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Abstract. We introduce static and dynamic algebras for specifying
combinations of modules communicating among them via shared second-
order variables. In the static algebra, atomic modules are classes of struc-
tures. They are composed using operations of extended Codd’s rela-
tional algebra, or, equivalently, first-order logic with least fixed point.
The dynamic algebra has essentially the same syntax, but with a specifi-
cation of inputs and outputs in addition. In the dynamic setting, atomic
modules are formalized in any framework that allows for the specification
of their input-output behaviour by means of model expansion. Algebraic
expressions are interpreted by binary relations on structures. We demon-
strate connections of the dynamic algebra with a modal temporal logic
and deterministic while programs.

1 Introduction

In this paper, we introduce a formalism for specifying and reasoning about modu-
lar systems. The goal is to be able to combine reusable components, potentially
written in different languages, for solving complex computational tasks.1 We
start with first-order logic with fixpoints. We use an algebraic syntax, similar
to Codd’s relational algebra, but the idea is the same. We redefine FO(LFP),
i.e., first-order logic with the least fixpoint operator, over a vocabulary of atomic
module symbols that replaces a relational vocabulary. In this static setting, each
atomic symbol is interpreted as a set of structures rather than a relational table
(set of tuples). That is, by a boolean query, a decision procedure. Thus, while
the syntax is first-order, the semantics is second-order because variables range
over relations. This gives us the first logic.

The second stage is a dynamic setting where we add information flows. An
information flow is a propagation of information from inputs to outputs. Formally,
it is given by two functions, I and O that partition the relational variables
of atomic modules into inputs and outputs. Semantically, modules are binary
relations on structures. The relations describe how information propagates. This
gives us an algebra of binary relations, where we can reason about information
1 The heterogeneous components could be web services, knowledge bases, declarative

specifications such as Integer Liner Programs, Constraint Satisfaction Problems,
Answer Set Programs etc.
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flows and control the expressive power by means of restricting the algebraic
operations and the logics for axiomatizing atomic modules.

Algebras of binary relations have been studied before. Such an algebra was
first introduced by De Morgan. It has been extensively developed by Peirce and
then Schröder. It was abstracted to relation algebra RA by Jónsson and Tarski
in [1]. For a historic perspective please see Pratt’s informative historic overview
paper [2]. More recently, relation algebras were studied by Fletcher, Van den
Bussche, Surinx and their collaborators in a series of paper, see, e.g. [3,4]. The
algebras of relations consider various subsets of operations on binary relations
as primitive, and other as derivable. In another direction, [5,6] and others study
partial functions and their algebraic equational axiomatizations.

When our algebra is interpreted over a pointed Kripke structure, it becomes
a modal temporal (dynamic) logic. The logic allows one to specify patterns of
execution inside (definable) modalities, similar to Dynamic Logic (see, e.g., [7])
and LDLf [8]. Just like in PDL and LDLf , the main constructs of imperative
programming (e.g., while loops) are definable. The main difference of our logic
from PDL and LDLf is that we impose the Law of Inertia for atomic components:
the interpretation of the variables not affected by a direct change must remain
the same. In this way, the logic is similar to Reiter’s situation calculus [9] and
Golog [10]. However unlike the first-order successor state axioms of the situation
calculus, we allow atomic changes to be non-deterministic, to be specified in
a logic with any expressive power where the main computational task can be
formalized as the task of Model Expansion, of any complexity. We formulate
the main computational task, the Model Expansion task for processes, in the
modal setting of our logic as the existence of an information flow that results in
a successful computation.

This paper continues the line of research that started at FROCOS 2011 [11]
and continued in [12] and then in [13] and [14]. Unlike the previous work, we
base our static formalism in classical logic, so the set of our algebraic operations
is different. We also develop a novel dynamic perspective, through an algebra of
binary relations, and then a modal temporal (dynamic) logic. The development
of the dynamic view constitutes most of this paper. Since, in our logic, all the
variables that are not constrained by the algebraic expressions are implicitly
cylinrified, the closest related work is that on cylindric algebras [15]. These alge-
bras were introduced by Tarski and others as a tool in the algebraization of the
first-order predicate calculus.2 However, a fundamental difference is that, in our
logic, unconstrained variables are not only cylindrified, but their interpretation,
if not modified, is transferred to the next state by inertia. This property gives
us, mathematically, a very different formalism, which is suitable for reasoning
about the dynamics of information flows.

The rest of the paper is organized as follows. In Sect. 2, we define the main
computational task of Model Expansion in the context of related tasks. Then, in
Sect. 3, we introduce the syntax and two different semantics, static and dynamic,
of our algebras. The algebra under the dynamic semantics is called a Logic of

2 See [16] for a historic context in applications to Database theory.
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Information Flows (LIF). In Sect. 4, we show that, just by adding input and
output specifications to classical logic (here, in an algebraic form), we obtain
multiple operations that are given as primitive in many algebras of binary rela-
tions. In Sect. 5, we show a connection with modal logic. Finally, we conclude,
in Sect. 6, with a broader perspective and future research directions.

2 Model Expansion, Related Tasks

Model Expansion [17] is the task of expanding a structure to satisfy a specifica-
tion (a formula in some logic). It is the central task in declarative programming:
in Answer Set Programming, Constraint Satisfaction Problem, Integer Linear
Programming, Constraint Programming, etc. In this section, we define Model
Expansion and compare it to two other related computational problems.

For a formula φ in any logic L with model-theoretic semantics, we can asso-
ciate the following three tasks (all three for the same formula), satisfiability
(SAT), model checking (MC) and model expansion (MX). We now define them
for the case where φ has no free object variables.

Definition 1 (Satisfiability (SATφ)). Given: Formula φ. Find: structure B such
that B |= φ. (The decision version is: Decide: ∃B such that B |= φ?).

Definition 2 (Model Checking (MCφ)). Given: Formula φ, structure A for
vocab(φ). Decide: A |= φ? There is no search counterpart for this task.

The following task (introduced in [17]) is at the core of this paper. The decision
version of it can be seen as being of the form “guess and check”, where the
“check” part is the model checking task we just defined.

Definition 3 (Model Expansion (MXσ
φ)). Given: Formula φ with designated

input vocabulary σ ⊆ vocab(φ) and σ-structure A. Find: structure B such that
B |= φ and expands σ-structure A to vocab(φ). (The decision version is: Decide:
∃B such that B |= φ and expands σ-structure A to vocab(φ)?).

Any logic that can be interpreted over first-order (Tarski) structures can be used
for writing specifications φ. In general, vocabulary σ can be empty, in which
case the input structure A consists of a domain only. When σ = vocab(φ), model
expansion collapses to model checking, MXσ

φ = MCφ. Note that, in general, the
domain of the input structure in MC and MX can be infinite. For complexity
analysis, in this paper, we focus on finite input structures.

Let φ be a sentence, i.e., has no free object variables. Data complexity [18]
is measured in terms of the size of the finite active domain. For the decision
versions of the problems, data complexity of MX lies in-between model checking
(full structure is given) and satisfiability (no part of structure is given):

MCφ ≤ MXσ
φ ≤ SATφ.

For example, for FO logic, MC is non-uniform AC0, MX captures NP (Fagin’s
theorem), and SAT is undecidable. In SAT, the domain is not given. In MC and
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MX, at least, the (active) domain is always given, which significantly reduces
the complexity of these tasks compared to SAT. The relative complexity of the
three tasks for several logics, including ID-logic of [19] and guarded logics, has
been studied in [20].

In this paper, we will view Model Expansion as a (nondeterministic) trans-
duction, i.e., a binary relation from input to outputs, that are τ -structures. We
will develop an algebra of such transductions. The following example illustrates
what we will consider as an atomic transduction. In the development of our alge-
bra, we will abstract away from what exactly the atomic transductions are. We
will become more specific towards the end of the paper, when we restrict our
attention to a specific logic and prove a complexity result.

Example 1. Consider the following first-order formula with free relational vari-
ables. φ3Col(V,E,R,G,B) :=

∀x (V (x) → [R(x) ∨ B(x) ∨ G(x)]) ∧
∀x (V (x) → ¬[(R(x) ∧ B(x)) ∨ (R(x) ∧ G(x)) ∨ (B(x) ∧ G(x))])

∧ ∀x∀y [V (x) ∧ V (y) ∧ E(x, y) →
¬((R(x) ∧ R(y)) ∨ (B(x) ∧ B(y)) ∨ (G(x) ∧ G(y)))].

This formula axiomatizes a class of structures. A class of structures, which is
closed under isomorphism, represents a boolean query. In this case, the query
specifies all 3-colourable graphs with all their proper clourings. If we identify I1 =
{E, V } as the input vocabulary, and O1 = {R,G,B} as the output (solution)
vocabulary, then we obtain the classic 3-Colouring computational problem. It
can be viewed as a transduction or a binary relation on structures, defined by
the binary semantics below. We can also identify I2 = {V,R,G,B} as an input
vocabulary, and O2 = {E} as the output, and it will give us a rather different
computational problem, with no specific name.

One of the parameters to control the expressive power of the logic is the
formalism for the atomic transductions (atomic modules). In the example above,
the axiomatization is first-order, and the free second-order variables implicitly
make it ∃SO. But later in the paper, we consider axiomatizations that are output-
monadic non-recursive Datalog programs, which are much less expressive.

3 Algebras: Static and Dynamic

For essentially the same syntax, we produce two algebras, static and dynamic,
by giving different interpretations to the algebraic operations and to the ele-
ments of the algebras. In the second algebra, atomic modules have a direction of
information propagation, which corresponds to solving MX task for those mod-
ules. The algebras correspond to classical and modal logics (as we will see later),
respectively. We use a version of Codd’s relational algebra instead of first-order
logic, since we need an algebraic notation, however, the equivalence of the two
formalisms is well-known.
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Syntax. Assume we have a countable sequence Vars = (X1,X2, . . . ) of relational
variables each with an associated finite arity. For convenience, we use X, Y , Z,
etc. Let ModAt = {M1,M2, . . . } be a fixed vocabulary of atomic module symbols.
Each Mi ∈ ModAt has an associated variable vocabulary vvoc(Mi) whose length
can depend on Mi. We may write Mi(Xi1 , . . . , Xik), (or Mi(X̄)), to indicate that
vvoc(M) = (Xi1 , . . . , Xik). Similarly, ModVars = {Z1, Z2, . . . } is a countable
sequence of module variables, where each Zj ∈ ModVars has its own vvoc(Zj).
Algebraic expressions are built by the grammar:

α ::= id | Mi | Zj | α ∪ α | α− | πδ(α) | σΘ(α) | μZj .α. (1)

Here, Mi is any symbol in ModAt of the form Mi(X̄), δ is any finite set of
relational variables in Vars, Θ is any expression of the form X = Y , for relational
variables of equal arity that occur in Vars, Zj is a module variable in ModVars
which must occur positively in the expression α, i.e., under an even number of
the complementation (−) operator. By equality symbol ‘=’ in Selection condition
Θ, we mean the equality of the interpretations. It is a slight abuse of notations,
however the definition of the semantics specifies the intended meaning precisely.

Atomic modules can be specified in any formalism with a model-theoretic
semantics. For example, we saw an axiomatization of 3Colouring in Example 1.
Modules occurring within one algebraic expression can even be axiomatized in
different logics, if needed. They can also be viewed as abstract decision proce-
dures. But, as far as the static algebra is concerned,

their only relevant feature is the classes of structures they induce.

When the domain is specified, we talk about sets of structures rather than classes.

Static (Unary) Semantics. Fix a finite relational vocabulary τ . Algebraic
expressions will be used as “constraints”. A variable assignment s is a function
that assigns, to each relational variable, a symbol in τ of the same arity. We
introduce notation V := s−1(τ). Clearly, V ⊂ V ars. Function s gives us the
flexibility to apply the same algebraic expression in multiple contexts, without
a priori binding to a specific vocabulary.

Now fix a domain Dom.3 The domain can be finite or infinite. Let U be
the set of all τ -structures over the domain Dom. The following definition is
mathematically necessary in defining the semantics of atomic modules.

Definition 4. Given a sub-vocabulary γ of τ , a subset W ⊆ U is determined
by γ if it satisfies

for all A,B ∈ U such that A|γ = B|γ we have
A ∈ W iff B ∈ W.

3 Usually, in applications, domain Dom is the (active) domain of an input structure
for a task of interest such as MX.
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Given a well-formed algebraic expression α defined by (1), we say that struc-
ture A satisfies α (or that is a model of α) under variable assignment s, notation
A |=s α, if A ∈ [α]s, where unary interpretation [ · ]s is defined as follows. Given
a variable assignment s, function [ · ]s assigns a subset [Mi]s ⊆ U and a subset
[Zj ]s ⊆ U to each atomic module symbol Mi ∈ ModAt and each module vari-
able Zj ∈ ModVars, with the property that [Mi]s is determined by s(vvoc(Mi))
(respectively, [Zj ]s is determined by s(vvoc(Zj))). The unary interpretation of
atomic modules [ · ]s (parameterized with s) can be viewed as a function that
provides “oracles” or decision procedures, or answers to boolean queries. In gen-
eral, these oracles can be of arbitrary computational complexity.

We extend the definition of [ · ]s to all algebraic expressions.

[id]s := U.
[α1 ∪ α2]s := [α1]s ∪ [α2]s.
[α−]s := U \ [α]s.
[πδ(α)]s := {A ∈ U | ∃B (B ∈ [α]s and A|s(δ) = B|s(δ))}.
[σX=Y (α)]s := {A | A ∈ [α]s and A|s(X) = A|s(Y )}.
[μZj .α]s :=

⋂{
R ⊆ U | [α]s[Z:=α] ⊆ R

}
.

Here, [α]s[Z:=α] means an interpretation that is exactly like given by the function
[ · ]s, except Z is interpreted as α. Note that Projection πδ(α) is equivalent to
cylindrification Cγ(α), where γ = V \ δ.

Free and Bound Variables. These notions are exactly the same as in classical
logic. The role of an existentional quantifier is played by Cylinderfication. We
define them as follows. free(M) := vvoc(M), free(id) := ∅, free(α ∪ β) :=
free(α)∪free(α), free(α−) := free(α), free(πδ(α)) := δ, free(σX=Y (α)) :=
free(α) ∪ {X,Y }, free(μX̄,Zα[X̄ : t̄] := free(t̄) ∪ (free(α) \ {X̄, Z}). Taking
into account that Projection πδ(α) is equivalent to cylindrification Cγ(α), where
γ = vvoc(α) \ δ, we also have: free(Cγ(α)) := free(α) \ γ. Bound variables are
defined as those that are not free.

Implicit Cylindrification. Algebraic expressions can be viewed as constraints
on the free variables. The following proposition shows that everything outside
the free variables of α is implicitly cylindrified. Recall that V := s−1(τ).

Proposition 1. If α is an atomic module symbol, then [α] = [πfree(α)(α)].

Proof. The proposition holds for the atomic case because, by the static semantics
of atomic modules, the set of structures [Mi]s that interprets an atomic module
is determined by s(vvoc(Mi)), see Definition (4), and vvoc(Mi) = free(Mi).

We now give a binary semantics to the algebra. The algebra under this seman-
tics is called a Logic of Information Flows (LIF).4

Dynamic (Binary) Semantics. The Dynamic semantics is produced by
adding information flows. Such flows are initiated by Model Expansion task,
4 Please note that the goals of this paper have no connection with information flows

in security.
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where we provide inputs by giving a part of a structure (say, a graph), and
expand to obtain the solution part (say, a possible 3-colouring). Since informa-
tion propagates from inputs to outputs, we introduce two functions that specify
inputs and outputs of atomic module symbols, respectively. As a consequence of
specifying inputs and outputs, we transition to generalized binary expressions.
Projection now has two cases, for the left and the right parts of the binary
relation it applies to, and Selection has three – left, right and mixed.

Let ModAtI/O denote the set of all atomic module symbols M with all possi-
ble partitions of vvoc(M) into inputs and outputs, i.e., I(M)∪O(M) = vvoc(M)
and I(M) ∩ O(M) = ∅.5 This set is larger than the set ModAt (unless both
are empty) because the same M can have several different input-output assign-
ments. Similarly, we define ModVarsI/O. The well-formed algebraic expression
α is defined, again, by (1), except, in the atomic case, we have atomic mod-
ule symbols (respectively, module variables) from ModAtI/O (respectively, from
ModVarsI/O).

While inputs and outputs of atomic modules are always given, the situation
with inputs I(α) and outputs O(α) of a general algebraic expression α is much
more complicated. The problem is that it is not always possible to syntactically
identify the variables whose interpretations are needed as conditions for applying
algebraic expression α, and those that are the effects of α, i.e., can potentially
be modified by the expression. A detailed analysis, for a general setting, is a
subject of an ongoing collaborative work.

Let s be as above. Given a well-formed α, we say that pair of structures
(A,B), satisfies α under variable assignment s, notation (A,B) |=s α, if (A,B) ∈
[[α]]s, where binary interpretation [[ · ]]s is defined by I and II below.

I. Binary Semantics: Atomic Modules and Variables

Definition 5. For atomic modules in ModAtI/O, we have:

[[M ]]s :=
{
(A,B) ∈ U × U | there exists C ∈ [M ]s such that

C|s(I(M)) = A|s(I(M)), (2)
C|s(O(M)) = B|s(O(M)) (3)

and A|τ\s(O(M)) = B|τ\s(O(M))

}
. (4)

That is, in each pair of structures in the interpretation of an atomic module,
the structure on the left agrees with the unary semantics on the inputs, and the
structure on the right agrees with the unary semantics on the outputs. While
in the unary semantics, everything that is not explicitly mentioned is implic-
itly cylindrified, here the situation is different. Intuitively, on states where it is
defined, an atomic module produces a replica of the current structure except
the interpretation of the output vocabulary changes as specified by the action.
This preservation of unmodified information, while intuitively obvious, is an

5 Either one of these sets, I(M), O(M), can be empty.
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important technical property. For this reason, we call it, rather ostentatiously,
the Law of Inertia. The semantics is defined in a way so that atomic modules
impose constraints on the vvoc(M) only. The semantics of module variables
Z ∈ ModVarsI/O is defined in exactly the same way as the semantics for atomic
module constants.

Properties of Binary Atomic Modules. Before giving binary semantics to
the operations, we clarify the properties of the semantics of atomic modules by
the following proposition.6

Proposition 2. For all atomic modules, we have, for all structures A, B:

(a) (A,B) ∈ [[M ]]s ⇒ (B,B) ∈ [[M ]]s,
(b) (B,B) ∈ [[M ]]s ⇔ B ∈ [M ]s.

Proof. (a) Assume, towards a contradiction that (a1) (A,B) ∈ [[M ]]s, but (a2)
(B,B) �∈ [[M ]]s. Assumption (a1) implies, by the definition of the binary seman-
tics of atomic modules, that there exists C ∈ [M ]s such that conditions (2)–(4)
hold. By (4), which is the Law of Inertia, A|s(I(M)) = B|s(I(M)). This is because
s(I(M)) ⊆ τ \ s(O(M)) since I(M) ∩ O(M) = ∅, so the Law of Inertia applies.
Thus, C|s(I(M)) = A|s(I(M)) = B|s(I(M)). Assumption (a2) implies that for all
C ∈ [M ]s, at least one of the conditions (2)–(4), where A = B, must be violated
for all structures B. Violation of (2) and (3) is impossible by our conclusion from
the assumption (1a). Violation of (4) is impossible because A is the same as B
in this case.

(b, ⇒) Assume (B,B) ∈ [[M ]]s. Then, by Definition 5 of the binary semantics
for atomic modules, there exists C ∈ [M ]s such that C|s(I(M)) = A|s(I(M)) and
C|s(O(M)) = B|s(O(M)). By Proposition 1, in the case of atomic modules, [M ] =
[πfree(M)(M)]. Thus, since free(M) = vvoc(M) = I(M) ∪ O(M), it does not
matter how B interprets symbols outside s(free(M)), and C can be taken to
be B.

(b, ⇐) Assume B ∈ [M ]s. Then, by the unary semantics, there exists C ∈
[M ]s such that C|s(I(M)) = B|s(I(M)) and C|s(O(M)) = B|s(O(M)). Take C = B.
Obviously, B = B outside of the outputs of M . Thus, all three conditions of
Definition 5 are satisfied and (B,B) ∈ [[M ]]s.

II. Binary Semantics: the Remaining Cases. We are now ready to extend
the binary interpretation [[·]]s to all algebraic expressions α:

6 Part (b) of this proposition is stated without proof as Theorem 4.1 for compound
expressions in Shahab Tasharrofi thesis. The language has Projection, Sequential
Composition, Union and Feedback. The operations of Projection and Sequential
Composition have a different semantics than ours, and we do not have Feedback.
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[[id]]s := {(A,B) ∈ U × U | A = B},
[[α1 ∪ α2]]s := [[α1]]s ∪ [[α2]]s,
[[α−]]s := U × U \ [[α]]s,
[[μZj .α]]s :=

⋂ {
R ⊆ U × U | [[α]]s[Z:=R] ⊆ R

}
,

[[πl
δ(α)]]s := {(A,B) ∈ U × U |

∃ (A′,B) ∈ [[α]]s such that A′|s(δ) = A|s(δ)},
[[πr

δ(α)]]s := {(A,B) ∈ U × U |
∃ (A,B′) ∈ [[α]]s such that B′|s(δ) = B|s(δ)},

[[σl
X=Y (α)]]s := {(A,B) ∈ [[α]]s | (s(X))A = (s(Y ))A},

[[σr
X=Y (α)]]s := {(A,B) ∈ [[α]]s | (s(X))B = (s(Y ))B},

[[σlr
X=Y (α)]]s := {(A,B) ∈ [[α]]s | (s(X))A = (s(Y ))B}.

Operation id is sometimes called the “nil” action, or it can be seen as an
empty word which is denoted ε in the formal language theory. It is convenient
to extend the selection operation to Θ ∈ {X = Y,X �= Y,X = R,X �= R},
where R is a relational constant. This extension is done in an obvious way.
According to the semantics, Left Projection keeps the interpretation of a subset
of the vocabulary in the first element of the binary relation defined by α while
cylindrifying everything else on the left. It keeps the second element of the binary
relation intact. The semantics of Right Projection is defined symmetrically.7

Standard Models: Induction Principle. The semantics of the algebra of
binary relations on U gives us transition systems (Kripke structures) with states
that are elements of U and transition given by the binary semantics. In this
paper, we are interested in reachability from the input structure. We need to
ensure categoricity of the theories in the logic, to avoid non-standard models
that, in particular, do not originate in the input structure. For that purpose, we
semantically impose the following restriction:

only structures reachable from the input structures by means of applying
atomic modules are in the allowable Kripke models.

This semantic constraint can also be imposed axiomatically, although we do
not do it in this paper. For example, in Dynamic Logic, which is a fragment
of the Logic of Information Flows, it would be expressed by an axiom schema
p∧ [a∗](p → [a]p) → [a∗]p. This schema is a form of an inductive definition. Such
a definition always has a construction principle that specifies how to construct a
set, and an induction principle that says “nothing else is” in the set being defined.
Together, the two principles produce, depending on the logic, an axiom similar
to the the second-order induction axiom of Peano Arithmetic or the Dynamic
Logic axiom above [21].8

7 Equivalently, we could have introduced appropriate Cylindrification operations
instead of the two Projections.

8 The idea of connecting dynamic systems with Peano Arithmetic goes back to Reiter
[9]. He introduced second-order Induction axiom to the Basic Action Theory of the
situation calculus, which is a formalism for reasoning about actions based on classical
first and second-order logic.
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In addition to the algebraic operations above, we will also use Sequential
Composition (α;β). This operation is sometimes also called relative, dynamic,
or multiplicative conjunction as its properties are similar to the properties of
the logical (additive, static) conjunction (α ∩ β). The semantics of sequential
composition is given as follows.

[[α;β]] := {(A,B) | ∃C((A,C) ∈ [[α]] and (C,B) ∈ [[β]])}.

This operation is definable, under some conditions on inputs and outputs,
through the other operations. The full study of the primitivity of this opera-
tion is an ongoing collaborative work.

As a decision task, we are interested in checking whether a program α has a
successful execution, including a witness for its free relational variables, starting
from an input structure A. This is specified by A |=s |α〉T, where |α〉 is a right-
facing possibility modality, and T represents true, that is, all states. We formally
introduce and explain this modality in Sect. 5 on Modal Logic. To evaluate α in
A, we use s to match the vocabulary of A with the relational input variables of
α, while matching the arities as well, and then apply the binary semantics as
defined above. We will come back to this decision task in Definition 7.

Static-Dynamic Duality for Atomic Modules. Note that, for a given
domain, each atomic module is, simultaneously, (a) a set of structures, according
to the unary semantics, and (b) a binary relation, i.e., a set of pairs of structures,
according to the binary semantics.

4 Definable Constructs

We now introduce several definable operations, and we study some of their prop-
erties. All of those constructs are present in algebras of binary relations and
partial functions. There are studies on which operations are primitive and which
are definable [3]. It turns out that the only thing lacking in classical logic to
define most of these constructs is information propagation, i.e., a specification
of inputs and outputs. By adding it, we obtain a surprisingly rich logic. In the
following, we assume that all structures range over universe U, and all pairs of
structures over U × U.

Set-Theoretic Operations

di := id−, (diversity)
� := id− ∪ id, (all)
⊥ := �−, (empty)
α ∩ β := (α− ∪ β−)−, (intersection)
α − β := (α− ∪ β)−, (difference)
α ∼ β := (α− ∪ β) ∩ (β− ∪ α). (similar)
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In the following, we use I(α) and O(α) as a generalization of inputs and
outputs of atomic modules to compound algebraic expressions.9

Projection onto the Inputs (Domain). Dom(α) := πl
I(α)(α) ∩ id. This

operation is also called “projection onto the first element of the binary relation”.
It identifies the states in V where there is an outgoing α-transition. Thus,

[[Dom(α)]] = {(B,B) | ∃B′ (B,B′) ∈ [[α]]}.

Projection onto the Outputs (Image). Img(α) := πr
O(α)(α) ∩ id. This

operation can also be called “projection onto the second element of the binary
relation”. It follows that

[[Img(α)]] = {(B,B) | ∃B′ (B′,B) ∈ [[α]]}.

Forward Unary Negation (Anti-domain). Regular complementation
includes all possible transitions except α. We introduce a stronger negation which
is essentially unary (binary with equal elements in the pair) and excludes states
where α originates.

�α := (πI(α)(α))− ∩ id.

It says “there is no outgoing α-transition”. By this definition,

[[ �α]] = {(B,B) | ∀B′ (B,B′) �∈ [[α]]}.

Backwards Unary Negation (Anti-image). We define a similar operation
for the opposite direction.

�α := (πO(α)(α))− ∩ id.

It says “there is no incoming α-transition”. We obtain:

[[ �α]] = {(B,B) | ∀B′ (B′,B) �∈ [[α]]}.

Each of the unary negations is a restriction of the regular negation (complemen-
tation). Unlike regular negation, these operations preserve determinism of the
components. In particular, De Morgan’s Law does not hold for � and � . We
have demonstrated that these connectives have the properties of the Intuitionis-
tic negation. The proofs do not fit into the conference format and will be given
in a journal version of this paper.

9 We do not give a formal definition of the more general concept of inputs and outputs
here since it is long and an informal understanding is sufficient. The formal definition
will be given in another paper (with coauthors).
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Iteration (Kleene Star). This operator is the iteration operator, also called
the Kleene star. The expression α∗ means “execute α some nondeterministically
chosen finite number of times. We define it as follows: α∗ := μZ.(id ∪ Z;α). By
this definition,

[[α∗]] = {(A,B) | A = B or there exists n < 0
and C0, . . . ,Cn ∈ U such that

A = C0,B = Cn, and for all i < n, (Ci,Ci+1) ∈ [[α]]}.

That is, α∗ is a transitive reflexive closure of α.

Converse. This operation is equivalent to switching I(α) and O(α). It changes
the direction of information propagation. The semantics is as follows.

[[α�]] := {(A,B) | (B,A) ∈ α}.

Converse is implicitly definable: β = α� iff
Dom(α) = Img(β),
Dom(β) = Img(α).

Logical Equivalence (Equality of Algebraic Terms). We say that α and
β are logically equivalent, notation α = β if

(
(A,B) |=s α iff (A,B) |=s β

)
, for

all τ -structures A, B, for any variable assignment s.
The following proposition clarifies semantical connections between the oper-

ations.

Proposition 3.

�α = Dom(α)− ∩ id = Dom(α−) − Dom(α) = �Dom(α) = �Dom(α),
�α = Img(α)− ∩ id = Img(α−) − Img(α) = � Img(α) = � Img(α),

Dom(α) = ��α,
Img(α) = ��α,

id = �⊥ = �⊥,
⊥ = � id = � id = �� = ��,

���α = �α,
���α = �α.

Proof. The logical equivalences follow directly from the semantics of the opera-
tions.

Notice that � inherits a property of intuitionistic negation: �� α �= α. This
is because Anti-domain ( �), when applied twice, gives us Domain of α, which
is clearly different from α itself. But Domain of Anti-domain is Anti-domain,
so ��� α = Dom( � α) = � α. It is also possible to show that � and
� distribute over ∩ and ∪, so De Morgan Law does not hold for them. Also,
�� = ⊥, but �⊥ �= �. Indeed, �⊥ = id.

5 Modal Logic

We now define a modal logic which we call Lμμ, since it is similar to the mu-
calculus Lμ, but has two fixed points, unary and binary. The modal logic is used,
in particular, to formalize the main computational task, the Model Expansion
task for processes in Definition 7.
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5.1 Two-Sorted Syntax, Lµµ

The algebra with information flows can be equivalently represented in a “two-
sorted” syntax, with sorts for processes (α) and state formulae (φ). This syntax
gives us a modal logic, similar to Dynamic Logic. The syntax is given by the
grammar:

α ::= id | Ma | Zj | α ∪ α | α− | πδ(α) | σΘ(α) | φ? | μZj .α
φ ::= T | Mp | Xi | φ ∨ φ | ¬φ | |α〉 φ | 〈α| φ | μXi.φ.

(5)

The first line defines process formulae. It is essentially our original syntax (1).
The second line specifies state formulae. There, we have two possibility modali-
ties, |α〉 is a forward “exists execution of α” modality, and 〈α| is its backwards
counterpart. We can also introduce their duals, the two necessity modalities:
|α] φ := ¬( |α〉 ¬φ) and [α| φ := ¬(〈α| ¬φ). Symbols Ma stand for modules that
are “actions”. Symbols Mp stand for modules that are “propositions”. Operation
T represents a proposition that is true in every state. It replaces id under unary
semantics.10

Test φ? turns every unary operation in the second line into a binary one by
repeating the arguments, such as in e.g. going from p(x) to p(x, x), i.e., they are
(partial) identities on U. Atomic tests are (a) atomic modules-propositions (MC
modules) and (b) expressions of the form πδ(id) and σΘ(id).

We will see that the state formulae “compile out”, i.e., are expressible using
the operations in the first line. Despite state formulae being redundant, they are
useful for expressing properties of processes relative to states, as in other modal
temporal logics. In particular, they give an easy way to express quantification
over executions (sequences of transitions) by means of modalities.

Semantics of Lµµ. The modal logic is interpreted over a transition system,
where the set of states U is the set of all τ -structures over the same domain
Dom. 11

State Formulae (line 2 of (5)): Atomic modules Mp (modules-propositions)
and module variables Xi are interpreted exactly like in the unary semantics.
That is, Mp are Model Checking (MC) modules, i.e., those where the expansion
(output) vocabulary is empty. The rest of the formulae are interpreted exactly
as in the μ-calculus, except we have a backwards modality in addition:

[T] := U,
[φ1 ∨ φ2] := [φ1] ∪ [φ2] ,
[¬φ] := U \ [φ] ,
[|α〉φ] := {A | ∃B ( (A,B) ∈ [[α]] and B ∈ [φ] ) },
[〈α|φ] := {B | ∃A ( (A,B) ∈ [[α]] and A ∈ [φ] ) },

[μZj .φ] :=
⋂ {

R ⊆ U : [φ][Z:=R] ⊆ R
}
.

10 Note that T is unary, as every other state formula in the second line of (5), which
makes it different from the binary � and id.

11 In the case of solving Model Expansion task, the domain is determined by the domain
of the input structure.
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Process Formulae (line 1 of (5)): These formulae are interpreted exactly as
in the binary semantics. In particular, modules-actions are interpreted as Model
Expansion (MX) tasks, since they have inputs and outputs. In addition, tests
are interpreted as in Dynamic Logic: [[φ?]] := {(A,A) | A ∈ [φ] }. In particular,
[[T?]] = [[id]], where id is the relative multiplicative identity (using the terminol-
ogy introduced for algebras in the style of Tarski and Givant) in the syntax of
Lμμ (5).

Satisfaction Relation for Lµµ. We say that state A, where A ∈ U, satisfies
φ under variable assignment s, notation A |=s φ, if A ∈ [φ]. For process formulae
α, the definition of the satisfaction relation is exactly as in the binary semantics.

Structures as Transitions and States. Note that, for each α ∈ Lμμ, its model
is a Kripke structure where transitions represent MX tasks for all subformulae
of α, according to the binary semantics. In that Kripke structure, states are
Tarski’s structures, and atomic transitions are also Tarski’s structures, over the
same vocabulary.12

5.2 Two-Sorted = One-Sorted Syntax

The two representations of the algebra, one-sorted (1) and two-sorted (5), are
equivalent.13 We show that all operations in the second line of (5) are reducible
to the operations in the first line.

Theorem 1. For every state formula φ in two-sorted syntax (5), there is a
formula φ̂ in the one-sorted syntax (1) such that B |=s φ iff (B,B) |=s

Dom/Img(φ̂). For every process formula α there is an equivalent formula α̂ in
the one-sorted syntax.

The notation Dom/Img above means that either of the two operations can be
used.

Proof. We need to translate all the state formulae into process formulae. We
do it by induction on the structure of the formula. Atomic constant modules
and module variables remain unchanged by the transformation, except, monadic
variables are now considered as binary. Similarly, T is translated into binary as
T̂ := id.

– If φ = φ1 ∨ φ2, we set φ̂ := φ̂1 ∪ φ̂2.
– If φ = ¬φ1, we set φ̂ := � (φ̂1). Equivalently, we can set φ̂ := � (φ̂1), since

state formulae are unary, and the two negations are essentially unary, i.e., are
subsets of the Diagonal relation id.

– If φ = |α1〉 φ1, we set φ̂ := Dom(α̂1; φ̂1).

12 Structures can be viewed as computing devices. They store information and expand
an interpretation of an input sub-vocabulary to an output sub-vocabulary to satisfy
a specification.

13 Similar statements have been shown for other logics, e.g. [22].
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– If φ = 〈α1| φ1, we set φ̂ := Img(φ̂1; α̂1).
– If φ = μX.(φ1), we set φ̂ := μX.Dom(φ̂1). Equivalently, we can set φ̂ :=

μX.Img(φ̂1), since, again, we are dealing with unary formulae here.

Operations �, �, Dom and Img are expressible using the basic operations of
the algebra, under the binary semantics. This gives us a transformation for the
state formulae.

All process formulae α except test φ1? remain unchanged under this trans-
formation. For test, we have:

– If α = φ1?, we set α̂ := Dom(φ̂1). Equivalently, we can set α̂ := Img(φ̂1).

It is easy to see that, under this transformation, the semantic correspondence
holds.

We now comment on a connection of the propositional version of Lμμ (i.e., a
fragment without projection and selection) with well-known logics. Propositional
Dynamic Logic (PDL) [23,24] and Linear Dynamic Logic (LDLf ) [8]. Both logics
have the same syntax:14

α ::= id | Ma | α;α | α ∪ α | α∗ | φ?,
φ ::= T | Mp | φ ∨ φ | ¬φ | |α〉 φ.

(6)

However, the semantics is different is each case. In particular, LDLf is interpreted
over finite paths. Both logics are fragments of the propositional version (no
projection, selection) of the modal logic Lμμ. To see it, recall that the Kleene
star is expressible by α∗ := μZ.(id ∪ Z;α). Note also that unary negation is
implicit in the process line of (6). This is because, in our translation from the
two-sorted to one-sorted syntax, if φ = ¬φ1, we set φ̂ := �(φ̂1).

It is known that we can use non-deterministic operations of Union and the
Kleene star, which are used in PDL, to define basic imperative constructs called
Deterministic Regular programs.15

Definition 6. DetRegular (While) programs are defined by restricting the
constructs ∪, ∗ and ? to appear only in the following expressions:

skip := T?,
fail := (¬T)?,
if φ then α else β := (φ?;α) ∪ ((¬φ)?;β),
while φ do α := (φ?;α)∗; (¬φ)?.

(7)

An unrestricted use of sequential composition is allowed.

While the programs are deterministic, their definition uses non-deterministic
operations. For a complexity-theoretic analysis, it is possible to show that some
14 Some description logics have a similar syntax and may include Converse operation.
15 Please note that Deterministic Regular expressions and the corresponding Glushkov

automata are unrelated to what we study here. In those terms, expressions a; a∗

are Deterministic Regular, while a∗; a are not. Here, the term Deterministic Regular
comes from another name for While programs.
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deterministic algebraic operations are sufficient to define the same imperative
constructs. We leave such an analysis to future work. As an application, Deter-
ministic Regular programs can be used to specify dynamic behaviour of complex
modular systems, in the style of Golog programming language [25].

5.3 The Main Decision Task: Definition

We now present a counterpart of Definition 3 of Model Expansion task for
processes. It will be our main task in the rest of the paper. Recall that
A |=s |α〉T means that program α has a successful execution starting from
an input structure A. We show now that checking A |=s |α〉T corresponds to
the decision version of the MX task for process α. Recall that, by the trans-
lation in the proof of Theorem1, |α〉T = Dom(α) = �� α. Recall also that
[[Dom(α)]]s = {(B,B) | ∃B′ (B,B′) ∈ [[α]]s}. Thus, we have: A |=s |α〉T iff
(A,A) ∈ [[Dom(α)]]s iff ∃B (A,B) ∈ [[α]]s iff ∃B over the same vocabulary as
A such that if A|s(I(α)) interprets the inputs of α, then B|s(O(α)) interprets the
outputs of α. This is an MX task. Thus, we formulate our problem as follows:

Definition 7 (MX task for Processes (Decision Version)).

Problem: MX task for Processes (Decision Version)
Input: τ -structure A, formula α with variables I(α)∪O(α), variable assignment
s : vvoc(α) → τ .
Question: A |=s |α〉T?

6 Conclusion

Motivated by the need to combine preexisting components for solving complex
problems, we developed two algebras, static and dynamic, for combining systems
that communicate through common variables. The variables are second-order,
i.e., they range over sets. Atomic modules are axiomatized in any formalism
where the task of finding solutions can be specified as the task of Model Expan-
sion. The dynamic algebra treats such specifications as “black boxes”. We showed
that, many operations studied in algebras of binary relations become definable
if we add information propagation, i.e., specify inputs and outputs of atomic
modules. We also showed that, when interpreted over transition systems, the
dynamic algebra is equivalent to a modal temporal (dynamic) logic.

The logic can be viewed as a significant generalization of Reiter’s situa-
tion calculus and Golog [9,10] in that first-order successor state axioms are
replaced with potentially non-deterministic atomic modules that can be of arbi-
trary expressive power and computational complexity, and can be axiomatized
in multiple logics. In place of Golog programs, we have algebraic terms inside the
modalities that specify desired patterns of execution. Since our “successor state
axioms” – atomic modules – are no longer first-order, a Prolog implementation,
as in the case of Golog, is no longer possible. Different solving methods are
needed. Some methods for solving modular systems for fragments of the current
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language have already been developed [26,27]. One method, [26], took inspira-
tion in the CDCL algorithm for SAT solving, where modules are called as oracles
during the execution. In the other method, [27], a parallel algebra of propaga-
tors has been defined and used for solving Model Expansion task for modular
systems. An important research direction is to extend the previous methods to
the full algebra, as well as to develop new solving techniques.

Another research direction is to analyze the computational complexity of
the main computational task in the Logic of Information Flows, under various
assumptions on the expressiveness of atomic modules and allowable algebraic
operations. In particular, it is very important to provide guarantees to the user
that: (1) all problems in a particular complexity class are expressible in a partic-
ular fragment, to guarantee completeness of the fragment with respect to that
complexity class; and (2) no more than the problems in that class are express-
ible, to ensure implementability of the system by a chosen technique. Providing
such guarantees is at the core of the Model Expansion project and its connection
to Descriptive Complexity [28], and a lot of work is currently under way in this
direction.
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