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Abstract. Hybrid-dynamic first-order logic is a kind of modal logic
obtained by enriching many-sorted first-order logic with features that are
common to hybrid and to dynamic logics. This provides us with a logical
system with an increased expressive power thanks to a number of distinc-
tive attributes: first, the possible worlds of Kripke structures, as well as
the nominals used to identify them, are endowed with an algebraic struc-
ture; second, we distinguish between rigid symbols, which have the same
interpretation across possible worlds – and thus provide support for the
standard rigid quantification in modal logic – and flexible symbols, whose
interpretation may vary; third, we use modal operators over dynamic-
logic actions, which are defined as regular expressions over binary nom-
inal relations. In this context, we propose a general notion of hybrid-
dynamic Horn clause and develop a proof calculus for the Horn-clause
fragment of hybrid-dynamic first-order logic. We investigate soundness
and compactness properties for the syntactic entailment system that cor-
responds to this proof calculus, and prove a Birkhoff-completeness result
for hybrid-dynamic first-order logic.

1 Introduction

The dynamic-reconfiguration paradigm is a most promising approach in the
development of highly complex and integrated systems of interacting ‘compo-
nents’, which now often evolve dynamically, at run time, in response to internal
or external stimuli. More than ever, we are witnessing a continuous increase in the
number of applications with reconfigurable features, many of which have aspects
that are safety- or security-critical. This calls for suitable formal-specification
and verification technologies, and there is already a significant body of research
on this topic; hybrid(ized) logics [2,5,17], first-order dynamic logic [15], and
modal μ-calculus [14] are three prominent examples, among many others.
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The application domain of the work reported in this contribution refers to a
broad range of reconfigurable systems whose states or configurations can be pre-
sented explicitly, based on some kind of context-independent data types, and for
which we distinguish the computations performed at the local/configuration level
from the dynamic evolution of the configurations. This suggests a two-layered
approach to the design and analysis of reconfigurable systems, involving a local
view, which amounts to describing the structural properties of configurations,
and a global view, which corresponds to a specialized language for specifying
and reasoning about the way system configurations evolve.

In this paper, we develop sound and complete proof calculi for a new modal
logic (recently proposed in [11]) that provides support for the reconfiguration
paradigm. The logic, named hybrid-dynamic first-order logic, is obtained by
enriching first-order logic (FOL) – regarded as a parameter for the whole con-
struction – with both hybrid and dynamic features. This means that we model
reconfigurable systems as Kripke structures (or transition systems), where:

– from a local perspective, we consider a dedicated FOL-signature for configu-
rations, and hence capture configurations as first-order structures; and

– from a global perspective, we consider a second FOL-signature for the possible
worlds of the Kripke structure; the terms over that signature are nominals
used to identify configurations, and the binary nominal relations are regarded
as modalities, which capture the transitions between configurations.

Sentences are build from equations and relational atoms over the two first-order
signatures mentioned above (one pertaining to data, and the other to possible
worlds) by using Boolean connectives, quantifiers, standard hybrid-logic opera-
tors such as retrieve and store, and dynamic-logic operators such as necessity
over structured actions, which are defined as regular expressions over modalities.
In practice, actions are used to capture specific patterns of reconfigurability.

The construction is reminiscent of the hybridization of institutions from [7,17]
and of the hybrid-dynamic logics presented in [1,16], but it departs fundamen-
tally from any of those studies due to the fact that the possible worlds of the
Kripke structures that we consider here have an algebraic structure. This spe-
cial feature of the logic that we put forward is extremely important for dealing
with reconfigurable systems whose states are obtained from initial configurations
by applying constructor operations; see, e.g. [12]. In this context, we advance a
general notion of Horn clause, which allows the use of implications, universal
quantifiers, as well as the hybrid- and dynamic-logic operators listed above.

Besides the fact that it relies on an algebraic structure for possible worlds, the
notion of Horn clause that we use in this paper also allows structured actions for
(a) the conditions of logical implication, and (b) the arguments of the necessity
operator. This feature distinguishes the present work from [8], where the first
author reported a Birkhoff completeness result for hybrid logics. That is, the
Horn clauses that we study in this paper are strictly, and significantly, more
expressive than those considered before; this poses a series of new challenges
in developing a completeness result. We show that any set of Horn clauses has
an initial model despite the fact that the structured actions alone do not have
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this property. In addition, we provide proof rules to reason formally about the
properties of those Kripke structures that are specified using Horn clauses. To
conclude, the main result of the paper is a completeness theorem for the Horn-
clause fragment of hybrid-dynamic first-order logic.

A brief comparison with the work recently reported in [11] is also in order:
both papers deal with properties of hybrid-dynamic first-order logic (with [11]
being the contribution in which we introduced the logic); and in both papers we
examine Horn clauses; but the results that we develop are complementary: in [11],
we focused on an initiality result and on Herbrand’s theorem, whereas here we
advance proof calculi for the logic. This latter endeavour is much more complex,
because it deals with syntactic entailment instead of semantic entailment.

The paper is structured as follows: Sect. 2 is devoted to the definition of
hybrid-dynamic first-order logic. Then, in Sect. 3, we discuss entailment sys-
tems and present the problem we aim to solve. Once the preliminaries are set,
we proceed in a layered fashion, in the sense that we consider progressively
more complex entailment relations, which are adequate for different fragments
of hybrid-dynamic first-order logic. In Sect. 4 we study completeness for the
atomic fragment of the logic. Building on that result, in Sect. 5 we develop a
quasi-completeness result for entailments where the left-hand side is an arbi-
trary set of Horn clauses, but the right-hand side is only an atomic sentence
or an action relation. Finally, in Sect. 6, we generalize completeness to the full
Horn-clause fragment of hybrid-dynamic first-order logic. Proofs of the lemmas
and propositions that support the main results can be found in [10].

2 Hybrid-Dynamic First-Order Logic

The hybrid-dynamic first-order logic with user-defined sharing1 (HDFOLS) that
we examine in this work is based on ideas that are similar to those used to define
hybrid first-order logic [2] and hybrid first-order logic with rigid symbols [5,7].

We present HDFOLS from an institutional perspective [13], meaning that we
focus on signatures and signature morphisms (though, for the purpose of this
paper, inclusions would suffice), Kripke structures and homomorphisms, sen-
tences, and the (local) satisfaction relation and condition that relate the syntax
and the semantics of the logic. However, other than the notations used, the text
requires no prior knowledge of institution theory, and should be accessible to
readers with a general background in modal logic and first-order model theory.
In order to establish some of the notations used in the rest of the paper, we
briefly recall the notion of (many-sorted) first-order signature: a FOL-signature
is a triple (S, F, P ), where S is a set of sorts, F is a family {Far→s}ar∈S∗,s∈S of
sets of operation symbols, indexed by arities ar ∈ S∗ and sorts s ∈ S, and P is
family {Par}ar∈S∗ of sets of relation symbols, indexed by arities ar ∈ S∗.

1 This last attribute is meant to indicate the fact that users have control over the
symbols that should be interpreted the same across the worlds of a Kripke structure.
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Signatures. The signatures of HDFOLS are tuples Δ = (Σn, Σr ⊆ Σ), where:

1. Σn = (Sn, F n, P n) is a FOL-signature of nominals such that Sn = {�},
2. Σr = (Sr, F r, P r) is a FOL-signature of so-called rigid symbols, and
3. Σ = (S, F, P ) is a FOL-signature of both rigid and flexible symbols.

We let Sf = S \ Sr, and F f and P f be the sub-families of F and P that consist
of flexible symbols (obtained by removing rigid symbols). In general, we denote
by Δ or Δ′ signatures of the form (Σn, Σr ⊆ Σ) or (Σ′n, Σ′r ⊆ Σ′), respectively.

Signature Morphisms. A signature morphism ϕ : Δ → Δ′ consists of a pair of
FOL-signature morphisms ϕn : Σn → Σ′n and ϕ : Σ → Σ′ such that ϕ(Σr) ⊆ Σ′r.

Kripke Structures. The models of a signature Δ are pairs (W,M), where:

1. W is a Σn-model, for which we denote by |W | the carrier set of the sort �;
2. M = {Mw}w∈|W | is a family of Σ-models, indexed by worlds w ∈ |W |, such

that the rigid symbols2 have the same interpretation across possible worlds;
i.e., Mw1,ς = Mw2,ς for all worlds w1, w2 ∈ |W | and all symbols ς in Σr.

Kripke Homomorphisms. A morphism h : (W,M) → (W ′,M ′) is also a pair
(W h→ W ′, {Mw

hw→ M ′
h(w)}w∈|W |) consisting of first-order homomorphisms such

that hw1,s = hw2,s for all possible worlds w1, w2 ∈ |W | and all rigid sorts s ∈ Sr.

Actions. As in dynamic logic, HDFOLS supports structured actions obtained
from atoms using sequential composition, union, and iteration. The set An of
actions over Σn is defined in an inductive fashion, according to the grammar:
a ::= λ | a ; a | a ∪ a | a∗, where λ ∈ P n

�� is a binary nominal relation. Given a
natural number n > 0, we denote by an the composition a ; · · · ; a (where the
action a occurs n times); and we let a0(k1, k2) denote the equation k1 = k2.

Actions are interpreted in Kripke structures as accessibility relations between
possible worlds. This is done by extending the interpretation of binary modal-
ities (from P n

��): Wa1;a2 = Wa1 ; Wa2 (diagrammatic composition of relations),
Wa1∪a2 = Wa1 ∪ Wa2 (union), and Wa∗ = (Wa)∗ (reflexive & transitive closure).

Hybrid Terms. For every Σn-model W , the family TW = {TW
w }w∈|W | of sets of

hybrid terms over W is defined inductively according to the following rules:

(1)
w0 ∈ |W | τ ∈ TW

w0,ar

σ(τ) ∈ TW
w,s

[ σ ∈ F r
ar→s ]

(2)
w0 ∈ |W | τ ∈ TW

w0,ar

σ(w0; τ) ∈ TW
w,s

[ σ ∈ F f
ar→s, s ∈ Sr ]

(3)
w ∈ |W | τ ∈ TW

w,ar

σ(w; τ) ∈ TW
w,s

[ σ ∈ F f
ar→s, s ∈ Sf ]

Notice that flexible operation symbols receive a possible world w ∈ |W | as a
parameter, while rigid operation symbols keep their initial arity. It is easy to
check that the hybrid terms of rigid sorts are shared across the worlds.

Fact 1. TW
w1,s = TW

w2,s for all possible worlds w1, w2 ∈ |W | and all sorts s ∈ Sr.

2 By symbol we usually refer to sorts as well, not only to operation/relation symbols.
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Given a world w ∈ |W |, the S-sorted set TW
w can be regarded as a Σ-model by

interpreting every rigid operation symbol σ : ar → s as the function that maps
(tuples of) hybrid terms τ ∈ TW

w,ar to σ(τ) ∈ TW
w,s, every flexible operation symbol

σ : ar → s as the function that maps hybrid terms τ ∈ TW
w,ar to σ(w; τ) ∈ TW

w,s,
and every relation symbol (either rigid or flexible) as the empty set.

Lemma 2 (Hybrid-term model and its freeness). For every Σn-model
W , (W,TW ) is a Δ-model. Moreover, for any Δ-model (W ′,M ′) and first-
order Σn-homomorphism f : W → W ′, there exists a unique Δ-homomorphism
h : (W,TW ) → (W ′,M ′) that agrees with f on W . ��

Standard Term Model. When W is the first-order term model TΣn , by Lemma 2
we obtain the standard hybrid-term model over Δ, denoted (TΣn , {TΔ

k }k∈TΣn ).
The initiality of the standard term model provides a straightforward inter-

pretation of hybrid terms in Δ-models (W,M): for every hybrid term t ∈ TΔ
k ,

we denote by (W,M)t or Mh(k),t the image of t under the function hk, where h
is the unique homomorphism (TΣn , TΔ) → (W,M).

Reachable Hybrid-Term Models. We say that a first-order Σn-model W is reach-
able if the unique homomorphism TΣn → W is surjective. In a similar manner,
for HDFOLS, we say that a Δ-model (W,M) is reachable if the unique homomor-
phism h : (TΣn , TΔ) → (W,M) is (componentwise) surjective. In order to avoid
naming the homomorphism, we make the following notation.

Notation 3. If a Δ-model (W,M) is reachable, then we may denote by [ ] the
unique homomorphism (TΣn , TΔ) → (W,M) given by the initiality of (TΣn , TΔ).

Proposition 4 (Reachability of hybrid term models). If W is a reach-
able first-order model of Σn, then (W,TW ) is reachable for the signature Δ. ��

Sentences. The atomic sentences ρ defined over a signature Δ are given by:

ρ ::= k1 = k2 | λ(k′) | t1 =k,s t2 | �(t) | π(k; t)

where k, ki ∈ TΣn are nominal terms, k′ is a tuple of terms corresponding to the
arity of λ ∈ P n, ti ∈ TΔ

k,s and t ∈ TΔ
k,ar are (tuples of) hybrid terms,3 � ∈ P r

ar ,
and π ∈ P f

ar . We refer to these sentences, in order, as nominal equations, nominal
relations, hybrid equations, rigid hybrid relations, and non-rigid/flexible hybrid
relations, respectively. When there is no danger of confusion, we may drop one
or both subscripts k, s from the notation t1 =k,s t2. Full sentences over Δ are
built from atomic sentences according to the following grammar:

γ ::= ρ | a(k1, k2) | @k γ | ¬γ | ∧
Γ | ↓z · γ′ | ∀X · γ′′ | [a]γ | (o) γ

where k, ki ∈ TΣn are nominal terms, a ∈ An is an action, Γ is a finite set
of sentences, z is a nominal variable, γ′ is a sentence over the signature Δ[z]

3 Note that, by Fact 1, if the arity ar is rigid, then the sets {T Δ
k,ar}k∈TΣn coincide.
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obtained by adding z as a new constant to F n, X is a set of nominal and/or
rigid variables, γ′′ is a a sentence over the signature Δ[X] obtained by adding the
elements of X as new constants to F n and F r, and o ∈ F n

�→�. Other than the first
two kinds of sentences (atoms and action relations), we refer to the sentence-
building operators, in order, as retrieve, negation, conjunction, store, universal
quantification, necessity, and next, respectively. Notice that necessity and next
are parameterized by actions and by unary nominal operations, respectively.

We denote by SenHDFOLS(Δ) the set of all HDFOLS-sentences over Δ.

The Local Satisfaction Relation. Given a Δ-model (W,M) and a world w ∈ |W |,
we define the satisfaction of Δ-sentences at w by structural induction as follows:

1. For atomic sentences:
– (W,M) �w k1 = k2 iff Wk1 = Wk2 for all nominal equations k1 = k2;
– (W,M) �w λ(k) iff Wk ∈ Wλ for all nominal relations λ(k);
– (W,M) �w t1 =k t2 iff MWk,t1 = MWk,t2 for all hybrid equations t1 =k t2;
– (W,M) �w �(t) iff (W,M)t ∈ Mw,� for all rigid relations �(t);
– (W,M) �w π(k; t) iff (W,M)t ∈ MWk,π for flexible relations π(k; t).

2. For full sentences:
– (W,M) �w a(k1, k2) iff (Wk1 ,Wk2) ∈ Wa for all action relations a(k1, k2);
– (W,M) �w @k γ iff (W,M) �w′

γ, where w′ = Wk;
– (W,M) �w ¬γ iff (W,M) �

w γ;
– (W,M) �w

∧
Γ iff (W,M) �w γ for all γ ∈ Γ ;

– (W,M) �w ↓z · γ iff (W,M)z←w �w γ, where (W,M)z←w is the unique
Δ[z]-expansion4 of (W,M) that interprets the variable z as w;

– (W,M) �w ∀X · γ iff (W ′,M ′) �w γ for all Δ[X]-expansion6 (W ′,M ′) of
(W,M);

– (W,M) �w [a]γ iff (W,M) �w′
γ for all w′ ∈ |W | such that (w,w′) ∈ Wa;

– (W,M) �w (o) γ iff (W,M) �w′
γ, where w′ = Wo(w).

Fact 5. The following two properties can be checked with ease:

1. The satisfaction of atoms and of action relations ρ does not depend on the
possible worlds: (W,M) �w ρ iff (W,M) �w′

ρ for all w,w′ ∈ |W |.
2. The satisfaction of atoms and of action relations ρ is preserved by homomor-

phisms: if (W,M) � ρ and h : (W,M) → (W ′,M ′) then (W ′,M ′) � ρ.

To state the satisfaction condition – and thus finalize the presentation of
HDFOLS – let us first notice that every signature morphism ϕ : Δ → Δ′ induces
appropriate translations of sentences and reductions of models, as follows: every
Δ-sentence γ is translated to a Δ′-sentence ϕ(γ) by replacing (usually in an
inductive manner) the symbols in Δ with symbols from Δ′ according to ϕ; and
every Δ′-model (W ′,M ′) is reduced to a Δ-model (W ′,M ′)�ϕ that interprets
every symbol x in Δ as (W ′,M ′)ϕ(x). When ϕ is an inclusion, we usually denote
(W ′,M ′)�ϕ by (W ′,M ′)�Δ – in this case, the model reduct simply forgets the
interpretation of those symbols in Δ′ that do not belong to Δ.
4 In general, by a Δ[X]-expansion of (W, M) we understand a Δ[X]-model (W ′, M ′)

that interprets all symbols in Δ in the same way as (W, M).
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The following satisfaction condition can be proved by induction on the struc-
ture of Δ-sentences. Its argument is essentially identical to those developed for
several other variants of hybrid logic presented in the literature (see, e.g. [5]).

Proposition 6 (Local satisfaction condition for signature morphisms).
For every signature morphism ϕ : Δ → Δ′, Δ′-model (W ′,M ′), world w′ ∈ |W ′|,
and Δ-sentence γ, we have: (W ′,M ′) �w ϕ(γ) iff (W ′,M ′)�ϕ �w γ.5 ��

Substitutions. Consider two signature extensions Δ[X] and Δ[Y ] with sets of
variables, and let X = Xn ∪ X r and Y = Y n ∪ Y r be the partitions of X and Y
into sets of nominal variables and rigid variables. A Δ-substitution θ : X → Y

consists of a pair of functions θn : Xn → TΣn[Y n] and θr : X r → T
Δ[Y ]
k , where k is

a nominal term – note that, since the sorts of the hybrid variables are rigid, by
Fact 1, it does not matter which nominal term k we choose.

Similarly to signature morphisms, Δ-substitutions θ : X → Y determine
translations of Δ[X]-sentences into Δ[Y ]-sentences, and reductions of Δ[Y ]-
models to Δ[X]-models. The proofs of the next two propositions are similar
to the ones given in [9] for hybrid substitutions.

Proposition 7 (Local satisfaction condition for substitutions). For
every Δ-substitution θ : X → Y , every Δ[Y ]-model (W,M), world w ∈ |W |,
and Δ[X]-sentence γ, we have: (W,M) �w θ(γ) iff (W,M)�θ �w γ. ��
Fact 8. Let θz←k : {z} → ∅ be the substitution that maps the nominal variable
z to the term k. Then (W,M)�θz←k

= (W,M)z←k for every model (W,M).

Propositions 7 and 9 (below) have an important technical role in the Birkhoff
completeness proofs presented in the later sections of the paper.

Proposition 9 (Subst. generated by expansions of reachable models).
If (W,M) is reachable, then for every Δ[X]-expansion (W ′,M ′) of (W,M) there
exists a Δ-substitution θ : X → ∅ such that (W,M)�θ = (W ′,M ′). ��

Expressive Power. Fact 5 highlights one of the main distinguishing features of
HDFOLS: the satisfaction of atomic sentences, whether they involve flexible sym-
bols or not, does not depend on the possible world where the sentences are evalu-
ated. This contrasts the standard approach in hybrid logic, where each nominal
is regarded as an atomic sentence satisfied precisely at the world that corre-
sponds to the interpretation of that nominal. In HDFOLS, the dependence of the
satisfaction of sentences on possible worlds is explicit rather than implicit, and
is achieved through the store operator. Following the lines of [9, Section 4.3],
one can show that even without considering action relations, HDFOLS is strictly
more expressive than other standard hybrid logics constructed from the same
base logic such as the hybrid first-order logic with rigid symbols [5,7].

5 By the definition of reducts, (W ′, M ′) and (W ′, M ′)�ϕ have the same possible worlds.
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3 Entailment

Let Γ and Γ ′ be two sets of sentences over a signature Δ. We say that Γ
semantically entails Γ ′, or that Γ ′ is a semantic consequence of Γ , and we write
Γ �Δ Γ ′, when every Δ-model that satisfies Γ satisfies Γ ′ too. When the set
Γ ′ is a singleton {γ}, we simplify the notation to Γ �Δ γ. Moreover, we usually
drop the subscript Δ when the signature can be easily inferred from the context.

Horn Clauses. The problem we propose to address in this paper is that of finding
a suitable syntactic characterisation of entailments of the form Γ � γ, where both
Γ and γ correspond to the Horn-clause fragment of HDFOLS.

By Horn clause, we mean a sentence obtained from atomic sentences by
repeated applications of the following sentence-building operators, in any order:
(a) retrieve (b) implication such that the condition is a conjunction of atomic
sentences or action relations, (c) store, (d) universal quantification, (e) necessity,
and (f) next. We denote by HDCLS the Horn-clause fragment of HDFOLS, and
by SenHDCLS(Δ) the set of all Horn clauses over the signature Δ.

In the next sections, we develop a series of syntactic entailment relations,
whose corresponding entailments are denoted by Γ 
 γ. All of them are sound,
in the sense that Γ 
 γ implies Γ � γ; and some are also compact, which means
that, whenever Γ 
 γ, there exists a finite subset Γf ⊆ Γ such that Γf 
 γ.

As in previous studies on Birkhoff completeness [4,8], we follow a layered
approach. This means that we distinguish the atomic layer of HDCLS from the
layer of general Horn clauses. The former is intrinsically dependent on the details
of HDCLS, whereas the latter is in essence logic-independent, and can easily be
adapted to other hybrid-dynamic logics, not necessarily based on first-order logic.
The same ideas apply, for example, to hybrid-dynamic propositional logic.

Nominal Replacement. In order to capture syntactically relations between hybrid
terms that correspond to different nominals, we introduce a way to replace nom-
inals with nominals within hybrid terms. Given two nominals k1 and k2, let
f : TΣn → TΣn be the function that maps k1 to k2 and leaves the other nominals
unchanged. We define the family {δk1/k2,k : TΔ

k → TΔ
f(k)}k∈TΣn by induction:

1. δk1/k2,k(σ(t)) = σ(δk1/k2,k0(t)) when σ ∈ F r
ar→s and t ∈ TΔ

k0,ar ;
2. δk1/k2,k(σ(k0; t)) = σ(f(k0); δk1/k2,k0(t)) when σ ∈ F f

ar→s, s ∈ Sr, t ∈ TΔ
k0,ar ;

3. δk1/k2,k(σ(k; t)) = σ(f(k); δk1/k2,k(t)) when σ ∈ F f
ar→s, s ∈ Sf, and t ∈ TΔ

k,ar .

We usually drop the subscript k, and denote the map δk1/k2,k simply by δk1/k2 .

4 Atomic Completeness

In this section, we focus on a completeness result for the atomic fragment of
HDCLS. There are two major advancements that distinguish the work presented
herein from previous contributions (see, e.g. [8]): (a) the state space of every
Kripke model is equipped with a full algebraic structure, and (b) the signatures
can have flexible sorts – instead of being restricted to rigid sorts only.



Birkhoff Completeness for Hybrid-Dynamic First-Order Logic 285

To start, let 
 be the syntactic entailment relation generated by the rules
listed in Fig. 1. The following soundness and compactness result can be proved
in essentially the same way as in [8]. In particular, the compactness property
follows from the fact that all rules have a finite number of premises.

Proposition 10 (Atomic soundness & compactness). The atomic syntac-
tic entailment relation 
 is both sound and compact. ��

As it is often the case, completeness is much more difficult to prove, and
relies on a number of preliminary results. For the developments presented in this
section, we make use of a specific notion of congruence on a Kripke structure.

Fig. 1. Proof rules for atomic sentences

Definition 11 (Congruence). Let Δ = (Σn, Σr ⊆ Σ) be a HDCLS-signature,
and (W,M) a Kripke structure for it. A Δ-congruence on (W,M) is a family
≡ = {≡w}w∈|W | of Σ-congruences ≡w on Mw, for each possible world w ∈ |W |,
such that (≡w1,s) = (≡w2,s) for all worlds w1, w2 ∈ |W | and rigid sorts s ∈ Sr.

The next construction is a straightforward generalization of its first-order
counterpart, and has been studied in several other papers in the literature (see,
e.g. [8]). For that reason, we include it for further reference without a proof.

Proposition 12 (Quotient model). Every Δ-congruence ≡ on (W,M) deter-
mines a quotient-model homomorphism ( /≡) : (W,M) → (W,M/≡) that acts
as an identity on W , and for which (M/≡)w is the quotient Σ-model Mw/≡w.
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Moreover, ( /≡) has the following universal property: for any Kripke homo-
morphism h : (W,M) → (W ′,M ′) such that ≡ ⊆ ker(h),6 there exists a unique
homomorphism h′ : (W,M/≡) → (W ′,M ′) such that ( /≡) ; h′ = h.7 ��

We prove the atomic completeness of HDCLS in two steps: first, for nominal
equations only; then, for arbitrary atomic sentences (both nominal and hybrid).
According to the lemma below, every set of nominal equations Γ n admits a ‘least’
Kripke structure (W n,Mn) that encapsulates the formal deduction of equations.

Lemma 13 (Least Kripke structure of a set of nominal equations). For
every set Γ n of nominal equations over a signature Δ, there exists a reachable
initial model (W n,Mn) such that Γ n 
 ρ if and only if (W n,Mn) � ρ, for all
nominal or hybrid equations ρ over the signature Δ. ��

The following proposition shows that a set Γ of (nominal or hybrid) equations
generates a congruence on a reachable Kripke structure (W,M) when Γ entails
all the equations satisfied by (W,M). In particular, the result holds when Γ
includes the set of all equations that are satisfied by (W,M).

Proposition 14 (Congruence generated by a set of equations). Con-
sider a set Γ of equations over a signature Δ, and a reachable Δ-model (W,M)
such that Γ 
 ρ for all equations ρ satisfied by (W,M). For all w ∈ |W |, let
≡w be the relation on Mw defined by τ1 ≡w τ2 whenever Γ 
 t1 =k t2 for some
k ∈ TΣn and t1, t2 ∈ TΔ

k such that w = Wk, and τi = Mw,ti
. Then:

P1. [t1] ≡[k] [t2] iff Γ 
 t1 =k t2, for all k ∈ TΣn and t1, t2 ∈ TΔ
k ;

P2. ≡ is a Δ-congruence on (W,M). ��
Now we can finally prove the completeness result for atomic sentences.

Theorem 15 (Atomic completeness). Every set Γ of atomic sentences over
a signature Δ has a reachable initial model (WΓ ,MΓ ) such that Γ 
 ρ if and
only if (WΓ ,MΓ ) � ρ, for all atomic sentences ρ over Δ.

Proof. Let Γ n be the subset of nominal equations in Γ . By Lemma 13, there
exists a initial model (W n,Mn) of Γ n such that Γ n 
 ρ iff (W n,Mn) � ρ for all
equations ρ over Δ. Then (W n,Mn) satisfies the hypotheses of Proposition 14
with respect to the set of all (nominal or hybrid) equations in Γ . It follows that
the relation ≡ defined by [t1] ≡[k] [t2] whenever Γ 
 t1 =k t2, for all nominals k
and all terms t1, t2 ∈ TΔ

k,s, is a congruence on (W n,Mn). We define (WΓ ,MΓ )
as the model obtained from (W n,Mn/≡) by interpreting:

– each nominal relation symbol λ ∈ P n as WΓ
λ = {[k] ∈ |W n| | Γ 
 λ(k)};

– each relation symbol � ∈ P r as MΓ
[k],� = {[t]/≡[k] ∈ MΓ

[k] | Γ 
 �(t)};
– each relation symbol π ∈ P f as MΓ

[k],π = {[t]/≡[k] ∈ MΓ
[k] | Γ 
 π(k; t)}.

6 This means that hw,s(a1) = hw,s(a2) for all a1, a2 ∈ Mw,s such that a1 ≡w,s a2.
7 Note that we use the diagrammatic notation for function composition.
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Note that the interpretations of � ∈ P r and π ∈ P f are independent of the
choice of the nominal k. For example, for flexible relation symbols, if [k] = [k′]
then Γ 
 k = k′; therefore, if Γ 
 π(k; t), we also have Γ 
 π(k′; t′) by (Ph),
where t′ = δk/k′(t) is a tuple of hybrid terms that satisfies [t] ≡[k] [t′].

The fact that (WΓ ,MΓ ) is a reachable model of Γ follows in a straightfor-
ward manner by construction. Therefore, we focus on the initiality property. Let
(W,M) be a Δ-model that satisfies Γ . In particular, (W,M) satisfies all nominal
equations in Γ . By Lemma 13, we deduce that there exists a unique homomor-
phism h : (W n,Mn) → (W,M). We also know that (W,M) satisfies all hybrid
equations in Γ , which implies that ≡ ⊆ ker(h). By Proposition 12, this means
that there exists a unique Kripke homomorphism h′ : (W n,Mn/≡) → (W,M)
such that ( /≡) ; h′ = h. To finalize this part of the proof, we need to ensure
that h′ preserves the interpretation of all relation symbols (nominal or hybrid)
satisfied by (WΓ ,MΓ ). We only consider the case of flexible relation symbols.
Nominal relations and rigid relations can be treated in a similar manner. Suppose
π ∈ P f

ar and τ ∈ MΓ
[k],π, for an arbitrary but fixed nominal k ∈ TΣn . Then:

1 Γ � π(k; t) for some tuple of terms
t ∈ T Δ

k,ar such that τ = [t]/≡[k]

by the definition of MΓ
[k],π

2 Γ � π(k; t) by Proposition 10

3 (W, M) � π(k; t) since (W, M) � Γ

4 Mw,t ∈ Mw,π for w = Wk by the definition of �
5 h′(τ) ∈ Mw,π since h′(τ) = h′([t]/≡[k]) = Mw,t

Lastly, we show that Γ 
 ρ iff (WΓ ,MΓ ) � ρ, for all atomic sentences ρ. The
‘only if’ part is straightforward since (WΓ ,MΓ ) is a model of Γ . For the ‘if’ part,
we proceed by case analysis on the structure of ρ. The more interesting cases
are those of relational atoms. Suppose, for instance, that (WΓ ,MΓ ) � π(k; t),
where π ∈ P f

ar , k ∈ TΣn , and t ∈ TΔ
k,ar . If follows that:

1 [t]/≡[k] ∈ MΓ
[k],π by the definition of �

2 Γ � π(k; t′) for some tuple of terms
t′ ∈ T Δ

k,ar such that [t′] ≡[k] [t]
by the definition of MΓ

[k],π

3 Γ � t =k,ar t′ by Proposition 14

4 Γ � π(k; t) by the proof rule (Pf) ��

5 Quasi-completeness

The main contribution in this section is the construction, for any set of Horn
clauses, of an initial model that encapsulates the syntactic deduction of atomic
sentences and action relations. An initiality result is obtained in [11] as well, but
in that paper it is based on the semantic entailment. In contrast, the present
result is based on syntactic deduction, which requires a higher level of complex-
ity, and it is developed in the context of a modular approach to completeness.
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Fig. 2. Proof rules for action relations

Fig. 3. Proof rules for Horn clauses

This means that the present results are applicable to other modal logics, where
some of the sentence-building operators considered here may be disregarded.

We focus on entailments of the form Γ � ρ, where Γ is an arbitrary set of
Horn clauses, and ρ is either an atomic sentence, or an action relation. To that
end, let 
 be the syntactic entailment relation generated by the rules listed in
Figs. 1, 2 and 3. The soundness and compactness result presented in Sect. 4 can
be generalized with ease for the entailment relation 
 that we consider here.

Proposition 16. The entailment relation 
 is sound and compact. ��
Fact 17 (Retrieve redundancies). For all nominals k1, k2 ∈ TΣn and all
sentences γ over a signature Δ, the sentences @k1 @k2 γ and @k2 γ are both
syntactically and semantically equivalent. Moreover, if ρ is atomic or an action
relation, then @kn

ρ is syntactically and semantically equivalent to ρ.

To prove that 
 is also complete, we first extend Theorem 15 to entailments
Γ 
 ρ for which Γ is a set of atoms and ρ is either atomic or an action relation.

Proposition 18 (Extending atomic completeness). Let Γ be a set of
atomic sentences over a signature Δ, and (WΓ ,MΓ ) a reachable initial model
of Γ as in Theorem15. Then Γ 
 ρ if and only if (WΓ ,MΓ ) � ρ, for all atomic
sentences or action relations ρ over the signature Δ. ��

The result below shows that, in order to obtain an initial model of a set Γ
of clauses, it suffices to consider the initial model (WΓ0,MΓ0) of the set Γ0 of
atoms entailed by Γ . Moreover, (WΓ0 ,MΓ0) satisfies all clauses entailed by Γ .
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Theorem 19 (Initiality preserves formal deductions). Let Γ be a set of
clauses over a signature Δ, Γ0 = {ρ ∈ SenHDCLS(Δ) | Γ 
 ρ & ρ is atomic},
and (WΓ0 ,MΓ0) a reachable initial model of Γ0 as in Theorem15. Then Γ 
 γ
implies (WΓ0 ,MΓ0) � γ for all Horn clauses γ over Δ.

Proof. Since the model (WΓ0 ,MΓ0) is reachable, it suffices to prove that Γ 

@k γ implies (WΓ0 ,MΓ0) � @k γ for all nominals k ∈ TΣn and Horn clauses
γ ∈ SenHDCLS(Δ). We proceed by structural induction on γ.

For the base case, assume Γ 
 @k γ, where γ is atomic. It follows that:

1 Γ � γ by (Ret0) in Figure 1

2 γ ∈ Γ0 by the definition of Γ0

3 Γ0 � γ by the monotonicity of �
4 (W Γ0 , MΓ0) � γ by Theorem 15

5 (W Γ0 , MΓ0) � @k γ by Fact 17

For the induction step, we proceed by case analysis on the topmost sentence-
building operator of γ. We only present the case corresponding to the necessity
operator. Proofs for the remaining cases can be found in [10].

[ Γ 
 @k [a]γ ] Let w = WΓ0
k . We want to show that (WΓ0 ,MΓ0) �w′

γ for
all possible worlds w′ such that (w,w′) ∈ WΓ0

a . Given such a possible world,
since the model (WΓ0 ,MΓ0) is reachable, we know that there exists a nominal
k′ such that w′ = WΓ0

k′ . It follows that:

1 (W Γ0 , MΓ0) � a(k, k′) since (w, w′) ∈ W Γ0
a

2 Γ0 � a(k, k′) by Proposition 18

3 Γf � a(k1, k2) for some finite Γf ⊆ Γ0 since � is compact

4 Γ � a(k, k′) since Γ � Γf and Γf � a(k1, k2)

5 Γ � @k′ γ by (NecE)

6 (W Γ0 , MΓ0) � @k′ γ by the induction hypothesis

7 (W Γ0 , MΓ0) �w′
γ since w′ = W Γ0

k′ . ��

We are now finally ready to tackle the quasi-completeness of HDCLS: the
initial model of a set of Horn clauses encapsulates the formal deduction of both
atomic sentences and action relations. Note that, in general, action relations are
not Horn clauses; nonetheless, we discuss their case too because it provides an
important technical tool for the final completeness result.

Corollary 20 (Quasi-completeness). Under the notations and hypotheses of
Theorem19, (WΓ0 ,MΓ0) is also an initial model of Γ . Moreover, for all atomic
sentences or action relations ρ, the following statements are equivalent:

1. Γ � ρ 2. (WΓ0 ,MΓ0) � ρ 3. Γ 
 ρ ��
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6 Horn-Clause Completeness

This final technical section deals with Birkhoff completeness, which corresponds
to the existence of a syntactic characterization for the semantic entailment rela-
tion of HDCLS. This is practically very useful, because Horn clauses facilitate the
development of an operational semantics of formal specifications based on rewrit-
ing. For example, action relations can provide logical support for the rewriting
rules used in Maude [3], or for the transitions from CafeOBJ [6].

In order to generalize completeness to arbitrary Horn clauses, we need to
consider additional rules, which are particular to different kinds of clauses. We
say that a sentence is action-free if it contains no occurrences of any of the
action-building operators (composition, union, or transitive closure), and that it
is star-free if it contains no occurrences of the transitive-closure operator.

Notation 21. Consider the following fragments of HDFOLS. Each of them is
obtained through a specific restriction on sentences:

HDFOLS(1) – corresponding to action-free Horn clauses;
HDFOLS(2) – corresponding to star-free Horn clauses and action relations;
HDFOLS(3) – corresponding to Horn clauses and action relations.

Fig. 4. Additional proof rules for Horn clauses

Fig. 5. Additional proof rules for action relations
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Notice that HDFOLS(3) is the richest fragment, and that γ is a clause in HDFOLS
iff it is a Horn clause in HDFOLS(3). We also define three entailment relations:

1. 
(1) is generated by the proof rules in Figs. 1, 2, 3 and 4, but restricts the
applications of (NecI) to situations where a is a modality (i.e., an atomic
action);

2. 
(2) is generated by the proof rules in Figs. 1, 2, 3, 4 and 5, except (StarI),
and restricted to applications of (CompI) and (UnionI) to star-free sentences;

3. 
(3) is generated by all proof rules in Figs. 1, 2, 3, 4 and 5.

Notice also that 
(3) is the most general one. Given a set of Horn clauses, 
(3)

can be used to derive arbitrary Horn clauses from it, whereas 
(2) can only be
used to derive star-free Horn clauses, and 
(1) only action-free Horn clauses.

It is easy to check that all these entailment relations are sound – similarly to
Propositions 10 and 22, along the lines of [8]. Compactness, however, holds only
for the first two. That is because the rule (StarI) in Fig. 5 is infinitary.

Proposition 22 (Soundness & compactness). The entailment relation 
(x)

is sound, for all x ∈ {1, 2, 3}. Moreover, 
(1) and 
(2) are also compact. ��
Our approach to completeness relies on the introduction rules in Figs. 4 and 5.

These allow us to simplify, for example, the action relations that may appear in
the left-hand side of the turnstile symbol during the proof process.

Theorem 23 (Birkhoff completeness). Let x ∈ {1, 2, 3}. For every set Γ of
Horn clauses in HDFOLS, and for every clause γ in HDFOLS(x),

Γ � γ implies Γ 
(x) γ.

Proof. Notice that Γ � γ implies Γ � @k γ, for any nominal k. Therefore, given
the proof rule (RetE), it suffices to prove that Γ � @k γ implies Γ 
(x) @k γ. We
proceed by induction on the structure of the sentence γ.

For the base case, where γ is an atomic sentence, the conclusion follows by
Fact 17, Corollary 20, and the fact that Γ 
 γ implies Γ 
(x) γ.

For the induction step, we consider only the case where γ is universally quan-
tified. The remaining cases can be proved in a similar fashion; see [10].

[ Γ � @k ∀X · γ ] Then:
1 Γ �Δ[X] @k γ by the general properties of �
2 Γ �(x)

Δ[X] @k γ by the induction hypothesis

3 Γ �(x)
Δ @k ∀X · γ by (QuantI) ��

To come to an end, notice that the entailment relation 
(3) is sound (by
Proposition 22) and complete (by Theorem 23), but it is not compact, since the
rule (StarI) is infinitary. The next proposition shows this is the best result we
can obtain, because the semantic entailment relation in HDCLS is not compact.
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Proposition 24 (Lack of compactness). HDCLS is not compact.

Proof (sketch). It suffices to consider a signature Δ with two nominals, k and
k′, and two modalities, λ and α, and the set Γ = {λn(k, k′) ⇒ α(k, k′) | n ∈ N}
of Horn clauses over Δ. Then the following properties hold:

1. Γ � λ∗(k, k′) ⇒ α(k, k′);
2. There is no finite subset Γf ⊆ Γ such that Γf � λ∗(k, k′) ⇒ α(k, k′). ��

7 Conclusions

The hybrid-dynamic first-order logic that we have studied in this paper is
obtained by enriching first-order logic with a unique combination of features
that are specific to hybrid and to dynamic logics. This provides a language that
is particularly well suited for specifying and reasoning about reconfigurable sys-
tems. More precisely, it allows us to capture reconfigurable systems as Kripke
structures whose possible worlds (a) have an algebraic structure, which supports
operations on configurations, and (b) are labelled with constrained first-order
models that capture the local structure of configurations. From a syntactic per-
spective, we define nominals and hybrid terms to refer to possible worlds and to
the elements of the first-order structures associated to those worlds. Terms are
then used to form nominal and hybrid equations, as well as relational atoms,
from which we build complex sentences using Boolean connectives, quantifiers,
hybrid-logic operators such as retrieve and store, and dynamic-logic operators
such as necessity over actions, i.e., regular expressions over modalities.

In this context, we have developed a layered approach towards a Birkhoff
completeness result for hybrid-dynamic first-order logic. There are three major
layers to consider: first, the atomic layer, which deals with entailments where
both the premises and the conclusion are atomic sentences; second, a mixed
layer, which deals with entailments where the premises are Horn clauses, but
the conclusion is only an atomic sentence or an action relation; and third, the
general, Horn-clause layer, which deals with entailments where both the premises
and the conclusion are Horn clauses. For each of these layers, we have developed
sound and complete proof systems. Moreover, for the first two layers, the proof
systems considered have also been shown to be compact.

The third layer deserves more attention. In that case, we distinguish between
two main proof systems: (a) one that is compact, but complete only for entail-
ments whose conclusion is a star-free clause; and (b) one that is not compact,
but it is complete for all entailments. To conclude this line of developments, we
have shown that this is the best result one can obtain for hybrid-dynamic logic.

As mentioned already, thanks to its features and expressive power, hybrid-
dynamic first-order logic is a promising formalism for reasoning about reconfig-
urable systems. The work reported in this paper provides a rigorous foundation
for that purpose. Therefore, an important task to pursue further is the devel-
opment of a language, specification methodology, and appropriate tool support
(that implements the proof systems presented here) for this new logic.
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12. Găină, D., Ţuţu, I., Riesco, A.: Specification and verification of invariant proper-
ties of transition systems. In: 25th Asia-Pacific Software Engineering Conference,
APSEC 2018, Nara, Japan, 4–7 December 2018. IEEE (2018)

13. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

14. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. SIGACT News 32(1), 66–69 (2001)
16. Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-
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