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Abstract. We define an inference rule called the Parallel rule. Given a
rewrite system R and an equational theory E, where R is E-convergent
modulo, we show that if R is saturated under the Parallel rule then
Basic Narrowing modulo E is complete for R. If R is finitely saturated
under both Parallel and Forward Overlap then Basic Narrowing, with
right hand side abstracted, is complete and terminates, and thus it is a
decision procedure for unification modulo R∪E. We give examples, such
as the theory of XOR, the theory of abelian groups and Associativity
with a unit element. We also show that R has the finite variant property
modulo E if and only if R can be finitely saturated under Parallel and
Forward Overlap, provided that E unification is finitary.
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1 Introduction

If an equational theory can be represented as a convergent rewrite system R, then
rewriting with R decides the word problem. However, some equations cannot be
oriented into rewrite rules, such as Associativity and Commutativity. Then we
may be able to split the equational theory into a rewrite system R and a set of
equations E where R is E-convergent, which also decides the word problem.

Narrowing lifts rewriting to solve unification problems. Narrowing with R
modulo E produces a complete set of unifiers for the R ∪ E unification problem
if R is E-convergent [10]. This is useful for applications such as Cryptographic
Protocol Analysis [7,8]. Unfortunately, Narrowing modulo E rarely halts, so it is
not practical to use. Basic Narrowing is a modification of Narrowing, where unifi-
cation problems are stored as constraints, rather than solving them immediately.
Narrowing may not take place inside a constraint, so Basic Narrowing is more
likely to halt. Unfortunately, Basic Narrowing modulo E is non-terminating for
many equational theories, and, even worse, it is not complete, i.e., it may not
produce a complete set of unifiers [5]. Because of these flaws it has been mostly
abandoned, in favor of other Narrowing methods such as Variant Narrowing [9].

This paper is our attempt to revive Basic Narrowing modulo. We create a new
inference rule, called the Parallel rule. If R is saturated by the Parallel rule, we
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show that Basic Narrowing modulo E is complete. We show that if R is finitely
saturated under both Parallel and Forward Overlap then Basic Narrowing with
Right Hand Side Abstracted (meaning that right hand sides of rewrite rules are
assumed to be reduced) is both complete and terminating, which is necessary
for applications. This gives a decision procedure for unification. These inference
rules are practical, as we illustrate with examples such as the theory of Exclusive
OR and the theory of Abelian groups, where the saturation under these inference
rules produces very few additional rewrite rules. In fact we show that a rewrite
system R can be finitely saturated by Parallel and Forward Overlap w.r.t. a
finitary E if and only if R has the Finite Variant Property modulo E (see also [4]
for a similar result in the empty theory).

Basic Narrowing modulo was shown to be incomplete [5] for the following
AC-convergent rewrite system R1:

1. x + 0 → x
2. a + a → 0

3. b + b → 0
4. a + a + x → x

5. b + b + x → x

where + is an AC symbol with an identity element 0, x is a variable, and a
and b are constants. The R1 ∪ AC-unification problem y + z≈?

R1∪AC0 has a
solution {y �→ a+b, z �→ a+b}, which cannot be found with Basic Narrowing. A
Basic Narrowing step with the fourth rule gives x≈?

R1∪AC0, with a constraint of
y + z ≈AC a+a+x. One solution of this constraint is x �→ u+v, y �→ a+u, z �→
a+v. If we could Narrow into the constraint, corresponding to a Narrowing step
at the variable position x, with b + b → 0 then this problem would be solved,
but Basic Narrowing does not allow that, and there is no other way to solve
this problem. To solve this problem in this paper, we define an inference rule
called Parallel (or E-Parallel and more specifically AC-Parallel). It combines the
parallel steps from rules 4 and 3 into one rewrite rule a + a + b + b → 0. It also
creates the extension of this rule a+a+ b+ b+x → x. (We sometimes leave out
parentheses for AC formulas, when they are not important.) After adding these
two additional rules, Basic Narrowing is complete.

To motivate the Forward Overlap rule, let R2 = {h(x)∗h(y) → h(x∗y)}. For
the purposes of this example, it doesn’t matter whether the ∗ and + symbol are
free or are associative and commutative. The forward Overlap rule combines two
rewrite steps into one. An application of Forward Overlap gives a new rewrite
rule h(h(x)) ∗ h(h(y)) → h(h(x ∗ y)). This process can be repeated an infinite
number of times in this particular example.

The Forward Overlap rule is not applicable for R1. So a form of Narrowing
called Basic Narrowing with Right Hand Side Abstracted (BNR) is complete for
R1. In R1 it was only necessary to add two rewrite rules to make it complete for
BNR. In other examples, such as R2 it takes infinitely many new rewrite rules.
But there are many practical examples like R1 where very few rewrite rules are
needed.

We give examples to show that saturation under Parallel and Forward Over-
lap can often be accomplished by adding just a few rules, in theories such as
Exclusive OR and Abelian group theory. We also show that a theory can be
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finitely saturated by Parallel and Forward Overlap if and only if that theory has
the Finite Variant Property, provided that the E unification problem is finitary.

In particular, we show that a rewrite system is saturated by Parallel if and
only if every innermost redex can be reduced with an instance of a rule mapping
all variables in the right hand side to terms in normal form (IRR). This implies
that Basic Narrowing is complete. We also show that a rewrite system is satu-
rated by Parallel and Forward Overlap if and only if every innermost redex can
be reduced to normal form in one step (IR1). This implies that Basic Narrowing
with Right Hand Side Abstracted is complete, which in turn implies a property
we call the Finite Constraint Property, which is a generalization of the Finite
Variant Property, to also handle equational theories with an infinitary unifica-
tion problem, such as the theory of Associativity. If the unification problem is
finitary, this is equivalent to the Finite Variant Property (FVP), which in turn
implies IR1.

2 Preliminaries

We use standard notation of term rewriting [1,3,6,11] and equational unifi-
cation [2]. We use the usual definition of substitution. If σ is a substitution
and V is a set of variables, then σ|V is the restriction of σ to the variables of
V . We say a substitution θ extends a substitution σ if θ|Dom(σ) = σ, where
Dom(σ) = {x | xσ �= x}. A complete set of E-unifiers of an E-unification prob-
lem Γ is a set of substitutions, denoted by CSUE(Γ ), such that each element
of CSUE(Γ ) is an E-unifier of Γ and for each E-unifier θ of Γ , there exists
some σ ∈ CSUE(Γ ) such that σ ≤V

E θ, where V is the set of variables of Γ . An
ordering has the subterm property no term t is greater than a proper subterm of
t. A reduction ordering > is E-compatible if s′ ≈E s > t≈E t′ implies s′ > t′ for
all s, s′, t and t′.

Given a rewrite system R and a set of equations E, denoted by (R,E), the
relation →R,E on T (Σ,V ) is defined by s →R,E t (or more specifically s

p−→R,E t)
iff there is a non-variable position p ∈ FPos(s), a rewrite rule l → r ∈ R, and a
substitution σ such that s|p ≈E lσ and t = s[rσ]p. The relation →R,E is decidable
whenever E-matching is decidable. The transitive and reflexive closure of →R,E

is denoted by ∗−→R,E . We say that a term t is R,E-irreducible (or in R,E-normal
form) if there is no term t′ such that t →R,E t′. If s

∗−→R,E t and t is R,E-
irreducible, we say that t is a reduced form of s (or a normal form of s), denoted
by t = s↓R,E . E is regular if V ar(s) = V ar(t) for all s ≈ t in E.

A substitution σ is called R,E-reduced if xσ is R,E-irreducible for all x ∈ V .
We say that a term t is an innermost redex of R,E iff t is R,E-reducible only at
the top position. Let s → t be a rewrite rule. Let θ be a substitution. The instance
sθ → tθ is a right-reduced instance if xθ is in normal form for all variables x in t.
Note that tθ may or may not be reduced.

The rewrite system (R,E) is Church-Rosser modulo E if for all terms s and
t with s =E t, there are terms u and v such that s

∗−→R,E u =E v
∗←−R,E t.
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The rewrite system (R,E) is convergent modulo E if (R,E) is Church-Rosser
modulo E and ↔E ◦ →R ◦ ↔E is well-founded. In this paper, we simply say
that the rewrite system R is R,E-convergent (or E-convergent) if the rewrite
system (R,E) is convergent modulo E.

3 Inference Rules on the Rewrite System

Throughout the paper, we assume E is a regular equational theory, and R is
an E-convergent rewrite theory, under an E-compatible reduction ordering with
the subterm property, so we will not explicitly state this in the theorems.

We give an inference rule called Parallel (or E-Parallel) which is a key con-
tribution of this paper. This is the rule that needs to be added to make Basic
Narrowing complete modulo an equational theory. It can be viewed as a non-
critical overlap below a variable position, but only in very specific cases. The
example in the introduction gives an idea where the name comes from. The pur-
pose of the rule is to ensure that every innermost redex can be reduced by an
instance of a rewrite rule where substitutions to variables on the right hand side
are reduced.

E-Parallel

s → t l → r v ≈ u[l′]
vσ → v′

where

1. s → t ∈ R
2. l → r ∈ R
3. v ≈ u[l′] ∈ E
4. l′ is a strict subterm of u and is not a variable
5. σ ∈ CSUE(l ≈?

E l′, u ≈?
E s)

6. v′ is some normal form of vσ
7. t contains a variable x, where l′σ is E-equivalent to a subterm of xσ

Definition 1. The above Parallel inference rule is redundant if either

1. for all s′ such that s′ ≈E sσ, a strict subterm of s′ is R,E-reducible, or
2. sσ is R,E-reducible by a right-reduced instance of a rule.

In the next section we will define Basic Narrowing, and later show that if R
is saturated under Parallel, then Basic Narrowing is complete.

Next we define the Forward Overlap rule, which is like the Critical Pair rule,
except it reduces an instance of the right side of a rule instead of the left side. It
ensures that all innermost redexes can be reduced to normal form in one step.
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ForwardOverlap

u → v[s′] s → t
(u → v[t])θ

where

1. u → v[s′] ∈ R
2. s → t ∈ R
3. s′ is not a variable
4. θ ∈ CSUE(s = s′)

Definition 2. The above Forward Overlap inference rule is redundant if, for all
u′ ≈E uθ, u′ is R,E reducible by a right-reduced instance of a rule l → r, with
matching substitution σ, and either

1. lσ < uθ or
2. lσ ≈E uθ and rσ < v[s′]θ.

The notions of redundancy in this section are slightly different than the
standard notions of redundancy. Instead of just requiring that redundant rules
are implied by smaller instances of rules, this requires that redundant rules are
implied by smaller instances of rules, where all substitutions to variables on the
right hand sides of the rules are reduced. This will be necessary to make Basic
Narrowing complete.

In the next section we will define Basic Narrowing with Right Hand Side
Abstracted, and show that if R is saturated under the Parallel Rule and Forward
Overlap then Basic Narrowing with Right Hand Side Abstracted is complete.
Since we will see that Basic Narrowing with Right Hand Side Abstracted always
terminates, this gives a decision procedure for unification.

We now give an example to illustrate the inference rules. There are also many
interesting examples toward the end of the paper.

Example 1. R0 = {f(x1) → g(x1), k(x2) → q(x2), b → c}. Let E =
{f(h(k(x))) ≈ p(x), h(q(a)) ≈ b}. There is a Parallel inference between f(x1) →
g(x1) and k(x2) → q(x2) involving the equation f(h(k(x))) ≈ p(x). This is
because f(x1) unifies with f(h(k(x))), and k(x2) unifies with k(x). Let σ ∈
CSUE(f(x1) ≈?

E f(h(k(x))), k(x2) ≈?
E k(x)). So σ = {x1 �→ h(k(x)), x2 �→ x}.

Since k(x) is a subterm of x1σ, the Parallel rule can be applied. The result is
p(x) → g(h(q(x))). Let R1 = R0 ∪ {p(x) → g(h(q(x)))}. R1 is saturated by Par-
allel, but it is not saturated by Forward Overlap. There is a Forward Overlap
inference between p(x) → g(h(q(x))) and b → c, because h(q(x)) is unifiable with
b using the substitution x �→ a. The result of applying the Forward Overlap rule
is p(a) → g(c). Let R2 = R1 ∪ {p(a) → g(c)}. Now R2 is saturated by Parallel
and Forward Overlap rule.

We define a set of inference rules to be saturated if all inferences are redun-
dant, according to the definition of redundancy we give in each rule. An E-
convergent rewrite system could be constructively saturated by applying the
inferences exhaustively and adding new rewrite rules. The set of rewrite rules
will still be E-convergent.
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4 Inference Rules for Solving the Unification Problem

We introduce constrained terms, of the form t|ϕ, where t is a term and ϕ is a set
of unification problems. Solutions and instances of constraints are defined as:

Definition 3. Let E be an equational theory. Let t|ϕ be a constrained term. The
solutions of ϕ are Sol(ϕ) = {σ | uσ ≈E vσ for all u≈?

Ev ∈ ϕ}. The irreducible
instances of t|ϕ are IInst(t|ϕ) = {tσ | σ ∈ Sol(ϕ) and xσ is in normal form for
all x ∈ V ar(t)}.

Narrowing is a relation on constrained terms, with notation t1|ϕ1 � t2|ϕ2.
Completeness is defined as follows:

Definition 4. A narrowing inference system is complete if given a term s and
a reduced substitution σ, there is a sequence of narrowing steps s | � ∗� t | ϕ
and a substitution θ such that

1. σ can be extended to θ,
2. θ is a solution of ϕ, and
3. tθ is a normal form of sσ.

In this section we present two Narrowing rules. BN stands for Basic Narrow-
ing, and BNR stands for Basic Narrowing with Right Hand Side Abstracted.

BN

u[s′] | ϕ s → t
u[t] | ϕ, s≈?

E s′

where

1. s → t ∈ R
2. s′ is not a variable

Example 2. Consider the rewrite system R0 from Example 1, and apply
BN to p(x)|�. The only reduction is with f(x) → g(x), which gives
g(x′) | f(x′)≈?

E p(x). (Note that p(x) ≈E f(h(k(x))).) All further BN steps
have unsatisfiable constraints, but there are instances that are not reduced. This
shows that BN is not complete for R0. However, it can be checked that BN is
complete for R1.

Next we introduce the BNR inference rule, where the right hand side of the
rewrite rule used for narrowing gets extracted into the constraint.

BNR

u[s′]|ϕ s → t
u[x] | ϕ, s≈?

E s′, x≈?
Et
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where

1. s → t ∈ R
2. s′ is not a variable
3. x is a fresh variable

Example 3. In Example 1, BNR is not complete for R1. The term p(a) cannot
be reduced to its normal form g(c) in one step. So, for example, a BNR from
p(a), using p(x) → g(h(q(x))) gives y | p(a) ≈?

E p(x), y ≈?
E g(h(q(x))), which

cannot be reduced further. It can be checked that BNR is complete for R2.

BN and BNR are used, as usual, to find normal forms of every instance
of a term. They can also be used to solve equational unification in R ∪ E, in
combination with an E-unification inference rule.

5 Optional Inference Rules

In this section we give some inference rules to augment the Basic Narrowing
rules. These rules are not necessary for any of the results in this paper. But
they are rules that are useful for designing an implementation that is efficient
in practice. In these inference rules, as opposed to the earlier rules in the paper,
the hypothesis is replaced by the conclusion.

The Concretization rule says that we can remove a constraint completely or
partially remove a constraint, and apply a substitution satisfying the constraint
directly to the unification problem.

Concretization

u|ϕ
uσ|ϕ

where σ is the most general unifier of ϕ.
The Split rule allows us to split a unification problem into two if the instances

remain the same. Suppose a constraint has a finite number of solutions. We
could split up a unification problem into one for each solution, and then apply
Concretization to apply the substitutions.

Split

u|ϕ
u|ϕ1 u|ϕ2

where IInst(u|ϕ) = IInst(u|ϕ1) ∪ IInst(u|ϕ2).
Simplify is an important rule. Suppose a unification problem simplifies using

a rewrite rule, then we are allowed to directly simplify it, without the nondeter-
minism that would come with a Basic Narrowing rule.
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Simplify

u[s′]|ϕ
u[tσ]|ϕ

where s → t ∈ R and sσ ≈E s′.
A unification problem can be removed if all solutions of its constraint are

reducible. This reduces the search space for narrowing.

ReducibleSubstitution

u|ϕ

where σ is reducible over the variables of u for all σ ∈ Sol(ϕ).

6 Completeness Proofs

In this section we prove the main completeness results of the paper. We show
that if a set of rewrite rules R is saturated under our inference rules, then any
minimal sequence of R,E rewrite steps, under an ordering we give below, can be
lifted to a sequence of Basic Narrowing steps. This is a generalization of what can
be done for Basic Narrowing in the empty theory, where any innermost sequence
of R rewrite steps can be lifted to a Basic Narrowing sequence.

We first need an ordering to compare rewrite steps. We prefer smaller rewrite
steps under this ordering. This means we prefer to use right-reduced instances
of rules, because of the subterm property of our ordering. Our next preference is
rules with smaller left hand sides, i.e., innermost reductions. Our last preference
is rules with smaller right hand sides, i.e., to get to the normal form faster.

Definition 5. Let s → t and u → v be rewrite rules. Let θ1 and θ2 be substi-
tutions. We define a relation on pairs of rewrite rules and substitutions.

– We say (s → t, θ1) ≤N (u → v, θ2) if sθ1 → tθ1 is a right-reduced instance,
or uθ2 → vθ2 is not.

– We say (s → t, θ1) ≤L (u → v, θ2) if sθ1 ≤ uθ2.
– We say (s → t, θ1) ≤R (u → v, θ2) if tθ1 ≤ vθ2.
– Then define ≤B to be the lexicographic combination (≤N ,≤L,≤R).

We will show that saturation under Parallel is equivalent to the ability to
reduce every innermost redex with a right-reduced instance of a rule, and closure
under Parallel and Forward Overlap is equivalent to the ability to reduce every
innermost redex to normal form in one step.

Definition 6. We say that R is IRR if every innermost redex is reducible by
a right-reduced instance of R. We say that R is IR1 if every innermost redex is
reducible to normal form in one step.
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Theorem 1. R is saturated by Parallel if and only if R is IRR.

Proof. First the forward direction. Assume R is saturated by Parallel. Given an
innermost redex s′ and a reduction of s′, let rule s → t and substitution θ be the
smallest reduction of s′ wrt ≤B . We show that if sθ → tθ is not a right-reduced
instance, then there is another reduction of s′ which is smaller than (s → t, θ).

Since sθ → tθ is not a right-reduced instance, there is a rewrite rule l → r, a
variable x in t and therefore also in s, and a substitution θ1, extending θ, such
that lθ1 is E-equivalent to a subterm of xθ. Since s′ is an innermost redex, we
know that lθ1 is not a subterm of s′. Therefore, sθ is E-equivalent to s′ but
not identical. Therefore there must be some equation u[l′] ≈ v in E, and some
substitution θ2, extending θ1 such that l′θ2 ≈E lθ1, and l′ is not a variable. Also,
there must be some substitution θ3, extending θ2, such that sθ is E-equivalent
to uθ3. θ3 must be a unifier of l ≈? l′ and u ≈? s.

Therefore, the conditions of the Parallel rule are applicable. Let
σ ∈ CSUE(l ≈?

E l′, u ≈?
E s) such that σ ≤E θ3 over the variables of the problem.

The result of applying the Parallel rule is vσ → (vσ) ↓. This rewrite rule can
be used to reduce s′. The first component of the ≤B ordering either stays the
same or gets smaller, since the right hand side was originally not a right-reduced
instance. The second component stays the same, but the third one is smaller.
Therefore the new rewrite step is smaller with respect to ≤B .

This inference might be redundant. Suppose it is redundant because a strict
subterm of every term E-equivalent to sσ is reducible. Then there is a rewrite rule
reducing a strict subterm of s′, which is smaller in the ≤B ordering. Suppose that
this inference is redundant because sσ is reducible by a right-reduced instance
of a rule. Then s′ is also reducible by a right-reduced instance of a rule. A
contradiction with the assumption has been obtained.

Now the reverse direction. Assume R is IRR. We need to show that all
Parallel inferences are redundant. This is trivially true, because one one condition
of the definition of redundancy for Parallel rules is that all innermost redexes
can be reduced by a right-reduced instance of a rule. ��
Theorem 2. R is saturated by Parallel and Forward Overlap iff R is IR1.

Proof. First the forward direction. Assume R is saturated by the Parallel and
Forward Overlap rules. Once again we assume the smallest reduction to obtain a
contradiction. Given an innermost redex s′ and a reduction using rule s → t and
substitution θ, we show that if tθ is not in normal form, then there is another
reduction of s′ which is smaller than (s → t, θ) with respect to ≤B .

Since tθ is not in normal form, there is a rewrite rule l → r and a substitution
θ1, extending θ, such that lθ1 is E-equivalent to a subterm of tθ. By the previous
theorem, and the fact that R is saturated by Parallel, we can assume that sθ → tθ
is a right-reduced instance, therefore lθ1 is E-equivalent to a subterm of tθ at a
non-variable position of t. Let l′ be that subterm of t.

Therefore, the conditions of the Forward Overlap rule are applicable. There
is a Forward Overlap among s → t[l′] and l → r. The result is sσ → t[r]σ for
some σ ∈ CSUE(l ≈? l′). Then sσ → t[r]σ can reduce s′. It is smaller in the
≤B ordering, because it must be a right-reduced instance, the left hand sides
are the same, and t[r]σθ1 is smaller than t[l]θ1.
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It is also possible that this inference is redundant because sσ is reducible by
a right-reduced instance of a rule smaller than sσ → t[l]σ. This must be smaller
with respect to ≤B .

Now the reverse direction. Assume R is IR1. We need to show that all Parallel
and Forward Overlap inferences are redundant. We have already showed that all
Parallel rules are redundant in the last theorem. In order to show all Forward
Overlap rules are redundant, consider a Forward Overlap of u → v[s′] and s →
t, resulting in uθ → v[t]θ. If uθ does not have an innermost redex, then this
inference is redundant, because all equivalents of uθ have a reduction below the
top. The smallest such reduction must be a right reduced instance. If uθ has an
innermost redex, then there must be another rule reducing uθ to normal form
in one step because R is IR1, and this rule must be a right reduced instance, so
this inference is redundant. ��

BN and BNR are clearly sound. We show that BN is complete for IRR
theories, and BNR is complete for IR1 theories, with or without the optional
rules. Since BNR halts, as long as Split is only applied finitely many times,
BNR gives a decision procedure for unification in IR1 theories, and BN gives
a complete procedure for unification in IRR theories.

Theorem 3. If R is IRR then BN (with or without optional rules) is complete.

Proof. We show that if sθ ∈ IInst(s | ϕ) and there exists t such that sθ → t
then there is a constrained term t′ | ϕ′ and a sequence of one or more inference
steps from s | ϕ to t′ | ϕ′ with t ∈ IInst(t′|ϕ′). That will show by induction that
some rewrite sequence from wσ to its normal form, where w is a term and σ is
a reduced substitution, can be lifted to a narrowing sequence from w | �.

Note that for Concretization, if sθ ∈ IInst(u | ϕ) then sθ ∈ IInst(uσ | ϕ).
For Split, if sθ ∈ IInst(u | ϕ) then sθ ∈ IInst(u | ϕ1) or sθ ∈ IInst(u | ϕ2).
So any sequence of those optional rules will preserve irreducibility. Also note
that the ReducibleSubstitution rule is not applicable to s | ϕ. For Simplify, the
conclusion u[tσ] | ϕ has the same constraint and a subset of the variables of the
hypothesis u[s′] | ϕ, so u[tσ]θ ∈ IInst(u[tσ] | ϕ) if u[s′]θ ∈ IInst(u[s′] | ϕ).

If Simplify is not applied, and s is reducible, then, because R is IRR, s must
be of the form s[l′] and there is some rule l → r such that l′θ =E lθ and θ|V ar(r)

is irreducible. There is then a BN application from s[l′] | ϕ to s[r] | ϕ, l≈?
El′.

Let x ∈ V ar(s[r]). Then either x ∈ V ar(s[l′]) or x ∈ V ar(r), and in both cases
xθ is irreducible. So s[r]θ ∈ IInst(s[r] | ϕ, l≈?

El′). ��
Theorem 4. If R is IR1 then BNR, with or without optional rules, is complete.

Proof. The proof is the same as the previous. Just redo the case where Simplify
is not applied, and s is reducible, then, because R is IR1, s must be of the form
s[l′] and there is some rule l → r such that l′θ≈Elθ and rθ is irreducible. There is
then a BNR application from s[l′] | ϕ to s[y] | ϕ, l≈?

El′, y≈?
Er. Let x ∈ V ar(s[y]).

Then either x ∈ V ar(s[l′]), in which case xθ is irreducible, or x = y, in which
case again xθ is irreducible. So s[r]θ ∈ IInst(s[r] | ϕ, l≈?

El′, x≈?
Er). ��
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These theorems imply completeness of R ∪ E unification. We can decide
the R ∪ E unification problem, and also find a complete set of R ∪ E unifiers
if E unification is finitary. In the case of BNR it gives a complexity bound,
since BNR narrowing branches nondeterministically but the length of a BNR
sequence is at most linear in the size of the term. The size of the terms and
constraints are linear in the size of the term. If E-unification is NP or better,
then the complexity bound is NP . If E-unification is PSPACE or worse, then the
complexity bound is the same as the complexity bound for unification modulo E.

We now give the definition of Finite Variant Property for rewrite systems
R modulo E. We define R,E to have the FV P if a finite number of substitu-
tions can be constructed, representing all normal forms of a given term. This
requires that the E-unification problem is finitary. We generalize this to a Finite
Constraint Property, which is also applicable to infinitary theories. R,E has the
FCP if a finite number of constraints can be constructed, representing all nor-
mal forms of a given term. For finitary theories, this is the same as the Finite
Variant Property. We show that if BNR is complete then R,E has the FCP .
In the reverse direction, we show that if R,E has the FV P then R is IR1.

Definition 7. A term-substitution pair (t, θ) is an R,E variant of a term s if θ
is normalized and sθ≈R∪Et. A complete set of R,E variants of s, denoted [[s]],
is a set of R,E variants of s such that:

1. for all (t, θ) ∈ [[s]], sθ
∗→ t with t in normal form, and

2. For all reduced substitutions σ and reduced terms s′ such that sσ
∗→ s′, there

exists a pair (t, θ) ∈ [[s]] and a substitution ρ such that tρ≈Es′ and θρ≈Eσ.

R,E has the Finite Variant Property (FV P ) if a finite [[s]] can be constructed
for all s.

Definition 8. A term/constraint pair (t, ϕ) is an R,E constraint variant of
term s if sθ≈R∪Et for all solutions θ of ϕ. A complete set of R,E constraint
variants of s, denoted [[s]]c, is a set of R,E constraint variants of s such that:

1. for all (t, ϕ) ∈ [[s]]c and θ ∈ Sol(ϕ), sθ
∗→ t with t in normal form, and

2. For all reduced substitutions σ and reduced terms s′ such that sσ
∗→ s′, there

exists a pair (t, ϕ) ∈ [[s]]c and a substitution θ ∈ Sol(ϕ) such that σ can be
extended to θ and tθ≈Es′.

R,E has the Finite Constraint Property (FCP ) if a finite [[s]]c can be con-
structed for all s.

Theorem 5. If BNR is complete for R then R,E has the FCP .

Proof. Saturate a term s under BNR. Then [[s]]c is the set of all pairs (t | ϕ)
such that BNR produces t | ϕ. ��

The inverse of the above theorem is not necessarily true. But the inverse of
the below corollary is true, as shown by the results of this paper.
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Corollary 1. Let R be a finite rewrite system. If BNR is complete for R, and
unification modulo E is finitary, then R,E has the FV P .

Theorem 6. Let R be a finite equational rewrite system. If R,E has the FV P
then R has a finite saturation under Parallel and Forward Overlap.

Proof. We definite a rewrite system VR as follows:

VR = {sθ → s′ | s → t ∈ R, (s′, θ) ∈ [[s]] and sθ is an innermost redex}

Since R,E has the finite variant property, VR is finite.
Let R∗ be a (possibly infinite) saturation of R. Then R∗ is IR1. This means

that every innermost redex can be reduced to normal form in one step in R∗.
Consider some sθ → s′ in VR. Then sθ is reducible to its normal form s′ in one
step in R∗. So there is a u → v ∈ R∗ and a substitution ρ such that uρ≈E sθ
and vρ≈E s′. This means there is a finite set V ′

R ⊆ R∗ such that all members of
VR are subsumed by some member of V ′

R, and therefore every innermost redex
can be rewritten to normal form in one step by a member of V ′

R. So V ′
R is IR1.

By definition, terms have the same normal form in V ′
R as they do in R.

Since V ′
R is finite, all rules from V ′

R will appear in finite time in the saturation
of R. At that time, the set of rules will be IR1, so saturated under Parallel and
Forward Overlap. ��

7 Examples of Equational Theories

In this section, we consider a few examples of equational theories, and show how
the E-Parallel rule is adapted for those theories.

First, consider the empty theory. Since the E-Parallel rule requires an equa-
tional axiom, it does not apply to the empty theory. Therefore, if R is convergent
modulo E then BN is complete for R, and BNR is complete for R if R is satu-
rated under Forward Overlap.

Now we consider AC, the theory of Associativity and Commutativity. When
we instantiate the E-Parallel rule to AC, we get the following inference rule.

AC-Parallel

u2 + x → w p + s → r
(u2 + x)σ → (wσ)↓

where

1. u2 + x → w or x + u2 → w is in R
2. p + s → r ∈ R
3. x is a variable which appears in w
4. σ = [x �→ p + s] or [x �→ p + s + y] for a fresh variable y

We show that this inference rule is correct.
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Theorem 7. AC-Parallel is an instance of E-Parallel for AC.

Proof. Using the notation of the E-Parallel rule, we know that since l appears
on the left hand side of a rewrite rule, it cannot be a variable. So it must be the
sum of two terms, since it must unify with a nonvariable position of one side
of an equation from AC. This justifies p + s → r as the right premise of the
AC-Parallel inference rule. Since p + s must unify with a strict subterm of an
AC equation, we can assume wlog that p+ s unifies with x1 +y1 of the equation
(x1 + y1) + z1 ≈ x1 + (y1 + z1).

The left hand side of the left premise of the inference rule must be of the
form u2 + x since it is not a variable, it is unifiable with one side of an equation
from AC, and it must contain the variable x, since t and therefore s contains the
variable x. So u2 + x unifies with (x1 + y1) + z1. Let σ ∈ CSUAC(p + s≈?

ACx1 +
y1, u2 + x≈?

AC(x1 + y1) + z1).
(p + s)σ must be AC-equivalent to a subterm of xσ by Condition 6 of the

E-Parallel rule. If (p+ s)σ is AC-equivalent to a strict subterm of xσ then xσ =
(p+ s+ y)σ for some fresh variable y. Since (p+ s)σ≈AC(x1 + y1)σ, this implies
that u2σ+yσ = z1σ. Then (u2+x)σ≈AC((x1+y1)+z1)σ≈AC((p+s)σ+u2σ+yσ).

A similar, but slightly simpler argument holds if xσ =AC (p + s)σ. ��
In practice, AC-Parallel inferences are usually redundant if u2 is not a sum.
We now give an A-Parallel rule for the theory of Associativity.

A-Parallel

u1 + x + u2 → w p + s → r
(u1 + x + u2)σ → (wσ)↓

where

1. u1 + x + u2 → w ∈ R
2. p + s → r ∈ R
3. x is a variable which appears in w
4. σ = [x �→ p + s] or [x �→ p + s + y] for a fresh variable y

Theorem 8. A-Parallel is an instance of E-Parallel for Associativity.

Proof. As in the AC case, using the notation from the E-Parallel rule, we know
that since l appears on the left hand side of a rewrite rule, it cannot be a variable.
So it must be the sum of two terms, since it must unify with a a nonvariable
position of one side of an equation from A. This justifies p + s → r as the right
premise of the A-Parallel inference rule. Since p + s must unify with a strict
subterm of an A equation, we can assume that p + s either unifies with y1 + z1
of the equation x1 + (y1 + z1)≈(x1 + y1) + z1.

Let s → t be the left premise of if the inference rule. s is not a variable but
must contain a variable x, and it is unifiable with one side of an equation from A.
So s unifies with x1+(y1+z1). Let σ ∈ CSUA(p+s≈?

Ay1+z1, s≈?
Ax1+(y1+z1)).
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Suppose s is of the form u2+x. (p+s)σ must be A-equivalent to a subterm of
xσ. Suppose that xσ =A (p + s)σ. Since (p + s)σ≈A(y1 + z1)σ, then u2σ = x1σ.
Then (u2+x)σ≈A(x1+(y1+z1))σ≈Au2σ+(p+s)σ, which is of the form t1+ t2.
If t2 contains pσ + sσ as part of its sum, then t2 is reducible, and t1 + t2 is
reducible below the root. Suppose t2 does not contain pσ + sσ. Then t1 must
contain u2σ. But since R is convergent modulo A, pσ+sσ+ t3 must be reducible
for any term t3. Therefore t1 is reducible and t1 + t2 is again reducible below the
root. In either case, the inference is redundant. If (p + s)σ is A-equivalent to a
strict subterm of xσ, the argument is identical. It is also an identical argument
if s is of the form x + u2.

Now suppose s is of the form u1 + x + u2. The argument here is the same as
the argument for the AC case. ��

8 Examples of Rewrite Systems

In this section we apply our results to some rewrite systems that are convergent
modulo AC or A or modulo two AC operators.

Example 4. Consider the example from the introduction. If we apply Parallel to
this theory, we create two new rules: a+a+b+b → 0 and a+a+b+b+x → x. All
other Parallel inferences are redundant, and Forward Overlap cannot be applied.
So this rewrite system is now saturated by Parallel and Forward Overlap, and
BNR is complete and terminating.

Example 5. Let R = {a + b → c, a + b + x → c +x} where + is AC. This cannot
be finitely saturated under Parallel. It creates all possible rules of the following
forms: {an + bn → cn, an + bn + x → cn + x}. We use an as an abbreviation for
a sum of n occurrences of a.

None of these rules are redundant. Since this rewrite system cannot be finitely
saturated under Parallel, it does not have the Finite Variant Property. It is inter-
esting that such simple rewrite systems do not have the finite variant property,
but much more complicated rewrite systems sometimes do.

Example 6. The theory of Exclusive OR satisfies Associativity, Commutativity,
Unit and Nilpotence. It consists of the following rewrite rules, modulo AC of +.

1. x + x → 0 2. x + 0 → x 3. x + x + y → y

Every application of Parallel is redundant in this theory. For example, a
Parallel inference between Rule 3 and Rule 2 gives x + x + x′ + 0 → x′. Every
AC-equivalent of x + x + x′ + 0 is reducible below the root. A Parallel inference
between Rule 3 and Rule 1 results in x + x + x′ + x′ → 0. Every AC-equivalent
of x+x+x′ +x′ is reducible below the root, except for (x+x′)+(x+x′), which
is reducible at the root by a right reducible instance of x + x → 0. Similarly for
all applications of Parallel. There are no instances of Forward Overlap.

Example 7. Consider the rewrite presentation of Abelian Groups from Lankford,
given in the Comon/Delaune paper [5], where ∗ is an AC operator.
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1. x ∗ 1 → x
2. (x−1)−1 → x
3. 1−1 → 1
4. (x−1 ∗ y)−1 → y−1 ∗ x
5. x ∗ x−1 → 1

6. x ∗ (x−1 ∗ y) → y
7. x−1 ∗ y−1 → (x ∗ y)−1

8. x−1 ∗ (y−1 ∗ z) → (y ∗ x)−1 ∗ z
9. (x ∗ y)−1 ∗ x → y−1

10. (x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z

All applications of Parallel are redundant and there are two applications of
Forward Overlap that are not redundant. A Forward Overlap between Rule 10
and Rule 7 gives (x ∗ y)−1 ∗ (y ∗ z−1) → (z ∗ x)−1. A Forward Overlap between
Rule 10 and Rule 8 gives (x ∗ y)−1 ∗ (y ∗ z−1) ∗ w → (z ∗ x)−1 ∗ w.

It can be checked that when these two new rules are added, the rewrite
system is saturated under Parallel and Forward Overlap.

Example 8. Here we consider a homomorphism from an AC operator to another
AC operator. Notice this is not an endomorphism as is often considered, because
the binary operator on the left hand side is not the same as the binary operator on
the right hand side. Let R = {h(x)∗h(y) → h(x+y), h(x)∗h(y)∗z → h(x+y)∗z}
where + and ∗ are both AC symbols.

There are many applications of Parallel, and Forward Overlap. One of the
applications of Parallel gives h(x) ∗ h(y) ∗ h(u) ∗ h(v) → h(x + y + u + v).
Every equivalent instance can be rewritten below the root. Similarly, the other
applications of Parallel and the applications of Forward Overlap derive rules
where all equivalent instances of the left hand side can be rewritten below the
root. So all Parallel and Forward Overlap rules are redundant. Therefore the two
rules above are saturated under Parallel and Forward Overlap.

Example 9. Consider the homomorphism theory over AC, where the binary
operator is the same on both sides. Let R = {h(x) ∗ h(y) → h(x ∗ y), h(x) ∗
h(y)∗z → h(x∗y)∗z}. R is saturated under Parallel, for the same reason as the
other homomorphism theory. But it cannot be finitely saturated under Forward
Overlap. Therefore, BN is complete for this theory, but BNR cannot be made
complete.

We could flip the order of the rules in this example. We would get R =
{h(x ∗ y) → h(x) ∗ h(y)}. Since the top symbol on the left hand side is not
AC, there are no extensions or Parallel inferences. So BN is complete. But this
theory also cannot be saturated by Forward Overlap.

Even though Associative Unification is infinitary, we can still represent them
with a constraint. Even when we cannot list out all the unifiers we can still
give a constraint representing them. Associative constraints are decidable, so we
can decide unification in theories that are closed under Parallel and Forward
Overlap. This is an advantage over the Finite Variant Property, which does not
allow infinitary theories, so it does not cover Associativity.

Example 10. Consider the theory AU of an associative operator with a unit, as
given by R = {x+0 → x, 0+x → x} . There are no applications of Parallel and
Forward Overlap. So it is saturated under Parallel and Forward Overlap.
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9 Conclusion

Basic Narrowing modulo an equational theory is known to be incomplete for
E-convergent rewrite systems R [5]. We defined an inference rule called Parallel,
and showed that if R is saturated by Parallel then Basic Narrowing is complete.
If R is also saturated by Forward Overlap, then BNR, a restricted form of Basic
Narrowing, is complete. Since BNR always terminates, this gives a decision pro-
cedure for R∪E unification, which runs in NP time if E-unification is decidable
in NP . If E-unification is finitary, we can also produce a complete set of unifiers.

Since Basic Narrowing was shown to be incomplete, recent research on nar-
rowing modulo E has focused on Variant Narrowing [9], which works if R,E has
the Finite Variant Property. We show that R has the Finite Variant Property
modulo E if and only if R can be finitely saturated by Parallel and Forward
Overlap wrt E, and the finite saturation of R makes BNR complete modulo E.

The work on the Finite Variant Property may deal with many sorted/order
sorted theories [12]. We see no issues in extending our work to cover order sorted
theories, but that is left for future work. On the other hand, we allow theories
where E-unification is infinitary such as Associativity, while the Finite Variant
Property does not cover that. We have generalized the Finite Variant Property
to something called the Finite Constraint Property, which we believe would
also allow Variant Narrowing to deal with infinitary equational theories. If E is
infinitary, it may not be possible to saturate R; but it can be saturated in cases
that do not require infinitary unification. We give the example of Associativity
with a unit in this paper.

For future work, we will extend BNR to handle sorts. We also think there
would not be a problem to extend our results to unfailing completion and full
first order theorem proving. We have given some examples in this paper, like
Exclusive OR and Abelian groups. We would like to find other interesting and
practical theories where BNR gives a decision procedure.
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