B), Marius-Constantin Melemciuc2(B),
and Miruna Paduraru2

1 The Research Institute of the University of Bucharest (ICUB),
University of Bucharest, Bd. M. Kogalniceanu 36-46,

050107 Bucharest, Romania
ciprian.paduraru@fmi.unibuc.ro

2 Department of Computing Science,
University of Bucharest, Bucharest, Romania

marius-constantin.melemciuc@my.fmi.unibuc.ro,

miruna-gabriela.paduraru@ubisoft.com

Abstract. To address the problem of automatic software testing against
vulnerabilities, our work focuses on creating a tool capable in assisting
users to generate automatic test sets for multiple programs under test at
the same time. Starting with an initial set of inputs in a corpus folder,
the tool works by clustering the inputs depending on their application
target type, then produces a generative model for each of these clusters.
The architecture of the models is falling in the recurrent neural network
architecture class, and for training and inferencing the models we used
the Tensorflow framework. Online-learning is supported by the tool, thus
models can get better as long as new inputs for each application cluster
are added to the corpus folder. Users can interact with the tool similar
to the interface used in expert systems: customize various parameters
exposed per cluster, or override various function hooks for learning and
inferencing the model, with the purpose of getting finer control over the
tool’s backend. As the evaluation section shows, the tool can be useful for
creating important sets of new inputs, with good code coverage quality
and less resources consumed.

Keywords: Fuzz testing · Recurrent neural networks · LSTM
Tensorflow · Pipeline · Taint analysis

1 Introduction

The importance of security in software systems has increased year over year
recently, because of the wide interconnectivity between different software pieces.
Important resources are invested nowadays in detecting security bugs in these
systems before being released on the market. Machine generated test data is
desirable for automatizing the process of testing and ensuring a better coverage.
c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 307–326, 2019.
https://doi.org/10.1007/978-3-030-29157-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_14

308 C. Paduraru et al.

Ideally, the purpose of an automatic test data generation system for programs
evaluation should be to generate test data that covers as many branches as
possible from a program’s code, with the least computational effort possible.
The most common technique is Fuzz testing [12], which is a program analysis
technique that looks for inputs causing errors such as buffer overflows, memory
access violations, null pointer dereferences, etc, which in general have a high rate
of being exploitable. Using this technique, testing data is generated using random
inputs and the program under test is executing them for the purpose of detecting
issues like the above mentioned ones. One of the main limitations of fuzz testing is
that it takes a significant effort to produce inputs that covers almost all branches
of a program’s source code. This comes from the fact that using randomness, it
results in a high chance of producing inputs that are not correct and rejected in
the early outs of a program’s execution. If we filter and consider only the inputs
that are correct and accepted by the program, there still is a huge area of possible
inputs remaining and from these usually only a few are a subset of the corner
cases that could trigger unexpected and problematic behaviour. This challenge
sits at the core of developing tools to increase the coverage of the branches in
the program execution that could point the development team to handle cases
omitted in the previous development steps. A constant cycle of releasing program
patches having one of the purposes of covering those cases are still desired to
be introduced as early as possible in the development process. Considering the
randomness aspect, any guidance specifics or additional insights taken from the
evaluation of early stages inputs are ideally to be taken into consideration for
reducing the computational power and time needed to expose the program issues.
The initial seed quality as well as unbalanced seed selection are good aspects to
be considered when generating the inputs.

Alternative methods that augment the classic random fuzz testing with dif-
ferent methods were created. Such ideas involved the use of genetic algorithms
for better guiding the test data generation towards uncovered areas [24], or by
using recurrent neural networks and predicting the probability distribution of
the next character knowing a previously generated context [15,26].

This paper discusses an open-source tool (from the authors’ knowledge, the
first one at the moment of writing this paper) that given a corpus of different
existing test file formats, it performs cluster analysis, then learns a generative
model for each cluster, which can be used later to quickly generate new tests
with a high rate of being correct (i.e., touching more branches of a program
instead of taking the early outs due to incorrect inputs). More specifically, the
contributions of this paper in the field of using machine learning for automating
software testing are:

– An open-source tool that is capable of storing a database of generative models
for sampling new test data for multiple programs at once. These models are
learned from a corpus of test data, which can be updated online with newly
added content. No manual clusterization of inputs is needed.

Automatic Test Data Generation for a Given Set of Applications 309

– Description of a parallelized implementation for learning the models and sam-
pling from them using Tensorflow [2]. The models also permit checkpoints and
online learning.

– Present a technique for assigning begin/end markers in the pre-processed
training data that works for all kinds of files, not just the well-known ones.
The previous work in the field that uses the same core system as our tool (i.e.
recurrent neural networks) is focused only on PDF files.

– Allows users to leverage expert system in oversizing the work and perform
custom optimizations and logs for learning or sampling certain categories of
file types.

– Describes how to use the recurrent neural networks generative models for
applications with binary input context too.

The paper is structured as follows. Next section presents some existing work
in the field that inspired the work presented in this paper. Section 3 makes a
quick introduction in one of the ways machine learning can be used to generate
new texts based on an existing corpus of texts. Section 4 presents our methods
for automating the process of test data generation. Evaluation of our tool and
methods are discussed in Sect. 5. Finally, conclusions and future work are given
in the last section.

2 Related Work

One of the main differences between fuzz testing and symbolic testing is that
the former has the potential of getting better code coverage in shorter time and
with less resources used, while the latter can exploit all possible branches of a
process with less resources consumed overall. It all depends on how complex is
the program under test, computational resources available and how many test
requests are in a given unit of time. In large companies, or online source-code
repositories, which usually need a quick testing of newly committed source code,
it is important to have variety that can get code coverage with minimal resource
consumption in very short time after each code commit. Thus, fuzz testing can
be an efficient method for covering such use cases.

In the field of fuzzing techniques, there are three main categories currently:
blackbox random fuzzing [30], whitebox random fuzzing [14], and grammar based
fuzzing [25,30]. The first two are automatic methods proving efficiency in finding
vulnerabilities in binary-format file parsers. These methods are also augmented
with others for better results. For example, in [24] authors present a distributed
framework using genetic algorithms that generates new tests by looking at the
probability of each branch encountered during the execution. Their fitness func-
tion scores a newly generated input test by the probability of the branches
encountered in the program’s execution trace. This way, the genetic algorithm
tries to create input data that drives the program’s execution towards rare (low
probability) branches inside the program’s control flow. They use Apache Spark
for parallelization and dynamic tainting to know the paths taken during the exe-
cution. Their method obtains better scores than classical random fuzzers and it

310 C. Paduraru et al.

is one of the solutions that we compare against, including the same two examples:
an HTTP and an XML parser.

On the other side, the grammar based fuzzing is not fully automatic: it
requires a grammar specifying the input format of the application under test.
Typically, this grammar is written by hand and the process becomes time con-
suming and error prone. It can be viewed as a model-based testing [32], and
the work on it started with [16,25]. Having the input grammar, test generation
from it can be done either (usually) random [10,27] or exhaustive [19]. Meth-
ods that combine whitebox fuzzing with grammar-based fuzzing were discussed
in [13,20]. Recent work concentrates also on learning grammars automatically.
For instance, [5] presents an algorithm to synthesize a context-free grammar from
a given set of inputs. The method uses repetition and alternation constructs for
regular expressions, then merging non-terminals for the grammar construction.
This can capture hierarchical properties from the input formats but, as men-
tioned in [15] the method is not well suited for formats such as PDF objects for
instance, which include a large diverse set of content types and key-value pair.

Autogram, mentioned in [17] learns context-free grammars given a set of
inputs by using dynamic tainting, i.e. dynamically observing how inputs are
processed inside a program. Syntactic entities in the generated grammar are
constructed hierarchically by observing what parts of the given input is processed
by the program. Each such input part becomes an entity in the grammar. The
same idea of processing input formats from examples and producing grammars,
but this time associating data structures with addresses in the application’s
address space is presented in [11].

Both approaches described above for learning grammars automatically
require access to the program for adding instrumentation. Thus, their appli-
cability and precision for complex formats under proprietary applications such
as XML, PNG or ZIP file parsers is unclear. There are two main differences
between our method and Autogram:

1. Our method can work on all kind of programming languages while Auto-
gram works only with Java source code. They use Java Virtual Machine to
understand variables content by analysing the execution stack. Our method
is more generic since the trace tool (Sect. 3) uses in the analysis side the
assembly language generated from the source code.

2. We generate grammars and do inference only for the parts of the input stream
that affect the execution flow of the program, while Autogram generates and
perform inference for all variables that have a connection with the input
stream. This should intuitively make our method faster to train and inference.

The method presented in [15] uses neural-network models to learn statistical
generative models for such formats. Starting from a base suite of input PDF files
(not binaries) they concatenate all and use recurrent neural networks (RNN, and
more specifically a sequence - to - sequence network) to learn a generative model
for other PDF files. Their work is focused on generative models for non-binary
objects.

Automatic Test Data Generation for a Given Set of Applications 311

Dynamic tainting has numerous applications such as finding and analyz-
ing security threats [3,22], software test generation using in combination with
concolic execution [6], or in combination with fuzz testing and genetic algo-
rithms [4,21]. One of the most appreciated tools for practical fuzzing today,
AFL (american fuzzy lop) [1], is based on genetic algorithms and various heuris-
tics to find faster vulnerabilities and achieve good code coverage. We compared
it against our solution to find out what is the difference between them. On
short, AFL tends to be better sometimes for short time tests done over text-
based inputs, while ours can get better results over longer execution times. An
improved fuzzing tool, with reported results above AFL is Angora [7]. It uses
runtime taint analysis and keeps stack context on branch transitions to achieve
improved code coverage and bugs finding. However, it is dependent on LLVM
and needs access to the source code. Instead, our tool works at binary level (i.e.
doesn’t need access to the source code), and this is the reason we don’t compare
our methods against Angora.

This paper is an update of [23] with some improvements over original content:
added our new work regarding RNNs usage for binary inputs too, new experi-
ments and comparison with one of the state of the art tools - AFL, another type
of application benchmark - a JSON parser, and several text improvements and
clarifications.

3 Using Machine Learning to Learn Generative Models
for Testing

A statistical learning approach for learning generative models for PDF files was
introduced in [15]. Their main idea is to learn the model based on a large
corpus of PDF objects using recurrent neural networks, and more specifically
a sequence-to-sequence network model [8,29]. This model has been used for
machine translation [29] and speech recognition [9], producing state of the art
results in these fields. The model can be trained in an unsupervised manner to
learn a generative model from the corpus folder, then used to produce new
sequences of test data. Recurrent neural networks are a good candidate for
this case because these algorithms have an internal memory, compared to other
machine learning algorithms, as in they have access to previous states, informa-
tion cycling through a loop. This detail is important in exploring the problem
that we are facing and it gives an important advantage when considering the
following iterations, keeping a track of the previous ones in memory. Being able
to remember aspects about the input they received, it enables them to be more
precise in predicting what’s coming next and how to consider the rest of the iter-
ations. This is the main reason why they are preferred algorithm for sequential
data.

3.1 Sequence-to-Sequence Neural Network Model

Recurrent neural networks (RNN) are neural network models that operate on a
variable input sequence < x1, x2, ..., xT > and have a hidden layer of states h,

312 C. Paduraru et al.

and an output y. At each time step (t) one element from the input sequence is
consumed, modifying the internal hidden state and the output of the network
as follows:

ht = f(ht−1, xt) (1)

yt = σ(ht), (2)

where σ is a function such as softmax (used typically in learning classifiers)
that computes the output probability distribution over a given vocabulary by
taking into account the current hidden state, while f is a non-linear activa-
tion function used to make the transition between hidden states (e.g. of func-
tions: sigmoid, tanh, ReLU, etc). Thus, the RNN can learn the probability
distribution of the next character (xt) in the vocabulary, given a character
sequence as input < x1, x2, ..., xt−1 >, i.e. it can learn the conditional distri-
bution p(xt| < x1, x2, ..., xt−1 >).

Sequence-to-sequence model (seq2seq) was introduced in [8]. It consists of
two connected recurrent neural networks: one that acts as an encoder, process-
ing a variable input sequence and producing a fixed dimensional representation,
and another one that acts as a decoder by taking the fixed dimensional input
sequence representation and generating a variable dimensional output sequence.
The decoder network uses the output character at time step t as an input charac-
ter for time step t + 1. Thus, it learns a conditional distribution over a sequence
of next outputs, i.e. p(< y1, ..., yT1 > | < x1, ..., xT2 >). Figure 2 shows the
architecture of the model (Fig. 1).

Fig. 1. A sequence-to-sequence graphical representation. In this example, the encoder
part takes as input the internal string marker representing the beginning of an HTTP
request, while the decoder produces the beginning text of such a request. Source: [23].

The test data of generative models presented in this paper uses the seq2seq
models. The corpus of input files are treated as a sequence of characters, so the
model itself contains the distribution of the next character in the vocabulary
based on a previously generated context. An epoch is defined in the machine
learning terminology as a full iteration of the learning algorithm over the entire
training database (i.e. input files in the corpus). In the evaluation section, we
use different epochs (10, 20, 30, 40 and 50) to correlate the time needed to train
versus the quality of the trained model.

Automatic Test Data Generation for a Given Set of Applications 313

3.2 Using the Model to Generate New Inputs

After the seq2seq model is trained, it can be used to generate new inputs based
on the probability distribution of next characters and the previously generated
context. The work in [15] always starts with “obj” string and continuously gen-
erates characters using different policies to draw the next characters from the
model, until the output produced is the string “endobj”. These markers are the
ones used to represent the beginning and ending of PDF objects. While our tool
is capable of dynamically adapting to new/unknown file types or without any
expert knowledge, we use a different strategy for defining the beginning/end
markers (see the next section for details).

There are four documented policies that can be used when deciding which
character a model should output next:

– No sampling: just use the model as it is without randomness; this will pro-
duce deterministic results from any starting point, i.e. the highest probability
character will be chosen always.

– Sample: random sampling at each next character according to the probability
distribution encapsulated in the model. This strategy produces a diverse set
of new inputs combining the patterns learned from data but also mixing with
random fuzzing.

– SampleSpace: random sampling only at white spaces. According to the evalu-
ation section, this produces better well-formed new inputs that are not deter-
ministic but that are not as diverse as the Sample model.

– SampleFuzz: A parameter defines the threshold probability for deciding how
to choose the next character from the learned model. Then, a random value
is drawn at each time step and if it is higher than the threshold, the next
character chosen is the one with the highest probability from the learned
model. Otherwise, the character with the lowest probability is selected in an
attempt to trick the PDF parser. The idea was analysed in [15]. However, in
our analysis this shows worse results than Sample and SampleSpace methods.

4 Pipeline for Generating New Tests Based on Existing
Corpus

The tool presented in this paper is open-source and currently available at:
https://github.com/AGAPIA/river-trace-analysis-and-fuzz. It receives as input
a corpus of different input file types, with no previous classification made man-
ually by the user. The content of the folder can be updated online in both
directions: either adding new files of existing types, or adding new file types.
This is an important requirement since the main requirements from software
security companies (such as the one we collaborated with, Bitdefender) are:
(1) to be able to learn and produce new inputs of different kinds for many differ-
ent programs with the purpose of security evaluation, and (2) to automatically
and dynamically collect data from users, i.e. new input tests are added online
and used to improve the trained model).

https://github.com/AGAPIA/river-trace-analysis-and-fuzz

314 C. Paduraru et al.

4.1 The Training Pipeline

Given the path to an existing corpus folder (data), the training pipeline writes
its output in two folders:

1. data preprocesses
2. data models

Folder (1) stores the clusterized and preprocessed corpus data. Since the
types of the files in there is unknown, our first target is to cluster them by
identifying the type of each file in the corpus then put them in a different sub-
folder corresponding to each file type. As an example, if the corpus folder (data)
contains four different input file types such as XML, PDF, JSON and HTTP
requests, then the first step will create (if not already existing) four clusters
(folders) and add each input file to the corresponding one. Currently, the clas-
sification of files to clusters is done using the file − l command in Unix, and
getting the output string of the command (we plan to improve this classification
in the future work by using unsupervised learning and perform clusterization
based on common identified features). Since at each training epoch the entire
sequence of character in each file must be processed, and considering that seek
operations on disk can be expensive, the strategy used by our training pipeline
is to concatenate together all files in each cluster (folder) in a single file to
make the training process faster. Thus, each of the four folders in the concrete
example above will contain a single file with the aggregated context from the
initial ones. The neural-network model of each cluster is trained by splitting the
aggregated file content (CContent) in multiple training sequences of a fixed size
L, which can be customized by user. Thus, the ith training sequence contains
ti = CContent[i ∗ L : (i + 1) ∗ L] (where F[a : b] denotes the subsequence of
characters in F between indices a and b). For each of these training sequences,
the expected output that the network is trained against is the input one shifted
by 1 position to the right, i.e, oi = CContent[i∗L+1 : (i+1)∗L+1]. The model
is then trained with all these input/output sequences from a cluster’s content
and using backpropagation to correct the weights, it learns the probability map
of next characters having a given context (prior sequence). This previous context
is modeled with the hidden state layer.

However, we need a generic way to mark the beginning and ending of an indi-
vidual file content, such that the sampling method knows how to start and when
to stop. At this moment, the beginning marker is a string BEGIN#CLUSTERID,
while the end marker is a string END#CLUSTERID, where CLUSTERID is
an integer built using a string to integer mapping heuristic. The input string
used for mapping is the full classification output string given by the file − l
command when the file was classified in a cluster. A supervisor map checks if
all hashcodes are unique and tries different methods until for each cluster there
is a unique identifier. The equation below (Source: [23]) shows the content of a
cluster’s aggregated file, where the

∑
and + operators acts as concatenation of

strings, and C is a given cluster type.

Automatic Test Data Generation for a Given Set of Applications 315

Identifier(C) = GetUniqueClusterIdentifier(C)

Cluster(C) =
∑

eachfileF∈C

(“BEGIN ′′ + Identifier(C)

+FileContent(F) + “END′′ + Identifier(C))

The tool uses Tensorflow [2] for implementing both learning and sampling pro-
cesses. Each cluster will have its own generative model, saved in data models
folder. In the example given above, four models will be created, one for each XML,
PDF, JSON, and HTTP input types. A mapping from CLUSTERID to the cor-
responding model will be created (and stored on disk) to let the sampling process
know where to get data from. In the network built using Tensorflow implementa-
tion we use LSTM cells for avoiding the problems with exploding or vanishing gra-
dients [33]. By default, the network built has two hidden layers each with 128 hid-
den states. However, the user can modify this network using expert knowledge per
cluster granularity as stated in Sect. 4.4 (the starting point of the process described
in this section is defined in generateModel.py script, which has a documented set
of parameters as help). Tensorflow is also able to parallelize automatically the
training/sampling in a given cluster. On a high-level view, the framework allows
users to customize a network and its internal compiler/executer decides where to
run tasks with the scope of optimizing performance (e.g. minimize communication
time, GPU-CPU memory transfer, etc).

Our tool takes advantage of the checkpointing feature available in the Ten-
sorflow framework, i.e. at any time the learned model up to a point can be
saved to disk. This helps users by letting them update the generative models if
new files were added dynamically to the clusters after the initial learning step.
This way, the learned weights in the neural network are reused and if the new
files are not completely different in terms of features from the initial ones, the
training time scales proportionally to the size of the new content added. At the
implementation level, an indexing service keeps the track of the new content in
each cluster and informs a service periodically to start the generative models
updating for each of the modified clusters. Another advantage of the checkpoint
feature is that it allows users to take advantage of the intermediate trained mod-
els. Although not optimal, these can be used in parallel with the training process
(until convergence) to generate new test data.

4.2 New Inputs Generation

The pseudocode in the listing below shows the method used to generate a new
input test. The function receives as input a cluster type (considering that there
exists a trained generative model for the given cluster), and a policy functor
pointing to one of the four policies defined in the previous section. The first
step is to get the custom parameters and the begin/end marker strings for the
given cluster. The next step is to feed the entire begin marker string (starting
with a zero set hidden layer) and get the resulted hidden state. This will capture

316 C. Paduraru et al.

Fig. 2. The process of updating the generative models. Source: [23].

the context learned from the training data at the beginning of the files in that
cluster. Then, the code loops producing output characters one by one using the
probability distribution map (P) returned by the FeedForward function in the
current state (h state). At each iteration, as seen in Fig. 2, the last produced
output character and state are given as parameters to find the probability dis-
tribution map over vocabulary. The loop ends when the last part of the output
(suffix) is exactly the end marker string (or until a certain maximum size was
produced to avoid blocking if the training was not good enough to get to the
end marker). The starting point of the concrete implementation can be found in
the script file named sampleModel.py.

SampleNewTest(Cluster, PolicyType):

Params = GetParams(Cluster)

BeginMarker, EndMarker = GetMarkers(Params)

foreach c in BeginMarker:

h_state, P = FeedForward(h0, internalRNN, c)

lastChar = c

output = ""

while the suffix of output != EndMarker :

lastChar = Policy(PolicyType, P, lastChar)

output += lastChar

h_state, P = FeedForward(h_state,

internalRNN, lastChar)

return output

Source: [23]

A pseudocode defining sampling policies is presented in the listing below.
Roulette-wheel based random selection is used with the Sample policy, and with

Automatic Test Data Generation for a Given Set of Applications 317

the SampleSpace one when the previous character generated was a whitespace.
If SampleSpace is used but still inside a word, or if SampleFuzz sampling method
is used and the random value drawn is higher than the fuzz threshold, then the
character with the highest probability from the vocabulary is chosen. Instead, if
the random value is smaller than fuzz threshold, the character with the lowest
probability is chosen in an attempt to trick the program under test.

Policy(PolicyType, P, C):

switch Type:

case NoSample:

return argmax(P)

case SampleSpace:

if C == " " return roulettewheel(P)

else return argmax(P)

case Sample:

return roulettewheel(P)

case SampleFuzz:

if rand < FuzzThreshold:

return argmin(P)

else

return argmax(P)

default:

assert "no such policy"

Source: [23]

4.3 Producing Generative Models for Applications with Binary
Inputs

Considering N samples of test examples for a specific application Fig. 3, and
by using using our RIVER tool (https://github.com/bitdefender/, [28]), we can
find out which parts of the inputs can affect the branching decision of a program
through taint analysis [31]. The intuition is that to achieve efficient result, we
should concentrate fuzzing more on those specific areas rather than the whole
input. Considering this, our approach is to create generative models for each of
the sample and contiguous green region. At inference time, we choose one of the
sample, duplicate it in a memory region, call each green area model, and fuzz
the rest of the input a little bit. The process is depicted in the listing below.

GetNewBinaryInput(AppType A)

NewInput = GetRandomInputSampleByAppType(A)

for each model M in NewInput

PartialInput = SampleNewTest(M)

Replace the bytes covered by M (green areas) in NewInput with PartialInput

Random fuzzing 5% of uncovered areas in NewInput

return NewInput

https://github.com/bitdefender/

318 C. Paduraru et al.

Fig. 3. Different length test samples for a given application from the training set.
Marked with green are regions of the input that can affect branching conditions, i.e.
the application flow. (Color figure online)

4.4 Expert Knowledge

Different clusters might need different parameters for optimal results. For exam-
ple, training PDF objects might require more time to get to the same loss result
than the threshold set for learning HTTP requests. The optimal parameters can
differ starting from simple thresholds to the configuration of the neural net-
work structure, i.e. the number of hidden layers or states. The tool allows users
to inject their own parameters for both learning and sampling new results, by
using a map data structure that looks more like an expert system. If custom data
is available in that map (e.g. [“HTTP request cluster”, num hidden layers] = 1)
for a particular cluster and parameters, then those are used instead of the default
ones. Another example is the customization of the beginning/end markers used
to know when a certain input data starts and ends. For well-known types, the
user can override our default method for assigning the markers with the correct
ones (e.g. PDF objects start with “obj” and end with “endobj”). Also, since
Tensorflow can provide graphical statistics added by users (Tensorboard) during
both training and sampling, the tool allows users to insert customized logs and
graphics per cluster type using the function hooks provided.

5 Evaluation

As the previous work in the field [15] already evaluated the training efficiency of
the core method, i.e. learning a generative model with RNNs and do inference
over it to find new inputs, using PDF file types, we evaluate our tool using

Automatic Test Data Generation for a Given Set of Applications 319

three more parser applications: XML parser1, JSON parser2, and HTTP parser3.
However, we use our own mark system for beginning/ending of a file, which
works for generic (any kind of) file types as mentioned in Sect. 4. The two new
mentioned test applications were used to compare the results directly against
the work in [24], which uses random fuzz testing driven by a genetic algorithm
to get better coverage over time, and the same two programs for evaluation.

5.1 Experiment Setup and Methodology

The experiments described below involved a cluster of 8 PCs, each one with
12 physical CPU cores, totaling 96 physical cores of approximately the same
performance (Intel Core i7-5930K 3.50 GHz). Each of the PC had one GPU
device, an Nvidia GTX 1070. The user should note that adding more GPUs into
the system could improve performance with our tool since the benchmarks show
that the GPU device was in average about 15 times faster than the CPU both
for learning models and generating new tests.

In our tests, we ultimately care about the coverage metric of a database
of input tests: how many branches of a program are evaluated using all the
available tests, and how much time did we spend to get to that coverage? Our
implementation uses a tool called Tracer that can run a program P against
the input test data and produce a trace, i.e., an ordered list of branch instruc-
tions B0,, Bn that a program encountered while executing with the given
input test: Tracer(P, test) = B0B1...Bn. Because a program can make calls to
other libraries or system executables, each branch is a pair of the module name
and offset where the branch instruction occurred: Bi = (module, offset). Note
that we divide our program in basic blocks, which are sequences of x86 instruc-
tions that contain exactly one branch instruction at its end. We used a tracer
tool developed by Bitdefender company, which helped us in the evaluation pro-
cess, but there are also open-source tracer tools such as Bintrace4. Having a set
of input test files, we name coverage the set of different instructions (pairs of
(module, offset)) encountered by Tracer when executing all those tests. We are
interested in maximizing the size of this set usually, and/or minimizing the time
needed to obtain good coverage.

Specifically, when training generative models, another point of interest is
how efficient is the trained model with different setups, i.e. how many newly
generated tests are correctly compiled by the HTTP and XML parsers (Pass
Rate metric)? This could help us make a correlation between the Pass Rate and
coverage metrics.

1 http://xmlsoft.org.
2 https://github.com/nlohmann/json.
3 https://github.com/nodejs/http-parser.
4 https://bitbucket.org/mihaila/bintrace.

http://xmlsoft.org
https://github.com/nlohmann/json
https://github.com/nodejs/http-parser
https://bitbucket.org/mihaila/bintrace

320 C. Paduraru et al.

5.2 Training Data and Generation of New Tests

The training set consisted of XML, JSON, and PDF files that were taken using
web-crawling different websites. A total of 12.000 files were randomly selected
and stored for each of these three categories. For HTTP requests, we used an
internal logger to collect 100.000 of such request. The folder grouping all these
inputs is named in our terminology corpus test set. A metric to understand how
well does the trained model learn is named Pass Rate. This estimates (using the
output from grep tool) the percent of tests (from the generated suite) that are
well formatted for the parser under test. As Fig. 4 shows, and as expected, the
quality of trained model grows with the number of epochs used for training (i.e.
the number of full passes over the entire training data set). Randomizing only on
spaces (i.e. using SampleSpace) gives better results for Pass Rate metric since
more data is used as indicated as being optimal by the trained model. Tensorflow
was used for both training and inference, and the hardware system considered
was the one described at the beginning of this section.

Fig. 4. Pass Rate metric evaluation for different number of epochs and models used to
generate new tests.

Table 1 shows the time needed to perform model learning over the entire
corpus folder of 12.000 PDF, JSON and XML files, and 100.000 HTTP requests
using a different number of epochs. Other parameters are also important, the user
should also take a look at the description of those inside the tool’s repository and
try to parametrize with expert knowledge for more optimizations when dealing
with new file types. Table 2 shows the timings for producing 10.000 new inputs
for PDF, JSON and XML files, and 50.000 of HTTP requests. As expected, since
there is only inference through a learned model, the timings are almost equal

Automatic Test Data Generation for a Given Set of Applications 321

between all models (we do not even show the difference between Sample and
SampleSpace since the difference is negligible). Actually, from profiling the data
tests generation it takes more time to write the output data (i.e. input tests) on
disk rather than spending cycles on inference.

Table 1. Time in hours to train models on different number of epochs and using 12.000
files for PDF, JSON, and XML, and 100.000 HTTP requests as training dataset.

Num epochs HTTP XML PDF JSON

50 8h:25 7h:19 9h:11 8h:01

40 6h:59 5h:56 8h:04 6h:09

30 5h:35 4h:20 6h:15 4h:53

20 3h:48 3h:42 4h:17 3h:24

10 2h:10 1h:12 3h:02 1h:35

Table 2. The average time needed to produce 10.000 new inputs for PDF, JSON, and
XML files, and 50.000 new HTTP requests.

File type Time in minutes

XML 49

HTTP 25

PDF 51

JSON 53

Main Takeaway. The time needed to train the model is fixed, depending on
the number of epochs and a few other parameters. After the training phase, the
tool can create huge databases of new inputs (valid ones) quickly, which in the
end can provide better code coverage than existing fuzzing methods. Those do
not need the training phase, but the new tests generated are often rejected from
early tests inside the program because of their incorrect format.

5.3 Coverage Evaluation

For the coverage evaluation tables below, we considered only the model trained
with 30 epochs, which was the winner in terms of performance versus training
cost. Using 40 or 50 epochs increased just with a few new lines the coverage over
time, but the training time is significantly higher. Of course, the user should
experiment and find the optimal number of epochs depending on training data
size for example, and their budget time limit allocated for training.

Tables 3, 5 and 4 show the coverage for XML, JSON and HTTP file types by
using three different evaluation methods. The first one, with suffix -fuzz+genetic,
considers the fuzzing method driven by genetic algorithms as explained in [24].

322 C. Paduraru et al.

Table 3. The number of branch instructions touched in comparison between random
fuzzing driven by genetic algorithms, Sample and SampleSpace models for XML files.

Model 9h 15h 24h 72h

XML-fuzz+genetic 1271 1279 1285 1286

XML-Sample 1290 1364 1455 1549

XML-SampleSpace 1291 1375 1407 1553

XML-AFL 1294 1351 1360 1395

Table 4. The number of branch instructions touched in comparison between ran-
dom fuzzing driven by genetic algorithms, Sample and SampleSpace models for HTTP
requests.

Model 9h 15h 24h 72h

HTTP-fuzz+genetic 229 230 230 232

HTTP-Sample 238 249 257 271

HTTP-SampleSpace 241 245 269 279

HTTP-AFL 243 248 251 263

Table 5. The number of branch instructions touched in comparison between ran-
dom fuzzing driven by genetic algorithms, Sample and SampleSpace models for JSON
requests.

Model 9h 15h 24h 72h

JSON-fuzz+genetic 151 174 263 269

JSON-Sample 290 364 455 449

JSON-SampleSpace 298 370 407 453

JSON-AFL 321 335 355 385

The Sample and SampleSpace are the two models used for sampling defined
above in this paper which uses our tool. The entries with suffix -AFL are tests
performed against AFL tool [1]. The main observation is that with simple fuzzing
(i.e. no use of generative models), the coverage value converges quickly to a value,
without necessarily growing by having more time allocated. This happens mainly
because the random fuzzing methods produce many times inputs that are not
correct, being rejected by early outs, or difficult to deviate from a few common
branches inside a program even when adopting different policies to guide fuzzing
[15,24]. However, fuzzing without learning the input context techniques have
their own advantage: they are simple to implement and require no training time.
For instance, if smoke tests [18] are needed after changing the user application’s
source code and input grammar, quick random fuzzing methods are very efficient
since they do not require any training time. Learning a generative model is not
feasible in this situation due to the limited time needed to respond to the new

Automatic Test Data Generation for a Given Set of Applications 323

code change. Actually, techniques can be combined: classic fuzzing can be used
for smoke tests, while fuzzing with generative models such as the one presented
in this paper can be used to perform longer and more performant tests.

In 72 h using the system described in the setup, the system was able to get
approximately 10 to 20% more coverage than the best fuzzing models available
on the XML, JSON, and HTTP cases. Also, please note again that the models
evaluated were chosen to compare against other documented results. Our tool
is able to produce generative models and training tests after training on any
kind of user inputs formats (e.g. HTML, DOC, XLS, source code for different
programming languages, etc). An interesting aspect is that the Sample method
has better results than SampleSpace one, although the Pass Rate metric shows
inverse results. Remember that by sampling each character according to the
probability distribution in the generative model, it has a higher rate of making
inputs incorrect (Fig. 4). One possible explanation for this is that having a high
rate of correct inputs can make the program avoid some instructions that were
verifying the code’s correctness in more detail. Thus, those instructions might
be encountered by Tracer only when the inputs given are a mix between correct
and (slightly) invalid. In [15] there is also a discussion about performing random
fuzzing over the inputs learned using RNN methods, but similar to our evalu-
ation, the results are not better than the Sample method. The other technique
presented in [17] that learns the grammar of the input through dynamic tainting
and applicable currently only to Java programs, could not be evaluated since
the tool is not (yet) open-source and could not be retrieved in any other way.

6 Conclusions and Future Work

This paper presented an open-source tool that addresses the problem of gener-
ating automatic test inputs for multiple programs under test at the same time.
Starting with a basic set of input in the corpus folder for learning some start-
ing models for each application type under test, the tool allows online-learning
to improve the initial set of the generative models quality over time. The sup-
port is available for both binary and text input types. Other important features
offered by the tool presented in this work are the capability to operate efficiently
in distributed computing environments, and the checkpointing support imple-
mented to pause and continue improving the existing models. The evaluation
section shows the efficiency of using the recurrent neural network architectures
for learning generative models that are able to produce new tests, from two main
perspectives: improved instruction coverage over random fuzzing and the percent
of correct input files produced from the learned model.

On our future work plans, we are interested in analyzing the effectiveness
of using Generative adversarial networks (GANs) in improving tests coverage
and compare them against the RNNs. Also, we plan improvements over the user
control of the tool, like adding a visual interface for controlling parameters and
injecting expert knowledge in learning and generation processes in an easier way.

324 C. Paduraru et al.

Acknowledgments. This work was supported by a grant of Romanian Ministry of
Research and Innovation CCCDI-UEFISCDI. project no. 17PCCDI/2018 We would
like to thank our colleagues Teodor Stoenescu and Alexandra Sandulescu from Bitde-
fender, and to Alin Stefanescu from University of Bucharest for fruitful discussions and
collaboration.

References

1. Afl. (2018). http://lcamtuf.coredump.cx/afl/
2. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous dis-

tributed systems. CoRR abs/1603.04467 (2016). http://arxiv.org/abs/1603.04467
3. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for android apps. In: PLDI (2014)
4. Avancini, A., Ceccato, M.: Towards security testing with taint analysis and genetic

algorithms. In: Proceedings of the 2010 ICSE Workshop on Software Engineering
for Secure Systems, SESS 2010, pp. 65–71. ACM, New York (2010). https://doi.
org/10.1145/1809100.1809110. http://doi.acm.org/10.1145/1809100.1809110

5. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing program input gram-
mars. SIGPLAN Not. 52(6), 95–110 (2017). https://doi.org/10.1145/3140587.
3062349. http://doi.acm.org/10.1145/3140587.3062349

6. Bekrar, S., Groz, R., Mounier, L., Bekrar, C.: Finding software vulnerabilities by
smart fuzzing. In: 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 427–430, March 2011. https://doi.org/10.
1109/ICST.2011.48. http://doi.ieeecomputersociety.org/10.1109/ICST.2011.48

7. Chen, P., Chen, H.: Angora: efficient fuzzing by principled search. CoRR
abs/1803.01307 (2018)

8. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR abs/1406.1078 (2014). http://arxiv.org/abs/1406.1078

9. Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based
models for speech recognition. CoRR abs/1506.07503 (2015). http://arxiv.org/abs/
1506.07503

10. Coppit, D., Lian, J.: Yagg: an easy-to-use generator for structured test inputs.
In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2005, pp. 356–359. ACM, New York (2005). https://
doi.org/10.1145/1101908.1101969. http://doi.acm.org/10.1145/1101908.1101969

11. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic
reverse engineering of input formats. In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS 2008, pp. 391–402. ACM,
New York (2008). https://doi.org/10.1145/1455770.1455820. http://doi.acm.org/
10.1145/1455770.1455820

12. Godefroid, P.: Random testing for security: blackbox vs. whitebox fuzzing. In: RT
2007 (2007)

13. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2008, pp. 206–215. ACM, New York (2008). https://doi.
org/10.1145/1375581.1375607. http://doi.acm.org/10.1145/1375581.1375607

http://lcamtuf.coredump.cx/afl/
http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/1809100.1809110
https://doi.org/10.1145/1809100.1809110
http://doi.acm.org/10.1145/1809100.1809110
https://doi.org/10.1145/3140587.3062349
https://doi.org/10.1145/3140587.3062349
http://doi.acm.org/10.1145/3140587.3062349
https://doi.org/10.1109/ICST.2011.48
https://doi.org/10.1109/ICST.2011.48
http://doi.ieeecomputersociety.org/10.1109/ICST.2011.48
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1506.07503
https://doi.org/10.1145/1101908.1101969
https://doi.org/10.1145/1101908.1101969
http://doi.acm.org/10.1145/1101908.1101969
https://doi.org/10.1145/1455770.1455820
http://doi.acm.org/10.1145/1455770.1455820
http://doi.acm.org/10.1145/1455770.1455820
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
http://doi.acm.org/10.1145/1375581.1375607

Automatic Test Data Generation for a Given Set of Applications 325

14. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security test-
ing. Queue 10(1), 20:20–20:27 (2012). https://doi.org/10.1145/2090147.2094081.
http://doi.acm.org/10.1145/2090147.2094081

15. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: machine learning for input
fuzzing. In: Rosu, G., Penta, M.D., Nguyen, T.N. (eds.) Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, 30 October–3 November 2017, pp. 50–59. IEEE Computer
Society (2017). https://doi.org/10.1109/ASE.2017.8115618

16. Hanford, K.V.: Automatic generation of test cases. IBM Syst. J. 9(4), 242–257
(1970). https://doi.org/10.1147/sj.94.0242

17. Höschele, M., Zeller, A.: Mining input grammars from dynamic taints. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, pp. 720–725. ACM, New York (2016). https://doi.org/10.
1145/2970276.2970321. http://doi.acm.org/10.1145/2970276.2970321

18. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing. Wiley,
New York (2001)

19. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based
testing. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol.
3964, pp. 19–38. Springer, Heidelberg (2006). https://doi.org/10.1007/11754008 2

20. Majumdar, R., Xu, R.G.: Directed test generation using symbolic gram-
mars. In: Proceedings of the Twenty-Second IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2007, pp. 134–143. ACM,
New York (2007). https://doi.org/10.1145/1321631.1321653. http://doi.acm.org/
10.1145/1321631.1321653

21. Mathis, B.: Dynamic tainting for automatic test case generation. In: Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2017, pp. 436–439. ACM, New York (2017). https://doi.org/10.
1145/3092703.3098233. http://doi.acm.org/10.1145/3092703.3098233

22. Newsome, J.: Dynamic taint analysis for automatic detection, analysis, and signa-
ture generation of exploits on commodity software (2005)

23. Paduraru, C., Melemciuc, M.: An automatic test data generation tool using
machine learning. In: Maciaszek, L.A., van Sinderen, M. (eds.) Proceedings of
the 13th International Conference on Software Technologies, ICSOFT 2018, Porto,
Portugal, 26–28 July 2018, pp. 506–515. SciTePress (2018). https://doi.org/10.
5220/0006836605060515

24. Paduraru, C., Melemciuc, M., Stefanescu, A.: A distributed implementation
using apache spark of a genetic algorithm applied to test data generation.
In: Bosman, P.A.N. (ed.) Genetic and Evolutionary Computation Conference,
Berlin, Germany, 15–19 July 2017, Companion Material Proceedings, pp. 1857–
1863. ACM (2017). https://doi.org/10.1145/3067695.3084219. http://doi.acm.org/
10.1145/3067695.3084219

25. Purdom, P.: A sentence generator for testing parsers. BIT Numer. Math. 12(3),
366–375 (1972). https://doi.org/10.1007/BF01932308

26. Rajpal, M., Blum, W., Singh, R.: Not all bytes are equal: Neural byte sieve for
fuzzing. CoRR abs/1711.04596 (2017). http://arxiv.org/abs/1711.04596

27. Sirer, E.G., Bershad, B.N.: Using production grammars in software test-
ing. SIGPLAN Not. 35(1), 1–13 (1999). https://doi.org/10.1145/331963.331965.
http://doi.acm.org/10.1145/331963.331965

28. Stoenescu, T., Stefanescu, A., Predut, S., Ipate, F.: Binary analysis based on sym-
bolic execution and reversible x86 instructions. Fundam. Inform. 153(1–2), 105–
124 (2017). https://doi.org/10.3233/FI-2017-1533

https://doi.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/2090147.2094081
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1147/sj.94.0242
https://doi.org/10.1145/2970276.2970321
https://doi.org/10.1145/2970276.2970321
http://doi.acm.org/10.1145/2970276.2970321
https://doi.org/10.1007/11754008_2
https://doi.org/10.1145/1321631.1321653
http://doi.acm.org/10.1145/1321631.1321653
http://doi.acm.org/10.1145/1321631.1321653
https://doi.org/10.1145/3092703.3098233
https://doi.org/10.1145/3092703.3098233
http://doi.acm.org/10.1145/3092703.3098233
https://doi.org/10.5220/0006836605060515
https://doi.org/10.5220/0006836605060515
https://doi.org/10.1145/3067695.3084219
http://doi.acm.org/10.1145/3067695.3084219
http://doi.acm.org/10.1145/3067695.3084219
https://doi.org/10.1007/BF01932308
http://arxiv.org/abs/1711.04596
https://doi.org/10.1145/331963.331965
http://doi.acm.org/10.1145/331963.331965
https://doi.org/10.3233/FI-2017-1533

326 C. Paduraru et al.

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. CoRR abs/1409.3215 (2014). http://arxiv.org/abs/1409.3215

30. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional, Reading (2007)

31. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. SIGPLAN Not. 44(6), 87–97 (2009). https://doi.org/
10.1145/1543135.1542486. http://doi.acm.org/10.1145/1543135.1542486

32. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). https://doi.org/10.
1002/stvr.456

33. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
CoRR abs/1409.2329 (2014). http://arxiv.org/abs/1409.2329

http://arxiv.org/abs/1409.3215
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1145/1543135.1542486
http://doi.acm.org/10.1145/1543135.1542486
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
http://arxiv.org/abs/1409.2329

Guiding the Functional Change Decisions
in Agile Project: An Empirical Evaluation

Asma Sellami1(B), Mariem Haoues2(B), Nour Borchani1(B),
and Nadia Bouassida1(B)

1 Mir@cl Laboratory, ISIMS, University of Sfax, BP 242, 3021 Sfax, Tunisia
{asma.sellami,nadia.bouassida}@isims.usf.tn, borchani.nour@gmail.com
2 Mir@cl Laboratory, FSEGS, University of Sfax, BP 1088, 3018 Sfax, Tunisia

mariem.haoues@isims.usf.tn

Abstract. Agile methods are becoming increasingly used in software
industry as a response to the challenges of managing the frequent changes
during the software life-cycle. However, an important number of agile
projects yield unsatisfactory results and end up with failure. This is due
mainly to a lack of structured change control process. A well-defined
change control process gives software industry a significant competi-
tive advantage. This paper describes an evaluation of functional changes
affecting either an ongoing sprint or an implemented sprint. This eval-
uation can greatly assist the development teams in making appropriate
decisions. We quantitatively and qualitatively evaluate 15 software devel-
opment projects using agile (scrum) method. We also investigate the use
of COSMIC Functional Size Measurement method for a rapid quantifi-
cation and evaluation of a change request.

Keywords: Functional change · Software requirements ·
Functional size measurement · User story description ·
COSMIC-ISO 19761 · Scrum · User stories · Agile

1 Introduction

Software projects are incredibly hard to manage when compared to other kinds of
projects. This is due mainly to invisibility, complexity, conformity and change-
ability of the software products in comparison to other products [15]. Hence,
software managers need an effective change control process to ensure the trade-
offs between the particular project constraints (budget, duration and scope),
while ultimately satisfying the customers’ needs.

At the beginning of the Software Life-Cycle (SLC), requirements are often
unclear, ambiguous, and incomplete. Hence, they may change frequently during
the software development. In addition, other reasons may cause the requirements
change (e.g., missing functionality, defects corrections, etc.) [7]. However, the cost
of a requirements change at an early phase of the SLC is relatively low compared to
the cost of changing requirements at a later phase [15]. For this reason, researchers
c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 327–348, 2019.
https://doi.org/10.1007/978-3-030-29157-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_15

328 A. Sellami et al.

adapted two strategies to reduce the cost of software requirements change: (i)
anticipating changes, and (ii) use flexible models more adapted to embrace change
such as Agile methods.

Currently, agile methods (e.g., extreme programming, scrum, crystal, etc.)
are increasingly being adopted in software organizations. eXtreme Program-
ming and Scrum methods are the most popular [13]. They are flexible and more
adapted to the software evolution. In addition, agile methods encourage an active
collaboration between development teams and the customer/user (i.e., product
owner), who is present during each phase of the SLC.

Although scrum is gaining popularity in comparison with other agile meth-
ods, Gilb considers that 61% of agile projects end up with failure [17]. This
is due mainly to the lack of comprehensive documentations in scrum [16], the
inappropriate application of scrum concepts, the limited use of standardized
measures, and the poorly change control. For a successful project development,
Gilb reported that it is important to use standardized measurement on review-
ing development progress, re-evaluating user stories priorities, etc. In addition, a
well-defined change control process is required at any step of the scrum process,
even within an ongoing sprint.

Requirements for a software system project are classified into three categories:
Functional User Requirements (FUR), Non-Functional Requirements (NFR),
and Project Requirements and Constraints (PRC) [5]. FUR express “what the
software shall do in terms of tasks and services” [5]. NFR include “any require-
ment for a hardware/software system or for a software product, including how it
should be developed and maintained, and how it should perform in operation” [5].
PRC describe “how a software system project should be managed and resourced
or constraints that affect its performance” [5]. Depending on the changed require-
ments, change requests are classified as (i) functional changes, and (ii) technical
changes [1]. In fact, a functional change affects the FUR. While, a technical
change may affect the NFR or the PRC. In our research studies, we addressed
the functional change requests.

In practice, change requests in scrum process are usually evaluated by
“experts”. Actually, the development team may have the required knowledge
about the changed product and the required modifications that must be done
with respect to the change request. However, change evaluations that is based
only on the expert judgment is hardly criticized. Since there is no guarantee of
their effectiveness [4]. Thus, it is necessary to use a well-defined measurement
method to assess a change request.

In our previous work, we introduced an automated functional change evalu-
ation approach applied in scrum process based on the COSMIC Functional Size
Measurement (FSM) method [23]. Sizing a functional change in terms of COS-
MIC Function Point (CFP) units will provide a real evaluation of the change
request [18]. An appropriate evaluation of a change request will help the decision-
makers responding to the change. In this paper, we provide an empirical evalu-
ation of the proposed automatic approach in [23].

Guiding the Functional Change Decisions in Agile Project 329

The remaining of this paper is organized as follows: Sect. 2 presents firstly
an overview of the scrum process, functional size measurement, and COSMIC
ISO/IEC 19761 method. Secondly, it discusses some related works. Section 3
presents our proposed approach for change evaluation in scrum process. In
Sect. 4, we present the recommendations to answer a functional change request.
In Sect. 5, we evaluate our approach and discuss several threats to validity.
Finally, Sect. 6 concludes the presented work and outlines some of its possible
extensions.

2 Background

2.1 Overview of the Scrum Process

Scrum process allows a better communication between the development team
and the product owner. For a successful scrum project, the development team
must learn how to manage themselves efficiently. In addition, the product owner
must be actively involved in every single phase of the software development.
Scrum appears to work better with small projects that require five to nine per-
sons in a development team including designers, developers and testers. Never-
theless, some companies adapt scrum for large-scale projects [13].

The scrum process, illustrated in Fig. 1, starts with a high-level definition of
the project scope. Scrum uses the product backlog as a list of stories created by
the product owner based on their initial requirements. These stories may increase
or decrease in size based on decisions made throughout the software development.
The list of stories is prioritized by the product owner to be used as an iterative
input for different sprints (Iterations) [21]. Thus, the active involvement of the
product owner is mandatory to explain, elucidate the next iteration that should
be implemented and evaluate/test the work done.

Fig. 1. Scrum software development process [2].

For a single sprint, four types of meetings should be held: sprint planning
meeting, daily stand up meeting, sprint retrospective meeting, and sprint review

330 A. Sellami et al.

meeting. The stories to be implemented in a sprint are captured during the
planning meeting. They are selected from the product backlog according to their
priorities and placed in a sprint backlog. In practice, usually, only the first two or
three sprints are identified and planned. Daily stand up meetings are held during
the sprint to discuss: what has been done, what are you going to do, and what
are the issues [9]. Each sprint is ended by a sprint retrospective meeting, during
which the team reviews the sprint and decides which change will be made, and
how they can improve their work in the next sprint.

As we mentioned previously, scrum uses the user stories to represent the user
requirements at different levels of details. A user story is a requirement written in
a specific way illustrating the type of user, feature or functionality that the user
want to do in order to realize some benefit [9]. Below the user story description
adapted in practice.

This description identifies Who will do the user story or find it valuable
<user type>, What it can be used for <feature or functionality>, and Why it
is valuable or important <value or expected benefit>.

As a <user type>
I want to <feature or functionality>
so that <value or expected benefit>

Typically, development team members use the user story point to determine
the effort required for the accomplishment of a user story compared to other user
stories in the same product backlog. Although its popularity, user story point
is not a good estimation technique. It has been widely criticized (cf., [8,10,12],
etc.). In fact, user story point is only meaningful for a specific development team
and project. Thus, it is necessary to use a standardized method that allows the
measurement of the product functional size. In addition, the study in [10] proved
that using COSMIC in agile projects gives a better results in estimating the
effort needed to accomplish a user story. For these reasons, we selected COSMIC
ISO/IEC 19761.

2.2 Functional Size Measurement and COSMIC ISO/IEC 19761
Method

Software size measurement throughout the SLC is used mainly for estimating the
software development effort/cost and in driving decisions on the development
project activities. The Functional Size Measurement (FSM) methods measure
the software size from the FUR. Function Point Analysis (FPA) is the first
FSM method proposed by Allan Albrecht in 1979. FPA is supported by the
“International Function Point Users Group” and ISO since 2003 (IFPUG-ISO
20926:2009). Thereafter, researchers proposed several methods to improve the
original FPA method such as NESMA, MK II, FiSMA, and finally COSMIC.

COSMIC considers that a FUR involves a number of functional processes.
Each functional process is detailed by a set of sub-processes of two types: data
movement and data manipulation. A data movement moves a data group from/to

Guiding the Functional Change Decisions in Agile Project 331

a functional user (respectively Entry and eXit data movement) or from/to a
persistent storage (respectively Read and Write data movement). Software size
is measured by counting one CFP (COSMIC Function Point) for each data
movement. The size of each functional process is measured separately. The sizes
of all functional processes are added to provide the software size.

COSMIC is the most straightforward method that measure the size of a
change to software. It defines a functional change as “any combination of addi-
tions of data movements or of modifications or deletions of existing data move-
ments” [11]. To measure the Functional Size of a Functional Change, referred
to as FS(FC), COSMIC attribute one CFP for each changed data movement
regardless of the change type (addition, deletion, or modification). The FS(FC)
is given by the aggregation of the sizes of all the added, deleted and modified
data movements. The functional size of the software after a functional change is
given as the sum of all added data movements minus the functional size of all
removed data movements [11] (Fig. 2).

Functional users:
Humans
Other software
Hardware devices

Functional
Sub-processes

Persistent
storage

Entry

eXit

Read Write

1 entering
data group

1 exiting
data group

1 retrieved
data group

1 data group
to be stored

Functional
process Boundary

Fig. 2. COSMIC data movements [11].

2.3 Related Work

Decision-making process in agile project has received an increased interesting
in recent years. For instance, Drury-Grogan & O’Dwyer explored the decision-
making in scrum process and identified the factors that may influence the deci-
sions made during the sprint planning and daily scrum meetings [14]. The authors
conducted 34 semi-structured interviews and 18 observations with four agile
teams. They showed that, in practice, agile teams follow sometimes a process
for making-decisions during the sprint planning and daily scrum meetings. Deci-
sions are made in a collaborative manner by the scrum team members. The
main factors that may influence the decisions made according to this study are:

332 A. Sellami et al.

sprint duration, experience and resource availability. The decision-making pro-
cess includes mainly the following steps: (i) problem identification, (ii) solution
development, and (iii) selection of best alternative.

Decisions-making in agile, for example after a change request, are usually
made based on the scrum team members’ experiences. Although experts’ judg-
ment is much closer to reality, it is often considered as subjective [4]. For this
reason, it is required to provide quantitative values to the decisions-makers in
order to help them making appropriate decisions.

Researchers and practitioners agree that agile development provides a rapid
response methodology to handle requirements change. Thus, many research stud-
ies have addressed the issues of managing changes in scrum process. For instance,
Lloyd et al., addressed the problem of requirements changes during the software
development in distributed agile development [20]. They proposed a supporting
tool to help managing requirements changes in distributed agile development.
On the other hand, St̊alhane et al., proposed to analyze the impact of technical
change requests [24]. In particular, this study focused on the safety require-
ments. Thus, two main questions have been addressed: (i) will the requirement
and design affect the safety? and (ii) will the update affect the safety? Regarding
the use of functionality measures in agile project, Commeyne et al., proved that
the use of ISO standards to measure the size of agile projects is mandatory [10].
This study demonstrated the reliability of COSMIC in estimating the size and
therefore the effort required to accomplish the defined requirements.

Table 1. Summary of the proposals focused on requirements change in scrum process.

Study Focus Type Findings

Lloyd et al. [20] Requirements change

management in distributed agile

development

Experimental A supporting tool

Commeyne et al. [10] Evaluation of teams’

productivity using COSMIC

Experimental COSMIC is more reliable in

estimating models with much

smaller variances

St̊alhane et al. [24] Impact of technical changes in

safety requirements

Exploratory A supporting tool that ensures

the validity of safety

Table 1 summarizes the main proposals that focused on the requirements
changes in scrum process. We noticed that some studies focused on functional
changes (cf., [20]) while other studies focused on technical changes (cf., [24]).
However, changes in these papers have been always considered as new require-
ments. In addition, none of the previous studies used a change control process.
Thus, no changes evaluation is provided. However, it is important to evaluate
requirements’ changes and provide useful information for the right audience.
This will certainly help during the software maintenance as well as for new
software development. Moreover, change evaluation is usually based on experts’
judgment. Whereas, experts’ judgment evaluation is less transparent compared
to any other techniques and depends mainly on the experts’ skills.

Guiding the Functional Change Decisions in Agile Project 333

In practice, usually, scrum teams do not allow changes in the middle of an
iteration, since developers may already have preceded the implementation. In
fact, practitioners consider that changes during an ongoing sprint may introduce
defects. However, we consider that same changes must be authorized during an
ongoing sprint. For example, a change request that proposes the deletion of a
user story selected in the current sprint must be authorized. Since it is useless
to implement a user story that will be deleted in the next sprint. Nevertheless,
changes introduced during an ongoing sprint need prioritization.

3 Change Evaluation in Agile Context

This section illustrates our approach that proposes to evaluate a functional
change in scrum process using COSMIC ISO/IEC 19761 [11]. Thus, we pro-
pose a detailed user story description that provides the required information to
apply COSMIC. Thereafter, we provide our algorithm that can be used for user
stories prioritization. Then, we present measurement formulas to measure the
functional size of software products using user story format. Later, we describe
our research method that suggests different phases to be used in evaluating a
functional change and making-decision responding to a change request.

3.1 Detailed User Story Description

In scrum, there is no standard user story representation. Thus, different tem-
plates have been proposed mainly to describe what the users will need the soft-
ware for. In addition, user stories are used at a high level of details [12]. This
will impact not only the size measurement but also the quality of requirements
statements. In order to guarantee the quality of measurement and requirements,
we propose a detailed description of user story that represents all the information
to apply COSMIC (see Fig. 3). Where:

– <UserType> is the user of the user story referred to as the functional user
in COSMIC.

– <Action> and <Object> are used to replace the concept “feature or func-
tionality” in the user story description provided in Sect. 2.1. In fact, the “fea-
ture or functionality” is a combination of an action and an object that the
action will be applied on.

– <value or expected benefit>: It is used to characterize the successful
ending of user story.

– <NFR> describes the non-functional requirements.
– <Attachments> any attachment that help defining the user story such as

GUI.

The <value or expected benefit>, <NFR>, and <Attachments> are optional
in the user story description.

In general, a user story could have finer or coarser granularity than functional
processes. That is a user story could be a fraction of a functional process or

334 A. Sellami et al.

a set of functional processes. In our study, we consider that each user story is
associated to a functional process. Thus, two user stories could not have the same
[<UserType>, <Action>, <Object>, and <value or expected benefit>]. The
user story description in Fig. 3 provides more details in comparison with the old
one. But, it does not represent the functional sub-process. Hence, moving to the
scenario description is required to apply COSMIC. At this level, we distinguish
the following concepts:

– <User>: External actor could be a human actor (e.g., moderator, customer,
etc.) or an external system in a direct relation with the software to be mea-
sured.

– <ActionType>: the action that will be applied on a data group is restricted
to a number of verbs (e.g., select, read, etc). These verbs are classified into
four corpses: entry actions, read actions, write actions, and exit actions (see
Appendix). These actions represent the sub-process in each user story. Thus,
a sub-process can be a data movement or a data manipulation. This depends
on whether or not it transfers data.

– <DataTransfered>: represents the data that have been transferred in each
sub-process. <DataTransfered> in COSMIC corresponds to the “data group”
concept.

– <ActionDefinition>: gives a summary of the user story purpose.

Fig. 3. Detailed user story description format [23].

3.2 Prioritizing User Stories

Algorithm 1 is used to help prioritizing user stories in the product/sprint backlog.
Hence, it can be used when selecting user stories from the product backlog and
when re-organizing user stories in an on-going sprint after a change.

In scrum, user stories are prioritized as requested by the product owner
[6]. However, the product owner may not have enough knowledge about the
implementation details. Hence, ordering user stories based only on priority is
not sufficient. In fact, the developer’s view is also important in the user stories

Guiding the Functional Change Decisions in Agile Project 335

prioritization. Taking into account the developer’s perspective is important to
maximize the business value released at the end of every sprint. Therefore, we
propose to balance the user story for product owner and development team
perspectives according to mainly three parameters: importance, priority, and
functional size. The priority of user stories is defined by the product owner (i.e.,
P1 is more prior than P2, P2 is more prior than P3, etc.). The importance of a
user story can be Essential or Desirable. User stories in the same cluster of classes
(the same data base, service, etc.) have the same importance. The functional size
is measured using COSMIC.

Algorithm 1. Prioritizing user stories.
Aim : Prioritizing user stories.
Require: P(US) the priority of user story (US).

Imp(US) the importance of user story (US).
FS(US) the functional size of user story (US).

Ensure : User stories organized by taking into account their priorities and
importance first of all and then their functional sizes.

1 begin
2 if Imp(USi) = Imp(USj) & P(USi) != P(USj) then
3 Select the more prior user story ;

4 else if Imp(USi) != Imp(USj) & P(USi) != P(USj) || P(USi) = P(USj)
then

5 Select the most important (Essential) user story ;

6 else if Imp(USi) = Imp(USj) & P(USi) = P(USj) then
7 Select the user story with minimum size ;

8 else if Imp(USi) = Imp(USj) & P(USi) = P(USj) & FS(USi) = FS(USj)
then

9 Select the user story that requires less demand on resources (time or
budget) ;

On the other hand, developers identify the status of a user story that can be
used to control the development progress. Thus, the status of a user story1, as
shown in Fig. 4, can be:

– New is the status of a user story in the product backlog.
– To do is the status of a user story assigned to an on-going sprint.
– In Progress is the status of a user story currently being implemented.
– To Verify is the status of a user story ready for testing.
– Done is the status of a user story tested with success in the customer envi-

ronment.

As it is described in [23], we kept only the Done and In Progress status.

1 https://www.dreamstime.com/stock-illustration-scrum-task-kanban-board-
sticky-notes-whiteboard-post-agile-software-development-hanging-tasks-team-
image91765825.

https://www.dreamstime.com/stock-illustration-scrum-task-kanban-board-sticky-notes-whiteboard-post-agile-software-development-hanging-tasks-team-image91765825
https://www.dreamstime.com/stock-illustration-scrum-task-kanban-board-sticky-notes-whiteboard-post-agile-software-development-hanging-tasks-team-image91765825
https://www.dreamstime.com/stock-illustration-scrum-task-kanban-board-sticky-notes-whiteboard-post-agile-software-development-hanging-tasks-team-image91765825

336 A. Sellami et al.

New DoneTo VerifyIn ProgressTo Do

Fig. 4. User stories status in scrum process.

3.3 Sizing Software from User Stories Description

This section proposes measurement formulas that can be used to measure the
software functional size based on the description of its user stories. Note that the
functional size of the product backlog can be different from the functional size
of the increment product. In fact, changes always happen in the scrum process.
Hence, new functionality may appear, while others may be modified or deleted.
The functional size of the product backlog is given by measuring the sizes of all
sprints initially identified. While, the functional size of the increment product
depends on the functional size of the implemented sprints.

The functional size of the product backlog or the increment product is equal
to the sum of the functional sizes of all the sprints it includes (see Eq. 1).

FS(P) =
n∑

i=1

FS(Si) (1)

Where:

– FS(P) is the functional size of the product backlog or the increment product.
– FS(Si) is the functional size of sprint i.
– n is the number of sprints initially identified in the case of product backlog size

measurement or the number of implemented sprints in the case of increment
product size measurement.

The functional size of a sprint is equal to the sum of the functional sizes of
all the user stories it includes (see Eq. 2).

FS(Si) =
m∑

j=1

FS(USij) (2)

Where:

– FS(Si) is the functional size of sprint i (1 ≤ i ≤ n).
– FS(USij) is the functional size of the user story j in Si.
– m is the number of user stories in sprint Si.

Guiding the Functional Change Decisions in Agile Project 337

The functional size of a user story is equal to the sum of the functional sizes
of its actions (see Eq. 3).

FS(USij) =
p∑

k=1

FS(Actijk) (3)

Where:

– FS(USij) is the functional size of the user story j in Si.
– FS(Actijk) is the functional size of action Actijk in USij (1 ≤ i ≤ n and 1 ≤

j ≤ m).
– p is the number of actions in user story j.

3.4 Research Method

Accepting or rejecting a functional change request depends on two main factors:
the functional size of the changed user story and the user story status (done or
undone). In fact, the functional size of a functional change gives a real evaluation
of the change [18]. A change in an ongoing sprint, in an implemented sprint
or in the product backlog may be handled with or without extra cost/time.
Consequently, every functional change needs to be evaluated. In our previous
study, we evaluate a functional change proposed in an ongoing or an implemented
sprint [23]. This evaluation is used later to provide recommendations to the
decision-makers to accept, defer or deny a functional change request.

In Fig. 5, we present the different phases of this study. In scrum, a change
request is proposed by the product owner or the development team members. It
should be expressed in terms of user story format to identify the changed user
story (noted by USa). Then, we provide for its impact analysis. The status of
the changed user story may be either done (i.e., the change is in an implemented
sprint or an ongoing sprint) or an undone user story (i.e., the change is in an
ongoing sprint). In the case of an ongoing sprint, we identify the attributes of the
sprint where the change occurs (e.g., size, start date, etc.) and measure respec-
tively the FS(FC), the FS(USa) and the functional sizes of all the undone user
stories in the same sprint. In the case of an implemented sprint, we measure the
FS(FC) and the FS(USa). These measures are used to evaluate the functional
change. This evaluation will be used to help in making decision (i.e., accept,
deny or defer a functional change request). More details about this step will
be provided in Sect. 4. If a change is deferred or denied, the development team
members must communicate the decision to the change requester. The commu-
nication is needed in order to resolve problems and ensure that expectations
and values are understood. The development team members must explain to
the product owner how long the change is going to take, and its impact on the
project progress. After making the decision, it is required to update the docu-
ments to track all changes that are to be implemented. The change request is
then implemented. It is send later for revision and testing.

338 A. Sellami et al.

Fig. 5. Proposed method.

Functional Change Evaluation in an Ongoing Sprint. At the moment
when a functional change appears, an ongoing sprint may contain both done
and undone user stories. Thus, if the status of the changed user story (USa) is
undone, our method proposes to compare the FS(FC) to the functional size of
all the undone user stories in the same sprint. Hence, different baselines will be
used to control the status of the functional change (see Table 2). Whereas, if the
status of the USa is done, we compare the FS(FC) to the functional size of USa.

Table 2. Evaluating a functional change request where USa status = undone.

Low Moderate High

1 CFP 2 CFP ≤ FS(FC) ≤ FS(US undone) FS(FC)>FS(US undone)

A “High” functional change is a change with a functional size bigger than
the total functional sizes of undone user stories in the same sprint. It will have a
potential impact on the software development progress. However, the functional
size of a “Low” functional change is equal to 1 CFP. This change can be handled
without any impact on the software development progress. Whereas, a “Moder-
ate” functional change is a change with functional size lowest than the functional
size of undone user stories in the same sprint. It will produce few changes in the
software development progress.

Functional Change Evaluation in an Implemented Sprint. An imple-
mented sprint in the increment product includes a number of done user stories.

Guiding the Functional Change Decisions in Agile Project 339

Hence, a functional change affecting a done user story means that the work that
has been already done must be changed. Thus, an additional time and effort
may be required to handle the change (Table 3).

Table 3. Evaluating a functional change request where USa status = done.

Low Moderate High

1 CFP 2 CFP ≤ FS(FC) ≤ FS(USa) FS(FC)>FS(USa)

A “High” functional change is a change with a functional size bigger than
the functional size of the changed user story in the implemented sprint (USa).
An important effort may be required to implement this change. However, the
functional size of a “Low” functional change is equal to 1 CFP. This change
can be handled without any required effort. However, a “Moderate” functional
change is a change with functional size less than the functional size of the user
story affected by the change in the implemented sprint. A little effort may be
required to implement a “Moderate” change.

4 Deciding on a Functional Change Request

Software functional size can be used not only for effort/cost estimations but also
for making decisions (e.g., budget decision, portfolio decision, etc.) [3]. In this
section, we provide some recommendations for the decision makers (cf., product
owner, development team, scrum master) that can be used to help in making
decision regarding a functional change request. Recall that a functional change
may affect either an ongoing sprint or an implemented sprint. These decisions
are as follows:

– Accept the functional change request which means implement the change in
the current sprint.

– Deny the functional change request which is made only if the change proposes
a new software (re-start the development from the beginning).

– Defer the functional change request to the next sprint means accept the
change and implement it in the next sprint not in the current one.

4.1 Functional Change in an Ongoing Sprint

Algorithm 2 provides recommendations that can be used in making decisions
when the change type is a modification and affects a user story selected to be
implemented in the ongoing sprint. These recommendations are based mainly
on the comparison between the functional size of the functional change, the
functional size of all undone user stories in the current sprint (noted by FS(US
undone) in Algorithm 2), and the functional size of the changed user story (noted

340 A. Sellami et al.

by FS(USa) in Algorithm2). For instance, if the functional size of the functional
change is greater than the total sizes of all the undone user stories in the current
sprint, we suggest to defer the change request. Hence, the changed user story
is deleted from the current sprint and added after modification, with respect to
the change request, to the next sprint. In the case when the functional size of
the functional change is less than the total sizes of all the undone user stories in
the current sprint, it is required to compare the functional size of the functional
change to the FS(USa) before the change (noted by FS(USa)i in Algorithm2).
Thus, if the FS(FC) is greater than the FS(USa)i, we suggest to defer the change
request, and the USa after the change (noted by (USa)f in Algorithm2) is added
to the next sprint. Whereas, if the functional size of the functional change is less
than the FS(USa)i, the decision will be made based on the impact of the change
on the FS(USa)i. In the case when a functional change proposes the addition of
a user story without changing any user story in the sprint, a comparison must
be done between the functional size of the functional change and the functional
sizes of all the undone user stories in the sprint. Hence, if the functional size of
the functional change is less than the FS(US undone), the functional change is
accepted. Otherwise, the functional change is deferred to the next sprint. The
deletion of a change request do not have any affect on the development progress.

4.2 Functional Change in an Implemented Sprint

To carry out a functional change in an implemented sprint, it is required to dis-
cuss the change with the product owner. In fact, changing an implemented sprint
means re-work (i.e., re-doing a work that already has been done as requested by
the product owner). In the case of an implemented sprint, we suggest to deny
the change. However, in order to satisfy the product owner needs, we provide
some analysis that allow the development team to determine the importance of
the change such as a comparison between the time spent in implementing the
changed user story and estimate the required time to re-develop the user story
after the change. These analyses are provided in Algorithm3. Hence, this algo-
rithm do not provide recommendations to answer a functional change request but
it provides some warnings to remember the product owner about the importance
of the functional change, whether it is really needed or not.

5 Evaluation

This section evaluates our automatic approach for guiding the change evaluation
process so that the decision makers will reach appropriate decisions responding to
functional change requests. Firstly, in this evaluation, we used 15 end of studies
projects implemented using scrum process. Then, we collected the feedback from
two experts about our proposed approach. Finally, we discuss some threats to
validity of our approach including internal, external, construct and conclusion
validity.

Guiding the Functional Change Decisions in Agile Project 341

Algorithm 2. Deciding on a functional change in an ongoing sprint [23].
Aim : Deciding on a FC in an ongoing sprint
Require: FS(FC), FS(US undone), and FS(USa).
Ensure : Recommendations

1 begin
2 if FS(FC) > FS (US undone) then
3 defer the FC to the next sprint;
4 delete (USa)i from ongoing sprint /* (USa)i is US before the FC */
5 add (USa)f to next sprint /* (USa)f is US after the FC */

6 else if FS(FC) ≤ FS(US undone) then
7 if FS(FC) > FS(USa)i then
8 defer the FC to the next sprint;
9 delete (USa)i from current sprint;

10 add (USa)f to next sprint;

11 else if FS(FC) ≤ FS(USa) then
12 if FS(USa)f > FS(USa)i then
13 /* the FS(USa) after the change is greater than the FS(USa)

before the change */ if remainingtime (USa)f ≤ requiredtime &
teamprogress = early then

14 accept the FC;
15 delete (USa)i from the current sprint;
16 add (USa)f to the current sprint;

17 else
18 defer the FC;
19 delete (USa)i from the current sprint;
20 add (USa)f to the next sprint;

21 else if FS(USa)f < FS(USa)i then
22 /* the FS(USa) after the change is lower than the FS(USa)

before the change */
23 accept the FC;
24 delete (USa)i from the current sprint;
25 add (USa)f to the current sprint;

26 else if FS(FC) = 1 then
27 accept the FC;
28 delete (USa)i from the current sprint;
29 add (USa)f to the current sprint;

5.1 Comparative Evaluation

To check how well the functional change status affects the decision making within
the scrum process, we conduct an experiment with 15 end of studies projects
between 2016 and 2018. The projects list is very diversified, it includes mobile
apps, web applications, business applications, and real-time software. All these
projects have been implemented during four months.

342 A. Sellami et al.

Algorithm 3. Deciding on a functional change in an implemented sprint.
Aim : Deciding on a functional change in an implemented sprint
Require: FS(FC), FS(USa), USa priority, priorities P, FS(USs), devtime, USa

real DevTime
Ensure : Warnings

1 begin
2 FC percentage = FS(FC) * 100 div FS(USa)
3 Avr DevTime =

∑
devtime div

∑
FS(USs)

4 if USa importance = Essential then
5 alert (you are going to change an Essential User Story with + FC

percentage) ;

6 else if USa priority < P(n div 2) then
7 alert (This FC could highly impact other user stories as it was

implemented in an early phase) ;

8 else if Avr DevTime < USa real DevTime then
9 alert (this US took more time in development then the average time

needed to accomplish a US with the same functional size. It may
contain extra data manipulation) ;

Case Studies and Results. The measurement results are given in Table 5.
For each project we measure its functional size before and after the change
noted in Table 5 respectively by FSi(sw) and FSf(sw). Then we measure the
functional size of the change request manually and automatically using our tool
noted in Table 5 respectively by FS(FC)m and FS(FC)aut. Based mainly on
the functional size of the functional change, we determine the functional change
status manually and automatically as listed in Table 5 respectively by FC status
m and FC status aut.

Evaluation Metrics. By analyzing all the results listed in Table 5, we noted
that the tool gives exactly the same results (software functional size and status
identification) for business applications, web applications and real time applica-
tion. However, for the mobile apps (e.g., Restaurant management system) our tool
could not measure correctly the functional size of the functional change as well as
the functional change status. In fact, this deviation can be related to the update
or reading information from the data storage device. It depends on whether the
data are stored in an internal or an external data storage devices [19].

We compared the manual results to the automatic results generated by our
tool by using the precision (see Eq. 4) and the recall (see Eq. 5) metrics. Thus,
our tool achieved a precision and a recall equal to 93%.

Precision =
TP

TP + FP
(4)

Guiding the Functional Change Decisions in Agile Project 343

Recall =
TP

TP + FN
(5)

Where:

– TP: number of functional changes’ status correctly identified by our tool.
– FP: number of functional changes’ status incorrectly identified by our tool.
– FN: False negatives are the number of functional changes’ status incorrectly

not identified.

5.2 Experts Evaluation

We verified our proposed automatic approach through an empirical evaluation
based on a comparison between our results built by applying our algorithms and
the results provided by two scrum experts.

The two experts are experienced and certified scrum practitioners. They
have more than five years of experience in software industry, especially in lead-
ing scrum team analyzing and identifying customers needs, writing user stories,
preparing maintaining, and prioritizing product backlog. However, they use user
story point in their estimation and they do not have any idea about COSMIC.

Experts were asked to evaluate how important is a change request in the
15 selected end of studies projects. For this purpose, we provided the following
information for each change request to the experts: software functional size before
and after the change, the functional change description, and the functional size
of the functional change. Experts were requested to classify each change request
into low, moderate, and high. Each expert provided his own evaluation based on
his experiences.

Experimentation results are given in Table 4. As shown in this Table, for 73%
of the projects, the classification given by experts and our evaluation are exactly
the same. All the high change requests have been correctly identified. In fact, the
functional size of high change requests is usually considered as important in com-
parison to other change requests in different projects. However, for small change
requests (with functional size equal to 3 CFP or 4 CFP), experts may provide
an evaluation different to our evaluation. For example, for the change request
proposed in the generic marketplace (with software functional size equal to 3
CFP) different evaluations have been provided. In fact, based on our proposed
approach, this change request is classified as Moderate change while Expert 1
classified this change as Low. Hence, although the functional size of the functional
change can be used as an indication of the change evaluation [18], experts usu-
ally compare the functional size of a change to other changes (in other projects)
without taking into account the functional size of the changed software within
the same project.

5.3 Threats to Validity

This work proposed an automatic approach to be used when software is being
developed. This automatic approach generates the functional size of the software

344 A. Sellami et al.

Table 4. A comparison between our evaluation and experts’ evaluations.

Software project Our evaluation Expert 1 Expert 2

Generic marketplace Moderate Low Moderate

Worlds web travel guide Moderate Moderate Low

Platform statistics Moderate Moderate Moderate

Human resource management system Moderate Moderate Low

E-commerce High High High

Product lifecycle management Moderate Moderate Moderate

Facial recognition system Moderate Moderate Low

SWIFT messages management Moderate Moderate Moderate

Stats forge detection Moderate Low Moderate

Social network for FIFA 2022 Moderate Low Moderate

Socle drupal set up High High High

Restaurant management system Low Low Low

C-Reg system High High High

Emergency monitoring system Moderate Low Moderate

Salary ProVision Moderate Moderate Low

before and after a change request, and the functional changes are measured and
evaluated. Therefore, decision-makers will be guided to decide which functional
change request should be accepted, deferred or denied.

The validity of the above results are subject to four types of threats (internal,
external, construct, and conclusion) [25]:

– The internal validity threats are related to four issues. The first issue affecting
the internal validity of our proposed approach is its dependence on a detailed
description of the user story; such details may not always be available. Thus,
for further work, we consider that approximate/rapid functional change eval-
uation is required for an urgent functional change request. The second issue
is related to the productivity of the development team. In fact, two func-
tional processes with exactly the same functional size do not require always
the same development time. Moreover, the rapidity of the development team
at the beginning of the sprint and the end of the sprint are not the same
(this depends on the development team skills). Thus, for further work, we
will use the structural size measurement method proposed by [22] for more
precise change evaluation (i.e., to take into account the data manipulations).
The third issue is related to the evaluation of the functional change which is
based only on its functional size without taking into account the functional
change type (delete, addition or modification). However, we consider that this
factor is important in the evaluation of a functional change request. Finally,
in this study we did not take into account the relationship between the user
stories. In fact, a functional change affecting a use story may lead to an impact

Guiding the Functional Change Decisions in Agile Project 345

Table 5. Experimentation results.

Software project FSi(sw)mFSf(sw) FC description FS(FC)mFS(FC)aut FC status m FC status aut

Generic

marketplace

47 CFP 50 CFP Add US “Contact

administrator”

3 CFP 3 CFP Moderate Moderate

World’s web travel

guide

70 CFP 76 CFP Add US

“communicate

with other client”

6 CFP 6 CFP Moderate Moderate

Platform statistics 80 CFP 88 CFP Add US “Create

user account”

8 CFP 8 CFP Moderate Moderate

Human resource

management

system

43 CFP 46 CFP Add US “Create

account”

3 CFP 3 CFP Moderate Moderate

E-commerce 40 CFP 56 CFP Add three US 16 CFP 16 CFP High High

Product lifecycle

management

50 CFP 57 CFP Add user story

“Create user

account”

7 CFP 7 CFP Moderate Moderate

Facial recognition

system

22 CFP 17 CFP Delete US “add

employee”

5 CFP 5 CFP Moderate Moderate

SWIFT messages

management

27 CFP 31 CFP Add US “add new

category”

4 CFP 4 CFP Moderate Moderate

Stats forge

detection

47 CFP 51 CFP Add US “create a

new account”

4 CFP 4 CFP Moderate Moderate

Social network for

FIFA 2022

28 CFP 31 CFP Add US “publish

a welcome

announcement”

3 CFP 3 CFP Moderate Moderate

Socle drupal set

up

75 CFP 85 CFP Add US “module

management”

10 CFP 10 CFP High High

Restaurant

management

system

197 CFP 197 CFPModifying the US

“Logon” users will

logged on using an

ID

3 CFP 1 CFP Low Moderate

C-Reg system 105 CFP 97 CFP Changes between

two versions V1.0

and V2.0

92 CFP 92 CFP High High

Emergency

monitoring system

24 CFP 30 CFP Add US “logon” 6 CFP 6 CFP Moderate Moderate

Salary ProVision 79 CFP 83 CFP Add US

“Registration”

4 CFP 4 CFP Moderate Moderate

on the functional size of other use stories. For further work, we will focus on
the relationships between user stories and change propagation.

– The external validity threats deal with the possibility to generalize the results
of this study to other case studies including the use of the proposed automatic
approach or tool and the decision algorithms. In this paper, we used 15 end
of projects studies to test the proposed tool. Although our experimentation
showed that this tool provide exactly the measurement results for the majority
of the software applications types, testing the proposed tool and algorithms
in an industrial environment is required.

– The threats of construct validity is related to the relation between theory and
observation. In fact, the experimental study showed that the proposed tool
is able to correctly identify the functional change status for the web, busi-
ness, and real time software applications. While the tool could not correctly
identify the functional change status for mobile apps. To avoid this deviation,

346 A. Sellami et al.

it is required to distinguish between internal and external data storage. In
addition, we believe that testing this tool with real data in industrial prac-
tice is important. On the other hand, the projects used in this paper include
mobile apps, web applications, business applications, and real-time software.
However, other projects types have not been considered in this paper such as
embedded software. Future work in this topic should be performed.

– Conclusion Validity: in summary, we used 15 end of project studies, where
two supported by the COSMIC-ISO 19761 Community (C-Reg system and
restaurant management system). We tested the proposed automatic approach
based on those case studies. The provided measurement results have been
reviewed by two experts. Nonetheless, we believe that getting the feedback
from the decision makers is important to guarantee the reliability of our
results.

6 Conclusion

In practice, changes in software requirements are inevitable and present a main
issue. Any deviation from those requirements may lead to project failure or
induce an extra effort and much time through the software life cycle to satisfy
the change request.

This paper proposed an automatic COSMIC-based approach that supports
the functional changes control throughout the scrum process. It can be used by
decision makers to meet user’s expectations, identify problems in future projects,
and estimating future software project effort. In fact, our tool is based on a
detailed description of user stories and their sizing using COSMIC method.
The evaluation of a change request and the decision made responding to the
change are based mainly on its functional size and its impact on the development
progress. This increase the users/product owner’s satisfaction, and guarantee the
project success.

For further work, we consider that approximate/rapid change evaluation is
required especially for an urgent change request. In addition, it is important to
estimate the change effort.

Appendix

Entry Corpus: These verbs express Entry data-movements: Assign, change,
choose, click, create, edit, give, input, modify, provide, re-enter, select, submit,
type, update.

Exit Corpus: These verbs express eXit data-movements: display, edit, list, out-
put, post, present, print, return, send, Show update, view.

Read Corpus: These verbs express read data-movements: find, get, obtain,
post, read, recognize retrieve, Validate, Verify.

Write Corpus: These verbs express write data-movements: add, archive,
change, create, define, delete, edit, insert, record, register, remove, save, store,
Update.

Guiding the Functional Change Decisions in Agile Project 347

References

1. ISO/IEC 14143–1: Information Technology - Software Measurement - Functional
Size Measurement. Part 1: Definition of Concepts (2007)

2. Scrum software development process (2018). https://www.maxxor.com/
3. Abran, A.: Software Metrics and Software Metrology. IEEE Computer Society

(2010)
4. Abran, A.: Software Project Estimation: The Fundamentals for Providing High

Quality Information to Decision Makers, 1st edn. Wiley/IEEE Computer Society
Press (2015)

5. Abran, A., et al.: Guideline on non-functional & project requirements: how to
consider non-functional and project requirements in software project performance
measurement, benchmarking and estimating (2015)

6. Ambler, S.W.: User Stories: An Agile Introduction (2014)
7. Bano, M., Imtiaz, S., Ikram, N., Niazi, M., Usman, M.: Causes of requirement

change - a systematic literature review. In: EASE 2012 (2012)
8. Berardi, E., Buglione, L., Santillo, L., Symons, C., Trudel, S.: Guideline for the

use of COSMIC FSM to manage agile projects, v1.0 (2011)
9. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley

Professional (2004)
10. Commeyne, C., Abran, A., Djouab, R.: Effort estimation with story points and

cosmic function points: an industry case study (2016)
11. COSMIC: The COSMIC Functional Size Measurement Method, Version 4.0.2,

Measurement Manual, October 2017
12. Desharnais, J.M., Kocaturk, B., Abran, A.: Using the cosmic method to evaluate

the quality of the documentation of agile user stories. In: 2011 Joint Conference
of the 21st International Workshop on Software Measurement and the 6th Inter-
national Conference on Software Process and Product Measurement, pp. 269–272,
November 2011

13. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations. J. Syst. Softw. 119(C), 87–108 (2016)

14. Drury-Grogan, M., O’Dwyer, O.: An investigation of the decision-making process
in agile teams. Int. J. Inf. Technol. Decis. Mak. 12(6), 1097–1120 (2013)

15. Fairley, R.E.: Managing and Leading Software Projects. Wiley/IEEE Computer
Society Press (2009)

16. Furtado, F., Zisman, A.: Trace++: a traceability approach to support transitioning
to agile software engineering. In: The 24th International Requirements Engineering
Conference (RE), pp. 66–75, September 2016

17. Gilb, T.: Why agile product development systematically fails, and what to do about
it! (2018)

18. Haoues, M., Sellami, A., Ben-Abdallah, H.: Functional change impact analysis
in use cases: an approach based on COSMIC functional size measurement. Sci.
Comput. Program. Spec. Issue Adv. Softw. Meas. 135, 88–104 (2017)

19. Haoues, M., Sellami, A., Ben-Abdallah, H.: A rapid measurement procedure for siz-
ing web and mobile applications based on COSMIC FSM method. In: Proceedings
of the 27th International Workshop on Software Measurement and 12th Interna-
tional Conference on Software Process and Product Measurement, IWSM-Mensura
2017, Gothenburg, Sweden, 25–27 October 2017, pp. 129–137 (2017)

20. Lloyd, D., Moawad, R., Kadry, M.: A supporting tool for requirements change
management in distributed agile development. Future Comput. Inform. J. 2(1),
1–9 (2017)

https://www.maxxor.com/

348 A. Sellami et al.

21. Schwaber, K.: Agile Project Management with Scrum (Developer Best Practices),
1st edn. Microsoft Press (2004)

22. Sellami, A., Hakim, H., Abran, A., Ben-Abdallah, H.: A measurement method for
sizing the structure of UML sequence diagrams. Inf. Softw. Technol. 59, 222–232
(2015)

23. Sellami, A., Haoues, M., Borchani, N., Bouassida, N.: Orchestrating functional
change decisions in scrum process using COSMIC FSM method. In: Proceedings
of the 13th International Conference on Software Technologies (ICSOFT), Porto,
Portugal, 26–28 July, pp. 516–527 (2018)

24. St̊alhane, T., Hanssen, G.K., Myklebust, T., Haugset, B.: Agile change impact
analysis of safety critical software. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F.
(eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 444–454. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10557-4 48

25. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering: An Introduction. Kluwer Academic Publishers
(2000)

https://doi.org/10.1007/978-3-319-10557-4_48

Wise Objects for IoT (WIoT): Software
Framework and Experimentation

Ilham Alloui(B), Eric Benoit, Stéphane Perrin, and Flavien Vernier

Université Savoie Mont Blanc - LISTIC, 5 chemin de Bellevue, Annecy-le-Vieux,
74940 Annecy, France

{ilham.alloui,eric.benoit,stephane.perrin,flavien.vernier}@univ-smb.fr

Abstract. Despite their expansion, Internet of Things (IoT) technolo-
gies remain young and require software technologies to ensure infor-
mation management in order to deliver sophisticated services to their
users. Users of IOT technologies particularly need systems that adapt to
their use and not the reverse. To meet those requirements, we enriched
our object oriented framework WOF (Wise Object Framework) with a
communication structure to interconnect WOs (Wise Objects) and IoT.
Things from IoT are then able to learn, monitor and analyze data in
order to be able to adapt their behavior. In this paper, we recall the
underlying concepts of our framework and then focus on the intercon-
nection between WOs and IoT. This is enabled by a software bus-based
architecture and IoT related communication protocols. We designed a
dedicated communication protocol for IoT objects. We show how IoT
objects can benefit from learning, monitoring and analysis mechanisms
provided by WOF to identify usual behavior of a system and to detect
unusual behavior. We illustrate our approach through two case studies
in home automation. The first shows how a wise smart presence sensor
learns on a classroom occupation. The second shows how a wise system
helps us to see correlation among several WOs.

Keywords: Wise object · IoT · Software architecture ·
Communication · Knowledge analysis

1 Introduction

The Internet of Things (IoT) is known as the extension of current Internet to pro-
vide connection and communication between devices or physical objects referred
to as “Things” [7]. Even growing substantially in number and use, the Internet
of Things (IoT) technologies remain young and require software technologies to
ensure data/information management among things in order to deliver sophisti-
cated services to their users. Examples are home automation (HA) things which
are getting more and more involved within our daily life: HA things are either
within a ready-to-use systems (like boxes) or singles to be integrated to an
existing system or platform. In both cases, when it is provided, support for data
c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 349–371, 2019.
https://doi.org/10.1007/978-3-030-29157-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_16&domain=pdf
http://orcid.org/0000-0001-7684-6502
https://doi.org/10.1007/978-3-030-29157-0_16

350 I. Alloui et al.

monitoring and analysis is very limited [11]. Users need to have a remote access
to things, for instance to switch off lights they forgot or turn off the strove. Com-
munication provided by existing IoT technologies should then involve basic data
or information such as current state of things. Moreover, users of a HA need the
technology adapts to their use and not the reverse: in our previous example, the
system (instead of users) would for instance detect that unusually the lights are
switched on at midnight. Then it would either adapt to this change (i.e. register
this new behavior as usual) or take initiative to raise an alert or to switch the
lights off depending on the knowledge it has (i.e. if no presence is detected).

This implies that the system is able to: (a) identify usual behavior; (b) detect
the changes in the way it is being used and (c) either react by taking initiative
or change its behavior to comply with those new usages. Our proposal is that
intelligent software systems could enhance IoT with useful capabilities such as
learning, monitoring and adaptation to meet users’ requirements.

Starting from works on IoT and on intelligent software systems [6,12] we
aim to add value to IoT through WOF (Wise Object Framework) [3], a software
object framework that provides things (be them physical or software), built-in
mechanisms for learning, monitoring, analyzing and managing data/information
(see Fig. 1). Those software mechanisms allow IoT-based systems like in HA to:
(a) identify common usage (i.e. usual behavior of their users); (b) detect changes
in usage (unusual behavior); (c) adapt to the new usage (system in automatic
mode) or simply give information to the users (manual mode).

Fig. 1. Example of home automation wise object system [2].

Identifying a system common usage by software is not an easy work. At the
best of our knowledge, common usage is usually studied from a psychological
point of view for the human [1] or from the signal processing point of view with
change detection methods [5] for data, but never from the software point of
view. This research issue raises many questions such as: what is considered as
common usage? Is common usage necessarily related to time? Is there an interval
of acceptance of unusual behavior? Which one? What methods/techniques better
identify common usage? In which context? etc.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 351

As users’ behavior identification and system adaptation rely on data collected
from connected things that may be distributed as is the case in IoT, we realized
a software bridge linking IoT objects to our WOF software objects. In this paper
we focus mainly on this link between software “wise” objects (WOs) and IoT
through the WOF. WOs can be seen as software avatars related to things. This
paper extends [2] and introduces a new experiment which for the first time
highlights the behavior of several WOs in the same environment and shows that
correlated unusual behavior among several WOs may result from a same cause.
The first case study presented in [2] illustrates the behavior of a single wise thing
(a smart presence device) and mainly shows how such thing is able to manage
and use presence events to result knowledge on a classroom occupation during
a year. The new case study in this paper is based on a system of three wise
things. Our aim is twofold: (a) show that our approach works also with several
wise things and (b) highlight its ability to show correlated unusual behavior
among several things. Such knowledge indicates that behavior change may result
from a same triggering event which is very useful for diagnosing or explaining
unusual behaviour of a system. In Sect. 2 we recall the concept of WO and
WOF, the behavior of a WO, its interaction with other WOs as well as our first
representation of common usage. Section 3 introduces the connection between a
WO and an IoT, from the software interaction point of view in Sect. 3.1 and from
the communication medium and protocol point of view in Sect. 3.2. In Sect. 4,
we present two cases studies in home automation domain with the results we
obtained using the framework. The first case study focus is on the behavior of
a single wise thing while the second one focus is on a system of several wise
things. Finally, we discuss our approach and conclude with ongoing work and
some perspectives.

2 WO and WOF

2.1 WOF

WOF is founded on the concept of WO. Our design decisions behind the WOF
are guided by the following requirements: software support should be the less
intrusive possible, reusable and generic enough to be maintainable and used in
different application domains with different strategies. Developers should be able
to use the framework with the minimum of constraints and intrusion in the source
code of the application. We consequently separated, in the WOF, the “wisdom”
and intelligence logic (we name abilities) of the objects from application services
(we name capabilities) they are intended to render. As shown by Fig. 2, we
designed the WOF according to a layered architecture:

– the core layer, i.e. the framework building blocks, consists of a set of inter-
related packages and classes that embed basic mechanisms for introspection,
monitoring, analysis and communication among WO instances. WO is the
main class from which a system developer may specialize application-level
classes such as the Switch and Shutter classes within the home automation
system in the example;

352 I. Alloui et al.

– the software system layer: contains the package and classes related to soft-
ware systems developed for end-users. The home automation cited so far is
a representative of such systems. Classes representing things can inherit the
structure and behavior of the WO class in the Framework layer;

– the instantiated software system: gathers the instantiated application software
systems from the previous layer. Instances of application-related classes are
avatars for physical or logical objects (things).

Fig. 2. WOF concrete architecture [2].

To build a WO system, the WOF provides a communication bus (Gava)
for the interaction between WOs. Interactions are managed through a manager
object that establishes the configured pairing between events and actions accord-
ing to a publish-subscribe pattern. Figure 3 illustrates this interaction.

Fig. 3. UML sequence diagram of the interaction between a WO switch and a WO
shutter [2].

When a method is invoked on a WO instance: (a) the wise part of the instance
raises an event at the end of the invocation; (b) the manager catches the event

Wise Objects for IoT (WIoT): Software Framework and Experimentation 353

and sends orders to all WO instances interested in the initial event (paired
WOs); (c) the paired WO instances execute the corresponding method; (d) the
manager checks that the order has been correctly executed. The communication
and pairing system are detailed in [4] and were initially limited to communication
and pairing between WO instances.

2.2 Concept of WO

We define a Wise Object (WO) as a software object able to learn by itself on
itself and on its environment (external knowledge), to deliver expected services
according to the current state and using its own experience. Wisdom refers to
the experience such object acquires by its own during its life. We intentionally
use terms dedicated to humans as a metaphor. A Wise Object is intended to
“connect” to either a physical entity/device (e.g. a vacuum cleaner) or a logical
entity (e.g. a software component). As wise object could be a cleaner able to
learn on how to clean a room depending on its shape and dimensions. In the
course of time, the cleaner could in addition improve its performance (less time,
less energy consumption, etc.). A WO is then characterized by:

– its autonomy: it is able to behave with no human intervention;
– its intelligence: it observes itself and its environment, analyzes them and uses

its knowledge to decide how to behave (introspection, monitoring, analysis,
planning);

– its adaptivity: it changes its behavior when its environment changes;
– its ability to communicate: with its environment that includes other WOs

and end-users in different locations.

A WO built-in behavior involves two states: The dream state and the awake
state, see Fig. 4.

Fig. 4. UML state diagram of WO built-in behavior [4].

354 I. Alloui et al.

The dream state is dedicated to acquiring knowledge about its own capa-
bilities and to analyzing usage-related knowledge. The awake state is the state
where the WO executes its methods invoked by other objects (external service
requests) or by itself (internal requests), and, monitors such execution while
recording usage-related knowledge.

A WO’s capability-related knowledge is itself stored as a state diagram. The
WO executes the methods of its sub-class (i.e. an application class like Switch)
to know the effect on the attributes of this sub-class instances. Each set of
attribute values produces a state in the diagram and method invocation produces
a transition (see Fig. 5). The main constraint in this step is that the method
invocation must have no effect on the application when the WO is dreaming.
This is solved thanks to a bus-based system architecture described in [3] with
disconnection/re-connection mechanisms.

Fig. 5. UML state diagram of a switch built by its WO.

Regarding knowledge on an application object usage, two kinds of situations
are studied: emotions and adaptation of behavior. We define an emotion of WO
as a distance between its current usage and its common usage (i.e. unusual
usage). WO can be stressed if one of its methods (services) is more frequently
used or conversely, a WO can be bored. WO can be surprised if one of its method
is used and this was never happened before. Emotions of a WO are a projection of
its current behavior with regard to its usual behavior. In Subsect. 2.3, we present
a Data Analyzer based on a statistical method we implemented in WOF to iden-
tify usual/unusual behavior. When a WO expresses an emotion, this information
is caught by the WO system that may consequently lead to behavior adaptation.
At the object level, two instances of the same class that are used differently –
different frequencies, different methods... – may have different emotions, thus,
different behavior and interaction in the WO system.

A WO uses its capability-related knowledge to compute a path from a current
state to a known state [8]. According to the frequency of the paths used, a
WO can adapt its behavior. For instance, if a path is often used between non-
adjacent states, the WO can build a shortcut transition between the initial and
destination states and then build the corresponding method within its subclass
instance (application object). This consequently modifies the capability-related
graph of this instance.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 355

2.3 WOF and Data Analyzers

The WOF provides a connector to an evolving set of analyzers whose role is
to identify a WO common behavior (usage) and to detect emotions when they
occur. Each analyzer connected to a WO is waked-up during the WO’s dream
state to analyze the last events and to update its knowledge.

Let us recall our preliminary model of common usage introduced in [4]. It is
based on a statistic approach and defines the common usage as weaker forms of
stationarity (WSS) from the statistic point of view.

Let x(i) be a continuous and stationary time random process. A process is a
WSS process if and only if:

E [x(i)] = μ ∀i,
V ar [x(i)] = σ2 �= ∞ ∀i,
Cov [x(i), x(i − k)] = f(k) = ρk ∀i∀k.

As the common usage can change along the time, we compute the stationarity
– the common usage – on a sliding window of size w:

E [x(i)] = μ(t) ∀i ∈ [t − w, t],
V ar [x(i)] = σ2(t) �= ∞ ∀i ∈ [t − w, t],
Cov [x(i), x(i − k)] = f(k, t) = ρk(t)∀i ∈ [t − w, t]∀k,

where the time series x(i) are the occurrences
[
et−w
τ . . . ei

τ . . . et
τ

]
of a given event

– i.e. transition – τ between t−w and t.
As our system cannot be perfectly stationary, we relax the definition of WSS

and consider that the system is in common use if and only if:

μ(t + 1) ∈ [μ(t − w), μ(t)]
σ2(t + 1) ∈ [σ2(t − w), σ2(t)]
ρk(t + 1) ∈ [ρk(t − w), ρk(t)].

In other words, if the new mean, variance or autocovariance at time t + 1 are in
their corresponding ranges, the new event occurrence at time t + 1 is considered
as a common usage, otherwise it is unusual.

According to this definition, we define an emotion as the distance between
the current usage at t + 1 and the common usage between t − w and t. This
distance d(x(i)) is defined by the following centered normalized scale between
−1 and 1, where:

d(x(i)) =

⎧
⎨

⎩

d(E [x(i)]),
d(V ar [x(i)]),
d(Cov [x(i), x(i − k)]),

where
d(E [x(i)]) = E[x(i)]−E[x(j)]

(max(E[x(j)])−min(E[x(j)]))/2 ,

d(V ar [x(i)]) = V ar[x(i)]−V ar[x(j)]
(max(V ar[x(j)])−min(V ar[x(j)]))/2 ,

356 I. Alloui et al.

d(Cov [x(i), x(i − k)]) =
Cov[x(i),x(i−k)]−Cov[x(j),x(j−k)]

(max(Cov[x(j),x(j−k)])−min(Cov[x(j),x(j−k)]))/2 ,

j ∈ [t − w, t] and E [x(j)], V ar [x(j)] and Cov [x(j), x(j − k)] are respectively
the means of means, variances and autocovariances on the range [t − w, t].

Thus, when a new event occurs at t+1, we compute the distance d(x(i)) with
the common usage between t−w and t. If all values of the distance – d(E [x(i)]),
d(V ar [x(i)]) and d(Cov [x(i), x(i − k)]) – are between −1 and 1, the behavior
is considered as common, otherwise it is identified as unusual relatively to the
knowledge on the common usage.

3 From WOF to IoT

To meet IoT related requirements cited in Sect. 1, we extended our framework
WOF [4] with mechanisms to relate “things” to WOs. We thus define an object
in WIoT as a peer composed of a physical object (thing) and a logical (software)
object (WO). A WO can be viewed as an avatar of a thing. From now on, the
term object will be used to refer to the thing-avatar peer (Fig. 6).

Fig. 6. WIoT architecture [2].

Wise Objects for IoT (WIoT): Software Framework and Experimentation 357

3.1 WO Model for IoT

When a thing (e.g. a physical switch) joins the application system (e.g. HA sys-
tem), its corresponding avatar (a Switch class instance) is automatically instan-
tiated and this pair forms then a new object. This means that the avatar’s class
of the thing exists. As it is not desirable and even not relevant to provide every-
thing in the system with the ability of learning and analysis, we introduced a
class named Generic WO without the introspection ability.

Like WO class instances, instances of Generic WO are able to construct
their capability-related graph, but they cannot use introspection to analyze their
behavior. A Generic WO instance learns its behavior from state change messages
it receives from the thing it is related to. This way, a generic WO can be related
to any “thing” able to communicate its state and state changes. This is not
a strong constraint as recent physical connected objects are generally able to
communicate changes in their state. In the case of home automation, devices
using ZigBee [15], Z-Wave [14] or other modern systems, communicate their
capabilities through profiles or other kinds of descriptions. Figure 7 presents
the UML Class diagram of WOs including the Generic WOs. As shown in the
figure, a generic WO is a WO where the “invoke” method is redefined. While
through the “invoke” method, a WO can invoke methods of its sub-classes (i.e.
application classes whose instances are avatars for things), the class Generic WO
has no subclass. Then when the “invoke” method is called, it just updates its
usage-related diagram (knowledge on the way the thing is being used).

Fig. 7. UML class diagram of generic WO [2].

358 I. Alloui et al.

Figure 8 illustrates the communication flow between a physical switch and
its associated physical shutter. The “PEvent/PAction” and “LEvent/LAction”
are respectively sent through the physical (P) and logical (L) communication
media.

Fig. 8. UML sequence diagram of the interaction between a physical switch and a
physical shutter [2].

When the switch is activated, it sends the message “PEvent:on!” to its avatar.
When receiving this message, the wise part of the avatar learns that the state of
its associated object has changed, thus it executes the method on itself, “on()”
in the example, to be in a consistent state with its thing. When this is done, the
switch object sends “LEvent:on!” message to inform the system that its state
has changed.

Let us note the system can manage pure logical objects namely objects that
are not linked to physical objects. Figures 9 and 10 illustrate 2 cases. The former,
Fig. 9, presents the sequence diagram of a logical switch activated respectively
through software and through a physical shutter. Physical devices and end-users
are represented as external actors (fellow symbol) to a WOS whereas logical
things (software) are represented as internal actors (blue boxes).

Figure 10, presents the sequence diagram of a physical bell push that launches
on the system a video application to check who is ringing. In this case, the video
application is considered as part of the WOS.

In the cases where a thing has no avatar in the system, it is associated with a
generic WO. Figure 11 illustrates this configuration where a physical switch has
an action on an object that is not explicitly defined in the system. Although it
is named “unknown:Actor”, it must respect the communication protocol defined
in Sect. 3.2. Let us notice that there is no constraint about the fact that the
“unknown:Actor” must be a logical or a physical object, it can be of both kinds.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 359

Fig. 9. UML sequence diagram of the interaction between a logical switch and a phys-
ical shutter [2]. (Color figure online)

Fig. 10. UML sequence diagram of the interaction between a physical bell push and a
logical video application [2].

Fig. 11. UML sequence diagram of the interaction between a physical switch and a
physical object not implemented as WO (no avatar) and managed as a generic WO [2].

360 I. Alloui et al.

As shown in the different sequence diagrams, the WOF offers the required
support for all combinations between two objects, be them physical (e.g. devices)
or logical (i.e. software). Let us however note that, if a physical object is used – a
thing – a logical object – its avatar – is necessarily associated with it. Moreover,
a physical object does not necessarily have a known avatar in the system. In this
case, it must respect communication constraints detailed in the next section.

3.2 Communication Protocol

The WOF provides a communication system for WOs to interact and exchange
information. It corresponds to communications between objects in the logi-
cal world (the software application that manages those objects). The physical
objects/things are from IoT and communicate in our case through an MQTT
communication system [13]. Thus we implemented a bridge between both those
systems in WOF to enable communication between WOs and things.

As the communications between WOs and between a WO and its associated
physical object are not of the same nature, we defined two kinds of communica-
tions we named respectively “logical” (WO-WO) and “physical” communications
(WO-thing). From the conceptual point of view, this approach can be considered
as a dedicated communication medium. Figure 12 shows this communication flow
among physical things (button and light), their logical avatars (software WOs)
and the manager software object.

Fig. 12. Communication flow between manager, logical and physical objects [2].

From the implementation point of view, WOF uses the publish/subscribe-
based Guava bus and IoT communication is based on MQTT with JSON format

Wise Objects for IoT (WIoT): Software Framework and Experimentation 361

for messages. As both are publish/subscribe-based systems, a simple bridge is used
to exchange messages from one to the other. To separate “logical” and “physical”
communications, we use different types of messages that we defined as follows:

– Physical messages:
• “PhysicNewDevice”: message sent by a physical object when it connects

to MQTT server.
• “PhysicStateChange”: message sent by a physical object when its state

changes; it contains the event that generates the state change.
• “PhysicAction”: message sent to a physical object so that it performs an

action.
• “PhysicGetState”: message sent to a physical object so that it sends its

state; this message type is mainly dedicated to generic WOs so that they
ask the things their state.

• “PhysicState”: message sent by a physical object to indicate its state; this
message is the answer to “PhysicGetState” message.

– Logical messages:
• “LogicNewDevice” message sent by a WO when it is created in the WOF.
• “LogicalStateChange” message sent by a WO when its state changes.
• “LogicalAction” message sent to a WO so that it performs an action.

The bridge only translates Java object messages to JSON objects and vice-versa
according to the following rules:

– the MQTT topic is defined by [basetopic]/[Class] where:
• basetopic is free, “Wo” in our example,
• Class is the name of class message including the package name, for

example a “PhysicAction” message of package “bus” is sent on topic
“WO/bus.PhysicAction”,

– any attribute of the Java object is an attribute of JSON.

Figures 13(a) and (b) illustrate respectively the “PhysicAction” class and an
object that is translated as the following JSON message:

Fig. 13. PhysicAction class used to receive “PhysicAction” message by a WO [2].

362 I. Alloui et al.

MqttConnector from MQTT: Wo/bus.PhysicAction->
{"senderId":"home_automation.Switch:1",
"sendTime":1512984990902,
"receiverId":"Switch:1",
"action":"on"}

The WO identified by id “home automation.Switch:1” sends, at time
1512984990902, the order “on” to its thing identified by “Switch:1”.

Finally, the communication system we built between WOF and IoT allows
us to connect:

– A thing defined in the WOF.
– A thing not defined in the WOF, but that can communicate using our pro-

tocol.
– A thing not defined in the WOF, that communicates with another medium

(ZigBee, ZWave, WiFi...)

The constraint is that the thing must be able to give information on its state
change. Figure 14 illustrates on a switch example the three communication cases.

Fig. 14. An IoT object, like a switch can be connected to WOF according to 3 ways:
(a) the thing can communicate using our MQTT protocol and its avatar exists in the
WOF; (b) the thing can communicate using our MQTT protocol but its avatar does
not exist in the WOF; (c) the thing cannot communicate using our MQTT protocol [2].

4 Experimental Implementation

We experimented our framework and its underlying approach on several exam-
ples. We present in this section two of them: the first one consists of a wise
smart presence sensor in a real situation while the second one consists of a set
of home automation related objects, namely a light, a shutter, a switch and a
heating device. For each case we give a description of the objects, the goal of the
experiment, data used/generated as well as the results and observations we did.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 363

4.1 Use Case 1 Description and Experimental Results

To illustrate the use of WOF including the interconnection of WOs and IoT, we
took the case of a presence smart sensor within a classroom with the objective
to identify the usual usage of the room and detect habit change (unusual behav-
ior). This allows us to experimentally validate our approach of habit change
measurement.

One objective of the case study is to know if our system is able to detect habit
change in relation to a common usage, especially regarding student vacation
periods. The smart presence sensor provides the “presence” state when persons
are in a room and the “no presence” state when not. It is worth noting that the
smart capacity of the sensor offers the possibility to filter the output state: “no
presence” state is delivered if no detection occurs for one minute.

Attempting to identify a common usage (habit) requires a significant volume
of data that depends on the temporal observing window or the number of obser-
vations taken into account. To cover different volumes of data, it is obviously
relevant to consider a long duration of observation. However to avoid a long
experiment, one year in our case, we simulate the smart presence sensor outputs
by using real data coming from the real-time scheduling system of our university.
Thus, real data injected in the system corresponds to the outputs of the smart
presence sensor placed into a classroom. At each “state change” event from the
sensor, a physical timestamped message, including the sensor id, is sent using
MQTT protocol. The next section presents some results of our experimentation.

Figures 15 and 16 illustrate the experiment results according to the definition
of common usage given in Sect. 2.3, with only one k value for covariance. Our
purpose is to highlight the strengths and weaknesses of our first modeling of
common usage. As the focus of this paper is on interconnection between wise
objects and IOT, we do not provide an in-depth analysis of common usage
modeling. This issue will be studied in the future.

In this experiment, we observe for the sensor, the delay between events as well
as the time spent by it in different states. The events are the detection of “new
presence”, when the sensor switches from “no presence” state to “presence” state
and conversely, the detection of “no more presence”, when the sensor switches
from “presence” state to “no presence” state. Figures 15(a) and (b) give the
common usage respectively computed from the “new presence” events and from
the “no more presence” events. In other word, Fig. 15(a), gives the common
variation of delay between two successive “new presence” events. Figures 16(a)
and (b) give the common usage respectively computed from the duration of
presence and the duration of no presence in the room. The results are computed
with 15 days as window size w, any data older than 15 days are forgotten. Thus,
in the range [−1, 1], between green lines in the figures, the behavior is considered
as common usage regarding the last 15 days. Outside the range [−1, 1], behavior
is considered as unusual, we qualify it as “emotion”. The emotional force is
represented by the distance of the behavior to the common usage.

These preliminary results are encouraging. They highlight, from different
points of view – state changes and time spent in a state – the change in the

364 I. Alloui et al.

(a) Classroom usage representation computed from ”new pres-
ence” events

(b) Classroom usage representation computed from ”no more
presence” events

Fig. 15. Common usage and emotion representation based on events [2]. (Color figure
online)

classroom usage. Each part with an important distance from the common usage
corresponds to holidays (in France):

– 1 week for the Halloween holidays in October,
– 2 weeks for the Christmas holidays in December,
– 1 week for the winter holidays in February,
– 1 week for the Easter holidays in April and
– the end of the school year in June.

Each part with a small distance from the common usage corresponds to week-
ends. Let us note that each part detected as unusual depends on the usage done
during the 15 days before. Thus weekends are strongly detected when the room
is frequently used in the week for example between September and December.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 365

(a) Classroom usage representation computed from ”presence”
duration

(b) Classroom usage representation computed from ”no pres-
ence” duration

Fig. 16. Common usage and emotion representation based on time spent in state [2].
(Color figure online)

The holidays are strongly detected before January but, weakly detected after
December. As the observed room is an amphitheater, it is more used at the
beginning of the school year than at the end.

We consider those results as preliminary because there is a combinatorial
problem in using the underlying analysis method. Sensor modeling with 2 states
and 2 transitions leads to 12 graphics, with only one k value for the covariance, to
identify common usage and emotions. For a given object, the maximum number
of “common usage” related graphics is n ∗ a ∗ (2 + nk), where n is the number
of states, a is the number of methods and nk is the possible number of values
of k. Thus, an information fusion step is required to reduce the combinatorial
problem. Another point is that our system does not react if nothing happens
during an unusual period; It detects changes only when an event occurs. The
management of “no event” must also be performed by the system. Both those
points will be addressed in future work.

366 I. Alloui et al.

4.2 Use Case 2 Description and Experimental Results

The second case study focus is on considering a set of objects instead of a single
one as in the first case. The objective behind the experimentation is to be as close
as possible to a real situation. Thus we used the WOF simulator to simulate a
home automation system, within a classroom, composed of four physical objects:
a switch, a light, a rolling shutter and a heating device. As in the previous case,
we would like to know if our system is able to detect habit change in relation
to a usual usage. As several objects are involved in the system, we also would
like to study the behavior correlation among those objects. The usual behavior
is the following:

– each day the heating system is automatically started at 6:00 am and it func-
tions until 6:00 pm;

– each day at 8 am (±5 min), the shutter is manually opened by a teacher or a
student of the first course. Eleven hours later (±30 min), the shutter is closed
by the caretaker;

– the light is manually switched on at 8 am (±5 min), at the arrival of the
teacher and students to the course. It is manually switched off at the end of
the first course, 1 h later (±5 min) and remains off until the following day.

We observe for each object, the delay between events. The events are:

– for the light: the detection of “light on” events, when the sensor switches
from “no light” state to “lighting” state; the reverse holds for the detection
of “light off” events;

– for the shutter: the detection of “shutter open” events, when the actuator
switches from “shutter closed” state to “shutter opened” state; the reverse
holds for the detection of “shutter close” events;

– for the heating: the detection of “heating on” events, when the actuator
switches from “no heating” state to “heating” state; the reverse holds for
the detection of “heating off” events;

Figure 17 depicts the common usage computed respectively for the light, shut-
ter and heating. Each sub-figure gives the common variation of delay between
two successive events on an object (red) as well as the standard deviation (blue).

The results are computed within a memory window size w of 100 events corre-
sponding to a duration of 3 months in our simulator. Data older than 3 months
are forgotten (no longer considered in the computation). Thus, in the range
[−1, 1], between green lines in the figures, the behavior is considered as usual
(common usage) during the last 3 months. Outside the range [−1, 1], behavior is
considered as unusual and the emotional force is represented by the distance of
the behavior to the common usage.

As shown by Fig. 17:

– the heating system behaves as usual: no emotion detected; this is consistent
with the fact that the heating is automatically started and stopped everyday
exactly at the same instants (no random effect);

Wise Objects for IoT (WIoT): Software Framework and Experimentation 367

(a) Classroom usage representation com-
puted from ”light on” events

(b) Classroom usage representation
computed from ”light off” events

(c) Classroom usage representation com-
puted from ”shutter open” events

(d) Classroom usage representation
computed from ”shutter close” events

(e) Classroom usage representation com-
puted from ”heating on” events

(f) Classroom usage representation com-
puted from ”heating off” events

Fig. 17. Common usage and emotion representation based on events. (Color figure
online)

368 I. Alloui et al.

(a) Classroom usage representation com-
puted from ”light on” events

(b) Classroom usage representation
computed from ”light off” events

(c) Classroom usage representation com-
puted from ”shutter open” events

(d) Classroom usage representation
computed from ”shutter close” events

(e) Classroom usage representation com-
puted from ”heating on” events

(f) Classroom usage representation com-
puted from ”heating off” events

Fig. 18. Usage and emotion representation based on events, integrating an unusual
event: a power cut at 10 am the 150th day of the experiment.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 369

– we can notice that for both “light on” and “light off” events, at the beginning
of the time window, there is a chaotic variation resulting an emotion (a sur-
prise): as the events outside the time window are forgotten, events occurring
in the new window are considered unusual by the object that progressively
integrate them as a usual behavior;

– generally there is no significant change in the behavior of the shutter. We can
however note sometimes a slight chaotic perturbation as in the sub-figure of
“light off” events: this is due to the cumulative random effect.

While in the previous situation nothing special happened relatively to the
common behavior, in Fig. 18, we can clearly see different shapes for the behav-
ior of the light and the heating device. Something happened that disturbed the
system without affecting the shutter: a power cut at 10 AM the 150th day of
the experiment (May 21st). In this case we clearly see a variation value outside
the normality boundaries. This translates an emotion that has an impact on
the means computation. As the power cut lasted 2 h, the delay between suc-
cessive events have been disturbed (around 2 h instead of 24). This highlights
the ability of a wise system to show correlated unusual behavior among several
things. Its knowledge monitoring and analysis capabilities are therefore useful
for diagnosing or explaining unusual behaviour of IoT-based systems.

5 Concluding Remarks and Future Work

To meet the growing user requirements for IoT technology-based systems that
adapt to their needs, we propose WOF (Wise Object Framework) [4], an object
oriented framework to develop software-intensive systems (“wise systems”) able
to learn, monitor and analyze data/information among distributed things. We
recalled in this paper the underlying concepts of WO (Wise Object) and WOF
and focused in particular on how to interconnect IoT to WOF to benefit from its
useful built-in mechanisms (namely learning, monitoring, adaptation) and meet
users’ requirements. The communication protocol we propose allows things to
communicate themselves. It is designed as part of WOF. For each thing, we
propose to use a software avatar, a WO in our case so that it become possi-
ble to manipulate and manage this representation of the thing. In this paper,
we focus on the description of the communication structure and especially the
corresponding software as well as the proposed protocol which makes possible
interaction between a wise object and a physical thing.

We show that using the proposed structure, any thing from IoT is manage-
able. The only constraint is that the considered thing uses the proposed com-
munication protocol. Thus, the system is able to communicate with any thing,
whether known or unknown. If a thing is unknown – there is no WO implemen-
tation dedicated to this thing – a generic WO implementation can be used as an
avatar for this thing.

We illustrated our approach on two case studies within home automation
domain and showed how wise things (smart presence sensor, light, etc.) are able
to identify common usage and unusual behavior. This is enabled by analyzers

370 I. Alloui et al.

connectable to WOF: in this paper we presented one of them we built using a
statistic method based on “stationarity” theory.

We show the interest for the system by performing a first experiment based
on real data with a single thing then a second experiment based on simulated
behavior of a classroom using home automation things (a smart presence sensor,
shutter, etc.). One interesting finding comes from the fact that the results show
the changes due to the usage context: vacation or weekends in the first case study
or a power cut in the second case. In the broader context of home automation, we
are convinced that our approach can be useful, for instance to assist old people
in their home (individual or nursing). Authors in [9,10], adopt a user driven
approach and present an interesting study on nursing home users’ expectations
from AAL (Ambient Assistant Living) technologies. One important outcome is
that there is a need for systems able to detect users’ activity level and to notify
the care staff and/or family members about unusual behavior.

In future work, we plan to focus our research mainly on the modeling and the
management of common usage and emotions. As highlighted in the experimental
results, issues of information fusion and of management of situations like “noth-
ing happens during an unusual time” must be addressed to obtain results that
are more accurate, usable and up-to-date upon request. Another important issue
is studying the correlation of behavior among a set of WOs composing a system,
in particular measuring the impact of a WO emotion on the other WOs. The
next step for us is to be able to express emotions with a higher semantic level
than the present one (i.e. the statistical method) in order to communicate lighter
amounts of information to the system. The system can then react according to
an aggregated information rather than multiple pieces of information.

References

1. Aarts, H., Verplanken, B., Knippenberg, A.: Predicting behavior from actions in
the past: repeated decision making or a matter of habit? J. Appl. Soc. Psychol.
28(15), 1355–1374 (2006). https://doi.org/10.1111/j.1559-1816.1998.tb01681.x.
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-1816.1998.tb01681.x

2. Alloui, I., Benoit, E., Perrin, S., Vernier, F.: Wiot: interconnection between wise
objects and IOT. In: Proceedings of the 13th International Conference on Software
Technologies, ICSOFT, vol. 1, pp. 494–505. INSTICC, SciTePress (2018). https://
doi.org/10.5220/0006870205280539

3. Alloui, I., Esale, D., Vernier, F.: Wise objects for calm technology. In: 10th Interna-
tional Conference on Software Engineering and Applications (ICSOFT-EA 2015),
Colmar, France, pp. 468–471. SciTePress, July 2015. https://doi.org/10.5220/
0005560104680471, https://hal.archives-ouvertes.fr/hal-01226219

4. Alloui, I., Vernier, F.: WOF: towards behavior analysis and representation of
emotions in adaptive systems. In: Cabello, E., Cardoso, J., Maciaszek, L.A., van
Sinderen, M. (eds.) ICSOFT 2017. CCIS, vol. 868, pp. 244–267. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93641-3 12

5. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change-
point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017). https://doi.org/10.1007/
s10115-016-0987-z

https://doi.org/10.1111/j.1559-1816.1998.tb01681.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-1816.1998.tb01681.x
https://doi.org/10.5220/0006870205280539
https://doi.org/10.5220/0006870205280539
https://doi.org/10.5220/0005560104680471
https://doi.org/10.5220/0005560104680471
https://hal.archives-ouvertes.fr/hal-01226219
https://doi.org/10.1007/978-3-319-93641-3_12
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z

Wise Objects for IoT (WIoT): Software Framework and Experimentation 371

6. Brun, Y., et al.: A design space for self-adaptive systems. In: de Lemos, R., Giese,
H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems
II. LNCS, vol. 7475, pp. 33–50. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35813-5 2

7. IEC: IoT 2020: Smart and Secure IoT Platform: White Paper. Inter-
national Electrotechnical Commission (2016). https://books.google.fr/books?
id=aItwAQAACAAJ

8. Moreaux, P., Sartor, F., Vernier, F.: An effective approach for home services man-
agement. In: 20th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 47–51. IEEE, Garching, February 2012.
https://doi.org/10.1109/PDP.2012.45

9. Röcker, C., Ziefle, M., Holzinger, A.: Social inclusion in ambient assisted living
environments: home automation and convenience services for elderly users. In:
International Conference on Artificial Intelligence (ICAI 2011), pp. 55–59. CSERA
Press, New York (2011). https://doi.org/10.1007/978-3-319-66808-6 17

10. Singh, D., Kropf, J., Hanke, S., Holzinger, A.: Ambient assisted living technologies
from the perspectives of older people and professionals. In: Holzinger, A., Kiese-
berg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp.
255–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66808-6 17

11. Vishwajeet, H.B., Sanjeev, W.: i-learning IOT: an intelligent self learning system
for home automation using IOT. In: International Conference on Communications
and Signal Processing (ICCSP), April 2015. https://doi.org/10.1109/ICCSP.2015.
7322825

12. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

13. Yassein, M.B., Shatnawi, M.Q., Aljwarneh, S., Al-Hatmi, R.: Internet of things:
survey and open issues of MQTT protocol. In: 2017 International Conference on
Engineering MIS ICEMIS, pp. 1–6, May 2017. https://doi.org/10.1109/ICEMIS.
2017.8273112

14. Z-Vawe: Z-vawe aliance (2018). https://z-wavealliance.org/. Accessed 1 Apr 2018
15. Zigbee: Zigbee aliance (2018). http://www.zigbee.org/. Accessed 1 Apr 2018

https://doi.org/10.1007/978-3-642-35813-5_2
https://doi.org/10.1007/978-3-642-35813-5_2
https://books.google.fr/books?id=aItwAQAACAAJ
https://books.google.fr/books?id=aItwAQAACAAJ
https://doi.org/10.1109/PDP.2012.45
https://doi.org/10.1007/978-3-319-66808-6_17
https://doi.org/10.1007/978-3-319-66808-6_17
https://doi.org/10.1109/ICCSP.2015.7322825
https://doi.org/10.1109/ICCSP.2015.7322825
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1109/ICEMIS.2017.8273112
https://doi.org/10.1109/ICEMIS.2017.8273112
https://z-wavealliance.org/
http://www.zigbee.org/

A Software Product Line Approach to Design
Secure Connectors in Component-Based

Software Architectures

Michael Shin1(&), Hassan Gomaa2, and Don Pathirage1

1 Department of Computer Science, Texas Tech University, Lubbock, TX, USA
{michael.shin,don.pathirage}@ttu.edu

2 Department of Computer Science, George Mason University,
Fairfax, VA, USA

hgomaa@gmu.edu

Abstract. This paper describes a software product line approach to design
secure connectors in distributed component-based software architectures. The
variability of secure connectors is modelled by means of a feature model, which
consists of security pattern and communication pattern features. Applying
separation of concerns, each secure connector is designed as a composite
component that encapsulates both security pattern and communication pattern
components. Integration of these components within a secure connector is
enabled by a security coordinator, the high-level template of which is cus-
tomized based on the selected security pattern features.

Keywords: Software product line � Feature model � Secure connector �
Secure software architecture � Component-based software architecture �
Message communication patterns � Security patterns �
Model-based software design

1 Introduction

This paper describes the design of secure connectors in distributed component-based
software architectures (CBSA) that are composed of components and connectors.
Although connectors are typically used in software architecture [1] to encapsulate
communication mechanisms between components, security concerns can also be
encapsulated in software connectors separately from the application. In order to
facilitate reuse of these connectors, which are referred to as secure connectors [2–6], it
is necessary to design secure connectors that are both modular and reusable.

Each secure connector is designed as a composite component consisting of reusable
security pattern components and communication pattern components. Each security
pattern component encapsulates a security pattern, such as symmetric encryption or
digital signature. Each communication pattern component encapsulates the communi-
cation protocol between application components, such as synchronous or asynchronous
message communication. A secure connector is then constructed by composing security
pattern components and communication pattern components. Integration of security

© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 372–396, 2019.
https://doi.org/10.1007/978-3-030-29157-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_17

patterns and communication patterns within a secure connector is provided by a security
coordinator. Once a secure connector is constructed, it can then be reused in different
applications.

This paper is an extension of our recent paper [7] that described modeling secure
connectors by means of a software product line (SPL) approach. Our earlier work [2–6]
focused on designing single reusable secure connectors in an ad hoc way. Our recent
paper [7] investigated how applying SPL concepts can lead to a more systematic
approach that addresses the inherent variability in the design of secure connectors that
encapsulate the separate concerns of security and communication patterns. This paper
extends our recent work in terms of the coordination templates needed to integrate
security and communication patterns, explains the differences between SPL for secure
connectors and traditional SPL approaches, provides an additional case study of a
synchronous message communication connector, and validates our approach with
android applications.

This paper is organized as follows. Section 2 describes existing approaches to
modeling and designing security concerns in software applications. Section 3 describes
a SPL approach for secure connectors, followed by the feature model for secure
connectors in Sect. 4. Section 5 describes communication and security components.
Section 6 describes security coordinator components and templates. Section 7
describes a secure asynchronous message communication connector derived from a
SPL for secure connectors, followed by a secure synchronous message communication
connector in Sect. 8. Section 9 describes the validation of reusable secure connectors.
Section 10 discusses and compares the SPL approach for secure connectors with
conventional SPL approaches. Section 11 describes the conclusions of this paper and
future research.

2 Related Work

Related work focuses on approaches to designing software architectures for secure
applications, patterns for distributed communication and component-based software
product lines. The authors in [8] proposed SecureUML, which is a UML based
modeling language for model-driven development of secure systems. An extension of
UML for security called UMLsec [9] helps with the expression of security-relevant
information within design diagrams. In model-driven security [10], a system is mod-
eled with its security requirements and security infrastructures are generated.

A distributed CBSA in [1] consists of a set of components and connectors. Com-
munication patterns in CBSA were investigated in [11, 12]. In [13], a connector centric
approach is used to model, capture, and enforce security using software connectors.
Methods in [14] propose SecArch to evaluate architectures with significant security
concerns. Security patterns in [15, 16] address a range of security issues to be taken
into account in the software development lifecycle. The authors describe the problem,
context, solution, and implementation of security patterns, which are intended to help
developers with little or no security expertise to construct secure systems.

A Software Product Line Approach to Design Secure Connectors 373

A software product line (SPL) [17] is a family of software systems that have some
common functionality and some variable functionality. The functionality of a SPL can
be modeled by means of a feature model. In a component-based SPL, each component
has ports with provided and required interfaces. The authors in [18–21] addressed
multiple-view modeling and meta-modeling of SPLs and in [7] addressed a SPL
approach for feature modeling and design of secure connectors. A co-author in [22–24]
investigated respectively the design of SPL architecture for service-oriented systems,
space flight systems, and smart spaces. Dynamic SPLs that dynamically adapt SPL
members at run-time, were investigated in [25–27].

In recent work by the authors [3] described secure asynchronous and synchronous
connectors for modeling the software architectures for distributed applications and the
design of reusable secure connectors. The authors in [4–6] addressed the design of
secure connectors in terms of maintainability and evolution. A co-author in [28–30]
also investigated designing dynamically adaptable and recoverable connectors.

3 Software Product Line for Secure Connectors

A security service [31, 32] is software functionality for realizing a security goal, such
as confidentiality, integrity and availability, which can be implemented by means of
different security techniques. A security service is realized by means of different
security patterns [15, 16], each of which addresses a specific security technique that
realizes a security service. For instance, a confidentiality security service can be real-
ized by means of a symmetric encryption or an asymmetric security pattern [16].

Typical message communication patterns between distributed components are
synchronous message communication with reply and asynchronous message commu-
nication [12]. Communication patterns are frequently used protocols for inter-
component communication. Each communication pattern is designed with a sender
and receiver communication pattern component (CPC), which are encapsulated in a
secure sender and secure receiver connector respectively. A secure connector is
designed by considering the message communication and security patterns required by
application components. A secure connector is a distributed connector, which consists
of a secure sender and secure receiver connector. A secure sender or receiver connector
consists of a security coordinator, one or more security objects, and a communication
object.

In this paper, the reusability of secure connectors is enabled by applying SPL
concepts to model the variability and design of secure connectors. The SPL approach
models the variability of secure connectors in terms of security patterns and commu-
nication patterns. In the SPL, variability in these patterns are modeled as features in a
feature model. The relationships between the features are modeled by means of feature
dependencies. In addition, a feature/component table is used to determine which
communication and security components are needed to realize each feature. To derive a
given secure connector from the feature model, the appropriate features are selected
and the components that realize those features are then selected and integrated.

374 M. Shin et al.

4 Feature Model for Secure Connectors

The feature model (Fig. 1) for secure connectors describes the variability of secure
connectors in terms of communication pattern (CP) and security pattern (SP) features
and the dependency between the features. The feature model consists of one exactly-
one-of-feature group, Communication Patterns, which means that one and only one
feature can be selected from the group, and one at-least-one-of-feature group Security
Patterns, which means that one or more features need to be selected from the
group. The Communication Patterns feature group is composed of three further
exactly-one-of feature groups: the Unidirectional feature group, which consists of three
optional one-way message communication pattern features (CPFs), SMC (synchronous
message communication) without Reply, Broadcast and AMC (asynchronous message
communication) features; the Bidirectional feature group, which consists of two two-
way optional message communication pattern features, Bidirectional AMC and
Subscription/Notification features; and the Message with Single Reply feature group,
which consists of two optional message communication features, AMC with Callback
and SMC with Reply features. The optional communication pattern features are:

In SMC with Reply feature, a sender component sends a message to a receiver
component and waits for a response from the receiver [12]. In SMC without Reply
feature, a receiver component acknowledges a sender component when it receives a
message from the sender [12]. In AMC feature, an asynchronous message is sent from a
sender component to a receiver component and is stored in a queue if the receiver is
busy [12]. Bidirectional AMC feature uses the asynchronous message communication
pattern feature in both directions between the sender and receiver components [12]. In
AMC with Callback feature, a sender component sends an asynchronous service request
message to a server component, which includes the client operation (callback) handle
[12]. Subscription/Notification feature uses the SMC with Reply for client components
to subscribe to receive messages from a server component. The server component
notifies client subscriber components through the AMC pattern [12]. In Broadcast
feature, a server component sends unsolicited messages to all clients [12].

The security pattern features (SPFs) that constitute the Security Patterns at-least-
one-of-feature group (Fig. 1) are the Authenticator, Authorization, Symmetric
Encryption, and Public Key Infrastructure optional features in addition to the Integrity
exactly-one-of-feature group, which consists of two optional mutually exclusive
security pattern features: Hashing and Digital Signature. The Hashing security pattern
feature provides message integrity, which is also provided by Digital Signature
security pattern feature. In addition, Digital Signature feature provides non-repudiation
security. The security pattern features are:

Symmetric Encryption feature prevents secret information from being disclosed to
any unauthorized party. A message sent by a sender is encrypted using a secret key and
is decrypted by the receiver [16]. Hashing feature protects against unauthorized
changes to secret information. A hash value for a message is generated by a sender and
the integrity of the message is verified by the receiver [16]. Digital Signature feature
protects against one party to a transaction later falsely denying that the transaction
occurred. A message is signed by a sender using the sender’s private key and is verified

A Software Product Line Approach to Design Secure Connectors 375

by a receiver [16]. Authenticator feature allows an entity to identify itself positively to
another entity using a password, personal-identification number or challenge response
[16]. Authorization feature protects against unauthorized access to valuable resources
using mandatory access control, discretionary access control, role-based access control
or attribute-based access control [16]. Public Key Infrastructure feature provides
security policies and procedures that create, revoke, manage, distribute, use, store
public certificates and public keys [33].

The Authenticator and Authorization features each require the Symmetric
Encryption feature because a sender’s credentials for authentication and sender’s
parameter for requesting permission should be encrypted to prevent unauthorized
access. Both Authenticator and Authorization features also require the Message with
Single Reply feature due to their need for a response to the original request. In the
Authenticator feature, a sender requests authentication from a server and the server
needs to reply with the authentication result. Similarly, in the Authorization feature, a
sender requests permission from a receiver and the receiver needs to send back the
approval or denial to the sender. The Digital Signature feature requires the Public Key
Infrastructure feature because a sender’s message is signed using the sender’s private
key and a receiver verifies the signed message using the sender’s public key.

requires

«secure connector»
Secure

Connector

«exactly one of feature
group»

«communication pattern»
Communication Patterns

«at-least-one-of feature
group»

«security pattern»
Security Patterns

«optional»
«communication

pattern»
Broadcast

«optional»
«security pattern»

Authenticator

«optional»
«security pattern»

Authorization

«optional»
«security pattern»

Symmetric
Encryption

«optional»
«security
pattern»
Hashing

«optional»
«security pattern»
Digital Signature

«exactly one of
feature group»

«communication
pattern»

Unidirectional

«exactly one of
feature group»

«communication
pattern»

Bidirectional

«optional»
«communication

pattern»
AMC

«optional»
«communication

pattern»
SMC Without Reply

«optional»
«communication pattern»

SMC With Reply

«optional»
«communication pattern»

AMC With Callback

«optional»
«communication pattern»

Bidirectional AMC

«optional»
«communication pattern»
Subscription/Notification

requires

requires

requires

requires

requires

requires

«exactly one of feature
group»

«communication pattern»
Message with Single

Reply

«optional»
«security pattern»

Public Key
Infrastructure

requires

«exactly one of
feature group»

«security pattern»
Integrity

Fig. 1. Feature model for secure connectors.

376 M. Shin et al.

5 Communication and Security Components

Each feature in the feature model for secure connectors is designed using components,
which are then encapsulated into a secure connector. A security pattern feature is
designed as one or more optional security pattern components, whereas a communi-
cation pattern feature is designed as sender and receiver optional communication
pattern components, together with the appropriate variant optional security coordinator
components, as described in Sect. 6.

Table 1 shows each feature in the feature model and their components. The SMC
with Reply feature is designed as a SMC with Reply Sender component for sending
messages to the receiver, a SMC with Reply Receiver component for receiving mes-
sages from the sender, and SMC with Reply Security Sender Coordinator and Receiver
Coordinator components for sequencing the interactions with one or more security
components and with the appropriate communication component. Similarly, the
Broadcast, AMC, Bidirectional AMC and SMC without Reply features are designed as
sender and receiver components respectively. Because the Bidirectional AMC feature
depends on the AMC feature, it is designed to use components from the AMC feature.
Also, the Subscription/Notification feature is designed to use components from both
AMC and SMC with Reply features due to its dependency on these features. The
Authenticator feature is designed as an Authenticator component whereas the Autho-
rization feature is designed as an Authorization component. Each of the Symmetric
Encryption, Digital Signature, and Hashing features is designed as two components, a
sender and a receiver component. The Public Key Infrastructure feature is designed as
a Public Key Repository component.

A security pattern feature (SPF) is designed using one or more security pattern
components (SPCs), as depicted in Fig. 2. The Symmetric Encryption feature (Fig. 2a)
is composed of the symmetric encryption encryptor and decryptor components [16].
The Digital Signature feature (Fig. 2b) is designed as the digital signature signer and
digital signature verifier components (Fig. 2b) [16]. Each port of a component is
defined in terms of provided and/or required interfaces [12]. Each security pattern
component (Fig. 2) has a provided port through which the component provides security
services to other components. Figure 3 depicts the interfaces provided by the ports of
the SPCs in Fig. 2.

Each communication pattern is designed as a sender and a receiver communication
pattern component (CPC), which are encapsulated in a secure sender connector and a
secure receiver connector respectively. Figure 4a depicts the Asynchronous MC Sender
CPC and Asynchronous MC Receiver CPC for the secure AMC connector. The
Asynchronous MC Sender CPC (Fig. 4a) has the provided PAsyncMCSenderService
port through which it receives from the Security Sender Coordinator component
(Fig. 10a) a message to be sent to the Asynchronous MC Receiver CPC via the
required RNetwork port. Similarly, the Asynchronous MC Receiver CPC (Fig. 4a) has
the required RSecurityService port and provided PNetwork port. Figure 4b depicts the
interfaces provided by each port of the AMC Sender and Receiver CPCs.

A Software Product Line Approach to Design Secure Connectors 377

Table 1. Features and their components [7].

Feature Components Reuse Stereotype
SMC Without
Reply Feature

SMC Without Reply Sender Component
SMC Without Reply Receiver Component
SMC Without Reply Security Sender
Coordinator Component
SMC Without Reply Security Receiver
Coordinator Component

Optional
Optional
Optional (Variant)

Optional (Variant)

Broadcast
Feature

Broadcast Sender Component
Broadcast Receiver Component
Broadcast Security Sender Coordinator
Component
Broadcast Security Receiver Coordinator
Component

Optional
Optional
Optional (Variant)

Optional (Variant)

AMC Feature AMC Sender Component
AMC Receiver Component
AMC Security Sender Coordinator Component
AMC Security Receiver Coordinator
Component

Optional
Optional
Optional (Variant)
Optional (Variant)

Bidirectional
AMC Feature

Components from AMC Feature

Subscription/
Notification
Feature

Components from AMC Feature
Components from SMC Feature

SMC With
Reply Feature

SMC With Reply Sender Component
SMC With Reply Receiver Component
SMC With Reply Security Sender Coordinator
Component
SMC With Reply Security Receiver Coordinator
Component

Optional
Optional
Optional (Variant)

Optional (Variant)

AMC With
Callback
Feature

AMC With Callback Sender Component
AMC With Callback Receiver Component
AMC With Callback Security Sender
Coordinator Component
AMC With Callback Security Receiver
Coordinator Component

Optional
Optional
Optional (Variant)

Optional (Variant)

Authenticator
Feature

Authenticator Component Optional

Authorization
Feature

Authorization Component Optional

Symmetric
Encryption
Feature

Symmetric Encryption Encryptor Component
Symmetric Encryption Decryptor Component

Optional
Optional

Digital
Signature
Feature

Digital Signature Signer Component
Digital Signature Verifier Component

Optional
Optional

Hashing
Feature

Hashing Generator Component
Hashing Verifier Component

Optional
Optional

Public Key
Infrastructure
Feature

Public Key Repository Component Optional

378 M. Shin et al.

«optional»
«security pattern»

Symmetric
Encryption Encryptor

ISEEncryptor

PSEEncryptor

ISEDecryptor

PSEDecryptor

«optional»
«security pattern»

Digital
SignatureSigner

IDSSigner

PDSSigner

«optional»
«security pattern»

Digital
SignatureVerifier

IDSVerifier

PDSVerifier

a) Symmetric Encryption Security Pattern

b) Digital Signature Security Pattern

«optional»
«security pattern»

Symmetric
EncryptionDecryptor

Fig. 2. Security pattern components [7].

«interface»
ISEEncryptor

encrypt (in message, in key, out
encryptedMessage)

«interface»
ISEDecryptor

decrypt (in encryptedMessage, in key,
out message)

«interface»
IDSSigner

sign (in message, in key, out signature)

«interface»
IDSVerifier

verify (in message&signature, in key,
out result)

Fig. 3. Interfaces of security pattern components [7].

INetwork

RNetwork«optional»
«communication pattern»

AsynchronousMC
Sender

PAsyncMCSenderService

IAsyncMCSenderService

ISecurityService

RSecurityService

PNetwork
INetwork

«optional»
«communication pattern»

AsynchronousMC
Receiver

a) Asynchronous Message Communication Sender and Receiver
Communication Pattern Components

b) Interfaces of Asynchronous Message Communication Sender and
Receiver Communication Pattern Components

«interface»
IAsyncMCSenderService

sendSecAsync (in messageName, in
messageContent)

«interface»
ISecurityService

sendSecAsync (in messageName, in
messageContent)

«interface»
INetwork

sendSecAsync (in messageName, in
messageContent)

Fig. 4. Asynchronous message communication sender and receiver components [7].

A Software Product Line Approach to Design Secure Connectors 379

Figure 5a depicts the SynchronousMC with Reply (SMCWR) Sender CPC and
Synchronous MC with Reply Receiver CPC for the secure Synchronous MC with Reply
connector. The SMCWR Sender CPC (Fig. 5a) has the provided PSyncMCWithReply
SenderService port through which the Security Sender Coordinator component
(Fig. 14a) sends a message to be sent to the SMCWR Receiver CPC via the required
RNetwork port. Similarly, the SMCWR Receiver CPC (Fig. 5a) has the required
RSecurityService port and provided PNetwork port. Figure 5b depicts the interfaces
provided by each port of the SMCWR Sender and Receiver CPCs.

6 Security Coordinator Components and Templates

This section describes the security coordinator components and templates for asyn-
chronous message communication and synchronous message communication with
reply. An example of a secure connector for a secure asynchronous message com-
munication (AMC) connector is described in Sect. 7 while an example of a secure
connector for a secure synchronous message communication with reply (SMCWR)
connector is described in Sect. 8.

A security sender coordinator component receives messages from an application
sender component, and a security receiver coordinator component delivers messages to
an application receiver component. The security sender and receiver coordinator
components are variant optional components (Table 1), optional because they are
needed for each optional communication pattern, and variant because the design of
each coordinator component needs to be customized for each secure connector based
on one or more selected security features. Templates for the high-level security sender
and receiver coordinator components are designed for each communication pattern.

ISecurityService

RSecurityService

PNetwork

INetwork

«optional»
«communication

pattern»
SynchronousMC

WithReplyReceiver

a) Synchronous Message Communication With Reply Sender and
Receiver Communication Pattern Components

b) Interfaces of Synchronous Message Communication With Reply Sender and Receiver
Communication Pattern Components

«interface»
ISyncMCWithReplySenderService

sendSecSync (in messageName,
in messageContent, out response)

«interface»
ISecurityService

sendSecSync (in messageName,
in messageContent, out response)

«interface»
INetwork

sendSecSync (in messageName, in messageContent,
out response)

ISyncMCWithReplySenderService INetwork

PSyncMCWithReplySenderService RNetwork«optional»
«communication

pattern»
SynchronousMC
WithReplySender

Fig. 5. Synchronous message communication with reply sender and receiver components

380 M. Shin et al.

A communication pattern needs one template for the high-level security sender coor-
dinator component (Figs. 6 and 8) and another template for the receiver coordinator
component (Figs. 7 and 9). These templates are customized for each secure connector
based on the security features selected.

The pseudocode template for the security sender coordinator in a secure AMC
sender connector is depicted in Fig. 6, in which the security related code (shown in
italics) is replaced by the pseudocode for the security patterns selected for a secure
AMC connector, as described in Sect. 7. A security pattern is applied to a message if
the security feature condition is true, namely when a security feature is selected for a
message. For instance, SymmetricEncryption_feature = True (Fig. 6) means that the
Symmetric Encryption feature condition is true, so a message must be encrypted. The
pseudocode template for the security sender coordinator is customized for a secure
AMC connector that encapsulates Asymmetric Encryption and Digital Signature SCs,
as described in Sect. 7 and depicted in Fig. 11.

Symmetric Encryption, Hashing and Digital Signature features can be applied to a
message in a secure AMC. When both Symmetric Encryption and Hashing features are
selected (Fig. 6), although Symmetric Encryption and Hashing security patterns could
be applied to a message in an arbitrary order, the security coordinator applies the
Symmetric Encryption feature to a message first and then applies the Digital Signature
security pattern (Fig. 6) because an encrypted and then signed message is more secure
and widely adopted. In contrast, a signed and then encrypted message could be
exploited by a receiver to spoof the identity of the sender and send it to a third party.

Similarly, the pseudocode template for the Security Receiver Coordinator in a
secure AMC receive connector is specified in Fig. 7. The security patterns in the
pseudocode template (Fig. 7) are applied to a message in the reverse order of the
security patterns (Fig. 6) applied by the security sender coordinator. As a security
sender coordinator applies the security patterns in the order of Symmetric Encryption,

loop

-- Wait for message from sender component;
receive (SenderComponentMessageQ, message);
Extract MessageName, MessageContent and SenderSecurityPatternAttribute from message;

-- Apply security patterns to message content;

if (SymmetricEncryption_feature = True) then encrypt MessageContent; end if
if (Hashing_feature = True) then generate hashValue of MessageContent; end if
if (DigitalSignature_feature = True) then sign MessageContent; end if

-- Send message to AMC Sender CPC;
AMCSender.sendSecAsync (in MessageName, in MessageContent);

end loop;

Fig. 6. Pseudocode template for security sender coordinator in secure AMC connector.

A Software Product Line Approach to Design Secure Connectors 381

Hashing, and Digital Signature features (Fig. 6), a security receiver coordinator applies
the security patterns in the order of Digital Signature, Hashing, and Symmetric
Encryption features (Fig. 7). The pseudocode templates for security receiver coordi-
nator component (Fig. 7) are customized for a secure AMC connector that encapsulates
Symmetric Encryption and Digital Signature SCPs, as described in Sect. 7.

Loop

-- Wait for message from AMC Receiver CPC;
receive (AMCReceiverMessageQ, message);
Extract MessageName and MessageContent from message;

-- Apply security patterns to message content;
if (DigitalSignature_feature = True) then verify MessageContent; end if
if (Hashing_feature = True) then verify hashValue of MessageContent; end if
if (SymmetricEncryption_feature = True) then decrypt MessageContent; end if

-- Send message name and message content to receiver component;
if MessageContent is secure
then

ReceiverComponent.sendSecAsync (in MessageName, in MessageContent);
end if;

end loop;

Fig. 7. Pseudocode template for security receiver coordinator in secure AMC connector.

loop
-- Wait for message from sender component;
receive (SenderComponentMessageBuffer&Response, message);
Extract MessageName, MessageContent and SenderSecurityPatternAttribute from
message;

-- Apply security pattern to message content;
if (SymmetricEncryption_feature = True) then encrypt MessageContent; end if
if (Hashing_feature = True) then generate hashValue of MessageContent; end if
if (DigitalSignature_feature = True) then sign MessageContent; end if

-- Send message to SMCWR Sender CPC;
SMCWRSender.sendSecSync (in MessageName, in MessageContent, out Reply);

-- Apply security pattern to reply if reply is required;
if (DigitalSignature_feature = True) then verify reply; end if
if (Hashing_feature = True) then verify hashValue of reply; end if
if (SymmetricEncryption_feature = True) then decrypt reply; end if

-- Send reply to sender component;
if reply is secure
then

reply(SenderComponentMessageBuffer&Response, Reply);
end if
end loop;

Fig. 8. Pseudocode template for security sender coordinator in secure SMCWR connector.

382 M. Shin et al.

Figure 8 depicts the pseudocode template for the security sender coordinator in the
secure SMCWR sender connector in which the security patterns are applied to a
message sent to and a reply received from the secure SMCWR receiver connector. The
pseudocode customized for the Symmetric Encryption security pattern in a secure
SMCWR sender connector is described in Sect. 8 and depicted in Fig. 15.

Similarly, the pseudocode template for the Security Receiver Coordinator in the
secure SMCWR receiver connector is specified in Fig. 9. When both Authenticator and
Authorization features are selected for a message, Authenticator and then Authorization
security patterns are applied to the message because the authenticity of message is
checked and then the message is authorized if the message is authenticated success-
fully. Also, when the credentials for Authenticator or Authorization security patterns
might be encrypted, hashed, and signed in the secure SMCWR receiver connector, the
signature and hash value of the credentials are verified and then the credentials are
decrypted in the secure SMCWR receiver connector. The pseudocode customized for
the Symmetric Encryption security pattern for a secure SMCWR receiver connector is
described in Sect. 8 and depicted in Fig. 16.

7 Secure Asynchronous Message Communication Connector

This section describes an example of a secure connector that can be derived from the
SPL for secure connectors if an application requires the AMC feature together with the
Symmetric Encryption and Digital Signature features. Deriving this secure connector
needs the selection of one communication pattern (AMC) corresponding to the AMC

loop
-- Wait for message from SMCWR Receiver CPC;
receive (SMCWRReceiverMessageBuffer&Response, message);
Extract MessageName and MessageContent from message;

-- Apply security pattern to message content;
if (DigitalSignature_feature = True) then verify MessageContent; end if
if (Hashing_feature = True) then verify hashValue of MessageContent; end if
if (SymmetricEncryption_feature = True) then decrypt MessageContent; end if
if (Authenticator_feature = True) then authenticate MessageContent;end if
if (Authorization_feature = True) then authorize MessageContent;end if

-- Send message name and message content to receiver component;
if MessgeContent is secure
then

ReceiverComponent.sendSecSync (in MessageName, in MessageContent,
out Reply&ReceiverSecurityPatternAttribute);
end if

-- Apply security pattern to reply;
if (SymmetricEncryption_feature = True) then encrypt reply; end if
if (Hashing_feature = True) then generate hashValue of reply; end if
if (DigitalSignature_feature = True) then sign reply; end if

-- Send reply to SMCWR Receiver CPC;
reply (SMCWRReceiverMessageBuffer&Response, Reply);
end loop;

Fig. 9. Pseudocode template for security receiver coordinator in secure SMCWR connector.

A Software Product Line Approach to Design Secure Connectors 383

feature, and two security patterns corresponding to the Symmetric Encryption and
Digital Signature features (Fig. 1). The corresponding components (from Table 1) are
the AMC Sender and Receiver components, Symmetric Encryption Encryptor
(SEE) and Symmetric Encryption Decryptor (SED) components, and Digital Signature
Signer (DSS) and Digital Signature Verifier (DSV) components. This secure AMC
connector is composed of a secure AMC sender connector (Fig. 13) and secure AMC
receiver connector (Fig. 13). The secure AMC sender connector (Fig. 13) is designed
as a composite component in which the Security Sender Coordinator (SSC) component
(Fig. 10a) integrates the SEE and DSS components (Fig. 2) with the AMC Sender
component (Fig. 4). Similarly, the secure AMC receiver connector (Fig. 13) is
designed as a composite component in which the Security Receiver Coordinator
(SRC) component (Fig. 10b) integrates the SED and DSV components (Fig. 2) with
the AMC Receiver component (Fig. 4).

Figure 10a depicts the interface provided by the SSC for a secure AMC connector.
The senderSecurityPatternAttribute parameter in sendSecAsync() specifies the private
key and/or secret key that is needed by security pattern components to apply security
services to a message. For integrating the components, the SSC component (Fig. 10a)
has a required RSEEncryptor port to communicate with a provided PSEEncryptor port
of the SEE component, which encrypts messages using the sender’s secret key, and it
also has a required RDSSigner port to communicate with a provided PDSSigner port of
the DSS component, which signs a message using the sender’s private key. The signed
and encrypted messages are sent to the receiver component. The pseudocode for the
SSC component is depicted in Fig. 11. Similarly, the AMC Receiver Connector
(Fig. 13) is designed as a composite component that encapsulates the SRC component
(Fig. 10b), SED component (Fig. 2), DSV component, and AMC Receiver component
(Fig. 4). The pseudocode for the SRC component is depicted in Fig. 12.

a) Security Sender Coordinator and its Interface

ISEEncryptor
«security

coordinator»
SecuritySender

Coordinator

RAsyncMCSenderService

IAsyncMCSenderService

PSecAsync
SenderService

ISecAsync
SenderService

RSEEncryptor

IDSSigner

RDSSigner

b) Security Receiver Coordinator and its Interface

ISEDecryptor

ISecurityService

PSecurityService «security
coordinator»

SecurityReceiver
Coordinator IDSVerifier

RSecAsyncReceiverService

ISecAsyncReceiverService

RSEDecryptor

RDSVerifier

RPKRepository

IPKRepository

«interface»
IPKRepository

retrievePublicKey (in ID, out
publicKey)

«interface»
ISecurityService

sendSecAsync (in messageName, in
messageContent)
retrieveSecretKey (out secretKey)

«interface»
ISecAsyncSenderService

sendSecAsync (in messageName,
in messageContent,
in senderSecurityPatternAttribute)

Fig. 10. Sender and receiver coordinators and their interfaces for secure AMC connector [7].

384 M. Shin et al.

loop
-- Wait for message from sender component;
receive (SenderComponentMessageQ, message);
Extract MessageName, MessageContent, PrivateKey, and SecretKey from message;

-- Apply security patterns to message content;
if MessageContent requires non-repudiation
then

DigitalSignatureSigner.sign (in MessageContent,
in PrivateKey, out SignedMessageContent);

MessageContent = SignedMessageContent;
end if;
if MessageContent requires confidentiality
then

SymmetricEncryptionEncryptor.encrypt (
in MessageContent, in SecretKey,
out EncryptedMessageContent);

Message Content = EncryptedMessageContent;
end if;

-- Send message to AMC Sender CPC;
AsynchronousMCSender.sendSecAsync (in MessageName, in MessageContent);
end loop;

Fig. 11. Pseudocode of security sender coordinator for secure AMC connector with symmetric
encryption and digital signature security pattern features [7].

loop
-- Wait for message from AMC Receiver CPC;
receive (AMCReceiverMessageQ, message);
Extract MessageName and MessageContent from message;

-- Apply security patterns to message content;
if MessageContent requires confidentiality
then

ReceiverComponent.retrieveSecretKey (out SecretKey);
SymmetricEncryptionDecryptor.decrypt (in

EncryptedMessageContent&Signature,
in SecretKey, out MessageContent&Signature);

end if;
if MessageContent requires non-repudiation
then

PublicKeyRepository.retrievePublicKey (in SenderID,
out SenderPublicKey);

DigitalSignatureVerifier.verify (in MessageContent&Signature,
in SenderPublicKey, out Result);

end if;

-- Send message name and message content to receiver component;
if Signature is verified
then

ReceiverComponent.sendSecAsync (in MessageName, in MessageContent);
end if;
end loop;

Fig. 12. Pseudocode of security receiver coordinator for secure AMC connector with symmetric
encryption and digital signature security pattern features [7].

A Software Product Line Approach to Design Secure Connectors 385

Figure 13 depicts the structural view of the secure AMC connector with Symmetric
Encryption and Digital Signature security patterns, which can be applied for confirming
a shipment in a business to business (B2B) electronic commerce application. When a
Supplier component sends a shipment confirmation to a Delivery Order Server, the
shipment confirmation is signed by the DSS component in the secure AMC sender
connector assuming the Digital Signature security pattern feature is selected for the
Supplier component. The shipment confirmation and signature is then encrypted by the
SEE component in the secure AMC sender connector assuming the Symmetric
Encryption security pattern feature is also selected for the Supplier component. The
encrypted shipment confirmation and signature are sent to the Delivery Order Server
via the secure AMC receiver connector and then decrypted by the SED component
using a secret key retrieved from the Delivery Order Server. The secure AMC receiver
connector requests the sender component’s public key from the Public Key Repository
component (Table 1) that is designed for a certificate authority in the public key
infrastructure feature (Table 1). The signature is verified by the DSV component in the
secure AMC receiver connector using the sender’s public key. The behavioral view of
a secure AMC connector can be depicted using UML communication or sequence
diagrams. An example is described in [4] for confidentiality and non-repudiation
security services.

«security pattern»
SymmetricEncryption

Encryptor

«security coordinator»
SecuritySender

Coordinator

«secure connector»
SecureAsynchronousMC

SenderConnector
«communication

pattern»
AMCSender

«security pattern»
DigitalSignature

Signer

PSecAsync
SenderService

PSecAsync
SenderService

PSEEncryptor

RSEEncryptor

PDSSigner

RDSSigner

RNetwork

RNetwork
PAsyncMC
SenderService

RAsyncMCSenderService

«communication
pattern»

AMCReceiver

«security pattern»
SymmetricEncryption

Decryptor

«security coordinator»
SecurityReceiver

Coordinator

«secure connector»
SecureAsynchronousMC

ReceiverConnector

«security pattern»
DigitalSignature

Verifier

PSEDecryptor

RSEDecryptor

PDSVerifier

RDSVerifier

PNetwork

PNetwork

RSecurityService

PSecurityService

RSecAsyncReceiverService

RPKRepository

RPKRepository

«application
component»

Supplier

RSecAsync
Sender
Service

«application
component»

Delivery
Order Server

RSecAsyncReceiverService
PSecAsyncReceiverService

PPKRepository

«security
pattern»

PublicKey
Repository

Fig. 13. Secure AMC sender and receiver connectors in B2B application [7].

386 M. Shin et al.

8 Secure Synchronous Message Communication Connector

This section describes a secure SMCWR connector that is derived from the SPL for
secure connectors if an application requires SMCWR feature with Symmetric
Encryption. This needs selection of one communication pattern (SMCWR) and one
security pattern (Symmetric Encryption) feature (Fig. 1). The corresponding compo-
nents (from Table 1) are SMCWR Sender and Receiver components, SEE and SED
components. This secure SMCWR connector is composed of a secure SMCWR sender
connector (Fig. 17) and a secure SMCWR receiver connector (Fig. 17). The secure
SMCWR sender connector (Fig. 17) is designed as a composite component in which
the SSC component (Fig. 14a) integrates the SEE component (Fig. 2) with the
SMCWR Sender component (Fig. 5). Similarly, the secure SMCWR receiver con-
nector (Fig. 17) is designed as a composite component in which the SRC component
(Fig. 14b) integrates the SED component with the SMCWR Receiver component.

Figure 14a depicts the interface provided by the SSC for a secure SMCWR con-
nector. The SSC component (Fig. 14a) has a required RSEEncryptor port to commu-
nicate with a provided PSEEncryptor port of the SEE component, which encrypts
messages using the sender’s secret key. The encrypted messages are sent to the receiver
component. The pseudocode for the Secure Sender Coordinator component is depicted
in Fig. 15. Similarly, the SMCWR Receiver Connector (Fig. 17) is designed as a
composite component that encapsulates the SRC component (Fig. 14b), SED com-
ponent (Fig. 2) and SMCWR Receiver component (Fig. 4). The pseudocode for the
Secure Receiver Coordinator component is depicted in Fig. 16.

ISEEncryptor

ISEDecryptor

RSEEncryptor

«security coordinator»
SecuritySender

CoordinatorISecSyncSenderService

PSecSyncSenderService

ISyncMCWithReplySenderService

RSyncMCWithReplySenderService
RSEDecryptor

a) Security Sender Coordinator and Interface

b) Security Receiver Coordinator and Interface

ISEEncryptor

ISEDecryptor

RSEEncryptor

RSEDecryptor

ISecurityService

PSecurityService
«security coordinator»

SecurityReceiver
Coordinator

RSecSyncReceiverService

ISecSyncReceiverService

«interface»
ISecSyncSenderService

sendSecSync (in messageName,
in messageContent,
in secretKey, out response)

«interface»
ISecurityService

sendSecSync (in messageName,
in messageContent, out response)

retrieveSecretKey (out secretKey)

Fig. 14. Sender and receiver coordinators and their interfaces for secure SMCWR connector.

A Software Product Line Approach to Design Secure Connectors 387

loop
-- Wait for message from sender component;
receive (SenderComponentMessageBuffer, message);
Extract MessageName and MessageContent, and SecretKey from message;

-- Apply security pattern to message content;
if MessageContent requires confidentiality
Then

SymmetricEncryptionEncryptor.encrypt (in MessageContent, in SecretKey,
out EncryptedMessageContent);

end if;

-- Send message to SMCWR Sender CPC;
SynchronousMCWithReplySender.sendSecSync (in MessageName, in
EncryptedMessageContent, out EncryptedReply);

-- Apply security pattern to reply received from SMCWR Sender CPC;
If Reply requires confidentiality
then

SymmetricEncryptionDecryptor.decrypt (in EncryptedReply, in SecretKey,
out Reply);

end if;

-- Send reply to sender component;
reply(SenderComponent, Reply);
end loop;

Fig. 15. Pseudocode of security sender coordinator for secure SMCWR connector with
symmetric encryption security pattern feature.

loop
-- Wait for message from SMCWR Receiver CPC;
receive (SMCWRReceiverMessageBuffer, message);
Extract MessageName and MessageContent from message;

-- Apply security pattern to message content;
if MessageContent requires confidentiality
then

ReceiverComponent.retrieveSecretKey(out SecretKey);
SymmetricEncryptionDecryptor.decrypt (in EncryptedMessageContent, in

SecretKey, out MessageContent);
end if;

-- Send message name and message content to receiver component;
ReceiverComponent.sendSecSync (in MessageName, in MessageContent, out Reply);

-- Apply security pattern to reply received from receiver component;
If Reply requires confidentiality
then

SymmetricEncryptionEncryptor.encrypt (in Reply, in SecretKey, out
EncryptedReply);
end if;

-- Send reply to SMCWR Receiver CPC;
reply (SMCWRReceiverMessageBuffer, EncryptedReply);
end loop;

Fig. 16. Pseudocode of security receiver coordinator for secure SMCWR connector with
symmetric encryption security pattern feature.

388 M. Shin et al.

Figure 17 depicts the structural view of the secure SMCWR connector with
Symmetric Encryption security pattern for a service request and a reply, which can be
applied for an ATM system. When an ATM Client component sends a service request
to a ATM Server, the service request is encrypted by the SEE component in the secure
SMCWR sender connector, assuming the Symmetric Encryption security pattern fea-
ture is selected for the ATM Client component. The encrypted service request is
decrypted by the SED component, and then sent to the ATM Server component.
Assuming the Symmetric Encryption security pattern feature is selected for the ATM
Server component, a reply is encrypted by the SEE component in the secure SMCWR
receiver connector. The encrypted reply is decrypted by the SED component in the
secure SMCWR sender connector, and then sent to the ATM Client component.

9 Validation

The secure connectors derived from the SPL were validated from the perspectives of
implementation and performance analysis of secure connectors for asynchronous
message communication and synchronous message communication with reply.

9.1 Implementation of Secure Connectors

The secure connectors designed using the SPL approach were implemented in Java,
Kotlin and XML for android applications, in which an application sender component
and a secure sender connector run on an android phone, and an application receiver

«security pattern»
SymmetricEncryption

Decryptor

«security pattern»
SymmetricEncryption

Encryptor

«security coordinator»
SecuritySender

Coordinator

«communication pattern»
SynchronousMC
WithReplySender

PSecSync
SenderService

PSEEncryptor

RSEEncryptor

RSEDecryptor

PSEDecryptor

PSyncMCWithReply
SenderService

RSyncMCWithReply
SenderService

RNetwork
RNetwork

«secure connector»
SecureSynchronousMC

WithReplySenderConnector

«security pattern»
SymmetricEncryption

Decryptor

«security pattern»
SymmetricEncryption

Encryptor

«security coordinator»
SecurityReceiver

Coordinator

«communication pattern»
SynchronousMC

WithReplyReceiver

PNetwork

PSEDecryptor

RSEDecryptor

RSEEncryptor

PSEEncryptor

RSecSyncReceiverService
RSecSyncReceiverService

RSecurityService

Psecurity
Service

«secure connector»
SecureSynchronousMC

WithReplyReceiverConnector

PSecSync
SenderService

«application
component»

ATM
Client

RSecSync
Sender
Service

«application
component»

ATM
Server

PSecSyncReceiverService

PNetwork

Fig. 17. Secure SMCWR sender and receiver connectors in ATM system.

A Software Product Line Approach to Design Secure Connectors 389

component and a secure receiver connector run on a computer. The secure sender and
receiver connectors in the android applications were implemented using multiple
threads in Java. Once an android application sender component and a secure sender
connector are installed and run on an android phone, an android application sender
component communicates with an android application receiver component via a secure
sender connector and a secure receiver connector using a network with Transmission
Control Protocol/Internet Protocol (TCP/IP). The implementation environment on the
android phone is as follows: Android 6.0 OS with 2 GB of memory and 2.5 GHz quad-
core Krait 400 processor. The implementation environment in a computer is as follows:
Eclipse 4.7.1 version on a Windows 10, 64-bit-based computer with 4 GB of memory
and 2.20 GHz quad-core i7 processor.

The secure asynchronous message communication connector (Fig. 13) was
implemented to integrate the symmetric encryption and digital signature security fea-
tures with the asynchronous message communication feature. The connector was
implemented using two algorithms for the security pattern features, Digital Signature
Algorithm (DSA) to sign/verify the message for the digital signature feature and Data
Encryption Standard (DES) to encrypt/decrypt the message for the symmetric
encryption feature. The shipment confirmation using the secure asynchronous message
communication connector in the B2B application (Fig. 13) was implemented with
seven threads, one for each of the following components: supplier, SSC, AMC sender,
AMC receiver, SRC, public key repository, and delivery order server. In addition, a
message queue was implemented and placed between threads (for example, a message
queue between the supplier application thread and SSC thread, and a message queue
between the SSC thread and the AMC sender thread).

Furthermore, a secure synchronous message communication with reply connector
for the ATM application (Fig. 17) was implemented to integrate the symmetric
encryption security feature with the secure synchronous message communication with
reply communication feature. The Encryption and Decryption components for the
symmetric encryption feature were implemented using the DES algorithm, which is a
block cipher that operates on plain text blocks of a given size (64-bits) and returns
cipher text blocks of the same size. The DES works by using the same 56-bit key to
encrypt and decrypt a message. The encrypted service request is sent from the ATM
Client component to the ATM Server component, the receiver connector of which
decrypts the service request message using the DES algorithm with the same secret
key. The service request using the secure SMC with reply connector was implemented
with threads and separate message buffers.

9.2 Performance Analysis of Secure Connectors

This section describes the performance analysis of secure android application using the
secure connectors derived from the SPL and compares them with secure android
applications executing the same message communication patterns but using other
approaches for providing or not providing security. The three approaches compared in
this section are the (1) with secure connector approach, for secure android applications
that use the approach described in this paper; (2) without security service approach, for
android applications that do not provide any security services; (3) without secure

390 M. Shin et al.

connector approach, for secure android applications in which security services are
mingled with the application logic. In the with secure connector approach, security
services are encapsulated in secure connectors separately from application logic. The
same application functionality is implemented in each approach. However, the
underlying difference between with secure connector approach and without secure
connector approach is that the security services in without secure connector approach
are implemented within application components along with application business logic,
whereas with secure connector approach separates the security services from appli-
cation components and implements them as secure connectors. Also, the difference
between with secure connector approach and without security service approach is that
with secure connector approach provides security services encapsulated in secure
connectors with application components, whereas without security service approach
implements only business application logic without any security services.

For each communication pattern described in this paper, namely (a) asynchronous
message communication with Symmetric Encryption and Digital Signature security
patterns and (b) synchronous message communication with Symmetric Encryption
security pattern, the performance of the with secure connector approach was evaluated
by measuring the average time of message communication between sender and receiver
components via a secure connector. Each message communication implemented in
Sect. 9.1 was run 20 times to calculate the average communication time so that the
performance evaluation would not be dependent on a few exceptional communication
times. Message communication time (MCT) is measured by observing the overall run
time from start to finish for each message communication pattern. For synchronous
communication, MCT measures the time to send a message and receive a response. For
asynchronous communication, MCT measures the time to send a message from sender
to receiver.

Table 2 shows the average time of message communication and a comparison of
the with secure connector approach, without security service approach, and without
secure connector approach for the communication patterns. For the secure AMC
connector with symmetric encryption and digital signature security patterns (Fig. 13
and top section in Table 2), the with secure connector approach (second column in
Table 2) shows that the MCT is 46.3 milliseconds (ms) for the sender connector,
4.4 ms for the network connection, 50.2 ms for the receiver connector, giving a total of
100.9 ms. The without security service approach (third column in Table 2) shows that
the MCT is 5.1 ms, 4.3 ms, and 4.0 ms for each portion, giving a total of 13.4 ms. The
without secure connector approach (fourth column in Table 2) shows that the MCT is
46.0 ms, 4.4 ms and 49.1 ms for each portion, giving the overall MCT of 99.5 ms. The
fifth column of Table 2 indicates that the time difference between the with secure
connector approach and the without security service approach is 87.5 ms, which is
highly significant. This is because with secure connector approach provides applica-
tion components with security services such as confidentiality and non-repudiation.
The security services in the with secure connector approach consume processing time
for encrypting/decrypting messages and signing/verifying digital signature, whereas the
without security service approach is much faster due to it providing no security ser-
vices. The additional processing time taken by the with secure connector approach is
to make android applications secure in comparison to insecure applications developed

A Software Product Line Approach to Design Secure Connectors 391

using the without security service approach. Comparing the performance without
secure connector approach and with secure connector approach (sixth column in
Table 2) shows that there is no significant difference in the runtime performance of the
secure AMC connector with symmetric encryption and digital signature security pat-
terns. The time difference between the approaches is 1.4 ms. These two approaches
provide applications with security services; however, the with secure connector
approach has the advantage of separating security services from application logic,
which leads to secure software architectures that are more maintainable and evolvable
than the without secure connector approach.

Table 2. Performance comparison of secure connector approaches.

Communication
pattern

With
secure

connector
approach

Without
security
service

approach

Without
secure

connector
approach

Time
difference

between with
secure

connector
approach and

without
security
service

approach

Time difference
between without
secure connector

approach and
with secure
connector
approach

Secure AMC Connector with Symmetric Encryption and Digital Signature security patterns
(Fig. 13)

● Secure
Asynchronous MC
Sender Time

46.3 ms 5.1 ms 46.0 ms 41.2 ms 0.3 ms

● Network Time 4.4 ms 4.3 ms 4.4 ms 0.1 ms 0.0 ms
● Secure
Asynchronous MC
Receiver Time

50.2 ms 4.0 ms 49.1 ms 46.2 ms 1.1 ms

● Total Time for
AMC with
Symmetric
Encryption &
Digital Signature

100.9 ms 13.4 ms 99.5 ms 87.5 ms 1.4 ms

Secure SMC with Reply Connector with Symmetric Encryption security pattern (Fig. 17)
● Secure
Synchronous MC
with reply Sender
Time

39.3 ms 8.4 ms 38.4 ms 30.9 ms 0.9 ms

● Network Time 8.2 ms 7.9 ms 8.0 ms 0.3 ms 0.2 ms
● Secure
Synchronous MC
with reply
Receiver Time

30.1 ms 3.1 ms 28.8 ms 27.0 ms 1.3 ms

● Total Time for
SMCWR with
Symmetric
Encryption

77.6 ms 19.4 ms 75.2 ms 58.2 ms 2.4 ms

392 M. Shin et al.

The performance analysis of the SMCWR with Symmetric Encryption security
pattern (Fig. 17 and bottom section in Table 2) indicates a finding that is similar to the
AMC with Symmetric Encryption and Digital Signature security patterns (Fig. 13 and
top section in Table 2). For the SMCWR with Symmetric Encryption security pattern
(Fig. 17 and bottom section in Table 2), the with secure connector approach shows
that the MCT is 39.3 ms for the sender connector of SMCWR with Symmetric
Encryption security pattern, 8.2 ms for the network connection, and 30.1 ms for the
receiver connector. Thus the overall MCT for the SMCWR with Symmetric Encryption
security pattern is 77.6 ms. The without security service approach (third column of
Table 2) shows that the MCT is 8.4 ms, 7.9 ms and 3.1 ms for each portion, giving an
overall average time of 19.4 ms. The without secure connector approach (fourth
column of Table 2) shows that the MCT for SMCWR with Symmetric Encryption
security pattern is 38.4 ms, 8.0 ms, 28.8 ms for each portion, giving an overall MCT of
75.2 ms. The fifth column of Table 2 indicates that the time difference between the
with secure connector approach and the without security service approach is highly
significant. This is because with secure connector approach provides application
components with the confidentiality security service. Comparing the performance
without secure connector approach and with secure connector approach (sixth column
in Table 2) shows that there is no significant difference in the runtime performance of
the SMCWR with Symmetric Encryption security pattern. The time difference between
the approaches is 2.4 ms.

10 Discussion of SPL Approach for Secure Connectors

The SPL approach for secure connectors is different from typical SPL approaches. This
section discusses the differences between SPL for secure connectors and traditional
SPL approaches. A SPL consists of a family of software systems that have some
common functionality and some variable functionality. Typical SPL approaches
involve developing a feature model and SPL architecture for a family of software
systems from which an application, which is a member of a SPL, is derived. The SPL
for secure connectors focuses on a family of software artifacts rather than a family of
software systems. Rather than features addressing variability in software requirements
or configurations, the feature model focuses on variability in communication patterns
and security patterns. The SPL architecture addresses the design of communication
pattern components and security pattern components, and how these pattern compo-
nents are selected and integrated within a secure connector. Thus, for the SPL for
secure connectors, an appropriate communication pattern is selected from the feature
model. The selected pattern is then customized based on the security features selec-
ted. Then the variant security coordinator template is customized based on the security
pattern components it needs to interface to.

A secure AMC connector is created by customizing a selected AMC pattern based
on the security patterns selected for an application. For a secure AMC connector with
Symmetric Encryption and Digital Signature security patterns (Fig. 13), an AMC
pattern is selected from the feature model (Fig. 1) and then components – AMC sender
and receiver components, and AMC security sender and receiver coordinator

A Software Product Line Approach to Design Secure Connectors 393

components - supporting the selected AMC pattern is determined based on the
feature/component table (Table 1). As Symmetric Encryption and Digital Signature
security patterns are selected for an application from the feature model (Fig. 1), the
templates (Figs. 6 and 7) for AMC SSC component and AMC SRC component are
customized (Figs. 11 and 12) to interface to the selected security pattern components
(Figs. 2 and 3).

11 Conclusions

This paper has described a SPL approach to modeling the variability of secure con-
nectors in terms of security patterns and communication patterns, which makes it
possible to design secure software architectures for concurrent and distributed software
applications. The feature model for secure connectors captures various security pattern
and communication pattern features, and describes the relationships between features.
The security and communication pattern features are designed as security and com-
munication pattern components that are encapsulated into secure connectors. Each
secure connector is derived from the SPL for secure connectors, which is designed as a
composite component that encapsulates both security and communication pattern
components. A security coordinator enables security and communication pattern
components to be integrated within a secure connector. A high-level pseudocode
template for a security coordinator is customized to a pseudocode that interfaces to the
security pattern components. This paper has also described a secure asynchronous
message communication connector and a secure synchronous message communication
with reply connector, which are designed and integrated based on the security pattern
and communication pattern features selected for the applications.

This paragraph describes future research for secure connectors. The pseudocode
templates described in this paper could be replaced with code, e.g., in Java or C++. The
code of a security coordinator could be generated automatically from a code template
of a high-level security coordinator. As security and communication pattern features
are selected for an application, the template could be automatically filled with calls to
the appropriate methods of the corresponding pattern components. A prototype tool
could also be developed to automatically generate the code for security coordinators
within secure connectors. In addition, we might need to investigate how multiple
communication pattern components could be encapsulated within a secure connector
when sender and receiver application components communicate with each other via
different types of communication patterns.

Acknowledgements. This work was partially supported by the AFOSR grant FA9550-16-1-
0030.

394 M. Shin et al.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. Wiley, West Sussex (2010)

2. Shin, M.E., Gomaa, H.: Software modeling of evolution to a secure application: from
requirements model to software architecture. Sci. Comput. Program. 66(1), 60–70 (2007)

3. Shin, M.E., Malhotra, B., Gomaa, H., Kang, T.: Connectors for secure software
architectures. In: 24th International Conference on Software Engineering and Knowledge
Engineering, pp. 394–399. Knowledge Systems Institute, San Francisco Bay (2012)

4. Shin, M.E., Gomaa, H., Pathirage, D., Baker, C., Malhotra, B.: Design of secure software
architectures with secure connectors. Int. J. Software Eng. Knowl. Eng. 26(05), 769–805
(2016)

5. Shin, M., Gomaa, H., Pathirage, D.: Reusable secure connectors for secure software
architecture. In: Kapitsaki, G.M., Santana de Almeida, E. (eds.) ICSR 2016. LNCS, vol.
9679, pp. 181–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-35122-3_13

6. Shin, M., Gomaa, H., Pathirage, D.: Model-based design of reusable secure connectors. In:
4th International Workshop on Interplay of Model-Driven and Component-Based Software
Engineering (ModComp), Austin (2017)

7. Shin, M., Gomaa, H., Pathirage, D.: A software product line approach for feature modeling
and design of secure connectors. In: The 13th International Conference on Software
Technologies (ICSOFT). SciTePress, Porto (2018)

8. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling language for
model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45800-X_33

9. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X_32

10. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security. In: Proceedings of the
16th ACM Symposium on Access Control Models and Technologies, pp. 1–10. ACM,
Innsbruck (2011)

11. Gomaa, H., Menascé, D.A., Shin, M.E.: Reusable component interconnection patterns for
distributed software architectures. In: Proceedings of the 2001 Symposium on Software
Reusability Putting Software Reuse in Context, pp. 69–77. ACM, Toronto (2001)

12. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Patterns, and software
Architectures. Cambridge University Press, Cambridge (2011)

13. Ren, J., Taylor, R., Dourish, P., Redmiles, D.: Towards an architectural treatment of
software security. ACM SIGSOFT SoftW. Eng. Notes 30(4), 1–7 (2005)

14. Al-Azzani, S., Bahsoon, R.: SecArch: architecture-level evaluation and testing for security.
In: Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, pp. 51–60. IEEE, Helsinki (2012)

15. Schumacher, M., Fernandez, E.B., Hybertson, D., Buschmann, F., Sommerlad, P.: Security
Patterns: Integrating Security and Systems Engineering. Wiley, West Sussex (2006)

16. Fernandez-Buglioni, E.: Security Patterns in Practice: Designing Secure Architectures Using
Software Patterns, 1st edn. Wiley, West Sussex (2013)

17. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based
Software Architectures. Addison-Wesley, Boston (2005)

A Software Product Line Approach to Design Secure Connectors 395

http://dx.doi.org/10.1007/978-3-319-35122-3_13
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1007/3-540-45800-X_32

18. Gomaa, H., Shin, M.E.: A multiple-view meta-modeling approach for variability manage-
ment in software product lines. In: Bosch, J., Krueger, C. (eds.) ICSR 2004. LNCS, vol.
3107, pp. 274–285. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27799-
6_23

19. Gomaa, H., Shin, M.E.: Automated software product line engineering and product
derivation. In: 40th Annual Hawaii International Conference on System Sciences, p. 285a.
IEEE, Waikoloa (2007)

20. Gomaa, H., Shin, M.E.: Multiple-view modelling and meta-modelling of software product
lines. IET Software 2(2), 94–122 (2008)

21. Gomaa, H., Shin, M.E.: Variability modeling in model-driven software product line
engineering. In: Proceedings of the 2nd International Workshop on Model Driven Product
Line Engineering (MDPLE 2010), Paris, p. 65 (2010)

22. Abu-Matar, M., Gomaa, H.: Variability modeling for service oriented product line
architectures. In: 15th International Software Product Line Conference (SPLC), pp. 110–
119. IEEE, Munich (2011)

23. Fant, J.S., Gomaa, H., Pettit, R.G.: Integrating and applying architectural design patterns in
space flight software product lines. In: 10th International Joint Conference on Software
Technologies (ICSOFT), vol. 1, pp. 1–11. IEEE, Colmar (2015)

24. Tzeremes, V., Gomaa, H.: Applying end user software product line engineering for smart
spaces. In: Proceedings of the 51st Hawaii International Conference on System Sciences, Big
Island, Hawaii (2018)

25. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of
software architectures. In: Fourth Working IEEE/IFIP Conference on Software Architecture,
Oslo (2004)

26. Gomaa, H., Hashimoto, K.: Dynamic software adaptation for service-oriented product lines.
In: Fifth International Workshop on Dynamic Software Product Lines, Munich (2011)

27. Albassam, E., Gomaa, H., Menasce, D.: Variable recovery and adaptation connectors for
dynamic software product lines. In: 10th International Workshop on Dynamic Software
Product Lines, Sevilla, pp. 123–128 (2017)

28. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.A.: Software adaptation
patterns for service-oriented architectures. In: Proceedings of the 2010 ACM Symposium on
Applied Computing, pp. 462–469. ACM, Sierre (2010)

29. Albassam, E., Gomaa, H., Menascé, D.A.: Model-based recovery connectors for self-
adaptation and self-healing. In: 11th International Joint Conference on Software Technolo-
gies, pp. 79–90. ICSOFT-EA, Lisbon (2016)

30. Albassam, E., Porter, J., Gomaa, H., Menascé, D.A.: DARE: a distributed adaptation and
failure recovery framework for software architectures. In: 14th IEEE International
Conference on Autonomic Computing and Communications (ICAC), Columbus (2017)

31. Farahmandian, S., Hoang, D.B.: SDS2: A novel software-defined security service for
protecting cloud computing infrastructure. In: 16th International Symposium on Network
Computing and Applications (NCA), pp. 1–8. IEEE, Boston (2017)

32. Taha, A., Trapero, R., Luna, J., Suri, N.: A framework for ranking cloud security services.
In: International Conference on Services Computing (SCC), pp. 322–329. IEEE, Honolulu
(2017)

33. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing, 3rd edn. Prentice Hall, Upper Saddle
River (2003)

396 M. Shin et al.

http://dx.doi.org/10.1007/978-3-540-27799-6_23
http://dx.doi.org/10.1007/978-3-540-27799-6_23

Towards an Automatic Verification
of BPMN Model Semantic Preservation

During a Refinement Process

Yousra Bendaly Hlaoui1, Salma Ayari2(B), and Leila Jemni Ben Ayed3

1 University of Tunis-Elmaner, Tunis, Tunisia
yousra.bendalyhlaoui@esstt.rnu.tn
2 LATICE Laboratory, Paris, France

salma ayari@yahoo.fr
3 National School of Computer Science Manouba, Manouba, Tunisia

leila.jemni@fsegt.rnu.tn

Abstract. In this paper, we present a refinement approach for business
processes specified with Business Process Modeling Notation (BPMN).
The Business process or workflow refinement approach is a step-wise
modeling approach which is composed of a set of abstraction levels. Each
refinement step corresponds to an abstract level of a BPMN model. For
each refined workflow model, we analyze, automatically, the workflow
change impact using NuSMV model checker. The change impact con-
cerns the semantic preservation of workflow models during the refinement
process. We talk about workflow data and control flow dependencies. To
realize this analysis, we have to transform at each level of modeling
refinement, the BPMN model to a Kripke structure formalizing, hence,
the semantics of the refined business process model.

Keywords: Workflow · BPMN modeling · Refinement ·
Change impact NuSMV · Kripke structure

1 Introduction

Workflow applications become increasingly popular in modern scientific compu-
tation and whose role is to automate processes. Typical examples of workflow
applications are banking, customer services or travel agencies [1]. They could
be complex and composed of a large number of heterogeneous linked entities.
The step-wise specification is a solution to manage the complexity and allows
a set of transformation from the highest level of the specification to the lowest
one. We call this step-wise specification a model refinement [2]. A model refine-
ment deals with adding more details to a given abstract model belonging to the
previous level. At each refinement step, we have to prove that this refinement
preserves the semantics of the abstract model as it is considered as a workflow
change [3]. The verification of model semantic preservation allows the proof of

c© Springer Nature Switzerland AG 2019
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2018, CCIS 1077, pp. 397–420, 2019.
https://doi.org/10.1007/978-3-030-29157-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29157-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-29157-0_18

398 Y. B. Hlaoui et al.

the correctness [4] and the soundness [5] of the workflow model built by speci-
fication refinement. In fact, at each refinement level, we analyze the impact of
the workflow or business process change. The impact of change deals with the
data dependency change and the control flow change dependency. The depen-
dency relationship determines the process semantics by simulating and modeling
its execution using a dependency graph [6]. This graph includes the data and
the control flow dependencies [6]. The dependency of data is defined by the
exchanged data between the workflow activities as input and the output. The
data dependency is determined by the data access mode affected to each work-
flow activity: an activity has the authorization to modify a data whereas an
other uses this data to be performed. The control flow dependencies specify the
causality order between workflow activities. Based on the dependency graph,
the analysis of the impact of workflow change seems to be costly in terms of
complexity. Therefore, we propose an automatic analysis of the workflow change
impact using NusMV model checker [7] based on the Kripke structure [8] to
specify the semantics of the refined model throughout the dependency relation-
ships. Indeed, a kripke structure which is modeled by a property labeled transi-
tion system replaces the dependency graph used in the literature [6] to analyze
the impact change. In this paper, we propose a refinement approach to specify
business processes or workflow using BPMN language (Business Process Model-
ing and Notations) [9]. BPMN language is a standard notation used to express
business processes [9]. To verify automatically the semantic preservation or the
workflow change impact during the refinement process, we use NuSMV model
checker. As mentioned above, we have to analyze the workflow data and control
flow dependencies specified by a BPMN model belonging to a specific refinement
level. As we propose an automatic approach, the refinement of a BPMN process
is realized by introducing a refinement pattern. We have defined four refinement
patterns [10] namely the Sequence Refinement Pattern, the Parallel Refinement
Pattern, the Exclusive Refinement Pattern, and the Loop Refinement Pattern.
Hence, we are brought about analyzing, automatically, the change impact caused
by each refinement pattern when its introduced into the BPMN model at a spe-
cific level of refinement. The change impact analysis is performed by the veri-
fication, at each level of refinement, of the data and control flow dependencies
using NuSMV. Therefore, we propose a translation process from BPMN models
into Kripke structure to allow the NuSMV verification. So, to check the preser-
vation of data and control flow dependencies, we have to specify them as linear
temporal logic properties (LTL) [11]. In this paper, we detail how to define these
properties, how to check them using NUSMV and How to proceed to transform
a BPMN model to a Kripke structure.

This paper is organized as follows:

2 Related Works and Discussion

In the Literature, different works, dealing with the transformations based on
refinement and using graphical notations, are proposed:

Towards an Automatic Verification of BPMN Model Semantic Preservation 399

– UML AD (UML Activity diagram): Authors in [12] presents a refinement
based modeling approach of workflow applications using UML AD. Limits
of their work consists on the automatic verification of the refinement or the
change. More, BPMN is becoming the leader in the modeling of business
processes.

– Petri Net: Authors in [13] adopt an approach called property-preservation for
verification of refinement. This verification technique is not automatic. PN
tend to become large even for relatively small systems. The lack of hierarchical
composition makes it difficult to specify and understand complex systems
using the conventional model(PN) [10].

– BPMN: Author in [14] apply the refinement with a set of composition opera-
tors in a BPMN process and did not check the semantic preservation of this
processes.

The change impact analysis has been studied in several works like [15,16]. The
change and its impact are formalized in this works by a graph called depen-
dency graph to represent dependencies existing inside the process. The impact
is studied and does not allow a verification approach of such change.

In Our Contribution, differently to what was done and to overcome the lim-
itations of the works mentioned above, we propose:

– BPMN is an ISO standard notation, provide a large collection of notation
elements. Moreover, it supports the hierarchical approach to design; thus, the
process can be modeled on several abstraction levels.

– Formal verification of the refinement BPMN processes with an automatic way
by using the NuSMV model checking.

– The change and more particularly refinement requires an analysis of its impact
since it allows to add details. Our analysis is done through a dependency graph
depicted from [6] and for which it serves as a support for the impact studies.

3 Overview of Our Proposed Methodology

In this paper, and by extending our methodology approach from [10] we propose
a transformation of BPMN refinement models to NuSMV. The first part is the
modeling phase, when we develop with our team [20] a tool for BPMN abstract
view in JAVA. XML files of the models are generated automatically from the
views. The second phase, is the formalization phase where it includes the gen-
eral idea of our work. The dependency graph is generated which is the Kripke
structure. The Kripke structure is modeled with the framework JUNG which is
used to visualize a graph. Kripke structure is the semantic notation of NuSMV.
The last phase, is the verification phase who can check the validity of our model
against a set of properties expressed in LTL. This is summarized in Fig. 1.

400 Y. B. Hlaoui et al.

Fig. 1. Overview of our approach.

4 BPMN Specification

The Business Process Model & notation (BPMN) has been established as the
standard notation to provide a graphical representations for business processes
which is comprehensible to business users. We describe a core subset of BPMN
elements in Fig. 2. These elements consist of:

– A set of objects connected by sequence flow transitions.
Object could be:
1. An activity which can be a simple task, a loop task or a sub-process,
2. A gateway which is a routing construct that can only be connected by a

sequence flow. There are many types of gateways such as parallel, exclu-
sive, inclusive and complex types of gateways,

3. Events can be triggered when something is happen during the running
process. There are 3 types of events: Start, Intermediate and End events.
Start event indicates when the process can starts, the Intermediate event
which can occur in the middle of the execution of the process (between
the Start and the End event) and the End event where there is no process
to catch after this event,

– Artifacts namely annotations which that we use to present the pre and post
conditions of an activity.

The BPMN specification definition is defined as follows:

Definition 1 (Formal definition of BPMN) [10]. Let BP = (O, Sf, Art, Sp)
be a Business process with:

– O = OEvent ∪ OActivity ∪ OGateway is a set of objects with:
1. OEvent = εS ∪ εI ∪ εE, i.e. the set of events partitioned into the disjoint

subsets start, intermediate and end events.
2. OActivity = Osimpletask ∪ Olooptask ∪ Osub-process, i.e. the set of activities

partitioned into the disjoint subsets task atomic activity and sub-process.

Towards an Automatic Verification of BPMN Model Semantic Preservation 401

Fig. 2. BPMN constructs.

3. OGateway = OP ∪ OEx ∪ OIn, i.e. the set of gateways partitioned into
the disjoint subsets parallel (AND), inclusive (XOR), exclusive (Or) and
complex gateways. In this paper we use only parallel and exclusive gate-
ways.

– Sf is a set of sequence flow or connecting of flow Objects.
– Art is the set of artifacts used to provide additional information.
– Sp is a function with Sp: O → Art where Art is a set of notations which

Art = Artpre ∪Artpost representing the pre and post-conditions for an object.

5 Business Process Refinement Approach

A refinement is a transformation that enriches system entities with specific detail
or functionality. Hence, starting from the higher level of abstraction of the pro-
cess specification which delivers as model a sub-process object annotated with
its pre and post conditions and surrounded with the Start and End events.
As Fig. 3 shows, the sub-process is refined with specific BPMN objects, sequence
flows, start event, intermediate event, artifacts and gateways to bring more detail
to the abstract sub-process. The obtained model belongs to the next abstract
level of the initial sub-process. We continue the refinement process model refine-
ment until no more detail could be added. The lower level of abstraction of
the business process contains only simple tasks linked via sequence flows and
gateways. The resulting model which belongs to the lower level of abstraction
has to be semantically conformed to the highest specification. In fact, we are
brought about developing a set of refinement patterns to ensure not only the
conformity between the refined models but also to guarantee the automation
of the refinement process. In order to verify the semantic conformity between
models belonging to different abstraction levels, we have analyzed the impact
of change when refining a model. Next, we bring more details concerning this
analysis.

402 Y. B. Hlaoui et al.

Fig. 3. The refinement approach steps.

5.1 Impact Analysis of Refinement

The purpose of the change impact analysis is to predict which parts of the
BPMN model will be affected by a change. This analysis is essential to main-
tain the consistency of business processes and to estimate the development cost
of this process. The consistency of a BPMN process can be used to prevent
inconsistent or unsatisfactory operation from being occurred. It ensures the effi-
ciency and quality of a process, at similar levels of abstraction, and provide
the same behavior and look. The analysis of change in a preponed time will
determine the consequences of changes before their introduction into the model.
Especially, in our work we tackle the problem of change that can be defined by
refinement. One of the most commonly identified relations as a common thread
in the impact analysis process is the genetic relationship so-called dependency
relationship [17]. A transformation can be applied in a business process if all
the dependencies between the different parts of the process are respected. As
a refinement is a special transformation, the dependency analysis which is per-
formed over a transformation can be defined by a dependency graph.

5.2 Dependency Relationship

Dependency relationship is performed to analyze the effect of the change in
software systems and which we can call the dependency analysis. The depen-
dency analysis can identify the execution-order between elements in a business
process models in order to maintain consistency. This can include Control flow
dependency, in which it can represent the dependent relation between BPMN ele-
ments that define and use data. Another dependency relationship who is activity
dependencies which defines the order of execution of the elements in a BPMN
process. In refinement, the type of dependency which we can talk about occurs

Towards an Automatic Verification of BPMN Model Semantic Preservation 403

when the achievement of the refined (complex) activity is realized by the exe-
cution of different refinement activities. We will present the dependency graph
for each dependency relationship Control flow and data dependencies applied to
the refinement patterns [10] mentioned above. Each refined BP is presented as
a graph in which every BPMN element is presented as a vertices connected by
means of BPMN transitions called edges of the graph. Only one edge is allowed
between two vertices.

Definition 2 Dependency Graph (process graph) [6]. Let Γ1 be a set of node
types. Let Θ1 a set of node labels. A process graph PG is represented by a tuple
PG = (V1, E1, γ1, θ1) where:

– V1 is a set of vertices,
– E1 is a set of edges modeling the control flow of the business process,
– γ1 : V1 → Γ1 is a function that maps vertices to types and
– θ1 : V1 → Θ1 is a function mapping vertices to labels comprising <(vertex

type,vertex name), unique number in the business process>.

Consequently, a BP is transformed to a graph across the notation PG = (V,
E). For example, if we have v1&v2 ∈ V and e ∈ E then the transition edge of
the two nodes e = (v1, v2) represent the flow sequence between two activities
AT1&AT2 where v1.name = AT1 , v2.name = AT2 , e.type = sequence, e.name =
AT1 → AT2 , v1.type = AT , v2.type = AT . For the example in Table 1 we have
the formal definition of the graph dependency for a simple BP.

Table 1. Graph dependency.

BPMN Object PG

εS A1 A2 εE

Description

V1 = {A1, A2, εS, εE}

E1 = {e1, e2, e3}

γ1(A1) = SimpleT ask

γ1(A2) = Subprocess

θ1(A1) = (< simpletask >, A1), 1)

θ1(A2) = (< Subprocess >, A2), 2)

· · · =

404 Y. B. Hlaoui et al.

Control Flow Dependency. The Control flow dependency is a control depen-
dency whose execution of an entity depends on the execution of a previous entity.
In another way, X an activity that defines a variable “a” and Y another activity
that uses this variable knowing that there is a direct path from X to Y and there
is no intervening definition of a. Hence between two entities in execution, there
is a control flow dependency between X and Y which Y’s precondition depends
on X post-condition. In other words, if D is modified by a new value then F
will use and read this new value. The use of this value can be made with the
precondition assertion. For that we consider that D transfers its current value
with the assertion post-condition.

Definition 3 Control flow dependency Graph (CFDG) [6]. Let Γ2 be a set of
edge types. Let Θ2 a set of node labels and Ω2 a set of edge labels. A CFDG is a
labeled typed directed graph defined by a tuple CFDG = (V2, E2, γ2, θ2, ω2) where:

– V2 ⊆ V1, represent the nodes of the PG,
– E2 ⊆ V2XV2 is a set of edges, is a dominance relationship,
– γ2 : V2 → Γ2 is a function that maps edges to types (Sequence dependency,

parallel dependency, exclusive dependency and loop dependency),
– θ2 : E1 → Θ2 and
– ω2 : E2 → Ω2 is a function that maps edges to labels (Pre & Post).

Based on works of [3–6,15], we can represent our dependency graph for con-
trol flow dependency in refinement as follows:

– Control flow dependency for sequence Refinement pattern:
The CFDG for sequence refinement pattern is shown in Table 2.

Table 2. Control flow dependency for sequence refinement pattern.

BPMN Object CFDG for sequence refinement pattern

A0 A10 A11 A2

{Pre(A10)
=Pre(A1) }

{Post(A10)
=Post(A1) }

Pre(A10)=Pre(A1)

Post(A11)=Post(A1)

Towards an Automatic Verification of BPMN Model Semantic Preservation 405

Table 3. Control flow dependency for parallel refinement pattern.

BPMN Object CFDG for parallel refinement pattern

A0

A10A11

A2

{Pre(A10) & Pre(A11)
=Pre(A1)}

{Pre(A11) & Pre(A10)
=Pre(A1)}

{Post(A10) & Post(A11)
=Post(A1)}

{Post(A11) & Post(A10)
=Post(A1)}

P re(A11)&P re(A10) = P re(A1)

Post(A11) & Post(A10) = Post(A1)

– Control flow dependency for parallel refinement pattern:
The CFDG for parallel refinement pattern is shown in Table 3.

– Control flow dependency for exclusive refinement pattern:
The CFDG for exclusive refinement pattern is shown in Table 4.

– Control flow dependency for loop refinement pattern:
The CFDG for loop refinement pattern is shown in Table 5.

Table 4. Control flow dependency for exclusive refinement pattern.

BPMN Object CFDG for Exclusive refinement pattern

A0

A10A11

A2

{Pre(A1)=Pre(A10)
=TRUE &
Pre(A11)=FALSE}

{Pre(A1)=Pre(A11)
=TRUE &
Pre(A01)=FALSE }

{Post(A1)=Post(A10)
=TRUE
& Post(A11)=FALSE}

{Post(A1)=Post(A11)
=TRUE
& Post(A01)=FALSE}

Pre(A10)| Pre(A11)=Pre(A1)

Post(A10)| Post(A11)=Post(A1)

406 Y. B. Hlaoui et al.

Table 5. Control flow dependency for loop refinement pattern.

BPMN Object CFDG for loop refinement
pattern

A0

A10

A2

{Post(A10)=Post(A1)
& N=FALSE }

{P
re
(A

10
)=

P
re
(A

1)
&

N
=

T
R
U
E
}

P re(A1) = P re(A10)&N = T RUE

P ost(A1) = P ost(A10)&N = F ALSE

Data Dependency. Data dependencies occur when a consumer of data is
dependent on the provisioning of data from a producer [18]. The data dependency
arises if one activity (A2) is the data consumer of (d1) then another activity (A1)
needs to produce (d1) before (A2) tries the use of the data object. Data flow
information can be collected by setting up and solving of equation systems that
link information into a business process. An equation has the general form:

Data(A) = Out(A) ∪ (In(A) − Del(A))

d1:i := m − 1
d2:j := n
d3:a := u1

d4:i := i+ 1

d5:j := j − 1

B1

B3

B2 Description
Out(B2) = {d4}
In(B2) = {d1, d2, d3}
Del(B2) = Di − {d4}
DATA(B2)= Out(B2) ∪ (In(B2)-Del(B2))

Fig. 4. DDG example.

Towards an Automatic Verification of BPMN Model Semantic Preservation 407

This equation can be read as follows: Either the information at the end of an
instruction is generated within that instruction, or it is entered at the beginning
and is not deleted during the instruction. Such equations are called data flow
equations. An example of data flow dependency graph (DFDG) is shown in
Fig. 4.

By referring to works of [6] we conclude that:

Definition 4 Data dependency Graph (DDG). Let Γ3 be a set of edge types. Let
Θ3 a set of node labels and Ω3 a set of edge labels. A DDG is a labeled typed
directed graph defined by a tuple DDG = (V3, E3, γ3, θ3, ω3) where:

– V3 ⊆ V1, represent the nodes of the PG where
V3 : FoActivity → In(Fo)XOut(Fo),

– E3 is a set of edges,
– γ3 : E3 → Γ3 is a function that maps edges to types (sequence data depen-

dency,parallel data dependency, exclusive data dependency and loop data
dependency),

– θ3 : V3 → (Θ3, Out, del, In) is a function mapping vertices to labels corre-
sponding BP activity name, data definition of the node, data to delete, data
collected from the node before and

– ω3 : E3 → Ω3 is a function that maps edges to labels.

We can represent our dependency graph for control flow dependency in refine-
ment as follows:

– Sequence refinement data dependency:
The DDG for sequence refinement pattern is shown in Table 6.

Table 6. Data dependency for sequence refinement pattern.

BPMN Object DDG for sequence refinement pattern

In(A1) Out(A1) In(A2) Out(A2)

Out(A)=Out(A2 ∪ (In(A1) − Del(A2)

Del(I)=Del(A2) ∪ (Del(A1) − In(A2)

In(A1) = In(A)

In(A2) = Data(A1)

Data(A) = Data(A2)

408 Y. B. Hlaoui et al.

Table 7. Data dependency for parallel refinement pattern.

BPMN Object DDG for parallel refinement
pattern

In(A1)
& In(A2)

Out(A1
& Out(A2)

Out(A)=Out(A1) ∩ Out(I2)

Del(A)=Del(A1) ∩ Del(A2)

In(A1) ∩ In(A2) = In(A)

Data(A) = Data(A1) ∩ Data(A2)

Table 8. Data dependency for exclusive refinement pattern.

BPMN Object
DDG for Exclusive refinement

pattern

In(A1) |
In(A2)

Out(A1) |
Out(A2)

Out(A)=Out(A1) ∪ Out(A2)

Del(A)=Del(A1) ∩ Del(A2)

In(A1) = In(I)

In(A2) = In(A)

Data(A) = Data(A1) ∪ Data(A2)

Towards an Automatic Verification of BPMN Model Semantic Preservation 409

Table 9. Data dependency for loop refinement pattern.

BPMN Object DDG for Loop refinement pattern

In(A1) Out(A1)

Out(A)=Out(A1)

Del(A)=Del(A1)

In(I1) = In(A) ∪ Out(I1)

Data(A) = Data(A1)

– Parallel refinement dependency data:
The DDG for parallel refinement pattern is shown in Table 7.

– Exclusive refinement data dependency:
The DDG for the exclusive refinement pattern is shown in Table 8.

– Loop refinement data dependency:
The DDG for the loop refinement pattern is shown in Table 9.

Graph Dependency Generation. The result of Control flow dependency and
data dependency analysis can be presented in a directed graph called graph
dependency generation. This graph analyses which structural and semantic
changes are produced when applying refinement patterns to the BPMN model.
The control flow dependency is represented through the labeled direct arcs of
the graph. Thus, this graph is composed of a finite set of vertices, a finite set
of edges and a typing of vertices. The graph dependency generation is a graph
which verify the execution semantics of the desirable model. Here we study the
semantics of BPMN processes using a set of refinement patterns. For example
the data dependency graph of the sequence refinement pattern is shown in Fig. 5.

The execution semantics of a dependency graph generation simulates the
behavior of the represented BPMN. In order to verify our execution semantics, we
need to describe a tool supports verification of BPMN processes using refinement
patterns for checking the refinement transformation in the graph dependency
generation. Referring to our published work [10], we can see that the graph

410 Y. B. Hlaoui et al.

in Fig. 5 is our defined kripke structure for checking the refinement of BPMN
processes that can be used for the model checking Nusmv.

In(A1)

{Pre(A1)=Pre(A)}

Out(A1)

In(A2)Out(A2)

{Post(A2)=Post(A)}

Fig. 5. Dependency Graph for a sequence refinement pattern.

Fig. 6. Specification & verification of BPMN models with NuSMV.

Towards an Automatic Verification of BPMN Model Semantic Preservation 411

6 Verification of BPMN Refinement Models Using
NuSMV

The refinement of BPMN processes allows us to enrich a model at each leveli
of abstraction in a step-by-step approach. At each level we define a semantic
execution behavior in which we define a formal definition for the transformation
for BPi to a Kripke structure. A set of properties is defined at each level. In
our approach we deal with the abstract and refinement safety properties. Safety
properties are added in each leveli. Therefore, we obtain the system behavior
describing by the Kripke structure and the property of each level. Then the model
checker NuSMV, takes models from Kripke structure and the safety properties
from each level. And verifies if the formula is satisfied or not. Figure 6 summarizes
the illustrated approach of this paper.

NuSMV is a widely used tool for the verification & validation of systems. It
is open source, it has a widespread use in academia, and it accepts properties
formalized not only in Computation Tree Logic (CTL) [19] but also in Linear
Temporal Logic (LTL). Kripke structure provide a semantic for the NuSMV
model checker in order to check the validity of refinement for BPMN models.
For that we need to check this validity against a set of refinement properties.

6.1 Properties Generation

The graph dependency generation should specify under which requirements the
transformation or the refinement is applicable for every vertices v ∈ V1 that
controls an activity with a pre and post-condition assertions. This assertions
are the labels of the vertices for the graph and can be used as conditions for
statements in order to verify the correctness of the transformation. To ensure
that our system never exhibit a bad behavior, we need to check the safety prop-
erty of the model. For that we have to verify that if a task try to run, it will
use the precondition assertion depicted from the post-condition of the precedent
BPMN object. After that, the task must terminate its execution and reach its
post-condition.

Definition 5 (Safety property) [10]. For functions Pre and Post over an object
A ∈ OActivity in BPMN:

P =̂ (pre(A) ⇒ post(A)).

The symbol =̂ is read “is defined to be equal”.

Likewise, in order to verify the refinement consistency we need to define a prop-
erty for each refinement pattern. The refinement must guarantee the behavior
preservation.

Definition 6 (Safety refinement property) [10]. A BPi−1 at level i−1 with a
specification property Pi−1 implements a BPi at level i with a specification prop-
erty Pi and by preserving the linking property PLinkRefi , if a correspondence
between them is given and called Prefi .

Prefi =̂PLinkRefi ∧ Pi−1 ∧ Pi,∀i ∈ [1 · · · n].

412 Y. B. Hlaoui et al.

The implementation of a Kripke structure representing each semantic BPMN
model must be equivalent to a set of specifications to avoid the structural errors
which can be fixed by the safety and refinement properties of the system.

6.2 Kripke Structure

Definition 7 (Kripke structure) [10]. A kripke structure is a quadruple K = (S,
I, T, L) where:

– S is a finite non-empty set of states,
– I ⊆ S is a set of initial states,
– T is a transition relation between states such as T ⊆ S × S and
– L : S → 2AP assigns truth values to the set of atomic propositions (AP).

A kripke structure is a graph dependency where all the vertices V of the graph
corresponds to a set of states S. The initial vertices v0 ∈ V is the start vertex
which is represented in the kripke structure with a set of Initial states I. E, the
finite set of arcs, corresponds to the transition relation T. Let “x” be a variable
and v a vertex. If v represent a statement referencing “x” then we can label the
state s ∈ S. We define L the function labeling each state with a set of atomic
propositions denoted AP where AP = {pre, end}. φ is the labeling function of
the dependency generation graph then we have φ : N → P(AP) where P(AP) is
a subset of the set AP. The formal semantic using Kripke structure for BPMN
processes is:

Definition 8 (Formal semantics of BPMN using Kripke structure) [10]. A pro-
cess BP = (Fo, Sf, Art, Sp) induces a Kripke structure K = (S, I, T, L) with:

1. S being the set of all valid system states which present the behavior of objects
in BP called Ins(O) where O ∈ FoActivity such that:

Ins : FoActivity → In Fo × Out Fo

where:
In Fo = {in O|O ∈ FoActivity} and Out Fo = {out O|O ∈ FoActivity}

2. I being the set of initial states;
3. T being the transition relation between the instantiate object Flow; Ins(O) ×

Ins(O);
4. L : S → 2P . P is a set of elementary properties verified by each state of the

entire system.

To define the semantic description of BPMN using kripke structure, we need a
formal description of each refinement pattern including the refinement proper-
ties [10].

1. The formal semantic using Kripke structure for a BPMN abstract Activity A
∈ Fo is given as follows [10]:
L (in(A)) = {pre(A)|�s ∈ S ∧ s 	= in(A), (s, in(A)) ∈ T}
L (out(A)) = {post(A)|∀s ∈ S, (out(A), s) /∈ T}

Towards an Automatic Verification of BPMN Model Semantic Preservation 413

2. The formal semantic using Kripke structure for a BPMN sequence refinement
activities (>, {A1, · · · , AN}) ∈ Fo and A ∈ Fo the refined activity is given as
follows: [10]
L>(in(A1) = {pre(A1), PlinkRefi |�s ∈ S ∧ s 	= in(A1); (s, in(A1)) ∈ T ∧
PLinkRefi =̂ pre(A1) = pre(A)}
L>(out(AN)) = {post(AN), PLinkRefi |∀s ∈ S; (out(AN), s) /∈ T ∧
PLinkRefi =̂ post(AN) = post(A)}

3. The formal semantic using Kripke structure for a BPMN parallel refinement
activities (‖, {A1, · · · , AN}) where A ∈ Fo is the refined activity [10]:
L‖(∩X∈(1,··· ,N)in(AX) = {∩X∈(1,··· ,N)Pre(AX), PlinkRefi |�s ∈ S ∧ s 	=
in(A1); (s, in(A1)) ∈ T ∧ PLinkRefi =̂ ∩X∈(1,··· ,N) Pre(AX) = pre(A)}
L‖(∩X∈(1,··· ,N)out(AX)) = {∩X∈(1,··· ,N)Post(AX), PLinkRefi |∀s ∈ S; (out
(AN), s) /∈ T ∧ PLinkRefi =̂ ∩X∈(1,··· ,N) Post(AX) = post(A)}

4. The formal semantic using Kripke structure for a BPMN exclusive refinement
activities ([], {A1, · · · , AN}) where A ∈ Fo is the refined activity [10]:
L[](∪X∈(1···N)in(AX)) = {∪X∈(1···N)Pre(AX), PLinkRefi |�s ∈ S ∧ s 	=
in(A1); (s, in(A1)) ∈ T ∧ PLinkRefi =̂ ∪X∈(1,··· ,N) Pre(AX) = pre(A)}
L[](∪X∈(1···N)out(AX)) = {∪X∈(1···N)Post(AX), PLinkRefi |∀s ∈ S; (out
(AN), s) /∈ T ∧ PLinkRefi =̂ ∪X∈(1,··· ,N) Post(AX) = post(A)}

5. The formal semantic using Kripke structure for a BPMN loop refinement
activities (� N,B) where A ∈ Fo is the refined activity [10]:
L�(in(A1)) = {Pre(A1) ∧ N,PLinkRefi |�s ∈ S ∧ s 	= in(A1); (s, in(A1)) ∈
T ∧ PLinkRefi =̂Pre(A1) ∧ N = Pre(A)}
L�(out(A1)) = {Post(A1) ∧ ¬N,PLinkRefi |∀s ∈ S; (out(A1), s) /∈ T ∧
PLinkRefi =̂ Post(A1) ∧ ¬N = Post(A)}

6.3 NuSMV

NuSMV is a symbolic model checker. An SMV program consists of a tuple (V,
init, next, AP) where:

– V i a set of Symbolic variables on a domain ID declared in the VAR section;
– A state transition variables init defined in section ASSIGNMENTS that

define the valid initial state init() and the transition relation next that
define the next state; next() defined as follows: “init(var):= initial state;
next(var):= next state” and

– AP is a set of atomic propositions.

The BPMN process model can be transformed to kripke structure which is pro-
duced from the graph dependency then to implement a local model checking to
check the refinement against properties expressed in LTL specification with the
NuSMV language.

414 Y. B. Hlaoui et al.

A Formal Transformation from BPMN to NuSMV. The formal trans-
formation from BPMN to NuSMV for a sub-process is shown in Table 10:

Table 10. Code NuSMV generated for a BPMN sub-process.

The formal transformation from BPMN to NuSMV for a sequence refinement
pattern is shown in Table 11:

Table 11. Code NuSMV generated for a sequence refinement pattern.

The formal transformation from BPMN to NuSMV for a sequence refinement
pattern is shown in Table 12:

Towards an Automatic Verification of BPMN Model Semantic Preservation 415

Table 12. Code NuSMV generated for refinement with a parallel pattern.

The formal transformation from BPMN to NuSMV for a sequence refinement
pattern is shown in Table 13:

Table 13. Code NuSMV generated for refinement with an exclusive pattern.

The formal transformation from BPMN to NuSMV for a sequence refinement
pattern is shown in Table 14:

416 Y. B. Hlaoui et al.

Table 14. Code NuSMV generated for refinement with a loop pattern.

7 Case Study

We illustrate the verification of a BPMN process using NuSMV with the help
of an example. The given case study consists of a simple booking site, as shown
in Fig. 7. This site must allow an easy and quick search of travels. For this, the
search will be possible with the sub-process Reservation. The user can register by
completing a form that contains information and then make his reservation by
specifying the number of people to travel for example. Finally the site determines
if the number of places is available and returns a feedback determining yes or
no the confirmation of its reservation.

Fig. 7. Case study example.

Towards an Automatic Verification of BPMN Model Semantic Preservation 417

The Screen-shots of the specification of the sub-process Reservation, the loop
refinement check available destination and Kripke structure of both models is
shown in Fig. 8. The verification results of the safety abstract and refined prop-
erties also are presented in Figs. 9 and 11.

Fig. 8. Screen-shots of the specification of the loop refinement pattern.

Fig. 9. NuSMV verification response for the loop pattern.

418 Y. B. Hlaoui et al.

The Screen-shots of the refinement with the exclusive process refinement and
its verification result is shown in Figs. 10 and 11.

Fig. 10. Specification of the exclusive refinement pattern.

Fig. 11. NuSMV verification response for the exclusive pattern.

Towards an Automatic Verification of BPMN Model Semantic Preservation 419

8 Conclusion

To get a manageable complexity of workflow modeling, we have introduced in
this paper a BPMN modeling refinement approach. This approach allows devel-
opers to introduce gradually more details within BPMN models at each level of
refinement.

In fact, we have proposed an automatic refinement approach based on a
set BPMN refinement patterns. For each pattern, we have analyzed the change
impact brought by the refinement pattern to the workflow model. The change
impact concerns the workflow data and control flow dependencies. To prove the
preservation of these dependencies throughout the refinement process, we have
transformed, at each level of refinement, the BPMN model to a Kripke struc-
ture formalizing the model semantics. Once semantic requirements are specified,
they are verified using NUSMV model checker. To validate our approach, we have
illustrate the refinement process and the automatic verification of the semantic
preservation via an example. As future work, we plan to finalize the tool sup-
porting our approach and to define a syntaxe driven definition generated by the
BPMN grammar allowing a systematic transformation of the workflow model to
the corresponding Kripke structure.

References

1. Vaz, C., Ferreira, C.: Towards automated verification of web services. arXiv
preprint arXiv:1111.2824 (2011)

2. Van Der Straeten, R., Jonckers, V., Mens, T.: A formal approach to model refac-
toring and model refinement. Softw. Syst. Model. 6(2), 139–162 (2007)

3. Cao, J., Zhao, H., Wang, J., Zhang, S., Li, M.: Verifying dynamic workflow change
based on executable path. Int. J. Intell. Control Syst. 12(1), 37–44 (2007)

4. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems–a survey. Data Knowl. Eng. 50(1), 9–34 (2004)

5. Van Der Aalst, W.M., et al.: Soundness of workflow nets: classification, decidability,
and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

6. Bouchaala, O., Yangui, M., Tata, S., Jmaiel, M.: DAT: dependency analysis tool
for service based business processes. In: IEEE 28th International Conference on
Advanced Information Networking and Applications (AINA), pp. 621–628. IEEE,
May 2014

7. Clarke Jr., E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Check-
ing. MIT Press, Cambridge (2018)

8. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

9. White, S.A., Bock, C.: BPMN 2.0 Handbook Second Edition: Methods, Concepts,
Case Studies and Standards in Business Process Management Notation. Future
Strategies Inc. (2011)

10. Ayari, S., Bendali, H.Y., Jemni, B.L.: A refinement based verification approach of
BPMN models using NuSMV. In: Proceedings of the 13th International Conference
on Software Technologies, ICSOFT 2018, Porto, 26–28 July 2018

http://arxiv.org/abs/1111.2824

420 Y. B. Hlaoui et al.

11. Lodaya, K., Sreejith, A.V.: LTL can be more succinct. In: Bouajjani, A., Chin,
W.N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 245–258. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15643-4 19

12. Younes, A.B., Hlaoui, Y.B., Ayed, L.J.B., Jlassi, R.: Refinement based modeling
of workflow applications using UML activity diagrams. In: IEEE 37th Annual
Computer Software and Applications Conference Workshops (COMPSACW), pp.
187–192. IEEE, July 2013

13. Huang, H., Cheung, T.Y., Mak, W.M.: Structure and behavior preservation by
Petri-net-based refinements in system design. Theoret. Comput. Sci. 328(3), 245–
269 (2004)

14. Istoan, P.: Defining composition operators for BPMN. In: Gschwind, T., De Paoli,
F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 17–34. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30564-1 2

15. Oliva, G., Milojicic, D., Gerosa, M.A., Smith, V.: A change impact analysis app-
roach for workflow repository management. In: IEEE 20th International Conference
on Web Services, ICWS 2013, June 2013

16. Strecker, M.: Modeling and verifying graph transformations in proof assistants.
Electron. Notes Theor. Comput. Sci. 203(1), 135–148 (2008)

17. Kherbouche, M.O.: Contribution à la gestion de l’évolution des processus métiers.
(Contribution to the business process evolution management). University of the
Littoral Opal Coast, Dunkerque, June 2013

18. Winkler, M.: Managing Service Dependencies in Service Compositions (2010)
19. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-

poral logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985)
20. Ben Fradj, I., Hlaoui, B.Y., Jemni, B.L.: Patterns for modeling and composing

flexible workflows from cloud services. In: Proceedings of the 20th International
Conference on Enterprise Information Systems, ICEIS 2018, Funchal, 21–24 March
2018, vol. 2 (2018)

https://doi.org/10.1007/978-3-642-15643-4_19
https://doi.org/10.1007/978-3-642-30564-1_2

Author Index

Alloui, Ilham 349
Ayad, Amani 3
Ayari, Salma 397
Ayed, Leila Jemni Ben 397

Ben Ahmed, Samir 282
Ben Noureddine, Dhouha 282
Benoit, Eric 349
Borchani, Nour 327
Bouassida, Nadia 327

Cavalli, Ana 194
Çergani, Ervina 79
Cerqueira, Italo 247
Chong, Chun Yong 266

da Silva, Fabio B. Q. 247
Dahab, Sarah 194
Dulz, Winfried 55

Florentin, Fabiana 247

Gharbi, Atef 282
Gol Mohammadi, Nazila 150
Gomaa, Hassan 372

Haidar, Hassan 124
Haoues, Mariem 327
Heisel, Maritta 150
Herber, Paula 28
Hlaoui, Yousra Bendaly 397

Kamei, Yasutaka 220
Kolp, Manuel 124

Lacerda, Rosberg 247
Laforcade, Pierre 104
Laghouaouta, Youness 104

Lee, Sai Peck 266
Loh, JiMeng 3

Maag, Stephane 194
Mallouli, Wissam 194
Marsit, Imen 3
Melemciuc, Marius-Constantin 307
Mezini, Mira 79
Mili, Ali 3
Moesus, Nikolai 28
Mohamed Omri, Nazih 3

Paduraru, Ciprian 307
Paduraru, Miruna 307
Pathirage, Don 372
Perrin, Stéphane 349
Pfahl, Dietmar 173

Quintino, Jonysberg P. 247

Santos, Andre L. M. 247
Sato, Ryosuke 220
Schlesinger, Sebastian 28
Scholze, Matthias 28
Sellami, Asma 327
Shah, Faiz Ali 173
Shin, Michael 372
Siebra, Clauirton 247
Sirts, Kairit 173

Ubayashi, Naoyasu 220
Ulfat-Bunyadi, Nelufar 150

Vernier, Flavien 349

Wautelet, Yves 124
Wirtz, Roman 150

	Preface
	Organization
	Contents
	Software Engineering and Systems Development
	Using Semantic Metrics to Predict Mutation Equivalence
	Abstract
	1 Equivalent Mutants
	2 The Key to Immortality
	2.1 Equivalence and Redundancy

	3 Analytical Study
	3.1 State Redundancy
	3.2 Non Injectivity
	3.3 Functional Redundancy
	3.4 Non Determinacy

	4 Empirical Study
	4.1 Experimental Conditions
	4.2 Raw Data
	4.3 Statistical Analysis

	5 Impact of Mutation Generation Policy
	5.1 Analyzing the Impact of Individual Operators
	5.2 Combining Operators
	5.3 Empirical Validation
	5.4 Analysis

	6 Concluding Remarks
	6.1 Summary
	6.2 Assessment and Threats to Validity
	6.3 Research Prospects

	Acknowledgement
	References

	A Rating Tool for the Automated Selection of Software Refactorings that Remove Antipatterns to Improve Performance and Stability
	1 Introduction
	2 Background
	2.1 Performance
	2.2 Stability
	2.3 Software Antipatterns
	2.4 Software Refactorings

	3 Related Work
	4 Automated Selection of Refactorings
	4.1 Assumptions and Requirements
	4.2 Rating Criteria
	4.3 Rating Function
	4.4 Weight Determination
	4.5 Selection of Detection Tools and Rules

	5 Evaluation
	5.1 Micro Benchmarks
	5.2 Rating Tool Chain
	5.3 Experimental Evaluation
	5.4 Added Values of Automated Refactoring Selection

	6 Conclusion
	References

	Model-Based On-the-Fly Testing of Web Applications and Multilingual Websites
	1 Introduction
	1.1 Model-Based Testing
	1.2 Automated Statistical Testing

	2 Automatic Test Suite Generation
	2.1 Creation of a Usage Model
	2.2 Creation of a Usage Model
	2.3 Automatic Generation of Test Cases
	2.4 Graphical Representation of the Test Suite Metrics

	3 Eclipse for the Automated Test Suite Execution
	4 Model-Based On-the-Fly Testing
	5 Model-Based Testing of Multilingual Websites
	5.1 Language-Dependent Usage Models
	5.2 Generic Usage Model
	5.3 Test Focusing by Means of Adapted Usage Profiles

	6 Conclusion and Final Remarks
	References

	On the Impact of Order Information in API Usage Patterns
	1 Introduction
	2 Related Work
	2.1 API Usage Representations
	2.2 Empirical Studies of API Usages
	2.3 API Misuse Detectors

	3 API Pattern Mining and Misuse Detection
	3.1 Episode Mining Algorithm
	3.2 Mining API Usage Patterns
	3.3 Detecting API Misuses

	4 Experimental Setup
	4.1 Data Sets
	4.2 Frequency and Entropy Thresholds
	4.3 Metrics for Pattern Comparison
	4.4 EMDetect Experimental Setup

	5 Empirical Comparison of Pattern Types
	5.1 Pattern Statistics
	5.2 Evaluation Results

	6 Implications
	7 EMDetect Evaluation Results
	7.1 Precision
	7.2 Recall
	7.3 Discussion

	8 Threats to Validity
	9 Conclusions
	References

	A Practical Approach for Constraint Solving in Model Transformations
	1 Introduction
	2 Motivation
	3 Global Overview
	3.1 Base Principles
	3.2 Illustrative Example
	3.3 Configuration Metamodel

	4 Transformation Infrastructure
	4.1 Generate Configuration
	4.2 Complete Configuration
	4.3 Generate Infrastructure
	4.4 Complete Resources
	4.5 Generate Targets

	5 Application
	5.1 Application Case
	5.2 Infrastructure Generation

	6 Related Work
	7 Conclusion
	References

	An Integrated Requirements Engineering Framework for Agile Software Product Lines
	Abstract
	1 Introduction
	2 Related Work
	3 A Metamodel for Agile Product Lines
	3.1 Organizational Sub-model
	3.2 Goal Sub-model
	3.3 Feature Sub-model

	4 User Story Concept
	5 The AgiFPL Methodology
	6 Applying the Proposed Metamodel
	7 Conclusion
	References

	Systematic Refinement of Softgoals Using a Combination of KAOS Goal Models and Problem Diagrams
	1 Introduction
	2 Fundamentals
	3 Our Method
	4 Application Example
	5 Related Work
	6 Conclusion
	References

	Simplifying the Classification of App Reviews Using Only Lexical Features
	1 Introduction
	2 Related Work
	3 Dataset and Preprocessing
	4 Classification Models
	4.1 Word N-Grams (BoW)
	4.2 Character N-Grams (BoC)
	4.3 Linguistic Features
	4.4 Convolutional Neural Networks (CNNs)

	5 Experimental Setup
	6 Results
	7 Discussion
	8 Threats to Validity
	9 Conclusion
	References

	Smart Measurements and Analysis for Software Quality Enhancement
	1 Introduction
	2 Related Works
	3 Measurement Approaches and Tools
	3.1 The MEASURE PaaS Platform
	3.2 A Formal Software Measurement Context
	3.3 The Software Metrics Suggester
	3.4 MINT- Metrics Intelligence Tool

	4 Experiments
	4.1 The Training Data Set and the Classification Process
	4.2 Suggester Experiments
	4.3 MINT Experiments

	5 Conclusion and Perspectives
	References

	Modular Programming and Reasoning for Living with Uncertainty
	1 Introduction
	2 Related Work
	2.1 Taxonomic Classification
	2.2 State-of-the-Art Research on Uncertainty

	3 Towards Conquering Uncertainty
	3.1 Pitfalls in Traditional Approaches
	3.2 Way for Us to Go

	4 Modular Programming for Uncertainty
	4.1 Why Interface?
	4.2 Archface-U in a Nutshell
	4.3 Usage Scenario

	5 Modular Reasoning
	5.1 Uncertainty-Aware Verification
	5.2 Type Check
	5.3 Model Checking Embracing Uncertainty
	5.4 Usage Scenario
	5.5 State Explosion Problem

	6 Tool Support
	6.1 Overview
	6.2 Eclipse-Based User Interface
	6.3 Implementation

	7 Discussion
	8 Conclusions—Can We Live with Uncertainty?
	References

	Software Systems and Applications
	Empowering Continuous Delivery in Software Development: The DevOps Strategy
	Abstract
	1 Introduction
	2 Structure as Code
	2.1 Basic Concepts
	2.2 Tools for Configuration Management
	2.3 Frameworks
	2.4 Tools in Practice

	3 DevOps Implementation: Case Study 1
	3.1 Tools in Practice
	3.2 Manual Deployment Process
	3.3 Infrastructure as Code Implementation
	3.4 Lessons Learned

	4 The Docker Extension: Case Study 2
	4.1 Initial Setup
	4.2 Workflow
	4.3 The Docker and PowerShell DSC Integration
	4.4 Discussion

	5 The Current State of PowerShell DSC and Docker
	6 Conclusion
	References

	Can Commit Change History Reveal Potential Fault Prone Classes? A Study on GitHub Repositories
	Abstract
	1 Introduction
	2 Related Works
	2.1 Modelling Software-Based Complex Network
	2.2 Change Metric to Identify Bug or Fault Prone Software Components

	3 Proposed Approach
	3.1 Centrality Measures Correlated to Fault Proneness of Software

	4 Experiment Setup
	4.1 Creation of Commit Change-Based Network and Identification of Fault Prone Classes
	4.2 Identification of Ground Truth
	4.3 Experiment Results

	5 Conclusion and Future Work
	Acknowledgement
	References

	An Agent-Based Planning Method for Distributed Task Allocation
	1 Introduction
	2 Related Work
	3 Benchmark Production System
	3.1 Sensing Input
	3.2 Action Output

	4 Agent Architecture
	4.1 Formal Specification
	4.2 Conceptual Architecture for MAS

	5 Multi-agent Planning
	5.1 Policy
	5.2 Experimental Evaluation

	6 Distributed Task Allocation Approach
	6.1 Problem Definition
	6.2 The Principle of Distributed Task Allocation
	6.3 Experiments

	7 Conclusion
	References

	Automatic Test Data Generation for a Given Set of Applications Using Recurrent Neural Networks
	1 Introduction
	2 Related Work
	3 Using Machine Learning to Learn Generative Models for Testing
	3.1 Sequence-to-Sequence Neural Network Model
	3.2 Using the Model to Generate New Inputs

	4 Pipeline for Generating New Tests Based on Existing Corpus
	4.1 The Training Pipeline
	4.2 New Inputs Generation
	4.3 Producing Generative Models for Applications with Binary Inputs
	4.4 Expert Knowledge

	5 Evaluation
	5.1 Experiment Setup and Methodology
	5.2 Training Data and Generation of New Tests
	5.3 Coverage Evaluation

	6 Conclusions and Future Work
	References

	Guiding the Functional Change Decisions in Agile Project: An Empirical Evaluation
	1 Introduction
	2 Background
	2.1 Overview of the Scrum Process
	2.2 Functional Size Measurement and COSMIC ISO/IEC 19761 Method
	2.3 Related Work

	3 Change Evaluation in Agile Context
	3.1 Detailed User Story Description
	3.2 Prioritizing User Stories
	3.3 Sizing Software from User Stories Description
	3.4 Research Method

	4 Deciding on a Functional Change Request
	4.1 Functional Change in an Ongoing Sprint
	4.2 Functional Change in an Implemented Sprint

	5 Evaluation
	5.1 Comparative Evaluation
	5.2 Experts Evaluation
	5.3 Threats to Validity

	6 Conclusion
	References

	Wise Objects for IoT (WIoT): Software Framework and Experimentation
	1 Introduction
	2 WO and WOF
	2.1 WOF
	2.2 Concept of WO
	2.3 WOF and Data Analyzers

	3 From WOF to IoT
	3.1 WO Model for IoT
	3.2 Communication Protocol

	4 Experimental Implementation
	4.1 Use Case 1 Description and Experimental Results
	4.2 Use Case 2 Description and Experimental Results

	5 Concluding Remarks and Future Work
	References

	A Software Product Line Approach to Design Secure Connectors in Component-Based Software Architectures
	Abstract
	1 Introduction
	2 Related Work
	3 Software Product Line for Secure Connectors
	4 Feature Model for Secure Connectors
	5 Communication and Security Components
	6 Security Coordinator Components and Templates
	7 Secure Asynchronous Message Communication Connector
	8 Secure Synchronous Message Communication Connector
	9 Validation
	9.1 Implementation of Secure Connectors
	9.2 Performance Analysis of Secure Connectors

	10 Discussion of SPL Approach for Secure Connectors
	11 Conclusions
	Acknowledgements
	References

	Towards an Automatic Verification of BPMN Model Semantic Preservation During a Refinement Process
	1 Introduction
	2 Related Works and Discussion
	3 Overview of Our Proposed Methodology
	4 BPMN Specification
	5 Business Process Refinement Approach
	5.1 Impact Analysis of Refinement
	5.2 Dependency Relationship

	6 Verification of BPMN Refinement Models Using NuSMV
	6.1 Properties Generation
	6.2 Kripke Structure
	6.3 NuSMV

	7 Case Study
	8 Conclusion
	References

	Author Index

