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21.1 Introduction

One of the most well-known concept in study of the geometry of normed linear
spaces is the notion of orthogonality. This concept and its connection with several
geometric properties of normed linear spaces, like strict convexity (rotundity) and
smoothness has been studied extensively. It is known that in an inner product space
(H, 〈·, ·〉) there is one orthogonality relation derived from inner product. In fact, the
vectors x, y ∈ H are orthogonal (written as x ⊥ y) if and only if 〈x, y〉 = 0.

The situation is completely different in general normed linear spaces. However,
there is not a unique way to define the notion of orthogonality in general normed
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J. Brzdęk et al. (eds.), Ulam Type Stability,
https://doi.org/10.1007/978-3-030-28972-0_21

469

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28972-0_21&domain=pdf
mailto:m.dehghani@kashanu.ac.ir
https://doi.org/10.1007/978-3-030-28972-0_21


470 A. Zamani and M. Dehghani

linear spaces. Since 1934 many mathematicians have introduced different general-
ized orthogonality in normed linear spaces for which, all of them are generalizations
of orthogonality in an inner product space.

In 1934, Roberts [67] introduced the first orthogonality in real normed linear
spaces. Let (X, ‖ · ‖) be a normed linear space over K ∈ {R,C}, whose dimension
is at least 2. A vector x ∈ X is said to be orthogonal in the sense of Roberts to a
vector y ∈ X, denoted by x ⊥R y if

‖x − ty‖ = ‖x + ty‖ (t ∈ K).

Later, in 1935 Birkhoff [8] introduced one of the most important orthogonality type.
This notion of orthogonality was developed by James in [38, 39]. (Actually, this
notion was much earlier considered by Carathéodory, see [2].) A vector x ∈ X is
said to be orthogonal to a vector y ∈ X in the sense of Birkhoff–James, written as
x ⊥B y, if

‖x + ty‖ ≥ ‖x‖ (t ∈ K).

The geometrical interpretation is that the line passing through x in the direction of y

supports (at the point x) the ball centred at 0 and with radius ‖x‖. Note that Roberts
orthogonality implies Birkhoff–James orthogonality. In [39] James elaborated how
the notions like smoothness, rotundity, etc., of a normed linear space can be studied
using Birkhoff–James orthogonality.

Also, James showed an example of a normed plane in which at least one of any
two vectors, which are Roberts orthogonal to each other, must be the origin cf.
[38]. Due to this situation, James introduced in 1945 isosceles orthogonality and
Pythagorean orthogonality [38]. A vector x ∈ X is said to be isosceles orthogonal
to a vector y ∈ X denoted by x ⊥I y if

‖x + y‖ = ‖x − y‖.

Furthermore, a vector x ∈ X is said to be Pythagorean orthogonal to a vector y ∈ X

denoted by x ⊥P y if

‖x + y‖2 = ‖x‖2 + ‖y‖2.

For normed linear spaces, isosceles and Pythagorean orthogonality are not
equivalent. They are also not equivalent to Roberts orthogonality. Of course, in an
inner product space we have

⊥B=⊥I=⊥P =⊥R=⊥ .

However, properties like symmetry, homogeneity, additivity, etc., of the orthogonal-
ity in inner product spaces do not always carry over to generalized orthogonalities.
For example, it is known that Birkhoff–James orthogonality is homogeneous and
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not symmetric, while isosceles orthogonality and Pythagorean orthogonality are
symmetric but not homogeneous, which shows (besides further properties) that
these types of orthogonalities are different. We refer the reader to [2, 4, 38–40] and
the references therein for basic properties of these type of orthogonalities. Also, a
classification of different types of orthogonality in normed linear spaces, their main
properties, and the relations between them can be found in e.g., survey paper [68]
(see also [24, 25, 37]).

Recall that a normed linear space X is called smooth if each point of the unit
sphere SX has a unique supporting hyperplane to the closed unit ball BX, or
equivalently, if to each nonzero x ∈ X there exits a unique x∗ ∈ X∗ satisfying
‖x∗‖ = 1 and x∗(x) = ‖x‖ (see e.g., [3, 31]). Here, X∗ denotes as usual the
(topological) dual of X. In the case of real normed linear space (X, ‖ ·‖), it has been
proved that X is smooth if the ‖ · ‖ has the Gateaux derivative in X, i.e.,

G±(x, y) := lim
t→0±

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ X; see e.g., [48].
One of the prominent reasons for importance of Birkhoff–James orthogonality is

its application to characterize smooth normed linear spaces. Considering existence
properties of Birkhoff–James orthogonality, we recall here the following result
from [39].

Lemma 21.1 ([39, Corollary 2.2 and Theorem 4.1]) Let X be a normed linear
space and let x, y ∈ X with x 
= 0. Then there exists t ∈ K such that x ⊥B (tx +y).
In particular, t is unique if and only if X is smooth.

The concept of semi-inner product space was introduced by Lumer [53] and then
the main properties of it were discovered in [34, 55, 64]. It has been proved in [53]
that in any normed linear space (X, ‖ · ‖) there exists a mapping [·|·] : X × X → K

satisfying the properties:

(i) [αx + y|z] = α[x|z] + [y|z] for all x, y, z ∈ X and all α ∈ K;
(ii) [x|βy] = β̄[x|y] for all x, y ∈ X and all β ∈ K;

(iii) [x|x] = ‖x‖2 for all x ∈ X;
(iv) |[x|y]| ≤ ‖x‖‖y‖ for all x, y ∈ X.

Such a mapping is called a semi-inner product in X. It is known, however, that in
a normed linear space there exists exactly one semi-inner product if and only if
the space is smooth. More characterizations of smooth normed linear spaces by the
notion of semi-inner products could be found in [31].

For vectors x, y ∈ X, the semi-inner product orthogonality is defined as follows:

x ⊥s y if and only if [y|x] = 0.

We remark that for any semi-inner product that generates the norm, we have
⊥s⊂⊥B . Nevertheless, the reverse implication is generally not true; see e.g, [31].
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For more information about semi-inner product spaces and its relation with
Birkhoff–James orthogonality the reader is refereed to [31] and the references
therein.

In 1986 norm derivatives were defined by Amir [4] in a real normed linear space
(X, ‖ · ‖) as follows:

ρ±(x, y) := lim
t→0±

‖x + ty‖2 − ‖x‖2

2t
= ‖x‖ lim

t→0±
‖x + ty‖ − ‖x‖

t
.

These functionals extend inner products and many geometrical properties of inner
product spaces could be formulated in normed linear spaces by means of norm
derivatives. The problem of finding necessary and sufficient conditions for a
normed linear space to be an inner product one has been investigated by many
mathematicians. There are many different ways to characterize inner product spaces
among normed linear spaces. In 1935, Jordan and von Neumann [42] proved that
the norm on a linear space X is induced by an inner product if and only if it
satisfies the parallelogram law. Another way to obtain characterizations of inner
product spaces is to force the orthogonality relation on a normed linear space to
fulfill some properties of the natural orthogonality of inner product spaces. Day
[26] and James [40] obtained some new characterizations of inner product spaces
by means of isosceles and Birkhoff–James orthogonality. For instance, they proved
that a normed linear space X, whose dimension is at least three, is an inner product
space if and only if Birkhoff–James orthogonality is symmetric in X. Also, it has
been proved in [38] that isosceles orthogonality is homogeneous in a normed linear
space if and only if this space is an inner product space. In particular, Tapia [70, 71]
characterized inner product spaces in terms of norm derivatives. More precisely, he
proved that a normed linear space X is an inner product space if and only if G+(·, ·)
is linear in the first variable if and only if G+(·, ·) is symmetric.

Norm derivatives play an important role in describing the geometric properties
of normed linear spaces. The basic geometric properties such as strict convexity
and smoothness of normed linear spaces have been characterized by many mathe-
maticians using the notion of norm derivatives. As the most famous descriptions for
smooth real normed linear spaces based on norm derivatives, we point out here the
following result from [3].

Lemma 21.2 ([3, Remark 2.1.1]) Let X be a real normed linear space. Then X is
smooth if and only if ρ−(x, y) = ρ+(x, y) for all x, y ∈ X.

Orthogonality relations which are taken from norm derivatives provide a good
framework for developing studies of the geometric structure of normed linear
spaces. During the last years many papers concerning various aspects of orthog-
onalities related to norm derivatives have appeared. In this paper we want to give
some overview on these results as well as to collect a number of items from the
literature dealing with the subject. Our paper can also be taken as an update of
existing surveys and monographs; see [16, 22, 68].
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21.2 Exact and Approximate Norm Derivatives
Orthogonalities

In this section we assume that the considered normed linear spaces are real and their
dimensions are not less than 2.

21.2.1 ρ-Orthogonality

Let (X, ‖ · ‖) be a normed linear space and let x, y ∈ X. The orthogonality relations
associated to the functionals ρ− and ρ+ are defined by

x ⊥ρ− y if and only if ρ−(x, y) = 0;
x ⊥ρ+ y if and only if ρ+(x, y) = 0.

In 1987, Miličić [56] introduced a new orthogonality relation as follows

x ⊥ρ y if and only if ρ(x, y) = 0,

where the functional ρ(·, ·) := 〈·, ·〉g : X × X → R was defined by

ρ(x, y) = 〈y, x〉g = ρ−(x, y) + ρ+(x, y)

2
.

Among the just defined three orthogonality relations only ⊥ρ is homogeneous (i.e.,
for all x, y ∈ X and all α, β ∈ R, if x ⊥ρ y, then αx ⊥ρ βy) and none of
them is symmetric. It has been proved in [3] that the relations ⊥ρ± and ⊥ρ in a
normed linear space X are symmetric if and only if X is an inner product space.
First, we remind several properties of these functions, which are used to obtain
different characterizations of inner product spaces and smooth normed linear spaces.

Theorem 21.1 Let (X, ‖ · ‖) be a normed linear space, and let x, y ∈ X. Then

(i) ρ±(x, x) = ‖x‖2 and ρ−(x, y) ≤ ρ+(x, y).

(ii) For all t ∈ R, ρ±(tx, y) = ρ±(x, ty) =
{

tρ±(x, y) t ≥ 0
tρ∓(x, y) t ≤ 0.

(iii) |ρ±(x, y)| ≤ ‖x‖ ‖y‖.
(iv) For all t ∈ R, ρ±(x, tx + y) = t‖x‖2 + ρ±(x, y).

In [3], Alsina et al. provided a complete description of these orthogonality rela-
tions. The relation of Birkhoff–James orthogonality, ρ±-orthogonality and ρ-
orthogonality has been obtained in [3] as follows:

Theorem 21.2 ([3, Propositions 2.2.2-3]) Let X be a normed linear space. Then
⊥ρ±⊂⊥B and ⊥ρ⊂⊥B .
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In particular, the equalities ⊥B=⊥ρ− , ⊥B=⊥ρ+ and ⊥B=⊥ρ in X are equiva-
lent to the smoothness of X.

Now, we recall that norm derivatives characterize Birkhoff–James orthogonality in
the following sense.

Theorem 21.3 ([4, 39]) Let (X, ‖ · ‖) be a normed linear space, x, y ∈ X and let
α ∈ R. Then the following conditions are equivalent:

(i) x ⊥B (y − αx).
(ii) ρ−(x, y) ≤ α‖x‖2 ≤ ρ+(x, y).

In particular, x ⊥B y if and only if ρ−(x, y) ≤ 0 ≤ ρ+(x, y).

There is a deep connection of smooth normed linear spaces and the orthogonality
relations related norm derivatives. Chmieliński and Wójcik in [21] clarified that the
relations ⊥ρ± and ⊥ρ are generally incomparable. More precisely, they proved that
these orthogonality relations are comparable in a normed linear space X if and only
if X is smooth.

Theorem 21.4 ([21, Theorem 1]) Let X be a normed linear space. Then the
following conditions are equivalent:

(i) ⊥ρ+⊂⊥ρ− . (ii) ⊥ρ−⊂⊥ρ+ . (iii) ⊥ρ+=⊥ρ− .

(iv) ⊥ρ+⊂⊥ρ . (v) ⊥ρ⊂⊥ρ+ . (vi) ⊥ρ+=⊥ρ .

(vii) ⊥ρ−⊂⊥ρ . (viii) ⊥ρ⊂⊥ρ− . (ix) ⊥ρ−=⊥ρ . (x) X is smooth.

Finally, we remark that the connection between the relations ⊥ρ and ⊥s were given
in [21].

Theorem 21.5 ([21, Theorem 2]) Let X be a normed linear space and let [·|·] be
a given semi-inner product in X. Then the following conditions are equivalent:

(i) ⊥ρ⊂⊥s . (ii) ⊥s⊂⊥ρ . (iii) ⊥ρ=⊥s . (iv) ρ(·, ·) = [·|·].

21.2.2 ρ∗-Orthogonality

Another type of an orthogonality relation connected to norm derivatives that was
introduced in [11] is ρ∗-orthogonality. In this section we will review elementary
properties of ρ∗-orthogonality. Also, some characterizations of smooth normed
linear spaces in terms of ρ∗-orthogonality which has been obtained in [60] are
reviewed.
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Definition 21.1 ([11]) Let X be a normed linear space. Then a vector x ∈ X is
called ρ∗-orthogonal to a vector y ∈ X, denoted by x ⊥ρ∗ y if

ρ∗(x, y) := ρ−(x, y)ρ+(x, y) = 0.

First, we represent some elementary properties of the functional ρ∗.

Proposition 21.1 ([60, Proposition 2.1]) Let (X, ‖ · ‖) be a normed linear space.
Then

(i) ρ∗(tx, y) = ρ∗(x, ty) = t2ρ∗(x, y) for all x, y ∈ X and all t ∈ R.
(ii) |ρ∗(x, y)| ≤ ‖x‖2‖y‖2 for all x, y ∈ X.

(iii) For all nonzero vectors x, y ∈ X, if x ⊥ρ∗ y, then x and y are linearly
independent.

(iv) ρ∗(x, tx + y) = t2‖x‖4 + 2t‖x‖2ρ(x, y) + ρ∗(x, y) for all x, y ∈ X and all
t ∈ R.

It is clear that ⊥ρ− ∪ ⊥ρ+=⊥ρ∗⊂⊥B and so the equality ⊥B=⊥ρ∗ implies the
smoothness of the norm. Also, it is noticed in [60] that the relations ⊥ρ and ⊥ρ∗
are incomparable. In fact, according to the following theorem, these orthogonality
relations in a normed linear space X are comparable if and only if X is smooth.

Theorem 21.6 ([60, Theorem 3.1]) Let X be a normed linear space. Then the
following conditions are equivalent:

(i) ⊥B⊂⊥ρ∗ . (ii) ⊥B=⊥ρ∗ . (iii) ⊥ρ⊂⊥ρ∗ .

(iv) ⊥ρ∗⊂⊥ρ . (v) ⊥ρ∗=⊥ρ . (vi) ⊥ρ∗⊂⊥ρ+ .

(vii) ⊥ρ∗⊂⊥ρ− . (viii) ⊥ρ∗=⊥ρ− . (ix) X is smooth.

Moreover, the connection between semi-inner product orthogonality and ρ∗-
orthogonality has been established in the following theorem.

Theorem 21.7 ([60, Proposition 2.2]) Let X be a normed linear space and let [·|·]
be a given semi-inner product in X. Then the following conditions are equivalent:

(i) ⊥ρ∗=⊥s .
(ii) ⊥ρ∗⊂⊥s .

(iii) ρ∗(x, y) = [y|x]2 for all x, y ∈ X.

Let us now suppose that ⊥ is a binary relation on a real vector space X satisfying

(O1) Totality of ⊥ for zero: x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(O2) Independence: if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly

independent;
(O3) Homogeneity: if x, y ∈ X and x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) The Thalesian property: let P be a two-dimensional subspace of X. If x ∈ P

and μ ≥ 0, then there exists y ∈ P such that x ⊥ y and x + y ⊥ μx − y.
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The pair (X,⊥) is called an orthogonality space in the sense of Rätz [66]. Inner
product spaces and normed linear spaces with Birkhoff–James orthogonality are
typical examples of orthogonality spaces. Also, it has been proved in [3] that ρ-
orthogonality is an orthogonality space. Using Proposition 21.1, it easy to check that
the conditions (O1)–(O3) are true for ρ∗-orthogonality and the following theorem
ensures that ρ∗-orthogonality has the Talesian property. Therefore a normed linear
space with ρ∗-orthogonality is an orthogonality space in the sense of Rätz.

Theorem 21.8 ([60, Theorem 4.2]) For any two-dimensional subspace P of a
normed linear space X and for every x ∈ P , μ ≥ 0, there exists a vector y ∈ P

such that

x ⊥ρ∗ y and x + y ⊥ρ∗ μx − y.

Let X be a normed linear space and let (G,+) be an Abelian group. Let us recall
that a mapping A : X −→ G is called additive if A(x + y) = A(x) + A(y) for all
x, y ∈ X, a mapping B : X × X −→ G is called biadditive if it is additive in both
variables and a mapping Q : X −→ G is called quadratic if Q(x+y)+Q(x−y) =
2Q(x) + 2Q(y) for all x, y ∈ X. As an immediate consequence of Theorem 21.8
and [3, Theorem 2.8.1], we deduce the following assertion.

Corollary 21.1 Let X be a normed linear space and let (G,+) be an Abelian
group. A mapping f : X −→ G satisfies the condition

x ⊥ρ∗ y �⇒ f (x + y) = f (x) + f (y) (x, y ∈ X)

if and only if there exist an additive mapping A : X −→ G and a biadditive and
symmetric mapping B : X × X −→ G such that

f (x) = A(x) + B(x, x) (x ∈ X)

and

x ⊥ρ∗ y �⇒ B(x, y) = 0 (x, y ∈ X).

Finally, as a consequence of Theorem 21.8 and [58, Theorem 3], we have the
following result.

Corollary 21.2 Let X be a normed linear space and let (G,+) be an Abelian
group. Suppose that Y is a real Banach space. If f : X −→ G is a mapping
fulfilling

x ⊥ρ∗ y �⇒ ‖f (x + y) − f (x) − f (y)‖ ≤ ε (x, y ∈ X)
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for some ε > 0, then there exist exactly an additive mapping A : X −→ Y and
exactly a quadratic mapping Q : X −→ Y such that

‖f (x) − f (0) − A(x) − Q(x)‖ ≤ 68

3
ε (x ∈ X).

21.2.3 Some Generalized Norm Derivatives Orthogonality

In [88] an orthogonality relation as an extension of ρ± and ρ-orthogonality that
is called ρλ-orthogonality has been introduced. We start this section by reviewing
some main results which obtained about this orthogonality relation in [88].

Let X be a normed linear space and let λ ∈ [0, 1]. Then a vector x ∈ X is said to
be ρλ-orthogonal to a vector y ∈ X denoted by x ⊥ρλ y if

ρλ(x, y) := λρ−(x, y) + (1 − λ)ρ+(x, y) = 0.

It is evident that ρ0 and ρ1-orthogonality coincide with ρ+ and ρ−-orthogonality,
respectively. Also, ρ 1

2
-orthogonality is equivalent to ρ-orthogonality. As an exten-

sion of Theorem 21.2, it has been proved that ρλ-orthogonality always implies
Birkhoff–James orthogonality.

Proposition 21.2 ([88, Theorem 2.5]) Let X be a normed linear space and let λ ∈
[0, 1]. Then ⊥ρλ⊂⊥B .

It is noticed in [88, Example 2.8] that for nonsmooth normed linear spaces, the
orthogonalities ⊥ρλ and ⊥B may not coincide. However, analogously to Theo-
rem 21.2, the equality ⊥ρλ=⊥B in a normed linear space X implies the smoothness
of X.

Theorem 21.9 ([88, Theorem 2.7]) Let X be a normed linear space and let λ ∈
[0, 1]. Then the following statements are equivalent:

(i) ⊥B⊂⊥ρλ . (ii) ⊥B=⊥ρλ . (iii) X is smooth.

Moreover, the relations ⊥ρ± , ⊥ρ and ⊥ρλ are generally incomparable; cf. [88,
Example 2.10]. The following theorems give some characterizations of smooth
normed linear spaces in terms of ρλ-orthogonality.

Theorem 21.10 ([88, Theorem 2.12]) Let X be a normed linear space and let λ ∈
(0, 1]. Then the following conditions are equivalent.

(i) ⊥ρλ⊂⊥ρ+ . (ii) ⊥ρ+⊂⊥ρλ . (iii) ⊥ρλ=⊥ρ+ . (iv) X is smooth.
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Theorem 21.11 ([88, Theorem 2.13]) Let X be a normed linear space and let λ ∈
[0, 1). Then the following conditions are equivalent:

(i) ⊥ρλ⊂⊥ρ− . (ii) ⊥ρ−⊂⊥ρλ . (iii) ⊥ρλ=⊥ρ− . (iv) X is smooth.

Theorem 21.12 ([88, Theorem 2.11]) Let X be a normed linear space and let λ ∈
[0, 1] such that λ 
= 1

2 . Then the following conditions are equivalent:

(i) ⊥ρ⊂⊥ρλ . (ii) ⊥ρλ⊂⊥ρ . (iii) ⊥ρλ=⊥ρ . (iv) X is smooth.

More generally, a new orthogonality relation based on norm derivatives which is a
generalization of the above orthogonalities has been introduced and studied in [28].
We will continue this section to review this orthogonality and its relation with other
types of orthogonality relations which have already introduced.

Definition 21.2 ([28]) Let X be a normed linear space, and let λ ∈ [0, 1], υ = 1
2k−1

with k ∈ N. For x, y ∈ X, consider the functional ρυ
λ : X × X → R which is

defined by

ρυ
λ (x, y) := λρυ−(x, y)ρ1−υ+ (x, y) + (1 − λ)ρυ+(x, y)ρ1−υ− (x, y).

A vector x ∈ X is called ρυ
λ -orthogonal to a vector y ∈ X, denoted by x ⊥ρυ

λ
y, if

ρυ
λ (x, y) = 0.

It is obvious that for a real inner product space, ρυ
λ -orthogonality coincides with the

standard orthogonality given by the inner product. Therefore ρυ
λ -orthogonality can

be considered as a generalization of orthogonality of inner product spaces in real
normed linear spaces. We have

ρv
0 (x, y) = ρv+(x, y)ρ1−v− (x, y) and ρv

1 (x, y) = ρv−(x, y)ρ1−v+ (x, y)

for all v = 1
2k−1 (k ∈ N). Hence it is easy to see that ⊥ρv

0
=⊥ρ∗ and ⊥ρv

1
=⊥ρ∗

for all v = 1
2k+1 (k ∈ N). On the other hand, we have ρ1

λ(x, y) = ρλ(x, y) and

therefore ρ1
λ-orthogonality coincides with ρλ-orthogonality for all λ ∈ [0, 1]. We

point out here the elementary properties of the functional ρv
λ .

Proposition 21.3 ([28, Theorem 2.1]) Let (X, ‖ · ‖) be a normed linear space and
let x, y ∈ X. Then

(i) ρv
λ(x, x) = ‖x‖2.

(ii) ρv
λ(tx, y) = ρv

λ(x, ty) =
{

tρv
λ(x, y) t ≥ 0

tρv
1−λ(x, y) t ≤ 0.

(iii) |ρv
λ(x, y)| ≤ ‖x‖‖y‖.

(iv) Let t be a real number such that ρ∗(x, tx + y) 
= 0. If
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K := K(x, y, t) = ρ−(x, tx + y)

ρ+(x, tx + y)
,

then

ρv
λ(x, tx + y) = t‖x‖2(λKv + (1 − λ)K−v) + λKvρ+(x, y)

+(1 − λ)K−vρ−(x, y).

It is clear that ⊥ρ±⊂⊥ρv
λ

and so ⊥ρ∗⊂⊥ρv
λ
. However, some illustrative example have

been prepared in [28] which show that the relations ⊥ρ,⊥ρλ and ⊥ρv
λ

are generally
incomparable. This fact lead us to the following descriptions of smooth normed
linear spaces.

Theorem 21.13 ([28, Theorem 2.14]) Let X be a normed linear space and let λ ∈
[0, 1] \ { 1

2 } and v = 1
2k−1 (k ∈ N). Then the following conditions are equivalent:

(i) ⊥ρ⊂⊥ρv
λ

. (ii) ⊥ρv
λ
⊂⊥ρ . (iii) ⊥ρv

λ
= ⊥ρ. (iv) X is smooth.

It is worth noting that the situation is different for the case λ = 1
2 and in this case, we

have ⊥ρ⊂⊥ρv
1
2

. Indeed, for each x, y ∈ X, if x ⊥ρ y, then ρ−(x, y) = −ρ+(x, y).

Hence

ρv
1
2
(x, y) = 1

2

[
(−1)vρυ+(x, y)ρ1−υ+ (x, y) + (−1)1−vρυ+(x, y)ρ1−υ+ (x, y)

]

= 1

2
[−ρ+(x, y) + ρ+(x, y)] = 0.

Theorem 21.14 ([28, Theorem 2.16]) Let X be a normed linear space and let λ ∈
(0, 1) and v = 1

2k+1 (k ∈ N). Then the following conditions are equivalent:

(i) ⊥ρv
λ
⊂⊥ρλ . (ii) ⊥ρλ⊂⊥ρv

λ
(λ 
= 1

2
). (iii) ⊥ρλ=⊥ρv

λ
. (iv) X is smooth.

Theorem 21.15 ([28, Theorem 2.17]) Let X be a normed linear space and let λ ∈
[0, 1] and v = 1

2k−1 (k ∈ N). Then the following conditions are equivalent:

(i) ⊥ρv
λ
⊂⊥ρ− (except for ⊥ρ1

1
=⊥ρ− ).

(ii) ⊥ρv
λ
⊂⊥ρ+ (except for ⊥ρ1

0
=⊥ρ+ ).

(iii) X is smooth.

The following result is an analogue of Theorems 21.2 and Proposition 21.2 which
describes the relation between Birkhoff–James orthogonality and ρv

λ-orthogonality.

Proposition 21.4 ([28, Proposition 2.9]) Let X be a normed linear space and let
λ ∈ [0, 1] and v = 1

2k−1 (k ∈ N). Then ⊥ρv
λ
⊂⊥B .
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Also, as stated in [28], for non-smooth normed linear spaces, Birkhoff–James
orthogonality and ρv

λ-orthogonality may not coincide. Now, as an analogue of
Theorems 21.2 and 21.9, we prove that the equality ⊥ρv

λ
=⊥B in normed linear

spaces yields the smoothness of the norm. In fact, all the results which mentioned
in Theorem 21.2 and Proposition 21.2 are given from the next theorem for the
particular modes of λ and v.

Theorem 21.16 Let X be a normed linear space, λ ∈ [0, 1] and let v = 1
2k−1

(k ∈ N). Then the following conditions are equivalent:

(i) X is smooth.
(ii) ⊥B⊂⊥ρv

λ
.

Proof The implication (i)⇒(ii) is clear. Now, we prove the implication (ii)⇒(i).
Suppose that λ ∈ [0, 1] such that λ 
= 1

2 and (ii) holds. It follows from (ii)
and Theorem 21.2 that ⊥ρ⊂⊥B⊂⊥ρv

λ
and so Theorem 21.13 concludes that X is

smooth.
Now, assume that λ = 1

2 . If x, y ∈ X and x 
= 0, then we obtain from
Lemma 21.1 that there is t ∈ R such that x ⊥B (tx + y) and so (ii) implies that
there is t ∈ R such that ρv

λ(x, tx + y) = 0. If ρ∗(x, tx + y) 
= 0, then it follows
from Proposition 21.3 (iv) that

Kvρ+(x, tx + y) + K−vρ−(x, tx + y) = 0.

So, we have K2v−1 = −1. Accordingly, K = ρ−(x,tx+y)
ρ+(x,tx+y)

= −1 and so t =
−ρ(x,y)

‖x‖2 . Consequently, Birkhoff–James orthogonality is right-unique. Therefore X

is smooth, by Lemma 21.1.
Also, if ρ∗(x, tx + y) = 0, then ρ−(x, tx + y)ρ+(x, tx + y) = 0. Therefore, we

obtain t = −ρ±(x,y)

‖x‖2 . Hence Birkhoff–James orthogonality is right-unique, and so X

is smooth.

21.2.4 The λ-Angularly Property of Norms

The concept of angle and the question how to measure angles are interesting from
the geometrical view points; see e.g. [7, 61, 62] and the references therein. In
this section, we study an angle function based on ρλ. Let us begin with some
observations. In a real inner product space

(
H, 〈·, ·〉), the angle θ(x, y) between

two non-zero elements x, y is defined by

θ(x, y) = arccos

( 〈x, y〉
‖x‖‖y‖

)
.
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Now, let (X, ‖ · ‖) be a real normed linear space, and let λ ∈ [0, 1]. For all non-zero
elements x, y ∈ X we have −1 ≤ ρλ(x,y)

‖x‖‖y‖ ≤ 1. Hence we can define the notion of
λ-angle between the non-zero elements x and y.

Definition 21.3 The number

θλ(x, y) := arccos

(
ρλ(x, y)

‖x‖‖y‖
)

.

is called the λ-angle between the element x and the element y in a normed linear
space.

We will refrain from referring to the λ-angle between x and y, since the λ-angle
from x to y may not coincide with the λ-angle from y to x. Notice that θλ(x, y)

does not depend on the lengths of x and y. Also, if the norm in X arises from an
inner product, it is easy to see that λ-angles agree with angles defined by the inner
product.

Definition 21.4 Two norms, ‖ · ‖1 and ‖ · ‖2, on X have the λ-angularly property
if there exists a constant C such that for all non-zero elements x, y ∈ X,

tan

(
θλ,2(x, y)

2

)
≤ C tan

(
θλ,1(x, y)

2

)
.

Here θλ,1(x, y) and θλ,2(x, y) are the λ-angles from x to y relative to ‖ · ‖1 and
‖ · ‖2, respectively. Also, tan(π

2 ) is taken to be +∞.

Our definition is motivated by the Wielandt and generalized Wielandt inequalities,
which can be applied in matrix analysis and multivariate analysis, where angles
between elements correspond to statistical correlation; see e.g. [74].

Remark 21.1 Suppose the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property on
X. Then the norms ‖ · ‖2 and ‖ · ‖1 have the (1−λ)-angularly property on X. Indeed,
for every non-zero x, y ∈ X we have

tan

(
θ1−λ,1(x, y)

2

)
= − tan

(
θλ,1(x,−y)

2

)

≤ − 1

C
tan

(
θλ,2(x,−y)

2

)
= 1

C
tan

(
θ1−λ,2(x, y)

2

)
.

In the following theorem we show that λ-angularly property of norms share a
geometric property.

Recall that a normed linear space (X, ‖ · ‖) is strictly convex (rotund) if and only
if x 
= y and ‖x‖ = ‖y‖ = 1 together imply that ‖tx + (1 − t)y‖ < 1 for all
0 < t < 1. To get the next result we use some ideas of [44].
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Theorem 21.17 Suppose the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property
on X. Then the following statements are equivalent:

(i) (X, ‖ · ‖1) is strictly convex.
(ii) (X, ‖ · ‖2) is strictly convex.

Proof (i)⇒(ii) Since a normed linear space is strictly convex if every boundary
point of the unit ball is an extreme point (see [31]), hence it is enough to show that
if x

‖x‖1
is an extreme point of the ‖ · ‖1-unit ball, then x

‖x‖2
is an extreme point of

the ‖ · ‖2-unit ball. Suppose x
‖x‖2

is not an extreme point of the ‖ · ‖2-unit ball. Then

there are points y and z in X such that x
‖x‖2

= y+z
2 and the closed line segment from

y to z is contained in the ‖ · ‖2-unit ball. If s ∈ [0, 1] then the points (1 − s)y + sz

and sy + (1 − s)z are on the line segment and hence in the ‖ · ‖2-unit ball. Thus,

2 = ‖y + z‖2 = ‖(1 − s)y + sz + sy + (1 − s)z‖2

≤ ‖(1 − s)y + sz‖2 + ‖sy + (1 − s)z‖2 ≤ 1 + 1 = 2.

It follows that ‖(1 − s)y + sz‖2 = ‖sy + (1 − s)z‖2 = 1. In particular, we observe
that ‖y‖2 = ‖z‖2 = 1. Hence

ρλ,2(y, z) = λρ−,2(y, z) + (1 − λ)ρ+,2(y, z)

= λ‖y‖2 lim
t→0−

‖y + tz‖2 − ‖y‖2

t
+ (1−λ)‖y‖2 lim

t→0+
‖y + tz‖2 − ‖y‖2

t

= λ lim
s→0−

∥∥∥y + s
1−s

z

∥∥∥
2
− 1

s
1−s

+ (1 − λ) lim
s→0+

∥∥∥y + s
1−s

z

∥∥∥
2
− 1

s
1−s

= λ lim
s→0−

‖(1 − s)y + sz‖2 − (1 − s)

s

+ (1 − λ) lim
s→0+

‖(1 − s)y + sz‖2 − (1 − s)

s

= λ + (1 − λ) = 1.

It follows that ρλ,2(y, z) = 1, cos
(
θλ,2(y, z)

) = 1, and tan
(

θλ,2(x,y)

2

)
= 0. By the

λ-angularly property, tan
(

θλ,1(x,y)

2

)
= 0 as well. This implies cos

(
θλ,1(y, z)

) = 1

and hence ρλ,1(y, z) = ‖y‖1‖z‖1. From [88, Theorem 2.2] we obtain

‖y‖1‖z‖1 = ρλ,1(y, z) ≤ (‖y + z‖1 − ‖y‖1)‖y‖1 ≤ ‖z‖1‖y‖1,

and hence (‖y + z‖1 − ‖y‖1)‖y‖1 = ‖z‖1‖y‖1, i.e., ‖y + z‖1 = ‖y‖1 + ‖z‖1. On
the other hands, we have
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x

‖x‖1
=

y+z
2 ‖x‖2∥∥ y+z

2 ‖x‖2

∥∥
1

= y + z

‖y + z‖1
= ‖y‖1

‖y‖1 + ‖z‖1

y

‖y‖1
+ ‖z‖1

‖y‖1 + ‖z‖1

z

‖z‖1
,

which is a convex combination of the points y
‖y‖1

and z
‖z‖1

. Thus, x
‖x‖1

is an interior

point of the line segment from y
‖y‖1

to z
‖z‖1

. Since the endpoints of this segment lie
in the ‖ · ‖1-unit ball, so the convexity shows that the entire line segment lies in the
‖ · ‖1-unit ball. Thus x

‖x‖1
is not an extreme point of the ‖ · ‖1-unit ball, which is a

contradiction.
By using a similar argument we get (ii)⇒(i).

The next theorem may be viewed as a stability result for the λ-angularly property of
norms.

Theorem 21.18 Suppose the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property
on X and let ‖ · ‖3 = ‖ · ‖1 + ‖ · ‖2. Then the following statements hold.

(i) The norms ‖ · ‖3 and ‖ · ‖1 have the λ-angularly property.
(ii) The norms ‖ · ‖3 and ‖ · ‖2 have the (1 − λ)-angularly property.

Proof

(i) Let x, y ∈ X \ {0}. Let ρλ,i(x, y) and θλ,i(x, y) be the functional ρλ and the
λ-angle from x to y with respect to the norm ‖ · ‖i , for i = 1, 2, 3. We have

ρλ,3(x, y) = λρ−,3(x, y) + (1 − λ)ρ+,3(x, y)

= λ‖x‖3 lim
t→0−

‖x + ty‖3 − ‖x‖3

t
+ (1−λ)‖x‖3 lim

t→0+
‖x + ty‖3 − ‖x‖3

t

= λ‖x‖3 lim
t→0−

‖x + ty‖1 + ‖x + ty‖2 − ‖x‖1 − ‖x‖2

t

+ (1 − λ)‖x‖3 lim
t→0+

‖x + ty‖1 + ‖x + ty‖2 − ‖x‖1 − ‖x‖2

t

= λ‖x‖3
ρ−,1(x, y)

‖x‖1
+ λ‖x‖3

ρ−,2(x, y)

‖x‖2

+ (1 − λ)‖x‖3
ρ+,1(x, y)

‖x‖1
+ (1 − λ)‖x‖3

ρ+,2(x, y)

‖x‖2

= ‖x‖3

‖x‖1

(
λρ−,1(x, y) + (1 − λ)ρ+,1(x, y)

)

+ ‖x‖3

‖x‖2

(
λρ−,2(x, y) + (1 − λ)ρ+,2(x, y)

)

= ‖x‖3

‖x‖1
ρλ,1(x, y) + ‖x‖3

‖x‖2
ρλ,2(x, y).



484 A. Zamani and M. Dehghani

Therefore

ρλ,3(x, y) = ‖x‖3

‖x‖1
ρλ,1(x, y) + ‖x‖3

‖x‖2
ρλ,2(x, y),

whence

cos θλ,3(x, y) = ρλ,3(x, y)

‖x‖3 ‖y‖3

= ρλ,1(x, y)

‖x‖1 ‖y‖3
+ ρλ,2(x, y)

‖x‖2 ‖y‖3

= ‖y‖1

‖y‖3
cos θλ,1(x, y) + ‖y‖2

‖y‖3
cos θλ,2(x, y).

Thus

cos θλ,3(x, y) = ‖y‖1

‖y‖3
cos θλ,1(x, y) + ‖y‖2

‖y‖3
cos θλ,2(x, y). (21.1)

Now, by (21.1) and the fact that 1+r
1+t

≤ 1 + r
t

for all r, t > 0 , we have

tan

(
θλ,3(x, y)

2

)
=

√
1 − cos θλ,3(x, y)

1 + cos θλ,3(x, y)

≤

√√√√√√√1 +
tan

(
θ2
λ,2(x,y)

2

)

tan

(
θ2
λ,1(x,y)

2

) tan

(
θλ,1(x, y)

2

)

≤
√

1 + C2 tan

(
θλ,1(x, y)

2

)
.

Hence

tan

(
θλ,3(x, y)

2

)
≤

√
1 + C2 tan

(
θλ,1(x, y)

2

)
.

So, the norms ‖ · ‖3 and ‖ · ‖1 have the λ-angularly property.
(ii) Since the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property, Remark 21.1

shows that the norms ‖ · ‖2 and ‖ · ‖1 have the (1−λ)-angularly property. Thus
from (i) we conclude that the norms ‖ · ‖3 and ‖ · ‖2 have the (1 −λ)-angularly
property.
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21.2.5 Approximate Norm Derivatives Orthogonalities

In an inner product space (H, 〈·, ·〉) an approximate orthogonality (ε-orthogonality)
of vectors x, y ∈ H was naturally defined in [13, 30] by

x ⊥ε y if and only if |〈x, y〉| ≤ ε‖x‖‖y‖.

For ε ≥ 1, it is clear that every pair of vectors are ε-orthogonal, so the interesting
case is when ε ∈ [0, 1).

Now, let (X, ‖ · ‖) be a normed linear space and let x, y ∈ X. Analogously, for
a given semi-inner product [·|·] on X the approximate semi-orthogonality relation
was defined in [15, 30] by

x ⊥ε
s y if and only if |[y|x]| ≤ ε‖x‖‖y‖.

The first notion of approximate Birkhoff–James orthogonality has been proposed by
Dragomir [29] as follows:

x ⊥ε
D y if and only if ‖x + ty‖ ≥ (1 − ε)‖x‖ (t ∈ K).

Chmieliński [12] also introduced another notion of approximate Birkhoff–James
orthogonality, defined in the following way:

x ⊥ε
B y if and only if ‖x + ty‖2 ≥ ‖x‖2 − 2ε‖x‖‖ty‖ (t ∈ K).

We would like to remark that in a normed linear space, both types of approximate
Birkhoff–James orthogonality are homogeneous. For more information about these
types of approximate orthogonality and their properties the reader is referred to
[12, 29].

Inspired by approximate Birkhoff–James orthogonality, for a normed linear
space, others notions of approximate orthogonality were considered. One of them is
the approximate Roberts orthogonality. In fact, the authors in [86] introduced two
versions of approximate Roberts orthogonality as follows:

x ⊥ε
R y ⇔

∣∣∣‖x + ty‖2 − ‖x − ty‖2
∣∣∣ ≤ 4ε‖x‖‖ty‖ (t ∈ R)

and

x ⊥ε R y ⇔
∣∣∣‖x + ty‖ − ‖x − ty‖

∣∣∣ ≤ ε(‖x + ty‖ + ‖x − ty‖) (t ∈ R).

It can be remarked that these two orthogonality relations are related to analogous
definitions for isosceles orthogonality introduced in [20] (see also [85]). Another
one is the approximate Pythagorean orthogonality which has been investigated
in [77]:
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x ⊥ε
P y ⇔

∣∣∣‖x + y‖2 − ‖x‖2 − ‖y‖2
∣∣∣ ≤ 2ε‖x‖‖y‖.

Also, we remember two generalized types of approximate isosceles orthogonality,
namely approximate cI -orthogonality, in normed linear spaces were considered in
[87]. For a fixed c 
= 0, the first one is

x ⊥ε cI y ⇔
∣∣∣‖x + cy‖2 − ‖x − cy‖2

∣∣∣ ≤ 4ε‖x‖‖cy‖,

and the second one is

x ⊥ε
cI y ⇔

∣∣∣‖x + cy‖ − ‖x − cy‖
∣∣∣ ≤ ε(‖x + cy‖ + ‖x − cy‖).

In a similar way Chmieliński and Wójcik [22] introduced the notions of an
approximate ρ± and ρ-orthogonality as follows:

x ⊥ε
ρ± y if and only if |ρ±(x, y)| ≤ ε‖x‖‖y‖,

x ⊥ε
ρ y if and only if |ρ(x, y)| ≤ ε‖x‖‖y‖.

Similarly, the approximate ρ∗-orthogonality has been defined and studied in [27]:

x ⊥ε
ρ∗ y if and only if |ρ∗(x, y)| ≤ ε2‖x‖2‖y‖2.

Obviously, if the norm in X comes from an inner product, then

⊥ε=⊥ε
s=⊥ε

B=⊥ε
R=⊥ε

P =⊥ε cI=⊥ε
ρ±=⊥ε

ρ=⊥ε
ρ∗ .

Also, it is clear that for ε = 0 all the above approximate orthogonalities coincide
with the related exact orthogonalities.

Chmieliński and Wójcik generalized Theorem 21.3 for approximate Birkhoff–
James orthogonality in [22] as follows:

Theorem 21.19 ([22, Thorem 3.1]) Let (X, ‖ · ‖) be a normed linear space and
let ε ∈ [0, 1). Then, for arbitrary x, y ∈ X and α ∈ R the following condition are
equivalent:

(i) x ⊥ε
B (y − αx).

(ii) ρ−(x, y) − ε‖x‖‖y − αx‖ ≤ α‖x‖2 ≤ ρ+(x, y) + ε‖x‖‖y − αx‖.

In particular, x ⊥ε
B y if and only if

ρ−(x, y) − ε‖x‖‖y‖ ≤ 0 ≤ ρ+(x, y) + ε‖x‖‖y‖.

They also identified the relationship between ⊥ε
s , ⊥ε

ρ± , ⊥ε
ρ and ⊥ε

B in the following
theorem.
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Theorem 21.20 ([21, 22]) Let ε ∈ [0, 1). For an arbitrary normed linear space X

and ♦ ∈ {s, ρ−, ρ+, ρ} we have ⊥ε♦⊂⊥ε
B .

Of course, for non-smooth normed linear spaces, the approximate orthogonalities
⊥ε

ρ± and ⊥ε
ρ are incomparable. The following generalization of Theorem 21.4 has

been proved in [22].

Theorem 21.21 ([22, Theorem 3.3]) Let X be a normed linear space and let ε ∈
[0, 1). Then the following conditions are equivalent:

(i) ⊥ε
ρ+⊂⊥ε

ρ− . (ii) ⊥ε
ρ−⊂⊥ε

ρ+ . (iii) ⊥ε
ρ+=⊥ε

ρ− .

(iv) ⊥ε
ρ+⊂⊥ε

ρ . (v) ⊥ε
ρ⊂⊥ε

ρ+ . (vi) ⊥ε
ρ+=⊥ε

ρ .

(vii) ⊥ε
ρ−⊂⊥ε

ρ . (viii) ⊥ε
ρ⊂⊥ε

ρ− . (ix) ⊥ε
ρ−=⊥ε

ρ . (x) X is smooth.

Some illustrated examples were provided in [21, 22] which show that equalities
in Theorem 21.20 need not to hold in non-smooth normed linear spaces. Actually,
using this fact and Theorem 21.21 it has been proved in [22] that the smoothness
of a normed linear space X resulted also from ⊥ε

ρ±=⊥ε
B and ⊥ε

ρ=⊥ε
B for some

ε ∈ [0, 1). In fact, the following theorem is a generalization of Theorem 21.2.

Theorem 21.22 ([22, Theorem 3.4]) Let X be a normed linear space and let ε ∈
[0, 1). If ⊥ε

ρ±=⊥ε
B or ⊥ε

ρ=⊥ε
B , then X is smooth.

Moreover, an approximate version of Theorem 21.5 has been prepared as follows:

Theorem 21.23 ([22, Theorem 3.5]) Let X be a normed linear space and let [·|·]
be a fixed semi-inner product in X. For ε ∈ [0, 1) the following conditions are
equivalent:

(i) ⊥ε
ρ⊂⊥ε

s . (ii) ⊥ε
s⊂⊥ε

ρ . (iii) ⊥ε
ρ=⊥ε

s . (iv) 〈·, ·〉g = [·|·].

Another characterization of smooth normed linear spaces using comparison of
approximate ρ±-orthogonality and approximate semi-inner product has been pre-
sented in [78].

Theorem 21.24 Let X be a normed linear space and let [·|·] be a fixed semi-inner
product in X. For ε ∈ [0, 1) the following conditions are equivalent.

(i) ⊥ε
ρ+⊂⊥ε

s . (ii) ⊥ε
s⊂⊥ε

ρ+ . (iii) ⊥ε
ρ+=⊥ε

s .

(iv) ⊥ε
ρ−⊂⊥ε

s . (v) ⊥ε
s⊂⊥ε

ρ− . (vi) ⊥ε
ρ−=⊥ε

s .

(vii) X is smooth.
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In [69] Stypuła and Wójcik by introducing the constants

E ρ(X) := inf
{
ε ∈ [0, 1] : ⊥ρ+⊂⊥ε

ρ−
}

and

R(X) := sup
{‖x − y‖ : conv{x, y} ⊂ SX

}

provided some different characterizations of rotundity and smoothness of dual
spaces. We have, of course, 0 ≤ E ρ(X) ≤ 1 and 0 ≤ R(X) ≤ 2. Observe that,

E ρ(X) = 0 if and only if X is smooth

and

R(X) = 0 if and only if X is rotund.

A well-known theorem states that if X∗ is rotund, then X is smooth. The following
theorem states this well-known result in terms of constants E ρ(X) and R(X).

Theorem 21.25 ([69, Corollary 2.6]) Let X be a real normed linear space. Then

E ρ(X) ≤ R(X∗).

Moreover, if X is a reflexive Banach space, then

E ρ(X) ≤ R(X∗) ≤ 2E ρ(X).

Hence,

(i) if X is reflexive, X∗ is rotund if and only if X is smooth;
(ii) if X is reflexive, X∗ is smooth if and only if X is rotund.

Now, let us review the results obtained related to approximate ρ∗-orthogonality from
[27]. It is easy to check that the approximate ρ∗-orthogonality is homogenous. Also,
if x ⊥ε

ρ+ y and x ⊥ε
ρ− y, then x ⊥ε

ρ∗ y. Indeed, by the arithmetic-geometric means
inequality, we get

|ρ∗(x, y)| = |ρ−(x, y)ρ+(x, y)| ≤
( |ρ−(x, y)| + |ρ+(x, y)|

2

)2

≤ ε2‖x‖2‖y‖2.

We notice that the relations ⊥ε
ρ± , ⊥ε

ρ and ⊥ε
ρ∗ are generally incomparable, see [27,

Example 2.1]. Also, the relation between ⊥ε
ρ∗ and ⊥ε

B has been identified as follows:

Theorem 21.26 ([27, Theorem 2.3]) Let X be a normed linear space and let ε ∈
[0, 1). Then ⊥ε

ρ∗⊂⊥ε
B .
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It is noticed in [27, Example 2.4] that for nonsmooth normed linear spaces, the
orthogonalities ⊥ε

ρ∗ and ⊥ε
B may not coincide.

Theorem 21.27 ([27, Remark 2.5]) Let X be a normed linear space and let ε ∈
[0, 1). If ⊥ε

B⊂⊥ε
ρ∗ , then X is smooth.

To finish this section we consider analogously, the notion of approximate ρv
λ-

orthogonality which is studied in [1]. In fact, naturally, for ε ∈ [0, 1), λ ∈ [0, 1]
and v = 1

2k−1 (k ∈ N), we say that a vector x ∈ X is approximate ρv
λ-orthogonal to

a vector y ∈ X, in short x ⊥ε
ρv

λ
y, if

|ρv
λ(x, y)| ≤ ε‖x‖‖y‖.

In particular, for v = 1, we have x ⊥ε
ρλ

y if and only if |ρλ(x, y)| ≤ ε‖x‖‖y‖.
Note that the relations x ⊥ε

ρ0
y, x ⊥ε

ρ1
y and x ⊥ε

ρ 1
2

y coincide with the relations

x ⊥ε
ρ+ y, x ⊥ε

ρ− y and x ⊥ε
ρ y, respectively.

In [1] some illustrated examples have been presented to show that the relations
⊥ε

ρ± , ⊥ε
ρ , ⊥ε

ρ∗ , ⊥ε
ρλ

and ⊥ε
ρv

λ
are incomparable in general normed linear spaces.

The following result is a generalization of Theorem 21.20.

Theorem 21.28 ([1, Theorem 2.4]) Let X be a normed linear space and let ε ∈
[0, 1), λ ∈ [0, 1] and v = 1

2k−1 (k ∈ N). Then ⊥ε
ρv

λ
⊂⊥ε

B .

According to [1], there are non-smooth normed linear spaces such that ⊥ε
B 
⊂⊥ε

ρλ
.

Analogously to Theorem 21.22, it has been proved in the following theorem that
approximate Birkhoff–James orthogonality and approximate ρv

λ-orthogonality in a
normed linear space X are equivalent if and only if X is smooth.

Theorem 21.29 ([1, Theorem 2.7]) Let X be a normed linear space and let ε ∈
[0, 1), λ ∈ [0, 1] and v = 1

2k−1 (k ∈ N). If ⊥ε
B⊂⊥ε

ρv
λ
, then X is smooth.

21.3 Orthogonality Preserving Property and Applications in
the Geometry of Normed Linear Spaces

21.3.1 Linear Mappings Preserving Orthogonality

The problem of determining the structure of linear mappings between normed linear
spaces, which leave certain properties invariant, has been considered in several
papers. These are the so-called linear preserver problems, see [10, 52] and the
references therein. The study on linear orthogonality preserving mappings can be
considered as a part of the theory of linear preservers. The orthogonality preserving
property have been intensively studied recently in connection with functional
analysis and operator theory; cf. [13, 23, 47, 72, 81, 89, 91].
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Let H and K be inner product spaces. A mapping T : H → K is called
orthogonality preserving if

x ⊥ y ⇒ T x ⊥ Ty (x, y ∈ X).

Such mappings can be very irregular, far from being continuous or linear (see
[13, Example 2]). For that reason we restrict ourselves to linear mappings only.
On the other hand, for linear orthogonality preserving mappings we have a simple
characterization.

Theorem 21.30 ([13, Theorem 1]) Let H and K be (real or complex) inner
product spaces. For a nonzero linear mapping T : H → K the following conditions
are equivalent (with some γ > 0 ):

(i) T is a similarity (scalar multiple of a linear isometry), i.e., ‖T x‖ = γ ‖x‖ for
all x ∈ H .

(ii) 〈T x, T y〉 = γ 2〈x, y〉 for all x, y ∈ H .
(iii) T is orthogonality preserving.

Orthogonality preserving mappings have been widely studied in the setting of inner
product C∗-modules, see [5, 6, 32, 35, 43, 49–51, 59, 89]. In particular, further
generalizations of Theorem 21.30 can be found in [18, 33]. Similar investigations
have been carried out in normed linear spaces for sesquilinear form (instead of inner
products) in paper [79].

Let X and Y be normed linear spaces and let T : X → Y be a linear and
continuous operator. The norm of T is defined as usual:

‖T ‖ = sup
{‖T x‖ : ‖x‖ = 1

} = inf
{
M > 0 : ‖T x‖ ≤ M‖x‖, x ∈ X

}
.

Similarly, we define

[T ] := inf
{‖T x‖ : ‖x‖ = 1

} = sup
{
m ≥ 0 : ‖T x‖ ≥ m‖x‖, x ∈ X

}
.

Now, let ♦,♥ ∈ {B, I, s, ρ±, ρ, ρ∗, ρλ, ρ
υ
λ }. We say that a mapping T : X → Y

(exactly) preserves (♦,♥)-orthogonality if

x ⊥♦ y ⇒ T x ⊥♥ Ty (x, y ∈ X).

In particular, we say that T is ♦-orthogonality preserving if

x ⊥♦ y ⇒ T x ⊥♦ Ty (x, y ∈ X).

Koehler and Rosenthal [45, Theorem 1] showed that a linear operator from a normed
linear space into itself is an isometry if and only if it preserves some semi-inner
product. Blanco and Turnšek [9, Remark 3.2] and Chmieliński [15, Theorem 2.5]
extended it to different normed linear spaces. Namely, we have the following result.
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Theorem 21.31 Let X and Y be normed linear spaces. For a linear mapping T :
X −→ Y and some γ > 0 the following conditions are equivalent:

(i) T is a similarity.
(ii) [T x, T y]Y = γ 2[x, y]X for all x, y ∈ X.

(iii) T is s-orthogonality preserving.

The conditions (ii) and (iii) should be understood that they are satisfied with respect
to some semi-inner products [·, ·]X and [·, ·]Y in X and Y , respectively.

It has been proved by Koldobsky [46] that a linear mapping T : X → X preserving
B-orthogonality has to be a similarity. In [36, Theorem 1], Ionică using the
connections between the Birkhoff–James orthogonality and norm derivatives gave
an alternative proof of the above results in the case of different real normed linear
spaces (see also [65]). The respective result for both real and complex cases was
given by Blanco and Turnšek in [9, Theorem 3.1]. Very recently, Wójcik in [83]
presented a somewhat simpler proof of this theorem.

Theorem 21.32 Let X and Y be (real or complex) normed linear spaces. A linear
mapping T : X → Y is B-orthogonality preserving if and only if it is a scalar
multiple of a linear isometry.

The following result gives a characterization of inner product spaces.

Theorem 21.33 ([15, Theorem 2.9]) Let X be a normed linear space. Suppose that
there exists an inner product space K and a linear mapping T from X into K or
from K onto X such that T preserves B-orthogonality. Then X is an inner product
space.

Martini and Wu [54, Lemma 4] proved the following result.

Theorem 21.34 Let X and Y be two normed linear spaces. If a linear mapping
T : X −→ Y preserves I -orthogonality, then it also preserves B-orthogonality.

Combining Theorems 21.32 and 21.34 actually lead us to the following result.

Corollary 21.3 Let X and Y be normed linear spaces, and let T : X −→ Y be a
nonzero linear mapping. Then the following conditions are equivalent:

(i) T is I -orthogonality preserving.
(ii) T is a scalar multiple of a linear isometry.

Remark 21.2 Notice that Corollary 21.3 also has been proved in [16, Theorem 4.5].

The next theorem gives characterizations of inner product spaces by properties of
linear operators related to B-orthogonality and I -orthogonality.
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Theorem 21.35 ([84, Theorems 9, 10]) Let X and Y be two normed linear spaces.
Each one of the following conditions implies that X and T (X) are inner product
spaces.

(i) There exists a nonzero linear mapping T : X −→ Y which preserve (I, B)-
orthogonality.

(ii) There exists a nonzero linear mapping T : X −→ Y which preserve (B, I )-
orthogonality.

The orthogonality preserving mappings have been considered also in [63]. The
paper [63] shows another way to consider the orthogonality preserving mappings.
Some other results on B-orthogonality preserving mapping can be found in
[19, 82, 84].

21.3.2 Mappings Which Exactly Preserve Norm Derivatives
Orthogonality

The aim of this subsection is to present results concerning the linear mappings
which preserve norm derivatives orthogonality. We survey on the results presented in
[11, 21, 22, 28, 60, 75, 88], as well as give some new and more general ones. In 2010,
Chmieliński and Wójcik [21] studied norm derivatives orthogonality preserving
mappings. They proved that for arbitrary normed linear spaces X and Y , if a linear
mapping T : X −→ Y preserves ρ−-orthogonality or preserves ρ+-orthogonality
then it is a similarity. Later, Wójcik [75] showed that a linear mapping preserving
ρ-orthogonality has to be a similarity. These results give

Theorem 21.36 Let X and Y be normed linear spaces, and let T : X −→ Y be a
nonzero linear mapping. Then the following conditions are equivalent:

(i) T preserves ρ+-orthogonality.
(ii) T preserves ρ−-orthogonality.

(iii) T preserves ρ-orthogonality.
(iv) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.
(v) ρ+(T x, T y) = ‖T ‖2ρ+(x, y) for all x, y ∈ X.

(vi) ρ−(T x, T y) = ‖T ‖2ρ−(x, y) for all x, y ∈ X.
(vii) ρ(T x, T y) = ‖T ‖2ρ(x, y) for all x, y ∈ X.

As for the ρ∗-orthogonality preserving mapping the following characterization has
been given in [60] (see also [11]).

Theorem 21.37 Let X, Y be normed linear spaces and let T : X −→ Y be a
nonzero linear mapping. Then the following conditions are equivalent:

(i) T preserves ρ∗-orthogonality.
(ii) T preserves (ρ∗, B)-orthogonality.

(iii) T preserves (B, ρ∗)-orthogonality.
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(iv) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.
(v) ρ∗(T x, T y) = ‖T ‖4 ρ∗(x, y) for all x, y ∈ X.

If X = Y , then each one of these assertions is also equivalent to
(vi) there exists a semi-inner product [·|·] : X × X −→ R satisfying

[T x, T y]X = ‖T ‖2[x, y]X (x, y ∈ X).

Recall that a normed linear space (X, ‖ · ‖) satisfies the δ-parallelogram law for
some δ ∈ [0, 1), if the double inequality

2(1 − δ)‖z‖2 ≤ ‖z + w‖2 + ‖z − w‖2 − 2‖w‖2 ≤ 2(1 + δ)‖z‖2

holds for all z,w ∈ X; cf. [17]. Also a normed linear space (X, ‖ · ‖) is equivalent
to an inner product space if there exist an inner product in X and a norm ||| · |||
generated by this inner product such that

1

k
‖x‖ ≤ |||x||| ≤ k‖x‖ (x ∈ X)

holds for some k ≥ 1; see [41].

Corollary 21.4 ([60, Corollary 2.7]) Any one of the following assertions implies
that X is equivalent to an inner product space.

(i) There exist a normed linear space Y satisfying the δ-parallelogram law for
some δ ∈ [0, 1) and a nonzero linear mapping T : X −→ Y such that T

preserves ρ∗-orthogonality.
(ii) There exist a normed linear space Y satisfying the δ-parallelogram law for

some δ ∈ [0, 1) and a nonzero surjective linear mapping S : Y −→ X such
that S preserves ρ∗-orthogonality.

We remark that the converse of Corollary 21.4 holds also true. Indeed, if X is
equivalent to an inner product space, then we can choose δ = 0, Y = X and T = id,
the identity operator on X. Recall that a normed linear space (X, ‖ · ‖) is called
uniformly smooth if X satisfies the property that for every ε > 0 there exists δ > 0
such that if x, y ∈ X with ‖x‖ = 1 and ‖y‖ ≤ δ, then ‖x+y‖+‖x−y‖ ≤ 2+ε‖y‖;
cf. [3].

The modulus of smoothness of X is the function �X defined for every t > 0 by
the formula

�X(t) := sup

{‖x + y‖ + ‖x − y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = t

}
.

Furthermore, X is called uniformly convex if for every 0 < ε ≤ 2 there is some
δ > 0 such that for any two vectors with ‖x‖ = ‖y‖ = 1, the condition ‖x −y‖ ≥ ε

implies that
∥∥ x+y

2

∥∥ ≤ 1 − δ.
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The modulus of convexity of X is the function σX defined by

σX(ε) := inf

{
1 −

∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

Let X, Y be normed linear spaces. If a linear mapping T : X −→ Y preserves
ρ∗-orthogonality, then from Theorem 21.37 we conclude that T must be a similarity.
Thus, the spaces X and Y have to share some geometrical properties. In particular,
the modulus of convexity σX and modulus of smoothness �X must be preserved,
i.e., σX = σT (X) and �X = �T (X). As a consequence, we have the following result.

Corollary 21.5 Let X be a normed linear space. Suppose that there exists a normed
linear space Y which is a uniformly convex (uniformly smooth) space, a strictly
convex space, or an inner product space and a nontrivial linear mapping T from
X into Y (or from Y onto X) such that T preserves ρ∗-orthogonality. Then X is,
respectively, a uniformly convex (uniformly smooth) space, a strictly convex space,
an inner product space.

Recently, the authors of the paper [88] considered the class of linear mappings
preserving ρλ-orthogonality. They showed that each such a mapping must be a
similarity. Namely, they proved the following result.

Theorem 21.38 ([88, Theorem 3.4]) Let X and Y be normed linear spaces and
λ ∈ [0, 1]. Let T : X −→ Y be a nonzero linear mapping. Then the following
conditions are equivalent:

(i) T preserves ρλ-orthogonality.
(ii) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.

(iii) ρλ(T x, T y) = ‖T ‖2 ρλ(x, y) for all x, y ∈ X.

Let X be a normed linear space endowed with two norms ‖ · ‖1 and ‖ · ‖2, which
generate respective functionals ρ�,1 and ρ�,2, where � ∈ {λ, ∗}. Following [3,
Definition 2.4.1], we say that functionals ρ�,1 and ρ�,2 are equivalent if there exist
constants 0 < m ≤ M such that

m|ρ�,1(x, y)| ≤ |ρ�,2(x, y)| ≤ M|ρ�,1(x, y)| (x, y ∈ X).

Taking X = Y and T = id, one obtains, from Theorems 21.37 and 21.38, the
following result.

Corollary 21.6 Let X be a normed linear space endowed with two norms ‖ · ‖1
and ‖ · ‖2, which generate respective functionals ρ�,1 and ρ�,2 with � ∈ {λ, ∗} and
λ ∈ [0, 1]. Then the following conditions are equivalent:

(i) The functionals ρ�,1 and ρ�,2 are equivalent.
(ii) The spaces (X, ‖ · ‖1) and (X, ‖ · ‖2) are isometrically isomorphic.

Next, we formulate one of our main results.
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Theorem 21.39 Let X, Y be normed linear spaces, λ ∈ [0, 1] and let υ = 1
2k−1

(k ∈ N). If T : X −→ Y be a nonzero linear mapping, then the following conditions
are equivalent:

(i) T preserves ρυ
λ -orthogonality.

(ii) T preserves (ρυ
λ , B)-orthogonality.

(iii) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.
(iv) ρυ

λ (T x, T y) = ‖T ‖2 ρυ
λ (x, y) for all x, y ∈ X.

Proof (i)⇒(ii) Suppose that x, y ∈ X and x⊥ρυ
λ
y. Then T x⊥ρυ

λ
T y, by (i). It fol-

lows from Proposition 21.4 that T x⊥BTy. Thus T preserves (ρυ
λ , B)-orthogonality.

(ii)⇒(iii) Suppose that (ii) holds and fix x, y ∈ X \ {0}. If x and y are linearly
dependent, then ‖T x‖

‖x‖ = ‖Ty‖
‖y‖ . Now, assume that x and y are linearly independent.

For any t ∈ R, it is easy to see that ρ±
(
x + ty,

−ρ±(x+ty,y)

‖x+ty‖2 (x + ty) + y
)

= 0 and

hence

ρυ
λ

(
x + ty,

−ρ±(x + ty, y)

‖x + ty‖2 (x + ty) + y
)

= 0.

It follows from Proposition 21.4 that T x + tT y⊥B
−ρ±(x+ty,y)

‖x+ty‖2 (T x + tT y) + Ty.
By Theorem 21.3, we get

ρ−
(
T x + tT y,

−ρ±(x + ty, y)

‖x + ty‖2
(T x + tT y) + Ty

)

≤ 0

≤ ρ+
(
T x + tT y,

−ρ±(x + ty, y)

‖x + ty‖2 (T x + tT y) + Ty
)
.

This implies

−ρ−(x + ty, y)

‖x + ty‖2 ‖T x + tT y‖2 + ρ−(T x + tT y, T y) ≤ 0 (t ∈ R) (21.2)

and

0 ≤ −ρ+(x + ty, y)

‖x + ty‖2 ‖T x + tT y‖2 + ρ+(T x + tT y, T y) (t ∈ R). (21.3)

Let us define

ϕx,y(t) := ‖T x + tT y‖
‖x + ty‖ (t ∈ R).

Then simple computations show that
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(ϕx,y)
′±(t) = ρ±(T x + tT y, T y)‖x + ty‖ − ρ±(x + ty, y)‖T x + tT y‖

‖x + ty‖2 .

From (21.2) and (21.3) it follows that

0 ≤ (ϕx,y)
′−(t) and (ϕx,y)

′+(t) ≤ 0 (t ∈ R).

Hence ϕx,y is constant on R. Therefore,

‖T x‖
‖x‖ = ϕx,y(0) = lim

t→∞ ϕx,y(t) = ‖Ty‖
‖y‖ .

Now, we fix a unit vector y0 in X. For every nonzero vector x ∈ X, we conclude that
‖T x‖
‖x‖ = ‖Ty0‖. Hence ‖T x‖ = ‖Ty0‖‖x‖ for all x ∈ X. Therefore (iii) is valid.

The other implications are trivial.

Let us adopt the notion of Birkhoff orthogonal set of x from [3]:

[x]B‖·‖ = {y ∈ X : x ⊥B y}.

We now define the ♦-orthogonal set of x as follows:

[x]♦‖·‖ = {y ∈ X : x ⊥♦ y},

where ♦ ∈ {I, s, ρ∗, ρυ
λ }.

Theorem 21.40 Let X be a normed linear space endowed with two norms ‖ · ‖1
and ‖ · ‖2, and let λ ∈ [0, 1] and υ = 1

2k−1 (k ∈ N). For every x ∈ X, the following
conditions are equivalent:

(i) [x]B‖·‖1
= [x]B‖·‖2

. (ii) [x]s‖·‖1
= [x]s‖·‖2

.

(iii) [x]I‖·‖1
= [x]I‖·‖2

. (iv) [x]ρ∗
‖·‖1

= [x]ρ∗
‖·‖2

.

(v) [x]ρυ
λ‖·‖1

= [x]ρυ
λ‖·‖2

.

Proof (i)⇒(v) Suppose that (i) holds and define T = id : (X, ‖ · ‖1) → (X, ‖ · ‖2)

to be the identity map. Then T is B-orthogonal preserving. It follows from
Theorem 21.32 that there exists M > 0 such that ‖T x‖2 = ‖x‖2 = M‖x‖1, which

implies that [x]ρυ
λ‖·‖1

= [x]ρυ
λ‖·‖2

(x ∈ X).
(v)⇒(i) If (v) holds, then T = id : (X, ‖ · ‖1) → (X, ‖ · ‖2) is ρυ

λ -orthogonal
preserving. It follows from Theorem 21.39 that there exists M > 0 such that ‖x‖2 =
‖T x‖2 = M‖x‖1, which ensures that [x]B‖·‖1

= [x]B‖·‖2
(x ∈ X).

The other implications can be proved similarly.
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In [75, Theorem 5.1] Wójcik proved that a real normed linear space X is smooth
if and only if there exist a real normed linear space Y and a nonvanishing linear
mapping T : X −→ Y , such that T preserves (♦,♥)-orthogonality for some
♦,♥ ∈ {ρ−, ρ+, ρ} with ♦ 
= ♥.

In the sequel, from [60, Theorems 3.2-3] and [28, Theorems 2.20-22] we are
going to provide some characterizations of smooth real normed linear spaces in
terms of linear mappings that preserve ρ∗ and ρv

λ-orthogonality to other types of
orthogonality relations.

Theorem 21.41 Let X be a real normed linear space and let λ ∈ [0, 1] and υ =
1

2k−1 (k ∈ N). Then the following conditions are equivalent:

(i) X is smooth.
(ii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ∗, ρ+)-orthogonality.
(iii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ∗, ρ−)-orthogonality.
(iv) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ∗, ρ)-orthogonality.
(v) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ, ρ∗)-orthogonality.
(vi) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρυ
λ , ρ−)-orthogonality.

(vii) There exist a normed linear space Y and a nonvanishing linear mapping T :
X −→ Y such that T preserves (ρυ

λ , ρ+)-orthogonality.
(viii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρυ
λ , ρλ)-orthogonality.

(ix) There exist a normed linear space Y and a nonvanishing linear mapping T :
X −→ Y such that T preserves (ρυ

λ , ρ)-orthogonality.

21.3.3 Approximate Orthogonality Preserving Mapping

Ulam [73] raised the general problem of when a mathematical object which satisfies
a certain property approximately must be close, in some sense, to one that satisfies
this property accurately. Approximately orthogonality preserving mappings in the
framework of inner product spaces have been studied in this setting, see [13, 14, 23,
47, 72, 81, 90, 91].

Let H and K be two inner product spaces and let δ, ε ∈ [0, 1). A mapping
T : H → K is called a (δ, ε)-orthogonality preserving if

x ⊥δ y ⇒ T x ⊥ε T y (x, y ∈ H).

Often δ = 0 has been considered. Therefore, we say that T is ε-orthogonality
preserving if
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x ⊥ y ⇒ T x ⊥ε T y (x, y ∈ H).

Obviously, if δ = ε = 0, then T is orthogonality preserving. Hence, the natural
question is whether a (δ, ε)-orthogonality preserving linear mapping T must be
close to a linear orthogonality preserving mapping. The following result was proved
in [13, Theorem 2] (see also [72, Remark 2.1]).

Theorem 21.42 ([13, Theorem 2]) Let H and K be two Hilbert spaces, and let T :
H → K be a nonzero linear ε-orthogonality preserving mapping with ε ∈ [0, 1).
Then T is injective, continuous and, with some γ > 0, T satisfies the functional
inequality

∣∣∣〈T x, T y〉 − γ 〈x, y〉
∣∣∣ ≤ 4ε

1 + ε
min

{
γ ‖x‖‖y‖, ‖T x‖ ‖Ty‖

}
(x, y ∈ H).

Conversely, if T : H → K satisfies

∣∣∣〈T x, T y〉 − γ 〈x, y〉
∣∣∣ ≤ ε min

{
γ ‖x‖‖y‖, ‖T x‖ ‖Ty‖

}
(x, y ∈ H)

with ε ≥ 0 and with γ > 0, then T is a quasi-linear mapping and ε-orthogonality
preserving.

Recently, Moslehian et al. [61] have been obtained the following result.

Theorem 21.43 ([61, Theorem 3.10]) Let H and K be two real Hilbert spaces and
dim H < ∞. Let T : H → K be a linear mapping with 0 < [T ]. Then there exists
γ such that T satisfies

∣∣∣〈T x, T y〉 − γ 〈x, y〉
∣∣∣ ≤

(
1 − [T ]2

‖T ‖2

)
‖T ‖2 ‖x‖ ‖y‖ (x, y ∈ H).

Moreover, [T ]2 ≤ |γ | ≤ 2‖T ‖2 − [T ]2.

In 2007, Turnšek proved the following

Theorem 21.44 ([72, Theorem 2.3]) Let H and K be two Hilbert spaces, T :
H → K be a nonzero ε-orthogonality preserving linear mapping, ε ∈ [0, 1), and
T = U |T | be its polar decomposition. Then U is an isometry and

∥∥∥T − ‖T ‖U
∥∥∥ ≤

(
1 −

√
1 − ε

1 + ε

)
‖T ‖.

Wójcik extended Theorem 21.44 as follows. (The same result is later obtained in
[91] by using a different approach.)
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Theorem 21.45 ([81, Theorem 5.4]) Let H be Hilbert space, T : H → H be a
nonzero linear ε-orthogonality preserving mapping and let ε ∈ [0, 1). Then there
exists linear mapping S : H → H preserving orthogonality such that

∥∥∥T − S

∥∥∥ ≤ 1

2

(
1 −

√
1 − ε

1 + ε

)
‖T ‖.

Moreover, ‖S‖ = 1
2 (‖T ‖ + [T ]) and ‖T − S‖ = 1

2 (‖T ‖ − [T ]).
Kong and Cao [47] considered the class of (δ, ε)-orthogonality preserving linear
mappings. They proved the following result.

Theorem 21.46 Let δ, ε ∈ [0, 1). Let H,K be Hilbert spaces and let T : H → K

be a nonzero (δ, ε)-orthogonality preserving linear mapping. Then there exists λ0 ∈
{z ∈ C : δ+1

2 ≤ |z| ≤ δ + 2} such that

√
|λ0|2 − ε|λ0|2

(δ + 1)2 + ε(δ + 1)2 ‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T x‖‖x‖ (x ∈ H).

An stronger version of the previous theorem proved by Wójcik in [81].

Theorem 21.47 ([81, Theorem 3.4]) Let δ, ε ∈ [0, 1). Let H,K be Hilbert spaces
and let T : H → K be a nonzero (δ, ε)-orthogonality preserving linear mapping.
Then T is injective, continuous and δ ≤ ε. Moreover the following inequality is
true:

√
1 − ε

1 + ε

√
1 + δ

1 − δ
‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T x‖‖x‖ (x ∈ H).

As for a stability problem, we would like to know, whether each (δ, ε)-orthogonality
preserving linear mapping T can be approximated by a linear orthogonality
preserving map S. Kong and Cao [47] proved the following result.

Theorem 21.48 Let δ, ε ∈ [0, 1). Let H,K be Hilbert spaces and let T : H →
K be linear mapping (δ, ε)-orthogonality preserving. Let T = U |T | be its polar
decomposition. Then U is an isometry and there exists λ0 ∈ C such that

∥∥∥T − ‖T ‖U
∥∥∥ ≤

(
1 −

√
|λ0|2 − ε|λ0|2

(δ + 1)2 + ε(δ + 1)2

)
‖T ‖.

Wójcik extended Theorem 21.48 as follows.

Theorem 21.49 Let δ, ε ∈ [0, 1). Let H be Hilbert space, and let T : H → K be
linear mapping (δ, ε)-orthogonality preserving. Then there exists linear mapping
S : H → H preserving orthogonality such that
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∥∥∥T − S

∥∥∥ ≤ 1

2

(
1 −

√
1 − ε

1 + ε

√
1 + δ

1 − δ

)
‖T ‖.

Moreover, ‖S‖ = 1
2 (‖T ‖ + [T ]) and ‖T − S‖ = 1

2 (‖T ‖ − [T ]).
For Hilbert C∗-modules some analogous results can be found in [35, 59]. Recently,
Chmieliński et al. [23] have been verified the approximate orthogonality preserving
property for two linear mappings. Similar investigations have been carried out for
pairs of mappings on inner product C∗-modules in [33].

Approximate orthogonality preserving property has been considered also in the
setting of normed linear spaces with respect to various definitions of orthogonality
in general normed linear spaces.

Let X, Y be two normed linear spaces, δ, ε ∈ [0, 1) and

♦,♥ ∈ {B, cI, R, P, ρ±, ρ, ρ∗, ρλ, ρ
v
λ}.

A mapping T : X → Y is called a (δ, ε)-(♦,♥)-orthogonality preserving if

x ⊥δ♦ y ⇒ T x ⊥ε♥ Ty, (x, y ∈ X).

In particular, we say that T is ε-♦-orthogonality preserving if

x ⊥♦ y ⇒ T x ⊥ε♦ Ty, (x, y ∈ X).

Mojškerc and Turnšek [57] considered the class of linear mappings approximately
preserving the Birkhoff–James orthogonality. They proved the following result.

Theorem 21.50 ([57, Theorem 3.5 and Remark 3.1]) Let X, Y be two normed
linear spaces, ε ∈ [0, 1

16 ) and let T : X → Y be a nonzero ε-B-orthogonality
preserving linear mapping. Then T is injective, continuous and

(1 − 16ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

Also, if X and Y are real normed linear spaces, then the constant (1 − 16ε) can be
replaced by (1 − 8ε) with ε ∈ [0, 1

8 ).

The following result was proved in [87]:

Theorem 21.51 ([87, Theorem 3.2]) Let X, Y be two real normed linear spaces,
and let 0 < b ≤ a and δ, ε ∈ [0, b

a
). Let T : X −→ Y be a nonzero linear

(δ, ε)-(aI, bI)-orthogonality preserving mapping. Then δ ≤ a−b+ε(a+b)
a+b−ε(a−b)

and T is
injective, continuous and satisfies

(1 + δ)(b − εa)

(1 − δ)(a + εb)
γ ‖x‖ ≤ ‖T x‖ ≤ (1 − δ)(a + εb)

(1 + δ)(b − εa)
γ ‖x‖

for all x ∈ X and for all γ ∈ [ [T ], ‖T ‖ ].
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Taking a = b = 1 and δ = 0 we get from Theorem 21.51 the following result.

Theorem 21.52 ([20, Theorem 3.2]) Let X and Y be two real normed linear
spaces, and let ε ∈ [0, 1). Let T : X −→ Y be a nonzero linear ε-I -orthogonality
preserving mapping. Then T is injective, continuous and satisfies

1 − ε

1 + ε
‖T ‖‖x‖ ≤ ‖T x‖ ≤ 1 + ε

1 − ε
[T ]‖x‖ (x ∈ X). (21.4)

In the next Theorem we formulate a result from Theorem 21.52.

Theorem 21.53 ([20, Theorem 3.6]) Let X and Y be two real normed linear
spaces, and let ε ∈ [0, 1). For a nontrivial linear mapping T : X −→ Y the
following conditions are equivalent:

(i) T preserves ε-I -orthogonality.
(ii) 1−ε

1+ε
‖T ‖‖x‖ ≤ ‖T x‖ ≤ 1+ε

1−ε
[T ]‖x‖ for all x ∈ X.

(iii) 1−ε
1+ε

γ ‖x‖ ≤ ‖T x‖ ≤ 1+ε
1−ε

γ ‖x‖ for all x ∈ X and for all γ ∈ [ [T ], ‖T ‖ ].
(iv) ‖T x‖ ‖y‖ ≤ 1+ε

1−ε
‖Ty‖ ‖x‖ for all x, y ∈ X.

(v) ‖T ‖ ≤ 1+ε
1−ε

[T ].
As consequences of Theorem 21.51, we have the following results.

Corollary 21.7 ([87, Corollary 3.3]) Let X, Y be two real normed linear spaces,
and let 0 < b ≤ a and ε, δ ∈ [0, b

a
). Let T : X −→ Y be a linear (δ, ε)-(aI, bI)-

orthogonality preserving mapping with 0 ≤ a−b+ε(a+b)
a+b−ε(a−b)

< δ. Then T = 0.

Corollary 21.8 ([87, Corollary 3.4]) Let X, Y be two real normed linear
spaces, and let 0 < b ≤ a and ε, δ ∈ [0, b

a
). Let T : X −→ Y be a

nonzero linear (δ, ε)-(aI, bI)-orthogonality preserving mapping. If a linear
mapping S : X → Y satisfies ‖S − T ‖ ≤ θ‖T ‖, then ‖S‖ ≤ η[S], where

η = (1−δ)2(a+εb)2+θ(1−δ2)(a+εb)(b−εa)

(1+δ)2(b−εa)2−θ(1−δ2)(a+εb)(b−εa)
.

Wójcik in [77] was obtain the following result for the stability of the orthogonality
preserving mappings for the finite-dimensional spaces.

Theorem 21.54 ([77]) Let X and Y be finite-dimensional real normed linear
spaces, and let ♦ ∈ {D, I,R, P }. Then, for an arbitrary θ > 0, there exists ε > 0
such that for any linear ε-♦-orthogonality preserving mapping T : X −→ Y there
exists a linear ♦-orthogonality preserving mapping S : X −→ Y such that

‖T − S‖ ≤ θ min{‖T ‖, ‖S‖}.

Some other results for the stability of the orthogonality preserving property in
normed linear spaces can be found in [16, 20, 57, 68, 76].

Approximate orthogonality preserving mappings have been also considered for
norm derivatives orthogonality relations.
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Remark 21.3 Let X, Y be normed linear spaces and let T : X → Y be linear
mapping. Then, T approximately preserves ρ+-orthogonality if and only if T

approximately preserves ρ−-orthogonality. Indeed, suppose that T approximately
preserves ρ+-orthogonality and let x ⊥ρ− y. Thus −x ⊥ρ+ y, hence −T x ⊥ε

ρ+ Ty

and finally T x ⊥ε
ρ− Ty, i.e., T approximately preserves ρ−-orthogonality. The

proof of the reverse is the same.

Chmieliński and Wójcik in [22, Theorem 5.1] proved that an approximate ρ±-
orthogonality preserving mapping is an approximate B-orthogonality preserving
mapping. Next, Wójcik [80, Theorem 5.5] obtained a same result for approximate
ρ-orthogonality preserving mappings. More precisely, he proved that the property
that a linear mapping approximately preserves the Birkhoff–James orthogonality
is equivalent to that it approximately preserves the ρ and ρ±-orthogonality (the
proof of which is by no means elementary). The same result was proved in
[27, Theorem 2.7] for approximate ρ∗-orthogonality preserving mappings. Thus,
from Theorem 21.50, we obtain the following characterization of linear mappings
approximately preserving the orthogonality relations.

Theorem 21.55 Let X, Y be two real normed linear space and let ε ∈ [0, 1
8 ).

If T : X → Y is a nonzero linear mapping, then the following conditions are
equivalent:

(i) T is ε-ρ−-orthogonality preserving.
(ii) T is ε-ρ+-orthogonality preserving.

(iii) T is ε-ρ-orthogonality preserving.
(iv) T is ε-ρ∗-orthogonality preserving.
(v) T is ε-B-orthogonality preserving.

Moreover, each of the above conditions implies that T is injective, continuous and

(1 − 8ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

Note that, in particular for ♦,♥ ∈ {B, ρ±, ρ, ρ∗} with ♦ 
= ♥, the property that
a linear mapping approximately preserves the ♦-orthogonality is equivalent to that
it approximately preserves the ♥-orthogonality. Although ⊥ε♦ and ⊥ε♥ need not be
equivalent unless we assume the smoothness of the norm.

Taking X = Y and T = id, one obtains, from Theorem 21.55, the following
result.

Corollary 21.9 Let ε ∈ [0, 1
8 ) and ♦ ∈ {B, ρ±, ρ, ρ∗}. Let ‖ · ‖1 and ‖ · ‖2 be

two norms in a linear space X. By ⊥1 and ⊥2 we denote the ♦-orthogonality with
respect to one of the two norms. If ⊥1⊂⊥ε

2, then both norms are equivalent and,
with some γ > 0, we have

(1 − 8ε)γ ‖x‖1 ≤ ‖x‖2 ≤ γ ‖x‖1 (x ∈ X).
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Recently, the class of linear mappings approximately preserving ρυ
λ -orthogonality

has been studied in [1]. Although ⊥ε
ρv

λ
need not be equivalent to ⊥ε

B , unless we
assume the smoothness of the norm, it has been proved in [1] the following result.

Theorem 21.56 ([1, Theorem 3.4]) Let X and Y be normed linear spaces and let
ε ∈ [0, 1), λ ∈ [0, 1] and v = 1

2k+1 (k ∈ N). If T : X → Y is a nonzero linear
mapping, then the following conditions are equivalent:

(i) T is ε-ρv
λ-orthogonality preserving.

(ii) T is ε-B-orthogonality preserving.

Moreover, each of the above conditions implies that T is injective, continuous and

(1 − 8ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

As an special case, the authors in [1] proved a similar result for approximately ρλ-
orthogonality preserving linear mappings.

Corollary 21.10 ([1, Corollary 3.6]) Let X and Y be normed linear spaces and let
ε ∈ [0, 1) and λ ∈ [0, 1]. If T : X → Y is a nonzero linear mapping, then the
following conditions are equivalent:

(i) T is ε-ρλ-orthogonality preserving.
(ii) T is ε-B-orthogonality preserving.

Moreover, each of the above conditions implies that T is injective, continuous and

(1 − 8ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

In particular, if we take ε = 0 in the foregoing corollary, then we obtain that every
ρλ-orthogonality preserving mapping is a similarity. We should notify that this result
was already shown in [88, Theorem 3.4] with a different approach.

Acknowledgement The authors would like to thank the referee for her/his valuable suggestions
and comments.
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