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Preface

In August 2018 Roy Dyckhoff left us. Roy was a prominent, very active member of the
TABLEAUX community since its early period, in the nineties. He worked mainly in logic and
proof theory, but his open mind also made him interested in other fields of computer science
and mathematics and, beyond, in several other aspects of human activity and intellectual
endeavor. Those of us who had the privilege of interacting with him have experienced his
exceptional kindness and attention to other people’s needs, supplemented by a wonderful sense
of humor. Many people in the TABLEAUX community feel that they have lost not only an
excellent researcher but also a dear friend, a mentor and, altogether, a beautiful human being.
This volume is warmly dedicated to him, on behalf of all the authors and Program Committee
members. Farewell, dear Roy!

These proceedings contain the papers selected for presentation at the 28th
International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2019). The conference was held during September 3–5, 2019
in London, UK, at Middlesex University. It was co-located with the 12th International
Symposium on Frontiers of Combining Systems (FroCoS 2019).

TABLEAUX is the main international forum for presenting research on all aspects
of the mechanization of tableaux-based reasoning and related methods, including
theoretical foundations, implementation techniques, systems development, and
applications. The first TABLEAUX conference was held in Lautenbach near Karlsruhe,
Germany, in 1992. Since then it has been organized on an annual basis. In 2001, 2004,
2006, 2008, 2010, 2012, 2014, 2016, and 2018 it was a constituent of IJCAR.

TABLEAUX 2019 received 43 paper submissions, among which 37 regular
research papers, 4 system descriptions, and 2 work-in-progress papers. The submis-
sions were evaluated by the Program Committee on the basis of their significance,
novelty, technical soundness, and appropriateness for the TABLEAUX audience.
Reviewing was single-blind and each paper was subjected to at least three reviews,
followed by a discussion within the Program Committee. In the end, 26 papers were
selected for presentation at the conference: 24 regular papers, 1 system description, and
1 work-in-progress. This volume contains the accepted regular and system description
papers, which have been grouped according to the following topic classification:
(1) tableau calculi, (2) sequent calculi, (3) semantics and combinatorial proofs,
(4) non-wellfounded proof systems, (5) automated theorem provers, and (6) logics for
program or system verification.

This edition had two invited talks by leading experts in logic and mechanized
reasoning:

– “Automated Reasoning for the Working Mathematician,” by Jeremy Avigad
– “Remembering Roy Dyckhoff,” by Stéphane Graham-Lengrand and Sara Negri

Sara and Stéphane were two of Roy’s closest collaborators, and Stéphane had also
been his PhD student. Jeremy Avigad’s invited talk was shared with FroCoS 2019.



Conversely, one of the FroCoS invited talks, “Modularity and Automated Reasoning in
Description Logics,” by Uli Sattler, was shared with TABLEAUX.

The joint FroCoS/TABLEAUX event had two affiliated workshops:

– The 25th Workshop on Automated Reasoning (ARW 2019), organized by
Alexander Bolotov and Florian Kammueller

– Journeys in Computational Logic: Tributes to Roy Dyckhoff, organized by
Stéphane Graham-Lengrand, Ekaterina Komendantskaya, and Mehrnoosh
Sadrzadeh

It also had two affiliated tutorials:

– Formalising Concurrent Computation: CLF, Celf, and Applications, by Sonia Marin
– How to Build an Automated Theorem Prover – An Introductory Tutorial (invited

TABLEAUX tutorial), by Jens Otten

The program committee offered the TABLEAUX 2019 Best Paper Award to Björn
Lellmann for his paper “Combining Monotone and Normal Modal Logic in Nested
Sequents – with Countermodels”. In addition, this year TABLEAUX also had the Best
Paper by a Junior Researcher Award, supported financially by Springer; the award was
offered to Timo Lang for his co-authored paper “A Game Model for Proofs with
Costs”.

We would like to thank all the people who contributed to making TABLEAUX
2019 a success. In particular, we thank the invited speakers for their inspiring talks, the
authors for providing many high-quality submissions, the workshop and tutorial
organizers for the interesting and engaging events, and all the attendees for contributing
to the conference discussion. We thank the Program Committee members and the
external reviewers for their careful, competent reviewing and discussion of the
submissions on quite a tight schedule. We thank the Steering Committee members for
their very helpful advice. We extend our thanks to the local Organizing Committee and
to the Middlesex University staff, especially to Nicola Skinner, for offering their
enthusiastic support to this event.

We gratefully acknowledge financial support from Amazon, Springer, and
Middlesex University. The Association for Symbolic Logic (ASL) has kindly included
TABLEAUX among the events for which students can apply to them for travel
funding. Finally, we are grateful to EasyChair for allowing us to use their excellent
conference management system.

September 2019 Serenella Cerrito
Andrei Popescu
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Automated Reasoning for the
Working Mathematician

Jeremy Avigad

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
avigad@cmu.edu

http://www.andrew.cmu.edu/user/avigad/

Abstract. The mathematical literature is filled with minor errors and impreci-
sion, and interactive proof assistants offer hope for making mathematics more
reliable and exact. Given the gap between an informal proof and a formal
derivation, one would expect automated reasoning tools to play a key role in
formally verified mathematics. But this expectation has not been borne out in
practice. Despite technological advances, automated reasoning is far from
central to the field, and many of the most impressive accomplishments to date
have used surprisingly little automation. The use of automated reasoning tools in
mathematical discovery has been even more limited. In this talk, I will do my
best to make sense of this state of affairs and offer guidance towards developing
useful mathematical tools.

Keywords: Automated reasoning � Interactive theorem proving



Remembering Roy Dyckhoff

Stéphane Graham-Lengrand1 and Sara Negri2

1 SRI International
stephane.graham-lengrand@csl.sri.com

2 Department of Philosophy, University of Helsinki, Finland
sara.negri@helsinki.fi

Abstract. Roy Dyckhoff left us after a long illness in August 2018. Many of us
have known him as a teacher, colleague, mentor, friend, collaborator, and
coauthor. He is much missed in the academic world, and especially in the
Tableaux community, community, of which he was a founding father and an
extremely active member. We shall remember Roy as a scientist with a broad
range of interests, care for rigour, passionate approach to new ideas, and
enthusiasm for new projects. He showed a human approach to scientific
endeavour, had great care for acknowledging priorities, was generous in helping
others and did not spare his personal involvement in easing conflicts and striving
for justice.
In his early years as a researcher, those of doctoral and postdoctoral study,

Roy Dyckhoff gave substantial contributions to topology and category theory
[2–8, 25], the latter also studied in relation to Martin-Löf’s type theory [9].
Moving from mathematics to computer science he became interested in com-
putational logic. In the early 1990s he started a systematic study of the use of
sequent calculus as a basis for automated deduction, his most influential dis-
covery being a terminating sequent calculus for intuitionistic propositional logic,
known as G4 and published in 1992 [10]. He was not content with just any
solution, but was always looking for the most elegant one. So he returned
recently to this issue, improving the proof of the main result [15].
Intuitionistic logic was a main thread of his research; to use his words, he

surveyed “the wide range of proof systems proposed for intuitionistic logic,
emphasising the differences and their design for different purposes, ranging from
ease of philosophical or other semantic justification through programming
language semantics to automated reasoning” [11] as well as decision procedures
and implementations thereof [12]. In investigating the relationship between
natural deduction and sequent calculus he settled an old problem on the rela-
tionship between cut elimination, substitution and normalisation [13]. Further-
more, he studied the translations from intermediate logics to their modal
companions as well as to the provability logic of Grzegorczyk logic, thus
offering a fresh proof theoretic perspective on earlier semantical results [20, 22].
By his contributions relating sequent calculus and natural deduction he shed

light on the connections between logic programming and functional program-
ming [33], for instance regarding the concept of uniform proof [32]. Roy
Dyckhoff was appealed by the use of term rewriting techniques in proof theory,
and explored innovative extensions of the Curry-Howard-De Bruijn corre-
spondence, which relates formulae to types and proofs to functional programs.
He contributed to the development of proof-term grammars and typing systems



corresponding to various sequent calculi, with the notion of cut giving a natural
typing rule for explicit substitutions, and with cut-elimination being expressed
as terminating proof-term normalisation procedures. His contributions to this
approach involve for instance the focussed sequent calculi LJT [24] and LJQ
[17], the sequent calculus G4 [18], and Pure Type Systems [29].
Roy Dyckhoff gave important contributions to the method of “axioms as

rules”; in particular he proposed a view of rules as rewrite conditions and
applied it to obtain a simple decision method, based on terminating proof search
in a suitable sequent calculus, for the fragment of positively quantified formulas
of the first-order theory of linearly ordered Heyting algebras [19]. Recent work
[21] broadens the range of applications of the methodology of
“axioms-as-rules.” Not only many interesting mathematical theories can be
expressed by means of coherent/geometric implications, classes of axioms that
can be easily turned into rules, but any first order theory is amenable to such a
treatment insofar it has a coherent conservative extension. Often classical con-
version steps, such as those based on conjunctive and disjunctive normal form
can (and should) be avoided. For this purpose, he devised a new algorithm of
“coherentization” that preserves as much as possible of the formula structure.
Roy Dyckhoff investigated proof theory also from the more general per-

spective of proof-theoretic semantics, in particular various notions of harmony
[26], the question of what it is to be a logical constant, favouring the view that
leads to strong normalisation results, and the relationship between general and
“flattened” elimination rules [14]. He also developed a proof-theoretic semantics
for a fragment of natural language as an alternative to the traditional
model-theoretic semantics [27, 28].
His scientific interests included systems of multimodal logics for encoding

and reasoning about information and misinformation in multi-agent systems [23,
34]. For such logics he employed nested sequent calculi, a formalism beyond
traditional Gentzen sequents and gave a Prolog implementation of a decision
procedure [30].
Roy Dyckhoff has always been fascinated by the challenge of understanding

the classics by modern means, as he did for Frege’s Begriffsschrift notation [31].
More recently, he was engaged with Stoic logic. In [1] he showed that the
extension of the Hertz-Gentzen Systems of 1933 (without thinning) by a rule
and certain Stoic axioms preserves analyticity, which in turn yields decidability
of propositional Stoic logic. His latest publication [16] shows how the rule of
indirect proof, in the form with no multiple or vacuous discharges used by
Aristotle, may be dispensed with, in a system comprising four basic rules of
subalternation or conversion and six basic syllogisms.
As is clear from this necessarily incomplete summary, Roy Dyckhoff had a

proactive attitude that fostered collaboration. He always took genuine interest in
the work of others. Many researchers across computer science, mathematics, and
philosophy profited from his wide knowledge, deep insights and open-minded
approach. He was exemplary in giving credit to others rather than claiming it for
himself, and in setting high standards, while at the same time being gracious to
those who did not meet them. His humility and his approach to academic life
will continue to be an inspiration to all.

Remembering Roy Dyckhoff xv
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Abstract. A new one-pass and tree-shaped tableau system for LTL sat-
isfiability checking has been recently proposed, where each branch can
be explored independently from others and, furthermore, directly cor-
responds to a potential model of the formula. Despite its simplicity,
it proved itself to be effective in practice. In this paper, we provide a
SAT-based encoding of such a tableau system, based on the technique
of bounded satisfiability checking. Starting with a single-node tableau,
i.e., depth k of the tree-shaped tableau equal to zero, we proceed in an
incremental fashion. At each iteration, the tableau rules are encoded in
a Boolean formula, representing all branches of the tableau up to the
current depth k. A typical downside of such bounded techniques is the
effort needed to understand when to stop incrementing the bound, to
guarantee the completeness of the procedure. In contrast, termination
and completeness of the proposed algorithm is guaranteed without com-
puting any upper bound to the length of candidate models, thanks to the
Boolean encoding of the PRUNE rule of the original tableau system. We
conclude the paper by describing a tool that implements our procedure,
and comparing its performance with other state-of-the-art LTL solvers.

Keywords: Tableau system · Temporal logic · Satisfiability · SAT

1 Introduction

Linear Temporal Logic (LTL) is one of the most used temporal logics in formal
verification. In this context, the main problem is model checking [9], i.e., decid-
ing whether a given specification is satisfied by a given system. However, since
testing a system against a valid or unsatisfiable formula can be useless at best,
and dangerous at worst, sanity checking of specifications is another important
step in model-based design [27]. For this reason, the satisfiability problem, i.e.,
establishing whether a formula admits any model in the first place, has been
given an important amount of research effort. In addition to its applications to
formal verification, it also plays a role in AI systems [16,20], e.g., in planning
problems.
c© Springer Nature Switzerland AG 2019
S. Cerrito and A. Popescu (Eds.): TABLEAUX 2019, LNAI 11714, pp. 3–20, 2019.
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Besides its relevant applications, the LTL satisfiability problem is theoreti-
cally by itself. Since the first computational complexity results [25], many tech-
niques have been devised over the last decades, with tableau methods being
among the first to be developed [18,19,24]. In contrast to earlier tableau meth-
ods for classical logic [4,10], that work by building a suitable derivation tree,
most of these methods build a graph structure, whose paths represent possi-
ble evolutions of the computation, and then look for those ones that satisfy all
the properties required by the formula. Recently, a novel one-pass tree-shaped
tableau for LTL has been proposed by Reynolds [22]. In contrast to other tree-
shaped systems [24], its novel termination condition allows each branch to be
independently explored and accepted or rejected. Moreover, there is a direct
relationship between the tableau branches and the models of the formula. These
features led to an efficient implementation [3], a simple and fruitful parallelisa-
tion [21], and modular extensions to more expressive logics [13,14].

In this paper, we propose a satisfiability checking procedure for LTL for-
mulae based on a SAT encoding of the one-pass and tree-shaped tableau by
Reynolds [22]. The tableau tree is (symbolically) built in a breadth-first way, by
means of Boolean formulae that encode all the tableau branches up to a given
depth k, which is increased at every step. The expansion rules of the tableau
system are encoded in the formulae in such a way that a successful assignment
represents a branch of the tree of length k, which directly corresponds to a model
of the original LTL formula. This breadth-first iterative deepening approach has
been exploited in the past by bounded satisfiability checking and bounded model
checking algorithms [7,15], which share with us the advantage of leveraging the
great progress of SAT solvers in the last decades, and the incrementality of such
solvers.

A common drawback of existing bounded satisfiability checking methods is
the difficulty in identifying when to stop the search in the case of unsatisfi-
able formulae. In order to ensure termination, either a global upper bound has
to be computed in advance, which is not always possible or feasible, or some
other techniques are needed to identify where the search can be stopped. In
our system, termination is guaranteed by a suitable encoding of the tableau’s
PRUNE rule. This rule was the main novelty of Reynolds’ one-pass and tree-
shaped system when it was originally proposed [22], has a clean model-theoretic
interpretation [13], and the important role it plays in our encoding adds up to its
interesting properties. The result is a simple and complete bounded satisfiability
checking procedure based on a small and much simpler SAT encoding.

We implemented the proposed procedure and encoding in a tool, called
BLACK for (Bounded Ltl sAtisfiability ChecKer), and we report the outcomes
of an initial experimental evaluation, comparing it with state-of-the-art tools.
The results are promising, consistently improving over the tableau explicit
construction.

The paper proceeds as follows. Section 2 includes a brief account of LTL and
of Reynolds’ one-pass and tree-shaped tableau system. Section 3 shows the base
encoding of the tableau rules, excepting the PRUNE rule, building a system
that terminates correctly on satisfiable instances. Later, Sect. 4 describes and
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discusses the encoding of the PRUNE rule, completing the procedure. Section 5
describes the BLACK tool, together with the results of the experimental evalua-
tion. Section 6 concludes and highlights possible future developments.

2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a propositional modal logic interpreted over
infinite (discrete) linear orders. Syntactically, LTL can be viewed as an extension
of propositional logic with the tomorrow (Xφ), until (αU β), and release (αRβ)
operators. Given a set Σ = {p, q, r, . . .} of atomic propositions, LTL formulae are
inductively defined as follows:

φ := p | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 Boolean operators
| Xφ1 | φ1 U φ2 | φ1 R φ2 temporal operators

Note that, given disjunctions and the until operator, conjunctions and the release
operator are not necessary (in particular, φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2)). However,
it is useful to consider them as primitive, in order to allow any LTL formula φ
to be put into negated normal form, producing a linear-size equivalent formula,
noted as nnf(φ), such that negations appear only applied to proposition letters.
Moreover, common shorthands can be defined, such as the eventually (Fφ1 ≡
� U φ1) and always (Gφ1 ≡ ¬F(¬φ1)) operators.

LTL formulae are interpreted over infinite state sequences σ = 〈σ0, σ1, . . .〉,
with σi ⊆ Σ for each i ≥ 0. Given a state sequence σ, a position i ≥ 0, and
an LTL formula φ, the satisfaction of φ by σ at position i, written σ |=i φ, is
inductively defined as follows:

1. σ |=i p iff p ∈ σi

2. σ |=i ¬φ iff σ �|=i φ
3. σ |=i φ1 ∨ φ2 iff either σ |=i φ1 or σ |=i φ2

4. σ |=i φ1 ∧ φ2 iff σ |=i φ1 and σ |=i φ2

5. σ |=i Xφ iff σ |=i+1 φ
6. σ |=i φ1 U φ2 iff there exists j ≥ i such that σ |=j φ2

and σ |=k φ1 for all i ≤ k < j
7. σ |=i φ1 R φ2 iff for all j ≥ i, either σ |=j φ2 or there

exists i ≤ k < j such that σ |=k φ1.

We say that σ satisfies φ, written σ |= φ, if and only if the state sequence σ
satisfies φ at its first state, i.e., σ |=0 φ. In this case, we say that σ is a model
of φ.
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2.2 The One-Pass and Tree-Shaped Tableau System

We now describe Reynolds’ tableau system for LTL. After its original formula-
tion in [22], the system was extended to support past operators [14] and more
expressive real-time logics [13]. Here, we briefly recall its original future-only
version, which is the one considered for the SAT encoding described in the next
section.

Table 1. Tableau expansion rules. For each formula φ found in the label Γ of a node
u, one or two children u′ and u′′, according to its type, are created with the same label
as u excepting for φ, which is replaced, respectively, by the formulae from Γ1(φ) and
Γ2(φ).

Rule φ Γ1(φ) Γ2(φ)

DISJUNCTION α ∨ β {α} {β}
UNTIL α U β {β} {α,X(α U β)}
RELEASE αR β {α, β} {β,X(αR β)}
EVENTUALLY Fβ {β} {XFβ}
CONJUCTION α ∧ β {α, β}
ALWAYS Gα {α,XGα}

The tableau for a formula φ is a tree where each node u is labelled by a set
Γ (u) of formulae from the closure C(φ) of φ. At each step of the construction,
a set of rules is applied to each leaf node. Each rule can possibly append one
or more children to the node, or either accept (✓) or reject (✗) the node. The
construction continues until all leaves are either accepted or rejected, resulting
into at least one accepted leaf if and only if the formula is satisfiable, with the
corresponding branch representing a satisfying model for the formula. A node
whose label contains only elementary formulae, i.e., propositions or tomorrow
operators, is called a poised node. At each step, the expansion rules are applied to
any non-poised leaf node. The rules are given in Table 1. For each non-elementary
formula ψ ∈ C(φ), the corresponding expansion rule defines two sets of expanded
formulae Γ1(ψ) and Γ2(ψ), with the latter possibly empty. The application of
the rule to a node u adds a child u′ to u such that Γ (u′) = Γ (u) \ {ψ} ∪ Γ1(ψ),
and, if Γ2(ψ) �= ∅, a second child u′′ such that Γ (u′′) = Γ (u) \ {ψ} ∪ Γ2(ψ).

Expansion rules are applied to non-poised nodes until a poised node is pro-
duced. Then, a number of termination rules are applied, to decide whether the
node can be accepted, rejected, or the construction can proceed. In what fol-
lows, a formula of the type X(α U β) is called X-eventuality. Given a branch
u = 〈u0, . . . , un〉, an X-eventuality ψ is said to be requested in some node ui if
ψ ∈ Γ (ui), and fulfilled in some node uj , with j ≥ i, if β ∈ Γ (uj).

Let u = 〈u0, . . . , un〉 be a branch with poised leaf un. The termination rules
are the following, to be applied in the given order:
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EMPTY If Γ (un) = ∅, then un is accepted.
CONTRADICTION If {p,¬p} ⊆ Γ (un), for some p ∈ Σ, then un is rejected.

LOOP If there is a poised node ui < un such that Γ (un) = Γ (ui),
and all the X-eventualities requested in ui are fulfilled in the
nodes between ui+1 and un, then un is accepted.

PRUNE If there are three positions i < j < n, such that Γ (ui) =
Γ (uj) = Γ (un), and among the X-eventualities requested
in these nodes, all those fulfilled between uj+1 and un are
fulfilled between ui+1 and uj as well, then un is rejected.

If the branch is neither accepted nor rejected, the construction of the branch
proceeds to the next temporal step by applying the STEP rule.

STEP A child un+1 is added to un such that Γ (un+1) = {ψ | Xψ ∈ Γ (un)}.

Intuitively, given an accepted branch of the complete tableau for φ, the poised
nodes are labelled by the formulae that hold in the states of the corresponding
model for the formula. Depending on whether the branch is accepted by the
EMPTY or the LOOP rule, it either corresponds to a finite (also called loop-free)
model or to a periodic one (also called lasso-shaped), whose period corresponds
to the segment in between the nodes that trigger the LOOP rule. If a branch
is rejected, it happens either because of a logical contradiction, that triggers
the CONTRADICTION rule, or because of the PRUNE rule, which avoids the
tableau to infinitely postpone a request that is impossible to fulfil. From a model-
theoretic point of view [13], the PRUNE rule allows one not to consider models
that contain redundant segments, i.e., segments that just repeat some previously
done piece of work without contributing further to the satisfaction of all the
pending requests. Recent work [13] studied this model-theoretic interpretation
of the rule, showing a characterisation of the discarded models.

3 SAT-Based Encoding of the Tableau

This section describes the SAT-based encoding of Reynolds’ tableau. We first
describe the base encoding, leaving the PRUNE rule to the next section, which
shows the complete satisfiability checking procedure.

As already pointed out, the overall structure of our procedure is similar
to other bounded satisfiability checking approaches. At each step k, ranging
from zero upwards, we produce a Boolean formula |φ|k, which represents all
the accepted branches of the tableau of depth at most k. The satisfaction of
such a formula witnesses the existence of an accepted branch of the tableau,
which in turn proves the existence of a model for the formula. If the formula is
unsatisfiable, we can proceed to the next depth level. Note that this corresponds
to a symbolic breadth-first traversal of the complete tableau for φ.

Such a procedure would be incomplete, possibly running forever on some
unsatisfiable instances, without some halting criterion, which in our case is pro-
vided by the encoding of the PRUNE rule as described in Sect. 4. Let us now
proceed with the description of the base encoding. In what follows, any LTL
formula is assumed to be in negated normal form.
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3.1 Notation

We now define some notation, useful for what follows. Let φ be an LTL formula
(in negated normal form) over the alphabet Σ. The closure of φ is the set of
formulae C(φ) defined as follows:

1. φ ∈ C(φ);
2. if Xψ ∈ C(φ), then ψ ∈ C(φ);
3. if ψ ∈ C(φ), then Γ1(φ) ⊆ C(φ) and Γ2(φ) ⊆ C(φ) (as defined in Table 1).

Then, let XR(φ) ⊆ C(φ) be the set of all the tomorrow formulae (X-requests)
in C(φ), i.e., all the formulae Xψ ∈ C(φ), and let XEV ⊆ XR(φ) be the set of all
the X-eventualities in C(φ), i.e., all the formulae X(α U β) ∈ C(φ).

The propositional encoding of the formula φ is defined over an extended
alphabet Σ+, which includes:

1. any proposition from the original alphabet Σ;
2. the grounded X-requests, i.e., a proposition noted as ψG for all ψ ∈ XR(φ);
3. a stepped version pk, for any k ∈ N, of all the propositions p above, with p0

identified as p.

Some notation complements the above extended propositions. In particular, for
all ψ ∈ C(φ), we denote by ψG the formula obtained by replacing ρ with ρG for
any ρ ∈ XR(φ) appearing in ψ. Similarly, for all ψ ∈ C(φ), we denote as ψk,
with k ∈ N, the formula obtained from ψ by replacing any proposition p with
pk. Intuitively, different stepped versions of the same proposition p are used
to represent the value of p at different states. From now on, for any formula
ψ ∈ C(φ), we will write ψk

G as a shorthand for the formula ((ψ)G)k.
Finally, we recall the definition of a simple transformation of LTL formulae

which is heavily used in our encoding.

Definition 1 (Next Normal Form). An LTL formula φ is in next normal form
iff every until or release subformula appears in the operand of a tomorrow.

An LTL formula φ can be turned into its next normal form equivalent formula
xnf(φ) as follows:

1. xnf(p) ≡ p and xnf(¬p) = ¬p for all p ∈ Σ;
2. xnf(Xψ1) ≡ Xψ1 for all Xψ1 ∈ C(φ);
3. xnf(ψ1 ∧ ψ2) ≡ xnf(ψ1) ∧ xnf(ψ2) for all ψ1 and ψ2;
4. xnf(ψ1 ∨ ψ2) ≡ xnf(ψ1) ∨ xnf(ψ2) for all ψ1 and ψ2;
5. xnf(ψ1 U ψ2) ≡ xnf(ψ2) ∨ (xnf(ψ1) ∧ X(ψ1 U ψ2)) for all ψ1 and ψ2;
6. xnf(ψ1 R ψ2) ≡ xnf(ψ2) ∧ (xnf(ψ1) ∨ X(ψ1 R ψ2)) for all ψ1 and ψ2.

The above definition has been recalled by other authors as well [17], but it
follows the same structure of the expansion rules defined in Table 1, which is
not surprising, since these rules trace back to earlier graph-shaped tableaux [18,
19]. This connection allows us to check that the above definition produces an
equivalent formula, as ψ ≡ Γ1(ψ) ∨ Γ2(ψ) for all the cases covered by Table 1.
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3.2 Expansion of the Tree

We can now define the first building block of our encoding. The k-unravelling of
φ, denoted as �φ�

k, is a propositional formula that encodes the expansion of all
the branches of the tableau tree up to at most k + 1 poised nodes per branch.

Definition 2 (k-unraveling). Let φ be an LTL formula over Σ and some k ∈ N.
The k-unravelling of φ is a propositional formula �φ�

k over Σ+ defined as follows:

�φ�
0 = xnf(φ)G

�φ�
k+1 = �φ�

k ∧ ∧
Xα∈XR

(
(Xα)k

G ↔ xnf(α)k+1
G

)

Although such branches may in general have different length, they can be
regarded as having the same depth as far as the corresponding model is con-
cerned, since each state corresponds to a poised node. Thus, we may regard the
k-unravelling as a symbolic encoding of a breadth-first traversal of the tree. The
formula encodes the expansion rules by means of the next normal form transfor-
mation, and the STEP rule by tying the grounded X-requests at step k with the
grounding of the requested formulae at step k+1, ensuring temporal consistency
between two adjacent states in the model (i.e., σ |=i Xψ iff σ |=i+1 ψ). More-
over, the CONTRADICTION rule is implicitly encoded as well, since satisfying
assignments to the formula cannot represent branches containing propositional
contradictions. Hence, the following holds.

Proposition 1 (Soundness of the k-unraveling). Let φ be an LTL formula.
Then, �φ�

k is unsatisfiable if and only if the complete tableau for φ contains only
branches with at most k + 1 poised nodes crossed by contradiction. ��

Note that �φ�
k+1 can be computed incrementally from �φ�

k, by adding only
the second conjunct of the definition. This speeds up the construction of the
formula itself as well as the solution process of modern incremental SAT-solvers.

3.3 Encoding of Accepted Branches

Once all non-contradictory branches of a given depth have been identified with
the k-unravelling, the accepted branches of such a depth can be represented by
the conjunction of the propositional encoding of the EMPTY and LOOP rules
of the tableau. This allows the unravelling process to be stopped in the case of
satisfiable formulae.

The EMPTY rule, which is the simplest rule to encode, accepts loop-free
models of the formula, that are identified by poised nodes lacking X-requests.
In what follows, let XRk ⊆ XR be the set of X-requests that appear (grounded)
in the k-th conjunct of the k-unravelling for φ. Similarly, let XEVk ⊆ XRk be
the X-eventualities (i.e., formulae of the form X(ψ1 U ψ2)) found in XRk. The
EMPTY rule can be encoded as follows:

Ek :=
∧

ϕ∈XRk

¬ϕk
G
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Then, each satisfying assignment of the formula �φ�
k ∧ Ek corresponds to a

branch of the tableau for φ, with exactly k + 1 poised nodes, accepted by the
EMPTY rule. Note that it would still be sound to use the full XR instead of XRk

in the definition above, but, in general, the latter is likely to be a smaller set,
thus making the formula smaller.

The encoding of the LOOP rule, which accepts branches corresponding to
lasso-shaped (periodic) models, is built on top of two pieces. For each 0 ≤ l < k,
let lRk and lFk be defined as follows:

lRk :=
∧

ψ∈XRk

ψl
G ↔ ψk

G

lFk :=
∧

ψ∈XEVk

ψ≡X(ψ1Uψ2)

(

ψk
G →

k∨

i=l+1

xnf(ψ2)i
G

)

Given a branch u = 〈u0, . . . , uk〉 identified by �φ�
k, lRk states that the nodes

ul and uk have the same set of X-requests, and lFk states that all such X-requests
are fulfilled between nodes ul and uk. Together, they can be used to express the
whole triggering condition of the LOOP rule:

Lk :=
k−1∨

l=0

(lRk ∧ lFk)

Then, each satisfying assignment of �φ�
k ∧Lk corresponds to a branch of the

tableau for φ, with exactly k + 1 poised nodes, accepted by the LOOP rule, i.e.,
with a satisfying loop between position k and some previous position. Together,
�φ�

k, Ek, and Lk can represent any accepted branch of the tableau of the given
depth.

Definition 3 (Base encoding). Let φ be an LTL formula over Σ and k ∈ N.
The base encoding of φ at step k is the formula |φ|k over Σ+ defined as follows:

|φ|k := �φ�
k

︸︷︷︸
exp. rules
STEP rule

∧
(

Ek︸︷︷︸
EMPTY rule

∨ Lk︸︷︷︸
LOOP rule

)

Again, note that the base encoding can be built incrementally, allowing us
to exploit the features of modern SAT solvers. Indeed, |φ|k consists of the con-
junction of �φ�

k, built from the already computed �φ�
k−1, and Ek ∨ Lk.

The construction of Lk gives us the following result.

Proposition 2 (Soundness of the base encoding). Let φ be an LTL for-
mula. Then, |φ|k is satisfiable if and only if the complete tableau for φ contains
at least an accepted branch with exactly k + 1 poised nodes. ��

Propositions 1 and 2, together with the soundness result for Reynolds’
tableau given in [22], lead us to the following result.
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Theorem 1 (Soundness). Given an LTL formula φ, if |φ|k is satisfiable, for
some k ∈ N, then φ is satisfiable. ��

Figure 1 shows a basic procedure that can be built on top of the encoding of
Definition 3. The procedure starts with k = 0, and increments it at each step,
looking for models of increasing size, stopping when a step k is found with a
satisfiable base encoding. The procedure is incomplete, as it may not terminate
on unsatisfiable instances, similarly to early bounded model checking techniques.

Fig. 1. Incomplete satisfiability checking procedure built on top of the base encoding.

If the procedure terminates, then the satisfying assignment for |φ|k can be
used to build a model σ ⊆ Σω of φ of minimal length, where, in the case of
periodic models, the length is considered as the sum of the prefix and the period
lengths. This breadth-first traversal, with the guarantee of finding a minimal
model, would not be feasible if carried out explicitly, and it is a distinguishing
feature of bounded satisfiability checking of this kind. Explicit implementations
of Reynolds’ tableau system [3] proceed instead in a depth-first way, and the
models they find are not guaranteed to be minimal in length.

The next section adds to the picture the encoding of the PRUNE rule, showing
how to integrate the above procedure in order to guarantee the termination for
any unsatisfiable instance as well.

4 Completeness

In order to ensure termination of the algorithm in Fig. 1 also on unsatisfiable
formulae, it is useful to look at the possible reasons why the base encoding |φ|k
of a formula φ may be unsatisfiable. We can distinguish two cases:

1. if the formula �φ�
k is unsatisfiable, it means that all the branches of the

tableau for φ are crossed by the CONTRADICTION rule at or before depth k
(see Proposition 1);

2. if both �φ�
k ∧Ek and �φ�

k ∧Lk are unsatisfiable, then there are no branches of
depth k accepted by the EMPTY rule or by the LOOP rule (see Proposition 2).
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As an example of the first case, consider the formula X p ∧ X¬p, whose 1-
unravelling is �X p ∧ X¬p�

1 ≡ (X p)0G ∧ (X¬p)0G ∧ p1 ∧ ¬p1. At step k = 1, the
formula is found to be unsatisfiable because of a propositional contradiction
between p1 and ¬p1. At this point there is no reason to continue looking further:
we can stop incrementing k and answer UNSAT.

The second case, instead, does not exclude that longer accepted branches
exist, and require looking further. One interesting example is the (unsatisfiable)
formula G¬p ∧ q U p: it holds that |G¬p ∧ q U p|k is unsatisfiable for all k ≥ 0,
since any branch can be accepted neither by the LOOP rule (because G¬p forces
pi to be false for each 0 ≤ i ≤ k) nor by the EMPTY rule (because the failed
fulfilment of q U p forces X(q U p)i to be true for each 0 ≤ i ≤ k). Nevertheless,
�G¬p∧q U p�

k is satisfiable for all k ≥ 0, because the branch of the tableau that
indefinitely postpones the satisfaction of q U p is never closed by contradiction.
Hence, the procedure in Fig. 1 can never be able to stop in this case.

In the tableau, such a branch is, instead, rejected by the PRUNE rule, whose
role is exactly that of rejecting these potentially infinite branches. We can sim-
ilarly recover termination and completeness of our procedure by introducing a
propositional encoding of the rule.

Recall that the PRUNE rule rejects any branch of length k that presents
two positions l < j < k, with the same set of X-requests, such that all the X-
eventualities fulfilled between j + 1 and k are fulfilled between l + 1 and j as
well. Let i and j be one such pair of positions. We can encode the condition of
the PRUNE rule by means of the following formula:

lP
k
j :=

∧

ψ∈XEVk

ψ≡X(ψ1Uψ2)

(

ψk
G ∧

k∨

i=j+1

xnf(ψ2)i
G →

j∨

i=l+1

xnf(ψ2)i
G

)

Then, the above formula can be combined with the lRk formula defined in the
previous section to obtain the following encoding of the PRUNE rule:

P k :=
k−2∨

l=0

k−1∨

j=l+1

(
lRj ∧ jRk ∧ lP

k
j

)

It is worth to note that the P k formula is of cubic size with respect to k
and the number of X-eventualities. With this formula, in case of an unsatisfiable
base encoding, we can check whether there exists at least one branch of depth
at most k which does not satisfy the prune condition: if this is the case, then it
makes sense to continue the search; otherwise, the procedure can stop reporting
the unsatisfiability of the formula. This is done by testing the satisfiability of
the termination encoding of φ, defined as the following formula:

|φ|kT := �φ�
k

︸︷︷︸
exp. rules
STEP rule

∧
k∧

i=0

¬P i
︸︷︷︸
PRUNE rule
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The complete procedure is shown in Fig. 2, where the first step k such that
|φ|kT is unsatisfiable stops the search. Based on the soundness and completeness
result for the encoded tableau system [22], we can state the following result.

Theorem 2 (Soundness and completeness). For every LTL formula φ, the
procedure of Fig. 2 always terminates, and it answers SAT iff φ is satisfiable.

Notably, the procedure guarantees termination and completeness without
establishing a priori a bound to the depth of the tree, at the cost of a slightly
bigger formula and three calls to the underlying solver.

Fig. 2. Complete and terminating satisfiability checking procedure based on the
tableau encoding.

It is worth to spend some words on how the above procedure can exploit the
incrementality of modern SAT solvers to speed up its execution. Many modern
solvers have a push/pop interface that allows the client to push some conjuncts to
a stack, solve them, then pop some of them while pushing others, maintaining all
the information about the untouched conjuncts. In our case, the construction of
�φ�

k only requires the addition of a conjunct to �φ�
k−1, and |φ|k only requires to

join Ek∨Lk to �φ�
k. This means that such a conjunct can be pushed temporarily,

while maintaining all the solver state about �φ�
k for the next step. Moreover,

the formula �φ�
k generated and solved at Sect. 4 of Fig. 2 can be replaced by one

built on top of the whole |φ|k−1
T from the previous step, instead of only from

�φ�
k−1. This allows us to avoid to backtrack the additional conjuncts of |φ|kT .

Since the PRUNE rule cuts redundant branches, maintaining the corresponding
formulae from step to step helps guiding the solver through relevant branches.
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5 Experimental Evaluation

The above-described procedure has been implemented in a tool called BLACK
(Bounded Ltl sAtisfiability ChecKer)1. This section presents some relevant
aspects of the tool and shows the results of our preliminary experimental evalu-
ation, where it has been compared with other state-of-the-art LTL solvers.

BLACK has been implemented from scratch in the C++17 language with the
goals of efficiency, portability, and reusability. Most of the tool is implemented
as a shared library with a well-defined API, that can be linked to other client
applications as needed. The library provides basic formula handling facilities,
and an interface to the main solving algorithm. The tool itself is as well a client
of such a library, providing a simple command-line user interface.

The tool is currently implemented on top of MathSAT [5], used as its back-
end SAT solver, which is actually a full-blown SMT solver. This choice was
driven by the fact that, contrary to most pure-SAT solvers, MathSAT supports
formulae with a general syntax, without the need of a preliminary conversion to
CNF. This feature greatly simplified the initial development cycle of the project.
Future plans include the support to multiple different SAT solvers, including
those with simple CNF-based APIs, to find the most performant candidate.

The above-described satisfiability checking procedure is implemented on top
of a formula handling layer, which eases the development of the solver by decou-
pling the logical encoding from low-level details. In particular, the lower layer
transparently implements subterm sharing, i.e., formulae are internally repre-
sented as circuits, by identifying repeated subformulae. Besides the positive
effects on memory usage, this mechanism matches well with the term-based API
of the MathSAT library. Most importantly, syntactic equality of two formulae
reduces to a single pointer comparison, since building any two equal formulae
results into two pointers to the same object. A peculiar feature of BLACK’s
formulae handling layer is that atomic propositions can be labelled by values
of almost any data type, in contrast to being restricted to strings, integers, or
similar identifiers. In this way, the grounding operation (ψG) performed on X-
requests by our encoding (such as in �φ�

k) is effectively a no-op: the grounding
of an X-request formula is just an atomic proposition labelled by the formula’s
representing object, with no need for any translation table between the formulae
and their corresponding grounded symbols. Since formulae are uniquely iden-
tified by just the pointer to their object, this is implementable in such a way
that the common cases of propositions labelled by short strings, formulae, and
formula/integer pairs (for the stepped versions ψk

G) do not cause any memory
allocation.

In our experiments, we compared BLACK with four competitors: Aalta
v2.0 [17], nuXmv [6], Leviathan [3], and PLTL [1,24]. The nuXmv model checker
is tested in two modes, which implement, respectively, the Simple Bounded Model
Checking (SBMC) [15] and the K-Liveness [8] techniques. The SBMC mode

1 BLACK can be downloaded from https://github.com/black-sat/black, together with
the whole benchmarking suite and the raw results data.

https://github.com/black-sat/black
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is the most similar to ours among the tested solvers. The PLTL tool imple-
ments both a graph-shaped [1] tableau, and the one-pass tree-shaped tableau by
Schwendimann [24]. Finally, Leviathan is an explicit implementation of Reynolds’
tableau [3]. Because of technical issues, we could not include the LS4 [26] tool
in our test. Future experiments will include this and other competitors as well.

We considered the comprehensive set of formulae collected by Schuppan and
Darmawan [23], which contains a total of 3723 LTL formulae, grouped in seven
families, acacia, alaska, anzu, forobots, rozier, schuppan, trp, named after
their original source. We set a timeout of five minutes for each formula in the set.

We ran our tests on a Quad Core i5–2500k 3.30 GHz processor, with 8 GB of
main memory. Processes were assigned a single CPU core each, with a memory
limit of 2 GB per core (and the five minutes timeout). Figures 4 and 5 show six
scatter plots comparing the execution times, while Fig. 3 shows the number of
timeouts and out of memory interruptions for the tools on each class of formulae.

Fig. 3. Total number of timeouts and out of memory interruptions of the solvers on
the different class of benchmark formulae.

Overall, the results are promising. Although Aalta remains the most perfor-
mant tool in the majority of cases, the picture is mixed. In particular, BLACK
is competitive with regards to nuXmv. With regards to the SBMC mode, the
advantage is consistent but constant, showing similar trends both on satisfiable
and unsatisfiable instances. The rozier set comes as an exception. Apart from
the counter formulae, which are hard for both solvers, all these formulae have
very short models, which is an advantage for iterative deepening approaches like
ours. SBMC shares the same principle, but the large difference between BLACK
and nuXmv on most of this set may be explained by (i) the simpler base encod-
ing employed by BLACK, whose asymptotically larger size does not bite at lower
values of the bound k, and/or (ii) differences between the SAT solvers underlying
the two tools (the distributed binary of nuXmv is linked to minisat [12]).
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Fig. 4. Experimental comparison with nuXmv and Aalta.
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Fig. 5. Experimental comparison with Leviathan and PLTL.
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When comparing with nuXmv in k-liveness mode, we can see an interesting
pattern on trp unsatisfiable instances, with some formulae being solved in mil-
liseconds while others reach the timeout limit. As recalled in [23], this is a set
of random instances, hence the erratic behaviour cannot a priori be tied to any
particular combination of parameters.

The comparison with Leviathan and the other explicit tableaux implemented
by PLTL is easier to analyse. BLACK performs consistently better than the
two tools, which suffer from a predictable explosion in memory usage in most
instances. Notably, they perform very well on formulae with very narrow search
trees, such as the rozier counters.

6 Conclusions

This paper proposed a satisfiability checking algorithm for LTL formulae based
on a SAT encoding of Reynolds’ one-pass and tree-shaped tableau system [22].
Both the expansion of the tableau tree and its rules are represented by Boolean
formulae, whose satisfying assignments represent all the branches of the tableau
up to a given depth k. Notably, the encoding of Reynolds’ PRUNE rule results
in a simple yet effective termination condition for the algorithm, which is a
non-trivial task in other bounded model checking approaches (see, e.g., [15]).

We implemented our procedure in the BLACK tool and made some prelimi-
nary experimental comparison with state-of-the-art LTL solvers. The tool shows
good performance overall. In particular, it outperforms Leviathan, the explicit
implementation of Reynolds’ tableau, and shows interesting results against the
similar simple bounded model checking approach. The results are promising, espe-
cially considering that the encoding has been implemented in a very simple way,
without any sort of heuristics in the generation of the encoded formulae. Fur-
ther work should consider a more compact encoding for the unravelling and for
the LOOP and PRUNE rules, the use and comparison of different back-end SAT
solvers, and heuristics for the search of the bound.

From a theoretical perspective, the followed approach has to be compared
with others, especially with bounded ones [15], on a conceptual, rather than
experimental, level. In particular, it is worth comparing the PRUNE rule with
the terminating conditions exploited in other bounded approaches, to understand
their difference and draw possible connections.

A number of extensions of Reynolds’ tableau to other logics have been pro-
posed since its inception. In particular, the extension to past operators [14]
appears to be easy to encode, without resorting to the virtual unrolling tech-
nique used in other bounded approaches [15]. Reynolds’ tableau system has also
been extended to timed logics [13], in particular TPTL [2] and TPTLb+P [11]. It
is natural to ask whether the approach used here to encode the LTL tableau to
SAT can be adapted to encode the timed extensions of the tableau to SMT.



A SAT-Based Encoding of the One-Pass Tree-Shaped Tableau for LTL 19

Acknowledgements. This work has been supported by the PRID project ENCASE -
Efforts in the uNderstanding of Complex interActing SystEms, and by the INdAM
GNCS project Formal Methods for Combined Verification. The authors would like
to thank Alessandro Cimatti and Stefano Tonetta for the helpful discussions about
bounded satisfiability checking, Valentino Picotti for providing the benchmarking hard-
ware, and Nikhil Babu for pointing out a bug in Leviathan that could have introduced
a bias in the experimental evaluation. Thanks also to the anonymous reviewers for
their helpful remarks.

References
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Abstract. Nonclausal connection tableaux calculi enable proof search
without performing clausification. We give a translation of nonclausal
connection proofs to Gentzen’s sequent calculus LK and compare it to
an existing translation of clausal connection proofs. Furthermore, we
implement the translation in the interactive theorem prover HOL Light,
enabling certification of nonclausal connection proofs as well as a new,
complementary automation technique in HOL Light.

1 Introduction

Most automated theorem provers (ATPs) output only limited proof traces for
performance reasons. This is in contrast to the LCF approach, which hinges on
the correctness of a small, trusted kernel [13]. One way to certify the correctness
of proofs produced by ATPs is to translate them to interactive theorem provers
(ITPs) [15,17]. Certification of proofs given by ATPs is also important for the
integration of ATPs into interactive theorem provers, providing automation in
the form of proof tactics [5].

Most ATPs convert their input problems to clausal normal form as prepro-
cessing step [23]. To reconstruct the resulting clausal proofs in an ITP, it is
necessary to verify in the ITP the conversion to clausal normal form. The ATP
nanoCoP has demonstrated that a connection prover not requiring clausification
can be effectively implemented [27]. The reconstruction of nonclausal proofs
eliminates the necessity of proving the correctness of the clausification, but on
the other hand, translating the proofs is more involved.

In this paper, we describe the translation of clausal and nonclausal connection
proofs to Gentzen’s LK. To ease the translation, we introduce slightly modified
versions of the clausal and nonclausal connection calculus in Sect. 3. Using these
calculi, we describe a translation method from clausal and nonclausal connection
proofs to LK in Sect. 4. Based on this translation, we develop in Sect. 5 an auto-
matic proof certification of clausal proofs from leanCoP as well as of nonclausal
proofs from nanoCoP in the ITP HOL Light. We evaluate the performance of
our implementations on HOL Light problem sets in Sect. 6.

This paper generalises work co-authored by the second author of this paper
about the certification of clausal connection tableaux proofs [19]. Whereas [19]
is concerned more with technical questions of implementing a clausal prover and
c© Springer Nature Switzerland AG 2019
S. Cerrito and A. Popescu (Eds.): TABLEAUX 2019, LNAI 11714, pp. 21–38, 2019.
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a corresponding proof translation in a functional language, this paper abstracts
more from technical details in order to treat the more involved nonclausal proof
translation. This paper extends section 6.4 of the first author’s PhD thesis [11],
where a preliminary version of the nonclausal proof translation described in this
paper was introduced.

2 Connection Calculi

In this section, we will give a brief overview of the clausal and the nonclausal
connection tableaux calculus. For more details and examples, see [26,27].1

Let us start by fixing some notation. The transitive closure of a relation
R is denoted by R+, and the transitive reflexive closure by R∗. A term t is
either a variable x, a constant a, or f(t1, . . . , tn), where f is a function symbol
of arity n and t1, . . . , tn are terms. An atom A is P (t1, . . . , tn), where P is a
predicate of arity n and t1, . . . , tn are terms. A (first-order) formula F is (A),
(F1 ∨ F2), (F1 ∧ F2), (F1 =⇒ F2), (¬F1), (∀x.F1), or (∃x.F1), where F1 and
F2 are formulas, A is an atom, and x is a variable. We write a sequence of
quantifiers ∀x1 . . . xn.F as ∀x.F . The formula F [t/x] denotes the formula F
with all unbound occurrences of x replaced by t. A literal L is either ¬A or A,
where A is an atom. The complement L of a literal is A if L is of the shape ¬A,
and ¬A otherwise. A substitution σ is a function from variables to terms.

In the clausal calculus, a clause C is ∀x.(L1 ∨ · · · ∨ Ln) and a matrix M is
C1 ∧ · · ·∧Cn. In the nonclausal calculus, a clause C is ∀x.(X1 ∨ · · ·∨Xn), where
X is either a literal or a matrix, and a matrix M is C1 ∧ · · · ∧ Cn.2 We refer
to matrices in the clausal calculus as clausal matrices and to matrices in the
nonclausal calculus as nonclausal matrices.

We can write a clause ∀x.(L1∨· · ·∨Ln) as a set {L1, . . . , Ln} and we can write
a matrix C1 ∧ · · · ∧Cn as a set {C1, . . . , Cn}. Alternatively, we write matrices as
row vectors and clauses as column vectors.

For any formula F , there are equisatisfiable closed formulas M(F ) and M̄(F ),
where M(F ) is a nonclausal matrix and M̄(F ) is a clausal matrix. We can
convert any formula to a nonclausal matrix by conversion to negation normal
form, Skolemisation (eliminating existential quantifiers), and pushing universal
quantifiers inwards via ∀x.(F1 ∧ F2) ≡ (∀x.F1) ∧ (∀x.F2).

Example 1. Consider the following equivalent formulas F and F̄ .

F = Q ∧ P (a) ∧ ∀x.(¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)))

F̄ = Q ∧ P (a) ∧ (∀x.¬P (x) ∨ ¬P (s2x)) ∧ (∀x.¬P (x) ∨ P (sx) ∨ ¬Q)

1 We diverge from [26] by using a refutational point of view; that is, instead of prov-
ing formulas directly, we refute their negations. This shows up for example when
we interpret clauses and matrices: In this paper, a clause (of a negated formula)
represents a disjunction, whereas in [26], a clause (of an unnegated formula) repre-
sents a conjunction. Our refutational view is historically motivated by other proof
certification methods, namely those for MESON [15] and leanCoP [19].

2 We represent clauses with quantifiers to reduce the size of the translated proofs.
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For brevity, we write sx for s(x) and s2x for s(s(x)). The nonclausal matrix M
corresponds to F and the clausal matrix M̄ to F̄ :

M =

⎡
⎣[Q] [P (a)]

⎡
⎣

¬P (x)[
[¬P (s2x)]

[
P (sx)
¬Q

]]
⎤
⎦

⎤
⎦

M̄ =

⎡
⎣[Q] [P (a)]

[ ¬P (x)
¬P (s2x)

] ⎡
⎣

¬P (x)
P (sx)
¬Q

⎤
⎦

⎤
⎦

The words of the connection calculi treated in this paper are tuples
〈C,M,Path〉, where C is a clause, M is a matrix, and Path is a set of liter-
als and matrices called the active path.3 In the calculus rules, σ is a global (or
rigid) term substitution, i.e. it is applied to the whole derivation. We say that a
(non)clausal connection proof of M is a derivation of 〈∅,M, ∅〉 in the (non)clausal
connection calculus.

The rules of the clausal connection calculus are shown in Fig. 1 [30]. For any
closed formula F , we have that F is unsatisfiable iff there is a clausal connection
proof of M̄(F ) [3]. A clausal connection proof of M̄ from Example 1 is given in
Fig. 2.

Fig. 1. Clausal connection calculus rules.

We now proceed to introduce definitions related to the nonclausal connection
calculus.

Definition 1 (Clause Predicates). A clause C recursively contains a literal
or a matrix X iff X ∈+ C.4 A clause C ∈+ M is α-related to X iff there is some
3 In the original description of the calculi, Path denotes a set of literals. Our generalisa-

tion to literals and matrices is motivated by the correctness proof of our translation,
in particular Theorem 1. It does, however, not alter the actual proof search with the
calculi, as all active paths in a connection proof tree will only contain literals.

4 We use the term “recursively contains” instead of “contains” as employed in [27] to
clearly distinguish it from regular set membership.
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Fig. 2. Clausal connection proof with σ = {x′ �→ a, x̂ �→ sx′, x �→ x′}.

M ′ ∈∗ M with {CX , CC} ⊆ M ′ such that CX = CC , X ∈+ CX , and C ∈∗ CC .
A variable is free in C ∈+ M if it occurs only in literals recursively contained
in C and (possibly) in literals to which C is α-related. A clause C ′ is a parent
clause of C iff M ′ ∈ C ′ and C ∈ M ′ for some matrix M ′.

Definition 2 (Clause Functions). A copy of the clause C ∈+ M is created
by replacing all free variables in C with fresh variables. M [C1\C2] denotes the
matrix M in which the clause C1 is replaced by the clause C2.

In a clausal matrix M̄ , all clauses in M̄ can potentially give rise to an exten-
sion step. In a nonclausal matrix M , however, we have clauses C for which
C ∈+ M , but C /∈ M . It depends on the active path which of these clauses
may give rise to an extension step. Those clauses which do are called extension
clauses.

Definition 3 (Extension Clause). The clause C ∈+ M is an extension clause
( e-clause) of the matrix M with respect to a set Path iff either (a) C recursively
contains an element of Path, or (b) C is α-related to all elements of Path
recursively contained in M and if C has a parent clause, that parent clause
recursively contains an element of Path.

Given an extension clause, its β-clause removes from the clause those parts
that are irrelevant to the current subgoal.

Definition 4 (β-clause). The β-clause of C with respect to L is C with L and
all clauses that are α-related to L removed.

Example 2. Consider the nonclausal matrix

M =

⎡
⎣[Q][P (a)]

C3︷ ︸︸ ︷⎡
⎣

¬P (x)[
︸ ︷︷ ︸

C4

[¬P (s2x)]
︸ ︷︷ ︸

C5

[
P (sx)
¬Q

]]
⎤
⎦

⎤
⎦

from Example 1. The extension clauses with respect to {Q} are all clauses C ∈
M . In particular, the first clause in M , {Q}, is an extension clause due to
condition (a) of Definition 3, because it contains Q, and the other clauses in
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M are extension clauses due to condition (b), because they are α-related to Q
and do not have parent clauses. Only one of the clauses in M recursively contains
¬Q, namely C3. The β-clause of C3 with respect to ¬Q is

[ ¬P (x)[[
P (sx)

]]
]

Let us now assume that σ(x) = a. The extension clauses with respect to
{Q,P (sx)} ∪ {

P (s2a)
}

are all clauses in M , plus C4 due to condition (b) and
C5 due to condition (a). Two of these extension clauses recursively contain
the literal ¬P (s2x) that can be unified with ¬P (s2a), namely C3 and C4. The
β-clause of C4 with respect to ¬P (s2x) is {}, and the β-clause of C3 with respect
to ¬P (s2x) is [¬P (x)

[[]]

]

Some β-clauses in this example will be used in a nonclausal proof in Fig. 7.

The rules of the nonclausal calculus are shown in Fig. 3. The difference
in the calculus rules to the clausal variant is the addition of a decompo-
sition rule, and the adaptation of the extension rule to the nonclausal set-
ting. For any closed formula F , we have that F is unsatisfiable iff there is
a nonclausal connection proof of M(F ) [26]. A nonclausal proof of M from
Example 1 as well as a shorter clausal proof of M̄ from the same exam-
ple will be given using slightly modified versions of the calculi in Sect. 3.

Fig. 3. Nonclausal connection calculus rules.
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3 Compressed Connection Calculi

In Otten’s presentation of connection calculi [26], all proof rules have a fixed
number of premises. To ease the presentation of proofs in this paper, we present
slightly reformulated versions of Otten’s calculi. We call these calculi compressed,
because proofs in these calculi usually consist of fewer proof steps and take up
less space. The compressed calculi can be considered a mixture between Otten’s
and Letz’s presentation of connection tableaux [21].

We introduce the following notation for rules with an arbitrary number of
premises:

∧
i
Pi

C
≡ P1 . . . Pn

C

The compressed connection calculi are shown in Figs. 4 and 5. In the original
calculi, the words are 〈C,M,Path〉. In the compressed calculi, the words are
〈X,M,Path〉, where X denotes an arbitrary clause element, i.e. a matrix or a
literal. In the compressed calculi, the axiom rule becomes obsolete.

Fig. 4. Compressed clausal connection calculus.

We will now show how proofs can be translated between the compressed
calculi in this section and the original calculi in Sect. 2.

Lemma 1. The sequent 〈{X1, . . . , Xn},M, Path〉 has a proof in a connection
calculus iff all sequents 〈X1,M, Path〉, . . . , 〈Xn,M, Path〉 have proofs in the cor-
responding compressed connection calculus.

Proof. Any connection proof of 〈{X1, . . . , Xn} ,M, Path〉 has the following
shape:

P1

P2

Pn

A{},M, Path
Rn ...

R2 {X2, . . . , Xn},M, Path
R1 {X1, . . . , Xn},M, Path
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Fig. 5. Compressed nonclausal connection calculus.

From such a proof, we can recursively construct proofs of 〈Xi,M, Path〉 in the
corresponding compressed calculus by

P ′
iRi

Xi,M, Path

where P ′
i is the translation of the proof Pi to the compressed calculus. Similarly,

we can translate proofs from the compressed to the original calculi. ��
Example 3. For the matrices M and M̄ in Example 1, proofs in the compressed
calculi are given in Figs. 6 and 7. The extension steps used to prove 〈Q,M, {}〉
and 〈P (sx̂), M̂ , . . . 〉 in the nonclausal proof of M are explained in Example 2.

Fig. 6. Proof in the compressed clausal calculus with σ = {x′ �→ a, x̂ �→ sx′, x �→ x′}.

4 Connection Proof Translation

In this section, we propose a translation method from connection proofs to
Gentzen’s sequent calculus LK [12].
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Fig. 7. Proof in the compressed nonclausal calculus with σ = {x′ �→ a, x̂ �→ sx′}.

A connection proof for a first-order formula F consists of a connection proof
tree and a global substitution σ. Given this information, we want to construct
a proof of F � ⊥, which is written in LK as F �. To more concisely present the
proof translation, we omit the substitution σ in the LK translation; for example,
instead of writing σ(L), σ(M), σ(Path) �, we write L,M,Path �.

We translate connection proof trees recursively by distinguishing the different
rules of the calculus. We denote by [Γ �] the LK translation of the connection
proof for Γ . We write that C is in M iff M = C1 ∧ · · · ∧ Cn with C = Ci for
some i with 1 ≤ i ≤ n.

We use a rule ∧L to extract a conjunct from a conjunction while keeping the
conjunction in the context, as well as a rule ⊥L to derive ⊥ from two comple-
mentary literals in the context:5

Γ,Ci, C1 ∧ · · · ∧ Cn � Δ ∧L
Γ,C1 ∧ · · · ∧ Cn � Δ

⊥L
Γ,A,A �

We now describe the translation of connection proofs. Two rules of the con-
nection calculi are translated the same way for clausal and nonclausal proofs,
namely the start and the reduction rule. We show the translation of these rules in
Fig. 8. For the start rule, the translation obtains the formula corresponding to the
clause C with the ∧L rule, and instantiates it with the ∀L rule. The substitution
σ is used to determine the instantiations, where fresh names are invented when
a variable is unbound in the substitution. As noted before, we omit σ in the LK
translation, writing X1 ∨ · · · ∨ Xn,M � to abbreviate σ(X1 ∨ · · · ∨ Xn), σ(M) �.
Then, the sequent is split into several proof trees [Xi,M, {} �], which represent
the translations of the connection proofs for 〈Xi,M, {}〉.6

5 These rules are not part of Gentzen’s original LK calculus. However, translating
them into Gentzen’s LK is straightforward.

6 In the clausal setting, Xi could be written as Li, but because the same rule is used
in the nonclausal setting, where Xi can represent either a literal or a matrix, we
write Xi for the common rules.
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Fig. 8. LK translation of common connection calculus rules.

4.1 Clausal Proof Translation

The translation of the clausal extension rule (shown in Fig. 4) is given in
Fig. 9. First, L,M,Path � is transformed to the equivalent M,P �, where
P = Path ∪ {L}. The remaining translation resembles that of the start rule,
with the exception that it additionally closes a proof branch containing the
negated literal L.

Fig. 9. LK translation of the clausal extension rule.

4.2 Nonclausal Proof Translation

We now proceed with the translation of nonclausal connection proofs, using the
calculus introduced in Fig. 5. The LK context in the translation of nonclausal
proofs now has the shape X,M , Path, where M is a set of matrices instead of a
single matrix M as in the clausal case. During translation, M is extended such
that for each word 〈L,M,Path〉 in the connection calculus and its corresponding
sequent L,M , Path � in LK, the e-clauses of M with respect to Path ∪ {L} are
the clauses C for which C in M ′ and M ′ ∈ M . We will see this in detail in the
explanation for the extension rule.
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The LK translation of nonclausal proofs reuses the translations of the start
and the reduction rules given in Fig. 8. However, occurrences of M in the LK
translation are replaced by M . The start rule uses M = {M}, i.e. M contains
only the initial problem matrix M .

The decomposition rule of the nonclausal calculus can be seen as a generali-
sation of the start rule. We give its translation to LK in Fig. 10.

Fig. 10. LK translation of the decomposition rule.

Let us now consider a nonclausal extension step applied to 〈L,M,Path〉. Let
C1 denote the e-clause of M with respect to Path ∪ {L} that was used for the
extension step. By construction of M mentioned above, C1 is some clause in
M1 ∈ M . Furthermore, let β1 be the β-clause of C1 with respect to L. Then we
can find some m such that M1, C1 and β1 can be written as in Fig. 11.

Fig. 11. Definition of matrix Mi, clause Ci, and β-clause βi.

The translation of the nonclausal extension rule is shown in Fig. 12. We first
transform L,M , Path � to M0, P � which is equivalent due to M0 = M . We
then determine M1 ∈ M and put it into the context by contraction (CL).

Now we recursively prove the sequent Mi,M
i−1, P � as follows: If Mi is the

literal L, we prove the sequent L,Mm, P � with the ⊥L rule. Otherwise, we
proceed in the following way: First, we put the appropriate clause Ci of Mi that
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Fig. 12. LK translation of the nonclausal extension rule.

corresponds to βi into the context with the ∧L rule. In the same step, we merge
Mi with M i−1, yielding M i. After the instantiation of Ci with the ∀L rule, the
clause elements Xi,1 to Xi,ni

give rise to several proof branches where all but
one are closed by translation of the proof branches of the connection proof. The
one remaining clause element Mi+1 gives rise to a sequent Mi+1,M

i, P �, which
we translate by recursion. This concludes the translation of the extension rule.

Example 4. Consider the nonclausal proof given in Fig. 7. We show its transla-
tion to LK in Fig. 13, where boxed sequents indicate words of the original proof.
We use F from Example 1 to define

M0 = {F}
M1 = M0 ∪ {¬P (s2a) ∧ (P (sa) ∨ ¬Q)}
M2 = M1 ∪ {¬P (s3a) ∧ (P (s2a) ∨ ¬Q)}

The question might arise whether the proof translation necessarily needs
to keep a set of matrices M containing potential extension clauses. Could one
instead reconstruct extension clauses from the initial M and Path? The next
example shows that extending M with extension clauses is indeed necessary.

Example 5. Consider the extension step that closes 〈P (sx̂), M̂ , {Q,P (sx′)}〉 in
Fig. 7. The extension clause used in this extension step is C4 from Example 2.
However, the closest to C4 we can obtain from M and {Q,P (sx′)} ∪ {P (sx̂)} is

[ ¬P (x′)[[¬P (s2x′)
]]

]

As performed by our translation, extending M in the translation of the extension
step for 〈P (sx′),M ′, {Q}〉 with the α-related clause [¬P (s2x′)] corresponding to
C4 allows us to translate the extension step for P (sx̂) with precisely that clause.
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Fig. 13. Translation of the nonclausal proof in Fig. 7 to LK.

The LK translation uses Path only for reduction steps and M for exten-
sion steps, whereas the original calculus uses Path for both. Future work might
explore whether a calculus closer to the translation yields more efficient proof
search.

Theorem 1. Let 〈X,M,Path〉 be a word in the nonclausal connection proof
Γ and let M contain the extension clauses of M with respect to Path ∪
{X}. For every premise 〈X ′,M ′, Path′〉 of the proof step in Γ with the con-
clusion 〈X,M,Path〉, the translation [X,M , Path �] has a sub-proof tree
[X ′,M ′, Path′ �] such that M ′ contains the extension clauses of M ′ with respect
to Path′ ∪ {X ′}.
Proof. We distinguish the calculus rule to close 〈X,M,Path〉. The reduction
rule is trivial because it has no premises.

Let us first consider the start rule in Fig. 8. The translation of the start rule
yields several proof trees of the shape [Xi,M , {} �], where M = {M}. For every
i, the extension clauses of M with respect to Xi are all the clauses in M , as was
illustrated in Example 2. Because all clauses in M are also contained in M , the
start rule satisfies the property.
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Now for the decomposition rule shown in Fig. 10. By hypothesis, M con-
tains the extension clauses of M with respect to Path ∪ {M ′}. This implies
that M contains all clauses that recursively contain M ′. For every i, Xi is
contained in M ′, therefore M ′ contains all clauses that recursively contain Xi,
satisfying condition (a) of Definition 3. Furthermore, those clauses α-related to
Xi that are required by condition (b) and that are not contained in M are
M ′ \ {∀x.(X1 ∨ · · · ∨ Xn)} and thus in M ′.

Finally we treat the extension rule shown in Fig. 12. By hypothesis, M con-
tains the extension clauses of M with respect to Path ∪ {L}. We have to show
that for each i and j, the extension clauses of M with respect to P ∪{Xi,j} cor-
respond to the clauses in M i. For every i and j, we have that M i contains all
clauses that recursively contain Xi,j , which in addition to some clauses in M are
the clauses Ck (see Fig. 11) with k ≤ i. This covers condition (a) of Definition 3.
Furthermore, those clauses α-related to Xi,j that are required by condition (b)
and that are not contained in M are the clauses Mk \ {Ck} with k ≤ i, which
are contained in M i. ��
Corollary 1. For every formula F , if Γ is a nonclausal connection proof of
M(F ), then the translation [Γ �] is an LK proof of M(F ) �.

Proof. By induction on Γ and Theorem 1.

In four large test sets of nonclausal and clausal connection proofs, all trans-
lated proofs yielded by our implementations of the proof translations in this
section are successfully verified by an interactive theorem prover, see Sect. 6.

5 Implementation

HOL Light is an interactive theorem prover developed by Harrison in OCaml
[16]. leanCoP and nanoCoP are clausal and nonclausal connection provers devel-
oped by Otten in Prolog [27,30]. We developed proof search tactics for HOL Light
based on leanCoP/nanoCoP and the proof translation shown in Sect. 4.7 To ease
integration with HOL Light, all parts of the tactics are written in OCaml, includ-
ing functional implementations of leanCoP and nanoCoP using the compressed
calculi in Sect. 3.

The structure of the proof search tactics is shown in Fig. 14: First, we convert
given proof goals from higher-order logic to first-order logic. For this, we reuse a
large part of the MESON [15] infrastructure, such as instantiation of higher-order
axioms. This leaves us with first-order problems of the shape (A1∧· · ·∧An) =⇒
C, on which we run leanCoP and nanoCoP in the same interpreter as HOL Light
[11]. Finally, we translate the resulting connection proofs to HOL Light proofs:
We implemented the proof translation shown in Sect. 4 such that it directly yields
HOL Light instead of LK proofs.

7 The source code can be retrieved at http://cl-informatik.uibk.ac.at/users/mfaerber/
tactics.html.

http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html
http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html
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Fig. 14. Structure of the proof search tactics in HOL Light.

6 Evaluation

We compare the performance of our proof search tactics based on leanCoP 2.1
and nanoCoP 1.0 with the Metis [10] and MESON [15] tactics. Similarly to
[19], we disable splitting for MESON. We evaluate the tactics on two kinds of
problems derived from HOL Light: toplevel and MESON problems.

A toplevel problem results from any HOL Light theorem that is given a
name on the OCaml toplevel. It consists of the conclusion of the theorem and
the premises used to prove it. A MESON problem results from any call to the
MESON tactic. It consists of the statement proven by MESON as well as the
premises given to the MESON tactic. Note that toplevel problems are not nec-
essarily solvable by first-order tactics, whereas MESON problems are, because
the (first-order) tactic MESON is able to prove them.

We evaluate both toplevel and MESON problems with some tactic by letting
the tactic find a proof of the problem conclusion using the problem premises.
The problem counts as proven if the tactic finds a proof within a given time
limit. We consider toplevel (“top”) and MESON (“msn”) problems from core
HOL Light (“HL”) and the Flyspeck project (“FS”), which finished in 2014 a
formal proof of the Kepler conjecture [14]. We use the Git version 08f4461 of HOL
Light from March 2017 (https://github.com/jrh13/hol-light/commit/08f4461),
running every tactic with a timeout of 10 s on each problem. We use a 48-core
server with AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2
cache per CPU. Each problem is always assigned one CPU. We run all provers
with a timeout of 10 s per problem.

Listing 1.1. Flyspeck problem WLOG LINEAR INJECTIVE IMAGE ALT.

!P. (!f s. P s /\ linear f ==> P (IMAGE f s))

==> (!f. linear f /\ (!x y. f x = f y ==> x = y)

==> (!s. P (IMAGE f s) <=> P s))

==>

!P f s. (!g t. P t /\ linear g ==> P (IMAGE g t)) /\

linear f /\ (!x y. f x = f y ==> x = y)

==> (P (IMAGE f s) <=> P s)

https://github.com/jrh13/hol-light/commit/08f4461
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The results are shown in Table 1: Metis solves the largest number of prob-
lems among all considered datasets. The comparatively low performance of lean-
CoP/nanoCoP inside HOL Light is due to their heavy use of array operations
for unification: Array access is more than 30 times faster in native OCaml pro-
grams compared to programs compiled in OCaml’s toplevel (as used in HOL
Light). When compiled as native OCaml programs, we have shown that lean-
CoP/nanoCoP solve more problems than Metis on four out of six datasets that
we evaluated [11]. Running leanCoP/nanoCoP outside HOL Light and translat-
ing the resulting proofs inside HOL Light would thus very likely increase the
performance of the corresponding tactics.

Table 1. Number of problems solved by various HOL Light tactics.

Prover HL-top HL-msn FS-top FS-msn

Problems in dataset 2499 1119 27112 44468

Metis 807 1029 4626 42829

MESON 736 900 4221 39227

leanCoP+cut 724 948 3714 39922

leanCoP−cut 717 844 3800 38528

nanoCoP+cut 538 802 2743 34213

nanoCoP−cut 550 811 2351 34769

Example 6. Listing 1.1 shows a Flyspeck toplevel problem which among the eval-
uated tactics, only nanoCoP can solve in the given time limit of 10 s. It is proven
by nanoCoP in 2.27 s.

7 Related Work

Certification of ATP found proofs has been especially important for the integra-
tion of ATPs into interactive proof assistants. Such components provide automa-
tion in the form of proof tactics for smaller steps. HOL Light includes the certified
proof producing model elimination prover MESON [15]. The paramodulation-
based prover Metis [17] was designed with a small certified proof core to sim-
plify its integration with interactive theorem provers [10]. There exists a proof-
certifying version of the intuitionistic first-order automated theorem prover
JProver for Coq and Nuprl [20,33] as well as a proof certifying version of an
ordered paramodulation prover for Matita [1]. Proofs from several SAT/SMT
solvers can be certified in Coq [9] and Isabelle [4]. The logical framework Dedukti
allows for the import of superposition proofs from iProver [6] as well as of
tableaux proofs from Zenon [7]. The GAPT framework provides translations
for a multitude of calculi and automated theorem provers, such as Vampire, E,
Prover9, and leanCoP [8,31].
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Among all provers whose proof certification is described in the cited work
above, the only nonclausal one is JProver. However, its performance is far behind
nanoCoP and the intuitionistic version of nanoCoP, nanoCoP-i, with nanoCoP
and nanoCoP-i solving about three times as many problems as JProver on the
TPTP and the ILTP benchmarks, respectively [27,28]. On the other hand, unlike
for nanoCoP-i, there already exists a proof certification method for JProver in
an intuitionistic proof assistant, namely in Coq. This leaves as future work the
extension of the proof certification in this paper to an intuitionistic setting, in
order to enable stronger automated proof search via nanoCoP-i in proof assis-
tants like Coq.

8 Conclusion

We proposed a translation from clausal and nonclausal connection proofs to LK,
yielding a sound proof certification and a proof search tactic for HOL Light. The
tactic certifies every nanoCoP and leanCoP proof output in our evaluation.

Future work includes the improvement of the proof search tactics, for example
by calling external instances of nanoCoP/leanCoP, but also by improved prepro-
cessing of the tactics, for example by reordering the clauses in the ITP before
proof search [29]. The proof search tactic could also be integrated into other
ITPs, such as Isabelle [34] and Coq [2]. The latter being an intuitionistic sys-
tem motivates the translation of nonclassical connection proofs, such as given
by ileanCoP and nanoCoP-i [25,28]. Finally, we hope that the present article
helps to prepare the ground for ITP-checked proofs of soundness/completeness
of connection calculi as well as of their implementations.
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Abstract. In recent work, we addressed an important limitation in pre-
vious extensions of description logics to represent defeasible knowledge,
namely the restriction in the semantics of defeasible concept inclusion to
a single preference order on objects of the domain. Syntactically, this lim-
itation translates to a context-agnostic notion of defeasible subsumption,
which is quite restrictive when it comes to modelling different nuances
of defeasibility. Our point of departure in our recent proposal allows for
different orderings on the interpretation of roles. This yields a notion of
contextual defeasible subsumption, where the context is informed by a
role. In the present paper, we extend this work to also provide a proof-
theoretic counterpart and associated results. We define a (näıve) tableau-
based algorithm for checking preferential consistency of contextual defea-
sible knowledge bases, a central piece in the definition of other forms of
contextual defeasible reasoning over ontologies, notably contextual ratio-
nal closure.

Keywords: Description logics · Defeasible reasoning · Contexts ·
Tableaux

1 Introduction

Description logics (DLs) [1] are central to many modern AI and database appli-
cations since they provide the logical foundation of formal ontologies. Yet, as
classical formalisms, DLs do not allow for the proper representation of and
reasoning with defeasible information, as shown up in the following example
from the access-control domain: employees have access to classified information;
interns (who are also employees) do not; but graduate interns do. From a näıve
(classical) formalisation of this scenario, one concludes that the class of interns
is empty (just as that of graduate interns). But while concept unsatisfiability
has been investigated extensively in ontology debugging and repair, our research
problem here goes beyond that.

The past 25 years have witnessed many attempts to introduce defeasible-
reasoning capabilities in a DL setting, usually drawing on a well-established body
c© Springer Nature Switzerland AG 2019
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of research on non-monotonic reasoning (NMR). These comprise the so-called
preferential approaches [13–15,25,26,29,30,34,35,47,48], circumscription-based
ones [6,7,49], as well as others [2,3,5,8,27,37–39,45,46,51].

Preferential extensions of DLs [14,29] turn out to be particularly promising.
There a notion of defeasible subsumption �∼ is introduced, the intuition of a
statement of the form C �∼ D being that “usually, C is subsumed by D” or
“the normal Cs are Ds”. The semantics is in terms of an ordering on the set of
objects allowing us to identify the most normal elements in C with the minimal
C-instances w.r.t. the ordering.

The assumption of a single ordering on the domain of interpretation does not
allow for different, possibly incompatible, notions of defeasibility in subsumption
resulting from the fact that a given object may be more exceptional than another
in some context but less exceptional in another. Defeasibility therefore introduces
a new facet of contextual reasoning not present in deductive reasoning. In recent
work [20] we addressed this limitation by allowing different orderings on objects,
using preference relations on role interpretations [17]. Here we complete the
picture by also providing a proof-theoretic counterpart in the form of a tableau
algorithm for satisfiability checking of a defeasible ALC knowledge base. Even
though the notion of entailment considered here is monotonic, it is required in
order to compute a stronger non-monotonic version of entailment as, for example,
used in the computation of rational closure [20].

The remainder of the present paper is organised as follows: In Sect. 2 we
provide a summary of the DL ALC and set up the notation we shall follow. In
Sect. 3, we recall our context-based defeasible DL, its properties, and in partic-
ular we show its fruitfulness in modelling context-based defeasibility. In Sect. 4,
we define a näıve (i.e., doubly-exponential) tableau-based algorithm for checking
consistency of contextual defeasible knowledge bases. After a discussion of and
a comparison with related work (Sect. 5), we conclude with a note on future
directions of investigation. (A preliminary version of this work was presented at
the International Workshop on Description Logics [22].)

2 Logical Preliminaries

The (concept) language of ALC is built upon a finite set of atomic concept
names C, a finite set of role names R (a.k.a. attributes) and a finite set of individ-
ual names I such that C, R and I are pairwise disjoint. In our scenario example,
we can have for instance C = {Classified,Employee,Graduate, Intern,ResAssoc},
R = {hasAcc, hasJob, hasQual}, and I = {anne, bill, chris, doc123}, with the obvi-
ous intuitions, and where ResAssoc, hasAcc and hasQual stand for ‘research asso-
ciate’, ‘has access’ and ‘has qualification’, respectively. With A,B, . . . we denote
atomic concepts, with r, s, . . . role names, and with a, b, . . . individual names.
Complex concepts are denoted with C,D, . . . and are built using the construc-
tors ¬ (complement), � (concept conjunction), � (concept disjunction), ∀ (value
restriction) and ∃ (existential restriction) according to the following grammar
rules:

C ::= � | ⊥ | C | (¬C) | (C � C) | (C � C) | (∃r.C) | (∀r.C)
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With LALC we denote the language of all ALC concepts. Examples of ALC
concepts in our scenario are Employee � ¬ResAssoc and ∃hasAcc.Classified.

The semantics of ALC is the standard set-theoretic Tarskian semantics. An
interpretation is a structure I =def 〈ΔI , ·I〉, where ΔI is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ΔI , role names r to binary relations rI over ΔI , and individual
names a to elements of the domain ΔI , i.e., AI ⊆ ΔI , rI ⊆ ΔI × ΔI , and
aI ∈ ΔI .

Figure 1 depicts an interpretation for our access-control example with domain
ΔI = {xi | 0 ≤ i ≤ 11}, and interpreting the elements of the vocabu-
lary as follows: ClassifiedI = {x10}, EmployeeI = {x0, x4, x5, x9}, GraduateI =
{x4, x5, x6, x9}, InternI = {x0, x4}, ResAssocI = {x5, x6, x7}, hasAccI = {(x4,
x10), (x9, x10), (x6, x10), (x6, x11)}, hasJobI = {(x0, x3), (x4, x3), (x9, x3), (x5,
x1), (x6, x1)}, and hasQualI = {(x4, x8), (x9, x8), (x5, x2), (x6, x2), (x7, x2)}. Fur-
ther, anneI = x5, billI = x0, chrisI = x6, and doc123I = x10.

ΔI

ClassI

EmpI

GradI

IntI

RAI

x0(b) x1 x2

x3 x4 x5(a) x6(c) x7

x8 x9 x10(d) x11

hJ

hJ

hJ

hQ

hQ

hA

hA

hA hA

hJ
hQhJ

hQ

hQ

Fig. 1. An ALC interpretation for C, R and I as above. For the sake of presentation,
concept, role and individual names have been abbreviated.

Let I = 〈ΔI , ·I〉 be an interpretation and define rI(x) =def {y ∈ ΔI |
(x, y) ∈ rI}, for r ∈ R. We extend the interpretation function ·I to interpret
complex concepts of LALC as follows:

�I =def ΔI ; ⊥I =def ∅; (¬C)I =def ΔI \ CI ;
(C � D)I =def CI ∩ DI ; (C � D)I =def CI ∪ DI ;
(∃r.C)I =def {x ∈ ΔI | rI(x) ∩ CI �= ∅};
(∀r.C)I =def {x ∈ ΔI | rI(x) ⊆ CI}.
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For the interpretation I in Fig. 1, we have (Employee � ¬ResAssoc)I =
{x0, x4, x9} and (∃hasAcc.Classified)I = {x4, x6, x9}.

Given C,D ∈ LALC , a statement of the form C � D is called a subsump-
tion statement, or general concept inclusion (GCI), read “C is subsumed by
D”. Concrete examples of GCIs are Intern � Employee and Intern � Graduate �
∃hasAcc.Classified. C ≡ D is an abbreviation for both C � D and D � C. An
ALC TBox T is a finite set of GCIs. Given C ∈ LALC , r ∈ R and a, b ∈ I, an
assertional statement (assertion, for short) is an expression of the form a : C or
(a, b) : r, read, respectively, “a is an instance of C” and “a is related to b via r”.
Examples of assertions are anne : Employee and (chris, doc123) : hasAcc. An ALC
ABox A is a finite set of assertional statements. We shall denote statements with
α, β, . . .. Given T and A, with KB =def T ∪ A we denote an ALC knowledge
base, a.k.a. an ontology.

An interpretation I satisfies a GCI C � D (denoted I � C � D) if
CI ⊆ DI . (And then I � C ≡ D if CI = DI .) I satisfies an assertion
a : C (respectively, (a, b) : r), denoted I � a : C (respectively, I � (a, b) : r),
if aI ∈ CI (respectively, (aI , bI) ∈ rI). In the interpretation I in Fig. 1,
we have I � Intern � Employee, I �� ResAssoc � Graduate � Employee,
I � bill : Employee � ¬Graduate and I �� (bill, doc123) : hasAcc.

We say that an interpretation I is a model of a TBox T (respectively, of
an ABox A), denoted I � T (respectively, I � A) if I � α for every α in T
(respectively, in A). We say that I is a model of a knowledge base KB = T ∪ A
if I � T and I � A.

A statement α is (classically) entailed by a knowledge base KB, denoted
KB |= α, if every model of KB satisfies α. If I � α for all interpretations I, we
say α is a validity and denote this fact with |= α.

For more details on Description Logics in general and on ALC in particular,
the reader is invited to consult the Description Logic Handbook [1] and the
introductory textbook on Description Logic [4].

3 Contextual Defeasible ALC
The knowledge base KB = T ∪ A, with T and A as below, is a first stab at
formalising our access-control example:

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Intern � Employee,
Employee � ∃hasJob.�,
Graduate � hasQual.�,

Employee � ∃hasAcc.Classified,
Intern � ¬∃hasAcc.Classified,

Intern � Graduate � ∃hasAcc.Classified,
ResAssoc � ¬Employee,
ResAssoc � Graduate

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A =

⎧
⎪⎪⎨

⎪⎪⎩

anne : ResAssoc,
chris : ResAssoc,

doc123 : Classified,
(chris, doc123) : hasAcc

⎫
⎪⎪⎬

⎪⎪⎭
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It is not hard to see that this knowledge base is satisfiable and to check that
KB |= Intern � ⊥, i.e., the ontology, although consistent, is incoherent. Inco-
herence of the knowledge base is but one of the (many) reasons to go defeasible.
Armed with a notion of defeasible subsumption of the form C �∼ D [15], of which
the intuition is “normally, C is subsumed by D”, formalised by the adoption of a
preferential semantics à la Shoham [50], we can give a more refined formalisation
of our scenario example with KB = T ∪ D ∪ A, where T and D are given below
(D standing for a defeasible TBox ) and A is as above:

T =

⎧
⎨

⎩

Intern � Employee,
Employee � ∃hasJob.�,
Graduate � hasQual.�

⎫
⎬

⎭
D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Employee �∼ ∃hasAcc.Classified,
Intern �∼ ¬∃hasAcc.Classified,

Intern � Graduate �∼ ∃hasAcc.Classified,
ResAssoc �∼ ¬Employee,
ResAssoc �∼ Graduate

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

From such a defeasible knowledge base, one cannot conclude Intern � ⊥,
which is in line with the intuition. Pushing defeasible reasoning further, one could
also ask whether intern research associates are usually graduates, and whether
they should usually have access to classified information. It soon becomes clear
that modelling defeasible information is more challenging than modelling clas-
sical information, and that it becomes problematic when defeasible information
relating to different contexts are not modelled independently.

Suppose, for example, that Chris is a graduate research associate who is also
an employee, and Anne is a research associate who is neither a graduate nor an
employee. In any preferential model of the defeasible KB, both Chris and Anne
are exceptional in the class of research associates. This follows because Chris
is an exceptional research associate w.r.t. employment status, and Anne is an
exceptional research associate w.r.t. qualification. Also, in any preferential model
of KB Chris and Anne are either incomparable, or one of them is more normal
than the other. Since context has not been taken into account, there is no model
in which Anne is more normal than Chris w.r.t. employment, but Chris is more
normal than Anne w.r.t. qualification.

Contextual defeasible ALC (dALC) smoothly combines in a single logical
framework the following features: all classical ALC constructs; defeasible value
and existential restrictions [12,17]; defeasible concept inclusions [15], and con-
text [20].

Let C, R and I be as before. Complex dALC concepts are denoted C,D, . . .,
and are built according to the rules:

C ::= C | (¬C) | (C C) | (C C) | (∃r.C) | (∀r.C) | (−∼−|r.C) | (∼r.C)

With LdALC we denote the language of all dALC concepts (including all
ALC concepts). An example of dALC concept in our access-control scenario is
ResAssoc � (

∨∼hasAcc.¬Classified) � (∃hasAcc.Classified), denoting those research
associates whose normal access is only to non-classified info but who also turn
out to have some (exceptional) access to a classified document.



44 K. Britz and I. Varzinczak

The semantics of dALC is anchored in the well-known preferential approach
to non-monotonic reasoning [42,43,50] and its extensions [9–11,16,18,19], espe-
cially those in DLs [15,17,32,47,52].

Let X be a set. With #X we denote the cardinality of X. A binary relation
is a strict partial order if it is irreflexive and transitive. If < is a strict partial
order on X, with min< X =def {x ∈ X | there is no y ∈ X s.t. y < x} we
denote the minimal elements of X w.r.t. <. A strict partial order on a set X is
well-founded if for every ∅ �= X ′ ⊆ X, min< X ′ �= ∅.

Definition 1 (Ordered interpretation). An ordered interpretation is a
tuple O =def 〈ΔO, ·O,�O〉 such that:

– 〈ΔO, ·O〉 is an ALC interpretation, with AO ⊆ ΔO, for each A ∈ C, rO ⊆
ΔO × ΔO, for each r ∈ R, and aO ∈ ΔO, for each a ∈ I, and

– �O=def 〈�O
r1 , . . . ,�O

r#R
〉, where �O

ri ⊆ rO
i ×rO

i , for i = 1, . . . ,#R, and such
that each �O

ri is a well-founded strict partial order.

Given O = 〈ΔO, ·O,�O〉, the intuition of ΔO and ·O is the same as in a stan-
dard ALC interpretation. The intuition underlying each of the orderings in �O is
that they play the role of preference relations (or normality orderings), in a sense
similar to the preference orders introduced by Shoham [50] in a propositional
setting, and investigated by Kraus et al. [42,43] and others [10,11,14,29]: The
pairs (x, y) that are lower down in the ordering �O

ri are deemed as most normal
(or typical, or expected, or conventional) in the context of (the interpretation
of) ri.

Figure 2 depicts an ordered interpretation in our example, where ΔO

and ·O are as in the interpretation I shown in Fig. 1, and �O= 〈�O
hasAcc,

ΔO

ClassO

EmpO

GradO

IntO

RAO

x0(b) x1 x2

x3 x4 x5(a) x6(c) x7

x8 x9 x10(d) x11

hJ

hJ

hJ

hQ

hQ

hA

hA

hA hA

hJ
hQhJ

hQ

hQ

Fig. 2. An ordered interpretation. For the sake of presentation, we omit the transitive
�O

r -arrows.
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�O
hasJob,�O

hasQual〉, where �O
hasAcc= {(x6x11, x6x10)}, �O

hasJob= {(x9x3, x0x3),
(x0x3, x4x3), (x9x3, x4x3), (x0x3, x5x1), (x9x3, x5x1), (x6x1, x5x1)}, and
�O

hasQual= {(x5x2, x6x2), (x6x2, x7x2), (x5x2, x7x2)}.
For the sake of readability, we shall henceforth sometimes write r-tuples of

the form (x, y) as xy, as in the above example.
In the following definition we extend ordered interpretations to complex con-

cepts of the language.

Definition 2 (Interpretation of concepts). Let O = 〈ΔO, ·O,�O〉, let r ∈ R
and, for each x ∈ ΔO, let rO|x =def rO ∩ ({x} × ΔO) (i.e., the restriction of the
domain of rO to {x}). The interpretation function ·O interprets dALC concepts
as follows:

O =def ΔO; ⊥O =def ∅; (¬C)O =def ΔO \ CO;

(C D)O =def CO ∩ DO; (C D)O =def CO ∪ DO;

(∃r.C)O =def {x ∈ ΔO | rO(x) ∩ CO = ∅}; (∀r.C)O =def {x ∈ ΔO | rO(x) ⊆ CO};
(−∼−|r.C)O =def {x ∈ ΔO | min O

r
(rO|x)(x) ∩ CO = ∅};

(∼r.C)O =def {x ∈ ΔO | min O
r
(rO|x)(x) ⊆ CO}.

As an example, in the ordered interpretation O of Fig. 2, we have
((

∨∼hasAcc.¬Classified) � (∃hasAcc.Classified))O = {x6}.
Notice that, analogously to the classical case,

∨∼ and are
dual to each other. As an example, for O as in Fig. 2, we have

Defeasible ALC also adds contextual defeasible subsumption statements to
knowledge bases. Given C,D ∈ LdALC and r ∈ R, a statement of the form C�∼rD
is a (contextual) defeasible concept inclusion (DCI), read “C is usually subsumed
by D in the context r”. A dALC defeasible TBox D (or dTBox D for short) is
a finite set of DCIs. A dALC classical TBox T (or TBox T for short) is a finite
set of (classical) subsumption statements C � D (i.e., T may contain defeasible
concept constructs, but not defeasible concept inclusions). Given T , D and A,
with KB =def T ∪ D ∪ A we denote a dALC knowledge base, a.k.a. a defeasible
ontology, an example of which is given below:

T =

⎧
⎪⎪⎨

⎪⎪⎩

Intern � Employee,
Employee � ∃hasJob.�,
Graduate � hasQual.�,

ResAssoc � ∨∼hasAcc.¬Classified

⎫
⎪⎪⎬

⎪⎪⎭

A =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

anne : Employee,
anne : ResAssoc,

bill : Intern,
chris : ResAssoc,

doc123 : Classified,
(chris, doc123) : hasAcc

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Employee �∼ hasJob∃hasAcc.Classified,
Intern �∼ hasJob¬∃hasAcc.Classified,

Intern � Graduate �∼ hasJob∃hasAcc.Classified,
ResAssoc �∼ hasJob¬Employee,
ResAssoc �∼ hasQualGraduate

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Definition 3 (Satisfaction). Let O = 〈ΔO, ·O,�O〉, r ∈ R, C,D ∈ LdALC,
and a, b ∈ I. Define ≺O

r ⊆ ΔO × ΔO as follows:

≺O
r =def {(x, y) | there is (x, z) ∈ rO s.t. for all (y, v) ∈ rO, ((x, z), (y, v)) ∈ �O

r }.

The satisfaction relation � is defined as follows:

O � C � D if CO ⊆ DO; O � C �∼ rD if min≺O
r

CO ⊆ DO;

O � a : C if aO ∈ CO; O � (a, b) : r if (aO, bO) ∈ rO.

If O � α, then we say O satisfies α. O satisfies a dALC knowledge base KB, written
O � KB, if O � α for every α ∈ KB, in which case we say O is a model of KB. We
say KB is preferentially consistent if it admits a model. We say C ∈ LdALC (resp.
r ∈ R) is satisfiable w.r.t. KB if there is a model O of KB s.t. CO �= ∅ (resp. rO �= ∅).

One can check that the interpretation O in Fig. 2 satisfies the above knowl-
edge base. To help in seeing why, Fig. 3 depicts the contextual orderings on
objects (represented with dotted arrows) induced from those on roles in O as
specified in Definition 3.
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IntO

RAO

x0(b) x1 x2

x3 x4 x5(a) x6(c) x7

x8 x9 x10(d) x11
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hJ

hJ

hQ

hQ

hA

hA

hA hA

hJ
hQhJ

hQ

hQ

hJ

hJ

hJ

hQ hQ

hJ

Fig. 3. Induced orderings on objects from the role orderings in Fig. 2. For the sake of
presentation, we omit the transitive ≺O

r -arrows.



Preferential Tableaux for Contextual Defeasible ALC 47

It follows from Definition 3 that, if �O
r = ∅, i.e., if no r-tuple is preferred to

another, then �∼r reverts to a context-agnostic classical �. A similar observation
holds for individual concept inclusions: if (C � ∃r.�)O = ∅, then C �∼ rD reverts
to C � D. This reflects the intuition that the context r is taken into account
through the preference order on rO. In the absence of any preference, the con-
text becomes irrelevant. This also shows why the classical counterpart of �∼ r is
independent of r — context is taken into account in the form of a preference
order, but preference has no bearing on the semantics of �.

Contextual defeasible subsumption �∼ r can also be viewed as defeasible sub-
sumption based on a preference order on objects in the domain of rO obtained
from �O

r . Non-contextual defeasible subsumption can then be obtained as a spe-
cial case by introducing a new role name r and axiom � � ∃r.�. More details
can be found in our related work on contextual rational closure [21].

Given a dALC knowledge base KB, a fundamental task from the standpoint
of knowledge representation and reasoning is that of deciding which statements
follow from KB and which do not.

Definition 4 (Preferential entailment). A statement α is preferentially
entailed by a dALC knowledge base KB, written KB |= prefα, if O � α for
every O s.t. O � KB.

The following lemma shows that deciding preferential entailment of GCIs
and assertions can be reduced to dALC knowledge base satisfiability, a result
that will be used in the definition of a tableau system in Sect. 4. Its proof is
analogous to that of its classical counterpart in the DL literature and we shall
omit it here:

Lemma 1. Let KB be a dALC knowledge base and let a be an individual name
not occurring in KB. For every C,D ∈ LdALC, KB |= C � D iff KB |=
C � ¬D � ⊥ iff KB ∪ {a : C � ¬D} is unsatisfiable. Moreover, for every b ∈ I
and every C ∈ LdALC, KB |= b : C iff KB ∪ {b : ¬C} is unsatisfiable.

It turns out that deciding preferential entailment of DCIs too can be reduced
to dALC knowledge base satisfiability, but first, we introduce the tableau-based
algorithm for deciding preferential consistency.

4 Tableau for Preferential Reasoning in dALC
In this section, we define a tableau method for deciding preferential consistency
of a dALC knowledge base. Our algorithm is based on that by Baader et al. [4]
for the classical case; it therefore follows that it is doubly-exponential.

We start by observing that we can assume w.l.o.g. that all concepts appearing
in a knowledge base are in negated normal form (NNF), i.e., concept comple-
ment ¬ occurs only in front of concept names.

Next, notice that for every ordered interpretation O and every C,D ∈ LdALC ,
O � C � D if and only if O � � � ¬C � D. In that respect, we can assume
w.l.o.g. that all GCIs in a TBox are of the form � � E, for some E ∈ LdALC .
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Notice also that we can assume w.l.o.g. that the ABox is not empty, for if it
is, one can add to it the trivial assertion a : �, for some new individual name a.
It is easy to see that the resulting (non-empty) ABox is preferentially equivalent
to the original one.

Definition 5 (Subconcepts). Let C ∈ LdALC. The set of subconcepts of C,
denoted sub(C), is defined inductively as follows:

– If C = A, for A ∈ C ∪ {�,⊥}, then sub(C) =def {A};
– If C = C1 � C2 or C = C1 � C2, then sub(C) =def {C} ∪ sub(C1) ∪ sub(C2);
– If C = ¬D or C = ∃r.D or C = ∀r.D or , then

sub(C) =def {C} ∪ sub(D).

Given a knowledge base KB = T ∪D∪A, the set of subconcepts of KB is defined
as sub(KB) =def sub(T ) ∪ sub(D) ∪ sub(A), where

sub(T ) =def

⋃
C�D∈T (sub(C) ∪ sub(D)) sub(A) =def

⋃
a:C∈A sub(C)

sub(D) =def

⋃

C �∼ r
D∈D(sub(C) ∪ sub(D))

We say that an individual name a appears in an ABox A if A contains an
assertion of the form a : C, (a, b) : r or (b, a) : r, for some C ∈ LdALC , r ∈ R
and b ∈ I.

Definition 6 (a-concepts). Let A be an ABox and let a be an individual name
appearing in A. With conA(a) =def {C | a : C ∈ A} we denote the set of
concepts that a is an instance of w.r.t. A.

We are now ready for the definition of the expansion rules for dALC-concepts.
They are shown in Fig. 4. The �-, �-, ∀-, and T -rules work as in the classical
case [4], whereas the remaining rules handle the additional dALC constructs
according to our preferential semantics. We shall explain them in more detail
below. Before doing so, we need a few more definitions, in particular of what it
means for an individual to be blocked, as tested by the ∃-, , and �∼ -rules and
needed to ensure termination of the algorithm we shall present.

As can be seen in the expansion rules, our tableau method makes use of a
few auxiliary structures, which are built incrementally during the search for a
model of the input knowledge base. The first one is a partial order on pairs of
individuals ρrA, for each r ∈ R. Its purpose is to build the skeleton of an r-
preference relation on pairs of individual names appearing in an ABox A. In the
unravelling of the complete clash-free ABox (see below), if there is any, ρrA is used
to define a preference relation on the interpretation of role r in the constructed
ordered interpretation.

The second auxiliary structure is a pre-order σr
A on individual names, for each

r ∈ R. It fits the purpose of keeping track of which individuals are to be seen
as more normal (or typical) relative to others in the application of the �∼ -rule
(see Fig. 4) so that the associated ρrA-ordering can be completed (by the �-rule)
and, in the unravelling of the model, deliver an induced ≺r that is faithful to σr

A.
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(This point will be clarified in the explanation of the relevant rules.) Intuitively,
σr

A corresponds to the converse of the preference order introduced in Definition 3.
Finally, the third structure used in the expansion rules is a labelling func-

tion τ r
A(a) mapping an individual name a to the set of concepts a ought to be a

minimal instance of in the context r w.r.t. the ABox A. The purpose of τ r
A(a)

is twofold: (i) whenever C ∈ τ r
A(a), it flags that every individual more preferred

than a should be marked as ¬C, as performed by the min-rule, and (ii) it plays a
role in the blocking condition (see below) to prevent the generation of an infinite
chain of increasingly more normal elements in σr

A. Note that ρrA, σr
A and τ r

A(a)
are only used in the inner workings of the tableau and are not accessible to the
user.

Definition 7 (r-ancestor). Let A be an ABox, a, b ∈ I, and r ∈ R. If
(a, b) : r ∈ A, we say b is an r-successor of a and a is an r-predecessor of b.
The transitive closure of the r-predecessor (resp. r-successor) relation is called
r-ancestor (resp. r-descendant).

Definition 8 (σr
A-ancestor). Let A be an ABox, a, b ∈ I, and r ∈ R. If (a, b) ∈

σr
A, we say b is a σr

A-successor of a and a is an σr
A-predecessor of b. The

transitive closure of the σr
A-predecessor (resp. σr

A-successor) relation is called
σr

A-ancestor (resp. σr
A-descendant).

An individual is called a root if it has neither an r-ancestor nor a σr
A-

ancestor.
The following definition is used in the expansion rules of Fig. 4 to ensure
termination:

Definition 9 (Blocking). Let A be an ABox, a, b ∈ I, and let σr
A and τ r

A be as
above. We say that b is blocked by a in A in the context r if (1) a is either an r-
ancestor or a σr

A-ancestor of b, (2) conA(b) ⊆ conA(a), and (3) τ r
A(b) ⊆ τ r

A(a).
We say b is blocked in A if itself or some r-ancestor or σr

A-ancestor of b is
blocked by some individual.

The �-, �-, ∀-, and T -rules in Fig. 4 are as in the classical case and need no
further explanation.

The -rule creates a most preferred (relative to individual a) r-link to a new
individual falling under concept C. Notice that this is achieved by just adding
an assertion (a, d) : r to A, for d new in A, since there shall never be (a, e) with
(ae, ad) ∈ ρrA.

The
∨∼-rule is analogous to the ∀-rule, but propagates a concept C only to

those individuals across preferred r-links (i.e., r-links that are minimal in ρrA).
The ∃-rule handles the creation of an r-successor without the information

whether such an r-link is relatively preferred or not. In this case, both possibil-
ities have to be explored, which is formalised by the or-branching in the rule.
In one case, a preferred r-link is created just as in the rule; in the other, an
r-link is created along with an extra one which is then set as more preferred to
it (in ρrA).
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Fig. 4. Expansion rules for the dALC tableau.

The �∼ -rule handles the presence of DCIs in the knowledge base, which have
a global behaviour just as the GCIs in T . Given an individual name a, it abides
by a DCI C �∼ rD if at least one of the following three possibilities holds: (i) a
is not in C; or (ii) a falls under C but there is another instance of C that is
more preferred than a, or (iii) a is in D. This is captured by the or-like branch
in the rule. Moreover, we need to check whether the node is not blocked in order
to prevent the creation of an infinitely descending chain of increasingly more
preferred objects. (This is needed to ensure termination of the algorithm and
also that the preference relation on pairs of objects created when unraveling an
open tableau is well-founded.)

The min-rule ensures that every individual that is more preferred than a
typical instance of C is marked as an instance of ¬C.
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Finally, the �-rule takes care of completing ρrA based on the information
in σr

A so that the ordering on objects induced by that on pairs that ρrA gives rise
to coincides with the ordering on objects given by the strict version of σr

A. (See
also Definition 3.) This is needed because at the end of the tableau execution,
σr

A is discarded and only ρrA is used to define an ordering on objects against
which to check satisfiability of DCIs.

Definition 10 (Complete and clash-free ABox). Let A be an ABox. We
say A contains a clash if there is some a ∈ I and C ∈ LdALC such that {a :
C, a : ¬C} ⊆ A. We say A is clash-free if it does not contain a clash. A is
complete if it contains a clash or if none of the expansion rules in Fig. 4 is
applicable to A.

Let ndexp(·) denote a function taking as input a clash-free ABox A, a nonde-
terministic rule R from Fig. 4, and an assertion α ∈ A such that R is applicable
to α in A. In our case, the nondeterministic rules are the �-, ∃- and �∼ -rules.
The function returns a set ndexp(A,R, α) containing each of the possible ABoxes
resulting from the application of R to α in A.

The tableau-based procedure for checking consistency of a dALC knowledge
base KB = T ∪ D ∪ A is given in Algorithm 1 below. It uses Function Expand
to apply the rules in Fig. 4 to A w.r.t. T and D. Given an ABox A, with ρA,
σA and τA we denote, respectively, the sequences 〈ρr1A , . . . , ρ

r#R

A 〉, 〈σr1
A , . . . , σ

r#R

A 〉
and 〈τ r1

A , . . . , τ
r#R

A 〉.

Lemma 2 (Termination). For every knowledge base KB, Consistent(KB)
terminates.

The proof of Lemma 2 is similar to that showing termination of the clas-
sical ALC tableau for checking consistency of general knowledge bases [4,
Lemma 4.10].

Algorithm 1. Consistent(KB)
Input: A dALC knowledge base KB = T ∪ D ∪ A

1 if Expand(KB) �= ∅ then
2 return “Consistent”

3 else
4 return “Inconsistent”
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Function Expand(KB)
Input: A dALC knowledge base KB = T ∪ D ∪ A

1 if A is not complete then
2 Select a rule R that is applicable to A;
3 if R is a nondeterministic rule then
4 Select an assertion α ∈ A to which R is applicable;
5 if there is A′ ∈ ndexp(A,R, α) with Expand(T ∪ D ∪ A′) �= ∅ then
6 return Expand(T ∪ D ∪ A′)

7 else
8 return ∅

9 else
10 Apply R to A

11 if A contains a clash then
12 return ∅
13 else
14 return 〈A, ρA, σA, τA〉

Theorem 1. Algorithm 1 is sound and complete w.r.t. preferential consistency
of dALC knowledge bases.

Corollary 1. Our tableau-based algorithm is a decision procedure for satisfia-
bility of dALC knowledge bases.

5 Related Work

To the best of our knowledge, the first tableau system for preferential description
logics was the one introduced by Giordano et al. [29,32]. They extend ALC with
a typicality operator T(·), which is applicable to concepts and for which they
define a preferential semantics that is a special case of ours, in the sense that
they place a preference relation only on objects of the domain. In their setting, a
concept of the form T(C), understood as referring to the typical objects falling
under C, serves as a macro for the sentence C � �¬C in a description language
extended with a modality capturing the behaviour of a preference relation on
objects. Hence, the intuition of x ∈ (T(C))I = (C � �¬C)I is that x is an
instance of C and any other object that is more preferred than x falls under ¬C.

There are some similarities between Giordano et al.’s tableau system and
the one we introduced here, but there are important differences as well. First,
our method assumes an underlying language that is more expressive than ALC
extended with T(·). Second, our calculus does not have to explicitly handle an
extra modality in the object language, since our preference relations are not
part of the syntax and materialise only in the inner workings of the tableau.
And finally, our tableau method allows for reasoning with several preference
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relations, in particular with possibly incompatible ones, which is not the case in
frameworks that assume a single objective ordering on the domain.

Giordano et al.’s tableau system has been extended in a series of papers [30,
31,34,35], in particular also to deal with the computation of non-monotonic
entailment from defeasible knowledge bases. In the latter case, the authors define
a hyper-tableau calculus to compute the rational closure of a (context-less) defea-
sible ontology via a minimal model construction [33,35]. In recent work [20] we
have shown how to compute context-based rational closure of dALC knowledge
bases, but instead of defining a hyper-tableau for that we rather rely on the use
of a context-based version of Casini and Straccia’s [25] algorithm, which is based
on a polynomial number of calls to the preferential tableau we have described
here and that can seamlessly be implemented as an extension of our Protégé
plugin [23,24].

Although broadly similar in aim, our approach differs from that of Giordano
and Gliozzi in their consideration of reasoning about multiple aspects in descrip-
tion logics [28]. Their aspects are linked to concept names, rather than to role
names. Semantically equivalent concepts may therefore act as aspects, yet have
unrelated associated preference orders. Also, only a single typicality operator is
allowed in the language.

6 Concluding Remarks

In this paper, we have strengthened the case for a parameterised notion of defea-
sible concept inclusion in description logics introduced recently [20]. We have
shown that preferential roles can be used to take context into account, and to
deliver a simple, yet powerful, notion of contextual defeasible subsumption. Tech-
nically, this addresses an important limitation in previous defeasible extensions
of description logics, namely the restriction in the semantics of defeasible con-
cept inclusion to a single preference order on objects. Semantically, it answers
the question of the meaning of multiple preference orders, namely that they
reflect different contexts.

We have presented context as an explanation of the intuition underlying the
introduction of multiple preference orders on objects, with defeasibility introduc-
ing a new facet of contextual reasoning not present in deductive reasoning. This
offers a semantic treatment of contextual defeasible subsumption, requiring no
extended vocabulary or further extension of the concept language. In contrast,
an account of deductive reasoning with contexts in knowledge representation
is not intrinsically linked to defeasible reasoning. The integration of defeasible
description logics with such an account of contextual knowledge representation
in description logics, for example, contextualised knowledge repositories [40] or
two-sorted description logics of context [41], is orthogonal to our work, and has
not yet been attempted.

The tableau procedure presented here can be implemented as a proof pro-
cedure for checking consistency of contextual defeasible knowledge bases. It can
also be used to perform preferential (and modular) entailment checking, and
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hence can also be used as part of an algorithm to determine contextual rational
closure [20]. In its current form the complexity of the näıve procedure here intro-
duced is doubly-exponential. An optimal proof procedure along the lines of those
by Nguyen and Szalas [44] and Goré and Nguyen [36] is currently under inves-
tigation. Given our previous results for similarly structured logics [18,19], we
conjecture the satisfiability problem for contextual defeasible ALC is exptime-
complete, i.e., the same as that of reasoning with general TBoxes in classi-
cal ALC.
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Abstract. We define a non-clausal MaxSAT tableau calculus. Given
a multiset of propositional formulas φ, we prove that the calculus is
sound in the sense that if the minimum number of contradictions derived
among the branches of a completed tableau for φ is m, then the minimum
number of unsatisfied formulas in φ is m. We also prove that it is complete
in the sense that if the minimum number of unsatisfied formulas in φ is
m, then the minimum number of contradictions among the branches of
any completed tableau for φ is m. Moreover, we describe how to extend
the proposed calculus to deal with hard and weighted soft formulas.

1 Introduction

We can distinguish between clausal MaxSAT and non-clausal MaxSAT. Clausal
MaxSAT, usually known simply as MaxSAT, is to find an assignment that min-
imizes the number of unsatisfied clauses in a given multiset of clauses, and
non-clausal MaxSAT is to find an assignment that minimizes the number of
unsatisfied formulas in a given multiset of propositional formulas that are not
necessarily in clausal form.

Inference systems for SAT are unsound for MaxSAT, because they preserve
satisfiability but not the minimum number of unsatisfied formulas. Thus, we need
to define logical calculi meeting that condition and show that they allow one to
derive as many contradictions as the minimum number of unsatisfied formulas
in the input multiset.

We count with complete resolution, natural deduction and tableau calculi for
clausal MaxSAT [4,7,8,18]. Restrictions of MaxSAT resolution are routinely used
to propagate information in branch-and-bound MaxSAT solvers [1,2,13,16,17];
and MaxSAT resolution was used to show that there exist polynomial-size
MaxSAT resolution proofs of the pigeon hole principle (PHP) if PHP is encoded
as a Partial MaxSAT instance using the dual rail encoding [14]. Indeed, the com-
bination of the dual rail encoding and MaxSAT resolution is a stronger proof
system than general resolution [6].
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In this paper we address the problem of defining a complete calculus for
non-clausal MaxSAT. As far as we know, non-clausal MaxSAT has not yet been
considered in the community. Thus, inspired by the work on clausal MaxSAT
tableaux [4,18], we define the first sound and complete non-clausal MaxSAT
tableau calculus, and describe how it can be extended to deal with hard and
weighted soft formulas.

The paper is mainly theoretical, but it is important to highlight that MaxSAT
solving has been applied to solve problems in a range of real-world domains as
diverse as bioinformatics [11,22], circuit design and debugging [23], community
detection in complex networks [15], diagnosis [10], FPGA routing [25], plan-
ning [26], scheduling [5] and team formation [21], among many others.

The paper is structured as follows. Section 2 reviews how tableaux solve
non-clausal SAT and clausal MaxSAT. Section 3 defines a complete non-clausal
MaxSAT tableau calculus. Section 4 describes how to extend the proposed calcu-
lus to deal with hard and weighted soft formulas. Section 5 gives the conclusions.

2 Background

A propositional formula is an expression constructed from propositional variables
by means of the propositional connectives ∧,∨,→ and ¬ in accordance with the
following rules: (i) each propositional variable is a propositional formula; and
(ii) if A and B are propositional formulas, then so are (A∧B), (A∨B), (A → B),
and (¬A). A non-clausal MaxSAT instance is a multiset of propositional
formulas.1 A truth assignment is a mapping that assigns 0 (false) or 1 (true) to
each propositional variable. A propositional formula is satisfied by an assignment
if it is true under the usual truth-functional interpretation of the connectives and
the truth values assigned to the variables.

Given a non-clausal MaxSAT instance φ, non-clausal MaxSAT is the problem
of finding an assignment of φ that minimizes the number of unsatisfied formulas.

Clauses are a particular type of propositional formulas defined as follows. A
clause is a disjunction of literals, where a literal li is a variable xi or its negation
¬xi. A clausal MaxSAT instance is a multiset of clauses. Given a clausal MaxSAT
instance φ, clausal MaxSAT is the problem of finding an assignment of φ that
minimizes the number of unsatisfied clauses.

A weighted formula is a pair (A,w), where A is a propositional formula and
w, its weight, is a positive number. A non-clausal weighted MaxSAT instance is
a multiset of weighted formulas. Given a non-clausal weighted MaxSAT instance
φ, non-clausal weighted MaxSAT is the problem of finding an assignment of φ
that minimizes the sum of weights of unsatisfied formulas.

A weighted clause is a pair (C,w), where C is a clause and w, its weight, is a
positive number. A clausal weighted MaxSAT instance is a multiset of weighted
clauses. Given a clausal weighted MaxSAT instance φ, clausal weighted MaxSAT
1 We use multisets of formulas instead of sets of formulas because duplicated for-

mulas cannot be collapsed into one formula because then the minimum number of
unsatisfied formulas might not be preserved.
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is the problem of finding an assignment of φ that minimizes the sum of weights
of unsatisfied clauses.

A non-clausal partial MaxSAT instance is a multiset of formulas in which
some formulas are declared to be relaxable or soft and the rest are declared to
be non-relaxable or hard. Given a non-clausal partial MaxSAT instance φ, non-
clausal partial MaxSAT is the problem of finding an assignment of φ that satisfies
all the hard formulas and minimizes the number of unsatisfied soft formulas.

A clausal partial MaxSAT instance is a multiset of clauses in which some
clauses are declared to be relaxable or soft and the rest are declared to be non-
relaxable or hard. Given a clausal partial MaxSAT instance φ, clausal partial
MaxSAT is the problem of finding an assignment of φ that satisfies all the hard
clauses and minimizes the number of unsatisfied soft clauses.

The weighted partial MaxSAT problem is the combination of partial MaxSAT
and weighted MaxSAT. Given a multiset φ composed of hard formulas (clauses)
and soft weighted formulas (clauses), non-clausal (clausal) weighted partial
MaxSAT is the problem of finding an assignment of φ that satisfies all the hard
formulas (clauses) and minimizes the sum of weights of unsatisfied soft formulas
(clauses).

We can group all propositional formulas of the form (A ◦ B) and ¬(A ◦ B),
where A and B denote propositional formulas and ◦ ∈ {∨,∧,→}, into two cat-
egories so that the presentation and proofs are simplified. Those that act con-
junctively, which are called α-formulas, and those that act disjunctively, which
are called β-formulas. The different formulas in each category are displayed in
Table 1. To complete a taxonomy of propositional formulas, excluding literals,
we also need the propositional formulas of the form ¬¬A. This notation is known
as uniform notation.

Table 1. α-formulas and β-formulas.

α α1 α2

A ∧ B A B

¬(A ∨ B) ¬A ¬B

¬(A → B) A ¬B

β β1 β2

A ∨ B A B

¬(A ∧ B) ¬A ¬B

A → B ¬A B

Note that α is logically equivalent to α1 ∧ α2, β is logically equivalent to
β1 ∨ β2 and ¬¬A is logically equivalent to A. In SAT tableaux, these equiva-
lences are used to reduce the problem of finding a satisfying assignment of α to
that of finding a satisfying assignment of both α1 and α2, of β to that of finding
a satisfying assignment of β1 or β2 and of ¬¬A to that of finding a satisfying
assignment of A. Thus, using the expansion rules of Table 2 we obtain a com-
plete tableau calculus for non-clausal SAT. We introduced the contradiction rule
(�-rule), where l denotes a literal, because it will be necessary in MaxSAT; in
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the literature, applying this rule is usually referred to as closing the branch. Note
that uniform notation allows to define tableau rules for arbitrary propositional
formulas in a concise way.

The tableau method is used to determine the satisfiability of a given set of
propositional formulas [9,12,24]. It starts creating an initial tableau composed
of a single branch that has a node for each formula in the input set of formulas.
Then, it applies the expansion rules of Table 2 until a contradiction is derived in
each branch (in this case, the input set of formulas is unsatisfiable) or a branch is
saturated without deriving a contradiction (in this case, the input set of formula
is satisfiable). A branch is saturated in a SAT tableau when all the possible
applications of the expansion rules have been applied in that branch.

Table 2. Tableau expansion rules for SAT

α

α1

α2

α-rule

β

β1 β2

β-rule

¬¬A

A

¬-rule

l

¬l

-rule

The single tableau calculus for MaxSAT [18] defined in the literature limits
the input to multisets of clauses; i.e., it is a clausal tableau calculus that cannot
solve non-clausal MaxSAT. This calculus does not contain the α- and ¬-rule.
It consists of the β- and �-rule. In fact, as all the formulas in the tableau are
clauses and the formulas of type β are always disjunctions of literals of the form
l1 ∨ l2 ∨ · · · ∨ ln, the previous β-rule is replaced with the following n-ary β-rule:

l1 ∨ l2 ∨ · · · ∨ ln

l1 l2 · · · ln

n-ary β-rule

Note that the n-ary β-rule collapses n − 1 applications of the β-rule over the
clause l1 ∨ l2 ∨ · · · ∨ ln.

In clausal MaxSAT tableaux, all the clauses in the initial tableau are declared
to be active. Clauses become inactive in a branch once they have been used as
premises of the β- or �-rule, and then the added conclusions become active.
The application of expansion rules is restricted to active clauses. In this way,
the preservation of the minimum number of unsatisfied clauses is guaranteed.
Active and inactive clauses are not needed in SAT because the goal is to preserve
satisfiability and the application of rules in a branch stops once a contradiction
is detected. The application of rules in MaxSAT continues until no more tableau
rules can be applied to the formulas in the branch, because the aim is to derive
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all the possible contradictions. Thus, the saturation of branches is also different
in SAT and MaxSAT.

Figure 1 shows the differences between clausal SAT and clausal MaxSAT
tableaux using the multiset of clauses is φ = {¬x1,¬x2,¬x3, x1 ∨ x2,¬x1 ∨ x3}.
In the SAT case, it is enough with applying the β-rule to x1 ∨ x2. Since a con-
tradiction is detected in each branch, the input multiset of formulas is declared
unsatisfiable. However, in the MaxSAT case, the β-rule must also applied to
¬x1 ∨ x3 and all the possible contradictions must be detected to complete the
tableau. Note that in the leftmost branch of the clausal MaxSAT tableau there is
just one contradiction because we have just one occurrence of x1, which became
inactive after detecting the first contradiction.

¬x1

¬x2

¬x3

x1 ∨ x2

¬x1 ∨ x3

x2x1

¬x1

¬x2

¬x3

x1 ∨ x2

¬x1 ∨ x3

x2

x3¬x1

x1

x3¬x1

Fig. 1. Completed clausal SAT tableau (left) and completed clausal MaxSAT tableau
(right) when the input multiset of clauses is φ = {¬x1, ¬x2, ¬x3, x1 ∨ x2, ¬x1 ∨ x3}.
The left tableau proves that φ is unsatisfiable and the right tableau proves that the
minimum number of unsatisfied clauses in φ is 1.

The soundness of the previous clausal MaxSAT tableau calculus states that
the β- and �-rule preserve the minimum number of unsatisfied clauses between
a tableau and its extension; in particular, the β-rule preserves that number
in at least one branch and does not decrease it in the rest of branches. So,
once all branches have been saturated, the minimum number of contradictions
derived among the branches of a completed tableau is the minimum number of
unsatisfied clauses in the input multiset of clauses. The completeness states that
any completed tableau for a multiset of clauses φ, whose minimum number of
clauses that can be unsatisfied in it is k, has a branch with k contradictions and
the rest of branches contain at least k contradictions [18].

If we move to deal with arbitrary propositional formulas (i.e., non-clausal
MaxSAT), the first problem we encounter is that the α-rule does not preserve the
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minimum number of unsatisfied formulas as the β-rule does for clauses. Assume
that we want to solve the non-clausal MaxSAT instance {x1, x2,¬x1 ∧ ¬x2},
whose single optimal assignment is the one that sets x1 and x2 to true, and only
falsifies ¬x1∧¬x2. If we apply the α-rule to ¬x1∧¬x2, we add two nodes, labelled
with ¬x1 and ¬x2, to the initial tableau. Then, we can derive two contradictions
by applying the �-rule to {x1,¬x1} and {x2,¬x2}, but the minimum number
of formulas unsatisfied by the optimal assignment is just one. Figure 2 displays
the resulting tableau. This counterexample shows that the α-rule is unsound in
MaxSAT. So, we need to define a new and sound α-rule as a first step towards
getting a sound and complete non-clausal MaxSAT calculus.

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

Fig. 2. Counterexample that shows that the α-rule is unsound for non-clausal MaxSAT.
The input multiset is φ = {x1, x2, ¬x1 ∧ ¬x2}.

The previous example also illustrates that the standard conversion to clausal
form is not valid in MaxSAT because it does not preserve the number of unsat-
isfied clauses. The clausal form of {x1, x2,¬x1∧¬x2} is {x1, x2,¬x1,¬x2}. How-
ever, the MaxSAT solution of {x1, x2,¬x1 ∧¬x2} is 1 and the MaxSAT solution
of {x1, x2,¬x1,¬x2} is 2. Thus, it is not possible to solve non-clausal MaxSAT
by first translating to clausal form and then using clausal MaxSAT tableaux.
We refer the reader to [19] for a recent paper on clausal form transformations
for MaxSAT.

3 A Non-clausal MaxSAT Tableau Calculus

We formally define a non-clausal MaxSAT tableau calculus and prove its sound-
ness and completeness. In the rest of the section, unless otherwise stated, when
we say tableau we refer to a non-clausal MaxSAT tableau.

Definition 1. A tableau is a tree with a finite number of branches whose nodes
are labelled by either a propositional formula or a box (�). A box in a tableau
denotes a contradiction. A branch is a maximal path in a tree, and we assume
that branches have a finite number of nodes.
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Table 3. Tableau expansion rules for non-clausal MaxSAT

α

α1

α2

α-rule

β

β1 β2

β-rule

¬¬A

A

¬-rule

l

¬l

-rule

Definition 2. Let φ = {φ1, . . . , φm} be a multiset of propositional formulas. A
tableau for φ is constructed by a sequence of applications of the following rules:

Initialize A tree with a single branch with m nodes such that each node is labelled
with a formula of φ is a tableau for φ. Such a tableau is called initial tableau
and its formulas are declared active.
Given a tableau T for φ, a branch b of T , and a node of b labelled with an
active formula F ,
α-rule If F is of type α, the tableau obtained by appending a new left node

below b labelled with � and a new right branch with two nodes below b
labelled with α1 and α2 is a tableau for φ. Formula F becomes inactive
in b and α1 and α2 are declared active.

β-rule If F is of type β, the tableau obtained by appending a new left node
below b labelled with β1 and a new right node below b labelled with β2 is a
tableau for φ. Formula F becomes inactive in b and β1 and β2 are declared
active.

¬-rule If F is of type ¬¬A, the tableau obtained by appending a new node
below b labelled with A is a tableau for φ. Formula ¬¬A becomes inactive
in b and A is declared active.

�-rule Given a tableau T for φ, a branch b of T , and two nodes of b labelled with
two active complementary literals l and ¬l, the tableau obtained by appending
a node below b labelled with � is a tableau for φ. Literals l and ¬l become
inactive in b.

The expansion rules of the previous definition are summarized in Table 3.
Note that all the rules preserve the number of premises falsified by an assignment
I in at least one branch and do not decrease that number in the other branch
(if any). In particular, in the α-rule, we have that if I falsifies α, the left branch
contains one contradiction and α1 and α2 cannot be used to derive any other
contradiction in that branch because they are not expanded; moreover, I falsifies
α1 or α2 (or both) on the right branch. On the other hand, if I satisfies α, then
I also satisfies α1 and α2 on the right branch.

Definition 3. Let T be a tableau for a multiset of propositional formulas φ. A
branch b of T is saturated when no further expansion rules can be applied on b,
and T is completed when all its branches are saturated. The cost of a saturated
branch is the number of boxes on the branch. The cost of a completed tableau is
the minimum cost among all its branches.
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As we show below, the minimum number of formulas that can be unsatisfied
in a multiset of propositional formulas φ is k iff the cost of a completed tableau for
φ is k. Thus, the systematic construction of a completed tableau for φ provides
an exact method for non-clausal MaxSAT.

Example 1. We can determine the minimum number of unsatisfied formulas in
the multiset φ = {x1, x2,¬x1∧¬x2} using the previous tableau calculus. Figure 3
displays how the tableau is constructed. We start by constructing the initial
tableau (the leftmost tableau) and then apply the α-rule to ¬x1 ∧ ¬x2, getting
as a result the second tableau in the figure. The leftmost branch is saturated and
we apply the �-rule to {x1,¬x1} on the rightmost branch, getting as a result
the third tableau. Finally, we apply the �-rule to {x2,¬x2} on the same branch
and get the rightmost tableau in the figure. Since the minimum number of boxes
among the branches of the last tableau is 1, the minimum number of formulas
that can be unsatisfied in φ is 1.

x1

x2

¬x1 ∧ ¬x2

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

x1

x2

¬x1 ∧ ¬x2

¬x1

¬x2

Fig. 3. A tableaux for the non-clausal MaxSAT instance {x1, x2, ¬x1 ∧ ¬x2}.

3.1 Soundness and Completeness

In this section we prove the soundness and completeness of the proposed tableau
calculus for non-clausal MaxSAT. We start by proving two propositions needed
later.

Proposition 1. A tableau for a multiset of propositional formulas φ is com-
pleted in a finite number of steps.

Proof. We start by creating an initial tableau and then apply rules in the newly
created branches until they are saturated. The α-, β- and ¬-rule reduce the
number of connectives. Since we began with a finite number of connectives, these
rules can only be applied a finite number of times. The �-rule inactivates two
literals and adds a box. Since we began with a finite number of literals and boxes
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cannot be premises of any expansion rule, this rule can only be applied a finite
number of times. Hence, the construction of any completed tableau terminates
in a finite number of steps. ��
Proposition 2. An assignment I falsifies k premises of a α-, β-, ¬- and �-rule
iff assignment I falsifies k conclusions in one branch of the conclusions of the
rule and at least k conclusions in the other branch (if any).

Proof. We prove the result for each rule:

– �-rule: Any assignment I always falsifies one premise and satisfies the other.
Since the single conclusion is a box and denotes a contradiction, I falsifies
the same number of formulas in the premises and the conclusion.

– α-rule: If I falsifies the premise of the rule, then I falsifies at least one con-
clusion in each branch. The left conclusion is a box and is falsified by any
assignment, and I falsifies α1 or α2 (o both) of the right conclusion. On the
other direction, if I falsifies at least one conclusion in each branch, then I
falsifies α1 or α2 (o both) and therefore I falsifies the premise α1 ∧ α2.

– β-rule: If I falsifies the premise of the rule, then I falsifies β1 and β2, and
so the left (β1) and right (β2) conclusions are falsified by I. On the other
direction, if I falsifies both conclusions, then I falsifies β1 ∨ β2.

– The ¬-rule: Since any assignment I that falsifies ¬¬A also falsifies A, and
vice versa, I falsifies the premise iff I falsifies the conclusion.

��
Theorem 1. Soundness and completeness. The cost of a completed tableau
for a multiset of formulas φ is k iff the minimum number of unsatisfied formulas
in φ is k.

Proof. (Soundness:) T was obtained by creating a sequence of tableaux
T0, . . . , Tn (n ≥ 0) such that T0 is an initial tableau for φ, Tn = T , and Ti

was obtained by a single application of the α-, β-, ¬- or �-rule on an branch of
Ti−1 for i = 1, . . . , n. By Proposition 1, we know that such a sequence is finite.
Since T has cost m, Tn contains one branch b with exactly m boxes and the
rest of branches contain at least m boxes. Moreover, the active formulas in the
branches of Tn are non-complementary literals; otherwise we could yet apply
expansion rules and Tn could not be completed. The assignment that sets to
true each active literal in b, only falsifies the m boxes and there cannot be any
assignment satisfying less than m formulas in a branch of Tn because each branch
contains at least m boxes. Therefore, the minimum number of active formulas
than can be unsatisfied among the branches of Tn is m.

Proposition 2 guarantees that the minimum number of unsatisfied active
formulas is preserved in the sequence of tableaux T0, . . . , Tn. Thus, the minimum
number of unsatisfied active formulas in T0 is also m. Since T0 is formed by a
single branch that only contains the formulas in φ and all these formulas are
active, the minimum number of formulas that can be unsatisfied in φ is m.
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(Completeness:) Assume that there is a completed tableau T for φ that does
not have cost m. We distinguish two cases:

(i) T has a branch b of cost k, where k < m. Then, T has a branch with k
boxes and a satisfiable multiset of non-complementary literals because T
is completed. This implies that the minimum number of unsatisfied active
formulas among the branches of T is at most k. By Proposition 2, this also
holds for T0, but this is in contradiction with m being the minimum number
of unsatisfied formulas in φ because k < m. Thus, any branch of T has at
least cost m.

(ii) T has no branch of cost m. This is in contradiction with m being the min-
imum number of unsatisfied formulas in φ. Since the tableau rules pre-
serve the minimum number of unsatisfied formulas and the branches of
any completed tableau only contain active formulas that are boxes or non-
complementary literals, T must have a saturated branch with m boxes. Thus,
T has a branch of cost m.

Hence, each completed tableau T for a multiset of formulas φ has cost m if
the minimum number of formulas that can be unsatisfied in φ is m. ��

4 Extension to Hard and Weighted Formulas

We presented the tableau calculus for non-clausal unweighted MaxSAT (i.e,;
non-clausal MaxSAT) for ease of presentation but tableaux can be extended to
deal with hard and soft formulas, and soft formulas can be weighted as well.

In the case of non-clausal partial MaxSAT, there are three basic observations:

– The hard literals of the initial tableau, as well as any other literal derived by
the application of an expansion rule to an input hard formula or a subformula
derived from a hard formula, remain always active. In the rest of the section,
we will refer to such literals as hard literals and to the subformulas derived
from a hard formula as hard subformulas.

– If the �-rule is applied to two hard literals, then the current branch is pruned.
This means that we have found a contradiction among hard clauses. This
corresponds to an unfeasible solution.

– When the premise of the α-rule is a hard formula or subformula, the α-
rule of Table 2 can be used instead of the α-rule of Table 3. The calculus
remains sound and complete but branching is reduced. This is so because
hard formulas must be satisfied by any optimal assignment.

Example 2. Let φ = H ∪ S be a non-clausal partial MaxSAT instance, where H
is the multiset of hard formulas and S is the multiset of soft formulas. Given
the multiset of propositional formulas {x1 ∧ x2 ∧ x3,¬x1,¬x2,¬x3}, we analyze
the different tableaux obtained when we vary the formulas declared as hard and
soft.

The first tableau of Fig. 4 displays a completed tableau when all the formulas
are soft; in this case φ = H ∪ S = ∅ ∪ {x1 ∧ x2 ∧ x3,¬x1,¬x2,¬x3}.
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The second tableau displays a completed tableau when x1 ∧ x2 ∧ x3 is hard
and the rest of formulas are soft; in this case φ = H ∪ S = {x1 ∧ x2 ∧ x3} ∪
{¬x1,¬x2,¬x3}. Notice that the input hard formulas and derived hard subfor-
mulas are in bold. We applied the α-rule of Table 2 because the premise is hard.

The third tableau displays a completed tableau when ¬x1, ¬x2 and ¬x3 are
hard, and x1 ∧ x2 ∧ x3 is soft; in this case φ = H ∪ S = {¬x1,¬x2,¬x3} ∪ {x1 ∧
x2 ∧ x3}. We applied the α-rule of Table 3 because the premise is soft.

The fourth tableau displays a completed tableau when x1 ∧ x2 ∧ x3 and ¬x1

are hard, and ¬x2 and ¬x3 are soft; in this case φ = H∪S = {x1∧x2∧x3,¬x1}∪
{¬x2,¬x3}. Notice that the single branch of the tableau is pruned as soon as
the �-rule has two hard premises (¬x1 and x1). We use a filled box to denote
that there is no feasible solution.

In the first case, the minimum number of unsatisfied soft formulas is 1. In
the second case, the minimum number of unsatisfied soft formulas among the
assignments that satisfy the hard formulas is 3. In the third case, the minimum
number of unsatisfied soft formulas among the assignments that satisfy the hard
formulas is 1. In the fourth case, there is no optimal solution because the subset
of hard formulas is unsatisfiable.

Table 4 displays the expansion rules for weighted formulas. The α-, β- and
¬-rule have just one premise and the weight associated to the premise is trans-
ferred to the conclusions. The �-rule has two premises and so the contradic-
tion takes as weight the minimum of the weights associated to the premises

x1 ∧ x2 ∧ x3

¬x1

¬x2

¬x3

x1

x2 ∧ x3

x2

x3

x1 ∧ x2 ∧ x3

¬x1

¬x2

¬x3

x1

x2 ∧ x3

x2

x3

¬x1

¬x2

¬x3

x1 ∧ x2 ∧ x3

x1

x2 ∧ x3

x2

x3

x1 ∧ x2 ∧ x3

¬x1

¬x2

¬x3

x1

x2 ∧ x3

Fig. 4. Examples of non-clausal partial MaxSAT tableaux. Input hard formulas and
derived hard subformulas are in bold.
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Table 4. Tableau expansion rules for non-clausal weighted MaxSAT

(α, w)

( , w) (α1, w)

(α2, w)

α-rule

(β, w)

(β1, w) (β2, w)

β-rule

(¬¬A, w)

(A, w)

¬-rule

(l, w1)

(¬l, w2)

( ,min(w1, w2))

(l, w1 − min(w1, w2))

(¬l, w2 − min(w1, w2))

-rule

(min(w1, w2)). If the premises have different weights, the remaining weight in
the premise with the greatest weight can be used to detect further contradic-
tions. The compensation weight of the other premise is 0, and formulas with
weight 0 are removed. In the weighted case, when a branch has repeated occur-
rences of a formula A, say (A,w1), . . . , (A,ws), such occurrences can be replaced
with the single formula (A,w1 + · · · + ws). Moreover, the cost of a saturated
weighted branch is the sum of weights of the boxes that appear in the branch,
and the cost of a completed weighted tableau is the minimum cost among all its
branches.

The expansion rules of Table 4 provide a sound and complete calculus for
non-clausal weighted MaxSAT. The correctness of such rules follows from the
correctness of the unweighted tableau rules and the fact that having a weighted
formula (A,w) is equivalent to having w copies of the unweighted formula A.

Example 3. Let φ = {(¬x1 → x2, 3), (x1 ∧ x3, 2), (¬x1, 5), (¬x1, 5), (¬x3, 2)} be
a non-clausal weighted MaxSAT instance. Figure 5 displays a completed tableau
for φ. This tableau has been obtained by applying the expansion rules of Table 4.
The costs of the branches, from left to right, are 5, 7, 5 and 7. So, the minimum
sum of weights of unsatisfied formulas is 5.

Finally, we show how to solve non-clausal weighted partial MaxSAT instances
with tableaux. The first observation is that hard formulas can be considered as
weighted formulas with infinity weight, and this observation is important to
understand the �-rule in weighted partial MaxSAT. Notice that the �-rule is
the only rule with two premises; in the rest os cases, if the premise is hard,
we proceed as in partial MaxSAT, and if it is soft, we proceed as in weighted
MaxSAT. If the two premises of the �-rule are hard, then the branch is pruned
because we are in front of an unfeasible solution. If the two premises are soft,
then the �-rule of Table 4 is applied. If there is a hard premise l and a soft
premise (¬l, w), then (�, w) is derived, (¬l, w) becomes inactive and l remains
active.
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(¬x1 → x2, 3)

(x1 ∧ x3, 2)

(¬x1, 5)

(¬x2, 4)

(¬x3, 2)

(x2, 3)

( , 3)

(¬x2, 1)

(x1, 2)

(x3, 2)

( , 2)

(¬x1, 3)

( , 2)

( , 2)

(x1, 3)

( , 3)

(¬x1, 2)

(x1, 2)

(x3, 2)

( , 2)

( , 2)

( , 2)

Fig. 5. Examples of non-clausal weighted MaxSAT tableaux.

Example 4. Let φ = {(x1 ∧ x3, (¬x1 → x2, 3), (¬x1, 5), (¬x2, 1), (¬x3, 2)} be a
non-clausal weighted partial MaxSAT instance, where the first formula is hard
and the rest of formulas are soft. Figure 6 displays a completed tableau for φ.
This tableau has been obtained by applying the expansion rules for non-clausal
weighted partial MaxSAT explained above. The cost of the left branch is 10
and the cost of the right branch is 8. Thus, the minimum sum of weights of
unsatisfied soft formulas among the assignments that satisfy the hard formula
is 8.
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x1 ∧ x3

(¬x1 → x2, 3)

(¬x1, 5)

(¬x2, 1)

(¬x3, 2)

x1

x3

( , 5)

( , 2)

(x2, 3)

( , 1)

(x2, 2)

(x1, 3)

( , 3)

Fig. 6. Example of non-clausal weighted partial MaxSAT tableau. Input hard formulas
and derived hard subformulas are in bold.

5 Conclusions

The main contributions of this paper are a non-clausal MaxSAT tableau calculus,
the corresponding proofs of soundness and completeness, and its extension to
deal with hard and weighted soft formulas. We claim that improvements defined
for SAT, like detection of contradictory subformulas instead of contradictory
literals, are also valid in our framework or can be easily adapted.

Tableaux have played a central role in automated deduction in first-order
logic, as well as in other non-classical logics [9,12], and this work might be a
first step towards dealing with optimization problems in those logics. From the
propositional perspective, tableaux might be used to find new proof complexity
results as the ones found for MaxSAT resolution [6,14], as well as to better
understand MaxSAT and the logic behind. An interesting open problem is to
find out how to define a complete tableau calculus for non-clausal MinSAT [3,20].
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Abstract. Quasi-canonical Gentzen-type systems with dual-arity quan-
tifiers is a wide class of proof systems. Using four-valued non-deterministic
semantics, we show that every system from this class admits strong cut-
elimination iff it satisfies a certain syntactic criterion of coherence. As a
specific application, this result is applied to the framework of Existential
Information Processing (EIP), in order to extend it from its current propo-
sitional level to the first-order one—a step which is crucial for its usefulness
for handling information that comes from different sources (that might
provide contradictory or incomplete information).

Keywords: Gentzen-type proof systems · Cut-elimination ·
Coherence · Non-deterministic matrices · Information processing ·
Knowledge bases

1 Introduction

Proving the cut-elimination theorem for a given Gentzen-type system G is usu-
ally a difficult and detail intensive task, especially if G involves quantifiers that
bind variables. In [3] this problem was solved for the wide class of canonical
Gentzen-type proof systems. These are the systems in which the language fea-
tures dual-arity quantifiers (i.e. quantifiers that may bind several variables and
at the same time connect several formulas), and in which all the logical rules are
of the ideal type which was used by Gentzen in [12]. The solution was achieved
by formulating an easily checkable syntactic criterion of coherence, and showing
that for canonical systems coherence is equivalent both to strong cut-elimination
and to strong soundness and completeness with respect to some two-valued non-
deterministic matrix. Based on results in [1], we extend this theory here to
quasi-canonical systems, i.e. systems which are canonical ‘up to negation’. (See
Definitions 18 and 20 below). Our main theorem is fairly similar to that in [3],
but it is more general, and has the significant difference that the semantics we
use is based on four-valued (rather than two-valued) non-deterministic matrices.
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As a very important specific application of the general theory described
above, we take the problem of gathering and processing information from a set of
sources. In [6,7], Belnap proposed a propositional framework to this end, based
on Dunn’s four-valued matrix [11]. In his model, sources of information are only
allowed to provide information on atomic formulas. However, this model is inad-
equate for dealing with knowledge bases in which information about complex
formulas may not originate from information about atomic formulas. Therefore
Belnap’s framework is generalized in [2] to the Existential Information Processing
(EIP) framework, where sources may provide information on complex formulas
too. For example, a source which does not state that ϕ is true, nor that ψ is
true, may still state that their disjunction is true. For reasoning under those cir-
cumstances, a corresponding strongly sound and complete Gentzen-type proof
system, that admits strong cut-elimination, is provided.

The EIP framework of [2] is still confined to the propositional level. However,
a knowledge base should permit queries in a first-order language in order to really
be useful. Using our extension to quasi-canonical systems we are able to extend
the EIP framework to the first-order level, carrying over its induced semantics
and proof system, and prove that the latter admits strong cut-elimination.

Note. Due to space constraints, some of the proofs are omitted here. They will
be given in a future publication.

2 Preliminaries

The following conventions are used throughout this paper.

– N is the set of natural numbers (which includes 0).
– A prefix of N is a set {n ∈ N | n < k }, where k ∈ N ∪ {∞}.
– A function f : X → Y where X ∩ P [X] = ∅ is implicitly extended to f :

X ∪ P [X] → Y ∪ P [Y ] by acting point-wise, i.e.

f [ζ] =

{
f [ζ] ζ ∈ X

{f [z] | z ∈ ζ } ζ ⊆ X

This paper considers first-order languages with dual-arity quantifiers, i.e.
〈n, k〉-quantifiers for some n, k ∈ N. Such a quantifier connects n formulas and
binds k variables. Connectives of arity n are seen as 〈n, 0〉-quantifiers.

Example 1. The language of first-order logic is usually defined to have the 〈1, 0〉-
quantifier ¬, the 〈2, 0〉-quantifiers ∨, ∧, →, and the 〈1, 1〉-quantifiers ∃, ∀.

For the rest of this paper L is a fixed first-order language with dual-
arity quantifiers. Constants of L are taken as 0-ary function symbols.

Construction of L-terms and atomic L-formulas is standard, and that of
L-formulas is a simple generalization of the usual construction: If Q is an
〈n, k〉-ary quantifier in L, z1, . . . zk are distinct variables, and A1, . . . An are
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L-formulas, then Q z1 . . . zk (A1, . . . An) is an L-formula where the free occur-
rences of z1, . . . zk in each of the formulas A1, . . . An become bound. Here Q is
said to connect A1, . . . An and bind z1, . . . zk.

If A and A′ are L-formulas that are equal up to renaming bound variables,
we write A

α∼ A′. If A is an L-formula, t1, . . . tk are L-terms, and z1, . . . zk are
distinct variables, then A {t1/z1, . . . tk/zk} is obtained from A by simultaneously
replacing free occurrences of zi by ti for all i ∈ {1, . . . k}. The accompanying
concept of t1, . . . tk being substitutable for z1, . . . zk in A is defined as usual.

An L-sequent is a construct of the form Γ ⇒ Δ, where Γ and Δ are finite sets
of L-formulas. We make use of the list-for-union shorthand, e.g. Γ,A,Δ,B ⇒
stands for {A,B} ∪ Γ ∪ Δ ⇒ ∅.

Definition 1. Let V ⊆ Var (the set of all variables). An L-formula (-term) is
V -open if it has no free variables outside of V ; it is closed if it is ∅-open.

Non-deterministic matrices [4] provide a rich and modular semantic frame-
work. First defined for propositional logic, the concept was later generalized to
predicate logic with dual-arity quantifiers [3]. In what follows, we restrict the
domain of our structure to at most countable, so without loss of generality the
domain may be taken to be a prefix of N.

Definition 2. A generalized non-deterministic matrix (GNmatrix) for
L is a triple 〈V,D,O〉 such that:

– V is a set (of truth values).
– D is a non-empty proper subset of V (of designated truth values).
– O associates with every non-empty prefix X of N and every 〈n, k〉-quantifier

Q a function Q̃X :
(
Xk → Vn

) → P+ [V] (truth table).

Note that the quantifiers’ interpretations return sets of truth values. This will
give rise to the semantics’ non-determinism, specifically in Definition 12 below.

For the rest of this section M = 〈V,D,O〉 is a fixed GNmatrix.

Notation. If Q is a connective, Q̃X may be abbreviated to Q̃.

Definition 3. An L-algebra (in the sense of [5]) A consists of:

– A non-empty prefix DomA of N called the domain of A.
– For each m-ary func. symbol f in L, a function fA : (DomA)m → DomA

called the interpretation of f in A.

For the rest of this section A is a fixed L-algebra.

Notation. If t is a closed L-term, then tA denotes its interpretation in the
L-algebra A, defined inductively: (f (t1, . . . tm))A = fA [

t1
A, . . . tm

A]
.

Definition 4. An A-based L-informer for M, I, consists of the following:
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– For every m-ary predicate symbol p in L, a predicate pI : (DomA)m → V
called the interpretation of p in I.

For the rest of this section I is a fixed A-based L-informer for M.

Definition 5. A pair 〈A, I〉, where A and I are as above, is called an L-
structure for M (which is based at A and informed by I).1

For the rest of this section S = 〈A, I〉 is a fixed L-structure for M.

Substitutional semantics [14] is used to handle assignment of elements of the
domain to free variables when evaluating a formula. This contrasts with the
prevailing denotational semantics which is inadequate in the non-deterministic
context. What follows is a condensed and slightly adapted presentation of notions
that appear in [4] (for more see references there).

Definition 6. The set {a | a ∈ DomA} of the individual constants of A is
obtained by associating a constant with every member of DomA.

Notation. L (A) is obtained by extending L with {a | a ∈ DomA}.

Definition 7. The extension of A to an L (A)-algebra is obtained by letting
aA = a for every a ∈ DomA.

Definition 8. An A-substitution is a Var → {a | a ∈ DomA} function.

Definition 9. Let t be an L (A)-term. The normal form of t, denoted |t|, is
defined inductively as follows:

– If t = f (t1, . . . tm), then |t| = tA if t is closed, otherwise |t| = f (|t1| , . . . |tm|).
– Otherwise (i.e. t is a variable), |t| = t.

For an L (A)-term t′, we write t
A∼ t′ if |t| = |t′|.

Definition 10. Let ϕ, ϕ′ be L (A)-formulas. We write ϕ
A∼ ϕ′ if |ϕ| α∼ |ϕ′|,

where |ϕ|, the normal form of ϕ, is defined inductively as follows:

– If ϕ = p (t1, . . . tm) is atomic, then |ϕ| = p (|t1| , . . . |tm|).
– If ϕ = Q z1 . . . zk (ψ1, . . . ψn), then |ϕ| = Q z1 . . . zk (|ψ1| , . . . |ψn|).

Valuations are functions that assign truth values to all formulas in a way
that is compatible with a particular GNmatrix and structure. In many cases,
and in Sect. 4 specifically, it is desirable to define valuations only on some of the
formulas.

1 This is equivalent to the usual definition of a structure. However, it is more conve-
nient for our purposes. See e.g. the independence of Definitions 9 and 10 below from
the informer, and the statement of Proposition 2. The convenience is further evident
in Sect. 4, where the base algebra remains fixed while the informer varies.
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Definition 11. A set Φ of L (A)-formulas is closed under subsentences
(Sclosed) if every formula in Φ is closed, and Q z1 . . . zk (ψ1, . . . ψn) ∈ Φ implies
that for all i ∈ {1, . . . n} and a1, . . . ak ∈ DomA, ψi {a1/z1, . . . ak/zk} ∈ Φ.

Notation. Q̃DomA may be abbreviated to Q̃A.

Definition 12. Let Φ be an Sclosed set of L (A)-formulas, and let v : Φ → V.
Consider the following conditions:

A. If ϕ
A∼ ϕ′, then v [ϕ] = v [ϕ′].

I. v [p (t1, . . . tm)] = pI (
t1

A, . . . tm
A)

.
Q. v [Q z1 . . . zk (ψ1, . . . ψn)] ∈ Q̃A [h], where h is

λa1, . . . ak ∈ DomA . 〈v [ψ1 {a1/z1, . . . ak/zk}] , . . . v [ψn {a1/z1, . . . ak/zk}]〉.
– v is a partial M-legal A-valuation if conditions A and Q hold.
– v is a partial M-legal S-valuation if conditions A, I and Q hold.
– The word ‘partial’ may be omitted if Φ includes all closed L (A)-formulas.

Proposition 1 [4]. Every partial M-legal S-valuation v is extendable to an M-
legal S-valuation (and similarly for partial M-legal A-valuations).

Proposition 2. For every partial M-legal A-valuation v there exists an A-based
L-informer Ĩ for M such that v is a partial M-legal 〈A, Ĩ〉-valuation.
Definition 13. Let C be an L-formula, Θ ∪{Γ ⇒ Δ} be a set of L-sequents, v
be an M-legal S-valuation, and σ be an S-substitution. Define:

– S, v, σ |= C if v [σ [C]] ∈ D.
– S, v, σ |= Γ ⇒ Δ if there exists A ∈ Γ such that S, v, σ � A or B ∈ Δ such

that S, v, σ |= B.
– S, v, σ |= Θ if S, v, σ |= Γ ′ ⇒ Δ′ for every Γ ′ ⇒ Δ′ ∈ Θ.
– S, v |= � if S, v, σ′ |= � for every S-substitution σ′ (� is a formula, sequent,

or set of sequents).
– Θ �M Γ ⇒ Δ if the following holds for every L-structure S ′ for M and

M-legal S ′-valuation v′: if S ′, v′ |= Θ, then S ′, v′ |= Γ ⇒ Δ.2

Definition 14. Let Θ ∪ {Γ ⇒ Δ} be a set of L-sequents.

– Θ �G Γ ⇒ Δ if Γ ⇒ Δ is derivable from Θ in G.
– G is strongly sound for M if �G ⊆�M.
– G is strongly complete for M if �M ⊆�G.
– M is strongly characteristic for G if G is strongly sound and strongly

complete for M.

Notation. It will often be convenient to use a structure instead of its base
algebra or informer:

– DomS = DomA; L (S) = L (A); S∼ = A∼.
– For a function symbol f : fS = fA; and for a closed term t: tS = tA.
– For a predicate symbol p: pS = pI .
2 Two consequence relations for formulas Γ �M ϕ are definable using this consequence

relation for sequents: ‘truth’ �M Γ ⇒ ϕ and ‘validity’ {⇒ ψ | ψ ∈ Γ } �M⇒ ϕ.
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3 Quasi-canonical Proof Systems and Their Semantics

As we said in the introduction, a characterization for strong cut-elimination
was given in [3] for canonical Gentzen-type systems. Specifically, the following
properties of a canonical system G with dual-arity quantifiers are shown to be
equivalent: (i) G is coherent, (ii) G admits strong cut-elimination, and (iii) G
has a strongly characteristic GNmatix of a particular kind. In [1] it is shown
that for a quasi -canonical system G of proposition logic (i) entails (ii) and (iii).
This section combines these two results, thus generalizing both (Theorem 1): (i),
(ii) and (iii) are found to be equivalent for a quasi-canonical system G with
dual-arity quantifiers.

For the rest of this paper assume L includes the 1-ary connective ¬.

3.1 Introducing Quasi-canonical Proof Systems

The family of highly simplified representation languages defined below suffices
for expressing the logical rules of a quasi-canonical system.

Definition 15. The language Ln
k is the language that consists – aside from

the mandatory variables and auxiliary symbols – of enumerably many constants
Con = {ci | i ∈ N}, predicate symbols p1, . . . pn of arity k, and the connective ¬.
Notation. Let

a¬ denote ¬ if a = 1, and the empty string if a = 0.

Definition 16. An 〈n, k〉-literal is an Ln
k -formula of the form

a¬pi (t1, . . . tk),
where a ∈ {0, 1}, i ∈ {1, . . . n}, and for every j ∈ {1, . . . k}, tj ∈ Con ∪ Var. An
〈n, k〉-gc (generalized clause) is a sequent of 〈n, k〉-literals.
Definition 17. Let Q be an 〈n, k〉-ary quantifier. A quasi-canonical rule for
Q is a construct of the form Λ/T , where Λ is a set of 〈n, k〉-gcs, and T is the
rule’s type—one of the following: (Q ⇒), (⇒ Q), (¬Q ⇒), (⇒ ¬Q). An 〈n, k〉-
rule is a quasi-canoncial rule for an 〈n, k〉-ary quantifier.

To apply an 〈n, k〉-rule as an inference in a proof one must first instantiate
the schematic constituents of Ln

k by constituents of L.

Definition 18. Let r = Λ/T be an 〈n, k〉-rule. Let Φ be a set of L-formulas and
z1, . . . zk be distinct variables. An 〈L, r, Φ, z1, . . . zk〉-mapping is any function χ
from the terms and predicate symbols of Ln

k to terms and formulas of L, satisfying
the following conditions:

– For every y ∈ Var, χ [y] ∈ Var, and for every x ∈ Var such that x �= y,
χ [x] �= χ [y].

– For every c ∈ Con, χ [c] is an L-term, such that for every x ∈ Var occurring
in Λ, χ [x] does not occur in χ [c].

– For every i ∈ {1, . . . n}, χ [pi] is an L-formula. If
a¬pi (t1, . . . tk) occurs in

Λ, then for every j ∈ {1, . . . k}: χ [tj ] is substitutable for zj in χ [pi], and if
tj ∈ Var, then χ [tj ] does not occur free in Φ ∪ {Q z1 . . . zk (χ [p1] , . . . χ [pn])}.
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χ extends to 〈n, k〉-literals by χ
[

a¬pi (t1, . . . tn)
]

=
a¬χ [pi] {χ [t1]/z1, . . . χ [tk]/zk}.

Definition 19. Let Q be an 〈n, k〉-ary quantifier, and r = {Π� ⇒ Σ�}m
�=1 /

(Q ⇒) be a quasi-canonical rule for Q. An application of r is any inference
step of the form:

{Γ, χ [Π�] ⇒ χ [Σ�] ,Δ}m
�=1 (Q ⇒)

Γ,Q z1 . . . zk (χ [pi] , . . . χ [pn]) ⇒ Δ

where χ is some 〈L, r, Γ ∪ Δ, z1, . . . zk〉-mapping.
Applications of the other types of quasi-canonical rules are defined similarly.

Example 2. Consider the following quasi-canonical rules for ∃:

{⇒ ¬p1 (v1)} / (⇒ ¬∃) {¬p1 (c1) ⇒} / (¬∃ ⇒)

Application of these rules has the forms:

Γ ⇒ ¬A {x/z} ,Δ
(⇒ ¬∃)

Γ ⇒ ¬∃zA,Δ

Γ,¬A {t/z} ⇒ Δ
(¬∃ ⇒)

Γ,¬∃zA ⇒ Δ

where x is not free in Γ ∪ Δ ∪ {¬∃zA}, and x and t are substitutable for z in A.

Definition 20. A full quasi-canonical calculus for L is a Gentzen-type sys-
tem that consists of rules of the following types:

– Logical rules: a finite number of quasi-canonical inference rules.
– Structural rules: the α-axiom scheme (A), the weakening rule (W), the cut

rule (C), and the substitution rule (S), with application forms

(A)
A ⇒ A′

Γ ⇒ Δ (W)
Γ ′, Γ ⇒ Δ,Δ′

Γ ′ ⇒ Δ,A A, Γ ⇒ Δ′
(C)

Γ ′, Γ ⇒ Δ,Δ′

Γ ⇒ Δ (S)
Γ {t1/x1, . . . tm/xm} ⇒ Δ {t1/x1, . . . tm/xm}

where Γ, Γ ′,Δ,Δ′, {A,A′} are sets of L-formulas such that A
α∼ A′; x1, . . . xm

are distinct variables; t1, . . . tm are L-terms substitutable for x1, . . . xm in
every formula in Γ ∪ Δ.

A full 4-quasi-canonical calculus for L is a full quasi-canonical calculus
in which there are no rules of the types (¬ ⇒) and (⇒ ¬).

The structural rules are sound in the following sense:

Proposition 3. Let Θ ∪ {Γ ⇒ Δ} be a set of L-sequents such that Θ/Γ ⇒ Δ
is an application of a structural rule r. Let M be an GNmatix. Let S be an
L-structure for M, and v be a M-legal S-valuation, such that S, v |= Θ. Let σ
be an S-substitution. Then S, v, σ |= Γ ⇒ Δ.
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Proof. By case analysis on the rule r:

– If r is the α-axiom (A) this follows from the definition of valuations (and S∼).
– If r is the weakening rule (W) or cut rule (C) this follows trivially as usual.
– If r is the substitution rule (S), then for every variable x, denote by tx its

L-term replacement (or simply tx = x if x was not replaced). Let σ′ be the

S-substitution such that σ′ [x] = (σ [tx])S . In particular, σ′ [x] S∼ σ [tx]. By
assumption, S, v, σ′ |= Θ. Consequently, S, v, σ |= Γ ⇒ Δ.

Coherence [3] is a syntactic property of quasi-canonical systems that will
later be used to determine whether the system admits strong cut-elimination.

Definition 21. A set Λ of 〈n, k〉-gcs is inconsistent if there is a proof of ⇒
from Λ using only (C) and (S); otherwise it is consistent.

Definition 22. Let Λ1 and Λ2 be sets of 〈n, k〉-gcs. Λ1 � Λ2 is Λ1 ∪ Λ′
2, where

Λ′
2 is obtained from Λ2 by fresh renaming of constants and variables in Λ1.

Definition 23. Rules Λ1/T1 and Λ2/T2 are conflicting if for some quantifier
Q either T1 = (Q ⇒) and T2 = (⇒ Q), or T1 = (¬Q ⇒) and T2 = (⇒ ¬Q).

Definition 24. A full quasi-canonical calculus for L is coherent if for every
pair of conflicting rules Λ1/T1 and Λ2/T2, the set Λ1 � Λ2 is inconsistent.

Example 3. Consider the full quasi-canonical calculus in which the inference
rules are those from Example 2. These rules are conflicting. However, the set
{¬p1 (c1) ⇒,⇒ ¬p1 (v1)} is clearly inconsistent, so the calculus is coherent.

Proposition 4. Let Λ ∪ {Π ⇒ Σ} be a set of 〈n, k〉-gcs. If there is a proof of
Π ⇒ Σ from Λ using only (C) and (S), then there is such a proof in which (S)
is used only as the first inference step on leaves of the proof tree, and only for
substituting by constants that appear in Λ ∪ {Π ⇒ Σ}.
Proof. Note that an application of (C) followed by an application of (S) can
be replaced with an a pair of applications of (S) followed by an application of
(C); and two consecutive applications of (S) can be replaced with one. Using
induction on the given proof’s height, applications of (S) can thus be pushed to
the leaves. Next, using induction on the given proof’s height, the obtained proof
remains valid after replacing all variables and constants that do not appear in
Λ ∪ {Π ⇒ Σ} with a variable or constant that does appear in Λ ∪ {Π ⇒ Σ}.

Corollary 1. The coherence of a full 4-quasi-canonical calculus is decidable.

3.2 The Semantics of Quasi-canonical Proof Systems

The semantics of quasi-canonical proof systems is based on Dunn’s four truth
values [11,13], where each truth value is a different subset of {0, 1}, and the
presence of 1 (0) indicates evidence supporting (opposing) the truth of a formula.
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Notation. ⊥ = {}; f = {0}; t = {1}; � = {0, 1}.

A statement is considered true iff it has supporting evidence, and its negation
true iff the statement has opposing evidence.

Definition 25. A GNmatix M = 〈V,D,O〉 for L is a ¬-GNmatix if:

– V ⊆ {t, f,�,⊥}, and D = V ∩ {t,�}.
– The following hold for the operation ¬̃ of O:

• If t ∈ V, then ¬̃t ⊆ {f,⊥}.
• If f ∈ V, then ¬̃f ⊆ {t,�}.

• If � ∈ V, then ¬̃� ⊆ {t,�}.
• If ⊥ ∈ V, then ¬̃⊥ ⊆ {f,⊥}.

– All operations Q̃ of O return members of

{V, {t,�} , {t,⊥} , {f,�} , {f,⊥} , {t} , {f} , {�} , {⊥}}
Definition 26. M4 = 〈{t, f,�,⊥} , {t,�} ,

{¬̃4
}〉 with ¬̃4t = ¬̃4⊥ = {f,⊥},

¬̃4f = ¬̃4� = {t,�}.
The next couple of definitions are adapted from [1]. First, a function is defined

to take a quasi-canonical rule for some quantifier Q and return a set of truth
values. Intuitively, the set returned consists of those truth values Q can take for
the rule’s conclusion to hold.

Definition 27. The function F on quasi-canonical rules is defined as follows:

F [r] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{t,�} r is of type (⇒ Q)
{f,⊥} r is of type (Q ⇒)
{f,�} r is of type (⇒ ¬Q)
{t,⊥} r is of type (¬Q ⇒)

Next, the function is used to provide an interpretation to quantifiers that
corresponds to a given Gentzen-type proof system.

Definition 28. Let G be a coherent full 4-quasi-canonical calculus for L. The
¬-GNmatrix induced by G, denoted MG, is the ¬-GNmatrix 〈V4, {t,�} ,OG〉
in which, for every non-empty prefix X of N, the interpretation Q̃X in OG of an
〈n, k〉-quantifier Q in L is defined as follows:

Q̃X [h] =

{⋂ {F [r] | r ∈ RG [Q,X, h]} Q �= ¬
¬̃4 [h] ∩ ⋂ {F [r] | r ∈ RG [Q,X, h]} Q = ¬

where RG [Q,X, h] is the set of rules Λ/T for Q in G that satisfy the following:
an Ln

k -structure N for M4 exists such that DomN = X, pi
N = hi, and N |= Λ.

Examples where Definitions 27 and 28 are employed can be found in the proof
of Theorem 2 below.

Proposition 5. Let G be a coherent full 4-quasi-canonical calculus for L. Then
MG is a well-defined four-valued ¬-GNmatix.
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3.3 Soundness, Completeness, and Cut-Elimination

Proposition 6. Let G be a coherent full 4-quasi-canonical calculus for L. Then
G is strongly sound for MG.

Definition 29. Let G be a full quasi-canonical calculus.

– Let Θ ∪{Γ ⇒ Δ} be some set of L-sequents. A proof in G of Γ ⇒ Δ from Θ
is Θ-cut-free if all cuts in the proof are on substitution instances of formulas
from Θ.

– G admits strong cut-elimination if for every set of L-sequents Θ ∪
{Γ ⇒ Δ} that satisfies the free-variable condition (no variable occurs both
free and bound): if there is a proof in G of Γ ⇒ Δ from Θ, there is also such
a proof which is Θ-cut-free.

Example 4. Consider the following proofs of ⇒ from {⇒ ¬p (x) ,¬p (c) ⇒} in
the system from Example 3:

⇒ ¬p (x)
(⇒ ¬∃)⇒ ¬∃xp (x)

¬p (c) ⇒
(¬∃ ⇒)¬∃xp (x) ⇒
(C)⇒

�
⇒ ¬p (x)

(S)⇒ ¬p (c) ¬p (c) ⇒
(C)⇒

The cut in the proof on the left was eliminated by using the substitution rule,
resulting in the proof on the right which is {⇒ ¬p (x) ,¬p (c) ⇒}-cut-free.

Proposition 7. Let G be a coherent full 4-quasi-canonical calculus. Let Θ ∪
{Γ ⇒ Δ} be a set of L-sequents that satisfies the free-variable condition. If Γ ⇒
Δ has no Θ-cut-free proof from Θ in G, then Θ �MG

Γ ⇒ Δ.

Proposition 8. Let Λ ∪ {Π ⇒ Σ} be a set of 〈n, k〉-gcs.
1. If there is a proof of Π ⇒ Σ from Λ using only (A), (W), (C), and (S), then

there are Π ′ ⊆ Π and Σ′ ⊆ Σ such that there is a proof of Π ′ ⇒ Σ′ from Λ
using only (A), (C), and (S).

2. If there is a proof of Π ⇒ Σ from Λ using only (A), (C), and (S), and Π ⇒ Σ
is not an instance of (A), then there is a proof of Π ⇒ Σ from Λ using only
(C) and (S).

Corollary 2. If a set Λ of 〈n, k〉-gcs is consistent, then there is an Ln
k -structure

N for M4 such that N |= Λ.

Theorem 1. Let G be a full 4-quasi-canonical calculus for L. The following are
equivalent:

1. G is coherent.
2. G is coherent and MG is strongly characteristic for G.
3. G has a strongly characteristic ¬-GNmatix.
4. G admits strong cut-elimination.

Proof. We prove 1 =⇒ 2 =⇒ 3 =⇒ 1 and 1 =⇒ 4 =⇒ 1:
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1 =⇒ 2. Assume G is coherent. Then by Proposition 6, MG is strongly sound for
G. It remains to show that MG is strongly complete for G. Let Θ∪{Γ ⇒ Δ}
be a set of L-sequents such that Γ ⇒ Δ has no proof from Θ in G. Rename
variables in Θ∪{Γ ⇒ Δ} as necessary to obtain Θ′∪{Γ ′ ⇒ Δ′} satisfying the
free-variable condition. Then Γ ′ ⇒ Δ′ has no proof from Θ′ in G, otherwise
a proof of Γ ⇒ Δ from Θ in G could be obtained by using (A) and (C).
By Proposition 7, Θ′

�MG
Γ ′ ⇒ Δ′. Since valuations respect α-equivalence,

Θ �MG
Γ ⇒ Δ. Therefore, if Θ �MG

Γ ⇒ Δ, then Θ �G Γ ⇒ Δ, the
required strong completeness.

2 =⇒ 3. MG is a ¬-GNmatix by Proposition 5.
3 =⇒ 1. Assume G has a strongly characteristic ¬-GNmatix M. Suppose for

contradiction that G is not coherent. Then there must exist two 〈n, k〉-rules
r1 = Λ1/

(
a¬Q ⇒

)
and r2 = Λ2/

(
⇒ a¬Q

)
in G such that Λ1�Λ2 is consistent.

By Corollary 2, there exist an Ln
k -structure N for M4 and an M4-legal N -

valuation u such that N , u |= Λ1�Λ2. Pick an L-structure S that extends3 N
and an M-legal S-valuation v such that for every closed L (S)-literal l it holds
that v [l] ∈ {t,�} iff u [l] ∈ {t,�}. Such v exists since M is a ¬-GNmatix.
Thus S, v |= Λ1 �Λ2. However, Λ1 �Λ2 �G ⇒, so by strong soundness S, v |=
⇒ which is impossible.

1=⇒ 4. Let Θ ∪ {Γ ⇒ Δ} be a set of L-sequents that satisfies the free-variable
condition such that Θ �G Γ ⇒ Δ. We have already shown that MG is
strongly sound for G, and therefore Θ �MG

Γ ⇒ Δ. By Proposition 7, Γ ⇒
Δ has a Θ-cut-free proof from Θ in G. Thus G admits strong cut-elimination.

4 =⇒ 1. Assume that G admits strong cut-elimination. Suppose G is not coher-
ent. Then there exist two rules Λ1/

(
a¬Q ⇒

)
and Λ2/

(
⇒ a¬Q

)
in G such that

Λ1 � Λ2 is consistent. Obtain Λ1 � Λ2 �G ⇒ by applying each rule once and
following with an application of (C). The set (Λ1 � Λ2)∪{⇒} clearly satisfies
the free-variable condition as there are no bound variable occurrences there
at all. Since G admits strong cut-elimination, there must be a Λ1�Λ2-cut-free
proof in G of ⇒ from Λ1 � Λ2.
Suppose there was an application of a logical rule in the proof. Since the
rule is neither of type (¬ ⇒) nor of type (⇒ ¬), such an application must
introduce a non-literal formula. It is easy to show that the existence of a non-
literal formula must be retained throughout a proof in which applications of
(C) eliminate only literals, in contradiction to the conclusion being ⇒.
Therefore, the only rules applied in the proof are (A), (W), (C), and (S). By
Proposition 8, the proof can be reduced to one using only (C) and (S). Yet
this is a contradiction to the fact that Λ1 � Λ2 is consistent.

4 Existential Information Processing

In [2] a propositional framework of Existential Information Processing (EIP) is
suggested as a means to handle inconsistent information in knowledge bases.4

3 Without loss of generality, Ln
k ⊆ L.

4 See [8] for a different approach that uses logics of formal inconsistency.
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This involves indiscriminately gathering information from a set of sources and
then processing it in order to discern further logical conclusions, while keep-
ing inconsistencies to a minimum. In this section the framework is extended to
predicate logic using the tools developed above.

For the rest of this paper assume the quantifiers of L are the
1-ary connective ¬, the 2-ary connectives ∨ and ∧, and the 〈1, 1〉-
ary quantifiers ∃ and ∀; and assume A is a fixed L-algebra.

4.1 Sources of Information

In the EIP framework, sources provide information on arbitrary formulas, in
the form of truth values from {i, 0, 1}, where i means that the source doesn’t
know. This fact enables them to possess disjunctive information: a source may
know that ϕ ∨ ψ holds without knowing which of ϕ and ψ holds; and dually, a
source may know that ϕ ∧ ψ does not hold without knowing which of ϕ and ψ
does not hold. To extend this framework to predicate logic, sources must provide
information on formulas with the classical quantifiers. This will be done here by
following the classical intuition that ∃xϕ ≡ ∨

a ϕ {a/x} and ∀xϕ ≡ ∧
a ϕ {a/x},

where a ranges over the domain (which may be infinite).

Definition 30. Let QM3
r = 〈{i, 0, 1} , {1} ,QO3

r〉, where QO3
r is detailed below:

a ¬̃a
i {i}
0 {1}
1 {0}

∨̃ i 0 1
i {i, 1} {i} {1}
0 {i} {0} {1}
1 {1} {1} {1}

∧̃ i 0 1
i {i, 0} {0} {i}
0 {0} {0} {0}
1 {i} {0} {1}

h [X] ∃̃X [h]
{i} {i, 1}

{i, 0} {i, 1}
{0} {0}
else {1}

h [X] ∀̃X [h]
{i} {i, 0}

{i, 1} {i, 0}
{1} {1}
else {0}

Definition 31. An A-source is a partial QM3
r-legal A-valuation.

An A-reservoir is a set of A-sources.5

Sources in a reservoir share an algebra, thus agreeing on the objects under
discussion. This means that disagreement is limited to properties of said objects.

For the rest of this section R is a fixed A-reservoir.

4.2 Gathering and Processing the Information

The next step is to gather the information from the reservoir for processing.

Definition 32. The existential gathering function of R is the function gR

from the closed L (A)-formulas to V4 defined as follows:

gR = λϕ . {b ∈ {0, 1} | ∃u ∈ R . b ∈ u [ϕ]}

5 Note how dividing structures into an algebra and an informer is convenient here.
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There may be knowledge that can only be learned by processing the infor-
mation in the reservoir. For example, if source a says ϕ holds and source b says ψ
holds, then the reservoir {a, b} provides evidence supporting ϕ∧ψ. The gatherer
will not observe this fact if neither a nor b say ϕ ∧ ψ holds.

Definition 33. Let g be a function from the closed L (A)-formulas to V4. The
information processing valuation induced by g is the function d from the
closed L (A)-formulas to V4 inductively defined as follows (for any b ∈ {0, 1},
x ∈ Var, θ an {x}-open L (A)-formulas, and ϕ,ϕ′, ϕl, ϕr closed L (A)-formulas
such that ϕ

A∼ ϕ′):

(d0) b ∈ g [ϕ′] =⇒ b ∈ d [ϕ].
(d1) b ∈ d [ϕ] =⇒ 1 − b ∈ d [¬ϕ].
(d2) 1 ∈ d [ϕl] ∪ d [ϕr] =⇒ 1 ∈ d [ϕl ∨ ϕr].
(d3) 0 ∈ d [ϕl] ∩ d [ϕr] =⇒ 0 ∈ d [ϕl ∨ ϕr].
(d4) 1 ∈ ⋃

a∈DomA d [θ {a/x}] =⇒ 1 ∈ d [∃xθ].
(d5) 0 ∈ ⋂

a∈DomA d [θ {a/x}] =⇒ 0 ∈ d [∃xθ].

The dual items for ∧ and ∀ are omitted.

Proposition 9. Let θ, ϕ be closed L (A)-formulas. If θ
A∼ ϕ, then d [θ] = d [ϕ].

Definition 34. The existential information processing valuation induced
by R, dR, is the information processing valuation induced by gR.

Proposition 10. For existential information processing, (d1), (d3) and (d5)
hold in the other direction (⇐=) as well (likewise for their duals).

These facts permit capturing the semantics of processors using a ¬-GNmatix.

Definition 35. Let QM4
E = 〈V4, {t,�} ,QO4

E〉, where QO4
E is detailed below:

a ¬̃a
⊥ {⊥}
f {t}
t {f}
� {�}

∨̃ ⊥ f t �
⊥ {⊥, t} {⊥, t} {t} {t}
f {⊥, t} {f, �} {t} {�}
t {t} {t} {t} {t}
� {t} {�} {t} {�}

∧̃ ⊥ f t �
⊥ {⊥, f} {f} {⊥, f} {f}
f {f} {f} {f} {f}
t {⊥, f} {f} {t, �} {�}
� {f} {f} {�} {�}

h [X] ∃̃X [h]
{⊥} {⊥, t}

{⊥, f} {⊥, t}
{f} {f, �}

{f, �} {�}
{�} {�}
else {t}

h [X] ∀̃X [h]
{⊥} {⊥, f}

{⊥, t} {⊥, f}
{t} {t, �}

{t, �} {�}
{�} {�}
else {f}

Corollary 3. dR is a QM4
E-legal A-valuation.

Proposition 11. For every QM4
E-legal A-valuation v there is an A-reservoir

Rv such that v = dRv
.

Corollary 4. The set of all QM4
E-legal A-valuations is identical to the set of

all existential information processing valuations induced by A-reservoirs.
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4.3 Proof System for the Logic Induced by Processors

A Gentzen-type system for processors is defined based on the propositional one
from [2] using the same intuition for the quantifiers that was used for QM4

E .

Definition 36. QG4
EIP is the full 4-quasi-canonical calculus for L with the fol-

lowing logical rules:

¬. {¬¬p1 ⇒} / (¬¬ ⇒), {⇒ ¬¬p1} / (⇒ ¬¬).
∨. {⇒ p1, p2} / (⇒ ∨), {¬p1,¬p2 ⇒} / (¬∨ ⇒), {⇒ ¬p1,⇒ ¬p2} / (⇒ ¬∨).
∧. {p1, p2 ⇒} / (∧ ⇒), {⇒ p1,⇒ p2} / (⇒ ∧), {⇒ ¬p1,¬p2} / (⇒ ¬∧).
∃. {⇒ p1 (c1)} / (⇒ ∃), {¬p1 (c1) ⇒} / (¬∃ ⇒), {⇒ ¬p1 (v1)} / (⇒ ¬∃).
∀. {p1 (c1) ⇒} / (∀ ⇒), {⇒ p1 (v1)} / (⇒ ∀), {⇒ ¬p1 (c1)} / (⇒ ¬∀).

Figure 1 below presents the application forms of the logical rules of QG4
EIP,

where the usual restrictions on variables apply.

Fig. 1. The system QG4
EIP in standard form

Theorem 2. QG4
EIP admits strong cut-elimination, and QM4

E is strongly
characteristic for it.

Proof. One can mechanically check that QG4
EIP is coherent (e.g. see Example 3).

It follows from Theorem 1 that QG4
EIP admits strong cut-elimination and that

MQG4
EIP

is characteristic for it. It remains to show that QM4
E = MQG4

EIP
.
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As an example, consider a non-empty prefix X of N and a function h : X → V
with image {⊥, t}. In QM4

E one has ∀̃X [h] = {⊥, f}. For MQG4
EIP

one must
find which ∀-rules of QG4

EIP are members of RQG4
EIP

[∀,X, h]. Let N be a L1
1-

structure for M4 such that DomN = X and p1
N = h. Pick ξ⊥ ∈ h−1 [⊥] and

ξt ∈ h−1 [t]. Consider each ∀-rule of QG4
EIP:

– If c1
N = ξt, then p1

N [
c1

N ]
= t, and so N |= {p1 (c1) ⇒}.

Thus {p1 (c1) ⇒} / (∀ ⇒) ∈ RQG4
EIP

[∀,X, h].

– There exists an N -substitution τ such that (τ [v1])
N = ξ⊥, so N �

{⇒ p1 (v1)}.
Thus {⇒ p1 (v1)} / (⇒ ∀) /∈ RQG4

EIP
[∀,X, h].

– Note that p1
N [

c1
N ] ∈ {t,⊥}, so ¬̃4 p1

N [
c1

N ] ∈ {f,⊥}, and so N �

{⇒ ¬p1 (c1)}.
Thus {⇒ ¬p1 (c1)} / (⇒ ¬∀) /∈ RQG4

EIP
[∀,X, h].

Therefore, in MQG4
EIP

, ∀̃X [h] =
⋂ {F [{p1 (c1) ⇒} / (∀ ⇒)]} = {f,⊥}.

The other cases are similar.

5 Conclusion and Future Research

We have shown that for a very wide class of quasi-canonical Gentzen-type proof
systems, our syntactic criterion of coherence is equivalent to both strong cut-
elimination and to strong soundness and completeness. Hence the task of prov-
ing cut-elimination (which is often rather difficult) now becomes very easy for
systems in this class, since it involves only the trivial matter of verifying the
coherence criterion. Using this result we extended the framework of Existential
Information Processing to predicate logic with dual-arity quantifiers. Paralleliz-
ing the propositional case, non-deterministic semantics and a strongly sound
and complete proof system were given for this extension, and the admissibility
of strong cut-elimination for that system was shown.

There are several directions of further research following this paper.

– Including function symbols in the schematic representation language(s) from
Definition 15 (not just constants) to express explicit dependencies between
variables and terms in the application forms of canonical rules.

– Definition 20 only addresses systems in which there are no rules of type
(¬ ⇒) or (⇒ ¬), however in [1] systems with one such rule (of a specific
shape) are also considered, yielding systems for three-valued logics.6 These
systems require a bit more care in their analysis (c.f. [1, Definition 5.5] of x̄-
inconsistency where x ∈ {f, t,�,⊥}). Still, we expect such 3-quasi-canonical
systems could similarly be extended to first-order logic.

6 The addition of more than one such rule is uninteresting as it result in a system that
is either trivial or equivalent to a (non-quasi) canonical one.
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– Theorem 1 may be seen as evidence that canonicity is a flexible concept, and
so similar theorems may be provable for other kinds of Gentzen-type proof
systems. The systems dealt with in [9] and [10] are natural candidates.

– The existential strategy is just one possible information gathering strategy.
A more interesting one involves a reservoir equipped with an order indicating
authority. This enables the authoritative strategy, in which information is
gathered only from sources that have not been overruled by a superior one.

– Sources in a reservoir share the same algebra. This means they are all aware
of the same individuals, and agree about the meaning of all function symbols.
A generalization which captures situations where this is not the case would
be interesting, and increase the usefulness of this framework.

– Formulas that are classically equivalent are not equivalent in this framework.
For example, a source may assign 1 to ϕ∨(ψ∧θ) yet assign 0 to (ϕ∨ψ)∧(ϕ∨θ).
The issue is in mitigating this with minimal complications.
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Abstract. Using substructural and modal logics as case studies, a uni-
form method is presented for transforming cut-free hypersequent proofs
into sequent calculus proofs satisfying relaxations of the subformula prop-
erty. As a corollary we prove decidability for a large class of commutative
substructural logics with contraction and mingle, and get a simple syn-
tactic proof of a well known result: the sequent calculus for S5 is analytic.

1 Introduction

In 1935, Gentzen introduced the sequent calculi LJ and LK for intuitionistic
and classical logic as alternatives to the prevailing axiomatic systems. For this
purpose, he replaced the rule of modus ponens in the latter with the more gen-
eral cut rule. His motivation was to obtain the subformula property (also called
analyticity) which asserts that a proof need only contain subformulas of the end
formula. This was achieved by exploiting the additional structure in the sequent
calculus formalism to show the redundancy of the cut rule. Analyticity yields
a strong restriction on the proof search space and it is this that is the key for
using a proof calculus to prove metalogical results (e.g. decidability, complexity,
interpolation, disjunction properties) and for automated reasoning.

Unfortunately, the sequent calculus is not expressive enough to support ana-
lyticity for most logics of interest. The structural proof theoretic response has
been the development of numerous exotic proof formalisms (e.g. hypersequent,
nested sequent, display, labelled calculi, tree-hypersequent)—typically extending
the syntax of the sequent calculus—with the aim of regaining analyticity via cut-
elimination. The hypersequent calculus, introduced independently by Mints [19],
Pottinger [22] and Avron [1], is one of the most successful such formalisms. Cut-
free hypersequent calculi have been presented for many non-classical logics that
resist an analytic sequent calculus formulation. Especially noteworthy are the
uniform constructions of cut-free hypersequent calculi via structural/modal rule
extensions for commutative substructural [6] and modal [13,14,16] logics.

Many non-classical logics possess a cut-free calculus in some exotic formalism
but such calculi tend to be less useful than cut-free sequent calculi because the
presence of the extended structure is a hinderance to proving metalogical results.

Here we propose an alternative: retain the sequent calculus and seek system-
atic relaxations of analyticity. Of course, most logics will have a sequent calcu-
lus with arbitrary cuts that is complete for it, but this does not meaningfully
c© Springer Nature Switzerland AG 2019
S. Cerrito and A. Popescu (Eds.): TABLEAUX 2019, LNAI 11714, pp. 94–110, 2019.
https://doi.org/10.1007/978-3-030-29026-9_6
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restrict the proof search space. Therefore what we seek here a restriction on the
‘quality’ of the cut-formula in terms of shape, complexity and composition. Such
a cut-restricted sequent calculus will be called a bounded sequent calculus.

In this work we obtain bounded sequent calculi by transforming cut-free
hypersequent calculi. This is a natural starting point: hypersequents are sim-
ple extension of sequents (in fact, just one step further); the existing uniform
constructions of cut-free hypersequent calculi can be exploited to obtain a uni-
form method for constructing bounded sequent calculi; and, given the novelty
and inherent technicalities in our proposal, there is an advantage in simplifying
one aspect of the problem by starting from proofs that already possess a nice
structure (i.e. cut-free hypersequent proofs). The bounded sequent calculi that
we obtain in this way are novel: a consideration of the quality of cut-formulas
has never been attempted for logics lacking an analytic sequent calculus.

Specifically, we present a methodology to uniformly transform cut-free hyper-
sequent calculi for a large class of propositional non-classical logics (substruc-
tural, intermediate and modal logics) into bounded sequent calculi. As a corollary
we obtain the decidability of all acyclic P ′

3-axiomatic extensions (c.f. the sub-
structural hierarchy [6]) of the commutative Full Lambek calculus with contrac-
tion and mingle [11] (including, e.g., UML [18]). This implies the decidability of
the equational theory of the corresponding classes of residuated lattices [8]. We
also obtain a simple and new syntactic proof of a well-known result [7]: analyt-
icity of the sequent calculus for the modal logic S5. We note that the syntactic
proof from the literature due to Takano [23] is highly intricate.

Related Work. Using algebraic methods, Bezhanishvili and Ghilardi [4] show
that several modal logics satisfy the bounded proof property, a restriction on the
modal complexity of formulas that need appear in a Hilbert-style proof. However
all those logics already have well-known analytic sequent calculi. Bezhanishvili
et al. [5] extend these methods to cut-free hypersequent calculi for intermedi-
ate logics. In particular, it is shown that is it possible to restrict hypersequent
calculus proofs (with cuts) to proofs consisting of formulas whose implicational
depth is bounded by the implicational depth of the endsequent. This is in the
spirit of this work (systematic relaxations of analyticity), although here our aim
is not only to restrict the formulas in the proof but to eliminate the hyper-
sequent structure as well. Moreover, our methods apply also to substructural
logics. Lahav and Zohar [15] establish syntactic criteria for determining if a pure
sequent calculus has analyticity. They introduce a subformula property modulo
leading negation symbols and provide a method for constructing analytic calculi
for sub-logics of a base logic from simple derivable rules in the base calculus.
In contrast, for us, relaxations of analyticity are the parameter for capturing
extensions of the base logic. In this sense, analyticity is the lower-limit of our
investigation: we are willing to give up analyticity in a carefully considered way,
to preserve the sequent calculus formalism. Fitting [7] proved analyticity of the
sequent calculus for several modal logics by logic-specific semantic argument
and asked if the “theorems could be established by a more uniform approach”.
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Our methodology suggests that it may indeed be possible to obtain analyticity
(and its relaxations) for modal logics in a uniform manner.

Fig. 1. The single-conclusioned sequent calculus FLe

2 Preliminaries

In this paper we consider extensions of the commutative Full Lambek calculus
FLe (see Fig. 1), including intermediate and normal modal logics. The language
of these logics may be inferred from their calculi. The connective · is called fusion
(or multiplicative conjunction), e.g. [6,8]. A sequent is a tuple (Γ,Δ) of formula
multisets (written as Γ ⇒ Δ). It is single-conclusioned if Δ contains at most
one formula, and multi-conclusioned otherwise. Throughout, ¬A will abbrevi-
ate A → ⊥. A,B,C, . . . will be used for formulas/formula variables, Γ,Δ,Π, . . .
for formula multisets/formula multiset variables. Π is taken to contain at most
one formula. A Ω-instantiation of a formula A is a uniform substitution of the
propositional variables of A by elements from the set Ω.

Rules and Rule Instances. An explicit distinction between a rule and a
rule instance will be made only where required. An instance of a rule (r) is
denoted σ(r), where σ is a function mapping the structure variables in (r) to
concrete elements of the corresponding type. E.g. in an instance σ(cut) of (cut)
(Fig. 1), σ maps the multiset variables Γ and Δ to (possibly empty) multisets
of formulas, the formula variable A to a formula, and the structure variable Π
to a multiset of formulas of size ≤ 1.

Axiomatic Extensions. Let S be a sequent calculus and F a set of formulas.
S + F denotes the extension of S with initial sequents {⇒ A|A ∈ F}. Initial
sequents are rules with no premises. Except in special cases, it is easily seen
that S + F fails cut-elimination even if S has cut-elimination.

Derivability. For a set F ∪ {S} of sequents, F �S S (resp. F �cf
S S) denotes

that S is derivable (resp. cut-free derivable) from F using the rule instances in
S. If F = ∅, then we say that S is derivable (cut-free derivable) and write �S S

(�cf
S S). Note: F �S S denotes a derivation from a fixed set F . In contrast,

substitution instances of F can be used in �S+F S.
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Let subf(S) denote the set of subformulas in a formula/sequent S. For a
multiset F of formulas, let 
F be the fusion of all formulas in F (1 if F is
empty). For sequent calculi where conjunction ∧ and fusion · conflate (i.e. in the
presence of contraction c and weakening w), we use just the single connective ∧.
Then 
F is defined as a conjunction of all formulas in F (� if F is empty).

A bounding function is a map from a sequent to a set of formulas. In the
following two definitions, S is a sequent calculus, g is a bounding function, S is
an arbitrary sequent and F is a set of initial sequents of S.

Definition 1 (g-, (g,F)-bounded derivation). A derivation of S in S is
g-bounded if every formula in the derivation is a subformula of an instanti-

ation of an initial sequent of S by formulas in g(S).
(g,F)-bounded if it is g-bounded and additionally every cut rule instance

and every initial sequent instance ⇒ A from F occurs together as shown below,
where A is a g(Γ ⇒ Π)-instantiation of a formula in F .

⇒ A Γ,A ⇒ Π
(cut)

Γ ⇒ Π

Intuitively, g-boundedness is a global relaxed-analyticity property on the
derivation. Meanwhile, (g,F)-boundedness specifies also that cuts and initial
sequent instances of F occur together and only together, and that the cut-
formula satisfies a local relaxed-analyticity property.

The particular relaxation of analyticity is determined by the bounding func-
tion g. In particular, a ga-bounded derivation of S with ga(S) = {A|A ∈ subf(S)}
is essentially an analytic derivation (but not quite, since subformulas of the initial
sequents may also occur).

The global/local relaxed analyticity properties are analogous to the
global/local subformula properties considered in Kowalski and Ono [12].

Definition 2 (g-, (g,F)-bounded sequent calculus). A sequent calculus S
is g-bounded ((g,F)-bounded) if every sequent derivable in S has a g-bounded
(resp. (g,F)-bounded) derivation.

A g - or (g,F)-bounded derivation/sequent calculus for some g and F is referred
to as a bounded derivation/sequent calculus.

For an associative binary connective ♥, define the bounding functions:

g♥(S) := {A1♥ . . . ♥An|Ai ∈ subf(S)}
g1♥(S) := {A1♥ . . . ♥An|Ai ∈ subf(S), and Ai = Aj iff i = j}

Note that the set g1♥(S) is always finite, whereas g♥(S) is not. As an exam-
ple, g1·(p ⇒ q) = {p, q, p · q, q · p}. A g♥-bounded derivation of S would only
contain subformulas of instantiations of the initial sequents by formulas of the
form A1♥ . . . ♥An where Ai ∈ subf(S). A g1♥-bounded derivation additionally
requires that there is no repetition in A1, . . . , An.

Hypersequent Calculi are a generalisation of sequent calculi. Each proof
rule is built from hypersequents i.e. finite multisets of sequents S1 | . . . | Sn.
Each Si is said to be a component of the hypersequent.
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Every sequent calculus S can be embedded into a hypersequent calculus HS;
replace each rule (r) in S with (Hr) (see below) where the new structure vari-
able G can be instantiated with a hypersequent (possibly empty). In addition
to the rules (Hr), HS contains the structural rules of external weakening (ew)
and external contraction (ec).

S1 . . . Sn

S′ (r)
G | S1 . . . G | Sn

G | S′ (Hr) G
G | S

(ew)
G | S | S

G | S
(ec)

The embedding is conservative, i.e. no new sequents are provable in HS.
Some axiomatic extensions of S cannot be captured analytically by extending

S with sequent rules, but they can be captured analytically by extending HS
with “proper” hypersequent rules that act on many sequents simultaneously.

Example 3. Let lin denote (p → q) ∨ (q → p). A sequent calculus for proposi-
tional Gödel logic is obtained by adding ⇒ lin to Full Lambek calculus with
exchange, contraction and weakening (denoted FLecw, or LJ). Cut is inelim-
inable. A cut-free hypersequent calculus is obtained by adding (com) [2] to HLJ.

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2

G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2
(com)

Several [3,13,21] cut-free hypersequent calculi for S5 have been given. E.g. in [3],
a cut-free hypersequent calculus for S5 is obtained by adding (MSAv) to HS4.

G | Γ1,�Γ2 ⇒ �Δ2,Δ1

G | Γ1 ⇒ Δ1 | �Γ2 ⇒ �Δ2
(MSAv)

In the above examples, the structure variable G is called the context. The
remaining components in the rule are called the active components.

3 A Guided Example Demonstrating the Methodology

We demonstrate by transforming a cut-free hypersequent derivation dh of ⇒ F
in HLJ + (com) into a bounded sequent derivation ds of ⇒ F in LJ + lin
through an example. Assume that dh contains a single instance of (com) above
an instance of (ec). Then it has the following form:

π1

Σ1, Γ1 ⇒ Π1

π2

Σ2, Γ2 ⇒ Π2 (com)
Σ1, Γ2 ⇒ Π1|Σ2, Γ1 ⇒ Π2

· · ·
Γ ′ ⇒ Π ′|Γ ′ ⇒ Π ′

(ec)
Γ ′ ⇒ Π ′

· · ·
⇒ F

Construct the sequent derivation ds as follows, utilising portions of dh:
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⇒ α

Γ2 ⇒ ∧Γ2

π1

Σ1, Γ1 ⇒ Π1
. . .

Σ1,∧Γ1 ⇒ Π1 →L∧Γ2 → ∧Γ1, Σ1, Γ2 ⇒ Π1

· · ·
∧Γ2 → ∧Γ1, Γ

′ ⇒ Π ′

Γ1 ⇒ ∧Γ1

π2

Σ2, Γ2 ⇒ Π2
. . .

Σ2,∧Γ2 ⇒ Π2 →L∧Γ1 → ∧Γ2, Σ2, Γ1 ⇒ Π2

· · ·
∧Γ1 → ∧Γ2, Γ

′ ⇒ Π ′
∨L

(∧Γ2 → ∧Γ1) ∨ (∧Γ1 → ∧Γ2), Γ ′ ⇒ Π ′
cut(α)

Γ ′ ⇒ Π ′
· · ·

⇒ F

The cut formula α is σ(lin) where σ(p) = ∧Γ2 and σ(q) = ∧Γ1. Since dh is
cut-free: Γ1 ∪ Γ2 ⊆ subf(F ). So ds is a g∧-bounded derivation. By construction,
the cut-rule occurs together with and only with the lin initial sequent instance.
Furthermore, again because dh is cut-free: Γ1 ∪ Γ2 ⊆ subf(Γ ′ ∪ Π ′). Thus a
stronger result holds: ds is a (g∧, {lin})-bounded derivation.

4 The Disjunction Form of a Rule: A Formal Definition

Let us summarise the idea in the previous section. Given a cut-free hyperse-
quent derivation of ⇒ F , we aim to obtain a sequent calculus derivation of each
component of each hypersequent in it. If the hypersequent derivation contains
an instance of a “proper” structural rule (r), the sequent calculus derivation is
forced to append to the LHS of its ith active conclusion component a suitable
formula Di. The formula ∨iDi can be defined explicitly (Definition 9) from the
form of (r) such that it satisfies (Theorem 12) the properties of a disjunction
form (Definition 5), which is formally defined in this section; these conditions
make the transformation work. E.g. (provability) guarantees that ∨iDi is no
stronger than the axiom corresponding to (r). Thus ⇒ ∨iDi is used as an initial
sequent without extending the logic. The disjunction form formulas are elimi-
nated at the bottom of the sequent calculus derivation of ⇒ F via bounded cuts
on these initial sequents.

Definition 4. For a multiset Δ of formulas, define Δ#(Γ ⇒ Π) as Δ,Γ ⇒ Π.

Let Γ1, . . . , Γm be the structure variables in a hypersequent rule (r); associate
with each Γi a propositional variable ̂Γi. Given an instantiation σ on (r), define
the extended instantiation σ̂ which maps each ̂Γi to the formula 
σ(Γi).

Definition 5 (disjunction form of a rule). Let H be a hypersequent calculus
and (r) a hypersequent rule with set H of premises and conclusion G|S1| . . . |Sn

built from the structure variables Γ1, . . . , Γm. A formula A1 ∨ . . .∨An built from
the propositional variables ̂Γ1, . . . , ̂Γm is a disjunction form of (r) if:

(splitting) For every rule instance σ(r) and every i ≤ n:

σ(H) �cf
H σ(G | σ̂(Ai)#Si)



100 A. Ciabattoni et al.

(provability) �H+(r) A1 ∨ . . . ∨ An

We use the term “splitting” because the condition asserts that we can split the
active components of a structural rule instance: the ith active component σ(Si)
appended with the disjunct σ̂(Ai) in the antecedent is cut-free derivable from
the premises of the rule without using (r). In effect:

σ(H)

σ(G | S1 | . . . | Sn)
(r)

�

⎧
⎪⎨

⎪⎩

σ(H)
.
..
.

H

σ(G | σ̂(A1)#S1) , . . . ,

σ(H)
.
..
.

H

σ(G | σ̂(An)#Sn)

⎫
⎪⎬

⎪⎭

There are pathological ways to obtain (splitting), for example by setting
each Ai as ⊥. Such formulas are ruled out by the (provability) condition.

Example 6. ( ̂Γ2 → ̂Γ1) ∨ ( ̂Γ1 → ̂Γ2) is a disjunction form of (com) in Eg. 3.

5 Disjunction Forms for Commutative Substructural
Logics

We show how to compute a disjunction form of analytic rules for substructural
logics. The logics we consider are extensions of FLe by axioms in the class P3

(P ′
3) of the substructural hierarchy [6]. Recall that the class P ′

3 is a modification
of P3 used in absence of weakening. Let us write B∧1 to denote B ∧ 1. For
A = A1 ∨ · · ·∨An (head connective of Ai is not disjunction), set A∨ := (A1)∧1 ∨
· · · ∨ (An)∧1 and let P ′

3 := {A∨|A ∈ P3}. Let F∨ denote {A∨|A ∈ F}.

Definition 7 (amenable). A set F of formulas is amenable if (i) F ⊆ P3 and
contains weakening p · q → p, or (ii) F ⊆ P ′

3 consists of acyclic formulas.

The interest in amenable axiomatic extensions is that they admit a cut-free
hypersequent calculus. This result is established in [6] and summarised below.

Theorem 8 ([6]). From every finite set F of amenable formulas, a finite set RF
of (‘analytic’) structural hypersequent rules can be computed such that

for every sequent S : �FLe+F S if and only if �cf
HFLe+RF S

E.g., F = {p · q → p, lin} is an amenable set of formulas and RF is the set
containing the rules of weakening and (com) (Example 3); hence HFLew+(com)
is a cut-free hypersequent calculus for FLew + lin. Likewise, the set F ′ = {lin∨}
is amenable (where lin∨ = (p → q)∧1 ∨ (q → p)∧1), RF ′ is the rule (com), and
so HFLe + (com) is a cut-free hypersequent calculus for FLe + lin.

Analytic structural hypersequent rules have one active component in each
premise and additionally satisfy the following properties.

(linear conclusion) All structure variables in the conclusion are distinct.
(separation) No structure variable occurs both on the left hand side (LHS)

and the right hand side (RHS) of a sequent.
(coupling) For each conclusion component with variable Π on the RHS there

is a variable Σ on the LHS such that the pair (Σ,Π) always occur together
in the premises.

(subformula property) Each variable in the premise occurs in the conclusion.
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Computing the Disjunction Form of an Analytic Rule. Select exactly
one structure variable occurrence in the active component of each premise (‘dis-
tinguished variable occurrence’). This induces an association of the distinguished
variable (and the premise it is contained in) to the unique conclusion component
containing this variable. We furthermore stipulate that every variable Σ that is
coupled (i.e. as (Σ,Π) for some Π) is chosen as distinguished.

Fig. 2. Association form. S, T , U , V, W denote multisets of structure variables. The
distinguished variable occurrences in the premises and their associated occurrences in
the components of the conclusion are indicated in boldface. The index sets I, L, Ji, Mij

and Nij are assumed to be pairwise disjoint.

The analytic rule together with the choice of distinguished variables can be
pictured in association form (see Fig. 2). Observe that:

– A structure variable declared as distinguished in a premise with empty RHS
may appear in a conclusion component with or without empty RHS.

– Distinct premises may be associated to the same conclusion component,
although not necessarily due to the same distinguished variable.

– Some conclusion components with empty RHS might not be associated to
any premise (captured by the possibility that si = 0).

– The multisets S, T and U may contain further (non-distinguished) occurences
of the distinguished variables Γ and Δ, but no further occurences of Σ due
to the coupling property. The multisets V and W do not contain any further
occurences of distinguished variables due to the linear conclusion property.

For a multiset S = {Γ1, . . . , Γn} of structure variables, let ̂S denote the multi-
set { ̂Γ1, . . . , ̂Γn} of propositional variables.

Definition 9 (Form(r, i)). For a rule (r) in association form (Fig. 2), let

Form(r, i) :=

⎛

⎝
̂Vi · 


⎧

⎨

⎩

̂Γij ∧ (¬
∨

l∈Mij


̂Tijl) | j ≤ ri

⎫

⎬

⎭

→
∨

j∈Ji


 ̂Sij

⎞

⎠

∧1

(i ∈ I)

Form(r, i) :=

⎛

⎝¬

⎛

⎝
̂Wi · 


⎧

⎨

⎩

̂Δij ∧ (¬
∨

l∈Nij


 ̂Uijl) | j ≤ si

⎫

⎬

⎭

⎞

⎠

⎞

⎠

∧1

(i ∈ L)

Finally, let Form(r) :=
∨

i∈I∪L Form(r, i).

Example 10. Here are association forms of three well-known structural rules.
In (com), the choice of distinguished variables Σ1 and Σ2 is determined by the
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coupling property. In (lq) and (wc), we could also have chosen Γ resp. the second
occurence of Δ as distinguished.

G | Γ1,Σ1 ⇒ Π1 G | Γ2,Σ2 ⇒ Π2

G | Γ2,Σ1 ⇒ Π1 | Γ1,Σ2 ⇒ Π2
(com)

G | Δ, Γ ⇒
G | Δ ⇒| Γ ⇒ (lq)

G | Δ, Δ ⇒
G | Δ ⇒ (wc)

Example 11. Consider the (com) rule from Example 10. Pattern-matching the
rule with Fig. 2 we obtain: I = {1, 2}, L = ∅, V1 = {Γ2}, V2 = {Γ1}, J1 = J2 =
{1}, S11 = {Γ1}, S21 = {Γ2}, r1 = r2 = 0:

Form(com, 1) :=

⎛

⎝
̂V1 · 

{

̂Γ1j ∧ (¬
∨

l∈M1j

̂T1jl) | j ≤ r1

}

→
∨

j∈{1}

 ̂S1j

⎞

⎠

∧1

Form(com, 2) :=

⎛

⎝
̂V2 · 

{

̂Γ2j ∧ (¬
∨

l∈M2j

̂T2jl) | j ≤ r2

}

→
∨

j∈{1}

 ̂S2j

⎞

⎠

∧1

So Form(com) = ( ̂Γ2 · 1 → ̂Γ1)∧1 ∨ ( ̂Γ1 · 1 → ̂Γ2)∧1. Also:

Form(lq) = (¬(1 · (Δ̂ ∧ ¬Γ̂ )))∧1 ∨ (¬(Γ̂ · 1))∧1 Form(wc) = (¬(1 · (Δ̂ ∧ ¬Δ̂)))∧1

Theorem 12. Form(r) is a disjunction form of the analytic rule (r).

Proof. Given an analytic rule (r), obtain Form(r) from its association form.
We require (c.f. Definition 5) (i) provability, i.e. �HFLe+(r)⇒ Form(r), and (ii)
splitting.

(i) Apply the invertible rules (ec), (∨L), (→R), (·L) backwards from ⇒ Form(r)
to obtain the hypersequent below. The substitution σ that makes it the con-
clusion of an instance σ(r) of (r) in association form (cf. Fig. 2) is obtained
by pattern-matching (refer to variables shown above hypersequent below),
⎡

⎢

⎢

⎣

̂Vi, {

Γij Σi

︷ ︸︸ ︷

̂Γij ∧ (¬
∨

l∈Mij


̂Tijl) | j ≤ ri} ⇒

Πi
︷ ︸︸ ︷

∨

j∈Ij


 ̂Sij

⎤

⎥

⎥

⎦

i∈I

|

⎡

⎢

⎢

⎣

̂Wi, {

Δij

︷ ︸︸ ︷

̂Δij ∧ (¬
∨

l∈Nij


 ̂Uijl) | j ≤ si} ⇒

⎤

⎥

⎥

⎦

i∈L

σ(G) := ∅ σ(Σi) := ∅ σ(Πi) :=
∨

j∈Ji


( ̂Sij) (i ∈ I)

For Vi = {Q1, . . . , Qn}, set σ(Qs) := ̂Qs

σ(Γij) := ̂Γij ∧ ¬
∨

l∈Mij


(̂Tijl) (i ∈ I, j ≤ ri)

For Wi = {Q1, . . . , Qn}, set σ(Qs) := ̂Qs (i ∈ L)

σ(Δij) := ̂Δij ∧ ¬
∨

l∈Nij


( ̂Sijl) (i ∈ L, j ≤ si)
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Applying σ(r) backwards to the hypersequent above, it remains to derive
each premise of σ(r) in HFLe.
We illustrate with the premise G | Sij , Σi ⇒ Πi of (r) (i ∈ I, j ∈ Ji). In σ(r)
this becomes σ(Sij) ⇒

∨

j′∈Ji

( ̂Sij′). Obtain σ(Sij) ⇒ 
( ̂Sij) using (∨R).

Let Sij = {P1, . . . , Pn} (each Ps is a structure variable). Applying (·R) back-
wards to the latter sequent we obtain σ(Ps) ⇒ ̂Ps (1 ≤ s ≤ n). It remains to
verify derivability of the latter. Since Ps occurs in the premise in the LHS, it
must occur in the conclusion (subformula property) in the LHS (separation).
Additionally it cannot be a Σ variable (coupling). Therefore either Ps ∈ Vi,
Ps ∈ Wi, Ps = Γuv or Ps = Δuv. In the first two cases, due to the definition
of σ(Vi) and σ(Wi), we have the assignment σ(Ps) := ̂Ps and hence deriv-
ability. In the latter two cases we get ̂Γuv ∧ ¬

∨

l∈Muv

(̂Tuvl) ⇒ ̂Γuv and

̂Δuv ∧ ¬
∨

l∈Nuv

( ̂Suvl) ⇒ ̂Δuv respectively. Applying (∧L) backwards we

get ̂Γuv ⇒ ̂Γuv and ̂Δuv ⇒ ̂Δuv.
(ii) Proving that Form(r) satisfies (splitting) follows from a straightforward

inspection so we simply set out what needs to be proved. Let (r) be given
as

H
G | [Si]i∈I∪L

(r)

We have to show that for any instantiation σ and for any i ∈ I∪L, the hyper-
sequent σ(G | σ̂(Form(r, i))#Si) is derivable from σ(H) without invoking
(r) or (cut). For i ∈ I, the hypersequent σ(G | σ̂(Form(r, i))#Si) is

σ(G) | σ̂(Form(r, i)), σ(Vi), σ(Γi1), . . . , σ(Γiri
), σ(Σi) ⇒ σ(Πi) (1)

From Definition 9 we have that σ̂(Form(r, i)) has the following form:
⎛

⎝
σ(Vi) · 


⎧

⎨

⎩

σ(Γij) ∧ (¬
∨

l∈Mij


σ(Tijl)) | j ≤ ri

⎫

⎬

⎭

→
∨

j∈Ij


σ(Sij)

⎞

⎠

∧1

Now σ(H) �cf
HFLe

(1) can be witnessed by decomposing σ̂(Form(r, i)). �

Remark 13. Form(r) is not necessarily the P3/P ′
3 formula that generates (r)

and might not coincide with the formula obtained by suitably reversing the
algorithm in [6]. E.g., in the guided example (Sect. 3) we used the formula
( ̂Γ2 → ̂Γ1)∨( ̂Γ1 → ̂Γ2) as a disjunction form of (com), but our method computes
a slightly different (though equivalent) form (Example 11). The advantage of the
method given here is that it works uniformly for substructural and modal logics,
and it does not require any familiarity with the algorithm in [6].

6 Bounded Calculi for Commutative Substructural Logics

Let F be a set of amenable axioms and RF the corresponding set of ana-
lytic structural hypersequent rules. In some cases (e.g. weakening, contraction
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axioms), the computed rule(s) may have just a single active component conclu-
sion and hence they correspond to sequent structural rules. We call these sequent
axioms, and they belong to the class N2 in the (Pi,Ni) substructural hierarchy.

Theorem 14. Let Fseq ∪ F be a finite set of amenable axioms such that Fseq

is a set of sequent axioms with corresponding sequent rules Rseq. Also set F ′ =
{Form(r)|r ∈ RF}. For every sequent S, the following are equivalent:

1. �FLe+Fseq+F S

2. �cf
FLe+Rseq

ΓS#S for a multiset ΓS of g·(S)-instantiations of elements in F ′.
3. S has a (g·,F ′)-bounded derivation in FLe + Rseq + F ′.

Proof. (1) ⇒ (2). Suppose that �FLe+Fseq+F S. By Theorem 8:
�cf

HFLe+RFseq+RF S. Let d0 be the hypersequent derivation witnessing the lat-
ter. Define the rank of a derivation in HFLe + Rseq + RF as the maximum
number of RF -instances on a branch. We successively eliminate all bottommost
occurrences of RF , obtaining a hypersequent derivation of ΓS#S where ΓS is
an increasing (with each round of elimination/reduction of rank) multiset of
g·(S)-instantiations of F ′.

First observe that since d0 is cut-free, it has the following property:

(∗) every instance of a rule from RF instantiates its structure variables
with a multiset of elements from subf(S)

Identify the bottommost RF -instances σ1(r1), . . . , σn(rn) in d0. Denote
the conclusion of σi(ri) by G|S1

i | . . . |Ski
i . By Theorem 12, Form(ri) =

∨

j≤ki
Form(ri, j) is a disjunction form for ri, i.e. a formula built from the

structure variables in ri satisfying (splitting) and (provability) in Definition 5.
From (∗) we establish that each σ̂i(Form(ri, j)) is an instantiation of Form(ri, j)
by formulas in g·(S).

Set δ1 := d0 and fix an n-tuple (j1, . . . , jn) satisfying ji ≤ ki (i ≤ n).
for i = 1 to n do
Use (splitting) to obtain a derivation of G|σ̂i(Form(ri, ji))#Sji

i using the
derivations of the premises of σ̂i(ri) in d0. Now use (ew) to derive the following.

G|S1
i | . . . |σ̂i(Form(ri, ji))#Sji

i | . . . |Ski
i (2)

Replace the subderivation (in δi) of the conclusion G|S1
i | . . . |Ski

i of σi(ri) with
the above derivation of (2). The result object is not yet a derivation. The fol-
lowing changes are required: when an additive rule or (ec) occurs below (2) (left
column below), proceed as in the right column to add the missing formula. Here
we are making use of the fact that every Form(ri, ji) has the form B ∧ 1 and
hence can be inserted in the LHS using (1L) and (∧L).

G|Γ ′ ⇒ Π′|Γ ′ ⇒ Π′

G|Γ ′ ⇒ Π′

G|σ̂i(Form(ri, ji)), Γ ′ ⇒ Π′|Γ ′ ⇒ Π′
(1L), (∧L)

G|σ̂i(Form(ri, ji)), Γ ′ ⇒ Π′|σ̂i(Form(ri, ji)), Γ ′ ⇒ Π′

G|σ̂i(Form(ri, ji)), Γ ′ ⇒ Π′

G|Γ ′ ⇒ A G|Γ ′ ⇒ B

G|Γ ′ ⇒ A ∧ B
G|σ̂i(Form(ri, ji)), Γ ′ ⇒ A

G|Γ ′ ⇒ B
(1L), (∧L)

G|σ̂i(Form(ri, ji)), Γ ′ ⇒ B

G|σ̂i(Form(ri, ji)), Γ ′ ⇒ A ∧ B
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A derivation of σ̂1(Form(r1, j1)), . . . , σ̂i−1(Form(ri−1, ji−1)), σ̂i(Form(ri, ji))#S
is obtained. Call this derivation δ′

i and set δi+1 := δ′
i. end for

The output is a derivation of the hypersequent below left for every
(j1, . . . , jn). Since σ̂i(Form(ri)) =

∨

j≤ki
σ̂i(Form(ri, j)), repeatedly apply (∨L)

to this family of derivations to obtain ultimately the derivation d1 of below right.

σ̂1(Form(r1, j1)), . . . , σ̂n(Form(rn, jn))#S σ̂1(Form(r1)), . . . , σ̂n(Form(rn))#S

By construction, each σ̂i(Form(ri)) is a g·(S)-instantiation of Form(ri).
Derivation d1 was obtained from d0 (without adding any cuts) by eliminat-
ing all bottommost RF -instances, without modifying any non-bottommost RF -
instances. Thus d1 is cut-free, has lesser rank than d0 and satisfies (∗).

Identify the bottommost RF instances in d1 and repeat the above argument,
to obtain ultimately a cut-free derivation dN of ΓS#S in HFLe + Rseq + RF
with rank 0, and hence also in HFLe +Rseq. As the derivation contains no rules
which act on more than one component in the premise or conclusion, we obtain
the cut-free sequent derivation of ΓS#S in FLe + Rseq.

(2) ⇒ (3). Given a cut-free derivation of {A1, . . . , An}#S in FLe + Rseq

where each Ai is a g·(S)-instantiations of some element in F ′, perform cuts on
A1, . . . , An to obtain a derivation of S. This derivation is (g·,F ′)-bounded.

(3) ⇒ (1). Theorem 12 states that each Form(r) ∈ F ′ is derivable in HFLe+
RF . So it follows from (3) that �cf

HFLe+Rseq+RF S. Then Theorem 8 implies (1).
�

Corollary 15. FLe +F has a (g·,F ′)-bounded sequent calculus for every finite
set F of amenable axioms and F ′ = {Form(r)|r ∈ RF}.

6.1 Application: Decidability and Complexity Of FLecm Extensions

The bounded sequent calculi obtained above can be used to give a simple and
uniform proof of decidability for every amenable axiomatic extension of FLecm.
Here m is the mingle rule corresponding to the sequent axiom p → p · p.

Δ,Γ1 ⇒ Π Δ,Γ2 ⇒ Π

Δ,Γ1, Γ2 ⇒ Π
(m)

Theorem 16. FLecm+F is decidable for each finite set F of amenable axioms.

Proof. Let F ′ := {Form(r)|r ∈ RF}. Given a sequent S, let Γ ∗ be the (finite)
multiset of all g1·(S)-instantiations of F ′ without repeats. We claim that

�FLecm+F S iff �FLecm Γ ∗#S

The result follows since FLecm is decidable [10,11] and Γ ∗ is computable from S.
The direction right to left follows from (2) =⇒ (1) in Theorem 14.

For the other direction, (1) =⇒ (2) in Theorem 14 guarantees the existence
of a multiset ΓS of g·(S)-instantiations of F ′ such that �FLecm ΓS#S. Due to
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mingle and contraction in FLecm, we have that �FLecm B ↔ Bn for every
formula B and Bn = B · . . . · B (n ≥ 1 occurrences). It follows that for every
g·(S)-instantiation A of a formula in F ′, there is a g1·(S)-instantiation A1 of the
same formula such that �FLecm A1 ⇒ A. By applying cuts with such sequents
A1 ⇒ A to the proof of �FLecm ΓS#S, we obtain a derivation of Γ ′

S#S. Applying
contractions to this sequent to remove repeated elements in Γ ′

S , we obtain a
derivation of Γ ′′

S #S such that Γ ′′
S ⊆ Γ ∗. Now obtain Γ ∗#S by introducing

the elements in Γ ∗ \ Γ ′′
S by (1L), (∧L) and (∨L) (each A1 ∈ Γ ∗ has the form

(A1)∧1 ∨ . . . ∨ (An)∧1). �

From the above proof we can also obtain a complexity upper bound. The size
of Γ ∗ in the above proof is O(2|S|) and this multiset can be computed from S
in exponential time. It follows that the decision problem for each amenable
extension of FLecm is at most exponentially greater than FLecm.

Deciding if a formula is derivable in FLecm is known to be PSPACE-hard [9]
but as far as we are aware, no upperbound has been presented in the literature.
Let us sketch how to obtain an EXPTIME upperbound using forward proof
search. In the presence of contraction and mingle, we can treat the antecedent
of a sequent as a set instead of a multiset. In an analytic proof of a sequent S,
there are at most 2|S| · |S| different sequents (with sets as antecedents) that
could appear in the proof. Compute in successive steps which of these sequents
is derivable in a proof with depth at most 1, 2, 3, . . . , 2|S| · |S|, terminating if a
step does not derive any new sequents. Since each step except perhaps the last
derives at least one new sequent, and since no more than 2|S| · |S| sequents may
be derived, it follows that S is derivable iff S is encountered in one of these steps.
Each step takes O(2|S|) time so the entire procedure takes O(2|S|) ·2|S| · |S| time
and the EXPTIME upperbound follows.

In terms of the algebraic semantics [8], Theorem 16 establishes the decidabil-
ity of the equational theory for the corresponding classes of residuated lattices.

Example 17. Our decidability result applies to a large class of logics includ-
ing Uninorm Mingle Logic UML [18] (see [17] for an alternative proof of
decidability) axiomatized as FLecm + (p → q)∧1 ∨ (q → p)∧1, as well as
FLecm + (p · ¬p) → p (⊂ LJ), and FLecm + (Bwk) (k ≥ 2) where (Bwk)
is ∨k

i=0(pi → ∨j �=ipj)∧1.

The proof of Theorem16 also yields the following refinement of Corollary 15.

Lemma 18. FLecm + F has a (g1·,F ′)-bounded calculus for every finite set F
of amenable axioms and F ′ = {Form(r)|r ∈ RF}.

7 The Methodology Applied to Modal Logics

We shall extract bounded sequent calculi from cut-free hypersequent calculi for
three normal modal logics. First, observe that the sequent calculus S4 is obtained
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by the addition of the rules (T) and (4) to the multi-conclusioned sequent cal-
culus LK for classical propositional logic. While S4 has cut-elimination, the
sequent calculus S5 = S4 + (5) famously fails cut-elimination [20] and, despite
much effort, no natural cut-free sequent calculus for the logic has been found.

A,Γ ⇒ Δ

�A,Γ ⇒ Δ
(T ) �Γ ⇒ A

�Γ ⇒ �A
(4)

�Γ ⇒ A,�Δ

�Γ ⇒ �A,�Δ
(5)

Let HS4 denote the hypersequent version of the sequent calculus S4.
Kurokawa [13] has shown that the hypersequent calculi in the first column
below satisfy cut-elimination, and are sound and complete for the corresponding
axiomatisations.

HS4 + (RMS) S4.2sc = S4 + ¬�¬�A → �¬�¬A

HS4 + (MC) S4.3sc = S4 + �(�A → B) ∨ �(�B → A)
HS4 + (MS) S5sc = S4 + ¬�A → �¬�A

The rules (RMS), (MC) and (MS) are given below. The methodology in Sect. 5
has been used to identify the distinguished variables (highlighted in bold). Note:
for this purpose we consider a term of the form �Γ to be a single structure
variable. Also let ̂�Γ denote a propositional variable.

G|�Γ, �Δ ⇒
G|�Γ ⇒ |�Δ ⇒ (RMS)

G|Γ1, �Σ2 ⇒ Π1 G|Γ2, �Σ1 ⇒ Π2

G|Γ1, �Σ1 ⇒ Π1|Γ2, �Σ2 ⇒ Π2
(MC)

G|�Γ, Δ ⇒ Π

G|�Γ ⇒ |Δ ⇒ Π
(MS)

Directly from Definition 9 we obtain:

Form(RMS) = (¬(1 · (̂�Γ ∧ ¬̂�Δ)))∧1 ∨ (¬(̂�Δ · 1))∧1

Form(MC) = (̂�Σ1 · 1 → ̂�Σ2)∧1 ∨ (̂�Σ2 · 1 → ̂�Σ1)∧1

Form(MS) = (¬(̂�Γ · 1))∧1 ∨ (̂�Γ · 1)∧1

The modal case requires the following additional uniform amendments: (i) the ∧1
in every disjunct is replaced by a leading �, (ii) the 1 is omitted, (iii) a � is
introduced in front of every propositional variable ̂�Γ , and (iv) every maximal
subformula ¬B with B not boxed is substituted by ¬�B. Let Form�(r) denote
the image under these amendments. Then

Form�(RMS) = �¬�(�̂�Γ ∧ ¬�̂�Δ) ∨ �¬�(�̂�Δ)

Form�(MC) = �(�̂�Σ1 → �̂�Σ2) ∨ �(�̂�Σ2 → �̂�Σ1)

Form�(MS) = �¬�(�̂�Γ ) ∨ �(�̂�Γ )

The motivation for these amendments is that the analogue of Theorem 12
can now be verified by inspection for r ∈ {RMS,MC,MS} i.e. provability
of Form�(r) in HS4 + r, and that Form�(r) satisfies splitting in HS4.
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For example, here is a derivation of Form�(RMS) in HS4 + (RMS):

̂�Δ ⇒ ̂�Δ

¬�̂�Δ,�̂�Δ ⇒
(¬L)

�(�̂�Γ ∧ ¬�̂�Δ),�(�̂�Δ) ⇒
(T ), (∧L)

�(�̂�Γ ∧ ¬�̂�Δ) ⇒ |�(�̂�Δ) ⇒
(RMS)

⇒ �¬�(�̂�Γ ∧ ¬�̂�Δ)| ⇒ �¬�(�̂�Δ)
(4), (¬R)

⇒ �¬�(�̂�Γ ∧ ¬�̂�Δ) ∨ �¬�(�̂�Δ)
(ec), (∨L)

For an instantiation σ on (r), define the extended instantiation σ̂ which
maps each ̂�Γ to the formula ∧�σ(Γ ) (c.f. paragraph following Definition 4).
Hence �σ(Γ ) ⇒ σ̂(̂�Γ ) is derivable. The following witnesses the splitting of
Form�(RMS) in HS4.

�σ(Γ ) ⇒ σ̂(�̂Γ )

�σ(Γ ) ⇒ �σ̂(�̂Γ )
(4)

�σ(Γ ), �σ(Δ) ⇒
�σ(Γ ), σ̂(�̂Δ) ⇒

(∧L)

�σ(Γ ), �σ̂(�̂Δ) ⇒
(T )

�σ(Γ ) ⇒ ¬�σ̂(�̂Δ)
(¬R)

�σ(Γ ) ⇒ �σ̂(�̂Γ ) ∧ ¬�σ̂(�̂Δ)
(∧R)

�σ(Γ ) ⇒ �(�σ̂(�̂Γ ) ∧ ¬�σ̂(�̂Δ))
(4)

�σ(Γ ), ¬�(�σ̂(�̂Γ ) ∧ ¬�σ̂(�̂Δ)) ⇒
(¬L)

�σ(Γ ), �¬�(�σ̂(�̂Γ ) ∧ ¬�σ̂(�̂Δ)) ⇒
(T )

�σ(Δ) ⇒ σ̂(�̂Δ)

�σ(Δ) ⇒ �σ̂(�̂Δ)
(4)

�σ(Δ) ⇒ �(�σ̂(�̂Δ))
(4)

�σ(Δ), ¬�(�σ̂(�̂Δ)) ⇒
(¬L)

�σ(Δ), �¬�(�σ̂(�̂Δ)) ⇒
(T )

We can thus obtain the following (the proof is analogous to that for Theo-
rem 14 and the strengthening in Lemma18).

Theorem 19. The calculus S4.2sc (S4.3sc, S5sc) has a (g1∧,Form�(RMS))-
(resp. (g1∧,Form�(MC))-, (g1∧,Form�(MS))-) bounded sequent calculus.

A New Syntactic Proof of Analyticity for S5

Although cut-elimination fails in S5, Takano [23] gave an intricate syntactic
proof of analyticity by establishing that only cuts on subformulas are required.
Prior to this, only a semantic argument was known, see Fitting [7].

Although the (g1∧,Form�(MS))-bounded sequent calculus we obtained in
Theorem 19 has a finite proof search space and hence is suited for meta-theoretic
argument, it is natural to ask if it is possible to modify the methodology of this
paper to obtain Takano’s (sharper) result for S5. We are able to answer this in
the affirmative. Here is a simple and rather short proof of analyticity for S5.

Theorem 20. The sequent calculus S5 is analytic.
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Proof. Cut-free HS4+(MS) derives exactly the same sequents as S5sc, and the
latter is (of course) equivalent to S5. Moreover, any instance of the rule (MS)
can be replaced (without introducing cuts) using multiple instances of its single
formula version (MS1) below, so cut-free HS4+(MS1) derives exactly the same
sequents too.

G | �A, Δ ⇒ Π
(MS1)

G | �A ⇒| Δ ⇒ Π

Consider a cut-free derivation d in HS4+ (MS1) of a sequent S. For simplicity,
suppose that d contains a single instance of (MS1) (in the general case, bottom-
most instances of (MS1) are eliminated at each step, c.f. proof of Theorem 14).
From this instance, we can obtain the following derivations in HS4 + (MS1):

�A ⇒ �A (ew)
G|�A ⇒ �A|Δ ⇒ Π, �A

G|�A, Δ ⇒ Π
(ew)

G|�A ⇒ |�A, Δ ⇒ Π

Above left (right), the component �A ⇒ �A (resp. �A,Δ ⇒ Π) has a �A in
the RHS (resp. LHS) that was not present in the original derivation d. Proceed
downward from each hypersequent following the rules in d, (propagating also
these additional �A formulas downwards from premise to conclusion).

This is not possible only if (4) is encountered as this rule permits only a
single formula in the RHS and the additional �A in the RHS would violate
this. Solution: use (5) at this point instead of (4). In this way we obtain (MS1)-
free hypersequent derivations (hence in HS5) of �A#S and S#�A (the latter
denotes that �A is added to the RHS of S). Applying the cut-rule on �A on
these sequents, we obtain a derivation of S in HS5. Since �A occurred in the
cut-free derivation d, it is a subformula of S. Finally: every rule in HS5 has one
active component, so we can extract an analytic derivation of S in S5. �

Concluding Remark: We have investigated what is required in terms of a
relaxation of analyticity—represented via a bounding function—in order to trade
the extended syntax of the hypersequent calculus for a sequent calculus. This
paves the way for a new classification of logics based on their bounding functions.
Identifying which functions are amenable to various meta-theoretic arguments
(think decidability, interpolation and so on) could lead to the development of
a common toolbox of methods applicable over a range of different logics. The
immediate corollaries obtained in this paper demonstrate the potential of our
approach. Finally, our transformations may provide a means of assessing the
logical content of analyticity in the hypersequent calculus (by pegging it to its
corresponding bounded sequent calculus), a problem hitherto unstudied.
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Abstract. Claessen and Rósen have recently presented an automated
theorem prover, intuit, for intuitionistic propositional logic which
utilises a SAT-solver. We present a sequent calculus perspective of the
theory underpinning intuit by showing that it implements a general-
isation of the implication-left rule from the sequent calculus LJT, also
known as G4ip and popularised by Roy Dyckhoff.

1 Introduction

Intuitionistic propositional logic IPL is one of the most important “non-classical”
logics due to its constructive reading of implication. There is a long history of
automated reasoning techniques for deciding validity of IPL-formulae, but most
of them are based on either sequent or tableaux calculi. One of the simplest
procedures for IPL is root-first (a.k.a. backward or goal-directed) proof search
in the LJT (a.k.a. G4ip) sequent calculus [2], as it is guaranteed to terminate
without implementing loop-checking.

Claessen and Rósen [1] have recently presented an automated theorem prover,
intuit, for intuitionistic propositional logic, based on a Satisfiability-Modulo-
Theories (SMT) approach. Their procedure also terminates without requiring
any loop-detection machinery. As of 2015, the intuit prover was the best per-
forming IPL prover, at least when evaluated on about 1200 standard bench-
marks [1], which include for instance the ILTP library [12].

The SMT approach embraced by intuit, organised around the top-level
loop of the DPLL(T ) procedure [11], and the proof-theoretic approach based on
root-first proof search, appear as radically different methodologies; the potential
connections between them was left as an open question. In this paper we rec-
oncile the two approaches, formalising an explicit connection. In particular, we
reformulate a variant of intuit using (a suitable generalisation of) one of the
rules of LJT. The procedure builds an explicit proof when the input formula is
valid, and builds an explicit Kripke counter-model when the formula is not valid.

c© Springer Nature Switzerland AG 2019
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2 Syntax and Kripke Semantics of IPL

In this paper, formulae of IPL, denoted by lowercase Greek letters, are built
from an infinite set of propositional variables V , the “falsum” constant ⊥ and
the connectives ∧, ∨, → with negation defined as ¬α := (α → ⊥). We use
Atm := V ∪ {⊥} for the set of “atoms”, denoted by lowercase Roman letters.

A rooted Kripke model for IPL is a quadruple 〈W,≤, r, ϑ〉 where W is a non-
empty set of “worlds” containing r, and ≤ is a reflexive and transitive binary
relation over W , and the root world r is minimal wrt ≤, and ϑ : W 
→ 2Atm

is a “valuation” mapping each world to a set of propositional variables which
obeys the “persistence” condition: ∀w, v ∈ W, if w ≤ v and p ∈ ϑ(w) then
p ∈ ϑ(v). Given a Kripke model 〈W,≤, r, ϑ〉, the valuation ϑ can be extended
into a “forcing” relation between worlds and formulae as shown below:

w � p iff p ∈ ϑ(w)
w � α ∧ β iff w � α and w � β
w � α ∨ β iff w � α or w � β

w � α → β iff ∀v ≥ w, v � α implies v � β
w � ⊥ never holds

A formula α is IPL-valid if, for all Kripke models 〈W,≤, r, ϑ〉, we have r � α.
The problem of deciding whether a formula is IPL-valid is known to be PSPACE-
complete [13]. For formula set or multiset Γ , we write w � Γ for ∀γ ∈ Γ.w � γ.

A model M for classical propositional logic (CPL), or “classical model”, is
just a set of propositional variables (assigned true). By M |= α we mean that α
is true in model M (following the Boolean truth tables). We write M |= Γ iff
∀γ ∈ Γ. M |= γ. We write Γ �ipl δ when the formula

∧
Γ → δ is IPL-valid and

Γ �cpl δ when it is CPL-valid, that is, when M |= γ for all classical models M .

3 The Theorem Prover intuit

The intuit theorem prover is an intuitionistic prover built on top of a SAT-
solver, following a Satisfiability-Modulo-Theories (SMT) approach. Despite the
fact that SMT-solving works primarily in classical logic and with first-order
theories, Claessen and Rosén [1] show this approach to be relevant to the prob-
lem of deciding IPL-validity. They use a variant of the SMT scheme known as
DPLL(T ) [11], where DPLL is the well-known procedure for SAT-solving and T
is here the “theory of intuitionistic implications”. The main loop of DPLL(T )
can be seen as a particular case of Counter-Example Guided Abstraction Refine-
ment (CEGAR), as we describe next, for the particular case of IPL. A formula
α whose IPL-validity is to be determined is transformed into a set R of classical
“flat clauses”, a set X of intuitionistic “implication clauses”, and an atomic for-
mula q, such that �ipl α iff R,X �ipl q (the definitions are in Sect. 3.1). The
sequent R ⇒ q constitutes an “abstraction” of the input formula α. A SAT-solver
tries to find a classical counter-model M for it, in that M |= R but M �|= q. If no
such counter-model exists then α is not only CPL-valid but also IPL-valid. Oth-
erwise the SAT-solver returns such a counter-model M , although the existence
of M does not necessarily mean that R,X �ipl q, as the implication clauses
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Fig. 1. Main algorithms of intuit [1]

X have so far been ignored. Therefore another procedure “checks” model M ,
in that it tries to produce a new abstraction R′ ⇒ q of α that refines R ⇒ q
(technically, R ⊆ R′) and defeats model M , meaning that M �|= R′ while still
ensuring �ipl α iff R′,X �ipl q. If it fails, then indeed α is not IPL-valid. If
it does produce a refinement, then the procedure loops with R′ instead of R.
Eventually, it either finds a counter-model for α, or exhausts the set of putative
counter-models and conclude that α is IPL-valid.

A key element of the approach is that R �cpl q iff R �ipl q, as the clauses
in R are “flat”. A twist of the approach, compared to the standard DPLL(T )
loop, is that the procedure that checks model M has to solve a new IPL-validity
problem (for a different R, X, q), so that it recursively calls a new DPLL(T ) loop.
In other words intuit implements a recursive version of DPLL(T ), although a
single SAT-solver is used, incrementally, for all recursive calls.
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Fig. 2. The function intuitProve1

3.1 intuit in Detail

Firstly, the formula α is transformed into a formula
∧

Γ → q, where q is an
atom and Γ is a set of flat clauses ϕ and implication clauses ι, where:

ϕ :: =
∧

A1 →
∨

A2 A1 ∪ A2 ⊆ Atm
ι :: = (a → b) → c {a, b, c} ⊆ Atm
∧

A1 is the conjunction of the atoms in A1
∨

A2 is the disjunction of the atoms in A2 if A1 = ∅ then ϕ =
∨

A2

A flat clause where A1 is empty is simply a disjunction
∨

A2 of atoms, and
simply an atom a when A2 is the singleton {a}. Henceforth, we write R, R1, R′

etc. to denote sets of flat clauses; X, X1, X ′ etc. for sets of implication clauses; A,
A1, A′ etc. for sets of atoms; and Xι, Xι′ for the sets X \{ι} and X \{ι′}, respec-
tively. A clausification procedure is presented in [1], similar to Tseitin’s [15],
where clauses are created by naming subformulae with new propositional atoms.
Technically, it transforms any IPL formula α into a triple clausal(α) = (R,X, q)
whose cumulative size is linear in the size of α and that is equiprovable to α:

Lemma 1. For every α with clausal(α) = (R,X, q), �ipl α iff R,X �ipl q [1].

From now on, we focus on deciding R,X �ipl q. The intuit algorithm [1],
outlined in Fig. 1 with only slight modifications, consists of three procedures.
It exploits a single SAT-solver s that is incremental : clauses can be added to s
but not removed, and problems can be solved with varying atomic assumptions.
So the clauses in s are “global clauses” which must hold at any point of proof-
search. Technically, the SAT-solver has the following API, i.e., it supports the
following operations, where R(s) denotes the set of clauses stored in s:
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Fig. 3. The procedure intuitPR (recursive variant of intuitProve)

newSolver(): create a new SAT-solver;
addClause(s, ϕ): add the flat clause ϕ to the SAT-solver s;
satProve(s, A, q): call the SAT-solver s to decide whether R(s), A �cpl q,

where A is a local set of assumptions and q is an atom.

The call satProve(s, A, q) yields one of the following answers:

Yes(A′): thus A′ ⊆ A and R(s), A′ �cpl q;
No(M): thus M is a classical model such that M |= R(s) ∪ A and M �|= q.

The main function prove(R, X, q) of intuit yields:

Yes(∅) if R,X �ipl q;
No(M) if there is a Kripke model K = 〈W,≤, r, ϑ〉 such that ϑ(r) = M and
r � R ∪ X and r � q; this implies R,X �ipl q.

As sketched by Claessen and Rósen [1], if prove(R, X, q) returns No(M),
then one can actually build the mentioned model K by tracking the sets M ′

returned by intuitProve.
To reason about intuit, it is convenient to merge the functions intuitProve

and intuitCheck into one recursive function. Firstly, we plug intuitCheck into
intuitProve and obtain the function intuitProve1 in Fig. 2. Then, we remove
the outer loop by replacing the “go to” statement at line 10 with a recursive call;
we get the recursive procedure intuitPR in Fig. 3. We henceforth consider the
intuit algorithm as implemented by the main function prove in Fig. 1, with
function intuitProve at line 5 replaced by function intuitPR in Fig. 3.

4 Adapting the Sequent Calculus LJT to Clausal Forms

The sequent calculus LJT is a variant of Gentzen’s sequent calculus LJ for intu-
itionistic logic [6,7] that was discovered many times, as outlined by Roy Dyck-
hoff [2]. Its rules are given in Fig. 4, where Γ ⇒ α denotes a sequent whose
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antecedent Γ is a multiset of assumptions, and whose provability in LJT is
denoted �LJT Γ ⇒ α. The key difference from LJ lies in the left introduction
rules for implication. In order to introduce an implication η → γ on the left,
LJT offers four rules, depending on the form of η, namely: either η = p, with
p ∈ V ; or η = α ∧ β; or η = α ∨ β; or η = α → β1.

Fig. 4. The calculus LJT (a.k.a. G4ip)

4.1 Root-First Proof Search, Invertibility and Recursivity

The purpose of replacing Gentzen’s left-introduction of implication by those four
rules is to ensure that root-first proof search terminates. When given a sequent
to prove, root-first proof search matches it against the conclusion of one of the
rules, and recursively tries to prove each of its premises. In every rule of LJT, the
multiset Γi, αi corresponding to the ith premise Γi ⇒ αi is strictly smaller than
the multiset Γ, α corresponding to the conclusion Γ ⇒ α, according to the well-
founded multiset ordering based on formula size.2 Hence, the recursions of root-
first proof search terminate. Note that keeping several copies of an assumption
is never useful for proof search, so from now on, the antecedents of sequents will
be considered sets. If, following the application of a rule, the recursive call that
attempts to prove any one of its premises fails, then proof search attempts to
apply another rule or another instance of the rule. Conceptually, a backtrack
point was set when the original rule was applied. However, no such backtrack is
needed if the rule is invertible, in the sense that, whenever the rule’s conclusion
is provable (in LJT), so is each of its premises. In that case indeed, if any one
of the premises is not provable, then neither is the conclusion, so there is no
point in trying out another rule. In LJT, all rules are invertible except R∨k

and (L→→), and therefore backtrack points need to be set only when applying
those two rules. However (L→→) is right-invertible in that, if the conclusion is
provable (in LJT), then so is the right premise (while the left premise may or

1 We follow Troelstra and Schwichtenberg [14] where the calculus is called G4ip; the
original (L→→) rule by Dyckhoff [2] has Γ, β → γ ⇒ α → β as the left premise.

2 This is the number of connectives, each conjunction counting for two [2].
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may not be provable). This means that (L →→) can be seen as a one-premise
invertible rule, guarded by a side-condition:

Γ, γ ⇒ δ
(Γ, β → γ, α ⇒ β)

Γ, (α → β) → γ ⇒ δ
.

When applying this rule, root-first proof search makes a first recursive call that
checks that the side-condition holds and, if successful, makes a second one on the
premise. Because of invertibility, that second call is tail-recursive, as no backtrack
point is needed: the output of proof search is the output of the recursive call.
The next sections describe how these two recursive calls, for a generalisation
of rule (L →→) satisfying the same invertibility properties, correspond to the
two recursive calls of intuitPR in Fig. 3 (lines 6 and 9). The (right-)invertibility
of that generalised rule means that the recursive call on the (right) premise is
tail-recursive and proof-search can thus be implemented by a while loop: namely
the DPLL(T ) loop of intuit. To see this we specialise LJT to clausal forms.

4.2 LJT Specialised to Clausal Forms

We now consider sequents in clausal form, namely sequents of the form R,X ⇒ q.
The only LJT rule manipulating X is then (L→→), which becomes:

R, b → c, Xι, a ⇒ b R, Xι, c ⇒ q

R, X ⇒ q

ι = (a → b) → c in X

Xι = X \ {ι}
All other rules concern R and q, or do not apply because the sequent to prove
is already in clausal form. Hence, these rules can be replaced by the use of a
SAT-solver, remembering that R �cpl q iff R �ipl q.

To prove the left premiss of (L→→), atom a is added as an assumption, and
will be taken into account by the SAT-solver. As a is not present in the right
premise, it must be removed from the assumptions if the same SAT-solver is
used for the right premise. Hence, it is useful to refine the notion of sequent in
clausal form into sequents of the form R,X,A ⇒ q, where R is the set of clauses
present in the SAT solver, which can only grow bigger, and A is a set of atomic
assumptions that can vary from one call to the next, relying on the SAT-solver’s
API presented in Sect. 3.1. On such sequents, rule (L→→) becomes:

R, b → c, Xι, A, a ⇒ b R, Xι, A, c ⇒ q

R, X, A ⇒ q

ι = (a → b) → c in X

Xι = X \ {ι}
We can start relating root-first proof search to intuit by relating the application
of the above rule to a call to function intuitPR(s,X,A,q), described in Fig. 3,
considering R = R(s).

Indeed the left premise of the above rule is very similar to the first recursive
call intuitPR(s, Xι, M ∪ {a}, b) on line 6 of Fig. 3, except that b → c is added
to R in the premise, and model M may differ from A: According to its definition
on line 4 of Fig. 3, M must satisfy (and therefore contain) all atoms in A, but
other atoms could be assigned true in M that are not in A. Note however that
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R(s) does contain b → c if (a → b) → c is in X: it has been added to s at the
beginning of the computation of function prove from Fig. 1.

Likewise, the right premise of the above rule is very similar to the second
recursive call intuitPR(s, X, A, q) on line 9 of Fig. 3, except that the right
premise contains the atomic formula c and the recursive call keeps the implication
(a → b) → c.

Furthermore, the use of the SAT-solver in procedure intuitPR has side-
effects: let R0 denote R(s) at the time when intuitPR is called, R1 denote R(s) at
the time of the first recursive call (line 6), and R2 denote R(s) at the time of the
second recursive call (line 9). We have R0 ⊆ R1 ⊆ R1∪{

∧
(A1 \{a}) → c} ⊆ R2,

for a subset A1 of M ∪ {a} such that R1,Xι, A1 �ipl b. This incremental use
of the SAT-solver is not reflected in root-first proof search using rule (L →→).
Hence, rule (L→→) has to be generalised to account for these differences.

4.3 A Generalised Version of (L→→)

The first generalisation consists in allowing the addition, in the left premise of
(L →→), of extra atomic assumptions that were not assumptions in the con-
clusion. By allowing this, the rule can model either the extra atoms that are in
M but not in A for the first recursive call of intuitPR (line 6 of Fig. 3), or the
atoms A1 that are returned by the call if successful. This ambiguity is systemic
to the description of root-first proof search as presented in Sect. 4.1, which makes
a double usage of sequent calculus rules. Consider a sequent calculus rule.

– Firstly, if the conclusion describes the arguments of a proof search, then the
premises describe the arguments of the recursive calls; the rule describes the
descent into the recursions.

– Secondly, if the recursive calls succeed, then a proof of each premise has been
completed, either explicitly or implicitly, and a proof of the conclusion can
be constructed; the rule describes the ascent back from the recursions.

It is useful to enhance proof search by considering, for each rule, a variant used for
the first purpose and a variant used for the second purpose. Typically for the first
purpose, it is convenient to integrate the weakening rule of the sequent calculus
(say in LJ) to the axiom rule, and use context-sharing rules, as in Fig. 4. For
the second purpose, it is useful to push all weakenings down towards the proof-
tree root, using context-splitting rules. This strengthens the proved sequents by
pruning the input sequent of all assumptions that were not used in the proof. This
was described for instance in [8,9], which also connects the said pruning to the
notion of conflict analysis used in SAT and SMT-solving. This is relevant for the
connection between LJT and intuit, as a call to function intuitPR(s, X, A, q),
if successful, precisely performs this pruning by outputting a subset A′ of A that
is sufficient for provability. In that spirit, we present the generalisation of (L→→)
in a context-splitting style, emphasising what happens upon the completion of
the recursive calls.

The addition of extra atomic assumptions in the left premise of (L →→)
makes the premise easier to prove than with the original rule (when seen as a
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one-premise rule with a side-condition, the rule applies more often). The price to
pay for this is that the new assumption that is learnt and that helps proving the
right premise, has to be weakened from c to the flat clause ϕ =

∧
(A1 \{a}) → c,

which in intuitPR is added to the SAT-solver on line 8 in Fig. 3. Note that
clause ϕ is a consequence of the original problem. Weakening this newly available
assumption in turn means that it no longer subsumes the original implication
clause ι, which has to stay in the right premise. The resulting rule is rule (ljt)
in Fig. 5.

Fig. 5. The calculus LJTSAT

When emulating SAT or SMT-solving, the sequent calculus has to deal with
the effectful aspect of these solvers, which learn clauses that are consequences of
the input problem, such as clause ϕ above.3 This effect was described in terms of
memoisation of root-first proof search in [8,9], and in terms of cuts in [4,9]. Here
again we use cuts to model the phenomenon: the added clauses can be deleted
at the end of the proof search computation by applying rule (cutipl) of Fig. 5.

5 The Calculus LJTSAT

We introduce the calculus LJTSAT (LJT with SAT-solver) for sequents of the form
R,X ⇒ q, whose provability in LJTSAT is denoted �LJTSAT

R,X ⇒ q. It consists
of the three rules of Fig. 5. Rule (cpl) has the premise judgment R �cpl q and
the sequent R,X ⇒ q as conclusion, with X any set of implicational clauses. The
rule can be applied if R �cpl q holds, as checked by a SAT-solver (hence LJTSAT).
The rule (cutipl) is a cut rule having the judgment R1,X1 �ipl ϕ as left premise.
In the proof-search procedure, whenever we apply (cutipl), the left-premise is a
judgment of the kind R0,X0 �ipl ϕ, where the cut formula ϕ is a clause already
stored in the SAT-solver, and we can take for granted that the assertion holds
(we do not have to invoke an external prover to check it). The rule (ljt) is a
sort of context-splitting generalisation of (L→→) needed to capture the intuit
procedure. We point out that the sets R1 and R2 may overlap, thus the common
part R1 ∩ R2 is kept in both the premises. The formula

∧
(A1 \ {a}) → c in the

right premise is needed to guarantee the soundness of the rule, since A1 is any set
of atoms. To get completeness, we have to keep the main formula (a → b) → c in
the right premise; as a side-effect, the termination of proof-search is now trickier

3 These effectful additions account for the distinction between R0, R1 and R2 above.
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to prove. If the sets R1 and R2 coincide and A1 = {a} (thus
∧

(A1 \ {a}) → c is
the atom c), we get the instance

R, b → c, X, a ⇒ b R, c, X, (a → b) → c ⇒ q
(ljt)

R, X, (a → b) → c ⇒ q

The formula (a → b) → c in the right premise is now redundant since it is
implied by the occurrence of c, thus we recover Dyckhoff’s rule (L→→).

To prove the soundness of LJTSAT, we show that an LJTSAT-derivation can
be translated into the calculus LJT. In derivations, a double line marks the
application of more than one rule. Firstly, we prove the soundness of rule (cpl).

Lemma 2 (Soundness of rule (cpl)). If R �cpl q then �LJT R ⇒ q.

Proof. We proceed via contraposition, so suppose ��LJT R ⇒ q. By completeness,
there is a Kripke model 〈W,≤, r, ϑ〉 containing a world w ∈ W such that w �

∧
R

and w �� q. Now consider any flat clause ϕ =
∧

A1 →
∨

A2 ∈ R. The valuation
ϑ(w) either has A2 ∩ ϑ(w) �= ∅ or A2 ∩ ϑ(w) = ∅. If A2 ∩ ϑ(w) �= ∅ then ϕ is
classically true at w. If A2 ∩ ϑ(w) = ∅ then reflexivity demands A1 � ϑ(w), as
otherwise w �� ϕ, contradicting our assumption. Again, ϕ is classically true at
w. That is, w by itself is a classical model that also makes

∧
R true and q false,

so R �cpl q. By contraposition, if R �cpl q then �LJT R ⇒ q. Notice that this
proof only works because R contains flat clauses. ��

A syntactic way of proving Lemma 2 is to consider the proof returned by
a (proof-producing) SAT-solver, justifying the unsatisfiability of R, q (where q
is the negation of q) with a resolution proof concluding the empty clause ⊥
from the flat clauses R, and q. Indeed, the resolution rule is perfectly valid in
intuitionistic logic if a clause a1 ∨ · · · ∨an ∨ b1 ∨ · · · ∨ bm is read as the flat clause
a1∧· · ·∧an → b1∨· · ·∨bm, as pointed out by Claessen and Rósen [1]. Removing
q → ⊥ from the leaves of the resolution tree leaves q at its root, yielding an
intuitionistic proof of R �ipl q. Completeness of LJT [2] concludes �LJT R ⇒ q.

We prove the main lemma for the soundness of LJTSAT.

Lemma 3. If �LJTSAT
R,X ⇒ q then �LJT R,X ⇒ q.

Proof. Let D be an LJTSAT-derivation of R,X ⇒ q; we prove the lemma by
induction on the depth of D. If the root rule of D is (cpl), the assertion follows
by Lemma 2. Let us assume that D is

R1, X1 �ipl ϕ

D2

ϕ, R2, X2 ⇒ q
(cutipl)

R1, R2, X1, X2 ⇒ q

By the completeness of LJT [2], there exists an LJT-derivation E1 of R1,X1 ⇒ ϕ.
By the induction hypothesis, there exists an LJT-derivation E2 of ϕ,R2,X2 ⇒ q.
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Fig. 6. The procedure LJTSatMain

Since (cut) is admissible in LJT [2], from E1 and E2 we get an LJT-derivation of
R1, R2,X1,X2 ⇒ q. Otherwise, D has the form

D1

R1, b → c, Xι, A1 ⇒ b

D2

R2, ϕ, X ⇒ q
(ljt)

R1, R2, X ⇒ q

ι = (a → b) → c

Xι = X \ {ι}
ϕ =

∧
(A1 \ {a}) → c

Obtaining E1 (resp. E2) from E1 (resp. D2) by the induction hypothesis, we get
the following LJT-derivation of R,X ⇒ q. We use here the fact that in LJT,
weakenings are admissible (so we can assume a ∈ A1), and so are cuts.

E1

R1, b → c, Xι, A1 ⇒ b
Ax

R1, Xι, c, A1 \ {a} ⇒ c
L→→

R1, X, A1 \ {a} ⇒ c
L∧, R →

R1, X ⇒ ϕ

E2

R2, ϕ, X ⇒ q
(cut)

R1, R2, X ⇒ q

��

By Lemma 3 and the soundness of LJT, we conclude:

Theorem 1 (Soundness of LJTSAT). �LJTSAT
R,X ⇒ q implies R,X �ipl q.

6 Proof-Search Using LJTSAT

We present the proof-search procedure based on the calculus LJTSAT, imple-
mented by the main function LJTSatMain (Fig. 6), which exploits the aux-
iliary recursive function LJTSat (Fig. 7). They correspond to the functions
prove and intuitPR respectively, enhanced with explicit proof/counter-model-
construction. The worlds of the counter-models to be constructed are sequences
of implication clauses, with [ ] denoting the empty sequence and w::ι denoting
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Fig. 7. The procedure LJTSat

the extension of sequence w with clause ι. Function LJTSat takes as its last
argument the root world of the counter-model to be constructed, if the input
is not IPL-valid. Initially, LJTSatMain calls LJTSat with the empty sequence as
root world, as shown in Fig. 6, where (cut∗

ipl) also denotes a chain of n successive
applications of (cutipl).

A Kripke model K = 〈W,≤, r, ϑ〉 is a counter-model for a sequent σ = R,X ⇒
q, written K �|= σ, if r � R ∪ X and r � q. In our incarnation of intuit, the
counter-model is obtained by gluing Kripke models, as explained next.

Let Θ be a family (Ki)i∈I of Kripke models and M a classical model such
that, for every i ∈ I, the root ri of Ki obeys ri � M . We write Mod(r,Θ,M)
for the model K = 〈W,≤, r, ϑ〉 obtained by gluing all the models in Θ over r,
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where r is a new world such that ϑ(r) = M . More specifically, if Θ = (〈Wi,≤i,
ri, ϑi〉)i∈I , where the sets Wi are pairwise disjoint and none of them contains r,
then Mod(r,Θ,M) is the model K = 〈W,≤, r, ϑ〉 such that

W = {r} �
n⊎

i=1

Wi ≤0 = { (r, r1), · · · , (r, rn) } ∪
n⋃

i=1

≤i ϑ =
n⋃

i=1

ϑi ∪ {(r, M)}

and ≤ is the reflexive-transitive closure of ≤0 (� denotes disjoint union).
If Θ = ∅, then K = 〈{r}, {(r, r)}, r, ϑ〉 only contains the reflexive world r

with ϑ(r) = M . Given a set X and a classical model M , we write XM for
{((a → b) → c) ∈ X | a �∈ M, b �∈ M, c �∈ M}.

Lemma 4. Let σ = R,X ⇒ q be a sequent, r be a world, M be a classical model
and Θ be a family (Kι)ι∈XM

of Kripke models indexed by XM such that:

(i) (a → b) → c ∈ X implies b → c ∈ R;
(ii) M |= R and M �|= q;
(iii) For every ι ∈ XM , we have Kι �|= R,Xι,M, a ⇒ b.

Then, Mod(r,Θ,M) �|= σ.

Proof. Let K be Mod(r,Θ,M) = 〈W,≤, r, ϑ〉, whence r � M . We have to show
that, at r, all the formulae in R ∪ X are forced and q is not forced. By (ii), we
immediately get r � q. We prove the cases for R and X.
Proof that r � R: Suppose ϕ ∈ R and assume ϕ =

∧
A1 →

∨
A2 with A1 �= ∅.

Let w ∈ W be any world such that r ≤ w and w �
∧

A1; we prove w �
∨

A2.
If w = r, we have r �

∧
A1, which implies A1 ⊆ M . Since M |= ϕ, we get

M |=
∨

A2, which implies r �
∨

A2. If w �= r, w must be in some Wι for some
Kι = 〈Wι,≤ι, rι, ϑι〉 in Θ, with ι ∈ XM . Thus rι ≤ w in K. By (iii), rι � R in Kι

and ϕ ∈ R, so rι � ϕ in Kι. Hence rι � ϕ in K, and the persistence of � gives
w � ϕ in K. Since w �

∧
A1, we obtain w �

∨
A2. The case A1 = ∅ (namely,

ϕ =
∨

A2) is similar.
Proof that r � X: First note that by (i), r � b → c for every (a → b) → c ∈ X.
Choose any ι = (a → b) → c ∈ X and let w be any world such that r ≤ w and
w � a → b; we prove w � c.

If c ∈ M , then r � c by construction, hence w � c. If b ∈ M then r � b by
construction, and we already have r � b → c, so we get r � c, hence w � c. If
a ∈ M then r � a and r � b → c and w � a → b, giving w � c. The previous
three cases are independent, thus w � c if a ∈ M or b ∈ M or c ∈ M .

So suppose a �∈ M and b �∈ M and c �∈ M . By (iii), Θ contains a model
Kι = 〈Wι,≤ι, rι, ϑι〉 such that Kι �|= R,Xι,M, a ⇒ b. Thus rι � a → b in Kι,
hence rι � a → b in K. By reverse persistence r � a → b (in K), which implies
w �= r. There is also a model Kι′ = 〈W ′,≤′, r′, ϑ′〉 of Θ such that w ∈ W ′, hence
r ≤ r′ ≤ w (in K). We need to cover the two cases ι = ι′ and ι �= ι′:

1. If ι′ = ι, by (iii) rι � a in Kι, thus w � a (in K). Since r � b → c, we have
w � b → c. Then w � a → b gives w � c.
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2. If ι′ �= ι then ι ∈ Xι′ , hence r′ � ι in Kι′ , whence it follows that w � ι (in K).
Our initial assumption that w � a → b gives w � c. ��

In Fig. 6 we define the proof-search function LJTSatMain such that
LJTSatMain(R0, X0, q0) returns either an LJTSAT-derivation of σ0 = R0,X0 ⇒
q0 or a counter-model K for σ0. Worlds of K are sequences of implication clauses,
ordered by the prefix order on sequences, and the empty sequence [ ] is its root
world. We set:

H0 = { b → c | (a → b) → c ∈ X0 } V0 = { p ∈ V | p occurs in σ0 }
M/V0(R) = { M ⊆ V0 | M |= R } for any set R of flat clauses

The call LJTSatMain(R0, X0, q0) defines a SAT-solver s and initializes it by
storing all the clauses in R0∪H0; we consider s, R0 and X0 as global parameters.
It exploits the auxiliary recursive procedure LJTSat defined in Fig. 7. A call
LJTSat(R, X, A, q, r) performed during the computation of the main call
LJTSatMain(R0, X0, q0) has the following specification.

Input Assumptions (IA):
– R ⊆ R(s) and X ⊆ X0;
– for every ϕ ∈ R(s), we have R0,X0 �ipl ϕ;
– r is a sequence of implication clauses.

Output Properties (OP):
LJTSat(R, X, A, q, r) yields a triple (D, R′, A′) or else a model K with:

– R′ ⊆ R(s) and A′ ⊆ A;
– for every ϕ ∈ R(s), we have R0,X0 �ipl ϕ;
– D is an LJTSAT-derivation of R,R′,X,A′ ⇒ q;
– K has root r and worlds are ordered by the prefix order on sequences;
– K �|= R,H0,X,A ⇒ q.

In (IA), R(s) refers to the clauses in the SAT-solver s at the beginning of the
computation of LJTSat(R,X,A,q,r); in (OP), R(s) is the set of clauses in s at the
end of the computation. Note that (OP) implies that the call LJTSat(R,X,A,q)
terminates. To prove the correctness of LJTSat, we have to show that, if the
assumptions (IA) are matched, then (OP) holds. We need the following property
about derivability in IPL.

Lemma 5. R,X,A �ipl b implies R,X, (a → b) → c �ipl

∧
(A \ {a}) → c.

Proof. Let A′ = A \ {a}. If R,X,A �ipl b, then R,X,A′ �ipl a → b, which
implies R,X, (a → b) → c,A′ �ipl c, hence R,X, (a → b) → c �ipl

∧
A′ → c. ��

To prove correctness, put the following order relation on pairs (R,X) such
that R is any set of flat clauses and X ⊆ X0:

(R′,X ′) ≺ (R,X) iff (X ′ ⊂ X) or
(
X ′ = X and M/V0(R

′) ⊂ M/V0(R)
)

Since the sets X and M/V0(R) are finite, the relation ≺ is well-founded, hence
we can prove correctness of LJTSat (Lemma 6) by induction on ≺.
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Lemma 6. If a call LJTSat(R, X, A, q, r) satisfies (IA) then (OP) holds.

Proof. We use the main induction hypothesis (MIH) below and show that the
invariant (Inv) holds at any point of the computation described in Fig. 7:

(MIH): if (R′,X ′) ≺ (R,X), then the lemma holds for LJTSat(R′,X ′,A′,q′,r′);
(Inv): for every ϕ ∈ R(s), we have R0,X0 �ipl ϕ.

At the start of the computation (Inv) holds by (IA). Let τ0 be the value computed
at line 2. If τ0 = Yes(A′), then the triple (D,R(s), A′) is returned at line 4, with
D defined at line 5; by definition of satProve, it holds that R(s), A′ �cpl q and
A′ ⊆ A, hence (OP) holds. Otherwise, since R ∪ H0 ⊆ R(s), we have:

(P0) τ0 = No(M) and M |= R ∪ H0 ∪ A and M �|= q.

Without loss of generality, we can assume M ⊆ V0, namely M ∈ M/V0(R). If,
for every (a → b) → c ∈ X, the loop condition at line 8 does not hold, then the
loop at lines 8–21 is skipped and the model Mod(r, ∅,M) is returned at line 22,
which is a counter-model for R,H0, A ⇒ q by Lemma 4; thus (OP) holds. Let us
assume that the loop at lines 8–21 is entered. We prove that at every iteration of
the loop the following properties hold, where τ1 and τ2 are the values computed
at lines 9 and 14 respectively, and ϕ̃ =

∧
(A1 \ {a}) → c is defined at line 12:

(P1) τ1 = (D1, R1, A1) or τ1 = K1 where:
– R1 ⊆ R(s) and A1 ⊆ M ∪ {a};
– D1 is an LJTSAT-derivation of R,R1, b → c,Xι, A1 ⇒ b;
– K1 has root r::ι and worlds are ordered by the prefix order on sequences;
– K1 �|= R,H0,Xι,M, a ⇒ b.

(P2) τ2 = (D2, R2, A2) or τ2 = K2 where:
– R2 ⊆ R(s) and A2 ⊆ A;
– D2 is an LJTSAT-derivation of R,R2, ϕ̃,X,A2 ⇒ q;
– K2 has root r and worlds are ordered by the prefix order on sequences;
– K2 �|= R, ϕ̃,H0,X,A ⇒ q.

Let us consider the first iteration of the loop and let ι = (a → b) → c ∈ X be the
selected clause (hence, a �∈ M , b �∈ M and c �∈ M). The call to LJTSat at line 9
satisfies (IA). Since Xι ⊂ X, we have (R ∪ {b → c},Xι) ≺ (R,X). By (MIH)
τ1 satisfies (OP); this proves (P1). Note that (OP) guarantees that (Inv) holds
after the computation of τ1. At line 13, ϕ̃ is added to s; we check that (Inv) is
preserved, namely R0,X0 �ipl ϕ̃. By (P1) and Soundness of LJTSAT (Theorem 1),
R,R1, b → c,Xι, A1 �ipl b and, by Lemma 5, we get R,R1, b → c,X �ipl ϕ̃,
hence R,R1, b → c,X0 �ipl ϕ̃. Since R ∪ R1 ∪ {b → c} ⊆ R(s), from (Inv) it
follows that R0,X0 �ipl ϕ̃. The call to LJTSat at line 14 matches (IA). To
apply (MIH), we have to check that:

(P3) (R ∪ {ϕ̃},X) ≺ (R,X).
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Clearly, M/V0(R ∪{ϕ̃}) ⊆ M/V0(R); to conclude the proof of (P3), we show that
the inclusion is strict. Note that M ∈ M/V0(R) see (P0) and the subsequent
remark). For a contradiction, assume M |= ϕ̃. Since A1 ⊆ M ∪ {a}, we get
A1 \ {a} ⊆ M . By definition of ϕ̃, it follows that M |= c, namely c ∈ M , a
contradiction. Thus, M �|= ϕ̃, which implies M �∈ M/V0(R∪{ϕ̃}); this proves (P3).
We can apply (MIH) to the recursive call at line 14 and we get (P2) and the
preservation of (Inv). Let us consider the iteration k + 1 of the loop (k ≥ 1). We
can repeat the above reasoning to prove that (P1) and (P2) hold at iteration
k+1; the invariant property (Inv) is crucial to guarantee that the recursive calls
at lines 9 and 14 satisfy (IA). We conclude that (P1) and (P2) hold at every
iteration of the loop.

Let us assume that, at some iteration of the loop, τ1 is not a model, namely
τ1 = (D1, R1, A1). If τ2 is a model K2, then K2 is returned at line 15 and (OP)
follows from (P2). Otherwise, τ2 = (D2, R2, A2) and (D, R1 ∪R2, A2) is returned
at line 17, where D is the LJTSAT-derivation displayed at line 18; accordingly
(OP) holds. Finally, let us assume that, at every iteration, τ1 is a model. Since
X is finite, the loop eventually ends and the model Mod(r,Θ,M) is returned
at line 22. At that point, Θ has been completed into a family (Kι)ι∈XM

such
that for every ι in XM , Kι has root r::ι and its worlds are ordered by the prefix
order on sequences, by (P1). Mod(r,Θ,M) has root r and also uses the prefix
order on sequences. So in order to prove (OP), we only have to check that
Mod(r,Θ,M) is a counter-model for R,H0,X,A ⇒ q. Let R′ = R ∪ H0 ∪ M
and σ′ = R′,X ⇒ q; by (P0) and (P1), it follows that σ′, M and Θ satisfy the
assumptions of Lemma 4. Since A ⊆ M , Mod(r,Θ,M) �|= σ′ and (OP) holds. ��

By Lemma 6, we get:

Theorem 2 (Correctness of LJTSatMain). LJTSatMain(R0, X0, q0) returns
either an LJTSAT-derivation of σ0 = R0,X0 ⇒ q0 or a counter-model for σ0.

Proof. Consider the call LJTSat(R0,X0,∅,q0,[ ]) at line 6. When LJTSat is called,
R(s) = R0 ∪ H0. Let b → c ∈ H0; since X0 contains a formula of the kind (a →
b) → c and (a → b) → c �ipl b → c, it follows that R0,X0 �ipl b → c. Thus, the
call to LJTSat satisfies (IA); by Lemma 6, the returned value τ satisfies (OP). If
τ is a counter-model K, then K is returned at line 7; since K �|= R0,H0,X0 ⇒ q,
we get K �|= σ0. Otherwise τ = (D, R, ∅), where D is an LJTSAT-derivation D of
R0, R,X0 ⇒ q0 and R0,X0 �ipl ϕ, for every ϕ ∈ R. Accordingly, the returned
derivation, displayed at line 10, is an LJTSAT-derivation of σ0. ��

As a consequence, we get:

Theorem 3. (LJTSATcompleteness). R,X �ipl q implies �LJTSAT
R,X ⇒ q.

Let us consider the call LJTSatMain(R0,X0,q0); we show that we can build
an LJT-derivation Dϕ of R0,X0 ⇒ ϕ, for every clause ϕ stored in the SAT-
solver s during the computation. Let ϕ = b → c be a clause introduced at the
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beginning of LJTSatMain (line 5 in Fig. 6). Then, (a → b) → c ∈ X0 and, setting
X ′ = X0 \ {(a → b) → c}, Dϕ is:

R0, X ′, b, b → c, a ⇒ b R0, X ′, c, b ⇒ c
L→→

R0, X0, b ⇒ c
R →

R0, X0 ⇒ b → c

Let us consider the clause ϕ̃ added in the loop of LJTSat when the clause
ι = (a → b) → c is considered (line 13 in Fig. 7). By Point (P1) in the proof
of Lemma 6, there exists an LJTSAT-derivation D1 of R,R1, b → c,Xι, A1 ⇒ b.
Note that R ∪ R1 ∪ {b → c} has the form R0 ∪ {ϕ1, . . . , ϕn}, where the clauses
ϕ1, . . . , ϕn are in s and Xι ⊆ X0. Let D′

1 be the LJTSAT-derivation:

R0, X0 ipl ϕ1 . . . R0, X0 ipl ϕn

D1

R0, ϕ1, . . . , ϕn, Xι, A1 ⇒ b
(cut∗ipl)R0, X0, A1 ⇒ b

By construction, for every judgment R0,X0 �ipl ϕ′ occurring in D′
1, the

clause ϕ′ is in s, thus we can assume that the LJT-derivation Dϕ′ has already
been defined. We can turn D′

1 into an LJT-derivation E1 of R0,X0, A1 ⇒ b.
If a �∈ A1, then ϕ̃ =

∧
A1 → c and Dϕ̃ is the LJT-derivation

E1

R0,X0, A1 ⇒ b

Ax
b, b → c, a ⇒ b

Ax
b, c ⇒ c

L→→
b, (a → b) → c ⇒ c

(cut)
R0,X0, A1 ⇒ c

L∧, R →
R0,X0 ⇒

∧
A1 → c

If A1 = ∅ (hence ϕ̃ = c) the bottom applications of L∧ and R → are crossed out.
Let a ∈ A1 and A′

1 = A1 \ {a}. Thus, ϕ̃ =
∧

A′ → c and Dϕ̃ is the derivation

E1

R0, X0, A
′
1, a ⇒ b

R →
R0, X0, A

′
1 ⇒ a → b

Ax
b, b → c, a ⇒ b

L0 →
a → b, b → c, a ⇒ b

Ax
a → b, c ⇒ c

L→→
a → b, (a → b) → c ⇒ c

(cut)
R0, X0, A

′
1 ⇒ c

L∧, R →
R0, X0 ⇒ ∧

A′
1 → c

If A′ = ∅ (hence ϕ̃ = c) the bottom applications of L∧ and R → are skipped.
By the above discussion, we can enhance the procedures LJTSatMain and

LJTSat so that, whenever a flat clause ϕ is added to the SAT-solver, an LJT-
derivation Dϕ of R0,X0 ⇒ ϕ is stored. Let us assume that LJTSatMain(R0,
X0, q0) returns an LJTSAT-derivation D of σ0 = R0,X0 ⇒ q0 Proceeding as in
the proof of Lemma 3, we can exploit the derivations Dϕ to translate D into an
LJT-derivation of σ0.

7 Discussion, Further Work and Conclusions

The construction of Kripke countermodels from failed proof search in (a variant
of) LJT was already explored by Dyckhoff and Pinto [3]. In this paper we have
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merged proof search and countermodel construction into one procedure based on
LJT while benefiting at the same time from the insights from intuit regarding
incremental SAT-solvers.

The rule (L →→) from Fig. 4 can be interpreted semantically as follows by
reading it from conclusion to premises. The antecedent of the conclusion requires
the current world w to make (a → b) → c true, to make all members of Γ true
and to make δ false. If w � c then we have the right premise. Else w � c and
therefore, w � a → b. But that means that there exists a v ≥ w such that v � Γ
and v � a and v � b, implying that v � b → c, which is the left premise.

We have shown that our simpler recursive version of intuit can be reconciled
with this semantic view if we generalise the rule (L→→) into the rule (ljt). By
doing so, we can utilise an incremental SAT-solver to implement the right premise
of the rule (ljt) by “restarting” the SAT-solver with additional flat clauses learned
during the process of finding the derivation of the left premise of (ljt).

There are many sequent and natural deduction calculi that contain rules
which have this “here” or “at some successor” flavour. For example, the LSJ
calculus of Ferrari et al. [5] and the traditional tableau calculus for linear tem-
poral logic PLTL [16]. Can we extend our insights to such calculi to obtain
incremental SAT-based decision procedures for these calculi too [10]?

Another direction for future work is the extent to which this approach relies
on the clausification of the input formula. Indeed, LJT is able to natively treat
any IPL formula. Technically, could the calculus LJTSAT be extended to any
sequent, not necessarily in clausal form? If so how would the interaction with
the SAT solver be organised?
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Abstract. In this paper we study proof translations between labelled
and label-free calculi for the logic of Bunched Implications (BI). We
first consider the bunched sequent calculus LBI and define a labelled
sequent calculus, called GBI, in which labels and constraints reflect the
properties of a specifically tailored Kripke resource semantics of BI with
two total resource composition operators and explicit internalization of
inconsistency. After showing the soundness of GBI w.r.t. our specific
Kripke frames, we show how to translate any LBI-proof into a GBI-proof.
Building on the properties of that translation we devise a tree property
that every LBI-translated GBI-proof enjoys. We finally show that any
GBI-proof enjoying this tree property (and not only LBI-translated ones)
can systematically be translated to an LBI-proof.

1 Introduction

The ubiquitous notion of resource is a basic one in many fields but has become
more and more central in the design and validation of modern computer systems
over the past twenty years. Resource management encompasses various kinds of
behaviours and interactions including consumption and production, sharing and
separation, spatial distribution and mobility, temporal evolution, sequentiality
or non-determinism, ownership and access control, etc.

Dealing with the various aspects of resource management is mostly in the
territory of substructural logics, and more precisely, resource-aware logics such
as Linear Logic (LL) [10] with its resource consumption interpretation, the logic
of Bunched Implications (BI) [17,18] with its resource sharing interpretation, or
order-aware non-commutative logic (NL) [1]. As specification logics, they model
features like resource distribution and mobility, non-determinism, sequentiality
or coordination of entities [4]. Separation Logic, of which BI is the logical kernel,
has proved itself very successful as an assertion language for verifying programs
that handle mutable data structures via pointers [12,19].

From a semantic point of view, resource interactions such as production and
consumption, or separation and sharing are handled in resource models at the
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level of resource composition. For example, various semantics have been pro-
posed to capture the resource sharing interpretation of BI including categori-
cal, topological, relational and monoidal models [9]. From a proof-theoretic and
purely syntactic point of view, the subtleties of a particular resource composi-
tion usually lead to the definition of distinct sets of connectives (e.g., additive
vs multiplicative, commutative vs non-commutative).

Capturing the interaction between various kinds of connectives often results
in label-free calculi that deal with structures more elaborated than sets or mul-
tisets of formulas. For example, the standard label-free sequent calculus for BI,
which is called LBI, admits sequents the left-hand part of which are structured
as binary trees called bunches [15,18]. Resource interaction is usually much sim-
pler to handle in labelled calculi since labels and label constraints are allowed to
reflect and mimic, inside the calculus, the fundamental properties of the resource
models they are drawn from. Several labelled tableaux or sequent-style systems
have been proposed for BI and its variants [9,11,14].

Categorical, relational, topological and monoidal resource models with a Beth
interpretation of the additive disjunction have all been proven sound and com-
plete w.r.t. both LBI and TBI in [9,17,18]. Unfortunately, although by far the
most widely used models of BI in the literature, monoidal resource models with
a more usual Kripke interpretation of the additive disjunction have only been
proven complete w.r.t. TBI. Their status w.r.t. LBI is not known and still a
difficult open problem as many attempts at solving it from a semantic point of
view have failed over the past fifteen years. Therefore, a better understanding of
how LBI relates to labelled calculi could be very helpful as a first step towards
solving the problem from the more syntactic standpoint of proof translations.

Our work takes place in the general context of studying the relationships
between labelled and label-free calculi. In this paper we more particularly focus
on the relationships between GBI, a sequent-style reworking of the labelled
tableaux calculus TBI [8], and the label-free bunched sequent calculus LBI [18].

In Sect. 2 we recall the basic notions about BI and its label-free bunch sequent
calculus LBI. We also introduce a non-standard resource semantics for BI based
on two total monoidal operators with an explicit treatment of inconsistency from
which we derive a new sequent-style labelled calculus called GBI in Sect. 3. GBI
can be seen as an intermediate calculus between TBI and LBI as both calculi
share the idea of sets of labels and constraints arranged as a resource graph,
but the resource graph in GBI is partially constructed on the fly using explicit
structural rules rather than being obtained as the result of a closure operator [8].

Section 4 is devoted to our first contribution which is a translation of any
LBI-proof into a GBI-proof. This translation is not a one-to-one correspondence
sending each LBI-rule occurring in the original proof to its corresponding GBI
counterpart in the translated proof. Indeed, most of the translations patterns
require several additional structural steps to obtain an actual GBI-proof. How-
ever, these patterns are such that the rule-application strategy of the original
proof will be contained in the translated proof, making our translation structure
preserving in that particular sense.
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Section 5 investigates how GBI-proofs relate to LBI-proofs. We first restrict
GBI to have a single formula on the right-hand side. This is justified by the
fact that, contrary to related works on translating labelled or prefixed calculi
to label-free sequent calculi, mainly in modal and (bi-)intuitionistic logics [16,
20], we cannot rely on the existence of a multi-conclusioned variant of LBI.
Such a variant would require bunches on the right-hand side of sequents, and
thus the definition of an intuitionistic dual to multiplicative conjunction, which
seems problematic, although there exists a multi-conclusioned display calculus
for Boolean BI [3].

We define a tree property for single-conclusioned GBI labelled sequents which
allows us to translate the left-hand side of a labelled sequent to a bunch according
to the label of the formula on its right-hand side. Refining our analysis of the LBI-
translation, we show that every sequent in a GBI-proof obtained by translation
of an LBI-proof satisfies our tree property.

The second and main contribution finally follows the definition of a restricted
variant of GBI the proofs of which always satisfy the tree property and can more-
over systematically be translated into LBI-proofs. Let us remark that this result
does not depend on a GBI-proof being some translated image of an LBI-proof.
We thus observe that our tree property can serve as a criterion for defining a
notion of normal GBI-proofs for which normality also means LBI-translatability.

2 The Logic BI

In this section, we give a short introduction to BI (see [18] for more details).
We recall the bunched sequent calculus LBI and introduce a variant of the usual
Kripke resource semantics.

2.1 Syntax and Sequent Calculus LBI

Let Prop = {p, q, . . . } be a countable set of propositional letters. The formulas
of BI, the set of which is denoted Fm, are given by the grammar:

A ::= p | �m | A ∗ A | A −∗ A | �a | ⊥ | A ∧ A | A ∨ A | A → A

Bunches are rooted trees given by the following grammar:

Γ ::= A | ∅a | Γ ; Γ | ∅m | Γ , Γ

Equivalence of bunches ≡ is given by commutative monoid equations for “ ;” and
“ ,” with units ∅a and ∅m respectively, together with the substitution congruence
for subbunches.

The LBI sequent calculus is depicted in Fig. 1. LBI derives sequents of the
form Γ 	 C, where Γ is a bunch and C is a formula. The notation Γ(Δ) denotes
a bunch Γ that contains the bunch Δ as a subtree.
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Fig. 1. The sequent calculus LBI.

A formula C is a theorem of LBI iff ∅m 	 C is provable in LBI. Let us remark
that the cut rule is admissible in LBI [18]. In order to make LBI-proofs shorter,
we often skip explicit uses of the exchange rules. We thus consider bunches
up to commutativity of “,” and “ ;”. However, we do not consider associativity of
bunches as implicit (i.e., we do not consider “ ,” and “ ;” as n-ary functors) since
it easily leads to unexpected difficulties when adapting results from unassocia-
tive systems, e.g. in [13] where the decidability of BI is erroneously concluded
from the decidability of the Lambek calculus using length and depth arguments
on the representation of bunches from [7] that actually fail in the presence of
associativity (and contraction).

The rule for equivalence of bunches can easily be replaced with the last six
rules given in Fig. 1, where double lines indicate rules that work both ways (i.e.,
rules for which the premiss and the conclusion can be swapped). We distinguish
bottom-up and top-down uses of such rules in LBI-proofs with up and down
arrows respectively. For technical reasons, the rules replacing ≡ will be prefered
in the proofs of the forthcoming translation theorems.

Figure 2 gives an example of a proof in LBI, which also shows that the set of
derivable sequents in cut-free LBI gets strictly smaller if contraction is removed
or restricted to a single formula.
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Lemma 1. The following semi-distributivity rule is derivable in LBI:

Γ((Δ1 , Δ2) ;(Δ1 , Δ3)) � A
Sd

Γ(Δ1 ,(Δ2 ; Δ3)) � A

Proof. Use contraction on (Δ1 ,(Δ2 ; Δ3)) followed by two weakenings.

Fig. 2. A proof in LBI.

Lemma 2. Adding semi-distributivity to LBI while restricting contraction to ∅m

(or �m) leads to the same set of derivable sequents.

Proof. Contraction is derivable from contraction on ∅m and semi-distributivity:

Γ(Δ ; Δ) � A
Um↑

Γ((Δ , ∅m) ;(Δ , ∅m)) � A
Em + Sd

Γ((∅m ; ∅m) , Δ) � A
C

Γ(∅m , Δ) � A
Um↓

Γ(Δ) � A

2.2 Semantics of BI

BI admits various semantics: monoidal, relational, topological, categorical, with
or without explicit inconsistency [18]. We introduce a variant of the total (i.e.,
with an explicit treatment of inconsistency) monoidal semantics [9] that makes
use of two monoidal functors to better reflect the syntactic structure of bunches.
Although the labelled tableau calculus TBI is known to be complete w.r.t. this
semantics [9], whether it is also the case for LBI is still an open problem.

Definition 1 (Resource Monoid). A resource monoid (RM) is a structure
M = (M,⊗, 1,⊕, 0,∞,) where (M,⊗, 1), (M,⊕, 0) are commutative monoids
and  is a preordering relation on M such that:

– for all m ∈ M , m  ∞ and ∞  ∞ ⊗ m,
– for all m,n ∈ M , m  m ⊕ n and m ⊕ m  m,
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– if m  n and m′  n′, then m ⊗ m′  n ⊗ n′ and m ⊕ m′  n ⊕ n′.

Let us remark that the conditions of Definition 1 imply that ∞ and 0 respectively
are greatest and least elements and that ⊕ is idempotent.

Definition 2 (Resource Interpretation). Given a resource monoid M, a
resource interpretation (RI) for M, is a function [ − ] : Fm −→ P(M) satisfying
∀p ∈ Prop, ∞ ∈ [ p ] and ∀m,n ∈ M such that m  n, m ∈ [ p ] ⇒ n ∈ [ p ].

Definition 3 (Kripke Resource Model). A Kripke resource model (KRM)
is a structure K = (M, |=, [ − ]) where M is a resource monoid, [ − ] is a resource
interpretation and |= is a forcing relation such that:

– m |= p iff m ∈ [ p ],
– m |= ⊥ iff ∞  m, m |= �a iff 0  m, m |= �m iff 1  m,
– m |= A ∗ B iff for some n, n′ in M such that n⊗n′  m, n |= A and n′ |= B,
– m |= A ∧ B iff for some n, n′ in M such that n⊕n′  m, n |= A and n′ |= B,
– m |= A −∗ B iff for all n, n′ in M such that n |= A and m ⊗ n  n′, n′ |= B,
– m |= A → B iff for all n, n′ in M such that n |= A and m ⊕ n  n′, n′ |= B,
– m |= A ∨ B iff m |= A or m |= B.

The semantic clauses for the additive connectives are stated so as to be
perfectly symmetric with their multiplicative counterparts (as is the case of their
corresponding syntactic rules in LBI). Although such clauses might seem strange
at first sight, they are easily proven equivalent to their more usual definitions.

A formula A is valid in the Kripke resource semantics iff 1 |= A in all Kripke
resource models.

3 The Labelled Calculus GBI

In this section we define a new labelled calculus for BI in the spirit of [2,5,6]
and prove its soundness w.r.t. the resource semantics given in Sect. 2.

A countable set L of symbols is a set of label letters if it is disjoint from the
set U = {m, a,� } of label units. L0

L = L ∪ U is the set of atomic labels over L.
The set LL of labels over L is defined as

⋃
n∈N

Ln
L where

Ln+1
L = Ln

L ∪ { r(�, �′) | �, �′ ∈ Ln
L and r ∈ {m, a } }.

For readability, we often drop the subscript L when L is clear from the context.
A label constraint is an expression � � �′, where � and �′ are labels. A labelled
formula is an expression A : �, where A is a formula and � is a label.

In full generality, the labelled sequent calculus GBI deals with sequents of
the form Γ 	 Δ, where Γ is a multiset mixing both labelled formulas and label
constraints and Δ is a multiset of labelled formulas. From now on, we only deal
with the single-conclusioned variant of GBI where Δ is restricted to exactly one
labelled formula. This restriction is justified by the fact that this paper is a first
step at understanding how purely syntactic LBI-proofs relate to GBI-proofs and
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Fig. 3. Structural rules of GBI.

LBI is a single-conclusioned calculus. Similarly to bunches, we use the notation
Γ(Δ) for a multiset Γ which contains Δ as a sub-multiset.

The structural rules of GBI are given in Fig. 3. They syntactically reflect the
semantic properties of the binary operators ⊗, ⊕ and the binary relation  into
the binary functors m, a and the binary relation �. The units 1, 0 and ∞ are
reflected into the labels units m, a and �. We generically write r (resp. r) to
denote either m or a (resp. m and a) in contexts where the multiplicative or
additive nature of the functor (resp. unit) is not important (e.g., for properties
that hold in both cases).

We begin with rules R and T to capture the reflexivity and transitivity of the
accessibility relation. Then we continue with rules Ui

r that capture the identity
of the functors m and a w.r.t. m and a. The superscript i ∈ { 1, 2 } in GBI-rule
names denotes which argument of an underlying r-functor is treated by the rule.
We then proceed with rules Ai

r and Er for associativity and commutativity of
the r-functors. In the presence of explicit exchange rules Er, or if we implic-
itly consider the r-functors as commutative (which we do not), the superscript
variants of the rules are not needed. We nevertheless keep them as they help



Relating Labelled and Label-Free Bunched Calculi in BI Logic 137

drastically reduce explicit uses of Er. The rule Ia reflects the idempotency of
⊕ into the a-functor. The projection rules Pi

a reflect into the a-functor the fact
that ⊕ is increasing, i.e., m  m ⊕ n. The projection rules Pi

m capture the fact
that m  m ⊗ n generally only holds if n is ∞ or 1. The compatibility rules Ci

r

reflect that ⊕ and ⊗ are both order preserving. Finally the last six rules simply
express Kripke monotonicity, weakening and contraction.

Fig. 4. Logical rules of GBI.

The logical rules of GBI are given in Fig. 4. and are direct translations of
their semantic clauses. Figure 7 gives an example of a proof in GBI, where the
notation “−” subsumes all the elements we omit to keep proofs more compact.

Definition 4. A formula A is a theorem of GBI if the sequent m � � 	 A : � is
provable in GBI for some label letter �.
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Fig. 5. Translation of the LBI-sequent (∅m , p) ; q � r

Fig. 6. Tree-like structural rules of GBI.

Fig. 7. A proof in GBI.

3.1 Soundness of GBI

Definition 5 (Realization). Let K = (M, |=, [ − ]) be a Kripke resource model
with M = (M,⊗, 1,⊕, 0,∞,). Let s = Γ 	 Δ be a labelled sequent. A realiza-
tion of s in K is a total function ρ from the labels of s to M such that:

– ρ(m) = 1, ρ(m(�1, �2)) = ρ(�1) ⊗ ρ(�2),
– ρ(a) = 0, ρ(�) = ∞, ρ(a(�1, �2)) = ρ(�1) ⊕ ρ(�2),
– for all �1 � �2 in Γ, ρ(�1)  ρ(�2) in M,
– for all A : � in Γ, ρ(�) |= A and for all A : � in Δ, ρ(�) �|= A.

We say that s is realizable in K if there exists a realization of s in K and that s
is realizable if it is realizable in some Kripke resource model K.

Lemma 3. If in a GBI-proof the sequent s = Γ 	 Δ is an initial sequent, i.e., a
leaf sequent that is the conclusion of a zero-premiss rule, then s is not realizable.
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Proof. Suppose that s is realizable, then we have a realization ρ of s in some
Kripke resource model K = (M, |=, [ − ]). We proceed by case analysis on the
zero-premiss rule r of which s is the conclusion. If r is id then s has the form
Γ,A : � 	 A : �,Δ, which implies the contradiction ρ(�) |= A and ρ(�) �|= A. If
r is �mL then s has the form m � �,Γ 	 �m : �,Δ so that both ρ(�) �|= �m and
1  ρ(�), which is a contradiction since 1  ρ(�) implies ρ(�) |= �m. Similarly for
the case when r is �aL. Finally, if r is ⊥R then s has the form Γ,� � � 	 A : �,Δ
so that ∞  ρ(�) and ρ(�) �|= A, which is a contradiction because by Kripke
monotonicity, ρ(�) |= A.

Lemma 4. Every proof-rule in GBI preserves realizability.

Proof. By case analysis of the proof rules of GBI.

Theorem 1 (Soundness). If a formula A is provable in GBI, then it is valid
in the Kripke resource semantics of BI.

Proof. Suppose that A is provable in GBI but not valid in the Kripke resource
semantics of BI. Then, the sequent 	 A : m is trivially realizable and we have
a GBI-proof P of A. It follows from Lemma 4 that P contains a branch the
sequents of which are all realizable. Since P is a proof, the branch ends with
an initial (axiom) sequent and Lemma 3 implies that this initial sequent is not
realizable, which is a contradiction. Therefore, A is valid.

4 From LBI-Proofs to GBI-Proofs

In this section, we introduce the concepts for translating sequents of LBI to
sequents of GBI. In order to highlight the relationships between the labels and
the tree structure of bunches more easily we use label letters of the form xs
where x is a non-greek letter and s ∈ { 0, 1 }∗ is a binary string that encodes the
path of the node xs in a tree structure the root of which is x. We thus call x the
root of a label letter xs. We use greek letters to range over label letters with the
convention that distinct greek letters denote label letters with distinct roots.

Definition 6. Given a bunch Γ and a label letter δ, we define L(Γ, δ), the trans-
lation of Γ according to δ, by induction on the structure of Γ as follows:

– L(A, δ) = {A : δ }, L(∅a, δ) = { a � δ }, L(∅m, δ) = {m � δ },
– L((Δ0 , Δ1), δ) = L(Δ0, δ0) ∪ L(Δ1, δ1) ∪ {m(δ0, δ1) � δ },
– L((Δ0 ; Δ1), δ) = L(Δ0, δ0) ∪ L(Δ1, δ1) ∪ { a(δ0, δ1) � δ }.
The definition extends to LBI-sequents as follows: L(Γ 	 A, δ) = L(Γ, δ) 	 A : δ.

We write Γ : δ as a shorthand for L(Γ, δ) so that L(Γ 	 A, δ) = Γ : δ 	 A : δ. An
illustration of Definition 6 is given in Fig. 5. Let Δ be a sub-bunch of Γ, then
for any label letter δ, Γ : δ will contain the multiset Δ : δs for some (possibly
empty) binary suffix s, in which case we write Γ(Δ : δs) : δ.
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Before translating LBI-proofs into GBI-proofs we introduce the notion of
label substitution, which is a mapping from label letters to atomic labels, written
[α1 �→ �1, . . . , αn �→ �n ]. Since label letters have the form xs where s is a binary
string, we write α ↪→ � as a shorthand for ∀s. αs �→ �s.

Theorem 2. If a sequent Γ 	 A is provable in LBI, then for any label letter δ,
the labelled sequent Γ : δ 	 A : δ is provable in GBI.

Proof. The proof is by induction on the height of LBI-proofs, using a case dis-
tinction on the last rule R applied. We show that for an arbitrary label letter δ,
we can build a GBI-proof of the translation of the conclusion of R from transla-
tions of its premises. Several LBI-rules that operate on a bunch Δ that can be
nested inside a bunch Γ(Δ) require a careful distinction between their shallow
(no actual Γ around Δ) and deep variants. We only consider a few cases, the
others being similar.

– Axiom id: id
A � A is translated to id

A : α � A : α
– Axiom �mR: �mR

∅m � �m
is translated to �mR

m � α � �m : α

– Axiom �aR: This case is similar to �mR

– Case −∗R: Consider the LBI-proof depicted below on the left-hand side
where D is a proof of Γ ; A 	 B, the premiss of −∗R

D
Γ , A � B −∗R

Γ � A −∗ B

P
m(α0, α1) � α, Γ : α0, A : α1 � B : α

Γ � A −∗ B

Given an arbitrary label letter δ, we are required to build a GBI-proof of
Γ : δ 	 A −∗ B : δ. By I.H. on D for some label letter α, we have a proof P of
(Γ , A) : α 	 B : α depicted above on the right-hand side from which we get

P[ α0 ↪→ δ ]

m(δ, α1) � α, Γ : δ, A : α1 � B : α −∗R
Γ : δ � A −∗ B : δ

Let us note that α1 and α are indeed fresh labels in the premiss of −∗R since
by convention α and δ have distinct roots.

– Case W (Shallow): By I.H. suppose we have for some α

D
Δ0 � A

W
Δ0 ; Δ1 � A

P
Δ0 : α � A : α

Γ � A −∗ B

We then construct the following proof

P[ α ↪→ δ0 ]

Δ0 : δ0 � A : δ0
WL

δ0 � δ, a(δ0, δ1) � δ, Δ0 : δ0, Δ1 : δ1 � A : δ0
KR

δ0 � δ, a(δ0, δ1) � δ, Δ0 : δ0, Δ1 : δ1 � A : δ
P1

a
a(δ0, δ1) � δ, Δ0 : δ0, Δ1 : δ1 � A : δ
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Let us note that we used WL to make the premiss of KR exactly match
P[α ↪→ δ0 ]. We can get rid of WL in all translation patterns by pasting the
missing material to every sequent in the proofs obtained by I.H.

– Case Um↓ (Deep): Suppose we have a proof

D
Γ(∅m , Δ) � A

Um↓
Γ(Δ) � A

By I.H., for some α, s ∈ {0, 1}∗ and x ∈ {0, 1}, we have a proof

P
Γ(m(αsx0, αsx1) � αsx, m � αsx0, Δ : αsx1) : α � A : α

We then construct the following proof

P[ αsx0 �→ m][ αsx1 ↪→ δsx ][ α ↪→ δ ]

Γ(m(m, δsx) � δsx, m � m, Δ : δsx) : δ � A : δ
U1

m
Γ(δsx � δsx, m � m, Δ : δsx) : δ � A : δ

R
Γ(Δ : δsx) : δ � A : δ

Using tree-like identity we get an alternative proof

P[ α ↪→ δ ]

Γ(m(δsx0, δsx1) � δsx, m � δs0, Δ : δsx1) : δ � A : δ
Z1
m

Γ(Δ : δsx) : δ � A : δ

Figure 8 summarizes the translation patterns from LBI to GBI, where left-
to-right reading of the rules means bottom-up application in a proof. We write
WL to indicate the patterns for which explicit uses of weakening in GBI can
be discarded as explained in the proof of Theorem 2. In LBI, the rules −∗L,
→L, ∗R and ∧R require context splitting, which is problematic for bottom-up
proof-search. Removing weakening from GBI is desirable as context splitting
is no longer needed, which also makes the labelled calculus more interesting
as its sequents become more than just an isomorphic term-like transcription of
bunches. Besides, removing WL allows the translation to send all logical rules in
LBI directly to their counterpart in GBI. Finally, we also learn from the patterns
that KR instead of Ci

r is what distinguishes the shallow cases from the deep ones,
that Ia identifies contraction in LBI while R identifies upward identity Ur↑ and
that T and KL are never used and can thus be removed from GBI without
harming its ability to prove any LBI-provable formula.
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Fig. 8. Translation patterns with t, r ∈ {m, a }, i ∈ { 1, 2 }, S=Shallow, D=Deep.

5 Back from GBI-Proofs to LBI-Proofs

In this section we define the notion of normal GBI-proofs and show how to trans-
late them into LBI-proofs. The main problem is that bunches are binary trees,
while label constraints describe graphs that capture the accessibility relations
between the worlds of a resource model. We observe that translating a bunch as
of Definition 6 results in label constraints encoding a binary tree, which might
only be destroyed by the rules WL, Ia and Ui

r. Using label letters of the form xs,
we can formulate (without requiring explicit substitutions) two tree preserving
rules CT and Zi

r described in Fig. 6. CT duplicates the whole subtree Θ rooted at
δs into two subtrees rooted at δs0 and δs1 (thus renaming all labels in the new
subtrees) and inserts a new node δs as the parent of the duplicated subtrees. Zi

r

behaves similarly except that one of the new subtrees is linked with the unit r.
From now on, without harming completeness w.r.t. LBI, we restrict GBI to

the rules that are actually used in the patterns of Fig. 8 (discarding WL) and
replace CL and Ui

r with CT and Zi
r of Fig. 6. We also slightly modify LBI: we

discard the surrounding Γ(−) in the axiom ⊥L and extend the weakening rule
to “,” whenever the bunch to weaken is ⊥.

Let Γ 	 A be labelled sequent with label letters in a set of label letters L. For
r ∈ { a,m }, Γ induces a subterm relation � = (�a ∪ �m) defined as follows:

�0 �r �1 iff �1 ∈ L and ∃ �2(r(�1, �2) � �0 ∈ Γ or r(�2, �1) � �0 ∈ Γ).

Intuitively, the subterm relation is intended to characterize the links from parent
to children nodes when the relation represents a tree.

Γ also induces a reduction relation � defined as follows:

�0 � �1 iff �1 � �0 ∈ Γ, �1 ∈ L0
L, �0 ∈ L and �1 �= �0.

Intuitively, the reduction relation will help us track steps that trigger weakenings
in LBI. A label �0 is irreducible in Γ if Γ has no redex �0 � �1. A redex �0 � �1 is
minimal if �1 is irreducible. A reduction of �0 to �n in Γ is a path �0 � �1 . . .� �n
such that for all 0 � i < n, �i��i+1 in Γ. A reduction of �0 to �n is minimal if �n
is irreducible. If all minimal reductions of �0 terminate with the same irreducible
label �n, then �n is called the normal form of �0 (in Γ).
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A label �′ is reachable from a label � in Γ, written � � �′, if � = �′ or there
is a path P from � to �′ with no redex pointing outside P , more formally, P is
a sequence �0 � �1 . . . � �n such that �0 = �, �n = �′ and for all 0 � i < n and
all �′′ such that �i � �′′, �′′ ∈ P . If A : � ∈ Γ then A is an �-leaf in Γ. A label
constraint �2 � �1 is reachable from �0 in Γ if �1 is reachable from �0 and there
is no formula A and no irreducible �′ on the path from �0 to �1 such A : �′ ∈ Γ.

Definition 7 (Tree Property). A labelled sequent Γ 	 Δ has the tree property
if it satisfies all of the following conditions:

(T1) Δ = {A : � } and A : � is called the root formula with root label �,
(T2) for all C : �0 ∈ Γ ∪ Δ, �0 is a label letter,
(T3) for all �1 � �0 ∈ Γ, �0 is a label letter and if so is �1 then �0 � �1,
(T4) for all r(�1, �2) � �0 ∈ Γ, �1 and �2 are atomic,
(T5) if ���0 and �0 is reducible then �0 has a normal form and Γ has no �0-leaf,
(T6) if � � �0 and �0 is irreducible, Γ has exactly one �0-leaf,
(T7) the set { �1 � �0 | � � �0 } is a tree with root � in which all internal nodes
have exactly two children linked with �r arrows of the same r type.

A GBI-proof has the tree property iff all of its sequents have the tree property.

A careful analysis of the translation patterns shows that all LBI-translated
GBI-proofs satisfy conditions (T1) to (T6). (T7) might seem very restrictive as it
implies that for all sequents s in a GBI-proof and all labels � in s, s contains at
most one corresponding label constraint of the form r(�1, �2) � �. Actually, we
can allow sequents in a proof to have more than one label constraint with the
same label on its right-hand side as long as we can decide which one has to be
used for the subterm relation to represent a tree structure. This can be achieved
either by managing label constraints with a stack strategy, always picking the
one which has been introduced into the sequent the most recently, or by using
a notion of rank corresponding to the depth at which the label constraint has
been introduced in (a bottom up reading of) the proof.

A sequent Γ 	 A : � is terminal if it admits a proof of height 0. For any GBI
proof-rule R, the principal label and principal label constraints of R are the labels
and label constraints explicitly mentioned in the conclusion of R as written in
Figs. 3, 4 or 6.

Definition 8. A GBI-proof is normal if it satisfies the tree property, all of its
terminal sequents are initial sequents and in all sequents s that are the conclusion
of an instance of a proof-rule R, the principal label and principal label constraints
of R in s can be reached from the root label of s.

Given a finite set B of bunches we define (up to associativity and commu-
tativity of bunches) Ba(B) as ∅a if B is empty and B1 ; . . . ; Bn with Bi ∈ B
otherwise. Similarly for Bm(B) w.r.t. ∅m and “ ,”.

Definition 9. Given a labelled sequent Γ 	 A : � in a normal GBI-proof, its
translation to an LBI-sequent is defined as B(Γ 	 A : �) = Γ@� 	 A where Γ@�
is defined by induction as follows:
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– Γ@m = ∅m, Γ@a = ∅a, Γ@� = ⊥,
– Γ@� = Γ@�′ if for some �′, � � �′ in Γ,
– let L = {Ai | Ai : � ∈ Γ } and Sr = { �i | � �r �i in Γ },

Γ@� =

⎧
⎨

⎩

Ba(L) if L �= ∅.
Ba(Sa) if L = ∅,Sm = ∅,Sa �= ∅.
Bm(Sm) if L = ∅,Sm �= ∅,Sa = ∅.

Theorem 3. Any normal GBI-proof of a formula A can be translated into an
LBI-proof of ∅m 	 A.

Proof. The proof is by induction on the height of normal GBI-proofs. We only
give a few illustrative cases, the others being similar.

– Base Case id: We show that the normal GBI-proof

id
Γ(A : �) � A : � translates to id

Δ ; A � A

Since A is a �-leaf in Γ, Γ has no redex for �. Therefore, Γ@� is by definition
a bunch of the form A1 ; . . . ; An where A = Ai for some 1 ≤ i ≤ n and
Ai : � ∈ Γ for all 1 ≤ i ≤ n. Up to associativity and commutativity, Γ@� can
therefore be rewritten as a bunch Δ ; A.

– Base Case �mR: We show that the normal GBI-proof

�mR
Γ(m � �) � �m : � translates to �mR

∅m � �m

Since � is a label letter, Γ has a redex � � m. Therefore, Γ cannot have any
�-leaf, so that Γ(m � �)@� = Γ(m � �)@m = ∅m.

– Case �mL: We show that the normal GBI-proof (below)

D
s1 = Γ(m � �) � A : �0 �mL
s0 = Γ(�m : �) � A : �0

translates to
P

Δ(∅m) � A �mL
Δ(�m) � A

By I.H., we have an LBI-proof P of the sequent Γ(m � �)@�0 	 A. Since D
is normal, we have �0 � � in the last two sequents s0, s1 so that � is actually
treated by the translation of s1. Then Γ(m � �)@�0 is of the form Δ(∅m).
Since �m is the only �-leaf in s0, Γ(�m : �)@�0 is Δ(�m).

– Case KR: Suppose we have a normal GBI-proof

D
s1 = Γ(�1 � �) � A : �1

KR
s0 = Γ(�1 � �) � A : �

Since � is a label letter, Γ has a redex ���1. Therefore, Γ has no �-leaf so that
Γ@� = Γ@�1 by definition. By I.H. we have an LBI-proof of s1@�1, which is
also an LBI-proof of s0@�.
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– Case −∗L: Suppose we have a normal GBI-proof

D1

s1 = Γ(m(�1, �2) � �) � B : �2

D2

s2 = Γ(m(�1, �2) � �, C : �) � A : �0 −∗L
s0 = Γ(m(�1, �2) � �, B −∗ C : �1) � A : �0

Since m(�1, �2) � � is reachable from �0 in s0, s0 contains no �-leaf. s0@�0 then
has the form Δ(B −∗ C,Γ@�2) 	 A and s2@�0 has the form Δ(C) 	 A since
s2 has a �-leaf C making m(�1, �2) � � unreachable from �0. By I.H., we have
LBI-proofs P1, P2 of s1, s2 respectively, leading to the LBI-proof

P1

Γ@�2 � B

P2

Δ(C) � A −∗L
Δ(B −∗ C, Γ@�2) � A

6 Conclusion and Future Work

In this paper we have shown how to translate any LBI-proof into a GBI-proof.
We also showed how to translate (normal) GBI-proofs satisfying the tree prop-
erty back into an LBI-proof. A first perspective is to investigate whether any
GBI-proof can be normalized so as to satisfy the tree property. We conjecture
that it is indeed the case. A second interesting perspective would be to find an
effective (algorithmic) procedure translating TBI-proofs into GBI-proofs since
TBI is known to be sound and complete w.r.t. total KRMs. Finally, a third per-
spective relies on the construction of counter-models in the KRM semantics of BI
directly from failed GBI-proof attempts. This direction requires building coun-
termodels from a single-conclusioned calculus in which backtracking is allowed.
Those perspectives would help us to show that total Kripke monoidal models
with explicit inconsistency are complete w.r.t. the label-free sequent calculus
LBI, thus solving a long-lasting open problem.
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Abstract. In this work, we investigate the proof theoretic connections
between sequent and nested proof calculi. Specifically, we identify gen-
eral conditions under which a nested calculus can be transformed into a
sequent calculus by restructuring the nested sequent derivation (proof)
and shedding extraneous information to obtain a derivation of the same
formula in the sequent calculus. These results are formulated generally
so that they apply to calculi for intuitionistic, normal modal logics and
negative modalities.

1 Introduction

Contemporary proof theory can be traced to Gentzen’s seminal work [8] where
analytic proof calculi for classical and intuitionistic logic were presented. Proof
calculi consist of formal rules of inference which describe the logic under consid-
eration; in an analytic calculus, every formula that occurs in a proof generated
by the calculus is a subformula of the end formula being proved. Analyticity is
crucial because it induces a structure on the proofs (in terms of the end formula).
This proof structure can be exploited to formalise reasoning, investigate meta-
logical properties of the logic e.g. decidability, complexity and interpolation, and
develop automated deduction procedures.

The wide applicability of logical methods and their use in new subject areas
has resulted in an explosion of new logics different from classical logic; their
usefulness depends on the availability of an analytic proof calculus. The sequent
calculus is the simplest and best-known formalism for constructing analytic proof
calculi. Unfortunately, there are many natural non-classical logics—for example,
most extensions of intuitionistic and modal logic—for which the sequent calculus
formalism is unable to provide an analytic calculus (the precise reasons for this
inability are still not well understood). In response, many more new formalisms
have been proposed, such as hypersequents [2,21], labelled sequents [6,18], nested
sequents [3,10] and linear nested sequents [14,16]. This work is primarily con-
cerned with the nested sequent formalism which is obtained by replacing the
sequent in the sequent calculus with a tree of sequents.
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While the trend has been towards developing formalisms with greater sophis-
tication in order to provide non-classical logics with analytic calculi, in this work
we look in the reverse direction by investigating which aspects of this sophis-
tication are extraneous. More specifically, we identify general conditions under
which a nested calculus can be transformed into a sequent calculus by restruc-
turing the nested sequent derivation (proof) and shedding information to obtain
a derivation of the same formula in the sequent calculus. Our approach identifies
a class of nested systems, called basic nested systems, suitable for such trans-
formations. In these systems, nested rules either create new nestings (creation
rules), or manage sequent contexts (update rules), moving formulae to deeper
nestings, with nesting depth difference exactly equal to one. This builds an inter-
esting connection with Avron and Lahav’s basic sequent systems [1,11], since the
systematic separation of the behaviour of principal-auxiliary/context formulae
in basic sequent systems and creation/update rules allows for a neater way of
relating sequent and nested frameworks.

We exploit this separation of rules as follows: after creating a new nesting,
upgrade rules control the flow of formulas from the surrounding context to nest-
ings. We show that, if this flow is restricted to stepwise, (bottom-up) outside-in
moves, then the whole block of applications of nested rules can be seen as a single
sequent rule, with the principal and auxiliary formulae determined by the cre-
ation rule, and the context restrictions determined by the upgrade rules. Observe
that the proof strategy described above is only possible since basic nested sys-
tems allow for a general form of the disjunction property. We apply this method
to intuitionistic, normal modal logics and negative modalities.

We believe that the material presented here is not only a mere technicality for
establishing connections between proof formalisms: on pinpointing the key differ-
ences between sequent and nested systems, we are in fact shedding some light on
the discussion of to what extent sequent calculus is an adequate meta-language
for producing analytic systems. We thus finish the paper by showing how our
ideas can be used in order to better understand the bounds for analyticity in
sequent systems.

Organisation and Contributions. Section 2 presents the notation for basic sequent
systems; Sect. 3 introduces the notion of basic nested systems and shows a
normalisation procedure for nested sequent derivations; Sect. 4 explains how
to recover sequent systems from nested ones; Sect. 5 applies our results to some
example logics and brings a discussion about nestings and cut-elimination; Sect. 6
concludes the paper.

2 Sequent Systems

In [1] a family of sequent systems (called basic systems) was uniformly presented
by explicitly differentiating the context and non-context portions of a rule. The
former is defined using binary context relations and the latter via a specified
rigid structure. The advantage of such a presentation is that it allows us to
relate the properties of the rule with the formal specification of its content and
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non-context. We will greatly explore this separation when relating sequent rule
applications to blocks of nested derivations in Sect. 4. In this work, we will
adopt the presentation for basic systems given in [11]. Where convenient, we
will also present sequent systems using the traditional rule schemas built from
meta-variables for formulae and sets of formulae.

Let L denote a propositional language and wffL the set of its well formed for-
mulae, built using a countable set Var = {p, p1, p2, . . .} of propositional variable
symbols.

Definition 1. A signed formula is an expression of the form T : A or F : A
where A ∈ wffL. A sequent is a finite set of signed formulae. As in [11], we will
adopt the usual sequent notation Γ � Δ, where Γ,Δ are (possibly empty) finite
sets of formulae and Γ � Δ is interpreted as the sequent {F : A | A ∈ Γ} ∪ {T :
A | A ∈ Δ}.

A substitution is a function σ : wffL → wffL such that

σ(♥(A1, . . . , Ak)) = ♥(σ(A1), . . . , σ(Ak))

for every k-ary connective ♥ of L. Substitutions extend to signed formulae (pre-
serving sign), sequents and (later) to nested sequents in the standard way.

A context relation is a finite binary relation on the set of signed formulae.
Given a context relation C, we denote by C the binary relation between signed
formulae C = {〈σ(α), σ(β)〉 | σ is a substitution, and 〈α, β〉 ∈ C}.

A C-instance is a pair of sequents 〈S1, S2〉 such that for some enumeration
S1 = {α1, . . . , αk} and S2 = {β1, . . . , βk} and every 1 ≤ i ≤ k, it is the case that
αiCβi.

Example 2. From the trivial relation Cid := {〈F : p,F : p〉, 〈T : p,T : p〉} it
follows that a signed formula is Cid-related to another iff the two signed formulae
are identical. It follows that the Cid-instances are precisely the sets {〈S, S〉 |
S is a sequent} of pairs.

From the relation Cint := {〈F : p,F : p〉} it follows that while (F : A)Cint(F : A)
for every formula A, it is not the case that (T : A)Cint(T : A). In particular, the
Cint-instances are precisely those sequent pairs of the form 〈Γ �, Γ �〉. Informally,
Cint-instances are identical sequents with empty right hand side.

Let �Γ denote the set {�A | A ∈ Γ}. Then from CK := {〈F : p,F : �p〉}
it follows that CK-instances are precisely those sequent pairs of the form
〈Γ �,�Γ �〉.

Finally, from the relation C4 := {〈F : �p,F : �p〉} it follows that C4-instances
are precisely those sequent pairs of the form 〈�Γ �,�Γ �〉.
We define the concatenation (Γ1 � Δ1) ⊗ (Γ2 � Δ2) as Γ1, Γ2 � Δ1,Δ2, and
∅ ⊗ Π as ∅.

Definition 3. A basic premise is a pair 〈S;C〉 where S is a sequent and C is a
context relation. A basic rule is a pair s/S where s = {〈Si;Ci〉}1≤i≤k is a finite
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set of basic premises and S is the conclusion sequent of the rule. A basic rule is
represented explicitly as:

〈S1;C1〉 · · · 〈Sk;Ck〉
S

The formulae in Si (1 ≤ i ≤ k) are called auxiliary formulae and the formulae
in S are called the principal formulae.

A rule with an empty set of basic premises is called an axiom. A basic sequent
system (SC) consists of a set of basic rules.

An application of a basic rule has the following form, where σ is a substi-
tution, Π1,Π

′
1, . . . , Πk,Π

′
k are sequents and 〈Πi,Π

′
i〉 is a Ci-instance for each i

(1 ≤ i ≤ k).

σ(S1) ⊗ Π1 · · · σ(Sk) ⊗ Πk

σ(S) ⊗ Π ′
1 ⊗ · · · ⊗ Π ′

k

r

The notion of premise, conclusion, principal and auxiliary formulae extends to
applications of rules in the standard way.

A derivation in a SC is defined in the usual way as a finite labelled rooted tree:
the root is labelled by the end-sequent, the labels of each node and its children
correspond to the conclusion and premises of a rule application, and axioms label
the leaves.

Fig. 1. Multi-conclusion intuitionistic calculus SCmLJ.

Example 4. The rule below on the left has principal formula p1 → p2, auxiliary
formulae p1, p2, and application depicted on the right

〈p1 � p2;Cint〉
� p1 → p2

Γ,A � B

Γ � A → B
→R

Example 5. The axiom init, and the right and left weakening rules are defined
as follows:

∅/p � p 〈∅;Cid〉/ � p 〈∅;Cid〉/p �
In the presence of the above rules, the following rules can be seen to be derivable:

Γ,A � A,Δ
init

Γ � Δ
Γ,Γ ′ � Δ,Δ′ W
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Remark 6. The systems that we consider will be fully structural in the sense
that free application of the schemas init and W is permitted (as originally in the
definition of basic sequent systems in [11]). Observe that, since sequents are sets,
we do not the copy formulae in the contexts.

Figure 1 presents (the schema representation of) SCmLJ [17], a multiple conclu-
sion sequent system for propositional intuitionistic logic. Observe that all rules,
except →R, have the trivial relation in the basic premises. On the other hand,
the relation Cint in the implication right rule enforces that the only formula in
the succedent of the conclusion is the principal formula.

In what follows, for readability, we may omit the word basic when referring
to rules, applications and systems.

3 Nested Systems

Nested systems [4,20] are extensions of the sequent framework where each
sequent is replaced by a tree of sequents. In this work, we will identify a family
of basic nested systems, inspired by [1,13].

Definition 7. A nested sequent is defined inductively as follows:

(i) if S is a sequent, then it is a nested sequent;
(ii) if Γ � Δ is a sequent and G1, . . . , Gk are nested sequents, then Γ �

Δ, [G1] , . . . , [Gk] is a nested sequent.

A nested rule is a pair υ/Υ represented as follows, where υ = {Υ1, . . . , Υk} is a
finite set of nested sequents (the premises) and Υ is the conclusion nested sequent
of the rule.

Υ1 · · · Υk

Υ

The non-context formulae in the premises are called auxiliary formulae and the
non-context formulae in the conclusion are called principal formulae.

For a sequent S = Γ � Δ, define S ⊗ (� [�]) to be the nested sequent Γ �
Δ, [�].

Let S, S1, . . . , Sk be sequents. A basic nested rule has one of the following
forms:

i. sequent-like rules

S1 · · · Sk

S

ii. nested-like rules
(a) creation rules (b) upgrade rules*

� [S1] · · · � [Sk]
S

� [S1]
S ⊗ (� [�])

*Upgrade rules must have exactly one principal and auxiliary formulae.
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We will call the nestings in the premises of a creation rule its auxiliary nestings.
Nestings containing principal or auxiliary formulae are called active.

Example 8. Consider the following nested-like rules

� [p1 � p2]
� p1 → p2

� [p �]
p � [�]

The first is a creation rule, with auxiliary nesting [p1 � p2]; the second an upgrade
rule.

Remark 9. Observe that our definition of nested-like rules restricts the rule
form in three ways. First, nested-like rules must have exactly one nesting in the
premises or conclusion. Second, information in nested rules always moves deeper
inside nestings, when reading rules bottom-up. Finally, upgrade rules move only
one piece of information at a time. The first restriction is crucial for avoiding
non-determinism when defining of applications of rules; the second one will be
key for stating sufficient conditions for the linearisation of nested systems; the
third restriction is natural but not necessary. In fact, nested rules usually are
local, acting in one formula at a time. Also, upgrade rules naturally have this
shape, which will allow for the identification of upgrade nested rules as basic
sequent context relations later in Sect. 4.

We will present, in Sect. 5, some examples of basic nested systems. It is worth
mentioning that every nested calculus we know that has a correspondence (in the
sense of this paper) with sequent systems is equivalent to a basic nested system.
On the other hand, the restrictions above exclude, e.g., the representation of
the rules for modal axioms 5 and B [4]. But then, there are no known simple,
cut-free sequent systems for logics K5 and KB. We will discuss some cases that
fall outside our scope also in Sect. 5.

For readability, we will denote by Γ,Δ sequent contexts and by Λ sets of nest-
ings. In this way, every nested sequent has the shape Γ � Δ,Λ where elements of
Λ have the shape [Γ ′ � Δ′, Λ′] and so on. We will denote by Υ arbitrary nested
sequents. Application of rules and schemas in nested systems will be represented
using holed contexts.1

Definition 10. A nested-holed context is a nested sequent that contains a hole
of the form { } in place of nestings. We represent such a context as S { }. Given
a holed context and a nested sequent Υ , we write S {Υ} to stand for the nested
sequent where the hole { } has been replaced by [Υ ], assuming that the hole is
removed if Υ is empty and if S is empty then S {Υ} = Υ .

For example, (Γ � Δ, { }){Γ ′ � Δ′} = Γ � Δ, [Γ ′ � Δ′] while { }{Γ ′ � Δ′} =
Γ ′ � Δ′ and (Γ � Δ, { }){ } = Γ � Δ.
1 Observe that, since in basic nested systems nested-like rules must have exactly one

nesting in the premises or conclusion, only one hole is enough for describing both
schemas and applications of rules. Compare with, e.g., the schematic nested rule for
5 in [5].
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Definition 11. An application of a basic nested rule is given by2

S {σ(Υ1) ⊗ G} · · · S {σ(Υk) ⊗ G}
S {σ(Υ ) ⊗ G} rn

where σ is a substitution, G is the nested sequent context. The definition of
derivations in a NS is a natural extension of the one for SC, only replacing
sequents by nested sequents. The notion of principal and auxiliary formulae is
extended to applications of rules in the standard way.

Remark 12. In this work we will assume that nested systems are fully structural,
i.e., including the following nested versions for the initial axiom and weakening

S {Γ,A � Δ,A,Λ} initn
S {Γ � Δ,Λ}

S {Γ, Γ ′ � Δ,Δ′, Λ, Λ′} Wn

Also, we only consider cut-free nested systems (we will discuss cut-freeness in
Sect. 5).

By treating nested contexts as sets, we are setting the context relations to be
the identity function. In this way, every basic rule having only Cid as contexts
relations in its premises is a sequent-like basic nested rule (and vice-versa). Note
that this also implies that basic nested rules are invertible.

Example 13. Applications of the basic rules in Example 8 have, respectively, the
form

S {Γ � Δ,Λ, [A � B]}
S {Γ � A → B,Δ,Λ} →n

R

S {Γ � Δ,Λ, [Γ ′, A � Δ′, Λ′]}
S {Γ,A � Δ,Λ, [Γ ′ � Δ′, Λ′]} liftn

Figure 2 presents (the schema representation of) NSmLJ [7], a basic nested system
for mLJ.

Fig. 2. Nested system NSmLJ.

2 Throughout, we will use n as a superscript, etc for indicating “nested”. Hence
e.g., →n

R will be the designation of the implication right rule in the nesting
framework.
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3.1 Normal Forms in NS

While adding a tree structure to sequents enhances the expressiveness of the
nesting framework when compared with the sequent one, the price to pay is that
the obvious proof search procedure may be of suboptimal complexity, since there
can be an exponential blow-up due to the nestings [4]. Hence the importance of
proposing normal form derivations and/or proof search strategies for taming the
proof search space.

In this section, we will propose a normalisation procedure for basic nested
systems, which will be crucial for transforming a nested sequent derivation into
a sequent derivation.

The first result states that the disjunction property holds for basic nested
systems.

Theorem 14. Let NS be a basic nested system and let Λi be nestings in NS.
Then � Λ1, . . . , Λk is derivable iff � Λi is derivable for some i ∈ {1, . . . , k}.
Proof. (⇐) Trivial due to Wn.

(⇒) Due to the shape of basic nested rules, it is immediate to see that any
derivation π of the nested sequent � Λ1, . . . , Λk has the form

π1

� Λ1, . . . , Λ
1
i , . . . , Λk · · ·

πh

� Λ1, . . . , Λ
h
i , . . . , Λk

� Λ1, . . . , Λi, . . . , Λk
rn

By inductive hypothesis, for each premise j, either Λj
i is provable for all 1 ≤ j ≤ h

or there is a m �= i such that Λm is provable. In both cases, the result follows
trivially.

This result generalises not only the disjunction property for mLJ [23] but also
for Horn relational sequent theories for modal logics (see [24], Prop. 8.2.9).

The next definition explains how to determine the exact position of nestings
and formulae occurring in a nested sequent, as well as the nesting-size of a
sequent. Intuitively, the depth of a hole/formula is the number of nodes on the
branch of its nesting tree (inside-out measure). The depth of a sequent, however,
measures the number of nodes on a branch of the nesting tree of maximal length
(outside-in measure). We will overload the function symbol dp in order to keep
the notation light.

Definition 15. The depth of S { }, denoted by dp (S { }), is defined inductively
by dp ({ }) = 0, dp (Γ � Δ,Λ, { }) = 1 and dp (Γ � Δ,Λ, [S { }]) = dp (S { }) +
1. If a formula A ∈ Γ,Δ, then the depth of A in S {Γ � Δ,Λ} is defined as
dp (S { }). Finally, the depth of a nested sequent Υ , written dp (Υ ), is defined as
the maximum depth of formulae in Υ .

For example, if S { } = Γ � Δ, { } and Υ = S {Γ ′ � Δ′, A, [� B]}, then
dp (S { }) = 1, the depth of A in Υ is 1 and dp (Υ ) = 2.
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Definition 16. Let NS be a nested system. The depth of an application of a
rule rn in a derivation (dp (rn)) is the depth of the principal formula in the
conclusion of rn.

Example 17. In the following derivation

S {Γ,B,C � Δ,Λ, [A,Γ ′ � Δ′,D,E]}
S {Γ,B,C � Δ,Λ, [A,Γ ′ � Δ′,D ∨ E]} ∨n

R

S {Γ,B ∧ C � Δ,Λ, [A,Γ ′ � Δ′,D ∨ E]} ∧n
L

S {Γ,A,B ∧ C � Δ,Λ, [Γ ′ � Δ′,D ∨ E]} liftn

dp (liftn) = dp (∧n
L) = dp (S { }), while dp (∨n

R) = dp (S { }) + 1.

The next definition brings a variant of nested systems where rules can be applied
only in the deep-most nestings of a sequent (this is an adaptation to nested
systems of the similar definition for linear nested systems [16]).

Definition 18. Let Υ be a nested sequent with dp (Υ ) ≤ 1 and m = dp (S { }).
An application of a basic nested sequent rule rn over S {Υ} is end-active if
dp (rn) = m and

– rn is sequent-like and dp (Υ ) = 0; or
– rn is a creation rule; or
– rn is an upgrade rule and dp (Υ ) = 1.

The end-active variant of a NS calculus is the calculus with the rules restricted
to end-active applications.

Example 19. Consider the following (open) derivations of A ∧ B � C → D,E →
(F → G) in NSmLJ.

(a) (b)
A � [B,C � D] , [E � [F � G]]
A � [B,C � D] , [E � (F → G)]

→n
R

A � E → (F → G), [B,C � D]
→n

R

A,B � E → (F → G), [C � D]
liftn

A ∧ B � E → (F → G), [C � D]
∧n
L

A ∧ B � C → D,E → (F → G)
→n

R

A � [B,C � D] , [E � [F � G]]
A,B � [C � D] , [E � [F � G]]

liftn

A,B � C → D, [E � [F � G]]
→n

R

A,B � C → D, [E � (F → G)]
→n

R

A,B � C → D,E → (F → G)
→n

R

A ∧ B � C → D,E → (F → G)
∧n
L

In (a), the application of the rule ∧n
L is not end-active since

dp (A ∧ B � E → (F → G), [C � D]) = 1. In (b), the topmost application of
the rule →n

R and the application of rule liftn are not end-active since
dp (A,B � C → D, [E � [F � G]]) = 2. All the other rule applications are end-
active.
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The schematic representation of end-active basic nested rules is as follows:

i. sequent-like rules

S {Γ1 � Δ1} · · · S {Γk � Δk}
S {Γ � Δ}

ii. nested-like rules

(a) creation rules (b) upgrade rules

S {Γ � Δ,Λ, [S1]} · · · S {Γ � Δ,Λ, [Sk]}
S {Γ � Δ,Λ}

S {Γ � Δ,Λ, [S ⊗ S′]}
S {Γ � Δ,Λ, [S]}

where Λ = {Λ1, . . . , Λl} is such that dp (Λi) = 1 for all 0 ≤ i ≤ l.

It turns out that basic nested systems always admit end-active versions, since
some applications of rules permute. The following extends the definition of per-
mutability to the nested setting.

Definition 20. Let NS be a nested system, r1, r2 be applications rules and Υ
be a nested sequent. We say that r2 permutes down r1 (r2 ↓ r1) if, for every
derivation in which r1 has as conclusion Υ and r2 is applied over one or more of
r1’s premises (but not on auxiliary formulae/nestings of r1), there exists another
derivation of Υ in which r2 has as conclusion Υ and r1 is applied over zero or
more of r2’s premises (but not on auxiliary formulae/nestings of r2).

Example 21. In Example 19 the application of the rule ∧n
L permutes down w.r.t.

→n
R in (a), the same with the applications of →n

R and liftn in (b).

(a) (b)
A � [B,C � D] , [E � [F � G]]
A � [B,C � D] , [E � F → G]

→n
R

A � E → (F → G), [B,C � D]
→n

R

A,B � E → (F → G), [C � D]
liftn

A,B � C → D,E → (F → G)
→n

R

A ∧ B � C → D,E → (F → G)
∧n
L

A � [B,C � D] , [E � [F � G]]
A � [B,C � D] , [E � F → G]

→n
R

A,B � [C � D] , [E � F → G]
liftn

A,B � C → D, [E � F → G]
→n

R

A,B � C → D,E → (F → G)
→n

R

A ∧ B � C → D,E → (F → G)
∧n
L

In the derivations above, all applications of rules are end-active. Observe that
they are different, but equivalent up-to-permutation derivations. Note also that
end-activeness implies that the deep-most implication can be unfolded only after
the application of all shallower rules.

Definition 22. Let NS be a basic nested system. In any derivation π in NS,
a sequential block Bs (nested block Bn) is a maximal bottom-up sequence of
applications of sequent-like (nested-like) rules in a branch of π having the same
depth d. We will define the depth of such sequential (nested) block as dp (Bs) = d
(dp (Bn) = d).
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Theorem 23. Any basic nested system admits an end-active variant. More-
over, in any end-active derivation, if Bs is the immediate successor of Bn then
dp (Bs) = dp (Bn) + 1.

Proof. The proof is by permutation of rules, using the fact that nested-like rules
do not modify outer sequents, hence not extruding information. For example,
upgrade rules (r2) permute down creation rules (r1):

π1

S {Γ � Δ,Λ,Λ′′, [Ω1 � Θ1]}
S {Γ � Δ,Λ,Λ′, [Ω1 � Θ1]}

r2 · · ·
πk

S {Γ � Δ,Λ,Λ′, [Ωk � Θk]}
S {Γ � Δ,Λ,Λ′} r1 �

π1

S {Γ � Δ,Λ,Λ′′, [Ω1 � Θ1]} · · ·
π′
k

S {Γ � Δ,Λ,Λ′′, [Ωk � Θk]}
S {Γ � Δ,Λ,Λ′′} r1

S {Γ � Δ,Λ,Λ′} r2

Observe that if S {Γ � Δ,Λ,Λ′, [Ωi � Θi]} is provable with proof πi then it is
the case that S {Γ � Δ,Λ,Λ′′, [Ωi � Θi]} is provable with proof π′

i, a weakened
version of πi.

Note that restricting systems to its end-active form is not enough for guaran-
teeing that derivations occur in alternating sequent and nested blocks. Next, we
define a depth first normalisation procedure for basic nested systems.

Definition 24. Let NS be an end-active basic nested system. We say that a
derivation π of Υ in NS is in normal form (or π is a normal derivation) if, for
each branch of π,

a. if Bn is the immediate successor of Bs then dp (Bn) = dp (Bs);
b. axioms are applied eagerly (i.e. as soon as possible).

Example 25. The following end-active derivations in NSmLJ are not in normal
form

Γ � Δ, [A,B � B] initn

Γ,A � [B � B] ,Δ
liftn

Γ,A � B → B,Δ
→n

R

Γ � Δ, [B,C � C,D] initn

Γ,C � Δ, [B � C,D]
liftn

Γ,C � Δ, [B � C ∨ D]
∨n
R

Γ,C � B → (C ∨ D),Δ
→n

R

The first since the axiom was not applied eagerly; and the second since the
sequential block of depth 1 is succeeded by a nested block of depth 0.

Theorem 26. Let NS be a basic nested system. Then any provable nested
sequent Υ in NS has a normal derivation.

Proof. By Theorem 23, we may consider the end-active variant of NS. The result
follows by observing that nested-like rules permute down sequent-like rules.

In Sect. 5, we will show representative examples of systems falling into the
class of end-active basic nested systems.
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4 Recovering Sequent Systems

The proof of Theorem 26 provides a way of pruning nested derivations so to reach
normal forms. However, the normalisation procedure given by Definition 24 may
produce several different normal forms (see Example 21). We will show next how
to further polish the normalisation process, so to avoid useless creation steps and
output a unique normal form, that will allow for sequential proofs.

Example 27. Consider the following normal-form derivation in NSmLJ, where
Γi ⊆ Γ and the top-most premise marks the end of a nested block (see
Definition 22).

π
Γ � [Γ1, A1 � B1] , . . . , [Γk, Ak � Bk]

Γ � [A1 � B1] , . . . , [Ak � Bk]
liftn

Γ � A1 → B1, . . . , Ak → Bk
→n

R

Since π is in normal form, no rules can be applied over Γ . Hence, by Theorem 14,
Γi, Ai � Bi is provable for some 1 ≤ i ≤ k. Let πi be a normal-form proof of
such sequent. Thus the proof above can be replaced by

πi

Γ � A1 → B1, . . . , Ai−1 → Bi−1, Ai+1 → Bi+1, . . . , Ak → Bk, [Γi, Ai � Bi]

Γ � A1 → B1, . . . , Ai−1 → Bi−1, Ai+1 → Bi+1, . . . , Ak → Bk, [Ai � Bi]
liftn

Γ � A1 → B1, . . . , Ak → Bk
→n

R

Note that, since π1 is normal, no rule can be applied to the outer context, which
will be erased in the leaves by the initn rule.

This idea can be generalised (with a trivial proof) to basic nested systems.

Lemma 28. Let NS be a basic nested system. Then every normal derivation of
a nested sequent Υ can be restricted so that exactly one creation rule is applied
in any nested block.

That is, normal derivations have alternating sequential and nested blocks with
non-decreasing depth, such that the nested blocks are restricted to one applica-
tion of a creation rule followed by possible applications of upgrade rules.

The next result shows how nested blocks are transformed into basic sequent
rules.

Theorem 29. Let rc be the creation rule and rui
be the upgrade rules

� [Ω1 � Θ1] · · · � [Ωk � Θk]
Γ � Δ

rc
� [Ψi � Ξi]
Σi � Φi, [�]

rui

where {Σi, Φi} = {Fi}, {Ψi, Ξi} = {Gi, }, Fi, Gi formulae, 1 ≤ i ≤ l. Then a
nested block consisting of the application of rc followed by applications of rui
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in a normal-form derivation corresponds to the application of the basic sequent
rule

〈Ω1 � Θ1;Cu〉 . . . 〈Ωk � Θk;Cu〉
Γ � Δ

where Cu = {〈I : Gi, J : Fi〉 | 1 ≤ i ≤ l}, I, J ∈ {T,F}.
Proof. Any nested block consisting of the application of rc followed by (maximal
blocks of) applications of rui

has the shape

π1

S {Γ � Δ, [Γ ′, Ω1 � Δ′, Θ1]}
S {Γ � Δ, [Ω1 � Θ1]}

rui
. . .

πk

S {Γ � Δ, [Γ ′, Ωk � Δ′, Θk]}
S {Γ � Δ, [Ωk � Θk]}

rui

S {Γ � Δ} rc

Fig. 3. Modal axiom K and necessitation rule nec.

Fig. 4. Nested system NSK. Rules →n
L, ∧n

R, ∧n
L, ∨n

R, ∨n
L and ⊥n

L are the same as in Fig. 2.

Considering that πj is in normal form, 1 ≤ j ≤ k, the only active formulae in
the leaves will be in Γ ′, Ωj � Δ′, Θj . Thus nested blocks transform sequents
into sequents, and they can be seen as a macro sequent-like rule. With this
thinking, an upgrade nested rule rui

is actually a context relation of the form
Cui

= 〈I : Gi, J : Fi〉, 1 ≤ i ≤ l. Hence the result follows.

Corollary 30. Let NS be a basic nested system which sequentialises to the
sequent system SC. Then the sequent Γ � Δ is provable in NS iff it is prov-
able in SC.

Example 31. In NSmLJ, a nested block containing the creation rule →n
R and the

upgrade rule liftn has the shape

S {Γ � Δ, [Γ ′, A � B]}
S {Γ � Δ, [A � B]} liftn

S {Γ � Δ,A → B} →n
R
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with Γ ′ ⊆ Γ . Observe that liftn maps an F formula into itself and there are no
context relations on T formulae. Hence Cu = Cint, and the corresponding sequent
rule is

〈p1 � p2;Cint〉
� p1 → p2

which is the implication right rule for mLJ. That is, sequentialising the basic
nested system NSmLJ (Fig. 2) results in the sequent system mLJ (Fig. 1).

5 Examples and Discussion

In the previous sections we used intuitionistic logic as a running example for
illustrating our method approach. In this section we will apply the sequentiali-
sation procedure to other well known logical systems.

Normal Modalities. The modal logic K is obtained from classical propositional
logic by adding the unary modal connective � to the set of classical connectives,
together with the necessitation rule and the K axiom (see Fig. 3 for the Hilbert-
style axiom schemata) to the set of axioms for propositional classical logic.

The nested framework provides an elegant way of formulating modal systems,
since no context restriction is imposed on rules. Figure 4 presents the schemata of
the modal rules for the nested sequent calculus NSK for the modal logic K [4,20].
Observe that there are two rules for handling the box operator (�L and �R),
which allows the treatment of one formula at a time. While this is one of the
main features of nested sequent calculi and deep inference in general [9], being
able to separate the left/right behaviour of the modal connectives is the key to
modularity for nested calculi [14,22]. Indeed, K can be modularly extended by
adding to NSK the nested rules corresponding to other modal axioms.

Fig. 5. Axioms D,T, 4,B and 5, where �A is a short for ¬�¬A.

Fig. 6. Nested sequent rules for {D,T, 4} extensions of K.

Let us first consider the axioms D,T and 4 (Fig. 5a). Figure 6 shows the modal
nested rules for such extensions: for a logic KA with A ⊆ {D,T, 4} the calculus
NSKA extends NSK with the corresponding nested modal rules.
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Note that tn is actually a sequent-like rule. On the other hand, �n
R and dn

are creation rules while �n
L and 4n are upgrade rules. It is straightforward to

verify that NSKA is basic. Observe that 4n maps a boxed F formula into itself,�n
L maps F formulae into the boxed versions and there are no context relations

on T formulae. Hence Cu = CK ∪ C4, and the basic sequent rules corresponding
to T, K and D (with possibly 4) are, respectively

〈p �;Cid〉�p �
〈� p;CK ∪ C4〉

� �p

〈p �;CK ∪ C4〉�p �
understanding that if the axiom 4 is not present in the logic then the relation C4

is dropped. Hence sequentialising the nested system NSKA results in the sequent
system SCKA (shown as rule schemas) in Fig. 7a.

We now move our attention to the extension of K4 containing axiom 5
(Fig. 5b). The rule 45 presented in Fig. 8 is a local rule schema for capturing
the behaviour of 5 in the presence of the nested rules for NSK4 (see [4] for a
discussion on the decomposition of 5n in local rules). Observe that the rule 45n

is an upgrade rule, hence sequentialising the nested system NSKT45 results in the
sequent system SCKT45 (Fig. 7b). Hence, since SCKT45 is not cut-free, this implies
that NSKT45 is also not cut-free (see e.g. [25]).

The rule bn (Fig. 8), corresponding to axiom B, is not basic. Hence systems
NSKA extended with this nested rule cannot be sequentialised. However, our app-
roach gives a good insight on the relationship between the extruding information
from nestings and cut-elimination in sequent systems (which will be discussed
later in this Section).

Negative Modalities. While normal modal modalities satisfy the monotone
property “if A � B then �A � �B”, negative modalities satisfy the antitone: “if
A � B then �B � �A”. The logic PK [12] has four 1-ary connectives �,�,��,��,
interpreted non-locally in terms of a Kripke model M = 〈W,R, V 〉 as follows

– M, w � �A iff M, v �� A for some v ∈ W such that wRv;
– M, w � �A iff M, v �� A for every v ∈ W such that wRv;
– M, w � �−A iff M, w �� A or M, w �� −A for − ∈ {�,�};

Fig. 7. Modal sequent rules for normal modal logics SCKA, for A ⊆ {T,D, 4,B, 45}.

Fig. 8. Basic nested sequent rules for axioms 45 and B.
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We present in Fig. 9a proposal of a nested system for such negative modalities.
Observe that rules for ��,�� are sequent-like, the lift rules are upgrade and the
rules for �,� are creation rules. Hence by sequentialising NSPK we obtain the
basic sequent rules

〈� p;CPK〉
�p �

〈p �;CPK〉
� �p

〈p,�p �;Cid〉
� ��p

〈� p;Cid〉 〈� �p;Cid〉��p �
〈p �;Cid〉 〈�p �;Cid〉

� ��p

〈� p,�p;Cid〉��p �

where CPK := {〈F : p,T : �p〉, 〈T : p,F : �p〉}, which are exactly the basic
sequent rules for the system SCPK presented in [12]. Hence NSPK is sound and
complete w.r.t. the Kripke semantics described above by Corollary 30.

Learning from Failure: The Case of B. The work in [15] suggests that it
should be hard, if not impossible, to define simple, cut-free sequent systems for
logics with no corresponding basic nested systems3. In this work, we advocate
that the sole responsible for this impossibility are: (a) on allowing extruding
formulae from nestings (when seen bottom-up), one could gather more informa-
tion, adding an extra-advantage not allowed in the meta-language of sequents;
and (b) on allowing information to “jump” over more than one nesting level,
the stepwise nature of sequents forces this information to be lost. In fact, our
sequentialisation method is heavily based on the fact that basic nested-like rules
move formulae to deeper nestings, with depth difference exactly equal to one.

For stressing these points better, we will present a relation between analytic
cuts and the lack of basic nested rules for KB (Fig. 8). The following definition
shows how to interpret nestings as formulae in the modal framework in the S5
cube.

Fig. 9. Nested system NSPK .

3 We observe that, in [11] the basic sequent systems for KB and S5 were proved to be
analytic (although not cut-free).
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Definition 32. The modal interpretation ι� for modal nested sequents is
given by

– if Γ � Δ is a sequent, then ι�(Γ � Δ) =
∧

Γ → ∨
Δ.

– ι� (Γ � Δ, [Γ1 � Δ1, Λ1] , . . . , [Γn � Δn, Λn]) =∧
Γ → (

∨
Δ ∨ � (ι� (Γ1 � Δ1, Λ1)) ∨ . . . ∨ � (ι� (Γn � Δn, Λn))).

That is, the structural connective [·] is interpreted by the logical connective �.
Consider a proof of the shape

π
Γ,A � Δ, [Γ ′,�A � Δ′]
Γ � Δ, [Γ ′,�A � Δ′] bn

where π has no occurrences of the bn rule. We may assume that A is prin-
cipal in π, otherwise this instance application of bn can be discarded and
the results from Sect. 4 apply immediately. Thus, all rules applied in π are
basic and, by Theorem 26, we may assume that π is in normal form. Hence,
by Theorem 29, π can be transformed into a derivation ι�(π) of the sequent
A,Γ � Δ,� (

∧
Γ ′ ∧ �A → ∨

Δ′). Now, the following is derivable in KB

Γ ′,�A � Δ′,�A
init

� ∧
Γ ′ ∧ �A → ∨

Δ′,�A
→R,∧L,∨R

� � (
∧

Γ ′ ∧ �A → ∨
Δ′) , A

b
ι�(π)

A,Γ � Δ,� (
∧

Γ ′ ∧ �A → ∨
Δ′)

Γ � Δ,� (
∧

Γ ′ ∧ �A → ∨
Δ′)

cut

That is, the end-active application of the bn rule in NSKB can be mimicked by
a proof in KB with an analytic cut whose cut-formula is the auxiliary formula
in bn. This establishes a (so far, weak) connection between nested derivations
and analytic cuts in sequent calculi for KB. Generalising this correlation is an
ongoing work.

6 Conclusion and Future Work

A common theme in recent structural proof theory is the development of new
proof formalisms generalising and extending the sequent calculus, in order to
present analytic proof calculi for the ever growing number of logics of interest.
This work considers the reverse direction: how can we transform an analytic
nested calculus into an analytic sequent calculus? Given that the nested sequent
calculi generalise the sequent calculus, and because the former has been used
to present logics that have defined presentation in the latter, an underlying
aim of this work is to identify general characteristics that make nested calculi
“sequentialisable”. In doing so, we open a new insight into the discussion of the
bounds for analyticity in sequent systems.

There are many ways of continuing this research topic. First of all, since we
showed how to transform nested into sequent systems it would be interesting
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to ask: how about the other way around? Or: when it is possible to transform
basic sequent rules into basic nested rules? This would allow for the automatic
generation of (analytic, possibly cut-free) nested systems from sequent systems.
One possible attempt would be analysing if the Kripke-style semantic interpre-
tation of basic sequent systems given in [11] can lifted to the nestings-as-worlds
interpretation of nested systems [7,19].

Another path worth investigating is if our approach entails negative results,
such as the impossibility of cut-free basic systems for KB, for example, as a gen-
eralisation of results in [15]. Not mentioning developing further the relationship
between the introduction of cuts in sequent calculi and the need for nested-like
rules in nested systems, discussion we have started here.

Finally, we would like to analyse to what extend our setting can handle other
systems, such as the known ones for non-normal modal logics, GL and PDL.

Acknowledgments. We would like to thank Agata Ciabattoni for our fruitful discus-
sions and the anonymous reviewers for their valuable comments.
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Abstract. We study freeze tense logic over well-founded data streams.
The logic features past- and future-navigating modalities along with
freeze quantifiers, which store the datum of the current position and
test data (in)equality later in the formula. We introduce a decidable
fragment of that logic, and present a proof system that is sound for the
whole logic, and complete for this fragment. Technically, this is a hyperse-
quent system enriched with an ordering, clusters, and annotations. The
proof system is tailored for proof search, and yields an optimal coNP
complexity for validity and a small model property for our fragment.

Keywords: Modal logic · Data ordinals · Freeze logic · Proof system ·
Hypersequent calculus

1 Introduction

Data Streams. Many applications can generate data streams, such as traces of
a program’s execution [22], system logs [7], XML streams [19], or intrusions
detection [21], which motivates the study of data words and data ω-words in
order to be able to formally reason about such streams. They consist respectively
of finite and infinite sequences in which each position carries a label from a finite
alphabet and a datum from an infinite domain.

Consider for instance a system where multiple processes could be editing the
same file on some server. The log of their execution can be represented as an
infinite data word, the datum being an integer identifying the process, and the
label representing their action: b for the beginning of a process, e for its ending,
and r (resp. w) when a process reads (resp. writes) the file. On such a data
ω-word, we could want to verify various properties:

1. Every process does not do anything after it stops or before it starts, i.e. for
every datum, the corresponding subword belongs to b(r + w)∗e.

2. For every position labelled by w, there exists an earlier position labelled by
r with the same datum such that there is no position in-between labelled by
w and carrying a different datum.

Funded by ANR-14-CE28-0005 prodaq. I am grateful to David Baelde and Sylvain
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On the following infinite data word, only the first property is respected.

(b, 1)(r, 1)(b, 2)(r, 2)(w, 1)(w, 2)(e, 2)(e, 1)(b, 3)(r, 3)(e, 3) · · ·
Moreover, working with ordinals instead of words can sometimes be useful

to model some problems more easily. For instance, Demri and Novak [16] use
ordinals to model Zeno behaviours in physical systems [16], and Godefroid and
Wolper [20] to model-check n concurrent executions while avoiding exploring
their n! interleavings. Hence, extending LTL to ordinal structures in the data-
free case has already been investigated [15].

Data Logics. Among the many logics developed to reason about data words,
freeze LTL [14,18,30] extends linear temporal logic [37] with freeze quantifiers:
a formula ↓rϕ stores the current datum in register r and evaluates ϕ; in this
scope, ↑r is satisfied if the current datum matches the one stored in r. As always
with data logics, the satisfiability problem for freeze LTL is undecidable and its
known decidable fragments are untractable [14,18].

Contributions. One of the main computational problems associated with a logic
is the satisfiability problem. In this paper, we investigate the satisfiability prob-
lem of the freeze tense logic over data ordinals, which we call K↓

tL�.3, and which
combines freeze quantifiers à la Demri and Lazić [14] with the tense logic over
ordinals KtL�.3. Our temporal core is thus Prior’s tense logic [9,40], which only
features the strict ‘past’ H and ‘future’ G temporal modalities (and their duals
P and F), but this is sufficient for many modelling tasks [42], and is known to
lead to an NP-complete satisfiability problem over arbitrary linear time flows [36],
over ω-words [41], and over arbitrary ordinals [3]. For instance, Property 1 above
can be expressed by

G
(
b ⊃ ↓r

(
H¬↑r ∧ G(b ⊃ ¬↑r) ∧ F (↑r ∧ e ∧ G¬↑r ∧ H (e ⊃ ¬↑r))

))

∧ G((e ∨ r ∨ w) ⊃ ↓rP (↑r ∧ b))

The full freeze tense logic K↓
tL�.3 is already undecidable with a single reg-

ister, just like freeze LTL over finite words [14,18]. We present a decidable frag-
ment, dubbed Kd

tL�.3, in which the use of registers is further restricted, and
which is exactly as expressive as the two-variable fragment of the first order logic
on data words [6]. We show in particular that

1. the satisfiability problem for Kd
tL�.3 over the class of ordinals is NP-complete,

2. a formula ϕ of Kd
tL�.3 has a well-founded linear model if and only if it has

a model of order type α for some α < ω · (4 · |ϕ|2 + |ϕ| + 2); this should be
contrasted with the corresponding ω · (|ϕ| + 2) bound proven in [3, Prop. 4.1]
for the underlying data-free logic KtL�.3.

These results are however just by-products of our main contribution, which is a
sound and complete proof system for Kd

tL�.3 in which proof search is in coNP.
Moreover, our system allows to work not only with data ω-words but with arbi-
trary data ordinals, which provides greater modelling flexibility.
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Algorithmic Approaches. Algorithmic results for data logics are often obtained
via automata-theoretic techniques [6,14,43], by building an enriched automaton
recognising the models of a given formula and testing it for emptiness. However,
this kind of approach might not be modular as the type of enriched automata is
often tailored for each specific logic. Moreover, if one’s interest is to check that
a formula ϕ is valid, the automata-theoretic approach does not yield a ‘natural’
certificate that could be checked by simple independent means.

All these considerations motivate our use of proof-theoretic techniques. The
primary example of proof system amenable to automated reasoning is Gentzen’s
sequent calculus. However, it is often too limited for modal logics. Hence, it has
been enriched in various ways, using e.g. labelled sequents [35], display calcu-
lus [5,28], nested sequents [8,27,31,38,39], or hypersequents [1,23,24,29]. These
enriched formalisms remain quite modular and sustain extensions simply by
adding a few rules. They can be exploited to provide optimal complexity solu-
tions to the validity problem directly by proof search [2–4,12,26,34], which may
sometimes avoid the worst-case complexity of the problem and rely in practice
on various heuristics. Finally, this approach obviously yields a proof of validity
as a certificate in case of success.

Specifically, we use the framework of ordered hypersequents with clusters
introduced in [2] as an elaboration, with terminating proof search, of Indrze-
jczak’s ordered hypersequent calculus for Kt4.3 [24,25], and which we have gen-
eralised [3] to work over ordinals. Conceptually, re-using the framework required
to adapt it to work with data ordinals, to use additional rules to deal with reg-
isters, and to develop a strategy to make sure that proof search always produces
proof attempts of polynomial depth. Moreover, this framework uses annotations
to bound the proof search, and we managed to handle them as a new type of
formulæ rather than just as an artefact of the proof system.

Furthermore, as in [3], our proof system can be easily adapted to also address
the more precise problems of validity over all the data ordinals of order type
β < α + 1 for a given α and of order type exactly α < ω2—which is recalled
in Sect. 6. Such a result seems out of reach for axiomatisations, and yields for
instance a coNP decision procedure for validity over data ω-words.

The detailed proof of every claim of this paper is available in the full version
of the paper [33] (https://hal.archives-ouvertes.fr/hal-02165359).

2 Freeze Tense Logic over Ordinals

Syntax. Our logic, called K↓
tL�.3, features two unary temporal operators from

the tense logic, countably many freeze operators, and a countable set Φ of propo-
sitional variables, with the following syntax:

ϕ ::=⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ | ↓rϕ | ↑r (where p ∈ Φ and r ∈ N)

Formulæ Gϕ and Hϕ are called modal formulæ. Intuitively, Gϕ expresses
that ϕ holds ‘globally’ in all future worlds, while Hϕ expresses that ϕ holds
‘historically’ in all past worlds. Other Boolean connectives may be encoded from

https://hal.archives-ouvertes.fr/hal-02165359
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⊥ and ⊃, and as usual Fϕ = ¬G¬ϕ expresses that ϕ will hold ‘in the future’ and
Pϕ = ¬H¬ϕ that it held ‘in the past’. Formulæ ↓rϕ are called freeze formulæ,
and atoms ↑r are called thaw formulæ. Intuitively, ↓rϕ stores the datum of the
current world in the register r, and evaluates ϕ, and ↑r tests if the current world
has the same datum as the one stored in the register r. Any occurrence of a
thaw ↑r within the scope of a freeze quantifier ↓r is bounded by it; otherwise,
that thaw is free.

Furthermore, in order to guide the proof search, our calculus will have to
manipulate a different kind of future formulæ called annotations : these formulæ
will be written (Gϕ), where Gϕ is a future modal formula, and will express that
Gϕ holds starting from a specific later position. Note that such formulæ cannot
ever appear as a subformula.

Data Ordinal Semantics. Recall that an ordinal α is seen set-theoretically as
{β ∈ Ord | β < α}. An ordinal is either 0 (the empty linear order), a limit
ordinal λ (such that for all β < λ there exists γ with β < γ < λ), or a successor
ordinal α + 1. In the case of K↓

tL�.3, our formulæ shall be evaluated on data
ordinals, which are tuples (α, δ) with α an ordinal and δ a function mapping
elements from α to a datum from an infinite1 domain D. Models of our logic are
Kripke structures M = (F, V ), where the frame F = (α, δ) is a data ordinal, and
V : Φ → α is a valuation of the propositional variables. A register valuation is a
finite partial map ν from N to D. The domain of such a ν must contain all the
free registers that appear in the formulæ it evaluates.

Given a structure M = ((α, δ), V ) and a register valuation ν, we define the
satisfaction relation M, β |=(θ)

ν ϕ, where β < α, θ < α and ϕ is a formula, by
structural induction on ϕ. Notice that θ is only used for the annotations.

M, β 
|=(θ)
ν ⊥

M, β |=(θ)
ν p iff β ∈ V (p)

M, β |=(θ)
ν ϕ ⊃ ψ iff if M, β |=(θ)

ν ϕ then M, β |=(θ)
ν ψ

M, β |=(θ)
ν Gϕ iff M, γ |=(θ)

ν ϕ for all β < γ < α

M, β |=(θ)
ν Hϕ iff M, γ |=(θ)

ν ϕ for all γ < β

M, β |=(θ)
ν ↓rϕ iff M, β |=(θ)

ν[r �→δ(β)] ϕ

M, β |=(θ)
ν ↑r iff δ(β) = ν(r)

M, β |=(θ)
ν (Gϕ) iff β < θ, and M, γ |=(θ)

ν ϕ

for all γ such that θ ≤ γ < α

When M, β |=(θ)
ν ϕ, we say that (M, ν, β, (θ)) is a model of ϕ. Note that, since

annotations cannot appear as subformulæ, we have M, β |=(θ)
ν ϕ if and only if

M, β |=(θ′)
ν ϕ for any θ′, when ϕ is not an annotation.

1 Since we will only be able to perform equality tests between data values, we can
assume that D is countable.
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Substitutions. We note [x/y](ϕ) for the formula ϕ where every free occurrence
of the register y is replaced by the register x. More formally, we define it by
structural induction as follows:

[x/y](⊥) = ⊥ [x/y](p) = p

[x/y](Hϕ) = H [x/y](ϕ) [x/y](Gϕ) = G[x/y](ϕ)
[x/y](ϕ1 ⊃ ϕ2) = [x/y](ϕ1) ⊃ [x/y](ϕ2) [x/y]((Gϕ)) = (G[x/y](ϕ))

[x/y](↑r) = ↑r if r 
= y [x/y](↑y) = ↑x

[x/y](↓rϕ) = ↓r[x/y](ϕ) if r 
= y and r 
= x [x/y](↓yϕ) = ↓yϕ

[x/y](↓xϕ) = ↓r[x/y]([r/x](ϕ)) where r is fresh

Example 1. Even though the underlying data-free logic KtL�.3 cannot express
that a model is of order type at least ω2 [3], this can be done with K↓

tL�.3,
even without using any propositional variable. Consider for this ϕ1 = G(↓rF ↑r),
ϕ2 = G(↓rF¬↑r), and ϕ3 = G(↓rG(F ↑r ⊃ ↑r)). Then, ϕ = F� ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 is
satisfiable, and any model of ϕ is of order type at least ω2.

Thanks to the conjunct F�, the other formulæ do not quantify over an
empty set of future positions: there exists at least a future β1. The conjunct ϕ1

forces that every datum appears infinitely many times, and ϕ3 forces that every
such infinite sequence of positions carrying the same datum is continuous (two
such sequences for two different data cannot be interleaved). Hence, any model
of ϕ starts with at least ω positions carrying d1 = δ(β1). In turn, ϕ2 forces the
existence of β2 carrying a datum d2 such that d1 
= d2, which due to ϕ3 must
be after the positions carrying d1; and because of ϕ2 we must have at least ω
positions carrying the datum d2. Again, ϕ2 forces the existence of β3 carrying d3
different from d1 and d2, and thus ω positions carrying d3 must exist, etc. By
repeating this reasoning, any model of ϕ must comprise at least ω positions
carrying the datum d, for infinitely many d ∈ D, so is of order type at least ω2.

Moreover, ϕ is indeed satisfied by a model of order type ω2, where the ith ω
carries di, for an enumeration (di)i∈N of D.

3 Hypersequents with Clusters

As is often the case with modal logics, Gentzen’s sequent calculus does not pro-
vide a rich enough framework to obtain complete proof systems. The extension
we consider is to use hypersequents [1], which are essentially sets of sequents
logically interpreted as a disjunction. Indrzejczak has moved to ordered hyper-
sequents [24,25] (which are lists of hypersequents) to obtain a sound and com-
plete calculus for Kt4.3. We have further enriched the structure of his ordered
hypersequents with clusters and annotations to obtain calculi for Kt4.3 [2] and
KtL�.3 [3] for which proof search terminates and, in fact, yields an optimal
complexity decision procedure. We keep the same structure in the present work,
but simplify the annotation mechanism, and add rules to handle freeze formulæ.



A Hypersequent Calculus with Clusters for Data Logic over Ordinals 171

In this section, we recall some definitions introduced in [3], with some minor
generalisations for working with data ordinals. In Sect. 4, we present our proof
system, which extends the proof system from [3], and prove that it is sound for
K↓

tL�.3. In Sect. 5, we focus on a decidable fragment of K↓
tL�.3, and prove that

our calculus is complete for that fragment, and has a proof strategy of optimal
complexity.

3.1 Syntax

Sequents. A sequent (denoted S) is a tuple consisting of two finite sets Γ,Δ
of formulæ, written Γ  Δ. It is satisfied by worlds β and θ of a structure M

if there exists a register valuation ν such that M, β |=(θ)
ν

∧
Γ ⊃ ∨

Δ (where∧
Γ and

∨
Δ denote respectively the conjunction of the formulæ of Γ and the

disjunction of the formulæ of Δ).

Hypersequents. A hypersequent is a list of cells, each cell being either a sequent
or a non-empty list of sequents called a (syntactic) cluster. We shall use the
following abstract syntax, where both operators ‘;’ and ‘‖’ are associative with
unit ‘•’:

H ::=C | H ; H (hypersequents)

C ::= • | S | {Cl} (cells)

Cl ::=S | Cl ‖ Cl (cluster contents)

Note that this definition allows for empty cells and hypersequents ‘•’, but
these notational conveniences will never arise in actual proofs—and should not
be confused with the empty sequent ‘’. We will see that the order of cells in a
hypersequent is semantically relevant, but the order of sequents inside a cluster
is not. Nevertheless, assuming an ordering as part of the syntactic structure of
clusters is useful in order to refer to specific sequents or positions.

3.2 Semantics

The semantics of an ordered hypersequent with clusters relies on a notion of
embedding, building on a view of hypersequents as partially ordered structures.

Partial Order of a Hypersequent. Let H be a hypersequent containing n sequents,
counting both the sequents found directly in its cells and those in its clusters. In
this context, any i ∈ [1;n] is called a position of H, and we write H(i) for the
i-th sequent of H. We define a partial order � on the positions of H by setting
i � j if and only if either the i-th and j-th sequents are in the same cluster, or
the i-th sequent is in a cell that lies strictly to the left of the cell of the j-th
sequent. We write i ≺ j when i � j but j 
� i, i.e. j lies strictly to the right of
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i in H. We write i ∼ j when i � j � i. Finally, the domain of H is defined as
dom(H) = ([1;n],�); note that empty cells are ignored in dom(H).

While a hypersequent is syntactically a finite partial order, its semantics
will refer to a linear well-founded order, obtained by ‘bulldozing’ its clusters
into copies of ω. This defines the order type o(H) of H by induction on its
structure: for cells, o(•) = 0, o(S) = 1, and o({Cl}) = ω, and for hypersequents,
o(H1 ; H2) = o(H1) + o(H2). Thus, o(H) = ω · k + m where k is the number of
clusters in H and m the number of non-empty cells to the right of the rightmost
cluster.

Embeddings. Let H be a hypersequent and α an ordinal. We say that μ : dom(H)
→ α + 1 \ {0} is an embedding of H into α, written H ↪→μ α, if

– for all i, j ∈ dom(H), i ≺ j implies μ(i) < μ(j) and i ∼ j implies μ(i) = μ(j)
– and for all i ∈ dom(H), i is in a cluster if and only if μ(i) is a limit ordinal.

Observe that, if H ↪→μ α, then o(H) < α + 1.

Semantics. A structure M is a model of a hypersequent H if there exists a
register valuation ν, an embedding M ↪→μ H, and a position i of H such that
for all d ∈ D there exists an ordinal βd < μ(i) such that for all γ such that
βd ≤ γ < μ(i) and δ(γ) = d, we have M, γ |=(μ(i))

ν H(i). In that case, we write
M, ν, μ |= H. Following this definition, we say that a hypersequent is valid if for
any M = ((α, δ), V ), any embedding H ↪→μ M, and any register valuation ν we
have M, ν, μ |= H. A formula ϕ is valid in the usual sense (i.e., satisfied in every
world of every ordinal structure) if and only if the hypersequent  ϕ is valid in
our sense.

If a hypersequent H is not valid, then it has a counter-model, that is a
structure M = ((α, δ), V ), an embedding H ↪→μ M and a register valuation ν
such that for every i ∈ dom(H) there exists di ∈ D such that for every β < μ(i),
there exists γ with β ≤ γ < μ(i) and δ(γ) = di such that M, γ 
|=(μ(i))

ν H(i).
For the positions i ∈ dom(H) that are not in clusters, μ(i) is a successor ordinal
γ + 1 and this amounts to asking that M, γ 
|=(γ+1)

ν H(i). When i is in a cluster,
the condition implies the existence of an infinite increasing sequence (γj)j of
ordinals carrying the same datum, and with limit μ(i) = supj γj , such that

M, γj 
|=(μ(i))
ν H(i) for all j.

4 Proof System

We now present our proof system for K↓
tL�.3, called HKd

tL�.3. The rules of
HKd

tL�.3 are given in Figs. 1, 2 and 3: the first group includes the usual propo-
sitional rules, the second deals with modalities. They are the same rules as in [3].
Figure 3 shows the new annotation rule—subsuming the annotation rules from
[3]—, and additional rules to deal with freeze formulæ. The figures make use of
some notations introduced in [3] which we recall next, before commenting on the
rule definitions themselves.
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Fig. 1. Propositional rules of HKd
tL� .3.

4.1 Notations

First, we use hypersequents with holes. One-placeholder hypersequents, cells,
and clusters are defined by the following syntax:

H [] ::= H ; C [] ; H C [] ::= � | { Cl[] } Cl[] ::=Cl• ‖ � ‖ Cl• Cl• ::= • | Cl

Two-placeholder cells and hypersequents have two holes identified by �1
and �2:

H [] [] ::=H ; C [] [] ; H | H[�1] ; H[�2]

C [] [] ::= { Cl[�1] ‖ Cl[�2] } | { Cl[�2] ‖ Cl[�1] }

As usual, C [S] (resp. C [Cl]) denotes the same cell with S (resp. Cl) substi-
tuted for �; two-placeholder cells and hypersequents with holes behave similarly.
In terms of the partial orders underlying hypersequents with two holes, observe
that the positions i and j associated resp. to �1 and �2 are exactly such that i � j.

Second, we use a convenient notation for enriching a sequent: if S is a sequent
Γ  Δ, then S � (Γ ′  Δ′) is the sequent Γ, Γ ′  Δ,Δ′. Moreover, we sometimes
need to enrich an arbitrary sequent of a cluster {Cl} with a sequent S; then
{Cl} � S denotes the cluster with its leftmost sequent enriched.

Finally, we write [x/y](H) for the hypersequent H where the operator [x/y]
has been applied to every formula.

4.2 Rules

We now comment on our rules. The rules from Figs. 1 and 2 are the same as
in [3]. The propositional rules of Fig. 1 are straightforward: they are the usual
ones applied to an arbitrary sequent of the hypersequent.

The first four modal rules of Fig. 2 should not be surprising. For instance, in
(G), if the conclusion has a counter-model, then Gϕ holds at some ordinal and
thus both ϕ and Gϕ must also hold at strictly greater ordinals. The rule also
applies to two distinct sequents inside the same cluster. The ({G}) rule allows
to proceed in the same way inside a cluster when the sequent further to the right
is the original sequent itself, something that our notations do not allow in (G).
Finally, (H ) and ({H }) are symmetric to the two previous rules.
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Fig. 2. Modal rules of HKd
tL� .3. In (�G) and (�H ), we allow C′ = • only when

H2 = •.

The rules (G) and (H ) are the most complex ones. We shall not try to
justify their soundness at this point, but simply make a few remarks that are
important to understand their definition. First, these rules are the only ones
that may introduce new cells in hypersequents. In (G), new cells come with the
annotation (Gϕ) of the principal formula Gϕ, which will help bounding the proof
search, as we will see in Lemma 1. In (H ), new sequents come instead with the
principal formula Hϕ on their left hand-side, which will have the same effect of
bounding the proof search. This difference comes from the well-foundedness of
our models when navigating to the past. As a result, we do not need annotations
for past operators. In the next section, one should notice the similar roles played
in Lemma 1 by past formulæ of the form Hϕ and annotations of the form (Gϕ).
Also, the principal cell C [Γ  Δ,Gϕ] in (G) may be the rightmost cell of the
conclusion hypersequent, in which case both C ′ and H2 are empty, and the rule
has two or three premises depending on whether the principal cell is a cluster
or not. When the principal cell is not rightmost, then C ′ is not allowed to be
empty, and the rule has one or two extra premises depending on whether C ′ is
a cluster or not. The situation is symmetric for (H ).

The annotation rules from [3] are now subsumed by the new rule ((G)) from
Fig. 3 which is similar to (G ), the difference being that an annotation (Gϕ)
cannot affect the current cluster.

The other rules from Fig. 3 are new. The rule (↑ ) unifies two registers
when they must contain the same datum, and is helpful to bound the number
of registers appearing in the proof search. The rules (↓) and (↓) both handle
the freeze quantifier ↓r by adding a version of ϕ where r has been replaced by
either an already used register matching the current datum if any, or a fresh one
otherwise.
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Finally, we have designed our rules so that they are all invertible: by keeping
in premises all the formulæ from the conclusion, we ensure that validity is never
lost by applying a rule; this is proved in [33].

Proposition 1 (invertibility). In any rule instance, if a premise has a
counter-model, then so does its conclusion.

In practice, keeping all formulæ can be unnecessarily heavy. Fortunately, the
following weakening rules are admissible:

H [Γ  Δ]
H [Γ, ϕ  Δ]

(weak )
H [Γ  Δ]

H [Γ  ϕ,Δ]
( weak)

This may not seem obvious since the new rules (↓ ) and ( ↓) require some
specific checks. To prove this claim, once the original proof system is proven
complete, one could just prove that the weakening rules are sound. Nonetheless,
we will sometimes omit formulæ when they do not play any role to lighten some
examples. Every time we do so, the exact same proof could be derived without
omitting any formulæ.

Fig. 3. Annotation, freeze, and thaw rules of HKd
tL� .3. By fresh, we mean that x does

not appear as a free register anywhere in the conclusion.

4.3 Soundness

Our calculus is sound w.r.t Kd
tL�.3, which is proved in [33].

Proposition 2. The rules of HKd
tL�.3 are sound: if the premises of a rule

instance are valid, then so is its conclusion.

Invertibility is not enough to obtain completeness since proof search does not
terminate, K↓

tL�.3 being undecidable. We now investigate a decidable fragment
for which HKd

tL�.3 is complete and has a proof strategy of optimal complexity.
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5 Restricted Logic and Completeness

The K↓
tL�.3 logic is known to be undecidable, even with only one register [14]

and some restrictions regarding the use of that register [18]. Here, we consider
another restriction of the logic, and prove that our calculus is complete for that
fragment, with proof search in coNP.

5.1 Restricted Syntax

We consider the following fragment of K↓
tL�.3, which we call Kd

tL�.3:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ

| ↓rG(↑r ⊃ ϕ) | ↓rG(¬↑r ⊃ ϕ)
| ↓rH (↑r ⊃ ϕ) | ↓rH (¬↑r ⊃ ϕ) (where p ∈ Φ and r ∈ N)

Because the use of registers is restricted to specific formulæ, we define the
following syntactic sugar:

G=r ϕ = G(↑r ⊃ ϕ) G�=r ϕ = G(¬↑r ⊃ ϕ)
H=r ϕ = H (↑r ⊃ ϕ) H �=r ϕ = H (¬↑r ⊃ ϕ)

Intuitively, G=r ϕ (resp. G�=r ϕ) expresses the fact that ϕ holds in every
future position with the same (resp. a different) datum as the one stored in
the register r; and H=r ϕ, H �=r ϕ express the same for past positions. Moreover,
since a negation before a freeze quantifier can be moved inside its scope, e.g.
¬↓rG�=r ¬ϕ ≡ ↓r¬G�=r ¬ϕ, we can also define their dual diamond modalities, e.g.
F �=r ϕ = ¬G�=r ¬ϕ. Formulæ of the form ↓rG=r ϕ (resp. ↓rG�=r ϕ) corresponds
to formulæ denoted � =ϕ (resp. � �=ϕ) from [4], which works over data trees.
As explained in [33], this fragment is furthermore exactly as expressive as a
two-variable fragment of first-order logic over data ordinals investigated in [6].

Example 2. The formula from Example 1, forcing its models to have order type
at least ω2, does not belong to this fragment. Furthermore, there is no equivalent
formula belonging to Kd

tL�.3, as we will show later that satisfiable formulæ from
this fragment always have a model of order type strictly below ω2.

Property 2 from the introduction does not seem expressible either, since it
would require to perform nested data tests. However, Property 1 can be expressed
by the following formula:

G(b ⊃ (¬↓rP=r � ∧ ¬↓rF=r b ∧ ↓rF=r (e ∧ ¬↓rF=r � ∧ ¬↓rP=r e)))
∧G((e ∨ r ∨ w) ⊃ ↓rP=r b)

From now on, we only consider formulæ from Kd
tL�.3.
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5.2 Completeness and Complexity

As in [2,3], completeness is a by-product of a rather simple proof-search strategy.
As already stated in Proposition 1, all the rules are invertible; and as we shall
see, our strategy only produces proof trees with branches that are polynomially
bounded for the restricted logic, as it will avoid any pitfall that could hap-
pen. Thus it is unnecessary to backtrack during proof-search. Moreover, proof
attempts result in finite (polynomial depth) partial proofs, whose unjustified
leaves yield counter-models that amount (by invertibility) to counter-models of
the conclusion. Hence the completeness of our calculus. We detail this argu-
ment below, and its corollary: proof-search yields an optimal coNP procedure for
validity.

We characterise next the proof attempts that we consider for proof search,
and show how to extract counter-models when such attempts fail.

Lemma 1. If a hypersequent H satisfies one of these conditions, then H is
provable (and we say that H is immediately provable).

(a) There exists a formula ϕ, and two positions i ≺ j of H such that H(i) and
H(j) both contain (Gϕ)  ϕ.

(b) There exists a formula ϕ, and two positions i ≺ j of H such that H(i) and
H(j) both contain Hϕ  ϕ.

(c) There exists a formula ϕ, three positions i ≺ j ≺ k of H, and three registers
x, y, z ∈ N such that:
– H(i) contains (G�=x ϕ)  ¬↑x ⊃ ϕ.
– H(j) contains (G�=y ϕ)  ¬↑y ⊃ ϕ.
– H(k) contains (G�=z ϕ)  ¬↑z ⊃ ϕ.

(d) There exists a formula ϕ, three positions i ≺ j ≺ k of H, and three registers
x, y, z ∈ N such that:
– H(i) contains H�=x ϕ  ¬↑x ⊃ ϕ.
– H(j) contains H�=y ϕ  ¬↑y ⊃ ϕ.
– H(k) contains H�=z ϕ  ¬↑z ⊃ ϕ.

We provide a proof tree for every case in [33]. The intuition behind (d) is the
following: if there exists γ where H �=z ϕ holds, and γ′ < γ where H �=y ϕ holds,
and if y and z stores different data, then ϕ holds in every past position of γ′ (at
any position, either ¬↑z or ¬↑y holds) and thus any H �=x ϕ holds in the past.
The intuition behind (c) is similar. This reasoning fails if y and z store the same
datum, but this cannot be assumed during proof search only when ↑y and ↑z

appear on the left-hand side of the same sequent, and in this case we should
apply (↑) in priority.

Partial Proofs. We characterise now the proof attempts that we consider for
proof search, and show how to extract counter-models when such attempts fail.
We call partial proof a finite derivation tree whose internal nodes correspond to
rule applications, but whose leaves may be unjustified hypersequents, and that
satisfies three conditions:
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(a) no rule application should be such that, if H is the conclusion hypersequent,
(i) one of the premises is also H, or
(ii) the rule being applied is (G) on a formula Gϕ at position i such that

there exists j ∼ i such that H(j) contains (Gϕ)  ϕ, or
(iii) the rule being applied is (G) on a formula G(¬↑x ⊃ ϕ) at position

i such that there exists j ∼ i and y 
= x such that H(j) contains(
G(¬↑y ⊃ ϕ)

)  ¬↑y ⊃ ϕ and does not contain ↑x on its left-hand side.
(b) If the rule (↑) is applicable, or if the rule (⊃) is applicable on a formula

of the form ↑x ⊃ ϕ, then the other rules cannot be applied.
(c) immediately provable hypersequents must be proven immediately as

sketched in the proof of Lemma 1.

Finally, we call failure hypersequent a hypersequent on which any rule application
would not respect condition (a).

The second part of condition (b) is there to optimize the use of its first part,
which in turn is there to bound the number of registers our calculus manipulates
during a proof search. Conditions (a) and (c) amount to a simple proof search
strategy that avoids loops, and addresses especially loops arising from repeated
applications of (H ) or (G), in branches where several new cells are created for
the same modal formula (up to maybe a different register): this results either
in immediately provable hypersequents from Lemma 1, or failure hypersequents
on which the proof strategy is stuck and for which we prove next that we can
always construct a counter-model.

Example 3. The annotation rules from [3] are subsumed by our new version of
the rule ((G)). For instance, if H has a position i that is not in a cluster such
that H(i) contains (Gϕ)  Gϕ, the branch can be immediately closed by some
rule from [3]. Let us show that such an H is provable by HKd

tL�.3. First of all,
since (Gϕ) ∈ H(i), then either H(i) contains (Gϕ)  ϕ, or there exist j ≺ i such
that H(j) contains it. Then:

– If ( G) cannot be applied on Gϕ, it is either because H(i + 1) contains
(Gϕ)  ϕ, and then H is immediately provable, or because Gϕ also appears
on the right-hand side of H(i + 1), and the same formula can also be sent on
its left-hand side (if not already present) by applying ((G)) on the annotation
(Gϕ), and then (ax) can be used.

– Else, we apply (G) on Gϕ. All premises are immediately provable, except
for the premise sending Gϕ on the right-hand side of H(i + 1) which can be
proved as in the previous case.

Proposition 3. Any failure hypersequent H has a counter-model.

Proof (sketch). The detailed proof is provided in [33]. We first construct a
counter-model M = ((α, δ), V ) of H with α = o(H) and a straightforward
embedding M ↪→μ H. We also describe a function pos : α → dom(H) which will
act as the reverse of μ. Then, δ is chosen such that every pair of worlds from
M carry distinct data unless their corresponding sequent in H carries the same
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atomic ↑r on their left-hand side; and V is constructed similarly: every atom
p is false except in worlds for which the corresponding sequent carries p on its
left-hand side. We finally prove that M is a counter-model of H by structural
induction on the subformulæ of H.

Example 4. Consider the following partial proof of the sequent  ↓rG↑r:

↑x  ↓rG↑r,G↑x ; (G↑x)  ↑x

· · · ↑x  ↓rG↑r,G↑x ; {(G↑x)  ↑x,G↑x}
↑x  ↓rG↑r,G↑x ; {(G↑x)  ↑x} (G)

↑x  ↓rG↑r,G↑x

(G)

 ↓rG↑r

(↓)

The first leaf is a failure hypersequent, since case (i) of condition (a) prevents
any rule application. Its corresponding counter-model consists of to worlds with
distinct data. The other branch will reach immediately provable hypersequent
(not displayed on the figure), and another failure hypersequent, since cases (i)
and (ii) of condition (a) prevent any rule application. Its corresponding counter-
model consists of a first world with a datum dx, followed by an infinite sequence
of worlds all carrying another datum dy 
= dx.

We now turn to establishing that proof search terminates, and always pro-
duces branches of polynomial length. For a hypersequent H, let len(H) be its
number of sequents (i.e., the size of dom(H)), and |H| the number of distinct
subformulæ occurring in H.

Lemma 2. For any partial proof of a hypersequent H, any branch of the proof
is of length at most 2|H|(4|H| + len(H))((4|H| + len(H))|H| + len(H) + 1).

Proof (sketch). Each creation of a new position along a branch of the proof
search could lead to the creation of a new register later in the branch, which
in turn could create a new renamed copy of some subformula of H, which then
could lead to the creation of another position. We must make sure that such
a process cannot go ad infinitum: we first bound the numbers of free registers
that can appear along a branch respecting our proof strategy, then the size of
the hypersequents of such a branch, and finally the number of rules that can be
applied. The details are presented in [33].

Example 5. If we did not follow our strategy, a bad case such as described at the
beginning of the previous proof could happen on the hypersequent H =  ; ϕ 
with ϕ = H (¬↓rH=r ⊥). In practice, ϕ can send the subformula ↓rH=r ⊥ on
the right-hand side of any past position by using (H ) and then handling the
negation. A proof of H will start as follows:

H=x ⊥  ↑x ⊃ ⊥ ; ϕ, ↑x  H=x ⊥, ↓rH=r ⊥ ; ϕ 
ϕ, ↑x  H=x ⊥, ↓rH=r ⊥ ; ϕ  (H )

ϕ  ↓rH=r ⊥ ; ϕ  (↓)

 ; ϕ 
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Our strategy would now force to handle the formula ↑x ⊃ ⊥. If we do not respect
that, and instead send ↓rH=r ⊥ on the right-hand side of the leftmost position
and apply (↓) again, a new register y would be created, along with the formula
H=y ⊥, which in turn will create a new position more in the past when applying
(H ). If we never deal with a formula of the form ↑x ⊃ ⊥, this process could
go on ad infinitum, alternating between creating a new register and creating a
new position. However, if we respect our strategy, the proof search will reach
an immediately provable hypersequent after creating a fourth position. It is
not surprising, since we can prove that a counter-model of H should be such
that every datum appearing in the past does so infinitely many times, which is
impossible as our models are well-founded.

We now conclude that HKd
tL�.3 is complete for Kd

tL�.3, and also enjoys
coNP proof search. This complexity is optimal, since our logic contains the propo-
sitional logic [10].

Theorem 1 (completeness). Our calculus is complete for Kd
tL�.3: every valid

hypersequent H has a proof in HKd
tL�.3.

Proof. Assume that H is not provable. Consider a partial proof P of H that
cannot be expanded any more: its unjustified leaves are failure hypersequents.
Such a partial proof exists by Lemma2. Any unjustified leaf of that partial proof
has a counter-model by Proposition 3, and by invertibility shown in Proposition 1
it is also a counter-model of H.

Proposition 4. Proof search in HKd
tL�.3 is in coNP.

Proof. Proof search can be implemented in an alternating Turing machine main-
taining the current hypersequent on its tape, with only universal states (choosing
a premise of the rule): by Proposition 1, we can choose an arbitrary order in which
to apply rules; and the choice of a fresh x by any application of (↓ ) or ( ↓)
does not matter (e.g., x can be taken as the next unused integer). Moreover,
by Lemma 2, the computation branches are of length bounded by a polynomial,
hence the Turing machine is in coNP.

6 Restricted Logic on Given Ordinals

We have designed a proof system that is sound and complete for Kd
tL�.3, and

enjoys optimal complexity proof search. Moreover, as in [3], we can derive a
small model property from the proof of completeness: the logic Kd

tL�.3 can only
distinguish ordinals up to ω2, as the underlying data-free logic [3].

Proposition 5 (small model property). If a hypersequent H has a counter-
model, then it has one of order type α < ω · ((4|H| + len(H))|H| + len(H) + 1).
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Proof. This is a corollary of Theorem 1. By the proof of Lemma 2, the hyper-
sequents in a failure branch—which are not immediately provable—have at
most (4|H| + len(H))|H| + len(H) + 1 non-empty sequents. The counter-model
extracted in Proposition 3 from a failure hypersequent H ′ is over o(H ′) <
ω · ((4|H| + len(H))|H| + len(H) + 1). A counter-model for H is then obtained
by Proposition 1, with a different embedding but the same structure.

In particular, for a formula ϕ, the hypersequent H =  ϕ has |H| = |ϕ| and
len(H) = 1, hence the ω ·(4 · |ϕ|2+ |ϕ|+2) bound announced in the introduction.

Furthermore, as in [3], we can easily enrich our calculus by the following rule
to obtain a sound and complete proof system for tense logic over data ordinals
below a certain type α.

H
(ordα) if o(H) > α

We can also capture validity at a fixed ordinal α < ω2, by padding the input
with enough empty sequents to start with a hypersequent H of order type α,
and enriching our calculus with rule (ordα) to forbid larger ordinals (as in [3]).
The only catch is that we should check that the formula of interest in valid in
all possible positions, i.e. considering all possible paddings leading to a hyperse-
quent of order type α. When checking validity of a formula ϕ in all structures
of order type exactly α, we must prove in HKd

tL�.3 extended with (ordα) all
hypersequents of order type α containing one sequent  ϕ and otherwise only
empty sequents. For instance, when α = ω we must check  ϕ ; {}.

7 Related Work and Conclusion

We have investigated K↓
tL�.3—the freeze tense logic over ordinals—and pro-

posed a decidable fragment, namely Kd
tL�.3, for which we designed a sound and

complete proof system.
Thanks to Indrzejczak’s ordered hypersequents [24], enriched with clusters

and annotations as in [2,3], our system enjoys optimal coNP proof search, allows
to derive small model properties, and can be extended into a proof system for
variants of the logic over bounded or fixed data ordinals.

First-Order Logic with Two Variables. Bojańczyk et al. [6] have shown that
validity in first-order logic with two variables over data words and data ω-words
is in coNEXP. The same statement can be derived from our results, since Kd

tL�.3
is exactly as expressive as FO2(<,∼). We detail this aspect in [33]: converting a
first-order formulæ into an equivalent Kd

tL�.3 formulæ can be done by adapting
the proof from [17]—which involves an exponential blow-up—, we can then apply
Theorem 4 to get a coNEXP decision procedure.
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Other Logics. Our fragment can be encoded in the Logic of Repeating Values
with Past from [13] (PLRV), for which the satisfiability problem is equivalent
to the problem of reachability in VASS, which is TOWER-hard [11], and with
an ACKERMANN complexity upper bound [32]. Kd

tL�.3 can also be encoded in
the fragment of XPath with data tests and navigation among siblings which has
been proved undecidable [18].

In both cases, the main difference is that Kd
tL�.3 cannot perform nested data

tests. However, this restriction allowed us to get a logic for which the satisfiability
problem has a smaller complexity (NP), as established by our proof system. The
complexities of various logics on data words and their inclusions is summed up
in [33].

The systems most closely related to HKd
tL�.3 are obviously the calculus for

Kt4.3 [2] and KtL�.3 [3] in which we respectively introduced the notions of
clusters and annotations, and adapted them to work over ordinals. The main
contribution of the paper is being able to maintain the small branch property
of the calculus with the addition of data registers. Another contribution is the
shift of perspective about the annotations. In [3], they were only considered as
an artefact of the proof system being able to guide the proof search; but in this
paper, they are treated as a new kind of formula, and generalising the notion of
immediately provable hypersequents introduced in [3] allowed us to mimic the
syntactic condition they were previously bound to.
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Abstract. We give a linear nested sequent calculus for the basic normal
tense logic Kt. We show that the calculus enables backwards proof-search,
counter-model construction and syntactic cut-elimination. Linear nested
sequents thus provide the minimal amount of nesting necessary to pro-
vide an adequate proof-theory for modal logics containing converse. As
a bonus, this yields a cut-free calculus for symmetric modal logic KB.

1 Introduction

The two main proof-calculi for normal modal logics are sequent calculi and
tableau calculi [4]. Tableau calculi are algorithmic, directly providing a deci-
sion procedure via cut-free completeness. Sequent calculi are proof-theoretic,
requiring us to show completeness via cut-admissibility. Often, there is a direct
relationship between these two formalisms, where one can be seen as the “upside
down” variant of the other. However, this direct relationship breaks down for
modal logics where the modalities are interpreted with respect to a Kripke reach-
ability relation as well as its converse relation, as in modal tense logic Kt.

Modal sequent calculi go back to at least 1957 [16]. Sequent calculi for nor-
mal modal tense logics have proved more elusive, with some previous published
attempts failing cut-elimination [19]: the counter-example is p → �¬�¬p. But
we now have several extended sequent frameworks for tense logics: for example,
display calculi [20]; nested sequents [6,10] and labelled sequents [1]. The main
disadvantage is the rather heavy machinery required to achieve cut-elimination.
Tableau calculi for tense logics in contrast take a global view of proof-search, per-
mitting to expand any node in the search space but requiring technical novelties
such as dynamic blocking [8] and the use of a “restart” rule [7].

But there is a glaring disparity between the simplicity of tableau calculi for
tense logics versus the mentioned extended sequent frameworks, giving rise to
the question: What is the minimum extension over traditional sequents enabling
a proof-theory for tense logics amenable to (algorithmic) backward proof-search?

Supported by WWTF project MA16-28.

c© Springer Nature Switzerland AG 2019
S. Cerrito and A. Popescu (Eds.): TABLEAUX 2019, LNAI 11714, pp. 185–202, 2019.
https://doi.org/10.1007/978-3-030-29026-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29026-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-29026-9_11
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Here, we address this question by giving a sequent-style calculus for tense
logic Kt which includes two “restart” rules. The calculus is given in the lin-
ear nested sequent framework. This framework, essentially a reformulation of 2-
sequents [15], lies between the original sequent framework and the nested sequent
framework, in that it extends the sequent structure to lists of sequents. Apart
from op.cit., this framework yielded, e.g., cut-free calculi for a number of stan-
dard normal and non-normal modal logics [13,14,17] as well as temporal or
intermediate logics of linear frames [9,11]. Yet, so far the only examples were
logics which either have a cut-free sequent formulation, or where the underlying
semantic structure exactly matches that of linear nested sequents. The calculus
presented here thus is interesting for two reasons: First, it shows that not the full
complexity of nested sequents is necessary to capture tense logic without cuts;
second, it provides a non-trivial example showing that the linear nested sequent
framework can handle interesting logics beyond the reach of standard sequents,
with models not mirroring the linear structure.

In the following, we present the calculus, then show how to use it for backward
proof-search and cut-free completeness. We also show that it is amenable to the
usual proof-theoretic results such as the admissibility of the structural rules and
cut. As a bonus, this yields a calculus for symmetric modal logic KB, suggesting
that the linear nested sequent framework so far is the simplest purely syntactic
extension of the standard sequent framework capturing KB in a cut-free way,
since even hypersequent systems for KB, such as that of Lahav [12], seem to
require an analytic cut rule and hence are not completely cut-free.

We thank Reviewer 2 for many helpful suggestions.

2 Preliminaries

We assume that the reader is familiar with normal modal tense logics and their
associated Kripke semantics but give a very terse introduction below.

Formulae of normal modal tense logics are built from a given set Atm of
atomic formula via the BNF grammar below where p ∈ Atm:

A := p | ⊥ | A → A | �A | ♦A | �A | �A

We assume conjunction, disjunction and negation are defined as usual.
The Kripke semantics for Kt is given by a non-empty set (of worlds) W , a

binary relation R over W , and a valuation function V mapping a world w ∈ W
and an atomic formula p ∈ Atm to either “true” or “false”. Given a Kripke model
〈W,R, V 〉, the forcing relation w � A between a world w ∈ W and a formula A
is defined as follows (omitting clauses for the propositional connectives):

w � p if V (w, p) = true
w � ♦A if ∃v ∈ W. wRv & v � A w � �A if ∃v ∈ W. vRw & v � A
w � �A if ∀v ∈ W. wRv ⇒ v � A w � �A if ∀v ∈ W. vRw ⇒ v � A
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Fig. 1. The system LNSKt where � stands for either ↗ or ↙

As usual, a formula A is satisfiable if there is some Kripke model 〈W,R, V 〉,
and some world w ∈ W such that w � A. A formula A is valid if ¬A is unsatis-
fiable. Formally, the logic Kt is the set of all valid formulae.

The traditional Hilbert system HKt for tense logic Kt takes all classical propo-
sitional tautologies as axioms, adds the axioms �(A → B) → (�A → �B)
and �(A → B) → (�A → �B), the necessitation rules Nec� : A/�A and
Nec� : A/�A, and the two interaction axioms ♦�p → p and ��p → p. The
system HKt is sound and complete w.r.t. the Kripke semantics.

3 A Linear Nested Sequent Calculus for Kt

Unlike standard Hilbert-calculi, our calculus operates on linear nested sequents
instead of formulae, defined and adapted from Lellmann [13] as follows.

Definition 1. A component is an expression Γ ⇒ Δ where the antecedent Γ
and the succedent Δ are finite, possibly empty, multisets of formulae. We write
ε to stand for an empty antecedent or succedent to avoid confusion. A linear
nested sequent is an expression obtained via the following BNF grammar:

S := Γ ⇒ Δ | Γ ⇒ Δ ↗ S | Γ ⇒ Δ ↙ S .

We often write G for a possibly empty context : e.g., G ↗ Γ ⇒ Δ stands for
Γ ⇒ Δ if G is empty, and for Σ ⇒ Π ↙ Ω ⇒ Θ ↗ Γ ⇒ Δ if G is the linear
nested sequent Σ ⇒ Π ↙ Ω ⇒ Θ. Figure 1 shows the rules of our calculus
LNSKt. As usual, each rule has a number of premisses above the horizontal line
and a single conclusion below it. The single formula in the conclusion is the
principal formula and the formulae in the premisses are the side-formulae.
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Every instance of the rule (id) is a derivation of height 0, and if (ρ) is an n-ary
rule and we are given n premiss derivations d1, · · · , dn, each of height h1, · · · , hn,
with respective conclusions c1, · · · , cn, and c1, · · · , cn/d0 is an instance of (ρ)
then d1, · · · , dn/d0 is a derivation of height 1 + max{h1, · · · , hn}. We write
D � S if D is a derivation in LNSKt of the linear nested sequent S, and � S if
there is a derivation D with D � S.

Note that our calculus is end-active, i.e., in every logical rule and every
premiss, at least one active formula occurs in the last component.

Example 2. Consider the end-sequent ⇒ �p,�q, r → �¬�¬r where r →
�¬�¬r is the axiom r → �♦r with the definition of ♦ expanded. Suppose
we apply the rule (→R) upward to obtain r ⇒ �p,�q,�¬�¬r. Then there are
two different instances of the rule �2

R using two different principal formulae,
neither of which leads to a derivation, and one instance of the rule �2

R which
leads to a derivation:

r ⇒ �p,�q,�¬�¬r ↗ ε ⇒ p �2
Rr ⇒ �p,�q,�¬�¬r

r ⇒ �p,�q,�¬�¬r ↗ ε ⇒ q �2
Rr ⇒ �p,�q,�¬�¬r

id
r,¬r ⇒ r,�p,�q,�¬�¬r ¬L
r,¬r ⇒ �p,�q,�¬�¬r �2

Lr ⇒ �p,�q,�¬�¬r ↙ �¬r ⇒ ¬�¬r ¬R
r ⇒ �p,�q,�¬�¬r ↙ ε ⇒ ¬�¬r �2

Rr ⇒ �p,�q,�¬�¬r

Intuitively, each component of a linear nested sequent corresponds to a world
of a Kripke model, and the structural connectives ↗ and ↙ between components
corresponds to the relations R and R−1 that connect these worlds.

These intuitions can be made formal since linear nested sequents have a
natural interpretation as formulae given by taking ↗ and ↙ to be the structural
connectives corresponding to � and �, respectively:

Definition 3. If Γ = {A1, · · · , An} then we write Γ̂ for A1 ∧ · · · ∧ An and Γ̆
for A1 ∨ · · · ∨ An. The formula translation of a linear nested sequent is given
recursively by τ(Γ ⇒ Δ) = Γ̂ → Δ̆ and

τ(Γ ⇒ Δ ↗ G) = Γ̂ → (Δ̆ ∨ � τ(G)) τ(Γ ⇒ Δ ↙ G) = Γ̂ → (Δ̆ ∨ � τ(G)) .

A sequent S is falsifiable if there exists a model 〈W,R, v〉 and a world w ∈ W
such that w �� τ(S). A sequent S is valid if it is not falsifiable.

Soundness of the calculus then follows by induction on the depth of the
derivation from the following theorem.

Theorem 4 (Soundness). For every rule, if the conclusion is falsifiable then
so is one of the premisses.

Proof. We only give the interesting cases going beyond the standard calculi.
For rule �1

R, suppose that for M = 〈W,R, V 〉 and w1 ∈ W we have M, w1 ��
τ (Γ1 ⇒ Δ1 � . . . � Γn ⇒ Δn � Γ ⇒ Δ ↙ Σ ⇒ Π,�A). Hence there are worlds
w2, . . . , wn, x, y ∈ W with w1R

ε1w2R
ε2 . . . Rεn−1wnRεnxR−1y, for εi empty or

−1 as needed, such that wi � Γ̂i ∧ ¬Δ̆i for every i ≤ n, as well as x � Γ̂ ∧ ¬Δ̆
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and y � Σ̂ ∧ ¬Π̆ ∧ ¬�A. Hence there is a world z ∈ W with yRz such that
z �� A. If z = x, then M, w1 falsifies the interpretation of the first premiss. If
z �= x, we have a model falsifying the interpretation of the second premiss. The
case of rule �1

R is analogous.
For the “restart” rule (�2

L), suppose that the conclusion G � Γ ⇒ Δ ↗
Σ,�A ⇒ Π is falsifiable. Thus there is a world w such that w �� Γ̂ → Δ̆ ∨
�(Σ̂ ∧ �A → Π̆). So w � Γ̂ and w �� Δ̆ and w must have an R-successor v
such that v � Σ̂ and v �� Π̆ and v � �A. But then w � A, exactly as desired to
conclude that the premiss Γ,A ⇒ Δ is falsifiable. �
Corollary 5. For every linear nested sequent S, if � S, then τ(S) is valid. �

Why does the premiss of the rule �2
L not contain the sequent Σ,�A ⇒ Π ?

Because there may be an incompatibility between w and its R-successor v. The
�2

L rule removes this incompatibility by propagating A to the R-predecessor w.
But A could be arbitrarily complex and we must again saturate the predecessor
before re-creating v. The current v must be deleted and we must “restart” w.

Before showing completeness of LNSKt we remark on a simplification of the
calculus. Let LNS∗

Kt be the calculus obtained from LNSKt by replacing the modal
right rules �1

R,�1
R,�2

R and �2
R with the following two rules:

G � Γ ⇒ Δ,�A ↗ ε ⇒ A

G � Γ ⇒ Δ,�A
�R

G � Γ ⇒ Δ,�A ↙ ε ⇒ A

G � Γ ⇒ Δ,�A
�R

Soundness of these rules can be shown exactly as in Theorem 4. Moreover, since
derivations in the system LNSKt can be converted straightforwardly into deriva-
tions in the system LNS∗

Kt by simply omitting the subderivations of the left
premisses of �1

R and �1
R respectively, we immediately obtain:

Proposition 6. If LNSKt is cut-free complete for Kt, then so is LNS∗
Kt. �

For technical reasons, in particular to facilitate a cut elimination proof when
the cut formula is principal in the rules �2

L or �2
L, in the following we take LNSKt

as the main system, but it is worth keeping in mind that the completeness results
automatically extend to LNS∗

Kt. Note also that, modulo the structural rules and
deleting the last component in the rules �2

L and �2
L, LNS∗

Kt is essentially a two-
sided linear end-active reformulation of the cut-free nested sequent calculus S2Kt

for Kt in [10]. Hence completeness of the latter follows from our completeness
results by transforming derivations bottom-up.

4 Completeness via Proof Search and Counter-Models

We now show how to use our calculus (without EW) for backward proof search,
and how to obtain a counter-model from failed proof search, yielding complete-
ness. For this, we separate the rules into groups, assuming an appropriate side-
condition to ensure that rules are applied only when they create new formulae:
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Termination Rules: (id) and ⊥L;
CPL Rules: (→R) and (→L). The side-conditions ensuring termination are:

A �∈ Γ or B �∈ Δ for (→R), and B �∈ Γ and A �∈ Δ for (→L);
Propagation Rules: �1

L and �1
L. These rules move subformulae to the last

component. The side-condition ensuring termination is that A �∈ Σ;
Restart Rules: �2

L and �2
L. These rules make the sequent shorter. The side-

condition ensuring termination is that A �∈ Γ ;
Box Rules: �1

R, �2
R, �1

R �2
R. We apply only one of these rules, even if many

are applicable, and backtrack over these choices. But these rules are non-
deterministic since they choose a particular formula as principal. We must
also back-track over all choices of principal formula in the chosen rule.

Our proof-search strategy is to apply (backwards) the highest rule in the above
list. Thus, assuming that the (id) rule is not applicable, our strategy first seeks
to saturate the final component with the CPL-rules. Then we seek to propagate
formulae from the second-final component into the final component. Then we
seek to repair any incompatibilities between the final two components using the
Restart rules to shorten the sequent if necessary. Only when none of these rules
are applicable do we apply a Box-rule to lengthen the sequent, and backtrack
over all choices of principal formula. In particular, if a node is “restarted” then
we have to redo all previous Box-rule applications from this changed node.

Overall, the strategy means that the maximal modal degree, defined stan-
dardly, of a formula in a component must decrease strictly as the sequent becomes
longer, and the restart rules, which shorten the sequent, do not increase this max-
imal modal degree. A particular component is restarted only a finite number of
times because each restart adds a formula which is a strict subformula of the
end-sequent, and there are only a finite number of these. Hence the proof-search
terminates.

Theorem 7 (Termination). Backward proof-search terminates. �
Suppose backward proof-search terminates without finding a derivation. How

do we construct a counter-model that falsifies the end-sequent? Consider the
search-space explored by our procedure, i.e., the space of all possible failed
derivations including the various backtracking choice-points inherent in the
search procedure. We visualise this search space as a single tree by conjoin-
ing the modal rules containing backtrack choices. E.g., the backtracking choices
in the sequent ε ⇒ �p,�q,�r can be “determinised” as below where we have
used “dotted” lines to indicate a meta-level conjunction which “binds” the three
premisses:

ε ⇒ �p,�q,�r ↗ ε ⇒ p ε ⇒ �p,�q,�r ↗ ε ⇒ q ε ⇒ �p,�q,�r ↙ ε ⇒ r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ε ⇒ �p,�q,�r

Similarly, the sequent G � Γ1 ⇒ Δ1 ↙ Γ2 ⇒ �p,�q can be determinised as:

(a) G � Γ1 ⇒ Δ1 ↙ Γ2 ⇒ �p,�q ↙ ε ⇒ q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G � Γ1 ⇒ Δ1 ↙ Γ2 ⇒ �p,�q
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with (a) being the pair below:

G � Γ1 ⇒ p,Δ1 ↙ Γ2 ⇒ �p,�q G � Γ1 ⇒ Δ1 ↙ Γ2 ⇒ �p,�q ↗ ε ⇒ p
�1

R p �∈ Δ1(a)

We dub these choice-points as “and-nodes” to distinguish them from the tradi-
tional “or-nodes” created by disjunctions [7]. We first show how we prune this
search space to keep only nodes useful for building a counter-model. We then
outline how the pruned search space yields a counter-model for the end-sequent.

4.1 Pruning Irrelevant Branches from the Search Space

Suppose the original search-space corresponds to a tree τ0, and consider some
leaf to which no rule is applicable. In this search tree, delete all the rightmost
components of the conclusion of a restart rule. We can do so because we know
that, in the conclusion, the second-last component is incompatible with the last
component precisely because its antecedent Γ is missing A. So this pair of com-
ponents cannot possibly be part of a counter-model.

Now consider the rule application (ρ) below the restart rule. Suppose the last
component of the premiss of (ρ) is Σ,�A ⇒ Π. If deleting Σ,�A ⇒ Π causes
(ρ) to become meaningless, then delete the last component of the conclusion of
(ρ). If the rule is binary or is an “and-rule” then we keep the shorter of the
sequents that are returned downward by this procedure. E.g., an instance of the
rule �2

L from Fig. 1, as below, now appears as shown below it:

G � A,Γ ⇒ Δ
�2

L A �∈ ΓG � Γ ⇒ Δ ↗ �A,Σ ⇒ A

...
G � Γ ⇒ Δ ↗ �A,Σ ⇒ B∧R G � Γ ⇒ Δ ↗ �A,Σ ⇒ A ∧ B

G � A,Γ ⇒ Δ

G � Γ ⇒ Δ G′

G′′

where G′ is the pruned version of G � Γ ⇒ Δ ↗ �A,Σ ⇒ B and G′′ is the
shorter of G � Γ ⇒ Δ and G′. We can do so because the shorter sequent G′′

restarts a component that is earlier in the order of expansion, hence closer to
the initial sequent. Now proceed by considering the number of restarts.

Lemma 8. For all Γ and Δ, if Γ ⇒ Δ is not derivable and no restart rule is
ever applied then there exists a Kripke model which falsifies Γ ⇒ Δ.

Proof. If no restart rules are applied in backward proof-search, then every appli-
cation of a Box-right-rule leads to a new component which is compatible with
its parent component in that every required formula is already in the latter.

Now consider any three adjacent components of a leaf sequent, which must be
of one of the following forms where the second-last component and the third-last
component are separated by ↗ (we skip the similar cases when it is ↙):
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(1) G � Γ0, Σ1,�Σ5 ⇒ Dl,Δ0 ↗
Γ1,�Σ1, Σ2,�Σ3, Σ5, Σ4 ⇒ Δ1,�Ai,�Bj ,�Ck,�Dl

↙ Γ2, Σ1,�Σ2 ⇒ Δ2, Ai � H
(2) G � · · · · · · · · · · · · · · · · · · · · · ↗

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
↗ Γ ′

2, Σ3,�Σ4 ⇒ Δ′
2, Ck � H

(3) G � · · · · · · · · · · · · · · · · · · · · · ↗
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
↗ Γ ′′

2 , Σ3,�Σ4 ⇒ Δ′′
2 , Bj � H

In (1), the final component is the right premiss of the rule �1
R on �Ai, so �Ai

is “fulfilled”. The rule �2
L is not applicable to the last component because Σ2 is

in the middle component. The rule �1
L is not applicable on the middle compo-

nent because Σ1 is in the last component. The rule �2
L is not applicable to the

middle component because Σ1 is also in the first component. The rule �1
L is not

applicable on the first component because Σ5 is in the middle component. The
�Dl in the middle component is fulfilled because the first component contains
Dl via the left premiss of �1

R.
The two formulae �Bj and �Ck in the middle component are not fulfilled by

(1). But there will be an application of �2
R on �Ck shown as (2), and another

similar instance on �Bj with Ck in the last component replaced by Bj . Rule �2
L

is not applicable on the last component because Σ4 is in the middle one. The
rule �1

L is not applicable on the middle component because Σ3 is in the last one.
These arguments apply for every �-formula and for every �-formula in the

second-last component. Moreover, for every conjunction in the succedent of
either component, at least one conjunct must be in that succedent. Similarly, for
every disjunction in the succedent of either component, both disjuncts must be
in that succedent. Finally, the (id) rule is not applicable to any component.

Now put the following valuation on these components: every formula in the
antecedent has a value of “true” and every formula in the succedent has a value of
“false”. Then replace every occurrence of ↗ with R and replace every occurrence
of ↙ with R−1. Thus we have the following picture:

wj : Γ ′′
2 , Σ3,�Σ4 ⇒ Δ′′

2 , Bj wk : Γ ′
2, Σ3,�Σ4 ⇒ Δ′

2, Ck

v : Γ1,�Σ1, Σ2,�Σ3, Σ5, Σ4 ⇒
R
��

Δ1,�Ai,�Bj ,�Ck,�Dl

R
��

u : Γ0, Σ1,�Σ5 ⇒ Dl,Δ0

R
��

wi : Γ2, Σ1,�Σ2 ⇒ Δ2, Ai

R
��

For every world v, every formula �Ai and every formula �Ck with v �� �Ai

and v �� �Ck, there exists a predecessor world ui with uiRv and ui �� Ai,
there exists a successor world wk with vRwk and wk �� Ck; for every formula
�B ∈ �Σ2 with ui � �B, we have v � B; and for every formula �D ∈ �Σ4 with
wk � �D, we have v � D. Hence, the triple uiRvRwk is mutually compatible
in terms of both modalities, and each world falsifies the associated component.
Similar triples exist for all the box-formulae in v which are not principal in the
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diagram, and they all “overlap” at v. Hence we can “glue” them together to form
the fan of R-successors and R-predecessors of v, maintaining global compatibility.
The original sequent Γ ⇒ Δ is thus falsified at its associated world. �
Lemma 9. For every Γ and Δ, if the sequent Γ ⇒ Δ is not derivable, and
contains restarts, then there is a Kripke model which falsifies the end-sequent.

Proof. We proceed by induction on the number of restarts. If there are none, then
we are done by the previous lemma. Else there are a finite number of restarts.

Consider the highest restart and suppose it is �2
L. By our deletion strategy,

it must look exactly as shown above. By the induction hypothesis, the premiss
must have a counter-model. But the premiss is a strict superset of the conclusion,
so the same model must falsify the conclusion. �
Example 10. Consider the end-sequent ε ⇒ �p,�q,�r. We would need two suc-
cessor worlds, falsifying p and q respectively, and one predecessor world falsifying
r. One failed derivation will come from ε ⇒ �p,�q,�r ↗ ⇒ p while another
will come from ε ⇒ �p,�q,�r ↗ ⇒ q, i.e., two instances of the �2

R-rule. But
there will also be a failed derivation from ε ⇒ �p,�q,�r ↙ ⇒ r, i.e., an
instance of the �2

R-rule. Moreover, if r := ¬�r′ then the failed derivation of
this last mentioned sequent will have a backward application of �2

L above it,
containing a failed derivation for r′ ⇒ �p,�q,�¬�r′, thereby ensuring com-
patibility. But there will also be failed derivations for r′ ⇒ �p,�q,�r ↗ ⇒ p
and r′ ⇒ �p,�q,�r ↗ ⇒ q and the witnesses for �p and �q will come from
these failed derivations, because the returned sequent r′ ⇒ �p,�q,�¬�r′ will
be shorter than the other “and-node” premisses ε ⇒ �p,�q,�r ↗ ⇒ p and
ε ⇒ �p,�q,�r ↗ ⇒ q. But note that a counter-model for r′ ⇒ �p,�q,�¬�r′

is also a counter-model for the end-sequent ε ⇒ �p,�q,�¬�r′.

Putting Theorem 7 and Lemma 9 together we then obtain cut-free complete-
ness:

Theorem 11 (Cut-free Completeness). If backward proof-search on end-
sequent S fails to find a derivation then there is a counter-model for S. �
Corollary 12. If ϕ is valid then the end-sequent ε ⇒ ϕ is derivable. �

It is tempting to think that we need some sort of coherence condition as
illustrated by the tree in Fig. 2.

In the lowermost application of ∧R we choose the left premiss, and in the
uppermost one the right one. Thus it seems that in the world corresponding to
these last components we would need to make both p and ¬p true, which of course
would not work. But our pruning turns this failed derivation tree into the tree in
Fig. 3. Note that only the component which is not restarted survives the pruning.
The previous incarnation of the component caused the restart, but the restarted
node did not necessarily follow the same sequence of rule applications, once it
was restarted. Indeed, the sequence may no longer be possible as it may lead to
an instance of (id). Of course, if it is possible and remains open, then it will find a
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counter-model for a larger set, which will also suffice for the smaller set. Thus our
backward proof-search procedure creates surviving successors/predecessors only
when it has ensured that they will be compatible via some number of restarts.
Their incarnations which are not compatible are irrelevant, and are deleted by
our counter-model construction.

Fig. 2. A seemingly incoherent failed derivation tree.

5 Completeness via Cut Elimination

We now provide an alternative proof of cut-free completeness of our calculus via
syntactic cut elimination. The proof is interesting from a technical point of view:
The additional left premiss in the rules �1

R and �1
R is introduced specifically as

a counterpart to the restart rules �2
L and �2

L to facilitate the reduction of cuts
on boxed formulae to cuts of smaller complexity. However, while this enables the
cut elimination proof itself, it shifts a large part of the work in the completeness
proof to a perhaps unexpected place: the proof of admissibility of necessitation.

The following two lemmata are shown straightforwardly by induction on the
depth of the derivation and the complexity of the formula A, respectively:

Lemma 13. The rules below are admissible in LNSKt:

G � Γ ⇒ Δ � H
G � Γ,Σ ⇒ Δ,Π � H W

G � Γ,A,A ⇒ Δ � H
G � Γ,A ⇒ Δ � H CL

G � Γ ⇒ Δ,A,A � H
G � Γ ⇒ Δ,A � H CR

�
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Lemma 14. The generalised initial sequent rule shown below is derivable in
LNSKt:

G � Γ,A ⇒ A,Δ

�
In order to introduce cuts in our framework, we need the following notion.

Fig. 3. The result of pruning the tree in Fig. 2.

Definition 15. The merge of two linear nested sequents is defined via the fol-
lowing, where we assume G,H to be nonempty:

(Γ ⇒ Δ) ⊕ (Σ ⇒ Π) := Γ,Σ ⇒ Δ,Π

(Γ ⇒ Δ) ⊕ (Σ ⇒ Π � H) := Γ,Σ ⇒ Δ,Π � H
(Γ ⇒ Δ � H) ⊕ (Σ ⇒ Π) := Γ,Σ ⇒ Δ,Π � H

(Γ ⇒ Δ ↗ G) ⊕ (Σ ⇒ Π ↗ H) := Γ,Σ ⇒ Δ,Π ↗ (G ⊕ H)
(Γ ⇒ Δ ↙ G) ⊕ (Σ ⇒ Π ↙ H) := Γ,Σ ⇒ Δ,Π ↙ (G ⊕ H) .

Hence the merge is only defined for linear nested sequents which are structurally
equivalent, i.e., have the same structure of the nesting operators.

Recall that we write D � G if D is a derivation in LNSKt of the linear nested
sequent G, and � G if there is a derivation D with D � G, and that we write
dp(D) for the depth of the derivation D. The heavy lifting in the cut elimination
proof is done by the following lemma, which captures the intuition that cuts
are first shifted into the derivation of the left premiss of the cut until the cut
formula becomes principal there. Then they are shifted into the derivation of the
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right premiss of the cut until they are principal here as well and can be reduced
to cuts on lower complexity. The key idea is that because the calculus is end-
active, the cut formula essentially always occurs in the last component of one of
the premisses. As a technical subtlety, in order to shift up cuts on the principal
formula of the rule �1

R or �1
R we need to remember that we can eliminate the

occurrence of the cut formula in the context. This is done by the additional
conditions in the statements SR�(n,m) and SR�(n,m) of the lemma, where we
use SL and SR as mnemonics for “shift left” and “shift right”, respectively, the
latter with subscripts for the cut formula being modal or propositional:

Lemma 16. The following statements hold for every n,m:

(SR�(n,m)) Suppose that all of the following hold:
– D1 � G ↗ Γ ⇒ Δ,�A with �A principal in the last rule in D1

– D2 � H ↗ �A,Σ ⇒ Π � I
– dp(D1) + dp(D2) ≤ m
– there is a derivation of G ⊕ H ↗ Γ,Σ ⇒ Δ,Π ↗ ε ⇒ A
– |�A| ≤ n.

Then there is a derivation of G ⊕ H ↗ Γ,Σ ⇒ Δ,Π � I.
(SR�(n,m)) Suppose that all of the following hold:

– D1 � G ↙ Γ ⇒ Δ,�A with �A principal in the last rule in D1

– D2 � H ↙ �A,Σ ⇒ Π � I
– dp(D1) + dp(D2) ≤ m
– there is a derivation of G ⊕ H ↙ Γ,Σ ⇒ Δ,Π ↙ ε ⇒ A
– |�A| ≤ n.

Then there is a derivation of G ⊕ H ↗ Γ,Σ ⇒ Δ,Π � I.
(SRp(n,m)) Suppose that all of the following hold where D1 � Γ ⇒ Δ,A and

H � A,Σ ⇒ Π are structurally equivalent:
– D1 � G � Γ ⇒ Δ,A with A principal in the last applied rule in D1

– D2 � H � A,Σ ⇒ Π � I
– dp(D1) + dp(D2) ≤ m
– |A| ≤ n
– A not of the form �B or �B.

Then there is a derivation of G ⊕ H � Γ,Σ ⇒ Δ,Π � I.
(SL(n,m)) If D1 � G � Γ ⇒ Δ,A � I and D2 � H � A,Σ ⇒ Π with |A| ≤ n and

dp(D1) + dp(D2) ≤ m, and G � Γ ⇒ Δ and H � A,Σ ⇒ Π are structurally
equivalent, then there is a derivation of G ⊕ H � Γ,Σ ⇒ Δ,Π � I.
The full proof is in our arxiv paper [5]. As an immediate corollary, using the

statement SL(n,m) from Lemma 16 for suitable n,m we obtain:

Theorem 17 (Cut elimination). Whenever � G � Γ ⇒ Δ,A and � H �
A,Σ ⇒ Π, then also � G ⊕ H � Γ,Σ ⇒ Δ,Π. �

As usual, we will use cut elimination to show completeness. However, we also
need to show admissibility of the necessitation rules A/�A and A/�A. While
this is straightforward in standard calculi for modal logics, due to the additional
premiss in the rules �1

R and �1
R, here we need to do some work:
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Theorem 18 (Admissibility of necessitation). If ε ⇒ A is derivable in
LNSKt, then so are ε ⇒ �A and ε ⇒ �A.

Proof. We consider the proof for ε ⇒ �A, the other case is analogous. To refer
to problematic applications of the �2

R rule, we introduce some terminology.

Definition 19. Let D be the derivation of the sequent ⇒ A. An application r
of the rule �2

R is critical in D if its conclusion has exactly one component. The
depth of a critical application r of �2

R is the depth of the sub-derivation of D
ending with this rule application, written dp(r).

Let D be a derivation of ⇒A, and let crit(D) be the set of critical applications
of �2

R in D. For every possible depth d of a critical application in crit(D), fix
an enumeration of all critical applications in crit(D) with this depth. We then
convert the derivation D bottom-up into a derivation from assumptions of ⇒ �A,
i.e., a derivation of ⇒ �A where the leaves might be labelled with arbitrary
linear nested sequents called the assumptions. Each of these comes from one
of the critical applications of D, i.e., we have an injection ι from crit(D) to
the set of assumptions of the so far constructed derivation with assumptions.
To each assumption A we associate an index, i.e., a triple (d, i, c) of natural
numbers, where d is the depth of the critical application ι−1(A), the number i is
the index of ι−1(A) in the enumeration of critical applications of depth d, and
c ≤ dp(D) is a number corresponding to the depth of the current position in
the original derivation D. To ensure termination of the procedure, we consider
the lexicographic ordering <lex on the indices (d, i, c), and the multiset ordering
≺ induced by <lex on the set of multisets of indices [3]. In particular for two
such multisets A,B we have that A ≺ B iff B can be obtained from A by
replacing one or more indices (d, i, c) by a finite number of indices (d′, i′, c′) with
(d′, i′, c′) <lex (d, i, c). It is shown in op.cit. that ≺ is well-founded.

The first ingredient in the construction of the derivation of ⇒ �A is given
by essentially prefixing ε ⇒ �A to every linear nested sequent in D:

Definition 20. Let E be a sub-derivation of D and Γ ⇒ Δ a sequent. For
any natural number n the derivation (Γ ⇒ Δ) ↗ E(n) is obtained by prefixing
Γ ⇒ Δ ↗ to every linear nested sequent in E, and replacing critical applications
of �2

R with applications of �1
R and an assumption as follows:

Σ ⇒ Π,�B ↙ ε ⇒ B

Σ ⇒ Π,�B
�2

R

�
Γ ⇒ Δ,B

Γ ⇒ Δ,B ↗ Σ ⇒ Π,�B
EW

Γ ⇒ Δ ↗ Σ ⇒ Π,�B ↙ ε ⇒ B

Γ ⇒ Δ ↗ Σ ⇒ Π,�B
�1

R

The index (d, i, n) of the assumption Γ ⇒ Δ,B is given by the depth d of the
original critical application of �2

R, its index i, and the number n.

In the first step we obtain from D the derivation with assumptions (ε ⇒
�A) ↗ D(dp(D)). The conclusion of this derivation is ε ⇒ �A ↗ ε ⇒ A, hence
applying �2

R we will ultimately obtain a derivation with assumptions of ε ⇒ �A.
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The next step is to construct a derivation for each assumption, starting with
one of maximal index. The general idea is to copy the derivation of the premiss of
the corresponding critical application of �2

R, but essentially “folding back” the
second component of the original derivation into the first one of the new deriva-
tion until the linear nested sequents in the original derivation are reduced to one
component again. This means that the first component of the new derivation
will collect a number of second components occurring in the original derivation.
To make this precise, for a sequent Ω ⇒ Θ, a derivation E with assumptions, a
critical rule application r and a natural number n, we write (Ω ⇒ Θ)⊕E(r ← n)
for the derivation with assumptions obtained from E by merging the first com-
ponent of each linear nested sequent in E with the sequent Ω ⇒ Θ, and changing
the indices (d, i, c) of all those assumption in E corresponding to r to (d, i, n).

Take an assumption Γ ⇒ Δ,B with index (d, i, c) which is maximal w.r.t.
<lex, and suppose that the corresponding critical rule application r is given by:

.... E
Σ ⇒ Π,�B ↙ ε ⇒ B

Σ ⇒ Π,�B
�2

R

Suppose that the assumption occurs in the context

Γ ⇒ Δ,B

Γ ⇒ Δ,B ↗ Σ ⇒ Π,�B
EW

....
Γ ⇒ Δ ↗ Σ ⇒ Π,�B ↗ ε ⇒ B

Γ ⇒ Δ ↗ Σ ⇒ Π,�B
�1

R
.... F

where F is the derivation with assumptions below the conclusion of the appli-
cation of �1

R. Note that all assumptions in F have index smaller than (d, i, c).
We extend this derivation upwards by applying the same rules as in the origi-
nal derivation E , until in E we encounter a rule �2

L or EW which shortens the
sequent to only the first component again. This is straightforward unless in the
original derivation we have an application of a rule in which the first component
is active, i.e., an application of the rules �1

L or �1
R with active first component.

The case of �1
R is unproblematic, replacing �1

R with �2
R and continuing

upwards as in the derivation of the right premiss. Note that the first component
in the original derivation stays the same.

In the case of an application of �1
L we recreate the original first component

Σ ⇒ Π,�B using F . In general, this creates new copies of the assumptions in
F , in particular of other assumptions corresponding to r. To ensure termination
we decrease the index of every assumption corresponding to r to the depth of the
current position in the original derivation. Hence the multiset of assumptions of
the new derivation is smaller than that of the old one w.r.t. ≺. Suppose that we
encounter an application of the rule �1

L in the form
.... G

Σ′,�C ⇒ Π ′,�B,↙ Ξ,C ⇒ Υ

Σ′,�C ⇒ Π ′,�B ↙ Ξ ⇒ Υ
�1

L
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Since all linear nested sequents between the conclusion of this rule application
and the critical rule application r contain at least two components, and since
when simulating applications of �1

R as above we never changed the first compo-
nent, the first component Σ′,�C ⇒ Π ′,�B stays the same as the original first
component Σ ⇒ Π,�B. Hence we can recreate this component and continue
as:

Γ,Ξ,C ⇒ Δ,B, Υ

Γ,Ξ ⇒ Δ,B, Υ ↗ Σ′,�C ⇒ Π ′,�B
�2

L

.... (Ξ ⇒ Υ ) ⊕ F(r ← dp(G))
Γ,Ξ ⇒ Δ,B, Υ

Continuing upwards like this, in the original derivation we eventually reach initial
sequents, or applications of �2

L or EW which reduce the number of components
to one. In the latter case, we again recreate the original first component. E.g.,
suppose that in the original derivation we have an application of �2

L in the form
.... G

Σ′, C ⇒ Π ′

Σ′ ⇒ Π ′ ↙ Ξ,�C ⇒ Υ
�2

L

Then again we have that Σ′ ⇒ Π ′ is the same as the first component Σ ⇒ Π,�B
of the critical rule application r, and hence we can recreate it and continue using

.... (Γ,Ξ,�C ⇒ Δ,Υ ) ↗ G(dp(G))
Γ,Ξ,�C ⇒ Δ,Υ ↗ Σ′, C ⇒ Π ′

Γ,Ξ,�C ⇒ Δ,Υ ↗ Σ′ ⇒ Π ′ �1
L

.... (Ξ ⇒ Υ ) ⊕ F(r ← dp(G))
Γ,Ξ,�C ⇒ Δ,Υ

Note that again the multiset of indices of assumptions is decreased wrt. ≺. In
particular, the depth of every critical rule application in G is smaller than the
depth of the critical rule application r. The case for the rule EW is analogous.

Continuing in this way we replace every assumption by a finite multiset of
smaller ones. Hence the sequence of multisets of assumptions is strictly decreas-
ing wrt. the well-ordering ≺, and the procedure must terminate. When it does
we obtain a derivation without assumptions, giving a derivation of ε ⇒ �A. �
Theorem 21 (Completeness). The system LNSKt is cut-free complete for Kt.

Proof. It is straightforward to derive the axioms. Modus ponens is simulated as
usual using cuts. The necessitation rules are simulated using Lemma 18. �

6 Application: Linear Nested Sequents for Modal
Logic KB

It is rather straightforward to adapt our system to capture modal logic KB.
Semantically, KB is given as the mono-modal logic of symmetric Kripke frames,
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i.e., frames with symmetric accessibility relation. Syntactically, KB is obtained
from Kt by collapsing the forwards and backwards modalities, e.g., via adding the
axiom �A ↔ �A. Correspondingly, we also collapse the structural connectives
↗ and ↙ to obtain the simpler definition of linear nested sequents for KB via the
grammar S := Γ ⇒ Δ | Γ ⇒ Δ ↗ S. The simplest version of the linear nested
sequent calculus LNSKB for modal logic KB then contains the propositional rules
and rule EW of Fig. 1 together with the two standard rules

G ↗ Γ ⇒ Δ,�A ↗ ε ⇒ A

G ↗ Γ ⇒ Δ,�A
�R

G ↗ Γ,�A ⇒ Δ ↗ Σ,A ⇒ Π

G ↗ Γ,�A ⇒ Δ ↗ Σ ⇒ Π
�1

L

found in (linear) nested sequent calculi for modal logic K and the single new
rule

G ↗ Γ,A ⇒ Δ

G ↗ Γ ⇒ Δ ↗ Σ,�A ⇒ Π
�2

L

Soundness is seen analogously to Theorem 4, and completeness follows by repeat-
ing the proofs for Kt, at each step collapsing the forwards and backwards
modalities:

Theorem 22. The calculus LNSKB is sound and complete for modal logic KB.�
In comparison with the linear nested sequent calculus for modal logic KB

introduced by Parisi [17], we do not need to change the direction of the linear
nested sequents, and (a variant of) our system has syntactic cut elimination. Note
also that the system LNSKB is essentially the end-active and linear version of the
nested sequent calculus for KB of Brünnler and Poggiolesi [2,18] with the crucial
difference that the last component is deleted in the premiss of the symmetry rule
�2

L. Since derivations of LNSKB can be transformed straightforwardly bottom-
up into derivations in the full nested sequent system considered in op. cit., our
completeness result implies the completeness results there.

7 Conclusion

We have seen that linear nested sequents are so far the minimal extension of tra-
ditional sequents needed to handle tense logics and modal logic KB. Intuitively,
they provide the semantic expressive power to look both ways along the under-
lying Kripke reachability relation while also providing a rigorous and modular
proof-theoretic framework. The main novelty to mimic traditional tableau cal-
culi for tense logics is the addition of restart rules to maintain the compatibility
between parent nodes and their children.

In future work we would like to explore the possibility of extending our calcu-
lus to capture further properties of the accessibility relation such as reflexivity,
forwards or backwards directedness, or transitivity. We conjecture that suitable
modifications of the rules �1

R and �1
R in the spirit of the ones presented here

should suffice for a cut elimination proof. It is perhaps less obvious that the proof
of admissibility of necessitation goes through in these cases as well. Finally, we
would like to investigate whether it is possible to use our calculi in complexity-
optimal decision procedures.
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Abstract. We introduce nested sequent calculi for bimodal monotone
modal logic, aka. Brown’s ability logic, a natural combination of non-
normal monotone modal logic M and normal modal logic K. The cal-
culus generalises in a natural way previously existing calculi for both
mentioned logics, has syntactical cut elimination, and can be used to
construct countermodels in the neighbourhood semantics. We then con-
sider some extensions of interest for deontic logic. An implementation is
also available.

Keywords: Modal logic · Non-normal modal logic · Ability logic ·
Nested sequents · Countermodel generation

1 Introduction

The nested sequent framework has been very successfully used to provide ana-
lytic calculi for a large number of logics. In the context of normal modal logics,
it enabled modular calculi for all logics in the modal cube [3,18], for tense log-
ics [10], and for intuitionistic and constructive modal logics [15]. One of the main
advantages of this framework is that while it is a purely syntactic extension of
the sequent framework with a structural connective for the modal box, the tree
structure of nested sequents is also closely related to the semantics of modal
logics, in particular to the underlying tree structure of Kripke models. Due to
this aspect, nested sequent calculi often lend themselves to direct methods of
countermodel construction: Usually, if proof search fails, it returns a saturated
unprovable nested sequent from which the countermodel can be read off directly.
However the full power and flexibility of this framework so far has not yet been
harnessed in the context of non-normal modal logics. An initial attempt at doing
so indeed yielded modular calculi for a number of non-normal modal logics in the
framework of linear nested sequents [13,14]. Unfortunately, these calculi neither
facilitated countermodel construction, nor was it possible to provide a formula
interpretation of the linear nested sequents in the language of the logic.
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Here we propose an approach to rectify this situation by considering bimodal
versions of the non-normal modal logics. Such logics seem to have been consid-
ered first in [1] in the form of ability logics. In this framework, the neighbourhood
semantics of monotone modal logic is interpreted by the “can” of ability. Intu-
itively, the neighbourhood function maps a world to a set of neighbourhoods,
which correspond to actions available to an agent. If there is an action avail-
able such that a certain proposition is true after every possible execution of this
action, i.e., true in every world in the corresponding neighbourhood, then the
agent can reliably bring about this proposition. This interpretation then gives
rise to a second modality interpreting the “will” of ability: If a proposition is
true after every available action, i.e., true in every world of every neighbourhood
of a particular world, then the agent will unavoidably bring about this propo-
sition. Crucially and very conveniently, this second modality turns out to be
normal, which lets us exploit the standard connection between nesting in nested
sequents and the successor relation in Kripke models. Moreover, this induced
second modality does not depend on the original ability interpretation of non-
normal monotone modal logic, and hence its usefulness extends far beyond that
particular context.

Using this approach reformulated in terms of one of the most fundamental
non-normal modal logics, monotone modal logic M [4,7,17], we here present a
nested sequent calculus for its bimodal version biM, which combines M with
normal modal logic K. Notably, the nested sequents have a formula interpre-
tation in the bimodal language, and the calculus facilitates the construction
of countermodels from failed proof search in a slightly modified version. Since
biM is a reformulation of Brown’s ability logic, this immediately yields a nested
sequent calculus for the latter. An additional benefit is that the calculus conser-
vatively extends both the standard nested sequent calculus for K from [3,18] and
the nested sequent calculus for M from [13,14]. A prototype implementation of
proof search and countermodel construction using the calculus is available under
http://subsell.logic.at/bprover/nnProver/.

In terms of related work, while the presented calculus is mainly intended
as a foundation for nested sequents for monotone modal logics in general, it
also seems to be the first sequent-style calculus for biM resp. Brown’s ability
logic. There are of course a number of calculi for the monomodal logics M and
K. The standard sequent calculus for M was introduced in [11], where it was
also used to generate countermodels. However, due to the fact that the sequent
structure is too poor to capture the information necessary to construct neigh-
bourhood functions, the countermodel generation is rather more involved than
in the nested sequent framework. Based on op.cit., sequent calculi for various
extensions of M were given in [8] and later converted to the prefixed tableaux
framework in [9]. The latter is interesting in that successor labels in these calculi
correspond to the K-modality. However, the investigated logics are still only the
purely monomodal non-normal fragments. Finally, calculi for non-normal logics
including M in the framework of labelled sequents have been introduced recently
in [6,16]. They are modular, facilitate syntactic cut elimination and can be used

http://subsell.logic.at/bprover/nnProver/
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Fig. 1. The modal axioms and rules for biM from [1]. In addition, the full axiomatisation
contains the standard axioms and rules of classical propositional logic.

Fig. 2. The reformulation of the modal axioms and rules for biM.

for countermodel construction, but due to the inherent semantical character of
labelled sequents and the restriction to the monomodal language they lack a
formula interpretation.

The article is structured as follows. In Sect. 2 we recall bimodal monotone
modal logic and introduce the base calculus. In Sect. 3 we show syntactical cut
elimination in a slight variant of the calculus, and Sect. 4 contains the counter-
model construction from failed proof search. Some extensions are considered in
Sect. 5, followed by a short description of the implementation in Sect. 6 and the
conclusion.

2 The Basic System

The set F of formulae of bimodal monotone modal logic is given by the following
grammar, built over a set V of propositional variables:

F ::=⊥ | V | F → F | 〈 ]F | [ ]F

The remaining propositional connectives are defined as usual. The semantics are
given in terms of neighbourhood semantics, following [1,2,4,17]:

Definition 1. A neighbourhood model is a tuple M = (W,N , �. �) consisting
of a universe W , a neighbourhood function N : W → 22

W

, and a valuation
�. � : V → 2W . The truth set of a formula A in a model, written as �A�, extends
�. � by the propositional clauses �⊥� = ∅ and �A → B� = �A�

c ∪ �B� together
with

– �〈 ]A� = {w ∈ W | exists α ∈ N (w) s.t. for all v ∈ α : v ∈ �A�}
– �[ ]A� = {w ∈ W | for all α ∈ N (w) and for all v ∈ α : v ∈ �A�}
We write M, w � A for w ∈ �A� and call A valid, if �A� = W for every model.
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The dual connectives are defined via [〉A ≡ ¬〈 ]¬A and 〈〉A ≡ ¬[ ]¬A. The
original axiomatisation for bimodal monotone logic biM from [1] (called V there)
is given in Fig. 1, its reformulation using only 〈 ] and [ ] in Fig. 2. Note that for a
model M = (W,N , �. �) and world w ∈ W we have that M, w � [ ]A if and only if
for all v ∈ ⋃ N (w) we have M, v � A. Hence [ ] is a normal K-type modality. The
fact that the modality 〈 ] is a monotone modality follows immediately from the
semantics, since if for α ∈ N (w) we have α ⊆ �A� and �A� ⊆ �B�, i.e., A → B is
valid, then we also have α ⊆ �B�. Thus if A → B is valid, then so is 〈 ]A → 〈 ]B.
This can also be read off the axiomatisation in Fig. 2, since (C[ ]), (RM[ ]), (RN[ ])
is an axiomatisation of K, and (RM〈 ]) gives monotonicity of 〈 ].

To obtain a calculus for bimodal monotone logic, we extend the ordinary
sequent structure by the two structural connectives 〈.〉 and [.] in the succedent,
corresponding to the logical connectives 〈 ] and [ ], respectively:

Definition 2. A nested sequent is an expression

Γ ⇒ Δ, 〈Σ1 ⇒ Π1〉 , . . . , 〈Σn ⇒ Πn〉 , [S1], . . . , [Sm]

where Γ,Δ,Σi,Πi are multisets of formulae, and the Sj are nested sequents. The
formula interpretation of a nested sequent S is written ι(S) and given by

ι(S) =
∧

Γ →
∨

Δ ∨
∨n

i=1
〈 ](

∧
Σi →

∨
Πi) ∨

∨m

j=1
[ ] ι(Sj) .

Intuitively, a nested sequent is a tree, where each node is labelled with an
expression Γ ⇒ Δ, 〈Σ1 ⇒ Π1〉 , . . . , 〈Σn ⇒ Πn〉 and is called a component of the
nested sequent, and the successor relation corresponds to the nesting operator
[.]. To shorten presentation we slightly abuse notation and sometimes take the
succedent of a sequent to contain nested sequents as well, i.e., we might write
Γ ⇒ Δ, [Σ ⇒ Π] instead of Γ ⇒ Δ′, 〈Ω ⇒ Θ〉 , [Σ ⇒ Π], [Ξ ⇒ Υ ]. The rules of
the nested sequent calculus intuitively then can be applied at any node of the
nested sequent. Syntactically, this uses the notion of a context as follows.

Definition 3 (Nested sequent context). A nested sequent context is a
nested sequent with a hole {.}, defined by S{.} :: = {.} | Γ ⇒ Δ, [S{.}].

Note that 〈.〉 never contains {.}. This ensures non-normality of its interpre-
tation 〈 ] by preventing application of the propositional rules inside 〈.〉.
Definition 4. The rules of the nested sequent calculus NM are given in Fig. 3.
A derivation in NM is a finite tree where each node is labelled with a nested
sequent, and the label of each node results from the labels of its successors by an
application of a rule from NM. The depth of a derivation is the maximal number
of nodes in its branches minus one, and the conclusion is the label of its root.

Note that the fragment of NM without the rules 〈 ]R, 〈 ]L, I is the standard two-
sided nested sequent calculus for K from [3,18]. Similarly, the fragment of NM

without the rules [ ]L, [ ]R, I is the full nested version of the linear nested sequent
calculus for M from [13,14]. Hence, since the semantics are easily transferred,
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completeness of the full calculus implies completeness of the fragments for K and
M respectively. The novel rule I corresponds to axiom (W′) and is the necessary
link between those two systems. The first step is to show soundness of the system.

Theorem 5. The calculus NM is sound for biM wrt. the formula interpreta-
tion ι, i.e., if a nested sequent S is derivable in NM, then ι(S) is valid in biM.

Fig. 3. The nested sequent rules of the calculus NM for the bimodal system biM.

Proof. This follows as usual by an induction on the depth of the derivation of S
from the fact that all rules preserve soundness wrt. the formula interpretation ι.
For all rules apart from 〈 ]L and I this is standard or trivial.

For 〈 ]L, assume that S{.} = Γ1 ⇒ Δ1, [. . . [Γn ⇒ Δn, [{.}]] . . . ], and that
ι(S{Γ, 〈 ]A ⇒ Δ, 〈Σ ⇒ Π〉}) is falsified in M = (W,N , �. �) at w. If the con-
tradiction comes from the context, i.e., ι(S{ ⇒ }) is falsified at w, then also
the interpretation of the premiss is falsified at w. Otherwise we have sequences
x1, . . . , xn+1 of worlds and α1, . . . , αn+1 of neighbourhoods with

– w = x1

– xi+1 ∈ αi+1 ∈ N (xi) for i = 1, . . . , n
– M, xi �

∧
Γi ∧ ¬∨

ι(Δi) for 1 ≤ i ≤ n
– M, xn+1 �

∧
Γ ∧ 〈 ]A ∧ ¬ι(Δ) ∧ [〉(

∧
Σ ∧ ¬∨

Π)

where ι(Δ) is the natural interpretation of Δ, potentially including further nest-
ing operators. From the last item we obtain a neighbourhood α ∈ N (xn+1) with
α ⊆ �A�. Due to the fact that M, xn+1 � [〉(

∧
Σ ∧ ¬∨

Π) we then obtain a
world y ∈ α such that M, y �

∧
Σ ∧ A ∧ ¬∨

Π. Hence we have M, xn+1 �
〈〉(

∧
Σ ∧ A ∧ ¬∨

Π) and the formula interpretation ι(S{Γ ⇒ Δ, 〈Σ,A ⇒ Π〉})
of the premiss of 〈 ]L is also falsified in M, w.

For the rule I, suppose the formula interpretation ι(S{Γ ⇒ Δ, [ ]A,
〈Σ ⇒ Π〉}) of the conclusion is falsified in M = (W,N , �. �) at w. Then as
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above ι(S{ ⇒ }) is falsified at w or there is a world v ∈ W such that
M, v falsifies

∧
Γ → ∨

ι(Δ) ∨ [ ]A ∨ 〈 ](
∧

Σ → ∨
Π). Thus, in particular, we

have M, v � 〈〉¬A and M, v � [〉(
∧

Σ ∧ ¬∨
Π). Since M, v � 〈〉¬A, there

is an α ∈ N (v) with α �= ∅. For this α then there exists a x ∈ α with
M, x �

∧
Σ ∧ ¬∨

Π. Thus, in particular we have M, v � 〈〉(
∧

Σ ∧ ¬∨
Π),

and hence M, v �� [ ](
∧

Σ → ∨
Π) = ι([Σ ⇒ Π]). Hence the formula interpreta-

tion of the premiss is also falsified in M, w. ��
We can prove completeness of the calculus in a number of different ways.

Perhaps the easiest way is via a detour through the corresponding sequent calculi.

Theorem 6. The calculus NM is complete for biM, i.e., if a formula A is valid,
then the nested sequent ⇒ A is derivable in NM.

Proof (Sketch). First, observe that in the ordinary sequent system GbiM given by
the standard propositional rules of G3c of [19] together with the three rules

Γ ⇒ B
Σ, [ ]Γ ⇒ [ ]B,Π

Γ ⇒ B
Σ, [ ]Γ ⇒ [ ]A, 〈 ]B,Π

Γ,A ⇒ B

Σ, [ ]Γ, 〈 ]A ⇒ 〈 ]B,Π

and the cut rule all axioms and rules of biM are derivable. Hence GbiM is complete
in presence of cut. It also has cut elimination, as can be seen by straightforward
adaption of the standard proof [19], or by checking that it satisfies the criteria
for cut elimination from [12]. Completeness of NM then follows by simulating
derivations in the sequent system in a leaf node of the nested sequents as in [13,
14]. In particular, the second and third modal rules above are simulated as
follows, abbreviating multiple rule applications by a double line:

Σ ⇒ Π, [Γ ⇒ B]

Σ, [ ]Γ ⇒ Π, [ ⇒ B]
[ ]L

Σ, [ ]Γ ⇒ [ ]A,Π, 〈⇒ B〉 I

Σ, [ ]Γ ⇒ [ ]A, 〈 ]B,Π
〈 ]R

Σ ⇒ Π, [Γ,A ⇒ B]

Σ, [ ]Γ ⇒ Π, [A ⇒ B]
[ ]L

Σ, [ ]Γ, 〈 ]A ⇒ Π, 〈⇒ B〉 〈 ]L

Σ, [ ]Γ, 〈 ]A ⇒ 〈 ]B,Π
〈 ]R

The simulation of the remaining modal rule is similar but easier. ��
Note that analogously to the results in [13,14] the proof of the previous

theorem further shows that completeness of the calculus is preserved if we restrict
the nested sequents to be linear, i.e., to consist only of a single branch, and
stipulate that all rules are end-active, i.e., only work in the last component:

Corollary 7. The end-active linear version of NM is complete for biM. ��
Like the ordinary sequent calculus constructed in the proof, the end-active

linear version of NM could be used to obtain an optimal PSPACE-complexity
result. However, since this already follows using standard techniques and back-
wards proof search in the ordinary sequent system, we omit the proof.

Theorem 8. The problem of deciding whether a formula is a theorem of biM is
PSPACE-complete. ��

While the end-active linear version of NM is more suitable for space-efficient
proof search, it is not ideal for constructing countermodels to underivable
sequents. Hence in the following we consider the full nested version.
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3 Cut Elimination

An alternative completeness proof is given by showing cut elimination. For this
we move to the cumulative or kleene’d variant of the calculus, where all principal
formulae and structures are copied into the premiss(es). The resulting kleene’d
calculus N k

M is given in Fig. 4. Note that it contains the structural version Is

of the interaction rule I. To show equivalence to the base calculus, we show
admissibility of the internal and external structural rules, including ICL, ICR,W.
The proof for the internal rules is by standard induction on the depth of the
derivation:

Fig. 4. The kleene’d version N k
M of the calculus

Lemma 9. The following rules are admissible in N k
M:

S{Γ ⇒ Δ}
S{Γ, Σ ⇒ Δ, Π}

S{Γ ⇒ Δ, 〈Σ ⇒ Π〉}
S{Γ ⇒ Δ, 〈Σ, Ω ⇒ Π, Θ〉}

S{Γ, A, A ⇒ Δ}
S{Γ, A ⇒ Δ}

S{Γ ⇒ Δ, A, A}
S{Γ ⇒ Δ, A}

Lemma 10. The merge rules are admissible in N k
M:

S{Γ ⇒ Δ, [Σ ⇒ Π], [Ω ⇒ Θ]}
S{Γ ⇒ Δ, [Σ,Ω ⇒ Π,Θ]}

mrg[]
S{Γ ⇒ Δ, 〈Σ ⇒ Π〉 , 〈Ω ⇒ Θ〉}

S{Γ ⇒ Δ, 〈Σ,Ω ⇒ Π,Θ〉}
mrg〈〉

Proof. By induction on the depth of the derivation. The only non-standard cases
are for mrg〈〉 with last applied rule 〈 ]i

L or Ii. Here we apply the induction hypoth-
esis, followed by admissibility of weakening and the original rule. ��
Lemma 11. The calculi NM+mrg〈〉 and N k

M are equivalent, i.e., a sequent ⇒ A

is derivable in NM plus mrg〈〉 iff it is derivable in N k
M.

Proof. For one direction, using admissibility of weakening and contraction it is
straightforward to transform a derivation in NM into a derivation in N k

M.
For the other direction we transform derivations in N k

M into derivations in NM

using contraction and merge, where mrg[] is shown admissible in NM by induction
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on the depth of the derivation. The only tricky part is the transformation for
the rule Is. For this we use the fact that we can permute applications of Is below
applications of the other rules of N k

M (the proof is rather straightforward by
going through all the cases), until a formula of the shape [ ]A appears in the
succedent. At this point we transform the application of Is into an application
of I creating the same formula [ ]A, followed by an application of contraction. ��

Note that this lemma shows equivalence only with NM extended with the
merge rule mrg〈〉. While it would be possible to either make this rule part of NM

from the outset, or to modify NM so that it becomes admissible, the advantage
of the current formulation is the direct link to the end-active linear version
(Corollary 7). To state the cut rule, we use the following notion adapted from [18]:

Definition 12. For two nested sequents with holes

S{ } = Γ1 ⇒ Δ1, [. . . [Γn ⇒ Δn, [{ }]] . . . ]
S ′{ } = Σ1 ⇒ Π1, [. . . [Σn ⇒ Πn, [{ }]] . . . ]

the merge is the nested sequent with hole

(S ⊕ S ′){ } := Γ1, Σ1 ⇒ Δ1,Π1, [. . . [Γn, Σn ⇒ Δn,Πn, [{ }]] . . . ]

obtained by “zipping” together the two nested sequents along the path from the
root to the hole. Note that the hole is at the same depth in both nested sequents.

Using this notion, the cut rule then is the following rule:

S{Γ ⇒ Δ,A} S ′{A,Σ ⇒ Π}
(S ⊕ S ′){Γ,Σ ⇒ Δ,Π} cut1

In order to reduce cuts on 〈 ]-formulae, we also eliminate the auxiliary cut rule:

S{Γ ⇒ Δ, 〈Ω ⇒ Θ,A〉} S ′{Σ ⇒ Π, [A,Ξ ⇒ Υ ]}
(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈Ω,Ξ ⇒ Θ, Υ 〉} cut2

Soundness of these rules can be shown directly, but also follows from the fact
that they are admissible in the cut-free calculus. Note that we only permit cut
on components at the same depth of the nested sequents. While often this neces-
sitates the addition or admissibility of certain structural rules [3,18], here the
situation is simpler due to the fact that the axiomatisation of biM does not
involve axioms of mixed modal rank such as 4, 5 or T.

Theorem 13. The cut rules cut1 and cut2 are admissible in the calculus N k
M.

Proof. The proof is for both statements simultaneously by induction on the
tuples (c, d) in lexicographic ordering, where c is the complexity of the cut for-
mula, i.e., its length, and d is the depth of the cut, i.e., the sum of the depth of
the derivations of the premisses of the cut. Call these tuples the measure of the
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corresponding application of cut. The proof of the statement for cut1 with mea-
sure (c, d) uses the statements for cut1 with measure (c, k) with k < d and for
cut1 and cut2 with measure (c−1, n) for arbitrary n. The proof of the statement
for cut2 with measure (c, d) uses the statements for cut2 with measure (c, k) with
k < d and for cut1 with measure (c, n) with arbitrary n.

The general strategy is to permute applications of cut up into the left premiss
until the cut formula is principal, then up into the right premiss until it is
principal here as well and can be reduced. We apply cross-cuts to eliminate the
cut formula from the context. The cases for the zero-premiss rules are standard.

Cut Formula Contextual on the Left. For cut1, the cut is permuted as usual
into the premiss(es) of the last applied rule in the derivation of the left premiss
of the cut and eliminated by induction hypothesis on the depth.

For cut2, we consider the case where the nesting 〈.〉 containing the cut formula
in the left premiss of the application of cut2 is active in the last rule of that
derivation. If the last rule is 〈 ]i

L, we have:

S{Γ, 〈 ]B ⇒ Δ, 〈Ω ⇒ Θ,A〉 , [Ω,B ⇒ Θ,A]}
S{Γ, 〈 ]B ⇒ Δ, 〈Ω ⇒ Θ,A〉} 〈 ]i

L S ′{Σ ⇒ Π, [A,Ξ ⇒ Υ ]}
(S ⊕ S ′){Γ, 〈 ]B,Σ ⇒ Δ,Π, 〈Ω,Ξ ⇒ Θ, Υ 〉} cut2

We first apply cut2 with lower depth to the premiss of 〈 ]i
L and S ′{Σ ⇒

Π, [A,Ξ ⇒ Υ ]} to obtain (S ⊕ S ′){Γ, 〈 ]B,Σ ⇒ Δ,Π, 〈Ω,Ξ ⇒ Θ, Υ 〉 , [Ω,B ⇒
Θ,A]}. Now an application of cut1 with possibly higher depth but the same
complexity yields

((S ⊕ S ′) ⊕ S ′){Γ, 〈 ]B,Σ2 ⇒ Δ,Π2, 〈Ω,Ξ ⇒ Θ, Υ 〉 , [Ω,B,Ξ ⇒ Θ, Υ ]} .

An application of 〈 ]i
L followed by admissibility of contraction and merge then

gives the result. The cases for the rules Ii and Is are analogous. The cases where
the nesting is not active are even simpler.

Cut Formula Principal on the Left and Contextual on the Right. Since
the cut formula is principal on the left and no rule has a principal formula inside
the nesting 〈.〉, we are dealing with the case of cut1 only. Thus as usual we
permute the cut into the premisses of the last rule of the derivation of the right
premiss of the cut and eliminate it using the induction hypothesis on the depth.

Principal-Principal: The cases where the cut formula is propositional are as
usual. In case the cut formula is 〈 ]A, we have:

S{Γ ⇒ Δ, 〈 ]A, 〈⇒ A〉}
S{Γ ⇒ Δ, 〈 ]A} 〈 ]i

R

S ′{〈 ]A,Σ ⇒ Π, 〈Ω ⇒ Θ〉 , [A,Ω ⇒ Θ]}
S ′{〈 ]A,Σ ⇒ Π, 〈Ω ⇒ Θ〉} 〈 ]i

L

(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈Ω ⇒ Θ〉} cut1

First we apply cross-cuts (i.e., the induction hypothesis on the lower depth) to
the premiss of 〈 ]i

R and the conclusion of 〈 ]i
L and vice-versa to obtain deriva-

tions of the two nested sequents (S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈⇒ A〉 , 〈Ω ⇒ Θ〉} and
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(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈Ω ⇒ Θ〉 , [A,Ω ⇒ Θ]}. Then we apply the induction
hypothesis on the smaller complexity for cut2 to these two to obtain

(S ⊕ S ′) ⊕ (S ⊕ S ′){Γ 2, Σ2 ⇒ Δ2,Π2, 〈Ω ⇒ Θ〉 , 〈Ω ⇒ Θ〉 , 〈Ω ⇒ Θ〉}
Now admissibility of mrg[], mrg〈〉 and contraction yields the result.

Suppose that the cut formula is [ ]A with last applied rules [ ]i
R and [ ]i

L:

S{Γ ⇒ Δ, [ ]A, [ ⇒ A]}
S{Γ ⇒ Δ, [ ]A} [ ]i

R

S ′{[ ]A,Σ ⇒ Π, [A,Ω ⇒ Θ]}
S ′{[ ]A,Σ ⇒ Π, [Ω ⇒ Θ]} [ ]i

L

(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, [Ω ⇒ Θ]} cut1

Again, applying cross-cuts gives (S ⊕ S ′){Γ,Σ ⇒ Δ,Π, [A,Ω ⇒ Θ]} and (S ⊕
S ′){Γ,Σ ⇒ Δ,Π, [ ⇒ A], [Ω ⇒ Θ]}. Now an application of cut1 with smaller
complexity gives (S ⊕ S ′) ⊕ (S ⊕ S ′){Γ 2, Σ2 ⇒ Δ2,Π2, [Ω ⇒ Θ], [Ω ⇒ Θ]} and
using admissibility of merge and contraction we are done.

If the cut formula is [ ]A with last applied rules Ii and [ ]L we have

S{Γ ⇒ Δ, [ ]A, 〈Ω ⇒ Θ〉 , [Ω ⇒ Θ]}
S{Γ ⇒ Δ, [ ]A, 〈Ω ⇒ Θ〉} Ii

S ′{[ ]A,Σ ⇒ Π, [A,Ξ ⇒ Υ ]}
S ′{[ ]A,Σ ⇒ Π, [Ξ ⇒ Υ ]} [ ]i

L

(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈Ω ⇒ Θ〉 , [Ξ ⇒ Υ ]} cut1

This is converted into

S{Γ ⇒ Δ, [ ]A, 〈Ω ⇒ Θ〉 , [Ω ⇒ Θ]}
S ′{[ ]A,Σ ⇒ Π, [A,Ξ ⇒ Υ ]}
S ′{[ ]A,Σ ⇒ Π, [Ξ ⇒ Υ ]} [ ]i

L

(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈Ω ⇒ Θ〉 , [Ω ⇒ Θ], [Ξ ⇒ Υ ]} cut1

(S ⊕ S ′){Γ,Σ ⇒ Δ,Π, 〈Ω ⇒ Θ〉 , [Ξ ⇒ Υ ]} Is

and we are done using the induction hypothesis on the depth. ��

4 Completeness via Countermodel Generation

From a semantical point it is more informative to show completeness by con-
structing countermodels from a failed proof search. For this we slightly modify
the system N k

M in two ways. First, to make the construction of a successor
world more explicit, we split the nesting operator 〈.〉 into an unfinished version
〈.〉u and a finished version 〈.〉f , adding an explicit jump rule which constructs a
[.]-successor out of a finished 〈.〉f -successor as in [13,14]. To facilitate the con-
struction of the neighbourhoods, we further add annotations to the components:

Definition 14. An annotated nested sequent is an expression

Γ
Ξ⇒ Δ, 〈Σ1 ⇒ Π1〉u , . . . , 〈Σn ⇒ Πn〉u ,

〈Ω1 ⇒ Θ1〉f , . . . , 〈Ωm ⇒ Θm〉f , [S1], . . . , [Sk]

where the annotation Ξ is a multiset of formulae, and the Si are annotated
nested sequents. For a component v we write an(v) for the annotation of this
component.
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Again, we can identify an annotated nested sequent with a labelled tree,
and we call each node labelled with an expression Γ

Ξ⇒ Δ, 〈Σ1 ⇒ Π1〉u , . . . ,

〈Σn ⇒ Πn〉u , 〈Ω1 ⇒ Θ1〉f , . . . , 〈Ωm ⇒ Θm〉f a component of the annotated
nested sequent. The main intuition for the annotations is that they store infor-
mation on how a component of a nested sequent was created during backwards
proof search. This information will the be used in the countermodel construc-
tion to collect all successors of a component with the same annotation into one
neighbourhood of the component. Finally, we drop the structural version of the
interaction rule. The resulting system N a

M is given in Fig. 5. Note that the anno-
tations only store information on how a component of a nested sequent in the
proof search was created, but do not influence proof search per se. Building on
this, the proof of the following Lemma shows that, modulo the structural rules,
derivations in the annotated and plain systems are easily converted into each
other.

Fig. 5. The invertible annotated variant N a
M of the system

Lemma 15. The systems NM and N a
M are equivalent, i.e.: A nested sequent

⇒ A is derivable in NM if and only if ∅⇒ A is derivable in N a
M.

Proof. To convert derivations in NM into derivations in N a
M, we first convert

them into derivations in N k
M using Lemma 11, noting that the result does not

contain the rule Is. Hence we can convert the resulting derivation into a deriva-
tion in N a

M bottom-up, starting from the conclusion, replacing all the rules with
their respective counterparts. The rules 〈 ]i

L and Ii are replaced with their anno-
tated versions followed by jumpa. In the other direction, derivations in N a

M are
converted into derivations in NM by deleting all the annotations and applica-
tions of jumpa, replacing the rules 〈 ]a

L and Ia by 〈 ]L and I respectively, and using
contraction to remove additional copies of the principal formulae. ��
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As usual, we then construct a model from an annotated nested sequent which
is saturated under the application of all the rules, defined as follows.

Definition 16. An annotated nested sequent S is saturated if for each of its
components Γ

Ξ⇒ Δ the following hold:

1. Γ ∩ Δ �= ∅
2. ⊥ /∈ Γ
3. A → B ∈ Γ implies B ∈ Γ or A ∈ Δ
4. A → B ∈ Δ implies A ∈ Γ and B ∈ Δ
5. 〈 ]A ∈ Δ implies 〈⇒ A〉u ∈ Δ

6. 〈 ]A ∈ Γ and 〈Σ ⇒ Π〉u ∈ Δ implies 〈Σ,A ⇒ Π〉f ∈ Δ

7. 〈Σ ⇒ Π〉f ∈ Δ implies there are Ω,Θ such that [Σ,Ω
Σ⇒ Π,Θ] ∈ Δ

8. [ ]A ∈ Δ implies there are Σ,Ω,Θ with [Ω Σ⇒ A,Θ] ∈ Δ

9. [ ]A ∈ Γ and [Ω Σ⇒ Θ] ∈ Δ implies A ∈ Ω.
10. [ ]A ∈ Δ and 〈Σ ⇒ Π〉u ∈ Δ implies 〈Σ,Ω ⇒ Π,Θ〉f ∈ Δ for some Ω,Θ.

The difficulty in building a model from a saturated nested sequent then lies in
constructing the set of neighbourhoods for each world. We do this by collecting
successor worlds into sets according to their annotations. A bit of care needs
to be taken, depending on whether there is a formula of the form 〈 ]A in the
succedent of the component or not. Formally:

Definition 17. Let S be a saturated nested sequent. The model generated by S
is the model MS = (W,N , �. �) with

– W the set of components (nodes) of S
– if w ∈ W , then w ∈ �p� iff w is a component Γ

Σ⇒ Δ with p ∈ Γ
– N (w) is defined as follows. Let Cw be the set of immediate successors of w,

and let �[Cw] be the set of annotations of nodes in Cw. Then let

Lw := { {v ∈ Cw | an(v) = Σ} | Σ ∈ �[Cw]}

Now, N (w) is defined as (Lw ∪ {Cw}) � {∅} if there is a formula 〈 ]A ∈ Δ,
and Lw ∪ {Cw} ∪ {∅} otherwise.

Thus, disregarding the empty set, the set of neighbourhoods of a node in
a nested sequent includes the set of all its children (to make the construction
work for the normal modality [ ]), as well as every set of children with the same
annotation. Whether it contains the empty set or not depends on whether there
is a formula 〈 ]A in its succedent. By construction we have:

Lemma 18 (Model Lemma). If S is saturated, then the model generated by
S is a neighbourhood model. ��

Non-derivable nested sequents then yield a saturated nested sequent via a
standard proof search procedure, given as follows.
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Definition 19. The proof search procedure in N a
M is defined by application

of the rules of N a
M in an arbitrary but fixed order, unless the conclusion of a

potential rule application already satisfies the saturation condition corresponding
to this rule. An annotated nested sequent is minimal if it can be obtained from
an annotated nested sequent Γ

∅⇒ Δ by the proof search procedure.

Lemma 20. The proof search procedure terminates and either yields a deriva-
tion or a saturated annotated nested sequent.

Proof. Every backwards application of a rule adds a formula or a sequent inside
a nesting operator. Since the maximal modal nesting depth of formulae decreases
in every nesting operator, and since by the saturation conditions no formula or
sequent is created twice in the same component, the procedure terminates. ��

The final ingredient for showing that the model generated from a saturated
nested sequent obtained from proof search really is a model then is the following.

Lemma 21. Let S be a minimal annotated nested sequent and Γ
Ξ⇒ Δ be a

component of S. Then Ξ ⊆ Γ .

Proof. Since in a minimal annotated nested sequent new components are only
constructed via the jumpa rule which has identical label and sequent in the
premiss, or via the [ ]R rule, which creates the empty label. ��
Lemma 22 (Truth Lemma). If S is saturated and minimal and w is a com-
ponent of S containing Γ

Ξ⇒ Δ, then for every formula A:

1. A ∈ Γ implies MS , w � A
2. A ∈ Δ implies MS , w �� A.

Proof. By induction on the complexity of A for both statements simultaneously.
If A is atomic, an implication or ⊥, then the statement follows as usual.
Suppose that A = 〈 ]B and A ∈ Γ . We need to show that MS , w � 〈 ]B, i.e.,

that there is an α ∈ N (w) with α ⊆ �B�.
Case 1: There is no formula of the shape 〈 ]C in Δ. Then by definition we

have ∅ ∈ N (w). But ∅ ⊆ �B�, and hence MS , w � 〈 ]B.
Case 2: There is a formula of the shape 〈 ]C in Δ. Then

N (w) = {{v ∈ Cw | an(v) = Σ} | Σ ∈ �[Cw]} ∪ {Cw} ∪ {∅}

Since 〈 ]C ∈ Δ, by saturation we have 〈⇒ C〉u ∈ Δ for that same C. Then again
by saturation and the fact that 〈 ]B ∈ Γ we have 〈B ⇒ C〉f ∈ Δ, and hence also
there are Ω,Θ with [B,Ω

B⇒ Θ] ∈ Δ. Thus the set α := {v ∈ Cw | an(v) = B} is
nonempty. By Lemma 21 we have for every component [Γ ′ B⇒ Δ′] from α that
B ∈ Γ ′. Hence by induction hypothesis α ⊆ �B�, and thus MS , w � 〈 ]B.

Suppose that A = 〈 ]B and A ∈ Δ. Then by definition of N we have that
∅ /∈ N (w). We need to show that MS �� 〈 ]B.
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Case 1: w has no children. Then N (w) = ∅ and hence MS , w �� 〈 ]B.
Case 2: w has a child. Then

N (w) = ({{v ∈ Cw | an(v) = Σ} | Σ ∈ �[Cw]} ∪ {Cw}) � {∅}

is non-empty. Let α ∈ N (w). Then there is an annotation Σ ∈ �[Cw] with
α = {v ∈ Cw | an(v) = Σ}, or α = Cw. We need to show that there is a v ∈ α with
MS , v � ¬B, i.e., that α �⊆ �B�. We show this for α = {v ∈ Cw | an(v) = Σ}. The
statement for the second case then follows from the fact that every such set is a
subset of Cw, and that for every v ∈ Cw we have v ∈ {x ∈ Cw | an(x) = an(v)}. So
suppose α = {v ∈ Cw | an(v) = Σ}. The only ways a successor can be created is
by the rules [ ]a

R or jumpa. If Σ = ∅, then there must be a formula [ ]D ∈ Δ, since
either the rule [ ]a

R or the rule Ia must have been applied. But then by saturation

and the fact that both [ ]D and 〈 ]B are in Δ, we have that [ ∅⇒ B] ∈ Δ as well.
By induction hypothesis, at this world B is false, and hence we have α �⊆ �B�. If
in contrast Σ �= ∅, then the component must have been created by jumpa, and
hence there must be a 〈Σ ⇒ Π〉f ∈ Δ. Moreover, there must be a formula C
with Σ = C,Σ′ such that 〈 ]C ∈ Γ and 〈Σ′ ⇒ Π〉u ∈ Δ. Note that due to the
shape of the rules we have Σ′ = ∅. Then, since 〈 ]B ∈ Δ, by saturation we also
have 〈⇒ B〉u ∈ Δ, and together with the previous also 〈Σ ⇒ B〉u ∈ Δ. Then
by saturation we also have [Σ,Ω

Σ⇒ B,Θ] ∈ Δ for some Ω,Θ. By the induction
hypothesis, the formula B is false at this world, and since the annotation is Σ,
we have α �⊆ �B�. So in any case MS , w �� 〈 ]B.

Suppose that A = [ ]B and A ∈ Γ . We need to show that MS , w � [ ]B. If
N (w) = ∅ this is trivial. Assume that N (w) �= ∅ and take α ∈ N (w). If α = ∅,
again the statement is trivial, so assume α �= ∅. By definition of N (w) this means
that α ⊆ Cw. The children of w are exactly the nested sequents [Ω Σ⇒ Θ] ∈ Δ,
and for these by saturation and [ ]B ∈ Γ we have B ∈ Ω. Thus by induction
hypothesis we have Cw ⊆ �B�, and hence also α ⊆ �B�. Thus MS , w � [ ]B.

Finally, suppose that A = [ ]B and A ∈ Δ. We need to show that MS , w ��
[ ]B. By saturation and [ ]B ∈ Δ we have that [Ω Σ⇒ B,Θ] ∈ Δ for some Σ,Ω,Θ.
By induction hypothesis at this world B is false, and since it is a member of Cw

and Cw ∈ N (w) we have that MS , w �� [ ]B. ��
Putting everything together we thus obtain:

Theorem 23. Proof search on input ∅⇒ A yields either a derivation or a satu-
rated minimal nested sequent S with root w such that MS , w �� A. ��

5 Extensions

A number of possible axiomatic extensions of biM have been considered in [1].
Here we highlight some of these, shown in Fig. 6 together with the corresponding
semantic condition and the ordinary sequent rules beyond those of GbiM obtained
by converting the axioms into rules and closing the rule set under cuts as in [12].
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Fig. 6. Axiomatic extensions of the bimodal system from [1] with corresponding seman-
tic conditions and direct translation into sequent rule.

Fig. 7. The nested rules for the extensions in their plain and annotated versions.

Note that in the bimodal system the condition that ∅ /∈ N (w) is expressed by the
two different axioms n〈 ] and d〈 ]. These extensions are particularly interesting
from the point of view of deontic logic, since they capture different readings of the
“ought implies can” principle, where 〈 ]A is read as “one ought to bring about A”
and [ ]A as “necessarily A”. Note that the presence of two modalities permits a
more fine-grained analysis of this principle than is possible in monomodal logics.
The plain and annotated nested sequent rules are shown in Fig. 7, the kleene’d
versions are as expected, copying the nesting of rule N〈 ] into the premiss. The
corresponding nested sequent calculi are given by NM +P〈 ] for both the axioms
n〈 ] and d〈 ], by NM + N〈 ] for the axiom d[〉, and by NM + N〈 ] + D[ ] for the
axiom d[ ]. Note that we use structural versions of the rules instead of additional
logical rules to enable smoother cut elimination proofs.

Lemma 24. The plain rules are sound for the logics with the corresponding
frame conditions under the interpretation ι.

Proof. For P〈 ]: Suppose that the interpretation of the conclusion is falsified in
M, w, not due to the context. Then as in Theorem5 there is a world v ∈ W such
that M, v �� ι(Γ ⇒ Δ). Since ∅ /∈ N (v) by assumption, we have M, v � ¬〈 ]⊥.
But since 〈 ]⊥ is equivalent to ι(〈⇒〉), we have that M, v falsifies ι(Γ ⇒ Δ, 〈⇒〉).
Hence M, w falsifies the formula interpretation of the premiss.

For N〈 ]: Suppose that the interpretation of the conclusion is falsified in
M, w, again not due to the context. Then there is a world v falsifying ι(Γ ⇒
Δ, 〈Σ ⇒ Π〉). Hence in particular we have M, v �� 〈 ](

∧
Σ → ∨

Π). This together
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with the assumption that N (v) �= ∅ yields that there is α ∈ N (v) and a world
x ∈ α with M, x �

∧
Σ ∧ ¬∨

Π. Hence M, v �� [ ](
∧

Σ → ∨
Π), and so the

interpretation of the premiss is falsified in M, w as well.
The proof for D[ ] is as for nested sequents for modal logic KD. ��
All the methods used to show completeness for the base calculus NM and its

variants can be adapted to show completeness for the calculi for the extensions
as well. First, it is straightforward to simulate the sequent rules of Fig. 6 in the
plain versions of the corresponding nested calculi as in the proof of Theorem6,
giving:

Theorem 25. The plain nested systems are complete. ��
Similarly, the cut elimination proof of Theorem13 extends readily to the

kleene’d versions of the calculi. The only non-trivial case is where the cut formula
is contextual on the left in the conclusion of the rule N〈 ]. This is treated as the
case for 〈 ]i

L, giving:

Theorem 26. The rules cut1, cut2 are admissible in the kleene’d systems. ��
Perhaps the most interesting extension is that for countermodel generation.

For this we need to extend the saturation conditions of Definition 16 with the
following, depending on whether the corresponding rule is in the system:

(P〈 ]) There is a 〈Σ ⇒ Π〉u ∈ Δ

(N〈 ]) 〈Σ ⇒ Π〉u ∈ Δ implies there are Ω,Θ with 〈Σ,Ω ⇒ Π,Θ〉f ∈ Δ

(D[ ]) Γ ∪ Δ �= ∅ implies there are Σ,Ω,Θ with [Ω Σ⇒ Π] ∈ Δ.

Note that the condition (D[ ]) incorporates a loop check, preventing an infinite
sequence of new components. Because of this, for the system with the rules D[ ]

and N〈 ] we need to slightly adapt the definition of the neighbourhood function in
the generated model (Definition 17), so that N (w) is defined as (Lw∪{Cw})�{∅}
if there is a formula 〈 ]A ∈ Δ, otherwise as Lw ∪ {Cw} ∪ {∅} if Γ ∪ Δ = ∅ and
{{w}} if Γ ∪ Δ = ∅. This ensures that when a component has no successor, the
semantical condition is still met and hence the constructed model is indeed a
model for the logic. Adapting the proofs for the base case accordingly, we then
obtain the analogue of Theorem23:

Theorem 27. Proof search in the annotated systems produces either a deriva-
tion or a saturated minimal nested sequent yielding a countermodel. ��

6 Implementation

A prototype implementation of proof search and countermodel construction
in the basic system N a

M is available under http://subsell.logic.at/bprover/
nnProver/. The core of the program is written in SWI Prolog. It recursively
performs the backwards proof search of Definition 19, at every step either return-
ing a labelled tree representing a derivation, or a saturated nested sequent. The
result is converted into a Latex file containing either the derivation or the coun-
termodel, the latter in the form of a tikz picture. The webinterface automatically
typesets this file to produce a pdf containing the derivation or countermodel.

http://subsell.logic.at/bprover/nnProver/
http://subsell.logic.at/bprover/nnProver/
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7 Conclusion

In this article, we presented the calculus NM, complete with a syntactic cut elim-
ination result, countermodel construction, an implementation and some exten-
sions. This seems to be the first sequent-style calculus for the logic biM aka
Brown’s ability logic. Its main interest, however, lies in the fact that it pro-
vides the key for properly treating monotone non-normal modal logics in the
nested sequent framework in that the inclusion of the modality [ ] enables a for-
mula interpretation and facilitates direct countermodel construction. As such it
should serve as a foundation both for obtaining nested sequent calculi for exten-
sions of monotone modal logic, and for a more detailed proof-theoretic analysis of
normal modal logics making use of a more fine-grained analysis of the successor
states in terms of the neighbourhood function.

In line with this, it would be very interesting to extend NM to modularly cap-
ture other axioms for 〈 ] and [ ], in particular those of the normal modal cube [3]
and the modal tesseract [14]. Further, we are planning to adapt the countermodel
construction to the logics of [5] to provide certificates for the underivability state-
ments used in the non-monotonic calculus considered there.
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Abstract. In this paper we extend Hughes’ combinatorial proofs to
modal logics. The crucial ingredient for modeling the modalities is the
use of a self-dual non-commutative operator that has first been observed
by Retoré through pomset logic. Consequently, we had to generalize the
notion of skew fibration from cographs to Guglielmi’s relation webs.

Our main result is a sound and complete system of combinatorial
proofs for all normal and non-normal modal logics in the S4-tesseract.
The proof of soundness and completeness is based on the sequent calculus
with some added features from deep inference.

Keywords: Combinatorial proofs · Modal logic · S4-tesseract ·
Relation webs · Skew fibration

1 Introduction

During the last three decades, the proof theory of modal logics has seen enor-
mous progress. We have now access to a systematic treatment of modal logics in
display calculus [32], calculus of structures [14,26], labeled systems [22,25], hyper
sequents [3,18], and nested sequents [5,20,28]. There are focused proof systems
for classical and intuitionistic modal logics [7,8], and we understand the relation
between display calculus and nested sequents [10] and hyper sequents [11].

The motivation for this paper is to take the natural next step in this advance-
ment. After having developed various proof systems, using different formalisms,
we are now asking the question: When are two proofs the same?

We are not claiming to provide a final answer to this question, but we pro-
pose an approach based on combinatorial proofs, introduced by Hughes [15,16]
to address the question of proof identity for classical propositional logic and
Hilbert’s 24th problem [30,31]. Via combinatorial proofs, it is finally possible to
ask the question of proof identity also for proofs in different proof formalisms;
recent research has investigated this for syntactic proofs in sequent calculus
[15,16], calculus of structures [29], resolution calculus, and analytic tableaux [1].

In classical propositional logic, a combinatorial proof is a skew fibration
f : G Ñ F from an RB-cograph G, that can be seen as the “linear part” of
the proof, to a cograph F that encodes the conclusion of the proof. The mapping
c© Springer Nature Switzerland AG 2019
S. Cerrito and A. Popescu (Eds.): TABLEAUX 2019, LNAI 11714, pp. 223–240, 2019.
https://doi.org/10.1007/978-3-030-29026-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29026-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-29026-9_13
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f precisely captures the information about what is duplicated and deleted in
the proof. In terms of syntactic proof systems, this corresponds to the rules of
contraction and weakening.

As an example we show below the combinatorial proof of Pierce’s law. On
the left we show the conclusion as formula, and on the right as cograph.

There, the regular (red) R-edges are the edges of the RB-cograph G, and the
bold (blue) B-edges represent the linking, corresponding to the instances of the
axiom-rule in the sequent calculus. The vertical arrows (purple) represent the
mapping f .

There is a close correspondence between cographs and formulas composed
from atoms via two binary (commutative and associative) connectives, ^ (and)
and _ (or): the vertices of the cograph are the atom occurrences in the formula,
and there is an (undirected) edge between two atom occurrences if their first
common ancestor in the formula tree is an ^, and there is no edge if it is an _.

For this reason, the cograph-approach works very well for classical proposi-
tional logic (CPL) [15,16,27,29] and for multiplicative linear logic (MLL) [24],
but it is not obvious how to extend this notion to modalities, which can be seen
as unary connectives.

We solve this problem by adding a third non-commutative (self-dual) oper-
ation � (seq), that has first been proposed by Retoré in pomset logic [23] and
later been studied in the logic BV [12,13]. In the corresponding graph, we put a
directed edge between two atoms if their first common ancestor in the formula
tree is an �. With this insight we can now represent a formula �A (resp. �A)
as graph by taking the graph of A, add a vertex labeled with (resp. ˛) and add
a directed edge from that vertex to every vertex in A. This is illustrated in the
example below, which is a proof in the modal logic K, and which is a variation
of the example in (1) above. As before, on the left the conclusion is written as
formula, and on the right as graph.

The upstairs graph is now no longer an RB-cograph but an RGB-cograph which
additionally has directed (green) G-edges. The downstairs graph is a relation
web which is a generalization of a cograph to more than two connectives.
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The contributions of this paper can now be summarized as follows: we present
a notion of combinatorial proof for the modal logics in the S4-plane (shown on the
left in Fig. 1), and we show how sequent proofs are translated to combinatorial
proofs, and that this translation is polynomial in the size of the proof. We then
show that these results can be extended to the non-normal modal logics of the
S4-tesseract [19] (shown on the right in Fig. 1).

Fig. 1. On the left: the S4-plane and on the right the S4-tesseract

We begin by recalling in Sect. 2 the sequent calculus systems for the modal
logics in the S4-plane. Then, in Sect. 3 we recall the notion of Guglielmi’s rela-
tion webs [12]. Section 5 introduces skew fibrations on relation webs and shows
that they correspond to contraction-weakening maps. In Sect. 4 we introduce
the notion of RGB-cograph and show the relation to “linear” proofs in modal
logics. The results of Sects. 4 and 5 are combined in Sect. 6 to define combi-
natorial proofs for the modal logics K and KD and show their soundness and
completeness. We also show that they form a proof system in the sense of Cook
and Reckhow [9]. Then, Sect. 7 shows how to treat modal logics that include
the axioms T and/or 4, and finally, in Sect. 8, we show how our results can be
extended to all logics in the S4-tesseract.

2 Sequent Calculus

We consider the class K of modal formulas (denoted by A,B, . . . ) in negation
normal form, generated by a countable set A “ {a, b, . . . } of propositional vari-
ables and their duals Ā “ {ā, b̄, . . . } by the following grammar:

A,B ::“ a | ā | A ∨ B | A ∧ B | �A | �A | �K | �K
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where K stands for the empty formula.1 An atom is an element of A Y Ā Y
{�K,�K}. A sequent Γ “ A1, . . . , An is a non-empty multiset of formulas,
written as list separated by comma.

Fig. 2. Sequent calculus rules for the S4-plane

Fig. 3. Extended modal rules incorporating weakening on K.

Fig. 4. Deep inference rules for weakening, contraction, and the t- and 4-axioms

Fig. 5. The atomic contraction rule (where a stands for any atom) and the medial rules

Fig. 6. Equality rules

1 Note that K is only allowed directly inside a � or �. The main purpose of avoiding
K as proper formula is to avoid the empty relation web (to be introduced in the next
section). However, we do need formulas �K and �K in order to allow weakenings
inside a � or �, which is needed to prove the decomposition theorem (stated in
Theorem 2.2 below) which in turn is the basis for combinatorial proofs.
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Fig. 7. Rule sets from logics

We begin our presentation with the six modal logics in the S4-plane shown
on the left of Fig. 1. In Fig. 2 we show the inference rules for the sequent sys-
tems for these logics. We use �Γ as abbreviation for �B1, . . . ,�Bn where
Γ “ B1, . . . , Bn. Then, Fig. 3 shows variations of the modal rules that are needed
to obtain our decomposition theorem (Theorem 2.2 below) that will play a cru-
cial role in the proof of soundness and completeness for combinatorial proofs.
We write k` (resp. d`, 4`

k , 4`
dk) for any instance in {k, k′, k′′, k′′′} (resp. {d, d′},

{4k, 4′
k, 4

′′
k , 4′′′

k }, {4dk, 4′
dk}).

In this paper we also make use of some deep inference [6,12,13] rules that are
shown in Fig. 4, where Γ{ } stands for a context, which is a sequent or a formula
with a hole that takes the place of an atom. We write Γ{A} when we replace the
hole in Γ{ } by the formula A. We write wÓ for the set {w,wÓ

∨1,w
Ó
∨2,w

Ó
�

,wÓ
�}.

For each X among the six logics K, KD, KT, K4, KD4, and KT4, we define
three sets Xseq, XLL, and XÓ of inference rules as shown in Fig. 7.

We now define the following sequent systems: MLL “ {ax,∨,∧} and LK “
MLLY{w, c}; if X is one of the six logics in the S4-plane, then MLL-X “ MLLYXLL

and LK-X “ LK Y Xseq. The following theorem is well-known [33].

Theorem 2.1. If X P {K,KD,KT,K4,KD4,KT4} then LK-X is a sound and
complete sequent system for the modal logic X.

If Γ is a sequent and S a sequent system, we write
S

Γ if there is a derivation
of Γ in S. If S is s set of inference rules that all have exactly one premise, we

can write Γ ′ S
Γ if there is a derivation from Γ ′ to Γ using only rules from S.

Theorem 2.2. Let X P {K,KD,KT,K4,KD4,KT4} and Γ be a sequent. Then
LK-X

Γ ⇐ñ MLL-X
Γ ′ XÓ

Γ ′′ wÓ,cÓ
Γ for some Γ ′ and Γ ′′.

Proof. This is proved by a straightforward permutation argument. First, all
instances of w (resp. c) are replaced by instances of wÓ (resp. _ and cÓ), and
then all wÓ- and cÓ-instances can be permuted down in the proof. Observe that
this step introduces the rules shown in Fig. 3. Then, all t instances are also
tÓ-instances, and all instances of 4`

k (resp. 4`
dk) are replaced by instances of

k` (resp. d`) and 4Ó-instances. Then all tÓ- and 4Ó-instances can be permuted
down. Conversely, we can first permute the instances of tÓ and 4Ó up and then
the instances of wÓ and cÓ until they are not deep anymore. ��

There are two reasons to use a deep contraction rule. The first is the decom-
position theorem proved above, and the second is that deep contraction can
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be reduced to atomic form (shown on the left in Fig. 5) via the so-called (deep)
medial rules (shown on the right in Fig. 5). We write mÓ for the set {m,mÓ

�
,mÓ

�}.
Additionally we make use of the equivalence rules shown in Fig. 6.

Theorem 2.3. Let Γ ′ and Γ be sequents. Then

Γ ′ cÓ,wÓ,”
Γ ⇐ñ Γ ′ mÓ,”

Δ′ acÓ,”
Δ

wÓ,”
Γ for some sequents Δ, Δ′ .

Proof. For the case without modalities, this is a standard result in the calculus
of structures, first proved in [6] (see also [27]). In the presence of the modalities,
the proof is similar: For ñ direction, we first reduce cÓ to acÓ using the medial
and equivalence rules, proceeding by induction on the contraction formula, as
shown in Fig. 8. Note that a contraction on �K (resp. �K) is already atomic.

In the next step we permute the wÓ down, and finally we permute all instances
of acÓ down. For the ⇐ direction, observe that acÓ is already a special case of cÓ
and that all rules in {m,mÓ

�
,mÓ

�} are derivable using cÓ and wÓ. ��

Fig. 8. Reducing contraction to atomic contraction via medial rules.

3 Relation Webs

A directed graph G “ xVG ,
Gñy is a set VG of vertices equipped with a binary

edge relation Gñ Ď VG × VG . We speak of an undirected graph G “ xVG ,
G"y if

the edge relation G" Ď VG × VG is irreflexive and symmetric. A mixed graph is a
triple G “ xVG ,

G",
Gñy where xVG ,

G"y is an undirected graph and xVG ,
Gñy is a

directed graph, such that G" ∩ Gñ “ H and Gñ is irreflexive. From now on, we
omit the index/superscript G when it is clear from the context. For two distinct
vertices v and w in a mixed graph we use the following abbreviations:

vðw ⇐ñ wñv
vòw ⇐ñ vñw or vðw or v"w

v!w ⇐ñ v �ñw and v �ðw and v �"w

(3)

Note that for any two vertices we have that v �òw iff v!w or v “ w. Furthermore,
in a mixed graph, for any two vertices v and w, exactly one of the following five
statements is true:

v “ w or v!w or v"w or vñw or vðw
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When drawing a graph we use v w for v"w, and for vñw, and for v!w
we either use v w or draw no edge at all.

A series-parallel order is a directed graph G “ xVG ,
Gñy where Gñ is transitive,

irreflexive, and Z-free, i.e., G does not contain an induced subgraph of the shape
shown on the left below:

A cograph is an undirected graph that is Z-free, i.e., it does not contain an
induced subgraph of the shape shown on the right above.

Definition 3.1. A relation web is a mixed graph G “ xVG ,
G",

Gñy where
xVG ,

G"y is a cograph and xVG ,
Gñy is a series-parallel order, and the following

two configurations do not occur:

Observation 3.2. It is easy to see that in a relation web, the undirected graph
determined by the relation ! (which is symmetric and irreflexive) is also a
cograph.

Let G and H be two disjoint mixed graphs. We define the following operations:

G � H “ xVG Y VH ,
G" Y H" ,

Gñ Y Hñy
G � H “ xVG Y VH ,

G" Y H" ,
Gñ Y Hñ Y {(u, v) | u P VG , v P VH}y

G � H “ xVG Y VH ,
G" Y H" Y {(u, v), (v, u) | u P VG , v P VH} ,

Gñ Y Hñy
(6)

which can be visualized as follows:

Theorem 3.3. A mixed graph is a relation web if and only if it can be con-
structed from single vertices using the three operations defined in (6) above.

Proof. This follows from the corresponding results on cographs and series-
parallel orders, e.g. [21]. A direct proof can be found in [12]. ��

A relation web is labeled if all its vertices carry a label selected from a label
set L. We write l(v) for the label of v. We are now defining for a formula F the
labeled relation web �F � where the label set L “ AYĀY{�,�}. We write H for
the empty graph and we use the notations ‚a, ‚ā, ˛, for the graph consisting
of a single vertex that is labeled with a, ā, �, �, respectively.
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For a sequent Γ “ A1, . . . , An we define �Γ � “ �A1, . . . , An� “ �A1�� · · ·��An�.

Definition 3.4. A relation web G is modalic if for any vertices u, v, w with
uñw and vñw we have uñv or vñu or u “ v, i.e., G does not contain the
two configurations below.

A labeled modalic relation web G is properly labeled if its label set is L “
AYĀY{�,�}, such that whenever there are v, w with vñw then l(v) P {�,�}.

Theorem 3.5. A relation web is the translation of a modal formula if and only
if it is modalic and properly labeled.

Proof. If G “ �F � for some formula F , then the only vertices in G with outgoing
ñ-edge are the ones created in the encoding of a modal subformula and labeled
with � or �. If we have two distinct such vertices u and v with an ñ-edge to
some vertex w, then one of the corresponding modal operators is in the scope
of the other and we have uñv or vñu. The converse follows from Theorem 3.3
and the fact that the operation � in (7) is associative. In fact, if l(v) “ �

(resp. l(v) “ �) and there is no w such that vñw then we interpret the vertex
v as the subformula �K (resp. �K). ��
Proposition 3.6. For two formulas F and F ′, we have �F � “ �F ′

� iff F and
F ′ are equivalent modulo associativity and commutativity of ^ and _.

Proof. By a straightforward induction, observing that the operations �, � and
� in (7) are associative, and that � and � are also commutative. ��

Proposition 3.7. Given a set VG and two binary relations G",
Gñ Ď VG ×VG, it

can be checked in time polynomial in |VG |, whether G “ xVG ,
G",

Gñy is a modalic
relation web.

Proof. Checking the transitivity, irreflexivity, and symmetry for verifying that
G is a mixed graph is trivially polynomial. Then, for checking the absence of
the forbidden configurations in (4), (5), and (8) we can loop over all triples and
quadruples of vertices, which is O(|VG |4). ��

4 RGB-Cographs and Linear Proofs for K and KD

In this section we investigate when a modalic relation web does represent a proof.
For this, we equip a relation web with a linking which is an equivalence class on
its vertices. In the special case where each such equivalence class contains exactly
two elements, and there are no ñ-edges, we have Retoré’s RB-cographs [24] that
with an additional correctness criterion correspond to proofs in MLL.
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Here we generalize the notion of RB-cographs to the one of RGB-cographs
and we give a correspondence with linear derivations in MLL-K and MLL-KD.2

Fig. 9. Translating MLL-K and MLL-KD sequent proofs into RGB-cographs

Definition 4.1. An RGB-cograph is a tuple G “ xVG ,
G",

Gñ,
GOy, where

xVG ,
G",

Gñy is a modalic relation web, VG is the disjoint union of three sets

, and
GO is an equivalence relation, called the linking, such that

– if v P V ‚
G then for all w P VG we have v �ñw;

– if vOw then either v, w P V ‚ or ;
– if v P V ‚

G then there is exactly one w P V ‚
G with vOw and v ‰ w.

An equivalence class of
GO is called a link. The vertices in V ‚

G are called atomic
vertices, and the vertices in are called modalic vertices. An RB-cograph
is an RGB-cograph G with .

The first condition in this definition says that if a vertex has an outgoing ñ-
edge then it has to be in , the second condition says that vertices from
V ‚

G and cannot be linked, and the third condition says that each link
on V ‚

G has exactly two elements. In an RB-cograph [24] only the last condition
makes sense since ñ is empty. When drawing an RGB-cograph we use bold
(blue) edges v w when v ‰ w and vOw.

Figure 9 shows how proofs in MLL-K and MLL-KD are translated into RGB-
cographs. There, the notation xG1,G2, . . . ,Gn | GOy is used to denote the RGB-
cograph whose underlying relation web is G “ G1�G2�· · ·�Gn and whose linking
is

GO. The ax-rule simply produces a graph with two vertices that are linked, and
" and ñ being empty. In the ∨-rule, premise and conclusion are the same
RGB-cograph. In the ∧-rule, the linking in the conclusion is the union of the
linkings in the premises. These three rules behave exactly the same as in proof

2 The logics defined by these systems can be seen as the “linear logic variants” of the
standard modal logics K and KD.



232 M. Acclavio and L. Straßburger

Fig. 10. The RGB-cographs for F1 “ d̄∨ (d∧ �(b̄∧ c) ∨ ē∨ (e∧ �c̄) ∨ �(b∧ �(a∨ ā)))
and F2 “ b ∨ (b̄ ∧ �a) ∨ (�ā ∧ c) ∨ c̄, and the corresponding RB-cographs B(F1) and
B(F2).

nets for MLL. More interesting are the rules k` and d`, where the linking of the
conclusion is the linking of the premise together with an additional equivalence
class containing all the new and ˛-vertices. The purpose of this section is to
give a combinatorial characterization of the RGB-cographs that can be obtained
via this sequent calculus translation.

Definition 4.2. An alternating elementary path (æ-path) of length n in an
RGB-cograph is a sequence of pairwise distinct vertices x0, x1, . . . , xn such that
we have either x0Ox1R1x2Ox3R3x4 · · · xn or x0R0x1Ox2R2x3Ox4 · · · xn with
Ri P {ñ, "}, i.e., an æ-path is an elementary path whose edges are alternat-
ing in O and ñ Y ". A chord in an æ-path is an edge xi"xj or xiñxj for
i, j P {0, . . . , n} and i ` 2 ≤ j. A chordless æ-path is an æ-path without chord.
An æ-cycle is an æ-path of even length such that x0 “ xn. An RGB-cograph G
is æ-connected if any two vertices are connected by a chordless æ-path, and G is
æ-acyclic if it contains no chordless æ-cycle.

Definition 4.3. An RGB-cograph G is K-correct (or {k`}-correct) if

1. G is æ-connected and æ-acyclic;
2. VG ‰ H and every O-equivalence class in contains at least one

vertex v such that there is a vertex w P V ‚ with vñw;
3. if w

Gñv and vOv′, then there is w′Ow such that w′ Gñv′; and
4. every O-equivalence class in contains exactly one vertex .

We say that G is KD-correct (or {k`, d`}-correct) if Condition 4 is replaced by:

4. every O-equivalence class in contains at most one vertex .

Theorem 4.4. Let X P {K,KD}. An RGB-cograph G is the translation of an
MLL-X sequent proof iff it is XLL-correct.

Proof (Sketch). For the left-to-right direction, observe that all rules in Fig. 9 pre-
serve correctness. For the right-to-left direction, we will reuse the MLL sequential-
ization result for RB-cographs [24]. For this we will define for an RGB-cograph
G an RB-cograph B(G) that is æ-connected and æ-acyclic if and only if G is.
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We define a vertex set and let VB(G) “ V ‚
G Z V ∗,

i.e., we take the atomic vertices of G, and each modalic vertex is replaced by
a dual pair of atomic vertices, that are linked by O (See Fig. 10). Then we
use Theorem 3.3 and Proposition 3.6 so that we can write G and B(G) as BV-

formulas [12]. Let form an
GO-equivalence class. Then the

formula for G is of shape F{v1 � B1} · · · {vn � Bn} for some n-ary context
F{ } · · · { } (because G is modalic). We transform F{v1�B1} · · · {vn�Bn} into
(v̄′

1 � · · · � v̄′
n � B(B1 � · · · � Bn)) � B(F{v′

1} · · · {v′
n}) and proceed inductively

for all
GO-equivalence classes. From Retoré’s proof [24] we get an MLL sequen-

tialization for B(G), which we then transform back into an MLL-K or MLL-KD
sequent proof for G. ��

5 Skew Fibrations

Definition 5.1. Let G and H be mixed graphs. A skew fibration f : G Ñ H is
a function from VG to VH that preserves " and ñ, i.e.,

v
G"w “ñ f(v) H"f(w) and v

Gñw “ñ f(v) Hñf(w) , (9)

and has the skew lifting property, i.e.,

for every v P VG and w P VH and R P {", ñ} with w RH f(v) ,

there is a u P VG such that u RG v and w
H
�" f(u) and w

H
�ñ f(u).

(10)

A skew fibration f : G Ñ H is modalic if it satisfies the following condition:

if u
G!v and f(u) Hñf(v), then there is a w P VG such that

w
Gñv and f(u) “ f(w), or u

Gñw and f(v) “ f(w).
(11)

The main purpose of this definition is Theorem5.2 which says that skew
fibrations are precisely the contraction-weakening maps. This is crucial for the
soundness and completeness of combinatorial proofs, to be defined in the next
section.

Theorem 5.2. There is a modalic skew fibration f : �Γ ′
� Ñ �Γ � iff Γ ′ cÓ,wÓ,”

Γ .

Proof (Sketch). To prove this theorem, we proceed via Theorem 2.3 and make

heavy use of results from [27] and the fact that Γ ′ mÓ,”
Γ iff there is a surjective

modalic skew fibration f : �Γ ′
� Ñ �Γ � that is bijective on atomic vertices, which

is a variant of [27, Theorem 5.1] and proved in a similar way. Then we can

characterize derivations
acÓ,”

and
wÓ,”

as in [27, Proposition 7.6], so that we can
apply Theorem 2.3 (See also [2] and [4]). ��
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6 Combinatorial Proofs for the Modal Logics K and D

Definition 6.1. A map f : G Ñ F from an RGB-cograph G to a modalic and
properly labeled relation web F is allegiant if the following conditions hold:

– if v, w P V ‚
G and v

GOw then f(v) and f(w) are labeled by dual atoms;
– if v P V �

G then l(f(v)) “ �;
– if v P VG̨ then l(f(v)) “ �;

Definition 6.2. For X P {K,KD}, an X-combinatorial proof of a sequent Γ is
an allegiant skew-fibration f : G Ñ �Γ � from an X-correct RGB-cograph G to the
relation web of Γ .

The size |f | of a combinatorial proof f : G Ñ �Γ � is |VG | ` |Γ |, where |Γ | is the
number of symbols in Γ , and the size |π| of a sequent proof π is the number of
symbols in π.

Theorem 6.3 (Completeness). Let X P {K,KD}. If
LK-X

Γ then there is an
X-combinatorial proof f : G Ñ �Γ �. Furthermore, the sizes of the sequent proof
and the combinatorial proof differ only by a polynomial factor.

Proof. Let π be a proof of Γ in LK-X. By Theorem 2.2, π can be rewritten

as
MLL-X

Γ ′ wÓ,cÓ
Γ for some Γ ′. By Theorem 4.4, we have an X-correct RGB-

cograph G whose underlying relation web is �Γ ′
�. By Theorem 5.2, we have a

skew-fibration f : �Γ ′
� Ñ �Γ �, and therefore also f : G Ñ �Γ �, which is allegiant

by construction. The size restrictions follow immediately: sequent proof and
combinatorial proof are bound by the number of ax, k`, and d` instances. ��
Theorem 6.4 (Soundness). Let X P {K,KD}, and let f : G Ñ �A� be an X-
combinatorial proof. Then A is a theorem in the modal logic X.

Proof. We have an MLL-X proof of a formula A′ with �A′
� “ G. Hence A′ is a

theorem of X. By Theorem 5.2 we have a derivation A′ cÓ,wÓ,”
A in which all

inferences are sound for X, we can conclude that A is also a theorem of X. ��
Theorem 6.5. Let Γ be a sequent, G be a mixed graph together with a linking,
and let f be a map from G to �Γ �. It can be decided in polynomial time in
|VG | ` |Γ | whether f : G Ñ �Γ � is an X-combinatorial proof for X P {K,KD}.
Proof. All necessary properties (forbidden configurations (4), (5), (8) for G being
a modalic relation web, X-correctness conditions in Definition 4.3, preservation
of " and ñ (9) and skew lifting (10)) can be checked in polynomial time. ��

These three results, together with Theorem 2.1, imply that X-combinatorial
proofs (for X “ K and X “ KD) form a sound and complete proof system (in the
sense of [9]) for the modal logic X. In the remaining sections of this paper we
extend this result to all logics in the S4-tesseract.
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7 Combinatorial Proofs for the Logics in the S4-plane

We call two vertices v and w in a relation web G clones if for all u with u ‰ v
and u ‰ w we have uRv iff uRw for all R P {", ñ, ð, !}. If v “ w then they
are trivially clones.

Definition 7.1. Let G and H be modalic and properly labeled relation webs. A
map f : G Ñ H is a {4Ó, tÓ}-map if the following conditions are fulfilled:

– if f(v) “ f(w) then v and w are clones in G, and if also v ‰ w then v
Gñw

and l(f(v)) “ l(f(w)) “ �;
– if f(v) ‰ f(w) then vRGw implies f(v)RHf(w) for any R P {", ñ, ð, !};
– if v P VH is not in the image of f then l(v) “ � and vñw for some w P VH.

A {4Ó, tÓ}-map is a {tÓ}-map if it is injective, and a {4Ó}-map if it is surjective.

Proposition 7.2. The composition of {4Ó, tÓ}-maps is a {4Ó, tÓ}-map, and every
{4Ó, tÓ}-map can be written as a composition of a {4Ó}-map and a {tÓ}-map.

Lemma 7.3. For all sequents Γ and Γ ′, we have:

– Γ ′ 4Ó,tÓ,”
Γ iff there is a {4Ó, tÓ}-map f : �Γ ′

� Ñ �Γ �;

– Γ ′ 4Ó,”
Γ iff there is a {4Ó}-map f : �Γ ′

� Ñ �Γ �;

– Γ ′ tÓ,”
Γ iff there is a {tÓ}-map f : �Γ ′

� Ñ �Γ �;

Proof. The second and the third statement follow immediately from the defini-

tions, and for the first statement, observe that Γ ′ 4Ó,tÓ,”
Γ iff Γ ′ 4Ó,”

Γ ′′ tÓ,”
Γ ,

and apply Proposition 7.2. ��
Definition 7.4. Let X P {K,KD,KT,K4,KD4,KT4}. A map f : G Ñ H is an
XÓ-skew fibration if f “ f ′′ ◦ f ′ for some f ′ : G Ñ G′ and f ′′ : G′ Ñ H, where
f ′ is an XÓ-map and f ′′ is a modalic skew fibration (if XÓ “ H then f ′ is the
identity).

Proposition 7.5. Given f : G Ñ H and XÓ Ď {tÓ, 4Ó}, it can be decided in time
polynomial in |G| ` |H| whether f is an XÓ-skew fibration.

Below are three examples, a {tÓ}-skew fibration, a {4Ó}-skew fibration, and
a {4Ó, tÓ}-skew fibration:

We can now easily generalize Theorem 5.2:
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Theorem 7.6. Let XÓ Ď {tÓ, 4Ó}. There is a derivation Γ ′ XÓ,”
Γ ′′ cÓ,wÓ,”

Γ iff
there is an XÓ-skew fibration f : �Γ ′

� Ñ �Γ �.

Proof. This follows immediately from Definition 7.4, Lemma 7.3 and
Theorem 5.2. ��
Definition 7.7. For X P {K,KD,KT,K4,KD4,KT4}, an X-combinatorial proof
of a sequent Γ is an allegiant XÓ-skew-fibration f : G Ñ �Γ � from an XLL-correct
RGB-cograph G to the relation web of Γ .

With this definition, it now follows immediately from Proposition 7.5,
Theorem 7.6 and Theorem 2.2, that Theorems 6.3, 6.4 and 6.5 hold for all
X P {K,KD,KT,K4,KD4,KT4}.

Fig. 11. Sequent calculus rules for S4-tesseract logics.

Fig. 12. Extended non-normal modal logic rules incorporating weakening on K.
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8 Non-normal Modal Logics

In this section, we show how to extend the results for the logics of the S4-plane
to the non-normal modal logics of the S4-tesseract3 in Fig. 1. Figure 11 shows
the additional sequent rules that are needed for these logics, Fig. 12 shows the
variations of these rules that are needed for obtaining the decomposition in
Theorem 2.2, and Fig. 13 shows the extension of the table in Fig. 7, defining
a sound and complete sequent system for each logic. We state here only the
Theorem 8.1 below, and refer the reader to the exposition in [19] for more details,
references, and proofs.

Theorem 8.1. For all modal logics X of the S4-tesseract, LK-X is a sound and
complete sequent system for the modal logic X.

For our purpose, the most important observation is that the Decomposition
Theorem 2.2 holds for all of these logics. This means that for defining combi-
natorial proofs for these logics, it suffices to define for RGB-cographs what it
means to be XLL-correct.

Fig. 13. Rule sets for the S4-tesseract logics not given in Fig. 7

3 Observe that all the logics in the S4-tesseract are monotone. In fact, our methods

can not be applied in presence of the rule
A, B̄ Ā, B
−−−−−−−−−−−−−− E

�A,�B
. We therefore have to leave

the investigation of combinatorial proofs for non-monotonic non-normal modal logics
as an open problem for future research.
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Fig. 14. The fourth condition an RGB-cograph has to satisfy in order to be XLL-correct.

Definition 8.2. Let X be a logic in the S4-tesseract. An RGB-cograph is XLL-
correct, if it obeys Conditions 1–3 of Definition 4.3, together with the corre-
sponding version of Condition 4 shown in the table in Fig. 14.

Intuitively, the corresponding conditions in the table in Fig. 14 verify if the
number of - and ˛-vertices in an O-equivalence class is compatible with the
number of �- and �-occurrences introduced in a sequent by a single application
of a sequent rule of XLL.

With this we can show Theorem 4.4 for all logics in the S4-tesseract shown
in Fig. 1. Therefore, X-combinatorial proofs, as defined in Definition 7.7 form
a sound and complete proofs system for the modal logic X, as stated in
Theorems 6.3, 6.4, and 6.5, for all logics X in the S4-tesseract shown in Fig. 1.

9 Conclusion and Future Work

In this paper we presented cominatorial proofs for all logics in the S4-tesseract.
Since checking correctness of a combinatorial proof is polynomial in its size, they
form a proof system in the sense of Cook and Reckhow [9]. Due to their com-
binatorial nature, they abstract away from the syntactic bureaucracy of more
standard formalisms like sequent calculus or analytic tableaux. This leads natu-
rally to the following notion of proof identity:

Two proofs are the same iff they have the same combinatorial proof. (13)

We conjecture that this notion of proof identity is in close correspondence to
the notion of proof identity that is induced by sequent rule permutations. How-
ever, investigating the relation between the two would go beyond the scope of
this paper, and we consider this to be future work. Furthermore, in order to
support (13) it is necessary, not only to show how sequent proofs are related
to combinatorial proofs, but also how analytic tableaux or resolution proofs or
other syntactic formalisms are related to combinatorial proofs [1].

Further topics for future work include the extensions to all logics in the
classical modal S5-cube, and also to intuitionistic modal logics. Another question
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is how our work relates to the recent development of combinatorial proofs for
first-order logic [17].

Finally, from the proof theoretical perspective, the most interesting question
for future research is the study of normalization of combinatorial proofs, as it
has been done for propositional logic in [16,29].
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Abstract. We look at substructural calculi from a game semantic point
of view, guided by certain intuitions about resource conscious and, more
specifically, cost conscious reasoning. To this aim, we start with a game,
where player P defends a claim corresponding to a (single-conclusion)
sequent, while player O tries to refute that claim. Branching rules for
additive connectives are modeled by choices of O, while branching for
multiplicative connectives leads to splitting the game into parallel sub-
games, all of which have to be won by player P to succeed. The game
comes into full swing by adding cost labels to assumptions, and a cor-
responding budget. Different proofs of the same end-sequent are inter-
preted as more or less expensive strategies for P to defend the corre-
sponding claim. This leads to a new kind of labelled calculus, which can
be seen as a fragment of SELL (subexponential linear logic). Finally, we
generalize the concept of costs in proofs by using a semiring structure,
illustrate our interpretation by examples and investigate some proof-
theoretical properties.

1 Introduction

Various kinds of game semantics have been introduced to characterize compu-
tational features of substructural logics, in particular fragments and variants of
linear logic (LL) [11]. This line of research can be traced back to the works of
Blass [5,6], Abramsky and Jagadeesan [1], Hyland and Ong [12], Lamarche [14],
Japaridze [13], Melliès [17], Delande et al. [8], among several others.

Our particular view of game semantics is that it is not just a technical tool
for characterizing provability in certain calculi, but rather a playground for illu-
minating specific semantic intuitions underlying certain proof systems. Specially,
we aim at a better understanding of resource conscious reasoning, which is often
cited as a motivation for substructural logics.

In a first step, we characterize a version of linear logic (exponential-free affine
inuitionistic linear logic aIMALL, or, equivalently, Full Lambek Calculus with
exchange and weakening FLew) by a game, where the difference between additive
and multiplicative connectives is modeled as sequential versus parallel continu-
ation in game states that directly correspond to sequents. More precisely, every
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branching rule for a multiplicative connective corresponds to a game rule that
splits the current run of the game into two independent subgames. Player P, who
seeks to establish the validity of a given sequent, has to win all the resulting sub-
games. In contrast, a branching rule for an additive connective is modeled by a
choice of player O between two possible succeeding game states, corresponding
to the premises of the sequent rule in question. Note that this amounts to a
deviation from the paradigm “formulas as games”, underlying the game seman-
tic tradition initiated by Blass [5]. Our games are, at least structurally, closer to
Lorenzen’s game for intuitionistic logic [16], where a state roughly corresponds to
a situation in which a proponent seeks to defend a particular statement against
attacks from an opponent, who, in general, has already granted a bunch of other
statements. This kind of semantics for linear logic (but without the sequen-
tial/parallel distinction) was first explored in [10].

As long as we only care about the existence of winning strategies, the distinc-
tion between sequential and parallel subgames is redundant. However, our model
not only highlights the intended semantics, but it also has concrete effects once
we introduce prices for resources (represented by formulas) into the game. This
is done via unary operators �a and �a, a ∈ R

+, which share some characteristic
features with subexponentials in LL (SELL [7,19]). The intuition is that a formula
�aA is a single use resource with price a: By paying a, we can “unpack” �aA
to obtain the formula A, and �aA is destroyed in the process. On the other
hand, �aA denotes a permanent resource: From �aA we can obtain A as often
as we want, each time paying the price a. We lift our game to the extended
language by enriching game states with a budget that is decreased whenever a
price is paid. Different strategies for proving the same endsequent can then be
compared by the budget which they require to be run safely, i.e. without getting
into debts. This form of resource consciousness not only enhances the game, but
it also translates into a novel sequent system, where cost bounds for proofs are
attached as labels to sequents.

We observe that, up to this point, we only considered resources in assump-
tions. This is translated to sequents by restricting negatively the occurrences of
the modalities �a and �a. Thus a promotion rule is not present and the proof-
theoretic properties of the proposed systems, such as cut-elimination, can be
mimicked by the ones of aIMALL. We hence move towards two possible gen-
eralizations. First, we propose a broader notion of cost and prices (for both the
game and corresponding calculi) beyond the domain of the non-negative real
numbers. For this, we organize the labels/prices in a semiring structure that
enables for the instantiation of several interesting concrete examples, having the
same game-theoretic characterization. Second, we discuss the quest of allowing
modalities also in positive contexts, showing the limitations of such approach.

Organization and Contributions. Section 2 defines the basic game for aIMALL
and establishes the correspondence between winning strategies and proofs.
Section 3 introduces the concept of prices and budgets into the game. The exis-
tence of cost-minimal strategies is shown in Sect. 3.1 and cut-admissibility is
discussed in Sect. 3.2. In Sect. 4, the concept of prices is generalized and several
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Fig. 1. Sequent systems C and C(R+)

examples of our interpretation of costs in proofs are presented. In Sect. 5, the
challenge of extending the semantics to full subexponential linear logic is dis-
cussed. Section 6 concludes the paper. Some additional material can be found in
the companion technical report [15].

2 A Game Model of Branching

Our starting point is a calculus for affine intuitionistic linear logic without expo-
nentials (aIMALL) [11], whose calculus is also equivalent to FLew, the Full
Lambek calculus with exchange and weakening. We denote this calculus simply
by C for brevity. Formulas in C are built from the grammar

A ::= p | 0 | 1 | A1 −◦ A2 | A1 ⊗ A2 | A1 & A2 | A1 ⊕ A2.

where p stands for atomic propositions (variables); 0/1 are the false/true units;
−◦ denotes linear implication; ⊗/& are the multiplicative/additive conjunctions;
and ⊕ is the additive disjunction.

We shall use A,B,C (resp. Γ,Δ) to range over formulas (resp. multisets of
formulas). The rules are in Fig. 1. Note that the cut rule is not included in our
presentation of C and that weakening is present only implicitly, via the context
Γ in the initial sequents. Furthermore, in rule I, p is a propositional variable.
We shall write �C S if the sequent S is provable in C.

We shall characterize C proofs as winning strategies (w.s.) in a certain game.
Usually, one can interpret bottom-up proof search in sequent systems as a game,
where at any given state, player P first chooses a formula of a sequent and, in
the next step, either P moves to the premise sequent of the corresponding intro-
duction rule (if the rule has only one premise); or player O chooses a premise
sequent in which the game continues (if the rule has more than one premise).
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Alternatively, rather than letting player O choose the subgame, one may stipu-
late that the game splits into independent subgames, all of which player P has
to win. At first glance, these two approaches might seem different. However, the
difference is only of interpretation and it does not affect the (non-)existence of
w.s.’s for P. To see this, note that, by definition of a w.s., player P has to be
prepared to answer to every possible choice of her opponent O. Therefore, it does
not matter whether we require P to actually win every subgame or whether we
image P to play a single run where she wins irrespectively of O’s choices. Hence,
the two interpretations are equivalent in terms of P’s w.s.’s but they provide
different viewpoints of branching sequent rules. Going more into detail, we can
see that this equivalence holds as long as the parallel games are independent. We
will break this independence later on by introducing a budget which is shared
among parallel games (see Sect. 3).

The distinguishing feature of the game GC below is: branching in additive rules
is modeled as choices of O, whereas in branching multiplicative rules, P splits
the context into two disjoint parts, which then form the corresponding contexts
of two subgames to be played in parallel. Consequently, a state of the game is
represented by a multiset of sequents, each belonging to a separate subgame.

Definition 1 (The game GC). GC is a game of two players, P and O. Game
states (denoted by G,H) are finite multisets of sequents. GC proceeds in rounds,
initiated by P’s selection of a sequent S from the current game state. The succes-
sor state is determined according to rules that fit one of the following schemes:

(1) G ∪ {S} � G ∪ {S′}
(2) G ∪ {S} � G ∪ {S1} ∪ {S2}

In (1), the subgame S changes to S′. In (2), the subgame S splits into two
subgames S1 and S2. Here is the complete description of a round: After P has
chosen a sequent S among the current game state, she chooses a principal for-
mula in S and a matching rule instance r of C such that S is the conclusion of
that rule. Depending on r, the round proceeds as follows:

1. If r is a unary rule with premise S′, then the game proceeds in the game state
G ∪ {S′} (no interaction of O is required).

2. Parallelism: If r is a binary rule with premises S1, S2 pertaining to a multi-
plicative connective, then the game proceeds in the game state G∪{S1}∪{S2}
(again, no interaction of O is required).

3. O-choice: If r is a binary rule with premises S1, S2 pertaining to an additive
connective, then O chooses S′ ∈ {S1, S2} and the game proceeds in the game
state G ∪ {S′}.

A winning state (for P) is a game state consisting of initial sequents of C only,
that is, sequents having one of the forms (Γ, p −→ p), (Γ,0 −→ A), (Γ −→ 1).

Example 2. As an example of a round in GC , assume that the game starts with
Δ −→ A⊗B. P might select A⊗B as the principal formula. For the choice of a
matching instance of the rule ⊗R, she also has to choose a partition Δ = Δ1∪Δ2.
The game then continues in the state {(Δ1 −→ A), (Δ2 −→ B)}.
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The following definitions are standard in game theory.

Definition 3 (Plays and strategies). A play of GC on a game state H is a
sequence H1,H2, . . . , Hn of game states, where H1 = H and each Hi+1 arises
by playing one round on Hi. A strategy (for P) on a game state H is defined
as a function telling P how to move in any given state. A strategy on H is a
winning strategy (w.s.) if all plays following it eventually reach a winning
state. We shall write |=GC H if P has a w.s. on the game state H.

Given w.s.’s π1, . . . , πn for sequents S1, . . . , Sn, there is an obvious w.s. for the
game state {S1, . . . , Sn} which could be specified as “play according to πi in the
subgame Si”. Not all w.s.’s for {S1, . . . , Sn} need to arise in such a way though,
since in principle it is allowed that moves in a subgame Si depend on the moves
in another subgame Sj . Nevertheless, since in the game GC valid moves and the
winning conditions in all subgames are independent, we can restrict to strategies
of the former kind. This observation is encapsulated as follows.

Lemma 4 (Independence). |=GC {S1, . . . , Sn} iff for all i ≤ n, |=GC Si

Strategies in a game can be pictured as trees of game states, and therefore
strategies share a common form with proofs. In our case, game states are mul-
tisets of sequents. However, by virtue of the above lemma, we obtain a notation
of winning strategies which uses single sequents as nodes, at least if the initial
state of the game is a sequent.

Theorem 5 (Adequacy for GC). Let S be a sequent. Then |=GC {S} iff �C S.

Proof: (⇐) is a straightforward induction on the length of proofs. (⇒) is proved
by induction on a w.s. (the maximal number of moves which can occur following
it). We only present the case where Lemma 4 comes into play. Assume that
the state is Δ1,Δ2 −→ A ⊗ B and π tells P to choose the instance of ⊗R

with premises Δ1 −→ A and Δ2 −→ B. By parallelism, the successor state is
{(Δ1 −→ A), (Δ2 −→ B)}. Since π is a w.s., it must contain a substrategy π′

for {(Δ1 −→ A), (Δ2 −→ B)}. By Lemma 4, we may assume that π′ is of the
form: “Use π1 to play in the subgame Δ1 −→ A and π2 to play in Δ2 −→ B”
for some w.s.’s π1, π2 for Δ1 −→ A and Δ2 −→ B respectively. By induction,
there are C-proofs Ξ1, Ξ2 for the sequents Δ1 −→ A and Δ2 −→ B. Applying
⊗R below Ξ1 and Ξ2, we obtain a C-proof Ξ of Δ1,Δ2 −→ A ⊗ B. �

3 Adding Costs

To increase the expressiveness of our framework, we now augment assumptions
with costs, where assumptions are formulas occurring negatively on sequents.
Costs will be modeled—for now—by elements of R

+ the set of non-negative
real numbers. Formally, we add the unary modal operators �a and �a for each
a ∈ R

+ to our language and call the resulting formulas extended formulas. An
extended formula �aA can be considered as a single use resource with price a:
By paying a, we can “unpack” �aA to A (and �aA is destroyed in the process).
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On the other hand, �aA is a permanent resource: We can obtain as many copies
of A from it as we want, each time paying the price a.

Definition 6. An extended sequent is a sequent built from extended formulas
in which subformulas �aA and �aA occur only in negative polarity.

The notion of polarity is the standard one: A subformula occurrence in the
antecedent of a sequent is negative if it occurs in the scope of an even number
(including 0) of contexts ([·] −◦ B), and otherwise it is positive. For occurrences
of a subformula in the consequent, one replaces “even” by “odd”. For instance,
�ap⊗p′, (�bq−◦q′)−◦q′′ −→ �cr−◦r′ is an extended sequent. We denote by �Γ
a set of formulas prefixed with �a for some (not necessarily the same) a ∈ R

+.
We introduce a game GC(R+) similarly as we did for GC . The rules of GC(R+)
make reference to the calculus C(R+) of Fig. 1. It is obtained by interpreting all
sequents as extended sequents, replacing the rules ⊗R and −◦L as indicated in
Fig. 1 (for internalizing contraction) and adding the dereliction rules

Γ,�aA,A −→ C

Γ,�aA −→ C
�L

Γ,A −→ C

Γ,�aA −→ C
�L

Note that there is no right rules for � and � in C(R+) since they only appear
in negative polarity.

Remark 7. C(R+) can be naturally seen as a fragment of subexponential linear
logic (SELL [7]). More specifically, let aSELL(Ru

b) be a single conclusion calculus
for SELL with weakening, and let Σ = 〈R+ ×{b, u},�,U〉 be the subexponential
signature where the set of unbounded subexponentials (that can be weakened
and contracted at will) is U = {(a, u) | a ∈ R

+}, and � is any partial order on
R

+×{b, u} in which, as standardly required in SELL, no bounded subexponential
is above an unbounded one. We identify the subexponential !(a,b) with �a and
!(a,u) with �a. Then C(R+) is precisely the subsystem of aSELL(Ru

b) given by
the syntactic restriction that subexponentials occur only in negative polarity.
We will exploit this relation between C(R+) and aSELL(Ru

b) later in Sect. 3.2.
For some remarks on the system without the syntactic restriction, see Sect. 5.

Let us return to the game now. The main difference between GC and GC(R+)
is that game states in the latter will involve a budget (modeled as a real number)
which will decrease whenever rules �L and �L are invoked.

Definition 8 (The game GC(R+)). GC(R+) is a game of two players, P and O.
Game states are tuples (H, b), where H is a finite multiset of extended sequents
and b ∈ R is a “budget”. GC proceeds in rounds, initiated by P’s selection of an
extended sequent S from the current game state. The successor state is deter-
mined according to rules that fit one of the two following schemes:

(1) (G ∪ {S}, b) � (G ∪ {S′}, b′)
(2) (G ∪ {S}, b) � (G ∪ {S1} ∪ {S2}, b)

A round proceeds as follows: After P has chosen an extended sequent S ∈ H
among the current game state, she chooses a rule instance r of C(R+) such that
S is the conclusion of that rule. Depending on r, the round proceeds as follows:
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1. If r is a unary rule different from �L,�L with premise S′, then the game
proceeds in the game state (G ∪ {S′}, b).

2. Budget decrease: If r ∈ {�L,�L} with premise S′ and principal formula
�aA or �aA, then the game proceeds in the game state (G ∪ {S′}, b − a).

3. Parallelism: If r is a binary rule with premises S1, S2 pertaining to a mul-
tiplicative connective, then the game proceeds as (G ∪ {S1} ∪ {S2}, b).

4. O-choice: If r is a binary rule with premises S1, S2 pertaining to an additive
connective, then O chooses S′ ∈ {S1, S2} and the game proceeds in the game
state (G ∪ {S′}, b).

A winning state (for P) is a game state (H, b) such that all S ∈ H are initial
sequents of C(R+) and b ≥ 0.

Plays and strategies are defined as in GC . We write |=GC(R+) (H, b) if P has a w.s.
in the GC(R+)-game starting on (H, b). The intuitive reading of |=GC(R+) (H, b) is:
The budgetb suffices to win the game H. From now on, we will just say “sequent”
and “formula” instead of “extended sequent” and “extended formula”.

Example 9. Consider the state ({�1p,�3q −→ p ⊗ q}, 5). In a first move, P
picks p ⊗ q and she finds a partition of the premises not prefixed with � and
decides that �3q goes to the right premise of ⊗R. So by parallelism, the new
state is ({(�1p −→ p), (�1p,�3q −→ q)}, 5). She now chooses to pick �1p of
the first component and, by budget decrease, her budget decreases and the
next state is ({(�1p, p −→ p), (�1p,�3q −→ q)}, 4). Now P picks �3q leading to
({(�1p, p −→ p), (�1p, q −→ q)}, 1). Since both components are initial sequents
and budget ≥ 0, this is a winning state for P.

Similarly to GC , it is not necessary to consider all possible strategies in
GC(R+): For example, P never needs to take the budget into account when
deciding the next move. (A rule of thumb for P could be: always play econom-
ical, i.e. avoid the rules �L and �L whenever possible.) It is easy to see that
a C(R+)-proof Ξ of a sequent S translates to a w.s. in (S, b) for some sufficiently
large budget b. Taking these observations together, one can prove the following:

Theorem 10 (Weak adequacy for GC(R+)). Let S be a sequent. Then
∃b

(
|=GC(R+) ({S}, b)

)
iff �C(R+) S

The proof is similar to the one of Theorem 5. We call this theorem weak adequacy
since information about the budget b is lost in the proof theoretic representation.
In other words, the game GC(R+) is more expressive than the calculus C(R+). To
overcome this discrepancy, we now introduce a labelled extension of C(R+) that
we call C�(R+). A C�(R+)-proof is build from labelled sequents Γ −→b A where
Γ −→ A is an extended sequent and b ∈ R

+. The complete system is given in
Fig. 2. Our aim is to prove that |=GC(R+) ({Γ −→ A}, b) iff �C�(R+) Γ −→b A.

To this end, we need an analogue of Lemma 4 (independency of subgames in
GC) for GC(R+). Note that crucially, the naive analogue

|=GC(R+) ({S1, . . . , Sn}, b) iff for all i ≤ n, |=GC(R+) ({Si}, b)
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Fig. 2. The labelled sequent system C�(R+)

does not hold: Having a w.s. in ({S1, . . . , Sn}, b) is not the same as having
w.s.’s in all ({Si}, b)’s, since the budget b is shared between the subgames in
GC(R+). However, one can prove that there are strategies in GC(R+) which are
independent up to a partition of the budget. More precisely,

Lemma 11 (Quasi-independency of subgames in GC(R+)). |=GC(R+)

({S1, . . . , Sn}, b) iff
∃b1, . . . , bn ≥ 0 s.t.

∑n
i=1 bi ≤ b and for all i ≤ n, |=GC(R+) ({Si}, bi).

Proof: The direction from right to left is obvious. For the other direction, assume
that P has a w.s. π for ({S1, . . . , Sn}, b). We may assume wlog that this strategy
is composed of strategies π1, . . . , πn for the subgames S1, . . . , Sn which are both
independent from each other and from the budget. In each subgame Si, let τi be
a strategy for O which maximizes the cost bi (the total decrease of the budget)
of playing πi against τi. Then |=GC(R+) ({Si}, bi). Furthermore, from τ1, . . . , τn

player O can compose a strategy τ such that when played against π in the
parallel game {S1, . . . , Sn}, the costs for P sum up to

∑n
i=1 bi. Since π is a w.s.

for ({S1, . . . , Sn}, b), it must be the case that
∑n

i=1 bi ≤ b. �
We emphasize that the game rules of GC(R+) do not force P to know a par-

tition of the budget in order to play parallel subgames. Nevertheless, Lemma 11
tells us that finding such a partition is always possible in principle (for an
omnipotent player P). Now we can prove the desired correspondence.

Theorem 12: (strong adequacy for GC(R+)).
|=GC(R+) ({Γ −→ A}, b) iff �C�(R+) Γ −→b A.
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Proof: (⇐) By induction on the length of a proof Ξ of Γ −→b A. We highlight
two cases. Consider the following two possible ends for Ξ:

(1)
Γ −→c C Γ −→d D

Γ −→max{c,d} C & D
&R (2)

Δ1 −→c C Δ2 −→d D

Δ1,Δ2 −→c+d C ⊗ D
⊗R

In both cases, by induction, there are w.s.’s π1 and π2 for: (1) the game states
({Γ −→ C}, c) and ({Γ −→ D}, d); and (2) the game states ({Δ1 −→ C}, c) and
({Δ2 −→ D}, d) respectively. The needed w.s.’s π& for the game state ({Γ −→
C & D},max{c, d}) and π⊗ for the game state ({Δ1,Δ2 −→ C ⊗ D}, c + d) are:

(1) π&: Choose the instance of &R as above. By O-choice, the successor
game state is either ({Γ −→ C},max{c, d}) or ({Γ −→ D},max{c, d}). In
any case, the budget in the successor state is greater or equal than both c
and d, so P can continue playing according to π1 resp. π2.

(2) π⊗: Choose the instance of ⊗R as above. By parallelism, the successor
state is ({Δ1 −→ C,Δ2 −→ D}, c + d). Use π1 to play the subgame
Δ1 −→ C and π2 to play in Δ2 −→ D. By assumption on π1 and π2, the
total costs when playing both strategies in parallel cannot exceed c + d.

(⇒) By induction on the length of a strategy π. We present only the case where
Lemma 11 is used. Assume that the state is ({Δ1,Δ2 −→ C ⊗D}, b) and π tells
P to choose the instance of ⊗R with premises Δ1 −→ C and Δ2 −→ D. By
parallelism, the successor state is ({Δ1 −→ C,Δ2 −→ D}, b). Since π is a w.s.,
it must contain a substrategy π′ for this state. By Lemma 11, we may assume
that π′ is composed of substrategies π1, π2 for the game states ({Δ1 −→ C}, c)
and ({Δ2 −→ D}, d) where c + d ≤ b. By induction, there are C-proofs Ξ1, Ξ2

for the sequents Δ1 −→c C and Δ2 −→d D. Applying ⊗R and w� below Ξ1 and
Ξ2, we obtain a C-proof Ξ of Δ1,Δ2 −→b C ⊗ D. �

Let Sb denote the labelled sequent corresponding to the sequent S with label
b. Given Π a C�(R+)-proof of Sb, we define the many-to-one onto skeleton func-
tion SK(Π) as the C(R+)-proof Ξ of S obtained by removing all labels and
applications of w� from Π. Conversely, we define the one-to-one decoration func-
tion D(Ξ) as the C�(R+)-proof Π� of Sa, obtained by assigning the label 0 to
all initial sequents of Ξ and propagating the labels downwards according to the
rules of C�(R+). We define cost(Ξ) := a. Let Λ ∈ SK−1(Ξ) be a proof of Sc.
It is easy to see that a ≤ c, that is, cost(Ξ) is the minimal label which can be
attached to S w.r.t. Ξ. In game theoretic terms, this means the following.

Theorem 13. Given a C(R+)-proof Ξ of a sequent S, cost(Ξ) is the smallest
budget which suffices to win the game GC(R+) on S when following the strategy
corresponding to Ξ.

Example 14. Consider the following well-known riddle:

You have white and black socks in a drawer in a completely dark room.
How many socks do you have to take out blindly to be sure of having a
matching pair?
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We can model the matching pair by the disjunction (w ⊗ w) ⊕ (b ⊗ b), and
the act of drawing a random sock by the labelled formula �1(w ⊕ b). The above
question then becomes:

For which n is the sequent �1(w ⊕ b) −→n (w ⊗ w) ⊕ (b ⊗ b) provable?

The following proof shows that n = 3 suffices:

G,w,w,w ⊕ b −→0 w ⊗ w
⊗R, I

G,w,w,w ⊕ b −→0 F
⊕R

G,w, b, w −→0 (w ⊗ w)
⊗R, I

G,w, b, w −→0 F
⊕R

G,w, b, b −→0 b ⊗ b
⊗R, I

G,w, b, b −→0 F
⊕R

G,w, b, w ⊕ b −→0 F
⊕L

G,w,w ⊕ b, w ⊕ b −→0 F
⊕L

Ξ

G,w ⊕ b, w ⊕ b, w ⊕ b −→0 F
⊕L

G −→3 F
3 × �L

where derivation Ξ is symmetric, F = (w ⊗ w) ⊕ (b ⊗ b) and G = �1(w ⊕ b).

3.1 The Spectrum of a Provable Sequent

Due to weakening on labels, many proofs in C�(R+) of labelled sequents of the
form Sb correspond to one skeleton proof in C(R+) of the sequent S. On the
other hand, S may have, itself, many proofs in C(R+), each of them having a
cost, uniquely determined by the decoration D. In this section we will consider
the spectrum of such costs and prove the existence of a minimal one.

Definition 15. spec(S) := {cost(Ξ) | Ξ is a C(R+)-proof of S}.
For example, spec(�1p,�0.8p,�0.8p −→ p ⊗ p) consists of the numbers
{1.6, 1.8, 2.6} and all combinations n + k · 0.8 where n, k are natural numbers
and n ≥ 2, k ≤ 2.

A subset X ⊆ R is called discrete if, for every x ∈ X, there is an open interval
I ⊆ R such that I ∩ X = {x}. We can prove:

Theorem 16. For any sequent S, spec(S) ⊆ R
+ is discrete and closed.

Proof: Let a1, . . . , an denote all real numbers appearing as �a or �a in S, and
let us denote by Ω(a1, . . . , an) the set of all linear combinations of a1, . . . , an

over N, i.e., Ω(a1, . . . , an) := {k1 · a1 + . . . + kn · an | k1, . . . , kn ∈ N}. By
inspecting the rules of C�(R+) and since w� is not applied in D(Ξ), it is easy to
see that cost(Ξ) ∈ Ω(a1, . . . , an), and hence spec(S) ⊆ Ω(a1, . . . , an). It suffices
to show that each bounded monotone sequence in Ω(a1, . . . , an) is eventually
constant. We may assume wlog that all the ai’s are nonzero. Now consider a
sequence (ki

1 · a1 + . . . + ki
n · an)i≥1 in Ω(a1, . . . , an), and assume that B is an

upper bound for it (a trivial lower bound is always 0). Pick a number K such
that K · min{a1, . . . , an} > B. It follows that for all i, j we have ki

j < K. In
particular, there are only finitely many different terms in the sequence, from
which our claim follows. �
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Since any bounded below, closed set in R has an minimum, we obtain:

Corollary 17. If �C(R+) Γ −→ A, then spec(Γ −→ A) has a least element. In
other words, there is a smallest b such that �C�(R+) Γ −→b A.

Corollary 17 tells us that cost-optimal strategies for all provable sequents exist,
but note that the proof is not constructive. Nevertheless, we may now define:

cost(S) :=

{
min(spec(S)) if �C(R+) S

∞ otherwise

3.2 Cut Admissibility

So far, the results about our game semantics GC(R+) did not depend essentially
on the chosen calculus C(R+). We now want to relate proof-theoretic properties
of C(R+) and C�(R+) to the game semantics. Recall that C(R+) can be seen as
a fragment of aSELL(Ru

b), arising from the syntactic restriction that the modal
operators �a,�a occur only negatively in sequents (Remark 7); consequently,
there is no corresponding right rule (promotion) in C(R+). This has the effect
that—even though (implicit) contraction on formulas �aA is present in C(R+)—
the proof theory of C(R+) is closer to aIMALL than to aSELL(Ru

b).
C(R+) inherits the admissibility of the following cut rule from aSELL(Ru

b)

�Γ,Δ1 −→ A �Γ,Δ2, A −→ C

�Γ,Δ1,Δ2 −→ C
cut

Note that, appearing both in a positive and a negative context, the cut formula A
cannot contain any modal operator.

Now, let us extend cut admissibility to the labelled system C�(R+). Assume
that both �Γ,Δ1 −→a A and �Γ,Δ2, A −→b C are provable in C�(R+). For-
getting labels a and b, we can conclude, from cut-admissibility in C(R+), that
�C(R+) �Γ,Δ1,Δ2 −→ C. But then, �Γ,Δ1,Δ2 −→c C is also provable in
C�(R+) with, e.g., c = cost(�Γ,Δ1,Δ2 −→ C) (see Corollary 17). Hence, stat-
ing cut-admissibility in C�(R+) strongly depends on the possibility of defining a
computable function f relating c with the labels of the premises of the cut rule.
We show that f(a, b) = a + b is the minimal such function.

Theorem 18. For f(a, b) = a+b, the following cut rule is admissible in C�(R+):

�Γ,Δ1 −→a A �Γ,Δ2, A −→b C

�Γ,Δ1,Δ2 −→f(a,b) C
cut�

Moreover, whenever cut� is admissible w.r.t. a given f ′, then a + b ≤ f ′(a, b).

Proof: For cut admissibility, one can follow the standard cut reduction strat-
egy of aIMALL and observe that it is compatible with the proposed labelling
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of the cut rule. Consider for instance the following reduction (note that
max{a + c, a + d} = a + max{c, d}):

�Γ,Δ1 −→a A

�Γ,Δ2, A −→c C �Γ,Δ2, A −→d D

�Γ,Δ2, A −→max{c,d} C & D
&R

�Γ,Δ1,Δ2 −→a+max{c,d} C & D
cut�

�

�Γ,Δ1,−→a A �Γ,Δ2, A −→c C

�Γ,Δ1,Δ2 −→a+c C
cut�

�Γ,Δ1,−→a A �Γ,Δ2, A −→d D

�Γ,Δ1,Δ2 −→a+d D
cut�

�Γ,Δ1,Δ2 −→max{a+c,a+d} C & D
&R

For the minimality, let p, q be distinct propositional variables. For any a, b ∈
R

+ we have proofs of �ap −→a p and p,�bq −→b p⊗ q. Applying cut, we get
�ap,�bq −→c p ⊗ q. Now, �ap,�bq −→c p ⊗ q is provable (without cut) only if
a + b ≤ c. Hence if f makes the cut rule admissible, a + b ≤ f(a, b). �
One can easily show that also weakening in the antecedent is admissible
in C�(R+) and does not lead to an increased label. Similarly, generalized axioms
Γ,A −→0 A are admissible: Appearing both positively and negatively, A does not
contain modal operators, and hence cost(Γ,A −→ A) = cost(A −→ A) = 0.

Example 19. Consider a labelled transition system (T, =⇒) where T is a set of
states and =⇒⊆ T×R

+×T is the transition relation on states. In (ti, ai, t
′
i) ∈=⇒,

simply written as ti
ai=⇒ t′i, ai is interpreted as the time needed for the transition

to happen. We use distinct propositional variables to represent states. Moreover,
the formula �ai(ti −◦ t′i) models the transition ti

ai=⇒ t′i. We shall use Δ=⇒ to
denote the set of such formulas. Given two sets of states Sstart, Send ⊆ T , it is
easy to see that the following sentences are equivalent:

1. From every state in Sstart, there is a state in Send reachable in time ≤ a
2. |=GC(R+) ({Δ=⇒,

⊕
Sstart −→ ⊕

Send}, a)

Hence by Theorem 12, both are equivalent to

3. �C�(R+) Δ=⇒,
⊕

Sstart −→a

⊕
Send.

One common way to obtain (1) is by finding a set of intermediary states Si

and a splitting of the time a1 + a2 = a such that we can go from each state
in Sstart to some state in Si in time a1, and from each state in Si to some
state in Send in time a2. In terms of (3), this strategy corresponds to a cut:
Assume we have proofs Ξ1 and Ξ2 of the sequents Δ=⇒,

⊕
Sstart −→a1

⊕
Si

and Δ=⇒,
⊕

Si −→a2

⊕
Send. By cut admissibility (Theorem 18) we obtain the

desired Δ=⇒,
⊕

Sstart −→a1+a2

⊕
Send as the result of the “concatenation”of

the paths encoded in Ξ1 with the paths encoded in Ξ2.

4 Alternative Cost Structures

We have used non-negative real numbers for representing costs and budgets,
together with basic operations for accumulating (+) and comparing (≥) them.
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This allowed us to give a more interesting perspective of resource consumption
in linear logic: we know that the cost of using a formula marked with cost 3 is
not the same as derelicting a formula marked with cost 7. A natural question
that arises is whether it is possible to consider other systems governing the way
we understand costs and budgets. In this section, we consider sequent systems
C�(K) in which the real numbers of C�(R+) (see Fig. 2) are replaced by elements
of a semiring K. As we shall see, the structure of K determines the behavior of
the system and the interpretation of costs and budgets.

A commutative semiring is a tuple K = 〈A,+A,×A ,⊥A,�A〉 satisfying: (S1)
A is a set and ⊥A,�A ∈ A; (S2) +A and ×A are binary operators that make the
triples 〈A,+A,⊥A〉 and 〈A,×A,�A〉 commutative monoids; (S3) ×A distributes
over +A (i.e., a ×A (b +A c) = (a ×A b) +A (a ×A c)); and (S4) ⊥A is absorbing
for ×A (i.e., a ×A ⊥A = ⊥A); K is absorptive if it additionally satisfies (S5)
a+A (a×A b) = a; in absorptive semirings, +A is idempotent, that is, a+A a = a.
This allows for the definition of the following partial order: a �A b iff a +A b = b
(and then, a ×A b �A a); an absorptive semiring K is idempotent whenever its
×A operator is idempotent.

Absorptive semirings satisfy some additional properties [3]: ⊥A (resp. �A) is
the bottom (resp. top) of A; a +A �A = �A; +A coincides with the lubA (least
upper bound) operator; if a +A b ∈ {a, b}, ∀a, b ∈ A then (A,�A) is a total
order; a ×A b �A glbA(a, b), where glbA is the greatest lower bound operator; if
K is idempotent, then +A distributes over ×A and ×A coincides with glbA.

We identify costs as elements of A. We can naturally consider �A (resp. ⊥A)
as the “best” (resp. “worst”) cost. Dually, �A (resp. ⊥A) is the “worst” (resp.
“best”) budget. Also, we expect the accumulating operator to be commutative
and associative (S2). Moreover, accumulating costs gives rise to a “worse” cost
(S5). Hence, the ×A operator is used to combine costs (+, on R

+, in Fig. 2). On
the other hand, +A is used to select which is the “best” value, in the sense that
a +A b = a iff b �A a iff a is “better” than b (i.e., �A will replace ≥ in Fig. 2).
Finally, we generalize max (in Fig. 2) as glbA. As mentioned above, in the case of
idempotent semirings, ×A coincides with the glbA while in the non-idempotent
case accumulating costs often gives a “worse” result than the glbA.

Note that the rules �a
L and �a

L, in Fig. 2, the budget c in the conclusion
must be of the form a + b. In the particular case of R+, we know that b = c − a
whenever c ≥ a. Hence, from a conclusion with budget c we obtain a premise with
decreased budget c − a. In the general case, we guarantee that such splitting
of the budget (also present in rules ⊗R and −◦L) is possible by requiring K to
be invertible in the following sense: K is invertible if for all b �A a, the set
I(b, a) = {x ∈ A | a ×A x = b} is non-empty and admits a minimum. We then
denote this minimum by b÷Aa. Observe that, in all our examples, if b �A a then
the set I(b, a) is a singleton except when a = b = ⊥A. In that case, I(b, a) = A
and we set ⊥A ÷A ⊥A = ⊥A. In Remark 22 we explain and clarify this choice.

In what follows, K will always denote an absorptive and invertible semiring.

Definition 20 (System C�(K)). Let K = 〈A,+A,×A,⊥A,�A〉 be an absorptive
and invertible semiring. The system C�(K) is obtained from C�(R+) (Fig. 2) by
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replacing 0 with �A, + with ×A, max with glbA, and ≥ with �A. Similarly, we
obtain C(K) as a generalization of C(R+) (Fig. 1).

Just as C(R+) can be seen as a fragment of aSELL(Ru
b), the system C(K) is

a fragment of aSELL(Ku
b), i.e. affine subexponential linear logic with subex-

ponentials taken from the set K × {u, b}. We omit the (rather straightforward)
formulation of the corresponding game semantics.

Next we present some instances of C�(K) and their intended behavior.

Example 21 (Costs). Kc = 〈R∞
+ ,minR,+R,∞, 0〉, where R

∞
+ is the completion of

R+ with ∞, reflects the meaning of costs in Sect. 3. If a, b �= ∞ and b ≥ a (i.e.,
b �A a), there is a unique way of splitting b into a + b′, namely, b′ = b − a (i.e.,
b′ = b ÷A a). Alternatively, we may interpret the elements in Kc as 2D areas.
Then, a label b �= ∞ in a sequent can be understood as the total area available
to place some objects. Each time an object of size a is placed (using �a

L or �a
L)

we observe, bottom-up, that the total area is decreased to b − a.

Remark 22 (Meaning of ÷ and ∞). Consider the semiring Kc above (where
⊥A = ∞ and �A = 0). If the label in the sequent is b = ⊥A, regardless the
value a in an application of �a

L or �a
L, the premise will be labelled with ∞.

This is because, according to our definition, ⊥A ÷ ⊥A = ⊥A. This makes sense
since we select the most “generous” budget to continue the derivation. Of course,
smaller suitable budgets are also allowed due to rule w�. For instance, the sequent
�⊥p,�⊥(p −◦ q) −→b q is provable in C�(Kc) only if b = ⊥A. The same sequent
(removing the label b) is also provable in aSELL(Ku

b). Note that if we decree
that ⊥A ÷ ⊥A = �A (as in [3]), then the sequent above would not be provable
for any b.

Example 23 (Protected resources). Let Kc/p = 〈{pub, conf},+,×, pub, conf〉
and define a + b = pub iff a = b = pub and a × b = conf iff a = b = conf.
The intuition is that �pubF represents public information (and then not confi-
dential) and �confF represents secret information. Observe that no derivation
of Γ,�pubF −→conf G can apply �L on �pubF (since conf �� pub). This means
that only confidential (or protected) resources can be used in such a derivation.
Alternatively, we can show that, if Γ −→conf G is provable then Γ ′ −→conf G′

is also provable where Γ ′ is as Γ but replacing any formula of the form �pubF
with the constant 1 (similarly for G and �pubF ). Kc/p is nothing less that the
structure Sc = 〈{false, true},∨,∧, false, true〉 [4].

Example 24 (Maximum amount of resources). Consider now the situation where
labels in sequents represents a certain amount of computational resources, e.g.,
RAM, available to process a series of tasks. Moreover, let us interpret �cF as
the fact that, in order to produce F , c resources need to be used. As expected,
once F is produced, the c resources can be released and freed to be used in other
tasks. The idea is to know what is the least amount of resources b s.t. some jobs
Γ can be all of them executed, sequentially if needed.

Consider Kmax = 〈R∞
+ ,min,max,∞, 0〉 where b ÷ a = b (if b ≥ a). Let t1, t2

be atomic propositions representing tasks and let Γ = {�at1,�ct2}. Clearly, the
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sequents Γ −→b t1 ⊗ t2 and Γ −→b t1 & t2 are both provable if b = max(a, c).
Of course, if we start with more resources, e.g., b = a + c, the sequent is still
provable (rule w�). Interestingly, from the point of view of costs, the difference
between concurrent (⊗) and sequential choices (&) vanishes in this particular
scenario, since Kmax is idempotent (and hence glbA and ×A coincide).

Example 25 (Transition systems revisited). Consider the formulas of the shape
�ai(ti −◦ t′i) and the sequent Δ=⇒, t −→b t′ in Example 19. The interpretation
there, of b as the time needed to observe a transition from t to t′, can be captured
with the semiring Kc (Example 21). As expected, according to +A (and then �A),
we prefer “faster” paths when there are different ways of going from t to t′.

Another possible interpretation for b is the probability of the different inde-
pendent events (transitions) to happen. Hence, given a specific path from t to t′,
the possible values for b must be less or equal to the product of the probabilities
ai involved in that path. This behavior can be captured with the probabilistic
semiring [4] Kp = 〈[0, 1],max,×, 0, 1〉.

For yet another example of Kp, consider the typical probabilistic choice in
process calculi: the process P +α Q chooses P with probability α and Q with
probability 1−α. Following the process-as-formulas interpretation [9,18], relating
process constructors with logical connectives and reductions with proof steps,
the system C�(Kp) offers a very natural interpretation of the process P +α Q as
the formula (�αP ) & (�1−αQ), that we can write as P &α Q. For instance, if
Γ = {t1 &α t2, t1 −◦ t3, t2 −◦ t4}, then, the sequent Γ −→b t3 (resp. Γ −→b t4) is
provable whenever α ≥ b (resp. 1 − α ≥ b).

5 Modalities in Positive Contexts

We have considered modalities appearing only in negative polarity. In this
section, we show some problems and limitations that arise when trying to extend
the labelled sequent approach to consider also positive occurrences of modali-
ties as in the full system of subexponential linear logic (see e.g., [19]). Let us
call CP�(R+) the system resulting from C�(R+) by adding the following labelled
promotion rules

Γ≤�a −→b A

Γ −→b �aA

Γ≤�a −→b A

Γ −→b �aA

where Γ≤�a

denotes all formulas in Γ which are of the form �cB or �cB and
a ≥ c; and Γ≤�a

denotes all formulas in Γ which are of the form �cB where
a ≥ c. These rules follow the standard formulation of the promotion rule in SELL:
the promotion of !aA requires all formulas of the context to be of the form !cB
where a � c and � is the underlying preorder on the subexponential signature.

The following result shows that it is not possible to define a labelled cut rule
for CP�(R+) where the label of the conclusion depends exclusively on the labels
of the premises.
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Theorem 26. There is no function f : R+ × R
+ → R

+ such that the rule

�Γ,Δ1 −→a A �Γ,Δ2, A −→b C

�Γ,Δ1,Δ2 −→f(a,b) C
cut

is admissible in CP�(R+).

Proof: Let p, q be different propositional variables, and let A⊗n denote the n-fold
multiplicative conjunction of a formula A. The sequents

�1/kp −→a �1/kp⊗(k·a) and �1/kp⊗(k·a) −→b p⊗(k·k·a·b)

are provable in CP�(R+) for all natural numbers a, b, k. The smallest label f
which makes their cut conclusion �1/kp −→f p⊗(k·k·a·b) provable in CP�(R+)
is k · a · b, which is not a function on the premise labels a, b. �
Note that Theorem 26 leaves open the possibility that cut is admissible w.r.t. a
function f which takes more information of the premises into account than just
their labels. Please refer to the technical report [15, Appendix A.1] for a more
detailed discussion.

6 Concluding Remarks and Future Work

We have introduced game semantics for fragments of (affine intuitionistic) linear
logic with subexponentials (SELL [7,19,21]), culminating in labelled extensions
of such systems so that Γ −→b A is interpreted as: “Resource A can be obtained
from the resources Γ with a budget b” or, alternatively, “The budget b suffices to
win the game Γ −→ A”. For achieving that, we proposed a new interpretation
for the dereliction rule, opposing to the standard controls in the promotion rule:
derelicting on �aB,�aB means “paying a to obtain (a copy of) B”. Hence our
games and systems offer a neater control of the resources appearing negatively
on sequents.

There are several ways of extending and continuing this work. First of all,
as signalized in Sect. 5, the quest of extending the cost conscious reasoning to
modalities occurring positively in sequents is not trivial. Despite the obvious
game interpretation of promotion that could be given in the style of [10], Theo-
rem 26 shows that this would not be followed with a proof theoretical notion of
cut-elimination, due to the impossibility of defining a functional notion of the
cut-label. In [15] we discuss some possible paths to trail in this direction. On the
other side, a philosophical discussion on the need of compositionally of dialogue
games driven by a cut rule can also be done [20].

Finally, we expect that the study of costs of proofs and cut-elimination
in labelled fragments of SELL may indicate a relationship between labels and
bounds of computation [2], as well as give a different approach to study
the complexity of cut-elimination process, specially in the multiplicative-
(sub)exponential fragment [22,23].



Derivations with Costs 257

References

1. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative lin-
ear logic. J. Symb. Log. 59(2), 543–574 (1994)

2. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds.
PACMPL, 2(ICFP), 94:1–94:30 (2018)

3. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI
2006, 17th European Conference on Artificial Intelligence, Including Prestigious
Applications of Intelligent Systems (PAIS 2006), Proceedings. Frontiers in Artificial
Intelligence and Applications, vol. 141, pp. 63–67. IOS Press (2006)

4. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison.
Constraints 4(3), 199–240 (1999)

5. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1–3), 183–
220 (1992)

6. Blass, A.: Some semantical aspects of linear logic. Log. J. IGPL 5(4), 487–503
(1997)

7. Danos, V., Joinet, J.-B., Schellinx, H.: The structure of exponentials: uncovering
the dynamics of linear logic proofs. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.)
KGC 1993. LNCS, vol. 713, pp. 159–171. Springer, Heidelberg (1993). https://doi.
org/10.1007/BFb0022564

8. Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann.
Pure Appl. Logic 161(5), 654–672 (2010)

9. Deng, Y., Simmons, R.J., Cervesato, I.: Relating reasoning methodologies in linear
logic and process algebra. Math. Struct. Comput. Sci. 26(5), 868–906 (2016)

10. Fermüller, C.G., Lang, T.: Interpreting sequent calculi as client-server games. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
98–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 6

11. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
12. Hyland, J.M.E., Ong, C.h.L.: Fair games and full completeness for multiplicative

linear logic without the mix-rule (1993)
13. Japaridze, G.: A constructive game semantics for the language of linear logic. Ann.

Pure Appl. Logic 85(2), 87–156 (1997)
14. Lamarche, F.: Games semantics for full propositional linear logic. In: Proceedings,

10th Annual IEEE Symposium on Logic in Computer Science, San Diego, Califor-
nia, USA, 26–29 June 1995, pp. 464–473. IEEE Computer Society (1995)

15. Lang, T., Olarte, C., Pimentel, E., Fermüller, C.: A Game Model for Proofs with
Costs. arXiv e-prints, arXiv:1906.11742, June 2019

16. Lorenzen, P.: Logik und agon. Atti Del XII Congresso Internazionale di Filosofia
4, 187–194 (1960)

17. Melliès, P.-A.: Asynchronous games 4: a fully complete model of propositional
linear logic. In: Proceedings of the 20th IEEE Symposium on Logic in Computer
Science (LICS 2005), Chicago, IL, USA, 26–29 June 2005, pp. 386–395. IEEE
Computer Society (2005)

18. Miller, D.: The π-calculus as a theory in linear logic: preliminary results. In:
Lamma, E., Mello, P. (eds.) ELP 1992. LNCS, vol. 660, pp. 242–264. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56454-3 13

19. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponen-
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Abstract. The main part of a classical combinatorial proof is a skew
fibration, which precisely captures the behavior of weakening and con-
traction. Relaxing the presence of these two rules leads to certain sub-
structural logics and substructural proof theory. In this paper we inves-
tigate what happens if we replace the skew fibration by other kinds of
graph homomorphism. This leads us to new logics and proof systems
that we call combinatorial.
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1 Introduction

Combinatorial proofs have been introduced by Hughes [17] to give a “syntax-
free” presentation for proofs in classical propositional logic. In doing so, they give
a possible response to Hilbert’s 24th problem of identity between proofs [29]: two
proofs are the same if they have the same combinatorial proof [1,18,27].

In a nutshell, a classical combinatorial proof consists of two parts: (i) a linear
part, and (ii) a skew fibration. The linear part encodes a proof in multiplicative
linear logic (MLL), whose conclusion is given as a cograph, together with an
equivalence relation on the vertices encoding the axiom links of the proof. A
combinatorial correctness criterion for this linear part can be given by Retoré’s
critically corded condition [22]. The skew fibration then maps this linear cograph
to the cograph of the conclusion of the whole proof. This precisely captures the
behaviour of weakening and contraction in a classical proof.

Recently, the theory of combinatorial proofs has been extended to intuition-
istic propositional logic [16] and to relevant logics [2]. For intuitionistic logic,
the linear part of a combinatorial proof has to be restricted to intuitionistic
multiplicative linear logic (IMLL), and for relevant logic the skew fibration had
to be restricted to a surjective weak fibration. This raises the question of what
happens with other substructural logics that restrict (in their sequent calculus
formulation) the use of contraction and weakening?

To answer this question, we need to address another issue first. Whereas
the linear part of a combinatorial proof corresponds to well understood proof
theory—there are sequent calculi and proof nets for most variants of MLL
c© Springer Nature Switzerland AG 2019
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(intuitionistic/classical, commutative/non-commutative, with mix/without mix,
etc.)—the skew fibration part is less obviously linked to established proof theory.
In particular, the lack of any natural class of sequent calculus proofs equivalent
to skew fibrations has lead to procrustean hacking away at either the sequent
calculus side (via the Homomorphism Sequent Calculus in [18] or deep inference
rules inside the sequent calculus in [1]), at the combinatorial proofs side (via lax
combinatorial proofs in [18]), or at both (via separated combinatorial/sequent
calculus proofs in [7]).

To address this problem, we will in this paper use a pure deep inference
system [6,13–15] to deal with weakening and contraction. This leads to different
degrees of freedom for the weakening and contraction rules than in the sequent
calculus. Whereas in the sequent calculus we can allow or forbid the rules on the
left and/or on the right of the turnstile, in deep inference we have other choices.
Besides allowing or forbidding rules, we can restrict the rules to atomic formulas
or not, and to shallow contexts or not. Furthermore, deep inference systems
with contraction and weaking also admit the medial rule, which implements the
classical implication

(A ∧ B) ∨ (C ∧ D)
m

(A ∨ C) ∧ (B ∨ D)
.

This rule is derivable if contraction and weakening are present in their general
form [6]. However, as soon as one of the restrictions mentioned above is applied,
medial is no longer derivable. Thus, the presence or absence of medial is another
degree of freedom in the design of a logical system. This creates a rich variety
of structural proof systems, some of which are familiar to deep inference proof
theorists, and some of which are novel.

Another reason for using deep inference is the availability of decomposition
theorems [4,5,23–25,28], which allow us to decompose a given formal derivation
into several phases each using only a specific subset of the inference rules. Using
techniques and results from work on linear rewriting systems [9–11,25] one can
obtain decompositions that provide exactly the separation in the linear part and
the contraction-weakening part of classical logic that is expressed by combina-
torial proofs. This leads to a close correspondence between combinatorial proofs
and deep inference (see also [26]).

On the other hand, we can study the effect on combinatorial proofs if we
restrict the notion of skew fibration by set theoretic and graph theoretic means:
we can demand injectivity, surjectivity, or bijectivity, or we can demand the skew
fibration to be a proper fibration. Certain restrictions create already studied
logics; some do not seem to correspond to logics studied in the literature. In
fact, if the condition for the map can be checked in polynomial time (in its size)
then we can speak of proof systems in the sense of Cook and Reckhow [8], and
we will coin the term combinatorial proof systems.

As the main result of this paper we will establish a strong correspondence
between these combinatorial proof systems and the structural proof systems that
naturally arise from restricting contraction and weakening in a deep inference
system, as described above.
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We begin the paper in Sect. 2 by recalling the relation between formulas and
cographs. Then, in Sect. 3, we recall standard classical combinatorial proofs, and
in Sect. 4, we recall standard deep inference proof systems, using open deduc-
tion. Finally, in Sect. 5 we introduce all the necessary technical definitions that
allow us to state our main result, Theorem 5.5, establishing the correspondence
between homomophism classes on cographs and structural proof systems in open
deduction. The remaining Sects. 6, 7, and 8 are dedicated to the proof of that
theorem.

2 Formulas and Cographs

In this paper, we restrict our attention to classical and substructural proposi-
tional logics: decidable logics freely generated from atoms and the two connec-
tives {∧,∨}.

Definition 2.1. We define an inexhaustible set of positive and negative atoms
A = {a, ā, b, b̄, . . . }, and a set of formulae, F , generated from these atoms:

A ::= a | (A ∧ A) | (A ∨ A)

We omit parentheses when there is no ambiguity.
A logic L is defined by a valuation function VL : F → {0, 1} selecting cor-

rect formulae. The valuation function for Classical Propositional Logic, VCPL is
defined in the usual way.

Definition 2.2. A graph G = 〈VG, EG〉 consists of a set of vertices VG and a
set of edges EG which are two-element subsets of VG. We write vw ∈ EG for
{v, w} ∈ EG. Given a set S, a labelled, or S-labelled, graph adds a map LG : VG →
S, mapping vertices to elements of S. We assume graphs are irreflexive: for all
v ∈ VG, vv /∈ EG. A graph H is an induced subgraph of G if VH ⊆ VG and
EH = {vw | v, w ∈ VH , vw ∈ EG}.

There is a useful correspondence between F and a certain class of graphs, called
cographs. First, we construct the map from formulae to cographs by defining
graphical equivalents for the logical connectives.

Definition 2.3. Let G,H be disjoint graphs. We define respectively their union
and their join:

G ∨ H = 〈VG ∪ VH , EG ∪ EH〉
G ∧ H = 〈VG ∪ VH , EG ∪ EH ∪ {vw | v ∈ VG, w ∈ VH}〉

Definition 2.4. We define the map G from formulae to A-labelled graphs as
follows:

– For a ∈ A, G(a) = 〈v, ∅〉, with L(v) = a.
– G(A ∨ B) = G(A) ∨ G(B), G(A ∧ B) = G(A) ∧ G(B).
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We call any A-labelled graphs in the image of G a cograph, and we denote the
set of cographs as G. For ease, we will write VA for VG(A) and EA for EG(A).

We can characterise cographs without constructing the formulae they map from.

Definition 2.5. A graph G of four distinct vertices VG = {v, w, u, z} with
vw,wu, uz ∈ EG and vu, vz, wz /∈ EG is called a P4 graph.

v w

u z

Proposition 2.6. Cographs are exactly those graphs that are P4-free, i.e., they
do not contain a P4 graph as an induced subgraph.

Proof. This has been proved in many places, e.g. [12]. ��
Definition 2.7. A context K{ } is a function from F → F , created by replacing
exactly one instance of an atom in a formula with a hole { }.

Definition 2.8. We define the following two equivalence relations on formulae,
with � ∈ {∨,∧}:

K{A � B} ≡C K{B � A} K{A � (B � C)} ≡A K{(A � B) � C}

The equivalence relation ≡, formula equivalence, is the reflexive, symmetric and
transitive closure of ≡C ∪ ≡A.

This definition of formula equivalence coincides exactly with the equivalence
classes induced by the cograph map G:

Proposition 2.9. For all formulae, A ≡ B iff G(A) = G(B).

Proof. Straightforward induction on the size of the formulas (see e.g. [12]). ��

3 Combinatorial Proofs

Usually, the linear (or multiplicative) part of a combinatorial proof is defined
graph theoretically. Here, since we are concerned chiefly with the structural part,
we simply use a sequent calculus.

Definition 3.1. We define the logic of MLL by the following one-sided sequent
calculus system, with multiset sequents:

ax � a, ā

� Γ,A � Δ,B
∧r � Γ,Δ,A ∧ B

� Γ,A,B
∨r � Γ,A ∨ B

VMLL(A) = 1 iff there is a proof of A in this sequent system.



Towards a Combinatorial Proof Theory 263

Proposition 3.2. If A ≡ B (and therefore G(A) = G(B)), then VMLL(A) =
VMLL(B).

Proof. Straightforward, since sequents are multisets. ��
Due to the above definition, we can define VMLL(G) = VMLL(A) for any A with
G(A) = G.

Definition 3.3. A graph homomorphism f : VG → VH is a map such that for
all e = vw ∈ EG, there is an edge f(e) = f(v)f(w) ∈ EH . A skew fibration
f : G → H is a graph homomorphism such that for every v ∈ VG, z ∈ VH with
f(v)z ∈ EH , there is some vw ∈ EG such that:

(SF1) f(w)z /∈ EH .

Figure 1 illustrates this condition and gives two examples of skew fibrations.

f(v)
z

f(w)

v w

a b
ā

b̄

ā

b̄
c

a b a b
ā

b̄

ā

b̄

a b
ā

b̄

ā

b̄
c

a

a

b

b

ā

b̄

ā

b̄

Fig. 1. On the left, we show a pictorial representation of the condition SF1. In the
centre and on the right, two skew fibrations are shown, that are in fact combinatorial
proofs of the formula (a ∧ b) ∨ ((ā ∨ b̄) ∧ (ā ∨ b̄)) ∨ c.

With the technology that we have built up, we are able to define combina-
torial proofs for classical logic.

Definition 3.4. Let A ∈ F . φ = 〈Gφ, fφ〉 is a correct combinatorial proof [17]
of A for classical propositional logic if:

– VMLL(Gφ) = 1,
– fφ : Gφ → G(A) is a skew fibration.

The two examples in Fig. 1 are combinatorial proofs.

Remark 3.5. A graph theoretic counterpart to the first condition is that the
cograph is non-empty critically chorded R&B-cograph [22,26]. Nicely coloured
graphs [17] correspond to theorems of MLL together with the mix rule.
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4 Open Deduction

We introduce the deep inference proof formalism of open deduction [14].

Definition 4.1. The set of prederivations, P = {φ, ψ, . . . } is generated by the
following grammar:

φ ::= A | (φ ∧ φ) | (φ ∨ φ) | φ

φ

We define two functions premise and conclusion, pr, cn : P → F ,

– pr(A) = cn(A) = A for A ∈ F ;
– pr(φ � ψ) = pr(φ) � pr(ψ), cn(φ � ψ) = cn(φ) � cn(ψ), for � ∈ {∧,∨};

– pr

(
φ

ψ

)
= pr(φ), cn

(
φ

ψ

)
= cn(ψ)

Definition 4.2. An inference rule ρ is a polynomial-time decidable relation on

F . We write
A

ρ
B

if 〈A,B〉 ∈ ρ. The equivalence rule is the formula equivalence

relation as defined in Definition 2.8, we write
A

≡
B

if A ≡ B. A proof system S is a

finite set of inference rules, that (usually implicitly) contains the equivalence rule.
The set of derivations, DS ⊆ P of a proof system S is precisely the prederivations

where vertical composition
φ

ψ
is restricted to cases where

cn(φ)
ρ
pr(ψ)

is a correct

instance for some ρ ∈ S.

Remark 4.3. Since there is no need in this paper, we do not define proofs, i.e.
derivations from no premise.

Definition 4.4. We define the structural rules of contraction, atomic contrac-
tion, weakening and medial :

A ∨ A
c↓

A

a ∨ a
ac↓

a

B
w↓

A ∨ B

(A ∧ B) ∨ (C ∧ D)
m

(A ∨ C) ∧ (B ∨ D)

An instance of c↓,w↓, ac↓ is called shallow if they are not in the scope of a
conjunction. We denote such instances by sc↓, sw↓ and sac↓ respectively. In Fig. 2
we give two examples of derivations with these rules.

(a ∧ b) ∨ (a ∧ b)
sc↓

a ∧ b
∨ ā ∨ b̄ ∧ ā ∨ b̄

sw↓
(a ∧ b) ∨ ā ∨ b̄ ∧ ā ∨ b̄ ∨ c

a ∨ a
ac↓

a
∧ b ∨ b

ac↓
b

∨
(a ∧ ā) ∨ b ∧ b̄

sw↓
(a ∧ ā) ∨ b ∧ b̄

m

(a ∨ b) ∧ ā ∨ b̄
∨ c

Fig. 2. Two simple derivations with the same conclusion (a∧ b)∨ ((ā∨ b̄)∧ (ā∨ b̄)), the
first with non-atomic shallow contraction and the second with medial and deep atomic
contraction.
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We are now almost ready to define the class of deep inference proofs that
will correspond to combinatorial proofs. First, however, we define the notion of
relative strength between proof systems.

Definition 4.5. Let S be a proof system and ρ an inference rule. If for every

instance
A

ρ
B

there is a derivation
A

S

B
, we say ρ is derivable for S. If every rule

ρ ∈ S′ is derivable for S, then we write S′ � S, where � is a partial order on
proof systems. We write S � S′ if S � S′ and S′ � S.

Proposition 4.6. c↓ is derivable for {ac↓,m}, m is derivable for {w↓, c↓}.
Hence {w↓, c↓} � {w↓,m, ac↓} [6].

Proof. The first is proven by a simple structural induction on formulae, the key
step being as follows:

(A ∧ B) ∨ (A ∧ B)
c↓

A ∨ B
−→

(A ∧ B) ∨ (A ∧ B)
m

A ∨ A
c↓

A
∧ B ∨ B

c↓
B

The second needs only a simple rewrite:

(A ∧ B) ∨ (C ∧ D)
m

(A ∨ C) ∧ (B ∨ D)
−→

(
A

w↓
A ∨ C

∧ B
w↓

B ∨ D

)
∨

(
C

w↓
A ∨ C

∧ D
w↓

B ∨ D

)
c↓

(A ∨ C) ∧ (B ∨ D)

��
A formal correspondence between derivations in open deduction and skew fibra-
tions has been established in other works.

Proposition 4.7. Let
A

φ {w↓,m,ac↓}
B

be a derivation. Then there is a skew fibra-

tion f : G(A) → G(B). We denote this skew fibration G(φ).

Proposition 4.8. If A,B ∈ F and f : G(A) → G(B) is a skew fibration, then

there is a derivation
A

φ {w↓,m,ac↓}
B

.

Proof. Each proposition follows from one direction of [25, Theorem 7.8] and
completeness and soundness of combinatorial proofs, respectively. ��
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5 Homomorphisms Classes and Structural Proof Systems

In Sect. 2 we have shown the correspondence between formulae and cographs, and
in Sect. 4 we have shown the correspondence between derivations in open deduc-
tion and skew fibrations. Now, we take this one step further, to a correspondence
between deep inference proof systems and classes of homomorphisms, construct-
ing two isomorphic lattices (partially ordered sets with meets and joins), of proof
systems with respect to derivability, and homomorphism classes with respect to
inclusion.

Definition 5.1. If S � {w↓, ac↓,m} � {w↓, c↓}, we say S is structural. We
denote the set of structural proof systems as S↓. Let S be a structural proof
system. We define G(S) = {G(φ) | φ ∈ DS}, the set of cograph homomorphisms
generated from derivations in S.1

We now need to introduce some terminology to better characterise classes of
homomorphisms.

Definition 5.2. A fibration f : G → H is a graph homomorphism such that for
every v ∈ VG, z ∈ VH with f(v)z ∈ EH , there is some vw ∈ EG such that:

(F1) f(w) = z.
(F2) For all vw′ with f(w′) = z we have w′ = w (i.e. w is unique).

A homomorphism is a weak fibration if it has property (F1), but it may not
have property (F2). Due to irreflexivity, a fibration is always a weak fibration
which is always a skew fibration. A graph homomorphism f : G → H is full if
f(v)f(w) ∈ EH implies vw ∈ EG.

The first example in Fig. 1 is a fibration, the second one is neither a fibration
nor a weak fibration.

Definition 5.3. In Fig. 3, we define sets of graph homomorphisms, all of which
are subsets of the set SkFib of skew fibrations.

Iso Isomorphisms Bij Bijections
Inj Injective Skew Fibrations Sur Surjective Skew Fibrations
FInj Full Injective Skew Fibrations FSur Full Surjective Skew Fibrations
Fib Fibrations SFib Surjective Fibrations
FFib Full Fibrations FSkFib Full Skew Fibrations
FIFib Full Injective Fibrations FSFib Full Surjective Fibrations
WFib Weak Fibrations SWFib Surjective Weak Fibrations
FWFib Full Weak Fibrations FSWFib Full Surjective Weak Fibrations

Fig. 3. Sets of graph homomorphisms

1 The attentive reader might notice that G can be seen as a functor between suitably
defined categories. However, in order to make this paper accessible to a broader
audience we decided not to use any category theoretical concepts here.
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Proposition 5.4. G : 〈S↓,�〉 → 〈2SkFib,⊆〉 is an order-preserving injection
from the set of structural proof systems into the set of subsets of cograph skew
fibrations. In particular, G({c↓,w↓}) = G({ac↓,m,w↓}) = SkFib.

Proof. We have that G(S↓) ⊆ SkFib from Proposition 4.7, and SkFib ⊆ G(S↓)
from Proposition 4.8. Order preservation is clear from the definitions of � and G.
��

In the remainder of the paper we will be study the two lattices, 〈S↓,�〉 and
〈2SkFib,⊆〉; identifying which classes of homomorphisms correspond to structural
proof systems and vice versa.

Theorem 5.5. The diagram in Fig. 4 establishes corresponding points in the
lattices 〈S↓,�〉 and 〈2SkFib,⊆〉, as explained in the caption.

{≡} : Iso
(Prop. 6.6)

{sac↓} : FSFib
(Prop. 8.11)

{ac↓} : FSur = FSWFib
(Prop. 7.4, 8.15)

? {sc↓} : SFib
(Prop. 8.9)

{c↓} : SWFib
(Prop. 8.14)

{m} :Bij
(Prop. 6.7)

{m, sc↓} {m, c↓} : Sur
(Prop. 7.5)

{sw↓} : FIFib
(Prop. 8.8)

{sw↓, sac↓} : FFib
(Prop. 8.10)

{sw↓, ac↓} : FWFib
(Prop. 8.17)

? {sw↓, sc↓} : Fib
(Prop. 8.7)

{sw↓, c↓} :WFib
(Prop. 8.16)

{sw↓,m} {sw↓,m, sc↓} {sw↓,m, c↓}

{w↓} : FInj
(Prop. 7.1)

{w↓, sac↓} {w↓, ac↓} : FSkFib
(Prop. 7.7)

? {w↓, sc↓} {w↓, c↓} : SkFib
(Prop. 5.4)

{w↓,m} : Inj
(Prop. 7.2)

{w↓,m, sc↓} {w↓,m, c↓} : SkFib
(Prop. 5.4)

Fig. 4. At each point of the cube, the referenced proposition proves that G maps from
the proof system to the homomorphism class also at that point. Question marks refer
to undefinable proof systems, and proof systems without propositions do not yet have
proven homomorphism class equivalents—we do not suspect that any of these are of
much interest.

6 Basic Correspondences

Just as we can compose derivations horizontally and vertically, we can also freely
compose graph homomorphisms in corresponding ways.
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Definition 6.1. Let f : G → H and f ′ : G′ → H ′ be graph homomorphisms.
We define their union f ∨f ′ : G∨G′ → H ∨H ′ and join f ∧f ′ : G∧G′ → H ∧H ′

such that the restrictions of each function to G or G′ are f or f ′ respectively. We
denote the identity functions as idG : G → G and empty functions as eG : ∅ → G.

In most cases, composing homomorphisms preserves their properties.

Proposition 6.2. Let G,G′,H,H ′ be cographs.

1. Any isomorphism i : G → H is a fibration and thus also a skew fibration.
2. The map w↓ = idG ∨ eH : G → G ∨ H, is a full injective fibration.
3. The map c↓ : G ∨ G → G, which acts as the identity on each copy of G, is a

full surjective fibration.
4. The map m : (G ∧ H) ∨ (G′ ∧ H ′) → (G ∨ G′) ∧ (H ∨ H ′) which acts as the

identity on G,G′,H,H ′, is a bijective skew fibration (but not a fibration).
5. If f : G → H and f ′ : G′ → H ′ are skew fibrations (respectively fibrations,

injections, surjections, bijections or full) then f ∨ f ′ : G ∨ G′ → H ∨ H ′ is a
skew fibration (respectively fibration, injection, surjection, bijection or full).

6. If f : G → H and f ′ : G′ → H ′ are skew fibrations (respectively injections,
surjections, bijections or full) then f ∧f ′ : G∧G′ → H ∧H ′ are skew fibration
(respectively injection, surjection, bijection or full). This property does not
hold for fibrations.

7. If f : G → G′ and g : G′ → H are skew fibrations (respectively fibrations,
injections, surjections, bijections or full), then g◦f : G → H is a skew fibration
(respectively fibration, injection, surjection, bijection or full).

Proof. Omitted but straightforward. ��
Before establishing the correspondences, we will first introduce some useful
results from work investigating medial as a rewriting rule.

Theorem 6.3. [25, Theorem 5.1] There is a derivation
A

{m}
B

iff the following

properties hold of G(A) = 〈VA, EA〉 and G(B) = 〈VB , EB〉.
1. VA = VB and EA ⊆ EB

2. For all a, d ∈ VA, s.t. ad ∈ EB\EA, there are b, c ∈ VA s.t.

a b

c d
⊆ G(A)

a b

c d
⊆ G(B)

Using this theorem, it can be shown that skew fibrations correspond to a further
stratified subclass of decomposed derivation.
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Definition 6.4. A derivation in the following form is said to be structurally
decomposed.

A
{m}

A′
{ac↓}

A′′

{w↓}
B

Theorem 6.5. There is a skew fibration G(A) → G(B) iff there is a structurally

decomposed derivation
A

{m,ac↓,w↓}
B

.

Proof. [25, Theorem 7.8] A refinement of Propositions 4.7 and 4.8.

Using this theorem, we can prove our first correspondences.

Proposition 6.6. G({≡}) = Iso.

Proof. Corollary of Proposition 2.9. ��
The next proposition, that the proof system {m} corresponds to bijective

skew fibrations, has been informally noted by Hughes [18, Section 9].

Proposition 6.7. G({m}) = Bij

Proof. We get inclusion from Proposition 6.2 parts 4, 5, 6 and 7. For equality,
we observe that if there is a bijective skew fibration from G(A) to G(B), then by

Theorem 6.5, we must have a structurally decomposed derivation
A

φ {m,ac↓,w↓}
B

.

Since any instance of ac↓ in φ would break injectivity, and any instance of w↓

would break surjectivity, we must have that
A

φ {m}
B

. ��

7 Restricting c↓ or w↓: Affine and Relevance Logic

Certain correspondences between proof systems and homomorphism classes have
already been established in [18,25] and [2] and others are simple corollaries of
these.

Proposition 7.1. [25, Proposition 7.6] G({w↓}) = FInj.

Proposition 7.2. G({w↓,m}) = Inj.
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Proof. Again, we get inclusion from Proposition 6.2. For equality, we observe
that if there is an (full) injective skew fibration from G(A) to G(B), then by

Theorem 6.5, we must have a structurally decomposed derivation
A

φ

B
. Since any

instance any instance of ac↓ would break injectivity, we must have that

φ =

A
φ1 {m}

A′

φ2 {w↓}
B

This gives us that G({w↓,m}) = Inj. For G({w↓}) = FInj, we observe that
if φ contains an instance of medial, then, by Theorem 6.3, there is some
(G(φ1)(v))(G(φ1)(w)) ∈ EA′ such that vw /∈ EA. Since weakenings do not alter
edges between existing vertices in the cographs, vw ∈ EB , and therefore G(φ) is
not full. ��
Remark 7.3. Allowing weakening but not contraction gives us affine logic.
Therefore, insisting that the skew fibrations of combinatorial proofs are fully
injective leads to combinatorial proofs for affine logic [18].

Proposition 7.4. [25, Proposition 7.6] G({ac↓}) = FSur = FSWFib.

Proposition 7.5. G({ac↓,m}) = Sur.

Proof. Once more, we get inclusion from Proposition 6.2. For equality, we observe
that if there is a bijective skew fibration from G(A) to G(B), then by Theorem

6.5, we must have a structurally decomposed derivation
A

φ

B
. Since any instance

of w↓ would break surjectivity, we must have if G(φ) is a surjection, then

φ =

A
φ1 {m}

A′

φ2 {ac↓}
B

This gives us G({ac↓,m}) = Sur. For G({w↓}) = FSur, we observe that
if φ contains an instance of medial, then, by Theorem6.3, there is some
(G(φ1)(v))(G(φ1)(w)) ∈ EA′ such that vw /∈ EA. Since atomic contractions
only contract vertices with no edge between them, the images of v and w under
G(φ) are distinct and (G(φ)(v))(G(φ)(w)) ∈ EB , and so G(φ) is not full. ��
Remark 7.6. Adding contraction but not weakening to MLL gives us relevance
logic. Therefore, insisting that the skew fibrations of combinatorial proofs are
surjective leads to combinatorial proofs for relevance logic [2,18].

Just leaving out medial, we get full skew fibrations.
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Proposition 7.7. G({ac↓,w↓}) = FSkFib.

Proof. Inclusion follows from Proposition 6.2. For equality, let f : G(A) → G(B)
be a full skew fibration, and consider its corresponding structurally decomposed
derivation:

φ =

A
φ1 {m}

A′

φ2 {ac↓,w↓}
B

Assume there is some G(φ)(vw) ∈ EB with vw /∈ EA′ . From the inclusion result,
we have that G(φ2) is a full skew fibration. In particular, since G(φ)(vw) ∈ EB ,
we have G(φ1)(vw) ∈ E′

A. Therefore φ1 must contain at least one medial rule. ��

8 Restricting to Shallow Inference: A Logic of Fibrations

We now come on to logics not yet studied: what happens if we do not insist on
either injectivity or surjectivity, but that the skew fibration is a graph fibration?
It is instructive to turn to the simplest possible examples that are skew fibrations
but not fibrations, in Fig. 5. The left hand derivation fails condition F1 and the
right hand derivation fails F2. In both cases, it is precisely the deepness of
the rules that breaks each condition: if the contraction or weakening was in a
disjunction with b, both would still be fibrations.

a
w↓

a ∨ c
∧ b a

c
b

a b

a ∨ a
ac↓

a
∧ b

a b

a a
b

Fig. 5. Simple examples of skewed fibrations

Definition 8.1. A path v0 . . . vn in a graph G is a sequence of vertices such
that vivi+1 ∈ EG for 0 ≤ i < n. Two vertices of a graph v, w ∈ VG are connected
if there is a path from v to w. A graph (or subgraph) G is connected if any
two vertices in G are connected. A subset V ′ ⊆ VG is connected if there is a
path between any two vertices in V ′ (the path does not need to stay in V ′). A
maximal connected subset of vertices is called a component.

Proposition 8.2. Let G be a cograph. If v and w are connected, then either
vw ∈ EG, or there is some z ∈ VG with vz, zw ∈ EG.

Proof. If the shortest path between v and w has three edges or more, then the
first four vertices in that path will form a P4 subgraph. ��
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Proposition 8.3. Let f : G → H be a fibration between cographs. If v, w ∈ G
and v �= w and f(v) = f(w), then v and w are in different components.

Proof. Assume v and w are connected, so, since f is a homomorphism, and
f(v)f(w) /∈ EG due to irreflexivity, there must be some z ∈ G with vz, zw ∈ G,
breaking the uniqueness property (F2) at z. ��
Proposition 8.4. Let f : G → H be a fibration between cographs. If v, w ∈ H
are connected, then either they are both in the image of f or both not.

Proof. We assume (WLOG) that vw ∈ H, v is in the image of f , but w is not,
the fibration property (F1) breaks at v. ��
Proposition 8.5. If f : G → H is a fibration, and H1 is a component of H,
then f−1(H1) is the union of zero or more copies of H1.

Proof. If some vertex in H1 has a non-empty pre-image in f then, by Propo-
sition 8.4, every vertex does. Let v′ ∈ H1. By Proposition 8.3, each vertex
v ∈ f−1(v′) is in a different component, and for each edge v′w′

i and vertex
v there is a unique pre-image vwi. Thus we can progressively recreate the whole
component from a single vertex. ��
Example 8.6. In Fig. 2, the c↓ in the left hand proof is shallow, but the two
instances of ac↓ in the right hand proof are not.

Proposition 8.7. G({sc↓, sw↓}) = Fib.

Proof. Inclusion from Proposition 6.2, as usual, noting that we forbid horizontal
composition by ∧. For equality, take a fibration f : G(A) → G(B). Write B as
B1 ∨ . . . ∨ Bn, where each Bi is such that G(Bi) is a component of B. Following
Proposition 8.5, let mi ≥ 0 be the number of pre-images G(Bi) has in B. We
can rearrange the Bi such that there is some k with ni = 0 iff i ≤ k. Then, we
can construct the following derivation:

φ =

Bk+1 ∨ . . . ∨ Bk+1
sc↓n

Bk+1

∨ . . . ∨ Bn ∨ . . . ∨ Bn
sc↓n

Bn
sw↓k−1

B1 ∨ . . . ∨ Bk ∨ . . . ∨ Bk+1 ∨ . . . ∨ Bn

where G(φ) = f . ��
Proposition 8.8. G({sw↓}) = FIFib.

Proposition 8.9. G({sc↓}) = SFib.

Proposition 8.10. G({sw↓, sac↓}) = FFib.

Proposition 8.11. G({sac↓}) = FSFib.

Proof. All four are straightforward corollaries of Proposition 8.7. ��
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We can adapt the above approach slightly for the case with weak fibrations.

Definition 8.12. Let f : G(A) → G(B) be a weak fibration, if C is a subformula
of B with G(C) a connected subgraph but f−1(G(C)) not a connected subgraph,
we say that C is a contracted subformula. If there is no larger subfomula of B
with this property, we say that C is a maximal contracted subformula.

Proposition 8.13. Let f : G(A) → G(B) be a surjective weak fibration, with
B = KB{C} and C a maximal contracted subformula of B. Define B′ = KB{C∨
C}. Then we can find a surjective weak fibration f ′ : G(A) → G(B′).

Proof. If G(C) is a component of G(B), then it is straightforward. If not, then
since C is a contracted subformula, f−1(G(C)) is a disconnected subgraph of
G(A). Denote the components of f−1(G(C)) as C1, . . . , Cn, and define Cl = {vl |
v ∈ C} and Cr = {vr | v ∈ C}. We have:

VA = VKA
∪

n⋃
1

(VCi
) VB = VKB

∪ VC V ′
B = VKB

∪ VCl
∪ VCr

We define the homomorphisms f ′ : G(A) → G(B) and c : G(B′) → G(B) (Fig. 6):

f ′(v) =

⎧⎨
⎩

f(v) : v ∈ VKA

vl : v ∈ VC1

vr : v ∈ VCi
, i > 1

⎫⎬
⎭ c(v) =

⎧⎨
⎩

v : v ∈ VKB

w : v ∈ VCl
, v = wl

w : v ∈ VCr
, v = wr

⎫⎬
⎭

G(A)

G(B)

f

VC1
. . . VCn

VC

G(A)

G(B )

G(B)

f

c

VC1 VC2
. . . VCn

VCl VCr

VC

Fig. 6. Constructing f ′ in Proposition 8.13

Since f is a homomorphism and a surjective weak fibration, f(Ci) = C for every
1 ≤ i ≤ n, so f = cf ′ and f ′ is surjective. We now need to show that f ′ is a
weak fibration. Let f ′(w)z ∈ EB′ , we need to show that there is some ẑ with
wẑ ∈ EA and f ′(ẑ) = z. The case where both f ′(w), z ∈ VKB

is trivial, as are
the cases where f ′(w), z ∈ VCl

or f ′(w), z ∈ VCr
.

If f ′(w) ∈ VCl
(WLOG) and z ∈ VKB′ , then we have f(w)z ∈ EB , and since

f is a weak fibration, we have ẑ with f(ẑ) = z and wẑ ∈ EA. As z ∈ VKB
, we

also have that f ′(ẑ) = z.
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Finally, if f ′(w) ∈ VKB′ and z ∈ VCl
(WLOG), then we have f(w)c(z) ∈ EB .

As f is a weak fibration, then we have some ẑi ∈ Ci with f(ẑi) = z, zi ∈ Ci

and ẑiw ∈ EA. If i = 1 we are done. If not, we need to show that ẑ1w ∈
EA. Since C is maximal, we must have that f−1(VC ∪ {f(w)} =

⋃n
1 (VCi

) ∪
f−1(f(w)) is connected. Therefore, by Proposition 8.2, since ẑ1ẑi /∈ EA we must
have ẑ1w

′, w′ẑi, for some w′ where f(w′) = f(w). But then, for ẑ1, ẑi, w, w′ not
to be a P4 subgraph, we need ẑ1ẑi, ww′ or ẑ1w to be in VA. Since f(w) = f(w′)
and f(ẑ1) = f(ẑi), we must have ẑ1w ∈ EA. Therefore f ′ is a weak fibration. ��
Proposition 8.14. G({c↓}) = SWFib.

Proof. Inclusion from Proposition 6.2, noting that horizontal composition of
derivations only violates condition (F1) if the derivation contains weakenings.
For equality, consider a surjectve weak fibration f : G(A) → G(B). We build the

derivation
A

{c↓}
B

working up by contracting on maximal contracted subformulae

of B using Proposition 8.13. ��
We can now prove a simple but purely graph theoretic result using the cor-

respondence with structural proof systems.

Proposition 8.15. Every full surjective skew fibration is a weak fibration, i.e.
FSur = FSWFib.

Proof. By definition FSWFib ⊆ FSur. Since G(ac↓) = FSur, {ac↓} � {c↓} and
G(c↓) = SWFib, we must have that FSur ⊆ SWFib. ��
Proposition 8.16. G({sw↓, c↓}) = WFib.

Proposition 8.17. G({sw↓, ac↓}) = FWFib.

Proof. Simple corollaries of Propositions 7.4, 8.7 and 8.14. ��

9 Conclusion

Cographs can describe formulas without using a syntax tree. Even though this
concept has been known for more than 50 years, these formulas without syntax
have been used for proof theoretical considerations first by Retoré [20–22] and
Guglielmi [13]. Hughes [17] provided the next natural step by studying combina-
torial proofs as proofs without syntax, as they describe proofs without the syntax
of a proof tree. In this paper we have generalized this further to proof systems
without syntax, using graph homomorphism classes instead of inference rules.
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Summarizing the main theorem leads to the following slogans relating homo-
morphism classes and proof systems:

No Weakening = Surjectivity
No Contraction = Injectivity

Atomic Contraction = Fullness
Shallow Inference = Fibrations

Deep Inference = Skew Fibrations

An important line of future research is the extension of these results to modal
logics [3] and first-order logic [19].
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20. Retoré, C.: Pomset logic: a non-commutative extension of classical linear logic. In:

de Groote, P., Roger Hindley, J. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 300–318.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62688-3 43
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Abstract. Hybrid-dynamic first-order logic is a kind of modal logic
obtained by enriching many-sorted first-order logic with features that are
common to hybrid and to dynamic logics. This provides us with a logical
system with an increased expressive power thanks to a number of distinc-
tive attributes: first, the possible worlds of Kripke structures, as well as
the nominals used to identify them, are endowed with an algebraic struc-
ture; second, we distinguish between rigid symbols, which have the same
interpretation across possible worlds – and thus provide support for the
standard rigid quantification in modal logic – and flexible symbols, whose
interpretation may vary; third, we use modal operators over dynamic-
logic actions, which are defined as regular expressions over binary nom-
inal relations. In this context, we propose a general notion of hybrid-
dynamic Horn clause and develop a proof calculus for the Horn-clause
fragment of hybrid-dynamic first-order logic. We investigate soundness
and compactness properties for the syntactic entailment system that cor-
responds to this proof calculus, and prove a Birkhoff-completeness result
for hybrid-dynamic first-order logic.

1 Introduction

The dynamic-reconfiguration paradigm is a most promising approach in the
development of highly complex and integrated systems of interacting ‘compo-
nents’, which now often evolve dynamically, at run time, in response to internal
or external stimuli. More than ever, we are witnessing a continuous increase in the
number of applications with reconfigurable features, many of which have aspects
that are safety- or security-critical. This calls for suitable formal-specification
and verification technologies, and there is already a significant body of research
on this topic; hybrid(ized) logics [2,5,17], first-order dynamic logic [15], and
modal μ-calculus [14] are three prominent examples, among many others.
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The application domain of the work reported in this contribution refers to a
broad range of reconfigurable systems whose states or configurations can be pre-
sented explicitly, based on some kind of context-independent data types, and for
which we distinguish the computations performed at the local/configuration level
from the dynamic evolution of the configurations. This suggests a two-layered
approach to the design and analysis of reconfigurable systems, involving a local
view, which amounts to describing the structural properties of configurations,
and a global view, which corresponds to a specialized language for specifying
and reasoning about the way system configurations evolve.

In this paper, we develop sound and complete proof calculi for a new modal
logic (recently proposed in [11]) that provides support for the reconfiguration
paradigm. The logic, named hybrid-dynamic first-order logic, is obtained by
enriching first-order logic (FOL) – regarded as a parameter for the whole con-
struction – with both hybrid and dynamic features. This means that we model
reconfigurable systems as Kripke structures (or transition systems), where:

– from a local perspective, we consider a dedicated FOL-signature for configu-
rations, and hence capture configurations as first-order structures; and

– from a global perspective, we consider a second FOL-signature for the possible
worlds of the Kripke structure; the terms over that signature are nominals
used to identify configurations, and the binary nominal relations are regarded
as modalities, which capture the transitions between configurations.

Sentences are build from equations and relational atoms over the two first-order
signatures mentioned above (one pertaining to data, and the other to possible
worlds) by using Boolean connectives, quantifiers, standard hybrid-logic opera-
tors such as retrieve and store, and dynamic-logic operators such as necessity
over structured actions, which are defined as regular expressions over modalities.
In practice, actions are used to capture specific patterns of reconfigurability.

The construction is reminiscent of the hybridization of institutions from [7,17]
and of the hybrid-dynamic logics presented in [1,16], but it departs fundamen-
tally from any of those studies due to the fact that the possible worlds of the
Kripke structures that we consider here have an algebraic structure. This spe-
cial feature of the logic that we put forward is extremely important for dealing
with reconfigurable systems whose states are obtained from initial configurations
by applying constructor operations; see, e.g. [12]. In this context, we advance a
general notion of Horn clause, which allows the use of implications, universal
quantifiers, as well as the hybrid- and dynamic-logic operators listed above.

Besides the fact that it relies on an algebraic structure for possible worlds, the
notion of Horn clause that we use in this paper also allows structured actions for
(a) the conditions of logical implication, and (b) the arguments of the necessity
operator. This feature distinguishes the present work from [8], where the first
author reported a Birkhoff completeness result for hybrid logics. That is, the
Horn clauses that we study in this paper are strictly, and significantly, more
expressive than those considered before; this poses a series of new challenges
in developing a completeness result. We show that any set of Horn clauses has
an initial model despite the fact that the structured actions alone do not have
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this property. In addition, we provide proof rules to reason formally about the
properties of those Kripke structures that are specified using Horn clauses. To
conclude, the main result of the paper is a completeness theorem for the Horn-
clause fragment of hybrid-dynamic first-order logic.

A brief comparison with the work recently reported in [11] is also in order:
both papers deal with properties of hybrid-dynamic first-order logic (with [11]
being the contribution in which we introduced the logic); and in both papers we
examine Horn clauses; but the results that we develop are complementary: in [11],
we focused on an initiality result and on Herbrand’s theorem, whereas here we
advance proof calculi for the logic. This latter endeavour is much more complex,
because it deals with syntactic entailment instead of semantic entailment.

The paper is structured as follows: Sect. 2 is devoted to the definition of
hybrid-dynamic first-order logic. Then, in Sect. 3, we discuss entailment sys-
tems and present the problem we aim to solve. Once the preliminaries are set,
we proceed in a layered fashion, in the sense that we consider progressively
more complex entailment relations, which are adequate for different fragments
of hybrid-dynamic first-order logic. In Sect. 4 we study completeness for the
atomic fragment of the logic. Building on that result, in Sect. 5 we develop a
quasi-completeness result for entailments where the left-hand side is an arbi-
trary set of Horn clauses, but the right-hand side is only an atomic sentence
or an action relation. Finally, in Sect. 6, we generalize completeness to the full
Horn-clause fragment of hybrid-dynamic first-order logic. Proofs of the lemmas
and propositions that support the main results can be found in [10].

2 Hybrid-Dynamic First-Order Logic

The hybrid-dynamic first-order logic with user-defined sharing1 (HDFOLS) that
we examine in this work is based on ideas that are similar to those used to define
hybrid first-order logic [2] and hybrid first-order logic with rigid symbols [5,7].

We present HDFOLS from an institutional perspective [13], meaning that we
focus on signatures and signature morphisms (though, for the purpose of this
paper, inclusions would suffice), Kripke structures and homomorphisms, sen-
tences, and the (local) satisfaction relation and condition that relate the syntax
and the semantics of the logic. However, other than the notations used, the text
requires no prior knowledge of institution theory, and should be accessible to
readers with a general background in modal logic and first-order model theory.
In order to establish some of the notations used in the rest of the paper, we
briefly recall the notion of (many-sorted) first-order signature: a FOL-signature
is a triple (S, F, P ), where S is a set of sorts, F is a family {Far→s}ar∈S∗,s∈S of
sets of operation symbols, indexed by arities ar ∈ S∗ and sorts s ∈ S, and P is
family {Par}ar∈S∗ of sets of relation symbols, indexed by arities ar ∈ S∗.

1 This last attribute is meant to indicate the fact that users have control over the
symbols that should be interpreted the same across the worlds of a Kripke structure.
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Signatures. The signatures of HDFOLS are tuples Δ = (Σn, Σr ⊆ Σ), where:

1. Σn = (Sn, F n, P n) is a FOL-signature of nominals such that Sn = {�},
2. Σr = (Sr, F r, P r) is a FOL-signature of so-called rigid symbols, and
3. Σ = (S, F, P ) is a FOL-signature of both rigid and flexible symbols.

We let Sf = S \ Sr, and F f and P f be the sub-families of F and P that consist
of flexible symbols (obtained by removing rigid symbols). In general, we denote
by Δ or Δ′ signatures of the form (Σn, Σr ⊆ Σ) or (Σ′n, Σ′r ⊆ Σ′), respectively.

Signature Morphisms. A signature morphism ϕ : Δ → Δ′ consists of a pair of
FOL-signature morphisms ϕn : Σn → Σ′n and ϕ : Σ → Σ′ such that ϕ(Σr) ⊆ Σ′r.

Kripke Structures. The models of a signature Δ are pairs (W,M), where:

1. W is a Σn-model, for which we denote by |W | the carrier set of the sort �;
2. M = {Mw}w∈|W | is a family of Σ-models, indexed by worlds w ∈ |W |, such

that the rigid symbols2 have the same interpretation across possible worlds;
i.e., Mw1,ς = Mw2,ς for all worlds w1, w2 ∈ |W | and all symbols ς in Σr.

Kripke Homomorphisms. A morphism h : (W,M) → (W ′,M ′) is also a pair
(W h→ W ′, {Mw

hw→ M ′
h(w)}w∈|W |) consisting of first-order homomorphisms such

that hw1,s = hw2,s for all possible worlds w1, w2 ∈ |W | and all rigid sorts s ∈ Sr.

Actions. As in dynamic logic, HDFOLS supports structured actions obtained
from atoms using sequential composition, union, and iteration. The set An of
actions over Σn is defined in an inductive fashion, according to the grammar:
a ::= λ | a ; a | a ∪ a | a∗, where λ ∈ P n

�� is a binary nominal relation. Given a
natural number n > 0, we denote by an the composition a ; · · · ; a (where the
action a occurs n times); and we let a0(k1, k2) denote the equation k1 = k2.

Actions are interpreted in Kripke structures as accessibility relations between
possible worlds. This is done by extending the interpretation of binary modal-
ities (from P n

��): Wa1;a2 = Wa1 ; Wa2 (diagrammatic composition of relations),
Wa1∪a2 = Wa1 ∪ Wa2 (union), and Wa∗ = (Wa)∗ (reflexive & transitive closure).

Hybrid Terms. For every Σn-model W , the family TW = {TW
w }w∈|W | of sets of

hybrid terms over W is defined inductively according to the following rules:

(1)
w0 ∈ |W | τ ∈ TW

w0,ar

σ(τ) ∈ TW
w,s

[ σ ∈ F r
ar→s ]

(2)
w0 ∈ |W | τ ∈ TW

w0,ar

σ(w0; τ) ∈ TW
w,s

[ σ ∈ F f
ar→s, s ∈ Sr ]

(3)
w ∈ |W | τ ∈ TW

w,ar

σ(w; τ) ∈ TW
w,s

[ σ ∈ F f
ar→s, s ∈ Sf ]

Notice that flexible operation symbols receive a possible world w ∈ |W | as a
parameter, while rigid operation symbols keep their initial arity. It is easy to
check that the hybrid terms of rigid sorts are shared across the worlds.

Fact 1. TW
w1,s = TW

w2,s for all possible worlds w1, w2 ∈ |W | and all sorts s ∈ Sr.

2 By symbol we usually refer to sorts as well, not only to operation/relation symbols.
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Given a world w ∈ |W |, the S-sorted set TW
w can be regarded as a Σ-model by

interpreting every rigid operation symbol σ : ar → s as the function that maps
(tuples of) hybrid terms τ ∈ TW

w,ar to σ(τ) ∈ TW
w,s, every flexible operation symbol

σ : ar → s as the function that maps hybrid terms τ ∈ TW
w,ar to σ(w; τ) ∈ TW

w,s,
and every relation symbol (either rigid or flexible) as the empty set.

Lemma 2 (Hybrid-term model and its freeness). For every Σn-model
W , (W,TW ) is a Δ-model. Moreover, for any Δ-model (W ′,M ′) and first-
order Σn-homomorphism f : W → W ′, there exists a unique Δ-homomorphism
h : (W,TW ) → (W ′,M ′) that agrees with f on W . ��

Standard Term Model. When W is the first-order term model TΣn , by Lemma 2
we obtain the standard hybrid-term model over Δ, denoted (TΣn , {TΔ

k }k∈TΣn ).
The initiality of the standard term model provides a straightforward inter-

pretation of hybrid terms in Δ-models (W,M): for every hybrid term t ∈ TΔ
k ,

we denote by (W,M)t or Mh(k),t the image of t under the function hk, where h
is the unique homomorphism (TΣn , TΔ) → (W,M).

Reachable Hybrid-Term Models. We say that a first-order Σn-model W is reach-
able if the unique homomorphism TΣn → W is surjective. In a similar manner,
for HDFOLS, we say that a Δ-model (W,M) is reachable if the unique homomor-
phism h : (TΣn , TΔ) → (W,M) is (componentwise) surjective. In order to avoid
naming the homomorphism, we make the following notation.

Notation 3. If a Δ-model (W,M) is reachable, then we may denote by [ ] the
unique homomorphism (TΣn , TΔ) → (W,M) given by the initiality of (TΣn , TΔ).

Proposition 4 (Reachability of hybrid term models). If W is a reach-
able first-order model of Σn, then (W,TW ) is reachable for the signature Δ. ��

Sentences. The atomic sentences ρ defined over a signature Δ are given by:

ρ ::= k1 = k2 | λ(k′) | t1 =k,s t2 | �(t) | π(k; t)

where k, ki ∈ TΣn are nominal terms, k′ is a tuple of terms corresponding to the
arity of λ ∈ P n, ti ∈ TΔ

k,s and t ∈ TΔ
k,ar are (tuples of) hybrid terms,3 � ∈ P r

ar ,
and π ∈ P f

ar . We refer to these sentences, in order, as nominal equations, nominal
relations, hybrid equations, rigid hybrid relations, and non-rigid/flexible hybrid
relations, respectively. When there is no danger of confusion, we may drop one
or both subscripts k, s from the notation t1 =k,s t2. Full sentences over Δ are
built from atomic sentences according to the following grammar:

γ ::= ρ | a(k1, k2) | @k γ | ¬γ | ∧
Γ | ↓z · γ′ | ∀X · γ′′ | [a]γ | (o) γ

where k, ki ∈ TΣn are nominal terms, a ∈ An is an action, Γ is a finite set
of sentences, z is a nominal variable, γ′ is a sentence over the signature Δ[z]

3 Note that, by Fact 1, if the arity ar is rigid, then the sets {T Δ
k,ar}k∈TΣn coincide.
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obtained by adding z as a new constant to F n, X is a set of nominal and/or
rigid variables, γ′′ is a a sentence over the signature Δ[X] obtained by adding the
elements of X as new constants to F n and F r, and o ∈ F n

�→�. Other than the first
two kinds of sentences (atoms and action relations), we refer to the sentence-
building operators, in order, as retrieve, negation, conjunction, store, universal
quantification, necessity, and next, respectively. Notice that necessity and next
are parameterized by actions and by unary nominal operations, respectively.

We denote by SenHDFOLS(Δ) the set of all HDFOLS-sentences over Δ.

The Local Satisfaction Relation. Given a Δ-model (W,M) and a world w ∈ |W |,
we define the satisfaction of Δ-sentences at w by structural induction as follows:

1. For atomic sentences:
– (W,M) �w k1 = k2 iff Wk1 = Wk2 for all nominal equations k1 = k2;
– (W,M) �w λ(k) iff Wk ∈ Wλ for all nominal relations λ(k);
– (W,M) �w t1 =k t2 iff MWk,t1 = MWk,t2 for all hybrid equations t1 =k t2;
– (W,M) �w �(t) iff (W,M)t ∈ Mw,� for all rigid relations �(t);
– (W,M) �w π(k; t) iff (W,M)t ∈ MWk,π for flexible relations π(k; t).

2. For full sentences:
– (W,M) �w a(k1, k2) iff (Wk1 ,Wk2) ∈ Wa for all action relations a(k1, k2);
– (W,M) �w @k γ iff (W,M) �w′

γ, where w′ = Wk;
– (W,M) �w ¬γ iff (W,M) �

w γ;
– (W,M) �w

∧
Γ iff (W,M) �w γ for all γ ∈ Γ ;

– (W,M) �w ↓z · γ iff (W,M)z←w �w γ, where (W,M)z←w is the unique
Δ[z]-expansion4 of (W,M) that interprets the variable z as w;

– (W,M) �w ∀X · γ iff (W ′,M ′) �w γ for all Δ[X]-expansion6 (W ′,M ′) of
(W,M);

– (W,M) �w [a]γ iff (W,M) �w′
γ for all w′ ∈ |W | such that (w,w′) ∈ Wa;

– (W,M) �w (o) γ iff (W,M) �w′
γ, where w′ = Wo(w).

Fact 5. The following two properties can be checked with ease:

1. The satisfaction of atoms and of action relations ρ does not depend on the
possible worlds: (W,M) �w ρ iff (W,M) �w′

ρ for all w,w′ ∈ |W |.
2. The satisfaction of atoms and of action relations ρ is preserved by homomor-

phisms: if (W,M) � ρ and h : (W,M) → (W ′,M ′) then (W ′,M ′) � ρ.

To state the satisfaction condition – and thus finalize the presentation of
HDFOLS – let us first notice that every signature morphism ϕ : Δ → Δ′ induces
appropriate translations of sentences and reductions of models, as follows: every
Δ-sentence γ is translated to a Δ′-sentence ϕ(γ) by replacing (usually in an
inductive manner) the symbols in Δ with symbols from Δ′ according to ϕ; and
every Δ′-model (W ′,M ′) is reduced to a Δ-model (W ′,M ′)�ϕ that interprets
every symbol x in Δ as (W ′,M ′)ϕ(x). When ϕ is an inclusion, we usually denote
(W ′,M ′)�ϕ by (W ′,M ′)�Δ – in this case, the model reduct simply forgets the
interpretation of those symbols in Δ′ that do not belong to Δ.
4 In general, by a Δ[X]-expansion of (W, M) we understand a Δ[X]-model (W ′, M ′)

that interprets all symbols in Δ in the same way as (W, M).
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The following satisfaction condition can be proved by induction on the struc-
ture of Δ-sentences. Its argument is essentially identical to those developed for
several other variants of hybrid logic presented in the literature (see, e.g. [5]).

Proposition 6 (Local satisfaction condition for signature morphisms).
For every signature morphism ϕ : Δ → Δ′, Δ′-model (W ′,M ′), world w′ ∈ |W ′|,
and Δ-sentence γ, we have: (W ′,M ′) �w ϕ(γ) iff (W ′,M ′)�ϕ �w γ.5 ��

Substitutions. Consider two signature extensions Δ[X] and Δ[Y ] with sets of
variables, and let X = Xn ∪ X r and Y = Y n ∪ Y r be the partitions of X and Y
into sets of nominal variables and rigid variables. A Δ-substitution θ : X → Y

consists of a pair of functions θn : Xn → TΣn[Y n] and θr : X r → T
Δ[Y ]
k , where k is

a nominal term – note that, since the sorts of the hybrid variables are rigid, by
Fact 1, it does not matter which nominal term k we choose.

Similarly to signature morphisms, Δ-substitutions θ : X → Y determine
translations of Δ[X]-sentences into Δ[Y ]-sentences, and reductions of Δ[Y ]-
models to Δ[X]-models. The proofs of the next two propositions are similar
to the ones given in [9] for hybrid substitutions.

Proposition 7 (Local satisfaction condition for substitutions). For
every Δ-substitution θ : X → Y , every Δ[Y ]-model (W,M), world w ∈ |W |,
and Δ[X]-sentence γ, we have: (W,M) �w θ(γ) iff (W,M)�θ �w γ. ��
Fact 8. Let θz←k : {z} → ∅ be the substitution that maps the nominal variable
z to the term k. Then (W,M)�θz←k

= (W,M)z←k for every model (W,M).

Propositions 7 and 9 (below) have an important technical role in the Birkhoff
completeness proofs presented in the later sections of the paper.

Proposition 9 (Subst. generated by expansions of reachable models).
If (W,M) is reachable, then for every Δ[X]-expansion (W ′,M ′) of (W,M) there
exists a Δ-substitution θ : X → ∅ such that (W,M)�θ = (W ′,M ′). ��

Expressive Power. Fact 5 highlights one of the main distinguishing features of
HDFOLS: the satisfaction of atomic sentences, whether they involve flexible sym-
bols or not, does not depend on the possible world where the sentences are evalu-
ated. This contrasts the standard approach in hybrid logic, where each nominal
is regarded as an atomic sentence satisfied precisely at the world that corre-
sponds to the interpretation of that nominal. In HDFOLS, the dependence of the
satisfaction of sentences on possible worlds is explicit rather than implicit, and
is achieved through the store operator. Following the lines of [9, Section 4.3],
one can show that even without considering action relations, HDFOLS is strictly
more expressive than other standard hybrid logics constructed from the same
base logic such as the hybrid first-order logic with rigid symbols [5,7].

5 By the definition of reducts, (W ′, M ′) and (W ′, M ′)�ϕ have the same possible worlds.
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3 Entailment

Let Γ and Γ ′ be two sets of sentences over a signature Δ. We say that Γ
semantically entails Γ ′, or that Γ ′ is a semantic consequence of Γ , and we write
Γ �Δ Γ ′, when every Δ-model that satisfies Γ satisfies Γ ′ too. When the set
Γ ′ is a singleton {γ}, we simplify the notation to Γ �Δ γ. Moreover, we usually
drop the subscript Δ when the signature can be easily inferred from the context.

Horn Clauses. The problem we propose to address in this paper is that of finding
a suitable syntactic characterisation of entailments of the form Γ � γ, where both
Γ and γ correspond to the Horn-clause fragment of HDFOLS.

By Horn clause, we mean a sentence obtained from atomic sentences by
repeated applications of the following sentence-building operators, in any order:
(a) retrieve (b) implication such that the condition is a conjunction of atomic
sentences or action relations, (c) store, (d) universal quantification, (e) necessity,
and (f) next. We denote by HDCLS the Horn-clause fragment of HDFOLS, and
by SenHDCLS(Δ) the set of all Horn clauses over the signature Δ.

In the next sections, we develop a series of syntactic entailment relations,
whose corresponding entailments are denoted by Γ 
 γ. All of them are sound,
in the sense that Γ 
 γ implies Γ � γ; and some are also compact, which means
that, whenever Γ 
 γ, there exists a finite subset Γf ⊆ Γ such that Γf 
 γ.

As in previous studies on Birkhoff completeness [4,8], we follow a layered
approach. This means that we distinguish the atomic layer of HDCLS from the
layer of general Horn clauses. The former is intrinsically dependent on the details
of HDCLS, whereas the latter is in essence logic-independent, and can easily be
adapted to other hybrid-dynamic logics, not necessarily based on first-order logic.
The same ideas apply, for example, to hybrid-dynamic propositional logic.

Nominal Replacement. In order to capture syntactically relations between hybrid
terms that correspond to different nominals, we introduce a way to replace nom-
inals with nominals within hybrid terms. Given two nominals k1 and k2, let
f : TΣn → TΣn be the function that maps k1 to k2 and leaves the other nominals
unchanged. We define the family {δk1/k2,k : TΔ

k → TΔ
f(k)}k∈TΣn by induction:

1. δk1/k2,k(σ(t)) = σ(δk1/k2,k0(t)) when σ ∈ F r
ar→s and t ∈ TΔ

k0,ar ;
2. δk1/k2,k(σ(k0; t)) = σ(f(k0); δk1/k2,k0(t)) when σ ∈ F f

ar→s, s ∈ Sr, t ∈ TΔ
k0,ar ;

3. δk1/k2,k(σ(k; t)) = σ(f(k); δk1/k2,k(t)) when σ ∈ F f
ar→s, s ∈ Sf, and t ∈ TΔ

k,ar .

We usually drop the subscript k, and denote the map δk1/k2,k simply by δk1/k2 .

4 Atomic Completeness

In this section, we focus on a completeness result for the atomic fragment of
HDCLS. There are two major advancements that distinguish the work presented
herein from previous contributions (see, e.g. [8]): (a) the state space of every
Kripke model is equipped with a full algebraic structure, and (b) the signatures
can have flexible sorts – instead of being restricted to rigid sorts only.
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To start, let 
 be the syntactic entailment relation generated by the rules
listed in Fig. 1. The following soundness and compactness result can be proved
in essentially the same way as in [8]. In particular, the compactness property
follows from the fact that all rules have a finite number of premises.

Proposition 10 (Atomic soundness & compactness). The atomic syntac-
tic entailment relation 
 is both sound and compact. ��

As it is often the case, completeness is much more difficult to prove, and
relies on a number of preliminary results. For the developments presented in this
section, we make use of a specific notion of congruence on a Kripke structure.

Fig. 1. Proof rules for atomic sentences

Definition 11 (Congruence). Let Δ = (Σn, Σr ⊆ Σ) be a HDCLS-signature,
and (W,M) a Kripke structure for it. A Δ-congruence on (W,M) is a family
≡ = {≡w}w∈|W | of Σ-congruences ≡w on Mw, for each possible world w ∈ |W |,
such that (≡w1,s) = (≡w2,s) for all worlds w1, w2 ∈ |W | and rigid sorts s ∈ Sr.

The next construction is a straightforward generalization of its first-order
counterpart, and has been studied in several other papers in the literature (see,
e.g. [8]). For that reason, we include it for further reference without a proof.

Proposition 12 (Quotient model). Every Δ-congruence ≡ on (W,M) deter-
mines a quotient-model homomorphism ( /≡) : (W,M) → (W,M/≡) that acts
as an identity on W , and for which (M/≡)w is the quotient Σ-model Mw/≡w.
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Moreover, ( /≡) has the following universal property: for any Kripke homo-
morphism h : (W,M) → (W ′,M ′) such that ≡ ⊆ ker(h),6 there exists a unique
homomorphism h′ : (W,M/≡) → (W ′,M ′) such that ( /≡) ; h′ = h.7 ��

We prove the atomic completeness of HDCLS in two steps: first, for nominal
equations only; then, for arbitrary atomic sentences (both nominal and hybrid).
According to the lemma below, every set of nominal equations Γ n admits a ‘least’
Kripke structure (W n,Mn) that encapsulates the formal deduction of equations.

Lemma 13 (Least Kripke structure of a set of nominal equations). For
every set Γ n of nominal equations over a signature Δ, there exists a reachable
initial model (W n,Mn) such that Γ n 
 ρ if and only if (W n,Mn) � ρ, for all
nominal or hybrid equations ρ over the signature Δ. ��

The following proposition shows that a set Γ of (nominal or hybrid) equations
generates a congruence on a reachable Kripke structure (W,M) when Γ entails
all the equations satisfied by (W,M). In particular, the result holds when Γ
includes the set of all equations that are satisfied by (W,M).

Proposition 14 (Congruence generated by a set of equations). Con-
sider a set Γ of equations over a signature Δ, and a reachable Δ-model (W,M)
such that Γ 
 ρ for all equations ρ satisfied by (W,M). For all w ∈ |W |, let
≡w be the relation on Mw defined by τ1 ≡w τ2 whenever Γ 
 t1 =k t2 for some
k ∈ TΣn and t1, t2 ∈ TΔ

k such that w = Wk, and τi = Mw,ti
. Then:

P1. [t1] ≡[k] [t2] iff Γ 
 t1 =k t2, for all k ∈ TΣn and t1, t2 ∈ TΔ
k ;

P2. ≡ is a Δ-congruence on (W,M). ��
Now we can finally prove the completeness result for atomic sentences.

Theorem 15 (Atomic completeness). Every set Γ of atomic sentences over
a signature Δ has a reachable initial model (WΓ ,MΓ ) such that Γ 
 ρ if and
only if (WΓ ,MΓ ) � ρ, for all atomic sentences ρ over Δ.

Proof. Let Γ n be the subset of nominal equations in Γ . By Lemma 13, there
exists a initial model (W n,Mn) of Γ n such that Γ n 
 ρ iff (W n,Mn) � ρ for all
equations ρ over Δ. Then (W n,Mn) satisfies the hypotheses of Proposition 14
with respect to the set of all (nominal or hybrid) equations in Γ . It follows that
the relation ≡ defined by [t1] ≡[k] [t2] whenever Γ 
 t1 =k t2, for all nominals k
and all terms t1, t2 ∈ TΔ

k,s, is a congruence on (W n,Mn). We define (WΓ ,MΓ )
as the model obtained from (W n,Mn/≡) by interpreting:

– each nominal relation symbol λ ∈ P n as WΓ
λ = {[k] ∈ |W n| | Γ 
 λ(k)};

– each relation symbol � ∈ P r as MΓ
[k],� = {[t]/≡[k] ∈ MΓ

[k] | Γ 
 �(t)};
– each relation symbol π ∈ P f as MΓ

[k],π = {[t]/≡[k] ∈ MΓ
[k] | Γ 
 π(k; t)}.

6 This means that hw,s(a1) = hw,s(a2) for all a1, a2 ∈ Mw,s such that a1 ≡w,s a2.
7 Note that we use the diagrammatic notation for function composition.
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Note that the interpretations of � ∈ P r and π ∈ P f are independent of the
choice of the nominal k. For example, for flexible relation symbols, if [k] = [k′]
then Γ 
 k = k′; therefore, if Γ 
 π(k; t), we also have Γ 
 π(k′; t′) by (Ph),
where t′ = δk/k′(t) is a tuple of hybrid terms that satisfies [t] ≡[k] [t′].

The fact that (WΓ ,MΓ ) is a reachable model of Γ follows in a straightfor-
ward manner by construction. Therefore, we focus on the initiality property. Let
(W,M) be a Δ-model that satisfies Γ . In particular, (W,M) satisfies all nominal
equations in Γ . By Lemma 13, we deduce that there exists a unique homomor-
phism h : (W n,Mn) → (W,M). We also know that (W,M) satisfies all hybrid
equations in Γ , which implies that ≡ ⊆ ker(h). By Proposition 12, this means
that there exists a unique Kripke homomorphism h′ : (W n,Mn/≡) → (W,M)
such that ( /≡) ; h′ = h. To finalize this part of the proof, we need to ensure
that h′ preserves the interpretation of all relation symbols (nominal or hybrid)
satisfied by (WΓ ,MΓ ). We only consider the case of flexible relation symbols.
Nominal relations and rigid relations can be treated in a similar manner. Suppose
π ∈ P f

ar and τ ∈ MΓ
[k],π, for an arbitrary but fixed nominal k ∈ TΣn . Then:

1 Γ � π(k; t) for some tuple of terms
t ∈ T Δ

k,ar such that τ = [t]/≡[k]

by the definition of MΓ
[k],π

2 Γ � π(k; t) by Proposition 10

3 (W, M) � π(k; t) since (W, M) � Γ

4 Mw,t ∈ Mw,π for w = Wk by the definition of �
5 h′(τ) ∈ Mw,π since h′(τ) = h′([t]/≡[k]) = Mw,t

Lastly, we show that Γ 
 ρ iff (WΓ ,MΓ ) � ρ, for all atomic sentences ρ. The
‘only if’ part is straightforward since (WΓ ,MΓ ) is a model of Γ . For the ‘if’ part,
we proceed by case analysis on the structure of ρ. The more interesting cases
are those of relational atoms. Suppose, for instance, that (WΓ ,MΓ ) � π(k; t),
where π ∈ P f

ar , k ∈ TΣn , and t ∈ TΔ
k,ar . If follows that:

1 [t]/≡[k] ∈ MΓ
[k],π by the definition of �

2 Γ � π(k; t′) for some tuple of terms
t′ ∈ T Δ

k,ar such that [t′] ≡[k] [t]
by the definition of MΓ

[k],π

3 Γ � t =k,ar t′ by Proposition 14

4 Γ � π(k; t) by the proof rule (Pf) ��

5 Quasi-completeness

The main contribution in this section is the construction, for any set of Horn
clauses, of an initial model that encapsulates the syntactic deduction of atomic
sentences and action relations. An initiality result is obtained in [11] as well, but
in that paper it is based on the semantic entailment. In contrast, the present
result is based on syntactic deduction, which requires a higher level of complex-
ity, and it is developed in the context of a modular approach to completeness.
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Fig. 2. Proof rules for action relations

Fig. 3. Proof rules for Horn clauses

This means that the present results are applicable to other modal logics, where
some of the sentence-building operators considered here may be disregarded.

We focus on entailments of the form Γ � ρ, where Γ is an arbitrary set of
Horn clauses, and ρ is either an atomic sentence, or an action relation. To that
end, let 
 be the syntactic entailment relation generated by the rules listed in
Figs. 1, 2 and 3. The soundness and compactness result presented in Sect. 4 can
be generalized with ease for the entailment relation 
 that we consider here.

Proposition 16. The entailment relation 
 is sound and compact. ��
Fact 17 (Retrieve redundancies). For all nominals k1, k2 ∈ TΣn and all
sentences γ over a signature Δ, the sentences @k1 @k2 γ and @k2 γ are both
syntactically and semantically equivalent. Moreover, if ρ is atomic or an action
relation, then @kn

ρ is syntactically and semantically equivalent to ρ.

To prove that 
 is also complete, we first extend Theorem 15 to entailments
Γ 
 ρ for which Γ is a set of atoms and ρ is either atomic or an action relation.

Proposition 18 (Extending atomic completeness). Let Γ be a set of
atomic sentences over a signature Δ, and (WΓ ,MΓ ) a reachable initial model
of Γ as in Theorem15. Then Γ 
 ρ if and only if (WΓ ,MΓ ) � ρ, for all atomic
sentences or action relations ρ over the signature Δ. ��

The result below shows that, in order to obtain an initial model of a set Γ
of clauses, it suffices to consider the initial model (WΓ0,MΓ0) of the set Γ0 of
atoms entailed by Γ . Moreover, (WΓ0 ,MΓ0) satisfies all clauses entailed by Γ .
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Theorem 19 (Initiality preserves formal deductions). Let Γ be a set of
clauses over a signature Δ, Γ0 = {ρ ∈ SenHDCLS(Δ) | Γ 
 ρ & ρ is atomic},
and (WΓ0 ,MΓ0) a reachable initial model of Γ0 as in Theorem15. Then Γ 
 γ
implies (WΓ0 ,MΓ0) � γ for all Horn clauses γ over Δ.

Proof. Since the model (WΓ0 ,MΓ0) is reachable, it suffices to prove that Γ 

@k γ implies (WΓ0 ,MΓ0) � @k γ for all nominals k ∈ TΣn and Horn clauses
γ ∈ SenHDCLS(Δ). We proceed by structural induction on γ.

For the base case, assume Γ 
 @k γ, where γ is atomic. It follows that:

1 Γ � γ by (Ret0) in Figure 1

2 γ ∈ Γ0 by the definition of Γ0

3 Γ0 � γ by the monotonicity of �
4 (W Γ0 , MΓ0) � γ by Theorem 15

5 (W Γ0 , MΓ0) � @k γ by Fact 17

For the induction step, we proceed by case analysis on the topmost sentence-
building operator of γ. We only present the case corresponding to the necessity
operator. Proofs for the remaining cases can be found in [10].

[ Γ 
 @k [a]γ ] Let w = WΓ0
k . We want to show that (WΓ0 ,MΓ0) �w′

γ for
all possible worlds w′ such that (w,w′) ∈ WΓ0

a . Given such a possible world,
since the model (WΓ0 ,MΓ0) is reachable, we know that there exists a nominal
k′ such that w′ = WΓ0

k′ . It follows that:

1 (W Γ0 , MΓ0) � a(k, k′) since (w, w′) ∈ W Γ0
a

2 Γ0 � a(k, k′) by Proposition 18

3 Γf � a(k1, k2) for some finite Γf ⊆ Γ0 since � is compact

4 Γ � a(k, k′) since Γ � Γf and Γf � a(k1, k2)

5 Γ � @k′ γ by (NecE)

6 (W Γ0 , MΓ0) � @k′ γ by the induction hypothesis

7 (W Γ0 , MΓ0) �w′
γ since w′ = W Γ0

k′ . ��

We are now finally ready to tackle the quasi-completeness of HDCLS: the
initial model of a set of Horn clauses encapsulates the formal deduction of both
atomic sentences and action relations. Note that, in general, action relations are
not Horn clauses; nonetheless, we discuss their case too because it provides an
important technical tool for the final completeness result.

Corollary 20 (Quasi-completeness). Under the notations and hypotheses of
Theorem19, (WΓ0 ,MΓ0) is also an initial model of Γ . Moreover, for all atomic
sentences or action relations ρ, the following statements are equivalent:

1. Γ � ρ 2. (WΓ0 ,MΓ0) � ρ 3. Γ 
 ρ ��
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6 Horn-Clause Completeness

This final technical section deals with Birkhoff completeness, which corresponds
to the existence of a syntactic characterization for the semantic entailment rela-
tion of HDCLS. This is practically very useful, because Horn clauses facilitate the
development of an operational semantics of formal specifications based on rewrit-
ing. For example, action relations can provide logical support for the rewriting
rules used in Maude [3], or for the transitions from CafeOBJ [6].

In order to generalize completeness to arbitrary Horn clauses, we need to
consider additional rules, which are particular to different kinds of clauses. We
say that a sentence is action-free if it contains no occurrences of any of the
action-building operators (composition, union, or transitive closure), and that it
is star-free if it contains no occurrences of the transitive-closure operator.

Notation 21. Consider the following fragments of HDFOLS. Each of them is
obtained through a specific restriction on sentences:

HDFOLS(1) – corresponding to action-free Horn clauses;
HDFOLS(2) – corresponding to star-free Horn clauses and action relations;
HDFOLS(3) – corresponding to Horn clauses and action relations.

Fig. 4. Additional proof rules for Horn clauses

Fig. 5. Additional proof rules for action relations
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Notice that HDFOLS(3) is the richest fragment, and that γ is a clause in HDFOLS
iff it is a Horn clause in HDFOLS(3). We also define three entailment relations:

1. 
(1) is generated by the proof rules in Figs. 1, 2, 3 and 4, but restricts the
applications of (NecI) to situations where a is a modality (i.e., an atomic
action);

2. 
(2) is generated by the proof rules in Figs. 1, 2, 3, 4 and 5, except (StarI),
and restricted to applications of (CompI) and (UnionI) to star-free sentences;

3. 
(3) is generated by all proof rules in Figs. 1, 2, 3, 4 and 5.

Notice also that 
(3) is the most general one. Given a set of Horn clauses, 
(3)

can be used to derive arbitrary Horn clauses from it, whereas 
(2) can only be
used to derive star-free Horn clauses, and 
(1) only action-free Horn clauses.

It is easy to check that all these entailment relations are sound – similarly to
Propositions 10 and 22, along the lines of [8]. Compactness, however, holds only
for the first two. That is because the rule (StarI) in Fig. 5 is infinitary.

Proposition 22 (Soundness & compactness). The entailment relation 
(x)

is sound, for all x ∈ {1, 2, 3}. Moreover, 
(1) and 
(2) are also compact. ��
Our approach to completeness relies on the introduction rules in Figs. 4 and 5.

These allow us to simplify, for example, the action relations that may appear in
the left-hand side of the turnstile symbol during the proof process.

Theorem 23 (Birkhoff completeness). Let x ∈ {1, 2, 3}. For every set Γ of
Horn clauses in HDFOLS, and for every clause γ in HDFOLS(x),

Γ � γ implies Γ 
(x) γ.

Proof. Notice that Γ � γ implies Γ � @k γ, for any nominal k. Therefore, given
the proof rule (RetE), it suffices to prove that Γ � @k γ implies Γ 
(x) @k γ. We
proceed by induction on the structure of the sentence γ.

For the base case, where γ is an atomic sentence, the conclusion follows by
Fact 17, Corollary 20, and the fact that Γ 
 γ implies Γ 
(x) γ.

For the induction step, we consider only the case where γ is universally quan-
tified. The remaining cases can be proved in a similar fashion; see [10].

[ Γ � @k ∀X · γ ] Then:
1 Γ �Δ[X] @k γ by the general properties of �
2 Γ �(x)

Δ[X] @k γ by the induction hypothesis

3 Γ �(x)
Δ @k ∀X · γ by (QuantI) ��

To come to an end, notice that the entailment relation 
(3) is sound (by
Proposition 22) and complete (by Theorem 23), but it is not compact, since the
rule (StarI) is infinitary. The next proposition shows this is the best result we
can obtain, because the semantic entailment relation in HDCLS is not compact.
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Proposition 24 (Lack of compactness). HDCLS is not compact.

Proof (sketch). It suffices to consider a signature Δ with two nominals, k and
k′, and two modalities, λ and α, and the set Γ = {λn(k, k′) ⇒ α(k, k′) | n ∈ N}
of Horn clauses over Δ. Then the following properties hold:

1. Γ � λ∗(k, k′) ⇒ α(k, k′);
2. There is no finite subset Γf ⊆ Γ such that Γf � λ∗(k, k′) ⇒ α(k, k′). ��

7 Conclusions

The hybrid-dynamic first-order logic that we have studied in this paper is
obtained by enriching first-order logic with a unique combination of features
that are specific to hybrid and to dynamic logics. This provides a language that
is particularly well suited for specifying and reasoning about reconfigurable sys-
tems. More precisely, it allows us to capture reconfigurable systems as Kripke
structures whose possible worlds (a) have an algebraic structure, which supports
operations on configurations, and (b) are labelled with constrained first-order
models that capture the local structure of configurations. From a syntactic per-
spective, we define nominals and hybrid terms to refer to possible worlds and to
the elements of the first-order structures associated to those worlds. Terms are
then used to form nominal and hybrid equations, as well as relational atoms,
from which we build complex sentences using Boolean connectives, quantifiers,
hybrid-logic operators such as retrieve and store, and dynamic-logic operators
such as necessity over actions, i.e., regular expressions over modalities.

In this context, we have developed a layered approach towards a Birkhoff
completeness result for hybrid-dynamic first-order logic. There are three major
layers to consider: first, the atomic layer, which deals with entailments where
both the premises and the conclusion are atomic sentences; second, a mixed
layer, which deals with entailments where the premises are Horn clauses, but
the conclusion is only an atomic sentence or an action relation; and third, the
general, Horn-clause layer, which deals with entailments where both the premises
and the conclusion are Horn clauses. For each of these layers, we have developed
sound and complete proof systems. Moreover, for the first two layers, the proof
systems considered have also been shown to be compact.

The third layer deserves more attention. In that case, we distinguish between
two main proof systems: (a) one that is compact, but complete only for entail-
ments whose conclusion is a star-free clause; and (b) one that is not compact,
but it is complete for all entailments. To conclude this line of developments, we
have shown that this is the best result one can obtain for hybrid-dynamic logic.

As mentioned already, thanks to its features and expressive power, hybrid-
dynamic first-order logic is a promising formalism for reasoning about reconfig-
urable systems. The work reported in this paper provides a rigorous foundation
for that purpose. Therefore, an important task to pursue further is the devel-
opment of a language, specification methodology, and appropriate tool support
(that implements the proof systems presented here) for this new logic.



Birkhoff Completeness for Hybrid-Dynamic First-Order Logic 293

References

1. Bohrer, B., Platzer, A.: A hybrid, dynamic logic for hybrid-dynamic information
flow. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, 09–12 July 2018, pp. 115–124. ACM
(2018)
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Abstract. Logics based on the μ-calculus are used to model induc-
tive and coinductive reasoning and to verify reactive systems. A well-
structured proof-theory is needed in order to apply such logics to the
study of programming languages with (co)inductive data types and auto-
mated (co)inductive theorem proving. The traditional proof system suf-
fers some defects, non-wellfounded (or infinitary) and circular proofs
have been recognized as a valuable alternative, and significant progress
have been made in this direction in recent years. Such proofs are non-
wellfounded sequent derivations together with a global validity condition
expressed in terms of progressing threads.

The present paper investigates a discrepancy found in such proof sys-
tems, between the sequential nature of sequent proofs and the parallel
structure of threads: various proof attempts may have the exact thread-
ing structure while differing in the order of inference rules applications.
The paper introduces infinets, that are proof-nets for non-wellfounded
proofs in the setting of multiplicative linear logic with least and greatest
fixed-points (μMLL∞) and study their correctness and sequentialization.

Keywords: Circular proofs · Non-wellfounded proofs · Fixed points ·
μ-calculus · Linear logic · Proof-nets · Induction and coinduction

1 Introduction

Inductive and coinductive reasoning is pervasive in computer science to spec-
ify and reason about infinite data as well as reactive properties. Developing
appropriate proof systems amenable to automated reasoning over (co)inductive
statements is therefore important for designing programs as well as for ana-
lyzing computational systems. Various logical settings have been introduced to
reason about such inductive and coinductive statements, both at the level of
the logical languages modelling (co)induction (such as Martin Löf’s inductive
predicates or fixed-point logics, also known as μ-calculi) and at the level of the
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proof-theoretical framework considered (finite proofs with explicit (co)induction
rules à la Park [27] or infinite, non-wellfounded proofs with fixed-point unfold-
ings) [1,2,5,8–10]. Moreover, such proof systems have been considered over clas-
sical logic [8,10], intuitionistic logic [11], linear-time or branching-time temporal
logic [15,17,18,23,24,29,30] or linear logic [4,5,17,19,28].

Logics based on the μ-calculus have been particularly successful in modelling
inductive and coinductive reasoning and for the verification of reactive systems.
While the model-theory of the μ-calculus has been well-studied, its proof-theory
still deserves further investigations. Indeed, while explicit induction rules are
simple to formulate (For instance, Fig. 1 shows the introduction rule à la Park
for a coinductive property) the treatment of (co)inductive reasoning brings some
highly complex proof objects.

� Γ, S � S⊥, F [S/X]
(νinv)� Γ, νX.F

Fig. 1. Coinduction rule

At least two fundamental technical shortcomings
prevent the application of traditional μ-calculus-
based proof-systems for the study of programming
languages with (co)inductive data types and auto-
mated (co)inductive theorem proving and call for
alternative proposals of proof systems supporting (co)induction. Firstly, the fixed
point introduction rules break the subformula property which is highly problem-
atic for automated proof construction: at each coinduction rule, one shall guess
an invariant (in the same way as one has to guess an appropriate induction
hypothesis in usual mathematical reasoning). Secondly, (νinv) actually hides a
cut rule that cannot be eliminated, which is problematic for extending the Curry-
Howard correspondence to fixed-point logics.

...
� μX.X

(μ)� μX.X

...
� νX.X, Γ

(ν)� νX.X, Γ
(cut)� Γ

Fig. 2. An unsound proof

Non-wellfounded proof systems have been pro-
posed as an alternative [8–10] to explicit
(co)induction. By having the coinduction rule
with simple fixed-point unfoldings and allow-
ing for non-wellfounded branches, those proof
systems address the problem of the subformula
property for the cut-free systems: the set of
subformula is then known as Fischer-Ladner
subformulas, incorporating fixed-point unfolding but preserving finiteness of
the subformula space. Moreover, the cut-elimination dynamics for inductive-
coinductive rules becomes much simpler. A particularly interesting subclass of
non-wellfounded proofs, is that of circular, or cyclic proofs, that have infinite
but regular derivations trees: they have attracted a lot of attention for retaining
the simplicity of the inferences of non-wellfounded proof systems but finitely
representable making it possible to have an algorithmic treatment of such proof
objects. However, in those proof systems when considering all possible infinite,
non-wellfounded derivations (a.k.a. pre-proofs), it is straightforward to derive
any sequent Γ (see Fig. 2). Such pre-proofs are therefore unsound: one needs to
impose a validity criterion to sieve the logically valid proofs from the unsound
ones. This condition will actually reflect the inductive and coinductive nature of
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our two fixed-point connectives: a standard approach [4,8–10,28] is to consider
a pre-proof to be valid if every infinite branch is supported by an infinitely pro-
gressing thread. As a result, the logical correctness of circular proofs becomes
non-local, much in the spirit of correctness criteria for proof-nets [14,20].

However the structure of non-wellfounded proofs has to be further investi-
gated: the present work stems from the observation of a discrepancy between
the sequential nature of sequent proofs and the parallel structure of threads. An
immediate consequence is that various proof attempts may have the exact same
threading structure but differ in the order of inference rule applications; more-
over, cut-elimination is known to fail with more expressive thread conditions [3].
This paper proposes a theory of proof-nets for μMLL∞ non-wellfounded proofs.

Organization of the Paper. In Sect. 2, we recall the necessary background from [4]
on linear logic with least and greatest fixed points and its non-wellfounded proofs,
we only present the unit-free multiplicative setting which is the framework in
which we will define our proof-nets. In Sect. 3 we adapt Curien’s proof-nets [12]
to a very simple extension of MLL, μMLL∗, in which fixed-points inferences are
unfoldings and only wellfounded proofs are allowed; this allows us to set the
first definitions of proof-nets and extend correctness criterion, sequentialization
and cut-elimination to this setting but most importantly it sets the proof-net
formalism that will be used for the extension to non-wellfounded derivations.
Infinets are introduced in Sect. 4 as an extension of the μMLL∗ proof-nets of
the previous section. A correctness criterion is defined in Sect. 5 which is shown
to be sound (every proof-nets obtained from a sequent (pre-)proof is correct).
The completeness of the criterion (i.e. sequentialization theorem) is addressed
in Sect. 6. We quotient proofs differing in the order of rule application in Sect. 7
and give a partial cut elimination result in Sect. 8. We conclude in Sect. 9 and
comment on related works and future directions.

Notation. For any sequence S, let Inf(S) be the terms of S that appears infinitely
often in S. Given a finite alphabet Σ, Σ∗ and Σω are the set of finite and infinite
words over Σ resp. Let Σ∞ = Σ∗ ∪ Σω. We denote the empty word by ε. Given
two words u, u′ (finite or infinite) we denote by u∩u′ the greatest common prefix
of u and u′ and u � u′ if u is a prefix of u′. Given a language, L ⊆ Σ∞, L ⊆ Σ∞

is the set of all prefixes of the words in L.

2 Background

We denote the multiplicative additive fragment of linear logic by MALL and the
multiplicative fragment by MLL. The non-wellfounded extension of MALL with
least and greatest fixed points operators, μMALL∞, was introduced in [4,17].
Proof-nets for additives and units are quite cumbersome [7,21], so, in the current
presentation, we will only consider the unit-free multiplicative fragment which
we denote by μMLL∞.
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Definition 1. Given an infinite set of atoms, A = {A,B, . . . }, and an infinite
set of propositional variables, V = {X,Y, . . . }, s.t. A ∩ V = ∅, μMLL pre-
formulas are given by the following grammar:

φ, ψ ::=A | A⊥ | X | φ ` ψ | φ⊗ψ | σX.φ

where A ∈ A and X ∈ V, and σ ∈ {μ, ν}; σ binds the variable X in φ. When a
pre-formula is closed (i.e. no free variables), we simply call it a formula.

Note that negation is not a part of the syntax, so that we do not need any
positivity condition on the fixed-point expressions. We define negation, (•)⊥, as
a meta-operation on the pre-formulas and will use it only on formulas.

Definition 2. Negation of a pre-formula φ, φ⊥, is the involution satisfying:

(φ ⊗ ψ)⊥ = ψ⊥ ` φ⊥, X⊥ = X, (μX.φ)⊥ = νX.φ⊥.

Example 1. As a running example, we will consider the formulas φ = A`A⊥ ∈
MLL and ψ = νX.X⊗ φ ∈ μMLL∞. Observe that φ⊥ = A⊥⊗A as usual in MLL
and by Definition 2, ψ⊥ = μX.X ` φ⊥.

The reader may find it surprising to define X⊥ = X, but it is harmless since
our proof system only deals with formulas. Note that (F [G/X])⊥ = F⊥[G⊥/X].

Definition 3. An (infinite) address is a finite (resp. infinite) word in
{l, r, i}∞. Negation extends over addresses as the morphism satisfying l⊥ = r,
r⊥ = l, and i⊥ = i. We say that α′ is a sub-address of α if α′ � α. We say
that α and β are disjoint if α ∩ β is not equal to α or β.

Definition 4. A formula occurrence (denoted by F,G, ...) is given by a for-
mula, φ, and a finite address, α, and written φα. Let addr(φα) = α. We say
that occurrences are disjoint when their addresses are. Operations on formu-
las are extended to occurrences as follows: φα

⊥ = φ⊥
α⊥ , for any � ∈ {`,⊗},

F �G = (φ �ψ)α if F = φαl and G = ψαr, and for σ ∈ {μ, ν}, σX.F = (σX.φ)α

if F = φαi. Substitution of occurrences forgets addresses i.e. (φα)[ψβ/X] =
(φ[ψ/X])α. Finally, we use 	•
 to denote the address erasure operation on
occurrences.

Fixed-points logics come with a notion of subformulas (and suboccurrences)
slightly different from usual:

Definition 5. The Fischer-Ladner closure of a formula occurrence F ,
FL(F ), is the least set of formula occurrences s.t. F ∈ FL(F ), G1 � G2 ∈
FL(F ) =⇒ G1, G2 ∈ FL(F ) for � ∈ {`,⊗}, and σX.G ∈ FL(F ) =⇒
G[σX.G/X] ∈ FL(F ) for σ ∈ {μ, ν}. We say that G is a FL-suboccurrence of
F (denoted G ≤ F ) if G ∈ FL(F ) and G is an immediate FL-suboccurrence
of F (denoted G � F ) if G ≤ F and for every H s.t. G ≤ H ≤ F either H = G
or H = F . The FL-subformulas of F are elements of {φ | φ = 	G ∈ FL(F )
}.

Clearly, we could have defined Fischer-Ladner closure on the level of formulas.
By abuse of notation, we will sometimes use FL(•),≤, � on formulas.
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Fig. 3. Inference rules for μMLL∞

Remark 1. Observe that for any F , the number of FL-subformulas of F is finite.

The usual notion of subformula (say in MLL) is obtained by traversing the
syntax tree of a formula. In the same way, the notion of FL-subformula can be
obtained by traversing the graph of the formula (resp. occurrence).

Definition 6. The FL-graph of a formula φ, denoted G(φ), is the graph
obtained from FL(φ) by identifying the nodes of bound variable occurrences with
their binders (i.e. φ → ψ if φ � ψ).

Example 2. The graphs of the formulas φ and ψ of Example 1 are the following:

Observe that the graph of a MLL formula is acyclic corresponding to the
usual syntax tree but the graph of a μMLL∞ formula could potentially contain
a cycle.

As usual with classical linear logic Γ, φ � Δ is provable iff the sequent Γ �
φ⊥,Δ is provable. Hence, it is enough to consider the one-sided proof system. A
one-sided μMLL∞ sequent is an expression � Δ where Δ is a finite set of pairwise
disjoint formula occurrences.

Definition 7. A pre-proof of μMLL∞ is a possibly infinite tree generated from
the inference rules given in Fig. 3.

Definition 8. A thread of a formula occurrence, F , is a sequence, t = {Fi}i∈I ,
where I ∈ ω + 1, F0 = F , and for every i ∈ I s.t. i + 1 ∈ I either Fi is
suboccurrence of Fi+1 or Fi = Fi+1. We denote by 	t
 the sequence {	Fi
}i∈I

where t = {Fi}i∈I . A thread, t, is said to be valid if min(Inf(	t
)) is a ν-formula
where minimum is taken in the ≤ ordering.

Remark 2. Observe that for any infinite thread t of a formula occurrence F ,
Inf(	t
) is non-empty since F has finitely many FL-subformulas.

Definition 9. A μMLL∞ proof is a pre-proof in which every infinite branch
contains a valid thread. A circular pre-proof is a regular μMLL∞ pre-proof i.e.
one which has a finite number of distinct subtrees.
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Example 3. The following non-wellfounded pre-proof of the sequent � ψα (α is
an arbitrary address) is circular and is a proof because the only infinite thread
{ψα(il)n}∞

n=0 is valid.

�

� ψαil

(ax)
� Aαirl, A

⊥
αirr (`)

� A ` A⊥
αir (⊗)

� ψ ⊗ (A ` A⊥)αi (ν)
� � ψα

3 A First Taste of Proof-Nets in Logics with Fixed Points

Proof-nets are a geometrical method of representing proofs, introduced by Girard
that eliminates two forms of bureaucracy which differentiate sequent proofs:
irrelevant syntactical features and the order of rules. As a stepping stone, we first
consider proof nets in μMLL∗ which is the proof system with the same inference
rules as μMLL∞ (Fig. 3) but with finite proofs. μMLL∗ is strictly weaker than
μMLL∞.

Proof-nets are usually defined as vertex labelled, edge labelled directed multi-
graphs. In this presentation a proof structure is “almost” a forest (i.e. a collection
of trees) with the leaves joined by axioms or cuts. We use a different presentation
due to Curien [12] to separate the forest of syntax trees and the space of axiom
links for reasons that will become clearer later.

Definition 10. A syntax tree of a formula occurrence, F , is the (possibly
infinite) unfolding tree of G(F ). The syntax tree induces a prefix closed language,
LF ⊂ {l, r, i}∞ s.t. there is a natural bijection between the finite (resp. infinite)
words in LF and the finite (resp. infinite) paths of the tree. A partial syntax
tree, FU , is a subtree of the syntax tree of the formula occurrence, F , such that
the set of words, U ⊆ LF , represents a “frontier” of the syntax tree of F i.e.
any u, u′ ∈ U are pairwise disjoint and for every uav ∈ U , there is a v′ s.t.
ua⊥v′ ∈ U . For a finite u ∈ U , we denote by (F, u) the unique suboccurrence of
F with the address addr(F ).u.

Example 4. The syntax tree of ψ is the unfolding of G(ψ) and induces the lan-
guage i(li)∗r(l + r) + (il)ω. Further, given an arbitrary address α, ψ

{ili,irl,irr}
α

is a partial syntax tree whereas ψ
{ilil,irl,irr}
α is not. If u = ililir then (ψα, u) =

A ` A⊥
αililir.

Definition 11. A proof structure is given by [Θ′]{BUi
i }i∈I [Θ], where,

– I is a finite index set;
– for every i ∈ I, Bi is a formula occurrence, BUi

i is a partial syntax tree with
Ui ⊂ {l, r, i}∗;

– Θ′ is a (possibly empty) collection of disjoint subsets of {Bi}i∈I of the form
{C,C⊥};
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Fig. 4. Induction cases for definition 12.

– Θ is a partition of
⋃

i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} s.t. the partitions are
of the form {αiui, αjuj} with 	(Bi, ui)
 = 	(Bj , uj)
⊥.

Each class of Θ represents an axiom, each of class of Θ′ represents a cut, and
{Bi}i∈I \ ⋃

θ∈Θ′ θ are the conclusions of the proof structure.

Definition 12. Let π be a μMLL∗ proof. Desequentialization of π, denoted
Deseq(π), is defined by induction on the structure of the proof:

– The base case is a proof with only an ax rule, say
(ax)

F,G⊥ . Then

Deseq(π) = [∅]{F {ε}, (G⊥){ε}}[{{addr(F ), addr(G⊥)}}]

– If Deseq(π1) = [Θ′
1]Γ1 ∪ {FU}[Θ1] and Deseq(π2) = [Θ′

2]Γ1 ∪ {F⊥U ′
}[Θ2],

then Deseq(π) = [Θ′
1 ∪ Θ′

2 ∪ {F, F⊥}]Γ1 ∪ Γ2[Θ1 ∪ Θ2] where π is Fig. 4(a).
– If Deseq(π1) = [Θ′

1]Γ1 ∪ {FU}[Θ1] with addr(F ) = αl and Deseq(π2) =
[Θ′

2]Γ1 ∪ {GU ′}[Θ2] with addr(G) = αr, then Deseq(π) = [Θ′
1 ∪ Θ′

2]Γ1 ∪ Γ2 ∪
{F⊗Gl·U+r·U ′}[Θ1 ∪ Θ2] with addr(F⊗G) = α where π is Fig. 4(b).

– If Deseq(π0) = [Θ′
0]Γ0∪{FU , GU ′}[Θ0] with addr(F ) = αl, addr(G) = αr then

Deseq(π) = [Θ0]Γ0 ∪ {F ` Gl·U+r·U ′}[Θ0] with addr(F ` G) = α where π is
Fig. 4(c).

– If Deseq(π0) = [Θ′
0]Γ0 ∪ {F [μX.F/X]U}[Θ0] with addr(F [μX.F/X]) = αi

then Deseq(π) = [Θ0]Γ0 ∪ {μX.F i·U}[Θ0] with addr(μX.F ) = α where π is
Fig. 4(d).

– The case for ν follows exactly as μ.

Example 5. Consider the following proof π of the sequent � νX.X ` μX.X.

(ax)� νX.Xαl, μY.Yβi
(μ)� νX.Xαl, μY.Yβ

(ax)� νY.Yβ⊥i, μX.Xαr
(ν)� νY.Yβ⊥ , μX.Xαr
(cut)� νX.Xαl, μX.Xαr (`)� νX.X ` μX.Xα

We choose α, β s.t. they are disjoint. We have that Deseq(π) = [Θ′]Γ [Θ] s.t.

Θ′ =
{{μY.Yβ , νY.Yβ⊥}}

Θ =
{{αl, βi}, {αr, β⊥i}}

Γ =
{

νX.X ` μX.X{l,r}
α , μY.Y

{i}
β , νY.Y

{i}
β⊥

}
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Fig. 5. Graph of μMLL∞ proof structures

Definition 13 (Graph of proof structure). Let S = [Θ′]{BUi
i }i∈I [Θ] be a

proof structure. The graph of S, denoted Gr(S), is the graph formed by:

– taking the transpose (i.e. reversal of every edge) of the partial syntax tree
{BUi

i }i∈I ;
– for each {Bi, Bj} ∈ Θ′, adding a node labelled cut with two incoming edges

from (Bi, ε) and (Bj , ε);
– for each {αiui, αjuj} ∈ Θ, adding a node labelled ax with two outgoing edges

to (Bi, ui) and (Bj , uj) where addr(Bi) and addr(Bj) is αi and αj resp.

Example 6. The graph of the proof structure in Example 5 is Fig. 5a.

Gr(S) are exactly the proof structures that we obtain from directly lifting
the formalism of MLL proof nets à la Girard to μMLL∗.

As usual in the theory of proof nets, we need a correctness criterion on
the μMLL∗ proof structures to exactly characterize the class of proof nets. The
following correctness criterion lifts to μMLL∗ a criterion first investigated by
Danos and Regnier [14]. We present it in a slightly different syntax using the
notion of orthogonal partitions [13,14].

Definition 14. Let P1 and P2 be partitions of a set S. The graph induced by
P1 and P2 is defined as the undirected bipartite multigraph, (P1, P2, E), s.t. for
every p ∈ P1 and p′ ∈ P2, (p, p′) ∈ E if p ∩ p′ �= ∅. Finally, P1 and P2 are
said to be orthogonal to each other if the graph induced by them is acyclic and
connected.

Definition 15. Given a proof structure, S = [Θ′]{BUi
i }i∈I [Θ], define a set of

switchings of S, sw = {swi}i∈I s.t. for every i ∈ I, swi : Pi → {l, r} is a
function over Pi, the ` nodes of BUi

i . The switching graph Ssw associated
with sw is formed by:

– taking the partial syntax tree {BUi
i }i∈I as an undirected graph;

– for each {Bi, Bj} ∈ Θ′, adding a node labelled cut with two edges to (Bi, ε)
and (Bj , ε);

– for each node (Bi, u) ∈ Pi, removing the edge between (Bi, u) and (Bi, u ·
sw((Bi, u))).
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Let Θsw
S be the partition over

⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} induced by

the connected component of Ssw.

Definition 16. A proof structure, S, is said to be OR-correct if for any switch-
ing sw, Θsw

S and Θ is orthogonal. The graph induced by Θsw
S and Θ is called a

correction graph of S.

Proposition 1. Let π be a μMLL∗ proof. Then Deseq(π) is an OR-correct proof
structure. Conversely, given an OR-correct μMLL∗ proof structure, it can be
sequentialized into a μMLL∗ sequent proof.

Definition 17. μMLL∗ cut-reduction rules is obtained by adding the follow-
ing rule to the usual cut-reduction rules for MLL proof nets:

F 
⊥/X

F 
⊥/X

Proposition 2. Cut elimination on μMLL∗ proof-nets preserves correctness and
is strongly normalizing and confluent.

The proofs of Propositions 1 and 2 are straightforward extensions from MLL.

Example 7. The proof structure in Example 5 after cut-elimination produces the
proof structure in Fig. 5b.

Remark 3. Now the question is how this translates to non-wellfounded proofs.
Consider the proof in Example 3. Firstly observe that there is no finite proof
of this sequent i.e. it is not provable in μMLL∗. Now, if we naively translate it
into a proof structure using the same recipe as Definition 12 (except allowing for
infinite partial syntax trees), we have

[∅]
{

ψ{i(li)∗r(l+r)+(il)ω}
α

}
[{αi(li)nrl, i(li)nrr}n≥0].

Observe that (il)ω is not in any partition. In fact, it represents a thread in an
infinite branch and must be accounted for. Hence the partition should account
for the threads invariant by an infinite branch in a proof (in particular, in the
example above there should be a singleton partition, {(il)ω}). This is also the
reason we will not use the graphical presentation for non-wellfounded proof-
nets since we would potentially need to join two infinite paths by a node which
is unclear graph-theoretically. However we will sometimes draw the “graph” of
non-wellfounded proof-nets for ease of presentation by using ellipsis points (for
example Fig. 6b represents the proof-net we discussed above).
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Fig. 6. Graph of μMLL∞ NWFPS

4 Infinets

We will now lift our formalism for defining proof nets for μMLL∗ to μMLL∞.

Definition 18. A non-wellfounded proof structure (NWFPS) is given by
[Θ′]{BUi

i }i∈I [Θ], where

– I is a possibly infinite index set;
– for every i ∈ I, Bi is a formula occurrence, BUi

i is a partial syntax tree;
– Θ′ is a (possibly empty) collection of disjoint subsets of {Bi}i∈I of the form

{C,C⊥};
– Θ is a partition of

⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} s.t. the partitions are

one of the following forms:
• {αiui, αjuj} s.t. ui, uj are finite and 	(Bi, ui)
 = 	(Bj , uj)
⊥.
• It contains an elements of the form αiui s.t. u is an infinite address;

– {Bi}i∈I \ ⋃
θ∈Θ′ θ is necessarily finite.

Intuitively, each class of Θ represents either an axiom or an infinite branch
in a sequentialization. In fact, the infinite addresses in a partition correspond
exactly to the infinite threads in a proof. Hence it is also straightforward to
define a valid NWFPS.

Definition 19. Let π be a pre-proof of the μMLL∞ sequent � Γ and addr(π) ⊆
{l, r, i}∞ be the set of all addresses occurring in π and all infinite addresses such
that all their strict prefixes are addresses occurring in π. Desequentialization of
π, denoted Deseq(π), is the NWFPS, [Θ′]Γ ′[Θ], s.t. Θ′ are the cut formulas in π,
BUi

i ∈ Γ ′ where Bi ∈ Γ , Ui = addr(Bi)−1addr(π), to any finite maximal branch
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of π, associate a partition in Θ containing the addresses of the occurrences that
are the conclusion of the corresponding axiom rule in π and to any infinite
branch, β, of π, associate a partition in Θ such that a finite address is in the
partition if it is belongs to infinitely many sequents of β and an infinite address
is in the partition if all its strict prefixes belong to β. A NWFPS that is the
desequentialization of a μMLL∞ (pre-)proof is called an (valid) infinet.

Example 8. As expected from the discussion in Remark 3, desequentialization of
the proof in Example 3 is

[∅]
{

ψ{i(li)∗r(l+r)+(il)ω}
α

}
[{αi(li)nrl, i(li)nrr}n≥0, {(il)ω}].

Remark 4. The reader might think that there is discrepancy in the way dese-
quentialization of wellfounded and non-wellfounded proofs are defined in Defi-
nitions 12 and 19 resp. Note that Definition 12 can be reformulated à la Defini-
tion 19 but not vice versa. However, we choose to inductively define wellfounded
desequentialization since it is closer to the standard definition in proof-net
theory.

5 Correctness Criteria

The OR-correctness of a NWFPS is defined as in Definitions 15 and 16 (up to the
fact that the switching can be an infinite set of switching functions). However
this straightforward translation is not enough to ensure soundness.

Example 9. Consider the following sequent proof with infinitely many cuts.

(ax)
μX.X, νZ.Z

� � μZ.Z, νY.Y
(ν)� μZ.Z, νY.Y

(cut)
� � μX.X, νY.Y

Observe that this structure is not OR-correct:

Consequently, we restrict ourselves to NWFPS with at most finitely many
cuts. The proof structures discussed in the rest of the paper have finitely many
cuts unless otherwise mentioned.

Example 10. Consider the graph of proof structure of the sequent � νX.X `
(A⊥⊗(A⊗ (A⊥ ` A))) in Fig. 6a. Note that for the sake of readability, edge
labels have been concealed. This proof structure is OR-correct but it is not
sequentializable. Consider the ⊗ node labelled t1. In any sequentialization it
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should be above p1, which should be above t2, which in turn should be above
p2 and so on. This is absurd since even in a non-wellfounded proof every rule is
executed at a finite depth.

Hence we impose a “lock-free” condition (borrowing the terminology from
concurrent programming) on NWFPS.

Definition 20. Let [Θ′]{BUi
i }i∈I [Θ] be a NWFPS. For any ui ∈ Ui, uj ∈ Uj,

we say that (ui, uj) is a coherent pair if there exists θ ∈ Θ,Bi, Bj s.t.
{αiui, αjuj} ⊆ θ addr(Bi) = αi and addr(Bj) = αj.

Definition 21. A switching path is an undirected path in a partial syntax
tree s.t. it does not go consecutively through two premises of a ` formula. A
strong switching path is a switching path whose first edge is not the premise
of a ` node. We denote by src(•), tgt(•) the source and target of a switching
path resp. Two switching paths γ, γ′ are said to be compatible if γ′ is strong
and tgt(γ) = src(γ′).

Proposition 3. If γ, γ′ are compatible switching paths, then their concatenation
γ · γ′ is a switching path. Furthermore, if γ is strong, then γ · γ′ is also strong.

The underlying undirected path of any path in a partial syntax tree is a
switching path. We call such paths straight switching paths. In particular,
the path from any vertex, v, to the root is a straight switching path. We denote
it by δ(v). By abuse of notation, we will also sometimes write δ((Bi, u)) where u
is infinite to mean the infinite path from the root of BUi

i following u, although
technically (Bi, u) is not a node per se. Observe that any straight switching path
in a partial syntax tree, FU , can be represented by a pair of words (u, u′) ∈ U

2

s.t. u � u′. Intuitively, it means that the path is from (F, u) to (F, u′).

Definition 22. A switching sequence is a sequence σ = {γi}n
i=1 s.t. γis are

disjoint switching paths and for every i ∈ {1, 2, . . . , n − 1}, either γi, γi+1 are
compatible or they are straight and the word pairs corresponding to them, (ui, u

′
i)

and (ui+1, u
′
i+1), are s.t. (u′

i, u
′
i+1) is a coherent pair. Two vertices, v and v′, are

said to be connected by the switching sequence, σ, if src(γ1) = v and tgt(γn) = v′.
We say the switching sequence is cyclic if src(γ1) = tgt(γn).

Proposition 4. Let γ be a switching path in B
Uj

j ∈ Γ . Then there exists a
switching sw s.t. γ is also a path in the switching graph, Ssw.

Proposition 5. If S is a NWFPS containing a cyclic switching sequence, then
there is switching of S, s.t. the corresponding correction graph is contains a cycle.

Definition 23. Let S = [Θ′]{BUi
i }[Θ] be a proof structure. Let T = {(Bi, ui) |

ui ∈ Ui; (Bi, ui) is a ⊗ formula} and let P = {(Bi, ui) | ui ∈ Ui; (Bi, ui) is a `
formula}. The dependency graph of S, D(S), is the directed graph (V,E)

s.t. V = T � P , for every v ∈ V and p ∈ P , (p, v) ∈ E if the premises of p
are connected by a switching sequence containing v, and, for every v, v′ ∈ V ,
(v, v′) ∈ E if v′ ∈ FL(v).
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Proposition 6 (Bagnol et al. [6]). If S is OR-correct then D(S) is acyclic.

From Proposition 6, we can impose an order on the nodes of an OR-correct
proof structure, S, namely, n1 <D(S) n2 if n1 → n2 in D(S).

Definition 24. A NWFPS, S, is said to be deeply lock-free if <D(S) has no
infinite descending chains.

Example 11. Consider the proof structure, S = [∅]{νX.X ` XL
α , A⊗B

{l,r}
β }[Θ]

where, L = (i(l + r))ω , Θ = {{α(il)ω, βl}, α · (L \ (il)ω) ∪ {βr}} .
Observe that S is OR-correct and deeply lock-free. But S cannot be sequen-

tialized into a sequent proof, because a potential sequentialization has a ⊗ rule
at a finite depth, then either there are no subsoccurences of νX.X ` Xα in the
left premise in which case A cannot reside with only the left-branch in Θ, or,
there are no subsoccurences of νX.X ` Xα in the left premise in which case A
cannot reside with any infinite branch in Θ.

Definition 25. A NWFPS, S = [Θ′]{BUi
i }i∈I [Θ], is said to be widely lock-

free if there is a function f : N → N s.t. for every (Bi, u) ∈ P and (Bj , v) ∈ T
if ((Bi, u), (Bj , v)) ∈ E, f(|v|) ≥ |u| where D(S) = (T � P,E). We call such a
function a wait function of S. A proof structure is simply called lock-free if
it is both deeply and widely lock-free.

Remark 5. The wait function of a NWFPS need not be unique (if one exists).

Proposition 7. An infinet is an OR-correct lock-free NWFPS.

6 Sequentialization

Fig. 7. Translating cuts to
tensors

In this section we show that any NWFPS satisfy-
ing the correctness criterion introduced in Sect. 5 is
indeed sequentializable. Since we deal with finitely
many cuts, without loss of generality, we can assume
that we have cut-free proof structures due to the
standard trick shown in Fig. 7.

So, in this section, we will write NWFPS without the left component. We try
to adapt the standard proof for MLL but the straightforward adaptation is not
fair since we may never explore one branch by forever prioritizing the sequen-
tialization of another infinite branch. We restore fairness by a time-stamping
algorithm.

Definition 26. Let S = Γ [Θ] be an OR-correct NWFPS. The root, Bi, of a tree
in Γ is said to be splitting if:

– Γ = {Bε
i , B

ε
j},

– Bi is a `, μ or ν formula, or,
– Bi is a ⊗ formula and there exists Θ1, Θ2 s.t. Θ = Θ1 �Θ2 and S1 = Γ1[Θ1],

S2 = Γ2[Θ2] are OR-correct NWFPS where Γ1 = Γ \ {BUi
i } ∪ {(Bi, l)Ul},

Γ2 = Γ \ {BUi
i } ∪ {(Bi, r)Ur} and Ui = lUl + rUr.
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Proposition 8. Let S = Γ [Θ] be an OR-correct NWFPS and Bi be a splitting
⊗ formula in S. If S is lock-free then so is S1 and S2 as defined in Definition 26.

Dated Sequentialization Process. We time-stamp each node of Γ to indicate the
time when it will be sequentialized. Formally, we have (S, τ) where τ is a function
s.t. τ : {(Bi, u)|u ∈ Ui}i∈I → N ∪ {∞} where Γ = {BUi

i }i∈I and ∞ > n for all
n ∈ N. Define the minimal finite image, min, as

min(τ) := min{n ∈ N | ∃i ∈ I, u ∈ Ui s.t. τ((Bi, u)) = n}.

We will describe the sequentialization process. Suppose we are given
S(= Γ [Θ], τ). We maintain the following invariant:

S is cut-free, OR-correct and lock-free;
τ((Bi, u)) �= ∞ iff (Bi, u) is splitting in S.

(�)

Assume that Γ contains a splitting root, Bj , st. τ(Bj) = min(τ).

– If Γ = {Bε
i , B

ε
j} then we stop successfully with the proof reduced to an ax.

– If Bj is a `, (co)recursively apply the sequentialization process to
S0(= Γ0[Θ], τ0) where Γ0 = Γ \{B

Uj

j }∪{(Bj , l)Ul , (Bj , r)Ur}, Uj = lUl +rUr,
and

τ0((Bi, u)) =

{
t if (Bi, u) is splitting in S0;
τ((Bi, u)) otherwise.

where for each splitting (Bi, u), t is arbitrarily chosen to be any natural
number greater than τ(Bj). We apply a ` rule on the obtained proof.

– If Bj is a μ(resp. ν) formula, (co)recursively apply the sequentialization pro-
cess to (S0 = Γ0[Θ], τ0) where Γ0 = Γ \ {B

Uj

j }∪ {(Bj , i)Ui}, Uj = iUi, and τ0
is defined as above. We apply a μ (resp. ν) rule on the obtained proof.

– If Bj is a ⊗ formula we (co)recursively apply the sequentialization process to
(S1, τ1) and (S2, τ2) where S1,S2 are as defined in Definition 26 and τ1, τ2 are
defined as above. We apply a ⊗ rule on the two obtained proofs.

Observe that the invariant (�) is maintained in this (co)recursive process. To
start the sequentialization, we initialize τ by assigning arbitrary natural numbers
to splitting nodes and ∞ to the other nodes.

Proposition 9. Let T be a non-splitting conclusion in an OR-correct NWFPS.
Then there exists a ` formula, P , s.t. there exists disjoint switching sequences,
σ, σ′, from T to P which both start with a premise of T and end with a premise
of P . We call (P, σ, σ′) the witness for T .

Lemma 1. Let S be a cut-free OR-correct NWFPS. S contains a splitting root.

Lemma 2. The sequentialization assigns a finite natural number to every for-
mula i.e. τ((Bi, u)) �= ∞ after some iterations of the process described above.
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Lemma 1 crucially uses OR-correctness and Lemma 2 crucially uses lock-
freeness. Lemma 1 ensures productivity of the aforementioned sequentialization
process while Lemma 2 ensures that every inference in a NWFPS is ultimately
executed. From that, we conclude the following theorem.

Theorem 1. Let S = [Θ′]Γ [Θ] be an OR-correct lock-free NWFPS s.t. Θ′ = ∅.
Then S is an infinet.

Remark 6. Observe that the choice of the time-stamping function at each step
of our sequentialization is non-deterministic. By considering appropriate time-
stamping functions we can generate all sequentializations. The detailed study is
beyond the scope of the present paper.

7 Canonicity

We started investigating proof nets for non-wellfounded proofs since we expected
that the proof net formalism would quotient sequent proofs that are equivalent
up to a permutation of inferences. At this point, we carry out that sanity check.

Consider the following proofs π1 and π′
1.

π2

� Γ, F [μX.F/X], A
(μ)� Γ, μX.F,A

π3

� B,Δ
(⊗)

π1 � Γ, μX.F,A ⊗ B,Δ

π2

� Γ, F [μX.F/X], A
π3

� B,Δ
(⊗)� Γ, F [μX.F/X], A ⊗ B,Δ

(μ)
π′
1 � Γ, μX.F,A ⊗ B,Δ

We say that π �(μ,⊗L) π′ if π is a proof with π1 as a subproof at a finite depth
and π′ is π where π′

1 has been replaced by π′
1. Observe that we can define �� for

every � ∈ P × P where P = {μ, ν,`,⊗�, cut� | � ∈ {L,R}}. Let ∼�=
⋃

�∈S

��.

Observe that the usual notion of equivalence by permutation, viz. ∼= (∼�)∗

does not characterize equivalence by infinets. Consider the following two proofs,
π1 and π2, s.t. π1 �∼ π2 which have the same infinet,

[∅]{μX.X{iω}
α , νX.X

{iω}
β }[{{αiω, βiω}}].

π1 � μX.X, νX.X
(μ)� μX.X, νX.X
(ν)

π1 � μX.X, νX.X

π2 � μX.X, νX.X
(ν)� μX.X, νX.X
(μ)

π2 � μX.X, νX.X

Suppose we allow infinite permutations. We say that π(∼�)ωπ′ if there exists
a proof π′′ (not necessarily different from π, π′) and two sequence of proofs,
{πi}∞

i=0 and {π′
i}∞

i=0, s.t. π0 = π, π′
0 = π′, for every i, πi ∼� πi+1 and π′

i ∼� π′
i+1,

and d(πi, π
′′) → 0, d(π′

i, π
′′) → 0 as i → ∞. Consider the following proofs.
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π

� A

..

.
(ν)� B, νY.Y
(⊗)� A⊗B, νY.Y (∼�)ω

.

..
(ν)� A⊗B, νY.Y (∼�)ω

π′

� A

..

.
(ν)� B, νY.Y
(⊗)� A⊗B, νY.Y

Note that equating these proofs is absurd since π and π′ can have different
computation behaviour (for example, A = (X⊥ ` X⊥) ` (X ⊗ X) and π corre-
sponds to true while π’ corresponds to false). To exactly capture equivalence by
infinets we need to refine this equivalence. To do that we introduce the notion of
an active occurrence. We say that for a permutation step �(ri,r′

i)
, the formula

occurrence Fi introduced by the rule r′
i is the active occurrence in that step.

Given two node-labelled trees T1 and T2, we define d(T1, T2) = 1
2δ where δ is

the minimal depth of the nodes at which they differ. We say that π(∼�)ω
fairπ

′ if
there exists a sequence of proofs {πi}∞

i=0 s.t. π0 = π, for every i, πi �(ri,r′
i)

πi+1,
the sequence of addresses of the active occurrences occurring infinitely often
is empty, i.e. Inf({addr(Fi)}∞

i=0) = ∅, and d(πi, π
′) → 0 as i → ∞. Let ∼∞=

(∼�)∗ ∪ (∼�)ω
fair.

Proposition 10. π1 ∼∞ π2 iff Deseq(π1) = Deseq(π2).

8 Cut Elimination

In this section we provide cut elimination results albeit with two crucial restric-
tions: firstly, we consider only finitely many cuts as in the rest of the paper
and secondly, we consider proofs with no axioms and no atoms. An infinet
S = [Θ′]Γ [Θ] is said to be η∞-expanded if it does not contain any axioms
or atoms i.e. every θ ∈ Θ contains only infinite addresses. Any infinet can be
made η∞-expanded in a way akin to η-expansion of axioms in MLL. There are
two issues to be resolved to obtain the result: first, to specify the notion of a
normal form and second, formulate how to reach that.

Proposition 11. Let S = [Θ′]Γ [Θ] be an η∞-expanded infinet. Let {C,C⊥} ∈
Θ and BUi

i , B
Uj

j ∈ Γ s.t. Bi = C = Bj
⊥. Then, Ui = Uj

⊥ i.e. u ∈ Ui iff
u⊥ ∈ Uj.

Proof (Sketch). Since Bi = Bj
⊥, their syntax trees are orthogonal. Since S is

η∞-expanded, Ui(resp. Uj) is actually the full syntax tree. Hence Ui = Uj
⊥.

Definition 27. Let S0 = [Θ′
0]Γ0[Θ0] be a η∞-expanded infinet. Let {C,C⊥} ∈

Θ′
0 and BUi

i , B
Uj

j ∈ Γ s.t. Bi = C = Bj
⊥. A big-step {C,C⊥} elimination on

S0 produces non-wellfounded proof-structure S1 = [Θ′
1]Γ1[Θ1] where,

– Θ′
1 = Θ′

0 \ {{C,C⊥}}
– Γ1 = Γ0 \ {BUi

i , B
Uj

j }
– If θ ∈ Θ0 s.t. θ ∩ Ui = ∅ and θ ∩ Uj = ∅, then θ ∈ Θ1. If u ∈ θ ∩ Ui then

θ ∪ θ′ \ {u, u⊥} ∈ Θ1 where θ′ ∈ Θ0 and u⊥ ∈ θ′ ∩ Uj.

Remark 7. Definition 27 is well-defined because of Proposition 11.
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Proposition 12. A big-step operation on a valid infinet produces a valid infinet.

Given S = [Θ′]Γ [Θ], an η∞-expanded infinet, we can extend the definition
of a big-step {C,C⊥} elimination on S, for any {C,C⊥} ∈ Θ′, to a big-step
C elimination on S, for C ⊆ Θ′. We call the big-step Θ′ elimination on S the
normal form of S and denote it by �S�.

The idea now is to show that local cut-elimination indeed produces in the
limit the normal form defined above. For this we need to define a metric, d, over
infinets with the same normal form so that we can formalize the limit of infinite
reduction sequences. See [16] for details.

Lemma 3. The set of all valid infinets with the same normal form together with
the distance, d, forms a metric space.

We can now define the limit of an infinite sequence of valid infinets with the
same normal form in the standard way: we say that {Si}∞

i=0 converges to S if
d (Si,S) → 0 as i → ∞.

Definition 28. A sequence of infinets, {Si}∞
i=0, is called a reduction

sequence if for every i > 0, Si → Si+1 by the cut reduction rules in Defi-
nition 17. A reduction sequence is said to be fair if for every i, for every cut
{C,C⊥} in Si, there is a j > i such that C ′ is a suboccurrence of C where
{C ′, C ′⊥} is the cut being reduced in the step Sj → Sj+1.

Theorem 2. Let {Si}∞
i=0 be a fair reduction sequence s.t. S0 is valid. Then, it

converges to �S0�.

Corollary 1. If two reduction sequences starting from a valid η∞-expanded
infinet, S, converges to S1 and S2, then all fair reduction sequences starting
from S1 and S2 resp. converge to �S�.

9 Conclusion

In this paper, we introduced infinitary proof-nets for μMLL∞. We defined a cor-
rectness criterion and showed its soundness and completeness in characterizing
those proof structures which come from non-wellfounded sequent (pre)proofs.
We also gave a partial cut elimination result. Currently, our results are sub-
ject to the restriction that non-wellfounded shall only contain finitely many cut
inferences.

For the non-wellfounded correctness criterion, we extended the Danos-
Regnier criterion from the finitary case. Other more efficient criteria (like the
parsing criterion [22]) are impossible to adapt since any reasonable operation
over non-wellfounded structures should necessarily be of a bottom-up nature
(unlike the parsing criterion).
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Related and Future Works. The closest works we know of are Montelatici’s
polarized proof nets with cycles [26] and Mellies’ work on higher-order par-
ity automata [25] which considers a λY-calculus and an infinitary λ-calculus
endowed with parity conditions, therefore quotienting some of the non-
determinism of sequent-calculus albeit in the case of intuitionistic logic.

Our work is a first step in developing a general theory of non-wellfounded
and circular proof-nets:

– We plan to extend our framework and strengthen the correctness criterion in
several directions to capture more proofs: we shall strengthen the criterion to
capture proofs with infinitely many cuts as well as to extend our formalism
to the additives, capturing μMALL∞.

– Once our framework can handle proofs with infinitely many cuts, we plan to
investigate how the so-called bouncing thread criterion [3] can be captured
in proof nets. This is indeed one of the motivation of our work to solve the
discrepancy between the sequential nature of proofs and the parallel nature
of threads which is especially problematic when relaxing validity conditions
as in [3].

– Finally we plan to carry an investigation of the notion of circularity in proof-
nets: while one can capture circular proofs as finitely representable proof
nets, there are non-wellfounded proofs which are not circular but which have
finitely representable desequentialization. The simplest example is the proof
of � νX.X ` X which contains sequents of unbounded size and is there-
fore not circular. Not only is the study of circular infinets interesting from
a programming perspective but also it would be possible to do a complexity
analysis on such finitely representable proof-nets to better understand the
cost of checking correctness, sequentialization and cut-elimination.

Acknowledgement. We are indebted to anonymous reviewers for providing insightful
comments which has immensely enhanced the presentation of the paper.
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Rémi Nollet1,2,3(B), Alexis Saurin1,2,3,4, and Christine Tasson1,2,3
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Abstract. In the context of logics with least and greatest fixed points,
circular (i.e. non-wellfounded but regular) proofs have been proposed
as an alternative to induction and coinduction with explicit invariants.
However, those proofs are not wellfounded and to recover logical consis-
tency, it is necessary to consider a validity criterion which differentiates
valid proofs among all preproofs (i.e. infinite derivation trees).

The paper focuses on circular proofs for MALL with fixed points. It
is known that given a finite circular representation of a non-wellfounded
preproof, one can decide in PSPACE whether this preproof is valid with
respect to the thread criterion. We prove that the problem of deciding
thread-validity for μMALL is in fact PSPACE-complete.

Our proof is based on a deeper exploration of the connection between
thread-validity and the size-change termination principle, which is usu-
ally used to ensure program termination.

Keywords: Sequent calculus · Non-wellfounded proofs ·
Circular proofs · Induction · Coinduction · Fixed points · Linear logic ·
mu-MALL · Size-change · PSPACE-complete · Complexity

1 Introduction

The search for proofs of formulas or theorems is one of the fundamental and
difficult tasks in proof theory. In the usual setting, those proofs should be easy
to check and thus finite. Induction and coinduction principles have been used in
order to provide such a finite proof theory for reasoning on formulas with least
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or greatest fixed points (see Kozen [10,11] and Baelde [2]). However in those
finite systems, the inference rule for greatest fixed points does not preserve the
subformula property. As a consequence, the proof search cannot be driven by the
formula that we aim to prove. This is one reason why infinite proofs have been
considered for logic with fixed points. The price to pay is that the consistency
of the logical system is broken and that a validity criterion has to be added in
order to ensure consistency. However, checking the validity criterion might be
complex and the purpose of this paper is to show that it is PSPACE-complete.
Let us get into more details.

Circular proofs, which are infinite proofs satisfying the validity criteria, have
thus been proposed as an alternative to induction and coinduction with explicit
invariants. Circular proofs present the advantage over explicit induction or coin-
duction to offer a framework in which it is possible to recover the good structural
properties of sequent calculus, such as cut-elimination, subformula property and
focusing, making them a more suitable tool to automated proof search. Indeed,
cut-elimination and focusing have recently been extended to non well-founded
proofs for μMALL by Baelde, Doumane and Saurin [3,6].

Circular proofs have already proved useful in implementing efficient auto-
matic provers, e.g. the Cyclist prover [1]. However, the complexity avoided in
the search, thanks to the subformula property and the fact that we need not
guess invariants, is counterbalanced by the complexity of the validity criterion
at the time of proof checking.

There are already polynomial-space and exponential-time methods to decide
thread validity criterions in several settings, but there was no lower bound on its
complexity and the exact complexity of checking the thread criterion was still
unknown.

The contribution of this work is to show that, in the setting of linear logic with
least and greatest fixed point, the decidability of thread criterion is PSPACE-
complete.

Thread Validity and Size-Change Termination. Our proof takes a lot of inspi-
ration from the proof of PSPACE-completeness of size-change termination by
Lee, Jones and Ben Amram [12]: in order to prove that deciding size-change
termination is PSPACE-complete, they define a notion of boolean program and
use the fact that the following set is complete in PSPACE:

B = {b | b is a boolean program and b terminates.}
then they reduce B to the problem of size-change termination. We adapt their
method by reducing B to the problem of thread-validity in circular μMALLω

preproof.
It would be very interesting to get a more precise understanding of the rela-

tion between threads in circular proofs and size-change termination.

Organization of the Paper. In Sect. 2 we recall the formulas and rules of linear
logic with least and greatest fixed points, as well as the notions of preproofs and
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the thread validity criterion, and we recall that the thread criterion is effectively
decidable in PSPACE. The main section of the article is Sect. 3, in which we show
the PSPACE-completeness of the thread criterion for μMALLω, in Theorem 1.
Section 4 is devoted to a discussion of our approach and a comparison with
related works. We conclude in Sect. 5.

2 Background on Circular Proofs and Thread Validity

In this section, we recall the definition of the logic μMALLω.

2.1 Formulas

Formulas of μMALLω are selected among a set of preformulas. Preformulas of
μMALLω are obtained by taking the usual formulas of MALL and adding two
monadic second order binders, μ and ν:

Definition 1 (μMALLω preformulas).

A,B ::= X | A ⊗ B | A ` B | 1 | ⊥ | A ⊕ B | A & B | 0 | � | μXA | νXA

where X ranges over an infinite set of propositional variables.

As usual, preformulas are considered modulo renaming of bound variables.
For instance, νX(X ⊗ X) and νY (Y ⊗ Y ) denote the same preformula.

Definition 2 (μMALLω formulas). A formula is a closed preformula. We
denote by F the set of all formulas.

Definition 3 (μMALLω negation). An involutive negation ·⊥ is defined on
every μMALLω preformula, inductively specified by:

(A ⊗ B)⊥ = A⊥ ` B⊥ 1⊥ = ⊥ X⊥ = X

(A ⊕ B)⊥ = A⊥ & B⊥ 0⊥ = � (μXA)⊥ = νXA⊥

Example 1. If A is any formula and F = νX(μY ((A ⊗ X) ` Y )) then F⊥ =
μX(νY ((A⊥ ` X) ⊗ Y )).

Remark 1. It may be counterintuitive that X⊥ = X. Yet, in practice negation
will only be applied to formulas, which are closed preformulas. This simple hack
allows us to avoid the use of negative atoms X,Y , . . . The fact that we have
only positive atoms guarantees in turn that bound variables can only appear
in covariant position, thus avoiding the need for a positivity condition when
forming a fixed point formula.
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2.2 Sequents and Preproofs

Proofs of μMALLω are selected among a set of preproofs. Preproofs of μMALLω

are circular objects, defined by adding back-edges to ordinary proof-trees.
In this article, a sequent is a list of formulas. The inference rules of μMALLω

are given below

(id)

� A,A⊥
� A,Γ � A⊥,Δ

(cut)� Γ,Δ

� Aσ(0), . . . , Aσ(n−1)
(exc)� A0, . . . , An−1

� Γ,A � Δ,B
(⊗)� Γ,Δ,A ⊗ B

� Γ,A,B
(`)� Γ,A ` B

(1)� 1
� Γ

(⊥)� Γ,⊥

� Γ,A
(⊕1)� Γ,A ⊕ B

� Γ,B
(⊕2)� Γ,A ⊕ B

� Γ,A � Γ,B
(&)� Γ,A & B

(�)� Γ,�

� Γ,A[μXA[X]]
(μ)� Γ, μXA[X]

� Γ,A[νXA[X]]
(ν)� Γ, νXA[X]

Note that, in the exchange rule (exc), σ must be a permutation of {0, 1, . . . , n−1}.
The (exc) rules are generally left implicit in descriptions of proof trees.

Definition 4 (Π0(μMALLω): preproofs). A μMALLω preproof consists of a
finite proof tree π, composed using the rules given above, and which may have
open sequents1, together with a function back, which associate to each occurrence
s of an open sequent in π, an occurrence back(s) of the same sequent in π, such
that back(s) is strictly below s in π (i.e. closer to the root).

We denote by Π0(μMALLω) the set of all μMALLω preproofs.

Example 2. Let π be the following proof tree, with three open sequents, and let
us denote by s0, . . . , s8 its occurrences of sequents, as indicated:

1 We call an occurrence of open sequent any occurrence of sequent which is not the
conclusion of an inference. In Example 2, s4, s6 and s8 are occurrences of open
sequents.
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then (π, {s4 �→ s1, s6 �→ s5, s8 �→ s7}) is a preproof of μMALLω, that we will
more simply denote by:

2.3 Proofs

The validity criterion used to distinguish proofs among preproofs is given in
Definition 11 and can be stated as: “every infinite branch must contain a valid
thread”. To make this formal, we will first define how a preproof induces two
graphs and then define the “branches” and “threads” of a preproof as infinite
paths in these graphs. Note that:

– In the following definitions, a “graph” always means a directed pseudograph,
i.e. a directed graph which may have loops and in which there may be several
edges between any pair of vertices.

– If (π,back) is a preproof, we say that an occurrence of a sequent in π is
“closed” when it is not an open sequent i.e. it is the conclusion of some
inference in π.

Definition 5 (Gbranch, branch graph of a preproof). Let (π,back) be a
μMALLω preproof. Its branch graph is the graph Gbranch defined as follows. The
vertices of Gbranch are the occurrences of closed sequents in π. For each inference
I with conclusion s in π and for each premise s′ of I, there is an edge in Gbranch,
from s to s′ if s′ is a closed occurrence of sequent in π, and from s to back(s′)
if s′ is an open occurrence of sequent in π.

To clarify the following definition, remember that in every proof tree π, for
every inference I in π, every occurrence of formula α in a premise of I has a
unique immediate descendant in the conclusion of I, except if I is a cut and α
is a cut formula, in which case α has no immediate descendant.

Definition 6 (Gthread, thread graph of a preproof). Let (π,back) be a
μMALLω preproof. Its thread graph is the graph Gthread defined as follows. The
vertices of Gthread are the occurrences of formulas in the closed sequents of π.
For each inference I with conclusion s in π, for each premise s′ of I and for
each occurrence of formula β in s′ which has an immediate descendant α in s,
there is an edge in Gthread, from α to β if s′ is a closed occurrence of sequent in
π, and from α to the occurrence of the formula corresponding to β in back(s′)
if s′ is an open occurrence of sequent in π.
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Definition 7 (Infinite branch). If (π,back) is a preproof and Gbranch is its
branch graph, we call an infinite branch of this preproof any infinite path in
Gbranch starting from the root of π.

Example 3. The infinite branches of the preproof of Example 2 are s0(s7)ω,
s0(s1s2s3)ω and all elements of {s0(s1s2s3)k(s5)ω | k ∈ N}.

Note that, in order to be totally rigorous, we should

1. not only give the vertices of the paths but also the edges, i.e. when an inference
has several premises, indicate explicitly which one was chosen;

2. include the implicit (exc) rules.

These details are omitted here for concision; they will cause no ambiguity on the
validity of this preproof.

Definition 8 (Thread). A thread in a preproof is simply a path (finite or infi-
nite) in Gthread.

Example 4. Let us denote by {α, β, γ, . . . , μ} the vertices of Gthread for the pre-
proof shown on Example 2, as indicated here:

The maximal threads of this preproof are (μ)ω, γεθ(λ)ω, (ι)ω, α(βδζ)ω and
the elements of {α(βδζ)kβδη(κ)ω | k ∈ N}.

Once again, in order to be totally rigorous, we should explicitly include the
occurrences of formulas in the sequents that are hidden by the elision of the (exc)

rules.

Definition 9 (U : Gthread → Gbranch). For any preproof, there is an obvious
graph morphism from Gthread to Gbranch, associating to every occurrence of a
formula the sequent occurrence it belongs to. We denote this graph morphism
by U. If t is a path in Gthread (i.e. a thread), we will also denote by U(t) the
corresponding path in Gbranch.

Remark 2. Even when t is an infinite thread, U(t) may not be an infinite branch
because it may not start at the root of the preproof. However, if t is an infinite
thread, then U(t) is a suffix of an infinite branch.
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Example 5. The images, by this morphism, of the threads of Example 4 are

U((μ)ω) = (s7)ω U(γεθ(λ)ω) = s1s2s3(s5)ω U((ι)ω) = (s5)ω

U(α(βδζ)ω) = s0(s1s2s3)ω

∀k ∈ N,U(α(βδζ)kβδη(κ)ω) = s0(s1s2s3)k+1(s5)ω

The following lemma is the key to the notion of a valid thread, which is
defined right after it. If s is an occurrence of formula in a proof tree, we denote
by fml(s) ∈ F the associated formula.

Lemma 1. Let t = (sn)n∈N be an infinite thread in a preproof. Let inf(t) =
{A ∈ F | ∀n0 ∈ N,∃n � n0, sn is principal and fml(sn) = A} i.e. the set of
formulas that are infinitely often principal in t.

If inf(t) �= ∅, i.e. if t encounters infinitely often principal formulas, then it
contains a smallest infinitely principal formula, and this formula is a fixed point
formula: ∃σ ∈ {μ, ν},∃C, σXC ∈ inf(t) and ∀A ∈ inf(t), σXC is a subformula
of A. As a minimum, this formula is unique.

Definition 10 (Valid thread). An infinite thread t is valid if inf(t) is non-
empty and the smallest formula in inf(t) is a ν-formula (cf. Lemma 1 just above).

Example 6. Among the threads of Example 4:

– (μ)ω and (ι)ω are valid: their smallest infinitely principal formula is νXX;
– α(βδζ)ω is valid: its smallest infinitely principal formula is νX(X ` X);
– γεθ(λ)ω is not valid: it has no principal formula;
– ∀k ∈ N, α(βδζ)kβδη(κ)ω is not valid: it has no principal formula after the

last occurrence of β.

Definition 11 (Π(μMALLω): proofs). We say that an infinite branch b of a
preproof � is valid if there is a valid infinite thread t of � such that U(t) is a
suffix of b.

A μMALLω preproof � is a proof if all its infinite branches are valid.
We denote by Π(μMALLω) the set of all μMALLω proofs and we denote by

Π(μMALLω) its complement in Π0(μMALLω), i.e. the set of all invalid pre-
proofs.

Example 7. The preproof of Example 2 is a proof:

– the branch s0(s7)ω contains the valid thread (μ)ω;
– the branch s0(s1s2s3)ω contains the valid thread (βγζ)ω;
– ∀k ∈ N, the branch s0(s1s2s3)k(s5)ω contains the valid thread (ι)ω.
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2.4 Deciding Thread Validity in PSPACE

In this section, we recall the fact that the problem Π(μMALLω) is in PSPACE.
Several algorithms can be used for that. Here we reduce this problem to the
problem of deciding equality of languages for parity ω-automata, which is known
to be in PSPACE. More precisely, given a preproof �, we define two parity
automata: the language of the first one is the set of infinite branches of � and
the language of the second one is the set of valid infinite branches of �.

Let � = (π,back) be a preproof. Let A = Ebranch, the set of edges of Gbranch;
this will be the input alphabet of our automata.

The first ω-automaton is Abranch = 〈Qbranch, ibranch, Tbranch〉, where:

– the set of states is Qbranch = Vbranch, the set of vertices of Gbranch

– the initial state ibranch is the root of π
– the set of transitions is

Tbranch = {s
e−→ s′ | e is an edge from s to s′ in Gbranch}

and the acceptance condition is trivial: every infinite run is accepted. With that
definition, the following lemma is immediate:

Lemma 2. The language L(Abranch) is the set of infinite branches of �.

For our second automaton, we need a priority assignment Ω : F → N with
two properties:

1. if A is a subformula of B then Ω(A) � Ω(B);
2. ∀A,Ω(μXA) is even and Ω(νXA) is odd.

Such a function is not difficult to construct. From now on we assume that one
has been chosen.

Our second automaton is a parity ω-automaton, with priorities in N∪ {∞},
defined as Athread = 〈Qthread, ithread, Tthread〉, where:

– the set of states is Qthread = Vthread + {⊥s | s ∈ Vbranch}, i.e. the vertices of
Gthread plus one extra vertex for each vertex of Gbranch

– the initial state is ithread = ⊥r where r is the root of π
– the set of transitions is

Tthread = {⊥s
e : ∞−→ ⊥s′ | e is an edge from s to s′ in Gbranch}

∪ { α β
U(e) : Ω(α) |

e is an edge from α to β in Gthread and α is principal}
∪ { α β

U(e) : ∞ |
e is an edge from α to β in Gthread and α is not principal}

∪ {⊥s
e : ∞−→ α | s = U(α)}

where q
e : i−→ q′ denote a transition from state q ∈ Qthread to state q′ ∈ Qthread

with label e ∈ A and priority i ∈ N ∪ {∞}.
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The acceptance condition is: a run is accepted if the smallest priority appearing
infinitely often is odd (∞ being even).

Once again, it should be clear from Definitions 10 and 11 that:

Lemma 3. The language L(Athread) is the set of valid infinite branches of �.

From these two lemmas it is immediate that

Proposition 1. We have the inclusion L(Athread) ⊆ L(Abranch) and the pre-
proof � is valid iff. this inclusion is an equality.

Deciding this equality can be done in PSPACE, and the constructions of
these automata are obviously PSPACE, so:

Proposition 2. The problem Π(μMALLω) is in PSPACE.

3 PSPACE-Completeness

3.1 Outline of the PSPACE-Completeness Proof

We now aim at proving that Π(μMALLω) is PSPACE-complete for LOGSPACE
reductions. As it is already known that Π(μMALLω) ∈ PSPACE, it remains to
prove that we have PSPACE �L Π(μMALLω).

We follow the same methodology as Lee, Jones and Ben Amram [12]: in
order to prove that deciding size-change termination is PSPACE-complete, they
define a notion of boolean program (see Definition 12) and use the fact that the
following problem is complete in PSPACE:

B = {b | b is a boolean program and b terminates.}

then they reduce B to the decidability of size-change termination.
We try to adapt their method by reducing B to Π(μMALLω).

3.2 Defining the Reduction

Let us first introduce boolean programs.

Definition 12 (BOOLEfalse and Bfalse). A boolean program in BOOLE is a
sequence of instructions b = 1:I1 2:I2 . . . m:Im where an instruction can have
one of the two following forms:

I ::= X := ¬X | if X then goto �′ else goto �′′

where X ranges over a finite set of variable names and labels �′, �′′ range overs
{0, . . . , m}.

The semantics is as expected: a program is executed together with a store
assigning values to variables which shall initially assign all variables to false
at the beginning of the execution (this is the initial store). More precisely, an
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execution is a sequence of pairs (�, s) of a label and a store subject to the expected
transitions (�1, s1) → (�2, s2) if �1 �= 0 and:

– if I�1 = X := ¬X, then �2 = �1 + 1 (mod m + 1) and s2(Y ) = s1(Y ) for all
variable Y �= X and S2(X) = ¬(s1(X));

– if I�1 = if X then goto �′ else goto �′′ then s2 = s1 and �2 = �′ if s1(X) = true
and �2 = �′′ otherwise.

The program terminates when the label reaches 0, the current store at termination
is the final store.

A program in BOOLEfalse is a program in BOOLE such that, if it terminates,
its final store is such that all variables have value false. We also denote the set
of terminating BOOLEfalse programs as:

Bfalse = {b ∈ BOOLEfalse | b terminates}.

Remark 3. The constraint on the values of the variables at the end of the pro-
gram will be useful when reducing it to Π(μMALLω). This circular preproof will
encode the fact that the program b is terminating by connecting the final state
to the initial one, hence the necessity that its initial and terminal states are the
same.

Lemma 4. Bfalse is PSPACE-hard under LOGSPACE-reductions:

PSPACE �L Bfalse

Proof. We reduce from the problem of termination for a more expressive lan-
guage, which has been defined and proved PSPACE-complete by Jones in [9],
under the name of BOOLE.

The following definition will be used in the proof of Proposition 3:

Definition 13 (Call graph of a program). Assume a boolean program b with
variables X1, . . . , Xk and instructions 1 : I1, . . . , m : Im. Define the call graph of b
to be G = (V,E) with

– V = {0, 1, . . . ,m}
– E = {0 0→ 1}

∪ {� �→ ((� + 1) mod (m + 1)) | I� = “ X := not X”}
∪ {� �+→ �′, � �−

→ �′′ | I� = “ if X goto �′ else �′′”}
Definition 14 (�·� : BOOLEfalse → Π0(μMALLω)). For every boolean program
b ∈ BOOLEfalse , we define a preproof �b� ∈ Π0(μMALLω). Let X1, . . . , Xk be
the variables of b and 1 : I1, . . . , m : Im its instructions. We first give names
to the formulas that will appear in �b�: we define a unary operation ¿, three
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formulas A,B,C, a family of unary operations (¿n) and two families of formu-
las (Dn), (En):

A = ¿(νX¿X) B = νX(⊥ ⊕ X) C = μX(B ` X) En = ¿n(νX¿nX)

¿F = μX(F ⊕ (⊥ ⊕ (X ` X))) ¿nF = μX(⊥ ⊕ (X ` (F ` · · · ` F
︸ ︷︷ ︸

n−1

)))

Dn = μX(X & · · · & X
︸ ︷︷ ︸

n

)

We now define �b� to be the preproof

�0:�

� A2k, B,C,D2,Dm, Em
m

�1 : I1�

� A2k, B,C,D2,Dm, Em
m

. . . �m : Im�

� A2k, B,C,D2,Dm, Em
m

(μ), (&)
m−1

(Root) � A2k, B,C,D2,Dm, Em
m

(1)
where Γn is an abbreviation for Γ, . . . , Γ

︸ ︷︷ ︸

n

.

The root of the preproof �b� is constructed by translating each pair �:I� of a
label and an instruction into a finite segment of branch of preproof, as defined in
Eq. (1), with each subderivation ��:I�� defined in Fig. 2 and each subderivation
��:goto �′� in Fig. 1.

Fig. 1. Back-edges of the preproof

Remark 4 (Implicit vs. explicit exchange rules). Notice that in the translation
of the previous definition, our derivations make an implicit use of the exchange
rule. In order to make explicit the exchange, it is enough to add an exchange
rule at the conclusion of every inference in the proof, simply doubling the size
of the proof. This will therefore have no impact on the forthcoming reductions
and completeness proofs that will be studied in the remaining of the paper.

Remark 5 (Infinite branches of �b� � Eω). The preproof �b� constructed from b
by the reduction �·� of Definition 14 is a finite tree with back-edges in which every
finite branch ends with a back-edge to the root. This finite tree has exactly as
many branches, and, consequently, as many back-edges to the root as the number
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CardE of edges in the call-graph of b (Definition 13). This in turn entails that
the set of infinite branches of the preproof �b� is in one-to-one correspondence
with the set Eω of infinite words on E. Note however that an infinite word
u ∈ Eω has no reason a priori to be a path in G.

From now on, we will refer directly to infinite branches of the preproof by
words u ∈ Eω.

3.3 Main Theorem

We now prove that Π(μMALLω) is PSPACE-complete.

Remark 6 (Thread groups). We need to be more precise about the occurrences
of formulas in the conclusion sequent of preproof �b�:

A, . . . , A
︸ ︷︷ ︸

2k

, B,C,D2,Dm, Em, . . . , Em
︸ ︷︷ ︸

m

Let us label the occurrences of A in this sequent as follows:

A+
1 , A−

1 , . . . , A+
k , A−

k , B,C,D2,Dm, Em, . . . , Em
︸ ︷︷ ︸

m

so that we can talk precisely about them. It can be seen by examining the
definition of �·� (Definition 14) that a valid thread in the preproof cannot pass

Fig. 2. Premises p� of the preproof
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through D2 or Dm, which contain no ν, and that the remaining formulas are
divided into k + 2 groups

A+
1 , A−

1
︸ ︷︷ ︸

, . . . , A+
k , A−

k
︸ ︷︷ ︸

, B,C
︸︷︷︸

, Em, . . . , Em
︸ ︷︷ ︸

which cannot thread-interact with each other, in the sense that, for instance, no
thread can contain a B and a Em, or a Aε

� and a Aε′
�′ if � �= �′.

Lemma 5. An infinite branch u ∈ Eω in the preproof contains a validating
thread

– in the Em group iff. no suffix of u is a valid path in G.
– in the B,C group iff. 0 occurs only finitely in u.

Proof (Proof sketch). By case on the instructions involved.
In order to prove the first part of the statement, that is that an infinite

branch u ∈ Eω in the preproof contains a validating thread in the Em group iff.
no suffix of u is a valid path in G, we reason by case on the instructions involved
and remark that the Em formulas are touched only in the ��:goto �′� parts of
the preproof.

In order to prove the second part of the statement, that is that an infinite
branch u ∈ Eω in the preproof contains a validating thread in the B,C group
iff. 0 occurs only finitely in u, we reason by case on the instructions involved.

Remark 7. Because of Lemma 5, the only infinite branches of �b� whose validity
is not known in advance are the u ∈ Eω which are valid paths in G going
infinitely many times through edge 0, and we know that these infinite branches
may have validating threads only in one of the k groups {A+

i , A−
i }1�i�k. Such

an infinite branch can always be factorized into u00u10u20 · · · where the un do
not contain 0. As the edge 0 ∈ E has source and target 0 0−→ 1, and because of
the hypothesis that u is a path in G, for n � 1 every un has source and target
1 un−→+ 0.

Lemma 6. Assume 1 u−→+ �, which does not contain the edge 0. If u is a prefix
of the execution of b then the threads of {A+

i , A−
i } in 0 0u−→+ � are

A+
i A−

i

A+
i A−

i

νX¿X A

if Xi = false at the end of u and

A+
i A−

i

A+
i A−

i

A νX¿X
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if Xi = true at the end of u; and if u is not a prefix of the execution of b then
there is an i ∈ �1,m� such that the threads of {A+

i , A−
i } in 0 0u−→+ � are

A+
i A−

i

A+
i A−

i

νX¿X νX¿X

Proof (Proof sketch). The proof goes by induction on the length of u.

The diagrams we use here are sketches of the thread structure of a segment of
branch. For instance the first of these diagrams should be read as: the occurrence
A−

i in the conclusion sequent is a descendant of both occurrences A+
i and A−

i

in the sequent at the top of the segment of branch we consider. The smallest
principal formula along the segment of thread from the lower A−

i to the upper
A+

i is νX¿X and the smallest principal formula along the segment of thread from
the lower A−

i to the upper A−
i is A. The occurrence A+

i in the lower sequent is
not a descendant of any of the occurrences A+

i nor A−
i in the upper sequent.

Proposition 3. �·� is a LOGSPACE reduction from Π(μMALLω) to Bfalse .

Proof. For the LOGSPACE character: the only data that need to be remembered
while constructing the preproof are integers like k, m, �, �′. As �, �′ � m and the
entry has size Ω(k +m), this takes a space at most logarithmic in the size of the
entry.

As for the fact that it is indeed a reduction: let us assume a b ∈ BOOLEfalse and
prove that �b� /∈ Π(μMALLω) ⇔ b ∈ Bfalse . Let G = (V,E) be the call-graph
of b, as defined in Definition 13. Following Remark 5, we denote by elements of
Eω the infinite branches of �b�. There are two cases: either b ∈ Bfalse and we
have to prove that p /∈ Π(μMALLω), or b /∈ Bfalse and we have to prove that
p ∈ Π(μMALLω). First case: if b ∈ Bfalse : the execution of b induces a finite path
u = 1 →∗ 0 in G. This finite path can be completed into v = 0 0→ 1 u−→∗ 0. Then
vω is an invalid branch of �p�ω. Here we use the fact that when b terminates, every
variable has value false. Second case: if b /∈ Bfalse : let P1 = {vw∞ | v ∈ E∗, w∞ ∈
Eω and w∞ is a path in G} and P2 = {v∞ ∈ P1 | 0 occurs infinitely in v∞}.
By construction, P2 ⊆ P1 ⊆ Eω. We will prove three facts: that every branch
v∞ ∈ Eω \ P1 is thread-valid, that every branch v∞ ∈ P1 \ P2 is thread-valid
and that every branch v∞ ∈ P2 is thread-valid. These three facts, together with
the fact that (Eω \P1)∪ (P1 \P2)∪P2 = Eω, are enough to conclude that every
branch v∞ ∈ Eω is thread-valid. The first fact, that every branch v∞ ∈ Eω \ P1

is thread-valid, is due to the thread going through the Em. The second fact, that
every branch v∞ ∈ P1 \ P2 is thread-valid, is due to the thread going through
B. The third fact, that every branch v∞ ∈ P2 is thread-valid, is due to the fact
that b is non-terminating and that, because of that, one of the 2k threads going
through the A is valid.
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Theorem 1. The problem Π(μMALLω) is PSPACE-hard under LOGSPACE
reductions:

PSPACE �L Π(μMALLω)

Proof. We reduce from Bfalse , which is PSPACE-complete by Lemma 4. More
precisely, we reduce Bfalse to Π(μMALLω), the complement of Π(μMALLω).
This is enough because PSPACE is closed under complements, in the same way
as all deterministic classes. The reduction �·� : BOOLEfalse → Π0(μMALLω) is
defined in Definition 14. It is indeed a LOGSPACE reduction by Proposition 3.

Remark 8. In fact, since our construction do not use the (cut) rule, the cut-free
fragment of Π(μMALLω) is already PSPACE-hard.

Remark 9. Our result extends to μLJ, μLK, μLK© and μLK�♦ and we con-
jecture that the method we illustrate here on μMALL can apply as well to the
guarded cases of μ-calculi with modalities.

4 Comments on Our Approach and Discussion of Related
Works

Our proof for the PSPACE-completeness of the thread criterion is an encoding
and an adaptation to our setting of the proof used by Lee, Jones and Ben Amram
to prove that size-change termination is PSPACE-complete [12]. We reduce, as
they do, from the problem of termination of boolean programs and the thread
diagrams that we have used to describe the preproof generated by the reduction
are very similar to the size-change graphs generated by their reduction; this is
in fact what has guided the design of this preproof: formula A mimicks the Xi, Xi

part of their graphs and formulas B and C adapt the Z part of their graphs.
We had to add the formulas D2 and Dm in order to have branching rules in the
preproof. One of the main novelties of our reduction, compared to the reduction
of Lee, Jones and Ben Amram for size-change termination, lies in the Em and
��:goto �′� part of the constructed preproof, which has no equivalent in the size-
change graphs obtained by their reduction. This part of our construction allows
us to construct a preproof which is a tree with back-edges, hence proving that
the thread criterion is PSPACE-complete even when preproofs are represented
by trees with back-edges. We could in fact drop the Em and ��:goto �′� part
of the construction by constructing �b� as a rooted graph instead of a tree with
back-edges. The constructions proofs are still correct—and shorter. The caveat
is that it only proves the thread-criterion to be PSPACE-hard in graph-shaped
preproofs and not in tree-with-back-edges-shaped preproofs. Furthermore, we
could not have filled this gap by simply unfolding the graph into a tree with back-
edges, for it could lead, as shown in the following example, to an exponential
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blow-up in size, which would prevent the reduction to be LOGSPACE, or even
PTIME. The following boolean program:

1:if X then goto 2 else goto 2
2:if X then goto 3 else goto 3

...
n:if X then goto n + 1 else goto n + 1

will be translated to a graph-shaped preproof of size Θ(n) but the unfolding of
this preproof into a tree-with-back-edges-shaped preproof will have size Θ(2n).
Therefore we had to be clever in order to target trees with back-edges by sim-
ulating several vertices with a single one; this is accomplished by the Em and
��:goto �′�.

This improvement of the reduction of Lee, Jones and Ben Amram could
in fact be adapted in the other direction, to show that size-change termina-
tion is already PSPACE-complete even when restricted to programs with only
one function (in the terminology of [12]), that is when the corresponding call
graph/control flow graph has only one vertex.

If, as it is commonly believed, NP �= PSPACE, our result implies that there
is no way to add a polynomial quantity of information to a preproof so that its
thread-validity can be checked in polynomial time. This can be seen as a prob-
lem, both for the complexity of proof search and proof verification. It suggests
trying to find restrictions of the thread criterion which will be either decidable
or certifiable in polynomial time, while keeping enough expressivity to validate
interesting proofs. A first step in this direction has already been done in [14].

We recalled in Sect. 2.4 that thread validity is decidable in PSPACE, and we
did so by reducing to the problem of language inclusion for ω-parity-automata.
The original size-change article [12] gives two different methods to check size-
change termination, the first one is based on reducing to inclusions of ω-languages
defined by finite automata while the second one is a direct, graph-based app-
roach. It is in fact possible to use this more direct method to decide the thread
criterion, and this has already been done in [5] by Dax, Hofmann and Lange, who
remark furthermore that this method leads to a more efficient implementation
than the automata-based one.

5 Conclusion

In the present paper, we analyzed the complexity of deciding the validity of
circular proofs in μMALL logic: while the problem was already known to be
in PSPACE, we established here its PSPACE-completeness. In doing so, we
drew inspiration from the PSPACE-completeness proof of size-change termina-
tion even though we depart at some crucial points in order to build our reduction
to take into account the specific form of circular proofs.

We conjecture that our proof adapts straightforwardly to a number of other
circular proof systems based on sequent calculus such as intutionistic or classical
proof systems in addition to the linear case on which we have focused here.
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While our result can be seen as negative for circular proofs, it does not prevent
actual implementations from being tractable and usable in many situations as
exemplified by the Cyclist prover for instance. In such systems, validity checking
does not seem to be the bottleneck in circular proof construction compared
with the complexity that is inherent in exploring and backtracking in the search
tree [4,15,16].

Our work suggests deep connections between thread-validity and size-change
termination, which we only touched upon in the previous section. This confirms
connections previously hinted by other authors [5,7,8,13] that we plan to inves-
tigate further in the future.

Acknowledgements. A special thanks must go to Anupam Das and Reuben Rowe,
and to the anonymous reviewer, for their very complete and most relevant comments.
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Abstract. We define an infinitary labelled sequent calculus for PDL,
G3PDL∞. A finitarily representable cyclic system, G3PDLω, is then
given. We show that both are sound and complete with respect to stan-
dard models of PDL and, further, that G3PDL∞ is cut-free complete.
We additionally investigate proof-search strategies in the cyclic system
for the fragment of PDL without tests.

1 Introduction

Fischer and Ladner’s Propositional Dynamic Logic (PDL) [14], which is the
propositional variant of Pratt’s Dynamic Logic [34], is perhaps the quintessential
modal logic of action. While (P)DL arose initially as a modal logic for reasoning
about program execution its impact as a formalism for extending ‘static’ logical
systems with ‘dynamics’ via composite actions [22, p. 498] has been felt broadly
across logic. This is witnessed in extensions and variants designed for reasoning
about games [31], natural language [21], cyber-physical systems [33], epistemic
agents [19], XML [1], and knowledge representation [11], among others.

Much of the proof theoretic work on PDL, and logics extending it, focuses on
Hilbert-style axiomatisations, which are not amenable to automation. Outside
of this, proof systems for PDL itself can broadly be characterised as one of two
sorts. Falling into the first category are a multitude of infinitary systems [16,
24,35] employing either infinitely-wide ω-proof rules, or (equivalently) allowing
countably infinite contexts. In the other category are tableau-based algorithms
for deciding PDL-satisfiability [18,20]. While these are (neccessarily) finitary,
they employ a great deal of auxillary structure tailored to the decision procedure
itself.

In the proof theory of modal logic, a high degree of uniformity and modularity
has been achieved through labelled systems. The idea of using labels as syntactic
representatives of Kripke models in modal logic proof systems can be traced back
to Kanger [25], but perhaps has been most famously deployed by Fitting [15].
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A succinct history of the use of labelled systems is provided by Negri [29]. Negri’s
work [28] is the high point of the technique, giving a procedure to transform
frame conditions for Kripke models into labelled sequent calculi rules preserving
structural properties of the proof system, given they are defined as coherent
axioms.

The power of this rule generation technique is of particular interest because
it enables the specification of sound and complete systems for classes of Kripke
frames that are first-order, but not modally, definable. In the context of PDL-
type logics, this is of interest because of common additional program constructs
like intersection which have a non-modally definable intended interpretation [32].
However, even with this expressive power, such a framework on its own cannot
account for program modalities involving iteration. In short, formulae involving
these modalities are interpreted via the reflexive-transitive closure of accessibil-
ity relations, and this closure is not first-order (and therefore, not coherently)
definable. Something more must be done to capture the PDL family of logics.

In this paper we provide the first step towards a uniform proof theory of
the sort that is currently missing for this family of logics by giving two new
proof systems for PDL. We combine two ingredients from modern proof theory
that have hitherto remained separate: labelled deduction à la Negri and non-
wellfounded (in particular, cyclic) sequent calculi.

We first construct a labelled sequent calculus G3PDL∞, extending that
of Negri [28], in which proofs are permitted to be infinitely tall. For this sys-
tem soundness (via descending counter-models) and cut-free completeness (via
counter-model construction) are proved in a similar manner to Brotherston and
Simpson’s infinitary proof theory for first-order logic with inductive definitions
[6]. Next we restrict attention to regular proofs, meaning only those infinite proof
trees that are finitely representable (i.e. only have a finite number of distinct sub-
trees), obtaining the cyclic system G3PDLω. This can be done by permitting
the forming of backlinks (or, cycles) in the proof tree, granted a (decidable)
trace condition guaranteeing soundness can be established. We then show that
the axiomatisation of PDL [23] can be derived in G3PDLω, obtaining com-
pleteness. We finish the paper with an investigation of proof-search in the cyclic
system for a sub-class of sequents, and conjecture cut-free completeness for the
test-free fragment of PDL.

There are a number of advantages to setting up PDL’s proof theory in
this manner. Most crucially, through the cyclic system we obtain a finitary
sequent calculus with natural, declarative proof rules, in which requirements on
Kripke models and traces are elegantly handled with the labels. Such a system
is amenable to automation through, for example, the Cyclist [5] theorem prover.
We also conjecture (see Sect. 5) that labels can be used to compute bounds to
determine termination of proof-search.

We believe this work can be built upon in two complementary directions.
First, towards a uniform proof theory of PDL-type logics. We conjecture the
presence of labels should facilitate the extension of the system with rules for
additional program constructs. Second, this work gives a case study for the
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extension of the expressivity of Negri-style modal proof theory. Our system thus
indicates the viability of constructing an analogous general framework that nat-
urally captures modal logics interpreted on classes of Kripke frames defined by
logics more expressive than first-order logic (for example, epistemic logics with a
common knowledge modality). We discuss this, and other ideas for future work,
in the conclusion.

For space reasons we elide proofs, but these can be found in an extended
version of this paper available online [13].

Related Work. Beyond the proof systems outlined above, the most significant
related work can be found in Das and Pous’ [9,10] cyclic proof systems for
deciding Kleene algebra (in)equalities. Das and Pous’ insight that iteration can
be handled in a cyclic sequent calculus is essential to our work here, although
there are additional complications involved in formulating a system for PDL
because of the interaction between programs (which form a Kleene algebra with
tests) and formulae. We also note that Goré and Widmann’s tableau procedure
also utilises the formation of cycles in proof trees. Our proof of cut-free com-
pleteness of the infinitary system also follows that of Brotherston and Simpson
[6] for first-order logic with inductive definitions.

Recent work by Cohen and Rowe [8] gives a cyclic proof system for the
extension of first-order logic with a transitive closure operator and we conjecture
that our labelled cyclic system (and labelled cyclic systems for modal logics more
generally) can be formalised within it. This idea echoes van Benthem’s suggestion
that the most natural frame language for many modal logics is not first-order
logic, but in fact first-order logic with a least fixed point operator [4].

Cyclic proof systems have also been defined for some modal logics with similar
model properties to PDL, including the logic of common knowledge [40] and
Gödel-Löb logic [37]. The idea of cyclic proof can be traced to modal μ-calculus
[30]. Indeed, it can be shown that the logic of common knowledge [2], Gödel-Löb
logic [4,39] and PDL [4,7] can be faithfully interpreted in the modal μ-calculus,
indicating that perhaps cyclic proof was the right approach for PDL all along.

2 PDL: Syntax and Semantics

The syntax of PDL formulas is defined as follows. We assume countably many
atomic propositions (ranged over by p, q, r), and countably many atomic pro-
grams (ranged over by a, b, c).

Definition 1 (Syntax of PDL). The set of formulas (ϕ, ψ, . . .) and the set
of programs (α, β, . . .) are defined mutually by the following grammar:

ϕ,ψ ::= ⊥ | p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | [α]ϕ
α, β, γ ::= a | α ; β | α ∪ β | ϕ? | α∗

We briefly reprise the semantics of PDL (see [23, §5.2]). A PDL model
m = (S, I) is a Kripke model consisting of a set S of states and an inter-
pretation function I that assigns: a subset of S to each atomic proposition; and
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a binary relation on S to each atomic program. We inductively construct an
extension of the interpretation function, denoted Im, that operates on the full
set of propositions and programs.

Definition 2 (Semantics of PDL). Let m = (S, I) be a PDL model. We
define the extended interpretation function Im inductively as follows:

Im(⊥) = ∅ Im(a) = I(a)
Im(p) = I(p) Im(α ; β) = Im(α) ◦ Im(β)

Im(ϕ ∧ ψ) = Im(ϕ) ∩ Im(ψ) Im(α ∪ β) = Im(α) ∪ Im(β)
Im(ϕ ∨ ψ) = Im(ϕ) ∪ Im(ψ) Im(ϕ?) = Id(Im(ϕ))

Im(ϕ → ψ) = (S \ Im(ϕ)) ∪ Im(ψ) Im(α∗) =
⋃

k≥0

Im(α)k

Im([α]ϕ) = S \ Π1(Im(α) ◦ Id(S \ Im(ϕ)))

where ◦ denotes relational composition, Rn denotes the composition of R with
itself n times, Π1 returns a set by projecting the first component of each tuple
in a relation, and Id(X) denotes the identity relation over the set X.

We write m, s |= ϕ to mean s ∈ Im(ϕ), and m |= ϕ to mean that m, s |= ϕ
for all states s ∈ S. A PDL formula ϕ is valid when m |= ϕ for all models m.

3 An Infinitary, Labelled Sequent Calculus

We now define a sequent calculus for deriving theorems (i.e. valid formulas) of
PDL. This proof system has two important features. The first is that it is a
labelled proof system. Thus sequents contain assertions about the structure of
the underlying Kripke models and formulas are labelled with atoms denoting
specific states in which they should be interpreted. Secondly, we allow proofs of
infinite height.

We assume a countable set L of labels (ranged over by x, y, z) that we
will use to denote particular states. A relational atom is an expression of the
form x Ra y, where x and y are labels and a is an atomic program. A labelled
formula is an expression of the form x : ϕ, where x is a label and ϕ is a for-
mula. We define a label substitution operation by z{x/y} = y when x = z, and
z{x/y} = z otherwise. We lift this to relational atoms and labelled formulas by:
(z Ra z′){x/y} = z{x/y} Ra z′{x/y} and (z : ϕ){x/y} = z{x/y} : ϕ.

Sequents are expressions of the form Γ ⇒ Δ, where Γ and Δ are finite
sets of relational atoms and labelled formulas. We denote an arbitrary member
of such a set using A, B, etc. As usual, Γ,A and A,Γ both denote the set
{A} ∪ Γ , and Γ{z/y} denotes the application of the (label) substitution {x/y}
to all the elements in Γ . We denote by [α]Γ the set of formulas obtained from
Γ by prepending the modality [α] to every labelled formula. That is, we define
[α]Γ = {x Ra y | x Ra y ∈ Γ} ∪ {x : [α]ϕ | x : ϕ ∈ Γ}. labs(Γ ) denotes the set
of all labels occurring in the relational atoms and labelled formulas in Γ .
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We interpret sequents with respect to PDL models using label valuations v,
which are functions from labels to states. We write m, v |= x Ra y to mean that
(v(x), v(y)) ∈ Im(a). We write m, v |= x : ϕ to mean m, v(x) |= ϕ. For a sequent
Γ ⇒ Δ, denoted by S, we write m, v |= S to mean that m, v |= B for some
B ∈ Δ whenever m, v |= A for all A ∈ Γ . We write m, v �|= S whenever this is
not the case, i.e. when m, v |= A for all A ∈ Γ and m, v �|= B for all B ∈ Δ. We
say S is valid, and write |= S, when m, v |= S for all models m and valuations v
that map each label to some state of m.

(Ax):
A ⇒ A

(⊥):
x : ⊥ ⇒

(WL):
Γ ⇒ Δ

A, Γ ⇒ Δ
(WR):

Γ ⇒ Δ

Γ ⇒ Δ, A

(∧L):
x : ϕ, x : ψ, Γ ⇒ Δ

x : ϕ ∧ ψ, Γ ⇒ Δ
(∧R):

Γ ⇒ Δ, x : ϕ Γ ⇒ Δ, x : ψ

Γ ⇒ Δ, x : ϕ ∧ ψ

(∨L):
x : ϕ, Γ ⇒ Δ x : ψ, Γ ⇒ Δ

x : ϕ ∨ ψ, Γ ⇒ Δ
(∨R):

Γ ⇒ Δ, x : ϕ, x : ψ

Γ ⇒ Δ, x : ϕ ∨ ψ

(→L):
Γ ⇒ Δ, x : ϕ x : ψ, Γ ⇒ Δ

x : ϕ → ψ, Γ ⇒ Δ
(→R):

x : ϕ, Γ ⇒ Δ, x : ψ

Γ ⇒ Δ, x : ϕ → ψ

( L):
y : ϕ, Γ ⇒ Δ

x : [a]ϕ, x Ra y, Γ ⇒ Δ
( R):

x Ra y, Γ ⇒ Δ, y : ϕ
(y fresh)

Γ ⇒ Δ, x : [a]ϕ

(;L):
x : [α][β]ϕ, Γ ⇒ Δ

x : [α ; β]ϕ, Γ ⇒ Δ
(;R):

Γ ⇒ Δ, x : [α][β]ϕ

Γ ⇒ Δ, x : [α ; β]ϕ

(∪L):
x : [α]ϕ, x : [β]ϕ, Γ ⇒ Δ

x : [α ∪ β]ϕ, Γ ⇒ Δ
(∪R):

Γ ⇒ Δ, x : [α]ϕ Γ ⇒ Δ, x : [β]ϕ

Γ ⇒ Δ, x : [α ∪ β]ϕ

(?L):
Γ ⇒ Δ, x : ϕ x : ψ, Γ ⇒ Δ

x : [ϕ?]ψ, Γ ⇒ Δ
(?R):

x : ϕ, Γ ⇒ Δ, x : ψ

Γ ⇒ Δ, x : [ϕ?]ψ

(∗L):
x : ϕ, x : [α][α∗]ϕ, Γ ⇒ Δ

x : [α∗]ϕ, Γ ⇒ Δ
(∗R):

Γ ⇒ Δ, x : ϕ Γ ⇒ Δ, x : [α][α∗]ϕ

Γ ⇒ Δ, x : [α∗]ϕ

(Subst):
Γ ⇒ Δ

Γ{x/y} ⇒ Δ{x/y}
(Cut):

Γ ⇒ Δ, A A, Σ ⇒ Π

Γ, Σ ⇒ Δ, Π

Fig. 1. Inference rules of G3PDL∞

The sequent calculus G3PDL∞ is defined by the inference rules in Fig. 1. A
pre-proof is a possibly infinite derivation tree built from these inference rules.
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Definition 3 (Pre-proof). A pre-proof is a possibly infinite (i.e. non-well-
founded) derivation tree formed from inference rules. A path in a pre-proof is
a possibly infinite sequence of sequents s0, s1, . . . (, sn) such that s0 is the root
sequent of the proof, and si+1 is a premise of si for each i < n.

Not all pre-proofs derive sound judgements.

Example 1. The following pre-proof derives an invalid sequent.

···
⇒ x : [a∗]p

(WR)⇒ x : [a∗]p, x : p

···
⇒ x : [a∗]p

(WR)⇒ x : [a∗]p, x : [a][a∗]p
(∗R)⇒ x : [a∗]p

Note that, since our sequents consist of sets of formulas, each instance of the
(∗R) rule incorporates a contraction

To distinguish pre-proofs deriving valid sequents, we define the notion of
a trace through a pre-proof. Traces consist of trace values, which (uniquely)
identify particular modalities within labelled formulas. αn denotes a sequence
α1, . . . , αn, and ε denotes the empty sequence. We sometimes omit the subscript
indicating length, writing α, when irrelevant or evident from the context.

Definition 4 (Trace Value). A trace value τ is a tuple (x,αn, β, ϕ) consisting
of a label x, a (possibly empty) sequence αn of n programs, a program β, and
a formula ϕ. We call α the spine of τ , and β the focus of τ . We write [γ]τ
for the trace value (x, γ · αn, β, ϕ), and y : τ for the trace value (y,αn, β, ϕ). In
an abuse of notation we also use τ to denote the corresponding labelled formula
x : [α1]. . . [αn][β∗]ϕ.

Trace values in the conclusion of an inference rule are related to trace values
in its premises as follows.

Definition 5 (Trace Pairs). Let τ and τ ′ be trace values, with sequents Γ ⇒ Δ
and Γ ′ ⇒ Δ′ (respectively denoted by s and s′) the conclusion and a premise,
respectively, of an inference rule r; we say that (τ, τ ′) is a trace pair for (s, s′)
when τ ∈ Δ and τ ′ ∈ Δ′ and the following conditions hold.

(1) If τ is the principal formula of the rule instance, then τ ′ is its immediate
ancestor and moreover if the rule is an instance of:

(�R) then τ = x : [a]τ ′, where x is the label of the principal formula;
(?R) then τ = [ϕ?]τ ′;
(;R) then τ = [α ; β]τ ′′ and τ ′ = [α][β]τ ′′ for some trace value τ ′′;

(∪R) then there is some τ ′′ such that: τ = [α ∪ β]τ ′′; τ ′ = [α]τ ′′ if s′ is the
left-hand premise; and τ ′ = [β]τ ′′ if s′ is the right-hand premise;

(∗R) then τ = [α∗]τ ′ if s′ is the left-hand premise, and τ ′ = [α]τ if s′ is the
right-hand premise.
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(2) If τ is not the principal formula of the rule then τ = x : τ ′ if the rule is an
instance of (Subst) and x is the label substituted, and τ = τ ′ otherwise.

If τ is the principal formula of the rule instance and the spine of τ is empty,
then we say that the trace pair is progressing.

Notice that when a trace pair is progressing for (s, s′), it is necessarily the case
that the corresponding rule is an instance of (∗R) and that s′ is the right-hand
premise (although, not necessarily vice versa).

Traces along paths in a pre-proof consist of consecutive pairs of trace values
for each corresponding step of the path.

Definition 6 (Trace). A trace is a (possibly infinite) sequence of trace values.
We say that a trace τ1, τ2, . . . (, τn) follows a path s1, s2, . . . (, sm) in a pre-proof
when there exists some k ≥ 0 such that each consecutive pair of trace values
(τi, τi+1) is a trace pair for (si+k, si+k+1); when k = 0, we say that the trace
covers the path. We say that the trace progresses at i if (τi, τi+1) is progressing,
and say the trace is infinitely progressing if it progresses at infinitely many points.

Proofs are pre-proofs that satisfy a well-formedness condition, called the
global trace condition.

Definition 7 (Infinite Proof). A G3PDL∞ proof is a pre-proof in which
every infinite path is followed by some infinitely progressing trace.

(Ax)

x : [a∗]ϕ ⇒ x : [a∗]ϕ

x : [a∗]ϕ ⇒ x : [a∗][a∗]ϕ
(Subst)

y : [a∗]ϕ ⇒ y : [a∗][a∗]ϕ
(WL)

x : ϕ, y : [a∗]ϕ ⇒ y : [a∗][a∗]ϕ
( L)

x Ra y, x : ϕ, x : [a][a∗]ϕ ⇒ y : [a∗][a∗]ϕ
( R)

x : ϕ, x : [a][a∗]ϕ ⇒ x : [a][a∗][a∗]ϕ
(∗L)

x : [a∗]ϕ ⇒ x : [a][a∗][a∗]ϕ
(∗R)

x : [a∗]ϕ ⇒ x : [a∗][a∗]ϕ
(;R)

x : [a∗]ϕ ⇒ x : [a∗ ; a
∗]ϕ

(→R)

⇒ x : [a∗]ϕ → [a∗ ; a
∗]ϕ

Fig. 2. Representation of a G3PDL∞ proof of [a∗]ϕ → [a∗ ; a∗]ϕ. (Color figure online)

Example 2. Figure 2 shows a finite representation of a G3PDL∞ proof of the
formula [a∗]ϕ → [a∗ ; a∗]ϕ. The full infinite proof can be obtain by unfolding
the cycle an infinite number of times. An infinitely progressing trace following
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(Ax)

x : ϕ ⇒ x : ϕ
(WL)

x : ϕ, x : [a∗][a∗]ϕ ⇒ x : ϕ
(∗L)

x : [a∗]ϕ ⇒ x : ϕ

x : [a∗]ϕ ⇒ x : [(a∗)∗]ϕ

x : [a∗]ϕ ⇒ x : [a∗][(a∗)∗]ϕ
(Subst)

y : [a∗]ϕ ⇒ y : [a∗][(a∗)∗]ϕ
(WL)

x : ϕ, y : [a∗]ϕ ⇒ y : [a∗][(a∗)∗]ϕ
( L)

x Ra y, x : ϕ, x : [a][a∗]ϕ ⇒ y : [a∗][(a∗)∗]ϕ
( R)

x : ϕ, x : [a][a∗]ϕ ⇒ x : [a][a∗][(a∗)∗]ϕ
(∗L)

x : [a∗]ϕ ⇒ x : [a][a∗][(a∗)∗]ϕ
(∗R) ‡

x : [a∗]ϕ ⇒ x : [a∗][(a∗)∗]ϕ
(∗R) †

x : [a∗]ϕ ⇒ x : [(a∗)∗]ϕ

Fig. 3. Representation of a G3PDL∞ proof of x : [a∗]ϕ ⇒ x : [(a∗)∗]ϕ. (Color figure
online)

the (unique) infinite path in this proof is indicated by the underlined programs
highlighted in blue, which denote the focus of the trace value in each sequent.
The progression point is the (only) instance of the (∗R) rule.

Figure 3 shows a finite representation of a G3PDL∞ proof of the sequent
x : [a∗]ϕ ⇒ x : [(a∗)∗]ϕ. This proof is more complex than that of Fig. 2, and
involves two overlapping cycles. This proof contains more than one infinite path
(in fact, it contains an infinite number of infinite paths). However, they fall into
three categories: (1) those that eventually traverse only the upper cycle; (2)
those that eventually traverse only the lower cycle; and (3) those that traverse
both cycles infinitely often. Infinite paths of the first variety have an infinitely
progressing trace indicated by the overlined programs highlighted in red. The
progression point is the upper instance of (∗R) rule, marked by (‡). The remain-
ing infinite paths have a trace indicated by the underlined programs highlighted
in blue. This trace does not progress around the upper cycle (for those paths that
traverse it), but does progress once around each lower cycle at the instance of
the (∗R) rule marked by (†). Since these paths traverse this lower cycle infinitely
often, the trace is infinitely progressing.

Remark 1. The notion of trace in the system for Kleene Algebra of Das and Pous
[9,10] appears simpler than ours: a sequence of formulas (on the left) connected
by ancestry, with such a trace being valid if it is principal for a (left) unfolding
rule infinitely often. In fact, we can show that our definition of trace is equivalent
to an analogous formulation of this notion for our system. However, our definition
allows for a direct, semantic proof of soundness via infinite descent. In contrast,
the soundness proof in [10] relies on cut-admissibility and an inductive proof-
theoretic argument for the soundness of the cut-free fragment. It is unclear that
a similar technique can be used to show soundness of the cut-free fragment of
our system. Furthermore, the cut-free fragment of the system of Das and Pous is
notable in that it admits a simpler trace condition than the full system: namely,
that every infinite path is fair for the (left) unfolding rule [10, prop. 8]. Our
system does not satisfy this property, due to the ability to perform contraction
and weakening, as demonstrated in Example 1.
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The proof system is sound since, for invalid sequents, we can map traces to
decreasing sets of counter-examples in (finitely branching) models.

A path in a model m is a sequence of states s1, . . . , sn in m such that each
successive pair of states satisfies (si, si+1) ∈ Im(a) for some a. A path in m is
called loop-free if it does not contain any repeated states. If s and s′ are paths
in m, we write s � s′ to denote that s is a prefix of s′.

An m-partition of a path sn is a sequence of m increasing indices k1 ≤ . . . ≤
km ≤ n. A path in m for a trace value τ = (x,αn, β, ϕ) with respect to a
valuation v is a path sm in m with s1 = v(x) having an n-partition k1, . . . , kn

satisfying (ski
, sk+1) ∈ Im(αi+1) for each 0 ≤ i < n and (skn

, sm) ∈ Im(β∗),
where we take k0 = 1 (i.e. sk0 = s1). The n-partition k1, . . . , kn is called a
partition of sm for τ . A counter-example in m for a trace value τ at v is simply
a path sm in m for τ w.r.t. v such that m, sm �|= ϕ.

A given path in m for τ at v can, in general, have many different partitions.
A partition kn of a path sm for τ at v is called maximal if the length of its final
segment skn

, . . . , sm is maximal among all such partitions. We define the weight
of a path s in m for τ at v to be the length of the final segment(s) of its maximal
partition(s). We denote this by μ(m,v)(s, τ). If Π is a set of paths in m for τ at v,
we define the measure of Π, denoted μ(m,v)(Π, τ), to be the multiset of weights
of the paths it contains; that is μ(m,v)(Π, τ) = {μ(m,v)(s, τ) | s ∈ Π}.

The measure for trace values in a model m at a valuation v, then, is simply
the measure of the set of all of its ‘nearest’ counter-examples.

Definition 8 (Trace Value Measure). Let C(m,v)(τ) denote the set of all
loop-free counter-examples s in m for τ at v such that there is no counter-
example s′ in m for τ at v with s′ � s. The measure of τ in m at v is defined
as μ(m,v)(τ) = μ(m,v)(C(m,v)(τ), τ).

For finitely branching models m, it is clear that trace value measures are
always finite. Note that finite multisets M of elements of a well-ordering can be
well-ordered using, e.g., the Dershowitz-Manna ordering <DM [12]. This means
that we have the following property.

Lemma 1 (Descending Counter-models). Let Γ ⇒ Δ, denoted S, be the
conclusion of an instance of an inference rule, and suppose there is a finitely
branching model m and valuation v such that m, v �|= S, then there is a premise
Γ ′ ⇒ Δ′ of the rule instance, denoted S′, and a valuation v′ such that m, v′ �|= S′

and for each trace pair (τ, τ ′) for (S, S′), μ(m,v′)(τ ′) ≤DM μ(m,v)(τ) and also
μ(m,v′)(τ ′) <DM μ(m,v)(τ) if (τ, τ ′) is progressing.

This entails the soundness of our proof system, since PDL has the finite
model property [14, Thm. 3.2]. This property states that, if a PDL formula is
satisfiable, then it is satisfiable in a finite (and thus finitely branching) model.
Thus, if a sequent is not valid then there is a finitely branching model that
falsifies it. If a G3PDL∞ proof P were to derive an invalid sequent, then by
Lemma 1 it would contain an infinite path Γ1 ⇒ Δ1, Γ2 ⇒ Δ2, . . . for which
there exists a finite model m and a matching sequence of valuations v1, v2, . . .



344 S. Docherty and R. N. S. Rowe

that invalidate each sequent in the path. Moreover, these invalidating valuations
ensure that the measures of the trace values in any trace pair along the path
is decreasing, and strictly so for progressing trace pairs. However, since P is a
proof, it satisfies the global trace condition. This means that there would be an
infinitely progressing trace following the path Γ1 ⇒ Δ1, Γ2 ⇒ Δ2, . . . and thus
we would be able to construct an infinitely descending chain of (finite) trace
value measures. Because the set of finite trace value measures is well-founded,
this is impossible and so the derived sequent must in fact be valid.

Theorem 1 (Soundness). G3PDL∞ derives only valid sequents.

The cyclic system G3PDLω is obtained by restricting consideration to only
those proofs of G3PDL∞ that are regular, i.e. have only a finite number of
distinct subtrees.

Definition 9 (Cyclic Pre-proof). A cyclic pre-proof is a pair (P, f) consist-
ing of a finite derivation tree P possibly containing open leaves called buds,
and a function f assigning to each bud an internal node of the tree, called its
companion, with a syntactically identical sequent.

We usually represent a cyclic pre-proof as the graph induced by identifying
each bud with its companion (as in Figs. 2 and 3). The infinite unfolding of a
cyclic pre-proof is the G3PDL∞ pre-proof obtained as the limit of the operation
that replaces each bud with a copy of the subderivation concluding with its
companion an infinite number of times. A cyclic proof is a cyclic pre-proof whose
infinite unfolding satisfies the global trace condition. As in other cyclic systems
(e.g. [6,8,36,38]) it is decidable whether or not this is the case via a construction
involving complementation of Büchi automata. This means that decidability of
the global trace condition for G3PDLω pre-proofs is PSPACE-complete.

Since every G3PDLω is also a G3PDL∞ proof, soundness of the cyclic
system is an immediate corollary of Theorem 1.

Corollary 1. If Γ ⇒ Δ is derivable in G3PDLω, then Γ ⇒ Δ is valid.

4 Completeness

In this section, we give completeness results for our systems. We show that the
full system, G3PDL∞, is cut-free complete. On the other hand, if we allow
instances of the (Cut) rule, then every valid theorem of PDL has a proof in the
cyclic subsystem G3PDLω.

4.1 Cut-Free Completeness of G3PDL∞

We use a standard technique of defining a pre-proof that encodes an exhaustive
search for a cut-free proof (as used in, e.g., [6,8]). For invalid sequents, this
results in a pre-proof from which we can construct a counter-model, using the
formulas that occur along a particular path.
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A schedule σ is an enumeration of labelled non-atomic formulas in which
each labelled formula occurs infinitely often. The ith element of σ is written σi.

Definition 10 (Search Tree). Given a sequent Γ ⇒ Δ and a schedule σ,
we can define an infinite sequence D of open derivations inductively. Taking
D0 = Γ ⇒ Δ, we construct each Di+1 from its predecessor Di by:

1. firstly closing any open leaves Γ ′ ⇒ Δ′ for which x : ⊥ ∈ Γ for some x or
Γ ∩ Δ �= ∅ by applying weakening rules leading to an instance of (⊥) or an
axiom A ⇒ A for some A ∈ Γ ∩ Δ (thus the antecedent of each remaining
open node is disjoint from its consequent);

2. then replacing each remaining open node Γ ′ ⇒ Δ′ in which σi occurs with
applications of the rule for which σi is principal in the following way.
– If σi = x : [a]ϕ ∈ Δ′, then we pick a label y not occurring in Γ ′ ⇒ Δ′,

and replace the open node with the following derivation.

x Ra y, Γ ′ ⇒ Δ′, y : ϕ
(�R)

Γ ′ ⇒ Δ′, x : [a]ϕ

– If σi = x : [a]ϕ ∈ Γ ′ then, letting {y1, . . . , yn} be the set of all yi such
that x Ra yi ∈ Γ ′, we replace the open node with the following derivation.

x : [a]ϕ, {y1 : ϕ, . . . , yn : ϕ}, Γ ′ ⇒ Δ′
···

x : [a]ϕ, {y1 : ϕ, y2 : ϕ}, Γ ′ ⇒ Δ′
(�L)

x : [a]ϕ, {y1 : ϕ}, Γ ′ ⇒ Δ′
(�L)

x : [a]ϕ, Γ ′ ⇒ Δ′

– In all other cases, we replace the open node with an application of the
appropriate rule (r) as follows, where Γ ′

i and Δ′
i, i ∈ {1, 2}, are the sets of

left and right immediate ancestors of σi, respectively, for the appropriate
premise.

Γ ′
1, Γ

′ ⇒ Δ′,Δ′
1 (Γ ′

2, Γ
′ ⇒ Δ′,Δ′

2)
(r)

Γ ′ ⇒ Δ′

Since each Di is a prefix of Di+1, there is a smallest derivation containing each
Di as a prefix. We call this derivation a search tree for Γ ⇒ Δ (w.r.t. σ).

Notice that search trees do not contain instances of the (Cut) or (Subst)
rules. Moreover, when a given search tree D is not a valid proof, we may extract
from it two sets of labelled formulas and relational atoms that we can use to
construct a countermodel. If D is not a valid proof, then either it contains an
open node to which no schedule element applies or it contains an infinite path
that does not satisfy the global trace condition (an untraceable branch). For a
search tree D, we say that a pair (Γ,Δ) is a template induced by D when either:
(i) Γ ⇒ Δ is an open node of D; or (ii) Γ =

⋃
i>0 Γi and Δ =

⋃
i>0 Δi, where
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Γ1 ⇒ Δ1, Γ2 ⇒ Δ2, . . . is an untraceable branch in D. Notice that, due to the
construction of search trees, the component sets of a template are necessarily
disjoint. Given a template, we construct a PDL model as follows.

Definition 11 (Countermodel Construction). Let P = (Γ,Δ) be a template
induced by a search tree. The PDL model determined by the template P is given
by mP = (L, IP ), where IP is the following interpretation function:

1. IP (p) = {x | x : p ∈ Γ} for each atomic proposition p; and
2. IP (a) = {(x, y) | x Ra y ∈ Γ} for each atomic program a.

We write v for the valuation defined by v(x) = x for each label x.

PDL models determined by templates have the following property.

Lemma 2. Let P = (Γ,Δ) be a template induced by a search tree. Then we
have mP , v |= A for all A ∈ Γ and mP , v �|= B for all B ∈ Δ.

Lemma 2 entails the cut-free completeness of G3PDL∞.

Theorem 2 (Completeness of G3PDL∞). If Γ ⇒ Δ is valid, then it has a
cut-free G3PDL∞ proof.

4.2 Completeness of G3PDLω for PDL

We show that the cyclic system G3PDLω can derive all theorems of PDL by
demonstrating that it can derive each of the axiom schemas and inference rules
in Fig. 4, which (along with the axiom schemas of classical propositional logic)
constitute a complete axiomatisation of PDL [23, §7.1].

[α](ϕ → ψ) → ([α]ϕ → [α]ψ) (1) [α](ϕ ∧ ψ) → ([α]ϕ ∧ [α]ψ) (2)

[α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ (3) [α ; β]ϕ ↔ [α][β]ϕ (4)

[ψ?]ϕ ↔ (ψ → ϕ) (5) ϕ ∧ [α][α∗]ϕ ↔ [α∗]ϕ (6)

ϕ ∧ [α∗](ϕ → [α]ϕ) → [α∗]ϕ (7)
ϕ ϕ → ψ

ψ
(MP)

ϕ

[α]ϕ
(Nec)

Fig. 4. Axiomatisation of PDL.

The derivation of the axioms of classical propositional logic is standard, and
axioms (3) to (6) are immediately derivable via the left and right proof rules
for their corresponding syntactic constructors. Each such derivation is finite,
and thus trivially a G3PDLω proof. Axioms (1), (2), (7) and (NEC) require the
following lemma showing that a general form of necessitation is derivable.
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Lemma 3 (Necessitation). For any labelled formula x : ϕ, program α, and
finite set Γ of labelled formulas such that labs(Γ ) = {x}, there exists a G3PDLω

derivation concluding with the sequent [α]Γ ⇒ x : [α]ϕ and containing open
leaves of the form Γ ⇒ x : ϕ such that:

(i) for each trace value τ = x : ϕ, every path from the conclusion to an open
leaf is covered by a trace [α]τ, . . . , τ ; and

(ii) every infinite path is followed by an infinitely progressing trace.

(Ax)
x : ϕ ⇒ x : ϕ

(Ax)
x : ψ ⇒ x : ψ

(→L)
x : ϕ → ψ, x : ϕ ⇒ x : ψ······

lemma 3

x : [α]ϕ → ψ, x : [α]ϕ ⇒ x : [α]ψ
(→R)

x : [α]ϕ → ψ ⇒ x : [α]ϕ → [α]ψ
(→R)

⇒ x : [α](ϕ → ψ) → ([α]ϕ → [α]ψ)

(a) Derivation schema for Axiom (1)

(Ax)
x : ϕ ⇒ x : ϕ

(WL)
x : ϕ, x : ψ ⇒ x : ϕ

(∧L)
x : ϕ ∧ ψ ⇒ x : ϕ······

lemma 3

x : [α](ϕ ∧ ψ) ⇒ x : [α]ϕ

(Ax)
x : ψ ⇒ x : ψ

(WL)
x : ϕ, x : ψ ⇒ x : ψ

(∧L)
x : ϕ ∧ ψ ⇒ x : ψ······

lemma 3

x : [α](ϕ ∧ ψ) ⇒ x : [α]ϕ
(∧R)

x : [α](ϕ ∧ ψ) ⇒ x : [α]ϕ ∧ [α]ψ
(→R)

⇒ x : [α](ϕ ∧ ψ) → ([α]ϕ ∧ [α]ψ)

(b) Derivation schema for Axiom (2)

(Ax)
x : ϕ ⇒ x : ϕ

(WL)
x : ϕ, x : [α∗]ϕ → [α]ϕ ⇒ x : ϕ

(Ax)
x : ϕ ⇒ x : ϕ

x : ϕ, x : [α∗]ϕ → [α]ϕ ⇒ x : [α∗]ϕ······
lemma 3

x : [α]ϕ, x : [α][α∗]ϕ → [α]ϕ ⇒ x : [α][α∗]ϕ
(WL)

x : ϕ, x : [α]ϕ, x : [α][α∗]ϕ → [α]ϕ ⇒ x : [α][α∗]ϕ
(→L)

x : ϕ, x : ϕ → [α]ϕ, x : [α][α∗]ϕ → [α]ϕ ⇒ x : [α][α∗]ϕ
(∗L)

x : ϕ, x : [α∗]ϕ → [α]ϕ ⇒ x : [α][α∗]ϕ
(∗R)

x : ϕ, x : [α∗]ϕ → [α]ϕ ⇒ x : [α∗]ϕ
(∧L)

x : ϕ ∧ [α∗]ϕ → [α]ϕ ⇒ x : [α∗]ϕ
(→R)

⇒ x : ϕ ∧ [α∗]ϕ → [α]ϕ → [α∗]ϕ

(c) Derivation schema for Axiom (7)

Fig. 5. G3PDLω derivation schemata for the distribution and induction axioms.

Schemas for deriving Axioms (1), (2) and (7) are shown in Fig. 5. Any infinite
paths which exist in the schemas for deriving axioms (1) and (2) are followed
by infinitely progressing traces by Lemma 3. Thus, they are G3PDLω proofs.
In the schema for axiom (7), the open leaves of the subderivation constructed
via Lemma 3 are converted into buds, the companion of each of which is the
conclusion of the instance of the (∗R) rule. Condition (i) of Lemma 3 guarantees
that each infinite path along these cycles has an infinitely progressing trace. We
thus have the following completeness result.

Theorem 3. If ϕ is valid then ⇒ x : ϕ is derivable in G3PDLω.
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It should be noted that Theorem 3 is not a deductive completeness result,
i.e. it does not say that any sequent Γ ⇒ Δ is only valid if there is a G3PDLω

proof for it. This is no major restriction, as a finitary syntactic consequence
relation cannot capture semantic consequence in PDL: due to the presence of
iteration, PDL is not compact. This can only be rectified by allowing infinite
sequents in the proof system, which yields a system that is not amenable to
automation.

5 Proof Search for Test-Free, Acyclic Sequents

In this section, we describe a cut-free proof-search procedure for sequents con-
taining formulas without tests (i.e. programs of the form ϕ?), and for which the
relational atoms in the antecedents do not entail cyclic models.

Our approach relies on the following notion of normal form for sequents. For
a set of relational atoms and labelled formulas, we write ∗-labs(Γ ) for the set
{x | x : [α∗]ϕ ∈ Γ}. We call formulas of the form [a]ϕ basic, those of the form
[α∗]ϕ iterated, and the remaining non-atomic formulas composite.

Definition 12 (Normal Sequents). A sequent Γ ⇒ Δ is called normal when:
(1) Γ ∩ Δ = ∅; (2) Δ contains only labelled atomic and iterated formulas; and
(3) Γ contains only relational atoms, labelled atomic formulas, and labelled basic
formulas x : [a]ϕ for which there is no y such that also x Ra y ∈ Γ .

We say that x reaches y (or y is reachable from x) in Γ when there are labels
z1, . . . , zn and atomic programs a1, . . . , an−1 such that x = z1 and y = zn with
zi Rai

zn+1 ∈ Γ for each i < n. We say that a sequent Γ ⇒ Δ is cyclic if there
is some x ∈ labs(Γ ) such that x reaches itself in Γ ; otherwise it is called acyclic.

Crucially, the following forms of weakening are validity-preserving.

Lemma 4 (Validity-preserving Weakenings). The following hold.

(1) If Γ ⇒ Δ,x Ra z is valid and x Ra z �∈ Γ , then Γ ⇒ Δ is valid.
(2) If normal Γ ⇒ Δ,x : p is valid with x �∈ ∗-labs(Δ), then Γ ⇒ Δ is valid.
(3) If normal Γ, x : ϕ ⇒ Δ is valid with x �∈ labs(Δ), then Γ ⇒ Δ is valid.
(4) If normal Γ, x Ra y ⇒ Δ is valid, z ∈ labs(Δ) for all z : ϕ ∈ Γ , x �∈ labs(Δ)

and x not reachable in Γ from any z ∈ labs(Δ), then Γ ⇒ Δ is valid.

An unwinding of a sequent Γ ⇒ Δ is a possibly open derivation of Γ ⇒
Δ obtained by applying left and right logical rules as much as possible, and
satisfying the properties that: no trace progresses more than once; and all rule
instances consume the active labelled formula of their conclusion, but preserve
in the premise any relational atoms. A capped unwinding is an unwinding for
which: (a) weakening rules and (Ax) and (⊥) have been applied to all open
leaves Γ ⇒ Δ with ⊥ ∈ Γ or Γ ∩ Δ �= ∅; and (b) the sequence of weakenings in
Lemma 4 have been exhaustively applied to all other open leaves.
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Lemma 5. Let D be a capped unwinding for Γ ⇒ Δ (denoted S) and Γ ′ ⇒ Δ′

an open leaf (denoted S′) of D. The following hold: (1) Γ ′ ⇒ Δ′ is normal; (2)
if Γ ⇒ Δ is valid, then so are all the open leaves of D; and (3) For every trace
τn covering the path from S to S′, if τ1 = (x, ε, β, ϕ) is a sub-formula of τn,
then the trace is progressing.

We call a sequent test-free if it does not contain any programs of the form
ϕ?. A crucial property for termination of the proof-search is the following.

Lemma 6. Let D be a capped unwinding for a test-free, acyclic sequent; then D
is finite, and labs(Γ ′) ⊆ labs(Δ′) ⊆ ∗-labs(Δ′) for all open leaves Γ ′ ⇒ Δ′ of D.

Both cyclicity and the presence of tests can cause Lemma 6 to fail, since then
it is possible for there to be a path of ancestry between two occurrences of an
antecedent formula x : [α∗]ϕ that traverses an instance of the (∗L) rule. That is,
antecedent formulas may be infinitely unfolded. Moreover, in the presence of tests
or cyclicity, the weakenings of Lemma 4(4) do not result in labs(Γ ′) ⊆ labs(Δ′)
for open leaves Γ ′ ⇒ Δ′.

We define a function ∗-max on test-free sequents (details are given in the
appendix), whose purpose is to provide a bound ensuring termination of proof-
search. We have conjectured that it satisfies the following property.

Conjecture 1. Let D be a capped unwinding of test-free, acyclic Γ ⇒ Δ. Then:

1. |{x : ϕ ∈ Δ′ | ϕ non-atomic}| ≤ ∗-max(Γ ⇒ Δ).
2. ∗-max(Γ ′ ⇒ Δ′) ≤ ∗-max(Γ ⇒ Δ) for all open leaves Γ ′ ⇒ Δ′ of D.

Proof-search proceeds by iteratively building capped unwindings for open
leaves. All formulas encountered in the search are in the (finite) Fischer-Ladner
closure of the initial sequent, and validity and acyclicity are preserved through-
out the procedure. Lemma 6 and Conjecture 1 will ensure that the number
of distinct open leaves (modulo relabelling) encountered during proof-search is
bounded, so we may apply substitutions to form back-links during proof-search.
Lemma 5(3) ensures that the resulting pre-proof satisfies the global trace con-
dition. For invalid sequents, proof-search produces atomic sequents that are not
axioms. We thus conjecture cut-free regular completeness for test-free PDL.

6 Conclusion

In this paper we have given two new non-wellfounded proof systems for PDL.
G3PDL∞ allows proof trees to be infinitely tall, and G3PDLω restricts to the
proofs of G3PDL∞ that are finitely representable as cyclic graphs satisfying
a trace condition. Soundness and completeness of both systems was shown, in
particular, cut-free completeness of G3PDL∞ and a strategy for cut-free com-
pleteness of G3PDLω for test-free PDL.

There is much further work to be done. Of immediate interest is the verifica-
tion of cut-free regular completeness for test-free PDL, and the extension of the
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argument to the full logic. We would also like to consider additional program
constructs. Some, like converse, can already be treated through De Giacomo’s
[17] efficient translation of Converse PDL into PDL. It may be more desirable,
however, to represent the program construct directly, to aid in the modular com-
bination of different constructs. One construct that is particularly notorious is
Intersection. Despite the modal definability of its dual, Choice, the intended
interpretation of Intersection is not modally definable, and the completeness
(and existence) of an axiomatisation for it remained open until Balbiani and
Vakarelov [3]. An earlier, and significantly simpler, solution to this problem was
the augmentation of PDL with nominals, denoted Combinatory DL [32]. We con-
jecture that the presence of labels in our system enables us to perform a similar
trick, without contaminating the syntax of the logic itself. However we should
note that a key prerequisite of our soundness proof, namely that we can restrict
attention to finitely branching models (guaranteed by the finite model property
of PDL), is an assumption that may no longer hold for particular combinations
of program constructs. Weakening this assumption will aid in the goal of giving
a truly uniform proof theory for PDL-type logics.

Our work should be seen as a part of a wider program of research to give a uni-
form and modular proof theory for a larger group of modal logics, including what
we have denoted PDL-type logics. One source of modularity and uniformity is
the existing Negri labelled system our calculi extend. This allows us to freely add
proof rules corresponding to first-order frame axioms defining Kripke models. A
wider class of modal logics than those directly covered by Negri’s framework are
those with accessibility relations that are defined to be wellfounded or arise as
transitive closures of other accessibility relations (we note Negri is able to treat
the specific case of Gödel-Löb logic due to its special interpretation of �, but not
the general class we describe). We believe an appropriate framework to uniformly
capture these logics as well is cyclic labelled deduction. We are encouraged in
this pursuit by recent work of Cohen and Rowe [8] in which first-order logic
with a transitive closure operator is given a cyclic proof theory. We may think of
labelled deduction as a way of giving a proof theoretic analysis of the first-order
theory of Kripke models and their modal satisfaction relations. Labelled cyclic
deduction, we conjecture, can capture the first-order-with-least-fixpoint theory
of Kripke models and modal satisfaction relations.

Finally, and somewhat more speculatively, with the cyclic system in hand we
intend to investigate the hitherto open problem of interpolation for PDL. This
has seen no satisfactory resolution in the years since PDL was first formulated,
with the only attempted proofs strongly disputed [27] or withdrawn [26]. It would
be interesting to see if the existence of a straightforward proof system for the
logic opens up any new lines of attack on the problem. For example, Lyndon
interpolation has been proved for Gödel-Löb logic using a cyclic system [37].
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Abstract. We describe a new method to constructivize proofs based
on Herbrand disjunctions by giving a practically effective algorithm
that converts (some) classical first-order proofs into intuitionistic proofs.
Together with an automated classical first-order theorem prover such a
method yields an (incomplete) automated theorem prover for intuition-
istic logic. Our implementation of this prover approach, Slakje, performs
competitively on the ILTP benchmark suite for intuitionistic provers:
it solves 1674 out of 2670 problems (1290 proofs and 384 claims of
non-provability) with Vampire as a backend, including 800 previously
unsolved problems.

1 Introduction

Intuitionistic logic is a logic of particular practical importance. Many interactive
theorem provers use intuitionistic logic as a foundation, like Coq [3], Agda [6], or
Lean [26]. In some foundational frameworks the law of excluded middle is even
provably false, such as in homotopy type theory1 [36]. Automating first-order
intuitionistic logic thus has immediate practical applications in these systems.

That intuitionistic proofs are often similar to classical proofs of the same
formula is a folklore observation, stated e.g. by Otten [29]. Hence it is reason-
able to approach automated theorem proving in intuitionistic logic by adapting
proofs from classical theorem provers. This general idea of proof constructiviza-
tion has recently been described and evaluated by Cauderlier [8] and Gilbert [16];
both transform detailed proofs (natural deduction resp. sequent calculus) using
essentially local rewriting operations. However their constructivization proce-
dures are hard to apply to state-of-the-art automated theorem provers as these
provers typically do not produce sequent calculus or natural deduction proofs.

Integrations of (classical) first-order theorem provers in higher-order theorem
provers—so-called “hammers”—typically use a similar general approach: pass-
ing a (sometimes even unsound) translation of the input problem to a classical
prover, and then reconstructing the proof in the higher-order system [5,10,18].

1 Considering of course the law of excluded middle for arbitrary types, not just mere
propositions.

c© Springer Nature Switzerland AG 2019
S. Cerrito and A. Popescu (Eds.): TABLEAUX 2019, LNAI 11714, pp. 355–373, 2019.
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In this framework, proof constructivization also uses an unsound translation:
one that maps each formula to itself (but reinterprets it in a different logic).

We present a new and different proof constructivization method based on
Herbrand disjunctions. Herbrand’s theorem [7,17] captures the insight that the
classical validity of a quantified formula is characterized by the existence of a
tautological finite set of quantifier-free instances. In its simplest case, the validity
of a purely existential formula ∃x ϕ(x) is characterized by the existence of a
tautological disjunction of instances ϕ(t1) ∨ · · · ∨ ϕ(tn), a Herbrand disjunction.
We say that ti is a quantifier instance term for ∃x ϕ(x). To store such Herbrand
disjunctions for general non-prenex formulas, we use an elegant data structure
called expansion trees, which also generalize this result to simply-typed higher-
order logic in the form of elementary type theory [23].

– We describe a new and effective procedure to constructivize classical proofs
into intuitionistic proofs based on Herbrand disjunctions.

– We have implemented the intuitionistic first-order theorem prover Slakje
based on this procedure using the GAPT [15] system for proof theory, and
show that it performs competitively on the ILTP benchmark suite.

– We show that the prover is complete on a practically relevant class of formulas.

We start out in Sect. 2 by giving an overview of the Slakje prover. In the
following sections we explain the technical details. Expansion trees, the central
data structure to represent classical proofs, are introduced in Sect. 3. In Sect. 4
we describe the SAT-based procedure that constructivizes expansion proofs and
produces intuitionistic proofs. Key optimizations are discussed in Sect. 5, and
completeness for a large class of problems including Horn problems and purely
equational problems is shown in Sect. 6. Finally, we evaluate the prover on the
ILTP benchmark suite in Sect. 7.

2 Overview of the Prover

We consider intuitionistic first-order logic with the connectives →,∧,∨,⊥,� and
the quantifiers ∃,∀. The abbreviation ¬ϕ stands for ϕ → ⊥. Let us first give a
short overview of the resulting intuitionistic first-order prover. Given an input
formula ϕ, it proceeds in three big phases:

1. Call classical prover (e.g. Vampire [19]) with ϕ2

(if the result is “satisfiable”, immediately return “non-theorem”)
2. Convert proof output into (classical) expansion proof
3. Produce intuitionistic proof from expansion proof

The only phase that is specific to this prover is the third one; in our implemen-
tation, phases 1 and 2 are part of the general-purpose external prover interface
that produces expansion proofs available in the GAPT [13,15] framework. We
use expansion proofs as a compact intermediate format for classical proofs, which
2 Internally, Vampire, and in general most classical provers then refute ¬ϕ.
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only contain the quantifier instance terms but not the propositional reasoning
in the proof. Many automated theorem proving paradigms generate proofs that
directly contain the same essential data as expansion proofs, e.g. the terms used
for heuristic instantiation in SMT solvers, or the global substitution used in
tableaux or connection proofs. Resolution and superposition proofs also contain
this information after grounding. This direct correspondence applies for formulas
in clause normal form; in the general case we also need to treat strong quantifiers,
which are Skolemized in classical provers.

While there are normal forms similar to CNF in intuitionistic logic which
avoid Skolemization [24,25], it makes little sense to use them here: the main dif-
ference is that they produce a different kind of “clauses”, such as (∀xP (x, y)) →
Q(y), which we cannot pass to classical theorem provers. But the use of Skolem-
ization as a preprocessing step is (in general) not sound in intuitionistic logic:
for example (¬∀x P (x)) → ∃x ¬P (x) is an intuitionistic non-theorem, while
its Skolemization (¬P (c)) → ∃x ¬P (x) is a theorem. Hence we use deskolem-
ization [1] to eliminate Skolemization from classical proofs (which is a natural
operation on expansion proofs).

The way we construct an intuitionistic proof from the expansion proof is
by a bottom-up proof construction in an intuitionistic multi-succedent sequent
calculus. We make use of a SAT solver to organize this proof construction. While
SAT solvers—as the name implies—can decide satisfiability of a propositional
formula ϕ in classical logic, only the part where we need to prove ϕ →

∧
C for

the CNF
∧

C requires classical logic. If the CNF
∧

C is unsatisfiable, then
∧

C
is already provable in intuitionistic logic: proofs produced by SAT solvers can be
translated to resolution proofs; and resolution is just the cut inference, which is
sound for intuitionistic logic. (See also Theorem 4 for a different explanation.)
In our setting, a SAT solver hence decides the following question: “is the sequent
Γ 	 Δ derivable from a set of sequents T using only cut and weakening?”

If the SAT solver cannot derive this sequent, we obtain an assignment which
corresponds to a leaf in this bottom-up proof construction and we apply the infer-
ences that cannot be encoded as clauses (e.g. the right-rule for implication). This
technique of using SAT solvers to support intuitionistic reasoning has already
been successfully used in the Intuit [9] prover, albeit only for propositional logic,
and their implementation does not produce proofs.

3 Expansion Proofs

The proof formalism of expansion trees was introduced in [23] to describe Her-
brand disjunctions in classical higher-order logic. In first-order logic, they pro-
vide an elegant data structure to describe Herbrand disjunctions for non-prenex
formulas, storing the quantifier instance terms. The central idea is that each
expansion tree E comes with a shallow formula sh(E) and a quantifier-free deep
formula dp(E). The deep formula corresponds to the quantifier-free Herbrand
disjunction, and the shallow formula is the quantified formula that we want to
prove. If the deep formula is a quasi-tautology (a tautology modulo equality),
then the shallow formula is valid in classical logic.
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Expansion trees have two polarities, − and +. We write −p for the inverse
polarity of p, i.e. −− = + and −+ = −. Polarity only changes on the left side of
the connective →. This distinction is important since we must instantiate positive
occurrences of ∀ (resp. negative occurrences of ∃, called “strong quantifiers”)
with an eigenvariable, while we can instantiate the negative ones with whatever
terms we want (“weak quantifiers”). An atom is a predicate such as P (x, y) or
an equality; the formulas �,⊥ are not atoms.

Definition 1. The set ETp(ϕ) of expansion trees with polarity p ∈ {+,−} and
shallow formula ϕ is inductively defined as the smallest set containing:

A atom/�/⊥
Ap ∈ ETp(A)

E1 ∈ ETp(ϕ) E2 ∈ ETp(ψ)
E1 ∧ E2 ∈ ETp(ϕ ∧ ψ)

E1 ∈ ETp(ϕ) E2 ∈ ETp(ψ)
E1 ∨ E2 ∈ ETp(ϕ ∨ ψ)

E1 ∈ ET−p(ϕ) E2 ∈ ETp(ψ)
E1 → E2 ∈ ETp(ϕ → ψ)

E ∈ ET+(ϕ[x\α])

∀x ϕ +α
ev E ∈ ET+(∀x ϕ)

E1 ∈ ET−(ϕ[x\t1]) · · · En ∈ ET−(ϕ[x\tn])

∀x ϕ +t1 E1 · · · +tn En ∈ ET−(∀x ϕ)

E ∈ ET−(ϕ[x\α])

∃x ϕ +α
ev E ∈ ET−(∃x ϕ)

E1 ∈ ET+(ϕ[x\t1]) · · · En ∈ ET+(ϕ[x\tn])

∃x ϕ +t1 E1 · · · +tn En ∈ ET+(∃x ϕ)

Each expansion tree E has a uniquely determined shallow formula and polar-
ity, we write sh(E) for its shallow formula, and pol(E) for its polarity. Given
an expansion tree E = Qx ϕ +α

ev E′ where Q ∈ {∀,∃}, we say that α is the
eigenvariable of E.

Example 1. Consider the formula3 ϕ := ∀x P (x) → (∀x P (f(x)) → Q) → Q.
The expansion tree ET+(ϕ) � E := (∀xP (x)+f(α) P (f(α))) → (∀xP (f(x))+α

ev

P (f(α)) → Q) → Q has the shallow formula sh(E) = ϕ, and its deep formula
dp(E) = (P (f(α)) → (P (f(α)) → Q) → Q) is tautological. The quantifier
instance terms here are f(α) and α (written in superscript after the +). An
instructive way to think about expansion proofs is that they are a compressed
form of cut-free sequent calculus proofs where we only store the quantifier infer-
ences. The following proof uses exactly the same terms, f(α) and α, in the
quantifier inferences ∀l and ∀r, resp.

P (f(α)) 	 P (f(α))
∀l∀x P (x) 	 P (f(α))
∀r∀x P (x) 	 ∀x P (f(x)) Q 	 Q →l∀x P (x),∀x P (f(x)) → Q 	 Q →r∀x P (x) 	 (∀x P (f(x)) → Q) → Q →r	 ∀x P (x) → (∀x P (f(x)) → Q) → Q

3 We use the convention that the quantifiers ∀, ∃ bind stronger than →, ∧, ∨. That
is, ∀x P (x) → Q is the same formula as (∀x P (x)) → Q. Furthermore, → is right-
associative, that is, P → Q → R is the same formula as P → (Q → R).
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Definition 2. Let E be an expansion tree. We define the deep formula dp(E)
recursively as follows:

dp(Ap) = A, dp(�p) = �, dp(⊥p) = ⊥, dp(E1 ∧ E2) = dp(E1) ∧ dp(E2)

dp(E1 ∨ E2) = dp(E1) ∨ dp(E2), dp(E1 → E2) = dp(E1) → dp(E2)

dp(∀x ϕ +y
ev E) = dp(E), dp(∀x ϕ +t1 E1 · · · +tn En) = dp(E1) ∧ · · · ∧ dp(En)

dp(∃x ϕ +y
ev E) = dp(E), dp(∃x ϕ +t1 E1 · · · +tn En) = dp(E1) ∨ · · · ∨ dp(En)

The deep formula corresponds to the Herbrand disjunction. In an expansion
proof, the eigenvariables need to be acyclic. This restriction is similar to the
eigenvariable condition in sequent calculi and the acceptability condition for
substitutions in matrices [4]. Let FV(ϕ) be the set of free variables of a formula ϕ.

Definition 3. Let E be an expansion tree. The dependency relation <E is a
binary relation on eigenvariables where α <E β iff E contains a subtree E′ such
that α ∈ FV(sh(E′)) and β is an eigenvariable of a subtree of E′.

Definition 4. An expansion proof4 E of ϕ is an E ∈ ET+(ϕ) such that:

1. <E is acyclic (i.e., can be extended to a linear order) and
there are no duplicate eigenvariables, and

2. dp(E) is a quasi-tautology

Theorem 1 ([23, Theorems 4.1 and 4.2]). A formula ϕ is a theorem of clas-
sical first-order logic if and only if there exists an expansion proof E ∈ ET+(ϕ).

Example 2. The formula ∃x (p(c) ∨ p(d) → p(c)) has E1 = ∃x (p(c) ∨ p(d) →
p(c)) +c (p(c)− ∨ p(d)− → p(c)+) as an expansion proof. The deep formula
dp(E1) = p(c)∨p(d) → p(c) is a tautology. This is not the only possible expansion
proof of this formula: we could also use the instance d instead of c.

Expansion proofs are closely related to the matrix characterization for clas-
sical first-order logic [4] used by connection-based theorem provers [30]. Both
separate the proof into two layers: the quantifier inference terms, and the propo-
sitional proof. In connection proofs, the quantifier instance terms are stored
implicitly as the result of the unifier induced by the connections, while expan-
sion proofs contain these terms explicitly. In the classical setting, the multiplic-
ity in a connection proof corresponds essentially to the number of children in
the weak quantifier nodes of an expansion tree. (In the intuitionistic setting,
the multiplicity also constrains the amount of contraction in a corresponding
sequent calculus proof, i.e., how often subformulas can be used. There is no such
constraint in our expansion-proof based method.) Integrating equality into con-
nection proofs is hard as it requires simultaneous rigid E-unification [38], and
4 Proof systems (for propositional logic) are typically required to be polynomial-time

checkable, as certificates to the coNP-complete validity problem. Expansion proofs
are coNP-checkable certificates for the undecidable first-order validity problem.
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connection provers such as leanCoP hence perform equational reasoning during
proof search by adding axioms for reflexivity, transitivity, and congruence of
equality during preprocessing.

By contrast, expansion proofs work modulo equality. We do not need to add
explicit axioms for equality. Instead, the handling of equality is part of verifying
that the deep formula is a quasi-tautology, and can be done using off-the-shelf
SMT solvers (which are typically the fastest tools to decide validity of quantifier-
free formulas). In principle, this could also be extended to other decidable (and
for our purposes, intuitionistically valid) theories used in SMT solvers such as
Presburger arithmetic.

4 Proof Constructivization

Our proof constructivization method operates on the level of expansion proofs.
That is, it takes an expansion proof and (if successful) produces an intuitionistic
proof using (at most) the quantifier inferences indicated by the expansion proof.
The expansion proof only restricts the quantifier instance terms in the proof; not
how often a subformula is used (i.e. contraction). We want to find a proof in the
multi-succedent intuitionistic sequent calculus mLJ as shown in Fig. 1, where all
eigenvariables and quantifier instances occur in the expansion proof and there
are no duplicate eigenvariables along any branch of the proof.

Definition 5. An mLJ-proof π realizes an expansion proof E iff every quantifier
instance term in π is contained in E, i.e.: (and analogously for ∃)

– If
Γ 	 ϕ(α)

Γ 	 ∀x ϕ(x)
is a subproof of π, then ∀xϕ(x)+α

ev E′ is a subtree of E (for

some E′)

– If
ϕ(t), Γ 	 Δ

∀x ϕ(x), Γ 	 Δ
is a subproof of π, then ∀xϕ(x)+t E′ · · · is a subtree of E

(for some E′)

Note that Definition 5 ignores the ancestor relationship of formulas in a proof:
if two subtrees E1, E2 of E have the same shallow formula, then their instances
can be be used interchangeably in π.

Definition 6. An mLJ-proof π is called weakly regular iff for all subproofs of
the following form, α does not occur as the eigenvariable of an inference in π′:

(π′)

Γ 	 ϕ(α)
∀r

Γ 	 ∀x ϕ(x)
or

(π′)

ϕ(α), Γ 	 Δ
∃l∃x ϕ(x), Γ 	 Δ

Our algorithm will have the property that whenever a cut-free weakly regular
mLJ-proof of sh(E) exists which realizes E, the algorithm will succeed and return
an intuitionistic proof. The restriction of cut-free weak regularity is due to the
intuitionistic logic; in classical logic, we can always find a cut-free weakly regular
proof realizing E, provided that dp(E) is quasi-tautological.
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ax
ϕ � ϕ

Γ � Δ wl
ϕ, Γ � Δ

Γ � Δ wr
Γ � Δ, ϕ

Γ � Δ, ϕ ϕ, Π � Λ
cut

Γ, Π � Δ, Λ

rfl� t = t
Γ � Δ, ϕ(t)

eq→
r

Γ, t = s � Δ, ϕ(s)
Γ � Δ, ϕ(s)

eq←
r

Γ, t = s � Δ, ϕ(t)

ϕ(t), Γ � Δ
eq→

l
ϕ(s), Γ, t = s � Δ

ϕ(s), Γ � Δ
eq←

l
ϕ(t), Γ, t = s � Δ

�r� � ⊥l⊥ �
Γ � Δ, ϕ, ψ ∨r

Γ � Δ, ϕ ∨ ψ

ϕ, Γ � Δ ψ, Γ � Δ ∨l
ϕ ∨ ψ, Γ � Δ

ϕ, ψ, Γ � Δ ∧l
ϕ ∧ ψ, Γ � Δ

Γ � Δ, ϕ Γ � Δ, ψ ∧r
Γ � Δ, ϕ ∧ ψ

Γ, ϕ � ψ →r
Γ � ϕ → ψ

Γ � Δ, ϕ ψ, Γ � Δ →l
ϕ → ψ, Γ � Δ

Γ � Δ, ϕ(t) ∃r
Γ � Δ, ∃x ϕ(x)

ϕ(α), Γ � Δ ∃l∃x ϕ(x), Γ � Δ

ϕ(t), Γ � Δ ∀l∀x ϕ(x), Γ � Δ

Γ � ϕ(α) ∀r
Γ � ∀x ϕ(x)

Fig. 1. The multi-succedent calculus mLJ for intuitionistic first-order logic (variant of
L’J first introduced by Maehara [20] but using sets instead of sequences, see also mG1i
in Troelstra and Schwichtenberg’s classification [37]). A sequent Γ � Δ consists of two
sets of formulas Γ and Δ and is interpreted as the formula

∧
Γ → ∨

Δ. The variable
α in the ∃l and ∀r inferences is called an eigenvariable, and must not occur in Γ, Δ
as a free variable. The proof system is cut-free complete for intuitionistic first-order
logic with equality. Note that the rules →r, ∀r do not have any extra formulas Δ in
the succedent: this is the only difference to the classical calculus.

Example 3. Consider the expansion proof 	 ¬¬(∀x(p∨¬p)+α
ev (p+∨¬p−)). This

expansion proof cannot be realized by a weakly regular cut-free mLJ-proof of
	 ¬¬∀x (p∨¬p), since we would need to use two ∀r inferences but the expansion
proof only contains one eigenvariable. The natural proof would use the eigen-
variable α twice. (Note that this example requires that α does not occur in p:
the formula ¬¬∀x (q(x) ∨ ¬q(x)) is not an intuitionistic theorem.)

The SAT-based bottom-up proof construction is done in the Construct
and Solve procedures shown in Algorithm 1. The main function Solve applies
the inference rules ∃l,∀r, and →r and calls itself recursively with the premise of
these inferences. However it does this in a loop where it first extends the given
sequent to a maximal sequent by obtaining a model from the SAT solver. Such
a sequent corresponds to a leaf in a restricted bottom-up search, which only
uses inferences (all except for →r,∀r,∃l—these inferences have an eigenvariable
or single-conclusion restriction) that we have encoded as clauses in the SAT
solver (in the Construct function). There may be multiple such leaves (e.g.
corresponding to two ∀r inferences in different branches of the proof), hence
Solve iterates over the models in a loop.

We use an incremental interface to the SAT solver: the solver internally
maintains a set of clauses C. A clause is a set of literals. If l is a literal, then −l
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Algorithm 1. SAT-based proof constructivization
1: procedure Construct(E) � returns true if intuitionistic proof of sh(E) found
2: Assert(‖	‖); Assert(−‖⊥‖)
3: Assert(−‖sh(E1)‖, ‖sh(E1 ∨ E2)‖) for each subtree E1 ∨ E2 of E
4: Assert(−‖sh(E2)‖, ‖sh(E1 ∨ E2)‖) for each subtree E1 ∨ E2 of E
5: Assert(−‖sh(E1 ∨ E2)‖, ‖sh(E1)‖, ‖sh(E2)‖) for each subtree E1 ∨ E2 of E
6: Assert(−‖sh(E1 ∧ E2)‖, ‖sh(E1)‖) for each subtree E1 ∧ E2 of E
7: Assert(−‖sh(E1 ∧ E2)‖, ‖sh(E2)‖) for each subtree E1 ∧ E2 of E
8: Assert(−‖sh(E1)‖, −‖sh(E2)‖, ‖sh(E1 ∧ E2)‖) for each subtree E1 ∧ E2 of E
9: Assert(−‖sh(E2)‖, ‖sh(E1 → E2)‖) for each subtree E1 → E2 of E

10: Assert(−‖sh(E1)‖, −‖sh(E1 → E2)‖, ‖sh(E2)‖) for each subtree
11: E1 → E2 of E
12: Assert(−‖sh(E′)|, ‖sh(Ei)‖) for each subtree
13: E′ = ∀x ϕ(x) +t1 E1 · · · +tn En of E and 1 ≤ i ≤ n
14: Assert(−‖sh(Ei)‖, ‖sh(E′)‖) for each subtree
15: E′ = ∃x ϕ(x) +t1 E1 · · · +tn En of E and 1 ≤ i ≤ n
16: return Solve(E; ∅; � sh(E))

17: procedure Solve(E; Σ; Γ � Δ) � Σ is the set of already used eigenvariables
18: � returns true if we have found an intuitionistic proof of Γ � Δ
19: while IsESatisfiable(‖Γ‖, −‖Δ‖) do
20: I = GetModel(‖Γ‖, −‖Δ‖)
21: (Γ ′, Δ′) = ({ϕ | I(‖ϕ‖) = 1}, {ϕ | I(‖ϕ‖) = 0}) � Γ ′ ⊇ Γ and Δ′ ⊇ Δ
22: for each ϕ → ψ in Δ′ such that ϕ �∈ Γ ′ do
23: if Solve(E; Σ; Γ ′, ϕ � ψ) then
24: C = UnsatCore(‖Γ ′‖, ‖ϕ‖, −‖ψ‖)
25: Assert(−C \ {‖ψ‖, −‖ϕ‖}, ‖ϕ → ψ‖)
26: continue outer loop

27: for each ∀x ϕ in Δ′ and subtree ∀x ϕ +α
ev . . . in E with α �∈ Σ do

28: Γ ′
α = {ψ ∈ Γ ′ | α �∈ FV(ψ)}

29: if Solve(E; Σ ∪ {α}; Γ ′
α � ϕ(α)) then

30: C = UnsatCore(‖Γ ′
α‖, −‖ϕ(α)‖)

31: Assert(−C \ {‖ϕ(α)‖}, ‖∀x ϕ(x)‖)
32: continue outer loop

33: for each ∃x ϕ in Γ ′ and subtree ∃x ϕ +α
ev . . . in E with α �∈ Σ do

34: (Γ ′
α, Δ′

α) = ({ψ ∈ Γ ′ | α �∈ FV(ψ)}, {ψ ∈ Δ′ | α �∈ FV(ψ)})
35: if Solve(E; Σ ∪ {α}; Γ ′

α, ϕ(α) � Δ′
α) then

36: C = UnsatCore(‖Γ ′
α‖, ‖ϕ(α)‖, −‖Δ′

α‖)
37: Assert(−C \ {−‖ϕ(α)‖}, −‖∃x ϕ(x)‖)
38: continue outer loop

39: return false
40: return true
41: procedure IsESatisfiable(A) � returns true iff satisfiable modulo equality
42: while IsSatisfiable(A) do � implemented using congrence closure
43: I = GetModel(A)
44: if {ϕ | I(‖ϕ‖) = 1} � {ϕ | I(‖ϕ‖) = 0} is provable with cut, w, rfl, eq then
45: Assert(end-sequent of equality proof)
46: else return true
47: return false
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is the negated literal. The function Assert adds a clause to this set. Given a
set of literals A (short for assumptions), the function IsSatisfiable(A) returns
true iff

∧
C ∧

∧
A is satisfiable. If it is satisfiable, the function GetModel(A)

returns a model. If it is unsatisfiable, then UnsatCore(A) returns a minimal
subset A′ ⊆ A such that

∧
C ∧

∧
A′ is still unsatisfiable.

Concretely we associate to the shallow formula ϕ of every subtree of E
a variable ‖ϕ‖ in the SAT solver. Given a set of formulas Γ , we also define
‖Γ‖ = {‖ϕ‖ | ϕ ∈ Γ} (in particular ‖∅‖ = ∅). We only call Assert(−‖Γ‖, ‖Δ‖)
if we have an intuitionistic mLJ-proof of Γ 	 Δ (that is,

∧
Γ →

∨
Δ is an

intuitionistic theorem). A model I returned by the SAT solver corresponds to
the sequent {ϕ | I(‖ϕ‖) = 1} 	 {ϕ | I(‖ϕ‖) = 0}.

By asserting specific clauses, we can ensure that these sequents obtained from
models are closed under inferences: for example if we call Assert(−‖ϕ∧ψ‖, ‖ψ‖)
then any model I satisfies I(‖ψ‖) = 1 if I(‖ϕ∧ψ‖) = 1. Hence, the sequent Γ 	 Δ
corresponding to the model has ψ ∈ Γ if ϕ∧ψ ∈ Γ and is closed under (part of)
the ∧l rule (read bottom-up). We add these clauses in the Construct function.

The other inferences, →r,∀r,∃l, are handled in the Solve function. For
example, lines 23–26 handle an →r inference inferring Γ ′ 	 ϕ → ψ from Γ ′, ϕ 	 ψ
in the following way: the recursive Solve-call first tries to prove Γ ′, ϕ 	 ψ. The
set of literals C returned by UnsatCore then corresponds to a minimal subset
Γ ′′ ⊆ Γ ′ such that Γ ′′, ϕ 	 ψ (the minimization is purely an optimization, albeit
an important one). The correspondence is that ‖Γ ′′‖ = C \ {‖ϕ‖,−‖ψ‖}. We
then assert −‖Γ ′′‖, ‖ϕ → ψ‖ (computed using C in line 25) corresponding to
the provable sequent Γ ′′ 	 ϕ → ψ. Note that the polarities of the SAT solver
variables are inverse in the assumptions passed to UnsatCore and the clause
passed to Assert: UnsatCore(A) returns a minimal subset of A′ ⊆ A such
that −A′ (regarded as a clause) is implied by the current clauses.

Algorithm 1 terminates, since each recursive call of Solve either increases
the size of Σ or increases the size of the antecedent Γ while keeping Σ the
same; the while-loop in Solve never iterates over the same model twice since
the Assert-calls in Solve add clauses that are not true in the current model.

Example 4. Consider again the expansion proof from Example 1 and abbreviate
ψ = ∀x P (f(x)) → Q. Then Construct asserts the following clauses:

‖�‖ −‖ϕ‖,−‖∀x P (x)‖, ‖ψ → Q‖
−‖⊥‖ −‖ψ → Q‖,−‖ψ‖, ‖Q‖
−‖ψ → Q‖, ‖ϕ‖ −‖ψ‖,−‖∀x P (f(x))‖, ‖Q‖
−‖Q‖, ‖ψ → Q‖ −‖∀x P (x)‖, ‖P (f(α))‖

And Solve proceeds in the following recursive call tree:

– Solve(E; ∅; 	 ϕ)
• Obtained model: ‖�‖ (list of all p with I(p) = 1)
• Solve(E; ∅; �,∀x P (x) 	 ψ → Q) (line 23 for ϕ)

* Obtained model: ‖�‖, ‖∀x P (x)‖, ‖P (f(α))‖
* Solve(E; ∅; �,∀x P (x), P (f(α)), ψ 	 Q) (line 23 for ψ → Q)
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· Obtained model: ‖�‖, ‖∀x P (x)‖, ‖P (f(α))‖, ‖ψ‖
· Solve(E; {α}; �,∀x P (x), ψ 	 P (f(α))) (line 29 for ∀x P (f(x)))
· Assert(−‖∀x P (x)‖, ‖∀x P (f(x))‖)

* Assert(−‖∀x P (x)‖, ‖ψ → Q‖)
• Assert(‖ϕ‖)

Theorem 2. If Construct(E) returns true, then there is an mLJ-proof of
sh(E) realizing E (and sh(E) is an intuitionistic theorem).

Proof. We store an mLJ-proof Γ 	 Δ for every clause −‖Γ‖, ‖Δ‖ that is passed
to Assert: these all have straightforward proofs in mLJ. Whenever IsESatis-
fiable(‖Γ‖,−‖Δ‖) returns false for a sequent Γ 	 Δ, we have an mLJ-proof of
Γ 	 Δ by combining the previously stored proofs using cuts as in the resolution
refutation returned by the SAT solver. ��

Let us now prove completeness, i.e., Construct returns true if the expansion
proof E is realized by a weakly regular proof π of sh(E) in mLJ. Intuitively, the
procedure succeeds because it can just pick the same inferences as in π. In
a sense, the function Solve proceeds upwards through the proof π, the SAT
solver jumps over all inferences except ∃l,∀r,→r, and the model Γ ′ 	 Δ′ that
we consider in Solve corresponds to an ∃l,∀r or →r inference in π.

Formally, we capture the required properties for the model obtained from
the SAT solver as “maximal” sequents. Whenever a proof ends in a sub-sequent
of a maximal sequent, we can trace the proof upwards to find a ∃l,∀r or →r

inference also ending in a sub-sequent of the maximal sequent.

Definition 7. A sequent Γ 	 Δ is called maximal (for an expansion proof E)
iff all of the following are true:

– Γ ∪ Δ is the set of all shallow formulas of subtrees of E
– Γ ∩ Δ = ∅
– ⊥ ∈ Δ
– � ∈ Γ
– If ϕ ∧ ψ ∈ Γ , then ϕ,ψ ∈ Γ
– If ϕ ∧ ψ ∈ Δ, then ϕ ∈ Γ or ψ ∈ Γ
– If ϕ ∨ ψ ∈ Δ, then ϕ,ψ ∈ Δ
– If ϕ ∨ ψ ∈ Γ , then ϕ ∈ Γ or ψ ∈ Γ
– If ϕ → ψ ∈ Γ , then ϕ ∈ Δ or ψ ∈ Γ
– If ∀x ϕ(x) ∈ Γ and ∀x ϕ(x) +t1 · · · +tn is a subtree of E,

then ϕ(t1), . . . , ϕ(tn) ∈ Γ .
– If ∃x ϕ(x) ∈ Δ and ∃x ϕ(x) +t1 · · · +tn is a subtree of E,

then ϕ(t1), . . . , ϕ(tn) ∈ Δ

Lemma 1. The sequent Γ ′ 	 Δ′ obtained in line 21 from the model returned by
GetModel in Solve(E;Σ;Γ 	 Δ) is maximal for E.

Proof. The set Γ ′ ∪ Δ′ contains all shallow formulas, and we have Γ ′ ∩ Δ′ =
∅ because Γ ′ 	 Δ′ corresponds to a model. Each of the other conditions in
Definition 7 is then ensured by a clause that is asserted in the Construct
function: e.g. ⊥ ∈ Δ′ is ensured by Assert(−‖⊥‖). ��
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Lemma 2. Let S be maximal for E, and π be an mLJ-proof of S ′ realizing E,
such that S ′ is a subsequent of S. Then there is a subproof π′ of π such that
the end-sequent of π′ is also a sub-sequent of S, and π′ ends in a ∃l,∀r or →r

inference.

Proof. By straightforward induction on π. For illustration, let us prove the case

where π ends in an ∧r-inference:
(π1)

Γ 	 Δ,ϕ

(π2)
Γ 	 Δ,ψ ∧r

Γ 	 Δ,ϕ ∧ ψ
Let S = (Γ ′ 	 Δ′). Note that Γ 	 Δ,ϕ ∧ ψ is a subsequent of Γ ′ 	 Δ′ by

assumption and hence ϕ ∧ ψ ∈ Δ′. The sequent S is maximal, so ϕ ∈ Δ′ or
ψ ∈ Δ′. First consider ϕ ∈ Δ′; then Γ 	 Δ,ϕ is a subsequent of S and we can
apply the induction hypothesis. The case ψ ∈ Δ′ is symmetric. ��

Theorem 3. If E can be realized by a weakly regular cut-free mLJ-proof of
sh(E), then Construct(E) returns true.

Proof. We use the following invariant for Solve(E;Σ;Γ 	 Δ): if there is a
weakly regular cut-free mLJ-proof π of a subsequent of Γ 	 Δ realizing E such
that the eigenvariables in π are disjoint from Σ, then Solve returns true.

In Solve, let π be the subproof described above, and let Γ ′ 	 Δ′ be the
sequent constructed from the model in line 21. Then Γ ′ 	 Δ′ is a maximal
sequent by Lemma 1. There is a subproof π′ of π whose end-sequent is a sub-
sequent of Γ ′ 	 Δ′ and that ends in a ∃l,∀r or →r inference by Lemma 2. At least
one of the recursive calls then corresponds to this inference, and invokes Solve
with the premise of the inference, which hence returns true. Weak regularity of
π ensures that the precondition for Σ is satisfied. The clause passed to Assert
corresponds to the conclusion of the ∃l,∀r,→r-inference, and we continue to the
next iteration of the loop. ��

For quantifier-free formulas, the constructivization method is a decision pro-
cedure since mLJ is cut-free complete and proofs of quantifier-free formulas are
trivially weakly regular and realize the expansion proof. The author believes that
it should be possible to give a similar proof-theoretic completeness proof for the
Intuit prover [9] (their paper gives a proof based on Kripke models).

Corollary 1. If sh(E) is a quantifier-free formula, then Construct(E)
returns true if and only if sh(E) is an intuitionistic theorem.

5 Optimizations

For performance reasons, we implement several optimizations in the Solve pro-
cedure. The first one was already described in [9].

Caching Unsolvable Cases. By using a SAT solver, we already have a cache for
the solvable cases: whenever Solve(E;Σ;Γ 	 Δ) returns true, the SAT solver
remembers the conflict clause and all subsequent calls to Solve will terminate
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after just one call to IsESatisfiable. However if we cannot find a proof, then
we would need to repeat the costly recursive backtracking procedure. Hence we
store all pairs (Σ;Γ ′ 	 Δ′) where the result is false (Γ ′ 	 Δ′ is the model
obtained in line 21). At the beginning of Solve we check if we have already
stored a pair (Σ′′;Γ ′′ 	 Δ′′) such that Σ ⊆ Σ′′ and Γ ⊇ Γ ′′ and Δ ⊇ Δ′′, and
return false if there is such a pair. (Pairs are stored in a trie-like data structure.)

Classical Quasi-Tautology Check. If a sequent Γ 	 Δ is not even classically prov-
able, then it cannot be intuitionistically provable either. This easy observation
allows us to prune large branches of the backtracking search in Solve. The
function IsESatisfiable(‖Γ‖,−‖Δ‖) returns false if there is a weakly regu-
lar cut-free mLJ-proof of Γ 	 Δ realizing E without the inferences →r,∀r,∃l.
We add a fresh variable c in such a way that IsESatisfiable(c, ‖Γ‖,−‖Δ‖)
returns false iff there is a classical proof of Γ 	 Δ realizing E. The classical
calculus differs from mLJ only in the rules →r,∀r. (Concretely, we assert the
clauses c 	 ‖ϕ → ψ‖, ‖ϕ‖ and c, ‖ϕ(α)‖ 	 ‖∀x ϕ(x)‖ and c, ‖∃x ϕ(x)‖ 	 ‖ϕ(α)‖
for the corresponding shallow formulas of subtrees of E.)

Invertible Occurrences of ∃l. In some cases we can avoid backtracking with
existential quantifiers in the antecedent. This is the case if we have a sub-
tree ∃x ϕ(x) +α

ev E1, where all free variables in ∃x ϕ(x) are already in Σ. In
this case we immediately apply the corresponding ∃l inference, and skip all
the loops in the Solve procedure. This is correct because we can permute
the ∃l inference downward in the realizing proof. Consider e.g. the expan-
sion proof ∀x ∃y R(x, y) +α (· · · +β

ev R(α, β)−) +f(α) (· · · +γ
ev R(f(α), γ)−) 	

∀x ∃y ∃z (R(x, y) ∧ R(f(x), z)) +α
ev · · · +β · · · +γ (R(α, β)+ ∧ R(f(α), γ)+). In

line 29, we first introduce the α eigenvariable, and then (in recursive calls) the
β and γ eigenvariables in line 35. Without the optimization, we would then try
every permutation of β, γ if Solve returned false (which will be expensive if
there are more eigenvariables). With the optimization, we only need to consider
a single permutation.

6 Completeness on Subclasses

In general, our proof constructivization-based approach to intuitionistic theorem
proving is incomplete. For example, ∀x(p(x)∨¬p(x)) 	 ¬¬p(c) → p(c) is an intu-
itionistic theorem where our approach will fail—we clearly need the assumption
∀x(p(x)∨¬p(x)), but virtually all classical theorem provers will discard it imme-
diately and never use it. For decidability assumptions such as ∀x (p(x) ∨ ¬p(x))
we can use heuristic instantiation as a pre-processing step, adding all instances
of the formula for subterms occurring in the expansion proof.

However there are some classes of formulas where our approach is complete.
These are classes of first-order formulas where intuitionistic provability is equiv-
alent to classical provability, such classes are called Glivenko classes and were
e.g. studied by Orevkov. See also [27] for a more modern presentation.
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Definition 8 ([28]). Class 1 is the set of sequents which do not have positive
occurrences of → or ∀.

Example 5. The sequent ∀x(p(x) → q(x)∨¬r(x)), p(c)∧r(c) 	 q(c) is in Class 1;
(p → q) → p 	 and (∀x p(x)) → q 	 are not in Class 1 since they have a positive
occurrence of → and ∀, resp.

Many practically relevant problems are in Class 1; all Horn problems, all
rewriting problems, and all problems in CNF are in Class 1. It is instructive to
look at the proof that intuitionistic provability is equivalent to classical prov-
ability for all problems in Class 1:

Theorem 4 ([28]). Let Γ 	 Δ be a sequent in Class 1. If Γ 	 Δ is provable in
classical logic, then it is provable in intuitionistic logic as well.

Proof. Let π be a cut-free proof of Γ 	 Δ in the sequent calculus LK (which
is cut-free complete for classical logic). Then π does not contain any of the
inferences →r or ∀r by the subformula property (these are the only inferences
that are different between LK and mLJ), and is hence a proof in mLJ. ��

Corollary 2. Let E be an expansion proof such that sh(E) is in Class 1, and
dp(E) is a quasi-tautology. Then Construct(E) returns true.

Proof. There is a weakly regular proof in LK of sh(E) realizing E since dp(E)
is a quasi-tautology, with the observation in Theorem 4 this proof is in mLJ.
Hence Construct succeeds by Theorem 3. ��

Corollary 2 shows that our prover as a whole is complete for sequents in
Class 1. A similar result also holds for Orevkov’s Class 2 (no positive occurrences
of → and no negative occurrences of ∨). The constructivization procedure of
Gilbert [16] was also shown to be complete for Class 2 (called F in their paper).

7 Experimental Evaluation

We have implemented and evaluated this constructivization approach in the open
source GAPT5 system for proof theory [15], version 2.14. Many of its features
are centered around a computational implementation of Herbrand’s theorem and
expansion trees, such as lemma generation [14], inductive theorem proving [12],
deskolemization, and proof import [33].

The intuitionistic first-order prover based on this constructivization proce-
dure is called Slakje, and provides a command-line program reading input prob-
lems in TPTP format [35]. Since GAPT is written in Scala and distributed as a
platform-neutral tarball, we want to avoid external dependencies and prefer to
use libraries available on the JVM: as a SAT solver we use Sat4j [2], for equality
reasoning we wrote a simple congruence closure implementation.

5 Open source, and freely available at https://logic.at/gapt.

https://logic.at/gapt
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By default, Slakje prints the generated mLJ proof in the TPTP derivation
format, writing each sequent in the proof on a separate line. Other output options
are supported as well: the --prooftool option displays the mLJ proof tree in
the graphical ProofTool user interface [11]. The --lj option transforms the mLJ
proof to a cut-free proof in the single-conclusion intuitionistic LJ calculus.

GAPT already contains a reliable interface to external theorem provers that
produces expansion proofs and supports many first-order provers, including
Vampire [19], E [34], SPASS [40], leanCoP [30], Prover9 [21], as well as others.
GAPT also includes a simple built-in superposition prover called Escargot, which
is mainly used for proof replay and small-scale automation in tactic proofs. For
the experimental evaluation, we used Vampire 4.2.2, E 2.2, and Escargot as back-
ends for Slakje. We do not call the external provers for quantifier-free problems:
there are no quantifier instances that we could import, and furthermore the con-
structivization procedure is already a decision problem in the quantifier-free case
by Corollary 1. The prover interface in GAPT supports most external provers
(including Vampire and E) using proof replay, which reconstructs the proofs
line-by-line by reproving each inference as a first-order problem using Escargot.
There is special support for the Avatar [39] splitting inferences produced by
Vampire. The interface operates on the level of clauses, the clausification and
Skolemization is performed inside GAPT. Parsing and importing the Skolem-
ization and clausification steps of all supported provers would be a tremendous
amount of work, since every prover (and sometimes different versions of the same
prover) use different proof output for these steps.

Fig. 2. Cactus plot of the prover runtime on proved theorems.

We evaluated the Slakje prover on the problems in the first-order section of
the Intuitionistic Logic Theorem Proving library [32], version 1.1.2. The ILTP
library contains a mixture of problems from the TPTP, as well as problems
designed for intuitionistic provers in the GEJ (constructive geometry), GPJ (group
theory), and SYJ (intuitionistic syntactic) categories. The ILTP also contains
benchmarking results for a number of intuitionistic theorem provers from 2006. In
those results, ileanCoP [30] solves the largest number of problems by a significant
margin.
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The provers imogen [22] and WhaleProver [31] were also benchmarked on
the ILTP, performing competitively with ileanCoP. According to [22], imogen
solves 857 problems, improving on the 690 problems solved by ileanCoP 1.0.
(On our hardware, the newest ileanCoP 1.2 version now solves 891 problems.)
Unfortunately we were not able to build a working version of imogen, so we
could not benchmark it on our hardware. WhaleProver is not publicly available
at all, according to [31] it solves 811 problems.

In our evaluation we compared Slakje against the current ileanCoP 1.2 ver-
sion, running both Slakje and ileanCoP on a Debian Linux system with an Intel
i5-4570 CPU and 8 GiB RAM.

The ILTP contains 2670 problems in the first-order section. (There are only
2550 problems according to the ILTP website, however the archive file6 con-
tains 2670 problem files.). Slakje solves 1674 of these problems (1290 theorems
and 384 non-theorems) with Vampire 4.2.2 as a backend (total time limit of
60 s, no command-line options). ileanCoP 1.2 solves 891 (813 theorems and 78
non-theorems). 905 of the problems solved by Slakje were not solved by ilean-
CoP (546 of which are theorems, and 359 non-theorems). (Including the ILTP
benchmark results as well, Slakje solves 800 problems not solved by ileanCoP
in our benchmarks, or any prover in the 2006 ILTP benchmarks.) Slakje could
not solve 122 problems that were solved by ileanCoP; 69 of these problems are
intuitionistic non-theorems. For the other 53 intuitionistic theorems, in one case
Slakje fails due to a timeout, and 24 could be solved with a different backend
(Escargot or E).

The runtime of Slakje with the three backends (Escargot, E, and Vampire),
and ileanCoP is shown as a cactus plot in Fig. 2. Slakje is leading in the number of
proven theorems with any of the three backends; the most theorems are obtained
using Vampire (1290 thms. and 384 nonthms.), followed by E (1210 thms. and
370 nonthms.), and Escargot (1096 thms. and 363 nonthms.).

While Slakje can prove many difficult problems, it has a high overhead: the
median runtime for solved problems is 3199 ms, compared to 46 ms for ileanCoP.
Within a time limit of one second, Slakje can only prove a single theorem, while
ileanCoP proves 734. This overhead is likely due to multiple factors: since Slakje
runs on the JVM, it takes some time for the just-in-time compiler to compile the
code. Furthermore, the interface to the external provers such as Vampire was
designed to be generic and is not highly optimized, e.g. we use the first-order
Escargot prover to reconstruct every inference that Vampire produces.

We might assume that the success of Slakje is due to benchmark set: that
the ILTP contains many Horn problems or purely equational problems. However
this is not the case. Only 650 of the problems in the ILTP are in Class 1 (recall
Definition 8). If we remove formulas that were not used in the classical proofs,
then 980 of the problems are in Class 1. Looking at the runtime plots for Class 1
problems vs. non-Class 1 problems, there does not seem to be a large difference
and Slakje is also leading even for the non-Class 1 problems, which should be
harder for Slakje as it is not complete there.

6 available at http://iltp.de/download/ILTP-v1.1.2-firstorder.tar.gz.

http://iltp.de/download/ILTP-v1.1.2-firstorder.tar.gz
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We have also run Vampire directly on the problems in the ILTP (in CASC
mode with a time limit of 60 s) to obtain a realistic upper limit on how many
problems we can expect to solve intuitionistically. In this configuration Vampire
solves 2468 problems (2079 proofs and 389 satisfiable). When used via GAPT’s
prover interface, Vampire solves 1938 out of the 2421 non-quantifier-free prob-
lems, returning 1585 proofs in the textual TPTP derivation format and 353
satisfiable results (for which Slakje can immediately return non-theorem). Proof
replay then produces 1541 resolution proofs, which are converted to 1526 expan-
sion proofs, ultimately yielding 1098 intuitionistic proofs in mLJ. (The remaining
192 theorems are quantifier-free formulas, which we directly passed to the con-
structivization procedure.) In each step we lose a few proofs due to the time
limit. The largest difference is in the initial step of running the external theorem
prover. We believe that this is mainly due to two reasons: first, the TPTP parser
in GAPT is less efficient and takes a long time to parse larger problems. Second,
we run Vampire in the default mode instead of the CASC mode, since the CASC
mode produces proofs that GAPT cannot parse reliably, making it less effective
in our interface.

8 Conclusion

First-order theorem proving seems to be fundamentally easier in classical logic
than in intuitionistic logic. We can use Skolemization, and have CNFs as a
simple normal form. The practical proof constructivization procedure that we
have presented allows to reuse some of these advantages of classical logic. In
a sense, we are learning from classical proofs to produce intuitionistic ones. In
our setting, we are learning the quantifier instances. On an empirical level, we
have shown that these instances as captured by expansion trees provide enough
information to produce intuitionistic proofs.

This proof constructivization technique is so effective that we obtain a highly
competitive automated intuitionistic first-order theorem prover by combining it
with a classical theorem prover. This prover, Slakje, performs very well on the
ILTP benchmark library for intuitionistic theorem provers: it proves 1290 out of
2670 problems with Vampire as a backend. This is significantly more than other
state-of-the-art provers such as ileanCoP (proving 813 problems).

However, this intuitionistic prover is incomplete since the classical theorem
prover may not produce enough quantifier instances for an intuitionistic proof.
One idea to fix this incompleteness that was already suggested in [9] is to add
a complete instantiation strategy akin to the support for first-order reasoning
in SMT solvers. Another approach would be to investigate variants of sound
(semantic) translations of intuitionistic logic into classical logic which are opti-
mized for automated theorem provers, and constructivize proofs of these trans-
lations.

As future work, we intend to integrate this prover approach in interactive
theorem provers and evaluate its use for proof automation and as a strong recon-
struction tactic for hammers in proof assistants based on intuitionistic logic.
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Abstract. In this work we describe a new learning-based proof guid-
ance – ENIGMAWatch – for saturation-style first-order theorem provers.
ENIGMAWatch combines two guiding approaches for the given-clause
selection implemented for the E ATP system: ProofWatch and ENIGMA.
ProofWatch is motivated by the watchlist (hints) method and based on
symbolic matching of multiple related proofs, while ENIGMA is based
on statistical machine learning. The two methods are combined by using
the evolving information about symbolic proof matching as additional
characterization of the saturation-style proof search for the statistical
learning methods. The new system is evaluated on a large set of problems
from the Mizar library. We show that the added proof-matching infor-
mation is considered important by the statistical machine learners, and
that it leads to improved performance over ProofWatch and ENIGMA.

1 Introduction

This work describes a new learning-based proof guidance – ENIGMAWatch – for
saturation-style first-order theorem provers. ENIGMAWatch1 is the combination
of two previous guidance methods implemented for the E theorem prover [35]:
ProofWatch [11] and ENIGMA [16,17]. Both ProofWatch and ENIGMA learn
to guide E’s proof search for a new conjecture based on related proofs.

ProofWatch uses the hints (watchlist) mechanism, which is a form of precise
symbolic memory that can allow inference chains done in a former proof to be
replayed in the current proof search. It uses standard symbolic subsumption to
check which clauses subsume clauses in related proofs. In addition to boosting
the priority of these clauses, the completion ratios of the related proofs are
computed, and the proof search is biased towards the most completed ones.

ENIGMA uses fast statistical machine learning to learn from related proof-
searches to identify good and bad (positive and negative) clauses for the current
1 The E version used in this paper can be found at https://github.com/ai4reason/

eprover/tree/devel, and the library for running ENIGMA with E can be found at
https://github.com/ai4reason/enigma.
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conjecture. ENIGMA chooses the given clauses based only on features of the
problem’s conjecture, which is static throughout the whole proof search. This
seems suboptimal: as the proof search evolves, information about the work done
so far should influence the selection of the next given clauses.

ENIGMAWatch combines the two approaches by giving the ENIGMA’s
learner the ProofWatch completion ratios of the related proofs as an evolv-
ing vectorial characterization of the current proof search state. This allows E’s
machine learning guidance to have more information about how the proof search
is unfolding.

An early version of ENIGMAWatch was tested on the MPTP Challenge2

[36,39] benchmark. It contains 252 first-order problems extracted from the
Mizar Mathematical Library (MML) [14], used in Mizar to prove the Bolzano-
Weierstrass theorem. Initially, ENIGMAWatch could not be run on a larger
dataset, such as the 57897 Mizar40 [21] benchmark, in a reasonable time. Since
then, ENIGMA implemented dimensionality reduction using feature hashing [6],
extending its applicability to large corpora. We have additionally improved
watchlist mechanism in E through enhanced indexing, first time presented in
this work in Sect. 4. This allows also ENIGMAWatch to be applied to larger
corpora.

The rest of the paper is organized as follows. Section 2 provides an introduc-
tion to saturation-based theorem proving and briefly describes ENIGMA and
ProofWatch. Section 3 explains how ENIGMA and ProofWatch are combined
into ENIGMAWatch, and how watchlists can be selected. Section 4 describes
our improved watchlist indexing in E. Both ENIGMAWatch and the improved
watchlist indexing are evaluated in Sect. 5.

2 Guiding the Given Clause Selection in ATPs

2.1 Automated Theorem Proving and Machine Learning

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E [33] and Vampire [25] employ the given clause
algorithm, translating the input FOL problem T ∪ {¬C} into a refutationally
equivalent set of clauses. The search for a contradiction is performed maintain-
ing sets of processed (P ) and unprocessed (U) clauses (the proof state Π). The
algorithm repeatedly selects a given clause g from U , moves g to P , and extends
U with all clauses inferred with g and P . This process continues until a contra-
diction is found, U becomes empty, or a resource limit is reached.

The search space of this loop grows quickly and it is a well-known fact that
the selection of the right given clause is crucial for success. Machine learning
from a large number of proofs and proof searches [1–4,7–10,15,16,19,20,22,26,
29,31,32,38,40,41] may help guide the selection of the given clauses.

2 http://tptp.cs.miami.edu/∼tptp/MPTPChallenge/.

http://tptp.cs.miami.edu/~tptp/MPTPChallenge/
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2.2 ENIGMA: Learning from Successful Proof Searches

ENIGMA [6,16–18] (Efficient learNing-based Internal Guidance MAchine) is our
method for guiding given clause selection in saturation-based ATPs. The method
needs to be efficient because it is internally applied to every generated clause.
ENIGMA uses E’s capability to analyze successful proof searches, and to output
lists of given clauses annotated as either positive or negative training examples.
Each processed clause which is present in the final proof is classified as positive.
On the other hand, processing of clauses not present in the final proof was
redundant, hence they are classified as negative. ENIGMA’s goal is to learn
such classification (possibly conditioned on the problem and its features) in a
way that generalizes and allows solving new related problems.

ENIGMA Learning and Models. Given a set of problems P, we can run E
with a strategy S and obtain positive and negative training data T from each
of the successful proof searches. Various machine learning methods can be used
to learn the clause classification given by T , each method yielding a classifier
or a (classification) model M. In order to use the model M in E, M is used as
a function that computes clause weights. This weight function is then used to
guide future E runs.

First-order clauses need to be represented in a format recognized by the
selected learning method. While neural networks have been very recently practi-
cally used for internal guidance with ENIGMA [6], the strongest setting currently
uses manually engineered clause features and fast non-neural state-of-the-art gra-
dient boosted trees libraries such as XGBoost [5]. The model M produced by
XGBoost consists of a set (ensemble [30]) of decision trees. Given a clause C,
the model M yields the probability that C represents a positive clause. When
using M as a weight function in E, the probabilities are turned into binary clas-
sification, assigning weight 1.0 for probabilities ≥ 0.5 and weight 10.0 otherwise.

Clause Features. Clause features represent a finite set of various syntactic
properties of clauses, and are used to encode clauses by a fixed-length numeric
vector. Various machine learning methods can handle numeric vectors and their
success heavily depends on the selection of correct clause features. Various pos-
sible choices of efficient clause features for theorem prover guidance have been
experimented with [16,17,22,23]. The original ENIGMA [16] uses term-tree
walks of length 3 as features, while the second version [17] reaches better results
by employing various additional features.

Since there are only finitely many features in any training data, the features
can be serially numbered. This numbering is fixed for each experiment. Let n
be the number of different features appearing in the training data. A clause
C is translated to a feature vector ϕC whose i-th member counts the number
of occurrences of the i-th feature in C. Hence every clause is represented by a
sparse numeric vector of length n. Additionally, we embed information about
the conjecture currently being proved in the feature vector, yielding vectors of
length 2n. See [6,17] for more details.
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Feature Hashing. Experiments revealed that XGBoost is capable of dealing
with vectors up to the length of 105 with a reasonable performance. In experi-
ments with the whole translated Mizar Mathematical Library, the feature vector
length can easily grow over 106. This significantly increases both the training
and the clause evaluation times. To handle such larger data sets, a simple hash-
ing method has previously been implemented to decrease the dimension of the
vectors.

Instead of serially numbering all features, we represent each feature f by a
unique string and apply a general-purpose string hashing function to obtain a
number nf within a required range (between 0 and an adjustable hash base).
The value of f is then stored in the feature vector at the position nf . If different
features get mapped to the same vector index, the corresponding values are
summed up. See [6] for more details.

2.3 ProofWatch: Proof Guidance by Clause Subsumption

In this section we explain the ProofWatch guiding mechanisms. Unlike the statis-
tical approach in ENIGMA, ProofWatch implements a form of symbolic memory
and guidance. It produces a notion of proof-state vector that is dynamically cre-
ated and updated.

Standard Watchlist Guidance. The watchlist (hint list) mechanism itself
does not perform any statistical machine learning. It steers given clause selection
via symbolic matching between generated clauses and a set of clauses called
a watchlist. This technique has been originally developed by Veroff [42] and
implemented in Otter [27] and Prover9 [28]. Since then, it has been extensively
used in the AIM project [24] for obtaining long and advanced proofs of open
algebraic conjectures. The watchlist mechanism is nowadays implemented also
in E. All the above implementations use only a single watchlist, as opposed to
ProofWatch discussed below.

Recall that a clause C subsumes a clause D, written C � D, when there
exists a substitution σ such that Cσ ⊆ D (where clauses are considered to be
sets of literals). The watchlist guidance then works as follows. Every generated
clause C is checked for subsumption with every watchlist clause D ∈ W . When
C subsumes at least one of the watchlist clauses, then C is considered important
for the proof search and is processed with high priority. The idea behind this is
that the watchlist W contains clauses which were processed during a previous
successful proof search of a related conjecture. Hence processing of similar clauses
may lead to success again.

In E, the watchlist mechanism is implemented using a priority function3

which takes precedence over the weight function used to select the next
given clause. Priority functions assign the priority to each clause, and clauses
with higher priority are selected as given before clauses with lower priority4.

3 See the priority function PreferWatchlist in the E manual.
4 Numerically the lower the priority, the better. Hence 0 is the best priority.
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When clauses from previous proofs are put on a watchlist, E thus prefers to
follow steps from the previous proofs whenever it can.

ProofWatch. Our approach [11, Sect. 5] extends standard watchlist guidance
by allowing for multiple watchlists W1,. . .,Wn, for example, one corresponding
to each related proof found before. We say that a generated clause C matches
the watchlist Wi, written C � Wi, iff C subsumes some clause D ∈ Wi (C � D).
Similarly, the above watchlist clause D is said to be matched by C.

The reason to include multiple watchlists is that during a proof search, clauses
from some watchlists might get matched more often than clauses from others.
The more clauses are matched from some watchlist Wi, the more the current
proof search resembles Wi, and hence Wi might be more relevant for this proof
search. Thus the idea of ProofWatch is to prioritize clauses that match more
relevant watchlists (proofs).

Watchlist relevance is dynamically computed as follows. We define
progress(Wi) to be the count of clauses from Wi that have been matched in
the proof search thus far. The completion ratio, ci = progress(Wi)

|Wi| , measures how
much of the watchlist Wi has been matched. The dynamic relevance of each
generated clause C is defined as the maximum completion ratio over all the
watchlists Wi that C matches:

relevance(C) = max
W∈{Wi:C�Wi}

(progress(W )
|W |

)

The higher the dynamic relevance relevance(C), the higher the priority of C. The
dynamic watchlist mechanism is implemented using the E priority function.5

The results of experiments in [11, Sect. 6.3] on the same dataset as this work
(Mizar40 [21]) indicate that dynamic relevance improves performance over an
ensemble of strategies, whereas the single watchlist approach is stronger on each
individual strategy.

When using a large problem library such as Mizar40, it is practically useful
to choose only some proofs for watchlists. First, E’s speed decreases with each
additional proof on the watchlist, so if working on a large dataset, loading all
available proofs as watchlists will lead to a large slowdown (cf. Sect. 4). Second,
it’s not guaranteed that all proofs will help E with proving the problem at hand.

3 ENIGMAWatch: ProofWatch Meets ENIGMA

3.1 Completion Ratios as Semantic Embeddings of the Proof Search

The watchlist completion ratios (c0, ..., cN ) (N ranges over the watchlist proofs)
at each step in E’s proof search can be taken as a vectorial representation of the
current proof state Π. The general motivation for this approach is to come up
with an evolving characterization of the saturation-style proof state Π, prefer-
ably in a vectorial form ϕΠ suitable for machine learning tools, such as ENIGMA.
5 See PreferWatchlistRelevant in [11].
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Recall that the proof state Π is a set of processed clauses P and unprocessed
clauses U . The vector of watchlist completion ratios thus maintains a running
tally of where clauses in P ∪U match the different related proofs. In general, this
could be replaced, e.g., by a vector of more abstract similarities of the current
proof state to other proofs measured in various (possibly approximate) ways.
In ENIGMAWatch we use the ProofWatch based proof-state vector for a proof
state Π defined by the completion ratios, i.e., ϕΠ = (c0, . . . , cN ). This is the first
practical implementation of the general idea: using semantic embeddings (i.e.,
representations in Rn) of the proof state Π for guiding statistical learning meth-
ods. ENIGMAWatch uses the proof-state vectors ϕΠ as follows. The positive C+

and negative C− given clauses are output along with ϕΠ , the proof-state vector
at the time of their selection, and used as added features of the proof state when
training ENIGMA-style classifiers.

Table 1. Example of the proof-state vector for 8 (of 32) (serially numbered) proofs
loaded to guide the proof of YELLOW 5:36. The three columns are the watchlist i, the
completion ratio of i, and progress(Wi)/|Wi|.

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25

4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242

Table 1 shows a sample proof-state vector based on 32 related proofs6 for the
Mizar theorem YELLOW 5:367 (De Morgan’s law8) at the end of the proof
search. Note that some related proofs, such as #2, were almost fully matched,
while others, such as #7 were mostly not matched in the proof search.

3.2 Proof Vector Construction

Data Construction. In the ProofWatch [11] experiments, the best method
for selecting related proofs (watchlists) was to use k-nearest neighbor (k-NN)
to recommend 32 proofs per problem. The watchlists there are thus problem
specific. In ENIGMAWatch, we want the watchlists to be globally fixed across
the whole library, so that the proof completion ratios have the same meaning
in all proofs. To construct the proof vectors, we first use a strong E strategy
to produce a set of initial proofs (14882 over the 57897 Mizar40 problems).
Then we run E with ProofWatch and the same strategy over the full 57897
problems with the 14882 proofs loaded into the watchlist. The time limit for
both runs was T60-G10000, which means that E stops after 60 s or 10000
generated clauses. This data provides information on how often each watch-
list was encountered in each successful proof search. The training data then

6 The proofs were chosen via k-NN. See [11, Sec. 6.1] for details.
7 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/yellow 5#T36.
8 ¬(P ∨ Q) ⇐⇒ (¬P ) ∧ (¬Q).

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5#T36
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consists of a proof vector for each given clause (for each conjecture/problem):
(conjecture, given-clause, proof -state vector).

Dimensionality Reduction. Next, we experiment with various pre-processing
methods to reduce the proof -state vector dimension and thus decrease the num-
ber of watchlists loaded in E. For each problem we compute the mean of proof-
state vectors over all given clauses g: 1

#g

∑
g ϕΠg

. This vector consists of the
averaged completion ratios for each watchlist, which will be higher if the watch-
list was matched earlier in the proof. This results in the mean proof-state matrix
M consisting of row vectors (mean-proof -vector) (one for each conjecture/
problem).

The following are methods experimented with in this paper for constructing
the globally fixed vector of 512 watchlists from matrix M :

– Mean: compute the mean of M across the rows to obtain a mean proof-state
vector that contains for each watchlist its average use across all problems.
Then we take the top 512 watchlists.

– Corr : compute the Pearson correlation matrix9 based on (the transpose of)
M , and find a relatively uncorrelated set of 512 watchlists.

– Var : compute the variance (across the rows) of each column in M , and take
the 512 watchlists with the highest variance. The intuition is that watchlists
whose completion ratio vary more over the problem corpus may be more
useful for learning.

– Rand : randomly select 512 watchlists.

4 Multi-indices Subsumption Indexing

In order to determine whether a generated clause matches a watchlist, the gen-
erated clause must be checked for subsumption with every watchlist clause. A
major limitation of previous work [11,12] was the slowdown of E as the watchlist
size increased beyond 4000 clauses. Including more than 128 proofs was imprac-
tical. This section describes a method we have developed to speed up watchlist
matching.

E already implements feature vector indexing [34] used also for the purpose
of watchlist matching. The watchlist clauses are inserted into an indexing data
structure and various properties of clauses are used to prune possible subsump-
tion candidates. In this way, the number of possibly expensive subsumption calls
is reduced. We build upon this, and further limit the number of required sub-
sumption checks by using multiple indices instead of a single index.10

We take advantage of the fact that a clause C cannot subsume a clause D
if the top-level predicate symbols do not match. In particular, C � D can only
hold if all the predicate symbols from C also appear in D, because substitution
can neither introduce nor remove predicate symbols from a clause.
9 https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html.

10 Even with multiple watchlists, all the watchlist clauses are inserted into a single
index, and only the name of the original watchlist is additionally stored.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
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We define the code of a clause C, denoted code(C), as the set of predicate
symbols with their logical signs (either + for positive predicates, or − for negated
ones). For example, the code of the clause “P (a) ∨ ¬P (b) ∨ P (f(x))” is the set
{+P,−P}. The following holds because codes are preserved under substitution.

Lemma 1. Given clauses C and D, C � D implies code(C) ⊆ code(D).

We create a separate index for every different clause code. Each watchlist
clause D is inserted only to the index corresponding to code(D). In order to
check whether some clause C matches a watchlist, we only need to search in
the indices whose codes are supersets of (or equal to) code(C). Each index is
implemented using E’s native feature vector indexing structure. Evaluation of
this simple indexing method is provided in Sect. 5.1.

Table 2. Evaluation of multi-indices subsumption indexing.

runtime (left graph ←)
single multi speedup

avg 9.23s 3.16s 2.9×
best 105.3s 5.7s 18.5×
worst 2.26s 2.09s 1.08×

subsumptions (right →)
single multi reduction

avg 2328k 52k 44.1×
best 3059 1 3059×
worst 709k 367k 1.9×

5 Experiments

This section describes the experimental evaluation11 of

1. the improved watchlist mechanism from Sect. 4
2. the watchlist selection for ENIGMAWatch from Sect. 3

5.1 Multi-indices Subsumption Indexing Evaluation

We propose a simple experiment to evaluate our implementation of multi-indices
subsumption indexing from Sect. 4. We take a random sample of 1000 problems
from the Mizar40 [21] data set and create a watchlist with around 60 k clauses
coming from proofs of problems similar to the sample problems. We then run E
11 Experiments code and data are available at https://github.com/ai4reason/eprover-

data/tree/master/TABLEAUX-19
All experiments are run on the same hardware: Intel(R) Xeon(R) Gold 6140 CPU
@ 2.30 GHz with 188 GB RAM.

https://github.com/ai4reason/eprover-data/tree/master/TABLEAUX-19
https://github.com/ai4reason/eprover-data/tree/master/TABLEAUX-19
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on the sample problems with a fixed limit of 1000 generated clauses. This gives us
a measure of how fast the single-index and multi-indices versions are, that is, how
fast they can generate the first 1000 clauses. As the watchlist indexing does not
influence the proof search, both versions process the same clauses and output the
same result. Each generated clause has to be checked for watchlist subsumption
and hence the limit on generated clauses is also the limit on different watchlist
checks. We expect the number of clause-to-clause subsumption checks to decrease
with multi-indices, as the method prunes possible subsumption candidates.

The results of the experiments are presented in Table 2. For each problem, we
measure the runtime (left graph) and the number of different clause subsumption
calls (right graph). The suffix “s” stands for seconds, “k” stands for thousands,
and “M” stands for millions. Although subsumption is also used for purposes
other than watchlist matching, we should be able to observe a decrease in the
number of calls. Each point in the graphs corresponds to one sample problem,
and is drawn at the position (x, y) corresponding to the results of single-index
(x) and multi-indices (y) versions. Hence points below the diagonal signify an
improvement. Also note logarithmic axes. The table shows the average improve-
ment, and also the best and the worst cases. From the results, we can see that
an average speed-up is almost 3 times. Furthermore, the average reduction of
subsumption calls is more than 44 times and the number is reduced even in the
worst case.

Table 3. ProofWatch evaluation: Problems solved by different versions.

Baseline Mean Var Corr Rand Baseline ∪ Mean Total

1140 1357 1345 1337 1352 1416 1483

Table 4. ENIGMAWatch evaluation: Problems solved and the effect of looping.

loop ENIGMA Mean Var Corr Rand ENIGMA ∪ Mean Total

0 1557 1694 1674 1665 1690 1830 1974

1 1776 1815 1812 1812 1847 1983 2131

2 1871 1902 1912 1882 1915 2058 2200

3 1931 1954 1946 1920 1926 2110 2227

The number of watchlist clauses in the experiments was 61501, and the multi-
indices version used 11442 different indices. This means that there were less than
6 clauses per index in average, although the count of clauses in different indices
varied from 1 to 3837. The most crowded index was for the code {+ =}, that is,
for positive equality clauses. Finally, 6955 indices contained only a single clause.
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5.2 Experimental Evaluation of ENIGMAWatch

The experiments are done on a random subset of 5000 Mizar40 [21] problems.
The time limit of 60 s and 30000 generated clauses is used to allow a comparison
to be done without regard for the differences in clause processing speed. The
30000 is approximately the average number of clauses that the baseline strategy
generates in 10 s. Table 3 provides the evaluation of different watchlist selec-
tion mechanims using ProofWatch (without ENIGMA) and making use of the
improved watchlist indexing. The last two columns show the number of problems
solved by (1) the Baseline together with Mean, and by (2) all the five methods.
This shows the relative complementarity of the methods. We can see that the
Mean method yields the best results, reaching more than 15% improvement over
the baseline strategy. The Rand method is however quite competitive.

Table 4 provides the evaluation of ENIGMAWatch and its comparison to
ENIGMA. The experiments are done in multiple loops, where in each loop all
the proof-runs in prior loops can be used as training data. This way ENIGMA
can learn increasingly effective models.

We can see that ENIGMAWatch can attain superior performance to
ENIGMA. The relation of looping and results is interesting. The largest absolute
improvement over ENIGMA is in loop 0 – 8.8% by the Mean method. This how-
ever drops to 1.2% in loop 4. In loops 1 and 2, Rand is the strongest, but Mean
ends up being the best in loop 3. In total, all the ENIGMA and ENIGMAWatch
methods solve together nearly twice as many problems as the baseline strategy.
Figure 1 shows the results of running ENIGMA and Mean for 13 loops. The rate
of improvement slows down, both methods eventually converge to a similar level
of performance, and the union of the two is ca. 150 problems better.

Table 5. ENIGMA and ENIGMAWatch: Model and training statistics.

Model Pos. acc Neg. acc Features Watchlist F Train size Train time

ENIGMA0 99.12% 92.16% 5061 0 0.4 GB 14 min

ENIGMA1 97.39% 86.82% 7071 0 0.8 GB 31 min

ENIGMA2 96.13% 83.92% 8089 0 1.4 GB 55 min

ENIGMA3 95.39% 82.5% 8662 0 2.0 GB 85 min

Mean0 99.05% 92.59% 5424 308 2.9 GB 19 min

Mean1 96.92% 88.16% 6950 316 6.2 GB 29 min

Mean2 95.75% 86.46% 7809 331 9.6 GB 38 min

Mean3 95.04% 85.24% 8313 330 13.0 GB 39 min



384 Z. Goertzel et al.

Fig. 1. Convergence: The improvement of ENIGMA and Mean decreases over 13 loops,
and their performance converges. The Union is consistently ca. 150 problems better.

5.3 Training, Model Statistics and Analysis

The XGBoost models used in our experiments are trained with a maximum tree
depth of 9 and 200 rounds (which means 200 trees are learned). There are 300000
features in the 5000 problem dataset hashed into 215 buckets. Combining clause
and conjecture features with the watchlist completion ratios, XGBoost makes its
predictions based on 66048 features (2 · 215 plus the count of completion ratios).

Table 5 provides various training and model statistics of the ENIGMA and
ENIGMAWatch models and their loops. The columns “Pos. Acc.” and “Neg.
Acc.” describe the training accuracy of the models on positive and negative
training examples. The column “Features” presents the number of features ref-
erenced in the decision trees. We see that the models use a small fraction of all
the 66048 available features. The column “Watchlist F.” provides the number of
watchlist features out of all the used features. Finally, “Train Size” and “Train
Time” specify the size of the input training file (in GB) and training times (in
minutes). The XGBoost models after the training are smaller than 4 MB.

We can see that the accuracy decreases with the increase of the training data
size, but the number of theorems proved increases. About 62% of the watchlists
are judged as useful by XGBoost and used in the decision trees. Figure 2 shows
the root of the first decision tree of the Mean model in loop 3. Green means “yes”
(the condition holds), red means “no”, and blue means that the feature is not
present. The multi line box is a (shortened) bucket of features, and single line
boxes correspond to watchlists (#194, etc.). We can see that ENIGMAWatch
uses a watchlist feature for the very first decision when judging newly generated
clauses. This shows that the features that characterize the evolving proof state
are indeed considered very significant by the methods that automatically learn
given clause guidance.
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Fig. 2. Example of an XGBoost decision tree.

6 Conclusion and Future Work

We have produced and evaluated the first practically usable version of the ENIG-
MAWatch system which can now be efficiently used over large mathematical
datasets. The previous experiments with the first prototype on the small MPTP
Challenge [12] demonstrated that ENIGMAWatch can find proofs faster (in
terms of how many processed clauses are needed). The work presented here
shows that with improved subsumption indexing, feature hashing, and suitable
global watchlist selection, ENIGMAWatch outperforms ENIGMA on the large
Mizar40 dataset. In particular, ENIGMAWatch significantly outperforms both
ProofWatch and ENIGMA when used without looping. With several MaLARea-
style [37,40] iterations of proving and learning, the difference to ENIGMA gets
smaller, however the two methods are still quite complementary, providing solu-
tions to a large number of different problems. In total, all the ENIGMA and
ENIGMAWatch methods (Table 4) together solve almost twice as many prob-
lems as the baseline strategy after four iterations of learning and proving.

The system is ready to be used on hard problems and to expand the set of
Mizar problems for which an ATP proof has been found. Future work includes
refining the watchlist selection, defining more sophisticated methods of comput-
ing the proof completion ratios, analyzing the learned decision tree models to see
which watchlists are the most useful, and also defining further and more abstract
meaningful representations and embeddings of saturation-style proof search.
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Abstract. We present Behavioral Program Logic (BPL), a dynamic
logic for trace properties that incorporates concepts from behavioral
types and allows reasoning about non-functional properties within a
sequent calculus. BPL uses behavioral modalities [s� τ ], to verify state-
ments s against behavioral specifications τ . Behavioral specifications gen-
eralize postconditions and behavioral types. They can be used to specify
other static analyses, e.g., data flow analyses. This enables deductive
reasoning about the results of multiple analyses on the same program,
potentially implemented in different formalisms. Our calculus for BPL
verifies the behavioral specification gradually, as common for behav-
ioral types. This vastly simplifies specification, calculus and composi-
tion of local results. We present a sequent calculus for object-oriented
actors with futures that integrates a pointer analysis and bridges the gap
between behavioral types and deductive verification.

1 Introduction

When reasoning about concurrent programs, the intermediate states of an exe-
cution are of more relevance than when reasoning about sequential programs. In
an object-oriented setting, it does not suffice to specify pre- and postcondition
of some method m. Instead, the traces generated by m must be specified.

Recently, dynamic logics for trace properties have been developed [3,7,12]
to leverage well-established verification techniques from dynamic logic [1] to a
concurrent setting. The application of these approaches to real world models
of distributed systems [13,25] revealed two shortcomings: (1) the composition
of method-local verification results to a guarantee for the whole system is not
automatic and (2) the specification of trace properties is too complex. Thus, the
current approaches are deemed as not practical for serious verification efforts.

Another group of verification techniques, behavioral types, aim “to describe
properties associated with the behavior of programs and in this way also describe
how a computation proceeds.” [20]. For object-oriented languages, behavioral
types can also be seen as specifications of traces of methods. Behavioral types,
especially session types [19], are restricted in their expressive power to easily
compose their local results to global guarantees, and are natural specifications
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for protocols. However, they lack precision when handling state [5] or require
additional static analyses [23]. For Active Objects [9] (object-oriented actors with
futures), a translation from session types to a trace logic has been given [23].

We introduce Behavioral Program Logic (BPL) to combine precise state rea-
soning from program logics with the relative simplicity of behavioral types and
enable the integration of static analyses into deductive reasoning. The main
difference to previous approaches in dynamic logic for trace properties is the
behavioral modality [s� τ ], which expresses that all traces of statement s sat-
isfy specification τ . The specification τ is not a formula, as the postcondition
of modalities in classical dynamic logic, but is a specification translated into a
monadic second order formula over traces. Similarly to behavioral types, τ may
contain syntactic elements and allows to syntactically match with s. Sequent cal-
culi for BPL may reduce s and τ in one rule. Contrary to previous dynamic logics
for traces, behavioral specifications are more succinct and easier to compose and
decompose by, e.g., using the projection mechanism of session types.

We distinguish between behavioral types, that have a sequent calculus of
the above kind, and behavioral specifications, which do not. Behavioral specifi-
cations interface with external properties, such as a data-flow points-to analysis.
Beyond integrating external analyses into the sequent calculus, this modularizes
the sequent calculus by expressing different properties with different behavioral
specifications. Behavioral specifications are clear interfaces that allow to close
proofs once more context is known and generalize proof repositories [6].

Our main contributions are (1) BPL, a trace program logic that integrates
deductive reasoning with static analyses (2) method types, a behavioral type in
BPL that generalizes method contracts, object invariants and local types for
Active Objects. Due to space constraints, we do not give (de-)compositions and
full semantics and refer to [23] and our technical report [22] for full details. We
introduce our programming language in Sect. 2 and BPL in Sect. 3. In Sect. 4 we
introduce method types. Sect. 5 summarizes previous approaches and concludes.

2 Preliminaries: An Actor Language with Futures

We introduce Behavioral Program Logic using a Core Active Object language [9]
(CAO) with futures, CAO uses strong encapsulation (i.e., all fields are object-
private) and cooperative scheduling. CAO is based on ABS [21] and we use a
locally abstract, globally concrete (LAGC) semantics [11]. An LAGC semantics
consists of two layers: A locally abstract (LA) layer for statements and methods,
and a globally concrete (GC) layer for objects and systems. The LA layer is
a denotational semantics that abstractly describes the behavior of a method
in every possible context, while the GC layer is an operational semantics that
concretizes the LA semantics of processes in a concrete context. LA semantics
enable one to analyze a method in isolation and Active Objects allow us to
demonstrate that BPL is suited for complex concurrency models.
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Definition 1 (Syntax). Let ∼ range over &&, ||, +, -, *, /, >=, >, <, <=, v over
variables, f over fields, C over class names, m over method names, i and n over N.
The syntax of CAO is defined in Fig. 1, where −→· denotes (possibly empty) lists.

Prgm ::=
−−−→
Class Main Main ::= main{si} Class ::= class C (

−→
C f){−−→

Field
−−−→
Meth} Field ::= D f = e;

Meth ::= D m(
−→
D v){s;return e;} D ::= Int | Bool | Fut<D> si ::= C v = C(−→v ); si | v!m(−→e )

s ::= [D] l = e | [D] v = e.geti | [D] v = f!m(−→e ) | skip | while(e){s} | if(e){s}else{s} | s;s
e ::= l | n | True | False | e ∼ e | !e | -e l ::= this.f | v

Fig. 1. Syntax of CAO.

A program consists of a set of classes and a main block. The main block
contains object instantiations and a method call to initialize the communication.
All objects are created at once, not in the order of their instantiations. A class
contains (1) parameter fields which reference other objects, (2) fields for data,
initialized upon creation and (3) methods. Multiple instances can share their
parameters. Parameters cannot be reassigned. As data types we use integers,
booleans and parametric futures. Each class has a run method that is started
upon creation. We omit run if it is empty.

1 class T(Comp S, Log L){

2 Int test(Int i){

3 Fut<Int> f = S!cmp(i);

4 Int r = f.get0;
5 if(r < 0){

6 r = -r;

7 f = L!log(i);

8 }

9 return r;

10 }

11 }

Fig. 2. An example method

Statement v = f!m(−→e ) calls method m

asynchronously on the object f with parame-
ters −→e . A fresh future is generated and stored
in v. This future identifies the called process.
We say that the called process will resolve the
future by executing return e and storing the
value of e in the future. The synchronizing
statement v = e.geti reads from the future
in e into v. Until the future is resolved, the
reading process blocks its object. The iden-
tifier i is used to distinguish multiple syn-
chronization points. The other statements,
expressions and methods are standard.

Example 1. Figure 2 shows a simple method that passes its input to Comp.cmp

and reads the result. If the result is negative, its sign is inverted and the original
input data is logged by Log.log. The possibly inverted result is returned.

The semantics of a method is a set of symbolic traces, to describe the behav-
ior of the method in every possible context, i.e., for every possible heap, call
parameters and accessed futures. Additionally to semantic values (semantic val-
ues are, e.g., object identifiers, rationals, futures etc.), symbolic traces contain
symbolic expressions. Structurally, symbolic expressions mirror syntactic expres-
sions, but do not contain variables or fields. Instead they contain symbolic values
and symbolic fields. Symbolic values have no operations defined on them and act
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as placeholders. They are replaced by semantic values once the method is run-
ning and the context is known. Symbolic fields are special symbolic values that
contain the name of the field they are abstracting.

Definition 2 (Symbolic Expressions). Let v range over semantic values, v
over symbolic values, i over N and this.fi over symbolic fields. Symbolic expres-
sions e are defined below. We highlight symbolic elements by underlining.

e ::= e ∼ e | !e | -e | v | v | this.fi

To model the points where processes, objects and futures interact, traces
contain events as markers for visible communication.

Definition 3 (Events). Events are defined by the following grammar.

ev ::= invEv(X, X′, f , m,−→e ) | invREv(X, f , m,−→e ) | futEv(X, f , m, e) | futREv(X, f , m, e, i) | noEv

Event invEv(X, X′, f , m,−→e ) models a call from X to X′ on method m with
future f and call parameters −→e . The future and the callee may be symbolic:
locally it is not possible to know the used future and the called object. Event
invREv(X, f , m,−→e ) is the callee view on a call. The object X here is the callee, the
caller is not visible to the callee. Event futEv(X, f , m, e) models the termination
of a process for future f , computing method m in object X and returning e. Event
futREv(X, f , m, e, i) models a geti statement in object X on the future f , which
was computed by m and returned e. Finally, noEv models an internal step.

Local traces consist of a selection condition, a set of symbolic expressions that
express when a trace executes and a history, a sequence of events and states.

Definition 4 (Local Semantics and Traces). A heap ρ maps from fields to
symbolic expressions and a local state σ maps variables to symbolic expressions.
Pairs of local states and heaps are object states and we write

(
σ
ρ

)
. The evaluation

function �e�(σ
ρ) maps a syntactic expression to a symbolic expression.

A local trace θ has the form sc�hs, where sc is a set of symbolic expressions,
called selection condition, and hs is a non-empty sequence, called history, such
that every odd-indexed element is an object state and every even-indexed element
an event. The semantics of methods and statements is defined by a function
�·�X,f,m,(σ

ρ) where X is the object name, f the future the method is resolving, m

the method name and
(
σ
ρ

)
the current object state. Future, object name and state

may be symbolic. The semantics of a method m with body s is, for a symbolic
(
σ
ρ

)
:

�m�X,f,m,(σ
ρ) =

{
∅ �

〈(
σ

ρ

)
, invREv(X, f , m,−→e )

〉
◦ θ | θ ∈ �s�X,f,m,(σ

ρ)

}

where −→e is extracted from the parameter names in σ. E.g., for a method
Int m(Int a, Rat b) we set −→e = 〈σ(a), σ(b)〉. Figure 3 shows selected rules. All
variables are initialized, futures with no, a special future that is never resolved.
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The rules for assignment both update the local state or the heap, and add
a noEv event. The rule for branching evaluates both branches and adds the
corresponding guard evaluation to the selection condition. The rule for get is
similar to the variable assignment, but receives a fresh symbolic value and stores
it in the local state. As the event, a resolving reaction event is added, which
stores the accessed future and the fresh symbolic value. The rule for method
calls is analogous, but uses a fresh future for the call instead of a fresh read
value. The added event is an invocation event with the evaluated parameters.
Figure 4 shows the two traces in the semantics of Example 1.

Fig. 3. Selected rules of the LA semantics of statements and expression. Evaluation
�e� of semantic values has its natural definition.

Fig. 4. LA semantics of T.test, with σ = {i �→ i}, ρ = {S �→ S, L �→ L}.

Symbolic traces represent a set of concrete traces, which contain only seman-
tic values and correspond to possible behaviors of the statement. The set of
concrete traces represented by a symbolic trace is a vast overapproximation and
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we only consider selected traces: concrete traces used in some terminating run of
a given program. For a formal definition and the GC semantics, we refer to [22].

Definition 5 (Selected Traces). A trace θ continues trace θ′, written θ 	
θ′, if its history is a suffix of the history of θ′, with all symbolic elements
replaced by concrete values, such that this substitution evaluates all expres-
sions in the selection condition to true. A trace θ is selected in a program
Prgm, if it is used during some run of Prgm. Let m be the method containing s.

�s�Prgm
X,f,m,(σ

ρ)
= {θ∈�s�X,f,m,(σ

ρ) | ∃θ′ ∈�m�X,f,m,(σ
ρ). θ 	 θ′∧ θ used in a terminating run of Prgm}

We use a first-order state (FOS) logic to express properties of states and a
monadic second-order (MSO) logic to express properties of traces. The MSO
logic embeds the FOS by using FOS formulas similar to predicates on states.
Similarly, it uses terms that allow to specify events.

Definition 6 (FOS Syntax). Let p range over predicate symbols, f over func-
tion symbols, x over logical variable names and S over sorts. As sorts we take
all data types D, all class names and additionally N and Heap. The logical heaps
are functions from field names to semantic values. Formulas ϕ and terms t
are defined by the following grammar, where v are program variables, consisting
of local variables and the special variables heap and result, and f are all field
names.

ϕ ::= p(−→t ) | t .= t | ϕ ∨ ϕ | ¬ϕ | ∃x ∈ S. ϕ t ::= x | v | f | f(−→t )

We demand the usual constants, (e.g., 0, True) and that each operator defined
in syntactic expressions e is a function symbol, so one can directly translate a
syntactic expression into a FOS term. We additionally assume the following
function symbols to handle heaps: select(t, t) | store(t, t, t), where select(h, f)
reads field f from heap h and store(h, f, t) stores the value of t in field f of heap
h. As only one object is considered, we do not require an object parameter.

Definition 7 (FOS Semantics). Interpretation I maps function names to
functions and predicate names to predicates. Assignment β maps logical variable
to semantic values of the resp. sort. Evaluation of terms in state

(
σ
ρ

)
is defined

as a function �t�(σ
ρ),I,β and satisfiability of formulas by a relation

(
σ
ρ

)
, β, I |= ϕ.

For the special variable heap we set �heap�X,f,m,(σ
ρ) = ρ and for the heap

functions we follow JavaDL [1] and demand, e.g., the following connection axiom
for all heaps h, all fields f and terms t: I(select)(I(store)(h, f, t), f) = t.

The models for the MSO logic are local traces and the whole semantic
domain. This allows to quantify over method names etc. – it is not a logic over
finite sequences. In additional to standard MSO constructs, we use [ttr]

.= t to
say that the event at position ttr of the trace is equal to the term t. Similarly,
[ttr]  ϕ expresses that the state at position ttr is a model for the FOS formula ϕ.
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Definition 8 (MSO Syntax). Let p,f ,x range over the same sets as before, S
over sorts. As sorts we take all data types D and additionally I, the set of trace
indices, O, the set of all object names, Fut, the set of all futures of all types, the
supertype Any, the set of all well-typed expressions and M, the set of all method
names. Formulas ψ are defined as follows. Terms ttr are standard.

ψ ::= p(−→ttr) | ψ ∨ ψ | ¬ψ | ttr ⊆ ttr | ∃x ∈ S. ψ | ∃X ⊆ S. ψ | [ttr]
.= ttr | [ttr]  ϕ

The predicate isEvent(i) that holds iff θ[i] is an event. For each type of event,
there is a function symbol that maps its parameters to an event of its type and
a predicate that holds iff the given position is an event of that kind, e.g.,

isfutEv(i) ⇐⇒ ∃f ∈ Fut. ∃o ∈ O. ∃m ∈ M. ∃v ∈ Any. [i] .= futEv(o, f,m, v)

Definition 9 (MSO Semantics). The semantics of terms and event terms is
defined by a function �·�I,β. The satisfiability of MSO-formulas is defined by a
relation θ, I, β |= ψ. The semantics of our extensions follows.

θ, I, β |= [ttr1]
.= ttr2 ⇐⇒ 1 ≤ �ttr1�I,β ≤ |θ| ∧ θ[�ttr1�I,β ] = �ttr2�I,β

θ, I, β |= [ttr]  ϕ ⇐⇒ 1 ≤ �ttr�I,β ≤ |θ| ∧ θ[�ttr�I,β ] is a state ∧ θ[�ttr�I,β ], I, β |= ϕ

Example 2. Let r = f.get0 be the statement from Example 1. The following
MSO-formula expresses that if all values read from futures of cmp is positive,
and every future read at point 0 is from cmp, then after the read the value of r

is positive.

(∀i ∈ I. (∀v ∈ Int. [i] .= futREv( , , cmp, v, ) → v > 0)
∧ ∀i ∈ I. (∀m ∈ M. [i] .= futREv( , ,m, , 0) → m

.= cmp))
→ ∀i ∈ I. ([i] .= futREv( , , , , 0) → [i + 1]  r > 0)

Relativization [17], an established technique in abstract model theory [15],
syntactically restricts a formula ψ on a substructure defined by another formula
ψ′. It is denoted ψ[x ∈ S \ ψ′], where x is a free variable in ψ′ of S sort. Each
quantifier of S sort is restricted to elements that fulfill ψ′.

Example 3. Formula ϕ expresses that every trace-element is either an event, or
a state with r > 0. The relativization with ψ expresses that ϕ holds for every
index above 9. Both traces of Fig. 2 satisfy ϕ[j ∈ I \ ψ], neither satisfies ϕ.

ϕ = ∀i ∈ I. isEvent(i) ∨ [i]  r > 0 ψ = j ≥ 9
ϕ[j ∈ I \ ψ] = ∀i ∈ I. i ≥ 9 → (isEvent(i) ∨ [i]  r > 0)

We use common abbreviations, e.g., ∀x ∈ S. ϕ for ¬∃x ∈ S. ¬ϕ and true and
shorten comparisons of Bool terms by writing, e.g., i > j instead of i > j

.= True.
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3 Behavioral Program Logic

Behavioral Program Logic (BPL) is an extension of FOS with behavioral modal-
ities [s�α τ ] that contain a statement s and a behavioral specification (τ, α).
A behavioral specification consists of (1) a syntactic component (the type τ)
and (2) a translation α of the type into an MSO formula that has to hold for
all traces generated by the statement. Behavioral specifications can be seen as
representations of a certain class of MSO formulas, which are deemed useful for
verification of distributed systems. For the rest of this section, we assume fixed
parameters Prgm, X, f , m for evaluation.

Definition 10 (Behavioral Program Logic). A behavioral specification T
is a pair (τT, αT), where αT maps elements of τT to MSO formulas.

BPL-formulas ϕ, terms t and updates U are defined by the following grammar,
which extends Definition 6. The meta variables range as in Definition 6. Addition-
ally let s range over statements and (τT, αT) over behavioral specifications.

ϕ ::= . . . | [s
αT

� τT] | {U}ϕ t ::= . . . | {U}t U ::= ε | U ||U | {U}U | v := t

Fig. 5. Semantics of BPL. The satisfiability relation on the right of the semantics of
behavioral modalities is the one of MSO.

The semantics of a behavioral modality [s�αT τT] is that all traces generated
by s selected within Prgm are models for αT(τT). We use updates [1,2] to keep
track of state changes, their semantics is a state transition. Update v := t changes
the state by updating v to t. The parallel update U ||U ′ applies U and U ′ in
parallel, with U ′ winning in case of clashes. ε is the empty update and application
{U} evaluates the term (resp. formula) in the state after applying U .

Definition 11 (Semantics of BPL). The semantical extension of FOS to
BPL is given in Fig. 5. The interpretation I has the properties described above.
A formula ϕ is valid if every

(
σ
ρ

)
and every β make it true.

Object, program, method name, resolved future and type of result are
implicitly known, but we omit them for readability’s sake. We use a sequent
calculus to reason about BPL (resp. FOS).
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Definition 12 (Sequents and Rules). Let Δ,Γ be sets of BPL-formulas. A
sequent Γ ⇒ Δ has the semantics of

∧
Γ → ∨

Δ. Γ is called the antecedent and
Δ the succedent. Let C,Pi be sequents. A rule has the form

P1 . . . Pn
(name) cond

C

Where C is called the conclusion and Pi the premise, while cond is a side-
condition. Side-conditions are always decidable. For readability’s sake, we apply
side conditions containing equalities directly in the premises.

Rules may contain, in addition to expressions, schematic variables. Their han-
dling is standard [1]. We assume the usual FO rules for the FOS part of BPL
handling all FO operators such as quantifiers.

Definition 13 (Soundness). A rule is sound if validity of all premisses implies
validity of the conclusion.

Soundness implicitly refers to a program Prgm, as behavioral modalities are
defined over Prgm-selectable traces. Rewrite rules τ1 � τ2 syntactically replace
one type τ1 by another, τ2 (and vice versa) and are sound if α(τ1) ≡ α(τ2).

Discussion. Before we introduce method types, a particular behavorial specifica-
tion, we illustrate BPL with further examples. To reason about postconditions,
as standard modal logics, we define a behavioral specification that only uses the
last state of a trace (denoted by the function symbol last) for its semantics.

Example 4. The specification for postconditions is the pair of the set of all FOS
sentences and the function pst, defined below. T is the type of result. The
first case accesses the return value stored in the futEv when result is used.

pst(ϕ) =
{∃v ∈ T. [last−1] .= futEv( , , , v) ∧ [last ]  ϕ[result\v] if ϕ contains result

[last ]  ϕ otherwise

A Hoare triple {ϕ}s{ψ} has the same semantics as the formula ϕ → [s�pst ψ].
A standard dynamic logic modality [s]ψ has the same semantics as the behav-
ioral modality [s�pst ψ]1. Behavioral modalities generalize these systems and
can be used to express any (MSO) trace property, independent of the form of
its verification system. The following defines a points-to analysis for futures [14]
(for the next statement), normally implemented in a data-flow framework.

Example 5 (Points-To). The behavioral specification of a points-to analysis
specifies that the next statement reads a future resolved by a method from
set M .

Tp2 = (P(M), p2) with

p2(M) = ∃X ∈ O.∃f ∈ Fut.∃m ∈ M.∃v ∈ Any.∃i ∈ N. [1] .= futREv(X, f, m, v, i) ∧
∨

m′∈M

m
.= m′

1 This justifies our use of the term “modality”. Contrary to standard modalities,
behavioral modalities are not formulas that express modal statements about formu-
las, but formulas that express a modal statement about more general specifications.
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The following formula expresses that the get statement reads a positive num-
ber, if the future is resolved by Comp.cmp. This is the case if Comp.cmp always
returns positive values. The identifier connects the two modalities semantically.

ϕp = [r = f.get0
p2

�{Comp.cmp}] → [r = f.get0
pst

� r > 0]

It is not necessary to include postcondition reasoning. Rule (ex1) in Fig. 6
expresses that if the next read from s is from some set E′ and it is required to
show that the next read is from E, it suffices to check whether E is a subset
of E′. Rule (ex-�) connects two analyses and generalizes Example 2: one may
assume some formula ψ for a read value, if this synchronization always reads
from method Comp.cmp and that the method body of Comp.cmp establishes ψ.

The above example illustrates the difference between modalites and typing
judgments. Modalites are formulas and can be used for deductive reasoning about
a type judgment (which, in our case, is encoded into �). While a calculus for
pst is easily carried over from other sequent calculi, this is not possible for all
behavioral specifications. The proof can still be closed in two ways.

– There may be some rules, such as (ex1) above, that enable to reason about
the analysis without reducing the statement at all.

– If the proof contains only open branches containing behavioral specification,
one may run a static analysis to evaluate them to true or false directly. E.g., if
for the formula ϕp above the pointer analysis returns that the synchronization
point 0 reads from L.log, the first behavioral modality evaluates to false and
the whole formula to true.

(ex1) E ⊆ E′

Γ, [s
p2

� E′] ⇒ [s
p2

� E], Δ

Γ, ψ(v) ⇒ {v := v}[s
pst

� ϕ], Δ

⇒ [v = f.get0
p2

�{Comp.cmp}] ∧ [sComp.cmp
pst

� ψ]
(ex-�) v fresh

Γ ⇒ [v = f.get0;s
pst

� ϕ], Δ

Fig. 6. Two example rules for behavioral specifications. ψ(v) replaces result by v and
we assume that ψ contains no fields.

Using external analyses increases modularity: (1) the BPL-calculus is simpler
because it does not need to encode the implementation and (2) one may verify
functional correctness of a method up to its context. Open branches are then a
description of the context which the method requires. This may be verified once
more context is known, thus extending proof repositories [6] to external analyses.

4 A Sequent Calculus for BPL: Behavioral Types

In this section we characterize behavioral types as behavioral specifications with
a set of sequent calculus rules and a constraint on the proof obligations of the
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methods within a program. Before we formalize this in general, we introduce
method types [23,24], a behavioral type for Active Objects that suffices to gen-
eralize method contracts and object invariants by integrating the behavioral
specifications for postcondition reasoning and points-to analysis. The method
type of a method describes the local view of a method on a protocol.

Definition 14. The local protocol L and method type L of a method are defined
by the grammar below. The behavioral specification for method types is Tmet =
(L, αmet). Let X0, . . . , Xn be roles, and fX0

, . . . , fXn
fields of fitting type. αmet(L)

is defined as ∃X0, . . . , Xn ∈ O.
∧

i≤n Xi
.= fXi

∧ α′
met(L). The first part models the

(generated [24]) assignment of roles (as function symbols) to fields.

L ::= ?m(ϕ).L L ::= X!m(ϕ) | ↓(ϕ) | skip | L.L | L∗ | ⊕ {Li}i∈I | &(−→m , ϕ){L, L}
The local protocol of a method contains the receiving action ?m(ϕ), which

models that the parameters satisfy the predicate ϕ. The method body is checked
against the method type – there is no statement corresponding to receiving.
Roles keep track of an object through the protocol. We stress that statements
and method types share syntactic elements – it is possible to pattern match on
statements/expressions on one side and a method type on the other side in rules.

Calls are specified with the call action X!m(ϕ), where X.m is the receiver and
the predicate ϕ has to hold. Here, ϕ does not only specify the sent data but
also local variables and fields. It can express properties such as “the sent data
is larger then some field”. The termination action ↓ (ϕ) models termination in
a state satisfying ϕ (which again may include result). The empty action skip
models no visible actions and L1.L2 to sequential composition: all interactions
in L1 must happen before L2. Repetition L∗ corresponds to the Kleene star (and
loops) and models zero or more repetitions of the interactions in L.

There are two choice operators: ⊕{Li}i∈I is the active choice, the method
must select one branch Li. It is not necessary to implement all branches, the
method may choose to never select some branches. The index set I must not be
empty. &(−→m , ϕ){L1, L2} is the passive choice: some other method made a choice
and this method has to follow the protocol according to this choice. The choice
is communicated via a future which has to be resolved by one of the methods
in −→m . If the choice condition ϕ, which may only include the program variable
result, is fulfilled by the read data, L1 has to be followed, otherwise L2 has to
be followed. Both branches have to be implemented.

The semantics of the call and termination actions specify a trace with at least
three elements with the correct event on second position and a state fulfilling the
given predicate on the third position. Every other event is noEv. The semantics of
the empty action and active choice are straightforward. Sequential composition
uses relativization: some position i is chosen, such that the left translation holds
before i and the right translation afterwards. Note that i is included in both
relativization, to uphold the invariant that a trace always starts and ends with
a state. The semantics of repetition are the only point where we require second
order quantifiers: set I is a set of indices, such that the first and last position are
included and for every consecutive pair k, l of elements of I, the translation of the
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repeated type holds in the relativization between k and l. Passive choice specifies
that the first event is a read on a correct future (i.e., resolved by the correct
method) and the suffix afterwards follows the communicated choice correctly.

Example 6. The following formalizes the behavior described informally in
Example 2:

?T.test(true).S!Comp.cmp(data .= i).&({Comp.cmp}, result < 0)
{
L!Log.log(data .= i),
skip

}
. ↓(result ≥ 0)

The result variable in the guard of the passive choice is referring to the result
of the read value, not the specified method.

We define behavioral types from a program logic perspective2 by a type sys-
tem, which is a set of sequent calculus rules that match on behavioral modalities
and a obligation scheme, that maps every method to a proof obligation

Definition 15 (Behavioral Types). A behavioral type T is a behavioral
specification (τT, αT) extended with (γT, ιT).

The obligation scheme ιT maps method names m to proof obligations,
sequents of the form ϕm ⇒ [sm �αT τm], which have to be proven. sm is the method
body of m. The type system γT is a set of rewrite rules for τT and sequent calculus
rules with conclusions matching the sequent Γ ⇒ {U}[s�αT τT],Δ.

We demand that obligation schemes are consistent, i.e., proof obligations do
not contradict each other. This would be the case if, for example a method is

α′
met(X!m(ϕ)) = ∀i ∈ I. isEvent(i) ∧ [i] 	 .= noEv → [i] .= invEv(x, X, f, m, −→e ) ∧ [i − 1] 
 ϕ(−→e )

∧ ∃i ∈ I. [i] 	 .= noEv ∧ isEvent(i)

α′
met(↓(ϕ)) = ∀i ∈ I. isEvent(i) ∧ [i] 	 .= noEv → [i] .= futEv(x, f, m, e) ∧ [i − 1] 
 ϕ[result \ e]

∧ ∃i ∈ I. [i] 	 .= noEv ∧ isEvent(i)

where ϕ(−→e ) replaces its free variables by −→e . ϕ[result \ e] replaces result by e.

α′
met(skip) = ∀l ∈ I. [l] .= noEv ∨ [l] 
 true α′

met(⊕{Li}i∈I) =
∨

i∈I α′
met(Li)

α′
met(L1.L2) = ∃i ∈ I. α′

met(L1)[n ∈ I \ n ≤ i] ∧ α′
met(L2)[n ∈ I \ n ≥ i]

α′
met(L

∗) = ∃I ⊆ I. ∃a, b ∈ I. a < b∧
∀k ∈ I. ((k < a ∧ isEvent(i) → [i] 	 .= noEv) ∨ (a ≤ k ∧ k ≤ b))∧
∀i1, i2 ∈ I. (∀l ∈ I. l ≤ i1 ∧ i2 ≤ l) → α′

met(L)[n ∈ I \ i1 ≤ n ∧ n ≤ i2)]
)

α′
met(&({ml}l∈I , ϕ){L1, L2}) = ∃i, j, k ∈ I. i < j ∧ j < k∧

(∀l ∈ I. l
.= j ∨ l ≥ k ∨ (l ≤ i ∧ ([l] .= noEv ∨ [l] 
 true)) ∧ [j] .= futREv(x, m, f, e, n)∧

l∈I m
.= ml ∧ ([k] 
 ϕ → α′

met(L1)[n ∈ I \ n ≥ k]) ∧ ([k] 	
 ϕ → α′
met(L2)[n ∈ I \ n ≥ k])

Fig. 7. Semantics for Tmet. Unbound variables are implicitly existentially quantified.

2 Behavioral types are sometimes (informally) distinguished from data types by having
a subject reduction theorem where the typing relation is preserved, but not the type
itself [10]. In BPL this would correspond to the property that one of the rules has a
premise where the type in the behavioral modality is different than in the conclusion.
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called and its precondition ϕ is checked caller-side, then ϕ must truly be used
as a precondition by the proof obligation for the called method.

Definition 16. Let Lm =?m(ϕm).Lm be the local protocols in Prgm. We require
that all Lm are consistent: If m is called in the method type of any other method
m′, then the call condition implies ϕm. Furthermore, ϕX.run = true.

The extension of the behavioral specification Tmet of method types to a behav-
ioral type is given by the calculus in Fig. 8 and ιmet(m) = ϕm ∧ Φ ⇒ [sm �αmet Lm].
Formula Φ =

∧
X X

.= select(heap, fX) encodes the assignment of roles to fields.

The call condition may contain fields of the other objects, but this is not
an issue when checking consistency, as the precondition only contains fields of
the own object and the fields are simply uninterpreted function symbols. The
method in Fig. 2 can be typed with the type in Example 6.

Rule (met–V) translates a variable-assignment into an update and (met–F) is
analogous for fields. Rule (met–get) has three premises: one premise checks via
Tp2 that the correct methods are synchronized with. The two others use a fresh
constant v for the read value and assign it to the target variable. The two

Γ ⇒ {U}{v := e}[s
αmet

� L], Δ
(met-V)

Γ ⇒ {U}[v = e; s
αmet

� L], Δ

Γ ⇒ {U}{heap := store(heap, f, e)}[s
αmet

� L], Δ
(met-F)

Γ ⇒ {U}[this.f = e; s
αmet

� L], Δ

Γ ⇒ {U}{v := v}(ϕ(v) → [s
αmet

� L1]), Δ

Γ ⇒ {U}{v := v}(¬ϕ(v) → [s
αmet

� L2]), Δ ⇒ [v = e.geti;s
p2

�{−→m }]
(met-get) v fresh

Γ ⇒ {U}[v = e.geti;s
αmet

� &(−→m , ϕ){L1, L2}], Δ

Γ ⇒ {U}I, Δ I, e ⇒ [s
pst

� I] I, e ⇒ [s
αmet

� L] I, ¬e ⇒ [s’
αmet

� L′], Δ
(met-while)

Γ ⇒ {U}[while e do s od s’
αmet

� L∗.L′], Δ

Γ ⇒ {U}(e → [s;s’’
αmet

� ⊕{Li}i∈I1 ]), Δ

Γ ⇒ {U}(¬e → [s’;s’’
αmet

� ⊕{Li}i∈I2 ]), Δ
(met-if) I1 ∪ I2 ⊆ I

Γ ⇒ {U}[if e then s else s’ fi s’’
αmet

� ⊕{Li}i∈I ], Δ

Γ ⇒ {U} (ϕ(e) ∧ select(heap, f) .= X) , Δ Γ ⇒ {U}{v := f}[s
αmet

� L], Δ
(met-call) f fresh

Γ ⇒ {U}[v = f!m(e); s
αmet

� X!m(ϕ).L], Δ

Γ ⇒ {U}{result := e}ϕ, Δ
(met-return)

Γ ⇒ {U}[return e
αmet

� ↓(ϕ)], Δ
(met-skip)

Γ ⇒ {U}[skip
αmet

� skip], Δ

L � ⊕ L skip.L � L L.skip � L

Fig. 8. Rules for Tmet. We remind that the sets I1, I2 are defined as non-empty. For
simplicity, we assume that every branch and every loop body implicitly ends in skip.
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premises differ in the branch that is checked afterwards, depending on whether
or not the choice condition holds. Rule (met–while) is a standard loop invariant
rule. An invariant I holds before the first iteration and is preserved by the loop
to remove all other information afterwards. The loop body is checked against
the repeated type and the continuation against the continuation of the type.
Method types have no special action for the end of a statement, so Tpst is used
for checking that the loop preserves its invariant. Rule (met–if) splits the set of
possible choices into two and checks each branch against one of these sets. These
sets may overlap and do not need to cover all original choices, but may not be
empty. Rule (met–call) checks the annotated condition of the called method and
the correct target explicitly and that the correct method is called by matching
call type and call statement. We remind that references are not reassigned, so
call targets can be verified locally. The other rules are straightforward.

Contracts and Invariants. Method types generalize method contracts and object
invariants as follows. An object invariant is encoded by adding it to the formula
in the receiving and terminating actions of all method in an object – except the
constructor run, where it is only added to the terminating action. A method
contract (consisting of a precondition on the parameters and a postcondition) is
encoded analogously by adding the precondition to the receiving and the post-
condition to the terminating actions. However, one additional step is required:
Method types are generated by projection of global types [23], so to use them for
object invariants or method contracts requires to infer a method type first. This
is done by mapping every call to a call action, every branching to an active choice,
every loop to a repetition, termination to a terminating action and using true
at every position where a formula is required, before adding precondition, post-
condition or object invariant. The most complex construct is synchronization.
Each such read is mapped to a passive choice with all methods as the method set
and true as the choice condition. The following code is added in the first branch.

1 class T(Comp S, Log L){

2 Int nr = 0;

3 Int test(Int i){

4 Fut<Int> f = S!cmp(i);

5 this.nr = this.nr + 1;

6 Int r = f.get0;
7 if(r < 0 && i > 0){

8 r = -r; f = L!log(i);

9 }

10 return r;

11 }

12 }

Precondition: i ≥ 0
Postcondition: result ≥ 0

Invariant: this.nr ≥ 0

L1 = ?T.test(i ≥ 0 ∧ this.nr ≥ 0).S!Comp.cmp(ϕcmp)

. &(M, true)

⎧⎨
⎩

⊕
{
L!Log.log(ϕlog),
skip

}
,

skip

⎫⎬
⎭

. ↓(result ≥ 0 ∧ this.nr ≥ 0)

L2 = ?T.test(i ≥ 0 ∧ this.nr ≥ 0).S!Comp.cmp(data .= i ∧ ϕcmp)

. &({Comp.cmp}, result < 0)
{
L!Log.log(data .= i ∧ ϕlog),
skip

}

. ↓(result ≥ 0) ∧ this.nr ≥ 0

Fig. 9. An example method and two method types for method contracts and invariants.
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The second branch is skip. Invariants require fields in the precondition and a
fitting notion of consistency, which was developed in [23].

Example 7. Consider the code in Fig. 9, a variation of our running example. It
tracks the number of calls to T.test and inverts the result if the input is positive.
It adheres to the contract with precondition i ≥ 0 and postcondition result ≥ 0
and the invariant this.nr ≥ 0. The algorithm above derives the following type:

?T.test(true) . S!Comp.cmp(true) . &(M, true)

⎧
⎨

⎩
⊕

{
L!Log.log(true),
skip

}
,

skip

⎫
⎬

⎭
. ↓(true)

Let ϕcmp and ϕlog be the preconditions of the called methods. The final specifi-
cation, after adding the contract and the invariant, is shown on the right in Fig. 9
as L1. The inferred type is not the one we gave in Example 6: For one, it differs
in its shape (two choice operators). For another, it neither keeps track of the
passed data, nor specifies the relation between the return value of Comp.cmp and
the taken branch. These properties are typical for protocol specifications and
require a global view, contrary to the local view of method contracts and object
invariants. However, one can add the pre- and postcondition and the object
invariant also to the type given in Example 6 and combine local and global spec-
ification. The result is shown as L2 in Fig. 9. L2 expresses that the method follows
the protocol and adheres to contract and object invariant.

Theorem 1. Tmet is sound for every program.

The proof is standard [22]. Consistency of the obligation scheme is required
to establish that all selected traces are models for the type of their method. The
first two elements are not described by the method type and, thus, removed.

Corollary 1. If (1) for every method m with type ?m(ϕ).Lm the formula ιmet(m)
is valid and (2) the obligation scheme is consistent, then for every selected trace
θ of any method m, the trace after the invocation reaction event follows its type:

θ[2..|θ|], I, ∅ |= αmet(Lm)

5 Conclusion and Related Work

This work presents BPL, a program logic for object-oriented distributed pro-
grams that enables deductive reasoning about the results of static analyses and
integrates concepts from behavioral types by pattern-matching statement and
specification. The method type behavioral type generalizes method contracts,
session types and object invariants. In the following, we discuss related work.

Dynamic Logics. Beckert and Bruns [3] use LTL formulas in dynamic logic
modalities in their Dynamic Trace Logic (DTL) for Java. Given an LTL formula
ϕ, the DTL-formula [s]ϕ expresses that ϕ describes all traces of s. DTL uses a
restricted form of pattern matching: its three loop invariant rules depend on the
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outermost operator of ϕ and other rules may consume a “next” operator. DTL
does not use events and specifies patterns of state changes, not of interactions.

The Abstract Behavior Specification Dynamic Logic (ABSDL) of Din and
Owe [12] is for the ABS language [21]. In ABSDL, a formula [s]ϕ, where ϕ is
a first-order formula over the program state, has the standard meaning that ϕ
holds after s is executed. ABSDL uses a special program variable to keep track of
the visible events. Its rules are tightly coupled with object-invariant reasoning.
This makes it impossible to specify the state at arbitrary interactions.

Bubel et al. [7] define dynamic logic with coinductive traces (DLCT). In
DLCT, a formula [s]ϕ, where ϕ is a trace modality formula, containing symbolic
trace formulas, has the meaning that every trace of s is a model for ϕ. Contrary
to ABSDL, DLCT keeps track of the whole trace, not just the events. DLCT
is not able to specify the property that between two states, some form of event
does not occur, as symbolic trace formulas are not closed under negation.

Behavioral Types. A number of behavioral types deals with assertions [4,5] or
Actors [16,18,26]. Stateful Behavioral Types for Active Objects (STAO) [23]
uses both and defines the judgment ϕ, s′  s : τ , that expresses that all traces of
s are models for the translation of τ . ϕ and s′ keep track of the chosen path so
far. STAO is not able to reason about multiple judgments, but relies on external
analyses for precision. Reasoning about these results happens on a meta-level.

Finally, Propositions-as-Types theorems (PaT) have been established [8,27]
between session types for the π-calculus and intuitionistic linear logic. They are
specific to this setting and do not characterize general behavioral types. To our
best knowledge, Definition 15 is the first formal characterization of behavioral
types.

Future Work. An implementation of BPL for full ABS is ongoing and as future
work, we plan to investigate further types and concurrency models, in particular
systems with shared memory and effect type systems.
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Abstract. We show that infinite satisfiability can be reduced to finite
satisfiability for all prenex formulas of Separation Logic with k ≥ 1 selec-
tor fields (SLk). This fact entails the decidability of the finite and infinite
satisfiability problems for the class of prenex formulas of SL1, by reduc-
tion to the first-order theory of a single unary function symbol and an
arbitrary number of unary predicate symbols. We also prove that the
complexity of this fragment is not elementary recursive, by reduction
from the first-order theory of one unary function symbol. Finally, we
prove that the Bernays-Schönfinkel-Ramsey fragment of prenex SL1 for-
mulas with quantifier prefix in the language ∃∗∀∗ is PSPACE-complete.

1 Introduction

Separation Logic [8,11] (SL) is a logical framework used to describe proper-
ties of the heap memory, such as the placement of pointer variables within the
topology of complex data structures (lists, trees, etc.). The features that make
SL attractive for program verification are the ability of defining (i) weakest pre-
and post-condition calculi that capture the semantics of programs with pointers,
and (ii) compositional verification methods, based on inferring local specifica-
tions of methods and threads independently of the context in which they evolve.
The search for automated push-button program verification methods motivates
the understanding of the decidability, complexity and expressive power of various
dialects of SL, used as assertion languages in Hoare-style proofs [8], or logic-based
abstract domains in static analysis [3].

Formal definitions are provided later, but essentially, SL can be viewed as the
first order theory of one partial finite function from U → Uk, called a heap, where
U denotes the universe of memory locations (i.e., addresses), to which two non-
classical connectives are added: (i) the separating conjunction φ1∗φ2, that asserts
a split of the heap into disjoint heaps satisfying φ1 and φ2 respectively, and (ii)
the separating implication or magic wand φ1−∗φ2, stating that each extension of
the heap by a disjoint heap satisfying φ1 must satisfy φ2. The number k denotes
the number of selector fields and we use the notation SLk to make this number
explicit. Quantification over elements of U is allowed. A fragment of separation
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logic that is practically relevant in verification is when k = 1, i.e., every allocated
cell points to a unique cell. This fragment allows, e.g., to describe simply linked
lists.

As a simple example of application, let us consider the following Hoare triple
with left-hand side that is the weakest precondition of an arbitrary formula φ
with respect to a selector update in a program handling lists:

{∃x . i �→ x ∗ (i �→ j −∗ φ)} i.next = j {φ}

Informally, the formula ∃x . i �→ x ∗ (i �→ j −∗ φ) holds when the heap can be
separated into disjoint parts, one in which cell i is allocated (the formula i �→ x
states that the heap maps i to x), and one that, when extended by allocating cell i
to j, satisfies φ. In other words, the formula states that cell i is allocated and that
φ holds after i is redirected to j. A typical verification condition checks whether
this formula is entailed by another precondition ψ, generated by a program
verifier or supplied by the user. The entailment ψ |= ∃x . i �→ x ∗ (i �→ j −∗ φ) is
valid if and only if the formula θ

def= ψ∧∀x . ¬(i �→ x∗(i �→ j−∗φ)) is unsatisfiable.
In addition, if φ and ψ are formulas in prenex form1 then, because the assertions
i �→ x and i �→ j unambiguously define a specific part of the heap (the cell
corresponding to i), the quantifiers of φ can be hoisted outside of the separating
conjunction and implication, and the formula θ can be written in prenex form.

Deciding the satisfiability of (prenex) SL formulas is thus an important ingre-
dient for push-button program verification. Unlike first order logic, some SL
formulas do not have a prenex form (see Example 2 on Page 7). Moreover, sat-
isfiability is decidable (and PSPACE-complete) for quantifier-free SL-formulas,
but it is undecidable for first-order SL-formulas, even when k = 1. In fact SL1

is as expressive as second-order logic in the presence of ∗ and −∗ whereas the
fragment of SL1 without −∗ is decidable but not elementary recursive [2]. In [6],
we investigated the Bernays-Schönfinkel-Ramsey fragment of SLk, i.e., the frag-
ment containing formulas of the form ∃x1, . . . , xn∀y1, . . . , ym . φ where φ is a
quantifier-free formula of SLk. We proved that for k > 1, satisfiability is unde-
cidable in general and decidable if −∗ only occurs in the scope of an odd number
of negations. However, nothing is known concerning the prenex fragment of SL1.
In this paper we fill in this gap and show that:

1. the prenex fragment of SL1 is decidable but not elementary recursive, and
2. the Bernays-Schönfinkel-Ramsey fragment of SL1 is PSPACE-complete.

The results are established using reductions to and from the fragment of
first order logic with one monadic function symbol [1]. The decidability of this
fragment is a consequence of the celebrated Rabin Tree Theorem [10], which
established the decidability of monadic second order logic of infinite binary tree
(S2S). As in our previous work [6] and unlike most existing approaches, we
consider both the finite and infinite satisfiability problems (other approaches

1 Q1x1 . . . Qnxn . ϕ, where Q1, . . . , Qn are the first order quantifiers ∃ or ∀ and ϕ is
quantifier-free.
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usually assume that the universe is infinite). Essential to our reductions to and
from this fragment is a result (proven in [6]) stating that each quantifier-free SLk

formula, for k ≥ 1, is equivalent to a boolean combination of formulas of some
specific forms, called test formulas. Similar translations exist for quantifier-free
SL1 [2,9] and for SL1 with one quantified variable [5]. In addition we show in the
present paper that the infinite satisfiability reduces to the finite satisfiability for
quantified boolean quantifications of test formulas.

2 Preliminaries

In this section, we briefly review some usual definitions and notations (missing
definitions can be found in, e.g., [7] or [1]). We denote by Z the set of integers
and by N the set of positive integers including zero. We define Z∞ = Z∪{∞} and
N∞ = N ∪ {∞}, where for each n ∈ Z we have n + ∞ = ∞ and n < ∞. For two
positive integers m ≤ n, we denote by [[m . . n]] the set {m,m + 1, . . . , n}. For a
countable set S we denote by ||S|| ∈ N∞ the cardinality of S. A decision problem
is in (N)SPACE(n) if it can be decided by a (nondeterministic) Turing machine
in space O(n) and in PSPACE if it is in SPACE(nc) for some input-independent
integer c ≥ 1.

2.1 First Order Logic

Syntax. Let Var be a countable set of variables, denoted by x, y, z and B and U
be distinct sorts, where B denotes booleans and U denotes memory locations. A
function symbol f has #(f) ≥ 0 arguments of sort U and a sort σ(f), which is
either B or U . If #(f) = 0, we call f a constant. We use ⊥ and � for the boolean
constants false and true, respectively. First-order (FO) terms t and formulas ϕ
are defined by the following grammar:

t := x | f(t, . . . , t
︸ ︷︷ ︸

#(f)

) ϕ := ⊥ | � | ϕ ∧ ϕ | ¬ϕ | ∃x . ϕ | t ≈ t | p(t, . . . , t
︸ ︷︷ ︸

#(p)

)

where x ∈ Var, f and p are function symbols, σ(f) = U and σ(p) = B. We write
ϕ1∨ϕ2 for ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 for ¬ϕ1∨ϕ2, ϕ1 ↔ ϕ2 for ϕ1 → ϕ2∧ϕ2 → ϕ1

and ∀x . ϕ for ¬∃x . ¬ϕ. The size of a formula ϕ, denoted by size(ϕ), is the
number of occurrences of symbols in ϕ. A variable is free in ϕ if it occurs in
ϕ but not in the scope of a quantifier. We denote by fv(ϕ) the set of variables
that are free in ϕ. A sentence is a formula ϕ such that fv(ϕ) = ∅. The Bernays-
Schönfinkel-Ramsey fragment of FO [BSR(FO)] is the set of sentences of the
form ∃x1 . . . ∃xn∀y1 . . . ∀ym . ϕ, where ϕ is a quantifier-free formula in which all
function symbols f of arity #(f) > 0 have sort σ(f) = B. We denote by FO1 the
set of formulas built on a signature containing only one function symbol of arity
1, the equality predicate and an arbitrary number of unary predicate symbols2.

2 The fragment FO1 is denoted by [all , (ω), (1)]= in [1].
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Semantics. First-order formulas are interpreted over FO-structures (called
structures, when no confusion arises) S = (U, s, i), where U is a nonempty
countable set, called the universe, the elements of which are called locations,
s : Var → U is a function mapping variables to locations called a store, and i
interprets each function symbol f by a function f i : U#(f) → U, if σ(f) = U and
f i : U#(f) → {⊥,�} if σ(f) = B. A structure (U, s, i) is finite when ||U|| ∈ N

and infinite otherwise. We write S |= ϕ iff ϕ is true when interpreted in S. This
relation is defined recursively on the structure of ϕ, as usual. When S |= ϕ, we
say that S is a model of ϕ. A formula is satisfiable when it has a model. We
write ϕ1 |= ϕ2 when every model of ϕ1 is also a model of ϕ2 and by ϕ1 ≡ ϕ2 we
mean ϕ1 |= ϕ2 and ϕ1 |= ϕ2. The (in)finite satisfiability problem asks, given a
formula ϕ, whether a (in)finite model exists for this formula.

We now recall and refine an essential known result concerning the satisfiabil-
ity problem for formulas in FO1:

Theorem 1. The finite satisfiability problem is decidable for first-order formu-
las in FO1. Furthermore, the problem is nonelementary even if the formula con-
tains no unary predicate symbols.

Proof. The decidability result is proven in [1, Corollary 7.2.12, page 341]. The
complexity lower bound is established in [1, Theorem 7.2.15, page 342] for arbi-
trary domains, however a careful analysis of the proof reveals that it also holds
for finite domains. Indeed, the proof goes by showing that a domino problem
of nonelementary complexity can be polynomially reduced to the satisfiabil-
ity problem for a first-order formula ϕ satisfying the conditions of the lemma.
The initial domino problem is not important here and its definition is omit-
ted. To establish the desired result, we only have to prove that satisfiability is
actually equivalent to finite satisfiability for the obtained formula ϕ. The for-
mula ϕ output of the reduction is of the following form (see [1, Page 345]):
ϕ = α ∧ γ ∧ η′[D(x)/δ(x), Pi(x, y)/πi(x, y), where:

– α = ∃x∀y . f(x) ≈ x∧ fn+1(y) ≈ x. This formula states that the domain can
be viewed as a tree of height at most n + 1, where the (necessarily unique)
element corresponding to the variable x is the root of the tree, and where f
maps every other node to its parent.

– The formula δ is based on an equivalence relation En−1 on nodes in a (possibly
infinite) tree, which is inductively defined as follows:

• All nodes are E0-equivalent.
• For m > 1, two nodes are Em-equivalent if for every Em−1-equivalence

class K, either both nodes have no child in K or both nodes have a child
in K.

The formula δ(x) states that x is a child of the root with at most one child in
each En−1-equivalence class. We also denote by E the intersection

⋂n
i=1 Ei.

– γ = ∀x, y . δ(x)∧ δ(y)∧βn(x, y) → x ≈ y, where βn(x, y) is a formula stating
that x and y have height at most n and are En-equivalent.
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– For i = 0, . . . , r, πi(x, y) is a formula stating that there exists a z satisfying
the following property denoted by P(i, a, b): z is a child of the root and for
every En−1-equivalence class K and for all j, k ∈ {0, 1}, if x and y have
exactly j and k children in K respectively, then z has exactly 2 + 4i + 2j + k
children in K.

– η′ is equivalent to a closed formula defined over a signature containing a unary
predicate symbol D and r + 1 binary predicate symbols P0, . . . , Pr, in which
every quantification ranges over elements x satisfying D(x). It is thus of the
form ∃x . D(x) ∧ ψ or ∀x . D(x) → ψ.

– η′[D(x)/δ(x), Pi(x, y)/πi(x, y)] denotes the formula η′ in which every occur-
rence of a formula D(x) (resp. Pi(x, y)) is replaced by δ(x) (resp. πi(x, y)).
Thus it is equivalent to a formula in which every quantification ranges over
elements x satisfying δ(x).

The formal definitions of η′, δ(x) and πi(x, y) are unimportant and omitted.
Let I = (U, s, i) be a model of ϕ, with f = f i. We denote by r the root

of the tree, i.e., the unique element of U with (U, s[x �→ r], i) |= ∀y . f(x) ≈
x∧fn+1(y) ≈ x. Given i ∈ [0, r] and a, b ∈ U, if (U, s[x �→ a, y �→ b], i) |= πi(x, y),
then we denote by μ(i, a, b) a set containing an arbitrarily chosen element z
satisfying P(i, a, b) in the definition of πi(x, y) along with all the children of z,
otherwise μ(i, a, b) is empty. Observe that μ(i, a, b) is always finite because the
number of children of z in each equivalence class is bounded by 2+4×i+2+1 ≤
2+4×r+2+1, moreover the number of E-equivalence classes is finite [1, bottom
of Page 343].

We show that ϕ admits a finite model I ′. The set B of elements b such that
(U, s[x �→ b], i) |= δ(x) is finite [1, Page 344, Lines 21–22]. Let Π be the set:
Π =

⋃{μ(i, a, b) | a, b ∈ B, i ∈ [0, r]}. Since B is finite and every set μ(i, a, b)
is finite, Π is also finite. With each element a ∈ U and each E-equivalence class
K, we associate a set ν(a,K) containing exactly one child of a in K if such a
child exists, otherwise ν(a,K) is empty. We now consider the subset U′ of U
defined as the set of elements a such that for every m ∈ N, fm(a) occurs either
in {r} ∪ B ∪ Π or in a set ν(b,K), where b ∈ U and K is an E-equivalence class.
Note that r ∈ U′ and that if a ∈ U′ then necessarily f(a) ∈ U′. Furthermore, if
f(b) ∈ U′ and b ∈ ν(f(b),K) then b ∈ U′.

It is easy to check that U′ is finite. Indeed, since (U, s, i) |= α and no new
node or edge is added, all nodes are of height less or equal to n+1. Furthermore,
all nodes have at most ||B|| + ||Π|| + #K children in U′, where #K denotes the
number of E-equivalence classes.

We denote by I ′ = (U′, s, i′) the restriction of I to the elements of U′ (we
may assume that s is a store on U′ since ϕ is closed). We prove that I ′ |= ϕ.

– Since U′ contains the root, and I |= α, we must have I ′ |= α.
– Observe that U′ necessarily contains ν(b,K), for every b ∈ U′, since by def-

inition the parent of the (unique) element of ν(b,K) is b. Thus at least one
child of b is kept in each equivalence class. Thus the relations Em on ele-
ments of U′ are preserved in the transformation: for every a, b ∈ U′, a, b are
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Em-equivalent in the structure I iff they are equivalent in the structure I ′.
Further, the height of the nodes cannot change. Therefore, for every a, a′ ∈ U ′:

(U′, s[x �→ a, y �→ a′], i′) |= βn(x, y) iff (U, s[x �→ a, y �→ a′], i) |= βn(x, y)

By definition, for every a ∈ B and m ∈ N, fm(a) ∈ {a, r}, thus B ⊆ U′.
Because no new edges are added, we deduce:

(U′, s[x �→ a], i′) |= δ(x) ⇔ (U, s[x �→ a], i) |= δ(x) ⇔ a ∈ B

Consequently, since I |= γ, we have I ′ |= γ.
– All elements in μ(i, a, a′) with a, a′ ∈ B occur in U′ (because if b ∈ μ(i, a, a′)

and m ∈ N then fm(b) ∈ {r} ∪ B ∪ μ(i, a, a′)), thus, for all a, a′ ∈ B:

(U′, s[x �→ a, y �→ a′], i′) |= πi(x, y) ⇔ (U, s[x �→ a, y �→ a′], i) |= πi(x, y)

Since all quantifications in η′ range over elements in B, we deduce, by
a straightforward induction on the formula, that I and I ′ necessarily
agree on the formula η′[D(x)/δ(x), Pi(x, y)/πi(x, y)]. Consequently, I ′ |=
η′[D(x)/δ(x), Pi(x, y)/πi(x, y)]. ��

2.2 Separation Logic

Syntax. Let k ∈ N be a strictly positive integer. The logic SLk is the set of
formulas generated by the grammar:

ϕ := ⊥ | � | emp | x ≈ y | x �→ (y1, . . . , yk) | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ϕ −∗ ϕ | ∃x . ϕ

where x, y, y1, . . . , yk ∈ Var. The connectives ∗ and −∗ are respectively called the
separating conjunction and separating implication (magic wand). The symbols
∨, →, ↔ and ∀ are defined as in first-order logic, and in addition, we write
ϕ1 � ϕ2 for ¬(ϕ1 −∗ ¬ϕ2) (� is called septraction).

A tuple (y1, . . . , yk) ∈ Vark is sometimes denoted by y. The size and
free variables of an SLk formula ϕ are defined as for first-order formulas.
The prenex fragment of SLk (denoted by PRE(SLk)) is the set of sentences
Q1x1 . . . Qnxn . φ, where Q1, . . . , Qn ∈ {∃,∀} and φ is a quantifier-free SLk

formula. The Bernays-Schönfinkel-Ramsey fragment of SLk [BSR(SLk)] is the set
of sentences ∃x1 . . . ∃xn∀y1 . . . ∀ym . φ, where φ is a quantifier-free SLk formula.
Since there are no function symbols of arity greater than zero in SLk, there are
no restrictions, other than the form of the quantifier prefix, defining BSR(SLk).

Semantics. SLk formulas are interpreted over SL-structures (called structures
when no confusion arises) I = (U, s, h), where U and s are defined as for first-
order formulas3 and h : U ⇀fin Uk is a finite partial mapping of locations to

3 In contrast to most existing work in Separation Logic, we do not assume that U is
infinite.
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k-tuples of locations, called a heap. A structure (U, s, h) is finite when ||U|| ∈ N

and infinite otherwise (note that the heap is always finite, but that the universe
may be finite or infinite).

Given a heap h, we denote by dom(h) the domain of the heap, by img(h) def=
{�i | ∃� ∈ dom(h), h(�) = (�1, . . . , �k), i ∈ [[1 . . k]]} its range and we let elems(h) def=
dom(h)∪ img(h). A element x is allocated in (U, s, h) if it belongs to dom(h). For a
store s, we define its range img(s) def= {� | x ∈ Var, s(x) = �}. If x = (x1, . . . , xn) is
a vector of pairwise distinct variables and e = (e1, . . . , en) is a vector of elements
of U of the same length as x, then s[x �→ e] denotes the store that maps xi

to ei (for all i ∈ [[1 . . n]]) and coincides with s on every variable distinct from
x1, . . . , xn. Two heaps h1 and h2 are disjoint if and only if dom(h1)∩dom(h2) = ∅,
in which case h1 � h2 denotes their union (h1 � h2 is undefined if h1 and h2 are
not disjoint). The relation (U, s, h) |= ϕ is defined inductively, as follows:

(U, s, h) |= emp ⇔ h = ∅
(U, s, h) |= x ≈ y ⇔ s(x) = s(y)
(U, s, h) |= x �→ (y1, . . . , yk) ⇔ h(s(x)) = (s(y1), . . . , s(yk)) ∧ dom(h) = {s(x)}
(U, s, h) |= ϕ1 ∧ ϕ2 ⇔ (U, s, h) |= ϕ1 and (U, s, h) |= ϕ2

(U, s, h) |= ¬ϕ ⇔ (U, s, h) �|= ϕ
(U, s, h) |= ∃x . ϕ ⇔ there exists e ∈ U s.t. (U, s[x �→ e], h) |= ϕ
(U, s, h) |= ϕ1 ∗ ϕ2 ⇔ there exist disjoint heaps h1, h2 such that h = h1 � h2

and (U, s, hi) |= ϕi, for i = 1, 2
(U, s, h) |= ϕ1 −∗ ϕ2 ⇔ for all heaps h′ disjoint from h such that (U, s, h′) |= ϕ1,

we have (U, s, h′ � h) |= ϕ2

Satisfiability, entailment and equivalence are defined for SLk as for FO formulas.
The finite [resp. infinite] satisfiability problem for SLk asks whether a finite [resp.
an infinite] model exists for a given formula. We write φ ≡fin ψ [φ ≡inf ψ]
whenever (U, s, h) |= φ ⇔ (U, s, h) |= ψ for every finite [infinite] structure
(U, s, h).

As stated in the introduction, SL formulas do not admit prenex forms in
general, because the quantifiers cannot be shifted outside of separating con-
nectives. This is an essential difference with FO, where each formula is equiv-
alent to a linear-size formula in prenex form. In particular, the equivalences
φ ∗ ∀x . ψ(x) ⇔ ∀x . φ ∗ ψ(x) and φ −∗ ∃x . ψ(x) ⇔ ∃x . φ −∗ ψ(x) do not always
hold.

Example 2. For instance, the formula (∀x . x �→ x) ∗ � is satisfiable only on
universes of cardinality 1 (because ∀x . x �→ x entails that the domain of the
heap is of size 1 and contains all locations), but the formula ∀x . (x �→ x ∗ �)
is satisfiable if and only if the universe is finite and each location points to
itself. �

2.3 Test Formulas for SLk

This section presents the definitions and results from [6], needed for self-
containment.
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Definition 3. The following patterns are called test formulas of SLk, for any
k ≥ 1:

x ↪→ y def= x �→ y ∗ � |U | ≥ n
def= � � |h| ≥ n, n ∈ N

alloc(x) def= x �→ (x, . . . , x)
︸ ︷︷ ︸

k times

−∗⊥ |h| ≥ |U | − n
def= |h| ≥ n + 1 −∗ ⊥, n ∈ N

x ≈ y |h| ≥ n
def=

{ |h| ≥ n − 1 ∗ ¬emp, if n > 0
�, if n = 0

where x, y ∈ Var, y ∈ Vark is a k-tuple of variables and n ∈ N is a positive inte-
ger. A literal is a test formula or its negation and a minterm is any conjunction
of literals.

The semantics of test formulas is intuitive: x ↪→ y holds when x denotes a
location and y is the image of that location in the heap, alloc(x) holds when x
denotes a location in the domain of the heap (allocated), |h| ≥ n, |U | ≥ n and
|h| ≥ |U | − n are cardinality constraints involving the size of the heap, denoted
by |h| and that of the universe, denoted by |U |. We recall that |h| ranges over
N, whereas |U | is always interpreted as a number larger than |h| and possibly
infinite. The truth value of the test formulas of the form |U | ≥ n and |h| ≥ |U |−n
depend on the universe U, hence such test formulas are called universe-dependent.
The truth value of the other test formulas depend only on the store and heap,
thus they are called universe-independent. Clearly, all universe-dependent test
formulas are trivially equivalent to true (for |U | ≥ n) or false (for |h| ≥ |U | − n)
when interpreted over an infinite universe. Observe that not all atoms of SLk

are test formulas, for instance x �→ y and emp are not test formulas. However,
it is easy to check that any atom may be written as a boolean combination of
test formulas, for instance x �→ y is equivalent to x ↪→ y ∧ ¬|h| ≥ 2 and emp is
equivalent to ¬|h| ≥ 1.

The following result establishes a translation of quantifier-free SLk formulas
into boolean combinations of test formulas. A literal is a test formula or its
negation and a minterm is any conjunction of literals.

Lemma 4. Given a quantifier-free SLk formula φ, there exist finite sets of
minterms μfin(φ) and μinf (φ) such that φ ≡fin

∨

M∈μfin(φ) M and φ ≡inf

∨

M∈μinf (φ) M . Furthermore, the size of every M ∈ μfin(φ) ∪ μinf (φ) is polyno-
mial w.r.t. size(φ), and given a minterm M , the problem of checking whether
M ∈ μfin(φ) [resp. M ∈ μinf (φ)] is in PSPACE.

Proof. See [6]. ��
Given a quantifier-free SLk formula φ, the number of minterms in μfin(φ) [resp.
in μinf (φ)] is exponential in the size of φ, in the worst case. An optimal decision
procedure does not generate and store these sets explicitly, but rather enumerate
minterms lazily.
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Example 5. The formula x �→ y ∗ y �→ x ∗ ¬emp is equivalent to the minterm:
x ↪→ y ∧ y ↪→ x ∧ x �≈ y ∧ |h| ≥ 3. Indeed, because the atoms x �→ y, y �→ x and
¬emp must be satisfied on disjoint heaps, the initial formula entails that x, y
are distinct and that the heap contains at least 3 allocated elements (x, y and
an additional element distinct from x and y). The formula x �→ y −∗ x �→ z is
equivalent to the disjunction of minterms alloc(x) ∨ (¬|h| ≥ 1 ∧ y ≈ z). Indeed,
if x is allocated then the heap cannot be extended by a disjoint heap satisfying
x �→ y hence the separating implication trivially holds, otherwise the implication
holds iff the heap is empty and y ≈ z. �

3 From Infinite to Finite Satisfiability

We begin by showing that for prenex SL-formulas, the infinite satisfiability prob-
lem can be reduced to the finite satisfiability problem. The intuition is that two
SL-structures defined on the same heap and store can be considered as equivalent
if both have enough locations outside of the heap.

Definition 6. Let X be a set of variables and let n ∈ N. Two SL-structures
I = (U, s, h) and I ′ = (U′, s′, h′) are (X,n)-similar (written I ∼n

X I ′) iff the
following conditions hold:

1. h = h′.
2. For every x ∈ X, if s(x) ∈ elems(h) or s′(x) ∈ elems(h′) then s(x) = s′(x).
3. ||U \ elems(h)|| ≥ n + ||X|| and ||U′ \ elems(h)|| ≥ n + ||X||.
4. For all x, y ∈ X, I |= x ≈ y iff I ′ |= x ≈ y.

Condition 1 entails that elems(h) ⊆ U∩U′. We prove that any two SL-structures
that are (fv(φ),m)-similar are indistinguishable by any formula φ prefixed by m
quantifiers.

Proposition 7. Let φ = Q1x1 . . . Qmxm . ψ be a prenex SLk formula, with
Qi ∈ {∀,∃} for all i = 1, . . . , m, where ψ is a quantifier-free boolean combination
of universe-independent test formulas. If I ∼m

fv(φ) I ′ and I |= φ then I ′ |= φ.

Proof. Let I = (U, s, h) and I ′ = (U′, s′, h′). Assume that I ∼m
fv(φ) I ′ and

I |= φ. By Condition 1 in Definition 6 we have h = h′. We prove that I ′ |= φ
by induction on m.

– If m = 0, then we have φ = ψ, we show that I and I ′ agree on every atomic
formula in φ, which entails by an immediate induction that they agree on
φ. By Condition 4 in Definition 6, we already have that I and I ′ agree on
every atom x ≈ x′ with x, x′ ∈ fv(φ). By Condition 1, I and I ′ agree on
all atoms |h| ≥ n. Consider an atom � ∈ {y0 ↪→ (y1, . . . , yk), alloc(y0)},
with y0, . . . , yk ∈ fv(φ). If for every i ∈ [[0 . . k]] we have s(yi) ∈ elems(h)
then by Condition 2 we deduce that s′ and s coincide on y0, . . . , yk hence
I and I ′ agree on � because they share the same heap. The same holds if
s′(yi) ∈ elems(h), ∀i ∈ [[0 . . k]]. If both conditions are false, then we must
have I �|= � and I ′ �|= �, by definition of elems(h), thus I and I ′ also agree on
� in this case.
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– Assume that m ≥ 1 and Q1 = ∃, i.e., φ = ∃x1 . φ′. Then there exists e ∈ U
such that (U, s[x1 �→ e], h) |= φ′. We construct an element e′ ∈ U′ as follows.
If e = s(y), for some y ∈ fv(φ), then we let e′ = s′(y). If ∀y ∈ fv(φ), e �= s(y)
and if e ∈ elems(h) then we let e′ = e. Otherwise, e′ is an arbitrarily chosen
element in U′ \ (s′(fv(φ)) ∪ elems(h)). Such an element necessarily exists,
because by Condition 3 in Definition 6, U′ contains at least m + ||fv(φ)|| ≥
1 + ||s(fv(φ))|| elements distinct from those in elems(h). Let J = (U, s[x1 �→
e], h) and J ′ = (U, s[x1 �→ e], h), we prove that J ∼m−1

fv(φ)∪{x1} J ′. This entails
the required results since by the induction hypothesis we deduce J ′ |= φ′,
so that I ′ |= φ.

• Condition 1 trivially holds.
• For Condition 2, assume that there exists a variable x ∈ fv(φ) ∪ {x1}

such that either s[x1 �→ e](x) ∈ elems(h) or s′[x1 �→ e′](x) ∈ elems(h),
and s[x1 �→ e](x) �= s′[x1 �→ e′](x). Since I ∼m

fv(φ) I ′, if x ∈ fv(φ) then
[s(x) ∈ elems(h) ∨ s′(x) ∈ elems(h)] ⇒ s(x) = s′(x), thus necessarily
x = x1. In this case, s[x1 �→ e](x) = e and s′[x1 �→ e′](x) = e′. Since
e �= e′ by hypothesis, there can be no y ∈ fv(φ) such that s(y) = e because
otherwise by construction we would have e = s(y) = s′(y) = e′. By
definition of e′ we cannot have e ∈ elems(h) either, so e′ is necessarily in
U′ \ (s′(fv(φ))∪elems(h)) and the disjunction e ∈ elems(h)∨e′ ∈ elems(h)
cannot hold.

• Condition 3 follows from the fact that I ∼m
fv(φ) I ′ because we have m −

1 + ||fv(φ) ∪ {x1}|| = m + ||fv(φ)||.
• We now establish Condition 4. Let x, x′ ∈ fv(φ) ∪ {x1}. If x, x′ ∈ fv(φ)

then s[x1 �→ e] and s′[x1 �→ e′] coincide with s and s′ respectively on
x and x′, hence J and J ′ must agree on x ≈ x′ since I ∼m

fv(φ) I ′.
The result also trivially holds when x = x′ = x1. Now assume that
x = x1 and x′ �= x1. If e = s(y) for some y ∈ fv(φ), then J |= x ≈ x′

iff I |= y ≈ x′. By definition of e′, we also have e′ = s′(y), hence
J ′ |= x ≈ x′ iff I ′ |= y ≈ x′. Since both y and x′ are in fv(φ), we
have J |= x ≈ x′ ⇔ I |= y ≈ x′ ⇔ I ′ |= y ≈ x′ ⇔ J ′ |= x ≈ x′.
If the previous condition does not hold then necessarily e �= s(x′), and
J �|= x1 ≈ x′. If e ∈ elems(h), then by definition of e′, we have e′ = e. If
J ′ |= x1 ≈ x′ then we must have s′(x′) = s′(x1) = e′ = e ∈ elems(h),
which by Condition 2 entails that s′(x′) = s(x′) = e, hence J |= x1 ≈ x′,
a contradiction. Finally, if e �∈ elems(h), then by definition of e′, e′ cannot
occur in s′(fv(φ)), thus J ′ �|= x1 ≈ x′.

– Finally, assume that m ≥ 1 and Q1 = ∀. Then φ = ∀x1 . φ′. Let φ2 = ∃x1 . φ′
1,

where φ′
1 denotes the nnf of ¬φ′. Assume that I ′ �|= φ, then I ′ |= φ2, because

¬φ ≡ ∃x1 . ¬φ′ ≡ ∃x1 . φ′
1 = φ2. By the previous case, using the symmetry

of ∼m
fv(φ) and the fact that φ and φ2 have exactly the same free variables and

number of quantifiers, we have I |= φ2, i.e. I �|= φ, a contradiction. ��
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We define the following shorthands:

x ∈ h
def= ∃y0, y1, . . . yk . y0 ↪→ (y1, . . . , yk) ∧ ∨k

i=0 x ≈ yi

dist(x1, . . . , xn) def=
∧n

i=1

∧i−1
j=1 ¬(xi ≈ xj)

λp
def= ∃x1, . . . , xp . (dist(x1, . . . , xp) ∧ ∧p

i=1 ¬xi ∈ h)

It is clear that (U, s, h) |= λp iff ||U \ elems(h)|| ≥ p. In particular, λp is always
true on an infinite universe. Observe, moreover, that λp belongs to the PRE(SLk)
fragment, for any p ≥ 2 and any k ≥ 1.

The following lemma reduces the infinite satisfiability problem to the finite
version of this problem. This is done by adding an axiom ensuring that there are
enough locations outside of the heap. Note that there is no need to consider test
formulas of the form |U | ≥ n [resp. |h| ≥ |U | − n] because they always evaluate
to true [resp. false] on infinite SL-structures.

Theorem 8. Let φ = Q1x1 . . . Qmxm . ψ be a prenex SLk formula, where Qi ∈
{∀,∃} for i = 1, . . . , m and fv(φ) = ∅. Assume that ψ is a boolean combination of
universe-independent test formulas. The two following assertions are equivalent.

1. φ admits an infinite model.
2. φ ∧ λm admits a finite model.

Proof. (1) ⇒ (2): Assume that φ admits an infinite model (U, s, h). Let U′ be
a finite subset of U containing elems(h) and m additional elements. It is clear
that (U, s, h) ∼m

∅ (U′, s, h). Indeed, Condition 1 holds since the two structures
share the same heap, Conditions 4 and 2 trivially hold since the considered set
of variables is empty, and Condition 3 holds since U is infinite and the additional
elements in U′ do not occur in elems(h). Thus (U′, s, h) |= φ by Proposition 7,
and (U′, s, h) |= λm, by definition of U′.

(2) ⇒ (1): Assume that φ ∧ λm has a finite model (U, s, h). Let U′ be any
infinite set containing U. Again, we have (U, s, h) ∼m

∅ (U′, s, h). As in the previous
case, Conditions 1, 2 and 4 trivially hold, and Condition 3 holds since U′ is infinite
and (U, s, h) |= λm. By Proposition 7, we deduce that (U′, s, h) |= φ. ��

4 PRE(SL1) is Decidable but Not Elementary Recursive

Using Lemma 4 and Theorem 8 we shall prove that the satisfiability problem is
decidable for the prenex fragment of SL1. This shows that PRE(SL1) is strictly less
expressive than SL1, because SL1 has an undecidable satisfiability problem [2].
For this purpose, we first define a translation of quantified boolean combination
of test formulas into FO that is sat-preserving on finite structures. Let d be a
unary predicate symbol and for i = 1, . . . , k, let fi be a unary function symbol.
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We define the following transformation from quantified boolean combinations of
test formulas into first order formulas:

Θ(x ≈ y) def= x ≈ y

Θ(x ↪→ (y1, . . . , yk)) def= d(x) ∧ ∧k
i=1 yi ≈ fi(x)

Θ(alloc(x)) def= d(x)
Θ(|U | ≥ n) def= ∃x1, . . . , xn . dist(x1, . . . , xn)
Θ(|h| ≥ n) def= ∃x1, . . . , xn . dist(x1, . . . , xn) ∧ ∧n

i=1 d(xi)
Θ(|h| ≥ |U | − n) def= ∃x1, . . . , xn∀y .

∧n
i=1 y �≈ xi → d(y)

Θ(¬φ) def= ¬Θ(φ)
Θ(φ1 ∧ φ2)

def= Θ(φ1) ∧ Θ(φ2)
Θ(∃x . φ) def= ∃x . Θ(φ)

Proposition 9. Let φ be a quantified boolean combination of test formulas. The
formula φ has a finite SL model if and only if Θ(φ) has a finite FO model.

Proof. An FO-structure I = (U, s, i) on the signature d, f1,. . . ,fk corresponds to
an SL-structure I ′ = (U′, s′, h) iff U = U′, s = s′, di = dom(h) and for every
j ∈ [[1 . . k]], fij(x) = yj if h(x) = (y1, . . . , yk). It is clear that for every finite first-
order structure I there exists a finite SL-structure I ′ such that I corresponds to
I ′ and vice-versa. Furthermore, if I corresponds to I ′ then it is straightforward
to check that I ′ |= φ ⇔ I |= Θ(φ). ��
If φ is an SL1 formula, then clearly Θ(φ) is in FO1, with one monadic boolean
function symbol d and one function symbol f1 of sort σ(f) = U . This yields the
following result:

Theorem 10. The finite and infinite satisfiability problems are decidable for
PRE(SL1).

Proof. Given a formula ψ = Q1x1 . . . Qnxn . φ of PRE(SL1), where φ is quantifier-
free, let μ

def=
∨

M∈μinf (φ) M be the infinite-domain equivalent expansion of φ as
a disjunction of minterms. We have ψ ≡inf Q1x1 . . . Qnxn . μ (Lemma 4) and
Q1x1 . . . Qnxn . μ admits an infinite model if and only if Q1x1 . . . Qnxn . μ ∧
λn admits a finite model (Theorem 8; note that μ contains no occurrence of
universe-dependent formulas, as such formulas are always true or false in infinite
universes). But Q1x1 . . . Qnxn . μ ∧ λn has a finite SL model if and only if
Θ(Q1x1 . . . Qnxn . μ∧λn) has a finite FO model (Proposition 9). Since the latter
formula belongs to FO1, its finite satisfiability problem is decidable (Theorem 1).
The finite case is similar. ��

The complexity lower bound is established thanks to the following
proposition.

Proposition 11. There is a polynomial reduction of the finite satisfiability prob-
lem for first-order formulas with one monadic function symbol f and no predi-
cate symbols other than ≈ to the finite [resp. infinite] satisfiability problem for
quantified boolean quantifications of test formulas in SL1.
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Proof. By flattening we may assume that all the equations occurring in the
considered first-order formula are of the form f(x) ≈ y or x ≈ y, where x, y are
variables. For finite domains, the reduction is immediate: it suffices to add the
axiom ∀x . alloc(x), stating that the heap is a total function, and to replace all
equations of the form f(x) ≈ y by x ↪→ y. It is straightforward to check that
satisfiability is preserved (f is encoded in the heap). For infinite domains, it is not
possible to add the axiom ∀x . alloc(x) as the resulting formula is unsatisfiable4,
so the first-order formula is translated on one that holds on the (finite) domain of
the heap. We thus add the axiom ¬emp∧∀x, y . x ↪→ y → alloc(y), and we replace
every quantification ∀x . φ (resp. ∃x . φ) by a quantification over the domain
of the heap: ∀x . alloc(x) → φ (resp. ∃x . alloc(x) ∧ φ). It is straightforward to
check that satisfiability is preserved. Note that infinite satisfiability is equivalent
to finite satisfiability, since the quantifications range over elements occurring in
the heap. ��
Note there is no obvious reduction from the usual first-order satisfiability prob-
lem (i.e., on arbitrary models), because the heap is always finite in SL-structures.
This explains why we had to refine in Theorem 1 the complexity lower bound
from [1] to cope with finite satisfiability.

Theorem 12. The finite and infinite satisfiability problems are not elementary
recursive for PRE(SL1).

Proof. The proof follows immediately from the lower bound complexity result
of Theorem 1 and from the reductions in Proposition 11. ��

5 The BSR(SL1) Fragment is PSPACE-complete

The last result concerns the tight complexity of the BSR(SL1) fragment. For k ≥
2, we showed that BSR(SLk) is undecidable, in general, and PSPACE-complete
if the positive occurrences of the magic wand are forbidden5 [6]. Here we show
that BSR(SL1) is PSPACE-complete. The result does not directly follow from the
Σp

2-complexity of the satisfiability problem for ∃∗∀∗ first-order formulas with one
unary function symbol6 because only partial finite functions are considered in
our context. The proof is based on the following definitions and results.

Definition 13. A model (U, s, h) of a formula ϕ is minimal if ϕ admits no model
of the form (U′, s′, h′) with U′

� U.

Proposition 14. Let ϕ = ∀y1, . . . , ym . φ be a prenex formula with free vari-
ables x1, . . . , xn (with n > 0) where φ is a boolean combination of universe-
independent test formulas, and let I = (U, s, h) be a minimal model of ϕ. Then
U = {hj(s(xi)) | i ∈ [[1 . . n]], j ∈ N}.
4 Since the domain of the heap is finite.
5 For infinite satisfiability, it is enough to forbid positive occurrences of the magic
wand containing universally quantified variables only.

6 See [1, Theorem 6.4.19].
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Proof. Let U′ = {hj(s(xi)) | i ∈ [[1 . . n]], j ∈ N} and assume that U′ �= U; note
that U′ �= ∅ since n > 0. Let s′ be a store on U′ coinciding with s on x1, . . . , xn and
let h′ be the restriction of h to U′. Both s′ and h′ are well-defined by construction
of U′, and h′ is a heap on U′. Since U is minimal, (U′, s′, h′) �|= ϕ, thus there exist
b1, . . . , bm ∈ U′ such that by letting s′

1
def= s′[yi �→ bi | i ∈ [[1 . . m]]], we have

(U′, s′
1, h

′) |= ¬φ. Since the atomic formulas in φ are universe-independent, we
deduce that (U, s′

1, h
′) |= ¬φ. Further, s′

1 and s[yi �→ bi | i ∈ [[1 . . m]]] coincide
on all the variables x1, . . . , xn, y1, . . . , ym that are free in φ, thus (U, s[yi �→ bi |
i ∈ [[1 . . m]]], h′) |= ¬φ. Finally, h and h′ coincide on every element of U′ and
by definition we have s(xi), bj ∈ U′ for i ∈ [[1 . . n]] and j ∈ [[1 . . m]], hence
(U, s[yi �→ bi | i ∈ [[1 . . m]]], h) |= ¬φ, and (U, s, h) �|= ϕ, which contradicts our
assumption.

Definition 15. Let ϕ be a formula with free variables x1, . . . , xn and let I =
(U, s, h) be a structure. A line for (I, ϕ) is a sequence of pairwise distinct elements
a1, . . . , a� in U such that:

1. ∀i ∈ [[1 . . � − 1]], ai+1 = h(ai).
2. ∀i ∈ [[1 . . � − 1]], ∀e ∈ U, if h(e) = ai+1 then e = ai.
3. ∀i ∈ [[1 . . �]], ∀j ∈ [[1 . . n]], ai �= s(xj).

The next proposition shows that there is a bound on the length of any line in a
minimal model.

Proposition 16. Let ϕ = ∀y1, . . . , ym . φ be a prenex formula with free vari-
ables x1, . . . , xn where φ is a boolean combination of domain-independent test
formulas, and let I = (U, s, h) be a model of ϕ. If (I, ϕ) admits a line of length
strictly greater than m + 2 then I is not minimal.

Proof. Let a1, . . . , al be a sequence of elements satisfying the conditions of
Definition 15 with l > m + 2. Let I ′ = (U′, s′, h′), where U′ def= U \ {a2}, s′ is a
store on U′ coinciding with s on all variables x such that s(x) ∈ U′, dom(h′) def=
dom(h)\{a2}, h′(a1)

def= a3 and h′(x) def= h(x) if x ∈ dom(h′)\{a1}. Note that s and
s′ coincide on all variables x1, . . . , xn free in ϕ since ∀i ∈ [[1 . . n]], a2 �= s(xi),
by Definition 15 (3). Since I is minimal, necessarily I ′ �|= ϕ, thus there exist
b′
1, . . . , b

′
m ∈ U′ such that by letting s′

1
def= s′[yj �→ b′

j | j ∈ [[1 . . m]]], we have
(U′, s′

1, h
′) |= ¬φ. Since l > m + 2 and a1, . . . , al are distinct by Definition 15,

there exists i ∈ [[2 . . l − 1]] such that ai+1 �∈ {b′
1, . . . , b

′
m}. We define a sequence

b1, . . . , bm ∈ U as follows. For every j ∈ [[1 . . m]], if there exists o ∈ [[3 . . i]]
such that b′

j = ao, then we let bj
def= ao−1; otherwise, bj

def= b′
j . Note that bj is

well-defined, because a1, . . . , al are distinct, hence there exists at most one o
satisfying the above condition.

We emphasize some useful consequences of the above definitions before prov-
ing that (U′, s′

1, h
′) |= φ. Let V = {x1, . . . , xn} ∪ {yj | j ∈ [[1 . . m]], s′

1(yj) �∈
{a3, . . . , ai}}. By definition s and s′ coincide on x1, . . . , xn, and s1(yj) = bj =
b′
j = s′

1(yj) if b′
j �∈ {a3, . . . , ai}, hence s′

1 and s[yj �→ bj | j ∈ [[1 . . m]]]
coincide on every variable in V . Furthermore, for every variable x ∈ V ,
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s1(x) ∈ U \ {a2, . . . , ai}. Indeed, either x ∈ {x1, . . . , xn} and in this case
s(x) �∈ {a1, . . . , an} by Definition 15 (3); or x = yj for some j ∈ [[1 . . m]], and then
s1(x) = bj = b′

j �∈ {a3, . . . , ai}, so that s1(x) ∈ U′\{a3, . . . , ai} = U\{a2, . . . , ai}.
Finally, if x occurs in φ and x �∈ V then x = yj for some j ∈ [[1 . . m]] such that
b′
j = ao, with o ∈ [[3 . . i]], thus s′

1(x) = ao and s1(x) = bj = ao−1, and there-
fore s′

1(x) ∈ {a3, . . . , ai} and s1(x) ∈ {a2, . . . , ai−1}. Let s1
def= s[yj �→ bj | j ∈

[[1 . . m]]]; we show that (U′, s′
1, h) and (U, s1, h) coincide on every test formula �

in φ.

� = x ≈ y. If x, y ∈ V then the proof is immediate since s1 and s′
1 coincide

on x and y. If x ∈ V and y �∈ V then s1(x) = s′
1(x) ∈ U \ {a2, . . . , ai} and

s1(y), s′
1(y) ∈ {a2, . . . , ai} hence x ≈ y is false in both structures. The proof is

symmetric if x �∈ V and y ∈ V . If x, y �∈ V then s′
1(x) = ao, s′

1(y) = ao′ , with
s1(x) = ao−1 and s1(y) = ao′−1. Since the a1, . . . , al are pairwise distinct we
have s′

1(x) = s′
1(y) ⇔ o = o′ ⇔ o − 1 = o′ − 1 ⇔ s1(x) = s1(y).

� = alloc(x). If x ∈ V then s1(x) = s′
1(x) �= a2 Thus s1(x) ∈ dom(h) ⇔

s′
1(x) ∈ dom(h) ⇔ s′

1(x) ∈ dom(h′). If x �∈ V then s′
1(x) ∈ {a3, . . . , ai} and

s1(x) ∈ {a2, . . . , ai−1} (with i < l) thus alloc(x) is true in both structures.
� = x ↪→ y. We distinguish several cases.

• If x, y ∈ V then s1(x) = s′
1(x) and s1(y) = s′

1(y), with s1(x) �= a2,
hence h(s1(x)) = s1(y) ⇔ h(s′

1(x)) = s′
1(y) ⇔ h′(s′

1(x)) = s′
1(y), thus

(U, s1, h) |= � ⇔ (U′, s′
1, h

′) |= �.
• If x, y �∈ V then s′

1(x) = ao, s′
1(y) = ao′ , with s1(x) = ao−1, s1(y) = ao′−1

and o, o′ ≥ 3 thus h′(s′
1(x)) = s′

1(y) ⇔ o = o′ − 1 ⇔ h(s1(x)) = s1(y).
• If x ∈ V and y �∈ V , then s′

1(y) = ao with s1(y) = ao−1 and o ∈ [[3 . . i]].
We distinguish two cases. If x ∈ {x1, . . . , xn}, then h(s1(x)) �∈ {a1, . . . , al}
(by Definition 15 (2)) thus h(s1(x)) = h′(s′

1(x)) �= s1(y), s′
1(y) and � is

false in both structures. Otherwise, x = yj , for some j ∈ [[1 . . m]] such that
b′
j �∈ {a3, . . . , ai}. If b′

j = a1 then h(s1(x)) = a2 and h′(s′
1(x)) = a3, thus

h(s1(x)) = s1(y) ⇔ a2 = s1(y) ⇔ a2 = ao−1 ⇔ o = 3 ⇔ a3 = s′
1(y) ⇔

h′(s′
1(x)) = s′(y), hence � has the same truth value in (U, s1, h) and

(U′, s′
1, h

′). If bj �= a1 then h′(s1(x)) = h(s1(x)), and s1(x) �∈ {a1, . . . , ai},
thus h(s1(x) �∈ {a2, . . . , ai+1}, hence � is false in both structures.

• If y ∈ V and x �∈ V then there exists o ∈ [[3 . . i]] such that s1(x) = ao−1

and s′
1(x) = ao, with s1(y) = s′

1(y) �∈ {a2, . . . , ai}. We have h′(s′
1(x)) =

ao+1 and h(s1(x)) = ao, thus h′(s′
1(x)), h(s1(x)) ∈ {a3, . . . , ai+1}. By

definition of i, ai+1 �∈ {b1, . . . , bm} (since ai+1 �∈ {b′
1, . . . , b

′
m} and i + 1 >

i), moreover ai+1 �∈ s({x1, . . . , xn}) by Definition 15 (3). Thus ai+1 �=
s1(y). Since s1(y) �∈ {a2, . . . , ai} we deduce that s1(y) �∈ {a3, . . . , ai+1},
thus � is false in both structures.

As a consequence, (U′, s′
1, h

′) and (U, s1, h) necessarily coincide on φ, and conse-
quently (U, s1, h) |= ¬φ, hence (U, s, h) �|= ∀y1, . . . , ym . φ which contradicts our
hypothesis. ��
Lemma 17. Let ϕ = ∀y1, . . . , ym . φ be a prenex formula of SL1 of free variables
x1, . . . , xn (with n > 0) where φ is a boolean combination of universe-independent
test formulas. If (U, s, h) is a finite minimal model of ϕ then ||U|| ≤ 2n · (m+3).
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Proof. Let I = (U, s, h) be a minimal finite model of ϕ and let ai = s(xi)
for i = 1, . . . , n. We inductively define a sequence li (1 ≤ i ≤ n) of natural
numbers as follows: li is the minimal natural number such that either hli(ai) �∈
dom(h) or h(hli(ai)) ∈ {a1, . . . , an} ∪ {hj(ai) | j ∈ [[1 . . li − 1]]} ∪ {hj(ak) |
k ∈ [[1 . . i − 1]], j ∈ [[1 . . lk]]}. Because the domain of h is finite, the numbers li
always exist, for all i = 1, . . . , n. Note that by construction, given i ∈ [[1 . . i]], if
hj(ai) �= hk(ai) for all k < j and hj(ai) /∈ {

hk(ap)
∣

∣ k ∈ N
}

for all p < i, then
j ≤ li. Hence, since by Proposition 14, we have U = {hj(s(xi)) | i ∈ [[1 . . n]], j ∈
N}, we deduce that U =

⋃n
i=1{hj(ai) | j ∈ [[0 . . li]]}. Furthermore, by definition

of li, all locations hj(ai), for i ∈ [[1 . . n]] and j ∈ [[1 . . li]], are pairwise distinct.
We define the following subsets of U: U1

def= {ai | i ∈ [[1 . . n]]}, U2
def=

{hli(ai) | i ∈ [[1 . . n]], hli(ai) �∈ dom(h)}, and U3
def= {h(hli(ai)) | i ∈

[[1 . . n]], hli(ai) ∈ dom(h)}. By definition, U2 ∪ U3 contains at most n elements,
thus ||U1 ∪ U2 ∪ U3|| ≤ 2n. We have that every element c such that there exist
a �= b with h(a) = h(b) = c is in U3. Indeed, assume that there exist two such
elements a, b ∈ U. Then there exist i, j ∈ [[1 . . n]], i′ ∈ [[0 . . li]], j′ ∈ [[0 . . lj ]]
such that a = hi′

(ai) and b = hj′
(aj). We assume by symmetry that i ≤ j.

Then by definition of lj we must have j′ = lj , so that h(b) = c ∈ U3. The
reader may refer to Fig. 1 for an illustration. Now, consider a sequence of the
form (hj(ai), . . . , hj′

(ai)) (with j ≤ j′) containing no element in U1 ∪ U2 ∪ U3.
By definition, this sequence fulfills Conditions 3 and 1 from Definition 15. If the
sequence does not fulfill Condition 2, then there exist k ∈ [[j . . j′ − 1]] such that
hk+1(ai) is a fork element, hence hk+1(ai) ∈ U3, which contradicts our hypoth-
esis. Consequently, (hj(ai), . . . , hj′

(ai)) is a line for (I, ϕ). By Proposition 16
such lines cannot be of length greater than m + 2, therefore U \ (U1 ∪ U2 ∪ U3)
contains at most (m + 2) · L elements, where L is the number of sequences
(hj(ai), . . . , hj′

(ai)) of maximal length not containing elements in U1 ∪ U2 ∪ U3.
Thus ||U|| ≤ (m + 2) · L + 2n. By definition, all such sequences necessarily
start by some element h(a), where a ∈ U1 ∪ U2 ∪ U3, thus there are at most
||U1 ∪ U2 ∪ U3|| ≤ 2n such sequences. Hence L ≤ 2n and ||U|| ≤ 2n · (m + 3). ��

l4

a1

a2

a3

a4

l1

u

v

w

l2 l3

Fig. 1. Heap decomposition example. We have l1 = 5, l2 = 1, l3 = 3 and l4 = 1.
Moreover, U1 = {a1, a2, a3, a4}, U2 = {u} and U3 = {u, v, w}.
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Corollary 18. The finite and infinite satisfiability problems for formulas of
BSR(SL1) are PSPACE-complete.

Proof. PSPACE-hardness follows from the proof that satisfiability of the quan-
tifier free fragment of SL2 is PSPACE-complete [4, Proposition 5]. Indeed, this
proof does not depend on the universe being infinite or the fact that k = 2.
There remains to show PSPACE-membership for both problems. Observe that
this does not directly follow from Lemmas 4 and 17, because (i) the sets μinf (φ)
and μfin(φ) are of exponential size hence no efficient algorithm can compute them
and, (ii) Lemma 17 only holds for universe-independent formulas. W.l.o.g., we
assume that the considered formula contains at least one free variable and is of
the form ∀y1, . . . , ym . φ. It is sufficient to focus on the finite satisfiability prob-
lem. Indeed, by Lemma 4, ∀y1, . . . , ym . φ ≡inf

∨

M∈μinf (¬φ) M . By Theorem
8, ∀y1, . . . , ym . φ has an infinite model iff ∀y1, . . . , ym . φ ∧ λn+m has a finite
model, where the size of λn+m is quadratic in n + m. Moreover, since λn+m is
a BSR(SL) formula, ∀y1, . . . , ym . φ ∧ λn+m is also a BSR(SL) formula. Hence
infinite satisfiability can be reduced polynomially to finite satisfiability.

Let ψ =
∨

M∈μfin(¬φ) M (note that the size of ψ is exponential w.r.t. that of
φ). Let L be the maximal number l such that a test formula |h| ≤ l or |h| ≤ |U |−l
occurs in μinf (φ). By Lemma 4, the number L is polynomial w.r.t. size(φ). We
guess a structure I = (U, s, h) and check that it is a model of ϕ as follows. We
first guess the set C of literals of the form |U | ≤ i, |U | < i, |h| ≤ i, |h| > i,
|h| ≤ |U | − i, or |h| > |U | − i with i ∈ [[0 . . L]] that are true in I. It is clear
that ϕ is satisfiable iff ϕ∪C is satisfiable for some such set C. Up to redundancy,
C contains at most 6 literals (one literal of each kind). With each test formula
� ∈ C we may associate an equivalent formula γ(�) in BSR(SL1) built on atoms
x ≈ y or alloc(x) using the following equivalence statements:

– |h| ≤ i ⇔ ∀x′
1, . . . , x

′
i+1 . dist(x′

1, . . . , x
′
i+1) → ∨i+1

j=1 ¬alloc(x′
j),

– |h| ≤ |U | − i ⇔ ∃x′
1, . . . , x

′
i . dist(x′

1, . . . , x
′
i) ∧ ∧i

j=1 ¬alloc(xj),
– |U | ≤ i ⇔ ∀x′

1, . . . , x
′
i+1 ¬dist(x′

1, . . . , x
′
i+1).

Let ϑ be the conjunction of all formulas γ(�) where � ∈ C. Note that ϑ
contains (up to redundancy) at most 3L + 2 existential variables and 3L + 2
universal variables. Now consider the formula ψ′ obtained from ψ by replacing
every test formula such that � ∈ C (resp. � ∈ C) by � (resp. ⊥). Let ϕ′ be the
formula obtained by putting ∀y1, . . . , ym . ¬ψ′ ∧ ϑ in prenex form. It is clear
that ϕ′ is in BSR(SL1) and that all test formulas in ϕ′ are universe-independent,
furthermore ϕ′ contains at most n′ = n + (3L + 2) free or existential variables
and m′ = m + (3L + 2) universal variables. Moreover, ϕ′ ≡ ϕ ∧ ϑ, hence ϕ′ is
satisfiable iff ϕ admits a model satisfying C. By Lemma 17, ϕ′ is satisfiable iff
ϕ′ admits a model (U, s, h) such that ||U|| ≤ 2n′ × (m′ + 3). We may thus check
that ϕ′ is satisfiable by fixing such a set U, guessing the value of s(x) on each
variable x free in ϕ, guessing some heap h on U, and checking that (U, s, h) |= C
and that (U, s, h) |= ϕ. The former test is easy to perform by counting the
number of allocated and nonallocated cells. For the latter test, we check the
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negation (U, s, h) �|= ϕ, by testing that there exists a store s′ coinciding with s on
x1, . . . , xn such that (U, s′, h) |= ¬φ, i.e., such that (U, s′, h) |= ∨

M∈μfin(¬φ) M .
To this aim, we guess the value of each variable yi in s′, guess a minterm M ,
check that M ∈ μfin(¬φ) (which can be done in polynomial space by Lemma 4)
and check that (U, s′, h) validates every test formula in M (it is clear that this
can be done in polynomial time). ��

6 Conclusion

We have shown that the prenex fragment of Separation Logic over heaps with one
selector, denoted as SL1, is decidable in time not elementary recursive. Moreover,
the Bernays-Schönfinkel-Ramsey BSR(SL1) is PSPACE-complete. These results
settle an open question raised in [6] and allow one to draw a precise boundary
between decidable and undecidable cases inside BSR(SLk). As far as applications
are concerned, the logic BSR(SL1) can be used to reason on singly linked data-
structures, where ∗ and −∗ are used to state dynamic transformations of the
heap and the quantifiers are useful to state general properties of the considered
data-structure (e.g., to check that a loop invariant is preserved). Theorem 8,
relating infinite and finite satisfiability, holds for any k ≥ 1 and we believe that
it could pave the way to further decidability results for prenex fragments of SLk.

Acknowledgments. The authors wish to thank Stéphane Demri, Etienne Lozes and
Alessio Mansutti for the insightful discussions during the preparation of this paper.
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one quantified variable. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin,
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Abstract. Cyber-physical systems (CPS), such as airplanes, operate
based on sensor and communication data, i.e. on potentially noisy or
erroneous beliefs about the world. Realistic CPS models must therefore
incorporate the notion of beliefs if they are to provide safety guarantees
in practice as well as in theory. To fundamentally address this challenge,
this paper introduces a first-principles framework for reasoning about
CPS models where control decisions are explicitly driven by controller
beliefs arrived at through observation and reasoning. We extend the dif-
ferential dynamic logic dL for CPS dynamics with belief modalities, and
a learning operator for belief change. This new dynamic doxastic differ-
ential dynamic logic d4L does due justice to the challenges of CPS verifi-
cation by having (1) real arithmetic for describing the world and beliefs
about the world; (2) continuous and discrete world change; (3) discrete
belief change by means of the learning operator. We develop a sound
sequent calculus for d4L, which enables us to illustrate the applicability
of d4L by proving the safety of a simplified belief-triggered controller for
an airplane.

Keywords: Differential dynamic logic · Dynamic epistemic logic ·
Sequent calculus · Hybrid systems · Cyber-physical systems

1 Introduction

Cyber-physical systems (CPS) mix discrete cyber change and continuous physi-
cal change. Examples of CPS include self-driving cars, airplane autopilots, and
industrial machines. With widespread espousal of automation in transportation,
it is imperative that we develop methods capable of verifying the safety of the
algorithms driving the CPSs on which human lives will increasingly depend.
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However, because CPSs rely on sensors and partial human operation, both
of which are imperfect, they face a possible discrepancy between reality, and
the perception, understanding and beliefs thereof. Critical system components
are engineered to be exceptionally reliable, so safety incidents often originate
from just such a discrepancy between what is believed to be true versus what is
actually true. This can be highlighted by three (of many) tragedies, some now
known to be preventable, e.g., through neutral control inputs [1,5,12]. However,
non-critical sensor failures led to erroneous pilot beliefs. These beliefs resulted
in the pilots’ inability to perform informed, safe control decisions, leading to 574
fatalities in these three incidents alone.

Verification efforts for practical system designs must therefore augment initial
analyses which assume perfect information with an awareness of factors such
as sensor errors, actuator disturbances, and, crucially, incomplete or incorrect
perceptions of the world. Ideally, such factors ought to become an explicit part
of the model so that CPS design and verification engineers can confront this
challenge of uncertainty head on at design time, before safety violations occur.

We argue that the notion of beliefs (doxastics) about the state of the world,
which has been extensively studied, can succinctly capture such phenomena. We
develop a first-principles language and verification method for reasoning about
changing beliefs in a changing world. Using this language, CPS designers may
create more realistic controllers whose decisions are explicitly driven by their
beliefs. The consequences of such decisions are borne out in the continuous-time
and continuous-space evolution of these belief-aware CPS.

In this new paradigm, control decisions are grounded only in what can be
observed and reasoned. By providing the tools to develop such belief-triggered
controllers, we help bridge the gap between the theoretical safety of CPS models,
and the practical safety of the CPS vehicles that will soon be driving and flying
us to our destinations.

2 Technical Approach

Our approach is to integrate a framework for specifying and verifying real-world
CPS with a suitable notion of dynamic beliefs. The result should be a single
cohesive framework capable of complex reasoning about changing beliefs in a
changing world, as required by belief-aware CPSs.

Work on control-theoretic robust solutions for CPS models seem promising,
since they entail asymptotical steering towards a desired target domain despite
perturbations in the system [11]: sensor and actuator noise could be modeled as
perturbations rather than beliefs. However, perturbation analysis does not cap-
ture the complex causal relationship from observation, to reasoning, to actuation
in an explicit way that can lead to e.g. malfunction checklists or pilot best prac-
tices. Accurate analyses for safety incidents such as [1,5,12] require the power
to (1) model agents with reasoning capabilities, and (2) leverage complex logical
arguments about perception versus fact in the pursuit of safety guarantees.

The differential dynamic logic dL [16,17,19] is a successful tool for design-
ing and verifying belief-unaware CPS, i.e. a “changing world” in a real-valued
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domain. Dynamic epistemic logics (DELs), on the other hand, deal with chang-
ing knowledge (which is tightly connected to beliefs1) in a propositional static
world that never changes [3,4,7,10], again through the lens of modal logic. Some
previous work exists at the intersection of these two. However, belief-aware CPS
requires unobservable world change under the real numbers, which is in conflict
with the public propositional world-change in [6]; and a more comprehensive
and less restrictive treatment of belief that goes beyond using the underlying
dynamic modalities of world-change to emulate noise as in [14].

Since both dL and DELs are dynamic modal logics, they are prime candidates
for inspiration in the pursuit of a unified dynamic modal logic that can reason
about changing beliefs in a changing world. We develop the dynamic doxastic
differential dynamic logic d4L, as an extension of dL with (1) belief modalities,
and (2) a learning operator for describing belief-change, inspired by DELs.

This new framework requires a fundamental conceptual shift in the design of
CPS. Let ctrl be a program describing control decisions (e.g. a pilot pressing a
button), and plant be a program for continuous evolution (e.g. an airplane fly-
ing). In the current, belief-unaware dL paradigm, the primary mode of establish-
ing the safety of CPS is by the validity of a formula pre → [

(ctrl; plant)∗
]
safe.

It states that, starting from precondition pre, every possible execution of the pro-
gram (ctrl; plant)∗ ends with the safety property safe being true, with the
star ∗ operator repeating ctrl followed by plant any number of times.

Example 1. As a running example, suppose an airplane is controlled by directly
setting its vertical velocity to 1 or -1 in thousands of feet per second. The safety
goal of the controller is to keep the airplane above ground:

1. pre ≡ safe ≡ (alt > 0), i.e., the airplane is above ground.
2. ctrl ≡ (?alt > 1; yv := −1) ∪ yv := 1, in which two things may happen, on

either side of ∪. If the airplane is above 1000 ft (?alt > 1), it may descend by
setting vertical velocity yv to -1000 ft per second. Alternatively, it can climb
with yv := 1, which may always happen since this action has no ? test.

3. plant ≡ t := 0; t′ = 1, alt′ = yv & t ≤ 1 describes, using differential equations,
that altitude changes with vertical velocity (alt′ = yv) for a maximum of 1
unit of time using time counter t′ = 1. The evolution domain constraint t ≤ 1
bounds how much time may pass before the pilot reassesses this choice.

Intuitively, this CPS is safe because the controller can only decide to descend
if it is high enough above ground such that descending for 1 second at a velocity
of -1000 ft per second, traveling a total of 1000 ft, keeps it above ground. This
condition is based on ontic (real world, or factual) truth and does not capture
the reality that altitude is read from a noisy altimeter, and that pilot beliefs
trigger actions, not ontics.

In contrast, in belief-aware CPS, control decisions are triggered by some belief
Ba (φ), not ontic truth φ. This minor syntactic change belies the complexity of

1 Beliefs may be erroneous, knowledge may not.
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the underlying paradigm shift. The CPS model must now explicitly describe how
an agent learns about the world and acquires such beliefs Ba (φ). In d4L, this
process of observation and reasoning is specified by means of a learning operator.

A dL program α, describing ontic change, does not alter beliefs. In con-
trast, a learning operator program La(α) changes only agent a’s beliefs, with
the change described by α becoming doxastic rather than ontic. The pattern
α;La(α) describes observed ontic change, which also affects beliefs. This learn-
ing operator may be used in a program obs to describe the agent’s learning
processes of observation and reasoning. This leads to the addition of the belief-
changing obs to the safety formula pre → [

(obs; ctrl; plant)∗
]
safe used for

belief-aware CPS.

Example 2. Consider a belief-triggered controller for the airplane of Example 1.
The model now incorporates the fact that observation is imperfect, and that the
altimeter, while operating properly, has some noise bounded by ε > 0.

1. obs ≡ La(?alt − alta < ε). The pilot a learns, by observing the altimeter with
known error bounds ε, that the perceived altitude alta can be lower than the
true altitude alt by at most ε. Thus, the belief Ba (alt − alta < ε) comes to
be.

2. ctrl ≡ (?Ba (alta − ε > 1) ; yv := −1) ∪ yv := 1). Climbing, being safe,
remains an always acceptable choice. However, the trigger for descending is
that the pilot believes that the perceived altitude with worst-case noise is still
high enough for the airplane to descend for one second, i.e. Ba (alta − ε > 1).

We must add ε > 0 to pre, but plant does not change since beliefs do not directly
affect the behavior of the real world: they do so only through agent actions.

More generally, d4L allows for arbitrary combinations of ontic dL actions
and the learning operator, representing any interleaving of physical and doxastic
change, the former potentially unobservable, and the latter potentially imperfect,
e.g. through noisy sensors.

3 Syntax of d4L
In this section, we will describe d4L terms, formulas and programs. As in dL,
real arithmetic is used to accurately model CPSs. Thus, terms are real-valued.

The safety of well-functioning belief-aware CPS is often predicated on beliefs
being grounded in reality so that informed decisions can be made, cf. formula
Ba (alt − alta < ε) of Example 2, where perceived altitude can underestimate
factual altitude by at most ε. This relation between belief and truth is at the
core of many safety arguments, and should be describable within the logic. We
must therefore be able to refer to both ontic (factual) and doxastic (belief) states
in the same context, as in Ba (alt − alta < ε).
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3.1 d4L Terms and Formulas

State variables describe ontic truth, e.g. alt is the airplane’s real altitude. Dox-
astic variable alta is agent a’s perception of alt. Basic arithmetic is also in the
language, e.g. x−y. Constants c ∈ Q allow for digitally representable numbers in
the syntax, e.g. 2.5 but not π, though the semantics can give variables any value
in R. Logical variables X are introduced by quantifiers over R to e.g. discharge
reasoning about continuous time, or to find witnesses for existential modalities.

Let A be a finite set of agents, Σ be a countable set of logical variables, V
be a countable set of state variables, and Va = {xa : x ∈ V} the set of doxastic
variables for agent a ∈ A. The following definition distinguishes between terms
with and without doxastic variables. The distinction is crucial when assigning
to state or doxastic variables, as we will see in Definition 3.

Definition 1. The doxastic terms θ and non-doxastic terms ζ of d4L, with ⊗ ∈
{+,−,×,÷}, X ∈ Σ, x ∈ V, xa ∈ Va, a ∈ A, c ∈ Q, are given by the grammar:

θ ::= θ ⊗ θ | X | c | x | xa

ζ ::= ζ ⊗ ζ | X | c | x

The formulas of d4L are a superset of dL’s [17], which are a superset of those of
first-order logic for real arithmetic. Alongside logical connectives, we may write
propositions such as θ1 ≤ θ2 and logical quantifiers ∀X φ. To this, d4L adds
the belief modality Ba (φ), meaning agent a believes φ. The dynamic modality
formula [α]φ (after all executions of program α, φ is true), and its dual 〈α〉 φ
(after some execution of α, φ is true) capture belief-aware CPS behavior. The
language of the programs α will be specified later in Definition 3.

Since d4L beliefs are only about the state of the world, it is useful to distin-
guish between formulas ξ which may appear inside belief modalities, and those
φ which may not. We still allow doxastic terms θ in φ, since safety proofs may
generate such formulas.

Definition 2. The formulas φ, ξ of d4L are given by the grammar:

φ ::= φ ∨ φ | ¬φ | θ ≤ θ | ∀X φ(X) | [α]φ | Ba (ξ)
ξ ::= ξ ∨ ξ | ¬ξ | θ ≤ θ

The remaining logical connectives, ∧,→ and duals 〈α〉 φ, ∃X φ(X), Pa (ξ) are
defined as usual, e.g. 〈α〉 φ ≡ ¬ [α]¬φ, and Pa (ξ) ≡ ¬Ba (¬ξ) when a considers
ξ possible. We may now generalize the noisy but accurate sensors of Example 2.

Example 3 (Noisy sensors). Sensors often come with known error bounds ε. A
pilot reading from the altimeter should thus come to believe the indicated value
to be within ε of the real alt, as captured by Ba

(
(alta − alt)2 ≤ ε2

)
, with integer

exponentiation being definable from multiplication.

Belief modalities with both state and doxastic variables are meta-properties
of belief, e.g., how far doxastic truth is from ontic truth. Thus, their truth value
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indeed changes as either the world or beliefs change. Section 6 will show such
formulas are part of the core argument for some belief-aware CPS safety proofs.
When formulas such as Ba

(
(alta − alt)2 ≤ ε2

)
are not true, it can become impos-

sible for a to make informed decisions. Safety may then instead rely on very
conservative actions, e.g. bringing a car to a stop, or flying straight and level.

3.2 Doxastic Hybrid Programs

The hybrid programs (HPs) of dL [17] are able to describe both discrete and
continuous ontic change. They are the starting point for the doxastic hybrid
programs (DHPs) of d4L. We introduce a learning operator La(γ) for doxastic
change, where γ encodes an agent observing the world, reading from a sensor,
or suspecting some change to have happened. In this paper, the language of the
learned program γ is nearly identical to that of hybrid programs, and to the
epistemic actions of the epistemic action logic EAL [7].

Changing Physical State. Assignment x := ζ performs instantaneous ontic
change, e.g. pushing the autopilot button, autopilot := 1, or resetting a time
counter with t := 0, as in Examples 1 and 2. No doxastic variables are allowed
in ζ, since ontic truth is not directly a function of belief!

Differential equations x′ = ζ & χ describe continuous motion over a nonde-
terministic duration, so long as the evolution domain constraint formula χ is true
throughout. For example, alt′ = yv, t′ = 1 & t ≤ 10 describes linear change of
altitude for up to 10 seconds according to vertical velocity yv. Nondeterministic
ontic assignment x := ∗ is definable as x′ = 1;x′ = −1, which assigns any value
in R to x by increasing then decreasing it arbitrarily.

The test ?φ transitions if and only if d4L formula φ is true. It was used in
Example 1 as an ontic trigger ?(alt > 1) determining whether an airplane could
descend, and similarly as a belief trigger ?Ba (alta − ε > 1) in Example 2, where
a pilot can only descend if they believe the airplane is safely above 1000 ft while
taking worst-case noise into account.

Sequential composition α;β is self-explanatory. The choice α ∪ β nondeter-
ministically executes either α or β. It may be used to encode multiple possible
outcomes or actions, e.g. (?alt > 1; yv := −1) ∪ yv := 1 from Example 2.

Nondeterministic repetition α∗ lets α be iterated arbitrarily many times. It
was used in (obs; ctrl; plant)∗ to ensure the safety proof applies to a system
that can run for a long time, not just to a one-time control decision.

Changing Belief State. Agent beliefs are updated by means of the learning
operator La(γ), where γ is a program describing belief change. Notably, to inter-
leave ontic and belief change, the learning operator is a program itself rather
than a modality as in [6,8]. Under d4L’s possible world semantics, each agent a
considers multiple worlds possible. The intuitive behavior of La(γ) is to execute
program γ at each such world, and consider all outcomes of such executions as
possible worlds.
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The language of γ is a slightly modified subset of that of hybrid programs.
Inside a learning operator, ontic assignment x := ζ becomes doxastic assignment
xa := θ. Since doxastic change (unlike ontic change) may depend on previous
beliefs, the assigned term θ allows doxastic variables. The language also includes
test ?φ, choice γ1 ∪ γ2 and sequential composition γ1; γ2.

This language of doxastic change captures the bulk of observation and rea-
soning phenomena found in belief-aware CPS, which tend to occur at distinct
and discrete intervals, e.g. looking at a sensor periodically. The literature [6,20]
suggests that learned differential equations and repetition pose a very significant
additional challenge, which is useful only in more specialized scenarios.

Learned programs may contain nondeterminism, as in La(γ1 ∪ γ2). Intu-
itively, this says that agent a is aware that either γ1 or γ2 happened, but cannot
ascertain which: agent a must consider possible all outcomes of γ1 and of γ2.
Thus, in d4L, learned nondeterminism is unobservable, and leads to the indistin-
guishability of outcomes, as in action models and epistemic actions [3,7]. This
is in contrast to program La(γ1) ∪ La(γ2), in which agent a either learns γ1, or
learns γ2, but in both case knows precisely which one happened.

Learned test La(?ξ) eliminates those possible worlds for which ?ξ does not
succeed, i.e. in which ξ is false. In this way, [La(?φ)]ψ is analogous to public
announcements and the tests of epistemic actions [7].

So far, the set of possible worlds may contract through learned tests and
finitely expand with learned choice. The nondeterministic doxastic assignment
xa := ∗ further enables uncountable expansion of possibilities by assigning any
value in R to xa. To let xa take any value satisfying some property φ(xa), the
program La(xa := ∗; ?φ(xa)) first “resets” the values xa can take using nondeter-
ministic assignment, and then contracts the set of possible worlds with ?φ(xa).

The grammar of programs divides programs into two categories. The first,
denoted α, describes the language of ontic change, or the ontic fact La(γ) that
program γ was learned. The second, denoted γ, describes the language of doxastic
change, and, as we have seen, is a subset of the first with minor modifications.

Definition 3. Let x ∈ V, a ∈ A, xa ∈ Va φ, ξ be formulas per Def. 2, θ, ζ be
terms per Def. 1. Doxastic hybrid programs (DHP) α and learnable programs γ
are defined thus:

α ::= x := ζ | x′ = ζ&χ | ?φ | α;α | α ∪ α | α∗ | La(γ)
γ ::= xa := θ | xa := ∗ | ?ξ | γ; γ | γ ∪ γ

With a better understanding of d4L programs, we may now describe exactly
how the belief of Example 3, Ba

(
(alta − alt)2 ≤ ε2

)
, is acquired.

Example 4 (Noisy sensors, cont’d). By observing a trusted altimeter, the pilot
decides to forget previous beliefs about altitude and trust the current reading.
Then, because the altimeter has a known error bound of ε, the pilot must now
consider possible all altitude values at most ε away from the true value of alt.

La

(
alta := ∗; ?(alta − alt)2 ≤ ε2

)
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4 Semantics of d4L
The d4L semantics are designed to allow agents to hold potentially erroneous
beliefs (proper belief, not knowledge) about a world which may undergo unob-
served change. We are inspired by the modal Kripke semantics, but diverge from
it by completely decoupling the valuation describing ontic truth, denoted r in
d4L, from agent beliefs, since unobservable actions must change ontic truth only.

Because beliefs are exclusively about the world and not about other beliefs,
different agents’ worlds need not interact with one another. Therefore, each agent
a has their own set of worlds Wa, which they consider possible. Each agent a’s
valuation Va(t) function holds the values of all doxastic variables at every world
t ∈ Wa, e.g. agent a’s perception of altitude at t ∈ Wa is Va(t)(alta).

In these sets of possible worlds, every world t1 ∈ Wa is indistinguishable from
any other world t2 ∈ Wa. Under the usual Kripke semantics, this means that the
accessibility relation ∼a, determining indistinguishability between worlds, is an
equivalence relation, i.e. an S5 system. Equivalence relations traditionally encode
knowledge, and belief is usually obtained by waiving the reflexivity requirement.
In such belief systems, a distinguished world s ∈ Wa determines ontic truth, and
yet may not be accessible through ∼a.

In d4L, we achieve belief by allowing discrepancies between the valuations
of the possible worlds, including the distinguished one, and the separate ontic
valuation r. Thus, a pilot could believe the airplane to be high with Va(t)(alta) >
1000 for every t ∈ Wa, while it could be low in reality, with r(alt) ≤ 1000.

This allows us to omit the accessibility relations entirely. It also simplifies
learned program semantics since the learning operator can never inadvertently
change ontic truth by altering the valuation of the distinguished world. We keep
the distinguished world in Definition 4 as a means by which we may interpret
every formula in every context, as we will see in Definitions 5 and 6.

This gives us the models of d4L, called physical-doxastic models, or PD-
models for short. For simplicity, we consider only one agent a from now on, and
we omit the subscript where it can be easily inferred, e.g. V instead of Va.

Definition 4 (Physical/doxastic model). A physical/doxastic model or PD-
model ω = 〈r,W, V, s〉 consists of (1) r : V → R, the state of the physical world;
(2) W a set of worlds called the possible worlds; (3) V : W → (Va → R), a
valuation function in which V (t)(xa) returns agent a’s perceived value of the
doxastic variable xa at world t ∈ W ; and 4) s ∈ W , a distinguished world.

PD-models are sufficient to give meaning to all terms, formulas and programs.
We use ω, ν, μ to denote PD-models, and sub- and super-scripts are applied
everywhere, e.g. ω′ = 〈r′,W ′, V ′, s′〉. The shortcut t ∈ ω means t ∈ W ; ω(t)(xa)
means V (t)(xa); and ω(x) means r(x). The distinguished world of ω is dw(ω)
and its distinguished valuation dv(ω) = ω(dw(ω)) = ω(s) = V (s). The real
world is r(ω) = r. Finally, let 〈r,W, V, s〉 ⊕ t = 〈r,W, V, t〉 for any t ∈ ω.
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Interpretation of Terms, Formulas, and Programs. The interpretation of
terms and formulas is standard, with logical variables X given meaning by a
variable assignment η : Σ → R, state variables x by the physical state r(ω), and
doxastic variables xa by the distinguished valuation dv(ω). Terms and formulas
such as alta and alta > 1000 may appear outside doxastic modalities during
calculus proofs. The distinguished valuation (for the distinguished world) ensures
that they have a well-defined meaning and can thus be used as part of the proof.

Definition 5 (Term interpretation). Let ω = 〈r,W, V, s〉 be a PD-model,
and η : Σ → R be a logical variable assignment. Then, the interpretation of
terms is defined inductively as follows: valη (ω, x) = r(x) for state variable x;
valη (ω,X) = η(X) for logical variable X; valη (ω, xa) = dv(ω) (xa) for doxastic
variable xa; valη (ω, θ1 ⊗ θ2) = valη (ω, θ1) ⊗ valη (ω, θ2) for ⊗ ∈ {+,−,×,÷}.

Formula interpretation is derived directly from dL, first-order logic for real
arithmetic, and simplified Kripke semantics for beliefs. Definitions 6 and 7 are
mutually recursive due to the box modality formula [α]φ and test program ?φ.

Definition 6 (Interpretation of formulas). Let ω = 〈r,W, V, s〉 be a PD-
model, η be a variable assignment, and 〈r,W, V, s〉 ⊕ t = 〈r,W, V, t〉. Then, the
valuation of a formula φ as 1 (true) or 0 (false) is defined inductively as follows.

valη (ω, θ1 ≤ θ2) = 1 iff valη (ω, θ1) ≤ valη (ω, θ2)
valη (ω, φ1 ∨ φ2) = 1 iff valη (ω, φ1) = 1 or valη (ω, φ2) = 1
valη (ω,¬φ) = 1 iff valη (ω, φ) = 0
valη (ω,∀X φ) = 1 iff for all v ∈ R, valη[X �→v] (ω, φ) = 1
valη (ω,Ba (ξ)) = 1 iff for all t ∈ ω, valη (ω ⊕ t, ξ) = 1
valη (ω, [α]φ) = 1 iff for all (ω, ω′) ∈ ρη (α) , valη (ω′, φ) = 1

Under these semantics, Ba (x = 0) is equivalent to x = 0 since state variable x
is independent of the choice of distinguished world, unlike xa. CPS designers have
no reason to write such formulas, but when they do appear in calculus proofs,
the doxastic modality is eliminated using the equivalence Ba (x = 0) ↔ x = 0.

Program Semantics. The program semantics is given as a reachability relation
over PD-models, with (ω, ω′) ∈ ρη (α) meaning that PD-model ω′ is reachable
from ω using program α. The semantics of DHPs starts with that of dL’s hybrid
programs. Most cases are intuitive. Differential equations use their solution y to
evolve r(ω) for a nondeterministic duration, and ensure the evolution domain
constraint χ is satisfied throughout. For a more in-depth treatment, see [17].

To this we add doxastic assignment, which affects the distinguished valua-
tion dv(ω), and the learning operator, which represents the “execute γ at each
possible world” semantics from DELs, as illustrated in Fig. 1.

In Fig. 1, let (ω, ω′) ∈ ρη (La(γ)). Then, each world ν ∈ ω′ after learning has
an “origin” world t ∈ ω from before learning, e.g. t1 is the origin world for ν1
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and ν2. Every PD-model ν that γ can reach from each origin world t ∈ ω (i.e.
(ω ⊕ t, ν) ∈ ρη (γ)) becomes a possible world ν ∈ ω′ after La(γ). The valuation
ω′(ν) reflects the effects of γ, which can be found in the distinguished valuation
of ν, and thus, we let ω′(ν) = dv(ν).

Finally, the distinguished world of ω′ is chosen as any t′ ∈ ω′ whose origin
world is dw(ω). This applies the principle of learned nondeterminism as indis-
tinguishability of outcomes to the distinguished world.

Fig. 1. The double-circled t1 = dw(ω) creates, through γ’s nondeterminism, two post-
learning worlds ν1, ν2 ∈ ω′ worlds, either of which can be nondeterministically chosen
as dw(ω′). The world t2 ∈ ω leads to ν3 ∈ ω′, which cannot be chosen as dw(ω′).

Definition 7 (Transition semantics). Let ω = 〈r,W, V, s〉 be a PD-model,
and η be a variable assignment. The transition relation for doxastic dynamic
programs is inductively defined by:

– (ω, ω′) ∈ ρη (x := ζ) iff ω′ = ω except r(ω′) (x) = valη (ω, ζ)
– (ω, ω′) ∈ ρη (xa := θ) iff ω′ = ω except dv(ω′) (xa) = valη (ω, θ)
– (ω, ω′) ∈ ρη (xa := ∗) iff ω′ = ω except dv(ω′) (xa) = v for some v ∈ R

– (ω, ω′) ∈ ρη (x′ = ζ & χ) iff ω′ = 〈r[x �→ y(τ)],W, V, s〉 for the solution y :
[0,T] → R of the diff. eq., with τ ∈ [0,T] for some T ≥ 0. Furthermore, for
all ti ∈ [0, τ ], and valη (〈r[x �→ y(ti)],W, V, s〉, χ) = 1.

– (ω, ω) ∈ ρη (?φ) iff valη (ω, φ) = 1
– ρη (α;β) = ρη (α) ◦ ρη (β)

= {ω3 : there is ω2 s.t. (ω1, ω2) ∈ ρη (α) and (ω2, ω3) ∈ ρη (β)}
– ρη (α ∪ β) = ρη (α) ∪ ρη (β)
– (ω, ω′) ∈ ρη (α∗) iff there is n ∈ N such that (ω, ω′) ∈ ρη (αn), where αn is α

sequentially composed n times.
– (ω, ω′) ∈ ρη (L (γ)) if: r′ = r, W ′ = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈

ρη (γ)}, ω′(ν) = dv(ν) for all ν ∈ ω′, and dw(dw(ω′)) = dw(ω).

Figure 1 and Definition 7 show that d4L’s learning operator applies the DEL
semantics to any language of change, so long as it has a transition semantics, as
in (ω ⊕ t, ν) ∈ ρη (γ). It is possible to extend this operator to traditional multi-
agent Kripke structures by letting two after-learning worlds be indistinguishable
in ω′ iff their origin worlds were indistinguishable in ω, as is standard in DELs.
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5 Sound Sequent Calculus

Our main contribution towards the verification of belief-aware CPS is a sound
proof calculus for d4L. The meaning of a sequent Γ � φ with a d4L formula φ
and a set of d4L formulas Γ is captured with the following definition of validity.

Definition 8 (Validity). A sequent Γ � φ is valid iff for all ω and η,

valη
(
ω,

∧
ψ∈Γ ψ → φ

)
= 1

For simplicity’s sake, we use a single definition of soundness for proof rules.

Definition 9 (Global Soundness). A proof rule PR, as in Γ1 � φ1
PR

Γ2 � φ2
, is

globally sound when, if Γ1 � φ1 is valid then Γ2 � φ2 is valid.

Overview of the Calculus. Fig. 2 contains the fragment of the calculus that
pertains to the learning operator. The dL calculus [16] is omitted as it is easily
adaptable to d4L. Single-modality agent rationality axioms can be adopted for
belief, i.e. Ba (φ1 → φ2) → (Ba (φ1) → Ba (φ2)) and, if φ is valid, then Ba (φ) is
too. The proof for the following theorem can be found in [13].

Theorem 1 The proof rules in Fig. 2 are globally sound.

Sequent contexts Γ are partitioned into ΓR;ΓB ;ΓP ;ΓO. The set ΓR is the set
of formulas with only state and logical variables and no doxastic modalities, e.g.
alt > 0. ΓB and ΓP are the sets of belief and possibility formulas respectively,
e.g. Ba

(
(alta − alt)2 ≤ ε2

)
and Pa

(
(alta − alt)2 ≤ ε2

)
. ΓO is the set of formulas

with doxastic variables but no modalities, e.g. alta > 0. The rules in Fig. 2 are
only applicable once this partitioning has been achieved. Finally, let Γ\xa

=
{φ ∈ Γ : xa does not occur in φ}.

Proof rules for learned programs that change doxastic state, like assignment
or test, work by altering the contexts in suitable ways. Each learned program
has two rules, for the � and ♦ dynamic modalities, which deal with the nonde-
terminism in the choice of the distinguished world. The exception is La(α ∪ β),
where doxastic and dynamic modalities interact much more subtly.

The proof rules for assignment La(xa := θ) capture the intuition that, since
xa now has the value of θ at each possible world, syntactically substituting all
occurrences of xa with θ ought to mean the same thing.

Since nondeterministic assignment La(xa := ∗) gives xa any possible value,
then anything previously possible about xa remains possible. However, beliefs
about xa, which must hold for all worlds, do not survive the assignment (unless
they are tautologies). The proof rules [L:=∗] and 〈L:=∗〉 eliminate the formulas
which may no longer hold after assignment from the context.

Formulas describing the distinguished world, i.e. in ΓO, are retained or
removed, respectively, depending on whether the dynamic modality allows us
pick our distinguished world to suit our goals, as with ♦, or not, as with �.
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Fig. 2. Dynamic doxastic fragment of the d4L calculus, with Γ being ΓR;ΓB ;ΓP ;ΓO

Learned test results in the belief about the test result, as in public announce-
ments. The test contracts the set of possible worlds, so we must remove the set
of possibility formulas from the context, as they may no longer hold. The under-
lying dynamic modality determines whether this belief is a precondition for ψ
or a necessity (♦ implies at least one transition, � does not).

Learned sequential composition is merely reduced to regular sequential com-
position. Doxastic assignment and choice deserve further attention below.

Doxastic Assignment. The rule for doxastic assignments relies on its syntac-
tic substitution being equivalent to the semantic substitution effected by learned
assignment. This nontrival result can be captured succinctly by Lemma 1, whose
full proof is found in [13]. This result only holds when the substitution is admis-
sible with respect to a given formula φ, i.e. that syntactic conditions are in
place ensuring the substitution will not change the meaning of the substituted
variables, and therefore, of the formula [13].

Lemma 1 (Doxastic Substitution Lemma). Let φ be a formula. Let σ be an
admissible substitution for φ which replaces only doxastic variable xa. Then, for
every η and ω = 〈r,W, V, s〉, we have valη (ω, σ (φ)) = valη (σ (ω), φ), where σ (φ)
is syntactic substitution, and σ (ω) is semantic substitution, defined as σ (ω) =
〈r,W, σ (V ), s〉, with σ (V )(t)(xa) = valη (ω ⊕ t, σ (xa)) and σ (V )(t)(ya) =
V (t)(ya) = ω(t)(ya) for ya �= xa, for all t ∈ ω.
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Nondeterministic Choice. Learned choice influences doxastic modalities, and
the choice of distinguished world is influenced by dynamic modalities. This makes
for some subtlety in the rules for learned choice. Consider the potential rule
below, which assumes La(γ1 ∪ γ2) is equivalent to La(γ1) ∪ La(γ2).

Pa (¬ξ) ; ξ � 〈La(?ξ)〉 Ba (ξ) ∨ 〈La(?True)〉 Ba (ξ)
Pa (¬ξ) ; ξ � 〈La(?ξ ∪ ?True)〉 Ba (ξ)

The sequent contexts tell us that ξ holds in the distinguished world dw(ω),
but not in some other t ∈ ω. The disjunction holds, since 〈La(?ξ)〉 Ba (ξ) is
trivially true. The program La(?ξ ∪ ?True) preserves all worlds, including t,
because of ?True. Since ξ is not true in t, agent a cannot therefore believe ξ. But
if the top is valid and the bottom is not, this rule would be unsound.

This phenomenon occurs because the conclusion of the rule requires us to
prove Ba (ξ) for worlds originated through both ?ξ and ?True. However, the
premise of the rule implies we need only check those from either ?ξ or ?True, as
if the ♦ dynamic modality had control over learned nondeterminism. It does not:
outcomes of learned nondeterminism are always considered indistinguishable.

Proof rules for La(γ1 ∪ γ2) must therefore be as conservative as the most
conservative of their dynamic and doxastic modalities: the only proof rule that
allows disjunction in the premise is 〈LP∪〉 since both modalities ♦ and Pa (·)
are existential. This realization informs the soundness proofs for learned choice.

Proof (Soundness sketch for 〈LB∪〉). Let ω be an arbitrary PD-model. We must
show that valη (ω, 〈La(γ1 ∪ γ2)〉 Ba (ξ)) = 1, i.e. that ξ is true at every world ν
reachable by either (t, ν) ∈ ρη (γ1) or (t, ν) ∈ ρη (γ2) for t ∈ ω.

Let (t, ν) ∈ ρη (γ1). By hypothesis, valη (ω, 〈La(γ1)〉 Ba (ξ)) = 1, i.e. ξ is true
at every world reachable by γ1, and ν in particular. The argument is symmetrical
for (t, ν) ∈ ρη (γ2), but only because the premise is a conjunction. Thus, for any
world ν created by La(γ1 ∪ γ2), ξ is true at that world. Therefore, Ba (ξ). �

6 Validation and Application

We will now use d4L to illustrate how to prove the safety of a small belief-aware
CPS. The scenario is similar to that of Example 2, and it is useful to have a
reference for some of the most used dL proof rules that d4L inherits [16].

Γ � [α] [β]φ
[; ]

Γ � [α;β]φ
Γ � φ → ψ

[?]
Γ � [?φ]ψ

Γ, φ � ψ→R
Γ � φ → ψ

We let the pilot observe the altimeter with O ≡ La(alta := ∗; ?Noise), with
Noise ≡ (alta − alt < ε). The control program C climbs or descends by setting
vertical velocity depending on whether descent is believed to be safe, CB ∪ CP ≡
(?Ba (alta − T − ε > 0) ; yv := −1) ∪ (?Pa (alta − T − ε ≤ 0) ; yv := 1). The two
tests are mutually exclusive, leading to dual belief operators: descending requires
the strong condition of belief, whereas the mere possibility of being too low
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triggers a climb. We use F ≡ t := 0; t′ = 1, alt′ = yv & t < T as very simplified
flight dynamics, and an invariant inv ≡ (alt > 0 ∧ T > 0) to handle repetition.

We will prove the validity of the formula alt > 0, T > 0 � [(O; C; F)∗] alt > 0
by successively applying sound proof rules from dL and Fig. 2 to it. The leaves
of the proof tree will be formulas that can be easily discharged using only dL
rules or real arithmetic. Once the proof tree is complete, we will know this safety
formula is valid, and thus that the modeled system is safe.

*
alt > 0, T > 0 � inv

inv � [O] [C] [F] inv
[;] [;]

inv � [O; C; F] inv
*

inv � alt > 0
loop

alt > 0, T > 0 � [(O; C; F)∗] alt > 0

The middle branch continues in:

inv;Ba (Noise) � [CB] [F] inv inv;Ba (Noise) � [CP] [F] inv
[∪]

inv;Ba (Noise) � [C] [F] inv
[L?] →R

inv � [La(?Noise)] [C] [F] inv
[L:=∗]

inv � [La(alta := ∗)] [La(?Noise)] [C] [F] inv
[L;] [;]

inv � [La(alta := ∗; ?Noise)] [C] [F] inv

The branch on the right closes using dL proof rules and standard dL reasoning
independent of beliefs: if the airplane is above ground and climbs, it remains
above ground. The left branch requires some doxastic reasoning.

inv;Ba (Noise) , Ba (alta − T − ε > 0) � alt > T inv; alt > T � [F(−1)] inv
cut

inv;Ba (Noise) , Ba (alta − T − ε > 0) � [F(−1)] inv
[:=]

inv;Ba (Noise) , Ba (alta − T − ε > 0) � [yv := −1] [F(yv)] inv
[; ] [?] →R

inv;Ba (Noise) � [?Ba (alta − T − ε > 0) ; yv := −1] [F(yv)] inv

The left side of the cut rule must show that alt > T , and for that we
will use the S5 rationality axioms that allow for reasoning about arithmetic.
Thus, the agent may conclude (1) Ba (alt > alta − ε) from Ba (Noise), and (2)
Ba (alta > T + ε) from Ba (alta − T − ε > 0). But (1) and (2) together lead to
Ba (alt > T ), which no longer contains any doxastic variables. It is therefore
equivalent to alt > T . We have thus used the belief meta-property (1), relating
ontic and doxastic truth, to obtain an important fact about the world which we
may now use in the right side of the proof.

This right side is a standard dL proof without doxastics: the rules for differ-
ential equations show that, after evolving for at most T time at a speed of −1,
the airplane cannot end up below ground, since it started above T altitude.

This completes the sequent proof. It leveraged a mix of ontic, doxastic and
meta-doxastic statements in order to make the argument for the safety of this
controller. When working with trusted sensors, we also see an intuitive parti-
tioning of the proof: first, doxastic formulas (Ba (alta − T − ε > 0)) and meta-
doxastic formulas (Ba (Noise)) are used to derive ontic formulas (alt > T ). Sec-
ond, such ontic statements form the basis for arguments made in dL-exclusive
proof branches that ensure post-control actuation results in safe behavior.
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This clear separation of concerns allows CPS engineers to work more intuitively
and compositionally during the design and verification stages of belief-aware
CPS.

The ways in which agents learn and reason influence the ontic facts that can
be deduced, but those facts must in turn be informed by safety requirements
of the CPS’s physical evolution. Doxastics and ontics clearly play off each and
have, in the past, contributed to safety incidents. By making this explicit in
the model, d4L ensures adequate attention is given to such dynamics so that
hopefully, ontic/doxastic concerns can be identified before they lead to tragedy.

7 Related Work

The logic d4L takes heavy inspiration from two bodies of work: one for reasoning
about a changing world, and one for reasoning about changing beliefs.

Changing World. The logic dL for reasoning about the ontic dynamics of CPS
[16,17,19] has shown itself to be capable of verifying interesting and relevant real
world systems [17,18]. However, it requires manual modeling discipline to express
noise [14], rather than having noise or beliefs thereof as built-in primitives.

The example used in this paper is so simple that it can still be converted
to dL using modeling tricks [14]. The trick is to transform alta into a state
variable and remove the learning operator from the observation program, i.e.
alta := ∗; ?Noise rather than La(alta := ∗; ?Noise). The agent’s control would
then be (?alta − T − ε > 0; yv := −1) ∪ (?alta − T − ε ≤ 0; yv := 1).

However, this conversion relies fundamentally on the box dynamic modality
[α]φ, which checks safety for all executions of alta := ∗; ?Noise. With liveness
formulas using the diamond dynamic modality 〈α〉 φ, safety need only be checked
for one execution. Thus, in liveness formulas, this method would fail to capture
the intended behavior of both the learning operator and the belief modality,
which should still apply to all possible worlds, or, in dL terms, all executions.

This conversion can also quickly become complex. A more detailed con-
troller for a pilot trying to remain around or above cruising altitude A could
be (?Ba (alta − T − ε > A) ; yv := −1) ∪ (?Pa (alta − T − ε > A) ; yv := −0.5) ∪
(?Ba (alta − T − ε ≤ 0) ; yv := 1). This is similar to previous controllers, but
allows for a more gentle descent when the pilot considers the possibility of
being close to A. The equivalent dL controller is (?alta − T − ε > A; yv :=
−1) ∪ (?alta − T + ε > A; yv := −0.5) ∪ (?alta − T − ε ≤ 0; yv := 1). However,
this elimination of doxastic modalities requires a change in the arithmetic itself,
e.g. (?Pa (alta − T − ε > A) turns into (?alta −T + ε > A). Belief must consider
worst case noise, whereas possibility can consider the best case. This can quickly
become complex when going beyond simpler interval-based noise scenarios.

Both dL and d4L controllers allow tests for deciding which action to take,
but represent action triggers in first-order logic or doxastic logic, respectively,
e.g. alta −T + ε > A and Pa (alta − T − ε > A). Decisions in real CPS are based
on belief, and as the conversion from doxastic to non-doxastic action triggers
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quickly becomes non-trivial, it is best to avoid subtle modeling mistakes by
working with belief during design and verification. With d4L, safety engineers
can rely on doxastic intuitions during verification, rather than having to infer
them from formulas such as alta − T + ε > A, which does not clearly convey the
concept of possibility that is so clear in Pa (alta − T − ε > A).

The notion of robustness in hybrid systems control can capture complex
notions of sensor and actuator noise [11], but is ultimately restrictive for the
purpose of belief-aware CPS, as discussed at the beginning of Sect. 2. Adaptive
control, where no a priori constraints are known, often depends on neural net-
works [15], and safety guarantees for systems relying on learning are known to
add significant complexity to such efforts [9].

Changing Belief. On the other side, we have dynamic epistemic logics (DELs)
[3,4,6,7,10], of which a good overview can be found in the literature [8]. They
provide several notions of learning for different languages, some similar to our
programs [6]. Public propositional world-change [6] would make ontic change
implicitly observable, which is in direct conflict with the unobservability require-
ments of belief-aware CPS. Furthermore, relevant DEL axiomatizations rely on
creating a conjunction out of properties of each accessible possible world [4,8],
which is incompatible with the uncountably many worlds that CPS demand.

Belief revision through the AGM postulates [2] is an axiomatic, declarative
approach to belief change. Because it is such a different approach, it presents
many challenges in its integration with model-theoretic work such as dL.

In order to begin addressing safety concerns around ontic/doxastic inter-
actions at design time, CPS engineers and agents must make complex logical
arguments from both ontic facts and beliefs, as in Sect. 6. Despite their many
successes, the works described in this section do not address this particular chal-
lenge directly in a principled way.

8 Conclusions

This paper considers interactions between belief and fact, which have signif-
icant safety implications. We proposed belief-aware CPSs as a first-principles
paradigm under which safety concerns with such ontic/doxastic dynamics are
expressly dealt with at design time, before safety violations occur. Our contri-
bution is the logic d4L for modeling and verifying belief-aware CPSs, requiring
simultaneous, complex belief- and world-change. Its formulas can describe ontic,
doxastic and meta-doxastic statements, and its programs can model belief-aware
CPS with belief-triggered controllers that make decisions based only on what
they can observe and reason. We proposed a learning operator for belief-change,
which is capable of transforming any transition-based semantics of change into
a semantics of belief -change. We presented a sequent calculus for d4L, which is
proven to be sound, and used it to show the safety of a simple belief-aware CPS.
This is, to the best of our knowledge, the first calculus for a dynamic logic of
belief/knowledge change that can handle an uncountable domain, as in CPS.
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Abstract. We propose a general framework to allow: (a) specifying the
operational semantics of a programming language; and (b) stating and
proving properties about program correctness. Our framework is based
on a many-sorted system of hybrid modal logic, for which we prove its
completeness results. We believe that our approach to program verifica-
tion improves over the existing approaches within modal logic as (1) it is
based on operational semantics which enables a more natural description
of the execution than Hoare-style weakest precondition used by dynamic
logic; (2) since it is multi-sorted, it allows for a clearer encoding of seman-
tics, with a smaller representational distance to its intended meaning.

Keywords: Operational semantics · Program verification ·
Hybrid modal logic · Many sorted logic

1 Introduction

Program verification within modal logic, as showcased by dynamic logic [15], is
following the mainstream axiomatic approach proposed by Hoare/Floyd [11,17].
In this paper, we continue our work from [18] in exploring the amenability of
dynamic logic in particular, and of modal logic in general, to express opera-
tional semantics of languages (as axioms), and to make use of such semantics in
program verification. Consequently, we consider the SMC Machine described by
Plotkin [21], we derive a dynamic logic set of axioms from its proposed transition
semantics, and we argue that this set of axioms can be used to derive Hoare-
like assertions regarding functional correctness of programs written in the SMC
language.

The main idea is to define a general logical system that is powerful enough to
represent both the programs and their semantics in a uniform way. With respect
to this, we follow the line of [14] and the recent work from [22].

The logical system that we developed as support for our approach is a many-
sorted hybrid polyadic modal logic, built upon our general many-sorted polyadic
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modal logic defined in [18]. We chose a modal setting since, as argued above,
through dynamic logic and Hoare logic, modal logic has a long-standing tradition
in program verification (see also [9] for a modal logic approach to separation logic
[23]) and it is successfully used in specifying and verifying hybrid systems [20].

In [18] we defined a general many-sorted modal logic, generalizing some of
the already existing approaches, e.g. [24,25] (see [18] for more references on
many-sorted modal logic). This system allows us to specify a language and its
operational semantics and one can use it to certify executions as well. However,
both its expressivity and its capability are limited: we were not able to perform
symbolic execution and, in particular, we were not able to prove Hoare-style
invariant properties for loops. In Remark 1, we point out some theoretical aspects
related to these issues.

In the present paper we employ the procedure of hybridization on top of our
many-sorted modal logic previously defined. We drew our inspiration from [8,22]
for practical aspects, and from the extensive research on hybrid modal logic [1,7]
on the theoretical side. Our aim was to develop a system that is strong enough
to perform all the addressed issues (specification, semantics, verification), but
also to keep it as simple as possible from a theoretical point of view. To con-
clude: in our setting we are able to associate a sound and complete many-sorted
hybrid modal logic to a given language such that both operational semantics
and program verification can be performed through logical inference.

Given a propositional modal logic, a hybrid corresponding system is defined
by adding some special atomic symbols (called nominals) to name the states of
a model. Apart from nominals, some hybrid systems have a special operator @j

(which is interpreted as a jump to the state denoted by the nominal j), as well
as binders such as ∀ and ∃. Whenever binders are employed, one also needs state
variables, special variables that are bind to states (see [1] for details). We have to
make a methodological comment: sometimes nominals are presented as another
sort of atoms (see, e.g. [7]). Our sorts come from a many-sorted signature (S,Σ),
as in [14], so all the formulas (in particular the propositional variables, the state
variables, the nominals) are S-sorted sets. When we say that the hybrid logic is
mono-sorted we use sorted according to our context, i.e. the sets of propositional
variables, nominals and state variables are regular sets and not S-sets.

The many-sorted polyadic modal logic defined in [18] is briefly presented in
Sect. 2. The hybridization is performed in Sect. 3. A concrete language and its
operational semantics are defined in Sect. 4; we also show how to perform Hoare-
style verification. A section on related and future work concludes our paper. We
refer to [19] for more details and full proofs.

2 Preliminaries: A Many-Sorted Polyadic Modal Logic

In this section we recall the many-sorted polyadic modal logic defined in [18].
Recall that the most well-known system of modal logic uses only unary modalities
(e.g � and ♦), but more general systems using modal operators of arbitrary
arities (called polyadic modalitaties [6, Section 6]) are also studied.
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In the many-sorted setting, the arity of each operator is defined by a many-
sorted signature. Consequently, our language is determined by a fixed, but arbi-
trary, many-sorted signature Σ = (S,Σ) and an S-sorted set of propositional
variables P = {Ps}s∈S such that Ps �= ∅ for any s ∈ S and Ps1 ∩Ps2 = ∅ for any
s1 �= s2 in S. For any n ∈ N and s, s1, . . . , sn ∈ S we denote Σs1...sn,s = {σ ∈ Σ |
σ : s1 · · · sn → s}.

The set of formulas is an S-indexed family inductively defined by:

φs :: = p | ¬φs |φs ∨ φs |σ(φs1 , . . . , φsn
)

where s ∈ S, p ∈ Ps and σ ∈ Σs1···sn,s.
We use the classical definitions of the derived logical connectors: for any

σ ∈ Σs1...sn,s the dual operation is σ�(φ1, . . . , φn) := ¬σ(¬φ1, . . . ,¬φn).
In the sequel, by φs we mean that φ is a formula of sort s ∈ S. Similarly, Γs

means that Γ is a set of formulas of sort s. When the context uniquely determines
the sort of a state symbol, we shall omit the subscript.

In order to define the semantics we introduce (S,Σ)-frames and (S,Σ)-
models. An (S,Σ)-frame is a tuple F = (W, (Rσ)σ∈Σ) such that:

– W = {Ws}s∈S is an S-sorted set and Ws �= ∅ for any s ∈ S (the elements of
W are called worlds, states or points),

– Rσ ⊆ Ws × Ws1 × . . . × Wsn
for any σ ∈ Σs1···sn,s.

An (S,Σ)-model based on F is a pair M = (F , V ) where V = {Vs}s∈S such
that Vs : Ps → P(Ws) for any s ∈ S. Note that, for any σ ∈ Σ, the relation
Rσ is the interpretation of σ in any model based on the frame F . The model
M = (F , V ) will be simply denoted as M = (W, (Rσ)σ∈Σ , V ). For s ∈ S, w ∈ Ws

and φ a formula of sort s, the many-sorted satisfaction relation M, w |s= φ is
inductively defined as follows:

– M, w |s= p iff w ∈ Vs(p)
– M, w |s= ¬ψ iff M, w �|s= ψ

– M, w |s= ψ1 ∨ ψ2 iff M, w |s= ψ1 or M, w |s= ψ2

– if σ ∈ Σs1...sn,s, then M, w |s= σ(φ1, . . . , φn) iff for any i ∈ [n] there exist
wi ∈ Wsi

such that Rσww1 . . . wn and M, wi |si= φi.

Definition 1 (Validity and satisfiability). Let s ∈ S and assume φ is a
formula of sort s. Then φ is satisfiable if M, w |s= φ for some model M and
some w ∈ Ws. The formula φ is valid in a model M if M, w |s= φ for any
w ∈ Ws; in this case we write M |s= φ. The formula φ is valid in a frame F if φ

is valid in all the models based on F ; in this case we write F |s= φ. Finally, the
formula φ is valid if φ is valid in all frames; in this case we write |s= φ.

The deductive system is presented in Fig. 1.
The set of theorems of KΣ is the least set of formulas that contains all the

axioms and it is closed under deduction rules. Note that the set of theorems is
obviously closed under S-sorted uniform substitution (i.e. propositional variables
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The system KΣ

– For any s ∈ S, if φ is a formula of sort s which is a theorem in propositional logic,
then φ is an axiom.

– Axiom schemes: for any σ ∈ Σs1···sn,s and for any formulas φ1, . . . , φn, φ, χ of
appropriate sorts, the following formulas are axioms:

(Kσ) σ�(. . . , φi−1, φ → χ, φi+1, . . .) →
(σ�(. . . , φi−1, φ, φi+1, . . .) → σ�(. . . , φi−1, χ, φi+1, . . .))

(Dualσ) σ(ψ1, . . . , ψn) ↔ ¬σ�(¬ψ1, . . . , ¬ψn)
– Deduction rules: Modus Ponens and Universal Generalization

(MP ) if | s φ and | s φ → ψ then | s ψ
(UG) if |si φ then | s σ�(φ1, .., φ, ..φn)

where | s φ means that φ is a provable formula of sort s.

Fig. 1. (S, Σ) modal logic

of sort s are uniformly replaced by formulas of the same sort). If φ is a theorem
of sort s write | s

KΣ
φ. Obviously, KΣ is a generalization of the modal system

K (see [7] for the mono-sorted version).
In modal logic one can speak about local and global logical consequence,

both from a syntactical and a semantical point of view. Given a set of premises,
a formula is a local consequence if, for any model, whenever the premises are
satisfied at some state, the formula is also satisfied at the same state (the truth is
preserved point-to-point). From the global point of view, the formula is satisfied
at any point of a model, whenever the premises are satisfied at any point. We
refer to [7, 1.5] for the mono-sorted setting and to [18, Section 3] for the many-
sorted one. The distinction between local and global deduction is deepened in
the many-sorted approach: locally, the conclusion and the hypotheses have the
same sort, while globally, the set of hypotheses is a many-sorted set. In the sequel
we only consider the local setting.

Definition 2 (Local deduction). [18] If s ∈ S and Γs ∪ {φ} is a set of
formulas of sort s, then we say that φ is (locally) provable from Γs if there
are γ1, . . . , γn ∈ Γs such that | s

KΣ
(γ1 ∧ . . . ∧ γn) → φ. In this case we write

Γs | s
KΣ

φ.

The construction of the canonical model is a straightforward generalization
of the mono-sorted setting. For more details, we refer to [18]. The last result
we recall is the (strong) completeness theorem with respect to the class of all
frames.

Theorem 1. [18] Let Γs be a set of formulas of set s. If Γs is a consistent set in
KΣ then Γs has a model. Moreover, if φ is a formula of sort s, then Γs |=KΣ

φ
iff Γs KΣ

φ, where Γs |=KΣ
φ denotes the fact that any model of Γ is also a

model of φ.
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Remark 1 (Problems). The many-sorted modal logic allows us to define both
the syntax and the semantics of a programming language (see [18] for a complex
example). However, there are few issues, both theoretical and operational, that
we could not overcome:

(i1) the logic can be used to certify executions, but not to perform symbolic
verification; in particular, in order to prove the invariant properties for
loops, the existential binder is required;

(i2) the completeness theorem for extensions of KΣ from [18] only refers to
model completeness, but says nothing about frame completeness (see [12]
for a general discussion on this distinction);

(i3) the sorts are completely isolated formally, but in our example elements of
different sorts have a rich interaction.

These issues will be addressed in the following sections.

3 Many-Sorted Hybrid Modal Logic

The hybridization of our many-sorted modal logic is developed using a combi-
nation of ideas and techniques from [1,3,4,7,12,13]. We refer to [19] for the full
proofs of the results presented in this section.

Hybrid logic is defined on top of modal logic by adding nominals, states
variables and specific operators and binders. Nominals allow us to directly refer
the worlds (states) of a model, since they are evaluated to singleton sets in any
model. However, a nominal may refer to different worlds in different models. In
the sequel we introduce the constant nominals, which are evaluated to singletons,
but they refer to the same world (state) in all models. Our example for constant
nominals are true and false from Sect. 4.

Definition 3 (Signature with constant nominals). A signature with con-
stant nominals is a triple (S,Σ,N) where (S,Σ) is a many-sorted signature and
N = (Ns)s∈S is an S-sorted set of constant nominal symbols. In the sequel, we
denote Σ = (S,Σ,N).

As before, the sorts will be denoted by s, t, . . . and by PROP = {PROPs}s∈S ,
NOM = {NOMs}s∈S and SVAR = {SVARs}s∈S we will denote some countable
S-sorted sets. The elements of PROP are ordinary propositional variables and
they will be denoted p, q, . . .; the elements of NOM are called nominals and they
will be denoted by j, k, . . .; the elements of SVAR are called state variables and
they are denoted x, y, . . .. We shall assume that for any distinct sorts s �= t ∈ S,
the corresponding sets of propositional variables, nominals and state variables
are distinct. A state symbol is a nominal, a constant nominal or a state variable.

As in the mono-sorted case, nominals and state variables will be semantically
constrained: they are evaluated to a singleton set, which means they will always
refer to a unique world of our model. In addition, the constant nominals will
refer to the same world(state) in any evaluation, so they will be defined at the
frames’ level.
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In the mono-sorted setting, starting with a modal logic, the simplest hybrid
system is obtained by adding nominals alone. However, the basic hybrid system
is obtained by adding the satisfaction modality @jφ (which states that φ is true
at the world denoted by the nominal j). The most powerful hybrid systems
are obtained by further adding the binders ∀ and ∃ that bind state variables
to worlds, with the expected semantics [1,2,4]. In the sequel we will develop
the hybrid modal logic HΣ(@,∀) in our many-sorted setting. As mentioned in
Remark 3, the system HΣ(@) can be similarly analyzed (see also [19] for more
details).

Note that, whenever the context is clear, we will simply write |s= instead of
|s=HΣ(@,∀), and | s instead of | s

HΣ(@,∀). We will further assume that the sort
of a formula (set of formulas) is implied by a concrete context but, whenever
necessary, we will use subscripts to fix the sort of a symbol: xs means that x is
a state variable of sort s, Γs means that Γ is a set of formulas of sort s, etc.

Definition 4 (HΣ(@,∀) formulas). For any s ∈ S we define the formulas of
sort s:

φs := p | j | ys | ¬φs | φs ∨ φs | σ(φs1 , . . . , φsn
)s | @s

kφt | ∀xt φs

Here, p ∈ PROPs, j ∈ NOMs ∪ Ns, t ∈ S, k ∈ NOMt ∪ Nt, x ∈ SVARt, y ∈
SVARs and σ ∈ Σs1···sn,s. For any σ ∈ Σs1...s,s, the dual formula σ�(φ1, . . . , φn)
is defined as in Sect. 2. We also define the dual binder ∃: for any s, t ∈ S, if φ
is a formula of sort s and x is a state variable of sort t, then ∃xφ := ¬∀x¬φ is
a formula of sort s. The notions of free state variables and bound state variables
are defined as usual. For any s ∈ S, the set of all formulas of sort s is denoted
FORMs.

Remark 2 (Expressivity). As a departure from our sources of inspiration, we only
defined the satisfaction operators @j for nominals, and not for state variables.
Hence, @x is not a valid formula in our logic. Our reason was to keep the system
as “simple” as possible, but strong enough to overcome the problems encountered
in the non-hybrid setting (see Remarks 1). More issues concerning expressivity
are analyzed in Sect. 5.

One important remark is the definition of the satisfaction modalities: if k and
φ are a nominal and a formula both of the sort t ∈ S, then we define a family
of satisfaction operators {@s

kφ}s∈S such that @s
kφ is a formula of sort s for any

s ∈ S. This means that φ is true at the world denoted by k on the sort t and is
acknowledged on any sort s ∈ S. For example, if j and k are nominals of sort t
and s �= t the formula @s

j¬k expresses the fact that at any world of sort s we
know that the worlds of sort t named by j and k are different. So, our sorted
worlds are not isolated any more, both from a syntactic and a semantic point
of view.

Definition 5. If Σ = (S,Σ,N) then a Σ-frame is F = (W, (Rσ)σ∈Σ , NF )
where (W, (Rσ)σ∈Σ) is an (S,Σ)-frame and NF = (NF

s )s∈S and for any s ∈ S
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NF
s = (wc)c∈Ns

⊆ Ws. We will further assume that distinct constant nominals
have distinct sorts, so we shall simply write NF = (wc)c∈N .

Let Σ = (S,Σ,N) be a many-sorted signature with nominal constants and
let F be a Σ-frame. A model (based on F) is a pair M = (F , V ) such that
V : PROP∪NOM → P(W ) is an S-sorted function such that Vs(j) is a singleton
set for any s ∈ S and j ∈ NOMs. In order to define the semantics for HΣ(@,∀)
more is needed. Given a model M = (W, (Rσ)σ∈Σ , (wc)c∈N , V ), an assignment is
an S-sorted function g : SVAR → W . If g and g′ are assignment functions, s ∈ S
and x ∈ SVARs, then we say that g′ is an x-variant of g (and we write g′ x∼ g)
if gt = g′

t for t �= s ∈ S and gs(y) = g′
s(y) for any y ∈ SVARs, y �= x. Moreover,

if V is an S-sorted evaluation, we define V N : PROP ∪ NOM ∪ N → P(W ) by
V N

s (c) = {wc} for any s ∈ S, c ∈ Ns and V N
s (v) = Vs(v) otherwise.

Definition 6 (The satisfaction relation in HΣ(@,∀)). In the sequel

M = (W, (Rσ)σ∈Σ , (wc)c∈N , V )

is a model and g : SVAR → W an S-sorted assignment. The satisfaction relation
is defined as follows for any sort s ∈ S:

– M, g, w |s= a, if and only if w ∈ V N
s (a), where a ∈ PROPs ∪ NOMs ∪ Ns,

– M, g, w |s= x, if and only if w = gs(x), where x ∈ SVARs,
– M, g, w |s= ¬φ, if and only if M, g, w �|s= φ where φ ∈ FORMs,
– M, g, w |s= φ ∨ ψ, if and only if M, g, w |s= φ or M, g, w |s= ψ

where φ, ψ ∈ FORMs,
– if σ ∈ Σs1...sn,S then M, g, w |s= σ(φ1, . . . , φn), if and only if there is

(w1, . . . , wn) ∈ Ws1 × · · · × Wsn
such that Rσww1 . . . wn and M, g, wi |si= φi

for any i ∈ [n],
– M, g, w |s= @s

kψ if and only if M, g, u |t= ψ where k ∈ NOMt ∪ Nt, ψ has the
sort t and V N

t (k) = {u},
– M, g, w |s= ∀xφ, if and only if M, g′, w |s= φ for all g′ x∼ g where φ ∈ FORMs,

x ∈ SVARt for some t ∈ S.
Consequently,

– M, g, w |s= ∃xφ, if and only if ∃g′(g′ x∼ g and M, g′, w |s= φ).

Following the mono-sorted setting, satisfiability in H(@,∀) is defined as fol-
lows: a formula φ of sort s ∈ S is satisfiable if M, g, w |s= φ for some model M,
some assignment g and some w ∈ Ws. Consequently, the formula φ is valid in a
model M if M, g, w |s= φ for any assignment g and any w ∈ Ws. One can speak
about validity in a frame as in Sect. 2. In the presence of nominals, we can speak
about named models and pure formulas, as in [7, Section 7.3].

Definition 7 (Named models and pure formulas). A formula is pure
if it does not contain propositional variables. A pure instance of a pure for-
mula is obtained by uniformly substituting nominals for nominals of the same
sort. We say that a formula is ∀∃-pure if it is pure or it has the form
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∀x1 . . . ∀xn∃y1 . . . ∃ymψ, where ψ contains no propositional variables and the
only state symbols from ψ are in {x1, . . . , xn, y1, . . . , ym}.

A model M = (W, (Rσ)σ∈Σ , (wc)c∈N , V ) is named if for any sort s ∈ S and
world w ∈ Ws there exists k ∈ NOMs ∪ Ns such that {w} = V N

s (k).

Note that a model is named if any world (state, point) is named by a nominal
or a nominal constant (which means that it can be referred at a syntactic level).
As in the mono-sorted case, pure formulas and named models are important
since they give rise to strong completeness results with respect to the class of
frames they define. Can we prove a similar result for the system HΣ(@,∀) when
state variables are involved? We give a positive answer to this question, inspired
by the discussion on existential saturation rules from [3, Lemma 1]. In order
to do this, we define ∀∃-pure formulas and we characterize frame satisfiability
for such formulas. Consequently, Proposition 1 will lead to completeness results
with respect to frame validity.

Proposition 1 (Pure formulas in HΣ(@,∀)). Let M be a named model where
M = (W, (Rσ)σ∈Σ , (wc)c∈N , V ), F = (W, (Rσ)σ∈Σ , (wc)c∈N ) the corresponding
frame and φ a ∀∃-pure formula of sort s. Then F |s= φ if and only if M |s= φ.

The system HΣ(@, ∀)
– The axioms and the deduction rules of KΣ

– Axiom schemes: any formula of the following form is an axiom, where s, s′, t are
sorts, σ ∈ Σs1···sn,s, φ, ψ, φ1, . . . , φn are formulas (when necessary, their sort is
marked as a subscript), j, k are nominals or constant nominals, and x, y are state
variables:

(K@) @s
j(φt → ψt) → (@s

jφ → @s
jψ) (Agree) @t

k@
t′
j φs ↔ @t

jφs

(SelfDual) @s
jφt ↔ ¬@s

j¬φt (Intro) j → (φs ↔ @s
jφs)

(Back) σ(. . . , φi−1,@si
j ψt, φi+1, . . .)s → @s

jψt (Ref) @s
jjt

(Q1) ∀x (φ → ψ) → (φ → ∀x ψ) where φ contains no free occurrences of x
(Q2) ∀x φ → φ[y/x] where y is substitutable for x in φ

(Name) ∃x x
(Barcan) ∀x σ�(φ1, . . . , φn) → σ�(φ1, . . . , ∀xφi, . . . , φn)

(Barcan@) ∀x@jφ → @j∀x φ
(Nom x) @kx ∧ @jx → @kj

– Deduction rules:
(BroadcastS) if | s @s

jφt then |s′
@s′

j φt

(Gen@) if |s′
φ then | s @jφ, where j and φ have the same sort s′

(Name@) if | s @jφ then |s′
φ, where j does not occur in φ

(Paste) if | s @jσ(. . . , k, . . .) ∧ @kφ → ψ then | s @jσ(. . . , φ, . . .) → ψ
where k is distinct from j that does not occur in φ or ψ

(Gen) if | s φ then | s ∀xφ
where φ ∈ Forms and x ∈ SVARt for some t ∈ S.

Here, j and k are nominals or constant nominals having the appropriate sort.

Fig. 2. (S, Σ) hybrid logic
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We are ready now to define the deductive system of our logic, which is pre-
sented in Fig. 2.

Theorems and (local) deduction from hypothesis are defined as in Sect. 2.
In order to further develop our framework, we need to analyze the uniform
substitutions. Apart from being S-sorted, in the hybrid setting, more restrictions
are required: state variables are uniformly replaced by state symbols that are
substitutable for them (as in the mono-sorted setting [4]).

The system HΣ(@,∀) is sound with respect to the intended semantics.

Proposition 2 (Soundness). The deductive system for HΣ(@,∀) from Fig. 2
is sound.

The following lemma generalizes the results from [3], being essentially used
in the proof of the completeness theorem.

Lemma 1. 1. The following formulas are theorems:
(Nom) @s

kj → (@s
kφ ↔ @s

jφ)
for any t ∈ S, k, j ∈ NOMt ∪ Nt and φ a formula of sort t.

(Sym) @s
kj → @s

jk
where s ∈ S and j, k ∈ NOMt ∪ Nt for some t ∈ S,

(Bridge) σ(. . . φi1 , j, φi+1 . . .) ∧ @s
jφ → σ(. . . φi−1, φ, φi+1, . . .)

if σ ∈ Σs1...sn,s, j ∈ NOMsi
∪ Nsi

and φ is a formula of sort si.
2. if | s φ → j then | t σ(. . . , φ, . . .) → σ(. . . , j, . . .) ∧ @t

jφ
for any s, t ∈ S, σ ∈ Σt1···tn,t, j ∈ NOMs ∪ Ns and φ a formula of sort s.

Let ⊥s denote a formula of sort s that is nowhere true. If s ∈ S and Γs is a
set of formulas of sort s, then Γs is consistent if Γs �| s ⊥s. An inconsistent set
of formulas is a set of formulas of the same sort that is not consistent. Maximal
consistent sets are defined as usual.

In the rest of the section, we develop the proof of the strong completeness the-
orem for our hybrid logical systems, possibly extended with additional axioms.
If Λ is a set of formulas, we denote by H(@,∀) + Λ the system obtained when
the formulas of Λ are seen as additional axiom schemes. The main steps are:
the extended Lindenbaum Lemma, the construction of the Henkin model and
the Truth Lemma (all of them extending the similar results in the mono-sorted
case). In order to state our extended Lindenbaum Lemma, we need to define
the named, pasted and @-witnessed sets of formulas. The following definition is
technical, but its purpose is to define a set of conditions that allow us to prove
the Truth Lemma (Lemma 4), a central result defining the satisfaction of a for-
mula in the Henkin model (Definition 9), and a main step in the proof of the
completeness theorem (Theorem 2).

Definition 8 (Named, pasted and @-witnessed sets). Let s ∈ S and Γs be
a set of formulas of sort s from HΣ(@,∀). We say that

– Γs is named if one of its elements is a nominal or a constant nominal,
– Γs is pasted if, for any t ∈ S, σ ∈ Σs1···sn,t, k ∈ NOMt ∪Nt, and φ a formula

of sort si, whenever @s
kσ(. . . , φi−1, φ, φi+1, . . .) ∈ Γs there exists a nominal

j ∈ NOMsi
such that @s

kσ(. . . , φi−1, j, φi+1, . . .) ∈ Γs and @s
jφ ∈ Γs.
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– Γs is @-witnessed if the following two conditions are satisfied:
(-) for s′, t ∈ S , x ∈ SVARt, k ∈ NOMs′ ∪Ns′ and any formula φ of sort
s′, whenever @s

k∃xφ ∈ Γs there exists j ∈ NOMt such that @s
kφ[j/x] ∈ Γs,

(-) for any t ∈ S and x ∈ SVARt there is js ∈ NOMt such that @s
jx

x ∈ Γs.

Lemma 2 (Extended Lindenbaum Lemma). Let Λ be a set of formulas in
the language of HΣ(@,∀) and s ∈ S. Then any consistent set Γs of formulas of
sort s from HΣ(@,∀) + Λ can be extended to a named, pasted and @-witnessed
maximal consistent set by adding countably many nominals to the language.

We are now ready to define a Henkin model, see [1,3] for the mono-sorted
hybrid modal logic.

Definition 9 (The Henkin model). Let s ∈ S and assume Γs is a maximal
consistent set of formulas of sort s from HΣ(@,∀). For any t ∈ S and any
j ∈ NOMt ∪ Nt, we define |j| = {k ∈ NOMt ∪ N |@s

jk ∈ Γs}. The Henkin model

is MΓs = (WΓ , (RΓ
σ )σ∈Σ , (|c|)c∈N , V Γ ) where

WΓ
t = {|j| | j ∈ NOMt ∪ Nt} for any t ∈ S

(|j|, |j1|, . . . , |jn|) ∈ RΓ
σ iff @s

jσ(j1, . . . , jn) ∈ Γs for any σ ∈ Σt1···tn,t

V Γ
t (p) = {|j| | j ∈ NOMt ∪ Nt,@s

jp ∈ Γs}
for any t ∈ S and p ∈ PROPt

V Γ
t (j) = {|j|} for any t ∈ S and j ∈ NOMt.

Under the additional assumption that Γs is @-witnessed, we define the assign-
ment gΓ : SVAR → WΓ by

gΓ
t (x) = |j| where t ∈ S, x ∈ SVARt and j ∈ NOMt such that @s

jx ∈ Γs.

Lemma 3. The Henkin model from Definition 9 is well-defined.

Lemma 4 (Truth Lemma). Let s ∈ S and assume Γs is a named, pasted
and @-witnessed maximal consistent set of formulas of sort s from HΣ(@,∀).
For any sort t ∈ S, j ∈ NOMt ∪ Nt and for any formula φ of sort t, we have
MΓ , gΓ , |j| |t= φ iff @s

jφ ∈ Γs.

We are ready now to prove the strong completeness theorem for the hybrid
logic HΣ(@,∀) extended with axioms from Λ. For a logic L, the relation | s

L
denotes the local deduction, the relation |s=Mod(L) denotes the semantic entail-
ment w.r.t. models satisfying all the axioms of L, while |s=L denotes the semantic
entailment w.r.t. frames satisfying all the axioms of L.

Theorem 2 (Completeness).

1. Strong model-completeness. Let Λ be an S-sorted set of formulas and assume
Γs is a set of formulas of sort s for some s ∈ S. If Γs is a consistent set in
L = HΣ(@,∀)+Λ then Γs has a model that is also a model of Λ. Consequently,
for a formula φ of sort s, Γs|s=Mod(L)φ iff Γs | s

Lφ.
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2. Strong frame-completeness for pure extensions. Let Λ be an S-sorted set
of ∀∃-pure formulas and assume Γs is a set of formulas of sort s for some
s ∈ S. If Γs is a consistent set in L = HΣ(@,∀) + Λ then Γs has a model
based on a frame that validates every formula in Λ. For a formula φ of sort
s, Γs|s=L φ iff Γs | s

Lφ.

The following useful results can be easily proved semantically:

Proposition 3. 1. (Nominal Conjunction) For any formulas and any nominals
of appropriate sorts, the following hold:

(i1) σ(. . . , φi−1, φi, φi+1, . . .) ∧ @k(ψ) ↔ σ(. . . , φi−1, φi ∧ @k(ψ), φi+1, . . .)

(i2)
σ�(. . . , φi−1, φi, φi+1, . . .) ∧ @k(ψ) ↔

σ�(. . . , φi−1, φi ∧ @k(ψ), φi+1, . . .) ∧ @k(ψ)
2. If φ1, . . . φn are formulas of appropriate sorts and x is a state variable that

does not occur in φj for any j �= i then:
(i3) ∃xσ�(. . . , φi−1, φi, φi+1, . . .) → σ�(, . . . , φi−1,∃xφi, φi+1, . . .)

In the many-sorted setting one can wonder what happens if we have an S-
sorted set of deduction hypothesis Γ = {Γs}s∈S . The following considerations
hold for any of HΣ(@) and HΣ(@,∀). Clearly, a model M is a model of Γ if
M |s= γs for any s ∈ S and γs ∈ Γs (in this case we write M |= Γ). Using
the “broadcasting” properties of the @i operators, we define another syntactic
consequence relation:

Γ |s∼ φ iff there are s1, . . . , sn ∈ S, j1 ∈ NOMs1 , . . . , jn ∈ NOMsn
and

γ1 ∈ Γs1 , . . . , γn ∈ Γsn
such that | s @s

j1
γ1 ∧ · · · ∧ @s

jn
γn → φ.

Proposition 4 ( |s∼ soundness). Let Γ be an S-sorted set and φ a formula of
sort s ∈ S. If Γ |s∼ ϕ then M |= Γ implies M |s= φ for any model M.

Remark 3 (The modal logic HΣ(@)). The formulas of HΣ(@) are:
φs := p | j | ¬φs | φs ∨ φs | σ(φs1 , . . . , φsn

)s | @s
kφt

The deduction system is defined as follows:

– The axioms and the deduction rules of KΣ

– Axiom schemes: (K@), (SelfDual), (Back), (Agree), (Intro), (Ref)
– Deduction rules: (BroadcastS), (Gen@), (Subst), (Name@), (Paste)

The system HΣ(@) is sound and complete. We mention that one can prove
strong model-completeness results and strong frame-completeness results for
pure extensions as in Theorem2. See [19] for more details and full proofs.
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4 A SMC-like Language and a Hoare-Like Logic for It

To showcase the application of our logic into program verification, we have chosen
to specify a state-machine, whose expressions have side effects and where Hoare-
like semantics are known to be hard to use. Note that handling side effects in
Hoare logic does not come naturally, requiring one to define a separate axiomatic
semantics for expressions with a modified form of assertions in order to allow for
expression results tracking (see e.g. [26, Section 4.3]).

In Fig. 3, we introduce the signature Σ = (S,Σ,N) of our logic as a context-
free grammar (CFG) in a BNF-like form. We make use of the established equiv-
alence between CFGs and algebraic signatures (see, e.g., [16]), by mapping non-
terminals to sorts and CFG productions to operation symbols. Note that, due
to non-terminal renamings (e.g., AExp :: = Nat), it may seem that our syn-
tax relies on subsorting. However, this is done for readability reasons only. The
renaming of non-terminals in syntax can be thought of as syntactic sugar for
defining injection functions. For example, AExp :: = Nat can be thought of as
AExp :: = nat2Exp(Nat), and all occurrences of an integer term in a context,
in which an expression is expected, could be wrapped by the nat2Exp function.

Our language is inspired by the SMC machine [21] which consists of a set
of transition rules defined between configurations of the form 〈S,M,C〉, where
S is the value stack of intermediate results, M represents the memory, mapping
program identifiers to values, and C is a control stack of commands represent-
ing the control flow of the program. Since our target is to extend Propositional
Dynamic Logic (PDL) [15], we identify the control stack with the notion of pro-
gram in dynamic logic, and use the “;” operator to denote stack composition. We
define our formulas to stand for configurations of the form 〈vs,mem〉 comprising
a value stack and a memory. Hence, the sorts CtrlStack and Config correspond
to programs and formulas from PDL, respectively. Inspired by PDL, we use the
dual modal operator [ ] : CtrlStack × Config → Config to assert that a config-
uration formula must hold after executing the commands in the control stack.
The axioms defining the dynamic logic semantics of the SMC machine are then
formulas of the form cfg → [ctrl]cfg′ saying that a configuration satisfying cfg
must change to one satisfying cfg′ after executing ctrl. The usual operations of
dynamic logic “ ;, ∪, ∗ ” are defined accordingly [15, Chapter 5]. We depart from
PDL with the definition of ? (test): in our setting, in order to take a decision,
we test the top value of the value stack. Consequently, the signature of the test
operator is ? : Val → CtrlStack .

A deductive system, that allows us to accomplish our goal, is defined in Fig. 3.
In this way we define an expansion of H(@,∀). Our definition is incomplete (e.g.
we do not fully axiomatize the natural numbers), but one can see that, e.g.
NBool = {true, false}. To simplify the presentation, we omit sort annotations
in the sequel; these should be easily inferrable from the context.

Remark 4. Assume that Λ contains all the axioms from Fig. 3 and denote
L = H(@,∀) + Λ. Then L is a many-valued hybrid modal system associated
to our language, and all results from Sect. 3 applies in this case. In particular,
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Domains

Nat ::= natural numbers

Bool ::= true | false | Nat == Nat | Nat <= Nat

Syntax

Var ::= program variables

AExp ::= Nat | Var | AExp + AExp

| ++ Var

BExp ::= AExp <= AExp

Stmt ::= x := AExp

| if BExp

then Stmt

else Stmt

| while BExp do Stmt

| skip

| Stmt ; Stmt

Semantics

Val ::= Nat | Bool

ValStack ::= nil

| Val . ValStack

Mem ::= empty | set(Mem, x, n)

CtrlStack ::= c(AExp)

| c(BExp)

| c(Stmt)

| asgn(x)

| plus | leq

| Val ?

| c1 ; c2

Config ::= < ValStack, Mem >

Domains axioms (incomplete)

(B1) true↔ ¬ false (I1) @Nat
true(x == y) → (x ↔ y)

. . . . . .

PDL-inspired axioms

(A∪) [π ∪ π′]γ ↔ [π]γ ∧ [π′]γ (A; ) [π;π′]γ ↔ [π][π′]γ
(A?) 〈v · vs, mem〉 → [v?] 〈vs, mem〉 (A¬?) 〈v · vs, mem〉 ∧ @v(¬v′) → [v′?]⊥
(A∗) [π∗]γ ↔ γ ∧ [π][π∗]γ (AInd) γ ∧ [π∗](γ → [π]γ) → [π∗]γ
Here, π, π′ are formulas of sort CtrlStack (“programs”), γ is a formula of sort Config
(the analogue of “formulas” from PDL), v and v′ are state variables of sort V ar, vs
has the sort V alStack and mem has the sort Mem.

SMC-inspired axioms

(CStmt) c(s1; s2) ↔ c(s1); c(s2)
(Aint) 〈vs, mem〉 → [c(n)] 〈n · vs, mem〉 where n is an integer
(Aid) 〈vs, set(mem, x, n〉) → [c(x)] 〈n · vs, set(mem, x, n〉)
(A ++) 〈vs, set(mem, x, n〉) → [c(+ + x)] 〈n + 1 · vs, set(mem, x, n + 1〉)
(Dplus) c(a1 + a2) ↔ c(a1); c(a2);plus
(Aplus) 〈n2 · n1 · vs, mem〉 → [plus] 〈(n1 + n2〉 · vs, mem)
(Dleq) c(a1 <= a2) ↔ c(a2); c(a1); leq
(Aleq) 〈n1 · n2 · vs, mem〉 → [leq] 〈(n1 ≤ n2〉 · vs, mem)
(Askip) γ → [c(skip)]γ
(Dasgn) c(x := a) ↔ c(a);asgn (x)
(Aasgn) 〈n · vs, mem〉 → [asgn (x)] 〈vs, set(mem, x, n〉)
(Dif) c(if b then s1 else s2) ↔ c(b); ((true ?; c(s1)) ∪ (false ?; c(s2)))
(Dwhile) c(while b do s) ↔ c(b); (true?; c(s); c(b))∗; false?

Memory consistency axioms

(AMem1) set(set(mem, x, n), y, m) ↔ set(set(mem, y, m), x, n)
where x and y are distinct

(AMem2) set(set(mem, x, n), x, m) → set(mem, x, m)

Fig. 3. Axioms defining an SMC-like programming language
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the system enjoys strong model-completeness. Moreover, we can safely assume
that Λ contains only ∀∃-pure formulas, so L is strongly complete w.r.t the class
of frames satisfying Λ by Theorem 2.

We present below several Hoare-like rules of inference. Note that they are
provable from the PDL and language axioms.

Proposition 5. The following rules are admissible:

1. Rules of Consequence
If  φ → [α]ψ and  ψ → χ then  φ → [α]χ.
If  φ → [α]ψ and  χ → φ then  χ → [α]ψ.

2. Rule of Composition, iterated
If φ0 → [α1]φ1, . . . , φn−1 → [αn]φn, then φ0 → [α1; . . . ;αn]φn.

3. Rule of Conditional
If B is a formula of sort Bool, and vs, mem, P are formulas of appropriate
sorts such that
(h1)  φ → [c(b)](〈B · vs,mem〉 ∧ P ),
(h2)  〈vs,mem〉 ∧ P ∧ @true(B) → [c(s1)]χ
(h3)  〈vs,mem〉 ∧ P ∧ @false(B) → [c(s2)]χ
(h4)  P → [α]P for any α of sort CtrlStack,
then  φ → [c(if b then s1 else s2)]χ

Note that our Rule of Conditional requires two more hypotheses, (h1) and
(h4) than the inspiring rule in Hoare-logic. (h1) is needed because language
expressions are no longer identical to formulas and need to be evaluated; in
particular this allows for expressions to have side effects. (h4) is useful to carry
over extra conditions through the rule; note that (h4) holds for all @jϕ formulas.

Similarly, the Rule of Iteration needs to take into account the evaluation steps
required for evaluating the condition. Moreover, since assignment is now handled
by a forwards-going operational rule, we require existential quantification over
the invariant to account for the values of the program variables in the memory,
and work with instances of the existentially quantified variables.

As before, one can see [19] for the full proofs of the subsequent results.

Proposition 6 (Rule of Iteration). Let B, vs, mem, and P be formulas with
variables over x, where x is a set of state variables. If there exist substitutions
xinit and xbody for the variables of x such that:

(h1)  φ → [c(b)](〈B · vs,mem〉 ∧ P )[xinit/x],
(h2)  〈vs,mem〉 ∧ P ∧ @true(B) → [c(s); c(b)](〈B · vs,mem〉 ∧ P )[xbody/x]
(h3)  P → [α]P for any formula α of sort CtrlStack

then  φ → [c(while b do s)]∃x 〈vs,mem〉 ∧ P ∧ @false(B).
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Proving a Program Correct. Let us now exhibit proving a program using the
operational semantics and the Hoare-like rules above. Consider the program:

s := 0 ; i := 0 ;
while ++ i <= n do s := s + i ;

Let pgm stand for the entire program. We want to prove that if the initial
value of n is any natural number, then the final value of s is the sum of numbers
from 1 to n. Formally,

〈vs, set(mem, n, vn〉 →
[c(pgm)] 〈vs, set(set(set(mem, n, vn〉 , s, vn ∗ (vn + 1)/2), i, vn + 1))

Let Cnd stand for + + i <= n and Body stand for s := s + i. By applying
the axioms above we can decompose pgm as

c(pgm) ↔ c(0);asgn (s); c(0);asgn (i); c(while Cnd do Body)

Similarly, c(Cnd) ↔ c(+ + i); c(n); leq and c(Body) ↔ c(s); c(i);plus;asgn (s).
We have the following instantiations of the axioms:

〈vs, set(mem, n, vn)〉 → [c(0)] 〈0 · vs, set(mem, n, vn)〉 Aint
〈0 · vs, set(mem, n, vn)〉 → [asgn(s)] 〈vs, set(set(mem, n, vn), s, 0)〉 Aasgn
〈vs, set(set(mem, n, vn), s, 0)〉 → [c(0)] 〈0 · vs, set(set(mem, n, vn), s, 0)〉 Aint
〈0 · vs, set(set(mem, n, vn〉 , s, 0))

→ [asgn(i)] 〈vs, set(set(set(mem, n, vn), s, 0), i, 0)〉 Aasgn
And by applying the Rule of Composition we obtain:

(1) 〈vs, set(mem, n, vn〉)
→ [c(0);asgn (s); c(0);asgn (i)] 〈vs, set(set(set(mem, n, vn), s, 0), i, 0)〉

We now want to apply the Rule of Iteration. First let us handle the condition.
Similarly to the “stepping” sequence above, we can use instances of (A++),
(Aid), (Aleq), and the Rule of Composition to chain them to obtain:
〈vs, set(set(set(mem, n, vn), s, 0), i, 0)〉

→ [c(Body)] 〈(1 ≤ vn) · vs, set(set(set(mem, s, 0), i, 1), n, vn)〉
Let x = vi, B = vi ≤ vn, vs = vs, mem = set(set(set(mem, s,

(vi− 1) ∗ vi/2), i, vi), n, vn), P = @true(vi ≤ vn+1). For xinit = 1 we have that
B[1/vi] = 1 ≤ vn, mem[1/vi] = set(set(set(mem, s, (1 − 1) ∗ 1/2), i, 1), n, vn),
P [1/vi] = @true(1 ≤ vn + 1). Using that (1 − 1) ∗ 1/2 ↔ 0 and 1 ≤ vn + 1 we
obtain
(2) 〈vs, set(set(set(mem, n, vn), s, 0), i, 0)〉 → [c(Cnd)](〈B · vs,mem〉 ∧ P )[1/vi]

Now, we can again use instances of (Aid), (Aid), (Aplus), (Aasgn), (AMem),
(A++), (AId), (Aleq), and the Rule of Composition to derive
〈vs, set(set(set(mem, i, vi), n, vn), s, (vi − 1) ∗ vi/2)〉 → [c(Body); c(Cnd)]

〈(vi + 1 ≤ vn) · vs, set(set(set(mem, s, vi ∗ (vi + 1)/2, i, vi + 1), n, vn)〉
By applying equivalences between formulas on naturals, the above leads to

〈vs, set(set(set(mem, i, vi), n, vn), s, (vi − 1) ∗ vi/2)〉
→ [c(Body); c(Cnd)] 〈B · vs,mem〉 [vi + 1/vi]

Using Proposition 3 (i2) and the fact that vi ≤ vn ↔ vi+1 ≤ vn+1, we obtain
(3)〈B · vs,mem〉 ∧ P ∧ @true(B)

→ [c(Body); c(Cnd)](〈B · vs,mem〉 ∧ P )[vi + 1/vi]
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Now using the Rule of Iteration with (2) and (3) we derive that
〈vs, set(set(set(mem, n, vn), s, 0), i, 0)〉

→ [c(while Cnd do Body)]∃vi. 〈B · vs,mem〉 ∧ P ∧ @false(B)
By arithmetic reasoning,  (false → vi ≤ vn) ↔ (true → vn + 1 ≤ vi),
hence  @false(vi ≤ vn) ↔ @true(vn + 1 ≤ vi). Moreover, @true(vn + 1 ≤
vi)∧@true(vi ≤ vn+1) ↔ @true(vn+1 ≤ vi∧vi ≤ vn+1) which by arithmetic
reasoning is equivalent to @true(vi =Nat vn + 1), which by (I1) is equivalent
to vi ↔ vn + 1 which allows us to substitute vi by vn + 1 and eliminate the
quantification, leading to

∃vi. 〈vs,mem〉 ∧ P ∧ @false(B) ↔ 〈vs,mem〉 [vn + 1/vi], hence,

(4) 〈vs,mem′〉 → [c(while Cnd do Body)] 〈vs,mem′′〉
where mem′′ = set(set(set(mem, s, vn ∗ (vn + 1)/2), i, vn + 1), n, vn),

mem′ = set(set(set(mem, n, vn), s, 0), i, 0).
Using the Rule of Composition on (1) and (4) we obtain our goal.

5 Conclusions and Related Work

We defined a general many-sorted hybrid polyadic modal logic that is sound and
complete with respect to the usual modal semantics. From a theoretical point of
view, we introduced nominal constants and we restricted the application of the
satisfaction operators to nominals alone. We proved that the system is sound
and complete and we also investigated the completeness of its pure axiomatic
expansions. Given a concrete language with a concrete SMC-inspired operational
semantics, we showed how to define a corresponding (sound and complete) logical
system and we also proved (rather general) results that allow us to perform
Hoare-style verification. Our approach was to define the weakest system that
allows us to reach our goals.

There is an abundance of research literature on hybrid modal logic, we refer to
[1] for a comprehensive overview. Our work was mostly inspired by [3,5,12,13],
where a variety of hybrid modal logics are studied in a mono-sorted setting.
We need to make a comment on our system’s expressivity: the strongest hybrid
language employs both the existential binder and satisfaction operator for state
variables (i.e. @x with x ∈ SVAR). Our systems seems to be weaker, but the
exact relation will be analyzed elsewhere.

Concerning hybrid modal systems in many-sorted setting, we refer to [8,10].
The system from [8] is built upon differential dynamic logic, while the one from
[10] is equationally developed, does not have nominals and satisfaction operators,
the strong completeness being obtained in the presence of a stronger operator
called definedness (which is the modal global operator). Note that, when the
satisfaction operator is defined on state variables, the global modality is definable
in the presence of the universal binder. However, we only have the satisfaction
operator defined on nominals, so, again, our system seems to be weaker.

There are many problems to be addressed in the future, both from theoretical
and practical point of view. We should definitely analyze the standard translation



462 I. Leuştean et al.

[6, Section 2.2] and clarify the issues concerning expressivity; we should study the
Fischer-Ladner closure [15, Section 6.1] and analyze completeness w.r.t. standard
models from the point of view of dynamic logic; of course we should analyze more
practical examples and even employ automatic techniques.

To conclude, the analysis of hybrid modal logic in a many-sorted setting leads
us to a general system, that is theoretically solid and practically flexible enough
for our purpose. We were able to specify a programming language, to define
its operational semantics and to perform Hoare-style verification, all within the
same deductive system. Modal logic proved to be, once more, the right framework
and in the future we hope to take full advantage of its massive development.

Acknowledgement. The authors wish to thank the anonymous reviewers whose com-
ments and suggestions have led to an improved version of our work.

A Proofs from Sect. 3

Proposition 1 (Pure formulas in HΣ(@,∀)). Let M be a named model where
M = (W, (Rσ)σ∈Σ , (wc)c∈N , V ), F = (W, (Rσ)σ∈Σ , (wc)c∈N ) the corresponding
frame and φ a ∀∃-pure formula of sort s. Then F |s= φ if and only if M |s= φ.

Proof Let φ be a pure formula of sort s and suppose F �|s= φ. Then there exist
a valuation V ′ and some state w ∈ Ws in the model M′ = (F , V ′) such that
M′, w �|s= φ.

On each sort s ∈ S we will notate js
1 , . . . , j

s
t all the nominals occurring in

φ. But because we are working in a named model, V labels every state of any
sort in F with a nominal of the same sort. Hence, on each sort s ∈ S there
exist ks

1, . . . , k
s
t nominals such that V N

s (js
1) = V ′

s (ks
1), . . . ,V N

s (js
t ) = V ′

s (ks
t ).

Therefore, if M′, w �|s= φ and ψ is obtained by substituting on each sort each
nominal js

i with the corresponding one ks
i , then M, w �|s= ψ.

But φ is a pure formula, and by substituting the nominals contained in the
formula with other nominals of the same sort, the new instance it is also a pure
formulas like ψ. Therefore, by hypothesis, we have M, v |s= ψ for any v ∈ Ws.
But also w ∈ Ws, hence M, w |s= ψ, and we have a contradiction.

Next, suppose M |s= ∀x1 . . . ∀xn∃y1 . . . ∃ynφ where y1, . . . , yn do not occur
in φ. Hence, for any g and any w of sort s, M, g, w |s= ∀x1 . . . ∀xn∃y1 . . . ∃ynφ

where y1, . . . , yn do not occur in φ. So, for any assignment g′ x1,...,xn∼ g exists
an assignment g′′ y1,...,yn∼ g′ such that M, g′′, w |s= φ(x1, . . . , xn, y1, . . . , yn).
Let g′(xi) = {wi} and g′′(yi) = {w′

i} for any i ∈ [n]. Because we work with
named model, there exist nominals ki and ji such that V N

s (ki) = {wi} and
V N

s (ji) = {w′
i} for any i ∈ [n]. Therefore, we get for any k1, . . . , kn exist

j1, . . . , jn such that M, g′′, w |s= φ[k1/x1, . . . , kn/xn, j1/y1, . . . , jn/yn]. But now
we have a pure formula and the assignment function will not affect the satis-
fiability of the formula. Therefore, for any k1, . . . , kn exist j1, . . . , jn such that
F |s= φ[k1/x1, . . . , kn/xn, j1/y1, . . . , jn/yn]. Therefore, for any assignment g and
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any w of sort s we have that for any k1, . . . , kn there exist j1, . . . , jn such
that M′, g, w |s= φ[k1/x1, . . . , kn/xn, j1/y1, . . . , jn/yn]. We use the contraposi-
tive of (Q2) axiom to get that M′, g, w |s= ∃y1 . . . ∃ynφ[k1/x1, . . . , kn/xn] and by
Lemma 7 we get that for any assignment g and any w of sort s we have that
M′, g, w |s= ∀x1, . . . ,∀xn∃y1 . . . ∃ynφ if and only if F |s= ∀x1, . . . ,∀xn∃y1 . . . ∃ynφ.

��
Before proceeding with the next results from Sect. 3, we need to prove some

lemmas that are generalization of [4].
Nominals and constant nominals are always substitutable for state variables

of the same sort. If x and z are state variables of the sort s, then we define:

– if φ ∈ PROPs ∪ SVARs ∪ NOMs ∪ Ns, then z is substitutable for x in φ,
– z is substitutable for x in ¬φ iff z is substitutable for x in φ,
– z is substitutable for x in φ ∨ ψ iff z is substitutable for x in φ and ψ,
– z is substitutable for x in σ(φ1, . . . , φn) iff z is substitutable for x in φi for

all i ∈ [n],
– z is substitutable for x in @s

jφ iff z is substitutable for x in φ,
– z is substitutable for x in ∀y φ iff x does not occur free in φ, or y �= z and z

is substitutable for x in φ.

In the sequel, we will say that a substitution is legal if it perform only allowed
replacements. If φ is a formula and x is a state variable we denote by φ[z/x] the
formula obtained by substituting z for all free occurrences of x in φ (z must be
a nominal, a constant nominal or a state variable substitutable for x).

Lemma 5 (Agreement Lemma). Let M be a standard model. For all stan-
dard M-assignments g and h, all states w in M and all formulas φ of sort s ∈ S,
if g and h agree on all state variables occurring freely in φ, then:

M, g, w |s= φ iff M, h, w |s= φ

Proof. We suppose that g and h agree on all state variables occurring freely in
φ on each sort. We prove this lemma by induction on the complexity of φ:

– M, g, w |s= a iff a ∈ PROPs∪NOMs∪Ns we have w ∈ V N
s (a) iff M, h, w |s= a.

– M, g, w |s= x iff x ∈ SVARs we have w = gs(x), but gs(x) = hs(x), therefore
M, h, w |s= x.

– M, g, w |s= ¬φ iff M, g, w �|s= φ. But, if g and h agree on all state variables
occurring freely in ¬φ, then same for φ. Therefore, from the induction hypoth-
esis, M, g, w |s= φ iff M, h, w |s= φ. Then M, g, w �|s= φ iff M, h, w �|s= φ. Then
M, h, w |s= ¬φ.

– M, g, w |s= φ ∨ ψ, iff M, g, w |s= φ or M, g, w |s= ψ. But, g and h agree on all
state variables occurring freely in φ or ψ, then from induction hypothesis, we
have (M, g, w |s= φ iff M, h, w |s= φ) or (M, g, w |s= ψ iff M, h, w |s= ψ). Then,
(M, h, w |s= ψ or M, h, w |s= ψ) iff M, h, w |s= φ ∨ ψ.
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– M, g, w |s= σ(φ1, . . . , φn) iff there is (w1, . . . , wn) ∈ Ws1 × · · · × Wsn
such

that Rσww1 . . . wn and M, g, wi |si= φi for each i ∈ [n], then, by induction
hypothesis M, h, wi |si= φi for each i ∈ [n]. Hence, we have that there is
(w1, . . . , wn) ∈ Ws1 × · · · × Wsn

such that Rσww1 . . . wn and M, h, wi |si= φi

for each i ∈ [n] iff M, h, w |s= σ(φ1, . . . , φn).

– M, g, w |s= @s
jφ iff M, g, v |s

′
= φ where V N

s′ (j) = {v} iff M, h, v |s
′

= φ where
V N

s′ (j) = {v} (induction hypothesis) iff M, h, w |s= @s
jφ.

– M, g, w |s= ∀xφ iff ∀g′(g′ x∼ g implies M, g′, w |s= φ). But g and h agree on
all state variables occurring freely in ∀xφ and because x is bounded, then
hs(y) = gs(y) for any y �= x. Therefore, ∀g′(g′

s(y) = gs(y) = hs(y) for any
y �= x implies M, g′, w |s= φ) equivalent with ∀g′(g′ x∼ h implies M, h′, w |s= φ)
iff M, h, w |s= ∀xφ. ��

Lemma 6 (Substitution Lemma). Let M be a standard model. For all stan-
dard M-assignments g, all states w in M and all formulas φ, if y is a state
variable that is substitutable for x in φ and j is a nominal then:

– M, g, w |s= φ[y/x] iff M, g′, w |s= φ where g′ x∼ g and g′
s(x) = gs(y)

– M, g, w |s= φ[j/x] iff M, g′, w |s= φ where g′ x∼ g and g′
s(x) = V N

s (j)

Proof. By induction on the complexity of φ.

– φ = a, a ∈ PROPs ∪ NOMs ∪ Ns. Then a[y/x] = a and M, g, w |s= a[y/x]
if and only if M, g, w |s= a if and only if w ∈ V N

s (a). But g′ x∼ g and by
Agreement Lemma M, g′, w |s= a.

– φ = z, where z ∈ SVARs. We have two cases:
1. If z �= x, then M, g, w |s= z[y/x] if and only if M, g, w |s= z if and only if

M, g′, w |s= z (Agreement Lemma).
2. If z = x, then M, g, w |s= z[y/x] if and only if M, g, w |s= y if and only if

w ∈ gs(y) if and only if w ∈ g′
s(x) if and only if w ∈ g′

s(z) if and only if
M, g′, w |s= z.

– φ = ¬φ, then M, g, w |s= ¬φ if and only if M, g, w �|s= φ if and only if
M, g′, w �|s= φ (inductive hypothesis) if and only if M, g′, w |s= ¬φ.

– φ = φ ∨ ψ, then M, g, w |s= (φ ∨ ψ)[y/x] if and only if M, g, w |s= φ[y/x] or
M, g, w |s= ψ[y/x] if and only if M, g′, w |s= φ or M, g′, w |s= ψ (inductive
hypothesis) if and only if M, g′, w |s= φ ∨ ψ.

– φ = σ(φ1, . . . , φn), then M, g, w |s= σ(φ1, . . . , φn)[y/x] if and only if M, g, w |s=
σ(φ1[y/x], . . . , φn[y/x]) if and only if exists (u1, . . . , un) ∈ Ws1 × . . . × Wsn

such that Rσwu1 . . . un and M, g, ui |si= φi[y/x] for any i ∈ [n] if and only
if there exists (u1, . . . , un) ∈ Ws1 × . . . × Wsn

such that Rσwu1 . . . un and
M, g′, ui |si= φi for any i ∈ [n] (inductive hypothesis) if and only if M, g′, w |s=
σ(φ1, . . . , φn).

– φ = @s
jφ, then M, g, w |s= @s

jφ[y/x] if and only if M, g, v |s= φ[y/x] where

V N
s′ (j) = {v} if and only if M, g′, v |s

′
= φ where V N

s′ (j) = {v} (inductive
hypothesis) if and only if M, g′, w |s= @s

jφ.
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– φ = ∀xφ, then M, g, w |s= (∀xφ)[y/z] if and only if M, g, w |s= (∀xφ)[y/z] if
and only if M, g, w |s= ∀xφ if and only if M, g′, w |s= ∀xφ (Agreement Lemma).

For the next case we will use the notation gx←y to specify that x is substituted
by y, therefore, if x if free in a formula, after substitution we will not have any
more x.

Claim 1 (1). The following two statements are equivalent:

• For all g′, if g′ z∼ g then M, g′x←y, w |s= φ.
• For all g′, if g′ z∼ gx←y then M, g′, w |s= φ.

Proof. Suppose for all g′, if g′ z∼ g then M, g′x←y, w |s= φ and g′ z∼ gx←y. Since
g′

s(o) = gx←y
s (o) for any o �= z and x �= z, then g′

s(x) = gx←y
s (x) = gs(y).

Therefore, g′
s = g′

s
x←y and g′ = g′x←y. Hence, M, g′, w |s= φ. Next, suppose for

all g′, if g′ z∼ gx←y then M, g′, w |s= φ and g′ z∼ g. Therefore, g′x←y
s

z∼ gx←y
s , so

g′x←y z∼ gx←y. From second case, we have that M, g′x←y, w |s= φ.

– φ = ∀zφ, where z �= x. Suppose M, g, w |s= (∀zφ)[y/x] iff M, g, w |s=
∀z(φ[y/x]) iff for all g′, if g′ z∼ g then M, g′, w |s= φ[y/x] iff for all g′, if g′ z∼ g

then M, g′x←y, w |s= φ (induction hypothesis) iff or all g′, if g′ z∼ gx←y then
M, g′, w |s= φ (Claim 1) iff M, gx←y, w |s= ∀zφ where g′

s(x) = g(y) and g′ z∼ g

iff M, g′, w |s= ∀zφ where g′
s(x) = gs(y) and g′ z∼ g (Agreement Lemma).

For the second case, when substituting with a nominal, the proof is similar. ��
Lemma 7 (Generalization on nominals). Assume | s φ[i/x] where i ∈
NOMt and x ∈ SVARt for some t ∈ S. Then there is a state variable y ∈ SVARt

that does not appear in φ such that | s φ[y/x]

Proof. There are two cases. First, let us suppose that x does not occur free in φ,
therefore φ[j/x] is identical to φ[y/x], hence as φ[j/x] is provable, so is ∀yφ[y/x]
for any choice of y.

Secondly, suppose that x occur free in φ. Suppose φ[j/x]. Hence we have a
proof of φ[j/x] and we choose any variable y that does not occur in the proof,
or in φ. We replace every occurrence of j in the proof of φ[j/x] with y. It follows
by induction on the length of proofs that this new sequence is a proof of φ[y/x].
By generalization we extend the proof with ∀y(φ[y/x]) and we can conclude that
∀y(φ[y/x]) is provable. ��

We are ready now to proceed with the proves from Sect. 3.

Proposition 2 (Soundness). The deductive systems for HΣ(@,∀) from Fig. 2
is sound.

Proof. Let M be an arbitrary model and w any state of sort s.
(K@) Suppose M, g, w |s= @s

j(φt → ψt) if and only if M, g, v |t= φt → ψt where

V N
t (j) = {v} iff M, g, v |t= φt implies M, g, v |t= ψt where V N

t (j) = {v}. Suppose
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M, g, w |s= @s
jφt and V N

t (j) = {v}. Then M, g, v |t= φt where V N
t (j) = {v} , but

this implies that M, g, v |t= ψt where V N
t (j) = {v} iff M, g, w |s= @s

jψt.

(Agree) Suppose M, g, w |t
′

= @t′
k @t

jφs iff M, g, v |t= @t
jφs where V N

t (k) = {v}
iff M, g, u |s= φs where V N

t (k) = {v} and V N
s (j) = {u}. Then M, g, u |s= φs

where V N
s (j) = {u} which implies that M, g, w |t

′
= @t′

j φs.

(SelfDual) Suppose M, g, w |s= ¬@s
j¬φt iff M, g, w �|s= @s

j¬φt iff M, g, v �|t=
¬φt where V N

t (j) = {v} iff M, g, v |t= φt where V N
t (j) = {v} iff M, g, w |s= @s

jφt.
(Back) Suppose M, g, w |s= σ(. . . , φi−1,@si

j ψt, φi+1, . . .)s if and only if there
is (w1, . . . , wn) ∈ Ws1 × · · · × Wsn

such that Rσww1 . . . wn and M, g, wi |si= φi

for any i ∈ [n]. This implies that there is wi ∈ Wsi
such that M, g, wi |si= @si

j ψt,

then M, g, v |t= ψt where V N
t (j) = {v}. Hence, M, g, w |s= @s

jψt

(Ref) Suppose M, g, w �|s= @s
jjt. Then M, g, v �|t= j where V N

t (j) = {v},
contradiction.

(Intro) Suppose M, g, w |s= j and M, g, w |s= φs. Then V N
s (j) = {w} and

M, g, w |s= φs implies that M, g, w |s= @s
jφs. Now, suppose M, g, w |s= j and

M, g, w |s= @s
jφs. Because, from the first assumption, we have V N

s (j) = {w},
then, form the second one, we can conclude that M, g, w |s= φs.

(Q1) Suppose that M, g, w |s= ∀x(φ → ψ) iff M, g′, w |s= φ → ψ for all g′ x∼ g.
Results that for all g′ x∼ g we have M, g′, w |s= φ implies M, g′, w |s= ψ. But φ

contains no free occurrences of x, then for all g′ x∼ g we have (M, g, w |s= φ implies
M, g′, w |s= ψ). Hence, M, g, w |s= φ implies that, for all g′ x∼ g, M, g′, w |s= ψ.
Then, M, g, w |s= φ implies that M, g, w |s= ∀ψ iff M, g, w |s= φ → ∀xψ.

(Q2) Suppose that M, g, w |s= ∀xφ. We need to prove that M, g′, w |s= φ[y/x].
But this is equivalent, by Substitution Lemma, with proving that M, g′, w |s= φ

where g′ x∼ g and g′
s(x) = gs(y). But M, g, w |s= ∀xφ iff M, g′, w |s= φ for all

g′ x∼ g. Let g′
s(z) = gs(y), if z = x, and g′

s(z) = gs(z), otherwise. Therefore,
we have g′ x∼ g , g′

s(x) = gs(y) and M, g′, w |s= φ. For the case of substituting
with a nominal is similar. We define g′

s(x) = V N
s (j), if z = x, and g′

s(z) = gs(z),
otherwise.

(Name) Suppose that M, g, w |s= ∃xx iff exists g′ x∼ g and M, g′, w |s= x. We
choose g′ an x-variant of g such that g′

s(x) = {w}.
(Barcan) Suppose M, g, w |s= ∀xσ�(φ1, . . . , φn) then for all g′ x∼ g, and for

all wi ∈ Wsi
, i ∈ [n], Rσww1 . . . wn implies M, g′, wi |si= φi for all i ∈ [n]. But g

and g′ agree on all state variables occurring freely. Therefore, for all wi ∈ Wsi
,

i ∈ [n], Rσww1 . . . wn and all g′ x∼ g , we have M, g, wi |si= φi for all i ∈ [n] and
i �= l and M, g′, wl |sl= φl. Hence, for the l-th argument, we have M, g, wl |sl= ∀xφl.
So, M, g, w |s= σ�(φ1, . . . ,∀xφl . . . φn).

(Barcan@) Suppose M, g, w |s= ∀x@s
jφ iff M, g′, w |s= @s

jφ for all g′ x∼ g.

Then, M, g′, v |t= φ for all g′ x∼ g where V N
t (j) = {v} and so M, g, v |t= ∀xφ

where V N
t (j) = {v}. Hence, M, g, w |s= @s

j∀xφ.
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(Nom x) Suppose M, g, w |s= @s
jx and M, g, w |s= @s

kx. Then M, g, v |t= x

where V N
t (j) = {v} and M, g, u |t= x where V N

t (k) = {u}. This implies that
u = v, so V N

t (j) = V N
t (k). Then M, g, w |s= @s

jk for any model M and any
world w.

(BroadcastS) Suppose M, g, w |s= @s
jφt if and only if M, g, v |t= φt where

V N
t (j) = {v}. Hence, for any s′ ∈ S we have M, g, w |s

′
= @s′

j φt.
Now, let M be an arbitrary named model.

(Name@) Suppose M, g, w |s= @s
jφ iff M, g, v |s

′
= φ where V N

s′ (j) = {v}, but
we work in named models, therefore, in any model M there exist v and j where

V N
s′ (j) = {v} and this implies M, g, v |s

′
= φ.

(Paste) Suppose M, g, w |s= @s
jσ(ψ1, . . . , ψi−1, k, ψi+1, . . . , ψn) ∧ @s

kφ → ψ

iff M, g, w |s= @s
jσ(ψ1, . . . , ψi−1, k, ψi+1, . . . , ψn) and M, g, w |s= @s

kφ implies

M, g, w |s= ψ. Hence, M, g, v |s
′

= σ(ψ1, . . . , ψi−1, k, ψi+1, . . . , ψn) where V N
s′ (j) =

{v} iff exists (v1, . . . , vn) ∈ Ws1 × . . . × Wsn
such that Rσvv1 . . . vi . . . vn where

V N
s′ (j) = {v} and M, g, ve |s

′
= ψe for any e ∈ [n], e �= i and M, g, vi |si= k iff

V N
si

(k) = {vi}. If M, g, w |s= @s
k and V N

si
(k) = {vi}, then M, g, vi |si= φ.

Then, if there exists (v1, . . . , vn) ∈ Ws1 × . . . × Wsn
such that

Rσvv1 . . . vi . . . vn where V N
s′ (j) = {v} and M, g, ve |s

′
= ψe for any e ∈

[n], e �= i and M, g, vi |si= φ, these imply M, g, w |s= ψ. So, M, g, v |s
′

=
σ(ψ1, . . . , ψi−1, φ, ψi+1, . . . , ψn) where V N

s′ (j) = {v} implies M, g, w |s= ψ.

In conclusion, M, g, w |s
′

= @s
jσ(ψ1, . . . , ψi−1, φ, ψi+1, . . . , ψn) → ψ. ��

In the sequel, by PL we mean classical propositional logic and by ML we mean
the basic modal logic.

Lemma 1.

1. The following formulas are theorems:
(Nom) @s

kj → (@s
kφ ↔ @s

jφ)
for any t ∈ S, k, j ∈ NOMt ∪ Nt and φ a formula of sort t.

(Sym) @s
kj → @s

jk
where s ∈ S and j, k ∈ NOMt ∪ Nt for some t ∈ S,

(Bridge) σ(. . . φi1 , j, φi+1 . . .) ∧ @s
jφ → σ(. . . φi−1, φ, φi+1, . . .)

if σ ∈ Σs1...sn,s, j ∈ NOMsi
∪ Nsi

and φ is a formula of sort si.
2. if | s φ → j then | t σ(. . . , φ, . . .) → σ(. . . , j, . . .) ∧ @t

jφ
for any s, t ∈ S, σ ∈ Σt1···tn,t, j ∈ NOMs ∪ Ns and φ a formula of sort s.

Proof. 1. (Nom)
(1) | t j → (φ ↔ @t

jφ) (Intro)
(2) | s @s

k(j → (φ ↔ @t
jφ)) (Gen@)

(3) | s @s
k(j → (φ ↔ @t

jφ)) → (@s
kj → @s

k(φ ↔ @t
jφ)) (K@)

(4) | s @s
kj → @s

k(φ ↔ @t
jφ) (MP ) : (2), (3)

(5) | s @s
k(φ ↔ @t

jφ) ↔ (@s
kφ ↔ @s

k@t
jφ) ML
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(6) | s @s
kj → (@s

kφ ↔ @s
k@t

jφ) PL:(4), (5)
(7) | s @s

k@t
jφ ↔ @s

jφ (Agree)
(8) | s @s

kj → (@s
kφ ↔ @s

jφ) PL:(6), (7)

(Sym)
(1) | s @s

kj ∧ @s
jk → @s

jk Taut
(2) | s @s

kj ∧ @s
jk → @s

jk) → (@s
kj → (@s

jk → @s
jk)) Taut

(3) | s @s
kj → (@s

jk → @s
jk) (MP ) : (1), (2)

(4) | s (@s
jk → @s

jk) → @s
jk PL

(5) | s @s
kj → @s

jk PL
(6) | s @s

jk → @s
kj Analogue

(7) | s @s
jk ↔ @s

kj PL:(5), (6)

(Bridge)
(1) | s σ(. . . φi1 , j, φi+1 . . .) ∧ σ�(. . . ,¬φi−1, φ,¬φi+1, . . .) →

σ(. . . φi−1, j ∧ φ, φi+1, . . .) ML
(2) | s j ∧ φ → @s

jφ (Intro)
(3) | s σ(. . . φi−1, j ∧ φ, φi+1, . . .) → σ(. . . φi−1,@s

jφ, φi+1, . . .) ML
(4) | s σ(. . . φi−1,@s

jφ, φi+1, . . .) → @s
jφ (Back)

(5) | s σ(. . . φi−1, j, φi+1 . . .) ∧ σ�(. . . ,¬φi−1, φ,¬φi+1, . . .) → @s
jφ PL

(6) | s σ(. . . φi−1, j, φi+1 . . .) ∧ σ�(. . . ,¬φi−1,¬φ,¬φi+1, . . .) → @s
j¬φ (5)

(7) | s ¬@s
j¬φ → ¬(σ(. . . φi−1, j, φi+1 . . .)∧σ�(. . . ,¬φi−1,¬φ,¬φi+1, . . .)) PL

(8) | s @s
jφ → (¬σ(. . . φi−1, j, φi+1 . . .) ∨ ¬σ�(. . . ,¬φi−1,¬φ,¬φi+1, . . .)) PL

(9) | s @s
jφ → (¬σ(. . . φi−1, j, φi+1 . . .) ∨ σ(. . . , φi−1, φ, φi+1, . . .)) (Dual)

(9) | s @s
jφ → (σ(. . . φi−1, j, φi+1 . . .) → σ(. . . , φi−1, φ, φi+1, . . .)) PL

(10) | s @s
jφ ∧ σ(. . . φi−1, j, φi+1 . . .) → σ(. . . , φi−1, φ, φi+1, . . .) PL

2.
(1) | s j → (¬φ ↔ @s

j¬φ) (Intro)
(2) | s j → (¬φ ↔ @s

j¬φ) → (j → (@s
j¬φ → ¬φ)) PL

(3) | s j → (@s
j¬φ → ¬φ) (MP ) : (1), (2)

(4) | s (j → (@s
j¬φ → ¬φ)) → (j ∧ @s

j¬φ → ¬φ) PL
(5) | s j ∧ @s

j¬φ → ¬φ (MP ) : (3), (4)
(6) | s φ → (¬j ∨ @s

jφ) PL,(SelfDual)
(7) | s φ → j hypothesis
(8) | s φ → (¬j ∨ @s

jφ) ∧ j PL
(9) | s φ → @s

jφ ∧ j PL
(10) | s (φ → @s

jφ) ∧ (φ → j) PL
(11) | s φ → @s

jφ PL

Therefore, if | s φ → j then | s φ → @s
jφ.

(1) | s φ → j hypothesis
(2) | t σ(. . . , ψi−1, φ, ψi+1, . . .) → σ(. . . , ψi−1, j, ψi+1, . . .) ML(1)
(3) | s φ → @s

jφ (1)
(4) | t σ(. . . , ψi−1, φ, ψi+1, . . .) → σ(. . . , ψi−1,@s

jφ, ψi+1, . . .) ML(3)
(5) | t σ(. . . , ψi−1, φ, ψi+1, . . .) → @t

jφ (Back),PL(4)
(6) | t σ(. . . , ψi−1, φ, ψi+1, . . .) → (σ(. . . , ψi−1, j, ψi+1, . . .)∧@t

jφ) PL:(2), (5)
Therefore, if | s φ → j then | t σ(. . . , φ, . . .) → σ(. . . , j, . . .) ∧ @t

jφ. ��



Operational Semantics Using Many-Sorted Hybrid Modal Logic 469

Lemma 2 (Extended Lindenbaum Lemma).
Let Λ be a set of formulas in the language of HΣ(@,∀) and s ∈ S. Then any
consistent set Γs of formulas of sort s from HΣ(@,∀) + Λ can be extended to
a named, pasted and @-witnessed maximal consistent set by adding countably
many nominals to the language.

Proof. The proof generalizes to the S-sorted setting well-known proofs for
the mono-sorted hybrid logic, see [7, Lemma 7.25], [3, Lemma 3, Lemma 4],
[4, Lemma 3.9].

For each sort s ∈ S, we add a set of new nominals and enumerate this set.
Given a set of formulas Γs, define Γ k

s to be Γs ∪ {ks} ∪ {@s
jx

x| x ∈ SVARs},
where ks is the first new nominal of sort s in our enumeration and jx are such
that if x and y are different state variables of sort s then also jx and jy are
different nominals of same sort s. Now that we know we are working on the sort
s, we will write k instead of ks.

Suppose Γ k
s is not consistent. Then there exists some conjunction of formulas

θ ∈ Γs such that | s k → ¬θ. We use the (Gen@) rule and the (K@) axiom to
prove that | s @s

kk → @s
k¬θ. From the (Ref) axiom and the (MP ) rule it

follows | s @s
k¬θ. Remember that k is a new nominal, so it does not occur in θ

and we use (Name@) rule to get that | s ¬θ ⇒ ¬θ ∈ Γs. But this contradicts
the consistency of Γs. Now, we prove the case for the additional @s

jx
x formulas.

Suppose | s θ → ¬@s
jx

x. We use the (SelfDual) axiom to get | s ¬θ ∨ @s
jx

¬x.
If | s ¬θ, this contradicts the consistency of Γs. If | s @s

jx
¬x, then |s= @s

jx
¬x.

Hence, for any model M, any assignment function g and any world w ∈ Ws, we
have M, g, w |s= @s

jx
¬x if and only if M, g, v |s= ¬x where V N

s (jx) = {v}. Then
for any model M and any assignment g, gs(x) �= V N

s (jx), contradiction.
Now we enumerate on each sort s ∈ S all the formulas of the new language

obtained by adding the set of new nominals and define Γ 0 := Γ k
s . Suppose we

have defined Γm, where m ≥ 0. Let φm+1 be the m + 1 − th formula of sort
s in the previous enumeration. We define Γm+1 as follows. If Γm ∪ {φm+1} is
inconsistent, then Γm+1 = Γm. Otherwise:

(i) Γm+1 = Γm ∪ {φm+1}, if φm+1 is neither of the form @jσ(. . . , ϕ, . . .), nor
of the form @j∃xϕ(x), where j is any nominal of sort s′′, ϕ a formula of
sort s′′ and x ∈ SVARs′′ .

(ii) Γm+1 = Γm ∪ {φm+1} ∪ {@jσ(. . . , k, . . .) ∧ @kϕ}, if φm+1 is of the form
@jσ(. . . , ϕ, . . .).

(iii) Γm+1 = Γm ∪{φm+1}∪ {@jϕ[k/x]}, where φm+1 is of the form @j∃xϕ(x).

In clauses (ii) and (iii), k is the first new nominal in the enumeration that does
not occur neither in Γ i for all i ≤ m, nor in @jσ(. . . , ϕ, . . .).

Let Γ+ =
⋃

n≥0 Γn. Because k ∈ Γ 0 ⊆ Γ+, this set in named, maximal,
pasted and @-witnessed by construction. We will check if it is consistent for the
expansion made in the second and third items.

Suppose Γm+1 = Γm ∪ {φm+1} ∪ {@jσ(. . . , k, . . .) ∧ @kϕ} is an inconsis-
tent set, where φm+1 is @jσ(. . . , ϕ, . . .). Then there is a conjunction of for-
mulas χ ∈ Γm ∪ {φm+1} such that | s χ → ¬(@jσ(. . . , k, . . .) ∧ @kϕ) and so
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| s @jσ(. . . , k, . . .) ∧ @kϕ → ¬χ. But k is the first new nominal in the enumera-
tion that does not occur neither in Γm, nor in @jσ(. . . , ϕ, . . .) and by Paste rule
we get | s @jσ(. . . , ϕ, . . .) → ¬χ ⇒ | s χ → ¬@jσ(. . . , ϕ, . . .), which contradicts
the consistency of Γm ∪ {φm+1}.

Suppose Γm+1 = Γm ∪ {φm+1} ∪ {@jϕ[k/x]} is inconsistent, where φm+1

is @j∃xϕ(x). Then there is a conjunction of formulas χ ∈ Γm ∪ {φm+1} such
that | s χ → ¬@jϕ[k/x], where k is the new nominal. By generalization on
nominals (Lemma 7) we can prove | s ∀y(χ → ¬@jϕ[y/x]), where y is a state
variable that does not occur in χ → ¬@jϕ[k/x]. Using (Q1) axiom, we get | s

χ → ∀y¬@jϕ[y/x] and by (SelfDual) | s χ → ∀y@j¬ϕ[y/x]. Next, we use
(Barcan@) to get | s χ → @j∀y¬ϕ[y/x]). Because x has no free occurrences
in ϕ[y/x], we can prove that @j∀y¬ϕ[y/x]) ↔ @j∀x¬ϕ. Therefore, | s χ →
@j∀x¬ϕ , so | s χ → @j¬∃xϕ. Use once again (SelfDual) and we have | s χ →
¬@j∃xϕ. Then ¬@j∃xϕ ∈ Γm ∪{φm+1}, but this contradicts the consistency of
Γm ∪ {φm+1}.

��
Lemma 3. The Henkin model from Definition 9 is well-defined.

Proof. Let s ∈ S and assume that Γs is a set of formulas of sort s. Note that RΓ
σ

is well-defined by (Nom) and (Bridge) from Lemma 1. For t ∈ S and j ∈ NOMt,
V Γ (j) is well-defined by axiom (Ref). For the system HΣ(@,∀), we further that
Γs is also @-witnessed so, for any t ∈ S and x ∈ SVARt, there is a nominal
j ∈ NOMt such that @s

jx ∈ Γ . The fact that gΓ is well-defined follows by
(Nomx). ��
Lemma 4 (Truth Lemma). Let s ∈ S and assume Γs is a named, pasted and
@-witnessed maximal consistent set of formulas of sort s from HΣ(@,∀). For
any sort s′ ∈ S, j ∈ NOMs′ ∪ Ns′ and for any formula φ of sort s′ we have

MΓ , gΓ , |j| |s
′

= φ iff @s
jφ ∈ Γs.

Proof. We make the proof by structural induction on φ.

– MΓ , gΓ , |j| |s
′

= a, where a ∈ PROPs′ ∪ NOMs′ ∪ Ns′ iff |j| ∈ V N
s′ (a) iff @s

ja ∈
Γs.

– MΓ , gΓ , |j| |s
′

= x, where x ∈ SVARs′ iff gΓ
s′(x) = |j| iff @s

jx ∈ Γs.

– MΓ , gΓ , |j| |s
′

= ¬φ iff MΓ , gΓ , |j| �|s
′

= φ iff @s
jφ �∈ Γs, but we work with

consistent sets, therefore @s
jφ �∈ Γs iff ¬@s

jφ ∈ Γs iff @s
j¬φ ∈ Γs (SelfDual).

– MΓ , gΓ , |j| |s
′

= φ ∨ ϕ iff MΓ , gΓ , |j| |s
′

= φ or MΓ , gΓ , |j| |s
′

= ϕ iff (inductive
hypothesis) @s

jφ ∈ Γs or @s
jϕ ∈ Γs iff @s

jφ ∨ @s
jϕ ∈ Γs iff @s

j(φ ∨ ϕ) ∈ Γs.

– MΓ , gΓ , |j| |s
′

= σ(φ1, . . . , φn) iff exists |ki| ∈ Wsi
such that R|j||k1| . . . |kn|

and MΓ , gΓ , |ki| |si= φi for any i ∈ [n]. Using the induction hypothesis, we
get @s

ki
φi ∈ Γs. But R|j||k1| . . . |kn| iff @s

jσ(k1, . . . , kn) ∈ Γs. Use the Bridge
axiom to prove @s

jσ(k1, . . . , kn) ∧ @s
k1

φ1 ∧ . . . ∧ @s
kn

φn → @s
jσ(φ1, . . . , φn),

so @s
jσ(φ1, . . . , φn) ∈ Γs. Now, suppose @s

jσ(φ1, . . . , φn) ∈ Γs. We work with
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pasted models, so there are some nominals ki such that @s
jσ(k1, . . . , kn) ∈ Γs

and @s
ki

φi ∈ Γs for any i ∈ [n]. Therefore, exists ki such that R|j||k1| . . . |kn|
and, by induction hypothesis, MΓ , gΓ , |ki| |si= φi for any i ∈ [n] if and only if

MΓ , gΓ , |j| |s
′

= σ(φ1, . . . , φn).

– MΓ , gΓ , |j| |s
′

= @s′
k φ iff MΓ , gΓ , |k| |s

′′
= φ, but from induction hypothesis @s

kφ ∈
Γs and by applying (Agree) we get @s

j@
s
kφ ∈ Γs.

– @s
j∃xφ ∈ Γs, then there exists l ∈ NOMs′ such that @s

jφ[l/x] ∈ Γs. Let
g′ x∼ gΓ such that g′

s′(x) = {|l|}. Therefore, there exists l ∈ NOMs′ such that

g′
s′(x) = {|l|}, g′ x∼ gΓ and MΓ , g′, |j| |s

′
= φ iff MΓ , gΓ , |j| |s

′
= ∃xφ.

– MΓ , gΓ , |j| |s
′

= ∃xφ iff exists g′ x∼ gΓ and MΓ , g′, |j| |s
′

= φ. Let g′
s′(x) = {|l|}.

Hence, there exists l ∈ NOMs′ such that g′
s′(x) = {|l|}, g′ x∼ gΓ and

MΓ , g′, |j| |s
′

= φ iff MΓ , g, |j| |s
′

= φ[l/x] and from inductive hypothesis
@s

jφ[l/x] ∈ Γs. Use the contrapositive of the (Q2) axiom, | s′
φ[l/x] → ∃xφ

and the (Gen@) and (K@) rules to obtain @s
jφ[l/x] → @s

j∃xφ ∈ Γs. There-
fore, @s

j∃xφ ∈ Γs.
��

Theorem 2 (Completeness).

1. Strong model-completeness. Let Λ be a set of formulas in the language of
HΣ(@,∀) and s ∈ S and assume Γs is a set of formulas of sort s. If Γs is a
consistent set in L = HΣ(@,∀) + Λ then Γs has a model that is also a model
of Λ. Consequently, for a formula φ of sort s, Γs|s=Mod(L)φ iff Γs | s

Lφ.
2. Strong frame-completeness for pure extensions. Let Λ be a set of pure formulas

in the language of ∀∃-pure formulas in the language of HΣ(@,∀) and s ∈ S
and assume Γs is a set of formulas of sort s. If Γs is a consistent set in
L = HΣ(@,∀)+Λ then Γs has a model based on a frame that validates every
formula in Λ. For a formula φ of sort s, Γs|s=Mod(L)φ iff Γs | s

Lφ.

Proof. Since 1. is obvious, we only prove 2. If Γs is a consistent set in HΣ(@,∀)+
Λ then, applying the Extended Lindenbaum Lemma, then Γs ⊆ Θs, where Θs is a
maximal consistent named, pasted and @-witnessed set (in an extended language
L′). If MΘ is the Henkin model and gΘ is the assignment from Definition 9 then,
by Truth Lemma, MΘ, gΘ, |j| |s= Γs for any t ∈ S and j ∈ NOMt∪Nt. Moreover,
MΘ is a named model (in the extended language) that is also a model of Λ.
By Proposition 1, the underlying frame of MΘ satisfies the ∀∃-pure formulas
from Λ. Hence the logic HΣ(@,∀) + Λ is strongly complete w.r.t to the class of
frames satisfying Λ. Assume that Γs|s=Λφ and suppose that Γs �| s φ. It follows
that Γs ∪ {¬φ} is inconsistent, so there exists a model of Γs based on a frame
satisfying Λ that is not a model of φ. We get a contradiction, so the intended
completeness result is proved. ��
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Proposition 3.

1. (Nominal Conjunction) For any formulas and any nominals of appropriate
sorts, the following hold:

(i1) σ(. . . , φi−1, φi, φi+1, . . .) ∧ @k(ψ) ↔ σ(. . . , φi−1, φi ∧ @k(ψ), φi+1, . . .)
(i2) σ�(. . . , φi−1, φi, φi+1, . . .) ∧ @k(ψ) ↔

σ�(. . . , φi−1, φi ∧ @k(ψ), φi+1, . . .) ∧ @k(ψ)
2. If φ1, . . . φn are formulas of appropriate sorts and x is a state variable that

does not occur in φj for any j �= i then:
(i3) ∃xσ�(. . . , φi−1, φi, φi+1, . . .) → σ�(, . . . , φi−1,∃xφi, φi+1, . . .)

Proof. 1. (Nominal Conjunction)
(i1) M, g, w |s= σ(. . . , φi−1, φi, φi+1, . . .) ∧ @k(ψ) iff

M, g, w |s= @k(ψ) and M, g, w |s= σ(. . . , φi−1, φi, φi+1, . . .) iff

M, g, v |s
′

= ψ where V N
s′ = {v} and there exist w1 ∈ Ws1 , . . . , wn ∈ Wsn

such that Rσww1 · · · wn and M, g, wj |sj= φj for all 1 ≤ j ≤ n iff
there exist w1 ∈ Ws1 , . . . , wn ∈ Wsn

such that Rσww1 · · · wn and
M, g, wj |sj= φj for all 1 ≤ j ≤ n, j �= i, and M, g, wi |si= φi ∧ @k(ψ) iff
M, g, w |= σ(. . . , φi−1, φi ∧ @k(ψ), φi+1, . . .).

(i2) M, g, w |s= σ�(. . . , φi−1, φi, φi+1, . . .) ∧ @k(ψ) iff
M, g, w |s= @k(ψ) and M, g, w |s= ¬σ(. . . ,¬φi−1,¬φi,¬φi+1, . . .) iff

M, g, v |s
′

= ψ where V N
s′ = {v} and for all w1 ∈ Ws1 , . . . , wn ∈ Wsn

for
which Rσww1 · · · wn, there exists 1 ≤ j ≤ n such that M, g, wj |sj= φj iff

M, g, v |s
′

= ψ where V N
s′ = {v} and for all w1 ∈ Ws1 , . . . , wn ∈ Wsn

for
which Rσww1 · · · wn, there exists 1 ≤ j ≤ n, j �= i such that M, g, wj |sj=

φj or M, g, wi |si= φi iff M, g, v |s
′

= ψ and for all w1 ∈ Ws1 , . . . , wn ∈
Wsn

for which Rσww1 · · · wn, there exists 1 ≤ j ≤ n, j �= i such that
M, g, wj |sj= φj or M, g, wi |si= φi ∧ @k(ψ) iff M, g, w |s= σ�(. . . , φi−1, φi ∧
@k(ψ), φi+1, . . .) ∧ @k(ψ).

2.
(i3) M, g, w |s= ∃xσ�(φ1, . . . , φi−1, φi, φi+1, . . . , φn) iff exists g′ x∼ g such that

M, g′, w |s= σ�(φ1, . . . , φi−1, φi, φi+1, . . . , φn) iff exists g′ x∼ g such that for
all (v1, . . . , vn) ∈ Ws1 × . . .×Wsn

, Rσwv1 . . . vn implies M, g′, vj |sj= φj for
some j ∈ [n]. Then, for all (v1, . . . , vn) ∈ Ws1 × . . . × Wsn

, Rσwv1 . . . vn

implies there exists g′ x∼ g such that M, g′, vj |sj= φj for some j ∈ [n].
But x does not occur in φj for any j ∈ [n] and j �= i, so for all
(v1, . . . , vi, . . . , vn) ∈ Ws1 × . . . × Wsi

× . . . × Wsn
, Rσwv1 . . . vi . . . vn

implies M, g′, vj |sj= φj and there exists g′ x∼ g such that M, g′, vi |si= φi

for some i, j ∈ [n] and j �= i. We use Agreement Lemma, then for all
(v1, . . . , vi, . . . , vn) ∈ Ws1 × . . . × Wsi

× . . . × Wsn
, Rσwv1 . . . vi . . . vn

implies M, g, vj |sj= φj and M, g, vi |si= ∃xφi for some i, j ∈ [n] and j �= i.
Therefore, M, g, w |s= σ�(φ1, . . . , φi−1,∃xφi, φi+1, . . . , φn).

��
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Proposition 4 ( |s∼ soundness). Let Γ be an S-sorted set and φ a formula of
sort s ∈ S. If Γ |s∼ ϕ then M |= Γ implies M |s= φ for any model M.

Proof. Let M be a model and assume | s @s
j1

γ1 ∧ · · · ∧ @s
jn

γn → φ as above. If
M |= Γ then, by (Gen@), M |s= Γs ∪ {@s

j1
γ1, . . . ,@s

jn
γn}. Using the soundness

of the local deduction, we get the desired conclusion. ��

B Proofs from Sect. 4

Proposition 5 (Hoare-like Admissible Rules). The following rules are
admissible:

1. Rules of Consequence
If  φ → [α]ψ and  ψ → χ then  φ → [α]χ.
If  φ → [α]ψ and  χ → φ then  χ → [α]ψ.

2. Rule of Composition, iterated
If φ0 → [α1]φ1, . . . , φn−1 → [αn]φn, then φ0 → [α1; . . . ;αn]φn.

3. Rule of Conditional
If B is a formula of sort Bool, and vs, mem, P are formulas of appropriate
sorts such that
(h1)  φ → [c(b)](〈B · vs,mem〉 ∧ P ),
(h2)  〈vs,mem〉 ∧ P ∧ @true(B) → [c(s1)]χ
(h3)  〈vs,mem〉 ∧ P ∧ @false(B) → [c(s2)]χ
(h4)  P → [α]P for any α of sort CtrlStack,
then  φ → [c(if b then s1 else s2)]χ

Proof. In the sequel we shall mention the sort of a formula only when it is
necessary.

1. Rule of Consequence follows easily by (UG).
2. Rule of Composition follows easily by (UG) and (CStmt).
3. Rule of Conditional. Since B is a formula of sort Bool, using the axiom (B1)

and the completeness theorem, one can easily infer that

 B ↔ (true ∧@trueB) ∨ (false ∧@falseB)
Using the fact that any operator σ ∈ Σ commutes with disjunctions,
Proposition 3 we get
(∗)  〈B · vs,mem〉 → (〈true ·vs,mem〉 ∧ @trueB)∨

(〈false ·vs,mem〉 ∧ @falseB)
Now we prove that

 〈true ·vs,mem〉 ∧ @trueB → [(true?; c(s1)) ∪ (false; c(s2))]χ.
Note that  @true(¬ false), so we use (A?) and (A¬?) as follows:
 〈true ·vs,mem〉 ∧ @trueB → 〈true ·vs,mem〉 ∧ @trueB ∧ @true(¬ false)
 〈true ·vs,mem〉 → [true?] 〈vs,mem〉
 〈true ·vs,mem〉 ∧ @true(¬ false) → [false?]⊥
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Next we prove that
(@[])  @kϕ → [α]@kϕ
for any formulas α, ϕ and nominal k of appropriate sorts. Note that  [α]�
so, using Proposition 3.3, we have the following chain of inferences:
 @kϕ → @kϕ ∧ [α]�
 @kϕ ∧ [α]� → [α]@kϕ
and (@[]) easily follows.
Consequently,  @trueB → [true?]@trueB
Since dual operators σ� for σ ∈ Σ commutes with conjunctions, using also
(h4) we get
 〈true ·vs,mem〉 ∧ P ∧ @trueB → ([true?](〈vs,mem〉 ∧ P ∧ @trueB))∧
[false?]⊥
By (h2) and (K) it follows that
 〈true ·vs,mem〉 ∧ ∧P@trueB → [true?; c(s1)]χ ∧ [false?]⊥
Since ⊥ → [c(s2)]χ, and using (A∪) we proved
 〈true ·vs,mem〉 ∧ P ∧ @trueB → [(true?; c(s1)) ∪ (false?; c(s2))]χ.
In a similar way, we get
 〈false ·vs,mem〉 ∧ P ∧ @falseB → [(true?; c(s1)) ∪ (false?; c(s2))]χ.
By (∗) we infer
 〈B · vs,mem〉 → [(true?; c(s1)) ∪ (false?; c(s2))]χ
Using (K) and (Dif) we get the conclusion. ��

Proposition 6 (Rule of Iteration). Let B, vs, mem, and P be formulas with
variables over x, where x is a set of state variables. If there exist substitutions
xinit and xbody for the variables of x such that:

(h1)  φ → [c(b)](〈B · vs,mem〉 ∧ P )[xinit/x],
(h2)  〈vs,mem〉 ∧ P ∧ @true(B) → [c(s); c(b)](〈B · vs,mem〉 ∧ P )[xbody/x]
(h3)  P → [α]P for any formula α of sort CtrlStack

then  φ → [c(while b do s)]∃x 〈vs,mem〉 ∧ P ∧ @false(B).

Proof. Denote θ := 〈B · vs,mem〉 ∧ P and θI := ∃xθ. We think of θI as being
the invariant of while b do s. Note that, using the contraposition of (Q2) and
(h1) we infer that

(c1)  φ → [c(b)]θI

In the following we firstly prove that
(c2)  θI → [α]θI ,

where α =true?; c(s); c(b). Since
 B ↔ (true ∧@trueB) ∨ (false ∧@falseB)

it follows that
 θ → (〈true ·vs,mem〉 ∧ P ∧ @trueB) ∨ (〈false ·vs,mem〉 ∧ P ∧ @falseB)

By (A?), (h3) and (@[]) (from the proof of Proposition 5) we infer
 〈true ·vs,mem〉 ∧ P ∧ @trueB → [true?](〈vs,mem〉 ∧ P ∧ @trueB)
and, by (h2)
 〈true ·vs,mem〉 ∧ P ∧ @trueB) → [α]θ[xbody/x]
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Since  @false(¬ true), by (A¬?) we get
 〈false ·vs,mem〉 ∧ @false(¬ true) → [true?]⊥, so
 〈false ·vs,mem〉 ∧ P ∧ @falseB) → [α]θ[xbody/x]

As consequence  θ → [α]θ[xbody/x] and, using the contraposition of Q2, we
infer that θ → [α]θI . We use now the fact that

 ∀x(ϕ(x) → ψ) → (∃xϕ(x) → ψ) if x does not appear in ψ,
which leads us to  θI → [α]θI . Using (UG) we get  [c(b);α∗](θI → [α]θI).

By (c1) it follows that
 φ → ([c(b)]θI ∧ ([c(b);α∗](θI → [α]θI))
Using the induction axiom, (UG), (K) and the fact that the dual operators

commutes with conjunctions, we get
 ([c(b)]θI ∧ ([c(b);α∗](θI → [α]θI)) → [c(b);α∗]θI

So  φ → [c(b);α∗]θI , which proves the invariant property of while b do s.
To conclude, so far we proved
 φ → [c(b);α∗]∃xθ
We can safely assume that the state variables from x do not appear in φ, b
Note that c(while b do s) ↔ c(b);α∗; false?
As before,
 θ → (〈true ·vs,mem〉 ∧ P ∧ @trueB) ∨ (〈false ·vs,mem〉 ∧ P ∧ @falseB)
Using again (A?) and (A¬?) we have that
 〈false ·vs,mem〉 → [false?] 〈vs,mem〉
 〈true ·vs,mem〉 ∧ @true(¬ false) → [false?]⊥

It follows that
 θ → [false?](< vs,mem > ∧P ∧ @falseB) so, using the properties of the

existential binder
 ∃xθ → ∃x[false?](< vs,mem > ∧P ∧ @falseB)
Since the state variables from x do not appear in false?, by Proposition 3 it

follows that
 ∃x[false?](< vs,mem > ∧P ∧ @falseB) →

[false?]∃x(< vs,mem > ∧P ∧ @falseB)
We can finally obtain the intended result:
 φ → [c(b);α∗; false?]∃x(< vs,mem > ∧P ∧ @falseB) ��
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19. Leuştean, I., Moangă, N., Şerbănuţă, T.F.: Operational semantics using many-
sorted hybrid modal logic. arXiv:1905.05036 (2019)

20. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

21. Plotkin, G.D.: A structural approach to operational semantics (1981) Technical
report DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark. (Reprinted with corrections in J. Log. Algebr. Program) 60–61, 17–139
(2004)
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