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Abstract. In this work, we investigate the proof theoretic connections
between sequent and nested proof calculi. Specifically, we identify gen-
eral conditions under which a nested calculus can be transformed into a
sequent calculus by restructuring the nested sequent derivation (proof)
and shedding extraneous information to obtain a derivation of the same
formula in the sequent calculus. These results are formulated generally
so that they apply to calculi for intuitionistic, normal modal logics and
negative modalities.

1 Introduction

Contemporary proof theory can be traced to Gentzen’s seminal work [8] where
analytic proof calculi for classical and intuitionistic logic were presented. Proof
calculi consist of formal rules of inference which describe the logic under consid-
eration; in an analytic calculus, every formula that occurs in a proof generated
by the calculus is a subformula of the end formula being proved. Analyticity is
crucial because it induces a structure on the proofs (in terms of the end formula).
This proof structure can be exploited to formalise reasoning, investigate meta-
logical properties of the logic e.g. decidability, complexity and interpolation, and
develop automated deduction procedures.

The wide applicability of logical methods and their use in new subject areas
has resulted in an explosion of new logics different from classical logic; their
usefulness depends on the availability of an analytic proof calculus. The sequent
calculus is the simplest and best-known formalism for constructing analytic proof
calculi. Unfortunately, there are many natural non-classical logics—for example,
most extensions of intuitionistic and modal logic—for which the sequent calculus
formalism is unable to provide an analytic calculus (the precise reasons for this
inability are still not well understood). In response, many more new formalisms
have been proposed, such as hypersequents [2,21], labelled sequents [6,18], nested
sequents [3,10] and linear nested sequents [14,16]. This work is primarily con-
cerned with the nested sequent formalism which is obtained by replacing the
sequent in the sequent calculus with a tree of sequents.
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While the trend has been towards developing formalisms with greater sophis-
tication in order to provide non-classical logics with analytic calculi, in this work
we look in the reverse direction by investigating which aspects of this sophis-
tication are extraneous. More specifically, we identify general conditions under
which a nested calculus can be transformed into a sequent calculus by restruc-
turing the nested sequent derivation (proof) and shedding information to obtain
a derivation of the same formula in the sequent calculus. Our approach identifies
a class of nested systems, called basic nested systems, suitable for such trans-
formations. In these systems, nested rules either create new nestings (creation
rules), or manage sequent contexts (update rules), moving formulae to deeper
nestings, with nesting depth difference exactly equal to one. This builds an inter-
esting connection with Avron and Lahav’s basic sequent systems [1,11], since the
systematic separation of the behaviour of principal-auxiliary/context formulae
in basic sequent systems and creation/update rules allows for a neater way of
relating sequent and nested frameworks.

We exploit this separation of rules as follows: after creating a new nesting,
upgrade rules control the flow of formulas from the surrounding context to nest-
ings. We show that, if this flow is restricted to stepwise, (bottom-up) outside-in
moves, then the whole block of applications of nested rules can be seen as a single
sequent rule, with the principal and auxiliary formulae determined by the cre-
ation rule, and the context restrictions determined by the upgrade rules. Observe
that the proof strategy described above is only possible since basic nested sys-
tems allow for a general form of the disjunction property. We apply this method
to intuitionistic, normal modal logics and negative modalities.

We believe that the material presented here is not only a mere technicality for
establishing connections between proof formalisms: on pinpointing the key differ-
ences between sequent and nested systems, we are in fact shedding some light on
the discussion of to what extent sequent calculus is an adequate meta-language
for producing analytic systems. We thus finish the paper by showing how our
ideas can be used in order to better understand the bounds for analyticity in
sequent systems.

Organisation and Contributions. Section 2 presents the notation for basic sequent
systems; Sect. 3 introduces the notion of basic nested systems and shows a
normalisation procedure for nested sequent derivations; Sect. 4 explains how
to recover sequent systems from nested ones; Sect. 5 applies our results to some
example logics and brings a discussion about nestings and cut-elimination; Sect. 6
concludes the paper.

2 Sequent Systems

In [1] a family of sequent systems (called basic systems) was uniformly presented
by explicitly differentiating the context and non-context portions of a rule. The
former is defined using binary context relations and the latter via a specified
rigid structure. The advantage of such a presentation is that it allows us to
relate the properties of the rule with the formal specification of its content and
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non-context. We will greatly explore this separation when relating sequent rule
applications to blocks of nested derivations in Sect. 4. In this work, we will
adopt the presentation for basic systems given in [11]. Where convenient, we
will also present sequent systems using the traditional rule schemas built from
meta-variables for formulae and sets of formulae.

Let L denote a propositional language and wffL the set of its well formed for-
mulae, built using a countable set Var = {p, p1, p2, . . .} of propositional variable
symbols.

Definition 1. A signed formula is an expression of the form T : A or F : A
where A ∈ wffL. A sequent is a finite set of signed formulae. As in [11], we will
adopt the usual sequent notation Γ � Δ, where Γ,Δ are (possibly empty) finite
sets of formulae and Γ � Δ is interpreted as the sequent {F : A | A ∈ Γ} ∪ {T :
A | A ∈ Δ}.

A substitution is a function σ : wffL → wffL such that

σ(♥(A1, . . . , Ak)) = ♥(σ(A1), . . . , σ(Ak))

for every k-ary connective ♥ of L. Substitutions extend to signed formulae (pre-
serving sign), sequents and (later) to nested sequents in the standard way.

A context relation is a finite binary relation on the set of signed formulae.
Given a context relation C, we denote by C the binary relation between signed
formulae C = {〈σ(α), σ(β)〉 | σ is a substitution, and 〈α, β〉 ∈ C}.

A C-instance is a pair of sequents 〈S1, S2〉 such that for some enumeration
S1 = {α1, . . . , αk} and S2 = {β1, . . . , βk} and every 1 ≤ i ≤ k, it is the case that
αiCβi.

Example 2. From the trivial relation Cid := {〈F : p,F : p〉, 〈T : p,T : p〉} it
follows that a signed formula is Cid-related to another iff the two signed formulae
are identical. It follows that the Cid-instances are precisely the sets {〈S, S〉 |
S is a sequent} of pairs.

From the relation Cint := {〈F : p,F : p〉} it follows that while (F : A)Cint(F : A)
for every formula A, it is not the case that (T : A)Cint(T : A). In particular, the
Cint-instances are precisely those sequent pairs of the form 〈Γ �, Γ �〉. Informally,
Cint-instances are identical sequents with empty right hand side.

Let �Γ denote the set {�A | A ∈ Γ}. Then from CK := {〈F : p,F : �p〉}
it follows that CK-instances are precisely those sequent pairs of the form
〈Γ �,�Γ �〉.

Finally, from the relation C4 := {〈F : �p,F : �p〉} it follows that C4-instances
are precisely those sequent pairs of the form 〈�Γ �,�Γ �〉.
We define the concatenation (Γ1 � Δ1) ⊗ (Γ2 � Δ2) as Γ1, Γ2 � Δ1,Δ2, and
∅ ⊗ Π as ∅.

Definition 3. A basic premise is a pair 〈S;C〉 where S is a sequent and C is a
context relation. A basic rule is a pair s/S where s = {〈Si;Ci〉}1≤i≤k is a finite
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set of basic premises and S is the conclusion sequent of the rule. A basic rule is
represented explicitly as:

〈S1;C1〉 · · · 〈Sk;Ck〉
S

The formulae in Si (1 ≤ i ≤ k) are called auxiliary formulae and the formulae
in S are called the principal formulae.

A rule with an empty set of basic premises is called an axiom. A basic sequent
system (SC) consists of a set of basic rules.

An application of a basic rule has the following form, where σ is a substi-
tution, Π1,Π

′
1, . . . , Πk,Π

′
k are sequents and 〈Πi,Π

′
i〉 is a Ci-instance for each i

(1 ≤ i ≤ k).

σ(S1) ⊗ Π1 · · · σ(Sk) ⊗ Πk

σ(S) ⊗ Π ′
1 ⊗ · · · ⊗ Π ′

k

r

The notion of premise, conclusion, principal and auxiliary formulae extends to
applications of rules in the standard way.

A derivation in a SC is defined in the usual way as a finite labelled rooted tree:
the root is labelled by the end-sequent, the labels of each node and its children
correspond to the conclusion and premises of a rule application, and axioms label
the leaves.

Fig. 1. Multi-conclusion intuitionistic calculus SCmLJ.

Example 4. The rule below on the left has principal formula p1 → p2, auxiliary
formulae p1, p2, and application depicted on the right

〈p1 � p2;Cint〉
� p1 → p2

Γ,A � B

Γ � A → B
→R

Example 5. The axiom init, and the right and left weakening rules are defined
as follows:

∅/p � p 〈∅;Cid〉/ � p 〈∅;Cid〉/p �
In the presence of the above rules, the following rules can be seen to be derivable:

Γ,A � A,Δ
init

Γ � Δ
Γ,Γ ′ � Δ,Δ′ W
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Remark 6. The systems that we consider will be fully structural in the sense
that free application of the schemas init and W is permitted (as originally in the
definition of basic sequent systems in [11]). Observe that, since sequents are sets,
we do not the copy formulae in the contexts.

Figure 1 presents (the schema representation of) SCmLJ [17], a multiple conclu-
sion sequent system for propositional intuitionistic logic. Observe that all rules,
except →R, have the trivial relation in the basic premises. On the other hand,
the relation Cint in the implication right rule enforces that the only formula in
the succedent of the conclusion is the principal formula.

In what follows, for readability, we may omit the word basic when referring
to rules, applications and systems.

3 Nested Systems

Nested systems [4,20] are extensions of the sequent framework where each
sequent is replaced by a tree of sequents. In this work, we will identify a family
of basic nested systems, inspired by [1,13].

Definition 7. A nested sequent is defined inductively as follows:

(i) if S is a sequent, then it is a nested sequent;
(ii) if Γ � Δ is a sequent and G1, . . . , Gk are nested sequents, then Γ �

Δ, [G1] , . . . , [Gk] is a nested sequent.

A nested rule is a pair υ/Υ represented as follows, where υ = {Υ1, . . . , Υk} is a
finite set of nested sequents (the premises) and Υ is the conclusion nested sequent
of the rule.

Υ1 · · · Υk

Υ

The non-context formulae in the premises are called auxiliary formulae and the
non-context formulae in the conclusion are called principal formulae.

For a sequent S = Γ � Δ, define S ⊗ (� [�]) to be the nested sequent Γ �
Δ, [�].

Let S, S1, . . . , Sk be sequents. A basic nested rule has one of the following
forms:

i. sequent-like rules

S1 · · · Sk

S

ii. nested-like rules
(a) creation rules (b) upgrade rules*

� [S1] · · · � [Sk]
S

� [S1]
S ⊗ (� [�])

*Upgrade rules must have exactly one principal and auxiliary formulae.
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We will call the nestings in the premises of a creation rule its auxiliary nestings.
Nestings containing principal or auxiliary formulae are called active.

Example 8. Consider the following nested-like rules

� [p1 � p2]
� p1 → p2

� [p �]
p � [�]

The first is a creation rule, with auxiliary nesting [p1 � p2]; the second an upgrade
rule.

Remark 9. Observe that our definition of nested-like rules restricts the rule
form in three ways. First, nested-like rules must have exactly one nesting in the
premises or conclusion. Second, information in nested rules always moves deeper
inside nestings, when reading rules bottom-up. Finally, upgrade rules move only
one piece of information at a time. The first restriction is crucial for avoiding
non-determinism when defining of applications of rules; the second one will be
key for stating sufficient conditions for the linearisation of nested systems; the
third restriction is natural but not necessary. In fact, nested rules usually are
local, acting in one formula at a time. Also, upgrade rules naturally have this
shape, which will allow for the identification of upgrade nested rules as basic
sequent context relations later in Sect. 4.

We will present, in Sect. 5, some examples of basic nested systems. It is worth
mentioning that every nested calculus we know that has a correspondence (in the
sense of this paper) with sequent systems is equivalent to a basic nested system.
On the other hand, the restrictions above exclude, e.g., the representation of
the rules for modal axioms 5 and B [4]. But then, there are no known simple,
cut-free sequent systems for logics K5 and KB. We will discuss some cases that
fall outside our scope also in Sect. 5.

For readability, we will denote by Γ,Δ sequent contexts and by Λ sets of nest-
ings. In this way, every nested sequent has the shape Γ � Δ,Λ where elements of
Λ have the shape [Γ ′ � Δ′, Λ′] and so on. We will denote by Υ arbitrary nested
sequents. Application of rules and schemas in nested systems will be represented
using holed contexts.1

Definition 10. A nested-holed context is a nested sequent that contains a hole
of the form { } in place of nestings. We represent such a context as S { }. Given
a holed context and a nested sequent Υ , we write S {Υ} to stand for the nested
sequent where the hole { } has been replaced by [Υ ], assuming that the hole is
removed if Υ is empty and if S is empty then S {Υ} = Υ .

For example, (Γ � Δ, { }){Γ ′ � Δ′} = Γ � Δ, [Γ ′ � Δ′] while { }{Γ ′ � Δ′} =
Γ ′ � Δ′ and (Γ � Δ, { }){ } = Γ � Δ.
1 Observe that, since in basic nested systems nested-like rules must have exactly one

nesting in the premises or conclusion, only one hole is enough for describing both
schemas and applications of rules. Compare with, e.g., the schematic nested rule for
5 in [5].
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Definition 11. An application of a basic nested rule is given by2

S {σ(Υ1) ⊗ G} · · · S {σ(Υk) ⊗ G}
S {σ(Υ ) ⊗ G} rn

where σ is a substitution, G is the nested sequent context. The definition of
derivations in a NS is a natural extension of the one for SC, only replacing
sequents by nested sequents. The notion of principal and auxiliary formulae is
extended to applications of rules in the standard way.

Remark 12. In this work we will assume that nested systems are fully structural,
i.e., including the following nested versions for the initial axiom and weakening

S {Γ,A � Δ,A,Λ} initn
S {Γ � Δ,Λ}

S {Γ, Γ ′ � Δ,Δ′, Λ, Λ′} Wn

Also, we only consider cut-free nested systems (we will discuss cut-freeness in
Sect. 5).

By treating nested contexts as sets, we are setting the context relations to be
the identity function. In this way, every basic rule having only Cid as contexts
relations in its premises is a sequent-like basic nested rule (and vice-versa). Note
that this also implies that basic nested rules are invertible.

Example 13. Applications of the basic rules in Example 8 have, respectively, the
form

S {Γ � Δ,Λ, [A � B]}
S {Γ � A → B,Δ,Λ} →n

R

S {Γ � Δ,Λ, [Γ ′, A � Δ′, Λ′]}
S {Γ,A � Δ,Λ, [Γ ′ � Δ′, Λ′]} liftn

Figure 2 presents (the schema representation of) NSmLJ [7], a basic nested system
for mLJ.

Fig. 2. Nested system NSmLJ.

2 Throughout, we will use n as a superscript, etc for indicating “nested”. Hence
e.g., →n

R will be the designation of the implication right rule in the nesting
framework.
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3.1 Normal Forms in NS

While adding a tree structure to sequents enhances the expressiveness of the
nesting framework when compared with the sequent one, the price to pay is that
the obvious proof search procedure may be of suboptimal complexity, since there
can be an exponential blow-up due to the nestings [4]. Hence the importance of
proposing normal form derivations and/or proof search strategies for taming the
proof search space.

In this section, we will propose a normalisation procedure for basic nested
systems, which will be crucial for transforming a nested sequent derivation into
a sequent derivation.

The first result states that the disjunction property holds for basic nested
systems.

Theorem 14. Let NS be a basic nested system and let Λi be nestings in NS.
Then � Λ1, . . . , Λk is derivable iff � Λi is derivable for some i ∈ {1, . . . , k}.
Proof. (⇐) Trivial due to Wn.

(⇒) Due to the shape of basic nested rules, it is immediate to see that any
derivation π of the nested sequent � Λ1, . . . , Λk has the form

π1

� Λ1, . . . , Λ
1
i , . . . , Λk · · ·

πh

� Λ1, . . . , Λ
h
i , . . . , Λk

� Λ1, . . . , Λi, . . . , Λk
rn

By inductive hypothesis, for each premise j, either Λj
i is provable for all 1 ≤ j ≤ h

or there is a m �= i such that Λm is provable. In both cases, the result follows
trivially.

This result generalises not only the disjunction property for mLJ [23] but also
for Horn relational sequent theories for modal logics (see [24], Prop. 8.2.9).

The next definition explains how to determine the exact position of nestings
and formulae occurring in a nested sequent, as well as the nesting-size of a
sequent. Intuitively, the depth of a hole/formula is the number of nodes on the
branch of its nesting tree (inside-out measure). The depth of a sequent, however,
measures the number of nodes on a branch of the nesting tree of maximal length
(outside-in measure). We will overload the function symbol dp in order to keep
the notation light.

Definition 15. The depth of S { }, denoted by dp (S { }), is defined inductively
by dp ({ }) = 0, dp (Γ � Δ,Λ, { }) = 1 and dp (Γ � Δ,Λ, [S { }]) = dp (S { }) +
1. If a formula A ∈ Γ,Δ, then the depth of A in S {Γ � Δ,Λ} is defined as
dp (S { }). Finally, the depth of a nested sequent Υ , written dp (Υ ), is defined as
the maximum depth of formulae in Υ .

For example, if S { } = Γ � Δ, { } and Υ = S {Γ ′ � Δ′, A, [� B]}, then
dp (S { }) = 1, the depth of A in Υ is 1 and dp (Υ ) = 2.
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Definition 16. Let NS be a nested system. The depth of an application of a
rule rn in a derivation (dp (rn)) is the depth of the principal formula in the
conclusion of rn.

Example 17. In the following derivation

S {Γ,B,C � Δ,Λ, [A,Γ ′ � Δ′,D,E]}
S {Γ,B,C � Δ,Λ, [A,Γ ′ � Δ′,D ∨ E]} ∨n

R

S {Γ,B ∧ C � Δ,Λ, [A,Γ ′ � Δ′,D ∨ E]} ∧n
L

S {Γ,A,B ∧ C � Δ,Λ, [Γ ′ � Δ′,D ∨ E]} liftn

dp (liftn) = dp (∧n
L) = dp (S { }), while dp (∨n

R) = dp (S { }) + 1.

The next definition brings a variant of nested systems where rules can be applied
only in the deep-most nestings of a sequent (this is an adaptation to nested
systems of the similar definition for linear nested systems [16]).

Definition 18. Let Υ be a nested sequent with dp (Υ ) ≤ 1 and m = dp (S { }).
An application of a basic nested sequent rule rn over S {Υ} is end-active if
dp (rn) = m and

– rn is sequent-like and dp (Υ ) = 0; or
– rn is a creation rule; or
– rn is an upgrade rule and dp (Υ ) = 1.

The end-active variant of a NS calculus is the calculus with the rules restricted
to end-active applications.

Example 19. Consider the following (open) derivations of A ∧ B � C → D,E →
(F → G) in NSmLJ.

(a) (b)
A � [B,C � D] , [E � [F � G]]
A � [B,C � D] , [E � (F → G)]

→n
R

A � E → (F → G), [B,C � D]
→n

R

A,B � E → (F → G), [C � D]
liftn

A ∧ B � E → (F → G), [C � D]
∧n
L

A ∧ B � C → D,E → (F → G)
→n

R

A � [B,C � D] , [E � [F � G]]
A,B � [C � D] , [E � [F � G]]

liftn

A,B � C → D, [E � [F � G]]
→n

R

A,B � C → D, [E � (F → G)]
→n

R

A,B � C → D,E → (F → G)
→n

R

A ∧ B � C → D,E → (F → G)
∧n
L

In (a), the application of the rule ∧n
L is not end-active since

dp (A ∧ B � E → (F → G), [C � D]) = 1. In (b), the topmost application of
the rule →n

R and the application of rule liftn are not end-active since
dp (A,B � C → D, [E � [F � G]]) = 2. All the other rule applications are end-
active.
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The schematic representation of end-active basic nested rules is as follows:

i. sequent-like rules

S {Γ1 � Δ1} · · · S {Γk � Δk}
S {Γ � Δ}

ii. nested-like rules

(a) creation rules (b) upgrade rules

S {Γ � Δ,Λ, [S1]} · · · S {Γ � Δ,Λ, [Sk]}
S {Γ � Δ,Λ}

S {Γ � Δ,Λ, [S ⊗ S′]}
S {Γ � Δ,Λ, [S]}

where Λ = {Λ1, . . . , Λl} is such that dp (Λi) = 1 for all 0 ≤ i ≤ l.

It turns out that basic nested systems always admit end-active versions, since
some applications of rules permute. The following extends the definition of per-
mutability to the nested setting.

Definition 20. Let NS be a nested system, r1, r2 be applications rules and Υ
be a nested sequent. We say that r2 permutes down r1 (r2 ↓ r1) if, for every
derivation in which r1 has as conclusion Υ and r2 is applied over one or more of
r1’s premises (but not on auxiliary formulae/nestings of r1), there exists another
derivation of Υ in which r2 has as conclusion Υ and r1 is applied over zero or
more of r2’s premises (but not on auxiliary formulae/nestings of r2).

Example 21. In Example 19 the application of the rule ∧n
L permutes down w.r.t.

→n
R in (a), the same with the applications of →n

R and liftn in (b).

(a) (b)
A � [B,C � D] , [E � [F � G]]
A � [B,C � D] , [E � F → G]

→n
R

A � E → (F → G), [B,C � D]
→n

R

A,B � E → (F → G), [C � D]
liftn

A,B � C → D,E → (F → G)
→n

R

A ∧ B � C → D,E → (F → G)
∧n
L

A � [B,C � D] , [E � [F � G]]
A � [B,C � D] , [E � F → G]

→n
R

A,B � [C � D] , [E � F → G]
liftn

A,B � C → D, [E � F → G]
→n

R

A,B � C → D,E → (F → G)
→n

R

A ∧ B � C → D,E → (F → G)
∧n
L

In the derivations above, all applications of rules are end-active. Observe that
they are different, but equivalent up-to-permutation derivations. Note also that
end-activeness implies that the deep-most implication can be unfolded only after
the application of all shallower rules.

Definition 22. Let NS be a basic nested system. In any derivation π in NS,
a sequential block Bs (nested block Bn) is a maximal bottom-up sequence of
applications of sequent-like (nested-like) rules in a branch of π having the same
depth d. We will define the depth of such sequential (nested) block as dp (Bs) = d
(dp (Bn) = d).



Sequentialising Nested Systems 157

Theorem 23. Any basic nested system admits an end-active variant. More-
over, in any end-active derivation, if Bs is the immediate successor of Bn then
dp (Bs) = dp (Bn) + 1.

Proof. The proof is by permutation of rules, using the fact that nested-like rules
do not modify outer sequents, hence not extruding information. For example,
upgrade rules (r2) permute down creation rules (r1):

π1

S {Γ � Δ,Λ,Λ′′, [Ω1 � Θ1]}
S {Γ � Δ,Λ,Λ′, [Ω1 � Θ1]}

r2 · · ·
πk

S {Γ � Δ,Λ,Λ′, [Ωk � Θk]}
S {Γ � Δ,Λ,Λ′} r1 �

π1

S {Γ � Δ,Λ,Λ′′, [Ω1 � Θ1]} · · ·
π′
k

S {Γ � Δ,Λ,Λ′′, [Ωk � Θk]}
S {Γ � Δ,Λ,Λ′′} r1

S {Γ � Δ,Λ,Λ′} r2

Observe that if S {Γ � Δ,Λ,Λ′, [Ωi � Θi]} is provable with proof πi then it is
the case that S {Γ � Δ,Λ,Λ′′, [Ωi � Θi]} is provable with proof π′

i, a weakened
version of πi.

Note that restricting systems to its end-active form is not enough for guaran-
teeing that derivations occur in alternating sequent and nested blocks. Next, we
define a depth first normalisation procedure for basic nested systems.

Definition 24. Let NS be an end-active basic nested system. We say that a
derivation π of Υ in NS is in normal form (or π is a normal derivation) if, for
each branch of π,

a. if Bn is the immediate successor of Bs then dp (Bn) = dp (Bs);
b. axioms are applied eagerly (i.e. as soon as possible).

Example 25. The following end-active derivations in NSmLJ are not in normal
form

Γ � Δ, [A,B � B] initn

Γ,A � [B � B] ,Δ
liftn

Γ,A � B → B,Δ
→n

R

Γ � Δ, [B,C � C,D] initn

Γ,C � Δ, [B � C,D]
liftn

Γ,C � Δ, [B � C ∨ D]
∨n
R

Γ,C � B → (C ∨ D),Δ
→n

R

The first since the axiom was not applied eagerly; and the second since the
sequential block of depth 1 is succeeded by a nested block of depth 0.

Theorem 26. Let NS be a basic nested system. Then any provable nested
sequent Υ in NS has a normal derivation.

Proof. By Theorem 23, we may consider the end-active variant of NS. The result
follows by observing that nested-like rules permute down sequent-like rules.

In Sect. 5, we will show representative examples of systems falling into the
class of end-active basic nested systems.
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4 Recovering Sequent Systems

The proof of Theorem 26 provides a way of pruning nested derivations so to reach
normal forms. However, the normalisation procedure given by Definition 24 may
produce several different normal forms (see Example 21). We will show next how
to further polish the normalisation process, so to avoid useless creation steps and
output a unique normal form, that will allow for sequential proofs.

Example 27. Consider the following normal-form derivation in NSmLJ, where
Γi ⊆ Γ and the top-most premise marks the end of a nested block (see
Definition 22).

π
Γ � [Γ1, A1 � B1] , . . . , [Γk, Ak � Bk]

Γ � [A1 � B1] , . . . , [Ak � Bk]
liftn

Γ � A1 → B1, . . . , Ak → Bk
→n

R

Since π is in normal form, no rules can be applied over Γ . Hence, by Theorem 14,
Γi, Ai � Bi is provable for some 1 ≤ i ≤ k. Let πi be a normal-form proof of
such sequent. Thus the proof above can be replaced by

πi

Γ � A1 → B1, . . . , Ai−1 → Bi−1, Ai+1 → Bi+1, . . . , Ak → Bk, [Γi, Ai � Bi]

Γ � A1 → B1, . . . , Ai−1 → Bi−1, Ai+1 → Bi+1, . . . , Ak → Bk, [Ai � Bi]
liftn

Γ � A1 → B1, . . . , Ak → Bk
→n

R

Note that, since π1 is normal, no rule can be applied to the outer context, which
will be erased in the leaves by the initn rule.

This idea can be generalised (with a trivial proof) to basic nested systems.

Lemma 28. Let NS be a basic nested system. Then every normal derivation of
a nested sequent Υ can be restricted so that exactly one creation rule is applied
in any nested block.

That is, normal derivations have alternating sequential and nested blocks with
non-decreasing depth, such that the nested blocks are restricted to one applica-
tion of a creation rule followed by possible applications of upgrade rules.

The next result shows how nested blocks are transformed into basic sequent
rules.

Theorem 29. Let rc be the creation rule and rui
be the upgrade rules

� [Ω1 � Θ1] · · · � [Ωk � Θk]
Γ � Δ

rc
� [Ψi � Ξi]
Σi � Φi, [�]

rui

where {Σi, Φi} = {Fi}, {Ψi, Ξi} = {Gi, }, Fi, Gi formulae, 1 ≤ i ≤ l. Then a
nested block consisting of the application of rc followed by applications of rui
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in a normal-form derivation corresponds to the application of the basic sequent
rule

〈Ω1 � Θ1;Cu〉 . . . 〈Ωk � Θk;Cu〉
Γ � Δ

where Cu = {〈I : Gi, J : Fi〉 | 1 ≤ i ≤ l}, I, J ∈ {T,F}.
Proof. Any nested block consisting of the application of rc followed by (maximal
blocks of) applications of rui

has the shape

π1

S {Γ � Δ, [Γ ′, Ω1 � Δ′, Θ1]}
S {Γ � Δ, [Ω1 � Θ1]}

rui
. . .

πk

S {Γ � Δ, [Γ ′, Ωk � Δ′, Θk]}
S {Γ � Δ, [Ωk � Θk]}

rui

S {Γ � Δ} rc

Fig. 3. Modal axiom K and necessitation rule nec.

Fig. 4. Nested system NSK. Rules →n
L, ∧n

R, ∧n
L, ∨n

R, ∨n
L and ⊥n

L are the same as in Fig. 2.

Considering that πj is in normal form, 1 ≤ j ≤ k, the only active formulae in
the leaves will be in Γ ′, Ωj � Δ′, Θj . Thus nested blocks transform sequents
into sequents, and they can be seen as a macro sequent-like rule. With this
thinking, an upgrade nested rule rui

is actually a context relation of the form
Cui

= 〈I : Gi, J : Fi〉, 1 ≤ i ≤ l. Hence the result follows.

Corollary 30. Let NS be a basic nested system which sequentialises to the
sequent system SC. Then the sequent Γ � Δ is provable in NS iff it is prov-
able in SC.

Example 31. In NSmLJ, a nested block containing the creation rule →n
R and the

upgrade rule liftn has the shape

S {Γ � Δ, [Γ ′, A � B]}
S {Γ � Δ, [A � B]} liftn

S {Γ � Δ,A → B} →n
R
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with Γ ′ ⊆ Γ . Observe that liftn maps an F formula into itself and there are no
context relations on T formulae. Hence Cu = Cint, and the corresponding sequent
rule is

〈p1 � p2;Cint〉
� p1 → p2

which is the implication right rule for mLJ. That is, sequentialising the basic
nested system NSmLJ (Fig. 2) results in the sequent system mLJ (Fig. 1).

5 Examples and Discussion

In the previous sections we used intuitionistic logic as a running example for
illustrating our method approach. In this section we will apply the sequentiali-
sation procedure to other well known logical systems.

Normal Modalities. The modal logic K is obtained from classical propositional
logic by adding the unary modal connective � to the set of classical connectives,
together with the necessitation rule and the K axiom (see Fig. 3 for the Hilbert-
style axiom schemata) to the set of axioms for propositional classical logic.

The nested framework provides an elegant way of formulating modal systems,
since no context restriction is imposed on rules. Figure 4 presents the schemata of
the modal rules for the nested sequent calculus NSK for the modal logic K [4,20].
Observe that there are two rules for handling the box operator (�L and �R),
which allows the treatment of one formula at a time. While this is one of the
main features of nested sequent calculi and deep inference in general [9], being
able to separate the left/right behaviour of the modal connectives is the key to
modularity for nested calculi [14,22]. Indeed, K can be modularly extended by
adding to NSK the nested rules corresponding to other modal axioms.

Fig. 5. Axioms D,T, 4,B and 5, where �A is a short for ¬�¬A.

Fig. 6. Nested sequent rules for {D,T, 4} extensions of K.

Let us first consider the axioms D,T and 4 (Fig. 5a). Figure 6 shows the modal
nested rules for such extensions: for a logic KA with A ⊆ {D,T, 4} the calculus
NSKA extends NSK with the corresponding nested modal rules.
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Note that tn is actually a sequent-like rule. On the other hand, �n
R and dn

are creation rules while �n
L and 4n are upgrade rules. It is straightforward to

verify that NSKA is basic. Observe that 4n maps a boxed F formula into itself,�n
L maps F formulae into the boxed versions and there are no context relations

on T formulae. Hence Cu = CK ∪ C4, and the basic sequent rules corresponding
to T, K and D (with possibly 4) are, respectively

〈p �;Cid〉�p �
〈� p;CK ∪ C4〉

� �p

〈p �;CK ∪ C4〉�p �
understanding that if the axiom 4 is not present in the logic then the relation C4

is dropped. Hence sequentialising the nested system NSKA results in the sequent
system SCKA (shown as rule schemas) in Fig. 7a.

We now move our attention to the extension of K4 containing axiom 5
(Fig. 5b). The rule 45 presented in Fig. 8 is a local rule schema for capturing
the behaviour of 5 in the presence of the nested rules for NSK4 (see [4] for a
discussion on the decomposition of 5n in local rules). Observe that the rule 45n

is an upgrade rule, hence sequentialising the nested system NSKT45 results in the
sequent system SCKT45 (Fig. 7b). Hence, since SCKT45 is not cut-free, this implies
that NSKT45 is also not cut-free (see e.g. [25]).

The rule bn (Fig. 8), corresponding to axiom B, is not basic. Hence systems
NSKA extended with this nested rule cannot be sequentialised. However, our app-
roach gives a good insight on the relationship between the extruding information
from nestings and cut-elimination in sequent systems (which will be discussed
later in this Section).

Negative Modalities. While normal modal modalities satisfy the monotone
property “if A � B then �A � �B”, negative modalities satisfy the antitone: “if
A � B then �B � �A”. The logic PK [12] has four 1-ary connectives �,�,��,��,
interpreted non-locally in terms of a Kripke model M = 〈W,R, V 〉 as follows

– M, w � �A iff M, v �� A for some v ∈ W such that wRv;
– M, w � �A iff M, v �� A for every v ∈ W such that wRv;
– M, w � �−A iff M, w �� A or M, w �� −A for − ∈ {�,�};

Fig. 7. Modal sequent rules for normal modal logics SCKA, for A ⊆ {T,D, 4,B, 45}.

Fig. 8. Basic nested sequent rules for axioms 45 and B.
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We present in Fig. 9a proposal of a nested system for such negative modalities.
Observe that rules for ��,�� are sequent-like, the lift rules are upgrade and the
rules for �,� are creation rules. Hence by sequentialising NSPK we obtain the
basic sequent rules

〈� p;CPK〉
�p �

〈p �;CPK〉
� �p

〈p,�p �;Cid〉
� ��p

〈� p;Cid〉 〈� �p;Cid〉��p �
〈p �;Cid〉 〈�p �;Cid〉

� ��p

〈� p,�p;Cid〉��p �

where CPK := {〈F : p,T : �p〉, 〈T : p,F : �p〉}, which are exactly the basic
sequent rules for the system SCPK presented in [12]. Hence NSPK is sound and
complete w.r.t. the Kripke semantics described above by Corollary 30.

Learning from Failure: The Case of B. The work in [15] suggests that it
should be hard, if not impossible, to define simple, cut-free sequent systems for
logics with no corresponding basic nested systems3. In this work, we advocate
that the sole responsible for this impossibility are: (a) on allowing extruding
formulae from nestings (when seen bottom-up), one could gather more informa-
tion, adding an extra-advantage not allowed in the meta-language of sequents;
and (b) on allowing information to “jump” over more than one nesting level,
the stepwise nature of sequents forces this information to be lost. In fact, our
sequentialisation method is heavily based on the fact that basic nested-like rules
move formulae to deeper nestings, with depth difference exactly equal to one.

For stressing these points better, we will present a relation between analytic
cuts and the lack of basic nested rules for KB (Fig. 8). The following definition
shows how to interpret nestings as formulae in the modal framework in the S5
cube.

Fig. 9. Nested system NSPK .

3 We observe that, in [11] the basic sequent systems for KB and S5 were proved to be
analytic (although not cut-free).
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Definition 32. The modal interpretation ι� for modal nested sequents is
given by

– if Γ � Δ is a sequent, then ι�(Γ � Δ) =
∧

Γ → ∨
Δ.

– ι� (Γ � Δ, [Γ1 � Δ1, Λ1] , . . . , [Γn � Δn, Λn]) =∧
Γ → (

∨
Δ ∨ � (ι� (Γ1 � Δ1, Λ1)) ∨ . . . ∨ � (ι� (Γn � Δn, Λn))).

That is, the structural connective [·] is interpreted by the logical connective �.
Consider a proof of the shape

π
Γ,A � Δ, [Γ ′,�A � Δ′]
Γ � Δ, [Γ ′,�A � Δ′] bn

where π has no occurrences of the bn rule. We may assume that A is prin-
cipal in π, otherwise this instance application of bn can be discarded and
the results from Sect. 4 apply immediately. Thus, all rules applied in π are
basic and, by Theorem 26, we may assume that π is in normal form. Hence,
by Theorem 29, π can be transformed into a derivation ι�(π) of the sequent
A,Γ � Δ,� (

∧
Γ ′ ∧ �A → ∨

Δ′). Now, the following is derivable in KB

Γ ′,�A � Δ′,�A
init

� ∧
Γ ′ ∧ �A → ∨

Δ′,�A
→R,∧L,∨R

� � (
∧

Γ ′ ∧ �A → ∨
Δ′) , A

b
ι�(π)

A,Γ � Δ,� (
∧

Γ ′ ∧ �A → ∨
Δ′)

Γ � Δ,� (
∧

Γ ′ ∧ �A → ∨
Δ′)

cut

That is, the end-active application of the bn rule in NSKB can be mimicked by
a proof in KB with an analytic cut whose cut-formula is the auxiliary formula
in bn. This establishes a (so far, weak) connection between nested derivations
and analytic cuts in sequent calculi for KB. Generalising this correlation is an
ongoing work.

6 Conclusion and Future Work

A common theme in recent structural proof theory is the development of new
proof formalisms generalising and extending the sequent calculus, in order to
present analytic proof calculi for the ever growing number of logics of interest.
This work considers the reverse direction: how can we transform an analytic
nested calculus into an analytic sequent calculus? Given that the nested sequent
calculi generalise the sequent calculus, and because the former has been used
to present logics that have defined presentation in the latter, an underlying
aim of this work is to identify general characteristics that make nested calculi
“sequentialisable”. In doing so, we open a new insight into the discussion of the
bounds for analyticity in sequent systems.

There are many ways of continuing this research topic. First of all, since we
showed how to transform nested into sequent systems it would be interesting
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to ask: how about the other way around? Or: when it is possible to transform
basic sequent rules into basic nested rules? This would allow for the automatic
generation of (analytic, possibly cut-free) nested systems from sequent systems.
One possible attempt would be analysing if the Kripke-style semantic interpre-
tation of basic sequent systems given in [11] can lifted to the nestings-as-worlds
interpretation of nested systems [7,19].

Another path worth investigating is if our approach entails negative results,
such as the impossibility of cut-free basic systems for KB, for example, as a gen-
eralisation of results in [15]. Not mentioning developing further the relationship
between the introduction of cuts in sequent calculi and the need for nested-like
rules in nested systems, discussion we have started here.

Finally, we would like to analyse to what extend our setting can handle other
systems, such as the known ones for non-normal modal logics, GL and PDL.

Acknowledgments. We would like to thank Agata Ciabattoni for our fruitful discus-
sions and the anonymous reviewers for their valuable comments.
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