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Preface

These proceedings contain the papers selected for presentation at the 12th International
Symposium on Frontiers of Combining Systems (FroCoS 2019). The symposium was
held during September 4–6, 2019 in London, UK, at Middlesex University. It was
co-located with the 28th International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX 2019).

FroCoS is the main international event for research on the development of tech-
niques and methods for the combination and integration of formal systems, their
modularization and analysis. Previous FroCoS meetings were organized in Munich
(Germany, 1996), Amsterdam (The Netherlands, 1998), Nancy (France, 2000), Santa
Margherita Ligure (Italy, 2002), Cork (Ireland, 2004, as part of the International Joint
Conference on Automated Reasoning, IJCAR), Vienna (Austria, 2005), Seattle (USA,
2006, as part of IJCAR), Liverpool (UK, 2007, co-located with the International
Workshop on First-Order Theorem Proving, FTP), Sydney (Australia, 2008, as part of
IJCAR), Trento (Italy, 2009), Edinburgh (UK, 2010, as part of IJCAR), Saarbrücken
(Germany, 2011), Manchester (UK, 2012, as part of IJCAR), Nancy (France, 2013,
co-located with TABLEAUX), Vienna (Austria, 2014, as part of IJCAR), Wrocław
(Poland, 2015, co-located with TABLEAUX), Coimbra (Portugal, 2016, as part of
IJCAR), Brasilia (Brazil, 2017, co-located with TABLEAUX), and Oxford (UK, 2018,
as part of IJCAR). Thus, if we also count the IJCAR editions, in 2019 FroCoS cele-
brated its 20th edition.

FroCoS 2019 received 30 high-quality paper submissions, which were evaluated by
the Program Committee on the basis of their significance, novelty, technical soundness,
and appropriateness for the FroCoS audience. Reviewing was single-blind and each
paper was subjected to at least three reviews, followed by a discussion within the
Program Committee. In the end, 20 papers were selected for presentation at the sym-
posium and publication. We have grouped them in this volume according to the
following topic classification: (1) automated theorem proving and model building,
(2) combinations of systems, (3) constraint solving, (4) description logics, (5) interac-
tive theorem proving, (6) modal and epistemic logics, and (7) rewriting and unification.

We were delighted to have three outstanding invited speakers. The abstracts of their
talks were included in this volume:

– Maria Paola Bonacina: “Conflict-Driven Reasoning in Unions of Theories”
– Stéphane Graham-Lengrand: “Recent and Ongoing Developments of Model-

Constructing Satisfiability”
– Uli Sattler: “Modularity and Automated Reasoning in Description Logics”

Uli Sattler’s invited talk was shared with TABLEAUX 2019. Conversely, one of the
TABLEAUX invited talks, “Automated Reasoning for the Working Mathematician” by
Jeremy Avigad, was shared with FroCoS.



The joint FroCoS/TABLEAUX event had two affiliated workshops:

– The 25th Workshop on Automated Reasoning (ARW 2019), organized by
Alexander Bolotov and Florian Kammueller

– Journeys in Computational Logic: Tributes to Roy Dyckhoff, organized by
Stéphane Graham-Lengrand, Ekaterina Komendantskaya, and Mehrnoosh
Sadrzadeh

It also had two affiliated tutorials:

– Formalising Concurrent Computation: CLF, Celf, and Applications, by Sonia Marin
– How to Build an Automated Theorem Prover – An Introductory Tutorial (invited

TABLEAUX tutorial), by Jens Otten

The program committee has offered two awards for outstanding submissions. The
Best Paper Award went to “A CDCL-Style Calculus for Solving Non-linear Con-
straints” by Franz Brauße, Konstantin Korovin, Margarita Korovina and Norbert
Müller. The Best Paper by a Junior Researcher Award was shared between “On the
Expressive Power of Description Logics with Cardinality” by Filippo De Bortoli as
junior co-author and “Verifying Randomised Social Choice” by Manuel Eberl. The
awards have been financially supported by Springer.

We would like to thank all the people who contributed to making FroCoS 2019 a
success. In particular, we thank the invited speakers for their inspiring talks, the authors
for providing their high-quality submissions (all 30 submissions!), revising and pre-
senting their work, the workshop and tutorial organizers for the interesting and
engaging events, and all the attendees for contributing to the symposium discussion.
We thank the Program Committee members and the external reviewers for their careful,
competent reviewing and discussion of the submissions on quite a tight schedule.

We extend our thanks to the local Organizing Committee chaired by Franco
Raimondi and to the Middlesex University staff, especially to Nicola Skinner, for
offering their enthusiastic support to this event.

We gratefully acknowledge financial support from Amazon, Springer, and
Middlesex University. The Association for Symbolic Logic (ASL) has kindly included
FroCoS among the events for which students can apply to them for travel funding.
Finally, we are grateful to EasyChair for allowing us to use their excellent conference
management system.

September 2019 Andreas Herzig
Andrei Popescu
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Conflict-Driven Reasoning in Unions
of Theories

Maria Paola Bonacina

Dipartimento di Informatica, Università degli Studi di Verona
Strada Le Grazie 15, 37134, Verona, Italy
mariapaola.bonacina@univr.it

As the development of automated reasoning has brought to relative maturity
multiple reasoning paradigms and tools, a general challenge is that of interfacing,
combining, and integrating them, in reasoning environments that are more powerful
and easier to use. Reasoning in a union T of theories T1; . . .; Tn is a context where this
challenge arises naturally, and many applications of automated reasoning require to
handle a union of at least a few theories. This talk advertises a recent paradigm named
CDSAT (Conflict-Driven SATisfiability) for conflict-driven reasoning in a union
of theories [4].

Reasoning in a union of theories can be approached in more than one way. The
equality sharing scheme by Nelson and Oppen, and its integration in the well-known
DPLL(T ) framework, combine decision procedures for T i-satisfiability (1� i� n) into
a decision procedure for T-satisfiability. Decision procedures are combined as
black-boxes that only exchange entailed (disjunctions of) equalities between shared
variables. Superposition reasons in a union of theories by taking the union of their
axiomatizations: under suitable conditions the termination of superposition is modular,
so that termination on T i-satisfiability problems (1� i� n) implies termination on
T-satisfiability problems [1]. Model-based theory combination by de Moura and
Bjørner is a variant of equality sharing, where the T i-satisfiability procedures build
candidate T i-models, and propagate equalities true in the current candidate T i-model
rather than entailed. DPLL(CþT ) integrates superposition and DPLL(T ) with
model-based theory combination to handle unions mixing axiomatized and built-in
theories [5].

DPLL(T ) and DPLL(CþT ) are built around the CDCL (Conflict-Driven Clause
Learning) procedure for propositional satisfiability (SAT) pioneered by Marques Silva
and Sakallah. CDCL builds a candidate partial model of a propositional abstraction
of the formula, and applies propositional resolution only to explain conflicts between
the model and the formula, so that the conflict explanation tells how to update the
model and solve the conflict. CDCL inspired several T i-satisfiability procedures for
fragments of arithmetic (e.g, using Fourier-Motzkin resolution only to explain conflicts
in linear real arithmetic), and was generalized to first-order logic (without equality) in a
theorem-proving method named SGGS (Semantically-Guided Goal-Sensitive reason-
ing) [6]. Methods that perform nontrivial inferences only to explain conflicts are called
conflict-driven.



In DPLL(T ) and DPLL(CþT ) the conflict-driven reasoning is only propositional
as in CDCL: conflict-driven T i-satisfiability procedures could be integrated only as
black-boxes, so that they could not participate in the model construction on a par with
CDCL. The MCSAT (Model-Constructing SATisfiability) framework by de Moura and
Jovanović shows how to integrate CDCL and a conflict-driven T i-satisfiability pro-
cedure, called theory plugin, so that both propositional and T i-reasoning are
conflict-driven. A key idea is to abandon black-box combination: open the black-box,
pull out from the T i-satisfiability procedure clausal inference rules that can explain
T i-conflicts, and enable CDCL and the T i-plugin to cooperate in model construction.

CDSAT generalizes MCSAT to the multi-theory case, solving the problem of how
to combine multiple T i-satisfiability procedures, some of which are conflict-driven and
some of which are black-boxes. The theories are assumed to be equipped with theory
inference systems called theory modules, with propositional logic viewed as one of the
theories in the union. CDSAT provides a framework for the theory modules to
cooperate as peers in building a candidate T-model and explaining T-conflicts. Thus,
reasoning in a union of theories is achieved by putting together inference systems,
rather than procedures or axiomatizations: of course, theory modules are abstractions of
decision procedures, and inference rules may correspond to axioms. A black-box
T i-satisfiability procedure is treated as a theory module with only one inference rule
that invokes the procedure to check T i-satisfiability. CDSAT encompasses the previous
approaches: it reduces to CDCL if propositional logic is the only theory, to equality
sharing if propositional logic is absent and all T i-satisfiability procedures are
black-boxes, to DPLL(T ) if propositional logic is one of the theories and all other
theories have black-box T i-satisfiability procedures, and to MCSAT if there are
propositional logic and another theory with a conflict-driven T i-satisfiability procedure.
Under suitable hypotheses, CDSAT is sound, terminating, and complete.

CDSAT opens several exciting directions for future work, including an integration,
or at least an interface, between CDSAT and SGGS, or SGGS enriched with
conflict-driven superposition to handle equality. Descriptions of all these approaches
appear in recent surveys [2, 3] where the references can be found.
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Recent and Ongoing Developments
of Model-Constructing Satisfiability

Stéphane Graham-Lengrand

SRI International

Model-constructing satisfiability is an approach to SMT-solving developed by Jova-
nović et al., generalising work on satisfiability in non-linear arithmetic [9]. The
approach lifts the principles of Conflict-Driven Clause Learning (CDCL) from classical
propositional reasoning to theory reasoning. It is incarnated by the MCSAT calculus
[4, 8] and is implemented in the Yices SMT-solver [5].

Model-constructing satisfiability constitutes a reasoning scheme within the more
abstract framework of conflict-driven satisfiability (CDSAT) for theory combination
[2]. It is more specific than conflict-driven reasoning in that it is tailored to theories that
have a standard model, such as arithmetic theories. Using that standard model to
evaluate terms and formulae is a central part of model-constructing satisfiability, and
allows the reduction of ground satisfiability problems to (series of) interpolation
problems, as explained below.

Given some (quantifier-free) constraints to satisfy, MCSAT successively guesses
assignments of first-order values to first-order variables, with the invariant that none
of the constraints evaluates to false, given the assignments made so far. If the invariant
can be maintained until all variables are assigned, then the constraints are satisfied by
these assignments. But if at any point the invariant cannot be maintained, it means that,
for some first-order variable y, every possible choice of value makes one of the con-
straints evaluate to false. This means that, for a subset fC1; . . .;Cmg of the constraints
with free variables among x1; . . .; xn; y, the assignments C ¼ fx1 7! v1; . . .; xn 7! vng
made so far make the formula 9yðC1 ^ � � � ^ CmÞ evaluate to false, i.e.,
½½9yðC1 ^ � � � ^ CmÞ��C ¼ false. This situation is called a conflict, with conflict con-
straints C1; . . .;Cm.

After hitting a conflict, MCSAT backtracks over some of the guessed assignments
and tries new ones. For this, MCSAT requires from the theory solver a symbolic
explanation of the conflict, namely a quantifier-free formula I, such that
(i) ð9yðC1 ^ � � � ^ CmÞÞ ) I is valid in the theory and (ii) ½½I��C ¼ false. Formula I is
the interpolant of ð9yðC1 ^ � � � ^ CmÞÞ at C. Any other pick C0 of assignments such that
½½I��C0 ¼ false will lead to a conflict for the same reason C did, so after the backtrack,
MCSAT will seek to satisfy the interpolant.

This notion of interpolation relates to quantifier elimination, where any formula
of the form ð9yðC1 ^ � � � ^ CmÞÞ above can be transformed into a quantifier-free for-
mula F such that ð9yðC1 ^ � � � ^ CmÞÞ , F is valid in the theory. Property (i) of
interpolation is weaker than such an equivalence, and property (ii) makes the pro-
duction of the interpolant “model-driven”, i.e., driven by assignments C.



MCSAT applies for instance to linear and non-linear real arithmetic, where the
interpolants are respectively produced using Fourier-Motzkin resolution and Cylin-
drical Algebraic Decomposition (CAD). These key mechanisms of quantifier elimi-
nation are used in MCSAT on demand, in response to a particular conflict.

MCSAT is also being applied to the theory of bit-vectors. The difficulty there is the
diversity of bit-vectors operations that may occur in conflict constraints. While
bit-blasting provides a default interpolation mechanism, the interpolants are not very
good for the efficiency of MCSAT, being closer to the bit level than to the word level.
Current research and implementation efforts in Yices aim at better interpolants, when
the conflict constraints lie within some suitable fragments of the bit-vector theory, for
instance in linear arithmetic modulo [7].

Following work on the application of SMT-solving to intuitionistic propositional
reasoning [3, 6], ongoing research also applies the MCSAT approach there, using the
worlds of a Kripke model in the assignments of values to variables.

Finally, the connection with quantifier elimination suggests the generalisation of
MCSAT to quantified problem. We are currently developing this generalisation, in
connection with previous work on quantified satisfaction [1].
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Modularity and Automated Reasoning
in Description Logics

Uli Sattler

School of Computer Science, University of Manchester, UK
uli.sattler@manchester.ac.uk

Description Logics [2] are decidable fragments of first order logics closely related to
modal logics and the guarded fragment. Through their use as logical underpinning
of the Semantic Web Ontology language OWL [5], they are now widely used in a range
of areas. As a further consequence, DL reasoners have to deal with logical theories—
called ontologies—of increasing size and complexity, and domain experts using DLs
ask for increasingly sophisticated tool support. One of the many areas that have been
considered in this aspect is modularity [4, 8], a concept that has successfully been used
to tame complexity and enable separation of concerns in other areas, in particular
Software Engineering.

Firstly, we consider the task of extracting, from one ontology, a small/suitable
fragment that captures a given topic, usually described in terms of its signature. The
question of suitability versus size here is interesting, and has given rise to different
notions of modules and their properties and algorithms for their extraction [1, 4, 6,
10–12, 15, 16]. Secondly, it would be extremely useful if we could “modularise” a
large ontology into suitable coherent fragments (OWL has an “imports” construct that
supports some kind of modular working with/storage of an ontology) [7, 9, 13].
Thirdly, if we have such a nice, modular ontology, the question arises of how a group
of domain experts can work independently on these without undesired side effects.
Fourth and finally, reasoning over ontologies is often a highly complex task, and a
natural question arising is whether/which form of modularity can be used and how to
optimise reasoning [3, 14, 18, 19].
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Abstract. This work considers the MACE-style approach to finite
model finding for (multi-sorted) first-order logic. This existing approach
iteratively assumes increasing domain sizes and encodes the correspond-
ing model existence problem as a SAT problem. The original MACE
tool and its successors have considered techniques for avoiding introduc-
ing symmetries in the resulting SAT problem, but this has never been the
focus of the previous work and has not received concentrated attention.
In this work we formalise the symmetry avoiding problem, characterise
the notion of a sound symmetry breaking heuristic, propose a number
of such heuristics and evaluate them experimentally with an implemen-
tation in the Vampire theorem prover. Our results demonstrate that
these new heuristics improve performance on a number of benchmarks
taken from SMT-LIB and TPTP. Finally, we show that direct symme-
try breaking techniques could be used to improve finite model finding,
but that their cost means that symmetry avoidance is still the preferable
approach.

1 Introduction

Finding finite models of first-order problems can be useful in a number of applica-
tions. The most prominent of these being in program verification, where models
correspond to bug traces under most common program encodings. This paper
considers an existing finite model finding technique and how it can be optimised
to handle larger and more complex problems (which correspond to programs in
the previous example application).

MACE-style finite model finding (introduced in [13] and extended in [4,16])
aims to build finite models of first-order problems by reduction to SAT. The
general idea behind this approach is as follows. To determine whether a (suit-
ably preprocessed) first-order problem has a model of size n we first instantiate
the problem with n fresh constants to produce a ground problem. This ground
problem is then translated into a SAT problem such that a model of the SAT
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problem can be translated back to a model of the first-order problem. To find
finite models we then iteratively repeat this process for larger values of n. A
well known issue with this approach is that the encoding introduces inherent
symmetries into the SAT problem. That is, if the SAT problem has a model
then it actually has n! isomorphic models for the different permutations of fresh
constants. This can have a significant impact on the finite model finding pro-
cess as to find a model of size n in the iterative setting, we must first refute
the preceding n − 1 cases and this tends to be much harder in the presence of
symmetries.

The problem of introducing symmetries in the encoding process is orthogo-
nal to the well-known problem of identifying existing symmetries in the original
problem. In the main part of this paper we look at avoiding introducing sym-
metries in our encoding. At the end of the paper we consider existing work on
identifying and breaking symmetries. The starting point of our work is that the
process of processing each produced SAT problem to identify symmetries (many
of which we introduce ourselves) is likely to introduce unnecessary overhead.
Our experimental analysis finds that, in general, this is true, but there may be
something gained on some problems by exploring a close integration of these
techniques into the finite model finding process.

Previous work has considered methods for avoiding symmetries in the SAT
encoding, but the topic has not received concentrated attention. The main app-
roach (also taken here) is to introduce additional constraints that restrict the
ways in which elements of the model may be mapped to the fresh constants. The
contributions of this paper are

– a characterisation of the symmetry avoidance problem in our context (Sect. 3).
This is an extension of restricted functional symmetry from Paradox [4] which
was previously stated in a restricted way and without proof;

– a number of heuristic symmetry breaking constraints (Sect. 4);
– an experimental evaluation using the Vampire theorem prover [12] demon-

strating their effectiveness at speeding up the finite model finding process
(Sect. 5);

– an experimental study examining the use of static symmetry breaking tech-
niques in our process and comparing these to symmetry avoidance (Sect. 6).

Before we present these contributions we briefly revisit the definition of MACE-
style finite model finding (Sect. 2).

A Note on Terminology. In this paper we have chosen to call the addition of
additional constraints to avoid symmetries introduced by our own encoding sym-
metry avoidance as we are avoiding adding symmetries. This is in contrast to
the act of symmetry breaking where inherent symmetries are identified and addi-
tional constraints added to break them. We note that prior work [4] used the
term symmetry breaking for what we call symmetry avoidance.
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2 MACE-Style Finite Model Building for First-Order
Logic

In this section we describe the finite model finding procedure (in a single-sorted
setting), which is a variation of the approach taken by Paradox [4]. Our presen-
tation here follows the one given in our previous work extending this approach
to the multi-sorted setting [16]. For simplicity, we only consider the single-sorted
setting here (but our later results lift to the multi-sorted setting).

Given a first-order problem S, the general idea is to create, for each integer
n ≥ 1, a SAT problem that is satisfiable if and only if problem S has a finite
model of size n. To find a finite model we iterate over the domain sizes n =
1, 2, 3, . . .. Below we introduce the key conceptual details and the previous work
[16] provides further examples.

First-Order Logic. We consider first-order logic with equality. A term is either a
variable, a constant, or a function symbol applied to terms. A literal is either a
propositional symbol, a predicate applied to terms, an equality of two terms, or
a negation of either. The set of function and predicate symbols with associated
arities defines the signature of a problem (constants are treated as function
symbols with arity zero).

We assume all formulas are clausified using standard techniques (e.g. [14] and
our recent work in [17]). A clause is a disjunction of literals where all variables are
universally quantified (existentially quantified variables get replaced by Skolem
functions during classification). We assume familiarity with the notion of an
interpretation and model of a set of clauses.

DC-Models. Let S be a set of clauses. Let us fix an integer n ≥ 1. We extend the
language by a set of distinct constants DC = {d1, . . . , dn} not occurring in S.
We will call these domain constants. An interpretation is a DC-interpretation, if
(i) its domain is DC and (ii) it interprets every domain constant as itself. Every
model of S that is also a DC -interpretation will be called a DC-model of S. If S
has a model of size n, then it also has a DC -model. We say that S is n-satisfiable
if it has a model of size n.

A DC-instance of a clause C is a ground clause obtained by replacing every
variable in C by a constant in DC . A clause with k different variables has exactly
nk DC -instances, where n is the current number of domain constants. Let us
denote by S∗ the set of all DC -instances of the clauses in S.

Theorem 1. Let I be a DC-interpretation and C a clause. Then C is true in
I if and only if all DC-instances of C are true in I.

Principal Terms. We cannot yet encode the existence of models of size n as a
SAT problem, as DC -instances can contain complex terms.1 By a principal term

1 An alternative to encoding the problem into SAT is to target the EUF logic and use
an SMT solver instead. This approach has been explored by Vakili and Day [21].
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we mean either a constant or an application of a function symbol of arity greater
than zero to domain constants. A ground atom is called principal if it is either a
predicate symbol applied to domain constants or an equality between a principal
term and a domain constant. We lift this notion to literals.

Theorem 2. Let I1, I2 be DC-interpretations. If they satisfy the same principal
atoms, then I1 coincides with I2.

Theorem 1 reduces n-satisfiability of S to the existence of a DC -interpretation
of the set S∗ of ground clauses. Theorem 2 shows that DC -interpretations can
be identified by the set of principal atoms true in them. Next we introduce a
propositional variable for every principal atom and reduce the existence of a
DC -model of S∗ to satisfiability of a set of clauses using only principal literals.

The SAT Encoding. The main step in the reduction is to transform every C into
an equivalent clause C ′ such that DC -instances of C ′ consist (almost) only of
principal literals (the exceptions are equalities between domain constants, which
can be trivially removed). This transformation is known as flattening and ensures
that all literals are of the form p(x1, . . . , xm), f(x1, . . . , xm) = y, or x = y or
their negation. Every DC -instance of a flat literal is either a principal literal
(for the first two cases), or an equality di = dj between domain constants. We
produce the DC -instances of each flattened clause where we immediately remove
inconsistent domain constant equalities and omit instances that are tautologous
due to equalities between the same constants.

The DC -instances by themselves do not sufficiently constrain the SAT prob-
lem as they do not capture what it means to be a function. To do this we add two
further kinds of constraints. For each principal term p and distinct domain con-
stants di, dj we produce the functionality axiom p �= di ∨ p �= dj . These clauses
guarantee that all function symbols are interpreted as (partial) functions. For
each principal term p we produce the totality axiom p = d1 ∨ . . .∨p = dn. These
clauses guarantee, together with functionality axioms, that all function symbols
are interpreted as total functions.

The following theorem underpins the SAT-based finite model building
method:

Theorem 3. Let S be a set of flat clauses and S′ be the set of clauses obtained
from S∗ as described above. More specifically, S′ consists of (1) the non-
tautologous DC-instances of the flattened versions of clauses in S∗, (2) the func-
tionality axioms corresponding to the principal terms, and (3) the totality axiom
corresponding to them. Then (i) all literals in S′ are principal and (ii) S is
n-satisfiable if and only if S′ is propositionally satisfiable (when understanding
principal atoms as propositional variables).

3 Characterising Symmetry Avoidance

The SAT problem produced above necessarily contains many symmetries. In
particular, every permutation of DC applied to a DC -model will give a DC -
model, and there are n! such permutations. This gives the SAT solver more
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work to do when refuting a model size (which it has to do k − 1 times if the
smallest model is of size k) as every possible interpretation needs to be refuted.

Isomorphic DC-Models. Let M be a DC -interpretation and σ a permutation
of DC , i.e. a bijective function from DC to itself. There is always a DC -
interpretation Mσ obtained by “relabelling” the domain constants in M accord-
ing to σ such that σ is an isomorphism between M and Mσ.2 For example,
consider the clauses

f(f(x)) = x a �= b

that have four possible DC -models captured by the following table

a b f(d1) f(d2)
1 d1 d2 d1 d2

2 d1 d2 d2 d1

3 d2 d1 d1 d2

4 d2 d1 d2 d1

where the first line captures the model M represented3 by the set {a = d1, b =
d2, f(d1) = d1, f(d2) = d2}. The last line is then Mσ for σ = {d1 �→ d2, d2 �→ d1}.
Similarly, the models represented by lines 2 and 3 are isomorphic under σ.

We can now characterise what we want to achieve via symmetry avoidance:
the removal of isomorphic interpretations. To appreciate the following definition,
recall that no domain constant d ∈ DC occurs in S (but some may occur in the
introduced constraint C).

Definition 1 (Symmetry Avoidance). A set of clauses C is said to be a
symmetry avoiding constraint (SAC) if

(i) not every DC-interpretation is a model of C,
(ii) for every set of clauses S and for every DC-model M of S there is a permu-

tation σ of DC such that Mσ is a DC-model of S ∪ C.

For the previous example the constraint a = d1 would remove the isomorphic
models represented by lines 3 and 4. This constraint satisfies (i) as we have
two DC -interpretations that are not models of it, and (ii) if we focus on this
particular set of clauses for S we can see that we have already identified the
necessary σ.

The question is then what form the constraint C should take in general. Here
we follow the work of Paradox [4]. We begin by assuming a total ordering on
domain constants. We then fix a (finite) sequence of principal terms P and use
this sequence to constrain the permissible DC -models. Let P = p1, . . . , pm. We

2 This means that for every function symbol f of arity a we have M(f)(d1, . . . , da) = d
if and only if Mσ(f)(σ(d1), . . . , σ(da)) = σ(d) and for every predicate symbol p of
arity b we have M(p)(d1, . . . , db) if and only if Mσ(p)(σ(d1), . . . , σ(db)).

3 Recall that a DC -interpretation can be identified by the set of principal atoms true
in it.
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want to restrict DC -models such that principal terms are assigned to domain
constants in order, starting with p1 = d1. As S may imply equalities between
principal terms we cannot straightforwardly assign pi = di. Instead, we wish to
specify that a principal term pi is only interpreted as one of the first i domain
constants, and, moreover, that the principal term pi should only be interpreted
as dk if there is some principal term pj such that j < i and pj is interpreted as
dk−1. This naturally leads to the addition of two kinds of clauses. The first kind
is

pi = d1 ∨ . . . ∨ pi = di (1)

for i ≤ min(m,n). Notice that these take a form of strengthened totality con-
straints for the respective pi. The second kind translates to

pi �= dj ∨ p1 = dj−1 ∨ . . . ∨ pi−1 = dj−1 (2)

for 1 < i ≤ m and 2 < j ≤ i.4 Together these capture the above notion of order.
Let CP be the set of all such clauses.

In our previous example, given P as p1 = a, p2 = b we would add the clauses

a = d1, b = d1 ∨ b = d2,

which would exclude the models represented by lines 3 and 4 in the previous
table. Note that in this case we did not need constraints of the second kind (as
previously observed).

Previously [4], this concept was introduced for ordering constants and
extended to functions in a restricted sense. However, this previous work did
not provide a proof that the approach is sound (does not exclude a possible
model).

Let us, for the sake of clarity, also first consider the constant-only setting to
later explain how it can be generalized.

Theorem 4. Let P = p1, . . . , pm be a non-empty sequence of constant symbols
from the problem signature. Then CP is a symmetry avoiding constraint.

Proof. We show both parts of Definition 1. For (i), notice that since P is non-
empty, CP contains the unit clause p1 = d1 as an instance of (1) which is not
satisfied by those DC -interpretations that do not map p1 to d1. For (ii), given a
DC -model M of S we construct σ, a permutation of DC , such that the isomor-
phic model Mσ additionally satisfies CP . We do this by describing a construction
of the inverse mapping σ−1. This is obviously equivalent, but makes the intuition
more transparent.

Let us consider PM = {M(pi) | pi ∈ P}, the set of domain constants that are
interpretation by M of some element of P, and denote its size by k = |PM |.5

4 For j = 2 the clauses contain p1 = d1 which is always true given (1). For j > i the
literal pi �= dj and thus the corresponding constraint (2) follow from (1) and the
functionality axioms.

5 We necessarily have k ≤ m and k < m implies M(pi) = M(pj) for some i �= j.
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We set σ−1(d1) = M(p1) and for every 1 < i ≤ k we pick σ−1(di) = M(pj)
for the smallest j such that M(pj) is not among {σ−1(d1), . . . , σ−1(di−1)}. By
construction, this function is injective and we can complete it to a permutation
on DC , if necessary (i.e. if k < n), by arbitrarily “pairing up” the remain-
ing {dk+1, . . . , dn} with the remaining values from DC \ PM . This construction
implements the intuitive idea of using the smallest “unused” domain constant
di for interpreting a term pi unless it is in the model already taking a value of
some “used” domain constant. It is easy to verify that Mσ satisfies both the
constraints (1) and (2) and CP is therefore a SAC. 
�

The intuition for using general principal terms in P rather than just constants
is that they provide another way of denoting domain elements in the model
and may thus help us avoid further symmetries. E.g., we may not have enough
constants, or the right constants. However, since non-constant principal terms
directly refer to domain constants as arguments, we have an extra complication
to deal with: while the construction from the proof of Theorem4 is making sure
it satisfies CP in Mσ, it is looking at the original model M to decide what to
do with each next pi. Thus its natural extension to non-constant terms cannot
proceed, unless the arguments of pi have already established value in M via the
partially constructed σ−1.

As an example of this complication, consider the one-element sequence P with
p1 = f(d1). Until we decide what d1 from Mσ refers to in M , i.e. until we define
σ−1(d1), the construction cannot proceed.6 Thus we pick σ−1(d1) arbitrarily at
which moment it becomes “used”. But if f does not happen to map this domain
constant to itself in M , i.e. if M(f)(σ−1(d1)) �= σ−1(d1), the smallest “unused”
domain constant for p1 in Mσ is d2, i.e. we set σ−1(d2) = M(f)(σ−1(d1)). All in
all, in this example, we can only restrict the symmetries by adding the following
clause of the first kind (1) to CP on behalf of p1:

f(d1) = d1 ∨ f(d1) = d2,

but not the stronger f(d1) = d1. (It is easy to see how this would become
unsound by considering an input problem containing the unit clause f(x) �= x.)

Even if we require that in the sequence P a domain constant dj does not
occur as an argument of a principal term pi unless i > j (which solves the above
complication), it is not generally sound to add clauses of the second kind (2) for
non-constant principal terms. To see this, consider the sequence P with p1 =
a, p2 = f(d1), p3 = f(d2) and assume that after the straightforward σ−1(d1) =
M(a), we learn that M(f)(σ−1(d1)) = σ−1(d1) and thus we do not need to
“use” a new domain constant to process p2. However, similarly to the previous
example, we are now forced to define σ−1(d2) before we can proceed to p3.
Moreover, it is easy to imagine a model M in which any choice of such next
element results in M(f)(σ−1(d2)) /∈ {σ−1(d1), σ−1(d2)} and we are forced to
define σ−1(d3) = M(f)(σ−1(d2)). Thus the new model Mσ will satisfy f(d2) =
d3, but also f(d1) �= d2 and a �= d2.
6 Speculating what this value could be if we proceed anyway is an interesting direction

for further research not covered in this paper.
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The following theorem reflects these observations and formalises and further
generalises the results reported in [4].

Theorem 5. Let P = p1, . . . , pm be a non-empty sequence of principal terms
such that whenever a domain constant dj occurs as an argument of a principal
term pi then j < i.7 Moreover, let the domain constants appear in P “in order”,
i.e. if dj for j > 0 occurs in pi then there is i′ ≤ i such that dj−1 occurs in pi′ .
Let DP consist of all the clauses of the first kind (1) and of the clauses of the
second kind (2) for any 1 < i ≤ m and 2 < j ≤ i such that dj−1 does not occur
in any pi′ for 1 ≤ i′ ≤ i. Then DP is a symmetry avoiding constraint.

Proof. Let us immediately focus on the sole non-trivial point of Definition 1,
namely point (ii). As in the proof of Theorem 4 we recursively construct a per-
mutation σ used for relabelling the elements of a given model M such that Mσ

additionally satisfies DP . And as before, we describe the construction of σ−1. Let
us by σ−1

i denote the partial permutation obtained after processing the sequence
P up to element pi and let us initiate the construction with σ−1

0 as the empty
mapping.

We now consider the i-th step of the construction for some 1 ≤ i ≤ m
assuming σ−1

i−1 is already defined. First, if there is a domain constant d which
occurs in pi that is not in the domain of σ−1

i−1, we pick an arbitrary domain
constant e not in the range of σ−1

i−1 and set σ′−1
i = σ−1

i−1 ∪ {d �→ e}. If this
happens, we say that d enters the domain of σ−1 to define an argument of pi.
We may need to repeat this several times until we obtain τ−1

i , an extension
of σ−1

i−1, whose domain contains all the domain constants occurring in pi. Let
pi = f(d1, . . . , da) and let e = M(f)(τ−1

i (d1), . . . , τ−1
i (da)). If e is in the range of

τ−1
i we set σ−1

i = τ−1
i . Otherwise, let d be the least domain constant not in the

domain of τ−1
i and we set σ−1

i = τ−1
i ∪{d �→ e}. In this case we say that d enters

the domain of σ−1 to stand for the value of pi. As in the proof of Theorem4, we
obtain the final σ−1 from σ−1

m by “pairing up” the remaining domain constants
“not yet” in the domain of σ−1

m with the remaining domain constants “not yet”
in its range arbitrarily. These domain constants are said to enter the domain of
σ−1 to finish it up.

Let us now verify that Mσ satisfies DP . We first look at clauses of the first
kind (1). These are satisfied, because our construction maintains that the domain
of σ−1

i , which contains Mσ(pi), is always a subset of {d1, . . . , di}. To see this, we
proceed by induction. First, the domain σ−1

0 is the empty set. Next, assuming
that the domain of σ−1

i−1 is a subset of {d1, . . . , di−1} (the induction hypothesis),
we check that the domain of τ−1

i is always a subset of {d1, . . . , di−1} using the
assumption that whenever a domain constant dj occurs as an argument of a
principal term pi then j < i. To finish, we recall that the construction only
possibly adds one more element when extending τ−1

i to σ−1
i and this is always

the least domain constant “not yet” in the domain of τ−1
i .

7 In particular, p1 must be a constant.
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Finally, we look at the clauses of the second kind (2). Let 1 < i ≤ m and
2 < j ≤ i and let

C = (pi �= dj ∨ p1 = dj−1 ∨ . . . ∨ pi−1 = dj−1)

be one such clause. Let us assume that C is false in Mσ. Because Mσ(pi) = dj ,
neither the domain constant dj nor dj−1 did enter the domain of σ−1 to finish
it up. Moreover, since Mσ(pi′) �= dj−1 for 1 ≤ i′ < i the domain constant dj−1

did not enter the domain of σ−1 to stand for the value for any of these pi′ . Thus
dj−1 must have entered the domain of σ−1 to define an argument of some pi′ for
1 ≤ i′ ≤ i. But then dj−1 occurs in some pi′ for 1 ≤ i′ ≤ i and C thus cannot be
part of DP . 
�

4 Symmetry Avoidance Heuristics

The previous section characterised the notion of a symmetry breaking constraint
determined by a list of principal terms P. In this section we propose a number
of heuristics for selecting a good P. The underlying idea is that as we can only
add n clauses of the ‘first kind’ (1) we want to pick the ‘best’ n principal terms,
i.e. those that avoid most symmetries. The best set P is such that S together with
CP ensures that each element of P must be interpreted by a distinct domain con-
stant. However, checking this is impractical and therefore we introduce heuristics
for this.

To ensure completeness, we optionally enforce the constraints set out in The-
orems 4 and 5 from the previous section by limiting the principal terms added
to P where they would otherwise break these constraints. Note that the diag-
onal approach below naturally preserves these constraints in all cases and in
most cases it is not necessary to restrict P . We preserve the option to run in an
incomplete mode where it is no longer possible to report that a model cannot
be found.

Ordering Function Symbols. The first heuristic considers how function symbols
should be ordered. Consider the problem S = {a = b, a = c, a �= d}, selecting
p1 = a, p2 = b will not be as effective as selecting p1 = a, p2 = d. In the first case,
the equality a = b induces a stronger constraint than the ordering. In the second
case, the ordering constraint is stronger than that induced by the inequality
a �= d. We consider the following variations:

– Occurrence. By default, function symbols are ordered by their order of appear-
ance in the input problem. This may perform poorly if similar functions (those
whose interpretations overlap significantly e.g. principal terms are interpreted
as the same domain constants) are defined close together in the input file;
conversely it may perform well if differing function symbols are defined close
together.

– Input Usage Frequency. This orders symbols by their frequency in the input.
– Preprocessed Usage Frequency. This orders symbols by their frequency in the

pre-processed clauses (pre-processing may copy some symbols many times).
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– Arity. This orders symbols from the smallest to largest arity. The reasoning
here is that it is simpler to show that functions with lower arity are distinct.

The hypothesis around using frequency is that the most used symbols are likely
to be distinct. In case the opposite is true, in both frequency cases we also add
their reverse. We also consider a randomised order.

Ordering the Construction of Principal Terms. We consider how complex princi-
pal terms are ordered. One approach is to put all principal terms for one function
before those for the other. But if the problem contains, e.g. f(x) = a, all princi-
pal f - terms already have the same interpretation and cannot be strictly ordered.
Conversely, we may wish to order by argument value (all those with d1 before
those with d2). But if the problem contains, e.g. f(x) = g(x) then again the
interpretation of the principal f -terms must agree with the succeeding g-term
in the sequence f(d1), g(d1), f(d2), g(d2), . . . such that their ordering constraint
becomes ineffective. Based on these observations we consider the following vari-
ations which make use of an ordering <f on function symbols and the ordering
<DC on domain constants.

– Function First. Orders principal term by <f and then <DC

– Argument First. Orders principal terms by <DC and then <f

– Diagonal. Orders principal terms for each function by <DC and then for
each function symbol in turn (according to <f ) selects the next princi-
pal term starting with the ith term for the ith function e.g. we may have
f(d1), g(d2), h(d3), f(d2), . . ..

We also consider a randomised order.

Restricting Symmetry Avoidance Clauses. This heuristic does not consider the
order of P but the clauses we add for P. Given principal terms P and a target
model size n, we add n clauses of the first kind and |P| × n clauses of the
second kind. The large number of these second kind of clauses may become too
expensive for the SAT solver. Therefore, by default we restrict P to have at most
n elements and we can optionally add a multiplier k (such that k ≤ |P| × n) to
this.

5 Experimental Evaluation

In this section we experimentally address a number of research questions, eval-
uating the effectiveness of the techniques introduced earlier. Vampire relies on
a schedule of strategies for attacking a problem and our evaluation reflects our
desire to identify options of complementary strengths, as discussed elsewhere
[15].
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-fmbsso -fmbswo -fmbse
occurrence function first 0 = P as defined
input usage argument first 1 = empty P
preprocessed usage diagonal 2 = P restricted to constants
random random
reverse input usage
reverse preprocessed usage
arity

Fig. 1. Option values for symmetry avoiding strategies (defaults in bold).

Experimental Setup. We considered problems from the TPTP [20] library (ver-
sion 7.0) in the FOF or CNF format that were either (counter-)satisfiable or
belong to the effectively propositional (Bernays–Schönfinkel) fragment (as this
process is complete for this fragment). We removed all problems known to only
have infinite models (determined by Infinox [3]). This led to a set of 2790 prob-
lems of which 1512 are known to be satisfiable, 969 are known to be unsatisfiable
and 23 are open problems.

The techniques described in the previous sections were implemented in the
Vampire theorem prover.8 The version of Vampire used in these experiments
can be found online.9 Experiments were run on the StarExec cluster [19], whose
nodes are equipped with Intel Xeon 2.4 GHz processors and 128 GB of memory.
For each experiment we will report the number of problems solved with the time
limit of 600 s.

The options related to symmetry avoidance covered were the order of sym-
bols (-fmbsso) and the enumeration strategies between functions applied to
domain constants only (-fmbswo). Further, we added options to turn off symme-
try avoidance altogether (-fmbse 1) and to order only constants (-fmbse 2). We
also limited vampire’s proof search strategy to MACE style finite model finding
(-sa fmb). Figure 1 summarises the options and their values (which correspond
directly to those described in Sect. 4).

Summary. We ran 30 experiments with sensible10 combinations of the above
options. Across all experiments we solved 1901 out of 2790 problems. Out of
these 1150 were shown to be satisfiable and 734 were shown to be unsatisfiable.
The mean solution time for satisfiable problems was 8.3 s and for unsatisfiable
problems it was 9.2 s. Table 1 provides some general statistics. On the left we
see the best, mean, and worst solving times for problems. This means that the
majority of problems are solved quickly by some strategy. But, only 58 problems
were solved by all experiments. There were 264 problems that took longer than
10 s to solve where the difference between best and worst experiment was at

8 https://vprover.github.io/.
9 https://derivation.org/frocos2019.

10 Some combinations are not sensible. For example, randomising the ordering of prin-
cipal terms means that any ordering of function symbols will be ignored.

https://vprover.github.io/
https://derivation.org/frocos2019
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least 5 s. These are interesting problems as they demonstrate real differences
in solution times. Within this set, there is considerable variation between the
best and worst solving times. Figure 2 illustrates the distribution of the speedup
between best and worst strategy on this set. Very large speedups are seen where
problems are solved in minutes by one strategy and seconds by another.

Table 1. General statistics about problems solved.

Fig. 2. Histograms of speedups comparing best and worst strategies and no avoidance
with best strategy for our 264 interesting problems.

Which Ordering Heuristics Perform Best? Table 2 presents the results for com-
paring the different ordering heuristics introduced earlier. Since testing all com-
binations of options would lead to 84 constellations, we always vary one option
and leave all others at their respective defaults. In each case we record how many
problems that option was the best (fastest) for and what the mean speedup (over
the second best) was in the case where the option was the best. Note that each
line includes all strategies where that option was selected i.e. more than one
experiment. Here we focus explicitly on problems taking >10 s as these are the
ones that are, in principle, the harder problems.

Here we can see that the performance of different values is varied. Note
that the speedup value addresses the question of how much we gain by adding a
single strategy on top of the rest. However, this hides particular outlier cases. For
example, the problem HWV052-1.007.004 was solved in 13 s with the diagonal
approach, the other principal term orders take at least 535 s, a speedup of a
factor of almost 38. Conversely, for NLP077-1.p the diagonal approach took
10% longer.



Symmetry Avoidance in MACE-Style Finite Model Finding 15

Table 2. Comparing the different options for ordering heuristics for problems >10 s.

Value Best Mean Speedup
occurrence 61 1.04
input usage 49 1.89
reverse input usage 11 1.16
preprocess usage 44 1.04
reverse preprocess usage 13 1.03
arity 12 1.04
random 2 1.01

Value Best Mean Speedup
function first 72 1.06
argument first 27 1.03
diagonal 36 2.22
random 57 1.03

Of the function ordering options, the reverse frequency options fared worse
than the standard frequency options, which supports a hypothesis that it is
better to avoid symmetries on common symbols. Interestingly, randomising the
order was hardly ever the best approach, suggesting that there is a benefit from
our heuristic orderings. We are surprised that the arity option did not fare well.
However, this may be attributable to the fact that the majority of functions in
problems are typically of low arity anyway.

Of the principal term ordering options, the best approach was the function-
first approach. This suggests that problems typically contain functions which
are distinct in their arguments. It is interesting to note that the randomisation
approach here fared very well. This suggests that there are orderings that per-
form well outside of our heuristics and we should inspect what elements of these
random orders were beneficial and attempt to encode them in new heuristics.

Table 3. Comparing the different
values for limiting symmetry avoid-
ing clauses.

Value Solved Best Mean speedup

1 1884 67 5.12

5 1882 127 4.03

10 1883 130 7.71

100 1886 88 4.23

1000 1886 131 9.37

What is the Effect of Limiting Symmetry
Avoidance Clauses? Table 3 compares the
results of limiting the size of P as some mul-
tiple of n. Here we can see that the number
of solved problems increases monotonically.
However, the amount of time taken to find
solutions varies and in some cases restrict-
ing to n provides the best (fastest) solution,
whereas including more and more values in
P can help in other situations. It is interesting to note that for the largest mul-
tiplier we see the biggest speedup. This suggests that where a large multiplier
can be of use it will make a large difference. We will keep this option and the
various values for strategy building.

Does Symmetry Avoidance Always Help? Next we question whether adding sym-
metry avoidance constraints is always helpful. Overall, there were 96 problems
where the fastest solution was to not add symmetry avoiding constraints. On
average the next fastest solution was 24% slower. The majority of these were
short runs (under 10 s), but in some cases the difference was significant. For
example, problem ALG333-1.p was solved in 32 s without symmetry avoiding
constraints, but the next best solution solved it in 54 s.
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Furthermore, there were many problems only solved using symmetry avoid-
ance. Without symmetry avoidance we only solve 173 of our 264 interesting prob-
lems (with 91 unsolved). On these problems, the resulting speedups are given in
Fig. 2. Again, we see that symmetry avoidance brings large performance gains.
Although there are 12 problems where solving without symmetry avoidance is
the best (fastest) strategy.

Our final question is whether restricting symmetry avoiding constraints to
constants only has any benefit, or conversely whether there are cases where we
need to avoid symmetries on non-constant terms. There were 55 problems where
it was better (i.e. the solution was faster) to exclude non-function symbols from
symmetry avoiding. This means that ordering principal terms is an interesting
research question.

How Does this Compare to Paradox? Finally, we compare our results to Para-
dox. Overall, Paradox solves 48 problems that we do not solve and we solve
54 problems unsolved by Paradox. All 54 of these problems rely on symmetry
avoidance options. Of the interesting problems, roughly half (145) are solved
more quickly by Paradox and the rest are solved more quickly by Vampire, out
of these 36 problems are solved at least 10 times faster with Vampire.

Discussion. The above experimental results show that the issue of symmetry
avoiding is important and that a portfolio solver such as Vampire needs many
options available to it. These experiments have allowed us to prioritise options
within our portfolio and suggest further exploration is required. In particular,
we need to explore the correlation between the success of symmetry avoiding
heuristics and the structure of properties, especially the number and distribution
of function symbols with different arities.

6 Comparing Symmetry Breaking and Symmetry
Avoidance

So far we have focussed on avoiding introducing new symmetries into the SAT
problem. There also exist tools for identifying symmetries in SAT problems. In
the final part of this paper we utilise one such tool to answer the following two
questions:

1. Could incorporating static symmetry breaking improve the performance of
finite model finding?

2. Are symmetry avoidance and symmetry breaking complementary (i.e. do the
avoidance constraints help symmetry breaking) or is avoidance subsumed by
breaking?

The Symmetry Breaking Problem. The symmetry breaking problem is similar to
the symmetry avoiding one, but in a more general setting. Slightly informally,
given a SAT problem S is it possible to produce some constraints C such that



Symmetry Avoidance in MACE-Style Finite Model Finding 17

Table 4. Comparing solving with and without breaking. T/O means timeout and BiD
means BreakID.

Without Breaking With Breaking Gained Lost Loss/Gain

Sat Unsat T/O Sat Unsat T/O (BiD) T/O (Sat) Sat Unsat Sat Unsat

1,194 12,919 423 954 11,991 1,435 156 3 191 262 1,171 7.39

Table 5. Solving statistics by SAT problem. T/O means timeout and BiD means
BreakID.

Options Total Without BreakID With BreakID Gained Lost Loss/Gain

Sat Unsat T/O Sat Unsat T/O (BiD) T/O (Sat) Sat Unsat Sat Unsat

prepro, ff 13,791 1,289 12,242 260 1,067 11,441 1,062 221 4 15 230 831 55.84

occ, ff 13,788 1,272 12,254 262 1,062 11,421 1,063 221 2 15 224 861 63.82

the models of S and S ∪ C are the same up to isomorphism, but there are fewer
models of S ∪ C. The problem of symmetries has been studied extensively in the
constraint programming, the ASP and the SAT communities [9,10,18]. The main
differentiation of the techniques lies between dynamic [2,22,23] and static [1,7]
symmetry breaking. The dynamic setting aims to identify and break symmetries
during the solving process whilst the static setting updates the problem directly.
In this work we focus on one of the best existing static symmetry breaking tools
BreakID [7].

Experimental Setup. We select the same 2970 problems as in Sect. 5 and run
finite-model finding on each problem for 60 s, recording the SAT problems pro-
duced for each model size in the DIMACS format [11]. Note that for each problem
where we explore up to model size n we will produce at least n − 1 unsatisfiable
SAT problems. Therefore, the majority of the SAT problems will be unsatisfiable.

We then run the BreakID static symmetry breaker [7] on each SAT problem
for 60 s. BreakID produces a copy of the problem with additional constraints
added that break identified symmetries in the problem. This will cover both sym-
metries in the original problem and any symmetries introduced via our encoding.
Finally, we run Minisat [8] on each SAT problem (this is the SAT solver used by
Vampire internally).

We repeat the above experiment for different heuristics. To establish a base-
line, we start without symmetry avoidance and investigate symbol orders by
occurrence and preprocessed usage that fared well before (see Table 2). In both
cases we construct terms by functions first. The system used for the experiments
is an Intel Xeon E5520 with 2.27 GHz and 16 GB memory.

6.1 The Effect of Symmetry Breaking

First we look at the effect that static symmetry breaking can have on the finite-
model finding process independently of our symmetry avoidance heuristics. Run-
ning finite-model finding using the default strategy (without symmetry avoid-
ance) produces 14,536 SAT problems. Table 4 reports the difference between
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running with and without static symmetry breaking. Overall, more problems
are solved without symmetry breaking than with. However, this is mainly due
to the timing out of the static symmetry breaking process. There are 194 SAT
problems that are solved with static symmetry breaking that were not solved
without it. This represents an opportunity for making further progress in the
finite model finding process. As expected, this has a far greater effect on the
unsatisfiable problems, which will partly be due to the fact that over 80% of
problems are unsatisfiable and partly due to the fact that these are fundamen-
tally harder.

In this we spent 60 s on static symmetry breaking and 60 s on SAT solving.
The next question to ask is whether the time spent on static symmetry breaking
can be justified. In 1,811 experiments the time spent on breaking and solving
combined is roughly equivalent to that of solving by itself without breaking. In
1,062 problems the solution was faster without breaking, leaving 56 problems
where the combination of breaking and solving performed faster than solving
without breaking.

This experiment shows that whilst static symmetry breaking can help on a
small number of problems, in general it reduces performance.

6.2 Comparing Breaking and Avoidance

Next we want to see what happens when we combine the symmetry avoiding
heuristics with static symmetry breaking. To do this we run the two best sym-
metry avoiding strategies from the previous section and repeat the above exper-
iment.

Table 5 reports only 13,791 and 13,788 generated files. This is due to the
time spent in symmetry avoidance. Compared to the baseline, there are fewer
time-outs and solved unsatisfiable problems, but more satisfiable ones. The rate
of time-outs (1,062 and 1,063) during symmetry breaking is also similar, which
leads to a high number of lost solutions. However, the number of solutions gained
by symmetry breaking over avoidance is significantly lower (19 and 17). This
suggests that symmetry avoidance was already having a significant impact on
solving times.

It is possible that the distinction between solutions gained and lost is too
rough. Next we investigate the speed-ups in timing between problems of unsatis-
fiable solutions for pairs of symmetry-avoidance and symmetry-breaking options.
We also restrict the problems to those where the model size is larger than the
number of constants. In these cases, not all domain constants can be assigned to
input constants which leaves room for the different symmetry orders with regard
to functions. Table 6 shows the number of problems that were solved faster and
slower. The time for BreakID includes the time taken for static symmetry break-
ing. Most timings were sufficiently close that jitter effects could tip the balance
either way. For this reason all results within 2 s were excluded.

When applying BreakId, about 10% of the SAT problems cannot be processed
within the 60 s time limit of the full input problem. This leads to a high ratio
of problems lost due to symmetry breaking against the new solutions gained.
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Table 6. Pairwise comparison of SAT problems with model size > number of constants

A B A slower than B A faster than B Too close

baseline preprocessed, ff 147 16 1, 063

baseline occ, ff 145 16 1, 064

preprocessed, ff occ, ff 0 0 1, 640

baseline baseline+BreakId 56 1, 062 1, 811

preprocessed, ff preprocessed, ff+BreakId 13 408 1, 139

occ, ff preprocessed, ff+BreakId 13 405 1, 139

baseline+BreakId preprocessed, ff+BreakId 279 7 877

baseline+BreakId occ, ff+BreakId 276 7 870

preprocessed, ff+BreakId occ, ff+BreakId 0 0 1, 550

There is also a consistent disparity in the gain/loss ratio between satisfiable
and unsatisfiable problems. Two factors could contribute to this phenomenon.
First, the separation into symmetry breaking and SAT solving comes with a
significant overhead in parsing and duplication of data structures. Moreover,
BreakId itself depends on the automorphism library saucy [5,6] which leads
to another duplication of data-structures. Second, we need to take the whole
sequence of models generated into account. When BreakId times out already
for small model sizes the larger model sizes are likely to follow. This artificially
amplifies the number of lost unsatisfiable solutions. On the other hand, the
satisfiable solutions depend more strongly on the heuristics of the SAT solver
which leads to less predictable timings.

As a consequence, we compare the gains and losses between the baseline
and the two symmetry orders as well. The baseline loses about 7 times as many
problems as gained by symmetry breaking. Both the preprocessed and occurrence
symmetry order retain a similar number of lost problems. Also the number of
satisfiable problems gained is similar to the baseline. The main improvement of
symmetry avoidance lies with the unsatisfiable lost problems where more than
90% of the problems gained versus the baseline can be recovered by the heuristics.

Most results are indistinguishable. Both symmetry avoidance options tend
to speed solving up more than slowing it down when compared to the baseline,
but they themselves are indistinguishable. Even without time-outs, symmetry
breaking tends to be slower than symmetry avoidance. Combining symmetry
breaking and symmetry avoidance mostly improves the solving times. Again
there is no distinguishable difference between the two avoidance options.

6.3 Discussion

We summarise answers to our two initial research questions. Symmetry breaking
can help solve more problems, but in the majority of cases, the cost of static
symmetry breaking is higher than symmetry avoidance. When considered along-
side symmetry avoidance, the benefits of symmetry breaking are more modest,
suggesting that overall the effort of incorporating these techniques directly into
the finite model finding process may not be worthwhile.
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7 Conclusion and Future Work

In this paper, we have characterised the symmetry avoidance problem for MACE-
style finite model finding, suggested a number of sound heuristics for symmetry
avoidance, and experimentally evaluated these heuristics. We found that some
of these variations can significantly speed up the finite model finding process.
Finally, we looked at whether directly identifying and breaking symmetries in
the SAT problems would give any further improvements. In further work we
would like to explore further heuristics and the correlation between the ordering
heuristics and the signature of a problem.

Acknowledgement. We thank the anonymous reviewers for critically reading the
paper and suggesting substantial improvements.

References

1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for
Boolean satisfiability. In: Proceedings of the 40th Design Automation Conference,
DAC 2003, Anaheim, CA, USA, 2–6 June 2003, pp. 836–839 (2003)

2. Audemard, G., Henocque, L.: The eXtended least number heuristic. In: Goré, R.,
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Abstract. A number of first-order calculi employ an explicit model rep-
resentation formalism in support of non-redundant inferences and for
detecting satisfiability. Many of these formalisms can represent infinite
Herbrand models. The first-order fragment of monadic, shallow, linear,
Horn (MSLH) clauses, is such a formalism used in the approximation
refinement calculus (AR). Our first result is a finite model property for
MSLH clause sets. Therefore, MSLH clause sets cannot represent mod-
els of clause sets with inherently infinite models. Through a translation
to tree automata, we further show that this limitation also applies to
the linear fragments of implicit generalizations, which is the formal-
ism used in the model-evolution calculus (ME), to atoms with dise-
quality constraints, the formalisms used in the non-redundant clause
learning calculus (NRCL), and to atoms with membership constraints,
a formalism used for example in decision procedures for algebraic data
types. Although these formalisms cannot represent models of clause sets
with inherently infinite models, through an additional approximation
step they can. This is our second main result. For clause sets including
the definition of an equivalence relation with the help of an additional,
novel approximation, called reflexive relation splitting, the approxima-
tion refinement calculus can automatically show satisfiability through
the MSLH clause set formalism.

1 Introduction

Proving satisfiability of a first-order clause set is more difficult than proving
unsatisfiability, in general. Still, for many applications the detection of failing
refutations by establishing a counter model is more than desirable. In the past,
several methods, calculi and systems have been presented that can detect sat-
isfiability of a clause set, in particular, if there is a finite model that is not too
large. The approaches can be separated into the following classes:

(1) the model building is integrated into a first-order calculus or a decision
procedure for some fragment, directly operating on the first-order clause
set, complete for unsatisfiability, e.g., [1,3,5,6,8,19,23],
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(2) the model building is integrated into a first-order calculus that operates on
the first-order clause set modulo an approximation, complete for unsatisfia-
bility, e.g., [14,16,27],

(3) the model building aims at finding finite models without being complete for
unsatisfiability, e.g., [9,17,21],

(4) the model building aims at finding finite and infinite models without being
complete for unsatisfiability, e.g., [18],

where superposition [2] does not belong to any of the above classes, because the
model building is implicit and reached by a finite saturation of the clause set
modulo inferences and the elimination of redundant clauses.

The approaches in classes (1) and (2) select inferences with respect to the
explicit (partial) model by identifying a false clause (instance). Therefore, the
representation of models needs to be effective, e.g., falsity of a clause (instance)
with respect to the model needs to be (efficiently) decidable.

For superposition it is undecidable whether a clause is false with respect to a
saturated clause set, in general. This can be seen by a reduction through the Post
Correspondence Problem (PCP) [20]. The clause set consisting of R(ε, ε) and
clauses R(x, y) → R(ti[x], si[y]) where the ti, si are terms built over the monadic
functions g, h and variables x, y, respectively, is saturated with strictly maximal
atoms R(ti[x], si[y]) and encodes the words (w1, . . . , wn), (v1, . . . , vn) generated
by a PCP over letters g, h. That means words are represented by nestings of
monadic functions. The PCP has a solution iff a ground atom R(g(t), g(t)) or
R(h(t), h(t)) is a consequence of the above clause set. This corresponds to testing
whether one of the clauses R(g(x), g(x)) or R(h(x), h(x)) has a false instance
with respect to the implicit model of the saturated PCP clause set.

Reasoning with respect to a (partial) model assumption has advantages. The
superposition completeness proof shows that an inference with a clause that is
false in the current partial model is not redundant [2]. This has meanwhile also
been shown for the CDCL [30] and the NRCL [1] calculus. The non-redundant
inference property might also hold for other calculi of classes (1) and (2). It
requires exhaustive model generation and eager conflict detection.

Our first contribution is showing that the model representation used in [27],
monadic shallow linear Horn clauses (MSLH) has the finite model property,
Sect. 3. This means that if a finite MSLH clause set has a model, it also has a
finite model. Hence, MSLH clause sets cannot be used directly to represent mod-
els of clause sets with inherently infinite models. A further consequence is that
any calculus in class (1), where the model representation can be represented by
an MSLH clause set, cannot terminate on satisfiable clause sets with inherently
infinite models. A more detailed discussion of this aspect is contained in Sect. 4.

The fact that MSLH clause sets have the finite model property does not
mean that the approximation refinement (AR) calculus presented in [27] cannot
be used for finding infinite models of clause sets with inherently infinite models.
The reason is that the MSLH model representation in [27] does not directly
relate to a model of the original clause set, but via an approximation. For the
approximation it is shown in a constructive way that it preserves satisfiability.
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This is done modulo the minimal Herbrand model of a saturated MSLH clause
set. Such Herbrand models become infinite as soon as there are non-constant
function symbols. So the question is whether AR can actually terminate on
clause sets with inherently infinite models. In Sect. 5, we show that this is the
case for certain classes of such clause sets relying on reflexivity of a binary
(equivalence) relation. The technique we propose is an additional approximation
called reflexive relation splitting. A similar relationship between a clause set and
its approximation was already observed in [18] where an approximation of a
first-order clause set into a class of tree automata is used in order to find finite
and infinite models.

Our results concerning the MSLH fragment and the reflexive relation splitting
modulo the AR calculus can be demonstrated by the following example. Consider
the following three clauses defining a reflexive binary relation R (see [8], page 55
for further discussion of this example).

{R(x, x), R(g(x), g(y)) → R(x, y), ¬R(g(x), c)}
This set has only infinite models. No resolution inference between R(x, x) and
¬R(g(x), c) is possible. Following the AR approach [27], the MSLH clause set

{T (fR(x, y)), T (fR(g(x), g(y))) → T (fR(x, y)), ¬T (fR(g(x), c))}
is generated. We write unit clauses as single literals, and non-unit clauses
as implications. The relation R is translated into a binary function fR over
a monadic predicate T . The approximation is the replacement of R(x, x) by
T (fR(x, y)), where now the connection between the non-linear occurrences of
x is lost. As a consequence, a refutation containing a resolution step between
T (fR(x, y)) and ¬T (fR(g(x), c)) with substitution {x �→ g(v), y �→ c} is possi-
ble, which cannot be lifted to the original clause set because g(v) and c are not
unifiable. The refinement then excludes this particular instance by generating
R(g(x), g(x)), however, after approximating this clause, the empty clause can
be derived again. This time the derivation also uses the second clause, where
the substitution instance of the refutation contains one further nesting of g. The
approximation refinement approach does not terminate on this example.

If in the approximation the inference between T (fR(x, x)) and
¬T (fR(g(x), c)) can be blocked, saturation will terminate without finding a con-
tradiction. As said, in the original clause set this inference is not possible, because
of the non-linear occurrence of x. Now the idea is to split the relation R into its
reflexive and irreflexive part, denoted by the two predicates Rref and Rirr. The
original clause set is satisfiable if and only if the following clause set is satisfiable

{Rref(x, x), Rirr(g(x), g(y)) → Rirr(x, y), ¬Rirr(g(x), c)},

details are explained in Sect. 5. After approximation it becomes

{T (fRref(x, y))∗, T (fRirr(g(x), g(y)))+ → T (fRirr(x, y)),¬T (fRirr(g(x), c))∗} (†)
where ∗ highlights maximal and + selected literals of the ordered resolution
calculus used to decide MSLH clauses [26,27]. There are no possible inferences
generating further clauses, i.e. the set is already saturated.
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The infinite minimal Herbrand model is I = {T (fRref(g
i(c), gj(c))) | i, j ≥ 0}

which is also a model for the clause set before approximation [26,27] by simply
undoing the shift of Rirr, Rref to the function level: I = {Rref(gi(c), gj(c))) |
i, j ≥ 0}. Nestings of functions in the Herbrand model representing relations,
e.g., fRref , can be prevented by adding further MSLH clauses. We omit these here
for simplicity. This model can then be translated, see the proof of Lemma 9, into
the Herbrand model I = {R(gi(c), gi(c))) | i ≥ 0} of the original clause set.

In Sect. 3, we prove a finite model property for saturated, satisfiable MSLH
clause sets. For the example, see (†), the thus constructed model has the domain
A := {ac, a(1), a(2), a(3), b(1), b(2), b(3)}. The predicate T is interpreted with the
set {b(1), b(2), b(3)}. For the constant c we use the distinguished element ac. The
interpretation of the function fRref is given in the following function table:

〈ac, ac〉 �−→ b(1)

〈a(i), a(i)〉 �−→ b(j) for every i and some j �= i
〈b(i), b(i)〉 �−→ b(j) for every i and some j �= i

〈c, d〉 �−→ a(j) for any c, d ∈ A with c �= d and
some j chosen such that for any i,
if c or d is equal to a(i) or b(i), then j �= i

For the function fRirr we get a similar function table in which every pair 〈c, d〉
is mapped to some a(j), where j is chosen such that c, d �= a(j). Finally, the
interpretation of the function g is given by g(ac) = a(1), g(a(i)) = a(j) and
g(b(i)) = a(j) for every i and some j �= i.

The paper is now organized as follows: after fixing some notions and nota-
tions, Sect. 2, the finite model property of MSLH clause sets is shown in Sect. 3.
Consequences of this result for other model representation formalisms are dis-
cussed in Sect. 4. In Sect. 5 reflexive relation splitting is introduced and its appli-
cation to AR investigated. The present paper ends with a discussion on the
obtained results and future research directions, Sect. 6. Due to space limitations,
not all proof details could be included. The interested reader will find the full
details in the extended preprint [25].

2 Preliminaries

We consider a standard first-order language without equality where letters v, w,
x, y, z denote variables, f, g, h functions, a, b, c constants, s, t terms, and Greek
letters σ, τ, ρ are used for substitutions. S, P,Q,R denote predicates, A,B atoms,
E,K,L literals, C,D clauses, N clause sets and V sets of variables. The notation
[¬]A denotes A or its negation. The signature Σ = (F ,P) consists of two disjoint,
non-empty, in general infinite sets of function and predicate symbols F and P,
respectively. The set of all terms over the variables in V is T (F ,V). If there
are no variables, then terms, literals and clauses are called ground, respectively.
A substitution σ is denoted by pairs {x �→ t}. A substitution σ is a grounding
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substitution for a term, atom, literal, clause if the application of σ yields a
ground term, ground atom, ground literal, ground clause, respectively.

The set of free variables of an atom A (term t, literal L, clause C) is denoted
by vars(A) (vars(t), vars(L), vars(C)). A predicate with exactly one argument is
called monadic. A term is complex if it is not a variable and shallow if it is a
constant, a variable, or of the form f(x1, . . . , xn). A term, atom is called linear
if there are no duplicate variable occurrences.

A clause is a multiset of literals which we write as an implication Γ → Δ
where the atoms in the multiset Δ (the succedent) denote the positive literals and
the atoms in the multiset Γ (the antecedent) the negative literals. Alternatively,
we write a clause also as a disjunction of its literals. We write � for the empty
clause. We abbreviate disjoint set union with sequencing, for example, we write
Γ, Γ ′ → Δ,L instead of Γ ∪ Γ ′ → Δ ∪ {L}. A clause Γ → Δ is called an
MSLH clause, if (i) Δ contains at most one atom, i.e., the clause is Horn, (ii) all
occurring predicates are monadic, (iii) the argument of any monadic atom in Δ
is shallow and linear. The first-order fragment consisting of finite MSLH clause
sets we call MSLH.

An atom ordering ≺ is an irreflexive, well-founded, total ordering on ground
atoms. It is lifted to literals by defining A ≺ ¬A ≺ B for any atoms A, B with
A ≺ B. It is lifted to clauses by its multiset extension. The ordering is lifted
from the ground level through ground instantiation: for two different atoms A,
B containing variables, A ≺ B if Aσ ≺ Bσ for all grounding substitutions σ and
the atoms are incomparable otherwise. A literal L is maximal (strictly maximal)
in a clause C ∨ L if there is no literal K ∈ C with L ≺ K (L � K). The clause
ordering is compatible with the atom ordering; if the maximal atom in C is
greater than the maximal atom in D then D ≺ C. We use ≺ simultaneously to
denote an atom ordering and its multiset, literal, and clause extensions. For a
ground clause set N and clause C, the set N≺C = {D ∈ N | D ≺ C} denotes
the clauses of N smaller than C.

As usual, we interpret atoms, clauses, and clause sets with respect to struc-
tures A, also called interpretations, consisting of a nonempty universe A and
interpretations cA, fA, and PA of all occurring constants, functions, and pred-
icates. We often use a special kind of interpretations, called Herbrand interpre-
tations, whose universe is the set of all ground terms. A Herbrand interpretation
I is represented by a – possibly infinite – set of ground atoms. A ground atom
A is true in I if A ∈ I and false, otherwise. I is said to satisfy a ground clause
C = Γ → Δ, denoted by I � C, if Δ ∩ I �= ∅ or Γ �⊆ I. A non-ground clause C
is satisfied by I if I � Cσ for every grounding substitution σ. An interpretation
I is called a model of N , I � N , if I � C for every C ∈ N . A Herbrand model I
of N is considered minimal (with respect to set inclusion) if there is no model
I ′ with I ′ ⊂ I and I ′ � N . A set of clauses N is satisfiable, if there exists a
model that satisfies N . Otherwise, the set is unsatisfiable.

The superposition calculus [2] restricted to first-order logic without equality
results in the ordered resolution calculus together with the superposition redun-
dancy criterion and partial model operator, see below. For ordered resolution, a
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selection function is assumed that may select negative literals in clauses. Then
(C ∨D)σ is an ordered resolution inference between a clause C ∨A and a clause
D ∨ ¬B, if (i) σ is the mgu between A and B, (ii) Aσ is strictly maximal in
(C ∨ A)σ and nothing is selected in C ∨ A, (iii) ¬Bσ is maximal in (D ∨ ¬B)σ
or selected. The clause (C ∨ A)σ is an ordered factoring inference on a clause
C ∨A∨A′, if (i) σ is the mgu between A and A′, (ii) Aσ is maximal in (C ∨A)σ
and nothing is selected in C ∨A∨A′. Selection is stable under instantiation, i.e.,
if ¬A is selected in ¬A ∨ C it is also selected in (¬A ∨ C)σ, for any substitution
σ. A clause C is redundant with respect to a clause set N , if for all ground
instances Cσ there are ground instances D1σ1, . . . , Dnσn, {D1, . . . , Dn} ⊆ N ,
Diσi ≺ Cσ for all i, such that D1σ1, . . . , Dnσn |= Cσ, i.e., Cσ is implied by
smaller ground instances from clauses in N . A clause set N is called saturated
if all clauses generated by ordered resolution or ordered factoring from clauses
in N are either redundant or contained in N . Given a ground clause set N and
an ordering ≺ we can construct a (partial) Herbrand model NI for N by the
superposition (partial) model operator inductively as follows:

NC :=
⋃

D≺C δD

δD :=

⎧
⎪⎪⎨

⎪⎪⎩

{P (t1, . . . , tn)} if D = D′ ∨ P (t1, . . . , tn), P (t1, . . . , tn) strictly maxi-

mal in D, no literal selected in D and ND � |= D

∅ otherwise

NI :=
⋃

C∈N δC

Clauses C with δC �= ∅ are called productive. For a non-ground clause set N
we define NI := ({Cσ | C ∈ N,σ grounding for C})I . The main completeness
result of superposition is: for a clause set N let N∗ be its (possibly infinite)
saturation, then either � ∈ N∗ and N is unsatisfiable, or N∗

I |= N [2].
Basically, inferences of the superposition calculus are restricted to maximal,

or selected negative literals. If all non-redundant inferences of a clause set are
performed, i.e., the clause set is saturated, then the superposition model operator
generates an overall model for the clause set.

3 MSLH Model Properties

By definition, Herbrand models for MSLH clause sets with non-constant function
symbols have an infinite domain. In what follows we show how to construct non-
Herbrand models with finite domains for satisfiable finite MSLH clause sets. The
constructed model is a finite representation of the minimal Herbrand model.

Consider a satisfiable finite MSLH clause set N . It is known that N can
be finitely saturated using superposition (ordered resolution) with an appropri-
ate ordering and selection strategy such that the following property holds for
the obtained saturated clause set N∗ [29]. Every clause C in N∗ that is pro-
ductive in the sense of the superposition model operator has the form C =
P1(x1), . . . , Pn(xn) → S(f(y1, . . . , ym)) where {x1, . . . , xn} ⊆ {y1, . . . , ym},
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f(y1, . . . , ym) is linear, and S(f(y1, . . . , ym)) is strictly maximal in C. Such a
saturation can, e.g., be obtained by choosing for ≺ a Knuth-Bendix-Ordering
(KBO) with weight one for all function symbols, variables, and a selection strat-
egy that selects a negative literal Pi(ti) in any clause P1(t1), . . ., Pn(tn) →
S(f(y1, . . . , ym)) if ti is not a variable, if ti is a variable that does not occur in
f(y1, . . . , ym), or if ti is a variable in a clause P1(x), . . . , Pn(x) → S(x) [28,29].

Proposition 1 (Entailed by Lemma4 from [29]). Consider a satisfiable
finite MSLH clause set N . There is a finite MSLH clause set N∗ such that
N ⊆ N∗ and N |= N∗ and there is a (minimal) Herbrand model H |= N∗ such
that for every ground atom A of the form S

(
f(s1, . . . , sm)

)
we have H |= A only

if there is some clause C in N∗ and a variable assignment β with the following
properties (notice that for m = 0 f degenerates to a constant symbol):

(a) C has the form P1(x1), . . . , Pn(xn) → S
(
f(y1, . . . , ym)

)
where {x1, . . . , xn} ⊆

{y1, . . . , ym}, the y1, . . . , ym are pairwise distinct, and m,n ≥ 0;
(b) we have β(yi) = si for every i, 1 ≤ i ≤ m; and
(c) we have H, β |= Pj(xj) for every j, 1 ≤ j ≤ n.

Since N∗ is satisfiable and all its clauses are Horn, it possesses a unique
minimal Herbrand model H (cf. [12], Chapter XI, Theorem 3.8). The property
described in Proposition 1 provides the key to construct a finite model for N and
N∗ from H. The following example is intended to illustrate the ideas underlying
the construction in a simplified form.

Example 2. Consider the following set of MSLH clauses with constants a and b:

N := {P (a), Q(b), ¬P (z) ∨ ¬Q(z) ∨ ¬R(z),
¬P (u) ∨ ¬P (u′) ∨ P (f(u, u′)), ¬Q(v) ∨ ¬Q(v′) ∨ Q(f(v, v′)),
¬P (x) ∨ R(f(x, y)), ¬P (y) ∨ R(f(x, y)),
¬Q(x) ∨ R(f(x, y)), ¬Q(y) ∨ R(f(x, y))} .

The set N is satisfied by the minimal Herbrand interpretation H with

PH :=
{
a, f(a, a), f

(
a, f(a, a)

)
, f

(
f(a, a), a

)
, f

(
f(a, a), f(a, a)

)
, . . .

}
,

QH :=
{
b, f(b, b), f

(
b, f(b, b)

)
, f

(
f(b, b), b

)
, f

(
f(b, b), f(b, b)

)
, . . .

}
,

RH :=
{
f(s, t)

∣
∣ s ∈ PH or t ∈ QH}

.

The interpretation H, together with N∗ := N , satisfies the conditions of Propo-
sition 1: for every term f(s, t) that belongs to RH we have that one of the
clauses ¬P (x) ∨ R(f(x, y)) or ¬P (y) ∨ R(f(x, y)) or ¬Q(x) ∨ R(f(x, y)) or
¬Q(y)∨R(f(x, y)) enforces H |= R(f(s, t)) because of H |= P (s) or H |= P (t)
or H |= Q(s) or H |= Q(t), respectively. Similarly, the presence of any term
f(. . .) in PH or QH is enforced by one of the clauses ¬P (u)∨¬P (u′)∨P (f(u, u′))
or ¬Q(v) ∨ ¬Q(v′) ∨ Q(f(v, v′)).

These requirements towards the minimality of H provide us with a certain
knowledge about distinct terms f(s, t) and f(s′, t′). Suppose the terms s and s′
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are indistinguishable with respect to their membership in PH, QH, RH. Further
suppose that the same holds for the terms t and t′. Then, f(s, t) and f(s′, t′)
are also indistinguishable with respect to their belonging to PH, QH, and RH,
because the arguments s, t and s′, t′ trigger the same productive clauses. A formal
statement of this property is given in Lemma 3.

Based on this observation, we use H as a blueprint for a finite model A,
which is depicted in Fig. 1. The domain of A shall be A := {a, b, c, d, e},
and we set aA := a and bA := b. The predicate symbols are interpreted by
PA := {a, c}, QA := {b, d}, RA := {c, d, e}. Moreover, we define

fA(a, a) := c fA(a, c) := c fA(c, a) := c fA(c, c) := c
fA(b, b) := d fA(b, d) := d fA(d, b) := d fA(d, d) := d.

For all other inputs, fA shall yield e as output. Every domain element in A rep-
resents one equivalence class of the terms in H’s Herbrand domain with respect
to membership in the sets PH, QH, and RH. The domain element a represents
the class [a] := {a} of terms that belong to PH and to no other set. Similarly,
b represents [b] := {b} of terms that belong to QH and to no other set. The
element c represents the class of all terms belonging to PH ∩ RH, i.e. to the
class containing f(a, a), f(a, f(a, a)) and so on. The class of terms belonging to
QH ∩RH is represented by d. Finally, e corresponds to the class of all terms that
are member of RH but of none of the other predicates, e.g. f(a, b), f(a, f(b, a)).

P \ R Q \ R

P ∩ R Q ∩ R

R \ (P ∪ Q)

a b

c d

e

R

P Qterms yielding a:
a

terms yielding b:
b

terms yielding c:
f(a, a), f(f(a, a), a),
f(a, f(a, a)), . . .

terms yielding d:
f(b, b), f(b, f(b, b)),
f(f(b, b), b), . . .

terms yielding e:
f(a, b), f(b, a),
f(a, f(a, b)), . . .

Fig. 1. Illustration of the model A of N from Example 2.

Next, we describe formally how to construct a finite model for the given satisfi-
able and finite MSLH clause set N . Let N∗ and H be the objects described in
Proposition 1. Then, we have H |= N∗ and H |= N . Let H be the domain of H,
i.e. H is the set of all ground terms over the vocabulary underlying N . We aim
at constructing a finite model A |= N starting from H.

Let Π denote the set of all predicates occurring in N , and recall that Π
contains only unary predicate symbols. Let ∼ be the equivalence relation on H
such that s ∼ t holds if and only if we have for every P ∈ Π that H |= P (s) if
and only if H |= P (t).
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Lemma 3. For every non-constant function symbol f in N of arity m and all
tuples 〈s1, . . . , sm〉, 〈t1, . . . , tm〉 ∈ Hm for which si ∼ ti holds for every i we have
f(s1, . . . , sm) ∼ f(t1, . . . , tm).

Proof. By Definition of H, H |= S
(
f(s1, . . . , sm)

)
entails that there is a clause

C of the form ¬P1(x1) ∨ . . . ∨ ¬Pn(xn) ∨ S
(
f(y1, . . . , ym)

)
in N∗ and a vari-

able assignment β that satisfy Properties (a) to (c) from Proposition 1. Let
γ be a variable assignment for which we have γ(yi) := ti for every i. Notice
that such a γ with

〈
γ(y1), . . . , γ(ym)

〉
= 〈t1, . . . , tm〉 always exists because the

y1, . . . , ym are pairwise distinct. Since we assume si ∼ ti for every i and because
of {x1, . . . , xn} ⊆ {y1, . . . , ym}, Conditions (b) and (c) of Proposition 1 stipulate
for every j that β(xj) ∈ PH

j and, hence, we also have γ(xj) ∈ PH
j . Since H is a

model of N∗, we have H, γ |= C. This together with H, γ |= Pj(xj), for every j,
entails H, γ |= S(f(y1, . . . , ym)). Put differently, we have H |= S

(
f(t1, . . . , tm)

)
.

Consequently, for every S we observe that H |= S
(
f(s1, . . . , sm)

)
entails

H |= S
(
f(t1, . . . , tm)

)
. The converse direction can be shown by a symmetric

argument. ��

We now construct the finite structure A. The universe of A shall be A :={
[s]∼ | s ∈ H

}
, where [s]∼ denotes the (unique) equivalence class with respect to

∼ which contains the term s. For every function symbol f (including constants)
we set fA(

[s1]∼, . . . , [sm]∼
)

:=
[
f(s1, . . . , sm)

]
∼ for all ground terms s1, . . . , sm.

Finally, we define each predicate P under A by PA :=
{
[s]∼ | H |= P (s)

}
.

Lemma 4. Let γ be any variable assignment over A’s domain. Let β be some
variable assignment over H’s domain defined such that for every x we have
γ(x) =

[
β(x)

]
∼. By definition of H, such a β must exist. Then, for every term

t in N and every predicate P we have A, γ |= P (t) if and only if H, β |= P (t).

Proof (Sketch). We proceed by case distinction regarding the structure of the
term t. If t = x is a variable, then we have A, γ |= P (x) if and only if γ(x) =[
β(x)

]
∼ ∈ PA if and only if β(x) ∈ PH if and only if H, β |= P (x). If t = c is a

constant, then we have A, γ |= P (c) if and only if cA = [c]∼ ∈ PA if and only
if c ∈ PH if and only if H, β |= P (c).

Suppose t = f(s1, . . . , sm) for some function f of arity m ≥ 1 and terms
s1, . . . , sm. Let t1, . . . , tm be ground terms such that A(γ)(si) = [ti]∼. Such terms
exist by definition of H. Then, A, γ |= P

(
f(s1, . . . , sm)

)
if and only if fA(

[t1]∼,
. . . , [tm]∼

)
=

[
f(t1, . . . , tm)

]
∼ ∈ PA if and only if H |= P

(
f(t1, . . . , tm)

)
. A

straightforward induction on the structure of the terms si yields ti ∼ H(β)(si)
for every i (see [25] for details), where H(β)(si) denotes the value of the term si
under H and β. Then, by Lemma 3, we have H |= P

(
f(t1, . . . , tm)

)
if and only

if H |= P
(
f
(
H(β)(s1), . . . ,H(β)(sm)

))
if and only if H, β |= P

(
f(s1, . . . , sm)

)
.

��

For the special case of ground terms, there is a simpler form of Lemma 4:

Corollary 5. For every ground term t and every predicate symbol P we have
A |= P (t) if and only if H |= P (t).
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Using Lemma 4, it is easy to show that N is satisfied by the finite structure A
(see [25] for details).

Theorem 6 (Finite Model Property for MSLH). Every satisfiable finite
MSLH clause set N has a finite model whose domain contains at most 2p ele-
ments, where p is the number of predicates occurring in N .

For a number of fragments enjoying the finite model property, such as the
Bernays-Schoenfinkel fragment, the size of minimal models also depends on the
number of constants. Ground unit clauses are sufficient to force the growth of
models. Ground unit clauses such as the unit clause T (f(a, b, c)) are not admitted
in MSLH. But they can be encoded. For the example, the unit clauses S1(a),
S2(b), S3(c) together with the clause ¬S1(x) ∨ ¬S2(y) ∨ ¬S3(z) ∨ T (f(x, y, z))
entail the ground unit clause T (f(a, b, c)). Forcing the growth of models via
ground unit clauses requires the introduction of additional predicates in MSLH.

4 Model Representation Formalisms

Many known explicit first-order model representation formalisms are built on
sequences of literals, often enhanced with constraints, eventually representing
Herbrand models, e.g., [1,3,5,6,19], so called constraints atomic representations
(CARMs) [8]. A thorough discussion of all known CARM model representation
formalisms is beyond the scope of this paper. We concentrate on three basic
building blocks of known model representation formalisms: atoms with dise-
quality constraints [8,11] (ADCs), implicit generalizations [13] (IGs) and atoms
with membership constraints [8,10] (AMCs). They form the basis for a num-
ber of concrete model representation formalisms that actually appear in the
above mentioned calculi. For this section we consider a fixed, finite signature
Σ = (F ,P), e.g., the function and predicate symbols occurring in some finite
clause set N . The results in this section for all three model representations will
be the same: if terms, literals are linear, the models represented by the respective
approaches have the finite model property. We will prove this as follows: (i) we
provide an effective linear time translation of atoms with disequality constraints
to implicit generalizations; (ii) we provide a linear time translation of implicit
generalizations to intersections of tree automata [10] or complements thereof;
(iii) we represent an atom with membership constraints by a tree automaton.
Then, because tree automata are closed under intersection and complement,
potentially causing an exponential blow up in size [10], the atoms generated by
ADCs and IGs can also be represented by the accepted language of a single tree
automaton. The accepted language of a tree automaton can be represented by
a finite MSLH clause set, e.g., see [15]. Thus, by Theorem 6, linear ADCs, lin-
ear IGs, and linear AMCs have all the finite model property, i.e., they cannot
represent models for clause sets with inherently infinite models.

A linear ADC [8,11] has the form (A : x1 �= t1, . . . , xn �= tn) where the xi

are all different and occur in A, the xi do not occur in any tj , the variables of
the tj do not occur in A and A as well as all tj are linear. The ground atoms
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generated by such an ADC are all ground atoms Aσ such that there is no δ with
xiσ = tiδ for some i. A linear IG [13] is an expression A/{B1, . . . , Bn} where A
and the Bi are linear atoms. Every ground instance of A that is not an instance
of any Bi is generated by the IG A/{B1, . . . , Bn}. The ground atoms generated
by an ADC are exactly the ground atoms generated by the respective linear IG
A/{A{x1 �→ t1}, . . . , A{xn �→ tn}}.

A tree automaton [7,10] consists of a finite set Q of states, a finite set O of oper-
ators, a subset of accepting states QA ⊆ Q, and a finite set of rules f(q1 . . . , qn) �→
q where q, qi ∈ Q, f ∈ O. The accepted language of a tree automaton is induc-
tively defined by f(t1, . . . , tn) ∈ qA if there is a rule f(q1 . . ., qn) �→ q and ti ∈ qA

i

for all i. The overall accepted language is then
⋃

{qA | q ∈ QA}.
For example, the ground instances of the linear atom R(x, g(a, y)) over sig-

nature Σ = ({g, a, b}, {R}) is the accepted language of the tree automaton
O = {R, g, a, b} with rules a �→ q1, b �→ q1, g(q1, q1) �→ q1, hence state q1
accepts all ground terms, a �→ q2, g(q2, q1) �→ q3, and R(q1, q3) �→ q4 where q4 is
the only accepting state recognizing all ground instances of R(x, g(a, y)).

If ta is a function mapping linear atoms to a tree automata accepting
the respective ground instances, then the ground atoms generated by an IG
A/{B1, . . ., Bn} are accepted by the tree automaton ta(A) ∩ ¬ ta(B1) ∩ . . . ∩
¬ ta(Bn). Recall that tree automata are closed under intersection (∩) and com-
plement (¬), however the above tree automaton may be exponentially larger in
size compared to the size of ta(A) and the ta(Bi).

A linear atom with membership constraint A : x ∈ S is the pair of a linear
atom A and a constraint x ∈ S where x occurs in A and S is represented by
a tree automaton. It generates all ground instances Aσ where xσ is accepted
by the tree automaton representing S. There is a function ta(A : x ∈ S) that
computes in linear time a tree automaton accepting exactly the generated ground
instances of A : x ∈ S. Basically, the state(s) representing the instances of x in
A in ta(A) have to be replaced by the accepting states of the tree automaton
representing S.

Finally, tree automata can be straight forwardly represented via MSLH clause
sets. For example, the tree automaton representing the ground instances of
R(x, g(a, y)) shown before, can be translated into the MSLH clause set → Q1(a);
→ Q1(b); Q1(x), Q1(y) → Q1(g(x, y)); → Q2(a); Q2(x), Q1(y) → Q3(g(x, y));
and Q1(x), Q3(y) → Qf (fR(x, y)). This, together with Theorem6, eventually
proves the following theorem.

Theorem 7. Linear disequality constraints (ADCs), linear implicit generaliza-
tions (IGs) and linear atoms with membership constraints (AMCs) have the finite
model property.

This result can be easily generalized to any “Boolean combination” of lin-
ear ADCs, IGs, and AMCs, because tree automata are closed under Boolean
operations. Our restriction on linearity does not imply that non-linear ADCs,
IGs, and AMCs do not have the finite model property. This is an open prob-
lem. For example, the non-linear IG R(x, x)/{R(g(x), g(x))} over signature
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Σ = ({g, h, a}, {R}) generates the infinite Herbrand model {R(a, a)} ∪ {R(h(x),
h(x))σ | σ grounding}. However, it also has a finite model over the domain
A := {a, b} of two elements where a is interpreted by a, g maps constantly to b,
h maps constantly to a, and R is the relation {(a, a)}.

Non-linear MSH clause sets do not have the finite model property, because
they are as expressive as full first-order logic.

5 Model Finding by Approximation Refinement

The AR calculus as it is used here works as follows [27]. Starting from a clause set
N it is approximated into a MSLH clause set N ′ by the following steps: (i) all
non monadic relation literals are turned into function terms below of a new
monadic predicate T , (ii) all non-linear variable occurrences in positive literals
are linearized, (iii) all nested function terms in positive literals are abstracted
through the introduction of further monadic predicates, (iv) non Horn clauses
are split into Horn clauses after removing variable dependencies between pos-
itive literals. Then if N ′ is satisfiable, so is N . If N ′ is unsatisfiable, the AR
calculus tries to lift the proof to N . This may fail, in particular, because of the
variable linearizations. In this case the respective clauses are instantiated and
again approximated in order to get rid of the particular proof in N ′ and the AR
calculus continues. If the proofs out of N ′ are generated in a fair way, the AR
calculus is complete [27]. The Horn splitting can be omitted but then a decision
procedure for MSL clause sets is needed [28].

The approximation refinement approach [27] cannot show satisfiability of the
simple clause set with the two unit clauses

R(x, x), ¬R(y, g(y)).

The approximated clause set consisting of the three clauses

T (fR(x, y)), ¬S(z) ∨ ¬T (fR(y, z)), S(g(y))

immediately yields a refutation. The problem is that R(x, x) cannot be refined
in such a way that all instances of the conflict clause ¬R(y, g(y)) are excluded.
The refinement loop instead ends up enumerating all R(gi(x), gi(x)) but
R(gi+1(y), gi+2(y)) will always remain as a conflict clause.

The non-termination can be resolved, if the resolution inference in the
abstracted clause set can be blocked. Our suggestion in case of reflexive relations
is reflexive relation splitting, i.e., we split a reflexive relation into its reflexive part
Rref and irreflexive part Rirr. For the example, this yields

Rref(x, x), ¬Rirr(y, g(y))

and after approximation

T (fRref(x, y)), ¬S(z) ∨ ¬T (fRirr(y, z)), S(g(y)).
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Now the approximation is saturated. The operation preserves satisfiability
because the two R literals could not be resolved anyway.

In general, for each predicate R with a reflexivity axiom, all occurrences
of atoms R(s, t) are replaced with Rref(s, t) and/or Rirr(s, t). If s and t are
not unifiable, R(s, t) is replaced with Rirr(s, t). If there is an mgu σ of s and t,
R(s, t) is replaced with both Rref(sσ, tσ) and Rirr(s, t). More precisely, any clause
C∨[¬]R(s, t) is replaced by two clauses: C∨[¬]Rirr(s, t) and Cσ∨[¬]Rref(sσ, tσ).
The process is repeated until all atom occurrences with R have been replaced.
In the final result, any clause that contains an atom of the form Rirr(s, s) can
be deleted.

More formally, the following transition system replaces a reflexive R by the
two new predicates.

Irreflexive N � {[¬]R(s, t) ∨ C} ⇒RRS N � {[¬]Rirr(s, t) ∨ C}
provided s and t are not unifiable

Reflexive N�{[¬]R(s, t)∨C} ⇒RRS N�{[¬]Rirr(s, t)∨C, [¬]Rref(sσ, tσ)∨Cσ}
provided s and t are unifiable by an mgu σ

Delete N � {[¬]Rirr(s, s) ∨ C} ⇒RRS N

Lemma 8. ⇒RRS is terminating and confluent.

Proof (Sketch). Termination is easy to prove. Each application of the rules
Irreflexive or Reflexive reduces the multiset of the numbers of R-occurrences
in all clauses, and no new occurrences of R are ever introduced when Delete is
applied. Each application of the rule Delete reduces the number of occurrences of
Rirr. Combining these two properties into a well-founded multi-set-based order-
ing completes the proof of termination. For local confluence, the non-obvious
case is a clause [¬]R(s, t) ∨ [¬]R(s′, t′) ∨ C where R(s, t) and R(s′, t′) share
variables, and without loss of generality, s and t are unifiable by the mgu σ.
Applying first the reflexive transformation to the first literal yields the two
clauses [¬]Rref(sσ, tσ) ∨ [¬]R(s′σ, t′σ) ∨ Cσ and [¬]Rirr(s, t) ∨ [¬]R(s′, t′) ∨ C.
Now the interesting case is where s′, t′ are unifiable but s′σ and t′σ are not.
Then we get with the mgu τ of s′, t′: [¬]Rref(sσ, tσ) ∨ [¬]Rirr(s′σ, t′σ) ∨ Cσ,
[¬]Rirr(s, t) ∨ [¬]Rirr(s′, t′) ∨ C, and [¬]Rirr(sτ, tτ) ∨ [¬]Rref(s′τ, t′τ) ∨ Cτ . This
is also exactly the result we get when starting with a translation of [¬]R(s′, t′):
if s′σ, t′σ are not unifiable, then sτ, tτ are not unifiable as well. For otherwise,
sττ ′, tττ ′ for unifier τ ′ is an instance of sσ, tσ, so s′σ, t′σ must be unifiable as
well, a contradiction to the above assumption. All other cases are similar to this
case. By Newman’s Lemma, termination plus local confluence implies confluence.

��

Given any finite clause set N , we write rrs(N) to address the normal form
of N after exhaustively applying ⇒RRS. Notice that any clause D ∈ rrs(N) is
an instance of a clause in N with respect to the renaming of Rref, Rirr with R.
Moreover, we use rrs(C) as shorthand for rrs({C}) for any clause C.
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Lemma 9 (Reflexive Relation Splitting). Let N be a finite clause set that
does not contain the predicates Rref and Rirr. N is satisfiable if and only if
rrs(N) is satisfiable.

Proof (Sketch). Consider the derivation N ⇒RRS N1 ⇒RRS . . . ⇒RRS rrs(N)
where we assume that the rule Delete is applied with priority whenever it is
applicable. By confluence of ⇒RRS, this is not a restriction.

We use an auxiliary result that is not hard to prove (see [25] for details):
Claim: Let M1,M2 be clause sets such that M1 ⇒RRS M2. Moreover, let I
be any Herbrand interpretation such that (1) for every ground term s we have
Rref(s, s) ∈ I if and only if R(s, s) ∈ I, (2) for all ground terms s, t and all
Rref(s, t) ∈ I we have s = t, (3) for all ground terms s, t we have Rirr(s, t) ∈ I
if and only if R(s, t) ∈ I. Then, I |= M1 if and only if I |= M2. ♦

Let I be a Herbrand model of N . Since N does not contain the predicates Rref

and Rirr, we can bring I into the shape that meets the conditions of the above
claim and still ensure that I |= N . It then follows that I |= N , I |= N1, . . . , I |=
rrs(N). Symmetrically, let I be a Herbrand model of rrs(N). Since rrs(N) does not
contain the predicate R, we can reshape I so that the above claim is applicable
and I is still a model of rrs(N). Then, we get I |= rrs(N), . . . , I |= N . ��

Notice that the above lemma holds independently of the fact whether there
is a reflexivity clause in N or not. Such a clause would, of course, also be trans-
formed by ⇒RRS.

Let us take a look at an example that is a little bit more involved. Consider
an equivalence relation R with the respective axiom clauses.

→ R(x, x)
R(x, y) → R(y, x)

R(x, y), R(y, z) → R(x, z)

Applying ⇒RRS exhaustively results in the clause set

→ Rref(x, x)
Rirr(x, y) → Rirr(y, x)
Rref(x, x) → Rref(x, x)

Rirr(x, y), Rirr(y, z) → Rirr(x, z)
Rirr(x, y), Rirr(y, x) → Rref(x, x)
Rirr(x, y), Rref(y, y) → Rirr(x, y)
Rref(x, x), Rirr(x, z) → Rirr(x, z)
Rref(x, x), Rref(x, x) → Rref(x, x).

After removing redundant clauses, we are conveniently left with just

→ Rref(x, x)
Rirr(x, y) → Rirr(y, x)

Rirr(x, y), Rirr(y, z) → Rirr(x, z)
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which are no longer trivialized by the linear approximation T (fR(x, y)) of the
reflexivity axiom generated by the AR calculus. See also the example in the
introduction, Sect. 1, for another application of reflexive relation splitting.

The rule Reflexive replaces a clause by two clauses and can, therefore, cause
an exponential blow up in the number of generated clauses. However, this is only
the case for a clause with several occurrences R(si, ti) such that the respective
term pairs are all simultaneously unifiable. This situation can be detected and
then reflexive relation splitting may not be efficiently applicable. However, the
above example on the equivalence relation R shows that in the case of variable
chains as they occur in the transitivity axiom, all of the eventually generated
clauses become redundant, except one: Rirr(x, y), Rirr(y, z) → Rirr(x, z). We have
integrated reflexive relation splitting into Spass-AR [24,27] and have run it
on the overall TPTP [22]. There is no example in TPTP v.7.2.0 showing the
exponential blow up and the set of problems solved by Spass-AR with reflexive
relation splitting is strictly larger than without.

Nevertheless, reflexive relation splitting is, of course, not sufficient to trans-
form all problems with inherently infinite models based on a (ir)reflexive relation
into clause sets that can eventually be decided by AR via MSLH clause sets.
Consider a strict partial ordering without endpoints:

R(x, x) →
→ R(x, g(x))

R(x, y), R(y, z) → R(x, z).

Reflexive relation splitting yields

Rref(x, x) →
→ Rirr(x, g(x))

Rirr(x, y), Rirr(y, z) → Rirr(x, z)
Rirr(x, y), Rirr(y, x) → Rref(x, x)

but after approximation, the abstraction refinement does not terminate on the
example. The reason is the approximation of the clause Rirr(x, g(x)) into the two
clauses S(g(x)) and S(y) → T (fRirr(x, y)) where the property is lost that in any
ground instance of Rirr(x, g(x)) the first argument has one occurrence of g less
than the second. This was resolved in [18] by the use of tuple tree automata.

6 Discussion

We have shown that the MSLH clause fragment has the finite model property
and can therefore not represent models of clause sets with inherently infinite
models. This applies to the model representation building blocks atoms with
disequality constraints, implicit generalizations, and atoms with membership
constraints as well, if atoms and terms are linear. For non-linear terms, our finite
model property proof breaks, and, in fact, the example from the introduction
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shows already that non-linear atoms can represent models for clause sets with
inherently infinite models.

Unsatisfiability of monadic shallow Horn clause sets is undecidable. One
occurrence of a clause Γ → S(f(x, x)) suffices to this end. This can be seen by
a respective monadic reformulation of the PCP encoding from the introduction.
On the other hand, models represented by ground instances of finite sets of (lin-
ear or non-linear) atoms are also restricted in expressivity, because they cannot
express any recursive structure. For example, MSLH clause sets and extensions
thereof have been successfully used for the analysis of security protocols [4,29]
where (counter-) models cannot be expressed by ground instances of finite sets
of atoms. In summary, and not surprisingly, there is currently no unique superior
model representation formalism.

If models are eventually constructed through the reversal of an approxima-
tion, the used representation may have the finite model property and can still
show satisfiability of clause sets with inherently infinite models. We obtained
this result via reflexive relation splitting. This insight is already a consequence
of [18]. There, an approximation into a theory of tuple tree automata is described
and it is even complete with respect to models generated out of these automata.
We can currently not provide such a completeness result although this would
be highly desirable. On the other hand, our techniques are embedded into a
refutationally complete procedure, whereas the approach in [18] can only show
satisfiability.
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Abstract. We present a prototype of a neurally-guided automatic theo-
rem prover for first-order logic with equality. The prototype uses a neural
network trained on previous proof search attempts to evaluate subgoals
based directly on their structure, and hence bias proof search toward
success. An existing first-order theorem prover is employed to dispatch
easy subgoals and prune branches which cannot be solved. Exploration
of the search space is asynchronous with respect to both the evaluation
network and the existing prover, allowing for efficient batched neural net-
work execution and for natural parallelism within the prover. Evaluation
on the MPTP dataset shows that the prover can improve with learning.

Keywords: ATP · Graph Convolutional Network · Tableaux · MCTS

1 Introduction

Recent advances in neural network systems allow for processing graph-structured
data in a neural context. Graphs are a natural representation for logical formu-
lae as found in automatic theorem provers (ATPs), suggesting a new breed of
neural ATP in which proof search is guided by a neural black-box acting as
“mathematician’s intuition”. However, in practice there are several implementa-
tion issues [31] which must be avoided in order for neural systems to integrate
with efficient traditional ATPs:

1. Proof state in such systems may be of impractical size, such as in saturation-
based provers, leading to training data which is impractical to learn from and
slow to evaluate. In a saturation context, the size of the current proof state
may be many times the size of the eventual proof: while neural networks are
in principle capable of processing large amounts of data, throughput suffers
and scalability is a concern.

2. Data structures employed may be very opaque or “unnatural”, containing
artifice designed for efficiency rather than natural comprehension by a neural
network.

3. Systems may be very sensitive to latency, which can result in the introduc-
tion of neural guidance systems crippling prover throughput and hence per-
formance.
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Attempting to solve these issues with a novel prover architecture, and exploring
several options to improve overall efficiency, the prototype system Lerna1 takes
an alternative step toward useful neural automatic theorem provers.

2 Background

We assume basic familiarity with first-order logic, theorem proving, and neural
networks [13].

2.1 Logic and Theorem Proving

First-Order Logic. Lerna works with formulas in standard first-order logic with
equality. Terms t and formulas φ are recursively defined as follows

t = x | f (t1, . . . , tn) | c

φ = � | ⊥ | t1 = t2 | p (t1, . . . , tn) | φ1 ⇒ φ2 | φ1 ≡ φ2 | ¬φ |
φ1 ∧ . . . ∧ φn | φ1 ∨ . . . ∨ φn | ∀x.φ | ∃x.φ

where x is a variable, f is a n-ary function symbol, c is a constant, and p is a
n-ary predicate symbol. Their meaning is defined as usual.

Automatic Theorem Provers. An automated theorem prover (ATP) is a sys-
tem able to automatically establish whether a formula (in first-order logic) is
satisfiable or unsatisfiable; although, given the undecidability of this problem,
ATPs may also return unknown. Both saturation-based provers (e.g. E [37],
iProver [21], Vampire [33]) and SMT solvers (e.g. CVC4 [6] and Z3 [4]) utilise
efficient proof calculi combined with highly-configurable search routines in order
to explore a large search space efficiently.

2.2 Machine Learning and Theorem Proving

Despite the efficiency of modern ATP systems, they can still spend time exploring
areas that a human mathematician would discard, and tuning such systems is,
in general, extremely difficult [32]. This has led to the application of machine-
learning techniques, with the eventual aim of an “intelligent” theorem prover
able to learn from past experience to develop an intuition, discard uninteresting
search space, and tune performance in a more principled way.

Previous work has focussed on premise selection [14,23,43,45], static strategy
selection [3,24,25], dynamic (run-time) strategy selection [30] and more recently,
direct proof guidance [15–17,26,44]. Proof guidance typically involves a form of

1 Learning to Reason with Neural Architectures. Lerna is also the lair of the
mythical many-headed beast Hydra. Source code available at https://github.com/
MichaelRawson/lerna.

https://github.com/MichaelRawson/lerna
https://github.com/MichaelRawson/lerna
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machine-learned heuristic which biases proof search in some way, allowing the
prover to avoid parts of the search space deemed uninteresting by the heuristic.

Work on integrating machine-learned heuristics into automatic theorem
provers has relied on hand-engineered features [16,17,44] or other embedding
methods [15,20], which have the advantage of simplicity and relative efficiency,
but do not fully encode the syntactic structure of proof state and therefore lose
information. By contrast, a neural method which takes into account all informa-
tion (as utilised in this work) should allow for greater precision in proof guidance
systems. Deep Network Guided Proof Search (DNGPS) [26] is an example of pre-
vious work in this area, which integrated a deep neural guidance system into the
saturation-based prover E [37]. DNGPS achieved successful results, but suffered
from the latency introduced into the system by the neural heuristic: despite
processing only a reduced amount of the available proof state, the reduction in
throughput necessitated a two-phase approach in which the prover was neurally-
guided in the first phase, before falling back to traditional proof search in the
second.

rlCoP. The rlCoP system [17] is a connection-based reinforcement-learning
prover which is not presently neurally-guided, but takes a similar approach to
that taken in this paper and achieves impressive results.

Neural Networks for Formulae. Neural networks are well-known tools for super-
vised learning [13], and combined with trainable convolution/pooling operators
are suitable for processing large-scale data such as images [22].

Processing structured data such as logical formulae is a relatively new domain
for neural networks. Some work attempts to use unstructured representations of
such formulae, such as text, or build entirely-new models for a specific logic [7],
whereas others attempt to re-use neural techniques for generic structures such
as trees [2]. A promising direction in this area is recent research on neural meth-
ods working with graphs [5,19,36], which have already been applied to premise
selection [45]. Graph neural networks tend to include network layers inspired
by convolution operators in image-processing networks, combining information
from neighbouring nodes (pixels) [19].

The MPTP Problem Set. For training and evaluation purposes a set of
valid propositions exported from the Mizar Mathematical Library [12] by the
MPTP [42] system are used. Urban et al. [17] took a subset2 of the large M40k
problem set (containing 32,524 problems) and called it M2k (containing 2004
problems).

3 Design

In order to achieve the goal of a neural theorem prover without the disadvantages
associated with neural approaches, a new design of theorem prover is required.
2 https://github.com/JUrban/deepmath/blob/master/M2k list.

https://github.com/JUrban/deepmath/blob/master/M2k_list
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Popular calculi used in existing ATPs tend to be unfriendly to neural guidance.
For such a system, we desire the following from the calculus:

1. Proof state must be reasonably-sized. Attempting to evaluate large proof states
structurally requires a lot of computation and resources. Saturation-based
provers can have very large proof states, for example.

2. Evaluation of states must be possible in parallel. Machine-learning algorithms
operate more efficiently in batches. Tree-based approaches (tableau etc.) lend
themselves to this, whereas saturation provers are inherently sequential.

3. Subgoals must be independent and self-contained. If the prover has a notion
of (sub-)goals which must be dispatched (such as in tableau provers), these
should be independent of the rest of the search space, without e.g. unifiers.
Otherwise, the learning system is trying to learn while blind to the context
of the search.

4. Subgoals must be intelligible. Adding “noise” such as clausification obscures
the original intuition behind a goal, at least for human observers. While this
is not necessarily the case for machine-learning algorithms, it seems likely
that removing structure and adding artefacts will reduce model performance.

We therefore implement a refutation prover based on a first-order tableaux cal-
culus without unification, on non-clausal formulae. Each goal in this case is the
set of formulae present on the tableau branch. In this context, proof state is
small (only the current branch), evaluation of states is possible in parallel, each
branch is independent and contains all information required, and all available
structure from the original problem is kept.

3.1 Search

In the calculus (see Sect. 4) for this prover, there are two branching factors:
each goal has a set of possible inferences, and each inference contains a set of
possible sub-goals. To prove a goal, at least one inference must be proved. To
prove an inference, all the inferences’ sub-goals must be proved (e.g. shown to be
unsatisfiable). A simple optimisation is that sub-goals may be shared between
inferences, so search becomes a directed acyclic graph, alternating between goals
and inferences (illustrated in Fig. 1).

Fig. 1. Search in the Lerna system,
showing shared sub-goals.

Now the search graph can be explored:
in each step, a leaf (goal) node is selected
for expansion, and all resulting inferences
and sub-goals are added to the graph. If
a goal has no possible inferences, it is
satisfiable and can be removed from the
search space. On the other hand, if a goal
is trivial (i.e. contains a contradiction),
it is unsatisfiable and can be marked as
proven. This idea is lifted to inferences: if
an inference contains any satisfiable sub-
goal, it too is satisfiable, whereas if an
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Fig. 2. Illustrating information-flow in the system.

inference contains all unsatisfiable goals, it is unsatisfiable. Proof search contin-
ues until the timeout is reached or the root goal is shown to be (un-)satisfiable.
In order to dispatch trivial sub-goals quickly, an existing fast oracle ATP is used
(see Sect. 5). This may mark goals as (un-)satisfiable, at which point no further
exploration is required.

Search is biased by heuristic evaluation. The neural heuristic function (see
Sect. 6) evaluates each goal and assigns a score corresponding to whether the
network believes that the goal is satisfiable or unsatisfiable. In order to balance
exploitation of promising directions and exploration of all parts of the search
space, a principled UCT-based search algorithm is used, as in MonteCoP [8]. At
each sub-goal g, the prover chooses the inference i with subgoals s according to

max
i∈g

⎡
⎢⎢⎢⎢⎣

min
s∈i

(score(s))
︸ ︷︷ ︸

exploitation

+ c ×
√

ln visits (g)
visits (i)︸ ︷︷ ︸

exploration

⎤
⎥⎥⎥⎥⎦

where score gives the heuristic score, visits gives the total number of visits to
that node so far, and c is the exploration parameter (theoretically

√
2). The sub-

goal with the minimal score is then selected: this prioritises subgoals considered
possibly satisfiable by the heuristic, as satisfiable subgoals allow large parts of
the search space to be pruned.

3.2 Architecture and Prototype Implementation

The system aims to consume all available CPU and GPU resources as efficiently
as possible. To that end, proof search is asynchronous: the search algorithm
generates new sub-goals, which are placed on two separate queues: one for the
oracle ATP, another for heuristic evaluation. Proof search then continues else-
where, while the oracle ATP is called in parallel on each sub-goal (consuming
all available CPU) while the heuristic consumes batches of subgoals, efficiently
utilising the available computational resource. As information flows backwards
from these processes, the search process updates its information about a given
sub-goal and propagates that information upwards to the sub-goal’s parent infer-
ences, to influence future proof search: see Fig. 2.

The prototype implementation (minus the heuristic) is currently just under
3,000 lines of Rust, not including the TPTP format parser or the implementation
of perfect sharing. Python 3 was used for the heuristic due to the large number of
libraries available for neural network implementation in Python. The heuristic
is implemented as a server, communicating with the main prover via a TCP
socket. In principle this allows for the heuristic to be a shared resource with a
centralised heuristic server, or a load-balanced cluster.
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contradiction

φ, ¬φ, Γ

equal
t = s, φ [t/s] , Γ

t = s, φ, Γ

implies
¬φ, ψ, Γ

φ ⇒ ψ, Γ

equivalent
¬φ, ¬ψ, Γ φ, ψ, Γ

φ ≡ ψ, Γ

conjunction
φ1, φ2, . . . , φn, Γ

φ1 ∧ φ2 ∧ . . . ∧ φn, Γ

disjunction
φ1, Γ φ2, Γ . . . φn, Γ

φ1 ∨ φ2 ∨ . . . ∨ φn, Γ

instantiation
∀x1, x2, . . . xn.φ[f(x1, x2, . . . xn)/x], ∀x.φ, Γ

∀x.φ, Γ

non-empty
φ[k/x], Γ
∀x.φ, Γ

exists
φ[k/x], Γ
∃x.φ, Γ

Fig. 3. A complete inference system for Lerna. Rules for negation are as usual and not
shown here for brevity. In rule instantiation, f is a function symbol of arity n in the
conclusion’s signature and x1 . . . xn are fresh for the conclusion. In rules non-empty
and exists, k is fresh for the conclusion. φ[t/s] is a capture-avoiding substitution
replacing t for s in φ.

4 Calculus

The proof calculus used in the above architecture may be extremely general: in
fact, any function from goals to a finite set of possible inferences (themselves
finite sets of sub-goals) will suffice, as long as each goal remains independent of
any other such that the heuristic function can process all available information.
If the inference system is complete, there are no additional constraints such as
orderings or fairness to ensure the completeness of the prover, as the balanced
search algorithm (see Sect. 3) will ensure this.

Lerna presently implements a refutation tableaux calculus [35] without uni-
fication. The calculus described is deliberately näıve in order to easily satisfy the
design constraints given above, but may be replaced by a stronger calculus in
the future. A näıve calculus is not necessarily a problem as the heuristic should
select promising areas to explore and ignore uninteresting sub-goals. However, a
more efficient calculus would improve performance where the heuristic fails.

Refutation Tableaux. In order to show a conjecture C from a set of axioms Ai,
it suffices to negate C and then show that the resulting conjunction A1 ∧ A2 ∧
. . . ∧ ¬C is unsatisfiable. A set of inference rules of the form

Γ1 Γ2 . . . Γn

Δ

where Γi,Δ are sets of formulae and ¬ (Γ1 ∧ Γ2 ∧ . . . Γn) ⇒ ¬Δ is an uncon-
ditional tautology, form a refutation calculus. Proofs in this calculus can be
expressed by closed trees of inference rules.
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double-neg
φ, Γ

¬¬φ, Γ

conj-assoc
φ ∧ ψ ∧ π, Γ

φ ∧ (ψ ∧ π)

disj-prop
φ, Γ

φ ∨ ⊥, Γ

refl
	, Γ

t = t, Γ

free
φ, Γ

∀x.φ, Γ

Fig. 4. Some simplification rules implemented in Lerna. In rule free, x is free in φ.
Several other rules are implemented.

Complete Inferences. The inference rules in Fig. 3 form a complete inference
system, by analogy with a first-order tableaux calculus without unification. A
difference and point of interest is the rule for instantiating universal quantifiers:
instead of instantiating a variable with any possible term t—an infinite space—
it is instantiated with one function symbol (or constant) at a time, quantifying
over new variables as needed. This allows for instantiating any term over multi-
ple inference rules (effectively enumerating the Herbrand universe for the goal),
but without an infinite number of possible inferences at any point. Equality is
handled by a rule rewriting classes of equal ground terms. Both of these rules
are complete yet inefficient, but both are likely to be used only a few times in
order to provide enough of a “hint” to the oracle system for it to find a proof.

Weakening. A weakening rule is an important part of Lerna’s calculus, since the
instantiation and equal rule can produce a large number of formulae, some of
which must be removed to help the oracle to prove the goal. Each application of
the rule removes some amount of information from the goal in order to simplify
it—this is sound and corresponds to removing an axiom from proof search. The
rule is merely

weaken
Γ

φ, Γ

Simplifications. Before each inferred goal is added to proof search, it is simplified,
removing tedious inferences such as double-negation elimination and generally
reducing the search space. Figure 4 gives example simplification rules.

5 Oracle

One problem with the calculus as described is that proofs can be quite lengthy,
even if the goal is relatively trivial. To rectify the situation, new goals generated
by ongoing proof search are enqueued for attempted proof by an existing oracle
ATP system, as described in Sect. 3. In our prototype implementation we use
the mature Z3 SMT solver [4], which supports quantified first-order logic via a
combination of decision procedures for decidable fragments (such as the Bernays-
Schönfinkel class of formulae), and heuristic quantifier instantiation routines [11].
Z3 is attractive for this application due to its low startup times and its ability
to produce both satisfiable and unsatisfiable results.
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Lerna uses Z3 as an external system (it could be replaced by an alternative
ATP), running it with its Model-Based Quantifier Instantiation heuristic for
20 ms. This was chosen as the shortest time in which the oracle can dispatch a
reasonable amount of trivial goals (and in fact Z3 is so strong it dispatches some
goals immediately: see Sect. 7). Longer oracle runtimes might produce better
performance in future, but for this work longer runtimes begin to conflate the
performance of the oracle and the performance of the system as a whole. This
application is unusual for ATP systems—very short runtimes, and a mix of true
and false problem statements.

Acting as a Preprocessor. Lerna might also be seen as an intelligent preproces-
sor for existing ATPs in this setting: existing theorem provers are known to be
sensitive to small changes in their input [40], and generally make little attempt
to split their input into smaller sub-goals, for parallelism [41] or otherwise. The
system can therefore act as an adapter for any existing ATP, adding parallelism
opportunities and “smoothing out” sensitivity to input syntax.

6 Learned Heuristic

A suitable heuristic function for the system must predict a value between 0 and
1 for a given formula F , where 0 represents a satisfiable goal and 1 represents
unsatisfiability, based on a set of tagged formulae seen in previous proof search.
Although the data is collected by running the system itself and might be consid-
ered reinforcement learning, for this approach data collection and learning were
considered separately and hence forms a classic supervised-learning problem.

6.1 Data Collection

A large dataset of satisfiable and unsatisfiable goals were collected by running
the unguided prover on the M40k dataset for 10 s. As soon as the prover deter-
mines the satisfiability of any sub-goal, the formula it represents and its status is
recorded. This resulted in 18,340 unsatisfiable examples and 1,845,267 satisfiable
examples, occupying 6 GB of disk space. The dataset is very imbalanced (due to a
combination of weakening rules producing a large number of trivially-satisfiable
examples, and to immediate prover termination after the goal is shown to be
unsatisfiable), at a ratio of around 100:1.

6.2 Translation to Graphs

Wang et al. [45] give a translation from higher-order formulae to directed graphs,
and a similar scheme is used here. Constants, function symbols, predicate sym-
bols, and bound variables are given their own node. Applications of functions
and predicates to arguments are represented as an “application node” with two
children: the symbol node and an “argument list” node representing the list
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Fig. 5. The translation process for ∀x. [p (f(c), x) ∧ ¬ (f(c) = d)] to a graph, as seen
by the neural network.

of arguments. Propositional connectives and equality have the obvious repre-
sentation, while quantifiers have two children: the variable they bind and their
sub-formula.

To produce an input graph from a formula F , the formula is first parsed
into an abstract syntax tree. Common sub-trees up to α-equivalence [1] are
merged, then the resulting directed acyclic graph has any named-symbol nodes
replaced with an opaque, nameless label such as “predicate” or “variable”—since
distinct symbols remain as distinct nodes under this scheme, no information is
lost other than the natural-language semantics of the symbol name. In practice,
undirected graphs improved model performance so the graph is made undirected
before encoding node labels as one-hot inputs to produce the final input graphs.
An example formula’s translation is shown in Fig. 5.

6.3 Augmentation

One possible solution [39] to the problem of classification on imbalanced domains
is to synthesise new data for under-represented classes—in this case unsatisfi-
able formulae—from existing data by augmenting it. An example is augmenting
image data by cropping, flipping or adding noise to existing images. There are
many possible ways to augment formulae graphs. For this prototype, a simple
approach is taken in which a small number of nonsense formulae are added to
the graph by randomly adding nodes/edges where appropriate. This approach
has the advantage of exposing the network to “noise” such as additional axioms
which might well occur in practice, but if the network is adequately capable of
filtering these then no new formulae are actually seen.
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6.4 Neural Architecture

In a typical convolutional network architecture for images [22], there are a series
of filtering stages, followed by a densely-connected neural network. Each filter-
ing stage intuitively combines data from local features (via convolution), then
reduces the dimensions of the image (via pooling) for the next stage. Graph
neural networks have analogous convolution [19] (combining information from
neighbouring nodes) and pooling [10] (merging nodes to reduce the size of the
input graph) operators. A brief period of experimentation with these operators
yielded the following network architecture, shown in Fig. 6.

1. Input. A graph G consisting of one-hot encoded nodes N and edges E.
2. Embedding. Each node is mapped to an embedding vector of size 64 via a

trained dense embedding.
3. Initial Convolution. 4 convolution layers are applied to the graph with rectified

linear activations. This yields a graph of the same size, but with information
exchanged between nodes.

4. Convolution/Pooling. Similar convolution layers are then passed through top-
k [10] layers, retaining k = 60% of the graph’s nodes. This is repeated 3 times,
reducing the size of the graph considerably.

5. Convolution/Max-Pooling. A final convolution layer feeds into a max-pooling
layer, combining all remaining node data into one datum, and dropping the
edge data.

6. Fully Connected. A fully-connected hidden layer with rectified linear activa-
tion halves the input size.

7. Fully Connected/Softmax. A fully-connected final layer outputs two class
labels, with softmax activation.

It is not claimed that this is the optimal configuration, and no grid search has
yet taken place to optimise the network architecture or hyper-parameters. To
reduce over-fitting, dropout [38] is applied in convolutional and fully-connected
layers, p = 0.1.

6.5 Implementation and Training

This architecture was implemented with the PyTorch [29] neural network library,
combined with a graph-processing (“geometric”) extension library, PyTorch Geo-
metric [9], which together provide facilities for automatic differentiation, GPU-
accelerated training, pre-programmed layers for graph processing, and various
utilities. The dataset is split into a large training set and a smaller test set (200
balanced examples), since unsatisfiable examples were time-consuming to obtain
in this setting. The unsatisfiable training data were then augmented as described
in Sect. 6.3 to produce a balanced total training set of 3.5 million examples.
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Fig. 6. The neural network architecture. Initially there are N nodes, then after pooling
there are P1, P2, P3 nodes. Node-level embedding layers are shown per-node, graph-level
convolutional and pooling layers are shown per-graph.

(a) Output of embedding
layer.

(b) Output after initial
convolutions.

(c) After first pooling.

(d) After second pooling. (e) After max-pooling.

Fig. 7. Computation in the neural network, showing intermediate values involved in
the network (correctly) predicting the satisfiability of an input formula.

The network was trained on commodity desktop hardware with a mid-range
GPU3 for 8 epochs/24 h, optimising a negative log-likelihood loss function.

3 NVIDIA® GeForce® GT 730.
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Table 1. Accuracy metrics for the neural heuristic.

Metric Score Metric Score

Accuracy 93.0% True Positive 99

Precision 0.990 True Negative 87

Recall 0.884 False Positive 13

F1 0.934 False Negative 1

Table 2. Total successful proof attempts on the M2k dataset.

Configuration Proofs

Z3 (10 s, as baseline) 1216

Z3 (20 ms, as oracle) 711

Lerna, unguided (10 s, with oracle) 969

Lerna, guided (10 s, with oracle) 1023

6.6 Network Evaluation

The network was evaluated on the balanced test set of 200 examples, as
described. Various metrics for accuracy are shown in Table 1. While these results
are very promising, it should be emphasised that it is unclear how effective
a train/test split is in this setting (since similar subgoals may occur in both
sets, even with proper data hygiene), and that this network is not attempting
to determine the satisfiability of arbitrary formulae, merely those that occur
in proof attempts on the M40k dataset. The higher precision and lower recall
values are likely an artefact of the augmentation process. However, even with
these caveats, the network performance is surprising and is practically useful for
improving proof search in this dataset.

7 Experimental Results

To show that neural guidance can improve the performance of Lerna the system
was run with and without guidance for 10 s on all available CPU cores. All results
were collected on commodity desktop hardware4.

Table 2 shows the total number of theorems proved using various configura-
tions of Z3 and Lerna on the M2k dataset. Z3 ran for a full 10 s to establish
baseline performance, then as an oracle for 20 ms to determine the number of
“trivial” problems. Lerna ran on an identical dataset, first without guidance
from the neural heuristic, then with guidance. With neural guidance Lerna was
able to solve an additional 54 problems and overall Lerna was shown to be
complementary to Z3, proving 114 problems that Z3 was unable to solve on its
own, and 40 that neither unguided Lerna nor Z3 could solve. Conversely, Z3
4 Intel® Core™ i7-6700 CPU @ 3.40 GHz, 16GB RAM.
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was able to solve more problems in total, which is unsurprising given the matu-
rity of the tool. These results show that Lerna is able to learn from experience
and complement an existing ATP.

8 Future Work

Given the prototype nature of this work, we have included a detailed discussion
on future directions. As Lerna is a very new system, there is likely much to
be gained by simple engineering and tuning: for example, the UCT exploration
parameter c has been left at its theoretical optimum value

√
2, but it is likely that

a higher value will account for neural network inaccuracies and hence improve
performance. Training on, benchmarking with, and optimising for other datasets
(such TPTP or SMT-LIB) is also left as future work.

Proof Search. Lerna is well-suited for long-term proof search attempts in math-
ematics, such as those employed in the AIM project [18]: search is stable over
time and does not produce a combinatorial explosion in the same way that some
traditional systems tend to after a short period. Additionally, the amount of
information (“confidence”) in the system grows over time, as a result of a grow-
ing number of oracle invocations and neural network evaluations. Proof search
can in principle be manually inspected more easily than in saturation-based
provers to examine promising subgoals and remove known falsehoods from the
search space. The authors hope to explore applying the system to this interesting
domain.

Another future direction for proof search is a principled incomplete mode
where branches deemed sufficiently uninteresting by the heuristic are pruned,
perhaps in response to resource constraints as in limited resource strategies [34].
This approach, while clearly incomplete, would significantly accelerate proof
search in the direction of more promising search within the available resources.

Prover Calculus. The calculus currently employed is deliberately näıve and
extensions should be explored. In particular, the simplification routines can be
improved to remove more trivial sub-formulae as, while in general the oracles’
preprocessing will remove these, they serve as noise for the neural network and
might also increase the number of inference steps required to reach a proof. As
one possible view of this approach is as an intelligent preprocessor for an existing
ATP, more aggressive and/or weakening inferences might be included in the cal-
culus. For instance, prenexing (or conversely miniscoping) formulae can have a
significant effect on proof search for some theorem provers, so including suitable
quantifier-manipulation rules might prove to be a useful extension.

Ideas from other refutation-tableaux calculi could well be suitable for this
system. The authors are attempting to integrate an adapted connection rule
from the non-clausal connection calculus [27], as used in nanoCoP [28], in order
to reduce the number of proof steps required to instantiate universal quantifiers.
Finally, this prover architecture can support other logics without excessive mod-
ification. Given that Z3 is already capable of supporting many theories, such as



A Neurally-Guided, Parallel Theorem Prover 53

arithmetic or datatypes, a many-sorted first order logic such as those described
by SMTLIB or the TFF0 dialect of TPTP seems appropriate.

Oracle. While Z3 is a strong theorem prover in its own right and performs well
here, it remains to be seen if it is the best for this application. Other ATPs
(or counter-example-finding systems) should be explored. A portfolio of sev-
eral oracle systems working in tandem might also be considered, although of
course this will eventually retard proof search linearly in the number of systems
present. Reducing the number of oracle invocations is another area for optimisa-
tion. Currently, the system calls an oracle for every new sub-goal generated. It
seems unlikely that the sub-goal is materially easier to dispatch than its parent
(especially in the case of propositional inferences that do not split the goal), so
heuristically or probabilistically removing such subgoals from the oracle’s queue
is a possible area for improvement. Lerna does not currently use any infor-
mation from the oracle beyond its status: using auxiliary information such as
satisfying models or unused formulae could well aid proof search.

Machine-Learned Heuristic. Many other graph-based neural architectures are
possible. PyTorch Geometric alone currently includes nearly 40 other graph-
specific neural layers pre-programmed from the literature5. Neural models specif-
ically for theorem proving are relatively under-studied. To combat this, data
used for this paper will be published in the near future so that the machine-
learning community can improve upon our simple models. Different approaches
to formula-to-graph translation, symbol embeddings, data augmentation, and
model integration may also be explored.

9 Conclusions

The introduced prototype Lerna system successfully implements a theorem
prover with a neural heuristic processing the entire proof state, structured as
a graph. After training on data automatically generated by the prover system,
the neural network approach is shown to be practically useful for improving
proof search performance. A number of approaches (batching, oracle invoca-
tions, parallelism) are employed to improve system efficiency. While the proto-
type is not yet a successful state-of-the-art ATP, it has some unique desirable
properties, among them simplicity, parallelism, parametricity with respect to cal-
culus/oracle/heuristic, and introspection of proof state. The general approach is
flexible and presently unexplored.

Acknowledgements. The authors wish to thank Josef Urban and his group in
ČVUT, Prague for their help and encouragement with early iterations of this work,
and for supplying the Mizar dataset used in this paper.

5 https://rusty1s.github.io/pytorch geometric/build/html/modules/nn.html.

https://rusty1s.github.io/pytorch_geometric/build/html/modules/nn.html
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Abstract. Automated decision making often requires solving difficult
and primarily NP-hard problems. In many AI applications (e.g., plan-
ning, robotics, recommender systems, etc.), users can assist decision mak-
ing by specifying their preferences over some domain of interest. To take
preferences into account, we take a model-theoretic approach to compu-
tationally hard problems with preferences. Computational problems are
characterized as Model Expansion, that is, the logical task of expanding
an input structure to satisfy a set of specifications. The uniformity of the
model-theoretic approach allows us to combine computational problems
with preferences regardless of the syntax of their specifications. We intro-
duce a formalism to represent preferences of users associated with com-
putationally hard problems. We introduce Prioritized Model Expansion,
which is Model Expansion based on preferences. We investigate prop-
erties of Prioritized Model Expansion and conduct a thorough study of
the impact of introducing preferences on the computational complexity
of ΣP

k -complete Model Expansion problems. We also discuss how Prior-
itized Model Expansion is related to other preference-based declarative
approaches, such as SAT with preferences and preference-based Logic
Programming.

Keywords: Preference · Model Expansion · Computational problems

1 Introduction

Solving computationally hard problems (e.g., NP-hard) is in the core of many
AI tasks. Due to the significant progress in the performance of modern solvers,
finding solutions to such problems (e.g., planning, travelling salesman, graph
colouring, etc.) has become feasible in many applications. We view such hard
problems as Model Expansion [25], which is the logical task of expanding a struc-
ture (a problem instance) to a solution structure that satisfies a formula (the
problem specification) that is written in a certain language. The main declarative
approaches in AI, including Satisfiability problems (SAT), Constraint Satisfac-
tion Problems (CSP), and Answer Set Programming (ASP), can be encoded as

c© Springer Nature Switzerland AG 2019
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Model Expansion [25]. By distinguishing between problem instances and prob-
lem specifications, Model Expansion provides a robust modelling framework and
establishes a connection to Descriptive Complexity [23].

It is common that a decision maker prioritizes the solutions. Since preferences
play a key role in AI, a large number of frameworks for handling preferences
have been proposed during the last two decades, e.g., [1,5,12,15,29]. As it was
discussed in [19], these proposals are often language-dependent because they are
added to a host formal language such as ASP [10,12,18] or default logic [11,17].

In real-world applications, search and decision problems often consist of a
number of sub-problems that interact with each other. For example, suppose a
vacation planner includes a component that generates a vacation package based
on the constraints of a travel agency by solving answer set programs and a com-
ponent that solves integer linear programs to find the best plan based on the
needs and priorities of a traveler. The modular nature of many AI tasks neces-
sitates the integrating of preference-based problems regardless of the language
of their specifications. We tackle this issue by proposing a preference framework
for Model Expansion. Given that Model Expansion underlies all predominant
declarative frameworks such as ASP, SAT, and CSP, we show how our language-
independent preference-based framework corresponds to these approaches with
preferences, such as Answer Set Optimization [12], Logic Programming with
Preferences [26], CSP with CP-nets [6], etc. The main motivation for our work
is to connect model theory, descriptive complexity, and preference modelling
to study computationally hard problems with preferences. To the best of our
knowledge, this is the first proposal of this kind in the literature. We propose
that preferences are expressed as an ordering relation on ground atoms. The rela-
tion among atoms is lifted to a preference ordering relation among structures
using a number of different preference semantics (lifting methods). We define
the Dominant Structure problem, which is the problem of deciding whether a
structure is preferred to another structure. We prove that solving the Dominant
Structure problem is polynomial in the size of the domain of structures. Our
framework allows other methods of lifting as long as the Dominant Structure
problem is polynomial, which makes the following complexity results applicable.

A model-theoretic view on modular systems with preferences was presented
in [21]. The authors showed the connection of their proposal to other formalisms
such as CP-nets [5]. They used Codd’s relational algebra [16] to combine modules
with preferences. The combination was static – the authors did not focus on
Model Expansion.

Our main contributions are as follows: First, we introduce the notion of Pri-
oritized Model Expansion, a declarative framework for specifying computational
problems with preferences. Prioritized Model Expansion extends Model Expan-
sion by modelling preferences of a decision maker. Second, we show that adding
preferences even in the simplest formulations leads to a rise of the computa-
tional complexity of ΣP

k -complete Model Expansion problems to ΣP
k+1-complete

Model Expansion problems. Third, we study the relations of some preference-
based frameworks with Prioritized Model Expansion. We apply the computa-
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tional complexity result to some associated reasoning tasks to obtain similar
results for those frameworks.

2 Background

A τ -structure A = (A,RA
1 , ..., RA

n , CA
1 , ..., CA

m) is a tuple where τ is a vocabulary,
which is a set of non-logical relation symbols Ri with associated arity ki where
i ∈ [1, n] and constant symbols Cj where j ∈ [1,m] and A is a domain. For
any Ri ∈ τ , RA

i is called the interpretation of Ri and RA
i ⊆ Aki . Also, for every

Cj ∈ τ , CA
j ∈ Dom. A structure is called finite if its domain is finite. Throughout

this paper, we assume that all structures are finite. For a formula ψ in a logic L,
vocab(ψ) denotes the set of vocabulary symbols appearing in ψ. The definition
of expansion is standard in logic literature and is defined inductively as follows:
Let A be a σ-structure and B be a τ -structure where σ ⊆ τ . B expands A if
the domain of B is the same as the domain of A and for all R ∈ σ, RA = RB.
Model Expansion (MX) is the task of expanding a structure to satisfy a formula
in logic L [25]. The Model Expansion problem is defined as follows:

Definition 1 (Model Expansion Problem MXσ,ψ).
Given: an arbitrary σ-structure I over a finite domain Dom, formula ψ in a
logic L where vocabulary σ ⊆ vocab(ψ),
Find a τ -structure A where A |= ψ and expands I. (The decision version: is
there a τ -structure A such that A |= ψ and A expands I?)

We call A an expansion structure of MXσ,ψ. Each expansion structure A is a τ -
structure with domain Dom. In this paper, we are interested in data complexity
(ψ is fixed and the domain of input is variable). For logic L, the data complex-
ity of Model Expansion (MX) is always in-between model checking (MC) and
satisfiability (SAT). For example, for first-order logic, MC is AC0, MX is in NP,
and SAT is undecidable. Graph colouring can be characterized as a first-order
Model Expansion problem ( i.e, the problem specification is in first-order logic)
as follows:

Example 1. Let E be a binary relation. Let unary relation symbols R,G, and
B denote red, green, and blue, respectively. The following formula specifies three-
colouring:

ψ = ∀x [(R(x) ∨ B(x) ∨ G(x))
∧¬((R(x) ∧ B(x)) ∨ (R(x) ∧ G(x)) ∨ (B(x) ∧ G(x)))]

∧ ∀x∀y [E(x, y) ⊃ (¬(R(x) ∧ R(y))
∧¬(B(x) ∧ B(y)) ∧ ¬(G(x) ∧ G(y)))].

A graph G = (V,E) is an instance structure with vocabulary σ = {E} and
domain V , which is the set of vertices. Model Expansion problem MX{E},ψ

finds expansion structure A (i.e., three-colouring of G) that interprets symbols
R,B, and G satisfying ψ as follows:

G
︷ ︸︸ ︷

(V ; EG , RA, BA, GA)
︸ ︷︷ ︸

A

|= ψ.
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Computational Complexity, a Review: Let X be a complexity class.

Notation 1. PX is the class of languages (complexity class) that can be com-
puted in polynomial time by a deterministic Turing machine with an oracle in
X. Also, NPX is the class of languages that can be computed in polynomial time
by a nondeterministic Turing machine using an oracle in X.

Notation 2. co-X is the complexity class of decision problems whose comple-
ments are in X.

The Polynomial Hierarchy (PH) is defined as ΣP
0 = ΠP

0 = ΔP
0 = P , ΣP

k+1 =

NPΣP
k , ΔP

k+1 = PΔP
k , and ΠP

k+1 = coNPΣP
k for k > 0.

3 Model Expansion with Preferences

In this section, we introduce the notion of Prioritized Model Expansion (PMX).
We study the computational complexity of solving problems related to the PMX
including Dominant Structure (i.e., given two structures, whether one is pre-
ferred to another), Optimal Expansion (i.e., given a structure, whether it is an
optimal expansion of a Model Expansion problem), and Goal-Oriented Opti-
mal Expansion (i.e., deciding whether there is an optimal expansion satisfying
a certain goal).

3.1 Preference Expression

Let Dom be a domain of elements. Consider first-order variables X = {x1, ..., xr}
over Dom, vocabulary τ , and k-ary R ∈ τ . Let ν : X → Dom be an assignment
function that assigns a domain element to each variable. For an ordered set of
variables x = (x1, ..., xk), we call a = (a1, ..., ak) a k-ary tuple when there is an
assignment ν such that for 1 ≤ i ≤ k, ν(xi) = ai. We use the symbol a[xi] to
denote value ai. For k-ary predicate symbol R ∈ τ , we call R(a) a ground atom
of τ over Dom. We say a structure A satisfies a ground atom R(a) (notation
A |= R(a)) if a ∈ RA.

Definition 2 (Preference Expression). A preference expression P over
Dom is defined as a pair P = (Sτ ,�P ) where Sτ is the set of all ground atoms
of vocabulary τ over Dom and �P is a preorder on Sτ .

Let R(a) and T (b) be ground atoms where k-ary predicate R and k′-ary predicate
T are in τ , k-ary tuple a ∈ Domk, and k′-ary tuple b ∈ Domk′

. The expression
R(a) �P T (b) is read as R(a) is preferred to T (b). Also, R(a) is called strictly
preferred to T (b) with notation R(a) �P T (b) if R(a) �P T (b) is true and
T (b) �P R(a) does not hold.

We shall introduce a preference ordering ≥s
P on structures based on a prefer-

ence expression P and a preference semantics (lifting method) s. Lifting method
s specifies how ≥s

P is constructed from �P . Comparing two sets with mem-
bers that are prioritized has been widely studied in different areas, such as in
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database systems [27], or even beyond the realm of theoretical computer science,
such as in economics and decision theory [14]. Inspired by [1,9,13,27], here we
introduce three different methods to lift a preference ordering on ground atoms
to a preference ordering on structures. In each of the following methods, relation
≥s

P among τ -structures with the same domain is constructed from �P .

Definition 3 (Preference Relations on Structures).
Given a preference expression P = (Sτ ,�P ) over domain Dom, let A and B be
two τ -structures with domain Dom,

– Weak Pareto (WP). A ≥wp
P B iff for all R,S ∈ τ and for all a ∈ RA and

all b ∈ SB, R(a) �P S(b).
– Upper Bound Dominance (UBD). A ≥ubd

P B iff for all S ∈ τ and for all
b ∈ SB, for some R ∈ τ , there is a such that a ∈ RA and R(a) �P S(b).

– Element Dominance (ED). A ≥ed
P B iff for some R,S ∈ τ , there is b ∈ SB

and there is a ∈ RA such that R(a) �P S(b) and there is no c for some T ∈ τ
such that c ∈ TB and T (c) �P R(a).

The Weak Pareto semantic uses the idea of Pareto dominance [28] such that
A is preferred to B if every ground atom that is satisfied by A is at least as
preferred as any ground atom which B satisfies. In a stronger version, all ground
atoms that are satisfied by A must be at least as preferred as ground atoms
satisfied by B except one ground atom satisfied by A that is strictly preferred
to a ground atom that B satisfies. The Upper Bound Dominance approach is
a weaker version of the Weak Pareto such that if A satisfies any ground atom
that is at least as preferred as the maximal element (based on preorder �P ) of
atoms satisfied by B, then A is preferred to B. Finally, based on the Element
Dominance semantics, there is an adequate reason to drive that A is preferred
to B if there is a ground atom, say R(a), that A satisfies and is preferred to
some ground atoms satisfied by B and no ground atom satisfied by B is strictly
preferred to R(a).

These semantics (lifting methods) may illustrate similar, or in some cases,
different behavior. For example, the computational complexity of reasoning tasks
associated with preferred models using each of these semantics is the same. Also,
relation >y

P is transitive when y is the Upper Bound Dominance or the Weak
Pareto semantics. However, if y is the Element Dominance semantics, >y

P is not
necessarily transitive. For example, consider the case where the relational vocab-
ulary is τ = {R} and the domain is Dom = {1, 2, 3, 4}. Assume the preorder over
ground atoms is defined as R(1) � R(2) and R(3) � R(4). Assume A, B, and C
are τ -structures such that RA = {1}, RB = {2, 3}, and RC = {4}. One can check
that for the Element Dominance semantics, A >ed B, B >ed C, but A >ed C does
not hold. However, the transitivity is not a requirement for relation >y

P in solv-
ing Optimal Expansion and Goal-oriented Optimal Expansion problems. We note
that the lifting methods are not limited to what was proposed in Definition 3.
Other lifting methods are allowed if the Dominant structure problem remains in
polynomial time. Defining different preference semantics on the condition that
the Dominant Structure problem is in polynomial time gives us the alternatives
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to pick stronger or weaker versions of preference semantics based on a particular
application while the complexity of associated reasoning tasks does not vary.

The strict version of ≥s
P where s ∈ {wp, ubd, ed} is defined as A >s

P B if
A ≥s

P B and B ≥s
P A does not hold. Also, we say A is dominant to B based on

a preference semantics s ∈{wp, ubd, ed} whenever A >s
P B.

Definition 4 (Dominant Structure Problem).

Input: a preference expression P = (Sτ ,�P ) over Dom, τ -structures A and
B with domain Dom, and a preference semantics s ∈ {wp, ubd, ed},
Question: is A >s

P B?

The following result indicates that the problem of deciding whether a struc-
ture is dominant to another structure using one of the preference semantics
in Definition 3 is solvable in polynomial time in the size of the domain of the
structures.

Proposition 1. The Dominant Structure problem is solvable in polynomial time
in the size of Dom.

Proof. As stated by Definition 3, at most, we compare all tuples in RA and RB

for all R ∈ τ . The total possible number of k-ary tuples is |Dom|k where k is the
maximum arity of predicate symbols in τ . Therefore, O(|Dom|2k) comparisons
are required for each R ∈ τ . Thus, deciding whether A >s

P B is in O(m·|Dom|2k)
(polynomial in the size of Dom) where m is the number of elements in τ . �

We note that vocabulary τ is considered to be fixed and our discussion of
computational complexity is focused on the size of the domain of A and B in
the Dominant Structure problem.

3.2 Prioritized Model Expansion

We characterize search and decision problems with preferences as Prioritized
Model Expansion (PMX), which is the task of expanding an input structure to
the most preferred expansion structures with respect to a preference expression.

Definition 5 (Prioritized Model Expansion Problem).

Input: an arbitrary input σ-structure I, formula ψ, input vocabulary σ ⊆
vocab(ψ), a preference expression P = (Sτ ,�P ) over the domain of I, and a
preference semantics s
Find: structure A such that A is an expansion structure of MXσ,ψ and there
is no expansion structure B such that B >s

P A.

Notation 3. Πσ,ψ = (MXσ,ψ, P ) is a Prioritized Model Expansion problem
(based on a preference semantics s) where MXσ,ψ is a Model Expansion prob-
lem and P = (Sτ ,�P ) is a preference expression over the domain of the input
structure.
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Each solution of a Prioritized Model Expansion problem Πσ,ψ is called an
optimal expansion of Πσ,ψ. It is worth noting that all expansion structures retain
the domain of input structure I. Also, ψ and vocab(ψ) are assumed to be fixed.
Hereafter, unless it is mentioned otherwise, we only study the data complexity
of associated reasoning tasks. The data complexity points to the fact that the
domain of input I (and hence the size of I) varies while the vocabulary of input
(i.e., σ) and specifications (and therefore vocab(ψ) = τ) are considered to be
fixed.

Example 2. Consider the problem of graph colouring that was described as
Model Expansion in Example 1. Let G = (V,E) be the input graph where V =
{v1, v2, v3, v4, v5} and EG = {(v1, v2), (v2, v1), (v1, v3), (v1, v3), (v3, v1), (v2, v4),
(v4, v2), (v4, v5), (v5, v4), (v3, v5), (v5, v3)}. Assume that we prefer red for v1.
Also, a red v4 is favoured over a red v5 and a blue v2 is preferred to a green
v2. These preference statements can be encoded by a preference expression P
such that R(v1) �P B(v1) and R(v1) �P G(v1). Also, R(v4) �P R(v5) and
B(v2) �P G(v2). Prioritized Model Expansion problem Π{E},ψ = (MX{E},ψ, P )
where MX{E},ψ is the characterization of three-colouring for input graph G
and P is the preference expression. The input graph G has 18 possible three-
colourings. Among these solutions, A is an optimal expansion of G (based on
the Element Dominance semantics) where RA = {v1, v4}, BA = {v2, v5}, and
GA = {v3}.
In the rest of this subsection, we discuss some decision problems that are asso-
ciated with Prioritized Model Expansion.

Definition 6 (Optimal Expansion Problem).

Input: a τ -structure A and a Prioritized Model Expansion problem Πσ,ψ =
(MXσ,ψ, P ) based on a preference semantics s where MXσ,ψ is a Model Expan-
sion problem with an arbitrary input σ-structure I such that σ ⊆ τ = vocab(ψ)
and P = (Sτ �P ) is a preference expression over the domain of I,
Question: Is A an optimal expansion of Πσ,ψ ?

Proposition 2. For a Model Expansion problem MXσ,ψ, let model checking of
ψ (given a structure A, decide if A |= ψ) be in a complexity class Y . The problem
of Optimal Expansion is in co-NPY .

Proof. The complementary problem is deciding whether there is an expansion
structure B such that B >s

P A. The complementary problem can be solved by a
non-deterministic polynomial Turing machine guessing B with access to an oracle
in Y that decides whether B is an expansion of MXσ,ψ (this includes checking
if B expands I in polynomial time and whether B |= ψ in complexity Y ) and,
based on Proposition 1, in polynomial time checks whether B >s

P A. Thus, the
complementary problem is in NPY and the original problem is in co-NPY . �

To put the impact of defining preferences in perspective, consider that decid-
ing whether a given structure A is an expansion of MXσ,ψ is in complexity Y
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because it is required to first check whether A is an expansion of I that can be
decided in polynomial time and then determine whether A |= ψ in complexity Y .
On the other hand, deciding whether A is an optimal expansion is in co-NPY . In
fact, to decide whether a structure is an optimal expansion, not only must it be
verified as an expansion, but it must also be compared to all possible expansion
structures.

One of the common tasks in many AI applications is to determine if a certain
goal is achieved by solutions to a problem, e.g., in automated AI planning [2]. In
the context of Prioritized Model Expansion, we ask whether there is an optimal
expansion that satisfies a certain formula (goal). The problem is formulated as
follows:

Definition 7 (Goal-Oriented Optimal Expansion Problem).

Input: Πσ,ψ = (MXσ,ψ, P ) where MXσ,ψ is a Model Expansion problem with
an input σ-structure I with a domain Dom, τ = vocab(ψ), P = (Sτ ,�P ) is
a preference expression over the domain of I, and φ is a formula of the form
Ri(aj) ∧ ... ∧ Rl(ak) where Ri, ..., Rl ∈ τ and Ri(aj), ..., Rl(ak) are ground
atoms over Dom where every element of Dom is also a constant in vocabulary
τ that is interpreted as itself by every expansion structure of MXσ,Ψ ,
Question: Is there an optimal expansion A of Πσ,ψ such that A |= φ?

Proposition 3. Let solving Optimal Expansion problem Πσ,ψ = (MXσ,ψ, P ) be
in the complexity class X. The problem of Goal-Oriented Optimal Expansion is
in NPX .

Proof. First, we non-deterministically guess a τ -structure A and in polynomial
time check if a ∈ RA, for all ground atoms R(a) appearing in φ, that can be done
by means of a non-deterministic polynomial Turing machine. Second, we check
whether our guess is an optimal expansion that is in complexity class X by the
assumption. Thus, the problem can be solved by a non-deterministic polynomial
Turing machine using an oracle in X. Hence, the problem is in NPX . �

A generalization of the Goal-Oriented Optimal Expansion problem is to find
an optimal expansion satisfying a formula φ in a certain logic L∗. In this case, the
complexity of model checking in logic L∗ (i.e., given a structure A if A |= φ?)
is taken into account. However, for the sake of simplicity, in this chapter we
consider goal φ as a conjunction of ground atoms. Hence, deciding whether a
structure A satisfies φ can be verified in polynomial time.

Prioritized ΣP
k -Complete Model Expansion Problems. In this subsection,

we discuss the computational complexity impact of introducing preferences on
ΣP

k -complete Model Expansion problems. As was discussed in [25], any boolean
query computable in NP can be expressed as a first-order Model Expansion
MXσ,ψ where ψ is a first-order formula. Based on Fagin’s theorem [22], NP is
the class of boolean queries expressible in existential second-order logic (∃SO).
This shows that a first-order MX and existential second-order logic have the
same expressive power. Similarly, the Polynomial Hierarchy is the set of boolean
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queries expressible in second-order logic and any query computable in ΣP
k (k > 1)

can be encoded as MXσ,ψ where ψ is a formula of the form Q1, ..., Qk−1ψ
∗ such

that for 1 ≤ i ≤ k, Qis are alternating second-order quantifiers (alternation
between ∃ and ∀), Q1 = ∀, Qk−1 is ∀ if k is even and ∃ otherwise, and ψ∗ is a
first-order formula.

If the decision version of a Model Expansion problem MXσ,ψ is in ΣP
k , then

the problem has second-order specification ψ of the form Q1, ..., Qk−1ψ
∗. Thus,

the complexity of model checking of ψ is in ΠP
k−1 and, hence, based on Propo-

sition 2, solving the Optimal Expansion problem (MXσ,ψ, P ) is in ΣP
k . For ΣP

1 -
complete Model Expansion problems, we show that the problem of deciding the
existence of minimal solutions to an abductive logic program [20] satisfying a
goal can be reduced to Goal-Oriented Optimal Expansion similar to [26]. An
abductive logic program is defined as ALP = 〈H,M,P〉 over a set A of propo-
sitional atoms where P is a logic program, H ⊆ A is called hypothesis and
M ⊆ A ∪ {¬a|a ∈ A} is manifestation. A solution of ALP is a set N ⊆ H such
that there is a stable model S of P ∪ N and M ⊆ S. A solution N is called (H)
minimal if there is no solution N ′ such that N ′ ⊂ N . For a given hypothesis
h ∈ H, deciding whether there is a minimal solution N such that h ∈ N is
ΣP

2 -complete.
For problems in the higher levels of the Polynomial Hierarchy, we consider the

following: ΣP
k -complete problems can be encoded as a combined logic program

[4]. Π = (Pg,Pt) is called a combined logic program where Pg and Pt are logic
programs over a set of propositional variables G and T respectively. M is a
model of Π if it is a stable model of Pg and there is not a stable model N of Pt

such that M ∩G = N ∩T . The decision version of this problem is ΣP
2 -complete.

Recursively, the existence of a model of a combined program in depth 2 defined
as Π2 = (Pg2 , (Pg1 ,Pt)) is ΣP

3 -complete and, similarly, in depth k, the existence
of a model of (Pgk−1 ,Πk−2) is ΣP

k -complete. We introduce abductive combined
program as C = 〈H,M,Π〉 where Π = (Pg,Pt) is a combined logic program. W
is a solution of C if there is a model S of (Pg ∪ W,Pt) such that M ⊆ S. W is
minimal if there is not a solution W ′ such that W ′ ⊂ W .

Lemma 1. The problem of deciding whether C = 〈H,M,Πk〉 for a given h ∈ H
has a minimal solution containing h is ΣP

k+1-complete.

Proof. The proof includes a translation from a quantified boolean formula
(QBF) to C for k = 2 and then, by induction on k for k > 2, the result follows.
Let ϕ be a boolean formula in CNF and X = {x1, ..., xm}, W = {w1, ..., wm},
X ′ = {x′

1, ..., x
′
m}, Y = {y1, ..., yn}, and Z = {z1, ..., zl} be a set of boolean

variables in ϕ. Let t, h, and f also be boolean variables. Consider Pg to be a
set of rules of the form {t ← xi, x

′
i}, {wi ← xi}, {wi ← x′

i}, {t ← y1, ...yn, h},
and{f ← l1, ..., lr} where ¬(l1∧, ...,∧lr) ∈ ϕ similar to [20]. For X ∪ X ′ ⊆ H, an
H-minimal solution of 〈H, {t} ∪ W,Pg〉 does not contain f and it has either xi

or x′
i. On the other hand, similar to [4], assume Pt determines the truth value

of a set of boolean variables Z. Also, for each clause C ∈ ϕ, suppose that Pt

includes a set of rules of the form t ← ¬C and f ← ¬f, t that means t must
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not be in any stable model of Pt. This implies that the validity of ∃X∀Y ∃Zϕ is
equivalent to the existence of an H-minimal solution of C that contains h. So,
for k = 2, the existence of a minimal solution to an abductive combined logic
program containing an atom h is ΣP

3 -complete. �

The following result shows the impact of introducing preferences to ΣP
k -

complete Model Expansion problems.

Theorem 1. Let the decision version of a Model Expansion problem MXσ,ψ be
ΣP

k -complete. The problem of Goal-Oriented Optimal Expansion for MXσ,ψ is
ΣP

k+1-complete.

Proof. The membership to ΣP
k+1 follows from the results of Propositions 2, 3,

and properties of Model Expansion. Since the Model Expansion problem is in
ΣP

k , it has a second-order specification with k−1 number of alternations between
second-order quantifiers. Therefore, the complexity of model checking of ψ is in
ΠP

k−1. Thus, based on Proposition 2, the complexity of the Optimal Expansion

problem is in co-NPΣP
k−1 that is equal to ΠP

k . Also, based on Proposition 3, the
Goal-Oriented Optimal Expansion problem is in NPΠP

k or NPΣP
k that is equal

to ΣP
k+1.

For the proof of hardness, we consider an abductive logic program ALP =
〈H,M,P〉. Let us define a logic program P ′ as a set of rules of the form
r : R(a) ← ¬S(b) for any R(a) �P S(b) such that S(b) ∈ H. Rule r says
that a better conclusion is drawn from not making a less preferred assumption.
Define P∗ = P ∪P ′. The problem of deciding the existence of a stable model of a
logic program is NP-complete and it can be translated into the decision version
of a Model Expansion problem MXσ,ψ. The program can be represented by an
instance structure and the stable model semantics is characterized by ψ (e.g.,
a first-order Model Expansion characterization of ASP was shown in [25]). The
problem of finding out whether there is an H-minimal solution of ALP can be
reduced to deciding whether there is an optimal expansion in (MXσ,ψ, P ) where
P∗ is translated into MXσ,ψ. Assume X1 and X2 are two stable models of P∗.
If X1 is preferred to X2 with respect to one of the preference semantics in Defi-
nition 3, then there is R(a) ∈ X1 and S(b) ∈ X2 such that R(a) �P S(b). So, we
have X1 ∩ H ⊆ X2 ∩ H and therefore, each preferred answer set is H-minimal.
Hence, finding a minimal solution for 〈H,M,P〉 is reduced to finding an optimal
expansion of Πσ,ψ that satisfies a goal M . Thus, Goal-Oriented Optimal Expan-
sion for an NP-complete MX is ΣP

2 -complete. By using the same argument and
according to Lemma 1, finding a minimal solution for an abductive combined
logic program in level k can be translated into a Goal-Oriented Optimal Expan-
sion where the Model Expansion problem is ΣP

k -complete and hence the result
follows. �

Theorem 1 presents an important consequence of adding preferences to a ΣP
k -

complete Model Expansion problem. For the problem of deciding whether there
is an expansion that satisfies a goal φ, adding preferences leads to a jump in the
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Polynomial Hierarchy. So, the preference relation between expansion structures
derived from a preference expression can not be translated into axiomatization ψ
with polynomial time model checking unless P = NP or the Polynomial Hierarchy
collapses.

Example 3. Deciding whether a graph is Hamiltonian (i.e., whether a graph
has a Hamiltonian cycle) is a well-known NP-complete problem. We first char-
acterize the Hamiltonian graph problem as first-order Model Expansion and then
examine the Goal-Oriented Prioritized Model Expansion problem for an input
graph with some preferences. Consider vocabulary τ = {E,H}. For an arbitrary
graph G = (V,EG) (represented as a structure) such that V is the set of ver-
tices of the graph and EG specifies edges of G, the Hamiltonian graph problem is
defined as a Model Expansion problem MX{E},Ψ where {E} is the vocabulary of
input and Ψ = ψ1 ∧ ψ2 ∧ ψ3 such that

ψ1 = ∀x∀y(H(x, y) ∨ H(y, x))
ψ2 = ∀x∀y∀z

(
H(x, y) ∧ H(y, x) ⊃ H(x, z)

)

ψ3 = ∀x∀y
(
(H(x, y) ∧ ¬∃z[H(x, z) ∧ H(z, y)]) ⊃ E(x, y)

)

where ψ1 indicates there is a Hamiltonian path between any arbitrary pair of
vertices x and y, ψ2 stipulates the transitivity property of the path, and, based on
ψ3, if there are two adjacent vertices in the path, they must be connected through
an edge of the graph. A τ -structure A is an expansion structure of MXE,Ψ if A
expands G and satisfies ψ as follows:

G
︷ ︸︸ ︷

(V ; EG , HA)
︸ ︷︷ ︸

A

|= ψ

Model Expansion problem MXE,ψ asks whether there is a Hamiltonian path
(and therefore a Hamiltonian cycle) in the input graph. If the answer is yes,
then there is a τ -structure B such that HB constitutes a Hamiltonian path.
Assume V = {v1, v2, v3, v4} is a set of vertices and G = (V,EG) is defined
EG = {(v1, v2),(v2, v3), (v3, v4), (v4, v1), (v1, v4), (v3, v1), (v4, v2)}. A preference
expression P is defined as H(v4, v2) �P H(v3, v4) which means it is preferred
that a Hamiltonian path includes H(v4, v2) (i.e., edge E(v4, v2) due to specifica-
tion ψ3) rather than H(v3, v4) (i.e., edge E(v4, v2) because of specification ψ3).

The Prioritized Model Expansion problem Π{E},ψ = (MX{E},ψ, P ) (in the
search version) finds the preferred Hamiltonian paths of G if there are such
paths. Let us define a goal formula φ = H(v3, v1). The Goal-Oriented Model
Expansion Problem asks whether there is a preferred expansion structure (i.e.,
Hamiltonian path) that includes H(v3, v1) and hence edge E(v3, v1). There are
two possible Hamiltonian paths HA = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)} and
HB = {(v3, v1), (v1, v4), (v4, v2), (v2, v3)}. Based on Definition 3, A character-
izes a path that is preferred and it is comprised of H(v3, v4).
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3.3 Conditional Preferences

Preferences of users are often expressed in conditional statements. For example,
A is preferred to B if C is true. Contextual preferences are widely studied in
the literature. Examples include [5,7,8,24]. Here, we show how the Prioritized
Model Expansion framework handles conditional preferences.

Let p be a conditional preference of the form p : Rq(au), ..., Rs(av) ⊃
Si(bl) �p Sj(bm). Conditional preference p is read as Si(bl) is preferred to Sj(bm)
if Rq(au)∧ ...∧Rs(av) is true. Intuitively, we aim to construct a partial order ≥p

from p such that for structures A and B with the same domain and vocabulary,
A is preferred to B with respect to p if A |= Rq(au) ∧ ... ∧ Rs(av) ∧ Si(bl) and
B |= Rq(au) ∧ ... ∧ Rs(av) ∧ Sj(bm). We call Rq(au) ∧ ... ∧ Rs(av) the body of p
with notation body(p).

Definition 8. Πσ,ψ = (MXσ,ψ,P) is called a General Prioritized Model Expan-
sion Problem where P = {p1, ..., pn} is a set of conditional preferences.

A translation of Πσ,ψ into a standard Prioritized Model Expansion problem
Π∗

σ,ψ∗ = (MXσ,ψ∗ , P ∗) is as follows: First, we add each element of Dom as
a constant symbol to τ . We assume that for all a ∈ τ such that a ∈ Dom
and for all optimal expansions A, aA = a. For conditional preference p, let us
introduce two new (ground) auxiliary atoms T and T ′. Consider formulas ψ1 :
(Rq(au)∧ ...∧Rs(av)∧Si(bl)) ⊃ T and ψ2 : (Rq(au)∧ ...∧Rs(av)∧Sj(bm)) ⊃ T ′.
Set ψ∗ = ψ∧ψ1∧ψ2, T �P ∗ T ′, and τ∗ = τ ∪ {T, T ′}. It is clear that an expansion
τ∗-structure A is preferred to another expansion τ∗-structure B with respect to
p if A and B satisfy Rq(au) ∧ ... ∧ Rs(av), A |= Si(bl), and B |= Sj(bm). The
binary relation ≥s

P ∗ is constructed from P based on the preference semantics
Weak Pareto, Upper Bound Dominance, and Element Dominance similarly to
before.

Example 4. For a graph three-colouring problem with conditional preferences
Π{E},ψ = (MX{E},ψ, P), consider the following conditional preferences: red v1
is preferred to blue v2 if v5 is green which is expressed as p : R(v1) ⊃ (

B(v2) �p

G(v5)). We introduce new atoms T1 and T2 such that ψ1 :
(
R(v1) ∧ B(v2)

) ⊃ T1

and ψ2 :
(
R(v1)∧G(v5)

) ⊃ T2. Also, we set ψ∗ = ψ ∧ψ1 ∧ψ2 and T1 �p T2. For
an input graph G = (V,EG) where V = {v1, ..., v5} and EG = {(v1, v2), (v2, v1),
(v1, v3), (v1, v3), (v3, v1), (v2, v4), (v4, v2), (v4, v5), (v5, v4), (v3, v5), (v5, v3)},
three-colouring A where RA = {v1, v4}, BA = {v2, v5}, and GA = {v3} is
preferable based on the Week Pareto semantics.

4 Relation to Other Preference-Based Declarative
Approaches

4.1 Preference-Based SAT

3-SAT is a canonical NP-complete problem. Let ϕ be a Conjunctive Normal Form
(CNF) boolean formula and X = {x1, ..., xn} be the set of boolean variables
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appearing in ϕ. A truth assignment I is a mapping from X to {true, false}. The
problem of deciding whether ϕ is satisfiable (i.e., there is a truth assignment
I that satisfies ϕ) can be converted into a Model Expansion problem MXσ,ψ

with an input σ-structure I. The general idea is to represent formula ϕ by
I. The domain of I is X. Also, the expansion vocabulary (i.e., τ\σ) includes
unary predicates T and F that specify each boolean variable as true or false. An
interpretation of the expansion vocabulary represents a truth assignment to the
boolean variables in ϕ. Formula ψ specifies the notion of satisfying a boolean
CNF formula by a truth assignment.

Preference-based SAT, which is related to the problem of max-SAT [3], is the
problem of finding truth assignments satisfying a boolean formula when some
variables are favourite to be assigned the value true. A preference-based SAT
problem for a boolean formula ϕ and the set X of boolean variables appearing
in ϕ is defined as a pair (ϕ, (X,≥)) where ≥ is a preorder on X that specifies
a preference over variables in X. Let I and I′ be truth assignments that satisfy
ϕ. We say I is preferred to I′ if all variables assigned the value true by I are
preferred to all variables that I′ maps to true.

Theorem 2. The problem of deciding whether there is a preferred truth assign-
ment I satisfying ϕ that maps all variables in some Y ⊂ X to true is ΣP

2 -
complete.

Proof. Consider a Prioritized NP-complete Model Expansion problem Πσ,ψ =
(MXσ,ψ, P ). All NP-complete problems, obviously, can be reduced to SAT in
polynomial time. Also, by considering the Weak Pareto semantics in the Priori-
tized Model Expansion framework, preference relation ≥ in the preference-based
SAT framework is matched with �P . For each relation R(a) �P S(b), we consider
xi ≥ xj in the preference-based SAT framework where xi and xj are boolean
variables representing ground atoms R(a) and S(b), respectively. In order to
reduce an NP-complete MXσ,ψ problem to SAT, some auxiliary propositional
variables are introduced that are considered to be equally preferred with respect
to relation �P . Therefore, Prioritized NP-complete Model Expansion problem
Πσ,ψ is reduced to a preference-based SAT S in polynomial time. Thus, the Goal-
oriented Optimal Expansion problem for Πσ,ψ = (MXσ,ψ, P ) where MXσ,ψ is an
NP-complete problem can be reduced (in polynomial time) to deciding whether
there is a preferred truth assignment I satisfying ϕ that maps all variables in
some Y ⊂ X to true, which is, based on Theorem 1, ΣP

2 -complete. �

4.2 Logic Programs with Preferences

Logic programming with stable model semantics is one of the main declarative
approaches for specifying problems in NP. Let P be a program which is defined
as a set of rules of the form r : c1, ..., cl ← a1, ..., am, not b1, ..., not bn where ai

for i ∈ [1,m], bj for j ∈ [1, n], and ck for k ∈ [1, l] are propositional atoms. Let
us define vocabulary symbols Rule, Stable, Body+, Body−, and Head. Sym-
bol Stable(x) denotes that x belongs to a stable model of program P , Rule(y)
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means that y is a rule of program P , Body+(y, x) indicates that x is a pos-
itive atom in the body of rule y and, similarly, Body−(y, x) points out that
x is an atom in the negative part of the body of y. Also, Head(y, x) means
that atom x is in the head of rule y. For σ= {Rule, Stable, Body+, Body−,
Head}, a σ-structure P specifies a program by interpreting predicate symbols
in σ. A first-order formula ψ characterizes the stable model semantics as ψ =
∀x

(∃y(Rule(y) ∧ Head(x, y) ∧ ∀z[Body+(y, z) ⊃ Stable(z)] ∧ ∀w[Body−(y, w) ⊃
¬Stable(w)]) ⊃ Stable(x)

) ∧ ∀x
(∃y(Rule(y)) ∧ Head(x, y) ∧ ∀z[¬Body+(y, z)] ∧

∀w[¬Body−(y, w)] ⊃ Stable(x)
)
.

A stable model of program P is represented by an expansion structure M
that expands input σ-structure P, which represents program P , and satisfies ψ.

Preferred Models
Prioritized logic program (PLP) [26] is one of the impactful frameworks proposed
for logic programming with preferences. A PLP program is a pair (Pr, Φ) where
Pr is a general extended disjunctive logic program with answer set semantics
and Φ is a set of preference relations among propositional atoms of the form
a � b that means a is preferred to b. The transitive closure of Φ is denoted
by Φc. The reflexive transitive binary relation � among answer sets of Pr is
defined as: (1) X1 � X1, (2) if there exist a ∈ X1 − X2 and b ∈ X2 − X1 where
(a � b) ∈ Φc and there is no d ∈ X1 −X2 such that (b � d) ∈ Φc, then X1 � X2,
and (3) if X1 � X2 and X2 � X3, then X1 � X3. X is called a preferred
answer set if there is no answer set Y such that Y � X. One could examine
conditions 1 and 2 in polynomial time in the size of the input (the number
of propositional atoms). However, condition 3 requires possibly an exponential
number of comparisons over the answer sets of Pr. The complexity results of the
decision problems associated to a PLP program are based on the assumption that
deciding whether X is preferable to Y is in polynomial time that is not accurate
due to condition 3. The role of condition 3 is to make relation � transitive.
On the other hand, relation >s

P in the Prioritized Model Expansion framework
is not necessarily transitive for some preference semantics (e.g., the Element
Dominance semantics).

Theorem 3. Let Πσ,ψ = (MXσ,ψ, P ) be a Prioritized Model Expansion problem
with an input σ-structure I and Γ = (Pr, Φc) be a PLP program. Assume ψ
characterizes the stable model semantics, I represents Pr, and P specifies Φc.
If there are expansion structures A and B, then Pr has answer sets M1 that is
represented by A and M2 that is represented by B such that if A >ed

P B, then
M1 � M2.

Proof. Φc can be viewed as a preference expression in the PMX framework
and finding answer sets of generalized extended disjunctive program Pr can be
expressed by an MXσ,ψ problem. As discussed in the previous subsection, there
is a correspondence between the expansion structures of MXσ,ψ and the answer
sets of Pr. Each expansion structure of MXσ,ψ can be one-to-one mapped in
polynomial time to an answer set of Pr and vice versa. The relation >ed

P with
the Element Dominance semantics is a subset of relation � in the PLP because
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it satisfies conditions 1 and 2 in the definition of � while it does not guarantee
the transitivity of the preference relation among the expansion structures. So,
for structures A and B, Pr has answer sets M1 and M2 such that M1 � M2 and
M1 and M2 are represented by A and B, respectively. �

4.3 Answer Set Optimization

An Answer Set Optimization (ASO) program [12] is a pair (Pg, R) where Pg is a
generating normal logic program and R is a set of rules of the form r : C1 > ... >
Ck ← a1, ..., an, not b1, ..., not bm. In each rule, ai and bi are literals. Also, Ci is
defined as a combination of atoms integrated by conjunction, disjunction, default
negation (not) and strong negation (¬) that must appear only before atoms.
Ci > Cj ← body means that if body is satisfied, Ci is preferred to Cj . Given a
set of l rules r1, ..., rl, each answer set M of Pg is associated with a satisfaction
vector d(M) = 〈d1(M), ..., dl(M)〉 where di(M) is called the satisfaction degree
of M in ri. Satisfaction degree denotes the minimum j of Cjs in ri that are
satisfied by M whenever M satisfies body, and 1 in other case. Let M1 and M2

be two answer sets of Pg. M1 is preferred to M2 with respect to R (notation
M1 � M2) if for all i ≤ l, di(M1) ≤ di(M2). When in each rule r ∈ R, Cis
in the head of r are literals, the relation between ASO and Prioritized Model
Expansion is formulated as follows:

Theorem 4. Let ASO = (Pg, R) be an ASO program where Pg is a normal
logic program and R is a set of preference rules. There is a Prioritized Model
Expansion problem Πσ,ψ = (MXσ,ψ, P ) with an input I such that each preferred
answer set of ASO is represented by an optimal expansion of Πσ,ψ.

Proof. Let P ∗
g be a logic program such that P ∗

g = Pg ∪ R∗ where R∗ is a set of
r∗
1 and r∗

2 rules that are constructed as follows: For each rule r in R of the form
C1 > C2 ← body(r), we introduce auxiliary atoms n1 and n2 and define r∗

1 as
r∗
1 : n1 ← C1,body(r) and r∗

2 as r∗
2 : n2 ← C2,body(r). Normal logic program

P ∗
g with stable model semantics can be cast as Model Expansion problem MXσ,ψ

such that ψ specifies stable model semantics and I represents P ∗
g . Also, let us

define preference expression P such that for auxiliary atoms n1 and n2, we have
n2 �P n1. We consider all other ground atoms in Pg as equally preferred. Let
M1 and M2 be answer sets of Pg. Assume A and B are expansion structures of
MXσ,ψ that represent M1, and M2, respectively. If M2 � M1 in ASO, for each
Ci in the head of each rule r ∈ R such that M1 |= Ci, there is Cj such that
M2 |= Cj and Cj > Ci. This is equivalent to say that for each auxiliary atom ni

satisfied by A, there is an auxiliary atom nj satisfied by B such that nj �P ni

that is matched with the Upper Bound Dominance semantics. So, A >ubd
P B and

the result follows. ��
We showed that an ASO program can be viewed as a Prioritized Model

Expansion. Also every Prioritized NP-complete Model Expansion problem with
the Upper Bound Dominance semantics can be encoded as an ASO program. The
problem of deciding the existence of a stable model of a normal program is NP-
complete and, obviously, an NP-complete problem can be reduced in polynomial



72 A. Ensan and E. Ternovska

time to another NP-complete problem. Preference expression P is encoded by a
single rule r ∈ R of the form a1 > a2.... > an ← where ais are ground atoms
and ai > aj if ai �P aj .

As a result, Goal-oriented Prioritized NP-complete Model Expansion prob-
lems can be reduced to deciding whether some answer sets of an ASO satisfy a
formula in polynomial time. The existence of an answer set that satisfies a set of
ground atoms is NP-complete (i.e., brave reasoning in logic programs with sta-
ble model semantics), and determining the existence of a solution of ASO that
satisfies a goal formula φ is ΣP

2 -complete [12]. Likewise, for an NP-complete
MXσ,ψ, the problem of deciding whether there is an optimal expansion of Πσ,ψ

that satisfies a goal φ, based on Theorem 1, is ΣP
2 -complete.

5 Conclusion

We proposed a novel language-independent preference framework for character-
izing preference-based computational decision and search problems. We demon-
strated that adding preferences raises the computational complexity of deciding
the existence of an expansion structure satisfying a goal. Our proposal can also
be related to a variety of other preference frameworks, such as CP-nets [5] that
model conditional preferences. A CP-net can be approximated by a Prioritized
Model Expansion problem such that if an outcome o1 is preferred to an outcome
o2 in a CP-net, then for associated expansion structures A and B in the Priori-
tized Model Expansion problem, A is preferred to B. Moreover, finding preferred
repairs of a database that violates some integrity constraints [27] can be trans-
lated into a Prioritized Model Expansion problem using the Upper Bound Dom-
inance semantics. One possible future direction is to devise an algorithm that
solves Prioritized Model Expansion problems using generic solvers empowered
by propagators. The solver would provide symbolic explanations for rejecting
and accepting models to prune the search space.
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Abstract. We describe a system to prove properties of programs. The
key feature of this approach is a method to automatically synthesize
inductive invariants of the loops contained in the program. The method
is generic, i.e., it applies to a large set of programming languages and
application domains; and lazy, in the sense that it only generates invari-
ants that allow one to derive the required properties. It relies on an
existing system called GPiD for abductive reasoning modulo theories
[14], and on the platform for program verification Why3 [16]. Experiments
show evidence of the practical relevance of our approach.

1 Introduction

Hoare logic – together with strongest post-conditions or weakest pre-conditions
calculi – allow one to verify properties of programs defined by bounded sequences
of instructions [20]. Given a pre-condition φ satisfied by the inputs of program
P, algorithms exist to compute the strongest formula ψ such that φ {P} ψ holds,
meaning that if φ holds initially then ψ is satisfied after P is executed, and any
formula ψ′ that holds after P is executed is such that ψ |= ψ′. To check that
the final state satisfies some formula ψ′, we thus only have to check that ψ′ is
a logical consequence of ψ. However, in order to handle programs containing
loops, it is necessary to associate each loop occurring within the program with
an inductive invariant. An inductive invariant for a given loop L is a formula
that holds every time the program enters L (i.e., it must be a logical consequence
of the preconditions of L), and is preserved by the sequence of instructions in L.
Testing whether a formula is an inductive invariant is a straightforward task, and
the difficulty resides in generating candidate invariants. These can be supplied
by the programmer, but this is a rather tedious and time-consuming task; for
usability and scalability, it is preferable to generate those formulas automatically
when possible. In this paper, we describe a system to generate such invariants in
a completely automated way, via abductive reasoning modulo theories, based on
the methodology developed in [13]. Roughly speaking, the algorithm works as
follows. Given a program P decorated with a set of assertions that are to be estab-
lished, all loops are first assigned the same candidate invariant �. These invari-
ants are obviously sound: they hold before the loops and are preserved by the
sequence of instructions in the loop; however they are usually not strong enough
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to prove the assertions decorating the program. They are therefore strengthened
by adding hypotheses that are sufficient to ensure that the assertions hold; these
hypotheses are generated by a tool that performs abductive inferences, and the
strengthened formulas are candidate invariants. Additional strengthening steps
are taken to guarantee that these candidates are actual invariants, i.e., that they
are preserved by the sequence of instructions in the loop. These steps are iterated
until a set of candidate invariants that are indeed inductive is obtained.

We rely on two existing systems to accomplish this task. The first one is Why3
(see, e.g., http://why3.lri.fr/ or [16]), a well-known and widely-used platform for
deductive program verification that is used to compute verification conditions
and verify assertions. The second system, GPiD, is designed to generate impli-
cants1 of quantifier-free formulas modulo theories [14]. This system is used as
an abductive reasoning procedure, thanks to the following property: if φ �|= ψ,
finding a hypothesis φ′ such that φ∧φ′ |= ψ is equivalent to finding φ′ such that
φ′ |= φ ⇒ ψ. GPiD is generic, since it only relies on the existence of a decision
procedure for the considered theory (counter-examples are exploited when avail-
able to speed-up the generation of the implicants when available). Both systems
are connected in the Ilinva framework.

Related Work. A large number of different techniques have been proposed to
generate loop invariants automatically, especially on numeric domains [9,10],
but also in more expressive logics, for programs containing arrays or express-
ible using combination of theories [8,18,22–24,26]. We only briefly review the
main ideas of the most popular and successful approaches. Methods based on
abstract interpretations (see, e.g., [11,25]) work by executing the program in a
symbolic way, on some abstract domain, and try to compute over-estimations of
the possible states of the memory after an unbounded number of iterations of
the loop. Counter-examples generated from runs can be exploited to refine the
considered abstraction [17,19]. The idea is that upon detection of a run for which
the assertion is violated, if the run does not correspond to a concrete execution
path, then the considered abstraction may be refined to dismiss it.

Candidate invariants can also be inferred by generating formulas of some
user-provided patterns and testing them against some particular executions of
the program [15]. Those formulas that are violated in any of the runs can be
rejected, and the soundness of the remaining candidates can be checked after-
wards. Invariants can be computed by using iterative backward algorithms [27],
starting from the post-condition and computing weakest pre-conditions until
a fixpoint is reached (if any). Other approaches [21] have explored the use of
quantifier elimination to refine properties obtained using a representation of all
execution paths.

The work that is closest to our approach is [13], which presents an algorithm
to compute invariants as boolean combinations of linear constraints over integers.
The algorithm is similar to ours, and also uses abduction to strengthen candi-

1 An implicant of a formula ψ is a formula φ such that φ |= ψ. It is the dual notion of
that of implicates.

http://why3.lri.fr/
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date invariant so that verification conditions are satisfied. The algorithms differ
by the way the verification conditions and abductive hypotheses are proceeded:
in our approach the conditions always propagate forward from an invariant to
another along execution paths, and we eagerly ensure that all the loop invariants
are inductive. Another difference is that we use a completely different technique
to perform abductive reasoning: in [13] is based on model construction and quan-
tifier elimination for Presburger arithmetic, whereas our approach uses a generic
algorithm, assuming only the existence of a decision procedure for the under-
lying theory. This permits to generate invariants expressed in theories that are
out of the scope of [13].

Contribution. The main contribution is the implementation of a general frame-
work for the generation of loop invariants, connecting the platform Why3 and
GPiD. The evaluation demonstrates that the system permits to generate loop
invariants for a wide range of theories, though it suffers from a large search space
which may induce a large computation time.

2 Verification Conditions

In what follows, we consider formulas in a base logic expressing properties of
the memory and assume that such formulas are closed under the usual boolean
connectives. These formulas are interpreted modulo some theory T , where |=T
denotes logical entailment w.r.t. T . The memory is modified by programs, which
are sequences of instructions; they are inductively defined as follows:

P = empty | I ; P
′

I = 〈base-instruction〉 | assume φ | assert φ

| if C then P1 else P2 | while C do P1{φ} end

where P′, P1 and P2 are programs, C is a condition on the state of the memory,
φ is a formula and I is an instruction. Assumptions correspond to formulas
that are taken as hypotheses, they are mostly useful to specify pre-conditions.
Assertions correspond to formulas that are to be proved. Base instructions are
left unspecified, they depend on the target language and application domain;
they may include, for instance, assignments and pointer redirection. The formula
φ in the while loop is a candidate loop invariant, it is meant to hold every time
condition C is tested. In our setting each candidate loop invariant will be set to
� before invoking Ilinva (except when another formula is provided by, e.g., the
user), and the program will iteratively update these formulas. We assume that
conditions contain no instructions, i.e., that the evaluation of these conditions
does not affect the memory. We write P ∼ P′ if programs P and P′ are identical
up to the loop candidate invariants.

An example of a program is provided in Fig. 1. It uses assignments on integers
and usual constructors and functions on lists as base instructions. It contains
one loop with candidate invariant � (Line 3) and one assertion (Line 6).
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1 let i ← 1 ;
2 let L ← list(1,nil) ;
3 while unknown() do {�}
4 i ← i + 1 ;
5 L ← list(i, L) ;

6 assert head(L) = length(L) ;

Fig. 1. A simple program on lists

It contains one loop for which we will
generate an invariant.

A location is a finite sequence of
natural numbers. The empty location is
denoted by ε and the concatenation of two
locations � and �′ is denoted by �.�′. If � is
a location and S is a set of locations then
�.S denotes the set {�.�′ | �′ ∈ S}. The

set of locations in a program P or in an instruction I is inductively defined as
follows:

– If P is an empty sequence then loc(P) = {0}.
– If P = I ; P′ then loc(P) = {0} ∪ 0.loc(I) ∪ {(i + 1).p | i ∈ N, i.p ∈ loc(P′)}.
– If I is a base instruction or an assumption/assertion, then loc(I) = ∅.
– If I = if C then P1 else P2 then loc(I) = 1.loc(P1) ∪ 2.loc(P2).
– If I = while C do P1{φ} end then loc(I) = 1.loc(P1).

For instance, a program I1 ; I2 where I1, I2 denote base instructions has three
locations: 0 (beginning of the program), 1 (between I1 and I2) and 2 (end of the
program). Note that there are no locations within an atomic instruction. The
program in Fig. 1 has eight locations, namely 0, 1, 2, 2.1.0, 2.1.1, 2.1.2, 3, 4. We
denote by P|� the instruction occurring just after location � in P (if any):

– If P = I ; P′ then P|0 = I, P|0.� = I|� and P|(i+1).� = P′|i.�.
– If I = if C then P1 else P2 then I|1.� = P1|� and I|2.� = P2|�.
– If I = while C do P1{φ} end then I|1.� = P1|�.

Note that � 
→ P|� is a partial function, since locations denoting the end of a
sequence do not correspond to an instruction. We denote by lloc(P) the set of
locations � in P such that P|� is a loop and by loops(P) = {P|� | � ∈ lloc(P)} the
set of loops occurring in P. For instance, if P denotes the program in Fig. 1, then
P|1 is let L ← list(1,nil), and lloc(P) = {2}.

We denote by < the usual order on locations: � < �′ iff either there exist
numbers i, j and locations �1, �2, �3 such that � = �1.i.�2, � = �1.j.�3 and i < j,
or there exists a location �′′ such that �′ = �.�′′.

We assume the existence of a procedure VCgen that, given a program P,
generates a set of verification conditions for P. These verification conditions are
formulas of the form φ ⇒ ψ, each of which is meant to be valid. Given a program
P, the set of conditions VCgen(P) can be decomposed as follows:

1. Assertion conditions, which ensure that the assertion formulas hold at the
corresponding location in the program. These conditions also include addi-
tional properties to prevent memory access errors, e.g., to verify that the
index of an array is within the defined valid range of indexes. The set of
assertion conditions for program P is denoted by VCgena(P).

2. Propagation conditions, ensuring that loop invariants do propagate. Given a
loop L occurring at position � in program P, we denote by VCgenind(P, �) the
set of assertions ensuring that the loop invariant for L propagates.



Ilinva: Using Abduction to Generate Loop Invariants 81

wp(φ, empty) = φ
wp(φ, I ; P) = wp(wp(φ, P), I)

wp(φ, assume φ′) = φ′ ⇒ φ
wp(φ, assert φ′) = φ′ ∧ φ

wp(φ, if C then P1 else P2) = C ⇒ wp(φ, P1) ∧ ¬C ⇒ wp(φ, P2)
wp(φ, while C do P1{ψ} end) = ψ ∧ ∀x. (ψ ⇒ wp(ψ, P1)) ∧ ∀x. (ψ ∧ ¬C ⇒ φ)

The formula in the last line states that the loop invariant holds when the loop is
entered, that it propagates and that it entails the formula φ . The vector x denotes
the vector of variables occurring in P1.

Fig. 2. A Weakest Precondition Calculus

sp(φ, empty) = φ
sp(φ, I ; P′) = sp(sp(φ, I), P′)

sp(φ, assume φ′) = φ ∧ φ′

sp(φ, assert φ′) = φ
sp(φ, if C then P1 else P2) = sp(φ ∧ C, P1) ∨ sp(φ ∧ ¬C, P2)
sp(φ, while C do P1{ψ} end) = ψ ∧ ¬C

sp(φ, P) describes the state of the memory after P. The conditions corresponding to
loops are approximated by using the provided loop invariants (the corresponding veri-
fication conditions are not stated).

Fig. 3. A Strongest Postcondition Calculus

3. Loop pre-conditions, ensuring that the loop invariants hold when the corre-
sponding loop is entered. Given a loop L occurring at position � in program
P, we denote by VCgeninit(P, �) the set of assertions ensuring that the loop
invariant holds before loop L is entered.

Thus, VCgen(P) = VCgena(P) ∪
(⋃

�∈lloc(P)(VCgenind(P, �) ∪ VCgeninit(P, �))
)

.

Such verification conditions are generally defined using standard weakest pre-
condition or strongest post-condition calculi (see, e.g., [12]), where loop invariant
are used as under-approximations. Formal definitions are recalled in Figs. 2 and
3 (the definition for the basic instructions depends on the application language
and is thus omitted). For the sake of readability, we assume, by a slight abuse
of notation, that the condition C is also a formula in the base logic.

This permits to define the goal of the paper in a more formal way: our aim
is to define an algorithm that, given a program P, constructs a program P′ ∼ P
(i.e., constructs loop invariants for each loop in P) such that VCgen(P′) only
contains valid formulas. Note that all the loops and invariants must be handled
globally since verification conditions depend on one another.
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Algorithm 1. GPiD(φ,M,A,P)
1 if M unsatisfiable (modulo T ) or ¬P(M) then
2 return ∅;
3 if M |= φ then
4 return {M};
5 let m be a model of {¬φ} ∪ M ;
6 let φ = Simplify(φ, M);
7 let A = {l ∈ A | M ∪ ¬φ �|=T l, M �|=T lc};
8 foreach l ∈ A such that m �|= l do
9 let Al = {l′ ∈ A | l′ < l ∧ m |= l′} ∪ {l′ ∈ A | l < l′};

10 let Pl = GPiD(φ, M ∪ {l} , Al, P);

11 return
⋃

l∈A Pl;

3 Abduction

As mentioned above, abductive reasoning will be performed by generating impli-
cants. Because it would not be efficient to blindly generate all implicants of a
formula, this generation is controlled by fixing the literals that can occur in an
implicant. We thus consider a set A of literals in the considered logic, called the
abducible literals.

Definition 1. Let φ be a formula. An A-implicant of φ (modulo T ) is a con-
junction (or set) of literals l1 ∧ · · · ∧ ln such that li ∈ A, for all i ∈ �1 . . n� and
l1 ∧ · · · ∧ ln |=T φ.

We use the procedure GPiD described in [14] to generate A-implicants. A simpli-
fied version of this procedure is presented in Algorithm1. A call to the procedure
GPiD(φ,M,A,P) is meant to generate A-implicants of φ that: (i) are of the form
M ∪A′, for some A′ ⊆ A; (ii) are as general as possible; and (iii) satisfy property
P. When M itself is not an A-implicant of φ, a subset of relevant literals from
A is computed (Line 7), and for each literal in this subset, a recursive call is
made to the procedure after augmenting M with this literal and discarding all
those that become irrelevant (Lines 9 and 10). In particular, the algorithm is
parameterized by an ordering < on abducible literals which is used to ensure that
sets of hypotheses are explored in a non-redundant way. The algorithm relies on
the existence of a decision procedure for testing satisfiability in T (Line 1). In
practice, this procedure does not need terminating or complete2, e.g., it may
be called with a timeout (any “unknown” result is handled as “satisfiable”). At
Line 8, a model of the formula {¬φ} ∪ M is used to prune the search space, by
dismissing some abducible literals. In practice, no such model may be available,
either because no model building algorithm exists for the considered theory or
because of termination issues. In this case, no such pruning is performed. Prop-
erty P denotes an abstract property of sets of literals. It is used to control the
2 However, Theorem2 only holds if the proof procedure is terminating and complete.
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form of generated A-implicants, it is for example possible to force the algorithm
to only generate A-implicants with a fixed maximal size. For Theorem 2 to hold,
it is simply required that P be closed under subsets, i.e., that for all sets of
abducible literals B and C, B ⊆ C ∧ P(C) ⇒ P(B).

Compared to [14], details that are irrelevant for the purpose of the present
paper are skipped and the procedure has been adapted to generate A-implicants
instead of implicates (implicants and implicates are dual notions).

Theorem 2 [14]. The call GPiD(φ, ∅,A,P) terminates and returns a set of
A-implicants of φ satisfying P. Further, if P is closed under subsets, then for
every A-implicant I of φ satisfying P, there exists I ′ ∈ GPiD(φ, ∅,A,P) such
that I |=T I ′.

This procedure also comes with generic algorithms for pruning redundant A-
implicants i.e., for removing all A-implicants I such that there exist another
A-implicant I ′ such that I |=T I ′, see [14, Sect. 4].

4 Generating Loop Invariants

In this section, we present an algorithm for the generation of loop invariants. As
explained in Sect. 2, we distinguish between 3 kinds of verification conditions,
which will be handled in different ways: assertion and propagation conditions;
and loop pre-conditions. As can be seen from the rules in Fig. 2, loop invariants
can occur as antecedents in verification conditions, this is typically the case
when a loop occurs just before an assertion in some execution path. In such
a situation, we say that the considered condition depends on loop L. When a
condition depends on a loop, a strengthening of the loop invariant of loop L
yields a strengthening of the hypotheses of the verification condition, i.e., makes
the condition less general (easier to prove).

This principle is used in Algorithm 2, which we briefly describe before going
into details. Starting with a program P in which it is assumed that every loop
invariant is inductive, the algorithm attempts to recursively generate invariants
that make all assertion conditions in P valid. It begins by selecting a non-valid
formula φ from VCgena(P) and a location � ∈ lloc(P) such that φ depends on �,
then generates a set of hypotheses that would make φ valid (Line 4). For each
such hypothesis ξ, a loop location �′ such that �′ ≤ � is selected, and a formula ξ′

that is a weakest precondition at �′ causing ξ to hold at location � is computed
(Line 7). This formula is added to the invariant of the loop at location �′ (Line 8),
so that if this invariant was ψ, the new candidate invariant is ξ′∧ψ. If ξ′ does not
hold before entering the loop then ξ is discarded (Line 9); otherwise, the program
attempts to update the other loop invariants to ensure that ξ′ propagates (Line
10). When this succeeds, a recursive call is made with the updated invariants
(Line 12) to handle the other non-valid assertion conditions.

Procedure Abduce(φ) (invoked Line 4 of Algorithm2) is described in Algo-
rithm3. It generates formulas ξ that logically entail φ; it is used to generate
the candidate hypotheses for strengthening. It first extracts a set of abducible



84 M. Echenim et al.

Algorithm 2. Ilinva (Program P)
1 if all formulas in VCgena(P) are valid then
2 return P;

3 let φ be a non valid formula in VCgena(P), depending on a loop at location �;
4 let Ξ ←− Abduce(φ, P, �);
5 foreach ξ ∈ Ξ do
6 foreach �′ ∈ lloc(P) such that �′ ≤ � do
7 let ξ′ ←− bp(ξ, P, �, �′);
8 let Pξ ←− Strengthen(P, �′, ξ′) ;
9 if VCgeninit(Pξ, �

′) is valid then
10 let P′

ξ ←− Ind(Pξ, �
′) ;

11 if P′
ξ �= fail then

12 let P′′
ξ ←− Ilinva(P′

ξ);
13 if P′′

ξ �= fail then
14 return P′′

ξ ;

15 return fail ;

Algorithm 3. Abduce(Formula φ, Program P, Location �)
1 let A ←− GetAbducibles(φ) ;
2 let A ←− {l | l ∈ A ∧ φ �|=T l} ;
3 let Ξ ←− GPiD(φ, ∅, A, P)) ;
4 let Ξ ′ ←− {ξ1 ∨ · · · ∨ ξn | n ∈ N, ξi ∈ Ξ} ;
5 return Ξ ′

literals A by collecting variables and symbols from the program and/or from the
theory T and combining them to create literals up to a certain depth (procedure
GetAbducibles at Line 1). To avoid any redundancy, this task is actually done
in two steps: a set of abducible literals for the entire program is initially con-
structed (this is done once at the beginning of the search), and depending on the
considered program location, a subset of these literals is selected. The abducible
literals that are logically entailed by φ modulo T are filtered out (Line 2), and
procedure GPiD is called to generate A-implicants of φ. Finally, A-implicants
are combined to form disjunctive formulas. Note that another way of generat-
ing disjunction of literals would be to add these disjunction in the initial set of
abducible literals, but this solution would greatly increase the search space.

Each of the hypotheses ξ generated by Abduce(φ) is used to strengthen the
invariant of a loop occurring at position �′ ≤ � (Line 8 in Algorithm2). The
strengthening formula is computed using the Weakest Precondition Calculus on
ξ, on a program obtained from P by ignoring all loops between �′ and �, since they
have corresponding invariants. To this purpose we define a function bp(φ, P, �, �′)
which, for positions �′ ≤ �, back-propagates abductive hypotheses from a location
� to �′ (see Fig. 4). This is done by extracting the part of the code path(P, �′, �)
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path(P, �, �) = empty

path(P, �, �′.(i + 1)) = path(P, �, �′.i) • P|�′.i if � ≤ �′.i
path(P, �, �′.0) = path(P, �, �′) if � ≤ �′

path(P, �.i.�′, �.(i + 1)) = path(P, �.i.�′, �.i.m) m = max{j | �.i.j ∈ loc(P)}

bp(φ, P, �, �′) = wp(φ, P′) if P′ = path(RmLoops(P), �′, �)
fp(φ, P, �, �′) = sp(φ, P′) if P′ = path(RmLoops(P), �, �′)

RmLoops(P) denotes the program obtained from P by removing all while instructions
and • denotes the concatenation operator on programs.

Fig. 4. Backward and forward propagation of abductive hypotheses

Algorithm 4. Ind (Program P, Location �)
1 if all formulas in VCgenind(P, �) are valid then
2 return P;

3 let φ be a non-valid formula in VCgenind(P, �) ;
4 let Ξ ←− Abduce(φ, P, �);
5 foreach ξ ∈ Ξ do
6 foreach �′ ∈ lloc(P) such that � is a prefix of �′ (with possibly � = �′) do
7 let ξ′ ←− fp(ξ, P, �, �′);
8 let P′

ξ ←− Strengthen(P, �′, ξ′) ;
9 if VCgeninit(P

′
ξ, �

′) is valid then
10 let P′′

ξ ←− Ind(P′
ξ, �) ;

11 if P′′
ξ �= fail then

12 return P′′
ξ ;

13 return fail ;

between the locations �′ and � while ignoring loops, and computing the weakest
precondition corresponding to this part of the code and the formula φ.

The addition of hypothesis ξ′ to the invariant of the loop at position �′

ensures that the considered assertion φ holds, but it is necessary to ensure that
this strengthened invariant is still inductive. This is done as follows. Line 9 of
Algorithm 2 filters away all candidates for which the precondition before enter-
ing the loop is no longer valid, and Algorithm4 ensures that the candidate still
propagates. This algorithm behaves similarly to Algorithm2 (testing the verifi-
cation conditions in VCgenind(P, �) instead of those in VCgena(P)), except that
it strengthens the invariants that correspond either to the considered loop, or
to other loops occurring within it (in the case of nested loops). Note that in
this case, properties must be propagated forward, from location � to the actual
location of the strengthened invariant, using a Strongest Postcondition Calculus
(Function fp(φ, P, �, �′) in Fig. 4). This technique avoids considering hypotheses
that do not propagate.
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When applied on the program in Fig. 1, Ilinva first sets the initial invariant
of the loop to � and considers the assertion φ : head(L) = length(L). As the
entailment � |= φ does not hold, it will call GPiD to get an implicant of � ⇒ φ.
Assume that GPiD returns the (trivial) solution φ. As φ indeed holds when the
loop is entered3, Ilinva will add φ to the invariant of the loop and call Ind.
Since φ does not propagate Ind will further strengthen the invariant, yielding,
e.g., the correct solution: φ ∧ i = head(L).

The efficiency of Algorithm 2 crucially depends on the order in which can-
didate hypotheses are processed at Line 5 for the strengthening operation. The
heuristic used in our current implementation is to try the simplest hypotheses
with the highest priority. Abducible atoms are therefore ordered as follows: first
boolean variables, then equations between variables of the same sort, then appli-
cations of predicate symbols to variables (of the appropriate sorts) and finally
deep literals involving function symbols (up to a certain depth). In every case,
negative literals are also considered, with the same priority as the corresponding
atom. Similarly, unit A-implicants are tested before non-unit ones, and single
A-implicants before disjunctions of A-implicants. In the iteration on line 6 of
Algorithm 2, the loops that are closest to the considered assertions are consid-
ered first. Due to the number of loops involved, numerous parameters are used
to control the application of the procedures, by fixing limits on the number
of abducible literals that may be considered and on the maximal size of A-
implicants. When a call to Ilinva fails, these parameters are increased, using
an iterative deepening search strategy. The parameter controlling the maximal
number of A-implicants in the disjunctions (currently either 1 or 2) is fixed
outside of the loop as it has a strong impact on the computation cost.

The following theorem states the main properties of the algorithm.

Theorem 3. Let P be a program such that VCgenind(P, �) and VCgeninit(P, �)
are valid for all � ∈ lloc(P). If Ilinva (P) terminates and returns a program
P′ other than fail, then P ∼ P′ and VCgen(P′) is valid modulo T . Furthermore,
if the considered set of abducible literals is finite ( i.e., if there exists a finite
set A such that GetAbducibles(φ) ⊆ A for all formulas φ), then Ilinva (P)
terminates.

Proof. The proof is provided in the extended version4.

5 Implementation

5.1 Overview

The Ilinva algorithm described in Sect. 4 has been implemented by connecting
Why3 with GPiD. A workflow graph of this implementation is detailed in the
3 This can be checked by computing the weakest precondition of φ w.r.t. Lines 1, 2.
The obtained formula is head(list(1,nil)) = length(list(1,nil)) which is equivalent
to � (w.r.t. the usual definitions of list and head).

4 https://arxiv.org/abs/1906.11033.

https://arxiv.org/abs/1906.11033
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extended paper. Note that both systems themselves call external SMT solvers
to check the satisfiability of formulas. In particular, the GPiD toolbox is easy to
plug to any SMTlib2-compliant SMT solver. The framework is actually generic,
in the sense that it could be plugged with other systems, both to generate and
verify proof obligations and to strengthen loop invariants. It is also independent
of the constructions used for defining the language: other constructions (e.g., for
loops) can be considered, provided they are handled by the program verification
framework.

Given an input program written in WhyML, Why3 generates a verification
condition the validity of which will ensure that all the asserted properties are
verified (including additional conditions related to, e.g., memory safety) This
initial verification condition is split by Why3 into several subtasks. These condi-
tions are enriched with all appropriate information (e.g., theories, axioms,. . . )
and sent to external SMT solvers to check satisfiability. The conditions we are
interested in are those linked to the proofs of the program assertions, as well as
those ensuring that the candidate loop invariants are inductive. In our imple-
mentation, Why3 is taken as a black box, and we merely recover the files that
are passed from Why3 to the SMT solvers, together with additional configuration
data for the solvers we can extract from Why3. If the proof obligation fails, then
we relate the file to the corresponding assertion in the WhyML program and
extract the set of abducible literals as explained in Sect. 4, restricting ourselves
to symbols corresponding to WhyML variables, functions and predicates. We
then tune the SMTlib2 file to adapt it for computations by GPiD and invoke
GPiD with the same SMT-solver as the one used by Why3 to check satisfiability,
as the problem is expected to be optimized/configured for it. We also configure
GPiD to skip the exploration of subtrees that will produce candidate invariants
that do not satisfy the loop preconditions. GPiD returns a stream of solutions
to the abductive reasoning problem. We then backward-translate the formulas
into the WhyML formalism and use them to strengthen loop invariants. For
efficiency, the systems run in parallel: the generation of abductive hypotheses
(by GPiD, via the procedure Abduce) and their processing in WhyML (via
Ilinva) is organized as a pipe-line, where new abduction solutions are computed
during the processing of the first ones.

To bridge Ilinva and Why3, we had to devise an interface, which is able to
analyze WhyML programs and to identify loop locations and the corresponding
invariants. It invokes Why3 to generate and prove the associated verification tasks,
and it recovers the failed ones. The library also includes tools to extract and
modify loop invariants, to extract variables and reference variables in WhyML
files, as well as types, predicates and functions, and wrappers to call the Why3
executable and external tools, and to extract the files sent by WhyML to SMT-
solvers.

5.2 Distribution

The Abdulot framework is available on GitHub [7]. It contains an revamped
interface to the GPiD libraries and algorithm, a generic library of the Ilinva
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algorithm automatically plugged with GPiD, the code interface for Why3 and
the related executables. GPiD interfaces and related executables are generated
for CVC4, Z3 and AltErgo5 via their SMTlib2 interface. Note that the SMT
solvers are not provided by our framework, they must be installed separately
(all versions with an SMTlib2-compatible interface are supported). Additional
interfaces and executables can be produced using C++ libraries for MiniSAT,
CVC4 and Z3 if their supported version is available6.

The framework also provides libraries and toolbox executables to work with
abducible files, C++ libraries to handle WhyML files, helpers for the generation
of abducible literals out of SMTlib2 files, and an extensive lisp parser. It also
includes a documentation, which explains in particular how to extend it to other
solvers and program verification framework. All the tools can be compiled using
any C++ 11 compliant compiler. The whole list of dependencies is available in
the documentation, as well as a dependency graph for the different parts of the
framework.

6 Experiments

We use benchmarks collected from several sources [1–6,13] (see also [7] for a more
detailed view of the benchmark sources), with additional examples corresponding
to standard algorithms for division and exponentiation (involving lists, arrays,
and non linear arithmetic). Some of these benchmarks have been translated7

from C or Java into WhyML. In all cases, the initial invariant associated with
each loop is �. We used Z3 for the benchmarks containing real arithmetic,
AltErgo for lists and arrays and CVC4 in all the other cases. All examples
are embedded with the source of the Ilinva tool.

6.1 Results

We ran Ilinva on each example, first without disjunctive invariants (i.e., taking
n = 1 in Procedure Abduce) then with disjunctions of size 2. The results are
reported in Fig. 5. For each example, we report whether our tool was able gen-
erate invariants allowing Why3 to check the soundness of all program assertions
before the timeout, in which case we also report the time Ilinva took to do
so (columns T(C) when generating conjunctions only and T(D) when generat-
ing implicants containing disjunctions). We also report the number of candidate
invariants that have been tried (columns C(D) and C(D)) and the number of
abducible literals that were sent to the GPiD algorithm (column Abd). Note
that the number of candidate invariants does not correspond to the number
5 Those are the three solvers the Why3 documentation recommends to work with as
an initial setup. (see also http://why3.lri.fr/@External Provers.).

6 TheAltErgo interface provided by the tool uses an SMTlib2 interface that is under
heavy development and that, in practice, does not work well with the examples we
send it.

7 The translation was done by hand.

http://why3.lri.fr/
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of SMT calls that are made by the system: those made by GPiD to generate
these candidates are not taken into account. The timeout is set to 20 min. For
some of the examples that we deemed interesting, we allowed the algorithm to
run longer. We report those cases by putting the results between parentheses.
Light gray cells indicate that the program terminates before the timeout with-
out returning any solution, and dark gray cells indicate that the timeout was
reached. Empty cells mean that the tool could not generate any candidate invari-
ant. The last column of both tables report the time Why3 takes to prove all the
assertions of an example when correct invariants are provided.

The tests were performed on a computer powered by a dual-core Intel i5
processor running at 1.3 GHz with 4 GB of RAM, under macOS 10.14.3. We
used Why3 version 1.2.0 and the SMT solvers AltErgo (version 2.2.0), CVC4
(prerelease of version 1.7) and Z3 (version 4.7.1).

An essential point concerns the handling of local solver timeouts. Indeed,
most calls to the SMT solver in the abductive reasoning procedure will involve
satisfiable formulas, and the solvers usually take a lot of time to terminate on
such formulas (or in the worst case will not terminate at all if the theory is
not decidable, e.g., for problems involving first-order axioms). We thus need to
set a timeout after which a call will be considered as satisfiable (see Sect. 3).
Obviously, we neither want this timeout to be too high as it can significantly
increase computation time, nor too low, since it could make us miss solutions.
We decided to set this timeout to 1 second, independently of the solver used,
after measuring the computation time of the Why3 verification conditions already
satisfied (for which the solver returns unsat) across all benchmarks. We worked
under the assumption that the computation time required to prove the other
verification conditions when possible would be roughly similar.

6.2 Discussion

As can be observed, Ilinva is able to generate solutions for a wide range of
theories, although the execution time is usually high. The number of invariant
candidates is relatively high, which has a major impact on the efficiency and
scalability of the approach.

When applied to examples involving arithmetic invariants, the program is
rather slow, compared to the approach based on minimization and quantifier
elimination [13]. This is not surprising, since it is very unlikely that a purely
generic approach based on a model-based tree exploration algorithm involving
many calls to an SMT solver can possibly compete with a more specific pro-
cedure exploiting particular properties of the considered theory. We also wish
to emphasize that the fact that our framework is based on an external program
verification system (which itself calls external solvers) involves a significant over-
cost compared to a more integrated approach: for instance, for the Oxy examples
(taken from [13]), the time used by Why3 to check the verification conditions
once the correct invariants have been generated is often greater than the total
time reported in [13] for computing the invariants and checking all properties.
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Abd T(C) C(C) T(D) C(D) Why3
O01 36 9.68 7 11.89 10 0.26
O02 536 3′18.9 66 1126 0.45
O04 108 50.47 32 2′31.4 156 0.26
O05 266 1′9.07 5 1′3.2 5 0.31
O06 390 6′13.6 56 18′5.1 552 0.72
O07 594 1′50.1 13 15′40.6 355 0.38
O08 210 2′35.5 61 9′35.8 528 0.42
O09 390 0 0 0.56
O10 90 1′39.54 65 12′56.9 0 0.35
O11 180 2′17.7 63 942 0.26
O12 782 0 0 0.53
O13 296 2′4.5 0 1621 0.30
O14 270 0 0 0.34
O15 36 32.53 21 888 0.27
O16 60 12.54 8 29.72 32 0.26
O17 36 40.88 26 2′42.5 134 0.33
O18 38 58.49 38 6′53.3 0 0.30
O19 60 1′59.5 111 1620 0.31
O20 546 380 870 0.49
O21 90 0.76 0 0.76 0 0.38
O22 270 2′10.1 20 2′11.9 20 0.48
O23 36 4.6 5 4.7 5 0.28
O25 60 1′23.4 20 2′38.4 44 0.39
O26 396 6′23.2 21 7′13.9 66 0.83
O28 2′3.9 137 16′22.8 1331 0.31
O29 61776 0 0 0.65
O30 36 31.43 26 41.66 45 0.26
O31 67050 0 0 0.49
O32 40 0.865 0 0.833 0 0.50
O33 90 1′11.3 12 1′19.9 21 0.45
O34 6768 0.798 0 0.79 0 0.44
O35 18 18.42 25 2′7.9 200 0.26
O36 61778 0 0 1.09
O37 36 0.752 0 0.769 0 0.34
O38 630 444 3′54.4 0 0.48
O39 546 1581 1840 0.40
O40 272 0 0 0.84
O41 0 0 0.37
O42 271 1′50.4 25 605 1.12
O43 60 4.27 2 3.67 2 0.29
O44 22.481 13 5′7.8 290 0.35
O45 0 0 1.50
O46 513 813 0.61

Abd T(C) C(C) T(D) C(D) Why3
509 130 (1h50′) (95) 0 0.66
534 172k 8 0 0.62
H04 120 2′54.8 223 1383 0.31
H05 1260 0 0 0.37

list0 60 6′30.4 77 1722 0.40
list1 20 40.82 3 3′26.2 385 0.47
list2 720 40 0 0.40
list3 126 3′35.1 11 930 0.44
list4 816 18 0
list5 468 22 0 0.44
array0 0 0 0.72
array1 0 0 0.50
array2 0 0 0.50
array3 0 0 0.82
expo0 171 (6h36′) (9) 0 0.40
expo1 2130 0 0
square 705 62 148
real0 965 81 213 0.55
real1 965 73 115 0.55
real2 240 9 2 0.40
realO0 36 4′9.6 25 5′32.18 40 0.47
realS 66 1′5.3 5 1′0.1 5 0.33
real3 17460 0 0
BM 1260 3′15.2 74 33 3.35

Scmp 0 0 0.83
Dmd 42 6 0 1′44.9
B00 639k 0 0 0.76
DIV0 560 3′58 35 534 0.83
DIV1 310 14.6 19 14.6 19 0.44
DIVE 42250 0 0

Fig. 5. Experimental results

Of course, our choice also has clear advantages in terms of genericity, generality
and evolvability.

When applied to theories that are harder for SMT solvers, the algorithm
can still generate satisfying invariants. However, due to the high number of
candidates it tries, combined with the heavy time cost of a verification (which
can be several seconds), it may take some time to do so.

The number of abducible literals has a strong impact on the efficiency of
the process, leading to timeouts when the considered program contains many
variables or function/predicate symbols. It can be observed that the abduction
depth is rather low in all examples (1 or 2).
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Our prototype has some technical limitations that have a significant impact
on the time cost of the execution. For instance, we use SMTlib2 files for commu-
nication between GPiD and CVC4 or Z3, instead of using the available APIs.
We went back to this solution, which is clearly not optimal for performance,
because we experienced many problems coping with the numerous changes in
the specifications when updating the solvers to always use the latest versions.
The fact that Why3 is taken as a black box also yields some time consumption,
first in the (backward and forward) translations (e.g., to associate program vari-
ables to their logical counterparts), but also in the verification tasks, which have
to be rechecked from the beginning each time an invariant is updated. Our aim
in the present paper was not to devise an efficient system, but rather to assess
the feasability and usefulness of this approach. Still, the cost of the numerous
calls to the SMT solvers and the size of the search tree of the abduction pro-
cedure remain the bottleneck of the approach, especially for hard theories (e.g.,
non-linear arithmetics) for which most calls with satisfiable formulas yield to a
local timeout (see Sect. 6.1).

7 Conclusion and Future Work

By combining our generic system GPiD for abductive reasoning modulo theories
with the Why3 platform to generate verification conditions, we obtained a tool to
check properties of WhyML programs, which is able to compute loop invariants
in a purely automated way.

The main drawback of our approach is that the set of possible abducible
literals is large, yielding a huge search space, especially if disjunctions of A-
implicants are considered. Therefore, we believe that our system in its current
state is mainly useful when used in an interactive way. For instance, the user
could provide the properties of interest for some of the loops and let the system
automatically compute suitable invariants by combining these properties, or the
program could rely on the user to choose between different solutions to the
abduction problem before applying the strengthening. Beside, it is also useful for
dealing with theories for which no specific abductive reasoning procedure exists,
especially for reasoning in the presence of user-defined symbols or axioms.

In the future, we will focus on the definition of suitable heuristics for auto-
matically selecting abducible literals and ordering them, to reduce the search
space and avoid backtracking. The number of occurrences of symbols should be
taken into account, as well as properties propagating from previous invariant
strengthening. A promising approach is to use dynamic program analysis tools
to select relevant abducibles. It would also be interesting to adapt the GPiD
algorithm to explore the search space width-first, to ensure that simplest solu-
tions are always generated first. Another option is to give Ilinva a more precise
control on the GPiD algorithm, e.g., to explore some branches more deeply,
based on information related to the verification conditions. GPiD could also be
tuned to generate disjunctions of solutions in a more efficient way.

From a more technical point of view, a tighter integration with the Why3
platform would certainly be beneficial, as explained in Sect. 6.2. The framework
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could be extended to handle procedures and functions (with pre- and -post
conditions).

A current limitation of our tool is that it cannot handle problems in which
Why3 relies on a combination of different solvers to check the desired properties.
In this case, Ilinva cannot generate the invariants, as the same SMT solver is
used for each abduction problem (trying all solvers in parallel on every problem
would be possible in theory but this would greatly increase the search space).
This problem could be overcome by using heuristic approaches to select the most
suited solver for a given problem.

From a theoretical point of view, it would be interesting to investigate the
completeness of our approach. It is clear that no general completeness result
possibly holds, due to usual theoretical limitations, however, if we assume that
a program P′ ∼ P such that VCgen(P′) is valid exists, does the call Ilinva(P)
always succeed? This of course would require that the invariants in P′ can be
constructed from abducibles occurring in the set returned by the procedure
GetAbducibles.
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Abstract. We introduce static and dynamic algebras for specifying
combinations of modules communicating among them via shared second-
order variables. In the static algebra, atomic modules are classes of struc-
tures. They are composed using operations of extended Codd’s rela-
tional algebra, or, equivalently, first-order logic with least fixed point.
The dynamic algebra has essentially the same syntax, but with a specifi-
cation of inputs and outputs in addition. In the dynamic setting, atomic
modules are formalized in any framework that allows for the specification
of their input-output behaviour by means of model expansion. Algebraic
expressions are interpreted by binary relations on structures. We demon-
strate connections of the dynamic algebra with a modal temporal logic
and deterministic while programs.

1 Introduction

In this paper, we introduce a formalism for specifying and reasoning about modu-
lar systems. The goal is to be able to combine reusable components, potentially
written in different languages, for solving complex computational tasks.1 We
start with first-order logic with fixpoints. We use an algebraic syntax, similar
to Codd’s relational algebra, but the idea is the same. We redefine FO(LFP),
i.e., first-order logic with the least fixpoint operator, over a vocabulary of atomic
module symbols that replaces a relational vocabulary. In this static setting, each
atomic symbol is interpreted as a set of structures rather than a relational table
(set of tuples). That is, by a boolean query, a decision procedure. Thus, while
the syntax is first-order, the semantics is second-order because variables range
over relations. This gives us the first logic.

The second stage is a dynamic setting where we add information flows. An
information flow is a propagation of information from inputs to outputs. Formally,
it is given by two functions, I and O that partition the relational variables
of atomic modules into inputs and outputs. Semantically, modules are binary
relations on structures. The relations describe how information propagates. This
gives us an algebra of binary relations, where we can reason about information
1 The heterogeneous components could be web services, knowledge bases, declarative

specifications such as Integer Liner Programs, Constraint Satisfaction Problems,
Answer Set Programs etc.
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flows and control the expressive power by means of restricting the algebraic
operations and the logics for axiomatizing atomic modules.

Algebras of binary relations have been studied before. Such an algebra was
first introduced by De Morgan. It has been extensively developed by Peirce and
then Schröder. It was abstracted to relation algebra RA by Jónsson and Tarski
in [1]. For a historic perspective please see Pratt’s informative historic overview
paper [2]. More recently, relation algebras were studied by Fletcher, Van den
Bussche, Surinx and their collaborators in a series of paper, see, e.g. [3,4]. The
algebras of relations consider various subsets of operations on binary relations
as primitive, and other as derivable. In another direction, [5,6] and others study
partial functions and their algebraic equational axiomatizations.

When our algebra is interpreted over a pointed Kripke structure, it becomes
a modal temporal (dynamic) logic. The logic allows one to specify patterns of
execution inside (definable) modalities, similar to Dynamic Logic (see, e.g., [7])
and LDLf [8]. Just like in PDL and LDLf , the main constructs of imperative
programming (e.g., while loops) are definable. The main difference of our logic
from PDL and LDLf is that we impose the Law of Inertia for atomic components:
the interpretation of the variables not affected by a direct change must remain
the same. In this way, the logic is similar to Reiter’s situation calculus [9] and
Golog [10]. However unlike the first-order successor state axioms of the situation
calculus, we allow atomic changes to be non-deterministic, to be specified in
a logic with any expressive power where the main computational task can be
formalized as the task of Model Expansion, of any complexity. We formulate
the main computational task, the Model Expansion task for processes, in the
modal setting of our logic as the existence of an information flow that results in
a successful computation.

This paper continues the line of research that started at FROCOS 2011 [11]
and continued in [12] and then in [13] and [14]. Unlike the previous work, we
base our static formalism in classical logic, so the set of our algebraic operations
is different. We also develop a novel dynamic perspective, through an algebra of
binary relations, and then a modal temporal (dynamic) logic. The development
of the dynamic view constitutes most of this paper. Since, in our logic, all the
variables that are not constrained by the algebraic expressions are implicitly
cylinrified, the closest related work is that on cylindric algebras [15]. These alge-
bras were introduced by Tarski and others as a tool in the algebraization of the
first-order predicate calculus.2 However, a fundamental difference is that, in our
logic, unconstrained variables are not only cylindrified, but their interpretation,
if not modified, is transferred to the next state by inertia. This property gives
us, mathematically, a very different formalism, which is suitable for reasoning
about the dynamics of information flows.

The rest of the paper is organized as follows. In Sect. 2, we define the main
computational task of Model Expansion in the context of related tasks. Then, in
Sect. 3, we introduce the syntax and two different semantics, static and dynamic,
of our algebras. The algebra under the dynamic semantics is called a Logic of

2 See [16] for a historic context in applications to Database theory.
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Information Flows (LIF). In Sect. 4, we show that, just by adding input and
output specifications to classical logic (here, in an algebraic form), we obtain
multiple operations that are given as primitive in many algebras of binary rela-
tions. In Sect. 5, we show a connection with modal logic. Finally, we conclude,
in Sect. 6, with a broader perspective and future research directions.

2 Model Expansion, Related Tasks

Model Expansion [17] is the task of expanding a structure to satisfy a specifica-
tion (a formula in some logic). It is the central task in declarative programming:
in Answer Set Programming, Constraint Satisfaction Problem, Integer Linear
Programming, Constraint Programming, etc. In this section, we define Model
Expansion and compare it to two other related computational problems.

For a formula φ in any logic L with model-theoretic semantics, we can asso-
ciate the following three tasks (all three for the same formula), satisfiability
(SAT), model checking (MC) and model expansion (MX). We now define them
for the case where φ has no free object variables.

Definition 1 (Satisfiability (SATφ)). Given: Formula φ. Find: structure B such
that B |= φ. (The decision version is: Decide: ∃B such that B |= φ?).

Definition 2 (Model Checking (MCφ)). Given: Formula φ, structure A for
vocab(φ). Decide: A |= φ? There is no search counterpart for this task.

The following task (introduced in [17]) is at the core of this paper. The decision
version of it can be seen as being of the form “guess and check”, where the
“check” part is the model checking task we just defined.

Definition 3 (Model Expansion (MXσ
φ)). Given: Formula φ with designated

input vocabulary σ ⊆ vocab(φ) and σ-structure A. Find: structure B such that
B |= φ and expands σ-structure A to vocab(φ). (The decision version is: Decide:
∃B such that B |= φ and expands σ-structure A to vocab(φ)?).

Any logic that can be interpreted over first-order (Tarski) structures can be used
for writing specifications φ. In general, vocabulary σ can be empty, in which
case the input structure A consists of a domain only. When σ = vocab(φ), model
expansion collapses to model checking, MXσ

φ = MCφ. Note that, in general, the
domain of the input structure in MC and MX can be infinite. For complexity
analysis, in this paper, we focus on finite input structures.

Let φ be a sentence, i.e., has no free object variables. Data complexity [18]
is measured in terms of the size of the finite active domain. For the decision
versions of the problems, data complexity of MX lies in-between model checking
(full structure is given) and satisfiability (no part of structure is given):

MCφ ≤ MXσ
φ ≤ SATφ.

For example, for FO logic, MC is non-uniform AC0, MX captures NP (Fagin’s
theorem), and SAT is undecidable. In SAT, the domain is not given. In MC and
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MX, at least, the (active) domain is always given, which significantly reduces
the complexity of these tasks compared to SAT. The relative complexity of the
three tasks for several logics, including ID-logic of [19] and guarded logics, has
been studied in [20].

In this paper, we will view Model Expansion as a (nondeterministic) trans-
duction, i.e., a binary relation from input to outputs, that are τ -structures. We
will develop an algebra of such transductions. The following example illustrates
what we will consider as an atomic transduction. In the development of our alge-
bra, we will abstract away from what exactly the atomic transductions are. We
will become more specific towards the end of the paper, when we restrict our
attention to a specific logic and prove a complexity result.

Example 1. Consider the following first-order formula with free relational vari-
ables. φ3Col(V,E,R,G,B) :=

∀x (V (x) → [R(x) ∨ B(x) ∨ G(x)]) ∧
∀x (V (x) → ¬[(R(x) ∧ B(x)) ∨ (R(x) ∧ G(x)) ∨ (B(x) ∧ G(x))])

∧ ∀x∀y [V (x) ∧ V (y) ∧ E(x, y) →
¬((R(x) ∧ R(y)) ∨ (B(x) ∧ B(y)) ∨ (G(x) ∧ G(y)))].

This formula axiomatizes a class of structures. A class of structures, which is
closed under isomorphism, represents a boolean query. In this case, the query
specifies all 3-colourable graphs with all their proper clourings. If we identify I1 =
{E, V } as the input vocabulary, and O1 = {R,G,B} as the output (solution)
vocabulary, then we obtain the classic 3-Colouring computational problem. It
can be viewed as a transduction or a binary relation on structures, defined by
the binary semantics below. We can also identify I2 = {V,R,G,B} as an input
vocabulary, and O2 = {E} as the output, and it will give us a rather different
computational problem, with no specific name.

One of the parameters to control the expressive power of the logic is the
formalism for the atomic transductions (atomic modules). In the example above,
the axiomatization is first-order, and the free second-order variables implicitly
make it ∃SO. But later in the paper, we consider axiomatizations that are output-
monadic non-recursive Datalog programs, which are much less expressive.

3 Algebras: Static and Dynamic

For essentially the same syntax, we produce two algebras, static and dynamic,
by giving different interpretations to the algebraic operations and to the ele-
ments of the algebras. In the second algebra, atomic modules have a direction of
information propagation, which corresponds to solving MX task for those mod-
ules. The algebras correspond to classical and modal logics (as we will see later),
respectively. We use a version of Codd’s relational algebra instead of first-order
logic, since we need an algebraic notation, however, the equivalence of the two
formalisms is well-known.
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Syntax. Assume we have a countable sequence Vars = (X1,X2, . . . ) of relational
variables each with an associated finite arity. For convenience, we use X, Y , Z,
etc. Let ModAt = {M1,M2, . . . } be a fixed vocabulary of atomic module symbols.
Each Mi ∈ ModAt has an associated variable vocabulary vvoc(Mi) whose length
can depend on Mi. We may write Mi(Xi1 , . . . , Xik), (or Mi(X̄)), to indicate that
vvoc(M) = (Xi1 , . . . , Xik). Similarly, ModVars = {Z1, Z2, . . . } is a countable
sequence of module variables, where each Zj ∈ ModVars has its own vvoc(Zj).
Algebraic expressions are built by the grammar:

α ::= id | Mi | Zj | α ∪ α | α− | πδ(α) | σΘ(α) | μZj .α. (1)

Here, Mi is any symbol in ModAt of the form Mi(X̄), δ is any finite set of
relational variables in Vars, Θ is any expression of the form X = Y , for relational
variables of equal arity that occur in Vars, Zj is a module variable in ModVars
which must occur positively in the expression α, i.e., under an even number of
the complementation (−) operator. By equality symbol ‘=’ in Selection condition
Θ, we mean the equality of the interpretations. It is a slight abuse of notations,
however the definition of the semantics specifies the intended meaning precisely.

Atomic modules can be specified in any formalism with a model-theoretic
semantics. For example, we saw an axiomatization of 3Colouring in Example 1.
Modules occurring within one algebraic expression can even be axiomatized in
different logics, if needed. They can also be viewed as abstract decision proce-
dures. But, as far as the static algebra is concerned,

their only relevant feature is the classes of structures they induce.

When the domain is specified, we talk about sets of structures rather than classes.

Static (Unary) Semantics. Fix a finite relational vocabulary τ . Algebraic
expressions will be used as “constraints”. A variable assignment s is a function
that assigns, to each relational variable, a symbol in τ of the same arity. We
introduce notation V := s−1(τ). Clearly, V ⊂ V ars. Function s gives us the
flexibility to apply the same algebraic expression in multiple contexts, without
a priori binding to a specific vocabulary.

Now fix a domain Dom.3 The domain can be finite or infinite. Let U be
the set of all τ -structures over the domain Dom. The following definition is
mathematically necessary in defining the semantics of atomic modules.

Definition 4. Given a sub-vocabulary γ of τ , a subset W ⊆ U is determined
by γ if it satisfies

for all A,B ∈ U such that A|γ = B|γ we have
A ∈ W iff B ∈ W.

3 Usually, in applications, domain Dom is the (active) domain of an input structure
for a task of interest such as MX.
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Given a well-formed algebraic expression α defined by (1), we say that struc-
ture A satisfies α (or that is a model of α) under variable assignment s, notation
A |=s α, if A ∈ [α]s, where unary interpretation [ · ]s is defined as follows. Given
a variable assignment s, function [ · ]s assigns a subset [Mi]s ⊆ U and a subset
[Zj ]s ⊆ U to each atomic module symbol Mi ∈ ModAt and each module vari-
able Zj ∈ ModVars, with the property that [Mi]s is determined by s(vvoc(Mi))
(respectively, [Zj ]s is determined by s(vvoc(Zj))). The unary interpretation of
atomic modules [ · ]s (parameterized with s) can be viewed as a function that
provides “oracles” or decision procedures, or answers to boolean queries. In gen-
eral, these oracles can be of arbitrary computational complexity.

We extend the definition of [ · ]s to all algebraic expressions.

[id]s := U.
[α1 ∪ α2]s := [α1]s ∪ [α2]s.
[α−]s := U \ [α]s.
[πδ(α)]s := {A ∈ U | ∃B (B ∈ [α]s and A|s(δ) = B|s(δ))}.
[σX=Y (α)]s := {A | A ∈ [α]s and A|s(X) = A|s(Y )}.
[μZj .α]s :=

⋂{
R ⊆ U | [α]s[Z:=α] ⊆ R

}
.

Here, [α]s[Z:=α] means an interpretation that is exactly like given by the function
[ · ]s, except Z is interpreted as α. Note that Projection πδ(α) is equivalent to
cylindrification Cγ(α), where γ = V \ δ.

Free and Bound Variables. These notions are exactly the same as in classical
logic. The role of an existentional quantifier is played by Cylinderfication. We
define them as follows. free(M) := vvoc(M), free(id) := ∅, free(α ∪ β) :=
free(α)∪free(α), free(α−) := free(α), free(πδ(α)) := δ, free(σX=Y (α)) :=
free(α) ∪ {X,Y }, free(μX̄,Zα[X̄ : t̄] := free(t̄) ∪ (free(α) \ {X̄, Z}). Taking
into account that Projection πδ(α) is equivalent to cylindrification Cγ(α), where
γ = vvoc(α) \ δ, we also have: free(Cγ(α)) := free(α) \ γ. Bound variables are
defined as those that are not free.

Implicit Cylindrification. Algebraic expressions can be viewed as constraints
on the free variables. The following proposition shows that everything outside
the free variables of α is implicitly cylindrified. Recall that V := s−1(τ).

Proposition 1. If α is an atomic module symbol, then [α] = [πfree(α)(α)].

Proof. The proposition holds for the atomic case because, by the static semantics
of atomic modules, the set of structures [Mi]s that interprets an atomic module
is determined by s(vvoc(Mi)), see Definition (4), and vvoc(Mi) = free(Mi).

We now give a binary semantics to the algebra. The algebra under this seman-
tics is called a Logic of Information Flows (LIF).4

Dynamic (Binary) Semantics. The Dynamic semantics is produced by
adding information flows. Such flows are initiated by Model Expansion task,
4 Please note that the goals of this paper have no connection with information flows

in security.
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where we provide inputs by giving a part of a structure (say, a graph), and
expand to obtain the solution part (say, a possible 3-colouring). Since informa-
tion propagates from inputs to outputs, we introduce two functions that specify
inputs and outputs of atomic module symbols, respectively. As a consequence of
specifying inputs and outputs, we transition to generalized binary expressions.
Projection now has two cases, for the left and the right parts of the binary
relation it applies to, and Selection has three – left, right and mixed.

Let ModAtI/O denote the set of all atomic module symbols M with all possi-
ble partitions of vvoc(M) into inputs and outputs, i.e., I(M)∪O(M) = vvoc(M)
and I(M) ∩ O(M) = ∅.5 This set is larger than the set ModAt (unless both
are empty) because the same M can have several different input-output assign-
ments. Similarly, we define ModVarsI/O. The well-formed algebraic expression
α is defined, again, by (1), except, in the atomic case, we have atomic mod-
ule symbols (respectively, module variables) from ModAtI/O (respectively, from
ModVarsI/O).

While inputs and outputs of atomic modules are always given, the situation
with inputs I(α) and outputs O(α) of a general algebraic expression α is much
more complicated. The problem is that it is not always possible to syntactically
identify the variables whose interpretations are needed as conditions for applying
algebraic expression α, and those that are the effects of α, i.e., can potentially
be modified by the expression. A detailed analysis, for a general setting, is a
subject of an ongoing collaborative work.

Let s be as above. Given a well-formed α, we say that pair of structures
(A,B), satisfies α under variable assignment s, notation (A,B) |=s α, if (A,B) ∈
[[α]]s, where binary interpretation [[ · ]]s is defined by I and II below.

I. Binary Semantics: Atomic Modules and Variables

Definition 5. For atomic modules in ModAtI/O, we have:

[[M ]]s :=
{
(A,B) ∈ U × U | there exists C ∈ [M ]s such that

C|s(I(M)) = A|s(I(M)), (2)
C|s(O(M)) = B|s(O(M)) (3)

and A|τ\s(O(M)) = B|τ\s(O(M))

}
. (4)

That is, in each pair of structures in the interpretation of an atomic module,
the structure on the left agrees with the unary semantics on the inputs, and the
structure on the right agrees with the unary semantics on the outputs. While
in the unary semantics, everything that is not explicitly mentioned is implic-
itly cylindrified, here the situation is different. Intuitively, on states where it is
defined, an atomic module produces a replica of the current structure except
the interpretation of the output vocabulary changes as specified by the action.
This preservation of unmodified information, while intuitively obvious, is an

5 Either one of these sets, I(M), O(M), can be empty.
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important technical property. For this reason, we call it, rather ostentatiously,
the Law of Inertia. The semantics is defined in a way so that atomic modules
impose constraints on the vvoc(M) only. The semantics of module variables
Z ∈ ModVarsI/O is defined in exactly the same way as the semantics for atomic
module constants.

Properties of Binary Atomic Modules. Before giving binary semantics to
the operations, we clarify the properties of the semantics of atomic modules by
the following proposition.6

Proposition 2. For all atomic modules, we have, for all structures A, B:

(a) (A,B) ∈ [[M ]]s ⇒ (B,B) ∈ [[M ]]s,
(b) (B,B) ∈ [[M ]]s ⇔ B ∈ [M ]s.

Proof. (a) Assume, towards a contradiction that (a1) (A,B) ∈ [[M ]]s, but (a2)
(B,B) �∈ [[M ]]s. Assumption (a1) implies, by the definition of the binary seman-
tics of atomic modules, that there exists C ∈ [M ]s such that conditions (2)–(4)
hold. By (4), which is the Law of Inertia, A|s(I(M)) = B|s(I(M)). This is because
s(I(M)) ⊆ τ \ s(O(M)) since I(M) ∩ O(M) = ∅, so the Law of Inertia applies.
Thus, C|s(I(M)) = A|s(I(M)) = B|s(I(M)). Assumption (a2) implies that for all
C ∈ [M ]s, at least one of the conditions (2)–(4), where A = B, must be violated
for all structures B. Violation of (2) and (3) is impossible by our conclusion from
the assumption (1a). Violation of (4) is impossible because A is the same as B
in this case.

(b, ⇒) Assume (B,B) ∈ [[M ]]s. Then, by Definition 5 of the binary semantics
for atomic modules, there exists C ∈ [M ]s such that C|s(I(M)) = A|s(I(M)) and
C|s(O(M)) = B|s(O(M)). By Proposition 1, in the case of atomic modules, [M ] =
[πfree(M)(M)]. Thus, since free(M) = vvoc(M) = I(M) ∪ O(M), it does not
matter how B interprets symbols outside s(free(M)), and C can be taken to
be B.

(b, ⇐) Assume B ∈ [M ]s. Then, by the unary semantics, there exists C ∈
[M ]s such that C|s(I(M)) = B|s(I(M)) and C|s(O(M)) = B|s(O(M)). Take C = B.
Obviously, B = B outside of the outputs of M . Thus, all three conditions of
Definition 5 are satisfied and (B,B) ∈ [[M ]]s.

II. Binary Semantics: the Remaining Cases. We are now ready to extend
the binary interpretation [[·]]s to all algebraic expressions α:

6 Part (b) of this proposition is stated without proof as Theorem 4.1 for compound
expressions in Shahab Tasharrofi thesis. The language has Projection, Sequential
Composition, Union and Feedback. The operations of Projection and Sequential
Composition have a different semantics than ours, and we do not have Feedback.
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[[id]]s := {(A,B) ∈ U × U | A = B},
[[α1 ∪ α2]]s := [[α1]]s ∪ [[α2]]s,
[[α−]]s := U × U \ [[α]]s,
[[μZj .α]]s :=

⋂ {
R ⊆ U × U | [[α]]s[Z:=R] ⊆ R

}
,

[[πl
δ(α)]]s := {(A,B) ∈ U × U |

∃ (A′,B) ∈ [[α]]s such that A′|s(δ) = A|s(δ)},
[[πr

δ(α)]]s := {(A,B) ∈ U × U |
∃ (A,B′) ∈ [[α]]s such that B′|s(δ) = B|s(δ)},

[[σl
X=Y (α)]]s := {(A,B) ∈ [[α]]s | (s(X))A = (s(Y ))A},

[[σr
X=Y (α)]]s := {(A,B) ∈ [[α]]s | (s(X))B = (s(Y ))B},

[[σlr
X=Y (α)]]s := {(A,B) ∈ [[α]]s | (s(X))A = (s(Y ))B}.

Operation id is sometimes called the “nil” action, or it can be seen as an
empty word which is denoted ε in the formal language theory. It is convenient
to extend the selection operation to Θ ∈ {X = Y,X �= Y,X = R,X �= R},
where R is a relational constant. This extension is done in an obvious way.
According to the semantics, Left Projection keeps the interpretation of a subset
of the vocabulary in the first element of the binary relation defined by α while
cylindrifying everything else on the left. It keeps the second element of the binary
relation intact. The semantics of Right Projection is defined symmetrically.7

Standard Models: Induction Principle. The semantics of the algebra of
binary relations on U gives us transition systems (Kripke structures) with states
that are elements of U and transition given by the binary semantics. In this
paper, we are interested in reachability from the input structure. We need to
ensure categoricity of the theories in the logic, to avoid non-standard models
that, in particular, do not originate in the input structure. For that purpose, we
semantically impose the following restriction:

only structures reachable from the input structures by means of applying
atomic modules are in the allowable Kripke models.

This semantic constraint can also be imposed axiomatically, although we do
not do it in this paper. For example, in Dynamic Logic, which is a fragment
of the Logic of Information Flows, it would be expressed by an axiom schema
p∧ [a∗](p → [a]p) → [a∗]p. This schema is a form of an inductive definition. Such
a definition always has a construction principle that specifies how to construct a
set, and an induction principle that says “nothing else is” in the set being defined.
Together, the two principles produce, depending on the logic, an axiom similar
to the the second-order induction axiom of Peano Arithmetic or the Dynamic
Logic axiom above [21].8

7 Equivalently, we could have introduced appropriate Cylindrification operations
instead of the two Projections.

8 The idea of connecting dynamic systems with Peano Arithmetic goes back to Reiter
[9]. He introduced second-order Induction axiom to the Basic Action Theory of the
situation calculus, which is a formalism for reasoning about actions based on classical
first and second-order logic.
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In addition to the algebraic operations above, we will also use Sequential
Composition (α;β). This operation is sometimes also called relative, dynamic,
or multiplicative conjunction as its properties are similar to the properties of
the logical (additive, static) conjunction (α ∩ β). The semantics of sequential
composition is given as follows.

[[α;β]] := {(A,B) | ∃C((A,C) ∈ [[α]] and (C,B) ∈ [[β]])}.

This operation is definable, under some conditions on inputs and outputs,
through the other operations. The full study of the primitivity of this opera-
tion is an ongoing collaborative work.

As a decision task, we are interested in checking whether a program α has a
successful execution, including a witness for its free relational variables, starting
from an input structure A. This is specified by A |=s |α〉T, where |α〉 is a right-
facing possibility modality, and T represents true, that is, all states. We formally
introduce and explain this modality in Sect. 5 on Modal Logic. To evaluate α in
A, we use s to match the vocabulary of A with the relational input variables of
α, while matching the arities as well, and then apply the binary semantics as
defined above. We will come back to this decision task in Definition 7.

Static-Dynamic Duality for Atomic Modules. Note that, for a given
domain, each atomic module is, simultaneously, (a) a set of structures, according
to the unary semantics, and (b) a binary relation, i.e., a set of pairs of structures,
according to the binary semantics.

4 Definable Constructs

We now introduce several definable operations, and we study some of their prop-
erties. All of those constructs are present in algebras of binary relations and
partial functions. There are studies on which operations are primitive and which
are definable [3]. It turns out that the only thing lacking in classical logic to
define most of these constructs is information propagation, i.e., a specification
of inputs and outputs. By adding it, we obtain a surprisingly rich logic. In the
following, we assume that all structures range over universe U, and all pairs of
structures over U × U.

Set-Theoretic Operations

di := id−, (diversity)
� := id− ∪ id, (all)
⊥ := �−, (empty)
α ∩ β := (α− ∪ β−)−, (intersection)
α − β := (α− ∪ β)−, (difference)
α ∼ β := (α− ∪ β) ∩ (β− ∪ α). (similar)
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In the following, we use I(α) and O(α) as a generalization of inputs and
outputs of atomic modules to compound algebraic expressions.9

Projection onto the Inputs (Domain). Dom(α) := πl
I(α)(α) ∩ id. This

operation is also called “projection onto the first element of the binary relation”.
It identifies the states in V where there is an outgoing α-transition. Thus,

[[Dom(α)]] = {(B,B) | ∃B′ (B,B′) ∈ [[α]]}.

Projection onto the Outputs (Image). Img(α) := πr
O(α)(α) ∩ id. This

operation can also be called “projection onto the second element of the binary
relation”. It follows that

[[Img(α)]] = {(B,B) | ∃B′ (B′,B) ∈ [[α]]}.

Forward Unary Negation (Anti-domain). Regular complementation
includes all possible transitions except α. We introduce a stronger negation which
is essentially unary (binary with equal elements in the pair) and excludes states
where α originates.

�α := (πI(α)(α))− ∩ id.

It says “there is no outgoing α-transition”. By this definition,

[[ �α]] = {(B,B) | ∀B′ (B,B′) �∈ [[α]]}.

Backwards Unary Negation (Anti-image). We define a similar operation
for the opposite direction.

�α := (πO(α)(α))− ∩ id.

It says “there is no incoming α-transition”. We obtain:

[[ �α]] = {(B,B) | ∀B′ (B′,B) �∈ [[α]]}.

Each of the unary negations is a restriction of the regular negation (complemen-
tation). Unlike regular negation, these operations preserve determinism of the
components. In particular, De Morgan’s Law does not hold for � and � . We
have demonstrated that these connectives have the properties of the Intuitionis-
tic negation. The proofs do not fit into the conference format and will be given
in a journal version of this paper.

9 We do not give a formal definition of the more general concept of inputs and outputs
here since it is long and an informal understanding is sufficient. The formal definition
will be given in another paper (with coauthors).
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Iteration (Kleene Star). This operator is the iteration operator, also called
the Kleene star. The expression α∗ means “execute α some nondeterministically
chosen finite number of times. We define it as follows: α∗ := μZ.(id ∪ Z;α). By
this definition,

[[α∗]] = {(A,B) | A = B or there exists n < 0
and C0, . . . ,Cn ∈ U such that

A = C0,B = Cn, and for all i < n, (Ci,Ci+1) ∈ [[α]]}.

That is, α∗ is a transitive reflexive closure of α.

Converse. This operation is equivalent to switching I(α) and O(α). It changes
the direction of information propagation. The semantics is as follows.

[[α�]] := {(A,B) | (B,A) ∈ α}.

Converse is implicitly definable: β = α� iff
Dom(α) = Img(β),
Dom(β) = Img(α).

Logical Equivalence (Equality of Algebraic Terms). We say that α and
β are logically equivalent, notation α = β if

(
(A,B) |=s α iff (A,B) |=s β

)
, for

all τ -structures A, B, for any variable assignment s.
The following proposition clarifies semantical connections between the oper-

ations.

Proposition 3.

�α = Dom(α)− ∩ id = Dom(α−) − Dom(α) = �Dom(α) = �Dom(α),
�α = Img(α)− ∩ id = Img(α−) − Img(α) = � Img(α) = � Img(α),

Dom(α) = ��α,
Img(α) = ��α,

id = �⊥ = �⊥,
⊥ = � id = � id = �� = ��,

���α = �α,
���α = �α.

Proof. The logical equivalences follow directly from the semantics of the opera-
tions.

Notice that � inherits a property of intuitionistic negation: �� α �= α. This
is because Anti-domain ( �), when applied twice, gives us Domain of α, which
is clearly different from α itself. But Domain of Anti-domain is Anti-domain,
so ��� α = Dom( � α) = � α. It is also possible to show that � and
� distribute over ∩ and ∪, so De Morgan Law does not hold for them. Also,
�� = ⊥, but �⊥ �= �. Indeed, �⊥ = id.

5 Modal Logic

We now define a modal logic which we call Lμμ, since it is similar to the mu-
calculus Lμ, but has two fixed points, unary and binary. The modal logic is used,
in particular, to formalize the main computational task, the Model Expansion
task for processes in Definition 7.
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5.1 Two-Sorted Syntax, Lµµ

The algebra with information flows can be equivalently represented in a “two-
sorted” syntax, with sorts for processes (α) and state formulae (φ). This syntax
gives us a modal logic, similar to Dynamic Logic. The syntax is given by the
grammar:

α ::= id | Ma | Zj | α ∪ α | α− | πδ(α) | σΘ(α) | φ? | μZj .α
φ ::= T | Mp | Xi | φ ∨ φ | ¬φ | |α〉 φ | 〈α| φ | μXi.φ.

(5)

The first line defines process formulae. It is essentially our original syntax (1).
The second line specifies state formulae. There, we have two possibility modali-
ties, |α〉 is a forward “exists execution of α” modality, and 〈α| is its backwards
counterpart. We can also introduce their duals, the two necessity modalities:
|α] φ := ¬( |α〉 ¬φ) and [α| φ := ¬(〈α| ¬φ). Symbols Ma stand for modules that
are “actions”. Symbols Mp stand for modules that are “propositions”. Operation
T represents a proposition that is true in every state. It replaces id under unary
semantics.10

Test φ? turns every unary operation in the second line into a binary one by
repeating the arguments, such as in e.g. going from p(x) to p(x, x), i.e., they are
(partial) identities on U. Atomic tests are (a) atomic modules-propositions (MC
modules) and (b) expressions of the form πδ(id) and σΘ(id).

We will see that the state formulae “compile out”, i.e., are expressible using
the operations in the first line. Despite state formulae being redundant, they are
useful for expressing properties of processes relative to states, as in other modal
temporal logics. In particular, they give an easy way to express quantification
over executions (sequences of transitions) by means of modalities.

Semantics of Lµµ. The modal logic is interpreted over a transition system,
where the set of states U is the set of all τ -structures over the same domain
Dom. 11

State Formulae (line 2 of (5)): Atomic modules Mp (modules-propositions)
and module variables Xi are interpreted exactly like in the unary semantics.
That is, Mp are Model Checking (MC) modules, i.e., those where the expansion
(output) vocabulary is empty. The rest of the formulae are interpreted exactly
as in the μ-calculus, except we have a backwards modality in addition:

[T] := U,
[φ1 ∨ φ2] := [φ1] ∪ [φ2] ,
[¬φ] := U \ [φ] ,
[|α〉φ] := {A | ∃B ( (A,B) ∈ [[α]] and B ∈ [φ] ) },
[〈α|φ] := {B | ∃A ( (A,B) ∈ [[α]] and A ∈ [φ] ) },

[μZj .φ] :=
⋂ {

R ⊆ U : [φ][Z:=R] ⊆ R
}
.

10 Note that T is unary, as every other state formula in the second line of (5), which
makes it different from the binary � and id.

11 In the case of solving Model Expansion task, the domain is determined by the domain
of the input structure.
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Process Formulae (line 1 of (5)): These formulae are interpreted exactly as
in the binary semantics. In particular, modules-actions are interpreted as Model
Expansion (MX) tasks, since they have inputs and outputs. In addition, tests
are interpreted as in Dynamic Logic: [[φ?]] := {(A,A) | A ∈ [φ] }. In particular,
[[T?]] = [[id]], where id is the relative multiplicative identity (using the terminol-
ogy introduced for algebras in the style of Tarski and Givant) in the syntax of
Lμμ (5).

Satisfaction Relation for Lµµ. We say that state A, where A ∈ U, satisfies
φ under variable assignment s, notation A |=s φ, if A ∈ [φ]. For process formulae
α, the definition of the satisfaction relation is exactly as in the binary semantics.

Structures as Transitions and States. Note that, for each α ∈ Lμμ, its model
is a Kripke structure where transitions represent MX tasks for all subformulae
of α, according to the binary semantics. In that Kripke structure, states are
Tarski’s structures, and atomic transitions are also Tarski’s structures, over the
same vocabulary.12

5.2 Two-Sorted = One-Sorted Syntax

The two representations of the algebra, one-sorted (1) and two-sorted (5), are
equivalent.13 We show that all operations in the second line of (5) are reducible
to the operations in the first line.

Theorem 1. For every state formula φ in two-sorted syntax (5), there is a
formula φ̂ in the one-sorted syntax (1) such that B |=s φ iff (B,B) |=s

Dom/Img(φ̂). For every process formula α there is an equivalent formula α̂ in
the one-sorted syntax.

The notation Dom/Img above means that either of the two operations can be
used.

Proof. We need to translate all the state formulae into process formulae. We
do it by induction on the structure of the formula. Atomic constant modules
and module variables remain unchanged by the transformation, except, monadic
variables are now considered as binary. Similarly, T is translated into binary as
T̂ := id.

– If φ = φ1 ∨ φ2, we set φ̂ := φ̂1 ∪ φ̂2.
– If φ = ¬φ1, we set φ̂ := � (φ̂1). Equivalently, we can set φ̂ := � (φ̂1), since

state formulae are unary, and the two negations are essentially unary, i.e., are
subsets of the Diagonal relation id.

– If φ = |α1〉 φ1, we set φ̂ := Dom(α̂1; φ̂1).

12 Structures can be viewed as computing devices. They store information and expand
an interpretation of an input sub-vocabulary to an output sub-vocabulary to satisfy
a specification.

13 Similar statements have been shown for other logics, e.g. [22].
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– If φ = 〈α1| φ1, we set φ̂ := Img(φ̂1; α̂1).
– If φ = μX.(φ1), we set φ̂ := μX.Dom(φ̂1). Equivalently, we can set φ̂ :=

μX.Img(φ̂1), since, again, we are dealing with unary formulae here.

Operations �, �, Dom and Img are expressible using the basic operations of
the algebra, under the binary semantics. This gives us a transformation for the
state formulae.

All process formulae α except test φ1? remain unchanged under this trans-
formation. For test, we have:

– If α = φ1?, we set α̂ := Dom(φ̂1). Equivalently, we can set α̂ := Img(φ̂1).

It is easy to see that, under this transformation, the semantic correspondence
holds.

We now comment on a connection of the propositional version of Lμμ (i.e., a
fragment without projection and selection) with well-known logics. Propositional
Dynamic Logic (PDL) [23,24] and Linear Dynamic Logic (LDLf ) [8]. Both logics
have the same syntax:14

α ::= id | Ma | α;α | α ∪ α | α∗ | φ?,
φ ::= T | Mp | φ ∨ φ | ¬φ | |α〉 φ.

(6)

However, the semantics is different is each case. In particular, LDLf is interpreted
over finite paths. Both logics are fragments of the propositional version (no
projection, selection) of the modal logic Lμμ. To see it, recall that the Kleene
star is expressible by α∗ := μZ.(id ∪ Z;α). Note also that unary negation is
implicit in the process line of (6). This is because, in our translation from the
two-sorted to one-sorted syntax, if φ = ¬φ1, we set φ̂ := �(φ̂1).

It is known that we can use non-deterministic operations of Union and the
Kleene star, which are used in PDL, to define basic imperative constructs called
Deterministic Regular programs.15

Definition 6. DetRegular (While) programs are defined by restricting the
constructs ∪, ∗ and ? to appear only in the following expressions:

skip := T?,
fail := (¬T)?,
if φ then α else β := (φ?;α) ∪ ((¬φ)?;β),
while φ do α := (φ?;α)∗; (¬φ)?.

(7)

An unrestricted use of sequential composition is allowed.

While the programs are deterministic, their definition uses non-deterministic
operations. For a complexity-theoretic analysis, it is possible to show that some
14 Some description logics have a similar syntax and may include Converse operation.
15 Please note that Deterministic Regular expressions and the corresponding Glushkov

automata are unrelated to what we study here. In those terms, expressions a; a∗

are Deterministic Regular, while a∗; a are not. Here, the term Deterministic Regular
comes from another name for While programs.
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deterministic algebraic operations are sufficient to define the same imperative
constructs. We leave such an analysis to future work. As an application, Deter-
ministic Regular programs can be used to specify dynamic behaviour of complex
modular systems, in the style of Golog programming language [25].

5.3 The Main Decision Task: Definition

We now present a counterpart of Definition 3 of Model Expansion task for
processes. It will be our main task in the rest of the paper. Recall that
A |=s |α〉T means that program α has a successful execution starting from
an input structure A. We show now that checking A |=s |α〉T corresponds to
the decision version of the MX task for process α. Recall that, by the trans-
lation in the proof of Theorem1, |α〉T = Dom(α) = �� α. Recall also that
[[Dom(α)]]s = {(B,B) | ∃B′ (B,B′) ∈ [[α]]s}. Thus, we have: A |=s |α〉T iff
(A,A) ∈ [[Dom(α)]]s iff ∃B (A,B) ∈ [[α]]s iff ∃B over the same vocabulary as
A such that if A|s(I(α)) interprets the inputs of α, then B|s(O(α)) interprets the
outputs of α. This is an MX task. Thus, we formulate our problem as follows:

Definition 7 (MX task for Processes (Decision Version)).

Problem: MX task for Processes (Decision Version)
Input: τ -structure A, formula α with variables I(α)∪O(α), variable assignment
s : vvoc(α) → τ .
Question: A |=s |α〉T?

6 Conclusion

Motivated by the need to combine preexisting components for solving complex
problems, we developed two algebras, static and dynamic, for combining systems
that communicate through common variables. The variables are second-order,
i.e., they range over sets. Atomic modules are axiomatized in any formalism
where the task of finding solutions can be specified as the task of Model Expan-
sion. The dynamic algebra treats such specifications as “black boxes”. We showed
that, many operations studied in algebras of binary relations become definable
if we add information propagation, i.e., specify inputs and outputs of atomic
modules. We also showed that, when interpreted over transition systems, the
dynamic algebra is equivalent to a modal temporal (dynamic) logic.

The logic can be viewed as a significant generalization of Reiter’s situa-
tion calculus and Golog [9,10] in that first-order successor state axioms are
replaced with potentially non-deterministic atomic modules that can be of arbi-
trary expressive power and computational complexity, and can be axiomatized
in multiple logics. In place of Golog programs, we have algebraic terms inside the
modalities that specify desired patterns of execution. Since our “successor state
axioms” – atomic modules – are no longer first-order, a Prolog implementation,
as in the case of Golog, is no longer possible. Different solving methods are
needed. Some methods for solving modular systems for fragments of the current
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language have already been developed [26,27]. One method, [26], took inspira-
tion in the CDCL algorithm for SAT solving, where modules are called as oracles
during the execution. In the other method, [27], a parallel algebra of propaga-
tors has been defined and used for solving Model Expansion task for modular
systems. An important research direction is to extend the previous methods to
the full algebra, as well as to develop new solving techniques.

Another research direction is to analyze the computational complexity of
the main computational task in the Logic of Information Flows, under various
assumptions on the expressiveness of atomic modules and allowable algebraic
operations. In particular, it is very important to provide guarantees to the user
that: (1) all problems in a particular complexity class are expressible in a partic-
ular fragment, to guarantee completeness of the fragment with respect to that
complexity class; and (2) no more than the problems in that class are express-
ible, to ensure implementability of the system by a chosen technique. Providing
such guarantees is at the core of the Model Expansion project and its connection
to Descriptive Complexity [28], and a lot of work is currently under way in this
direction.
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Abstract. We present and illustrate an approach to combining logics
based on shallow semantical embeddings, a technique that harnesses the
high expressive power of classical higher-order logic (HOL) as a meta-
language in order to embed the syntax and semantics of some object
logic. This approach allows us to reuse existing (higher-order) automated
reasoning infrastructure for seamlessly combining and reasoning with dif-
ferent non-classical logics (modal, deontic, intensional, epistemic, etc.).
In particular, the work presented here illustrates the utilisation of the
Isabelle proof assistant for the representation and assessment of linguisti-
cally complex arguments. We illustratively combine a dyadic deontic logic
(also featuring alethic modalities) enhanced with higher-order quantifiers
and a 2D-semantics drawing on Kaplan’s logic of indexicals.

Keywords: Logic combinations · Higher-order logic · Deontic logic ·
Argumentation · Higher-order theorem proving · Isabelle

1 Introduction

Our approach to combining logics is based on shallow semantical embeddings
(SSE). SSEs harness the high expressive power of classical higher-order logic
(HOL) as a meta-language in order to embed the syntax and semantics of some
object logics [3], thus allowing us to reuse existing (higher-order) automated
reasoning infrastructure for seamlessly combining and reasoning with different
non-classical logics (modal, deontic, intensional, epistemic, etc.) [1]. A seman-
tical embedding for an object logic corresponds to adding a set of axioms and
definitions to the expressive meta-logic (HOL) in such a way as to encode the
connectives of the object logic as meta-logical constants. This has interesting
practical implications. For example, the semantically embedded object logics (or
their combinations) can easily be varied by adding or removing (meta-logical)
axioms, which thus enables the rapid prototyping and formal verification of com-
plex object logics and their combinations. Moreover, due to the expressivity of
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HOL, it is also possible to directly encode bridge rules, or, as an alternative,
their corresponding semantic counterparts.

In this paper, we illustrate how a non-trivial combination of logics can be
stepwise developed and assessed. In particular, we demonstrate the utilisation of
the SSE approach within the Isabelle proof assistant for the representation and
assessment of complex linguistic phenomena in natural-language arguments.1

The presented examples require the extension and combination of a dyadic deon-
tic logic (DDL) [7] with higher-order quantification and a 2D-Semantics [17]
drawing on Kaplan’s logic of indexicals [15]. The extended logic DDL is immune
to known paradoxes in normative reasoning, in particular to contrary-to-duty
scenarios [8]. Moreover, conditional obligations in DDL are of a defeasible and
paraconsistent nature, and thus lend themselves to reasoning with incomplete
and inconsistent knowledge. Kaplan’s logic of indexicals aims at modelling the
behaviour of certain context-sensitive linguistic expressions known as indexicals
(such as pronouns, demonstrative pronouns, and some adverbs and adjectives).
It is characteristic of an indexical that its content varies with context, i.e. they
have a context-sensitive character. We have modelled Kaplanian contexts by
introducing a new type of object (context) and by modelling sentence mean-
ings as so-called “characters” [15], i.e. functions from contexts to sets of possible
worlds (following a Kripke semantics). For simplicity of exposition, we have
omitted tenses in our treatment of Kaplan’s logical theory.

With our running example we demonstrate that complex natural-language
arguments can nowadays be adequately reconstructed and formally verified by
higher-order provers when utilising the SSE approach. It is worth mentioning
that such a rich and heterogeneous combination of expressive logics as presented
here has not been automated before. By allowing higher-order quantification (e.g.
as required by the ethical argument in Sect. 4.3) and being immune to contrary-
to-duty paradoxes, the mechanisation of this particular logic combination also
constitutes a significant improvement over related work on automated deontic
reasoning (e.g., [6,11,13,16]). In particular, we overcome unintuitive, machine-
oriented formula representations and provide means for intuitive user interaction.

2 Semantical Embedding of (augmented) DDL

In this section, we introduce an extension of the work developed by Benzmüller et
al. [2], where a (propositional) Dyadic Deontic Logic (DDL) originally presented
by Carmo and Jones [7, Sect. 4] has been embedded in classical higher-order logic
(HOL). That work features a faithfulness proof, i.e. soundness and completeness
of the HOL-embedded logic with respect to Carmo and Jones original semantics,
as well as an encoding of this embedding in Isabelle/HOL together with an
illustrative example demonstrating how the approach can successfully cope with
a well-known contrary-to-duty scenario: Chisholm’s paradox [8]. In Sect. 4 below,
we will exemplarily showcase our embedding work by encoding an extended,
1 The SSE approach has also been illustrated in [1] by formalising the “Wise Men

Puzzle” (a riddle in multi-agent epistemic reasoning).
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more complex version of Chisholm’s paradox. We will often refer the interested
reader to Benzmüller et al. [2] for further details.

Part of the embedding work presented here has been made available as a
computer-verified data publication in the Archive of Formal Proofs [9]. Relevant
portions of that previous work are summarily presented in Sect. 4.3.2 We have
also uploaded the corresponding Isabelle/HOL sources for this paper to motivate
the interested reader to experimentally assess and extend our work (see [10]).

As a first measure, we extend the embedding introduced by Benzmüller et
al. [2] to a two-dimensional semantics [17] by introducing an additional type c
(for Kaplanian contexts, which will be discussed further in Sect. 3). With this
new base type, we lift (again) the type used to represent sentence meanings,
which were previously lifted from simple bool to its corresponding intensions (of
type w⇒bool), thus representing propositions as sets of worlds. The rest of the
embedding remains the same, excepting for the introduction of an additional
argument (of type c) for each lambda expression in the embedding of logical and
modal operators. We then use the automated tools integrated with the Isabelle
proof assistant to formally verify that our extended embedding indeed validates
the (double type-lifted) original Carmo and Jones axiom system.

2.1 Definition of Types

The type w corresponds to the original type for possible worlds/situations in
DDL (cf. [2]). We draw in this present work upon Kaplan’s logic of indexi-
cals/demonstratives as originally presented in [15] (and later revisited in [14]).
In Kaplan’s logical theory, entities of the aforementioned type w would corre-
spond to his so-called “circumstances of evaluation”. Moreover, Kaplan intro-
duces an additional dimension c, called “contexts of use”, which allows for the
modelling of particular context-dependent linguistic expressions, i.e. indexicals
(see Sect. 3). We additionally introduce some type aliases: wo for propositional
contents (intensions), which are identified with their truth sets, i.e. the set of
worlds at which the proposition is true, and cwo (aliased m) for sentence mean-
ings (also called “characters” in Kaplan’s theory), which are modelled as func-
tions from contexts to intensions. Type e is introduced to enable referencing and
quantifying over individuals.

typedecl w — Type for Kaplanian “circumstances of evaluation”
typedecl c — Type for Kaplanian “contexts of use”
type-synonym wo = w⇒bool — Type for propositional contents
type-synonym cwo = c⇒wo — Type for sentence meanings (“characters”)
type-synonym m = cwo — Type alias ‘m’ for characters
typedecl e — Type for individuals

2 The embedding introduced in [9] was developed with a focus on providing veri-
fied and extensible Isabelle/HOL sources enabling the reconstruction of a special
argument in normative ethics (Alan Gewirth’s argument for the so-called “Principle
of Generic Consistency” [12]). In particular, it does not yet embed the operators
“dthat” and “actually” (see Sects. 3.3 and 3.4 below). That work can be considered
as a complementary resource to this paper and is briefly revisited in Sect. 4.3.
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2.2 Semantic Characterisation of the DDL by Carmo and Jones

In this section, for the sake of completeness, we briefly summarise the SSE of the
DDL by Carmo and Jones in the Isabelle/HOL logic.3 A detailed presentation
of this work is given in [2]. The aim here is to illustrate our methodology and
to highlight the fact that an SSE for an object logic (DDL in this case) ‘simply’
corresponds to adding a set of concise and intuitive axioms and definitions to the
expressive meta-logic (HOL). We thereby make use of some basic set operators in
the definitions/abbreviations for the connectives of the object logic. Furthermore,
we use automated reasoning tools to formally verify that the embedding validates
some intended principles. This includes a verification of the original DDL axioms,
which, as expected, become theorems in our SSE.

Set Operators: We introduce some basic set-theoretic operators which are
used in the definitions and axioms below:

abbreviation subset::wo⇒wo⇒bool (infix �) where α � β ≡ ∀ w. α w −→ β w
abbreviation intersection::wo⇒wo⇒wo (infixr �) where α � β ≡ λx. α x ∧ β x
abbreviation union::wo⇒wo⇒wo (infixr 	) where α 	 β ≡ λx. α x ∨ β x
abbreviation complement::wo⇒wo (∼-) where ∼α ≡ λx. ¬α x
abbreviation instantiated::wo⇒bool (I-) where I ϕ ≡ ∃ x. ϕ x
abbreviation setEq::wo⇒wo⇒bool (infix =s) where α =s β ≡ ∀ x. α x ←→ β x
abbreviation univSet :: wo (�) where � ≡ λw. True
abbreviation emptySet :: wo (⊥) where ⊥ ≡ λw. False

Set-Theoretic Conditions: The semantics of the DDL by Carmo and Jones
draws on Kripke semantics for its (normal) alethic modal operators and on a
neighbourhood semantics4 for its (non-normal) deontic operators. To embed
those, we introduce the operators av and pv (accessibility relations between
worlds), and ob (denoting a neighbourhood function operating on sets of worlds)
at the meta-logical level. Axioms are introduced below to properly constrain
them. We employ the model finder Nitpick [5] to formally verify the consistency
of our axiomatisation.5 We refer the reader to [7] and [2] for further details.
3 Notice that at this level we still do not make use of the additional c type.
4 Neighbourhood semantics is a generalisation of Kripke semantics, developed inde-

pendently by Dana Scott and Richard Montague. Whereas a Kripke frame features
an accessibility relation R : W→2W indicating which worlds are alternatives to (or,

accessible from) others, a neighbourhood frame N : W→22W (or, as in our case,

N : 2W→22W ) features a neighbourhood function assigning to each world (or set of
worlds) a set of sets of worlds.

5 Calls to model finder Nitpick are pre-configured with the flags user-axioms = true
and expect = genuine (which we don’t show here for better readability). By finding
a genuine model satisfying some tautology (e.g. the “True” formula as shown below)
while taking into account all given user axioms, Nitpick indeed proves the consistency
of an axiom system. Similarly, Nitpick can prove, by finding a countermodel, the
non-validity of a given formula (in the context of a background axiom system). The
models (resp. countermodels) reported by Nitpick were inspected manually by us.
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consts
av::w⇒wo — av(w) are the worlds which are ‘open alternatives’ of w
pv::w⇒wo — pv(w) are the worlds which are ‘possible alternatives’ of w
ob::wo⇒wo⇒bool — ob(p) are the propositions obligatory in the given set of worlds

axiomatization where
sem-3a: ∀ w. I(av w) and — in every situation there is always an open alternative
sem-4a: ∀ w. av w � pv w and — open alternatives are possible alternatives
sem-4b: ∀ w. pv w w and — every situation is a possible alternative to itself
sem-5a: ∀ X. ¬(ob X ⊥) and — contradictions cannot be obligatory
sem-5b: ∀ X Y Z. (X � Y) =s (X � Z) −→ (ob X Y ←→ ob X Z) and
sem-5c: ∀ X Y Z. I(X � Y � Z) ∧ ob X Y ∧ ob X Z −→ ob X (Y � Z) and
sem-5d: ∀ X Y Z. (Y � X ∧ ob X Y ∧ X � Z) −→ ob Z ((Z � (∼X)) 	 Y) and
sem-5e: ∀ X Y Z. Y � X ∧ ob X Z ∧ I(Y � Z) −→ ob Y Z

lemma True nitpick[satisfy] oops — model found: axioms consistent

2.3 Semantical Embedding of DDL

The following abbreviations/definitions realise the SSE of the logical connectives
of DDL as lambda expressions of the meta-logic HOL (Isabelle/HOL).

Basic Propositional Connectives: In the SSE presented in [2], and in accor-
dance with [3], the propositional connectives of DDL were identified with truth
sets of type w⇒bool in HOL, where w is the type of possible worlds. In these and
various related papers we have called this a “type lifting”. In our given context
this type lifting is conservatively extended to also cover the additional type c of
Kaplanian contexts. In other words, the intuitive boolean type of propositions of
our object logic is now “doubly type lifted” in the embedding to type c⇒w⇒bool
(or simply: m).

abbreviation pand::m⇒m⇒m (infixr∧) where ϕ∧ψ ≡ λc w. (ϕ c w)∧(ψ c w)
abbreviation por::m⇒m⇒m (infixr∨) where ϕ∨ψ ≡ λc w. (ϕ c w)∨(ψ c w)
abbreviation pim::m⇒m⇒m (infix→) where ϕ→ψ ≡ λc w. (ϕ c w)−→(ψ c w)
abbreviation peq::m⇒m⇒m (infix↔) where ϕ↔ψ ≡ λc w. (ϕ c w)←→(ψ c w)
abbreviation pnot::m⇒m (¬-) where ¬ϕ ≡ λc w. ¬(ϕ c w)

Modal Operators: These correspond to the two alethic modal operators intro-
duced in DDL. As above, their embedding is based on a double type lifting of
the intuitive boolean type of propositions to type (c⇒w⇒bool)⇒(c⇒w⇒bool).
In the definition of these operators we make use of the previously defined av and
pv accessibility relations. For a detailed presentation of the SSE of modal logics
in HOL we refer the reader to [3].

abbreviation boxa :: m⇒m (�a-) where �aϕ ≡ λc w. ∀ v. (av w) v −→ (ϕ c v)
abbreviation diaa :: m⇒m (♦a-) where ♦aϕ ≡ λc w. ∃ v. (av w) v ∧ (ϕ c v)
abbreviation boxp :: m⇒m (�p-) where �pϕ ≡ λc w. ∀ v. (pv w) v −→ (ϕ c v)
abbreviation diap :: m⇒m (♦p-) where ♦pϕ ≡ λc w. ∃ v. (pv w) v ∧ (ϕ c v)
abbreviation taut :: m (�) where � ≡ λc w. True
abbreviation contr :: m (⊥) where ⊥ ≡ λc w. False
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Deontic Operators: These correspond to the two unary and the dyadic deontic
operators introduced in DDL. Their SSE analogously applies the double type
lifting idea as illustrated above. For a detailed presentation of the SSE of DDL
deontic operators in HOL we refer the reader to [2].

abbreviation cjod :: m⇒m⇒m (O〈-|-〉) where O〈ϕ|σ〉 ≡ λc w. ob (σ c) (ϕ c)
abbreviation cjos :: m⇒m (O〈-〉) where O〈ϕ〉 ≡ O〈ϕ|�〉
abbreviation cjoa :: m⇒m (Oa-) where

Oaϕ ≡ λc w. (ob (av w)) (ϕ c) ∧ (∃ x. (av w) x ∧ ¬(ϕ c x))
abbreviation cjop :: m⇒m (Oi-) where

Oiϕ ≡ λc w. (ob (pv w)) (ϕ c) ∧ (∃ x. (pv w) x ∧ ¬(ϕ c x))

Logical Validity: The classical notion of validity in modal logic is requiring
truth in all worlds. Since we have double lifted our type for propositions to
c⇒w⇒bool, we introduce here two notions of validity: context-dependent and
global validity. The latter corresponds to the former holding in every context.
This well illustrates the two-dimensionality aspect of our embedding.

abbreviation modvalidctx :: m⇒c⇒bool (�-�M ) where �ϕ�M ≡ λc. ∀ w. ϕ c w
abbreviation modvalid :: m⇒bool (�-�) where �ϕ� ≡ ∀ c. �ϕ�M c

2.4 Verifying the Embedding

Modal Collapse: Our axioms do not validate modal (alethic or deontic) col-
lapse. Nitpick computes intuitive countermodels (which are not displayed here).

lemma �P → OaP� nitpick oops — countermodel found: no collapse
lemma �P → OiP� nitpick oops — countermodel found: no collapse
lemma �P → �aP� nitpick oops — countermodel found: no collapse
lemma �P → �pP� nitpick oops — countermodel found: no collapse

Necessitation: We verify that the necessitation rule is validated by the axioms.

lemma NecDDLa: �A� =⇒ ��aA� by simp
lemma NecDDLp: �A� =⇒ ��pA� by simp

Original Axiom System: We have employed the automated reasoning tools
integrated with Isabelle to verify that our SSE indeed validates the axiom system
presented by Carmo and Jones in their original work (cf. [7, p. 293ff]). In the
following, we present an extract of the proven axioms and refer the reader to the
corresponding Isabelle/HOL sources [10] and [9] for the rest.6

6 Note that the provided axioms are encoded as globally (and classically) valid. They
are proved by employing some of the proof tactics supported by Isabelle. Some of
the tactics we employed are: simp (term rewriting engine), blast (tableaux prover),
metis (resolution and paramodulation prover), smt (SMT solver), and auto (term
rewriting and proof search using different methods). These tactics were automatically
suggested and applied by Isabelle’s metaprover Sledgehammer.
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lemma CJ-3: ��pA → �aA� by (simp add: sem-4a)
lemma CJ-4: �¬O〈⊥|A〉� by (simp add: sem-5a)
lemma CJ-7: �A ↔ B� −→ �O〈C|A〉 ↔ O〈C|B〉� using sem-5ab sem-5e by blast
lemma CJ-9p: �♦pO〈B|A〉 → �pO〈B|A〉� by simp
lemma CJ-12p: ��pA → (¬OiA ∧ ¬Oi(¬A))� using sem-5ab by blast
lemma CJ-13p: ��p(A ↔ B) → (OiA ↔ OiB)� using sem-5b by metis

An ideal obligation which is actually possible both to fulfil and to violate entails
an actual obligation (cf. [7, p.319]).

lemma CJ-Oi-Oa: �(OiA ∧ ♦aA ∧ ♦a(¬A)) → OaA�
using sem-5e sem-4a by blast

The following lemma highlights the relationship between conditional obligations
and implications.

lemma CJ-O-O: �O〈B|A〉 → O〈A → B|�〉� using sem-5bd4 by presburger

The following can be seen as bridge relations between conditional obligations
and actual/ideal obligations:

lemma CJ-14p: �O〈B|A〉 ∧ �pA ∧ ♦pB ∧ ♦p¬B → OiB� using sem-5e by blast
lemma CJ-15p: �(O〈B|A〉 ∧ ♦p(A ∧ B) ∧ ♦p(A ∧ ¬B)) → Oi(A → B)�

using CJ-O-O sem-5e by fastforce

Model finder Nitpick has found counterexamples for two of the axioms initially
provided by Carmo and Jones (see axioms 5 and 11 in [7, p. 293]), which proves
their non-validity (w.r.t. our semantic embedding in Isabelle/HOL). Quite inter-
estingly, those two axioms have indeed been revisited by Carmo and Jones later
in this very same work, where they have been weakened in order to avoid inconsis-
tency of the axiom system (see the discussion in [7, p. 323]). Moreover, we could
prove the validity of the new, weakened versions (w.r.t. our semantic embedding)
as shown below.

lemma CJ-5: �(O〈B|A〉 ∧ O〈C|A〉) → O〈B∧C|A〉�
nitpick oops — countermodel found by nitpick for this strong variant

lemma CJ-5-weak: �♦p(A ∧ B ∧ C) ∧ (O〈B|A〉 ∧ O〈C|A〉) → O〈B∧C|A〉�
by (simp add: sem-5c) — however this weaker variant is validated

lemma CJ-11p: �(OiA ∧ OiB) → Oi(A ∧ B)�
nitpick oops — countermodel found by nitpick for this strong variant

lemma CJ-11p-weak: �♦p(A ∧ B) ∧ (OiA ∧ OiB) → Oi(A ∧ B)�
using sem-5c by auto — however this weaker variant is validated

3 Extending the Embedding

In the previous section, we have modelled Kaplanian contexts by introducing
a new type of object (type c) and modelled sentence meanings as Kaplanian
characters, i.e. functions from contexts to sets of worlds (type c⇒w⇒bool). We
also made the corresponding adjustments to the semantical embedding of Carmo
and Jones DDL presented in [2]. So far we haven’t said much about what these
Kaplanian contexts are or which effect they should have on the evaluation of
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logical validity. We restricted ourselves to illustrating that their introduction
does not have any influence on the (classical) logical validity of key DDL axioms.
Indeed we showed how we can leverage our semantical embedding to prove the
validity of DDL axioms using Isabelle’s automated tools. In this section, we
introduce an alternative notion of logical validity as introduced by Kaplan (cf.
[14,15]), which is well-suited for working with context-dependent expressions.
This notion is called indexical validity.

3.1 Context Features

Kaplan’s theory [14,15] aims at modelling the behaviour of certain context-
sensitive linguistic expressions such as pronouns (“I”, “my”, “your”), demon-
strative pronouns (“that”, “this”), some adverbs (“here”, “now”, “tomorrow”)
and adjectives (“actual”, “present”). Such expressions are known as indexicals,
and thus Kaplan’s logical system (among others) is usually referred to as a “logic
of indexicals”. In his seminal work [15], though, Kaplan referred to it as “Logic
of Demonstratives” (LD).

It is characteristic of an indexical that its content varies with context, i.e. it
has a context-sensitive character. Non-indexicals have a fixed character, i.e. the
same content is invoked in all contexts. Kaplan’s logical system models context-
sensitivity by representing a context as a quadruple of features: 〈Agent(c), Posi-
tion(c), World(c), Time(c)〉. The Agent and the Position of a context c can
be seen as the actual speaker and place of the utterance respectively, while the
World and the Time of c stand for the circumstances of evaluation of the expres-
sion’s content and allow for the interaction of indexicals with alethic and tense
modalities respectively. For our present purposes,7 we can think of a context c as
the pair: 〈Agent(c), World(c)〉. We introduce the concepts of Agent and World
as functional constants.

consts Agent::c⇒e — function retrieving the agent corresponding to context c
consts World::c⇒w — function retrieving the world corresponding to context c

3.2 Logical Validity

Kaplan’s notion of (context-dependent) logical truth for a sentence corresponds
to its (context-sensitive) formula (of type c⇒w⇒bool) being true in the given
context and at its corresponding world.

abbreviation ldtruectx::m⇒c⇒bool (�-�-) where �ϕ�c ≡ ϕ c (World c)

Kaplan’s notion of context-independent logical validity for a sentence corre-
sponds to its being true in all contexts. This notion is known as indexical validity.

abbreviation ldvalid::m⇒bool (�-�D) where �ϕ�D ≡ ∀ c. �ϕ�c
7 Note that we do not consider tenses (as Kaplan does). An extension of our work to

operate on context quadruples is possible using the same approach presented here
(adding new types and further type-lifting the corresponding formulas).
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Isabelle’s integrated automated reasoning tools allow us to easily verify that
indexical validity is indeed weaker than its classical counterpart (truth at all
worlds for all contexts):

lemma �A� =⇒ �A�D by simp
lemma �A�D =⇒ �A� nitpick oops — countermodel found

Importantly, we can also easily verify that the interplay between indexical valid-
ity and the DDL modal and deontic operators does not result in modal collapse.

lemma �P → OaP�D nitpick oops — countermodel found: no collapse
lemma �P → �aP�D nitpick oops — countermodel found: no collapse

Next we show that the necessitation rule does not work for indexical validity (in
contrast to classical modal validity as defined for DDL).

lemma NecLDa: �A�D =⇒ ��aA�D nitpick oops — countermodel found
lemma NecLDp: �A�D =⇒ ��pA�D nitpick oops — countermodel found

Below we introduce a kind of a priori necessity operator (to be contrasted to the
more traditional alethic necessity). This operator (quite trivially) satisfies the
necessitation rule for indexical validity.8 In Kaplan’s framework, a sentence being
logically (i.e. indexically) valid means that it is true a priori : it is guaranteed
to be true in every possible context in which it is uttered, even though it may
express distinct propositional contents (intensions) in different contexts. This
correlation between indexical validity and a prioricity has also been claimed in
other two-dimensional semantic frameworks [17].

abbreviation ldvalidbox :: m⇒m (�D-) where �Dϕ ≡ λc w. �ϕ�D
lemma NecLD: �A�D =⇒ ��DA�D by simp — necessitation principle

3.3 Operator “dthat”

Kaplan’s operator dthat is aimed at modelling a special kind of indexi-
cals: demonstratives (e.g. “this/that”, “this/that [description]”). As mentioned
before, the referent of a (pure) indexical depends on the context. In the case of
demonstratives, the referent depends on the associated demonstration (mostly a
definite description). We also extend our embedding by introducing type-lifted
descriptions (see operator the below) and use these to introduce (as syntactic
sugar) a related operator named Dthat.

type-synonym cwe = c⇒w⇒e — type alias for indexical individual terms

abbreviation cthe::(c⇒w⇒e⇒bool)⇒cwe (the)
where the ϕ ≡ λc w. THE x. ϕ c w x

abbreviation ctheBinder::(c⇒w⇒e⇒bool)⇒cwe (binder the)
where the x. (ϕ x) ≡ the ϕ

8 Note that this operator is not part of the original Kaplan’s theory. It has been added
by us in order to provide an object-logical necessity operator useful to model modal
expressions which satisfy the necessitation rule with respect to indexical validity,
thus adding more expressiveness to our embedded logic combination.
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abbreviation dthat::cwe⇒cwe (dthat[-])
where dthat[α] ≡ λc w. α c (World c)

abbreviation Dthat::(c⇒w⇒e⇒bool)⇒cwe (Dthat[-])
where Dthat[α] ≡ dthat[the α]

Below we use Isabelle’s automated reasoning tools once more to formally val-
idate some important characteristics of Kaplan’s demonstratives. We start by
introducing equality for indexical individual terms (of type cwe as introduced
before). We also introduce the modal operator �S5 to signify that a formula is
necessarily true (in all possible worlds) at a given context. Then we show that
many equations involving demonstratives are indeed indexically valid while not
being classically valid or necessarily true. Details on the theoretical and philo-
sophical rationale behind these results can be found in [15, p. 539 (and also p.
547ff)]. For our present purposes, it is important to note that our results fully
coincide with the ones shown by Kaplan in his logical theory.

abbreviation ceq:: cwe⇒cwe⇒m (infix ≈) where α≈β ≡ λc w. α c w = β c w
abbreviation boxS5 :: m⇒m (�S5-) where �S5ϕ ≡ λc w. ∀ v. ϕ c v

According to the new notion of indexical validity, demonstratives refer a priori
(though not necessarily!) to the same objects as their associated demonstrations
(resp. descriptions) in all contexts of use. Note that this is not the case for
classical validity.

lemma �α ≈ dthat[α]�D by simp — using indexical validity
lemma ��S5(α ≈ dthat[α])�D nitpick oops — counterexample
lemma �α ≈ dthat[α]� nitpick oops — counterexample if using classical validity

Necessary equality in a certain context x does not imply a priori equality (i.e.
in all contexts).

lemma ��S5(dthat[β] ≈ dthat[α])�x=⇒�(dthat[β] ≈ dthat[α])�D
nitpick oops — counterexample

The a priori (i.e. in all contexts) equality of demonstratives is equivalent to the
a priori equality of their respective demonstrations/descriptions. Similarly, it
holds a priori (i.e. indexically valid or true in all contexts of use) that equal-
ity of demonstratives is equivalent to equality of their respective demonstra-
tions/descriptions.

lemma �dthat[β] ≈ dthat[α]�D ←→ �β ≈ α�D by simp
lemma �dthat[β] ≈ dthat[α] ↔ (β ≈ α) �D by simp

3.4 Operator “Actually”

Below we introduce the predicate A used to model the sentential operator “it
is actually the case that”. We use this term to indicate that the given sentence
is true in the (actual) world of the context in which it is uttered (World c), i.e.
independently of the world or situation of evaluation. More details can be found
in [15, p. 539 (and also p. 547ff)].

abbreviation cactually :: m⇒m (A- ) where Aϕ ≡ λc w. ϕ c (World c)
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We again formally validate some important characteristics of this operator.

lemma �ϕ ↔ Aϕ�D by simp
lemma ��S5(ϕ ↔ Aϕ)�D nitpick oops — counterexample
lemma ��S5(ϕ ↔ Aϕ)� nitpick oops — counterexample
lemma �ϕ�D ←→ �Aϕ� by simp

3.5 Quantification

By utilising Isabelle/HOL’s parameterised types (rank-1 polymorphism), we can
easily enrich our logic with (first-order and higher-order) quantifiers.

abbreviation mforall::( ′t⇒m)⇒m (∀ ) where ∀ Φ ≡ λc w.∀ x. (Φ x c w)
abbreviation mexists::( ′t⇒m)⇒m (∃ ) where ∃ Φ ≡ λc w.∃ x. (Φ x c w)

Additionally, we can add binder syntax (as syntactic sugar) for our quantifiers.

abbreviation mforallBinder::( ′t⇒m)⇒m (binder∀ ) where ∀ x. (ϕ x) ≡ ∀ ϕ
abbreviation mexistsBinder::( ′t⇒m)⇒m (binder∃ ) where ∃ x. (ϕ x) ≡ ∃ ϕ

3.6 Some Meta-logical Results

Below we introduce the meta-logical predicates stable (content) and stableChar-
acter. The former is employed to indicate that a sentential term has a fixed,
stable content (i.e. has the same denotation in all possible worlds) for a given
context; the latter is used to indicate that a sentence has a stable character (i.e.
has the same stable content in all contexts) [15].

abbreviation stable::m⇒c⇒bool where stable ϕ c ≡ ∀ w. ϕ c w −→�ϕ�Mc
abbreviation stableCharacter::m⇒bool

where stableCharacter ϕ ≡ ∀ c. stable ϕ c

These predicates are used to represent some interesting meta-logical results, some
of which we reproduce below (cf. [15, p. 547ff]). In particular, we show that (i)
sentences of the form “it is actually the case that ...” are stable. We also show
that for any sentence ϕ with a stable character: (ii) indexical validity implies
classical validity and (ii) the principle of (alethic) necessitation holds.

lemma ∀ c. stable (Aϕ) c by simp — (i)
lemma stableCharacter ϕ −→ (�ϕ�D −→ �ϕ�) by blast — (ii)
lemma stableCharacter ϕ −→ (�ϕ�D −→ ��aϕ�D) by blast — (iii)
lemma �ϕ�D −→ ��aϕ�D nitpick oops — counterexample for general case

4 Examples

4.1 Chisholm’s Paradox (Propositional)

(A1) It ought to be that Jones goes to assist his neighbours
(A2) It ought to be that if Jones goes, then he tells them he is coming
(A3) If Jones doesn’t go, then he ought not tell them he is coming
(A4) Jones doesn’t go (locally valid statement uttered in context ‘C’).
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We first present and assess a propositional version of Chisholm’s paradox [8].
One of the main virtues of Carmo and Jones’s DDL [7] is that it allows us to
adequately represent (avoiding explosion) the paradoxical set of sentences listed
above. As is well known, by using standard (normal) deontic logic (SDL) to model
this set of sentences, we can indeed derive a contradiction: John ought [not] to
tell his neighbours he is coming. Explosion is the result in SDL, and thus we can
infer anything. Chisholm’s example is known in the literature as a “contrary-to-
duty” scenario [8], since it arises from the fact that an individual (Jones) has
not honoured its duties. DDL is a logic purposely designed to be immune to this
well-known paradox (among others). Below we present the paradox as originally
formalised in [2] using (type-lifted propositional) Carmo and Jones DDL [7]. We
use Isabelle’s automated reasoning tools to show that the encoded axiom set is
consistent and verify its intended consequences (see sources in [10] for details).

consts JonesGo::m — Jones goes to assist his neighbours
consts JonesTell::m — Jones tells his neighbours he is coming
consts C::c — current context of use

axiomatization where
A1: �O〈JonesGo〉� and
A2: �O〈JonesTell|JonesGo〉� and
A3: �O〈¬JonesTell|¬JonesGo〉� and
A4: �¬(JonesGo)�C

Below we formalise the notion of obligation’s violation. In our framework, it
corresponds to having an (ideal) obligation to do something and not doing it.9

abbreviation violated ϕ ≡ Oi(ϕ) ∧ ¬ϕ

We use model finder Nitpick to show that the encoded axiom set is consistent.

lemma True nitpick [satisfy] oops — model found

We have employed Isabelle’s provided SMT solvers (Z3 and CVC4) to prove that
(a subset of) the introduced axioms indeed entails that, while having violated
the obligation to go help his neighbours, Jones actually ought to not tell them
he is coming.

lemma (��a¬(JonesGo)�C ∧ �♦p(JonesGo ∧ JonesTell)�C ∧
�♦p(JonesGo ∧ ¬JonesTell)�C ∧ �¬JonesTell�C ∧
�♦aJonesTell�C ∧ �♦a(¬JonesTell)�C)

−→ (�violated JonesGo�C ∧ �Oa(¬JonesTell)�C)
using sem-4a sem-4b sem-5e A1 A3 A4 sem-5b by smt

4.2 Chisholm’s Paradox (Enhanced)

(B1) It ought to be that I go to assist my neighbours
(B2) It ought to be that if I go, then I tell them I am coming

9 A discussion of the difference between actual and ideal obligations in the DDL
framework is out of the scope of this paper. We refer the interested reader to [7].
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(B3) If I don’t go, then I ought not tell them I am coming
(B4) I don’t go (locally valid statement uttered in context ‘C’).

We can use our expressive logic combination to represent Chisholm’s exam-
ple from the standpoint of a speaker. We introduce the pronoun I (an indexi-
cal), which corresponds to the agent of the context of use: Agent(c). Note that
this example can also be formulated using other demonstratives (e.g. Kaplan’s
“dthat”).

type-synonym cwe = c⇒w⇒e — type alias for indexical individual terms
abbreviation I::cwe where I ≡ λc w. Agent c

Since this variant is no longer propositional, we need to introduce some predicate
constants and type-lifting definitions/abbreviations.

consts goPred::e⇒m — predicate: to go to assist one’s neighbours
consts tellPred::e⇒m — predicate: to tell one is coming
abbreviation Go::(c⇒w⇒e)⇒m

where Go α ≡ λc w. goPred (α c w) c w — type-lifted predicate
abbreviation Tell::(c⇒w⇒e)⇒m

where Tell α ≡ λc w. tellPred (α c w) c w — type-lifted predicate

axiomatization where
B1: �O〈Go(I)〉�D and
B2: �O〈Tell(I)|Go(I)〉�D and
B3: �O〈¬Tell(I)|¬Go(I)〉�D and
B4: �¬(Go(I))�C

Analogous to above, we use Nitpick to verify consistency and prove that (a subset
of) the given axioms indeed entails that, while having violated the obligation to
go help my neighbours, I actually ought to not tell them I am coming.

lemma True nitpick [satisfy] oops — model found: axioms consistent
lemma (��a¬(Go(I))�C ∧ �♦p(Go(I) ∧ Tell(I))�C ∧

�♦p(Go(I) ∧ ¬(Tell(I)))�C ∧ �¬(Tell(I))�C ∧
�♦a(Tell(I))�C ∧ �♦a(¬(Tell(I)))�C)

−→ (�violated (Go(I))�C ∧ �Oa(¬(Tell(I)))�C)
using sem-4a sem-4b sem-5b sem-5e B1 B3 B4 by smt

4.3 Applications in Formal Ethics

Relying on the expressive logic combination presented here, we have previously
encoded and mechanised an ethical argument (and background theory) pre-
sented by the philosopher Gewirth in [12], which aims at justifying an upper
moral principle called the “Principle of Generic Consistency” (PGC) [9]. In a
nutshell, according to this principle, any intelligent agent (by virtue of its self-
understanding as an agent) is rationally committed to asserting that (i) it has
rights to freedom and well-being, and (ii) all other agents have those same rights.
The argument used by Gewirth to derive the PGC (presented in detail in [4,12])
is by no means trivial and has stirred much controversy in legal and moral phi-
losophy during the last decades. To get a general idea of Gewirth’s argument we
take a look at its main steps (taken from [4]):
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(1) [Premise] I act voluntarily for some purpose E (i.e. I am a PPA).
(2) E is (subjectively) good (i.e. I value E proactively).
(3) My freedom and well-being (FWB) are generically necessary conditions of my

agency (i.e. I need them to achieve any purpose whatsoever).
(4) My FWB are necessary goods (at least for me).
(5) I have (maybe nobody else) a claim right to my FWB.
(13) Every PPA has a claim right to their FWB.

Note how any formalisation of this argument needs to support the modelling of
complex linguistic expressions such as alethic and deontic modalities, quantifi-
cation and indexicals. The expressive logic introduced in this paper is especially
appropriate for this kind of purposes. In the following, we present some axioms
and definitions used to model key concepts of Gewirth’s ethical theory.

Agency: Below we give “purposes” the same type as sentence meanings (type
c⇒w⇒bool aliased as m), so that “acting on a purpose” is represented anal-
ogously to having a certain propositional attitude (like “desiring that so and
so”).

type-synonym p = e⇒m — function from individuals to characters
consts ActsOnPurpose:: e⇒m⇒m
consts NeedsForPurpose:: e⇒p⇒m⇒m

In Gewirth’s ethical theory, an individual with agency (i.e. capable of purpo-
sive action) is said to be a “prospective purposive agent” (PPA). This defini-
tion is supplemented with an axiom stating that being a PPA is an essential
(i.e. identity-constitutive) property of an individual.

definition PPA:: p where — Definition of PPA
axiomatization where essentialPPA: �∀ a. PPA a → �D(PPA a)�D

Goodness: Gewirth’s concept of (subjective) goodness applies to purposes and
is relative to some agent. It is thus modelled as a binary relation relating an
individual (of type e) with a purpose (of type m). The axioms below interrelate
the concept of goodness with agency and are given as indexically valid sentences.
In particular, the axiom explGood3 represents the intuitive notion of “seeking
the good”, i.e. necessarily good purposes are not only action motivating, but also
entail an instrumental obligation to their realization (but only where possible).

consts Good::e⇒m⇒m
axiomatization where
explGood1: �∀ a P. ActsOnPurpose a P → Good a P�D
explGood2: �∀ P M a. Good a P ∧ NeedsForPurpose a M P → Good a (M a)�D
explGood3: �∀ ϕ a. ♦pϕ → O〈ϕ | �DGood a ϕ〉�D

Freedom and Well-Being (FWB): Enjoying FWB is the contingent property
which is always required to be able to act on any purpose whatsoever.
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consts FWB::p — FWB is a property (has type e⇒m)
axiomatization where

explicationFWB1: �∀ P a. NeedsForPurpose a FWB P�D
explicationFWB2: �∀ a. ♦p FWB a�D
explicationFWB3: �∀ a. ♦p ¬FWB a�D

Obligation and Interference: The so-called Kant’s law (aka. “ought implies
can”) plays an important role in Gewirth’s argument and is indeed derivable
directly in DDL from the definition of the deontic operators. We have noticed
the need to slightly amend it in order to render the argument as logically valid.
We axiomatise a new variant that reads as: “ought implies ought to can”.

lemma �Oiϕ → ♦pϕ� using sem-5ab by simp
axiomatization where OIOAC: �Oiϕ → Oi(♦aϕ)�D

The existence of an individual b interfering with some state of affairs ϕ implies
that ϕ cannot possibly be obtained in any of the actually possible situations (and
vice versa). This implies that if someone (successfully) interferes with agent a
having FWB, then a can no longer possibly enjoy its FWB (and the converse).

consts InterferesWith::e⇒m⇒m
axiomatization where explInterference: �(∃ b. InterferesWith b ϕ) ↔ ¬♦aϕ�
lemma InterfWithFWB: �∀ a.(∃ b. InterferesWith b (FWB a)) ↔ ¬♦a(FWB a)�

using explInterference by blast

Rights and Other-Directed Obligations: Gewirth ([12, p. 66]) points out
the existence of a correlation between an agent’s own claim rights and other-
referring obligations. A claim right is a right which entails duties or obligations
for other agents regarding the right-holder (so-called Hohfeldian claim rights in
legal theory). We model this concept in such a way that an individual a has a
(claim) right to having some property ϕ if and only if it is obligatory that every
(other) individual b does not interfere with the state of affairs (ϕ a).

definition RightTo::e⇒(e⇒m)⇒m where
RightTo a ϕ ≡ Oi(∀ b. ¬InterferesWith b (ϕ a))

We use Nitpick to show the consistency of the theory by computing a corre-
sponding model (not shown) having one context, one individual and two worlds.

lemma True nitpick[satisfy, card c = 1, card e = 1, card w = 2] oops

We paraphrase the following variant of the PGC as: “From every agent’s point
of view [C], it is true that if it is a PPA, then it has a claim right to FWB”.

theorem PGC: shows ∀ C. �PPA (Agent C) → (RightTo (Agent C) FWB)�C
Figure 1 (see appendix) shows an extract of the formal reconstruction of
Gewirth’s argument in Isabelle/HOL by employing the previously formalised
concepts. Unabridged computer-verified sources for that work are available in [9].
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5 Conclusion

We have enhanced a dyadic deontic logic with higher-order quantification and
a 2D-semantics drawing on Kaplan’s logic of indexicals. This logic combination
has been implemented in Isabelle/HOL using the shallow semantical embeddings
(SSE) technique and its core properties have been formally verified. In particular,
we have shown that the combined logic is stable against different versions of
Chisholm’s paradox as intended. We have also motivated applications of the
combined logic, e.g., for the encoding of challenging ethical theories.

Appendix

Fig. 1. A variant of Gewirth’s proof in the Isabelle proof assistant (cf. [9]).
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Abstract. In this paper we propose a novel approach for checking sat-
isfiability of non-linear constraints over the reals, called ksmt. The pro-
cedure is based on conflict resolution in CDCL-style calculus, using a
composition of symbolical and numerical methods. To deal with the non-
linear components in case of conflicts we use numerically constructed
restricted linearisations. This approach covers a large number of com-
putable non-linear real functions such as polynomials, rational or trigono-
metrical functions and beyond. A prototypical implementation has been
evaluated on several non-linear SMT-LIB examples and the results have
been compared with state-of-the-art SMT solvers.

1 Introduction

Continuous constraints occur naturally in many areas of computer science such
as verification of safety-critical systems, program analysis and theorem prov-
ing. Historically, there have been two major approaches to solving continuous
constraints. One of them is the symbolic approach, originated by the Tarski’s
decision procedure for the real closed fields [31], and developed further in proce-
dures based on cylindrical decomposition (CAD) [5], Gröbner basis [3,14], and
virtual substitution [7,20]. Another one is the numerical approach, based on
interval computations, where the technique of interval constraint propagations
have been explored to deal with continuous constraints on compact intervals,
e.g., [1,10–12]. It is well known that both approaches have their strengths and
weaknesses concerning completeness, efficiency and expressiveness.

Recently, a number of methods has been developed aimed at merging
strengths of symbolical and numerical methods, e.g. [4,9,27,28]. In particular,
the approach developed in this paper is motivated by extensions of CDCL-style
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reasoning into domains beyond propositional logic such as linear [15–17,23] and
polynomial constraints [13]. In this paper we develop a conflict-driven frame-
work called ksmt for solving non-linear constraints over large class of functions
including polynomial, exponential and trigonometric functions. Our approach
combines model guided search for a satisfying solution and constraint learning
as the result of failed attempts to extend the candidate solution.

In the nutshell, our ksmt algorithm works as follows. Given a set of non-linear
constraints, we first separate the set into linear and non-linear parts. Then we
incrementally extend a candidate solution into a solution of the system and when
such extension fails we resolve the conflict by generating a lemma that excludes a
region which includes the falsifying assignment. There are two types of conflicts:
between linear constraints which are resolved in a similar way as in [17] and non-
linear conflicts which are resolved by local linearisations developed in this paper.
One of the important properties of our algorithm is that all generated lemmas
are linear and hence the non-linear part of the problem remains unchanged
during the search. In other words, our algorithm can be seen as applying gradual
linear approximations of non-linear constraints by local linearisations guided by
solution search in the CDCL-style.

The quantifier-free theory of reals with transcendental functions is well known
to be undecidable [30] and already problems with few variables pose considerable
challenge for automated systems. In this paper we focus on a practical algorithm
for solving non-linear constraints applicable to problems with large number of
variables rather than on completeness results. Our ksmt algorithm can be used
for both finding a solution and proving that no solution exists. In addition to a
general framework we discuss how our algorithm works in a number of important
cases such as polynomials, transcendental and some discontinuous functions. In
this paper we combine solution guided search in the style of conflict resolution,
bound propagation and MCSAT [6] with linearisations of real computable func-
tions. The theory of computable functions has been developed in Computable
Analysis [32] with implementations provided by exact real arithmetic [24]. Lin-
earisations have been employed in different SMT theories before, including NRA
and a recently considered one with transcendental functions [4,21,29], however,
not for the broad class we consider here. We define a general class of functions
called functions with decidable rational approximations to which our approach is
applicable. This class includes common transcendental functions, exponentials,
logarithms but also some discontinuous functions.

We implemented the ksmt algorithm and evaluated it on SMT benchmarks.
Our implementation is at an early stage and lacking many features but already
outperforms many state-of-the-art SMT solvers on certain classes of problems.

2 Preliminaries

We consider the reals extended with non-linear functions Rnl = (R, 〈Flin ∪
Fnl ,P〉), where Flin consists of rational constants, addition and multiplica-
tion by rational constants; Fnl consists of a selection of non-linear functions
including multiplication, trigonometric, exponential and logarithmic functions;
P = {<,≤, >,≥} are predicates.
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We consider a set of variables V . We will use x, y, z possibly with indexes for
variables in V , similar we will use q, a, b, c, d for rationals, f, g for non-linear
functions in Fnl . Terms, predicates and formulas over X are defined in the
standard way. We will also use predicates �=,=, which can be defined using
predicates in P. An atomic formula is a formula of the form t�0 where � ∈ P. A
literal is either an atomic formula or its negation. In this paper we consider only
quantifier-free formulas in conjunctive normal form. We will use conjunctions
and sets of formulas interchangeably.

We assume that terms are suitably normalised. A linear term is a term of the
form q1x1 + . . .+ qnxn + q0. A linear inequality is an atomic formula of the form
q1x1 + . . . + qnxn + q0 � 0. A linear clause is a disjunction of linear inequalities
and a formula is in linear CNF if it is a conjunction of linear clauses.

2.1 Separated Linear Form

In this paper we consider the satisfiability problem of quantifier-free formulas in
CNF over Rnl , where the linear part is separated from the non-linear part which
we call separated linear form.

Definition 1. A formula F is in separated linear form if it is of the form
F = L ∪ N where L is a set of clauses containing predicates only over linear
terms and N is a set of unit-clauses each containing only non-linear literals of
the form x � f(t), where f ∈ Fnl , t is a vector of terms and � ∈ P.

Lemma 1 (Monotonic flattening). Any quantifier-free formula F in CNF
over Rnl can be transformed into an equi-satisfiable separated linear form in
polynomial time.

Proof. Consider a clause C in F which contains a linear combination of non-
linear terms, i.e., is of the form C = qf(t) + p � 0 ∨ D, where f ∈ Fnl and q �= 0.
Then we introduce a fresh variable x, add x �′ f(t) into N and replace C with
qx + p � 0 ∨ D. Here, �′ is ≥, if either q > 0 and � ∈ {≤, <} or q < 0 and
� ∈ {≥, >}; and �′ is ≤ otherwise. The resulting formula is equi-satisfiable to F .
The claim follows by induction on the non-linear monomials.

Let us remark that monotonic flattening avoids introducing equality predicates,
which is based on the monotonicity of linear functions. In some cases we need
to flatten non-linear terms further (in particular to be able to represent terms
as functions in the FDA class introduced in Sect. 5). In most cases this can
be done in the same way as in Lemma 1 based on monotonicity of functions
in corresponding arguments, but we may need to introduce linear conditions
expressing regions of monotonicity. For simplicity of the exposition we will not
consider such cases here.

2.2 Trails and Assignments

Any sequence of single variable assignments α ∈ (V × Q)∗ such that a variable
is assigned at most once is called a trail. By ignoring the order of assignments in
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α, we will regard α as a (partial) assignment of the real variables in V and use
V (α) ⊆ V to denote the set of variables assigned in α. We use the notation �t�α to
denote the (partial) application of α to a term t, that is, the term resulting from
replacing every free variable x in t such that x ∈ V (α) by α(x) and evaluating
term operations on constants in their domains. We extend �·�α to predicates over
terms and to CNF in the usual way. An evaluation of a formula results in true or
false, if all variables in the formula are assigned, or else in a partially evaluated
formula. A solution to a CNF C is a total assignment α such that each term in C
is defined under α and for each clause C ∈ C there is (at least) one literal l ∈ C
with �l�α = true.

Any triple (α,L,N ) when α is a trail, L is a set of clauses over linear predi-
cates and N is a set of unit clauses over non-linear predicates is called state. A
state is called linearly conflict-free if �L�α �= false. It is called conflict-free if it
is linearly conflict-free and �N �α �= false.

The main problem we consider in this paper is finding a solution to L ∧ N
or showing that no solution exists.

3 The ksmt Algorithm

Our ksmt algorithm will be based on a CDCL-type calculus [22,25] and is in the
spirit of Conflict Resolution [16,17], Bound Propagation [8,18], GDPLL [23],
MCSAT [6] and related algorithms.

The ksmt calculus will be presented as a set of transition rules that operate
on the states introduced previously. The initial state is a state of the form
(nil,L,N ). A final state will be reached when no further ksmt transition rules
(defined below) are applicable.

Informally, the ksmt algorithm starts with a formula in separated linear form
and the empty trail, and extends the trail until the solution is found or a triv-
ial inconsistency is derived by applying the ksmt transition rules. During the
extension process the algorithm may encounter conflicts which are resolved by
deriving lemmas which will be linear clauses. These lemmas are either derived by
resolution between two linear clauses or by linearisation of non-linear conflicts,
which is described in detail in Sect. 3.4. One of the important properties of our
calculus is that we only generate linear lemmas during the run of the algorithm
and the non-linear part N remains fixed.

3.1 General Procedure

Let (α,L,N ) be a conflict-free state and z ∈ V \ V (α) be a variable unassigned
in α. Assume there is no q ∈ Q such that (α :: z → q,L,N ) is linearly conflict-
free. That means that for any potential assignment q there is a clause D ∈ L
not satisfied under α :: z → q. Another way of viewing this situation, called a
conflict, is that there are clauses consisting under α only of predicates linear in
and only depending on z that contradict each other. Analogously to resolution
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in propositional logic,
A ∨ � B ∨ ¬�

A ∨ B

the following inference rule we call arithmetical resolution on x is sound [17,23]
on clauses over linear predicates:

A ∨ (cx + d ≤ 0) B ∨ (−c′x + d′ ≤ 0)
A ∨ B ∨ (c′d + cd′ ≤ 0)

where c, c′ are positive rational constants and d, d′ are linear terms. Similar rules
exist for strict comparisons. We denote by Rα,L,z a set of resolvents of clauses
in L upon variable z such that �Rα,L,z�

α = false. In Sect. 3.3 we discuss how to
obtain such a set.

We consider the following rules for transforming states into states under some
preconditions, i.e., the binary relation ⇒ on states.

Assignment refinement: In order to refine an existing partial assignment α by
assigning z ∈ V to q ∈ Q in a state (α,L,N ), the state needs to be linearly
conflict-free, that is, no clause over linear predicates in L must be false under
α. Additionally, under this assignment the clauses over linear predicates in L
must be valid under the new assignment, formally: For any state (α,L,N ),
z ∈ V and q ∈ Q

(α,L,N ) ⇒ (α :: z → q,L,N ) (A)

whenever �L�α �= false, z /∈ V (α), and �L�α::z �→q �= false. In the linear setting
of [17], this rule exactly corresponds to “assignment refinement”.

Conflict resolution: Assume despite state (α,L,N ) being linearly conflict-
free and z ∈ V unassigned in α there is no rational value to assign to z
that makes the resulting state linearly conflict-free. This means, that for any
q ∈ Q there is a conflict, i.e., a clause in L that is false under α :: z → q.
In order to progress in determining sat or unsat, the partial assignment α
needs to be excluded from the search space. Arithmetical resolution Rα,L,z

provides exactly that: a set of clauses preventing any β � α from being
linearly conflict-free. For any state (α,L,N ) and z ∈ V

(α,L,N ) ⇒ (α,L ∪ Rα,L,z,N ) (R)

whenever �L�α �= false, z /∈ V (α) and ∀q ∈ Q : �L�α::z �→q = false. In the
linear setting of [17], this rule corresponds to “conflict resolution”.

Backjumping: In case the state (α,L,N ) contains one or more top-level assign-
ments that make it not linearly conflict-free, these assignments are removed.
This is commonly known as backjumping. Indeed, when transitioning to
applying this rule, the information on the size of the suffix of assignments to
remove is already available, as is detailed in Sect. 3.2. Formally, for a state
(α,L,N ) such that �L�α = false, let γ be the maximal prefix of α such that
�L�γ �= false. Then, Backjumping is defined as follows:

(α,L,N ) ⇒ (γ,L,N ) (B)
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Linearisation: The above rules are only concerned with keeping the (partial)
assignment linearly conflict-free. This rule extends the calculus to ensure that
the non-linear clauses in N are conflict-free as well. In essence, the variables
involved in a non-linear conflict are “lifted” into the linear domain by a
linearisation of the conflict local to α. The resulting state will not be linearly
conflict-free as is shown in Lemma 4. Formally, if (α,L,N ) is a state and
Lα,N a non-empty set of linearisation clauses as detailed in Sect. 3.4, then
the rule reads as

(α,L,N ) ⇒ (α,L ∪ Lα,N ,N ) (L)

whenever �L�α �= false and �N �α = false.

Let us note that the set N remains unchanged over any sequence of states
obtained by successive application of the above rules.

Lemma 2 (Soundness). Let I be an input instance in separated linear form.
Let (S0, S1, . . . , Sn) be a sequence of states Si = (αi,Li,N ) where S0 is the
initial state and each Si+1 is derived from Si by application of one of the rules
(A), (R), (B), (L).

1. For all i < n and total assignments α : V → Q: �Li ∧ N �α = �Li+1 ∧ N �α.
2. If no rule is applicable to Sn then the following are equivalent:

– I is satisfiable,
– αn is a solution to I,
– Sn is linearly conflict-free,
– the trivial conflict clause (1 ≤ 0) is not in Ln.

Lemma 3 (Progress). Let (Si)i be a sequence of states Si = (αi,Li,N ) pro-
duced from initial state S0 by the ksmt rules, n be the number of variables and

Λi := {α : (A) cannot be applied to (α,Li,N ) linearly conflict-free}.
Then Λi ⊇ Λi+1 and Λi �= Λi+n+2 hold for all i.

The proofs follow from the following:

1. (A) does not change Λ and can be applied consecutively at most n times,
2. after application of (R) or (L) the set Λ is reduced which follows from the

properties of the resolvent, and Corollary 2 respectively, and
3. (B) does not change Λ and can be applied only after (R) or (L).

Corollary 1. After at most n + 2 steps the search space is reduced.

3.2 Concrete Algorithm

The algorithm transforms the initial state by applying ksmt transition rules
exhaustively. The rule applicability graph is shown in Fig. 1. The rule (B) is
applicable whenever the linear part is false in the current assignment. This is
always the case after applications of either (R) or (L). In order to check appli-
cability of remaining rules (A), (R) and (L) the following conditions need to be
checked.



A CDCL-Style Calculus for Solving Non-linear Constraints 137

1. Is the state conflict-free? In particular, we need to check whether the non-
linear part evaluates to false under the current assignment. Decidability of
this problem for the broad class of functions FDA is shown in Sect. 5.1, along
with concrete algorithms for common classes of non-linear functions.

2. If the state is linearly conflict-free and a variable is chosen, can it be assigned
in a way that the linear part remains conflict-free? A polynomial-time proce-
dure is described in Sect. 3.3.

Fig. 1. Transitions between
applicability of rules.

These computations determine whether (A), (R)
or (L) is applicable next. Item 2 has to be checked
after each application of (A) and (B). Note that in
case of transitioning to an application of rule (B)
the size of the suffix of assignments to revoke is syn-
tactically available in form of the highest position in
α of a variable in Rα,L,z or the linearisation Lα,N ,
respectively.

Let us note that the calculus allows for flexibility
in the choices of:

1. The variable z and value q to assign to z when applying rule (A).
2. Which arithmetical resolutions to perform when applying rule (R).
3. Which linearisations to perform when applying rule (L). We describe the

general conditions in Sect. 3.4 and our approach in Sect. 5.2.

Many of the heuristics presented in [8,16] are applicable to items 1 and 2 as well.

3.3 Determining Bounds and Resolvents

In this section we consider the problem of checking whether we can extend the
trail of a linearly conflict-free state in such a way that the linear part remains
conflict-free after the extension and in this case we apply rule (A), or otherwise
there is a conflict which should be resolved by applying rule (R).

Given a linearly conflict-free state (α,L,N ) and a variable z unassigned in
α, the problem

∃q ∈ Q : �L�α::z �→q �= false

can be solved efficiently by the following algorithm. Let Lz,α be those partially
applied (by α) clauses from L that only depend on z. The other clauses are
either already satisfied or depend on a further unassigned variable. So each
D ∈ Lz,α is ‘univariate’, i.e. just a set of z � ci. The disjunction of these simple
predicates in D is equivalent to a clause of the form (i) z < a ∨ z > b, perhaps
with non-strict inequalities, giving an alternative between a lower and an upper
bound or (ii) a unit clause for a lower bound, or (iii) a unit clause for an upper
bound, or (iv) an arithmetic tautology. So each clause is equivalent to the union
of at most two half-bounded rational intervals. The conjunction of two such
clauses corresponds to the intersection of sets of intervals, which is again a set
of intervals. This intersection can be computed easily and can also be checked
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for emptiness. In case the intersection is not empty, it even gives us intervals to
choose an assignment q for z with �L�α::z �→q �= false. If the intersection is empty,
we know there is no such q and we can use arithmetical resolution to resolve this
conflict to obtain Rα,L,z.

3.4 Non-linear Predicates

While resolution is a well-established and efficient symbolic technique for dealing
with the linear part of the CNF under consideration, there seem to be no similarly
easy techniques for non-linear predicates. The approach presented here is based
on numerical approximations instead.

Given a linearly conflict-free state (α,L,N ), in order to decide on the appli-
cability of (L), the non-linear unit clauses in N have to be checked for validity
under α. If all are valid, then, by definition, (α,L,N ) is conflict-free. Lemma 5
gives sufficient conditions on the non-linear functions in Fnl in order to make
this problem decidable. In this section, we will describe how we deal with the
case that some unit clause {P} ∈ N is false under α, where according to (L) we
construct a linearisation of P with respect to α. We will not need the order of
variables given in the trail α, so we will only use α as a partial assignment.

Definition 2. Let P be a non-linear predicate and let α be a partial assignment
with �P �α = false. An (α, P )-linearisation is a clause Lα,P = {Li : i ∈ I}
consisting of finitely many rational linear predicates (Li)i∈I with the properties

1. {β : �P �β = true} ⊆ {β : �Lα,P �β = true}, and
2. �Lα,P �α = false.

If we let cα denote the values assigned in α and x the vector of assigned variables,
we can reformulate the properties of Lα,P as a formula:

(
P =⇒

∨
i∈I

Li

)
∧

(
x = cα =⇒ ¬

∨
i∈I

Li

)

This formula will not be added to the system but is just used as a basis for
discussions. Later we will use a similar formalism to define linearisation clauses.

A central idea of our approach is to add Lα,P as a new clause to the CNF, as
well as the predicates Li. Adding Lα,P is sound, as the following lemma shows:

Lemma 4. Suppose a partial assignment α violates a predicate P with {P} ∈ N ,
so �P �α = false. Further suppose Lα,P is an (α, P )-linearisation.

1. Any β, which is a solution for L ∪ N , is also a solution for L ∪ {Lα,P } ∪ N .
2. (α,L ∪ {Lα,P },N ) is not linearly conflict-free.

Corollary 2. Whenever (L) is applied, the search space is reduced.

Hence at least the partial assignment α (and all extensions thereof) are
removed from the search space for the linear part of our CNF, at the cost of
adding the clause Lα,P usually containing several new linear predicates Li. In
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Fig. 2. Initial system and linearisations constructed.

general, our linearisations will not just remove single points but rather polytopes
from the search space.

We should emphasise several remarks on the linearisations: There is a high
degree of freedom when choosing a linearisation for a given pair (α, P ). Tech-
niques for constructing these will be discussed in Sect. 5.2. They will all be based
on numerical approximations.

Furthermore we are allowed to add more than one clause in one step, so we
can construct several linearisations for different (α, P ′) as long as �P ′�α = false,
and then add all of them. This has already been formulated in (L) as a set of
linearisation clauses Lα,N instead of a single clause Lα,P .

4 Example

As a basic example describing our method we consider the conjunction of the
non-linear predicate P : (x ≤ 1

y ), and linear constraints L1 : (x ≥ y/4 + 1) and
L2 : (x ≤ 4·(y−1)), shown on Fig. 2. We will first detail on how linearisations can
be constructed numerically for P . In Sect. 5.2 we will detail on how linearisations
can be constructed in general.

Linearisation of P . Assume �P �α = false under assignment α. By definition, α
assigns (x, y) to some values (cx, cy) such that cx > 1/cy, (point (3a), at (8/3, 2)).
Here we will only discuss the case cy > 0 needed below. The other cases can
be dealt with in a similar way. To construct an (α, P )-linearization, first we
compute the rational number d such that 1/cy < d < cx. In this example, we
take d := (cx +1/cy)/2, that is, for this linearisation 19/12 ≈ 1.58. In general, such
values are computed by numerical approximations to the function value. Then
the clause Lα,P = {x ≤ d, y ≤ 1/d} is the required linearisation (which excludes
region (3b) containing the conflicting assignment). Indeed, Lα,P is implied by P
and �Lα,P �α = false.

After adding Lα,P to the linear constraints, region (3b) is excluded from the
search space and backjumping to the empty assignment is performed (since 8/3
is not a linearly conflict-free assignment to x anymore). The system again is
linearly conflict-free. In the next iteration we obtain a solution (4a) roughly at
(1.47, 1.63) to the new linear system, linearisation at (4a) results in linear lemma
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excluding region (4b) where d ≈ 1.04. Finally, the resulting linear constraints are
unsatisfiable and therefore the original system is proven to be also unsatisfiable.
This example is based on an actual run of our system.

5 Schemes for Local Linearisations

A successful linearisation scheme has to fulfil two tasks: (a) deciding whether a
trail α is in conflict with a non-linear predicate P and then, if there is a conflict,
(b) finding reasonable linearisations Lα,P . We first address task (a).

5.1 Deciding Non-linear Conflicts

By Definition 1, P is of the form x � f(t), where f is a function symbol, t is a
vector of terms, and � ∈ {<,≤, >,≥}. In the following assume that the terms
in t use the variables (y1, . . . , yk) = y ∈ V k. So the semantical interpretation
�f(t)� of the syntactical term f(t) is a function g : Rk → R.

In order to introduce the class FDA we use the following notion of approx-
imable function.

Definition 3. We call a partial function g : R → R approximable if the set

�g := {(p, q, s, t) : g([p, q]) ⊂ (s, t), p, q, s, t ∈ Q}
is computably enumerable. Here, g(I) denotes the set-evaluation of g on I, that
is, {g(x) : x ∈ I ∩ dom g}.
This definition can easily be generalized to the multi-variate case by taking
boxes [p1, q1] × · · · × [pk, qk] with p, q ∈ Q

k. For total continuous real func-
tions, approximability coincides with the notion of computability known from
Computable Analysis (TTE) [2,32].

Given a number d ∈ Q and a vector c ∈ Q
k with d �= g(c) we can always

decide whether d � g(c) holds if g : Rk → R is a total approximable function.
However, in general we cannot decide the premise d �= g(c). Therefore we restrict
our considerations to a general class of functions where this problem is decidable.

Definition 4. A partial function g : Rk → R is called a function with decidable
rational approximations, denoted g ∈ FDA, if the following holds.

– dom(g) is decidable on Q
k,

– graph(g) is decidable on Q
k × Q, and

– g is approximable.

The following important classes of functions belong to FDA.

Multivariate Polynomials. For multivariate polynomials g with rational coeffi-
cients, rational arguments are mapped to rational results using rational arith-
metic and the relations � under consideration are decidable on Q

2.
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Selected Elementary Transcendental Functions. Let g ∈ {exp, ln, logb, sin, cos,
tan, arctan}, where in the case of logb, b ∈ Q. Let us show that g ∈ FDA. Indeed,
it is well known that g : R → R is computable [32]. Since emptiness of [p, q]\dom g
is decidable, g is also approximable. In addition, Xg := graph(g) ∩ Q

2 either
consists of a single point, or in the case of logb, is of the form Xg = {(bn, n) :
n ∈ Z} [26] and therefore is decidable, as is the respective domain.

Selected Discontinuous Functions. Additionally, FDA includes some discontinu-
ous functions like e.g. the step-functions taking rational values with discontinu-
ities at finitely many rational points and more generally piecewise polynomials
defined over intervals with a decidable set of rational endpoints. Multi-variate
piecewise defined functions with non-axis-aligned discontinuities are included as
well.

Lemma 5. Let P be a predicate over reals and let α be a trail assigning all
variables used in P . If P is linear or P : (x � f(t)) with �f(t)� ∈ FDA then �P �α

is computable.

Proof. By definition, trails α contain rational assignments. If P is linear, there
is nothing to show. Let P : (x � f(t)) with g(y) = �f(t)� ∈ FDA where y is
the vector of free variables in terms t. The cases �y�α /∈ dom g and �(y, x)�α ∈
graph(g) are decidable by the definition of FDA. The remaining case is z :=
�y�α ∈ dom g and �(y, x)�α /∈ graph(g). Perform a parallel search for (1) q ∈ Q

with (z, q) ∈ graph(g) and for (2) a rational interval box I ×J in �g̃ with z ∈ I
and �x�α /∈ J . We now show that this search terminates. Either g(z) ∈ Q, then
q = g(z) can be found in the graph of g, or g(z) /∈ Q, then |�x�α − g(z)| > 0,
thus there is a rational interval box I × (s, t) ∈ �g with z ∈ I and s, t ∈ Q such
that �x�α /∈ (s, t). Note that I can be the point-interval [z] since z ∈ dom g.

In particular, if all predicates P : (x � f(t)) appearing in a given problem
instance are such that the function �f(t)� used in this instance are from FDA,
we can decide if a ksmt state is conflict-free as required in Sect. 3.2.

5.2 Linearisations for Functions in FDA

This section addresses task (b), namely finding reasonable linearisations Lα,P in
case a trail α is in conflict with a non-linear predicate P , that is, �P �α = false.
In order to reduce the number of cases, we assume that the comparison operator
� in P : x � f(t) is from {<,≤}. The other two cases {>,≥} are symmetric.

Again let g = �f(t)� : Rk → R be the function represented by the term f(t).
We assume that g ∈ FDA. Let cx = �x�α ∈ Q and cy = �y�α ∈ Q

k be the
values assigned by α to the free variables y in t, additionally, let cy ∈ dom g.
Furthermore let cg = g(cy ) = �f(t)�α ∈ R be the value resulting from an exact
evaluation of g. Note that cg will only be used in the discussion and will not be
added to the constraints, since in general cg /∈ Q. Then our assumption of an
existing conflict �P �α = false can be read as cx > cg for � ∈ {≤}, and as cx ≥ cg

for � ∈ {<}. Let us note that cx and cy are rational, but cg is a real number
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and usually irrational. Since g ∈ FDA we can compute approximations c̄g ∈ Q

to cg with |c̄g − cg| ≤ ε for any rational ε > 0 using Lemma 5.
We now give a list of possible linearisations of g, starting from trivial versions

where we exclude just the conflicting point (cx, cy ) to more general linearisations
excluding larger regions containing this point.

Point Linearisation: A trivial (α, P )-linearisation excluding the point (cx, cy )
is

(y = cy =⇒ x �= cx)

Half-Line Linearisation: An (α, P )-linearisation excluding a closed half-line
starting in cx is

(y = cy =⇒ x < cx)

In the following we will develop more powerful linearisations with the aim to
exclude larger regions of the search space.

For better linearisations, we can exploit additional information about the
predicate P and the trail α, especially about the behaviour of g in a region
around cy . This information could be obtained by a per-case analysis on Fnl ,
or during run time using external algebra systems or libraries for exact real
arithmetic or interval arithmetic on the extended real numbers R∪ {−∞,+∞}.
Our focus, however, is on the numerical and not the symbolical approach.

As we aim at linearisations, the regions should have linear rational bound-
aries, so we concentrate on finite intersections of half-spaces:

Definition 5. An (open or closed) rational half-space H ⊆ R
k is the solution

set of a linear predicate a ·y ≤ b or a ·y < b for some a ∈ Q
k, b ∈ Q. A rational

polytope R ⊆ R
k is a finite intersection of rational half-spaces.

Any such polytope R is a convex and possibly unbounded set and can be rep-
resented as the conjunction of linear predicates over the variables y. Therefore
the complement R

k \ R can be represented as a linear clause {Li : i ∈ I} denot-
ing the predicate y /∈ R. For the ease of reading, instead of writing clauses like∨

i∈I Li ∨ D we will use y ∈ R =⇒ D in the following.
Since g ∈ FDA and approximable it follows that for any bounded rational

polytope R ⊆ R
k in the domain of g we can find arbitrarily precise rational

over-approximations (a, b) such that g(R) ⊂ (a, b).

Interval Linearisation: Suppose we have cx �= cg. By approximating cg we
compute d ∈ Q with cg < d < cx. The proof of Lemma 5 provides an initial
rational polytope R ∈ R

k with cy ∈ R such that d �∈ g(R). Then

y ∈ R =⇒ x ≤ d (5.1)

is an (α, P )-linearisation. Using specific properties of g, e.g., monotonicity,
we can extend the polytope R to an unbounded one.
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g(y)

R

(cy, cg)

(cy, cx)

dd+ c∂ · (y − cy)

Fig. 3. Tangent Space Linearisation shown for univariate g. The shaded area will be
excluded from the search space.

This linearisation excludes the set {x : x > d} × R from the search space which
is a polytope, now in R × R

k, containing the point (cx, cy ).
Linearisations in Example 4 are of this type, there cg = 1/cy and R =

(1/d,∞) defined by y > 1/d which is the negation of y ≤ 1/d, the second literal
in the linear lemma Lα,P is the right hand side of the implication (5.1).

The univariate predicate x ≤ d corresponds to a very special half-space in
R × R

k, as it is independent from the variables in y. Usually, using partial
derivatives gives better linearisations:

Tangent Space Linearisation: Suppose we again have cx �= cg. Assume the
partial derivatives of g at cy exist and we are able to compute a vector
c∂ = (c1, . . . , ck) of rational approximations, that is, ci ≈ ∂g

∂yi
(cy ). As before

we construct d ∈ Q with cg < d < cx and search for a rational polytope
R ∈ R

k with cy ∈ R. But instead of just d �∈ g(R) now R has to fulfil the
constraint

∀r ∈ R : g(r) ≤ d + c∂ · (r − cy )

using the dot product of c∂ and (r−cy ). Again, R can be found using interval
computation. Then

y ∈ R =⇒ x ≤ d + c∂ · (y − cy )

is an (α, P )-linearisation, since the dot-product is a linear and rational oper-
ation. This situation is schematically depicted in Fig. 3.

Using the tangent space, we are able to get a much better ‘fit’ of d+
∑

ciyi to g
than just using the naive interval evaluations. This allows to choose d closer to
cg for given R, or to choose a bigger polytope R for a given d. Some examples
of Tangent Space Linearisations are available.1

Lemma 6. By construction, the above procedures indeed provide linearisations
as stated in Definition 2.
1 http://informatik.uni-trier.de/∼brausse/ksmt.

http://informatik.uni-trier.de/~brausse/ksmt
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For the rest of this section, we briefly discuss more specific linearisations
for some important cases when we can perform a by-case analysis on g and
exploit further properties like (piecewise) monotonicity, convexity or bounded-
ness, which cannot be deduced by naive interval arithmetic, see Sect. 6 for details.

– g(y) = y2n is convex, with polytope R = (−∞,+∞) for � ∈ {>,≥}.
– g(y) = y2n+1 is monotonically increasing, with polytopes R of the form

(−∞, c], similar to the linearisation in Sect. 4.
– Polynomials can be decomposed into monomials.
– Piecewise convex/concave functions g like sin, cos, tan allow polytopes cover-

ing a convex area in their domain.
– More direct ways of computing linearisations of the elementary transcendental

functions can be obtained e.g. by bounding the distance of the image of
specific g to algebraic numbers, such bounds are given in [19, Sect. 4.3].

6 Evaluation

We implemented our approach in the ksmt system, which is open source and
publicly available (See footnote 1). The ksmt system supports a subset of QF LRA
and QF NRA logics as defined in the SMT-LIB standard. As with Z3, when no
logic is specified in the input script, our extended signature Rnl is the default.

Choices made in the implementation include:

– Selecting a rational value in a non-empty interval as smallest dyadic or by
continued fractions.

– The decision which clauses to resolve on conflict is guided by an internal
SAT-solver.

– Heuristic about reusing existing constraints when computing polytope R,
leading to piecewise linear approximations of g.

– Specialised linearisation algorithms for specific combinations of subclasses of
functions g ∈ FDA and cy :
differentiable: Use Tangent Space Linearisation.
convex/concave: Derive the polytope R from computability of unique

intersections between g and the linear bound on y.
piecewise: This is a meta-class in the sense that dom g is partitioned into

(Pi)i∈I where the Pi are linear or non-linear predicates in y, and for
each i ∈ I there is a linearisation algorithm, then the decision which
linearisation to use is based on membership of the exact rational value
cy in one of the Pi.

rational: Evaluate cg exactly in order to decide on linearisation to use.
transcendental: Bound |cx−cg| by a rational from below by approximating

cg by the TTE implementation iRRAM2 [24] in order to compute d.

2 http://irram.uni-trier.de.

http://irram.uni-trier.de
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Table 1. Benchmarks of Kn,d for different n, d.

Table 2. Benchmarks of Cr for different r.

We evaluated our approach over higher dimensional sphere packing bench-
marks which are available at (See footnote 1). Sphere packing is a well known
problem which goes back to Kepler’s conjecture, and in higher dimensions is
also of practical importance e.g., in error correcting codes. The purpose of this
evaluation is to exemplify that our approach is viable and can contribute to the
current state-of-the-art, extensive evaluation is left for future work.

The solvers3 were compiled with GCC-8.2 according to their respective doc-
umentation (except for mathsat, which is not open-source). Experiments were
run on a machine with 32 GiB RAM, 3.6 GHz Core i7 processor and Linux 3.18.

Example 1 (Sphere packing). Let n, d ∈ N and let

Kn,d := ∃x1, . . . ,xn ∈ R
d :

∧
1≤i≤n

‖xi‖∞ ≤ 1 ∧
∧

1≤i<j≤n

‖xi − xj‖2 > 2

An instance Kn,d is sat iff n balls fit into a d-dimensional box of radius 2
without touching each other. In the SMT-Lib language the ‖ ·‖∞ norms in these
instances are formulated using per-component comparisons to the lower and
upper endpoints of the range, while the euclidean norms ‖s‖2 > t are expressed
by the equivalent squared variant

∑
i s

2
i > t2. Table 1 provides a comparison of

different solvers on instances of this kind.

3 ksmt-0.1.3, cvc4-1.6+gmp, z3-4.7.1+gmp, mathsat-5.5.2, yices-2.6+lpoly-1.7,
dreal-v3.16.08.01, rasat-0.3.
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Example 2. Let r ∈ Q, then

Cr := ∃x,y ∈ R
3 : ‖x‖22 ≤ r2 ∧ ‖y‖22 ≥ 82 ∧ ‖x − y‖∞ ≤ 1

100 .

Cr is sat for some r ∈ [0, 8] iff there is a translation of the center x of the
3-dimensional ball Br(x) in a box of radius 1

100 such that it intersects the com-
plement of B8(y). Since the constraints are expressed as square-root-free expres-
sions, obviously for r ≥ 8 − 1

100 , there is a solution. Table 2 list running times
for various r of our solver and other solvers of non-linear real arithmetic.

Noteworthy about these benchmarks is the monotonicity of the running times
of ksmt in contrast to e.g. yices in conjunction with unlimited precision, which
seems to be what prevents cvc4 from deciding the instance for r =

√
63 and

even r =
√

64.

These experiments show that already in the early stage of the implemen-
tation, our system can handle high dimensional non-linear problems which are
challenging for most SMT solvers.

7 Conclusions and Future Work

In this paper we presented a new approach for solving non-linear constraints
over the reals. Our ksmt calculus combines model-guided solution search with
targeted linearisations for resolving non-linear conflicts. We implemented our
approach in the ksmt system, our preliminary evaluation shows promising results
demonstrating viability of the proposed approach.

For future work we are developing more precise linearisations for specific
trigonometric functions and are analyzing the complexity of deciding conflicts
in general. We are working on extending the applicability of our implementation
and a more extensive evaluation. We are also investigating theoretical properties
of our calculus, such completeness in restricted settings and δ-completeness.

Acknowledgements. We thank the anonymous reviewers and Stefan Ratschan for
their helpful comments.
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8. Dragan, I., Korovin, K., Kovács, L., Voronkov, A.: Bound propagation for arith-
metic reasoning in Vampire. In: Proceedings SYNASC 2013, pp. 169–176. IEEE
(2013)

9. Fontaine, P., Ogawa, M., Sturm, T., To, V.K., Vu, X.T.: Wrapping computer alge-
bra is surprisingly successful for non-linear SMT. In: SC-Square 2018, Oxford,
United Kingdom, July 2018

10. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
JSAT 1(3–4), 209–236 (2007)

11. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability
over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS
(LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31365-3 23

12. Hlad́ık, M., Ratschan, S.: Efficient solution of a class of quantified constraints with
quantifier prefix Exists-Forall. Math. Comput. Sci. 8(3–4), 329–340 (2014)
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imation of multivariate polynomials using Handelman’s theorem. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 166–184. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 8

22. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

23. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 35

24. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

25. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

26. Niven, I.: Irrational Numbers. Mathematical Association of America, Washington,
D.C. (1956)

27. Passmore, G.O., Paulson, L.C., de Moura, L.: Real algebraic strategies for Meti-
Tarski proofs. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp.
358–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-
5 24

28. Reger, G., Bjorner, N., Suda, M., Voronkov, A.: AVATAR modulo theories. In:
Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.), 2nd Global Conference on Artificial
Intelligence, EPiC Series in Computing, vol. 41, pp. 39–52. EasyChair (2016)
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Abstract. In this paper, we investigate variants of cutting plane proof
systems for a class of integer programs called Horn constraint systems
(HCS). Briefly a system of linear inequalities A · x ≥ b is called a Horn
constraint system, if each entry in A belongs to the set {0, 1,−1} and
furthermore there is at most one positive entry per row. Our focus is
on deriving refutations i.e., proofs of unsatisfiability of such programs
in variants of the cutting plane proof system. Horn systems generalize
Horn formulas, i.e., CNF formulas with at most one positive literal per
clause. A Horn system which results from rewriting a Horn clausal for-
mula is called a Horn clausal constraint system (HClCS). The cutting
plane calculus (CP) is a well-known calculus for deciding the unsatisfia-
bility of propositional CNF formulas and integer programs. Usually, CP
consists of the addition rule (ADD) and the division rule (DIV). We show
that the cutting plane calculus with the addition rule only (CP-ADD)
does not require constraints of the form 0 ≤ xi ≤ 1. We also investigate
the existence of read-once refutations in Horn clausal constraint systems
in the cutting plane proof system. We show that read-once refutations
are incomplete and furthermore the problem of checking for the exis-
tence of a read-once refutation in an arbitrary Horn clausal system is
NP-complete.

1 Introduction

In this paper, we investigate refutability in Horn constraint systems. Horn con-
straint systems define a class of polyhedra that find applications in a number
of disparate domains [4]. A refutation of an unsatisfiable constraint system (not
necessarily Horn) is a negative certificate that attests to the infeasibility of the
system. When an algorithm produces a certificate to accompany the output,
it is called a certifying algorithm [19]. The literature is replete with certifying
algorithms for a number of problems in combinatorial optimization, especially
c© Springer Nature Switzerland AG 2019
A. Herzig and A. Popescu (Eds.): FroCoS 2019, LNAI 11715, pp. 149–164, 2019.
https://doi.org/10.1007/978-3-030-29007-8_9
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as they relate to graphical structures [5,13,18]. Likewise, there exist a number
of combinatorial algorithms for Horn constraint systems that do not produce
negative certificates [4,22]. This paper discusses negative certificates for Horn
constraint systems in a number of interesting proof systems.

The focus of this paper is on read-once refutations in various proof systems.
In a read-once refutation, each constraint defining the polyhedron can be used at
most once in an inference step of the proof system. The advantage of read-once
refutations is that they are short by definition [11]. In general, read-once proof
systems are not complete in that there exist unsatisfiable constraint systems for
which read-once refutations do not exist. A variant of read-once refutation called
input refutation is discussed in [10].

We also utilize cutting plane calculus on Horn constraint systems generated
from Horn formulas. This extends the research in [9] which linked unit resolution
and polyhedral projection.

The principal contributions of this paper are:

1. A proof that the problem of determining if a system of Horn constraints has
a read-once refutation using only the ADD rule is NP-complete.

2. A proof that the problem of determining if a system of Horn constraints has
a read-once refutation using the ADD and DIV rules is NP-complete.

3. A proof that when using only the ADD rule, the constraints 0 ≤ xi ≤ 1
are redundant when the Horn clausal system is reduced to an integer/linear
program.

4. A proof that the problem of determining if a system of Horn constraints
derived from Horn clauses has a read-once refutation using only the ADD
rule is NP-complete.

5. A proof that the problem of determining if a system of Horn constraints
derived from Horn clauses has a read-once refutation using the ADD and
DIV rules is NP-complete.

The rest of the paper is organized as follows. In Sect. 2, we describe the con-
straint systems and proof systems under consideration. Section 3 details the prob-
lems examined in this paper. In Sect. 4, we discuss the motivation for the prob-
lems and describe related work. Section 5 examines systems of Horn constraints.
In Sect. 6, we examine properties of systems of constraints derived from Horn
clausal formulas. Finally, Sect. 7 summarizes our results and describes avenues
for future research.

2 Preliminaries

In this section, we briefly discuss the terms used in this paper.

Definition 1. A Horn constraint, is a constraint of the form a · x ≥ b where:

1. Each element of a belongs to the set {0, 1,−1} and at most one element of a
is 1.

2. b is an integer.
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Definition 2. In a Horn constraint a · x ≥ b, b is known as the defining con-
stant.

We can now define a Horn constraint system.

Definition 3. A conjunction of Horn constraints is known as a Horn Constraint
system (HCS). An HCS with m constraints over n variables can be represented
in matrix form as A · x ≥ b where:

1. A is an m × n matrix.
2. The entries in A belong to the set {0, 1,−1}.
3. Each row of A contains at most one positive entry.
4. x is an n dimensional vector.
5. b is an integral m dimensional vector.

There are two main feasibility queries for HCSs depending on how we restrict
the domain of x. These are as follows:

Definition 4. An HCS, A · x ≥ b is linear feasible if there exists an x∗ ∈ R
n

such that A · x∗ ≥ b.

Definition 5. An HCS, A · x ≥ b is integer feasible if there exists an x∗ ∈ Z
n

such that A · x∗ ≥ b.

For both of these queries, we are interested in certificates of infeasibility;
in particular, we are interested in restricted cutting-plane refutations. In linear
programs (systems of linear inequalities), we use the following rule, which plays
the role that resolution does in clausal formulas:

ADD :
∑n

i=1 ai · xi ≥ b1
∑n

i=1 a′
i · xi ≥ b2∑n

i=1(ai + a′
i) · xi ≥ b1 + b2

(1)

We refer to Rule (1) as the ADD rule. It is easy to see that Rule (1) is sound
in that any assignment satisfying the hypotheses must satisfy the consequent.
Furthermore, the rule is complete in that if the original system is linear infea-
sible (has no real valued solutions), then repeated application of Rule (1) will
result in a contradiction of the form: 0 ≥ −b, b < 0. The completeness of the
ADD rule was established by Farkas [7], in a lemma that is famously known as
Farkas’ Lemma for systems of linear inequalities [21].

Farkas’ lemma along with the fact that linear programs must have basic feasi-
ble solutions establishes that the linear programming problem is in the complex-
ity class NP ∩ coNP. Farkas’ lemma is one of several lemmata that consider
pairs of linear systems in which exactly one element of the pair is feasible. These
lemmas are collectively referred to as “Theorems of the Alternative” [20].

Definition 6. A linear refutation is a sequence of applications of the ADD rule
that results in a contradiction of the form 0 ≥ b, b > 0.
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When studying integer feasibility, we typically use an additional rule. This
is referred to as the DIV rule and is described as follows

DIV :
∑n

i=1 aij · xi ≥ bj d ∈ Z
+ : aij

d ∈ Z, i = 1 . . . n
∑n

i=1
aij

d · xi ≥
⌈
bj
d

⌉ (2)

Rule (2) corresponds to dividing a constraint by a common divisor d of the left-
hand coefficients and then rounding the right-hand side. Since each aij

d is an
integer this inference preserves integer solutions but doesn’t necessarily preserve
linear solutions. However, for systems of Horn constraints the DIV rule pre-
serves linear feasibility, since in Horn polyhedra, linear feasibility implies integer
feasibility [4].

Any constraint derived using either the ADD rule or the DIV rule is called
a cutting plane. Similarly, a refutation utilizing cutting plane calculus is a refu-
tation utilizing the ADD rule and the DIV rule.

Note that for systems of Horn constraints, an integer refutation still proves
linear infeasibility.

We can look at the additional restriction, that each application of the ADD
rule must use at least one absolute constraint (a constraint with only one vari-
able). Such a refutation is known as a unit refutation. Note that in a unit
refutation, at least one coefficient in a non-redundant derived constraint is 1 or
−1. Thus, the DIV rule will never be used.

We now formally define the types of refutation discussed in this paper.

Definition 7. A Read-Once refutation is a refutation in which each con-
straint, can be used at most once. This applies to constraints present in the orig-
inal system and those derived as a result of previous applications of the inference
rules.

Note that this applies to both linear refutations and integer refutations.
We also study constraint systems generated from clausal formulas. We assume

that the reader is familiar with elementary propositional logic.

Definition 8. A literal is a variable x or its complement ¬x. x is termed a
positive and ¬x is termed a negative literal.

Definition 9. A CNF clause is a disjunction of literals. The empty clause,
which is always false, is denoted as �.

Using this definition of a clause, we can now define what a CNF formula is.

Definition 10. A CNF formula is a conjunction of CNF clauses.

Definition 11. A Horn clause is a CNF clause which contains at most one
positive literal.

From any CNF formula, we can construct a corresponding constraint system.
In order to avoid case distinctions we assume that no tautological clause occurs
in the formulas.
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Definition 12. Let α = α1, . . . , αm be a CNF formula

1. For each clause αi = (x1 ∨ . . .∨xn ∨¬y1 ∨ . . .∨¬yt), we create the constraint
(x1 + . . . + xn − y1 . . . − yt) ≥ 1 − t.
The constraint is denoted as S(αi). S(α) := {S(α1), . . . , S(αm)} is called the
standard representation of α.

2. The extended representation additionally adds for each variable x the
constraints x ≥ 0 and −x ≥ −1 to S(α). Such a representation is denoted as
E(α).

For each clause αi in α, we also define the following:

Definition 13.

1. L(αi) is the left hand side of the constraint S(αi).
2. R(αi) is the right hand side of the constraint S(αi).
3. Neg(αi) is the number of negative literals in αi.
4. Pos(αi) is the number of positive literals in αi.
5. |αi| is the number of literals in αi.

For a Horn formula α, we refer to the resultant constraint systems (S(α) and
E(α)) as Horn clausal constraint systems (HClCSs).

3 Statement of Problems

In this section, we define the problems under consideration.
For systems of Horn constrains, we consider the following problems:

1. ROR(ADD): Does a system of Horn constraints have a read-once refutation
using only the ADD rule?

2. ROR(ADD, DIV): Does a system of Horn constraints have a read-once refu-
tation using the ADD and DIV rules?

We also examine constraint systems generated from clausal formulas. As with
general systems of constraints, we can consider refutations using only the ADD
rule, or both the ADD and DIV rules. This results in the following problems:

1. CP(ADD): Does an HClCS have a refutation using only the ADD rule?
2. CP(ADD, DIV): Does an HClCS have a refutation using the ADD and DIV

rules?
3. CP-RO(ADD): Does an HClCS have a read-once refutation using only the

ADD rule?
4. CP-RO(ADD, DIV): Does an HClCS have a read-once refutation using the

ADD and DIV rules?

It is important to note that both ROR(ADD) and CP-RO(ADD) refer to
restricted cutting planes under the read-once proof system; however, the latter
applies only to Horn clausal systems.
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Accordingly, we restate he principal contributions of this paper as follows:

1. A proof that the ROR(ADD) problem for a system of Horn constraints is
NP-complete.

2. A proof that the ROR(ADD, DIV) problem for a system of Horn constraints
is NP-complete.

3. A proof that from the perspective of CP(ADD), the constraints 0 ≤ xi ≤ 1
are redundant when the Horn clausal system is reduced to an integer/linear
program.

4. A proof that CP-RO(ADD) and CP-RO(ADD, DIV) are NP-complete for
HClCS.

To obtain several of these results we utilize a reduction from the set packing
problem.

Definition 14. The set packing problem is the following: Given a set S, m
subsets S1, . . . , Sm of S, and an integer k, does {S1, . . . , Sm} contain k mutually
disjoint sets.

This problem is known to be NP-complete [14].

4 Motivation and Related Work

Clausal and polyhedral Horn systems have been studied widely in the literature;
some of the important applications of the same have been discussed in [4]. Horn
clauses are used in logic programming and in particular Prolog [6]. Horn con-
straints also arise in program verification [2,17]. Indeed, the HVCS Workshop
focuses exclusively on the use of Horn clauses for verification [12]. A linear time
algorithm for Horn clauses is discussed in [6].

Horn constraint systems arise in program verification as well [1,8]. Horn con-
straint systems share an interesting property with difference constraint systems
in that the Horn system A · x ≥ b has a linear solution if and only if it has an
integer solution [4]. Recall that a difference constraint is a linear constraint of the
form: xi − xj ≥ bij . Thus, the techniques discussed in this paper simultaneously
provide proofs of both linear and integer infeasibility.

It follows that the length and the structure of proofs (refutations) for Horn
constraints are of interest. It is well-known that cutting plane proofs can be
exponentially shorter than resolution proofs [3]. Therefore, the comparison of
the refutation complexities for various restrictions of CP-systems should be of
interest, too.

The current work leads to a better understanding of cutting plane proofs
for Horn formulas for various restrictions of cutting plane systems based on the
addition and division rule, which can also be compared with resolution based
proofs. For example, in favorable circumstances the division rule can be used to
reduce the length of CP-proofs compared to proofs using only the addition rule.
[15] describes some of our recent work in read-once proofs in Horn clauses. This
paper is concerned with Horn constraints.
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5 The ROR Problem for Horn Constraint Systems

In this section, we study systems of Horn constraints. Note that not every system
of Horn constraints has a read-once refutation.

Example 1. Consider the system of Horn constraints

l1 : x1 ≥ 1
l2 : −x1 + x2 ≥ 1
l3 : −x1 − x2 + x3 ≥ 1
l4 : −x1 − x2 − x3 + x4 ≥ 1
l5 : −x1 − x2 − x3 − x4 ≥ −14

The constraint l5 is necessary for any refutation. To cancel each xi, i = 1 . . . 4,
the constraint li, i = 1 . . . 4 must also be used in the refutation. Thus, all five
constraints need to be used in any refutation.

However to get a positive number on the right-hand side of the resultant
constraint we need to use some of the constraints l1 through l4 more than once.
Thus, this system does not have a read-once linear refutation.

We now show that ROR(ADD) is NP-complete for HCSs. This is done by
a reduction from the set packing problem. Note that a read-once refutation is
guaranteed to be polynomially sized with respect to the input. Thus, ROR(ADD)
is trivially in NP for HCSs. All that remains is to show that the problem is NP-
hard.

Theorem 1. ROR(ADD) for Horn constraints is NP-hard.

Proof. Let us consider an instance of the set packing problem. We construct the
system of Horn constraints H as follows.

1. For each xi ∈ S, create the variable xi and the constraint xi ≥ 1.
2. For j = 1 . . . k, create the variable vj .
3. For each subset Sl, l = 1 . . . m, and each j = 1 . . . k create the constraints

vj −
∑

xi∈Sl

xi ≥ 1 − |Sl|.

4. Finally create the constraint −v1 − . . . − vk ≥ 1 − k.

We now show that H is in ROR(ADD) if and only if {S1, . . . , Sm} contains
k mutually disjoint sets.

Suppose that {S1, . . . , Sm} does contain k mutually disjoint sets. Without
loss of generality assume that these are the sets S1, . . . , Sk.

Let us consider the sets of clauses

Hj = {vj −
∑

xi∈Sj

xi ≥ 1 − |Sj |} ∪ {xi ≥ 1 |xi ∈ Sj} j = 1 . . . k.
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By the construction of H, we have that Hj ⊆ H for j = 1 . . . k. Since the
sets S1, . . . , Sk are mutually disjoint, so are the sets H1, . . . ,Hk.

It is easy to see that the constraint vj ≥ 1 can be derived by summing
all of the constraints in Hj . Since this holds for every j = 1 . . . k and since
the sets H1, . . . ,Hk are mutually disjoint, we have that the set of constraints
{v1 ≥ 1, . . . , vk ≥ 1} can be derived from H by read-once linear resolution.

Together with the constraint −v1 − . . . − vk ≥ 1 − k, this set of constraints
sums together to derive the constraint 0 ≥ 1. It follows that H has a read-once
linear refutation.

Now suppose that H has a read-once linear refutation R. Note that H/{−v1−
. . . − vk ≥ 1 − k} can be satisfied by setting every variable to 1. Thus, R must
use the constraint −v1 − . . . − vk ≥ 1 − k.

By construction, we must cancel −v1, . . . ,−vk. Let us consider −vj , 1 ≤
j ≤ k. By the construction of H, to cancel this term we must use one of the
constraints

vj −
∑

xi∈Sl

xi ≥ 1 − |Sl| l = 1 . . . m.

To cancel the −xi terms introduced by this constraint, we must use the set of
constraints Flj = {xi ≥ 1 |xi ∈ Slj} for some lj ≤ m.

Since the refutation is read-once we must have that the sets Flj for j = 1 . . . k
are mutually disjoint. Thus, the sets Slj for j = 1 . . . k are also mutually disjoint.
This means that {S1, . . . , Sm} contains k mutually disjoint sets.

Thus, H is in ROR(ADD) if and only if {S1, . . . , Sm} contains k mutually
disjoint sets. As a result of this, the linear ROR problem for systems of Horn
constraints is NP-hard. 
�

6 Horn Clausal Constraint Systems

In this section, we study systems of Horn constraints generated from Horn for-
mulas.

Recall that from a Horn formula α we can define two systems of Horn con-
straints S(α) and E(α). Note that E(α) adds the restriction that each variable
is in the interval [0, 1]. We now show that this restriction is unnecessary. First
we need to prove the following properties of constraint systems generated from
CNF formulas.

Theorem 2. Let α be a CNF formula with m clauses. If S(α) ∈ CP(ADD),
then α contains a unit clause.

Proof. Since S(α) ∈ CP(ADD), we have that there exists a refutation R of S(α)
using only the ADD rule. For each clause αi in α, let ki be the number of times
the constraint S(αi) is used in R. Thus, we have that the constraint

m∑

i=1

ki · L(αi) ≥
m∑

i=1

ki · R(αi)
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is equivalent the contradiction 0 ≥ b for some integer b > 0. This means that∑m
i=1 ki · L(αi) = 0 and

∑m
i=1 ki · R(αi) > 0.

Since
∑m

i=1 ki · L(αi) = 0, then, counting repeats, each variable must appear
an equal number of times as a positive literal and as a negative literal. Thus,∑m

i=1 ki · Neg(αi) =
∑m

i=1 ki · Pos(αi).
By definition,

m∑

i=1

ki · R(αi) =
m∑

i=1

ki · (1 − Neg(αi)).

Thus,
m∑

i=1

ki · (1 − Neg(αi)) =
m∑

i=1

ki · (1 − Pos(αi)) > 0.

This means that
m∑

i=1

ki · (2 − |αi|) =
m∑

i=1

ki · (2 − Neg(αi) − Pos(αi))

=
m∑

i=1

ki · (1 − Neg(αi)) +
m∑

i=1

ki · (1 − Pos(αi))

> 0.

Suppose α contains no unit clause. Then for each clause αi in α, we have
|αi| ≥ 2. Thus,

∑m
i=1 ki · (2 − |αi|) ≤ 0. However this contradicts the fact that∑m

i=1 ki · (2 − |αi|) > 0. Thus, α must contain a unit clause. 
�
Theorem 3. If E(α) ∈ CP(ADD), then α contains a unit clause.

Proof. Suppose there is a formula α = {α1, . . . , αm} with no unit clause such
that E(α) ∈ CP(ADD). By Theorem 2, S(α) �∈ CP(ADD).

Let R be a refutation of E(α) that uses only the ADD rule. For each clause
αi, i = 1 . . . m, let ki be the number of times the constraint S(αi) is used in R.
Let lR the constraint

∑

1≤i≤m

ki · L(αi) ≥
∑

1≤i≤m

ki · (1 − Neg(αi)).

Let P (R) be the set of variables that have positive coefficient in the constraint
lR and let N(R) be the set of variables with negative coefficient in lR. For each
variable x ∈ P (R), let cx be the coefficient of x in lR. For each variable y ∈ N(R),
let −dy be the coefficient of y in lR. Thus,

∑

1≤i≤m

ki · L(αi) =
∑

x∈P (R)

cx · x −
∑

y∈N(R)

dy · y.

This means that lR is equivalent to the constraint
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∑

x∈P (R)

cx · x −
∑

y∈N(R)

dy · y ≥
∑

1≤i≤m

ki · (1 − Neg(αi)).

The remaining constraints used by R must be from E(α) \S(α). Thus, these
constraints must be of the form x ≥ 0 or −x ≥ −1 for some variable x. Since R is
a refutation, the final constraint derived must be of the form 0 ≥ b where b > 0.
Thus the constraints used by R from E(α) \ S(α) must cancel cx copies of each
x ∈ P (R) and dy copies of −y for each y ∈ N(R). Thus, R must have cx copies
of the constraint −x ≥ −1 for each x ∈ P (R) and dy copies of the constraint
y ≥ 0 for each y in N(R). Including these constraints in the summation results
in the constraint

0 ≥
∑

1≤i≤m

ki · (1 − Neg(αi)) −
∑

x∈P (R)

cx.

Since R is a refutation, we must have that
∑

1≤i≤m

ki · (1 − Neg(αi)) −
∑

x∈P (R)

cx > 0. (3)

Let β = {β1, . . . , βm} be the CNF formula obtained by negating every vari-
able in P (R).

We have that
∑

1≤i≤m

ki · L(βi) = −
∑

x∈P (R)

cx · x −
∑

y∈N(R)

dy · y.

Since only variables with negative coefficients remain in this summation, we
have

m∑

i=1

ki · Neg(βi) ≥
m∑

i=1

ki · Pos(βi).

Thus,
m∑

i=1

ki · (2 − |βi|) =
m∑

i=1

ki · (2 − Pos(βi) − Neg(βi))

≥
m∑

i=1

ki · (2 − 2 · Neg(βi))

= 2 ·
m∑

i=1

ki · (1 − Neg(βi)).

Since α, and thus β has no unit clause, we have that for each clause βi, |βi| ≥ 2.
Thus,

∑m
i=1 ki · (2 − |βi|) ≤ 0 and

∑m
i=1 ki · (1 − Neg(βi)) ≤ 0.

Note the following:
m∑

i=1

ki · Neg(βi) −
m∑

i=1

ki · Pos(βi) =
∑

y∈N(R)

dy +
∑

x∈P (R)

cx.
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m∑

i=1

ki · Neg(αi) −
m∑

i=1

ki · Pos(αi) =
∑

y∈N(R)

dy −
∑

x∈P (R)

cx.

m∑

i=1

ki · Neg(αi) +
m∑

i=1

ki · Pos(αi) =
m∑

i=1

ki · Neg(βi) +
m∑

i=1

ki · Pos(βi).

Thus,
m∑

i=1

ki · Neg(βi) =
m∑

i=1

ki · Neg(αi) +
∑

x∈P (R)

cx.

This means that,

0 ≥
m∑

i=1

ki · (1 − Neg(βi)) =
m∑

i=1

ki · (1 − Neg(αi)) −
∑

x∈P (R)

cx

However, this contradicts System (3). Thus, α contains a unit clause. 
�
We now use these results to show that the addition of the 0 ≤ xi ≤ 1

constraints does not affect the feasibility of the constraint system.

Theorem 4. For all CNF formulas α: S(α) ∈ CP(ADD) if and only if E(α) ∈
CP(ADD).

Proof. If α has a unit clause (xi), then S(α) contains the constraint xi ≥ 1.
We can eliminate this constraint from S(α) by summing it with all constraints
containing the term −xi. A similar process can be used to eliminate the con-
straint −xi ≥ 0 from S(α) if α contains the unit clause (¬xi). We can repeat this
process until either we derive a contradiction of the form 0 ≥ b, b > 0 or until
all constraints corresponding to unit clauses have been eliminated from S(α).

If we derived a contradiction, then this contradiction was derived using only
the ADD rule. Thus, S(α) ∈ CP(ADD). Since E(α) is obtained by adding con-
straints to S(α), we have that E(α) ∈ CP(ADD).

If we derive a system with no constraints corresponding to unit clauses, or
if α had no unit clauses, then by Theorem 3, E(α) �∈ CP(ADD). Since E(α) is
obtained by adding constraints to S(α), we have that S(α) �∈ CP(ADD). 
�

Thus, we can assume without loss of generality that the system of constraints
generated from the CNF formula α is S(α). It is important to note that the
above theorems hold for arbitrary CNF formulas. However, if linear feasibility
does not imply integer feasibility of the clausal system, then CP(ADD) is no
longer a complete proof system. As shown in the literature, Horn constraint
systems in general and Horn clausal systems in particular, have the property
that the corresponding constraint system is linear feasible if and only if it is
integer feasible [4].
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6.1 Addition Rule for Horn Clausal Constraint Systems

First, we study refutations of systems of Horn clause constraints that use only
the ADD rule.

We now examine the complexity of determining if an HClCS has a read-once
refutation using only the ADD rule.

Lemma 1. If Φ is an unsatisfiable system of Horn clauses, then the HClCS
S(Φ) ∈ CP(ADD).

Proof. We do this by showing that a linear refutation can simulate positive unit
resolution. Consider a single resolution step. Let (x) and (¬x ∨ ¬x1 ∨ . . . ∨
¬xs ∨ y) be two clauses. The resolvent is (¬x1 ∨ . . . ∨ ¬xs ∨ y).

The constraints corresponding to the original clauses are x ≥ 1 and −x−x1−
. . . − xs + y ≥ 1 − s. Summing these inequalities results in −x1 − . . . − xs + y ≥
1 − (s − 1). This is the inequality corresponding to the resolvent. 
�
Lemma 2. If Φ has a read-once unit resolution refutation, then the HClCS
S(Φ) ∈ CP-RO(ADD). Moreover, S(Φ) has a read-once unit refutation under
the ADD rule.

This is a direct consequence of Lemma 1.
From [16], we know that determining if a Horn formula has a read-once unit

resolution refutation is NP-complete. Thus we have the following result.

Corollary 1. The CP-RO(ADD) problem for HClCSs is NP-complete.

6.2 Division Rule for Horn Clausal Constraint Systems

In this section, we study refutations of systems of Horn clause constraints that
use both the ADD rule and the DIV rule.

Example 2. There are CNF formulas α such that S(α) ∈ CP-RO(ADD, DIV)
which cannot be renamed into Horn formulas. Let α be the formula

(x ∨ y), (¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y).

S(α) has the following CP-RO(ADD, DIV) refutation:

1. Apply the ADD rule to x + y ≥ 1 and −x + y ≥ 0 to obtain 2 · y ≥ 1.
2. Apply the DIV rule to 2 · y ≥ 1 to obtain y ≥ 1.
3. Apply the ADD rule to x − y ≥ 0 and −x − y ≥ −1 to obtain −2 · y ≥ −1.
4. Apply the DIV rule to −2 · y ≥ −1 to obtain −y ≥ 0.
5. Apply the ADD rule to y ≥ 1 and −y ≥ 0 to obtain the contradiction 0 ≥ 1.

With the addition of the DIV rule, additional constraint systems have read-
once refutations.

Lemma 3. There is a Horn formula Φ such that S(Φ) ∈ CP-RO(ADD, DIV)
and S(Φ) �∈ CP-RO(ADD).



Cutting Planes and Horn Constraint Systems 161

Proof. Let Φ = (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2) ∧ (x1) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).
This corresponds to the HClCS

l1 : −x1 − x2 + x3 ≥ −1
l2 : −x1 + x2 ≥ 0
l3 : x1 ≥ 1
l4 : −x1 − x2 − x3 ≥ −2

This system has the following read-once integer refutation.
First sum the constraints l1 and l4 to get the constraint −2 ·x1 −2 ·x2 ≥ −3.

Then apply the division rule (DIV) with d = 2 to get the constraint −x1 −
x2 ≥ −1. Now sum this constraint with the constraint l2. This results in the
constraint −2 · x1 ≥ −1. Then apply the division rule. with d = 2 to get the
constraint −x1 ≥ 0. Finally, we sum this constraint with constraint l3 to obtain
the contradiction 0 ≥ 1.

However S(Φ) does not have a read-once refutation using only the ADD
rule. The formula is minimal unsatisfiable. Therefore we need to use all four
constraints. However summing all four constraints results in the constraint −2 ·
x1 − x2 ≥ −2. Thus, to derive a contradiction we need to use the constraint l2
an additional time and the constraint l3 an additional 3 times. 
�

However, not every Horn constraint system has a read-once refutation even
with the addition of the DIV rule.

Theorem 5. There is an unsatisfiable Horn formula Φ such that S(Φ) �∈ CP-
RO(ADD, DIV)

Proof. Let Φ = (y1)∧(y2)∧(¬y1∨x1)∧(¬y1∨¬y2∨¬x1∨x2)∧(¬y1∨¬y2∨¬x2).
This corresponds to the HClCS:
l1 : y1 ≥ 1
l2 : y2 ≥ 1
l3 : −y1 +x1 ≥ 0
l4 : −y1 −y2 −x1 +x2 ≥ −2
l5 : −y1 −y2 −x2 ≥ −2
Note that −y1 and −y2 each appear in multiple constraints. Thus, the first

applications of the ADD rule cannot use either constraint l1 or l2. This means
that the first application of the ADD rule must be to either constraints l3 and
l4, constraints l3 and l5, or constraints l4 and l5.

1. If we apply the ADD rule to constraints l3 and l4, then this results in the
constraint −2 · y1 − y2 + x2 ≥ −2. We cannot apply the DIV rule to this con-
straint. Additionally, −y1 and −y2 still occur in multiple constraints. Thus,
l1 and l2 cannot be used in the next application of the ADD rule. This means
that the next application of the ADD rule involves the new constraint and l5.
This results in the constraint −3 · y1 − 2 · y2 ≥ −4.

2. If we apply the ADD rule to constraints l3 and l5, then this results in the
constraint −2 · y1 − y2 + x1 − x2 ≥ −2. We cannot apply the DIV rule to
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this constraint. Additionally, −y1 and −y2 still occur in multiple constraints.
Thus, l1 and l2 cannot be used in the next application of the ADD rule. This
means that the next application of the ADD rule involves the new constraint
and l4. This results in the constraint −3 · y1 − 2 · y2 ≥ −4.

3. If we apply the ADD rule to constraints l4 and l5, then this results in the
constraint −2 · y1 − 2 · y2 − x1 ≥ −4. We cannot apply the DIV rule to this
constraint. Additionally, −y1 still occurs in multiple constraints and y2 has a
coefficient of 2 in the new constraint. Thus, l1 and l2 cannot be used in the
next application of the ADD rule. This means that the next application of the
ADD rule involves the new constraint and l3. This results in the constraint
−3 · y1 − 2 · y2 ≥ −4.

Note that if the first step is applying the add rule to the constraints l1 and
l2 the resultant constraint y1 + y2 ≥ 2 encounters the same issues as constraints
l1 and l2 in the preceding cases.

In all three cases we obtain the constraint −3 · y1 − 2 · y2 ≥ −4. However, we
cannot apply the DIV rule to this constraint. Since both −y1 and −y2 have coeffi-
cients greater than 1, we cannot use constraints l1 and l2 to completely eliminate
either of these literals. Thus, the system is not in CP-RO(ADD, DIV). 
�

We now show that even with the addition of the DIV rule, the problem of
determining if an HClCS has a read-once refutation remains NP-complete.
This is done by a reduction from the set packing problem.

Theorem 6. CP-RO(ADD, DIV) is NP-complete for HClCSs.

The proof of this theorem can be found in the complete version of the paper.
Since HClCSs are a subset of HCSs, we have the following corollary.

Corollary 2. The ROR(ADD, DIV) problem for HCSs is NP-complete.

7 Conclusion

In this paper, we studied refutability in variants of Horn constraint systems
under various proof systems. In particular, the constraint systems we studied
include general Horn constraint systems and Horn clausal constraint systems.
The proof systems we considered include ADD and ADD, DIV, subject to various
restrictions such as Read-once and Unit read-once.

Table 1 summarizes our results.

Table 1. Results for refutations in constraint systems

Constraint system Proof system

ROR(ADD) ROR(ADD+DIV)

HCS NP-complete NP-complete

HClCS NP-complete NP-complete
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7. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. Journal für die Reine
und Angewandte Mathematik 124(124), 1–27 (1902)
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Kleine Büning, H., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 184–200.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023767

10. Hooker, J.N.: Input proofs and rank one cutting planes. INFORMS J. Comput.
1(3), 137–145 (1989)

11. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los
Alamitos, CA, USA, June 1995, pp. 29–36. IEEE Computer Society Press (1995)

12. Kahsai, T., Vidal, G. (eds.): Proceedings 5th Workshop on Horn Clauses for Verifi-
cation and Synthesis, HCVS 2018, Oxford, UK, 13th July 2018, vol. 278 of EPTCS
(2018)

13. Kaplan, H., Nussbaum, Y.: Certifying algorithms for recognizing proper circular-
arc graphs and unit circular-arc graphs. Discret. Appl. Math. 157(15), 3216–3230
(2009)

14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.), Complexity of Computer Computations, pp. 85–103.
Plenum Press, New York (1972)
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Abstract. The probabilistic Description Logic ALCME is an extension
of the Description Logic ALC that allows for uncertain conditional state-
ments of the form “if C holds, then D holds with probability p,” together
with probabilistic assertions about individuals. In ALCME, probabilities
are understood as an agent’s degree of belief. Probabilistic conditionals
are formally interpreted based on the so-called aggregating semantics,
which combines a statistical interpretation of probabilities with a sub-
jective one. Knowledge bases of ALCME are interpreted over a fixed finite
domain and based on their maximum entropy (ME) model. We prove that
checking consistency of such knowledge bases can be done in time poly-
nomial in the cardinality of the domain, and in exponential time in the
size of a binary encoding of this cardinality. If the size of the knowl-
edge base is also taken into account, the combined complexity of the
consistency problem is NP-complete for unary encoding of the domain
cardinality and NExpTime-complete for binary encoding.

1 Introduction

Description Logics (DLs) [2] are a well-investigated family of logic-based knowl-
edge representation languages, which can be used to represent terminological
knowledge about concepts as well as assertional knowledge about individuals.
DLs constitute the formal foundation of the Web Ontology Language OWL,1

and they are frequently used for defining biomedical ontologies [9]. DLs are
(usually decidable) fragments of first-order logic, and thus inherit the restric-
tions of classical logic: they cannot be used to represent uncertain knowledge.
In many application domains (e.g., medicine), however, knowledge is not neces-
sarily certain. For example, a doctor may not know definitely that a patient has
influenza, but only believe that this is the case with a certain probability. This is
1 see https://www.w3.org/TR/owl2-overview/.
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an example for a so-called subjective probability. From a technical point of view,
subjective probabilities are often formalized using probability distributions over
possible worlds (i.e., interpretations). To obtain the probability of an assertion
like “John has influenza,” one then sums up the probabilities of the worlds that
satisfy the assertion. Another type of probability, called statistical, is needed to
treat general statements like “humans have their heart on the left with probabil-
ity p.” In this setting, one wants to compare the number of individuals that are
human and have their heart on the left with the number of all humans within one
world, rather than summing up the probabilities of the worlds where all humans
have their heart on the left. Thus, when defining a probabilistic DL, there is a
need for treating assertional knowledge using subjective probabilities, and ter-
minological knowledge using a statistical approach. More information on the
distinction between statistical and subjective probabilities can be found in [8].
Most probabilistic extensions of DLs handle either subjective probabilities [12]
or statistical ones [15], or are essentially classical terminologies over probabilistic
databases [4].

The probabilistic DL ALCME [23] was designed such that it can accommo-
date both points of view. In ALCME, the terminological part of the knowledge
base consists of probabilistic conditionals, which are statements of the form
(D|C)[p], which can be read as “if C holds for an individual, then D holds for
this individual with probability p.” Such a probability should be understood as
an agent’s degree of belief. Formally, the meaning of probabilistic conditionals
is defined using the so-called aggregating semantics [11]. This semantics general-
izes the statistical interpretation of conditional probabilities by combining it with
subjective probabilities based on probability distributions over possible worlds.
Basically, in a fixed possible world, the conditional (D|C) can be evaluated sta-
tistically by the relative fraction of those individuals that belong to both C and
D measured against the individuals that belong to C. In the aggregating seman-
tics, this fraction is not built independently for every possible world, but the
single numerators and denominators of the fractions are respectively weighted
with the probability of the respective possible world, and are summed up there-
after. Hence, the aggregating semantics mimics statistical probabilities from a
subjective point of view. Assertions can then be interpreted in a purely subjec-
tive way by summing up the probabilities of the worlds in which the respective
assertion holds. Due to this combination of statistical and subjective probabili-
ties, the models of ALCME-knowledge bases are probability distributions over a
set of interpretations that serve as possible worlds. These worlds are built over
a fixed finite domain, which guarantees that this set of interpretations is also
finite and constitutes a well-defined probability space.

The aggregating semantics defines what the models of an ALCME knowledge
base are. However, reasoning w.r.t. all these models is usually not productive
due to the vast number of probabilistic models. For this reason, we choose as a
single model of a knowledge base its maximum entropy (ME) distribution [14].
From a commonsense point of view, the maximum entropy distribution is a good
choice as it fulfills a number of commonsense principles that can be subsumed
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under the main idea that “essentially similar problems should have essentially
similar solutions” [13]. Moreover, the maximum entropy distribution is known to
process conditional relationships particularly well according to conditional logic
standards [10]. If the knowledge base is consistent in the sense that it has an
aggregating semantics model, then it also has a unique maximum entropy model
[10,14]. Hence, deciding whether an ALCME knowledge base has a maximum
entropy model is the same as deciding whether it has a model according to the
aggregating semantics. For this reason, we restrict our attention to deciding the
latter inference problems. This is relevant also if one wants to use the aggregating
semantics without its combination with maximum entropy.

It should be noted that the general approach of using the aggregating seman-
tics in combination with maximum entropy to define the semantics of proba-
bilistic conditionals has been introduced and discussed before [11,20], and is
not particular to probabilistic DLs. A detailed discussions of the aggregating
semantics (plus ME) and comparisons with related approaches, in particular
with approaches by Halpern and colleagues (see, e.g., [7,8]), can be found in
[20]. The instantiation of this approach with the DL ALC was first considered in
our previous work [23], and the investigation of the computational properties of
the resulting logic ALCME is continued in the present paper. To be more precise,
we first show that checking consistency of an ALCME knowledge base is possible
in time polynomial in the cardinality of the finite domain used to construct the
possible worlds, and in time exponential in the size of the binary encoding of this
cardinality. The first of these two complexity results was already shown in [23]
for ALCME knowledge bases without assertions. An important tool for proving
this result was the use of so-called types, which have also been employed to show
complexity results for classical DLs and other logics [16,17]. In order to extend
this result to ALCME knowledge bases with probabilistic assertions, we need
to modify the notion of types such that it can also accommodate individuals.
The second contribution of the present paper is to determine the combined com-
plexity of checking consistency in ALCME, i.e., the complexity measured w.r.t.
the domain size and the size of the knowledge base. For unary encoding of the
domain cardinality, we show that this problem is in NP, and for binary encoding
that it is in NExpTime. Since fixed domain reasoning in classical ALC is already
NP-complete in the unary case [18] and NExpTime-complete in the binary case
[6] these complexity bounds are tight. These results show that the complexity
of fixed-domain reasoning in ALC does not increase if probabilistic conditionals
and probabilistic assertions with aggregating semantics are added.

The rest of the paper is organized as follows. First, we start with a brief rep-
etition of the classical DL ALC. We extend ALC with probabilistic conditionals
and assertions and introduce the aggregating semantics as a probabilistic inter-
pretation of knowledge bases within the resulting probabilistic DL ALCME. Since
the consistency problem for ALCME knowledge bases does not depend on the ME
distribution, we do not define this distribution formally in the present paper (see
[23] for the exact definition), but illustrate its usefulness by an example. After
that, we introduce our notion of types, and use it to give an alternative proof
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of the known ExpTime upper bound for consistency of classical ALC knowledge
bases. Based on the approach used in this proof, we then show our complexity
results for consistency in ALCME using a translation into a system of linear equa-
tions over the real numbers, whose variables basically correspond to multisets
types.

2 The Description Logics ALC and ALCME

We start with a brief introduction of the classical DL ALC, and then introduce
its probabilistic variant ALCME.

Classical ALC. The basic building blocks of most DLs are the pairwise disjoint
sets of concept names NC , role names NR, and individual names NI . From these,
the set of ALC concepts is defined inductively as follows:

– every concept name A ∈ NC is an ALC concept;
– � (top concept) and ⊥ (bottom concept) are ALC concepts;
– if C,D are ALC concepts and r ∈ NR is a role name, then ¬C (negation),

C � D (conjunction), C � D (disjunction), ∃r.C (existential restriction), and
∀r.C (value restriction) are also ALC concepts.

An ALC concept inclusion (GCI) is of the form C 	 D, where C and D are
ALC concepts. A classical ALC TBox is a finite set of ALC concept inclusions.
An ALC assertion is of the form C(a) where C is an ALC concept and a ∈ NI ,
or r(a, b) with r ∈ NR and a, b ∈ NI . A classical ALC ABox is a finite set of
ALC assertions. Together, TBox and ABox form an ALC knowledge base (KB).

The semantics of ALC is based on interpretations. An interpretation I =
(ΔI , ·I) consists of a non-empty set of elements ΔI , the domain, and an inter-
pretation function that assigns to each concept name A ∈ NC a subset AI ⊆ ΔI ,
to each role name r ∈ NR a binary relation rI ⊆ ΔI ×ΔI , and to each individual
name a ∈ NI an element aI ∈ ΔI . The interpretation function is extended to
ALC concepts as follows:

�I = ΔI , ⊥I = ∅, (¬C)I = ΔI \ CI ,

(C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI ,

(∃r.C)I = {d ∈ ΔI | ∃e ∈ ΔI .(d, e) ∈ rI ∧ e ∈ CI},

(∀r.C)I = {d ∈ ΔI | ∀e ∈ ΔI .(d, e) ∈ rI =⇒ e ∈ CI}.

An interpretation I satisfies a concept inclusion C 	 D (I |= C 	 D) if CI ⊆
DI . It is a model of a TBox T if it satisfies all concept inclusions occurring in
T . I satisfies an assertion C(a) (I |= C(a)) if aI ∈ CI , and r(a, b) (I |= r(a, b))
if (aI , bI) ∈ rI . It is a model of an ABox A if it satisfies all assertions in A. A
KB K = (T ,A) is consistent if there exists a model that satisfies both T and A.

Note that we do not employ the unique name assumption (UNA), i.e., we do
not assume that different individual names are interpreted by different elements
of the interpretation domain.
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Probabilistic ALCME. In our probabilistic extension ALCME of ALC, we use
probabilistic conditionals instead of concept inclusions. A probabilistic ALC con-
ditional is of the form (D|C)[p], where C and D are ALC concepts and p ∈ [0, 1].
We call a finite set of probabilistic conditionals a CBox. A probabilistic ABox (or
pABox) contains assertions labeled with probabilities, i.e., probabilistic asser-
tions of the form C(a)[p] or r(a, b)[p], where again p ∈ [0, 1]. A probabilistic
knowledge base (pKB) consists of both a CBox and a pABox.2

Example 1. Using probabilistic ALCME, we can express that every person has at
least one friend, on average one in two people are unhappy, and that people with
only happy friends are much more likely to be happy themselves in the following
CBox:

C = {(∃friend.Person | Person)[1], (¬Happy | Person)[0.5],
(Happy | Person � ∀friend.Happy)[0.9]}.

Additionally, let us introduce the persons Emma and Peter, for whom we state
that Emma considers Peter a friend, and Peter is quite happy:

A = {Person(peter)[1], Person(emma)[1],
Happy(peter)[0.8], friend(emma, peter)[0.9]}.

The semantics of probabilistic conditionals and assertions is defined via prob-
abilistic interpretations, which are probability distributions over classical inter-
pretations. For this definition to be well-behaved, we consider a fixed, finite
domain Δ and assume that the signature (i.e., the set of concept, role, and indi-
vidual names) is finite. For the signature, we can simply restrict to those names
that actually occur in a given pKB K, i.e., to concept names sigC(K) = {A ∈
NC | A occurs in K}, role names sigR(K) = {r ∈ NR | r occurs in K} and indi-
vidual names sigI(K) = {a ∈ NI | a occurs in K}. Then, we denote the set of all
interpretations I = (Δ, sigC(K) → P(Δ), sigR(K) → P(Δ × Δ), sigI(K) → Δ)
as IK,Δ. Since Δ and all sig�(K) are finite, IK,Δ is also finite. Then, a prob-
abilistic interpretation is a probability distribution over IK,Δ, i.e., a function
μ : IK,Δ → [0, 1] such that

∑
I∈IK,Δ

μ(I) = 1.
The semantics of probabilistic assertions is defined as one would expect:

a probabilistic interpretation μ satisfies a probabilistic assertion of the form
C(a)[p] or the form r(a, b)[p] if

∑

I∈IK,Δ

s.t. aI∈CI

μ(I) = p or
∑

I∈IK,Δ

s.t. (aI ,bI)∈rI

μ(I) = p.

Defining the semantics of probabilistic conditionals is more involved since
here we need to consider not only all possible worlds, but also all elements of the

2 We will see later (proof of Corollary 14) that setting all probabilities to 1 in a pKB
basically yields a classical KB, and thus ALCME indeed is an extension of ALC.
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domain. There are multiple possibilities for how to combine these two dimen-
sions. In this work, we use the aggregating semantics to define the semantics of
our probabilistic extension of ALC. Under the aggregating semantics [11], a prob-
abilistic interpretation μ satisfies a probabilistic conditional (D|C)[p], denoted
μ |= (D|C)[p], if

∑
I∈IK,Δ

|CI ∩ DI | · μ(I)
∑

I∈IK,Δ
|CI | · μ(I)

= p. (1)

A probabilistic interpretation μ is a model of a CBox C (μ |= C) if it satisfies
all probabilistic conditionals in C, and a model of a pABox A (μ |= A) if it
satisfies all probabilistic assertions in A. It is a model of a pKB K if it is a
model of both its CBox and pABox.

Equation (1) formalizes the intuition underlying conditional probabilities by
weighting the probabilities μ(I) with the number of individuals for which the
conditional (D|C)[p] is applicable (|CI |) or verified (|CI ∩DI |) in I. Hence, the
aggregating semantics mimics statistical probabilities from a subjective point
of view, and probabilities can be understood as an agent’s degrees of belief.
If, on the one hand, μ is the distribution that assigns the probability 1 to a
single interpretation I, which means that the agent is certain that I is the real
world, then the aggregating semantics boils down to counting relative frequencies
in this world. On the other hand, if μ is the uniform distribution on those
interpretations that do not contradict facts (conditionals or assertions with 0/1-
probability), which means that the agent is minimally confident in her beliefs,
then the aggregating semantics means counting relative frequencies spread over
all interpretations.

Consistency is the question whether a given pKB has a model (for a given
domain size). In previous work [23], we were concerned with the model of a pKB
with maximal entropy, as this ME-model has several nice properties. In particu-
lar, reasoning with respect to all probabilistic models instead of solely the ME-
model leads to monotonic and often uninformative inferences, as demonstrated
in the next example.

Example 2. Consider the CBox C = {(Happy|Wealthy)[0.7], (Happy|Parent)[0.9]}.
Then C has a model in which wealthy parents are happy with probability 0, as
well as a model in which wealthy parents are happy with probability 1. This is the
case since the marginal probabilities of wealthy persons and of parents, respec-
tively, as stated in C, do not limit the probabilities of wealthy parents. Hence,
when reasoning over all probabilistic models of C, it is impossible to make a state-
ment about the happiness of wealthy parents although it is obviously reasonable
to assume that wealthy parents are happy with at least probability 0.7.

In the ME-approach, instead, it holds that the maximum entropy probability
of wealthy parents being happy is PME(Happy|Wealthy � Parent) ≈ 0.908. Note
that this holds independently of the domain size |Δ| > 0 (see [22] for details).
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However, as mentioned before, if we are only interested in consistency, then
this distinction is irrelevant: A pKB has an ME-model iff it has a model at all. For
this reason, it is not necessary to introduce the principle of maximum entropy
and the definition of the ME-model here.

Example 3. We can now reconsider the pKB in Example 1, and see how its inter-
pretation under aggregation semantics differs from the one under other proba-
bilistic formalisms. For instance, the assertion Happy(peter) [0.8] does not con-
tradict the conditional (Happy | Person) [0.5]. Indeed, the aggregating semantics
implies that, on average, people are happy with a probability of 0.5, not that
every person needs to have a subjective probability of exactly 0.5 of being happy.
Thus, Peter being happy with an above-average probability only means that, for
other people, the average probability to be happy will be slightly below 0.5, so
that the total average can be 0.5.

Similarly, this pKB is consistent with Emma being unhappy, even if all her
friends, like Peter, are happy. Again, the conditional probability of people being
happy if all their friends are happy quantifies over all people, so one outlier will
not necessarily lead to a contradiction.

3 Checking Consistency Using Types

Types classify individuals into equivalence classes depending on the concepts
they satisfy. In this paper, we extend the notion of types for ALC found in the DL
literature (see, e.g., [3,17]) such that named individuals and their relationships
with other named individuals, as stated in an ABox, are taken into account. After
introducing our notion of types, we will first use it to reprove the ExpTime
upper bound for consistency in classical ALC. The constructions and results
used for this purpose are important for our treatment of consistency in ALCME.
Type notions that can deal with individuals have been considered before in
the DL literature, but usually in the more complicated setting of DLs that are
considerably more expressive than ALC (see, e.g., [1], where such types are
considered in the context of temporal extensions of DLs). Our results for the
probabilistic case crucially depend on the exact notion of types introduced in
the present paper, and in particular on the model construction employed in the
proof of Theorem7 below.

Types. For the sake of simplicity, we will only consider concepts using the
constructors negation, conjunction, and existential restriction. Due to the equiv-
alences C �D ≡ ¬(¬C �¬D), ∀r.C ≡ ¬(∃r.¬C), � ≡ A�¬A, and ⊥ ≡ A�¬A,
any concept can be transformed into an equivalent concept in this restricted
form. We also assume that all double negations have been eliminated. For such
a concept C, we define the set of its subconcepts as

sub(C) = {C} ∪
{

sub(C ′) if C = ¬C ′ or C = ∃r.C ′

sub(C ′) ∪ sub(D′) if C = C ′ � D′
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Similarly, for a pKB K consisting of a CBox C and pABox A, the set of all
subconcepts is sub(K) =

⋃
(D|C)[p]∈C sub(D) ∪ sub(C) ∪

⋃
C(a)[p]∈A sub(C). The

set of subconcepts is defined in an analogous way for a classical ALC KB K.
For convenience, we also want to include the negation of each concept. Thus,

we define the closure of the set of subconcepts under negation as

sub¬(K) = sub(K) ∪ {¬C | C ∈ sub(K)},

where we again assume that double negation is eliminated. In the presence of
assertions, types also need to keep track of individual names and their connec-
tions. Basically, we achieve this by employing individuals names from the ABox
as nominals [21] within existential restrictions. To be more precises, we use the
set of existential restrictions to an individual:

EIK = {∃r.a,¬∃r.a | a ∈ sigI(K), r ∈ sigR(K)}

Then, we can define a type as a set of concepts, existential restrictions to
named individuals, and individual names:

Definition 4 (Type). Given a KB K, a type t for K is a subset t ⊆ sub¬(K)∪
sigI(K) ∪ EIK such that

1. for every ¬X ∈ sub¬(K) ∪ EIK, either X or ¬X belongs to t;
2. for every C � D ∈ sub¬(K), we have C � D ∈ t iff C ∈ t and D ∈ t.

We use types to characterize elements of an interpretation. In particular, we
want to identify domain elements d of an interpretation I with the type that
contains exactly those concepts the element is an instance of. In addition, we
also need to keep track which individual name is interpreted as d, and to which
individuals d is related to via a role. This motivates the following definition:

τ(I, d) :=
{
C ∈ sub¬(K)

∣
∣ d ∈ CI}

∪
{
a ∈ sigI(K)

∣
∣ aI = d

}

∪
{
∃r.a

∣
∣ (d, aI) ∈ rI}

∪
{
¬∃r.a

∣
∣ (d, aI) �∈ rI}

It is easy to see that the type of an individual is indeed a type in the sense
of Definition 4. Due to Definition 4, each type is compatible with the semantics
of conjunction and negation. However, the satisfaction of existential restrictions
depends on the presence of other types. Given a type t, an existential restriction
∃r.X ∈ t with X being an individual name or concept, and the set of all negated
existential restrictions {¬∃r.X1, . . . ,¬∃r.Xk} ⊆ t for role r, we say that a typet′

satisfies ∃r.X in t if X ∈ t′ and Xi �∈ t′ for i = 1, . . . , k.

Definition 5 (Consistency of a set of types). A set of types T is consistent
if (i) T �= ∅, (ii) for every t ∈ T and every ∃r.X ∈ t there is a type t′ ∈ T that
satisfies ∃r.X in t, and (iii) every a ∈ sigI(K) occurs in exactly one t ∈ T .

Condition (iii) says that, for every individual, there is exactly one type. Note
that we do not require that a type contains at most one individual since we do
not impose the UNA.
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Consistency in Classical ALC. Before we prove complexity bounds for con-
sistency in ALCME, we recall how to use types for classical ALC. First, we show
that consistent sets of types correspond to ALC interpretations. On the one hand,
for every interpretation I we can construct a consistent set of types τ(I) as set
of types of its domain elements: τ(I) =

{
τ(I, d)

∣
∣ d ∈ ΔI}

. On the other hand,
given a consistent set of types T , we can build an interpretation IT = (ΔIT , ·IT ):

ΔIT := T,

AIT := {t ∈ T | A ∈ t},

rIT := {(t, t′) | ∃X ∈ sub¬(K) ∪ sigI(K) : t′ satisfies ∃r.X in t},

aIT is the unique type t ∈ T with a ∈ t.

Lemma 6. Let K = (T ,A) be a classical ALC knowledge base consisting of
TBox T and ABox A and T be a consistent set of types. Then, for every t ∈ T
and C ∈ sub¬(K) we have C ∈ t iff t ∈ CIT .

Proof. This can be proved by a simple induction on the structure of C. Here
we consider only the most interesting case, which is the case where C is an
existential restriction. If C = ∃r.D, then ∃r.D ∈ t implies that there is t′ ∈ T
such that t′ satisfies ∃r.D in t. This implies that D ∈ t′, and thus by induction
t′ ∈ DIT . By construction of IT we also have (t, t′) ∈ rIT , and thus t ∈ (∃r.D)IT .

Conversely, if ∃r.D �∈ t, then ¬∃r.D ∈ t. We need to show that t �∈ (∃r.D)IT ,
i.e., if (t, t′) ∈ rIT , then t′ �∈ DIT . However, (t, t′) ∈ rIT implies that t′ satisfies
∃r.X in t for some X. Since ¬∃r.D ∈ t, this can only be the case if D �∈ t′.
Induction now yields t′ �∈ DIT as required. ��

There is a known correspondence that states that an ALC TBox T is con-
sistent iff there exists a consistent set of types T that satisfies all GCIs, i.e., for
each C 	 D ∈ T and each t ∈ T we have C ∈ t implies D ∈ t [3]. We can extend
this result to KB consistency as follows:

Theorem 7. Let K = (T ,A) be a classical ALC KB. Then K is consistent if,
and only if, there exists a consistent set of types T such that

– for all GCIs C 	 D ∈ T and types t ∈ T we have C ∈ t implies D ∈ t;
– for all assertions C(a) ∈ A and types t ∈ T with a ∈ t we have C ∈ t; and
– for all assertions r(a, b) ∈ A and types t ∈ T with a ∈ t we have ∃r.b ∈ t.

Proof. If I is a model of K, then τ(I) is a consistent set of types, and it is easy
to see that this set satisfies the three conditions of the theorem.

For the other direction, assume that T be a consistent set of types that
satisfies the three conditions from above. We show that IT is a model of K:

– Let C 	 D ∈ T and assume that t ∈ CIT . Then Lemma 6 yields C ∈ t, which
implies D ∈ t by the first condition. Lemma 6 thus yields t ∈ DIT , which
shows that IT |= C 	 D.
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– For every C(a) ∈ A, we have C ∈ t for the unique type t that contains a.
By the definition of IT and Lemma 6, this implies aIT = t ∈ CIT , and thus
IT |= C(a).

– For every r(a, b) ∈ A, we have ∃r.b ∈ t for the unique type t that contains
a. Since T is consistent, there is a type t′ ∈ T that satisfies ∃r.b in t. Con-
sequently, b ∈ t′ and (t, t′) ∈ rIT . Since t = aIT and t′ = bIT , this shows
IT |= r(a, b).

This completes the proof of the theorem. ��

Based on this theorem, consistency of a classical ALC KB K = (T ,A) can
be decided using type elimination as follows:

1. Construct the set T of all types t ⊆ sub¬(K) ∪ EIK for K that do not contain
individual names, and for which C ∈ t implies D ∈ t for all C 	 D ∈ T .

2. Consider all extensions T ′ of T with types t ∪ I with t ∈ T and I ⊆ sigI(K)
such that

– each individual name a ∈ sigI(K) occurs in exactly one type t′ ∈ T ′;
– for all C(a) ∈ A and t′ ∈ T ′, a ∈ t′ implies C ∈ t′; and
– for all r(a, b) ∈ A and t′ ∈ T ′, a ∈ t′ implies ∃r.b ∈ t′.

3. For each such set T ′, successively remove all types from T ′ with unsatisfied
existential restrictions until no more such types remain.

4. Return “consistent” if at least one of the sets T ′ obtained this way is non-
empty and contains for each a ∈ sigI(K) a type t with a ∈ t.

Corollary 8. Consistency of ALC KBs can be decided in ExpTime.

Proof. We need to show that the above algorithm is sound and complete, and
runs in exponential time. We sketch how to show each claim:

Soundness follows directly from Theorem7 since it is easy to see that a set
T ′ that leads the algorithm to answer “consistent” is a consistent set of types
that satisfies the three conditions of the theorem.

For completeness, assume that K is consistent, and thus by Theorem7 a
consistent set S of types with the stated properties exists. This consistent set of
types S must be a subset of the set T ′ constructed by the algorithm after step 2
for some guess of the types for each individual name. However, then step 3 will
never remove any type of S from T ′, and thus step 4 of the algorithm will return
that K is indeed consistent.

Regarding runtime, note that the set T constructed in the first step contains
at most exponentially many types. In the second step, at most exponentially
many extensions T ′ of T are constructed since this step basically amounts to
looking at all possible ways of choosing exactly one type for each of the (linearly
many) individuals, and then removing choices that do not satisfy the stated con-
ditions. Since each of the sets T ′ constructed this way is of at most exponential
size, type elimination applied to T ′ takes at most exponential time. ��
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Consistency in ALCME. For probabilistic ALC, we need to consider multi-
ple worlds, each corresponding to a classical interpretation. Additionally, the
aggregating semantics takes into account how many individuals verify or falsify
a conditional, even if those individuals are indistinguishable (i.e., have the same
type). Thus, instead of sets of types, we need to consider multisets of types.

Formally, a multiset on a domain X is a function M : X → N. We denote
multisets as mappings, such as M = {|x1 �→ 3, x2 �→ 1|}. We say that an element
x ∈ X occurs M(x) times in M , and that it occurs in M if M(x) > 0. The
cardinality of the multiset M is given by the sum of the number of occurrences
of each element, i.e. |M | =

∑
x∈X M(x).

As said above, we are interested in multisets of types, and in particular
multisets of types with a given cardinality k = |Δ|. These correspond to ALC
interpretations with a domain of size k. We define the (multiset-)type τM (I) of
an interpretation I as follows:

τM (I)(t) := |{d ∈ Δ | τ(I, d) = t}|.

It is easy to see that |τM (I)| = |Δ|.
Consistency of multisets of types is defined analogously to the set case: every

existential restriction in every type occurring in the multiset M must be satisfied
by some other type occurring in M , and every individual name must occur
in exactly one type that occurs exactly once in M . We denote the set of all
consistent multisets of types with cardinality k with MK,k.

Similarly to the classical case, we build an interpretation IM = (ΔIM , ·IM )
from a multiset M of types, except now we take M(t) copies for each element
in M , to ensure that the interpretation domain has the same cardinality as M :

ΔIM := {(t, i) | 1 ≤ i ≤ M(t)}
AIM := {(t, i) ∈ ΔIM | A ∈ t},

rIM := {((t, i), (t′, j)) ∈ ΔIM × ΔIM |
∃X ∈ sub¬(K) ∪ sigI(K) : t′ satisfies ∃r.X in t},

aIM := (t, 1) where t is the unique type occurring in M with a ∈ t.

(2)

It is easy to show that this construction achieves the same as in the classical
case (see Lemma 6):

Lemma 9. Let K = (C,A) be a pKB consisting of a CBox C and a pABox A,
and let M ∈ MK,k be a consistent multiset of types. Then |ΔIM | = k, and for
every t ∈ M , 1 ≤ i ≤ M(t), and C ∈ sub¬(K), we have C ∈ t iff (t, i) ∈ CIM .

In order to use this lemma to obtain a characterization of consistent pKBs,
we need to take into account that, in ALCME, models are probability distribu-
tions over classical interpretations. Consequently, we need to consider probabil-
ity distributions over the set of all multisets of types of a given cardinality. The
aggregating semantics depends on counting instances of concepts. Thus, we need
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to show that counting instances can be reduced to summing up the number of
occurrences of the corresponding types.

Lemma 10. Let K be a pKB and I be an ALC interpretation with finite domain
Δ and τM (I) = M . Then for all (D|C)[p] occurring in K we have |CI | =∑

t∈M s.t.C∈t M(t) and |CI ∩ DI | =
∑

t∈M s.t. {C,D}⊆t M(t). Additionally, for
any a, b ∈ sigI(K), we have aI ∈ CI iff there is t ∈ M with {a,C} ⊆ t, and
(aI , bI) ∈ rI iff there is t ∈ M with {a,∃r.b} ⊆ t.

Proof. M = τM (I) implies that

|CI ∩ DI | =
∣
∣
{
d ∈ Δ

∣
∣ d ∈ CI ∧ d ∈ DI}∣

∣

= |{d ∈ Δ | {C,D} ⊆ τM (I, d)}|
=

∑

t∈M s.t. {C,D}⊆t

M(t).

The same argument can be used to show |CI | =
∑

t∈M s.t.C∈t M(t).
Let t ∈ τM (I) be the unique type with a ∈ t. Then aI ∈ CI iff C ∈ t and

thus {a,C} ⊆ t. If (aI , bI) ∈ rI , then ∃r.b ∈ t = τ(I, aI), and thus {a,∃r.b} ⊆ t.
Conversely, if ∃r.b ∈ t = τ(I, aI), then (aI , bI) ∈ rI . ��

Note that Lemma 10 implies that, for interpretations I1 and I2 with the
same type τM (I1) = τM (I2), we have |CI1 | = |CI2 | and |CI1 ∩ DI1 | = |CI2 ∩
DI2 | for all (D|C)[p] occurring in K, as well as aI1 ∈ CI1 iff aI2 ∈ CI2 and
(aI1 , bI1) ∈ rI1 iff (aI2 , bI2) ∈ rI2 . This means that the aggregating semantics
cannot distinguish between interpretations with the same type. Thus, these types
allow us to simplify Eq. (1): instead of summing over all interpretations IK,Δ, we
only have to consider those interpretations with different types. Based on these
ideas, the following theorem characterizes consistency of pKBs in ALCME.

Theorem 11. Let K be a pKB and Δ be a finite domain with |Δ| = k. Then K
is consistent if, and only if, the equation system (3) in Fig. 1 has a non-negative
solution pM ∈ R

MK,k

≥0 .

Proof. For each M ∈ MK,k, let I(M) = {I ∈ IK,Δ | τM (I) = M} be the set
of interpretations with type M . It is easy to see that, for M �= M ′, we have
I(M) ∩ I(M ′) = ∅. Using Lemma 10 together with this fact,3 we can translate
between models of K and solutions of the system of Eqs. 3 as follows.

First, assume that K is consistent, i.e., there exists a model μ : IK,Δ → [0, 1]
of K. Then it is easy to see that setting pM :=

∑
I∈I(M) μ(I) yields a solution

of (3).

3 More precisely, this fact is used in the identities marked with ∗ below.
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∑
M∈MK,k

∑
t∈M

s.t.C∈t∧D∈t

M(t) · pM
∑

M∈MK,k

∑
t∈M

s.t.C∈t

M(t) · pM = p, for (D|C)[p] ∈ C,

∑

M∈MK,k

s.t.∃t∈M :{a,C}⊆t

pM = p, for C(a)[p] ∈ A,

∑

M∈MK,k

s.t.∃t∈M :{a,∃r.b}⊆t

pM = p, for r(a, b)[p] ∈ A,

∑

M∈MK,k

pM = 1.

(3)

Fig. 1. The system of equations that characterizes consistency of pKBs in ALCME.

In fact, for (D|C)[p] ∈ C we have
∑

M∈MK,k

∑

t∈M
s.t.C∈t∧D∈t

M(t) · pM

∑

M∈MK,k

∑

t∈M
s.t.C∈t

M(t) · pM
=

∑

M∈MK,k

∑

t∈M
s.t.C∈t∧D∈t

M(t) ·
∑

I∈IM

μ(I)

∑

M∈MK,k

∑

t∈M
s.t.C∈t

M(t) ·
∑

I∈IM

μ(I)

=

∑
M∈MK,k

∑
I∈IM

∑
t∈M

C∈t∧D∈t
M(t) · μ(I)

∑
M∈MK,k

∑
I∈IM

∑
t∈M
C∈t

M(t) · μ(I)

Using Lemma 10 we see that this sum is equal to

=

∑
M∈MK,k

∑
I∈IM

∣
∣CI ∩ DI∣

∣ · μ(I)
∑

M∈MK,k

∑
I∈IM

|CI | · μ(I)

=∗
∑

I∈IK,Δ

∣
∣CI ∩ DI∣

∣ · μ(I)
∑

I∈IK,Δ
|CI | · μ(I)

= p.

For C(a)[p] ∈ A we have
∑

M∈MK,k

s.t.∃t∈M :{a,C}⊆t

pM =
∑

M∈MK,k

s.t.∃t∈M :{a,C}⊆t

∑

I∈IM

μ(I) =∗ ∑

I∈IK,Δ

aI∈CI

μ(I) = p.

The assertions r(a, b) ∈ A can be treated analogously, and finally we have
∑

M∈MK,k

pM =
∑

M∈MK,k

∑

I∈IM

μ(I) =∗ ∑

I∈IK,Δ

μ(I) = 1.

For the other direction, let pM ∈ R
MK,k

≥0 be a solution to (3) Then, for every
M ∈ MK,k, I(M) is not empty since τM (IM ) = M . Thus, we can choose a
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function μ : IK,Δ → [0, 1] such that
∑

I∈IM
μ(I) = pM for every M ∈ MK,k,

e.g.,

μ(I) =
pτM (I)

|IτM (I)|
.

Then, analogously to the proof above, we can show that μ is indeed a probability
distribution and satisfies Eq. (1). ��

4 Complexity Bounds for Consistency in ALCME

In this section, we use the characterization of consistency given in Theorem11 to
determine the complexity of the consistency problem in ALCME. We will start
with domain size complexity (where the complexity is measured in terms of
the size of the domain Δ only), and then determine the combined complexity
(measured in terms of the size of the domain and the knowledge base). In both
settings, we will distinguish between unary and binary encoding of the domain
size.

Domain Size Complexity. Given a pKB K and a domain Δ with |Δ| = k, we
know that the number n of types can grow exponentially with the size of K, i.e.,
n ∈ O(2|K|). Then, the number of different multisets [19] over those n types of
cardinality k is

|MK,k| =
((

n
k

))

=
(
n + k − 1

k

)

=
(n + k − 1)!
k! · (n − 1)!

.

Interestingly, this can be simplified to both |MK,k| = (n+k−1)(n+k−2)···n
k(k−1)···1 ∈ O(nk)

and |MK,k| = (n+k−1)(n+k−2)···(k+1)
(n−1)(n−2)···1 ∈ O(kn).

Since (3) is a linear equation system with O(|K|) equations and |MK,k| vari-
ables, and linear equation systems over the real numbers can be solved in poly-
nomial time [5], this yields the following complexities.

Corollary 12 (Domain size complexity). Let K be a fixed pKB (which is not
part of the input) and Δ be a finite domain with |Δ| = k. Then the consistency
of K w.r.t. Δ can be decided in

– P in |Δ| = k (unary encoding),
– ExpTime in log(k) (binary encoding).

This result extends an existing P-time result for domain size complexity for
unary encoding given in [23] from CBoxes to the case of general probabilistic
KBs also including assertional knowledge. It should be noted that the approach
used in [23] to show the “in P” result also uses types, but is nevertheless quite
different from the one employed here.

Combined Complexity. Both the number of interpretations in Eq. (1) and the
number of multisets of types in will usually grow exponentially with the size of
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the pKB K, and thus will the number of variables. However, the number of linear
equations in both systems will always be the number of probabilistic conditionals
and probabilistic assertions plus one, i.e., it will at most grow linearly with the
size of K. We can exploit this fact using the following “sparse solution lemma”
from linear programming:

Lemma 13 ([5], Theorem 9.3). If a system of m linear equations has a non-
negative solution in R, then it has a solution with at most m variables positive.

Thus, we can solve the consistency problem for a given pKB K with m condi-
tionals and assertions (where m ∈ O(|K|)) and a domain Δ non-deterministically,
by guessing a set M of m + 1 distinct multisets M1, . . . ,Mm+1 of types with
cardinality k = |Δ|, and checking whether these multisets are consistent and
yield a solvable system of equations:

∑

M∈M

∑

t∈M
s.t.C∈t∧D∈t

M(t) · pM

∑

M∈M

∑

t∈M
s.t.C∈t

M(t) · pM
= p, for (D|C)[p] ∈ C,

∑

M∈M
s.t.∃t∈M :{a,C}⊆t

pM = p, for C(a)[p] ∈ A,

∑

M∈M
s.t.∃t∈M :{a,∃r.b}⊆t

pM = p, for r(a, b)[p] ∈ A,

∑

M∈M
pM = 1.

(4)

This provides us with the following complexity results:

Corollary 14 (Combined Complexity). Let K be a pKB and Δ be a finite
domain with |Δ| = k. Then consistency of K w.r.t. Δ is

– NP-complete in |K| + k (unary encoding of k),
– NExpTime-complete in |K| + log(k) (binary encoding of k).

Proof Guessing a multiset of size k can be done by guessing k types (of size at
most quadratic in |K|). Thus, in total guessing can be done in non-deterministic
time O(m · k · |K|2) = O(|K|3 · k). Evaluating the corresponding linear equation
system (4) (of size polynomial in |K|) can then be done in polynomial time. The
complexity upper bounds follow directly from this observation.

According to [6,18], fixed-domain reasoning in classical ALC is already NP-
complete for unary encoding of the domain size, and NExpTime-complete for
binary encoding of the domain size. There is an easy reduction from fixed-domain
consistency in classical ALC to ALCME consistency: Simply exchange GCIs C 	
D with conditionals (D|C)[1] and add probability 1 to all assertions. It is easy



182 F. Baader et al.

to see that each model I of the original KB can be translated into a model of the
new pKB by setting the probability of I to 1, and of all other interpretations
to 0. Similarly, for each model of the pKB all interpretations with non-zero
probability must also be models of the original KB. Thus, the original classical
KB has a model with domain Δ iff the constructed pKB is consistent w.r.t.
Δ, which transfers the hardness results for fixed-domain consistency in classical
ALC to consistency in ALCME. ��

Note that the results for combined complexity cannot be shown using the
approach employed in [23]. There, the constructed equation system not only has
exponentially many variables, but also exponentially many equations. Thus, the
sparse solution lemma cannot be used to reduce the complexity.

5 Conclusion

In this paper, we have determined the complexity of the consistency problem in
the probabilistic Description Logic ALCME, considering both domain size and
combined complexity and distinguishing between unary and binary encoding
of the domain size. Our results are based on the notion of types, but to use
this notion in a setting with assertions, we had to extend it such that it also
takes named individuals and their relationships into account. Basically, these
results show that probabilities do not increase the complexity of the consistency
problem since we obtain the same results as for fixed domain reasoning in ALC.
Note that our results can be transferred easily to a variant of ALCME in which
probabilistic conditionals are provided with interval probabilities instead of point
probabilities.

In future work, we want to extend our complexity results to other reasoning
tasks and to DLs other than ALC. In [23] we have already considered drawing
inferences, but have only investigated the domain size complexity. More chal-
lenging is to go from fixed domain reasoning to finite domain reasoning, i.e.,
checking whether there is some finite domain Δ such that the pKB is consistent
w.r.t. Δ. Finally, if a pKB is consistent, then we know that it has a unique ME-
model, but the complexity of computing (an approximation of) this distribution
is unclear, though [23] contains some preliminary results in this direction, but
again restricted to domain size complexity.
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Abstract. Abductive reasoning produces hypotheses to explain new
observations with respect to some background knowledge. This paper
focuses on ABox abduction in ontologies, where knowledge is expressed in
description logics and both the observations and hypotheses are ground
statements. The input is expressed in the description logic ALC and the
observation can contain any set of ALC concept or role assertions. The
proposed approach uses forgetting to produce hypotheses in the form
of a disjunctive set of axioms, where each disjunct is an independent
explanation for the observation and the overall hypothesis is semanti-
cally minimal, i.e., makes the least assumptions required. Previous work
on forgetting-based abduction is combined with the semantic forgetting
method of the system FAME. The hypotheses produced are expressed
in an extension of ALC which uses nominals, role inverses and fixpoints:
ALCOIμ(∇). This combination overcomes the inability of the existing
forgetting-based approach to allow role assertions in observations and
hypotheses, and enables the computation of other previously unreachable
hypotheses. An experimental evaluation is performed using a prototype
implementation of the method on a corpus of real world ontologies.

1 Introduction

Abduction was first identified as a form of reasoning by C.S. Peirce, who likened
it to a “flash of insight”. Like induction, and unlike deduction, abduction is
ampliative: the conclusion of the reasoning process extends beyond what already
follows from existing background knowledge. Abduction is often seen as the
process of hypothesis generation, while induction can be seen as the process of
hypothesis evaluation or generalisation. The use cases for abduction have led
to a diverse range of investigations into the topic. These include complexity
studies [10], applications in natural language interpretation [16], inductive and
abductive logic programming [26,29], statistical relational AI [28] and studies of
the interaction between abduction and induction [12].

This paper focuses on abductive reasoning in description logics (DLs), which
are fragments of first-order logic. In this setting, background knowledge is
expressed in an ontology, which contains information regarding concepts and
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relations between entities. Ontologies are used in a wide variety of fields includ-
ing bioinformatics, robotics and finance. Benefits of using ontologies include the
ability to clearly model, reuse, share and reason about existing knowledge. Most
existing reasoning systems in ontologies are deductive. They can be used to
derive consequences of the existing ontology that are not explicitly represented.
However, they cannot be used directly to explain new observations that do not
follow from the existing knowledge, which is required for tasks such as hypothe-
sis generation, diagnostics and belief expansion. The importance of abduction in
DLs has been recognised [11] and a variety of work exists on the topic, including
complexity studies [3], applications to repair and query explanation [5,21] and
methods for different forms of TBox and ABox abduction [8,9,15,17,27].

One approach to performing abductive reasoning in DL ontologies uses forget-
ting. Forgetting aims to eliminate specified symbols in an ontology while preserv-
ing all entailments that can be represented in the restricted signature. The dual
task is called uniform interpolation. Both of these are related to second-order
quantifier elimination [13], which translates logical formulae expressed in second-
order logic into equivalent formulae in first-order logic by eliminating existen-
tially quantified predicate symbols. The use of second-order quantifier elimina-
tion for abduction has been proposed for relatively small theories expressed in
propositional or classical logics [7,13,30], while forgetting has been proposed
for TBox abduction in DLs [20]. More recently, a method for performing ABox
abduction in the DL ALC was developed [6], which utilises contrapositive rea-
soning and the resolution-based forgetting system LETHE [19]. This approach
produces hypotheses that consist of a disjunctive set of ABox assertions. Each
disjunct is an independent explanation [18], resulting in a space of possible expla-
nations. The method has been shown to be practical over large ontologies. How-
ever, a limitation to the method is the absence of role assertions in observations
and hypotheses, which restricts its use of existing information contained within
the ABox. Given an ABox observation, the approach cannot use relationships
between individuals to provide a more specific explanation. These explanations
would be useful in many applications, such as those involving the use of large
knowledge graphs which have seen increasing interest in recent years.

The primary aim of this work is to overcome this limitation by combining the
method in [6] with another forgetting system: FAME [32,33]. The key character-
istic of FAME is its ability to perform forgetting in ALCOIμ(∇), which includes
nominals. As suggested in [6], nominals can be used to overcome the limitations
of the abduction method. This is explored and confirmed in this paper.

2 Problem Definition

In this work, knowledge is expressed in the description logic ALC [2]. The signa-
ture of ALC is defined by disjoint sets Nc, Nr and NI containing atomic concept
names, role names and individual names respectively. Concepts in ALC can take
the following forms: ⊥ | � | A | ¬C | C � D | C � D | ∃r.C | ∀r.C, where A is
any atomic concept name, C and D are any ALC concepts and r is a role name.
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An ontology O expressed in ALC takes the form O = T ∪ A, where T is a
TBox and A is an ABox. The TBox contains information about concepts rep-
resented as general concept inclusions (GCIs) of the form C 
 D or equivalence
axioms of the form C ≡ D, which can also be expressed as the two GCIs C 
 D
and D 
 C. The ABox contains (ground) assertions about specific individuals
of the form C(a) or r(a, b) where a, b are arbitrary individual names.

The semantics of ALC is defined in terms of an interpretation I as a pair
I = 〈ΔI , ·I〉, where ΔI is a non-empty set called the domain and ·I is an
interpretation function mapping each individual a ∈ NI to a single element
aI ∈ ΔI , each concept to a subset of ΔI and each role to a subset of ΔI × ΔI .
This is extended to ALC concepts as follows:

⊥I= ∅ �I = ΔI ¬C = ΔI \ CI

(C � D)I = CI ∩ DI (C � D)I = CI ∪ DI

(∃r.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
(∀r.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ rI → y ∈ CI}

For TBox axioms, the GCI C 
 D is true in I iff CI ⊆ DI holds. A model
of a TBox is an interpretation for which all axioms in the TBox are true, and if
a TBox has a model then it is satisfiable.

For this paper, it is also necessary to consider the DL ALCOIμ(∇), which
extends ALC with nominals, role inverses, the top role and in some cases fix-
points. For each individual a ∈ NI , the corresponding nominal {a} is interpreted
as a concept containing only a. Using nominals, ABox assertions can be expressed
as equivalent TBox axioms, i.e., C(a) and r(a, b) can be expressed as {a} 
 C
and {a} 
 ∃r.{b} respectively. The role inverse of a role r is denoted by r−,
and the top role is denoted by ∇. The semantics of these are defined as follows:
(r−)I = {(y, x) ∈ ΔI × ΔI |(x, y) ∈ r} and ∇I = ΔI × ΔI . In some specific
cases, described later in this paper, fixpoints may be used to represent cyclic
results. We refer to [4] for a full description and the semantics of fixpoints.

Here the focus is on ABox abduction over ALC ontologies. Our aim is to
produce hypotheses that satisfy the following:

Definition 1. Let O be an ontology and ψ be a set of ABox assertions, both
expressed in ALC, where O, ψ �|=⊥ and O �|= ψ. Let SA be a set of abducible
symbols, containing any subset of the symbols in the signature of O, ψ. The ABox
abduction problem is to find a hypothesis H as a disjunction of ABox assertions,
containing only the symbols in SA, which satisfies the following conditions:

(i) O,H �|=⊥, (ii) O,H |= ψ
(iii) Each disjunct αi in H is an independent explanation for ψ: i.e. for every

αi in H, O, αi �|= α1 � ... � αi−1 � αi+1 � ... � αn.
(iv) If there exists a H′ which satisfies conditions (i)—(iii), such that H′ con-

tains only symbols in SA and O,H |= O,H′, then O,H′ |= O,H.

Conditions (i), consistency, and (ii), explanation, are standard conditions
on abductive hypotheses, requiring that the hypothesis computed explains the
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observation using the information in O without contradicting it. Condition (iii)
requires that there are no redundant disjuncts in the hypothesis H. A redundant
disjunct is one that contradicts the information in O, or provides an explanation
that is simply stronger than one that is already contained within the rest of the
hypothesis H. From this, it can be seen that condition (i) is a consequence of
condition (iii). However, condition (i) is still included here for clarity as it is a
key requirement. Condition (iv) requires that the overall hypothesis computed is
the one that makes the least assumptions required to entail the observation, and
is referred to as semantic minimality [15]. As noted in [6], in settings where the
hypothesis can contain disjunctions it is necessary to consider the redundancy
of individual disjuncts prior to checking for semantic minimality.

The above definition extends the problem defined in [6] by lifting the restric-
tions on ψ, SA and H. Specifically, both ψ and H may contain any combination
of ALC ABox assertions, including role assertions, and the set of abducibles SA

is no longer required to contain all role symbols in O, ψ.
In addition, in this work the produced hypothesis consists of a disjunction of

ALCOIμ(∇) axioms. Thus, certain hypotheses that can only be expressed using
nominals and inverse roles are also reachable using this extended approach. The
exact form of these are discussed alongside the proposed method.

3 Forgetting-Based Abduction

Forgetting eliminates symbols, i.e., concept and role names from an ontology
while preserving the entailments that are representable in the restricted signa-
ture. The symbols to eliminate are specified by a forgetting signature F , where
F can contain any subset of symbols in the signature of the ontology.

Forgetting can be utilised for abduction via contraposition: O,H |= ψ if and
only if O,¬ψ |= ¬H. For an ontology O and observation ψ, both expressed in
ALC, the steps in forgetting-based abduction are given in Fig. 1.

1. Eliminate a specified set of symbols F from (O, ¬ψ). The result of this step
is a new ontology, V = {β1, ..., βn}, which is called the forgetting solution of
(O, ¬ψ) with respect to F .

2. Extract a reduced forgetting solution V∗ from V. This is done by eliminating
all axioms in V that violate the dual of Definition 1(iii), i.e., those βi ∈ V such
that O, β1, ..., βi−1, βi+1, ..., βn |= βi.

3. Negate V∗ to obtain a hypothesis H, in the form of a disjunctive set of axioms,
which satisfies Definition 1.

Fig. 1. Steps in forgetting-based abduction [6].

There are several important features of forgetting that make forgetting-based
abduction promising [6]. (1) Given that forgetting preserves all remaining entail-
ments, the forgetting solutions can be seen as strongest necessary conditions of
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an input ontology in the restricted signature. This means that the forgetting solu-
tion V is the strongest necessary condition [22] of (O,¬ψ) in the signature SA. As
a result, the negation of V is a weakest sufficient condition, as strongest necessary
and weakest sufficient conditions are dual notions. Weakest sufficient conditions
correspond to a weakest abduction result [7,22], i.e., a semantically minimal
hypothesis. When combined with the negation step 3 in Fig. 1, this results in a
hypothesis H that satisfies both conditions (iii) and (iv). (2) The use of a forget-
ting signature F provides a goal-oriented method for specifying the abducible
symbols SA: for an ontology O and an observation ψ, SA = sig(O ∪ {ψ}) \ F .
It may be the case that a user does not have sufficient information to manu-
ally choose the abducibles from a large set of available symbols. In this case,
by inspecting the signature of the observation ψ, F can be defined by simply
setting it equal to a subset of the symbols in ψ. This guarantees that inferences
are made between O and ψ in order to eliminate the symbols in F , in turn
guaranteeing that a non-trivial hypothesis H �= ψ is obtained. (3) Forgetting
can be applied iteratively. For example, eliminating a set of symbols F1 from an
ontology O results in a forgetting result V1. If a second set of symbols F2 is then
eliminated from V1, the result obtained will be the same as eliminating all of the
symbols in F1 ∪ F2 from O. This provides a method for hypothesis refinement:
the steps in Fig. 1 can be repeated by eliminating symbols that occur in the cur-
rent hypothesis to obtain a stronger hypothesis, perhaps based on heuristics or
external data. (4) There exist several forgetting systems that have been shown
to be efficient across large real-world ontologies, for example [19,23,33].

The abduction method proposed in [6] utilises the resolution-based forgetting
approach implemented in the system LETHE [19], which performs forgetting
over ALC ontologies with ABoxes. LETHE adopts the uniform interpolation
perspective on forgetting [24], meaning that it preserves all consequences of
the input ontology in the restricted signature. Thus, the forgetting solution V
computed by LETHE is called a uniform interpolant.

By using LETHE for the forgetting step 1 in Fig. 1, the abduction approach
in [6] can compute hypotheses which satisfy a restricted form of Definition 1,
and has been shown to be sound and complete for this problem. The first main
restriction, however, is that the set of abducibles SA must contain all role symbols
in (O,¬ψ). This is due to the fact that the form of role forgetting currently
implemented in LETHE is not complete for the abduction problem. This was
noted in [6] and an example was provided. Here is another example:

Example 1. Consider the following ontology: O = {B 
 ∃r.B}. Let the observa-
tion be ψ = ∃r.B(a). The expected hypothesis given SA = {B} is H = B(a).

The result of applying LETHE’s calculus [19] to forget r is an empty uniform
interpolant. While this is sufficient for the uniform interpolation problem, for
abduction the expected hypothesis B(a) is not computed.

The second restriction is that the observations and hypotheses cannot contain
role assertions. Consider the following example:
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Example 2. Consider the following ontology O = {∃r.B 
 A,B(b)}. Let the
observation be ψ = A(a). Case 1: given a set of abducibles SA = {B, r}, the
hypothesis satisfying Definition 1 would be H1 = ∃r.B(a). Case 2: given SA =
{r}, the hypothesis would instead be H2 = r(a, b).

The first hypothesis H1 is reachable using LETHE. However, the second
hypothesis H2 is not. This is due to the fact that LETHE’s calculus does not
support deriving negated role assertions of the form ¬r(a, b), as it is designed to
preserve all entailments of the input that are expressible in ALC and ¬r(a, b) is
not expressible in ALC. Thus, these are not obtained in the reduced forgetting
solution V∗ and role assertions will be absent from the hypothesis when V∗ is
negated in step 3. This restriction means that the system is not able to utilise
existing relationships between individuals in the observation and those in the
ABox of the background ontology when generating hypotheses. Thus, many of
the more specific hypotheses such as H2 in the example above are not reachable.

In summary, the existing forgetting-based abduction approach in [6] takes as
input an ALC ontology O, an observation of the form ψ = {C1(a1), ..., Ck(ak)}
where each Ci is an ALC concept and each ai is an individual, and a set of
abducibles SA containing all role symbols in (O,¬ψ). The negation of the obser-
vation takes the form ¬ψ = ¬C1(a1) � ... � ¬Ck(ak). The final hypothesis pro-
duced via steps 1–3 in Fig. 1 takes the form H = α1(a1)� ...�αn(an) where each
αi is an ALC concept. It turns out the final output may need to be expressed in
ALC extended with disjunctive ABox assertions ALCν.

4 Extending the System

In this work, the forgetting-based approach is extended via the use of nominals.
However, producing hypotheses with nominals requires the use of a forgetting
method that can compute forgetting solutions for ontologies expressed in ALCO.

For this purpose, the abduction approach above is combined with the forget-
ting system FAME [32,33]. As opposed to the uniform interpolation perspective
taken by LETHE, FAME frames the problem of forgetting in terms of semantic
forgetting [32,33]. This view is closely related to second-order quantifier elimina-
tion [7,13], where the forgetting result must be equivalent to the original formula
in second-order logic. From the viewpoint of abduction, while the steps taken in
the approach are conceptually the same when utilising FAME, each step must
be extended in several ways compared to the previous approach.

First it is helpful to consider how FAME handles the forgetting process [33].
Any ABox assertions in the input are translated to equivalent TBox axioms
involving nominals. Then, the ontology is transformed into a set of clauses N .
Before the process of eliminating the symbols in the forgetting signature F can
take place, the set N must be transformed into the appropriate reduced forms.

For role forgetting, N is transformed into r-reduced form. Given a role symbol
to be forgotten r, every clause in N that contains r must be of the form C�∀r.D
or C�¬∀r.D where C and D are possibly complex concepts that do not contain r.
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During this transformation, definer symbols may need to be introduced. These
are fresh symbols that do not appear in the input ontology and are used to
incrementally replace the concept symbols C and D in clauses such as the one
above, until neither of them contain r. For example, given a forgetting signature
F = {r} and a clause ∀r.A � ∀r.B, a definer is introduced to replace ∀r.A. This
results in the two clauses D1 � ∀r.B and ¬D1 � ∀r.A respectively.

For concept forgetting, the reduced form is the A-reduced form. To forget a
concept A, every clause must be of the form A�C where C is a possibly complex
concept which does not contain A or contains only negative occurrences of A.
For example, the clauses A � B and A � ∀r.¬A are in A-reduced form.

When forgetting the symbols in F , role symbols are eliminated first followed
by concept symbols. In both cases, the set N is first transformed into r-reduced
and A-reduced forms respectively [33]. Once the appropriate reduced form is
obtained, rules based around Ackermann’s Lemma [1] are used to forget the
symbols in F . Given a symbol A to be eliminated, the essence of Ackermann’s
lemma is to construct a definition of A, which does not contain it, from the exist-
ing clauses in which it occurs. This definition can then be used to replace every
instance of A, thereby eliminating it from the original ontology. The AckermannR

and PurifyR rules are used to eliminate role symbols, while the AckermannC and
PurifyC rules, shown in Fig. 2, are used to eliminate concept symbols [33]. Finally
any definer symbols are eliminated, via the use of the AckermannC and PurifyC

rules, resulting in the forgetting solution V.
Full details of this process, including the rules for obtaining the reduced

forms and the forgetting rules, can be found in the relevant papers [32,33]. The
concept forgetting rules have been included for reference in Fig. 2, since these
are utilised in illustrative examples throughout this paper.

An important aspect of FAME for this work is the fact that it is sound for
forgetting in ALCOIμ(∇), as expressed in this theorem.

Theorem 1. For any ALCOIμ(∇) ontology O and any signature F ⊆ sig(O),
where sig(O) is the set of concept and role symbols in O, FAME always termi-
nates and returns a set V of clauses. If V does not contain any symbols in F ,
then the symbols in F were successfully forgotten and the set V is a solution of
forgetting the symbols in F from O.

This theorem is a weaker form of the theorem in [33], specifically focussed on
the description logic ALCOIμ(∇), as this is the language required in the setting
of this paper. The original theorem holds for the logic ALCOIHμ+(∇,�), which
also includes role hierarchies of the form r 
 s and role conjunction. However,
here all inputs are expressed in ALCO(∇). For this setting, role hierarchies are
excluded. Role conjunctions are also excluded since they are only needed in the
solution when the input is expressed in ALCOIH [31].

One limitation of using FAME to compute the forgetting result is that FAME
is not complete. However, it is worth noting that LETHE is not complete for role
forgetting in the context of abduction either [6]. Thus, the incompleteness draw-
back of FAME is offset by the fact that additional hypotheses can be reached.
This is illustrated by Examples 4, 5 and 7 later in this paper.
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Fig. 2. Rules used in the forgetting system FAME to forget a concept A, where NA
C is

the set of clauses obtained from N by replacing every occurrence of A with C [33].

Via the use of FAME, the forgetting step 1 of the abduction method can
now take any ontology O and observation ψ for which the combination (O, ψ)
is expressible in ALCO, where the signature of abducibles SA can be any set
of concept or role symbols occurring in (O, ψ). Note, the set of abducibles SA

includes all nominals, since no form of nominal forgetting is utilised in this work.
However, it is first necessary to decide how to represent the negation of the

observation ψ and the form of the hypothesis H, since FAME operates on and
produces ALCO TBoxes rather than ABox assertions. To illustrate this, as well
as the procedure for concept forgetting in FAME, recall Example 2:

Example 3. The ALCO reformulation of the ontology considered in Example 2
is: O = {∃r.B 
 A, {b} 
 B} and the observation is ψ = {a} 
 A, where {a} and
{b} are nominals. Given a set of abducibles SA = {B, r}, the hypothesis obtained
using FAME in step 1 of Fig. 1 is H1 = {a} 
 ∃r.B. If instead SA = {r}, the
hypothesis is H2 = {a} 
 ∃r.{b}. Both H1 and H2 satisfy Definition 1.

However, in cases where either the observation or the hypothesis take the
form of a conjunction or disjunction of ABox assertions, the reformulation is less
obvious. In this case, it is possible to take advantage of the fact that FAME can
perform forgetting in the presence of the top role ∇.

Example 4. Consider the following ontology O = {∃r.B 
 A,C 
 D, {b} 
 B}
and the observation ψ = A(a)�D(c). Let SA = {r, C}. The expected hypothesis
under Definition 1 should be equivalent to H = r(a, b)�C(c). The negation of ψ
can be represented as: ¬ψ = � 
 ∀∇.(¬{a} � ¬A) � ∀∇.(¬{c} � ¬D). Following
the steps in Fig. 1 using FAME, in step 1, where F = {A,B,D}, the hypothesis
obtained can be represented as: H = � 
 ∃∇.(¬{a} � ∃r.{b}) � ∃∇.(¬{c} � C).
This is equivalent to the expected hypothesis r(a, b) � C(c).
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This leads to the general form used for the negated observations and the
hypotheses produced. These are shown below:

¬ψ = � 
 ∀∇.(¬{a1} � ¬C1) � ... � ∀∇.(¬{ak} � ¬Ck) (1)
HF = � 
 ∃∇.D1 � ... � ∃∇.Dn (2)

where each Ci is an ALCO concept and each Di is an ALCOIμ(∇) concept.
From here HF is used to denote the hypothesis obtained using FAME in step 1
in Fig. 1 and HL is used to refer to the one obtained using LETHE.

The following lemma relates HF to the disjunctive form in Definition 1:

Lemma 1. The hypothesis HF is expressed as HF = α1 � ... � αn where each
disjunct αi is of the form � 
 ∃∇.Di and each Di is an ALCOIμ(∇) concept.

It is still possible to satisfy conditions (iii) and (iv) of Definition 1 using this
representation. However, it is first necessary to adapt the filtering method of step
2 in Fig. 1 to obtain the reduced forgetting solution V∗, as this is an important
part of the feasibility of the approach in practice [6].

An annotation concept � is used to efficiently trace any dependencies on the
negated observation ¬ψ in the forgetting result V. Any axioms which do not
contain the concept � are removed from V, thereby removing the majority of
the axioms that are redundant with respect to Definition 1. Fortunately, extend-
ing this approach to the current setting is straightforward. Here, the negated
observation provided in step 1 of Fig. 1 is annotated as follows:

¬ψ = � 
 ∀∇.(¬{a1} � ¬C1 � �) � ... � ∀∇.(¬{ak} � ¬Ck � �)

where as before, � is a fresh concept symbol that does not occur in (O, ψ), nor
in the signature F . The soundness of this filtering approach is expressed below.

Theorem 2. Let O be an ALCOIμ(∇) ontology, ψ an observation as a set of
axioms, F a forgetting signature and � an annotator concept appended disjunc-
tively to each disjunct in ¬ψ, where � �∈ sig(O) and � �∈ F . For each axiom β in
the forgetting result V obtained by forgetting all symbols in F , if � �∈ sig(β) then
β is redundant under the dual of Definition 1(iii), and should be removed in the
extraction of the reduced forgetting result V∗.

Proof sketch: The proof is by induction over the construction of a derivation
using the calculus of FAME [33], and takes the same form as the proof in [6].
The annotation concept � does not appear in the signature F . Thus, � is not
eliminated and if a clause in the normal form of (O,¬ψ) contains the annotation
concept �, then any clause derived via inferences on this clause under FAME’s
forgetting calculus will also contain �. Therefore, any axiom β in the forgetting
result V that does not contain � was derived purely using axioms in the back-
ground ontology O, i.e., O |= β. Since under Definition 1, O �|= ψ, such a β
will not contribute to the explanation of ψ required by abduction, and should
be omitted from HF to satisfy Definition 1(iii).
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As proposed in [6], the filtering step 3 in Fig. 1 can be performed in an
approximate or full manner. The approximate filtering utilises the annotation-
based method to inexpensively remove all redundancies that can be captured
using this approach. The result is an approximation of the reduced forgetting
result V∗, denoted by V∗

app. This can be negated in step 3 to return an approxi-
mate hypothesis. Alternatively, the full filtering setting further performs the dual
entailment check of Definition 1(iii) over each axiom in V∗

app using an external
reasoner. This eliminates any remaining redundancies that cannot be captured
using annotations, an example of which appears in [6]. The result is then V∗,
which is negated to return a hypothesis satisfying Definition 1.

It is worth noting that, for fixpoints to occur in the hypothesis, a cycle
would need to occur both over the symbols in F and also not be redundant
under Theorem 2. As found in [6] this is rare in practice.

Example 5. To illustrate the full procedure, for the ontology O and the obser-
vation ψ from Example 4, the input given to FAME is:

∃r.B 
 A C 
 D
{b} 
 B � 
 ∀∇.(¬{a} � A � �) � ∀∇.(¬{c} � D � �).

The set of abducibles is SA = {C, r} and thus the forgetting signature is F =
{A,B,D}. In step 1, (O,¬ψ) is first transformed into A-reduced form:

∀r.¬B � A ¬C � D
¬{b} � B ∀∇.(¬{a} � ¬A � �) � ∀∇.(¬{c} � ¬D � �)

This is also in D-reduced form. Forgetting the concepts A and D results in:

¬{b} � B ∀∇.(¬{a} � ∀r.¬B � �) � ∀∇.(¬{c} � ¬C � �)

Forgetting the concept B then produces:

∀∇.(¬{a} � ∀r.¬{b} � �) � ∀∇.(¬{c} � ¬C � �),

which is the forgetting result V. In the filtering step 3 of Fig. 1, the axiom
is retained and the annotation concept � is set to ⊥. Neither disjunct in this
hypothesis is redundant with respect to the dual of Definition 1(iii) and thus
both are retained in the reduced forgetting result V∗, which is then negated in
step 3 to produce the hypothesis: HF = � 
 ∃∇.({a} � ∃r.{b}) � ∃∇.({c} � C).
This is equivalent to the suggested hypothesis H = r(a, b) � C(c).

5 Comparing Hypotheses

Since the main aim of abductive reasoning is to produce an explanation, the form
taken by the hypotheses is important. This is in contrast to the problem of for-
getting, where restricting the original ontology while preserving all representable
entailments [19] or obtaining an equivalent set of formulae [32] is the main goal.
Thus, the readability of the forgetting result has so far received little attention.
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For abduction, aside from the conditions in Definition 1, the readability of the
hypotheses should be considered to provide insight into unseen observations.

Therefore, it is useful to compare the hypotheses produced by both
approaches to forgetting-based abduction: the first using the resolution-based
approach of LETHE, and the second using the Ackermann approach of FAME.
Consider the following example:

Example 6. Let the background ontology O contain the following axioms:

Pogona 
 ∃livesIn.(Arid � Woodlands) Woodlands 
 Habitat
EucalyptForest 
 Woodlands EucalpytForest(SpringbrookPark)

and consider the observation ψ = ∃livesIn.Woodlands(Gary). Case (1): let
SA include all symbols in O except Woodlands, i.e. F = {Woodlands}. The
hypotheses obtained using LETHE and FAME respectively are:

HL = Pogona � ∃livesIn.EucalyptForest(Gary)
HF = � 
 ∃∇.(Pogona � ∀livesIn.(¬Arid � ¬Habitat � ∃livesIn−.{Gary})
� ∃∇.({Gary} � ∃livesIn.EucalyptForest),

where livesIn− denotes the inverse of the role livesIn.

Example 6 illustrates a potential drawback of utilising a more expressive
forgetting approach: the hypothesis produced can be more difficult to inter-
pret, as seen by the additional syntactic redundancy in the first disjunct of
HF . Despite this, the extra expressivity in the target language of FAME can
be useful. Since FAME’s solution preserves additional entailments compared to
LETHE’s, it may lead to additional explanations (disjuncts) in the final hypothe-
sis. In Example 6, if F is extended to F = {Woodlands,EucalyptForest}, then
HL = Pogona(Gary), whereas HF = � 
 ∃∇.(Pogona � ∀livesIn.(¬Arid �
¬Habitat � ∃livesIn−.{Gary}) � ∃∇.({Gary} � ∃livesIn.{SpringbrookPark}).
The second disjunct in HF is equivalent to livesIn(Gary, SpringbrookPark),
an explanation that is absent from HL.

In Example 6, the following relations hold: O,HL |= HF and O,HF �|= HL.
This indicates that the hypotheses obtained by using FAME in the forgetting
step 1 in Fig. 1 can be weaker than those obtained using LETHE. This is to
be expected, since the forgetting solution computed by FAME can be stronger
than the uniform interpolant produced by LETHE due to the extended language
of FAME’s solution. Thus, HF can be weaker than HL under the background
ontology, since these are obtained by negating the reduced forgetting solutions.

6 Experimental Evaluation

To perform a preliminary evaluation of the new forgetting-based abduction
method, a prototype was implemented in Java using the OWL-API1. Since one

1 http://owlapi.sourceforge.net/.

http://owlapi.sourceforge.net/
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of the primary aims of this work is to assess the benefit of utilising FAME for
abduction rather than LETHE, the forgetting module in the abduction method
utilises either of the two tools: LETHE2 or FAME [32,33].

Table 1. Characteristics of the experimental corpus.

Ontology name DL TBox size ABox size Num. concepts Num. roles

BFO EL 52 0 35 0

LUBM EL 87 0 44 24

HOM EL 83 0 66 0

DOID EL 7892 0 11663 15

SYN EL 15352 0 14462 0

ICF ALC 1910 6597 1597 41

Semintec ALC 199 65189 61 16

OBI ALC 28888 196 3691 67

NATPRO ALC 68565 42763 9464 12

Since no benchmarks exist for abduction problems in DLs, a challenging
aspect of experimentally evaluating tools for abduction is the generation of
appropriate observations. These observations should not violate the conditions
in Definition 1, i.e. they should be consistent with the corresponding background
ontology, but should also not be entailed by it. However, it is also necessary to
consider the forms the observations take. While it is not possible to know exactly
what forms the observations may take outside of case studies, it is important
to try to emulate information that may be seen in practice. To do this, in this
work the observations were generated randomly using existing information in
each background ontology, as in [6]. Specifically, to generate a set of candidate
observations for a background ontology, the concepts occurring in the axioms of
the ontology were scanned and stored. These were selected at random and com-
bined with ALC operators, also at random, to encourage variety. Each candidate
observation was checked using HermiT to determine if it satisfied the conditions
in Definition 1. If it did not, it was discarded. This process was repeated until
the required number of observations was obtained.

For the first experiment, the aim was to compare the performance of the
abduction method using LETHE and FAME in terms of time and the hypothe-
ses obtained. The set of observations was restricted to those that can be handled
by the abduction system using LETHE as in [6]. These included any ALC con-
cept assertion, with at least one concept symbol that is not � or ⊥, over a single
individual. For ontologies with an ABox, each individual in the observations was
an existing individual, while for those without an ABox the individual was a
fresh one. The restriction to one individual was performed because in the OWL

2 http://www.cs.man.ac.uk/koopmanp/lethe/index.html.

http://www.cs.man.ac.uk/koopmanp/lethe/index.html
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API disjunctive assertions cannot be expressed for ALC. For each observation,
the forgetting signature F was set to one random concept symbol in the obser-
vation ψ. In this way, the results are indicative of a single step of the abduction
procedure, assuming that the user has no additional information that would lead
them to further restrict the set of abducibles SA. Thus, the hypothesis obtained
is one of the weakest possible hypotheses (least assumptions). It is assumed that
the user would proceed to further refine the hypothesis by forgetting symbols
from the hypotheses obtained. The time limit in this experiment was 300s for
both the forgetting and filtering steps respectively.

The corpus used in experiment 1 is the same as the one used in [6], which
consists of ontologies taken from NCBO Bioportal3, OBO Foundry4, the LUBM
benchmark [14] and the Semintec5 financial ontology. The choice of corpus is
detailed in [6]. The statistics of this corpus are shown in Table 1.

The aim of the second experiment was to assess the performance of FAME
with the approximate and full filtering settings of the abduction approach in the
less restrictive setting of this paper. The corpus was extracted from a snapshot
of NCBO Bioportal [25]. The observations were generated in the same way as
in experiment 1, but without the restrictions which excluded role assertions.
The forgetting signature in each case included at least one symbol from the
observation, including role symbols. Again the assumption is that, unlike for
forgetting, the aim is not to restrict a background ontology to a portion of the
original, but to produce a space of independent explanations that does not make
too many assumptions without sufficient prior knowledge about the observation.
Thus, the forgetting signature was set to small portions of the symbols in the
ontology. The timeout for the method was set to 1000 s in total. The success rates
reported include cases for which FAME failed to forget at least one symbol, or
one of these two steps exceeded the time limit.

Table 2. Characteristics of the experimental corpus used in experiment 2.

Number of Mean Median 90th Percentile Maximum

TBox Axioms 1374 328 3830 8535

ABox Assertions 1014 26 2472 10889

Concepts 783 221 2232 6446

Roles 54 21 76 1043

Individuals 558 23 1605 8220

The requirements for the ontologies in the extracted corpus were as follows.
(1) They should be parsable by the OWLAPI, FAME and HermiT. This excludes

3 https://bioportal.bioontology.org/.
4 http://www.obofoundry.org/.
5 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm.

https://bioportal.bioontology.org/
http://www.obofoundry.org/
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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cases for which there were errors in loading the ontology into any of these sys-
tems. For this reason, the ontologies were also restricted to those containing at
most 100,000 axioms. (2) The observation generation method should succeed
after 2,000 attempts. This was done to exclude ontologies for which it is not
possible to generate a sufficient number of non-entailed, consistent observations
for the given ontology. (3) The ontology should contain an ABox, since the main
benefit of this less restrictive setting is that information in the ABox can be used
to produce hypotheses that utilise local information about an individual and its
relationships with other individuals in the ABox. The final corpus contained 50
ontologies, the statistics of which are summarised in Table 2.

All ontologies were preprocessed into their ALC fragments, since this is the
setting of this work. To do this, axioms not representable in ALC were removed.
Others that were representable in ALC were translated using simple conversions.

Since fixpoint operators are not utilised in the implementation of FAME,
these were not present in the results. Thus, cases requiring fixpoints are deemed
to be a failure case and count against the reported success rates. However, these
are unlikely to have a significant impact as they are rare in practice [6].

Both experiments were performed on a machine using a 2.8 GHz Intel Core
i7-7700HQ CPU and 12 GB of RAM.

Table 3. Results for the first experiment. HL (HF ) indicates results for the abduction
system using LETHE (FAME). The time limit for forgetting and filtering was 300 s
each. For the equivalence check, only cases where both LETHE and FAME computed
a hypothesis were compared. For the success rate, failures took into account both times
exceeding the timeout and, in the case of FAME, results for which the concept could
not be forgotten and results containing definer symbols.

Ont.
name

Mean time/s Max time/s Mean disjuncts O, HL ≡ O, HF Success %

HL HF HL HF HL HF % HL HF

BFO 0.05 0.04 0.64 0.26 1.73 1.73 100.0 100.0 100.0

LUBM 0.08 0.06 0.67 0.30 2.53 2.96 60.8 100.0 86.7

HOM 0.06 0.05 0.65 0.26 2.5 2.5 100.0 100.0 100.0

DOID 3.35 3.07 9.97 10.26 4.77 4.77 100.0 100.0 100.0

SYN 6.18 2.84 16.12 13.92 5.6 5.6 100.0 100.0 100.0

ICF 0.96 0.67 3.56 2.16 1.93 1.93 100.0 100.0 100.0

Sem 2.89 3.09 6.70 6.39 1.10 1.63 58.3 96.7 100.0

OBI 34.47 32.97 120.05 108.85 43.45 42.2 91.3 96.7 100.0

NAT 46.04 138.24 301.27 688.87 10.61 4.17 62.5 76.7 76.7

The results for experiment 1 are shown in Table 3. Over most ontologies,
utilising FAME resulted in a shorter mean runtime. Two exceptions were the
Semintec and NATPRO ontologies. The maximum runtime was longer when
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using FAME in a few cases, most noticeably over NATPRO, for which it was
over double that obtained using LETHE. These differences could be due to the
computation of additional explanations requiring the expressivity of FAME’s
solution, which would necessitate additional entailment checks during the filter-
ing step. Also, for ontologies with large ABoxes, a significant number of axioms
need to be transformed to TBox axioms using nominals, which may increase the
time taken. In most cases, the success rate when using LETHE was 100%. The
same is true using FAME. In LETHE’s case, failures occurred over the larger
and more expressive ontologies, Semintec, OBI and NATPRO. These are due to
timeouts, indicating that LETHE took longer than 300 s to produce a solution.
For FAME, failures can occur due to the incompleteness of FAME’s calculus: all
of the failures over the LUBM ontology were due to this characteristic. For the
NATPRO ontology, all of the failures observed using FAME were instead due
to timeouts. In most cases, the hypotheses HL and HF were equivalent under
the corresponding ontology. This indicates that it should often be possible to
express HF in ALC, which may help to improve the readability issue discussed
in Example 6 in these cases. Over the LUBM, Semintec, OBI and NATPRO
ontologies, a number of the hypotheses produced using FAME were weaker than
those returned using LETHE. This is expected: the forgetting result returned
by FAME may be stronger than the uniform interpolant produced by LETHE,
and in some cases there may be hypotheses that cannot be expressed without
the extra expressivity of FAME’s result. The following is an example taken from
the LUBM experiments, demonstrating the benefit of this in practice.

Example 7. For the observation ψ = ¬Organization(a), where a is a fresh indi-
vidual, the key axioms in the LUBM ontology were:

Person � ∃worksFor.Organization 
 Employee College 
 Organization

Employee 
 Person � ∃worksFor.Organization

For the forgetting signature F = {Organization}, the hypothesis was:

HF = � 
 ∀∇.(¬{a} � ∃worksFor−.(¬Employee � Person))

Other explanations, such as those equivalent to ¬College(a), are redundant with
respect to Definition 1(iii) and are removed by the filtering in step 3 of Fig. 1.
Using LETHE, no hypothesis was produced as the above hypothesis requires the
use of the inverse role worksFor−, which cannot be produced by LETHE.

The results for experiment 2 are shown in Table 4. As expected, the approxi-
mate filtering took less time than the full filtering across all cases, as it does not
perform the additional, expensive entailment checks. The maximum time for the
approximate filtering for an F size of 1 is particularly high. It is likely that for
this single case the forgetting solution was particularly large, indicating that the
forgotten symbol occurred frequently in the given ontology. The mean number
of redundant axioms removed from the forgetting results by the approximate
filtering was 2444.6, 2510.4 and 2873.3 for F sizes of 1, 5% and 10% respec-
tively. The mean additional redundancies removed by the full filtering setting
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was 11.7, 11.3 and 9.7 axioms respectively. This indicates that in many cases the
approximate filtering may be sufficient to obtain a space of explanations that
is largely free of redundancies. The success rates indicate that the full filtering
setting caused a number of additional timeouts for each size of F . However, the
majority of failures were the result of FAME failing to forget at least one sym-
bol in F . For the approximate filtering cases, 100%, 100% and 99.5% of failures
occurred due to the forgetting step for F sizes 1, 5% and 10% respectively. For
the full filtering cases, the corresponding values were 88.8%, 94.8% and 94.8%
respectively. FAME’s failure rates for these abduction experiments are higher
than those reported for forgetting experiments [31,33]. This may be due to the
frequency of role symbols occurring in ABox observations for abduction, many
of which included role assertions or complex concepts involving roles.

Table 4. Results for experiment 2. Percentages for F are relative to sig(O, ψ). All
times are in seconds.

F size Forgetting time Approx. filter time Full filter time Successes %

Mean Max Mean Max Mean Max Approx. Full

1 0.05 1.02 0.74 869.63 7.40 880.11 90.3 89.3

5% 0.13 11.15 0.09 28.25 8.29 878.05 81.7 80.9

10% 1.04 75.09 0.06 5.52 6.45 975.24 70.9 70.6

7 Conclusion and Future Work

In this paper the expressivity of forgetting-based abduction was extended using
the forgetting system FAME. Role symbols can now be excluded from the
abducibles, and observations and hypotheses can now contain role assertions,
including conjunctions and disjunctions of these. Hypotheses requiring role
inverses can also now be computed. These extensions are useful in practice, as
data in the ABox of an ontology can be used to compute more specific hypothe-
ses.

One limitation of the approach is the lack of completeness, due to the fact
that FAME uses semantic forgetting, which is not complete. A possible solution
is to combine the use of FAME and LETHE, enabling LETHE to forget definer
or forgetting symbols in FAME’s result. Future work will also include further,
fine-grained experimental evaluation and applications such as concept learning.
These will benefit significantly from the enhanced expressivity of the approach.
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Abstract. In recent work we have extended the description logic (DL)
ALCQ by means of more expressive number restrictions using numeri-
cal and set constraints stated in the quantifier-free fragment of Boolean
Algebra with Presburger Arithmetic (QFBAPA). It has been shown that
reasoning in the resulting DL, called ALCSCC, is PSpace-complete with-
out a TBox and ExpTime-complete w.r.t. a general TBox. The seman-
tics of ALCSCC is defined in terms of finitely branching interpretations,
that is, interpretations where every element has only finitely many role
successors. This condition was needed since QFBAPA considers only
finite sets. In this paper, we first introduce a variant of ALCSCC, called
ALCSCC∞, in which we lift this requirement (inexpressible in first-order
logic) and show that the complexity results for ALCSCC mentioned above
are preserved. Nevertheless, like ALCSCC, ALCSCC∞ is not a fragment
of first-order logic. The main contribution of this paper is to give a char-
acterization of the first-order fragment of ALCSCC∞. The most impor-
tant tool used in the proof of this result is a notion of bisimulation that
characterizes this fragment.

1 Introduction

Description Logics (DLs) [4] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as biology and medicine [8]. To define the impor-
tant notions of such an application domain as formal concepts, DLs state nec-
essary and sufficient conditions for an individual to belong to a concept. These
conditions can be Boolean combinations of atomic properties required for the
individual (expressed by concept names) or properties that refer to relationships
with other individuals and their properties (expressed as role restrictions). For
example, the concept of a man that has a son and a daughter can be formalized
in the DL ALC [17] as Male � Human � ∃child .Male � ∃child .Female. Number
restrictions allow us to formulate numerical constraints on the role successors
of the elements of a concept. For example, in the DL ALCQ [9], the concept
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Female �Human � (≥ 5 child .Female)� (≤ 1 child .Male) describes women that
have at least five daughters and at most one son.

In recent work [2], we have extended the DL ALCQ by means of more
expressive number restrictions using numerical and set constraints stated in
the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic
(QFBAPA) [11]. For example, in the resulting DL ALCSCC, one can describe
individuals that have twice as many sons as daughter using the role successor
constraint succ(|child ∩ Male| = 2 · |child ∩ Female|). It has been shown in [2]
that reasoning in ALCSCC has the same complexity as reasoning in its sub-logic
ALCQ [18,19], i.e., PSpace-complete without a TBox and ExpTime-complete in
the presence of a TBox.

The semantics of ALCSCC is defined in terms of finitely branching inter-
pretations, i.e., interpretations where every element has only finitely many role
successors. This condition was needed since QFBAPA considers only finite sets.
The disadvantage of this meta-condition is that it is not expressible in first-order
logic, and thus makes the comparison of the expressive power of ALCSCC with
that of other DLs, which are usually fragments of first-order logic, problematic.
Strictly speaking, no ALCSCC concept is expressible in first-order logic due to
this implicit constraint. To overcome this problem, we introduce a variant of
ALCSCC, called ALCSCC∞, in which we lift the “finite branching” requirement.
This is achieved by introducing a variant of QFBAPA, called QFBAPA∞, in
which not just finite, but also infinite sets are considered. We prove that satisfi-
ability in QFBAPA∞ has the same complexity (NP-complete) as satisfiability in
QFBAPA. Based on this, we can show that the complexity results for ALCSCC
mentioned above also hold for ALCSCC∞. Alternatively, we could have also used
the variant QFBAPA∞ of QFBAPA with possibly infinite sets introduced in [10],
whose satisfiability problem is also NP-complete.

Despite the removal of the “finite branching” requirement—a constraint that
destroys expressibility in first-order logic of ALCSCC—ALCSCC∞ is still not a
fragment of first-order logic. The main contribution of this paper is to give a
characterization of the first-order fragment of ALCSCC∞. For this purpose, we
introduce the fragment ALCCQU of ALCSCC∞, which uses constraints of the
logic CQU (counting quantifiers over unary predicates) [7] in place of QFBAPA
constraints, and show that ALCCQU concepts are first-order definable. Basically,
in ALCCQU we can compare the cardinality of successors sets with a constant,
but not with the cardinality of another successor set. For example, the ALCCQU
role successor constraint succ(|friend ∩ livesWith ∩ Female| ≥2) describes indi-
viduals that live together with at least two female friends. To get a handle on
the expressive power of ALCCQU , we define a notion of bisimulation that char-
acterizes ALCCQU , in the sense that a first-order formula is invariant under this
kind of bisimulation iff it is equivalent to an ALCCQU concept. This notion of
bisimulation is very similar to the counting bisimulation introduced in [13] for
ALCQ. Surprisingly, all ALCSCC∞ concepts are also invariant under ALCCQU-
bisimulation, which allows us to conclude that ALCCQU consists of exactly the
first-order definable concepts of ALCSCC∞.
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When formulating complexity results for logics that use numbers in their
syntax (such as QFBAPA, CQU, ALCCQU , and ALCSCC∞), it is important
to make clear how the input size of the numbers is defined. In this paper, we
assume binary coding of numbers (e.g., the number 1024 has size 10 rather than
size 1024), which makes the complexity upper bounds stronger.

2 The Logics QFBAPA∞ and CQU

In this section, we first introduce the logic QFBAPA∞, whose main difference to
the well-known logic QFBAPA [11] is that it allows for solutions involving not
just finite, but also infinite sets. Then, we demonstrate that two important results
shown in [11] for QFBAPA also hold for QFBAPA∞. Finally, we define the
fragment CQU of QFBAPA∞, for which a decision procedure based on column
generation was described in [7].

The logic QFBAPA∞. In this logic one can build set terms by applying
Boolean operations (intersection ∩, union ∪, and complement ·c) to set variables
as well as the constants ∅ and U . Set terms s, t can then be used to state inclusion
and equality constraints (s = t, s ⊆ t) between sets. Presburger Arithmetic (PA)
expressions are built from non-negative integer constants, PA variables, and set
cardinalities |s| using addition as well as multiplication with a non-negative inte-
ger constant. They can be used to form numerical constraints of the form k = �
and k < �, where k, � are PA expressions. A QFBAPA∞ formula is a Boolean
combination of set and numerical constraints.

The semantics of set terms and set constraints is defined using substitutions
σ that assign a set σ(U) to U and subsets of σ(U) to set variables. The evaluation
of set terms and set constraints by such a substitution is defined in the obvious
way, using the standard notions of intersection, union, complement,1 inclusion,
and equality for sets. PA expressions are evaluated over N∞ = N∪{∞}, i.e., the
non-negative integers extended with a symbol for infinity. Thus, substitutions
additionally assign elements of N∞ to PA variables. The cardinality expression
|s| is evaluated under σ as the cardinality of σ(s) if this set is finite, and as ∞ if
σ(s) is not finite.2 When evaluating PA expressions w.r.t. a substitution σ, we
employ the usual way of adding, multiplying, and comparing integers, extended
to N

∞ by the following rules ranging over N ∈ N:

1. ∞ + N = N + ∞ = ∞ = ∞ + ∞,
2. if N �= 0 then N · ∞ = ∞ = ∞ · N , else 0 · ∞ = 0 = ∞ · 0,
3. N < ∞ and ∞ �< N , as well as ∞ = ∞ and ∞ �< ∞.

A solution σ of a QFBAPA∞ formula φ is a substitution that evaluates φ to
true, using the above rules for evaluating set and numerical constraints and the
usual interpretation of the Boolean operators occurring in φ. The formula φ is
satisfiable if it has a solution.
1 The complement is defined w.r.t. σ(U), i.e., σ(sc) = σ(U) \ σ(s).
2 Note that we do not distinguish between different infinite cardinalities, such as count-

ably infinite, uncountably infinite, etc.
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Note that, in QFBAPA∞, we can enforce infinity of a set although we do
not allow the use of ∞ as a constant. For instance, |s| = ∞ is not an admissible
numerical constraint, but it is easy to see that the constraint |s| + 1 = |s| can
only be satisfied by a substitution that assigns an infinite set to the set term s.

Comparison with QFBAPA andQFBAPA∞. The logic QFBAPA, as intro-
duced in [11], differs from QFBAPA∞ as defined above, both syntactically and
semantically. From the syntactic point of view, the main difference is that, in
QFBAPA∞, we disallow negative integer constants as well as divisibility by a
fixed integer constant. Dispensing with negative constants is not really a restric-
tion since we can always write the numerical constraints of QFBAPA in a way
that does not use negative integer constants (by bringing negative summands to
the other side of a constraint). Disallowing divisibility may be a real restriction,
but in the presence of ∞ it is not clear how to interpret divisibility constraints
(Is ∞ even or odd?). In addition, in the context of using the logic within a DL,
there does not appear to be an urgent need for such constraints. From a syntac-
tic point of view, the logic QFBAPA∞ [10] has more general atomic constraints
than our logic QFBAPA∞ (e.g., it allows for the use of rational constants and the
explicit statement that a set is infinite), but these constraints can be expressed
also in QFBAPA∞.

From the semantic point of view, the main difference of QFBAPA∞ and
QFBAPA∞ to QFBAPA is, of course, that the semantics of QFBAPA requires us
to interpret U , and thus all set variables, as finite sets. In addition, PA variables
are interpreted in QFBAPA∞ as non-negative integers, but this was already
the case for the variant of QFBAPA used in the definition of ALCSCC in [2]
since in that context only set cardinalities (which are non-negative) are used. In
QFBAPA∞, PA variables can also be interpreted as real numbers, but there is
a constraint available that allow to state that a PA term must be interpreted
by an integer. Since PA variables are not used in the context of ALCSCC and
ALCSCC∞, this difference is not relevant here.

Satisfiability in QFBAPA, QFBAPA∞ , and QFBAPA∞. In [11] it is
shown that the satisfiability problem for QFBAPA formulae is NP-complete.
Since NP-hardness is clear due to the use of Boolean operations on the formula
level, the main task in [11] was to show the “in NP” result. The main tool used in
[11] is a “sparse solution” lemma (see Fact 1 in [11] and Lemma 3 in [2]), which
was also important for showing the complexity upper bounds for reasoning in
ALCSCC in [2]. We show below that this “sparse solution” lemma also holds for
QFBAPA∞, which implies that satisfiability of QFBAPA∞ formulae is also in
NP.

The “sparse solution” lemma is based on the notion of a Venn region. Assume
that φ is a QFBAPA formula containing the set variables X1, . . . , Xk. A Venn
region for φ is of the form

Xc1
1 ∩ . . . ∩ Xck

k ,

where ci is either empty or c for i = 1, . . . , k. Venn regions are interesting since
every set term s occurring in φ can be expressed as the disjoint union of Venn
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regions, and thus its cardinality is the sum of the cardinalities of these Venn
regions. The problem is that there may be exponentially many Venn regions in
the size of φ. The “sparse solution” lemma basically says that it is possible to
restrict the attention to a polynomial number of Venn regions.

To be more precise, it is shown in [11] that a given QFBAPA formula φ
can be transformed in polynomial time into an equisatisfiable QFBAPA formula
G∧F where G is a Boolean combination of numerical constraints not containing
sets, and F is a conjunction of linearly many expressions |bi| = ki (i = 1, . . . ,m),
where bi is a set term and ki is a PA variable (standing for the cardinality of the
set bi). Using the fact that each bi is a disjoint union of Venn regions, F can be
expressed as a system of linear equations

A · x = k, (1)

which must be solved over the non-negative integers. Here the ith row of the
matrix A is a 0/1 vector that expresses which Venn regions participate in gener-
ating the set bi. The vector x contains a variable xv for every Venn region v at
the position corresponding to the occurrence of this region in A. Intuitively, the
value of xv in a solution of the equation stands for the cardinality of the Venn
region. Finally, k is the vector of the variables ki, and thus the value of ki stands
for the cardinality of the set bi.

For example, consider the QFBAPA formula

φ = |X1 ∪ X2| ≥ |X1| + |X2|.

In this case, G is k1 ≥ k2+k3 and F is |X1∪X2| = k1∧|X1| = k2∧|X2| = k3, and
thus m = 3 is the number of rows in the matrix A. There are four Venn regions
in this example: v1 = X1 ∩X2, v2 = X1 ∩Xc

2 , v3 = Xc
1 ∩X2, v4 = Xc

1 ∩Xc
2 . The

system (1) thus has four variables in the vector x, and looks as follows:

⎛
⎜⎝

1 1 1 0

1 1 0 0

1 0 1 0

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

xv1

xv2

xv3

xv4

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎝

k1

k2

k3

⎞
⎟⎠ (2)

The first row of A in (2) is explained by the fact that X1 ∪X2 = v1 ∪ v2 ∪ v3,
and similarly for the other rows. If we take the solution k1 = 3, k2 = 1, k3 = 1
of G, then the linear system obtained from (2) by applying this replacement is
actually not solvable. In contrast, if we take k1 = 2, k2 = 1, k3 = 1, then setting
xv1 = 0, xv2 = 1, xv3 = 1, xv4 = 5 is a solution of the resulting system (where
the value for xv4 is actually irrelevant). Note that xv1 = 0 means that the Venn
region v1 = X1 ∩ X2 is empty, which corresponds to the fact that we can only
have |X1 ∪ X2| ≥ |X1| + |X2| if X1 and X2 are interpreted by disjoint sets.

The problem with the system (1) is that it contains exponentially many
variables. Using a result by Eisenbrand and Shmonin [6] (called Fact 1 in [11]),
it is shown in [11] that there is a bound N = 2m log(4m) such that, for any
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solution of G, the system obtained from (1) by applying this solution to the
variables ki has a solution in which at most N of the variables xv in (1) are non-
zero, if it has a solution at all. Note that the value of N is clearly polynomial in
the size of φ since m is bounded by the number of set terms occurring in φ.

On the one hand, this implies that, by guessing (in non-deterministic poly-
nomial time) N Venn regions v whose associated variables in (1) are supposed to
be non-zero, we obtain a polynomial-sized system A′ · x′ = k, in which only the
variables xv for the guessed Venn regions and their associated columns remain.
The formula G is a Boolean combination of linear (in)equations. After guessing
which of them are to be true and which not, we overall obtain a polynomially
large system of linear (in)equations, whose solvability in the non-negative inte-
gers N can then be tested by an NP procedure [14]. Note that this NP procedure
is not used as an NP oracle, but rather as an extension of the search tree for a
solution that has already been built by the guessing done before.

Proposition 1 ([11]). Satisfiability of QFBAPA formulae is in NP.

On the other hand, since xv = 0 means that the Venn region v is empty,
the above argument also shows that a solvable QFBAPA formula always has a
solution in which at most N Venn regions are non-empty. In [2] this result was
actually strengthened as follows.

Lemma 1 ([2]). For every QFBAPA formula φ, one can compute in polyno-
mial time a number N whose value is polynomial in the size of φ such that the
following holds for every solution σ of φ: there is a solution σ′ of φ such that

(i) |{v Venn region | σ′(v) �= ∅}| ≤ N , and
(ii) {v Venn region | σ′(v) �= ∅} ⊆ {v Venn region | σ(v) �= ∅}.

In the corresponding result shown in [11], the property (ii) is missing. The
main idea underlying the proof of our stronger result is that, for a given solution
σ of φ, one applies the “sparse solution” lemma of [6] not to (1) directly, but to
the system obtained from it by removing the variables xv and the corresponding
columns in A for those Venn regions v that satisfy σ(v) = ∅.

Our goal is now to show that Proposition 1 and Lemma 1 also hold if we
replace QFBAPA with QFBAPA∞. For this purpose, let us assume that σ is a
solution of G in N

∞, and consider the system

A · x = σ(k), (3)

where the variables ki are replaced by σ(ki) ∈ N
∞. Then the following lemma is

an easy consequence of the way we defined operations involving ∞.

Lemma 2. The following holds for any solution θ of (3): if σ(ki) = ∞, then
there is a Venn region v such that θ(xv) = ∞ and

1. the column in A corresponding to v contains 1 at position position i, and
2. for all j with σ(kj) < ∞, the column in A corresponding to v contains 0 at

position j.
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Based on this lemma, we can now extend the “sparse solution” lemma of [6]
to the setting where ∞ may occur on the right-hand side of the system and in
the solution.

Lemma 3. If the linear system (3) has a solution in N
∞, then it has a solution

in N
∞ where at most M = 2m log(4m) + m of the variables in the vector x are

non-zero.

Proof. Assume that (3) has a solution θ in N
∞. Then the system B · x = b

obtained from (3) by removing the rows i for which σ(ki) = ∞ also has a
solution in N

∞. In addition, since the vector b does not contain ∞, it is easy to
see that B · x = b also has a solution in N. The “sparse solution” lemma of [6]
then yields a solution γ of B · x = b such that at most N = 2m log(4m) of the
variables xv in x are such that γ(xv) �= 0.

We modify γ to obtain a solution γ′ of (3) using Lemma 2. Since (3) has the
solution θ, we know the following: for every i such that σ(ki) = ∞, there is a Venn
region v such that 1. and 2. stated in that lemma are satisfied. We now select for
each such i one Venn region v with these properties, and set γ′(xv) := ∞. For
Venn regions u not selected in this way, we set γ′(xu) := γ(xu). In the worst-
case, this modification changes m zeros to ∞, and thus γ′ satisfies the bound
M on the number of non-zero variables. It remains to show that γ′ solves (3).
Thus, consider the ith equation in this system. If σ(ki) = ∞, then there is a
v such that γ′(xv) = ∞ and 1. in Lemma 2 is satisfied. This implies that γ′

solves the ith equation. If σ(ki) = bi < ∞, then 2. in Lemma 2 implies that the
modifications made to obtain γ′ from γ have no effect on this equation since the
modified values are multiplied with 0, and thus removed. Hence, we have shown
that γ′ solves (3) and it satisfies the required bound on the number of non-zero
variables. ��

This lemma allows us to extend Proposition 1 and Lemma 1 to QFBAPA∞.

Theorem 1. Satisfiability of QFBAPA∞ formulae is in NP. Moreover, for
every QFBAPA∞ formula φ, one can compute in polynomial time a number
N whose value is polynomial in the size of φ such that the following holds for
every solution σ of φ: there is a solution σ′ of φ such that

(i) |{v Venn region | σ′(v) �= ∅}| ≤ N , and
(ii) {v Venn region | σ′(v) �= ∅} ⊆ {v Venn region | σ(v) �= ∅}.

Proof. Using Lemma 3, the proof of Lemma 1 can easily be adapted to
QFBAPA∞.

Regarding decidability in NP, Lemma 3 shows that it is sufficient to prove
that solvability in N

∞ of G together with a polynomially large system A′ ·x′ = k
can be decided by an NP procedure. In a first step, we guess which of the PA
variables in G and k are to be replaced by ∞. For the linear (in)equations in
G containing at least one such variable, the truth value is determined by this
choice. For example, if we have x1 + 2x2 > x3, and x1 is guessed to be ∞, then
this inequation becomes true if x3 is not guessed to be ∞, and false otherwise. By
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replacing such (in)equations by the respective truth values, G can be modified
to G′, which now needs to be solved in N. Regarding the system A′ · x′ = k,
we check whether, for each i such that ki was guessed to be ∞, there is a Venn
region v such that 1 and 2 of Lemma 2 are satisfied, where “σ(kj) < ∞” is
replaced with “kj is not guessed to be ∞.” If this is not the case, than we
return the answer “unsolvable.” Otherwise, we modify A′ · x′ = k to the system
A′′ · x′ = k′ by removing the rows i for which ki was guessed to be ∞. We then
check whether G′ together with this new system is solvable in N. Using Lemma 2
and the construction employed in the proof of Lemma 3, it is not hard to show
that this yields a correct NP procedure. ��

In [10], similar results are shown for QFBAPA∞, but again without the
property (ii). From a technical point of view, the proof in [10] is quite different
from ours, though it is based on similar ideas.

The Logic CQU. This logic is obtained from QFBAPA∞ by restricting numer-
ical constraints to be of the form k = N and k < N , i.e., a CQU formula
is a Boolean combination of set constraints and numerical constraints of this
restricted form. Since CQU is a fragment of QFBAPA∞, its satisfiability prob-
lem is clearly also in NP, and NP hardness is, on the one hand, due to the
Boolean operations on the formula level. Other reasons for NP-hardness are the
Boolean operations on the set level, and the fact that numerical constraints can
be used to express the knapsack problem [14].

It should be noted that the logic CQU as introduced here is actually the
Boolean closure of the logic called CQU in [7]. In fact, in [7] only conjunctions of
set constraints and numerical constraints of the form k ≤ N and k ≥ N for set
cardinalities k are allowed. When using CQU to define our extension ALCCQU
of ALCQ, this difference is irrelevant since the Boolean operations are available
anyway on the DL level. In addition, sums in the PA expressions k in k = N
and k < N can be reduced away using disjunction (see the next section). It
is actually not hard to see that the logic CQU as defined here has the same
expressivity as C1, the one-variable fragment of first-order logic with counting
(see, e.g., [15]).

3 The DLs ALCSCC∞, ALCCQU , and ALCQt

In this section, we define the variant ALCSCC∞ of the logic ALCSCC introduced
in [2], and its fragments ALCCQU and ALCQt. First, we argue why the complex-
ity results for ALCSCC proved in [2] also hold for ALCSCC∞. Then, we show
that ALCCQU has the same expressivity as its fragment ALCQt, and that both
are expressible in first-order logic.

The DL ALCSCC∞. Basically, ALCSCC∞ provides us with Boolean oper-
ations on concepts and constraints on role successors, which are expressed in
QFBAPA∞. In these constraints, role names and concept descriptions can be
used as set variables, and there are no PA variables allowed. The syntax of
ALCSCC∞ is identical to the one of ALCSCC.
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Definition 1 (Syntax of ALCSCC∞). Given finite, disjoint sets NC of concept
names and NR of role names, the set of ALCSCC concept descriptions over the
signature (NC , NR) is inductively defined as follows:

– every concept name in NC is an ALCSCC concept description over (NC , NR);
– if C,D are ALCSCC concept descriptions over (NC , NR), then so are C � D,

C � D, and ¬C;
– if Con is a set or numerical constraint of QFBAPA∞ using role names and

already defined ALCSCC concept descriptions over (NC , NR) as (set) vari-
ables, then succ(Con) is an ALCSCC concept description over (NC , NR).

An ALCSCC TBox over (NC , NR) is a finite set of concept inclusions of the
form C � D, where C,D are ALCSCC concept descriptions over (NC , NR).

For example, the ALCSCC∞ concept description Female � succ(|child ∩
Female| = |child ∩ Male|) describes all female individuals that have exactly
as many sons as daughters. Of course, successor constraints can also be nested,
as in the ALCSCC∞ concept description succ(|child ∩ succ(child ⊆ Female)| =
|child ∩ succ(child ⊆ Male)|), which describes all individuals having as many
children that have only daughters as they have children having only sons. As
usual in DL, the semantics of ALCSCC∞ is defined using the notion of an inter-
pretation.3

Definition 2 (Semantics of ALCSCC∞). Given finite, disjoint sets NC and
NR of concept and role names, respectively, an interpretation of NC and NR

consists of a non-empty set ΔI and a mapping ·I that maps every concept name
A ∈ NC to a subset AI of ΔI and every role name r ∈ NR to a binary relation
rI over ΔI . Given an individual d ∈ ΔI and a role name r ∈ NR, we define
rI(d) := {e ∈ ΔI | (d, e) ∈ rI} (r-successors) and arsI(d) :=

⋃
r∈NR

rI(d) (all
role successors).

The interpretation function ·I is inductively extended to ALCSCC∞ concept
descriptions over (NC , NR) by interpreting �, �, and ¬ respectively as intersec-
tion, union and complement. Successor constraints are evaluated according to
the semantics of QFBAPA∞: to determine whether d ∈ succ(Con)I or not, U is
evaluated as arsI(d) (i.e., the set of all role successors of d), ∅ as the empty set,
roles r occurring in Con as rI(d) (i.e., the set of r-successors of d) and concept
descriptions D as DI ∩ arsI(d) (i.e., the set of role successors of d that belong
to D).4 Then d ∈ succ(Con)I iff the substitution obtained this way is a solution
of the QFBAPA∞ formula Con.

The interpretation I is a model of the TBox T if CI ⊆ DI holds for all
C � D ∈ T . The ALCSCC∞ concept description C is satisfiable if there is an
interpretation I such that CI �= ∅, and it is satisfiable w.r.t. the TBox T if
there is a model I of T such that CI �= ∅. The ALCSCC∞ concept descriptions
C,D are equivalent (written C ≡ D) if CI = DI for all interpretations I.

3 A more detailed definition of the semantics can be found in [5].
4 Note that, by induction, the sets DI are well-defined.
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This semantics differs from the one given in [2] for ALCSCC as follows. In [2],
interpretations are restricted to being finitely branching in the sense that, for
any d ∈ ΔI , the set arsI(d) of all role successors of d must be finite. This ensures
that, in the evaluation of successor constraints, only finite sets are considered,
and thus this evaluation can be done using QFBAPA. Here, we do not make
this assumption, and thus QFBAPA∞ needs to be used to evaluate successor
constraints. Note that in ALCSCC∞ we can actually force the existence of ele-
ments with infinitely many role successors. For example, the successor constraint
succ(|r| + 1 = |r|) is unsatisfiable in ALCSCC, but satisfiable in ALCSCC∞ in
an interpretation that contains an element that has infinitely many r-successors.

The main results shown in [2] are that the satisfiability problem in ALCSCC
is PSpace-complete for the case without a TBox and ExpTime-complete in the
presence of a TBox. The hardness results trivially follow from well-known hard-
ness results for ALC [16,17]. The main tools used in the proof of the complexity
upper bounds are Lemma 1 (and in particular property (ii)) and Proposition 1.
Since, by Theorem 1, these two results also hold for QFBAPA∞, we can basi-
cally reuse the proofs from [2]. The only places where explicit adaptations are
required are the proofs of soundness of the algorithms, where one now must
consider infinite sets. Since these adaptations are quite easy, we dispense with
spelling them out here.

Theorem 2. Satisfiability in ALCSCC∞ is PSpace-complete without a TBox
and ExpTime-complete in the presence of a TBox.

The DLs ALCCQU and ALCQt. Fragments of ALCSCC∞ can be obtained by
restricting the constraints that can be used in successor constraints to fragments
of QFBAPA∞.

Definition 3 (ALCCQU). The DL ALCCQU is defined like ALCSCC∞, but in
successor constraints only constraints of CQU can be used.

Thus, the concept description

succ(|child ∩ livesWithc ∩ Female| = 1), (4)

which describes individuals that have exactly one daughter that does not live
with them, is an ALCCQU concept description, but succ(|child ∩ livesWithc ∩
Female| = |child ∩ livesWithc ∩ Male|) is not. In the definition of CQU given in
the previous section, we have introduced as atomic constraints only constraints of
the form k = N and k < N . In ALCCQU , we can also allow the use of constraints
of the form k ≤ N , k > N , k ≥ N , and k �= N since successor constraints using
them can be expressed. For example, succ(k ≥ N) ≡ ¬succ(k < N).

Before we can introduce the fragment ALCQt of ALCCQU we must define the
notion of a safe role type. A role literal is a role name r or its complement rc.
Given a finite set of role names NR, a role type for NR is an intersection τ of role
literals such that every role name in NR occurs exactly once in this conjunction.
The role type τ is safe if at least one role occurs non-negated. For example, if
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NR = {r, s, t}, then r ∩ s ∩ tc and rc ∩ sc ∩ tc are role types, but the latter is not
safe. The intersections r ∩ s and r ∩ s ∩ tc ∩ rc are not role types.

Definition 4 (ALCQt). The DL ALCQt is defined like ALCSCC∞, but in suc-
cessor constraints occurring in ALCQt concept descriptions over (NC , NR), no
set constraints can be used, and numerical constraints are restricted to the form
|τ ∩C| 	
 N , where τ is a safe role type for NR, C is an ALCQt concept descrip-
tion over (NC , NR), and 	
 ∈ {<,≤,≥, >,=, �=}.

The ALCCQU concept description (4) is actually an ALCQt concept descrip-
tion over (NC , NR) if NR contains only the two roles used in this description.

Adopting the syntax usually employed to denote qualified number restric-
tions in DLs [1], we can write ALCQt successor constraints succ(|τ ∩C| 	
 N) as
(	
 N τ .C) with τ a safe role type. The semantics given by Definition 2 to the
successor constraint succ(|τ ∩ C| 	
 N) indeed coincides with the usual seman-
tics for qualified number restrictions if intersection and complement in τ are
respectively interpreted as role intersection and role complement. It should be
noted, however, that this is only true since τ is assumed to be safe. In fact,
in Definition 2, complement is performed w.r.t. the role successors of the indi-
vidual under consideration, whereas general role negation is performed w.r.t. all
elements of the interpretation domain. But safety of τ ensures that only role suc-
cessors of the given individual can be τ -successors of this individual. A similar
safety requirement for role expressions has been employed by Tobies (see [19],
Chapter 4.4), but he considers arbitrary Boolean combinations of roles, and not
just role types, and also allows for inverse roles.

Obviously, ALCQt is a sub-logic of ALCCQU since the successor constraints
available in ALCQt can clearly be expressed in ALCCQU . From a syntactic point
of view, ALCCQU has successor constraints that are not available in ALCQt.
However, we can show that nevertheless all of them can be expressed in ALCQt.

Theorem 3. The DLs ALCCQU and ALCQt have the same expressivity.

Proof. We need to show that the successor constraints of ALCCQU can be
expressed in ALCQt. Because of space restrictions, we refer the reader to [5]
for a detailed proof, and only give a sketch here.

First note that set constraints, which can be used in ALCCQU , but not in
ALCQt, can be expressed as numerical constraints. Indeed, we have succ(s ⊆ t) ≡
succ(|s ∩ tc| = 0). Second, numerical constraints in ALCCQU may contain linear
combinations of set cardinalities, whereas addition and multiplication with a
constant are not allowed to be used in numerical constraints of ALCQt. However,
they can be eliminated using Boolean operations. In fact, multiplication with a
non-negative integer constant can be expressed by iterated addition, and addition
can be eliminated as follows: succ(|s1| + . . . + |s�| 	
 N) for 	
 ∈ {≤,=,≥} is
equivalent to the disjunction

⊔
N1+...+N�=N

succ(|s1| 	
 N1) � . . . � succ(|s�| 	
 N�),
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where N1, . . . , N� range over the non-negative integers. Since N is a fixed non-
negative integer, this disjunction is clearly finite. For 	
 ∈ {<,>}, this equiv-
alence would not hold, but we can clearly express > and < using the other
comparison operators. For example, succ(k > N) ≡ ¬succ(k ≤ N).

Finally, consider successor constraints of the form succ(|s| 	
 N) where s is
a set term built using role names and concept descriptions, and 	
 ∈ {≤,=,≥}.
The semantics of ALCSCC∞ ensures that succ(|s| 	
 N) is equivalent to
succ(|s∩(r1∪. . .∪rn)| 	
 N) where NR = {r1, . . . , rn}. Using distributivity of set
intersection over set union, we can now transform the set term s∩ (r1 ∪ . . .∪ rn)
into “disjunctive normal form,” which yields an equivalent set term of the form
(s1 ∩ C1) ∪ . . . ∪ (sp ∩ Cp), where each si is a conjunction of role literals contain-
ing at least one role positively, and the Ci are concept descriptions. Obviously,
each si can then be expressed as a union of safe role types. Using the fact
that (τ ∩ C1) ∪ (τ ∩ C2) is equivalent to (τ ∩ (C1 � C2)), we thus obtain that
s ∩ (r1 ∪ . . . ∪ rn) can be expressed in the form

(τ1 ∩ D1) ∪ . . . ∪ (τq ∩ Dq),

where τ1, . . . , τq are distinct safe role types and D1, . . . , Dq are concept descrip-
tions. Since distinct role types are interpreted as disjoint sets, we thus have

succ(|s| 	
 N) ≡ succ(|(τ1 ∩ D1)| + . . . + |(τq ∩ Dq)| 	
 N)

≡
⊔

N1+...+Nq=N

succ(|τ1 ∩ D1| 	
 N1) � . . . � succ(|τq ∩ Dq| 	
 Nq).

Since the last expression is clearly an ALCQt concept description, this com-
pletes the proof of the theorem. ��

It should be noted that the constructions employed in the above proof can
lead to an exponential blow-up for several reasons. One example is building the
disjunctive normal form in the third part of the proof, and another is express-
ing addition using disjunction. Thus, it would not be a good idea to use these
constructions for the purpose of reducing reasoning in ALCCQU to reasoning in
ALCQt. At the moment, it is not clear to us whether the exponential blow-up
can be avoided, but we conjecture that ALCCQU is exponentially more succinct
than ALCQt.

By using the standard translation of ALCQ and of Boolean operations on
roles into first-order logic [4], it can easily be shown that ALCQt, and thus also
ALCCQU , can be expressed in first-order logic.

Corollary 1. The DL ALCCQU can be expressed in first-order logic, i.e., for
every ALCCQU concept description C there is an equivalent first-order formula,
i.e, a first-order formula φC(x) with one free variable x such that CI = {d ∈
ΔI | I |= φC(d)} holds for every interpretation I.
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4 Expressive Power

To prove that the concepts of one DL can be expressed in another DL, one usually
shows how to construct, for a given concept of the former DL, an equivalent
one of the latter, as we have, e.g., done in the proof of Theorem 3. Showing
inexpressibility results is usually more involved. An important tool often used
in this context is the notion of a bisimulation [12,13], inherited from modal
logics [20]. In the following, we first recall the definition of a bisimulation relation
tailored towards the DL ALCQ [13], and use this to show that ALCCQU is
strictly more expressive than ALCQ. Then, we adapt this definition to obtain a
bisimulation relation tailored towards ALCQt. Surprisingly, this relation cannot
be used to separate ALCQt, and thus ALCCQU , from ALCSCC∞. In fact, we
can show that not only all ALCCQU concepts are invariant under this notion of
bisimulation, but also all ALCSCC∞ concepts. As a consequence, we obtain that
ALCCQU is exactly the first-order fragment of ALCSCC∞. Finally, we show that
ALCSCC∞ indeed contains concepts that are not expressible in first-order logic.

ALCQ Bisimulation. In the context of the present paper, ALCQ can be
defined as the fragment of ALCCQU where only successor constraints of the
form succ(|r ∩ C| 	
 N) can be used, where r ∈ NR, C is an ALCQ concept
description, 	
 ∈ {<,≤,≥, >,=, �=}, and N is a non-negative integer.

Definition 5 ([13]). Let I1 and I2 be interpretations. The relation ρ ⊆ ΔI1 ×
ΔI2 is an ALCQ bisimulation between I1 and I2 if

1. d1 ρ d2 implies d1 ∈ AI1 iff d2 ∈ AI2 , for all d1 ∈ ΔI1 , d2 ∈ ΔI2 , A ∈ NC ;
2. if d1 ρ d2 and D1 ⊆ rI1(d1) is finite for r ∈ NR, then there is a set D2 ⊆

rI2(d2) such that ρ contains a bijection between D1 and D2;
3. if d1 ρ d2 and D2 ⊆ rI2(d2) is finite for r ∈ NR, then there is a set D1 ⊆

rI1(d1) such that ρ contains a bijection between D1 and D2.

The individuals d1 ∈ ΔI1 , d2 ∈ ΔI2 are ALCQ bisimilar (written (I1, d1) ∼ALCQ
(I2, d2)) if there is an ALCQ bisimulation ρ between I1 and I2 such that d1 ρ d2,
and ALCQ -equivalent (written (I1, d1) ≡ALCQ (I2, d2)) if for all ALCQ concept
descriptions C we have d1 ∈ CI1 iff d2 ∈ CI2 .

The following theorem shows that ALCQ is exactly the fragment of first-
order logic that is invariant under this notion of bisimulation. We say that a
first-order formula φ(x) with one free variable x is invariant under ∼ALCQ if
(I1, d1) ∼ALCQ (I2, d2) implies I1 |= φ(d1) iff I2 |= φ(d2).

Theorem 4 ([13]). Let φ(x) be a first-order formula with one free variable x.
Then the following are equivalent:

1. there is an ALCQ concept description C such that C is equivalent to φ(x);
2. φ(x) is invariant under ∼ALCQ.

Since ALCQ is expressible in first-order logic, this theorem in particu-
lar implies that ALCQ bisimilar elements of interpretations are also ALCQ-
equivalent. We can use this fact to show that ALCCQU is strictly more expressive
than ALCQ.
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Fig. 1. Two interpretations I1 and I2 and an ALCQ bisimulation ρ.

Corollary 2. There is no ALCQ concept description C such that C is equivalent
to the ALCCQU concept description succ(|r ∩ s| > 0).

Proof. Assume that C is an ALCQ concept description such that C ≡ succ(|r ∩
s| > 0), and consider the interpretations I1, I2 and the ALCQ bisimulation ρ
depicted in Fig. 1. Then we have d1 ∈ succ(|r ∩ s| > 0)I1 = CI1 , and thus
(I1, d1) ∼ALCQ (I2, d2) implies d2 ∈ CI2 . This contradicts our assumption that
C ≡ succ(|r ∩ s| > 0) since d2 �∈ succ(|r ∩ s| > 0). ��

ALCQt Bisimulation. The definition of a bisimulation can be adapted to
ALCQt by replacing role names r with safe role types τ . To be more precise,
let τ be a safe role type, r1, . . . , rk the role names occurring positively in τ , and
s1, . . . , s� the role names occurring negatively, i.e., τ = r1 ∩ . . .∩rk ∩sc

1 ∩ . . .∩sc
�.

For a given interpretation I and element d ∈ ΔI we then define

τI(d) := (rI
1 (d) ∩ . . . ∩ rI

k (d)) \ (sI
1 (d) ∪ . . . ∪ sI

� (d)).

Since τ is safe, we have k ≥ 1, and thus τI(d) ⊆ rI
1 (d) ⊆ arsI(d).

ALCQt bisimulation, ALCQt bisimilar, ALCQt equivalent, and invariance
under ALCQt bisimulation are now defined as for ALCQ (Definition 5), but
with ALCQt replacing ALCQ and safe role types τ for NR replacing role names
r ∈ NR (see [5] for a more detailed definition).

Theorem 5. Let φ(x) be a first-order formula with one free variable x. Then
the following are equivalent:

1. there is an ALCQt concept description C such that C is equivalent to φ(x);
2. φ(x) is invariant under ∼ALCQt.

Since the proof of this theorem is very similar to the proof of Theorem 4
given in [13], we omit it here. An explicit proof for the case of ALCQt, which is
more detailed than the one in [13], can be found in [5].

The Expressivity of ALCSCC∞Relative to ALCCQU . Our original expec-
tation was that we could use Theorem 5 to show that ALCSCC∞ is strictly
more expressive than ALCQt, and thus also ALCCQU . The following proposition
implies that this is not possible.
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Proposition 2. If (I1, d1) ∼ALCQt (I2, d2) then (I1, d1) ≡ALCSCC∞ (I2, d2).

A detailed proof of this proposition can be found in [5]. Here, we only explain
the main ideas underlying this proof. Basically, we must show that, given a PA
expression k occurring in an ALCSCC∞ concept description, the assumption
that (I1, d1) ∼ALCQt (I2, d2) implies that evaluating k on the role successors
of d1 yields the same result (i.e., element of N

∞) as evaluating k on the role
successors of d2. To this purpose, we first observe that k can be written as

k =
�∑

i=1

Ni · |τi ∩ Ci|,

where (for i = 1, . . . , �) we have that Ni is a non-negative integer, τi is a safe role
type, and Ci is an ALCSCC∞ concept description. This can be shown by a simple
adaptation of the arguments used in the proof of Theorem 3. Consequently, it is
sufficient to show the claim for the summands |τi ∩ Ci|. First, assume that, on
the role successors of d1, this expression evaluates to the non-negative integer
N . Then we have d1 ∈ succ(|τi ∩ Ci| = N)I1 , and since succ(|τi ∩ Ci| = N) is
an ALCQt concept description, Theorem 5 yields d2 ∈ succ(|τi ∩ Ci| = N)I2 .
Consequently, |τi ∩Ci| also evaluates to N on the role successors of d2. If |τi ∩Ci|
evaluates to ∞ on the role successors of d1, then we have d1 ∈ succ(|τi ∩ Ci| >
N)I1 for all non-negative integers N , and we can conclude that d2 ∈ succ(|τi ∩
Ci| > N)I2 for all non-negative integers N . This shows that |τi∩Ci| also evaluates
to ∞ on the role successors of d2, which concludes our proof sketch.

Together with Theorem 5, this proposition yields a characterization of
ALCCQU as the first-order fragment of ALCSCC∞.

Theorem 6. Let C be an ALCSCC∞ concept description. Then the following
are equivalent:

1. there is a first-order formula φ(x) with one free variable x such that C is
equivalent to φ(x);

2. C is equivalent to an ALCCQU concept description.

Proof. (2 ⇒ 1) is an immediate consequence of Corollary 1. Now, assume
that 1. holds. Since φ(x) is equivalent to an ALCSCC∞ concept description,
it is invariant under ALCQt bisimulation by Proposition 2, and thus equivalent
to an ALCQt concept description by Theorem 5. Since ALCQt is a sub-logic of
ALCCQU , this yields 2. ��

It remains to show that ALCSCC∞ itself is not a fragment of first-order logic.

Theorem 7. The ALCSCC∞ concept description succ(|r∩A| = |r∩¬A|) cannot
be expressed in first-order logic.

To prove this theorem, it is sufficient to show that the above concept descrip-
tion cannot be expressed in ALCCQU . The proof of this fact is similar to the
one given in [2] to show that ALCSCC is more expressive than ALCQ, but more
involved since ALCCQU is more expressive that ALCQ.
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5 Conclusion

In this paper, we have introduced the variant ALCSCC∞ of the DL ALCSCC
investigated in [2], in which the restriction to finitely branching interpretations is
lifted. We have shown that this modification does not change the complexity of
reasoning. As an auxiliary result we have shown that reasoning in QFBAPA∞,
a variant of QFBAPA in which also infinite sets are allowed, has the same com-
plexity as in QFBAPA. The main result of this paper is the proof that the DL
ALCCQU is exactly the first-order fragment of ALCSCC∞.

Regarding future work, it should be noted that we have only investigated the
expressive power of the concept descriptions of ALCSCC∞ and ALCCQU . In [13],
the expressivity of TBoxes is considered as well. It would be interesting to see
whether we can extend our results to TBoxes (or even cardinality constraints
on concepts [3]) of ALCSCC∞ and ALCCQU . In [5] we have shown how the
satisfiability procedure for CQU presented in [7], which is based on column
generation, can be extended to a satisfiability procedure for ALCCQU , but it
remains to implement and test this procedure. In addition, it would be interesting
to see whether this approach can be extended to ALCSCC and ALCSCC∞. It
would also be interesting to see what impact the addition of inverse roles to
ALCSCC and ALCSCC∞ has on the complexity of reasoning.

Acknowledgment. The authors would like to thank Ulrike Baumann for helpful dis-
cussions regarding QFBAPA∞. We should also like to point out that we have learned
about the results regarding QFBAPA∞ in [10] only a couple of days before the sub-
mission of the final version of this paper.
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Abstract. Dutertre and de Moura developed a simplex-based solver
for linear rational arithmetic that has an incremental interface and pro-
vides unsatisfiable cores. We present a verification of their algorithm in
Isabelle/HOL that significantly extends previous work by Spasić and
Marić. Based on the simplex algorithm we further formalize Farkas’
Lemma. With this result we verify that linear rational constraints are
satisfiable over Q if and only they are satisfiable over R. Hence, our ver-
ified simplex algorithm is also able to decide satisfiability in linear real
arithmetic.

Keywords: DPLL(T) · Farkas’ Lemma · Simplex algorithm ·
SMT solving

1 Introduction

CeTA [7] is a verified certifier for checking untrusted safety and termination proofs
from external tools such as AProVE [12] and T2 [6]. To this end, CeTA also
contains a verified SAT-modulo-theories (SMT) solver, since these untrusted
proofs contain claims of validity of formulas. It is formalized as a deep embedding
and is generated via code generation.

The ultimate aim of this work is the optimization of the existing verified SMT
solver, as it is quite basic: The current solver takes as input a quantifier free
formula in the theory of linear rational arithmetic, translates it into disjunctive
normal form (DNF), and then tries to prove unsatisfiability for each conjunction
of literals with the verified simplex implementation of Spasić and Marić [16]. This
basic solver has at least two limitations: It only works on small formulas, since
the conversion to DNF often leads to an exponential blowup in the formula size;
and the procedure is restricted to linear rational arithmetic, i.e., the existing
formalization only contain results on satisfiability over Q, but not over R.

Clearly, instead of the expensive DNF conversion, the better approach is
to verify an SMT solver that is based on DPLL(T) or similar algorithms [4,11].
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Although there has been recent success in verifying a DPLL-based SAT solver [2],
for DPLL(T), a core component is missing, namely a powerful theory solver.

Therefore, in this paper we will extend the formalization of the simplex algo-
rithm due to Spasić and Marić [16]. This will be an important milestone on
the way to obtain a fully verified DPLL(T)-based SMT solver. To this end, we
change the verified implementation and the existing soundness proofs in such
a way that minimal unsatisfiable cores are computed instead of the algorithm
merely indicating unsatisfiability. Moreover, we provide an incremental inter-
face to the simplex method, as required by a DPLL(T) solver, which permits
the incremental assertion of constraints, backtracking, etc. Finally, we formalize
Farkas’ Lemma, an important result that is related to duality in linear program-
ming. In our setting, we utilize this lemma to formally verify that unsatisfiability
of linear rational constraints over Q implies unsatisfiability over R. In total, we
provide a verified simplex implementation with an incremental interface, that
generates minimal unsatisfiable cores over Q and R.

We base our formalization entirely on the incremental simplex algorithm
described by Dutertre and de Moura [10]. This paper was also the basis of the
existing implementation by Spasić and Marić, of which the correctness has been
formalized in Isabelle/HOL [14].

Although the sizes of the existing simplex formalization and of our new one
differ only by a relatively small amount (8143 versus 11167 lines), the amount
of modifications is quite significant: 2940 lines have been replaced by 5964 new
ones. The verification of Farkas’ Lemma and derived lemmas required another
1647 lines. It mainly utilizes facts that are proved in the existing simplex for-
malization, but it does not require significant modifications thereof.

The remainder of our paper is structured as follows. In Sect. 2 we describe
the key parts of the simplex algorithm of Dutertre and de Moura and its for-
malization by Spasić and Marić. We present the development of the extended
simplex algorithm with minimal unsatisfiable cores and incremental interfaces
in Sect. 3. We formalize Farkas’ Lemma and related results in Sect. 4. Finally,
we conclude with Sect. 5.

Our formalization is available in the Archive of Formal Proofs (AFP) for
Isabelle 2019 under the entries Simplex [13] and Farkas [5]. The Simplex entry
contains the formalization of Spasić and Marić with our modifications and exten-
sions. Our Isabelle formalization can be accessed by downloading the AFP, or by
following the hyperlink at the beginning of each Isabelle code listing in Sects. 3
and 4.

Related Work. Allamigeon and Katz [1] formalized and verified an implemen-
tation of the simplex algorithm in Coq. Since their goal was to verify theoretical
results about convex polyhedra, their formalization is considerably different from
ours, as we aim at obtaining a practically efficient algorithm. For instance, we
also integrate and verify an optimization of the simplex algorithm, namely the
elimination of unused variables, cf. Dutertre and de Moura [10, end of Section 3].
This optimization also has not been covered by Spasić and Marić.
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Layer 1: Arbitrary Constraints

Phase 1: Translation to Non-Strict Constraints

Layer 2: Non-Strict Constraints

Phase 2: Translation to Tableau and Atoms

Layer 3: Tableau and Atoms

Phase 3: Solving Tableau and Atoms

input: cs

ns

(t,as)

Unsat (t,as)

Unsat ns

output: Unsat cs

v |= (t,as)

w |= ns

output: u |= cs

Fig. 1. The layers and phases of the simplex algorithm

Chaieb and Nipkow verified quantifier elimination procedures (QEP) for
dense linear orders and integer arithmetic [9], which are more widely appli-
cable than the simplex algorithm. Spasić and Marić compared the QEPs with
their implementation on a set of random quantifier-free formulas [16]. In these
tests, their (and therefore our) simplex implementation outperforms the QEPs
significantly. Hence, neither of the formalizations subsumes the other.

There is also work on verified certification of SMT proofs, where an untrusted
SMT solver outputs a certificate that is checked by a verified certifier. This is an
alternative to the development of a verified SMT prover, but the corresponding
Isabelle implementation of Böhme and Weber [3] is not usable in our setting, as
it relies on internal Isabelle tactics, such as linarith, which are not accessible
in Isabelle-generated code such as CeTA.

2 The Simplex Algorithm and the Existing Formalization

The simplex algorithm as described by Dutertre and de Moura is a decision
procedure for the question whether a set of linear constraints is satisfiable over Q.
We briefly recall the main steps.

For the sake of the formalization, it is useful to divide the work of the algo-
rithm into phases, and to think of the data available at the beginning and end
of each phase as a layer (see Fig. 1). Thus, Layer 1 consists of the set of input
constraints, which are (in)equalities of the form p ∼ c, for some linear poly-
nomial p, constant c ∈ Q, and ∼ ∈ {<,≤,=,≥, >}. Phase 1, the first prepro-
cessing phase, transforms all constraints of Layer 1 into non-strict inequalities
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involving δ-rationals, i.e. rationals in combination with a symbolic value δ, rep-
resenting some small positive rational number.1 In Phase 2, each constraint with
exactly one variable is normalized; in all other constraints the linear polynomial
is replaced by a new variable (a slack variable). Thus, Phase 2 produces a set of
inequalities of the form x ≤ c or x ≥ c, where x is a variable (such constraints
are called atoms). Finally, the equations defining the newly introduced slack
variables constitute a tableau, and a valuation (a function assigning a value to
each variable) is taken initially to be the all-zero function.

At this point, the preprocessing phases have been completed. At the end of
Phase 2, on Layer 3, we have a tableau of equations of the form sj =

∑
aixi,

where the sj are slack variables, together with a set of atoms bounding both
original and slack variables. The task now is to find a valuation that satisfies
both the tableau and the atoms. This will be done by means of two operations,
assert and check, that provide an incremental interface: assert adds an atom to
the set of atoms that should be considered, and check decides the satisfiability of
the tableau and currently asserted atoms. Both operations preserve the following
invariant: Each variable occurs only on the left-hand or only on the right-hand
side of tableau equations, and the valuation satisfies the tableau and the asserted
atoms whose variables occur on the right-hand side of tableau equations.

In order to satisfy the invariant, the assert operation has to update the
valuation whenever an atom is added whose variable is the right-hand side of
the tableau. If this update conflicts with previously asserted atoms in an easily
detectable way, assert itself can detect unsatisfiability at this point. Otherwise,
it additionally recomputes the valuation of the left-hand side variables according
to the equations in the tableau.

The main operation of Phase 3 is check, where the algorithm repeatedly
modifies the tableau and valuation, aiming to satisfy all asserted atoms or detect
unsatisfiability. The procedure by which the algorithm actually manipulates the
tableau and valuation is called pivoting, and works as follows: First, it finds
a tableau equation where the current valuation does not satisfy an asserted
atom, A, involving the left-hand side variable, x. If no such x can be found,
the current valuation satisfies the tableau and all asserted atoms. Otherwise,
the procedure looks, in the same equation, for a right-hand side variable y for
which the valuation can be modified so that the resulting value of x, as given by
the equation, exactly matches the bound in A. If no such y can be found, the
pivoting procedure concludes unsatisfiability. Otherwise, it updates the valuation
for both x and y, and flips the sides of the two variables in the equation, resulting
in an equation that defines y. The right-hand side of the new equation replaces
all appearances of y on the right-hand side of other equations, ensuring that
the invariant is maintained. Since y’s updated value may no longer satisfy the
asserted atoms involving y, it is not at all clear that repeated applications of
pivoting eventually terminate. However, if the choice of variables during pivoting
is done correctly, it can be shown that this is indeed the case.

1 Arithmetic on δ-rationals is defined pointwise, e.g., (a + bδ) + (c + dδ) := (a + c) +
(b + d)δ, and a + bδ < c + dδ := a < c ∨ (a = c ∧ b < d) for any a, b, c, d ∈ Q.
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Fig. 2. Example run of the simplex algorithm

Consider the example in Fig. 2. The input constraints A–D are given in step 1
and converted into non-strict inequalities with δ-rationals in the step 2. In step 3,
the constraint 2y ≥ 6 is normalized to the atom y ≥ 3, two slack variables
s = 2x + y and t = x − 3y are created, and the constraints 2x + y ≤ 12 and
x − 3y ≤ 2 are simplified accordingly. The equations defining s and t then form
the initial tableau, and the initial valuation v0 is the all-zero function. In step 4,
the three atoms A, B and D are asserted (indicated by boldface font) and the
valuation is updated accordingly. Next, the algorithm invokes check and performs
pivoting to find the valuation v2 that satisfies A, B, D and the tableau. This
valuation on Layer 3 assigns δ-rationals to all variables x, y, s, t and can then be
translated to a satisfying valuation over Q for constraints A, B, D on Layer 1.
If the incremental interface is then used to also assert the atom C (step 6),
unsatisfiability is detected via check after two further pivoting operations (step
7). Hence, the constraints A–D on Layer 1 are also unsatisfiable.

Spasić and Marić use Isabelle/HOL for the formalization, as do we for the
extension. Isabelle/HOL is an interactive theorem prover for higher-order logic.
Its syntax conforms to mathematical notation, and Isabelle supports keywords
such as fixes, assumes and shows, allowing us to state theorems in Isabelle in a
way which is close to mathematical language. Furthermore, all terms in Isabelle
have a well-defined type, specified with a double-colon: term :: α. We use Greek
letters for arbitrary types. Isabelle has built-in support for the types of rational
numbers (rat) and real numbers (real). The type of a function f from type α
to type β is specified as f :: α ⇒ β. There is a set type (α set), a list type (α
list), an option type (α option with constructors Some :: α ⇒ α option and
None :: α option) and a sum type (α + β with constructors Inl :: α ⇒ α+β

and Inr :: β ⇒ α + β). The syntax for function application is f arg1 arg2 . In
this paper we use the terms Isabelle and Isabelle/HOL interchangeably.
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Spasić and Marić proved the following main theorem about their simplex
implementation simplex :: rat constraint list ⇒ rat valuation option .

lemma simplex_spasic_maric:

shows simplex cs = None −→ � v :: rat valuation. v |= cs

shows simplex cs = Some v −→ v |= cs

The lemma states that if simplex returns no valuation, then the constraints
cs are unsatisfiable. If simplex returns a valuation Some v , then v satisfies cs .

To prove the correctness of their algorithm they used a modular approach:
Each subalgorithm (e.g. pivoting, incremental assertions) and its properties were
specified in a locale, a special feature of Isabelle. Locales parameterize definitions
and theorems over operations and assumptions. The overall algorithm is then
implemented by combining several locales and their verified implementations.
Soundness of the whole algorithm is then easily obtained via the locale structure.
The modular structure of the formalization allows us to reuse, adapt and extend
several parts of their formalization.

3 The New Simplex Formalization

In the following we describe our extension of the formalization of Spasić and
Marić through the integration of minimal unsatisfiable cores (Sect. 3.1), the inte-
gration of an optimization during Phase 2 (Sect. 3.2) and the development of an
incremental interface to the simplex algorithm (Sect. 3.3).

3.1 Minimal Unsatisfiable Cores

Our first extension is the integration of the functionality for producing unsatis-
fiable cores, i.e., given a set of unsatisfiable constraints, we seek a subset of the
constraints which is still unsatisfiable. Small unsatisfiable cores are crucial for a
DPLL(T)-based SMT solver in order to derive small conflict clauses, hence it is
desirable to obtain minimal unsatisfiable cores, of which each proper subset is
satisfiable. For example, in Fig. 2, {A,B,C} is a minimal unsatisfiable core. We
will refer to this example throughout this section.

Internally, the formalized simplex algorithm represents the data available on
Layer 3 in a data structure called a state, which contains the current tableau,
valuation, the set of asserted atoms,2 and an unsatisfiability flag. Unsatisfiability
is detected by the check operation in Phase 3, namely if the current valuation of
a state does not satisfy the atoms, and pivoting is not possible.3 For instance,
in step 7 unsatisfiability is detected as follows: The valuation v3 does not satisfy

2 In the simplex algorithm [10] and the formalization, the asserted atoms are stored
via bounds, but this additional data structure is omitted in the presentation here.

3 Asserting an atom can also detect unsatisfiability, but this gives rise to trivial unsat-
isfiable cores of the form {x ≤ c, x ≥ d} for constants d > c.
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the atom x ≥ 5+ δ since v3(x) = 9
2 . The pivoting procedure looks at the tableau

equation for x,

x =
1
2
s − 1

2
y, (1)

and checks whether it is possible to increase the value of x. This is only possible if
the valuation of s in increased (since s occurs with positive coefficient in (1)), or
if y is decreased (since y occurs with a negative coefficient). Neither is possible,
because v3(s) is already at its maximum (s ≤ 12) and v3(y) at its minimum
(y ≥ 3). Hence, in order prove unsatisfiability on Layer 3, it suffices to consider
the tableau and the atoms {x ≥ 5 + δ, s ≤ 12, y ≥ 3}.

We formally verify that this kind of reasoning works in general: Given the
fact that some valuation v of a state does not satisfy an atom x ≥ c for some
left-hand side variable x, we can obtain the corresponding equation x = p of
the tableau T , and take the unsatisfiable core as the set of atoms formed of:
x ≥ c, all atoms y ≥ v(y) for variables y of p with coefficient < 0, and all atoms
s ≤ v(s) for variables s of p with coefficient > 0. The symmetric case x ≤ c is
handled similarly by flipping signs.

We further prove that the generated cores are minimal w.r.t. the subset
relation: Let A be a proper subset of an unsatisfiable core. There are two cases.
If A does not contain the atom of the left-hand side variable x, then all atoms in
A only contain right-hand side variables. Then by the invariant of the simplex
algorithm, the current valuation satisfies both the tableau T and A. In the other
case, some atom with a variable z of p is dropped. But then it is possible to apply
pivoting for x and z. Let T ′ be the new tableau and v be the new valuation after
pivoting. At this point we use the formalized fact that pivoting maintains the
invariant. In particular, v |= T ′ and v |= A, where the latter follows from the
fact that A only contains right-hand side variables of the new tableau T ′ (note
that x and z switched sides in the equation following pivoting). Since T and T ′

are equivalent, we conclude that v satisfies both T and A.
In the formalization, the corresponding lemma looks as follows:

lemma check_minimal_unsat_state_core: assumes |=nolhs s and 	 s and ...

shows ¬ U s −→ U (check s) −→ minimal_unsat_state_core (check s)

The assumptions in the lemma express precisely the invariant of the simplex
algorithm, and the lemma states that whenever the check operation sets the
unsatisfiability flag U , then indeed a minimal unsatisfiable core is stored in the
new state check s . Whereas the assumptions have been taken unmodified from
the existing simplex formalization, we needed to modify the formalized definition
of the check operation and the datatype of states, so that check can compute
and store the unsatisfiable core in the resulting state.

At this point, we have assembled a verified simplex algorithm for Layer 3 that
will either return satisfying valuations or minimal unsatisfiable cores. The next
task is to propagate the minimal unsatisfiable cores upwards to Layer 2 and 1,
since, initially, the unsatisfiable cores are defined in terms of the data available
at Layer 3, which is not meaningful when speaking about the first two layers.

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex.html#lem:check_minimal_unsat_state_core
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A question that arises here is how to represent unsatisfiable cores. Taking the
constraints literally is usually not a desirable solution, as then we would have to
convert the atoms {x ≥ 5 + δ, s ≤ 12, y ≥ 3} back to the non-strict constraints
{x ≥ 5 + δ, 2x + y ≤ 12, 2y ≥ 6} and further into {x > 5, 2x + y ≤ 12, 2y ≥ 6},
i.e., we would have to compute the inverses of the transformations in Phases 2
and 1. A far more efficient and simple solution is to use indexed constraints in the
same way, as they already occur in the running example. Hence, the unsatisfiable
core is just a set of indices ({A,B,C} in our example). These indices are then
valid for all layers and do not need any conversion.

Since the formalization of Spasić and Marić does not contain indices at all, we
modify large parts of the source code so that it now refers to indexed constraints,
i.e., we integrate indices into algorithms, data structures, definitions, locales,
properties and proofs. For instance, indexed constraints ics are just sets of pairs,
where each pair consists of an index and a constraint, and satisfiability of indexed
constraints is defined as

(I, v) |= ics if and only if v |= {c | (i, c) ∈ ics ∧ i ∈ I},

where I is an arbitrary set of indices.
In order to be able to lift the unsatisfiable core from Layer 3 to the upper lay-

ers, we have to prove that the two transformations (elimination of strict inequali-
ties and introduction of slack variables) maintain minimal unsatisfiable cores. To
this end, we modify existing proofs for these transformation, since they are not
general enough initially. For instance, the soundness statement for the introduc-
tion of slack variables in Phase 2 states that if the transformation on non-strict
constraints N produces the tableau T and atoms A, then N and the combination
of T and A are equisatisfiable, i.e.,

(∃v. v |= N) ←→ (∃v. v |= T ∧ v |= A).

However, for lifting minimal unsatisfiable cores we need a stronger property,
namely that the transformation is also sound for arbitrary indexed subsets I:4

(∃v. (I, v) |= N) ←→ (∃v. v |= T ∧ (I, v) |= A). (2)

Here, the indexed subsets in (2) are needed for both directions: given a min-
imal unsatisfiable core I of T and A, by the left-to-right implication of (2) we
conclude that I is an unsatisfiable core of N , and it is minimal because of the
right-to-left implication of (2). Note that tableau satisfiability (v |= T ) is not
indexed, since the tableau equations are global.

Our formalization therefore contains several new generalizations, e.g., the
following lemma is the formal analogue to (2), where preprocess is the function
that introduces slack variables. In addition to the tableau t and the indexed
atoms ias , it also provides a computable function trans_v to convert satisfying
valuations for t and ias into satisfying valuations for ics .
4 This stronger property is also required, if the preprocessing is performed on the

global formula, i.e., including the Boolean structure. The reason is that also there
one needs soundness of the preprocessing for arbitrary subsets of the constraints.
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lemma preprocess: assumes preprocess ics = (t, ias, trans_v)

shows (I,v) |= ias −→ v |= t −→ (I, trans_v v) |= ics

shows (∃ v. (I,v) |= ics) −→ (∃ v. (I,v) |= ias ∧ v |= t)

After all these modifications we obtain a simplex implementation that indeed
provides minimal unsatisfiable cores. The corresponding function simplex_index

returns a sum type, which is either a satisfying valuation or an unsatisfiable core
represented by a set of indices.

lemma simplex_index:

shows simplex_index ics = Inr v −→ v |= {c | (i,c) ∈ ics}
shows simplex_index ics = Inl I −→ � v. (I,v) |= ics

shows simplex_index ics = Inl I −→ J ⊂ I −→
distinct_indices ics −→ ∃ v. (J,v) |= ics

Here, the minimality of the unsatisfiable cores can only be ensured if the
indices in the input constraints are distinct. That distinctness is essential can
easily be seen: Consider the following indexed constraints {(E, x ≤ 3), (F, x ≤ 5),
(F, x ≥ 10)} where index F refers to two different constraints. If we invoke the
verified simplex algorithm on these constraints, it detects that x ≤ 3 is in conflict
with x ≥ 10 and hence produces {E,F} as an unsatisfiable core. This core is
clearly not minimal, however, since {F} by itself is already unsatisfiable.

Some technical problems arise, regarding distinctness in combination with
constraints involving equality. For example, the Layer 1-constraint (G, p = c)
will be translated into the two constraints (G, p ≥ c) and (G, p ≤ c) on Layer 2,5

violating distinctness. These problems are solved by weakening the notion of
distinct constraints on Layers 2 and 3, and strengthening the notion of a minimal
unsatisfiable core for these layers: For each proper subset J of the unsatisfiable
subset, each inequality has to be satisfied as if it were an equality, i.e., whenever
there is some constraint (j, p ≤ c) or (j, p ≥ c) with j ∈ J , the satisfying
valuation must fulfill p = c.

3.2 Elimination of Unused Variables in Phase 2

Directly after creating the tableau and the set of atoms from non-strict con-
straints in Phase 2, it can happen that there are unused variables, i.e., variables
in the tableau for which no atoms exist.

Dutertre and de Moura propose to eliminate unused variables by Gaussian
elimination [10, end of Section 3] in order to reduce the size of the tableau. We
integrate this elimination of variables into our formalization. However, instead
of using Gaussian elimination, we implement the elimination via pivoting. To be
more precise, for each unused variable x we perform the following steps.

5 Note that it is not possible to directly add equality constraints on Layer 1 to the
tableau: First, this would invalidate the incremental interface, since the tableau
constraints are global; second, the tableau forms a homogeneous system of equations,
so it does not permit equations such as x − y = 1 which have a non-zero constant.

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex.html#lem:preprocess
http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex.html#lem:simplex_index
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– If x is not already a left-hand side variable of the tableau, find any equation
y = p in the tableau that contains x, and perform pivoting of x and y, so
that afterwards x is a left-hand side variable of the tableau.

– Drop the unique equation from the tableau that has x on its left-hand side,
but remember the equation for reconstructing satisfying valuations.

Example 1. Consider the non-strict constraints {x+y ≥ 5, x+2y ≤ 7, y ≥ 2} on
Layer 2. These are translated to the atoms {s ≥ 5, t ≤ 7, y ≥ 2} in combination
with the tableau {s = x+y, t = x+2y}, so x becomes an unused variable. Since
x is not a left-hand side variable, we perform pivoting of x and s and obtain the
new tableau {x = s−y, t = s+y}. Then we drop the equation x = s−y resulting
in the smaller tableau {t = s + y}. Moreover, any satisfying valuation v for the
variables {y, s, t} will be extended to {x, y, s, t} by defining v(x) := v(s) − v(y).

In the formalization, the elimination has been integrated into the preprocess

function of Sect. 3.1. In fact, preprocess just executes both preprocessing steps
sequentially: first, the conversion of non-strict constraints into tableau and
atoms, and afterwards the elimination of unused variables as described in this
section. Interestingly, we had to modify the locale-structure of Spasić and Marić
at this point, since preprocessing now depends on pivoting.

3.3 Incremental Simplex

The previous specifications of the simplex algorithm are monolithic: even if two
(consecutive) inputs differ only in a single constraint, the functions simplex (in
Sect. 2) and simplex_index (in Sect. 3.1) will start the computation from scratch.
Hence, they do not specify an incremental simplex algorithm, despite the fact
that an incremental interface is provided on Layer 3 via assert and check.

Since the incrementality of a theory solver is a crucial requirement for devel-
oping a DPLL(T)-based SMT solver, we will provide a formalization of the sim-
plex algorithm that provides an incremental interface at each layer. Our design
closely follows Dutertre and de Moura, who propose the following operations.

– Initialize the solver by providing the set of all possible constraints. This will
return a state where none of these constraints have been asserted.

– Assert a constraint. This invokes a computationally inexpensive deduction
algorithm and returns an unsatisfiable core or a new state.

– Check a state. Performs an expensive computation that decides satisfiability
of the set of asserted constraints; returns an unsat core or a checked state.

– Extract a solution of a checked state.
– Compute some checkpoint information for a checked state.
– Backtrack to a state with the help of some checkpoint information.

Since a DPLL(T)-based SMT solver basically performs an exhaustive search,
its performance can be improved considerably by having it keep track of checked
states from which the search can be restarted in a different direction. This is
why the checkpointing and backtracking functionality is necessary.
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In Isabelle/HOL we specify this informal interface for each layer as a locale,
which fixes the operations and the properties of that layer. For instance, the
locale Incremental_Simplex_Ops is for Layer 1, where the type-variable σ repre-
sents the internal state for the layer, and γ is the checkpoint information.

locale Incremental_Simplex_Ops =

fixes init :: (ι × constraint) list ⇒ σ

and assert :: ι ⇒ σ ⇒ ι list + σ

and check :: σ ⇒ ι list + σ

and solution :: σ ⇒ rat valuation

and checkpoint :: σ ⇒ γ

and backtrack :: γ ⇒ σ ⇒ σ

and invariant :: (ι × constraint) list ⇒ ι set ⇒ σ ⇒ bool

and checked :: (ι × constraint) list ⇒ ι set ⇒ σ ⇒ bool

assumes checked cs {} (init cs)

and checked cs J s −→ invariant cs J s

and invariant cs J s −→ assert j s = Inr s ′ −→
invariant cs ({j} ∪ J) s ′

and invariant cs J s −→ assert j s = Inl I −→
I ⊆ {j} ∪ J ∧ minimal_unsat_core I cs

and invariant cs J s −→ check s = Inr s ′ −→ checked cs J s ′

and invariant cs J s −→ check s = Inl I −→
I ⊆ J ∧ minimal_unsat_core I cs

and checked cs J s −→ solution s = v −→ (J, v) |= cs

and checked cs J s −→ checkpoint s = c −→ invariant cs K s ′ −→
backtrack c s ′ = s ′′ −→ J ⊆ K −→ invariant cs J s ′′

The interface consists of the six operations init , . . . , backtrack to invoke
the algorithm, and the two invariants invariant and checked , the latter of which
entails the former.

Both invariants invariant and checked take the three arguments cs , J and s .
Here, cs is the global set of indexed constraints that is encoded in the state s . It
can only be set by invoking init cs and is kept constant otherwise. J indicates
the set of all constraints that have been asserted in the state s .

We briefly explain the specification of assert and backtrack and leave the
usage of the remaining functionality to the reader.

For the assert operation there are two possible outcomes. If the assertion of
index j was successful, it returns a new state s ′ which satisfies the same invariant
as s , and whose set of indices of asserted constraints contains j , and is otherwise
the same as the corresponding set in s . Otherwise, the operation returns a set of
indices I , which is a subset of the set of indices of asserted constraints (including
j), such that the set of all I -indexed constraints is a minimal unsatisfiable core.

The backtracking facility works as follows. Assume that one has computed
the checkpoint information c in a state s , which is only permitted if s satis-
fies the stronger invariant for some set of indices J . Afterwards, one may have

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex_Incremental.html#loc:Incremental_Simplex_Ops
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performed arbitrary operations and transitioned to a state s ′ corresponding to
a superset of indices K ⊇ J. Then, solely from s ′ and c , one can compute via
backtrack a new state s ′′ that corresponds to the old set of indices J . Of course,
the implementation should be done in such a way that the size of c is small in
comparison to the size of s ; in particular, c should not be s itself. And, indeed,
our implementation behaves in the same way as the informally described algo-
rithm by Dutertre and de Moura: for a checkpoint c of state s we store the
asserted atoms of the state s , but neither the valuation nor the tableau. These
are taken from the state s ′ when invoking backtrack c s ′.

In order to implement the incremental interface, we take the same modular
approach as Spasić and Marić, namely that for each layer and its corresponding
Isabelle locale, we rely upon the existing functionality of the various phases,
together with the interface of the lower layers, to implement the locale.

In our case, a significant part of the work has already been done via the results
described in Sect. 3.1: most of the generalizations that have been performed in
order to support indexed constraints, play a role in proving the soundness of
the incremental simplex implementation. In particular, the generalizations for
Phases 1 and 2 are vital. For instance, the set of indices I in lemma preprocess

on page 9 can not only be interpreted as an unsatisfiable core, but also as the
set of currently asserted constraints. Therefore, trans_v allows us to convert a
satisfying valuation on Layer 2 into a satisfying valuation on Layer 1 for the
currently asserted constraints that are indexed by I . Consequently, the internal
state of the simplex algorithm on Layer 1 not only stores the state of Layer 3 as
it is described at the beginning of Sect. 3.1, but additionally stores the function
trans_v , in order to compute satisfying valuations on Layer 1.

We further integrate and prove the correctness of the functionality of check-
pointing and backtracking on all layers, since these features have not been formal-
ized by Spasić and Marić. For instance, when invoking backtrack c s ′ on Layer 3
with check_point s = c , we obtain a new state that contains the tableau t ′ and
valuation v ′ of state s ′, but the asserted atoms as of state s . Hence, we need to
show that v ′ satisfies those asserted atoms of as that correspond to right-hand
side variables of t ′. To this end, we define the invariant on Layer 3 in a way
that permits us to conclude that the tableaux t and t ′ are equivalent. Using
this equivalence, we then formalize the desired result for Layer 3. Checkpointing
and backtracking on the other layers is just propagated to the next-lower layers,
i.e., no further checkpointing information is required on Layers 1 and 2.

Finally, we combine the implementations of all phases and layers to obtain
a fully verified implementation of the simplex algorithm w.r.t. the specification
defined in the locale Incremental_Simplex_Ops .

Note that the incremental interface does not provide a function to assert
constraints negatively. However, this limitation is easily circumvented by passing
both the positive and the negative constraint with different indices to the init

function. For example, instead of using (A, x > 5) as in Fig. 2, one can use
the two constraints (+A, x > 5) and (−A, x ≤ 5). Then one can assert both
the original and the negated constraint via indices +A and −A, respectively.
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Only the negation of equations is not possible in this way, since this would
lead to disjunctions. However, each equation can easily be translated into the
conjunction of two inequalities on the formula-level, i.e., they can be eliminated
within a preprocessing step of the SMT-solver.

4 A Formalized Proof of Farkas’ Lemma

Farkas’ Lemma states that a system of linear constraints is unsatisfiable if and
only if there is a linear combination of the constraints that evaluates to a trivially
unsatisfiable inequality (e.g. 0 ≤ d for a constant d < 0). The non-zero coeffi-
cients in such a linear combination are referred to as Farkas coefficients, and can
be thought of as an easy-to-check certificate for the unsatisfiability of a set of lin-
ear constraints (given the coefficients, one can simply evaluate the corresponding
linear combination and check that the result is indeed unsatisfiable.)

One way to prove Farkas’ Lemma is by using the Fundamental Theorem of
Linear Inequalities; this theorem can in turn be proved in the same way as the
fact that the simplex algorithm terminates (see [15, Chapter 7]). Although Spasić
and Marić have formalized a proof of termination for their simplex implemen-
tation [16], this is not sufficient to immediately prove Farkas’ Lemma. Instead,
our formalization of the result begins at the point where the simplex algorithm
detects unsatisfiability in Phase 3, because this is the only point in the execu-
tion of the algorithm where Farkas coefficients can be computed directly from the
available data.6 Then, these coefficients need to be transferred up to Layer 1. In
the following we illustrate how Farkas coefficients are computed and propagated
through the various phases of the algorithm, by giving examples and explaining,
informally, intermediate statements that have been formalized.

To illustrate how Farkas coefficients are determined at the point where the
check-operation detects unsatisfiability in Phase 3, let us return once more to
the example in Fig. 2. In step 7, the algorithm detects unsatisfiability via the
equation x = s−y

2 , and generates the unsatisfiable core based on this equation.
This equality can also be used to obtain Farkas coefficients. To this end, we
rewrite the equation as −x + 1

2s − 1
2y = 0, and use the coefficients in this

equation (−1 for x, 1
2 for s, and − 1

2 for y) to form a linear combination of the
corresponding atoms involving the variables:

− (x ≥ 5 + δ) +
1
2
(s ≤ 12) − 1

2
(y ≥ 3) (FC3)

= (−x ≤ −5 − δ) +
(

1
2
s ≤ 6

)

+
(

−1
2
y ≤ −3

2

)

=
(

−x +
1
2
s − 1

2
y

)

︸ ︷︷ ︸
p

≤
(

−δ − 1
2

)

︸ ︷︷ ︸
d

,

6 Again, we here consider only the check operation, since obtaining Farkas coefficients
for a conflict detected by assert is trivial, cf. footnote 3.
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where p = 0 is a reformulation of an equation of the tableau and d is a negative
constant. Consequently, we show in the formalization that whenever unsatisfia-
bility is detected for a given tableau T and set of atoms A, there exist Farkas
coefficients ri, i.e., that there is a linear combination (

∑
riai) = (p ≤ d), where

d < 0, ai ∈ A for all i, each riai is a ≤-inequality, and T |= p = 0. The second-to-
last condition ensures that only inequalities are added which are oriented in the
same direction, so that the summation is well-defined. The condition T |= p = 0
means that for every valuation that satisfies T , p evaluates to 0.

Recall that before detecting unsatisfiability, several pivoting steps may have
been applied, e.g., when going from step 3 to step 7. Hence, it is important to
verify that Farkas coefficients are preserved by pivoting. This is easily achieved
by using our notion of Farkas coefficients: Spasić and Marić formally proved
that pivoting changes the tableau T ′ into an equivalent tableau T , and, hence,
the condition T |= p = 0 immediately implies T ′ |= p = 0. In the example, we
conclude that T ′ |= −x + 1

2s − 1
2y = 0 for any tableau T ′ in steps 3–7. Thus,

(FC3) provides Farkas coefficients for the atoms and tableau mentioned in any
of these steps.

Layer 2 requires a new definition of Farkas coefficients, since there is no
tableau T and set of atoms A at this point, but a set N of non-strict constraints.
The new definition is similar to the one on Layer 3, except that the condition
T |= p = 0 is dropped, and instead we require that p = 0. To be precise, ri
are Farkas coefficients for N if there is a linear combination (

∑
rici) = (0 ≤ d)

where d < 0, ci ∈ N for all i, and each rici is a ≤-inequality.
We prove that the preprocessing done in Phase 2 allows for the transformation

of Farkas coefficients for Layer 3 to Farkas coefficients for Layer 2. In essence,
the same coefficients ri can be used, one just has to replace each atom ai by
the corresponding constraint ci. The only exception is that if a constraint ci has
been normalized, then one has to multiply the corresponding ri by the same
factor. However, this will not change the constant d, and we formally verify that
the polynomial resulting from the summation will indeed be 0.

In the example, we would obtain (FC2) for Layer 2. Here, the third coefficient
has been changed from − 1

2 to − 1
2 · 1

2 = − 1
4 , where the latter 1

2 is the factor used
when normalizing the constraint 2y ≥ 6 to obtain the atom y ≥ 3.

−(x ≥ 5 + δ) +
1
2
(2x + y ≤ 12) − 1

4
(2y ≥ 6) =

(

0 ≤ −δ − 1
2

)

(FC2)

Finally, for Layer 1 the notion of Farkas coefficients must once again be
redefined so as to work with a more general constraint type that also allows
strict constraints. In particular, we have that either the sum of inequalities is
strict and the constant d is non-positive, or the sum of inequalities is non-strict
and d is negative. In the example we obtain (again with the same coefficients,
but using the original, possibly strict inequalities in the linear combination):

−(x > 5) +
1
2
(2x + y ≤ 12) − 1

4
(2y ≥ 6) =

(

0 < −1
2

)

. (FC1)
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Farkas coefficients ri on Layer 2 are easily translated to Layer 1, since no
change is required, i.e., the same coefficients ri can be used. We just prove that
whenever the resulting inequality in Layer 2 is 0 ≤ d for d = a+bδ with a, b ∈ Q,
then the sum of inequalities on Layer 1 will be 0 ≤ a (and b = 0), or it will be
0 < a. In both cases we use the property that a + bδ = d is negative, to show
that the ri are Farkas coefficients for Layer 1.

We illustrate the results of our formalization of Farkas coefficients by pro-
viding the formal statements for two layers. In both lemmas, cs is a set of
linear constraints of the form p ∼ d for a linear polynomial p, constant d and
∼ ∈ {≤, <}. Here, the first theorem is an Isabelle statement of [8, Lemma 2], i.e.,
Farkas’ Lemma over δ-rationals. The second theorem is a more general version
of Farkas’ Lemma which also permits strict inequalities, i.e., our statement on
Layer 1. It is known as Motzkin’s Transposition Theorem [15, Cor. 7.1k] or the
Kuhn–Fourier Theorem [17, Thm. 1.1.9].

lemma Farkas ′_Lemma_Delta_Rationals: assumes finite cs

and ∀ c ∈ cs. ∃ p d. c = (p ≤ d) (* only ≤−constraints *)

shows (� v :: QDelta valuation. v |= cs) ←→
(∃ C d. d < 0 ∧ (∀ (r, c) ∈ C. r > 0 ∧ c ∈ cs)

∧ (Σ(r,c) ← C. r · c) = (0 ≤ d))

theorem Motzkin ′s_transposition_theorem: assumes finite cs

shows (� v :: rat valuation. v |= cs) ←→
(∃ C ineq d. (∀ (r, c) ∈ C. r > 0 ∧ c ∈ cs)

∧ (Σ (r,c) ← C. r · c) = ineq

∧ ((ineq = (0 ≤ d) ∧ d < 0) ∨ (ineq = (0 < d) ∧ d ≤ 0)))

The existence of Farkas coefficients not only implies unsatisfiability over Q,
but also unsatisfiability over R: lifting the summation of linear inequalities from
Q to R yields the same conflict 0 ≤ d, with d negative, over the reals. Hence,
we formalize the property that satisfiability of linear rational constraints over Q

and over R are the same. Consequently, the (incremental) simplex algorithm is
also able to prove unsatisfiability over R.

lemma rat_real_conversion: assumes finite (cs :: rat constraint set)

shows (∃ v :: rat valuation. v |= cs)

←→ (∃ v :: real valuation. v |= cs)

Note that the finiteness condition of the set of constraints in the previ-
ous three statements mainly arose from the usage of the simplex algorithm
for doing the underlying proofs, since the simplex algorithm only takes finite
sets of constraints as input. However, the finiteness of the constraint set is
actually a necessary condition, regardless of how the statements are proved:
none of the three properties hold for infinite sets of constraints. For instance,
the constraint set {x ≥ c | c ∈ N} is unsatisfiable over Q, but there are
no Farkas coefficients for these constraints. Moreover, the rational constraints
{x ≥ c | c ≤ π, c ∈ Q} ∪ {x ≤ c | c ≥ π, c ∈ Q} have precisely one real solution,
v(x) = π, but there is no rational solution since π /∈ Q.

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Farkas/Farkas.html#lem:Farkas_Lemma_Delta_Rationals
http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Farkas/Farkas.html#lem:Motzkins_transposition_theorem
http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Farkas/Simplex_for_Reals.html#lem:rat_real_conversion
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5 Conclusion

We have presented our development of an Isabelle/HOL formalization of a sim-
plex algorithm with minimal unsatisfiable core generation and an incremental
interface. Furthermore, we gave a verified proof of Farkas’ Lemma, one of the
central results in the theory of linear inequalities. Both of these contributions are
related to the simplex formalization of Spasić and Marić [16]: the incremental
simplex formalization is an extension built on top of their work, and the formal
proof of Farkas’ Lemma follows their simplex implementation through the phases
of the algorithm.

In our formalization we use locales as the main structuring technique for
obtaining modular proofs – as was done by Spasić and Marić. Our formal proofs
were mainly written interactively, with frequent use of find theorems rather than
sledgehammer (which only provided a few externally generated proofs).

Both of our contributions form a crucial stepping stone towards our initial
goal, the development of a verified SMT solver that is based on the DPLL(T)
approach and supports linear arithmetic over Q and R. The connection of the
theory solver and the verified DPLL-based SAT solver [2] remains as future
work. Here, we already got in contact with Mathias Fleury to initiate some
collaboration. However, he immediately informed us that the connection itself
will be a non-trivial task on its own. One issue is that his SAT solver is expressed
in the imperative monad, but in our use case we need to apply it outside this
monad, i.e., it should have a purely functional type such as formula ⇒ bool .

Acknowledgments. We thank the reviewers and Mathias Fleury for constructive
feedback.
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Abstract. This work describes the formalisation of a recent result from
Randomised Social Choice Theory in Isabelle/HOL. The original result
had been obtained through the use of linear programming, an unverified
Java program, and SMT solvers; at the time that the formalisation effort
began, no human-readable proof was available. Thus, the formalisation
with Isabelle eventually served as both independent rigorous confirma-
tion of the original result and led to human-readable proofs both in
Isabelle and on paper.

This presentation focuses on the process of the formalisation itself, the
domain-specific tooling that was developed for it in Isabelle, and how the
structured human-readable proof was constructed from the SMT proof.
It also briefly discusses how the formalisation uncovered a serious flaw
in a second peer-reviewed publication.

1 Introduction

First of all, it must be stressed that this presentation is not intended as an
introduction to Social Choice Theory, nor will it repeat the detailed explanation
of the proof of the main result in Brandl et al. [1] (of which I am also a co-author).
I must also stress that my contribution consists only of the formalisation and
the human-readable proof for that result, and the purpose of this paper is to
present more details of this formalisation process and the technology behind it.

All the background theory of Social Choice Theory that I will mention
later on is either folklore or comes from the work of Brandl et al.; again, see
their presentation [1] for more details on this background. For the sake of self-
containedness, the result and the necessary definitions from Social Choice Theory
will nevertheless be sketched here very briefly, but without any deeper explana-
tion or motivation. For this, the reader should consult the original presentation
by Brandl et al.

I will attempt to strike a balance between readability and technical details. In
particular, I attempt to stay close to the Isabelle definitions, but mostly without
actually using Isabelle syntax except in cases where there is real benefit in doing
so. The full formal Isabelle proof developments can be found in the Archive of
Formal Proofs [2,3].

c© Springer Nature Switzerland AG 2019
A. Herzig and A. Popescu (Eds.): FroCoS 2019, LNAI 11715, pp. 240–256, 2019.
https://doi.org/10.1007/978-3-030-29007-8_14
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2 The Main Result

The main result that was formalised is a typical impossibility result from Social
Choice Theory: these are of the form

‘There exists no voting scheme for at least m voters and n alternatives
that simultaneously has the following properties:’

A large variety of results like this exists for many different types of voting schemes
and many different choices for the properties that they should have; two famous
ones are Arrow’s Theorem [4] and Gibbard’s Theorem [5].

The setting that we shall focus on is that of Social Decision Schemes (SDSs):
We fix some finite set N = {1, . . . , m} of agents (or voters) and a finite set of
alternatives A with |A| = n. Each agent i has a preference relation �i over the
alternatives. In our setting, these preferences are total preorders, i. e. reflexive,
transitive, and total relations. The vector R = (�1, . . . ,�m) is called a preference
profile. An SDS is then a function that, given such a preference profile, returns
a lottery : a probability distribution of winning alternatives.

The theorem that was formalised is the following:

Theorem 1. If m ≥ 4 and n ≥ 4, there exists no SDS that has the following
properties:1

Anonymity: Invariance under renaming of agents
Neutrality: Invariance under renaming of alternatives
SD-Efficiency: If the SDS returns some lottery, it is optimal in the sense that

there is no other lottery that all agents prefer to it.
SD-Strategyproofness: No one agent can, by themselves, obtain a better result

by lying about their preferences (i. e. strategic voting is not possible).

As we will see later, it is enough to prove the theorem for m = n = 4 because
any SDS f(R) with the above properties for m ≥ 4 agents and n ≥ 4 alternatives
would give rise to another SDS (denoted as f↓(R)) with the same properties for
exactly 4 agents and alternatives (see Sect. 3 for details on this). The difficult
part is therefore the case of exactly 4 agents and alternatives.

In a nutshell, the strategy Brandl et al. pursued to find a proof for this case
was the following: Consider the set of all preference profiles for our 4 agents
and alternatives. For each profile R (or pair of profiles R1, R2), there are certain
conditions on the probabilities of the lottery f(R) (resp. the lotteries f(R1) and
f(R2)) resulting from the four conditions (anonymity, neutrality, etc.) It happens
that all these conditions can be written as formulæ in quantifier-free linear real
arithmetic (QF-LRA), which is a decidable logic that SMT solvers can typically
handle fairly efficiently.

Unfortunately, there are 31,640,625 profiles for m = n = 4 (or 471,956 mod-
ulo anonymity and neutrality), which results in far too many QF-LRA formulæ
1 The meaning of these concepts will be made more precise later – in particular, what

it means for an agent to prefer one lottery over another.
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to compute and check. However, if there really is no SDS with these four proper-
ties, these conditions must be inconsistent. When this is the case, there is often
a much smaller subset of conditions (or, equivalently, a smaller set of profiles)
that is already inconsistent – an unsatisfiable core. If one could guess a small
set of profiles that already leads to inconsistent conditions, one could pass only
these to an SMT solver and obtain a proof of the contradiction more quickly.

Brandl et al. used search heuristics to find such a set of profiles, which they
then narrowed down to only 47. The search for profile sets likely to lead to a
contradiction and the translation to QF-LRA formulæ in the SMT-LIB format
was performed by an unverified Java program.

However, there are various problems with this. Computer proofs are noto-
riously controversial in the mathematical community and even in high-profile
computer proofs such as the Kepler conjecture [6] or the Lorenz Attractor [7,8],
problems with the computer code were later found (although they turned out to
be repairable). In our case, some possible points of criticism are:

– One must trust the SMT solver.
– One must trust the Java program that computes the conditions arising from

the profiles and encodes them into the SMT-LIB format.
– The proof cannot realistically be inspected or verified by a human.

The first problem is not too serious, since one can use several different indepen-
dent SMT solvers to check the result. Some of them can produce proof objects
that can be verified by simple independent checkers.

The second problem could be solved by inspecting the generated SMT-LIB
file by hand and checking that the generated inequalities are indeed the ones
that follow from the 47 preference profiles – a very tedious task, but feasible.

The last problem, however, is difficult to address. While solvers like Z3 can
print out unsatisfiability proofs, these proofs are typically fairly large and dense
and provide little insight.

To address these concerns, Brandl et al. sought out my collaboration to for-
malise some version of this proof in Isabelle. Since Isabelle can replay SMT
proof objects through its own kernel, we were confident that it should be pos-
sible to obtain some kind of proof of Theorem 1 in Isabelle. It was, however,
completely unclear how to achieve the ultimate goal of finding a more structured
and human-readable proof and whether such a proof even exists.

3 Definitions

First of all, I will define the basic notions that are required to state and prove the
main result. For the Isabelle definitions, I followed the philosophy to keep defi-
nitions as simple and as close to the textbook definitions as possible – including
syntax – or to at least prove more textbook-style versions as alternative defini-
tions later on. In particular, I also placed great importance on proving various dif-
ferent views on more complex notions (e. g. Stochastic Dominance, SD-Efficiency,
and Strategyproofness). This makes working with them more convenient as one
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can pick whichever form is most suitable in any given situation; it also increases
the confidence that the definitions really are faithful to the textbook definitions.

I aim to present every notion precisely as it is defined in Isabelle, but for the
sake of brevity and readability, I will mostly refrain from using actual Isabelle
notation.

Most of the notions discussed here (such as family of preorders, Social Deci-
sion Scheme, SD-efficient SDS ) are defined as locales [9]. These are a kind of
named context supporting multiple inheritance that facilitates modular reason-
ing.

In the remainder of this section, I will list the most relevant definitions for
Theorem 1.

Agents and Alternatives. In the Isabelle formalisation, agents and alternatives
are opaque: We simply assume that we have finite non-empty sets N of some
type ν set (agents) and A of some type γ set (alternatives).2 For convenience, I
invented the name election (with a locale of the same name) to describe a setting
with a fixed set of agents and alternatives.

Preferences. Each agent i has their own preference relation �, which is a total
preorder (reflexive, transitive, and total – i. e. x � y ∨ y � x for all x, y). The
collection of the preferences of all the agents forms a vector (�1, . . . ,�m); this
is called a preference profile.

In Isabelle, the preference relations are modelled as functions γ → γ →
bool. Preference profiles are a modelled as functions ν → γ → γ → bool. By
convention, any preference relation must return false if one of its inputs is not
in A and any preference profile must return an empty relation if its input is not
in N . This ensures extensionality in the sense that e. g. two preference relations
are logically equal if they agree on all alternatives in A.

Lotteries. A lottery is a probability distribution of alternatives. Since there are
only finitely many alternatives, the most convenient representation of this is as
a Probability Mass Function (PMF). In Isabelle/HOL, the type γ pmf is defined
as the type of all functions f : γ → R such that ∀x. f(x) ≥ 0 and

∑
x f(x) = 1.

Various probability- and measure-theoretic concepts are defined for this type so
that one can work with it in a fairly idiomatic way. We can simply define the set
of lotteries as the set of values of type γ pmf whose support is a subset of A.

Anonymity and Neutrality. An SDS is anonymous if renaming the agents does
not change the outcome, i. e. for any permutation π of N , we have f(R ◦ π) =
f(R).

For neutrality, we first need to define what it means to rename an alternative.
Let σ be a permutation of A. Then, if � is a preference relation, the relation
2 Readers who are used to systems like Coq or Lean might wonder why one does not

simply use the entire types ν and γ. The reason for this is that we sometimes want
to decrease or increase the number of agents and alternatives. Doing this without
explicit carrier sets can be problematic in Isabelle.
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�σ obtained by renaming the alternatives with σ can be defined as x �σ y ←→
σ−1(x) � σ−1(y). By renaming all preferences in a profile R like this, we obtain
a profile Rσ. Additionally, we also have to take into account that the elements in
the lottery returned by f must also be renamed. This can be accomplished with
the function map pmf , which is the push-forward measure, i. e. the covariant
map function for PMFs. All in all, we obtain the condition

f(Rσ) = map pmf σ (f(R)) .

Pareto Preorder. A family (i. e. a vector) R = (�1, . . . ,�n) of preorders gives rise
to the Pareto preorder of that family, which is simply defined as the intersection
of all the �i:

x 
Par(R) y ⇐⇒ ∀i. x 
i y

Note that here, the �i are not assumed to be total, since we will use Par for
non-total relations later on. Even if the � are total, Par(R) typically is not.

We call x a Pareto loser w. r. t. R if there is y such that x ≺Par(R) y; in other
words, there exists another alternative y that makes all agents at least as happy
as x, and one of them strictly more happy.

Stochastic Dominance. As was mentioned before, we need a notion of when
an agent prefers one lottery to another, i. e. to lift a preference relation � on
alternatives to one on lotteries. Such a notion is called a lottery extension. In
general, the resulting relations on lotteries are not total. Lottery extensions are
typically justified by making some reasonable assumption about the behaviour
of agents and then concluding under what circumstances they must prefer one
lottery over another. An extreme example to illustrate this would be that any
agent should be expected to prefer the singleton lottery where their favourite
alternative wins with probability 1 over any other lottery.

The lottery extension we shall use is Stochastic Dominance. The definition
is somewhat technical, namely

p 
SD(�) q ⇐⇒ ∀x∈A. Pp[{y | y � x}] ≤ Pq[{y | y � x}] ,

i. e. for any alternative x, the probability of getting something at least as good
as x in the lottery q is at least as big as that in p.

Another equivalent, but perhaps more intuitive definition is

p 
SD(�) q ⇐⇒ ∀u∈vnM(�). Ep[u] ≤ Eq[u],

i. e. for all von Neumann–Morgenstern utility functions u : A → R that are
compatible with the preference relation �, the lottery q must yield at least as
much expected utility as p.

The idea behind SD is that agents are assumed to have a utility function and
want to maximise their expected utility. We only know the agent’s preference
relation, but not the underlying utility function. However, if a lottery q yields
at least as much expected utility as p for all utility functions that fit the agent’s
preferences, we expect the agent to consider q at least as good as p – and that
is precisely what SD is.
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Efficiency. Efficiency of an SDS, in general, means that the SDS never returns
a lottery that can be improved upon in a way that satisfies all agents. One basic
notion of Efficiency is ex-post-Efficiency, which states that for any profile R, the
resulting lottery f(R) must not contain a Pareto loser w. r. t. R.

SD-Efficiency, which is used in Theorem 1, is a stronger notion. Using the
concepts defined above, we can define it very concisely: a lottery is called SD-
inefficient w. r. t. a profile R if it is a Pareto loser w. r. t. SD ◦ R, i. e. there is
another profile R′ that is weakly SD-preferred by all agents and strictly SD-
preferred by at least one agent.

An SDS is called SD-efficient if it never returns an SD-inefficient lottery.

Strategyproofness. Strategyproofness captures the intuitive idea that agents
should have no benefit from voting strategically. There are various notions of
Strategyproofness; for our purposes, we only need (weak) SD-Strategyproof-
ness. An SDS f is called (weakly) SD-strategyproof if, for any agent i ∈ N , any
preference profile R = (�1, . . . ,�m), and any preference relation �′

i we have:

f(R(i := �′
i)) �SD(�i) f(R)

Intuitively, this means that no single agent can benefit from lying about their
preferences. If they submit false preferences �′

i instead of their true preferences
�i (while all other preferences remain the same), the result can never be better
(w. r. t. SD(�i)) than if they had submitted their true preferences.

Lifting. As was mentioned before, the impossibility result can be ‘lifted’ from
m agents and n alternatives to m′ agents and n′ alternatives with m′ ≥ m,
n′ ≥ n. The general idea is this: Given a preference profile R for m agents and n
alternatives, we can extend this profile to n′ alternatives by adding n′ − n new
‘dummy’ alternatives that are all equally good, but strictly worse than all the
existing n alternatives. Then, we can extend the profile to m′ agents by adding
m′ −m new ‘dummy’ agents that are fully indifferent between all n′ alternatives.
We denote this ‘lifted’ version of R as R↑.

Using this, we can ‘lower’ any SDS f for m′ agents and n′ alternatives to
an SDS f↓ on m agents and n alternatives by defining f↓(R) := f(R↑). In
order for f↓ to be well-defined, however, it must never return any of the dummy
alternatives. Since the dummy alternatives are all Pareto losers, one way to
ensure this is if f is ex-post-efficient. In this case, f↓ is also ex-post-efficient.

Notably, if f is ex-post-efficient, this construction also preserves anonymity,
neutrality, SD-Efficiency, and SD-Strategyproofness. This way, any impossibility
result involving ex-post-Efficiency (or something stronger) and any combination
of the above-mentioned properties can be lifted to a higher number of agents
and alternatives.

Random (Serial) Dictatorship. Let us now turn to two interesting examples of
concrete SDSs that I also formalised in Isabelle as an exercise to myself and to the
library I developed: Random Dictatorship (RD) and Random Serial Dictatorship
(RSD).
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The former is normally only defined for the subset of preference profiles
where each agent has a unique favourite alternative. In this case, RD picks an
agent uniformly at random and returns that agent’s favourite alternative as
the winner. Since the present formalisation only allows SDSs over the full set
of preference relations, I chose the obvious generalisation where one first picks
an agent uniformly at random and then returns one of that agent’s favourites
uniformly at random if there are more than one. The Isabelle definition of RD
is

RD R = do {i ← pmf of set N ; pmf of set (Max wrt among (R i) A)}
where pmf of set X describes the uniform distribution over the set X and
Max wrt among returns the maximal elements among the given set w. r. t. the
given preference relation. For details on the monadic do notation, see e. g.
Eberl et al. [10]. The SDS thus defined can then easily be proven to satisfy
anonymity, neutrality, and SD-Strategyproofness (a stronger version of the lat-
ter than the one defined above even). It is, however, not ex-post-efficient.

Random Serial Dictatorship is another generalisation of RD to the full set
of preference profiles which additionally fulfils ex-post-Efficiency. Here, one first
chooses a random permutation i1, . . . , im of the agents and then lets each agent,
in that order, delete all those among the remaining alternatives that they ‘do
not want’ (i. e. keep only those that they prefer most among the remaining ones).
Then, one returns one of the remaining alternatives (among which all agents are
indifferent) uniformly at random. One possible Isabelle definition is

RSD N A R = do is ← pmf of set (permutations of set N)
pmf of set (foldr (λi A′. Max wrt among (R i) A′) is A)

where permutations of set N returns the set of all lists that contain each element
of N exactly once. An alternative recursive definition is

RSD N A R = if N = ∅ then pmf of set A

else do i ← pmf of set N

RSD (N \{i}) (Max wrt among (R i) A) R

The actual definition in Isabelle uses the generic combinator fold random
permutation from the Isabelle library that allows traversing a set in random
order. This directly yields the above two definitions as corollaries and allows the
user to use whichever form is more convenient.

RSD can then be proven to be anonymous, neutral, strongly SD-
strategyproof, and ex-post-efficient. The proofs of the first two are fairly sim-
ple; the other two are somewhat more involved. Writing these non-trivial proofs
about a concrete SDS like RSD served as a good first ‘stress test’ of the Social
Choice library and increased the confidence that the formal definitions were as
intended. This is likely the first formalisation of RD and RSD and their prop-
erties.
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4 Gathering Consequences from Profiles

Having established the necessary definitions, we can now approach the proof of
the main result (Theorem 1). First of all, let us explore how to take the four
conditions – anonymity, neutrality, SD-Efficiency, SD-Strategyproofness – and
derive all of the arising conditions for a fixed set of profiles, from which we can
then hopefully derive a contradiction. Suppose we have an SDS f for some fixed
set of m agents and n alternatives. As mentioned before, these four conditions
can be fully characterised by QF-LRA formulæ. The variables in these formulæ
are the probabilities returned by f for each profile R. We denote these variables
as pR,x (the probability that f(R) returns the winner x).

Let us now go through the different types of conditions. Again, I will only
sketch the precise constructions here; for more details, see Brandl et al. [1].

Anonymity and Neutrality. Anonymity can be handled implicitly by simply con-
sidering all preference profiles that differ only by a renaming of agents as equal.
An alternative view is to look at a preference profile as a multiset of preference
relations instead of as a vector.

For neutrality, one can similarly consider all profiles equal that differ only
by a renaming of alternatives. Here, the only way to implement this in practice
seems to be to choose an arbitrary representative among the n! candidates, e. g.
the one with the lexicographically smallest representation.

Orbit Conditions. The above does not completely capture anonymity and neu-
trality; what is still missing are the so-called orbit conditions that arise from
profile automorphisms: If a permutation σ of alternatives maps a profile R to
itself (modulo anonymity), it is clear that by neutrality, all alternatives in an
orbit of σ must receive the same probability (e. g. if σ = (a b c)(d), we have
pR,a = pR,b = pR,c). These orbit conditions tend to arise when R has rich sym-
metries. Together with the efficiency conditions, they will be extremely useful in
the proof later since they greatly restrict the possible values for f .

SD-Strategyproofness. This is easy to capture in QF-LRA: For any pair of profiles
R, R̄ we must check if R̄ differs from R only by the preferences of one agent i. If
that is the case, let �i resp. �̄i denote the preference relation of agent i in R resp.
R̄. We must then have ¬f(R̄) �SD(�i) f(R) and ¬f(R) �SD(�̄i)

f(R̄). When the
definition of Stochastic Dominance is unfolded, these conditions simply reduce
to a combination of equations and inequalities in the pR,x and pR̄,x.

Of course, equality must be seen modulo anonymity and neutrality here, and
if a renaming of alternatives was necessary for the manipulation, this renaming
must also be taken into account.

SD-Efficiency. This is the most difficult condition to handle. Here, the key insight
by Brandl et al. is that if a lottery is SD-efficient w. r. t. a profile R, then all
other lotteries with the same support or a smaller support (w. r. t. inclusion) are
also SD-efficient. We can therefore define the notion of an SD-efficient support:
A set X ⊆ A is called an SD-efficient support if the lotteries that have support
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X are SD-efficient. Whether such a set X is an SD-efficient support can simply
be encoded as a linear programming problem.

Therefore, we only need to find all the inclusion-minimal SD-inefficient sup-
ports X1,X2, . . . (of which there are < 2m). The condition that some lottery
p be SD-efficient w. r. t. R then reduces to its support not being a superset of
any of these minimal SD-inefficient supports, i. e. ∀k. ∃x∈Xk. pR,x = 0. This
is a conjunction of disjunctions, and thus a QF-LRA formula. Of course, this
support-set characterisation of SD-Efficiency is also fully verified in the system.

Another interesting fact is that a singleton support {x} is SD-inefficient iff
x is a Pareto loser. This directly implies that SD-Efficiency is stronger than ex-
post-Efficiency, and it means that we do not have to employ linear programming
for singleton sets; we can simply check if the element is a Pareto loser.

Lottery Conditions. Lastly, we still need to take into account that the pR,x

are not independent real variables: since they represent probabilities, they are
subject to the conditions pR,x ≥ 0 and

∑
x∈A pR,x = 1.

5 Tooling

5.1 External Tools and Trusted Code Base

I will now give a brief overview of the two external tools that were used in this
project. Neither of them are trusted, i. e. the correctness of the final result does
not depend on them. First, however, I would like to clarify what exactly the
trusted code base of the result is.

Isabelle is based on a simple intuitionistic logic known as Isabelle/Pure, on
top of which the object logic HOL is then axiomatised. The basic inference rules of
Pure are provided as ML functions by the Isabelle kernel, which is the only part
of Isabelle that can actually produce theorems3. All other parts of Isabelle (e. g.
all of its various proof automation tools) can only prove theorems by interfacing
with this kernel, so that the trusted code base is effectively only the kernel (and
the code for parsing and pretty-printing). A bug in any other part of Isabelle or
in my own ML code should therefore, in principle, never lead to an inconsistency.
To reiterate: all proofs in this work go through the kernel. There is no use of
computational reflection, there are no external computations, and no trusted
external tools.

Now, let me clarify what the two external tools were used for and in what
form.

Z3. This is a well-known SMT solver. It is bundled with the Isabelle distribution
and integrated via the smt proof method [11], which translates Isabelle/HOL
goals into the SMT-LIB format, calls Z3, and attempts to reconstruct an Isabelle
proof from the Z3 proof. Here, Isabelle proof does not mean Isabelle proof text.
smt does not produce Isabelle code; it rather constructs Isabelle theorems by

3 Except for oracles, which I do not use here.
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emulating the Z3 proof rules with basic logical inference. A replayed Z3 proof
therefore appears as a single opaque invocation of the smt method in Isabelle
proof text. Like the Z3 proofs, these reconstructed proofs are very large and low-
level and therefore not human-readable. They are, however, just as trustworthy
as any other Isabelle proof since the smt method has to go through Isabelle’s
kernel in order to create theorems.

As will be explained in Sect. 6, this smt method was very helpful in deriving
the ‘human-readable’ version of the proof of Theorem 1; however the final proof
does not contain any invocations of it anymore.

QSOpt ex. This software is a Linear Programming solver written in C that uses
exact rational arithmetic [12,13], i. e. it outputs the exact optimal solutions as
rational numbers without any rounding errors. It was developed by Applegate et
al. using their non-exact solver QSopt as a basis and uses a combination of fast,
non-exact floating point operations and exact rational computations based on
GMP arbitrary-precision rational numbers. This is important because we want
to use the solution returned by the solver to construct witness lotteries, and even
a small rounding error would lead Isabelle to reject such a witness.

However, I do not use this version of QSopt ex since I was unable to compile
the code. Fortunately, there is a fork by Steffenson [14] that provides a number
of improvements, particularly to the build system. I created rudimentary bind-
ings to interface with this version of QSopt ex from Isabelle/ML by writing the
problems into a problem description file in the LP format, invoking QSopt ex
on it, and parsing the result file.

For our purposes, we only need to compute the optimal solutions, but we do
not have to prove that they are optimal. QSopt ex is used to check if a support is
SD-inefficient and – when it is – to compute a witness for this inefficiency (i. e.
another lottery that is strictly better w. r. t. Pareto-SD). If there were a bug
in QSopt ex, this would either lead to an unprovable goal when trying to use
the witness or it would cause us to miss some inefficient supports and therefore
give us less information about the consequences of SD-Efficiency. It can, by
construction, never lead to any inconsistency.

Note that we do not need to show the optimality of the solutions found by
QSopt ex in Isabelle; it is only required on a meta level for the completeness
of the approach. We do need to prove the correctness of the solutions, however,
and this can easily be done by Isabelle’s general-purpose automation.

5.2 Automation in Isabelle/HOL

While all of the many facts following from our four properties for the given
set of preference profiles could easily be derived and proven in Isabelle by a
human, this would have resulted in a considerable amount of work and boiler-
plate proofs. Moreover, this work would have to be re-done for a new proof of a
related statement or even if the underlying preference profiles changed slightly,
which discourages experimentation. The goal was therefore to develop specialised
automation for this in Isabelle that is capable of replacing the unverified Java
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program by Brandl et al., thereby turning Isabelle into a capable IDE for ran-
domised Social Choice proofs of this kind.

Isabelle itself is written in Standard ML and contains a sophisticated ML
system based on Poly/ML that allows compiling and adding new code at run-
time. Users can add custom proof methods written in ML to automate proof steps
and commands to automatically define constants, derive facts, etc. I developed
a number of such Isabelle commands to automate the fact gathering described
before:

preference profiles defines preference profiles and automatically proves their
well-definedness. The notation is similar to that found in textbooks: to specify
e. g. the preference relation 1 � {2, 3} � 4 (1 is better than 2 or 3 and 2 and
3 are equally good and better than 4) one would write 1, [2, 3], 4.

derive orbit equations computes the orbit conditions for a set of given pref-
erence profiles and proves them automatically. . For each orbit, a canonical
representative x is chosen and the orbit conditions have the form f(R)(y) =
f(R)(x), where y �= x is some other element on the orbit. This makes it possi-
ble to use the orbit conditions directly as rewrite rules for Isabelle’s simplifier,
since the equations are normalising.

find inefficient supports computes Pareto losers and SD-inefficient supports
and automatically proves the corresponding conditions for ex-post- and SD-
efficient SDSs. In order to find SD-inefficient supports and prove their
inefficiency, the ML code invokes the external Linear Programming solver
QSOpt ex.

prove inefficient supports takes a list of ex-post- and SD-inefficient supports
where each SD-inefficient support is annotated with a witness lottery (i. e.
a lottery that is strictly SD-preferred to the uniform distribution on the
inefficient support). This witness lottery can be read directly from the solution
of the corresponding linear program.

The idea is to compute the inefficient supports and their witnesses once with
find inefficient supports, which outputs a hyperlink that can be clicked to
automatically insert a corresponding invocation of prove inefficient supports
with all the witnesses filled in as needed. This makes the final proof document
completely independent from the external LP solver.

derive strategyproofness conditions takes a list of preference profiles and
computes all possible manipulations of all profiles in this list that yield
another profile in the list. It then derives and proves all the conditions that
arise from these manipulations for a (weakly) strategyproof SDS. The user
can specify an optional distance threshold to restrict the search to small
manipulations (measured as the cardinality of the symmetric difference of
the relations). For our purposes, a distance of 2 is sufficient.

Note again that this ML code is untrusted : I did not verify it and – as
explained in Sect. 5.1 – there is, in fact, no need to verify it.

All of this automation is available in the Archive of Formal Proofs entry on
randomised Social Choice [2]. The automation also provides ML interfaces so



Verifying Randomised Social Choice 251

that for future similar projects, one could easily implement the entire pipeline
of candidate set generation, derivation of all the QF-LRA conditions, and the
invocation of the SMT solver inside Isabelle, turning it into a convenient and
extensible IDE for randomised Social Choice.

6 The Formal Proof of Theorem 1

The formal proof of the main result begins with a definition of the setting: I
define a locale called sds impossibility for the setting of an anonymous, neutral,
SD-efficient and SD-strategyproof SDS for m ≥ 4 agents I and n ≥ 4 alternatives
N . Building on this, I then define a sublocale called sds impossibility 4 4 that
additionally assumes that I = {A,B,C,D} and N = {a, b, c, d} where the four
agents and alternatives are distinct. Our goal is to prove False in the context of
the latter locale and then use the lifting machinery described in Sect. 3 to derive
False in the first locale.

For illustration purposes, I will track the total number of degrees of freedom
in our problem, i. e. the number of real variables pR,x that are not constrained
by an equation. In the beginning, we have 141 degrees of freedom (4 for each
profile, minus 1 eliminated since the probabilities must sum to 1).

The Automatic Part. In the context of the locale sds impossibility 4 4, the
machinery described in Sect. 5.2 is invoked: The 47 preference profiles listed in
the proof by Brandl et al. are defined using the preference profiles command. The
orbit and strategyproofness conditions are derived fully automatically – we only
have to supply the list of profiles that we are interested in to the corresponding
commands. For the efficiency conditions, we need to run find inefficient supports
once; for the full set of profiles, this takes about 7 s. The final proof document
only contains the invocation of prove inefficient supports generated by it.

This automatic part is fairly quick: The proofs of the well-definedness of
the profiles and all the other conditions take about 20 s altogether. The result
returned by these commands is:

– 12 equations of the form pR,x = pR,y from orbit conditions
– 24 equations of the form pR,x = 0 from Pareto losers
– 9 conditions of the form pR,x = 0 ∨ pR,y = 0 from SD-inefficient supports
– 256 conditions from Strategyproofness (of which we will use only 85)

Each orbit and Pareto-loser condition immediately eliminates one degree, and 5
of the SD-Efficiency conditions also each eliminate one degree immediately due
to orbit conditions. This leaves us with 100 degrees of freedom. Using the smt
method mentioned in Sect. 5.1, we can then already prove False in Isabelle from
all these conditions fully automatically within about 8 s.

Deriving A Human-Readable Proof. As mentioned before, one of the goals of
the project was to obtain a structured proof that a human can follow and, in
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principle, check every step. I will now describe how I proceeded to find such a
proof.

As a first step, the 5 support conditions mentioned above that eliminate a
degree have to be identified by hand. They happen to have the form pR,x =
0∨ pR,y = 0 where we know pR,x = pR,y from an orbit condition, so that we can
conclude pR,x = pR,y = 0. Naturally, this process could also be automated, but
seeing as there are only 5 conditions like this, it is hardly worth the effort.

I then näıvely tried to reason ‘forward’ from the conditions by combining
various Strategyproofness conditions and the 4 remaining unused support con-
ditions. It seemed particularly desirable to me to find exact values for variables
(e. g. pR39,b = 0 or pR36,a = 1/2) since this immediately greatly simplifies all
Strategyproofness conditions in which that variable appears. Any value thus
determined can be added to Isabelle’s simplifier so that one can easily see what
remains of any given condition after all the values that were already determined
have been plugged in.

My general approach to derive these new equalities was then initially to pick
two corresponding Strategyproofness conditions (i. e. two profiles R1 and R2 that
differ only by one agent’s manipulation modulo a renaming of alternatives). Then
I hand these – together with lottery conditions and possibly support conditions –
to Isabelle’s auto method. In some cases, the assumptions are then automatically
simplified to some useful equation like pR36,b = 0 or pR18,c = pR9,c or at least an
inequality like pR5,d ≥ 1/2. This worked for quite a while, but eventually, I was
unable to find any new information like this.

I then turned towards the SMT solver for guidance. The situation at this
point is that there are some structured proofs of facts and we hand these facts
(along with many Strategyproofness conditions) to the SMT solver to derive
False. The way forward was to attempt to pull out facts from the set of facts
given to the SMT solver. To do this, I conjectured values of variables (e. g.
pR42,a = 0) that seemed likely to be useful (e. g. because they would simplify
many other conditions). Of course, since the conditions are inconsistent, any
conjecture like this is provable in our context, but a ‘good’ conjecture can be
derived from a small subset of the conditions.

I therefore used the smt method to check how many conditions suffice to prove
my conjecture. When this set was sufficiently small, I proved the conjecture using
the smt method, added it to the set of facts given to smt in the final proof of
False, and removed as many of its preconditions as possible from that set in
order to determine whether the conjecture was indeed a useful one – the goal,
after all, is to make the final ‘monolithic’ proof step smaller.

With this approach, I was able to easily shrink the final proof step until
it disappeared completely. I then proceeded to ‘flesh out’ all the small facts
proven with the smt method into structured Isabelle proofs, which was fairly
easy since they were all relatively small and Isabelle has good automation for
linear arithmetic. The end result was a very linear proof without any ‘big’
case distinctions, which is remarkable considering that there are over 60 dis-
junctions in the conditions altogether. At this stage, the proof was clear and
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detailed enough to derive a rigorous and human-readable (albeit rather lengthy)
pen-and-paper proof, which is printed in the appendix of the paper by Brandl
et al. [1].

7 A Mistake in a Related Result

A previous paper by Brandl et al. contained a proof of a weaker version of
Theorem 1. The difference is that this weaker theorem additionally assumes
that the SDS in question must also be an extension of Random Dictatorship
in the sense that it returns the same result as RD if each agent has a unique
favourite alternative (i. e. whenever RD is defined).

Corollary 1. If m ≥ 4 and n ≥ 4, there exists no SDS that is an extension
of RD and has the following properties: Anonymity, Neutrality, SD-Efficiency,
SD-Strategyproofness.

For the motivation behind this result, see the original presentation by Brandl et
al. [15]. For our purposes, it should only be said that the proof for this theorem
was relatively short and human-readable (it involves only 13 profiles). It was
therefore decided to first formalise this weaker theorem in Isabelle (in the hope
that it would be considerably easier) and then move on to the proof of Theorem 1.

Like their later proof of Theorem 1, the main part here is also the base case
m = n = 4 and then employs the lifting argument described in Sect. 3. I was
able to formalise the base case of m = n = 4 quickly and without any problems,
although it already became apparent that tool support such as that described
in Sect. 5.1 would be very useful.

However, once I attempted to formalise the lifting step (which Brandl et al.
only described very roughly in a single paragraph since it is usually not very
interesting), it became apparent that the lifting argument breaks down in this
case: What Brandl et al. missed is that unlike the other four properties, the
property ‘f is an extension of RD’ does not ‘survive’ the lifting, i. e. if f is an
RD-extension, it is possible that f↓ is not an RD-extension anymore.

Brandl et al. acknowledged this mistake and published a corrigendum [16]
in which they suggest to add the additional requirement that f must ignore
fully indifferent agents. The result and its problems were superseded by the
later correct proof of Theorem 1 anyway. Nevertheless, I find it notable that
the formalisation process found a previously undiscovered mistake in a peer-
reviewed published work – in particular, a mistake that could only be repaired
by introducing additional assumptions.

8 Related Work

Brandl et al. [1,15] already give a good overview of work related to Theorem 1
in Social Choice Theory. Geist & Peters [17] give an overview of computer-
aided methods in Social Choice Theory in general. I shall therefore restrict this
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section to formalisations of results from broader Social Choice Theory in theorem
provers.

Nipkow [18,19] formalised Arrow’s theorem and the Gibbard–Satterthwaite
theorem. Gammie [20,21] formalised some more results such as Arrow’s theorem,
May’s theorem, Sen’s liberal paradox, and stable matchings. All of these use
Isabelle/HOL. The only formalisation of Social Choice Theory outside of Isabelle
that I am aware of is one of Arrow’s theorem in Mizar by Wiedijk [22].

Brandt et al. [23,24] recently built upon my work to formalise another, sim-
pler impossibility result in Isabelle/HOL: that there is no Social Choice Func-
tion (SCF) for at least 3 agents / alternatives that fulfils Anonymity, Fishburn-
Strategyproofness, and Pareto-Efficiency. The main differences to this work are:

– SCFs return a set of winners, not a lottery. The problem can thus be encoded
into SAT and SMT is not needed.

– The proof involves only 21 preference profiles instead of 47 and only 33 Strat-
egyproofness conditions instead of 85.

– They do not attempt to construct a human-readable proof and instead use
Isabelle’s built-in SAT solver to obtain the contradiction in the end.

Due to the different setting of SCFs, most of the specialised automation devel-
oped for SDSs could unfortunately not be reused. The preference profiles com-
mand and the substantial amount of library material on preferences, however,
could be reused. The general structure of the proof (locales, definitions of var-
ious notions related to SDSs/SCFs, lifting) was also sufficiently similar that a
considerable amount of material on SDSs could easily be adapted. Due to the
much smaller size of the proof, the derivation of the SAT conditions from the
preference profiles was done by hand since it would have been significantly more
work to adapt the automation to SCFs.

It is worth noting that, in contrast to my work here, all examples listed in this
section were only concerned with non-probabilistic Social Choice Theory. The
present work is therefore probably the first published formalisation concerning
randomised Social Choice Theory.

9 Conclusion

Based on work by Brandl et al. [15,25], I have written a fully machine-checked
proof of the incompatibility of SD-Strategyproofness and SD-Efficiency using
the Isabelle/HOL theorem prover and, based on this, a ‘human-readable’ proof.
In the process, I have also developed a high-level formalisation of basic concepts
of randomised Social Choice Theory and proof automation that automatically
defines and derives facts from given preference profiles. Both of these can be
used for similar future projects.

This work was also an interesting case study in how interactive theorem
provers (like Isabelle) and powerful automated theorem provers (like Z3 and
other SMT solvers) can be used not only to formally verify existing mathemat-
ical theorems, but also to find completely new and – more or less – human-
readable proofs for conjectures. For human mathematicians, simplifying large
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terms and combining large numbers of complicated linear equations and inequal-
ities is tedious and error-prone, but specialised computer programs (such as SMT
solvers or Isabelle’s decision procedures for linear arithmetic) excel at it. Using
an interactive proof system such as Isabelle has the great advantage that

– it is virtually impossible to make a mistake in a proof,
– one receives immediate feedback on everything, and
– it is easy to check whether an idea works out or not.

The last two points are, in my opinion, often not stressed enough when talking
about interactive theorem proving. With a paper proof, changing parts of the
proof (e. g. simplifying the presentation or removing unnecessary assumptions)
is usually a tedious and error-prone process. With the support of an interactive
theorem prover, the consequences of any change become visible immediately,
which can make experimentation and ‘proof prototyping’ much more appealing.

I also believe that this work shows that there is an opportunity for fruitful
collaboration between domain experts and interactive proof experts. Together,
even brand-new research-level mathematical results can – at least sometimes –
be formalised. This can improve the confidence in the correctness of the result
tremendously, and, more importantly, it is an excellent way to find and rectify
mistakes (as was the case here).
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...By our remembrances of days foregone
Such were our faults, or then we thought
them none.

W. Shakespeare,
All’s Well That Ends Well

Abstract. We introduce a novel comprehensive framework for epis-
temic reasoning in multi-agent systems where agents may behave asyn-
chronously and may be byzantine faulty. Extending Fagin et al.’s classic
runs-and-systems framework to agents who may arbitrarily deviate from
their protocols, it combines epistemic and temporal logic and incorpo-
rates fine-grained mechanisms for specifying distributed protocols and
their behaviors. Besides our framework’s ability to express any type of
faulty behavior, from fully byzantine to fully benign, it allows to specify
arbitrary timing and synchronization properties. As a consequence, it
can be adapted to any message-passing distributed computing model we
are aware of, including synchronous processes and communication, (un-)
reliable uni-/multi-/broadcast communication, and even coordinated
action. The utility of our framework is demonstrated by formalizing
the brain-in-a-vat scenario, which exposes the substantial limitations of
what can be known by asynchronous agents in fault-tolerant distributed
systems. Given the knowledge of preconditions principle, this restricts
preconditions that error-prone agents can use in their protocols. In par-
ticular, it is usually necessary to relativize preconditions with respect to
the correctness of the acting agent.

1 Introduction

At least since the groundbreaking work by Halpern and Moses [12], the
knowledge-based approach [6] is known as a powerful tool for analyzing dis-
tributed systems. In a nutshell, it combines epistemic logic [14] and temporal
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logic to reason about knowledge and belief in multi-agent systems (MAS). Stan-
dard epistemic logic relies on Kripke models M that describe possible global
states s of the system, where atomic propositions, e.g., “xi = 0 for a local vari-
able of agent i” or “i has witnessed an external event e,” hold true or not, along
with an indistinguishability relation s ∼i s′ that tells that i cannot distinguish
state s from s′ based on its local information. Knowledge of a statement ϕ about
the system in global state s is represented by a modal knowledge operator Ki,
written (M, s) |= Kiϕ. Agent i knows ϕ at global state s iff ϕ holds in every
global state s′ that i cannot distinguish from s.

In the interpreted runs-and-systems framework for reasoning about dis-
tributed and other multi-agent systems [6,12], the semantics of Kripke models is
combined with a complex machinery representing runs of distributed MAS, thus,
obtaining an additional temporal structure. For the set of all possible runs r of
a system I, all possible global states r(t) in all runs r ∈ I over discrete time
t ∈ T = IN are considered. The accessibility relation is also dictated by the
distributed component: two global states r(t) and r′(t′) are indistinguishable for
agent i iff i has the same local state in both, formally, ri(t) = r′

i(t′). Therefore,
i knows ϕ at time t in run r ∈ I, formally, (I, r, t) |= Kiϕ iff (I, r′, t′) |= ϕ
in every r′ ∈ I and for every t′ with ri(t) = r′

i(t′). Here ϕ can be a formula
containing arbitrary atomic propositions, as well as other knowledge operators
and temporal modalities such as ♦ (eventually) and � (always), combined by
standard logical operators ¬, ∧, ∨, →. Note that agents do not generally know
the global time.

Related Work. Whereas the knowledge-based approach has been used success-
fully for distributed computing problems in systems with uncertainty but no
failures [1,2,10], few papers apply epistemic reasoning to byzantine agents that
can disseminate false information. Agents suffering from crash and from send
omission failures were studied in [24], primarily in the context of agreement
problems, which require standard [4] or continual [13] common knowledge. More
recent results are unbeatable consensus algorithms in synchronous systems with
crash failures [3] and the discovery of the importance of silent choirs [11] for
message-optimal protocols in crash-resilient systems. Still, to the best of our
knowledge, the only attempt to extend epistemic reasoning to systems with
some byzantine1 faults [18] was made in Michel’s PhD thesis published as [21],
where faulty agents may deviate from their protocols by sending wrong messages.
Even there erroneous behavior is restricted to actions that could have also been
observed in some correct execution, meaning that Michel’s faulty agents may
not behave truly arbitrarily.

1 The term “byzantine” originated from [18]. Leslie Lamport chose a defunct country
to avoid offending anyone living and also as a pun [26, p. 39] because generals from
Byzantium could, in fact, be expected to behave in a byzantine (i.e., devious or
treacherous) fashion. Unfortunately, this pun might be responsible for the ensuing
unnecessary ([27]) capitalization of the word even for faults unrelated to Byzantium
proper.
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To some extent, fault-tolerance has also been considered for general multi-
agent systems. For non-fault-tolerant MAS, temporal-epistemic languages like
CTLK [6] and even model checkers like MCMAS [19] exist, which can be used
for specification and automatic verification of temporal-epistemic properties. For
MAS that may suffer from faults, replication-based fault-tolerance techniques [8],
diagnosis-based approaches [15], lying agents [28], and even fault-injection based
model mutation and model checking [5] have been considered. However, to the
best of our knowledge, a comprehensive epistemic reasoning framework that also
allows byzantine agents did not exist so far.

Contributions and Paper Organization. In Sects. 2 and 3, we present the cor-
nerstones of our comprehensive modeling and analysis framework for epistemic
reasoning about fault-tolerant distributed message-passing systems, the full ver-
sion of which is available as a comprehensive technical report [17]. We demon-
strate its utility in Sect. 5, by deriving generic results about what asynchronous
agents can(not) know in the presence of byzantine faults. In order to achieve
this, we first introduce in Sect. 4 a general method of run modifications: to show
that agent i cannot know some fact ϕ, it is sufficient to construct a modified
run, imperceptible to agent i, that makes ϕ false. This way, we obtain our cen-
tral result, the “brain-in-a-vat lemma” (with the proof relegated to Appendix A)
stating that, no matter what it observed, an agent can never rule out the pos-
sibility of these observations being wholly fictitious results of its malfunction
[25]. Our findings imply that the knowledge of preconditions principle [22] (any
precondition for action must be known to the acting agent) severely restricts the
kinds of preconditions acceptable in such systems. Thus, we introduce epistemic
modalities that convert a desired property, e.g., an occurrence of an event, to a
knowable precondition in Sect. 6. Finally, Sect. 7 contains some conclusions and
directions of future work.

2 Runs and Systems with Byzantine Faults

We introduce our version of the runs-and-systems framework enhanced with
active byzantine agents, which provides the basis for epistemic reasoning in this
setting. To prevent the waste of space by multiple definition environments, we
give the following series of formal definitions as ordinary text marking the defined
objects by italics; consult [17] for all the details.

We consider a non-empty finite set A = {1, . . . , n} of agents, representing
individuals and/or computing units. Agent i can perform actions from Actionsi,
e.g., send messages, and can witness events from Eventsi, e.g., message delivery.
We group all actions and events, collectively termed haps2, taking place after
timestamp t and no later than t + 1 into a round, denoted t + ½, and treat
all haps of the round as happening simultaneously. Global system timestamps
taken from T = IN are not accessible to our asynchronous agents, who need to

2 Cf. “And whatsoever else shall hap to-night, Give it an understanding but no tongue.”
W. Shakespeare, Hamlet, Act I, Scene 2.
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be woken up during a round to record the passage of time. A local state ri(t +
1), referred to as (process-time) node (i, t + 1), describes the local view of the
system by agent i ∈ A after round t + ½. Nodes (i, 0) correspond to initial local
states ri(0), taken from a set Σi. The set of all possible tuples of initial local
states is G (0) :=

∏
i∈A Σi. We assume ri(t) to be a list of all haps as observed

by i in rounds it was active in, grouped by round, i.e., if agent i is awoken
in round t + ½, then ri(t + 1) = X : ri(t),3 where X ⊆ Hapsi := Actionsi �
Eventsi is the set of all internal actions and external events as perceived by i in
round t + ½. Agents passive in the round have no record of it: ri(t + 1) = ri(t).
We denote Actions :=

⋃
i∈A Actionsi, Events :=

⋃
i∈A Eventsi, and Haps :=

Actions � Events to be sets of all actions, events, and haps respectively. Each
agent has a protocol dictating its actions (more details below). Actions prompted
by the protocol are deemed correct, whereas actions imposed by the environment
in circumvention of the protocol are byzantine (even when they mirror correct
protocol actions). In addition to acting outside its protocol, a byzantine agent
i may incorrectly record its actions and/or witnessed events. Events recorded
correctly (incorrectly) are correct (byzantine). Thus, ri(t) may not match reality.
Still agents possess perfect recall: though imperfect, their memories never change.
The set of all local states of i is denoted Li.

An accurate record rε(t + 1) of the system after round t + ½ is possessed
only by the environment ε /∈ A that controls everything but agents’ protocols:
it determines which agents wake up and which become faulty; it fully controls
all byzantine haps (including faulty actions by the agents); it enforces physical
and causal laws; and it is the source of indeterminacy (of the type involved in
throwing dice). The environment is also responsible for message passing, the
details of which can be found in [17] but are largely irrelevant for the results
presented in this paper. The crucial features are: messages are agent-to-agent;
correctly sending (resp. receiving) a message is an action (resp. event); each sent
message, correct or byzantine alike, is supplied with a unique global message
identifier, or GMI, inaccessible for agents and used by ε to ensure the causality
of message delivery, i.e., that an unsent message cannot be correctly received.
The global state r(t + 1) := (rε(t + 1), r1(t + 1), . . . , rn(t + 1)) after round t + ½
consists of all local states ri(t + 1), as well as rε(t + 1). The set of all global
states is denoted G .

To distinguish o ∈ Hapsi from the same o observed by another agent j 	= i
and to facilitate message delivery, ε transforms each action a ∈ Actionsi initiated
by i’s protocol (and, hence, correct) into an extended format global (i, t, a) ∈
GActionsi, e.g., incorporating a unique time-based GMI for each sent message.
The main requirement is that global be one-to-one (see [17] for details). Haps
in rε(t) are recorded in this global, or environment’s, view. The sets of globally
recorded correct actions/events/haps are denoted by adding G to the notations
above, e.g., GEventsi are pairwise disjoint sets of all i’s correct events in global
notation.

3 ‘ : ’ stands for concatenation.
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The duality between the local and global views is also crucial for allow-
ing agents to have false memories. Every correct event E = global (i, t, e)
for e ∈ Eventsi has a faulty counterpart fake (i, E) representing i being mistaken
about witnessing e, with both E and fake (i, E) recorded as e in ri(t+1). Further,
a faulty agent may misinterpret its own actions, by mistakenly believing to have
performed A′ = global (i, t, a′) despite actually performing A = global (i, t, a),
where a, a′ ∈ Actionsi. This is coded as a byzantine event fake (i, A 
→ A′) result-
ing in a′ recorded in ri(t + 1) but the causal effects on the whole system being
those of A. The case of A = A′ corresponds to a correctly recorded byzantine
action. In addition, either of A or A′ can be a special byzantine action noop
representing the absence of actions. If A = noop, the agent believes to have per-
formed a′ without doing anything. If A′ = noop, the agent performs A without
leaving a local record. Finally, fail (i) := fake (i,noop 
→ noop) represents the
byzantine inaction and leaves no local record for i. The set of all i’s byzantine
events, whether mimicking correct events or correct actions, is denoted BEventsi,
with BEvents :=

⊔
i∈A BEventsi.

Apart from correct GEventsi and byzantine BEventsi, the environment issues
at most one of the system events SysEventsi = {go(i), sleep (i), hibernate (i)} per
agent i per round. The correct event go(i) activates i’s protocol (see below) for
the round. Events sleep (i) and hibernate (i) represent i failing to implement its
protocol, with sleep (i) enforcing a local record of the round, whereas ri(t + 1) =
ri(t) is possible for hibernate (i). Thus, GEventsi := GEventsi � BEventsi �
SysEventsi with GEvents :=

⊔
i∈A GEventsi and GHaps := GEvents�GActions .

The first event from BEventsi, or sleep (i), or hibernate (i) in a run turns i into
byzantine. Overall, rε(t + 1) := X : rε(t) for the set X ⊆ GHaps of all haps from
round t + ½.

As in this definition of GEventsi, throughout the paper horizontal bars sig-
nify the correct subsets of phenomena in question, i.e., GEventsi ⊆ GEventsi,
GHaps ⊆ GHaps , etc. Later, this would also apply to formulas, e.g., occurredi(o)
is a correctly recorded occurrence of o ∈ Hapsi whereas occurredi(o) is any
recorded occurrence. Note that this distinction is only made in the global for-
mat because locally agents do not distinguish correct haps from byzantine.

Each agent’s protocol Pi : Li → ℘(℘(Actionsi)) \ {∅} is designed to choose a
set of actions based on i’s current local state in order to achieve some collective
goal. At least one set of actions is always available. In case of multiple options,
the choice is up to the adversary part of the environment. For asynchronous
agents, the global timestamp cannot be inferred from their local state.

The environment governs all events, correct, byzantine, and system, via an
environment protocol Pε : T → ℘(℘(GEvents)) \ {∅}, which can depend on a
timestamp t ∈ T but should not depend on the current state because the envi-
ronment is assumed to be an impartial physical medium. Both the environment’s
and agents’ protocols are non-deterministic, with the choice among the possible
options arbitrarily made by the adversary part of the environment. It is also
required that all events of round t + ½ be mutually compatible (for time t). The
complete list of these coherency conditions can be found in [17], of which the
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following are relevant for this paper: (a) at most one event from SysEventsi at
a time is issued per agent; (b) a correct event observed as e by agent i is never
accompanied by a byzantine event that i would also register as e, i.e., an agent
cannot be mistaken about observing an event that did happen.4

Both the global run r : T → G and its local parts ri : T → Li provide a
sequence of snapshots of system states. Given the joint protocol P := (P1, . . . , Pn)
and the environment’s protocol Pε, we focus on τf,Pε,P -transitional runs r that
result from following these protocols and are built according to a transition
relation τf,Pε,P ⊆ G × G for asynchronous agents at most f ≥ 0 of which may
turn byzantine per run. Each such transitional run progresses by ensuring that
r (t) τf,Pε,P r (t + 1), i.e., (r (t) , r (t + 1)) ∈ τf,Pε,P , for each timestamp t ∈ T.

Figure 1 represents one round of an asynchronous system governed by τf,Pε,P ,
which consists of the following five consecutive phases:

Fig. 1. Details of round t + ½ of a τf,Pε,P -transitional run r.

1. Protocol Phase. A non-empty range Pε (t) ⊆ ℘(GEvents) of possible coher-
ent sets of events is determined by the environment’s protocol Pε; for each i ∈ A,
a non-empty range Pi (ri (t)) ⊆ ℘(Actionsi) of possible sets of i’s actions is
determined by the agents’ joint protocol P .

2. Adversary Phase. The adversary non-deterministically picks one (coherent)
set Xε ∈ Pε (t) and one set Xi ∈ Pi (ri (t)) for each i ∈ A from their ranges.

3. Labeling Phase. Locally represented actions in each Xi are translated into
the global format: αt

i (r) := {global (i, t, a) | a ∈ Xi} ⊆ GActionsi.

4. Filtering Phase. Functions filterε and filteri for each i ∈ A remove all
attempted events from αt

ε (r) := Xε and actions from αt
i (r) that would violate

causality. More precisely, the filtering phase is performed in two stages:
1. filterε filters out causally impossible events based (a) on the current global
state r(t), which could not have been accounted for by Pε, (b) on αt

ε (r), and
(c) on all αt

i (r), which are not accessible to Pε either. Specifically, two kinds
of events are causally impossible and, accordingly, removed by filterε: (1) each

4 Prohibition (b) does not extend to actions, which need not be correctly recorded.
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correct receive event that has no matching send either in the global history r(t)
or in the current round5 and (2) all byzantine events if they would have resulted
in more than f agents becoming faulty (cf. [17] for details). The resulting set of
events to actually occur in round t + ½ is denoted

βt
ε (r) := filterε

(
r (t) , αt

ε (r), αt
1 (r), . . . , αt

n (r)
)

.

2. For each agent i, filteri either removes all actions whenever go(i) /∈ βt
ε (r) or

leaves αt
i (r) unchanged otherwise. The resulting sets of actions to be actually

performed by agents in round t + ½ are denoted

βt
i (r) := filteri

(
αt
1 (r), . . . , αt

n (r), βt
ε (r)

)
.6

Note that βt
i (r) ⊆ αt

i (r) ⊆ GActionsi and βt
ε (r) ⊆ αt

ε (r) ⊆ GEvents .

5. Updating Phase. The resulting mutually causally consistent events βt
ε (r)

and actions βt
i (r) are appended to the global history r(t); for each i ∈ A,

all non-system events from βt
εi

(r) := βt
ε (r) ∩ GEventsi and all actions βt

i (r)
are appended in the local form to the local history ri(t), which may remain
unchanged if no action or event triggers an update or be appended with the
empty set if an update is triggered only by a system event go(i) or sleep (i):

rε (t + 1) := updateε

(
rε (t) , βt

ε (r), βt
1 (r), . . . , βt

n (r)
)

;
ri (t + 1) := updatei

(
ri (t) , βt

i (r), βt
ε (r)

)
.7

Since only the protocol phase depends on the specific protocols P and Pε,
the operations in the remaining phases 2–5 can be grouped into a transition
template τf that produces a transition relation τf,Pε,P given P and Pε.

Properties of runs that cannot be implemented on a round-by-round basis,
e.g., liveness properties requiring certain things to happen in a run eventually,
are enforced by restricting the set of allowable runs by admissibility conditions Ψ
defined as subsets of the set R of all transitional runs. For example, no goal can
be achieved unless agents are guaranteed to act from time to time. Thus, it is
standard to impose the Fair Schedule (FS) admissibility condition, which ensures
that each correct agent is eventually given a possibility to follow its protocol:
FS := {r | (∀i ∈ A) (∀t ∈ T) (∃t′ ≥ t) βt′

ε (r) ∩ SysEventsi 	= ∅}. In scheduling
terms, FS demands that the environment either provide or wrongfully deny CPU
time for every processor infinitely many times. Thus, a process is always given an
opportunity to act, unless its faults sleep (i) and/or hibernate (i) persist infinitely
often.

Definition 1. A context γ = (Pε,G (0), τf , Ψ) consists of the environment’s
protocol Pε, a set of global initial states G (0), a transition template τf for f ≥ 0,
5 In αt

ε (r) for byzantine sends or in αt
i (r) for correct ones that will be actually per-

formed (see filtering stage 2).
6 Arguments αt

j (r) for j �= i are redundant here but will be used in future extensions.
7 Full definitions of updateε and updatei are presented in Appendix in Definition 16.
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and an admissibility condition Ψ . For a joint protocol P , we call χ = (γ, P ) an
agent-context. A run r ∈ R is called weakly χ-consistent if r(0) ∈ G (0) and
the run is τf,Pε,P -transitional. A weakly χ-consistent run r is called (strongly)
χ-consistent if r ∈ Ψ . The set of all χ-consistent runs is denoted Rχ. Agent-
context χ is called non-excluding if any finite prefix of a weakly χ-consistent run
can be extended to a strongly χ-consistent run.

We distinguish types of agents depending on their expected malfunctions. Let
FEventsi := BEventsi � {sleep (i), hibernate (i)} be all faulty events for agent i.

Definition 2. Environment’s protocol Pε makes an agent i ∈ A:

(i) fallible if X ∈ Pε (t) implies {fail (i)} ∪ X ∈ Pε (t);
(ii) delayable if X ∈ Pε (t) implies X \ GEventsi ∈ Pε (t);
(iii) error-prone if X ∈ Pε (t) implies that any coherent set Y � (X \FEventsi) ∈

Pε (t) for Y ⊆ FEventsi;
(iv) gullible if X ∈ Pε (t) implies that any coherent set Y �(X\GEventsi) ∈ Pε (t)

for Y ⊆ FEventsi;
(v) fully byzantine if it is error-prone and gullible.

Thus, fallible agents can always be faulty with the same behavior; delayable
agents can be prevented from waking up; error-prone (gullible) agents can exhibit
any faults in addition to (without) correct events, thus, implying fallibility
(delayability); fully byzantine agents exhibit the widest range of faults.

3 Epistemic Modeling of Byzantine Faults

The runs-and-systems framework is traditionally used as a basis for interpreted
systems, a special kind of Kripke models for multi-agent distributed environ-
ments [6]. For an agent-context χ, we consider pairs (r, t′) of a run r ∈ Rχ

and timestamp t′ ∈ T. A valuation function π : Prop → ℘(Rχ × T) determines
where an atomic proposition from Prop is true. The determination is arbitrary
except for a small set of designated atomic propositions (and more complex for-
mulas built from them) whose truth value is fully determined by r and t′. More
specifically, for i ∈ A, o ∈ Hapsi, and t ∈ T such that t ≤ t′,

– correct(i,t) is true at (r, t′) iff no faulty event happened to i by timestamp t,
i.e., no event from FEventsi appears in the rε(t) prefix of the rε(t′) part of
r(t′);

– correcti is true at (r, t′) iff no faulty event happened to i yet, i.e., no event
from FEventsi appears in rε(t′) (this is the formal definition of what it means
for an agent i to be correct; the agent is faulty or byzantine iff it is not correct);

– fake(i,t) (o) is true at (r, t′) iff i has a faulty reason to believe that o ∈ Hapsi

occurred in round t − ½, i.e., o ∈ ri(t) because (at least in part) of some
O ∈ BEventsi ∩ βt−1

ε (r);
– occurred(i,t)(o) is true at (r, t′) iff i has a correct reason to believe that o ∈
Hapsi occurred in round t − ½, i.e., o ∈ ri(t) because (at least in part) of
some O ∈ (GEventsi ∩ βt−1

ε (r)) � βt−1
i (r);



Epistemic Reasoning with Byzantine-Faulty Agents 267

– occurredi(o) is true at (r, t′) iff at least one of occurred(i,m)(o) for 1 ≤ m ≤ t′

is; also occurred (o) :=
∨

i∈A occurredi(o);
– occurredi(o) is true at (r, t′) iff either occurredi(o) is or at least one of

fake(i,m) (o) for 1 ≤ m ≤ t′ is.

An interpreted system is a pair I = (Rχ, π). We combine the standard epistemic
language with the standard temporal language ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | �ϕ
for p ∈ Prop and i ∈ A, with other Boolean connectives defined in the usual
way and ♦ϕ := ¬�¬ϕ. Truth for these formulas is defined in the standard way,
in particular, for a run r ∈ Rχ, timestamp t ∈ T, atomic proposition p ∈ Prop,
agent i ∈ A, and formula ϕ we have (I, r, t) |= p iff (r, t) ∈ π(p); (I, r, t) |= Kiϕ
iff (I, r′, t′) |= ϕ for any r′ ∈ Rχ and t′ ∈ T such that ri(t) = r′

i(t′); and
(I, r, t) |= �ϕ iff (I, r, t′) |= ϕ for all t′ ≥ t in the same run r. A formula ϕ is
valid in I, written I |= ϕ, iff (I, r, t) |= ϕ for all r ∈ Rχ and t ∈ T.

Due to the coherency of protocol Pε, an agent cannot be both right and wrong
about an occurrence of an event, i.e., I |= ¬(occurred(i,t)(e) ∧ fake(i,t) (e)) for
any i ∈ A, event e ∈ Eventsi, and t ∈ T. Note that for actions this can happen.

Following the concept from [7] of global events that are local for an agent,
we define conditions under which formulas can be treated as such local events.
A formula ϕ is called localized for i within an agent-context χ iff ri(t) = r′

i(t′)
implies (I, r, t) |= ϕ ⇐⇒ (I, r′, t′) |= ϕ for any I = (Rχ, π), runs r, r′ ∈ Rχ, and
t, t′ ∈ T. By these definitions, we immediately obtain:

Lemma 3. The following statements are valid for any formula ϕ localized for an
agent i ∈ A within an agent-context χ and any interpreted system I = (Rχ, π):

I |= ϕ ↔ Kiϕ and I |= ¬ϕ ↔ Ki¬ϕ.

The knowledge of preconditions principle [22] postulates that in order to act
on a precondition an agent must be able to infer it from its local state. Thus,
the preceding lemma shows that formulas localized for i can always be used as
preconditions. Our first observation is that the agent’s perceptions of a run are
one example of such epistemically acceptable (though not necessarily reliable)
preconditions:

Lemma 4. For any agent-context χ, agent i ∈ A, and local hap o ∈ Hapsi, the
formula occurredi(o) is localized for i within χ.

4 Run Modifications

By contrast, as we will demonstrate, correctness of these perceptions is not
localized for i and, hence, cannot be the basis for actions. In fact, correctness
can never be established by an agent. Such impossibility results are proved by
means of controlled run modifications.

Definition 5. A function ρ : Rχ −→ ℘(GActionsi) × ℘(GEventsi) is called an
i-intervention for an agent-context χ and agent i ∈ A. A joint intervention
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B = (ρ1, . . . , ρn) consists of i-interventions ρi for each agent i ∈ A. An adjust-
ment [Bt; . . . ; B0] is a sequence of joint interventions B0 . . . , Bt to be performed
at rounds from ½ to t + ½ for some timestamp t ∈ T.

An i-intervention ρ(r) = (X, Xε) applied to a round t + ½ of a given run r can
be seen as a meta-action modifying the results of this round for i in such a
way that βt

i (r′) = X and βt
εi

(r′) = βt
ε (r′) ∩ GEventsi = Xε in the artificially

constructed new run r′. We denote aρ(r) := X and eρ(r) := Xε. Accordingly, a
joint intervention (ρ1, . . . , ρn) prescribes actions βt

i (r′) = aρi(r) for each agent i
and events βt

ε (r′) =
⊔

i∈A eρi(r) for the round in question. Thus, an adjustment
[Bt; . . . ; B0] fully determines actions and events in the initial t + 1 rounds of
run r′:

Definition 6. Let adj = [Bt; . . . ; B0] be an adjustment where Bm = (ρm
1 , . . . , ρm

n )
for each 0 ≤ m ≤ t and each ρm

i is an i-intervention for an agent-context
χ = ((Pε,G (0), τf , Ψ), P ). A run r′ is obtained from r ∈ Rχ by adjustment adj
iff for all t′ ≤ t, all T > t, and all i ∈ A,

1. r′ (0) := r (0),
2. r′

i (t′ + 1) := updatei(r′
i (t′) , aρt′

i (r),
⊔

i∈A eρt′
i (r)),

3. r′
ε (t′ + 1) := updateε(r′

ε (t′) ,
⊔

i∈A eρt′
i (r), aρt′

1 (r), . . . , aρt′
n (r)),

4. r′(T ) τf,Pε,P r′(T + 1).
We denote by R (τf,Pε,P , r, adj) the set of all runs obtained from r by adj.

Note that generally not all adjusted runs are τf,Pε,P -transitional, i.e., obey
Prop. 4 also for t′ ≤ t. Thus, special care is required to produce τf,Pε,P -
transitional adjustments with required properties. To demonstrate the impossi-
bility of establishing knowledge of correctness, we use several adjustment types
to formalize the infamous brain in a vat scenario8, where one agent, the “brain,”
is to experience a fabricated, i.e., faulty, version of its local history from a given
run, whereas all other agents are to remain in their initial states (and made faulty
or not at will). This is achieved by using interventions (a) Fakei for brain i and
(b) CFreeze (resp. BFreezej) for other agents j that are to be correct (resp.
byzantine).

Definition 7. For an agent-context χ, agent i ∈ A, and run r ∈ Rχ, we define
i-interventions CFreeze (r) := (∅, ∅), and BFreezei (r) := (∅, {fail (i)}), and

Faket
i (r) := (∅,

{fail (i)} ∪ (βt
ε (r) ∩ BEventsi) ∪ {fake (i, E) | E ∈ βt

ε (r) ∩ GEventsi} ∪
{
fake (i,noop �→ A) | A ∈ βt

i (r)
}

� {sleep (i) | ri(t + 1) �= ri(t)}). (1)

The following Brain-in-a-Vat Lemma 8, whose proof can be found in the
appendix, constructs the desired modified transitional run:

8 For connections to the semantic externalism and a survey of philosophical literature
on the subject, see [25].
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Lemma 8 (Brain in a Vat). For an agent i ∈ A, for an agent-context
χ = ((Pε,G (0), τf , Ψ), P ) such that Pε makes i gullible and every j 	= i delayable
and fallible, for a set Byz ⊆ A \ {i} such that |Byz| + 1 ≤ f , for a run r ∈ Rχ,
and for a timestamp t > 0, we consider an adjustment adj = [Bt−1; . . . ; B0] such
that Bm = (ρm

1 , . . . , ρm
n ) with ρm

i = Fakem
i , with ρm

j = BFreezej for j ∈ Byz,
and with ρm

j = CFreeze for j /∈ {i} � Byz for all 0 ≤ m ≤ t − 1. Then each run
r′ ∈ R (τf,Pε,P , r, adj) satisfies the following properties:

1. r′ is weakly χ-consistent; if r′ ∈ Ψ , then r′ ∈ Rχ;
2. (∀m ≤ t) r′

i (m) = ri (m);
3. (∀m ≤ t) (∀j 	= i) r′

j (m) = r′
j (0).

4. agents from A \ ({i} � Byz) remain correct until t.
5. i and all agents from Byz become faulty already in round ½;
6. (∀m < t) (∀j 	= i) βm

εj
(r′) ⊆ {fail (j)}. More precisely,

βm
εj

(r′) = ∅ iff ρm
j = CFreeze and βm

εj
(r′) = {fail (j)} iff ρm

j = BFreezej;
7. (∀m < t) βm

εi
(r′) \ FEventsi = ∅;

8. (∀m < t)(∀j ∈ A) βm
j (r′) = ∅.

Corollary 9. If χ is non-excluding, for t ∈ T there is a run r′ ∈ Rχ constructed
according to Lemma 8, such that for any I = (Rχ, π), o ∈ Haps, j ∈ {i} � Byz,
and k /∈ {i} � Byz,

(I, r′, t) 	|= occurred (o), (I, r′, t) 	|= correctj , (I, r′, t) |= correctk. (2)

5 Byzantine Limitations of Certainty

The ability to construct a Brain-in-a-Vat run r′ in Lemma 8 and its properties
in Corollary 9 spell doom for the strategy of asynchronous agents waiting for
a definitive proof of correctness before acting. More precisely, agents can never
learn a particular event actually happened, nor that they are not byzantine.

Throughout this section, χ = ((Pε,G (0), τf , Ψ), P ) is a non-excluding agent-
context such that Pε makes agent i ∈ A gullible and every other agent k 	= i
delayable and fallible (in particular, this covers the case of fully byzantine agents),
I = (Rχ, π) is an interpreted system, and o ∈ Haps .

Theorem 10. If f ≥ 1, then for k 	= i the following statements are valid in I:
I |= ¬Kioccurred (o), I |= ¬Kicorrecti, I |= ¬Ki¬correctk. (3)

Proof. For any r ∈ Rχ and t ∈ T, by Lemma 8 with Byz = ∅ and non-
exclusiveness of χ, there is r′ ∈ Rχ such that (2) for j = i and k 	= i holds
by Corollary 9. (I, r, t) |= ¬Kioccurred (o) ∧ ¬Kicorrecti ∧ ¬Ki¬correctk follows
from ri(t) = r′

i(t) by Lemma 8.2. ��
Remark 11. While agent i can never learn that it is correct or that another
agent k is faulty, agent i might be able to detect its own faults, for instance, by
comparing actions prescribed by its protocol against actions recorded in its local
history.
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The case of f = 0 corresponds to a system without byzantine faults, where
correctness of all actions, events, and agents is common knowledge. When f = 1,
in view of Remark 11, the agent may be able to conclude that all other agents are
correct. By reusing the proof of Theorem 10 with Byz = {k}, we can establish
that for f ≥ 2 this determination is not possible either:

Theorem 12. If f ≥ 2 and k 	= i, the validity I |= ¬Kicorrectk holds.

6 Epistemes for Distributed Analysis and Design

The results of Sect. 5 clearly show that most desired properties, such as trigger
events, cannot be used as preconditions in asynchronous byzantine settings. The
knowledge of a precondition ϕ requirement stated in [22], i.e., that an agent
only act on ϕ when the agent is sure ϕ is not false, would typically lead for such
simple preconditions to no actions being taken at all: even when an asynchronous
agent is correct, it can never discount the scenario of being a brain in a vat.
This is, in fact, a “human condition”, as philosophy and science have yet to
provide a definitive way of discounting each of us being a brain in a vat (see
[20] for discussion). It then stands to reason that the human response to act
as if everything is fine could also be applied in distributed scenarios. This led
to the soft or defeasible knowledge Biϕ := Ki(correcti → ϕ) considered, e.g.,
in [23]. In other words, the agent only considers situations where it has not
been compromised and, while ϕ is the desired property, the agent acts on the
precondition correcti → ϕ relativized to its correctness.

We believe that this formulation can be improved in at least two directions.
Firstly, a typical specification for a fault-tolerant system does not impose any
restrictions on byzantine agents. For instance, in distributed consensus, all cor-
rect agents must agree on a common value, whereas faulty agents are exempted.
Consequently, in a correctness proof for a particular protocol, it is common
to verify Biϕ only for correct agents. In effect, the condition being verified in
such correctness analyses is Hiϕ := correcti → Ki(correcti → ϕ), which we
call the hope modality. Note that Hi is not localized for i because, by Theo-
rem 10, the agent itself can never ascertain its own correctness. On the other
hand, per Remark 11, the agent can in some cases learn its own faultiness.
Assuming the agent is malfunctioning rather than malicious, this information
can be used to implement self-correcting protocols or, at least, to minimize the
effects of detected faults on the system as a whole. Therefore, exploiting negative
introspection and factivity of Ki, we consider the modality credence defined by
Cr iϕ := ¬Ki¬correcti ∧Ki(correcti → ϕ), which is always localized, for protocol
design.

Further, Definition 2 shows that our framework easily models agents whose
faultiness is restricted in a particular way. For instance, the send omissions
failures from [24], where an agent may fail to send some of the required messages,
arbitrary receiving failures, where an agent may receive incorrect messages (or
not receive correct ones), and the well-studied crash failures can easily be defined.
It suffices to introduce restricted propositions such as crashcorrecti, sendcorrecti,
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receivecorrecti and define high-level logical descriptions of the appropriate type of
errors on top of it. E.g., replacing Ki(correcti → ϕ) with Ki(receivecorrecti → ϕ)
if the truth of ϕ relies solely on correct communication shrinks the pool of
situations ignored by the protocol to only those faults that do impede the agent’s
ability to ascertain ϕ.

The following basic relationships among the proposed modalities describing
various preconditions immediately follow from the standard S5 properties of Ki:

Lemma 13. For any formula ϕ, any agent i, the following formulas are valid
in every interpreted system:

|= Kiϕ → Biϕ |= Cr iϕ → Biϕ |= Biϕ → Hiϕ

|= correcti → (Hiϕ → Cr iϕ) |= ¬correcti → Hiϕ

|= Kiϕ → ϕ |= correcti → (Biϕ → ϕ)
|= correcti → (Cr iϕ → ϕ) |= correcti → (Hiϕ → ϕ)
|= Biϕ → KiBiϕ |= Cr iϕ → KiCr iϕ

|= Kicorrecti → (Hiϕ → Kiϕ)

As follows from the preceding lemma, credence is stronger than belief, which is
stronger than hope, with knowledge also being stronger than belief. However, for
a correct agent, credence, belief, and hope all become equivalent, while knowledge
generally remains stronger; for fault-free systems, this hierarchy collapses to the
standard notion of knowledge. A faulty agent, however, automatically hopes for
everything, making it unnecessary to check preconditions for faulty agents while
verifying system correctness. At the same time, all four modalities are factive
for correct agents (knowledge is factive for all agents), making them acceptable
as precondition criteria modulo correctness. Finally, belief and credence satisfy
the self-awareness condition that one should know one’s own convictions (cf.,
e.g., [16]). On the other hand, hope, which represents an external view, does not
generally satisfy Hiϕ → KiHiϕ. A complete axiomatization of the hope modality,
obtained by adding to K45 the axioms correcti → (Hiϕ → ϕ), ¬correcti → Hiϕ,
and Hicorrecti, can be found in [9].

7 Conclusions and Future Work

We presented a general framework for reasoning about knowledge in multi-agent
message-passing systems with byzantine agents. Thanks to its modularity, it
allows to model any timing and synchrony properties of agents and messages. We
demonstrated the utility of our framework by successfully modeling the brain-
in-a-vat scenario in a system of asynchronous agents, some of which are byzan-
tine. Since this result implies that the knowledge of preconditions principle puts
severe restrictions on allowable preconditions, we introduced weaker modalities,
credence and hope, for the design and analysis of protocols respectively, which
translate desired properties into actionable preconditions.
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Part of our current work is devoted to further exploring these modalities,
as well as their mutual relationships, and to the study of causality in fault-
tolerant distributed systems, with the view of obtaining necessary conditions for
iterated, coordinated, and simultaneous actions. Future work will be devoted to
also incorporate protocols, which are currently specified outside our combined
temporal–epistemic logic, into the logic itself, e.g., by using a suitably adaptation
of dynamic epistemic logic.

A Appendix

This section is dedicated to proving the Brain-in-a-Vat Lemma. Before engaging
with the proof, we flesh out necessary details of how our framework operates.

For a function f : Σ → Θ and a set X ⊆ Σ we use the following nota-
tion: f(X) := {f(x) | x ∈ X} ⊆ Θ. For functions with multiple arguments,
we allow ourselves to mix and match elements with sets of elements, e.g.,
global (i, T,Actionsi) := {global (i, t, a) | t ∈ T, a ∈ Actionsi}. As stated in
Sect. 2, the function global :

⊔
i∈A ({i} × T × Actionsi) −→ GActions must be

total and satisfy the following properties: for arbitrary i, j ∈ A, and t, t′ ∈ T,
and a ∈ Actionsi, and b ∈ Actionsj ,

1. global (i, T,Actionsi) = GActionsi;
2. global (i, t, a) 	= global (j, t′, b) whenever (i, t, a) 	= (j, t′, b).

Thus, it is possible to define an inverse function on GHaps := GEvents �
GActions :

Definition 14. We use a function local : GHaps −→ Haps converting correct
haps from the global format into the local ones for the respective agents in such
a way that, for any i ∈ A, t ∈ T, and a ∈ Actionsi, (1) local

(
GActionsi

)
=

Actionsi; (2) local
(
GEventsi

)
= Eventsi; (3) local

(
global (i, t, a)

)
= a.

Recall that GEventsi ∩ GEventsj = ∅ for i 	= j,

BEventsi := {fake (i, E) | E ∈ GEventsi} �
{fake (i, A 
→ A′) | A, A′ ∈ {noop} � GActionsi},

and SysEventsi := {go(i), sleep (i), hibernate (i)}. While for correct haps, local
provides a translation to local format on a hap-by-hap basis, the same cannot
be extended to all haps because system events from SysEventsi and byzantine
actions fake (i, A 
→ noop) do not correspond to any local hap, to be recorded
in i’s history. Thus, the localization function σ is defined on sets of global haps:

Definition 15. We define a localization function σ : ℘(GHaps) −→ ℘(Haps):

σ
(
X

)
:= local

( (
X ∩ GHaps

) ∪ {E | (∃i) fake (i, E) ∈ X} ∪

{A′ 	= noop | (∃i)(∃A) fake (i, A 
→ A′) ∈ X}
)

.
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Thus, as intended, for any E ∈ GEventsi, the local record left by fake (i, E) for
agent i is the same as the record of E, whereas for any A′ ∈ GActionsi and any
A ∈ {noop} � GActionsi, the local record of fake (i, A 
→ A′) for i is the same
as that of A′, whichever action A was taken in reality.

Definition 16. We abbreviate X := Xε, X1, . . . , Xn and Xεi
:= Xε ∩ GEventsi

for a tuple of performed events Xε ⊆ GEvents and actions Xi ⊆ GActionsi for
each i ∈ A. Given a global state r (t) =

(
rε (t) , r1 (t) , . . . , rn (t)

) ∈ G , we define
agent i’s update function updatei : Li × ℘(GActionsi) × ℘(GEvents) → Li that
outputs a new local state from Li based on i’s actions Xi and events Xε:

updatei (ri (t) , Xi, Xε) :=

⎧
⎪⎪⎨

⎪⎪⎩

ri (t) if σ(Xεi
) = ∅ and

Xε ∩ {go(i), sleep(i)} = ∅[
σ

(
Xεi

� Xi

)]
: ri (t) otherwise.

(note that, in transitional runs, updatei is always used after the action filteri;
thus, in the absence of go(i), it is always the case that Xi = ∅). Similarly, the
environment’s state update function

updateε : Lε × ℘ (GEvents) × ℘
(
GActions1

) × · · · × ℘
(
GActionsn

) → Lε

outputs a new state of the environment based on events Xε and all actions Xi:
updateε (rε (t) , X) := (Xε � X1 � · · · � Xn) : rε (t) . Summarizing,

update (r (t) , X) :=
(

updateε (rε (t) , X) , update1 (r1 (t) , X1, Xε) , . . . , updaten (rn (t) , Xn, Xε)
)

.

The following properties directly follow from Definition 7 of the i-intervention
Faket

i:

Lemma 17. Let t ∈ T and r be an arbitrary run. Then
1. aFaket

i (r) = ∅, i.e., Faket
i removes all actions.

2. go(i) /∈ eFaket
i (r), i.e., Faket

i never lets agent i act.
3. σ

(
aFaket

i (r) � eFaket
i (r)

)
= σ

(
eFaket

i (r)
)

= σ
(
βt

i (r) � βt
εi

(r)
)
.

4. ri(t + 1) 	= ri(t) iff eFaket
i (r) ∩ {go(i), sleep(i)} 	= ∅.

The last two properties mean that from i’s local perspective, the intervention is
imperceptible (also when agent i was unaware of the passing round in the given
run).

Proof (of Brain-in-a-Vat Lemma 8). Let r′ ∈ R (τf,Pε,P , r, adj). Prop. 6 fol-
lows from the definitions of CFreeze and BFreezej . Prop. 7 follows from (1).
Prop. 8 follows from Lemma 17.1 for i and from the definitions of CFreeze and
BFreezej for j 	= i. Prop. 5 follows from (1) for i and from the definition of
BFreezej for j ∈ Byz. Prop. 2–4 depend solely on rounds from ½ to t − ½ of r′,
whereas the transitionality of r′ for Prop. 1 from round t + ½ onward directly
follows from Definition 6. We now show Prop. 1–4 for m ≤ t by induction on m.
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Base: m = 0. Prop. 3–4 and transitionality for Prop. 1 are trivial. Prop. 2 follows
from Definition 6.
Step from m to m + 1. We prove Prop. 1 based on the gullibility of i
and delayability (and fallibility) of all other j 	= i. In order to show that
r (m) τf,Pε,P r (m + 1), we need to demonstrate that the β-sets prescribed
by adj can be obtained in a regular round. Since the adversary’s choice of
actions αm

j (r) for all j ∈ A is immaterial due to the absence of go(j) (by Prop. 7
for i and Prop. 6 for other j 	= i), we concentrate on ensuring the adversary can
choose suitable α-sets of events. Consider αm

ε (r) ∈ Pε (m) from the original run
r. The set αm

ε (r) is coherent because r is transitional. By the delayability of all
j 	= i, αm

εi
(r) := αm

ε (r) ∩ GEventsi = αm
ε (r) \ ⊔

j �=i GEventsj ∈ Pε (m) . Note
that for any Z ⊆ FEventsi,

(
αm

εi
(r) \ GEventsi

) � Z = ∅ � Z = Z because
αm

εi
(r) ⊆ GEventsi. Thus, by the gullibility of i,

αm
εi

(r′) := {fail (i)} ∪ (βm
ε (r) ∩ BEventsi) ∪

{
fake(i, E) | E ∈ βm

ε (r) ∩ GEventsi

} ∪
{fake (i,noop 
→ A) | A ∈ βm

i (r)} � {sleep (i) | ri(t + 1) 	= ri(t)} ∈ Pε (m)

(note that this set is coherent because it contains no correct events and neither
go(i) nor hibernate (i)). Finally, by the fallibility of all agents j ∈ Byz, αm

ε (r′) :=
αm

εi
(r′) � {fail (j) | j ∈ Byz} ∈ Pε (m) . This αm

ε (r′) is coherent and unaffected
by filtering (there are no correct receives in αm

ε (r′) to be filtered out, and only
at most f agents from {i} � Byz become byzantine).

It remains to show that filtering turns these sets αm
ε (r′), αm

1 (r′), . . . , αm
n (r′)

into the exact β-sets prescribed by the adjustment adj. Let us abbreviate:

Υ := filterε

(
r′(m), αm

ε (r′), αm
1 (r′), . . . , αm

n (r′)
)

= αm
ε (r′),

Ξj := filterj (αm
1 (r′), . . . , αm

n (r′), Υ ) .

Our goal is to show that Υj := Υ ∩ GEventsj = βm
εj

(r′) and Ξj = βm
j (r′) for

each j ∈ A. After the filtering phase, for our i and j 	= i, we have the following:

Υi = αm
ε (r′) ∩ GEventsi = αm

εi
(r′) = βm

εi
(r′),

Υj = αm
ε (r′) ∩ GEventsj =

{
∅ if ρm

j = CFreeze,

{fail (j)} if ρm
j = BFreezej ,

the latter being exactly βm
εj

(r′). Since go(j) /∈ Υ for any j ∈ A, we also have that
Ξj = ∅ = βm

j (r′) for all j ∈ A. This completes the induction step for Prop. 1.
For Prop. 2, the induction step follows from Lemma 17.3–4. We have:

– if σ
(
βm

εi
(r)

) 	= ∅, then ri (m + 1) = σ
(
βm

i (r) � βm
εi

(r)
)

: ri (m) =
σ

(
βm

i (r) � βm
εi

(r)
)

: r′
i (m) by IH. It remains to use Lemma 17.3 to see that

the last expression is the same as σ
(
βm

i (r′) � βm
εi

(r′)
)

: r′
i (m) = r′

i (m + 1) .
– if σ

(
βm

εi
(r)

)
= ∅ but ri (m + 1) 	= ri (m), then ri (m + 1) =

σ
(
βm

i (r) � βm
εi

(r)
)

: ri (m) = σ(βm
i (r)) : ri (m) = σ(βm

i (r)) : r′
i (m) by IH.

By Lemma 17.4, we also have r′
i (m + 1) 	= r′

i (m). Thus, this case can be
concluded by using Lemma 17.3 as it was done in the previous case.
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– if σ
(
βm

εi
(r)

)
= ∅ and ri (m + 1) = ri (m), then r′

i (m + 1) = r′
i (m) by

Lemma 17.3–4 (note that go(i) 	∈ βm
ε (r), meaning that βm

i (r) = ∅). Using IH,
we now immediately get, r′

i (m + 1) = r′
i (m) = ri (m) = ri (m + 1) .

This completes the proof of the induction step for Prop. 2.
For Prop. 3–4, the induction step is even simpler. Since, for any j 	= i,

βm
εj

(r′) ⊆ {fail (j)} by Prop. 6, it follows that r′
j (m + 1) = r′

j (m) = r′
j (0)

by IH. Similarly, βm
εj

(r′) = ∅ by Prop. 6 for j /∈ {i} � Byz. Thus, being correct
at m by IH, such agents j remain correct after round m + ½. ��
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Abstract. We present a generalised sequent calculus based on the use
of pairs of ordinary sequents called bisequents. It may be treated as the
weakest kind of system in the rich family of systems operating on items
being some collections of ordinary sequents. This family covers hyper-
sequent and nested sequent calculi introduced for several non-classical
logics. It seems that for many such logics, including some many-valued
and modal ones, a reasonably modest generalization of standard sequents
is sufficient. In this paper we provide a proof theoretic examination of S5
in the framework of bisequent calculus. Two versions of cut-free calculus
are provided. The first version is more flexible for proof search but admits
only indirect proof of cut elimination. The second version is syntactically
more constrained but admits constructive proof of cut elimination. This
result is extended to several versions of first-order S5.

Keywords: Bisequent calculus · Modal logic · Cut elimination

1 Introduction

During the last five decades researchers trying to apply sequent calculi (SC) to
several non-classical logics faced many serious problems. In order to overcome
the difficulties they provided a lot of ingenious solutions, mainly based on the
changes in the notion of basic items on which rules are defined. Sometimes
the machinery involved in the construction of such generalised forms of SC is
quite complicated and in special cases may be reduced. The aim of this paper
is to provide the simplest cut-free generalised SC which has strictly syntactical
character, i.e. no labels or other external devices are required. Of course the
assumption that there is a clear-cut distinction between purely syntactic and
semantic-based calculi may be questioned. After all, there are results showing
that some of the approaches may be seen as notational variants simply1 and, on
the other hand, a labelled SC of Negri [36] admits purely syntactical methods
1 For example, Fitting [16] results concerning the correspondence between prefixed

tableaux and nested sequents, or Baaz, Fermüller and Zach [5] concerning n-sided
sequents and labelled tableaux for many-valued logics.
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of proving admissibility of cut and other structural rules. Also the notion of
simplicity is rather vague; in Introduction to [24] different, sometimes opposing,
criteria are discussed. Below we will try to explain in what sense the proposed
solution may be seen as the simplest, at least in one, but quite rich and important
group of generalised SC of similar character.

Let us propose a name many-sequent calculi for the class of systems which
is under inspection here. This class covers a variety of systems using collections
of sequents as the basic items – in particular, two families of calculi operat-
ing on hyper- or nested sequents. Moreover, many other approaches, e.g. using
structured notion of a sequent (e.g. Sato [41]) or multiple kinds of sequents (e.g.
Indrzejczak [21]) may be reduced to this group by suitable translation.

Let us recall that hypersequents are structures of the form Γ1 ⇒ Δ1 | ... |
Γi ⇒ Δi which are usually conceived as sets or multisets of their components2. It
is commonly believed that hypersequent calculus (HC) was originally introduced
by Pottinger [39]. However, this information should be revised since a similar idea
was earlier introduced by Mints in [32] and [33] to formalize S5. Unfortunately,
these papers were written in Russian and unknown to wider community. Even
much later, when English translation of [33] was presented in Mints [34] he did
not care to underline his priority in this respect. But it was Avron [1] who not
only independently introduced such kind of SC but developed its theory, first
for relevant, then for many other non-classical logics (see e.g. [2]). Since then,
HC was applied widely in many fields (see e.g. [12] or [31]).

Nested sequents are more complicated structures where, in addition to formu-
lae, the elements of a sequent may be other sequents, containing other sequents.
This approach in general form was initiated by Dos̆en [14] where one is dealing
with a hierarchy of sequents of order n + 1 with arguments being finite sets of
sequents of order n. In particular, sequents of order 2 consist of finite sets of ordi-
nary sequents (of order 1) on both sides, where elements of the antecedent are
treated conjunctively, and elements of the succedent disjunctively. Independently
of Dos̆en’s general frame (not well known either) similar ideas were extensively
applied, under different names (deep inference calculi, tree-hypersequent calculi),
in the field of modal and temporal logics (e.g. Bull [11], Kashima [27], Stouppa
[43], Brünnler [10], Poggiolesi [38]).

In fact, HC may be seen as a special, simplified case of Došen’s general frame-
work. In this perspective hypersequents are just sequents of order 2 with empty
antecedents. This shows a deep relationship between these approaches. In partic-
ular, if hypersequents are defined not as sets or multisets of sequents, but rather
as their sequences, then HC may be interpreted as a restricted version of nested
sequent calculi, called by Lellmann [30] linear nested SC and by Indrzejczak [26]
non-commutative HC.

In particular, if we use just structures which consist of two sequents only, we
obtain a limiting case of either HC or nested SC which we call bisequent calculi
(BSC). Hence our proposal may be seen as providing the simplest and most

2 In fact other kinds of components, for example expressing clusters, were also pro-
posed recently, see e.g. Baelde, Lick and Schmitz [6].
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restrictive form of all aforementioned systems captured by the general frame
of Dos̆en in the sense of simplicity of the basic syntactic structures. Is such
restricted calculus of any use? HC already may be seen as quite restrictive form
of generalised SC, yet it was shown to be useful in many fields. BSC is even more
restrictive but preliminary work on its application is promising. For example, one
may apply bisequents successfully to a variety of three- and four-valued logics
which may be characterised in terms of Hähnle [19] approach with labels as sets
of values (work in progress). In this paper we focus on construction of BSC for
modal logic S5. It is an open question if this approach may be extended to other
modal logics containing axiom 5 or B. But in case of S5 we obtain an elegant
solution which is simple also in the sense of simple modal rules allowing for easy
proof search and establishing decidability (in propositional case).

S5 is chosen not only because of its philosophical importance. It is impor-
tant also for proof theory since it had a remarkable impact on the development
of different generalised SC. This well-known and important modal logic was
very early recognized as a troublesome case for construction of well-behaving SC
(Matsumoto and Ohnishi [37]). It was in the strong contrast with nice semantic,
algebraic and many other features of S5. Although it is possible to devise a
standard cut-free SC it requires global restrictions on the application of modal
rules which make it rather complicated in practical proof search (see e.g. Sere-
briannikov [42] or Braüner [9]). Several proposals for solving the problem were
connected not only with aforementied kinds of generalised SC but also with
other approaches based on the application of structured sequents (Sato [41]) or
variety of sequents (Indrzejczak [21]) or labels (Fitting [15]), to mention just a
few proposed solutions. In nested SC there are systems of Stouppa [43], Brünnler
[10] and Poggiolesi [38]. In case of HC the number of different formalizations of
S5 is particularly impressive: Mints [32], Pottinger [39], Avron [2], Restall [40],
Poggiolesi [38], Lahav [29], Kurokawa [28], Bednarska and Indrzejczak [7].

When we compare different generalised SC for S5 we can observe that
although in standard SC this logic is troublesome, in other approaches it often
needs the minimum of what is at hand. For example, in labelled approach formal-
ization of S5 requires the most simple solution – labels being natural numbers;
no necessity for structured prefixes (Fitting [15]) or relational formulae (Negri
[36]). Similarly in the approach based on the use of variety of different sequents
(Indrzejczak [22]), S5 requires only two different ones. In what follows we want
to show that also in many-sequent approach the overall machinery may be sig-
nificantly reduced to very simple BSC. One may look at this attempt as a kind
of the application of the principle of Ockham’s Razor to generalised SC of some
sort. It may also be compared with the principle of shallow formalization pro-
posed by Quine. HC in itself may be seen already as a quite simple form of
many-sequent calculi, but sometimes we can go further.

In Sect. 2 we describe the basic propositional system called BSC1 and com-
pare it with some approaches represented in HC. In Sect. 3 we will show that
its cut-free version is complete. It is shown indirectly by translation from cut-
free proofs in double sequent calculus DSC for S5 which is briefly characterised
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first. In Sect. 4 we introduce restricted form of BSC1 called BSC2. Although it is
less flexible in practical applications we can prove a constructive cut elimination
theorem for it. Usually different approaches are restricted to propositional level
only, here the last section discusses extensions of BSC to quantified versions with
identity. Three variants of modal first-order logics are discussed, one based on
classical logic and two on free logic. Surprisingly enough, the first one although
unproblematic in the setting of BSC1, cannot be accomodated in BSC2 without
addition of axiomatic sequents which destroy full cut elimination. On the other
hand, for two variants based on free logic we can still obtain cut elimination
theorem in nonrestricted version.

2 The System

We will use standard monomodal language with ordinary boolean connectives
and two modal operators of necessity � and possibility ♦. Let us recall that
one can axiomatize propositional S5 by adding to Hilbert system for classical
propositional logic CPL the following schemata of axioms:

K �(ϕ → ψ) → (�ϕ → �ψ)
T �ϕ → ϕ
4 �ϕ → ��ϕ
5 ¬�ϕ → �¬�ϕ or ♦ϕ → �♦ϕ
Pos ♦ϕ ↔ ¬�¬ϕ

Instead of 5 one can use B (¬ϕ → �¬�ϕ or ϕ → �♦ϕ) and dispense with
4 since it is provable from 5 and T. The only primitive rules are modus ponens
MP and Gödel’s rule GR. Γ �S5 ϕ denotes a provability of ϕ from Γ where
applications of GR is restricted to theses only. Since only syntactic proofs will
be presented below we do not recall semantic characterisation of S5.

The basic system which we call BSC1 is essentially a bisequent counterpart
of Gentzen’s LK for CPL enriched with special modal rules. Bisequents in BSC1
are simply (unordered) pairs of sequents Γ ⇒ Δ | Π ⇒ Σ, where Γ,Δ,Π,Σ
are finite (possibly empty) multisets of formulae. In case when one component
of a bisequent is empty (i.e. both arguments of ⇒ are empty multisets) we can
omit it and a bisequent with single nonempty sequent is just a standard sequent.
Most of the rules have active formulae (i.e. side and principal formulae) in one
sequent only and this sequent is called active, whereas the second is non-active
(for this instance of rule application). For both components of a bisequent we
have the same set of rules hence for simplicity in schemata of rules we will state
active component always on the left but in the course of the proof respective
inferences are allowed in both sequents. As axioms we count all bisequents of
the form ϕ ⇒ ϕ | S, where S is any sequent, possibly empty. For classical basis
we just take LK (but with all two-premiss rules in multiplicative form):
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(W ⇒)
Γ ⇒ Δ | S

ϕ, Γ ⇒ Δ | S
(⇒ W )

Γ ⇒ Δ | S

Γ ⇒ Δ,ϕ | S

(C ⇒)
ϕ,ϕ, Γ ⇒ Δ | S

ϕ, Γ ⇒ Δ | S
(⇒ C)

Γ ⇒ Δ,ϕ, ϕ | S

Γ ⇒ Δ,ϕ | S

(¬⇒)
Γ ⇒ Δ,ϕ | S

¬ϕ, Γ ⇒ Δ | S
(⇒¬)

ϕ, Γ ⇒ Δ | S

Γ ⇒ Δ,¬ϕ | S

(∧⇒)
ϕ,ψ, Γ ⇒ Δ | S

ϕ ∧ ψ, Γ ⇒ Δ | S
(⇒∧)

Γ ⇒ Δ,ϕ | S Π ⇒ Σ,ψ | S

Γ,Π ⇒ Δ,Σ,ϕ ∧ ψ | S

(⇒∨)
Γ ⇒ Δ,ϕ, ψ | S

Γ ⇒ Δ,ϕ ∨ ψ | S
(∨⇒)

ϕ, Γ ⇒ Δ | S ψ,Π ⇒ Σ | S

ϕ ∨ ψ, Γ,Π ⇒ Δ,Σ | S

(⇒→)
ϕ, Γ ⇒ Δ,ψ | S

Γ ⇒ Δ,ϕ → ψ | S
(→⇒)

Γ ⇒ Δ,ϕ | S ψ,Π ⇒ Σ | S

ϕ → ψ, Γ,Π ⇒ Δ,Σ | S

(Cut)
Γ ⇒ Δ,ϕ | Λ ⇒ Θ ϕ,Π ⇒ Σ | Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω
Note that although in case of logical two-premiss rules we keep the second,

non-active component, the same in both premisses, for cut we admit different
sequents which are mixed in the conclusion. It simplifies a constructive proof of
cut elimination which will be stated in Sect. 4.

Now rules for modal operators:

(�⇒)
ϕ, Γ ⇒ Δ | Π ⇒ Σ

�ϕ, Γ ⇒ Δ | Π ⇒ Σ
(⇒�)

⇒ ϕ | Γ ⇒ Δ

⇒ �ϕ | Γ ⇒ Δ

(⇒♦)
Γ ⇒ Δ,ϕ | Π ⇒ Σ

Γ ⇒ Δ,♦ϕ | Π ⇒ Σ
(♦⇒)

ϕ ⇒| Γ ⇒ Δ

♦ϕ ⇒| Γ ⇒ Δ

As we can see all logical modal rules are symmetric, explicit and separate
in the sense defined by Wansing [44]. Moreover, they allow for easy proofs of
interdefinability of � and ♦ hence they satisfy most of the desiderata stated for
well behaved logical rules. Only (⇒ �) and (♦ ⇒) are not pure in the sense of
Avron. Note also that all rules stated so far are static in the sense that there is
no transition of any formula from one sequent to another. In addition to ordinary
structural rules W and C we have eight transitional quasi-structural rules:

(TR⇒ |) Mϕ,Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | Mϕ,Π ⇒ Σ
(⇒TR |) Γ ⇒ Δ,Mϕ | Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,Mϕ

(| TR⇒)
Γ ⇒ Δ | Mϕ,Π ⇒ Σ

Mϕ,Γ ⇒ Δ | Π ⇒ Σ
(| ⇒TR)

Γ ⇒ Δ | Π ⇒ Σ,Mϕ

Γ ⇒ Δ,Mϕ | Π ⇒ Σ

where M is either � or ♦ uniformly in the premiss and the conclusion. These
rules are called quasi-structural since no constant is introduced but it is anyway
displayed in the schemata of rules.
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A proof is defined in the standard way as a tree of bisequents. As an example
we provide a proof of B:

p ⇒ p
(� ⇒) �p ⇒ p

(TR ⇒|) ⇒ p | �p ⇒
(¬ ⇒) ¬p ⇒| �p ⇒
(⇒ ¬) ¬p ⇒|⇒ ¬�p
(⇒ �) ¬p ⇒|⇒ �¬�p

(|⇒ TR) ¬p ⇒ �¬�p
(⇒→) ⇒ ¬p → �¬�p

One can easily prove other axioms of S5 whereas MP and GR are simulated
by cut and (⇒ �). In the other direction we can use some translation functions
which were developed in general form for nested and hypersequent calculi. Let
∧Γ,∨Γ denote conjunctions and disjunctions of elements of Γ and in case Γ
is empty they are interpreted as 	 and ⊥ respectively. Consider the following
translation for bisequents: �(Γ ⇒ Δ | Π ⇒ Σ) := (∧Γ → ∨Δ) ∨ �(∧Π →
∨Σ). This is a (restricted) form of the translation applied to nested sequents.
Alternatively, we may use a translation applied to hypersequents, i.e., �(Γ ⇒
Δ | Π ⇒ Σ) := �(∧Γ → ∨Δ) ∨ �(∧Π → ∨Σ). The former is a bit simpler
but has a disadvantage that in fact bisequents are treated here as ordered pairs
whereas it was not required for BSC1 (although it will be required for BSC2).
The fact that both can be used provides one more evidence that provided calculi
may be seen as a limit case of both hypersequent and nested sequent calculi. We
left to the reader the task of proving that all rules of BSC1 are admissible in
S5 under any of these translations. Alternatively, one may demostrate validity-
preservation of translation of rules thereby proving soundness. In consequence
we have:

Theorem 1. Γ �S5 ϕ iff BSC1 � Γ ⇒ ϕ

Before we go to more satisfactory solutions (i.e. cut-free) it is interesting to
compare modal rules of BSC1 with several kind of hypersequent rules which were
provided so far. Mints [32] is using HLK for CPL with addition of the following
rules for �:

(⇒�K)
Γ ⇒ Δ |⇒ ϕ | G

Γ ⇒ Δ,�ϕ | G
(⇒�G)

⇒ ϕ | G

⇒ �ϕ | G

(� ⇒T )
ϕ, Γ ⇒ Δ | G

�ϕ, Γ ⇒ Δ | G
(� ⇒5)

Γ ⇒ Δ | ϕ,Σ ⇒ Θ | G

�ϕ, Γ ⇒ Δ | Σ ⇒ Θ | G

where G denotes a collection of sequents. Two of them, namely (� ⇒T )
and (⇒ �G) are just our rules for �. The remaining rules are transitional but
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logical, not quasi-structural like in our system. The only rule which is specific
for S5 is (� ⇒5). This set of rules is in fact redundant and later approaches,
of Restall [40] and Poggiolesi [38], were more economical but also partly static,
partly transitional on the side of logical modal rules. Approaches of Avron [2],
Kurokawa [28] and Lahav [29] were based rather on special quasi-structural rules.
One can find a comparison of all these systems in Bednarska and Indrzejczak
[7]. Solutions provided for S5 in the framework of nested calculi are of similar
character. What is important is the fact that all proposed rules may be easily
simulated in BSC1, if we just take G in the schemata of rules to represent just
one sequent, possibly empty. Moreover, the proposed solution seems to be more
elegant since all logical rules are static and the only transitional ones are quasi-
structural.

3 Cut-Free BSC1

What with cut elimination? Let us call BSC1 without cut BSC1−. It is pos-
sible to prove completeness for such cut-free system semantically3 but to save
space we will show it indirectly by translation from proofs in some other kind of
generalised cut-free SC for S5 which is known to be complete. We finished the
previous section with the claim that BSC1 can simulate modal rules from several
cut-free hypersequent calculi. But devising a direct translation is harder since
hypersequents may have more components than two. There are some other gen-
eralised SC where such translation is more straightforward; moreover it shows
how bisequents can simulate other kind of systems in addition to hypersequent
or nested sequent calculi.

One such possibility is connected with SC operating on structured sequents
i.e., having additional components in the antecedent or succedent like in Blamey
and Humberstone [8] or Heuerding, Seyfried and Zimmermann [20]. In particular,
all rules of Sato [41] from cut-free system for S5 may be simulated in BSC1 under
translation �(Γ [Σ] ⇒ [Π] Δ) := Γ ⇒ Δ | Σ ⇒ Π. Another possibility is to
refer to multisequent calculi in which only one sequent is used at a time but
different kinds of sequents are generally applied in the system. In particular, a
cut-free system for S5 uses only two kinds of sequents. It is called double SC
(DSC) since in addition to ordinary sequents there are modal ones of the form
Γ �⇒Δ. The latter appear only in proofs but what is proved are only standard
sequents. If it is inessential whether standard or modal sequent is applied both
kinds are denoted as Γ (�)⇒ Δ. The idea of using special kind of sequents is due
to Curry [13] and it was also used by Zeman [46]. In both cases additional sequent
was introduced to express modal character of suitable operations. In fact, its
introduction in Curry’s formulation of S4 is not necessary; in Zeman it is essential
for obtaining a modal rule characterising S4.2. Two kinds of sequents were
applied also in Avron, Honsell, Miculan and Paravano [3] but in totally different
3 For example, the method applied in Indrzejczak [25] and based on suitably defined

downward saturation and loop check can be adapted to BSC1 as well. Moreover it
yields decidability in propositional case.
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character. In their system two kinds of sequents correspond to two different
deducibility relation – global and local one. Indrzejczak introduced a general
construction where several types of modal [22] and temporal sequents [23] were
applied in one SC but in case of S5 a considerable reduction is possible to the
effect that only one type of modal sequent is required. Below we briefly describe
this system; in addition to [21] one may find a fuller account and comparison
with other approaches in Poggiolesi [38] and Wansing [45].

In addition to modal sequents, a language is enriched with a special structural
operation of transition (from one argument of a sequent to another). It is unary
like negation but cannot be iterated; it is allowed only to add it in front of a
formula or to delete it. We will use a sign ‘−’ for it, so any formula ϕ may be
transformed into −ϕ. In the schemata we will use a convention ϕ∗ in the sense
that for ordinary formula ϕ, ϕ∗ = −ϕ and (−ϕ)∗ = ϕ. Also Γ ∗ = {ϕ∗ : ϕ ∈ Γ}.

Most rules are standard and work the same way on both kinds of sequents.
However in order to block uncontrolled transition from one side of a sequent to
the other for negation and implication we have symmetric variants:

(¬⇒)
−ϕ, Γ (�)⇒ Δ

¬ϕ, Γ (�)⇒ Δ
(⇒¬)

Γ (�)⇒ Δ,−ϕ

Γ (�)⇒ Δ,¬ϕ

(⇒→)
Γ (�)⇒ Δ,−ϕ,ψ

Γ (�)⇒ Δ,ϕ → ψ
(→⇒)

−ϕ, Γ (�)⇒ Δ ψ,Γ (�)⇒ Δ

ϕ → ψ, Γ (�)⇒ Δ

Clearly, Γ and Δ may contain ordinary formulae as well as formulae with −;
the same remark applies to further rules. We need special rules for transition of
the form:

(⇒ ∗)
ϕ, Γ ⇒ Δ

Γ ⇒ Δ,ϕ∗ (∗ ⇒)
Γ ⇒ Δ,ϕ

ϕ∗, Γ ⇒ Δ
(TR)

Γ �⇒ Δ

Δ∗ �⇒ Γ ∗
and modal rules:

(� ⇒)
ϕ, Γ (�)⇒ Δ

�ϕ, Γ (�)⇒ Δ
(⇒ �)

Γ �⇒ MΔ,ϕ

Γ ⇒ MΔ,�ϕ
(NC)

Γ ⇒ Δ

Γ �⇒ Δ
where MΔ contains only formulae of the form �ψ,−�ψ and in (NC) one of the
Γ,Δ is either empty or contains only such modal formulae. If we admit ♦ as a
primitive operator, we have dual rules for it and the notion of modal formula is
extended to include ♦ψ,−♦ψ.

It is easy to prove soundness under syntactic translation where standard
sequents are dealt with as Gentzen transforms with the addition that formulae
preceded with − are translated as negations. Modal sequents are translated as
∧Γ → �(∨Δ) with the same proviso for formulae with −.

This system is cut-free and has generalised subformula property in the sense
that the only formulae which must occur in any proof of Γ ⇒ Δ are of the form
ϕ,−ϕ for every ϕ ∈ SF (Γ ∪ Δ). Completeness and decidability is proved by
Hintikka-style argument in [21].
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The obvious translation of modal sequents is: �(Γ,−Δ �⇒ −Π,Σ) := Γ ⇒
Δ | Π ⇒ Σ; ordinary sequents are treated as bisequents with one component
empty.

Theorem 2. If �DSC Γ ⇒ Δ, then BSC1− � �(Γ ⇒ Δ).

Proof. It goes by induction on the height of a proof in DSC. We must provide
stepwise simulation of all rules of DSC under the translation. For most of the
rules it is obvious so we consider only the case of (⇒ �) and (NC). In case of the
former by the induction hypothesis we have provable a bisequent in which one
component has ϕ in the succedent and the remaining formulae are modal. By
transitional rules we move all modal formulae to the next component and then
apply (⇒ �) (from BSC1) to ϕ. The application of (|⇒ TR) to �ϕ completes
the proof. For (NC) one of Γ,Δ is modal or empty. In the first case a series
of application of transitional rules leads to translation of the conclusion; in the
second there is nothing to do. ��

This theorem implies completeness of cut-free version of BSC1, that is of
BSC1−. It yields, by subformula property, decidability and also admissibility of
cut by a simple argument. Since if both premisses of cut are provable, then by
soundness they are valid. But cut is validity-preserving, hence the conclusion
must be valid either and, by completeness, it is also provable. But we may do
even better and prove this result constructively. However, not for a calculus in
this shape. Consider the following application of cut:

⇒ ϕ | Γ ⇒ Δ, ¬ψ
(⇒ �) ⇒ �ϕ | Γ ⇒ Δ, ¬ψ

Λ ⇒ Θ | Π ⇒ Σ,ψ
(¬ ⇒)

Λ ⇒ Θ | ¬ψ,Π ⇒ Σ
(Cut)

Λ ⇒ Θ,�ϕ | Γ,Π ⇒ Δ, Σ

If we now push cut up to reduce the height of a proof we obtain Λ ⇒ Θ,ϕ |
Γ,Π ⇒ Δ,Σ and in general there is no chance to apply (⇒ �) to this bisequent.
Therefore, for the aim of constructive proof of cut elimination we must modify
slightly a calculus to obtain its variant BSC2.

4 Modified System BSC2

First of all let us restrict the application of all static rules to left sequents only.
So what in BSC1 was only a convention applied in the schemata of rules, now
is a rigid requirement to the effect that in BSC2 bisequents are ordered pairs.
Note that in consequence of this restriction the right sequent is either empty
or modal and plays only auxiliary role, similarly like in the sequent calculus of
Heuerding, Seyfried and Zimmermann [20] for S4; it serves for storing modal
data. To simplify things we restrict language to � only but the proof works also
in the presence of ♦. We also introduce (Mix) instead of (Cut) to deal with C.
It looks like this:
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(Mix)
Γ ⇒ Δ,ϕi | Λ ⇒ Θ ϕk,Π ⇒ Σ | Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω

where i, k > 0 and all occurrences of ϕ are displayed. It is obvious that a system
with mix is equivalent to the system with cut by exactly the same argument as
stated by Gentzen for LK.

However, to deal with transitional rules we must add the second form of mix.
Let (MMix) denote the following rule devised for boxed cut formulae:

(MMix)
Γ ⇒ Δ,�ϕi | Λ ⇒ Θ,�ϕj �ϕk,Π ⇒ Σ | �ϕn, Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω

with i + j ≥ 1 and k + n ≥ 1.
Note that (MMix) similarly like TR-rules works also on the right sequents,

even if i = k = 0. Moreover, we require that (Mix) is restricted only to nonmodal
cut formulae and denote it by (Mix′). Nothing is lost since if j = n = 0, then
(MMix) works like (Mix). This is the solution similar to applied by Avron [2]
in his cut elimination proof for hypersequent calculus for S5. Details of such
proof are specified in Bednarska and Indrzejczak [7].

Let us call the system with these two variants of mix BSC2’. One may easily
prove that:

Lemma 1. BSC2 � Γ ⇒ Δ iff BSC2’ � Γ ⇒ Δ

Proof. From left to right it is enough to show that the application of (Mix) on
modal formula is derivable by (MMix). If j = n = 0 it is the same. Other-
wise, after the application of (MMix) we must introduce the lacking number of
occurences of cut formula by W to the left sequent and then by TR move them
to the right sequent to restore its full shape.

From right to left it is enough to show that (MMix) is derivable by (Mix)
in BSC2. Again only the case with j ≥ 1 or n ≥ 1 must be considered. We apply
(TR) to such occurrences of cut formula to move them to the left sequent in
both premisses, then we apply (Mix) so all these occurrences are deleted from
resulting bisequent. ��

Before we prove elimination of cut for BSC2 one important thing should
be noted. Clearly, in the presence of cut BSC1 and BSC2 are equivalent. It
is also easy to observe that without cut everything provable in BSC2 must be
provable in BSC1 since the former is just restricted form of the latter. But is
BSC2 without cut equivalent to BSC1? An examination of a proof of B in BSC1
shows that rules were applied in both sequents. But in BSC2 the application of
static rules in the right sequent is forbidden and without cut we are not able to
prove B. If we restrict our interest to the system which is only weakly complete,
i.e. where all valid formulae are provable, we can apply the approach of Fitting
[15] based on the observation that in S5 it holds that � ϕ iff � �ϕ. Therefore, at
the expense of reducing the problem to weak completeness only we can change
slightly a definition of a proof demanding that what we are proving are sequents
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of the form ⇒ �ϕ. In fact, due to the application of bisequents we may provide
more specific formulation. Note first that:

Lemma 2. In BSC2 (without cut) �⇒ �ϕ iff �⇒ ϕ |⇒ �ϕ

Proof. From left to right we just apply (⇒ TR |) and (⇒ W ); conversely we
apply (⇒ �), then (|⇒ TR) (but to the right sequent) and (⇒ C). ��

For illustration sake let us consider again a problem of proving B in so mod-
ified BSC2 (without cut). Here is a proof of ⇒ ¬p → �¬�p |⇒ �(¬p → �¬�p)

p ⇒ p
(� ⇒) �p ⇒ p

(TR ⇒|) ⇒ p | �p ⇒
(¬ ⇒) ¬p ⇒| �p ⇒

(⇒ W ) ¬p ⇒ �¬�p | �p ⇒
(⇒→) ⇒ ¬p → �¬�p | �p ⇒

(⇒ �) ⇒ �(¬p → �¬�p) | �p ⇒
(| TR ⇒) �p ⇒ �(¬p → �¬�p) |⇒
(⇒ TR |) �p ⇒|⇒ �(¬p → �¬�p)

(⇒ ¬) ⇒ ¬�p |⇒ �(¬p → �¬�p)
(⇒ �) ⇒ �¬�p |⇒ �(¬p → �¬�p)

(W ⇒) ¬p ⇒ �¬�p |⇒ �(¬p → �¬�p)
(⇒→) ⇒ ¬p → �¬�p |⇒ �(¬p → �¬�p)

Now we can prove:

Theorem 3. If BSC2 �⇒ ϕ |⇒ �ϕ, then BSC2− �⇒ ϕ |⇒ �ϕ

Proof. We will use the method of Girard [18] based on the application of cross-
cuts. But we apply Gentzen’s overall strategy, i.e., we will prove the result for
the case where both premisses of (Mix′) or (MMix) are cut-free.

The cases where one premiss, say the left one, is axiomatic are simple; we
show it only for (MMix):

(MMix)
�ϕ ⇒ �ϕ �ϕi, Γ ⇒ Δ | �ϕj ,Π ⇒ Σ

�ϕ, Γ ⇒ Δ | Π ⇒ Σ
is replaced by:

�ϕi, Γ ⇒ Δ | �ϕj , Π ⇒ Σ
(| TR ⇒)

�ϕi+j , Γ ⇒ Δ | Π ⇒ Σ
(C ⇒)

�ϕ, Γ ⇒ Δ | Π ⇒ Σ
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The cases where one cut-formula in one premiss is parametric in all occur-
rences are similar to reductions in standard LK. For illustration we consider the
case of (MMix) when the left premiss is obtained by (→⇒):

Γ ⇒ Δ, ϕ, �χi | Π ⇒ Σ, �χj ψ, Γ ⇒ Δ, �χi | Π ⇒ Σ, �χj

ϕ → ψ, Γ ⇒ Δ, �χi | Π ⇒ Σ, �χj �χk, Λ ⇒ Θ | �χn, Ξ ⇒ Υ
(MMix)

ϕ → ψ, Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Υ

is transformed into:

Γ ⇒ Δ, ϕ,�χi | Π ⇒ Σ,�χj �χk, Λ ⇒ Θ | �χn, Ξ ⇒ Υ
(MMix)

Γ,Λ ⇒ Δ, Θ, ϕ | Π,Ξ ⇒ Σ,Υ D
(→⇒)

ϕ → ψ, Γ, Λ ⇒ Δ, Θ | Π,Ξ ⇒ Σ,Υ

where D replaces:

ψ, Γ ⇒ Δ,�χi | Π ⇒ Σ,�χj �χk, Λ ⇒ Θ | �χn, Ξ ⇒ Υ
(MMix)

ψ, Γ, Λ ⇒ Δ,Θ | Π,Ξ ⇒ Σ,Υ

Note that in case ϕ = �χ we must additionally restore ϕ by (⇒ W ) to
be able to derive the last sequent by (→⇒). If in this case also some �χ were
deleted in the right component we restore them by W in the left component and
TR. It should be noted that when TR is performed we can always reduce the
height even if left sequents are non-active.

The most troublesome cases are with cut formulae being principal in both
premisses. Let us consider the case of �ϕ:

⇒ ϕ | Γ ⇒ Δ, �ϕi

(⇒ �) ⇒ �ϕ | Γ ⇒ Δ, �ϕi

�ϕj , ϕ, Λ ⇒ Θ | �ϕk, Π ⇒ Σ
(� ⇒)

�ϕj+1, Λ ⇒ Θ | �ϕk, Π ⇒ Σ
(MMix)

Λ ⇒ Θ | Γ,Π ⇒ Δ, Σ

if i = j = k = 0 it is enough to perform (Mix′) on ϕ and then possibly restore
by (W ⇒) some occurences of ϕ in Λ. Moreover, if ϕ = �ψ and there are some
occurrences of it in Δ or Π we actually perform (MMix) and must restore by
W also deleted occurrences in these multisets. In case some of i, j, k ≥ 0 we must
first make cross-cuts to delete occurrences of �ϕ. Of course the most difficult
situation is when all of i, j, k ≥ 1; we perform two cross-cuts:

⇒ ϕ | Γ ⇒ Δ, �ϕi �ϕj+1, Λ ⇒ Θ | �ϕk, Π ⇒ Σ
(MMix)

Λ ⇒ Θ,ϕ | Γ,Π ⇒ Δ, Σ

⇒ �ϕ | Γ ⇒ Δ, �ϕi �ϕj , ϕ, Λ ⇒ Θ | �ϕk, Π ⇒ Σ
(MMix)

ϕ, Λ ⇒ Θ | Γ,Π ⇒ Δ, Σ
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where both applications of (MMix) have lower height and next:

Λ ⇒ Θ,ϕ | Γ,Π ⇒ Δ, Σ ϕ,Λ ⇒ Θ | Γ,Π ⇒ Δ, Σ
(Mix′)

Λ, Λ′ ⇒ Θ′, Θ | Γ, Γ, Π, Π ⇒ Δ, Δ,Σ, Σ
(C, TR)

Λ, ⇒ Θ | Γ,Π ⇒ Δ, Σ

where the application of (Mix′) is of lower complexity. Λ′, Θ′ are like Λ,Θ but
with deleted occurrences of ϕ (if any). Again, if ϕ = �ψ and there are some
occurrences of it in Δ,Σ, Γ,Π we perform rather (MMix). The last step signed
with double line should be explained. No rule is to be applied on the right
component, including contraction. However, all formulae are modal so we can
perform enough transitions to the left component, make required contractions
and move these formulae again to the right component. ��

5 Extensions

Recently Avron and Lahav [4] noticed that all HC for S5 are restricted to propo-
sitional part. In fact, Mints [32] proposed systems for some first-order version
of S5 but, as we mentioned, this work came unnoticed. In general, most of the
proposals indeed are restricted to propositional level. However, once we have at
our disposal a calculus for which a syntactic cut elimination holds it is possible
to extend it to cover at least some first-order versions of S5. We will use a version
of first-order language commonly applied in proof theoretic research with denu-
merable set of bound individual variables x, y, z, . . . and free individual variables
(or parameters) a, b, c, .... Both sorts of variables are rigid but we additionally
admit also nonrigid terms f1, f2, f3, . . ..

Let us consider axiomatic formulations of systems Q1, Q1R and QS as stated
by Garson [17], all with S5 modalities (hence the last is just QS5 since S is just a
label for chosen modality). The first and the second are adequate wrt to seman-
tics with all terms rigid whereas QS5 admits also nonrigid terms being individual
concepts in the sense of Carnap. Q1 is the logic of constant domain for all states
in models whereas the other two admit varying domains. We do not go deeper
into semantical matters here since what is of interest for us is their axiomatic
characterization. Q1 is based on standard classical first-order logic CFL hence
to obtain its BSC2-counterpart we may use standard rules for quantifiers:

(∀⇒) ϕ[x/t], Γ⇒ Δ | S
∀xϕ, Γ⇒ Δ | S

(⇒∀) Γ⇒ Δ, ϕ[x/a] | S
Γ⇒ Δ, ∀xϕ | S

(∃⇒) ϕ[x/a], Γ⇒ Δ | S
∃xϕ, Γ⇒ Δ | S

(⇒∃) Γ⇒ Δ, ϕ[x/t] | S
Γ⇒ Δ, ∃xϕ | S

where t is any (rigid) term but a is not in Γ,Δ and ϕ.
Note that Barcan Formula ∀x�ϕ → �∀xϕ is provable in axiomatic CFL

with S5-modalities hence it need not be added as a separate axiom as in case of
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weaker modal logics. Unfortunatelly it is not provable in BSC2− although it is
easily provable in BSC1−:

ϕ[x/a] ⇒ ϕ[x/a]
(� ⇒) �ϕ[x/a] ⇒ ϕ[x/a]

(| TR ⇒) �ϕ[x/a] ⇒|⇒ ϕ[x/a]
(∀ ⇒) ∀x�ϕ ⇒|⇒ ϕ[x/a]
(⇒ ∀) ∀x�ϕ ⇒|⇒ ∀xϕ
(⇒ �) ∀x�ϕ ⇒|⇒ �∀xϕ

(|⇒ TR) ∀x�ϕ ⇒ �∀xϕ
(⇒→) ⇒ ∀x�ϕ → �∀xϕ

We conjecture that BSC1− is complete but it needs separate semantic proof
since constructive cut elimination theorem does not hold for this calculus. As for
BSC2− to save equivalence with Q1 we must add axiomatic sequents ∀x�ϕ ⇒
�∀xϕ. This formalization is easily proven to be equivalent to standard axiomatic
one under the translation stated for propositional case but note that cuts with
additional axioms as one of the premisses are not eliminable.

In case of Q1R and QS5 the situation is clearer. Since both are based on
positive free logic FL we must change quantifier rules for their free versions:

(∀⇒) Γ⇒ Δ, Et | S ϕ[x/t], Π⇒ Σ | S
∀xϕ, Γ, Π⇒ Δ, Σ | S

(⇒∀) Ea, Γ⇒ Δ, ϕ[x/a] | S
Γ⇒ Δ, ∀xϕ | S

(∃⇒) Ea,ϕ[x/a], Γ⇒ Δ | S
∃xϕ, Γ⇒ Δ | S

(⇒∃) Γ⇒ Δ, Et | S Π⇒ Σ,ϕ[x/t] | S
Γ,Π⇒ Δ, Σ, ∃xϕ | S

with the same stipulations concerning instantiated terms but in case of QS5 they
may be nonrigid as well. ‘E’ is an existence predicate. Again proving equivalence
with axiomatic formulation of (positive) free logic is unproblematic.

To accomodate identity one may add the following rules to Q1 and QR1:

(=⇒) t = t, Γ⇒ Δ | S
Γ⇒ Δ | S

(⇒=) Γ⇒ Δ, t1 = t2 | S Π⇒ Σ,ϕ[x/t1] | S
Γ,Π⇒ Δ, Σ, ϕ[x/t2] | S

(⇒= �) Γ⇒ Δ, t1 = t2 | S
Γ⇒ Δ, �t1 = t2 | S

(⇒�= �) t1 = t2, Γ⇒ Δ | S
Γ⇒ Δ, �¬t1 = t2 | S

where ϕ is atomic in (⇒=). For QS5 only the first two rules are needed since
nonrigid terms are admitted. But it should be noted that Et is not counted as
atomic formula in case of QS5.

One may in a standard way (see e.g. Negri and von Plato [35]) prove that:

Lemma 3 (Substitution). If � Γ ⇒ Δ, then � (Γ ⇒ Δ)[a/t] in the height-
preserving manner.

It is then routine to extend our cut elimination to BSC2 counterparts of
all these six axiomatic systems (with or without rules for identity) but in case
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of Q1 in restricted form (see the remarks above concerning Barcan Formula).
Reduction of the height in case all occurrences of mix-formula are parametric
in one premiss goes as in propositional case. The cases where in both premisses
one occurrence of mix formula is principal are also unproblematic. However one
should remeber that in case of Q1 and QR1 MMix also takes place when the left
premiss is deduced by (⇒= �) or (⇒�= �) and the right one by (� ⇒) or some
transitional rule. For the sake of illustration we display one such case:

a = b, Γ ⇒ Δ, �¬a = bi | Π ⇒ Σ, �¬a = bj

(⇒�= �)
Γ ⇒ Δ, �¬a = bi+1 | Π ⇒ Σ, �¬a = bj

�¬a = bk, ¬a = b, Λ ⇒ Θ | �¬a = bn, Ξ ⇒ Ω
(� ⇒)

�¬a = bk+1, Λ ⇒ Θ | �¬a = bn, Ξ ⇒ Ω
(MMix)

Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Ω

by two cross-cuts of lesser height we obtain:

a = b, Γ ⇒ Δ, �¬a = bi | Π ⇒ Σ, �¬a = bj

(⇒�= �)
Γ ⇒ Δ, �¬a = bi+1 | Π ⇒ Σ, �¬a = bj �¬a = bk, ¬a = b, Λ ⇒ Θ | �¬a = bn, Ξ ⇒ Ω

(MMix)
¬a = b, Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Ω

and

a = b, Γ ⇒ Δ, �¬a = bi | Π ⇒ Σ, �¬a = bj

�¬a = bk, ¬a = b, Λ ⇒ Θ | �¬a = bn, Ξ ⇒ Ω
(� ⇒)

�¬a = bk+1, Λ ⇒ Θ | �¬a = bn, Ξ ⇒ Ω
(MMix)

a = b, Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Ω

and finally:

a = b, Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Ω
(⇒ ¬)

Γ, Λ ⇒ Δ, Θ, ¬a = b | Π, Ξ ⇒ Σ, Ω ¬a = b, Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Ω
(Mix′)

Γ, Γ ′, Λ, Λ′ ⇒ Δ′, Δ, Θ′, Θ | Π, Π, Ξ, Ξ ⇒ Σ, Σ, Ω, Ω
C, TR

Γ, Λ ⇒ Δ, Θ | Π, Ξ ⇒ Σ, Ω

where mix-formula is of lesser complexity and the compact last step is obtained
by the series of transitions, contractions and transitions again.
We consider also the case of ∀xϕ(x):

Ea, Γ ⇒ Δ, ∀xϕ(x)k, ϕ(a) | Λ ⇒ Θ

Γ ⇒ Δ, ∀xϕ(x)k+1 | Λ ⇒ Θ

∀xϕ(x)i, Π ⇒ Σ, Eb | Ξ ⇒ Ω ϕ(b), ∀xϕ(x)j , Π′ ⇒ Σ′ | Ξ ⇒ Ω

∀xϕ(x)i+j , Π, Π′ ⇒ Σ, Σ′ | Ξ ⇒ Ω

Γ, Π, Π′ ⇒ Δ, Σ, Σ′ | Λ, Ξ ⇒ Θ, Ω

where a is fresh, hence by Substitution Lemma we have a proof of the same
height of:

Eb, Γ ⇒ Δ,∀xϕ(x)k, ϕ(b) | Λ ⇒ Θ
Now we perform three cross-cuts of lesser height:

Eb, Γ ⇒ Δ, ∀xϕ(x)k, ϕ(b) | Λ ⇒ Θ ∀xϕ(x)i+j , Π, Π ′ ⇒ Σ, Σ′ | Ξ ⇒ Ω

Eb, Γ, Π, Π ′ ⇒ Δ, Σ, Σ′, ϕ(b) | Λ, Ξ ⇒ Θ, Ω

Γ ⇒ Δ, ∀xϕ(x)k+1 | Λ ⇒ Θ ∀xϕ(x)i, Π ⇒ Σ, Eb | Ξ ⇒ Ω

Γ, Π ⇒ Δ, Σ, Eb | Λ, Ξ ⇒ Θ, Ω
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Γ ⇒ Δ, ∀xϕ(x)k+1 | Λ ⇒ Θ ϕ(b), ∀xϕ(x)j , Π ′ ⇒ Σ′ | Ξ ⇒ Ω

ϕ(b), Γ, Π ′ ⇒ Δ, Σ′ | Λ, Ξ ⇒ Θ, Ω

Two mixes on Eb and ϕ(b) respectively, both of lesser complexity, lead to
the required sequent after some contractions. Note that in case ϕ(b) is modal
we must apply (MMix) and some applications of transitional rules may be also
required. ��

Let us conclude with a brief comparison of BSC1 and BSC2. The former is
more flexible as far as we want to use it for actual proof search. It is also strongly
complete (even without cut) whereas BSC2 without cut is only weakly complete.
However, in BSC2 we can keep better control over the structure of proofs and
it allows for obtaining a constructive proof of cut elimination which is always
seen as an advantage over calculi which can be only semantically shown to be
cut-free. In particular, we have made use of it in this section. We restrict our
investigation here to the problem of cut elimination but further features and
applications of both versions seem to be worth exploring.
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Abstract. Asymmetric unification, or unification with irreducibility constraints,
is a newly developed paradigm that arose out of the automated analysis of cryp-
tographic protocols. However, there are still relatively few asymmetric unifica-
tion algorithms. In this paper we address this lack by exploring the application
of automata-based unification methods. We examine the theory of xor with a
homomorphism, ACUNh, from the point of view of asymmetric unification, and
develop a new automata-based decision procedure. Then, we adapt a recently
developed asymmetric combination procedure to produce a general asymmetric-
ACUNh decision procedure. Finally, we present a new approach for obtaining
a solution-generating asymmetric-ACUNh unification automaton. We also com-
pare our approach to the most commonly used form of asymmetric unification
available today, variant unification.

1 Introduction

We examine the newly developed paradigm of asymmetric unification in the theory
of xor with a homomorphism. Asymmetric unification is motivated by requirements
arising from symbolic cryptographic protocol analysis [6]. These symbolic analysis
methods require unification-based exploration of a space in which the states obey rich
equational theories that can be expressed as a decomposition R � Δ , where R is a set of
rewrite rules that is confluent, terminating, and coherent modulo Δ . However, in order
to apply state space reduction techniques, it is usually necessary for at least part of
this state to be in normal form, and to remain in normal form even after unification
is performed. This requirement can be expressed as an asymmetric unification problem
{s1 =↓ t1, . . . , sn =↓ tn} where the=↓ denotes a unification problem with the restriction
that any unifier leaves the right-hand side of each equation irreducible.

At this point there are relatively few such algorithms. Thus in most cases when
asymmetric unification is needed, an algorithm based on variant unification [8] is used.
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Variant unification turns an R�Δ -problem into a set of Δ -problems. Application of vari-
ant unification requires that a number of conditions on the decomposition be satisfied.
In particular, the set of Δ -problems produced must always be finite (this is equivalent to
the finite variant property [4]) and Δ -unification must be decidable and finitary. Unfor-
tunately, there is a class of theories commonly occurring in cryptographic protocols that
do not have decompositions satisfying these necessary conditions: theories including an
operator h that is homomorphic over an Abelian group operator +, that is AGh. There
are a number of cryptosystems that include an operation that is homomorphic over an
Abelian group operator, and a number of constructions that rely on this homomorphic
property. These include for example RSA [13], whose homomorphic property is used in
Chaum’s blind signatures [3], and Pallier cryptosystems [12], used in electronic voting
and digital cash protocols. Thus an alternative approach is called for.

In this paper we concentrate on asymmetric unification for a special case of AGh:
the theory of xor with homomorphism, or ACUNh. We first develop an automata-based
ACUNh-asymmetric decision procedure. We then apply a recently developed combi-
nation procedure for asymmetric unification algorithms to obtain a general asymmet-
ric decision procedure allowing for free function symbols. This requires a non-trivial
adaptation of the combination procedure, which originally required that the algorithms
combined were not only decision procedures but produced complete sets of unifiers. In
addition, the decomposition of ACUNh we use is Δ = ACh. It is known that unification
modulo ACh is undecidable [11], so our result also yields the first asymmetric decision
procedure for which Δ does not have a decidable finitary unification algorithm.

We then consider the problem of producing complete sets of asymmetric unifiers for
ACUNh. We show how the decision procedure developed in this paper can be adapted to
produce an automaton that generates a (possibly infinite) complete set of solutions. We
then show, via an example, that asymmetric unification modulo ACUNh is not finitary.

1.1 Outline

Section 2 provides a brief description of preliminaries. Section 3 develops an automaton
based decision procedure for the ACUNh-theory. In Sect. 4 an automaton approach that
produces substitutions is outlined. Section 5 develops the modified combination method
needed to obtain general asymmetric algorithms. In Sect. 6 we conclude the paper and
discuss further work.

2 Preliminaries

We use the standard notation of equational unification [1] and term rewriting sys-
tems [1]. Σ -terms, denoted by T (Σ , X ), are built over the signature Σ and the (count-
ably infinite) set of variablesX . The terms t|p and t[u]p denote respectively the subterm
of t at the position p, and the term t having u as subterm at position p. The symbol of
t occurring at the position p (resp. the top symbol of t) is written t(p) (resp. t(ε)). The
set of positions of a term t is denoted by Pos(t), the set of non variable positions for a
term t over a signature Σ is denoted by Pos(t)Σ . A Σ -rooted term is a term whose top
symbol is in Σ . The set of variables of a term t is denoted by Var(t). A term is ground
if it contains no variables.
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Definition 2.1. Let Γ be an E-unification problem, let X denote the set of variables
occurring in Γ and C the set of free constants occurring in Γ . For a given linear order-
ing< onX ∪C , and for each c∈C define the set Vc as {x | x is a variable with x< c}.
An E-unification problem with linear constant restriction (LCR) is an E-unification
problem with constants, Γ , where each constant c in Γ is equipped with a set Vc of
variables. A solution of the problem is an E-unifier σ of Γ such that for all c,x with
x ∈Vc, the constant c does not occur in xσ . We call σ an E-unifier with LCR.

A rewrite rule is an ordered pair l → r such that l,r ∈ T (Σ ,X ) and l �∈ X . We
use R to denote a term rewrite system which is defined as a set of rewrite rules. The
rewrite relation on T (Σ ,X ), written t →R s, hold between t and s iff there exists a non-
variable p ∈ PosΣ (t), l → r ∈ R and a substitution σ , such that t|p = lσ and s= t[rσ ]p.
The relation →R/E on T (Σ ,X ) is =E ◦ →R ◦ =E . The relation →R,E on T (Σ ,X )
is defined as: t →R,E t ′ if there exists a position p ∈ PosΣ (t), a rule l → r ∈ R and
a substitution σ such that t|p =E lσ and t ′ = t[rσ ]p. The transitive (resp. transitive
and reflexive) closure of →R,E is denoted by →+

R,E (resp. →∗
R,E ). A term t is →R,E

irreducible (or in R,E-normal form) if there is no term t ′ such that t →R,E t ′. If →R,E is
confluent and terminating we denote the irreducible version of a term, t, by t ↓R,E .
Definition 2.2. We call (Σ , E, R) a weak decomposition of an equational theory Δ
over a signature Σ if Δ = R�E and R and E satisfy the following conditions:

1. Matching modulo E is decidable.
2. R is terminating modulo E, i.e., the relation →R/E is terminating.
3. The relation →R,E is confluent and E-coherent, i.e., ∀t1, t2, t3 if t1 →R,E t2 and t1 =E

t3 then ∃ t4, t5 such that t2 →∗
R,E t4, t3 →+

R,E t5, and t4 =E t5.

This definition is a modification of the definition in [6]. where asymmetric unifica-
tion and the corresponding theory decomposition are first defined. The last restrictions
ensure that s →!

R/E t iff s →!
R,E t (see [6,8]).

Definition 2.3 (Asymmetric Unification).Given a weak decomposition (Σ ,E,R) of an
equational theory, a substitution σ is an asymmetric R,E-unifier of a set S of asym-
metric equations {s1 =↓ t1, . . . , sn =↓ tn} iff for each asymmetric equations si =↓ ti,
σ is an (E ∪R)-unifier of the equation si =? ti and (ti ↓R,E)σ is in R,E-normal form.
A set of substitutions Ω is a complete set of asymmetric R,E-unifiers of S (denoted
CSAUR∪E(S ) or just CSAU(S ) if the background theory is clear) iff: (i) every mem-
ber of Ω is an asymmetric R,E-unifier of S , and (ii) for every asymmetric R,E-unifier

θ ofS there exists a σ ∈ Ω such that σ ≤Var(S )
E θ .

Example 2.1. Let R= {x⊕0→ x, x⊕x→ 0, x⊕x⊕y→ y} and E be the AC theory for
⊕. Consider the equation y⊕x=↓ x⊕a, the substitution σ1 = {y �→ a} is an asymmetric
solution but, σ2 = {x �→ 0, y �→ a} is not.

Definition 2.4 (Asymmetric Unification with Linear Constant Restriction). Let S
be a set of asymmetric equations with some LCR. A substitution σ is an asymmetric
R,E-unifier of S with LCR iff σ is an asymmetric solution to S and σ satisfies the
LCR.
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Definition 2.5. Let R be a term rewriting system and E be a set of identities. We say
(R,E) is R,E-convergent if and only if

(a) →R,E is terminating, and
(b) for all terms s, t, if s ≈R∪E t, there exist terms s′, t ′ such that s →!

R,E s′, t →!
R,E

t ′, and s′ ≈E t ′

Definition 2.6. A term t is an R,Δ -normal form of a term s if and only if s →!
R,Δ t. This

is often represented as t = s
⏐
�
R,Δ .

3 An Asymmetric ACUNh-Unification Decision Procedure via an
Automata Approach

In this section we develop a new asymmetric unification algorithm for the theory
ACUNh. The theory ACUNh consists of the following identities: x+ x ≈ 0, x+ 0 ≈
x, h(x+ y) ≈ h(x)+h(y), h(0) ≈ 0, (x+ y)+ z ≈ x+(y+ z), x+ y ≈ y+ x
Following the definition of asymmetric unification, we first decompose the theory into a
set of rewrite rules, R, modulo a set of equations, Δ . Actually, there are two such decom-
positions possible. The first decomposition keeps associativity and commutativity as
identities Δ and the rest as rewrite rules. This decomposition has the following AC-
convergent term rewriting system R1: x+ x → 0, x + 0 → x, x + (y+ x) → y,
h(x+ y) → h(x)+h(y), h(0) → 0, as well as R′

1: x+ x → 0, x+0 → x, x+(y+ x) →
y, h(x)+h(y) → h(x+ y), h(0) → 0 (when + is given a higher precedence over h).

The second decomposition has associativity, commutativity and the distributive
homomorphism identity as Δ 1, i.e., Δ = ACh. Our goal here is to prove that the follow-
ing term rewriting system R2: x+x → 0, x+0→ x, x+(y+x)→ y, h(0)→ 0 is ACh-
convergent. The proof for convergence of →R2,ACh

is provided in our tech report [10].
Decidability of asymmetric unification for the theory R2, ACh can be shown by

automata-theoretic methods analogous to the method used for deciding the Weak Sec-
ond Order Theory of One successor (WS1S) [2,5]. In WS1S we consider quantification
over finite sets of natural numbers, along with one successor function. All equations
or formulas are transformed into finite-state automata which accepts the strings that
correspond to a model of the formula [9,14]. This automata-based approach is key to
showing decidability of WS1S, since the satisfiability of WS1S formulas reduces to the
automata intersection-emptiness problem. We follow the same approach here.

To be precise, what we show here is that ground solvability of asymmetric unifica-
tion, for a given set of constants, is decidable. We explain at the end of this section why
this is equivalent to solvability in general, in Lemmas 3.1 and 3.2.

Problems with One Constant. For ease of exposition, let us consider the case where
there is only one constant a. Thus every ground term can be represented as a set of nat-
ural numbers. The homomorphism h is treated as a successor function. Just as in WS1S,
the input to the automata are column vectors of bits. The length of each column vector

1 This is the background theory.
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is the number of variables in the problem. Σ =

⎧

⎨

⎩

⎛

⎝

0
0
...
0

⎞

⎠, . . . ,

⎛

⎝

1
1
...
1

⎞

⎠

⎫

⎬

⎭
. The deterministic

finite automata (DFA) are illustrated here. The + operator behaves like the symmetric
set difference operator.

We illustrate how an automaton is constructed for each equation in standard form.
In order to avoid cluttering up the diagrams the dead state has been included only for the
first automaton. The missing transitions lead to the dead state by default for the others.
Recall that we are considering the case of one constant a.
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D
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)
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0
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)
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0
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1
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,
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0
0
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,
(1

1
1

)

(0
0
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)

,
(0

0
1
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,
(0

1
0

)

,
(0

1
1

)

,
(1

0
0

)

,
(1

0
1

)
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(1

1
0

)

,
(0

1
1

)

(a) Automaton for P=Q+R
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q3 q2
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)
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)

(1
1
0

)

(0
0
0
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,
(1

1
0

)

(1
0
1

)

(0
0
0

)

,
(1

0
1

)

,
(1

1
0

)(0
0
0

)

,
(1

0
1

)

(1
1
0

)

(b) Automaton for P=↓ Q+R

Fig. 1. Automata construction

Figure 1a: Let Pi,Qi and Ri denote the ith bits of P,Q and R respectively. Pi has a
value 1, when either Qi or Ri has a value 1. We need 3-bit alphabet symbols for
this equation. The input for this automaton are column vectors of 3-bits each, i.e.,

Σ = {
(
0
0
0

)

, · · · ,
(
1
1
1

)

}. For example, if R2 = 0, Q2 = 1, then P2 = 1. The correspond-

ing alphabet symbol is

(
P2
Q2
R2

)

=
(
1
0
1

)

. Hence, only strings with the alphabet symbols

{
(
0
0
0

)

,
(
0
1
1

)

,
(
1
0
1

)

,
(
1
1
0

)

} are accepted by this automaton. The rest of the input sym-

bols {
(
0
0
1

)

,
(
1
1
1

)

,
(
0
1
0

)

,
(
1
0
0

)

} go to the dead state D, as they violate the XOR prop-

erty. Note that the string
(
1
0
1

)(
1
1
0

)

is accepted by this automaton. This corresponds to

P= a+h(a), Q= h(a) and R= a.

Figure 1b: To preserve asymmetry on the right-hand side of this equation, Q+R should
be irreducible. If either Q or R is empty, or if they have any term in common, then a
reduction will occur. For example, if Q = h(a) and R = h(a)+a, there is a reduction,
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whereas if R = h(a) and Q = a, irreducibility is preserved, since there is no common
term and neither one is empty. Since neither Q nor R can be empty, any accepted string

should have one occurrence of
(
1
0
1

)

and one occurrence of
(
1
1
0

)

.

q0start q1

1
0
)

0
0
)

0
1
)

1
1
)

(a) Automaton for X= h(Y)

q0start q1

q2

1
0
)

0
0
)

0
1
)

1
1
)

0
0
)

1
0
)

(b) Automaton for X=↓ h(Y)

Fig. 2. Automata construction

Figure 2a: We need 2-bit vectors as alphabet symbols since we have two unknowns X
and Y. Remember that h acts like the successor function. q0 is the only accepting state.
A state transition occurs with bit vectors

(
1
0

)

,
(
0
1

)

. If Y=1 in current state, then X=1 in
the next state, hence a transition occurs from q0 to q1, and vice versa. The ordering of
variables is (YX ).

Figure 2b: In this equation, h(Y) should be in normal form. So Y cannot be 0, but can
contain terms of the form u+ v. (YX ) is the ordering of variables. Therefore the bit vector(
1
0

)

should be succeeded by
(
0
1

)

, with possible occurrences of the bit vector
(
1
1

)

in
between. Thus the string either ends with

(
0
1

)

or
(
0
0

)

. For example, if Y = h(a)+a, then
X = h2(a)+h(a), which results in the string

(
1
0

) (
1
1

) (
0
1

)

is accepted by this automaton.
Figure 3a: This automaton represents the disequality Xa �= Ya. In general, if there are
two or more constants, we have to guess which components are not equal. This enables
us to handle the disequality constraints mentioned in the next section.

Figure 3b: This automaton represents the disequality X �= a, where a is a constant.

Example 3.1. Let
{

U =↓ V +Y, W = h(V ), Y =↓ h(W )
}

be an asymmetric unification

problem. We need 4-bit vectors and 3 automata since we have 4 unknowns in 3 equa-

tions, with bit-vectors represented in this ordering of set variables:

(
V
W
Y
U

)

. We include

the × (“don’t-care”) symbol in state transitions to indicate that the values can be either
0 or 1. This is done to avoid cluttering the diagrams. Note that here this × symbol is
a placeholder for the variables which do not have any significance in a given automa-
ton. The automata constructed for this example are indicated in Figs. 4a, b and 5a. The
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1
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(a) Automaton for X �= Y

q0start q1

q2

(0)

(1)

(0),(1)

(0)

(1)

(b) Automaton for X �= a

Fig. 3. Automata construction

string

(
1
0
0
1

) (
0
1
0
0

) (
0
0
1
1

) (
0
0
0
0

)

is accepted by all the three automata. The corresponding

asymmetric unifier is {V �→ a,W �→ h(a), Y �→ h2(a),U �→ (h2(a)+a)}.

q0start q1
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(a) Automata for Example 3.1, Part 1
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1
1
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(b) Automata for Example 3.1, Part 2

Fig. 4. Automata example

Once we have automata constructed for all the formulas, we take the intersection
and check if there exists a string accepted by all the automata. If the intersection is not
empty, then we have a solution or an asymmetric unifier for the given problem.

Problems with more than One Constant. This technique can be extended to the case
where we have more than one constant. Suppose we have k constants, say c1, . . . ,ck.
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q0start q1

( 1
0××

)

( 0
0××

)

( 0
1×
×

)

( 1
1×
×

)

(a) Automata for Example 3.1, Part 3

h(x)+b=?
↓ x+ ystart b=?

↓ y

h(x) =?
↓ x+ y 0=?

↓ 0

{x �→ h(x)+b,
y �→ h(y)}

{x �→ h(x),
y �→ h(y)+b}

{x �→ b,
y �→ h(y)}

{y �→ b}

{x �→ h(x),
y �→ h(y)}

(b) Substitution producing automaton

Fig. 5. Automata example

Algorithm 1. ACUNh-decision Procedure for a single constant
Require: Asymmetric ACUNh-unification problem S.
For S construct automata for each equation as outlined in the paragraph “Problems with one
constant”. Let these be A1,A2, . . . ,An.
“Intersect the automata”: Let A be the automaton that recognizes

⋂n
i=1L(Ai).

if L(A ) = /0 then
return ‘no solution.’

else
return a solution.

end if

We express each variable X in terms of the constants as follows: X = Xc1 + . . .+Xck .
For example, if Y is a variable and a,b,c are the constants in the problem, then we
create the equation Y = Ya+Yb+Yc.

If we have an equation X= h(Y) with constants a,b,c, then we have equations
Xa = h(Ya), Xb = h(Yb) and Xc = h(Yc). However, if it is an asymmetric equation
X=↓ h(Y) all Ya, Yb and Yc cannot be zeros simultaneously.

Similarly, if the equation to be solved is X=W+Z, with a,b,c as constants, we
form the equations Xa =Wa+Za, Xb =Wb+Zb and Xc =Wc+Zc and solve the
equations. But if it is an asymmetric equation X=↓ W+Z then we cannot have Wa,
Wb, Wc to be all zero simultaneously, and similarly with Za, Zb, Zc.

Our approach is to design a nondeterministic algorithm by guessing which constant
component in each variable has to be 0, i.e., for each variable Y and each constant b, we
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“flip a coin” as to whether Yb will be set equal to 0 by the target solution2. Now for the
case X=↓ W+Z, we do the following:

for all constants a do:
if Xa =Wa = Za = 0 then skip
else ifWa = 0 then set Xa = Za

if Za = 0 then set Xa =Wa

if both Wa and Za are non-zero then set Xa =↓ Wa+Za

Similarly, for the case X=↓ h(Y) we follow these steps:

for all constants a do:
if Xa = Ya = 0 then skip
else set Xa =↓ h(Ya)

This is summarized in Algorithm 2. Thus, it follows that

Algorithm 2. Nondeterministic Algorithm when we have more than one constant
if there are m variables and k constants then

represent each variable in terms of its k constant components.
Guess which constant components have to be 0.
Form symmetric and asymmetric equations for each constant.
Solve each set of equations by the Deterministic Finite Automata (DFA) construction as
outlined in Algorithm 1.

end if

Theorem 3.1. Algorithm 2 is a decision procedure for ground asymmetric unification
modulo (R2, ACh).

Proof. This holds by construction, as outlined in “Problems with only one constant”
and “Problems with more than one constant”.

We now show that general asymmetric unification modulo ACUNh, where the solu-
tions need not be ground solutions over the current set of constants, is decidable by
showing that a general solution exists if and only if there is a ground solution in the
extended signature where we add an extra constant.

We represent each term as a sum of terms of the form hi(α) where α is either a
constant or variable. The superscript (power) i is referred to as the degree of the simple
term hi(α). The degree of a term is the maximum degree of its summands.

Lemma 3.1. Let t be an irreducible term and d be its degree. Let V ar(t) = {X1,X2,
. . . , Xn}. Suppose c is a constant that does not appear in t. Then for any D > d, tθ is
irreducible, where θ =

{

X1 �→ c, X2 �→ hD(c), X3 �→ h2D(c), . . . , Xn �→ h(n−1)(D)(c)
}

.

2 The linear constant restrictions in Sect. 5 can also be handled this way: a constant restriction
of the form a �∈ X can be taken care of by setting Xa = 0.
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Lemma 3.2. Let Γ =
{

s1≈?
↓ t1, . . . ,sn≈?

↓ tn
}

be an asymmetric unification problem.
Let β be an asymmetric unifier of Γ and V = VRan(β ) = {X1, . . .Xm}. Let D = 1+
max
1≤i≤n

degree(siβ , tiβ ), and c be a constant that does not appear in Γ . Then θ =
{

X1 �→
c, X2 �→ hD(c), . . . , Xm �→ h(n−1)D(c)

}

is an asymmetric unifier of Γ .

General solutions over variables, without this extra constant c, can be enumerated
by back-substituting (abstracting) terms of the form h j(c) and checking whether the
obtained substitutions are indeed solutions to the problem.
The exact complexity of this problem is open.

4 Automaton to Find a Complete Set of Unifiers

In this section we create automata to find all solutions of an ACUNh asymmetric unifi-
cation problem with constants. We also have linear constant restrictions and disequali-
ties for combination. Our terms will be built from elements in the set described below.

Definition 4.1. Let C be a set of constants and X be a set of variables. Define H(X ,C)
as the set {hi(t) | t ∈ X ∪C}. We also define Hn(X ,C) as {hi(t) | t ∈ X ∪C, i ≤ n}. For
any object t we define Const(t) to be the set of constants in t, except for 0. For an object
t, define H(t) = H(Var(t),Const(t)) and Hn(t) = Hn(Var(t),Const(t)).

Terms are sums. We often need to talk about the multiset of terms in a sum.

Definition 4.2. Let t be a term whose Rh normal form is t1+ · · ·+ tn. Then we define
mset(t) = {t1, · · · , tn}. Inversely, if T = {t1, · · · , tn} then ΣT = t1+ · · ·+ tn.

A term in normal form modulo R1 can be described as a sum in the following way.

Theorem 4.1. Let t be a term in R1 normal form. Then there exists an H ⊆ H(t) such
that t = ΣH.

Proof. Since t is reduced by h(x+y)→ h(x)+h(y), it cannot have an h symbol above a
+ symbol. So it must be a sum of terms of the form hi(s)where i≥ 0 and s is a constant.
Since t is also reduced by R2, there can be no duplicates in the sum.

We show that every substitution θ that is irreducible with respect to R1, can be
represented as a sequence of smaller substitutions, which we will later use to construct
an automaton.

Definition 4.3. Let ζ be a substitution and X be a set of variables. Then ζ is a zero
substitution on X if Dom(ζ ) ⊆ X and xζ = 0 for all x ∈ Dom(ζ ).

Theorem 4.2. Let t be an object and θ be a ground substitution in R1 normal form,
such that Dom(θ) = Var(t). Let m be the maximum degree in mset(Ran(θ)). Then
there are substitutions ζ , θ0, · · · ,θm such that

1. ζ is a zero substitution on Dom(θ),
2. ζ θ0 · · ·θm = θ ,
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3. Dom(θi) =Var(tζ θ0 · · ·θi−i)
4. for all i and all variables x in Dom(θi), xθi = ΣT for some nonempty T ⊆

Const( Ran(θ))∪{h(x)}.
Proof. By the previous theorem, we know that each xθ is a sum of h-terms or is 0. Then
ζ and θi can be defined as follows, where Sx =mset(xθ) and Six is the set of terms in S
with degree i:

– If xθ = 0 then xζ = 0 else xζ = x.
– For all x ∈ Dom(θi)

• If the maximum degree of Sx is i then xθi = ΣSix.
• If no terms in Sx have degree i then xθi = h(x).
• If Sx has terms of degree i and also terms of degree greater than i then xθi =
h(x)+ΣSix.

In the rest of this section we will be considering the ACUNh asymmetric equation
u=?

↓ v, where u and v are in R1 normal form, and we will build an automaton to represent

all the solutions of u=?
↓ v. We will need the following definitions.

Definition 4.4. Let t be an object. Define loseh(t) = Σ{hi(t) | hi+1(t) ∈ mset(t ↓Rh)}.
In the next four automata definitions we will use the following notation: Let P be a

set of ACUNh asymmetric equations. Let m be the maximum degree of terms in P. Let
Θ be the set of all substitutions θ such that Dom(θ) ⊆Var(P) and for all x ∈ Dom(θ),
xθ = ΣT where T is a nonempty subset ofConst(P)∪{h(x)}. Let u=?

↓ v be an ACUNh
asymmetric equation.

First we define an automaton to solve the ACUNh asymmetric unification problem
with constants.

Definition 4.5. The automaton M(u =?
↓ v,P) consists of the quintuple (Q,qu=?

↓v
,F, Θ ,

δ ), where Q is the set of states, qu=?
↓v
is the start state, F is the set of accepting states,

Θ is the alphabet, and δ is the transition function, defined as follows:

– Q is a set of states of the form qs=?
↓t
, where s = ΣS and t = ΣT , for some S and T

subsets of Hm(P).
– F = {qs=?

↓t
∈ Q | mset(s) = mset(t)}

– δ : Q×Θ −→ Q such that δ (qs=?
↓t
,θ) = qloseh(sθ)↓R1=?

↓loseh(tθ)
if Dom(θi) = Var

(s =?
↓ t), mset((sθ) ↓R1)∩H0(P) = mset(tθ)∩H0(P), and mset(tθ) contains no

duplicates.

Next we define an automaton to solve linear constant restrictions.

Definition 4.6. Let R be a set of linear constant restrictions of the form (x,c). MLCR(R,
P) = ({q0}, q0,{q0},Θ ,δLCR) where δLCR(q0,θ) = q0 if for all variables x and all
(x,c) ∈ R, c �∈Const(xθ).

Next we define an automaton to solve disequalities between a variable and a con-
stant.
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Definition 4.7. Let D be a set of disequalities of the form x �= c where x is a variable
and c is a constant. MVC(D,P) = ({q0,q1},q0, {q0,q1},Θ ,δVC) where δVC(q0,θ) = q1
if for all variables x and all x �= c ∈ D, xθ �= c. Also δVC(q1,θ) = q1.

Finally we define automata for solving disequalities between variables

Definition 4.8. Let x and y be variables. Then MVV (x �= y,P) = ({q0,q1},qo,{q1},Θ ,
δx �=y) where δx �=y(q0,θ) = q0 if mset(xθ) = T ∪ {h(x)} and mset(yθ) = T ∪ {h(y)}
for some T . Also δx �=y(q0,θ) = q1 if mset(xθ) �= mset(yθ) and mset(xθ)[x �→ y] �=
mset(yθ).

These are all valid automata. In particular, the first automaton described has a finite
number of states, and each transition yields a state in the automaton. Now we show that
these automata can be used to find all asymmetric ACUNh unifiers.

We need a few properties before we show our main theorem, that the constructed
automaton finds all solutions.

Lemma 4.1. Let t be an object and θ be a substitution, such that, for all x ∈ Var(t),
mset(xθ) does not contain a variable. Then mset(tθ) does not contain a variable.

Proof. Consider s ∈ mset(t). If s is not a variable then sθ is not a variable. If s is a
variable, then, by our hypothesis, sθ is not a variable.

Lemma 4.2. Let s =?
↓ t be an ACUNh asymmetric unification equation in P, where

mset(s) and mset(t) contain no variables and mset(s ↓R1)∩H0(P) �= mset(t)∩H0(P).
Then for all substitutions σ , sσ and tσ are not unifiable.

Proof. s and t are not unifiable, because, wlog, the multiplicity of some constant in
mset(s ↓R1) is not in mset(t ↓R1). When we apply a substitution, that same constant will
appear in mset((sσ) ↓R1) but not mset((tσ) ↓R1), since mset(s) and mset(t) contain no
variables. So sσ and tσ are not unifiable.

Lemma 4.3. Let t be such that mset(t) contains a duplicate. Then ∀ σ , tσ is reducible
by R2.

Proof. We know t is reducible by R2 because mset(t) contains a duplicate. But then tσ
also contains a duplicate.

Lemma 4.4. Let s =?
↓ t be an ACUNh asymmetric unification equation in P, such that

mset(s) and mset(t) contain no variables. Suppose also that mset(s ↓R1)∩H0(P) =
mset(t)∩H0(P)) and mset(t) contains no duplicates. Then σ is an ACUNh asymmetric
unifier of s =?

↓ t if and only if σ is an ACUNh asymmetric unifier of loseh(s ↓R1) =?
↓

loseh(t).

Proof. Let s′ = loseh(s ↓R1) and t ′ = loseh(t). If mset(s′) and mset(t ′) contain no con-
stants, then s=?

↓ t and s′ =?
↓ t

′ have the same solutions. Since mset(s) and mset(t) con-
tain no variables, the multiset of constants in s is the same as the multiset of constants
in sσ . Similarly for t and tσ . Therefore s=?

↓ t has the same solutions as s′ =?
↓ t

′.
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Theorem 4.3. Let P be a set of asymmetric ACUNh equations, such that all terms in
P are reduced by R1. Let θ be a substitution which is reduced by R1. Let R be a set of
linear constant restrictions. Let D be a set of variable/constant disequalities. Let D′ be
a set of variable/variable disequalities.

Then θ is a solution to P if and only if there exists a zero substitution ζ on P where
all right hand sides in P are irreducible, and a sequence of substitutions θ0, · · · ,θm such
that θ ≤ ζ θ0 · · ·θm and

1. The string θ0 · · ·θm is accepted by M((u=?
↓ v)ζ ) ↓R1 ,P′ζ ) for all u=?

↓ v ∈ P.
2. The string θ0 · · ·θm is accepted by MLCR(R,P′ζ ).
3. The string θ0 · · ·θm is accepted by MVC(D,P′ζ ).
4. The string θ0 · · ·θm is accepted by MVV (x �= y,P′ζ ) for all x �= y ∈ D′.

where P′ = P∪{c=?
↓ c} for a fresh constant c.

Proof. First we show that Item 1 holds for a ground substitution θ reduced by R1. By
the previous theorem, θ can be represented as ζ θ0 · · ·θm.

We show by induction that, for all i, if θ = ζ θ0 · · ·θi and δ (q(u=?
↓v)ζ

,θ0 · · ·θi)= qs=?
↓t

then θσ is an asymmetric ACUNh unifier of u =?
↓ v if and only if σ is an asymmetric

ACUNh unifier of s=?
↓ t. In the base case, θ = ζ and (s=?

↓ t) = (u=?
↓ v)ζ , so it is true.

For the inductive step, we assume the statement is true for i and prove it for
i+ 1. Then let σ ′ be an arbitrary substitution, and instantiate σ θσ ′ in the inductive
assumption, where θ = ζ θ0 · · ·θi. Our assumption implies that θθi+1σ is an asymmet-
ric ACUNh unifier of u=?

↓ v if and only if θiσ is an asymmetric ACUNh unifier of s=?
↓ t

(i.e., σ is an asymmetric ACUNh unifier of (s =?
↓ t)θi+1). If we can now show that σ

is an asymmetric ACUNh unifier of (s =?
↓ t)θi+1 if and only if σ is an ACUNh uni-

fier of loseh(sθi+1) =?
↓ loseh(tθi+1). and mset(sθi+1 ∩H0(P′) = mset(tθi+1)∩H0(P′)

and mset(tθi+1) contains no duplicates, then we are done. By Lemma 4.1, we know
that mset(s =?

↓ t)θi+1 contains no variables. Then we apply Lemma 4.4 to prove the
induction step.

This proves our inductive statement. If θ is not an asymmetric ACUNh unifier of
u=?

↓ v, then Lemmas 4.2 and 4.3 imply that the transition function will not be applicable
at some point. Our inductive statement shows that θ is an asymmetric ACUNh unifier
of u =?

↓ v if and only if there is a final state with id as an asymmetric ACUNh unifier,
which will be an accepting state.

This concludes the case for a ground substitution θ . It θ is not ground, then the fact
that P′ contains a fresh constant c means that we create substitutions with an additional
constant. We have already shown in this paper that nonground solutions are generaliza-
tions of solutions involving one additional constant.

It is straightforward to see that the other automata only accept valid solutions of
linear constant restrictions and disequations.

If desired, we could intersect all the automata, yielding an automaton representing
all the solutions of the problem (think of the results after applying ζ as a set of initial
states). This shows that the set of solutions can be represented by a regular language,
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with or without LCRs and disequalities. If we only want to decide asymmetric unifica-
tion, we just check if there is an accepting state reachable from an initial state. We could
enumerate all the solutions by finding all accepting states reachable in 1 step, 2 steps,
etc. If there is a cycle on a path to an accepting state, then there are an infinite number
of solutions, otherwise there are only a finite number of solutions. This will find all
the ground substitutions. To find all solutions, we generalize the solutions we find and
check them. Indeed, the only terms that need to be generalized are those containing c.
This is decidable because there are only a finite number of generalizations.

In Fig. (5b), we show the automaton created for the problem h(x) + b =?
↓ x+ y,

without linear constant restrictions and disequality constraints. In this example, the only
zero substitution that works is the identity. Notice that c never appears in the domain
of a substitution, because no such substitution satisfies the conditions for the transition
function. This leads to the following theorem.

Theorem 4.4. Asymmetric ACUNh unification with constants is not finitary.

Proof. The automaton constructed for h(x) + b =?
↓ x+ y has a cycle on a path to an

accepting state. Therefore there are an infinite number of solutions. Since there is no c
in the range of the solution, all the solutions are ground. So no solution can be more
general than another one, which means this infinite set of solutions is also a minimal
complete set of solutions.

5 Combining Automata Based Asymmetric Algorithms with the
Free Theory

In order to obtain a general asymmetric ACUNh-unification decision procedure we need
to add free function symbols. We can do this by using disjoint combination. The prob-
lem of asymmetric unification in the combination of disjoint theories was studied in [7]
where an algorithm is developed for the problem. However, the algorithm of [7] does
not immediately apply to the two methods developed in this paper. This is due to the
nature of the two automata based approaches. More formally, let Δ1 and Δ2 denote
two equational theories with disjoint signatures Σ1 and Σ2. Let Δ be the combination,
Δ = Δ1 ∪Δ2, of the two theories having signature Σ1 ∪Σ2. The algorithm of [7] solves
the asymmetric Δ -unification problem. It assumes that there exists a finitary complete
asymmetric Δi-unification algorithm with linear constant restrictions, Ai. Based on this
assumption the algorithm is able to check solutions produced by the A1 and A2 algo-
rithms for theory-preserving and injective properties, discarding those that are not. A
substitution σi is injectivemodulo Δi if xσi =Δi yσi iff x= y, and σi is theory preserving
if for any variable x of index i, xσi is not a variable of index j �= i. For the automaton
it is not always possible to check solutions, however, it is possible to build constraints
into the automaton that enforce these conditions. Algorithm 3 (outlined in our tech
report [10]) is a modification of the algorithm from [7] with the following properties:

– Δ1 = ACUNh and Δ2 = FΩ, for some free theory FΩ with symbols Ω.
– For each Δ1-pure problem, partition, and theory index, an automaton is constructed
enforcing the injective and theory preserving restrictions. Since these restrictions are
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built into the automata, the only Δ1 solutions produced will be both theory preserv-
ing and injective.

– The solution produced by the FΩ algorithm is checked as in the original algorithm.
If the solution is found not to be injective or theory preserving it is discarded.

The new modified version is presented in Algorithm 3 (included in the appendix due to
space). Given the decision procedure of Sect. 3 we obtain the following.

Theorem 5.1. Assume there exists an asymmetric ACUNh decision procedure that
enforces linear constant restrictions, theory indexes, and injectivity. Then Algorithm
3 is a general asymmetric ACUNh decision procedure.

Proof. The result follows directly from the proof contained in [7]. There it is shown
that Algorithm 3 is both sound and complete. The only modification is that in [7] the
combination algorithm checks the Δ1 solutions for the properties of being injective and
theory preserving, while in Algorithm 3 it is assumed that the algorithm A1 itself will
enforce these restrictions.

If instead of a decision procedure we want to obtain a general asymmetric ACUNh
unification algorithm we can use the automata based algorithm from Sect. 4 and again a
modification of the asymmetric combination algorithm of [7]. Here, the modification to
the combination algorithm is even smaller. We just remove the check on injective and
theory preserving substitutions. Again these restrictions are enforced by the automata.
The solutions to the ACUNh and the free theory are combined as is done in [7] since
they obey the same linear constant restrictions. Since asymmetric ACUNh unification
with constants is not finitary (Theorem 4.4), the general asymmetric ACUNh unification
algorithm will not in general produce a finite set of solutions. However, based on the
algorithm of Sect. 4 we easily obtain the following result.

Theorem 5.2. Assume there exists an asymmetric ACUNh algorithm that enforces lin-
ear constant restrictions, theory indexes and injectivity, and produces a complete set of
unifiers. Then there exists a general asymmetric ACUNh algorithm producing a com-
plete set of unifiers.

6 Conclusion

We have provided a decision procedure and an algorithm for asymmetric unification
modulo ACUNh using a decomposition R�ACh. This is the first example of an asym-
metric unification algorithm for a theory in which unification modulo the set Δ of
axioms is undecidable. It also has some practical advantages: it is possible to tell by
inspection of the automaton used to construct unifiers whether or not a problem has a
finitary solution. Moreover, the construction of the automaton gives us a natural way of
enumerating solutions; simply traverse one of the loops one more time to get the next
unifier.

There are a number of ways in which we could extend this work. For example,
the logical next step is to consider the decidability of asymmetric unification of AGh
with a Δ = ACh. If the methods we used for ACUNh extend to AGh, then we have an
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asymmetric unification algorithm for AGh, although with Δ = ACh instead of AC. On
the other hand, if we can prove undecidability of asymmetric unification for AGh with
Δ = ACh as well as with Δ = AC, this could give us new understanding of the problem
that might allow us to obtain more general results. Either way, we expect the results to
give increased understanding of asymmetric unification when homomorphic encryption
is involved.
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Abstract. We define an inference rule called the Parallel rule. Given a
rewrite system R and an equational theory E, where R is E-convergent
modulo, we show that if R is saturated under the Parallel rule then
Basic Narrowing modulo E is complete for R. If R is finitely saturated
under both Parallel and Forward Overlap then Basic Narrowing, with
right hand side abstracted, is complete and terminates, and thus it is a
decision procedure for unification modulo R∪E. We give examples, such
as the theory of XOR, the theory of abelian groups and Associativity
with a unit element. We also show that R has the finite variant property
modulo E if and only if R can be finitely saturated under Parallel and
Forward Overlap, provided that E unification is finitary.

Keywords: Basic Narrowing · E-unification · Finite Variant Property

1 Introduction

If an equational theory can be represented as a convergent rewrite system R, then
rewriting with R decides the word problem. However, some equations cannot be
oriented into rewrite rules, such as Associativity and Commutativity. Then we
may be able to split the equational theory into a rewrite system R and a set of
equations E where R is E-convergent, which also decides the word problem.

Narrowing lifts rewriting to solve unification problems. Narrowing with R
modulo E produces a complete set of unifiers for the R ∪ E unification problem
if R is E-convergent [10]. This is useful for applications such as Cryptographic
Protocol Analysis [7,8]. Unfortunately, Narrowing modulo E rarely halts, so it is
not practical to use. Basic Narrowing is a modification of Narrowing, where unifi-
cation problems are stored as constraints, rather than solving them immediately.
Narrowing may not take place inside a constraint, so Basic Narrowing is more
likely to halt. Unfortunately, Basic Narrowing modulo E is non-terminating for
many equational theories, and, even worse, it is not complete, i.e., it may not
produce a complete set of unifiers [5]. Because of these flaws it has been mostly
abandoned, in favor of other Narrowing methods such as Variant Narrowing [9].

This paper is our attempt to revive Basic Narrowing modulo. We create a new
inference rule, called the Parallel rule. If R is saturated by the Parallel rule, we
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show that Basic Narrowing modulo E is complete. We show that if R is finitely
saturated under both Parallel and Forward Overlap then Basic Narrowing with
Right Hand Side Abstracted (meaning that right hand sides of rewrite rules are
assumed to be reduced) is both complete and terminating, which is necessary
for applications. This gives a decision procedure for unification. These inference
rules are practical, as we illustrate with examples such as the theory of Exclusive
OR and the theory of Abelian groups, where the saturation under these inference
rules produces very few additional rewrite rules. In fact we show that a rewrite
system R can be finitely saturated by Parallel and Forward Overlap w.r.t. a
finitary E if and only if R has the Finite Variant Property modulo E (see also [4]
for a similar result in the empty theory).

Basic Narrowing modulo was shown to be incomplete [5] for the following
AC-convergent rewrite system R1:

1. x + 0 → x
2. a + a → 0

3. b + b → 0
4. a + a + x → x

5. b + b + x → x

where + is an AC symbol with an identity element 0, x is a variable, and a
and b are constants. The R1 ∪ AC-unification problem y + z≈?

R1∪AC0 has a
solution {y �→ a+b, z �→ a+b}, which cannot be found with Basic Narrowing. A
Basic Narrowing step with the fourth rule gives x≈?

R1∪AC0, with a constraint of
y + z ≈AC a+a+x. One solution of this constraint is x �→ u+v, y �→ a+u, z �→
a+v. If we could Narrow into the constraint, corresponding to a Narrowing step
at the variable position x, with b + b → 0 then this problem would be solved,
but Basic Narrowing does not allow that, and there is no other way to solve
this problem. To solve this problem in this paper, we define an inference rule
called Parallel (or E-Parallel and more specifically AC-Parallel). It combines the
parallel steps from rules 4 and 3 into one rewrite rule a + a + b + b → 0. It also
creates the extension of this rule a+a+ b+ b+x → x. (We sometimes leave out
parentheses for AC formulas, when they are not important.) After adding these
two additional rules, Basic Narrowing is complete.

To motivate the Forward Overlap rule, let R2 = {h(x)∗h(y) → h(x∗y)}. For
the purposes of this example, it doesn’t matter whether the ∗ and + symbol are
free or are associative and commutative. The forward Overlap rule combines two
rewrite steps into one. An application of Forward Overlap gives a new rewrite
rule h(h(x)) ∗ h(h(y)) → h(h(x ∗ y)). This process can be repeated an infinite
number of times in this particular example.

The Forward Overlap rule is not applicable for R1. So a form of Narrowing
called Basic Narrowing with Right Hand Side Abstracted (BNR) is complete for
R1. In R1 it was only necessary to add two rewrite rules to make it complete for
BNR. In other examples, such as R2 it takes infinitely many new rewrite rules.
But there are many practical examples like R1 where very few rewrite rules are
needed.

We give examples to show that saturation under Parallel and Forward Over-
lap can often be accomplished by adding just a few rules, in theories such as
Exclusive OR and Abelian group theory. We also show that a theory can be
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finitely saturated by Parallel and Forward Overlap if and only if that theory has
the Finite Variant Property, provided that the E unification problem is finitary.

In particular, we show that a rewrite system is saturated by Parallel if and
only if every innermost redex can be reduced with an instance of a rule mapping
all variables in the right hand side to terms in normal form (IRR). This implies
that Basic Narrowing is complete. We also show that a rewrite system is satu-
rated by Parallel and Forward Overlap if and only if every innermost redex can
be reduced to normal form in one step (IR1). This implies that Basic Narrowing
with Right Hand Side Abstracted is complete, which in turn implies a property
we call the Finite Constraint Property, which is a generalization of the Finite
Variant Property, to also handle equational theories with an infinitary unifica-
tion problem, such as the theory of Associativity. If the unification problem is
finitary, this is equivalent to the Finite Variant Property (FVP), which in turn
implies IR1.

2 Preliminaries

We use standard notation of term rewriting [1,3,6,11] and equational unifi-
cation [2]. We use the usual definition of substitution. If σ is a substitution
and V is a set of variables, then σ|V is the restriction of σ to the variables of
V . We say a substitution θ extends a substitution σ if θ|Dom(σ) = σ, where
Dom(σ) = {x | xσ �= x}. A complete set of E-unifiers of an E-unification prob-
lem Γ is a set of substitutions, denoted by CSUE(Γ ), such that each element
of CSUE(Γ ) is an E-unifier of Γ and for each E-unifier θ of Γ , there exists
some σ ∈ CSUE(Γ ) such that σ ≤V

E θ, where V is the set of variables of Γ . An
ordering has the subterm property no term t is greater than a proper subterm of
t. A reduction ordering > is E-compatible if s′ ≈E s > t≈E t′ implies s′ > t′ for
all s, s′, t and t′.

Given a rewrite system R and a set of equations E, denoted by (R,E), the
relation →R,E on T (Σ,V ) is defined by s →R,E t (or more specifically s

p−→R,E t)
iff there is a non-variable position p ∈ FPos(s), a rewrite rule l → r ∈ R, and a
substitution σ such that s|p ≈E lσ and t = s[rσ]p. The relation →R,E is decidable
whenever E-matching is decidable. The transitive and reflexive closure of →R,E

is denoted by ∗−→R,E . We say that a term t is R,E-irreducible (or in R,E-normal
form) if there is no term t′ such that t →R,E t′. If s

∗−→R,E t and t is R,E-
irreducible, we say that t is a reduced form of s (or a normal form of s), denoted
by t = s↓R,E . E is regular if V ar(s) = V ar(t) for all s ≈ t in E.

A substitution σ is called R,E-reduced if xσ is R,E-irreducible for all x ∈ V .
We say that a term t is an innermost redex of R,E iff t is R,E-reducible only at
the top position. Let s → t be a rewrite rule. Let θ be a substitution. The instance
sθ → tθ is a right-reduced instance if xθ is in normal form for all variables x in t.
Note that tθ may or may not be reduced.

The rewrite system (R,E) is Church-Rosser modulo E if for all terms s and
t with s =E t, there are terms u and v such that s

∗−→R,E u =E v
∗←−R,E t.
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The rewrite system (R,E) is convergent modulo E if (R,E) is Church-Rosser
modulo E and ↔E ◦ →R ◦ ↔E is well-founded. In this paper, we simply say
that the rewrite system R is R,E-convergent (or E-convergent) if the rewrite
system (R,E) is convergent modulo E.

3 Inference Rules on the Rewrite System

Throughout the paper, we assume E is a regular equational theory, and R is
an E-convergent rewrite theory, under an E-compatible reduction ordering with
the subterm property, so we will not explicitly state this in the theorems.

We give an inference rule called Parallel (or E-Parallel) which is a key con-
tribution of this paper. This is the rule that needs to be added to make Basic
Narrowing complete modulo an equational theory. It can be viewed as a non-
critical overlap below a variable position, but only in very specific cases. The
example in the introduction gives an idea where the name comes from. The pur-
pose of the rule is to ensure that every innermost redex can be reduced by an
instance of a rewrite rule where substitutions to variables on the right hand side
are reduced.

E-Parallel

s → t l → r v ≈ u[l′]
vσ → v′

where

1. s → t ∈ R
2. l → r ∈ R
3. v ≈ u[l′] ∈ E
4. l′ is a strict subterm of u and is not a variable
5. σ ∈ CSUE(l ≈?

E l′, u ≈?
E s)

6. v′ is some normal form of vσ
7. t contains a variable x, where l′σ is E-equivalent to a subterm of xσ

Definition 1. The above Parallel inference rule is redundant if either

1. for all s′ such that s′ ≈E sσ, a strict subterm of s′ is R,E-reducible, or
2. sσ is R,E-reducible by a right-reduced instance of a rule.

In the next section we will define Basic Narrowing, and later show that if R
is saturated under Parallel, then Basic Narrowing is complete.

Next we define the Forward Overlap rule, which is like the Critical Pair rule,
except it reduces an instance of the right side of a rule instead of the left side. It
ensures that all innermost redexes can be reduced to normal form in one step.
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ForwardOverlap

u → v[s′] s → t
(u → v[t])θ

where

1. u → v[s′] ∈ R
2. s → t ∈ R
3. s′ is not a variable
4. θ ∈ CSUE(s = s′)

Definition 2. The above Forward Overlap inference rule is redundant if, for all
u′ ≈E uθ, u′ is R,E reducible by a right-reduced instance of a rule l → r, with
matching substitution σ, and either

1. lσ < uθ or
2. lσ ≈E uθ and rσ < v[s′]θ.

The notions of redundancy in this section are slightly different than the
standard notions of redundancy. Instead of just requiring that redundant rules
are implied by smaller instances of rules, this requires that redundant rules are
implied by smaller instances of rules, where all substitutions to variables on the
right hand sides of the rules are reduced. This will be necessary to make Basic
Narrowing complete.

In the next section we will define Basic Narrowing with Right Hand Side
Abstracted, and show that if R is saturated under the Parallel Rule and Forward
Overlap then Basic Narrowing with Right Hand Side Abstracted is complete.
Since we will see that Basic Narrowing with Right Hand Side Abstracted always
terminates, this gives a decision procedure for unification.

We now give an example to illustrate the inference rules. There are also many
interesting examples toward the end of the paper.

Example 1. R0 = {f(x1) → g(x1), k(x2) → q(x2), b → c}. Let E =
{f(h(k(x))) ≈ p(x), h(q(a)) ≈ b}. There is a Parallel inference between f(x1) →
g(x1) and k(x2) → q(x2) involving the equation f(h(k(x))) ≈ p(x). This is
because f(x1) unifies with f(h(k(x))), and k(x2) unifies with k(x). Let σ ∈
CSUE(f(x1) ≈?

E f(h(k(x))), k(x2) ≈?
E k(x)). So σ = {x1 �→ h(k(x)), x2 �→ x}.

Since k(x) is a subterm of x1σ, the Parallel rule can be applied. The result is
p(x) → g(h(q(x))). Let R1 = R0 ∪ {p(x) → g(h(q(x)))}. R1 is saturated by Par-
allel, but it is not saturated by Forward Overlap. There is a Forward Overlap
inference between p(x) → g(h(q(x))) and b → c, because h(q(x)) is unifiable with
b using the substitution x �→ a. The result of applying the Forward Overlap rule
is p(a) → g(c). Let R2 = R1 ∪ {p(a) → g(c)}. Now R2 is saturated by Parallel
and Forward Overlap rule.

We define a set of inference rules to be saturated if all inferences are redun-
dant, according to the definition of redundancy we give in each rule. An E-
convergent rewrite system could be constructively saturated by applying the
inferences exhaustively and adding new rewrite rules. The set of rewrite rules
will still be E-convergent.
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4 Inference Rules for Solving the Unification Problem

We introduce constrained terms, of the form t|ϕ, where t is a term and ϕ is a set
of unification problems. Solutions and instances of constraints are defined as:

Definition 3. Let E be an equational theory. Let t|ϕ be a constrained term. The
solutions of ϕ are Sol(ϕ) = {σ | uσ ≈E vσ for all u≈?

Ev ∈ ϕ}. The irreducible
instances of t|ϕ are IInst(t|ϕ) = {tσ | σ ∈ Sol(ϕ) and xσ is in normal form for
all x ∈ V ar(t)}.

Narrowing is a relation on constrained terms, with notation t1|ϕ1 � t2|ϕ2.
Completeness is defined as follows:

Definition 4. A narrowing inference system is complete if given a term s and
a reduced substitution σ, there is a sequence of narrowing steps s | � ∗� t | ϕ
and a substitution θ such that

1. σ can be extended to θ,
2. θ is a solution of ϕ, and
3. tθ is a normal form of sσ.

In this section we present two Narrowing rules. BN stands for Basic Narrow-
ing, and BNR stands for Basic Narrowing with Right Hand Side Abstracted.

BN

u[s′] | ϕ s → t
u[t] | ϕ, s≈?

E s′

where

1. s → t ∈ R
2. s′ is not a variable

Example 2. Consider the rewrite system R0 from Example 1, and apply
BN to p(x)|�. The only reduction is with f(x) → g(x), which gives
g(x′) | f(x′)≈?

E p(x). (Note that p(x) ≈E f(h(k(x))).) All further BN steps
have unsatisfiable constraints, but there are instances that are not reduced. This
shows that BN is not complete for R0. However, it can be checked that BN is
complete for R1.

Next we introduce the BNR inference rule, where the right hand side of the
rewrite rule used for narrowing gets extracted into the constraint.

BNR

u[s′]|ϕ s → t
u[x] | ϕ, s≈?

E s′, x≈?
Et
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where

1. s → t ∈ R
2. s′ is not a variable
3. x is a fresh variable

Example 3. In Example 1, BNR is not complete for R1. The term p(a) cannot
be reduced to its normal form g(c) in one step. So, for example, a BNR from
p(a), using p(x) → g(h(q(x))) gives y | p(a) ≈?

E p(x), y ≈?
E g(h(q(x))), which

cannot be reduced further. It can be checked that BNR is complete for R2.

BN and BNR are used, as usual, to find normal forms of every instance
of a term. They can also be used to solve equational unification in R ∪ E, in
combination with an E-unification inference rule.

5 Optional Inference Rules

In this section we give some inference rules to augment the Basic Narrowing
rules. These rules are not necessary for any of the results in this paper. But
they are rules that are useful for designing an implementation that is efficient
in practice. In these inference rules, as opposed to the earlier rules in the paper,
the hypothesis is replaced by the conclusion.

The Concretization rule says that we can remove a constraint completely or
partially remove a constraint, and apply a substitution satisfying the constraint
directly to the unification problem.

Concretization

u|ϕ
uσ|ϕ

where σ is the most general unifier of ϕ.
The Split rule allows us to split a unification problem into two if the instances

remain the same. Suppose a constraint has a finite number of solutions. We
could split up a unification problem into one for each solution, and then apply
Concretization to apply the substitutions.

Split

u|ϕ
u|ϕ1 u|ϕ2

where IInst(u|ϕ) = IInst(u|ϕ1) ∪ IInst(u|ϕ2).
Simplify is an important rule. Suppose a unification problem simplifies using

a rewrite rule, then we are allowed to directly simplify it, without the nondeter-
minism that would come with a Basic Narrowing rule.
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Simplify

u[s′]|ϕ
u[tσ]|ϕ

where s → t ∈ R and sσ ≈E s′.
A unification problem can be removed if all solutions of its constraint are

reducible. This reduces the search space for narrowing.

ReducibleSubstitution

u|ϕ

where σ is reducible over the variables of u for all σ ∈ Sol(ϕ).

6 Completeness Proofs

In this section we prove the main completeness results of the paper. We show
that if a set of rewrite rules R is saturated under our inference rules, then any
minimal sequence of R,E rewrite steps, under an ordering we give below, can be
lifted to a sequence of Basic Narrowing steps. This is a generalization of what can
be done for Basic Narrowing in the empty theory, where any innermost sequence
of R rewrite steps can be lifted to a Basic Narrowing sequence.

We first need an ordering to compare rewrite steps. We prefer smaller rewrite
steps under this ordering. This means we prefer to use right-reduced instances
of rules, because of the subterm property of our ordering. Our next preference is
rules with smaller left hand sides, i.e., innermost reductions. Our last preference
is rules with smaller right hand sides, i.e., to get to the normal form faster.

Definition 5. Let s → t and u → v be rewrite rules. Let θ1 and θ2 be substi-
tutions. We define a relation on pairs of rewrite rules and substitutions.

– We say (s → t, θ1) ≤N (u → v, θ2) if sθ1 → tθ1 is a right-reduced instance,
or uθ2 → vθ2 is not.

– We say (s → t, θ1) ≤L (u → v, θ2) if sθ1 ≤ uθ2.
– We say (s → t, θ1) ≤R (u → v, θ2) if tθ1 ≤ vθ2.
– Then define ≤B to be the lexicographic combination (≤N ,≤L,≤R).

We will show that saturation under Parallel is equivalent to the ability to
reduce every innermost redex with a right-reduced instance of a rule, and closure
under Parallel and Forward Overlap is equivalent to the ability to reduce every
innermost redex to normal form in one step.

Definition 6. We say that R is IRR if every innermost redex is reducible by
a right-reduced instance of R. We say that R is IR1 if every innermost redex is
reducible to normal form in one step.
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Theorem 1. R is saturated by Parallel if and only if R is IRR.

Proof. First the forward direction. Assume R is saturated by Parallel. Given an
innermost redex s′ and a reduction of s′, let rule s → t and substitution θ be the
smallest reduction of s′ wrt ≤B . We show that if sθ → tθ is not a right-reduced
instance, then there is another reduction of s′ which is smaller than (s → t, θ).

Since sθ → tθ is not a right-reduced instance, there is a rewrite rule l → r, a
variable x in t and therefore also in s, and a substitution θ1, extending θ, such
that lθ1 is E-equivalent to a subterm of xθ. Since s′ is an innermost redex, we
know that lθ1 is not a subterm of s′. Therefore, sθ is E-equivalent to s′ but
not identical. Therefore there must be some equation u[l′] ≈ v in E, and some
substitution θ2, extending θ1 such that l′θ2 ≈E lθ1, and l′ is not a variable. Also,
there must be some substitution θ3, extending θ2, such that sθ is E-equivalent
to uθ3. θ3 must be a unifier of l ≈? l′ and u ≈? s.

Therefore, the conditions of the Parallel rule are applicable. Let
σ ∈ CSUE(l ≈?

E l′, u ≈?
E s) such that σ ≤E θ3 over the variables of the problem.

The result of applying the Parallel rule is vσ → (vσ) ↓. This rewrite rule can
be used to reduce s′. The first component of the ≤B ordering either stays the
same or gets smaller, since the right hand side was originally not a right-reduced
instance. The second component stays the same, but the third one is smaller.
Therefore the new rewrite step is smaller with respect to ≤B .

This inference might be redundant. Suppose it is redundant because a strict
subterm of every term E-equivalent to sσ is reducible. Then there is a rewrite rule
reducing a strict subterm of s′, which is smaller in the ≤B ordering. Suppose that
this inference is redundant because sσ is reducible by a right-reduced instance
of a rule. Then s′ is also reducible by a right-reduced instance of a rule. A
contradiction with the assumption has been obtained.

Now the reverse direction. Assume R is IRR. We need to show that all
Parallel inferences are redundant. This is trivially true, because one one condition
of the definition of redundancy for Parallel rules is that all innermost redexes
can be reduced by a right-reduced instance of a rule. ��
Theorem 2. R is saturated by Parallel and Forward Overlap iff R is IR1.

Proof. First the forward direction. Assume R is saturated by the Parallel and
Forward Overlap rules. Once again we assume the smallest reduction to obtain a
contradiction. Given an innermost redex s′ and a reduction using rule s → t and
substitution θ, we show that if tθ is not in normal form, then there is another
reduction of s′ which is smaller than (s → t, θ) with respect to ≤B .

Since tθ is not in normal form, there is a rewrite rule l → r and a substitution
θ1, extending θ, such that lθ1 is E-equivalent to a subterm of tθ. By the previous
theorem, and the fact that R is saturated by Parallel, we can assume that sθ → tθ
is a right-reduced instance, therefore lθ1 is E-equivalent to a subterm of tθ at a
non-variable position of t. Let l′ be that subterm of t.

Therefore, the conditions of the Forward Overlap rule are applicable. There
is a Forward Overlap among s → t[l′] and l → r. The result is sσ → t[r]σ for
some σ ∈ CSUE(l ≈? l′). Then sσ → t[r]σ can reduce s′. It is smaller in the
≤B ordering, because it must be a right-reduced instance, the left hand sides
are the same, and t[r]σθ1 is smaller than t[l]θ1.
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It is also possible that this inference is redundant because sσ is reducible by
a right-reduced instance of a rule smaller than sσ → t[l]σ. This must be smaller
with respect to ≤B .

Now the reverse direction. Assume R is IR1. We need to show that all Parallel
and Forward Overlap inferences are redundant. We have already showed that all
Parallel rules are redundant in the last theorem. In order to show all Forward
Overlap rules are redundant, consider a Forward Overlap of u → v[s′] and s →
t, resulting in uθ → v[t]θ. If uθ does not have an innermost redex, then this
inference is redundant, because all equivalents of uθ have a reduction below the
top. The smallest such reduction must be a right reduced instance. If uθ has an
innermost redex, then there must be another rule reducing uθ to normal form
in one step because R is IR1, and this rule must be a right reduced instance, so
this inference is redundant. ��

BN and BNR are clearly sound. We show that BN is complete for IRR
theories, and BNR is complete for IR1 theories, with or without the optional
rules. Since BNR halts, as long as Split is only applied finitely many times,
BNR gives a decision procedure for unification in IR1 theories, and BN gives
a complete procedure for unification in IRR theories.

Theorem 3. If R is IRR then BN (with or without optional rules) is complete.

Proof. We show that if sθ ∈ IInst(s | ϕ) and there exists t such that sθ → t
then there is a constrained term t′ | ϕ′ and a sequence of one or more inference
steps from s | ϕ to t′ | ϕ′ with t ∈ IInst(t′|ϕ′). That will show by induction that
some rewrite sequence from wσ to its normal form, where w is a term and σ is
a reduced substitution, can be lifted to a narrowing sequence from w | �.

Note that for Concretization, if sθ ∈ IInst(u | ϕ) then sθ ∈ IInst(uσ | ϕ).
For Split, if sθ ∈ IInst(u | ϕ) then sθ ∈ IInst(u | ϕ1) or sθ ∈ IInst(u | ϕ2).
So any sequence of those optional rules will preserve irreducibility. Also note
that the ReducibleSubstitution rule is not applicable to s | ϕ. For Simplify, the
conclusion u[tσ] | ϕ has the same constraint and a subset of the variables of the
hypothesis u[s′] | ϕ, so u[tσ]θ ∈ IInst(u[tσ] | ϕ) if u[s′]θ ∈ IInst(u[s′] | ϕ).

If Simplify is not applied, and s is reducible, then, because R is IRR, s must
be of the form s[l′] and there is some rule l → r such that l′θ =E lθ and θ|V ar(r)

is irreducible. There is then a BN application from s[l′] | ϕ to s[r] | ϕ, l≈?
El′.

Let x ∈ V ar(s[r]). Then either x ∈ V ar(s[l′]) or x ∈ V ar(r), and in both cases
xθ is irreducible. So s[r]θ ∈ IInst(s[r] | ϕ, l≈?

El′). ��
Theorem 4. If R is IR1 then BNR, with or without optional rules, is complete.

Proof. The proof is the same as the previous. Just redo the case where Simplify
is not applied, and s is reducible, then, because R is IR1, s must be of the form
s[l′] and there is some rule l → r such that l′θ≈Elθ and rθ is irreducible. There is
then a BNR application from s[l′] | ϕ to s[y] | ϕ, l≈?

El′, y≈?
Er. Let x ∈ V ar(s[y]).

Then either x ∈ V ar(s[l′]), in which case xθ is irreducible, or x = y, in which
case again xθ is irreducible. So s[r]θ ∈ IInst(s[r] | ϕ, l≈?

El′, x≈?
Er). ��
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These theorems imply completeness of R ∪ E unification. We can decide
the R ∪ E unification problem, and also find a complete set of R ∪ E unifiers
if E unification is finitary. In the case of BNR it gives a complexity bound,
since BNR narrowing branches nondeterministically but the length of a BNR
sequence is at most linear in the size of the term. The size of the terms and
constraints are linear in the size of the term. If E-unification is NP or better,
then the complexity bound is NP . If E-unification is PSPACE or worse, then the
complexity bound is the same as the complexity bound for unification modulo E.

We now give the definition of Finite Variant Property for rewrite systems
R modulo E. We define R,E to have the FV P if a finite number of substitu-
tions can be constructed, representing all normal forms of a given term. This
requires that the E-unification problem is finitary. We generalize this to a Finite
Constraint Property, which is also applicable to infinitary theories. R,E has the
FCP if a finite number of constraints can be constructed, representing all nor-
mal forms of a given term. For finitary theories, this is the same as the Finite
Variant Property. We show that if BNR is complete then R,E has the FCP .
In the reverse direction, we show that if R,E has the FV P then R is IR1.

Definition 7. A term-substitution pair (t, θ) is an R,E variant of a term s if θ
is normalized and sθ≈R∪Et. A complete set of R,E variants of s, denoted [[s]],
is a set of R,E variants of s such that:

1. for all (t, θ) ∈ [[s]], sθ
∗→ t with t in normal form, and

2. For all reduced substitutions σ and reduced terms s′ such that sσ
∗→ s′, there

exists a pair (t, θ) ∈ [[s]] and a substitution ρ such that tρ≈Es′ and θρ≈Eσ.

R,E has the Finite Variant Property (FV P ) if a finite [[s]] can be constructed
for all s.

Definition 8. A term/constraint pair (t, ϕ) is an R,E constraint variant of
term s if sθ≈R∪Et for all solutions θ of ϕ. A complete set of R,E constraint
variants of s, denoted [[s]]c, is a set of R,E constraint variants of s such that:

1. for all (t, ϕ) ∈ [[s]]c and θ ∈ Sol(ϕ), sθ
∗→ t with t in normal form, and

2. For all reduced substitutions σ and reduced terms s′ such that sσ
∗→ s′, there

exists a pair (t, ϕ) ∈ [[s]]c and a substitution θ ∈ Sol(ϕ) such that σ can be
extended to θ and tθ≈Es′.

R,E has the Finite Constraint Property (FCP ) if a finite [[s]]c can be con-
structed for all s.

Theorem 5. If BNR is complete for R then R,E has the FCP .

Proof. Saturate a term s under BNR. Then [[s]]c is the set of all pairs (t | ϕ)
such that BNR produces t | ϕ. ��

The inverse of the above theorem is not necessarily true. But the inverse of
the below corollary is true, as shown by the results of this paper.
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Corollary 1. Let R be a finite rewrite system. If BNR is complete for R, and
unification modulo E is finitary, then R,E has the FV P .

Theorem 6. Let R be a finite equational rewrite system. If R,E has the FV P
then R has a finite saturation under Parallel and Forward Overlap.

Proof. We definite a rewrite system VR as follows:

VR = {sθ → s′ | s → t ∈ R, (s′, θ) ∈ [[s]] and sθ is an innermost redex}

Since R,E has the finite variant property, VR is finite.
Let R∗ be a (possibly infinite) saturation of R. Then R∗ is IR1. This means

that every innermost redex can be reduced to normal form in one step in R∗.
Consider some sθ → s′ in VR. Then sθ is reducible to its normal form s′ in one
step in R∗. So there is a u → v ∈ R∗ and a substitution ρ such that uρ≈E sθ
and vρ≈E s′. This means there is a finite set V ′

R ⊆ R∗ such that all members of
VR are subsumed by some member of V ′

R, and therefore every innermost redex
can be rewritten to normal form in one step by a member of V ′

R. So V ′
R is IR1.

By definition, terms have the same normal form in V ′
R as they do in R.

Since V ′
R is finite, all rules from V ′

R will appear in finite time in the saturation
of R. At that time, the set of rules will be IR1, so saturated under Parallel and
Forward Overlap. ��

7 Examples of Equational Theories

In this section, we consider a few examples of equational theories, and show how
the E-Parallel rule is adapted for those theories.

First, consider the empty theory. Since the E-Parallel rule requires an equa-
tional axiom, it does not apply to the empty theory. Therefore, if R is convergent
modulo E then BN is complete for R, and BNR is complete for R if R is satu-
rated under Forward Overlap.

Now we consider AC, the theory of Associativity and Commutativity. When
we instantiate the E-Parallel rule to AC, we get the following inference rule.

AC-Parallel

u2 + x → w p + s → r
(u2 + x)σ → (wσ)↓

where

1. u2 + x → w or x + u2 → w is in R
2. p + s → r ∈ R
3. x is a variable which appears in w
4. σ = [x �→ p + s] or [x �→ p + s + y] for a fresh variable y

We show that this inference rule is correct.
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Theorem 7. AC-Parallel is an instance of E-Parallel for AC.

Proof. Using the notation of the E-Parallel rule, we know that since l appears
on the left hand side of a rewrite rule, it cannot be a variable. So it must be the
sum of two terms, since it must unify with a nonvariable position of one side
of an equation from AC. This justifies p + s → r as the right premise of the
AC-Parallel inference rule. Since p + s must unify with a strict subterm of an
AC equation, we can assume wlog that p+ s unifies with x1 +y1 of the equation
(x1 + y1) + z1 ≈ x1 + (y1 + z1).

The left hand side of the left premise of the inference rule must be of the
form u2 + x since it is not a variable, it is unifiable with one side of an equation
from AC, and it must contain the variable x, since t and therefore s contains the
variable x. So u2 + x unifies with (x1 + y1) + z1. Let σ ∈ CSUAC(p + s≈?

ACx1 +
y1, u2 + x≈?

AC(x1 + y1) + z1).
(p + s)σ must be AC-equivalent to a subterm of xσ by Condition 6 of the

E-Parallel rule. If (p+ s)σ is AC-equivalent to a strict subterm of xσ then xσ =
(p+ s+ y)σ for some fresh variable y. Since (p+ s)σ≈AC(x1 + y1)σ, this implies
that u2σ+yσ = z1σ. Then (u2+x)σ≈AC((x1+y1)+z1)σ≈AC((p+s)σ+u2σ+yσ).

A similar, but slightly simpler argument holds if xσ =AC (p + s)σ. ��
In practice, AC-Parallel inferences are usually redundant if u2 is not a sum.
We now give an A-Parallel rule for the theory of Associativity.

A-Parallel

u1 + x + u2 → w p + s → r
(u1 + x + u2)σ → (wσ)↓

where

1. u1 + x + u2 → w ∈ R
2. p + s → r ∈ R
3. x is a variable which appears in w
4. σ = [x �→ p + s] or [x �→ p + s + y] for a fresh variable y

Theorem 8. A-Parallel is an instance of E-Parallel for Associativity.

Proof. As in the AC case, using the notation from the E-Parallel rule, we know
that since l appears on the left hand side of a rewrite rule, it cannot be a variable.
So it must be the sum of two terms, since it must unify with a a nonvariable
position of one side of an equation from A. This justifies p + s → r as the right
premise of the A-Parallel inference rule. Since p + s must unify with a strict
subterm of an A equation, we can assume that p + s either unifies with y1 + z1
of the equation x1 + (y1 + z1)≈(x1 + y1) + z1.

Let s → t be the left premise of if the inference rule. s is not a variable but
must contain a variable x, and it is unifiable with one side of an equation from A.
So s unifies with x1+(y1+z1). Let σ ∈ CSUA(p+s≈?

Ay1+z1, s≈?
Ax1+(y1+z1)).
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Suppose s is of the form u2+x. (p+s)σ must be A-equivalent to a subterm of
xσ. Suppose that xσ =A (p + s)σ. Since (p + s)σ≈A(y1 + z1)σ, then u2σ = x1σ.
Then (u2+x)σ≈A(x1+(y1+z1))σ≈Au2σ+(p+s)σ, which is of the form t1+ t2.
If t2 contains pσ + sσ as part of its sum, then t2 is reducible, and t1 + t2 is
reducible below the root. Suppose t2 does not contain pσ + sσ. Then t1 must
contain u2σ. But since R is convergent modulo A, pσ+sσ+ t3 must be reducible
for any term t3. Therefore t1 is reducible and t1 + t2 is again reducible below the
root. In either case, the inference is redundant. If (p + s)σ is A-equivalent to a
strict subterm of xσ, the argument is identical. It is also an identical argument
if s is of the form x + u2.

Now suppose s is of the form u1 + x + u2. The argument here is the same as
the argument for the AC case. ��

8 Examples of Rewrite Systems

In this section we apply our results to some rewrite systems that are convergent
modulo AC or A or modulo two AC operators.

Example 4. Consider the example from the introduction. If we apply Parallel to
this theory, we create two new rules: a+a+b+b → 0 and a+a+b+b+x → x. All
other Parallel inferences are redundant, and Forward Overlap cannot be applied.
So this rewrite system is now saturated by Parallel and Forward Overlap, and
BNR is complete and terminating.

Example 5. Let R = {a + b → c, a + b + x → c +x} where + is AC. This cannot
be finitely saturated under Parallel. It creates all possible rules of the following
forms: {an + bn → cn, an + bn + x → cn + x}. We use an as an abbreviation for
a sum of n occurrences of a.

None of these rules are redundant. Since this rewrite system cannot be finitely
saturated under Parallel, it does not have the Finite Variant Property. It is inter-
esting that such simple rewrite systems do not have the finite variant property,
but much more complicated rewrite systems sometimes do.

Example 6. The theory of Exclusive OR satisfies Associativity, Commutativity,
Unit and Nilpotence. It consists of the following rewrite rules, modulo AC of +.

1. x + x → 0 2. x + 0 → x 3. x + x + y → y

Every application of Parallel is redundant in this theory. For example, a
Parallel inference between Rule 3 and Rule 2 gives x + x + x′ + 0 → x′. Every
AC-equivalent of x + x + x′ + 0 is reducible below the root. A Parallel inference
between Rule 3 and Rule 1 results in x + x + x′ + x′ → 0. Every AC-equivalent
of x+x+x′ +x′ is reducible below the root, except for (x+x′)+(x+x′), which
is reducible at the root by a right reducible instance of x + x → 0. Similarly for
all applications of Parallel. There are no instances of Forward Overlap.

Example 7. Consider the rewrite presentation of Abelian Groups from Lankford,
given in the Comon/Delaune paper [5], where ∗ is an AC operator.
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1. x ∗ 1 → x
2. (x−1)−1 → x
3. 1−1 → 1
4. (x−1 ∗ y)−1 → y−1 ∗ x
5. x ∗ x−1 → 1

6. x ∗ (x−1 ∗ y) → y
7. x−1 ∗ y−1 → (x ∗ y)−1

8. x−1 ∗ (y−1 ∗ z) → (y ∗ x)−1 ∗ z
9. (x ∗ y)−1 ∗ x → y−1

10. (x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z

All applications of Parallel are redundant and there are two applications of
Forward Overlap that are not redundant. A Forward Overlap between Rule 10
and Rule 7 gives (x ∗ y)−1 ∗ (y ∗ z−1) → (z ∗ x)−1. A Forward Overlap between
Rule 10 and Rule 8 gives (x ∗ y)−1 ∗ (y ∗ z−1) ∗ w → (z ∗ x)−1 ∗ w.

It can be checked that when these two new rules are added, the rewrite
system is saturated under Parallel and Forward Overlap.

Example 8. Here we consider a homomorphism from an AC operator to another
AC operator. Notice this is not an endomorphism as is often considered, because
the binary operator on the left hand side is not the same as the binary operator on
the right hand side. Let R = {h(x)∗h(y) → h(x+y), h(x)∗h(y)∗z → h(x+y)∗z}
where + and ∗ are both AC symbols.

There are many applications of Parallel, and Forward Overlap. One of the
applications of Parallel gives h(x) ∗ h(y) ∗ h(u) ∗ h(v) → h(x + y + u + v).
Every equivalent instance can be rewritten below the root. Similarly, the other
applications of Parallel and the applications of Forward Overlap derive rules
where all equivalent instances of the left hand side can be rewritten below the
root. So all Parallel and Forward Overlap rules are redundant. Therefore the two
rules above are saturated under Parallel and Forward Overlap.

Example 9. Consider the homomorphism theory over AC, where the binary
operator is the same on both sides. Let R = {h(x) ∗ h(y) → h(x ∗ y), h(x) ∗
h(y)∗z → h(x∗y)∗z}. R is saturated under Parallel, for the same reason as the
other homomorphism theory. But it cannot be finitely saturated under Forward
Overlap. Therefore, BN is complete for this theory, but BNR cannot be made
complete.

We could flip the order of the rules in this example. We would get R =
{h(x ∗ y) → h(x) ∗ h(y)}. Since the top symbol on the left hand side is not
AC, there are no extensions or Parallel inferences. So BN is complete. But this
theory also cannot be saturated by Forward Overlap.

Even though Associative Unification is infinitary, we can still represent them
with a constraint. Even when we cannot list out all the unifiers we can still
give a constraint representing them. Associative constraints are decidable, so we
can decide unification in theories that are closed under Parallel and Forward
Overlap. This is an advantage over the Finite Variant Property, which does not
allow infinitary theories, so it does not cover Associativity.

Example 10. Consider the theory AU of an associative operator with a unit, as
given by R = {x+0 → x, 0+x → x} . There are no applications of Parallel and
Forward Overlap. So it is saturated under Parallel and Forward Overlap.
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9 Conclusion

Basic Narrowing modulo an equational theory is known to be incomplete for
E-convergent rewrite systems R [5]. We defined an inference rule called Parallel,
and showed that if R is saturated by Parallel then Basic Narrowing is complete.
If R is also saturated by Forward Overlap, then BNR, a restricted form of Basic
Narrowing, is complete. Since BNR always terminates, this gives a decision pro-
cedure for R∪E unification, which runs in NP time if E-unification is decidable
in NP . If E-unification is finitary, we can also produce a complete set of unifiers.

Since Basic Narrowing was shown to be incomplete, recent research on nar-
rowing modulo E has focused on Variant Narrowing [9], which works if R,E has
the Finite Variant Property. We show that R has the Finite Variant Property
modulo E if and only if R can be finitely saturated by Parallel and Forward
Overlap wrt E, and the finite saturation of R makes BNR complete modulo E.

The work on the Finite Variant Property may deal with many sorted/order
sorted theories [12]. We see no issues in extending our work to cover order sorted
theories, but that is left for future work. On the other hand, we allow theories
where E-unification is infinitary such as Associativity, while the Finite Variant
Property does not cover that. We have generalized the Finite Variant Property
to something called the Finite Constraint Property, which we believe would
also allow Variant Narrowing to deal with infinitary equational theories. If E is
infinitary, it may not be possible to saturate R; but it can be saturated in cases
that do not require infinitary unification. We give the example of Associativity
with a unit in this paper.

For future work, we will extend BNR to handle sorts. We also think there
would not be a problem to extend our results to unfailing completion and full
first order theorem proving. We have given some examples in this paper, like
Exclusive OR and Abelian groups. We would like to find other interesting and
practical theories where BNR gives a decision procedure.
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Abstract. The notion of normal forms is ubiquitous in various equiva-
lent transformations. Confluence (CR), one of the central properties of
term rewriting systems (TRSs), concerns uniqueness of normal forms. Yet
another such property, which is weaker than confluence, is the property
of unique normal forms w.r.t. conversion (UNC). Recently, automated
confluence proof of TRSs has caught attentions; some powerful conflu-
ence tools integrating multiple methods for (dis)proving the CR property
of TRSs have been developed. In contrast, there have been little efforts
on (dis)proving the UNC property automatically yet. In this paper, we
report on a UNC prover combining several methods for (dis)proving the
UNC property. We present an equivalent transformation of TRSs pre-
serving UNC, as well as some new criteria for (dis)proving UNC.

1 Introduction

The notion of normal forms is ubiquitous in various equivalent transformations—
normal forms are objects that cannot be transformed further. A crucial issue
around the notion of normal forms is that whether they are unique so that
normal forms (if exist) can represent the equivalence classes of objects. For this,
the notion of confluence (CR), namely that s

∗← ◦ ∗→ t implies s
∗→ ◦ ∗← t

for all objects s and t, is most well-studied. Here, ∗→ is the reflexive transitive
closure of the equivalent transformation →, and ◦ stands for the composition. In
term rewriting, various methods for proving confluence of term rewriting systems
(TRSs) have been studied (see e.g. slides of [20] for a survey). Yet another such
a property is the property of unique normal forms w.r.t. conversion (UNC)1,
namely that two convertible normal forms are identical, i.e. s

∗↔ t with normal
forms s, t implies s = t. In term rewriting, famous examples that are UNC but not

1 The uniqueness of normal forms w.r.t. conversion is also often abbreviated as UN
in the literature; here, we prefer UNC to distinguish it from a similar but different
notion of unique normal forms w.r.t. reduction (UNR), following the convention
employed in CoCo (Confluence Competition).
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CR include TRSs consisting of S,K,I-rules for combinatory logic supplemented
with various pairing rules [13,22], whose non-CR have been shown in [12].

It is undecidable whether R is UNC for a given TRS R in general. However, it
is known that the UNC property is decidable for left-linear right-ground TRSs [6]
and for shallow TRSs [17]. Another class for which the UNC property is decidable
is terminating TRSs, for which the CR property and the UNC property coincide
(e.g. [7]). Some classes of TRSs having the UNC property are also known: non-ω-
overlapping TRSs [10] and non-duplicating weight-decreasing joinable TRSs [21].
Another important topic on the UNC property is modularity. It is known that the
UNC property is modular for persistent decomposition [2] and layer-preserving
decomposition [1]. These results allow us to use the divide-and-conquer approach
for (dis)proving the UNC property. Compared to the CR property, however, not
much has been studied on the UNC property in the field of term rewriting.

Recently, automated confluence proof of TRSs has caught attentions lead-
ing to investigations of automatable methods for (dis)proving the CR property
of TRSs; some powerful confluence tools have been developed as well, such as
ACP [3], CSI [14], Saigawa [11] for TRSs, and also tools for other frameworks
such as conditional TRSs and higher-order TRSs. This leads to the emergence
of the Confluence Competition (CoCo)2, yearly efforts since 2012. In contrast,
there have been little efforts on (dis)proving the UNC property automatically.
Indeed, there are few tools that are capable of (dis)proving the UNC property;
furthermore, only few UNC criteria have been elaborated in these tools.

In this paper, we report on a UNC prover comprising multiple methods for
(dis)proving the UNC property and integrating them in a modular way. We
present new automated methods to prove or disprove the UNC property; these
methods enabled our tool to win the UNC category of CoCo 2018.

The rest of the paper is organized as follows. After introducing necessary
notions and notations in Sect. 2, we first revisit the conditional linearization
technique for proving UNC, and obtain new UNC criteria based on this approach
in Sect. 3. In Sect. 4, we present a slightly generalized version of the critical pair
criterion presented in the paper [21], and report an automation of the criterion.
In Sect. 5, we present a new method for proving or disproving UNC. We show an
experiment of the presented methods in Sect. 6. In Sect. 7, we report our prover
ACP which supports the presented methods and integrates them based on the
modularity results. Section 8 concludes.

2 Preliminaries

We now fix notions and notations used in the paper. We assume familiarity with
basic notions in term rewriting (e.g. [4]).

We use � to denote the multiset union and N the set of natural numbers.
A sequence of objects a1, . . . , an is written as a. Negation of a predicate P is
denoted by ¬P . The composition of relation R and S is denoted by R ◦ S.

2 http://project-coco.uibk.ac.at/.

http://project-coco.uibk.ac.at/
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Let → be a relation on a set A. The reflexive transitive (reflexive, symmetric,
equivalent) closure of the relation → is denoted by ∗→ (resp. =→, ↔, ∗↔). The set
NF of normal forms w.r.t. the relation → is given by NF = {a ∈ A | a → b for
no b ∈ A}. The relation → has unique normal forms w.r.t. conversion (denoted
by UNC(→)) if a

∗↔ b and a, b ∈ NF imply a = b. The relation → is confluent
(denoted by CR(→)) if ∗← ◦ ∗→ ⊆ ∗→ ◦ ∗←. When we consider two relations →1

and →2, the respective sets of normal forms w.r.t. →1 and →2 are denoted by
NF1 and NF2. The following proposition, which is proved easily, is a basis of the
conditional linearization technique, which will be used in Sects. 3 and 4.

Proposition 1 ([13,22]). Suppose (1) →0 ⊆ →1, (2) CR(→1), and (3) NF0 ⊆
NF1. Then, UNC(→0).

The set of terms over the set F of fixed-arity function symbols and denumer-
able set V of variables is denoted by T(F ,V). The set of variables in a term t is
denoted by V(t). A term t is ground if V(t) = ∅. We abuse the notation V(t) and
denote by V(e) the set of variables occurring in any sequence e of expressions.
The subterm of a term t at a position p is denoted by t|p. The root position is
denoted by ε. A context is a term containing a special constant � (called hole). If
C is a context containing n-occurrences of the hole, C[t1, . . . , tn]p1,...,pn

denotes
the term obtained from C by replacing holes with t1, . . . , tn at the positions
p1, . . . , pn. Here, subscripts p1, . . . , pn may be abbreviated if it can be remained
implicit. The expression s[t1, . . . , tn]p1,...,pn

denotes the term obtained from s
by replacing subterms at the positions p1, . . . , pn with terms t1, . . . , tn respec-
tively. We denote by |t|x the number of occurrences of a variable x in a term t.
Again, we abuse the notation |t|x and denote by |e|x the number of occurrences
of a variable x in any sequence of expressions e. A term t is linear if |t|x = 1
for any x ∈ V(t). A substitution σ is a mapping from V to T(F ,V) with finite
dom(σ) = {x ∈ V | σ(x) 
= x}. Each substitution is identified with its homomor-
phic extension over T(F ,V). For simplicity, we often write tσ instead of σ(t). A
most general unifier σ of terms s and t is denoted by mgu(s, t).

An equation is a pair 〈l, r〉 of terms, which is denoted by l ≈ r. When we
do not distinguish the lhs and rhs of the equation, we write l ≈̇ r. We identify
equations modulo renaming of variables. For a set or sequence Γ of equations, we
denote by Γσ the set or the sequence obtained by replacing each equation l ≈ r
by lσ ≈ rσ. An equation l ≈ r satisfying l /∈ V and V(r) ⊆ V(l) is a rewrite rule
and written as l → r. A rewrite rule l → r is linear if l and r are linear terms;
it is left-linear (right-linear) if l (resp. r) is a linear term. A rewrite rule l → r
is non-duplicating if |l|x ≥ |r|x for any x ∈ V(l). A term rewriting system (TRS,
for short) is a finite set of rewrite rules. A TRS is linear (left-linear, right-linear,
non-duplicating) if so are all rewrite rules. A rewrite step of a TRS R (a set Γ
of equations) is a relation →R (resp. ↔Γ ) over T(F ,V) defined by s →R t iff
s = C[lσ] and t = C[rσ] for some l → r ∈ R (resp. l ≈̇ r ∈ Γ ) and context C and
substitution σ. The position p such that C|p = � is called the redex position of
the rewrite step, and we write s →p,R t to indicate the redex position explicitly.
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A rewrite sequence is (finite or infinite) consecutive applications of rewrite steps.
A rewrite sequence of the form t1 R← t0 →R t2 is called a local peak.

Let l1 → r1 and l2 → r2 be rewrite rules such that V(l1) ∩ V(l2) = ∅. Let
σ = mgu(l1, l2|p) with l2|p /∈ V. A local peak l2[r1]pσ p,R← l2σ →ε,R r2σ is
called a critical peak of l1 → r1 over l2 → r2, provided that p 
= ε or (l1 → r1) 
=
(l2 → r2). The pair 〈l2[r1]pσ, r2σ〉 is called a critical pair in R. It is overlay if
p = ε; it is inner-outer if p 
= ε. The set of (overlay, inner-outer) critical pairs
from rules in a TRS R is denoted by CP(R) (resp. CPout(R), CPin(R)).

Let l ≈ r be an equation and let Γ be a finite sequence of equations. An
expression of the form Γ ⇒ l ≈ r is called a conditional equation. Conditional
equations are also identified modulo renaming of variables. If l /∈ V, it is a
conditional rewrite rule and written as l → r ⇐ Γ . The sequence Γ is called the
condition part of the rule.

A conditional rewrite rule l → r ⇐ Γ is linear (left-linear) if so are rewrite
rule l → r. A finite set of conditional rewrite rules is called a conditional term
rewriting system (CTRS, for short). A CTRS is linear (left-linear) if so are
all rules. A CTRS R is said to be of type 1 if V(Γ ) ∪ V(r) ⊆ V(l) for all
l → r ⇐ Γ ∈ R.

Let l1 → r1 ⇐ Γ1 and l2 → r2 ⇐ Γ2 be conditional rewrite rules such that
w.l.o.g. V(l1, r1, Γ1)∩V(l2, r2, Γ2) = ∅. Let σ = mgu(l1, l2|p) with l2|p /∈ V. Then
Γ1σ, Γ2σ ⇒ 〈l2[r1]pσ, r2σ〉 is called a conditional critical pair (CCP, for short),
provided that p 
= ε or (l1 → r1 ⇐ Γ1) 
= (l2 → r2 ⇐ Γ2). Here, Γ1σ, Γ2σ is the
juxtaposition of sequences Γ1σ and Γ2σ. It is overlay if p = ε; it is inner-outer
if p 
= ε. The set of (overlay, inner-outer) CCPs from rules in a CTRS R is
denoted by CCP(R) (resp. CCPout(R), CCPin(R)). A CTRS R is orthogonal if
it is left-linear and CCP(R) = ∅.

In this paper, we deal with semi-equational CTRSs. The conditional rewrite
step →R =

⋃
n∈N

→(n)
R of a semi-equational CTRS R is given via auxiliary

relations →(n)
R (n ≥ 0) defined like this: →(0)

R = ∅, →(n+1)
R = {〈C[lσ], C[rσ]〉 |

l → r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R,∀i (1 ≤ i ≤ k). siσ
∗↔R

(n)
tiσ)}. The rank of a

conditional rewrite step s →R t is the least n such that s →(n)
R t.

Let R be a TRS or CTRS. The set of normal forms w.r.t. →R is written as
NF(R). A (C)TRS R is UNC (CR) if UNC(→R) (resp. CR(→R)) on the set
T(F ,V). Let E be a set or sequence of equations or rewrite rules. We denote ≈E
the congruence closure of E . We write �E l ≈ r if l

∗↔E r. For sets or sequences
Γ and Σ of equations, we write �E Σ if �E l ≈ r for all l ≈ r ∈ Σ, and Γ �E Σ
if �E Γσ implies �E Σσ for any substitution σ.

A TRS R is said to be right-reducible if r /∈ NF(R) for all l → r ∈ R.
Although it is straightforward, we did not noticed the following claim having
appeared in the literature:

Proposition 2. Right-reducible TRSs are UNC.

Example 1 (Cops �126 ). Let R = {f(f(x, y), z) → f(f(x, z), f(y, z))}. The
state of the art confluence tools fail to prove confluence of this example. However,



334 T. Aoto and Y. Toyama

it is easy to see R is right-reducible, and thus, the UNC property is easily
obtained automatically.

3 Conditional Linearization Revisited

In this section, we revisit the conditional linearization technique.

3.1 Conditional Linearization

A conditional linearization is a translation from TRSs to CTRSs which elimi-
nates non-left-linear rewrite rules, say f(x, x) → r, by replacing them with a
corresponding conditional rewrite rules, such as f(x, y) → r ⇐ x ≈ y. Formally,
let l = C[x1, . . . , xn] with all variable occurrences in l displayed (i.e. V(C) = ∅).
Note here l may be a non-linear term and some variables in x1, . . . , xn may be
identical. Let l′ = C[x′

1, . . . , x
′
n] where x′

1, . . . , x
′
n are mutually distinct fresh

variables and let δ be a substitution such that δ(x′
i) = xi (1 ≤ i ≤ n) and

dom(δ) = {x′
1, . . . , x

′
n}. A conditional rewrite rule l′ → r′ ⇐ Γ is a conditional

linearization of a rewrite rule l → r if r′δ = r and Γ is a sequence of equations
xi ≈ xj (1 ≤ i, j ≤ n) such that x′

i ≈Γ x′
j iff x′

iδ = x′
jδ holds for all 1 ≤ i, j ≤ n,

where ≈Γ is the congruence closure of Γ . A conditional linearization of a TRS R
is a semi-equational CTRS (denoted by RL) obtained by replacing each rewrite
rule with its conditional linearization. We remark that any result of conditional
linearization is a left-linear CTRS of type 1.

Conditional linearization is useful for showing the UNC property of non-left-
linear TRSs. The key observation is CR(RL) implies UNC(R). For this, we use
Proposition 1 for →0 := →R and →1 := →RL . Clearly, →R ⊆ →RL , and thus
the condition (1) of Proposition 1 holds. Suppose CR(RL). Then, one can easily
show that NF(R) ⊆ NF(RL) by induction on the rank of conditional rewrite
steps. Thus, the condition (2) of Proposition 1 implies its condition (3). Hence,
CR(RL) implies UNC(R).

Now, for semi-equational CTRSs, the following confluence criterion is known.

Proposition 3 ([5,15]). Orthogonal semi-equational CTRSs are confluent.

A TRS R is strongly non-overlapping if CCP(RL) = ∅. Hence, it follows:

Proposition 4 ([13,22]). Strongly non-overlapping TRSs are UNC.

This proposition is subsumed by the UNC of non-ω-overlapping TRSs [10].

3.2 UNC by Conditional Linearization

We now give some simple extensions of Proposition 4 which are easily incorpo-
rated from [8], but does not fall within the class of non-ω-overlapping TRSs.
For this, let us recall the notion of parallel rewrite steps. A parallel rewrite
step s −→� R t is defined like this: s −→� R t iff s = C[l1σ1, . . . , lnσn] and
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t = C[r1σ1, . . . , rnσn] for some rewrite rules l1 → r1, . . . , ln → rn ∈ R and
context C and substitutions σ1, . . . , σn (n ≥ 0). Let us write Γ �R u → v if
�R Γσ implies uσ →R vσ for any substitution σ. We define Γ �R u −→� R v,
etc. analogously.

The following notion is a straightforward extension of the corresponding
notion in [8,19].

Definition 1. A semi-equational CTRS R is parallel-closed if (i) Γ �R u −→� v

for any inner-outer CCP Γ ⇒ 〈u, v〉 of R, and (ii) Γ �R u −→� ◦ ∗← v for any
overlay CCP Γ ⇒ 〈u, v〉 of R.

We now come to our first extension of Proposition 4, which is proved in a
way very similar to the one for TRSs.

Theorem 1. Parallel-closed semi-equational CTRSs of type 1 are confluent.

Corollary 1. A TRS R is UNC if RL is parallel-closed.

Example 2. Let R = {@(@(@(S, x), y), z) → @(@(x, z),@(y, z)), @(@(K,x), y)
→ x, @(I, x) → x, @(@(D,x), x) → x, app(K,x) → @(I, x), app(x,K) → x}.
Since R is non-terminating, non-shallow, and non-right-ground, previous decid-
ability results for UNC does not apply. Furthermore, since R is overlapping and
duplicating, previous sufficient criteria for UNC does not apply. Also, previous
modularity results for UNC does not properly decompose R. Note that the TRS
consisting of the first 4 rules is a famous non-confluent example ([12]); one can
prove that R is non-confluent in a similar way. We have CCPin(RL) = ∅ and
CCPout(RL) = {∅ ⇒ 〈@(I,K),K〉, ∅ ⇒ 〈K,@(I,K)〉}. Thus, RL is parallel-
closed, and from Corollary 1, it follows that R is UNC.

Next, we incorporate the strong confluence criterion of TRSs [8] to semi-
equational CTRSs in the similar way.

Definition 2. A semi-equational CTRS R is strongly closed if Γ �R u
∗→ ◦ =←

v and Γ �R u
=→ ◦ ∗← v for any CCP Γ ⇒ 〈u, v〉 of R.

Similar to the proof of Theorem 1, the following theorem is obtained in the
same way as in the proof for TRSs.

Theorem 2. Linear strongly closed semi-equational CTRSs of type 1 are con-
fluent.

Corollary 2. A TRS R is UNC if RL is linear and strongly closed.

We remark that the results of conditional linearization are not unique.
Although the rewrite relation →RL is independent of the results of conditional
linearization, the CCPs may be different depending on RL. Thus, the applica-
bility of Theorems 1 and 2 changes by the choice of RL. This is exhibited in the
next example, where the first 5 rules are from [8].
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Example 3. Let

R =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(F (x, y)) → F (H(R(x)), y) F (x,K(y, z)) → G(P (y), Q(z, x))
H(Q(x, y)) → Q(x,H(R(y))) Q(x,H(R(y))) → H(Q(x, y))
H(G(x, y)) → G(x,H(y)) K(x, x) → R(x)
P (y) → C C → K(C,C)
F (x,R(y)) → G(C,Q(y, x))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

There are two variants of conditional linearization of the sixth rule, namely
K(x1, x2) → R(x1) ⇐ x1 ≈ x2 and K(x1, x2) → R(x2) ⇐ x1 ≈ x2. Depend-
ing on the choice of the variants, one obtains two kinds of CCP—namely,
〈F (x,R(y)), G(P (y), Q(z, x))〉 and 〈F (x,R(z)), G(P (y), Q(z, x))〉. The former is
strongly closed as F (x,R(y)) → G(C,Q(y, x) ← G(P (y), Q(z, x)). On the other
hand, the latter is not. Actually, the CTRS obtained by the former linearization
is strongly closed, while the CTRS obtained by the latter linearization is not
strongly closed.

3.3 Automation

Even though proofs are rather straightforward, it is not at all obvious how the
conditions of Theorems 1 and 2 can be effectively checked.

Let R be a semi-equational CTRS. Let Γ ⇒ 〈u, v〉 be an inner-outer CCP
of R, and consider to check Γ �R u −→� v. For this, we construct the set
Red = {v′ | Γ �R u −→� v′} and check whether v ∈ Red . To construct the set
Red , we seek the possible redex positions in u. Suppose we found conditional
rewrite rules l1 → r1 ⇐ Γ1, l2 → r2 ⇐ Γ2 ∈ R and substitutions θ1, θ2 such that
u = C[l1θ1, l2θ2]. Then we obtain u −→� C[r1θ1, r2θ2] if �R Γ1θ1 and �R Γ2θ2, i.e.
s

∗↔R t for any equation s ≈ t in Γ1θ1 ∪ Γ2θ2. Now, for checking Γ �R u −→� v,
it suffices to consider the case �R Γ holds. Thus, we may assume s′ ∗↔R t′ for
any s′ ≈ t′ in Γ . Therefore, the problem is to check whether s′ ∗↔R t′ for s′ ≈ t′

in Γ implies s
∗↔R t for any equation s ≈ t in Γ1θ1 ∪ Γ2θ2.

To check this, we use the following sufficient condition: s ≈Γ t for all s ≈
t ∈ Γ1θ1 ∪ Γ2θ2. Since congruence closure of a finite set of equations is recursive
(e.g. [4]), this approximation is indeed automatable.

Example 4. Let

R =
{

P (Q(x)) → P (R(x)) ⇐ x ≈ A Q(H(x)) → R(x) ⇐ S(x) ≈ H(x)
R(x) → R(H(x)) ⇐ S(x) ≈ A

}

.

Then, we have CCP(R) = CCPin(R) = {S(x) ≈ H(x),H(x) ≈ A ⇒ 〈P (R(x)),
P (R(H(x)))〉}. In order to apply the third rule to have P (R(x)) −→� R
P (R(H(x))), we have to check the condition S(x) ∗↔R A. This holds, since
we can suppose S(x) ∗↔R H(x) and H(x) ∗↔R A. This is checked by S(x) ≈Σ A,
where Σ = {S(x) ≈ H(x),H(x) ≈ A}.
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Γ � {u ≈ v} �R u ∼0 v Γ �R t ∼0 t

Γ �R t ∼i s

Γ �R s ∼i t

Γ �R s ∼i t Σ �R t ∼j u

Γ � Σ �R s ∼i+j u

Γ �R s ∼i t

Γ �R C[s] ∼i C[t]
Γ1 �R u1 ∼i1 v1 · · · Γn �R un ∼in vn
⊔

j Γj �R 〈u1, . . . , un〉 ∼k 〈v1, . . . , vn〉 k =
∑

j ij

Γ �R s →i t

Γ �R s ∼i t

Γ �R 〈u1σ, . . . , unσ〉 ∼i 〈v1σ, . . . , vnσ〉
Γ �R C[lσ] →i+1 C[rσ]

l → r ⇐ u1 ≈ v1, . . . , un ≈ vn ∈ R

Fig. 1. Inference rules for ranked conversions and rewrite steps

4 Automating UNC Proof of Non-duplicating TRSs

In this section, we show a slight generalization of the UNC criterion of the
paper [21], and show how the criterion can be decided. First, we briefly capture
necessary notions and notations from the paper [21].

A left-right separated (LR-separated) conditional rewrite rule is l → r ⇐
x1 ≈ y1, . . . , xn ≈ yn such that (i) l /∈ V is linear, (ii) V(l) = {x1, . . . , xn} and
V(r) ⊆ {y1, . . . , yn} (iii) {x1, . . . , xn} ∩ {y1, . . . , yn} = ∅, and (iv) xi 
= xj for
all 1 ≤ i, j ≤ n such that i 
= j. Here, note that some variables in y1, . . . , yn

can be identical. A finite set of LR-separated conditional rewrite rules is called
an LR-separated conditional term rewriting system (LR-separated CTRS, for
short). An LR-separated conditional rewrite rule l → r ⇐ x1 ≈ y1, . . . , xn ≈ yn

is non-duplicating if |r|y ≤ |y1, . . . , yn|y for all y ∈ V(r).
The LR-separated conditional linearization translates TRSs to LR-separated

CTRSs: Let C[y1, . . . , yn] → r be a rewrite rule, where V(C) = ∅. Here, some
variables in y1, . . . , yn may be identical. Then, we take fresh distinct n vari-
ables x1, . . . , xn, and construct C[x1, . . . , xn] → r ⇐ x1 ≈ y1, . . . , xn ≈ yn as
the result of the translation. It is easily seen that the result is indeed an LR-
separated conditional rewrite rule. It is also easily checked that if the rewrite rule
is non-duplicating then so is the result of the translation (as an LR-separated
conditional rewrite rule). The LR-separated conditional linearization RS of a
TRS R is obtained by applying the translation to each rule.

It is shown in [21] that semi-equational non-duplicating LR-separated CTRSs
are confluent if their CCPs satisfy some condition, which makes the rewrite
steps ‘weight-decreasing joinable’. By applying the criterion to LR-separated
conditional linearization of TRSs, they obtained a criterion of UNC for non-
duplicating TRSs. Note that rewriting in LR-separated CTRSs is (highly) non-
deterministic; even reducts of rewrite steps at the same position by the same
rule are generally not unique, not only reflecting semi-equational evaluation of
the conditional part but also by the V(l)∩V(r) = ∅ for LR-separated conditional
rewrite rule l → r ⇐ Γ . Thus, how to effectively check the sufficient condition
of weight-decreasing joinability is not very clear, albeit it is mentioned in [21]
that the decidability is clear.

For obtaining an algorithm for computing the criterion, we introduce ternary
relations parameterized by an LR-separated CTRS R and n ∈ N as follows.
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Definition 3. The derivation rules for Γ �R u ∼n v and Γ �R u →n v are
given in Fig. 1. Here, n ∈ N and Γ is a multiset of equations.

Intuitively, Γ �R u ∼n v means that u
∗↔R v using the assumption Γ where

the number of rewrite steps is n in total (i.e. including those used in checking
conditions). Main differences to the relation ∼

Γ
in [21] are twofold:

1. Instead of considering a special constant •, we use an index of natural number.
The number of • corresponds to the index number.

2. Auxiliary equations in Γ are allowed in our notation of Γ �R u ∼n v (i.e. not
all equations in Γ need not be used). On the contrary, Γ in ∼

Γ
in [21] does

not allow auxiliary equations in Γ .

The former is useful to designing the effective procedure to check the UNC
criteria presented below. The latter is convenient to prove the satisfiability of
constraints on such expressions.

The following slightly generalizes the main result of [21].

Theorem 3. A semi-equational non-duplicating LR-separated CTRS R is
weight-decreasing joinable if for any CCP Γ ⇒ 〈s, t〉 of R, either (i) Γ �R
s ∼≤1 t, (ii) Γ �R s ↔2 t, or (iii) Γ �R s →i ◦ ∼j t with i + j ≤ 2 and
Γ �R t →i′ ◦ ∼j′ s with i′ + j′ ≤ 2.

Thus, non-duplicating TRSs R are UNC if all CCPs of RS satisfy some of
these (i)–(iii).

Thanks to our new formalization, decidability of the condition easily follows.

Theorem 4. The condition of Theorem 3 is decidable.

Proof. We show that each condition (i)–(iii) is decidable. Let Γ be a (finite)
multiset of equations, s, t terms, and s, t sequences of terms. The claim fol-
lows by showing the following series of sets are finite and effectively constructed
one by one: (a) SIM0(Γ, s) = {〈Σ, t〉 | Γ\Σ �R s ∼0 t}, (b) SIM0(Γ, s ) =
{〈Σ, t 〉 | Γ\Σ �R s ∼0 t }, (c) RED1(Γ, s, t) = {Σ | Γ\Σ �R s →1 t},
(d) SRS010(Γ, s, t) = {Σ | Γ\Σ �R s ∼0 ◦ →1 ◦ ∼0 t}, (e) SIM1(Γ, s, t) =
{Σ | Γ\Σ �R s ∼1 t}, (f) SIM1(Γ, s, t ) = {Σ | Γ\Σ �R s ∼1 t }, and (g)
RED2(Γ, s, t) = {Σ | Γ\Σ �R s →2 t}. ��
Example 5. Let

R =
{

f(x, x) → h(x, f(x, b)) f(g(y), y) → h(y, f(g(y), c(b)))
h(c(x), b) → h(b, b) c(b) → b

}

Since R is non-terminating, non-shallow, and non-right-ground, previous decid-
ability results for UNC does not apply. Furthermore, since R is overlapping and
duplicating, previous sufficient criteria for UNC does not apply. Also, previous
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modularity results for UNC does not properly decompose R. By conditional
linearization, we obtain

RS =

⎧
⎨

⎩

f(x1, x2) → h(x, f(x, b)) ⇐ x1 ≈ x, x2 ≈ x
f(g(y1), y2) → h(y, f(g(y), c(b))) ⇐ y1 ≈ y, y2 ≈ y
h(c(x), b) → h(b, b) c(b) → b

⎫
⎬

⎭
.

We have an overlay CCP Γ ⇒ 〈h(x, f(x, b)), h(y, f(g(y), c(b)))〉, where Γ =
{(a) : y1 ≈ y, (b) : y2 ≈ y, (c) : g(y1) ≈ x, (d) : y2 ≈ x}. (Another one is its
symmetric version.) Let s = h(y, f(g(y), c(b))) and t = h(x, f(x, b))). To check
the criteria of Theorem 3, we start computing SIM0(Γ, s) and SIM0(Γ, t). For
example, the former equals to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈{(a), (b), (c), (d)}, h(y, f(g(y), c(b)))〉 〈{(b), (c), (d)}, h(y1, f(g(y), c(b)))〉
〈{(b), (c), (d)}, h(y, f(g(y1), c(b)))〉 〈{(b), (d)}, h(y, f(x, c(b)))〉
〈{(a), (c), (d)}, h(y2, f(g(y), c(b)))〉 〈{(a), (c), (d)}, h(y, f(g(y2), c(b)))〉
〈{(a), (c)}, h(x, f(g(y), c(b)))〉 〈{(a), (c)}, h(y, f(g(x), c(b)))〉
〈{(c), (d)}, h(y1, f(g(y2), c(b)))〉 〈{(c), (d)}, h(y2, f(g(y1), c(b)))〉
〈{(c)}, h(y1, f(g(x), c(b)))〉 〈{(c)}, h(x, f(g(y1), c(b)))〉
〈{(d)}, h(y2, f(x, c(b)))〉 〈∅, h(x, f(x, c(b)))〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We now can check s ∼0 t does not hold by 〈Γ ′, t〉 ∈ SIM0(Γ, s) for no Γ ′.
To check Γ � s →1 t, we compute RED1(Γ, s, t). For this, we check there
exist a context C and substitution θ and rule l → r ⇐ Γ ∈ RS such that
s = C[lθ] and t = C[rθ]. In our case, it is easy to see RED1(Γ, s, t) = ∅.
Next to check Γ � s ∼1 t, we compute SRS010(Γ, s, t). This is done by, for
each 〈Γ ′, s′〉 ∈ SIM0(Γ, s), computing 〈Σ, t′〉 ∈ SIM0(Γ ′, t) and check there
exists Σ ∈ RED1(Σ′, s′, t′). In our case, for 〈∅, h(x, f(x, c(b)))〉 ∈ SIM0(Γ, s)
we have 〈∅, t〉 ∈ SIM0(∅, t), and ∅ ∈ RED1(∅, h(x, f(x, c(b))), t). Thus, we
know h(x, f(x, c(b))) →1 h(x, f(x, b)). Hence, for these overlay CCPs, we have
y1 ≈ y, y2 ≈ y, g(y1) ≈ x, y2 ≈ x �R h(y, f(g(y), c(b))) ∼1 h(x, f(x, b)). We
also have CCPin(RS) = { ∅ ⇒ 〈h(b, b), h(b, b)〉}. For this inner-outer critical
pair, it follows that �R h(b, b) ∼0 h(b, b) using 〈∅, h(b, b)〉 ∈ SIM0(∅, h(b, b)).
Thus, from Theorem 3, RS is weight-decreasing. Hence, it follows R is UNC.
We remark that, in order to derive �R h(b, b) ∼0 h(b, b), we need the reflexivity
rule. However, since the corresponding Definition of ∼ in the paper [21] lacks the
reflexivity rule, the condition of weight-decreasing in [21] (Definition 9) does not
hold for RS . A part of situations where the reflexivity rule is required is covered
by the congruence rule, and the reflexivity rule becomes necessary when there
exists a trivial critical pair such as above.

5 Equivalent Transformation for UNC

In this section, we present a transformational approach for proving and disprov-
ing UNC.
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noitanimilEnoitiddA
R

R ∪ {l → r} l /∈ NF(R), l ∗↔R r, V(r) ⊆ V(l)
R ∪ {l → r}

R l /∈ NF(R), l ∗↔R r

Reversing
R ∪ {l → r}

R ∪ {l → l, r → l} r /∈ NF(R ∪ {l → r}), V(l) ⊆ V(r)

Disproof-1 Disproof-2
R
⊥ l, r ∈ NF(R), l ∗↔R r, l �= r

R
⊥ r ∈ NF(R), l ∗↔R r, V(r) V⊆� (l)

Fig. 2. Inference rules for equivalent transformation and disproof

5.1 Equivalent Transformation and Disproof

Firstly, observe that the conditional linearization does not change the input TRSs
if they are left-linear. Thus, the technique has no effects on left-linear rewrite
rules. But, as one can easily see, it is not at all guaranteed that left-linear TRSs
are UNC.

Now, observe that a key idea in the conditional linearization technique is
that the CR property of an approximation of a TRS implies the UNC property
of the original TRS. The first method presented in this section is based on
the observation that one can also use the approximation other than conditional
linearization. To fit our usage, we now slightly modify Proposition 1 to obtain
the next two lemmas, whose proofs are easy.

Lemma 1. Suppose (1) →0 ⊆ →1 ⊆ ∗↔0 and (2) NF0 ⊆ NF1. Then, UNC(→0)
iff UNC(→1).

Lemma 2. Suppose (1) =↔0 = =↔1 and (2) NF0 = NF1. Then, UNC(→0) iff
UNC(→1).

These lemmas are made into first three transformation rules in Fig. 2.

Definition 4. Let R be a TRS. We write R � α if α is obtained by one of the
inference rules in Fig. 2.

The next lemma immediately follows from Lemmas 1 and 2.

Lemma 3. Let R be a TRS and l → r a rewrite rule.

1. Suppose l
∗↔R r and l /∈ NF(R). Then, UNC(R) iff UNC(R ∪ {l → r}).

2. Suppose r → l is a rewrite rule and r /∈ NF(R∪{l → r}). Then UNC(R∪{l →
r}) iff UNC(R ∪ {l → l, r → l}).

Applying Lemma 3 (1) to the Addition and Elimination rules, and
Lemma 3 (2) to the Reversing rules, we obtain:
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Theorem 5. Let R be a TRS and suppose R ∗� R′ 
= ⊥. Then, R′ is a TRS,
and UNC(R′) iff UNC(R).

Note that the relation � is not well-founded; we will present some strategies
for automation in the next subsection. We next show the correctness of the
Disproof-1/2 rules.

Theorem 6. Let R be a TRS and suppose R ∗� ⊥. Then ¬UNC(R).

Proof. Then we have R ∗� R′ � ⊥ for some R′. From Theorem 5, we have
UNC(R′) iff UNC(R). Thus, it remains to show ¬UNC(R′). Suppose R′ � ⊥
by Disproof-1. Then l

∗↔R′ r, l, r ∈ NF(R′), and l 
= r. By the definition of
UNC, R′ is not UNC. Suppose R′ � ⊥ by Disproof-2. Then s

∗↔R′ t ∈ NF(R′)
and x ∈ V(t) \ V(s). Take a fresh variable y and let t′ = t{x := y}. Clearly, from
t ∈ NF(R′) we have t′ ∈ NF(R′). By t′ ∗↔R′ s

∗↔R′ t, R′ is not UNC. ��

5.2 Automation

The correctness of equivalent transformation itself does not give us any hint
how to apply such transformations. Below, we give two procedures based on the
equivalent transformation.

First one employs the Reversing rule, the Elimination rule, and an ordering
> as a heuristic (not to loop).

Definition 5 (Rule reversing transformation). Let R be a TRS. We write
R ↪→ R′ if R′ = (R \ {l → r}) ∪ {l → l, r → l} for some l → r ∈ R such
that l < r, r /∈ NF(R) and r → l is a rewrite rule, or R′ = R \ {l → r} for
some l → r ∈ R such that l = r and l /∈ NF(R \ {l → r}). Any transformation
R ∗

↪→ R′ is called a rule reversing transformation.

It is easy to see that the relation ↪→ is well-founded, by comparing the num-
ber of increasing rules (i.e. l → r such that l < r) and the number of rules
lexicographically. The correctness follows from Theorem 5.

Theorem 7. Let R′ be a TRS obtained by a rule reversing transformation from
R. Then, UNC(R) iff UNC(R′).

Next, we consider constructing an approximation S of a TRS R by adding
auxiliary rules generated by critical pairs. To guide the procedure, we consider
two predicates ϕ and Φ such that the following confluence criterion holds:

Suppose that TRS S satisfies ϕ(S). If Φ(u, v) holds for all critical pairs
〈u, v〉 of S, then S has the CR property. (A)

Multiple criteria in this form are known: one can take ϕ(S) and Φ(u, v) as
‘S is left-linear’ and ‘〈u, v〉 is development-closed’, respectively [16] and as ‘S
is linear’ and ‘〈u, v〉 is strongly closed’, respectively [8]. The idea is that if one



342 T. Aoto and Y. Toyama

encounters a critical pair 〈u, v〉 for which Φ(u, v) does not hold, then (check
whether one can apply Disproof rules and) apply the equivalent transformation
so that Φ(u, v) is satisfied.

Definition 6 (UNC completion procedure).

Input: TRS R, predicates ϕ,Φ satisfying (A).
Output: UNC or NotUNC or Failure (or may diverge)

Step 1. Compute the set CP(R) of critical pairs of R.
Step 2. If Φ(u, v) for all 〈u, v〉 ∈ CP(R) and ϕ(R) then return UNC.
Step 3. Let S := ∅. For each 〈u, v〉 ∈ CP(R) with u 
= v for which Φ(u, v) does

not hold, do:
(a) If u, v ∈ NF(R), then exit with NotUNC.
(b) If u /∈ NF(R) and v ∈ NF(R), then if V(v) 
⊆ V(u) then exit with

NotUNC, otherwise update S := S ∪ {u → v}.
(c) If v /∈ NF(R) and u ∈ NF(R), then if V(u) 
⊆ V(v) then exit with

NotUNC, otherwise update S := S ∪ {v → u}.
(d) If u, v /∈ NF(R) then find w such that u

∗→R w (v ∗→R w), and V(w) ⊆
V(v) (resp. V(w) ⊆ V(v)). If it succeeds then update S := S∪{v → w}.

Step 4. If S = ∅ then return Failure; otherwise update R := R ∪ S and go back
to Step 1.

Again, the correctness of the UNC completion procedure follows immediately
from Theorems 5 and 6.

Theorem 8. The UNC completion procedure is correct, i.e. if the proce-
dure returns UNC then UNC(R), and if the procedure returns NotUNC then
¬UNC(R).

Example 6. Let R = {a → a, f(f(x, b), y) → f(y, b), f(b, y) → f(y, b), f(x, a) →
b}. Since R is non-terminating, non-shallow, and non-right-ground, previous
decidability results for UNC does not apply. Furthermore, since R is overlapping
and RL = R is non-confluent, previous sufficient criteria for UNC does not
apply. Also, previous modularity results for UNC does not properly decompose
R. Now, let us apply the UNC completion procedure to R using linear strongly
closed criteria for confluence. For this, take ϕ(R) as R is linear, and Φ(u, v) as
(u ∗→ ◦ =← v)∧(u =→ ◦ ∗← v). In Step 3, we find an overlay critical pair 〈f(a, b), b〉,
for which Φ is not satisfied. Since f(a, b) is not normal and b is normal, we go
to Step 3(b). Thus, we update R := R ∪ {f(a, b) → b}. Now, the updated R
is linear and strongly closed (and thus, R is confluent). Hence, the procedure
returns UNC at Step 2.

6 Implementation and Experiment

We have tested various methods presented so far. The methods used in our
experiment are summarized as follows.
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(ω) UNC(R) if R is non-ω-overlapping.
(pcl) UNC(R) if RL is parallel-closed.
(scl) UNC(R) if R is right-linear and RL is strongly closed.
(wd) UNC(R) if RS is non-duplicating and weight-decreasing joinable.
(sc) UNC completion using strongly closed critical pairs criterion.
(dc) UNC completion using development-closed critical pairs criterion.
(rr) UNC(R) if R is right-reducible.
(cp) ¬UNC(R) by adhoc search of a counterexample for UNC(R).
(rev) Rule reversing transformation, combined with other criteria above.

For the implementation of non-ω-overlapping condition, we used unification algo-
rithm over infinite terms in [9]. For (sc) and (dc), we approximate ∗→ by the
development step −→◦ (e.g. [16]) in Step 3(d). We employed as the heuristic
ordering > for (rev) the comparison in terms of size. For (cp), we use an adhoc
search based on rule reversing, critical pairs computation, and rewriting.

We tested on the 242 TRSs from the Cops (Confluence Problems) database3

of which no confluence tool has proven confluence nor terminating at the time
of experiment4. The motivation of using such testbed is as follows: If a confluent
tool can prove CR, then UNC is obtained by confluent tools. If R is terminating
then CR(R) iff UNC(R), and thus the result follows also from the result of
confluence tools. Thus, we here evaluate our UNC techniques on such testbed.

Table 1. Test on presented criteria

without (rev) (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp) all

YES 10 8 3 3 4/10/12 3/9/12 45 0 62

NO 0 0 0 0 24/49/59 24/49/59 0 68 87

YES+NO 10 8 0 0 28/59/71 27/58/71 45 68 149

timeout (60 s) 0 0 0 0 13/20/53 15/23/70 0 0 –

time (min) 0 0 0 0 13/21/60 16/25/79 0 2 –

with (rev) (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp) all

YES 6 4 1 1 26/44/47 26/37/41 45 0 75

NO 0 0 0 0 25/52/60 25/53/61 0 60 84

YES+NO 6 4 1 1 51/96/107 51/90/102 45 60 159

timeout (60 s) 0 0 0 3 14/19/47 14/19/60 0 0 –

time (min) 0 0 0 4 15/20/54 15/21/70 0 0 –

both (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp) all

YES+NO 10 8 3 3 53/102/112 52/96/106 45 68 171

In Table 1, we summarize the results. Our test is performed on a PC with
2.60 GHz cpu with 4G of memory. The column headings show the technique
3 Cops can be accessed from http://cops.uibk.ac.at/, which consists of 1137 problems

at the time of experiment.
4 This was obtained by a query ‘trs !confluent !terminating’ in Cops at the time

of experiment.

http://cops.uibk.ac.at/
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used. The number of examples for which UNC is proved (disproved) successfully
is shown in the row titled ‘YES’ (resp. ‘NO’). In the columns below (sc) and
(dc), we put l/n/m where each l, n,m denotes the scores for the 1-round (2-
rounds, 3-rounds) UNC completion. The columns below ’all ’ show the numbers
of examples succeeded in any of the methods.

The columns below the row headed ‘with (rev)’ are the results for which
methods are applied after the rule reversing transformation. The columns below
the row headed ‘both’ show the numbers of examples succeeded by each tech-
nique, where the techniques are applied to both of the original TRSs and the
TRSs obtained by the rule reversing transformation.

3 rounds UNC completions (sc), (dc) with rule reversing are most effective,
but they are also the most time consuming. Simple methods (rr), (cp) are also
effective for not few examples. Although there is only a small number of exam-
ples for which criteria based on conditional linearization are effective, but their
checks are fast compared to the UNC completions. Rule reversing (rev) is only
worth incorporated for UNC completions. For other methods, the rule reversing
make the methods less effective; for methods (ω), (pcl), (scl) and (wd), this is
because the rule reversing transformation generally increases the number of the
rules. In total, the UNC property of the 171 problems out of 242 problems have
been solved by presented methods. The details of the experiment are found in
http://www.nue.ie.niigata-u.ac.jp/tools/acp/experiments/frocos19/.

7 Tool

ACP originally intends to (dis)prove confluence of TRSs [3]. ACP integrates
multiple direct criteria for guaranteeing confluence of TRSs; it also incorpo-
rates several divide-and-conquer criteria. We have extended it to also deal with
(dis)proving the UNC property of TRSs.

Like its confluence proving counterpart, ACP first tries to decompose the
UNC problem of the given TRS into those of smaller components. For this, one
can use the following modularity results on the UNC property, where we refer
to [3] for the terminology:

Proposition 5 ([2]). Suppose {R1, . . . ,Rn} is a persistent decomposition of
R. Then,

⋃
i Ri is UNC if and only if so is each Ri.

Proposition 6 ([1]). Suppose {R1, . . . ,Rn} is a layer-preserving decomposition
of R. Then,

⋃
i Ri is UNC if and only if so is each Ri.

After possible decomposition, multiple direct criteria are tried for each com-
ponent. For the direct criteria, we have incorporated (ω), (pcl), (scl), (wd),
(rr), (cp) without rule reversing, and (sc)3 and (dc)3 with rule reversing. These
methods are tried one method after another. We also add yet another UNC check,
namely that after the Steps 1–3 of the UNC completion using development-closed
critical pairs criterion, the confluence check in ACP is performed.

Other tools that support UNC (dis)proving include CSI [14] which is a con-
fluence prover supporting UNC proof for non-ω-overlapping TRSs and a decision

http://www.nue.ie.niigata-u.ac.jp/tools/acp/experiments/frocos19/
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Table 2. Comparison of UNC tools

ACP ACP(direct) CSI FORT

YES 83 83 86 38
NO 92 92 65 34
time 62m 62m 78m 2m

35

8

1 012

238

ACP

FORT

CSI

33

25

1 00

331

ACP

FORT

CSI

procedure of UNC for ground TRSs (at the time of CoCo 20185), and FORT [18]
which implements decision procedure for first-order theory of left-linear right-
ground TRSs based on tree automata. Our new methods are also effective for
TRSs outside the class of non-ω-overlapping TRSs and that of left-linear right-
ground TRSs. We use the same testbed in the previous section, to compare our
tool with the latest versions of CSI (ver. 1.2.2) and FORT (ver. 2.1), also test
the effect of the divide-and-conquer criteria. The result is shown in the Table 2.

There is no example in the testbed that fails when decomposition techniques
are inactivated (ACP (direct)). For the next example, however, our tool succeeds
only if the decomposition techniques are activated.

Example 7. Let R = R1 ∪ R2, where R1 = {f(f(x, y), z) → f(f(x, z), f(y, z))}
and R2 = { @(@(@(S, x), y), z) → @(@(x, z),@(y, z)), @(@(K,x), y) → x,
@(I, x) → x, @(@(D,x), x) → x }. By the persistency decomposition, UNC(R)
follows UNC(R1) and UNC(R2). Since R1 is right-reducible, UNC(R1) holds.
Since R2 is non-ω-overlapping, UNC(R2) holds. Thus, one obtains UNC(R).

The techniques in the present paper mainly contributed to make our tool
ACP win the UNC category of CoCo 2018. The details of the competition can
be seen at http://project-coco.uibk.ac.at/2018/. The version of ACP for CoCo
2018 (ver. 0.62) is downloadable from http://www.nue.ie.niigata-u.ac.jp/tools/
acp/.

8 Conclusion

In this paper, we have studied automated methods for (dis)proving the UNC
property of TRSs. We have presented some new methods for (dis)proving the
UNC property of TRSs. Presented methods have been implemented in our tool
ACP based on divide-and-conquer criteria.

Acknowledgements. Thanks are due to the anonymous reviewers of the previous ver-
sions of the paper. This work is partially supported by JSPS KAKENHI No. 18K11158.

5 The recent version of CSI had been extended with some other techniques.

http://project-coco.uibk.ac.at/2018/
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Abstract. Derivational complexity of term rewriting considers the
length of the longest rewrite sequence for arbitrary start terms, whereas
runtime complexity restricts start terms to basic terms. Recently, there
has been notable progress in automatic inference of upper and lower
bounds for runtime complexity. We propose a novel transformation that
allows an off-the-shelf tool for inference of upper or lower bounds for
runtime complexity to be used to determine upper or lower bounds for
derivational complexity as well. Our approach is applicable to deriva-
tional complexity problems for innermost rewriting and for full rewriting.
We have implemented the transformation in the tool AProVE and con-
ducted an extensive experimental evaluation. Our results indicate that
bounds for derivational complexity can now be inferred for rewrite sys-
tems that have been out of reach for automated analysis thus far.

1 Introduction

Term rewrite systems (TRSs) are a classic computational model both for equa-
tional reasoning and for evaluation of programs with user-defined data structures
and recursion [5]. A widely studied question for TRSs is that of their complexity,
i.e., the length of their longest derivation (i.e., rewrite sequence) as a function of
the size of the start term of the derivation. From a program analysis perspective,
this corresponds to the worst-case time complexity of the TRS.

In the literature, commonly two distinct notions are considered for the set of
start terms. On the one hand, the derivational complexity [21] of a term rewrite
system considers arbitrary terms as start terms that need to be regarded, includ-
ing terms with several (possibly nested) function calls. This notion is inspired by
the notion of termination of a rewrite system, which also considers whether all
rewrite sequences from arbitrary start terms terminate. Derivational complexity
is a suitable measure for the number of rewrite steps needed for deciding the
word problem in first-order equational reasoning with the help of a terminat-
ing and confluent term rewrite system to rewrite both sides of the conjectured
equality to normal form.

On the other hand, the notion of runtime complexity [18] of a term rewrite
system restricts the set of start terms that are regarded to what is known as

c© Springer Nature Switzerland AG 2019
A. Herzig and A. Popescu (Eds.): FroCoS 2019, LNAI 11715, pp. 348–364, 2019.
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basic terms: intuitively, these are terms where a single function call is performed
on constructor terms (i.e., data objects) as arguments. The motivation for this
restriction comes from program analysis, where one is usually interested in the
running time of a function when it is invoked on data objects.

These notions have been particularly studied for term rewriting with arbi-
trary rewrite strategies (“full rewriting”) and for term rewriting restricted to
innermost rewrite strategies (“innermost rewriting”). The latter notion is closely
related to call-by-value evaluation in programming languages and λ-calculi.

Both for the derivational complexity and the runtime complexity of rewriting,
and both for innermost and full rewriting, fully automatic push-button tools
have been devised to determine asymptotic upper and lower bounds on the
derivational complexity and the runtime complexity of term rewriting. Examples
include the tools AProVE [14], CaT [23], Matchbox [34], and TcT [4].

However, as far as the author of this paper is aware, the two strands of
research on derivational and on runtime complexity have essentially stayed sep-
arate thus far. While an upper bound on derivational complexity also implies
an upper bound on runtime complexity and a lower bound on runtime complex-
ity also implies a lower bound on derivational complexity, these implied bounds
are seldom tight. A translation that would allow for applying tools for analy-
sis of runtime complexity to analysis of derivational complexity (or vice versa)
to infer potentially tight bounds is still missing. This paper aims to close this
gap. We propose a transformation between rewrite systems such that the run-
time complexity of the transformed rewrite system is the same as the derivational
complexity of the original rewrite system. This transformation is applicable both
for innermost rewriting and for full rewriting.

This paper is organized as follows. In Sect. 2, we give preliminaries on term
rewriting and on notions of complexity. Sect. 3 proposes our novel transforma-
tion (Definition 5) and proves its correctness (Theorems 12 and 14). In Sect. 4,
we discuss related work for complexity analysis of rewriting and for transfor-
mational approaches to analysis of rewrite systems. Sect. 5 provides a detailed
experimental evaluation of our contributions on a large standard benchmark set.
Sect. 6 concludes.

2 Preliminaries

In the following, we assume basic knowledge of term rewriting [5]. We recapit-
ulate (relative) term rewriting as well as the notions of derivational complexity
and runtime complexity.

Definition 1 (Signature, term, term rewriting, defined symbol, con-
structor symbol, basic term). We write T (Σ,V) for the set of terms over a
finite signature Σ and the set of variables V. For a term t, V(t) denotes the set of
variables occurring in t, and if t has the form f(t1, . . . , tn), we write root(t) = f .

A term rewrite system (TRS) R is a set of rules {�1 → r1, . . . , �n → rn}
with �i, ri ∈ T (Σ,V), �i �∈ V, and V(ri) ⊆ V(�i) for all 1 ≤ i ≤ n. Its rewrite
relation is given by s →R t iff there is a rule � → r ∈ R, a position π ∈ Pos(s),
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and a substitution σ such that s = s[�σ]π and t = s[rσ]π. Here, the term �σ is
called the redex of the rewrite step.

For two TRSs R and S, R/S is a relative TRS, and its rewrite relation
→R/S is →∗

S ◦ →R ◦ →∗
S , i.e., rewriting with S is allowed before and after each

R-step. We define the innermost rewrite relation by s i→R/S t iff s →∗
S s′ →R

s′′ →∗
S t for some terms s′, s′′ such that the proper subterms of the redexes of

each step with →S or →R are in normal form w.r.t. R ∪ S. We may write →R
instead of →R/∅ and i→R instead of i→R/∅.

For a relative TRS R/S, ΣR∪S
d = {root(�) | � → r ∈ R ∪ S} and ΣR∪S

c =
{f | f ∈ Σ occurs in some rule � → r ∈ R ∪ S} \ ΣR∪S

d are the defined (and
constructor, respectively) symbols of R/S. We write ΣR∪S = ΣR∪S

d 	 ΣR∪S
c .

A term f(t1, . . . , tk) is basic (for a given relative TRS R/S) iff f ∈ ΣR∪S
d and

t1, . . . , tk ∈ T (ΣR∪S
c ,V). We write T R/S

basic for the set of basic terms for a relative
TRS R/S.

In the following, ω is the smallest infinite ordinal, i.e., ω > n holds for all
n ∈ N, and for any P ⊆ N ∪ {ω}, sup P is the least upper bound of P , where
sup ∅ = 0.

Definition 2 (Size, derivation height, derivational complexity dc, run-
time complexity rc [18,21,37]). The size |t| of a term t is defined as |x| = 1
if x ∈ V and |f(t1, . . . , tk)| = 1 +

∑k
i=1|ti|, otherwise.

The derivation height of a term t w.r.t. a relation → is the length of the
longest sequence of →-steps starting with t, i.e., dh(t,→) = sup{e | ∃ t′ ∈
T (Σ,V). t →e t′} where →e denotes the eth iterate of →. If t starts an infi-
nite →-sequence, we write dh(t,→) = ω.

To define the intended complexity notions, we first introduce a generic com-
plexity function compl parameterized by a natural number n, a relation →, and
a set of start terms T : compl(n,→, T ) = sup{dh(t,→) | t ∈ T , |t| ≤ n}.

The derivational complexity function dcR/S maps any n ∈ N to the length
of the longest sequence of →R/S-steps starting with a term whose size is at
most n, i.e., dcR/S(n) = compl(n,→R/S , T (ΣR∪S ,V)). The innermost deriva-
tional complexity function idcR/S is defined analogously for innermost rewriting:
idcR/S(n) = compl(n, i→R/S , T (ΣR∪S ,V)).

The runtime complexity function rcR/S maps any n ∈ N to the length of the
longest sequence of →R/S-steps starting with a basic term whose size is at most
n, i.e., rcR/S(n) = compl(n,→R/S , T R/S

basic ). The innermost runtime complexity
function ircR/S is defined analogously: ircR/S(n) = compl(n, i→R/S , T R/S

basic ).

Our transformation will preserve and reflect derivation height precisely. How-
ever, many analysis techniques for derivational complexity and runtime com-
plexity of rewriting consider asymptotic behavior. The following definition is
standard.

Definition 3 (Asymptotic notation, O, Ω, Θ). Let f, g : N → N∪{ω}. Then
f(n) ∈ O(g(n)) iff there are constants M,N ∈ N such that f(n) ≤ M · g(n) for



Transforming Deriv. Complexity of Term Rewriting to Runtime Complexity 351

all n ≥ N . Moreover, f(n) ∈ Ω(g(n)) iff g(n) ∈ O(f(n)), and f(n) ∈ Θ(g(n))
holds iff both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) hold.

Example 4 (plus). Consider the relative TRS R/S with the following rules in
R:

plus(0, x) → x

plus(s(x), y) → s(plus(x, y))

and with S = ∅. Here 0 and s are constructor symbols, and plus is a defined
symbol. We have rcR/S(n) ∈ Θ(n) (so both rcR/S(n) ∈ O(n) and rcR/S(n) ∈
Ω(n) hold) and ircR/S(n) ∈ Θ(n). Moreover, we have dcR/S(n) ∈ Θ(n2) and
idcR/S(n) ∈ Θ(n2).

3 From Derivational Complexity to Runtime Complexity

In this section we present the main contribution of this paper, an instrumentation
of a relative TRS R/S to a relative TRS R/(S 	 G) with the same (innermost
or full) runtime complexity. Moreover, we provide a proof for its correctness.
The idea is to encode the set of arbitrary start terms that is considered for
derivational complexity into a set of corresponding basic terms of the same size
that can be analyzed for runtime complexity. This is accomplished by adding
further constructor symbols consf that represent the defined symbols f from
R/S. We also add an “instrumentation” in the form of relative rewrite rules
G that generate the original start term for R/S from its encoding as a basic
term for R/(S 	 G), but do not lead to additional derivation height. The root
symbol for these basic terms will be called encf for f a defined or a constructor
symbol for R/S (note that the root symbol of a start term for derivational
complexity with maximum derivation height is not necessarily a defined symbol,
e.g., consider the rewrite rule a → c(b, b)). We will also introduce an auxiliary
function symbol argenc for recursive application of the additional rewrite rules.

For example, a start term plus(plus(s(0), 0), x) for derivational complexity
will be represented by a basic term encplus(consplus(s(0), 0), x). Here encplus will
be a defined symbol and consplus a constructor symbol. Rewriting using i→G then
restores (an instance of) the original start term.

Definition 5 (Generator rules G, runtime instrumentation). Let R/S
be a relative TRS. We define the generator rules G of R/S as the set of rules

G = {encf (x1, . . . , xn) → f(argenc(x1), . . . , argenc(xn)) | f ∈ ΣR∪S}
∪ {argenc(consf (x1, . . . , xn)) → f(argenc(x1), . . . , argenc(xn)) | f ∈ ΣR∪S

d }
∪ {argenc(f(x1, . . . , xn)) → f(argenc(x1), . . . , argenc(xn)) | f ∈ ΣR∪S

c }

where x1, . . . , xn are variables and where all function symbols argenc, consf , and
encf are fresh (i.e., they do not occur in R ∪ S). We call the relative TRS
R/(S 	 G) the runtime instrumentation of R/S. Moreover, we call terms over
the signature {encf | f ∈ ΣR∪S} ∪ {consf | f ∈ ΣR∪S

d } ∪ ΣR∪S
c generator terms

for R/S (they are the intended start terms for R/(S 	 G)).
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Example 6 (Example 4 continued). Continuing Example 4, we obtain the follow-
ing generator rules G:

encplus(x, y) → plus(argenc(x), argenc(y))
enc0 → 0

encs(x) → s(argenc(x))
argenc(consplus(x, y)) → plus(argenc(x), argenc(y))

argenc(0) → 0

argenc(s(x)) → s(argenc(x))

To reason about our transformation, we introduce several helper functions
to encode and decode arbitrary terms for R/S as basic terms for R/(S 	 G).

Definition 7 (Constructor variant, basic variant, decoded variant).
Let R/S be a relative TRS and let R/(S 	 G) be its runtime instrumentation.

For a term t ∈ T (ΣR∪S ,V), we define its constructor variant cv(t) induc-
tively as follows:

– cv(x) = x for x ∈ V
– cv(f(t1, . . . , tn)) = f(cv(t1), . . . , cv(tn)) for f ∈ ΣR∪S

c

– cv(f(t1, . . . , tn)) = consf (cv(t1), . . . , cv(tn)) for f ∈ ΣR∪S
d

For a term t = f(t1, . . . , tn) ∈ T (ΣR∪S ,V), we define its basic variant
bv(f(t1, . . . , tn)) = encf (cv(t1), . . . , cv(tn)).

Finally, for a term t ∈ T (ΣR∪S∪G ,V), we define its decoded variant dv(t) ∈
T (ΣR∪S ,V) as follows:

– dv(x) = x for x ∈ V
– dv(f(t1, . . . , tn)) = g(dv(t1), . . . ,dv(tn)) for f ∈ {g, consg, encg} with g ∈

ΣR∪S
d

– dv(f(t1, . . . , tn)) = f(dv(t1), . . . ,dv(tn)) for f ∈ ΣR∪S
c

The following lemmas address properties of our helper functions that we will
use in the proofs of our theorems.

Lemma 8 (Basic variants of function applications are basic terms).
Let R/S be a relative TRS, let t be a term from T (ΣR∪S ,V).

(a) We have cv(t) ∈ T (ΣR∪S∪G
c ,V).

(b) The term bv(t) is a basic term for the runtime instrumentation R/(S 	 G).
(c) |bv(t)| = |t|.

Proof. Claims (a) and (b) follow directly from the definitions of cv, of bv, and
of generator rules, and claim (c) follows by induction over the definitions of bv
and cv. �
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In the following lemmas and proofs, we will need a particular substitution σt

that maps each variable x of a term t to argenc(x), so we introduce corresponding
notation.

Definition 9 (σt). For a term t, we define the substitution σt by σt(x) =
argenc(x) for x ∈ V(t) and σt(x) = x otherwise.

Lemma 10 (argenc reduces constructor variants innermost to instances
of their originals). Let R/S be a relative TRS and R/(S 	 G) its runtime
instrumentation. Then for all t ∈ T (ΣR∪S ,V), argenc(cv(t)) i→∗

R∪S∪G tσt is an
innermost rewrite sequence that moreover uses only rules from G.

Proof. By induction over the structure of t. Let t ∈ V. Then cv(t) = t, and
argenc(cv(t)) i→∗

R∪S∪G tσt in zero steps.
Now let t = f(t1, . . . , tn) ∈ T (ΣR∪S ,V). By induction hypothesis, we have

argenc(cv(ti)) i→∗
R∪S∪G tiσti .

If f ∈ ΣR∪S
c , we have cv(f(t1, . . . , tn)) = f(cv(t1), . . . , cv(tn)). By applying

the induction hypothesis, we get the desired innermost rewrite sequence:

argenc(cv(t))
= argenc(f(cv(t1), . . . , cv(tn)))

i→R∪S∪G f(argenc(cv(t1)), . . . , argenc(cv(tn)))
i→∗

R∪S∪G f(t1σt1 , . . . , tnσtn)
= tσt

If f ∈ ΣR∪S
d , we have cv(f(t1, . . . , tn)) = consf (cv(t1), . . . , cv(tn)). By apply-

ing the induction hypothesis, we get the desired innermost rewrite sequence:

argenc(cv(t))
= argenc(consf (cv(t1), . . . , cv(tn)))

i→R∪S∪G f(argenc(cv(t1)), . . . , argenc(cv(tn)))
i→∗

R∪S∪G f(t1σt1 , . . . , tnσtn)
= tσt

�

Lemma 11 (Basic variants reduce innermost to instances of their orig-
inals). Let R/S be a relative TRS and R/(S 	G) its runtime instrumentation.
Then for all t ∈ T (ΣR∪S ,V) of the form f(t1, . . . , tn), bv(t) i→∗

R∪S∪G tσt is an
innermost rewrite sequence that moreover uses only rules from G.

Proof. Let t ∈ T (ΣR∪S ,V) of the form f(t1, . . . , tn). Then we have bv(t) =
encf (cv(t1), . . . , cv(tn)). The only possible rewrite step uses the rewrite rule
encf (x1, . . . , xn) → f(argenc(x1), . . . , argenc(xn)) in G for bv(t) i→R∪S∪G
f(argenc(cv(t1)), . . . , argenc(cv(tn))). By Lemma 10, we have:

f(argenc(cv(t1)), . . . , argenc(cv(tn))) i→∗
R∪S∪G f(t1σt1 , . . . , tnσtn) = tσt

�
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Now we are ready to prove the first theorem:

Theorem 12 (Derivational complexity via runtime complexity). Let
R/S be a relative TRS and let R/(S 	 G) be its runtime instrumentation. Then
for all n ∈ N, we have dcR/S(n) = rcR/(S�G)(n).

Proof. We show the two directions of the theorem separately.

(1) dcR/S(n) ≤ rcR/(S�G)(n).
For n = 0, there are no terms of size ≤ n. Thus, let n > 0 and let t ∈

T (ΣR∪S ,V) be an arbitrary term with |t| ≤ n starting a →R/S -rewrite sequence

t = t0 →R/S t1 →R/S t2 →R/S · · ·

of maximal length for all terms of size at most n, i.e., (i) dh(t,→R/S) =
dcR/S(n).

By Lemma 11, we have bv(t) →∗
G tσt. Since →R/S ⊆ →R/(S�G) and since

rewriting is closed under substitutions, we have

bv(t) →∗
G tσt →R/(S�G) t1σt →R/(S�G) t2σt →R/(S�G) · · ·

which yields

bv(t) →R/(S�G) t1σt →R/(S�G) t2σt →R/(S�G) · · ·

and thus (ii) dh(t,→R/S) ≤ dh(bv(t),→R/(S�G)).
By Lemma 8, bv(t) is a basic term for R/(S	G) with |bv(t)| = |t| ≤ n. Thus,

dh(bv(t),→R/(S�G)) ≤ rcR/(S�G)(n). Using equality (i) and inequality (ii), we
can conclude that the claim indeed holds.

(2) dcR/S(n) ≥ rcR/(S�G)(n).
For n = 0, there are no terms of size ≤ n. Thus, let n > 0 and let t ∈

T (ΣR∪S∪G ,V) be an arbitrary basic term for R/(S 	 G) with |t| ≤ n starting a
→R/(S�G)-rewrite sequence

t = t0 →R/(S�G) t1 →R/(S�G) t2 →R/(S�G) · · ·

of maximal length for all terms of size at most n, i.e., dh(t,→R/(S�G)) =
rcR/(S�G)(n).

We will now show that there exists a term s ∈ T (ΣR∪S ,V) of size at most n
that has at least the same derivation height, witnessed by a “simulation” of the
above →R/(S�G)-derivation using →R/S .

If root(t) ∈ ΣR∪S
d , t does not contain argenc or encf for any f since t is a

basic term. Moreover, no rewrite sequence starting with t can use the rules in G
since none of the rules reachable from t introduce any of the symbols argenc or
encf for some f . Therefore, the above →R/(S�G)-sequence starting from t is an
→R/S -sequence of the same length. To get a term s over the original signature
ΣR∪S , we replace all occurrences of function symbols consf by the corresponding
f ∈ ΣR∪S

d , i.e., we set s = dv(t). Thus, we have dh(t,→R/(S�G)) ≤ dh(s,→R/S)
≤ dcR/S(n).
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Now consider root(t) = argenc, i.e., t = argenc(u) for a constructor term u ∈
T (ΣR∪S∪G

c ,V). We can simulate the →R/(S�G)-derivation starting with t from
the term s = dv(u). In this simulation, we omit the →G-steps from the original
→R/(S�G)-derivation and obtain a →R/S -derivation with the same number of
→R-steps and hence the same derivation height. As |s| ≤ n (|dv(u)| = |u| can
be shown analogously to Lemma 8), we have dh(t,→R/(S�G)) ≤ dh(s,→R/S) ≤
dcR/S(n).

Finally, let root(t) = encf for some f ∈ ΣR∪S
d and thus t = encf (u1,

. . . , uk) for some terms u1, . . . , uk ∈ T (ΣR∪S∪G
c ,V). By construction,

the first rewrite step in the above →∗
R∪S∪G-derivation must be t →G

f(argenc(u1), . . . , argenc(uk)). We again obtain s ∈ T (ΣR∪S ,V) as the start
term for our simulation from f(u1, . . . , uk) as dv(f(u1, . . . , uk)), and analogously
to the case root(t) = argenc, we again have dh(t,→R/(S�G)) ≤ dh(s,→R/S) ≤
dcR/S(n). �

To prove the corresponding theorem for innermost derivational complex-
ity, we use an additional lemma which lets us simulate innermost rewrite steps
s i→R/S t via sσs

i→R/(S�G) tσs. (This is a priori not completely obvious since
innermost rewriting is not closed under substitutions nor under addition of
rewrite rules.)

Lemma 13 (Innermost simulation with generator rules). Let R/S be
a relative TRS and let R/(S 	 G) be its runtime instrumentation. Let s, t ∈
T (ΣR∪S ,V). Let σ be a substitution with sσ = sσs.

(a) If s i→R∪S t, then sσ i→R∪S∪G tσ.
(b) If s i→R/S t, then sσ i→R/(S�G) tσ.

Proof. (a) Let s, t ∈ T (ΣR∪S ,V) such that s i→R∪S t. Then we also have
s i→R∪S∪G t since s, t do not contain any defined symbols from G. Moreover,
we have sσ i→R∪S∪G tσ since the introduced function symbol argenc does not
occur in R ∪ S, since argenc does not occur below the root of a left-hand side
of G, and since argenc occurs in sσ only in subterms of the shape argenc(x) for
variables x, whereas all argenc-rules in G require a function symbol below the
root of a potential redex.

(b) Follows directly from (a).

Theorem 14 (Innermost derivational complexity via innermost run-
time complexity). Let R/S be a relative TRS and let R/(S	G) be its runtime
instrumentation. Then for all n ∈ N, we have idcR/S(n) = ircR/(S�G)(n).

Proof. (1) idcR/S(n) ≤ ircR/(S�G)(n).
The proof for this direction of the theorem is analogous to the one for

Theorem 12. The only difference is that Lemma 13 is required to show that
ti

i→R/S ti+1 implies tiσt
i→R/(S�G) ti+1σt.
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(2) idcR/S(n) ≥ ircR/(S�G)(n).
Let n ∈ N and let t ∈ T (ΣR∪S∪G ,V) be an arbitrary basic term for R/(S	G)

with |t| ≤ n starting a i→R/(S�G)-rewrite sequence

t = t0
i→R/(S�G) t1

i→R/(S�G) t2
i→R/(S�G) · · ·

of maximal length for all terms of size at most n, i.e., (i) dh(t, i→R/(S�G)) =
ircR/(S�G)(n).

We will now show that there exists a term s ∈ ΣR∪S that has at least the
same derivation height, again witnessed by a simulation of the above →R/(S�G)-
derivation using →R/S .

If root(t) ∈ ΣR∪S
d , no rewrite sequence starting with t can use the rules in

G since none of the rules reachable from the basic term t introduce any of the
symbols argenc or encf for some f . Therefore, the above i→R/(S�G)-sequence is
an i→R/S -sequence of the same length.

For our simulation, we still need to obtain a start term over the original signa-
ture ΣR∪S . Simply replacing all consf by f as in the proof of Theorem 12 might
introduce new S-redexes that, due to innermost rewriting, could prevent further
steps in the derivation using R and lead to a shorter i→R/(S�G)-derivation. Thus,
to obtain a term s over ΣR∪S , we replace all maximal “alien subterms” u of t
with regard to the signature ΣR∪S by corresponding fresh variables xu. (An
alien subterm u of a term t with regard to a (sub-)signature Σ is a subterm of
t with a root symbol h /∈ Σ. Here h = consg for some g ∈ ΣR∪S

d may occur.)
The obtained rewrite sequence from s has at least as many i→R/S -rewrite

steps as the original i→R/(S�G)-rewrite sequence had steps from t, and so we
have dh(t, i→R/(S�G)) ≤ dh(s, i→R/S) ≤ idcR/S(n).

The cases root(t) = argenc and root(t) = encf are analogous to Theorem 12.
Note that by construction, here argenc is always applied to constructor terms as
arguments. �

We finish the section by presenting an example that (to the author’s knowl-
edge) was out of reach for automated analysis tools for derivational complexity
so far, but can now be handled using an off-the-shelf tool for automated infer-
ence of runtime complexity bounds. This example is taken from the Termination
Problems Data Base (TPDB) [36], a collection of examples used at the annual
Termination and Complexity Competition [16,35].

Example 15 (Derivational Complexity Full Rewriting/AG01/#3.12 ,
TPDB). Consider the following set of rewrite rules R:

app(nil, y) → y

app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil

reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil

shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
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Using our transformation to a runtime instrumentation, AProVE adds the
following generator rules G:

argenc(nil) → nil

argenc(add(x1, x2)) → add(argenc(x1), argenc(x2))
argenc(consapp(x1, x2)) → app(argenc(x1), argenc(x2))
argenc(consreverse(x1)) → reverse(argenc(x1))
argenc(consshuffle(x1)) → shuffle(argenc(x1))

encnil → nil

encadd(x1, x2) → add(argenc(x1), argenc(x2))
encapp(x1, x2) → app(argenc(x1), argenc(x2))
encreverse(x1) → reverse(argenc(x1))
encshuffle(x1) → shuffle(argenc(x1))

Then AProVE determines dcR/∅(n) ∈ O(n4) and dcR/∅(n) ∈ Ω(n3). (A
manual analysis reveals that dcR/∅(n) ∈ Θ(n4).)

For the inference of the upper bound, first a sufficient criterion [12] is used
to show that this TRS belongs to a class of TRSs where runtime complexity
and innermost runtime complexity coincide. To analyze innermost runtime com-
plexity, the approach by Naaf et al. [30] is applied. Here the search for an upper
bound for innermost runtime complexity is encoded as the search for an upper
bound for the runtime of integer transition systems. The proof is completed using
the tools CoFloCo [10,11] and KoAT [6] as backends for complexity analysis
of integer transition systems.

For the inference of the lower bound, AProVE uses a technique based on
rewrite lemmas [13].

4 Related Work

Derivational Complexity Analysis. There is a significant body of work on auto-
mated analysis of derivational complexity [21] of term rewriting systems. Early
techniques are based on observations on the induced maximal derivation height
by a direct termination proof via reduction orders [20,22,27,28,31]. Later work
also considers modular techniques [37].

Runtime Complexity Analysis. In recent years, techniques to infer bounds on
the runtime complexity of rewrite systems [18] have become a subject of inten-
sive study, both for full and for innermost rewriting strategies [2,3,13,18,30].
We can use these techniques to analyze the runtime instrumentations generated
from our transformation. In this way, we can now analyze of derivational com-
plexity indirectly, e.g., using amortized complexity analysis [29], adaptions of
the dependency pair method [18,32], and further transformational techniques
discussed below (see also Example 15).
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Transformational Approaches for Proving Properties of TRSs. Transformational
approaches for proving properties of TRSs have been introduced successfully in
the literature before.

For instance, for termination, techniques like semantic labeling [38] or depen-
dency pairs [1] transform rewrite systems in a way that preserves and reflects
termination and that often makes the resulting system more amenable to (auto-
mated) termination proofs.

For termination of rewriting with different rewrite strategies, a number of
transformations have been devised. For example, transformations to context-
sensitive rewriting [25] have been proposed for innermost rewriting [8] (later
adapted to innermost runtime complexity [19]) and for outermost rewrite strate-
gies [7]. Here termination of the resulting rewrite system w.r.t. a context-sensitive
strategy implies termination w.r.t. the original strategy. Similarly, for context-
sensitive rewriting, a number of transformations to full rewriting have been pro-
posed [9,15,24,39] such that termination of the transformed TRS w.r.t. full
rewriting implies termination of the original TRS w.r.t. the original context-
sensitive rewrite strategy. In particular, Giesl and Middeldorp [15] propose a
transformation such that termination of the transformed system is equivalent
to termination of the original system w.r.t. its context-sensitive rewrite strat-
egy. These transformations often encode aspects of the context-sensitive rewrite
strategy by means of rewrite rules. We follow a related idea, but in contrast to
the rewrite strategy, in this paper we encode the set of start terms.

For complexity analysis, dependency pairs have been adapted in the form of
weak dependency pairs [18] and dependency tuples [32]. Further transformational
approaches with term rewriting as target formalism for complexity analysis of
programming languages have been investigated, e.g., for Prolog [17] and for
Java [26]. Here upper bounds on the (innermost) runtime complexity of the
obtained TRS (possibly with constraints) are used to draw conclusions on upper
bounds for the worst-case time complexity of the input program. Our approach
is related in that it also encodes a complexity problem for a source language
(here: term rewriting) to a runtime complexity problem.

Similar to us, Frohn and Giesl [12] also relate different complexity properties.
They identify a sufficient criterion to identify TRSs where runtime complexity
of innermost rewriting and of full rewriting coincide.

However, to the best of the author’s knowledge, so far complexity properties
for different sets of start terms for the same TRS have not been related. This is
where the present work comes in.

5 Implementation and Experimental Evaluation

Of course, to make the point that an instrumentation technique such as the
present one is of practical interest, automatic analysis tools need to be able to
actually prove useful statements about the output of the technique on stan-
dard examples. Thus, to assess the practical usefulness of our contributions,
we implemented our transformation in the termination and complexity analy-
sis tool AProVE [14]. First the runtime instrumentation of the derivational
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complexity problems is computed, and then this generated problem is processed
further by existing techniques to find upper or lower bounds for runtime complex-
ity of innermost or full rewriting. The corresponding configurations are labeled
“AProVE instrumentation irc” and “AProVE instrumentation rc” in Tables 1,
2, 3 and 4.

As the state of the art against which to compare our contributions, we used
the complexity analysis tool TcT [4] from the Termination and Complexity
Competition in 20181 (for the competition of 2019, no tools had been submitted
to analyze derivational complexity of rewriting) to analyze derivational complex-
ity for innermost and for full rewriting. The corresponding tool configurations
are labeled “TcT direct idc” and “TcT direct dc” in Tables 1, 2, 3 and 4. Thus
far, AProVE featured only rudimentary techniques for analysis of derivational
complexity. Therefore, we did not use AProVE as a reference implementation
for analysis of derivational complexity, and we deactivated the existing rudimen-
tary techniques for direct analysis of derivational complexity in our experiments.

Additionally, we wanted to assess whether our runtime instrumentation tech-
nique could be useful also for existing state-of-the-art tools like TcT for analysis
of derivational complexity. To this end, we extracted the runtime instrumenta-
tions for the derivational complexity benchmarks and then conducted exper-
iments on the resulting runtime complexity inputs for innermost and for full
rewriting using TcT. The time needed for computing the runtime instrumenta-
tions themselves is negligible, so we believe that this is a fair comparison that can
inform whether it might be worthwhile to add our transformation technique to
the portfolio of techniques to analyze derivational complexity in an established
tool like TcT.

For inferring lower bounds for dc, it is sound to use lower bounds for irc
or rc for the same set of rewrite rules. Similarly, a lower bound for idc can be
obtained directly from a lower bound for irc for the same set of rewrite rules.
Thus, for computation of lower bounds, we ran the tools AProVE and TcT on
corresponding versions of the rewrite systems (configurations “AProVE direct
irc”, “AProVE direct rc”, “TcT direct irc”, and “TcT direct rc” in Tables 2
and 4). The purpose of including these configurations was to see to what extent
the addition of our generator rules facilitates the search for lower bounds.

As benchmark set, we used the derivational complexity families of the TPDB,
version 10.6 [36]. For technical reasons, we restricted ourselves to the 2664 bench-
marks for innermost rewriting2 and the 1754 benchmarks for full rewriting3

whose rewrite rules satisfy the conditions from Definition 1 that left-hand sides

1 Available at:
https://www.starexec.org/starexec/secure/details/solver.jsp?id=20651.

2 Benchmark family: Derivational Complexity Innermost Rewriting.
3 Benchmark family: Derivational Complexity Full Rewriting.

https://www.starexec.org/starexec/secure/details/solver.jsp?id=20651
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Table 1. Upper bounds for derivational complexity of innermost rewriting

Tool O(1) ≤O(n) ≤O(n2) ≤O(n3) ≤O(n≥4)

TcT direct idc 1 368 468 481 501

TcT instrumentation irc 3 465 555 626 691

AProVE instrumentation irc 13 598 769 827 833

of rewrite rules must not be variables and right-hand sides of rewrite rules must
not contain variables that do not occur in the corresponding left-hand sides.4

Table 2. Lower bounds for derivational complexity of innermost rewriting

Tool ≥ Ω(n) ≥Ω(n2) ≥Ω(n3) ≥Ω(n≥4) EXP

TcT direct idc 0 0 0 0 0

TcT direct irc 913 10 10 10 10

AProVE direct irc 1047 205 140 140 139

TcT instrumentation irc 893 10 10 10 10

AProVE instrumentation irc 1082 169 135 135 134

We ran our experiments on the StarExec compute cluster [33] in the all.q
queue with a timeout of 300 s per example.

Tables 1, 2, 3 and 4 give an overview over our experimental results. For each
considered configuration, we state the number of examples for which the cor-
responding asymptotic complexity bound could be inferred. More precisely, a
row “≤ O(nk)” means that the corresponding tools proved a bound ≤ O(nk)
(e.g., in Table 1, the configuration “TcT direct idc” proved constant or linear
upper bounds in 368 cases). The column “EXP” in Tables 2 and 4 refers to an
unspecified exponential.

Upper Bounds for Innermost Rewriting. Table 1 provides our experimental data
for inference of upper bounds for innermost rewriting. As evidenced by the
results, both TcT and AProVE benefit significantly from using our instrumen-
tation rather than relying on existing techniques. For example, the 2018 version
of TcT inferred constant or linear upper bounds for 368 TRSs. In contrast,
TcT with our instrumentation found constant or linear upper bounds for 465
TRSs, and AProVE found constant or linear upper bounds for 598 TRSs. This
indicates that our technique is particularly useful for finding upper complexity
bounds.

4 Version 10.6 of the TPDB contains 60 further examples for derivational complexity
of innermost rewriting and 55 further examples for derivational complexity of full
rewriting that violate these restrictions.
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Table 3. Upper bounds for derivational complexity of full rewriting

Tool O(1) ≤O(n) ≤O(n2) ≤O(n3) ≤O(n≥4)

TcT direct dc 1 366 466 479 499

TcT instrumentation rc 1 203 224 304 304

AProVE instrumentation rc 1 328 386 398 399

Lower Bounds for Innermost Rewriting. In Table 2 we present our data for the
inference of lower bounds for innermost rewriting. Here the analysis of innermost
runtime complexity of the runtime instrumentation and the analysis of the orig-
inal TRSs are roughly on par. In particular, approximately the same numbers
of exponential bounds could be found.

Table 4. Lower bounds for derivational complexity of full rewriting

Tool ≥Ω(n) ≥Ω(n2) ≥Ω(n3) ≥Ω(n≥4) EXP

TcT direct dc 0 0 0 0 0

TcT direct rc 415 0 0 0 0

AProVE direct rc 451 73 68 68 68

TcT direct irc 345 0 0 0 0

AProVE direct irc 426 59 54 54 54

TcT instrumentation rc 378 0 0 0 0

AProVE instrumentation rc 456 68 65 65 65

Upper Bounds for Full Rewriting. Table 3 presents our data for upper bounds of
derivational complexity for rewriting with arbitrary strategies. Here we observe
that the 2018 version of TcT scores noticeably better than our instrumentation-
based approach. We conjecture that this is because a number of advanced tech-
niques (e.g., [19,29,30,32]) for analysis of runtime complexity are available only
for innermost rewriting. Still, Example 15 shows that also here bounds on deriva-
tional complexity can now be found that were out of reach before.

Lower Bounds for Full Rewriting. Table 4 shows the results for our experiments
with respect to lower bounds for arbitrary rewrite strategies. Similar to inner-
most rewriting, also here the precision of the analysis with and without the
generator rules is roughly on par (note that for lower bounds, high bounds are
better).

Overall we can conclude that in particular for upper bounds of (innermost)
derivational complexity, our instrumentation-based approach provides a good
addition to state-of-the-art techniques.
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Our experimental data from StarExec is available at the following URL:

http://www.dcs.bbk.ac.uk/∼carsten/eval/rcdc/

6 Reflections and Conclusion

In this article, we have introduced a transformation technique that allows one to
analyze derivational complexity problems in term rewriting via an off-the-shelf
analysis tool specialized for the analysis of runtime complexity. We have proved
correctness of the technique, and we have performed extensive experiments to
validate the practical usefulness of our approach.

We recommend that a complexity analysis tool should use this approach
and existing techniques in parallel. For complexity analysis tools specialized to
(innermost) runtime complexity, our transformation can provide an avenue to
broadened applicability.

In general, the approach of using instrumentations by rewrite rules to gen-
erate the set of “intended” start terms from their representation via “allowed”
start terms appears to be underexplored in the analysis of properties of rewrite
systems. We believe that this approach is worth investigating further, also for
other properties of rewriting.

Acknowledgments. The author wishes to thank Florian Frohn and Jürgen Giesl for
valuable discussions and the anonymous reviewers for suggestions and comments that
helped to improve the paper.
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