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Abstract. We present a generalised sequent calculus based on the use
of pairs of ordinary sequents called bisequents. It may be treated as the
weakest kind of system in the rich family of systems operating on items
being some collections of ordinary sequents. This family covers hyper-
sequent and nested sequent calculi introduced for several non-classical
logics. It seems that for many such logics, including some many-valued
and modal ones, a reasonably modest generalization of standard sequents
is sufficient. In this paper we provide a proof theoretic examination of S5
in the framework of bisequent calculus. Two versions of cut-free calculus
are provided. The first version is more flexible for proof search but admits
only indirect proof of cut elimination. The second version is syntactically
more constrained but admits constructive proof of cut elimination. This
result is extended to several versions of first-order S5.
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1 Introduction

During the last five decades researchers trying to apply sequent calculi (SC) to
several non-classical logics faced many serious problems. In order to overcome
the difficulties they provided a lot of ingenious solutions, mainly based on the
changes in the notion of basic items on which rules are defined. Sometimes
the machinery involved in the construction of such generalised forms of SC is
quite complicated and in special cases may be reduced. The aim of this paper
is to provide the simplest cut-free generalised SC which has strictly syntactical
character, i.e. no labels or other external devices are required. Of course the
assumption that there is a clear-cut distinction between purely syntactic and
semantic-based calculi may be questioned. After all, there are results showing
that some of the approaches may be seen as notational variants simply' and, on
the other hand, a labelled SC of Negri [36] admits purely syntactical methods

! For example, Fitting [16] results concerning the correspondence between prefixed
tableaux and nested sequents, or Baaz, Fermiiller and Zach [5] concerning n-sided
sequents and labelled tableaux for many-valued logics.
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of proving admissibility of cut and other structural rules. Also the notion of
simplicity is rather vague; in Introduction to [24] different, sometimes opposing,
criteria are discussed. Below we will try to explain in what sense the proposed
solution may be seen as the simplest, at least in one, but quite rich and important
group of generalised SC of similar character.

Let us propose a name many-sequent calculi for the class of systems which
is under inspection here. This class covers a variety of systems using collections
of sequents as the basic items — in particular, two families of calculi operat-
ing on hyper- or nested sequents. Moreover, many other approaches, e.g. using
structured notion of a sequent (e.g. Sato [41]) or multiple kinds of sequents (e.g.
Indrzejczak [21]) may be reduced to this group by suitable translation.

Let us recall that hypersequents are structures of the form It = Ay | ... |
I'; = A; which are usually conceived as sets or multisets of their components?. It
is commonly believed that hypersequent calculus (HC) was originally introduced
by Pottinger [39]. However, this information should be revised since a similar idea
was earlier introduced by Mints in [32] and [33] to formalize S5. Unfortunately,
these papers were written in Russian and unknown to wider community. Even
much later, when English translation of [33] was presented in Mints [34] he did
not care to underline his priority in this respect. But it was Avron [1] who not
only independently introduced such kind of SC but developed its theory, first
for relevant, then for many other non-classical logics (see e.g. [2]). Since then,
HC was applied widely in many fields (see e.g. [12] or [31]).

Nested sequents are more complicated structures where, in addition to formu-
lae, the elements of a sequent may be other sequents, containing other sequents.
This approach in general form was initiated by Dosen [14] where one is dealing
with a hierarchy of sequents of order n + 1 with arguments being finite sets of
sequents of order n. In particular, sequents of order 2 consist of finite sets of ordi-
nary sequents (of order 1) on both sides, where elements of the antecedent are
treated conjunctively, and elements of the succedent disjunctively. Independently
of DoSen’s general frame (not well known either) similar ideas were extensively
applied, under different names (deep inference calculi, tree-hypersequent calculi),
in the field of modal and temporal logics (e.g. Bull [11], Kashima [27], Stouppa
[43], Brinnler [10], Poggiolesi [38]).

In fact, HC may be seen as a special, simplified case of Dosen’s general frame-
work. In this perspective hypersequents are just sequents of order 2 with empty
antecedents. This shows a deep relationship between these approaches. In partic-
ular, if hypersequents are defined not as sets or multisets of sequents, but rather
as their sequences, then HC may be interpreted as a restricted version of nested
sequent calculi, called by Lellmann [30] linear nested SC and by Indrzejczak [26]
non-commutative HC.

In particular, if we use just structures which consist of two sequents only, we
obtain a limiting case of either HC or nested SC which we call bisequent calculi
(BSC). Hence our proposal may be seen as providing the simplest and most

2 In fact other kinds of components, for example expressing clusters, were also pro-
posed recently, see e.g. Baelde, Lick and Schmitz [6].
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restrictive form of all aforementioned systems captured by the general frame
of DosSen in the sense of simplicity of the basic syntactic structures. Is such
restricted calculus of any use? HC already may be seen as quite restrictive form
of generalised SC, yet it was shown to be useful in many fields. BSC is even more
restrictive but preliminary work on its application is promising. For example, one
may apply bisequents successfully to a variety of three- and four-valued logics
which may be characterised in terms of Hahnle [19] approach with labels as sets
of values (work in progress). In this paper we focus on construction of BSC for
modal logic S5. It is an open question if this approach may be extended to other
modal logics containing axiom 5 or B. But in case of S5 we obtain an elegant
solution which is simple also in the sense of simple modal rules allowing for easy
proof search and establishing decidability (in propositional case).

S5 is chosen not only because of its philosophical importance. It is impor-
tant also for proof theory since it had a remarkable impact on the development
of different generalised SC. This well-known and important modal logic was
very early recognized as a troublesome case for construction of well-behaving SC
(Matsumoto and Ohnishi [37]). It was in the strong contrast with nice semantic,
algebraic and many other features of S5. Although it is possible to devise a
standard cut-free SC it requires global restrictions on the application of modal
rules which make it rather complicated in practical proof search (see e.g. Sere-
briannikov [42] or Braiiner [9]). Several proposals for solving the problem were
connected not only with aforementied kinds of generalised SC but also with
other approaches based on the application of structured sequents (Sato [41]) or
variety of sequents (Indrzejczak [21]) or labels (Fitting [15]), to mention just a
few proposed solutions. In nested SC there are systems of Stouppa [43], Briinnler
[10] and Poggiolesi [38]. In case of HC the number of different formalizations of
S5 is particularly impressive: Mints [32], Pottinger [39], Avron [2], Restall [40],
Poggiolesi [38], Lahav [29], Kurokawa [28], Bednarska and Indrzejczak [7].

When we compare different generalised SC for S5 we can observe that
although in standard SC this logic is troublesome, in other approaches it often
needs the minimum of what is at hand. For example, in labelled approach formal-
ization of S5 requires the most simple solution — labels being natural numbers;
no necessity for structured prefixes (Fitting [15]) or relational formulae (Negri
[36]). Similarly in the approach based on the use of variety of different sequents
(Indrzejczak [22]), S5 requires only two different ones. In what follows we want
to show that also in many-sequent approach the overall machinery may be sig-
nificantly reduced to very simple BSC. One may look at this attempt as a kind
of the application of the principle of Ockham’s Razor to generalised SC of some
sort. It may also be compared with the principle of shallow formalization pro-
posed by Quine. HC in itself may be seen already as a quite simple form of
many-sequent calculi, but sometimes we can go further.

In Sect.2 we describe the basic propositional system called BSC1 and com-
pare it with some approaches represented in HC. In Sect.3 we will show that
its cut-free version is complete. It is shown indirectly by translation from cut-
free proofs in double sequent calculus DSC for S5 which is briefly characterised
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first. In Sect. 4 we introduce restricted form of BSC1 called BSC2. Although it is
less flexible in practical applications we can prove a constructive cut elimination
theorem for it. Usually different approaches are restricted to propositional level
only, here the last section discusses extensions of BSC to quantified versions with
identity. Three variants of modal first-order logics are discussed, one based on
classical logic and two on free logic. Surprisingly enough, the first one although
unproblematic in the setting of BSC1, cannot be accomodated in BSC2 without
addition of axiomatic sequents which destroy full cut elimination. On the other
hand, for two variants based on free logic we can still obtain cut elimination
theorem in nonrestricted version.

2 The System

We will use standard monomodal language with ordinary boolean connectives
and two modal operators of necessity [0 and possibility <. Let us recall that
one can axiomatize propositional S5 by adding to Hilbert system for classical
propositional logic CPL the following schemata of axioms:

K O(p = ¢) — (Op — 0¢)

T Op — ¢

4 Oy — O

5 -0 — O-0O¢p or O — OO
Pos ¢ - —O-¢

Instead of 5 one can use B (—¢ — O-Op or ¢ — OOy) and dispense with
4 since it is provable from 5 and T. The only primitive rules are modus ponens
MP and Go&del’s rule GR. I' g5 ¢ denotes a provability of ¢ from I' where
applications of GR is restricted to theses only. Since only syntactic proofs will
be presented below we do not recall semantic characterisation of S5.

The basic system which we call BSC1 is essentially a bisequent counterpart
of Gentzen’s LK for CPL enriched with special modal rules. Bisequents in BSC1
are simply (unordered) pairs of sequents I' = A | I = X where I, A, IT, X
are finite (possibly empty) multisets of formulae. In case when one component
of a bisequent is empty (i.e. both arguments of = are empty multisets) we can
omit it and a bisequent with single nonempty sequent is just a standard sequent.
Most of the rules have active formulae (i.e. side and principal formulae) in one
sequent only and this sequent is called active, whereas the second is non-active
(for this instance of rule application). For both components of a bisequent we
have the same set of rules hence for simplicity in schemata of rules we will state
active component always on the left but in the course of the proof respective
inferences are allowed in both sequents. As axioms we count all bisequents of
the form ¢ = ¢ | S, where S is any sequent, possibly empty. For classical basis
we just take LK (but with all two-premiss rules in multiplicative form):
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I'sA|S I'=sA|S
W=) 75218 O 754,18
0. = A|S I'sApp|S
C - — c) ———M——
©=) = r=as ©Y T=a,0s
I'=A¢|S o, I'=A|S
=) o, T = A[S (=) I'=A ¢S
o0, "= A|S I'=sA¢|S =4S
=) ner=sas N TThmosazeaels
I'=s Ay |S o, I'=A|S v, I =X|8
v v
=V TS aoveis V) T ovenisAr|s
(=) o, I'= A | S (o) I'=A¢|S Y, II=X|8
I'sAgp—v]|S o=, T =AX|S
(Cut) I'sAgp|A=06 o, [I=X]|Z2= 10

im=AX|AZ=06,10

Note that although in case of logical two-premiss rules we keep the second,
non-active component, the same in both premisses, for cut we admit different
sequents which are mixed in the conclusion. It simplifies a constructive proof of
cut elimination which will be stated in Sect. 4.

Now rules for modal operators:

I'=sA|II= X I'=A

(O=) p ' =A1l= (=0) =ell'=4
Op, ' = A|I=X% =0 | = A

s Ae|=2X% p=IT=A
(=0) I'=A300 | I=X (©=) Qo=|T'=A

As we can see all logical modal rules are symmetric, explicit and separate
in the sense defined by Wansing [44]. Moreover, they allow for easy proofs of
interdefinability of (0 and <> hence they satisfy most of the desiderata stated for
well behaved logical rules. Only (= 0O) and ({ =) are not pure in the sense of
Avron. Note also that all rules stated so far are static in the sense that there is
no transition of any formula from one sequent to another. In addition to ordinary
structural rules W and C we have eight transitional quasi-structural rules:

Mo, I'= Al =X
I's A|Mep,II=X

(TR=|)

I's A|Mp,II=X
Mo, I'= A1l =X

(| TR=)

I's AMe|ll =X
I'sA|II= X My

(=TR])

I's A|II= X My
I's AMe|ll=X

(|=TR)

where M is either O or < uniformly in the premiss and the conclusion. These
rules are called quasi-structural since no constant is introduced but it is anyway

displayed in the schemata of rules.
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A proof is defined in the standard way as a tree of bisequents. As an example
we provide a proof of B:

(Dﬁ)ﬂ

(TR =|) _Bp=p
(~ =) =p|0Op=
(iﬂ‘W$Mb$

(= 0) —p =[= —0p

(= TR) —p =|= 0O0-0p

(=) -p = O-0p

= —p — U=0p

One can easily prove other axioms of S5 whereas MP and GR are simulated
by cut and (= 0). In the other direction we can use some translation functions
which were developed in general form for nested and hypersequent calculi. Let
AL VI denote conjunctions and disjunctions of elements of I" and in case I’
is empty they are interpreted as T and L respectively. Consider the following
translation for bisequents: S(I" = A | II = X) := (A" — vA) v OAI —
VvX). This is a (restricted) form of the translation applied to nested sequents.
Alternatively, we may use a translation applied to hypersequents, i.e., S(I" =
Al D= X)) :=0AN" — VvA)vONAI — VvX). The former is a bit simpler
but has a disadvantage that in fact bisequents are treated here as ordered pairs
whereas it was not required for BSC1 (although it will be required for BSC2).
The fact that both can be used provides one more evidence that provided calculi
may be seen as a limit case of both hypersequent and nested sequent calculi. We
left to the reader the task of proving that all rules of BSC1 are admissible in
S5 under any of these translations. Alternatively, one may demostrate validity-
preservation of translation of rules thereby proving soundness. In consequence
we have:

Theorem 1. I'tg5 ¢ iff BSC1+1T = ¢

Before we go to more satisfactory solutions (i.e. cut-free) it is interesting to
compare modal rules of BSC1 with several kind of hypersequent rules which were
provided so far. Mints [32] is using HLK for CPL with addition of the following
rules for O

I'sAl=¢|G =¢|G
oK ooy —Z P91
=00 T ame O Saora

I'=sA|G I'sA|le,Y=0|G
0 T %— 0 5 )
C=)a,r=a1¢ O morsazsela

where G denotes a collection of sequents. Two of them, namely (O =71)
and (= 0OY) are just our rules for (J. The remaining rules are transitional but
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logical, not quasi-structural like in our system. The only rule which is specific
for 85 is (0 =°). This set of rules is in fact redundant and later approaches,
of Restall [40] and Poggiolesi [38], were more economical but also partly static,
partly transitional on the side of logical modal rules. Approaches of Avron [2],
Kurokawa [28] and Lahav [29] were based rather on special quasi-structural rules.
One can find a comparison of all these systems in Bednarska and Indrzejczak
[7]. Solutions provided for S5 in the framework of nested calculi are of similar
character. What is important is the fact that all proposed rules may be easily
simulated in BSC1, if we just take G in the schemata of rules to represent just
one sequent, possibly empty. Moreover, the proposed solution seems to be more
elegant since all logical rules are static and the only transitional ones are quasi-
structural.

3 Cut-Free BSC1

What with cut elimination? Let us call BSC1 without cut BSC1~. It is pos-
sible to prove completeness for such cut-free system semantically® but to save
space we will show it indirectly by translation from proofs in some other kind of
generalised cut-free SC for S5 which is known to be complete. We finished the
previous section with the claim that BSC1 can simulate modal rules from several
cut-free hypersequent calculi. But devising a direct translation is harder since
hypersequents may have more components than two. There are some other gen-
eralised SC where such translation is more straightforward; moreover it shows
how bisequents can simulate other kind of systems in addition to hypersequent
or nested sequent calculi.

One such possibility is connected with SC operating on structured sequents
i.e., having additional components in the antecedent or succedent like in Blamey
and Humberstone [8] or Heuerding, Seyfried and Zimmermann [20]. In particular,
all rules of Sato [41] from cut-free system for S5 may be simulated in BSC1 under
translation S(I" [X] = [II] A) := T = A | ¥ = II. Another possibility is to
refer to multisequent calculi in which only one sequent is used at a time but
different kinds of sequents are generally applied in the system. In particular, a
cut-free system for S5 uses only two kinds of sequents. It is called double SC
(DSC) since in addition to ordinary sequents there are modal ones of the form
I' O=A. The latter appear only in proofs but what is proved are only standard
sequents. If it is inessential whether standard or modal sequent is applied both
kinds are denoted as I' ()= A. The idea of using special kind of sequents is due
to Curry [13] and it was also used by Zeman [46]. In both cases additional sequent
was introduced to express modal character of suitable operations. In fact, its
introduction in Curry’s formulation of S4 is not necessary; in Zeman it is essential
for obtaining a modal rule characterising S4.2. Two kinds of sequents were
applied also in Avron, Honsell, Miculan and Paravano [3] but in totally different

3 For example, the method applied in Indrzejczak [25] and based on suitably defined
downward saturation and loop check can be adapted to BSC1 as well. Moreover it
yields decidability in propositional case.
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character. In their system two kinds of sequents correspond to two different
deducibility relation — global and local one. Indrzejczak introduced a general
construction where several types of modal [22] and temporal sequents [23] were
applied in one SC but in case of S5 a considerable reduction is possible to the
effect that only one type of modal sequent is required. Below we briefly describe
this system; in addition to [21] one may find a fuller account and comparison
with other approaches in Poggiolesi [38] and Wansing [45].

In addition to modal sequents, a language is enriched with a special structural
operation of transition (from one argument of a sequent to another). It is unary
like negation but cannot be iterated; it is allowed only to add it in front of a
formula or to delete it. We will use a sign ‘—’ for it, so any formula ¢ may be
transformed into —¢. In the schemata we will use a convention ¢* in the sense
that for ordinary formula ¢, ¢* = —¢ and (—p)* = . Also I'* = {p* : p € I'}.

Most rules are standard and work the same way on both kinds of sequents.
However in order to block uncontrolled transition from one side of a sequent to
the other for negation and implication we have symmetric variants:

—p, I'(O)= A rO= A -y
=) —Tos2 ) Tos2
rO= A —p¢ —o, (0= A , (0= A
&) TEs ae—0v T o= T 4

Clearly, I" and A may contain ordinary formulae as well as formulae with —;
the same remark applies to further rules. We need special rules for transition of
the form:

o, I'= A I'= A p ra= A
(=) I'= A p* (=) e I'= A (TR) A* O= I'*
and modal rules:
o, (0= A I'O= MA,p I'=A
0 = 0 —F N —_—
C=) goros2 ©9 rswmao, Y9 rosa

where M A contains only formulae of the form O, —0y and in (NC') one of the
I') A is either empty or contains only such modal formulae. If we admit { as a
primitive operator, we have dual rules for it and the notion of modal formula is
extended to include $, —Oap.

It is easy to prove soundness under syntactic translation where standard
sequents are dealt with as Gentzen transforms with the addition that formulae
preceded with — are translated as negations. Modal sequents are translated as
Al — O(VA) with the same proviso for formulae with —.

This system is cut-free and has generalised subformula property in the sense
that the only formulae which must occur in any proof of I" = A are of the form
», —¢ for every ¢ € SF(I' U A). Completeness and decidability is proved by
Hintikka-style argument in [21].
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The obvious translation of modal sequents is: (I, —A O= —II, X)) := I =
A | II = X; ordinary sequents are treated as bisequents with one component
empty.

Theorem 2. IfFpgsc I' = A, then BSC1~ + (1" = A).

Proof. 1t goes by induction on the height of a proof in DSC. We must provide
stepwise simulation of all rules of DSC under the translation. For most of the
rules it is obvious so we consider only the case of (= 0) and (NC). In case of the
former by the induction hypothesis we have provable a bisequent in which one
component has ¢ in the succedent and the remaining formulae are modal. By
transitional rules we move all modal formulae to the next component and then
apply (= 0O) (from BSC1) to ¢. The application of (|= TR) to Oy completes
the proof. For (NC) one of I'y A is modal or empty. In the first case a series
of application of transitional rules leads to translation of the conclusion; in the
second there is nothing to do. O

This theorem implies completeness of cut-free version of BSC1, that is of
BSC1~. It yields, by subformula property, decidability and also admissibility of
cut by a simple argument. Since if both premisses of cut are provable, then by
soundness they are valid. But cut is validity-preserving, hence the conclusion
must be valid either and, by completeness, it is also provable. But we may do
even better and prove this result constructively. However, not for a calculus in
this shape. Consider the following application of cut:

=op| =AY A=0|1= X7

=0 |I'= A~ AN=0 |- I=X%
A=0,00p | 1= A%

(=0)
(Cut)

(==)

If we now push cut up to reduce the height of a proof we obtain A = O, ¢ |
I, 1T = A, X and in general there is no chance to apply (= O) to this bisequent.
Therefore, for the aim of constructive proof of cut elimination we must modify
slightly a calculus to obtain its variant BSC2.

4 Modified System BSC2

First of all let us restrict the application of all static rules to left sequents only.
So what in BSC1 was only a convention applied in the schemata of rules, now
is a rigid requirement to the effect that in BSC2 bisequents are ordered pairs.
Note that in consequence of this restriction the right sequent is either empty
or modal and plays only auxiliary role, similarly like in the sequent calculus of
Heuerding, Seyfried and Zimmermann [20] for S4; it serves for storing modal
data. To simplify things we restrict language to O only but the proof works also
in the presence of {. We also introduce (Mix) instead of (Cut) to deal with C.
It looks like this:



286 A. Indrzejczak

F'=sA¢|A=0 P IT=X]Z=0
Nim=AY|A=2=06,0

where i, k > 0 and all occurrences of ¢ are displayed. It is obvious that a system
with mix is equivalent to the system with cut by exactly the same argument as
stated by Gentzen for LK.

However, to deal with transitional rules we must add the second form of mix.
Let (M Mizx) denote the following rule devised for boxed cut formulae:

I'= A0¢ | A= 6,007 Opk, IT = X | O™, £ = 12
=AY |AZ=6/10

(M Miz)

withi+j>1and k+n > 1.

Note that (M Mix) similarly like T R-rules works also on the right sequents,
even if i = k = 0. Moreover, we require that (Miz) is restricted only to nonmodal
cut formulae and denote it by (Miz'). Nothing is lost since if j = n = 0, then
(M Mix) works like (Mix). This is the solution similar to applied by Avron [2]
in his cut elimination proof for hypersequent calculus for S5. Details of such
proof are specified in Bednarska and Indrzejczak [7].

Let us call the system with these two variants of mix BSC2’. One may easily
prove that:

Lemma 1. BSC2+ 1T = A iff BSC2’+H T = A

Proof. From left to right it is enough to show that the application of (Miz) on
modal formula is derivable by (M Mix). If j = n = 0 it is the same. Other-
wise, after the application of (M Mix) we must introduce the lacking number of
occurences of cut formula by W to the left sequent and then by TR move them
to the right sequent to restore its full shape.

From right to left it is enough to show that (M Mix) is derivable by (Mix)
in BSC2. Again only the case with j > 1 or n > 1 must be considered. We apply
(T'R) to such occurrences of cut formula to move them to the left sequent in
both premisses, then we apply (Mix) so all these occurrences are deleted from
resulting bisequent. O

Before we prove elimination of cut for BSC2 one important thing should
be noted. Clearly, in the presence of cut BSC1 and BSC2 are equivalent. It
is also easy to observe that without cut everything provable in BSC2 must be
provable in BSC1 since the former is just restricted form of the latter. But is
BSC2 without cut equivalent to BSC1? An examination of a proof of B in BSC1
shows that rules were applied in both sequents. But in BSC2 the application of
static rules in the right sequent is forbidden and without cut we are not able to
prove B. If we restrict our interest to the system which is only weakly complete,
i.e. where all valid formulae are provable, we can apply the approach of Fitting
[15] based on the observation that in S5 it holds that F ¢ iff F Op. Therefore, at
the expense of reducing the problem to weak completeness only we can change
slightly a definition of a proof demanding that what we are proving are sequents
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of the form = Uy. In fact, due to the application of bisequents we may provide
more specific formulation. Note first that:

Lemma 2. In BSC2 (without cut) = Op iff F= ¢ |= Op

Proof. From left to right we just apply (= TR |) and (= W); conversely we
apply (= 0), then (|= TR) (but to the right sequent) and (= C). O

For illustration sake let us consider again a problem of proving B in so mod-
ified BSC2 (without cut). Here is a proof of = —p — O-Up |= O(—p — O-0p)

0 p=Dp
(TR(:>|) E=EY,
(- =p|0p=
(= W) —p=|0p=
(=) -p=0-0Op | Op =
(=0) =-p—-0-0Op|Op=
(TR =) = 0O(-p — 0O-0Op) | Op =
(= TR ) Op = O(—p — O-0p) |=
(=) Op =|= 0O(-p — O-0Op)

= ~Up |= O(=p — O-0Op)

=0
(V[E ) ) = 0-0p |= O(—-p — O-0p)
—p = O0-0p |= O(-p — O-0p)
(=—)

= —p — 0-0p [= O(=p — O-0p)
Now we can prove:
Theorem 3. If BSC2 = ¢ |= Oy, then BSC2~ F= ¢ |= Op

Proof. We will use the method of Girard [18] based on the application of cross-
cuts. But we apply Gentzen’s overall strategy, i.e., we will prove the result for
the case where both premisses of (Miz') or (M Mizx) are cut-free.

The cases where one premiss, say the left one, is axiomatic are simple; we
show it only for (M Miz):

Op = Op Opt, I'= A |0/, I = X

MM:
( iz) Op, '=A |1 =X

is replaced by:
Op', ' = A | O, Il = X

Op = A|ll=X
Op, = A|II=X

(| TR =)
(C=)
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The cases where one cut-formula in one premiss is parametric in all occur-
rences are similar to reductions in standard LK. For illustration we consider the
case of (M Mix) when the left premiss is obtained by (—=>):

= A,0,0x | T = 3,0 O, 0= A,0x" | T = 2,0x7
o=, = A0x" | IT= 32,0 Oxk, A= 0 |0x",2=>7T
o=, A= A0 |,5= 3,7

(M Mizx)

is transformed into:

I'= Ao, 0x | IT = 2,0y O, A=60|0x",E=7T

INA=AB,p|II,=Z=X7T D
-, A= A0 |I1,Z= X7

(M Mix)

(—=)

where D replaces:

O, I = AOx | [T = 2,0y Ok, A=0 |0y, 2=17T
Vv, A= A0 |I1,5= 37T

(M Miz)

Note that in case ¢ = Oy we must additionally restore ¢ by (= W) to
be able to derive the last sequent by (—=). If in this case also some [y were
deleted in the right component we restore them by W in the left component and
TR. It should be noted that when TR is performed we can always reduce the
height even if left sequents are non-active.

The most troublesome cases are with cut formulae being principal in both
premisses. Let us consider the case of Up:

= o | = A O O¢/,p, A= 0|05 11 = 8

=0p | I'= A0 Optt A= 0|0pF 1T = X
A=0| 1= A%

(=0)
(M Miz)

=)

ifi = j = k=0 it is enough to perform (Miz’) on ¢ and then possibly restore
by (W =) some occurences of ¢ in A. Moreover, if ¢ = [y and there are some
occurrences of it in A or II we actually perform (M Miz) and must restore by
W also deleted occurrences in these multisets. In case some of 4, j, k > 0 we must
first make cross-cuts to delete occurrences of p. Of course the most difficult
situation is when all of 7, j, k > 1; we perform two cross-cuts:

= | I'= A0 Opitt A= 6|0k 1T = X

MMi
(MMiz) A=0,0| = A%

=0y | I'= A,0Op Dapj7997A:>8|Dg0k,H:>E
o A= 0| II=AX
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where both applications of (M Mix) have lower height and next:
AN=0,0| I =AY pA=0 |1 => A%
AN =60, 0|11 =AAZL, %
A=0|00= A%

(Miz")
(C,TR)

where the application of (Miz’) is of lower complexity. A’, @ are like A, © but
with deleted occurrences of ¢ (if any). Again, if ¢ = ¢ and there are some
occurrences of it in A, X, I', IT we perform rather (M Mix). The last step signed
with double line should be explained. No rule is to be applied on the right
component, including contraction. However, all formulae are modal so we can
perform enough transitions to the left component, make required contractions
and move these formulae again to the right component. a

5 Extensions

Recently Avron and Lahav [4] noticed that all HC for S5 are restricted to propo-
sitional part. In fact, Mints [32] proposed systems for some first-order version
of S5 but, as we mentioned, this work came unnoticed. In general, most of the
proposals indeed are restricted to propositional level. However, once we have at
our disposal a calculus for which a syntactic cut elimination holds it is possible
to extend it to cover at least some first-order versions of S5. We will use a version
of first-order language commonly applied in proof theoretic research with denu-
merable set of bound individual variables x, ¥, z, . .. and free individual variables
(or parameters) a,b, ¢, .... Both sorts of variables are rigid but we additionally
admit also nonrigid terms f1, f2, fs, .. ..

Let us consider axiomatic formulations of systems Q1, Q1R and QS as stated
by Garson [17], all with S5 modalities (hence the last is just QS5 since S is just a
label for chosen modality). The first and the second are adequate wrt to seman-
tics with all terms rigid whereas QS5 admits also nonrigid terms being individual
concepts in the sense of Carnap. Q1 is the logic of constant domain for all states
in models whereas the other two admit varying domains. We do not go deeper
into semantical matters here since what is of interest for us is their axiomatic
characterization. Q1 is based on standard classical first-order logic CFL hence
to obtain its BSC2-counterpart we may use standard rules for quantifiers:

pla/t],'= A|S I'=s Ajplz/a] | S

=) Nio.T=ATS =) TS Avip S
plajal, = A|S I'= Ajplz/t] | S
(3=) Jxp, I'= A|S (=3) I'= A Jze | S

where ¢ is any (rigid) term but a is not in I'; A and ¢.
Note that Barcan Formula VaOp — OVze is provable in axiomatic CFL
with S5-modalities hence it need not be added as a separate axiom as in case of
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weaker modal logics. Unfortunatelly it is not provable in BSC2™ although it is
easily provable in BSC17:

plz/a] = plz/a]
Oelz/a] = plz/a]
Oelz/a] =|= ¢lz/a]
v) Valp =|= ¢[z/a]
VeOp =|= Ve
; VaOyp =|= OVze
-)

O =)

(| TR =)

(V=)
(=
(=
(=T

(=

VzUOp = OVze
= Valy — OVzp

We conjecture that BSC1~ is complete but it needs separate semantic proof
since constructive cut elimination theorem does not hold for this calculus. As for
BSC2™ to save equivalence with Q1 we must add axiomatic sequents Valyp =
OVxp. This formalization is easily proven to be equivalent to standard axiomatic
one under the translation stated for propositional case but note that cuts with
additional axioms as one of the premisses are not eliminable.

In case of Q1R and QS5 the situation is clearer. Since both are based on
positive free logic FL we must change quantifier rules for their free versions:

I's AJEt|S  olz/t],[I= XS Ea,I'= A, plz/a] | S

(V=) Vo I IT= 4,3 S =Y) TS A v S
Ea,plz/a), = A| S I'=s AEt| S IO= X plx/t]| S
=) =50 = Al (=3) TI= 4,5, 309 | S

with the same stipulations concerning instantiated terms but in case of QS5 they
may be nonrigid as well. ‘E’ is an existence predicate. Again proving equivalence
with axiomatic formulation of (positive) free logic is unproblematic.

To accomodate identity one may add the following rules to Q1 and QR1:

= I'=A[S B L= A X, plz/t] | S
o F:>A,t1:t2|S f1:t2,F2>A|S
(:_D) F:>A,Dt1:t2\5 (:>;é|:0 F:>A,|:|_|t1:t2|5

where ¢ is atomic in (==). For QS5 only the first two rules are needed since
nonrigid terms are admitted. But it should be noted that Et is not counted as
atomic formula in case of QS5.

One may in a standard way (see e.g. Negri and von Plato [35]) prove that:

Lemma 3 (Substitution). If - I' = A, then b (I" = A)[a/t] in the height-
preserving manner.

It is then routine to extend our cut elimination to BSC2 counterparts of
all these six axiomatic systems (with or without rules for identity) but in case
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of Q1 in restricted form (see the remarks above concerning Barcan Formula).
Reduction of the height in case all occurrences of mix-formula are parametric
in one premiss goes as in propositional case. The cases where in both premisses
one occurrence of mix formula is principal are also unproblematic. However one
should remeber that in case of Q1 and QR1 MMix also takes place when the left
premiss is deduced by (== 0) or (=% 0O) and the right one by (O =) or some
transitional rule. For the sake of illustration we display one such case:
a=bT=A0-a=0bl | 0= 5 0-a=bl O-a=bF -a=b,A=0|0-a=bt",2=0

(=#0) - - @ =)
= A O-a=bt | 7= 5 0-a=0bI O-a=btFtl A= 0 |0-0a=b"2=0

A= A0 |I,=5= 3,02

(M Mix)

by two cross-cuts of lesser height we obtain:

a=bT= A 0-a=0>0"|1I =5 0-a=>bl
(=#0)

(M Mizx)

= A,O-a=bt | 1= 5 0O-a=0b] O-a=bF-a=b,4A=0|0-0a=0b"2=0

—a=bI"A= A0 |1I,Z =3, 02

and

O-a=bF -a=b,4= 06 |0O-a=b"5= 0

) ) @ =)
a=0b= A, 0-a=0b"|1 =5 0-a=0b O-a=0Ftl A= 0 |0-a=0b",5=0

(MMiz)
a=bTA= A0 |I5Z=3,0

and finally:

a=bIA=A06|I,5=30
INA= A0,-a=b|II,E =X, 02 —a=bI A= A0 |I,E= X0
I AN = A A0 |H,I,5,5= 5,502,
A= A0 |IILE= X0

(=)
(Miz")

C, TR

where mix-formula is of lesser complexity and the compact last step is obtained
by the series of transitions, contractions and transitions again.
We consider also the case of Yaxp(x):

Ea,I' = A, Vae(z)*, p(a) | A = © Vaep(z)!, I = S, Bb| = = Q pb),Vep(z)) , I = = | 2= Q

= A vVap)tl A= 0 Vap(z)iti m,n’ = 2,52 |2 =

romn =a,32,35 | A2 =6,02

where a is fresh, hence by Substitution Lemma we have a proof of the same
height of:

Eb, T = ANzp(x)* pb) | A= 6
Now we perform three cross-cuts of lesser height:

Eb, I = AVap(), o) | A= 6 Vap(z) ™ LI = 2,5 |2 =0
Eb,[ILIT = A, 2,5 o) | A,E = 0,02

I'= AVzp(z)*t | A= 6 Vao(z), I = X,Eb| 5 = 2
INil=AX Eb|AE=06,10
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I'= AVzp(z)*t | A= 6 o), Vro(x), I = X' |E =0
p), ' =AY |AZE= 0,0

Two mixes on Eb and ¢(b) respectively, both of lesser complexity, lead to
the required sequent after some contractions. Note that in case ¢(b) is modal
we must apply (M Mix) and some applications of transitional rules may be also
required. O

Let us conclude with a brief comparison of BSC1 and BSC2. The former is
more flexible as far as we want to use it for actual proof search. It is also strongly
complete (even without cut) whereas BSC2 without cut is only weakly complete.
However, in BSC2 we can keep better control over the structure of proofs and
it allows for obtaining a constructive proof of cut elimination which is always
seen as an advantage over calculi which can be only semantically shown to be
cut-free. In particular, we have made use of it in this section. We restrict our
investigation here to the problem of cut elimination but further features and
applications of both versions seem to be worth exploring.
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