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Preface

Prior to the emergence of the HIV epidemic, the global TB burden was steadily declin-
ing over time, largely due to strengthening TB treatment programs delivering short-
course TB chemotherapy, which could cure most patients in 6 months. With the 
emergence of HIV in the 1990s, trends in progress in controlling TB, including reduc-
tions in TB incidence and decreasing TB mortality rates, began to be tragically reversed, 
particularly in sub-Saharan Africa but in highly resourced countries such as the United 
States as well [1, 2]. Evaluating changes in TB incidence over time by global region 
throughout the 1990s and early 2000s revealed what has now been repeatedly demon-
strated in large-scale epidemiologic analyses: HIV infection profoundly increases the 
risk of active TB disease, and regions with the highest HIV burden experience dramatic 
increases in TB case notification rates at the population level [3]. Initial metrics describ-
ing the interactions between HIV and TB were nothing short of astounding. Studies 
from certain populations with high rates of HIV infection and intensive exposure to TB, 
such as South African miners, for example, began reporting some of the highest TB case 
notification rates on record, approaching 7000 cases per 100,000 individuals [4]. Early 
analytic studies provided further grim details revealing that, in areas where TB is com-
mon, not only does the risk of TB essentially double in the initial months after HIV 
acquisition [5] but also TB risk continues to increase as cellular immune competence, 
measured by CD4+ T cell counts, declines [6]. Not surprisingly, substantial rates of TB 
among HIV-infected individuals have pushed TB to the top of the list of causes of death 
among HIV-infected individuals, despite being grossly underdiagnosed [7].

Furthermore, while hope in the fight against TB has been provided by the dual 
triumphs of the discovery and delivery of highly active antiretroviral therapy (ART), 
subsequent studies revealed that ART does not completely reverse the heightened 
TB risk among HIV-infected individuals [8]. Further compounding the problem, the 
use of ART in patients with TB is complex, often triggering toxicity, with untoward 
drug-drug interactions or with pathologic inflammation via the immune reconstitu-
tion inflammatory syndrome [9]. Indeed, in TB meningitis, rapid provision of ART, 
versus a careful delay, actually appears harmful [10].

Confronting this “formidable alliance” between HIV and TB has resulted in nearly 
three decades of dedicated research and public health efforts that have revealed insights 



vi

into how HIV-1 and Mycobacterium tuberculosis interact in cells, host tissues, and 
communities. While each area of HIV/TB research and care is associated with substan-
tial challenges, these challenges are being met creatively in ways that are continually 
advancing our understanding of not only the interaction between the two diseases but 
also of each of the infections. For example, the study of progression from latent to 
active TB disease is facilitated by the higher rate of incident TB events among latently 
infected, HIV-positive individuals over time [11]. This has underscored the concept, 
recently illuminated by positron emission tomography (PET)-computed tomography 
(CT) studies, that the clinical space between latent infection and TB disease is most 
likely a spectrum, not a dichotomy, defined by increasing bacterial replication and 
inflammation [12, 13]. In addition, the role of monocytes/macrophages and inflamma-
somes in TB-associated inflammation has been facilitated by evaluating patients longi-
tudinally early during immune reconstitution on ART [14, 15]. More practically, the 
low bacillary burden of mycobacteria in the sputum of HIV-infected individuals with 
pulmonary TB has driven the intensive search for a more sensitive TB diagnostic for use 
in resource-limited settings, which culminated in the approval and scale-up of a novel 
desktop PCR platform for detecting both Mtb and rifampin resistance in patient sam-
ples in as little as 2 hours [16]. This and other diagnostic innovations are fueling, in turn, 
large-scale efforts aimed at detecting and treating TB in heavily affected communities.

This volume will introduce the reader to the main clinical, pathophysiologic, and 
public health topics within the scope of HIV/TB. Global epidemiology contributions 
provide an orientation to the determinants and distribution of HIV and TB disease 
internationally, highlighting the characteristics of regions of intense concentrations 
of coinfected individuals in areas such as sub-Saharan Africa. The chapter on model-
ing builds on the epidemiology sections and provides details on the effects of HIV, as 
well as public health interventions, on TB transmission and TB burden at the popula-
tion level. Chapters on immunology of HIV and TB and on the TB immune reconsti-
tution inflammatory syndrome summarize the current understanding of how HIV 
affects the immune system to influence host susceptibility to and manifestations of 
TB and how immune restoration on ART can lead to immune pathology. Aspects 
related to the increased risk of progression to active TB in latently infected individu-
als with HIV, and new and conventional treatments for latent TB, are covered in a 
chapter that leads into sections covering the presentation, diagnosis, and manage-
ment of both drug-sensitive and drug-resistant active TB disease, including the 
important issue of pharmacology and drug-drug interactions as well as the diagnosis 
and treatment of TB meningitis, the most life-threatening form of TB disease.

We would like to take the opportunity to thank all of the chapter authors of this 
book for their excellent contributions. We hope that this volume stimulates further 
interest in the interaction of these two globally important diseases and inspires 
future investigations to overcome their impact on human health.

Bethesda, MD, USA� Irini Sereti 
Philadelphia, PA, USA � Gregory P. Bisson 
Cape Town, South Africa � Graeme Meintjes 
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Overview of the HIV-Associated 
Tuberculosis Epidemic

Constance A. Benson

Abstract  Globally, tuberculosis is the leading infectious cause of death and the 
most common opportunistic infection in people living with HIV (PLWH) (World 
Health Organization. Global Tuberculosis Report 2018). TB incidence has actually 
declined in the past 5 years both overall and for PLWH (World Health Organization. 
Global Tuberculosis Report 2018). However, efforts to achieve the target goals of 
the “End TB Strategy” both for people with and without HIV infection, will require 
more aggressive interventions aimed at each of the three pillars of TB control, 
including increased screening and diagnosis of TB infection and disease, rapid ini-
tiation of effective TB treatment, and more effective prevention of TB disease. The 
last decade has seen an explosion of new diagnostic technologies, development of 
new or novel antimycobacterial drugs, and the evolution of shorter course treatment 
for latent TB infection and drug resistant TB disease. While the next 5 years is likely 
to see a sea-change in our approaches to more effective treatment of TB, there are 
numerous barriers to the scale-up of new diagnostic tests and treatment regimens for 
PLWH that must be overcome to reach the rates of reduction in TB incidence that 
will be required to achieve the 2035 TB elimination goals.

Keywords  HIV · TB · Opportunistic infection · TB diagnosis · TB treatment · TB 
prevention · TB elimination

�Introduction

Tuberculosis is now the number one leading infectious cause of death worldwide 
and the most common opportunistic infection and cause of death globally in people 
living with HIV (PLWH) [1]. There were an estimated ten million new incident 
cases of TB and 1.6 million TB deaths in 2017, the most recent year for which the 
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World Health Organization (WHO) has calculated TB case notification rates [1]. 
An estimated 464,633 incident TB cases occurred in PLWH and there were 
300,000 TB deaths in PLWH, representing 18.8% of TB deaths in 2017. Based on a 
recent update of global models by Houben and Dodd an estimated one quarter of the 
world’s population, 1.7 billion people, are latently infected with Mycobacterium 
tuberculosis (MTB), although the regional distribution varies, with Southeast Asia, 
the western Pacific region, and the African region having the highest rates of latent 
TB infection [2].

Although the notification rates for new and relapsed cases of TB continue to rise 
slowly, TB incidence has actually declined in the past 5 years both overall and for 
PLWH [1]. The number of TB deaths has declined at a faster rate, particularly 
among PLWH, mostly attributed to the increased access to and implementation of 
earlier antiretroviral therapy in areas with the highest burden of TB and HIV [1]. For 
the first time in modern history, a United Nations General Assembly High Level 
Meeting took place in 2018 aimed at engaging the world’s politicians and public 
health leaders in the efforts to end TB [3]. New global TB elimination targets were 
adopted and included, among others, the goals of a 95% reduction in the number of 
TB deaths and a 90% reduction in TB incidence rate by 2035, accompanied by 
“zero TB-affected households that experience catastrophic costs resulting from TB” 
[1, 3]. However, with current reduction rates ranging from only 1.5–2.0% in TB 
incidence and TB deaths, respectively, meeting these targets would require substan-
tially more aggressive reduction rates of 10% by 2020 and 17% by 2025 to reach 
these new targets [1, 4].

Efforts to achieve the target goals of the “End TB Strategy” both for people with 
and without HIV coinfection, will require more aggressive interventions aimed at 
each of the three pillars of TB control, namely (1) increased systematic screening of 
TB contacts and high-risk groups, using improved diagnostic tests for detecting 
active and latent TB infection; (2) rapid evaluation and more effective treatment for 
active TB, including drug resistant TB, making use of universal drug susceptibility 
testing and more active, better tolerated, and shorter duration antimycobacterial 
therapies, and; (3) more effective prevention of active TB by identifying better pre-
dictors of risk of progression, implementing shorter course, more effective regimens 
to prevent TB, including among those exposed to drug resistant TB, and continued 
development of vaccines capable of preventing active TB, whether in the context of 
preventing infection or preventing disease. For PLWH, additional steps needed to 
more effectively address the epidemic include integration of HIV and TB screening 
and testing of contacts and high risk groups; assuring that new drugs and regimens 
being tested in clinical trials or used in programmatic settings have appropriate 
assessment of drug-drug interactions with antiretroviral drugs as well as develop-
ment of formulations that can be used in children and pregnant women with HIV, 
and; assuring that clinical trials evaluating new drugs and regimens and new diag-
nostic modalities for active and latent TB infection are appropriately tested in per-
sons with HIV coinfection, i.e., that PLWH are enrolled in all such clinical trials.

The last decade has seen an explosion of new diagnostic technologies aimed at 
detecting active TB at or near the point of care. The most widely accessible of these 
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is the GeneXpert MTB/RIF, a rapid (less than 2-h turnaround time) polymerase 
chain reaction (PCR)-based assay that can detect the presence of MTB and the rpoB 
gene that confers resistance to rifamycins in sputum and other body fluids with a 
sensitivity and specificity in persons with acid fast smear (AFB) positive and culture 
positive TB of 85% and 96%, respectively [5, 6]. Recent modifications of this tech-
nology resulted in the development of the MTB/RIF Ultra assay, which has improved 
sensitivity, particularly in those with sputum smear negative disease, comparable to 
that of sputum culture [6]. The Xpert MTB/RIF has revolutionized the rapid diag-
nosis of active TB in many settings, and in some settings, has replaced smear 
microscopy. Another rapid diagnostic test used as an adjunct screening test is the 
urine lipoarabinomannan antigen detection test; this test is more sensitive in seri-
ously ill PLWH with advanced immunosuppression, and when used to trigger ear-
lier initiation of ART can improve mortality in this population [7]. Additional 
advances in diagnostic testing have yielded the ability to conduct rapid drug suscep-
tibility testing using either variations on the Xpert MTB/RIF technology, line probe 
assays for detection of key mutations conferring resistance to first and second line 
anti-TB drugs, and more recently whole genome sequencing to genotypically test 
for signature mutations that confer resistance to anti-TB drugs [8, 9]. If the combi-
nation of novel rapid tests is successfully implemented in programmatic settings, 
one can efficiently diagnose active TB within hours dramatically reducing the time 
to initiation of effective treatment. However, there remain numerous obstacles to the 
use of newer technologies in resource constrained high TB burden settings, not the 
least of which are the cost and maintenance of the equipment and supplies, the need 
for training laboratory staff in their use and clinicians in the interpretation of the 
results, and the need for strengthening infrastructure and health care systems to use 
them. With the broad array of newer technology in the diagnostic development pipe-
line, much more work is needed to determine where and how best to implement 
newer diagnostic tests.

As of late 2018, there were more than 15 new or novel antimycobacterial com-
pounds in varying stages of development, and a host of phase 1–3 clinical trials 
underway or planned to evaluate these together with repurposed or existing anti-TB 
drugs in combination [1]. This, coupled with the recent approval of bedaquiline and 
delamanid (in Europe) for use in the treatment of drug resistant TB, represents a 
dramatic change in the landscape for more effective treatment of TB. Efforts at TB 
treatment shortening for drug-susceptible TB have been mixed. Three phase 3 clini-
cal trials published in 2014, each incorporating the substitution of one or two newer 
or repurposed drugs (with greater in vitro activity against MTB in mouse models) 
into the induction or continuation phases (or both) of TB treatment in regimens 
aimed at shortening treatment from 6 to 4 months all failed [10–12]. The RIFAQUIN 
study reported a 26.9% unfavorable outcome in the 4-month arm compared to 
14.4% in the standard arm [10]. The OFLOTUB trial reported a 21% unfavorable 
outcome rate versus 17% for the standard of care arm, primarily owing to a higher 
recurrence rate in the shorter course arm [11]. The ReMOX trial reported unfavor-
able outcomes of 20% and 15% in the two shorter course arms versus 8% in the 
standard of care arm [12]. While these were disappointing outcomes, it should be 
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noted that in each of these studies 70–80% of participants in the 4-month treatment 
arms were successfully treated, leading to the further investigation of factors likely 
to be associated with a favorable outcome that could be used to target shorter course 
treatment.

More encouraging has been the rapid evolution of shorter course treatment for 
drug resistant TB. Data from the original Bangladesh regimen studies reported an 
84.4% bacteriologically favorable outcome with an intensive 9 to 12-month inten-
sive standardized regimen for the treatment of multidrug resistant TB (MDRTB), 
with 95% of participants completing the regimen within 12  months [13]. These 
results have been recapitulated in observational studies among persons with 
MDRTB in a number of countries in Sub-Saharan Africa and elsewhere, leading to 
a WHO recommendation in 2016 to treat MDRTB in patients who meet specific 
criteria with a modified Bangladesh regimen that includes kanamycin, moxifloxa-
cin, prothionamide, clofazimine, pyrazinamide, high dose isoniazid, and ethambu-
tol for 4–6 months followed by moxifloxacin, clofazimine, pyrazinamide and 
ethambutol for an additional 5 months [14]. Results of two phase 2 trials demon-
strating the superiority of bedaquiline (a novel diarylquinoline drug) or delamanid 
(a novel nitroimidazole drug), respectively, combined with optimized background 
therapy in the treatment of MDRTB, ultimately led to the availability of two new 
drugs from novel classes of anti-TB drugs that together with repurposed drugs have 
substantially improved the successful treatment outcome rates for MDRTB [15–
18]. Coupled with the final results of the STREAM-1 randomized controlled trial of 
a 9-month shorter course MDRTB regimen, the plethora of new data emerging from 
numerous other studies over the past 2 years reporting more favorable outcomes 
with shorter courses of combinations of new and existing drugs led to a new WHO 
rapid communication in August 2018 with key changes to the recommendations for 
treatment of MDR- and rifampin-resistant (RR-) TB [19, 20]. TB drugs were 
regrouped into three categories and prioritized based on the evidence supporting 
their use; Group A includes levofloxacin/moxifloxacin, bedaquiline, and linezolid; 
Group B includes clofazimine and cycloserine/terizidone; and Group C includes 
delamanid, ethambutol, pyrazinamide, and other second-line anti-TB drugs. 
Regimens prioritize Group A, then Group B drugs with Group C drugs reserved for 
those unable to use one or more of those in the other two groups. The most impor-
tant changes in the recommendations are that kanamycin and capreomycin are no 
longer recommended, and all regimens should exclude injectable drugs unless there 
is a compelling need for them based on drug-susceptibility testing or toxicity 
management.

Lastly, perhaps the most notable development in the treatment of drug resistant 
TB has been the interim results reported from the NixTB trial of just three drugs, 
bedaquiline, pretomanid, and linezolid, used in a 6-month treatment course for 
extensively drug-resistant TB (XDRTB). Interim results from 75 patients complet-
ing treatment as of late 2018 demonstrated durable cure in 88%, with only six deaths 
and two relapses [21]. Based on final results from 109 participants the U.S. Food 
and Drug Administration approved pretonamid in August 2019 for persons with 
highly drug-resistant TB. These results have led to discussion in the field of the 
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possibility of a “universal regimen” for treatment of drugs-susceptible and drug-
resistant TB, with clinical trials underway exploring the use of bedaquiline, preto-
manid, moxifloxacin, and pyrazinamide as a universal regimen. In addition, there 
are now more than 20 randomized clinical trials underway worldwide exploring 
different regimens for treatment shortening for drug resistant TB.

While the next 5 years is likely to see a sea-change in our approach to more 
effective treatment of TB, there are numerous barriers to the scale-up of new treat-
ment regimens, not the least of which are the need for new and inexpensive rapid 
diagnostic tests for detecting active TB and for drug-susceptibility testing, assuring 
that the cost of new drugs and regimens make them accessible, overcoming country 
level registration and importation barriers, training clinicians in the use of newer 
drugs and regimens, assuring adequate pharmacovigilance to assess the safety of 
newer drugs and regimens as they are deployed more broadly and specifically 
assessing their activity in PLWH who are on antiretroviral agents that may interact 
with one or more of the anti-TB drugs, and strengthening health systems and infra-
structure for public health programs so that the promise of these drugs can be 
realized.

The past decade has also seen dramatic changes in our armamentarium for the 
prevention of latent TB infection. Current regimens now include the standard of 9 
months of isoniazid, or the alternatives of once weekly isoniazid plus rifapentine for 
12 weeks, or daily rifampin for 4 months all of which are similar with regard to 
efficacy although treatment completion rates are higher with the shorter regimens 
[22–26]. The most recent trial may be transformative, demonstrating in PLWH the 
equal efficacy of a short course regimen comprised of 1 month of daily isoniazid 
and rifapentine compared with daily isoniazid for 9 months [26]. While this has not 
yet been incorporated into WHO or other treatment guidelines, it will likely be rec-
ommended as an alternative, particularly for PLWH. Finally, recent data suggest 
that a novel TB vaccine construct, M72/ASO1E might reduce the incidence of pro-
gression to active TB by 54% in adults with latent TB infection, a rate of reduction 
similar to that seen with chemoprevention [27]. The promise of these critically 
important studies has not yet been realized. Implementation of effective preventive 
therapy in the settings where it might have the greatest impact has been disappoint-
ingly low. Among the principle obstacles to implementation of preventive therapy 
have been the inability to either identify those at highest risk of TB progression or 
to convincingly rule out the presence of active TB with currently available diagnos-
tic tests. For example, the positive predictive value of tuberculin skin testing and 
interferon gamma release assays as diagnostic tests for latent TB have positive pre-
dictive values in the range of 2–7% even in the highest risk populations [28]. The 
focus of research in the field more recently has been on utilizing gene sequencing or 
key gene signatures to more effectively predict those most likely to progress in the 
short term. A recent study suggested a single gene pair, C1QC/TRAV27, that could 
successfully predict progression to active TB in household contacts up to 24 months 
before onset of active disease [29]. Whether this approach will ultimately lead to 
cost-effective and widely applicable technology that can be implemented in high 
TB burden settings remains to be established. But without more effective methods 
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of diagnosing those at highest risk of disease progression, and targeting them for 
intervention, it may not be possible to achieve the rates of reduction in new TB 
infections resulting from reactivation of latent TB that are required to achieve the 
new goals set for TB elimination.

In summary, we now have or will have in the near future, a plethora of tools that, 
if effectively deployed, will allow us to achieve the rates of reduction in TB inci-
dence that will be required to achieve the 2035 TB elimination goals set by the 
WHO and the United Nations High Level Meeting in 2018. The remaining chapters 
in this textbook highlight the many elements of TB infection, disease, diagnosis, 
treatment and prevention that specifically pertain to PLWH and that will challenge 
our ability to reach these goals in this key patient population.
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Abbreviations

AIDS	 Acquired immunodeficiency syndrome
ART	 Antiretroviral therapy
DOTS	 Directly observed treatment short course
DR-TB	 Drug resistant tuberculosis
HCWs	 Healthcare workers
HIV	 Human immunodeficiency virus
HTS	 HIV testing service
IPT	 Isoniazid preventative therapy
MDR-TB	 Multi drug resistant tuberculosis
Mtb	 Mycobacterium tuberculosis
NSP	 National strategic plan
PLHIV	 People living with HIV
SA	 South Africa
SSA	 sub-Saharan Africa
TB	 Tuberculosis
TB-IC	 Tuberculosis infection control
UN	 United Nations
WHO	 World Health Organization
XDR-TB	 Extensively drug resistant tuberculosis

�Role of Human Immunodeficiency Virus (HIV) in Fuelling 
the Tuberculosis (TB) and Drug-Resistant TB (DR-TB) Epidemic

Approximately 8% of Mycobacterium tuberculosis (Mtb) infections arise in indi-
viduals with HIV, making TB the most significant opportunistic infection in immune 
compromised patients worldwide. Globally, approximately 9% of newly diagnosed 
TB patients were living with HIV (72% in Africa) in 2017, were the proportion of 
known positive TB individuals on ARVs is 78%. More importantly, sub-Saharan 
Africa (SSA) bears high TB incidence rates as well as the highest HIV prevalence 
rates globally [1]. Furthermore, SSA represents 14% of all emerging multi-drug 
resistant (MDR)-TB reports worldwide [1]. Within this region, 34 countries reported 
on MDR-TB affected patients and 8 countries reported extensively drug-resistant 
(XDR)-TB affected patients, with approximately 15,000 MDR-TB individuals 
reported annually in South Africa (SA) alone.

Approximately two billion individuals are presently infected with Mtb world-
wide, but only 10% of infected immunocompetent patients become symptomatic in 
their lifetime compared to 50% of immunologically compromised patients [2]. Five 
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up to 15% of the estimated 2 billion individuals infected with Mtb will advance to 
TB disease [1, 3, 4]. However, developing TB disease is greater amongst HIV 
infected individuals, currently estimated at 10% per annum risk of TB disease in 
HIV infected individuals not on antiretroviral therapy (ART) [5], and 5% per annum 
among those on ART [6]. During 2000 and 2016, TB therapy projected 44 million 
deaths amongst HIV-negative individuals [1]. Amongst HIV-infected individuals, 
TB therapy supported by ART prevented a further nine million losses [1]. In SSA, 
the deadly synergy of HIV and TB has accounted for the extremely high TB inci-
dence rates observed over the past 20 years [2]. According to the WHO, highest TB 
incidence rates were observed in Asian and African regions. Nine SSA countries are 
currently represented in the 22 high TB burden countries (Fig. 1, Table 1) [1], glob-
ally. These countries include DRC, Ethiopia, Kenya, Mozambique, Nigeria, SA, 
Uganda, Tanzania and Zimbabwe [1]. Of note, known socio-economic drivers of TB 
including poor housing and working conditions associated with high transmission 
risk, HIV infection, malnutrition, alcohol abuse, smoking, coupled with delays in 
presentation for diagnosis and treatment are characteristic of most African settings 
where TB is endemic [1].

Fig. 1  African Countries with high burden of TB, drug resistant TB and HIV and TB co-infection, 
including areas of overlap, during 2016–2020. Figure adapted from the WHO global TB report 
2018 [1]

Epidemiology of Drug-Susceptible, Drug-Resistant Tuberculosis and HIV in Africa
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�Incidence of TB in High Burden SSA Countries

Constant with preceding global TB reports, incidence of newly diagnosed TB 
patients is gradually declining (Fig. 2) from 1.4% per annum between 2000 to 2017 
and 1.9% per annum between 2015 to 2016. The rate of decline needs to fast-track 
to 4–5% yearly by 2020 to attain the End TB Strategy milestones of reduced TB 
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Fig. 2  Projected TB incidence trends in 16 high TB burden African countries; 2000–2017. 
Incidence rates of HIV-positive TB in red, overall TB incidence rates shown in green, and uncer-
tainty levels shown by shaded areas. Black lines show new and relapse TB patients. A. Eight coun-
tries show a sharp decline in TB incidence from 2008–2017. B. Eight countries with minimal TB 
incidence rate changes [1]
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notification and TB related mortality. The projected reduction in incidence rates 
since 2010 has surpassed 4% yearly in numerous African countries, including 
Ethiopia (6.9%), Kenya (6.9%), Lesotho (7%), Namibia (6.0%), Tanzania (6.7%), 
Zimbabwe (11%), and Zambia (4.8%). Data from sixteen African countries show 
encouraging trends of reduced TB incidence in eleven countries, and incidence rates 
that appear stable in seven countries (Fig. 2, green lines). Furthermore, in all coun-
tries TB incidence in HIV infected patients appears to be declining (Fig. 2, red lines), 
with rates of reduction of TB incidence reported to be highest in Lesotho and 
SA. New and relapse TB cases increased in Liberia, Mozambique and Sierra Leone, 
despite the decline in other African countries. Furthermore, in 2017, projected num-
ber of new TB patients in Africa was 2,480,000 (range: 2,210,000–2,760,000). 
Among newly diagnosed TB patients, 62% were male (1,540,000). Males between 
0–14 years and > 15 years old accounted for 53% and 63% of all newly diagnosed 
TB patients respectively. However, it is important to note that these estimates are 
wide and may not be truly representative of the disease burden.

Various TB control strategies implemented by African countries have contributed 
to the declining trends in TB incidence and mortality. Ethiopia has implemented the 
WHO-recommended DOTS strategy to improve TB treatment success and case detec-
tion rates resulting in significant success in TB control [7]. Incidence of TB (per 
100,000 people) in Ethiopia was 177 per 100,000 population in 2016, compared to 
340 per 100,000 population in 2006 [7]. Furthermore, a recent meta-analysis reported 
successful TB treatment outcomes of 84% in Ethiopia [8], comparable to successful 
TB treatment outcomes reported in SA (82%) [9], Kenya (82%) [10], and Ghana 
(88%) [11]. A multi-centred retrospective cohort study conducted in Ethiopia demon-
strated significantly reduced TB incidence rates of 96% among exposed to isoniazid 
(INH) preventative therapy (IPT) compared to non-IPT exposed patients. Moreover 
concomitant use of ART with IPT showed a significant decline in TB incidence of 
94%, far exceeding the impact of only ART alone in reducing TB incidence [12].

Since 2004, Lesotho has achieved 100% coverage of the WHO DOTS strategy in 
all health districts [7], and as of 2016 achieved 71% case detection rate and 73% 
microbiologic coverage. Incidence of TB (per 100,000 people) in Lesotho has 
reduced from 724 in 2006, to 1300 in 2016 [53]. Furthermore, the expanded decen-
tralisation of public-access nurse-driven ART services in Lesotho has likely contrib-
uted substantially to TB incidence decline [13]. Namibia has seen similar successes 
in TB control with TB incidence rates dropping from 910 per 100,000 population in 
2006 to 446 per 100,000 population in 2016 [14, 15]. In SA, TB incidence rate 
peaked in 2009 at 832 per 100,000 population and has since declined to 520 per 
100,000 in 2016. The Eastern Cape, KwaZulu-Natal and the Western Cape have the 
highest TB incidence rates in SA at 692, 685 and 681 per 100,000 population, 
respectively [16]. The most notable decline has been in KwaZulu-Natal where the 
incidence has decreased from 1185 to 685 per 100,000 since 2013. The reduction in 
TB incidence seen in SA is due to multiple factors. People living with HIV remain 
vulnerable to TB disease acquisition, and this vulnerability is enhanced among 
those not on ART and those with advanced immunosuppression [17]. The large 
public access ART programme has enrolled almost two-thirds of the country’s HIV 
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positive people onto ART. Furthermore, since September 2016, SA has implemented 
the Universal HIV test and treat policy resulting in larger numbers of patients 
accessing ART, including a higher proportion of patients initiating ART at CD4 
counts >500 [18]. In addition, programmatic implementation of IPT in HIV positive 
individuals has also contributed to reduced TB incidence. Other measures such as 
universal TB symptom screening for all patients presenting to health services, as 
well as roll-out of the GeneXpert test for TB diagnosis has also assisted with early 
detection and possibly reduced TB transmission. Zambia has a policy of ensuring 
the availability of quality first line anti-TB drugs in all public health facilities, driv-
ing the county’s attainment of a TB treatment success rate of 86%, surpassing the 
WHO target of 85% (Table 2).

�The Risk of TB in HIV Infected Individuals

Tuberculosis is the most common opportunistic infection among people with HIV 
infection. An estimated 1.2 million HIV positive incident TB cases and 430,000 
deaths from HIV associated TB, occurred globally in 2015 despite widespread 
availability of effective treatment and prevention [7]. In 2015, worldwide estima-
tions of people with HIV was 36.7 million, and 2–3 billion TB infected, with 10.4 
million new patients with TB disease. In patients with new or latent Mtb infection 
[7, 19–21], HIV remains the sturdiest risk factor for TB disease and TB associated 
death. The risk of TB disease is high soon after HIV sero-conversion, doubles within 
the first year of HIV acquisition [22–24], and is highest with advancing immuno-
suppression at CD4 counts <100 cells/μL [25, 26]. Tuberculosis risk in HIV positive 
individuals is 20–37% higher compared to non-HIV infected individuals, and in 
parts of SSA, HIV-TB co-infection rates are as high as 80% [27]. The burden of TB 
disease is 450,000 individuals per  annum in SA, among mainly HIV infected 
patients—the country bearing the highest TB incidence rate globally, where it 
occurs mainly in the HIV uninfected [7].

Table 2  Estimated TB burden (in thousands) in WHO regions among adults and children, in 
Africa and globally, in 2017 [1]

Total Male Female
Best 
estimate

Uncertainty 
interval

Best 
estimate

Uncertainty 
interval

Best 
estimate

Uncertainty 
interval

Africa 2480 2210–2760 1540 1310–1770 941 798–1080
Global 10,000 9000–11,100 6360 5440–7290 3680 3140–4210

Total ≥ 15 years Male ≥15 years Female ≥15 years
Africa 2180 1910–2450 1380 1150–1620 800 665–936
Global 9030 7980–10,100 5830 4900–6760 3200 2690–3710

Total 0–14 years Male 0–14 years Female 0–14 years
Africa 296 260–333 156 129–182 141 117–164
Global 1010 888–1120 529 445–613 478 401–554

Epidemiology of Drug-Susceptible, Drug-Resistant Tuberculosis and HIV in Africa
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�TB-HIV Integration: When to Start ART During TB Treatment

WHO recommends that HIV-TB infected patients ought to begin ART regardless of 
their CD4 count. This will potentially reduce mortality. ART must be administered 
within 8 weeks of initiation of anti-TB treatment. Randomized studies underpinning 
this guidance included large numbers of African patients and showed strong survival 
benefit with integrated ART in TB therapy. The South African Starting Antiretroviral 
Therapy at Three Points in Tuberculosis (SAPIT) trial demonstrated a 56% rise in sur-
vival rate once TB and ART treatment were combined, when compared to deferred 
ART following TB treatment [28, 29]. Additional investigation of the study data dis-
played no change in incidence rate of acquired immune deficiency syndrome (AIDS) 
or mortality compared to ART initiation amongst patients randomised to receive ART 
within 4 weeks of TB treatment start (early arm) versus those randomized to receive 
ART during the first 4 weeks of the continuation phase of TB treatment (late integrated 
arm). Parallel results were published from additional randomised clinical trials con-
ducted in other settings, the STRIDE (AIDS Clinical Trials Group Study 5221), and the 
CAMELIA (Cambodian Early versus Late Introduction of Antiretrovirals study) [30, 
31] studies. The STRIDE study enrolled 554/809 (69%) of TB-HIV co-infected 
patients from seven African countries, found that immediate ART, i.e. ART initiated 
within 2 weeks of TB treatment start compared to early ART, defined as ART initiated 
8–12 weeks after TB treatment start, did not reduce AIDS-defining illness and death. 
Furthermore, the STRIDE study showed that among patients with CD4+ counts 
<50 cells/mm3, there was 42% lower incidence of AIDS defining illness and mortality 
in immediate compared to initial ART. The vast majority of deaths were attributed to 
HIV related disease, including progression of TB [31].

Since findings from these three landmark studies became available, several other 
research groups investigating optimal timing of ART in TB patients have published 
findings from systematic reviews and metanalyses [32], modelling studies [32], cohort 
and clinical trials [33, 34], which uniformly conclude that early ART in TB therapy is 
associated with decreased death, however, the death advantage from early ART was 
most pronounced amongst individuals with CD4+ counts <50 cells/mm3. The recent 
WHO guidelines echo these results, recommending that TB therapy should be initiated 
followed by ART immediately within the first 8 weeks of therapy regardless of CD4+ 
count. Individuals with severe immunosuppression (CD4+ <50  cells/mm3), should 
begin ART in the first 2 weeks of TB therapy. HIV infected individuals with TB men-
ingitis remain exempt to this recommendation. In-country ART guidelines from high 
TB burden African countries reflect the WHO policy on ART timing in TB.

�Impact of ART in Patients with DR-TB

WHO estimates that between 36,000 and 44,000 MDR-TB cases occurred in the 
African region in 2016. The proportion of DR-TB cases co-infected with HIV dif-
fers by background burden of HIV, and ranges from 0.4–28.8% in low HIV burden 
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African settings to approximately 80% in settings with a high background burden of 
HIV [35, 36]. Patients with DR-TB and HIV co-infection are characterized by 
excessively high mortality rates of 50–80% [37–39]. Empiric evidence for the sur-
vival benefit of early ART initiation in patients with MDR-TB was provided in a 
sub-group secondary analysis of 23 MDR-TB patients that were enrolled into the 
SAPIT study. This study showed an 86% reduction in mortality among MDR-TB 
patients initiating ART early in DR-TB treatment [40]. This study together with 
other published literature observed that HIV and ART status significantly impacted 
DR-TB treatment outcomes including patient survival [37, 41, 42]. Another study 
concluded that ART is a noteworthy determinant of treatment success in individuals 
co-infected with HIV [52]. This SA study reported 114/748 DR-TB and HIV co-
infected patients (15%) were not on ART. Furthermore 67 (59%) of HIV-positive 
individuals not on ART had failed treatment outcomes [52]. Those 116 (35%) HIV-
positive patients on ART represented patients who had successful treatment out-
comes [52]. It is anticipated that the introduction of the test and treat approach will 
further reduce the number of HIV positive DR-TB patients not on ART. Another 
study by Brust et  al. [3] also reported that therapeutic and mortality outcomes 
among MDR-TB patients receiving simultaneous ART was similar to HIV-
uninfected patients. Results displayed 191 participants with MDR-TB outcome, 
130 were cured or completed therapy, which did not differ by HIV status (P = 0.50). 
HIV-infected and HIV-uninfected individuals had greater survival rates (86% and 
94%, respectively; P = 0.34). The sturdiest mortality risk factor among DR-TB and 
HIV co-infected patients was a CD4 count ≤100  cells/mm3 [3]. These findings 
taken collectively, support early concurrent treatment of MDR-TB and HIV in co-
infected patients. While studies consistently show no association between HIV and 
mortality in patients with XDR-TB despite receiving XDR-TB therapy, two studies 
independently showed that use of ART in XDR-TB-HIV co-infected patients 
reduced mortality [37, 43]. Furthermore, a substantially lower risk of death was 
found even among patients initiating ART at CD4 cell counts >200/mm3, (HR 0.094, 
95% CI 0.007–1.22) [37].

�Universal HIV and TB Case Finding and Universal ART 
for HIV-Infected TB Patients

WHO commends that all HIV-TB infected patients should be initiated on ART 
regardless of CD4 count creating huge potential for further reductions to TB associ-
ated mortality in HIV infected patients. Most African countries with a high burden 
of TB-HIV have specific policies supporting HIV counselling and testing for those 
with presumptive or confirmed TB and recommend ART for all TB cases regardless 
of CD4+ cell count [44].

In SA, separate reports have confirmed the high national-level uptake of HIV 
testing services (HTS), demonstrating HTS uptake of >90% can be attained in pri-
mary healthcare facilities irrespective of the level of TB and HIV service integration 
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[45], and in DR-TB services regardless of whether these are centralized or decen-
tralized [46]. Despite calls to ensure that all persons investigated for TB are also 
routinely offered HIV testing [47, 48], there is a shortage of data to show to what 
extent programmes are achieving this within different African countries. There is 
also limited available data describing HIV testing for children undergoing investiga-
tion and treatment for TB disease. National-level data in SA shows that the propor-
tion of child TB cases (under 15  years) reported to have unknown HIV status 
declined from 77% to 25% between 2008 and 2012 [49].

WHO recommends the Xpert® MTB/RIF test for early diagnostic testing for all 
children and adults with symptoms and signs of TB, including testing of extrapul-
monary samples e.g. tissue specimens, lymph nodes and cerebrospinal fluid. Amid 
2010 and 2016, 6659 GeneXpert devices were procured by 130 of 145 countries 
suitable for concessional pricing. Of the 6.9 million test cartridges obtained by qual-
ified countries in 2016, 35% (2.4 million) went to SA. Nevertheless numerous func-
tioning challenges in the scale-up and implementation of GeneXpert were observed 
in five SSA countries: low coverage, poor laboratory infrastructure, limited access, 
poor associations to treatment, inadequate data on outcomes, difficulties with speci-
men transport and analytic algorithms that weren’t associated with updated WHO 
recommendations on target patient groups and sponsoring challenges [50]. The 
GeneXpert strategy should poise the need to advance its application with general 
health systems establishment. To achieve the full impact of innovative diagnostics, 
quality of health service delivery and quality of care must improve. Furthermore 
obligation of resources is required to take new diagnostics into the field including 
rearrangement of laboratory services and enhanced access to technical expertise to 
support implementation [50] (Fig. 3).

Fig. 3  (a) Age, sex disaggregated African TB incidence (black box) and notifications estimates 
(female in red; male in green). (b) Age, sex disaggregation of TB mortality in HIV-negative people 
in Africa (female in red; male in green) [1]
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�Tuberculosis Related Mortality in High Burden SSA 
Countries

Despite more than a decade of public access ART, TB treatment and preventive 
therapy, TB contributes most to morbidity and mortality from an infectious disease, 
globally. This remains starkly apparent in many SSA settings, including SA. About 
1.5 million TB deaths occurred worldwide in 2016, with approximately 90% of all 
TB related deaths occurring in SSA and South East Asia [51]. ART scale-up reduces 
HIV-associated morbidity and mortality. TB case-fatality rates of 16–35% have 
been observed in HIV infected patients not on ART compared to 4–9% in HIV-
negative patients [51]. Trends from 16 high TB burden countries in SSA (Fig. 4) 
show substantial decrease in TB mortality rates in HIV-positive individuals living in 
9 of 16 high TB burden settings in the past few years: CAR, DRC, Ethiopia, Kenya, 
Lesotho, Mozambique, Tanzania, Namibia, and Nigeria. Despite huge program-
matic investments in HIV and TB, TB mortality rates in HIV infected patients 
remain unchanged in SA, Angola, Sierra Leone and Liberia. Comorbidities in these 
settings, such as opportunistic infections, anaemia, TB drug resistance coupled with 
high initial loss-to-follow-up in ART and TB programmes are commonly identified 
factors contributing to the ongoing high TB mortality rates.

Tuberculosis remains an international emergency accounting for 1.7 million 
deaths annually. Africa is disproportionately affected by TB. One quarter of the 
global TB burden resides in Africa, making this continent a key geographical area 
for health TB related interventions. The widespread mismanagement of INH and 
rifampicin over three decades has caused the emergence of potentially untreatable 
forms of TB. These forms of TB undermine clinical and programmatic outcomes 
in disease endemic settings like SSA. Regardless of improvements in prevention 
and care, TB is still one of the world’s foremost causes of ill-health and death. The 
present rate of reduction in TB incidence and TB mortality is insufficient to reach 
targets set in the SDGs and in the End TB Strategy. Failure to respond timely and 
appropriately to the dual escalation of HIV and TB incidence between 
1992–2005 in SSA resulted in unacceptably high rates of TB-associated morbid-
ity and mortality, in HIV infected patients with devastating consequences within 
communities. Since then, the rapid expansion of ART has resulted in a dramatic 
reduction in HIV-associated TB incidence and mortality in SSA. Several factors 
threaten realisation of the 95–95-95 End TB strategy targets, key among these 
being increasing DR-TB incidence, and failure to find and treat missing TB 
patients. Robust high-quality implementation strategies suitable for disease 
endemic resource limited settings that appropriately use new technologies in TB 
prevention, diagnosis and treatment is essential for the 2035 TB elimination targets 
to be met in Africa.
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A. Countries with a Rapid Decline in TB mortality

B. Countries with relatively Unchanged TB mortality
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Modelling the HIV-Associated TB 
Epidemic and the Impact of Interventions 
Aimed at Epidemic Control

P. J. Dodd, C. Pretorius, and B. G. Williams

Abstract  In this chapter, we focus on mathematical models of tuberculosis epi-
demiology (TB) that include interactions with HIV and an explicit representation 
of transmission. We review the natural history of TB and illustrate how its features 
are simplified and incorporated in mathematical models. We then review the ways 
HIV influences the natural history of TB, the interventions that have been consid-
ered in models, and the way these individual-level effects are represented in mod-
els. We then go on to consider population-level effects, reviewing the TB/HIV 
modelling literature. We first review studies whose focus was on purely epidemio-
logical modelling, and then studies whose focus was on modelling the impact of 
interventions. We conclude with a summary of the uses and achievements of TB/
HIV modelling and some suggested future directions.
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�Introduction

The emergence of the HIV pandemic in sub-Saharan Africa and the simultaneous 
rise in the incidence of tuberculosis (TB) in this region is a stark reminder of the 
importance of HIV-epidemiology for modelling TB (Fig. 1). As HIV prevalence 
increased during the 1990s, the per-capita TB notification rate increased several-
fold in some countries. As the HIV epidemics matured and the mean duration of 
HIV-infection grew longer, the mean level of population immunocompetence 
declined, and the strength of association increased. By the late 1990s for example, 
over 70% of TB notifications in Zimbabwe were in people living with HIV (PLHIV) 
[1]. Comparing this proportion to the HIV infection prevalence in the population 
without TB yields an odds ratio of around 10, which can also be interpreted as an 
average incidence rate ratio for developing TB if infected with HIV [2].

With the wider roll-out of antiretroviral therapy for HIV (ART) beginning around 
2004, initially provided to those meeting certain CD4 count thresholds and now 
recommended for all PLHIV, these population-level associations between HIV and 
TB incidence began to weaken. As the epidemic declined in some countries, includ-
ing Zimbabwe and Ethiopia, and ART was rolled out very aggressively, as in 
Botswana and South Africa, the TB notification rates declined but not to the pre-
HIV levels. Today, around 10% of TB is thought to be HIV-associated globally 
(74% of this in sub-Saharan Africa) [3]. A higher, but more uncertain, proportion of 
TB deaths are HIV-associated, but vital registration cause-of-death coding rules and 
frequent comorbidities make such estimates more difficult. However, the fairly con-
stant HIV prevalence and still-elevated risks of developing TB even among PLHIV 
on ART means that HIV will continue to affect TB epidemiology for decades to 
come and remain a crucial aspect of modelling in high-HIV burden settings.
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Fig. 1  TB and HIV in sub-Saharan Africa between 1990 and 2015: total tuberculosis notifications 
reported to the World Health Organisation (WHO) by countries in the WHO African region (left); 
UNAIDS estimates of HIV prevalence in 15–49 year olds (right)
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�Focus of This Chapter

The use of mathematical modelling as a tool in public health for understanding the 
behaviour of complex systems, and of assessing the impact and cost-effectiveness 
of interventions has grown. For an infectious disease like TB, making quantitative 
predictions about the population-level impact of interventions requires models that 
explicitly account for the transmission process. Without including transmission, 
there is no way of assessing the indirect benefits interventions may have through 
onward cases averted. For interventions whose benefit accrues mainly or wholly at 
the individual-patient level, the standard static modelling approaches of health eco-
nomics are likely to be appropriate, but for interventions that are likely to reduce 
transmission, static models may substantially underestimate benefits from indirect 
effects. In this chapter, we focus explicitly on dynamic models, that is population-
level transmission models where the risks of infection depend on the prevalence of 
infectious cases and may change in response to interventions.

We first review the natural history and transmission epidemiology of TB, and 
describe in nontechnical terms the way these features are approximated and abstractly 
represented in transmission models. We describe the way HIV affects individuals’ 
natural history of TB and the approaches that have been used to model these effects. 
We highlight a number of interventions and describe how these have been allowed 
for in TB models, and we review the literature on modelling the impact of these 
interventions on TB at a population-level. We conclude by critically reflecting on the 
achievements and limitations of the work to date and suggest future directions.

�TB Modelling Without HIV

Before going on to consider how TB/HIV is modelled, it is important to understand 
how TB is usually represented in transmission models and what modelling tech-
niques are used. In this section, we introduce compartmental models of TB and step 
through various aspects of TB natural history, discussing how modellers approach 
incorporating these into mathematical models.

�Modelling Approaches

We will centre our description of TB modelling on Fig. 2, which is largely based on 
the early work of Dye and colleagues [4] (see also the book by Dye [5]), which, with 
variations largely reflecting different model purpose, has become the canonical 
basis for TB transmission models. Different disciplines have brought different tech-
niques, focus and approaches to the analysis, with TB/HIV modelling papers 
appearing in journals ranging from mathematical biology focussed on formally 
characterizing properties of specific models with abstract applications, through 
population biology/ecology studies aimed at exploring actual or potential behaviour 
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in more realistically-specified particular populations, through to very detailed mod-
els tightly tied to the epidemiology and costs in specific settings, and aimed at pol-
icy evaluation and decision support. A list of modeling studies evaluating HIV and 
TB is given in Table 1.

It should be noted that appropriate model structure is determined not only by the 
natural history or epidemiology, but also by the question at hand, and the published 
models vary widely in their structure. However, it is also the case that some models 
have appeared in the literature whose structure or parametrization means that they 
seriously misrepresent the natural history of TB. Menzies et al. [6] in a systematic 
review of TB modelling literature found that in 40% of published TB models there 
was an implied cumulative risk of progression to active disease that was substan-
tially at odds with empirical data.

The model diagram in Fig. 2 maps precisely to simple ‘compartmental models’. 
In these models, a set of mutually exclusive states that exhaustively classify indi-
viduals in the population are chosen. Each person in the population can then be 
thought of as being in one of these ‘boxes’ or ‘compartments’. The model state at a 
given time is then given by the population number in each compartment and the 
population dynamics are determined by quantitative rules for the rates of flow 

Fig. 2  A typical TB transmission model structure
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between boxes, which may depend on the state of the system and on time. Certain 
flows are sometimes omitted from such model diagrams, e.g. the inflow of births 
into the uninfected class; the outflow of death from all states (at higher rates from 
disease states). Model diagrams, such as in Fig. 2 may suppress some detail for the 
sake of simplicity. An example is where models include a discrete number of age 
categories, each one of which would require a duplication of the infection/disease 
logic of Fig. 2. Model diagrams can also be used to describe more approximately 
the logic of modelling approaches that are not compartmental, e.g. individual- or 
agent-based models, which may include much finer subdivisions of the states and 
more flexible rules governing transition between states. Individual-based models 
(IBMs) explicitly track in silico representations of people, and can therefore deal 
with effects that are hard to represent when only dealing with groups of a certain 
type of person (e.g. a detailed dependence on the history that led to the current state 
rather than simply depending on the current state alone).

Table 1  Summary of topics considered by TB modelling papers for high HIV prevalence settings

Focus on 
intervention Topic First author, year and reference

No HIV on TB 
incidence

Bermejo 1992 [67], Schulzer 1992 [68], Schulzer 1994 [70], 
Dolin 1994 [69]

TB dynamics with 
HIV

Kapitanov 2015 [74], Massad 1993 [71], Naresh 2009 [72], 
Roeger 2009 [73]

HIV on TB 
evolution & DR

Basu 2009 [76], Basu 2008 [75], Sergeev 2012 [77]

HIV on TB 
outbreaks

Murray 2002 [79], Porco 2001 [78], Pretorius 2011 [80]

HIV on TB 
transmission

Andrews 2014 [84], Andrews 2013 [85], Dodd 2016 [86], 
Escombe 2008 [81], Uys 2011 [83], Wood 2010 [82]

Interpreting TB/
HIV epidemiology

Blaser 2016 [89], Hughes 2006 [87], Pretorius 2014 [90], 
Sánchez 2009 [88]

Yes TB/HIV dynamics 
with interventions

Agusto 2014 [91], Bacaër 2008 [94], Kaur 2014 [92], 
Sharomi 2008 [93]

Control of DR-TB 
in TB/HIV 
epidemics

Basu 2007 [63], Basu 2009 [96], Basu 2011 [97]

Preventive therapy Basu 2009 [101], Cohen 2006 [100], Guwatudde 2004 [99], 
Heymann 1993 [98], Kunkel 2016 [103], Mills 2011 [102]

Case finding Azman 2014 [110], Baltussen 2005 [104], Dodd 2011 [42], 
Dowdy 2009 [107], Dye 1998 [4], Laxminarayan 2009 [105], 
Mellor 2011 [108], Sánchez 2008 [106], Yaesoubi 2013 [109]

Diagnostics Dowdy 2014 [62], Dowdy 2006 [111], Langley 2012 [114], 
Langley 2014 [61], Lin 2011 [113], Menzies 2012 [112]

ART Bhunu 2009 [117], Dodd 2013 [118], Pretorius 2014 [119], 
Williams 2005 [115], Williams 2003 [35], Williams 2010 [1]

Combined 
interventions

Chindelevitch 2015 [122], Currie 2005 [120], Currie 2003 [121], 
Gilbert 2015 [124], Gilbert 2016 [125], Houben 2016 [127], 
Houben 2016 [129], Knight 2015 [123], Trauer 2017 [128]

Topics are in order of discussion in text. DR = drug resistant. The topic word ‘dynamics’ implies a 
more mathematically focussed study
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�Modelling TB Natural History and Epidemiology

�Infection and Progression

One of the features of TB natural history that sets it aside from other infectious dis-
eases and therefore distinguishes TB models from models of other infectious diseases 
is its long latent state and the complexity of this latent state’s relationship to active TB 
disease. At birth, individuals are assumed to be uninfected and subject to infection 
with Mycobacterium tuberculosis (M. tuberculosis) with a force of infection (FOI) 
that depends on the prevalence of active TB disease at that time (see below). Individuals 
infected with M. tuberculosis for the first time are subject to an age-dependent risk of 
progressing to TB disease that decreases during childhood ages, remains low until 
adolescence and then increases as people reach adulthood [7]. This is normally repre-
sented as an elevated risk of ‘primary progression’ during the first 2–5 years following 
infection, with a subsequent lower risk of ‘endogenous reactivation’ thereafter [8]. 
These rates of progression compete with mortality, such that only a minority of those 
infected will develop active disease as a result: the canonical rule-of-thumb is that 
once infected with TB people have a 10% lifetime risk of disease [9], evenly divided 
between primary progression and endogenous reactivation, and more modern data 
broadly corroborate this picture [10]. In models, this is most often modelled as a cer-
tain fraction of infections progressing directly to active disease (an approximation to 
primary progression) and other individuals entering a latent category. Another model-
ling approach is to introduce two latent categories, with newly infected individuals 
moving initially into a fast-progressing latent category, before moving into a lower TB 
risk slow-latent category over a 2–5 year time scale [11].

�Reinfection and Protection

Another feature that is different from many other infectious diseases is the potential 
for those already carrying a latent M. tuberculosis infection (LTBI) to be reinfected. 
Evidence from modelling of population trends and more directly from cohorts of 
healthcare workers suggests that an existing latent infection conveys some protection 
against infection and progression to disease [8, 12, 13]. However, it is not possible to 
distinguish whether this protection applies against re-infection itself or progression 
following reinfection. If the latter, it is not clear whether there is any difference in the 
way this protection applies to progression in the initial years following reinfection or 
more distant re-activation. Re-infection is conventionally modelled as a partially 
effective ‘degree’ vaccine: i.e. infections in the latent (or slow-latent) category act 
like initial infections in the uninfected category, but occur at a lower rate with the FOI 
multiplied by some hazard ratio representing protection. This provides a contribution 
to incident TB disease from the latent category or via another route back into the fast-
latent compartment. For modelling approaches with a single latent category, this 
approach covers either protection via reduced possibility of infection or via reduced 
progression. For modelling approaches with fast- and slow-latent compartments, this 
approach represents protection via reduced susceptibility to infection.
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�Infectiousness and Risks of Infection

Upon development of active disease, many models assign individuals to either spu-
tum smear-positive or smear-negative disease. This definition has been made opera-
tionally as it affects the changes of diagnosis by particular algorithms and represents 
a group historically emphasised in TB control approaches, but also because smear-
positive TB is on average more infectious per unit time than smear-negative TB 
disease [14, 15]. Some models introduce a low rate of progression from smear-
negative to smear-positive disease [4], but this is poorly evidenced and considered 
small. While incipient smear-positive TB disease must at some point transition from 
smear-negative to smear-positive, the conventional modelling approach assumes 
this happens early on if at all, with around half of TB disease being smear-positive. 
It should be noted that new insights suggesting that the dichotomy between LTBI 
and clinical disease is an overly-simplistic representation of the dynamic spectrum 
existing in biological reality [16], and epidemiological data from prevalence sur-
veys that have found substantial amounts of asymptomatic TB [17] have yet to be 
explored in terms of their implications for models. Typically, the force-of-infection 
in TB models is taken as being proportional to the per capita TB prevalence with a 
discounting factor for smear-negative TB prevalence. The coefficient of proportion-
ality between per capita smear-positive TB prevalence and the force-of-infection is 
known in the epidemiological literature as Styblo’s ratio: the number of infections 
per year generated by 1 smear-positive TB case. Historically this was estimated to 
be in the region of 10 infections per year, but may be closer to 6 infections per year 
in the modern era [18, 19]. It is this dependence of force-of-infection on the current 
prevalence of active disease that makes a TB model ‘dynamic’ as opposed to ‘static’. 
Changes in TB prevalence due to interventions here are allowed to accrue indirect 
benefits, influencing the future incidence of TB disease via a reduced 
force-of-infection.

�Mortality, Self-Cure and Detection

The best data on the natural history of TB disease in the absence of treatment comes 
from the pre-chemotherapy literature [20]. A substantial proportion of those with 
TB disease would be expected to die: around 70% of those with smear-positive 
disease and around 30% of those with smear-negative disease, giving an average 
case-fatality ratio of around 50%. The remaining cases are said to ‘self-cure’, repre-
sented as a return to latent infection compartments in TB models. The course of TB 
disease was found to run over an average of around 3 years (independent of 
smear-status), though data from the early 20th century suggest that some individu-
als could have active TB for over a decade [21].

The era of chemotherapy for TB has added a third class of outcome to TB dis-
ease: that a case is diagnosed and put onto treatment. This detection process is often 
abstracted into a single rate that captures both the efforts of a patient to seek care, 
and the sensitivity of the clinical algorithms used for diagnosis. Modelled in this 
way, rates of death, self-cure and detection can be considered as a competing hazard 
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framework, with the rate representing detection competing against the rates of self-
cure and death to determine the fraction of incident TB cases that are detected. In 
practice, this logic is usually inverted: information about the fraction of cases 
detected is used to determine the corresponding rate of detection.

�Treatment and Recovery

Detection is usually modelled as synonymous with treatment initiation and those in the 
treatment category are normally assumed not to be infectious. This is based on the rapid 
decrease in both bacillary load and coughing frequency of TB patients on effective 
treatment [22, 23]. Exceptions include models that are used to investigate the signifi-
cance of delays to treatment, and work including drug-resistant TB which may still be 
infectious on inappropriate treatment. Often, this low infectiousness on treatment and 
the small fraction of the population on TB treatment at any point mean that models do 
not include an explicit compartment for those on TB treatment. If an explicit TB treat-
ment compartment is included it is normally modelled as a non-infectious compart-
ment with a mean duration of 6 months (i.e. a total per capita exit rate of 2 per year).

The outcomes of treatment are often modelled as simply death or successful treat-
ment, neglecting treatment failure or loss-to-follow-up (LTFU), with the total out 
rate split in proportion to the fraction experiencing each outcome. Surveillance data 
reported to WHO suggest that the treatment success for the 2015 cohort of new TB 
cases was 83%, and 78% in PLHIV [3]. Death, LTFU, and unevaluated outcomes 
heterogeneously account for most of the non-successful outcomes, with treatment 
failure rare in settings without very high levels of drug resistance. Globally, around 
11% of TB treatments for new and relapse cases in PLHIV reported death as an out-
come, compared with 4% of those without HIV [3]. Pre-treatment LTFU (i.e. LTFU 
between diagnosis and treatment initiation) is often incorporated into diagnostic 
rates, which may misrepresent the complexity in subsequent care-seeking by those 
who have at some point been diagnosed with TB.

Successful treatment outcomes and often self-cure of disease, are frequently 
modelled by a transition to a ‘recovered’ compartment. In contrast to the ‘recov-
ered’ designation in most infectious disease models, this compartment is used to 
capture the elevated risk of recurrent TB disease in those previously treated for 
TB. TB treatment is not now thought to be sterilizing, and even after a documented 
cure, the risk of TB infection is greater than in people who have never developed the 
disease [24]. In many settings, approaching 10% of notified TB cases will be 
individuals who have been previously treated for TB, sometimes after LTFU, but 
more often after treatment completion. Recurrence is a complex phenomenon which 
includes disease following reinfection, reactivation, and mis-classified episodes of 
ongoing TB disease. Individuals with previous TB may be at elevated risk of TB 
infection and subsequent progression due to constant social or biological risk fac-
tors, or potentially due to changed risk factors resulting from their initial TB episode 
(lung scarring, exacerbated poverty). Many of these factors also increase the risk of 
reactivation disease from the original M. tuberculosis infection.
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This has important implications for TB control suggesting that previously treated 
patients should be followed-up regularly, possibly until the end of their lives. More 
recently a series of studies by Marx et al. have shown that, in the Western Cape Province 
of South Africa, previously treated patients have a relapse rate and a recurrence rate both 
of which are about 3000/100,000 in the first year after successful treatment which has 
important implications for the control of TB, especially in high burden settings [25, 26].

�Drug Resistance

Recurrence may be linked with the local epidemiology of drug-resistant TB (DR-
TB), which varies hugely around the globe, with proportions of multidrug-resistant 
or rifampicin-resistant TB (MDR/RR) among TB cases ranging from over 30% in 
some former Soviet republics to less rates typically below 3% in much of sub-
Saharan Africa [3]. In all settings, the rates of drug resistance in cases with a history 
of TB treatment are higher than treatment-naive patients; treatment-naive patients 
are a barometer of transmitted resistance whereas cases previously treated reflect 
both acquired resistance during treatment and undiagnosed primary resistance that 
has been empirically determined to need second line treatment. MDR/RR TB is 
significant due to its worse outcomes and the much higher cost of treatment. Other 
resistance patterns, such as extensively drug-resistant (XDR) TB include resistance 
to common second-line compounds. Models including drug-resistant TB must rep-
licate much of the structure to allow infection and transmission by strains of 
M. tuberculosis with different resistance patterns. The different outcomes, dura-
tions, relevant diagnostic algorithms and mechanisms for becoming a drug-resistant 
TB case must all be included in transmission models of DR-TB.

�Risk Factors Other Than HIV

HIV is the single strongest risk factor for TB and the way its influence on the natural 
history of TB is typically incorporated in models of TB will be discussed in the fol-
lowing section. However, it is worth noting that other factors also influence the risk 
and characteristics of TB disease. Risks of progression to disease change rapidly 
during childhood, as does the spectrum of disease, requiring specific modelling 
approaches [27, 28]. The proportion of disease that is smear positive may increase 
through adult ages [8]. Biological and social risk factors mean that there are typi-
cally around twice as many TB cases in men as in women [29]. Diabetes mellitus is 
a moderate risk factor for TB incidence, but forecasts of increasing diabetes preva-
lence suggest a potentially important future role in global TB epidemiology [30]. 
Smoking, indoor air pollution, and silicosis are all risk factors that may make sub-
stantial contributions to TB incidence in some locales [31, 32]. A curious, but still 
unexplained, observation is the extremely strong association of TB with body-mass 
index (BMI) [33]. Across six longitudinal follow-up studies of navy recruits in the 
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USA (2 studies), male smokers in Finland, Mass Radiography in Norway, Health 
Centres for the Elderly in Hong Kong and participants in an NHANES study in the 
USA, there was a 13.8%±0.4% reduction in TB risk per unit increase in BMI over a 
range of BMI from 17 kg/m2 to 34 kg/m2, making BMI the single best predictor of 
an individual’s relative risk of tuberculosis. Finally, through a variety of mecha-
nisms, socioeconomic status has associations with TB incidence and outcomes and 
may well be a strong influence on global TB epidemiology during a period of rapid 
economic development in many high-TB prevalence regions [34].

�Modelling TB in Individuals with HIV

�Data for Modelling

In this section, we review the ways that the individual-level effects of HIV have 
been incorporated in TB models. It is worth noting that epidemiological evidence 
often needs particular interpretations, sometimes requiring additional assumptions, 
for use in mechanistic models. This is because mechanistic models are frequently 
more specific in their representations of causality than the statistical models conven-
tionally used for analysing epidemiological data. Therefore, when incorporating 
effects which may act on one (or several) different pathways to effect, a more 
nuanced account of effect is required.

�Progression, Infection and Protection

The main way TB models include the association between HIV and TB is through 
an increased rate of progression to TB disease for individuals with HIV infections. 
However, increased rates of progression could apply solely to ‘primary progression’ 
in the first couple of years following an infection, or to subsequent ‘endogenous 
reactivation’, or to both these processes (potentially in different ways). Data on TB 
incidence in cohorts of PLHIV suggest that the incidence rate ratio for developing 
TB increases immediately after infection by a factor of around 2, and remains 
higher, increasing as immunocompetence declines to over 30. Most models in the 
literature account for an increased rate of primary TB progression in 
PLHIV.  Individual-based models and partial differential equation (PDE) models 
may include rates of progression to disease that vary continuously by time-since-
infection. In these cases, without an enforced distinction between primary progres-
sion and endogenous reactivation, the most natural and commonly used approach is 
application of a single incidence rate ratio (IRR), which therefore elevates of both 
processes. The division between primary progression and endogenous reactivation, 
which is in any case a somewhat arbitrarily drawn distinction in practice, is further 
blurred in PLHIV when large IRRs may mean reactivation timescales are on a par 
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with primary progression rates in HIV-uninfected individuals. Taken together, aver-
aging across levels of immunocompetence, a rate of progression to TB disease in 
those with M. tuberculosis infections of 10% per year has been suggested among 
PLHIV, compared with a similar lifetime risk of progression among HIV-uninfected 
individuals [2].

Determining M. tuberculosis infection in PLHIV is particularly problematic, as 
sensitivity of both traditional tuberculin skin tests (TSTs) and newer interferon 
gamma release assays (IGRAs) is typically lower in this group due to immune dys-
function. It is therefore not possible to reliably determine whether HIV infection 
increases susceptibility to infection (as opposed to increasing progression to disease 
following infection). In models, it is usually assumed that HIV does not affect the 
risk of M. tuberculosis infection, and is a risk factor for higher TB incidence due to 
higher rates of progression to disease. The effect of HIV infection on the protection 
against reinfection disease conferred by LTBI is also poorly defined. Most models 
assume that HIV infection reduces or completely removes the protection against 
reinfection disease due to previous infection.

�Influence of CD4 Count

There are a number of motivations for including a more detailed representation of 
HIV-related immunosuppression in TB models and for formulating this in terms of 
CD4 cell count. As mentioned above, there is more than an order of magnitude 
variation in IRR among PLHIV depending on their degree of immunosuppression. 
This is substantial enough to generate secular trends in the association between HIV 
and TB at a population level as HIV epidemics have aged. The count of CD4-
positive lymphocytes in peripheral whole blood samples (CD4 cell count) has been 
widely studied as a marker of immune suppression in PLHIV, and a guide for clini-
cal decisions. Many guidelines on when to start ART have historically been based 
on CD4 counts, and there is much surveillance and survey data on CD4 counts at 
various stages of accessing care. This means that models including CD4 count could 
examine CD4-based ART policies and draw upon a wide range of data in their 
parametrization.

A number of analyses have identified a consistent relationship between CD4 
count decline and increasing risk of TB incidence [1, 35, 36]. This relationship is 
exponential, that is a fixed decrement of 100 cells/mm3 CD4 count results in a 1.4-
fold factor increase in the IRR for TB [36]. Thus the roughly 20% drop in CD4 cell 
count during the acute phase of HIV infection roughly doubles the risk of TB [35]. 
After the acute phase of HIV infection a person’s CD4 cell count drops linearly 
(without ART) until death implying the risk of TB increases exponentially [35].

The IRR for TB given HIV varies widely on a population level: for example, the 
incidence rate ratio for TB in those with and without HIV ranges from 7.5 in Lesotho 
to 17.5  in Zimbabwe [37]. This may partly be due to the relative importance of 
socio-epidemiological factors, e.g. IRRs for TB given HIV are typically much lower 
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for populations with generalized HIV epidemics than for populations with HIV epi-
demics driven by specific risk groups, whose members may be at elevated risk of TB 
due to other correlated risk factors amplified by assortative mixing. But this is likely 
only part of the story, and there is also substantial variation in baseline CD4-cell 
counts within and between populations [38]. Furthermore, for reasons still not 
understood, it seems that while the decline of CD4 cell counts is linear in time after 
HIV infection, the survival after infection is independent of the initial CD4 cell 
count, implying that people with a high CD4 cell count have a correspondingly 
faster rate of decline. However, this consistent exponential relationship with CD4 
decrement across a number of settings and background TB risks means the strong 
biological component of increased risk from HIV can be separated from factors that 
do not depend on CD4 count.

Using CD4 count as a measure of immunosuppression for the IRR for TB has 
several advantages. Statistical analyses of data from the CASCADE cohorts provide 
models of CD4 count progression and their determinants, as well as HIV-related mor-
tality [39, 40]. Modelling increases in TB risk through CD4 count means existing 
work on HIV natural history can be used directly in HIV/TB models, and allows TB 
models to be built on top of existing HIV model structures. There is an advantage in 
terms of parsimony: a single parameter can be used to capture the increased risk of TB 
in a variety of CD4 count compartments, by using an average implied IRR from the 
exponential model rather than separately assessing the risk for each CD4 category, 
and for models which continuously track time-since-HIV-infection or CD4 (IBMs, 
PDEs) this parametrization avoids binning into categories altogether. Incorporating 
several CD4 categories and parametrizing their TB risks via this exponential model is 
the approach most commonly used in applied models aimed at informing country 
policy. An example is the Spectrum HIV model developed by Avenir Health, which 
includes 7 CD4 categories, and the TB Impact Model and Estimates (TIME) model-
ling module that is part of the Spectrum tool and makes use of this underlying HIV 
model and the exponential model of TB risk with respect to CD4 count.

The natural history of HIV and TB are both different in children, who have much 
higher absolute CD4 cell counts that vary rapidly with age. The CD4 percentage is 
often used as an age-adjusted measure of immunosuppression. Systematic review 
and meta-analysis suggests that, as with adults, there is an exponential increase in 
the IRR for TB as CD4 percentage declines [41]. At a population level, an average 
over different levels of immunosuppression yields an IRR of around 8.

�TB Disease and Outcomes

HIV infection shifts the spectrum of TB disease away from cavitary disease towards 
smear negative and extrapulmonary disease. One consequence of this is that the 
average HIV-positive TB case is usually assumed to be less infectious per unit time 
than the average HIV-negative TB case. This is often modelled as a lower proportion 
of disease that is classified as smear-positive. The natural history of TB/HIV without 
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TB treatment is uncertain because HIV emerged after TB treatment was available, 
however, outcomes in individuals with DR-TB that was inappropriately treated, 
expert clinical opinion and other information do paint a consistent picture of a very 
much shorter duration of disease (of the order a few months rather than the few 
years of TB in HIV-negative individuals), with very limited or no self-cure (i.e. a 
case fatality rate of close to 100%). Thus, although HIV increases the risk of TB by 
a factor of the order ten, TB disease progresses about ten times faster than in HIV-
positive than in HIV-negative people. This means that while incidence may increase 
by up to ten times prevalence remains more or less constant as first shown by Corbett 
et al. [31]

Similarly, there is little evidence on TB case-detection rates in PLHIV. One could 
quantify rates of detection by HIV-status by examining HIV-stratified 
prevalence:notification ratios from using TB prevalence survey data, however TB 
prevalence surveys are not powered for conclusions by HIV status. The usual 
assumption in modelling is that TB has the same probability of being detected 
whether HIV positive or negative, although some studies have explored differential 
case detection [42]. This reflects much higher rates of care-seeking or screening for 
TB among PLHIV to compete with their higher rates of mortality. While evidence 
to directly inform this assumption is lacking, given population HIV prevalence and 
an IRR for TB among PLHIV, this assumption does generate HIV-prevalence among 
notified TB cases in keeping with observation.

TB treatment outcomes for PLHIV are somewhat worse than those of HIV-
negative TB patients. In reality, outcomes are worse for more immunocompromised 
patients. All other characteristics of TB disease and detection are also likely to vary 
with level of immunosuppression, though this is rarely modelled. An exception is 
Williams et al. [1], which modelled the duration of untreated TB disease as being 
shorter for lower CD4 count.

�Effects of TB on HIV

TB is one of the leading opportunistic infections listed as cause of death in PLHIV. Even 
if not fatal, it has been shown that TB disease can affect CD4 count in PLHIV and 
worsen HIV progression [43]. Finally, during some periods in some locales, TB dis-
ease has been a major route of HIV diagnosis and entry into HIV care. However, few 
studies have investigated the potential for bidirectional cross-talk between the HIV 
and TB epidemics. Most TB-focussed modelling exercises in high HIV-prevalence 
settings have used HIV incidence or prevalence as an input. This is no doubt partly 
because this requires dynamic HIV and TB models as well as specification of all their 
sources of interaction, which is challenging given the scarcity of data. It also poten-
tially reflects the sense that the level of TB in a population may not greatly affect 
survival of untreated HIV; that if the primary cause of death at some level of immuno-
suppression had not been TB, it would have been something else. However, this 
assumption is unlikely to be true, especially at higher CD4 counts.
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�Modelling Interventions

�Antiretroviral Therapy (ART)

Coverage of ART among PLHIV globally has increased rapidly since 2004, and has 
potent benefits in reducing mortality almost to levels of HIV-negative individuals [44]. 
ART also benefits as a population-level HIV preventive tool [45], via reduced proba-
bility of transmission [46]. WHO guidelines now suggest initiation of ART in PLHIV 
regardless of CD4 count [47], though historically and still in some national guidelines, 
ART initiation is recommended only once CD4 count has fallen below some threshold.

Given its power to reduce HIV incidence and HIV-related mortality, ART provi-
sion has the potential to influence TB incidence through reductions in HIV preva-
lence in populations. However, ART also has direct individual level effects on TB.

Most notably, ART reduces the incidence of TB in adults, with a hazard ratio of 
around 0.35 across all CD4 counts [48], and to a similar degree in children [41]. The 
proportionate reduction in TB incidence may be higher for adults initiated at the 
lowest CD4 counts, whose rates of TB would otherwise be highest [48]. The protec-
tion from TB appears to increase over the first few years on ART in line with mark-
ers of immune status [49, 50], and somewhat more rapidly in children [41]. However, 
TB rates in PLHIV on ART compared to HIV-uninfected adults appear to remain at 
least 4 fold higher, even after 5 years or more on ART [51].

Being on ART may shift the spectrum of TB disease back in the direction of the 
HIV-negative spectrum, likely increasing infectiousness, decreasing case fatality rate, 
and potentially allowing some degree of protection stemming from LTBI and lengthen-
ing disease duration. Most models have treated TB disease in PLHIV on ART as very 
similar or identical to TB disease in PLHIV not on ART, and transmission models have 
not considered unmasking, immune reconstitution inflammatory syndrome (IRIS), or 
drug-drug interactions [52]. TB treatment outcomes are improved in PLHIV by being 
on ART, and are comparable with those for HIV-uninfected TB patients [53].

However, regular attendance of ART clinics may well also have implications for 
TB detection rates. Aside from acting as a marker for those able and motivated to 
access care, it also signals a heightened index of suspicion for TB among both patients 
and clinicians. Conversely, ART clinics have also been suggested as the source of a 
potentially heightened exposure to TB: the Tugela Ferry outbreak of XDR TB centred 
on an ART clinic, and high rates of active TB have been found among ART clinic 
attendees [54]. These features, which may have national-level implications in high 
HIV burden settings, remain largely unexplored in modelling studies.

�Isoniazid Preventive Therapy (IPT)

Isoniazid preventive therapy (IPT) to lower the rate of progression to TB disease is 
currently recommended for 36 months in PLHIV [55]. Shorter courses of IPT have 
been shown to lower TB incidence by around 60% in PLHIV with a positive skin 
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test [56], and data comparing TB incidence for individuals on ART with that in 
those on both ART and IPT [57], and comparing TB incidence or mortality reduc-
tions from IPT in cohorts with or without ART [58] suggest IPT has an incremental 
benefit while taking ART.

While IPT has sometimes been regarded historically as protecting by clearing a 
latent infection, trial data evaluating extended durations of IPT in PLHIV (including 
those on ART) [59] and mathematical modelling fitting to data from a set of IPT 
studies in PLHIV not on ART with post-prophylaxis follow-up [60] both suggest 
that IPT is unlikely to clear M. tuberculosis infection in most PLHIV. This means 
that the risk of TB incidence after treatment cessation is likely to return to its level 
before prophylaxis, and has implications for the way IPT should be modelled in 
PLHIV (i.e. as a temporary reduction in risk). Houben et al.’s modelling also sug-
gested a higher curative effect of rifamycin-containing prophylactic regimens 
among PLHIV [60], tallying with biological understanding of mechanism.

�Improved TB Detection

Transmission models that have focussed on evaluating diagnostic algorithms within 
clinics tend to have relatively simple representations of either HIV or of the diagno-
sis process, with the focus of detail being on the complementary aspect. Most 
frequently, the effects of changed algorithm are reflected in different rates into treat-
ment states in a compartmental model. This may neglect the true complexity of 
repeated attempts to obtain a diagnosis, diagnosis of previously treated TB and 
similar details. Sometimes these changes in transmission parameters may be derived 
from more detailed operational models of diagnostic procedures [61], or calculated 
by approximations to decision trees giving mean sensitivity, specificity and delay 
for patient types represented in the transmission model [62]. Applying simple 
changes in a detection rate (e.g. in proportion to changes in test sensitivity) without 
considering additional compartments representing pre-care-seeking infectiousness 
may exaggerate the potential for improvements in passive detection to affect 
transmission.

More active approaches to case-detection are variously-termed and understood 
(e.g. active case-finding, enhanced case-finding, systematic screening), and have 
been the subject of transmission modelling analyses in high-HIV burden settings 
(intensified case-finding, conventionally referring to screening among PLHIV, 
seems to have received less attention from transmission modellers). Periodic rounds 
of active case-finding have been modelled as mechanistically removing a proportion 
of prevalent cases each round. Often, active or enhanced case-finding is conceptual-
ized more nebulously as improved case-detection from direct efforts and potentially 
improved community awareness, and represented as increases in detection rate 
parameters. Understanding when transmission occurs on average with respect to 
care-seeking and symptoms is a crucial uncertainty that affects the relative impact 
of active case-finding interventions.
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Household contact-tracing has also been considered in these settings, typically 
using individual-based models that can naturally represent households of 
index cases.

�Infection Control

Improvements in ventilation for preventing nosocomial transmission of TB have 
been modelled by using the Wells-Riley equation and its variants, which quantify 
the reduction in infectiousness achieved by changes in ventilation rates [63]. More 
sophisticated specific approaches have been used to model the impact on ventilation 
of specific changes to buildings [64], and of upper room ultraviolet germicidal irra-
diation [65], but this has yet to be combined with transmission modelling in high-
HIV burden settings.

�Population-Level Impacts

In this section, we review the mathematical modelling literature that has included 
explicit representation of TB transmission and of the effect of HIV on TB epidemi-
ology. We have divided the literature into work describing the influence of HIV on 
TB epidemics that does not evaluate the impact of interventions, and work whose 
main focus is in evaluating single or multiple interventions that reduce TB burden. 
In focussing only on modelling work that includes transmission, we have excluded 
a substantial body of work evaluating the individual-level impact and cost-
effectiveness of TB interventions among PLHIV (e.g. some of the work on IPT, 
diagnostic approaches). We have also included some work focussed on modelling 
the transmission process in high-HIV burden settings (e.g. using Wells-Riley 
approaches), but which does not use a transmission model (in the usual sense) to 
propagate the consequences of this transmission. In writing this section, we have 
drawn on a systematic review of the TB/HIV modelling literature up to 2012 [66], 
and updated it using the same search terms. See Fig. 3 for temporal trends in number 
and topic of these publications.

There are several key points that determine the way in which one models HIV-
related TB. First of all, standard TB models for modelling HIV-negative TB can be 
used even in the presence of a substantial HIV epidemic TB because HIV has a 
much larger impact on TB incidence than prevalence, and therefore transmission. 
Secondly, the time-scales for HIV are of the order of years but for TB are of the 
order of decades which allows the separation of the models. Given a model of TB 
that fits the data before the epidemic of HIV starts, simple approaches need only a 
few additional parameters to include TB/HIV: a parameter (around 2), which gives 
the increase in the risk of TB immediately after infection with HIV; a parameter 
which gives the relative risk of TB when HIV-positive people are on ART; and a 
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parameter specifying the exponential rate of increase in TB incidence as people 
progress to successive clinical stages of HIV, which may differ between populations 
to account for the substantial variation in the incidence rate ratio in different popula-
tions. A detailed discussion of these observations is given in the supporting informa-
tion of Williams et al. [37]

�Population-Level Impact of HIV on TB Epidemics

The earliest papers using modelling tools to understand TB/HIV epidemics focussed 
on drawing attention to the threat posed by HIV to TB control and making estimates 
of the increases in TB incidence due to HIV. Bermejo et al. [67] in 1992 used a 
simple mathematical model and ecological data on associations between HIV and 
TB to conclude that TB incidence would double going forward when adult HIV 
prevalence hit 13%. Schulzer et al. [68] in the same year concluded that the TB 
incidence in 15–45 year olds was likely to increase by factors of between 4 and 12 
by the year 2000 compared to 1980, depending on the baseline annual risks of 
M. tuberculosis infection, and projected HIV prevalence. Dolin et al. [69] in 1994 
generated TB burden forecasts for 1990–1999, projecting 88 million new TB cases 
for this period with 10% of them HIV associated. The same year, Schulzer et al. [70] 
introduced a more sophisticated actuarial back calculation approach, and projected 
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2–6 fold increases in TB incidence in sub-Saharan African populations by 2000 
compared with 1980. These predicted increases are in line with those observed over 
the period. Later, in their 2003 review of global TB/HIV epidemiology, Corbett 
et al. [2] used simple mathematical tools to interpret data that were subsequently 
very influential in the applied TB/HIV modelling literature.

The first article to introduce a traditional compartmental transmission model 
based on ordinary differential equations (ODEs) was Massad et al. [71] in 1993. 
This work was in a dynamical systems and mathematical biology tradition, but did 
conclude that the influence of HIV on TB at a population level was much stronger 
than the other way around. Other authors followed in this vein, exploring the stabil-
ity properties of systems of ODEs motivated as TB/HIV models, but with a focus 
more on mapping out possible behaviours of the abstract dynamical systems than 
closely tying the models to a real setting or settings [71–73]. (Naresh et al. [72] is 
notable and unusual for considering the population-level impact of TB on HIV, 
however.) Kapitanov [74] introduces and analyses a PDE model, separately includ-
ing time-since-infection for HIV and M. tuberculosis.

Authors beginning with Basu et al. [75] in 2008 have followed a population biol-
ogy tradition and focussed on the potential impact of HIV for the evolution of TB, 
especially DR-TB. This first article considered cross-immunity between TB strains 
in a multi-strain HIV/TB model, and highlighted the potential for HIV to promote 
the emergence of DR-TB at a population-level by compensating for reduced fitness 
in DR-TB strains. In a later paper Basu et al. [76] consider the evolution of TB viru-
lence, again concluding that HIV may facilitate increased virulence. Sergeev et al. 
[77] agree that HIV can facilitate DR-TB epidemics, but explore the dynamics of 
the relationship between HIV and DR-TB, predicting a lower proportion of DR-TB 
among PLHIV early on in DR-TB epidemics due to enhanced reactivation of older 
strains in this group.

Models have also been used to explore the influence of HIV on stochastic aspects 
of TB incidence in small communities or lower burden settings. In 2001, Porco et al. 
[78] used discrete event simulation (DES) to study the influence of HIV on the fre-
quency and severity of TB outbreaks. Murray et al. [79] included HIV in their analy-
sis of the determinants of molecular cluster size. More recently, Pretorius et al. [80] 
used a van Kampen expansion to explore the effects of stochasticity in a TB model 
applied to a medium size high-HIV community, and examined the temporal correla-
tions for active TB cases.

Another strand of work has made use of the classical Wells-Riley model of indoor 
transmission and ventilation to interpret experimental work on the relative infectious-
ness of TB in PLHIV [81], to consider the role of household transmission in generat-
ing observed acute respiratory illnesses (ARI) in South Africa [82], and arguing 
implications at the population-level and a necessity for more-than-proportionately 
intense interventions in intense transmission settings (again focussed on South Africa) 
[83]. Andrews et al. [84] have modelled the implications of data on social contact pat-
terns, and CO2-derived measures of ventilation, for the location of TB transmission in 
South Africa, singling out the role of public transport in another study [85]. Dodd 
et  al. [86] also make use of social contact data (from Zambia and South Africa), 
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together with data on TB prevalence and infection rates, to model the age- and sex-
specific rates of TB infection, arguing ARI measured in children under-estimates that 
experienced by adults.

Lastly, transmission models have been used to interpret the patterns and trends in 
epidemiologic data from high-HIV burden settings. In 2006, Hughes et al. [87] used 
a DES model calibrated to Zimbabwe, to understand the impact of HIV on the TB 
epidemic there. In an intriguing article, Sanchez et al. [88] fitted a difference equa-
tion model of HIV and TB in sub-Saharan African settings, notably Kenya, high-
lighting the difficulties of matching the observed trends and exploring potential 
reasons for discrepancies. Blaser et al. [89] developed an age-structured TB/HIV 
model calibrated to Cape Town in order to understand the epidemiology. They con-
clude that protection from LTBI and higher progression rates in previously treated 
individuals are key in being able to reproduce age-patterns of TB. Finally, Pretorius 
et al. [90] developed a regression methodology to model the influence of population 
CD4 changes on TB incidence and is used to disaggregate TB incidence by CD4 
stratum in the TIME model (part of the Spectrum model suite for country-level 
estimation of TB/HIV mortality burden).

�Population-Level Impact of Interventions

A number of studies considering the impact of interventions on TB/HIV have 
appeared in the mathematical literature. Agusto et al. [91] considered optimal con-
trol theory applied to a two-(TB)strain TB/HIV ODE model. Kaur et al. [92] studied 
an ODE TB/HIV model that includes abstractly defined screening and treatment 
interventions from a dynamical systems perspective. Sharomi et al. [93] also applied 
dynamical systems analysis to a TB/HIV ODE model, but with more explicit repre-
sentation of intervention strategies including ART. The study of Bacaër et al. [94] is 
more realistic, and calibrates an TB/HIV ODE model to a specific (South African) 
setting. Interventions for HIV including ART and condom use promotion, as well as 
IPT for TB are considered: ART was predicted to strongly reduce TB notifications.

Motivated by the 2006 outbreak of XDR-TB in Tugela Ferry, South Africa, in 
which ART clinics appeared to play a key role, Basu et al. [63] use an TB/HIV ODE 
model including drug-resistant TB to model intervention strategies to reduce noso-
comial transmission of TB, concluding that a combination of strategies could pre-
vent around half of XDR cases. It was shown that the outbreak of XDR-TB in 
Tugela Ferry was largely due to nosocomial transmission resulting from poor infec-
tion control in a clinic with very high rates of both HIV and TB [95]. Basu et al. [96] 
went on to consider this with a stochastic model appropriate to the relatively small 
numbers of this outbreak situation, concluding that community-based interventions 
would be needed to curtail the outbreak. Later Basu et al. [97] considered the role 
of institutions such as prisons in amplifying TB epidemics, and argue that reducing 
the inflow to these institutions would have impacts on both TB incidence and the 
propagation of drug-resistant TB.
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A number of studies have considered IPT. In keeping with our scope, we discuss 
only those including transmission; it should be noted that IPT in PLHIV has been 
the focus of a similar number of static cost-effectiveness modelling analyses. In 
1993, Heyman [98] considered the impact of HIV on TB in HIV-hyperendemic settings 
with low TB treatment coverage, and the impact of preventive therapy (assumed 
curative) aimed at PLHIV, suggesting a large reduction in prevalence could result 
over a decade. In 2004, Guwatudde et al. [99] developed an TB/HIV ODE model 
and concluded that IPT for PLHIV would have a limited impact on the TB epidem-
ics of sub-Saharan Africa. In 2006, Cohen et al. [100] also modelled IPT for PLHIV 
in sub-Saharan Africa and found a greater potential for this intervention, with up to 
around 20% of cumulative HIV deaths preventable through this strategy over a 
5-year period. However, they also found a potential for increases in drug-resistant 
TB, and argued that IPT should therefore be coupled with improved diagnostic and 
treatment options. Basu et al. [101] specifically consider IPT delivered through ART 
clinics in Botswana, found that increases in resistance were small and more than 
counterbalanced by reduced TB incidence and mortality. Mills et al. [102] intro-
duced a dual-network model - one network for contacts relevant to HIV transmis-
sion, a second network with contacts relevant to TB transmission - and investigated 
the role of correlations between these structures in generating heterogeneity in the 
impact of IPT. IPT was found to be effective at a population-level, but networks 
with clustering of HIV and TB transmission in intense foci had reduced local impact 
from IPT due to high rates of TB reinfection. Kunkel et al. [103] calibrated a multi-
strain TB model with HIV to data from Botswana and consider the health benefits 
and resistance dynamics resulting from continuous IPT for PLHIV. They find health 
benefits outweigh concerns around increased resistance, so long as sufficient con-
trol is maintained for the overall TB epidemic.

Various studies have used modelling to evaluate TB case finding in high-HIV 
burden settings, including both improvements in passive case detection and cure 
under the DOTS strategy, and through active case finding. The early paper of Dye 
et al. [4] projected the global and regional impact of the DOTS strategy (focussed on 
case detection and treatment success) and included HIV. They concluded that DOTS 
has a greater impact on mortality than incidence and that this difference is heightened 
in settings where HIV is prevalent. Baltussen et al. [104] built on the work of Dye 
et al. [4] to evaluate the cost-effectiveness of DOTS and DOTS-plus on a regional 
and global level. Laxminarayan et al. [105] undertook a later global country-level 
economic evaluation of sustaining DOTS, finding that the benefits exceeded costs in 
all of the (then-designated) 22 high TB-burden countries. Sanchez et al. [106] con-
sidered increased detection as well as decreased LTFU and higher cure of shorter 
regimens for PLHIV in a transmission model calibrated to the epidemiology of 
Kenya, projecting a 20% reduction in TB incidence and mortality by 2030 for these 
interventions in combination. Dowdy et al. [107] considered the effects of improve-
ments in case detection on TB incidence, finding that declines in TB incidence reduce 
over time since an improvement in case-detection. Dodd et al. [42] considered what 
features affect periodic active case finding for TB in high-HIV burden settings using 
a PDE model, and allowing different baseline detection characteristics for HIV-
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positive and HIV-negative TB cases. For a given case-finding round efficacy, the 
impact is higher in settings where a higher proportion of TB incidence is due to 
recent infection. Mellor et al. [108] used an individual-based household-structured 
model based on data from Zimbabwe to consider the impact of different household 
contact tracing (HHCT) interventions to screen for TB disease and offer IPT, and 
found HHCT for late-stage HIV-positive individuals was particularly effective in 
reducing mortality. Yaesoubi et  al. [109] considered optimal dynamic rules for 
switching on and off active or enhanced TB case finding efforts in addition to passive 
case finding given a decision rule based on a policy-make willingness-to-pay thresh-
old, concluding that dynamic strategies are more efficient and therefore potentially 
more feasible and sustainable in practice than fixed case-finding strategies. Lastly, 
Azman et  al. [110] consider the cost-effectiveness of active case-finding in three 
countries, including South Africa, concluding that the modelled intervention would 
be cost-effective in South Africa, and that active case-finding strategies have greater 
cost-effectiveness when considered over longer time horizons.

The impact of different diagnostic strategies in HIV-driven TB epidemics has 
also been considered. Dowdy et al. [111] in 2006 considered the impact of rapid 
molecular testing or culture compared to active case-finding or wider ART use; find-
ing that while improved diagnostic strategies only moderately reduce TB incidence 
(by around 10%), their effect on TB mortality is larger (around 20%). Dowdy et al. 
[62] introduce a transmission modelling framework focussed on diagnostic strate-
gies, which did include a simple aggregate representation of HIV. Menzies et al. 
[112] undertook a rigorous economic evaluation of Xpert MTB/RIF in five southern 
African countries, using a TB transmission model that included the effects of 
HIV. This analysis too found limited impacts on TB incidence, but benefits in terms 
of TB mortality and morbidity. Longer time horizons favoured the intervention 
because they allowed indirect benefits to accrue. Another stream of modelling work 
has sought to integrate operational research models of practical implementation 
details and workflows with transmission models for evaluating new diagnostics in 
high TB (and high HIV) burden settings [61, 113, 114]. For example, Langley et al. 
[61] also evaluated Xpert (together with fluorescence LED microscopy) in Tanzania, 
finding Xpert to have the greatest cost and impact, and allowing estimation of quan-
tities such as reductions in patient visits to health facilities.

ART for HIV is one of the key interventions whose impact on TB in high-HIV 
burden settings has been considered. In 2003, Williams et al. [35] developed a cohort 
model and brought evidence together on the efficacy of ART for preventing TB and 
the incidence rate ratio for TB at different CD4 counts, highlighting the importance 
of starting ART early and achieving high coverage and compliance in reducing 
cumulative TB incidence. In Williams et  al. [115], a transmission model with a 
4-stage HIV structure was used to project the impact of HIV on the Indian TB epi-
demic, finding that continued progress with TB control activities should contain the 
impact of HIV, but recommending ART to PLHIV who develop TB. The evidence on 
the individual impact of CD4 cell count and ART on TB risk was updated in Williams 
et  al. [1] and incorporated in a TB/HIV model applied to 9 sub-Saharan African 
countries to investigate the impact of a ‘universal test-and-treat’ (UTT) HIV control 
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strategy on TB. UTT comprises frequent HIV testing at high coverage followed by 
immediate ART initiation, and has been projected to have the potential to reduce HIV 
incidence by reducing the infectiousness of PLHIV [116]. This study included the 
impact of aggressive ART beginning in 2010 on HIV incidence, and predicted a 
potential reduction in TB/HIV by more than 50% by 2015; strategies achieving ART 
initiation within 2 years of HIV infection led to more than 95% reductions in TB/
HIV by 2050. The approaches to modelling the relationship between TB and HIV 
introduced in these papers, confirmed by more recent evidence synthesis [36], have 
been very influential on other modelling approaches to TB/HIV.

Some work on the impact of ART on TB has included work in a mathematical 
tradition such as Bhunu et al. [117], who pursue a dynamical systems analysis of an 
TB/HIV model including ART, and Bacaër et al. [94], discussed above. Dodd et al. 
[118] caution that the still-high relative risks of TB on ART and the longer life-
expectancies imply that long-term reduction in TB from ART must be mediated by 
reductions in HIV incidence or background population risks of TB. Pretorius et al. 
[119] report results from three independent models assessing the impact of ART 
policy changes in South Africa over the period 2014–2033, finding expanded cover-
age and universal eligibility could reduce cumulative TB incidence and mortality by 
around 20% and 30%, respectively over this period, with one TB case averted for 
every person-decade or so on ART.

In addition to the studies focussed on ART discussed here, many of the models 
considering combinations of interventions (discussed below) have included ART as 
a component of their policy options, alongside other interventions. Currie et  al. 
[120] consider three interventions to prevent TB in Uganda, Kenya and South 
Africa - namely IPT, ART, and reduced HIV transmission - with curative interven-
tions (improved TB case detection and treatment success). They found the largest 
impacts on TB from curative interventions, but cautioned that alone they were able 
to contain but not reverse TB epidemics. Currie et al. [121] built on this work to 
consider the cost-effectiveness of interventions in Kenya, finding that improve-
ments in TB detection and cure were extremely cost-effective, but noting that ART 
policies had the largest potential for general health gains, while being the most 
expensive and relatively expensive measured as a TB-prevention strategy. 
Chindelevitch et al. [122] compared wider ART provision and improvements to TB 
control for improving TB control in South Africa, finding that expanded coverage of 
the TB programme had the greatest potential for impact on TB, but suggesting a 
potential 22% reduction in cumulative TB incidence over 5 years from expanded 
ART eligibility. Knight et al. [123] also considered South Africa, using an individual-
based model to evaluate portfolios of interventions including expanded ART, long-
duration IPT, and active case finding for achieving the national targets to find that 
the most aggressive combination considered could result in TB incidence and mor-
tality rates that were 70% and 86% lower than those in 2012. The most effective 
single intervention was general-population active case finding for TB, whereas 
improvements in ART had more modest impacts: UTT alone generated around a 
20% reduction in TB incidence. Gilbert et al. [124] considered a combination of 
intervention strategies in rural South African settings, including ART, IPT, and a 

P. J. Dodd et al.



47

community-based integrated intensified case finding strategy for HIV and TB. The 
intensified case finding was found to be the single most effective intervention for TB 
incidence, with around a 25% reduction over 10 years and a comparable impact on 
combined TB and HIV mortality as expanded ART policies. Gilbert et al. [125] built 
on this to evaluate the projected cost-effectiveness of their intensified case finding 
strategy, finding it cost-effective in rural South Africa.

A number of studies recently have gathered multiple modelling teams together to 
address the same question. The study of Pretorius et al. [119], discussed above, was a 
result from a multi-modelling study focussed on ART policies for HIV [126]. In 2016, 
Houben et al. [127] undertook a study with 11 different models focussed on 3 coun-
tries to assess approaches to meeting the End TB strategy goals. South Africa was one 
of the countries considered by the 8 models including the necessary HIV structure for 
this context, and it was found that a combination of continuous IPT for PLHIV on 
ART, TB screening at health facilities, and improved TB care could reduce TB inci-
dence and mortality in 2025 by 55% and 72%, respectively, compared with 2015.

Finally, a number of country-level TB modelling tools are being developed to 
undertake national policy analyses, often for informing applications for support 
from the Global Fund to Fight AIDS, Malaria and Tuberculosis [128, 129]. For 
example, the TIME model is built into the widely-used Spectrum suite of models, 
which have a heavy emphasis on HIV policy, and has been applied to a number of 
high-HIV burden countries. Most of the outputs from this work have yet to be 
described in peer-reviewed literature.

�Discussion

�Uses and Achievements of Modelling

One of the key uses of TB/HIV epidemic modelling has been as a tool to understand 
the drivers of epidemiological patterns and project the effects of HIV on TB epi-
demics. Some of the early studies were based on simple models but provided impor-
tant insights. The first projections of the effect of HIV on TB incidence proved 
broadly correct, and the understanding that the association between TB and HIV is 
a dynamic one, driven by mean population immune status is also borne out by 
observation. Early fears that TB in PLHIV might be more infectious than in HIV-
uninfected individuals proved wrong, and together with the much shorter duration 
of TB/HIV compared with TB in HIV-uninfected individuals means that even in 
settings where the majority of incident TB is HIV-associated, it will still often be the 
case that TB in the HIV-negative population drives the majority of transmission. 
This implies that efforts to strengthen TB control in these settings must also 
encompass the HIV-negative population, while recognising the special challenges 
of TB/HIV from increased risks of mortality and different clinical presentation.

Modelling work has also established the potential for HIV to have a facilitating 
effect on the development and establishment of DR-TB in populations; the impaired 
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host immune responses compensating for reductions in pathogen transmission fit-
ness or virulence. Modelling has also explored the role of ART clinics in facilitating 
TB, and particular DR-TB transmission in the wider community.

Understanding the impact of new or existing interventions and prioritizing their 
future development has also been an important area where models have been useful. 
The application of modelling to IPT in PLHIV is a good example of understanding 
existing interventions: data from randomized studies are often analyzed at an indi-
vidual level; sometimes transmission effects and the potential for reinfection with 
M. tuberculosis may have a bearing on the interpretation of results from individual-
level trials. Modelling has been particularly influential in investigating the potential 
for impact from innovative strategies that have not yet been trialled at population 
level. HIV modelling provided some of the evidence supporting the policy shifts to 
universal ART provision, and related TB modelling has studied the potential for 
additional benefits from these policies effects on the TB epidemic. Modelling stud-
ies are able to explore more interventions, intervention variants, and combinations 
of interventions than would ever be possible to trial in empirical studies, thus help-
ing to prioritize and design interventions to take forward for empirical evaluation.

Models of TB/HIV are also increasingly being used to guide policy and invest-
ment decisions, including both epidemiological impact from changes in TB trans-
mission and the costs and benefits needed to generate health economic evaluations 
of policy options. Multiple models have been applied to harmonized scenarios in 
specific settings, particularly with the aim of establishing a consensus about ingre-
dients needed to move towards TB control targets using current tools. Practical use 
of country-level modelling of TB in high-HIV burden settings to support policy 
design and applications for donor funding has also been increasing. This is an 
important area of work that is as yet less documented in the academic literature.

�Future Directions

For a combination of serious conditions that afflicts in the region of 1 million people 
in the world each year, TB/HIV has not received the attention from epidemiological 
modellers that it should have. This is perhaps due to the genuine complexity of deal-
ing of the interactions between two conditions which each have their own complexities 
in terms of epidemiology, natural history, and control policies. However, it means 
that there are many areas where modelling could be usefully applied going forwards.

More could be done to use modelling as a tool to understand epidemiology and 
the performance of control efforts. ART has scaled up hugely over the last decade; 
modelling using routine and study data could be used more to understand the 
long-term impact of ART on TB/HIV epidemiology and chart its likely future 
course. This may require increasing attention to interactions with other societal fea-
tures that are rapidly changing in high-HIV and TB burden settings, such as urban-
ization, improvements in nutritional status, and increasing prevalence of diabetes 
mellitus. Modelling has been used in conjunction with social contact data and 

P. J. Dodd et al.



49

ventilation data to assess likely contributions of particular locales to TB transmis-
sion, and the impact of infection control interventions aimed at particular hot-spots; 
more work in this area would help improve our knowledge of an important but 
poorly-understood aspect of TB epidemiology and potentially suggest relatively 
easily-implemented interventions.

Finally, some workers have begun to include the operational details of health 
systems and care provision in models, and there is an increasing demand for these 
details that mesh with the level where design decisions are taken and where costs-
accrue. Developing such models presents challenges in terms of the range of exper-
tise required by the teams involved, but also in terms of modelling techniques for 
combining models that may have very different emphases and ideal approaches to 
implementation separately. Increasing availability of electronic health records may 
also make easier the job of parametrizing the health system aspects of such models.

�Conclusion

Population-level modelling of TB in high-HIV burden settings has helped bring 
together a wealth of understanding around TB/HIV natural history, epidemiology 
and interventions to provide important insights into the implications for TB trans-
mission and control. Increasingly, models are being used to guide policy and invest-
ment decisions at a country and supranational level. TB/HIV remains a substantial 
global health concern, and important questions and challenges remain to be 
addressed by transmission modelling.
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Abstract  Mycobacterium tuberculosis control relies on a well-orchestrated 
immune response, where a complex array of innate and adaptive immune cells 
responses act synergistically to restrict Mycobacterium tuberculosis growth. While 
different immune cell subsets have been associated with protection in experimental 
models of TB, it is still unclear exactly what type of immune responses are required 
to confer protection in humans.

People living with HIV are around 20 times more likely to develop active TB. The 
clearest immune defect caused by HIV is a progressive reduction in absolute CD4 T 
cell numbers that correlates with increasing risk of active TB.  However, shortly 
after HIV acquisition or when CD4 T cell numbers improve upon HIV treatment, 
the risk of active TB remains heightened. This indicates that, independently of the 
overall CD4 T cell depletion, HIV infection also induces qualitative changes weak-
ening protective TB immune responses.

This chapter section covers the human immune response to Mycobacterium 
tuberculosis and describes the impact of HIV infection.
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Mycobacterium tuberculosis infection leads to a highly orchestrated immune 
response, in which both innate and adaptive immune cells are required to contain 
the infection [1]. HIV disease is associated with generalized immunodeficiency and 
systemic chronic immune activation, leading to a progressive deterioration of both 
innate and adaptive immune responses [2] that together cripple the host's ability to 
mount and/or maintain effective responses against M. tuberculosis.

�First Line of Defence Against M. tuberculosis: The Innate 
Immune System

Infection with M. tuberculosis occurs via the aerosol route, and bacilli are first rec-
ognized by phagocytic cells including macrophages, monocytes, neutrophils and 
dendritic cells, with alveolar macrophages being the primary targets for M. tubercu-
losis infection. The recognition of M. tuberculosis by phagocytic cells occurs via the 
interaction of Pathogen-Associated Molecular Patterns (PAMPs, present at the sur-
face of bacteria) with Pattern Recognition Receptors (PRRs) expressed by phago-
cytes. PRRs are capable of binding to conserved molecular structures (such as 
lipoproteins or peptido-glycans) that are expressed by a large variety of microbes, 
including M. tuberculosis. PRRs include toll like receptors (TLR), C-type lectin 
receptor, scavenger receptors and the intracellular nucleotide oligomerization 
domain (NOD)-like receptors (NLRs) [3, 4].

Once M. tuberculosis has been sensed by PRRs, it is engulfed by the cell, creat-
ing intracellular phagosomes. The maturation of these phagosomal compartments 
promotes their acidification, which is required for the optimal activity of antimyco-
bacterial digestive enzymes and reactive oxygen species, triggering intracellular 
bacterial elimination. M. tuberculosis-infected cells also produce an array of inflam-
matory cytokines and chemokines (including TNFα, IL-1β, IL-12, MCP1 and IL-8). 
These cytokines promote the recruitment of additional macrophages, neutrophils 
and dendritic cells to the site of infection enhancing the innate response and initiat-
ing the formation of granulomas to contain M. tuberculosis. Neutrophils play an 
important role in the innate response, contributing to M. tuberculosis clearance 
through the production of antimicrobial peptides, but they also participate in the 
dissemination of viable bacteria in established disease, exacerbating pathology. 
Elevated peripheral blood neutrophil count are associated with death in tuberculosis 
patients [5]. Dendritic cells are a link between the innate and adaptive immune 
response through their significant role in capturing, processing and presenting anti-
gens. Infection of dendritic cells with M. tuberculosis induces their maturation and 
migration to the secondary draining lymph nodes, where the adaptive immune 
response is initiated by priming of naïve T lymphocytes by the dendritic cells.

Additional players, at the interface of the innate and adaptive immune system, 
are unconventional donor-unrestricted T (DURT) cells. These cell subsets interact 
with dendritic cells and macrophages, through highly conserved molecules (unlike 
the classical HLA- class I or HLA class II restricted antigen presentation). DURT 
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cells include: CD1-restricted Natural Killer T cells (NKT cells) capable of 
recognizing lipid and glycolipid moieties present on M. tuberculosis cell walls; 
MR1-restricted mucosal associated invariant T cells (MAIT cells) that can bind and 
recognize riboflavin (vitamin B2) or folate (vitamin B9) derivatives; and γδ T cells 
which exhibit a restricted TCR repertoire and recognize small metabolites (called 
“phospho-antigens” structurally related to isopentenyl pyrophosphate) produced by 
mammalian cells and intracellular pathogens including M. tuberculosis [6]. Our 
understanding of the role of DURT cells in anti-bacterial immunity is only partial, 
given that this is a young field of investigation, but increasing evidence suggests that 
these cell subsets may contribute to protection against M. tuberculosis infection 
and/or to M. tuberculosis containment. Indeed, a rapid expansion of MAIT and γδ 
T cells is observed in healthy individuals recently exposed to M. tuberculosis [7]. 
Moreover, human studies have shown that the frequency of NKT cells and MAIT 
cell populations are reduced in quantity and functionally impaired during active TB 
compare to latent infection [8].

However, M. tuberculosis is endowed with a wide range of strategies to counter-
act innate defences, thereby preventing its eradication. Once engulfed by the mac-
rophage, M. tuberculosis interferes with macrophage functions, inhibiting 
phagosomal acidification and maturation and preventing cell apoptosis; thus allow-
ing M. tuberculosis to survive within the macrophage [9, 10]. Moreover, M. tuber-
culosis uses virulence mechanisms to disseminate by inducing necrotic death of 
infected cells. This results in the release of bacteria that are then taken up by freshly 
recruited phagocytes and this promotes bacterial population expansion as well as 
tissue inflammation and necrosis.

In most cases, due to the ability of M. tuberculosis to “highjack” the innate 
immune system, innate responses are not capable of eradicating M. tuberculosis and 
appear to only moderately restrict bacterial growth during the initial phase of infec-
tion. The initial innate response does, however, create an inflammatory environment 
that promotes the recruitment of additional innate cells, and the priming and recruit-
ment of the adaptive immune response. These events lead to the formation of granu-
lomas that are capable of containing M. tuberculosis [11].

�The Impact of HIV Infection on Innate Immune Responses 
to M. tuberculosis

The hallmark of HIV infection is progressive destruction of CD4+ T cells (HIV 
primary target cells) but macrophages and dendritic cells are also permissive to HIV 
infection, leading to significant dysfunction of these cells [12, 13]. While HIV 
infects only 1–10% of alveolar macrophages in vivo (with limited cytopathic effect), 
it alters key aspects of macrophage functions such as receptor-mediated phagocyto-
sis and cell apoptosis; thereby impairing their capacity to eliminate intracellular 
pathogens. In acute HIV infection, dendritic cell numbers (especially plasmacytoid 
dendritic cells) decrease markedly. Moreover, HIV also interferes with the 
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processing and/or presentation of M. tuberculosis antigens by dendritic cells, 
thereby disrupting important cellular functions linking innate and adaptive immune 
response and impairing immune responses to M. tuberculosis. Additionally, HIV 
infection induces a systemic and chronic state of immune activation, affecting the 
functions and trafficking of uninfected cells. The aberrant immune activation during 
HIV infection has been attributed to several mechanisms including HIV viral repli-
cation, the loss of gut mucosal integrity (leading to the translocation of gut bacteria 
and bacterial products into the peripheral blood stream), increased concentration of 
soluble pro-inflammatory molecules (such as IP-10, IL-6, TNFα) and increased 
homeostatic proliferation in response to HIV-induced lymphopenia. All these fac-
tors probably play a role in inducing a hyper-inflammatory environment, thereby 
eliciting innate cell activation and maturation. Indeed, in the context of HIV infec-
tion, neutrophils exhibit a hyperactivated phenotype and are more susceptible to 
necrotic cell death, affecting their ability to restrict M. tuberculosis growth. HIV 
also has an impact on DURT cells. The frequency of MAIT cells, CD1-restricted 
NKT cells and γδ T cells are markedly decreased in the blood of HIV-infected 
patients, with poor recovery after initiating ART [14–16]. Moreover, further charac-
terization of the residual peripheral iNKT and MAIT cell populations suggests that 
HIV infection also alter their functional potential, impairing their cytokine produc-
tion capacity and proliferation potential [17]. Overall, via direct and indirect mecha-
nisms, HIV impairs the capacity of the innate immune system to contain and clear 
M. tuberculosis infection.

�The Second Line of Defence: The Adaptive Immune System

Once primed by antigen presenting cells in the lymph nodes, naïve M. tuberculosis-
specific T cells mature, proliferate and migrate to the site of infection where they 
participate in the formation of granulomas to contain M. tuberculosis infection. As 
a facultative intracellular pathogen, M. tuberculosis is preferentially recognized by 
the major histocompatibility complex (MHC) class II processing pathway, leading 
to the development of a predominant CD4 response. M. tuberculosis-specific CD4+ 
T cell responses are diverse, including a vast array of T helper (Th) subsets endowed 
with distinct effector or regulatory functions. Th1 CD4+ T cells, producing 
interferon-gamma (IFNγ), contribute to the recruitment of monocytes and granulo-
cytes and activate the antimicrobial functions of macrophages. These cells are nec-
essary but not sufficient to control TB infection. Of note, it is this IFNγ response 
that is measured in the diagnostic tests for M. tuberculosis infection such as the 
interferon-gamma release assay (IGRA) including QuantiFERON-TB gold-in-tube 
or T-SPOT TB test, detecting recent or remote M. tuberculosis exposure that elicited 
an adaptive immune response. Besides Th1 responses, other T helper CD4 subsets 
such as IL-17 producing Th17 and IL-10 producing regulatory CD4+ T cells (Treg) 
(which exhibit pro-inflammatory and suppressive functions, respectively) also par-
ticipate in M. tuberculosis containment. Overall, the clinical outcome of 
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M. tuberculosis infection relies on the capacity of the adaptive immune system to 
generate a balanced CD4+ T cell response, reaching equilibrium between effector 
and regulatory T helper subsets. Pro-inflammatory responses enhance bacterial kill-
ing required to control M. tuberculosis; while anti-inflammatory responses limit 
pathology and inflammation during initial infection and latency. The disruption of 
this pro- vs anti-inflammatory equilibrium (tipping the balance one way or the 
other) appears to impair M. tuberculosis containment. While immune activation and 
inflammatory reactions are essential for host protection (as demonstrated by 
increased TB susceptibility in humans treated with TNFα blocking agents [18] or 
with genetic disorders disrupting IFNγ signalling pathways [19]), there is mounting 
evidence that excessive inflammation is also detrimental for M. tuberculosis control. 
For example, increasing the per capita production of IFNγ in CD4+ T cells led to 
premature death in M. tuberculosis infected mice [20]. Moreover, in the mouse 
model, deleting PD-1 (an inhibitory receptor regulating T cell responsiveness) in 
CD4+ T cells exacerbated TB disease, where PD-1-knock out mice developed large 
necrotic lesions with high bacterial load and succumbed faster compared to wild-
type animals [21]. While the mechanisms underlying IFNγ-driven TB disease exac-
erbation are yet undefined, it is plausible that excessive inflammatory signals could 
lead to tissue injury, promoting cell necrosis and enhancing TB pathology. 
Interestingly, a few cases of tuberculosis reactivation have been reported in patients 
on PD-1-blocking therapy [22], reinforcing the idea that M. tuberculosis control 
requires a balanced inflammatory response.

While M. tuberculosis is preferentially recognized by the MHC class II process-
ing pathway, secreted immunodominant M. tuberculosis antigens can escape from 
the phagosome to the cytosol of the macrophage, be processed by cytosolic path-
ways, and be presented by MHC class I molecules and elicit CD8 responses. 
Alternatively, M. tuberculosis antigens can also be degraded into peptides in the 
phagosome, where they are then loaded on MHC class I molecules (vacuolar path-
way), inducing M. tuberculosis-specific CD8 responses. M. tuberculosis-specific 
CD8 responses are more frequently detected in patients with TB active disease 
(~70%) compared to latently infected individuals (~20%). But the precise role of 
CD8 cell responses in M. tuberculosis control is still unclear. However, these cells 
have been shown to be recruited to the lung and can be found in granulomas. Like 
CD4+ T cells, CD8+ T cells can produce IFNγ, and TNFα, cytokines playing a role 
in orchestrating immune responses against M. tuberculosis. Moreover, in vitro stud-
ies indicate M. tuberculosis-specific CD8+ T cells can directly kill M. tuberculosis-
infected macrophages, preferentially targeting cells that are heavily infected. 
Mechanistically, upon recognition of M. tuberculosis-infected cells, CD8+ T cells 
release the contents of cytotoxic granules containing perforin, granzyme B, and 
granulysin. Perforin establishes pores in the cytoplasmic membrane of the targeted 
cell, allowing entry of granzyme B, which eliminates infected cells via apoptosis. 
These observations support the hypothesis that M. tuberculosis-specific CD8+ T 
cell responses may also contribute to M. tuberculosis control.

Although cell-mediated immunity (predominantly based on T cells and mono-
nuclear phagocytes) is the cornerstone in the defense against M. tuberculosis, 
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increasing evidences suggest that humoral immunity to TB (i.e. antibody response 
against M. tuberculosis) could also participate in M. tuberculosis containment. 
While it is clear, based on animal models and human data, that antibodies alone are 
not sufficient to ensure protection, they could be necessary for an optimal immune 
response to M. tuberculosis infection, limit TB disease severity and/or participate in 
the prevention of initial M. tuberculosis infection [23]. For example, children with-
out detectable antibodies against lipoarabinomannan (LAM), a glycolipid of 
M. tuberculosis cell wall, are at greater risk of disseminated TB [24]. Moreover, it 
has been shown that a significant minority of healthcare workers who are exposed 
to high doses of M. tuberculosis make M. tuberculosis-specific antibodies. Some of 
these individuals had no prior evidence of latent TB infection, suggesting that they 
may represent a subset of “restrictors” who can resist infection by M. tuberculosis 
[25] and it is plausible that antibodies play a role in protection against infection in 
these individuals.

�The Impact of HIV Infection on Adaptive Immune Responses 
to M. tuberculosis

The depletion of CD4+ T cells, which is the major immunological feature of HIV 
infection, is the main contributor to the increased risk of reactivation of latent TB 
and susceptibility to progression of new M. tuberculosis infection seen in HIV-
infected patients. During the initial stages of HIV infection mucosal CD4+ T cells 
are the prime target cells for HIV viral entry and replication [26]. This is particu-
larly true for the effector memory subset of CD4+ T cells owing to their abundant 
expression of the CC-chemokine receptor 5 (CCR5) [27]. HIV envelope glycopro-
teins (gp120) bind to the CD4 receptor and to a co-receptor to gain cellular entry. 
During early infection with M-tropic HIV strains CCR5 is the predominant co-
receptor used by HIV. It is reasonable to assume that profound, rapid mucosal mem-
ory CD4+ T cell loss ensues early after HIV infection, as non-human primate (NHP) 
studies of SIV infection have shown that 60% of gut mucosal memory CD4+ T cells 
are infected at peak viremia and 80% of these cells are destroyed by 4 days post 
infection [28]. This profound depletion of the mucosal memory CD4+ T cells is not 
confined to the gut, but also extends to lung interstitium [29], and this has been 
thought to explain the phenomenon of increased TB risk being apparent even with a 
relatively preserved peripheral CD4 count [30]. Moreover, this increased TB sus-
ceptibility during the early phase of HIV infection may also be explained by the 
finding that peripheral M. tuberculosis-specific CD4+ T cells are preferentially 
depleted upon HIV infection compared to memory T cells targeting other pathogens 
(such as cytomegalovirus, CMV). Mechanistically, the vulnerability of 
M. tuberculosis-specific CD4+ T cells to HIV was linked to their ability to produce 
elevated levels of IL-2 and their poor capacity to secrete Macrophage Inflammatory 
Protein 1β (MIP-1β), a ligand for CCR5 acting as a natural antagonist of HIV entry 
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[31]. Furthermore, TB disease has been associated with increased expression of 
CCR5 on CD4+ T cells, increasing the pool of potential target cells for HIV. This 
HIV-induced depletion of M. tuberculosis-specific CD4+ T cells explains the 
reduced sensitivity of M. tuberculosis infection assays (i.e. QuantiFERON and 
T-SPOT TB) [32]. Few studies have focused on the impact of HIV infection on 
M. tuberculosis-specific CD4+ T cells at the site of disease. Studies of broncho-
alveolar lavage (BAL) samples from M. tuberculosis-sensitized individuals with 
and without HIV have shown that although there is a decrease in frequency of 
M. tuberculosis-specific CD4+ T cells in HIV infected individuals, absolute num-
bers may be maintained in early HIV infection [33]. This can possibly be explained 
by the HIV induced influx of lymphocytes to the lung known as lymphocytic alveo-
litis, a phenomenon observed in ART-naive HIV infected individuals [34]. However, 
BAL sampling only reflects the alveolar CD4+ T cell compartment and may not 
adequately reflect the cellular composition of the lung as a whole (i.e. including the 
interstitium). There is evidence that lung interstitial CD4+ T cells with a resident 
memory-like phenotype (CD3+ CD4+ CD45RO+ TCRαβ+ CD25- CD62L-CD69+) 
are early targets of HIV owing to their abundant expression of CCR5 and their sus-
ceptibility to productive HIV infection. Although it is not known to what degree 
these interstitial CD4+ T cells are M. tuberculosis-specific, their depletion in co-
infected NHPs was associated with dissemination of M. tuberculosis to distant 
organs [29].

In addition to the numerical depletion of CD4+ T cells, HIV also impairs the 
functional properties of the remaining M. tuberculosis-specific CD4+ T cells. 
Indeed, in HIV infection, M. tuberculosis-specific Th1 CD4 responses are skewed 
towards a monofunctional TNFα response; and M. tuberculosis-specific CD4+ T 
cells exhibit decreased ability to produce IL-2 that is associated with level of HIV 
viremia [35]. As IL-2 is important for T cell proliferation, this could limit the expan-
sion of antigen-specific T cells upon antigen recall. HIV infection also impairs 
tuberculosis immunity by distorting the spectrum of M. tuberculosis-specific T 
helper responses. HIV is known to preferentially eliminate Th17 subsets from the 
periphery and the gut, and a reduced proportion of Th17 cells was also observed in 
pleural effusions from HIV-coinfected patients compared to HIV-uninfected 
patients. In the context of latent M. tuberculosis infection, HIV co-infected persons 
with relatively maintained CD4 counts exhibited preserved Th1 M. tuberculosis 
responses, but showed deficient IL-10-inducible responses, suggesting that by 
impairing anti-inflammatory regulatory pathways, HIV may shift M. tuberculosis-
specific responses toward a more pathogenic/inflammatory profile [36].

The impact of HIV coinfection on M. tuberculosis-specific CD8+ T cells is rela-
tively understudied. One study of participants with latent tuberculosis showed that 
M. tuberculosis- specific CD8+ T cells from HIV-coinfected people exhibited 
decreased cytotoxic potential and impaired proliferative capacity.

As previously mentioned, chronic immune activation is a hallmark of HIV dis-
ease progression and alters T cell phenotype, affecting the CD8 compartment even 
more severely than the CD4 compartment. During HIV infection, T cells have 
upregulation of activation markers such as HLA-DR and CD38, cell memory 
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profiles shift towards a more differentiated profile with the accumulation of effector 
cells, and there is a significant increase in the expression of markers of senescence 
(such as CD57 and PD1) [37]. Together, these alterations result in T cell exhaustion 
and accelerate their turnover impairing their ability to mount an effective immune 
response upon antigen recall.

Overall, there is gradual but progressive impairment of M. tuberculosis immune 
responses during the course of untreated HIV infection. In the early phase of HIV 
infection, when CD4 counts are relatively maintained, sustained systemic inflamma-
tion may promote the generation of M. tuberculosis-specific CD4 responses of a 
suboptimal T helper type with increased cell turnover, weakening their ability to 
control M. tuberculosis. In more advanced HIV, severe reduction of absolute num-
bers of CD4+ T cells further increases tuberculosis risk by eliminating M. tuberculosis-
specific CD4+ T cells, which are key players for M. tuberculosis control. Although 
the early depletion of M. tuberculosis-specific CD4 T cells following HIV infection 
is thought to be a major contributor to the early increased risk of TB disease [31], the 
impact of HIV on the innate arm of the immune system likely also contributes to the 
increased risk of progression to active tuberculosis disease.

�The Impact of HIV Infection on Granuloma Formation,  
M. tuberculosis Containment and Dissemination 
Beyond the Lung

The granuloma is a classic pathologic feature of M. tuberculosis infection. It is con-
stituted by many different immune cell types including primarily M. tuberculosis-
infected macrophages, highly differentiated cells such as multinucleated giant cells 
(also known as Langerhans giant cells), foamy cells and epithelioid cells; all these 
cells are surrounded by a rim of lymphocytes, giving it a solid structure. Unlike 
other granulomatous diseases such as sarcoidosis, M. tuberculosis granulomas are 
often characterized by the presence of a caseous necrotic center but M. tuberculosis 
granulomas can also be non-necrotic or fibrotic. The granuloma creates an immuno-
logic microenvironment that should facilitate the control M. tuberculosis growth 
and prevent its dissemination. However, due to the ability of M. tuberculosis to 
evade immune responses, it also provides bacilli a niche in which to potentially 
survive for decades in a latent form with ongoing potential for re-activation and 
spread [38]. T cells are instrumental in the maintenance and functional capacity of 
granulomas. Indeed, the arrival of M. tuberculosis-specific T cells at the site of dis-
ease coincides with the curbing of bacterial proliferation by producing IFNγ and 
TNFα that enhance macrophage microbicidal activity [39]. In HIV-infected patients 
with relatively preserved CD4 counts, typical granuloma architecture is observed. 
By contrast, TB patients with advanced HIV infection present with diffuse lesions 
which are multibacillary with ill-formed or absent granulomas, and can be necrotic. 
It is most likely that the disruption of granuloma structure is linked to HIV-induced 
immune dysregulation. HIV-induced killing of resident CD4+ T cells probably 
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results in a direct disruption of granuloma structure; and combined with the alterations 
of T cells and macrophage function observed during HIV infection, this weakens 
the capacity of granulomas to contain M. tuberculosis, enhancing susceptibility to 
active disease and promoting M. tuberculosis dissemination. Consistent with this, 
disseminated TB and mycobacteremia are common in HIV co-infected individuals, 
especially in those with lower peripheral CD4 counts [40]. There is evidence from 
phylogenetic analysis of M. tuberculosis samples collected post mortem from lung 
and extrapulmonary biopsies that dissemination from the lung to distant organs 
occurs as frequently as within the lung itself in HIV-infected individuals [41]. 
Furthermore, dissemination of M. tuberculosis may take place soon after HIV infec-
tion. In the study by Corleis et al. [29] CCR5+ interstitial lung CD4+ T cells became 
productively infected with SIV and were preferentially depleted in NHPs with latent 
TB infection early after infection with SIV, which was in turn associated with dis-
semination of M. tuberculosis to the liver, spleen and kidney [29]. Furthermore, it 
has been shown that the M. tuberculosis virulence factor ESAT-6 is upregulated in 
mycobacteremic blood from HIV infected individuals and has been implicated in 
enhancing HIV replication [42]. From animal TB models we know that 
M. tuberculosis-specific T cells are required to halt M. tuberculosis infected den-
dritic cell migration in infected tissues, and this may to some extent explain why, 
with the depletion of M. tuberculosis-specific T cells in HIV infection, there is 
greater dissemination of M. tuberculosis [43]. In M. tuberculosis infected zebrafish 
the pharmacological inhibition of vascular endothelial growth factor (VEGF) lead 
to reduction in M. tuberculosis induced-granuloma angiogenesis, with concomitant 
decrease in M. tuberculosis burden and dissemination [44]. It is unknown whether 
there is abnormal granuloma angiogenesis in M. tuberculosis/HIV co-infected gran-
ulomas, but it is well recognised that HIV disrupts normal M. tuberculosis granu-
loma architecture and this may in turn give rise to a loss in containment of 
M. tuberculosis bacilli and consequent dissemination [45, 46].

�Lung Damage in TB and the Impact of HIV

The lung is the primary target organ of M. tuberculosis and lung damage is common in 
TB, with cavities being one of TB’s characteristic features. The development of cavities 
in TB has been studied extensively in rabbits. These studies show cavities develop from 
liquefied caseating granulomas, which contain large numbers of bacteria. The release 
of high amounts of M. tuberculosis antigens triggers a tissue-damaging delayed-type 
hypersensitivity reaction. The granuloma ruptures and spills its contents into a bron-
chus, leaving behind a cavity [47]. Pathologic studies in humans, which became rare 
after the 1950s, show a different pathway to cavity formation: cavities did not appear to 
develop from liquefied caseating granulomas, but from a caseous pneumonia, in which 
host lipids and mycobacterial antigens—but relatively few bacteria—accumulate in the 
alveoli. Similar to the rabbit model, necrosis occurs related to a delayed-type hypersen-
sitivity reaction against mycobacterial antigens. The necrotic tissue either fragments to 
produce a cavity or hardens to develop fibrocaseous disease [48].
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In both scenario’s, the formation of cavities requires degradation of the lung extra-
cellular matrix (ECM). The ECM is comprised of the interstitium, which forms the 
parenchyma of the lung, surrounding cells and providing structural scaffolding, and 
the basement membrane, which separates the epithelium or endothelium from the sur-
rounding stroma. The ECM of the lung is mainly made up of type I collagen and 
elastin, and type III and IV collagen are important components of the alveolar wall 
and basement membrane. All these large fibers are connected by smaller fibrils. To 
destroy the ECM, cleavage of both small fibrils and large fibers is necessary. Collagens 
are highly resistant to cleavage by proteolytic enzymes; only matrix metalloprotein-
ases (MMP’s) are capable of completely degrading the ECM. Both immune cells like 
macrophages/monocytes and tissue cells like lung epithelial cells can secrete MMP’s. 
Their generation is tightly regulated by tissue inhibitors of metalloproteinases 
(TIMPs). MMPs are not stored but require gene transcription before secretion; exemp-
tions are MMP-8 and -9, which are stored in neutrophils. Prostaglandin and several 
cytokines (IL-1β, TNFα, IFNγ, IL-4, and IL-10) play a role in regulating MMP 
expression [49]. Data from animal models and human studies suggest that MMPs play 
a central role in mediating lung damage in TB. For example, several MMPs, primarily 
MMP-1, -3, -7, -8, and -9, are upregulated in blood, sputum and BAL fluid of patients 
with active TB, and increased levels of MMPs correlate with extent pulmonary dis-
ease—both cavities and infiltrates—seen on chest radiographs [50].

Neutrophils have also been linked to lung damage in TB, with higher neutrophil 
counts correlating with more radiographic lung damage [51, 52]. Moreover, studies 
have assessed the association between cytokines (including IFNγ and TNFα, and 
several pro- and anti-inflammatory interleukins) and lung damage in TB. Several 
factors make it difficult to interpret and compare these results. Firstly, different 
studies used different measuring methods: for example, M. tuberculosis–induced 
cytokine production by peripheral blood mononuclear cells (PBMCs) measured 
in vitro may not parallel serum cytokine levels. Secondly, several cytokines are not 
limited to a single effector function. Only TNF-α and IL-1β in serum or bronchoal-
veolar fluid seem to unambiguously correlate with lung damage [53].

Patients with HIV-associated TB and low CD4 counts (CD4 < 200/μL) often 
present with atypical chest radiograph (CXR) findings, or even normal CXRs, and 
cavitation is rare [54]. This suggest that TB-related pulmonary damage might be 
reduced in HIV co-infected patients; the host immune response, necessary for pro-
tection against TB, is required for the development of cavities. Indeed, HIV co-
infection affects several of the factors implicated in pulmonary damage. Although 
HIV’s effect on the levels of several cytokines is variable across studies, HIV co-
infection has been found to reduce sputum levels of several MMPs in conjunction 
with reduced cavitation on CXRs [50, 55]. Moreover, HIV-co-infection reduced the 
activity and lifespan of neutrophils [56]. Clinical studies assessing the effect of HIV 
co-infection on lung function impairment during and after tuberculosis are scarce as 
patients with HIV co-infection are often excluded or underrepresented in studies 
assessing lung function in TB. In a cross sectional study in Tanzania, assessing lung 
function in 501 patients with TB, of which 30% were HIV co-infected, abnormal 
lung function was indeed less common in those with HIV co-infection [57]. Other 
studies, done in Cameroon, Indonesia, and Kenya, including 48/269, 19/200, and 
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60/183 patients infected with HIV, found no effect of HIV co-infection on func-
tional lung impairment in TB [58–60].

�Restoration of M. tuberculosis-Specific Immune Response 
with ART

Antiretroviral therapy (ART) dramatically decreases morbidity and mortality in HIV-
infected individuals. ART induces rapid reduction of plasma viral load, decreases of 
systemic immune activation and results in progressive repletion of CD4+ T cells. 
Multiple mechanisms contribute to the increase in CD4+ T cells in blood in response 
to ART. Over the first few months of ART, there is a redistribution of CD4+ T cells 
from the lymph nodes to the blood, leading to a rapid initial rise in CD4 counts. 
Moreover, homeostatic cell proliferation, decrease in cell death and increased thymic 
output also play a key role in the replenishment of CD4+ T cells [61, 62]. Although 
the CD4 absolute cell count at the time of treatment initiation is one of the main fac-
tors dictating the level to which CD4+ T cells are restored, other parameters such as 
the activation level of T cells at the time of treatment, age, and active co-infections 
also impact on the degree of reconstitution of the CD4 compartment. Nevertheless, 
ART-induced restoration of the immune system is often partial and persistent aber-
rant activation of both the adaptive and innate cells is observed even during fully 
suppressive ART [63, 64]. The dynamics of the reconstitution of M. tuberculosis-
specific CD4+ cell responses during ART is not yet fully understood. While the abso-
lute number of M. tuberculosis-specific CD4+ T cells in the peripheral blood of 
individuals with a pre-existing M. tuberculosis response increases with the restora-
tion of the CD4 compartment, conflicting results have been reported regarding the 
ability of ART to restore the functional capacity of M. tuberculosis-specific responses. 
Suboptimal reconstitution of M. tuberculosis-specific immune responses could in 
part explain why ART-treated patients continue to have excess risk of TB disease 
exceeding that of HIV-uninfected people living in the same community despite 
achieving CD4 count levels above 500 cells/μL [30, 65].

Immune reconstitution on ART in patients with active TB, may result in 
tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS), 
an immunopathological reaction driven by recovering immune responses. TB-IRIS 
is covered in detail in chapter “The Tuberculosis-Associated Immune Reconstitution 
Inflammatory Syndrome (TB-IRIS)”.

�Summary

Immune responses mounted against M. tuberculosis are diverse and multifaceted 
involving all arms of the host immune system. Many different immune cell subsets 
have been associated with protection in experimental models of TB. However, to 
date, it is unclear exactly what type of immune responses are required to confer 
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protection in humans. People living with HIV are at a much greater risk of develop-
ing active TB once infected, which increases as the degree of HIV-induced immune 
suppression increases. The hallmark of HIV infection is a progressive reduction of 
CD4+ T cell count. But HIV-induced aberrant chronic immune inflammation also 
impairs immune responses, altering the functionality of the remaining CD4+ T cells 
and impairing innate cell subsets. This leads to a generalized immune dysfunction 
favouring TB progression to disease. This highlights the importance of early antiret-
roviral treatment initiation for HIV-infected persons in order to protect against 
immune system damage and thereby reduce TB morbidity and mortality.
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Figure: Overview of the immune response to Mycobacterium tuberculosis 
infection and impact of HIV. Tuberculosis infection is initiated when M. tubercu-
losis bacilli, present in exhaled droplets from another individuals are inhaled, recog-
nized by Pattern Recognition Receptors (PRRs) and phagocytosed by resident 
alveolar macrophages in the respiratory tract. Once infected, cells mature and 
employ a number of processes to eliminate M. tuberculosis (e.g. autophagy, apopto-
sis) and recruit additional innate cells to the site of infection (via secretion of pro-
inflammatory cytokines). During this process, loosely aggregated “pre-granulomas” 
are already formed. Infection of dendritic cells with M. tuberculosis induces their 
maturation and migration to the secondary draining lymph nodes, where the adaptive 
immune response is initiated by priming naïve CD4 or CD8 T lymphocytes. 
M. tuberculosis-specific CD4+ T cell responses include a wide array of T helper 
(Th) subsets endowed with distinct effector (Th1/Th17) or regulatory functions 
(Treg). These activated T cells migrate back to the lungs via blood, participate in 
granuloma formation and function (enhancing activation of macrophages). Solid 
granulomas are constituted by various immune cell types (primarily M. tuberculosis-
infected macrophages, and highly differentiated cells such as multinucleated giant 
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cells, foamy cells and epithelioid cells), surrounded by a rim of lymphocytes. It is 
likely that the clinical outcome of M. tuberculosis infection relies on the capacity of 
the immune system to reach a balanced response between effector and regulatory 
subsets; where pro-inflammatory responses enhance bacterial killing required to 
control M. tuberculosis, while anti-inflammatory responses limit pathology and 
inflammation during initial infection and latency. HIV-induced immune dysregula-
tion most likely disrupt the granuloma structure. HIV-induced killing of resident 
CD4+ T cells probably results in a direct disruption of granuloma structure; and 
combined with alterations of T cell and macrophage function observed during HIV 
infection, this impairs the capacity of granulomas to contain M. tuberculosis, 
enhancing susceptibility to active disease and promoting M. tuberculosis 
dissemination.

Acknowledgement  This figure was developed by Avuyonke Balfour.
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Abstract  HIV-associated tuberculosis is a heterogenous disease that confronts cli-
nicians with substantial diagnostic challenge. Clinical syndromes are frequently 
non-specific in terms of symptoms, physical examination, routine laboratory test-
ing, and chest radiography. Further complicating management is the possibility of 
co-infection with other severe opportunistic infections, all of which may have clini-
cal presentations that mimic tuberculosis. Early recognition and treatment is urgent 
because of more severe manifestations and rapid progression, particularly at low 
CD4 counts. This chapter describes clinical manifestations and diagnostic 
approaches for HIV-associated tuberculosis in adults, with an emphasis on practice 
in resource-limited, high-burden settings. Advanced immunosuppression and dis-
seminated disease are considered separately from ambulant patients with preserved 
CD4 cell counts in order to highlight differences in clinical phenotype, differential 
diagnosis, and management strategies. Clinical features and evaluation of common 
extra-pulmonary manifestations are also covered.
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�Introduction

Infection with Mycobacterium tuberculosis causes a broad spectrum of pathology, 
the manifestations of which are largely influenced by host immune response. 
Although tuberculosis has traditionally been understood as taking dichotomous 
form—with patients having either latent or active infection depending on the 
absence or presence of clinical symptoms—it is now recognised that latent tubercu-
losis is part of a spectrum that spans from the possible elimination of M. tuberculo-
sis by the innate immune system, through immune containment (associated with 
tuberculin skin test or interferon-gamma release assay positivity), to asymptomatic 
yet culture positive states (so-called ‘sub-clinical tuberculosis’) through to active 
and symptomatic disease [1]. The term ‘HIV-associated tuberculosis’ describes the 
clinical manifestations of active disease caused by M. tuberculosis in HIV-infected 
patients, and will be the focus of this chapter.

Immune dysfunction associated with HIV infection (detailed in chapter “Immune 
Responses to Mycobacterium tuberculosis and the Impact of HIV Infection”—
Immunology) has profound effects on the course and clinical phenotype of tubercu-
losis. Granuloma formation, the hallmark of M. tuberculosis infection, requires 
well-orchestrated immune responses and is central to local control of M. tuberculo-
sis. Alteration of adaptive immunity in HIV infection, particularly through absolute 
and functional depletion of CD4+ cells, leads to granuloma disruption that underlies 
atypical clinical presentations observed in HIV-associated tuberculosis. HIV-
infected individuals with advanced immunodeficiency (CD4 count <200 cells/μL) 
are generally unable to form organised granulomas leading to ineffective contain-
ment and unrestrained bacillary replication. Rather than causing localised apical 
cavitary lung disease, as is typically observed in HIV-uninfected patients or in HIV-
infected patients with well-preserved CD4 counts, M. tuberculosis dissemination 
and aberrant inflammatory responses often results in non-cavitary pulmonary paren-
chymal disease, extra-pulmonary organ involvement, intra-thoracic adenopathy and 
haematogenous (‘miliary’) infiltration of the lung parenchyma and other organs. 
These clinical syndromes are frequently non-specific in terms of symptoms, are 
more challenging to diagnose, and can rapidly progress to severe and life-threatening 
illness. This is illustrated by post-mortem studies in resource-limited settings where 
almost half of deaths from tuberculosis are undiagnosed at the time of death [2]. 
Further complicating clinical management of suspected tuberculosis in patients 
with advanced HIV is the possibility of co-infection with other severe opportunistic 
infections such as Pneumocystis jirovecii, dimorphic fungi, cytomegalovirus, and 
bacterial sepsis, as well as HIV-associated malignancies like Kaposi sarcoma and 
lymphoma, all of which may have clinical presentations that mimic tuberculosis.

The aim of this chapter is to describe important clinical manifestations and diag-
nostic approaches in the clinical setting for HIV-associated tuberculosis in adults. 
The emphasis is on patients in resource-limited, high-burden settings with advanced 
HIV infection in whom early recognition and treatment of tuberculosis is critical, 
but may be hindered by the particular challenges encountered in this population. 
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Because of specific issues relating to diagnosis and management, neurological dis-
ease and tuberculosis-IRIS are addressed separately in chapters “Neurological 
Tuberculosis in HIV” and “The Tuberculosis-Associated Immune Reconstitution 
Inflammatory Syndrome (TB-IRIS)”, respectively. Paediatric tuberculosis is also 
covered in a dedicated chapter.

�Clinical and Radiological Features at Higher CD4 Counts

HIV-infected individuals with preserved CD4 cell counts, particularly >350 cells/
μL, are more likely to manifest similar symptoms and signs as those who are HIV-
negative. The predominant disease site is pulmonary; pleural effusion and lymphad-
enitis are also frequently encountered. Although less common than in severe 
immunosuppression, extra-pulmonary involvement of any site can occur at high 
CD4 counts—these are discussed in section “Specific Clinical Syndromes 
Associated with EPTB” on extra-pulmonary tuberculosis (EPTB) below. Even with 
relatively intact immune responses, pulmonary disease in HIV-associated tubercu-
losis has a heterogenous clinical presentation and considerable overlap with other 
diagnoses in radiological appearances.

�Symptoms

Early pulmonary tuberculosis may be asymptomatic, but eventually leads to chronic 
productive cough accompanied by non-specific constitutional symptoms including 
weight loss, night sweats (often drenching), fever, chills, fatigue and anorexia, but 
not rigors. Persistent, slowly progressive respiratory symptoms are an important 
feature in HIV-infected patients with relatively well-preserved immunity, and 
should prompt intensive efforts to exclude tuberculosis, even in the absence of typi-
cal CXR changes and negative smear microscopy and Xpert. Pleuritic chest pain 
occurs if parenchymal inflammation abuts the parietal pleura, and is common with 
tuberculous pleural effusions. Cough may uncommonly be associated with haemop-
tysis related to endobronchial erosion or sloughing of caseous material from cavi-
ties. Haemoptysis is usually mild, but can present as a sudden and massive event as 
a result of erosion of an artery in the pulmonary circulation. Importantly, many 
patients with HIV co-infection may lack the typical symptoms associated with pul-
monary tuberculosis, and are at risk of numerous diseases whose symptoms overlap 
with tuberculosis.

A meta-analysis including individual data from 8148 HIV-infected patients iden-
tified current cough of any duration, fever, night sweats, or weight loss as having the 
best predictive value for active tuberculosis [3]. These are recommended by WHO 
as a screening tool in national tuberculosis programs, to be used repeatedly in fol-
low-up visits. However, the specificity of these symptoms is poor (50%) and their 
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negative predictive value falls substantially when applied to patient populations 
with greater than 20% prevalence of TB, which is common in high burden clinical 
settings [3, 4]. The prevalence of completely asymptomatic sputum culture-positive 
tuberculosis amongst ambulant people living with HIV in a community setting may 
be as high as 15% [5]. Absence of typical symptoms therefore does not exclude 
pulmonary tuberculosis and this diagnosis needs to be aggressively pursued amongst 
symptomatic patients with HIV in high burden settings.

�Clinical and Laboratory Examination

Clinical examination findings relate to the extent of lung involvement and chronic-
ity of illness, and are often unremarkable. Fever is not universal. There may be 
auscultatory signs of consolidation and cavitation in advanced disease, but these are 
characteristically absent at initial presentation. Tuberculous pleural effusions are 
almost always unilateral, and strongly suggested by dullness on percussion and 
reduced breath sounds on the side of the effusion. Pallor and cachexia may be pres-
ent. Digital clubbing is absent among patients with recent-onset symptoms, but may 
manifest after prolonged infection or repeated episodes in association with bronchi-
ectasis and fibrosis. Routine laboratory tests are usually non-contributory: total 
white blood cell count is typically in the normal range, and there may be a normo-
cytic or mildly microcytic anaemia of inflammation. Mild eosinophilia is occasion-
ally seen.

Non-specific markers of systemic inflammation such as C-reactive protein (CRP) 
[6–8] and procalcitonin (PCT) [9] are frequently elevated, and may perform better 
than symptom screening for identifying patients with active tuberculosis [10]. In a 
cohort of Ugandan adults attending outpatient ART clinics (median CD4 count 
137  cells/μL), point-of-care (POC) CRP had a higher specificity than symptom 
screening (87% vs. 21%; P < 0.001) for tuberculosis, and correctly identified more 
patients without active tuberculosis [10]. However, CRP and PCT do not reliably 
distinguish tuberculosis from bacterial infection or pneumocystis pneumonia [9, 
11], and when negative do not have sufficient predictive value to confidently exclude 
tuberculosis in symptomatic HIV-infected patients in high burden settings [6–8], 
where the consequences of misdiagnosis are severe. For example, the negative pre-
dictive value (NPV) of CRP was only 72% in tuberculosis suspects in Kwazulu-
Natal, South Africa, where the background prevalence of confirmed or possible 
tuberculosis was ~30%. HIV status did not influence the performance of CRP in this 
cohort [8]. Although the NPV of a very low CRP (<1.5 mg/L) is excellent (100% in 
an active case finding study in Cape Town, South Africa), this may not be useful for 
most patients because such very low CRP values may be infrequent in the popula-
tion of interest [6].
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�Imaging

Chest radiography is an important diagnostic tool for assessing HIV-associated 
tuberculosis in patients with higher CD4 counts. The typical features, as seen in 
HIV-negative pulmonary tuberculosis, result from liquefaction of caseous necrosis 
with subsequent cavity formation, areas of parenchymal infiltrates, and progres-
sive fibrosis and lung destruction, predominantly affecting upper lobes (Table 1) 
[12]. A pooled analysis of five cohort studies showed a significant association 
of cavitation and parenchymal infiltrates with CD4 cell counts ≥200 cells/μL in 
patients with HIV-associated tuberculosis [13]. Bronchogenic spread may result 
in ill-defined micronodules with segmental or lobar distribution, seen best on high 
resolution computed tomography (CT) imaging as a so-called “tree-in-bud” sign. 
Post-tuberculosis fibrocavitatory disease and bronchiectatic changes may lead to 
chronic respiratory symptoms with negative M. tuberculosis cultures and predis-
pose to chronic lung infections, including Aspergillus sp. and non-tuberculous 
mycobacteria.

�Approach to Diagnosis of Pulmonary Tuberculosis 
in Ambulant Patients with Higher CD4 Counts

The diagnostic approach for suspected tuberculosis in HIV-infected patients with 
CD4 counts ≥350 cells/μL is similar to HIV-negative patients, and is presented in 
Fig. 1. Chest X-ray is central to diagnosis but interpretation is reader-dependent, 
and there may non-specific changes and the absence of abnormalities even in the 
context of positive smear microscopy and culture [13, 14]. There is generally a less 
rapidly-progressive course compared to patients with severe immune compromise, 
and therefore opportunity to confirm the diagnosis with molecular or microbiologi-
cal testing.

Spontaneously expectorated sputum is often available for testing, particularly 
when cavitary disease is present, as cavitation is associated with high bacillary load 
in sputum and greater chance of diagnosis by smear microscopy. If this is not pos-
sible sputum induction with hypertonic saline should be attempted. Although spu-
tum induction with nebulized hypertonic saline potentially identifies approximately 

Table 1  Chest X-ray features of HIV-associated tuberculosis in relation to CD4 cell count

CD4 > 350 cells/μL CD4 < 200 cells/μL

Upper lobe parenchymal infiltrates and 
cavitation

Nodular infiltrates, may be localised or 
widespread

Pleural effusion Consolidation
Fibrosis Miliary infiltration
Bronchiectasis Mediastinal and hilar adenopathy

Pleural and/or pericardial effusion
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25% additional cases in symptomatic patients who are smear-negative or unable to 
spontaneously produce sputum [15], a negative smear never excludes the diagnosis 
of tuberculosis in HIV co-infected patients. Sputum Xpert-MTB/RIF (or the more 
sensitive Xpert-MTB/RIF Ultra) is the preferred initial diagnostic test for ambula-
tory patients, particularly those with higher CD4 counts. This is due to superior 
sensitivity to smear microscopy, rapid turnaround time, and ability to detect the 
presence of rifampicin resistance (discussed in chapter “Diagnosis of HIV-
Associated Tuberculosis”). On a population level, screening symptomatic ambula-
tory HIV-infected patients with Xpert detects more cases of tuberculosis compared 
to fluorescence microscopy, and results in lower mortality amongst those with clini-
cal stage 3 or 4 disease [16]. However, Xpert’s imperfect sensitivity and negative 
predictive value is insufficient to exclude HIV-associated tuberculosis in high bur-
den settings and may not influence empiric management decisions [17]. It is there-
fore important to also perform sputum culture, for both diagnostic and monitoring 
reasons, as well as Xpert and culture testing on extra-pulmonary samples when 
appropriate (and if available). With HIV-infected patients now routinely being 
admitted to intensive care units, tuberculosis is an important consideration in this 
patient population in high burden settings. A study in Cape Town, South Africa, 
diagnosed tuberculosis in 15% (46/317 screened) of mechanically ventilated 
patients, a quarter of whom were HIV-infected. Xpert performed well on tracheal 
aspirates, identifying all patients with positive M. tuberculosis cultures [18].

Occasionally empiric antituberculosis treatment is started without confirmation 
while awaiting results of microbiological testing. This may be considered under the 

HIV-infected, symptom screen positivea

Ambulant and no danger signs

Sputum Xpert
Sputum culture 

Perform Xpert and culture on extra-pulmonary specimens if appropriate

Xpert positive

Convincing CXR featuresb CXR normal/suggests 
alternative diagnosis

Treat alternative problem
and/or monitor and/or repeat CXR 

in 1 week

No improvement/deterioration or 
new convincing CXR features and/or 

culture-positive

Xpert negative

Initiate antituberculosis therapy
Treat for drug-susceptible TB except if confirmed 

rifampicin resistance 

Resolution of symptoms and 
culture-negative

Start PT

Perform CXR

Fig. 1  Diagnostic approach for suspected HIV-associated tuberculosis at CD4 ≥ 350 cells/μL 
(a) Current cough, night sweats, fever, weight loss. (b) Cavitations, nodular infiltrate, pleural effu-
sion (lymphocytic). CXR chest X-ray, PT preventive therapy
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following circumstances: strongly suggestive chest X-ray abnormalities, poor 
response to empiric therapy for an alternative condition (e.g. bacterial pneumonia), 
severe illness, or rapid deterioration. A subset of patients with typical symptoms and 
radiological features of pulmonary tuberculosis have persistently negative M. tuber-
culosis cultures with no alternative aetiology identified. These patients are often 
diagnosed with ‘culture-negative’ pulmonary tuberculosis and started on empiric 
antituberculosis therapy. Potential pitfalls of empiric treatment include missing 
another serious alternative diagnosis or drug-resistant tuberculosis, and exposing 
patients unnecessarily to prolonged courses of antituberculosis therapy. It is there-
fore critical to monitor clinical response to therapy and review sputum culture 
results when empiric therapy is initiated.

The differential diagnosis for HIV-associated pulmonary tuberculosis at higher 
CD4 counts includes lung malignancy (which occurs more frequently amongst 
HIV-infected vs. HIV-uninfected smokers [19]) and chronic infections such non-
tuberculous mycobacterial lung disease and aspergillosis. Other important causes of 
symptoms suggestive of tuberculosis include weight loss due to food insecurity, 
viral upper respiratory tract infection, and post-tuberculosis chronic lung disease 
[20]. Although seen more commonly amongst patients with CD4 <200 cells/μL, 
pneumocystis pneumonia remains a possibility in those with higher CD4 counts. 
Important differential diagnoses for tuberculosis in HIV-infected patients with 
higher CD4 counts are listed in Table 2.

�Clinical Manifestations of HIV-Associated Tuberculosis 
with Advanced Immunosuppression

By contrast, the clinical presentation of tuberculosis in HIV co-infected patients 
with advanced immunosuppression (CD4 count < 200 cells/μL) is associated with 
atypical pulmonary manifestations, frequent extra-pulmonary involvement, and a 
higher prevalence of disseminated disease with rapid progression. With improved 
access to antiretroviral therapy (ART) and higher CD4 count thresholds for treat-
ment initiation the clinical presentation of HIV-associated tuberculosis may begin to 
shift towards the typical syndrome seen in immune competent individuals [21]. 
However, the majority of cases of HIV-associated tuberculosis still occur at low 
CD4 counts in high burden settings. Analysis of a large dataset from the tuberculo-
sis registry in Cape Town, South Africa, found that 25% of patients on ART had 
CD4 ≤  90 cells/μL at the time of initiation of antituberculosis therapy; amongst 
ART-naïve patients, the lower CD4 count quartile was 67 cells/μL [21]. Another 
study in the Western Cape Province in South Africa showed that over half of patients 
with CD4 < 50 cells/μL were ART-experienced, many having disengaged from ART 
care [22]. Thus, even with substantial increases in ART coverage, a large proportion 
of patients with HIV-associated tuberculosis are expected to manifest atypical, 
non-specific, and severe presentations, which present important clinical and diag-
nostic challenges.
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Table 2  Differential diagnosis for HIV-associated tuberculosis at higher CD4 counts

Disease Characteristics

Bacterial pneumonia Short duration symptoms (≤7 days) with focal or multi-focal 
consolidation on CXR. Prominent inflammatory response (rigors, 
chest signs) seen in lobar/pneumococcal pneumonia. Early response to 
antibiotics

Pulmonary non-
tuberculous 
mycobacterial infection

Predisposing structural lung disease, older age patient
Indolent onset, chronic respiratory symptoms, weight loss and fevers 
leading to extensive pathology on chest X-ray at time of presentation. 
Requires confirmation with >1 sputum culture of same species. 
Suspect if no improvement on antituberculosis therapy with persistent 
smear positivity without culture confirmation of tuberculosis

Cryptococcusa Can cause primary respiratory disease (without or with meningitis) 
with non-specific sub-acute symptoms and diverse chest X-ray features

Nocardiaa Subacute respiratory symptoms with fever; causes nodules and lung 
abscess on CXR. May be associated with skin and CNS lesions. 
Culture of sputum or aspirate shows branching Gram-positive bacilli 
that are weakly acid fast on modified ZN staining

Pneumocystis 
pneumoniaa

Subacute to acute respiratory symptoms with prominent dyspnoea and 
tachypnoea. Typically normal auscultation but desaturation on mild 
exertion. Chest X-ray shows bilateral infiltrates, without adenopathy or 
pleural effusions

Chronic pulmonary 
aspergillosis

Fever not prominent unless invasive disease. Haemoptysis common. 
Fungal ball can sometimes be seen in cavity on CXR

Chronic obstructive 
airways disease

History of smoking or biomass smoke exposure. Long standing 
exertional dyspnoea often with wheeze. Prolonged expiration, barrel 
chest, hyper-resonance, hyper-expansion on CXR

Lung cancer Older patient with risk factors. Often minimal symptoms until 
advanced disease, fever not typical unless secondary pneumonia. May 
be evidence of metastases (bone pain, irregular liver, brain space 
occupying lesions), local mass effects or paraneoplastic phenomena

Kaposi sarcomaa Majority have associated muco-cutaneous disease. Diverse 
presentations, including haemoptysis, chest pain, and severe 
respiratory distress. CXR typically shows ‘flame-shaped’ infiltrate 
extending from hilum adjacent to vascular and bronchial trees; septal 
and nodular patterns; associated effusions which are often blood 
stained when aspirated

aMore common at lower CD4 counts

�Disseminated Tuberculosis and Mycobacteraemia

Post-mortem series of hospitalised patients dying of HIV-associated tuberculosis 
show that in ~90% of cases tuberculosis pathology is disseminated, i.e. involving 
several organ systems, in particular the reticulo-endothelial system and tissues with 
high blood flow such as the kidneys [2]. There is a broad spectrum of illness sever-
ity, but disseminated tuberculosis is often associated with organ dysfunction and 
decline in patient global functional status (e.g. the WHO danger signs ‘inability to 
walk unaided’ and respiratory rate >30 breaths/min).
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Many studies performing routine mycobacterial blood cultures in hospitalised 
HIV-infected patients suggest that a large proportion of those with critical illness 
have active mycobacteraemic dissemination at time of admission [David Barr, per-
sonal communication]. In the spectrum of tuberculosis infection, these are patients 
who are likely to have the highest total body bacilli-burden, and M. tuberculosis 
blood stream infection (BSI) in the range of ten to ten-thousand bacilli per ml have 
been recorded [David Barr, personal communication]. Although localised pauci-
bacillary tuberculosis infection can cause acute life-threatening illness (for exam-
ple, tuberculous meningitis, bowel perforation, or rupture of a great vessel), high 
bacilli-burden disseminated tuberculosis, with or without current BSI, is associated 
with high mortality and can be considered the major mode of disease in critically 
unwell patients with HIV-associated tuberculosis.

Due to profound immunosuppression, granuloma formation may be atypical or 
absent, and serositis may be blunted, resulting in non-specific clinical presentation. 
Classic miliary pathology—which results from a sudden, large bacteraemic event, 
with granuloma formation at sites of seeding—is an unreliable indicator of HIV-
associated tuberculosis BSI.  Indeed, in one study of disseminated tuberculosis, a 
positive tuberculosis blood culture was associated with absence of miliary shadow-
ing, but a higher probability of death [23]. The absence of organised granulomas 
does not denote an absence of inflammation; rather hospitalised patients with severe 
HIV-associated tuberculosis and BSI have marked innate immune cell activation 
and dysfunction [24], and are at high-risk of secondary bacterial infections.

�Clinical and Radiological Features

As outlined above, classical tuberculosis symptoms may be absent in HIV-associated 
tuberculosis and overlap with other conditions affecting these patients. The WHO 
standardised screening rule for tuberculosis in HIV-infected individuals (any of 
cough, fever, night sweats, or weight loss, developed and validated through meta-
analysis of predominantly outpatient data [3]) has no predictive value for critically 
unwell inpatients [25, 26]. The presentations of disseminated tuberculosis are 
diverse, and depend on organ involvement and intensity of systemic inflammatory 
response. Non-classical symptoms such as vomiting, diarrhoea, generalised pain 
and weakness may have higher associated likelihood ratios for tuberculosis BSI 
than cough or night sweats. A typical history elicited in patients with HIV-associated 
tuberculosis BSI includes a sub-acute onset—often with multiple prior visits to 
health facilities—followed by a more rapid decline in functional status associated 
with anorexia, prolonged fevers, night sweats, and generalised weakness. Despite 
patients typically being young adults, inability to walk unaided and/or self-feed are 
common, and strongly associated with early mortality. Fever is almost universal 
[27], but unlike other, non-mycobacterial BSIs, history of pronounced rigors is 
unusual.
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Patients with tuberculosis BSI can present with a syndrome of septic shock; 
indeed, tuberculosis is the most common microbiological diagnosis in studies of 
severe sepsis in HIV-infected inpatients in sub-Saharan Africa [28, 29]. However, 
only a minority of critically unwell patients with tuberculosis BSI have frank hypo-
tension, and the “hot & flushed” appearance of acute, systemic vasodilation is 
unusual. High fever (e.g. temperature >39.0 °C) is not predictive of mortality and 
many patients are hypothermic, with cool peripheries but relatively normal capillary 
refill. Raised lactate is common and strongly associated with mortality, but not 
closely related to hypotension, and may instead reflect accelerated aerobic metabo-
lism in activated innate immune cells [30], rather than anaerobic respiration from 
tissue hypoperfusion. In contrast to frank hypotension, postural-drop in blood pres-
sure can frequently be elicited, and moderate tachycardia is the norm. Patients with 
tuberculosis BSI are often profoundly fluid depleted, with near universal hypona-
traemia suggesting a sub-acute loss of total body sodium and water. Lethargy and 
limited ability to mobilise are very common in tuberculosis BSI, but wasting is not 
universal. Reduced levels of consciousness may reflect metabolic effects of sys-
temic infection, but meningitis or raised intra-cranial pressure should be ruled-out 
with lumbar puncture and/or brain imaging, and hypoglycaemia excluded.

Despite respiratory symptoms often being absent, the majority of HIV-infected 
patients with disseminated disease will have pulmonary involvement as evidenced 
by positive sputum cultures or radiological abnormalities. When present, respira-
tory symptoms may include dry cough, dyspnoea, reduced effort tolerance, and 
pleuritic chest pain. Raised respiratory rate is common, and often associated with 
nasal flare, but not with other signs of respiratory failure such as inability to com-
plete sentences. The raised respiratory rate can often be explained by metabolic 
acidosis, in turn associated with reduced glomerular filtration rate due to fluid and 
sodium depletion, and/or raised lactate. Acute renal impairment is the most com-
mon organ dysfunction in tuberculosis associated sepsis. Tachypnoea may also 
reflect impaired oxygenation due to extensive tuberculous infiltration or massive 
pleural or pericardial effusion. Crepitations and evidence of pleural effusion may be 
present, but auscultation is often normal. Acute respiratory distress syndrome is rare 
in tuberculosis BSI and marked hypoxia is more suggestive of pneumocystis pneu-
monia, which is an important competing or concurrent diagnosis.

As discussed above, chest radiology becomes atypical and non-specific at lower 
CD4 counts [31], which is the case in critically unwell tuberculosis BSI patients. 
Chest X-rays may be completely normal in up to 30% despite a positive sputum 
M. tuberculosis culture [32]. Abnormalities may include diffuse and lower lobe 
opacities, subtle nodular infiltrates, a miliary pattern, or consolidation, with or with-
out intrathoracic lymphadenopathy or pleural effusions (Figs.  2 and 3) [13, 31]. 
Classic miliary shadowing is not generally seen in tuberculosis BSI in patients with 
advanced HIV; less symmetrical, but still diffuse, interstitial nodule infiltrates with-
out uniformity of nodule size and often sparing some lung zones is more typical 
(and may incorrectly be described as miliary by some clinicians). Non-specific air-
space opacification is also frequent, and distinguishing from bacterial pneumonia is 
difficult in many cases. The chest X-ray features of HIV associated tuberculosis are 
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listed in Table 1. As a consequence of non-distinctive clinical and radiological fea-
tures, the differential diagnosis for pulmonary involvement in patients with advanced 
immunosuppression is much broader compared to those with higher CD4 counts. 
Besides bacterial and Pneumocystis jiroveci pneumonia, which are common causes 
of respiratory disease in advanced HIV and can be co-pathogens with tuberculosis 
[33], dimorphic fungal infection, cryptococcosis, nocardiosis, pulmonary cytomeg-
alovirus, and Kaposi sarcoma should also be considered.

Although often accompanied by organ dysfunction, disseminated tuberculosis 
may have no localising features, and in high burden settings tuberculosis is a com-
mon cause of pyrexia of unknown origin in hospitalised patients with HIV [34]. 

Fig. 2  Illustrative examples of chest X-ray features in HIV-associated tuberculosis. Images A 
and B: 32-year-old woman, who had an initial episode of culture-positive tuberculosis in 2015 with 
a CD4 count of 390 cells/μL. Chest X-ray from that time shows bilateral nodular opacification, 
worse on left with areas of confluence, and hilar adenopathy. (a) She re-presented with progressive 
respiratory symptoms and constitutional symptoms in 2019, after being on ART for 3 years and 
with a CD4 count of 1274 cells/μL. CXR shows volume loss and pleural thickening with wide-
spread fibrosis and cystic changes. (b) Culture was again positive for M. tuberculosis. (c) 35 year 
old woman, CD4 count 479 cells/μL and virally suppressed on ART. Presented with new constitu-
tional symptoms and sputum culture was positive for TB. CXR shows confluent opacification with 
areas of breakdown on the left and bilateral nodular infiltrates. (d) 29 year old woman with consti-
tutional symptoms, newly diagnosed with HIV, CD4 109. Induced sputum culture positive M. 
tuberculosis. CXR shows extensive mediastinal and hilar lymphadenopathy, and a small left sided 
pleural effusion. (e) 54 year old man, newly diagnosed HIV with CD4 68 cells/μL. Presented with 
chest pain and shortness of breath. CXR shows pleural effusion with surrounding nodules on the 
right. (f) 39 year old woman, CD4 unknown on second line ART, with radiological abnormalities 
noticed incidentally after presenting with upper gastrointestinal bleeding. CXR shows classical 
miliary pattern
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Anaemia is nearly universal [35], often profound enough to be seen on examination. 
All EPTB presentations (discussed below in section “Specific Clinical Syndromes 
Associated with EPTB”) may be found, but findings are generally more subtle: for 
example, pleural effusions are common but may be small and bilateral; traces of 
ascitic fluid below the threshold for shifting dullness, and small pericardial effu-
sions not detectable on examination. These effusions can be difficult to distinguish 
from the effects of hypoalbuminaemia. Adenopathy—particularly nodes >2 cm at 
multiple sites – are predictive of tuberculosis BSI in high HIV-tuberculosis burden 
settings. Significant hepato- or splenomegaly may be detected, but tender right 
upper quadrant or generalised abdominal tenderness without detectable enlarge-
ment is more common. Ultrasound imaging is frequently available in low resource 
settings and can give important clues to tuberculosis BSI, including splenic micro-
abscesses and abdominal adenopathy (Fig. 4) [Niel van Hoving, unpublished]. Cold 
abscesses and musculoskeletal disease are rare in tuberculosis BSI (but may develop 
later in the context of IRIS). Unlike in classic miliary tuberculosis, retinal involve-
ment is very uncommon in HIV-associated tuberculosis BSI.

Fig. 3  Illustrative examples of chest X-ray and corresponding CT images in HIV-associated 
tuberculosis. (a, b) 38 year old man, CD4 297 on second line ART. Previous pulmonary tubercu-
losis. Presented with constitutional symptoms and persistent fever. Extensive right mediastinal 
adenopathy on CXR and CT chest which is ring enhancing with necrotic centres (arrow). (c, d) 
37 year old woman, CD4 count 56 cells/μL, ART-naïve. Admitted to hospital after sustaining poly-
trauma. Found to have persistent fever with extensive bilateral nodular infiltrates on CXR (c) and 
CT chest (d). Sputum Xpert was positive
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�Routine Laboratory Investigations

As mentioned previously, hyponatraemia occurs frequently in severe HIV-associated 
tuberculosis. Tuberculosis is a well-known cause of inappropriate anti-diuretic hor-
mone excretion, however, a diagnosis of SIADH is unfounded in a patient who is 
clinically fluid-depleted, and most tuberculosis BSI patients’ low sodium levels 
respond to normal saline infusion. Acute kidney injury is usually reversible with 
extracellular fluid replenishment. Aggressive fluid resuscitation (fluid boluses total-
ling more than 2L in the 6 h following presentation) should be avoided as this led to 

Fig. 4  Illustrative examples of ultrasound images in HIV-associated tuberculosis. (a, b) 36 year 
old man, presenting with cough, fever, night sweats and weight loss. Interrupted ART, CD4 count = 1. 
Ultrasound findings: Splenic micro abscesses (max diameter = 0.53 cm) (a); para-aortic lymph node 
below take-off of superior mesenteric artery (max diameter = 0.83 cm) (b). (c) 42 year old man, 
presenting with cough, night sweats and weight loss. ART-naïve, CD4 count = 164. Ultrasound find-
ings: Pericardial effusion (1.41 cm at apex). (d) 52 year old man, presenting with cough, fever, night 
sweats and weight loss. On ART, CD4 count = 68. Ultrasound findings: Hyperechoic splenic lesions 
and ascites (arrow)

Clinical Manifestations of HIV-Associated Tuberculosis in Adults



86

worse outcomes in a randomised controlled trial of sepsis bundle of care in Zambia 
which recruited a large proportion of patients with tuberculosis BSI [36].

Anaemia associated with tuberculosis BSI is multifactorial, but predominantly 
caused by an inflammatory response to tuberculosis [37]. This is mediated by hep-
cidin, which sequesters free iron in an attempt to limit extracellular bacterial growth 
[35]. Nutritional deficiency, bone marrow suppression from HIV itself and infiltra-
tion by tuberculosis are other contributors to anaemia, and may lead to pancytopae-
nia. Blood transfusions, which anecdotally have been linked to deterioration in 
HIV-associated tuberculosis, appear to be safe [38], although optimal transfusion 
thresholds have not been defined. Thrombocytopenia, and a downward trend in 
platelet count, is a regular feature of severe HIV-associated tuberculosis (and, by 
contrast, the reactive thrombocytosis of tuberculosis in HIV-negative patients is not 
a feature of tuberculosis BSI). The aetiology of thrombocytopenia in HIV-associated 
tuberculosis is likely multifactorial, but increased consumption and destruction of 
platelets is the leading culprit, with bone-marrow infiltration being another major 
factor when pancytopenia is present. A high proportion of patients with tuberculosis 
BSI have (sub-clinical) disseminated intravascular coagulopathy if full coagulation 
screens are checked [39]. Active bleeding is uncommon; symptomatic venous 
thromboembolism is common.

Biochemical markers of inflammation (e.g. CRP) are reliably raised in inpatients 
with HIV-associated tuberculosis; those with BSI generally have CRP greater than 
100 mg/L. However, specificity is poor, and cannot distinguish from other severe 
bacterial infections or pneumocystis pneumonia, even in settings with high prior 
probability of tuberculosis [11]. Neutrophilia (or total white cell count) greater than 
12 × 109/L is not typical of tuberculosis BSI and suggests (possibly superimposed) 
bacterial infection.

�Approach to Diagnosis of Disseminated Tuberculosis 
in Inpatients with Advanced HIV

In contrast to the chronic indolent course of pulmonary tuberculosis in immuno-
competent people, disseminated tuberculosis can progress rapidly in patients with 
advanced HIV, necessitating more urgent diagnosis and treatment initiation. Risk of 
tuberculosis increases exponentially as CD4 counts fall and degree of immunosup-
pression is a factor in empiric management decisions. However, other severe infec-
tions that occur more commonly at lower CD4 counts (such as invasive pneumococcal 
disease, salmonellosis, pneumocystis) may have similar presentations and are 
important considerations (Table 3).

WHO has proposed an algorithm to diagnose smear-negative tuberculosis in 
seriously ill patients with HIV and suspected tuberculosis [40]. “Suspected tubercu-
losis” is defined by presence of TB symptoms (cough, fever, weight loss, night 
sweats), while “seriously-ill” is defined by the presence of at least one “danger 
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sign”: respiratory rate >30, heart rate >120, temperature >39 °C, and inability to 
walk unaided. As discussed above the TB symptom screening rule has limited or no 
value in critically-ill inpatients. Two of the WHO danger signs, inability to walk and 
temperature >39 °C, were significant predictors of tuberculosis in a large cohort of 
HIV-infected inpatients in South Africa [41]. In this study a likely radiological diag-
nosis of tuberculosis (assessed by an experienced radiologist) was also indepen-
dently associated with confirmed infection. However, classic symptoms of weight 
loss and subjective fever had poor specificity, suggesting that screening should be 
applied more broadly in severely ill patients with HIV and a high pre-test probabil-
ity of tuberculosis; in some settings this may be up to 30% of hospitalised HIV-
infected patients regardless of presenting complaint [42]. Only one of the WHO 
danger-signs—inability to walk unaided—has empirical support as a predictor of 
mortality in HIV-associated TB [43].

Sputum Xpert testing is recommended as the initial diagnostic procedure in the 
WHO algorithm, but samples are difficult to obtain from critically unwell, non-
ambulant patients even with availability of sputum induction. Consequently, the 

Table 3  Differential diagnosis for disseminated HIV-associated tuberculosis at low CD4 counts

Disease Characteristics

Bacterial sepsis Invasive pneumococcal disease and non-typhi salmonella are important 
causes, and may present with a non-specific ‘sepsis syndrome’ 
indistinguishable from tuberculosis BSI. Hypotension/shock 
unresponsive to fluid replacement may be present which is unusual 
with tuberculosis

Disseminated 
non-tuberculous 
mycobacterial infection

Distinguished from disseminated tuberculosis by prominent weight 
loss, hepatosplenomegaly, and cytopenias. May cause chronic 
diarrhoea due to small bowel involvement. Diagnosed by culture of 
NTM organism from sterile site. Usually seen only in patients with 
CD4 count <50 cells/μL

Lymphoma, 
multicentric 
Castleman’s disease

Non-specific systemic ‘B’ symptoms and fever with peripheral and/or 
intra-thoracic or intra-abdominal adenopathy, cytopenias

Disseminated 
dimorphic fungal 
infection

Prominent systemic symptoms (weight loss and fever), skin lesions, 
hepatosplenomegaly, cytopenias. Nodular infiltration (can appear 
miliary) on chest X-ray

Pneumocystis 
pneumonia

Subacute to acute respiratory symptoms with prominent dyspnoea and 
tachypnoea. Typically normal auscultation but desaturation on mild 
exertion. Chest X-ray shows bilateral ‘ground glass’ infiltrates, without 
adenopathy or pleural effusions, and may cause pneumatoceles, 
pneumothorax or pneumomediastinum

Kaposi sarcoma In addition to pulmonary involvement (described above), may manifest 
as nodal disease, organomegaly, serositis, and/or gastrointestinal 
lesions with bleeding. Majority have visible mucocutaneous 
involvement

Cytomegalovirus Relatively uncommon. Manifests in a specific organ site, mainly as 
colitis and/or retinitis, and very rarely pneumonitis. Presents with fever 
and symptoms relating to involved organ, generally in patients with 
CD4 count <50 cells/μL
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real-world diagnostic yield of sputum Xpert testing in this patient population is low, 
identifying only 28% of confirmed tuberculosis cases, and fewer than 20% of those 
with confirmed tuberculosis BSI, in one cohort from a high burden setting [42, 44]. 
Because of this difficulty in obtaining samples from extrapulmonary sites, accurate 
clinical prediction rules for tuberculosis that use easily obtainable clinical parame-
ters and incorporate point-of-care or rapid laboratory diagnostics are required, par-
ticularly in resource-limited settings where most cases of severe HIV-associated 
tuberculosis occur. Application of rapid diagnostic tests for tuberculosis to non-
sputum samples has thus emerged as an important strategy in the assessment of 
acutely unwell patients with advanced HIV.

POC urine-lipoarabinomannan (u-LAM) is highly specific for tuberculosis [45], 
can provide a rapid diagnosis, and greatly increases diagnostic yield of tuberculosis 
in hospitalised patients with HIV [44]. Amongst HIV-infected inpatients with sus-
pected tuberculosis in a high burden setting, u-LAM detected two thirds of con-
firmed cases overall and half of cases with negative sputum smear microscopy [46]. 
In another study involving unselected HIV-infected medical admissions with a high 
prevalence of EPTB, u-LAM detected 40% of confirmed tuberculosis cases [42]. 
When combined with Xpert testing of concentrated urine (spun in a centrifuge with 
testing of the residual pellet) the overall sensitivity may rise to 70%. For those with 
CD4 counts <100 cells/μL the combined urine tests plus sputum Xpert had the abil-
ity to rapidly diagnose tuberculosis in ~80% of unselected HIV-infected admissions 
[42, 47], and their use was associated with substantial absolute reduction in mortal-
ity for critically ill subgroups [26].

Because of non-specific clinical and laboratory features of tuberculosis, low 
diagnostic yield of sputum Xpert, and need for urgent treatment initiation, POC 
u-LAM is indicated in all non-ambulant or hospitalised HIV-infected patients, irre-
spective of CD4 count. A positive u-LAM is an excellent rule-in test in high burden 
settings [47], and should prompt rapid initiation of antituberculosis therapy [48]. 
Although not yet recommended by WHO, urine Xpert has good specificity for 
tuberculosis in HIV-infected patients [42, 47], and is increasingly recognised as a 
useful test to rapidly identify inpatients with tuberculosis, particularly for patients 
who are u-LAM negative. Xpert testing also performs well on needle aspirates of 
lymph nodes (the sensitivity is lower on pleural and pericardial fluid), and therefore 
can also be useful when lymphadenopathy is present in critically unwell patients.

POC ultrasound is an inexpensive and non-invasive method to detect indirect evi-
dence of disseminated tuberculosis. Features such as intra-abdominal adenopathy, 
ascites, and splenic micro-abscesses (Fig. 4) have good specificity for disseminated 
tuberculosis in high prevalence settings [Niel van Hoving, unpublished], and can be 
used as a basis to initiate empiric therapy. It is, however, important to recognise that 
none of these rapid diagnostics have 100% sensitivity in (culture confirmed) tubercu-
losis BSI patients: negative tests do not rule out tuberculosis and their use in combi-
nation is advised to maximise yield. Despite this limitation, negative u-LAM 
(particularly in combination with a negative urine Xpert and normal abdominal ultra-
sound examination) identifies patients at lower risk of early mortality [44, 45, 47, 49] 
in whom a definitive diagnosis of tuberculosis can be sought. In these situations, 
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assessment of clinical response to a trial of empiric antibiotic therapy is a helpful 
diagnostic manoeuvre: failure to respond or deterioration should prompt treatment 
for presumptive tuberculosis. Other opportunistic infections should be simultane-
ously investigated in patients with CD4 <200 cells/μL. Regardless of whether empiric 
antituberculosis therapy is initiated, an attempt should always be made to confirm the 
tuberculosis diagnosis and confirm rifampicin susceptibility with molecular and/or 
microbiological tests. These include mycobacterial cultures of induced sputum, 
blood, and urine if no localised disease is apparent. Culture and histological exami-
nation of lymph nodes, pleura, and bone marrow aspirate may be indicated under 
appropriate clinical circumstances. An algorithm for the evaluation of tuberculosis in 
non-ambulatory patients is shown in Fig. 5. Note, this approach applies to patients 
who reside in or originate from high-burden settings; the positive predictive value of 
rapid diagnostics in countries with low tuberculosis prevalence is limited and there is 
a higher threshold for empiric antituberculosis treatment initiation in those settings.

�Specific Clinical Syndromes Associated with EPTB

Extra-pulmonary tuberculosis (EPTB) is common with advanced HIV, with or with-
out concomitant pulmonary involvement [50]. Virtually any organ system can be 
affected, but the most frequent discreet sites are lymph nodes, pleura, intra-

u-LAM bedside testing
Collect sputum (if possible) for Xpert testingb and perform CXR

Initiate antituberculosis therapy
• Treat for drug-susceptible TB except if 

Xpert shows rifampicin resistance 
• Send clinical specimen(s) for TB culture 

and DST 

Perform 
abdominal/chest 

ultrasound

Features of intra-
abdominal or 
thoracic TBd

• Send clinical specimen(s) for TB culture and DST 
• Blood culture and consider empiric antibiotics, 

especially if unstablee

• Consider PCP if respiratory rate >30/min, oxygen 
desaturation on mild exertion, and/or if CXR shows 
bilateral groundglass infiltrates

• Lumbar puncture if meningism or reduced level of 
consciousness (if no contraindications)

Failure to 
improve or 

deterioration

HIV-infected hospitalized, non-ambulant, or danger signsa

Ultrasound not available 
or negative

u-LAM negative
plus 

uncertain CXR 
interpretation

u-LAM or Xpert positive 
or 

convincing CXR featuresc

Fig. 5  Diagnostic approach for non-ambulant HIV-infected patients (a) Danger signs: inabil-
ity to walk, respiratory rate > 30 breaths/min, heart rate > 120 beats/min, and temperature > 39°C. 
(b) Perform urine Xpert testing if available. (c) Miliary pattern, nodular infiltrate, mediastinal 
adenopathy, cavitations, nodular infiltrate. (d) Intra-abdominal adenopathy, ascites, splenic lesions, 
pleural or pericardial effusion. (e) Hypotension not responding to fluids, hypoxia, hyperlactaemia, 
decreased level of consciousness. CXR chest x-ray, DST drug susceptibility testing, u-LAM urine 
lipoarabinomannan, PCP pneumocystis pneumonia
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abdominal (peritoneal, intestinal, lymph node), the central nervous system (CNS), 
and pericardium. Skeletal system and genitourinary tuberculosis occur less fre-
quently. These latter forms are not discussed and CNS tuberculosis is covered in 
chapter “Neurological Tuberculosis in HIV”.

�Tuberculous Adenitis

Lymphadenitis is the most frequent form of EPTB. In advanced HIV infection this 
is often multifocal, involving mediastinal and intra-abdominal nodes, with promi-
nent constitutional symptoms. Extrathoracic lymph nodes are affected in around a 
fifth of patients with HIV-associated tuberculosis, commonly in the cervical and 
axillary regions. Involved nodes are typically soft and fixed to underlying tissue. 
Groups of nodes can become matted together and coalesce to form massive swell-
ings which may develop fluctuant areas and open onto overlying skin as chronic 
discharging sinus tracts. Empiric therapy is often considered in high prevalence 
settings and with compatible clinical presentations, especially when other features 
of tuberculosis are present (such as constitutional symptoms and chest X-ray 
abnormalities).

A rapid diagnosis can be made by Xpert testing of needle aspirates [51, 52]; 
M. tuberculosis culture should be performed on a node biopsy specimen if Xpert 
testing is negative or unavailable. Lymphoma is the most important alternative diag-
nosis to consider in HIV-infected patients with adenopathy and constitutional symp-
toms, and should be excluded with an excisional lymph node biopsy particularly in 
those not improving on empiric antituberculous therapy. Other causes of significant 
adenopathy in HIV include Kaposi sarcoma, multicentric Castleman’s disease and 
infection due to cryptococcus or dimorphic fungi. Malignancy is an important con-
sideration, particularly in older patients who fail to respond to empiric therapy for 
presumptive tuberculous adenitis.

�Pleural Tuberculosis

Pleural effusions are more common in HIV-associated tuberculosis than in HIV-
uninfected patients and occur more frequently in those with CD4 cell counts 
<200 cells/μL [53, 54]. Symptoms include pleuritic chest pain and dry cough, which 
may progress to cause dyspnoea as the effusion enlarges; the indolent nature of the 
disease can allow effusions to become massive, occasionally leading to respiratory 
compromise and requiring urgent intercostal needle drainage. Simple pleural effu-
sions may become complicated to form empyema, either due to superadded bacte-
rial infection or from tuberculosis itself. HIV-infected patients with pleural 
tuberculosis have an increased frequency of systemic symptoms and more severe 
disease than HIV-uninfected patients [54]. Diagnosis usually involves a combina-
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tion of clinical, biochemical, and microbiological testing. Chest radiology most 
commonly reveals a unilateral effusion (although bilateral effusions are more com-
mon in HIV), that varies in size from obliteration of the costophrenic angle to com-
plete whiteout of a hemithorax; HIV-infection is associated with a higher frequency 
of concomitant parenchymal disease [54, 55].

The pleural fluid profile is not different in HIV: exudative with an elevated white 
cell count dominated by lymphocytes [54]. Adenosine deaminase (ADA), a cheap 
and accessible T-lymphocyte enzyme assay, has a specificity and sensitivity of 
≥90% for tuberculosis at a cutoff value of ≥35 μm/L [56], and performs well even 
at low CD4 counts [57]. In high burden settings, the finding of a unilateral lympho-
cytic pleural effusion with elevated ADA in a young HIV-infected person has a very 
high positive predictive value for tuberculosis, and can be used as a basis for empiric 
antituberculosis therapy. Mycobacterial load in pleural fluid is low, and culture is 
usually negative; Xpert also performs poorly in pleural fluid [51, 52]. The definitive 
diagnostic procedure for suspected tuberculous pleural effusion is pleural biopsy, 
which has a high culture yield in HIV [58] and may also provide strongly supportive 
histological evidence (granulomatous inflammation and caseous necrosis). Other 
causes of pleural effusion in HIV include parapneumonic effusion (due to bacterial 
organisms), Kaposi sarcoma, cryptococcosis and primary effusion lymphoma; these 
(plus drug-resistant tuberculosis) should be excluded by pleural biopsy in patients 
not responding to empiric antituberculosis therapy for pleural effusion.

�Abdominal Tuberculosis

Abdominal involvement is a common feature of HIV-associated tuberculosis, occur-
ring either in association with disseminated disease or as a distinct syndrome. Any 
structure of the gastrointestinal tract may be affected, and the clinical presentation 
is strongly influenced by predominant disease site [59]. Abdominal symptoms and 
signs are non-specific in the context of disseminated tuberculosis, and include gen-
eralised pain, tenderness, and fever, reflecting peritoneal disease, intra-abdominal 
adenopathy, and hepato-splenic microabscesses. If present, organomegaly and asci-
tes are mild. Massive hepatosplenomegaly is not expected in abdominal tuberculo-
sis, and should raise suspicions of alternative diagnoses such as disseminated 
non-tuberculous mycobacteria, deep fungal infection, or lymphoma in HIV-infected 
patients. Abdominal tuberculosis may present acutely with a syndrome mimicking 
bacterial peritonitis. Perforation from ileal tuberculosis, and invasive salmonellosis, 
should be considered. Urgent treatment should be started with third generation 
cephalosporin (after performance of blood cultures), along with imaging and surgi-
cal review if available.

Yields from culture and Xpert testing of ascitic fluid are low, and diagnosis 
depends on detection of tuberculosis from other sites or indirect evidence. If ascites 
is sufficiently large for drainage, the fluid is characteristically exudative and lym-
phocytic. ADA levels ≥40  IU/L have a high sensitivity (100%) and specificity 
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(97%) for tuberculous peritonitis [60]. Use of abdominal ultrasound is an important 
diagnostic strategy for non-ambulant patients with HIV-associated tuberculosis: the 
presence of three abnormalities on POC ultrasound (including intra-abdominal ade-
nopathy, ascites, splenic lesions, pleural or pericardial effusion) has a positive likeli-
hood ratio >4.5, increasing the post-test probability of tuberculosis to >70% in high 
burden settings [Niel van Hoving, unpublished].

�Tuberculous Pericarditis

The incidence of tuberculous pericarditis has risen dramatically in HIV-endemic 
regions. In developing countries, tuberculosis is responsible for over 50% of cases 
of pericarditis, and up to 75% of patients with large pericardial effusions in sub-
Saharan Africa are HIV-infected, with tuberculosis the cause in most [61]. Pericardial 
tuberculosis manifests as three clinical syndromes, namely pericardial effusion (the 
most frequent), constrictive pericarditis, or as effusive-constrictive disease [62]. In 
addition to non-specific symptoms there is broad overlap of examination findings, 
and these syndromes can be difficult to differentiate. Chest pain, cough, reduced 
effort tolerance and classical constitutional symptoms associated with tuberculosis 
are common. Large pericardial effusions resulting in cardiac tamponade may mimic 
heart failure: cardiac dullness, pericardial friction rub, and pulsus paradoxus may be 
elicited. These signs, plus diastolic lift, may also be present in constrictive disease. 
In HIV, pericardial tuberculosis is more frequently associated with disseminated 
disease, as well as more severe manifestations including myopericarditis, dyspnoea, 
and haemodynamic instability [62]. HIV-infected patients also have a higher 
6-month mortality (40%) than those who are HIV-negative [63].

Diagnosis of tuberculosis pericarditis is challenging, requiring a combination of 
clinical features, electrocardiography, and cardiac imaging. Specific physical signs 
and electrocardiographic abnormalities may provide clues to the presence of peri-
cardial effusion, but confirmation requires cardiac ultrasound (Fig. 4c) (or echocar-
diography when available). Chest radiography is a useful adjunct to distinguish 
tuberculous pericarditis from other causes, with evidence of active pulmonary 
tuberculosis in 30% [64]. Intrapericardial fibrin strands and pericardial thickening 
on cardiac ultrasound or echocardiography are highly specific for tuberculosis [65, 
66]. Other possible causes of pericardial effusion in HIV include pyogenic (may be 
as co-infection with tuberculosis), cryptococcosis, Kaposi sarcoma and lymphoma, 
as well as malignancy (particularly in older patients with higher CD4 counts). 
Therefore, pericardiocentesis is recommended in all patients with suspected tuber-
culous pericarditis, even when the diagnosis is suggested by imaging, provided 
effusion is sufficiently large. As with tuberculous pleural effusions and ascites, peri-
cardial fluid is typically exudative with lymphocyte-predominant pleocytosis. The 
sensitivity (96%) and negative likelihood ratio (0.05) of ADA at a cutoff ≥35 IU/L 
was excellent in a South African cohort with pericardial effusion and a high preva-
lence of HIV infection, making this a valuable indirect test for a tuberculous aetiol-

S. Wasserman et al.



93

ogy [67]. Yield of smear microscopy and culture on pericardial fluid is variable but 
generally low [68], and overall diagnostic accuracy of Xpert is disappointing (sen-
sitivity 64%) precluding it as a rule-out test [67]. Pericardial biopsy should be con-
sidered in equivocal cases, older patients, and where there is poor clinical response 
to empiric antituberculosis therapy. Proposed diagnostic criteria for tuberculous 
pericarditis are shown in Table 4.

�Conclusions and Future Directions

HIV-associated tuberculosis is a heterogenous disease that confronts clinicians with 
substantial diagnostic challenge. Early recognition and treatment is urgent because 
of more severe manifestations and rapid progression in this population, particularly 
at low CD4 counts. Urine-based rapid diagnostics are an important advance but are 
not currently able to reliably exclude tuberculosis. Accurate clinical decision rules 
that integrate POC diagnostic tests on accessible clinical samples plus imaging 
(chest X-ray and ultrasound) are needed in high-burden, resource-limited settings to 
assist clinicians in early identification of HIV-associated tuberculosis. These should 
be validated in prospective cohort studies to assess impact on clinical outcomes and 
understand their optimal use. Machine learning algorithms are already being applied 
to large clinical and radiological datasets and in the near future may inform treat-
ment decisions through widely-available platforms such as smartphone applica-
tions. For now, clinicians should have an especially high index of suspicion for 
tuberculosis in any HIV-infected patient with rapid loss of weight and a reduced 
level of function. The decision to start empiric antituberculosis therapy depends 
mainly on the severity of the clinical presentation and access to diagnostic tests, 
with a lower threshold in ill patients or those with a rapidly deteriorating condition. 
When starting empiric treatment, clinicians should consider and exclude important 
alternative diagnoses and monitor patients carefully for response to treatment.

Table 4  Diagnostic criteria for HIV-associated tuberculous pericarditis in high burden settings 
(Adapted from Mayosi BM, Burgess LJ, Doubell AF. Tuberculous pericarditis. Circulation 2005; 
112(23): 3608–16)

Definite tuberculous pericarditis Probable tuberculous pericarditis

Positive microbiological (AFBs or positive 
M. tuberculosis culture) or molecular (Xpert) 
test on pericardial fluid or tissue.

Presence of pericardial effusion plus evidence 
(microbiological, molecular, or antigen) of 
tuberculosis elsewhere
Lymphocyte-predominant pericardial fluid 
with ADA ≥ 35 IU/L
Caseous granulomatous inflammation with or 
without visible AFBs on histological 
examination of pericardial tissue
Presence of pericardial effusion without 
confirmed tuberculosis and good response to 
empiric antituberculosis therapy
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Abstract  Initiation of antiretroviral therapy (ART) in HIV infected people with 
tuberculosis (TB) significantly improves their overall prognosis, but paradoxical 
worsening of the clinical or radiographic manifestations of TB can occur during the 
initial weeks of ART, a phenomenon that is called immune reconstitution inflamma-
tory syndrome or IRIS. Paradoxical TB-IRIS occurs in patients initiating ART while 
established on TB treatment and presents with systemic and/or localized symptoms 
and signs. Patients with more severe CD4 lymphopenia, disseminated TB and more 
rapid initiation of ART after TB diagnosis are at higher risk. TB-IRIS is thought to 
represent an aberrant inflammatory response in patients with low CD4 counts and 
high mycobacterial burden when HIV plasma viremia is suppressed leading to 
hyperactivation of the innate immune system, especially myeloid cells with inflam-
masome activation. This triggers exuberant TB-specific CD4 T cell responses and 
release of proinflammatory cytokines likely resulting in activation of tissue macro-
phages with production of matrix metalloproteinases contributing to tissue pathol-
ogy. Apart from drainage of suppurative lesions, treatment with prednisone can 
alleviate many of the symptoms. Prednisone was also shown to reduce the incidence 
of paradoxical TB-IRIS in a placebo-controlled clinical trial that enrolled high risk 
patients with CD4 counts less than 100 cells/μL when starting ART.
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�Introduction

When patients with advanced HIV infection initiate antiretroviral therapy (ART), 
provided adherence is optimal and their virus does not harbor primary drug resis-
tance, there is predictably a rapid decline in HIV viral load and recovery of immune 
function in the vast majority. Since the mid-1990’s, combination ART, usually with 
a combination of 3 drugs, has made it possible to achieve sustained suppression of 
HIV viral load in plasma to below 50 copies/mL. This allows for both quantitative 
and qualitative reversal of the immune suppression caused by HIV. After initiation 
of ART, the majority of patients achieve a CD4 count greater 200 cells/mm3 [1]. 
Autran and colleagues [2] demonstrated that there are three phases of T cell recon-
stitution. There is an early rise of memory CD4 T cells. This is thought to reflect 
recirculation of cells previously recruited into productively infected tissues once 
viral replication is suppressed. There is little de novo production of immune cells in 
the first 2–3 months of ART [3]. The second phase is characterized by a reduction 
in T cell activation with improved CD4 T cell reactivity to recall antigens. There is 
a later rise of naïve CD4 T cells while CD8 T cells decline [2]. The regeneration of 
naïve CD4 T cells is accompanied by restoration in the diversity of the CD4 T cell 
receptor repertoire [4].

Therefore, while it may take years for patients with a very low CD4 count to 
recover within the normal range, even in the first few weeks of ART there is usually 
a rise in CD4 counts accompanied by other functional improvements in immune 
responses involving CD4 cells and other components of the immune system. During 
early ART when there is rapid decline in HIV viral load and early immune recovery, 
patients who have concurrent active TB may manifest inflammatory features associ-
ated with TB disease. Such immunopathological reactions are thought to result from 
the recovering immune system reacting to Mycobacterium tuberculosis antigen 
present in tissue at the site of disease, and this condition has been termed the 
TB-associated immune reconstitution inflammatory syndrome (TB-IRIS).

Two forms of TB-IRIS are recognized: paradoxical and unmasking [5, 6]. 
Paradoxical TB-IRIS occurs in patients diagnosed with active TB and started on TB 
treatment prior to starting ART. Typically they have had a favorable clinical response 
to TB treatment, then after starting ART present with clinical deterioration mani-
festing as recurrent, worsening or new TB symptoms and signs or radiographic 
deterioration. Unmasking TB-IRIS occurs in patients with active but undiagnosed 
TB prior to ART, who develop an exaggerated inflammatory presentation of TB dur-
ing early ART (Fig. 1). Not all patients diagnosed with active TB during early ART 
are regarded as having unmasking TB-IRIS, but rather a subset with more inflam-
matory presentations. Consensus case definitions for both forms of TB-IRIS were 
developed by the International Network for the Study of HIV-associated IRIS 
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(INSHI) [5]. The major focus of this chapter is paradoxical TB-IRIS (Section 1), but 
in Section 2 we discuss unmasking TB-IRIS. In Section 3 the immune mechanisms 
underlying TB-IRIS are discussed.

IRIS is also described in association with a wide range of other infections, 
including fungal infections (e.g. cryptococcosis), viral infections (e.g. hepatitis B), 
protozoal infections (e.g. toxoplamosis) and malignancies (e.g. Kaposi’s sarcoma) 
[7]. However, TB-IRIS is the most significant form of IRIS in ART programmes 
globally, given that TB is the most common co-infection affecting patients with 
advanced HIV and because of the severity of TB-IRIS complications.

�Section 1: Clinical Aspects of Paradoxical TB-IRIS

�Clinical Features

The most common manifestations observed in paradoxical TB-IRIS are pulmonary 
and nodal. Pulmonary features manifest with recurrent or worsening respiratory 
symptoms, such as cough, chest pain and dyspnea. The chest radiograph typically 
shows worsening pulmonary infiltration (example in Fig. 2). This may include non-
confluent infiltrates, consolidation or miliary infiltrates. New cavitation due to 
TB-IRIS has also been described. Worsening of pulmonary inflammation may also 
be assessed using FDG PET-CT scanning (examples in Fig. 3). Patients may develop 
deterioration in pulmonary function assessed by spirometry [8]. Nodal TB-IRIS 
manifests with new or increasing enlargement of TB lymph nodes. This most fre-
quently affects cervical nodes but may also involve thoracic, abdominal, axillary or 
inguinal nodes. Frequently, the nodes enlarge with accompanying features of acute 
inflammation such as red and tender overlying skin (example in Fig.  4). Often, 
nodes enlarging due to TB-IRIS suppurate and become fluctuant within a few 
weeks, and chronic draining sinuses may form. TB-IRIS may also manifest with the 
formation of tubercular abscesses such as psoas abscesses, that may be chronic 
(example in Fig. 5).

Patients on
TB treatment

Paradoxical
TB-IRIS

ART

Patients not on
TB treatment

ART-associated TBART

Unmasking TB-IRIS

Fig. 1  Schema illustrating timing of initiation of TB treatment and antiretroviral therapy (ART) in 
relation to different forms of TB-IRIS
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Fig. 2  This patient with HIV-associated pulmonary TB started ART after TB treatment. Three 
weeks after starting ART he developed recurrent fatigue, drenching night sweats, and left sided 
pleuritic chest pain and weight loss of 3 kg. Chest radiograph showed extension of the left sided 
infiltrate (b) compared to the baseline radiograph (a). The TB-IRIS was treated with prednisone 
with rapid symptom resolution over the next 2 weeks

Fig. 3  FDG PET-CT fusion images of adult patients with HIV and pulmonary TB. Figures (a–c) 
show pre-ART scans in three patients. Figures (d–F) show pre-ART (top) and week-4 (bottom) 
scans in three different patients who experienced increases in pulmonary glycolytic activity after 
ART initiation. Brightness of enhancement is due to metabolic activity of cells, and specifically 
FDG uptake into cells. These increases in pulmonary enhancement on ART have been associated 
with lung function impairment
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Fig. 4  This patient developed massive enlargement of cervical nodes due to TB-IRIS soon after 
starting ART while on TB treatment. The nodes had red overlying skin (panel A) and were tender 
to palpation. After needle aspiration of pus there was chronic drainage through a sinus for several 
months with eventual decrease in size and subsequent resolution

Fig. 5  30-year-old woman 
with paradoxical TB-IRIS 
manifesting as severe left 
thigh pain with inability to 
walk. Computerized 
tomography showing an 
extensive multiloculated 
psoas abscess that required 
drainage by Interventional 
Radiology. More details of 
the clinical history have 
been previously reported 
[54]

Serositis is another common feature of TB-IRIS. This may manifest with new or 
enlarging pleural effusions, pericardial effusions or ascites. Rapid enlargement of 
pleural effusions may cause significant dyspnea, while rapid enlargement of peri-
cardial effusions may be life threatening due to development of cardiac tamponade 
requiring emergency intervention. TB-IRIS may also manifest with the clinical sign 
of perotinism presumably due to the development of IRIS-related inflammation on 
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the peritoneal surface. Clinicians must obviously exclude other causes (e.g. bowel 
perforation) before ascribing symptoms and signs to TB-IRIS. Chylous ascites and 
chylothorax have also been described as complications of TB-IRIS [9].

TB-IRIS may affect a number of intra-abdominal organs. Liver involvement may 
manifest with right upper quadrant pain, nausea and vomiting and tender hepato-
megaly [10]. Liver function derangements are predominantly of cholestatic enzymes 
(alkaline phosphatase and gamma-glutamyl transferase) [11]. Patients may develop 
mild jaundice. Liver histology shows granulomas. It is presumed that this inflamma-
tory response is targeting antigens of Mycobacterium tuberculosis in liver tissue in 
the context of disseminated TB. It may be challenging to differentiate presentations 
of hepatic TB-IRIS from drug-induced liver injury—either a trial of interruption of 
hepatotoxic medications or a liver biopsy may be required to differentiate. Splenic 
TB-IRIS may manifest as splenomegaly or abscess formation in the spleen visual-
ized on imaging (example in Fig. 6). There are rare case reports of splenic rupture 
due to TB-IRIS [12]. Intestinal involvement is not frequently apparent, but there is 
a case report of intestinal perforation due to TB-IRIS and some patients do develop 
diarrhea at the time of TB-IRIS onset perhaps reflecting intestinal involvement. 

Fig. 6  45-year-old man 
with disseminated TB and 
suspected TB multiple 
splenic abscesses at the 
start of ART. He developed 
paradoxical TB IRIS after 
starting ART manifesting 
mostly with fevers and left 
upper quadrant abdominal 
as well as left shoulder 
pain. Computerized 
tomography (D) after ART 
initiation showed multiple 
new splenic abscesses. 
Pain resolved after months 
of continuing ART and 
corticosteroids for TB-IRIS 
treatment
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Renal involvement may manifest with renal dysfunction (rising blood urea and cre-
atinine) [13]. A renal biopsy is required to make a definitive diagnosis (a 
granulomatous infiltrate of the kidney is present) and exclude other causes of renal 
impairment (e.g. tenofovir nephrotoxicity).

The most severe presentations of TB-IRIS are when it involves the central ner-
vous system. This may take the form of recurrent or new meningitis, formation or 
enlargement of cerebral tuberculomas or abscesses (often with associated cerebral 
oedema), and radiculomyelitis presenting with paraparesis [14]. The typical setting 
for this is a patient diagnosed with TB meningitis and started on TB treatment prior 
to starting ART, who initially has improvement in neurological symptoms and signs, 
but has neurologic deterioration after starting ART. However, CNS involvement is 
sometimes only recognized at the time of TB-IRIS presentation, for example as in a 
patient who is diagnosed and treated for pulmonary TB who subsequently develops 
new meningitis due to TB-IRIS after commencing ART or tuberculomas (undiag-
nosed at ART initiation) flaring with localizing symptoms [14, 15]. In such cases it 
is presumed that the dissemination of TB to the CNS was subclinical prior to ART, 
but becomes manifest due to recovering immune responses. One study found that 
patients who developed TB-IRIS had higher neutrophil numbers in the cerebrospi-
nal fluid (CSF) at the time of TB meningitis diagnosis, and that the development of 
TBM-IRIS was associated with a recurrent increase in CSF neutrophils during early 
ART [16]. Neurologic TB-IRIS is discussed in more detail in chapter “Neurological 
Tuberculosis in HIV”.

Patients with TB-IRIS frequently have symptoms and signs of systemic inflam-
mation including fevers, night sweats, tachycardia and weight loss. Less common 
manifestations that have been reported include ureteric compression, epipidymo-
orchitis, arthritis and osteitis (example in Fig. 7). Deep vein thromboses occurring 
at the time of TB-IRIS have also been reported.

Fig. 7  41-year-old man with miliary TB and right knee TB arthritis with tibial osteomyelitis 
developed fevers and exacerbation of knee arthritis with swelling and pain 2 weeks after ART 
initiation. Magnetic resonance tomography (T2) showing bright enhancing lateral tibial lesion 
with cortical disruption. Further details of the clinical presentation and management have been 
previously reported [9]
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�Duration

Early cohort studies of TB-IRIS reported that the median duration of symptoms was 
2–3 months [17–19]. A small proportion of cases had symptoms lasting over one 
year and a case with a recurrence 4 years after ART initiation was also described 
[20]. A more recent publication [21] that pooled data from 3 prospective studies 
conducted in South Africa, in which 216 patients with TB-IRIS were included and 
followed up, reported the median duration of TB-IRIS symptoms was 71 days 
(interquartile range, 41–113). In 73/181 patients (40.3%) with adequate follow-up 
data, IRIS duration was longer than 90 days. Six patients (3.3%), mainly with lymph 
node involvement, had IRIS duration of over 1 year. In multivariate analysis, lymph 
node TB-IRIS was one of the factors associated with prolonged TB-IRIS.

�Diagnosis

The diagnosis of paradoxical TB-IRIS relies on a compatible clinical assessment 
and exclusion of relevant differential diagnoses pertinent to the individual patient, 
as there are no confirmatory laboratory tests. The typical scenario is that of a patient 
with HIV-associated TB who is started on TB treatment and experiences clinical 
improvement then starts ART and within the first 3 months, and most frequently 
within the first month, of ART develops new, recurrent or worsening symptoms and 
inflammatory signs of TB disease. The differential diagnoses to exclude will depend 
on the clinical presentation and the immunologic status of the patient (particularly 
CD4 count). For example, in patients who present with recurrent respiratory symp-
toms and new infiltrates on chest radiograph, the differential diagnosis may include 
bacterial, viral and pneumocystis pneumonia. In such cases, empiric treatment for 
bacterial pneumonia and diagnostic work-up for pneumocystis pneumonia may be 
considered before a diagnosis of TB-IRIS is made. An important differential diag-
nosis in all presentations is drug-resistant TB or non-adherence to medications, as 
patients may deteriorate clinically for these reasons and these scenarios may mimic 
or even co-exist with a TB-IRIS presentation [11]. In order to standardize the diag-
nosis of TB-IRIS across research studies and to assist clinicians in the diagnosis, 
INSHI published case definitions for TB-IRIS in 2008. The case definition for para-
doxical TB-IRIS is shown in Table 1. This case definition has been validated in 
several subsequent studies [22–24].
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�Incidence

A wide range of incidence estimates for paradoxical TB-IRIS have been reported 
from retrospective and prospective cohort studies and randomized controlled trials 
of patients with HIV-associated TB starting ART. These were summarized in a sys-
tematic review and meta-analysis published in 2015 that included data from 40 
studies [25]. Across the 40 studies that were included there were 7789 patients who 
were at risk for paradoxical TB-IRIS (i.e. with a diagnosis of HIV-associated TB 
and initiating ART); 1048 of these patients were diagnosed with TB-IRIS after ini-
tiating ART. The pooled incidence of paradoxical TB-IRIS across studies was 18% 
(95% CI: 16–21%), but estimates varied widely across individual studies from 0% 
to 54%. The pooled incidence reported from prospective observational studies was 
23%, retrospective observational studies 16% and randomized controlled trials 16%.

Table 1  INSHI case definition for paradoxical TB-IRIS

There are 3 components to this case definition:
A. Antecedent requirements
Both of the 2 following requirements must be met:
�1. � Diagnosis of TB: the TB diagnosis was made before starting ART and this should  

fulfil WHO criteria for diagnosis of smear-positive PTB, smear-negative PTB  
or extrapulmonary TB

�2. � Initial response to TB treatment: the patient’s condition should have stabilised or improved 
on appropriate TB treatment before ART initiation—e.g. cessation of night sweats, fevers, 
cough, weight loss. (Note: this does not apply to patients starting ART within 2 weeks of 
starting TB treatment since insufficient time may have elapsed for a clinical response to be 
reported)

B. Clinical criteria
The onset of TB-IRIS manifestations should be within 3 months of ART initiation, re-initiation, 
or regimen change because of treatment failure. Of the following, at least 1 major criterion or 2 
minor clinical criteria are required:
Major criteria
�1. � New or enlarging lymph nodes, cold abscesses or other focal tissue involvement—e.g. 

tuberculous arthritis
�2. � New or worsening radiological features of TB (found by chest X-ray, abdominal US,  

CT or MRI)
3. � New or worsening central nervous system TB (meningitis or focal neurological deficit—

e.g. caused by tuberculoma)
4.  New or worsening serositis (pleural effusion, ascites, or pericardial effusion)
Minor criteria
1.  New or worsening constitutional symptoms such as fever, night sweats, or weight loss
2.  New or worsening respiratory symptoms such as cough, dyspnoea, or stridor
3. � New or worsening abdominal pain accompanied by peritonitis, hepatomegaly, 

splenomegaly, or abdominal adenopathy
C. Alternative explanations for clinical deterioration must be excluded if possible
1.  Failure of TB treatment due to TB drug resistance
2.  Poor adherence to TB treatment
3. � Another opportunistic infection or neoplasm (it is particularly important to exclude an 

alternative diagnosis in patients with smear-negative PTB and extrapulmonary TB where 
the initial TB diagnosis has not been microbiologically confirmed)

4.  Drug toxicity or reaction
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The considerable heterogeneity in estimates across studies likely relates to two 
main factors: differences in methods of ascertainment of TB-IRIS cases and the 
underlying prevalence of risk factors for TB-IRIS in the studied population. 
Prospective studies that use a standardised case definition for TB-IRIS with regular 
clinical follow-up and questioning regarding symptoms of TB-IRIS would be more 
likely to ascertain cases that may be missed during routine clinical follow-up. The 
prevalence of baseline risk factors in the study population appears to be an impor-
tant determinant of incidence in that cohort. Since the publication of the systematic 
review, two studies conducted in South Africa have reported incidence rates of 
around 50% when patients with low CD4 counts starting ART with a short delay 
from TB treatment are studied. In the PredART randomized controlled trial (dis-
cussed in detail in Prevention section below), patients in the placebo arm experi-
enced TB-IRIS with an incidence of 46.7%; these patients had median CD4 count 
of 51 cells/mm3 (all had a CD4 count < 100 cell/mm3) and started ART a median of 
16 days after TB treatment (interquartile range, 15–22) [26]. In another cohort study 
done in the same clinic, 57 ART-naive TB patients with CD4 counts <200 cells/mm3 
were enrolled and followed up after initiating ART: TB-IRIS was diagnosed in 29 of 
49 (59.2%) patients who completed follow-up. In this cohort, the median duration 
from TB treatment to ART initiation was 15 days in patients that developed TB-IRIS 
and 22 days in those who did not [27].

�Risk Factors

Across studies the risk factors most consistently associated with TB-IRIS include 
lower baseline CD4 count, higher baseline HIV viral load, short interval between 
TB treatment and ART initiation, and extra-pulmonary or disseminated TB. The 
association between a short interval from initiation of TB treatment to ART may 
reflect that a higher mycobacterial load and thus greater antigen stimulus increases 
TB-IRIS risk. Another risk factor, lower CD4 count, is a marker of immunosuppres-
sion and this in turn may be associated with a higher mycobacterial load due to TB 
dissemination.

Many studies have reported that a baseline CD4 count < 50 cells/mm3 is associ-
ated with TB-IRIS [25]. The SAPIT, CAMELIA and STRIDE clinical trials all 
reported that lower baseline CD4 count and higher baseline HIV viral load were 
independent risk factors for paradoxical TB-IRIS in multivariate analyses [28–30]. 
Certain studies (including the CAMELIA trial [30]) have reported that a faster rise 
in CD4 count during early ART is associated with increased TB-IRIS risk, whereas 
other studies have reported a faster decline in HIV viral load to be associated [25].

Several early observational studies reported an association between the interval 
from initiating TB treatment to initiating ART and the risk of TB-IRIS [31–33]. An 
interval less than 60 days was a significant risk factor in a Spanish retrospective 
study [34]. In a UK retrospective study, an interval less than 6 weeks was associated 
with higher risk of TB-IRIS [35]. A prospective cohort study conducted in India 
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reported that an interval of less than 30 days was a risk factor for TB-IRIS [31]. In 
a retrospective study conducted in Thailand, an interval of less than 60 days was 
found to be a significant risk factor after adjustment (odds ratio = 6.57; 95%CI: 
1.61–26.86) [33]. In a retrospective observational study conducted in South Africa, 
an interval less than 30 days compared with greater than 90 days was a significant 
risk factor for TB-IRIS in multivariate analysis [14]. By contrast, in several studies 
the risk of paradoxical TB-IRIS was not associated with duration of TB treatment at 
ART initiation [36–38].

However, observational studies are prone to potential bias when addressing the 
association between ART timing and TB-IRIS; particularly confounding by indica-
tion given that clinicians are likely to initiate the sickest patients (those with low 
CD4 counts and disseminated TB) on ART more rapidly and this may contribute to 
the observed association. However, the association between earlier ART and 
TB-IRIS has subsequently been confirmed in several randomised controlled trials of 
ART timing in TB patients, which eliminates such biases. These trials were meta-
analysed with the key finding with respect to TB-IRIS risk being that starting ART 
1–4 weeks (early) versus 8–12 weeks (delayed) after starting TB treatment increases 
the risk for TB-IRIS 2.3-fold [39]. This meta-analysis is discussed in more detail in 
the Prevention section below. This provides strong evidence that earlier ART does 
indeed increase the risk of paradoxical TB-IRIS.

Extra-pulmonary or disseminated tuberculosis has been associated with an 
increased risk for paradoxical TB-IRIS; the magnitude of the increased risk varying 
from around 2- to 9-fold higher across studies [22, 30, 33, 38, 40, 41]. This likely 
reflects that a higher Mycobacterium tuberculosis antigen load is more likely to 
provoke the inflammatory response in tissues that results in the clinical presentation 
of TB-IRIS. Another line of evidence to support this is that studies have reported an 
association between paradoxical TB-IRIS and a positive urine lipo-arabinomannan 
(LAM) assay [27, 42, 43]. A positive urine LAM assay is thought to be a marker of 
dissemination of TB to the kidney in patients with advanced HIV [44]. Also, a 
cohort study of patients with TB meningitis starting ART, reported that having a TB 
culture positive in cerebrospinal fluid at the time of TB meningitis diagnosis was 
associated with a heightened risk of developing TB meningitis IRIS [16].

Concerns have been raised that the integrase strand transfer (InSTI) class of ART 
drugs may increase the risk for IRIS because, compared with other ART classes, 
they result in more rapid HIV viral load decline and CD4 cell count increase during 
initial ART [45]. Retrospective observational cohort studies have reported a 2 to 
3-fold increase in IRIS in general with the InSTI class, but there were few TB-IRIS 
cases in these studies [46, 47]. In the INSPIRING trial that evaluated dolutegravir 
versus efavirenz-based ART in patients with HIV-associated TB there was no differ-
ence in the proportion of participants developing TB-IRIS in the dolutegravir (6%) 
compared with the efavirenz (9%) arms [48]. This finding is similar to that of the 
Reflate TB trial which compared two different doses of raltegravir to efavirenz in 
patients with HIV-associated TB: TB-IRIS occurred in 10% of patients in the efavi-
renz arm and in 6% in the raltegravir arms [49]. Therefore, based on prospective 
evidence, InSTIs do not appear to be associated with an increased risk for 
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TB-IRIS. An important consideration, however, is that patients at the highest risk 
for TB-IRIS (i.e. those with low CD4 counts) were under-represented in both the 
INSPIRING and the Reflate TB trials.

This question of whether InSTIs increase the risk for IRIS in general was also 
addressed in a secondary analysis from the REALITY trial (n = 1805, 15% were on 
TB treatment at study entry) [50]. One of the randomizations in this trial was to 
receive raltegravir plus standard ART versus standard ART alone (predominantly 
tenofovir, emtricitabine and efavirenz). Patients were followed for IRIS events 
(including those related to specific infections) and IRIS-related death. As expected, 
patients in the raltegravir arm had a significantly more rapid decline in plasma HIV 
viral load. However, there was no difference in IRIS-related mortality, overall IRIS 
events or IRIS events related to specific infections, including TB-IRIS. Cumulative 
incidence rates were similar between arms with IRIS occurring in 9.9% of patients 
in the raltegravir arm and 9.5% of patients in the no raltegravir arm. TB-IRIS was 
the most common IRIS event, occurring in 5.9% and 6.0% respectively. Future stud-
ies that include more patients at high risk for TB-IRIS will need to evaluate whether 
the InSTI class increases the risk for TB-IRIS.

�Consequences

The consequences of paradoxical TB-IRIS include hospitalisation, the need for 
diagnostic and therapeutic procedures, and in some instances the use of antibiotics 
that are not required. This has health care resource implications in high burden set-
tings. In a meta-analysis, 25% of patients who developed paradoxical TB-IRIS were 
hospitalized, with a range of 3–54% across studies, while 17%, with a range of 
2–77%, required a therapeutic procedure [25]. Therapeutic procedures included 
aspiration or surgical drainage of lymph nodes and abscesses, aspiration of serous 
effusions and laparotomies.

In the past, clinicians interrupted ART in some patients who developed IRIS. This 
is seldom done currently unless IRIS is life-threatening where it may be considered. 
Interruption of ART may predispose to ART drug resistance and may result in wors-
ening immunosuppression and risk of other opportunistic infections. IRIS may 
potentially negatively impact ART adherence, but in one study adherence was only 
slightly lower in patients who developed IRIS [51].

The all-cause mortality among paradoxical TB-IRIS cases was 7% (95% CI: 
4–11%) and death attributable to paradoxical TB-IRIS occurred in 2% (95% CI: 
1–3%) of TB-IRIS cases in a meta-analysis [25]. Although mortality due to TB-IRIS 
is uncommon overall, when the central nervous system is affected the condition is 
potentially life-threatening. In an Indian cohort study, 5 of 13 patients with para-
doxical TB-IRIS died and TB-IRIS meningitis was the cause in 3 [52]. In a South 
African study, 4 of 16 patients diagnosed TB meningitis IRIS died and in 2, death 
was directly attributed to neurologic TB-IRIS [16]. In another Indian cohort study 
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the 2 TB-IRIS deaths that occurred were also in patients with neurological involve-
ment [31].

Recent studies suggest that acute increases in pulmonary inflammation are com-
mon in patients initiating ART with pulmonary TB, and that these increases are 
associated with decreases in lung function as assessed by spirometry. In one pro-
spective cohort study from South Africa, clinically significant decreases in pulmo-
nary function occurred in the first 4 weeks of ART in approximately half of all 
patients with TB who initiated ART, and decreases in lung function at week 4 were 
associated with worse lung function up to 24 weeks after TB treatment completion. 
Furthermore, in one study from Botswana, more rapid increases in CD4 cell count 
in the first 4 weeks on ART were associated with more limited lung function several 
months after TB was cured. These findings raise the possibility that immune restora-
tion may trigger pulmonary damage that persists after TB cure. As has been noted 
from chest radiograph studies of HIV-infected patients with TB, low CD4 counts 
are associated with less lung infiltration at diagnosis. It is therefore plausible, and 
noted in the clinic not infrequently, that as CD4 cell counts recover lung involve-
ment subsequently increases, usually in association with TB-IRIS symptoms [8].

�Treatment

One randomised controlled trial has been conducted assessing treatment of para-
doxical TB-IRIS.  In this single-centre double-blind, placebo-controlled trial 110 
participants with a clinical diagnosis of TB-IRIS were randomised to prednisone 
(1.5 mg/ kg per day for 2 weeks followed by 0.75 mg/kg per day for 2 weeks) or 
identical placebo [53]. Patients with immediately life-threatening TB-IRIS manifes-
tations were excluded. The primary combined endpoint was days of hospitalization 
and outpatient therapeutic procedures. Procedures were counted as one hospital day. 
This primary endpoint was more frequent in the placebo arm (median hospital days 
3 versus 0; p=0.04). There was more rapid improvement in symptoms, quality of 
life score and chest radiograph score in the prednisone arm. Infections occurred in 
more participants in the prednisone arm (mainly oral candida and uncomplicated 
herpes simplex), but there was no difference in severe infections. We suggest that 
patients with a clinical diagnosis of paradoxical TB-IRIS and without contra-
indications to corticosteroids should be treated with a course of prednisone starting 
at 1.5mg/kg/day and weaning over 4 weeks. Some patients require longer courses of 
prednisone because their symptoms recur on weaning or stopping prednisone. 
Kaposi’s sarcoma may worsen due to corticosteroids, so corticosteroids should be 
avoided in patients with this condition unless TB-IRIS is life-threatening [54].

In the Namale meta-analysis [25], 23 studies reported corticosteroid use, while 10 
reported Non-steroidal anti-inflammatory drug (NSAID) use. Including only these 
studies, 28% of TB-IRIS cases were prescribed NSAID while 38% were prescribed 
corticosteroids, most frequently prednisone or prednisolone. In a retrospective cohort 
study conducted in France, of 34 patients managed with TB-IRIS, corticosteroids 
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were prescribed in 61% and had no significant side effects apart from a trend towards 
a lower CD4 count at 12 months [55]. Such a trend was not observed in the ran-
domised controlled trial of prednisone for TB-IRIS treatment [53].

NSAIDs have also been used to treat mild manifestations with anecdotal reports 
of benefit. In refractory cases, thalidomide, TNF-blockers and interleukin-6 block-
ers have been used [6, 9]. Aspiration procedures (e.g. lymph node aspiration, peri-
cardiocentesis) may be required to relieve symptoms or mitigate complications. 
Interruption of ART is generally not advised. In the majority of patients with 
TB-IRIS, TB treatment does not need to be prolonged beyond 6 months. However, 
in patients with abscesses or tuberculomas that are present for longer than 6 months 
after starting TB treatment most clinicians would opt to prolong the treatment.

�Prevention

There are two strategies that have been demonstrated in randomized controlled tri-
als to reduce the incidence of paradoxical TB-IRIS: (1) deferring ART to 8–12 
weeks after initiation of TB treatment; and (2) moderate dose prednisone to cover 
the first 4 weeks of ART.

A meta-analysis of trials that compared starting ART 1–4 weeks (early) versus 
8–12 weeks (delayed) after starting TB treatment in patients with HIV-associated 
TB found that starting ART in the earlier time window was associated with a more 
than two-fold increase in the risk of paradoxical TB-IRIS. There were 1450 patients 
from 6 trials included in this component of the meta-analysis: in those who received 
early ART, 17.5% developed TB-IRIS compared with 8.3% in the delayed ART 
group (relative risk (RR) = 2.31 (95%CI= 1.87–2.86)). This heightened risk of 
TB-IRIS associated with early ART was observed for both patients with CD4 count 
<50 cells/mm3 (RR = 2.50 (95%CI = 1.84–3.40)) and in those with a CD4 count >50 
cells/mm3 (RR = 2.21 (95%CI = 1.50–3.24)). Thus deferring ART to 8–12 weeks 
after starting TB treatment will reduce the incidence of TB-IRIS by more than 50%. 
However, deferring ART to reduce the risk of TB-IRIS can only be recommended in 
patients with CD4 counts > 50 cells/mm3 and no urgent clinical indication to start 
ART (e.g. Kaposi’s sarcoma). In the same meta-analysis, in patients with a CD4 
count < 50 cells/mm3 delaying ART until 8–12 weeks after starting TB treatment 
was associated with an increased risk of death; mortality in these patients was 29% 
lower in those who started early ART compared with deferred ART. There was no 
difference in mortality in the early versus delayed ART arms for patients with CD4 
count > 50 cells/mm3 (RR = 1.05 (95%CI = 0.68–1.61)). In line with this, the World 
Health Organisation guidelines recommend that TB treatment should be initiated 
first in patients with HIV-associated TB followed by ART within the first 8 weeks of 
treatment. Furthermore, they advise that patients with CD4 count < 50 cells/mm3 
should receive ART within 2 weeks of initiating TB treatment [56].

Given that patients with low CD4 counts have a higher risk of TB-IRIS that is 
further exacerbated by starting ART early after TB treatment (which is nonetheless 
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indicated because it improves survival) it is important to consider adjunctive 
strategies for preventing TB-IRIS. The PredART trial investigated whether a moder-
ate dose of prednisone to cover the first 4 weeks of ART could safely reduce the 
incidence of TB-IRIS in patients with HIV-associated TB who were at high risk for 
TB-IRIS when starting ART [26]. This was a randomized, double-blind, placebo-
controlled trial that enrolled 240 HIV-positive ART-naïve patients initiating ART 
who had started TB treatment within 30 days before initiating ART, and had a CD4 
count of 100 cells/mm3 or less. Patients were randomised to receive either predni-
sone (at a dose of 40 mg/day for 14 days and then 20 mg/day for 14 days) or pla-
cebo. Paradoxical TB-IRIS was diagnosed in 39/120 patients (32.5%) in the 
prednisone arm and in 56/120 (46.7%) in the placebo arm (RR  =  0.70; 
95%CI = 0.51–0.96). Open-label corticosteroids were prescribed to treat TB-IRIS 
in 13% in the prednisone arm and in 28% in the placebo arm (RR  =  0.47; 
95%CI = 0.27–0.81). There was no difference in mortality between the two arms 
and prednisone was not associated with an excess risk of severe infections nor 
Kaposi’s sarcoma. Whether higher doses of prednisone may have a more substantial 
impact on reducing the risk of TB-IRIS and whether higher doses are safe in this 
patient population could be investigated in future clinical trials. Based on the find-
ings of the PredART trial, a 4-week course of prednisone could be used in clinical 
practice for preventing TB-IRIS in patients with TB and CD4 count less than or 
equal to 100 cells/mm3 starting ART at the dose used in the trial. This recommenda-
tion does not apply to patients also diagnosed with conditions that could be wors-
ened by corticosteroids (e.g. Kaposi’s sarcoma, uncontrolled diabetes).

Other strategies proposed for preventing IRIS have been maraviroc and NSAIDs. 
Maraviroc is an ART drug that also potentially blocks immune cell migration to tis-
sue by blocking the chemokine receptor CCR5. In a clinical trial of maraviroc ver-
sus placebo added to three drug ART, maraviroc was not associated with a reduced 
risk of IRIS. This trial did not specifically focus on TB patients and only 64 of the 
276 participants (23%) had a diagnosis of TB at baseline. The baseline CD4 count 
was a median of 32 (placebo arm) and 36 (maraviroc arm) cells/mm3. IRIS in gen-
eral was not less common in participants who received maraviroc versus placebo 
(24% versus 23% respectively, p = 0.74). Specifically for paradoxical TB-IRIS, this 
was diagnosed in 8 (6% of all in maraviroc arm) versus 9 (7% of all in placebo arm) 
participants (p  =  0.80) [57]. Neither NSAIDs nor any other immunomodulatory 
agents have been investigated for preventing TB-IRIS in a clinical trial.

�Section 2: Clinical Aspects of Unmasking TB-IRIS

In settings with a high epidemiologic burden of TB, a substantial proportion of 
patients who present (or re-present) for HIV care do so with active TB, either overtly 
symptomatic or subclinical TB. Many of these patients will be diagnosed with TB 
and started on TB treatment before starting ART. However, because of the imperfect 
diagnostic sensitivity of TB diagnostics (particularly sputum smear), their limited 
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availability, as well as health care workers occasionally missing symptoms of TB, a 
proportion of these patients will be started on ART with undiagnosed active 
TB. Such patients will then frequently be diagnosed with active TB during the first 
3 months of ART when their symptoms manifest or worsen. High TB incidence 
rates (5.6–23 TB cases per 100 person years) in the first 3 months of ART have been 
reported from developing country ART programs [58–60]. Such presentations have 
been termed ART-associated TB [5]. A subset of these patients will present with 
unmasking TB-IRIS in the first 3 months of ART that the INSHI case definition for 
unmasking TB-IRIS [5] characterises as:

•	 Heightened intensity of clinical manifestations, particularly if there is evidence 
of a marked inflammatory component to the presentation.

•	 Once established on tuberculosis treatment, a clinical course that is complicated 
by a paradoxical reaction.

Examples of unmasking TB-IRIS include patients who present with pulmonary 
TB in the first few weeks after starting ART with rapid progression of symptoms 
and respiratory distress at presentation (a presentation that resembles a bacterial 
pneumonia). There is a case report of a patient who required mechanical ventilation 
for adult respiratory distress syndrome associated with miliary TB during early 
ART [61]. A fatal case of unmasking TB-IRIS presenting after 6 weeks on ART was 
shown at postmortem to have extensive infiltrate of the upper lobe of the right lung, 
with histology suggestive of bronchiolitis obliterans organizing pneumonia [62]. 
Another example is patients who present with cerebral tuberculomas and severe 
neurological deficits soon after starting ART. Also, patients who present with nodal 
TB after starting ART may manifest with paradoxical worsening even after being 
started on TB treatment, and may have a similar prolonged clinical course similar to 
patients with paradoxical TB-IRIS. Breen and colleagues reported 13 patients diag-
nosed with active TB in the first 3 months of ART. These patients developed para-
doxical reactions more frequently (62%) than patients who were diagnosed with TB 
later on ART (0%) [63]. The clinical manifestations and incidence rate of unmask-
ing TB-IRIS is less well characterised than paradoxical TB-IRIS with fewer cases 
reported in the literature. Incidence is likely influenced by baseline CD4 count of 
the cohort, screening and diagnostic practices for TB and local practices with 
respect to starting empiric TB treatment in patients with TB symptoms prior to ART.

It is important to note that not all patients with undiagnosed TB at the time of 
starting ART will develop unmasking TB-IRIS, but only a subgroup. Many will 
present with TB in a manner that is typical and without heightened inflammatory 
features [64]. In our experience, it is patients who were overtly symptomatic with 
TB where the diagnosis was overlooked by a health care worker prior to starting 
ART who develop severe unmasking TB-IRIS.

In order to prevent unmasking TB-IRIS it is key to screen for TB symptoms 
before ART and investigate those with symptoms. It has been reported that around 
50–70% of patients diagnosed with TB in the first 3 months of ART had TB symp-
toms at the time of ART initiation [63, 65]. The use of the WHO symptom screen 
assessment [66] followed by investigation of those who are symptomatic (with spu-
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tum smear, Xpert and /or TB culture, chest radiograph and urinary LAM) will 
facilitate the diagnosis of many patients with TB prior to starting ART and the 
appropriate initiation of TB treatment. However, the diagnosis of TB may be diffi-
cult to prove in patients with advanced HIV given the insensitivity of sputum smears 
and difficulties with producing sputum and frequent extra-pulmonary TB. Empiric 
treatment, if there is a strong clinical suspicion and compatible imaging (chest 
radiograph or abdominal ultrasound), should be considered.

The management of unmasking TB-IRIS involves initiation of appropriate TB 
treatment and exclusion (and if needed treatment) of concomitant conditions con-
tributing to clinical deterioration. There is no clinical trial data regarding the use of 
corticosteroids for this form of TB-IRIS, but some clinicians opt to use corticoste-
roids if there are severe inflammatory manifestations, for example tuberculomas 
with surrounding cerebral oedema or severe pulmonary TB with respiratory failure, 
or if there is paradoxical deterioration after starting TB treatment.

�Section 3: Immunologic Mechanisms Involved In TB-IRIS

The immunopathogenesis of TB-IRIS involves both innate and adaptive immune 
activation resulting in a profound release of inflammatory cytokines that contribute 
to both the symptomatology of the syndrome and the tissue histopathology [6]. The 
immune mechanisms involved have been intensively studied shaping a better under-
standing of potential therapeutic targets. Most immunopathogenesis studies have 
focused on the paradoxical form of TB-IRIS.

�Role of T Lymphocytes

The most notable immunologic change after ART initiation in all patients starting 
therapy is the recovery of CD4 T lymphocytes. As such, in the early years that 
TB-IRIS was recognized, the focus of pathogenesis research was the T lymphocytes 
and specifically the CD4 T cells [67, 68]. Recovery of CD4 T lymphocytes after 
ART initiation is both quantitative, with increases in circulating numbers, and quali-
tative, manifesting as changes in phenotype and improvement in function.

Although the overall numbers of CD4 counts in people with HIV-TB and para-
doxical TB-IRIS are not always higher than in those without IRIS, evaluation of 
phenotype, by assessing differentiation and maturation markers of memory versus 
naïve T cells as well as activation markers signifying exposure to antigen and 
cycling of T cells, has suggested a more robust recovery of effector memory CD4 T 
cells in people who develop the syndrome [69, 70]. More recently this was further 
characterized by looking at expression of chemokine receptors namely CCR6 and 
CXCR3, showing higher expression of CXCR3+ CD4 T cells in people with emerg-
ing TB-IRIS [71]. CXCR3 T cells are typically enriched in Th1 cells, which are 
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cells with higher potential for production of cytokines like interferon gamma 
(IFNγ), the same cytokine measured in the diagnostic whole blood IFN-γ release 
assays (IGRAs), and tumor necrosis factor (TNF).

Patients with paradoxical TB-IRIS have also been shown to have robust 
TB-specific responses, measured by assessing production of IFNγ after stimulation 
with PPD or TB peptides, during IRIS events, which also usually represent striking 
increases from pre-ART baseline values. These responses to M. tuberculosis antigens 
have been demonstrated using enzyme-linked immunospot (ELISPOT) or whole 
blood IGRAs or flow cytometric analysis of intracellular cytokine production in T 
cells [67, 72, 73]. In addition, although the majority of patients with advanced HIV-
associated TB experience increases in TB-specific immune responses on ART, 
increases in TB-specific CD4 responses are often significantly higher in those who 
develop TB-IRIS when compared to those who do not. Since the initial early reports 
documenting this association [67], several subsequent studies have concluded that 
there is a significant expansion of TB-specific effector polyfunctional CD4 T cells 
during IRIS that produce cytokines including INFγ, TNF, IL-2 and IL-17 [73, 74]. 
Studies have also suggested that specific types of effector cells may be involved. For 
example, Bourgarit et al. [75] found that higher proportions of TCRγδ+ T cells not 
expressing CD94/NKG2 inhibitory receptors were observed pre-ART in those 
patients who ended up developing paradoxical TB-IRIS. Wilkinson KA et al., stud-
ied the effector function of TB-specific CD4 T cells and demonstrated an increase in 
IFNγ response as well as in perforin 1 and granzyme B expression in heat-killed 
H37Rv stimulated human PBMCs from paradoxical TB-IRIS patients compared to 
non-IRIS patients with HIV-associated TB [76]. Notably, this observation is in agree-
ment with a recent study of HIV patients with Mycobacterium avium complex IRIS 
[77]. Furthermore, recent studies from sub-Saharan African adults with HIV-
associated TB suggest that greater recovery of TB-specific CD4 cell function on ART 
is associated with greater inflammation in the lung and worse lung function after TB 
cure, indicating that cellular immune recovery may promote clinically-relevant 
inflammation at the site of disease (Fig. 3). Taken together, existing research supports 
an association between more robust recovery of pathogen-specific cellular immune 
responses on ART and development of paradoxical TB-IRIS. In this model, patho-
gen-specific immune cells unleashed by ART-mediated virologic suppression pro-
mote immunopathology at anatomic sites where antigen burden is high. Activation of 
myeloid cells appear to also directly mediate tissue damage. Consistent with this 
model, greater antigen burden, assumed by a shorter interval between TB treatment 
and ART initiation or measured directly by higher acid fast bacilli status or by detec-
tion of LAM in urine at baseline, increases the risk of paradoxical TB-IRIS.

This association has not been universally observed in all cohorts [68], however, 
and controversy remains as to whether increases in the numbers and function of 
antigen-specific CD4+ T cells are as important as other immunologic mediators that 
may more directly drive IRIS risk. Further confusion stems from limited baseline 
data time points in many studies, complicating the ability to definitively conclude 
that pathogen-specific cellular responses were indeed not actually already higher 
prior to ART initiation compared to persons with HIV-associated TB who did not 
develop IRIS.  Moreover, despite the fact that expansion of polyfunctional and 
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potentially cytotoxic CD4 T cells after ART is a fairly consistent finding in TB-IRIS, 
the presence of these cells after ex vivo stimulation with TB antigens persists after 
treatment of IRIS with corticosteroids or even cytokine blockade. In addition, some 
patients without TB-IRIS have very robust increases in pathogen-specific, poly-
functional CD4+ T cell responses on ART [73]. While the majority of TB-IRIS 
investigations have measured cellular immune responses in blood and not at the site 
of disease, these apparent inconsistencies make it possible that although they seem 
involved in IRIS pathogenesis, they may not be mediating the inflammation driving 
the clinical symptoms of TB-IRIS.

The magnitude of CD4 cellular immune recovery on ART is a key correlate of 
survival, including among those with HIV-associated TB, where the lack of recov-
ery of TB-specific CD4 cellular immune function on ART has been associated with 
death within 6 months after ART initiation, despite virologic suppression. One pro-
spective cohort study of HIV-infected adults initiating ART in the setting of active 
pulmonary TB indicated that there were three general groups of patients: those who 
developed TB-IRIS, those who died, and those who survived without IRIS. Those 
with rapid recovery of pathogen-specific CD4 cell function had a higher risk of 
TB-IRIS, whereas those who had poor recovery of these cells had a high risk of 
death. These data suggest that patients who die of TB despite ART initiation have a 
biomarker profile distinct from patients who go on to develop TB-IRIS and may not 
benefit from strategies to immunosuppress HIV-associated TB patients but may in 
fact benefit from immune boosting strategies [78].

�Role of NK Cells

The role of NK cells has been investigated in two studies of TB-IRIS. The presence 
of activated NK cells expressing CD69 and HLA-DR was found in one cross-
sectional study to be associated with unmasking TB-IRIS events at the time of IRIS 
events [79]. In the second study of patients with fairly advanced disease participat-
ing in a randomized controlled trial of timing of ART initiation in TB showed that a 
higher proportion of cytotoxic NK cells was associated with eventual development 
of paradoxical TB-IRIS [30]. It remains unclear how the NK cell activation ties in 
with the myeloid cell activation that may represent, possibly along with inflamma-
some activation, the cornerstone of IRIS pathogenesis.

�Role of Myeloid Cells

The role of myeloid cells had long been hypothesised after biomarker investigation 
revealed a prominent signature of pro-inflammatory cytokines of predominantly 
myeloid cell origin such as IL-6, TNF, CXCL10, IL-6, IL-1β and IL-18 in periph-
eral blood associated with TB-IRIS onset [80, 81]. When biomarkers were assessed 
prior to ART, after short (<4 weeks) versus longer (>4 weeks) anti-tuberculous 
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treatment, a clear predominance of myeloid origin cytokines and chemokines was 
observed after short TB treatment which was also highly associated with develop-
ment of paradoxical TB-IRIS [80]. Further studies looking specifically at subsets of 
monocytes identified an expansion of inflammatory monocytes (CD14highCD16−) in 
people developing TB-IRIS that was observed prior to ART initiation. The expan-
sion of this monocyte subset preceded ART initiation and was independently associ-
ated with IRIS emergence [80]. Inflammatory monocytes not only produce 
inflammatory cytokines such as IL-6, TNF and IL-1β but also express CCR2 which 
can facilitate tissue migration in response to CCL2 or MCP-1, a chemokine that is 
also elevated in paradoxical TB-IRIS. It is hypothesized that when these inflamma-
tory monocytes migrate into tissue they mature into inflammatory macrophages 
which are important cells in the formation of TB granulomas.

Inflammasone activation has also been implicated in IRIS and was investigated 
after elevated concentrations of IL-1β and IL-18, two signature infammasome cyto-
kines, were observed in patients developing TB-IRIS [80–82]. Inflammasomes are 
cytosolic protein aggregates assembled to coordinate distinct immune responses to 
infectious agents or physiological perturbations. In addition to its role in the immune 
response against pathogens, inflammasome activation has also been shown to be 
dysregulated in cancer, cardiovascular and neurodegenerative disorders, autoin-
flammatory syndromes and diabetes. In a study assessing gene expression in blood 
at the start of ART in patients with HIV-associated TB and then at regular intervals 
during early ART, differences were observed not at baseline but after ART initiation, 
when genes related to inflammasome activation were more upregulated in patients 
who developed TB-IRIS [83]. This was further evaluated by PBMC cultures ex vivo 
showing that blocking MyD88 reduced cytokine production. These data support a 
significant role of inflammasome activation in IRIS pathogenesis. Whole blood 
transcripts from patients with TB meningitis (TBM) who were starting ART showed 
prominent inflammasome gene upregulation in those who went on to develop TBM-
IRIS as well as an IL-8 signature [84], which corroborated the finding of increased 
neutrophils in CSF in those TBM patients who develop TBM-IRIS [85].

A previous study had evaluated the transciptome of isolated monocytes in 
patients with TB-IRIS and controls (HIV-associated TB patients without IRIS) prior 
to ART initiation and after two weeks on ART, which was close to IRIS symptoms 
presentation [86, 87]. Upregulated C1Q and C1-INH was observed before and 
around the IRIS event in monocytes but the respective complement protein mea-
surements were essentially not different therefore not providing serological evidence 
of the gene upregulation observation. It thus remains unclear if complement may be 
playing a role in initiating the aberrant inflammatory cascade of TB-IRIS.

In a case-control study, Torrado et al. [88] found that in vitro Mycobacterium 
tuberculosis stimulated PBMCs from patients with paradoxical TB-IRIS transcribe 
more IL-27p28 than do PBMCs from HIV-associated TB patients without 
IRIS. Plasma IL-27p28 subunit level was higher in those who developed IRIS com-
pared with those who did not before ART initiation, suggesting also a potential role 
of IL-27, another myeloid derived cytokine, in development of IRIS which has not 
been further explored to date.
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In summary, myeloid cells are important in IRIS pathogenesis and tissue pathol-
ogy. Data supportive of their role in the syndrome emanate from multiple lines of 
evidence ranging from neutrophils that dominate in necrotic lymph nodes and 
TBM-IRIS to monocytes with inflammasome activation and to tissue macrophages 
with their prominent role in granuloma formation in various affected organs includ-
ing lymph nodes, bone marrow, liver, spleen, kidneys and genitourinary tract.

�Role of Tissue Damage

Evidence of tissue destruction with neutrophil infiltration and granule production 
and increased production of matrix metalloproteinases (MMPs) including MMP 3, 
7, 8, 9 and 10 in TB-IRIS seems to further support an important role of myeloid 
cells in IRIS pathogenesis including macrophages which also represent relevant 
cells for granuloma formation [27, 89]. Importantly, MMPs can degrade lung matrix 
and lead to lung function abnormalities despite microbiologic clearance. Consistent 
with this hypothesis, increased MMP-8 levels were independently associated with 
TB-IRIS development and with decreases in lung function after treatment [8].

In addition, imaging with FDG-PET scans has shown a high uptake of glucose in 
more extensive areas of involvement in TB patients who developed IRIS versus 
those who did not [90]. In the lung, higher uptake of radiolabeled glucose has been 
shown to be associated with worsening lung function. These observations are in 
agreement with the hypothesis that inflammatory myeloid cells as well as effector 
memory CD4 T cells rely on glycolysis as a fast energy source, and also with the 
clinical observation that patients with more disseminated extensive disease and 
higher antigen burden are more prone to develop paradoxical IRIS. High levels of 
glycolysis are typically accompanied by higher expression of Glut-1 which was 
observed on both CD4 T cells and monocytes in patients with paradoxical 
TB-IRIS.  This observation highlights the possible dependence of inflammatory 
cells on glycolytic pathways in the IRIS immune response.

�Conclusion

No single specific cellular population or immunologic mechanism perfectly pre-
dicts TB-IRIS risk or identifies all patients who have the syndrome. Rather, over a 
decade of research has implicated a variety of inter-related adaptive and innate 
immune mechanisms that can drive development of pathologic inflammation in 
patients with active TB who virologically respond to ART. The key immunologic 
components of TB-IRIS appear to be severe lymphopenia with immune suppression 
and quantitative and qualitative myeloid and T cell recovery in the setting of a high 
mycobacterial antigen load and HIV viral suppression. It remains unclear if genetics 
play a role in either predisposition to the syndrome or response to treatment and 
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resolution. It also remains unclear what, if any, the long-term consequences for IRIS 
may be in overall status of residual immune activation, or other immunologic and 
virologic outcomes. Further research on the immunologic mechanisms of TB-IRIS 
will ideally lead to new treatments that may decrease the morbidity of the syn-
drome. These research efforts may also yield insights into mechanisms of 
TB-associated inflammation more broadly (i.e., beyond HIV and TB co-infection).
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�Introduction

Of the estimated 1.2 million tuberculosis (TB) cases among people living with HIV 
(PLHIV), less than half are diagnosed and reported to health authorities [1]; this is 
a key factor that contributes to why TB remains the leading cause of death among 
PLHIV.  Better diagnostics are critical to reducing the gap and, after more than 
150 years, smear microscopy is finally starting to be eclipsed as the primary diag-
nostic method for TB diagnosis in high burden countries. Since 2010, the World 
Health Organization (WHO) has endorsed several new diagnostic tools including 
(1) Xpert MTB/RIF, a semi-automated molecular assay that has higher sensitivity 
than smear microscopy and can identify rifampin resistance; (2) Determine 
TB-LAM, a lateral flow assay that can detect lipoarabinomannan (LAM) in urine of 
the sickest HIV/AIDS patients in less than 30 min at the bedside [2, 3]; and (3) line 
probe assays (LPAs) that rapidly identify mutations conferring resistance to first and 
second line anti-TB drugs in reference laboratories [4]. The devastating toll of TB 
on PLHIV has also led to guidelines emphasizing the need for systematic screening 
rather than reliance on passive case detection alone.

This chapter will review current approaches to screening and diagnosis of HIV-
associated TB, including drug-resistant TB, in adults. The chapter is organized into 
three parts: Part I provides an overview of WHO-recommended tools to facilitate 
screening for and diagnosis of HIV-associated TB, Part II provides a selective over-
view of tools and tests currently in the later stages of the TB diagnostic pipeline and 
Part III provides a clinically-oriented, step-wise approach for diagnosing TB in 
PLHIV in resource-limited settings. Of note, the diagnosis of latent tuberculosis 
infection (LTBI) is covered separately in the chapter “Recent Advances in the 
Treatment of Latent Tuberculosis Infection Among Adults Living with HIV 
Infection”, the diagnosis of TB immune reconstitution inflammatory syndrome 
(IRIS) is covered in the chapter “The Tuberculosis-Associated Immune 
Reconstitution Inflammatory Syndrome (TB-IRIS)” and the diagnosis of pediatric 
TB disease is covered in the chapter “HIV and Tuberculosis in Children”.

�Part I: Overview of Screening Tools and Diagnostic Tests 
for HIV-Associated TB

�Types of Available Tests for HIV-Associated TB and Desired 
Characteristics

Tools for identifying patients with HIV-associated TB can be broadly organized into 
one of two categories: screening (typically non-microbiological assays) and diag-
nostic (typically microbiological assays) tools.

Screening tools are ideally simple, low-cost and can be used at the point-of-care to 
differentiate between people living with HIV (PLHIV) with a low probability of hav-
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ing active TB who can be safely started on TB preventative therapy and PLHIV with 
an increased likelihood of having active TB who should undergo further microbiologi-
cal testing. A positive result, however, does not provide confirmation of TB disease. 
The WHO has proposed that a screening tool/test for TB should be at least 90% sensi-
tive (to make it very unlikely that those screening negative have TB and can therefore 
safely start TB preventative therapy) and at least 70% specific (to reduce the number 
of unnecessary confirmatory tests by limiting false-positive results) [5].

Microbiological tests directly detect the presence of Mycobacterium tuberculosis 
(MTB) in a clinical specimen, providing confirmation of a TB diagnosis in the cor-
rect clinical setting. An ideal microbiological test would be rapid, inexpensive, have 
minimal infrastructure requirements and be available for use (and provide results) at 
the point-of-care [5]. Traditionally, microbiological assays for TB have included 
acid fast bacilli (AFB) smear microscopy and culture-based methods. However, 
rapid tests based on molecular methods (Xpert and Xpert Ultra) or detection of TB 
antigens (lipoarabinomannan) have emerged from the pipeline. The WHO has pro-
posed that new diagnostic tests for TB should have excellent specificity (>98%) to 
minimize false-positive results and that the sensitivity should be >80% [5].

Below we outline and discuss WHO-recommended screening and diagnostic 
tools for TB, highlighting their performance among PLHIV. A discussion of tests 
available for monitoring response to TB therapy is beyond the scope of this chapter.

�Tools and Tests for TB Screening

�Symptom-Based Screening Rules

Because of the non-specific symptoms of TB in PLHIV, often including an absence 
of cough, many HIV-associated TB diagnoses are missed. Standardized, symptom-
based screening can help maximize case detection. In 2011, a meta-analysis evalu-
ating different symptom screening rules for HIV-associated TB found that the 
presence of any one of four symptoms—cough, night sweats, fevers, or weight loss 
(of any duration)—had a sensitivity of ~79% and specificity of ~50%. This corre-
sponded to a negative predictive value of >90% when TB prevalence ranged from 
5% to 20%. On the basis of this study, in 2011, the WHO recommended screening 
all PLHIV for TB using this screening rule at every clinical encounter, regardless of 
reason for presentation [6]. PLHIV who screen positive should undergo further 
microbiological testing, ideally with sputum Xpert, while those testing negative 
should be evaluated for initiation of TB preventative therapy [7]. More recently, a 
meta-analysis found that the symptom screen was associated with poor sensitivity 
among PLHIV receiving antiretroviral therapy (ART) (51%) compared to those 
who were ART-naive (89%) [8]. It also found that specificity among ART-naive 
patients was only 28%. These data highlight the urgent need for improved TB 
screening tools.

The clinical application of this screening rule within a TB diagnosis algorithm as 
well as its limitations are further described in Part III, step 2.
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�Radiologic Screening Tools

�Chest X-Ray

Chest X-ray has long been a mainstay of TB diagnostic algorithms. There is no 
single chest radiographic pattern that is pathognomonic for TB, especially in PLHIV 
where significant variation in radiographic patterns across CD4 strata are observed. 
This is because more advanced immunodeficiency is associated with an impaired 
local tissue inflammatory response and results in reduced consolidation, fibrosis and 
cavitation [9]. PLHIV with a greater degree of immunosuppression are more likely 
to demonstrate a lower lobe and miliary pattern; however, those on ART and with 
well-controlled disease may manifest more typical patterns (as seen in HIV-negative 
persons), such as upper lobe infiltrates with or without cavitation. The diagnostic 
performance of chest X-ray for detecting HIV-associated TB is dependent on the 
definition applied to determine an ‘abnormal chest X-ray’ as well as the average 
CD4 count of the population in which a study is being conducted. It is well-
recognized that those with pulmonary TB (PTB) may have completely normal chest 
imaging (up to 30%) [10–13]. Thus, a normal chest-X-ray does not exclude the 
diagnosis of active TB disease. Chest X-rays are non-specific as a patient may have 
alternative lung pathology accounting for radiographic lesions and they are also 
subject to both intra- and inter-reader variability. Radiographic findings in PLHIV 
with TB are discussed in greater depth in the chapter “Clinical Manifestations of 
HIV-Associated Tuberculosis in Adults”.

In PLHIV, chest-X-rays may be complementary to symptom-based screening 
and serve as an important screening tool for active TB disease. Notably, a meta-
analysis found that among patients receiving ART, the addition of chest radiography 
to the WHO symptom screen increased sensitivity for active TB from 52% (95% CI 
38–66) to 85% (95% CI 70–93) [8]; because this results in a substantial improve-
ment in the negative predictive value, TB preventive therapy can be initiated with 
greater confidence in such patients. Additionally, chest X-rays may provide rapid 
clues towards a diagnosis in those in whom TB is suspected and Xpert testing (or 
sputum microscopy) is negative, unavailable or result turnaround time may delay 
initiation of possibly life-saving therapy (i.e., severely ill patients) [7]. The use of 
chest X-rays within the TB diagnosis algorithm is discussed in Part III, steps 
2 and 3.

There have been several recent advances in chest radiography. Digital chest 
X-rays are now available that may be associated with lower radiation doses, more 
immediate results without the requirement for film, improved image quality, while 
also allowing for the transmission and storage of images. They are also associated 
with lower operational costs when compared to film-based X-rays [14]; however, 
substantial upfront costs have limited their uptake. Furthermore, there are now por-
table digital X-ray machines that can allow the technology to be decentralized and 
integrated into mobile screening units/programs. Computer-aided algorithms have 
been developed to systematically read digital chest X-rays and detect abnormalities 
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that may be compatible with PTB. A systematic review found that, while available 
evidence was limited, new computer-aided algorithms are likely as good as novice 
readers and likely approach the diagnostic accuracy of expert radiologists [15]. HIV 
prevalence among patients included in the meta-analysis ranged from 33% to 68%, 
however only one study explicitly reported the sensitivity and specificity of a 
computer-aided diagnosis (CAD) program for scoring chest X-rays in PLHIV [16]. 
Among 57 PLHIV in Zambia with Xpert-confirmed pulmonary TB, a CAD score 
>60 was associated with a sensitivity of 100%, but specificity was only 18% [16]. 
Automated, computer-aided algorithms are not recommended by the WHO at this 
time due to insufficient evidence [14], but are due to be formally evaluated by the 
WHO in the near future.

�Ultrasound for Extra-Pulmonary TB (EPTB)

Ultrasonography is available as a portable, hand-held device with a number of clini-
cal applications. It can rapidly identify abnormal signs that in high incidence set-
tings may suggest EPTB. There is a standardized protocol for the assessment of 
HIV-associated TB called FASH (focused assessment with sonography for HIV-
associated TB). FASH includes two different types of assessments [17]. The FASH 
basic assessment attempts to identify the presence of a pericardial effusion (possible 
pericardial TB), a pleural effusion (possible pleural TB) or ascites (possible abdom-
inal TB). The FASH-plus examine requires greater skill and user experience, but 
looks for the presence of periportal/para-aortic lymphadenopathy (possible abdomi-
nal TB), focal liver lesions (possible liver abscesses due to TB) and focal splenic 
lesions (possible splenic abscesses due to TB). Several studies have demonstrated 
the utility of ultrasound to improve and expedite the diagnosis of EPTB, especially 
abdominal and pericardial disease [10, 18, 19]. One important limitation of ultra-
sound is its lack of specificity, as findings may be mimicked by other opportunistic 
infections, Kaposi sarcoma and lymphoma [10].

�Microbiological Assays (Confirmatory Tests) for TB

�Smear Microscopy

AFB smear microscopy remains the most commonly available microbiological test 
for TB in most low-resource settings as it is simple, rapid and relatively inexpen-
sive. There are two different staining techniques that can be utilized to evaluate for 
AFB – Ziehl-Neelsen (ZN) staining is used with light microscopy and auramine 
fluorochrome staining is used with fluorescence microscopy. When available, fluo-
rescence microscopy is preferred over light microscopy as it allows for more rapid 
scanning of sputum smears at low magnification and has improved sensitivity when 
compared to light microscopy [20]. Traditional fluorescence microscopy requires 

Diagnosis of HIV-Associated Tuberculosis



132

dark room isolation and expensive equipment with ongoing need for replacement 
bulbs. However, light-emitting diode (LED) fluorescence microscopes are less 
expensive and have fewer technology requirements. LED fluorescence microscopy 
is being increasingly utilized in resource-limited settings.

Although widely available, smear microscopy has low and variable sensitivity, 
particularly for HIV-associated TB. One systematic review found that sensitivity of 
sputum smear microscopy for HIV-associated PTB ranged from 39% to 76% [21]. 
The sensitivity of smear microscopy for EPTB varies by sample type, however is 
generally poor (0–40%) [22, 23], given the often paucibacillary nature of disease. 
Other disadvantages of smear microscopy include that results are operator-
dependent, it cannot differentiate MTB from non-tuberculous mycobacteria (NTM) 
and it is unable to identify drug resistance.

�Culture

Growth-based detection of MTB remains the gold-standard for the diagnosis of all 
forms of HIV-associated TB (pulmonary and extra-pulmonary) as it has the highest 
sensitivity and specificity. Culture can be performed using solid or liquid media. 
Solid media culture is typically less sensitive and takes longer than liquid media 
culture, but is less expensive. However, both methods require weeks to provide 
results, substantial laboratory infrastructure (including biosafety requirements) and 
highly trained staff. Liquid culture is also prone to contamination and thus rapid 
specimen transport and quality assurance protocols are crucial. These requirements 
typically preclude the use of culture-based methods for routine diagnosis of TB in 
poorly resourced, high burden countries. However, culture-based methods are com-
monly available at referral laboratories and remain the primary method for drug 
susceptibility testing, particularly for second-line anti-TB drugs.

�Xpert MTB/RIF Assay

The Xpert MTB/RIF assay (Cepheid Inc., Sunnyvale, CA, USA) is a nucleic acid 
amplification test (NAAT) that utilizes a semi-automated, cartridge-based system to 
detect MTB and the presence of RIF resistance within 2.5 h [24]. Single-use plastic 
cartridges that contain the necessary buffers and reagents for sample processing, 
DNA extraction and real-time PCR are loaded with a clinical specimen that has 
been treated with a sample reagent. The cartridge is then loaded into the GeneXpert 
PCR platform. Five overlapping molecular probes (A-E) that span the entire rpoB 
core region (81 base pairs) are used to detect the presence of MTB. The probes bind 
to a matching sequence in the clinical specimen producing a fluorescence signal, 
indicating the presence of one of the gene sequences. The number of PCR cycles 
required to detect a minimum fluorescence signal is called a ‘cycle threshold (CT)’ 
and the assay will terminate after 38  cycles [24]. When at least two of the five 
probes produce a positive signal in less than 38 cycles, MTB is detected. The assay 
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provides one of the following results for TB diagnosis: (1) MTB not detected, (2) 
MTB detected (high, medium, low or very low), or (3) ‘error’, ‘invalid’ or ‘no 
result.’ In addition, when MTB is detected, RIF resistance results are also reported 
as (1) RIF resistance detected, (2) RIF resistance not detected, or (3) RIF resistance 
indeterminate. The CT is also reported with a positive Xpert result and provides an 
approximation of bacillary burden. Studies have found that a CT value cutoff of ≤28 
corresponds to a high bacillary burden and predicts sputum smear-status [25, 26].

Among PLHIV, Xpert has a pooled sensitivity of 97% (95% CI 90–99) for 
smear-positive PTB and a sensitivity of 61% (95% CI 40–81) for smear-negative 
PTB [27]; its overall pooled sensitivity is 79% (95% CI 70–86) and pooled specific-
ity is 98% (95% CI 96–99). The sensitivity for EPTB ranges dramatically by sample 
type (corresponding to disease site) [28]. It performs best on bone/joint, lymph node 
and urine samples (sensitivity 82–88%), moderately for TB meningitis (sensitivity 
71%) and less favorably on pericardial, pleural and peritoneal fluid samples 
(<31–66%). It should be noted that the sensitivity of urine Xpert (pooled estimate 
83%) is among those with genitourinary disease; it has decreased performance 
when used for testing all PLHIV regardless of symptoms [29–31]. Table 1 summa-
rizes the diagnostic accuracy of Xpert for important non-respiratory samples.

In 2010, the WHO recommended that Xpert replace sputum microscopy as the 
initial test for the microbiological evaluation of PTB in PLHIV. Subsequent WHO 
recommendations also endorsed Xpert MTB/RIF as the first line assay for EPTB in 
PLHIV as well as the first-line diagnostic for the rapid detection of RIF resistance 
in those with confirmed TB [7].

Table 1  Pooled estimates of sensitivity and specificity of Xpert MTB/RIF for different forms of 
EPTB (adapted from Kohli et al.) [28]

Number of 
patients

Number of 
specimens with 
culture-confirmed TB

Pooled 
sensitivity  
(95% CI)

Pooled 
specificity  
(95% CI)

TB of blood 
(Disseminated TB)
Blood 266 23 (Numbers 

insufficient)
(Numbers 
insufficient)

TB of genitourinary 
tract (renal TB)
Urine 1199 73 82.7 

(69.6–91.1)
98.7 (94.8–99.7)

TB of lymph node 
(TB lymphadenitis)
Lymph node aspirate 1710 671 87.6 

(81.7–92.0)
86.0 (78.4–91.5)

Lymph node tissue 484 147 84.4 
(74.7–91.0)

78.9 (52.6–91.5)

TB meningitis
Cerebrospinal fluid 3774 433 71.1 

(60.9–80.4)
98.0 (97.0–98.8)

(continued)
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Number of 
patients

Number of 
specimens with 
culture-confirmed TB

Pooled 
sensitivity  
(95% CI)

Pooled 
specificity  
(95% CI)

TB of musculoskeletal 
system
Bone or joint fluid 385 58 97.2 

(89.5–99.6)
90.2 (55.6–98.5)

Bone or joint tissue 618 179 82.0 
(56.6–94.9)

91.8 (70.1–98.4)

TB of pericardium 
(pericardial TB)
Pericardial fluid 324 76 65.7 

(46.3–81.4)
96.0 (85.8–99.3)

TB of peritoneum 
(peritoneal TB)
Peritoneal fluid 712 115 59.2 

(45.2–73.5)
97.9 (96.2–99.1)

TB pleurisy (pleural 
TB)
Pleural fluid 4006 607 50.9 

(39.7–62.8)
99.2 (98.2–99.7)

Pleural tissue 207 71 30.5 (3.5–77.8) 97.4 (92.1–99.3)

For all forms of EPTB except pleural TB, solid or liquid mycobacterial culture was used as the 
reference standard. For pleural TB, either culture or the presence of granulomatous inflammation 
on histopathological examination defined the reference standard

Table 1  (continued)

Unfortunately, cost remains an issue even with subsidized pricing for the 
GeneXpert platform and Xpert MTB/RIF cartridges (~$10/cartridge). The 
GeneXpert platform is also sensitive to heat and dust, requires a continuous power 
supply to operate as well as ongoing maintenance [32]. For these reasons, Xpert 
testing has mainly been available in higher-level health facilities in high burden 
countries. Several studies have shown that implementation of Xpert has resulted in 
increased detection of mycobacteriologically-confirmed TB, reduced time to diag-
nosis and reduced time to TB treatment. The implementation of Xpert has been 
associated with a mortality reduction in some settings [33, 34], however, this has not 
been a universal finding, as the majority of trials did not find a survival benefit asso-
ciated with its use [35–42].

�Xpert MTB/RIF Ultra (Xpert Ultra) Assay

The Xpert Ultra cartridge utilizes the existing GeneXpert platform, but incorporates 
two new multi-copy amplification targets (IS6110 and IS1081) and a larger DNA 
amplification reaction chamber than the original Xpert cartridge. This contributes to 
an improved lower limit of detection compared to the original Xpert cartridge (16 
vs 114 bacterial colony forming units per milliliter), and increased sensitivity [43]. 
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The Xpert Ultra test adds a new result category, ‘trace-positive’, which corresponds 
to the lowest bacillary burden for MTB detection. A large multi-country evaluation 
found that among PLHIV, Xpert Ultra increased the sensitivity for the detection of 
PTB by 13% (95% CI 6–21) compared to Xpert (90% versus 77%) [44]. However 
Xpert Ultra was also associated with a small decrease in specificity (2.7%). 
Specificity was higher when not considering trace results to be positive, and when 
excluding patients previously treated for TB [44]. Evaluations of Xpert Ultra for 
EPTB are limited among PLHIV, however a study evaluating its utility for detecting 
TB meningitis (TBM) found that the sensitivity for probable or definite TBM in 
PLHIV was 70% (95% CI 47–87), compared to 43% (95% CI 23–66) using either 
Xpert or culture [45]. On the basis of these early, but highly encouraging results, in 
2017 the WHO recommended that the Xpert Ultra cartridge replace the original 
Xpert cartridge as the first line test for HIV-associated TB (pulmonary and extra-
pulmonary samples) [46].

�Lipoarabinomannan (LAM)

LAM comprises a group of lipopolysaccharides within the cell wall of MTB [3]. A 
commercially available lateral-flow urine assay, called ‘Determine TB-LAM’ 
(Alere Inc. Waltham, Massachusetts, USA), was the first truly rapid, inexpensive, 
point-of-care assay available for the diagnosis of HIV-associated-TB. The assay is 
a lateral-flow, urine-based, dip-stick assay (henceforth known as ‘LF-LAM’) that 
does not have any storage requirements, has minimal training requirements and is 
capable of providing results within 30 min at the point-of-care [3]. The assay cur-
rently costs between $2.50 and $3.00 a test. The sensitivity of LF-LAM strongly 
correlates with the immune status of HIV-patients as demonstrated by a meta-
analysis that showed sensitivity in patients with CD4 count <100 cells/μL was 56% 
(95% CI 41–70) compared to 26% (95% CI 16–46) in patients with CD4 count 
>100 cells/μL [47]. Similarly, sensitivity was greater among hospitalized patients 
than among ambulatory outpatients (53% versus ~20%). Pooled specificity was 
found to be 92%, but approaches 99% when a rigorous reference standard is utilized 
[48, 49].

While the LF-LAM assay has only moderate sensitivity among immunocompro-
mised HIV patients, it rapidly detects TB in the sickest patients at the highest risk 
for poor outcomes [50]. For example, one study found that LF-LAM detected TB in 
two-thirds of all patients with evidence of mycobacteremia, including all patients 
dying within 90 days [51]. Furthermore, a meta-analysis among HIV patients found 
that mortality was 2.5-fold higher among those with a positive versus a negative 
LF-LAM result [2]. Notably, two randomized trials have evaluated the addition of 
LF-LAM to the local diagnostic standard of care in sub-Saharan Africa and have 
demonstrated a mortality reduction associated with its use among those with a CD4 
count <100  cells/μL [52, 53]. This mortality benefit likely reflects the ability to 
more rapidly detect TB and start potentially life-saving anti-TB therapy. LF-LAM 
was conditionally recommended by the WHO in 2015 for use in PLHIV with signs 
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and symptoms of TB (pulmonary and/or extra-pulmonary) who either have a CD4 
count ≤100 cells/μL or who are seriously ill with any ‘danger signs’ as defined by 
the presence of respiratory rate >30, temperature > 39.0° C, heart rate > 120 beats 
per minute, or inability to ambulate unassisted (independent of CD4 count) [54]. 
Since 2015, a number of additional studies have reported on the diagnostic perfor-
mance of LF-LAM among PLHIV; in 2019 the WHO is expected to reappraise the 
available evidence and issue updated guidance on the use of LF-LAM.

�Loop-Mediated Isothermal Amplification (LAMP)

TB LAMP (Eiken Chemical Company Ltd. Tokyo, Japan) is a rapid assay that can 
provide results in less than 1 h. It uses a temperature-independent method for DNA 
amplification that is easy to use, requires minimal laboratory infrastructure and that 
can be read using the naked eye under ultraviolet light. However, the assay has sev-
eral steps and requires trained laboratory personnel. A systematic review was under-
taken in 2016 to evaluate its diagnostic performance against smear microscopy as 
well as Xpert [55]. There was limited data available among PLHIV. Overall, the 
sensitivity of TB LAMP for pulmonary TB ranged from 64% to 73% and its speci-
ficity from 95% to 99% depending on the reference standard used. On the basis of 
these results, TB LAMP was recommended by the WHO as a replacement for spu-
tum smear microscopy or as a follow-on test after a negative sputum smear result 
[55]. However, the WHO advised that TB LAMP should not replace Xpert where 
available, and felt that there was insufficient evidence to recommend the use of TB 
LAMP for non-respiratory samples or for testing for TB among PLHIV.

�Detection of TB Drug-Resistance (Drug-Susceptibility Testing)

Only one-quarter of RIF-resistant (RR) and multi-drug resistant (MDR)-TB cases 
worldwide are detected each year. The rapid and accurate detection of drug resis-
tance is important to the individual and to public health alike. For the individual, 
rapid drug susceptibility testing (DST) allows for initiation of the most effective 
anti-TB regimen as soon as possible, which allows for the highest likelihood of 
cure. For the community, rapid DST can help to minimize the transmission of drug-
resistant TB, help to guide appropriate care for contacts and help prevent the spread 
of drug-resistant TB. The END TB strategy rightfully calls for universal access to 
DST [56].

DST is broadly comprised by two major methodologic categories  – growth-
based (phenotypic) and molecular-based (genotypic). Generally, culture-based DST 
is thought to be more reliable than molecular methods because an MTB isolate is 
grown on a culture media containing the critical concentration of a given anti-TB 
agent. It is therefore typically assumed that if growth of MTB is inhibited by that 
agent on DST, that same agent should be reliably effective for the patient’s isolate 
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in vivo; however, up to 5% of wild-type strains may be classified as resistant, in part 
likely due to limitations of critical-concentration methods [57, 58]. Additionally, 
there are reports of specific rpoB mutations that confer rifampicin resistance not 
being detected on liquid culture DST [59]. This is compared to molecular methods 
that detect known mutations for drug resistance. If all resistance mutations are not 
known or included in the probe, drug-resistance using molecular techniques may be 
underdiagnosed in a proportion of patients.

One important difference between growth-based and molecular-based DST is the 
requirement for a pure MTB isolate to be obtained from either solid or liquid culture 
media before culture-based DST can be performed. When coupled with the further 
requirement to monitor growth (or lack of growth) in the setting of agar or liquid 
culture media containing a specific drug, the overall process can take several weeks 
to months. Molecular methods not only provide for more rapid results, but also offer 
standardized testing with fewer biosafety requirements; both of which may allow 
for increased throughput. On this basis, the WHO recommends that molecular 
methods for TB DST be performed in addition to culture-based DST whenever 
available [60, 61].

�Culture-Based Methods for DST

Phenotypic methods, or culture (growth)-based DST remain the gold standard for 
DST. There are multiple methods available and in clinical use. Critical concentra-
tions, not minimum inhibitory concentrations (MIC), are used to determine the sus-
ceptibility or resistance of anti-TB agents for a given culture isolate. The critical 
concentration is defined as the lowest concentration that reliably inhibits >99% of 
wild-type MTB complex strains in vivo, while also not inhibiting strains considered 
to be resistant [62]. The critical concentration varies slightly between culture media 
and in 2018 the WHO published standard critical concentrations for most first-, 
second- and third-line agents [62].

Solid media-based DST (the indirect agar proportion method) most commonly 
utilizes Lowenstein-Jensen, Middlebrook 7H10 or 7H11 agar. Using this technique, 
a culture isolate is directly inoculated into a quadrant of the plate. Three quadrants 
contain a specific anti-TB agent at its critical concentration, while one quadrant 
without a drug serves as a control. After 21 days colony counts are taken and if the 
number of colonies in a drug-containing quadrant is >1% of the colonies in the 
control quadrant, the isolate is considered to be resistant to that drug.

Liquid media-based DST has faster turnaround time when compared to solid 
media-based techniques, with results available in as little as 7–10 days after inocula-
tion. There are several commercially available platforms, but WHO critical concen-
trations are only available for the MGIT 960 platform (Becton Dickinson, Sparks, 
MD). The MGIT 960 platform can provide DST for first- and second-line agents. 
The method is based on fluorescence that is produced from the MGIT medium when 
bacterial growth results in reduced oxygen. The amount of fluorescence generated 

Diagnosis of HIV-Associated Tuberculosis



138

is then converted to growth units (GU), where greater GU corresponds to more 
growth. If a drug containing tube yields a GU < 100 at the end of incubation then 
the organism is considered susceptible, while a GU ≥100 is considered resistant.

�Molecular Methods for DST

There are several benefits associated with molecular methods compared to growth-
based methods. The most important is the short turnaround time for DST results, 
which may be as few as 1–2 days as compared to at least several weeks associated 
with culture-based methods. Additionally, unlike culture-based methods, molecular 
methods can be run on smear-positive/ culture-negative specimens, as well as fixed 
pathology specimens. In general, there are two broad categories of molecular meth-
ods available for DST: sequencing and non-sequencing based techniques. Currently, 
non-sequencing methods predominate especially in low- and middle-income set-
tings. However, sequencing-based methods are expected to become more simplified 
and increasingly affordable, which will likely translate to increased availability over 
the next several years.

�Xpert and Xpert Ultra

As noted previously, the Xpert assay is able to rapidly detect RIF resistance in clini-
cal specimens in which MTB is confirmed and results are provided within 2.5 h. It 
is recommended by the WHO as the first-line assay for the rapid detection of RIF-
resistance and has become the most widely available assay for TB DST globally. Its 
pooled sensitivity and specificity for the detection of RIF-resistance in patients with 
HIV-associated TB is 95% (95% CI 90–97) and 98% (95% CI 97–99), respec-
tively [27].

The Xpert Ultra cartridge utilizes a new melt curve analysis to detect RIF-
resistance and data to date suggest that the Xpert Ultra cartridge provides similar 
(non-inferior) diagnostic accuracy for the detection of RIF resistance compared to 
the traditional Xpert cartridge [44]. As described in Part III, the detection of RIF 
resistance by Xpert and Xpert Ultra testing should prompt further DST for first and 
second line anti-TB agents (injectable agents and fluoroquinolones).

�Line Probe Assays

Line probe assays (LPA) are a type of molecular test that permit the detection of 
M. tuberculosis complex, as well as mutations associated with TB drug resistance. 
LPA involves a multi-step process that includes: (1) DNA extraction, (2) PCR-based 
amplification of known resistance determining regions using primers, (3) reverse 
hybridization of amplicons to probes affixed on the assay strip and (4) colorimetric 
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detection of captured hybrids allowing for visualization of bands. LPAs can be per-
formed on DNA extracted from clinical specimens (direct method) or from culture 
isolates (indirect method). LPAs can detect specific mutations known to be associ-
ated with drug resistance but can also indirectly indicate drug resistance when a 
mutation is present in one of the target regions, resulting in the amplicon not hybrid-
izing with a wild-type probe [63].

The WHO has made formal recommendations for two commercially available 
LPAs that detect drug resistance associated with RIF and INH (first-line agents). 
These include the GenoType MTBDRplusv2.0 (Hain Lifescience, Nehren, 
Germany) and the Nipro NTM + MDRTB Detection Kit 2 (Nipro, Tokyo, Japan). 
The diagnostic accuracy of both assays for the detection of RIF and INH resistance 
directly on smear-positive sputum samples was evaluated and found to be compa-
rable (~97–98%, ~95% sensitive for RIF and INH resistance, respectively; ~98% 
specific for RIF and INH resistance) [60]. However, the sensitivity of both assays 
for indirect testing of MTB culture isolates was lower, ~90–91% [60]. On the basis 
of these results, the WHO recommended that for persons with sputum smear-
positive disease or any culture-isolate positive for MTB complex, either LPA 
(MTBDRplusv2.0 or NTM+MDRTB Detection Kit 2) may be used as the initial test 
for the rapid detection of RIF and INH resistance in addition to conventional culture-
based DST [60]. There is limited data available that specifically evaluate the perfor-
mance of these LPAs among PLHIV, however one study suggested that the 
MTBDRplusv2.0 had excellent sensitivity for the detection of RIF resistance 
(>90%), but only moderate sensitivity for the detection of INH resistance (~70%) 
[64]. Incomplete sensitivity for INH resistance likely reflects the fact that additional 
resistance conferring mutations are not included in the assay.

The GenoType MTBDRsl (Hain Lifescience, Nehren, Germany) version 1.0 was 
the first commercially available LPA able to rapidly detect mutations associated 
with resistance to second-line agents, thus allowing for the diagnosis of MDR-, pre-
extensively drug resistant- (XDR) and XDR-TB [61]. The assay can detect the pres-
ence of MTB complex, mutations associated with fluoroquinolones (ofloxacin, 
levofloxacin, moxifloxacin, gatifloxacin) and second-line injectable agents (kana-
mycin, amikacin, capreomycin). The pooled sensitivities and specificities of the 
version 1.0 assay for second-line TB drugs are shown in Table 2.

The manufacturer has subsequently introduced a newer generation of the 
GenoType MTBDRsl assay (version 2.0) that detects additional resistance muta-
tions as well as all identified by the version 1.0 assay. There is limited published 
data on its diagnostic accuracy specifically among PLHIV, however, in one study 
testing 268 respiratory isolates from a high burden HIV-associated TB setting, the 
sensitivity of the version 2.0 assay for fluoroquinolones (100%; 95% CI 96–100) 
and second-line injectable agents (89%; 95% CI 79–96) was excellent and was 
associated with a specificity >98.5% for all agents with the exception of capreomy-
cin (95.9%) [65].

In patients with either confirmed RR-TB or MDR-TB (detected using Xpert, 
LPA or culture-based methods), the WHO recommends that the MTBDRsl assay 
may be used as the initial test (in addition to culture-based DST) to rapidly detect 
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resistance associated with fluoroquinolones or second line injectable agents on (1) 
sputum samples (irrespective of smear status—direct testing) or (2) cultured iso-
lates of MTB complex from any respiratory or non-respiratory samples (indirect 
testing) [61].

�Part II: Novel Approaches to Diagnosis of HIV-Associated TB

�Overview

There are considerable ongoing efforts to develop TB tests that are faster, cheaper, 
simpler and can be performed on samples that are easier to collect than sputum. 
These range from discovery phase studies that seek to identify and validate novel 
biomarkers in blood, urine and breath, to the development and evaluation of new 
technologies to facilitate sample processing and analysis [4, 66]. In this section, we 
will provide a selective overview of tools in the TB diagnostic pipeline that are 
either at the later stages of development or have later phase clinical data published 

Table 2  Pooled sensitivity and specificity estimates of GenoType MTBDRsl v1.0 for fluoroquinolones 
and second-line injectable agents using conventional culture-based DST reference standarda

Number of 
patients

Pooled sensitivity 
(95% CI)

Pooled specificity 
(95% CI)

Fluoroquinolones, direct testing 1771 86.2 (74.6–93.0) 98.6 (96.9–99.4)
Ofloxacin 1667 90.9 (84.7–94.7) 98.9 (97.8–99.4)
Moxifloxacin 821 95.0 (92.1–96.9) 99.0 (97.5–99.6)
Fluoroquinolones, indirect testing 2223 85.6 (79.2–90.4) 98.5 (95.7–99.5)
Levofloxacinb 169 80.0–100b 96–100b

Ofloxacin 1927 85.2 (78.5–90.1) 98.5 (95.6–99.5)
Moxifloxacin 419 94.0 (82.2–98.1) 96.6 (85.2–99.3)
Second-line injectable agents, 
direct testing

1639 87.0 (38.1–98.6) 99.5 (93.6–100)

Amikacin 1491 91.9 (71.5–98.1) 99.9 (95.2–100)
Capreomycin 1027 76.6 (61.1–87.3) 98.2 (92.5–99.6)
Kanamycin 1020 78.7 (11.9–99.0) 99.7 (93.8–100)
Second-line injectable agents, 
indirect testing

1921 76.5 (63.3–86.0) 99.1 (97.1–99.7)

Amikacin 1301 84.9 (79.2–89.1) 99.1 (97.6–99.6)
Capreomycin 1406 79.5 (58.4–91.4) 95.6 (93.4–97.3)
Kanamycin 1342 66.9 (44.1–83.8) 98.6 (96.1–99.5)

aFor the MTBDRsl v2.0 there was insufficient data to undertake a meta-analysis or compare direct 
and indirect testing
bInsufficient data precluded pooled estimates; numbers represent ranges from study point estimates
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and focus on tests and platforms that we anticipate will improve the diagnosis of 
HIV-associated TB in the near future.

For the most up-to-date information on the TB diagnostics pipeline, the 
Foundation for New Innovative Diagnostics (FIND) has developed an online, inter-
active diagnostics pipeline that shows the current status and estimated release dates 
of various diagnostic tools and assays. Please visit: https://www.finddx.org/tb/
pipeline/

�Tools and Tests for TB Screening

�Clinical Prediction Scores

Clinical prediction scores may combine symptoms as well as easily obtained clin-
ical information (body mass index, vital signs, ART status) with routinely avail-
able laboratory tests (hemoglobin, CD4 cell counts) to direct diagnostic testing 
for HIV-associated TB. Notably, two clinical prediction scores have been studied 
among ambulatory HIV patients screening positive using the WHO symptom 
screen [67, 68]. Both studies propose that a defined cutoff could be used to safely 
reduce the overall number of patients requiring further TB testing without missing 
a large number of TB cases. One of the clinical scores utilized ART status (ART 
>3 months vs. pre-ART or ART <3 months), body mass index, CD4 count and the 
number of WHO symptoms present (1 versus >1 symptom). When used among 
those with a positive WHO symptom screen, a cutoff score of 3 had a sensitivity 
and specificity for HIV-associated TB that was 92% and 34%, respectively and 
would have resulted in a  >30% reduction in need for further TB testing while 
missing <10% of all TB diagnoses (predominantly among those on ART and with 
higher CD4 cell counts) [68].

�C-Reactive Protein (CRP)

CRP is an acute phase reactant that is detectable in serum and can be rapidly mea-
sured at the point-of-care [69]. A systematic review among predominantly ambu-
latory PLHIV found that the sensitivity and specificity of CRP (cutoff: 10 mg/L) 
for the detection of confirmed pulmonary TB was 93% (95% CI 88–98) and 60% 
(95% CI 40–75), respectively [70]. Prospective studies in Uganda and South 
Africa have demonstrated that point-of-care CRP testing has similar sensitivity 
when compared to the WHO symptom screen (~90%), but has significantly 
improved specificity (59–72%) [69, 71]. Dependent on the CRP cut-off level 
used, the specificity associated with CRP is 21–58% higher than that of symptom 
screening. While these results must be further validated, the results suggest that 
use of CRP in place of the WHO symptom screen as part of intensified case find-
ing for PLHIV would detect a similar number of HIV-associated TB cases, while 
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significantly reducing the number of patients requiring further TB investigations 
by >50%. Indeed, one study among ambulatory PLHIV showed that CRP-based 
TB screening followed by confirmatory testing with LF-LAM (if CD4 
count  <  100), Xpert and a single liquid culture, would increase case detection 
relative to the currently recommended strategy [72].

�Microbiological Assays (Confirmatory Tests) for TB

�Next-Generation LAM Assays

Several urine-based assays that detect the presence of LAM are undergoing devel-
opment and evaluation. They aim to retain the point-of-care quality of the currently 
available LF-LAM assay while improving upon sensitivity that would expand util-
ity beyond only the sickest HIV patients [4]. One test, the SILVAMP TB LAM assay 
(FujiFilm Global, Tokyo, Japan), had a sensitivity of 70.4% compared to 42.3% 
using the LF-LAM assay without a significant difference in specificity, when retro-
spectively testing 968 urine samples from PLHIV in South Africa. Among those 
with a CD4 count ≤100 cells/μL, the SILVAMP TB LAM had a sensitivity of 84.2% 
versus 57.3% using the LF-LAM assay [73]; it also demonstrated useful sensitivity 
in those with CD4 counts 101–200  cells/μL—60.6% compared to 26.4% using  
LF-LAM. prospective evaluations of its performance will be undertaken in 2019.

�Xpert Omni

In 2019, a new Xpert platform called Xpert Omni is expected to be introduced that 
may allow for truly point-of-care detection of MTB and the presence of RIF resis-
tance within 2 h. The single module unit is lightweight (~1 kg), portable, battery-
powered (up to 12 h rechargeable battery life) and is designed to allow for testing in 
more extreme clinical settings. Its initial cost is expected to be ~$5,000 per device 
and it will require special cartridges which will be ~$1.50 more expensive than 
traditional Xpert cartridges (to allow for the incorporation of wireless near-field 
communication) [74]. It is currently undergoing feasibility studies and is expected 
to become commercially available in 2019.

�Nucleic Acid Amplification Tests (NAAT) Other Than GeneXpert

Since the introduction of GeneXpert, there have been many companies that have 
sought to develop competing rapid NAAT-based assays for the diagnosis of 
TB. Some of the assays furthest along in development and evaluation include the 
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Genedrive MTB/RIF assay (Epistem Ltd., UK), TrueNat MTB RIF assay (Molbio, 
Goa, India), TRCReady (Tosoh Bioscience, Tokyo, Japan), EasyNAT TB assay 
(Ustar Biotechnologies Ltd., Hangzhou, China), RealTime MTB (and MTB RIF/
INH) assay (Abbott, Chicago, USA), and the FluoroType MTB assay (Hain 
Lifescience, Nehren, Germany). Of these, only the TRCReady assay represents a 
stand-alone, semi-automated NAAT similar to Xpert; however, it does not provide 
simultaneous RIF resistance detection. While some of these assays are already com-
mercially available and even in use in countries such as India and China, there are 
minimal published data to recommend their routine use in PLHIV [4].

�Molecular Methods for DST

�Xpert Xtend XDR

A new cartridge utilizing the GeneXpert platform called the Xpert Xtend XDR will 
test for resistance associated with isoniazid (INH) as well as fluoroquinolones and 
injectable aminoglycosides. The Xtend XDR cartridge is expected in 2019 and may 
potentially allow for decentralized, rapid detection (results available within 90 min) 
of resistance associated with second-line agents. An initial prototype demonstrated 
promising results [58].

�Sequencing

Next generation sequencing (NGS) is the latest advance in the rapid detection of 
TB-associated drug resistance. It can be used to perform targeted and whole genome 
sequencing. Non-sequencing, molecular methods such as Xpert and LPAs may miss 
important resistance-conferring mutations if not encapsulated within the target 
probe(s) or may detect mutations that do not confer resistance, resulting in false-
negative and false-positive results, respectively. One major advantage of NGS is its 
ability to identify all known mutations simultaneously.

Studies have demonstrated that NGS has good concordance with culture-
based methods and NGS can be performed directly on smear-positive clinical 
specimens [75–78]. NGS may ultimately one day allow for more individualized 
treatment regimens based on knowledge of the most effective anti-TB drugs for 
each person. However, a number of challenges face the implementation and 
scale-up of NGS, especially in resource-limited settings. These include the abil-
ity to reliably extract sufficient mycobacterial DNA from clinical samples for 
sequencing, the cost of sequencing platforms and laboratory infrastructure 
requirements, as well as the need for improved means to process and analyze 
large amounts of raw data [4].
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�Part III: A Suggested Step-Wise Approach to Diagnosing 
HIV-Associated TB for Clinicians with a Focus 
on Resource-Limited Settings

�Overview

Recent WHO guidelines highlight the shift towards active case finding among 
PLHIV as well as new diagnostic tools for rapid TB detection and DST. In the sub-
sequent sections, we present a suggested step-wise approach for the diagnosis of 
HIV-associated TB using current WHO recommendations and the revised 2018 
Global Laboratory Initiative (GLI) model TB diagnostic algorithms for PLHIV as a 
framework (Figs. 1–3) [79].

Fig. 1  WHO recommended algorithm for evaluating persons for TB (Xpert as the initial test)
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Fig. 2  Algorithm for evaluating PLHIV for TB among those who are seriously ill with danger 
signs or have CD4 count ≤100 cells/μL

�Step 1. Who Should I Screen for HIV-Associated TB?

Current WHO recommendation: All patients with confirmed HIV (or an unknown 
HIV status) should be screened for TB at each health care encounter.

Further information: There are typically two broad approaches to identifying 
people with HIV-associated TB - passive and active case finding. Passive case find-
ing is reliant upon symptomatic TB patients to self-present to a health-care setting 
followed by a health worker recognizing that their symptoms may be due to TB and 
ordering TB testing [80]. This approach on its own has led to substantial under-
diagnosis of HIV-associated TB globally for several reasons. These include that 
patients with early TB disease may not be symptomatic (or symptoms may be non-
specific) and that health workers often fail to order TB testing even when indicated. 
In contrast, active or intensified case finding (ICF) in either facility- or community-
based settings involves screening everyone within a high-risk group, such as PLHIV, 
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followed by confirmatory diagnostic testing for those who screen positive. The 
goals of ICF are not only to identify more people with TB but also to identify them 
earlier in order to reduce morbidity and community transmission [80].

�Step 2. How Should I Screen for HIV-Associated TB?

Current WHO recommendation: A four-part symptom screen should be used: cur-
rent cough, fever, weight loss or night sweats. For PLHIV on ART, chest radiogra-
phy may be considered in addition to symptom screening. Chest radiography (when 

Relevant guidelines:
• � Consolidated guidelines on the use of antiretroviral drugs for treating and 

preventing HIV infection. Geneva: WHO; 2016.
• � Guidelines for intensified tuberculosis case-finding and isoniazid preven-

tative therapy for people living with HIV in resource-constrained settings. 
Geneva: WHO; 2011.

• � Systematic screening for active tuberculosis: Principles and recommenda-
tions. Geneva: WHO; 2013.

Fig. 3  Alternative 
algorithm for evaluating 
persons for TB where 
molecular testing is not 
readily available (sputum 
microscopy as the initial 
test)
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available) is also recommended as a screening tool in addition to symptom-based 
screening in all PLHIV with a CD4 count <100 cells/μL or those presenting with 
‘danger signs,’ regardless of symptoms (Fig. 2).

Further information: PLHIV who have a negative symptom screen with or with-
out a negative chest X-ray are unlikely to have active TB and should be offered TB 
preventive therapy, regardless of ART status. In addition to the above symptom 
screen (with or without chest radiography), all PLHIV should have a careful history 
and vital signs obtained and physical exam undertaken to determine: 1) if there are 
‘danger signs’ present (defined as any one of the following: respiratory rate > 30, 
temperature > 39.0C, heart rate > 120 beats per minute, or unable to ambulate unas-
sisted) that would suggest a need for referral to a higher level of clinical care and 2) 
if there are any signs or symptoms that might suggest EPTB (Step 5).

Limitations of currently recommended strategy: There are several limitations of 
the WHO standard symptom-screening rule that has kept it from being widely 
implemented in high burden settings. It is not objective in that it relies on patients’ 
self-reported symptoms. Additionally, and more pragmatically challenging, it has 
low overall specificity (~50%) [8], and even poorer specificity among ART-naive 
PLHIV (~28%) [8]. As many clinicians and policy makers point out, universal 
application of this recommendation would result in a large proportion of PLHIV 
requiring additional TB investigations, of whom only a small number might have 
TB. This may stretch the resources of HIV/AIDS programs as well as delay and 
reduce the number of patients initiated on TB preventative therapy. Furthermore, it 
demonstrates poor sensitivity among those receiving ART (~50%) [8]. The WHO 
symptom screen therefore falls short of the WHO proposed cutoffs for a screening 
tool - >90% sensitivity and > 70% specificity [5]. Thus, there is significant interest 
in developing improved screening strategies that might help better identify PLHIV 
who should be prioritized for TB testing.

Relevant guidelines:
• � Chest radiography in tuberculosis detection – summary of current WHO 

recommendations and guidance on programmatic approaches. Geneva: 
WHO; 2016.

• � Consolidated guidelines on the use of antiretroviral drugs for treating and 
preventing HIV infection. Geneva: WHO; 2016.

• � Guidelines for intensified tuberculosis case-finding and isoniazid preven-
tative therapy for people living with HIV in resource-constrained settings. 
Geneva: WHO; 2011.

• � Latent tuberculosis infection: updated and consolidated guidelines for pro-
grammatic management. Geneva: WHO; 2018.

• � Systematic screening for active tuberculosis: Principles and recommenda-
tions. Geneva: WHO; 2013.
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�Step 3: Whom Should I Investigate Further for Pulmonary TB?

Current WHO recommendation: All PLHIV who screen positive using four-part 
symptom screen should be investigated for active TB. Furthermore, anyone with 
clinical exam findings or radiology (chest X-ray, ultrasound [when undertaken]) 
findings potentially consistent with PTB should also be further investigated for 
active TB, regardless of symptoms.

�Step 4. How Should I Test for PTB?

Current WHO recommendation: Xpert MTB/RIF (Xpert Ultra if available) should 
be used as the initial diagnostic test for PTB (Figs. 1 and 2). In addition, the LF-LAM 
assay should be performed in all PLHIV who are severely ill or have CD4 count 
<100 cells/mm3 to enable rapid diagnosis and treatment initiation (Fig. 2). Where 
Xpert MTB/RIF is not readily available, sputum microscopy should be used as the 
initial diagnostic test for PTB (Fig. 3).

Further information:

Xpert (Ultra) for PTB: For patients with suspected PTB, one fresh sputum sample 
should be collected and tested using Xpert (or preferably Xpert Ultra) (Fig. 1). If the 
initial Xpert test result is negative, but the clinical suspicion for PTB remains high, 
undertaking repeat Xpert testing on a newly collected, fresh sputum specimen may 
be considered as this has been associated with up to a 20% increase in diagnostic 
sensitivity for smear-negative disease [81]. It is not yet clear if there is increased 

Relevant guidelines:
• � Chest radiography in tuberculosis detection – summary of current WHO 

recommendations and guidance on programmatic approaches. Geneva: 
WHO; 2016.

• � Consolidated guidelines on the use of antiretroviral drugs for treating and 
preventing HIV infection. Geneva: WHO; 2016.

• � Guidelines for intensified tuberculosis case-finding and isoniazid preven-
tative therapy for people living with HIV in resource-constrained settings. 
Geneva: WHO; 2011.

• � Improving the diagnosis and treatment of smear-negative pulmonary and 
extrapulmonary tuberculosis among adults and adolescents. Geneva: 
WHO; 2007.

• � Latent tuberculosis infection: updated and consolidated guidelines for pro-
grammatic management. Geneva: WHO; 2018.

• � Systematic screening for active tuberculosis: Principles and recommenda-
tions. Geneva: WHO; 2013.
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diagnostic yield associated with undertaking repeat sputum Xpert Ultra testing if 
the first Xpert Ultra test is negative. When Xpert Ultra testing is utilized, the WHO 
recommends that for PLHIV a trace positive result be regarded as a true positive 
result and that these patients be initiated on anti-TB therapy [46].

Smear microscopy for PTB: Where Xpert testing is not available for the investi-
gation of PTB, it is recommended that microscopy (LED fluorescent microscopy 
preferred) be performed on two sputum samples to evaluate for the presence of acid-
fast bacilli (Fig.  3). Same-day microscopy involves collecting two spot sputum 
samples at the initial health center visit and is the recommended approach as it is 
more patient-friendly and retains similar sensitivity and specificity when compared 
to multiple day sputum collection [82, 83]. Use of a concentrated sputum sample 
does not appear to increase sensitivity and is not recommended because it increases 
resource requirements [84]. A positive sputum AFB microscopy result should be 
confirmed as MTB (when possible) as this may represent non-tuberculous myco-
bacteria (NTM); however, this should not delay treatment, especially if the patient 
is at risk for further clinical deterioration.

Culture-based methods: When the results of rapid tests are negative, culture-
based methods should be considered where resources permit. A recent study dem-
onstrated considerable incremental yield with the addition of a single liquid culture 
when Xpert results are negative [72].

TB-LAMP: Where available, TB-LAMP may be used as a replacement test for 
sputum-smear microscopy for the diagnosis of PTB only, or may be considered as a 
follow-on test in those testing sputum-smear negative (see Fig. 3).

�Step 5: Whom Should I Investigate Further for EPTB and How Should 
I Test for EPTB?

Current WHO recommendation: All PLHIV with signs or symptoms of EPTB 
should be investigated for TB using microbiological tests. If PLHIV have respira-
tory symptoms or chest radiograph abnormalities, sputum-based testing with Xpert 
should be performed (Fig.  1). Even in PLHIV without respiratory symptoms, 
sputum-based testing will yield some TB diagnoses. If the results of rapid sputum-

Relevant guidelines:
• � Consolidated guidelines on the use of antiretroviral drugs for treating and 

preventing HIV infection. Geneva: WHO; 2016.
• � Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuber-

culosis. Geneva: WHO; 2011.
• � GLI model TB diagnostic algorithms. Geneva: WHO; 2018.
• � Same-day diagnosis of tuberculosis by microscopy. Geneva: WHO; 2011.
• � Xpert MTB/RIF implementation manual  – technical and operational 

“how-to”. Practical considerations. Geneva: WHO; 2014.

Diagnosis of HIV-Associated Tuberculosis



150

based testing (Xpert or microscopy) are negative, or PLHIV are unable to produce 
sputum, microbiological testing should be undertaken on non-respiratory samples 
corresponding to the extra-pulmonary manifestation most strongly suspected using 
Xpert (or Xpert Ultra). In PLHIV with signs and symptoms of TB who either have 
a CD4 count ≤100 cells/μL or are seriously ill (independent of CD4 count), the 
LF-LAM assay should be performed in parallel with sputum Xpert testing for the 
diagnosis of disseminated TB; its use should especially be considered in those 
unable to produce sputum (Fig. 2) [54].

Further Information:

Overview of EPTB: EPTB is defined as any case of TB that involves an organ or 
anatomic site other than the lungs. EPTB is common among PLHIV, especially 
those with severe immunosuppression (present in up to 90%). Disseminated and 
extra-pulmonary disease is associated with significant morbidity and mortality [1]; 
therefore, timely diagnosis is crucial. Unfortunately, the diagnosis of EPTB remains 
challenging given its non-specific presentations and traditional difficulty in obtain-
ing non-respiratory samples.

Clinical and radiological features of EPTB: TB can involve almost any anatomic 
site, but patients will often have local signs and symptoms related to the site of their 
disease with or without constitutional symptoms. EPTB clinical manifestations are 
reviewed in greater detail in the chapter “Clinical Manifestations of HIV-Associated 
Tuberculosis in Adults”. Clinicians should have heightened suspicion for EPTB in 
PLHIV presenting with a positive symptom screen as well as dyspnea (possible TB 
pleural effusion and/or TB pericarditis), enlarged cervical/axillary lymph nodes (pos-
sible TB lymphadenitis), headache or altered mental status (possible TB meningitis). 
The WHO has previously outlined a pragmatic clinical approach to help identify cases 
of EPTB by “looking and listening” for signs of four common forms of EPTB, includ-
ing TB lymphadenitis, pleural TB, TB pericarditis and TB meningitis (Table 3) [85].

As discussed in Part I, ultrasonography may also help rapidly and inexpensively 
detect pleural or pericardial effusions suggesting pleural and pericardial TB, respec-
tively [17]. The abdomen is the most frequent site of TB disease dissemination 
beyond the chest cavity and almost any structure (i.e., peritoneum, gastrointestinal 
tract, lymph nodes) or solid organ (spleen, liver, pancreas) may be involved. Intra-
abdominal findings on ultrasonography, especially ascites, diffuse lymphadenopathy 
or splenic or liver micro-abscesses should result in microbiological TB 
investigations.

Overview of diagnosing EPTB: When EPTB is suspected on the basis of clinical 
or radiologic features (chest X-ray or ultrasound), rapid investigations to confirm a 
TB diagnosis should be undertaken to allow for the prompt initiation of TB therapy. 
If empiric TB treatment is initiated on the basis of high clinical suspicion (for exam-
ple: the patient is symptomatic, has compatible ultrasound findings and is at high 
risk for clinical deterioration), clinical specimens should still be obtained for TB 
confirmation and DST.
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Table 3  ‘Look and listen 
for’ signs of possible EPTB

• � Possible TB lymphadenitis
  �  – � Cervical (typically unilateral) or axillary 

lymphadenopathy
• � Possible pleural TB
  �  –  Absent breath sounds
  �  –  Reduced chest wall movement
  �  –  Dullness to percussion
• � Possible TB pericarditis
  �  –  Distant heart sounds
  �  – � Peripheral edema and/or abdominal distension
  �  –  Jugular venous distension
• � Possible TB meningitis
  �  –  Neck stiffness
  �  –  Confusion
  �  –  Atypical eye movements

The WHO recommends that Xpert should be the initial test for the investigation 
of all forms of EPTB. The most common forms of EPTB are listed in Table 4 along 
with associated clinical samples that might be obtained and submitted for further 
microbiological testing when those forms of EPTB are clinically suspected. The 
approach to microbiological testing for EPTB is described below.

Sputum-based testing for those able to produce sputum: A large proportion of 
patients with extra-pulmonary disease also have concomitant pulmonary disease [29]. 
For PLHIV with suspected EPTB, those who are able to produce a sputum sample 
should still undergo initial testing with sputum Xpert testing (Figs. 1 and 2) or sputum 
AFB microscopy (and culture) testing where Xpert testing is unavailable (Fig. 3).

Obtaining non-respiratory clinical specimens: When the diagnosis of EPTB is sus-
pected but cannot be made via sputum-based methods (either sputum testing negative, 
or patient is too sick/unable to provide a sputum sample) then further non-respiratory 
samples should be obtained and submitted for rapid microbiological testing. The 
obtainment of clinical samples should be guided by which clinical site/organ is sus-
pected to be involved, as well as what investigations are locally available (Table 4). 
When multiple anatomic sites are thought to be involved, the least invasive clinical 
specimen that can be obtained for microbiological testing should be prioritized.

Xpert MTB/RIF (and Xpert Ultra) for EPTB: The diagnostic sensitivity of Xpert for 
non-respiratory samples is summarized in Table 1. While evaluations to-date are limited, 
Xpert Ultra is expected to improve detection of EPTB in PLHIV. As above, a ‘trace-
positive’ Xpert Ultra result in PLHIV should be regarded as a true-positive result [46].

LF-LAM assay: When LF-LAM results are positive, an additional microbiologi-
cal test that provides drug susceptibility testing results should be performed if pos-
sible (steps 6 and 7).

Microscopy and culture for EPTB: In PLHIV with suspected EPTB for which 
Xpert and LF-LAM testing is either negative or unavailable, smear microscopy and 
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culture may be considered on EPTB samples (Table 4). Smear microscopy is often 
of limited value given the pauci-bacillary nature of most EPTB samples and the 
clinical utility of culture-based methods is greatly diminished, especially among 
sick hospitalized patients given prolonged time-to-positivity and these patients’ pre-
disposition to rapid clinical deterioration without appropriate treatment.

�Step 6: Whom Should I Test for Drug Resistance?

Current WHO recommendation: All PLHIV with confirmed TB should undergo 
rapid DST for RIF. Patients with HIV-associated TB and evidence of RIF resistance 
should have further DST undertaken for other first-line drugs and at least for fluoro-
quinolones and second-line injectable agents.

Relevant guidelines:
• � Consolidated guidelines on the use of antiretroviral drugs for treating and 

preventing HIV infection. Geneva: WHO; 2016.
• � GLI model TB diagnostic algorithms. Geneva: WHO; 2018.
• � Improving the diagnosis and treatment of smear-negative pulmonary and 

extrapulmonary tuberculosis among adults and adolescents. Geneva: 
WHO; 2007.

• � The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the 
diagnosis and screening of active tuberculosis in people living with 
HIV. Geneva: WHO; 2015.

• � Xpert MTB/RIF implementation manual  – technical and operational 
“how-to”. Practical considerations. Geneva: WHO; 2014.

Relevant guidelines:
• � Framework of indicators and targets for laboratory strengthening under 

the End TB Strategy. Geneva: WHO; 2016.
• � WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. 

October 2016 revision. Geneva: WHO; 2016.

Table 4  Forms of EPTB and associated clinical samples for TB testing

EPTB form Sample

Bacteremia Blood
Genitourinary TB Urine, semen (men), organ biopsy
Lymphadenitis Fine needle aspirate of affected tissue, excisional biopsy
Meningitis Cerebrospinal fluid, tuberculoma biopsy
Pericarditis Pericardial fluid, pericardial biopsy
Peritonitis Ascitic fluid (paracentesis), peritoneal biopsy
Pleurisy (pleural TB) Pleural fluid (thoracentesis), pleural biopsy
Skeletal (bone/joint) Synovial fluid (arthrocentesis), bone biopsy
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�Step 7: How Should I Test for Drug Resistance?

Current WHO recommendations: Xpert (or Xpert Ultra) should be used for first-line 
DST to evaluate for RIF-resistance. In PLHIV with confirmed RR-TB or MDR-TB, 
further DST should be undertaken for other first-line drugs and at least fluoroquino-
lones and second-line injectable agents using LPA or other molecular methods 
(where available), in addition to culture-based methods.

Further information: For PLHIV, the WHO recommends universal access to 
rapid drug-susceptibility testing (DST) for at least RIF and if RIF-resistance is pres-
ent, further DST for fluoroquinolones and second-line injectable agents. This allows 
for the prompt identification of RR-TB, MDR-TB and XDR/pre-XDR TB.

�Step 8: For Whom Should I Consider Initiation of Empiric TB Therapy?

Current WHO recommendations: Every effort should be made to confirm the diag-
nosis of TB. When sputum Xpert (or smear microscopy) testing is negative, or in 
settings where TB investigations are limited, empiric TB therapy should be consid-
ered in those who are seriously ill due to suspected TB.

Further information: Whenever possible, all attempts should be made to make a 
microbiological diagnosis of TB as outlined in steps 4 and 5, before initiating 
empiric TB therapy. However, there are circumstances when empiric therapy (the 
administration of TB therapy without microbiological confirmation of TB) might be 
warranted. According to the current WHO algorithm for ambulatory HIV patients 
[7], empiric therapy might be considered in those for which TB is still felt to be 
likely despite negative Xpert testing (on respiratory and/or non-respiratory samples) 
or negative sputum microscopy (if Xpert testing is unavailable). However, if the 
patient’s clinical stability will allow for further TB investigations (i.e., repeat spu-
tum testing, repeat chest imaging, abdominal ultrasound and extra-pulmonary sam-
pling) these should be preferentially pursued before initiating empiric therapy. A 
multi-country trial among ambulatory PLHIV with CD4 counts <50 cells/μL ran-
domized patients to either ART plus isoniazid preventive therapy (IPT) or ART plus 
active TB treatment after systematic TB screening and further TB investigations 
were negative [86]. No difference in 24-week mortality between the two arms was 
found; this suggests that empiric TB treatment does not improve outcomes in ambu-

Relevant guidelines:
• � Framework of indicators and targets for laboratory strengthening under 

the End TB Strategy. Geneva: WHO; 2016.
• � The use of molecular line probe assays for the detection of mutations asso-

ciated with resistance to fluoroquinolones (FQs) and second-line inject-
able drugs (SLIDs). Policy guidance. Geneva: WHO; 2016.

• � The use of molecular line probe assays for the detection of resistance to 
isoniazid and rifampicin. Geneva: WHO; 2016.

• � WHO treatment guidelines for drug-resistant tuberculosis
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latory PLHIV if TB investigations are negative and that IPT can be safely initiated 
even in those with severe immunodeficiency if TB symptom screening and/or sub-
sequent TB investigations are negative.

In hospitalized PLHIV or those who are seriously ill as defined by the presence 
of one or more danger signs (Fig. 2), if one or more Xpert tests (or sputum smear 
microscopy where Xpert is not available) and a LF-LAM test (where available) are 
negative, empiric therapy should be started when the patient fails to clinically 
improve on broad-spectrum antibiotics within 3–5 days and TB remains clinically 
suspected. This approach is supported by studies demonstrating that among seri-
ously ill hospitalized patients with smear-negative, but suspected TB, early empiric 
therapy was associated with reduced hospitalization and improved survival at 
8 weeks [87, 88].

The initiation of empiric TB therapy may be necessary in settings where there are 
limited or no TB investigations routinely available. In patients who are seriously ill 
due to suspected TB (based on compatible clinical history, exam and/or imaging 
findings) a clinician at their discretion may choose to start empiric TB-therapy. In 
such settings, clinical prediction scores may be helpful in assessing which patients 
should be started on empiric TB therapy (see Part II). For example, one study 
among HIV inpatients with cough (of any duration) and at least one WHO danger 
sign found that a clinical prediction rule using only clinical, laboratory and radio-
graphic characteristics might have utility for determining who may benefit from 
empiric TB initiation [89]; a cutoff score of 3 or 4 was associated with a sensitivity 
of 87–90% and a specificity of 45–59% for culture-confirmed TB and thus might be 
used to guide initiation of empiric therapy.

�Conclusions

As more than half of incident TB cases in PLHIV remain undiagnosed and unre-
ported, significant challenges remain in the diagnosis of HIV-associated 
TB. However, there is much reason to be excited about new and imminent diagnos-
tic tools and tests. With improved implementation of currently recommended WHO 
universal screening and testing strategies for HIV-associated TB, the diagnosis gap 
can be greatly reduced allowing for significant progress to be achieved towards 
improved individual patient outcomes among PLHIV and enhanced TB control.

Relevant guidelines:
• � Consolidated guidelines on the use of antiretroviral drugs for treating and 

preventing HIV infection. Geneva: WHO; 2016.
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�Latent TB Infection and TB Disease: A Spectrum

Traditionally, tuberculosis (TB) has been viewed as a dichotomous disease entity in 
which a person with TB has either latent TB infection (LTBI) or active TB disease. 
LTBI is classically defined as evidence of an immunologic response to M. tubercu-
losis (Mtb) antigens via an in vivo tuberculin skin test (TST) or an in vitro interferon-
gamma release assay (IGRA) in the absence of other signs and/or symptoms of TB 
disease. Active TB disease has been distinguished from LTBI by the presence of 
objective signs and/or symptoms of TB disease, such as cough, fever, night sweats, 
hemoptysis, and weight loss. However, evidence of an immunologic response to 
Mtb antigens via either a TST or IGRA is not required for the diagnosis of active TB 
disease. Importantly, the TST and IGRA are unable to distinguish between LTBI 
and active TB disease.

More recent evidence suggests that TB is a spectrum of disease pathology, and 
not simply a dichotomous disease entity. In 2009, Young and colleagues proposed a 
novel paradigm that involved a spectrum of responses to and control of Mtb infec-
tion (Fig. 1): (1) an innate immune response in which Mtb infection is eliminated 
without priming of antigen-specific T-cells; (2) an acquired immune response in 
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load?

Infection eliminated
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with T cell priming
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with some bacteria persisting
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by immune response
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Innate
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Quiescent
infection

Active
infection

Disease

TRENDS in Microbiology

Fig. 1  A spectrum of responses to tuberculosis infection (Adapted from Young et al. Trends in 
Microbiology 2009) [1]

A. C. Pettit and T. R. Sterling



163

which infection is eliminated with T-cell priming; (3) quiescent infection during 
which bacteria can persist in a non-replicating form and infection is controlled; (4) 
active infection in which bacteria are replicating at a sub-clinical level (i.e. asymp-
tomatic) that is controlled by the immune response and; (5) clinical disease in which 
overt signs and symptoms are observed due to bacterial replication despite immune 
responses [1]. There is in vitro, non-human primate, and clinical human evidence to 
support this concept of a spectrum of TB disease pathology, as discussed below.

First, the elimination of Mtb infection by the innate immune response, without 
T-cell priming via an acquired immune response, is supported by the finding that 
some healthy people who are repeatedly exposed to TB do not develop a positive 
TST or IGRA [2–5]. In addition to never becoming infected, another explanation 
for this finding is that current tests are unable to detect the host’s acquired immune 
response. The latter could be due in part to the imperfect sensitivity of the TST or 
the IGRA, particularly when the host’s immune system is compromised (e.g. human 
immunodeficiency virus [HIV]) [6–9]. Another possible explanation is that some 
people exposed to TB do not need an acquired immune response for bacterial elimi-
nation. For example, a person might expectorate Mtb bacilli before the immune 
system is exposed. Alternatively, the innate immune response (via neutrophils or 
macrophages) could eliminate Mtb without necessitating an acquired immune 
response [10, 11].

Second, elimination of Mtb infection by the acquired immune response is sup-
ported by the finding that some people with a positive IGRA revert to negative on 
subsequent testing, and never develop a positive TST. Although some reversions may 
be related to the sub-optimal reproducibility of the IGRA using current cutoffs for a 
positive result [12, 13], elimination of Mtb infection via transient activation of the 
acquired immune response may also revert an IGRA from positive to negative [14].

While in vivo evidence is lacking, there is in vitro evidence that Mtb can persist 
in a non-replicating form, as seen in quiescent infection. This dormant state has 
been described using the Wayne model, in which bacilli are deprived of oxygen 
[15]. Oxygen-deprived bacilli upregulate genes controlled by two sensor kinases 
(dosS and dosT) and a response regulator (dosR) [16, 17]. The dosR response regu-
lator includes genes involved in triglyceride synthesis, which are required when the 
bacilli shift their carbon source from glucose to fatty acids [18, 19]. With more 
prolonged oxygen deprivation, many genes responsible for transcriptional regula-
tion are induced [20]. Dormant bacteria may be resuscitated, either randomly or due 
to unknown signals, and serve as “scouts” which test the conditions of the local 
environment. If these scouts are not cleared by the immune system (e.g., immuno-
compromised states, including HIV-infection), they will continue to replicate and 
signal the remainder of the dormant bacilli to replicate which, in turn, leads to sub-
clinical and clinical TB disease. These scout signals may take the form of a protein 
called Rpf (resuscitation promoting factor), which has been shown to increase the 
recovery of Mtb from the sputum of patients with active TB [21].

Sub-clinical TB disease occurs in the macaque TB model, which may most 
closely resemble the human TB disease spectrum. Monkeys with sub-clinical TB, 
termed “percolators”, are clinically normal but may have positive cultures for Mtb 
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months and even up to 1 year after infection with Mtb [22]. Sub-clinical TB is also 
well-described in humans, particularly among people living with HIV [23]. Perhaps 
the best human example of the transition from subclinical to clinical TB disease is 
provided by treatment of people living with HIV with antiretroviral therapy (ART). 
A vigorous recovery of T cell responses on ART has been associated with unmask-
ing of sub-clinical TB in the setting of immune reconstitution inflammatory syn-
drome (IRIS) [24, 25].

Understanding this spectrum of TB disease is important when considering treat-
ment for latent Mtb infection. Based on this paradigm, persons diagnosed with 
LTBI represent a heterogenous group of individuals—those who have already 
cleared the infection, are infected with bacilli in a non-replicating form, or infected 
with actively replicating bacilli but have no overt signs or symptoms of clinical 
disease. Therefore, anti-tuberculous drugs may be effective because non-replicating 
bacilli can be targeted by affecting cell wall maintenance and repair, or because Mtb 
bacilli periodically replicate (e.g. “scouts”) and this is inhibited by the drugs. An 
improved understanding of the TB disease spectrum is critical for future TB drug 
development.

Immunocompromise in the setting of HIV-infection likely has effects all along 
this disease spectrum. First, PLWH may be unable to mount an adequate innate or 
acquired immune response, leaving them less likely to clear infection following 
exposure compared to HIV-negative persons. Second, PLWH may also be unable to 
clear “scouts” that signal other dormant bacilli to replicate and cause sub-clinical or 
clinical TB disease following infection. Thirdly, PLWH and severe immunocom-
promise may not progress from subclinical to clinical TB for long periods of time. 
In contrast, the progression from subclinical to clinical TB may be accelerated 
among PLWH in the setting of antiretroviral therapy initiation and immune 
reconstitution.

�Treatment of Latent TB Infection with Anti-TB Therapy

There are several regimens available for the treatment of LTBI among people living 
with HIV (Table 1). Currently in the US, guidelines recommend testing for latent 
TB infection using TST or IGRA at the time of HIV diagnosis, regardless of epide-
miological risk factors for TB exposure. PLWH, CD4+ counts <200 cells/μL, and 
negative tests for LTBI should be retested once they have started antiretroviral ther-
apy (ART) and CD4+ counts are over 200 cells/μL. Annual testing (using TST) is 
only recommended for PLWH if they are at high risk for repeated/ongoing exposure 
to people with active TB [31]. In the US, treatment for LTBI is only recommended 
for PLWH who test positive for LTBI [28–30]. According to the WHO guidelines, 
PLWH who have an unknown or positive TST (and are unlikely to have active TB) 
are recommended to receive treatment for latent TB infection. HIV-negative persons 
are recommended to receive treatment if they are household contacts of a person 
with pulmonary TB or if they belong to other at-risk groups [26, 27].
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Table 1  Treatment regimens for LTBI among PLWH Endorsed by the WHO and CDC

WHO Guidelines [26, 27] CDC Guidelines [28–30]

Isoniazid
Dose: 5 mg/kg/day
Maximum dose 300 mg daily

6 months given daily in settings 
with high or low TB incidence 
(strong recommendation with 
high-quality evidence) 
36 months given daily in 
settings with high TB incidence 
and high rates of TB 
transmission as determined by 
national authorities (conditional 
recommendation with low-
quality evidence)

9 months given daily (AII 
evidence rating) 
Alternatives: 6 months 
given daily (CI evidence 
rating); 6–9 months given 
biweekly by directly 
observed therapy (CI 
evidence rating for 
6 months and BII 
evidence rating for 
9 months)

Rifampicin plus isoniazid 
Isoniazid dosing: 5 mg/kg/day 
Maximum dose 300 mg daily 
Rifampicin dosing: 10 mg/kg/day 
Maximum dose 600 mg daily

3–4 months given daily in 
settings with low TB incidence 
(strong recommendation with 
moderate to high quality 
evidence)

Not recommended

Rifampicin
Dose 10 mg/kg/day
Maximum dose 300 mg daily

3–4 months given daily in 
settings with low TB incidence 
(strong recommendation with 
moderate to high quality 
evidence)

4 months given daily
Rifabutin may be used as 
a substitute among 
PLWH on ART with 
significant drug 
interactions (BIII 
evidence rating)

Rifapentine plus isoniazid 
Isoniazid dosing: 15 mg/kg/week 
Maximum dose 900 mg weekly 
Rifapentine dosing: 
10–14 kg = 300 mg/week 
14.1–25 kg = 450 mg/week 
25.1–32 kg = 600 mg/week 
32.1–50 kg = 750 mg/week 
>50 kg = 900 mg/week Maximum 
dose 900 mg weekly

12 weeks given weekly by 
directly observed or self-
administered therapy in settings 
with low TB incidence (strong 
recommendation with moderate 
to high quality evidence) or high 
TB incidence (strong 
recommendation with moderate 
quality evidence)

12 weeks given weekly 
by directly observed or 
self-administered therapy 
(no evidence rating 
provided yet)

Definitions: High TB incidence, estimated annual TB incidence rate ≥ 100 per 100,000 popula-
tion; Low TB incidence, estimated annual TB incidence rate < 100 per 100,000
WHO quality of evidence rating: High-We are very confident that the true effect lies close to that of 
the estimate of the effect; Moderate-We are moderately confident that the true effect is likely to be 
close to the estimate of the effect, but there is a possibility that it is substantially different; Low-Our 
confidence in the effect estimate is limited (the true effect may be substantially different); Very low-We 
have very little confidence in the effect estimate (the true effect is likely to be substantially different)
WHO strength of recommendation definitions: Strong-the GDG was confident that the desirable 
effects of adherence would outweigh the undesirable effects (either in favor of or against an inter-
vention); Conditional-the GDG concluded that the desirable effects of adherence would probably 
outweigh the undesirable effects, but the GDG was not confident about the trade-off (i.e. absence of 
high-quality evidence, imprecise estimates of benefits/harm, uncertainty/variation in the value of the 
outcomes for different individuals, and small benefits or benefits that might not be worth the cost)
CDC quality of evidence definitions: (I)-randomized clinical trial data; (II)-data from clinical trials 
that are not randomized or were conducted in other populations; (III)-expert opinion
CDC strength of recommendation definitions: (A)-preferred; (B)-acceptable alternative; (C)-offer 
when A and B cannot be given
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�Isoniazid

Isoniazid (INH) monotherapy is endorsed as an LTBI treatment option by both the 
World Health Organization (WHO) [26, 27] and the United States Centers for 
Disease Control and Prevention (CDC) [28–30]. The WHO guidelines recommend 
INH daily for 6 months regardless of HIV-status, in countries with either high or 
low TB incidence, as a strong recommendation. In contrast, the CDC recommends 
INH daily for 9 months, regardless of HIV-status. The CDC endorses isoniazid for 
6 months as an alternative regimen. There are no special antiretroviral therapy con-
siderations during INH monotherapy for LTBI.

Randomized trials have shown that both 6 and 12 months of INH, when com-
pared to placebo, significantly reduce the incidence of TB disease in both HIV-
negative [32–34] and HIV-positive populations [35, 36]. Only one trial, conducted 
by the International Union Against Tuberculosis (IUAT) among an HIV-negative 
population, was designed to compare 6 vs. 12 months of INH. This study showed a 
65% efficacy of 6 months of INH and 75% efficacy of 12 months of INH during 
5 years of follow-up [33]. The 6-month INH regimen has not been directly com-
pared to 12 months duration in clinical trials among HIV-positive populations.

Data on direct comparisons of treatment pairs for the outcome of active TB are 
lacking for 9-months compared to either 6 or 12 months. Through a network meta-
analysis, indirect evidence regarding these comparisons is available. For example, 
although 9 months of INH has not been directly compared to either 6 or 12 months, 
all three have been compared to no treatment and both 6 and 12 months have been 
compared to placebo, allowing indirect comparisons to be made. Using network 
meta-analysis, the odds ratio for active TB was 0.65 (95% Credible Interval [Crl] 
0.50–0.83) for 6 months INH, 0.75 (95% Crl 0.35–1.62) for 9 months INH, and 0.50 
(95% Crl 0.41–0.62) for 12–72 months INH compared to placebo. The 95% credi-
ble intervals for all INH durations are overlapping, indicating no significant differ-
ences in the prevention of active TB. Stratifying results by HIV-status revealed no 
statistically significant difference in effect estimates for all INH durations [37]. In 
addition to these data, the WHO Guideline Development Group (GDG) considered 
programmatic feasibility, resource requirements, and patient acceptability in their 
preference for 6 over 9 months of INH. The 6-month regimen is more cost-effective 
than the 12-month regimen [38].

Data supporting the CDC’s recommendation for 9-month INH duration over the 
6-month duration are largely extrapolated from two studies including only HIV-
negative persons, neither of which were designed to directly compare various INH 
durations. A post-hoc analysis of a randomized trial conducted by the US Public 
Health Service [34] showed that among persons believed to have taken at least 80% 
of INH therapy, TB rates dropped 68% if INH was taken for 10–12 months and 
only 16% when taken for less than 10 months when compared to placebo [32]. 
Another post-hoc analysis was conducted using data from the Bethel Isoniazid 
Studies [39, 40] and included participants who had taken a wide range of INH 
durations, from none up to 24 months. TB case rates per 100 persons were plotted 
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against the duration of INH in months and the observed points were fitted with a 
simple curve. This curve approached horizontal at approximately 9–10 months dura-
tion [41]. However, the CDC also notes that cost-effectiveness may be a consider-
ation for the 6-month duration depending on the local health department conditions.

�Continuous Isoniazid

A treatment duration of at least 36  months (or continuous isoniazid) is recom-
mended by the WHO for PLWH who have either a positive TST, or unknown TST 
result in settings with high TB incidence and high rates of Mtb transmission, as 
defined by national authorities. It was recognized by the GDG that PLWH with a 
positive TST (or unknown TST result) as well as those receiving antiretroviral ther-
apy (ART) are more likely to benefit [42]. This is a conditional recommendation 
with low-quality evidence based largely on the results of a systematic review includ-
ing three studies conducted in Botswana, South Africa, and India [43]. Compared to 
6 months of INH, patients receiving continuous isoniazid had a 38% lower risk of 
active TB (relative risk [RR] 0.62, 95% CI 0.42–0.89) [43]. Among those with a 
positive TST there was a 49% lower risk of active TB (RR 0.51, 95% CI 0.30–0.86) 
and a 50% lower risk of mortality (RR 0.50, 95% CI 0.27–0.91) [43]. Among those 
with a negative TST there was no significant decrease in active TB or mortality, 
although the point estimate indicated a reduction in TB incidence of 27% [43]. All 
but one of these studies excluded participants eligible for ART [44]. In this study, 
those PLWH with a positive TST receiving continuous isoniazid and 360 days of 
ART had a 96% lower risk of active TB than those PLWH with a positive TST who 
received only 6 months of isoniazid and no ART (adjusted hazard ratio [aHR] 0.04, 
95% CI 0.005–0.35). Among those with a positive TST receiving 6-months of iso-
niazid and 360 days of ART, the reduction in the risk of active TB was only 50% 
(aHR 0.50, 95% CI 0.26–0.97) compared to TST-positive participants receiving 
6-months of isoniazid but not receiving ART [44].

Two of the studies found no statistically significant increase in adverse events in 
the continuous isoniazid group [44, 45]; a third study reported an increase in grade 
3 or 4 adverse events (32 vs. 9.5%, RR 3.41, 95% CI 2.28–5.09) [46], but meta-
analysis was not preformed due to study heterogeneity [43]. The pooled relative risk 
of study drug discontinuation due to adverse events was 5.96 (95% CI 4.12–8.62) 
for the continuous isoniazid group compared to the 6-month treatment duration 
group [43].

Only one of the studies included in this meta-analysis reported data on adherence 
[46]. The proportion of patients who reported or were observed taking more than 
90% of their assigned treatment regimen in the allotted time frame were 84% in the 
6-month isoniazid arm and 89% in the continuous isoniazid arm. In the continuous 
arm, the median treatment duration was 3.3 years (IQR 2.1–4.3 years). The propor-
tion of patients who had to permanently discontinue medication was highest for the 
continuous isoniazid arm (36.5%) compared to the rifapentine-isoniazid arm (1.8%), 
rifampicin-isoniazid arm (3.8%), and 6-month isoniazid arm (1.9%). Similarly, this 
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was the only study included in the meta-analysis which reported resistance rates for 
incident TB cases in both the continuous and 6-month isoniazid groups [46]. They 
found 1 case of isoniazid resistance in the continuous isoniazid arm and no cases in 
the 6-month arm (RR 5.96, 95% CI 0.24–146). The other two studies reported that 
the observed rate of INH resistance in incident cases was similar between the con-
tinuous and 6-month isoniazid groups, and not different from the expected rate of 
INH resistance in the population [44, 45].

Data on the cost-effectiveness of continuous isoniazid are limited. One study 
utilized data from a National Institute for Research in Tuberculosis clinical trial 
conducted in India in conjunction with a previously published model of TB and HIV 
co-infection [47]. Compared to no preventive therapy, 6  months of isoniazid 
increased life expectancy by 0.8 months at a lifetime cost per person of $57,00 US 
dollars; continuous isoniazid increased life expectancy by 1.0 months at a lifetime 
per person cost of $5,780 US dollars. The incremental cost-effectiveness ratio 
(ICER) for continuous isoniazid was $4,290 per year of life saved compared to 
$1,140 for 6 months of isoniazid. The WHO Commission on Macroeconomics and 
Health suggests that a regimen is cost-effective if the incremental cost-effectiveness 
ratio is <3 times the Gross Domestic Product (GDP) per capita ($2,490 US dollars 
in India in 2009) making the 6-month isoniazid regimen (ICER $1,140) cost-effec-
tive and the continuous isoniazid regimen (ICER $4,290) not cost-effective [47]. A 
second study developed a decision-analytic model utilizing previously published 
data with health care costs from South Africa [48]. This study also considered vary-
ing antiretroviral coverage (55% versus 90%), presence of infection control prac-
tices, type of TB diagnostic algorithms (sputum smear and chest radiography versus 
Xpert MTB/RIF), and presence of intensified case finding in addition to isoniazid 
duration (6 versus 36 months) in the strategies evaluated. The 36-month strategy 
was most cost-effective when packaged together with expanded ART provision 
(90%), infection control, Xpert MTB/RIF, and intensified TB case finding. The 
incremental cost-effectiveness ratio (ICER) per TB case averted was $28,936 US 
dollars [48]. A third study, also utilizing a decision-analytic model, used primary 
data and key results from a clinical trial conducted in Botswana [44]. This study 
considered TST results in the decision to provide isoniazid and a CD4+ lymphocyte 
cut-off of 250 and 500 cells/ μL in the decision to provide ART in addition to isonia-
zid duration (6 versus 36 months). Providing 36 months of isoniazid to only TST-
positive PLWH and providing ART only when CD4+ counts were <250 cells/μL 
was the most cost-effective strategy with respect to ICER per TB case averted 
($1,612 US dollars) and ICER per death averted ($2,418) [49].

The WHO GDG noted that consideration be given to the increased resource 
needs for implementation of continuous isoniazid at the programmatic level, as it is 
known that global implementation of the 6-month regimen among PLWH is low. 
The preference for TST before starting therapy was recognized as a possible barrier. 
Additionally, the committee expressed concerns about lower completion rates and 
adherence with a longer regimen as well as the development of isoniazid resistance. 
Continued research on operationalizing continuous isoniazid among PLWH 
is needed.
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�Rifamycin-Containing Regimens

There are several rifamycin-containing regimens available as options for treatment 
of LTBI and endorsed by the WHO and/or CDC as discussed below.

�Rifampicin

The WHO guidelines recommend daily rifampicin for 3–4 months as an alternative 
to isoniazid monotherapy in countries with low TB incidence [26, 27]. The CDC 
guidelines also recommend daily rifampicin for 4 months as an alternative regimen 
[28]. Rifampicin-containing regimens must be prescribed with caution to PLWH in 
high-burden settings. This population has a higher possibility of sub-clinical or 
undiagnosed TB, which if treated with monotherapy could result in rifampicin 
resistance.

In addition, there are several drug-drug interactions between rifampicin and 
ART. Currently, a non-nucleoside reverse transcriptase inhibitor (NNRTI) plus two 
nucleoside reverse transcriptase inhibitors (NRTIs) is the recommended first-line 
ART regimen with rifampicin-based therapy. The preferred NRTI backbone is aba-
cavir (ABC), zidovudine (AZT), or tenofovir (TDF) with either lamivudine (3TC) 
or emtricitabine (FTC). The preferred NNRTI is efavirenz (600 mg) although nevi-
rapine can be considered for patients with an intolerance or contraindication to efa-
virenz [50–52]. Nevirapine induces its own metabolism and is, therefore, initiated 
using a lead-in dose of 200 mg/day for 2 weeks before increasing to full doses of 
400 mg/day. Rifampicin can also lower serum nevirapine levels in addition to this 
auto-induction [53]. When evaluated in clinical trials, nevirapine with lead-in dos-
ing has been shown to be associated with low serum nevirapine concentrations, 
decreased antiviral efficacy, emergence of drug resistance, and death [54–57]. 
Therefore, experts suggest starting nevirapine at full-dose when it is co-administered 
with rifampicin [50, 51]. However, when compared to efavirenz, even full-dose 
nevirapine has been shown to be associated with poor virologic outcomes and 
higher rates of discontinuation due to toxicity [58]. These data strengthen the 
preference for efavirenz over nevirapine as the NNRTI of choice during rifampicin 
co-administration.

Integrase inhibitor-based regimens are now increasingly used as first-line ther-
apy, including in resource-limited settings. Raltegravir and dolutegravir are metabo-
lized mainly by uridine 5′-diphospho-glucuonosyltransferase 1A1, which is induced 
by rifampicin. Co-administration of these agents with rifampicin reduces serum 
levels of both drugs. For this reason, rifabutin is preferred over rifampicin by the 
CDC guidelines. However, there are emerging data that rifampicin may be co-
administered with raltegravir if doses are increased to 800 mg twice daily [59–61] 
or with dolutegravir if doses are increased to 50 mg twice daily [62, 63]. Based on 
these data and expert opinion, the CDC currently favors the increased dose of ralte-
gravir and dolutegravir when co-administered with rifampicin until further data are 
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available [51]. Additional details on drug-drug interactions between rifampicin and 
integrase inhibitors can be found in the chapter on pharmacologic considerations 
during the co-treatment of HIV and TB.

In a network meta-analysis of studies including both HIV-negative and HIV-
positive persons, rifampicin monotherapy was effective at preventing active TB 
when compared to placebo (OR 0.41, 95% CI 0.19–0.85). Rifampicin monotherapy 
had a lower odds of hepatotoxicity than either 6 or 9-months of isoniazid. The odds 
ratio for hepatotoxicity with rifampicin monotherapy was 0.03 (95% CI 0.00–0.48) 
compared to 6-months isoniazid and 0.17 (95% CI 0.06–0.47) compared to 9-months 
of isoniazid. Stratifying results by HIV-status revealed no statistically significant 
difference in effect estimates [37].

Since the publication of this meta-analysis, the first randomized controlled trial 
investigating the effectiveness of 4 months of rifampicin (and compared to 9 months 
of isoniazid) has been published. Participants were eligible if they were 18 years of 
age or older, and had a positive TST. Among 6012 participants enrolled, 242 (4.0%) 
were HIV-positive. There were 3443 participants enrolled in the rifampicin group; 
4 developed confirmed active TB and 4 developed clinically diagnosed active TB 
over 7732 person-years of follow-up. Among 3416 participants enrolled in the iso-
niazid group, 4 developed confirmed active TB and 5 developed clinically diag-
nosed active TB over 7652 person-years of follow-up. The rate difference for 
rifampicin minus isoniazid was <0.01 cases/100 p-y (95% CI −0.14 to 0.16) for 
confirmed active TB and < 0.01 cases/100 p-y (95% CI −0.23 to 0.22) for confirmed 
or clinically diagnosed TB. The upper bound of the 95% confidence interval was 
below the prespecified noninferiority margin of 0.75; thus the 4-month rifampicin 
regimen was noninferior to 9 months of isoniazid. Treatment completion was better 
for rifampicin compared to isoniazid (rate difference 15.1%, 95% CI 12.7 to 17.4%). 
There were fewer grade 3–5 adverse events (rate difference  −  1.1%, 95% CI 
−1.9—0.4%) and fewer grade 3–5 hepatotoxicity events (rate difference −1.2%, 
95% CI −1.7 to −0.7%) for rifampicin compared to isoniazid.

�Rifabutin

The CDC guidelines note that rifabutin can be substituted for rifampicin among 
PLWH on ART regimens that are known to interact with rifampicin, such as 
protease-inhibitor (PI) based or integrase inhibitor based ART [28]. Rifabutin is not 
recommended in the WHO LTBI treatment guidelines [26, 27]. Although rifabutin 
is a less potent inducer of CYP isoenzymes, rifabutin itself is metabolized by 
CYP3A enzymes. Co-administration with PI-based ART, therefore, leads to CYP3A 
inhibition and increased serum rifabutin levels. Experts suggest decreasing rifabutin 
doses to 150 mg daily when co-administered with PI-based ART [64]. If rifabutin is 
not available, double dose lopinavir/ritonavir is the only PI that can be used with 
rifampicin although these patients must be monitored closely for hepatotoxicity. No 
dose adjustments are required when rifabutin is co-administered with either ralte-
gravir or dolutegravir.
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Rifabutin has been evaluated in a phase II pilot study including 44 participants with 
LTBI and HIV co-infection. Participants were eligible if they were TST positive adults 
with confirmed HIV-infection; they were excluded if CD4+ counts were < 200 cells/
μL. Participants were randomized to receive either rifabutin 300 mg and isoniazid 
750 mg twice weekly for three months (arm 1, n = 16), rifabutin 600 mg and isoniazid 
750 mg twice weekly for three months (arm 2, n = 14), or isoniazid 300 mg daily for 
6 months (arm 3, n = 14). The study was terminated early prior to reaching enrollment 
goals by the pharmaceutical sponsor. Three, one, and four subjects did not complete 
treatment in arms 1, 2, and 3, respectively. Adverse events were reported for four, nine, 
and seven participants in arms 1, 2, and 3, respectively. During follow-up two cases of 
active TB were identified (both in the isoniazid monotherapy arm) [65].

�Rifampicin and Isoniazid

The WHO guidelines recommend rifampicin plus isoniazid daily for 3 months as an 
alternative to isoniazid monotherapy in countries with a low TB incidence [26, 27]. 
ART considerations when using this regimen are the same as those for rifampicin 
monotherapy as described above.

In a network meta-analysis of studies including both HIV-negative and HIV-
positive persons, rifampicin plus isoniazid was effective in preventing active TB 
when compared to placebo (OR 0.53, 95% CI 0.36–0.78). Furthermore, when using 
standard meta-analysis methods for direct pairwise comparisons between regimens, 
rifampicin plus isoniazid did not differ from isoniazid of any duration with respect 
to prevention of active TB. Rifampicin plus isoniazid also did not differ from isonia-
zid of either 6 or 9-months in duration with respect to the development of hepato-
toxicity. Stratifying results by HIV-status revealed no statistically significant 
difference in effect estimates [37].

�Isoniazid and Rifapentine

The WHO guidelines recommend rifapentine plus isoniazid weekly for 12 weeks 
(3HP) in countries with a low TB incidence (strong recommendation) and those 
with a high TB incidence (conditional recommendation) [26, 27]. The CDC guide-
lines first recommended 3HP among PLWH in December 2011 if they were other-
wise healthy and not taking antiretroviral therapy and if 3HP was given by 
directly-observed therapy [29]. This recommendation was based largely on the 
results of the PREVENT TB trial which compared 3HP given weekly by directly 
observed therapy to 9H given daily by self-administered therapy [66]. The primary 
endpoint was active TB and the non-inferiority margin was 0.75%. There were 403 
PLWH enrolled in the United States, Brazil, Spain, Peru, Canada, and Hong Kong; 
median CD4+ count was 495 (IQR 389–675  cells/μL). Participants receiving or 
planning to initiate ART during the first 90 days after enrollment were excluded. 
Cumulative TB rates were 1.01% in the 3HP arm and 3.50% in the 9H arm (rate 
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difference − 2.49, upper 95% CI of the difference 0.60%). Treatment completion 
was higher in the 3HP arm compared to the 9H arm (89% versus 64%, p < 0.001). 
Discontinuation of study drug due to adverse events was similar (3% in 3HP arm 
versus 4% in 9H arm, p = 0.79) [66].

In June 2018, these recommendations were updated to also include PLWH who 
were taking efavirenz or raltegravir-based ART. Moreover, self-administered therapy 
was now an allowed mode of administration in the United States based on local 
resources and patient characteristics [30]. The inclusion of PLWH taking standard 
dose efavirenz or raltegravir-based ART were based on pharmacokinetic studies [67, 
68]. Co-administration of dolutegravir and rifapentine is not currently recommended, 
but some pharmacokinetic data on this topic are discussed in the chapter on pharma-
cologic considerations during co-treatment of HIV and TB. Self-administered 3HP 
was evaluated in the iAdhere study, which compared that administration method to 
directly-observed therapy [69]. The primary endpoint was treatment completion and 
the non-inferiority margin was 15%. Among 1002 participants enrolled in the United 
States, Spain, Hong Kong, and South Africa, 11 (1.1%) were known to be HIV-
positive. Overall, treatment completion was 87% (95% CI 83–91%) in the direct 
observation group, 74% (95% CI 70–79%) in the self-administration group, and 76% 
(95% CI 71%–81%) in the self-administration with text message reminders group. In 
the United States, treatment completion was 85% (95% CI 81–89%), 78% (95% CI 
73%–83%) and 77% (95% CI 71–82%), respectively. Therefore, treatment comple-
tion of self-administered therapy was non-inferior to directly observed therapy in the 
United States but not overall or outside of the United States [69].

This short course regimen (3HP) has been evaluated in a cost-effectiveness study 
in both high- and low-burden settings. Using a cohort of PLWH in a Ugandan HIV 
clinic, 3HP was estimated to avert 9 cases of TB and 1 death for every 1000 PLWH 
on ART when compared to isoniazid monotherapy [70]. Incremental cost effective-
ness was estimated at $9,402 US dollars per disability-adjusted life year averted. In 
this model, the cost-effectiveness of 3HP was highly dependent on the cost of 
rifapentine, completion of treatment, and the prevalence of LTBI. The authors con-
cluded that in comparison to isoniazid monotherapy, that 3HP would only be cost-
effective in this high burden setting if the price of rifapentine was reduced and 
treatment completion rates were high (>85%) [70]. In a US setting, the cost-
effectiveness of 3HP was initially evaluated using a cost per dose of 3HP of $12.31 
US dollars [71]. In this analysis, 3HP was estimated to avert 5.2 cases of TB for 
every 1000 people treated. The 3HP regimen would cost $21,525 and $4,294 more 
per TB case prevented compared to 9H from a health system and societal perspec-
tive; it would cost $4,565 and $911 per quality adjusted life year, respectively. In the 
US, activities costing <$50,000/QALY gained are generally considered to be cost-
effective [71]. These estimates were updated after the price of rifapentine was 
reduced and the cost per dose of 3HP dropped to $6 [72]. In the updated analysis, 
the cost to the health system per TB case averted by 3HP decreased to $8,816 and 
the cost to the health system per QALY gained decreased to $1,879. Additionally 
the authors estimated that switching from 9H to self-administered 3HP would lead 
to an additional $141 saved per individual treated from a health system perspective 
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and $231 saved per individual treated from a societal perspective. Therefore, in low 
burden settings the 3HP regimen was deemed to be cost-effective when compared 
to 9H, with additional savings following the reduction in rifapentine pricing and 
ability to provide self-administered therapy [72].

The BRIEF-TB trial conducted by the AIDS Clinical Trial Group evaluated an 
ultra-short 1-month course of daily self-administered rifapentine and isoniazid for 
treatment of LTBI among PLWH [73]. Participants were eligible if they were at 
least 13 years old and lived in a high burden TB setting or were TST/IGRA positive. 
Concomitant ART with an efavirenz or nevirapine based regimen was allowed. 
Participants were stratified by ART status and CD4+ count and randomized to either 
9 months of isoniazid 300 mg daily or one month of weight based-rifapentine plus 
isoniazid 300 mg daily. The primary outcome was a combined endpoint of active 
TB, death due to TB, and death due to unknown causes. There were 3000 partici-
pants; 50% were on ART and median CD4+ count was 470 cells/ μL (IQR 
346–635 cells/μL). Only 634 (21%) had a positive TST/IGRA. A non-inferiority 
margin of 1.25/100 person-years was set based on an assumed 2.0/100 p-y inci-
dence of the primary endpoint in the 9H arm. The incidence of the primary endpoint 
was 0.69/100 person-years in the 1HP arm and 0.72/100 p-y in the 9H arm (IR dif-
ference − 0.025, upper 95% CI 0.31). Since the upper bound of the 95% CI was 
below the non-inferiority margin, the 1HP regimen was deemed non-inferior to the 
9H regimen. There was no difference in serious adverse events between arms (5.6% 
1HP versus 7.1% 9H, p  =  0.1). There was a higher incidence of targeted safety 
events in the 9H arm (5.1/100 p-y) compared to the 1HP arm (3.3/100 p-y, p = 0.03). 
Treatment completion was higher in the 1HP arm compared to the 9H arm (97% 
versus 90%, p < 0.01). There was one case of rifampicin-resistance TB in each arm 
and 1 case of isoniazid-resistant TB in the 9H arm [73]. Additional studies con-
ducted in low-burden TB settings and on the pharmacokinetics of integrase inhibi-
tors when co-administered with daily rifapentine dosing are needed.

Rifapentine was approved by the US Food and Drug Administration for the treat-
ment of latent TB in 2014. Despite the drop in price as discussed above, the drug has 
not been widely registered outside the US, raising concerns for global access to rifa-
pentine. In 2015, the 20th World Health Organization (WHO) meeting on the selec-
tion and use of essential medications recommended the addition of Rifapnetine to the 
WHO Model List of Essential Medications (EML) [74]. The addition of a medication 
to the EML often leads to increased demand from country governments and subse-
quently stimulates drug manufacturers to invest in registration in these countries.

�Effect of Antiretroviral Therapy in Preventing the Progression 
of Latent TB Infection

Many studies have demonstrated the protective effect of ART on the incidence of active 
TB disease. In 2012, a systematic review and meta-analysis was conducted which 
included randomized controlled trials, prospective cohort studies, and retrospective 
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cohort studies if they compared TB incidence by ART status among HIV-positive 
adults for a median of at least 6 months in developing countries [75]. The authors found 
that ART was strongly associated with a reduction in TB incidence regardless of CD4+ 
count: HR 0.16 (95% CI 0.07–0.36) for CD4+ <200, HR 0.34 (95% CI 0.19–0.60) for 
CD4+ 200–350, HR 0.43 (95% CI 0.30–0.63) for CD4+ >350, and HR 0.35 (95% CI 
0.28–0.44) for any CD4+ count [75].

Following the publication of this systematic review an additional clinical trial 
using a 2-by-2 factorial design was conducted to assess the benefits of early ART, 
6-months of isoniazid preventive therapy, or both among PLWH in Ivory Coast – the 
TEMPRANO trial [76]. Participants were included if they had CD4+ counts 
<800 cells/μL and did not meet criteria for ART initiation according to WHO guide-
lines. They were randomly assigned to deferred ART (ART initiation per WHO 
guidelines), deferred ART plus isoniazid, early ART (immediate ART initiation), or 
early ART plus isoniazid. The primary endpoint was a composite endpoint includ-
ing AIDS, non-AIDS defining cancer, non-AIDS defining bacterial disease, or death 
from any cause at 30 months. There were 2056 participants enrolled and followed 
for 4757 person-years. Tuberculosis accounted for 42% of the 204 primary end-
points observed. Early ART initiation was associated with a decreased incidence of 
TB (aHR 0.50, 95% CI 0.32–0.79) compared to deferred ART initiation among all 
patients. When stratified by baseline CD4+ count, early ART initiation was associ-
ated with a similar decrease in TB incidence for those with baseline CD4+ count 
<500 cells/μL (aHR 0.48, 95% CI 0.27–0.87) and a trend toward a decreased inci-
dence for those with a baseline CD4+ count >500  cells/μL (aHR 0.54, 95% CI 
0.26–1.09). Isoniazid preventive therapy was associated with a decreased incidence 
of TB overall (aHR 0.44, 95% CI 0.28–0.69), regardless of baseline CD4+ count 
(aHR 0.42 [95% CI 0.23–0.76] for CD4 < 500 cells/μL and aHR 0.47 [95% CI 
0.23–0.97] for CD4 > 500 cells/μL). The group who received both early ART plus 
isoniazid had the fewest number of TB events (n  =  11), followed by those who 
received deferred ART plus isoniazid (n  =  16), early ART alone (n  =  17), and 
deferred ART alone (n = 41) [76]. Participants who completed this trial follow-up 
were invited to participate in additional post-trial phase. The primary endopoint of 
this post-trial phase was death due to any cause from the time of inclusion in the 
parent trial. The hazard ratio of death was 0.63 (95% CI 0.41–0.97) after adjusting 
for ART timing and 0.61 (95% CI 0.39–0.94) after adjusting for ART timing, CD4+ 
count, and other patient characteristics [77]. These data suggest that there is additive 
benefit of ART and isoniazid preventive therapy in the prevention of TB.

In summary, tuberculosis is likely a spectrum of disease rather than a dichoto-
mous condition of latent infection or active disease; the spectrum is impacted by 
immunocompromising conditions, particularly HIV infection. Both antiretroviral 
therapy and anti-mycobacterial therapy are important for the treatment of 
LTBI.  Several anti-mycobacterial regimens are endorsed by the World Health 
Organization and US Centers for Disease Control and Prevention for treatment of 
latent TB infection among PLWH, although LTBI treatment options are limited by 
drug-drug interactions with antiretroviral drugs. Further research is needed to 
advance our understanding the TB disease spectrum, to develop novel and shorter, 

A. C. Pettit and T. R. Sterling



175

well-tolerated anti-mycobacterial treatment regimens, and to better characterize the 
interactions of anti-mycobacterial and antiretroviral drugs.
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Abstract  Tuberculosis (TB) is the most common opportunistic infection and the 
leading cause of death in patients with human immunodeficiency virus (HIV) 
worldwide. Persons with advanced HIV infection and those not on antiretroviral 
therapy (ART) are at highest risks of morbidity and mortality. Thus, early diagnosis 
and treatment of both HIV and TB are keys to treatment success. Concurrent treat-
ment of both infections can be challenging due to high pill burden, overlapping 
toxicities, drug interactions, adherence concerns, and the potential of immune 
reconstitution inflammatory syndrome. This chapter provides an overview of treat-
ment regimens and duration of therapy for drug-susceptible TB, management of 
adverse drug reactions, monitoring parameters, adherence interventions, and appro-
priate timing for ART initiation in this patient population.
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�General Principles of Tuberculosis Treatment

Tuberculosis (TB) is the most common opportunistic infection globally and the 
leading cause of death in persons with HIV, especially in areas with high TB preva-
lence, such as sub-Saharan Africa [1]. The severity of TB and related complications 
in persons with HIV correlate well with the degree of immune suppression (as mea-
sured by CD4 cell count) at the time of TB diagnosis and whether or not the patient 
is receiving antiretroviral therapy (ART) [2]. Thus, early diagnosis and treatment of 
both infections are keys to treatment success and reduction of TB and HIV associ-
ated morbidity and mortality.

All patients with documented TB [defined as having a positive smear of acid fast 
bacilli (AFB) or molecular test or culture diagnosis of Mycobacterium tuberculosis 
(MTB), along with compatible clinical signs and symptoms] or high clinical suspi-
cion of TB (compatible symptoms in a highly endemic area but without microbio-
logic confirmation) should be initiated on TB treatment immediately [3–5]. The 
primary goals of therapy are to reduce TB-associated disease progression and death, 
and to cure the patient of TB. Another important goal, for patients with pulmonary 
or laryngeal TB, is to reduce the duration of infectivity and to prevent further spread 
of TB to others. To accomplish these goals, first-line TB therapy consists of an ini-
tial “intensive” phase of a four-drug regimen with isoniazid, a rifamycin antibiotic 
(generally rifampicin or rifabutin), ethambutol, and pyrazinamide, and is used for 
approximately 2 months. This multiple drug combination rapidly reduces bacillary 
load and halts replication of bacilli. Furthermore, combination therapy is particu-
larly important while awaiting drug susceptibility testing results, as it should be 
effective against MTB isolates that may harbor mono-drug resistance, particularly 
to isoniazid. After the intensive phase, therapy should be continued with 2 drugs 
(isoniazid and a rifamycin) for approximately 4 months. The purpose of this con-
tinuation phase treatment is to eradicate the slower growing bacilli in order to 
achieve cure. The duration of therapy may be extended if the patient has severe 
disease at presentation, has slower than expected clinical response, has smear or 
culture positivity at the end of the 2-month intensive phase treatment, has certain 
types of extrapulmonary MTB infection (e.g. TB of the spine), has adverse drug 
reactions necessitating substitution for isoniazid or rifampin with other TB drugs or 
discontinuation of pyrazinamide, or if the patient has periods of non-adherence to 
the regimen [3, 5].

Because of the long duration of therapy, non-adherence or loss to follow-up is a 
major hurdle for successful TB treatment. Failure to complete a treatment course 
may result in acquired drug resistance, relapse of TB, and further transmission of 
MTB to others.
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�Indications for TB Treatment

All patients with documented TB by microbiological (AFB smear and/or culture 
and/or approved molecular genetic testing) should commence TB therapy promptly. 
The availability of a more sensitive rapid diagnostic test, such as the Xpert RIF/TB 
Ultra assay, should reduce the proportion of patients needing empiric TB treatment.

�Empiric TB Therapy for Suspected TB

If TB is strongly suspected, therapy should be initiated empirically pending diag-
nostic confirmation. The World Health Organization (WHO) has issued recommen-
dations for empiric TB therapy in persons with HIV and suspected TB and negative 
rapid diagnostic tests, while awaiting culture results [6]. Xpert RIF/TB assay is the 
preferred rapid diagnostic test. However, the AFB smear is still the only available 
rapid test in many resource-poor settings. Diagnosis of TB should be highly sus-
pected if a patient presents with any one of the following symptoms: cough for more 
than 2 weeks, weight loss, night sweats, or fever. Danger signs are any one of the 
following: respiratory rate >30  breaths/min, heart rate >120  beats/min, tempera-
ture > 39°C, or inability to walk unaided. In ambulatory patients without danger 
signs, TB therapy is recommended if the chest radiograph is compatible with TB, or 
if there are features of extrapulmonary TB.  In seriously ill patients with HIV 
(defined as having danger signs), in addition to empiric TB therapy, broad spectrum 
antibiotics are recommended and treatment for Pneumocystis pneumonia should 
also be considered, especially in patients with CD4 count <200 cells/mm3.

Few studies have evaluated the performance of the WHO algorithms for TB diag-
nosis. Studies of the algorithm report relatively poor diagnostic performance, but 
high negative predictive values indicate the algorithm has value in ruling out TB [7, 
8]. In a South African study evaluating the seriously ill algorithm, none of the clas-
sic TB symptoms predicted TB in patients with cough; predictors of TB were cough 
≥14 days, inability to walk unaided, temperature >39 °C, low haemoglobin, low 
white cell count, and chest radiographic features of TB [9].

�Treatment of Drug Susceptible Tuberculosis (Also See Table 1)

MTB divides slowly and may exist in either a replicating, metabolically active state 
or a dormant, slowly or non-replicating state [10]. Successful treatment requires 
multiple drugs for two main reasons—to kill both actively-multiplying and semi-
dormant (so-called “persister”) bacilli and to prevent selection of drug resistant 
mutants.

Treatment of Drug-Sensitive Tuberculosis in Persons with HIV
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Table 1  Management of drug susceptible tuberculosis (TB) in persons with HIV

Recommendations Comments

Treatment Regimens for Drug Susceptible TB

Treatment Regimens 
for Drug 
Susceptible TB

For uncomplicated pulmonary 
TB
Intensive phase
–  Isoniazid (+ pyridoxine) 
+ rifampicin (or rifabutin) 
+ pyrazinamide + ethambutol 
(see Table 2 for dosing 
recommendations) × 2 months, 
followed by
Continuation phase
–  Isoniazid (+ pyridoxine) 
+ rifampicin (or rifabutin) × 
4 months

Treatment should be given daily. 
Intermittent therapy (2–3 times weekly is 
not recommended for HIV-infected 
patients). Therapy may be extended if 
treatment interruption is needed. Use of 
rifampicin vs. rifabutin depends on ART 
regimen (see “Co-treatment of 
Tuberculosis and HIV: Pharmacologic 
Considerations” chapter for 
recommendation). Directly observed 
therapy should be done if feasible. 
Treatment duration may need to be 
extended based on clinical response.

Total duration of 
Therapy Based on 
Clinical Situations

Pulmonary TB with good 
clinical response—6 months
Pulmonary TB with positive 
AFB smear or culture at 
2 months of TB 
treatment—9 months
Extrapulmonary TB w/CNS 
involvement—at least 
9 months
Extrapulmonary TB w/bone or 
joint involvement—9 months
Extrapulmonary TB in other 
sites—6 months

Management of Drug-Induced Liver Injury (DILI)

Asymptomatic and 
ALT <5× ULN

Continue TB drugs and 
monitor more frequently

If patient becomes symptomatic or ALT 
>5× ULN—see recommendation below. 

–  Symptoms 
consistent with DILI 
and ALT >3× ULN, 
or
–  Asymptomatic 
and ALT >5× ULN

Stop TB drugs except 
ethambutol and any 
concomitant drugs with DILI 
potential. 
Start TB regimen with 
ethambutol + a 
fluoroquinolone + linezolid or 
an aminoglycoside. 
Evaluate for other causes of 
liver disease, including viral 
hepatitis. 
Obtain additional laboratory 
tests associated with liver 
function such as bilirubin, 
alkaline phosphatase, 
prothrombin time, and 
albumin. 
Close monitoring for 
resolution of symptoms and 
laboratory abnormalities. 

Initiation of a new regimen of 
ethambutol + a fluoroquinolone + 
linezolid or an aminoglycoside will 
allow for continue TB treatment and 
avoid development of TB drug 
resistance. 

(continued)
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Receipt of ART is a key factor for TB treatment success. Six-month TB treatment 
duration in persons with HIV not receiving ART is associated with higher treatment 
failure and recurrence rates compared to those receiving ≥8 months of treatment 
[11–13]. However, in patients on ART, rates of TB recurrence are similar for treat-
ment durations of 6 and ≥8 months [11].

Treatment should begin with a combination of rifampicin (or rifabutin), isoniazid 
(with pyridoxine supplementation), pyrazinamide, and ethambutol for a 2-month 
intensive phase. Drug resistance testing to at least rifampicin, and when possible 
isoniazid should be performed on all initial isolates if this is affordable and available 
[3, 5]. If susceptibility to rifampicin and isoniazid is confirmed, ethambutol may be 
discontinued before the end of the 2 months.

After the successful completion of the 2 month, 4-drug intensive phase of ther-
apy—defined as resolution or significant improvement of clinical symptoms along 
with negative or significantly reduced number of AFB seen on sputum smear  - 
patients with drug sensitive TB should remain on isoniazid and rifampicin (or rifab-
utin). This continuation phase generally lasts for an additional 4 months but may 
require extension to an additional 3 months. Duration may vary depending on sever-

Table 1  (continued)

Recommendations Comments

Rechallenging with 
TB Drugs

Rechallenge can begin after 
resolution of symptoms and 
jaundice and ALT decrease to 
<2.5 times ULN (or close to 
baseline if ALT is elevated at 
baseline)
See text for detailed discussion 
regarding drug rechallenge 
recommendations

Rechallenge with pyrazinamide should 
be limited to patients with TB meningitis 
or disseminated TB

When to Start Antiretroviral Therapy (ART) in ART-Naïve Patients or Those Not on Therapy at 
the Time of TB Diagnosis

CD4 count 
<50 cells/mm3 and 
without TB 
meningitis

Within 2 weeks of starting TB 
therapy

Early ART in patients with 
CD4 < 50 cells/mm3 has been associated 
with reduced mortality
Monitor for clinical signs and symptoms 
of IRIS

CD4 count 
≥50 cells/mm3

Within 8 weeks of starting TB 
therapy

Monitor for clinical signs and symptoms 
of IRIS
Delay ART until after completion of TB 
treatment is not recommended

TB meningitis ART may be delayed to after 
4–8 weeks of TB treatment 
with close monitoring for 
adverse events

Early ART has been associated with 
higher rate of Grade 4 adverse events in 
patients with TB meningitis

ALT alanine aminotransferase, ART antiretroviral therapy, CNS central nervous system, DILI drug 
related liver injury, HIV human immunodeficiency virus, IRIS immune reconstitution inflamma-
tory syndrome, TB tuberculosis, ULN upper limit of normal

Treatment of Drug-Sensitive Tuberculosis in Persons with HIV
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Table 2  Dosing of anti-tuberculosis medications in adult patients

Medications Formulations
Once daily 
dosing

For patients with 
renal insufficiency

For patients with 
liver disease

Isoniazida,b Oral liquid, 
tablet, 
intramuscular /
intravenous 
injection

5 mg/kg No dosage 
adjustment 
necessary.

Use with caution in 
patients with liver 
disease

Rifampicina Oral liquid, 
tablet/capsule, 
intravenous 
injection

10 mg/kg No dosage 
adjustment 
necessary.

Use with caution in 
patients with liver 
disease

Rifabutin Capsule 5 mg/kg
Usual dose is 
300 mg (dosage 
adjustment may 
be necessary 
based on 
concomitant 
ARV drug)

CrCl <30 mL/min:
give 50% of usual 
dose
Consider 
monitoring rifabutin 
concentration, 
especially if dose 
adjusted based on 
drug interaction

Use with caution in 
patients with liver 
disease

Pyrazinamidea Oral liquid, 
tablet, 
dispersible tablet

40–55 kg: 
1000 mg
56–75 kg: 
1500 mg
76–90 kg: 
2000 mg
>90 kg: 
2000 mg

CrCl <30 mL/min 
or hemodialysis:
Adjust dose to 
25–35 mg/kg three 
times weekly. For 
patients on 
hemodialysis, dose 
on dialysis day, 
after dialysis 
session

Use with caution in 
patients with liver 
disease. 
Contraindicated in 
patients with severe 
hepatic impairment

Ethambutola Oral liquid, 
tablet

40–55 kg: 
800 mg
56–75 kg: 
1200 mg
76–90 kg: 
1600 mg
>90 kg: 
1600 mg

CrCl <30 mL/min 
or hemodialysis:
Adjust dose to 
20–25 mg/kg three 
times weekly. For 
patients on 
hemodialysis, dose 
on dialysis day, 
after dialysis 
session

No dosage 
adjustment 
necessary

Levofloxacin Tablet, 
intravenous 
injection

750–1000 mg CrCl <30 mL/min:
give usual dose 
three times per 
week

Limited hepatic 
metabolism

Moxifloxacin Tablet, 
intravenous 
injection

400 mg No dosage 
adjustment 
necessary.

Use with caution in 
patients with liver 
disease

CrCl creatinine clearance, FDC fixed dose combination
aAvailable as a component of a variety of brand or generic fixed dose combination (FDC) tablets 
containing other TB drugs, please refer to product labels of the FDC for dosing information
bIsoniazid should be given with pyridoxine 25–50 mg daily to reduce peripheral neuropathy
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ity, delayed culture conversion, the site of infection, presence of drug resistance, 
clinical response, treatment interruptions, or other factors.

Intermittent dosing (e.g. two or three times weekly therapy) is not recommended 
in persons coinfected with HIV and TB as it is associated with higher rate of treat-
ment failure and acquired drug resistance in both the intensive and continuation 
phase [11, 12, 14–17]. Therefore, daily (or at least 5 times weekly) dosing is recom-
mended for all persons with HIV and TB.

While on therapy, patients with smear positive pulmonary TB should be moni-
tored with sputum AFB smears (and cultures in resource-rich settings) at months 2 
and 5—cultures should be done at these timepoints if AFB smear is positive [4, 5]. 
A baseline chest radiography (x-ray or CT scan) and follow-up imaging at 2 months 
should also be performed if resources permit, or sooner if clinically indicated. 
Patients with extensive disease and delayed culture conversion are at increased risk 
of TB relapse [18, 19]. In patients with cavitation on initial chest radiograph and 
whose culture or smear at month 2 remains positive, the continuation phase treat-
ment should be extended by 3 months—for a total treatment duration of 9 months. 
If sputum cultures remain positive after ≥4 months of therapy or if they revert to 
positive after initial culture conversion to negative, repeat drug resistance testing 
should be performed. For more information on treatment of drug resistant TB and 
susceptibility testing, please see the “Drug Resistant TB and HIV” chapter. If signs 
and symptoms of TB disease fail to improve or worsen, patients should be evaluated 
for other potential causes such as another infection or IRIS.

�Anti-tuberculosis Medications and Drug Therapy Monitoring

If possible, baseline liver function tests, complete blood count, and serum creatinine 
should be performed as these results can affect treatment decisions, including drug 
choice, dosing, and monitoring frequency. Patients should also be monitored regu-
larly during therapy for adverse drug reactions, clinical response to treatment, and 
adherence. Frequency and type of monitoring depend on several factors including 
comorbidities (e.g. underlying liver or renal impairment), potential for drug interac-
tions, and side effects. As weight gain is common in patients with successful TB 
therapy, body weight should also be monitored to determine if weight-based drugs 
need dosage adjustment. Patients should be educated on potential side effects of 
their drug regimen and counseled to report these immediately. Parameters for indi-
vidual drug monitoring are reviewed below. Table 2 provides information on the 
dosing of the different TB drugs used for patients with drug susceptible TB, includ-
ing recommendations for dosing in patients with renal and liver diseases. Table 3 
lists common and serious adverse effects reported with these TB drugs. For more 
information on clinical pharmacology and drug-drug interactions, please refer to 
chapter on “Co-treatment of Tuberculosis and HIV: Pharmacologic Considerations”.

Treatment of Drug-Sensitive Tuberculosis in Persons with HIV
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�Isoniazid

Isoniazid inhibits the synthesis of mycolic acids, which are an essential component 
of the bacterial cell wall. It has excellent early bactericidal activity against actively 
replicating MTB, however, it is bacteriostatic against non-replicating MTB. Isoniazid 
is metabolized via acetylation by N-acetyl transferase 2 (NAT2). Rates of acetyla-
tion, and thus drug exposures, differ due to genetic variation in NAT2 alleles, lead-
ing to “slow” or “rapid” acetylation. The prevalence of NAT2 alleles varies 
geographically, with high prevalence of rapid acetylators in Southeast Asia [20]. 
Slow acetylation results in higher isoniazid plasma concentrations and increases the 
risk of toxicity [20–22]. Rapid acetylation, which reduces isoniazid exposure, has 
been associated with treatment failure, acquired drug resistance, and treatment 
relapse [23]. Isoniazid use has been associated with hepatotoxicity (which may be 
severe), peripheral neuropathy, drug-induced lupus, and rarely neuropsychiatric 
effects such as acute psychosis. Pyridoxine (vitamin B6) supplementation 
(25–50 mg/day) is recommended for all patients with HIV to prevent peripheral 
neuropathy.

�Rifamycin Antibiotics

The rifamycin antibiotics bind to the beta subunit of RNA polymerase to inhibit 
RNA transcription and protein synthesis. They are bactericidal against MTB and 
have excellent sterilizing activity. These agents are essential for eliminating persist-
ing organisms and therefore are key to shortened treatment duration to 6-months. 
Unless an adverse reaction prohibits its use, a rifamycin antibiotic should be main-
tained as a component of the TB treatment regimen for the entire course of therapy, 
unless rifamycin resistance is documented.

Three rifamycin antibiotics are currently used to treat TB—rifampicin, rifabutin, 
and rifapentine. Rifampicin is the most commonly used rifamycin antibiotic and is 
available in several fixed dose combination (FDC) products. Rifabutin may be used 
in place of rifampicin when a significant drug-drug interaction prohibits the use of 
rifampicin or if rifampicin is not tolerated because of a hypersensitivity reaction, as 
cross-reactivity occurs only in a minority of patients [24]. Intermittently dosed rifa-
pentine, though approved as part of a combination therapy for TB, is not recom-
mended for persons with HIV due to the high rate of treatment failure with acquired 
rifamycin monoresistance in one study [25]. However, higher doses of rifapentine 
given once daily have been shown to be more effective than the doses initially used 
[26, 27], and are being studied in patients with TB and HIV. Higher doses of rifam-
picin result in earlier sputum culture conversion in phase II studies [28, 29], and are 
also being evaluated in patients with and without HIV co-infection [30].

All rifamycins may cause red-orange discoloration of body fluids, which patients 
should be counseled about prior to treatment initiation. Hepatitic or cholestatic 
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drug-induced liver injury (DILI) is also a potential adverse effect. Hypersensitivity 
reactions, including a flu-like syndrome, are more common with intermittent dosing 
strategies (which are not recommended in HIV/TB coinfected patients). Other 
immune-mediated adverse drug reactions include rashes, thrombocytopenia, and 
interstitial nephritis. Uveitis and neutropenia are toxicities that are unique to rifabu-
tin [31, 32].

Rifamycin antibiotics, especially rifampicin and rifapentine, are potent inducers 
of many cytochrome P450 and Phase 2 metabolic enzymes, as well as drug trans-
porters (e.g. P-glycoprotein), which may lead to significant decrease in systemic 
exposure of drugs that are substrates of the induced enzymes and/or transporters 
[33]. Therefore, all concomitant drugs, including antiretroviral drugs, should be 
carefully evaluated for drug-drug interactions (see “Co-treatment of Tuberculosis 
and HIV: Pharmacologic Considerations”, chapter for detailed discussion).

�Pyrazinamide

The exact mechanism of pyrazinamide’s activity against MTB has not been well 
established. Like rifamycin antibiotics, pyrazinamide is a bactericidal agent with 
excellent MTB sterilizing activity. It is active only in acidic environments. 
Pyrazinamide is associated with a higher incidence of hepatotoxicity than the other 
first line TB medications [3]. Other side effects include hyperuricemia, gout, poly-
arthralgia, and hypersensitivity reactions.

�Ethambutol

Ethambutol is a bacteriostatic agent that interferes with mycobacterial cell wall syn-
thesis. It is given at the minimum effective dose, solely to protect against emergence 
of resistance. Once rifamycin and isoniazid susceptibilities are confirmed, ethambu-
tol may be discontinued during the intensive phase of treatment. Ethambutol is asso-
ciated with optic neuropathy, manifested by decreased visual acuity, visual field 
defects, and abnormal color perception. Patients should be evaluated at baseline and 
at routine intervals while on therapy, with visual acuity testing measured using the 
Snellen chart. They should also be counseled to report visual changes to their pro-
viders. Other causes of visual changes common in persons with advanced HIV such 
as cytomegalovirus retinitis should be ruled out. If toxicity is detected, ethambutol 
should be immediately discontinued to avoid permanent damage.

A. K. Pau et al.
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�Fluoroquinolones

Levofloxacin and moxifloxacin are fluoroquinolones with rapid bactericidal activity 
against MTB [34–36]. However, clinical trials in which a fluoroquinolone was sub-
stituted for either isoniazid or ethambutol in an effort to shorten the treatment dura-
tion to 4-month were not successful [37, 38]. Therefore, this class of drug is 
generally reserved for use in patients who are unable to tolerate first line drugs (e.g. 
isoniazid) or who have isoniazid mono-resistant TB [4]. A fluoroquinolone is also a 
standard part of TB regimens for multiple drug resistant TB [39]. Fluoroquinolones 
are associated with a variety of adverse drug reactions such as tendonitis and tendon 
rupture, modest QT prolongation (more marked with moxifloxacin than levofloxa-
cin), peripheral neuropathy, hypo- or hyper-glycemia, and neuropsychiatric effects 
(e.g. insomnia, acute psychosis, seizures), and rarely rupture of the aorta. They are 
also susceptible to chelation and decreased drug absorption when given concomi-
tantly with polyvalent cations such as antacids, mineral supplements or 
multivitamins.

�Management of Adverse Drug Reactions

Adverse drug reactions are common when treating both TB and HIV infections, and 
some severe reactions may require permanent discontinuation of one or more anti-
tuberculosis medication. Clinicians should seek expert consultation to construct an 
effective regimen that includes drug substitutions and to determine if the treatment 
duration requires extension.

Nausea and vomiting are common early side effects of TB therapy. However, 
liver function tests should be evaluated if there is new onset nausea and vomiting, 
which are common symptoms of hepatotoxicity. For more information on drug 
induced hepatotoxicity, please see the discussion below.

Rash can also occur and if mild, patients can continue TB therapy and be man-
aged symptomatically if appropriate. Patients should be evaluated for features of 
severe cutaneous adverse drug reactions: mucous membrane involvement, blister-
ing, fever or other systemic symptoms, or evidence of systemic hypersensitivity 
reactions. It should be noted that hepatotoxicity often presents after the rash, so it is 
important to repeat liver function tests after a week. A notable exception is etham-
butol, which may cause rash but does not cause drug induced liver injury. All drugs 
should be discontinued immediately if a severe adverse drug reaction is suspected. 
To identify the causative drug, follow the same approach presented in the “Drug 
Induced Liver Injury” section to reintroduce each medication.

Treatment of Drug-Sensitive Tuberculosis in Persons with HIV
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�Management of Drug Induced Liver Injury (DILI) Associated with TB 
Therapy

DILI is among the most common and most serious complication of TB medications, 
and can be attributed to isoniazid, rifampicin, or pyrazinamide. HIV infection, older 
age, female sex, those with underlying liver diseases (such as caused by hepatitis B 
or C co-infection, chronic alcohol use), and baseline abnormal serum transaminases 
are all risk factors for DILI [40–45]. DILI may manifest with laboratory abnormali-
ties [best assessed by elevation of serum alanine aminotransferase (ALT) and biliru-
bin] with or without clinical manifestations such as fever, jaundice, nausea, 
vomiting, abdominal pain and/or mental status changes. Transient asymptomatic 
ALT elevation, known as hepatic adaptation, is common.

Managing patients with suspected DILI can be challenging. One needs to bal-
ance the need to treat active TB and the risk of life-threatening acute liver injury if 
therapy is continued. The decision for continuation of TB therapy should be done on 
a case by case basis, with careful evaluation before stopping drugs, during treatment 
interruption, and after resumption of therapy. In general, for asymptomatic patients 
with ALT <5 times upper limit of normal (ULN), many experts recommend contin-
ued TB treatment, but with more frequent clinical and laboratory monitoring. In 
most cases, the laboratory abnormalities resolve without intervention. If the ALT 
increases to ≥5 times ULN, regardless of symptoms, or if a patient is symptomatic 
and has an ALT ≥3 times ULN, all TB drugs and any concomitant hepatotoxic drugs 
should be interrupted [3]. Other causes of liver disease, including viral hepatitis, 
should be investigated and additional laboratory tests such as bilirubin, alkaline 
phosphatase, prothrombin time, albumin, and viral hepatitis serology should be 
evaluated. In patients with active hepatitis B virus (HBV) infection started on ART, 
immune reconstitution inflammatory syndrome (IRIS) associated with HBV may 
also be a cause of the liver disease [46]. Additionally, some antiretroviral drugs 
including nevirapine, efavirenz, maraviroc, protease inhibitors, and dolutegravir 
may also cause hepatotoxicity.

After discontinuation of isoniazid, rifampicin, and pyrazinamide, TB treatment 
with ethambutol, a fluoroquinolone (moxifloxacin or levofloxacin), and either line-
zolid or an aminoglycoside should be commenced as soon as possible and contin-
ued throughout the rechallenge period, in order to avoid gaps in treatment and to 
serve as a background regimen to protect against the development of resistance. 
Rechallenge is not recommended if the DILI resulted in acute liver failure. In all 
other cases, TB drug rechallenge can begin once the symptoms and jaundice have 
resolved, and the ALT has decreased to <2.5 times ULN or, in the case of patients 
who have pre-treatment ALT elevation, when the ALT declines to close to baseline 
level. The discontinued TB drugs should be reintroduced one at a time, starting with 
the drug with the least likelihood of causing liver injury. Among the three key TB 
drugs - rifampicin, isoniazid, and pyrazinamide, rifampicin has the least propensity 
for causing DILI and, therefore, should be restarted first. If no increase in ALT and/
or symptoms occur in 3–7 days, then isoniazid can be restarted for 3–7 days. The 
decision to rechallenge with pyrazinamide should be made carefully. Some experts 
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recommend that this rechallenge should be limited to patients with TB meningitis or 
disseminated TB. If symptoms and/or ALT elevation recur after initiation of any of 
the drugs, the last drug started should be stopped, and the ALT closely monitored. 
Once rechallenge has been completed, the composition and duration of the regimen 
needs to be considered. If rechallenge with isoniazid and rifampicin was successful 
and the DILI occurred towards the end of the 2-month intensive phase, one may 
complete the course with isoniazid and rifampicin alone. If the DILI occurred early 
in the intensive phase, the fluoroquinolone should be continued for the duration of 
the intensive phase if pyrazinamide is not reintroduced. If isoniazid is not tolerated, 
the fluoroquinolone should be continued for the duration of therapy. Some experts 
also recommend continuing ethambutol for the duration of TB treatment. In most 
cases the course of therapy should be extended from 6 to 9 months [3]. If rifampicin 
is not tolerated, patients should be treated with a regimen for multiple drug resistant 
TB, and treatment duration should be prolonged.

�Challenges in Treating TB and HIV Coinfection

Successful concurrent treatment of TB and HIV infection is critical for reducing 
morbidity and mortality associated with both infections. However, co-treatment can 
be complicated and there are several key challenges as discussed below.

�Polypharmacy, Pill Burden, Adherence, and Directly Observed 
Therapy

HIV treatment generally requires two to three active antiretroviral agents while TB 
requires an initial four drug regimen. Additionally, many patients may also receive 
cotrimoxazole, and some may receive other medications to treat comorbidities, 
other co-infections, or to prevent other OIs. A number of HIV and TB treatment 
regimens are available as fixed dose combination (FDC) tablets, and are commonly 
used in many countries. Using FDC tablets for both TB and HIV treatment can help 
reduce pill burden, which improves adherence, limiting the risk of treatment discon-
tinuation and drug resistance. FDC tablets may also simplify prescription writing 
and pharmacy inventory control. Although FDC tablets are recommended for the 
management of patients with drug susceptible TB [4], some patients may require 
individualized medication regimens or doses that need to be managed with separate 
formulations—this is often a problem in resource-limited settings where individual 
drugs are not always available.

A key component of adherence is involving the patient in the care plan and 
designing it collaboratively to achieve treatment success. Patients (and family or 
caregivers) should receive education on the general disease course of TB, transmis-
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sion potential, treatment plan, TB and HIV treatment goals, proper medication 
administration schedule, side effects, drug resistance, and the importance of strict 
adherence. Adherence interventions may include consistent communication with 
patients (such as home visits or phone calls), psychological support, and material 
support (such as food assistance, financial aid, or transportation) to alleviate indirect 
costs associated with TB diagnosis and treatment [4].

If the healthcare setting has adequate capacity, TB treatment should be adminis-
tered through directly observed therapy (DOT) for all patients with HIV and 
TB. DOT typically requires that the TB drugs be given at least 5 days per week be 
observed [3]. DOT with documentation of doses administered should be continued 
as much as possible in the outpatient setting - in clinics, or by community workers 
or family members. The WHO has reported cure rates >80% with programs incor-
porating DOT [4]. DOT improves treatment completion rates and treatment 
responses, and reduces loss to follow-up [47]. It can also facilitate early identifica-
tion of potential adverse drug reactions, disease progression, and immune reconsti-
tution inflammatory syndrome (IRIS). Community or home-based DOT is preferred 
and should be administered by trained lay providers or healthcare workers [4]. 
However, DOT may not be feasible in all settings. If resources are limited, some 
factors to consider if prioritizing individuals who will most benefit from DOT 
include severity of disease, likelihood for non-adherence, delayed culture conver-
sion, and transmission risk. In settings where in-person DOT is not possible, alter-
native strategies such as virtual DOT using video conferencing via smart phone can 
be a better and sometimes more acceptable option [48, 49]. Virtual DOT together 
with intensive patient education and weekly home visits [50] have also been 
successful.

Patients with both HIV and TB infections require collaborative care from provid-
ers treating both diseases. Studies have found that patients co-infected with TB and 
HIV who attend clinics where integrated TB and HIV care is provided achieve bet-
ter clinical outcomes than those cared for in separate clinics [51, 52]. If this approach 
is not possible, close communication between providers in the HIV and TB clinic is 
critical for treatment success.

�Drug-Drug Interactions

Polypharmacy in patients with both HIV and TB makes drug interactions a serious 
concern. Rifamycin antibiotics are an integral part of TB treatment but have signifi-
cant drug interaction potential due to their ability to induce drug metabolizing 
enzymes and drug transporters [33, 53]. Many drugs, including some antiretroviral 
drugs, require dose adjustment or should not be co-administered with rifampicin. 
Rifabutin is an alternative when rifampicin cannot be used due to drug-drug interac-
tions, as its CYP3A4 induction potential is only ~40% as potent as rifampicin’s. But 
unique among rifamycins, rifabutin is also a CYP3A4 substrate and therefore its 
metabolism maybe altered in the presence of CYP3A4 inducers or inhibitors. This 
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may result in bi-directional interactions, which requires careful evaluation for rifab-
utin dose adjustment. Despite their complexities, rifamycin antibiotics are an inte-
gral part of TB treatment and unless there is contraindications, they should be used 
for the full treatment duration. Please refer to the “Co-treatment of Tuberculosis and 
HIV: Pharmacologic Considerations” chapter for further discussion.

�Adverse Drug Reactions

Both anti-tuberculosis and antiretroviral medications can have significant, often 
overlapping side effects that necessitate regular monitoring and if needed, treatment 
modifications. Severe reactions may include drug induced hepatotoxicity and hyper-
sensitivity reactions, among others (Table 3). The initiation of seven or more drugs 
within a short timeframe complicates assessment of causality and patient manage-
ment when toxicities develop. First line TB treatments are more efficacious and 
better tolerated than second line alternatives. Therefore, first line agents should not 
be discontinued without careful evaluation.

�Immune Reconstitution Inflammatory Syndrome (IRIS)

IRIS results from an inflammatory reaction that can occur after ART initiation in 
patients with HIV infection. Patients with HIV not known to have TB may develop 
unmasking TB IRIS after ART initiation, or patients on TB therapy may develop 
paradoxical IRIS after ART initiation, manifested as clinical worsening after initial 
response to TB therapy. Recognition and management of TB IRIS can be compli-
cated, as the clinical signs and symptoms may be similar to an undiagnosed oppor-
tunistic infection, inadequate response to TB treatment, or adverse drug reactions to 
TB or HIV treatment. Depending on the severity of IRIS, drug therapy to control the 
symptoms may include NSAIDs or in more severe cases, systemic corticosteroids. 
However, prednisolone, the active metabolite of prednisone, is a CYP3A4 substrate 
so its metabolism is susceptible to induction by rifampicin. Therefore, recom-
mended doses of prednisone for TB-associated IRIS should take into account the 
reductions in steroid exposures with rifampicin-based TB treatment. Please refer to 
chapter on IRIS.

�Starting ART in Patients with TB

For persons co-infected with HIV, ongoing HIV replication and profound immuno-
deficiency are key contributing factors to TB disease progression and death [2, 54]. 
Thus, initiation of effective ART to suppress viral replication and improve immune 
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function should always be a crucial part of the treatment plan for patients with 
active TB [55]. When considering treating both HIV infection and TB, a number of 
factors should be considered: (1) whether the patient is already on ART; (2) poten-
tial for drug-drug interactions, with special attention to rifamycins’ enzyme induc-
tion effect on antiretroviral drugs; (3) overlapping drug toxicities; (4) adherence 
concerns; and (5) the possibility of IRIS.

�Patients Known to Have HIV Infection and Receiving ART

Patients with HIV infection who are receiving ART at the time of TB diagnosis 
should remain on ART. HIV viral load should be determined to assess for treatment 
response. Clinicians should carefully review each antiretroviral drug in the regimen 
for potential of significant pharmacokinetic interactions with rifamycin antibiotics, 
and use the guidance in the “Co-treatment of Tuberculosis and HIV: Pharmacologic 
Considerations”, chapter to determine whether there is a need for antiretroviral drug 
change or dosage modification. Before switching one antiretroviral drug to an alter-
native agent, clinicians should review the patient’s past antiretroviral history and 
responses to therapy, any history of drug intolerance, as well as any available cur-
rent and historic resistance testing. For example, even though efavirenz has been 
shown to have no clinically significant interaction with rifampicin, it should not be 
used in a patient with prior history of virologic failure on efavirenz-based therapy.

�Patients Not Receiving ART at the Time of TB Diagnosis

Some patients may have had stopped ART before TB diagnosis. If available, ART 
history should be assessed as noted earlier, in order to determine the appropriate 
antiretroviral choice. The timing for when to restart ART in relationship to TB treat-
ment should follow the recommendation as stated below.

Because of the high prevalence of HIV infection in patients with TB, it is recom-
mended that all TB patients should be tested for HIV [3, 4]. As a result, a substantial 
number of patients with TB receive the diagnosis of HIV infection for the first time 
after TB diagnosis, and therefore, are not receiving ART when TB treatment is initi-
ated. All persons with active TB should be started on TB treatment promptly with-
out delay. All patients with TB and HIV co-infection should also receive ART. As 
noted earlier, major concerns about concomitant treatment of both infections include 
high pill burden, drug-drug interactions, overlapping toxicities, and difficulties with 
adherence. However, the argument for treating HIV is that untreated HIV infection 
may lead to additional opportunistic infections, especially in patients with severe 
immunosuppression.

Several large randomized controlled trials, mostly conducted in countries with 
high burden of HIV and TB in Asia and Africa, addressed the optimal timing of ART 
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initiation in patients with TB and not on ART [56–61]. The study endpoints for 
these trials were death, AIDS related events, TB outcomes, and/or IRIS events. As 
expected, in most of these studies, low CD4 count, anemia, and low body mass 
index are frequently reported as predictors of poor outcomes, including deaths.

�Recommendations for When to Start ART in TB Patients

The results from the randomized controlled trials provided guidance for the optimal 
time to start ART in patients with TB. These studies showed that patients with CD4 
count <50 cells/mm3 are at highest risk of disease progression and death if initiation 
of ART is delayed to more than 4 weeks after starting TB treatment [56, 58, 60]. 
Therefore, patients with CD4 count ≤50 cells/mm3, ART should be initiated within 
2 weeks of TB treatment, or as soon as feasible [5, 62]. Early initiation of ART in 
these patients may, however, lead to higher incidence of paradoxical TB IRIS—thus 
patients should be closely monitored after ART initiation for any signs and symptoms 
associated with IRIS and drug related adverse events. An exception to starting ART 
early may be made in patients with TB meningitis, where serious adverse events 
were more frequently observed in patients who received early ART (<7 days of TB 
treatment) without survival benefit [63]; in these TB meningitis cases, a delay in 
therapy until up to 4–8 weeks may be warranted, with close follow-up after initia-
tion of ART. For patients with CD4 >50 cells/mm3, ART should be started within 8 
weeks of TB treatment [5, 55, 62]. Waiting until completion of TB treatment before 
initiation of ART is not recommended.

�Conclusion

TB is the most common cause of morbidity and mortality for persons with HIV 
worldwide, especially in patients with CD4 counts <50 cells/mm3 at the time of TB 
diagnosis. Early diagnosis of HIV infection and initiation of ART, may reduce the 
severity of TB.  Successful TB and HIV treatment not only benefits the patient; 
from a public health standpoint, it reduces transmission of both HIV and MTB to 
others. Though treatment for both HIV and TB can be complex, both infections are 
treatable and good clinical outcomes are possible—especially in patients with good 
medication adherence. Integrated clinics with providers who have expertise in 
management of both infections can further improve patient outcomes. Despite 
effective therapy, TB recurrences and drug resistance continue to be challenges, 
especially in areas with high TB prevalence. Ongoing clinical and laboratory 
research evaluating new TB treatment strategies—such as dose optimization (espe-
cially with older drugs), more potent drugs, more effective drug combinations, and 
shorter treatment duration—are urgently needed to make further progress in the 
control of this disease.
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Abstract  Multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB are 
associated with substantially worse outcomes than drug-susceptible TB—especially 
in the setting of HIV co-infection. Although global TB incidence has decreased over 
the past decade, drug-resistant TB remains a substantial threat to control of TB 
worldwide. This chapter reviews the epidemiology of drug-resistant TB, common 
genetic mutations conferring resistance to first and second-line TB drugs, as well as 
current diagnostic methods and principles of treatment. Therapy for drug-resistant 
TB is complicated, associated with frequent side effects, and a field of active 
research. Several new and repurposed drugs, such as bedaquiline and delamanid, 
have recently come to market or are in active clinical development. Guidelines 
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management of drug-resistant TB and HIV is recommended.
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�History and Epidemiology

In 1948, the British Medical Council conducted the first ever randomized, con-
trolled clinical trial to determine the efficacy of streptomycin for the treatment of 
pulmonary tuberculosis (TB) [1–3]. Over the course of 15 months, this landmark 
study enrolled 107 patients who were studied for up to 6 months following treat-
ment with either streptomycin monotherapy or bed rest—the standard of care at the 
time. The patients assigned to streptomycin treatment had marked improvements in 
their radiographic findings, temperature trends and sedimentation rates, and were 
less than half as likely to die as those in the control group. However, high-level 
resistance to streptomycin developed in 85% of cases for whom resistance testing 
was performed and, in a number of cases, resistance emerged within several days of 
initiating treatment [1, 4]. In the years that followed, resistance to every new anti-
TB drug was observed soon after each drug’s introduction, including the four drugs 
that make up the current first-line regimen: isoniazid, pyrazinamide, ethambutol and 
rifampin [5–7]. It became clear that Mycobacterium tuberculosis (Mtb) was a highly 
adaptive pathogen and that drug-resistance would remain a challenge for patients, 
healthcare providers and TB control programs.

Although there were scattered outbreaks of drug-resistant TB in the 1960s and 
1970s [8], the emergence of HIV, first described in 1981, laid the foundation for a 
dramatic upsurge in both TB and drug-resistant TB [9, 10]. In the early 1990s in the 
United States, there were a series of outbreaks of multidrug-resistant (MDR) TB, 
defined as resistance to at least isoniazid and rifampin, among people with HIV 
[11–15]. Many of these outbreaks were nosocomial, occurring in hospitals and resi-
dential facilities, and included transmission of MDR TB to healthcare workers [14–
16]. In New York City, the prevalence of drug resistance increased from 10% to 
23% between 1983 and 1991, and drug-resistant disease was associated with signifi-
cantly higher mortality [11]. Soon after, similar HIV-associated outbreaks of drug-
resistant TB were reported in Spain, Italy and Argentina [17–21].

In the wake of these outbreaks, there was increasing alarm about global underdi-
agnosis and underreporting of MDR TB and the potential for drug-resistant disease 
to spread further, given the rising rates of HIV in many parts of the world [16, 22]. 
A series of targeted drug-resistance surveys conducted in the late 1990s demon-
strated drug resistance in all countries studied [23, 24]. Rates of MDR TB were 
particularly high in Eastern Europe; in Estonia, for example, the prevalence of 
mono-resistant and MDR TB among all TB cases were 36.9% and 14.1%, respec-
tively. The first comprehensive estimates of the global MDR TB burden were pub-
lished in 2002, with an estimated 273,000 new cases of MDR TB worldwide, 
representing 3.2% of all new TB cases [25]. There was, however, substantial regional 
heterogeneity, with MDR TB rates ranging from 0.7% in Western Europe, North 
America and Asia, to as high as 5.5% in Eastern Europe and 7.9% in the Eastern 
Mediterranean regions.

By the mid-2000s, the convergence of the MDR TB and HIV epidemics were 
creating “the perfect storm.” [26] Co-infected patients were experiencing delayed 
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diagnosis, inadequate initial treatment with prolonged infectious periods, and 
unacceptably high mortality. High rates of MDR TB among people with HIV con-
tinued to be reported from Europe and the Americas [27–31], but also from less 
developed countries that had not been recognized in the initial wave of MDR TB 
outbreaks. With the involvement of each successive global region, the challenges in 
combating HIV and MDR TB co-infection mounted, as each epidemic carried 
unique features. In Eastern Europe, rising rates of HIV infection, a growing epi-
demic of intravenous drug use, and high incarceration rates were fueling the further 
spread of MDR TB [32–38]. In southeast Asia, the MDR TB and HIV epidemics 
were driven by social instability from refugees and internal migration as well as 
intravenous drug use [39–42]. Across sub-Saharan Africa, HIV had become a gen-
eralized epidemic and skyrocketing rates were widely cited as driving the drug-
resistant TB epidemic [43–46]. While there had not yet been large-scale surveillance 
in the heavily populated countries of India and China, multiple reports of MDR TB 
and HIV co-infection underscored the likely magnitude of the syndemic [47–52].

As the global prevalence of MDR TB increased, the first reports of extensively 
drug-resistant (XDR) TB (i.e., MDR TB with additional resistance to fluoroquino-
lones and second-line injectable agents) began to emerge [53, 54]. The most dra-
matic reports initially came from South Africa in 2006, a country already burdened 
with the world’s worst HIV epidemic. At a rural hospital in Tugela Ferry, South 
Africa, the first cases of XDR TB and HIV co-infection were described. The most 
notable feature of that report, and a larger follow-up analysis, was that XDR TB/
HIV co-infected patients had rapid and high mortality, with a median survival of 
less than 30 days [55, 56]. From 2002–2009, nearly three-quarters of all XDR TB 
cases reported to the WHO were from South Africa [57], but over time, additional 
reports from other countries, including China and India, all pointed to a growing 
epidemic of XDR TB and exceedingly high mortality among people with HIV [50, 
52, 58–63].

In 2016 it was estimated that there were 490,000 new cases of MDR TB and an 
additional 110,000 new cases with mono-resistance to rifampin [64]. XDR TB has 
been reported by 123 countries and it is estimated that 6.2% of all MDR TB cases—
nearly 50,000 cases worldwide—are, in fact, XDR TB. Global surveillance data 
indicate that the highest rates of MDR TB (as a proportion of total TB cases) are in 
the Russian Federation and former Soviet Union, which, together with India and 
China, comprise 45% of the total global burden of MDR TB [64, 65]. Among 14 
countries designated by the WHO as having a high burden of both MDR TB and 
TB-HIV co-infection, however, eight are in sub-Saharan Africa (Fig. 1), underscor-
ing the threat that drug-resistant TB poses worldwide.

A number of studies have sought to identify an association between HIV and the 
development of drug-resistant TB, but neither a systematic review in 2009, nor a 
later analysis of surveillance data from Kazakhstan found an association between 
MDR TB and HIV [33, 66]. The Kazakhstan study did identify overlapping risk 
factors for the two infections [33], and a subsequent meta-analysis found a small, 
but significant, association between HIV and MDR TB, despite a moderate degree 
of heterogeneity in the included studies [67]. These studies, however, relied upon 
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the identification of epidemiologic associations, and there has been limited exploration 
of whether there is a biological relationship whereby HIV infection directly 
increases the risk of drug-resistant TB. Several potential mechanisms of such a 
relationship have been posited, including malabsorption of TB drugs, drug interac-
tions and poor adherence to co-treatment [26, 68–70], but there are very limited 
data supporting these theories. Most studies have found that TB/HIV co-infected 
patients have high levels of medication adherence, and two recent meta-analyses 
had conflicting results as to whether people with HIV had different pharmacoki-
netic exposures to first-line TB drugs as compared to those without HIV [71, 72]. 
As such, it remains unclear whether HIV increases the risk of MDR TB, or whether 
shared risk factors contribute to an increased risk of both diseases. Even if risk fac-
tors such as poverty, substance use and access to healthcare confound the relation-
ship between drug-resistant TB and HIV, the two epidemics have clearly had a 
catastrophic convergence in countries from Eastern Europe to sub-Saharan Africa 
and Southeast Asia.

Fig. 1  Countries in the three TB high-burden country lists that will be used by WHO during the 
period 2016–2020, and their areas of overlap. DPR Korea, Democratic People’s Republic of 
Korea; DR Congo, Democratic Republic of the Congo; HIV, human immunodeficiency virus; 
MDR, multidrug-resistant; TB, tuberculosis; UR Tanzania, United Republic of Tanzania; WHO, 
World Health Organization aIndicates countries that are included in the list of 30 high-burden 
countries for TB on the basis of the severity of their TB burden (i.e. TB incidence per 100,000 
population), as opposed to the top 20, which are included on the basis of their absolute number of 
incident cases per year. (From the WHO Global Tuberculosis Report 2017)
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�Development of Drug-Resistance

From the earliest trials of streptomycin, it was clear that Mtb could develop drug resis-
tance under selective drug pressure, particularly with monotherapy or inadequate 
therapy (Fig. 2) [1, 4]. This resistance arises as a result of spontaneous genetic muta-
tions that occur at a predictable rate, and not from horizontal gene transfer of resistant 
mutations, as is common with many bacterial pathogens [73, 74]. The prevailing 
belief for many years was that drug-resistant TB was primarily a problem of acquired 
resistance, whereby the majority of MDR TB was created de novo by treatment fail-
ure, poor medication adherence and physician error [75]. As such, prevention of MDR 
TB focused primarily on strengthening existing TB control programs and improving 
treatment adherence among patients with drug-susceptible TB [75–81].

Recently, however, there has been increasing recognition that transmission of 
Mtb strains that are already drug-resistant plays a major role in the development of 
MDR and XDR TB. Evidence for transmission of drug-resistant TB (i.e. transmit-
ted, or primary resistance) includes multiple reports from the 1960s involving 
pediatric cases of drug-resistant TB, in addition to the HIV-associated outbreaks in 
the 1990s where MDR TB had been transmitted in nosocomial settings [8, 14, 15, 

Fig. 2  Acquisition of resistance. I = isoniazid. R = rifampicin. P = pyrazinamide. MDR = multidrug-
resistant. TB = tuberculosis. (Adapted from Albino JA, Reichman LB. The treatment of tuberculo-
sis. Respiration 1998; 65: 237–55)
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17–19, 82–84]. Large studies of transmission have now been reported in a number 
of settings, from South Africa to Peru and China, with up to 90% of cases of MDR 
and XDR TB attributable to transmission in some settings [85–89].

The increasing reports of transmitted resistance likely reflect the natural history 
of a drug-resistant epidemic. The initial emergence of drug-resistant TB strains will 
occur as a result of acquired resistance following the introduction of new drugs, but 
later cases and growth of the epidemic are more likely to be due to direct transmis-
sion of resistant strains. Modeling data support this notion of maturation of the 
drug-resistant TB epidemic and indicate that the relative proportion of MDR TB 
cases, among all incident cases of TB, is likely to increase in high-burden countries 
[90, 91]. At this time, it is not known how HIV impacts the likelihood of transmis-
sion of MDR or XDR TB, and specifically, whether HIV might accelerate transmis-
sion, potentially by increasing the number of individuals vulnerable to infection and 
disease. Genetic analyses also indicate that HIV may increase Mtb strain evolution 
[92], although these findings have not been replicated and the implications for trans-
mission are thus not clear.

�Diagnosis

Drug-resistant TB is indistinguishable from drug-susceptible TB based on its symp-
tomatology, clinical findings, and radiologic patterns. Drug-resistant TB can present 
as pulmonary or extra-pulmonary disease, similar to drug-susceptible TB. The diag-
nosis of drug-resistant TB requires specific testing to assess the Mtb strain’s suscep-
tibility to anti-tuberculous medications, which can be done either phenotypically or 
genotypically. While several of the available modalities for diagnosing active TB 
disease (reviewed in chapter “Diagnosis of HIV-Associated Tuberculosis” on the 
Diagnosis of HIV-associated TB) can also assess susceptibility, many do not. 
Specifically, among currently available diagnostic assays, smear microscopy, cul-
ture (without the addition of phenotypic drug-susceptibility testing [DST]) and 
urine lipoarabinomannan (LAM) can diagnose active TB disease, but not drug 
resistance.

Prompt diagnosis of drug resistance is essential. A delay between the onset of 
symptoms and initiation of effective treatment can result in clinical deterioration for 
that individual patient, and ongoing transmission to their contacts. Because mortal-
ity rates are substantially higher in drug-resistant TB—particularly in HIV-infected 
patients—and because the majority of drug-resistant TB cases arise due to transmis-
sion, minimizing the time to diagnosis is critical to reducing the incidence of drug-
resistant TB and its associated morbidity and mortality.

Phenotypic susceptibility testing examines whether an Mtb strain can grow even 
though an antibiotic is included in the growth medium. For example, if a strain 
grows despite the presence of isoniazid (at a pre-specified critical concentration), it 
is considered resistant to isoniazid. Phenotypic testing relies upon growth of the 
mycobacterium either on solid media (e.g., Lowenstein Jensen [LJ] or Middlebrook 
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agar) or in liquid (e.g., Mycobacteria Growth Indicator Tube [MGIT]); Mtb 
typically requires 6–8 weeks to grow on solid media and 2–4 weeks in liquid cul-
ture. Critical concentrations of drugs to include in these media have been developed 
for most first- and second-line TB drugs [93, 94]; however, phenotypic testing is 
less reproducible for several drugs and thus, DST is not routinely performed for 
them (e.g., pyrazinamide, ethambutol, ethionamide and para-amino salicylic acid).

Considering that culture and DST is a two-step process of first growing the bac-
teria in culture and then inoculating them onto drug-containing media, the typical 
turnaround time for culture and DST on solid media is 6–12 weeks. Efforts have 
been made to decrease this turnaround time by using indicators that can identify 
bacterial growth earlier than visualizing colonies with the naked eye. Automated 
indicators, such as those in the BACTEC-460 or MGIT, can reduce the turnaround 
time to 4–8 weeks. Other approaches are to visualize microscopic cords that Mtb 
characteristically makes using the Microscopic Observation Drug Susceptibility 
(MODS) assay, or color changes in the media by reduction of nitrate or an indicator 
dye in the Nitrate reductase assay (NRA) or Colorimetric redox indicator (CRI) 
[95]. The MODS assay has a median turnaround time of 7 days to diagnose drug 
resistance, as compared to 22 days for automated liquid culture and 68–70 days on 
solid media [96, 97].

Genotypic susceptibility testing relies on the demonstration of a mutation or 
polymorphism in a mycobacterial gene that is known to confer resistance. Specific 
resistance-conferring genes have been identified for most anti-tuberculous agents 
(see Table 1). Polymorphisms in these genes result in a loss of effectiveness of that 
particular drug, typically by causing a conformational change in a binding site for 
the drug, disruption of enzymes that are needed to convert a medication into its 

Table 1  Genes associated 
with drug resistance [98–101]

Anti-tuberculous drug Resistance-conferring genesa

Isoniazid inhA-mabA, katG (mshA)

Rifampin rpoB

Pyrazinamide pncA (rpsA)

Fluoroquinolones gyrA, gyrB

Streptomycin rpsL, rrs, (gidB)

Amikacin rrs

Kanamycin eis, rrs

Capreomycin rrs, tlyA

Ethionamide inhA (ethA)

Linezolid rrl, rplC

Ethambutol embB (embC)
Bedaquiline (atpEb, Rv0678, pepQb)

aGenes with less frequent prevalence or uncertain corre-
lation with resistance in parentheses
bMutations found in strains created in laboratory or ani-
mal models; clinical correlation pending
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active form, or expression of an efflux pump which reduces the intracellular concen-
tration of the drug.

Genotypic testing provides advantages over phenotypic assays, but has a few 
limitations as well (Table 2). The principal advantage to genotypic testing is a faster 
turnaround time for making a diagnosis of drug resistance. Unlike phenotypic sus-
ceptibility testing, genotypic testing utilizes polymerase chain reactions (PCR) to 
amplify the pertinent resistance conferring regions, rather than relying on the growth 
of the mycobacteria. Consequently, genotypic testing can identify drug resistance 
within several hours to days, based on whether samples are tested in isolation or 
batched. Several commercial assays are now available using cartridge-based or line 
probe assays, such as the Xpert MTB/RIF (Cepheid) and GenoType MTBDR plat-
forms (Hain Lifesciences), respectively [102, 103]. Genotypic drug resistance can 
also be diagnosed by carrying out targeted or “Sanger” gene sequencing, although 
this testing has been primarily utilized in research settings. Recently, the UK and the 
US have both announced that they will be performing whole genome sequencing on 
isolates of all active TB cases and will utilize mutation data from the resistance 
conferring genes to assess drug susceptibility [104].

Table 2  Comparison of phenotypic drug-susceptibility testing, commercially-available genotypic 
tests and whole-genome sequencing (Adapted from Dheda, Gumbo et al. Lancet Resp Dis. 2017)101

Phenotypic tests
Xpert MTB/
RIF Line probe assays

Whole-genome 
sequencing

Time to 
result

Slow (weeks or 
months)

Less than 2 h Rapid (hours or 
days) when done 
directly from 
samples

Rapid (hours or 
days) if done 
directly from 
samples

Sensitivity 
for 
detecting 
resistance

High High for 
rifampin; no 
other drugs 
included

Sensitivity limited 
by the number of 
loci incorporated in 
test; high for 
rifampin

Dependent on 
knowledge of 
polymorphism; 
high for rifampin

Safety High risk, requiring 
sophisticated 
microbiological 
protection

Low risk Moderate 
microbiological risk 
when testing clinical 
samples. High risk if 
bacterial cultures are 
used

Moderate risk 
when testing 
clinical samples. 
High risk if 
bacterial cultures 
are used

Quality 
assessment

Quality assurance via 
WHO and 
International Union 
Against Tuberculosis 
and Lung Disease 
reference laboratory 
network

Test-specific 
quality 
assurance 
schemes not 
widespread

Test-specific quality 
assurance schemes 
not widespread

Quality assurance 
schemes not 
available

Efficiency Separate tests for 
each drug

Detects 
resistance to 
one drug only

Two or three drugs 
per test

Single analysis for 
all drugs
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The principal drawback of genotypic testing is that they test specific resistance 
conferring genes, and thus, their sensitivity is reliant on drug resistance polymor-
phisms falling within that interrogated region. For many of the most important TB 
medications (e.g., isoniazid, rifampin, fluoroquinolones), this is only a minor con-
cern because the majority of resistance conferring mutations occur in only 1–2 genes 
and within a relatively narrow number of base pairs within those genes. Consequently, 
tests can focus on a small area for PCR amplification and still have a high sensitivity 
for diagnosing drug resistance. This is the strategy employed by early generations of 
the commercially available genotypic platforms focused on identifying drug resis-
tance to rifampin and/or isoniazid (i.e., Xpert MTB/RIF, Hain, INNO-LiPA).

With other drugs, however, mutations conferring resistance either do not localize 
to a small region of the resistance conferring genes (e.g., pyrazinamide), or may 
occur in any one of multiple genes (e.g., aminoglycosides, capreomycin), creating 
logistical challenges for creating commercially available genotypic platforms and 
resulting in lower sensitivity if assays only employ a select group of loci [105]. 
Newer generations of the line probe assay utilize multiple genes for the diagnosis of 
aminoglycoside and capreomycin resistance, and appear to have improved sensitiv-
ity [106]. Initiatives to catalog resistance-conferring mutations and their correlation 
with phenotypic testing will be critical for the continued development of genotypic 
testing in the future [107, 108].

Over the past decade, efforts have focused on increasing laboratory capacity to 
diagnose drug resistance in low- and middle-income countries, largely spearheaded 
by The Stop TB Partnership’s Global Lab Initiative [109]. The efforts have entailed 
creating laboratories which are capable of conducting phenotypic testing, as well as 
molecular assays for genotypic DST. Scale-up of DST capability has been impacted 
the most, however, by the ease of use of the automated Xpert MTB/RIF platform—
minimizing the infrastructure and training required to carry out genotypic DST. More 
than 21,500 GeneXpert machines were deployed between 2010 and 2015, and dur-
ing that time 16 million tests had been performed in 122 countries, to enhance the 
availability of DST [110]. Future advances in the Xpert platform, including an 
Xpert MTB/XDR assay capable of detecting second-line drug resistance, as well as 
other automated systems in development, hold promise for the availability of DST 
testing in peripheral clinics of low- and middle-income countries in the next decade. 
(See https://www.finddx.org/tb/pipeline/ for latest pipeline of TB diagnostics.)

�Treatment and Outcomes

While the treatment for drug-susceptible TB consists of oral, well-tolerated medica-
tions which are dosed daily, the treatment for drug-resistant TB is substantially 
more complicated. In general, medications for drug-resistant TB are less potent and 
are associated with side effects which are both more common and more severe than 
those associated with first-line therapy. Given the lower potency and sterilizing 
effect of these medications, more drugs are required in combination and for a longer 
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duration of therapy to achieve cure. Treatment outcomes are typically worse for 
drug-resistant disease than for drug-susceptible disease. Additionally, while uncon-
trolled HIV infection has been associated with worse outcomes in drug-resistant 
TB, survival is improved when patients’ HIV is well-controlled on antiretroviral 
therapy (ART) [111, 112].

�Early Experience with MDR TB Treatment

To date, there have been very few published clinical trials in drug-resistant TB. As 
a result, the development of regimens to treat drug-resistant TB has been largely 
iterative and based on observational studies beginning in the late 1980s. Until that 
point, drug resistance had been managed on a case-by-case basis, primarily with 
single drug substitutions. Earlier work by the British Medical Research Council had 
shown that certain drugs were more important to the regimen than others. For exam-
ple, replacement of rifampin (due to either intolerance or resistance) required exten-
sion of the treatment duration from 6 months to a minimum of 18 months [113]. 
Given the limited evidence base to guide treatment, however, the earliest outbreaks 
of MDR TB in the 1990s posed a substantial challenge for treating physicians, who 
relied on consensus among colleagues and individual expertise.

Retrospective studies of the early outbreaks in the 1980s and 1990s found that 
receipt of second-line injectable agents such as capreomycin and receipt of a fluo-
roquinolone were each associated with improved survival [114]. Early guidelines 
for MDR TB, therefore, recommended inclusion of both a second-line injectable 
(kanamycin, amikacin or capreomycin) AND a fluoroquinolone, and recommended 
a treatment duration of 24 months [115]. Treatment guidelines for MDR TB were 
refined over the years but remained largely unchanged until 2016, when the option 
for a short-course regimen was added (see below) [116–118].

�Development of the Standard 24-Month Regimen

The 2011 WHO guidelines, which were largely reiterated in the 2016 update, rec-
ommend a standard regimen of at least 5 medications, including a later-generation 
fluoroquinolone, a parenteral agent (for an ‘intensive phase’ in the first 8 months), 
and pyrazinamide (Table  3) [118, 119]. Later-generation fluoroquinolones (i.e., 
moxifloxacin or levofloxacin) are preferred over ofloxacin which is, itself, preferred 
over ciprofloxacin. The later-generation fluoroquinolones have greater in vitro 
activity (i.e., lower minimum inhibitory concentrations) against Mtb [120–125], and 
one study found that the addition of moxifloxacin was associated with earlier cul-
ture conversion in ofloxacin-resistant MDR TB patients [126]. Comparing different 
later-generation fluoroquinolones, an open-label randomized trial in South Korea 
found no difference in 3-month culture conversion or in final treatment outcomes 
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among MDR TB patients treated with either levofloxacin or moxifloxacin [127, 
128]. The remainder of the recommended regimen consists of other second-line 
medications thought to have activity based on the infecting strain or the treatment 
history of the patient. These other medications include ethionamide (or its analog, 
prothionamide), cycloserine (or its analog, terizidone), para-aminosalicylic acid 
(PAS), and clofazimine. Additional medications, such as amoxicillin/clavulanate 
and carbapenems, are often added in an effort to include a sufficient number of 
medications in patients with more resistant strains or with a history of extensive 
prior treatment [129]. The total recommended treatment duration is no less than 
20 months, and typically 24 months.

�The Short-Course Regimen

In 2010, a group of investigators in Bangladesh reported high MDR TB cure rates 
in a cohort of patients treated with a 9–12 month regimen [130]. Patients in the 
initial cohort had a relapse-free cure rate of nearly 90%, and a subsequent study by 
the same investigators in more than 500 patients showed similar success rates [131]. 
These early studies were met with some initial skepticism due to their observa-
tional, uncontrolled study design, but there have since been multiple, similarly posi-
tive reports of successful implementation of the so-called “Bangladesh” regimen 
[131–133].

Based on these encouraging findings, WHO modified their MDR TB treatment 
guidelines in 2016 to formally recommend the short-course regimen for MDR TB 
patients without second-line drug resistance (i.e., without pre-XDR or XDR TB) 
[119]. The short-course MDR TB regimen consists of moxifloxacin (a third-
generation fluoroquinolone), a second-line injectable, pyrazinamide, high-dose 
isoniazid, ethionamide (or prothionamide), clofazimine, and ethambutol (Table 3). 

Table 3  Example 24-month and Short-course Regimens

24-month Regimen Short-course Regimen

Intensive phase (6–8 months)
Moxifloxacin
Kanamycina

Pyrazinamide
Ethionamide
Terizidone
Continuation phase (12–18 months)
Moxifloxacin
Pyrazinamide
Ethionamide
Terizidone

Intensive phase (4–6 months)
Moxifloxacin
Kanamycina

Prothionamide
Clofazimine
Pyrazinamide
High-dose isoniazid
Ethambutol
Continuation phase (5 months)
Moxifloxacin
Clofazimine
Pyrazinamide
Ethambutol

aInjectable agents
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The injectable medication is given for a minimum of 4 months (extended to 6 months 
if the sputum remains smear-positive) and the oral medications are continued for a 
minimum of 5 additional months (i.e., minimum of 9 months total). Patients with 
resistance to any of the drugs in the short-course regimen, should be treated with a 
traditional, individualized regimen lasting an average of 24 months.

Following the WHO endorsement of the short-course regimen, nine countries in 
West and Central Africa participated in an observational study where patients with 
rifampin-resistant or MDR TB were treated with the regimen [134]. Overall, 82% 
of patients had treatment success, including 72% of those patients co-infected with 
HIV. However, there was a higher proportion of deaths among those with HIV co-
infection than those without (19% vs. 5%; p < 0.001). A randomized controlled trial 
of a 9-month regimen, the Standardised Treatment Regimen of Anti-TB Drugs for 
Patients with MDR-TB (STREAM) trial, found that 79% of patients receiving the 
short-course regimen and 80% of patients receiving a 20–24 month regimen had 
favorable outcomes [135]. Although the STREAM trial demonstrated non-inferiority 
of the short-course regimen compared to the traditional 20–24 month regimen, the 
regimen remains somewhat controversial both for its reliance on injectable medica-
tions and because many patients with MDR TB are not eligible to receive the short-
course regimen, given the high prevalence of resistance to drugs included in the 
regimen in many regions [136].

�HIV and Drug-Resistant TB

In the pre-ART era, MDR TB treatment outcomes were exceedingly poor among 
people with HIV. In the earliest nosocomial outbreaks, the overwhelming majority of 
patients died, often within a month or two of diagnosis [15, 17]. Among patients with 
HIV and MDR TB in early New York City outbreaks, mortality rates ranged from 
60–80%, as compared to 20–30% among those with drug-susceptible TB [11, 13, 137, 
138]. In the decade that followed, similarly poor outcomes were reported in nearly 
every setting where HIV and drug-resistant TB were found [29, 36, 41, 139–141], and 
a meta-analysis that included studies through the mid-2000s found that MDR TB 
treatment success was approximately 10% lower with HIV coinfection [142].

Several more recent reports, however, found similar outcomes for those with and 
without HIV when those with HIV were treated with ART [58, 111, 143, 144]. 
These findings were echoed in a meta-analysis that included studies conducted 
through 2010; patients with MDR TB and HIV co-infection had treatment success 
rates comparable to those without HIV [145]. People with HIV did have higher 
mortality in this meta-analysis, although this finding was largely driven by exceed-
ingly poor outcomes in early cohorts where ART use was lower. Importantly, how-
ever, these retrospective studies were likely limited by indication and survival bias. 
That is, patients who did not receive ART may not have survived to receive ART, or 
may have been sicker or perceived as less adherent to medical care than patients 
who were prescribed ART. One prospective study from South Africa examined survival 
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in co-infected patients treated with ART as compared to HIV-uninfected patients 
with MDR TB and found that overall survival in the HIV co-infected group was not 
significantly different from those without HIV. However, participants with a CD4 
count persistently less than 100 cells/mm3 had a significantly higher mortality [146]. 
In contrast, those with a low CD4 count at baseline who experienced immunological 
recovery had similar survival to both those with high CD4 counts throughout, as 
well as HIV-negative participants. These findings thus emphasized the importance 
of initiating ART in co-infected patients and of close follow-up to ensure continuous 
virologic suppression.

Current guidelines for treatment of MDR TB/HIV co-infected patients are 
largely the same as those for patients with MDR TB alone with a few additional 
concerns [119]. Most importantly, all HIV-infected patients should be initiated on 
ART. While no clinical trials have been conducted to determine the optimal timing 
of ART in MDR TB co-infected patients, several randomized trials in co-infected 
patients with drug-susceptible TB have demonstrated improved survival with early 
ART, especially when patients have advanced immunosuppression [147–149].

�New and Repurposed Drugs for Drug-Resistant TB

After a 40-year gap with no novel anti-tuberculous agents, there are now several 
new TB medications in clinical development and two that have received at least 
limited approval by either the US Food and Drug Administration (FDA) or the 
European Medicines Agency (EMA). Here, we limit our discussion to those which 
are either approved or in late-stage clinical trials. (Additional information about 
new TB drugs can be found at: https://www.newtbdrugs.org/pipeline/clinical.)

�Bedaquiline

Bedaquiline is a diarylquinoline that inhibits mycobacterial ATP synthase and has a 
very long terminal half-life of more than 5 months [150]. On the basis of three phase 
2 trials, bedaquiline received accelerated FDA approval for use in drug-resistant 
pulmonary TB in December 2012, EMA approval in December 2013, and was the 
first TB drug from a new class of medications to be approved since rifampin in 1967 
[151–153]. Generalizability of the early trial results to patients co-infected with 
HIV is limited, as trial patients were largely HIV-negative and, if HIV-positive, were 
not on ART. In addition, because bedaquiline causes cardiac conduction abnormali-
ties and prolongs the QT interval, the trials generally restricted use of other 
QT-prolonging drugs (e.g., moxifloxacin, macrolides, clofazimine). Nevertheless, 
bedaquiline was introduced in South Africa in 2014 and is now included in the 
country’s standard regimen for MDR, pre-XDR, and XDR TB.  Despite initial 
concerns about its safety, increasing observational data from multiple countries 
[154–157] suggest that the drug is well-tolerated and effective, although a phase 3 
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trial is still forthcoming. Resistance to bedaquiline has been reported but appears to 
be infrequent in clinical use [158]. Although polymorphisms of several different 
genes have been identified, causing both target-modification as well as upregulation 
of efflux pumps, genotypic tests for bedaquiline resistance are not yet available. 
Other mechanisms of resistance may yet be identified as use of bedaquiline increases 
and in less selected patient populations. Bedaquiline has several important drug-
drug interactions with ART (see chapter on “Co-treatment of Tuberculosis and HIV: 
Pharmacologic Considerations”).

�Delamanid

Delamanid is a nitro-dihydro-imidazooxazole which inhibits mycolic acid biosyn-
thesis and disrupts metabolism of the cell wall. It received approval by the EMA in 
2013 based on the results of a phase 2 study [159]. A subsequent phase 3 trial, how-
ever, did not show a significant improvement in 6-month culture conversion com-
pared to placebo when added to an optimized background regimen for the treatment 
of patients with MDR TB [160]. Based on these data, the WHO issued interim 
guidance that delamanid could be added to a MDR TB regimen only when the regi-
men could not otherwise be composed according to WHO recommendations [161]. 
Given its novel mechanism of action and that it may be better tolerated than other 
second-line TB medications, additional data are needed to determine the value of 
delamanid as an addition to drug-resistant TB regimens. Like bedaquiline, delama-
nid also prolongs the QT interval and there has been concern about co-administering 
delamanid with bedaquiline. A large multinational cohort study, however, found few 
serious adverse events when the drugs were given together [162], and preliminary 
data from the DELIBERATE clinical trial found a minimal effect of co-administration 
on QT-interval prolongation [163].

�Pretomanid

Like delamanid, pretomanid (formerly PA-824), is a nitroimidazole and has shown 
promising results in phase 2 studies. The NIX-TB trial is an ongoing uncontrolled 
trial testing a novel, 6-month, all-oral regimen consisting of bedaquiline, pretoma-
nid, and high-dose linezolid for patients with XDR TB. Recent preliminary analyses 
suggest that patients in the trial have had exceptionally good outcomes, suggesting 
that the regimen warrants further study [164, 165].

�Linezolid

Linezolid is an oxazolidinone and has been used for nearly 20 years in the treatment 
of gram-positive bacterial infections. Given its potent activity against Mtb, it has 
also been used in the treatment of both MDR and XDR TB. Although multiple case 
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series and a clinical trial have shown benefit of including linezolid in treatment 
regimens, use of the drug is often limited by toxicities [166–169]. Side effects from 
linezolid are primarily due to inhibition of mitochondrial function and include lactic 
acidosis, peripheral neuropathy, and optic neuritis. Additional side effects are leuko-
penia, anemia, and thrombocytopenia. Toxicities are dose-related and generally 
emerge after several weeks of therapy. Given the high XDR TB treatment success 
rates seen in the NIX-TB trial, where linezolid was given with pretomanid and 
bedaquiline [164], there has been an increased interest in the use of linezolid. The 
standard treatment regimens for MDR and XDR TB in South Africa now contain 
both bedaquiline and linezolid. Newer oxazolidinones with less mitochondrial tox-
icity have been developed and are in clinical development. The most advanced of 
these, sutezolid, had promising results in mice and in a human phase 2a early bac-
tericidal activity study [170, 171].

�Clofazimine

Clofazimine is a riminophenazine that was first synthesized as an anti-tuberculous 
drug in 1954, but for much of the last half-century was used primarily for the treat-
ment of leprosy [172]. The primary mechanism of action is believed to be related to 
the induction of redox imbalance and membrane destabilization [173]. The drug is 
lipophilic, which enables it to target transporters in the outer membrane of Mtb 
[174] and it has a long half-life, which may aid in the targeting of slowly replicating 
bacterial populations [174]. For many years, clofazimine was classified as a so-
called “category 5” drug with “questionable efficacy” against Mtb, but recently, 
there has been increasing evidence for its role in the treatment of drug-resistant 
TB.  Two systematic reviews found that 61–65% of drug-resistant TB patients 
treated with clofazimine had a favorable outcome [173, 175], and the drug is con-
sidered a core component of the 9-month MDR TB regimen (see Short-Course 
Regimen above). Side effects from clofazimine include gastrointestinal intolerance 
and brownish skin pigmentation [176], and there have been emerging concerns 
about cross-resistance with bedaquiline [136, 177]. Despite its apparent effective-
ness, low global availability and high cost may limit access to clofazimine for many 
patients [178].

�Mono-Resistance and Resistance “Beyond” MDR TB

�Isoniazid Mono-Resistance

It is estimated that approximately 8.5% of TB cases worldwide have resistance to 
isoniazid without concurrent rifampin resistance [64]. With the global rollout of 
Xpert MTB/RIF, rifampin susceptibility is now routinely available. However, sus-
ceptibility to isoniazid, the other cornerstone of drug-susceptible TB regimens, is 
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not routinely tested in many countries, and patients without rifampin resistance are 
assumed to have fully susceptible isolates. If these patients are treated with the stan-
dard first-line regimen, they will receive a weakened regimen in the intensive phase 
and effective rifampin monotherapy in the continuation phase. A recent meta-
analysis found that 15% of patients with isoniazid mono-resistance had treatment 
failure or relapse when treated with a standard regimen, as compared to 4% of 
patients with pan-susceptible isolates [179]. Further, 3.6% of mono-resistant 
patients developed additional acquired drug resistance, compared with 0.6% of pan-
susceptible patients. Thus, despite the marked advance of widespread rifampin 
resistance testing, these findings have raised concerns about the worldwide reliance 
on rifampin susceptibility testing without concurrent testing for isoniazid [179, 
180]. In 2018, the WHO recommended that patients with isoniazid mono-resistance 
be treated with a 6-month regimen containing rifampin, pyrazinamide, ethambutol, 
and levofloxacin [181].

�Rifampin Mono-Resistance

The detection of rifampin resistance is typically considered a marker for MDR TB 
as the overwhelming majority of such isolates have concurrent resistance to isonia-
zid. Nevertheless, it is estimated that 18% of patients with rifampin resistance have 
mono-resistance [64]. Without the strong sterilizing activity of rifampin, treatment 
regimens for patients with rifampin mono-resistance must be treated for a minimum 
of 12–18 months. Many programs use an MDR TB regimen with the addition or 
substitution of isoniazid, a practice that is supported by WHO guidelines [119]. A 
UKMRC trial in Hong Kong showed good success with a regimen of isoniazid, 
pyrazinamide and streptomycin but this regimen has never been tested in patients 
with HIV [182].

�Pre-XDR and XDR TB

Treatment outcomes for MDR TB patients worsen in a stepwise fashion with the 
addition of second-line drug resistance [56, 183, 184]. The two most widely used 
resistance categorizations are “pre-XDR TB” (i.e., MDR TB with resistance to a 
fluoroquinolone OR a second-line injectable, but not both) and “XDR TB” 
(resistance to both a fluoroquinolone AND a second-line injectable). Strains with 
yet further resistance, have been described in case series and meta-analyses with 
terms such as “totally drug-resistant,” “super extensively drug-resistant,” and “drug 
resistance beyond XDR,” [185–187] but their nomenclature remains controversial, 
particularly given the lack of standardized drug susceptibility testing for many of 
the third and fourth line agents, as well as the availability of new drugs (e.g., beda-
quiline, delamanid). At the moment, there are no formal guidelines for the manage-
ment of pre-XDR or XDR TB beyond the basic principles underlying the MDR TB 
guidelines. Because it can be difficult, however, to find 4 or 5 drugs with likely 
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activity against such strains, it is not surprising that outcomes for such patients are 
extremely poor [184]. With the availability of new drugs, however, countries like 
South Africa are now recommending regimens containing bedaquiline, linezolid 
and clofazimine for pre-XDR and XDR TB patients, which hold promise for better 
treatment outcomes for pre-XDR and XDR TB [164, 188]. Several studies have 
found comparable outcomes for XDR TB patients with and without HIV, but this is 
likely related to the generally poor outcomes for XDR TB [55, 58, 144, 189]. There 
is hope, however, that XDR TB outcomes will improve with the wider availability 
and use of newer drugs; a recent cohort study from South Africa reported a mortality 
rate of 13% for patients with XDR TB receiving a bedaquiline-containing regimen, 
as compared to 25% for those treated with a standard regimen [157].

�Adverse Events

Adverse events due to drug toxicity, whether from the toxicities associated with 
second- and third-line anti-tuberculous agents or from overlapping drug toxicity 
with ART, pose another challenge to achieving successful treatment outcomes [26, 
189]. Side effects associated with second-line TB medications have been well 
described [190–197] and figure prominently in treatment because they impact regi-
men choice, medication adherence, and retention in care. Most reports indicate that 
the overwhelming majority of MDR TB patients will experience at least one side 
effect during their treatment course. Adverse drug effects can also lead to less effec-
tive treatment regimens, if problematic drugs are stopped without the addition or 
substitution of alternative agents. Although data are limited, two small studies found 
no difference in frequency or severity of adverse events in patients with MDR-TB/
HIV co-infection [197, 198].

In general, all patients initiating drug-resistant TB treatment must be counseled 
about likely side effects and how best to manage them. Patients who choose to stop 
MDR TB therapy prematurely often cite medication side effects among their rea-
sons for doing so [199, 200]. Several studies have shown that with extensive patient 
education, aggressive symptomatic treatment of emergent toxicities, and support 
from family members/caregivers, most patients can complete treatment success-
fully with minimal or no changes to their treatment regimen [191, 197]. Table 4 lists 
the most common side effects associated with each second-line drug. Most reports 
of medication toxicity have been retrospective with little standardization of severity 
or detail regarding duration.

One of the most feared side effects is hearing loss from the second-line injectable 
agents. This typically begins as high-frequency loss and can progress to complete 
and irreversible deafness [201–204]. Most guidelines recommend screening patients 
with audiometric testing at baseline and then monthly while receiving an injectable. 
If evidence of hearing loss is found, either a reduction in dosing frequency (i.e., 
from daily to three times weekly) or discontinuation of the injectable is advised 
[205–207]. Whether such dose reduction mitigates the hearing loss or compromises 
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Table 4  Dosage and toxicities of medications used to treat drug-resistant TB

Medication Typical dosage Important side effects Comments

Levofloxacin 1000 mg PO 
daily

QT prolongation; 
tendonitis

Moxifloxacin 400–800 mg PO 
daily

QT prolongation; 
tendonitis

Amikacin 15 mg/kg/day 
(max 
1000 mg/d)

Hearing loss; tinnitus; 
nephrotoxicity; 
hypokalemia; 
hypomagnesemia

Kanamycin 15 mg/kg/day Hearing loss; tinnitus; 
nephrotoxicity; 
hypokalemia; 
hypomagnesemia

Capreomycin 15 mg/kg/day 
(max 1000 mg/
day)

Hearing loss; tinnitus; 
nephrotoxicity; 
hypokalemia; 
hypomagnesemia; 
hypocalcemia

Ethionamide 15–20 mg/kg/
day (usually 
total 500 or 
750 mg per day)

Nausea and vomiting; 
hypothyroidism; taste 
disturbance; 
gynecomastia; alopecia

Prothionamide 15–20 mg/kg/
day (usually 
total 500 or 
750 mg per day)

Nausea and vomiting; 
hypothyroidism; taste 
disturbance; 
gynecomastia; alopecia

Cycloserine 10–15 mg/kg/
day (usually 
total 500 or 
750 mg per day)

Psychosis; seizures; 
depression; difficulty 
concentrating

Potential for overlapping 
neuropsychiatric side effects when 
given with efavirenz.

Terizidone 10–15 mg/kg/
day (usually 
total 500 or 
750 mg per day)

Psychosis; seizures; 
depression; difficulty 
concentrating.

Potential for overlapping 
neuropsychiatric side effects when 
given with efavirenz.

Pyrazinamide 25 mg/kg daily Gout; arthralgias; 
hepatotoxicity; rash; 
photosensitivity; 
gastrointestinal upset.

Ethambutol 15–25 mg/kg 
daily

Optic neuritis

Clofazimine 100–200 mg 
daily

Red discoloration of 
skin, conjunctiva, 
cornea, and body fluids;
gastrointestinal 
intolerance; 
photosensitivity.

Imipenem-
cilastatin

1000 mg IV 
q12h

Diarrhea; nausea; 
vomiting; seizure

Must be given with clavulanate 
125 mg PO q8–12.

(continued)
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treatment outcomes has never been rigorously examined, however. Preventing such 
hearing loss is one of several motivating forces driving the development, testing, 
and implementation of novel, injectable-free regimens.

Hypothyroidism can be induced by either ethionamide/prothionamide or PAS 
and was once thought to be rare. A number of recent studies, however, have shown—
with more proactive monitoring—that it is much more common than previously 
believed [197, 198, 208–210]. In a cohort of patients from South Africa who were 
treated with ethionamide, 34% of patients required levothyroxine replacement ther-
apy [197], whereas in a cohort from Lesotho who received concurrent ethionamide 
and PAS, 69% of patients had a thyroid-stimulating hormone level  >  10 mIU/L 
[209], suggesting an additive effect of the two medications. Unlike injectable-
related hearing loss, this effect is largely reversible, but requires regular monitoring. 
Thyroid-stimulating hormone levels should be checked at baseline, and then 
repeated after 3 months, 6 months, and then every 6 months thereafter until the end 
of treatment.

As in the treatment of drug-susceptible TB, drug-induced liver injury (DILI) has 
also been reported in the treatment of MDR TB, with frequencies ranging from 

Table 4  (continued)

Medication Typical dosage Important side effects Comments

Meropenem 1000–2000 mg 
IV q8-q12a

Diarrhea; nausea; 
vomiting; seizure

Must be given with clavulanate 
125 mg PO q8–12.

Rifabutin 5 mg/kg (max 
300 mg) PO 
daily

Uveitis; leukopenia; 
thrombocytopenia; 
hepatotoxicity

�• � Efavirenz decreases rifabutin 
AUC by 35%. Consider 
increasing RFB to 450 mg daily;

�• � Most protease inhibitors 
increase RFB AUC by 250%. 
Decrease dose of RFB to 
150 mg daily.

Rifabutin decreases elvitegravir 
AUC; avoid co-administration.

Linezolid 600 mg PO daily 
or BID

Peripheral neuropathy; 
optic neuritis; lactic 
acidosis; leukopenia; 
anemia; 
thrombocytopenia

Bedaquiline 400 mg PO daily 
for 2 weeks 
THEN 200 mg 
PO TIW to 
complete 
6-month course.

QT-prolongation. Efavirenz decreases BDQ AUC by 
40–50%. Do not co-administer; 
Lopinavir/ritonavir doubles BDQ 
AUC. Clinical significance 
unknown. No interaction with 
nevirapine. No interaction with 
integrase strand transfer inhibitors 
predicted.

Delamanid 100 mg PO BID QT-prolongation

BDQ = bedaquiline; AUC = area under the curve; RFB = rifabutin
aDosage based on published reports. Ideal dose not established
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10–17% of patients [211–213]. Multiple second-line drugs can cause DILI, including 
fluoroquinolones and ethionamide/prothionamide, as well as the first-line drugs iso-
niazid and pyrazinamide, which are often included in MDR TB regimens. In one 
study from South Korea, patients with alcoholic hepatitis or co-infection with either 
hepatitis B or C were at significantly greater risk of incident hepatotoxicity from 
MDR TB treatment [211]. Although mild elevations in liver function tests can often 
be followed clinically, treatment interruptions and sequential rechallenge may be 
necessary if patients experience significant transaminase elevations (i.e., >5x upper 
limit of normal) or if elevations are accompanied by symptoms.

Lastly, several second-line TB medications can cause treatment-limiting gastro-
intestinal discomfort, nausea, and vomiting. PAS and ethionamide/prothionamide 
are the two most common culprits, and tolerability of ethionamide/prothionamide 
can often be improved by dividing the dose BID.

For a discussion of drug-drug interactions between second-line TB medications 
and ART, see chapter “Co-treatment of Tuberculosis and HIV: Pharmacologic 
Considerations.” 

�Other Considerations in MDR TB Treatment

�Standardized Versus Individualized Treatment

Treatment for drug-resistant TB has always been hampered by limitations in diag-
nostics and challenges in obtaining a comprehensive drug susceptibility profile, as 
outlined above. Because phenotypic resistance testing to many second-line drugs is 
technically challenging, unreliable and marred by poor reproducibility [93, 214], 
many programs either do not routinely test for susceptibility, or restrict testing to 
only a handful of drugs. As a result, the treating clinician often does not know if 
each medication in a patient’s regimen is truly active against that patient’s isolate.

In an effort to save money on diagnostic testing and simplify treatment programs 
while providing patients the best chance at cure, many programs have used surveil-
lance data to analyze broad trends in resistance patterns within a given community. 
They then use these data to generate a “standard” regimen which can be given to any 
patient presenting with MDR TB in that community. The appeal of this approach is 
that it allows programs to plan for consistent drug-utilization, facilitating pharmacy 
procurement and preventing stock-outs, and allows clinicians with less experience 
in drug-resistant TB to manage these patients. An important shortcoming, however, 
is that without precise drug-susceptibility testing for each patient, those with less 
common resistance patterns may be inadequately treated by the standard regimen. 
These patients will be at greater risk of treatment failure and amplification of further 
resistance.

An alternate approach to standardized therapy is “individualized” treatment, in 
which the clinician creates a regimen specifically developed for a given patient, 
based on that patient’s known exposure to other drug-resistant TB patients and prior 
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treatment history. Typically, the clinician treats with an aggressive regimen at the 
outset and then removes extra drugs once the precise drug susceptibility pattern is 
known. This approach has the disadvantage of added costs associated with diagnos-
tics and medications, and requires additional expertise in the treating clinician. In 
addition, the pill burden and side effects associated with the aggressive regimen 
may compromise medication adherence. The advantage, however, is that every 
patient receives the best possible regimen for his or her disease [215, 216]. Most 
studies have suggested that individualized treatment achieves superior outcomes 
compared to standardized treatment [115, 142, 217], but in communities with a 
fairly homogeneous strain epidemiology and/or limited resources for diagnostic 
testing, standardized therapy can be a reasonable compromise.

�Hospital-Based Versus Community-Based Treatment

Because the 24-month MDR TB regimen requires a daily intramuscular injection 
and is associated with frequent side effects, many TB programs hospitalize patients 
with MDR TB for the duration of the intensive phase. This both facilitates adminis-
tration of an injectable agent and provides a theoretical benefit of isolating such 
patients from spreading their disease in the community. Yet, keeping patients hospi-
talized for such long periods—often hundreds of kilometers from their homes and 
families—is potentially counterproductive. In a number of reports, patients fre-
quently became frustrated with what they viewed as a de facto incarceration and left 
the hospitals against medical advice, thereby discontinuing their TB treatment [140, 
218–220]. In addition, countries with very large MDR TB burdens may not have 
enough hospital beds to accommodate all patients who need them. Patients, then, 
are often placed on waiting lists, and receive ineffective, first-line therapy while 
awaiting a hospital bed where they can initiate drug-resistant TB therapy [221]. 
During this time, patients are often infectious and likely contribute to ongoing trans-
mission of drug-resistant disease in their communities.

In an effort to improve outcomes and adherence, while also broadening access to 
drug-resistant TB treatment, a number of programs have explored the feasibility and 
safety of community-based treatment for patients with drug-resistant TB [222]. 
Keeping patients at home, where they are supported by their family members, 
makes them less likely to discontinue therapy. Providing care at decentralized clin-
ics or district hospitals makes it easier for patients to attend follow-up appointments. 
Many models of decentralized, community-based drug-resistant TB care have been 
implemented in both urban and rural settings, either with patients traveling to a local 
clinic for their daily injection or injection teams traveling to a patient’s home [221–
223]. DOT has been provided in such programs by nurses, community health work-
ers, and family members. Two meta-analyses of community-based treatment studies 
found higher rates of treatment success in decentralized versus centralized MDR TB 
programs, with no impact of HIV prevalence on treatment outcomes [224, 225]. 
These data are encouraging both for TB treatment programs and for patients, as 
community-based treatment is typically less expensive than hospital-based treatment 
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and is vastly preferred by patients [226, 227]. As part of these programs, it is critical 
to educate the patient and family members about basic infection control practices in 
order to minimize the risk of transmission within the home.

Community-based treatment has also been used to provide concurrent treatment 
for drug-resistant TB and HIV. Outcomes from such programs are heterogeneous; 
when decentralized care was introduced in several sites within the province of 
KwaZulu-Natal, South Africa, some programs had superior outcomes compared to 
inpatient care while others had worse outcomes [228]. An analysis of health systems 
at each of the sites demonstrated the importance of proper staffing, management, 
training, and oversight if the benefits of decentralized care are to be realized [229].

�Surgery for Drug-Resistant TB

Prior to the discovery of anti-tuberculous chemotherapy, treatment for TB often 
included surgical collapse procedures, such as thoracoplasty, plombage, induced 
pneumothorax, pneumoperitoneum, and lung resection (partial or total) [230–233]. 
With the advent of effective medical therapy and high cure rates, surgical manage-
ment was largely abandoned in most countries. However, the recent global rise in 
drug-resistant TB and its associated poor outcomes have brought renewed attention 
to adjuvant surgical therapy [234].

Even with more than a century of global experience with the procedures, there 
remain very limited data on its effectiveness. To date, there have been no clinical 
trials of lung resection surgery for drug-resistant TB, and several meta-analyses, 
including one individual patient data meta-analysis, have attempted to combine the 
more than two dozen published case series [235–238]. These meta-analyses all 
found that partial lung resection surgery, when performed along with medical ther-
apy, provided high rates of cure and treatment success. The studies in question, 
however, were all uncontrolled and suffered from significant indication bias, such 
that they included patients who had been specifically selected to undergo major 
surgery and thus may have been healthier than the general drug-resistant TB popula-
tion. One meta-analysis utilized individual patient-level data in an attempt to address 
this concern and created a control group of patients from studies in which surgery 
was not performed [237]. They found that while lobectomy was associated with 
improved treatment success compared with no surgery, pneumonectomy was not. In 
addition, treatment success was more likely if surgical resection was performed 
after sputum culture-conversion, although this likely represents channeling bias as 
patients who achieved earlier culture-conversion would have been more likely to 
achieve treatment success regardless, and may have been more likely to undergo 
surgery after conversion.

Despite concerns about the generalizability of the published data on adjuvant 
surgical therapy, there is general consensus that surgery likely has an important role 
in controlling disease in MDR and XDR TB and surgery is recommended by the 

S. C. Auld et al.



225

WHO as a potential adjunct to appropriate chemotherapy [239]. In general, surgery 
is advised for patients who have localized disease and adequate pulmonary reserve 
to tolerate resection (though this is rarely quantified); further, preference is often 
given to patients with a more favorable resistance profile who have already achieved 
sputum culture conversion. The resection should be performed by an experienced 
surgeon and the patient should complete a full course of medical therapy even if the 
surgery is successful. Further research is needed to develop risk-stratification tools 
for surgery in the context of drug-resistant TB and to identify patients most likely to 
benefit from surgical intervention.

�Thinking Beyond Drugs for Drug-Resistant TB

Even with the availability of novel drug regimens and surgical intervention, there 
continue to be patients who are deemed programmatically incurable. In a case series 
published from the Western Cape province of South Africa, albeit prior to the intro-
duction of bedaquiline and linezolid, 203 (74%) of 273 patients with XDR TB were 
deemed incurable and 172 (63%) of these patients were discharged home [240]. 
Over 20% of these patients were still alive one year after hospital discharge, and the 
investigators identified downstream cases among contacts with nearly identical TB 
strains as the discharged index cases. For patients with programmatically incurable 
disease, there is an urgent need to ensure safe discharge plans, such that these indi-
viduals do not pose a risk to their communities and have access to palliative 
care [63].

Finally, the far-reaching impact of drug-resistant TB on patients’ lives and their 
families must be acknowledged. In a US task force convened in 1992 to develop a 
national action plan to combat MDR TB, the authors recognized the need for social 
and economic support for patients undergoing MDR TB treatment, to ensure adher-
ence with prolonged treatment regimens, and to prevent secondary cases for patients 
in unstable living situations [241]. Despite a growing advocacy movement for 
patient-centered care and respect for patients’ autonomy [242], individuals with TB, 
and particularly drug-resistant TB, often face high levels of stigma in their commu-
nities, which can lead to psychological stress [63]. Successful treatment is further 
challenged by financial stress and loss of productivity, as TB can impact individuals 
during their adult working years. By enabling patients to remain in their homes, 
community-based care (as reviewed above) is one element of patient-centered care. 
Similarly, peer support groups and psychological counseling have been demonstrated 
to improve adherence and psychosocial well-being in several pilot projects [243–
245]. A recent review of these important “non-medical” patient-centered outcomes 
found a relatively limited evidence base for psychosocial and economic interven-
tions for patients with MDR TB, despite common reports of depression, stigma, 
discrimination and financial constraints in this population [246].
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Abstract  Having HIV and TB worsens the impact of both. The treatment of 
HIV-TB coinfection is beset by challenges, including drug-drug-interactions, coin-
cident toxicities, and the occurrence of the immune reconstitution inflammatory 
syndrome. These challenges can be overcome with careful attention to evidence-
guided practice and clinical pharmacological aspects of co-treatment. There is a 
clear mortality benefit to treating both infections; the relative timing of initiation of 
both treatments will be discussed. This chapter will address pharmacologic consid-
erations in the co-treatment of HIV-related latent or active TB of all sensitivity pat-
terns (drug sensitive and multidrug resistant (MDR). The discussion will identify 
existing gaps in the evidence and include current recommendations for HIV-TB 
treatment in special populations, including pregnant and lactating women and 
children.
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�Introduction

Tuberculosis (TB) is currently a leading cause of infectious disease-related death 
globally, and it is also the #1 killer of persons living with HIV infection (PLWH) 
[1]. TB disease, though, can be averted in this population by provision of antiretro-
viral therapy (ART) and appropriate TB preventative therapy (TBPT) [2–4]. When 
TB does develop, treatment is largely similar among patients with and without HIV 
co-infection, consisting of four-drug therapy for drug-sensitive TB, namely isonia-
zid, a rifamycin, pyrazinamide, and ethambutol. Treatment, though, should be 
administered daily, rather than intermittently [5–8]; vitamin B6 should be adminis-
tered as standard of care to prevent peripheral neuropathy given that HIV infection 
itself also confers risk; and ART drugs and doses must be selected with potential 
drug interactions kept in mind. TB drug exposures—especially rifampicin—may be 
reduced in patients with advanced HIV, due to malabsorption or weight-based dos-
ing algorithms that under-dose low-weight persons [9, 10]. Therapeutic drug moni-
toring, where available, or, more importantly, higher dosing, may be of particular 
benefit in this population [11]. Management of drug-resistant TB, specifically mul-
tidrug resistant (MDR) TB (Mycobacterium tuberculosis that is resistant to rifampi-
cin and isoniazid) is similar in patients with and without HIV co-infection, though 
there are notable drug interactions between ART agents and drugs used to treat 
MDR-TB, as well as toxicity concerns.

Co-treatment of HIV and TB is challenging, owing to high pill burden, overlap-
ping toxicities, and immune reconstitution inflammatory syndrome [12], but there is 
a clear benefit to giving TB and HIV treatment concurrently [13–16], and so these 
challenges must and can be addressed. Clearly, coordination of HIV and TB care is 
of the utmost importance for successful treatment of both infections. In this chapter, 
we highlight pharmacologic considerations relevant to the co-management of latent 
or active TB (including drug-sensitive and MDR-TB) and HIV, identify knowledge 
gaps, and provide treatment recommendations based on the available evidence, with 
attention to considerations applicable to pregnant women and children [17, 18].

�Prevention of HIV-Associated TB

While many opportunistic infections are only a concern when the CD4 count falls 
below a certain threshold, risk of TB among PLWH is heightened almost immedi-
ately following HIV infection, even when CD4 counts remain high [19–21]. TBPT 
not only reduces risk of TB disease but it also may lower the risk of death in indi-
viduals with HIV infection [22]. A recent meta-analysis of Isoniazid Preventive 
Therapy (IPT) showed no all-cause mortality benefit except among a subset of 
patients given an extended 12-month course of IPT (in whom RR of mortal-
ity = 0.65; 95% CI(0.47, 0.90)) [4]. And an older Cochrane review from 2010 found 
no evidence that TBPT reduced all-cause mortality as compared to placebo [23]. 
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However, the TEMPRANO study, notably one of the few individually randomized 
studies of the impact of IPT on mortality in HIV-infected patients in the era of ART, 
showed a substantially reduced risk of death, which persisted for over 5 years, in the 
arm given IPT compared with no IPT (HR of death was 0·61 (0.39–0.94) after 
adjustment for baseline CD4 cell count and ART strategy) [22]. TBPT uptake, 
though, remains poor—the consequence is thousands of preventable deaths each 
year [24]. It is, thus, imperative that LTBI treatments be accessible, simple to take, 
and compatible with available ART.

How might regimens for LTBI be different in different regions and for HIV-infected 
persons on ART versus HIV-uninfected individuals? There are three main options 
endorsed by the World Health Organization (WHO) for treatment of LTBI in countries 
with low TB burden (estimated TB incidence <100 per 100,000 population)—isonia-
zid alone for 6–9 months (IPT), isoniazid plus rifapentine once-weekly for 12 weeks 
(3HP), or rifampicin alone for 4 months (4R) [25]. In high-burden countries, however, 
WHO guidelines recommend that people living with HIV (and their child contacts 
under the age of 5 years) must be offered IPT for a longer course of 36 months. This 
recommendation is based on evidence from the randomized, placebo-controlled 
BOTUSA trial of 6 months versus 36 months of IPT, which demonstrated a significant 
decrease in cases of incident TB in the group given IPT for 36 months as compared to 
6 months, chiefly among cases with positive tuberculin skin test (TST) [26].

Isoniazid (9H) when given as IPT is dosed at 300 mg daily. Tolerability of IPT is 
excellent, though adverse events are modestly more common in HIV-infected than 
HIV-uninfected patients [27, 28], and WHO, accordingly, recommends pre-treatment 
liver function testing and on-treatment monthly clinical assessments for HIV-infected 
patients receiving IPT [25]. For the most part, isoniazid is compatible with antiretro-
virals (ARVs). However, daily isoniazid may increase efavirenz exposures in a subset 
of patients, namely individuals with slow cytochrome P450 2B6 (CYP2B6) metabo-
lizer status. The major metabolic pathway for efavirenz is CYP2B6. CYP2A6 is a 
minor metabolic pathway for efavirenz, but it is a more important route of clearance 
for patients with slow CYP2B6 metabolizer genotype. Isoniazid is an inhibitor of 
CYP2A6 and can, thus, increase efavirenz concentrations in this subpopulation, and 
the effect is more pronounced in individuals with high isoniazid concentrations (typi-
cally seen in patients with the slow NAT2 acetylator genotype) [29, 30]. The fre-
quency, magnitude, and clinical relevance of this drug interaction remain to be 
quantified. However, being alert to this potential interaction is important, and clini-
cians should be on the lookout for central nervous system side effects such as insom-
nia, vivid dreams, paranoia, psychosis, and suicidality in efavirenz-isoniazid co-treated 
patients, particularly in populations or geographic areas where slow CYP2B6 metabo-
lizer and/or slow NAT2 genotypes are common [31].

With 3HP for TB prevention, isoniazid and rifapentine are given less frequently 
(once-weekly), shorter duration (3 months) and at higher doses (900 mg each) than 
for treatment of TB disease [32]. This regimen is better-tolerated than 9H in HIV-
infected patients, and, interestingly, side effects are less common in persons with 
versus without HIV co-infection [27]. In the Phase 3 trial of 3HP, ART was not 
permitted, so subsequent drug interaction studies were required to characterize 
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potential drug interactions of once-weekly HP with commonly-used ARVs. This 
regimen can be used with the following medications: tenofovir disoproxil fumarate 
(TDF) [33], emtricitabine, efavirenz [33, 34], and raltegravir [35] without dose 
adjustments. The effects of rifapentine (dosed once-weekly or daily) on tenofovir 
alefenamide (TAF) have not been assessed. In one small trial involving healthy 
HIV-uninfected volunteers, dolutegravir given with once-weekly HP was poorly-
tolerated [36]. However, further exploration of this combination in a phase I/II study 
of patients with HIV and LTBI showed that coadministration of 3HP with DTG was 
well-tolerated and all participants maintained viral suppression despite a mildly 
reduced DTG trough while on 3HP. The geometric mean (GM) trough concentra-
tion of DTG on Day 58 (pre-HP) was 1003 μg/mL (5th–95th %ile: 500–2080), and 
during HP treatment was 546 (134–1616); of particular note, all trough levels but 
one were above the DTG IC90 of 64 μg/mL. Given rifapentine’s strong induction 
effects on CYP3A, even once-weekly dosing is expected to reduce exposures of 
drugs that are CYP3A substrates, so co-administration of 3HP with boosted prote-
ase inhibitors or cobicistat-boosted elvitegravir or bictegravir is not recommended.

Moving the field further towards treatment shortening, a recently completed 
Phase 3 trial (NCT01404312) evaluated an ultra-short course of isoniazid and rifa-
pentine given daily for 1 month (1HP) for the prevention of TB disease in individu-
als >13 years of age with HIV infection. Participants were not required to have a 
positive TST skin test or IGRA test. That study showed that 1HP was non-inferior 
to a 9-month regimen of daily INH (9H), with fewer adverse events and a higher 
treatment completion rate. Importantly, over a median follow-up period of 3.3 years, 
the ultra-short course 1HP regimen had no difference in incidence rates of active 
TB, TB death, or death from an unknown cause, when compared to 9H. Preliminary 
drug interaction substudies showed that efavirenz could be used with the once-daily 
regimen [34]. Raltegravir has been studied in combination with daily rifapentine in 
healthy volunteers, and the coadministration was well-tolerated and did not change 
the geometric mean of either RAL Cmaxor geometric mean AUC, though it did lower 
the RAL trough concentration by 41%. Information is still lacking on the combina-
tion of TAF and DTG with 1HP, and that combination is being studied by the AIDS 
Clinical Trials Group. Other drug-drug interaction studies with daily rifapentine are 
needed; some are on the launch pad.

Rifampicin (4R), is a potent inducer of metabolizing enzymes, and drug interac-
tions for this prophylactic regimen would be expected to be similar to those seen 
with rifampicin given as part of multidrug therapy for TB disease (see below).

�Treatment of Drug-Sensitive TB

Among the four drugs used in first-line treatment for drug-sensitive TB, rifamycins 
have unique activity against the M. tuberculosis bacilli that are slowly replicating or 
dormant, those so-called “persisters” that must be eradicated to achieve clinical cure 
[37]. Up to now, no other drugs have comparable, clinically-proven sterilizing activity. 
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If a rifamycin is not included in the regimen for the full 6 months of therapy, treat-
ment duration must be prolonged significantly [38, 39]. Thus, rifampicin (or one of 
its rifamycin cousins) is an essential component of first-line regimens for drug-
sensitive TB. Rifampicin, however, is a potent and promiscuous inducer of multiple 
metabolizing enzymes (including phase 1 enzymes, like cytochrome P450 oxidases, 
and phase 2 enzymes, e.g. transferases such as UDP-glucuronosyltransferases and 
sulfotransferases) and drug transporters (such as P-glycoprotein, or P-gp) [40]. The 
use of rifampicin can cause clinically-meaningful drug interactions with companion 
drugs, including, most importantly, ARVs. There are two main strategies for manag-
ing the drug interaction – (1) use standard isoniazid, rifampicin, pyrazinamide, and 
ethambutol therapy (HRZE) and choose ART agents that either do not have clini-
cally important drug interactions with rifampicin or that have a drug interaction that 
can be mitigated with adjustment of dose or dosing frequency; or (2) substitute 
rifabutin, a less potent inducer of metabolizing enzymes and transporters, for rifam-
picin, to enable use of ARVs that cannot be used with rifampicin (Table 1). Multiple 
groups publish guidelines regarding HIV-TB co-treatment that are regularly updated 
and may serve as good references, as this is a rapidly evolving field (https://www.
hiv-druginteractions.org/; https://www.bhiva.org/; https://aidsinfo.nih.gov/guide-
lines; https://www.cdc.gov/hiv/guidelines/index.html).

Table 1  Recommended and alternative therapies for co-treatment of drug-sensitive TB and HIV 
infections in adults

Antiretroviral 
medicationa

Metabolizing 
enzymes Rifamycinb

Dose 
adjustments Comments

Preferred

 � Efavirenz CYP2B6 > CYP2A6 Rifampicin None Some patients may 
experience elevations in 
efavirenz 
concentrations; monitor 
for CNS side effects

 � Raltegravir UGT1A1 Rifampicin Increase 
raltegravir to 
800 mg twice 
daily

Raltegravir 400 mg 
twice daily has been 
studied in 1 RCT and 
may be sufficient but 
clinical experience is 
too limited to 
recommend that dosing 
at this time

 � Dolutegravir UGT1A1 > CYP3A Rifampicin Increase 
dolutegravir to 
50 mg twice 
dailyc

Continue twice daily 
dolutegravir dosing for 
10–14 days following 
completion of TB 
treatment

 � Ritonavir-
boosted 
protease 
inhibitor

CYP3A Rifabutin Decrease 
rifabutin to 
150 mg once 
daily

Monitor closely for 
exposure-dependent 
rifabutin toxicities, to 
include neutropenia and 
uveitis

(continued)
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Table 1  (continued)

Antiretroviral 
medicationa

Metabolizing 
enzymes Rifamycinb

Dose 
adjustments Comments

Alternative

 � Efavirenz CYP2B6 > CYP2A6 Rifabutin Increase 
rifabutin dose 
to 450 mg daily

If efavirenz is used, the 
rifamycin of choice is 
rifampicin
Rifabutin is an 
alternative in select 
cases where resistance 
or tolerability is drug- 
and not class-specific

 � Nevirapine CYP2B6, CYP3A Rifampicin Give twice-
daily 
throughout 
co-treatment 
(avoid the once 
daily lead-in 
phase)

Less effective than 
efavirenz-based 
treatment, close 
monitoring of HIV viral 
load is required
Watch for hepatotoxicity 
when given with 
first-line TB drugs

 � Nevirapine CYP2B6, CYP3A Rifabutin No dose 
adjustments 
needed

Less effective than 
efavirenz-based 
treatment, close 
monitoring of HIV viral 
load is required
Watch for hepatotoxicity 
when given with 
first-line TB drugs

 � Raltegravir UGT1A1 Rifabutin No dose 
adjustments 
needed

Limited clinical 
experience with this 
combination

 � Rilpivirine CYP3A Rifabutin Increase 
rilpivirine dose 
to 50 mg once 
daily

Discordance between 
Prescribing Information 
from the EMA (double 
rilpivirine dose) and US 
FDA (coadministration 
contraindictated)

 � Dolutegravir UGT1A1 > CYP3A Rifabutin No dose 
adjustments 
needed

Limited clinical 
experience with this 
combination

 � Ritonavir-
boosted 
lopinavir

CYP3A4 Rifampicin Double dose 
(of both 
lopinavir and 
ritonavir)

Alternative if rifabutin 
is not available.
Monitor carefully for 
drug-induced liver 
injury
Double dosing has only 
been examined for 
lopinavir/ritonavir

(continued)
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�Rifampicin-Based TB Treatment

Nucleoside/nucleotide reverse transcriptase inhibitors (NRTI). In general, these 
agents, including tenofovir (as tenofovir disoproxil fumarate or TDF), zidovudine, 
lamivudine, abacavir, and emtricitabine do not have clinically important drug inter-
actions with HRZE and can be used without dose modifications [41–43]. Tenofovir 
alafanamide, or TAF, is a new, lower-dose, more potent formulation of tenofovir 
which appears to have lower risk of bone or kidney toxicities than TDF [44]. It is 
also active against hepatitis B virus (HBV) and, like TDF, is recommended for per-
sons co-infected with HIV and HBV. TAF and TDF are pro-drugs; both are con-
verted to the active compound, tenofovir diphosphate (TFV-DP) in lymphoid cells, 
but TAF achieves intracellular TFV-DP concentrations approximately fivefold 
higher than TDF. TAF is a P-gp substrate, and, unlike TDF, is also a minor substrate 
of CYP3A4, as well as a substrate of drug transporters such as BCRP, ABCG2, and 
ABCB1. TAF therefore appears to have higher drug interaction liability than TDF, 
as evidenced by drug interaction studies with cobicistat (inhibitor of CYP3A and 
P-gp) and carbamazepine (inducer of CYP3A) [45]. Given that rifampicin induces 
both P-gp and CYP3A4, there is concern that absorption of TAF will be signifi-
cantly reduced when it is given with HRZE. Data from Gilead (the manufacturer of 
TAF) demonstrate that, when given in conjunction with RIF 600 mg daily, TAF 
25 mg dosed every 12 h instead of daily is well tolerated and yields similar plasma 
TAF levels and intracellular PBMC TFV-DP levels as TAF 25 mg dosed once daily 
without RIF [46]. When TAF-FTC is dosed 25 mg–200 mg once daily with 600 mg 

Antiretroviral 
medicationa

Metabolizing 
enzymes Rifamycinb

Dose 
adjustments Comments

 � Etravirine CYP3A, CYP2C9, 
CYP2C19; UGT

Rifabutin No dose 
adjustments 
needed

Limited clinical 
experience with this 
combination.
Do not use in 
combination with 
boosted protease 
inhibitor

 � Maraviroc CYP3A4, CYP3A5 Rifabutin No dose 
adjustments 
needed

Limited clinical 
experience with this 
combination.

 � Maraviroc CYP3A4, CYP3A5 Rifampicin 600 mg orally 
once daily

Limited clinical 
experience

aAccompanied by two nucleoside or nucleotide reverse transcriptase inhibitors (NRTI) (tenofovir 
disoproxil fumarate (TAF is not recommended until PK data become available) or abacavir plus 
emtricitabine or lamivudine)
bAs part of multidrug treatment for TB including isoniazid, pyrazinamide, and ethambutol
cINSTI mutations must be carefully screened for clinically based on ART history, and virologically 
where possible; in cases of BID DTG dosing because of prior virologic failure on INSTI, the dos-
ing of DTG with RIF has not yet been clearly established

Table 1  (continued)
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of RIF, emtricitabine exposures are not affected but TAF exposures are lowered; the 
geometric mean ratios (90% CI) of plasma TAF with and without RIF are 0.45 
(0.42–0.50) and 0.46 (0.40–0.52) for Cmin and AUC0–24, respectively. However, intra-
cellular TFV-DP concentrations decrease by 36%; the geometric mean ratio (90% 
CI) of intracellular active metabolite TFV-DP in the setting of TAF-FTC given with 
as compared to without RIF is 0.64 (0.54–0.75). It is important to note, however, 
that these decreased intracellular concentrations are still higher than the intracellu-
lar concentrations achieved by standard TDF (GMR (90% CI) of intracellular 
TFV-DP AUC0–24 in the setting of TAF-FTC given with RIF as compared to TDF 
dosed normally without RIF is 4.21 (2.98–5.95)). It is likely that achieving with 
standard dosed TAF the (fivefold higher) intracellular levels of TFV-DP comparable 
to levels achieved clinically with TDF will be adequate for clinical effect, though 
that has not been proven. Given that TAF is now a first-line ART agent in many set-
tings, further characterization of the pharmacokinetics and pharmacodynamics of 
TAF when it is given with TB therapy [specifically the effects of HRZE on intracel-
lular TFV-DP and HIV-1 (and HBV, if co-infected) virologic suppression] in patients 
with HIV-associated TB is a high priority (Table 2).

Non-nucleoside reverse transcriptase inhibitors (NNRTI). Efavirenz is still first-
line treatment for HIV infection in many settings globally. Initial small drug interac-
tion studies involving rifampicin and efavirenz were conducted in healthy 
HIV-uninfected volunteers without concomitant HZE and without waiting the 
>4 weeks required for EFV to be fully auto-induced. These demonstrated moderate 
reductions in efavirenz exposures [47], yet both cohort studies and clinical trials 
among HIV-TB co-infected patients have demonstrated that the standard adult efa-
virenz dose of 600 mg daily (given with 2 NRTIs) is highly efficacious in patients 
receiving full TB treatment with HRZE [48–51]. As noted above, efavirenz expo-
sures are known to be highly variable and correlate with CYP2B6 metabolizer gen-
otype (extensive, intermediate, or slow). Among individuals with slow CYP2B6 
metabolizer genotype, treatment with HRZE actually reduces efavirenz clearance 
(isoniazid’s concentration-dependent inhibition of the alternative CYP2A6 pathway 
counterbalances the inductive effects of rifampicin), resulting in higher drug expo-
sures [52, 53]. There is currently a movement to reduce the standard dose of efavi-
renz to 400 mg daily to lessen the cost of manufacture of this drug and expand 
access, as well as reducing efavirenz-associated side effects [54]. A randomized 
controlled trial, ENCORE1, demonstrated that the 400 mg dose was non-inferior to 
a 600 mg dose in treatment-naïve patients with HIV infection who were not receiv-
ing rifampicin for TB treatment [55]. Whether or not this 400 mg dose can be safely 
given to patients who are extensive metabolizers of efavirenz and require HRZE for 
TB treatment has been explored in an open-label study among people with HIV 
without TB. The study found that the coadministration of INH/RIF and 400 mg 
daily efavirenz led to minimal changes (<25%) in EFV exposures, and efavirenz 
concentrations in the range observed in the ENCORE-1 trial. Eighteen % of the 
subjects in the trial were carriers of slow efavirenz CYP2B6 metabolizer alleles 
516  T or 983C; 32% were intermediate metabolizers, and 45% were extensive 
metabolizers. Of the 26 individuals who were enrolled in the trial, 4 discontinued 
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Table 2  Knowledge gaps in pharmacokinetics and safety of drugs or regimens used for treatment 
of latent tuberculosis (TB) infection or TB disease, co-administered with antiretroviral therapy 
(ART), among people living with HIV infection

Research area
Drug(s) for treatment 
or prevention of TB Knowledge gaps: TB agent(s) with ART

Co-treatment of latent 
TB and HIV

Once-weekly isoniazid 
plus rifapentine (3HP)

�• � Safety, rifapentine dosing with dolutegravir, 
boosted PIs, ETR, EVG/c, BIC

�•  Tenofovir alefenamide (TAF) dosing
Daily high-dose 
isoniazid plus 
rifapentine (1HP)

�• � Safety, rifapentine dosing with dolutegravir, 
boosted PIs, ETR, EVG/c, BIC

�•  Tenofovir alefenamide (TAF) dosing
Daily isoniazid (9H) �• � Risk of CNS side effects when 9H is given 

to patients on efavirenz who are CYP2B6 
slow metabolizers

Co-treatment of 
drug-sensitive TB  
and HIV

Rifampicin �•  PK/dosing of TAF
�• � PK and efficacy of efavirenz 400 mg 

among CYP2B6 extensive metabolizers
�• � PK of efavirenz with regimens including 

high-dose rifampicin (e.g. 35 mg/kg)
�• � Population-level efficacy of standard-dose 

raltegravir (400 mg twice daily)
�• � Dolutegravir dosing with standard or 

high-dose rifampicin
�• � PK and efficacy of maraviroc given at 

increased dose of 600 mg twice daily
�• � Potential use (through dose adjustment) of 

cobicistat- or ritonavir-boosted once-daily 
protease inhibitors

Rifabutin �•  PK/dosing of TAF
�• � Toxicodynamics of rifabutin and its 

metabolite for bone marrow suppression and 
uveitis, when rifabutin is given at 150 mg 
once daily with a boosted protease inhibitor

Rifapentine �• � PK/dosing of TAF, efavirenz, raltegravir, 
dolutegravir, boosted PI, EVG/c, BIC with 
regimens including high-dose rifapentine 
(e.g. 1200 mg)

Co-treatment of 
drug-resistant TB  
and HIV

Moxifloxacin �• � Effects of efavirenz on moxifloxacin 
pharmacokinetics and efficacy

Ethionamide �• � Effects on efavirenz PK among slow 
CYP2B6 metabolizers

High-dose isoniazid �• � Effects on efavirenz concentrations among 
slow CYP2B6 metabolizers

Bedaquiline �• � QT risk when co-administered with 
cobicistat- and ritonavir-boosted protease 
inhibitors

�•  PK and safety with dose-adjusted efavirenz

(continued)
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participation because of low efavirenz C24 levels below the cutoff of 800 ng/mL at 
>3 consecutive visits (of those four, 3 were extensive metabolizers and 1 was an 
intermediate metabolizer). These findings remain to be confirmed in individuals 
with both HIV and TB.

Theoretically, the additive inductive effects of rifampicin when combined with 
efavirenz (which induces its own metabolism in a concentration- and time-dependent 
fashion) could be most discernible in patients with the extensive metabolizer geno-
type, as these patients generally have the lowest efavirenz concentrations. However, 
it is worth noting that rifampicin does not significantly add to EFV auto-induction 
when the standard 600 mg daily dose of efavirenz is given. The target trough con-
centration for efavirenz remains ill-defined but is likely below the commonly-cited 
1 mcg/mL [56], and the efficacy of the 400 mg dose in TB-HIV co-infected patients 
cannot be deduced by pharmacokinetic (PK) studies alone [57, 58]. Thus, for indi-
viduals taking the 400 mg daily dose at the time of their TB diagnosis and the initia-
tion of a rifampicin-based regimen, the efavirenz dose should either be increased to 
600 mg daily or there should be close monitoring of virologic outcomes. For those 
who start EFV-based cART while taking RHZE, a starting dose of 600 mg should 
be considered. Efavirenz pharmacokinetics in people with HIV-associated TB dis-
ease receiving short-course high-dose (1200 mg) daily rifapentine are not altered in 
a clinically significant way; a study of this combination found efavirenz concentra-
tions above the currently recommended trough of 1 mcg/mL in 91% of participants 

Table 2  (continued)

Research area
Drug(s) for treatment 
or prevention of TB Knowledge gaps: TB agent(s) with ART

TB/HIV co-treatment 
in pregnant women, 
special considerations

Rifampicin �•  DDI with ART in pregnancy
Pyrazinamide �•  PK and safety in pregnancy
Rifapentine + INH �• � PK/ dosing of both RPT and ART (e.g. 

TAF, efavirenz, raltegravir, dolutegravir); 
best timing for and safety of this regimen 
compared with alternatives

Moxifloxacin/
levofloxacin

�•  PK and safety in pregnancy

Clofazamine �• � Role in treatment-shortening regimen in 
pregnancy

�•  PK and safety in pregnancy
TB/HIV co-treatment 
in children, special 
considerations

Rifapentine �• � PK, dosing (especially in very young 
children), acceptability and safety with TAF, 
raltegravir, dolutegravir, etravirine, bictegravir

Rifampin, higher dose �• � PK, dosing, acceptability and safety with 
LPV/RTV, EFV, TAF, raltegravir, 
dolutegravir, etravirine,

Rifabutin �• � PK and dosing for children, dose-exposure-
toxicity relationships (which may differ 
from adults)

�•  Pediatric-friendly palatable formulation
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at week 8. When efavirenz (600 mg or 800 mg) was studied in combination with 
high-dose RIF (20 mg/kg) in HIV-TB coinfected individuals in the ANRS 12292 
Rifavirenz phase 2 trial, there was a trend towards lower efavirenz concentrations 
than with the same dose of efavirenz alone, but concentrations were still within the 
therapeutic window, and participants remained virologically suppressed.

DDI studies reveal that concomitant rifampicin reduces nevirapine levels by any-
where from 30–55% [59–61]. Nevirapine is less effective than efavirenz in combi-
nation ART regimens, including in TB-HIV co-treatment [62–65]; thus, its use 
should be avoided in patients being treated concurrently for TB and HIV. If options 
are few and nevirapine must be used, given that rifampicin further induces the 
enzymes that are auto-induced by and metabolize nevirapine (CYP2B6 and 
CYP3A4), the lead-in phase of 200 mg once daily should be dropped, and nevirap-
ine should be given twice daily throughout co-treatment [66, 67]. Rilpivirine’s area 
under the concentration-time curve (AUC) and trough concentrations are reduced 
by 80% and 89%, respectively, by rifampicin, so the two drugs should not be co-
administered [68]. Though the effects of rifampicin on etravirine pharmacokinetics 
have not been tested, rifampin is predicted to reduce etravirine exposures signifi-
cantly, so these drugs should not be used together [69]. Doravirine’s AUC is reduced 
by 88% when administered with rifampin, so co-administration is not 
recommended.

Integrase strand transfer inhibitors (INSTI). Raltegravir, the first-in-class INSTI, 
is metabolized by UDP-glucuronosyltransferase 1A1 (UGT1A1), a phase 2 enzyme 
that is induced by rifampicin. In healthy volunteers, rifampicin reduced raltegravir 
trough concentrations 60% [70], and in patients with TB receiving HRZE, raltegra-
vir trough concentrations were diminished by about 40% [71, 72]. In REFLATE, a 
three-arm phase 2 non-comparative clinical trial that randomized participants to 
receive 2 NRTIs plus standard-dose raltegravir (400 mg twice daily), double-dose 
raltegravir (800 mg twice daily), or efavirenz, virologic suppression was achieved 
in 76%, 78%, and 63% of participants, respectively, by 24 weeks [73]. While these 
results are encouraging and suggest that raltegravir could be used with HRZE at 
standard doses without dose adjustment, particularly in light of early HIV raltegra-
vir monotherapy trials demonstrating that 200 mg twice daily and 400 mg twice 
daily had similar virologic activity [74], the sample size in the REFLATE trial was 
small, and experience with the 400 mg twice daily dose in patients receiving rifam-
picin is limited, so it is still not clear if the 400 mg twice daily dose will be adequate 
on a population level. A follow-up Phase 3 trial with adequate power to detect infe-
riority is planned. Dolutegravir, like raltegravir, is mainly metabolized by UGT1A1, 
but CYP3A is also a minor metabolic pathway (unlike raltegravir). Evidence from a 
drug interaction study conducted among healthy HIV-uninfected volunteers suggests 
that dolutegravir dosing should be increased from 50 mg once daily to 50 mg twice 
daily when given with rifampicin-containing TB treatment [75]; results from a PK 
study of RIF in combination with dolutegravir 50 mg daily versus 100 mg daily are 
also forthcoming. In addition, a trial of dolutegravir-based ART among ART-naïve 
patients with HIV-associated TB in which dolutegravir is dosed at 50 mg twice daily 
during and for two weeks after completing standard first-line TB treatment among 
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patients with HIV-TB co-infection is completed. Results at 24 weeks were promis-
ing, with PK targets reached and rapid virologic response; further, there were no 
IRIS or drug toxicity events necessitating discontinuation, no deaths, and no 
acquired resistance. Final 48-week results are as yet unpublished but similarly 
encouraging (NCT02178592), with 75% (95% CI 65–86) and 82% (95% CI 70–93) 
viral suppression at 48 weeks in the BID DTG and EFV arms, respectively, and the 
lower response rate in the DTG arm driven by non-treatment-related snapshot fail-
ures, such as loss to follow-up and protocol deviations. Elvitegravir is a primarily a 
CYP3A substrate, and its concentrations are expected to be markedly reduced when 
it is given with rifampicin, even in the presence of cobicistat as a boosting agent 
[76], thus, is not recommended in patients receiving a rifamycin-based regimen. 
Similarly, bictegravir AUC was lowered 75% by concomitant RIF administration 
[77]. In a study among HIV-uninfected healthy volunteers, giving bictegravir twice 
daily (as Biktarvy, which contains 50 mg of bictegravir, plus TAF and emtricitabine) 
with rifampicin failed to mitigate the drug interaction, as trough concentrations 
were still reduced by 80% compared to Biktarvy given alone. Bictegravir is not 
recommended with rifampicin-containing TB treatment at this time.

Protease inhibitors (PI). Protease inhibitors, including those currently in clinical 
use—darunavir, atazanavir, and lopinavir—are all administered with pharmacoen-
hancing agents that reduce drug clearance, thus boosting drug concentrations, 
increasing serum half-life, and allowing for less-frequent dosing. Cobicistat is 
licensed for use with darunavir, atazanavir, and elvitegravir. Ritonavir and cobicistat 
are both suicide inhibitors of CYP3A, but they differ in some important ways [78]. 
While both inhibit CYP3A, P-gp and CYP2D6, ritonavir has more off-target activ-
ity than cobicistat; specifically, it induces CYP1A2, CYP2C9, CYP2C19, CYP2B6 
and UGT enzymes and is a mixed inducer/inhibitor of CYP3A.  Ritonavir also 
inhibits CYP2C19, CYP2C8, and CYP2C9. With regards to use of boosted protease 
inhibitors together with first-line TB treatment, all clinical assessments have been 
conducted among individuals taking ritonavir as the PI boosting agent; whether or 
not dose adjustment can safety mitigate drug interactions between rifampicin and 
cobicistat-boosted PIs remains to be tested clinically, though in vitro data from a 
human hepatocyte model suggests that both RTV or COBI (but RTV more potently 
than COBI) can overcome RIF-induced elevations in the clearance of DRV [79].

Rifampicin severely diminishes concentrations of standard-dose ritonavir-
boosted lopinavir (by 80–90%), reductions significant enough to compromise treat-
ment efficacy [80–82]. Doubling the boosted lopinavir dose increases exposures, 
but this strategy increases pill burden and may also increase risk of liver injury and 
poor GI tolerance, and the safety of this strategy has not been established in large 
cohorts [83–86]. A trial to assess the safety and PK of double-dose atazanavir was 
stopped early due to undue toxicity; double-dose boosted darunavir has not yet been 
studied. Giving a double-dose boosted PI with HRZE is only recommended when 
there are no other options (particularly rifabutin), and close monitoring for hepato-
toxicity is required. Super-boosting (quadrupling the ritonavir component of the 
regimen to achieve 1:1 PI/ritonavir doses, e.g. lopinavir/ritonavir 400/400 twice 
daily) has been associated with high risk of symptomatic hepatitis, gastrointestinal 
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upset, and treatment discontinuation in adults with HIV-TB [87], and it is not rec-
ommended in this population.

Other ART agents. Maraviroc is a CYP3A substrate. In a Phase 1 clinical trial 
conducted among healthy HIV-uninfected subjects, rifampicin reduced maraviroc 
concentrations by approximately 70%, but increasing the dose from 300 mg twice 
daily to 600 mg twice daily effectively compensated for this drug interaction [88]; 
this dose adjustment has not been tested in patients being co-treated for HIV and 
TB. Rifampicin does not appear to impact enfuvirtide or ibalizumab pharmacoki-
netics, so these drugs can be used with first-line TB treatment if one is really in a 
‘pinch’ [89].

High-dose rifamycins. Rifampicin is typically given at a dose of 10 mg/kg (or 
600 mg) daily, but higher doses hold promise for shortening the TB treatment dura-
tion, as demonstrated in a recent Phase 2 trial that evaluated doses as high as 35 mg/
kg [90]. The incremental increase in induction of metabolizing enzymes and trans-
porters that may result with higher doses of rifampicin has not been measured in 
clinical studies, though some drug interaction studies are underway (e.g. 
RIFAVIRENZ, NCT01986543). Results from this study revealed a trend towards 
lower EFV levels with the 20 mg/kg RIF dosing, but concentrations that remained 
in the therapeutic window, and comparable TB culture conversion rates and viro-
logic control between arms. Rifapentine is a rifamycin antibiotic that has a longer 
half-life and lower minimum inhibitory concentration (MIC) against M. tuberculo-
sis than rifampicin [91], and it is being tested in shortened (4-month) regimens for 
TB in a Phase 3 trial (NCT02410772). The right dosing of ARVs (namely efavirenz, 
TAF, raltegravir, dolutegravir) with high-dose rifapentine, a potent inducer of the 
same metabolizing enzymes and transporters as rifampicin [92], is still being 
established.

�Rifabutin-Based TB Treatment

Rifabutin is a much less potent inducer of metabolizing enzymes than rifampicin or 
rifapentine [93]. Its efficacy for treatment of TB is thought to be comparable to that 
of rifampicin, though there is insufficient evidence to support this assertion, espe-
cially among HIV-infected patients [94]. It is often substituted for rifampicin in the 
TB treatment regimen to avoid drug-drug interactions in patients who require com-
panion drugs that are simply incompatible with rifampicin. Rifabutin, though, is not 
available in fixed dose combinations with other first-line TB drugs, and access in 
some settings is limited by cost and availability. Rifabutin is more lipid-soluble than 
rifampicin; it has a large volume of distribution with low plasma concentrations and 
high tissue-to-plasma ratios. Uniquely among rifamycins, rifabutin is a CYP3A 
substrate, so it can be both the victim and the perpetrator of drug-drug interactions 
when it is given with CYP3A inducers or inhibitors [95]. Compared with other rifa-
mycins, its therapeutic margin is narrow; it has a distinct side effect of uveitis [96], 
and significant neutropenia occurs more commonly than with rifampicin.
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Protease inhibitors. Rifabutin has no effect on concentrations of ritonavir-
boosted protease inhibitors. It is likely that rifabutin’s impact on the pharmacokinet-
ics of cobicistat-boosted protease inhibitors is similarly negligible, though this has 
not been studied expressly. Boosted protease inhibitors, via their inhibition of 
CYP3A, increase concentrations of rifabutin and its metabolites markedly, and, 
consequently, dose adjustment of rifabutin is required to avoid concentration-
dependent toxicities, specifically uveitis and bone marrow suppression [97]. The 
standard dose of rifabutin is 300 mg once daily; there is some debate regarding the 
appropriate dose when this drug is co-administered with a boosted protease inhibi-
tor. Giving the drug at 150 mg thrice-weekly was previously common practice, but 
this dose produces subtherapeutic concentrations in many patients and has been 
associated with relapse and acquired rifamycin drug resistance [7, 98–102]. Small 
PK and safety studies in Vietnam and South Africa have demonstrated that dose of 
150 mg daily with a boosted PI produces rifabutin exposures similar to 300 mg daily 
given alone [103, 104], so daily rather than thrice-weekly dosing is now recom-
mended in most guidelines. However, plasma concentrations of 25-O-desacetyl 
rifabutin (which has some antimycobacterial effect and contributes to toxicity) are 
increased markedly (5- to 15-fold) when rifabutin is given at a dose of 150 mg once 
daily with a boosted PI versus rifabutin 300 mg given alone [103, 104]; the implica-
tions for risk of adverse events are not yet clear. Experience, thus, remains limited 
with the currently-recommended dose of 150 mg once daily, and close monitoring 
for neutropenia or uveitis is required. A trial of double-dose lopinavir-ritonavir with 
rifampicin-based TB treatment versus standard-dose lopinavir-ritonavir with (daily) 
rifabutin-based TB treatment is ongoing with results expected in 2018 
(NCT01601626).

�Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI)

Efavirenz reduces rifabutin concentrations by inducing CYP3A; the rifabutin dose 
must be increased to 450 mg daily if these drugs are used together; it is better to use 
rifampicin than rifabutin with efavirenz. Nevirapine increases rifabutin and des-
rifabutin concentrations very modestly (around 30%), but the magnitude of the drug 
interaction is highly variable among individuals, and so caution and close monitor-
ing are necessary when co-administering these medications (Viramune package 
insert). The rifabutin dose that should be used with NVP is 300 mg daily [105]. 
Rifabutin reduces rilpivirine drug concentrations; a dose increase to 50 mg daily 
might overcome this interaction, but this adjustment overshoots in some patients 
and may have QT risk, particularly when the patient is taking other QT prolonging 
drugs [106]. The reductions (30–40%) in etravirine AUC and trough concentrations 
caused by rifabutin are not considered to be clinically significant [107]. Rifabutin 
reduces doravirine drug concentrations by 50%, when co-administered, doravirine 
dose should be increased from 100 mg once daily to 100 mg twice daily.
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�Integrase Strand Transfer Inhibitors (INSTIs)

Rifabutin can be given with raltegravir or dolutegravir without dose adjustments 
[75, 108]. When elvitegravir/cobicistat was given with rifabutin in one study, the 
elvitegravir trough was lowered by 67% (GMR 32.9; 90% CI 26.9–40.1), rifabutin 
levels were unaffected, and levels of the rifabutin metabolite 25-O-desacetylrifabutin 
were increased up to sixfold. Thrice-weekly rifabutin dosing with elvitegravir may 
be an option, but it has not been studied in patients with TB-HIV co-infection, and 
there is likely still to be a substantial decrease in elvitegravir concentrations [109]. 
As previously mentioned, rifabutin, as a modest CYP3A4/Pgp inducer, modestly 
reduces bictegravir AUC (38%) but the clinical significance of this remains to be 
explored [77].

�Other ARVs

Results from an industry-sponsored maraviroc-rifabutin drug interaction study in 
healthy HIV-uninfected subjects are pending (RIFAMARA; NCT01894776). NRTIs 
can be given with rifabutin without dose adjustments with one exception—rifabutin 
induces P-gp, and the effects of this induction on the pharmacokinetics and pharma-
codynamics of TAF have not been explored; currently, this combination is contrain-
dicated (Descovy package insert).

�Other Considerations

With HIV-TB co-treatment, pill fatigue, adverse events, and complications of 
immune reconstitution are all risks. Overlapping toxicities between HIV and first-
line TB medications are a concern and include, but are not limited to, hepatotoxic-
ity, gastrointestinal upset, rash, and peripheral neuropathy. Coordination of HIV-TB 
care is a must, to ensure that medications are dosed correctly, side effects are prop-
erly attributed and managed, and medication changes are communicated across care 
teams, particularly when dose adjustments to either the ART or the TB regimen are 
in place to compensate for drug interactions.

�Treatment of Drug-Resistant TB

MDR-TB is treated with multiple drugs, and therapy is given for a prolonged dura-
tion. Standard treatment for MDR-TB is 18–24 months and consists of a fluoroqui-
nolone (moxifloxacin or levofloxacin), an injectable agent (amikacin, kanamycin, 
or capreomycin), two core second-line agents (among ethionamide, cycloserine, 
linezolid, and clofazimine), and add-on drugs, typically pyrazinamide with or with-
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out ethambutol. A new ‘short-course’ MDR regimen was introduced in WHO rec-
ommendations in 2016 and consists of an intensive phase (4–6 months) of high-dose 
isoniazid, ethionamide, injectable, moxifloxacin, ethambutol, pyrazinamide, and 
clofazimine followed by a continuation phase (5 months) of moxifloxacin, etham-
butol, pyrazinamide, and clofazimine [110]. Two new drugs have been registered for 
MDR-TB treatment in recent years: bedaquiline or delamanid can be added to stan-
dard background therapy if needed to complete a fully-active regimen or if side 
effects preclude use of standard second-line TB drugs. Because MDR-TB treatment 
regimens do not include rifampicin, drug interaction liability is much lower with 
MDR-TB regimens than with first-line TB treatment. MDR-TB has high mortality, 
especially among patients with advanced HIV, so rapid initiation of ART may be 
especially important in this group [111, 112]. Overlapping toxicities, though, pres-
ent a challenge as does the sizeable pill burden.

Second-line drugs—Metabolic drug interactions between ARVs and second-line 
drugs that are clinically relevant are few, and most are not well characterized. They 
include the following: efavirenz may reduce moxifloxacin concentrations (mecha-
nism unknown) [113], isoniazid may boost efavirenz concentrations, particularly in 
slow CYP2B6 metabolizers (see above), and ethionamide may cause additive hepa-
totoxicity when combined with efavirenz and nevirapine [114] . Injectables can 
cause renal dysfunction which can, in turn, affect the pharmacokinetics of renally 
cleared drugs such as tenofovir disoproxil fumarate (TDF). Lamivudine and emtric-
itabine are also renally cleared, but the effects of slightly higher levels do not tend 
to include any significant toxicities. Shared and potentially additive toxicities 
include the following: peripheral neuropathy (high-dose isoniazid, linezolid, stavu-
dine, HIV disease); central nervous system (CNS) side effects (efavirenz, dolutegra-
vir, high-dose isoniazid, cycloserine, ethionamide, fluoroquinolones); QT 
prolongation (fluoroquinolones, clofazimine, efavirenz, rilpivirine, bedaquiline, and 
delamanid (see below)), bone marrow suppression (linezolid, zidovudine, 
trimethoprim-sulfamethoxazole); hepatotoxicity (efavirenz, nevirapine, high-dose 
isoniazid, pyrazinamide), nausea and vomiting (ritonavir-boosted PIs, ethionamide, 
PAS), and nephrotoxicity (injectables and TDF or TAF).

New drugs—Bedaquiline is a first-in-class anti-TB antibiotic that works by 
inhibiting mycobacterial ATP synthase. Bedaquiline is a CYP3A substrate, and 
within the range of clinically-achievable exposures, its activity is exposure-
dependent [115]. Bedaquiline is highly protein-bound, and its terminal half-life is 
exceedingly long, approximately 5  months [116]. Overall, bedaquiline is well-
tolerated. Its main toxicity is QT prolongation. Drug interactions of concern for 
HIV-TB co-treatment are mediated via the CYP3A metabolic pathway and include 
the following: boosted protease inhibitors increase bedaquiline exposures (ECG 
monitoring is prudent if these drugs must be given together) [117–119], and efavi-
renz reduces bedaquiline exposures by about 50% (bedaquiline dose adjustment 
may mitigate this interaction but this has not been tested clinically); therefore, the 
co-administration of BDQ and EFV should be avoided [120, 121]. Based on knowl-
edge of metabolic pathways, bedaquiline can be given with dolutegravir or raltegra-
vir. Nevirapine causes only a modest reduction in bedaquiline exposures, so the two 
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can be given together without dose adjustments [117–119]. Delamanid is a nitro-
imidazole antibiotic that was authorized by the European Medicines Agency for 
treatment of MDR-TB in 2014. Delamanid is metabolized by albumin. It has poor 
bioavailability, so its dosing must be separated in time from dosing of other drugs 
(including ARVs), as its absorption may be impaired. When given with ritonavir-
boosted lopinavir, delamanid exposures are very modestly increased; efavirenz has 
no impact on delamanid pharmacokinetics [122]. It is very well-tolerated, its main 
toxicity is modest QT prolongation, thought to be mediated by its DM-6705 metab-
olite, which tends to accumulate with multiple dosing; caution (and monitoring) is 
warranted when delamanid is given together with other drugs that prolong QT 
interval.

�Pregnant Women with TB-HIV Co-Infection

There is a high burden of TB disease and LTBI among pregnant women globally 
[123], and TB is a leading cause of death in women of childbearing age [124], par-
ticularly among the HIV infected. In settings with high burden of HIV, facility-
based studies have shown that 15–34% of the indirect causes of obstetric mortality 
are attributable to TB. LTBI may be more likely to progress to active TB disease 
during pregnancy than at other times; there is also an increased risk of TB in the 
postpartum period, which may reflect a progression to active disease during preg-
nancy, with diagnostic delays [17, 125]. Therefore, pregnancy and the postpartum 
period may be critical windows in which to treat LTBI, though the composition and 
safety of LTBI regimens in pregnant women is not established. IMPAACT 2001 
(DAIDS ID 12026) is a study of the PK and safety of a shortened LTBI regimen, 
once-weekly RPT and INH (3HP), in HIV-1-infected and HIV-1-uninfected preg-
nant and postpartum women with LTBI; results are anticipated in the coming years. 
The TB APPRISE trial was the first randomized, controlled trial to evaluate the 
safety of immediate (antepartum-initiated) versus deferred (postpartum-initiated) 
IPT among pregnant women with HIV living in settings with high TB incidence. 
The majority of women in the trial were taking efavirenz for HIV treatment, and 
TST skin test or IGRA positivity was not required for participation. Individuals who 
were household contacts of active TB cases were excluded from participation and 
referred for IPT. The trial showed that there was no difference in either maternal or 
infant TB rates between the immediate and deferred IPT arms and that adverse 
events were common but not different between the arms. However, among women 
given antepartum-initiated IPT, there appeared to be a higher risk of adverse preg-
nancy outcomes; the reasons for this are still under investigation. The findings of 
this trial should not sway clinicians from timely initiation of IPT post-partum in 
women at high risk of developing TB disease. Furthermore, pregnancy is a unique 
case where the soonest feasible initiation of ART must be prioritized, to prevent 
maternal-to-child transmission of HIV, so for women with TB disease, ART should 
be started soon after TB treatment initiation for the good of both the mother and 

Co-treatment of Tuberculosis and HIV: Pharmacologic Considerations



256

infant [126]. Further strengthening the argument for soonest possible initiation of 
ART in pregnancies complicated by HIV-TB coinfection, there is some evidence 
that pregnant women with HIV have increased prenatal transmission of HIV to their 
infants if they also have active TB [127].

Pregnancy itself confers dramatic physiologic changes that substantially affect 
the manner in which the body absorbs, metabolizes, and clears drugs [128]. With 
expansion of plasma volume and the creation of a placental-fetal compartment, 
there is increased cardiac output and more blood flow to organs of elimination, such 
as liver and kidney. Decreased peak steady state concentrations of many drugs dur-
ing pregnancy have long been observed, mainly due to increased renal elimination 
and increased volume of distribution. Various hepatic metabolizing enzymes are 
variably induced or inhibited at various stages of pregnancy. Gastrointestinal emp-
tying and transit time are slowed, and gastric pH drops, which can affect drug 
absorption. In addition, there is an increase in total body water, and decreases in 
serum albumin. ART and TB drugs are both affected by these changes. Because of 
this, and the highly variable PK of many ARVs, pregnant women should have fre-
quent monitoring of HIV RNA and TB treatment efficacy throughout pregnancy, 
with dose and regimen adjustments as warranted. In addition, therapeutic drug mon-
itoring (TDM) to ensure therapeutic levels may play an important role in monitoring 
pregnant women with TB-HIV coinfection.

There are numerous ART for which appropriate dosing has not been established 
in late pregnancy, including newer agents such as DTG and TAF. Some ART (like 
PIs) were initially thought to require dose adjustments in late pregnancy to achieve 
therapeutic exposures [129], given the changes in physiology that accompany late 
pregnancy; however, when this was done, some studies showed increased toxicity 
with higher doses, likely secondary to decreased protein binding and similar 
unbound drug levels as in non-pregnant individuals [130]. Guidelines for active TB 
treatment in pregnant women differ for low-burden and high-burden countries in 
one important way: in high-burden countries, it is felt that the benefits of pyrazin-
amide (PZA) to pregnant women outweigh its risks, so PZA is recommended 
(though its safety in pregnancy has not been clearly established). There are also 
uncertainties surrounding the rifamycin-related DDI in pregnancy. MDR-TB in 
pregnancy presents unique challenges among women with HIV. Newer shortened, 
9–12 month regimens for MDR-TB have been recommended by the WHO since 
2016 for adults with MDR-TB, with the exception of pregnant women, largely 
because aminoglycosides, a key component of these shortened regimens, are terato-
genic and should be excluded from MDR-TB regimens in pregnancy. Because 
treatment shortening improves adherence and treatment completion, treatment 
shortening (with injectable-sparing regimens) should also be a goal for pregnant 
women. Dosing, PK, and safety in pregnancy for most of the MDR-TB drugs is 
unknown and richly deserves further study. Overall, uncertainties about TB drugs in 
pregnant women abound, including questions about both efficacy and toxicity to 
both the mother and the fetus, plus the magnitude of rifampicin-related drug interac-
tions is mostly unexplored. Thus, pregnant women are a high priority for further 
research in this area.
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�Pediatric Considerations

There is a high prevalence of HIV coinfection among children with tuberculosis, 
especially in countries disproportionately affected by the HIV epidemic. Children 
with coinfection, in line with the adult syndemic, have worsened outcomes from 
both diseases [131]. Children under the age of 2 years are more likely than other age 
groups to have severe and disseminated TB [132], and also have more rapidly pro-
gressive HIV disease with high morbidity and mortality, with a 50% mortality rate 
in their first 2 years of life if left untreated for HIV [133]. Given these sobering 
statistics, it is very important to optimize and prescribe effective therapeutic regi-
mens for both HIV and TB in children. Palatability of available formulations is a 
key variable which can clinch a regimen’s success or failure. Fortunately, there have 
been recent advances in improving taste and palatability of TB drugs and creating 
child-friendly formulations, e.g. scored dispersible tablets in fruit flavors. 
Clofazimine and bedaquiline are notable exceptions; no pediatric formulations of 
these are currently available, though bioavailability testing of a dispersible formula-
tion of bedaquiline has been completed. Pediatric fixed-dose combinations for chil-
dren with DS-TB that are easily dispersible in liquid and dramatically lower pill 
burden have recently been granted WHO pre-qualification in 2017--Rifampicin 
75 mg + Isoniazid 50 mg + Pyrazinamide 150 mg for the intensive treatment phase, 
and Rifampicin 75 mg + Isoniazid 50 mg for the continuation phase [134].

An additional challenge for pediatric HIV-TB co-management is that few Drug-
Drug Interaction (DDI) studies are carried out in children, despite the dramatic 
changes in metabolism and clearance of drugs over the course of a child’s lifetime. 
Many of the antituberculosis drugs provoke different toxicities in children than in 
adults (rifabutin, for example, causes marrow suppression more commonly in chil-
dren than in adults at the same exposures) [135]. Additionally, ART options in chil-
dren are more limited. Many antiretrovirals have not been studied in children and 
thus have no dosing guidance for pediatric populations, particularly under age 3, 
when renal development and thus elimination as well as the ontogeny of metaboliz-
ing enzymes are in dynamic flux. For this reason, enriching trials recruitment in this 
age group, particularly in children age 0–6 months old, is needed in order to under-
stand fully DDIs among infants and young children.

The preferred ART regimen currently recommended by the WHO for the treat-
ment of DS-TB in children with HIV who do not have a prior history of virologic 
failure is ABC/AZT + 3TC + LPV/r + RTV (super-boosted LPV) for those under 
3 years of age, and ABC/AZT + 3TC + EFV for those over the age of 3 years. Triple 
nucleoside regimens (such as AZT + 3TC + ABC) should not be used in children 
with HIV-associated TB who have previously failed ART, as they were shown in the 
ACTG 5095 trial to be virologically inferior to regimens containing EFV and 2 or 
more nucleosides.

PIs: Because PI-based regimens are often used in perinatally infected children 
with HIV under age 3 years, and levels of PIs are decreased by the co-administration 
of rifampin [136], innovative dosing strategies can be employed to optimize levels 
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of both lopinavir and rifampin. “Super-boosting”, or the administration of addi-
tional ritonavir to coformulated lopinavir-ritonavir in a ratio of ritonavir:lopinavir of 
1:1 achieves therapeutic lopinavir levels when co-administered with rifampin, but is 
difficult to implement as ritonavir is often unavailable and the syrup formulation has 
a short expiry time. Double-dosed co-formulated lopinavir-ritonavir does not 
achieve therapeutic lopinavir concentrations in young children on rifampin-based 
TB therapy [137]. A population PK model suggested that 8 hourly lopinavir-
ritonavir might overcome the induction by rifampicin [138]. The higher rifampin 
doses recently recommended by the WHO in children have not yet been studied 
with adjusted doses of lopinavir-ritonavir.

NNRTIs: Efavirenz cannot be used in children under the age of 3 years, because 
appropriate doses have not yet been established for that age group. Levels of EFV 
among children above age 3 receiving weight-based standard EFV dosing with and 
without rifampicin-based TB therapy have been observed to be subtherapeutic 
[139]; it is unclear whether this is clinically detrimental, however, as >88% of chil-
dren on NNRTI-based ART, both with and without TB cotreatment, have been 
observed to attain viral suppression [140]. Levels of nevirapine are diminished by 
the co-administration of rifampicin in children [141], and low nevirapine trough has 
been correlated with treatment failure in adults. The clinical significance of this in 
children is unknown, though one trial showed fairly similar clinical and immuno-
logical outcomes for children receiving NVP/3TC/D4T with and without rifampicin-
based TB treatment [142]. Studies of higher dose nevirapine with rifampicin have 
not been done, but some experts advocate increasing the dose by 50%; even in high-
income, low burden settings, this would often be unavailable [143]. Because of the 
lack of evidence, nevirapine-based regimens are not at present recommended for 
children with TB who require rifampicin.

INSTIs: There is a paucity of data on the use of integrase-strand transfer inhibitors 
with rifampicin in children. IMPAACT trial 1101 is currently investigating the safety 
and pharmacokinetics of raltegravir in conjunction with rifampicin-based TB regi-
mens. No PK or safety studies of dolutegravir among children with coexisting TB have 
yet been performed, though some data may emerge from the ODYSSEY trial, run by 
the Pediatric European Network for Treatment of AIDS (PENTA), in which dolutegra-
vir-based ART is being assessed in children with HIV infection (NCT02259127). A 
subset of children with HIV-TB are expected to be enrolled in that trial.

�Summary

It is inadvisable to treat only TB, or only HIV, in an individual who suffers from 
both illnesses, as each worsens the impact of the other. The cotreatment of HIV and 
TB is imperative, and presents many challenges, particularly in an era with no great 
alternatives to the rifamycins for drug sensitive TB, and with many lingering dosing 
and toxicity questions surrounding the second line agents for drug resistant TB, 
particularly in special populations such as children and pregnant women. The role 
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that TDM can play in individualized monitoring of the exposures of TB drugs and 
ART, in cases of doubt, should also be considered. Many questions and research 
gaps remain, and progress demands that they be addressed. However, careful atten-
tion to the existing knowledge on the clinical pharmacology of both ART and anti-
TB drugs will enable the safe and effective treatment of both of these intertwined 
and deadly diseases, and the shattering of a formidable microbial alliance that has 
long burdened humankind.
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�Introduction

In 2017 it was estimated that there were 1.8 million [1.3 million–2.4 million] chil-
dren living with HIV globally [1]. The greatest burden, 88%, of children live in 
sub-Saharan Africa [2]. Since 2000, scaling up of prevention of mother to child 
transmission has greatly reduced the number of new pediatric diagnoses. UNICEF 
estimates that there were two million new infections among children (0–14 years 
old) averted since 2000 [2]. In addition, between 2000 and 2015 there was a decline 
of 60% in the number of AIDS-related deaths among children under 15 years of age 
[3]. This is largely due to increasing antiretroviral therapy (ART) coverage and ear-
lier ART initiation. However, ART coverage in children lags substantially behind 
that of adults. Globally, in 2017 an estimated 52% of children with HIV were on 
ART compared to 59% in adults [1].

HIV-induced immunodeficiency is compounded in young children with imma-
ture immune systems. Infants born with HIV have a 2 year survival of 47.5% with-
out ART [4]. In addition, the total CD4 count is not an accurate correlate of disease 
severity or immune compromise, although there is a trend that children with lower 
CD4 count percentages have a higher likelihood of opportunistic infections [5]. 
HIV causes a functional and numeric decline in CD4 cells, as well as secondary 
humeral defects [6, 7]. With ART, the CD4 cells often rise to a normal number, but 
functional defects may remain as seen with the continued increased susceptibility to 
certain infections such as TB and diminished vaccine responses [8–10]. This is an 
important reason to initiate ART as soon as possible after diagnosis and not to wait 
for immune decline before offering ART to children. Without ART there may also 
be a depletion of CD8 cells, with poor thymic production, lysis of CD4 cells and 
apoptosis of bystander T-cells all contributing to Acquired Immunodeficiency 
Syndrome (AIDS) progression [11, 12].

Increased antenatal HIV screening and prevention of mother to child transmis-
sion not only reduces the number of children infected with HIV, but also facilitates 
the diagnosis of HIV in early infancy providing an opportunity for early initiation of 
ART [2]. However, in many places, programs are not fully functional and clinicians 
needs to be alert to the myriad different manifestations with which a HIV-infected 
child may present. Table 1 summarizes World Health Organization (WHO) clinical 
staging criteria and Table 2 provides an overview of common syndromes with which 
HIV-infected children may present.

�TB/HIV co-Infection in Children

In 2017 there were an estimated ten million new cases of TB worldwide, including 
one million children under 15 years of age [13]. With the exception of Asia, the 
same regions hardest hit by the HIV epidemic also have the highest rates of TB in 
adults and children, reflecting uncontrolled transmission of Mycobacterium 
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Table 1  World Health Organization clinical HIV staging for children <15 years

Stage 1 Asymptomatic; generalised lymphadenopathy
Stage 2 Unexplained persistent hepatosplenomegaly

Papular pruritic eruptions or extensive wart virus infection or 
molluscum contagiosum
Fungal nail infection
Angular cheilitis; lineal gingival erythema; recurrent oral 
ulcerations
Unexplained persistent parotid enlargement
Herpes zoster
Recurrent or chronic URTI; otitis media, otorrhea, sinusitis or 
tonsillitis

Stage 3 Unexplained moderate malnutritiona or wasting
Unexplained persistent diarrhea (14 days or more)
Unexplained persistent fever (intermittent or constant, for longer 
than 1 month)
Persistent oral candidiasis (after first 6–8 weeks of life)
Oral hairy leukoplakia; acute necrotising ulcerative gingivitis or 
periodontitis
Lymph node or pulmonary tuberculosis
Severe recurrent bacterial pneumonia or chronic lung disease
Symptomatic lymphoid interstitial pneumonitis
Unexplained anaemia, neutropenia and/or chronic 
thrombocytopenia

Stage 4 Unexplained severe wastingb, stunting or severe malnutrition
Pneumocystis pneumonia
Recurrent severe bacterial infections
Chronic herpes simplex infection
Esophageal or airway/lung candidiasis
Extrapulmonary tuberculosis
Kaposi’s sarcoma
Cytomegalovirus infection with onset at age older than 1 month
Central nervous system toxoplasmosis (after 1 month of life)
Extrapulmonary cryptococcosis (including meningitis)
HIV encephalopathy
Disseminated endemic mycosis or non-tuberculous mycobacterial 
infection
Chronic cryptosporidiosis or isosporiasis (with diarrhea)
Cerebral or B-cell non-Hodgkin’s lymphoma
Progressive multifocal leukoencephalopathy
Symptomatic HIV-associated nephropathy or HIV-associated 
cardiomyopathy
HIV-associated rectovaginal fistula (African children)
Reactivation of American trypanosomiasis (south American 
children)

(continued)
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tuberculosis (MTB) within these communities. See Figs. 1 and 2. In total, 9% of the 
ten million new cases were estimated to be persons with HIV [13], but in parts of 
Southern Africa the co-infection rate often exceeds 50% [13]. In high TB/HIV prev-
alence countries, the peak TB incidence in TB/HIV co-infected adults occurs 
between 25–54 years [14]. These are men and women of reproductive age who are 
more likely to have young children within their household. In a prospective isonia-
zid prophylaxis study done in Cape Town, South Africa, 10% of HIV-exposed 
infants already had documented TB exposure at the time of screening for enrolment 
(before 4 months of age) [15]. Household contact is one of the major risk factors for 
TB in children [16]. There is also evidence that maternal TB during pregnancy may 
not only worsen HIV disease control in the mother, but also increase the risk of HIV 
transmission to the infant [17].

TB and HIV co-infection represents a vicious cycle where HIV increases suscep-
tibility to TB and TB worsens HIV disease progression. In HIV uninfected persons 
the incidence of TB disease in those infected with TB is roughly estimated as 10% 
over a lifetime, although this varies greatly in different age and vulnerability groups, 
but TB disease risk is often reported as 10% per year in someone with HIV who is 
not on ART [18]. HIV targets the CD4 cells, which are key for the body’s defence 
against TB. The risk of TB disease increases as the CD4 count falls, but low CD4 
counts alone do not account for the increased TB risk in HIV-infected individuals, 
as studies have shown that even after immune reconstitution with ART an HIV-
infected individual remains at increased risk of TB [19].

The mechanisms of how HIV and TB interact are complex. HIV decreases the 
body’s ability to recognize foreign antigens by inhibiting interleukin 2 production 
and function, down regulating CD4+ receptors on T-cells and blocking HLA II 
expression. These all lead to the failure and expansion of CD4+ specific cells to fight 
TB infection. In addition, mononuclear cells in HIV lose the ability to secrete the T1 
helper cell stimulating cytokines, shifting responses from a pro T1 helper pathway 
with IFN –gamma and interleukin (IL) 12 to a pro T2 helper pathway with increased 
IL4 and IL10. HIV also decreases CD40 ligand leading to decreased macrophage 
activation with reduced IL12 production [20]. These dysfunctional responses lead to 
poorly organized granuloma formation with poor MTB containment.

TB also exacerbates HIV disease progression by providing microenvironments 
that enhance HIV replication, such as activating macrophages and other mononuclear 
cells that HIV uses for replication. This leads to increased HIV replication, with 

Table 1  (continued)
Source: Adapted from: WHO case definitions of HIV for surveillance and revised clinical staging 
and immunological classification of HIV-related disease in adults and children. Geneva: World 
Health Organization; 2007
aFor children younger than 5 years, moderate malnutrition is defined as weight-for-height <−2 
z-score or mid-upper arm circumference ≥115 mm to <125 mm
bFor children younger than 5 years of age, severe wasting is defined as weight-for-height <−3 
z-score; stunting is defined as length-for-age/height-for-age <−2 z-score; and severe acute malnu-
trition is either weight for height <−3 z-score or mid-upper arm circumference <115 mm or the 
presence of edema

T. Arscott-Mills et al.



273

Table 2  Overview of microorganisms and clinical disease syndromes observed in HIV-infected 
childrena

Organism Clinical syndrome

Bacteria
Haemophilus influenza U/LRTI, meningitis, bacteremia
Streptococcus 
pneumoniae

U/LRTI, meningitis, bacteremia

Klebsiella pneumonia U/LRTI, UTI, meningitis, bacteremia
Salmonella spp. LRTI, gastroenteritis, meningitis, bacteremia
Escherichia coli LRTI, UTI, meningitis, bacteremia
Staphylococcus aureus LRTI, meningitis, bacteremia, bone skin and joint
Virus
Common respiratory 
viruses

U/LRTI

Cytomegalovirus (CMV) Congenital infection, pneumonia, retinitis, esophagitis, colitis
Herpes simplex Skin and soft tissue, ulcers, keratitis, encephalitis
EBV Cancers
Varicella zoster Chickenpox and zoster, keratitis, retinitis encephalitis
Influenza U/LRTI
Molluscum contagiosum Skin infections
Human papilloma virus Skin, mouth and upper airway infections, genital warts, cancer risk
JC and BK virus Progressive multifocal leukoencephalopathy (rarely reported in 

children)
Measles Increased risk of severe disease
Mycobacteria
Mycobacterium 
tuberculosis

All forms of tuberculosis

M. bovis BCG Young infants not on ART are at risk of BCG dissemination and 
children starting ART of BCG IRIS

M.avium-intracellulare 
(MAC)

Chronic lung infection

Fungi
Cryptococcus spp. CNS, lung, skin infection
Candida spp. Mucosal, nail and skin infection
Pneumocystis jiroveci 
(PCP)

Chronic lung infection

Protozoa
Crypto and 
microsporidium

Gastrointestinal and bile duct infection

Toxoplasma gondii Congenital infection and CNS disease

HIV human immunodeficiency virus, URTI upper respiratory tract infection, LRTI lower respira-
tory tract infection, UTI urinary tract infection, PLE progressive multifocal leukoencephalopathy, 
ART antiretroviral therapy, BCG Bacille Calmette-Guerin, IRIS Immune Reconstitution 
Inflammatory Syndrome, CNS central nervous system
Source: Viral Infections in Children, Volume I 2017, Springer Nature ISBN 978–3–319-54,032-0 
Chief Editor: Green RJ Chap. 4: Rabie H, Marais BJ. Tuberculosis and other opportunistic infec-
tions in HIV-infected children. pp1–26
aEspecially in children with poor disease control and significant immune compromise
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Fig. 1  Global estimated TB incidence rates in 2017 (Source: Global TB Report 2018)

Fig. 2  Global estimated HIV prevalence in new and relapse TB cases, 2017 (Source: Global TB 
Report 2018)
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higher viral loads and increased CD4 T-cell loss [21]. In addition, TB creates a state 
of immune activation that encourages increased HIV-1 genotypic heterogeneity and 
reduces the production of new CD4 T-cells [21].

The natural history of TB in children was well documented in the pre-
chemotherapeutic era. Age related immunocompetence was historically the major 
determinant for disease following infection in immunocompetent hosts [22]. See 
Fig. 3 for the age-related risk and Table 3 for clinical manifestations of TB in chil-
dren with age stratification (note that dark shaded bars in Fig. 3 represent extrapul-
monary TB). As seen in Fig. 3 infants and young children without HIV are also at 
risk of disseminated TB and severe TB that result from failure of the body to contain 
the Ghon complex after infection [23]. Cavitation in young infants and immuno-
compromised older children is thought to be due to poor containment of the primary 
infection and without treatment predicts a poor outcome while in adolescents cavi-
tation is thought to be an excessive response as in adults [23]. The other factor that 
is key in determining the TB manifestations seems to be time from exposure with 
the highest risk for active disease being the first year after infection [23]. An HIV-
infected child will have the age related differences in immunocompetence as well as 
those associated with the acquired immunodeficiency related to HIV. Studies have 
clearly demonstrated that the manifestations of TB in the HIV-infected child not on 
ART are similar to those of young infants [24–26]. Knowledge of the increased risk 
of young children and the immunocompromised child along with the association 
with recent infection led to several proven strategies for prevention of TB in child-
hood that will be discussed later.

�Diagnosing Pediatric TB

Establishing an accurate TB diagnosis in children can be a clinical challenge, which 
is greatly exacerbated by HIV co-infection. This is due to the paucibacillary nature 
of childhood TB disease, difficulty in obtaining adequate respiratory samples from 

Fig. 3  Age related risk of 
TB disease after infection∗. 
Adapted from Marais BJ 
et al- reference 22. 
∗Children with significant 
immunocompromise 
experience similar high 
risk as those observed in 
very young immune-
immature children <2 years 
of age
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young children and overlapping clinical symptoms with other common diseases of 
childhood and HIV. Thus, WHO recommends a combination of clinical, radiological 
and microbiologic assessments to diagnose TB in children [27]. Clinical symptoms 
of pulmonary (intra-thoracic) TB include a persistent non-remitting cough, fever, 
poor energy levels and weight loss or failure to thrive. Radiologic findings include 
a chest x-ray with hilar or paratracheal nodes, persistent parenchymal opacification 
or a miliary pattern. Studies have shown that clinical symptoms in HIV-infected 
children are less sensitive and specific for TB diagnostic purposes, since HIV-
infected children often have chronic symptoms that are not related to TB [28]. TB 
symptoms in the young and/or immunocompromised child can also be more acute 
and thus “chronic” symptoms have reduced sensitivity in the HIV co-infected popu-
lation [29, 30]. TB has been identified as the second most frequent pathogen iso-
lated in a South African cohort of children admitted for community acquired 
pneumonia who failed first-line treatment [31]. The physical examination for both 
the HIV-infected and uninfected child with TB is rarely informative [32]. TB must 
be considered in any child with unexplained symptoms, particularly in those with 
accompanying weight loss or failure to thrive, or clinical deterioration relative to 
their previous baseline not responding to first-line treatment.

In children with suspected pulmonary TB one of the challenges is obtaining spu-
tum for bacteriologic confirmation via acid-fast bacilli staining (AFB), culture or 
nucleic acid amplification test (NAAT) based methods. TB is frequently not detected 
in young children because the burden of TB bacilli in a diseased child’s lung is often 
low and may be below the threshold of detection via AFB staining and culture. For 
TB to be detected via AFB one needs 10,000 bacilli/mL of sputum and for culture 
100 bacilli/mL [33]. A second reason for difficulty in obtaining bacteriologic con-
firmation is that young children are unable to cough out sputum. When they cough, 
children swallow the sputum into their stomachs. It is for these reasons that the 
techniques of obtaining samples via gastric aspiration (GA) or sputum induction 
(SI) were developed. For GA, the theory is that a child coughs the sputum during the 
night and swallows it. Obtaining an early morning gastric sample potentially detects 
the mycobacterium in the gastric contents. There have been many studies to assess 
the yield of this method in both inpatient and outpatient settings using a range of 
methodologies. Bacteriologic confirmation varied significantly depending on the 
presentation of intrathoracic disease, from as low as 35% in lymph node disease to 
as high as 100% in adult type disease [34]. A challenge is the gold standard to which 
one compares the yield of the GA or SI. Thus, the yield for AFB and culture has 
varied significantly depending on the method of TB diagnosis [35–42]. Maciel et al. 
in their systematic review of GA protocols for children less than 15 years found the 
sensitivity to range from 0 to 92% for culture [43]. In a clinical review of GAs from 
children less than 15 years, Stockdale reported the sensitivity of smear as between 
2–47% and culture yield between 37–74%. The yield was similar between inpa-
tients and outpatients [44]. Thus, although a positive TB culture is ideal for diagno-
sis in young children with pulmonary TB disease, the consensus is that it is, at best, 
positive in 30–40% of cases [45]. SI methods have had similar variability in yield 
[36, 37, 46, 47].
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MTB GeneXpert has been introduced as a NAAT-based method to diagnose 
TB. The performance in children on spontaneous or induced sputum and gastric 
aspirates for intrathoracic disease has overall been better than smear microscopy but 
not as good as culture. A meta-analysis described a pooled sensitivity of 62% com-
pared to culture [48]. Under more routine conditions MTB GeneXpert compared to 
clinical diagnosis instead of culture, has been found to provide a similar yield 
regardless of HIV status [49]. Although NAAT has an inferior yield compared to 
culture it does confer the significant advantage of a much faster test turnaround time 
of 2 h and there may be increased sensitivity with MTB GeneXpert Ultra.

Based on the same principle as gastric aspiration whereby children swallow their 
sputa and coupled with the likelihood that MTB DNA survived the gastrointestinal 
tract environment, MTB GeneXpert has more recently been applied to stool speci-
mens in children with promising results [50–53]. Chipinduro et  al. found stool 
GeneXpert to be positive in 13/19 (68%) microbiologically confirmed cases and 
4/199 (2%) microbiologically negative cases. This study was in children over 
5 years old and the yield was similar in HIV positive and negative patients [54].

Lipoarabinomannan (LAM) is a main component of MTB cell wall that is 
excreted in the urine. Urine LAM concentration has been evaluated as a diagnostic 
test for TB. It has been shown to be useful primarily in severely immunocompro-
mised adult patients with disseminated TB [55]. The utility in children has been 
variable. Nicol et al. showed poor sensitivity of 48.3% and specificity of 60.8% in a 
study of 535 children [56]. However, in a Tanzanian study of 132 children, LAM 
had a sensitivity of 50–70% in HIV-infected children compared to 0–13% in HIV-
uninfected children. The specificity (97.3%) was the same in both infected and 
uninfected children suggesting that, as in adults, there may be a subset of children 
where it is useful [57]. This needs further exploration.

The quality of any specimen sent for TB testing, regardless of type, affects the 
test yield. For example, standardizing the procedure for gastric aspiration increases 
the yield from 8% to 50% [58]. Similarly, a meta-analysis among adults demon-
strated that sputum collected after clear instructions and after pooling increased the 
diagnostic yield of both smear and culture [59]. Peter et al. worked with outpatient 
adults who were either smear negative or unable to produce sputum and evaluated 
the impact of enhanced instruction to produce sputum as compared to SI.  They 
found SI increased sputum volume and had improved culture yield but same-day 
diagnosis via smear or GeneXpert was similar between intervention groups [60]. 
There are no other studies exploring this concept in children but extrapolating from 
adult studies, improved technique and quality of TB specimens in children is likely 
to improve the yield of TB.

Thus without good confirmatory tests for TB in children other approaches should 
be used to support the diagnosis of TB in a child. The most commonly used tech-
niques - the Tuberculin Skin Test (TST), Interferon Gamma Release Assays (IGRA) 
and chest x-ray - each have their limitations. TST and IGRA are unable to distin-
guish between infection and disease. In two meta-analyses, the sensitivity between 
TST and IGRA is similar although the IGRA may be more specific [61, 62]. Both 
are less sensitive in HIV-positive and malnourished children and both may be 
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affected by age [63]. A study from Botswana found IGRA’s to be positive in only 
1% of HIV positive children in this TB endemic area [64].

Chest x-ray has historically been used to assess for evidence of intrathoracic 
TB. However, in children, and particularly in those under the age of 10 years, the 
classic “adult” finding of a lung cavity is rare. The chest x-ray findings in children 
are not specific for tuberculosis. Marais et al. demonstrated that the most common 
chest x-ray finding is children is hilar and subcarinal adenopathy [65]. However, it 
has been suggested that more than 50% of children presenting with symptomatic 
disease have findings on chest x-ray beyond simple hilar or subcarinal adenopathy 
[66]. Common chest x-ray findings in children with TB include focal nodules, air-
space disease, collapse and a miliary pattern [67]. In the HIV-infected child, these 
findings may be caused by other HIV-related illnesses from severe bacterial pneu-
monia to lymphoid interstitial pneumonitis (LIP). LIP can mimic the miliary pattern 
that is classic for disseminated tuberculosis [68]. Fortunately, there may be other 
signs and symptoms that help distinguish between LIP and TB. LIP tends to be in 
the older child and accompanied by clubbing and parotid enlargement while miliary 
TB is seen in a younger child without the other features. High-resolution chest com-
puted tomography has also been used to evaluate for evidence of intrathoracic tuber-
culosis. It is more sensitive than chest x-ray but is not specific and, similar to chest 
x-ray, may be interpreted in different ways when assessed by different clinicians or 
radiologists [69, 70].

Thus, without a high performing, sensitive and specific gold standard confirma-
tory diagnostic test for childhood TB, scoring systems have been developed. These 
aim to use a combination of clinical history, symptoms and diagnostic data to create 
a score which is used to determine the likelihood of a diagnosis of intrathoracic 
TB. No scoring systems have ideal sensitivity and specificity for a diagnostic test. 
Sant’Anna et  al. from Brazil reported a scoring system that had a sensitivity of 
58–89% and a specificity of 86–98% depending on the cut point used [71]. In this 
population with low rates of HIV co-infection, a scoring system had higher sensitiv-
ity than culture but a significant proportion of children with TB would still be 
missed. In a study from a single hospital serving a high HIV prevalence population 
in Zambia in the era before ART, Van Reneen found that a scoring system had a 
sensitivity of 88% but a specificity of only 25% [72]. This would lead to significant 
over treatment. Marais et al. showed that a refined set of symptoms of a cough for 
greater than 2 weeks, failure to thrive for 3 months and fatigue were useful in the 
diagnosis of TB in HIV uninfected children but not as useful in the HIV-infected 
child [28]. Given the overall poor sensitivity and specificity of these scoring sys-
tems, they are generally not recommended, particularly in the HIV-infected child. 
Thus, the diagnosis of TB requires an astute clinician to use a classic diagnostic 
approach and sound clinical reasoning applying all tools available including a high 
index of suspicion, a quality history and physical examination, and close follow-up 
when uncertain.

Confirmatory testing for extra-pulmonary TB is also challenging and the recom-
mended approach varies depending on the site and type of specimen tested. A meta-
analysis of MTB GeneXpert applied to extra-pulmonary samples found consistently 
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high specificities but heterogeneous sensitivities, from a low of 34% for pleural 
fluid samples to a high of 96% for lymph node tissue [73]. This is consistent with 
other studies. For example, there has been variable results of NAAT-based tests on 
fine needle aspiration or biopsy of peripheral nodes [74, 75]. For CSF, Rufai et al. 
reported a sensitivity of 55% and specificity of 94.8% in CSF samples from patients 
with high clinical-radiological suspicion for TBM [76]. Table  4 summarizes the 
benefits and drawbacks of different samples being sent for culture and NAAT test-
ing [77]. For most sites, the yield in HIV positive patients is similar to that in HIV 
negative patients.

For extrapulmonary TB, other investigations should also be done to evaluate for 
evidence of TB. These include fine needle aspiration or biopsy of a lymph node to 
look for classic TB pathological changes such as granulomas, giant cells and AFBs. 
Computed tomography is frequently used to assess for features of central nervous 
system TB including communicating hydrocephalus, basilar enhancement, tubercu-
lomas, abscesses, and evidence of infarcts or vasculitis. Magnetic resonance imag-
ing (MRI) is the imaging test of choice for evidence of TB meningitis as it is superior 
for detecting basilar enhancement. However, the limited availability of MRI in areas 
of the world most affected by TB limits its wider use [67].

Table 4  Tuberculosis specimen collection methods—perceived problems and benefits∗

Specimen collection 
method Problems/benefits Potential clinical application

Sputum Not feasible in very young 
children; assistance and 
supervision may improve the 
quality of the specimen

Routine sample to be collected in 
children >7 yrs. of age (all children 
who can produce a good quality 
specimen) and evaluate for gene 
Xpert® and culture

Induced sputum Comparable yield to gastric 
aspirate; no age restriction; 
specialized technique, which 
requires nebulization and suction 
facilities; potential transmission 
risk

To be considered in the hospital 
setting on an in- or out-patient basis. 
Evaluate using gene Xpert® and 
culture

Gastric aspirate Unpleasant procedure, but not 
difficult to perform; requires 
fasting
Sample collection advised on 3 
consecutive days

Routine sample to be collected in 
hospitalized who cannot produce a 
good quality sputum specimen. 
Evaluate using gene Xpert® and 
culture

Nasopharyngeal 
aspiration

Less invasive than gastric aspirate; 
no fasting required;
Comparable yield to gastric 
aspirate

To be considered in primary health 
care clinics or on an outpatient basis. 
Evaluate using gene Xpert® and 
culture

String test Less invasive than gastric aspirate; 
tolerated well in children >4 years; 
bacteriologic yield and feasibility 
requires further investigation

Potential to become the routine 
sample collected in children who 
can swallow the capsule, but cannot 
produce a good quality sputum 
specimen

(continued)
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�TB Treatment in the HIV-infected Child

Once TB is diagnosed, treatment is initiated immediately. Historically the approach 
for treating childhood TB has been extrapolated from knowledge gained in the adult 
population, although there are now a number of ongoing pediatric pharmacokinetics 
and pharmacodynamics studies. The same first line drugs of isoniazid, rifampicin, 
pyrazinamide and ethambutol are used to treat childhood TB. In order to achieve 
clinical and microbiologic cure, current TB treatment regimens require a multidrug 
approach for at least 6 months. Treatment may need to be longer in certain popula-
tions such as severely immunocompromised HIV-infected persons who are at 
increased risk of relapse [78]. This prolonged multidrug approach is challenging for 
families [79]. Healthcare providers and systems need to be aware of the burden a 
prolonged multidrug regimen places on a family and provide education and support 
for the child and family affected by TB. Child friendly formulations of the drugs are 
now available and practitioners caring for children with TB need to be advocates for 
the use of these formulations to ease the burden of TB treatment.

The combination of first line drugs together attack the MTB in the various stages 
of its lifecycle. Isoniazid is bactericidal against rapidly multiplying mycobacteria 

Table 4  (continued)

Specimen collection 
method Problems/benefits Potential clinical application

Broncho-alveolar 
lavage

Extremely invasive Only for use in patients who are 
intubated or who require diagnostic 
bronchoscopy. Evaluate using gene 
Xpert® and culture

Stool Culture not practical, DNA 
extraction difficult
Not invasive; M. tuberculosis 
excretion well documented

Reasonable yield using gene Xpert®

Urine Not invasive; excretion of 
M. tuberculosis components

Lipoarabinomanan (LAM) assay has 
poor sensitivity; unreliable in 
children although as in adults it may 
be useful in a subset of severely ill 
children

Blood/bone marrow Good sample sources to consider 
in the case of probable 
disseminated TB

To be considered for the 
confirmation of probable 
disseminated TB in hospitalized 
patients. Evaluate using culture

Cerebrospinal fluid 
(CSF)

Fairly invasive; bacteriologic yield 
low, better with more CSF, 
preferably >10 mL

To be considered if signs of 
tuberculous meningitis. Evaluate 
using culture and gene Xpert®

Fine needle 
aspiration biopsy 
(FNAB)

Minimally invasive using a fine 
23G needle; excellent bacteriologic 
yield, minimal side-effects

Procedure of choice in children with 
superficial lymphadenopathy. 
Evaluate based on pathology, gene 
Xpert® and culture

Adapted from BJ Marais et al. ref. 56
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but is bacteriostatic against those with slow growth [80]. It is therefore effective at 
reducing the mycobacterial load early in treatment thereby decreasing infectivity, 
improving symptoms and preventing resistance. However once the turnover of 
mycobacteria is reduced, isoniazid is no longer sterilizing [80]. Rifampicin, by con-
trast, attacks mycobacteria that are multiplying more slowly and thus is an effective 
sterilizing drug [81]. If, for whatever reason, rifampicin is not one of the drugs used 
to treat TB, then to ensure sterilization the treatment regimen duration must be lon-
ger than 6 months. Pyrazinamide effectively attacks mycobacteria in an acidic envi-
ronment, which is usually present at the time of diagnosis. It has a unique role to 
augment the action of rifampicin and the historic introduction of pyrazinamide 
shortened treatment regimens from 9 to 6 months [82]. Ethambutol’s role is to pro-
tect against drug resistance developing to rifampicin [80]. It has a risk of causing 
optic neuritis at higher doses and when used for longer periods [80]. Thus, it has 
historically not been as frequently included in pediatric regimens where resistance 
was a lower concern and detecting ocular toxicity was challenging, particularly in 
younger children. However, WHO now recommends its use across the age groups in 
countries where there is greater than 1% INH resistance and a high HIV burden 
[83]. Studies have shown that at the recommended dose in children of 20–25 mg/kg/
day for 2 months, that optic neuritis is a rare and reversible complication [84].

Table 5 presents the recommended dosing of the first line TB agents [85]. 
Research in recent years has shown that children generally metabolize TB medica-
tion faster than adults and thus higher doses of particularly INH at 10 mg/kg/day are 
now recommended [86]. In locations where the new pediatric combination therapy 
that has INH and rifampicin in a 1:1.5 ratio is unavailable, extra INH may need to 
be added to the regimen to ensure adequate INH dosing. Dose optimization is par-
ticularly relevant for children with HIV who are immunocompromised and who 
may have higher TB relapse rates. In addition, recent data suggests that TB out-
comes in the adolescent population, particularly those that are dually infected, are 
poor [87, 88]. The reasons for this are likely complex and further data are needed to 
inform approaches to improve outcomes in this population.

There is growing TB drug resistance globally. In any child with possible drug 
resistant TB extra effort should be sought to confirm the diagnosis and send samples 
for susceptibility testing. High risk groups include a child who does not respond 
well to treatment, has a contact with known drug resistant TB, or has contact with a 
person who died on TB treatment or had poor response to TB treatment. In addition, 
if a child has a TB contact that has drug resistant TB, the child’s treatment regimen 
should be tailored, based on the adult contact’s resistance pattern. Resistant TB is as 
transmissible as drug sensitive TB and studies have shown that children who are in 
contact with a drug resistant TB case and contract TB are most likely to have the 
same drug resistant strain as the adult contact [89, 90]. These cases should be dis-
cussed with an expert in drug resistant TB. Fortunately, children seem to respond 
well to second line treatment with fewer side effects than adults [91].

In the HIV-infected child antiretroviral therapy is a key component of treatment. 
Prior to the “treat all” strategy for HIV control, TB was a clinical indication for ART 
with multiple studies showing that ART reduces TB morbidity and mortality [5, 19, 92]. 
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Table 5  Use of first and second-line TB treatment with antiretrovirals in children with TB/HIV 
co-infection

TB drugs Recommended dose Drug-drug interactions with ART

First-line treatment
Isoniazid 7–15 mg/kg once daily; max 

300 mg
None

Rifampicin 10–20 mg/kg once daily; 
max 600 mg

Reduces plasma levels of 
NNRTIs, PIs and integrase 
inhibitors
Examples of dose adjustments:
Efavirenz- no dose adjustment
Lopinavir/ritonavir- increase 
ritonavir to 1:1 ratio with 
lopinavir
Dolutegravir- dose twice daily 
instead of once daily

Pyrazinamide 30–40 mg/kg once daily; 
max

None

Ethambutol 15–25 mg/kg once daily; 
max

None

Rifabutin 10–20 mg/kg/day; max 
300 mg

Boosted PI: Increase rifabutin 
levels; NNRTI: Efavirenz reduces 
the rifabutin levels; no dose 
adjustment with nevirapine

Second-line treatment
WHO Group A Drugs- known good potency
Bedaquiline
Age > 6 yrs.

(6 mg/kg/day for 14 days 
followed by 3–4 mg/kg 
thrice weekly (dose 
extrapolated from adult 
dosing for those less than 
16 kg)

Efavirenz: Reduced BDQ levels
Lopinavir/ritonavir: Increased 
Bedaquiline levels

Levofloxacin 15–20 mg/kg once daily; 
max 750 mg

Buffered didanosine may reduce 
oral absorption of all 
fluoroquinolones

Moxifloxacin 7.5–10 mg/kg once daily; 
max 400 mg

Ritonavir may reduce 
moxifloxacin levels

Linezolid ≥16 years: 10–12 mg/kg/day
≤ 16 years: 15 mg/kg/day

NRTIs: Increased risk for adverse 
effects

WHO Group B Drugs- reasonable potency
Cycloserine/Terizidone 10–20 mg/kg once daily, 

max 1 gram
Unlikely

Clofazimine 2-5 mg/kg/day
On alternate days if gelcaps 
cannot be split
Or weight based dosing∗

None documented; may be a weak 
CYP3A4 inhibitor

(continued)
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WHO recommends ART initiation within 2–8 weeks of starting ATT in the co-infected 
child [93]. This recommendation, extrapolated from adult studies, is supported by stud-
ies describing decreased morbidity and mortality with early ART in those with more 
severe immunocompromise [94–96]. A study from South Africa found that delayed 
ART beyond 8 weeks in co-infected children was associated with increased mortality 
and worse outcomes [97]. The same adult studies did not show increased benefit with 
early ART in mildly immunocompromised individuals and thus in such patients delay-
ing ART may be considered to avoid drug-drug interactions and high pill burdens. The 
risk-benefit considerations must be carefully weighed in each situation.

Treatment of co-infected children is more complex because of the interaction of 
TB and HIV drugs, high pill burdens and the potential for overlapping toxicities. 
ART regimen choices will be guided by local recommendations, availability and 
age of the child. The rifamycins, particularly rifampicin is a potent inducer of the 
cytochrome 3A4 [80]. Protease inhibitors and nevirapine are metabolized through 
the CYP 450 pathway and thus blood concentrations are lowered when 
co-administered with rifampicin. Drug dosing must be adjusted when using these 
drugs in conjunction with TB treatment. Nevirapine should be dosed at the upper 
end of the range and an induction phase should not be used [98]. Lopinavir/ritonavir 

Table 5  (continued)

TB drugs Recommended dose Drug-drug interactions with ART

WHO Group C Drugs- other drugs with uncertain/poor potency
Pro/Ethionamide 15–20 mg/kg once daily; 

max 1 g
Possible

Delaminid
Age > 3 years

3–4 mg/kg/day (dose 
extrapolated from adult 
dosing for those less than 
10 kg)

None documented

Meropenem/clavulanic acid 
imipenem/cilastin

As for bacterial infections Unlikely

Thiacetazone 5–8 mg/kg once daily Contraindicated in HIV-infected 
individuals

Para-aminosalicylic acid 
(PAS)

150–200 mg/kg granules 
daily in 2 divided doses, 
max 12 g

Efavirenz may reduce PAS levels

Kana/Capreomycin 15–30 mg/kg once daily; 
max 1 g

Unlikely

Amikacin 15–22.5 mg/kg once daily; 
max 1 g

Unlikely

Streptomycin 20–40 mg/kg once daily; 
max 1 g

Should not be used in children

TB tuberculosis, ART antiretroviral therapy, NNRTI non-nucleoside reverse transcriptase inhibitor, 
PI protease inhibitor, AUC area under the curve, HIV human immunodeficiency virus
∗For weight based dosing refer to “Management of multi-drug resistant tuberculosis in children: A 
field Guide fourth Edition”; ∗Available via the Global TB Consillium (tbconsilium@gmail.com) 
or Sentinel Project on Paediatric Drug Resistant TB (tbsentinelproject@gmail.com)
Adapted from Marais BJ et al. ref. 77
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should have the ritonavir increased to a 1:1 ratio with the lopinavir [99, 100]. 
Treatment with a triple nucleoside reverse transcriptase inhibitor regimen in viro-
logically suppressed children was studied in a recent trial. It showed similar viral 
suppression and clinical response to a non-nucleoside reverse transcriptase inhibitor 
based regimen in those children who had well controlled HIV before the switch 
[101]. Thus, this may be an alternative regimen for a subset of children needing TB 
treatment but again the risk benefit of a less efficacious ART regimen with less drug 
interaction must be carefully considered. The newer integrase inhibitor based ART 
regimens also need dose adjusting based on early adult pharmacokinetic studies but 
this has not yet been studied in the pediatric population [102]. See Table 5 for TB 
drug dosing and ART interactions [85].

As previously mentioned there has been some concern that HIV-infected chil-
dren experience a TB relapse more frequently. However, the evidence for prolonged 
treatment to prevent relapse is weak and thus WHO recommends the standard length 
of treatment for those who respond well but suggests clinicians consider prolonga-
tion in those who have a poor response [83].

�Immune Reconstitution Inflammatory Syndrome (IRIS)

Once ART is initiated the body may have a robust immune recovery with improvement 
in CD4+ T cells and drop in viral load. In patients with severe immunosuppression, this 
can lead to an unmasking of infections previously not diagnosed or a paradoxical wors-
ening of symptoms of diagnosed TB. This usually occurs within the first 3 months of 
ART [103]. However, the very population of the more severely immunocompromised 
child is the same population that benefits from early ART. Thus, ART should not be 
withheld for fear of IRIS. Usually these symptoms are not life threatening, can be man-
aged with supportive care and resolve on their own. Treatment of the symptoms with 
non-steroidal anti-inflammatory drugs or steroids may be considered [104].

�TB Prevention

The saying goes that “Prevention is better than cure.” This certainly is true for child-
hood tuberculosis given the complexities of diagnosis, treatment and management in 
the TB-HIV co-infected child. Eradication of adult and adolescent TB cases is the 
single most important way to prevent childhood TB infection. Vaccines are one of the 
best primary prevention methods but currently the only available TB vaccine is bacil-
lus Calmette-Guerin (BCG), a live attenuated vaccine, which provides sub-optimal 
protection against TB. In TB-endemic areas in HIV negative children it affords some 
protection against severe forms of tuberculosis, TBM and miliary TB, but does not 
protect against all forms of TB and does not give durable protection into adulthood 
[105]. Its efficacy in the HIV-infected child is poor [106]. Secondly, as this is a live 
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attenuated vaccine, studies have shown that the risk of disseminated BCG disease is 
increased in this population [107, 108]. Thus, BCG is not recommended in the known 
HIV-infected child. However, in many endemic settings the HIV status of the child is 
unknown when BCG is given at birth. In these settings, BCG is recommended and 
emphasis is placed on strengthening prevention of mother to child transmission of HIV.

HIV-infected children are frequently interacting with health care systems and 
thus another area of prevention is TB infection control practices in healthcare facili-
ties. Studies have shown that nosocomial transmission of TB does occur in health 
care settings [109]. There are guidelines on the types of TB infection control prac-
tices [110]. Thus, facilities that care for children should consider their infection 
control plans carefully such that children are not at increased risk of nosocomial 
infection with TB. For example, HIV-infected children being seen at a clinic where 
adults are also seen probably should be separated from adult patients.

Secondary prevention is also a known strategy to prevent TB disease in children. 
Because children tend to have primary disease within a year after infection there is 
an opportunity to prevent disease for those with a known exposure and no active 
disease. Isoniazid prophylaxis therapy (IPT) at 10 mg/kg/day for 6 months has been 
well studied for asymptomatic child contacts of TB cases and shown to reduce TB 
disease by up to 62% [111]. Other regimens such as isoniazid combined with rifa-
pentine for 3 months or rifampicin for 4 months prevent TB and have the advantages 
of a shorter regimens with higher completion rates [112–114]. However, they can be 
more costly and have been studied in low TB burden countries [115].

No studies have specifically looked at IPT in the HIV-infected child with a known 
exposure and no active disease but the benefits are expected to be similar in this 
population and thus WHO recommends IPT for young children and HIV-infected 
children in contact with a case of pulmonary TB [83]. Universal IPT in the absence 
of a documented TB exposure has been well studied in adults and seems to be ben-
eficial during the time of prophylaxis in this population where disease is a combina-
tion of reactivation and primary infection [116, 117]. The evidence for universal IPT 
in childhood has had mixed results. A Cape Town, South Africa study in the pre-
ART era of over 300 children showed IPT decreased all-cause mortality from 16% 
to 8% and decreased TB incidence from 10% to 4% [118]. However, a randomized 
control trial in the post ART era of HIV positive and negative infants did not show 
benefit [119]. A recent Cochrane review including these studies suggested that IPT 
benefits children not on ART but is unlikely to benefit those already on ART. Both 
recommendations had low certainty of evidence [120].

Antiretroviral therapy is a potent prevention strategy for TB. In areas where ART 
coverage has increased, TB incidence has clearly decreased. The Children with HIV 
Early Antiretroviral (CHER) trial clearly demonstrated the benefit of early ART in 
decreasing TB risk in those on early ART (8% in the early ART arm vs 20% in the 
delayed ART arm) [5]. A South African study has also shown a 70% drop in culture 
confirmed TB in HIV-infected children when ART coverage changed from 43% in 
2005 to 84% in 2009 [92]. This was reflected in the overall reduction in confirmed 
TB in all children in the same study (63%).
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�Conclusion

HIV-infected children are at increased risk of TB exposure, infection and disease. 
The diagnosis of TB in this population is a particular challenge given the wide dis-
ease spectrum, similarity with other common diseases and poor performance of 
current diagnostic tests in children. Although the majority of HIV-infected children 
do well on TB treatment, children with TB/HIV co-infection face high pill burdens, 
overlapping toxicities and drug interactions that can impact outcomes negatively. 
Given these complexities, everything possible should be done to prevent TB in the 
first place; by preventing HIV infection or treating it early if it does occur; improv-
ing respiratory infection control in health care facilities; as well as screening for 
recent TB exposure at every health care visit and providing preventive therapy for 
every documented TB exposure or infection event.
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Neurological TB in HIV

Louise Bovijn, Regan Solomons, and Suzaan Marais

Abstract  Central nervous system (CNS) tuberculosis (TB) is the worst form of TB 
and may present as (1) intracranial pathology, including tuberculous meningitis 
(TBM), tuberculoma/abscess, and rarely cerebritis or encephalopathy (described in 
children) and, (2) intraspinal disease. HIV co-infection increases the risk of develop-
ing CNS TB substantially, especially in patients with severe immunosuppression 
(CD4 count <100 cells/μL). In this chapter, we discuss the pathogenesis, clinical and 
imaging findings, management and outcomes of the most frequent forms of CNS TB 
in HIV co-infected patients. We further review the features and management of a 
frequently fatal complication related to starting antiretroviral therapy (ART), namely 
neurological TB immune reconstitution inflammatory syndrome (IRIS).

Keywords  Tuberculous meningitis · TB radiculomyelitis · Tuberculoma · Spinal 
TB · Extra-pulmonary TB · Central nervous system

�Introduction and Epidemiology

Central nervous system tuberculosis (CNS TB) is rare compared to many other TB 
manifestations (e.g. pulmonary, pleural and lymph node TB) [1] but is the most 
devastating form [2, 3]. Neurological TB constitutes 3.4–22% of extra-pulmonary 
TB cases [1, 4, 5]. HIV co-infection increases the risk of developing CNS TB sub-
stantially with one study showing a five-fold increase of meningitis in HIV-infected 
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compared to HIV-uninfected TB cases [6]; this increased risk is greatest in patients 
with severe immunosuppression (CD4 count<100  cells/μL) [4]. Estimates of the 
burden of CNS TB are likely inaccurate, given the difficulty in establishing a defini-
tive diagnosis due to the paucibacillary nature of the disease in the CNS [7, 8].

Central nervous system TB may present as 1) intracranial pathology, including 
tuberculous meningitis (TBM), tuberculoma/abscess, and rarely cerebritis or 
encephalopathy (described in children) and, 2) intraspinal disease [9]. In this chap-
ter, we discuss the most frequent forms of CNS TB including TBM, tuberculoma/
abscess and intraspinal TB, as well as a complication related to starting antiretrovi-
ral therapy (ART), namely neurological TB immune reconstitution inflammatory 
syndrome (IRIS).

�Tuberculous Meningitis

Tuberculous meningitis is the most common form of CNS TB accounting for 
approximately 1–2% of all TB cases in developed countries [1, 10–12], and 9.3% 
(100/1072) of HIV co-infected TB cases in one study [2]. Population-based TBM 
disease burden data from resource-poor, high TB incidence settings are scant, but 
based on extrapolations from available data it has been suggested that there is at 
least 100,000 cases globally per year [13]. Tuberculous meningitis is widely 
regarded as the second most common meningitis after cryptococcal meningitis 
(CM) in HIV co-infected adults in highly TB endemic settings [14–16]; A study 
conducted in Cape Town, South Africa found that 28% (227/820) of microbiologi-
cally confirmed meningitis cases were due to Mycobacterium tuberculosis (M. tuber-
culosis), whilst CM accounted for 63% [14]. A subsequent study from the same 
setting reported that 57% (120/211) of meningitis cases could be attributed to TB 
when using a clinical case definition [17]. In children, TBM is the most common 
cause of bacterial meningitis in TB endemic settings, accounting for 33% of all 
HIV-infected meningitis cases in one series [18]. In addition to HIV, risk factors for 
developing TBM are age (with young children [<5 years] being at greatest risk) [19] 
and other factors that contribute to an impaired immune system, such as malnutri-
tion, alcoholism and immunosuppressive therapies (e.g. tumor necrosis factor 
(TNF)-α inhibitors) [20].

�Pathogenesis and Pathology

In the late nineteenth century, it was thought that TBM resulted from haematoge-
nous spread to the meninges, due to the frequent finding of TBM and miliary TB 
occurring in the same patient [21]. In 1933, Rich and McCordock suggested a two-
phase model for TBM pathogenesis based on their autopsy findings of TBM cases 
[22]. These findings form the basis of our current understanding of the pathogenesis 
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of TBM. The first phase of the model commences with the primary infection or late 
reactivation of TB in the respiratory system. During the localized infection in the 
lungs, a bacillaemia may lead to mycobacterial seeding to the brain cortex or menin-
ges, with formation of small tuberculous granuloma referred to as “Rich foci”. How 
mycobacteria leave the lung and enter the blood and subsequently cross the blood-
brain-barrier (BBB) during TB disease is not fully understood and not explained by 
animal models of cerebral TB used thus far [13]. In vitro studies have shown that 
M. tuberculosis is able to cross the BBB by invasion of human brain endothelial 
cells through endocytosis [23] and could therefore gain access to the CNS via this 
route. Alternatively or additionally, the organism may enter through a “trojan horse” 
mechanism, whereby infected cells adhere to the endothelium and undergo diapede-
sis [13]. According to the model by Rich and McCordock [22], the foci become 
dormant and remain so for months to years after the initial bacillaemia. During the 
second phase, caseating foci rupture into the subarachnoid or ventricular space, 
initiating an inflammatory response resulting in TBM.

More recently, the concept of the two-phase model as the only pathogenic mech-
anism at play in CNS TB has been challenged [24]. Rich and McCordock consid-
ered miliary TB and TBM separate entities as their studies suggested that a Rich 
focus of older age than lesions of simultaneous occurring miliary TB was nearly 
always present in patients with TBM. However, the association between miliary TB 
and TBM in children is well established [24] with brain magnetic resonance imag-
ing (MRI) detecting a miliary picture in up to 88% of children with TBM [25]. It has 
therefore been proposed that miliary TB, which is an exacerbated form of hae-
matogenous spread, increases the probability of meningeal/cortical disease that then 
manifests in close proximity to the time of CNS seeding [24]. The increased fre-
quency of TBM in HIV-infected patients may similarly be linked to the frequent 
bacillaemia observed in HIV-associated TB patients, especially in those with severe 
immunosuppression (CD4 ≤ 100 cells/μL) of whom up to 49% have positive blood 
cultures [26–28].

The release of bacilli into the subarachnoid space sets into motion a complex 
cascade of inflammatory reactions that is yet to be fully understood. According to 
current hypotheses, M. tuberculosis is taken up predominantly by microglia (resi-
dent brain macrophages) in which they replicate and induce cytokine, chemokine 
and growth factor synthesis and secretion [13, 29–31]. Additionally, inflammatory 
mediators are secreted by other resident CNS cell types, such as astrocytes and 
endothelial cells. During the course of inflammation, cytokines (e.g. interleukin 
[IL]-6 and TNF-α) and other mediators (e.g. matrix metalloproteinase [MMP]-9) 
lead to disruption of the BBB whilst chemokines (e.g. CC chemokine ligand [CCL] 
2 and CXC chemokine ligand [CXCL] 10) recruit inflammatory cells (predomi-
nantly lymphocytes, but also neutrophils) into the CNS, propagating the inflamma-
tory process. The robust inflammatory response that ensues results in the typical 
macroscopic granulomatous exudate discussed in further sections.

On cerebrospinal fluid (CSF) analysis, TBM is characterized by increased 
expression of a vast range of pro- and anti-inflammatory cytokines, chemokines, 
MMPs and neutrophil-related peptides [32–38]. Some of these inflammatory 
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markers remain high for weeks to months after the initiation of TB treatment. 
Several studies have compared concentrations of inflammatory mediators in CSF 
between HIV-infected and -uninfected TBM patients [33, 34, 38]. Although similar 
concentrations were found for TNF-α [33] and IL-6 [34] by some, a large recent 
study (n = 764) reports increased concentrations of pro-inflammatory (TNF-α, IL-2, 
IL-1β, IL-6, IL12p70) and anti-inflammatory (IL-5) cytokines and decreased con-
centrations of the regulatory cytokine IL-10 in HIV-infected patients, whilst IFN-γ 
was similar between groups [38]. When dividing HIV-infected patients according to 
degree of immunosuppression (CD4 count ≥150 or <150 cells/μL), cytokines were 
significantly higher in patients with severe immunosuppression whilst no significant 
difference in cytokine concentrations was seen between those with CD4 ≥ 150 cells/
μL and HIV-uninfected patients. Furthermore, patients with CD4 < 150, had signifi-
cantly higher CSF neutrophil percentage (median = 25%), compared to those with 
CD4 ≥ 150 (10%) and those without HIV co-infection (5%) and cytokine concen-
trations correlated positively with CSF absolute neutrophil number. Increased CSF 
neutrophils and raised inflammatory mediator concentrations also predispose HIV-
associated TBM patients to clinical deterioration after starting ART (see IRIS sec-
tion below) [36, 39]. Although the influence of HIV on TBM immunopathogenesis 
remains poorly understood, these findings suggest a prominent role for neutrophils, 
especially in severely immunosuppressed patients. Furthermore, IL-10 is an inhibi-
tor of cytokine secretion (e.g. IFN-γ by T-helper 1 cells and natural killer cells) and 
it has been suggested that decreased concentrations of IL-10 skews the CSF cyto-
kine balance to a Th1 response in the context of HIV [34, 38].

Both host and bacterial genetic factors may play a role in the development and/
or severity of TBM.  In HIV-infected TBM patients, for example, infection with 
“modern” Beijing lineage M. tuberculosis strains was associated with a lower mor-
tality compared to patients infected with “ancient” Indo-Oceanic lineage strains 
[40]. Several human genes that influence the host immune response to M. tubercu-
losis have been implicated in TBM susceptibility or disease severity, but results may 
vary between different countries/ethnic populations [13]. Recent studies suggest 
that two single nucleotide polymorphisms (SNPs) in the promoter of the Leucotriene 
A4 hydrolase (LTA4H) gene, that catalyzes the production of the pro-inflammatory 
eicosanoid LTB4, are associated with either a hyperinflammatory (TT) or a hypoin-
flammatory (CC) CSF phenotype in TBM [38, 41]. In the initial study, adjunctive 
corticosteroids conferred protection from death in patients with the TT genotype, 
whilst those with the CC genotype had a significantly higher mortality. The con-
verse was seen in patients who did not receive corticosteroids; in this group, patients 
with the TT genotype had a significantly higher mortality compared to those with 
the CC genotype [41]. A subsequent study, during which all patients received corti-
costeroids, found that HIV-uninfected patients with the TT genotype were signifi-
cantly more likely to survive, compared to CC genotype patients [38]. This benefit 
was not seen in HIV-infected patients, although analyses according to CD4 count 
(≥150 cells/μL or <150 cells/μL) suggested that results in patients with less immu-
nosuppression (≥150  cells/μL) were similar to those in HIV-uninfected patients. 
These studies suggest that host-directed therapies (such as corticosteroids) should 
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be tailored according to LTH4H genotype to improve outcome. However, further 
larger RCTs in HIV-infected patients and in different ethnic populations are war-
ranted, particularly considering findings from an Indonesian study in HIV-uninfected 
patients (91% of whom received corticosteroids) that showed no survival benefit in 
association with the TT-genotype [42].

The major pathological consequences of the inflammatory reaction elicited by 
M. tuberculosis include the following [9]:

•	 Basal arachnoiditis: A proliferative arachnoiditis that produces a thick, gelati-
nous exudate and mostly affects the cisterns surrounding the base of the brain is 
the hallmark finding in TBM. The exudate encases the adjacent cranial nerves 
often leading to cranial nerve palsies. Several small studies found that HIV-
infected patients have less extensive exudate, poorly formed granuloma and a 
larger number of mycobacteria compared to HIV-uninfected patients [43–45]. 
However, others describe the exudate to be “moderate to severe” [46] and “thick” 
[47] in the context of HIV. It is likely that the histopathological findings reflect 
the degree of immunosuppression with less advanced cases showing features 
more similar to those in HIV-uninfected patients [48].

•	 Vasculitis: The exudate extends around vessels often resulting in vasculitis caus-
ing thrombosis, aneurysm formation and infarction [49]. Occlusion of vessels 
can be intensified by surrounding pressure from hydrocephalus and vasospasm 
[50]. An autopsy study in adults and children (n = 51) identified infarcts in 73% 
of TBM cases; macroscopic apparent infarcts (27 cases) most commonly 
occurred in the basal ganglia (25.5%), cortex (25.5%) and pons (7.8%) [49]. 
Vascular involvement was seen in all patients (n = 51). Smaller branches of the 
middle cerebral arteries were involved in 100% and those of the basilar artery in 
94%, predominantly showing fibrinoid necrosis. Larger branches were variably 
involved showing fibro-intimal proliferation. Mononuclear cell infiltration 
occurred in vessels of any size. HIV causes damage to the vessel wall, either 
directly or indirectly through an aberrant autoimmune response resulting in a 
vasculopathy, which may aggravate the vascular consequences of TBM [51, 52].

•	 Hydrocephalus (HC): The exudate may lead to obstruction of CSF flow, resulting 
in HC, which may be obstructive (OHC; i.e. CSF cannot exit the ventricles due 
to blockage at the level of the aqueduct of Sylvius or the fourth ventricle) or, 
communicating (CHC; i.e. CSF can exit the ventricles and there is “communica-
tion” with the subarachnoid space, but normal CSF flow is impaired due to exu-
dates within this space). Due to ensuing raised intracranial pressure, HC may 
result in brain herniation or ischemia. Hydrocephalus may be less common in 
HIV-infected patients due to a less severe inflammatory response [43].

•	 Tuberculoma: Small granuloma may coalesce to form a tuberculoma that typi-
cally develops a central core of caseous necrosis (initially solid followed by liq-
uefaction) which is surrounded by a wall of epithelioid histiocytes, Langhan’s 
giant cells and lymphocytes [53–55]; acid-fast bacilli (AFB) are only rarely iden-
tified in the necrotic center. A study comparing the histopathological findings of 
spinal (bony) TB lesions in HIV-infected and -uninfected patients reports the 
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presence of well-organized granulomas, irrespective of HIV-status [56]; the only 
difference between groups was a reversal in the ratio of infiltrating CD4–CD8 T 
cells in the lesions of HIV-infected patients. Well-organized granuloma has also 
been described in HIV-infected patients with cerebral tuberculoma [57]. Rarely, 
abscess formation takes place that is characterized macroscopically by pus in the 
cavity and microscopically by a lack of the typical granulomatous reaction in its 
wall, and numerous bacilli in its center [53, 58].

�Clinical Features

The majority of childhood TBM cases occur between 2–4 years of age [19], whilst 
in adults most cases occur during the third and fourth decade of life, regardless of 
HIV-status [59]. TBM typically presents sub-acutely after 5 days to weeks of neu-
rological symptoms [7]. Occasionally though, TBM may present acutely (within a 
few days of symptom onset), mimicking bacterial meningitis or conversely, it may 
present as a slow, progressive dementia. If left untreated, the disease usually pro-
gresses through three consecutive phases:

•	 Prodromal phase: Initially patients typically experience non-specific symptoms 
that include malaise, vague headache, low-grade fever, anorexia, vomiting with-
out diarrhea and neck pain. In children early warning signs further include poor 
weight gain and listlessness. A clue to recognizing early stage TBM is the persis-
tence of symptoms and, particularly in children, household contact with an adult 
source case with pulmonary TB within the previous year should heighten suspi-
cion of TBM.

•	 As the infection progresses, a more pronounced meningitic phase emerges, and 
gradually more striking neurological features such as severe headache, menin-
gism, confusion, cranial nerve palsies (most commonly VI, followed by III and 
VII) [60, 61] and seizures become evident.

•	 Further progression lead to the paralytic phase, which is marked by coma, abnor-
mal movements and dense neurological deficits (such as hemi- or paraparesis) 
that ultimately results in death, if untreated.

The severity of the neurological status at TBM presentation is scored according 
to the modified British Medical Research Council (BMRC) grading system, which 
takes into account level of consciousness and the presence or absence of focal neu-
rological deficits [29].

•	 Grade I-Patients are fully conscious (Glasgow coma scale [GCS] score 15) with 
or without meningeal signs, but without neurological deficit.

•	 Grade II-Patients are confused (GCS score 11–14) and/or have focal neurologi-
cal signs.

•	 Grade III-Patients present with stupor or coma (GCS score ≤ 10) with or without 
focal neurological signs.
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Most studies suggest that HIV co-infection does not significantly influence the 
symptom duration at presentation, nature of symptoms and neurological findings in 
TBM, regardless of age [59]. However, HIV-infected TBM patients are significantly 
more likely to have concomitant extra-CNS TB [62, 63]. In childhood TBM, findings 
likely related to the underlying HIV disease such as poor nutrition, lymphadenopathy, 
hepatosplenomegaly, clubbing and otorrhoea, were significantly more frequent in the 
HIV-infected group, which may further complicate early recognition of TBM [63].

�Cerebrospinal Fluid Features

Lumbar puncture (LP) is the mainstay investigation to confirm the diagnosis and 
should be performed in all TBM suspects unless a clinical or radiological contrain-
dication is present. Cerebrospinal fluid typically shows a clear appearance, leukocy-
tosis (median  =  50–450; range  =  5–1000  cells  ×  106/L) with lymphocyte 
predominance, a raised protein concentration (0.5–3 g/L), and a low glucose con-
centration (CSF to blood ratio <0.5 or absolute value <2.2 mmol/L) [7, 64]. Most 
studies report similar CSF findings in HIV-infected and -uninfected adults and chil-
dren with TBM [59], however, a reduced inflammatory response characterized by 
lower leucocyte counts and protein concentration in HIV-infected adults have been 
reported [42, 65]. Although atypical CSF features such as normal cell count, protein 
concentration or glucose concentration, or a neutrophil predominance may occur in 
HIV-uninfected patients, it is seen more frequently in association with HIV co-
infection [7, 59]. HIV-infected adults often present with a neutrophil predominance 
(up to >90% of the cell population) or a high neutrophil count (in the hundreds) [66] 
and up to a third of those with severe immune suppression (CD4 < 50 cells/μL) may 
have a normal cell count [65]. Such findings can cause diagnostic uncertainty, 
resulting in a delayed or missed diagnosis of TBM.

�Laboratory Features

Hyponatremia (serum sodium<135 mmol/L) is a common metabolic complication 
of TBM in adults and children [61, 67], which is severe (<125 mmol/L) in up to 
45% of patients [68]. Hyponatremia is potentially life threatening and was found to 
be an independent risk factor for earlier time to death in adults with HIV-associated 
TBM [66]. Pathogenic mechanisms that that may underlie hyponatremia in the con-
text of TBM include the syndrome of inappropriate antidiuretic hormone secretion 
(SIADH) and cerebral salt wasting (CSW); results from a recent study suggest that 
CSW is the more common of the two [69]. Other causes such as poor oral intake, 
diarrhea, vomiting, diuretic use, renal disease, liver disease and other endocrine 
disorders should also be considered. Further blood test abnormalities commonly 
associated with TBM include mild anemia, leukocytosis and mild elevations in 
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transaminases [60, 62, 66], all which may be more severe in HIV co-infection [59]. 
Low hematocrit levels, that were independently associated with death, may be lower 
in HIV-infected adults [62, 70].

�Features of Extra-Meningeal TB

Features of TB outside the CNS support the diagnosis of TBM and are especially 
useful if CSF findings are atypical and when a definitive diagnosis has not been made 
[7]. Chest radiograph should be performed on all TBM suspects, as most studies 
report evidence of previous or active pulmonary TB in at least 40% of patients [19, 
42, 59, 71]. Although some studies suggest that HIV-infected children more fre-
quently have chest radiograph features of TB compared to HIV-uninfected children 
(85% vs 65%) [63], others have reported the converse in adults (HIV-uninfected: 
74% vs HIV-infected: 56%) [42]. Additional imaging such as abdominal ultrasound 
and computed tomography (CT) chest may also identify involvement of other organs, 
particularly in HIV-infected patients, who have a higher incidence of extra-meningeal 
involvement [62]. Analysis of samples from other sites of infection such as sputum, 
lymph node, pleural fluid, gastric aspirate, bone marrow and urine may not only 
assist in a diagnosis of TB, but also inform drug susceptibility of the organism [7].

�Brain Imaging Findings

Brain imaging including CT and MRI contributes significantly to the diagnosis of 
TBM and should be performed in all TBM suspects if resources permit [7]. However, 
imaging may be normal, especially early in the disease and radiological abnormali-
ties may only develop after initiation of TB treatment [71–73]. Furthermore, CT is 
less sensitive and may miss some lesions apparent on MRI [74–78]. Classic findings 
of TBM include basal meningeal enhancement (BME), HC, tuberculoma and 
infarct, which may occur alone or in combination (Fig. 1) [71, 77]. The overall fre-
quency of cerebral imaging abnormalities is similar in HIV-infected and –unin-
fected TBM patients (55–100% vs 50–90%, respectively) [59, 77]. However, one 
study reported greater frequency of abnormalities on MRI in HIV-infected com-
pared to HIV-uninfected patients (100% vs 64%) [79].

Meningeal enhancement and HC are the most consistent features of TBM, occur-
ring in 16–71%, and 20–72% of HIV-infected patients, respectively [59, 77, 80]. 
Some studies in children [63, 80] and in adults [43] report less frequent OHC and 
BME in association with HIV, however these findings are not consistent [59]. HIV-
infected patients frequently show cerebral atrophy on brain imaging that should not be 
confused with CHC [43, 63, 80]. The combination of HC, BME and infarcts or, the 
single finding of pre-contrast hyperdensity in the basal cisterns on CT, was 100% 
specific for TBM in children (HIV status not reported), although the latter still requires 
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validation in future studies [81]. A study of predominantly HIV-infected adults report 
that criteria for BME on CT was insensitive (0–29%), but both BME and acute infarcts 
were 100% specific in the diagnosis of TBM compared to other meningitides [82]. 
Although typical BME may be seen less frequently in HIV-infected patients, small 
tuberculomas (miliary picture) affecting the meninges were seen on MRI in all HIV-
infected (n = 7), compared to 72% of HIV-uninfected children [80].

Imaging identifies infarcts in 13–50% of HIV-infected cases [59]. Although the 
majority of infarcts in TBM occur in the basal ganglia region due to involvement of 
small perforating arteries [50, 63, 75], it has been suggested that cortical infarction 
may be more common in HIV [43]. Diffusion-weighted image (DWI) sequence is 
more sensitive that routine T2-weighted and fluid-attenuated inversion recovery 
(FLAIR) sequences in detecting acute infarcts on MRI; in a pediatric study, DWI 
revealed 89/172 infarcts that were not observed by routine MRI and CT [75]. 
Features of vasculitis in HIV-associated TBM may be enhanced by the effect of HIV 
on vessels [51, 52]. MR angiography is useful to identify vasculitis of intracranial 
vessels, which is present in 37–51% of HIV-uninfected TBM patients and may pre-
dict development of future stroke [50, 83], but the application of this modality in 
HIV-associated TBM is rarely described [43].

�Diagnosis

There remains a vast need for a rapid, sensitive test to confirm the diagnosis of TBM 
and guide individual patient care. TBM presents similar to other causes of meningi-
tis and, due to the poor sensitivity of current diagnostic tests, clinicians may either 

Fig. 1  Imaging of intracranial TB in HIV-infected patients. (a–c are post-gadolinium T1-weighted 
MRI images and D is a post-contrast CT image; A was taken in the sagittal pane and b–d were 
taken in the axial planes). (a) Multi-loculated brainstem tuberculoma causing obstructive hydro-
cephalus in an adult receiving ART (CD4 count = 783). (b) Nodular basal meningeal enhancement 
in an adult not receiving ART (CD4 count = 217). (c) Abscess (short, black arrow), basal menin-
geal enhancement (long, black arrow) and multiple subdural tuberculomas (white arrow) in a child 
on ART (CD4 = 838). (d) Infarct (short, black arrow), basal meningeal enhancement (long, black 
arrow), and hydrocephalus (white arrow) in a child not receiving ART (CD4 = 390). Abbreviations: 
MRI magnetic resonance imaging, CT computed tomography, ART antiretroviral therapy, CD4 
count CD4+ T-lymphocyte count expressed as cells/μL
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“over treat” TBM suspects for fear of missing the diagnosis or “under treat” for fear 
of exposing patients unnecessarily to months of potentially hazardous TB treatment. 
The most commonly used methods are discussed below.

�Smear Microscopy and Culture

Microscopy using Ziehl–Neelsen (ZN) staining is a rapid, inexpensive, 100-year old 
test to identify AFB from CSF, but sensitivity is extremely poor (10–20%) in most 
settings [17, 84, 85]. Cerebrospinal fluid culture of M. tuberculosis remains the gold 
standard test, but time to positivity is too slow (2–4 weeks in liquid medium) to 
inform patient management at presentation [84] and furthermore, the test is negative 
in more than 50% of clinical TBM cases [8, 19, 86, 87]. However, it is advisable to 
perform culture in all cases as it may inform drug susceptibility, especially to iso-
niazid and second-line TB drugs, which cannot be determined by current alternative 
diagnostic methods such as Xpert TBM/RIF, discussed below. Culture may be more 
sensitive in HIV co-infected compared to -uninfected patients (42% vs 30%) [62], 
which may relate to an impaired immune response and hence an impaired ability to 
contain M. tuberculosis replication [43].

The diagnostic yield of conventional bacteriological methods can be increased 
through simple measures. Firstly, increasing the volume of CSF analyzed to at least 
6 ml allowed for culture of M. tuberculosis in 80% of clinical TBM cases [88]. 
Secondly, prolonging the time spent on microscopy to 40 min, compared to five, 
improved its yield from 35% to 95% [88]. Lastly, performing up to four serial LP 
early during TB treatment significantly increased the sensitivity of both microscopy 
and culture [89]. There is little data to inform the maximum volume of CSF that can 
be collected safely but suggested volumes include 6–9 mL in infants, 10–15 mL in 
young children and 15–17 mL in adults [90]. However, much larger volumes are 
likely safe in the context of TBM, which is often characterized by CHC; in one 
study, 30 mL of CSF was collected from 68 adults with suspected TBM after exclu-
sion of contra-indications, none of whom had related side-effects aside from tran-
sient headaches, which was present in the minority [86].

�Nucleic Acid Amplification (NAA) Tests

The World Health Organization (WHO) currently recommends Xpert MTB/RIF 
(Xpert, Cepheid, Sunnyvale, CA, USA) as the initial diagnostic test for TBM, as it 
is rapid (results are potentially available within hours) and it is more sensitive than 
conventional ZN smear [91]. Xpert is a real time NAA assay that detects M. tuber-
culosis and rifampicin-resistant mutations simultaneously. Three studies have 
assessed the diagnostic utility of Xpert in adults with TBM [84, 85, 92], two of 
which included predominantly HIV-infected patients (87–98%) [84, 85]. Sensitivities 
of Xpert compared to culture ± PCR (definite TBM), and a clinical case definition, 
were 65–85% and 36–59%, respectively and specificity was 95–100%. In one study, 
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sensitivity of Xpert against a clinical case definition was significantly higher in 
HIV-infected patients compared to uninfected patients (78.8% vs 47.9%; odds ratio 
4.01, 95% CI 3.65–4.36) [92]. All three studies highlighted the importance of using 
larger volumes of centrifuged CSF to increase the sensitivity of Xpert; for example, 
a median of ~6  mL centrifuged CSF compared to 2  ml of uncentrifuged CSF 
increased the sensitivity from 28% to 72% [85].

Xpert MTB/RIF Ultra (Ultra) is a recent second-generation Xpert assay that is more 
sensitive, but less specific, than the Xpert MTB/RIF in pulmonary TB [93]. A study in 
HIV-infected TBM patients found that Ultra was more sensitive than Xpert or culture, 
detecting 70% of probable/definite TBM cases, compared to 43% detected by culture 
and Xpert each [8]. A multitude of other NAA tests (commercial and in-house) to diag-
nose TBM exists, but there is significant heterogeneity among in-house assays, whilst 
commercial tests lack sensitivity and/or have not been validated for use in TBM [94].

�Clinical Prediction Rules

None of the currently available microbiological and molecular tests are sensitive 
enough to exclude the diagnosis of TBM if negative and treatment should be started 
based on circumstantial clinical and investigation evidence [7, 95]. To aid the clinical 
diagnosis, numerous clinical prediction rules have been devised to distinguish TBM 
from other causes of meningitis in both children and adults [13, 96]. However, the 
performances of these rules vary according to the prevalence of TB and HIV and they 
often lack validation outside the centers that they were generated. The most consistent 
features able to distinguish TBM from bacterial meningitis include prolonged symp-
tom duration (>5–9 days), lower total CSF leucocyte count (<400–1000 cells × 106/L) 
and lower proportion of CSF neutrophils (<30–90%) [13, 96]. Studies that compared 
findings in TBM to CM both in HIV-uninfected patients [97] and in a high HIV-
prevalence group [15] report higher CSF leucocyte counts (≥13–68 cells × 106/L) and 
more depressed level of consciousness (GCS < 14) to be predictive of TBM, but these 
findings are rarely useful in clinical practice due to overlap between groups. For 
research, a uniform clinical case definition for TBM (regardless of age or HIV status) 
that groups cases into definite, probable and possible categories was derived in 2010 to 
unify reporting of research findings [7]. This case definition has not been validated for 
use in clinical practice and hence should not be used to inform patient management.

�Differential Diagnosis

HIV influences the differential diagnosis of TBM and HIV testing should be per-
formed in patients with unknown status. The differential diagnosis in HIV-infected 
TBM suspects is vast and depends on the prevalence of different diseases in the 
specific setting. A limited list of alternative infective causes with their diagnostic 
investigations is presented in Table 1. Cerebrospinal fluid Gram’s stain and bacterial 
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Table 1  Infective causes in the differential diagnosis of HIV-associated neurological TB

Differential diagnosisa Investigation(s)b

Meningitis (intracranial and intraspinal) and myelitis
Bacteria Gram’s stain, bacterial culture
Non-opportunistic viruses (e.g. 
enterovirus)

Viral PCR

Herpesviruses (HSV, HZV, CMV, HHV-6) Viral PCR
Syphilis VDRL and TPHA or FTA
Cryptococcosis India ink, cryptococcal antigen testing, fungal 

culture
Lymphoma Cytology (and EBV PCR)
Non-tuberculous mycobacteria (e.g. 
MAC)

Mycobacterial culture

HIV seroconversion HIV PCR or RNA and conversion of antibody tests
Chronic HIV infection Exclusion of other causes
Brucellosis PCR or Wright agglutination test on blood or CSF
Borreliosis CSF to blood antibody index
Malaria Blood smear
Eosinophilic meningitis (parasitic) Eosinophil count and proportion
Tuberculoma (intracranial and intraspinal)c

Toxoplasmosis Serum and CSF IgG antibodies or PCR
Primary CNS lymphoma EBV PCR
PML-IRISd JC virus PCR
Cryptococcoma India ink, cryptococcal antigen testing, fungal 

culture
Syphilitic gumma VDRL and TPHA or FTA
Bacteria Blood and CSF bacterial culture
Non-tuberculous mycobacteria (e.g. 
MAC)

Mycobacterial culture

Schistosomiasis Rectal biopsy, stool and urine microscopy
Cysticercosis Serum and CSF antibodies
Epidural spinal abscessc

Bacteria Blood bacterial culture

Abbreviations: PCR polymerase chain reaction, HSV herpes simplex virus, HZV herpes zoster 
virus; CMV cytomegalovirus, HHV-6 human herpesvirus-6, VDRL venereal disease research labo-
ratory, TPHA Treponema pallidum haemagglutination, FTA fluorescent tryponemal antibody, EBV 
Epstein-Barr virus, MAC Mycobacterium avium complex, IgG immunoglobulin G, CNS central 
nervous system, PML-IRIS progressive multifocal leucoencephalopathy immune reconstitution 
inflammatory syndrome, JC John Cunningham
aSome causes only applicable to areas endemic for the organism
bPerformed on cerebrospinal fluid (CSF), unless otherwise specified
cBiopsy of lesion may be indicated
dBrain lesions only
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culture should be performed in all patients to rule out pyogenic meningitis. However, 
these tests may be negative in patients who have received antibiotics (oral or intra-
venous) prior to LP and a strong index of suspicion should be maintained in patients 
with raised CSF neutrophils. Although CM is rare in children compared to adults, it 
should be excluded in all HIV-associated meningitis cases [18, 98]. Microscopy 
with India ink staining is still used in some settings to diagnose CM, but the pre-
ferred test for a rapid diagnosis is the IMMY CrAg lateral flow assay (Immy, Inc., 
Norman, OK, USA), a point-of-care dipstick test that detects cryptococcal antigen 
in bodily fluids [99]. When performed on CSF the test has a sensitivity of 99.3% and 
a specificity of 99.1% [100], therefore reliably confirming or excluding the diagno-
sis. Fungal culture should also be performed if possible to determine if the disease 
is active (in re-treatment cases) and to inform drug susceptibility.

It is important to take note that HIV itself may result in mild CSF inflammatory 
changes such as leukocytosis (5–25 cells × 106/L) and raised protein (0.46–1 g/L) 
[101, 102]. In these scenarios it is essential to re-evaluate the clinical presentation 
and ancillary test results to inform clinical decision making; if the diagnosis is 
uncertain, management may include close clinical monitoring and repeat LP days 
after the initial LP and prior to initiation of disease-specific treatment.

�Prognosis

TBM is associated with a significant mortality and morbidity regardless of age or 
socio-economic setting, particularly in HIV-infected patients [17, 19, 62, 68, 70, 87, 
103]. Even in the context of a RCT during which patients received optimal medical 
and supportive care, the mortality rate in HIV-infected adults was 39% (compared to 
19.4% in –uninfected patients, hazard ratio, 2.53; 95% CI, 1.90–3.36) [87]. An addi-
tional 10% of all patients were severely disabled after 9 months of treatment. In two 
childhood TBM studies, death occurred in 24–30% of HIV infected compared to 0% 
of HIV-uninfected patients during follow-up and full recovery occurred significantly 
less in HIV-infected children (0–29% compared to 52–60%) [63, 104]. Longer dura-
tion of symptoms and worse TBM disease grade (BMRC grade II and III) are further 
strong predictors of poor outcome, emphasizing the need for early diagnosis and 
treatment initiation [17, 19, 60, 70, 87, 105, 106]. Other important risk factors for 
death not discussed elsewhere include extra-meningeal/extra-pulmonary TB [62, 70] 
and interruption/change of anti-TB drug regimen [70]. Younger age is a further risk 
factor for poor outcome in children [106]. In HIV co-infection, a higher CD4 count 
is independently associated with reduced mortality (hazard ratio per increase of 
100 cells/μL, 0.62; 95% CI, 0.44–0.87) [105] and outcome is poorer in adults not 
receiving ART [2] and in those who develop neurological TB-IRIS (discussed below) 
[39]. It is likely that other opportunistic infections acquired during TBM treatment 
contribute to poor outcome in HIV co-infected TBM.

Poor cognitive outcome is a major cause of disability in childhood TBM survi-
vors [19, 107, 108], with intellectual impairment (IQ  ≤  80) observed in 77% 
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(277/359) of predominantly HIV-uninfected children at 6 months follow-up [19]. In 
HIV-uninfected children, cognitive disability manifested as global developmental 
delay without predilection for verbal or performance abilities; risk factors included 
multiple unilateral or bilateral infarction on CT at 1 month, younger age and worse 
TBM disease [107, 108]. Additionally, attention deficit and behavior abnormalities 
are well-known long-term complications seen by clinicians following up children 
with TBM [109]. Two studies from India report cognitive impairment (as measured 
by the mini-mental state examination) in approximately half of HIV-uninfected 
adults 6–12 months after TBM diagnosis [110, 111]. Cognitive impairment corre-
lated with CT findings of exudates and tuberculoma [110] and, low GCS at TBM 
diagnosis [111]. Importantly, HIV infection itself frequently results in neurocogni-
tive impairment as a consequence of neuronal injury and cell death [112, 113]. With 
both TBM and HIV infection individually adversely affecting cognitive and devel-
opmental outcome, clinicians must remain vigilant when following up HIV co-
infected TBM patients to allow early detection and, where possible, intervention.

�Management

�Antimicrobial Treatment

Current antimicrobial treatment recommendations for TBM are based on those for 
pulmonary TB as optimum regimens for CNS TB in adults and children are yet to be 
established by RCTs. Most guidelines recommend that first-line regimens in all cases 
regardless of HIV status consist of rifampicin, isoniazid, pyrazinamide and a fourth 
drug, most commonly ethambutol or streptomycin [90, 114, 115]. These drugs are 
administered for 2  months followed by rifampicin and isoniazid for a further 
7–10 months. A major concern regarding these regimens is that the majority of drugs 
does not cross the BBB sufficiently at the recommended doses and therefore do not 
reach concentrations required to kill the organism effectively in the CNS [116]. 
Malabsorption may further compromise drug exposure in HIV-infected patients 
[117], who frequently have reduced plasma TB drug concentrations compared to 
HIV-uninfected patients [118]. Whereas isoniazid and pyrazinamide have good CNS 
penetration, rifampicin, ethambutol and streptomycin do not. Even though CSF con-
centrations of rifampicin only reach 10–20% compared to that in plasma, the impor-
tance of rifampicin in TBM treatment has been established by the high case-fatality 
rate associated with rifampicin resistance [40, 119, 120]. Regardless of its apparent 
benefit, there is concern that the conventional dose of rifampicin (10 mg/kg/day) is 
too low in TBM, as well as in other forms of TB [121]. Support for this point came 
from recent studies in predominantly HIV-uninfected adults with pulmonary TB that 
showed that a dose of 35 mg/kg/day of rifampicin in combination with other standard 
TB drugs was safe and resulted in faster sputum culture conversion compared to 
standard dose rifampicin [122]. The benefit of ethambutol and streptomycin has not 
been established and in some centers ethionamide (20 mg/kg), that has good CNS 
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penetration [116], is routinely used as the fourth drug in first-line TBM treatment 
[123]. This drug, in combination with high-dose isoniazid (20 mg/kg), rifampicin 
(20  mg/kg) and pyrazinamide (40  mg/kg), seems to be safe and effective when 
administered for 6 months in HIV-uninfected children and 9 months in HIV-infected 
children [124].

Two recent RCTs have assessed higher-than-normal doses of rifampicin and the 
fluoroquinolones moxifloxacin and levofloxacin (that both have good CNS penetra-
tion [103, 125]), in combination with other standard-of-care TB drugs in adults with 
TBM [87, 103]. In the first small trial (7/60 patients HIV-infected), daily rifampicin 
at a dose of 13 mg/kg administered intravenously compared to 10 mg/kg oral rifam-
picin during the first 2 weeks of treatment resulted in higher rifampicin drug expo-
sure in CSF and increased survival (65% vs 35%), however the trial was not powered 
for a mortality outcome [103, 121]. In the same study, moxifloxacin (400  mg or 
800 mg) was not associated with a survival benefit [103]. In a subsequent larger RCT 
(n = 817), the addition of daily levofloxacin (20 mg/kg) and rifampicin (15 mg/kg) 
during the first 2 months of treatment was not associated with improved outcome in 
either HIV-infected or –uninfected patients [87]; It may be that the dose of rifampicin 
was still too low and that much higher doses may prove to be beneficial [13].

Resistance to at least one first-line TB drug is frequently described in TBM 
studies from both resource-rich and resource-poor countries [126], accounting for 
47% of Vietnamese HIV-infected TBM patients in whom drug-susceptibility test-
ing was performed [40]. Isoniazid mono-resistant TBM is associated with poor 
outcome, regardless of HIV status [10, 40, 119, 126]. It has therefore been sug-
gested that an extra drug with effective CNS penetration be added to the standard-
of-care first-line regimen for the duration of TB treatment in these patients [126]. 
This recommendation is supported by one RCT that found a survival benefit with 
a regimen containing additional levofloxacin (and high-dose rifampicin) during the 
first 2 months of treatment in isoniazid mono-resistant adults with TBM [119]. 
Rifampicin mono-resistant and multidrug-resistant (MDR) TBM (resistance to 
rifampicin and isoniazid) are associated with dismal prognoses with mortality 
exceeding 80% in children [127] and up to 100% in HIV-infected and -uninfected 
adults [10, 40, 119, 120]. This is related, at least in part, to the extended time it 
takes to determine drug susceptibility and to start appropriate treatment. As in 
drug-susceptible TBM, treatment guidelines for MDR-TBM and extensively DR 
(XDR)-TBM (resistance to isoniazid, rifampicin, a fluoroquinolone and an amino-
glycoside) are similar to those for extra-CNS TB (Discussed in chapter “Drug-
Resistant Tuberculosis and HIV”).

�Host-Directed Therapies

The majority of the pathology and clinical consequences of TBM is thought to 
occur due to the robust host response against M. tuberculosis and this hypothesis 
has prompted studies investigating host-directed therapies to curb inflammation and 
improve patient outcome [13].
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Adjunctive corticosteroid therapy improves end-of-treatment survival in children 
[128] and HIV-uninfected adults with TBM [70, 129]. Although a similar benefit has 
not been shown in HIV co-infection, dexamethasone, compared to placebo, was associ-
ated with less severe adverse events (mostly hepatitis) in severely immunosuppressed 
(median CD4 count = 66 cells/μL) adults with HIV-associated TBM [70]. The WHO 
therefore recommends a course of either dexamethasone or prednisone during the ini-
tial 6–8 weeks of TB treatment in all TBM cases [130]. In children, oral prednisone at 
2 mg/kg/day for a month followed by a 2-week taper is commonly used [19]. In adults, 
the best evidence comes from a RCT performed in Vietnam that found a significant 
survival benefit in association with the interventional arm [70]; 545 patients with newly 
diagnosed TBM were randomized to placebo or the following dexamethasone regi-
mens according to their BMRC disease grade: Patients with grade II or III disease 
received daily intravenous treatment for 4 weeks (0.4 mg/kg for week 1, 0.3 mg/kg for 
week 2, 0.2 mg/kg for week 3, and 0.1 mg/kg for week 4) followed by oral treatment 
for 4 weeks, starting at a total of 4 mg/day and decreasing by 1 mg each week. Patients 
with grade I disease received 2 weeks of daily intravenous therapy (0.3 mg/kg for week 
1 and 0.2 mg/kg for week 2) followed by 4 weeks of oral therapy (0.1 mg/kg/day for 
week 3, then a total of 3 mg/day, decreasing by 1 mg each week). In some resource-
constrained settings intravenous administration of corticosteroids for 2 to 4 weeks is 
impractical due to limited bed space in public sector hospitals and therefore, oral pred-
nisone at a starting dose of 1.5 mg/kg/day with a 6–8 week taper is used instead [39]. 
As mentioned earlier in the chapter, response to corticosteroids may be influenced by 
LTA4H genotype in certain populations and a trial reassessing the potential benefit of 
corticosteroids in HIV-infected adults is currently ongoing in Vietnam (NCT03092817); 
results of the primary outcome are expected in 2020–2021.

Stroke is a common and menacing complication of TBM that may occur before, 
and often during, TB treatment [72, 73]. Preventing strokes will likely improve patient 
outcome, as such events are frequently associated with permanent neurological dis-
ability [19, 73, 107]. Failure of TB chemotherapy in treating TBM-associated vascu-
litis and the structural similarities it shares with multiple immune vasculitides suggests 
an immune-mediated mechanism [131]. However, corticosteroids have not been 
proven to prevent strokes in TBM [72, 128]. The role of aspirin, which has both anti-
platelet and anti-inflammatory properties, is well established in stroke prevention out-
side the context of TBM. Two RCTs have investigated adjunctive aspirin in TBM 
patients [132, 133]. Children (5% HIV-infected) who received daily low-dose (75 mg) 
aspirin, high-dose (100 mg/kg) aspirin or placebo during the first month of TB treat-
ment showed similar neurological outcomes at 6-months follow-up [132]. However, 
children in the high-dose aspirin group were younger and had significantly more fre-
quent hemiparesis at presentation compared to the other groups, suggesting a possible 
benefit for high-dose aspirin in childhood TBM.  A RCT in predominantly adult 
patients (HIV status not noted) found that aspirin 150 mg daily, compared to placebo, 
resulted in a significant lower mortality and less strokes on MRI at 3 months follow-
up [133]. Although results of these two studies are promising, larger trials need to be 
conducted that also include more HIV-infected patients, prior to advocating the rou-
tine use of aspirin in TBM.
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�Management of Hydrocephalus

Hydrocephalus is a common complication of TBM and associated with poor outcome 
[134, 135]. The optimal treatment of raised intracranial pressure in the context of TBM-
associated HC is uncertain as no RCTs exists to inform standardized practices [136]. 
Distinguishing between CHC and OHC is important as treatment strategies may differ 
[136, 137]. Communicating HC is the most common form in both adults and children, 
accounting for up to 80% of childhood HC cases [19, 134, 137, 138]. Computed tomog-
raphy and MRI are often unable to determine the level of CSF block in TBM [134, 139, 
140]. The simplest robust method to differentiate between OHC and CHC is air-enceph-
alography, which involves injecting 5–10 ml air during LP [19, 140]. The presence of air 
in the ventricular system by lateral skull x-ray 30 min later indicates patency of the 
ventricular system (i.e. CHC), whist air is only visualized in the basal cisterns in OHC.

Communicating HC can be treated effectively with medical management includ-
ing diuretics (furosemide and acetazolamide) and or regular (up to daily) LP to 
achieve opening pressures of less than 20 cm H2O [136, 137, 141]. These strategies, 
best described in children, effectively manage raised intracranial pressure in 
74–91% of patients [67, 137, 138, 141], usually within 7 days [142]. Patients who 
present with severely depressed level of consciousness; deteriorate clinically and 
have progressive hydrocephalus on CT; and those in whom normal opening pres-
sures are not achieved after three to 4 weeks of medical therapy, should be consid-
ered for surgical intervention (discussed below).

Treatment options for OHC are all surgical, including external ventricular drain 
(EVD), ventriculo-peritoneal shunting (VPS) and endoscopic third ventriculostomy 
(ETV) [136, 137, 143]. Endoscopic third ventriculostomy, during which a stoma is cre-
ated in the floor of the third ventricle allowing CSF flow into the subarachnoid space, 
has only recently emerged as a treatment option for TBM [136]. Criteria for any surgi-
cal procedure and the choice of intervention in TBM vary greatly between centers [136, 
144]. Some base their decision to intervene not on the type of HC (communicating vs 
obstructive) but on the patient’s clinical state, with those with normal or conversely, 
severely impaired consciousness being excluded from surgery [144]. Furthermore, 
some advocate that patients with a low GCS (less than 9) should first undergo EVD and 
that VPS only be offered to those who show significant neurological improvement over 
the following one to two days [143, 145]. Complications related to VPS in all TBM 
patients occur in ~22% of cases, most commonly shunt blockage leading to shunt revi-
sion and infections [144]. Up to 29% of ETV procedures may suffer complications 
especially infection, intraoperative bleeding and CSF leak [146, 147]. Little data are 
available from head-to-head studies on the efficacy of VPS compared to ETV in TBM; 
In one pediatric study VPS and ETV showed similar outcomes (54% vs 42% success-
ful) and complication rates (17% vs 29%) but the sample size was small (24 in each 
arm) [146]. Clinical outcome following VPS is significantly influences by TBM 
severely; less than a third of patients with a GCS less than 9 had a “good outcome” 
(defined as good recovery or moderate disability), compared to more than 75% of those 
fully conscious at presentation [144]. HIV-infected patients generally show poor 
response to VPS; in the only two studies that compared outcome according to HIV 
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status [145, 148], only 24–27% of HIV-infected compared to 60–65% of -uninfected 
patients had a “good outcome” and 1-month mortality associated with HIV was 67% 
[148]. It should be taken into account that the HIV-infected patients in these studies 
were severely immunosuppressed (median CD4 = 121–143 cells/μL) and not receiving 
ART; findings may be less grim in the context of a more preserved or recovered immune 
system. In studies that included adults and children with TBM, 64–73% showed clini-
cal improvement after ETV [149, 150], but this procedure is yet to be described in 
HIV-infected patients. Risk factors for ETV failure include the presence of cisternal 
basal exudates that clouds the surgeon’s vision to the floor of the third ventricle, and 
worse TBM disease (BMRC grade III) [149]. As HIV co-infection may result in less 
basal exudates thereby decreasing the chances of accidental damage to the basilar 
artery [43], EVT should be explored as a therapeutic option in this group.

�Supportive Management

An important component to the management of TBM is general supportive care. 
Simple measures such as treating fever; managing hypoxia with supplemental oxy-
gen via face mask or nasal prongs; ensuring adequate hydration (orally or intrave-
nously) and optimal nutrition; and correcting glucose disturbances may all contribute 
to improved outcome [136].

Hyponatremia is arguably the most prevalent and hazardous metabolic conse-
quence of TBM and should be identified, and treated, as soon as possible [136]; 
SIADH and CSW are frequently implicated in the pathogenesis but other alterna-
tive/additional causes (listed earlier) should be excluded or addressed. SIADH is 
characterized by fluid retention and has historically been treated with fluid restric-
tion, whilst CSW is associated with fluid depletion and requires fluid replacement. 
The distinction between SIADH and CSW is often difficult and implementing the 
wrong strategy may result in clinical deterioration [136, 151]. Recently it has been 
suggested that all cases of hyponatremia complicating intracranial pathology should 
be treated with hypertonic saline (3% or 5% saline), regardless of volume status [67, 
136, 151]. Hypertonic saline should ideally be administered in a high-care setting 
with close monitoring of fluid infusion rate, blood sodium concentrations and urine 
output, as rapid sodium correction may result in the osmotic demyelination syn-
drome that may be associated with severe, permanent neurological disability [152]. 
Suggested safe rates of sodium corrections include 6 to 8 mmol/L in 24 h, 12 to 
14 mmol/L in 48 h, and 14 to 16 mmol/L in 72 h [153].

�Tuberculoma

Tuberculoma is a major cause of intra-cerebral space-occupying lesions (SOLs) in 
high TB endemic settings and in HIV-infected patients [9, 154–156]. The lesions 
most commonly occur within the brain parenchyma, but may also be found at other 
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sites in the cranium such as dura mater and leptomeninges, subdural and subarach-
noid space, and within the ventricular system [80, 157]. Rarely, the spinal cord may 
be involved [158] (Fig. 2a, b). Parenchymal tuberculoma (discussed hence forth), is 
frequently associated with TBM, but can evolve without evidence of meningeal or 
extra-CNS disease [55, 74].

Fig. 2  Magnetic resonance imaging of intraspinal TB in HIV-infected patients (a–c, e and f are 
post-gadolinium T1-weighted images and d is a T2-weighted image; all were taken in the sagittal 
planes). (a) Intramedullary tuberculoma in an adult not receiving ART (CD4 count = 213). (b) 
Multiple subdural tuberculomas in an adult who was receiving treatment for lymph node TB, com-
menced ART 1 month later and developed spinal symptoms 4 months thereafter (CD4 count = 144). 
(c) Epidural (short arrow) and paravertebral abscess (long arrow) without bony involvement in an 
adult receiving ART for unknown duration (CD4 count = 130). (d) Syringomyelia in an adult not 
receiving ART who developed spinal symptoms 3 years after completing TBM treatment (CD4 
count unknown). (e) Extensive subdural exudate (leptomeningitis) in a child not receiving ART 
(CD4 count = 427). F) Myelitis in an adult not receiving ART (CD4 count = 250). Abbreviations: 
ART, antiretroviral therapy; CD4 count, CD4+ T-lymphocyte count expressed as cells/μL
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�Clinical Presentation

Clinical data specific to HIV co-infection are limited to case reports and small case 
series, but findings appear to be similar to HIV-uninfected patients [57, 159–161]. 
Symptom duration to presentation varies from days to months, and findings from 
one small study (n = 9) [160] suggests that time to diagnosis may be shorter in HIV-
infected (~4 weeks) compared to HIV-uninfected (~16 weeks) patients [55, 57, 159, 
162–164]. The neurological findings depend on the location of the lesion in the 
brain. Similar to other SOLs, tuberculoma manifests as raised intracranial pressure 
(headache, vomiting, papilledema and depressed level of consciousness), visual dis-
turbances and or progressive focal neurological deficits [55, 57, 159–161]. 
Additional signs of meningitis (e.g. meningism, cranial nerve palsies) or other organ 
involvement may also be present. Lumbar puncture should be performed unless 
contra-indicated, as it may assist in supporting the diagnosis and excluding other 
etiologies (Table 1). Cerebrospinal fluid examination frequently shows features sug-
gestive of concomitant TBM, but routine examination may be normal; culture for 
M. tuberculosis is rarely positive [57, 74, 159, 165]. As for TBM, ancillary investi-
gations such as chest radiograph and sputum examination frequently show extra-
meningeal involvement (50–75% of HIV-infected cases) [54, 57, 162, 165–167].

�Brain Imaging

Contrast enhancing brain lesions are usually described at similar frequency in HIV-
infected and uninfected TBM patients (0–60% vs 0–27%) [59, 77, 168], however 
one study reports more frequent mass lesions in association with HIV (60% vs 14%) 
[169]. Tuberculoma presents as one or more well-circumscribed lesions of variable 
size (usually between 1 mm to 3 cm in diameter), that most commonly shows a ring 
or homogenous post-contrast enhancement pattern on CT and MRI; lesions may 
involve any part of the brain, including supra- and infra-tentorial structures and is 
often associated with surrounding edema [74, 77, 164, 168]. A miliary pattern is 
also frequently described, especially in children [25]. TB abscesses are characteris-
tically solitary, large (>3 cm), multi-loculated, thin-walled enhancing lesions, how-
ever they may be indistinguishable from caseating tuberculoma with a liquid center 
[53, 58]. TB abscess may be more frequent in HIV-infected patients, occurring in up 
to 20% of HIV-associated neurological TB cases [168].

The differential diagnosis of ring-enhancing brain lesions is vast and includes 
infective, neoplastic, inflammatory and demyelination conditions [170] (Table  1 
includes a limited list of infective causes for SOLs in HIV). Toxoplasma encephali-
tis is widely regarded as the most common cause of SOLs in HIV-infected patients 
globally, which may occur concurrently with TBM [43, 171], followed by primary 
CNS lymphoma (PCNSL) in low TB-incidence settings [155, 172–175]. However, 
several studies from TB endemic settings reported tuberculoma as the most frequent 
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cause of SOL in HIV [154, 156]. The radiological presentation of tuberculoma is 
often indistinguishable from PCNSL and toxoplasmosis (as well as other infective 
etiologies) by CT and MRI, including alternative MRI techniques such as perfusion-
weighted MRI and proton MR spectroscopy [176]. The role of nuclear medicine 
examinations such as Thallium-201 single-photon emission computed tomography 
(SPECT) and 18-fluorodeoxyglucose PET, especially to distinguish infective causes 
of SOLs, remains to be defined.

�Approach to Space-Occupying Lesions in HIV

Brain biopsy is the only definitive diagnostic test for focal brain lesions, but is inva-
sive and not readily available in high TB/HIV prevalence settings. As a result, 
numerous clinical algorithms have been derived to guide the approach to HIV-
associated SOLs [154, 156, 170, 172, 174]. One management strategy is to treat all 
cases with an initial trial of anti-toxoplasma treatment, which will result in a clinical 
or radiological response within 10 to 14 days in most toxoplasma cases [155, 170, 
172]. If there is no response, a brain biopsy should be considered to establish a 
definitive diagnosis.

An alternative approach for high TB incidence settings is to treat patients for 
either tuberculoma or toxoplasmosis based on the most likely cause as determined 
by clinical and investigative findings [154, 156]. Other causes resulting in similar 
radiological findings such as cryptococcoma, syphilitic gumma and bacterial 
abscess should also be excluded as far as possible, by blood tests and CSF analysis. 
Although not absolute, criteria in favor of tuberculoma versus toxoplasmosis include 
the following: (1) features of extra-CNS TB (e.g. by chest radiograph); (2) a well-
preserved CD4 count (>200 cells/μL); (3) evidence of concomitant TBM by LP (i.e. 
markedly raised cell count and decreased glucose concentrations) or brain imaging 
(i.e. BME); (4) a negative toxoplasma serum IgG antibody test and; (5) use of anti-
toxoplasma prophylaxis [154, 156, 174, 177]. If patients do not respond to either of 
the two treatment modalities, the alternative should be added. However, in some 
cases it is appropriate to start dual treatment at presentation, especially in acutely ill 
patients (e.g. a depressed level of consciousness) or when there is a suspicion of 
dual infection. Only if there is no clinico-radiological response to either or a combi-
nation of these two treatments should a brain biopsy be considered.

�Surgical Management

Early surgical intervention may be warranted in some cases, including (1) single 
lesions with negative Toxoplasma gondii serum serology, requiring a diagnostic 
biopsy (open or stereotactic); (2) large tuberculoma with mass effect threatening 
impending herniation, or abscess, requiring an open biopsy with decompression 
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and; (3) OHC secondary to compression of the ventricular system by tuberculoma, 
requiring CSF diversion procedures (discussed above) [58, 172].

�Prognosis

Mortality rates during TB treatment vary between 0 and 23% [73, 162, 163, 165, 
166, 178], with full clinical recovery reported in 40–92% of HIV-uninfected tuber-
culoma cases [162, 163]. Limited data in HIV-infected cases report mortality rates 
of 9–29% during treatment [57, 160, 165, 167, 179], with a good response to treat-
ment seen in up to 90% of cases [167]. It appears that the presence of tuberculoma 
does not increase the risk of mortality in the context of TBM [72, 73, 163]. Serial 
brain imaging is frequently performed to assess response to treatment, however, a 
caveat in such an approach is that tuberculoma may enlarge paradoxically or, new 
lesions may appear after commencing appropriate TB treatment both in HIV-
infected [180–183] and -uninfected patients [72, 73, 110, 164, 184, 185]. After 9 
months of therapy, tuberculoma may still be present in 60–82% of HIV-uninfected 
cases, although a large proportion of these patients are asymptomatic [72, 164]. 
However, other groups report resolution of tuberculoma during TB treatment in 
more than 80% of cases [73, 166, 178].

�Duration of TB Treatment

The WHO recommends TB treatment for 9–12 months in all forms of CNS TB, 
including tuberculoma, however treatment is often prolonged to 18–24 months in 
those who have persistent contrast enhancement of lesions [164, 166, 186, 187]. 
The practice to extend TB treatment past the conventional treatment period is not 
evidence-based and whilst some authors recommend continuation of TB treatment 
until resolution of tuberculoma [186], others suggest that there is no additional ben-
efit in continuing TB treatment beyond 18 months [187]. As for all forms of CNS 
TB, adjunctive corticosteroids should be prescribed in all patients in whom a strong 
suspicion of tuberculoma exists [90]. In steroid-resistant tuberculoma and abscess, 
thalidomide (a potent TNF-α inhibitor) has been effective in both adults and chil-
dren (including HIV-infected patients) [183, 188, 189].

�Intraspinal Tuberculosis

Tuberculosis of the spine can be divided into vertebral (bony) and non-bony (referred 
to as intraspinal TB in this chapter) manifestations. This section will focus on the 
latter, which is rare compared to intracranial TB [190, 191]. Several studies have 
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reported TB as a major cause of myelopathy and or radiculopathy in high HIV/TB 
co-infection settings [192–194], accounting for 68% (84/123) of HIV-infected 
patients with a myelopathy or cauda equina syndrome in whom an etiological cause 
was confirmed [192]. However, there is a paucity of literature on the presentations, 
MRI findings and outcomes of HIV-associated intraspinal TB; only case reports and 
few case series exist [192, 194–202].

�Pathogenesis and Pathology

Intraspinal TB may be brought about in three different ways [191]:

•	 Cephalocaudal extension of intracranial meningitis (conversely, spinal manifes-
tations may also precede TBM, suggestion an “upward” spread of the infection 
in some cases)

•	 Primary involvement of spinal meninges after hematogenous dissemination from 
extra-neural sites of infection (i.e. the initial presentation of CNS tuberculosis)

•	 As an extension of vertebral TB (transdural extension of TB spondylitis)

Intraspinal TB manifests pathologically as one or more of the following: lepto-
meningitis, tuberculoma, myelitis, abscess and syringomyelia [190, 191, 203], all of 
which have been described in HIV-infected patients [192, 195–202] (Fig. 2). Spinal 
leptomeningitis, that is pathologically identical to the intracranial variant, is by far 
the most common finding recorded in HIV-uninfected patients [190, 191]. The typi-
cal gelatinous exudate may fill the entire space between the dura mater and the cord, 
encasing the spinal cord and nerve roots and resulting in variable degrees of tissue 
damage by direct compression or infiltration. Local vasculitis occurs frequently, 
leading to ischemia and infarction, whilst congested veins may result in cord edema. 
In the chronic stage of infection, exudates become organized and an adhesive arach-
noiditis may develop characterized by arachnoidal collagenosis.

Intraspinal tuberculoma may develop within the spinal cord (intramedullary) or 
in the subarachnoidal and subdural spinal spaces (intradural, extramedullary) [158, 
201] [203]. Intramedullary spinal tuberculoma may occur in the context of lepto-
meningitis, but may also be seen without evidence of overt spinal meningeal dis-
ease [158, 202]. Tuberculous myelitis is characterized by inflammation of the 
spinal cord that usually affects more than one spinal segment and most commonly 
involves the thoracic spine [196, 204]. Epidural TB abscess is typically seen as a 
complication of bony spinal TB [205, 206], but rare cases of primary epidural 
abscess without evidence of vertebral involvement have been described [200, 207–
210]. Syringomyelia, a complication of intraspinal TB, is characterized by cystic 
cavities within the spinal cord due to abnormal CSF dynamics and may develop 
days to weeks after TBM diagnosis or develop years after TB treatment completion 
[190, 197, 200, 211].
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�Clinical Presentation

In general, intraspinal TB may present acutely (over a few days) or progress sub-
acutely over a few months; less frequently a slowly progressive course over 6 months 
to years has been described [195, 197–199, 202, 204, 212–214]. Symptoms and 
signs may originate from nerve roots (such as radicular pain, paresthesias, sphincter 
dysfunction and lower motor neuron signs) or the spinal cord (such as upper or 
lower motor neuron signs, sphincter dysfunction and a sensory level); a combina-
tion of root and cord signs (i.e. radiculo-myelopathy) is typical [197–199, 212]. In 
the majority of patients the lower limbs are preferentially involved with upper limbs 
being spared or less severely affected [190, 196, 197, 199]. Clinically-evident spinal 
TB may present concurrently with TBM [192, 196, 201, 204] or manifest prior to, 
during or following TBM treatment [195, 197, 200, 212, 214]. Asymptomatic spinal 
leptomeningitis (as evidenced by MRI findings) is also increasingly reported in 
TBM [196, 203, 215]; in a study of childhood TBM, 70% (23/33) of cases in whom 
MRI spine was performed had asymptomatic intraspinal disease [203]. Cerebrospinal 
fluid findings suggestive of spinal disease during TBM include a dry tap during LP 
(i.e. the inability to release CSF), which results from the presence of excessive 
arachnoidal exudate and adhesions in the lumbar thecal sac [203, 212], and a mark-
edly raised CSF protein (>2.50 g/l), which may be due to a spinal block [196, 203, 
212]. Conversely, patients with isolated intramedullary disease, such as tubercu-
loma, may have no or little CSF inflammatory changes [213, 216].

�Spinal Imaging

MRI is the imaging modality of choice in the screening of patients with suspected 
intraspinal TB [53, 61]. Findings of leptomeningitis include one or more of the fol-
lowing: CSF loculations, obliterations of the spinal subarachnoid space and thick-
ened, clumped nerve roots [197]. The spinal cord may show expansion, compression 
or atrophy [195]. Intramedullary hyperintensity on T2-weighted image may reflect 
cord edema, ischemia and or myelitis [53, 195, 204]. Contrast-enhanced MRI shows 
variable degrees of enhancement of nerve roots, surface of the spinal cord and sub-
arachnoid space, which may be linear, nodular or occlusive. Myelitis is often, but 
not always associated with intramedullary enhancement and in some cases imaging 
may be completely normal [192, 202, 204, 217]. Tuberculoma and abscess have 
similar features to those described for intracranial disease [195, 198, 202]. 
Syringomyelia presents as a central cavity within the spinal cord demonstrating 
CSF intensity on T1- and T2-weighted imaging without enhancement [53, 197, 200].

The differential diagnosis of intraspinal TB in HIV is vast and depends on the 
clinical presentation and, disease location and extent as seen on MRI [192, 193, 
218, 219] (Table 1); an exhaustive list is beyond the scope of this chapter. Common 
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alternative infective causes include those discussed for intracranial disease. In addi-
tion, primary spinal tumors and metastatic disease should be considered. Pyogenic 
abscess is the most common cause of epidural collection and requires exclusion in 
all such cases [220]. If diagnostic uncertainty exists, MRI brain is advised, which 
may show features of silent concomitant intracranial TB [158, 198, 216].

�Treatment

Medical management is the mainstay of treatment for spinal TB and is the same as 
for other forms of neurological TB, including TB treatment and corticosteroids; in 
some cases the duration of TB treatment is extended to 18 months [90, 190, 195, 
197]. The indications for additional surgical intervention are not clear cut and not 
based on evidence from RCTs. It is recommended that surgery (such as excision or 
drainage procedures) be individualized and guided by the extent and nature of the 
lesion, response to medical therapy and severity of neurological deficit [61, 190]. 
Surgery may also be warranted if a histological diagnosis is required [90, 190]. CSF 
diversion procedures such as syringo-subarachnoidal and syringo-peritoneal shunt-
ing have been used to treat syringomyelia in general, however these are associated 
with high rates of failure and shunt blockage in cases of TB leptomeningitis [211]. 
Arachnolysis is a newer surgical technique that is associated with decreased recur-
rent rates and improved outcomes [221]. It has recently been suggested that a com-
bination of endoscopic arachnolysis and syringo-subarachnoid shunting may be an 
effective strategy in selected post-TB syringomyelia cases [211].

�Prognosis

Published details of outcomes (mortality and morbidity) of intraspinal TB are lim-
ited to small case series and rates of complete recovery are often not reported [158, 
196, 201, 213, 222, 223]. In a literature review of all intraspinal TB cases complicat-
ing TBM (n = 147), Garg et al. [190] report improvement in 57.5%, neurological 
sequelae in 14.2%, no change in 10.6% and death in 17.6% of cases. In HIV-infected 
patients, symptomatic improvement on medical treatment with or without surgical 
intervention has been reported [195, 197, 198, 200], although patients may remain 
static [199] and not all survive [202]. Spinal disease is likely a risk factor for poor 
outcome in TBM; in a study of predominantly HIV-uninfected patients, 34% with 
concomitant intraspinal disease died or were left severely disabled (Modified 
Barthel index <12) at 6 months follow-up, compared to 13% without intraspinal TB 
[196]. Spinal cord atrophy, cavitation and the presence of syrinx on MRI may be 
associated with poor outcome in intraspinal TB [190].
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�Neurological TB-IRIS

Deterioration of CNS TB after an initial improvement on appropriate TB treatment, 
referred to as “paradoxical reaction”, is well described in both HIV-infected and 
-uninfected patients [163, 185, 195, 197, 224–226]. When such deterioration occurs 
in HIV-infected patients after ART initiation during TB treatment, it is referred to as 
“paradoxical TB-IRIS” (also see chapter “The Tuberculosis-Associated Immune 
Reconstitution Inflammatory Syndrome (TB-IRIS)”) [227]. In the other form of 
TB-IRIS, namely “unmasking TB-IRIS”, untreated TB disease becomes apparent 
after ART initiation. This section will focus on paradoxical TB-IRIS.

HIV is an independent risk factor for developing paradoxical TB reactions in 
patients with TBM [224]. Neurological TB-IRIS is common in adults in TB 
endemic settings, accounting for the majority of cases (21%) of CNS deteriora-
tion during the first year of ART in a South African study [181]. In the same set-
ting, the CNS was involved in 12% of TB-IRIS cases [182] and TBM-IRIS 
developed in almost half of TBM patients starting ART 2 weeks after TB treat-
ment initiation [39]. Neurological TB-IRIS in children is poorly documented; 
only one case series exists [183].

�Pathogenesis and Pathology

The immunopathogenesis of neurological TB-IRIS remains unclear, but a series of 
recent studies from South Africa has shed some light on mechanisms involved [36, 
39, 228]. In their prospective study, Marais et al. [39] enrolled ART-naïve, HIV-
infected adults at TBM diagnosis when they commenced TB treatment and 
adjunctive corticosteroids. Antiretroviral treatment was started 2 weeks later and 
patients were followed for the development of TBM-IRIS. Serial LP was performed 
at TBM diagnosis, 2 weeks later (prior to ART initiation) and 2 weeks thereafter and 
or at time of TBM-IRIS development. Patients who subsequently developed TBM-
IRIS (16/34) were significantly more likely to have a positive CSF M. tuberculosis 
culture at baseline compared to those who did not (15/16 vs 7/18; RR = 9.3, 95% 
CI, 1.4–62.2, p = 0.004). This supports the inference that high bacillary load predis-
poses to TB-IRIS [229] and highlights the importance of optimizing TB treatment 
prior to ART initiation. Other CSF findings that predicted subsequent IRIS were 
high CSF neutrophil counts (median = 50 vs 3 cells x 106/l) and the combination of 
high TNF-α and low IFN-γ. TBM-IRIS was associated with a marked, compartmen-
talized inflammatory response in the CSF both at TBM diagnosis and at IRIS pre-
sentation that included increased concentrations of a wide range of pro-inflammatory 
and anti-inflammatory cytokines, chemokines, MMPs and neutrophil-associated 
peptides [36]. Of these, the neutrophil-associated peptide S100A8/A9 was the only 
inflammatory mediator to differentiate TBM-IRIS from culture positive non-IRIS 
patients after ART initiation. Although protein levels of inflammatory mediators 
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were similar in blood between IRIS and non-IRIS patients, blood transcriptomic 
analysis revealed significantly more abundant neutrophil-associated transcripts 
from before development of IRIS through IRIS symptom onset [228]. After ART 
initiation, transcripts associated with canonical and non-canonical inflammasomes 
were increased in IRIS patients compared to non-IRIS patients. These findings sup-
port a dominant role for the innate immune system in the pathogenesis of neurologi-
cal TB-IRIS, which may inform future studies investigating host-directed therapies 
in the treatment and prevention of the syndrome.

�Clinical Presentation

The onset of worsening, new or recurrent neurological TB symptoms occurs at 
a median of 14 days, and usually within 3 months of ART initiation, however 
occasionally patients develop the typical presentation at later timepoints [39, 
230]. In the only childhood series, IRIS events occurred within 3 weeks of ART 
initiation [183]. Neurological TB-IRIS may present as any form of neurological 
TB, including TBM [39, 181, 182, 230], intracranial tuberculoma [39, 181, 182] 
or abscess [58, 231] or intraspinal TB [39, 181, 182], with clinical features as 
described in previous sections (Fig. 2b). Neurological manifestations described 
in children include newly acquired neck stiffness, intracranial and intraspinal 
tuberculous mass lesions, radiculomyelitis, HC, visual compromise and sei-
zures [183]. Although clinical characteristics at time of TBM diagnosis were 
mostly similar between adults who did and did not develop subsequent TBM-
IRIS, TBM-IRIS patients had longer symptom duration (median 19 vs 9 days), 
more frequent chest radiograph abnormalities (81% vs 50%) and lower serum 
sodium concentrations (median 123 vs 130  mmol/l), which may reflect more 
disseminated TB disease [39].

The diagnosis of neurological TB-IRIS requires exclusion of other causes for 
deterioration, as no confirmatory diagnostic test exists [227]. Differential diagno-
ses include TB drug resistance, poor adherence to TB treatment or ART, drug 
reactions or toxicities (e.g. efavirenz-induced psychosis) and other opportunistic 
infections (e.g. CM and progressive multifocal leucoencephalopathy [PML]-
IRIS). Patients may also deteriorate due to the natural progression of TBM (e.g. 
strokes). Ideally patients should have repeat brain imaging and LP at time of IRIS 
presentations to aid diagnosis and exclusion of other causes. TB-IRIS (including 
all organ manifestations combined) usually has a benign disease course, with 
death attributed to TB-IRIS occurring in 2% of cases [232]. In neurological 
TB-IRIS however, raised intracranial pressure due to cerebral inflammation in the 
confined intracranial space may result in complications such as compression of 
viral brain structures and brain herniation, that could explain the high associated 
mortality rates (13% - 75%) reported in this form [39, 182, 230].
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�Time of ART Initiation in TBM

Trials in extra-neural TB have consistently shown a mortality benefit in severely 
immunosuppressed patients (CD4 < 50 cells/μL) who start ART early (2–4 weeks 
after TB treatment initiation) compared with later (8 weeks after TB treatment ini-
tiation), in spite of a significantly increased risk of developing TB-IRIS in the early 
arms [233–235]. The optimal time to start ART in neurological TB is still uncertain; 
only one adult study has addressed this question [105]. Torok et al. reported no dif-
ference in nine-month mortality between adults with TBM (median CD4 count = 41 
cells/μL) who started ART early (within seven days of TB treatment initiation) com-
pared to later (8 weeks after TB treatment initiation). This study did not report the 
incidence of neurological TB-IRIS, but an increased frequency of severe adverse 
events occurred in the early ART arm. Because of these findings and the potentially 
increased risk of developing life-threatening neurological TB-IRIS manifestations 
with early ART initiation, some guidelines suggests delaying ART (up to 8 weeks) 
after starting TB treatment in all TBM patients [236, 237]. An important component 
of initiating ART during TBM treatment involves counseling patients regarding the 
potential of developing neurological TB-IRIS. Patients should be advised to con-
tinue their ART and to present themselves to medical care if any symptomatic dete-
rioration occurs.

�Treatment

Corticosteroids are the only treatment modality for which clinical trial data in 
TB-IRIS exist. In a RCT that included mild to moderate TB-IRIS cases, daily pred-
nisone (1.5  mg/kg for 2  weeks followed by 0.75  mg/kg for a further 2  weeks) 
compared to placebo was associated with more rapid symptom relief and reduced 
the duration of hospitalization and need for therapeutic procedures [238]. However, 
this study did not include cases with severe forms of IRIS such as those with neuro-
logical involvement. Corticosteroid therapy has anecdotally been associated with 
good outcome in neurological TB-IRIS [39, 182], and is commonly used to treat 
such cases, but the choice of drug (prednisone, methylprednisone or dexametha-
sone) and, dose and duration of treatment, are not standardized [239]. Some experts 
suggest a dose of 1.5 mg/kg/day of prednisone (or equivalent) for 2–4 weeks fol-
lowed by a gradual taper depending on the clinical response in adults [240]. 
Although 2–4 months of treatment is adequate in most cases, some may relapse 
after treatment discontinuation, necessitating re-initiation of treatment [39, 241]. If 
the diagnosis of IRIS is questionable, corticosteroids should be deferred pending 
further investigations. It is important to note that corticosteroids do not prevent neu-
rological TB-IRIS; in one study 13/16 TBM cases were receiving prednisone 
(0.75–1.5  mg/kg/day) at time of neurological TB-IRIS presentation [39]. Case 
reports describing a good response of TB-IRIS to numerous other anti-inflammatory 
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agents (e.g. non-steroidal anti-inflammatory drugs, thalidomide, pentoxifylline, 
mycophenylate mofetil and montelukast) have been published, but none of these 
have been investigated in RCTs [183, 189, 239]. Antiretroviral therapy should be 
continued as far as possible during the IRIS episode as discontinuation may result 
in the acquisition of ART drug resistance and leave patients vulnerable to other 
opportunistic infections. However, temporary interruption of ART should be con-
sidered in cases with depressed level of consciousness or severe disease not respon-
sive to corticosteroids [242].

References

	 1.	Sandgren A, Hollo V, van der Werf MJ (2013) Extrapulmonary tuberculosis in the European 
Union and European Economic Area, 2002 to 2011. Euro Surveill 18(12)

	 2.	Efsen AM, Panteleev AM, Grint D, Podlekareva DN, Vassilenko A, Rakhmanova A, et al. TB 
meningitis in HIV-positive patients in Europe and Argentina: clinical outcome and factors 
associated with mortality. Biomed Res Int 2013;2013:373601

	 3.	Kingkaew N, Sangtong B, Amnuaiphon W, Jongpaibulpatana J, Mankatittham W, Akksilp S 
et al (2009) HIV-associated extrapulmonary tuberculosis in Thailand: epidemiology and risk 
factors for death. Int J Infect Dis 13(6):722–729

	 4.	Leeds IL, Magee MJ, Kurbatova EV, del Rio C, Blumberg HM, Leonard MK et al (2012) Site 
of extrapulmonary tuberculosis is associated with HIV infection. Clin Infect Dis 55(1):75–81

	 5.	Nicol MP, Sola C, February B, Rastogi N, Steyn L, Wilkinson RJ (2005) Distribution of strain 
families of Mycobacterium tuberculosis causing pulmonary and extrapulmonary disease in 
hospitalized children in Cape Town, South Africa. J Clin Microbiol 43(11):5779–5781

	 6.	Berenguer J, Moreno S, Laguna F, Vicente T, Adrados M, Ortega A et al (1992) Tuberculous 
meningitis in patients infected with the human immunodeficiency virus. N Engl J  Med 
326(10):668–672

	 7.	Marais S, Thwaites G, Schoeman JF, Torok ME, Misra UK, Prasad K et  al (2010) 
Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect 
Dis 10(11):803–812

	 8.	Bahr NC, Nuwagira E, Evans EE, Cresswell FV, Bystrom PV, Byamukama A et al (2017) 
Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected 
adults: a prospective cohort study. Lancet Infect Dis. Sept 14 [Epub ahead of print]

	 9.	Dastur DK, Manghani DK, Udani PM (1995) Pathology and pathogenetic mechanisms in 
neurotuberculosis. Radiol Clin N Am 33(4):733–752

	 10.	Vinnard C, King L, Munsiff S, Crossa A, Iwata K, Pasipanodya J et al (2017) Long-term mor-
tality of patients with tuberculous meningitis in New York City: a Cohort Study. Clin Infect 
Dis 64(4):401–407

	 11.	Ducomble T, Tolksdorf K, Karagiannis I, Hauer B, Brodhun B, Haas W et al (2013) The bur-
den of extrapulmonary and meningitis tuberculosis: an investigation of national surveillance 
data, Germany, 2002–2009. Euro Surveill 18:12

	 12.	Centers for Disease Control and Prevention (CDC). Reported tuberculosis in the United 
States, 2015. Atlanta: US Department of Health and Human Services, CDC; 2016. Available at 
https://www.cdc.gov/tb/statistics/reports/2015/pdfs/2015_Surveillance_Report_FullReport.
pdf. Accessed 11 Oct 2017

	 13.	Wilkinson RJ, Rohlwink U, Misra UK, van Crevel R, Mai NTH, Dooley KE et al (2017) 
Tuberculous meningitis. Nat Rev Neurol 13(10):581–598

	 14.	Jarvis JN, Meintjes G, Williams A, Brown Y, Crede T, Harrison TS (2010) Adult meningitis 
in a setting of high HIV and TB prevalence: findings from 4961 suspected cases. BMC Infect 
Dis 10:67

Neurological TB in HIV

https://www.cdc.gov/tb/statistics/reports/2015/pdfs/2015_Surveillance_Report_FullReport.pdf
https://www.cdc.gov/tb/statistics/reports/2015/pdfs/2015_Surveillance_Report_FullReport.pdf


324

	 15.	Cohen DB, Zijlstra EE, Mukaka M, Reiss M, Kamphambale S, Scholing M et  al (2010) 
Diagnosis of cryptococcal and tuberculous meningitis in a resource-limited African setting. 
Tropical Med Int Health 15(8):910–917

	 16.	Boulware DR, Meya DB, Muzoora C, Rolfes MA, Huppler Hullsiek K, Musubire A et al 
(2014) Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl 
J Med 370(26):2487–2498

	 17.	Marais S, Pepper DJ, Schutz C, Wilkinson RJ, Meintjes G (2011) Presentation and outcome 
of tuberculous meningitis in a high HIV prevalence setting. PLoS One 6(5):e20077

	 18.	Wolzak NK, Cooke ML, Orth H, van Toorn R (2012) The changing profile of pediatric men-
ingitis at a referral centre in Cape Town, South Africa. J Trop Pediatr 58(6):491–495

	 19.	van Well GT, Paes BF, Terwee CB, Springer P, Roord JJ, Donald PR et al (2009) Twenty years 
of pediatric tuberculous meningitis: a retrospective cohort study in the western cape of South 
Africa. Pediatrics 123(1):e1–e8

	 20.	Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK (2008) Central nervous system tuber-
culosis: pathogenesis and clinical aspects. Clin Microbiol Rev 21(2):243–261

	 21.	Hektoen L (1896) The Vascular Changes of Tuberculous Meningitis, Especially the 
Tuberculous Endarterities. J Exp Med 1(1):112–163

	 22.	Rich AR, McCordock HA (1933) The pathogenesis of tuberculous meningitis. Bull Johns 
Hopkins Hosp 52:2–37

	 23.	Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR (2006) Mycobacterium 
tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a patho-
genic mechanism for central nervous system tuberculosis. J Infect Dis 193(9):1287–1295

	 24.	Donald PR, Schaaf HS, Schoeman JF (2005) Tuberculous meningitis and miliary tuberculo-
sis: the Rich focus revisited. J Infect 50(3):193–195

	 25.	Janse van Rensburg P, Andronikou S, van Toorn R, Pienaar M (2008) Magnetic resonance 
imaging of miliary tuberculosis of the central nervous system in children with tuberculous 
meningitis. Pediatr Radiol 38(12):1306–1313

	 26.	von Gottberg A, Sacks L, Machala S, Blumberg L (2001) Utility of blood cultures and inci-
dence of mycobacteremia in patients with suspected tuberculosis in a South African infec-
tious disease referral hospital. Int J Tuberc Lung Dis 5(1):80–86

	 27.	Shafer RW, Goldberg R, Sierra M, Glatt AE (1989) Frequency of Mycobacterium tuberculo-
sis bacteremia in patients with tuberculosis in an area endemic for AIDS. Am Rev Respir Dis 
140(6):1611–1613

	 28.	Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF (1993) Relationship 
of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodefi-
ciency virus infection. Am Rev Respir Dis 148(5):1292–1297

	 29.	Thwaites GE, Tran TH (2005) Tuberculous meningitis: many questions, too few answers. 
Lancet Neurol 4(3):160–170

	 30.	Rock RB, Hu S, Gekker G, Sheng WS, May B, Kapur V et  al (2005) Mycobacterium 
tuberculosis-induced cytokine and chemokine expression by human microglia and astro-
cytes: effects of dexamethasone. J Infect Dis 192(12):2054–2058

	 31.	Spanos JP, Hsu NJ, Jacobs M (2015) Microglia are crucial regulators of neuro-immunity dur-
ing central nervous system tuberculosis. Front Cell Neurosci 9:182

	 32.	Thwaites GE, Simmons CP, Than Ha Quyen N, Thi Hong Chau T, Phuong Mai P, Thi Dung 
N et al (2003) Pathophysiology and prognosis in vietnamese adults with tuberculous menin-
gitis. J Infect Dis 188(8):1105–1115

	 33.	Patel VB, Bhigjee AI, Bill PL, Connolly CA (2002) Cytokine profiles in HIV seropositive 
patients with tuberculous meningitis. J Neurol Neurosurg Psychiatry 73(5):598–599

	 34.	Simmons CP, Thwaites GE, Quyen NT, Torok E, Hoang DM, Chau TT et  al (2006) 
Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with 
tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. 
J Immunol 176(3):2007–2014

	 35.	Mastroianni CM, Paoletti F, Lichtner M, D'Agostino C, Vullo V, Delia S (1997) Cerebrospinal 
fluid cytokines in patients with tuberculous meningitis. Clin Immunol Immunopathol 
84(2):171–176

L. Bovijn et al.



325

	 36.	Marais S, Wilkinson KA, Lesosky M, Coussens AK, Deffur A, Pepper DJ et  al (2014) 
Neutrophil-associated central nervous system inflammation in tuberculous meningitis 
immune reconstitution inflammatory syndrome. Clin Infect Dis 59(11):1638–1647

	 37.	Visser DH, Solomons RS, Ronacher K, van Well GT, Heymans MW, Walzl G et al (2015) 
Host immune response to tuberculous meningitis. Clin Infect Dis 60(2):177–187

	 38.	Thuong NTT, Heemskerk D, Tram TTB, Thao LTP, Ramakrishnan L, Ha VTN et al (2017) 
Leukotriene A4 hydrolase genotype and HIV infection influence intracerebral inflammation 
and survival from tuberculous meningitis. J Infect Dis 215(7):1020–1028

	 39.	Marais S, Meintjes G, Pepper DJ, Dodd LE, Schutz C, Ismail Z et al (2013) Frequency, sever-
ity, and prediction of tuberculous meningitis immune reconstitution inflammatory syndrome. 
Clin Infect Dis 56(3):450–460

	 40.	Tho DQ, Torok ME, Yen NT, Bang ND, Lan NT, Kiet VS et  al (2012) Influence of anti-
tuberculosis drug resistance and Mycobacterium tuberculosis lineage on outcome in HIV-
associated tuberculous meningitis. Antimicrob Agents Chemother 56(6):3074–3079

	 41.	Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP et al (2012) Host genotype-
specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 
148(3):434–446

	 42.	van Laarhoven A, Dian S, Ruesen C, Hayati E, Damen M, Annisa J et al (2017) Clinical 
parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality 
among 608 patients with tuberculous meningitis in Indonesia. J Infect Dis 215(7):1029–1039

	 43.	Katrak SM, Shembalkar PK, Bijwe SR, Bhandarkar LD (2000) The clinical, radiological and 
pathological profile of tuberculous meningitis in patients with and without human immuno-
deficiency virus infection. J Neurol Sci 181(1–2):118–126

	 44.	Schutte CM (2001) Clinical, cerebrospinal fluid and pathological findings and outcomes in 
HIV-positive and HIV-negative patients with tuberculous meningitis. Infection 29(4):213–217

	 45.	Tripathi S, Patro I, Mahadevan A, Patro N, Phillip M, Shankar SK (2014) Glial alterations in 
tuberculous and cryptococcal meningitis and their relation to HIV co-infection--a study on 
human brains. J Infect Dev Ctries 8(11):1421–1443

	 46.	Lanjewar DN, Jain PP, Shetty CR (1998) Profile of central nervous system pathology in 
patients with AIDS: an autopsy study from India. AIDS 12(3):309–313

	 47.	Smith AB, Smirniotopoulos JG, Rushing EJ (2008) From the archives of the AFIP: cen-
tral nervous system infections associated with human immunodeficiency virus infection: 
radiologic-pathologic correlation. Radiographics 28(7):2033–2058

	 48.	Lawn SD, Butera ST, Shinnick TM (2002) Tuberculosis unleashed: the impact of human 
immunodeficiency virus infection on the host granulomatous response to Mycobacterium 
tuberculosis. Microbes Infect 4(6):635–646

	 49.	Chatterjee D, Radotra BD, Vasishta RK, Sharma K (2015) Vascular complications of tuber-
culous meningitis: an autopsy study. Neurol India 63(6):926–932

	 50.	Tai MS, Viswanathan S, Rahmat K, Nor HM, Kadir KA, Goh KJ et al (2016) Cerebral infarc-
tion pattern in tuberculous meningitis. Sci Rep 6:38802

	 51.	Hammond CK, Eley B, Wieselthaler N, Ndondo A, Wilmshurst JM (2016) Cerebrovascular 
disease in children with HIV-1 infection. Dev Med Child Neurol 58(5):452–460

	 52.	Benjamin LA, Allain TJ, Mzinganjira H, Connor MD, Smith C, Lucas S et al (2017) The role 
of human immunodeficiency virus-associated vasculopathy in the etiology of stroke. J Infect 
Dis 216(5):545–553

	 53.	Bernaerts A, Vanhoenacker FM, Parizel PM, Van Goethem JW, Van Altena R, Laridon A et al 
(2003) Tuberculosis of the central nervous system: overview of neuroradiological findings. 
Eur Radiol 13(8):1876–1890

	 54.	Bayindir C, Mete O, Bilgic B (2006) Retrospective study of 23 pathologically proven cases 
of central nervous system tuberculomas. Clin Neurol Neurosurg 108(4):353–357

	 55.	DeLance AR, Safaee M, Oh MC, Clark AJ, Kaur G, Sun MZ et al (2013) Tuberculoma of the 
central nervous system. J Clin Neurosci 20(10):1333–1341

	 56.	Danaviah S, Sacks JA, Kumar KP, Taylor LM, Fallows DA, Naicker T et  al (2013) 
Immunohistological characterization of spinal TB granulomas from HIV-negative and -posi-
tive patients. Tuberculosis (Edinb) 93(4):432–441

Neurological TB in HIV



326

	 57.	Lesprit P, Zagdanski AM, de La Blanchardiere A, Rouveau M, Decazes JM, Frija J  et  al 
(1997) Cerebral tuberculosis in patients with the acquired immunodeficiency syndrome 
(AIDS). Report of 6 cases and review. Medicine (Baltimore) 76(6):423–431

	 58.	Vidal JE, Cimerman S, da Silva PR, Sztajnbok J, Coelho JF, Lins DL (2003) Tuberculous 
brain abscess in a patient with AIDS: case report and literature review. Rev Inst Med Trop 
Sao Paulo 45(2):111–114

	 59.	Marais S, Pepper DJ, Marais BJ, Torok ME (2010) HIV-associated tuberculous meningitis—
diagnostic and therapeutic challenges. Tuberculosis (Edinb) 90(6):367–374

	 60.	Girgis NI, Sultan Y, Farid Z, Mansour MM, Erian MW, Hanna LS et al (1998) Tuberculosis 
meningitis, Abbassia fever hospital-Naval Medical Research Unit No. 3-Cairo, Egypt, from 
1976 to 1996. Am J Trop Med Hyg 58(1):28–34

	 61.	Garcia-Monco JC (1999) Central nervous system tuberculosis. Neurol Clin 17(4):737–759
	 62.	Thwaites GE, Duc Bang N, Huy Dung N, Thi Quy H, Thi Tuong Oanh D, Thi Cam Thoa N 

et al (2005) The influence of HIV infection on clinical presentation, response to treatment, 
and outcome in adults with Tuberculous meningitis. J Infect Dis 192(12):2134–2141

	 63.	van der Weert EM, Hartgers NM, Schaaf HS, Eley BS, Pitcher RD, Wieselthaler NA et al 
(2006) Comparison of diagnostic criteria of tuberculous meningitis in human immunodefi-
ciency virus-infected and uninfected children. Pediatr Infect Dis J 25(1):65–69

	 64.	Solomons RS, Visser DH, Donald PR, Marais BJ, Schoeman JF, van Furth AM (2015) The 
diagnostic value of cerebrospinal fluid chemistry results in childhood tuberculous meningitis. 
Childs Nerv Syst 31(8):1335–1340

	 65.	Cecchini D, Ambrosioni J, Brezzo C, Corti M, Rybko A, Perez M et al (2009) Tuberculous 
meningitis in HIV-infected and non-infected patients: comparison of cerebrospinal fluid find-
ings. Int J Tuberc Lung Dis 13(2):269–271

	 66.	Torok ME, Chau TT, Mai PP, Phong ND, Dung NT, Chuong LV et al (2008) Clinical and 
microbiological features of HIV-associated tuberculous meningitis in Vietnamese adults. 
PLoS One 3(3):e1772

	 67.	van Toorn R, Solomons R (2014) Update on the diagnosis and management of tuberculous 
meningitis in children. Semin Pediatr Neurol 21(1):12–18

	 68.	Davis LE, Rastogi KR, Lambert LC, Skipper BJ (1993) Tuberculous meningitis in the south-
west United States: a community-based study. Neurology 43(9):1775–1778

	 69.	Misra UK, Kalita J, Bhoi SK, Singh RK (2016) A study of hyponatremia in tuberculous 
meningitis. J Neurol Sci 367:152–157

	 70.	Thwaites GE, Nguyen DB, Nguyen HD, Hoang TQ, Do TT, Nguyen TC et  al (2004) 
Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl 
J Med 351(17):1741–1751

	 71.	Ozates M, Kemaloglu S, Gurkan F, Ozkan U, Hosoglu S, Simsek MM (2000) CT of the brain 
in tuberculous meningitis. A review of 289 patients. Acta Radiol 41(1):13–17

	 72.	Thwaites GE, Macmullen-Price J, Tran TH, Pham PM, Nguyen TD, Simmons CP et al (2007) 
Serial MRI to determine the effect of dexamethasone on the cerebral pathology of tubercu-
lous meningitis: an observational study. Lancet Neurol 6(3):230–236

	 73.	Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR (1995) Serial CT scanning in childhood 
tuberculous meningitis: prognostic features in 198 cases. J Child Neurol 10(4):320–329

	 74.	Wasay M, Kheleani BA, Moolani MK, Zaheer J, Pui M, Hasan S et  al (2003) Brain CT 
and MRI findings in 100 consecutive patients with intracranial tuberculoma. J Neuroimaging 
13(3):240–247

	 75.	Pienaar M, Andronikou S, van Toorn R (2009) MRI to demonstrate diagnostic features and 
complications of TBM not seen with CT. Childs Nerv Syst 25(8):941–947

	 76.	Christensen AS, Andersen AB, Thomsen VO, Andersen PH, Johansen IS (2011) Tuberculous 
meningitis in Denmark: a review of 50 cases. BMC Infect Dis 11:47

	 77.	Villoria MF, de la Torre J, Fortea F, Munoz L, Hernandez T, Alarcon JJ (1992) Intracranial 
tuberculosis in AIDS: CT and MRI findings. Neuroradiology 34(1):11–14

	 78.	van der Merwe DJ, Andronikou S, Van Toorn R, Pienaar M (2009) Brainstem ischemic 
lesions on MRI in children with tuberculous meningitis: with diffusion weighted confirma-
tion. Childs Nerv Syst 25(8):949–954

L. Bovijn et al.



327

	 79.	Azuaje C, Fernandez Hidalgo N, Almirante B, Martin-Casabona N, Ribera E, Diaz M et al 
(2006) Tuberculous meningitis: a comparative study in relation to concurrent human immu-
nodeficiency virus infection. Enferm Infecc Microbiol Clin 24(4):245–250

	 80.	Dekker G, Andronikou S, van Toorn R, Scheepers S, Brandt A, Ackermann C (2011) MRI 
findings in children with tuberculous meningitis: a comparison of HIV-infected and non-
infected patients. Childs Nerv Syst 27(11):1943–1949

	 81.	Andronikou S, Smith B, Hatherhill M, Douis H, Wilmshurst J  (2004) Definitive neu-
roradiological diagnostic features of tuberculous meningitis in children. Pediatr Radiol 
34(11):876–885

	 82.	Botha H, Ackerman C, Candy S, Carr JA, Griffith-Richards S, Bateman KJ (2012) Reliability 
and diagnostic performance of CT imaging criteria in the diagnosis of tuberculous meningi-
tis. PLoS One 7(6):e38982

	 83.	Kalita J, Prasad S, Maurya PK, Kumar S, Misra UK (2012) MR angiography in tuberculous 
meningitis. Acta Radiol 53(3):324–329

	 84.	Patel VB, Theron G, Lenders L, Matinyena B, Connolly C, Singh R et al (2013) Diagnostic 
accuracy of quantitative PCR (Xpert MTB/RIF) for tuberculous meningitis in a high burden 
setting: a prospective study. PLoS Med 10(10):e1001536

	 85.	Bahr NC, Tugume L, Rajasingham R, Kiggundu R, Williams DA, Morawski B et al (2015) 
Improved diagnostic sensitivity for tuberculous meningitis with Xpert((R)) MTB/RIF of cen-
trifuged CSF. Int J Tuberc Lung Dis 19(10):1209–1215

	 86.	Bhigjee AI, Padayachee R, Paruk H, Hallwirth-Pillay KD, Marais S, Connoly C (2007) 
Diagnosis of tuberculous meningitis: clinical and laboratory parameters. Int J  Infect Dis 
11(4):348–354

	 87.	Heemskerk AD, Bang ND, Mai NT, Chau TT, Phu NH, Loc PP et al (2016) Intensified anti-
tuberculosis therapy in adults with tuberculous meningitis. N Engl J Med 374(2):124–134

	 88.	Thwaites GE, Chau TT, Farrar JJ (2004) Improving the bacteriological diagnosis of tubercu-
lous meningitis. J Clin Microbiol 42(1):378–379

	 89.	Kennedy DH, Fallon RJ (1979) Tuberculous meningitis. JAMA 241(3):264–268
	 90.	Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T, Innes J (2009) British Infection 

Society guidelines for the diagnosis and treatment of tuberculosis of the central nervous sys-
tem in adults and children. J Infect 59(3):167–187

	 91.	World Health Organization (2013) Policy update: Xpert MTB/RIF assay for the diagnosis 
of pulmonary and extrapulmonary TB in adults and children. Available at: www.who.int/tb/
laboratory/xpert_launchupdate. Accessed 30 Nov 2017

	 92.	Nhu NT, Heemskerk D, Thu DD, Chau TT, Mai NT, Nghia HD et al (2014) Evaluation of 
Xpert MTB/RIF for the diagnosis of tuberculous meningitis. J Clin Microbiol 52(1):226–233

	 93.	World Health Organization (2017) WHO Meeting Report of a Technical Expert Consultation: 
Non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Available at: 
www.who.int/tb/publications/2017/XpertUltra/en/ Accessed 30 Nov 2017

	 94.	Solomons RS, van Elsland SL, Visser DH, Hoek KG, Marais BJ, Schoeman JF et al (2014) 
Commercial nucleic acid amplification tests in tuberculous meningitis--a meta-analysis. 
Diagn Microbiol Infect Dis 78(4):398–403

	 95.	Bahr NC, Marais S, Caws M, van Crevel R, Wilkinson RJ, Tyagi JS et al (2016) GeneXpert 
MTB/Rif to diagnose tuberculous meningitis: perhaps the first test but not the last. Clin Infect 
Dis 62(9):1133–1135

	 96.	Moghtaderi A, Alavi-Naini R, Izadi S, Cuevas LE (2009) Diagnostic risk factors to differenti-
ate tuberculous and acute bacterial meningitis. Scand J Infect Dis 41(3):188–194

	 97.	Zhang B, Lv K, Bao J, Lu C, Lu Z (2013) Clinical and laboratory factors in the differential 
diagnosis of tuberculous and cryptococcal meningitis in adult HIV-negative patients. Intern 
Med 52(14):1573–1578

	 98.	Nyazika TK, Masanganise F, Hagen F, Bwakura-Dangarembizi MF, Ticklay IM, Robertson 
VJ (2016) Cryptococcal meningitis presenting as a complication in HIV-infected children: a 
case series from Sub-Saharan Africa. Pediatr Infect Dis J 35(9):979–980

Neurological TB in HIV

http://www.who.int/tb/laboratory/xpert_launchupdate
http://www.who.int/tb/laboratory/xpert_launchupdate
http://www.who.int/tb/publications/2017/XpertUltra/en/


328

	 99.	Vidal JE, Boulware DR (2015) Lateral flow assay for cryptococcal antigen: an important 
advance to improve the continuum of HIV care and reduce cryptococcal meningitis-related 
mortality. Rev Inst Med Trop Sao Paulo 57(Suppl 19):38–45

	100.	Boulware DR, Rolfes MA, Rajasingham R, von Hohenberg M, Qin Z, Taseera K et al (2014) 
Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser 
thermal contrast. Emerg Infect Dis 20(1):45–53

	101.	Price RW, Spudich S (2008) Antiretroviral therapy and central nervous system HIV type 1 
infection. J Infect Dis 197(Suppl 3):S294–S306

	102.	Christo PP, Vilela Mde C, Bretas TL, Domingues RB, Greco DB, Livramento JA et al (2009) 
Cerebrospinal fluid levels of chemokines in HIV infected patients with and without opportu-
nistic infection of the central nervous system. J Neurol Sci 287(1–2):79–83

	103.	Ruslami R, Ganiem AR, Dian S, Apriani L, Achmad TH, van der Ven AJ et  al (2013) 
Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an 
open-label, randomised controlled phase 2 trial. Lancet Infect Dis 13(1):27–35

	104.	Topley JM, Bamber S, Coovadia HM, Corr PD (1998) Tuberculous meningitis and co-
infection with HIV. Ann Trop Paediatr 18(4):261–266

	105.	Torok ME, Yen NT, Chau TT, Mai NT, Phu NH, Mai PP et al (2011) Timing of initiation of 
antiretroviral therapy in human immunodeficiency virus (HIV)-associated tuberculous men-
ingitis. Clin Infect Dis 52(11):1374–1383

	106.	Humphries MJ, Teoh R, Lau J, Gabriel M (1990) Factors of prognostic significance in 
Chinese children with tuberculous meningitis. Tubercle 71(3):161–168

	107.	Springer P, Swanevelder S, van Toorn R, van Rensburg AJ, Schoeman J  (2009) Cerebral 
infarction and neurodevelopmental outcome in childhood tuberculous meningitis. Eur 
J Paediatr Neurol 13(4):343–349

	108.	Schoeman CJ, Herbst I, Nienkemper DC (1997) The effect of tuberculous meningitis on the 
cognitive and motor development of children. S Afr Med J 87(1):70–72

	109.	Wait JW, Schoeman JF (2010) Behaviour profiles after tuberculous meningitis. J Trop Pediatr 
56(3):166–171

	110.	Ranjan P, Kalita J, Misra UK (2003) Serial study of clinical and CT changes in tuberculous 
meningitis. Neuroradiology 45(5):277–282

	111.	Kalita J, Misra UK, Ranjan P (2007) Predictors of long-term neurological sequelae of tuber-
culous meningitis: a multivariate analysis. Eur J Neurol 14(1):33–37

	112.	Donald KA, Hoare J, Eley B, Wilmshurst JM (2014) Neurologic complications of pediatric 
human immunodeficiency virus: implications for clinical practice and management chal-
lenges in the African setting. Semin Pediatr Neurol 21(1):3–11

	113.	Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F et  al (2010) HIV-
associated neurocognitive disorders persist in the era of potent antiretroviral therapy: 
CHARTER Study. Neurology 75(23):2087–2096

	114.	World Health Organization (2010) Treatment of tuberculosis guidelines, 4th ed. Available at: 
whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf. Accessed 30 Nov 2017

	115.	Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A et  al (2016) 
Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious 
Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible 
Tuberculosis. Clin Infect Dis 63(7):e147–ee95

	116.	Donald PR (2010) Cerebrospinal fluid concentrations of antituberculosis agents in adults and 
children. Tuberculosis (Edinb) 90(5):279–292

	117.	Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Padmapriyadarsini C, 
Swaminathan S et al (2004) Malabsorption of rifampin and isoniazid in HIV-infected patients 
with and without tuberculosis. Clin Infect Dis 38(2):280–283

	118.	McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C et al (2012) Reduced 
antituberculosis drug concentrations in HIV-infected patients who are men or have low 
weight: implications for international dosing guidelines. Antimicrob Agents Chemother 
56(6):3232–3238

L. Bovijn et al.



329

	119.	Heemskerk AD, Nguyen MTH, Dang HTM, Vinh Nguyen CV, Nguyen LH, Do TDA et al 
(2017) Clinical outcomes of patients with drug-resistant tuberculous meningitis treated with 
an intensified antituberculosis regimen. Clin Infect Dis 65(1):20–28

	120.	Thwaites GE, Lan NT, Dung NH, Quy HT, Oanh DT, Thoa NT et al (2005) Effect of antitu-
berculosis drug resistance on response to treatment and outcome in adults with tuberculous 
meningitis. J Infect Dis 192(1):79–88

	121.	Te Brake L, Dian S, Ganiem AR, Ruesen C, Burger D, Donders R et al (2015) Pharmacokinetic/
pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin 
for tuberculous meningitis. Int J Antimicrob Agents 45(5):496–503

	122.	Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S et al (2017) High-dose 
rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage ran-
domised controlled trial. Lancet Infect Dis 17(1):39–49

	123.	Donald PR, Schoeman JF, Van Zyl LE, De Villiers JN, Pretorius M, Springer P (1998) 
Intensive short course chemotherapy in the management of tuberculous meningitis. Int 
J Tuberc Lung Dis 2(9):704–711

	124.	van Toorn R, Schaaf HS, Laubscher JA, van Elsland SL, Donald PR, Schoeman JF (2014) 
Short intensified treatment in children with drug-susceptible tuberculous meningitis. Pediatr 
Infect Dis J 33(3):248–252

	125.	Thwaites GE, Bhavnani SM, Chau TT, Hammel JP, Torok ME, Van Wart SA et al (2011) 
Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for 
tuberculous meningitis. Antimicrob Agents Chemother 55(7):3244–3253

	126.	Garg RK, Jain A, Malhotra HS, Agrawal A, Garg R (2013) Drug-resistant tuberculous men-
ingitis. Expert Rev Anti-Infect Ther 11(6):605–621

	127.	Seddon JA, Visser DH, Bartens M, Jordaan AM, Victor TC, van Furth AM et al (2012) Impact 
of drug resistance on clinical outcome in children with tuberculous meningitis. Pediatr Infect 
Dis J 31(7):711–716

	128.	Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR (1997) Effect of corticosteroids on 
intracranial pressure, computed tomographic findings, and clinical outcome in young chil-
dren with tuberculous meningitis. Pediatrics 99(2):226–231

	129.	Prasad K, Singh MB, Ryan H (2016) Corticosteroids for managing tuberculous meningitis. 
Cochrane Database Syst Rev (4):CD002244

	130.	World Health Organization. Treatment of tuberculosis. Guidelines for treatment of drug-
susceptible tuberculosis and patient care (2017 update). 2017. Available at: www.who.int/tb/
publications/2017/dstb_guidance_2017/en/ Accessed 30 Nov 2017

	131.	Lammie GA, Hewlett RH, Schoeman JF, Donald PR (2009) Tuberculous cerebrovascular 
disease: a review. J Infect 59(3):156–166

	132.	Schoeman JF, Janse van Rensburg A, Laubscher JA, Springer P (2011) The role of aspirin in 
childhood tuberculous meningitis. J Child Neurol 26(8):956–962

	133.	Misra UK, Kalita J, Nair PP (2010) Role of aspirin in tuberculous meningitis: a randomized 
open label placebo controlled trial. J Neurol Sci 293(1–2):12–17

	134.	Raut T, Garg RK, Jain A, Verma R, Singh MK, Malhotra HS et al (2013) Hydrocephalus in 
tuberculous meningitis: incidence, its predictive factors and impact on the prognosis. J Infect 
66(4):330–337

	135.	Hsu PC, Yang CC, Ye JJ, Huang PY, Chiang PC, Lee MH (2010) Prognostic factors of tuber-
culous meningitis in adults: a 6-year retrospective study at a tertiary hospital in northern 
Taiwan. J Microbiol Immunol Infect 43(2):111–118

	136.	Figaji AA, Fieggen AG (2010) The neurosurgical and acute care management of tuberculous 
meningitis: evidence and current practice. Tuberculosis (Edinb) 90(6):393–400

	137.	Schoeman J, Donald P, van Zyl L, Keet M, Wait J (1991) Tuberculous hydrocephalus: com-
parison of different treatments with regard to ICP, ventricular size and clinical outcome. Dev 
Med Child Neurol 33(5):396–405

	138.	Lamprecht D, Schoeman J, Donald P, Hartzenberg H (2001) Ventriculoperitoneal shunting in 
childhood tuberculous meningitis. Br J Neurosurg 15(2):119–125

Neurological TB in HIV

http://www.who.int/tb/publications/2017/dstb_guidance_2017/en/
http://www.who.int/tb/publications/2017/dstb_guidance_2017/en/


330

	139.	Bruwer GE, Van der Westhuizen S, Lombard CJ, Schoeman JF (2004) Can CT predict the 
level of CSF block in tuberculous hydrocephalus? Childs Nerv Syst 20(3):183–187

	140.	Figaji AA, Fieggen AG, Peter JC (2005) Air encephalography for hydrocephalus in the era of 
neuroendoscopy. Childs Nerv Syst 21(7):559–565

	141.	Visudhiphan P, Chiemchanya S (1979) Hydrocephalus in tuberculous meningitis in children: 
treatment with acetazolamide and repeated lumbar puncture. J Pediatr 95(4):657–660

	142.	van Toorn R, Schaaf HS, Solomons R, Laubscher JA, Schoeman JF (2014) The value of 
transcranial Doppler imaging in children with tuberculous meningitis. Childs Nerv Syst 
30(10):1711–1716

	143.	Palur R, Rajshekhar V, Chandy MJ, Joseph T, Abraham J (1991) Shunt surgery for hydro-
cephalus in tuberculous meningitis: a long-term follow-up study. J Neurosurg 74(1):64–69

	144.	Rizvi I, Garg RK, Malhotra HS, Kumar N, Sharma E, Srivastava C et al (2017) Ventriculo-
peritoneal shunt surgery for tuberculous meningitis: A systematic review. J  Neurol Sci 
375:255–263

	145.	Sharma RM, Pruthi N, Arimappamagan A, Somanna S, Devi BI, Pandey P (2015) Tubercular 
meningitis with hydrocephalus with HIV co-infection: role of cerebrospinal fluid diversion 
procedures. J Neurosurg 122(5):1087–1095

	146.	Goyal P, Srivastava C, Ojha BK, Singh SK, Chandra A, Garg RK et al (2014) A randomized 
study of ventriculoperitoneal shunt versus endoscopic third ventriculostomy for the manage-
ment of tubercular meningitis with hydrocephalus. Childs Nerv Syst 30(5):851–857

	147.	Li C, Gui S, Zhang Y (2017) Compare the safety and efficacy of endoscopic third ventriculos-
tomy and ventriculoperitoneal shunt placement in infants and children with hydrocephalus: a 
systematic review and meta-analysis. Int J Neurosci:1–30

	148.	Nadvi SS, Nathoo N, Annamalai K, van Dellen JR, Bhigjee AI (2000) Role of cerebrospinal 
fluid shunting for human immunodeficiency virus-positive patients with tuberculous menin-
gitis and hydrocephalus. Neurosurgery 47(3):644–649. discussion 9-50

	149.	Chugh A, Husain M, Gupta RK, Ojha BK, Chandra A, Rastogi M (2009) Surgical outcome 
of tuberculous meningitis hydrocephalus treated by endoscopic third ventriculostomy: prog-
nostic factors and postoperative neuroimaging for functional assessment of ventriculostomy. 
J Neurosurg Pediatr 3(5):371–377

	150.	Jha DK, Mishra V, Choudhary A, Khatri P, Tiwari R, Sural A et al (2007) Factors affecting 
the outcome of neuroendoscopy in patients with tuberculous meningitis hydrocephalus: a 
preliminary study. Surg Neurol 68(1):35–41

	151.	Sterns RH, Silver SM (2008) Cerebral salt wasting versus SIADH: what difference? J Am 
Soc Nephrol 19(2):194–196

	152.	Sterns RH (2015) Disorders of plasma sodium--causes, consequences, and correction. N Engl 
J Med 372(1):55–65

	153.	Sterns RH, Nigwekar SU, Hix JK (2009) The treatment of hyponatremia. Semin Nephrol 
29(3):282–299

	154.	Smego RA Jr, Orlovic D, Wadula J  (2006) An algorithmic approach to intracranial mass 
lesions in HIV/AIDS. Int J STD AIDS 17(4):271–276

	155.	Bhigjee AI, Naidoo K, Patel VB, Govender D (1999) Intracranial mass lesions in HIV-
positive patients--the KwaZulu/Natal experience. Neurosci AIDS Res Group S Afr Med 
J 89(12):1284–1288

	156.	Modi M, Mochan A, Modi G (2004) Management of HIV-associated focal brain lesions in 
developing countries. QJM 97(7):413–421

	157.	Dastur HM (1983) Diagnosis and neurosurgical treatment of tuberculous disease of the 
CNS. Neurosurg Rev 6(3):111–117

	158.	Li H, Liu W, You C (2012) Central nervous system tuberculoma. J  Clin Neurosci 
19(5):691–695

	159.	Vidal JE, Hernandez AV, Oliveira AC, de Souza AL, Madalosso G, Silva PR et al (2004) 
Cerebral tuberculomas in AIDS patients: a forgotten diagnosis? Arq Neuropsiquiatr 
62(3B):793–796

L. Bovijn et al.



331

	160.	Martinez-Vazquez C, Bordon J, Rodriguez-Gonzalez A, de la Fuente-Aguado J, Sopena B, 
Gallego-Rivera A et al (1995) Cerebral tuberculoma—a comparative study in patients with 
and without HIV infection. Infection 23(3):149–153

	161.	Malasky C, Reichman LB (1992) Long-term follow-up of tuberculoma of the brain in an 
AIDS patient. Chest 101(1):278–279

	162.	Wasay M, Moolani MK, Zaheer J, Kheleani BA, Smego RA, Sarwari RA (2004) Prognostic 
indicators in patients with intracranial tuberculoma: a review of 102 cases. J Pak Med Assoc 
54(2):83–87

	163.	Unal A, Sutlas PN (2005) Clinical and radiological features of symptomatic central nervous 
system tuberculomas. Eur J Neurol 12(10):797–804

	164.	Poonnoose SI, Rajshekhar V (2003) Rate of resolution of histologically verified intracranial 
tuberculomas. Neurosurgery 53(4):873–878

	165.	Kelly JD, Teeter LD, Graviss EA, Tweardy DJ (2011) Intracranial tuberculomas in adults: a 
report of twelve consecutive patients in Houston, Texas. Scand J Infect Dis 43(10):785–791

	166.	 Idris MN, Sokrab TE, Arbab MA, Ahmed AE, El Rasoul H, Ali S et al (2007) Tuberculoma 
of the brain: a series of 16 cases treated with anti-tuberculosis drugs. Int J Tuberc Lung Dis 
11(1):91–95

	167.	Thonell L, Pendle S, Sacks L (2000) Clinical and radiological features of South African 
patients with tuberculomas of the brain. Clin Infect Dis 31(2):619–620

	168.	Whiteman M, Espinoza L, Post MJ, Bell MD, Falcone S (1995) Central nervous system tuber-
culosis in HIV-infected patients: clinical and radiographic findings. AJNR Am J Neuroradiol 
16(6):1319–1327

	169.	Dube MP, Holtom PD, Larsen RA (1992) Tuberculous meningitis in patients with and with-
out human immunodeficiency virus infection. Am J Med 93(5):520–524

	170.	Garg RK, Sinha MK (2010) Multiple ring-enhancing lesions of the brain. J Postgrad Med 
56(4):307–316

	171.	Adurthi S, Mahadevan A, Bantwal R, Satishchandra P, Ramprasad S, Sridhar H et al (2010) 
Utility of molecular and serodiagnostic tools in cerebral toxoplasmosis with and without 
tuberculous meningitis in AIDS patients: A study from South India. Ann Indian Acad Neurol 
13(4):263–270

	172.	Evaluation and management of intracranial mass lesions in AIDS (1998) Report of the Quality 
Standards Subcommittee of the American Academy of Neurology. Neurology 50(1):21–26

	173.	Ondounda M, Ilozue C, Magne C (2016) Cerebro-meningeal infections in HIV-infected 
patients: a study of 116 cases in Libreville, Gabon. Afr Health Sci 16(2):603–610

	174.	Antinori A, Ammassari A, De Luca A, Cingolani A, Murri R, Scoppettuolo G et al (1997) 
Diagnosis of AIDS-related focal brain lesions: a decision-making analysis based on clini-
cal and neuroradiologic characteristics combined with polymerase chain reaction assays in 
CSF. Neurology 48(3):687–694

	175.	Antinori A, Larussa D, Cingolani A, Lorenzini P, Bossolasco S, Finazzi MG et  al (2004) 
Prevalence, associated factors, and prognostic determinants of AIDS-related toxoplas-
mic encephalitis in the era of advanced highly active antiretroviral therapy. Clin Infect Dis 
39(11):1681–1691

	176.	Omuro AM, Leite CC, Mokhtari K, Delattre JY (2006) Pitfalls in the diagnosis of brain 
tumours. Lancet Neurol 5(11):937–948

	177.	Porter SB, Sande MA (1992) Toxoplasmosis of the central nervous system in the acquired 
immunodeficiency syndrome. N Engl J Med 327(23):1643–1648

	178.	Awada A, Daif AK, Pirani M, Khan MY, Memish Z, Al Rajeh S (1998) Evolution of brain 
tuberculomas under standard antituberculous treatment. J Neurol Sci 156(1):47–52

	179.	Choe PG, Park WB, Song JS, Song KH, Jeon JH, Park SW et al (2010) Spectrum of intra-
cranial parenchymal lesions in patients with human immunodeficiency virus infection in the 
Republic of Korea. J Korean Med Sci 25(7):1005–1010

	180.	Marais S, Lai RPJ, Wilkinson KA, Meintjes G, O'Garra A, Wilkinson RJ (2017) Inflammasome 
activation underlying central nervous system deterioration in HIV-associated tuberculosis. 
J Infect Dis 215(5):677–686

Neurological TB in HIV



332

	181.	Asselman V, Thienemann F, Pepper DJ, Boulle A, Wilkinson RJ, Meintjes G et al (2010) 
Central nervous system disorders after starting antiretroviral therapy in South Africa. AIDS 
24(18):2871–2876

	182.	Pepper DJ, Marais S, Maartens G, Rebe K, Morroni C, Rangaka MX et al (2009) Neurologic 
manifestations of paradoxical tuberculosis-associated immune reconstitution inflammatory 
syndrome: a case series. Clin Infect Dis 48(11):e96–e107

	183.	van Toorn R, Rabie H, Dramowski A, Schoeman JF (2012) Neurological manifestations of 
TB-IRIS: a report of 4 children. Eur J Paediatr Neurol 16(6):676–682

	184.	Jain SK, Kwon P, Moss WJ (2005) Management and outcomes of intracranial tuberculo-
mas developing during antituberculous therapy: case report and review. Clin Pediatr (Phila) 
44(5):443–450

	185.	Nicolls DJ, King M, Holland D, Bala J, del Rio C (2005) Intracranial tuberculomas develop-
ing while on therapy for pulmonary tuberculosis. Lancet Infect Dis 5(12):795–801

	186.	Monteiro R, Carneiro JC, Costa C, Duarte R (2013) Cerebral tuberculomas—a clinical chal-
lenge. Respir Med Case Rep 9:34–37

	187.	Wasay M (2006) Central nervous system tuberculosis and paradoxical response. South Med 
J 99(4):331–332

	188.	Schoeman JF, Fieggen G, Seller N, Mendelson M, Hartzenberg B (2006) Intractable intra-
cranial tuberculous infection responsive to thalidomide: report of four cases. J Child Neurol 
21(4):301–308

	189.	Fourcade C, Mauboussin JM, Lechiche C, Lavigne JP, Sotto A (2014) Thalidomide in the 
treatment of immune reconstitution inflammatory syndrome in HIV patients with neurologi-
cal tuberculosis. AIDS Patient Care STDs 28(11):567–569

	190.	Garg RK, Malhotra HS, Gupta R (2015) Spinal cord involvement in tuberculous meningitis. 
Spinal Cord 53(9):649–657

	191.	Dastur D, Wadia NH (1969) Spinal meningitides with radiculo-myelopathy. 2. Pathology and 
pathogenesis. J Neurol Sci 8(2):261–297

	192.	Candy S, Chang G, Andronikou S (2014) Acute myelopathy or cauda equina syndrome in 
HIV-positive adults in a tuberculosis endemic setting: MRI, clinical, and pathologic findings. 
AJNR Am J Neuroradiol 35(8):1634–1641

	193.	Modi G, Ranchhod J, Hari K, Mochan A, Modi M (2011) Non-traumatic myelopathy at the 
Chris Hani Baragwanath Hospital, South Africa--the influence of HIV. QJM 104(8):697–703

	194.	Bhigjee AI, Madurai S, Bill PL, Patel V, Corr P, Naidoo MN et al (2001) Spectrum of myelop-
athies in HIV seropositive South African patients. Neurology 57(2):348–351

	195.	Alessi G, Lemmerling M, Nathoo N (2003) Combined spinal subdural tuberculous empyema 
and intramedullary tuberculoma in an HIV-positive patient. Eur Radiol 13(8):1899–1901

	196.	Gupta R, Garg RK, Jain A, Malhotra HS, Verma R, Sharma PK (2015) Spinal cord and 
spinal nerve root involvement (myeloradiculopathy) in tuberculous meningitis. Medicine 
(Baltimore) 94(3):e404

	197.	Hernandez-Albujar S, Arribas JR, Royo A, Gonzalez-Garcia JJ, Pena JM, Vazquez JJ (2000) 
Tuberculous radiculomyelitis complicating tuberculous meningitis: case report and review. 
Clin Infect Dis 30(6):915–921

	198.	Gallant JE, Mueller PS, McArthur JC, Chaisson RE (1992) Intramedullary tuberculoma in a 
patient with HIV infection. AIDS 6(8):889–891

	199.	Woolsey RM, Chambers TJ, Chung HD, McGarry JD (1988) Mycobacterial meningomyelitis 
associated with human immunodeficiency virus infection. Arch Neurol 45(6):691–693

	200.	Sundaram SS, Vijeratnam D, Mani R, Gibson D, Chauhan AJ (2012) Tuberculous syringo-
myelia in an HIV-infected patient: a case report. Int J STD AIDS 23(2):140–142

	201.	Roca B (2005) Intradural extramedullary tuberculoma of the spinal cord: a review of reported 
cases. J Infect 50(5):425–431

	202.	Mohit AA, Santiago P, Rostomily R (2004) Intramedullary tuberculoma mimicking primary 
CNS lymphoma. J Neurol Neurosurg Psychiatry 75(11):1636–1638

	203.	Rohlwink UK, Kilborn T, Wieselthaler N, Banderker E, Zwane E, Figaji AA (2016) Imaging 
features of the brain, cerebral vessels and spine in pediatric tuberculous meningitis with asso-
ciated hydrocephalus. Pediatr Infect Dis J 35(10):e301–e310

L. Bovijn et al.



333

	204.	Wasay M, Arif H, Khealani B, Ahsan H (2006) Neuroimaging of tuberculous myelitis: analy-
sis of ten cases and review of literature. J Neuroimaging 16(3):197–205

	205.	Leibert E, Schluger NW, Bonk S, Rom WN (1996) Spinal tuberculosis in patients with 
human immunodeficiency virus infection: clinical presentation, therapy and outcome. Tuber 
Lung Dis 77(4):329–334

	206.	Metta H, Corti M, Redini L, Yampolsky C, Schtirbu R (2006) Spinal epidural abscess due to 
Mycobacterium tuberculosis in a patient with AIDS: case report and review of the literature. 
Braz J Infect Dis 10(2):146–148

	207.	Arora S, Kumar R (2011) Tubercular spinal epidural abscess involving the dorsal-lumbar-
sacral region without osseous involvement. J Infect Dev Ctries 5(7):544–549

	208.	Kasundra GM, Sood I, Bhushan B, Bhargava AN, Shubhkaran K (2016) Distal cord-
predominant longitudinally extensive myelitis with diffuse spinal meningitis and dural 
abscesses due to occult tuberculosis: a rare occurrence. J Pediatr Neurosci 11(1):77–79

	209.	Zhang Q, Koga H (2016) Tubercular spinal epidural abscess of the lumbosacral region with-
out osseous involvement: comparison of spinal MRI and pathological findings of the resected 
tissue. Intern Med 55(6):695–698

	210.	Mantzoros CS, Brown PD, Dembry L (1993) Extraosseous epidural tuberculoma: case report 
and review. Clin Infect Dis 17(6):1032–1036

	211.	Canova G, Boaro A, Giordan E, Longatti P (2017) Treatment of posttubercular syringomyelia 
not responsive to antitubercular therapy: case report and review of literature. J Neurol Surg 
Rep 78(2):e59–e67

	212.	Wadia NH, Dastur DK (1969) Spinal meningitides with radiculo-myelopathy. 1. Clinical and 
radiological features. J Neurol Sci 8(2):239–260

	213.	Sharma MC, Arora R, Deol PS, Mahapatra AK, Sinha AK, Sarkar C (2002) Intramedullary 
tuberculoma of the spinal cord: a series of 10 cases. Clin Neurol Neurosurg 104(4):279–284

	214.	Freilich D, Swash M (1979) Diagnosis and management of tuberculous paraplegia with spe-
cial reference to tuberculous radiculomyelitis. J Neurol Neurosurg Psychiatry 42(1):12–18

	215.	Srivastava T, Kochar DK (2003) Asymptomatic spinal arachnoiditis in patients with tubercu-
lous meningitis. Neuroradiology 45(10):727–729

	216.	Yen HL, Lee RJ, Lin JW, Chen HJ (2003) Multiple tuberculomas in the brain and spinal cord: 
a case report. Spine (Phila Pa 1976) 28(23):E499–E502

	217.	Garg RK, Sharma R, Kar AM, Kushwaha RA, Singh MK, Shukla R et al (2010) Neurological 
complications of miliary tuberculosis. Clin Neurol Neurosurg 112(3):188–192

	218.	Panos G, Watson DC, Karydis I, Velissaris D, Andreou M, Karamouzos V et  al (2016) 
Differential diagnosis and treatment of acute cauda equina syndrome in the human immuno-
deficiency virus positive patient: a case report and review of the literature. J Med Case Rep 
10:165

	219.	Thurnher MM, Post MJ, Jinkins JR (2000) MRI of infections and neoplasms of the spine and 
spinal cord in 55 patients with AIDS. Neuroradiology 42(8):551–563

	220.	Reihsaus E, Waldbaur H, Seeling W (2000) Spinal epidural abscess: a meta-analysis of 915 
patients. Neurosurg Rev 23(4):175–204

	221.	Ghobrial GM, Dalyai RT, Maltenfort MG, Prasad SK, Harrop JS, Sharan AD (2015) 
Arachnolysis or cerebrospinal fluid diversion for adult-onset syringomyelia? A systematic 
review of the literature. World Neurosurg 83(5):829–835

	222.	Ramdurg SR, Gupta DK, Suri A, Sharma BS, Mahapatra AK (2009) Spinal intramedullary 
tuberculosis: a series of 15 cases. Clin Neurol Neurosurg 111(2):115–118

	223.	Moghtaderi A, Alavi Naini R (2003) Tuberculous radiculomyelitis: review and presentation 
of five patients. Int J Tuberc Lung Dis 7(12):1186–1190

	224.	Singh AK, Malhotra HS, Garg RK, Jain A, Kumar N, Kohli N et al (2016) Paradoxical reac-
tion in tuberculous meningitis: presentation, predictors and impact on prognosis. BMC Infect 
Dis 16:306

	225.	Garg RK, Malhotra HS, Kumar N (2014) Paradoxical reaction in HIV negative tuberculous 
meningitis. J Neurol Sci 340(1–2):26–36

Neurological TB in HIV



334

	226.	Birnbaum GD, Marquez L, Hwang KM, Cruz AT (2014) Neurologic deterioration in a child 
undergoing treatment for tuberculosis meningitis. Pediatr Emerg Care 30(8):566–567

	227.	Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W et  al (2008) 
Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for 
use in resource-limited settings. Lancet Infect Dis 8(8):516–523

	228.	Marais S, Lai RP, Wilkinson KA, Meintjes G, O'Garra A, Wilkinson RJ (2017) Inflammasome 
activation underlies central nervous system deterioration in HIV-associated tuberculosis. 
J Infect Dis 15(5):677–686

	229.	Lawn SD, Meintjes G (2011) Pathogenesis and prevention of immune reconstitution disease 
during antiretroviral therapy. Expert Rev Anti-Infect Ther 9(4):415–430

	230.	Agarwal U, Kumar A, Behera D, French MA, Price P (2012) Tuberculosis associated immune 
reconstitution inflammatory syndrome in patients infected with HIV: meningitis a potentially 
life threatening manifestation. AIDS Res Ther 9(1):17

	231.	Lee CH, Lui CC, Liu JW (2007) Immune reconstitution syndrome in a patient with AIDS 
with paradoxically deteriorating brain tuberculoma. AIDS Patient Care STDs 21(4):234–239

	232.	Namale PE, Abdullahi LH, Fine S, Kamkuemah M, Wilkinson RJ, Meintjes G (2015) 
Paradoxical TB-IRIS in HIV-infected adults: a systematic review and meta-analysis. Future 
Microbiol 10(6):1077–1099

	233.	Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS et al (2011) Timing of 
antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med 365(16):1482–1491

	234.	Blanc FX, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al (2011) Earlier 
versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl 
J Med 365(16):1471–1481

	235.	Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL et  al 
(2011) Integration of antiretroviral therapy with tuberculosis treatment. N Engl J  Med 
365(16):1492–1501

	236.	Torok ME, Farrar JJ (2011) When to start antiretroviral therapy in HIV-associated tuberculo-
sis. N Engl J Med 365(16):1538–1540

	237.	National Tuberculosis Management Guidelines (2014) Department of Health of the Republic 
of South Africa. 2014. Available at http://www.tbonline.info/media/uploads/documents/
ntcp_adult_tb-guidelines-27.5.2014.pdf Accessed 21 Nov 2017

	238.	Meintjes G, Wilkinson RJ, Morroni C, Pepper DJ, Rebe K, Rangaka MX et  al (2010) 
Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated 
immune reconstitution inflammatory syndrome. AIDS 24(15):2381–2390

	239.	Marais S, Wilkinson RJ, Pepper DJ, Meintjes G (2009) Management of patients with the 
immune reconstitution inflammatory syndrome. Curr HIV/AIDS Rep 6(3):162–171

	240.	Bahr N, Boulware DR, Marais S, Scriven J, Wilkinson RJ, Meintjes G (2013) Central nervous 
system immune reconstitution inflammatory syndrome. Curr Infect Dis Rep 15(6):583–593

	241.	Bana TM, Lesosky M, Pepper DJ, van der Plas H, Schutz C, Goliath R et al (2016) Prolonged 
tuberculosis-associated immune reconstitution inflammatory syndrome: characteristics and 
risk factors. BMC Infect Dis 16(1):518

	242.	Meintjes G, Scriven J, Marais S (2012) Management of the immune reconstitution inflamma-
tory syndrome. Curr HIV/AIDS Rep 9(3):238–250

L. Bovijn et al.

http://www.tbonline.info/media/uploads/documents/ntcp_adult_tb-guidelines-27.5.2014.pdf
http://www.tbonline.info/media/uploads/documents/ntcp_adult_tb-guidelines-27.5.2014.pdf


C1© Springer Nature Switzerland AG 2020
I. Sereti et al. (eds.), HIV and Tuberculosis, 
https://doi.org/10.1007/978-3-030-29108-2_14

Correction to: Modelling  
the HIV-Associated TB Epidemic 
and the Impact of Interventions Aimed 
at Epidemic Control

P. J. Dodd, Ronaldo de Carvalho Augusto, David Roquis, 
Marion A. L. Picard, Cristian Chaparro, Celine Cosseau, 
and Christoph Grunau

The updated online version of this chapter can be found at 
https://doi.org/10.1007/978-3-030-29108-2_3

�Correction to:  
Chapter 3 in: I. Sereti et al. (eds.), HIV and Tuberculosis, 
https://doi.org/10.1007/978-3-030-29108-2_3

Unfortunately, the original version of this chapter was published as a non-open 
access chapter. This chapter has been changed to open access. Hence, the chapter 
“Modelling the HIV-Associated TB Epidemic and the Impact of Interventions 
Aimed at Epidemic Control” is now available open access under a Creative 
Commons Attribution 4.0 International License via link.springer.com.

In addition, the following acknowledgments section was not included in the original 
version of the chapter and has been included at the end of the text.

Acknowledgments This publication was produced by TREATS which is part of the 
EDCTP2 programme supported by the European Union (grant number 
RIA2016S-1632-TREATS). The views and opinions of the authors expressed herein 
do not necessarily state or reflect those of EDCTP.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29108-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-29108-2_14#DOI


335© Springer Nature Switzerland AG 2019
I. Sereti et al. (eds.), HIV and Tuberculosis, 
https://doi.org/10.1007/978-3-030-29108-2

A
Abdominal tuberculosis, 91
Abdominal ultrasound, 302
Aberrant immune activation, 60
Acid-fast bacilli (AFB), 3, 129, 182, 278, 299
Acquired immunodeficiency syndrome 

(AIDS), 270
Acquired resistance, 207
Active TB disease, see Latent TB infection 

(LTBI)
Acute inflammation, 101, 135
Acute kidney injury, 85
Adaptive immune system

CD4+ T cell, 61
cell-mediated immunity, 61
cytokines, 61
formation of granulomas, 60
IFNγ, 60, 61
impact of HIV infection

CD4+ T cells, 62, 63
CD8+ T cells, 63
chronic immune activation, 63
immune responses, 64

MHC class I molecules, 61
MHC class II processing pathway, 61
pro- vs. anti-inflammatory  

equilibrium, 61
Adenosine deaminase (ADA), 91
Adherence, 187, 195, 196, 198, 199
Adverse drug reactions, 197
Agent-based models, 29
Alcoholism, 296
Aminoglycoside resistance, 211
Amoxicillin, 213
Anaemia, 86

Antimicrobial treatment
TBM, 308, 309

Antiretroviral therapy (ART), 79, 100, 147, 
164, 166, 167, 171, 173–175, 240, 
247–248

anti-TB treatment, 16
CD4 cells, 270
CD4 counts, 16, 35, 100
in children, 270
clinical trials, 16
clinics, 38, 43, 44, 48
in co-infected patients, 215
drug toxicity, 219
eligibility, 46
GeneXpert, 18
guidelines, 35
HIV, 26, 45, 283
HTS uptake, 17
immune reconstitution, 272
initiation, 270
interventions, 43, 46
LTBI, 173–175
in MDR TB, 215
M. tuberculosis, restoration, 67
molecular testing, 45
multi-modelling, 47
optimal timing, 16
patients with TB, 198, 199
patients with DR-TB, 16, 17
PLHIV, 26, 38, 45, 47
policies, 46, 47
post-prophylaxis follow-up, 39
pre-ART era, 214
prevention strategy, 287
provision, 38, 48

Index

https://doi.org/10.1007/978-3-030-29108-2


336

Antiretroviral therapy (ART) (cont.)
regimens, 286
and second-line TB medications, 222
spectrum of TB, 38
TB, 16, 46
WHO guidelines, 38
Xpert® MTB/RIF test, 18

Antiretrovirals (ARVs), 241, 257
Anti-TB therapy

annual testing, 164
baseline liver function tests, 187
common/serious adverse effects, 187, 

189–191
dosing, 187
ethambutol, 192
fluoroquinolones, 193
guidelines, 164
isoniazid, 188
levofloxacin and moxifloxacin, 193
monitoring, 187
pyrazinamide, 192
rifamycins, 188, 192 (see also Rifamycin-

containing regimens)
WHO guidelines, 164

Anti-tuberculosis medications,  
186, 187

Anti-tuberculous agents, 209
Anti-tuberculous chemotherapy, 224
Anti-tuberculous drugs, 164
Anti-tuberculous medications, 208
Arachnoiditis, 299
Astrocytes, 297
Audiometric testing, 219

B
Bacillus Calmette-Guerin (BCG),  

286, 287
Basal meningeal enhancement (BME),  

302, 303
Bedaquiline, 215, 216, 225, 254, 257
Bed rest/streptomycin monotherapy, 204
Bethel Isoniazid Studies, 166
Biological and social risk factors, 33
Biomarkers, 117
Blood-brain-barrier (BBB), 297
Blood stream infection (BSI), 81
Body-mass index (BMI), 34
Brain imaging

TBM, 302, 303
tuberculoma, 314, 315

British Medical Research Council (BMRC) 
grading system, 300

C
CAMELIA clinical trials, 108
Capreomycin, 211, 212
Carbapenems, 213
Caseating foci rupture, 297
CD4 counts, 26, 35–37, 45, 100
Central nervous system (CNS), 105
Central nervous system TB (CNS TB), 295

HIV co-infection, 295
intracranial

pathology, 296 (see also Intracranial TB)
intraspinal disease, 296
neurological (see Neurological TB-IRIS)
TBM (see Tuberculous meningitis (TBM))
tuberculoma (see Tuberculoma)

Cerebral atrophy, 302
Cerebral salt wasting (CSW), 301
Cerebrospinal fluid (CSF), 105, 281, 297, 298, 

301, 304, 305, 314, 318
Chemotherapy, 31
Chest radiography (CXR), 66, 77, 130, 146
Chest X-ray, 130, 131, 278–280
Childhood TB/HIV

cavitation, 275
HIV prevalence in new and relapse TB 

cases, 272, 274
household contact, 272
immune activation, 275
immunocompetence, 275
mechanisms, 272
microorganisms and clinical disease 

syndromes, 270, 273
mononuclear cells, 272
TB incidence rates, 272, 274
treatment, 282–286
vicious cycle, 272
WHO, 270–272

Children with HIV Early Antiretroviral 
(CHER) trial, 287

Chylothorax, 104
Chylous ascites, 104
Clavulanate, 213
Clinical manifestations

with advanced immunosuppression
ART, 79
CD4 counts, 79
disseminated tuberculosis, 80, 81
laboratory investigations, 85, 86
mycobacteraemia, 80, 81
and radiological features, 81–84

CD4 counts
clinical and laboratory examination, 76
EPTB, 75

Index



337

imaging, 77
symptoms, 75, 76

Clinical prediction scores, 141
Clinical trials, 2
Clofazimine, 213, 217, 257
Cobicistat, 250
Collagens, 66
Colorimetric detection, 138–139
Co-management of TB/HIV

drug-resistant (see Drug-resistant TB  
(DR TB))

drug-sensitive (see Drug-sensitive TB)
MDR-TB, 240
prevention (see TB preventative therapy 

(TBPT))
Compartmental models, 27, 28, 39
Computed tomography (CT), 302
Computer-aided diagnosis (CAD) program, 131
Confirmatory tests, see Microbiological assays
Continuous INH

cost-effectiveness, 168
decision-analytic model, 168
grade 3/4 adverse events, 167
ICER, 168
low-quality evidence, 167
meta-analysis, 167
PLWH, 167, 168
TST, 167
resistance, 168
WHO GDG, 168

C-reactive protein (CRP), 76, 141, 142
Cryptococcal meningitis (CM), 296
Culture

DST (see Drug-susceptibility testing 
(DST))

EPTB, 151, 152
liquid mycobacterial, 134
microbiological assays (confirmatory 

tests), 132
MTB, 139
and NAAT, 278
single liquid, 142
TBM, 304
Xpert, 135

Culture-based methods
DST

critical concentrations, 137
liquid media-based DST, 137
MGIT 960 platform, 137
MIC, 137
solid media-based DST, 137

PTB, 149
CXCR3 T cells, 115

Cycle threshold (CT), 132
Cycloserine, 213
Cytokines, 58, 61, 66

and chemokines, 118
IFNγ, 116
infammasome, 118
inflammatory, 115
IRIS, 116
pro-inflammatory, 117

D
Delamanid, 216, 254, 255
Dendritic cells, 58, 60
De novo production, 100
Determine TB-LAM, 135
Diabetes mellitus, 33, 48
Diagnosis

AFB smear microscopy, 129
DST (see Drug-susceptibility testing 

(DST))
microbiological assays, 142
MTB, 129
resource-limited settings (see Resource-

limited settings)
and screening (see also Screening)

clinical prediction scores, 141
CRP, 141, 142

Diffusion-weighted image (DWI), 303
Directly observed therapy (DOT), 171, 172, 

195, 196, 206
Discrete event simulation (DES), 42, 43
Disseminated TB, 108, 109

CD4 counts, 86, 87
empiric antituberculosis therapy, 89
POC ultrasound, 88
sputum Xpert testing, 87
u-LAM, 88
WHO, 86

DNA extraction, 138
Donor-unrestricted T (DURT) cells, 58
Dormant bacteria, 163
dosR response regulator, 163
DOTS strategy, 44
Drug-drug interactions (DDI), 196, 249,  

256, 257
Drug-induced liver injury (DILI), 192, 194, 

195, 221
Drug-resistance (DR), 32, 33

rifampicin, 283
TB, 283
WHO recommendation, 152, 153
XDR, 218

Index



338

Drug-resistant TB (DR TB), 4, 33, 37, 42, 47
bedaquiline, 215, 216, 225, 254
clofazimine, 217
community-based care, 225
delamanid, 216, 254, 255
development, 205, 207, 208
diagnosis

aminoglycoside and capreomycin, 211
anti-tuberculous medications, 208
automated indicators, 209
culture, 209
DST, 209
genotypic testing, 209–211
laboratory capacity, 211
MODS assay, 209
mortality rates, 208
Mtb strain, 208
mutations, 211
phenotypic testing, 208, 209
pulmonary/extra-pulmonary disease, 208
symptoms, 208
Xpert platform, 211

dosage and toxicities, medications, 220–221
epidemiology, 204–206
genetic analyses, 208
history, 204–206
and HIV, 214
linezolid, 216, 217, 225
MDR-TB, 253
medications, 211
modeling data, 208
pretomanid, 216
prevalence, 204
safe discharge plans, 225
second-line drugs, 254
social and economic support, 225
surgery, 224, 225
and surgical intervention, 225
transmission, 207

Drug-sensitive TB
co-treatment, in adults, 243–245
“persisters”, 242
rifabutin (see Rifabutin)
rifampicin (see Rifampicin)

Drug susceptible TB
adverse drug reactions, 193–195
antiretroviral agents, 195
anti-tuberculosis therapy (see Anti-

tuberculosis therapy)
ART, 185, 198, 199
clinical symptoms, 185
DILI, 194, 195
empiric TB, 183
intermittent dosing, 187

liver function tests, 193
management, 183–185
morbidity and mortality, 199
“persister”, 183
rash, 193
resistance testing, 185
signs and symptoms, 187
six-month TB treatment duration, 185
smear positive pulmonary TB, 187
treatment, 221

Drug-susceptibility testing (DST)
culture-based methods, 137, 138
DR TB, 136
END TB strategy, 136
growth-based (phenotypic), 136, 137
MDR-TB, 136
molecular-based (genotypic), 136, 137
molecular methods, 138–140
rpoB mutations, 137
RR, 136

Drug therapy monitoring, see Anti-
tuberculosis therapy

Drug toxicity, 219–222

E
Economic evaluation

global country-level, 44
policy options, 48
Xpert MTB/RIF, 45

Efavirenz, 169, 241, 242, 246, 248, 249,  
254, 258

Elvitegravir, 250
Empiric TB therapy, 78, 153, 154, 183
Emtricitabine, 242, 254
END TB strategy, 136
Endogenous reactivation, 30, 34
Endothelial cells, 297
Enzyme-linked immunospot (ELISPOT), 116
Epidemiological modelling

TB with HIV
CD4 counts, 35, 36
disease and outcomes, 36, 37
infection, 34, 35
PLHIV, 37
prevalence settings, 37
progression, 34, 35
protection, 34, 35

TB without HIV
compartmental models, 28
description, 27, 28
IBMs, 29
model diagrams, 29
natural history (see Natural history)

Index



339

risk factors, 33
structure/parametrization, 28
transmission models, 27

uses and achievements, 47–48
Epidemiology

in Africa
HIV in TB and DR-TB epidemic, 

10–12
and natural history

detection, 31, 32
DR, 33
infection, 30
infectiousness, 31
mortality, 31, 32
progression, 30
protection, 30
reinfection, 30
risks of infection, 31
self-cure, 31, 32
treatment and recovery, 32

Ethambutol, 192
Ethionamide, 213, 221
European Medicines Agency (EMA), 215
Extensively drug-resistant TB (XDR TB), 4, 

10, 33, 38, 43, 205
development, 207
and HIV co-infection, 205
and pre-XDR, 218
WHO, 205

Extracellular matrix (ECM), 66
Extra-meningeal TB, 302
Extra-pulmonary MTB infection, 182
Extra-pulmonary TB (EPTB), 108, 109, 115, 

295, 307
clinical and radiological features,  

150, 151
clinical samples, 151, 152
clinical syndromes

abdominal, 91, 92
adenitis, 90
pericarditis, 92, 93
pleural, 90, 91

confirmatory testing, 280
CT, 281
definition, 150
diagnosing, 150, 151
LF-LAM assay, 151
microscopy and culture, 151, 152
non-respiratory clinical specimens, 151
sputum-based testing, 151
ultrasound, 131
WHO recommendation, 149, 150
Xpert MTB/RIF (and Xpert Ultra), 151

Extrathoracic lymph nodes, 90

F
Fast-progressing latent category, 30
FDG PET-CT scanning, 101, 102
Fixed dose combination (FDC) tablets, 188, 195
Fluid-attenuated inversion recovery  

(FLAIR), 303
Fluoroquinolones, 193, 205, 212, 218, 222
Focused assessment with sonography for 

HIV-associated TB (FASH), 131
Force of infection (FOI), 30
Foundation for New Innovative Diagnostics 

(FIND), 141

G
Gastric aspiration (GA), 278, 279
GeneXpert, 18

MTB/RIF, 3
NAAT, 142
PCR platform, 132, 134, 143

Genotypic testing, 209–211
Geometric mean (GM), 242
Granuloma, 64, 65, 74, 81

H
Hepatic adaptation, 194
Hepatic TB-IRIS, 104
Hepatitic/cholestatic DILI, 188
Hepatitis B virus (HBV), 194, 245
HIV-associated tuberculosis (HIV/TB)

clinical manifestations (see Clinical 
manifestations)

diagnosis (see Diagnosis)
screening (see Screening)

HIV-induced immunodeficiency, 270
HIV testing services (HTS), 17
Hospital-based vs. community-based 

treatment, 223, 224
Host-directed therapies, 298

TBM, 309, 310
Household contact tracing (HHCT), 45
Human immunodeficiency virus (HIV), 163, 

164, 166, 168, 170–172, 174
ART, 2
coinfection, 2
and DR TB, 214
in neurological TB (see Neurological TB)
and TB (see Tuberculosis (TB))

Hydrocephalus (HC), 299, 303, 311, 312
Hyperinflammatory (TT), 298, 299
Hyponatraemia, 85
Hyponatremia, 301, 312
Hypothyroidism, 221

Index



340

I
Immune reconstitution inflammatory 

syndrome (IRIS), 38, 240, 286
associated with HBV, 194
description, 101
disease progression, 196
TB-HIV co-infection, 197

Immune suppression
quantitative and qualitative reversal, 100

Immunologic mechanisms
innate and adaptive immune activation, 115
myeloid cells, 117–119
NK cells, 117
tissue damage, 119
T lymphocytes, 115–117

Immunology, 62, 64
Immunopathological reactions, 100
Immunosuppressive therapies, 296
Inadequate therapy, 207
Incidence rate ratios (IRRs), 26, 34–37, 41
Incremental cost-effectiveness ratio (ICER), 168
Individual-based models (IBMs), 29, 34, 40, 46
Inflammasomes, 118
Inflammation, 61, 64, 68, 69

acute, 101
clinical symptoms of TB-IRIS, 117
lung and worse lung function, 116
pathologic, 119
peritoneal surface, 104
pulmonary, 101, 111
symptoms and signs, 105

Inflammatory cytokines, 118
Inflammatory monocytes, 118
Injectable medication, 214
Innate immune system

dendritic cells, 58
DURT cells, 58, 59
impact of HIV, 59, 60
inflammatory cytokines and  

chemokines, 58
inflammatory environment, 59
neutrophils, 58
phagocytic cells, 58
PRRs, 58
virulence mechanisms, 59

INSPIRING trial, 109, 110
Integrase inhibitor based ART, 170
Integrase strand transfer inhibitors (INSTIs), 

109, 110, 258
rifabutin, 253
rifampicin, 249, 250

Interferon-gamma (IFNγ), 60, 61, 116
Interferon-gamma release assays (IGRAs), 35, 

60, 162, 163, 279

International Network for the Study of 
HIV-associated IRIS (INSHI), 
100–101, 106, 107, 114

International Union Against Tuberculosis 
(IUAT), 166

Intracranial TB
clinical presentation, 318
in HIV-infected patients, 303
myelopathy, 317
pathogenesis, 317
pathology, 317
prognosis, 319
radiculopathy, 317
spinal imaging, 318, 319
treatment, 319

Isoniazid (INH), 169–170, 174
addition/substitution, 218
anti-tuberculosis therapy, 188
ARVs, 241
Bethel Isoniazid Studies, 166
CDC, 166, 167
continuous (see Continuous INH)
drug interaction, 241
durations, 166
efavirenz, 241
first-line drugs, 222
GDG, 166
high-dose, 213
HIV-negative persons, 166
IUAT, 166
medications, 242
mono-resistance, 217
network meta-analysis, 166
raltegravir, 242
randomized trials, 166
and rifampicin, 171
and rifampin, 204
and rifapentine, 171–173, 241, 242
WHO guidelines, 166

Isoniazid preventive therapy (IPT), 38, 40, 
43–48, 240

Isoniazid prophylaxis therapy (IPT), 287

K
Kaposi’s sarcoma, 101, 111–113

L
Laboratory features, 301, 302
Lamivudine, 254
Langhan’s giant cells, 299
Latent M. tuberculosis infection (LTBI), 30, 

31, 35, 38, 43, 241, 242, 255

Index



341

acquired immune response, 163
anti-TB drugs, 164
anti-TB therapy (see Anti-TB therapy)
ART, 173–175
bacterial elimination, 163
definition, 162
Dormant bacteria, 163
dosR response regulator, 163
IGRA, 162, 163
immunocompromise, 164
INH (see Isoniazid (INH))
in vitro and in vivo evidence, 163
innate immune response, 163
Mtb infection, 162, 163
pathology, 163
PLWH, 164, 165
scout signals, 163
spectrum of responses, 162
sub-clinical TB disease, 163, 164
treatment, 164, 165
TST, 162, 163

Leucotriene A4 hydrolase (LTA4H) gene, 298
Levofloxacin, 193, 213
LF-LAM assay, 135, 136, 151
Light-emitting diode (LED) fluorescence 

microscopy, 132
Line probe assays (LPA), 138–140
Linezolid, 216, 217, 225
Lipoarabinomannan (LAM), 62, 109, 128, 

135, 136, 279
Liquid media-based DST, 137
Liver function, 104
Loop-mediated isothermal amplification 

(LAMP), 136
Loss-to-follow-up (LTFU), 32, 44
Lower CD4 count, 108
Lung damage and HIV

cavities, development, 65
CD4 counts, 66
clinical studies, 66
collagens, 66
ECM, 66
neutrophils, 66

Lymphadenitis, 90
Lymphocytes, 299
Lymphoid interstitial pneumonitis (LIP), 280
Lymphoma, 90

M
Macrophages, 58–61, 64, 66, 68
Magnetic resonance imaging (MRI), 281
Malignancy, 90
Malnutrition, 296

Maraviroc, 113, 251
Mathematical modelling

ART, 26
interventions, 27

ART, 38
infection control, 40
IPT, 38
TB detection, 39, 40

mean duration, 26
population-level impacts (see Population-

level impacts)
in public health, 26
TB/HIV in sub-Saharan Africa, 26

Matrix metalloproteinases (MMP), 66
Microbiological assays

diagnosis
NAAT, 142
next-generation LAM assays, 142
Xpert Omni, 142 (see also Diagnosis)

screening
culture, 132
LAM, 135, 136
LAMP, 136
smear microscopy, 131, 132
Xpert MTB/RIF assay, 132–134
Xpert ultra assay, 134, 135

Microscopic Observation Drug Susceptibility 
(MODS) assay, 209

Microscopy
AFB, 151
smear, 128, 131, 132, 136, 149
sputum, 130, 133, 146, 148, 153

Miliary TB, 297
Minimum inhibitory concentrations (MIC), 

137, 251
Molecular methods, DST

diagnosis
sequencing, 143
Xpert Xtend XDR, 143

screening
LPA, 138–140
vs. growth-based methods, 138
sequencing and non-sequencing based 

techniques, 138
Xpert and Xpert Ultra, 138

Molecular test, 182
Mononuclear cells, 272
Mono-resistance

isoniazid, 217
pre-XDR and XDR TB, 218
rifampin, 218

Monotherapy, 207
Mortality, 182, 195, 199
Moxifloxacin, 193, 212

Index



342

MTBDRplusv2.0, 139
MTBDRsl, 139, 140
MTB GeneXpert, 279
Multidrug-resistant (MDR), 240
Multidrug-resistant/rifampicin-resistant TB 

(MDR/RR), 33
Multidrug-resistant TB (MDR TB),  

4, 10
adverse events, 219–222
convergence, 204
definition, 204
early experience, 212
genetic analyses, 208
global surveillance data, 205
heterogeneity, 205
and HIV co-infection, 214
and HIV epidemics, 205
hospital-based vs. community-based 

treatment, 223, 224
and mono-resistance

isoniazid, 217
pre-XDR and XDR TB, 218
rifampin, 218

prevalence, 204, 205
prevention, 207
risk factors, 206
short-course regimen, 213, 214
standardized vs. individualized treatment, 

222, 223
standard 24-month regimen, 212, 213
and TB-HIV co-infection, 205
transmission, 208
treatment, 212, 215
underdiagnosis and underreporting, 204

Mycobacteraemia, 65, 80, 81
Mycobacterium tuberculosis (MTB), 2, 204

adaptive immune system (see Adaptive 
immune system)

clinical specimen, 129
culture diagnosis, 182
with FOI, 30
granuloma formation, 64, 65
infections, 10
innate immune system (see Innate immune 

system)
lung damage (see Lung damage and HIV)
meta-analysis, 280
restoration, 67

Myeloid cells, 117–119

N
N-acetyl transferase 2 (NAT2), 188
Namale meta-analysis, 111

Natural history
detection, 31, 32
DR, 33
infection, 30
infectiousness, 31
mortality, 31, 32
progression, 30
protection, 30
reinfection, 30
risks of infection, 31
self-cure, 31, 32
treatment and recovery, 32

Natural killer (NK) cells, 117
Natural killer T cells (NKT cells), 59
Negative predictive value (NPV), 76
Neurological TB

differential diagnosis of HIV-associated, 306
epidemiology, 295, 296 (see also Central 

nervous system TB (CNS TB))
Neurological TB-IRIS

clinical presentation, 321
endemic settings, 320
paradoxical reaction, 320
pathogenesis, 320, 321
pathology, 320, 321
time of ART initiation in TBM, 322
treatment, 322, 323
unmasking, 320

Neutrophils, 58, 66
Nevirapine, 169, 249, 258
Next-generation LAM assays, 142
Next generation sequencing (NGS), 143
Nipro NTM + MDRTB Detection Kit 2, 139
Nitrate reductase assay (NRA), 209
Non-microbiological assays, see Screening
Non-nucleoside reverse transcriptase inhibitors 

(NNRTIs), 169, 258
rifabutin, 252
rifampicin, 246, 248, 249

Non-respiratory clinical specimens, 151
Non-steroidal anti-inflammatory drugs 

(NSAIDs), 111–113
Non-tuberculous mycobacteria (NTM), 132, 149
Nucleic acid amplification tests (NAAT), 132, 

278, 304, 305
fine needle aspiration/biopsy, 281
GeneXpert, 142

Nucleoside reverse transcriptase inhibitors 
(NRTIs), 169, 245, 246

O
Observational studies, 109
ODYSSEY trial, 258

Index



343

Open-label corticosteroids, 113
Optimal control theory, 43
Ordinary differential equations (ODEs), 42

P
Para-aminosalicylic acid (PAS), 213
Paradoxical reaction, 320
Paradoxical TB-IRIS, 320

ART, 100
clinical features, 101, 103–105
consequences, 110, 111
definitions, 100, 107
diagnosis, 106
duration, 106
immunopathogenesis, 115
incidence, 107, 108
prevention, 112–113
risk factors, 108–110
symptoms and signs/radiographic 

deterioration, 100
treatment, 111, 112

Parenchymal tuberculoma, 313
Partial differential equation (PDE) models, 34, 

42, 44
Pathogen-associated molecular patterns 

(PAMPs), 58
Pattern recognition receptors  

(PRRs), 58
PCR-based amplification, 138
Pediatric European Network for Treatment of 

AIDS (PENTA), 258
Pediatrics, 257, 258
Pediatric TB/HIV

AFB, 278
chest x-ray, 279, 280
clinical symptoms of pulmonary, 278
confirmatory testing, 280
CSF, 281
culture/NAAT, 278
diagnostic test, 280
GA, 278, 279
IGRA, 279
LAM, 279
LIP, 280
MTB GeneXpert, 279
paucibacillary nature, 275
physical examination, 278
radiologic findings, 278
scoring system, 280
SI, 278
specimen collection methods, 281–282
suspected pulmonary TB, 278
TST, 279

People living with HIV (PLWH), 1, 164, 165, 
168–174

ambulatory, 142
on ART, 146
chest-X-rays, 130
diagnostic accuracy, 139
diagnostic algorithms, 144
EPTB, 150, 151
microbiological testing, 129
POC, 128
PTB, 133
resource-limited settings, 128
respiratory symptoms, 149
signs, 135
symptoms, 136
TBM, 135
and TB preventative therapy, 129

Percolators, 163
Pericardiocentesis, 92
Peripheral blood mononuclear cells (PBMCs), 

66, 118
Persisters, 242
Persons living with HIV infection (PLWH), 240
Pharmacology, 240, 259
Phospho-antigens, 59
Pill burden, 195, 196
Pleural effusions, 84, 90
POC ultrasound, 88
POC urine-lipoarabinomannan (u-LAM), 88
Point-of-care (POC), 88, 128, 135, 142
Polymerase chain reactions (PCR), 210
Polypharmacy, 195, 196
Population-level impacts

high HIV prevalence settings, 29, 41
HIV-negative TB, 40
interventions

ART, 45–47
DOTS strategy, 44
HHCT, 45
high-HIV burden settings, 44
IPT, 44
optimal control theory, 43
TB/HIV ODE model, 43
TIME model, 47
XDR, 43
Xpert, 45

single/multiple interventions, 40
TB/HIV epidemics, 41–43
time-scales, 40

Population-level transmission models, 27
PredART trial, 108, 113
Prednisone, 111–113
Pregnant women

TB-HIV co-infection, 255, 256

Index



344

Pretomanid, 216
Pre-XDR TB and XDR, 218
‘Primary progression’, 30, 34
Primers, 138
Procalcitonin (PCT), 76
Pro-inflammatory cytokines, 117
Protease inhibitors (PIs), 258

cobicistat-boosted, 250
perinatally infected children, 257
rifabutin, 252
rifampicin, 250, 251
super-boosting, 258

Prothionamide, 221
Pulmonary features, 101
Pulmonary inflammation, 111
Pulmonary TB (PTB)

CD4 counts
diagnostic approach, 77, 79

culture-based methods, 149
diagnostic test, 144, 145, 148
EPTB (see Extra-pulmonary TB (EPTB))
guidelines, 148
molecular testing, 146
smear microscopy, 149
TB-LAMP, 149
WHO recommendation, 144–146, 148
Xpert (Ultra), 148
Xpert MTB/RIF, 144, 148

Pyrazinamide (PZA), 182, 185, 192, 194, 195, 
212, 256

R
Radiologic screening tools

chest X-ray, 130, 131
EPTB, 131

Raltegravir, 242
Rapid diagnostics, 88–90, 93
REALITY trial, 110
REFLATE trial, 110, 249
ReMOX trial, 3
Renal biopsy, 105
Renal dysfunction, 105
Resource-limited settings

DR, 152, 153
empiric TB therapy, 153, 154
ICF, 145
passive case, 145
PLHIV, 147
PTB (see Pulmonary TB (PTB))
WHO recommendation, 145–150, 152, 153

Respiratory symptoms, 101
Rifabutin

adverse events, 171
ARV, 253

CDC guidelines, 170
CYP isoenzymes, 170
CYP3A substrate, 251
HIV co-infection, 171
HIV-infected patients, 251
immune reconstitution, 253
INSTIs, 253
LTBI, 171
NNRTI, 252
PI, 252

Rifampicin, 242
ART agents, 251
CDC guidelines, 169
dolutegravir, 169
drug-drug interactions, 169, 170
drug transporters, 243
efavirenz, 169
high-dose, 251
and INH, 171
INSTIs, 249, 250
meta-analysis, 170
metabolizing enzymes, 243
monotherapy, 170
network meta-analysis, 170
nevirapine, 169
NNRTI, 169, 246, 248, 249
NRTIs, 169, 245, 246
PI, 250, 251
raltegravir, 169
rifabutin, 169
treatment completion, 170
WHO guidelines, 169

Rifampin mono-resistance, 218
Rifamycin antibiotics, 188, 192
Rifamycin-containing regimens

rifabutin, 170, 171
rifampicin (see Rifampicin)
rifapentine (see Rifapentine)

Rifapentine and INH
BRIEF-TB trial, 173
CDC guidelines, 171
cost effectiveness, 172
EML, 173
health system per TB, 172
3HP, 171, 172
non-inferiority margin, 173
PLWH, 172
PREVENT TB trial, 171
self-administered 3HP, 172
self-administered therapy, 172
short course regimen, 172
treatment completion, 173
WHO guidelines, 171

RIF-resistant (RR), 136
Rilpivirine, 249

Index



345

S
SAPIT clinical trials, 108
Screening

available tests, 128, 129
confirmatory tests (see Microbiological 

assays)
and diagnosis (see Diagnosis)
DST (see Drug-susceptibility testing (DST))
low-cost, 128
PLHIV, 128
radiologic, 130–131
symptom-based screening rules, 129
WHO, 129

Self-administered therapy, 171, 172
Serositis, 103
Single nucleotide polymorphisms (SNPs), 298
Smear microscopy, 129, 131, 132

PTB, 149
TBM, 304

Solid media-based DST, 137
Space-occupying lesions (SOLs), 312

in HIV, 315
Spanish retrospective study, 108
Spinal imaging, 318, 319
Spinal TB, 299, 317–319
Splenic TB-IRIS, 104
Sputum-based testing, 151
Sputum induction (SI), 278
Sputum Xpert-MTB/RIF, 78
Standardised Treatment Regimen of Anti-TB 

Drugs for Patients with MDR-TB 
(STREAM) trial, 214

Standardized vs. individualized treatment,  
222, 223

Streptomycin, 204, 207
STRIDE clinical trials, 108
Super extensively drug-resistant, 218
Syndrome of inappropriate antidiuretic 

hormone secretion (SIADH), 301

T
Tachycardia, 105
TB disease spectrum, 162–164, 174, 175
TB/HIV

epidemiological modelling (see 
Epidemiological modelling)

mathematical modelling (see Mathematical 
modelling)

ODE model, 43, 44
TB-HIV co-infection

antiretrovirals, 257
antituberculosis drugs, 257
ART (see Antiretroviral therapy (ART))
bedaquiline, 257

in children, 270–275
clofazimine, 257
DDI, 257
INSTIs, 258
NNRTI, 258
pediatrics, 257, 258
PIs, 257, 258
pregnant women, 255, 256
risk factor, 15
treatment

adherence interventions, 196
adverse drug reactions, 197
cotrimoxazole, 195
DDI, 196
DOT, 196
FDC tablets, 195
IRIS, 197
patient care plan and design, 195

TB Impact Model and Estimates (TIME) 
modelling, 36, 43, 47

TB incidence
estimated TB burden, WHO regions, 15
in SSA countries, 13–15, 18

TB-LAMP
PTB, 149

TB mortality
in high burden SSA countries, 19, 20

TB pericarditis, 92
TB preventative therapy (TBPT), 240

CD4 count, 240
IPT, 240, 241
isoniazid, 241, 242
LTBI, 241
rifampicin, 242
TEMPRANO study, 241

TB radiculomyelitis, 321
TB treatment

indications, 183
principles, 182

T cells
CD4+, 59, 61, 62, 64, 67
CD8+, 61
DURT, 59
γδ T cells, 59
instrumental, 64
and macrophage function, 65
MAIT, 59
NKT, 59
reconstitution, 100

TEMPRANO trial, 174
Tenofovir alefenamide (TAF), 242
Tenofovir diphosphate (TFV-DP), 245
Tenofovir disoproxil fumarate (TDF), 242, 254
Therapeutic drug monitoring (TDM), 256
Thrombocytopenia, 86

Index



346

Thyroid-stimulating hormone levels, 221
Tissue damage, 119
Tissue pathology, 119
T lymphocytes, 115–117
Totally drug-resistant, 218
Toxicities, 188, 192, 197, 198
Transmission modelling

diagnostic algorithms, 39
DR-TB, 33, 48
fitness/virulence, 48
framework, 45
HIV, 44
nosocomial, 40, 43
ODEs, 42
patient types, 39
patterns and trends, 43
population-level, 27
4-stage HIV structure, 45
TB, 27, 28, 40

Trojan horse mechanism, 297
Tuberculin skin tests (TSTs), 35, 162, 163, 

241, 279
Tuberculoma, 299, 300

brain imaging, 314, 315
clinical presentation, 314
duration, TB treatment, 316
parenchymal, 313
prognosis, 316
SOLs, 312, 315
surgical management, 315

Tuberculosis (TB)
anti-TB drugs, 3
ART, 240
clinical trials, 2, 3
control, 2
diagnostic technologies, 2, 3
DR-TB, 4
drug

exposures, 240 (see also Drug 
susceptible TB)

elimination, 2, 6
“End TB Strategy”, 2
implementation, preventive therapy, 5
incidence, 2, 6
and LTBI (see Latent TB infection (LTBI))
MDR, 240
MDRTB, 4
opportunistic infection, 1
PLWH, 2, 240
prevention, 5, 286–287
PT, 240
vaccine, 5
vitamin B6, 240
WHO, 2

Tuberculosis-associated immune reconstitution 
inflammatory syndrome (TB-IRIS)

immunologic mechanisms (see 
Immunologic mechanisms)

paradoxical (see Paradoxical TB-IRIS)
unmasking (see Unmasking TB-IRIS)

Tuberculous meningitis (TBM), 118
brain imaging, 302, 303
in children, 296
clinical features

concomitant extra-CNS TB, 301
infection progresses, 300
neurological deficits, 300
paralytic phase, 300
prodromal phase, 300

CM, 296
CSF, 301
diagnosis

clinical prediction rules, 305
culture, 304
NAA tests, 304, 305
smear microscopy, 304

differential diagnosis, 305, 307
extra-meningeal TB, 302
immune system, 296
laboratory features, 301, 302
management

antimicrobial treatment, 308, 309
HC, 311, 312
host-directed therapies, 309, 310
supportive, 312

pathogenesis and pathology
arachnoiditis, 299
autopsy findings, 296
bacilli, 297
BBB, 297
caseating foci rupture, 297
CSF, 297, 298
frequency, 297
HC, 299
HIV-infected, 298
host and bacterial genetic factors, 298
host-directed therapies, 298
IL-6, 298
immunopathogenesis, 298
inflammatory mediators, 297
inflammatory reaction, 299
and miliary TB, 297
primary infection/late reactivation, 297
Rich foci, 297
SNPs, 298
susceptibility/disease severity, 298
TNF-α, 298
“trojan horse” mechanism, 297

Index



347

TT, 298, 299
tuberculoma, 299, 300
vasculitis, 299

population-based, 296
prognosis, 307, 308
risk factors, 296
time of ART initiation, 322

Tuberculous pericarditis, 92
Tumor necrosis factor (TNF), 116

U
UDP-glucuronosyltransferase 1A1  

(UGT1A1), 249
Ultrasonography

EPTB, 131
Ultrasound imaging, 84
UNICEF estimates, 270
Unmasking TB-IRIS, 320

ART, 100, 114
cerebral, 114
characterises, 114
clinical manifestations, 114
definitions, 100
incidence rates, 114
management, 115
mechanical ventilation, 114
neurological deficits, 114
prevention, 114
pulmonary TB, 114
symptomatic/subclinical, 113

undiagnosed TB, 100, 114
WHO symptom screen assessment, 114

Upper limit of normal (ULN), 194
US Food and Drug Administration (FDA), 215

V
Vaccines, 286
Vascular endothelial growth factor (VEGF), 65
Vasculitis, 299

W
Wayne model, 163
Wells-Riley model, 42
WHO DOTS strategy, 14
Whole blood transcripts, 118
World Health Organization (WHO), 2, 128, 

183, 241

X
Xpert and Xpert Ultra, 78, 138, 148
Xpert MTB/RIF, 3, 132–134, 144, 148, 151
Xpert MTB/RIF Ultra (Ultra), 134, 135, 305
Xpert Omni, 142
Xpert Xtend XDR, 143

Z
Ziehl–Neelsen (ZN) staining, 131, 304

Index


	Preface
	Contents
	Overview of the HIV-Associated Tuberculosis Epidemic
	Introduction
	References

	Epidemiology of Drug-Susceptible, Drug-Resistant Tuberculosis and HIV in Africa
	Role of Human Immunodeficiency Virus (HIV) in Fuelling the Tuberculosis (TB) and Drug-Resistant TB (DR-TB) Epidemic
	Incidence of TB in High Burden SSA Countries
	The Risk of TB in HIV Infected Individuals
	TB-HIV Integration: When to Start ART During TB Treatment
	Impact of ART in Patients with DR-TB
	Universal HIV and TB Case Finding and Universal ART for HIV-Infected TB Patients
	Tuberculosis Related Mortality in High Burden SSA Countries
	References

	Modelling the HIV-Associated TB Epidemic and the Impact of Interventions Aimed at Epidemic Control
	Introduction
	Focus of This Chapter

	TB Modelling Without HIV
	Modelling Approaches
	Modelling TB Natural History and Epidemiology
	Infection and Progression
	Reinfection and Protection
	Infectiousness and Risks of Infection
	Mortality, Self-Cure and Detection
	Treatment and Recovery
	Drug Resistance

	Risk Factors Other Than HIV

	Modelling TB in Individuals with HIV
	Data for Modelling
	Progression, Infection and Protection
	Influence of CD4 Count
	TB Disease and Outcomes
	Effects of TB on HIV

	Modelling Interventions
	Antiretroviral Therapy (ART)
	Isoniazid Preventive Therapy (IPT)
	Improved TB Detection
	Infection Control

	Population-Level Impacts
	Population-Level Impact of HIV on TB Epidemics
	Population-Level Impact of Interventions

	Discussion
	Uses and Achievements of Modelling
	Future Directions
	Conclusion

	References

	Immune Responses to Mycobacterium tuberculosis and the Impact of HIV Infection
	First Line of Defence Against M. tuberculosis: The Innate Immune System
	The Impact of HIV Infection on Innate Immune Responses to M. tuberculosis
	The Second Line of Defence: The Adaptive Immune System
	The Impact of HIV Infection on Adaptive Immune Responses to M. tuberculosis
	The Impact of HIV Infection on Granuloma Formation, M. tuberculosis Containment and Dissemination Beyond the Lung
	Lung Damage in TB and the Impact of HIV
	Restoration of M. tuberculosis-Specific Immune Response with ART
	Summary
	References

	Clinical Manifestations of HIV-Associated Tuberculosis in Adults
	Introduction
	Clinical and Radiological Features at Higher CD4 Counts
	Symptoms
	Clinical and Laboratory Examination
	Imaging

	Approach to Diagnosis of Pulmonary Tuberculosis in Ambulant Patients with Higher CD4 Counts
	Clinical Manifestations of HIV-Associated Tuberculosis with Advanced Immunosuppression
	Disseminated Tuberculosis and Mycobacteraemia
	Clinical and Radiological Features
	Routine Laboratory Investigations

	Approach to Diagnosis of Disseminated Tuberculosis in Inpatients with Advanced HIV
	Specific Clinical Syndromes Associated with EPTB
	Tuberculous Adenitis
	Pleural Tuberculosis
	Abdominal Tuberculosis
	Tuberculous Pericarditis

	Conclusions and Future Directions
	References

	The Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome (TB-IRIS)
	Introduction
	Section 1: Clinical Aspects of Paradoxical TB-IRIS
	Clinical Features
	Duration
	Diagnosis
	Incidence
	Risk Factors
	Consequences
	Treatment
	Prevention

	Section 2: Clinical Aspects of Unmasking TB-IRIS
	Section 3: Immunologic Mechanisms Involved In TB-IRIS
	Role of T Lymphocytes
	Role of NK Cells
	Role of Myeloid Cells
	Role of Tissue Damage
	Conclusion

	References

	Diagnosis of HIV-Associated Tuberculosis
	Introduction
	Part I: Overview of Screening Tools and Diagnostic Tests for HIV-Associated TB
	Types of Available Tests for HIV-Associated TB and Desired Characteristics
	Tools and Tests for TB Screening
	Symptom-Based Screening Rules

	Radiologic Screening Tools
	Chest X-Ray
	Ultrasound for Extra-Pulmonary TB (EPTB)

	Microbiological Assays (Confirmatory Tests) for TB
	Smear Microscopy
	Culture
	Xpert MTB/RIF Assay
	Xpert MTB/RIF Ultra (Xpert Ultra) Assay
	Lipoarabinomannan (LAM)
	Loop-Mediated Isothermal Amplification (LAMP)

	Detection of TB Drug-Resistance (Drug-Susceptibility Testing)
	Culture-Based Methods for DST
	Molecular Methods for DST
	Xpert and Xpert Ultra
	Line Probe Assays


	Part II: Novel Approaches to Diagnosis of HIV-Associated TB
	Overview
	Tools and Tests for TB Screening
	Clinical Prediction Scores
	C-Reactive Protein (CRP)

	Microbiological Assays (Confirmatory Tests) for TB
	Next-Generation LAM Assays
	Xpert Omni
	Nucleic Acid Amplification Tests (NAAT) Other Than GeneXpert

	Molecular Methods for DST
	Xpert Xtend XDR
	Sequencing


	Part III: A Suggested Step-Wise Approach to Diagnosing HIV-Associated TB for Clinicians with a Focus on Resource-Limited Settings
	Overview
	Step 1. Who Should I Screen for HIV-Associated TB?
	Step 2. How Should I Screen for HIV-Associated TB?
	Step 3: Whom Should I Investigate Further for Pulmonary TB?
	Step 4. How Should I Test for PTB?
	Further information:

	Step 5: Whom Should I Investigate Further for EPTB and How Should I Test for EPTB?
	Further Information:

	Step 6: Whom Should I Test for Drug Resistance?
	Step 7: How Should I Test for Drug Resistance?
	Step 8: For Whom Should I Consider Initiation of Empiric TB Therapy?


	Conclusions
	References

	Recent Advances in the Treatment of Latent Tuberculosis Infection Among Adults Living with HIV Infection
	Latent TB Infection and TB Disease: A Spectrum
	Treatment of Latent TB Infection with Anti-TB Therapy
	Isoniazid
	Continuous Isoniazid

	Rifamycin-Containing Regimens
	Rifampicin
	Rifabutin
	Rifampicin and Isoniazid
	Isoniazid and Rifapentine


	Effect of Antiretroviral Therapy in Preventing the Progression of Latent TB Infection
	References

	Treatment of Drug-Sensitive Tuberculosis in Persons with HIV
	General Principles of Tuberculosis Treatment
	Indications for TB Treatment
	Empiric TB Therapy for Suspected TB

	Treatment of Drug Susceptible Tuberculosis (Also See Table 1)
	Anti-tuberculosis Medications and Drug Therapy Monitoring
	Isoniazid
	Rifamycin Antibiotics
	Pyrazinamide
	Ethambutol
	Fluoroquinolones
	Management of Adverse Drug Reactions
	Management of Drug Induced Liver Injury (DILI) Associated with TB Therapy


	Challenges in Treating TB and HIV Coinfection
	Polypharmacy, Pill Burden, Adherence, and Directly Observed Therapy
	Drug-Drug Interactions
	Adverse Drug Reactions
	Immune Reconstitution Inflammatory Syndrome (IRIS)

	Starting ART in Patients with TB
	Patients Known to Have HIV Infection and Receiving ART
	Patients Not Receiving ART at the Time of TB Diagnosis
	Recommendations for When to Start ART in TB Patients


	Conclusion
	References

	Drug-Resistant Tuberculosis and HIV
	History and Epidemiology
	Development of Drug-Resistance

	Diagnosis
	Treatment and Outcomes
	Early Experience with MDR TB Treatment
	Development of the Standard 24-Month Regimen
	The Short-Course Regimen
	HIV and Drug-Resistant TB
	New and Repurposed Drugs for Drug-Resistant TB
	Bedaquiline
	Delamanid
	Pretomanid
	Linezolid
	Clofazimine

	Mono-Resistance and Resistance “Beyond” MDR TB
	Isoniazid Mono-Resistance
	Rifampin Mono-Resistance
	Pre-XDR and XDR TB

	Adverse Events
	Other Considerations in MDR TB Treatment
	Standardized Versus Individualized Treatment
	Hospital-Based Versus Community-Based Treatment
	Surgery for Drug-Resistant TB

	Thinking Beyond Drugs for Drug-Resistant TB

	References

	Co-treatment of Tuberculosis and HIV: Pharmacologic Considerations
	Introduction
	Prevention of HIV-Associated TB
	Treatment of Drug-Sensitive TB
	Rifampicin-Based TB Treatment
	Rifabutin-Based TB Treatment
	Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI)
	Integrase Strand Transfer Inhibitors (INSTIs)
	Other ARVs

	Other Considerations
	Treatment of Drug-Resistant TB

	Pregnant Women with TB-HIV Co-Infection
	Pediatric Considerations
	Summary
	References

	HIV and Tuberculosis in Children
	Introduction
	TB/HIV co-Infection in Children
	Diagnosing Pediatric TB
	TB Treatment in the HIV-infected Child
	Immune Reconstitution Inflammatory Syndrome (IRIS)
	TB Prevention
	Conclusion
	References

	Neurological TB in HIV
	Introduction and Epidemiology
	Tuberculous Meningitis
	Pathogenesis and Pathology
	Clinical Features
	Cerebrospinal Fluid Features
	Laboratory Features
	Features of Extra-Meningeal TB
	Brain Imaging Findings
	Diagnosis
	Smear Microscopy and Culture
	Nucleic Acid Amplification (NAA) Tests
	Clinical Prediction Rules

	Differential Diagnosis
	Prognosis
	Management
	Antimicrobial Treatment
	Host-Directed Therapies
	Management of Hydrocephalus
	Supportive Management


	Tuberculoma
	Clinical Presentation
	Brain Imaging
	Approach to Space-Occupying Lesions in HIV
	Surgical Management
	Prognosis
	Duration of TB Treatment

	Intraspinal Tuberculosis
	Pathogenesis and Pathology
	Clinical Presentation
	Spinal Imaging
	Treatment
	Prognosis

	Neurological TB-IRIS
	Pathogenesis and Pathology
	Clinical Presentation
	Time of ART Initiation in TBM
	Treatment

	References

	Correction to: Modelling the HIV-Associated TB Epidemic and the Impact of Interventions Aimed at Epidemic Control
	Correction to: Chapter 3 in: I. Sereti et al. (eds.), HIV and Tuberculosis, https://doi.org/10.1007/978-3-030-29108-2_3

	Index

