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Preface

This volume presents papers written by experts, who are actively working in various
areas of mathematics and its applications on issues in one way or another connected
to Ulam-type stability problems, motivated by the famous question concerning
approximate homomorphisms. These papers provide an insightful perspective on
a large number of investigations in mathematical analysis.

The present book is the outcome of two Conferences on Ulam Type Stability
(CUTS) organized in 2016 (July 4–9, Cluj-Napoca, Romania) and in 2018 (October
8–13, Timişoara, Romania).

The aim of the volume is not only to give an account of the present state of
research on Ulam-type stability but also to stimulate further research in the area.
Thus, alongside research papers containing new results, it includes surveys on
various themes pointing to the potential for further future study and identifying
several open problems and/or questions.

Let us recall that S.M. Ulam (April 13, 1909–May 13, 1984) was a prominent
mathematician and physicist. In 1940, he posed his famous question concerning
approximate homomorphisms, which gave rise to a long-lasting study of a field
which we now call Ulam (or Hyers-Ulam) stability.

The book contains 21 articles written by 29 authors from 12 countries, all
of whom have been intensively involved in active research in this area. Special
emphasis has been placed on the topics which apply methods and techniques
involving, or originating from, functional equations and inequalities (FEI).

We hope that this publication will serve as a kind of guidebook for both graduate
students and researchers in various fields, including not only mathematics but also
physics, engineering, and interdisciplinary research.

Subjects treated in this book are (in order of appearance in this volume) as
follows:

– Stability and solutions of the Cauchy functional equation in lattice environments
– Fixed-point approach to the Hyers-Ulam stability and hyperstability of a general

functional equation
– Reversing property of the Birkhoff-James orthogonality and its stability

v
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– Optimal forward contract design for inventory (a value-of-waiting analysis via
sensitivity analysis of a functional equation)

– Hyers-Ulam stability of functional equations in quasi-β-Banach spaces
– Stability of the functional equation of p-Wright affine functions in 2-Banach

spaces
– Solutions and stability of a functional equation arising from a queueing system
– Approximately cubic mappings
– Solutions and stability of some functional equations on semigroups
– Bi-additive s-functional inequalities and quasi-∗-multipliers on Banach ∗-

algebras
– Ulam stability of a generalization of the Fréchet functional equation on a

restricted domain
– Various remarks concerning the notion of stability of functional equations
– Subdominant eigenvalue location of a bordered diagonal matrix
– A fixed-point theorem in uniformizable spaces
– Symmetry of Birkhoff-James orthogonality of bounded linear operators
– Ulam stability of zero-point equations
– Cauchy difference operator in some Orlicz spaces
– Semi-inner products and parapreseminorms on groups and a generalization of a

theorem of Maksa and Volkmann on additive functions
– Invariant means in Ulam-type stability theory
– Geometry of Banach function modules
– Exact and approximate orthogonalities based on norm derivatives

It is our pleasure to express warmest thanks to all the mathematicians, who
participated in this publication. We would also wish to acknowledge the support
of our referees.

Last but not least, we wish to acknowledge the superb assistance that the staff of
Springer provided for the publication of this volume.

Krakow, Poland Janusz Brzdȩk
Cluj-Napoca, Romania Dorian Popa
Athens, Greece Themistocles M. Rassias
March 2019
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Adrian Petruşel and Ioan A. Rus

17 Cauchy Difference Operator in Some Orlicz Spaces . . . . . . . . . . . . . . . . . . . 365
Stanisław Siudut

18 Semi-Inner Products and Parapreseminorms on Groups and
a Generalization of a Theorem of Maksa and Volkmann on
Additive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Árpád Száz

19 Invariant Means in Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
László Székelyhidi

20 On Geometry of Banach Function Modules: Selected Topics . . . . . . . . . 453
Paweł Wójcik

21 On Exact and Approximate Orthogonalities Based on Norm
Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Ali Zamani and Mahdi Dehghani

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509



Contributors

Nutefe Kwami Agbeko Institute of Mathematics, University of Miskolc, Miskolc,
Hungary

Keltouma Belfakih Department of Mathematics, Faculty of Sciences, University
Ibn Zohr, Agadir, Morocco
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Adrian Petruşel Babeş-Bolyai University, Cluj-Napoca, Romania
Academy of Romanian Scientists, Bucharest, Romania

Themistocles M. Rassias Department of Mathematics, National Technical
University of Athens, Athens, Greece
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Chapter 1
Survey on Cauchy Functional Equation
in Lattice Environments

Nutefe Kwami Agbeko

Abstract By replacing in Cauchy functional equation the addition with the lattice
operations we are able to formulate the Ulam’s stability problem in lattice envi-
ronments. Various types of solution are formulated and proved similarly as their
counterparts in addition environments. This survey contains a part of the habilitation
thesis presented to the Department of Mathematics, University of Debrecen (cf.
Agbeko, Studies on some addition-free environments. Habilitation Thesis submitted
to the University of Debrecen. http://www.uni-miskolc.hu/~matagbek/Habilitation
%20Thesis.pdf) and the material in Agbeko and Szokol (Extracta Math 33:1–10,
2018).

Keywords Functional equation · Functional inequality · Banach lattice · Ulam’s
stability · Lattice semigroup

Mathematics Subject Classification (2010) Primary 39B82, 06B99, 20M99;
Secondary 39B42, 39B52, 46A40

1.1 Introduction

In the early 90s we substituted with the lattice join operation, the addition in the
definition of measure as well as in the Lebesgue integral to obtain lattice-dependent
operators which behave similarly as their counterparts in Measure Theory do, in
the sense that existing major theorems in Measure Theory are also proved with the
addition replaced by the join (or supremum). We refer the reader to [1–4] for the
earliest results to [9] for other considerations. Later on we have studied the linear
functional equation in lattice environments (by replacing in the Cauchy functional

N. K. Agbeko (�)
Institute of Mathematics, University of Miskolc, Miskolc, Hungary
e-mail: matagbek@uni-miskolc.hu

© Springer Nature Switzerland AG 2019
J. Brzdęk et al. (eds.), Ulam Type Stability,
https://doi.org/10.1007/978-3-030-28972-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28972-0_1&domain=pdf
http://www.uni-miskolc.hu/~matagbek/Habilitation%20Thesis.pdf
http://www.uni-miskolc.hu/~matagbek/Habilitation%20Thesis.pdf
mailto:matagbek@uni-miskolc.hu
https://doi.org/10.1007/978-3-030-28972-0_1


2 N. K. Agbeko

equation the addition with lattice operations) and namely considered Ulam’s type
stability problem and separation theorem. Recalling it here as historical background
the Cauchy (or linear) functional equation reads:

f (x + y) = f (x)+ f (y) , (1.1)

where f is a real function.
The so-called Ulam’s stability problem involving Eq. (1.1) was first posed by M.

Ulam (see [33]) in the terms: “Give conditions in order for a linear mapping near an
approximately linear mapping to exist.” In a more precise formulation the problem
reads:

Given two Banach algebras E and E′, a transformation f : E → E′ is called
δ-linear if

‖f (x + y)− f (x)− f (y)‖ < δ, (1.2)

for all x, y ∈ E. Does there exist for each ε ∈ (0, 1) some δ > 0 such that to
each δ-linear transformation f : E → E′ there corresponds a linear transformation
l : E → E′ satisfying the inequality

‖f (x)− l (x)‖ < ε

for all x ∈ E? This question was answered in the affirmative for the first time by
Hyers [20]. Ever since various problems of stability on various spaces have come
to light. We shall just list few of them: [14, 19, 24, 25, 27, 32]. The lattice version
of the Ulam’s stability problem will be formulated in a more general form later in
Sects. 1.3 and 1.5.

1.2 Stability of Maximum Preserving Functional Equations
on Banach Lattices

We would like to stress the similitude between the present section and the result
in [11].

If B is a Banach lattice, then B+ will stand for its positive cone, i.e.

B+ = {x ∈ B : x ≥ 0} = {|x| : x ∈ B} .

Given two Banach lattices X and Y we say that a functional F : X → Y is
cone-related if

F
(
X +) = {F (|x|) : x ∈ X } ⊂ Y +,

also known in the literature as positive function.
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Some Properties 1 Let be given two Banach lattices X and Y and, a cone-related
functional F : X → Y .

P1. Maximum Preserving Functional Equation:

F (|x| ∨ |y|) = F (|x|) ∨ F (|y|)

for all members x, y ∈ X .
P2. Semi-homogeneity:

F (τ |x|) = τF (|x|)

for all x ∈ X and every number τ ∈ [0, ∞).
P3. Continuity From Below on the Positive Cone: The identity

lim
n→∞F (xn) = F

(
lim
n→∞ xn

)

holds for every increasing sequence (xn)n∈N ⊂ X +.
P4. For any increasing sequence (xk) ⊂ X + the inequality hereafter holds

lim
n→∞ lim

k→∞
F (2nxk)

2n
≤ lim
k→∞ lim

n→∞
F (2nxk)

2n
, (1.3)

provided that the limits exist.

We should note that every functional, which solves the maximum preserving
functional equation, is known as a join homomorphism in Lattice Theory.

Remark 1.1 Given two Banach lattices X and Y let a cone-related functional F :
X → Y satisfy property P1. Then the following statements are valid.

1. F (|x ∨ y|) ≤ F (|x|) ∨ F (|y|) for all members x, y ∈ X .
2. The semi-homogeneity implies that F (0) = 0.
3. F is an increasing operator, in the sense that if x, y ∈ X are such that |x| ≤ |y|,

then F (|x|) ≤ F (|y|).
Theorem 1.1 Let be given a continuous function p : [0, ∞) → (0, ∞) and two
Banach lattices X and Y . Consider a cone-related functional F : X → Y for
which there are numbers ϑ > 0 and α ∈ [0, 1) such that

∥∥
∥F (τ |x| ∨ η |y|)− τp(τ)F (|x|)∨ηp(η)F (|y|)

p(τ)∨p(η)
∥∥
∥

‖x‖α + ‖y‖α ≤ ϑ (1.4)

for all x, y ∈ X and τ, η ∈ R
+. Then there is a unique cone-related mapping

T : X → Y which satisfies properties P1, P2 and inequality
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‖T (|x|)− F (|x|)‖
‖x‖α ≤ 2ϑ

2 − 2α
(1.5)

for every x ∈ X .
Moreover, if F is continuous from below, then in order that T be continuous from

below it is necessary and sufficient that F enjoy property P4.

Each of the following theorem is a variation of the above result.

Theorem 1.2 Let be given a continuous function p : [0, ∞) → (0, ∞) with
p (0) = 0 and, two Banach lattices X and Y . Consider a cone-related functional
F : X → Y for which there are numbers ϑ > 0 and α ∈ [0, 1) such that

∥∥∥F (τ |x| ∨ η |y|)− τp(τ)F (|x|)∨ηp(η)F (|y|)
p(τ)+p(η)

∥∥∥

‖x‖α + ‖y‖α ≤ ϑ (1.6)

for all x, y ∈ X and τ, η ∈ R
+. Then there is a unique cone-related mapping

T : X → Y which satisfies properties P1, P2 and inequality (1.5) is valid for
every x ∈ X . Moreover, if F is continuous from below, then in order that T be
continuous from below it is necessary and sufficient that F enjoy property P4.

Theorem 1.3 Let be given a continuous function p : [0, ∞) → (0, ∞) and, two
Banach lattices X and Y . Consider a cone-related functional F : X → Y for
which there are numbers ϑ > 0 and α ∈ [0, 1) such that

∥∥∥F
(
τp(τ)|x|∨ηp(η)|y|

p(τ)∨p(η)
)
− τp(τ)F (|x|)∨ηp(η)F (|y|)

p(τ)∨p(η)
∥∥∥

‖x‖α + ‖y‖α ≤ ϑ (1.7)

for all x, y ∈ X and τ, η ∈ R
+. Then there is a unique cone-related mapping

T : X → Y which satisfies properties P1, P2 and inequality (1.5) is valid for
every x ∈ X . Moreover, if F is continuous from below, then in order that T be
continuous from below it is necessary and sufficient that F enjoy property P4.

Theorem 1.4 Let be given a continuous function p : [0, ∞) → (0, ∞) with
p (0) = 0 and, two Banach lattices X and Y . Consider a cone-related functional
F : X → Y for which there are numbers ϑ > 0 and α ∈ [0, 1) such that

∥∥∥F
(
τp(τ)|x|∨ηp(η)|y|

p(τ)+p(η)
)
− τp(τ)F (|x|)∨ηp(η)F (|y|)

p(τ)+p(η)
∥∥∥

‖x‖α + ‖y‖α ≤ ϑ (1.8)

for all x, y ∈ X and τ, η ∈ R
+. Then there is a unique cone-related mapping

T : X → Y which satisfies properties P1, P2 and inequality (1.5) is valid for
every x ∈ X . Moreover, if F is continuous from below, then in order that T be
continuous from below it is necessary and sufficient that F enjoy property P4.
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We point out that the proof of Theorem 1.1 can be suitably adapted to show the
validity of Theorems 1.2–1.4.

It is worth to ask the question: Under what conditions inequalities (1.4)
and (1.6)–(1.8) hold true? The answer is formulated in the following results without
proof, because of their easiness (in fact, only the triangle inequality of the norm is
needed to check their validity).

Lemma 1.1 Let be given a continuous function p : [0, ∞) → (0, ∞) and, two
Banach lattices X and Y . Consider a cone-related functional F : X → Y and
define the functional Fc : X → Y by Fc (x) = F (x) ∧ c, where c ∈ Y +. Let
α ∈ [0, 1) be some number, Y0 ⊂ Y + be some non-empty subset and consider the
following four quantities:

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

‖Fc (τ |x| ∨ η |y|)− F (τ |x| ∨ η |y|)‖
‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥ τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)p(τ)∨p(η) − τp(τ)F (|x|)∨ηp(η)F (|y|)
p(τ)∨p(η)

∥∥∥

‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥Fc (τ |x| ∨ η |y|)− τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)
p(τ)∨p(η)

∥∥∥

‖x‖α + ‖y‖α

and

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥F (τ |x| ∨ η |y|)− τp(τ)F (|x|)∨ηp(η)F (|y|)
p(τ)∨p(η)

∥∥∥

‖x‖α + ‖y‖α .

If any three of them are simultaneously finite, then the fourth is also finite.

Lemma 1.2 Let be given a continuous function p : [0, ∞) → (0, ∞) and, two
Banach lattices X and Y . Consider a cone-related functional F : X → Y and
define the functional Fc : X → Y by Fc (x) = F (x) ∧ c, where c ∈ Y +. Let
α ∈ [0, 1) be some number and Y0 ⊂ Y + some non-empty subset and consider the
following four quantities:

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

‖Fc (τ |x| ∨ η |y|)− F (τ |x| ∨ η |y|)‖
‖x‖α + ‖y‖α ,
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sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥ τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)p(τ)+p(η) − τp(τ)F (|x|)∨ηp(η)F (|y|)
p(τ)+p(η)

∥∥∥

‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥
∥∥Fc (τ |x| ∨ η |y|)− τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)

p(τ)+p(η)
∥
∥∥

‖x‖α + ‖y‖α ,

and

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥
∥F (τ |x| ∨ η |y|)− τp(τ)F (|x|)∨ηp(η)F (|y|)

p(τ)+p(η)
∥∥
∥

‖x‖α + ‖y‖α .

If any three of them are simultaneously finite, then the fourth is also finite.

Lemma 1.3 Let be given a continuous function p : [0, ∞) → (0, ∞) and, two
Banach lattices X and Y . Consider a cone-related functional F : X → Y and
define the functional Fc : X → Y by Fc (x) = F (x) ∧ c, where c ∈ Y +. Let
α ∈ [0, 1) be some number and Y0 ⊂ Y + some non-empty subset and consider the
following four quantities:

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥
∥Fc

(
τp(τ)|x|∨ηp(η)|y|

p(τ)∨p(η)
)
− F

(
τp(τ)|x|∨ηp(η)|y|

p(τ)∨p(η)
)∥∥
∥

‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥ τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)p(τ)∨p(η) − τp(τ)F (|x|)∨ηp(η)F (|y|)
p(τ)∨p(η)

∥∥∥

‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥Fc
(
τp(τ)|x|∨ηp(η)|y|

p(τ)∨p(η)
)
− τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)

p(τ)∨p(η)
∥∥∥

‖x‖α + ‖y‖α

and

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥F
(
τp(τ)|x|∨ηp(η)|y|

p(τ)∨p(η)
)
− τp(τ)F (|x|)∨ηp(η)F (|y|)

p(τ)∨p(η)
∥∥∥

‖x‖α + ‖y‖α .

If any three of them are simultaneously finite, then the fourth is also finite.
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Lemma 1.4 Let be given a continuous function p : [0, ∞) → (0, ∞) and, two
Banach lattices X and Y . Consider a cone-related functional F : X → Y and
define the functional Fc : X → Y by Fc (x) = F (x) ∧ c, where c ∈ Y +. Let
α ∈ [0, 1) be some number and Y0 ⊂ Y + some non-empty subset and consider the
following four quantities:

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥Fc
(
τp(τ)|x|∨ηp(η)|y|

p(τ)+p(η)
)
− F

(
τp(τ)|x|∨ηp(η)|y|

p(τ)+p(η)
)∥∥∥

‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥ τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)p(τ)+p(η) − τp(τ)F (|x|)∨ηp(η)F (|y|)
p(τ)+p(η)

∥∥∥

‖x‖α + ‖y‖α ,

sup
c∈Y0

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥Fc
(
τp(τ)|x|∨ηp(η)|y|

p(τ)+p(η)
)
− τp(τ)Fc(|x|)∨ηp(η)Fc(|y|)

p(τ)+p(η)
∥∥∥

‖x‖α + ‖y‖α

and

sup
τ, η∈[0,∞)

sup
x, y∈X

∥∥∥F
(
τp(τ)|x|∨ηp(η)|y|

p(τ)+p(η)
)
− τp(τ)F (|x|)∨ηp(η)F (|y|)

p(τ)+p(η)
∥∥∥

‖x‖α + ‖y‖α .

If any three of them are simultaneously finite, then the fourth is also finite.

Proof (of Theorem 1.1) We first show by induction that for any fixed x ∈ X ,

∥∥∥F(2
n|x|)

2n − F (|x|)
∥∥∥

‖x‖α ≤ ϑ

n−1∑

j=0

2j (α−1) (1.9)

whenever n ∈ N. In fact, for n = 1 the statement is obvious by choosing τ = η = 2
and x = y in inequality (1.4). Suppose the statement is true for n = k. Let us prove
it for n = k + 1. In fact, let 2x replace x and n = k in inequality (1.9) and observe
that

∥∥
∥∥
F
(
2k2|x|)
2k

− F (2 |x|)
∥∥
∥∥

‖2x‖α ≤ ϑ

k−1∑

l=0

2l(α−1).
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Hence
∥
∥∥∥
F
(
2(k+1)|x|)
2(k+1) − 1

2F (2 |x|)
∥
∥∥∥

‖x‖α ≤ ϑ2(α−1)
k−1∑

l=0

2l(α−1) ≤ ϑ

k∑

l=1

2l(α−1).

The triangle inequality yields

∥∥
∥∥∥
F

(
2(k+1) |x|)
2k+1

− F (|x|)
∥∥
∥∥∥
≤

∥∥
∥∥∥
F

(
2(k+1) |x|)
2k+1

− F (2 |x|)
2

∥∥
∥∥∥

+
∥∥∥∥
F (2 |x|)

2
− F (|x|)

∥∥∥∥

≤
⎛

⎝ϑ
k∑

j=1

2j (α−1) + ϑ
⎞

⎠ ‖x‖α

= ϑ ‖x‖α
k∑

j=0

2j (α−1).

We have just shown the validity of inequality (1.9) for every n ∈ N. Since the
geometric series

∞∑

l=0

2l(α−1) = 2

2 − 2α
,

(0 ≤ α < 1), we obtain that

∥∥∥F(2
n|x|)

2n − F (|x|)
∥∥∥

‖x‖α ≤ 2ϑ

2 − 2α
, 0 ≤ α < 1. (1.10)

Next, note that for all m > n > 0 and making the change of variable y = 2nx we
have

∥
∥2−mF

(
2m |x|)− 2−nF

(
2n |x|)∥∥ = 2−n

∥
∥2−m+nF

(
2m |x|)− F (

2n |x|)∥∥
= 2−n

∥∥2−m+nF
(
2m−n |y|)− F (|y|)∥∥

≤ 2−n 2ϑ

2 − 2α
‖y‖α

= 2−n(1−α) 2ϑ

2 − 2α
‖x‖α .
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Consequently, passing to the limit yields,

lim
n→∞

∥∥2−mF
(
2m |x|)− 2−nF

(
2n |x|)∥∥ = 0.

Since Y is a Banach space, we can thus conclude that the sequence

(
F (2n |x|)

2n

)
⊂ Y +

converges in the Y -norm. Now, define the mapping T : X → Y by

T (|x|) := lim
n→∞

F (2n |x|)
2n

(1.11)

Clearly, T is a cone-related operator. Let us show that T is maximum preserving.
In fact, letting τ = η = 2n in (1.4) leads to

∥∥F
(
2n (|x| ∨ |y|))− 2n (F (|x|) ∨ F (|y|))∥∥ ≤ ϑ

(‖x‖α + ‖y‖α) .

Substituting x with 2nx and y with 2ny in this last inequality one can get

∥∥F
(
4n (|x| ∨ |y|))− 2n

(
F

(
2n |x|) ∨ F (

2n |y|))∥∥ ≤ 2nαϑ
(‖x‖α + ‖y‖α)

which implies

4−n
∥∥F

(
4n (|x| ∨ |y|))− 2n

(
F

(
2n |x|) ∨ F (

2n |y|))∥∥
= ∥∥4−nF

(
4n (|x| ∨ |y|))− 2−n

(
F

(
2n |x|) ∨ F (

2n |y|))∥∥
≤ 2n(α−2)ϑ

(‖x‖α + ‖y‖α) .

Consequently, passing to the limit yields

‖T (|x| ∨ |y|)− T (|x|) ∨ T (|y|)‖ = 0,

x, y ∈ X or equivalently

T (|x| ∨ |y|) = T (|x|) ∨ T (|y|) ,
x, y ∈ X , because

lim
n→∞ 4−nF

(
4n |z|) = lim

m→∞ 2−mF
(
2m |z|) , z ∈ X .

Next, we show the validity of the identity

T (τ |x|) = τT (|x|)
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for all x ∈ X and every number τ ∈ [0, ∞). In fact, in inequality (1.4) choose
η = τ , y = 0 and substitute 2nτ for τ to observe via Remark 1.1/(2) that

∥
∥F

(
2nτ |x|)− 2nτF (|x|)∥∥ ≤ ϑ ‖x‖α ,

for all x ∈ X and every number τ ∈ [0, ∞). This inequality can be transformed as

∥∥F
(
4nτ |x|)− 2nτF

(
2n |x|)∥∥ ≤ ϑ2nα ‖x‖α

if we replace x with 2nx. Consequently,

∥∥
∥∥
F (4nτ |x|)

4n
− τ F (2

n |x|)
2n

∥∥
∥∥ ≤ ϑ2−n(2−α) ‖x‖α .

Hence on the one hand,

lim
n→∞

F (4nτ |x|)
4n

= τ lim
n→∞

F (2n |x|)
2n

= τT (|x|)

and on the other hand by changing the variable z = τx

lim
n→∞

F (4nτ |x|)
4n

= lim
n→∞

F (4n |z|)
4n

= T (|z|) = T (τ |x|) .

Therefore, the semi-homogeneity holds true. In the next step taking the limit in
(1.10) leads to (1.5). Further, let us show the unicity. In fact, assume the existence
of another such cone-related functional G such that

S := {x ∈ X : G(|x|) 
= T (|x|)} 
= ∅.

Then (1.5) implies the existence of some ϑ0 > 0 and β ∈ [0, 1) such that for each
x ∈ S ,

‖G(|x|)− T (|x|)‖ ≤ ϑ0 ‖x‖β . (1.12)

One can easily deduce from the semi-homogeneity of G and T that kx ∈ S for
every k ∈ N whenever x ∈ S . Taking into account (1.12) one can easily deduce by
the triangle inequality and the semi-homogeneity that

‖G(|x|)− T (|x|)‖ = n−1 ‖G(|nx|)− T (|nx|)‖ ≤ nα−1ϑ ‖x‖α + nβ−1ϑ0 ‖x‖β

which would imply in the limit that

‖G(|x|)− T (|x|)‖ = 0,
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or equivalently

G(|x|) = T (|x|) .

This would mean that x ∈ S implies x /∈ S , or equivalently S ∩ S = ∅,
i.e. S = ∅, a contradiction, indeed. Finally, let us prove the moreover-part. In
fact, assuming that F satisfies property P4, pick arbitrarily an increasing sequence
(|xk|) ⊂ X + with limit |x| ∈ X +. Then by (1.11), the monotonicity of T and the
continuity from below of F we have

lim
k→∞ lim

n→∞
F (2n |xk|)

2n
= lim

k→∞ T (|xk|) ≤ T (|x|)

= lim
n→∞

F (2n |x|)
2n

= lim
n→∞ lim

k→∞
F (2n |xk|)

2n
.

Thus

lim
k→∞ lim

n→∞
F (2n |xk|)

2n
≤ T (|x|) = lim

n→∞ lim
k→∞

F (2n |xk|)
2n

. (1.13)

By the conjunction of both inequalities (1.3) and (1.13), it follows that operator
T is continuous from below. To end the proof of the moreover-part we simply note
that the reverse conditional is trivial. Therefore, we can conclude on the validity of
the argument. ��
Remark 1.2 Theorems 1.1–1.4 and Lemmas 1.1–1.4 remain valid for negative
values of the norm exponent α.

1.3 Functional Equation Involving Both Lattice Operations

In the sequel (X , ∧X , ∨X ) will denote a vector lattice and (Y , ∧Y , ∨Y ) a
Banach lattice with X + and Y + their respective positive cones.

Let us consider the functional equation

T
(|x|	∗

X |y|)	∗
Y T

(|x|	∗∗
X |y|) = T (|x|)	∗∗

Y T (|y|) (1.14)

to hold true for all x, y ∈ X , where 	∗
X , 	∗∗

X ∈ {∧X , ∨X } and 	∗
Y , 	

∗∗
Y ∈

{∧Y , ∨Y } are fixed lattice operations, and where T : X → Y .
Note that if in the special case the above four lattice operations are at the same

time the supremum (join) or the infimum (meet), then the functional equation (1.14)
is just the defining equation of the join (or meet)-homomorphism. Moreover, if
operations 	∗

X and 	∗∗
X are the same, then the left hand side of (1.14) is the maps
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of the meets or the joins. Next, we formulate a lattice version of Ulam’s stability
problem whose solution also solves Eq. (1.14).

Problem 1.1 Let be given lattice operations 	∗
X , 	∗∗

X ∈ {∧X , ∨X } and
	∗

Y , 	
∗∗
Y ∈ {∧Y , ∨Y }, a vector lattice G1, a vector lattice G2 endowed with

a metric d(·, ·) and a positive number ε, does there exist some δ > 0 such that, if a
mapping F : G1 → G2 satisfies the perturbation inequality

d
(
F

(|x|	∗
X |y|)	∗

Y F
(|x|	∗∗

X |y|) , F (|x|)	∗∗
Y F (|y|)

) ≤ δ

for all x, y ∈ G1, then an operation-preserving functional T : G1 → G2 exists
with the property that

d (T (x), F (x)) ≤ ε

for all x ∈ G1?

Since the respective proofs of the main theorems in Sects. 1.3–1.5 will be based
on a Forti’s result in [15], known as the direct method, we thought we should recall
it here.

Theorem 1.5 (Forti) Let (X, d) be a complete metric space and S an appropriate
set. Assume that f : S → X is a function satisfying the inequality

d (H (f (G (x))) , f (x)) ≤ δ (x) , (1.15)

for all x ∈ S, where δ : S → [0, ∞) is some function. If H : X → X is a
continuous function and satisfies the inequality

d (H (u) ,H (v)) ≤ ϕ (d (u, v)) , u, v ∈ X, (1.16)

for a certain non-decreasing subadditive function ϕ : [0, ∞) → [0, ∞) and the
series

∞∑

j=0

ϕj
(
δ
(
Gj (x)

))
(1.17)

is convergent for every x ∈ S, then there exists a unique function F : S → X

solution of the functional equation

H (F (G (x))) = F (x) , x ∈ S, (1.18)

and satisfying the following inequality:
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d (F (x) , f (x)) ≤
∞∑

j=0

ϕj
(
δ
(
Gj (x)

))
. (1.19)

The function F is given by

F (x) = lim
n→∞H

n
(
f

(
Gn (x)

))
. (1.20)

1.3.1 The Main Results of This Section

Theorem 1.6 Consider a cone-related functional F : X → Y for which there are
numbers ϑ > 0 and α ∈ [0, 1) such that

∥∥
∥∥∥
F

(|x|	∗
X |y|)	∗

Y F
(|x|	∗∗

X |y|)
τ

− F
( |x|
τ

)
	∗∗

Y F

( |y|
τ

)∥∥
∥∥∥

≤ ϑ

4

(‖x‖α + ‖y‖α)
(1.21)

for all x, y ∈ X and τ ∈ (0, ∞), where 	∗
X , 	∗∗

X ∈ {∧X , ∨X }
and 	∗

Y , 	
∗∗
Y ∈ {∧Y , ∨Y } are fixed lattice operations. Then the sequence(

2−nF (2n |x|))
n∈N is a Cauchy sequence for every x ∈ X . Moreover, let the

functional T : X → Y be defined by

T (|x|) = lim
n→∞ 2−nF

(
2n |x|) . (1.22)

Then

(a) T is semi-homogeneous, i.e.

T (τ |x|) = τT (|x|) ,

for all x ∈ X and all τ ∈ [0, ∞);
(b) T is the unique cone-related functional satisfying both identity (1.14) and

inequality

‖T (|x|)− F (|x|)‖ ≤ 2αϑ

2 − 2α
‖x‖α (1.23)

which holds for every x ∈ X .
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Theorem 1.7 Consider a cone-related functional F : X → Y for which there are
numbers ϑ > 0 and p ∈ (1, ∞) such that

∥
∥τ

(
F

(|x|	∗
X |y|)	∗

Y F
(|x|	∗∗

X |y|))− F (τ |x|)	∗∗
Y F (τ |y|)

∥
∥

≤ ϑ
(‖x‖p + ‖y‖p)

(1.24)

for all x, y ∈ X and τ ∈ [0, ∞), where 	∗
X , 	∗∗

X ∈ {∧X , ∨X }
and 	∗

Y , 	
∗∗
Y ∈ {∧Y , ∨Y } are fixed lattice operations. Then the sequence(

2nF
(
2−n |x|)) is a Cauchy sequence for every x ∈ X . Moreover, let the functional

T : X → Y be defined by

T (|x|) = lim
n→∞ 2nF

(
2−n |x|) . (1.25)

Then

(a) T is semi-homogeneous, i.e.

T (τ |x|) = τT (|x|) ,
for all x ∈ X and all τ ∈ [0, ∞);

(b) T is the unique cone-related functional satisfying both identity (1.14) and
inequality

‖T (|x|)− F (|x|)‖ ≤ 2pϑ

2p − 2
‖x‖p (1.26)

which holds for every x ∈ X .

Before we start the proofs the following obvious remarks are worth being men-
tioned, as they will be used multiple times.

Remark 1.3 If the conditions of Theorem 1.6 or 1.7 hold true, then F (0) = 0.

Remark 1.4 Let Z be a set closed under the scalar multiplication, i.e. bz ∈ Z

whenever b ∈ R and z ∈ Z. Given a number c ∈ R let the function γ : Z → Z be
defined by γ (z) = cz. Then γ j : Z → Z the j -th iteration of γ is given by

γ j (z) = cj z

for every counting number j ≥ 2.

Proof (of Theorem 1.6) First, if we choose τ = 2, y = x and replace x by 2x in
inequality (1.21) then we obviously have

∥∥∥
∥
F (2 |x|)

2
− F (|x|)

∥∥∥
∥ ≤ ϑ2α−1 ‖x‖α . (1.27)
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Next, let us define the following functions:

1. G : X → X , G (|x|) = 2 |x|.
2. δ : X → [0, ∞) , δ (|x|) = ϑ2α−1 ‖x‖α .
3. ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2−1t .
4. H : Y → Y , H (|y|) = 2−1 |y|.
5. d (· , ·) : Y × Y → [0, ∞) , d (y1 , y2) = ‖y1 − y2‖.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

(I) From inequality (1.27) we obviously have

d (H (F (G (|x|))) , F (|x|)) =
∥∥
∥∥
F (2 |x|)

2
− F (|x|)

∥∥
∥∥

≤ ϑ2α−1 ‖x‖α = δ (|x|) .

(II) d (H (|y1|) , H (|y2|)) = 2−1 ‖y1 − y2‖ = φ (d (y1 , y2)) for all y1, y2 ∈
Y .

(III) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations Gj and ϕj of G and ϕ respectively, one can observe that

∞∑

j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ2α−1 ‖x‖α

∞∑

j=0

2(α−1)j = ϑ ‖x‖α 2α

2 − 2α
<∞.

Then in virtue of the above Forti’s theorem sequence (Hn (F (Gn |x|)))n∈N is a
Cauchy sequence for every x ∈ X and thus so is sequence

(
2−nF (2n |x|))

n∈N and
furthermore, the mapping (1.22) is the unique functional which satisfies inequality
(1.23).

Next, we prove the validity of inequality (1.14). In fact, in (1.21) substitute x
with 2nx and y with 2ny, and also let τ = 1. Then

∥∥F
(
2n

(|x|	∗
X |y|))	∗∗

Y F
(
2n

(|x|	∗∗
X |y|))− F (

2n |x|)	∗∗
Y F

(
2n |y|)∥∥

≤ ϑ

4
2nα

(‖x‖α + ‖y‖α) .

Dividing both sides of this last inequality by 2n yields

∥∥∥∥∥
F

(
2n

(|x|	∗
X |y|))	∗∗

Y F
(
2n

(|x|	∗∗
X |y|))

2n
− F (2n |x|)	∗∗

Y F (2
n |y|)

2n

∥∥∥∥∥

≤ ϑ

4

(‖x‖α + ‖y‖α) 2(α−1)n.

(1.28)
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Taking the limit in (1.28) we have via (1.25) that

∥∥T
(|x|	∗

X |y|)	∗
Y T

(|x|	∗∗
X |y|)− T (|x|)	∗∗

Y T (|y|)
∥∥ = 0

which is equivalent to

T
(|x|	∗

X |y|)	∗
Y T

(|x|	∗∗
X |y|) = T (|x|)	∗∗

Y T (|y|) .

Because of Remark 1.3 identity τF (|x|) = F (τ |x|) is trivial on the one hand for
τ = 0 and all x ∈ X , on the other hand for x = 0 and all τ ∈ [0, ∞). Without loss
of generality let us thus fix arbitrarily a number τ 
= 0 and an x ∈ X \{0}. In (1.21)
choose y = x and make the changes τ to τ−1 and x to 2nx. Then

∥
∥τF

(
2n |x|)− F (

τ2n |x|)∥∥ ≤ ϑ

2
‖x‖α 2nα.

Divide both sides of this last inequality by 2n to get

∥
∥τ2−nF

(
2n |x|)− 2−nF

(
τ2n |x|)∥∥ ≤ ϑ

2
‖x‖α 2(α−1)n. (1.29)

By taking the limit in (1.29) we have via (1.22) that

‖τT (|x|)− T (τ |x|)‖ = 0

or equivalently,

T (τ |x|) = τT (|x|)
for all x ∈ X . We have thus shown the semi-homogeneity of operator T . We can
conclude on the validity of the argument. ��
Proof (of Theorem 1.7) First, if we choose τ = 2, y = x and replace x by 2−1x in
inequality (1.24) then we obviously have

∥∥∥2F
(

2−1 |x|
)
− F (|x|)

∥∥∥ ≤ ϑ21−p ‖x‖p . (1.30)

Next, let us define the following functions:

1. G : X → X , G (|x|) = 2−1 |x|.
2. δ : X → [0, ∞) , δ (|x|) = ϑ21−p ‖x‖p.
3. ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2t .
4. H : Y → Y , H (|y|) = 2 |y|.
5. d (· , ·) : Y × Y → [0, ∞) , d (y1 , y2) = ‖y1 − y2‖.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.
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(I) From inequality (1.30) we obviously have

d (H (F (G (|x|))) , F (|x|)) =
∥∥∥2F

(
2−1 |x|

)
− F (|x|)

∥∥∥ ≤ϑ21−p ‖x‖p

= δ (|x|) .

(II) d (H (|y1|) , H (|y2|)) = 2 ‖y1 − y2‖ = φ (d (y1 , y2)) for all y1, y2 ∈ Y .
(III) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the

positive half line, and on the other hand by applying Remark 1.4 on both the
iterations Gj and ϕj of G and ϕ respectively, one can observe that

∞∑

j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ21−p ‖x‖p

∞∑

j=0

2(1−p)j = ϑ ‖x‖p 2p

2p − 2
<∞.

Then in virtue of the above Forti’s theorem sequence (Hn (F (Gn |x|)))n∈N is a
Cauchy sequence for every x ∈ X and thus so is sequence

(
2nF

(
2−n |x|))

n∈N
and furthermore, the mapping (1.25) is the unique functional which satisfies
inequality (1.26). Next, we prove the validity of inequality (1.14). In fact, in (1.24)
substitute x with 2−nx and y with 2−ny, and also let τ = 1. Then

∥∥F
(
2−n

(|x|	∗
X |y|))	∗∗

Y F
(
2−n

(|x|	∗∗
X |y|))− F (

2−n |x|)	∗∗
Y F

(
2−n |y|)∥∥

≤ ϑ2−np
(‖x‖p + ‖y‖p) .

Multiplying both sides of this last inequality by 2n yields

∥∥2n
(
F

(
2−n

(|x|	∗
X |y|))	∗∗

Y F
(
2−n

(|x|	∗∗
X |y|)))

−2n
(
F

(
2−n |x|)	∗∗

Y F
(
2−n |y|))∥∥ ≤ ϑ

(‖x‖p + ‖y‖p) 2(1−p)n.
(1.31)

Taking the limit in (1.31) we have via (1.25) that

∥∥T
(|x|	∗

X |y|)	∗
Y T

(|x|	∗∗
X |y|)− T (|x|)	∗∗

Y T (|y|)
∥∥ = 0

which is equivalent to

T
(|x|	∗

X |y|)	∗
Y T

(|x|	∗∗
X |y|) = T (|x|)	∗∗

Y T (|y|) .

Because of Remark 1.3 identity τF (|x|) = F (τ |x|) is trivial on the one hand for
τ = 0 and all x ∈ X , on the other hand for x = 0 and all τ ∈ [0, ∞). Without loss
of generality let us thus fix arbitrarily a number τ 
= 0 and an x ∈ X \{0}. In (1.24)
choose y = x and change x to 2−nx. Then

∥∥τF
(
2−n |x|)− F (

τ2−n |x|)∥∥ ≤ ϑ ‖x‖p 2−np.
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Multiply both sides of this last inequality by 2n to get

∥∥τ2nF
(
2−n |x|)− 2nF

(
τ2−n |x|)∥∥ ≤ ϑ ‖x‖p 2(1−p)n. (1.32)

By taking the limit in (1.32) we have via (1.25) that

‖τT (|x|)− T (τ |x|)‖ = 0

or equivalently,

T (τ |x|) = τT (|x|)

for all x ∈ X . We have thus proved the semi-homogeneity of operator T . We can
conclude on the validity of the argument. ��

To end the section we shall provide an example showing that if in (1.24) the
parameter τ is omitted and the power p of the norms equals the unity, then stability
cannot always be guaranteed. We remind that in the addition environments Gajda in
[16] and Găvruţa in [18] gave some interesting examples to show how stability fails
when the power of the norms is equal to 1.

Example 1.1 Consider the Lipschitz-continuous function

F : [0, ∞)→ [0, ∞) , F (x) =
√
x2 + 1.

Fix arbitrarily two numbers x, y ∈ [0, ∞). Since F is an increasing function
the very first equality in the chain of relations here below is valid, implying the
subsequent relations in the chain:

|F (x ∨ y)− (F (x) ∧ F (y))| = |F (x ∨ y)− F (x ∧ y)|

=
∣∣
∣∣

√
(x ∨ y)2 + 1 −

√
(x ∧ y)2 + 1

∣∣
∣∣

= (x ∨ y)2 − (x ∧ y)2
√
(x ∨ y)2 + 1 +

√
(x ∧ y)2 + 1

= |x − y| · (x ∨ y)+ (x ∧ y)
√
(x ∨ y)2 + 1 +

√
(x ∧ y)2 + 1

≤ |x − y| ≤ x + y

for all x, y ∈ [0, ∞). Now, let T : [0, ∞) → [0, ∞) be a function such that
T (x) = xT (1) for all x ∈ [0, ∞). Then a simple argument shows
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sup
x∈(0,∞)

|F (x)− T (x)|
x

= sup
x∈(0,∞)

∣∣∣
√

1 + x−2 − T (1)
∣∣∣ = ∞.

Remark 1.5 Theorem 1.6 remains valid for negative values of the norm exponent α.

1.4 Schwaiger’s Type Functional Equation

As a consequence of the counterexample given by Gajda (see [16]), many definitions
of approximately linear mappings have come to light. In this perspective Schwaiger
(cf. [31]) also proposed a functional equation similar to the Cauchy’s one and
suitably perturbed it and obtained a stability result similar to Hyers-Ulam’s original
one (see [11, 20, 33]). Schwaiger’s theorem reads:

Theorem 1.8 (Schwaiger’s Stability Theorem) Given a real vector space E1 and
a real Banach space E2, let f : E1 → E2 be a mapping for which inequality

‖f (x + αy)− f (x)− αf (y)‖ ≤ b (α) (1.33)

is satisfied for all α ∈ R. Then there exists a unique linear function g : E1 → E2
such that f − g is bounded.

In the sequel (X , ∧X , ∨X ) will denote a vector lattice and (Y , ∧Y , ∨Y ) a
Banach lattice with X + and Y + their respective positive cones.

Given two positive real numbers p and q consider the functional equation

T
((
τq |x|) ∨ |y|) = (

τpT (|x|)) ∨ T (|y|) (1.34)

for all x, y ∈ X and τ ∈ [0, ∞), where T maps X into Y .
The following simple examples show that the functional equation (1.34) has at

least one solution.

Example 1.2 The function T1 : [0, ∞) → [0, ∞) defined by T1 (x) = x is a
solution of (1.34), for all τ, q, x, y ∈ [0, ∞) with the choice p = q.

Example 1.3 The function T2 : [0, ∞) → [0, ∞) defined by T2 (x) = √
x is a

solution of (1.34), for all τ, q, x, y ∈ [0, ∞) with the choice p = q

2
< q.

Example 1.4 The function T3 : [0, ∞) → [0, ∞) defined by T3 (x) = x2 is a
solution of (1.34), for all τ, q, x, y ∈ [0, ∞) with the choice p = 2q > q.

Example 1.5 Let X = B (M, R) be the space of all bounded real-valued functions
defined on M . Then the functional

T : X → X , such that T (|f |) = |f |α

solves (1.34) for arbitrary positive numbers q and α with p = qα.
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The goal of this section is to prove the stability of the functional equation (1.34)
which can be viewed as a counterpart of the Schwaiger type stability theorem in
lattice environment.

Remark 1.6 Given two positive real numbers p and q, if a cone-related operator
T : X → Y satisfies the functional equation (1.34), then

1. T (|x| ∨ |y|) = T (|x|) ∨ T (|y|) for all x, y ∈ X and τ = 1;
2.

T
(
τq |x|) = τpT (|x|) (1.35)

for all x ∈ X and all τ ∈ [0, ∞) \ {1}.
Proof Choosing τ = 1 in (1.34) we obviously obtain that T is a join-
homomorphism. To show the second part we first prove that

T (0) = 0.

In fact, take x = y = 0 in (1.34). Then

T (0) = (
τpT (0)

) ∨ T (0) .

But since τ runs over the non-negative real line, by choosing τ = 2 yields

T (0) = (2T (0)) ∨ T (0) ,

which is possible only if T (0) = 0. Consequently, (1.35) follows if we select y = 0
in (1.34). ��
Theorem 1.9 Given a pair of positive real numbers (p, q), consider a cone-related
functional F : X → Y for which there are numbers ϑ > 0 and α with qα ∈ (0, p)
such that

∥
∥F

((
τq |x|) ∨ |y|)− (

τpF (|x)|) ∨ F (|y|)∥∥ ≤ 2−pϑ
(‖x‖α + ‖y‖α) (1.36)

for all x, y ∈ X and all τ ∈ [0, ∞). Then the sequence
(
2−npF (2nq |x|))

n∈N is a
Cauchy sequence for every x ∈ X . Let the functional T : X → Y be defined by

T (|x|) = lim
n→∞ 2−npF

(
2nq |x|) . (1.37)

Then

a. T is a solution of the functional equation (1.34);
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b. T is the unique cone-related functional which satisfies inequality

‖T (|x|)− F (|x|)‖ ≤ 2qαϑ

2p − 2qα
‖x‖α (1.38)

for every x ∈ X .

Moreover, assume that X is a Banach lattice and F is continuous from below on
the positive cone X +. Then in order that the limit operator T be continuous from
below on X +, it is necessary and sufficient that

lim
n→∞ lim

k→∞
F (2nqxk)

2np
≤ lim
k→∞ lim

n→∞
F (2nqxk)

2np
, (1.39)

for any increasing sequence (xk)k∈N ⊂ X +.

Theorem 1.10 Given a pair of positive real numbers (p, q), consider a cone-
related functional F : X → Y for which there are numbers ϑ > 0 and α with
qα ∈ (p, ∞) such that

∥∥F
((
τq |x|) ∨ |y|)− (

τpF (|x)|) ∨ F (|y|)∥∥ ≤ 2pϑ
(‖x‖α + ‖y‖α) (1.40)

for all x, y ∈ X and all τ ∈ [0, ∞). Then the sequence
(
2npF

(
2−nq |x|))

n∈N is a
Cauchy sequence for every x ∈ X . Let the functional T : X → Y be defined by

T (|x|) = lim
n→∞ 2npF

(
2−nq |x|) . (1.41)

Then

a. T is a solution of the functional equation (1.34);
b. T is the unique cone-related functional which satisfies inequality

‖T (|x|)− F (|x|)‖ ≤ 2pϑ

2qα − 2p
‖x‖α (1.42)

for every x ∈ X .

Moreover, assume that X is a Banach lattice and F is continuous from below on
the positive cone X +. Then in order that the limit operator T be continuous from
below on X +, it is necessary and sufficient that

lim
n→∞ lim

k→∞ 2npF
(
2−nqxk

) ≤ lim
k→∞ lim

n→∞ 2npF
(
2−nqxk

)
, (1.43)

for any increasing sequence (xk)k∈N ⊂ X +.
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Before we start the proofs the following obvious remark is worth being mentioned,
as it will be used multiple times in the sequel.

Remark 1.7 If the conditions of Theorem 1.9 or 1.10 hold true, then F (0) = 0.

Proof In (1.36) or (1.40) choose x = y = 0 and observe that

∥
∥F (0)− (

τpF (0)
) ∨ F (0)∥∥ = 0

so that

F (0) = (
τpF (0)

) ∨ F (0) .

But since τ runs over the non-negative real line, by choosing τ = 2 yields

F (0) = (2F (0)) ∨ F (0) ,

which is possible only if F (0) = 0. ��
Proof (of Theorem 1.9) First, we choose τ = 2−1, y = 0 and replacing x by 2qx
in (1.36) we obviously have

∥
∥∥∥
F (2q |x|)

2p
− F (|x|)

∥
∥∥∥ ≤ ϑ2qα−p ‖x‖α . (1.44)

Next, let us define the following functions:

1. G : X → X , G (|x|) = 2q |x|.
2. δ : X → [0, ∞) , δ (|x|) = ϑ2qα−p ‖x‖α .
3. ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2−pt .
4. H : Y → Y , H (|y|) = 2−p |y|.
5. d (· , ·) : Y × Y → [0, ∞) , d (y1 , y2) = ‖y1 − y2‖.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

(I) From inequality (1.44) we obviously have

d (H (F (G (|x|))) , F (|x|)) =
∥∥
∥∥
F (2q |x|)

2p
− F (|x|)

∥∥
∥∥

≤ ϑ2qα−p ‖x‖α = δ (|x|) .

(II) For all y1, y2 ∈ Y ,

d (H (|y1|) , H (|y2|)) = 2−p ‖y1 − y2‖ = ϕ (d (y1 , y2)) .
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(III) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations Gj and ϕj of G and ϕ respectively, one can observe that

∞∑

j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ2(qα−p) ‖x‖α

∞∑

j=0

2(qα−p)j

= ϑ ‖x‖α 2qα

2p − 2qα
<∞.

Then in virtue of Forti’s theorem sequence (Hn (F (Gn |x|)))n∈N is a Cauchy
sequence for every x ∈ X and thus so is sequence

(
2−npF (2nq |x|))

n∈N and
furthermore, the mapping (1.37) is the unique functional which satisfies inequal-
ity (1.38).

Next, we prove that the mapping T , defined in (1.37), satisfies the functional
equation (1.34). In fact, in (1.36) substitute x with 2nqx also y with 2nqy, and fix
arbitarily τ ∈ [0, ∞). Then

∥∥F
(
2nq

((
τq |x|) ∨ |y|))− (

τpF
(
2nq |x|)) ∨ F (

2nq |y|)∥∥
≤ ϑ2−p2qαn

(‖x‖α + ‖y‖α) .

Dividing both sides of this last inequality by 2np yields

∥∥∥∥
F (2nq ((τ q |x|) ∨ |y|))

2np
− (τpF (2nq |x|)) ∨ F (2nq |y|)

2np

∥∥∥∥

≤ ϑ2−p2(qα−p)n
(‖x‖α + ‖y‖α) .

(1.45)

Taking the limit in (1.45) we have via (1.37) that for all τ ∈ [0, ∞) and all
x, y ∈ X

∥
∥T

((
τq |x|) ∨ |y|)− (

τpT (|x|)) ∨ T (|y|)∥∥ = 0

which is equivalent to (1.34).
The moreover part can be proved the same way the moreover parts of the

theorems in [5] were, after we will have proved that the limits on both sides of (1.39)
exist. In fact, on the one hand, the existence of the limit on the left hand side
follows from the combination of the monotonicity of F and (1.37). On the other
hand, because of (1.37) the inner limit on the right hand side equals T (xk) for every
k ∈ N. But since the limit operator T is a join-homomorphism, it is also isotonic
or increasing. Consequently, (T (xk))k∈N is a convergent sequence. We have thus
proved that the limits on both sides of (1.39) exist.

Therefore, we can conclude on the validity of the argument. ��
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Proof (of Theorem 1.10) First, we choose τ = 2, y = 0 and replacing x by 2−qx
in (1.40) we obviously have

∥∥2pF
(
2−q |x|)− F (|x|)∥∥ ≤ ϑ2p−qα ‖x‖α . (1.46)

Next, let us define the following functions:

1. G : X → X , G (|x|) = 2−q |x|.
2. δ : X → [0, ∞) , δ (|x|) = ϑ2p−qα ‖x‖α .
3. ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2pt .
4. H : Y → Y , H (|y|) = 2p |y|.
5. d (· , ·) : Y × Y → [0, ∞) , d (y1 , y2) = ‖y1 − y2‖.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

(I) From inequality (1.46) we obviously have

d (H (F (G (|x|))) , F (|x|)) = ∥∥2pF
(
2−q |x|)− F (|x|)∥∥

≤ ϑ2p−qα ‖x‖α
= δ (|x|) .

(II) d (H (|y1|) , H (|y2|)) = 2p ‖y1 − y2‖ = ϕ (d (y1 , y2)) for all y1, y2 ∈ Y .
(III) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the

positive half line, and on other hand by applying Remark 1.4 on both the
iterations Gj and ϕj of G and ϕ respectively, one can observe that

∞∑

j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ2(p−qα) ‖x‖α

∞∑

j=0

2(p−qα)j

= ϑ ‖x‖α 2p

2qα − 2p
<∞.

Then in virtue of Forti’s theorem sequence (Hn (F (Gn |x|)))n∈N is a Cauchy
sequence for every x ∈ X and thus so is sequence

(
2npF

(
2−nq |x|))

n∈N and
furthermore, the mapping (1.41) is the unique functional which satisfies inequal-
ity (1.42).

Next, we prove that the mapping T , defined in (1.41), satisfies the functional
equation (1.34). In fact, in (1.40) substitute x with 2−nqx also y with 2−nqy, and fix
arbitarily τ ∈ [0, ∞). Then

∥∥F
(
2−nq

((
τq |x|) ∨ |y|))− (

τpF
(
2−nq |x|)) ∨ F (

2−nq |y|)∥∥
≤ ϑ2p2−qαn

(‖x‖α + ‖y‖α) .
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Multiply both sides of this last inequality by 2np to obtain

∥∥2npF
(
2−nq

((
τq |x|) ∨ |y|))− 2np

(
τpF

(
2−nq |x|) ∨ F (

2−nq |y|))∥∥
≤ ϑ2p2(p−qα)n

(‖x‖α + ‖y‖α) .
(1.47)

Taking the limit in (1.47) we have via (1.41) that for all τ ∈ [0, ∞) and all
x, y ∈ X

∥∥T
((
τq |x|) ∨ |y|)− (

τpT (|x|)) ∨ T (|y|)∥∥ = 0

which is equivalent to (1.34).
The moreover part can be proved the same way the moreover parts of the

theorems in [5] were, after we will have proved that the limits on both sides of (1.43)
exist. In fact, on the one hand, the existence of the limit on the left hand side
follows from the combination of the monotonicity of F and (1.41). On the other
hand, because of (1.41) the inner limit on the right hand side equals T (xk) for every
k ∈ N. But since the limit operator T is a join-homomorphism, it is also isotonic
or increasing. Consequently, (T (xk))k∈N is a convergent sequence. We have thus
proved that the limits on both sides of (1.43) exist. Therefore, we can conclude on
the validity of the argument. ��
To end the section we shall provide some example showing that if in (1.40)
parameter τ does not range over the whole non-negative half-line and the power α
of the norms equals the ratio of p and q, then stability cannot always be guaranteed.

Example 1.6 Fix arbitrarily three numbers p, q, c ∈ (0, ∞) and consider the
function

F : R → R, F (|x|) = c.

Then whenever τ ∈ (0, 1] we have:

∣
∣F

((
τq |x|) ∨ |y|)− (

τpF (|x|)) ∨ F (|y|)∣∣ = ∣
∣c − (

τpc
) ∨ c∣∣ = 0 ≤ |x|α+|y|α ,

where α = p
q

. Since |x| =
(
|x| 1

q

)q
, for any function T : R → R which solves

Eq. (1.34) the following consecutive relations are true:

sup
|x|∈(0,∞)

|F (|x|)− T (|x|)|
|x|α = sup

|x|∈(0,∞)

∣∣
∣∣c − T

((
|x| 1

q

)q)∣∣
∣∣

|x|α

= sup
|x|∈(0,∞)

|c − |x|α T (1)|
|x|α

= sup
|x|∈(0,∞)

∣∣∣∣
c

|x|α − T (1)
∣∣∣∣ = ∞.
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1.5 A More General Form of Problem 1.1 with Some
Solutions

Consider the following functional equation [10]:

(
T

((
τq |x|)	∗

X

(
ηq |y|)))	∗

Y

(
T

((
τq |x|)	∗∗

X

(
ηq |y|)))

= (
τpT (|x|))	∗∗

Y

(
ηpT (|y|))

(1.48)

for all x, y ∈ X and all τ, η ∈ [0, ∞), where 	∗
X , 	∗∗

X ∈ {∧X , ∨X } and
	∗

Y , 	
∗∗
Y ∈ {∧Y , ∨Y } are fixed lattice operations, where X and Y are Banach

lattices.

Remark 1.8 If we let η = τ and y = x in Eq. (1.48), we obtain the Schwaiger’s
type functional equation in lattice environment [7], recalled as follows

T
(
τq |x|) = τpT (|x|) (1.49)

for all x ∈ X and all τ ∈ [0, ∞).

The results in this section are straight generalizations of Agbeko [5, 6] and Salahi
et al. [29].

We note that fetching for the unique solution of Eq. (1.48) in the sense of Ulam-
Hyers-Aoki is equivalent to solving the problem hereafter.

Problem 1.2 Given three numbers ε, p, q ∈ (0, ∞), two Riesz spacesG1 andG2
with G2 being endowed with a metric d(·, ·), four lattice operations 	∗

G1
, 	∗∗

G1
∈{∧G1 , ∨G1

}
and 	∗

G2
, 	∗∗

G2
∈ {∧G2 , ∨G2

}
, does there exist some real number

δ > 0 such that, if a mapping F : G1 → G2 satisfies the perturbation inequality

d
((
F

((
τq |x|)	∗

G1

(
ηq |y|)))	∗

G2

(
F

((
τq |x|)	∗∗

G1

(
ηq |y|))) ,

(
τpF (|x|))	∗∗

G2

(
ηpF (|y|))) ≤ δ

for all x, y ∈ G1 and all τ, η ∈ [0, ∞), then an operation-preserving functional
T : G1 → G2 exists with the property that

d (T (x), F (x)) ≤ ε

for all x ∈ G1 and all τ, η ∈ [0, ∞)?

Letting τ = η = 1, Problem 1.2 reduces to Problem 1.1, indeed.
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1.5.1 The Main Results of This Section

Theorem 1.11 Given a pair of real numbers (p, q) ∈ (0, ∞)× (0, ∞), consider
a cone-related functional F : X → Y for which there are numbers ϑ > 0 and α
with qα ∈ (p, ∞) such that

∥∥F
((
τq |x|)	∗

X

(
ηq |y|))	∗

Y F
((
τq |x|)	∗∗

X

(
ηq |y|))

− (
τpF (|x|))	∗∗

Y

(
ηpF (|y|))∥∥ ≤ 2(p−1)ϑ

(‖x‖α + ‖y‖α)
(1.50)

for all x, y ∈ X and all τ, η ∈ [0, ∞). Then the sequence
(
2npF

(
2−nq |x|))

n∈N
is a Cauchy sequence for every x ∈ X . Let the functional T : X + → Y + be
defined by

T (|x|) = lim
n→∞ 2npF

(
2−nq |x|) (1.51)

for all x ∈ X . Then T both is a solution of (1.48) and uniquely satisfies inequality

‖T (|x|)− F (|x|)‖ ≤ 2pϑ

2qα − 2p
‖x‖α (1.52)

for every x ∈ X .

Theorem 1.12 Given a pair of real numbers (p, q) ∈ (0, ∞)× (0, ∞), consider
a cone-related functional F : X → Y for which there are numbers β ∈ [0, ∞),
ϑ > 0 and α with qα ∈ (0, p) such that

∥∥F
((
τq |x|)	∗

X

(
ηq |y|))	∗

Y F
((
τq |x|)	∗∗

X

(
ηq |y|))

− (
τpF (|x|))	∗∗

Y

(
ηpF (|y|))∥∥ ≤ β + ϑ2−(p+1) (‖x‖α + ‖y‖α)

(1.53)

for all x, y ∈ X and all τ, η ∈ [0, ∞). Then the sequence
(
2−npF (2nq |x|))

n∈N
is a Cauchy sequence for every fixed x ∈ X . Let the functional T : X + → Y + be
defined by

T (|x|) = lim
n→∞ 2−npF

(
2nq |x|) (1.54)

for all x ∈ X . Then T both is a solution of (1.48) and uniquely satisfies inequality

‖T (|x|)− F (|x|)‖ ≤ β2p

2p − 1
+ ϑ ‖x‖α 2qα

2p − 2qα
(1.55)

for every x ∈ X .
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Remark 1.9 If the conditions of Theorem 1.11 or 1.12 hold true, then F (0) = 0.

Proof The proof is similar to its counterpart in [6, 7] under the conditions of
Theorem 1.11 or 1.12 when β = 0. Under the condition of Theorem 1.12 with
β > 0, we need to prove that F (0) = 0. Suppose in the contrary that F (0) > 0
were true. Then by letting x = y = 0 and η = τ in (1.53), inequality

∥∥F (0)− τpF (0)∥∥ ≤ β

follows or equivalently

∣∣τp − 1
∣∣ ≤ β

‖F (0)‖ <∞

which, as τ tends to infinity, would lead to an absurdity, indeed. Hence the relation
F (0) = 0 must be true.

1.5.2 Proof of the Main Results

We shall use the technique in [6] to prove the main theorems.

Proof (of Theorem 1.11) First, if we choose τ = η = 2, y = x and replace x by
2−qx in inequality (1.50) then we obviously have

∥
∥2pF

(
2−q |x|)− F (|x|)∥∥ ≤ ϑ2p−qα ‖x‖α . (1.56)

Next, let us define the following functions:

G : X + → X +, G (|x|) = 2−q |x| , for all x ∈ X +
δ : X + → [0, ∞) , δ (|x|) = ϑ2p−qα ‖x‖α , for all x ∈ X +
ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2pt, for all t ∈ [0, ∞)

H : Y + → Y +, H (|y|) = 2p |y| , for all y ∈ Y +
d : Y + × Y + → [0, ∞) , d (|y1| , |y2|) = ‖|y1| − |y2|‖ , for all y1, y2 ∈ Y +.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

(I) From inequality (1.56) we obviously have

d (H (F (G (|x|))) , F (|x|)) = ‖H (F (G (|x|)))− F (|x|)‖
= ∥∥2pF

(
2−q |x|)− F (|x|)∥∥

≤ ϑ2p−qα ‖x‖α = δ (|x|) .
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(II) d (H (|y1|) , H (|y2|)) = 2p ‖|y1| − |y2|‖ = ϕ (d (|y1| , |y2|)) for all
y1, y2 ∈ Y .

(III) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations Gj and ϕj of G and ϕ respectively, one can observe that

∞∑

j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ2p−qα ‖x‖α

∞∑

j=0

2(p−qα)j = ϑ ‖x‖α 2p

2qα − 2p
<∞.

Then in view of Forti’s theorem, sequence (Hn (F (Gn |x|)))n∈N is a Cauchy
sequence for every x ∈ X and thus so is sequence

(
2npF

(
2−nq |x|))

n∈N.
Furthermore, the mapping (1.51) satisfies inequality (1.52).

Next, we prove that T solves (1.48). In fact, in (1.50) substitute x with 2−nqx
also y with 2−nqy, and fix arbitrarily τ, η ∈ [0, ∞). Then

∥∥∥∥F
(
(τ q |x|)	∗

X (ηq |y|)
2nq

)
	∗

Y F

(
(τ q |x|)	∗∗

X (ηq |y|)
2nq

)

−
(
τpF

( |x|
2nq

))
	∗∗

Y

(
ηpF

( |y|
2nq

))∥∥∥
∥ ≤ 2(p−1)ϑ

(∥∥
∥
x

2nq

∥∥
∥
α +

∥∥
∥
y

2nq

∥∥
∥
α)
.

Multiplying both sides of this last inequality by 2np yields

2np
∥∥∥∥F

(
(τ q |x|)	∗

X (ηq |y|)
2nq

)
	∗

Y F

(
(τ q |x|)	∗∗

X (ηq |y|)
2nq

)

−
(
τpF

( |x|
2nq

))
	∗∗

Y

(
ηpF

( |y|
2nq

))∥∥∥
∥ ≤ ϑ

2(1−p)
‖x‖α + ‖y‖α

2n(qα−p)
.

(1.57)

Taking the limit in (1.57) we have via (1.51) that

∥∥T
((
τq |x|)	∗

X

(
ηq |y|))	∗

Y T
((
τq |x|)	∗∗

X

(
ηq |y|))

− (
τpT (|x|))	∗∗

Y

(
ηpT (|y|))∥∥ = 0

for all τ, η ∈ [0, ∞) and all x, y ∈ X , which is equivalent to (1.48). Thus
T also satisfies (1.49) in Remark 1.8. Finally, we show the uniqueness, using a
technique in [29]. In fact, assume that there is another functional S : X → Y
which satisfies (1.48) and the inequality

‖S (|x|)− F (|x|)‖ ≤ δ2 ‖x‖α2

for some numbers α2, δ2 ∈ (0,∞) with qα2 > p, and for all x ∈ X . In (1.52) let

δ1 := 2pϑ

2qα − 2p
, α1 := α
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and by choosing τ = 2−n in Eq. (1.49) one can observe that for all x ∈ X

‖S (|x|)− T (|x|)‖ = 2np
∥∥S

(
2−nq |x|)− T (

2−nq |x|)∥∥
≤ 2np

∥
∥F

(
2−nq |x|)− T (

2−nq |x|)∥∥
+ 2np

∥∥S
(
2−nq |x|)− F (

2−nq |x|)∥∥
≤ 2npδ1

∥∥2−nqx
∥∥α1 + 2npδ2

∥∥2−nqx
∥∥α2

= 2(p−qα1)nδ1 ‖x‖α1 + 2(p−qα2)nδ2 ‖x‖α2 .

Hence,

‖S (|x|)− T (|x|)‖ ≤ 2(p−qα1)nδ1 ‖x‖α1 + 2(p−qα2)nδ2 ‖x‖α2

which, in the limit, yields

‖S (|x|)− T (|x|)‖ = 0

or equivalently

S (|x|) = T (|x|)

for all x ∈ X .
This was to be proven.

Proof (of Theorem 1.12) First, if we choose τ = η = 2−1, y = x and replace x by
2qx in inequality (1.53) then we obviously have

∥
∥2−pF

(
2q |x|)− F (|x|)∥∥ ≤ β + ϑ2qα−p ‖x‖α . (1.58)

Next, let us define the following functions:

G : X + → X +, G (|x|) = 2q |x| , for all x ∈ X +
δ : X + → [0, ∞) , δ (|x|) = β + ϑ2qα−p ‖x‖α , for all x ∈ X +
ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2−pt, for all t ∈ [0, ∞)

H : Y + → Y +, H (|y|) = 2−p |y| , for all y ∈ Y +
d : Y + × Y + → [0, ∞) , d (|y1| , |y2|) = ‖|y1| − |y2|‖ , for all y1, y2 ∈ Y +.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.
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(I) From inequality (1.58) we obviously have

d (H (F (G (|x|))) , F (|x|)) = ‖H (F (G (|x|)))− F (|x|)‖
= ∥∥2−pF

(
2q |x|)− F (|x|)∥∥

≤ β + ϑ2qα−p ‖x‖α = δ (|x|) .

(II) d (H (|y1|) , H (|y2|)) = 2−p ‖|y1| − |y2|‖ = ϕ (d (|y1| , |y2|)) for all
y1, y2 ∈ Y .

(III) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations Gj and ϕj of G and ϕ respectively, one can observe that

∞∑

j=0

ϕj
(
δ
(
Gj (|x|)

))
= β

∞∑

j=0

2−pj + ϑ2qα−p ‖x‖α
∞∑

j=0

2(qα−p)j

= β2p

2p − 1
+ ϑ ‖x‖α 2qα

2p − 2qα
<∞.

Then in view of Forti’s theorem, sequence (Hn (F (Gn |x|)))n∈N is a Cauchy
sequence for every x ∈ X and thus so is sequence

(
2−npF (2nq |x|))

n∈N.
Furthermore, the mapping (1.54) satisfies inequality (1.55).

Next, we prove that T solves (1.48). In fact, in (1.53) substitute x with 2nqx also
y with 2nqy, and fix arbitrarily τ, η ∈ [0, ∞). Then

∥
∥F

(
2nq

((
τq |x|)	∗

X

(
ηq |y|)))	∗

Y F
(
2nq

((
τq |x|)	∗∗

X

(
ηq |y|)))

− (
τpF

(
2nq |x|))	∗∗

Y

(
ηpF

(
2nq |y|))∥∥

≤ β + 2−(p+1)ϑ
(∥∥2nqx

∥∥α + ∥∥2nqy
∥∥α) .

Dividing both sides of this last inequality by 2np yields

∥∥∥
∥∥
F

(
2nq

(
(τ q |x|)	∗

X (ηq |y|)))	∗
Y F

(
2nq

(
(τ q |x|)	∗∗

X (ηq |y|)))
2np

− (τ
pF (2nq |x|))	∗∗

Y (ηpF (2nq |y|))
2np

∥∥
∥∥

≤ β2−np + 2−(p+1)ϑ
(‖x‖α + ‖y‖α) 2(qα−p)n.

(1.59)

Taking the limit in (1.59) we have via (1.54) that

∥
∥T

((
τq |x|)	∗

X

(
ηq |y|))	∗

Y T
((
τq |x|)	∗∗

X

(
ηq |y|))

− (
τpT (|x|))	∗∗

Y

(
ηpT (|y|))∥∥ = 0
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for all τ, η ∈ [0, ∞) and all x, y ∈ X , which is equivalent to (1.48). Thus T
satisfies (1.49) in Remark 1.8. Finally, we show the uniqueness, using a technique
in [29]. In fact, assume that there is another functional S : X → Y which
satisfies (1.48) and the inequality

‖S (|x|)− F (|x|)‖ ≤ β2 + δ2 ‖x‖α2

for some numbers α2, δ2 ∈ (0,∞) , β2 ∈ [0,∞) with qα2 < p, and for all x ∈ X .
In (1.55) let

β1 := β2p

2p − 1
, δ1 := ϑ2qα

2p − 2qα
, α1 := α

and by choosing τ = 2n in Eq. (1.49) one can observe that for all x ∈ X

‖S (|x|)− T (|x|)‖ = 2−np
∥
∥S

(
2nq |x|)− T (

2nq |x|)∥∥
≤ 2−np

∥∥F
(
2nq |x|)− T (

2nq |x|)∥∥
+ 2−np

∥∥S
(
2nq |x|)− F (

2nq |x|)∥∥
≤ 2−np

(
β1 + δ1

∥∥2nqx
∥∥α1

)+ 2−np
(
β2 + δ2

∥∥2nqx
∥∥α2

)

= 2−np (β1 + β2)+ δ12(qα1−p)n ‖x‖α1 + δ22(qα2−p)n ‖x‖α2 .

Hence

‖S (|x|)− T (|x|)‖ ≤ 2−np (β1 + β2)+ δ12(qα1−p)n ‖x‖α1 + δ22(qα2−p)n ‖x‖α2

which, in the limit, yields

‖S (|x|)− T (|x|)‖ = 0

or equivalently

S (|x|) = T (|x|)

for all x ∈ X . This completes the proof. ��
To end the section we give an example showing that stability fails to occur in

general.

Example 1.7 Fix arbitrarily τ, η ∈ (0, 2) and consider the function

F : [0, ∞)→ [0, ∞) , F (x) = xα+1, α = p

q
.
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Since F is increasing the first equality in the chain below is valid, entailing the
subsequent relations:

∣
∣F

((
τqx

) ∨ (
ηqy

))− (
τpF (x)

) ∧ (
ηpF (y)

)∣∣

=
∣∣
∣
(
τqx

)α+1 ∨ (
ηqy

)α+1 −
(
τpxα+1

)
∧

(
ηpyα+1

)∣∣
∣

≤ (
τqx

)α+1 ∨ (
ηqy

)α+1 +
(
τpxα+1

)
∧

(
ηpyα+1

)

≤ (
2qx

)α+1 ∨ (
2qy

)α+1 +
(

2pxα+1
)
∧

(
2pyα+1

)

≤ 2p+q(xα+1 ∨ yα+1)+ 2p+q(xα+1 ∧ yα+1) = 2p+q
(
xα+1 + yα+1

)

for all x, y ∈ [0, ∞). Now, let T : [0, ∞) → [0, ∞) be a function such that
T (μqx) = μpT (x) for all x ∈ [0, ∞) and all μ ∈ [0, ∞). Since x = (

x1/q
)q

,
and α is the ratio of p and q, we can then note that T (x) = xαT (1) for every
x ∈ [0, ∞). Now,

sup
x∈(0,∞)

|F (x)− T (x)|
2p+qxα+1 = sup

x∈(0,∞)

∣∣
∣∣x
α+1 − T

((
x

1
q

)q)∣∣
∣∣

2p+qxα+1 =

= sup
x∈(0,∞)

∣∣xα+1 − xαT (1)∣∣
2p+qxα+1

= 1

2p+q
sup

x∈(0,∞)

∣∣
∣∣1 − T (1)

x

∣∣
∣∣ = ∞.

The above example about the lack of stability on the real line in lattice environments
is the counterpart of the example given by Czerwik [12] in the addition environments
for quadratic mappings.

1.6 Lattice-Valued Maps Defined on Semigroups

This section is the collection of notions and results in [9]. Order theory plays
an important role in many disciplines of computer science and engineering.
For example, it has applications in distributed computing (vector clocks, global
predicate detection), cryptography, programming language semantics (fixed-point
semantics), and data mining (concept analysis). Moreover, it is useful in other
disciplines of mathematics such as logic, combinatorics, number theory or measure
theory. Also the semigroup theory is an integral part of modern mathematics, with
connections and applications across a broad spectrum of areas such as theoretical
physics, computer sciences, control engineering, information sciences, coding
theory, topological spaces.
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Algebraic semigroups are defined in very simple terms: they are algebraic
varieties endowed with a composition law which is associative and a morphism
of varieties. We omit its formal definition together with its additional properties, as
well known. For basic definitions of ordered structures and related notions which
are used throughout the paper the reader is referred to Davey and Priestley [13] and
Schaefer [30].

We adopt the following notations: endpoints of open and closed, or half-open or
half-closed intervals are denoted by round and square brackets, respectively.

Proceeding to the main part let us assume that (S, 
) is a semigroup, (L,≤) is
a lattice and T : S → L is a lattice-valued mapping. We denote by L+ the positive
cone of L. Inspired by the notion of optimal averages we ask about morphisms
between the algebraic structure of G and the order structure of L. To be precise, we
are interested in the following functional equation

T (x 
 y) = T (x) ∨ T (y), x, y ∈ S (1.60)

and in its related functional inequalities

T (x 
 y) ≥ T (x) ∨ T (y), x, y ∈ S (1.61)

and

T (x 
 y) ≤ T (x) ∨ T (y), x, y ∈ S. (1.62)

Clearly, (1.61) implies

T (x 
 y) ≥ T (x), T (x 
 y) ≥ T (y), x, y ∈ S (1.63)

whereas (1.62) implies

T (x2) ≤ T (x), x ∈ S, (1.64)

respectively. In fact, (1.61) and (1.63) are equivalent. However, inequalities (1.63)
and (1.64) do not require the lattice structure of the target space, and they make
sense if L is a partially ordered set (poset for short).

Note also that from (1.60) it easily follows that

T (xn) = T (x), x ∈ S, n ∈ N, (1.65)

where the powers xn are defined inductively as follows: x1 = x and xn+1 = xn 
 x

for n ∈ N.
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1.6.1 Examples and Basic Properties of Solutions
of (1.60), (1.61) and (1.62)

Example 1.8 Fix arbitrarily an element ω ∈ L+ and let (S, 
) be any semigroup
and Tω : S → L+ be the mapping defined by Tω (x) = ω. Then Tω trivially satisfies
the functional equation (1.60).

Example 1.9 Let n ∈ N be fixed and Pn := {p0, p1, p2, . . . , pn−1} any set of n
elements. Let us define on the set Pn the binary operation 
 : Pn × Pn → Pn by
pk 
 pm = pk∨m. Then one can easily see that Pn is a commutative idempotent
semigroup with the unity element p0, which is also the unique invertible element of
Pn. Define the functional T : Pn → N by T (pk) = k. Then

T (pk 
 pm) = T (pk∨m) = k ∨m = T (pk) ∨ T (pm)

for all k, m ∈ {0, 1, . . . , n− 1}, i.e. T satisfies Eq. (1.60).
One can easily extend this example to an infinite set. Let P∞ := {pk : k ∈ N0} be

any sequence of arbitrary pairwise distinct elements furnished P∞ with the binary
operation 
 defined as above. Then P∞ is a commutative idempotent semigroup with
a unity element p0, which is also the only invertible element in P∞ and functional
T defined as previously solves (1.60).

Since lattice operations are associative, then trivially every lattice is a commuta-
tive semigroup with operation “
” taken as “∨”. A natural question is to know what
relation there is between operations “
” and “∨”. A very short partial answer is as
follows.

Remark 1.10 Assume that S is a net S = {xi : i ∈ I }, where I is a linearly ordered
set of indices, and define on S the following operation 
 : S × S → S by xi 
 xj =
xi∨j for i, j ∈ I . Then (S, 
) is a semigroup. Moreover, one can introduce an order
≺ on S by xi ≺ xj if i < j . We will show that both operations 
 and ∨ coincide
if and only if S is monotone increasing, i.e. xi ≺ xj whenever i < j . Indeed, if
xi ≺ xj for i < j , then xi 
 xj = xi∨j = xi ∨ xj , so “
” and “∨” are identical
operations. Similarly, if “
” and “∨” coincide, then we get xi∨j = xi ∨ xj for all
i, j ∈ I , which implies that xi ≺ xj for i < j .

Definition 1.1 Let (S, τ ) be a partially ordered set. Consider the mappings
Mτ : S → 2S and Nτ : S → 2S , where 2S is the power set of S, which are
defined by

Mτ (q) = {p ∈ S : (p, q) ∈ τ } and Nτ (p) = {q ∈ S : (p, q) ∈ τ } .

Note that Mτ (x) ⊆ Mτ (y), and Nτ (y) ⊆ Nτ (x) for all x, y ∈ S with (x, y) ∈ τ .

Example 1.10 Let the set S := {r ∈ Q : r ≥ 1} be endowed with the standard
multiplication operation and the standard order ≤, which we will denote by τ .
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Further, let (pk)k∈N be a sequence of elements of S containing 1. Then we have
easily:

(a) Mτ (x) ∪Mτ (y) ⊆ Mτ (xy) for all x, y ∈ S, where the sets Mτ are defined in
Definition 1.1.

(b) If x > 1 and y > 1, then xy ∈ Mτ(xy) and xy /∈ Mτ(x) ∪Mτ(y). Therefore
Mτ (x) ∪Mτ (y) is a proper subset of Mτ (xy).

(c) Let x ∈ S. Then Mτ

(
x2

) = Mτ (x) if and only if x = 1.
(d) If x, y ∈ S, then Mτ (xy) = Mτ (x) if and only if y = 1.
(e) Assume that (αk) ⊂ [0, ∞) is a bounded sequence of distinct numbers. Let the

functional T1 : S → [0, ∞) be defined by

T1 (x) = sup {αk : pk ∈ Mτ (x)} , x ∈ S.

Since the sequence (pk)k∈N contains 1, then the set {αk : pk ∈ Mτ (x)}
is always non-empty and therefore T1 is well-defined. Moreover T1 solves
functional inequality (1.61).

(f) Let (βk) ⊂ (0, ∞) be a bounded sequence of distinct numbers such that

inf {βk : k ∈ N} > 0.

Let us define the functional T2 : S → (0, ∞) by

T2 (x) = 1

inf {βk : pk ∈ Mτ (x)} , x ∈ S.

Then T2 is well-defined and solves functional inequality (1.62).

One can easily check that analogous statements can be obtained for operators
defined analogously to T1 and T2 with the sets Mρ replaced by the sets Nρ .

One can modify this example using as the order τ the divisibility relation on the
set of natural numbers.

Now, we provide some basic properties of the solutions of inequalities (1.63).

Proposition 1.1 Let (S, 
) be a semigroup with a unit e and let L be a partially
ordered set. Further let T : S → L satisfy (1.63). Then

(i) T (x) ≥ T (e) for all x ∈ S,
(ii) T (x) = T (x−1) = T (e) for all x ∈ S which are invertible,

(iii) in particular, if S is a group, then every solution of the functional equa-
tion (1.60) on S is a constant mapping.

Proof Point (i) follows directly from the second part of (1.63) applied for y = e.
Next, assume that x ∈ S is invertible. Then one can easily see that with the aid

of (i) we have

T (x) ≥ T (e) = T (x 
 x−1) ≥ T (x),
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which proves (ii). Note that the third part is an immediate consequence of
part (ii). ��
Let � be a nonempty set. We will consider the space R

� of real functions defined
on � with the pointwise multiplication. Let also (L, ≤) be a poset and

(
L+, ≤)

its
positive cone. Further, denote

ker (f ) := {ω ∈ � : f (ω) = 0}

whenever f ∈ R
�. We introduce on R

� two relations “≤ker ” and “=ker ” as follows.
For f, g : �→ R let us define:

(i) f ≤ker g if and only if ker (f ) ⊆ ker (g),
(ii) f =ker g if and only if ker (f ) = ker (g).

The next remark is straightforward.

Remark 1.11 For all f, g, h : �→ R we have:

(i) f ≤ker f ,
(ii) if f ≤ker g and g ≤ker f , then f =ker g,

(iii) if f ≤ker g and g ≤ker h, then f ≤ker h.

Lemma 1.5 For an arbitrary mapping μ : 2� → L+ the following two assertions
are equivalent:

(i) μ (ker (f )) ≤ μ (ker (g)) for all f, g ∈ R
� with f ≤ker g,

(ii) μ (A) ≤ μ (B) for all A, B ⊆ � with A ⊆ B.

Proof Note that the implication (ii) �⇒ (i) is obvious. To show the reverse
implication (i) �⇒ (ii), let us assume that μ (ker (f )) ≤ μ (ker (g)) for all
f, g ∈ R

� with f ≤ker g. Pick arbitrarily two sets A, B ⊆ � with A ⊆ B.
Then (since Bc ⊆ Ac, i.e. the complement of B is a subset of the complement of A)
it can be easily seen that

A = ker
(
χ
Ac

) ⊆ ker
(
χ
Bc

) = B,

where χ denotes the characteristic function of a set. Consequently,

μ (A) = μ
(
ker

(
χ
Ac

)) ≤ μ
(
ker

(
χ
Bc

)) = μ (B) ,

which completes the proof. ��
Proposition 1.2 Endow the set R

� with the relation ≤ker and the pointwise
multiplication operation. Fix μ : 2� → L+ and let T : R� → L+ be a mapping
defined by

T (f ) = μ (ker (f )) , f ∈ R
�.



38 N. K. Agbeko

Then the following two assertions are equivalent:

(i) T (f ) ≤ T (g) for all f, g ∈ R
� with f ≤ker g,

(i) μ (A) ≤ μ (B) for all A, B ⊆ � with A ⊆ B.

Moreover, T solves the functional inequality (1.61).

Proof Note that the first part can be easily derived from Lemma 1.5, and the second
part is also immediate from the elementary fact that

ker (f · g) = ker (f ) ∪ ker (g) .

��

1.6.2 Separation Theorems in Lattice Environments

The main results of the present section (cf. [8]) essentially involve the topic
of separation (Theorems 1.13 and 1.14) and the Ulam-type stability problem
(Theorem 1.16).

Separation theorems have been studied by several authors. A classical result is
the Mazur-Orlicz Theorem [26], which was generalized by Kaufman [21] and by
Kranz [23]. In 1978 Rodé [28] proved a far reaching generalization of the Hahn-
Banach Theorem, which presently is a powerful tool in the theory of functional
equations and inequalities. König [22] found a simpler proof of the Rodé’s Theorem.
Gajda and Kominek [17] presented another approach, which motivated our next two
theorems.

In the first two results of this section we deal with the separation problem for
inequalities (1.61) and (1.62). To be precise, we ask whether given two solutions of
the reverse inequalities can be separated by a solution of the equation.

Theorem 1.13 Let us be given a σ -continuous lattice L and a multiplicative
semigroup (S, 
) which is commutative and has no elements of finite order, i.e. if
x ∈ S, then there is no number n ≥ 2 for which xn = x. Further, let f, g : S → L

be functionals for which

g (x 
 y) ≥ g (x) ∨ g (y)

and

f (x 
 y) ≤ f (x) ∨ f (y)

for all x, y ∈ S. Suppose that g (x) ≤ f (x) and

lim
n→∞ g

(
x2n

)
= lim
n→∞ f

(
x2n

)
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for every x ∈ S. Then there is a functional a : G→ L such that

(i) g (x) ≤ a (x) ≤ f (x), for all x ∈ S,
(ii) a (x 
 y) = a (x) ∨ a (y), for all x, y ∈ S.

Moreover, the functional a : S → L which meets conditions (i) and (ii) is unique.

First, we prove the two separation theorems. The following two lemmas are crucial
in their proofs.

Lemma 1.6 Let (S, 
) be a commutative multiplicative semigroup and L a σ -
continuous lattice. Let g : S → L be a functional for which

g (x 
 y) ≥ g (x) ∨ g (y)

for all x, y ∈ S. Then, for every x ∈ G the sequence
(
g
(
x2n

))
n∈N is increasing, so

that the limit

lim
n→∞ g

(
x2n

)
=

∞∨

n=1

g
(
x2n

)

exists.

Lemma 1.7 Let (S, 
) be a commutative multiplicative semigroup and L a σ -
continuous lattice. Let f : S → L be a functional for which

f (x 
 y) ≤ f (x) ∨ f (y)

for all x, y ∈ S. Then, for every x ∈ S the sequence
(
f

(
x2n

))
n∈N is decreasing, so

that the limit

lim
n→∞ f

(
x2n

)
=

∞∧

n=1

f
(
x2n

)

exists.

The proofs of Lemmas 1.6 and 1.7 are omitted because they can be easily carried
out.

Proof (of Theorem 1.13) Combine the three functional inequalities from assumption
of Theorem 1.13 to see that

g (x) ∨ g (y) ≤ g (x 
 y) ≤ f (x 
 y) ≤ f (x) ∨ f (y) (1.66)

for all x, y ∈ S. One can thus easily observe that

g (x) ≤ g
(
x2n

)
≤ f

(
x2n

)
≤ f (x)
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for all x ∈ S and n ∈ N. Then applying Lemmas 1.6 and 1.7 it ensues that

g (x) ≤ lim
n→∞ g

(
x2n

)
≤ lim
n→∞ f

(
x2n

)
≤ f (x) (1.67)

for all x ∈ S. Now, due to our assumptions a mapping a : S → L can be defined by

a (x) := lim
n→∞ g

(
x2n

)
= lim
n→∞ f

(
x2n

)

for all x ∈ S. Then (1.67) yields

g (x) ≤ a (x) ≤ f (x)

for all x ∈ S. Next, fix arbitrarily x, y ∈ S and n ∈ N. Then in (1.66) replace x
with x2n and y with y2n to observe that

g
(
x2n

)
∨ g

(
y2n

)
≤ g

(
x2n 
 y2n

)
≤ f

(
x2n 
 y2n

)
≤ f

(
x2n

)
∨ f

(
y2n

)
.

By applying the commutativity and passing to the limit in the above chain of
inequalities, both Lemmas 1.6 and 1.7 entail

a (x) ∨ a (y) ≤ a (x 
 y) ≤ a (x) ∨ a (y) .

Therefore,

a (x 
 y) = a (x) ∨ a (y)

whenever x, y ∈ S.
To end the proof suppose that b is another mapping which satisfies conditions (i)

and (ii) of the theorem and fix an arbitrary x ∈ S. Since b also satisfies (1.65) it is
easy to see that

g
(
x2n

)
≤ b (x) = b

(
x2n

)
≤ f

(
x2n

)

for all n ∈ N. Then passing to the limit entails that

lim
n→∞ g

(
x2n

)
≤ b (x) ≤ lim

n→∞ f
(
x2n

)
.

Consequently, by the assumption, b (x) = a (x), which completes the proof. ��
Theorem 1.14 Let (S, 
) be an Abelian group and (L, ≤) a lattice. Further,
suppose g : S → L and f : G→ L are two mappings for which inequalities (1.61)
and (1.62) are met respectively. Then
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(i) g (x) = g (e) for every x ∈ S,
(ii) f (e) ≤ f (x) ∨ f

(
x−1

)
for every x ∈ S. Moreover, given any x ∈ S, if

f (x) = f
(
x−1

)
, then f (e) ≤ f (x),

(iii) f (e) ≥ f (x) ∨ f (
x−1

)
for all x ∈ S if and only if f (x) = f (e) for all

x ∈ S.

Furthermore, suppose that g (x) ≤ f (x) and f (x) = f
(
x−1

)
for every x ∈ S.

Then the functionals f and g can be separated by a constant function, i.e. there
exist some β ∈ L such that

g (x) ≤ β ≤ f (x)

for all x ∈ S.

Proof In (1.61) replace T by g and simultaneously y by e and x−1 to get that

g (x) ∨ g (e) ≤ g (x) ,

respectively

g (x) ∨ g
(
x−1

)
≤ g (e) .

These two inequalities lead to the identity g (x) = g (e) , x ∈ S. Next, in (1.62)
replace T with f and y with x−1 to observe that

f (e) ≤ f (x) ∨ f
(
x−1

)
,

whenever x ∈ S. To show the biconditional in part (iii) we just note that the
necessity follows from part (ii) and that the sufficiency is obvious. To end the proof,
assume that f (x) = f

(
x−1

)
and g (x) ≤ f (x) for all x ∈ S. If β ∈ L is defined

by

β := 1

2
[g(e)+ f (e)],

then β separates g and f . ��
An easy remark here below is worth being pointed out.

Remark 1.12 Let S, L and f be as in Theorem 1.14. Then the following three
conditions are equivalent:

(i) f (x) = f
(
x−1

)
, x ∈ S,

(ii) f (x) ≥ f
(
x−1

)
, x ∈ S,

(iii) f (x) ≤ f
(
x−1

)
, x ∈ S.
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1.6.3 Stability Theorems

Now, we will focus on the stability of Eq. (1.60). One can say that Eq. (1.60) is
stable in a sense of Ulam if every perturbed solution of (1.60) is close to an
exact solution. In view of Proposition 1.1, which says that all solutions of (1.60)
on a group are constant mappings, one can expect that every perturbed solution
of (1.60) is bounded, or its norm is estimated by a mapping somehow related
to an error function. This however is not the case for (1.60), which is shown in
Example 1.12. There exists an unbounded approximate solution which satisfied
the stability problem with a bounded error function. Instead, we prove that every
solution of a perturbed equation vanishes asymptotically. To be more precise,
we show that under some assumptions all Hyers sequences of a particular type
converges to zero.

We begin with a result, which states that the following functional equation

T (x2) = T (x), x ∈ S

possesses some stability behaviour for mappings defined on a commutative semi-
group and taking values in a Banach lattice.

Theorem 1.15 Let (S, 
) be an arbitrary semigroup and let B be a Banach lattice.
Further, assume that (αn)n∈N is a sequence of positive real numbers converging to
zero and � : S → [0,+∞) satisfies

lim
n→+∞αn

n−1∑

k=0

�(x2k ) = 0, x ∈ S. (1.68)

If F : S → B is a mapping such that

‖F(x2)− F(x)‖ ≤ �(x), x ∈ S, (1.69)

then for every x ∈ S the sequence (αnF (x2n))n∈N converges to zero in B.

Theorem 1.16 Let (S, 
) be a commutative semigroup and B be a Banach lattice,
F : S → B and � : S × S → [0,+∞) satisfy

‖F(x 
 y)− F(x) ∨ F(y)‖ ≤ �(x, y), x, y ∈ S. (1.70)

If (αn)n∈N is a sequence of positive real numbers converging to zero and � : S →
[0,+∞) defined by

�(x) = �(x, x), x, y ∈ S (1.71)
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satisfies (1.68), then for every x ∈ S the sequence (αnF (x2n))n∈N converges to zero
in B.

Conversely, if there exists a sequence (αn)n∈N of positive real numbers such
that for every x ∈ S the sequence (αnF (x2n))n∈N converges to some T (x) and
� satisfies

lim
n→+∞αn�(x

2n , y2n) = 0 x, y ∈ S, (1.72)

then T : S → B is a solution of Eq. (1.60).

The next example shows that the estimates of Theorem 1.16 are optimal in the
sense that the rate of convergence has to be the same in both conditions (1.68)
and (1.72).

Example 1.11 Let us take S = (1,+∞) with 
 equal to the standard multiplication
in S and B = R with the standard order. Next, take

F(x) = log x, x ∈ (1,+∞),

�(x, y) = min{log x, log y}, x, y ∈ (1,+∞).

Then clearly

| log(xy)− log x ∨ log y| = min{log x, log y}

for every x, y ∈ (1,+∞), thus estimate (1.70) is satisfied. Moreover, it is easy to
see that for every sequence (αn)n∈N such that

lim
n→+∞ 2nαn = 0,

both conditions (1.68) and (1.72) hold true.

Next, we will modify the previous example in order to show that there exists an
unbounded mapping which satisfies estimate (1.70) with a bounded error function
�. Therefore, a direct analogue of Hyers Theorem is not true for functional
equation (1.60).

Example 1.12 Let us take S = (e,+∞), where e is the base of the natural
logarithm, with 
 equal to the standard multiplication in S and B = R with the
standard order. Next, take

F(x) = log(log x), x ∈ (e,+∞),
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and �(x, y) = log 2 for x, y ∈ (e,+∞). Fix x, y ∈ (e,+∞). Without loss of
generality we can assume that x ≤ y. Then we have

| log(log(xy))− log(log x) ∨ log(log y)| =
∣
∣∣∣log

(
log x + log y

log y

)∣
∣∣∣ ≤ log 2.

Thus estimate (1.70) is satisfied with bounded �. Thus both conditions (1.68)
and (1.72) hold true with every sequence (αn)n∈N for which lim

n→∞ nαn = 0.

Proof (of Theorem 1.15) Fix x ∈ S and n ∈ N and apply (1.69) repeatedly for x, x2,
. . . , x2n−1

. Summing up the inequalities obtained and using the triangle inequality
we arrive at

‖F(x2n)− F(x)‖ ≤
n−1∑

k=0

‖F(x2k+1
)− F(x2k )‖ ≤

n−1∑

k=0

�(x2k ).

Next, multiply both sides of this estimate by αn to see

‖αnF (x2n)− αnF (x)‖ ≤ αn

n−1∑

k=0

�(x2k ).

Clearly, sequence (αnF (x))n∈N tends to zero as n tends to +∞. Thus, it follows
from (1.68) that the sequence αnF (x) converges to zero. ��
Proof (of Theorem 1.16) The first part follows immediately from Theorem 1.15
after substitution y = x in (1.70).

To prove the second part, fix x, y ∈ S and a positive integer n and apply (1.70)
with x replaced by x2n and y replaced by y2n . Note that by the commutativity of
operation 
 we have

F(x2n 
 y2n) = F((x 
 y)2
n

),

and after multiplying both sides by αn we get

‖αnF ((x 
 y)2n)− αnF (x2n) ∨ αnF (y2n)‖ ≤ αn�(x
2n , y2n).

Let n tend to +∞ and use assumption (1.72) to get the assertion. ��
Remark 1.13 Let us note that in the proofs of Theorems 1.15 and 1.16 no
completeness of the target set B was used. This is a substantial difference between
our approach and a vast majority of other stability results, where completeness of
the target space is essential. Note however, that in the second part of Theorem 1.16
this is at least partially hidden in the assumptions, because we assume that a certain
sequence is convergent.
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Chapter 2
A Purely Fixed Point Approach to the
Ulam-Hyers Stability and Hyperstability
of a General Functional Equation

Chaimaa Benzarouala and Lahbib Oubbi

Abstract In this paper, using a purely fixed point approach, we produce a new proof
of the Ulam-Hyers stability and hyperstability of the general functional equation:

m∑

i=1

Aif (

n∑

j=1

aij xj )+ A = 0, (x1, x2, . . . , xn) ∈ Xn,

considered in Bahyrycz and Olko (Aequationes Math 89:1461, 2015. https://doi.
org/10.1007/s00010-014-0317-z), and in Bahyrycz and Olko (Aequationes Math
90:527, 2016. https://doi.org/10.1007/s00010-016-0418-y). Here m and n are pos-
itive integers, f is a mapping from a vector space X into a Banach space (Y, ‖ ‖),
A ∈ Y and, for every i ∈ {1, 2, . . . , m} and j ∈ {1, . . . , n}, Ai and aij are scalars.
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2.1 Introduction

The problem of stability of functional equations goes back to 1940, when Ulam
[15] asked whether, for a given group G1, a metric group (G2, d) and a positive
number ε, it exists a number δ > 0 such that, whenever a function f : G1 → G2
satisfies the inequality d(f (xy), f (x)f (y)) < δ, for every (x, y) ∈ G2

1, there exists
a group homomorphism F : G1 → G2 such that d(f (x), F (x)) < ε, for every
x ∈ G1. Whenever the answer to this problem is in the affirmative, one says that
the homomorphism equation f (xy) = f (x)f (y) is Ulam-stable, or that the group
homomorphisms are stable with respect to the equation f (xy) = f (x)f (y) and the
Ulam-approximation.

The first partial answer to this problem was given in 1941 by Hyers [8]. He
namely showed that the Cauchy equation f (x + y) = f (x)+ f (y) is Ulam stable,
whenever G1 = X and G2 = Y are real Banach spaces. Later, in 1978, Rassias
[14] considered Ulam’s problem with a new kind of approximation. He allowed the
Cauchy differences to be unbounded, but dominated in the following way:

‖f (x + y)− f (x)− f (y)‖ ≤ θ(‖x‖p + ‖y‖p), x, y ∈ X,

for some θ ≥ 0 and some p ∈ [0, 1[. With a similar method as Hyers, he
obtained that additive mappings between Banach spaces are stable with respect
to the Cauchy functional equation and the approximation above. Further, in 2003,
Radu [13] used the alternative fixed point theorem to retrieve Rassias’ theorem.
In the same year, L. Cadariu and V. Radu introduced in [4] a new approximation
condition generalizing Rassias’ one and, using the alternative fixed point theorem,
they showed that the additive mappings between Banach spaces are stable with
respect to the Jensen functional equation 2f (x+y2 ) = f (x) + f (y) and their new
approximation condition.

Instead of The Cauchy and the Jensen functional equations, a large variety
of functional equations have been considered in the literature, such as quadratic
functional equations [6], Euler-Lagrange type equations [9, 11], cubic equations
[5], quartic equations [12] and so on. Several authors have also considered systems
of functional equations and studied their stability [10, 11].

In 2014, A. Bahyrycz and J. Olko proved in [1] the stability of the general
functional equation

m∑

i=1

Aif (

n∑

j=1

aij xj )+ A = 0, (2.1)

where f is a mapping from a vector spaceX into a Banach space Y ,Ai ∈ K

,A ∈ Y

and aij ∈ K. Equation (2.1) generalizes most of the linear functional equations in
the literature. The authors used the direct method, with, in midway, a fixed point
theorem of Brzdęk et al. [3], to show the stability of (2.1). In 2015, Dong [7], using
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the same theorem of J. Brzdęk et al., proved the hyperstability of Eq. (2.1) when
A = 0 with respect to two different approximation functions.

In the same sense of Dong et al., Bahyrycz and Olko in [2], using the same
theorem of Brzdęk et al., showed the hyperstability of Eq. (2.1).

In this note, using a proof similar to that of Oubbi [11], relying on the classical
Banach contraction theorem, we reprove the stability and the hyperstability of (2.1).
Along the way, let us notice that, in [1] and [2], the authors assumed that A is a
scalar in (2.1). Actually, A must be an element of Y . Fortunately, this does not alter
their results.

2.2 Stability of Eq. (2.1)

In all what follows X and Y will be vector spaces on the field K ∈ {R,C} and
f : X → Y will be a mapping. The space Y will be endowed with a complete norm
‖ ‖. We will denote by A an element of Y and by n,m positive integers, while Ai
and aij will be scalars, i = 1, . . . , m and j = 1, . . . , n. We will then be concerned
with the functional equation (2.1) and its corresponding homogenous one:

m∑

i=1

Aif (

n∑

j=1

aij xj ) = 0 (2.2)

Theorem 2.1 Assume A = 0 or (A 
= 0 and
∑m
i=1Ai 
= 0). Suppose that some

mapping θ : Xn → R+ exists such that:

‖
m∑

i=1

Aif (

n∑

j=1

aij xj )+ A‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X. (2.3)

Assume also that there exist a non empty set I � {1, . . . , m}, c1, · · · , cn ∈ K, and
positive numbers ωi , i /∈ I , such that:

(i) ∀i ∈ I , βi = 1, where, for every k = 1, . . . , m, βk := ∑n
j=1 akj cj ,

(ii)
∑
i 
∈I |Ai |ωi < |∑i∈I Ai |,

(iii) θ(βix1, · · · , βixn) ≤ ωiθ(x1, · · · , xn), i /∈ I , x1, · · · , xn ∈ X.

Then there exists a unique solution G : X → Y of (2.1) satisfying

‖f (x)−G(x)‖ ≤ θ(c1x, · · · , cnx)
|∑i∈I Ai | −

∑
i 
∈I |Ai |ωi

, x ∈ X. (2.4)

Before giving our proof, let us denote by T : YX → YX an operator of the form:
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(T ξ)(x) :=
k∑

i=1

αiξ(βix), ξ ∈ YX, x ∈ X, (2.5)

with k ∈ N and α1, · · · , αk, β1, · · · , βk ∈ K.
We will make use of the following lemma proven in [1].

Lemma 2.1 Assume that θ : Xn → R+ is a mapping and let T : YX → YX be
given by (2.5). Assume that there exist ω1, · · · , ωk ∈ R+ such that

∑k
i=1 |αi |ωi < 1

and

θ(βi(x1, · · · , xn)) ≤ ωiθ(x1, · · · , xn), i ∈ {1, · · · , k}, x1, · · · , xn ∈ X.

If f satisfies the inequality:

‖
m∑

i=1

Aif (

n∑

j=1

aij xj )‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X,

and if the limit G(x) := limn→∞ T nf (x) exists for every x ∈ X, then G : X → Y

is a solution of (2.2).

Now we are in a position to prove Theorem 2.1.

Proof Assume that there exist a non empty set I � {1, · · · ,m}, scalars c1, · · · , cn,
and positive numbers ωi , i /∈ I , enjoying the assumptions (i)–(iii). Note that, due
to (ii), AI := ∑

i∈I Ai 
= 0.
Case A = 0 : Let x ∈ X be arbitrary. Putting xj = cj x, j ∈ {1, · · · , n} in (2.3),

we get

‖f (x)−
∑

i 
∈I

−Ai
AI

f (

n∑

j=1

aij cj x)‖ ≤ θ(c1x, · · · , cnx)
|AI | .

Consider the set:

Mf := {g : X → Y, ∃B > 0 such that ‖f (t)−g(t)‖ ≤ Bθ(c1t, · · · , cnt), t ∈ X}.

Then Mf is non empty, for f ∈ Mf . Now, for every g, h ∈ Mf , put

d(g, h) := inf{B > 0, ‖g(t)− h(t)‖ ≤ Bθ(c1t, · · · , cnt), t ∈ X}.

Then d is a distance on Mf . Indeed, since g, h ∈ Mf , there exist B ′, B ′′ > 0 such
that, for every x ∈ X,

‖g(x)−f (x)‖ ≤ B ′θ(c1x, · · · , cnx) and ‖h(x)−f (x)‖ ≤ B ′′θ(c1x, · · · , cnx).
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Therefore

‖g(x)− h(x)‖ ≤ ‖g(x)− f (x)‖ + ‖f (x)− h(x)‖ ≤ (B ′ + B ′′)θ(c1x, · · · , cnx).

Thus d(g, h) ≤ B ′ +B ′′ < +∞ for all g, h ∈ Mf . It is clear that d(g, h) = 0 if and
only if g = h, and that d(g, h) = d(h, g), g, h ∈ Mf . For the triangular inequality,
let g, h, k ∈ Mf , and B,B ′ > 0 be given so that d(g, h) < B and d(h, k) < B ′.
Then, for all t ∈ X, we have:

‖g(t)− k(t)‖ ≤ ‖g(t)− h(t)‖ + ‖h(t)− k(t)‖
≤ Bθ(c1t, · · · , cnt)+ B ′θ(c1t, · · · , cnt)
≤ (B + B ′)θ(c1t, · · · , cnt).

Passing to the infimum, we get d(g, k) ≤ d(g, h)+d(h, k). Therefore d is a distance
on Mf . Now, let’s show that the metric space (Mf , d) is complete. If (gn)n is a
Cauchy sequence inMf , as the evaluations δx : g �→ g(x) are uniformly continuous
from Mf into Y , the sequence (gn(x))n is Cauchy in Y , for every x ∈ X. By the
completeness of Y , it converges to some g(x). But

∀ε > 0, ∃Nε ∈ N,∀m > n ≥ Nε : d(gn, gm) < ε.

Therefore

‖gn(x)− gm(x)‖ ≤ εθ(c1x, · · · , cnx), m > n ≥ Nε, x ∈ X. (2.6)

Letting m tend to infinity, we get ‖gn(x)− g(x)‖ ≤ εθ(c1x, · · · , cnx). Thus

‖g(x)−f (x)‖ ≤ ‖g(x)−gn(x)‖+‖gn(x)−f (x)‖ ≤ (ε+d(gn, f ))θ(c1x, · · · , cnx).

Therefore the so defined mapping g belongs toMf . Again by (2.6), (gn)n converges
in Mf to g and then (Mf , d) is complete.

Now, for arbitrary ξ ∈ Mf , define a mapping T ξ from X into Y by:

T ξ(x) :=
∑

i 
∈I

−Ai
AI

ξ(

n∑

j=1

aij cj x).

Since

‖f (x)−
∑

i 
∈I

−Ai
AI

f (

n∑

j=1

aij cj x)‖ ≤ θ(c1x, · · · , cnx)
|AI | , x ∈ X,

‖f (x)− Tf (x)‖ ≤ θ(c1x, · · · , cnx)
|AI | , x ∈ X.
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Then Tf ∈ Mf . Actually, T is a self mapping of Mf . Indeed, for every g, h ∈ Mf ,
it holds ‖g(x)− h(x)‖ ≤ d(h, g)θ(c1x, · · · , cnx). Then, for g ∈ Mf ,

‖T g(x)− f (x)‖ ≤ ‖T g(x)− Tf (x)‖ + ‖Tf (x)− f (x)‖

≤
∑

i /∈I

|Ai |
|AI | ‖g(

n∑

j=1

aij cj x)− f (
n∑

j=1

aij cj x)‖ + ‖Tf (x)− f (x)‖

≤
∑

i /∈I
|Ai
AI

|d(g, f )θ(βic1x, · · · , βicnx)+ θ(c1x, · · · , cnx)
|AI |

≤ d(f, g)
∑

i /∈I
|Ai
AI

|ωiθ(c1x, · · · , cnx)+ θ(c1x, · · · , cnx)
|AI |

≤
⎛

⎝d(f, g)
∑

i 
∈I
|Ai
AI

|ωi + 1

|AI |

⎞

⎠ θ(c1x, · · · , cnx).

Whence T g ∈ Mf , for all g ∈ Mf .
Now, let us show that T is a strictly contracting mapping. Given g and h in Mf .

Then

‖T g(x)− T h(x)‖ = ‖
∑

i 
∈I

−Ai
AI

g(

n∑

j=1

aij cj x)−
∑

i 
∈I

−Ai
AI

h(

n∑

j=1

aij cj x)‖

≤
∑

i 
∈I
|Ai
AI

|‖g(
n∑

j=1

aij cj x)− h(
n∑

j=1

aij cj x)‖

≤
∑

i 
∈I
|Ai
AI

|d(g, h)θ(c1

n∑

j=1

aij cj x, · · · , cn
n∑

j=1

aij cj x)

≤ d(g, h)
∑

i 
∈I
|Ai
AI

|ωiθ(c1x, · · · , cnx).

If we put γ := ∑
i 
∈I | AiAI |ωi , then γ < 1 and

d(T g, T h) ≤ γ d(g, h), g, h ∈ Mf ,

Therefore T is a strictly contracting mapping. By Banach fixed point theorem, there
exists a unique mapping G ∈ Mf such that TG = G and limn→∞ T nf = G.
Thanks to Lemma 2.1, G is a solution of (2.1). Furthermore
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d(f,G) = d(f, lim
n→∞ T

nf )

= lim
n→∞ d(f, T

nf )

≤ lim
n→∞

n−1∑

j=0

γ jd(f, Tf )

≤ d(f, Tf )

1 − γ
≤ 1

|AI | −∑
i 
∈I |Ai |ωi

.

Thus (2.4) holds.
Case A 
= 0 and

∑m
i=1Ai 
= 0. Define a new function g : X → Y by g(x) :=

f (x)+ A∑m
i=1 Ai

. Since

‖
m∑

i=1

Aif (

n∑

j=1

aij xj )+ A‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X,

we get:

‖
m∑

i=1

Aig(

n∑

j=1

aij xj )‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X,

By the first part of the proof, there exists a unique solution H of (2.2) such that

‖g(x)−H(x)‖ ≤ θ(c1x, · · · , cnx)
|∑i∈I Ai | −

∑
i 
∈I |Ai |ωi

, x ∈ X.

Since H is a solution of (2.2), G := H − A∑m
i=1 Ai

is a solution of (2.1). But then

‖f (x)−G(x)‖ ≤ θ(c1x, · · · , cnx)
|∑i∈I Ai | −

∑
i 
∈I |Ai |ωi

, x ∈ X.

This finishes the proof. ��
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2.3 Hyperstability of Eq. (2.1)

In this section, with an additional condition than in Theorem 2.1, we show the
hyperstability of Eq. (2.1).

Theorem 2.2 Assume that A = 0 or A 
= 0 and
∑m
i=1Ai 
= 0. Let θ : Xn → R+

satisfy (2.3) and let ω : K → R+ enjoy:

θ(βx1, · · · , βxn) ≤ ω(β)θ(x1, · · · , xn), x1, · · · , xn ∈ X, β ∈ K.

If there exist a non empty set I � {1, · · · ,m} and a sequence (ck,1, · · · , ck,n)k∈N
of elements of Kn such that, with the notation βk,i := ∑n

j=1 aij ck,j , k ∈ N and
i ∈ {1, 2, . . . , m}:

(i) βk,i = 1 for all i ∈ I and all k ∈ N.
(ii) AI := ∑

i∈I Ai 
= 0, and limk→∞
∑
i 
∈I | AiAI |ω(βk,i) < 1,

(iii) limk→∞ θ(ck,1x, · · · , ck,nx) = 0,

then f is a solution of Eq. (2.1).

Proof First assume A = 0. It follows from (ii) that there exists k0 ∈ N such that:

γk :=
∑

i 
∈I
|Ai
AI

|ω(βk,i) < 1, ∀k ≥ k0.

For k ≥ k0 and arbitrary x ∈ X, if we take in (2.3), xj = ck,j x, j ∈ {1, · · · , n}, we
will get:

‖f (x)−
∑

i 
∈I

−Ai
AI

f (βk,ix)‖ ≤ θ(ck,1x, · · · , ck,nx)
|AI | , x ∈ X. (2.7)

Consider the set Mk
f defined by :

Mk
f := {g : X → Y ; ∃B > 0 such that ‖f (t)−g(t)‖ ≤ Bθ(ck,1t, · · · , ck,nt), t ∈ X}.

As in the proof of Theorem 2.1, (Mk
f , dk) is a complete metric space, with respect

to the distance

dk(g, h) := inf{B > 0; ‖g(t)−h(t)‖ ≤ Bθ(ck,1t, · · · , ck,nt), ∀t ∈ X}, g, h ∈ Mk
f .

Moreover, the self-mapping Tk of Mk
f defined by:

Tkξ(x) :=
∑

i 
∈I

−Ai
AI

ξ(βk,ix), ξ ∈ YX, x ∈ X
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is a contraction with Lipschitz constant γk < 1. By Banach fixed point theorem,
Tk admits a unique fixed point Gk ∈ Mk

f with Gk(x) = limn→∞ T nk f (x), x ∈ X.
Again, by Lemma 2.1, we have:

m∑

i=1

AiGk(

n∑

j=1

aij xj ) = 0. (2.8)

and

‖f (x)−Gk(x)‖ ≤ θ(ck,1x, · · · , ck,nx)
|AI |(1 − γk) , x ∈ X. (2.9)

Letting k tend to +∞ in (2.9), we obtain

lim
k→∞Gk(x) = f (x), x ∈ X.

Letting k tend to +∞ in (2.8), we obtain that f is a solution of (2.2) or equivalently
of (2.1).

Now, if A 
= 0 and
∑m
i=1Ai 
= 0, define a new function g : X → Y by

g(x) := f (x)+ A
∑m
i=1Ai

.

We have

‖
m∑

i=1

Aif (

n∑

j=1

aij xj )+ A‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X.

Then

‖
m∑

i=1

Ai(f (

n∑

j=1

aij xj )+ A
∑m
i=1Ai

)‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X.

i.e.,

‖
m∑

i=1

Aig(

n∑

j=1

aij xj )‖ ≤ θ(x1, · · · , xn), x1, · · · , xn ∈ X.

By the first part of the proof, g satisfies (2.2). Hence f is a solution of (2.1), which
finishes the proof. ��
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Chapter 3
Birkhoff–James Orthogonality Reversing
Property and Its Stability

Jacek Chmieliński and Paweł Wójcik

Abstract For real normed spaces, we consider the class of linear operators, approx-
imately preserving or reversing the Birkhoff–James orthogonality. In particular we
deal with stability problems.

Keywords Birkhoff–James orthogonality · Approximate orthogonality ·
Orthogonality preserving mappings · Orthogonality reversing mappings ·
Stability

Mathematics Subject Classification (2010) Primary 46B20, 39B82; Secondary
47B49

3.1 Introduction

Linear preservers problems and, in particular, orthogonality preserving property
have been studied widely in various settings of underlying spaces and with various
definitions of the orthogonality—cf., e.g., the survey [9]. In the present paper we
remind some of these results to give a context for a similar research concerning
an analogous orthogonality reversing property. We recall some recently published
results in this direction and we also present a few original ones. A significant part
of the paper is devoted to questions arising from the stability theory. Namely, along
with the considered property of an exact preservation (reversing) of orthogonality
we study also its approximate counterpart and we estimate how far these properties
are each to other.

Throughout the paper we usually assume that (X, ‖ · ‖) is a real normed space,
with dimX ≥ 2. By SX we denote the unit sphere in X and L (X) stands for the
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space of all continuous operators from X into X. For T ∈ L (X) we consider its
usual operator norm ‖T ‖ and the “lower norm” [T ]:

‖T ‖ := sup{‖T x‖ : ‖x‖ = 1} = inf{M ≥ 0 : ∀ x ∈ X ‖T x‖ ≤ M‖x‖};

[T ] := inf{‖T x‖ : ‖x‖ = 1} = sup{m ≥ 0 : ∀ x ∈ X m‖x‖ ≤ ‖T x‖}.

By X∗ we mean the dual space, i.e., the (normed) space of all linear and continuous
functionals defined on X. For a fixed x ∈ X by J (x) we denote the (nonempty) set
of supporting functionals:

J (x) := {ϕ ∈ X∗ : ‖ϕ‖ = 1, ϕ(x) = ‖x‖}.

3.2 Birkhoff–James Orthogonality and Approximate
Orthogonality

In the case of inner product spaces we have a standard orthogonality relation
x⊥y ⇔ 〈x|y〉 = 0, as well as a natural notion of an approximate orthogonality

x⊥ε y ⇔ | 〈x|y〉 | ≤ ε ‖x‖ ‖y‖

(i.e., | cos 
 (x, y)| ≤ ε) with ε ∈ [0, 1). If the given norm is not generated by
any inner product, then the notion of orthogonality has to be introduced using
solely the notion of the norm and by referring to some desired properties. Among
various concepts of such relations we have the Birkhoff–James orthogonality which
is defined by

x⊥By ⇐⇒ ∀ λ ∈ R : ‖x + λy‖ ≥ ‖x‖

(cf. [3, 20, 21] or a more recent survey [1]). It is known (cf. [21, Corollary 2.2]) that

x⊥By ⇐⇒ ∃ϕ ∈ J (x) : ϕ(y) = 0.

In [5] the following definition of an approximate Birkhoff–James orthogonality
(or more specifically ε-Birkhoff–James orthogonality with ε ∈ [0, 1)) was intro-
duced:

x⊥εBy ⇐⇒ ∀ λ ∈ R : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖ ‖λy‖.

Obviously, for ε = 0, ⊥0
B = ⊥B and if the norm comes from an inner product, then

⊥εB is equivalent to ⊥ε . In a recent paper [16] authors have proved the following two
characterizations of the approximate Birkhoff–James orthogonality.
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Theorem 3.1 ([16, Theorems 2.2, 2.3]) For x, y ∈ X and ε ∈ [0, 1)

x⊥εB y ⇐⇒ ∃z ∈ Lin{x, y} : x⊥Bz, ‖z− y‖ ≤ ε‖y‖; (3.1)

x⊥εB y ⇐⇒ ∃ϕ ∈ J (x) : |ϕ(y)| ≤ ε‖y‖. (3.2)

3.3 Operators Preserving or Reversing Orthogonality

This section is devoted to the main considered property. We are interested in linear
operators which do not essentially change orthogonality of arguments. By this we
mean that they exactly preserve orthogonality (with the same or changed order) or
they do it in some sense approximately.

3.3.1 Exact Preservation or Reversal of the Orthogonality

Let T : X → X be a nonzero linear mapping. We say that T is orthogonality
preserving (OP) if

x⊥By �⇒ T x⊥BTy, x, y ∈ X. (3.3)

It is known that T satisfies (3.3) if and only if it is a similarity (a scalar multiple of
a linear isometry), i.e.,

‖T x‖ = γ ‖x‖, x ∈ X

with some γ > 0. This result is nontrivial (cf. [22]) and remains true also for
complex normed spaces X, Y and T : X → Y (cf. [4]). For inner product spaces
the property (3.3) is, additionally, equivalent with the condition

〈T x|Ty〉 = γ 2 〈x|y〉 , x, y ∈ X

and the proof is quite elementary (cf. [6, Theorem 1]).
The Birkhoff–James orthogonality is generally not symmetric. If dimX ≥ 3,

then symmetry of ⊥B characterizes inner product spaces among normed ones. If X
is a two-dimensional plane it is possible that ⊥B is symmetric even though the norm
does not come from an inner product (X is a Radon plane—cf. [23, 28]). Therefore,
we can consider the property that T keeps orthogonality but in a reverse order.

We say that T is orthogonality reversing (OR) if

x⊥By �⇒ Ty⊥BT x, x, y ∈ X. (3.4)
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Orthogonality reversing operators have been introduced and studied in [10]. Obvi-
ously, if the Birkhoff–James orthogonality relation is symmetric, then the proper-
ties (3.3) and (3.4) coincide. We say that T essentially reverses orthogonality if
it is (OR) but not (OP). It has been proved that such operators may exist only on
Minkowski planes (2-dimensional normed spaces). Actually, if dimX ≥ 3, then X
admits (OR) operators if and only if X is an inner product space (it was proved
first in [10, Theorem 4.1] for smooth spaces only and then, independently, in [35,
Theorem 2.1] and [36, Theorem 5] without this restriction).

Note, that we consider here the same (Birkhoff–James) orthogonality relation for
x, y and T x, T y. Alternatively, one can consider the property that for orthogonal
vectors x, y, their images T x, T y are orthogonal but in a different sense. Such
properties were considered, e.g., in [31, 36].

Finally, in this section, we estimate the distance between the two considered
classes of operators. Denote by Sim(X) the class of all similarities, i.e., the class
of all linear orthogonality preserving operators and by Rev(X) the class of all
linear operators reversing orthogonality. For the sake of convenience assume that
zero operator belongs to both classes. By Isom(X) we denote the class of all linear
isometries.

Theorem 3.2 For T ∈ Rev(X) and U ∈ Isom(X) it holds that

dist(T ,Sim(X)) ≤ ‖T ‖ dist(U,Rev(X)). (3.5)

Moreover, for each T ∈ Rev(X) there exists V ∈ Sim(X) such that

‖T − V ‖ ≤ γX‖T ‖, (3.6)

where γX := inf{dist(U,Rev(X)) : U ∈ Isom(X)} is a constant depending on X
only.

Proof For T = 0, (3.5) and (3.6) are obvious. If 0 
= T ∈ Rev(X), then X is an
inner product space (whence Rev(X) = Sim(X)) or dimX ≤ 2. In the first case
again (3.5) and (3.6) follow trivially. Assume that dimX ≤ 2. It is visible that

Rev(X) ◦ Rev(X) ⊂ Sim(X) and Rev(X) ◦ Sim(X) = Rev(X).

Thus for an arbitrary similarity V ∈ Sim(X) we have T 2V ∈ Sim(X) and T V ∈
Rev(X). Moreover, for any S ∈ Sim(X) we have ‖T U − SU‖ = ‖T − S‖ and (U
is invertible) {SU : S ∈ Sim(X)} = Sim(X), whence

dist(T ,Sim(X)) = dist(T U,Sim(X)) ≤ ‖T U − T 2V ‖ ≤ ‖T ‖ ‖U − T V ‖.

Since V is an arbitrary similarity, T V is an arbitrary operator reversing orthogonal-
ity. Passing to the infimum over Rev(X) we get (3.5).

Since dimX < ∞, Sim(X) and Isom(X) are closed whence the distances are
attained and (3.5) implies (3.6).
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3.3.2 Operators Approximately Preserving or Reversing
Orthogonality

In real world applications, usually there is always some error in measurement so
we may tell that the respective property (like preservation of some relation) holds,
to some extent, approximately only. Thus it may be of some interest to consider
mappings which transform orthogonal vectors into approximately orthogonal ones.
In other words, we are interested in approximately orthogonality preserving (AOP)
linear operators and, similarly, approximately orthogonality reversing (AOR) ones.
We would like do describe how far these approximately preserving (reversing)
operators are from those which preserve (or reverse) orthogonality exactly.

3.3.2.1 AOP Operators: Review of Results

LetX and Y be real normed spaces and let T : X → Y be a nonzero linear mapping.
For given ε ∈ [0, 1) we say that T is ε-orthogonality preserving (ε-OP) if

x⊥By �⇒ T x⊥εBTy, x, y ∈ X. (3.7)

The class of approximately orthogonality preserving operators for inner product
spaces has been introduced and studied in [6].

Theorem 3.3 ([6, Theorem 2]) Let X and Y be inner product spaces and let
T : X → Y be a nonzero linear mapping satisfying (3.7) for some ε ∈ [0, 1). Then
T is injective, continuous and there exists γ > 0 such that

|〈T x|Ty〉 − γ 〈x|y〉| ≤ δmin{γ ‖x‖ ‖y‖, ‖T x‖ ‖Ty‖}, x, y ∈ X (3.8)

with

δ = 4ε

(
1

1 − ε +
√

1 + ε
1 − ε

)

. (3.9)

The above estimation can be improved if dimX < ∞; namely we may take δ = ε

in that case (cf. [34, Theorem 5.5].
For arbitrary normed spaces, Theorem 3.3 was extended in [25].

Theorem 3.4 ([25], Remark 3.1) Let X, Y be real normed spaces, ε ∈ [0, 1
2 ). If

T : X → Y is a linear mapping and satisfies (3.7), then

(1 − 8ε)‖T ‖ ‖x‖ ≤ ‖T x‖ ≤ ‖T ‖ ‖x‖, x ∈ X.

The above result holds true also for complex spaces, however with a worse constant
1 − 16ε (cf. [25, Theorem 3.5]).
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Let us only mention that similar problems were also considered for other types
of orthogonality, like isosceles orthogonality [11], ρ-orthogonality [12, 13, 30], ρ∗-
orthogonality [17], bisectric orthogonality [37], Roberts orthogonality [38, 39] and
others. The problem was also studied in other structures like Hilbert modules [19,
26] and for concrete spaces like the space of bounded linear operators [27]. See also
[9, 15, 32].

3.3.2.2 AOR Operators

In an analogous manner as in the previous part we define the class of operators
which approximately reverse orthogonality. For a given ε ∈ [0, 1) we say that T is
ε-orthogonality reversing (ε-OR) if

x⊥By �⇒ Ty⊥εBT x, x, y ∈ X. (3.10)

We will show that ε-OR operators (with positive ε) may exists on X, even if
dimX ≥ 3 and X is not an inner product space (as opposed to the case ε = 0).

Theorem 3.5 Let X be a real, uniformly convex normed space. Then, each linear
operator T : X → X such that [T ] > 0 satisfies (3.10) with some ε < 1.

Proof Let T be a linear operator, [T ] > 0 and assume that the assertion does not
hold. Thus for any increasing sequence εn ↗ 1 there exist sequences of unit vectors
xn, yn ∈ SX such that

xn⊥Byn and
Tyn

‖Tyn‖ 
 ⊥εnB T xn

‖T xn‖ , n ∈ N

(we use homogeneity of ⊥εB). Since xn⊥Byn, we have in particular

‖xn + yn‖ ≥ ‖xn‖ = 1, and ‖xn − yn‖ ≥ ‖xn‖ = 1, n ∈ N. (3.11)

Now, since Tyn
‖Tyn‖ 
 ⊥εnB T xn‖T xn‖ , applying (3.2), for any ϕ ∈ J

(
Tyn
‖Tyn‖

)
we have

∣∣∣∣ϕ
(
T xn

‖T xn‖
)∣∣∣∣ > εn.

Without loss of generality, we may assume ϕ
(
T xn‖T xn‖

)
> εn (otherwise we replace

xn by −xn and use (3.11)). Now, we have

1 + εn < ϕ

(
Tyn

‖Tyn‖
)
+ ϕ

(
T xn

‖T xn‖
)
= ϕ

(
Tyn

‖Tyn‖ + T xn

‖T xn‖
)

≤
∥
∥∥∥
Tyn

‖Tyn‖ + T xn

‖T xn‖
∥
∥∥∥ ≤ 2.
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Letting n→ ∞ we get

lim
n→∞

∥∥∥
∥
Tyn

‖Tyn‖ + T xn

‖T xn‖
∥∥∥
∥ = 2.

The space X was assumed uniformly convex, thus it follows (cf. [18, Fact 9.5])

lim
n→∞

∥∥∥∥
Tyn

‖Tyn‖ − T xn

‖T xn‖
∥∥∥∥ = 0.

Since xn⊥Byn, there is also xn‖T xn‖⊥B
yn

‖Tyn‖ , and hence

1

‖T ‖ ≤
∥∥
∥∥

xn

‖T xn‖
∥∥
∥∥ ≤

∥∥
∥∥

xn

‖T xn‖ − yn

‖Tyn‖
∥∥
∥∥ ≤ 1

[T ] ·
∥∥
∥∥T

(
xn

‖T xn‖ − yn

‖Tyn‖
)∥∥
∥∥

= 1

[T ] ·
∥∥∥∥
T xn

‖T xn‖ − Tyn

‖Tyn‖
∥∥∥∥ .

So it follows

1

‖T ‖ ≤ 1

[T ] ·
∥∥∥∥
T xn

‖T xn‖ − Tyn

‖Tyn‖
∥∥∥∥ → 0

as n→ ∞, a contradiction.

Notice that the above theorem can be applied for the identity operator on the
considered space X. It follows then, that in each real uniformly convex normed
space the Birkhoff–James orthogonality relation has the property

x⊥By �⇒ y⊥εBx, x, y ∈ X (3.12)

with some ε ∈ [0, 1). We call the above property an approximate symmetry
(or, more precisely, ε-symmetry) of the Birkhoff–James orthogonality ⊥B. This
notion has been introduced and studied in [14]. Theorem 3.5 yields (cf. also [14,
Theorem 4.1]) that the Birkhoff–James orthogonality in a real uniformly convex
normed space is approximately symmetric. The same holds true, in particular,
for a finite-dimensional real smooth normed space (cf. [14, Theorem 4.2]). But
generally it is not true—there are normed spaces (or classes of spaces) for which
the condition (3.12) does not hold with any ε ∈ [0, 1). A simple example is the
plane R

2 with the maximum norm. We refer to [14] for detailed discussion on this
subject.
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3.4 Stability Problems

The stability problem for functional properties may be posed in an analogous way
as for functional equations. Namely, if a mapping satisfies some relation (property)
approximately only, we may ask whether there exists another mapping which is
close to the original one and which exactly satisfies the considered property.

The problem of stability of the orthogonality preserving property, posed in [6],
has been studied quite extensively. The first result obtained in [7, Theorem 4] for
finite-dimensional inner product spaces was generalized in [29] to arbitrary Hilbert
spaces.

Theorem 3.6 ([29], Theorem 2.3) Let X, Y be Hilbert spaces. Then, for each
linear mapping f : X → Y satisfying (3.7) there exists a linear orthogonality
preserving mapping T : X → Y such that

‖f − T ‖ ≤
(

1 −
√

1 − ε
1 + ε

)

min{‖f ‖, ‖T ‖}.

Additionally, in the case where X = Y , the constant 1 −
√

1−ε
1+ε can be replaced by

1
2

(
1 −

√
1−ε
1+ε

)
(cf. [33, Theorem 5.4]).

Later, the considerations were carried on in normed spaces (cf. [8, 11, 25]) and
it is known that for some normed spaces the orthogonality preserving property is
stable. Actually, stability of the orthogonality preserving property is equivalent to
the stability of linear isometries (SLI) property. We say that a pair (X, Y ) has got the
(SLI) property if there exists a function δ : [0, 1)→ R+ satisfying limε→0 δ(ε) = 0
such that whenever T is an ε-isometry (i.e., | ‖T x‖ − ‖x‖ | ≤ ε‖x‖, x ∈ X), then
there exists an isometry U such that ‖T − U‖ ≤ δ(ε). The function δ may depend
on X and Y but not on T .

For the orthogonality reversing property the situation is different since it may
happen that there exists an (ε-OR) operator which cannot be approximated by an
(OR) operator, simply because such an operator does not exist in the considered
space. Indeed, as it was mentioned in Sect. 3.3.1, a normed space X admits an (OR)
operator only if dimX = 2 or X is an inner product space. In the latter case the
problem reduces to stability of the orthogonality preserving property. Therefore it is
reasonable to restrict our (OR)-stability considerations to two-dimensional spaces
only, even though we can formulate a formally correct result for a wider class of
normed spaces.

Let us recall now an auxiliary result which will be used in the proof of our
stability theorem. It was proved by Wójcik [31] who considered a general problem
of transferring one relation into another and the stability of this property.

Theorem 3.7 ([31], Theorem 3) LetX and Y be finite-dimensional normed spaces
and let R1 ⊂ X×X, R2 ⊂ Y × Y , Rε2 ⊂ Y × Y . Suppose that for all ε ∈ [0, 1), the
relations Rε2 are weakly homogeneous, i.e.,
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x Rε2 y �⇒ αx Rε2 αy, x, y ∈ Y, α ∈ R.

Assume that the family of relations {Rε2}ε∈[0,1) is continuous with respect to the
relation R2, i.e., for each sequence (εn)n∈N such that 0 ≤ εn < 1 and limn→∞ εn =
0 and for all sequences (an)n∈N, (bn)n∈N in Y such that limn→∞ an = a,
limn→∞ bn = b (a, b ∈ Y ) we have

(
an R

εn
2 bn, n ∈ N

) �⇒ a R2 b.

Then, for an arbitrary δ > 0 there exists ε > 0 such that for any linear mapping
f : X → Y satisfying

x R1 y �⇒ f x Rε2 fy, x, y ∈ X

there exists a linear mapping g : X → Y satisfying

x R1 y �⇒ gx R2 gy, x, y ∈ X

such that

‖f − g‖ ≤ δmin{‖f ‖, ‖g‖}.

Applying the above theorem we immediately get the (OR)-stability.

Theorem 3.8 Let X be a finite-dimensional normed space. For each δ > 0 there
exists ε > 0 such that for any linear mapping A : X → X satisfying (3.10) there
exists a linear mapping T : X → X satisfying (3.4) and

‖A− T ‖ ≤ δ · min{‖A‖, ‖T ‖}.

Proof Define a relation R1 ⊂ X × X by x R1 y ⇔ x⊥By. For any ε ∈ [0, 1)
define Rε2 ⊂ X × X by x Rε2 y ⇔ y⊥εBx. Since the orthogonality relations ⊥B and
⊥εB satisfy the homogeneity and continuity properties, the assertion follows from
Theorem 3.7.

Although we only assumed that the dimension of X if finite, we have to stress
again that this result is essential only for two-dimensional spaces. If dimX ≥ 3 and
X is not an inner product space, then no linear nonzero mapping satisfying (3.4)
exists and therefore also a nonzero mapping A satisfying (3.10) cannot exist for all
ε > 0.

Corollary 3.1 Let X be a normed space with 3 ≤ dimX <∞ and which is not an
inner product space. Then there exists ε0 ∈ (0, 1) such that for all ε ≤ ε0 the set of
all nonzero linear mappings A : X → X satisfying (with this ε) (3.10) is empty.

Notice that there are also two-dimensional normed spaces which does not admit
(OR) operators and the above corollary applies also to them.

Bearing the above remarks in mind, Theorem 3.8 may be reformulated as follows.
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Theorem 3.9 Let X be a finite-dimensional normed space. There exists ε∗ ∈ (0, 1]
(depending on X) such that for a linear mapping A : X → X satisfying (3.10) with
ε ∈ [0, ε∗), there exists a linear mapping T : X → X satisfying (3.4) and

‖A− T ‖ ≤ δ(ε) min{‖A‖, ‖T ‖},

where δ(ε) satisfies δ(ε)→ 0 as ε → 0.

Now, we consider a reverse problem. Given an operator A which is close to an
orthogonality reversing operator T , we show that A is approximately orthogonality
reversing. For reasons discussed above, we will assume dimX = 2. If X is an inner
product space the notions of (approximate) orthogonality reversing and preserving
properties coincide and this case will be covered by Theorem 3.12 (see the remark
following this theorem).

Let us recall some notions and respective properties. Let ρX denote the modulus
of smoothness of X, i.e.,

ρX(t) = sup

{‖x + th‖ + ‖x − th‖ − 2

2
: x, h ∈ SX

}
, t > 0.

It is known that (cf. [2, Proposition A.4])

t �→ ρX(t)

t
is a nondecreasing mapping (3.13)

and (cf. [2, 18]) X is uniformly smooth if and only if

ρX(t)

t
→ 0, as t → 0. (3.14)

Smoothness of X implies card J (z) = 1 for all z ∈ X \ {0}, i.e., J (z) = {ϕz}.
Moreover (cf. [2, Proposition A.5]), if ϕx , ϕy are supporting functionals in x and y,
respectively, then

‖ϕx − ϕy‖ ≤
ρX

(
2
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥
)

∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥

. (3.15)

Now we are able to state and prove the announced result. Note that if X is a finite
dimensional normed space, then X is smooth if and only if X is uniformly smooth.

Theorem 3.10 Let X be a real, two-dimensional and smooth space. Let 0 
= T ∈
L (X) satisfy (3.4) and let A ∈ L (X) satisfy, with γ ∈ (0, 1),

‖T − A‖ ≤ γ [T ]. (3.16)
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Then A satisfies (3.10) with ε = ε(γ ) where the mapping γ �→ ε(γ ) depends only
on X and satisfies the condition

ε(γ )→ 0, as γ → 0. (3.17)

Proof Notice that property (3.4) yields that T is injective and since X is finite
dimensional, [T ] > 0. Let x, y ∈ X and x⊥By. We may assume that x, y ∈ SX. For
a, b ∈ X \ {0} we have the Massera-Schaffer inequality (cf. [24]):

∥
∥∥∥
a

‖a‖ − b

‖b‖
∥
∥∥∥ ≤ 2‖a − b‖

max{‖a‖, ‖b‖} ,

thus, in particular,

∥∥∥
∥
a

‖a‖ − b

‖b‖
∥∥∥
∥ ≤ 2‖a − b‖

‖b‖ . (3.18)

Applying the above inequality and (3.16) we get

∥∥∥∥
Ay

‖Ay‖ − Ty

‖Ty‖
∥∥∥∥ ≤ 2‖Ay − Ty‖

‖Ty‖ ≤ 2‖A− T ‖
[T ] ≤ 2γ [T ]

[T ] = 2γ. (3.19)

Moreover,

| ‖T x‖ − ‖Ax‖ | ≤ ‖T x − Ax‖ ≤ ‖T − A‖ ‖x‖ ≤ γ [T ] ‖x‖ ≤ γ ‖T x‖,

whence (1 − γ )‖T x‖ ≤ ‖Ax‖ and

‖T x‖ ≤ 1

1 − γ ‖Ax‖. (3.20)

Combining smoothness with (3.2) we see that a⊥εBb ⇔ |ϕa(b)| ≤ ε‖b‖ for a, b ∈
X \{0} and a unique supporting functional ϕa . Since Ty⊥BT x, we have ϕTy(T x) =
0 and

∣∣ϕAy(Ax)
∣∣ = ∣∣ϕAy(Ax)− ϕTy(T x)

∣∣

≤ ∣∣ϕAy(Ax)− ϕAy(T x)
∣∣+ ∣∣ϕAy(T x)− ϕTy(T x)

∣∣

= ∣∣ϕAy(Ax − T x)
∣∣+ ∣∣(ϕAy − ϕTy

)
(T x)

∣∣

≤ ‖Ax − T x‖ + ∥∥ϕAy − ϕTy
∥∥·‖T x‖,

whence, using (3.15),
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∣∣ϕAy(Ax)
∣∣ ≤ ‖Ax − T x‖ + 2 ·

ρX

(
2
∥∥∥ Ay
‖Ay‖ − Ty

‖Ty‖
∥∥∥
)

2
∥
∥∥ Ay
‖Ay‖ − Ty

‖Ty‖
∥
∥∥

‖T x‖.

Now, applying (successively) (3.13), (3.19), (3.16) and (3.20) we obtain

∣∣ϕAy(Ax)
∣∣ ≤ ‖Ax − T x‖ + 2 · ρX (4γ )

4γ
· ‖T x‖

≤ γ [T ] ‖x‖ + 2 · ρX (4γ )
4γ

· 1

1 − γ ‖Ax‖

≤ γ ‖T x‖ + 2 · ρX (4γ )
4γ

· 1

1 − γ ‖Ax‖.

Finally, using (3.20),

∣∣ϕAy(Ax)
∣∣ ≤ γ

1 − γ ‖Ax‖ + 2 · ρX (4γ )
4γ

· 1

1 − γ ‖Ax‖

=
(

γ

1 − γ + 2 · ρX (4γ )
4γ

· 1

1 − γ
)
‖Ax‖.

Define ε(γ ) := γ
1−γ + 2 · ρX(4γ )4γ · 1

1−γ . Then (3.14) yields (3.17). It follows from

the above inequalities that
∣∣ϕAy(Ax)

∣∣ ≤ ε(γ )·‖Ax‖, whence also, cf. (3.2),

Ay⊥ε(γ )B Ax.

Finally, A satisfies (3.10) with ε = ε(γ ).

The following theorem is obtained as a consequence.

Theorem 3.11 Let X be a real, two-dimensional and smooth normed space. Let
a nonzero operator T ∈ L (X) satisfy (3.4) and let A ∈ L (X) satisfy, with α ∈(

0, [T ]
‖T ‖

)
, inequality

‖T − A‖ ≤ α ‖T ‖. (3.21)

Then A satisfies (3.10) with ε = ε̂(α) where the mapping α �→ ε̂(α) depends on X
only and satisfies the condition ε̂(α)→ 0, as α → 0.

Proof Consider γ := α
‖T ‖
[T ] ∈ (0, 1). Then (3.21) yields ‖T −A‖ ≤ α ‖T ‖ = γ [T ].

Now, for the mapping ε(·) from Theorem 3.10 we define ε̂(α) := ε
(
α · ‖T ‖[T ]

)
.

Finally, we goes back to the orthogonality preserving property. The following
result is obtained by applying similar methods as in two previous theorems. We will
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present, however, the whole proof for the reader’s convenience. We do not need to
require finite-dimensionality of X but its uniform smoothness.

Theorem 3.12 Let X be a real, uniformly smooth normed space and let 0 
= T ∈
L (X) satisfy (3.3). If A ∈ L (X) satisfies, with γ ∈ (0, 1), inequality ‖T − A‖ ≤
γ ‖T ‖, then A satisfies (3.7) with ε = ε(γ ) such that ε(γ )→ 0 as γ → 0.

Proof Let x, y ∈ X and x⊥By. We may assume that x, y ∈ SX and thus (T is a
similarity) ‖T x‖ = ‖Ty‖ = ‖T ‖. Applying (3.18) and ‖T − A‖ ≤ γ ‖T ‖ we get

∥
∥∥∥
Ay

‖Ay‖ − Ty

‖Ty‖
∥
∥∥∥ ≤ 2‖Ay − Ty‖

‖Ty‖ ≤ 2‖A− T ‖
‖T ‖ ≤ 2γ ‖T ‖

‖T ‖ = 2γ. (3.22)

Moreover, | ‖T x‖ − ‖Ax‖ | ≤ ‖T x − Ax‖ ≤ ‖T − A‖ ≤ γ ‖T ‖ = γ ‖T x‖,
whence (3.20) follows. Since T x⊥BTy, we have ϕT x(T y) = 0 (uniqueness of the
supporting functional is guaranteed by smoothness). Therefore

|ϕAx(Ay)| = |ϕAx(Ay)− ϕT x(T y)|
≤ |ϕAx(Ay − Ty)| + |(ϕAx − ϕT x) (T y)|
≤ ‖Ay − Ty‖ + ‖ϕAx − ϕT x‖·‖Ty‖,

and by (3.15),

|ϕAx(Ay)| ≤ ‖Ay − Ty‖ + 2 ·
ρX

(
2
∥∥∥ Ax
‖Ax‖ − T x

‖T x‖
∥∥∥
)

2
∥∥∥ Ax
‖Ax‖ − T x

‖T x‖
∥∥∥

‖Ty‖.

Proceeding analogously as in the last part of the proof of Theorem 3.10, applying
now (3.22), we get

|ϕAx(Ay)| ≤
(

γ

1 − γ + 2 · ρX (4γ )
4γ

· 1

1 − γ
)
‖Ay‖.

Finally, with ε(γ ) := γ
1−γ + 2 · ρX(4γ )4γ · 1

1−γ we have |ϕAx(Ay)| ≤ ε(γ ) ·‖Ay‖,

whence Ax⊥ε(γ )B Ay. Thus A satisfies (3.7).

Notice, that the above theorem covers in particular the case where dimX ≥ 3
and T satisfies (3.4) instead of (3.3). Then X must be an inner product space (which
obviously is uniformly convex), (3.4) is equivalent to (3.3) and (3.7) is equivalent
to (3.10) so A satisfies (3.10).
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Optimal Forward Contract Design for
Inventory: A Value-of-Waiting Analysis
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Abstract A classical inventory problem is studied from the perspective of embed-
ded options, reducing inventory-management to the design of optimal contracts for
forward delivery of stock (commodity). Financial option techniques à la Black-
Scholes are invoked to value the additional ‘option to expand stock’. A simplified
approach which ignores distant time effects identifies an optimal ‘time to deliver’
and an optimal ‘amount to deliver’ for a production process run in continuous time
modelled by a Cobb-Douglas revenue function. Commodity prices, quoted in initial
value terms, are assumed to evolve as a geometric Brownian process with positive
(inflationary) drift. Expected revenue maximization identifies an optimal ‘strike
price’ for the expansion option to be exercised and reveals the underlying martingale
in a truncated (censored) commodity price. The paper establishes comparative
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4.1 Problem Formulation and Model

We enhance a classical inventory-management problem by studying its embedded
options, reducing the problem to the design of optimal contracts for forward delivery
of inventory. The approach borrows much from the Black-Scholes model for valuing
financial options (see Musiela and Rutkowski [11, Chapter 5]) and reveals the
underlying martingale to be a truncated (right-censored) discounted commodity
price.

A production process runs continuously over a unit time interval and the manager
is permitted to acquire raw input materials at two dates: initially, at time t = 0, and
again at one other time θ < 1, selected freely, but committed to at time t = 0.
This framework is intended as a proxy for a multi-stage inventory management
problem, since ‘proximal’ effects of forward contracting, as represented by the
date θ , are more significant than any additional ‘distal’ dates for forward delivery.
Distal dates for additional forward deliveries are thus neglected in this model (see
the ‘Interpretation’ paragraph at the end of Sect. 4.4). Inputs are consumed in a
continuous production process which creates an instantaneous revenue rate at time
t equal to f (xt ) (quoted in present-value terms), where xt is the instantaneous input
rate of consumed material. To begin with f (x) is, as usual, an Inada-type increasing
function, viz. twice differentiable, unboundedly increasing from zero, with slope
unbounded at the origin and strictly decreasing to zero at infinity; eventually f (x)
is specialized to a Cobb-Douglas production function. The revenue from any interval
[a, b] is taken to be

∫ b

a

f (xt )dt.

If the manager decides to use up a proportion θx in the period [0, θ ] then, with θ
fixed, the Euler-Lagrange equation implies that a constant instantaneous input rate
equal to x is optimal. A further quantity (1 − θ)y may similarly be consumed in
the remaining time interval. If the quantity (1 − θ)y is made up from a contracted
forward delivery of (1 − θ)u and a possible supplement, purchased at time θ , of a
non-negative quantity (1 − θ)z, the revenue from the second interval will be

∫ 1

θ

f (xt )dt = (1 − θ)f (u+ z).

Values here and below are quoted in discounted terms, i.e. present-value terms
relative to time t = 0. (We side-step a discussion of the relevant discount factor.
In brief, discounting would be done relative to the required rate of return on capital
given the risk-class of the investment project; see Dixit and Pindyck [4, Chapter 4,
Section 2].)

Whilst the model of revenue assumes a steady (deterministic) market for the
output, the input prices are assumed stochastic. (We prefer this modelling choice to
the more general approach of including also a stochastic output price. Indeed, what
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then determines optimal behaviour is the ratio of the two prices; so, in a sense, the
present simpler arrangement subsumes it.) Specifically, we suppose that at time 0
the price of inputs is b0 = 1, and that, as time t progresses, the present value of the
spot price, bt , follows the stochastic differential equation

dbt

bt
= μ̄dt + σ̄ dwt , (4.1)

with wt a standard Wiener process. It is assumed that the constant growth rate
μ̄ is positive, thus modelling anticipated inflation. The (present-value/discounted)
expected price at time t is eμ̄t , and so the price is expected to grow above the initial
price of unity. The price bt is log-normally distributed with a mean which we denote
by ν = (μ̄ − 1

2 σ̄
2)t and a variance σ 2 = σ̄ 2t. Write qt (·) = q(·, μ̄t, σ̄√t) for the

density of bt . Conditional on the initial choice of θ , the expected future revenue
consequent on the choice of x, u and z (with z selected at time θ) is

θ(f (x)− x)+ (1 − θ)
(∫ ∞

0
{f (z+ u)− bz}qθ (b)db − u

)
. (4.2)

This is a classical inventory problem but amended by the explicit inclusion of
the ‘option to expand inventory’ (choice of z) and of a ‘forward’ contract (choice
of u). We shall evaluate the embedded option in a framework reminiscent of Black-
Scholes option-pricing. The ‘forward contract’ is construed here as a contract signed
at the earlier date t = 0 with an agreed specified delivered quantity, u, a specified
delivery date t = θ, and a price standardized here to unity per unit delivered.
The latter standardization fixes the unit of money, since, as is well-known, in the
absence of arbitrage and storage costs the forward price equals the price of inputs
at the initial time of contracting, compounded up to term-value at the required rate
of interest. Note that the advance purchase of u has by assumption nil resale value
on delivery. This makes the delivered asset a ‘non-tradeable’ commodity, so that
the usual martingale valuation approach applied to a discounted security price is
not immediately appropriate; our analysis makes use of dynamical programming,
as in Eberly and Van Mieghem [5], and thereby identifies the underlying martingale
structure via an appropriately truncated (right-censored) price.

Apart from offering a real-options approach with optimal design in mind, in
contrast to the classical inventory literature (see for instance Bensousssan et al.
[2], or Scarf [15]), an additional contribution of the current paper is to provide
information about the sensitivity in regard to model parameters of the critical ‘strike
price’ for stock expansion (its comparative statics and asymptotics), an issue omitted
from consideration in Eberly and Van Mieghem [5].

The current study of profit dependence on timing, drift and variance is motivated
by the general discrete-time multi-period model of Gietzmann and Ostaszewski [7],
but with the simplifying removal of costly liquidation of inventory. There the latter
feature was necessary for a more comprehensive study into the dependence of a
firm’s ‘future value’ on accounting data. Such themes are explored in [12] in this
volume.
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Our option-based analysis is simpler than [3], though similar in spirit. There the
(retailer’s) inventory control problem studies re-distribution of a storable product;
one uses a (long) forward (contract) for delivery combined with an option to
dispose of any excess (a put, with a lower salvage price) coupled with an option
for additional supply (a call, with a penalty cost for ‘emergency supply’); for
background on these ‘option’ terms see e.g. [8]. A similar approach, albeit in
discrete time, is taken in [10] using at each date a continuum of puts and calls
maturing at the next date taken together with a short (negative) forward.

The rest of the paper is organized as follows. In Sect. 4.2 we study optimality
conditions, which identify a threshold price level (the price censor) above which it
is not worth purchasing the input. We consider its sensitivity (comparative statics)
to price drift and volatility in Sect. 4.3: here we view the censor as a function
of these two, identified by a functional equation. Then in Sect. 4.4 we assess the
expected revenue and in Sect. 4.5 the optimal timing. Proofs (sensitivity analysis)
are spread across Sects. 4.6 and 4.7, some of this in outline with details relegated to
an Appendix.

4.2 Optimality: The Censor and Value of Waiting

From (4.2) the optimization problem separates into maximization over x ≥ 0 of
f (x)− x (with solution specified by f ′(x) = 1) and over u ≥ 0 and over functions
z(.) of the (time t = 0) expectation

E[f (z(b)+ u)− bz(b)] − u. (4.3)

Definition For any Inada-type strictly concave function f (x) define the ‘indirect
profit’ (i.e. maximized profit) for a deterministic price b by

h(b) = max
x>0

[f (x)− bx]. (4.4)

Evidently h(b) = f (I (b)) − bI (b), where by tradition I denotes the inverse
function to f ′.

Theorem 1 (Optimal Forward Delivered Quantity) In the model setting above,
with time θ given, let b̃ = b̃(μ, σ, θ) be the scalar solving the equation

E[bθ ∧ b̃] = b0 = 1, (4.5)

where bθ denotes the random price at time θ . Then the profit-optimizing level of the
advance purchase u = u(μ, σ, θ) for (4.3) satisfies

f ′(u) = b̃, (4.6)
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and the optimal expected profit is given by

g(μ, σ ) := E[h(b), b ≤ b̃] + h(b̃) · Pr[b > b̃]. (4.7)

Proof With β arbitrary, select u with β = f ′(u). Note that h(β) = f (u)− βu and
h′(β) = −u. Define the right-censored random variable Bθ = Bθ(β) by

Bθ = bθ ∧ β.

For given price b, the quantity z = z(b) which maximizes f (u + z) − bz is either
zero or satisfies the first-order condition

f ′(z+ u) = b.

In view of the monotonicity of f ′ we thus have z(b) = 0, unless b ≤ β. Given that
u has been purchased at a price of unity, the profit, when bθ ≤ β, is f (u + z) −
(bθ z(bθ ) + u) = h(bθ ) + (ubθ − u). Otherwise it is f (u) − u = h(β) + uβ − u.

Thus the expected profit is

�(β) := E[h(Bθ )+ uBθ − u] = E[h(Bθ )] + uE[Bθ ] − u.
Differentiating � with respect to β, and noting that

dE[h(bθ ∧ β)]/dβ = h′(β)Pr[bθ ≥ β],
we obtain, after some cancellations in view of h′(β) = −u, the optimality condition
E[Bθ ] = 1 on β. The model assumption that μ̄ is positive ensures the existence
of a solution of Eq. (4.5). With β set equal to the solution b̃ of Eq. (4.5) we have
b̃ = f ′(u), i.e. (4.6). ��
Definition In view of the right-censoring of the price b occurring under the
expectation, we call the solution of (4.5) the censor b̃ = b̃(μ, σ, θ) at time θ. This
definition follows Gietzmann and Ostaszewski [6]. The censored variable is thus a
martingale.

Remark It is clear from the proof above that the censor describes the upper limit of
those prices which trigger the exercise of the option to expand stock. So evidently,
b̃ > 1. We return in the next section to a consideration of its behaviour. Whilst this
threshold role makes the censor similar to the ‘optimal ISD control limit’ studied
by Eberly and Van Mieghem [5], their thresholds correspond to Investing/Staying-
put/Disinvesting and are distinct in respect of the treatment of capital depreciation.

Proposition 1 (Value of Waiting) The expected profit g(μ, σ ) defined in (4.7)
obtained by optimal forward contracting is no worse than the indirect profit h(1)
obtained by only using purchases at initial prices, that is,

h(1) < g(μ, σ ) = E[h(bθ ∧ b̃)].
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Proof This follows from a simple application of Jensen’s inequality, as h(b) is
strictly convex in b. Indeed, we then have

h(1) = h(E[bθ ∧ b̃]) < E[h(bθ ∧ b̃)].

Of course −h(b) is the Fenchel dual of the strictly concave function f , so −h(b)
is strictly concave in b (see [14, Section 12]). In the specific case of f (x) twice
differentiable the asserted convexity follows from h′′(b) = −1/f ′′(I (b)), where I
denotes, as before, the inverse function of f ′. ��

4.3 Sensitivity and the Censor Functional Equation

Assuming an Inada-type production function for the geometric Brownian model
adopted for the price as in (4.1), the censor equation (4.5) which defines b̃ = b̃(μ, σ )

can be re-written as

1 = eμ�(W − σ)+ b̃�(−W). (4.8)

Here �(x) = ∫ x
−∞ ϕ(w)dw, with ϕ(w) = e− 1

2w
2
/
√

2π, denotes the standard

normal cumulative distribution function, W = w(b̃), and

w(b) := ln b − ν
σ

, where ν = μ− 1

2
σ 2. (4.9)

This formulation leads naturally to a further definition.

Definition The normal censor is the function W(μ, σ) defined for μ, σ > 0
implicitly by the censor functional equation for W

e−μ = F(W, σ), where F(W, σ) := �(W − σ)+ eσW− 1
2σ

2
�(−W). (4.10)

We note that W is well defined since ∂F/∂W > 0. It is helpful to be aware
of the hidden connection between the function F and the normal hazard rate
H(x) = ϕ(x)/�(−x) (or its reciprocal, the Mills Ratio) and to use properties of
this function. We refer to Kendall and Stuart [9, p. 104], or Patel and Read [13] for

details. From ϕ(σ −W) = eσW− 1
2σ

2
ϕ(W),

F(W, σ) = ϕ(σ −W)
(

1

H(σ −W) +
1

H(W)

)
.

From (4.10), W(μ, σ) is decreasing in μ, since e−μ is decreasing. Less obvious is
the fact that W(μ, σ) is increasing in σ since in fact ∂W/∂σ > 1. This is shown in
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Sect. 4.7, where we deduce the comparative statics of b̃(μ, σ ) from corresponding
properties of W(μ, σ). The main results proved there are as follows.

Theorem 5 The censor b̃(μ, σ ) is decreasing in the drift μ and is increasing in the
standard deviation σ .

These two properties together suggest the following result, obtained by setting
μ = μθ and σ = σ

√
θ , and noting that (4.10) permits arbitrary positive θ .

Theorem 6 The censor b̄(θ) := b̃(μθ, σ
√
θ) is either unimodal or increasing on

the interval 0 < θ <∞, according as μ ≥ 1
2σ

2 or μ < 1
2σ

2.

4.4 Cobb-Douglas Revenue: Asymptotic Results

We now assume f (x) is Cobb-Douglas, specifically f (x) = 2
√
x, so that the

indirect profit defined by (4.4) is h(b) = b−1. This choice for the power of x inflicts
no loss of generality, because in the presence of a log-normally distributed price
any other choice of power is equivalent to a re-scaling of μ̄, σ̄ . Substituting into the
definition (4.7) yields

g(μ, σ ) = e(σ
2−μ)�(W + σ)+ e−μ−σW+ 1

2σ
2
�(−W), (4.11)

as the (optimal expected) profit per unit time arising after the re-stocking date θ . We
also define the associated function

ḡ(θ) := g(μ̄θ, σ̄
√
θ),

for 0 < θ < ∞ (with some re-sizing of μ̄, σ̄ in mind, as in Proposition 4 of
Sect. 4.5). To study these functions we are led to analyse the behaviour of first
W(μ, σ) and then W(t) := W(μ̄t, σ̄

√
t). The following are derived in Sect. 4.6.

Proposition 2 For fixed μ > 0,

W(μ, σ) = −μ
σ

+ 1

2
σ + o(σ ) (σ → 0+).

Proposition 3 For fixed μ > 0 and with μ̂ := −�−1(e−μ),

W(μ, σ) = σ − μ̂− 1

σ − μ̂ {1 + o(1)} ( σ → ∞ ).

From (4.11) and standard asymptotic estimates of �(x) (see Abramowitz and
Stegan [1, Section 7]) Theorem A below is immediate. It also turns out that W(t)
behaves rather like ±√

t (except when μ = 1
2σ

2).
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Theorem A (Asymptotic Behaviour of the Profit g(μ, σ ))

(i) g = eσ
2−μ + o(1/σ), as σ → ∞;

(ii) g = e−μ + (1 − e−μ)�(μ/σ)+ o(σ ), as σ → 0 + .
Theorem B (Behaviour of the Profit ḡ(θ) at the Origin) We have ḡ′(0) = σ̄ 2 so
that

ḡ(θ) = 1 + σ̄ 2θ + o(θ) ( θ → 0 ).

Theorem C (Asymptotic Behaviour of the Profit ḡ(θ) at Infinity)

(i) If σ̄ 2 < μ̄, then

ḡ(θ) = 1 + o(1/√θ)→ 1 + ( θ → ∞ ),

and ḡ(θ) has a maximum whose location tends to infinity as σ̄ 2 → μ̄.
(ii) If μ̄ ≤ σ̄ 2 < 2μ̄, then

ḡ(θ) = 1 + e(σ̄ 2−μ̄)θ + o(1/√θ) ( θ → ∞ ).

(iii) If 2μ̄ < σ̄ 2, then

ḡ(θ) = e(σ̄
2−μ̄)θ + o(1/√θ) ( θ → ∞ ).

(iv) If σ̄ 2 = 2μ̄, then

ḡ(θ) = 1

4
+ eμ̄θ�(√2μ̄θ)+ o(1/√θ) = 1

4
+ eμ̄θ + o(1/√θ) ( θ → ∞ ).

For the proofs see Sect. 4.6.
Figures 4.1, 4.2, 4.3 and 4.4 with a parameter value μ̄ = 0.05 show the

computed graphs of ḡ (red/bold) alongside the approximation (green/faint) where
relevant; Fig. 4.4 shows the first to the right of the two approximations given in the
case (iv).

Interpretation Under ‘myopic management’, i.e. in the absence of forward con-
tracting, for a given re-stocking date θ the expected profit would be

E0[h(bθ )] = E[1/bθ ] = e(σ̄
2−μ̄)θ .

Theorems A and C thus imply that forward contracting advantages lose significance
as variance increases, or as the re-stocking date θ advances. This is ultimately our
justification for excluding any additional dates for further forward deliveries.
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Fig. 4.1 Typical graph of
ḡ(θ) in the case (i) σ̄ 2 < μ̄;
here μ̄ = 0.05, σ̄ = 0.1

Fig. 4.2 Typical graph of
ḡ(θ) (red) in the case (ii) μ̄ <
σ̄ 2 < 2μ̄; here
μ̄ = 0.05, σ̄ = 0.25

Fig. 4.3 Graph of ḡ(θ) in the
case (iii) 2μ̄ < σ̄ 2 (red-green
merged); here
μ̄ = 0.05, σ̄ = 0.4

4.5 Cobb-Douglas Optimal Timing: Estimates

Assuming again as above, without much loss of generality, that f (x) = 2
√
x, we

turn now to revenue optimization in respect of the time θ to be selected freely
in [0, 1]. Supposing there are no associated management costs in choosing θ , the
optimal revenue R(θ) for a selected value of θ is, from (4.2), given by
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Fig. 4.4 Graph of ḡ(θ) (red)
in the case (iv)
σ̄ 2 = 2μ̄ = 0.1 and of
1
4 + eμ̄θ�(√2μ̄θ)

R(θ) := θ + (1 − θ)ḡ(θ),

the first term being justified by h(1) = 1. Since ḡ(0) = 1, the optimal choice of θ,
assuming such exists, is given by the following first-order condition:

ḡ(θ)− ḡ(0)
ḡ′(θ)

= 1 − θ. (4.12)

Proposition 4 The first-order condition for R in (4.12) is satisfied for some θ with
0 < θ < 1. The smallest solution is a local maximum of R. If ḡ is concave on [0, 1],
then the solution of (4.12) is unique.

Proof In general, by Proposition 1 on the Value of Waiting (Sect. 4.2), ḡ(1) −
ḡ(0)> 0 and so the first assertion is obvious, since the right-hand side of (4.12)
is zero at θ = 1 and is positive at θ = 0; indeed, by Theorem B above, the left-hand
side has the limiting value zero as θ → 0+ for σ > 0. If, however, ḡ(1)− ḡ(0) = 0
(i.e. h fails to be strictly convex), then since the function ḡ is initially increasing
for θ > 0, ḡ has an internal local maximum at θ̄ for some θ̄ with 0 < θ̄ < 1 (by
the Mean Value Theorem). In this case the first-order condition for R is satisfied by
some θ < θ̄, since the left-hand side tends to +∞ as θ → θ̄ .

Any internal solution θ∗ to Eq. (4.12) has ḡ′(θ∗) > 0 and so the second assertion
follows since R′(θ∗−) > 0 and R′(θ∗+) < 0. Observe that if ḡ′′(θ) < 0, then we
have

d

dθ

(
ḡ(θ)− ḡ(0)
ḡ′(θ)

)
= 1 − ḡ′′(θ) ḡ(θ)− ḡ(0)[ḡ′(θ)]2 > 0,

so the third assertion is clear; indeed concavity ensures that the left-hand side
of (4.12) is an increasing function of θ. ��

One would wish to improve on Proposition 4 to show in more general cir-
cumstances (beyond the concavity which can sometimes fail, as Fig. 4.1 shows)
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that (4.12) has a unique solution, and to study dependence on the two parameters
of the problem. This appears analytically intractable. For the purposes of gaining
an insight we propose therefore to replace ḡ(t) by a function related to it through
asymptotic analysis (as t varies), on the grounds that from numerical evaluations
the substitute is qualitatively similar. Examination of behaviour for large t may be
justified by re-sizing the parameters μ̄, σ̄ which enables the termination date to
become ‘large’. This observation then introduces the advantages of the asymptotic
viewpoint.

Guided by Theorems B and C, we are led to a considerably simpler problem
obtained by making one of two ‘typical’ substitutions for ḡ(θ), namely

1 + Aθe−αθ , if σ̄ 2 < μ̄, or eαθ , if μ̄ < σ̄ 2,

according as variance is low, or high. Here α := |σ̄ 2 − μ̄| > 0. The substitution in
the first of the two situations fits qualitatively with numerical evaluations on the form
of ḡ (see Fig. 4.1); it agrees in the second situation with the general form observed
in other figures and also the asymptotic form as t → ∞.

Case (i) α = μ̄− σ̄ 2 > 0. In this case the optimum time θ is the solution of

θ/(1 − αθ) = 1 − θ,

a quadratic equation, leading to the explicit formula

θ = θ(α) := 1

2
− 1

α

⎛

⎝−1 +
√

1 + α2

4

⎞

⎠ ,

so that as α increases from zero the optimal time θ recedes from the mid-point
towards the origin. That is, low volatilities move the replenishment timing back.

Case (ii) α = σ̄ 2 − μ̄ > 0. The first-order condition here reduces to

(1 − e−αθ )/α = 1 − θ,

with a unique solution in the unit interval. Here we can use a quadratic approxima-
tion for the exponential term and solve for θ to obtain, for α < 2, the approximation

θ(α) := 1

1 +√
1 − α/2 ,

so that the optimal choice of θ is close to the midpoint θ = 1/2, when α is small,
but advances as α increases towards unity (as a direct computation shows). That
is, high volatilities bring the replenishment position forward (meaning that waiting
longer, beyond the mid-term, is optimal for higher volatilities).
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4.6 Asymptotic Analysis: The Proofs

In this section we give outline arguments (for the details, see the Appendix) leading
to Propositions 2 and 3 and Theorems B and C of Sect. 4.4.

Lemma 1 We have for fixed μ

lim
σ→0+W(μ, σ) = −∞, and lim

σ→0+ σW(μ, σ) = −μ.

This follows directly from the definition of W(μ, σ). We now prove

Proposition 5 For μ > 0,

W(μ, σ) = −μ
σ

+ 1

2
σ + o(σ ) (σ → 0+).

Proof For an intuition, note that for small enough σ we have e−μ ∼ eσW− 1
2σ

2

and so

W(μ, σ) ∼ −μ
σ

+ 1

2
σ.

This argument can be embellished as follows. For any non-zero ε let

W(ε) := −μ
σ

+ 1

2
σ + σε,

so that

σ −W(ε) = μ

σ
+ 1

2
σ − σε.

We shall prove that for positive ε we have, for small enough σ , that

W(−ε) < W(μ, σ) < W(ε).

This is achieved by showing that for all small enough σ the expression below has
the same sign as ε :

D(σ) = F(W(ε), σ )− F(W(μ, σ), σ ) = F(W(ε), σ )− e−μ.

This implies the Proposition. Now D(0+) = 0 and, since D(σ) = �(W(ε)− σ)+
eσW(ε)− 1

2σ
2
�(−W(ε)),
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D′(σ ) = e−
1
2 (−W(ε)+σ)2 1√

2π
{− μ

σ 2 + 1

2
− ε} + e−μ+σ 2ε{2σε}(1 + o(σ ))

+e−μ+σ 2εe−
1
2W(ε)

2{ μ
σ 2

+ 1

2
+ ε}.

Note that the first and third terms contain a factor σ exp[−μ2/σ 2], which is small
compared with σ. So for small enough σ the derivative D′(σ ) has the same sign as
ε. So the same is true for D(σ). ��
Definitions Recall from (4.10) that ∂F/∂W > 0 and F(−∞, σ ) = 0,
F (+∞, σ ) = 1. Let m be fixed; for the purposes only of the current section it
is convenient to define

�(m) := 1 −�(m)

and to introduce, also as a temporary measure, a variant form Ŵ (m, σ) of W(m, σ)
obtained by replacing e−μ in (4.10) by �(m) so that now

F(Ŵ(m, σ), σ ) = �(m) < 1. (4.13)

Claim For c any constant

lim
σ→∞F(σ − c, σ ) = �(c).

The proof is routine.

Conclusion from Claim Notice the consequences for the choices c = (1 ± ε)m.

Since

lim
σ→∞F(σ − (1 + ε)m, σ) = �((1 + ε)m) < �(m),

for large enough σ we have

F(σ − (1 + ε)m, σ) < F(W, σ).

Hence for large enough σ we haveW > σ−(1+ε)m. Similarly, taking c = (1−ε)m
we obtain W < σ − (1 − ε)m. Thus

W(m, σ) = σ −m{1 + o(1)}(as σ → ∞).

This result can be improved by an argument similar to that for Proposition 2 by
reference to

D(σ) = �(σ −W)+ eσW− 1
2σ

2
�(−W)−�(m)

to yield the following.
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Proposition 6 With the definition (4.13), for fixed m

Ŵ(m, σ) = σ −m− 1

σ −m {1 + o(1)} (as σ → ∞).

Conclusion Ŵ (m, σ) = W(μ, σ) when m = μ̂ where e−μ = �(m). Restating
this equation as

e−μ = 1 −�(μ̂) = �(−μ̂),

we see that μ̂ > 0 if and only if μ > ln 2, since μ̂ = −�−1(e−μ); in particular for
small μ we thus have μ̂ < 0.

Lemma 2

lim
θ→0+

√
θW(θ) = 0 and lim

θ→0+W(θ) = +∞ for fixed μ̄, σ̄ > 0.

This follows again by a routine argument starting from (4.10) but requires the
claim below and the definition

V := V (θ) = W(θ)− σ̄√θ.

Claim

L := lim
θ→0+ σV (θ) = 0.

The proof here is by contradiction from (4.10), assuming L non-zero.

Proof of Theorem B Differentiation of (4.10) with respect to θ gives

−μ̄e−μ̄θ = ϕ(W − σ)(W ′ − σ ′)+ eσW− 1
2σ

2
ϕ(−W)(−W ′)

+�(−W)eσW− 1
2σ

2 [−1

2
σ̄ 2 + (σW)′].

Now

ϕ(W − σ)σ ′ = eσW− 1
2σ

2
ϕ(W)

σ̄

2
√
θ

=
(
eσW− 1

2σ
2 ϕ(W)

W

)
1

θ

Wσ̄
√
θ

2
→ μ̄ · 0 = 0 (θ → 0+),

using (4.10) and limW→+∞ ϕ(W)/(W�(−W)) = 1 to deal with the bracketed
term. Thus
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−μ̄ = lim
θ→0+[�(−W)(σW)

′].

Differentiation of (4.11) with respect to θ gives

ḡ′ = [σ̄ 2 − μ̄]e(σ 2−μ)�(W + σ)+ e(σ 2−μ)ϕ(W + σ)(W ′ + σ ′)

+e−μ−σW+ 1
2σ

2
ϕ(−W)(−W ′)+ e−μ−σW+ 1

2σ
2
�(−W)[1

2
σ̄ 2 − μ̄− (σW)′].

Now

ḡ′(0) = [σ̄ 2 − μ̄] − lim
θ→0+�(−W)[(σW)

′] = σ̄ 2.

��
Lemma 3 If 1

2 σ̄
2 
= μ̄, then

lim
θ→∞W(θ) = ±∞.

Remark This leaves the identification of the appropriate sign as a separate task. The
proof is by contradiction from (4.10) by reference to simple properties of the normal
hazard rate H(w) = ϕ(w)/�(−w). Lemma 4 below is proved by contradiction.
Lemma 5 clarifies the cross-over case.

Lemma 4 limθ→∞W(θ)− σ = −∞.

Lemma 5 If 1
2 σ̄

2 = μ̄, then limθ→∞ σ̄
√
θW(θ) = log 2.

Conclusion 1 If limθ→∞W(θ) = −∞, then

W(θ) = − μ̄− 1
2 σ̄

2

σ̄

√
θ + o(√θ), for μ̄ >

1

2
σ̄ 2.

Lemma 6 If σ̄ 2 < 2μ̄, then

lim
θ→∞ e

−σW+( 1
2 σ̄

2−μ̄)θ = 1.

This follows directly from (4.10) and Lemmas 3 and 4.

Proof of Theorem C Lemma 6 establishes case (ii) of Theorem C. Next we note:

Conclusion 2 If limθ→∞W(θ) = +∞, then for μ̄ < 1
2 σ̄

2

W(θ) = (σ̄ −√
2μ̄)

√
θ +O(1/√θ).
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Case (iii) of Theorem C follows from this estimate. Combining (ii) and (iii) gives
(i). Turning to case (iv), if σ̄ 2 = 2μ̄, then as θ → ∞ we have σ+W(θ)→ +∞, by
Lemma 5, so since limθ→∞ eσW(θ) = 2, and appealing to the standard asymptotic
estimates of �(x), as 1 − ϕ(x)/x for large x,

ḡ(θ) = e(σ̄
2−μ̄)θ�(σ +W(θ))+ e−σW+( 1

2 σ̄
2−μ̄)θ�(−W(θ))

= eμ̄θ�(σ +W(θ))+ e−σW�(−W(θ))
= eμ̄θ + 1

4
+ o(1/√θ).

This completes the proof of Theorem C.

4.7 Censor Comparative Statics: Reprise

This section considers the sensitivity of b̃(μ, σ ) to μ and σ , and the dependence of
b̄(θ) = b̃(μθ, σ

√
θ) on θ as given in Sect. 4.3.

Theorem 2 The censor b̃(μ, σ ) is decreasing in the drift μ.

Proof The derivative of b̃ = exp(σW + μ− 1
2σ

2) with respect to μ is positive iff

− σ ∂W(μ, σ)
∂μ

> 1. (4.14)

But differentiation of (4.10) and

ϕ(W(μ, σ)− σ) = eσW− 1
2σ

2
ϕ(W(μ, σ))

yield

1 = b̃�(−W(μ, σ))
(
−σ ∂W

∂μ

)
.

So (4.14) holds iff b̃�(−W(μ, σ)) < 1. But the latter follows from (4.8). ��
Theorem 3 The censor b̃(μ, σ ) is increasing in the standard deviation σ .

Proof Differentiating b̃ = exp(σW(μ, σ)+ μ− 1
2σ

2) with respect to σ yields

∂b̃

∂σ
= b̃(μ, σ )

{
σ
∂W

∂σ
+W(μ, σ)− σ

}
.
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Differentiating also the censor equation (4.10) with respect to σ , we obtain after
some cancellations that

ϕ(W(μ, σ)− σ) = eσW(μ,σ)−
1
2σ

2
�(−W(μ, σ))

{
W(μ, σ)+ σ ∂W

∂σ
− σ

}
.

The bracketed term appearing here and earlier is thus positive, and so

∂b̃(μ, σ )/∂σ > 0. ��
Using ϕ(σ −W) = eσW− 1

2σ
2
ϕ(W) (cf. Sect. 4.2) we note the identity

W(μ, σ)+ σ ∂W
∂σ

− σ = ϕ(W(μ, σ))

�(−W(μ, σ)) = H(W(μ, σ)), (4.15)

where H(x) denotes the normal hazard rate (ϕ(x)/�(−x)). Since H(x) > x for all
x, Eq. (4.15) gives ∂W/∂σ > 1 for σ > 0. Recalling from Sect. 4.2 that ∂W/∂μ <
0, we have the following two results:

Theorem 4 The two functions σW(μ, σ)− 1
2σ

2, W(μ, σ)− σ are increasing
in σ for σ > 0.

Theorem 5 The normal censor W(μ, σ) is increasing in standard deviation and
decreasing with drift.

Our final result is the following.

Theorem 6 The censor b̄(θ) := b̃(μθ, σ
√
θ) is either unimodal or increasing on

the interval 0 < θ <∞, according as μ ≥ 1
2σ

2 or μ < 1
2σ

2.

Proof Using b̄ϕ(W) = eμϕ(W − σ) and applying the Chain Rule to b̄(θ) =
b̃(μθ, σ

√
θ), we obtain

θ�(−W)db̄(θ)
dθ

= −μ{eμ�(W − σ)} + 1

2
σ b̄ϕ(W).

The stationarity condition for b̄(θ) can be written using the normal hazard rate
H(x) = ϕ(x)/�(−x) as

μ = 1

2
σH(−W(μ, σ)+ σ), (4.16)

where μ = μθ and σ = σ
√
θ , and W(μ, σ) is the normal censor as in (4.10).

We now regard μ and σ as free variables and let κ := μ/σ 2 be the dispersion
parameter. In this setting we seek a stationary point θ of b̄(θ) by first finding the
values μ = μ∗ and σ = σ ∗ which satisfy Eq. (4.16) simultaneously with the
equation:

μ = κσ 2. (4.17)
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We shall show that this is possible (uniquely) if and only if κ ≥ 1/2 (i.e. μ ≥
1
2σ

2). Thus for σ 2 > 2μ the function b̄(θ) is increasing, but otherwise has a unique
maximum at θ = μ∗/μ = σ ∗2/σ 2.

We begin by noting that (4.16) defines an implicit function μ = μ(σ) for all
σ > 0. Indeed, elimination of μ between (4.10) and (4.16) leads to

exp

(
−1

2
σH(−w + σ)

)
= F(w, σ), (4.18)

and then routine analysis shows that there is a unique solution w = ω(σ) of (4.18).
Since ∂W/∂μ < 0, we may recover μ(σ) > 0, for σ > 0, from ω(σ) =
W(μ(σ), σ ).

Linearization of both sides of (4.18) around σ = 0 yields the equation

H(−w) = 2(ϕ(w)+ w�(−w))

with unique solution w = ω(0) = 0. Hence limσ→0W(μ(σ), σ ) = 0 and so, for
small σ , we have the approximation to (4.16) given by the convex function

μ = 1

2
σH(σ).

Numerical investigation of the positive function w = ω(σ) finds its maximum to be
0.051 for σ approximately 2.547. To see why, rewrite (4.18) in the equivalent form:

exp

(
1

2
σ 2 − 1

2
σH(−w + σ)

)
= �(w − σ)
ϕ(σ )

√
2π

+ eσw�(−w).

For fixed w with 0 ≤ w ≤ 1, and large σ , the left-hand side is close to e
1
2 (σw−1), in

view of the asymptotic over-approximation (x + 1/x) for H(x) (when x is large),
whereas the first term on the right is asymptotic to 1/(σ

√
2π). Neglecting the latter,

and replacing�(−w) by 1
2 , the solution for w may be estimated by (2 log 2−1)/σ .

Finally, using the same asymptotic approximation for H(σ), we may over-
approximate 1

2σH(σ − ω(σ)) by 1
2σ

2 + 1
2 . From here we may conclude that, for

κ > 1
2 , Eqs. (4.16) and (4.17) have a solution with a crude over-estimate for σ ∗

given by

(σ ∗)2 = 1

2κ − 1
.

The supporting line μ = 1
2H(0)σ provides the crude under-estimate σ =

1/κ
√

2π . For the special case κ = 1
2 the solution to (4.16) and (4.17) is σ ∗ = 4.331.

For κ < 1
2 there is no solution, since 1

2σH(σ) > κσ 2 for σ > 0. ��
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4.8 Appendix

Proof of Proposition 6 For convenience put

R(W, σ) := √
2πF(W, σ) =

∫ ∞

−W+σ
e−

1
2 x

2
dx + eσW− 1

2σ
2
∫ ∞

W

e−
1
2 x

2
dx.

Consider an arbitrary non-zero ε; let Wε := σ −m− δ and put

δ := 1 − ε
σ −m.

Now, with D as in the proof of Proposition 5 in Sect. 4.6, as δ → 0 and σ → ∞

D(σ) =
(∫ ∞

−W+σ
e−

1
2 x

2
dx + eσW− 1

2σ
2
∫ ∞

W

e−
1
2 x

2
dx

)
−

∫ ∞

m

e−
1
2 x

2
dx

=
(∫ ∞

m+δ
e−

1
2 x

2
dx −

∫ ∞

m

e−
1
2 x

2
dx

)
+ eσ(σ−m−δ)− 1

2σ
2
∫ ∞

σ−m−δ
e−

1
2 x

2
dx

= −δe− 1
2 (m+δ)2 +O(δ2)

+eσ(σ−m−δ)− 1
2σ

2 1

σ −m− δ e
− 1

2 (m+δ−σ)2{1 +O(1/σ 2)}

= −δe− 1
2 (m+δ)2 +O(δ2)+ 1

σ −m− δ e
− 1

2 (m+δ)2{1 +O(1/σ 2)}

=
(

1

σ −m− δ − δ
)
e−

1
2 (m+δ)2 +O(δ2)+O(1/σ 2)

=
(

1

(σ −m)− 1−ε
σ−m

− 1 − ε
σ −m

)

e−
1
2 (m+δ)2 +O(δ2)+O(1/σ 2)

=
(
(σ −m)2 − (1 − ε){(σ −m)2 − (1 − ε)}

(σ −m)3 − (1 − ε)(σ −m)
)
e−

1
2 (m+δ)2 +O(1/σ 2)

= ε(σ −m)2 + (1 − ε)2
(σ −m)3 − (1 − ε)(σ −m)e

− 1
2 (m+δ)2 +O(1/σ 2)

= ε

σ −me
− 1

2 (m+δ)2 +O(1/σ 2),

and this has the same sign as ε. Thus, for ε > 0,

R(W−ε, σ ) < R(W(m, σ), σ ) < R(Wε, σ ),
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and so, since ∂R(W, σ)/∂W > 0,

W−ε < W(m, σ) < Wε. �

Proof of Lemma 2 We begin with the associated Claim (Sect. 4.6 above), for which
we recall that

V := V (θ) = W(θ)− σ̄√θ,

and then note (by the definition of the normal sensor in Sect. 4.3) that

(e−μ − 1)− {�(−σ − V )−�(−V )} = [eσV+ 1
2σ

2 − 1]�(−σ − V ). (4.19)

From here, for some V ∗ between V and V + σ,

(e−μ − 1)− σϕ(V ∗) = [eσV+ 1
2σ

2 − 1]�(−σ − V ),

so that

−μ̄θ + σϕ(V ∗) ∼ [eσV+ 1
2σ

2 − 1]�(−σ − V ).

Proof of Claim Put V̄ := limθ→0+ V (θ), and suppose L = limθ→0+ σV (θ) 
= 0
along a sequence of values of θ; then

V (θ) ∼ L/(σ̄
√
θ) : σϕ(V ∗) ∼ σ̄

√
θ exp(−L2/σ̄ 2θ)/

√
2π

and so

−μ̄θ{1 − (σ̄ /μ̄√θ) exp(−L2/σ̄ 2θ)/
√

2π ∼ −μ̄θ.

So, for small enough θ,

[eσV+ 1
2σ

2 − 1]�(−σ − V ) < 0,

so that V̄ ≤ 0. Suppose first that V̄ = −∞; then L = 0, since �(∞) = 1 reduces
Eq. (4.19) to

0 = (eL − 1),

contradicting L 
= 0. Likewise, from (4.19), the finiteness of V̄ yields L = 0, a final
contradiction. �claim

We turn now to Lemma 2 proper. As above

(e−μ − 1)+ σϕ(V ∗) ∼ [eσV+ 1
2σ

2 − 1]�(−σ − V ).
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By the Claim, σV is small; so we may expand the exponential and, dividing by
σ = σ̄

√
θ, obtain

− μ̄
σ̄

√
θ + ϕ(V ∗) = (V + 1

2
σ)�(−σ − V ).

If V → V̄ , a finite limit, then the Mills ratio (hazard rate) defined by

H(V̄ ) := ϕ(V̄ )

�(−V̄ )

satisfies H(V̄ ) = V̄ , a contradiction, since the ratio is always greater than V̄ . Thus
the limit V̄ must be infinite, and hence ϕ(V̄ ) = 0. So V̄ = +∞, as otherwise
V̄ = −∞ leads to the contradiction

0 = V̄ �
(−V̄ ) = V̄ · 1. �

Proof of Lemma 3 As in the definition of the normal censor

e−μ̄θ = �(W(θ)− σ)+ eσW(θ)− 1
2σ

2
�(−W(θ)),

or

e−μ̄θ−σW(θ)+
1
2σ

2 = e−σW(θ)+
1
2σ

2
�(W(θ)− σ)+�(−W(θ)), (4.20)

e−μ̄θ−σW(θ)+
1
2σ

2 = �(−W(θ))+ ϕ(W(θ))/H(σ −W(θ)),

where, as above, H(.) denotes the hazard rate. Assume that W(θ)→ W. We are to
prove that W is not finite. We argue by cases.

Case 1 1
2 σ̄

2 > μ̄. The left hand side is unbounded, whereas the right-hand side is
bounded for large θ by

1 + ϕ(W)/(σ̄√θ −W).

Case 2 1
2 σ̄

2 < μ̄. Letting θ → ∞ gives the contradiction:

0 = �(−W)+ 0. �

Proof of Lemma 4 As before, if V := W(θ)− σ, then

e−μ = �(V )+ eσV+ 1
2σ

2
�(−σ − V ).
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Suppose V → −∞ is false. Then either V → ∞, or V → V̄ , a finite limit. In
either case we have

eσV+
1
2σ

2
�(−σ − V ) ≤ e−

1
2V

2
ϕ(V + σ)/(V + σ)→ 0,

as θ → ∞ (since σ → ∞). This implies that 0 = �(V̄ ), a contradiction in either
case. So V → −∞. �
Proof of Lemma 5 As before suppose W(θ) → W. If W < 0 (possibly −∞), then
we have in the limit �(−W) = ∞, a contradiction. If 0 < W <∞, then by (4.20)
above 0 = �(−W), again a contradiction. This leaves two possibilities: eitherW =
∞ or W = 0.

Suppose the former. Noting that

1 = lim
θ→∞[eμ̄θ�(W(θ)− σ)+ eσW(θ)�(−W(θ))],

then eσW(θ)�(−W(θ)) is bounded. But

lim
θ→∞ e

σW(θ)�(−W(θ)) = lim
θ→∞

eσW(θ)e− 1
2W

2

W(θ)
√

2π
= lim
θ→∞ e

[W(θ)(σ−W)] e+ 1
2W

2

W(θ)
√

2π
= ∞,

by Lemma 4 and by our assumption, a contradiction.
Thus after all W = 0. So

1 = lim
θ→∞[eμ̄θ�(W(θ)− σ)+ eσW(θ)�(0)]

= lim
θ→∞

e
1
2 σ̄

2θ e− 1
2W

2− 1
2 σ̄

2θ+σW(θ)

(σ −W(θ))√2π
+ eσW(θ)�(0)]

= lim
θ→∞ e

σW(θ)

(
1

2
− 1

σ
√

2π

)
= 1

2
lim
θ→∞ e

σW(θ). �

Proof of Conclusion 1 Recalling that σ = σ̄
√
θ , for any ε, put

Wε(θ) := μ̄− 1
2 σ̄

2 + ε
σ̄

√
θ : e−μ̄θ+σWε(θ)+

1
2σ

2 = eεθ .

For ε > 0 and large enough θ,

e−μ̄θ−σW(θ)+
1
2σ

2 = �(−W(θ))+ ϕ(−W(θ))/H(σ −W(θ))
< eεθ = e−μ̄θ+σWε(θ)+

1
2σ

2 : −W(θ) < Wε(θ).
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On the other hand, for ε < 0 and large enough θ

e−μ̄θ−σW(θ)+
1
2σ

2
> �(−W(θ)) > eεθ = e−μ̄θ+σWε(θ)+

1
2σ

2
.

So Wε(θ) < −W(θ). �
Proof of Lemma 6 Here, for large θ ,

W(θ) = −(μ̄− 1

2
σ̄ 2)

√
θ + o(√θ).

So, since σ = σ̄
√
θ ,

σ +W(θ) =
3
2 σ̄

2 − μ̄
σ̄

√
θ + o(√θ), σ −W(θ) =

1
2 σ̄

2 + μ̄
σ̄

√
θ + o(√θ).

Furthermore, rewriting the normal censor equation,

e−μ̄θ+
1
2σ

2−σW(θ) = e−
1
2W(θ)

2
�(−σ +W(θ))/ϕ(−W(θ)+ σ)+�(−W(θ)).

So by Lemma 4, and since W(θ)→ −∞ (as θ → +∞),

lim
θ→∞ e

−μ̄θ+ 1
2σ

2−σW(θ) = 1.

In fact, we have e−μ̄θ+ 1
2σ

2−σW(θ) = 1 + o(1/√θ). �
Proof of Conclusion 2 As 2μ̄ > σ̄ 2, note that

(σ̄ 2−μ̄)−1

2

(
3

2
σ̄ − μ̄

σ̄

)2

= (σ̄ 2−μ̄)−9

8
σ̄ 2−1

2

μ̄2

σ̄ 2
+3

2
μ̄ = −1

8
σ̄ 2+1

2
μ̄−1

2

μ̄2

σ̄ 2
< 0;

indeed,

μ̄2 − μ̄σ̄ 2 + 1

4
σ̄ 4 =

(
μ̄− 1

2
σ̄ 2

)2

> 0.

From Sect. 4.6,

g(θ) = e(σ̄
2−μ̄)θ�

(
σ +W(θ))+� (−W(θ))+ o(1/√θ)

= e(σ̄
2−μ̄)θ�

(
3
2 σ̄

2 − μ̄
σ̄

√
θ

)

+�
(
μ̄− 1

2 σ̄
2

σ̄

√
θ

)

+ o(1/√θ).
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Applying the asymptotic expansion

�(x) ∼ 1 − e−x2/2

x
√

2π
(as x → +∞),

for which see [1], yields

e(σ̄
2−μ̄)θ�

(
3
2 σ̄

2 − μ̄
σ̄

√
θ

)

= e(σ̄
2−μ̄)θ + o(1/√θ). �
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Postscript Harold Wilson (1916–1995, British prime minister 1964–1970 and 1974–1976)
famously always emphasized the importance of keeping his options open.

References

1. Abramowitz, M.A, Stegan, I.A.: Handbook of Mathematical Functions. Dover, Mineola (1972)
2. Bensoussan, A., Crouhy, M., Proth, J.M.: Mathematical Theory of Production Planning. North-

Holland, Amsterdam (1983)
3. Chang, J.S.K, Chang, C., Shi, M.: A market-based martingale valuation approach to optimum

inventory control in a doubly stochastic jump-diffusion economy. J. Oper. Res. Soc. 66, 405–
420 (2015)

4. Dixit, A.K., Pindyck, R.S.: Decision Making Under Uncertainty. Princeton University Press,
Princeton (1994)

5. Eberly, J.C., Van Mieghem, J.A.: Multi-factor investment under uncertainty. J. Econ. Theory
75(8), 345–387 (1997)

6. Gietzmann, M.B., Ostaszewski, A.J.: Hedging the purchase of direct inputs in an inflationary
environment. Manag. Account. Res. 10, 61–84 (1999)

7. Gietzmann, M.B., Ostaszewski, A.J.: Predicting firm value: the superiority of q-theory over
residual income. Account. Bus. Res. 34(4), 379–382 (2004)

8. Hull, J.C.: Options, Futures, and Other Derivatives, 10th edn. Pearson Educational Limited,
Harlow (2017)

9. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, vol. 1. Griffin & Co, London
(1963)

10. Kouvelis, P., Zhan, P., Qing D.: Integrated commodity management and financial hedging: a
dynamic mean-variance analysis. Prod. Oper. Manag. 27(6), 1052–1073 (2018)

11. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling. Springer, Berlin
(1997)

12. Ostaszewski, A.J.: Subdominant eigenvalue location and the robustness of dividend policy
irrelevance. In: J. Brzdȩk, D. Popa, T.M. Rassias (eds.), Ulam Type Stability (this volume).
https://doi.org/10.1007/978-3-030-28972-0, chapter 13

13. Patel, J.K., Read, C.R.: Handbook of the Normal Distribution. Marcel Dekker, New York
(1982)

14. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
15. Scarf, H.: The optimality of (S, s) policies in the dynamic inventory problem. In: Arrow, Karli,

Suppes (eds.), Mathematical Methods in the Social Sciences, 1959 First Stamford Symposium.
University Press, Stanford (1960)

https://doi.org/10.1007/978-3-030-28972-0


Chapter 5
Ulam-Hyers Stability of Functional
Equations in Quasi-β-Banach Spaces
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Abstract In this chapter, we give a survey on Ulam-Hyers stability of functional
equations in quasi-β-Banach spaces, in particular in p-Banach spaces, quasi-Banach
spaces and (β, p)-Banach spaces.

Keywords Ulam-Hyers stability · b-metric · Quasi-norm · Quasi-β-norm
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5.1 Quasi-Normed Spaces and Quasi-β-Normed Spaces

In mathematics, more specially in functional analysis, a Banach space is a complete
normed vector space. Thus, a Banach space is a vector space with a metric that
allows the computation of vector length and distance between vectors and is
complete in the sense that a Cauchy sequence of vectors always converges to a
well defined limit that is within the space. Banach spaces are named after the
Polish mathematician Stefan Banach, who introduced this concept and studied it
systematically in 1920–1922 along with Hahn and Helly [69, Chapter 1]. Banach
spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and
Riesz earlier in the twentieth century. Banach spaces play a central role in functional
analysis. In other areas of analysis, the spaces under study are often Banach spaces.
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Banach spaces were generalized to quasi-Banach spaces. Moreover, there have
been very sound reasons to develop understanding these spaces such as the non-
normable property of many Banach spaces, and the absence of Hahn-Banach
theorem in quasi-Banach spaces, see [44] for fundamental facts in quasi-Banach
spaces. Similar to Banach algebras, the notion of quasi-Banach algebras was
introduced also.

Definition 5.1 ([39, page 77]; [5, Definition 3]; [45, pages 6–7]; [3, Remark 1.4];
[67, Definition 1.5]) Let A be a vector space over the field K (R or C), κ ≥ 1 and
‖ · ‖ : A→ R+ be a function such that for all x, y ∈ A and all a ∈ K,

1. ‖x‖ = 0 if and only if x = 0.
2. ‖ax‖ = |a|‖x‖.
3. ‖x + y‖ ≤ κ

(‖x‖ + ‖y‖).
Then

1. ‖·‖ is called a quasi-norm onA, the smallest possible κ is called the modulus of
concavity or quasi-triangle constant. Without loss of generality we can assume
κ is the modulus of concavity. (A, ‖ · ‖, κ) is called a quasi-normed space

2. ‖.‖ is called a p-norm on A, and (A, ‖.‖, κ) is called a p-normed space if

‖x + y‖p ≤ ‖x‖p + ‖y‖p (5.1)

for some 0 < p ≤ 1 and for all x, y ∈ A.
3. The sequence {xn}n is called convergent to x if lim

n→∞‖xn − x‖ = 0, which we

denote by lim
n→∞ xn = x.

4. The sequence {xn}n is called Cauchy if lim
n,m→∞‖xn − xm‖ = 0.

5. The quasi-normed space (A, ‖ · ‖, κ) is called quasi-Banach if each Cauchy
sequence is a convergent sequence.

6. The quasi-normed space (A, ‖ · ‖, κ) is called p-Banach if it is a p-normed and
quasi-Banach space.

7. The quasi-normed space (A, ‖ · ‖, κ) is called a quasi-normed algebra if A is
an algebra and ‖xy‖ ≤ C‖x‖‖y‖ for all x, y ∈ A and some C > 0.

8. The quasi-normed algebra (A, ‖ · ‖, κ) is called a quasi-Banach algebra if
(A, ‖ · ‖, κ) is a quasi-Banach space.

9. The quasi-normed algebra (A, ‖ · ‖, κ) is called a p-normed algebra if
(A, ‖ · ‖, κ) is a p-normed space.

10. The p-normed algebra (A, ‖ · ‖, κ) is called a p-Banach algebra if (A, ‖ · ‖, κ)
is a p-Banach space.

In 1993 Czerwik [21] introduced the notion of a b-metric with a coefficient 2.
This notion was generalized later with a coefficient κ ≥ 1 [22]. In 2010 Khamsi
and Hussain [47] reintroduced the notion of a b-metric under the name metric-
type. Another notion of metric-type, called s-relaxedp metric was introduced in [29,
Definition 4.2], see also [46]. A b-metric is called quasi-metric in [55]. Quasi-metric
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spaces play an important role in the study of Gromov hyperbolic metric spaces [79,
Final remarks], and in the study of optimal transport paths [82]. For convenience the
names b-metric and b-metric space will be used in what follows.

Definition 5.2 ([22, page 263]) Let X be a nonempty set, κ ≥ 1 and d : X×X →
R+ be a function satisfying the following conditions for all x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y.;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ κ

[
d(x, y)+ d(y, z)].

Then

1. d is called a b-metric on X and (X, d, κ) is called a b-metric space.
2. The sequence {xn}n is called convergent to x in (X, d, κ) if lim

n→∞ d(xn, x) = 0,

written lim
n→∞ xn = x.

3. The sequence {xn}n is called Cauchy if lim
n,m→∞ d(xn, xm) = 0.

4. The space (X, d, κ) is called complete if each Cauchy sequence is a convergent
sequence.

It is easy to see that every metric space is a b-metric space with κ = 1, and there
exists a b-metric that is not a metric [4, Example 3.9]. Here, we give some known
examples of b-metric spaces.

Example 5.1 ([36, page 110]) LetX = R, p ≥ 1 and the map d : X×X → [0,∞)

defined by

d(x, y) = |x − y|p for all x, y ∈ X.

Then (X, d, κ) is a b-metric space with coefficient κ = 2p−1 ≥ 1.

Next example shows the generality of Example 5.1.

Example 5.2 ([10, Example 1.1]) The set �p(R) with 0 < p < 1, where

�p(R) :=
{{xn} ⊂ R :

∞∑

n=1

|xn|p <∞}
,

together with the map d : �p(R)× �p(R)→ [0,∞) defined by

d(x, y) := (

∞∑

n=1

|xn − yn|p)
1
p

for all x = {xn}, y = {yn} ∈ �p(R) is a b-metric space with coefficient κ = 2
1
p > 1.

The above result also holds for the general case �p(X) with 0 < p < 1, where X is
a Banach space.
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Example 5.3 ([10, Example 1.2]) The set Lp[0, 1] with 0 < p < 1, where

Lp[0, 1] :=
{
x : [0, 1] → R :

∫ 1

0
|x(t)|pdt < 1

}
,

together with the map d : Lp[0, 1] × Lp[0, 1] → R+ defined by

d(x, y) :=
( ∫ 1

0
|x(t)− y(t)|pdt

)1/p

for all x, y ∈ Lp[0, 1] is a b-metric space with constant κ = 2
1
p > 1.

Next we give the result claiming that every b-metric space is metrizable.

Theorem 5.1 ([65, Proposition on page 4308]) Let (Y, d, κ) be a b-metric space,
θ = log2κ 2, and

Dd(x, y) = inf

{
n∑

i=1

dθ (xi, xi+1) : x1 = x, x2, . . . , xn, xn+1 = y ∈ Y, n ≥ 1

}

for all x, y ∈ Y. Then Dd is a metric on Y satisfying

1

4
dθ (x, y) ≤ Dd(x, y) ≤ dθ (x, y)

for all x, y ∈ Y . In particular, if d is a metric then θ = 1 and Dd = d.

It is also easy to see that every normed space is a quasi-normed space with κ = 1.
But, there exist p-Banach spaces which are not normable as in following examples.

Example 5.4 ([56, Examples 1–2])

1. Lebesgue spaces Lp with the quasi-norms

‖f ‖p = ( ∫

�

|f (x)|pdμ(x)) 1
p , f ∈ Lp

are Banach spaces for 1 ≤ p < ∞. For 0 < p < 1, they are p-Banach spaces

with the quasi-triangle constant C = 2
1

p−1 .
2. Lorentz spaces Lp,q for 0 < p, q < ∞ and Marcinkiewicz or weak Lp-spaces
Lp,∞ for 0 < p ≤ ∞ are quasi-Banach spaces determined by the quasi-norms

‖f ‖p,q =

⎧
⎪⎨

⎪⎩

(∫ ∞
0 [t 1

p f ∗(t)]q dt
t

) 1
q

if 0 < q <∞
sup
t>0

t
1
p f ∗(t) if q = ∞
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where

f ∗(t) = inf{λ > 0 : μ(
x ∈ � : |f (x)| > λ

) ≤ t}.

Moreover, the following assertions hold.

a. ‖.‖p,q is a norm if and only if either 1 ≤ q ≤ p or p = q = ∞.
b. The spaces Lp,q are not normable if one of the following conditions holds.

i. 0 < p <∞ and 0 < q < 1.
ii. 0 < p < 1 and 1 ≤ q ≤ ∞.

iii. p = 1 and 1 < q ≤ ∞.

However, by Aoki-Rolewicz Theorem, each quasi-norm is equivalent to some
p-norm. This theorem plays a very important role in p-normalizing a quasi-normed
space.

Theorem 5.2 ([56, Theorem 1/Aoki-Rolewicz Theorem]) Let (Y, ‖ · ‖Y , κY ) be a
quasi-normed space, p = log2κY 2, and

|‖x‖|Y = inf
{( n∑

i=1

‖xi‖pY
) 1
p : x =

n∑

i=1

xi, xi ∈ Y, n ≥ 1
}

for all x ∈ Y. Then |‖ · ‖|Y is a quasi-norm on Y satisfying

|‖x + y‖|pY ≤ |‖x‖|pY + |‖y‖|pY
and

1

2κY
‖x‖Y ≤ |‖x‖|Y ≤ ‖x‖Y (5.2)

for all x, y ∈ Y . In particular, the quasi-norm |‖ · ‖|Y is a p-norm, and if ‖ · ‖Y is a
norm then p = 1 and |‖ · ‖|Y = ‖ · ‖Y .

The main results of [2] were proved by using the following fixed point result of
Brzdȩk et al. [13], where YU is the set of all functions from U 
= ∅ to Y 
= ∅.

Theorem 5.3 ([13, Theorem 1]) Assume that

1. U is a nonempty set, Y is a complete metric space, and T : YU → YU is a
given function.

2. There exist f1, . . . , fk : U → U and L1, . . . , Lk : U → R+ such that for all
ξ, μ ∈ YU and x ∈ U ,

d
(
(T ξ)(x), (T μ)(x)

) ≤
k∑

i=1

Li(x)d
(
ξ
(
fi(x)

)
, μ

(
fi(x)

))
. (5.3)



102 N. V. Dung and W. Sintunavarat

3. There exist ε : U → R+ and ϕ : U → Y such that for all x ∈ U ,

d
(
(T ϕ)(x), ϕ(x)

) ≤ ε(x)

4. For every x ∈ U ,

ε∗(x) =
∞∑

n=0

(�nε)(x) <∞

where (�δ)(x) =
k∑

i=1
Li(x)δ

(
fi(x)

)
for all δ : U → R+ and x ∈ U .

Then for every x ∈ U , the limit lim
n→∞(T

nϕ)(x) = ψ(x) exists and the function

ψ : U → Y so defined is a unique fixed point of T satisfying

d
(
ϕ(x), ψ(x)

) ≤ ε∗(x)

for all x ∈ U .

The version of Theorem 5.3 in Banach spaces is as follows.

Theorem 5.4 ([2, Theorem 2.1]) Assume that

1. U is a nonempty set, Y is a Banach space, and T : YU → YU is a given
function.

2. There exist f1, . . . , fk : U → U and L1, . . . , Lk : U → R+ such that for all
ξ, μ ∈ YU and x ∈ U ,

‖(T ξ)(x)− (T μ)(x)‖ ≤
k∑

i=1

Li(x)‖ξ
(
fi(x)

)− μ(
fi(x)

)‖.

3. There exist ε : U → R+ and ϕ : U → Y such that for all x ∈ U ,

‖(T ϕ)(x)− ϕ(x)‖ ≤ ε(x).

4. For every x ∈ U ,

ε∗(x) =
∞∑

n=0

(�nε)(x) <∞

where (�δ)(x) =
k∑

i=1
Li(x)δ

(
fi(x)

)
for all δ : U → R+ and x ∈ U .



5 Ulam-Hyers Stability of Functional Equations in Quasi-β-Banach Spaces 103

Then for every x ∈ U , the limit lim
n→∞(T

nϕ)(x) = ψ(x) exists and the function

ψ : U → Y so defined is a unique fixed point of T satisfying for all x ∈ U ,

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x).

The next result is an extension of Theorem 5.3 on complete metric spaces to
complete b-metric spaces, which was proved by using Theorem 5.1.

Theorem 5.5 ([24, Theorem 2.1]) Assume that

1. U is a nonempty set, (Y, d, κ) is a complete b-metric space, and T : YU → YU

is a given function.
2. There exist f1, . . . , fk : U → U and L1, . . . , Lk : U → R+ such that for all
ξ, μ ∈ YU and x ∈ U ,

d
(
(T ξ)(x), (T μ)(x)

) ≤
k∑

i=1

Li(x)d
(
ξ
(
fi(x)

)
, μ

(
fi(x)

))
.

3. There exist ε : U → R+ and ϕ : U → Y such that for all x ∈ U ,

d
(
(T ϕ)(x), ϕ(x)

) ≤ ε(x).

4. For every x ∈ U and θ = log2κ 2,

ε∗(x) =
∞∑

n=0

(�nε)θ (x) <∞

where (�δ)(x) =
k∑

i=1
Li(x)δ

(
fi(x)

)
for all δ : U → R+ and x ∈ U .

Then we have

1. For every x ∈ U , the limit lim
n→∞(T

nϕ)(x) = ψ(x) exists and the function ψ :
U → Y so defined is a fixed point of T satisfying

dθ
(
ϕ(x), ψ(x)

) ≤ 4ε∗(x) (5.4)

for all x ∈ U .
2. For every x ∈ U , if

ε∗(x) ≤
(
M

∞∑

n=1

(�nε)(x)
)θ
<∞

for some positive real number M , then the fixed point of T satisfying (5.4) is
unique.
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From Theorem 5.5 we get the following result which is an extension of
Theorem 5.4 to quasi-Banach spaces.

Corollary 5.1 ([24, Corollary 2.2]) Assume that

1. U is a nonempty set, (Y, ‖.‖, κ) is a quasi-Banach space, and T : YU → YU is
a given function.

2. There exist f1, . . . , fk : U → U and L1, . . . , Lk : U → R+ such that for all
ξ, μ ∈ YU and x ∈ U ,

‖(T ξ)(x)− (T μ)(x)‖ ≤
k∑

i=1

Li(x)‖ξ
(
fi(x)

)− μ(
fi(x)

)‖.

3. There exist ε : U → R+ and ϕ : U → Y such that for all x ∈ U ,

‖(T ϕ)(x)− ϕ(x)‖ ≤ ε(x)

4. For every x ∈ U and θ = log2κ 2,

ε∗(x) =
∞∑

n=0

(�nε)θ (x) <∞

where

(�δ)(x) =
k∑

i=1

Li(x)δ
(
fi(x)

)

for all δ : U → R+ and x ∈ U .

Then we have

1. For every x ∈ U , the limit lim
n→∞(T

nϕ)(x) = ψ(x) exists and the function ψ :
U → Y so defined is a fixed point of T satisfying

‖ϕ(x)− ψ(x)‖θ ≤ 4ε∗(x) (5.5)

for all x ∈ U .
2. For every x ∈ U , if

ε∗(x) ≤
(
M

∞∑

n=1

(�nε)(x)
)θ
<∞

for some positive real number M , then the fixed point of T satisfying (5.5) is
unique.
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Remark 5.1 ([24, Remark 2.3]) If Y is a complete metric space in Theorem 5.5,
then κ = 1. So θ = 1 and Dd = d and we obtain Theorem 5.3. Moreover the
inequality (5.4) becomes better as

d
(
ϕ(x), ψ(x)

) = dθ
(
ϕ(x), ψ(x)

) ≤ ε∗(x).

As a generalization of a quasi-normed space, the quasi-β-normed space was
introduced as follows.

Definition 5.3 ([40]) Let X be a vector space over the field K (R or C), κ ≥ 1,
0 < β ≤ 1, and ‖ · ‖ : X → R+ be a function satisfying the following conditions
for all x, y ∈ X and all a ∈ K:

1. ‖x‖ = 0 if and only if x = 0;
2. ‖ax‖ = |a|β‖x‖;
3. ‖x + y‖ ≤ κ

(‖x‖ + ‖y‖).
Then

1. ‖·‖ is called a quasi-β-norm onX, the smallest possible κ is called the modulus of
concavity or quasi-triangle constant, and (X, ‖ · ‖, κ) is called a quasi-β-normed
space. For a quasi-β-normed space (X, ‖ · ‖, κ), without loss of generality we
can assume κ is the modulus of concavity.

2. ‖.‖ is called a (β,p)-norm onX, and (X, ‖.‖, κ) is called a (β,p)-normed space if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for some 0 < p ≤ 1 and for all x, y ∈ X.
3. The sequence {xn}n is called convergent to x if lim

n→∞‖xn − x‖ = 0, which we

denote by lim
n→∞ xn = x.

4. The sequence {xn}n is called Cauchy if lim
n,m→∞‖xn − xm‖ = 0.

5. The quasi-β-normed space (X, ‖ · ‖, κ) is called quasi-β-Banach space if each
Cauchy sequence is a convergent sequence.

6. The quasi-β-normed space (X, ‖ · ‖, κ) is called (β, p)-Banach space if it is a
(β, p)-normed and quasi-β-Banach space.

For β = 1, the quasi-β-norm reduces to a quasi-norm. The following example
shows that there exists a quasi-β-norm that is not a quasi-norm.

Example 5.5 ([28, page 333]) Let X = R
2 and for some 0 < p, β < 1, define

‖x‖p,β =
{
(|x1|βp + |x2|βp)

1
p if x2 
= 0

2|x1|β if x2 = 0

for all x = (x1, x2) ∈ X. Then ‖.‖p,β is a (β, p)-norm that is not a quasi-norm.
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If X is a quasi-β-normed space with the quasi-β-norm ‖x‖β , then it is a quasi-

normed space with the quasi-norm ‖x‖ = ‖x‖
1
β

β . Recall that Aoki-Rolewicz
Theorem, see Theorem 5.2, plays a very important role in p-normalizing a
quasi-normed space. However, some authors used Aoki-Rolewicz Theorem to p-
normalize a quasi-β-normed space, see Sect. 5.3.1. It seems to be not correct. We
present here an explicit Aoki-Rolewicz type Theorem to show that we can also p-
normalize a quasi-β-normed space as follows.

Theorem 5.6 Let (Y, ‖ · ‖Y , κY ) be a quasi-β-normed space with 0 < β ≤ 1,
p = log

(2κY )
1
β

2, and

|‖x‖|Y = inf
{( n∑

i=1

‖xi‖
p
β

Y

) β
p : x =

n∑

i=1

xi, xi ∈ Y, n ≥ 1
}

for all x ∈ Y. Then |‖ · ‖|Y is a quasi-β-norm on Y satisfying

|‖x + y‖|pY ≤ |‖x‖|pY + |‖y‖|pY (5.6)

and

1

2κY
‖x‖pY ≤ |‖x‖|pY ≤ ‖x‖pY (5.7)

for all x, y ∈ Y . In particular, the quasi-β-norm |‖ · ‖|Y is a (β, p)-norm, and if
‖ · ‖Y is a norm then β = p = 1 and |‖ · ‖|Y = ‖ · ‖Y .
Proof Put

|‖x‖|Y,β = inf
{( n∑

i=1

‖xi‖
p
β

Y

) 1
p : x =

n∑

i=1

xi, xi ∈ Y, n ≥ 1
}
.

We find that ‖.‖
1
β

Y is a quasi-norm with the modulus of concavity (2κY )
1
β

2 . So by
Theorem 5.2 we get |‖.‖|Y,β is a quasi-norm on Y satisfying

|‖x + y‖|pY,β ≤ |‖x‖|pY,β + |‖y‖|pY,β
and

1

(2κY )
1
β

(‖x‖
1
β

Y

)p ≤ |‖x‖|pY,β ≤ (‖x‖
1
β

Y

)p
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for all x, y ∈ Y . Since 0 < β ≤ 1, we get |‖.‖|Y = (|‖.‖|Y,β)β is also a quasi-β-
norm on Y and

|‖x + y‖|pY = (|‖x + y‖|βY,β
)p

= (|‖x + y‖|pY,β
)β

≤ (|‖x‖|pY,β + |‖y‖|pY,β
)β

≤ (|‖x‖|pY,β
)β + (|‖y‖|pY,β

)β

= |‖x‖|pY + |‖y‖|pY .

Also, we have

1

2κY
‖x‖pY =

( 1

(2κY )
1
β

(‖x‖
1
β

Y

)p)β≤ (|‖x‖|pY,β
)β= |‖x‖|pY ≤ ((‖x‖

1
β

Y

)p)β= ‖x‖pY .

In 2005 Baak [7] introduced the so-called generalized quasi-normed space as
follows.

Definition 5.4 ([7, Definition 2]) Let X be a vector space over the field K (R or
C), κ > 0, and ‖ · ‖ : X → R+ be a function satisfying the following conditions for
all x, xi ∈ X, i ∈ N, and all a ∈ K:

1. ‖x‖ = 0 if and only if x = 0;
2. ‖ax‖ = |a|‖x‖;

3. ‖
∞∑
i=1

xi‖ ≤ κ
∞∑
i=1

‖xi‖.

Then ‖ · ‖ is called a generalized quasi-norm on X, and (X, ‖ · ‖, κ) is called a
generalized quasi-normed space.

A generalized quasi-Banach space, a generalized p-norm and a generalized p-
Banach space were defined similarly to the quasi-normed spaces, see [7, page 216].
The author claimed that the generalized quasi-normed space is an extension of a
quasi-normed space. However, the class of all generalized quasi-normed spaces is
only a special class of quasi-normed spaces. Indeed, by choosing x1 = x, x2 = y

and xi = 0 for all i ≥ 3 in Definition 5.4 we get ‖x + y‖ ≤ κ(‖x‖ + ‖y‖).
Therefore generalized quasi-normed, generalized p-normed, generalized quasi-
Banach, generalized p-Banach in the sense of Definition 5.4 will be called
strong quasi-normed, strong p-normed, strong quasi-Banach, strong p-Banach
respectively in the next.



108 N. V. Dung and W. Sintunavarat

5.2 Ulam-Hyers Stability of Functional Equations
in Quasi-Banach Spaces

A definition of stability in the case of homomorphisms between groups was
suggested by a problem posed by Ulam [80, page 64]. The first answer to Ulam’s
problem is the result of Hyers. Many authors then studied Ulam-Hyers stability of
the following Cauchy equation:

f (x + y) = f (x)+ f (y), x, y ∈ X, (5.8)

where f is an unknown function from a space X to a space Y endowed with some
binary operations and thus forming groups, norm spaces, algebras etc. Next, we give
one of the famous results in this direction.

Theorem 5.7 ([41, Theorems 1 and 2]; [6, Theorem on page 64]; [31, Theo-
rem 2]; [53, Theorem 5]; [11, Theorem 1.2]) LetX, Y be two real normed spaces
and f : X → Y be a function satisfying the inequality

‖f (x + y)− f (x)− f (y)‖ ≤ α(‖x‖p + ‖y‖p)

for all x, y ∈ X \ {0}, where α and p are real constants with α > 0 and p 
= 1.
Then the following statements hold.

1. If p ≥ 0 and Y is complete, then there exists a unique solution T : X → Y

of (5.8) such that

‖f (x)− T (x)‖ ≤ α

1 − 2p−1
‖x‖p for all x ∈ X \ {0}.

2. If p < 0 then f is additive, that is, (5.8) holds for all x, y ∈ X \ {0}.
In 2006, Maligranda [56] presented an interesting report on the life and work,

the books and research of Tosio Aoki who was a Japanese mathematician and
published only two papers on functional analysis. Very surprisingly, those two
papers have a high impact to Ulam-Hyers stability and quasi-normed spaces. The
first paper [5] was on a very useful tool to p-normalize a quasi-normed space which
was then reproved by Rolewicz independently [78], see Theorem 5.2. The second
paper [6] was on Ulam-Hyers stability of additive map, see the above theorem.
Maligranda explained many aspects on Aoki result about Ulam-Hyers stability and
even proposed the term Ulam-Hyers-Aoki stability instead of Ulam-Hyers-Rassias
stability, see also [57]. In this chapter we use the term Ulam-Hyers stability to merit
the asker and the first answerer to the problem.

Ulam-Hyers stability was studied in quasi-Banach spaces where the authors
investigated many kinds of functional equations similar to those already considered
in Banach spaces. We may distinguish two approaches. In the first one, based
on Theorem 5.2, the authors claimed to study Ulam-Hyers stability of functional
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equations only for p-Banach spaces. In the second, the authors studied Ulam-Hyers
stability of functional equations in quasi-Banach spaces which are not assumed to
be p-Banach spaces. We must say that the stages in which we study Ulam-Hyers
stability of functional equations in quasi-Banach spaces are very similar to those in
Banach spaces as follows

1. First stage: Finding a certain kind of functional equations.
2. The second stage: Stating and proving Ulam-Hyers stability of that kind of

functional equations in quasi-Banach spaces by using direct method or the fixed
point method.

a. Direct method: the exact solution of the functional equation is explicitly
constructed as a limit of a sequence, starting from the given approximate
solution [30].

b. Fixed point method: the exact solution of the functional equation is explicitly
constructed as a fixed point of some certain map [14].

5.2.1 Ulam-Hyers Stability of Functional Equations in
p-Banach Spaces

The first result in this field belongs to Park et al. [68] published in 2006. In that
paper the authors proved Ulam-Hyers stability of the quadratic functional equation
of the form

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

in strong p-Banach spaces by the direct method as follows.

Theorem 5.8 ([68, Theorem 3.1]) Assume that the following conditions hold.

1. (X, ‖.‖X, κX) is a strong quasi-normed space over the field K and (Y, ‖.‖Y , κY )
is a strong p-Banach space, and f : X → Y is a given map.

2. There are r > 2, θ ≥ 0 such that

‖f (x + y)+ f (x − y)− 2f (x)− 2f (y)‖Y ≤ θ
(‖x‖rX + ‖y‖rX

)

for all x, y ∈ X.

Then there exists a unique quadratic map Q : X → Y such that

‖Q(x)− f (x)‖Y ≤ 2θ

(2pr − 4p)
1
p

‖x‖rX

for all x ∈ X.
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After that Park [67] proved Ulam-Hyers stability of homomorphisms in p-
Banach algebras. This was also applied to investigate isomorphisms between
p-Banach algebras. This problem was continued by Najati and Park [61] but the
latter paper was published 1 year earlier. Note that the following statement appeared
in [67, page 90] and [59, page 1320] and many papers later.

By Aoki-Rolewicz Theorem, each quasi-norm is equivalent to some p-norm. Since it is
much easier to work with p-norms than quasi-norms, henceforth we restrict our attention
mainly to p-norms.

Then, although the titles of many papers are about quasi-Banach spaces, almost all
their contents are on p-Banach spaces.

There have been many results on Ulam-Hyers stability of functional equations
in p-Banach spaces, and almost all of them were proved by the direct method. The
main result of [67] is as follows.

Theorem 5.9 ([67, Theorem 2.1]) Assume that the following conditions hold.

1. (A, ‖.‖A, κA) is a quasi-normed algebra and (B, ‖.‖B, κB) is a p-Banach
algebra over the field R.

2. r > 1, θ > 0, and f : A→ B is a map satisfying

‖f (x + y)− f (x)− f (y)‖B ≤ θ‖x‖rA‖y‖rA
‖f (xy)− f (x)f (y)‖B ≤ θ‖x‖rA‖y‖rA

for all x, y ∈ A.
3. For each x ∈ A, f (tx) is continuous in t ∈ R.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤ θ

(4pr − 2p)
1
p

‖x‖2r
A , x ∈ A.

Also in [67] Ulam-Hyers stability of homomorphisms in p-Banach algebras
associated to Jensen functional equation, isomorphisms between p-Banach alge-
bras associated to Cauchy functional equation and to Jensen functional equation
were studied, see [67, Theorem 2.3], [67, Theorem 3.1] and [67, Theorem 3.3],
respectively.

In the year 2007 many results on Ulam-Hyers stability of functional equations
in p-Banach spaces were published. Park [66] proved Ulam-Hyers stability of
homomorphisms in p-Banach algebras and of generalized derivations on p-Banach
algebras for the functional equation of the form

n∑

i=1

f
( n∑

j=1

q(xi − xj )
)+ nf ( n∑

i=1

qxi
) = nq

n∑

i=1

f (xi)
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see [66, Theorems 2.1 and 2.2] and [66, Theorems 4.2 and 4.3], respectively. These
were also applied to investigate isomorphisms between p-Banach algebras, see
[66, Theorems 3.1 and 3.2]. Jun and Kim [42] characterized the generalized cubic
functional equation, see [42, Theorems 2.1 and 2.3], and then solved the generalized
Ulam-Hyers stability problem for Euler-Lagrange type cubic functional equations
of the form

f (ax + y)+ f (x + ay) = (a + 1)(a − 1)2[f (x)+ f (y)] + a(a + 1)f (x + y),

where f is an unknown function from a p-norm space to a p-Banach space Y
and a is a fixed integer with a 
= 0,±1, see [42, Theorems 3.1, 3.3, 3.7 and 3.8],
also in p-Banach B-modules, see [42, Theorems 4.1–4.4]. These results were then
generalized in [50].

In 2008, Eskandani [27] characterized the following functional equation

m∑

i=1

f
(
mxi +

m∑

j=1,j 
=i
xj

)+ f ( m∑

i=1

xi
) = 2f

( m∑

i=1

mxi
)

where f is an unknown function from a quasi-norm space to a p-Banach space,
m ∈ N with m ≥ 2 [27, Lemma 2.1] and then investigated Ulam-Hyers stability
of (5.2.1) in p-Banach spaces [27, Theorems 2.2 and 2.3]. In the same year, Najati
and Moghimi [60] established the general solution of the functional equation

f (2x + y)+ f (2x − y) = f (x + y)+ f (x − y)+ 2f (2x)− 2f (x),

where f is an unknown function from a real vector space to a real vector space
[60, Lemmas 2.1 and 2.3, Theorem 2.4], and investigated Ulam-Hyers stability of
this equation in p-Banach spaces [60, Theorems 3.2, 3.3, 3.6, 3.7, 3.10 and 3.11].
Also, Najati and Eskandani [59] established the general solution and investigated
Ulam-Hyers stability of the following functional equation

f (2x + y)+ f (2x − y) = 2f (x + y)+ 2f (x − y)+ 2[f (2x)− 2f (x)]

in the p-Banach spaces.
In 2009, Gordji and Khodaei [34] achieved the general solution and the general-

ized Ulam-Hyers stability of generalized mixed type cubic, quadratic and additive
functional equations of the form

f (x + ky)+ f (x − ky) = k2f (x + y)+ k2f (x − y)+ 2(1 − k2)f (x)

for fixed integers k with k 
= 0,±1 in the p-Banach spaces.
In 2012, Gao [32] investigated the generalized Ulam-Hyers stability of an n-

dimensional quadratic functional equation
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f
( n∑

i=1

xi
)+

∑

1≤i≤j≤n
f (xi − xj ) = n

n∑

i=1

f (xi)

with n ≥ 2 in p-Banach spaces by the direct method [32, Theorem 10.2], and
by the fixed point method [32, Theorem 10.4]. Zhang and Wang [85] investigated
the generalized Ulam-Hyers stability of the quadratic-cubic functional equation of
the form

6f (x + y)− 6f (x − y)+ 4f (3y) = 3f (x + 2y)− 3f (x − 2y)+ 9f (2y)

in p-Banach spaces [85, Theorems 25.1-25.7].
In 2015, Cho et al. [20] considered the following functional equation

n∑

i=1

f
( n∑

j=1

q(xi − xj )
)+ nf ( n∑

i=1

qxi
) = nq

n∑

i=1

f (xi)

in p-Banach algebras. Then authors proved Ulam-Hyers stability of homomor-
phisms in p-Banach algebras [20, Subsection 2.3.3] and stability of generalized
derivations in p-Banach algebras [20, Subsection 2.3.1].

In 2016 Balamurugan et al. [8] established the general solution and investigated
the generalized Ulam-Hyers stability of the following additive-quadratic-cubic-
quartic functional equation

f (3x + 2y + z)+ f (3x + 2y − z)+ f (3x − 2y + z)+ f (3x − 2y − z)
= 48[f (x + y)+ f (x − y)] + 24[f (−x + y)+ f (−x − y)]

+ 12[f (x + z)+ f (x − z)] + 6[f (−x + z)+ f (−x − z)]
+ 4[f̃ (y + z)+ f̃ (y − z)] + 20f (2x)+ 4f (−2x)− 160f (x)− 80f (−x)
+ 2f̃ (2y)− 80f̃ (y)− 24f̃ (z)

in p-Banach spaces, where f̃ (x) = f (x) + f (−x), see [8, Theorems 12, 13,
16, 19, 22, 25 and 28]. Heidarpour [35] proved the superstability of n-ring
homomorphisms on C [35, Theorems 2.1 and 2.3] and established Ulam-Hyers
stability of n-ring homomorphisms in p-Banach algebras [35, Theorems 3.1–3.3,
3.5 and 3.6]. Bodaghi and Kim [9] proved Ulam-Hyers stability for the following
mixed quadratic-additive functional equation in p-Banach spaces
f (x +my)+ f (x −my)

=
{

2f (x)− 2m2f (y)+m2f (2y) if m is even

f (x + y)+ f (x − y)− 2(m2 − 1)f (y)+ (m2 − 1)f (2y) if m is odd

see [9, Theorems 2.2, 2.6, 2.8 and 2.10].
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In 2017 Nikoufar [63] proved the generalized Ulam-Hyers stability of (α1, α2)-
double Jordan derivations in p-Banach algebras and Isac-Rassias stability of double
Jordan derivations in p-Banach algebras [63, Theorems 2.6 and 2.8].

5.2.2 Ulam-Hyers Stability of Functional Equations in
Quasi-Banach Spaces Which Are Not Assumed to be
p-Banach

As mentioned in Sect. 5.2.1, on studying Ulam-Hyers stability in quasi-Banach
spaces, the authors usually restricted their attentions mainly to p-norms. The
quotation on page 110 also appeared in the first works [60, page 401], [59,
page 1320], and in recent works [20, page 10]. However, quantities relevant to
Ulam-Hyers stability of functional equations are not preserved even by equivalent
norms in general. Moreover, the inequality (5.1) which may be seen to have the
modulus of concavity equal to 1, and the continuity of p-norms were used in
many proofs such as in proving the inequalities (3.17) and (3.20) in proof of
[60, Theorem 3.2], in proving the inequalities (3.32) and (3.35) in proof of [84,
Theorem 3.2].

Inspired by the above facts, some authors were interested in studying Ulam-
Hyers stability of functional equations in quasi-Banach spaces where the quasi-norm
is not assumed to be a p-norm, and thus, the modulus of concavity is greater than 1
and the quasi-norm is not continuous in general.

To overcome the modulus of concavity greater than 1 and the discontinuity
of quasi-norms, we can use the b-metric metrization theorem, see Theorem 5.1.
Note that we also use the following squeeze inequalities on b-metric mentioned in
Lemma 5.1 to overcome the discontinuity of a b-metric, and thus, of a quasi-norm,
in proving Ulam-Hyers stability of functional equations in quasi-normed spaces.
Besides that, some authors also used the assumption of strong quasi-Banach spaces
to overcome the modulus of concavity greater than 1 and the discontinuity of quasi-
norms.

Lemma 5.1 ([1], Lemma 2.1) Let (X, d, κ) be a b-metric space and lim
n→∞ xn = x,

lim
n→∞ yn = y. Then we have

1. 1
κ2 d(x, y) ≤ lim inf

n→∞ d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ κ2d(x, y).

2. If x = y, then lim
n→∞ d(xn, yn) = 0.

3. For each z ∈ X, 1
κ
d(x, z) ≤ lim inf

n→∞ d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ κd(x, z).

The first result in this field belongs to Park et al. [68] published in 2006. In that
paper the authors proved Ulam-Hyers stability of the quadratic functional equation
of the form



114 N. V. Dung and W. Sintunavarat

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

in strong quasi-Banach spaces by the direct method as follows.

Theorem 5.10 ([68], Theorem 2.1) Assume that the following conditions hold.

1. X is a strong quasi-normed space over the field K and (Y, ‖.‖Y , κY ) is a strong
quasi-Banach space, and f : X → Y is a given map with f (0) = 0.

2. ϕ : X ×X → [0,∞) is a function satisfying

ϕ̃(x, y) :=
∞∑

j=1

4j ϕ
( x

2j
,
y

2j
)
<∞

for all x, y ∈ X.
3. ‖f (x + y)+ f (x − y)− 2f (x)− 2f (y)‖Y ≤ ϕ(x, y) for all x, y ∈ X.

Then there exists a unique quadratic map Q : X → Y such that

‖Q(x)− f (x)‖Y ≤ K

4
ϕ̃(x, x)

for all x ∈ X.

In [24] Dung and Hang used the fixed point method to prove an extension of the
stability result of Aiemsomboon and Sintunavarat [2, Theorem 2.2] to quasi-Banach
spaces by applying Corollary 5.1.

Theorem 5.11 ([24], Theorem 2.5) Assume that the following conditions hold.

1. (X, ‖.‖, κ) is a quasi-normed space over the field F, (Y, ‖.‖, κ) is a quasi-Banach
space over the field K, and g : X → Y is a given function.

2. There exist a, b ∈ F \ {0}, A,B ∈ K \ {0} and u, v : X → R+ such that

M0 =
{
n ∈ N : κ

(∣∣∣
1

A

∣∣∣s1(a + bn)s2(a + bn)+
∣∣∣
B

A

∣∣∣s1(n)s2(n)
)
< 1

}

is an infinite set, where θ = log2κ 2,

s1(n) = inf{t ∈ R+ : u(nx) ≤ tu(x) for all x ∈ X}

s2(n) = inf{t ∈ R+ : v(nx) ≤ tv(x) for all x ∈ X}

for n ∈ F \ {0}, and s1, s2 satisfy the following two conditions, where n → ∞
in F if and only if |n| → ∞,

a. lim
n→∞ s1(±n)s2(±n) = 0.

b. lim
n→∞ s1(n) = 0 or lim

n→∞ s2(n) = 0.
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3. The function g : X → Y satisfies the inequality

‖g(ax + by)− Ag(x)− Bg(y)‖ ≤ u(x)v(y) for x, y ∈ X \ {0}.

Then g satisfies the equation

g(ax + by) = Ag(x)+ Bg(y) for x, y ∈ X \ {0}.

By [12, Lemma 3.1] we see that if g : X → Y satisfies the general linear equation
on X \ {0} then it satisfies the general linear equation on X. From this fact and
Theorem 5.11 we get the following result which is an extension of Aiemsomboon
and Sintunavarat [2, Theorem 2.3] to quasi-Banach spaces.

Theorem 5.12 ([24], Theorem 2.6) Assume that the following conditions hold.

1. (X, ‖.‖, κ) is a quasi-normed space over the field F, (Y, ‖.‖, κ) is a quasi-Banach
space over the field K, and g : X → Y is a given function.

2. There exist a, b ∈ F \ {0}, A,B ∈ K \ {0} and u, v : X → R+ such that

M0 =
{
n ∈ N : κ

(∣∣∣
1

A

∣∣∣s1(a + bn)s2(a + bn)+
∣∣∣
B

A

∣∣∣s1(n)s2(n)
)
< 1

}

is an infinite set, where

s1(n) = inf{t ∈ R+ : u(nx) ≤ tu(x) for all x ∈ X}

s2(n) = inf{t ∈ R+ : v(nx) ≤ tv(x) for all x ∈ X}

for n ∈ F \ {0} and s1, s2 satisfy the following two conditions

a. lim
n→∞ s1(±n)s2(±n) = 0.

b. lim
n→∞ s1(n) = 0 or lim

n→∞ s2(n) = 0.

3. The function g : X → Y satisfies the inequality

‖g(ax + by)− Ag(x)− Bg(y)‖ ≤ u(x)v(y) for x, y ∈ X \ {0}.

Then g satisfies the equation

g(ax + by) = Ag(x)+ Bg(y) for x, y ∈ X.

By using Theorem 5.11 we get an extension of [70, Theorem 2.1] to quasi-
Banach spaces as follows.

Corollary 5.2 ([24], Corollary 2.7) Assume that the following conditions hold.

1. (X, ‖.‖, κ) is a quasi-normed space over the field F, (Y, ‖.‖, κ) is a quasi-Banach
space over the field K, and g : X → Y is a given function.
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2. There exist a, b ∈ F \ {0}, A,B ∈ K \ {0}, c ≥ 0, p, q ∈ R with p + q < 0
such that

‖g(ax + by)− Ag(x)− Bg(y)‖ ≤ c‖x‖p‖y‖q for x, y ∈ X \ {0}.

Then g satisfies the equation

g(ax + by) = Ag(x)+ Bg(y) for x, y ∈ X.

The next example shows the significance of the obtained results in quasi-Banach
spaces.

Example 5.6 ([24, Example 2.8]) Let X = Y = Lp(0, 1) with 0 < p < 1 and
g : X → Y be defined by g(x) = 1

2x for all x ∈ X. Then X, Y are quasi-Banach
spaces and all assumptions of Corollary 5.2 are satisfied with a = A and b = B. So
Corollary 5.2 is applicable to X, Y and g.

However, since Lp(0, 1) with 0 < p < 1 is not normable [64, page 18], so [2,
Theorem 2.2] is not applicable to X, Y and g.

To overcome the modulus of concavity greater than 1 and the discontinuity of
quasi-norms, the author of [23] used the squeeze inequality (5.2) presented in an
explicit revision of Aoki-Rolewicz, see Theorem 5.2. As illustrations, the authors
proved an extension of the main result of [60] in p-Banach spaces to quasi-Banach
spaces with better approximation.

Theorem 5.13 ([23, Theorem 2.2]) Assume that the following conditions hold.

1. (X, ‖ · ‖X, κX) is a real quasi-normed space and (Y, ‖ · ‖Y , κY ) is a real quasi-
Banach space.

2. ϕ : X ×X → [0,∞) is a function such that for all x, y ∈ X,

lim
n→∞ 4nϕ

( x
2n
,
y

2n
) = 0

and for all x ∈ X, all y ∈ {0, x,−2x, 3x, 4x}, p = log2κY 2,

∞∑

i=1

4ipϕp
( x

2i
,
y

2i
)
<∞.

3. f : X → Y is an even function such that f (0) = 0 and for all x, y ∈ X,

‖f (2x + y)+ f (2x − y)− f (x + y)− f (x − y)− 2f (2x)+ 2f (x)‖Y ≤ ϕ(x, y).

Then for all x ∈ X, the limit Q(x) = lim
n→∞ 4nf

(
x
2n

)
exists, and the function Q :

X → Y is a unique quadratic function satisfying
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‖f (x)−Q(x)‖Y ≤ κY

2

(
ψ̃(x)

) 1
p (5.9)

for all x ∈ X, where

ψ̃(x) =
∞∑

i=1

4ip
(

2pϕp
( x

3 · 2i
,
x

3 · 2i
)+ ϕp( x

3 · 2i
,
x

2i
)+ ϕp( x

3 · 2i
,

4x

3 · 2i
)

+ϕp( x

3 · 2i
,
−2x

3 · 2i
)+ ϕp( x

3 · 2i
, 0

))
.

The following example illustrates that the approximation defined by (5.9) in
Theorem 5.13 can be better than the approximation defined by (3.4) in [60,
Theorem 3.2].

Example 5.7 ([23, Example 2.3]) Let X = Y = L
1
2 [0, 1] and

‖x‖X = ‖x‖Y =
( ∫ 1

0
|x(t)| 1

2 dt
)2

for all x ∈ X, where

L
1
2 [0, 1] = {

f : [0, 1] → R : |f | 1
2 is Lebesgue integrable

}
.

Define f (x) = x2 + x4 for all x ∈ X, ϕ(x, y) =
( ∫ 1

0
6|x(t)y(t)|dt

)2
for all

x, y ∈ X. Then

1. All assumptions of Theorem 5.13 and [60, Theorem 3.2] are satisfied with κY =
2.

2. The approximation defined by (5.9) in Theorem 5.13 is better than the approxi-
mation defined by (3.4) in [60, Theorem 3.2].

Remark 5.2 ([23, Remark 2.4]) Similarly to the proof of Theorem 5.13, we can
prove extensions of [60, Theorems 3.6, 3.7, 3.10 and 3.11] and many other results
in p-Banach spaces to quasi-Banach spaces with better approximation.

As mentioned in Sect. 5.2.1, Ulam-Hyers stability of functional equations in p-
Banach algebras was studied by Park [67]. Two of the key techniques in [67] are the
proofs of R-linearity of the homomorphism [67, line +14 on page 91], and of the
preservation of multiplication [67, line -9 on page 91].

Recall that, to prove the R-linearity of the homomorphism [67, line +14 on
page 91], the author used the same reasoning as in [71, page 299], where the dual
space of a Banach space was used. However, one of the main differences between
Banach spaces and quasi-Banach spaces is the dual space, while the dual space
approach is very useful in Banach spaces by Hahn-Banach theorem, the dual space
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approach fails in quasi-Banach spaces since many quasi-Banach spaces have the
trivial dual space, see [44, page 1102].

Also, to prove the preservation of multiplication under the functionH [67, line -9
on page 91], the function H was defined by

H(x) = lim
n→∞ 2nf

( x
2n

)

and thus

H(xy) = lim
n→∞ 2nf

(xy
2n

)

but the author used

H(xy) = lim
n→∞ 4nf

( xy

2n · 2n
)
.

These limitations were subsequently used in many works, see for example in
old one [61, line +8 on page 769] and in recent one [20, Lemma 2.14]. Recall
that the quantities relevant to Ulam-Hyers stability are not preserved even under
equivalent norms. So Ulam-Hyers stability of homomorphisms in quasi-Banach
algebras, where the Banach space is not assumed to be p-Banach, may be different
from that in p-Banach algebras.

By the above reasons, some authors were interested in revising the proofs of
Ulam-Hyers stability of homomorphisms in p-Banach algebras [67], and interested
in extending that to quasi-Banach algebras.

To prove R-linearity of homomorphisms in quasi-Banach algebras,
Dung et al. [25] used the following Moore-Osgood Theorem on exchanging limits.

Theorem 5.14 (Moore-Osgood Theorem [33, Theorem 2.1.4.1 and Remark
2.1.4.1]) Let X, Y be subsets of Hausdorff spaces, a ∈ X \ X, b ∈ Y \ Y , Z be
a metric space, and f : X × Y → Z be a given function such that

1. lim
x→a

f (x, y) = h(y) on Y \ {b}.
2. lim

y→b
f (x, y) = g(x) uniformly on X \ {a}.

Then the limits lim
(x,y)→(a,b)

f (x, y), lim
x→a

lim
y→b

f (x, y) and lim
y→b

lim
x→a

f (x, y) exist and

lim
(x,y)→(a,b)

f (x, y) = lim
x→a

lim
y→b

f (x, y) = lim
y→b

lim
x→a

f (x, y).

To prove the preservation of multiplication under the functionH , Dung et al. [25]
used the following, somewhat different, definition of the homomorphism

H(x) = lim
n→∞ 4nf

( x
4n

)
. (5.10)
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These techniques overcome the limitations appeared in many results on Ulam-
Hyers stability of homomorphisms in quasi-Banach algebras as mentioned above.

The following result is an extension of [67, Theorem 2.1], where the p-
Banach algebra is replaced by a quasi-Banach algebra, and it was proved by using
Theorems 5.2, 5.14 and the definition of H stated in (5.10).

Theorem 5.15 ([25], Theorem 4) Assume that the following conditions hold.

1. (A, ‖.‖A, κA) is a quasi-normed algebra and (B, ‖.‖B, κB) is a quasi-Banach
algebra over the field R.

2. r > 1, θ > 0, and f : A→ B is a function satisfying

‖f (x + y)− f (x)− f (y)‖B ≤ θ‖x‖rA‖y‖rA
‖f (xy)− f (x)f (y)‖B ≤ θ‖x‖rA‖y‖rA

for all x, y ∈ A.
3. For each x ∈ A, f (tx) is continuous in t ∈ R.

Then there exists a unique homomorphism H : A→ B such that

‖f (x)−H(x)‖B ≤ θ

(4pr − 2p)
1
p

‖x‖2r
A , x ∈ A.

The techniques used in proof of Theorem 5.15 may be applied to revise and
extend other results on Ulam-Hyers stability of homomorphisms in p-Banach
algebras to quasi-Banach algebras [25, Remark 5].

5.3 Ulam-Hyers Stability of Functional Equations
in Quasi-β-Banach Spaces

Ulam-Hyers stability of functional equations in quasi-β-Banach spaces was first
studied in [74] by Rassias and Kim. Then authors investigated Ulam-Hyers stability
of many kinds of functional equations similar to that in quasi-Banach spaces. We
may distinguish two ways in stating and proving the results. In the first way, based
on Theorem 5.2, the authors claimed to study Ulam-Hyers stability of functional
equations only for (β, p)-Banach spaces. In fact, we must use Theorem 5.6 to
do that. In the second way, the authors studied Ulam-Hyers stability of functional
equations in β-Banach spaces directly. We must say that the stages to study Ulam-
Hyers stability of functional equations in quasi-β-Banach spaces are very similar to
that in quasi-Banach spaces mentioned on page 109.
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5.3.1 Ulam-Hyers Stability of Functional Equations in
Quasi-β-Banach Spaces

In studying Ulam-Hyers stability of functional equations in quasi-β-Banach spaces,
many authors also used the quotation on page 110 to claim that we could replace a
quasi-β-Banach space by certain (β, p)-Banach space. However, as mentioned on
page 106 we could not use Aoki-Rolewicz Theorem to claim that every quasi-β-
norm is equivalent to certain (β, p)-norm. Alternatively we must use Theorem 5.6.

There have been many results on Ulam-Hyers stability of functional equations in
(β, p)-Banach spaces. In 2009, Rassias and Kim [74] generalized results obtained
for Jensen type maps and established new theorems about Ulam-Hyers stability for
general additive functional equations of the form

∑

1≤i<j≤n
g
(xi + xj

2
+

n−2∑

l=1,kl 
=i,j
xkl

)
= (n− 1)2

2

n∑

i=1

g(xi) (5.11)

in (β, p)-normed spaces. Note that in case n = 2, Eq. (5.11) yields Jensen additive
equation

2g

(
x + y

2

)
= g(x)+ g(y)

and there are many interesting results concerning Ulam-Hyers stability problems of
Jensen equation, see [72] for example. Therefore, Eq. (5.11) is a generalized form
of Jensen additive equation. The characterization for additive maps was stated as
follows. Note that the case n ≤ 3 was stated in [62, Lemma 2.2].

Lemma 5.2 ([74, Theorem 2.2]) Let X and Y be linear spaces, n ≥ 3 and f :
X → Y be a map. Then f satisfies

∑

1≤i<j≤n
f
(xi + xj

2
+

n−2∑

l=1,kl 
=i,j
xkl

)
= (n− 1)2

2

n∑

i=1

f (xi)

for all x1, x2, . . . , xn ∈ X if and only if f is additive.

By using the characterization mentioned above, the next result was proved for
contractively subadditive equations by using the direct method.

Theorem 5.16 ([74, Theorem 3.1]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ‖.‖Y , κY ) is a (β, p)-Banach space
with the p-norm ‖.‖Y , and f : X → Y is a given map.

2. ϕ : Xn → [0,∞) is a contractively subadditive function, that is,

ϕ(x + y) ≤ L[ϕ(x)+ ϕ(y)]
for all x, y ∈ Xn, where the constant L is such that L > 0 and λ1−βL < 1.
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3. ‖D1f (x1, . . . , xn)‖ ≤ ϕ(x1, . . . , xn) for all n-variables x1, . . . , xn ∈ X, where

D1f (x1, . . . , xn) =
∑

1≤i<j≤n
g
(xi + xj

2
+

n−2∑

l=1,kl 
=i,j
xkl

)
− (n− 1)2

2

n∑

i=1

g(xi).

Then there exists a unique additive map g : X → Y satisfying (5.11) and

‖f (x)− g(x)‖Y ≤ 2βϕ(x, . . . , x)

nβλβ
p
√
λβp − λpLp

for all x ∈ X and λ = n− 1.

Similar to Theorem 5.16, the next result is for expansively superadditive
equations.

Theorem 5.17 ([74, Theorem 3.2]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ‖.‖Y , κY ) is a (β, p)-Banach space
with the p-norm ‖.‖Y , and f : X → Y is a given map.

2. ϕ : Xn → [0,∞) is a expansively subadditive function, that is,

ϕ(x + y) ≥ 1

L
[ϕ(x)+ ϕ(y)]

for all x, y ∈ Xn, where the constant L is such that L > 0 and λβL < 1.
3. ‖D1f (x1, . . . , xn)‖ ≤ ϕ(x1, . . . , xn) for all n-variables x1, . . . , xn ∈ X.

Then there exists a unique additive map g : X → Y satisfying

∑

1≤i<j≤n
g
(xi + xj

2
+

n−2∑

l=1,kl 
=i,j
xkl

)
= (n− 1)2

2

n∑

i=1

g(xi)

and

‖f (x)− g(x)‖Y ≤ 2βLϕ(x, . . . , x)

nβλβ
p
√
λp − λβpLp

for all x ∈ X and λ = n− 1.

Another result about Ulam-Hyers stability of Eq. (5.11) is as follows.

Theorem 5.18 ([74, Theorem 3.3]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ‖.‖Y , κY ) is a (β, p)-Banach space
with the p-norm ‖.‖Y , and f : X → Y is a given map.

2. ϕ : Xn → [0,∞) is a function satisfying
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φ(x, . . . , x) :=
∞∑

i=0

κiY ϕ(λ
ix, . . . , λix)

λβi
<∞, lim

m→∞
κmY ϕ(λ

mx1, . . . , λ
mxn)

λβm
= 0

for all x, x1, . . . , xn ∈ X, where λ = n− 1.
3. ‖D1f (x1, . . . , xn)‖Y ≤ ϕ(x1, . . . , xn) for all n-variables x1, . . . , xn ∈ X.

Then there exists a unique additive map g : X → Y satisfying (5.11) and

‖f (x)− g(x)‖Y ≤ 2βκY
nβλ2β φ(x, . . . , x)

for all x ∈ X.

In 2010, Wang and Liu [81] investigated Ulam-Hyers stability of the following
quadratic functional equation

2f (2x+y)+2f (2x−y) = 4f (x+y)+4f (x−y)+4f (2x)+f (2y)−8f (x)−8f (y)

in (β, p)-normed spaces. They characterized solutions of such quadratic functional
equations as follows.

Theorem 5.19 ([81, Theorem 2.1]) Suppose f : X → Y is a map. Then f

satisfies (5.3.1) if and only if there are a quadratic map Q(x) and a cubic map
H(x) such that f (x) = Q(x)+H(x) for all x ∈ X.

Then the authors proved Ulam-Hyers stability by using the direct method as follows.

Theorem 5.20 ([81, Theorem 3.1]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ‖.‖Y , κY ) is a (β, p)-Banach space
with the p-norm ‖.‖Y , and f : X → Y is a given map with f (0) = 0.

2. ϕ : X ×X → [0,∞) is a function satisfying

�(x) :=
∞∑

n=1

4βnpϕp
(
0,
x

2n
)
<∞, lim

n→∞ 4βnϕ
( x

2n
,
y

2n
) = 0

for all x, y ∈ X.
3. ‖Df (x, y)‖Y ≤ ϕ(x, y) for all x, y ∈ X, where

Df (x, y) = 2f (2x + y)+ 2f (2x − y)− 4f (x + y)− 4f (x − y)
−4f (2x)− f (2y)+ 8f (x)+ 8f (y).

Then there exists a unique quadratic map Q : X → Y such that

‖Q(x)− f (x)‖Y ≤ 1

4β
(
�(x)

) 1
p
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for all x ∈ X.

Some other modifications of Theorem 5.20 were also stated, see [81, Theo-
rems 3.2, 3.4, 3.5, 3.7 and 3.8].

In 2011, Eskandani et al. [28] first characterized quadratic and quartic maps and
then established the general solution of the following mixed additive and quadratic
functional equation

f (λx+ y)+ f (λx− y) = f (x+ y)+ f (x− y)+ (λ− 1)[(λ+ 2)f (x)+λf (−x)]

in (β, p)-normed spaces [28, Lemmas 2.1–2.2, Theorem 2.3]. The authors then
investigated the generalized Ulam-Hyers stability of that equation with λ ∈ N and
λ 
= 1 in (β, p)-normed spaces, see [28, Theorems 3.1, 3.3, 3.4, 3.6, 3.7, 3.9, 3.10,
3.12 and 3.15].

In 2012 Kim et al. [51] studied the following two radical equations

f (

√
x2 + y2) = f (x)+ f (y)

f (

√
x2 + y2)+ f (

√
|x2 − y2|) = 2f (x)+ 2f (y)

in (β, p)-Banach spaces, see [51, Lemma 2.1]. Then the authors proved Ulam-Hyers
stability by using subadditive and subquadratic functions for radical functional
equations in (β, p)-Banach spaces, see [51, Theorems 2.2, 2.3, 2.7 and 2.9–2.12].
Note that the characterizations for quadratic and quartic maps mentioned in that
paper were cited from [48].

In 2013, Moradlou and Rassias [58] proved that every generalized additive map
of Cauchy-Jensen type of the form

2
n∑

j=1

f
(xj

2
+

n∑

i=1,i 
=j
xi

)+
n∑

j=1

f (xj ) = 2nf
( n∑

j=1

xj
)

is Cauchy additive in (β, p)-normed spaces, see [58, Lemma 2.1]. Then they proved
the generalized Ulam-Hyers stability of that functional equation [58, Theorems 2.3–
2.4] by using the fixed point method. In the same year, Xu and Rassias also obtained
a description of the general solution of the septic and octic functional equations of
the form

f (x + 4y)− 7f (x + 3y)+ 21f (x + 2y)− 35f (x + y)+ 35f (x)

−21f (x − y)+ 7f (x − 2y)− f (x − 3y) = 5040f (y)

and
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f (x + 4y)− 8f (x + 3y)+ 28f (x + 2y)− 56f (x + y)+ 70f (x)

−56f (x − y)+ 28f (x − 2y)− 8f (x − 3y)+ f (x − 4y) = 40320f (y)

in (β, p)-normed spaces [83, Theorems 2.1 and 2.2] and then proved Ulam-Hyers
stability of the septic and octic functional equations in (β, p)-normed spaces [83,
Theorems 3.2 3.5] by the direct method.

In 2014, Rassias and Kim [75] characterized the general solution of the (m, n)-
Cauchy-Jensen functional equation [75, Theorem 2.1] and established new theo-
rems about Ulam-Hyers stability of general (m, n)-Cauchy-Jensen additive maps
in (β, p)-Banach spaces, which generalized results obtained for Cauchy-Jensen
type additive maps by the direct method [75, Theorems 3.1–3.4 and 3.7–3.8].
Cho et al. [19] proved the generalized Ulam-Hyers stability results by considering
maps satisfying conditions much weaker than Hyers and Rassias conditions for
radical quadratic and radical quartic functional equations in (β, p)-Banach spaces.

In 2015, Kim et al. [52] found the general solution of the following Cauchy-
Jensen type functional equation of the form

f

(
x + y
n

+ z
)
+f

(
y + z
n

+ x
)
+f

(
z+ x
n

+ y
)
= n+ 2

n
(f (x)+ f (y)+ f (z))

in (β, p)-Banach spaces [52, Lemma 1], and then investigated the generalized
Ulam-Hyers stability of the equation in (β, p)-Banach spaces for any fixed nonzero
integer n by the direct method, see [52, Theorems 1–4]. Also Hong and Kim [37]
considered a modified quadratic functional equation and then investigated its
generalized Ulam-Hyers stability in (β, p)-Banach spaces, see [37, Theorems 2.1
and 2.2]. Cădariu et al. [18] used a fixed point theorem [18, Theorem 2.2] to prove
some generalized Ulam-Hyers stability theorems for additive Cauchy functional
equations as well as for monomial functional equations in (β, p)-Banach spaces,
see [17, Theorem 2 on page 104 and Theorem 3 on page 107].

In 2016, Ravi et al. [77] obtained the generalized Ulam-Hyers stability of the
functional equation of the form

f (x + 6y)− 11f (x + 5y)+ 55f (x + 4y)− 165f (x + 3y)

+330f (x + 2y)− 462f (x + y)+ 462f (x)− 330f (x − y)
+165f (x − 2y)− 55f (x − 3y)+ 11f (x − 4y)− f (x − 5y) = 39916800f (y)

in (β, p)-Banach spaces by using the fixed point method. The authors also
investigated the pertinent stability of the above functional equation using control
functions with sum of powers of norms, product of powers of norms and a mixture
of products and sums of powers of norms as upper bounds.

Continuing [77], in 2017 Rassias et al. [76] achieved the general solution of the
duodecic functional equation of the form
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f (x + 6y)− 12f (x + 5y)+ 66f (x + 4y)− 220f (x + 3y)

+495f (x + 2y)− 792f (x + y)+ 924f (x)− 792f (x − y)
+495f (x − 2y)− 220f (x − 3y)+ 66f (x − 4y)

−12f (x − 5y)+ f (x − 6y) = 479001600f (y)

in (β, p)-Banach spaces [76, Theorem 3.1], and investigated Ulam-Hyers stability
involving a general control function with sum of powers of norms, product of powers
of norms and mixed product-sum of powers of norms in (β, p)-Banach spaces via
the fixed point method [76, Theorem 4.2].

Recently, EL-Fassi [26] introduced and solved the radical quintic functional
equation of the form

f
( 5
√
x5 + y5

) = f (x)+ f (y)

in quasi-β-Banach spaces [26, Theorem 2.1]. The author next established Ulam-
Hyers stability results in quasi-β-Banach spaces [26, Theorems 3.1 and 3.2],
and then Ulam-Hyers stability by using subadditive and subquadratic functions
in (β, p)-Banach spaces for that functional equation [26, Theorems 3.4 and 3.5].
Also Kim and Liang [49] presented general solution of a generalized quadratic
functional equation with several variables, and then obtained its generalized Ulam-
Hyers stability results in (β, p)-Banach spaces [49, Theorems 3.1–3.5].

Up to now, there has been a few results on Ulam-Hyers stability of functional
equations in quasi-β-Banach spaces which are not assumed to be (β, p)-Banach
spaces. In 2012 Liguang and Jing [54] investigated Ulam-Hyers stability of a
functional equation deriving from additive and quadratic equations of the form

f (x + 2y)+ f (x − 2y) = f (x + y)+ f (x − y)+ 3f (2y)− 6f (y)

in quasi-β-Banach spaces without the assumption that they are (β, p)-Banach
spaces. The key technique in that paper is to transform the problem to certain
generalized metric space, see the proof of [54, Theorem 3.1]. In that proof, the
authors claimed without calculation that the function d defined by

d(g, h) = inf{C : C ∈ R, C ≥ 0, ‖g(x)− h(x)‖Y ≤ Cϕ(0, x), x ∈ X}

is a generalized metric on the set � = {g : X → Y }, where a generalized metric is
very similar to a metric except for d(g, h) ∈ [0,∞]. However, by usual calculation,
it is easy to check that d is a generalized b-metric on�. It remains an open problem
to prove the claim that d is a generalized metric on �.

Recently EL-Fassi [26] established Ulam-Hyers stability results for the radical
quintic functional equation in quasi-β-Banach spaces as follows.
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Theorem 5.21 ([26, Theorem 3.1]) Assume that the following conditions hold.

1. (X, ‖.‖, κ) is a quasi-β-Banach space.
2. f : R → X is a ϕ-approximately radical quintic function, that is,

‖f ( 5
√
x5 + y5

)− f (x)− f (y)‖ ≤ ϕ(x, y)

for all x, y ∈ R, where ϕ : R2 → [0,∞) is a function.

3. �(x, y) :=
∞∑
j=0

(
κ
2β

)j
ϕ(2

j
5 x, 2

j
5 y) <∞ and lim

n→∞ 2−nβϕ(2 n
5 x, 2

n
5 y) = 0 for all

x, y ∈ R.

Then there exists a unique quintic map Q : R → X satisfying

Q
( 5
√
x5 + y5

) = Q(x)+Q(y)

and

‖f (x)−Q(x)‖ ≤ κ

2β
�(x, x)

for all x, y ∈ R.

Also see [26, Theorem 3.2] for a similar result. In the proof the author used the
following equality

‖Q( 5
√
x5 + y5

)−Q(x)−Q(y)‖ = lim
n→∞ 2−βn‖f (

2
n
5

5
√
x5 + y5

)−f (2 n
5 x)−f (2 n

5 y)‖.

However, this equality does not hold since the quasi-β-norm ‖.‖ does not need to be
continuous. To overcome this confusion, we must use Lemma 5.1 or Theorem 5.6.

5.3.2 Some Open Problems in Ulam-Hyers Stability of
Functional Equations in Quasi-β-Normed Spaces

There have been many results on Ulam-Hyers stability in Banach spaces [73] and
Banach algebras [20]. Inspired by these works, we have the following question.

Question 5.1 Generalize Ulam-Hyers stability results in Banach spaces and in
Banach algebras to quasi-Banach spaces and quasi-Banach algebras.

Inspired by the work [24], we have the following equation.

Question 5.2 State other fixed point results in b-metric spaces and apply to study
the Ulam-Hyers stability of functional equations in quasi-Banach spaces and to
study integral equations, see [38] for example; see also [15].
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Finally we list some unsolved issues in the literature.

1. Ulam-Hyers stability of Euler-Lagrange type cubic maps in quasi-Banach spaces
[42, Remarks 3.2 and 3.5].

2. Ulam-Hyers stability of first-order linear partial differential equations [43,
Remark 3] (see also [16]).
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13. Brzdȩk, J., Chudziak, J., Páles, Z.: A fixed point approach to stability of functional equations.
Nonlinear Anal. 74(17), 6728–6732 (2011)
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Chapter 6
On Stability of the Functional Equation
of p-Wright Affine Functions in 2-Banach
Spaces
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Abstract We present some stability results for the functional equation of p-Wright
affine functions in 2-Banach spaces. In this way we extend several earlier outcomes.

Keywords 2-Norm · 2-Banach space · p-Wright affine function · Functional
equation · Ulam stability
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6.1 Introduction

The subject of functional equations forms a somehow modern branch of mathemat-
ics. The importance of functional equations usually comes from their wide range of
applications. Functional equations have recent applications in many fields see e.g.
[13, 19, 24]. They have applications e.g. in Communication and Network models
see [20, 31, 36], in computer graphics [33], in information theory [2, 32], in decision
theory [1, 39], and in digital filtering [38]. In this chapter we investigate the stability
of the functional equation of the p-Wright affine functions investigated in [4] but in
2-Banach spaces.

Stability is a very important issue with many interesting applications and we
refer to, e.g., [9, 11, 12, 14, 15, 26, 34] for more details. Stability can be seen from
different points of views see [34] and hundreds of researchers are dealing with such
amazing topic. It has applications in optimization theory (see, e.g., [30]), it is related
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to the notion of shadowing (see, e.g., [25]), and it has applications in economics
(see [16]). It should be noted that the issue of stability of functional equations was
originally motivated by a problem of S.M. Ulam posed in 1940 and Hyers’s answer
to it published in [26]. Stability is very important because its an efficient tool for
evaluating the error people usually face when replacing functions that satisfy some
equations only approximately, by the exact solutions to those equations. Roughly
speaking, nowadays we say that an equation is stable in some class of functions if
any function from that class, satisfying the equation approximately (in some sense),
is near (in some way) to an exact solution of the equation. In the last few decades,
several stability problems of various (functional, difference, differential, integral)
equations have been investigated by many mathematicians (see e.g. [7, 8, 10, 27, 29]
for more details), but mainly in classical spaces.

Since the notion of an approximate solution and the idea of nearness of two
functions can be understood in many, nonstandard ways, depending on the needs
and tools available in a particular situation. One of such non-classical measures of a
distance can be introduced by the notion of a 2-norm. As far as we know the concept
of linear 2-normed space was introduced first by Gähler in [22], and it seems that
the first work on the Hyers-Ulam stability of functional equations in complete 2-
normed spaces (that is, 2-Banach spaces) see e.g. [23]. See also [17, 37] for some
details in 2-Banach spaces. This chapter is organized as follows: in Sect. 6.2 we
recall some definitions and the functional equation of our interest, in Sect. 6.3 we
introduce the fixed point theorem used in the stability, in Sect. 6.4 we investigate the
stability of the functional equation of the p-Wright affine functions, and in Sect. 6.5
we introduce a simple observation on superstability.

6.2 Preliminaries

Let 0 < p < 1 be a fixed real number. We say that a function f :

f : I �−→ R,

mapping a real nonempty interval I into the set of reals R is p-Wright convex
provided (see, e.g., [18])

f (px1 + (1 − p)x2)+ f ((1 − p)x1 + px2) ≤ f (x1)+ f (x2), x1, x2 ∈ I.

If f satisfies the functional equation

f (px1 + (1 − p)x2)+ f ((1 − p)x1 + px2) = f (x1)+ f (x2), (6.1)

then we say that it is p-Wright affine (see [18]). Note that for p = 1/2 Eq. (6.1)
becomes the Jensen’s functional equation

f (
x1 + x2

2
) = f (x1)+ f (x2)

2
.
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For p = 1/3 Eq. (6.1) takes the form

f (2x1 + x2)+ f (x1 + 2x2) = f (3x1)+ f (3x2),

which has been investigated by Najati and Park in [35]; in particular, they proved
some results on its stability and applied them in the investigation of the generalized
(σ, τ )-Jordan derivations on Banach algebras. The cases of more arbitrary p were
studied in [18] (see also [28]). We prove some results concerning the Hyers-Ulam
stability of (6.1). The method of the proof of the main result corresponds to some
observations in [9] and the main tool in it is a fixed point. To present it we need the
following three assumptions (R+ denotes the set of nonnegative reals). Let us recall
first (see, for instance, [21]) some definitions.

Definition 6.1 By a linear 2-normed space we mean a pair (X, ‖., .‖) such that X
is an at least two-dimensional real linear space and

‖·, ·‖ : X ×X → R

is a function satisfying the following conditions:

(1) ‖x1, x2‖ = 0 if and only if x1 and x2 are linearly dependent;
(2) ‖x1, x2‖ = ‖x2, x1‖ for x1, x2 ∈ X
(3) ‖x1, x2 + x3‖ ≤ ‖x1, x2‖ + ‖x1, x3‖ for xi ∈ X, i = 1, 2, 3
(4) ‖βx1, x2‖ = |β|‖x1, x2‖ for β ∈ R and x1, x2 ∈ X
Definition 6.2 A sequence (xn)n ∈ N of elements of a linear 2-normed space X is
called a Cauchy sequence if there are linearly independent y, z ∈ X such that

lim
n,m→∞‖xn − xm, z‖ = 0 = ‖xn − xm, y‖,

whereas (xn)n ∈ N is said to be convergent if there exists an x ∈ X (called a limit
of this sequence and denoted by limn→∞Xn) with

lim
n,m→∞‖xn − x, y‖ = 0, y ∈ X.

A linear 2-normed space in which every Cauchy sequence is convergent is called a
2-Banach space.

Let us also mention that in linear 2-normed spaces, every convergent sequence
has exactly one limit and the standard properties of the limit of a sum and a scalar
product are valid. Next, it is easily seen that we have the following property.

Lemma 6.1 If X is a linear 2-normed space, x, y, z ∈ X, y, z are linearly
independent, and

‖x, y‖ = 0 = ‖x, z‖,

then x = 0.
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Let us yet recall a lemma from [37].

Lemma 6.2 If X is a linear 2-normed space and (xn)n ∈ N is a convergent
sequence of elements of X, then

lim
n→∞‖xn, z‖ = ‖ lim

n→∞ xn, z‖, z ∈ X.

It is easy to check that (in view of the Cauchy-Schwarz inequality), if 〈., .〉 is a real
inner product in a real linear space X, of dimension greater than 1, and

‖x1, x2‖ :=
√
‖x1‖2‖x2‖2 − 〈x1, x2〉2, x1, x2 ∈ X

then conditions (1)–(4) are valid.

6.3 Fixed Point Theorem

Let us introduce the following three assumptions:

(A1) S is a nonempty set, (Y, ‖., .‖) is a 2-Banach space, Y0 is a subset of Y
containing two linearly independent vectors, j ∈ N,

fi : S → S, gi : Y0 → Y0, Li : S × Y0 → R for i = 1, · · · , j ;

(A2) T : YS → YS is an operator satisfying the inequality

‖Tξ(x)− Tμ(x), y‖ ≤
j∑

i=1

Li(x, y)‖ξ(fi(x))− μ(fi(x)), gi(y)‖,
(6.2)

ξ, μ ∈ YS, x ∈ S, y ∈ Y0,

(A3) � : RS×Y0 → R
S×Y0 is an operator defined by

�δ(x, y) :=
j∑

i=1

Li(x, y)δ(fi(x), gi(y)), δ ∈ R
S×Y0 , x ∈ S, y ∈ Y0

(6.3)

Now, its the position to present the above mentioned fixed point theorem.
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Theorem 6.1 Let hypotheses (A1)–(A3) hold and functions ε : S × Y0 → R+ and
ϕ : S → Y fulfill the following two conditions:

‖Tϕ(x)− ϕ(x), y‖ ≤ ε(x, y), x ∈ S, y ∈ Y0 (6.4)

ε∗(x, y) :=
∞∑

i=1

(�lε)(x, y) <∞, x ∈ S, y ∈ Y0 (6.5)

Then there exists a unique fixed point ψ of T for which

‖ϕ(x)− ψ(x), y‖ ≤ ε∗(x, y), x ∈ S, y ∈ Y0 (6.6)

Moreover,

ψ(x) = lim
l→∞(T

lϕ)(x), x ∈ S. (6.7)

6.4 Stability

The next theorem is the main result in this chapter and concerns the stability of
Eq. (6.1); it extends the results in [4] and corresponds to some outcomes, e.g., in
[3, 5, 6, 9].

Theorem 6.2 Let (A1) be valid, p ∈ R, A, k ∈ (0,∞),

|p|k + |1 − p|k < 1,

E be a subset of Y with 0 ∈ E and

px1 + (1 − p)x2 ∈ E, x1, x2 ∈ E, (6.8)

and g : E → Y satisfy

‖g(px1 + (1 − p)x2)+ g((1 − p)x1 + px2)− g(x1)− g(x2), y‖
≤ A(‖x1, y‖k + ‖x2, y‖k), x1, x2 ∈ E, y ∈ Y0. (6.9)

Then there exists a unique solution G : E → Y of Eq. (6.1) such that

‖g(x)−G(x), y‖ ≤ A‖x, y‖k
1 − |p|k − |1 − p|k , x ∈ E (6.10)
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and G is given by:

G(x) := g(0)+ lim
n→∞(T

ng0)(x), x ∈ E, (6.11)

where g0 and T are defined by (6.14) and (6.15). Moreover,G is the unique solution
of Eq. (6.1) such that there exists a constant M ∈ (0,∞) with

‖g(x)−G(x), y‖ ≤ M‖x, y‖k, x ∈ E, y ∈ Y0. (6.12)

Proof Note that (6.9) with x2 = 0 gives

‖g(px1)+ g((1 − p)x1)− g(x1)− g(0), y‖ ≤ A(‖x1, y‖k + ‖y‖k), (6.13)

x1 ∈ E, y ∈ Y0.

Write

g0(x1) = g(x1)− g(0), x1 ∈ E (6.14)

and

Tξ(x1) = ξ(px1)+ ξ((1 − p)x1), x1 ∈ E, ξ ∈ YE. (6.15)

Then (6.13) implies the inequality

‖g0(px1)+ g0((1 − p)x1)− g(x1)− g(0), y‖ ≤ A(‖x1, y‖k), x1 ∈ E,
(6.16)

which means that

‖Tg0(x1)− g0(x1), y‖ ≤ A(‖x1, y‖k), x1 ∈ E. (6.17)

Further note that (A3) holds with k = 2, f1(x) = px, f2(x) = (1−p)x, Li(x) = 1
for i = 1, 2, x ∈ E. Define � as in (A3). Clearly, with ε(x) := A(‖x1, y‖k) for
x ∈ E, we have

ε∗(x1) :=
∞∑

n=0

(�nε)(x1) (6.18)

≤ A(‖x1, y‖k)
∞∑

n=0

(|p|k + |1 − p|k)n

= A(‖x1, y‖k)
1 − |p|k − |1 − p|k , x1 ∈ E.
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Hence, according to Theorem 6.1, there exists a unique solutionG0 : X → Y of the
equation

G0(x1) = G0(px1)+G0((1 − p)x1), x1 ∈ E (6.19)

such that

‖g0(x1)−G0(x1)‖ ≤ A(‖x1, y‖k)
1 − |p|k − |1 − p|k , x1 ∈ E; (6.20)

moreover

G0(x1) := lim
n→∞(T

ng0)(x1), x1 ∈ E. (6.21)

Now we show that, for every x1, x2 ∈ E, n ∈ N0 (nonnegative integers),

‖Tng0(px1 + (1 − p)x2)+ Tng0((1 − p)x1 + px2)− Tng(x1)− Tng(x2), y‖
(6.22)

≤ A(|p|k + |1 − p|k)n(‖x1, y‖k + ‖x2, y‖k), x1, x2 ∈ E, y ∈ Y0

It is easy to see that the case n = 0 is just (6.9). Next, fix m ∈ N0 and assume
that (6.22) holds for every x1, x2 ∈ E with n = m. Then

‖Tm+1 g0(px1 + (1 − p)x2)+ Tm+1g0((1 − p)x1 + px2) (6.23)

− Tm+1g(x1)− Tm+1g(x2), y‖
= ‖Tmg0(p(px1 + (1 − p)x2))+ Tmg0((1 − p)(px1 + (1 − p)x2))

+ Tmg0(p((1 − p)x1 + px2))+ Tmg0((1 − p)(1 − p)x1 + px2))

− Tmg0(px1)− Tmg0((1 − p)x1)− Tmg0(px2)− Tmg0((1 − p)x2), y‖,
≤ ‖Tmg0(ppx1 + (1 − p)px2)+ Tmg0((1 − p)px1 + ppx2)− Tmg0(px1)

− Tmg0(px2), y‖
+ ‖Tmg0(p(1 − p)x1 + (1 − p)(1 − p)x2)

+ Tmg0((1 − p)(1 − p)x1 + p(1 − p)x2)

− Tmg0((1 − p)x1)− Tmg0(p(1 − p)x2), y‖
≤ A(|p|k + |1 − p|k)m((p‖x1, y‖)k + (p‖x2, y‖)k)

+ (|p|k + |1 − p|k)m(((1 − p)‖x1, y‖)k + ((1 − p)‖x2, y‖)k)
= (|p|k + |1 − p|k)m((‖x1, y‖)k + (‖x2, y‖)k), x1, x2 ∈ E, y ∈ Y0.
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Thus, by induction we have shown that (6.22) holds for every x1, x2 ∈ E and n ∈
N0. Letting n→ ∞ in (6.22), we obtain that

G0(px1 + (1 − p)x2)+G0((1 − p)x1 + px2) = G0(x1)+G0(x2), (6.24)

x1, x2 ∈ E.
Write G(x1) := G0(x1)+ g(0) for x1 ∈ E. Then it is easily seen that

G(px1 + (1 − p)x2)+G((1 − p)x1 + px2) = G(x1)+G(x2), x1, x2 ∈ E
(6.25)

and (6.10) holds. It remains to show the uniqueness of G. So suppose that M0 ∈
(0,∞) and G1 : X → Y is a solution to (6.1) with

‖g(x1)−G1(x1), y‖ ≤ M0‖x1, y‖, x1 ∈ E, y ∈ Y0. (6.26)

Note that

G(0) = g(0) = G1(0),

G1(px1)+G1((1 − p)x1) = G1(x1)+G1(0), x1 ∈ E, (6.27)

G(px1)+G((1 − p)x1) = G(x1)+G(0), x1 ∈ E, (6.28)

and, by (6.10),

‖G(x1)−G1(x1), y‖ ≤ (M + A)‖x1, y‖k
1 − |p|k − |1 − p|k (6.29)

= (M + A)‖x1, y‖k
∞∑

n=j
(|p|k + |1 − p|k)n, x1 ∈ E.

The case j = 0 is exactly (6.29). So fix l ∈ N0 and assume that (6.29) holds for
j = l. Then, in view of (6.27) and (6.28),

‖G(x1) −G1(x1), y‖ (6.30)

= ‖G(px1)+G((1 − p)x1)−G1(px1)−G1((1 − p)x1), y‖,
≤ ‖G(px1)−G1(px1), y‖ + ‖G((1 − p)x1)−G1((1 − p)x1), y‖

≤ (M + A)(‖p‖k‖x1, y‖k + ‖(1 − p)‖k‖x1, y‖k)
∞∑

n=l
(|p|k + |1 − p|k)n,

≤ (M + A)‖x1, y‖k
∞∑

n=l+1

(|p|k + |1 − p|k)n, x1 ∈ E, y ∈ Y0.

Thus we have shown (6.29). Now, letting j → ∞ in (6.29) we get G1 = G. ��
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6.5 An Observation on Superstability

The following is a very simple observation on the superstability of Eq. (6.1)
complements Theorem 6.2.

Theorem 6.3 Let (A1) be valid, p ∈ F, A, k ∈ (0,∞), |p|2k + |1 − p|2k < 1, E
be a subset of Y such that 0 ∈ E and (6.8) holds, and g : E → Y satisfy

‖g(px1 + (1 − p)x2)+ g((1 − p)x1 + px2)− g(x1)− g(x2), y‖ (6.31)

≤ A‖x1, y‖k‖x2, y‖k

for every x1, x2 ∈ E, y ∈ Y0. Then g is a solution to (6.1).

Proof It is easy to see that (6.31) with x2 = 0 gives

g(x1) = g(px1)+ g((1 − p)x1)− g(0), x1 ∈ E (6.32)

We show that, for every x1, x2 ∈ E, y ∈ Y0, n ∈ N0,

‖g(px1 + (1 − p)x2)+ g((1 − p)x1 + px2)− g(x1)− g(x2), y‖ (6.33)

≤ A(|p|2k + |1 − p|2k)n‖x1, y‖k‖x2, y‖k.

It is easy to see that the case n = 0 is just (6.31). Next, fix m ∈ N0 and assume
that (6.33) holds for every x1, x2 ∈ E, with n = m. Then, by (6.32),

‖g(px1 + (1 − p)x2)+ g((1 − p)x1 + px2)− g(x1)− g(x2), y‖ (6.34)

= ‖g(p(px1 + (1 − p)x2))+ g((1 − p)(px1 + (1 − p)x2))

+ g(p((1 − p)x1 + px2))+ g((1 − p)((1 − p)x1 + px2))

− g(px1)− g((1 − p)x1)− g(px2)− g((1 − p)x2), y‖
≤ A(|p|2k + |1 − p|2k)m‖p‖k‖x1, y‖k‖p‖k‖x2, y‖k

+ A(|p|2k + |1 − p|2k)m‖1 − p‖k‖x1, y‖k‖1 − p‖k‖x2, y‖k

= A(|p|2k + |1 − p|2k)m+1‖x1, y‖k‖x2, y‖k

for every x1, x2 ∈ E, y ∈ Y0. Therefore, by induction we have shown that (6.33)
holds for every x1, x2 ∈ E and n ∈ N0. Letting n → ∞ in (6.33), we obtain that g
is a solution to (6.1). ��
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11. Brzdęk, J., Cădariu, L., Ciepliński, K.: Fixed point theory and the Ulam stability. J. Funct.
Spaces 2014, 16 pp. (2014). Article ID 829419
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Chapter 7
On Solutions and Stability of a
Functional Equation Arising
from a Queueing System

El-Sayed El-hady

Abstract We use the boundary value problems approach to investigate the analyt-
ical solution of a two-variable functional equation, which arose from a queueing
model. We also provide some remarks on the Ulam stability of such functional
equation.

Keywords Boundary value problem · Two-variable functional equation ·
Queueing model

Mathematics Subject Classification (2010) Primary 30D05, 30E25, 39B32,
60K25, 65Q20; Secondary 39B82

7.1 Introduction

Functional equations have many recent interesting applications in various fields
see e.g. [12, 16]. They have applications in Communication models and Network
models see e.g. [15, 16, 21], in dynamical systems [3], in information theory [2, 23],
in computer graphics [24], decision theory [1, 32], and in digital filtering [31]. In
this chapter we are interested in a special case of the interesting class of functional
equations surveyed in [12]. It should be noted that so far there is no general solution
theory available for such interesting class of equations. In this chapter we investigate
the analytical solution of a functional equation arising from a queueing model. This
chapter is organized as follows: in Sect. 7.2 we recall the functional equation from
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the original article, in Sect. 7.3 we analyse the kernel which plays a crucial role in
the solution, in Sect. 7.4 we introduce a solution of the functional equation using
boundary value problem approach, and in Sect. 7.5 we investigate the stability of
the functional equation of interest.

7.2 The Functional Equation

The article [22] ends up with the following challenging two-variable functional
equation (for functions f of two complex variables)

(x(2ρx + 1) − 2(1 + ρ)xy + y2)f (x, y) (7.1)

= (x(2ρx + 1)− (1 + ρ)xy − ρxy2)f (x, 0)+ y(y − x)f (0, y),

where

f (x, y) =
∞∑

m,n=0

pm,nx
myn, |x| ≤ 1, |y| < 1 + 2ρ

is the probability generating function (PGF) of the sequence pm,n, which is defined
in [22],

f (x, 0) =
∞∑

m=0

pm,0x
m, |x| ≤ 1

is the generating function of the sequence pm,0,

f (0, y) =
∞∑

n=0

p0,ny
n, |y| < 1 + 2ρ

is the generating function of the sequence p0,n, and 0 < ρ < 1 is some parameter.
Equation (7.1) can be written as follows

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y), (7.2)

where

C1(x, y) = x(2ρx + 1)− 2(1 + ρ)xy + y2,

C2(x, y) = x(2ρx + 1)− (1 + ρ)xy − ρxy2,

and
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C3(x, y) = y(y − x).

A crucial role in the solution of (7.2) is played by the kernel defined by

{(x, y) : C1(x, y) = 0}. (7.3)

The solution of (7.2) will be investigated in the next sections. It should be noted that
the current functional equation is related to the equations that appear in the literature
(see e.g. [10, 27, 30]) as follows:

• It is a special case of the general class of functional equations surveyed in [12].
• It is different from the functional equations solved recently in [6, 13, 29].
• The functions C2(x, y), C3(x, y), are not related to each other unlike the case in

[15].
• We have only two unknowns namely f (x, 0) and f (0, y) unlike the case in [16].
• The contour L defined below is not a circle unlike the case in [14].
• We have only one system parameter, namely ρ which will simplify the analysis

of the kernel unlike the case in [26].
• We have two unknown functions namely f (x, 0) and f (0, y) so we cannot use

Rouché’s theorem unlike the case in [28].

7.3 Kernel Analysis

The kernel given by (7.3) can be written as

{(x, y) : C1(x, y) = x(2ρx + 1)− 2(1 + ρ)xy + y2 = 0}. (7.4)

It is obvious that (7.4) is a biquadratic equation, i.e. it can be considered as a
quadratic equation in x with coefficients in y and also can be considered as a
quadratic equation in y with coefficients in x. We have to study the two cases in
the following two subsections.

7.3.1 The Kernel as a Function in y

If we consider (7.4) as a quadratic equation in y we can write that

2ρx2 + x − 2xy − 2ρxy + y2 = 0

or in the form

y2 + (−2x − 2ρx)y + 2ρx2 + x = 0,
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which can be rewritten as

α(x)y2 + β(x)y + γ (x) = 0, (7.5)

where

α(x) = 1,

β(x) = −2x − 2ρx,

and

γ (x) = 2ρx2 + x.
Equation (7.5) has two solutions given by

y±(x) = −β(x)±√
β(x)2 − 4α(x)γ (x)

2α(x)

= x + ρx ±
√
x(x + ρ2x − 1). (7.6)

It is easy to see that the function (7.6) is a local analytic function. That is to say it
is an analytic function except at the real zeros of the root which are the two branch
points at

x1 = 0, x2 = 1

1 + ρ2 .

This is because when x traverses any small circuit around xi, i = 1, 2, the function

x �→ x + ρx ±
√
x(x + ρ2x − 1)

does not return to its original value.

7.3.2 The Kernel as a Function in x

If we consider (7.4) as a quadratic equation in x we can write that

2ρx2 + x − 2xy − 2ρxy + y2 = 0,

or in the form

2ρx2 + (1 − 2y − 2ρy)x + y2 = 0,
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which can be written as

λ(y)x2 + μ(y)x + ν(y) = 0, (7.7)

where

λ(y) = 2ρ,

μ(y) = 1 − 2y − 2ρy,

and

ν(y) = y2.

Equation (7.5) has two solutions given by

x±(y) = −μ(y)±√
μ(y)2 − 4λ(y)ν(y)

2λ(y)

= 2y + 2ρy − 1 ±√
4(1 + ρ2)y2 − 4(1 + ρ)y + 1

4ρ
. (7.8)

It is easy to see that the function (7.8) is a local analytic function. This means that it
is an analytic function except at the real zeros of the root which are the two branch
points at

y1 = 1 + ρ +√
2ρ

2(1 + ρ2)
, y2 = 1 + ρ −√

2ρ

2(1 + ρ2)
.

This is because when y traverses any small circuit around yj , j = 1, 2, the function
x±(y) defined by (7.8) does not return to its original value.

Lemma 7.1 For x ∈ [x1, x2]we have x ∈ R and the two roots given by

y+(x) = x + ρx +
√
x(x + ρ2x − 1),

y−(x) = x + ρx −
√
x(x + ρ2x − 1)

are complex conjugates. Hence, the interval (x1, x2) is mapped by x �→ y±(x) onto
a contour L. Any point on such a contour satisfies

|y(x)|2 = 2ρx2 + x.
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Proof Follows directly from the fact that the root function in (7.6) is zero for x = x1
and x2 and negative for x ∈ (x1, x2), which is symmetric with respect to the real
line. Using (7.5) and Vieta’s formula we can guarantee that any point on that contour
satisfies

|y(x)|2 = y+(x)y−(x)

= γ (x)

α(x)
= 2ρx2 + x

7.4 Solution of the Functional Equation

Since by definition the main unknown function f (x, y) is an analytic function in
the unit disks, this implies that if C1(x, y) = 0 then also

C2(x, y)f (x, 0)+ C3(x, y)f (0, y) = 0. (7.9)

Now the solution of the main functional equation is reduced to the solution of the
functional equation (7.9) on

{(x, y) : C1(x, y) = 0}.

It should be noted that it is sufficient to find one unknown of (7.9) and plug it
back in (7.9), using the kernel equation i.e. C1(x, y) = 0 one can latter find the
other unknown and hence the main unknown f (x, y) will be obtained. Now using
the kernel analysis in Sect. 7.3 the main functional equation can be reduced to the
following boundary value problem.

Lemma 7.2 Find a function f (.) which is analytic inside the unit disk and satisfies

%(ia(ϒy(u))f (ϒy(u))) = 0, u ∈ D

for some known function a(.) of a conformal mapping ϒy(.).

Proof Since the main unknown function f (x, y) is by definition an analytic
function in the unit disk, this implies that if C1(x, y) = 0, then also

C2(x, y)f (x, 0)+ C3(x, y)f (0, y) = 0, (7.10)

which is equivalent to

f (x, 0) = −C3(x, y)

C2(x, y)
f (0, y). (7.11)
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Now assume that the function given by (7.6) maps the interval [x1, x2] to a closed
contour L in the y-domain. That is to say the function y+(x) maps [x1, x2] to a
curve in the upper half plane while the function y−(x) maps [x1, x2] to a curve in
the lower half plane so that both functions defined by (7.6) map [x1, x2] to a closed
contour L which is symmetric with respect to the real line. Since for x ∈ [x1, x2]
we have x ∈ R. Then using this interval in the (7.11) we get

%(if (x, 0)) = 0 = %(−i
C3(x, y)

C2(x, y)
f (0, y)),

which can be written as

0 = %{−ia(y)f (0, y)} (7.12)

for every y ∈ L. The problem constructed is a Riemann-Hilbert boundary value
problem. The classical way to solve is to use some conformal mapping between L+
and the unit disk:

�y(y) : L+ �→ D+,

with inverse

ϒy(u) : D+ �→ L+,

then the problem (7.12) can be reduced to the following

0 = %{−ia(ϒy(u))f (ϒy(u))}, u ∈ D.

The boundary value problem constructed is a homogenous Riemann-Hilbert bound-
ary value problem. In fact it is a special case of the problem stated, e.g., in [11, 17].
According to [11] the solution of this problem, when it exists, is given by

f (0, y) = Q(y)φ(y), (7.13)

where Q(y) is some polynomial, and the function φ(y) is defined by

φ(y) =
⎧
⎨

⎩

exp
(

1
2iπ

∫
L

log
(
z−κ a(z)

a(z)

)
dz
z−y

)
if y ∈ L+

1
yκ

exp
(

1
2iπ

∫
L

log
(
z−κ a(z)

a(z)

)
dz
z−y

)
if y ∈ L−

with κ denoting the index of the Riemann–Hilbert problem and φ(+)(u) being the
interior limit of the function φ(u) on the unit circle. The solution of the Riemann-
Hilbert boundary value problem exists when κ < 0 and is unique if and only if for
k = 0, 1, · · · , |κ| − 1
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∫

L

zkC(z)

φ(+)(z)
dz = 0;

in that case, the polynomialQ(u) ≡ 0. In the case that κ = 0, the solution is unique
and Q(u) is some constant.

7.5 Remarks on Stability of the Functional Equation

Stability of functional equations is an important issue with many interesting
applications and we refer to, e.g., [4, 5, 7, 8, 19, 25] for more details. Stability can be
seen from different points of views see [25] and hundreds of researchers are dealing
with such amazing topic. It can be considered as a branch of optimization theory
(see, e.g., [20]), it is related to the notion of shadowing (see, e.g., [18]), and it has
applications in economics (see [9]). It should be noted that the issue of stability of
functional equations was originally motivated by a problem of S.M. Ulam posed in
1940 and Hyers’s answer to it published in [19].

There are many methods illustrated in the literature see e.g. [4] to investigate
stability, namely: the direct method, the method of invariant means, the method
based on the sandwich theorems, the weighted space method, the fixed point
method, and the method of shadowing. The notion of stability of functional
equations arises when we replace the functional equation by a functional inequality
which can be considered in some sense as a perturbation of the equation. The
stability question now is:

How do the solutions of the perturbed equation “the inequality” differ from those of the
given functional equation?

It seems that some methods used in such stability could be applied in investiga-
tions of solutions to (7.1), or even more general equations of the form

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y), x, y ∈ D ⊂ C.

(7.14)
It should be noted that the general solution of Eq. (7.14) is a function defined as
follows

f (·, ·) : D ⊂ C → C (7.15)

where D is the unit disk in the complex plane, and C is the set of all complex
numbers. For instance, we could use the following classical definition of Ulam-
Hyers stability (cf., e.g., [8]): We say that the functional equation (7.14) is Ulam-
Hyers stable if there is a r > 0 such that for any ε > 0 and

g : D ⊂ C → C
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with

|C1(x, y)g(x, y)− C2(x, y)g(x, 0)− C3(x, y)g(0, y)| ≤ ε (7.16)

there exists a solution f to Eq. (7.14) such that

|f (z,w)− g(z,w)| ≤ rε, (z, w) ∈ D. (7.17)

So, the Ulam-Hyers stability of Eq. (7.14) means that every approximate (in the
sense of (7.16)) solution of (7.14) is close (in the sense of (7.17)) to the exact
solutions of the equation. Therefore, in some cases, we could use approximate
solutions of the equation (which might have a simpler form) knowing that they are
close to the functions that solve the equation exactly. This shows that the issue of
stability of (7.14) (and various similar equations surveyed in [12]) is of interest and
should be investigated.
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6. Brzdęk, J., El-hady, E., Förg-Rob, W., Leśniak, Z.: A note on solutions of a functional equation
arising in a queuing model for a LAN gateway. Aequationes Math. 90(4), 671–681 (2016)
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Chapter 8
Approximation by Cubic Mappings

Paşc Găvruţa and Laura Manolescu

Abstract Starting with a stability problem posed by Ulam for group homomor-
phisms, we characterize the functions with values in a Banach space, which can be
approximated by cubic mappings with a given error.

Keywords Hyers-Ulam-Rassias stability · Cubic mapping
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8.1 Introduction

The study of stability problems for various functional equations originated from a
question posed by Ulam [38] in 1940 and reads as follows.

Let (G1, ◦) be a group, (G2, ∗) be a metric group with the metric d(·, ·) and
ε > 0. Does there exits a δ > 0 such that f : G1 → G2 satisfies

d(f (x ◦ y), f (x) ∗ f (y)) ≤ δ, for all x, y ∈ G1

then there exists a homomorphism h : G1 → G2 with

d(f (x), h(x)) ≤ ε, for all x ∈ G1?

The first affirmative answer to this question, was the one provided by Hyers [22],
who solved the problem for Banach spaces.

P. Găvruţa (�) · L. Manolescu
Department of Mathematics, Politehnica University of Timişoara, Timişoara, Romania
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Theorem 8.1 (Hyers [22]) Let f : E1 → E2 (E1, E2 are Banach spaces) be a
function such that

‖f (x + y)− f (x)− f (y)‖ ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

T (x) = lim
n→∞

f (2nx)

2n

exists for each x ∈ E1 and T : E1 → E2 is the unique additive mapping such that

‖f (x)− T (x)‖ ≤ δ, for every x ∈ E1.

Moreover, if f (tx) is continuous in t for each fixed x ∈ E1, then the function T is
linear.

Another important result was obtained by Rassias [34] for approximately additive
mappings, by using the so called the direct method.

Theorem 8.2 (Rassias [34]) Let f : E1 → E2 be a function between Banach
spaces, such that f (tx) is continuous in t for each fixed x. If f satisfies the
functional inequality

‖f (x + y)− f (x)− f (y)‖ ≤ θ(‖x‖p + ‖y‖p)

for some θ ≥ 0, 0 ≤ p < 1 and for all x, y ∈ E1, then there exists a unique linear
mapping T : E1 → E2 such that

‖f (x)− T (x)‖ ≤ 2θ

2 − 2p
‖x‖p, for each x ∈ E1.

A further generalization was obtained by Găvruţa [9], by replacing the Cauchy
difference by a control mapping ϕ and also introduced the concept of generalized
Hyers-Ulam-Rassias stability in the spirit of Th.M. Rassias’ approach.

In [24] was introduced the notion of ψ-additive mapping and was given a
generalized solution to Ulam’s problem for ψ-additive mappings.

Definition 8.1 Let ψ : R+ → R+ be a mapping, E1 and E2 be normed spaces. A
mapping f : E1 → E2 is called ψ-additive if there exists θ > 0 such that

‖f (x + y)− f (x)− f (y)‖ ≤ θ(ψ(‖x‖)+ ψ(‖y‖)),

for all x, y ∈ E1.

In [13], Găvruţa gave the following characterization of ψ-additive mappings.
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Theorem 8.3 We suppose that ψ verifies the following conditions:

(i) ψ(ts) ≤ ψ(t)ψ(s), for all t, s ≥ 0;
(ii) ψ(t + s) ≤ ψ(t)+ ψ(s), for all t, s ≥ 0;
(iii) ψ is monotone increasing on R+;
(iv) there exists t0 > 0 such that ψ(t0) < t0.

Let E1 be a normed space and E2 a real Banach space, then f : E1 → E2 is a
ψ−additive mapping if and only if there exists a constant c > 0 and an additive
mapping T : E1 → E2 such that

‖f (x)− T (x)‖ ≤ cψ(‖x‖), for all x ∈ E1.

Other aspects concerning the connection between �-additive mappings and
Hyers-Ulam stability were studied in the paper [17].

For basic results on the stability of mappings, one can see the references [6, 7,
23, 27].

For recent results on the Hyers-Ulam-Rassias stability, see also [3, 4, 19, 23, 27–
30, 32]. Some open problems in this field were solved in the following papers: [2,
10–14, 16, 18, 21].

In the paper [20], we have investigated the approximation of functions by additive
and quadratic mappings. We continue that work here by discussing about the
approximation of functions by cubic mappings.

8.2 Approximation of Functions by Additive
and by Quadratic Mappings

In this section, we present the main results from the paper [20].
We consider S to be an abelian semigroup, X to be a Banach space and the

following given functions:

f : S → X and � : S → R+.

Definition 8.2 We say that f is �-approximable by an additive map if there exists
T : S → X additive such that

‖f (x)− T (x)‖ ≤ �(x), x ∈ S.
We say that T is the additive �-approximation of f.

Problem 8.1 Give conditions on f such that f to be �-approximable by an
additive map.

We solve this problem by posing minimal conditions on �. We denote by

A = {� : S → R+ : lim
n→∞

�(2nx)

2n
= 0, for any x ∈ S}.
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Theorem 8.4 Let be � ∈ A . Then f is�-approximable by an additive map if and
only if

lim
n→∞

‖f (2nx + 2ny)− f (2nx)− f (2ny)‖
2n

= 0, (∀) x, y ∈ S

and there exists � ∈ A such that

‖f (2nx)− 2nf (x)‖ ≤ �(2nx)+ 2n�(x), x ∈ S.

In this case, the additive �-approximation of f is unique and is given by

T (x) = lim
n→∞

f (2nx)

2n
.

In the same paper, we give an analogous result for quadratic mappings.
The functional equation

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

is called a quadratic functional equation. Every solution of the quadratic functional
equation is said to be a quadratic mapping. The Hyers-Ulam stability for quadratic
functional equation was proved by Skof [37], for mappings acting between a normed
space and a Banach space. Cholewa [6] showed that Skof’s Theorem remains true
when the normed space is replaced with an abelian group.

Theorem 8.5 (Cholewa [6]) Let (G,+) be an abelian group and letE be a Banach
space. If a function f : G→ E satisfies the inequality

‖f (x + y)+ f (x − y)− 2f (x)− 2f (y)‖ ≤ δ

for some δ ≥ 0 and for all x, y ∈ G, then there exists a unique quadratic function
Q : G→ E such that

‖f (x)−Q(x)‖ ≤ (1/2)δ,

for any x ∈ G.
Let (G,+) be an abelian group and X a Banach space.

Definition 8.3 We say that f is �-approximable by a quadratic map if there exists
Q : G→ X quadratic mapping such that

‖f (x)−Q(x)‖ ≤ �(x), x ∈ G.

We say that Q is the quadratic � approximation of f .
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Problem 8.2 Give conditions on f such that f to be �-approximable by a
quadratic map.

We denote by

Q = {� : G→ R+ : lim
n→∞

�(2nx)

4n
= 0, for any x ∈ S}.

The set Q is the analogous of the set A from the case of approximation by
additive mappings.

In this case, we have the following characterization of functions which can be
approximated by quadratic ones.

Theorem 8.6 Let beQ ∈ Q. Then f is�-approximable by a quadratic map if and
only if the following two conditions holds

(i) lim
n→∞

‖f (2nx+2ny)+ f (2nx−2ny)−2f (2nx)−2f (2ny)‖
4n

= 0, (∀) x, y ∈G
(ii) there exists � ∈ Q such that

‖f (2nx)− 4nf (x)‖ ≤ �(2nx)+ 4n�(x), x ∈ G.

In this case, the quadratic �-approximation of f is unique and is given by

Q(x) = lim
n→∞

f (2nx)

4n

From this result, we have immediately the result of Borelli and Forti [1] on the
stability of quadratic mappings.

8.3 Approximation of Functions by Cubic Mappings

The study of the stability of the cubic functional equation,

f (x + 2y)+ 3f (x) = 3f (x + y)+ f (x − y)+ 6f (y), (8.1)

in the sense of Ulam, was given by Rassias [35] in 2001. The generalized Hyers-
Ulam-Rassias stability of this equation was given by Găvruţa and Cădariu [15] in
2002.

In 2002, Jun and Kim [25], introduced the following form of a cubic functional
equation

f (2x + y)+ f (2x − y) = 2f (x + y)+ 2f (x − y)+ 12f (x). (8.2)
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Every solution of this equation is said to be a cubic function. They established the
general solution and the Hyers-Ulam-Rassias stability for this functional equation.
The stability of Eq. (8.2) in fuzzy normed spaces was initiated in [31]. The stability
of the cubic functional equation in a non-Archimedean random normed space and
intuitionistic Random normed spaces was studied in the paper [36] and in the paper
[5], by using the fixed point method.

In the following, we will prove that the functional equations (8.1) and (8.2) are
equivalent with two other more functional equations, studied by other authors.

Theorem 8.7 Let (G,+) be an abelian group and X be a linear space. The
following functional equations are equivalent, for f : G→ X,

(A) f (x + 2y)+ 3f (x)− 3f (x + y)− f (x − y)− 6f (y) = 0, for all x, y ∈ G;
(B) f (2x+y)+f (2x−y)−2f (x+y)−2f (x−y)−12f (x) = 0, for all x, y ∈ G;
(C) f (2x+ y)+ f (x+ 2y)− 3f (x)− 3f (y)− 6f (x+ y) = 0, for all x, y ∈ G;
(D) 	3

yf (x) :=
3∑

k=0

(−1)3−k
(

3
k

)
f (x + ky)− 3!f (y) = 0, for all x, y ∈ G.

Proof (A)⇒ (B)

In (A), we take x = y = 0 and it follows that f (0) = 0.
In (A), we take y = −x and it follows that −5f (−x)+ 3f (x)− f (2x) = 0.
In (A), we take x = 0, y = x and it follows that −f (−x)− 9f (x)+ f (2x) = 0.
By adding the above relations, we obtain that

−6f (−x)− 6f (x) = 0,

so f is an odd function.
In (A), x → y and y → x and we get:

f (2x + y)+ 3f (y)− 3f (x + y)− f (y − x)− 6f (x) = 0.

We put here instead of y, −y and we use the fact that f is odd

(A′) f (2x − y)− 3f (y)− 3f (x − y)+ f (x + y)− 6f (x) = 0.

By adding the previous form of (A) with (A′), we obtain (B).

(B)⇒ (C)

In (B), we take x = y = 0 and we obtain that f (0) = 0.
In (B), we take x = 0 and we get f (y)+ f (−y) = 0, so f is odd.
In (B), we take y = 0 it follows f (2x)− 8f (x) = 0.

In (B) we replace x with x + y and y with x − y and we obtain:

f (3x + y)+ f (x + 3y)− 12f (x + y)− 2f (2x)− 2f (2y) = 0
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and since f (2x) = 8f (x), we have:

(B ′) f (3x + y)+ f (x + 3y)− 12f (x + y)− 16f (x)− 16f (y) = 0.

In (B) we replace x with x + y and y with 2y and we obtain:

(B ′′) 8f (x + 2y)+ 8f (x)− 12f (x + y)− 2f (x + 3y)− 2f (x − y) = 0

and by x → y and y → x

(B ′′′) 8f (y + 2x)+ 8f (y)− 12f (x + y)− 2f (y + 3x)+ 2f (x − y) = 0.

We add (B ′′) with (B ′′′), and using (B ′), it follows (C).

(C)⇒ (D)

If f verifies (C), then f is odd. Indeed, in (C) we take x = y = 0 and it follows
that f (0) = 0.

In (C) we take y = −x and we get:

f (−x)+ f (x)− 3[f (x)+ f (−x)] = 0,

so f (x)+ f (−x) = 0.
In (C), we take x = u+ 2v, y = −u− v:

f (−u)+ f (u+ 3v)− 3f (u+ 2v)− 3f (−u− v)− 6f (v) = 0

and since f is odd, we have

−f (u)+ f (u+ 3v)− 3f (u+ 2v)+ 3f (u+ v)− 6f (v) = 0,

that is, (D).

(D)⇒ (A)

In (D), we replace x with x − y and we obtain:

−f (x − y)+ 3f (x)− 3f (x + y)+ f (x + 2y)− 6f (y) = 0,

that is, (A).

Other functional equation equivalent with the ones mentioned above, was studied
in the papers [8, 33]. For the stability of equation (D), see Ref. [26].

Let (G,+) be an abelian group and X a Banach space. Let be the functions

f : G→ X, � : G→ R+.
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We define the following function Cf : G×G→ X,

Cf (x, y) = f (2x + y)+ f (2x − y)− 2f (x + y)− 2f (x − y)− 12f (x)

If F is a cubic map, then

F(2x) = 8F(x).

Indeed, if y = 0:

2F(2x) = 4F(x)+ 12F(x)

that is

F(2x) = 8F(x). (8.3)

Definition 8.4 We say that f is �-approximable by a cubic map if there exists
F : G→ X a cubic map such that

‖f (x)− F(x)‖ ≤ �(x), ∀x ∈ G. (8.4)

We say that F is the cubic � approximation of f.

Problem Give conditions on f such that f to be �-approximable by a cubic map.

We denote by

C =
{
� : G→ R+ : lim

n→∞
�(2nx)

8n
= 0, for all x ∈ G

}
.

Theorem 8.8 Let be F ∈ C . Then f is�-approximable by a cubic map if and only
if the following conditions holds

(i) lim
n→∞

‖Cf (2nx, 2ny)‖
8n

= 0, for all x, y ∈ G;
(ii) there exists� ∈ C such that

‖f (2nx)− 8nf (x)‖ ≤ �(2nx)+ 8n�(x), x ∈ G.

In this case, the cubic �-approximation of f is unique and is given by

F(x) = lim
n→∞

f (2nx)

8n
.

Proof First, we assume that f is �-approximable by a cubic map, i.e. there exist

F : G→ X
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such that the condition (8.4) holds. We have, for x, y ∈ G,

‖f (2x + y)− F(2x + y)‖ ≤ �(2x + y)

‖f (2x − y)− F(2x − y)‖ ≤ �(2x − y)

and also

‖f (x + y)− F(x + y)‖ ≤ �(x + y)

‖f (x − y)− F(x − y)‖ ≤ �(x − y)

It follows

‖Cf (x, y)‖ = ‖Cf (x, y)− CF (x, y)‖
= ‖f (2x + y)− F(2x + y)+ f (2x − y)− F(2x − y)
− 2[f (x + y)− F(x + y)] − 2[f (x − y)− F(x − y)]
− 12[f (x)− F(x)]‖

≤ �(2x + y)+�(2x − y)+ 2�(x + y)+ 2�(x − y)+�(x)

hence

‖Cf (2nx, 2ny)‖
8n

≤ �[2n(2x + y)]
8n

+ �[2n(2x − y)]
8n

+ 2
�[2n(x + y)]

8n
+ 2

�[2n(x − y)]
8n

+ 12
�(2nx)

8n

By letting n go to infinity in the above inequality, we obtain:

lim
n→∞

‖Cf (2nx, 2ny)‖
8n

= 0

Thus (i) holds.
Now we prove (ii). From (8.4), we have

‖f (2nx)− F(2nx)‖ ≤ �(2nx)

So, with (8.3), we obtain

‖f (2nx)− 8nf (x)‖ = ‖f (2nx)− F(2nx)+ 8nF (x)− 8nf (x)‖
≤ ‖f (2nx)− F(2nx)‖ + 8n‖F(x)− f (x)‖
≤ 8n�(x)+�(2nx)
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Conversely, from (ii), we get

∥∥∥
∥
f (2nx)

8n
− f (x)

∥∥∥
∥ ≤ �(2nx)

8n
+�(x) (8.5)

In (8.5), we put instead of x, 2mx to get

∥
∥∥∥
f (2n+mx)

8n+m
− f (2mx)

8m

∥
∥∥∥ ≤ �(2n+mx)

8n+m
+ �(2mx)

8m

By letting n,m go to infinity in the above inequality, we obtain

lim
n,m→∞

∥
∥∥∥
f (2n+mx)

8n+m
− f (2mx)

8m

∥
∥∥∥ = 0

Since X is a Banach space, it follows that the limit

F(x) = lim
n→∞

f (2nx)

8n

exists. And using (8.5)

‖F(x)− f (x)‖ ≤ �(x)

From (i) it follows that CF (x, y) = 0, hence F is cubic.
Now we show that F is unique. We suppose that F satisfies (8.4), i.e.

‖F(x)− f (x)‖ ≤ �(x)

and exists F ′ which satisfies

‖F ′(x)− f (x)‖ ≤ �(x).

By norm inequality, we have ‖F(x) − F ′(x)‖ ≤ 2�(x). But, F and F ′ are cubic
mappings and, by putting instead of x, 2nx and we get

‖F(2nx)− F ′(2nx)‖ ≤ 2�(2nx)

and by dividing the above inequality by 8n, we get

∥∥∥∥
F(2nx)

8n
− F ′(2nx)

8n

∥∥∥∥ ≤ 2
�(2nx)

8n
.

But lim
n→∞

�(2nx)

8n
= 0 so F(x) = F ′(X).
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As a corollary, we have the result of Jun and Kim [25].

Corollary 8.1 Let ϕ : G×G→ R+ be a function such that

∞∑

i=0

ϕ(2ix, 0)

8i
<∞ and

lim
n→∞

ϕ(2nx, 2ny)

8n
= 0, for all x, y ∈ X.

Suppose that a function f : G→ X satisfies

‖Cf (x, y)‖ ≤ ϕ(x, y), for all x, y ∈ X. (8.6)

Then there exists a unique cubic function F : X → Y such that

‖f (x)− F(x)‖ ≤ 1

16

∞∑

i=0

ϕ(2ix, 0)

8i
,

for all x ∈ G. The function F is given by

F(x) = lim
n→∞

f (2nx)

8n
.

Proof In (8.6), we take y = 0:

‖f (2x)− 8f (x)‖ ≤ 1

16
8ϕ(x, 0)

and by induction, we get

‖f (2nx)− 8nf (x)‖ ≤ 8n
1

16

∞∑

i=0

ϕ(2ix, 0)

8i
, for all x ∈ G.
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Politehnica Timişoara Ser. Mat.-Fiz. 47(61)(1), 59–70 (2002)
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18. Găvruţa, L., Găvruţa, P.: On a problem of John M. Rassias concerning the stability in Ulam
sense of Euler-Lagrange equation. In: Rassias, J.M. (ed.) Functionl Equation, Difference
Inequalities and Ulam Stability Notions, pp. 47–53. Nova Science Publishers, New York (2010)
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Abstract In this paper we investigate the solutions and the Hyers-Ulam stability of
the μ-Jensen functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x), x, y ∈ S,

a variant of the μ-Jensen functional equation

f (xy)+ μ(y)f (σ (y)x) = 2f (x), x, y ∈ S,

and the μ-quadratic functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x)+ 2f (y), x, y ∈ S,
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9.1 Introduction

In 1940, Ulam [31] delivered a wide ranging talk before the Mathematics Club of
the University of Wisconsin in which he posed a number of important unsolved
problems. Among those was the question concerning the stability of group homo-
morphisms: Given a group G1, a metric group (G2, d), a number ε > 0 and
a mapping f : G1 −→ G2 which satisfies d(f (xy), f (x)f (y)) < ε for all
x, y ∈ G1, does there exist a homomorphism g : G1 −→ G2 and a constant
k > 0, depending only on G1 and G2 such that d(f (x), g(x)) < kε for all x ∈ G1?

In the case of a positive answer to this problem, we say that the Cauchy functional
equation f (xy) = f (x)f (y) is stable for the pair (G1,G2).

The first affirmative partial answer was given in 1941 by Hyers [16] where G1,
G2 are Banach spaces.

In 1950 Aoki [2] provided a generalization of Hyers’ theorem for additive
mappings and in 1978 Rassias [22] generalized Hyers’ theorem for linear mappings
by allowing the Cauchy difference to be unbounded.

Beginning around the year 1980, several results for Hyers-Ulam-Rassias stability
of many functional equations have been proved by several mathematicians. For more
details, we can refer for example to [3, 8–10, 12–14, 17, 19, 23–26].

Let S be a semigroup with identity element e. Let σ be an involutive morphism
of S. That is σ is an involutive homomorphism:

σ(xy) = σ(x)σ (y) and σ(σ(x)) = x for all x, y ∈ S,

or σ is an involutive anti-homomorphism:

σ(xy) = σ(y)σ (x) and σ(σ(x)) = x for all x, y ∈ S.

We say that f : S −→ C satisfies the Jensen functional equation if

f (xy)+ f (xσ(y)) = 2f (x), (9.1)

for all x, y ∈ S.
A complex valued function f defined on a semigroup S is a solution of a variant

of the Jensen functional equation if

f (xy)+ f (σ(y)x) = 2f (x), (9.2)

for all x, y ∈ S. Equations (9.1) and (9.2) coincide if f is central, and the central
solutions are the maps of the form f = a + c, where a : S −→ C is an additive
map such that a(σ (x)) = −a(x) and where c ∈ C is a constant.

The Jensen functional equation (9.1) takes the form

f (xy)+ f (xy−1) = 2f (x) (9.3)
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for all x, y ∈ S when σ(x) = x−1 and S is a group. The new equation (9.2) is much
simpler than (9.1). For a more general study we refer the reader to Ng’s paper [21]
and Stetkær’s book [26].

The stability in the sense of Hyers-Ulam of the Jensen equations (9.1) and (9.3)
has been studied by various authors for the case when S is an abelian group or a
vector space. The interested reader is referred to the papers of Jung [18] and Kim
[20].

In 2010, Faiziev and Sahoo [11] proved the Hyers-Ulam stability of Eq. (9.3) on
some non-commutative groups such as metabelian groups and T (2,K), where K
is an arbitrary commutative field with characteristic different from two. They have
shown as well that every semigroup can be embedded into a semigroup in which the
Jensen equation is stable.

The quadratic functional equation

f (x + y)+ f (x − y) = 2f (x)+ 2f (y), x, y ∈ S (9.4)

has been extensively studied (see for example [1, 17, 26]). It was generalized by
Stetkær [25] to the more general equation

f (x + y)+ f (x + σ(y)) = 2f (x)+ 2f (y), x, y ∈ S. (9.5)

A stability result for the quadratic functional equation (9.4) was derived by Cholewa
[5] and by Czerwik [6]. Bouikhalene et al. [3] stated the stability theorem of
Eq. (9.5). In [7] the stability of the quadratic functional equation

f (xy)+ f (xy−1) = 2f (x)+ 2f (y), x, y ∈ S (9.6)

was obtained on amenable groups.
Bouikhalene et al. [4] obtained the stability of the quadratic functional equation

f (xy)+ f (xσ(y)) = 2f (x)+ 2f (y), x, y ∈ S (9.7)

on amenable semigroups.
In this paper we consider the following functional equations:
The μ-Jensen functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x), x, y ∈ S, (9.8)

a variant of the μ-Jensen functional equation

f (xy)+ μ(y)f (σ (y)x) = 2f (x), x, y ∈ S, (9.9)

and the μ-quadratic functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x)+ 2f (y), x, y ∈ S, (9.10)

whereμ: S −→ C is a multiplicative function such thatμ(xσ(x)) = 1 for all x ∈ S.
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Our results are organized as follows. In Sects. 9.2 and 9.3 we give a proof of
the Hyers-Ulam stability of the Jensen functional equation (9.1) and a variant of
the Jensen functional equation (9.2) on an amenable semigroup. As an application
(Sect. 9.4), we prove the Hyers-Ulam stability of the symmetric functional equation

f (xy)+ f (yx) = 2f (x)+ 2f (y), x, y ∈ G, (9.11)

where G is an amenable group.
In Sects. 9.5 and 9.6 we prove that the μ-Jensen equation (9.8), respectively,

the μ-quadratic functional equation (9.10) possesses the same solutions as Jensen’s
functional equation (9.1), respectively, the quadratic functional equation (9.7).
Furthermore, we prove the equivalence of their stability theorems on semigroups.

Throughout this paper m denotes a linear functional on the space B(S,C),
namely the space of all bounded functions on S.

The linear functional m is called a left, respectively, right invariant mean if and
only if

inf
x∈S f (x) ≤ m(f ) ≤ sup

x∈S
f (x); m(af ) = m(f ); respectively, m(fa) = m(f )

for all f ∈ B(S,R) and a ∈ S, where af and fa are the left and right translates of
f defined by af (x) = f (ax); fa(x) = f (xa), x ∈ S.

A semigroup S which admits a left, respectively, right invariant mean on B(S,C)
will be called left, respectively, right amenable. If on the space B(S,C) there exists
a real linear functional which is simultaneously a left and right invariant mean, then
we say that S is two-sided amenable or just amenable. We refer to [15] for the
definition and properties of invariant means.

9.2 Stability of a Variant of the Jensen Functional Equation

In this section we investigate the Hyers-Ulam stability of the functional equa-
tion (9.2) on amenable semigroups.

Theorem 9.1 Let S be an amenable semigroup with identity element e. Let σ be
an involutive anti-homomorphism, and let f : G −→ C be a function. Assume that
there exists δ ≥ 0 such that

|f (xy)+ f (σ(y)x)− 2f (x)| ≤ δ (9.12)

for all x, y ∈ S. Then, there exists a unique solution J : S −→ C of the functional
equation (9.2) such that J (σ (x)) = −J (x) and

|f (x)− J (x)− f (e)| ≤ δ (9.13)
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for all x ∈ S. Furthermore if S is a group and σ(x) = x−1 then there exists a unique
additive map a : S −→ C such that

|f (x)− a(x)− f (e)| ≤ δ (9.14)

for all x ∈ S.

Proof Let x, y be in S. Replacing x by σ(x) in (9.12) we get

|f (σ(x)y)+ f (σ(y)σ (x))− 2f (σ(x))| ≤ δ (9.15)

Adding (9.12) to (9.15), and using the triangle inequality we obtain that

|[f (xy)+ f (σ(y)σ (x))] + [f (σ(y)x)+ f (σ(x)y)] − 2[f (x)+ f (σ(x))]| ≤ 2δ.
(9.16)

Hence

|f e(xy)+ f e(σ (y)x)− 2f e(x)| ≤ δ, (9.17)

where

f e(x) = f (x)+ f (σ(x))
2

for all x ∈ S.

Subtracting (9.15) from (9.12), and using the triangle inequality we derive that

|f o(xy)+ f o(σ (y)x)− 2f o(x)| ≤ δ (9.18)

for all x, y ∈ S, where

f o(x) = f (x)− f (σ(x))
2

for all x ∈ S.

Setting x = e in (9.17) we obtain

|f e(y)− f e(e)| ≤ δ

2
for all x, y ∈ S. (9.19)

By replacing x by y in (9.18) and by the fact that f o is odd we get

|f o(yx)− f o(σ (y)x)− 2f o(y)| ≤ δ. (9.20)

This implies that for each y fixed in S, the function x −→ f o(yx)− f o(σ (y)x) is
bounded. Since S is amenable, then there exists an invariant mean m on the space
of complex bounded functions on S and we can define the new mapping on S by

ψ(y) = m{yf o −σ(y) f o}, for all y ∈ S. (9.21)
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Using (9.21) and the fact that m is an invariant mean we get

ψ(yz)+ ψ(σ(z)y) = m{yzf o −σ(z)σ (y) f o} +m{σ(z)yf o −σ(y)z f o}
= m{yzf o −σ(y)z f o} +m{σ(z)yf o −σ(z)σ (y) f o}
= m{z[yf o −σ(y) f o]} +m{[yf o −σ(y) f o]σ(z)}
= m{yf o −σ(y) f o} +m{yf o −σ(y) f o}
= ψ(y)+ ψ(y) = 2ψ(y)

for all x, y ∈ S. The function

J (y) = ψ(y)

2

satisfies the variant of the Jensen functional equation (9.2), J (σ (y)) = −J (y) for
all y ∈ S, and we have the following inequality

|J (y)− f o(y)| = |1
2
m{yf o −σ(y) f o − 2f (y)}| (9.22)

≤ 1

2
sup
x∈S

|f o(yx)− f o(σ (y)x)− 2f o(y)| ≤ δ

2
.

Finally, we obtain

|f (y)− J (y)− f (e)| = |f e(y)+ f o(y)− J (y)− f (e)|
≤ |f e(y)− f (e)| + |f o(y)− J (y)| ≤ δ

for all y ∈ S. This proves the first part of Theorem 9.1.
If S is a group and σ(x) = x−1, then from [26, Proposition 12.29] we have

J = a, where a : S −→ C is an additive map.
Now suppose that there exist two odd functions J1 and J2 satisfying the variant

of the Jensen functional equation (9.2), and the following inequality

|f (y)− Ji(y)− f (e)| ≤ δ, with i = 1, 2. (9.23)

The function J := J1 − J2 is also a solution of the functional equation (9.2), that is

J (xy)+ J (σ (y)x) = 2J (x) for all x, y ∈ S. (9.24)

By using the triangle inequality we get |J (x)| ≤ 2δ for all x ∈ S.
Replacing y by x in (9.24) and using that J (σ (x)) = −J (x) we get

J (x2) = 2J (x) (9.25)
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and consequently, we get J (x2n) = 2nJ (x) for all n ∈ N. Since J is a bounded map
then J (x) = 0 for all x ∈ S. This completes the proof of Theorem 2.1. ��

The stability of Eq. (9.2) has been obtained in [4, Lemma 3.2], on amenable
semigroups with identity element and under the condition that σ is an involutive
homomorphism. In the following theorem we investigate the Hyers-Ulam stability
of the functional equation (9.2) on amenable semigroups without identity element,
and where σ is a homomorphism.

Theorem 9.2 Let S be an amenable semigroup. Let σ be an involutive homomor-
phism of S and let f : S −→ C be a function. Assume that there exists δ ≥ 0 such
that

|f (xy)+ f (σ(y)x)− 2f (x)| ≤ δ (9.26)

for all x, y ∈ S. Then there exists a unique additive function a : S −→ C and
x0 ∈ S such that

|f (x)− a(x)+ f (x0)− f (σ(x0))− f (x2
0)| ≤ 4δ (9.27)

for all x ∈ S.
Proof In the proof we use some ideas from Stetkær [28].

Let x, y, z be in S. If we replace x by xy and y by z in (9.26) we get

|f (xyz)+ f (σ(z)xy)− 2f (xy)| ≤ δ. (9.28)

By replacing x by σ(z)x in (9.26) we get

|f (σ(z)xy)+ f (σ(y)σ (z)x)− 2f (σ(z)x)| ≤ δ. (9.29)

Replacing y by z in (9.26) and multiplying the result by 2 we get

|2f (xz)+ 2f (σ(z)x)− 4f (x)| ≤ 2δ. (9.30)

If we replace y by yz in (9.26) we get

|f (xyz)+ f (σ(y)σ (z)x)− 2f (x)| ≤ δ. (9.31)

Subtracting (9.31) from (9.29) and using the triangle inequality we get

|f (σ(z)xy)− 2f (σ(z)x)− f (xyz)+ 2f (x)| ≤ 2δ. (9.32)

Adding (9.30) and (9.32) and using the triangle inequality we obtain

|2f (xz)− 2f (x)+ f (σ(z)xy)− f (xyz)| ≤ 4δ. (9.33)
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Subtracting (9.33) from (9.28) and applying the triangle inequality we get

|2f (xyz)− 2f (xy)− 2f (xz)+ 2f (x)| ≤ 5δ, (9.34)

which can be written as follows

|[2f (xyz)− 2f (x)] − [2f (xy)− 2f (x)] − [2f (xz)− 2f (x)]| ≤ 5δ. (9.35)

Now, for each fixed x0 in S we define on S the functionAx0(t) = 2f (x0t)−2f (x0).
Therefore, the inequality (9.35) can be written as follows

|Ax0(yz)− Ax0(y)− Ax0(z)| ≤ 5δ for all y, z ∈ S. (9.36)

Since S is an amenable semigroup then by Szekelyhidi [30] there exists a unique
additive mapping b : S −→ C such that

|Ax0(x)− b(x)| ≤ 5δ for all x ∈ S. (9.37)

Replacing y in (9.26) by yz we get

|f (xyz)+ f (σ(yz)x)− 2f (x)| ≤ δ. (9.38)

If we replace x by σ(y) and y by σ(z)x in (9.26) we derive

|f (σ(y)σ (z)x)+ f (zσ (xy))− 2f (σ(y))| ≤ δ. (9.39)

Replacing x by z and y by σ(xy) in (9.26) we get

|f (zσ (xy))+ f (xyz)− 2f (z)| ≤ δ. (9.40)

Subtracting (9.39) from the sum of (9.38) and (9.40) and applying the triangle
inequality we get

|2f (xyz)− 2f (x)− 2f (z)+ 2f (σ(y))| ≤ 3δ. (9.41)

By replacing x and y by x0, and z by x in (9.41) we get

|2f (x2
0x)− 2f (x0)− 2f (x)+ 2f (σ(x0))| ≤ 3δ, (9.42)

which can be expressed as follows

|2f (x2
0x)− 2f (x2

0)− 2f (x)− 2f (x0)+ 2f (σ(x0))+ 2f (x2
0)| ≤ 3δ. (9.43)

Since Ax2
0
(x) = 2f (x2

0x)− 2f (x2
0), then we have

|Ax2
0
(x)− 2f (x)− 2f (x0)+ 2f (σ(x0))+ 2f (x2

0)| ≤ 3δ. (9.44)
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Subtracting (9.37) from (9.44) and using the triangle inequality we get

|f (x)− a(x)+ f (x0)− f (σ(x0))− f (x2
0)| ≤ 4δ, (9.45)

where a = 1
2b. This completes the proof of Theorem 2.2. ��

9.3 Hyers-Ulam Stability of Eq. (9.1) on Amenable
Semigroups

In this section, we investigate the Hyers-Ulam stability of Eq. (9.1) on an amenable
semigroup, where σ is an involutive anti-homomorphism.

Theorem 9.3 Let S be an amenable semigroup with identity element e. Let σ be an
involutive anti-homomorphism of S. Let f : S −→ C be a function which satisfies
the following inequality

|f (xy)+ f (xσ(y))− 2f (x)| ≤ δ (9.46)

for all x, y ∈ S and for some nonnegative δ. Then there exists a unique solution j
of the Jensen equation (9.1) such that j (σ (x)) = −j (x) and

|f (x)− j (x)− f (e)| ≤ 3δ (9.47)

for all x ∈ S.

First, we prove the following useful lemma.

Lemma 9.1 Let S be a semigroup. Let σ be an involutive anti-homomorphism of
S. Let f : S −→ C be a function such that f (σ(x)) = −f (x) for all x ∈ S and for
which there exists a solution g of the Drygas functional equation

g(yx)+ g(σ (y)x) = 2g(x)+ g(y)+ g(σ (y)), x, y ∈ S (9.48)

such that |f (x)− g(x)| ≤ M , for all x ∈ S and for some non negative M . Then

g(x) = lim
n→+∞ 2−nf (x2n) for all x ∈ S. (9.49)

Furthermore g(σ (x)) = −g(x) for all x ∈ S and g satisfies the Jensen functional
equation

g(xy)+ g(xσ(y)) = 2g(x) for all x, y ∈ S.
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Proof Replacing y by xσ(x) in (9.48) we obtain

g((xσ(x))2)+ g((xσ(x))2) = 2g(xσ(x))+ g(xσ(x))+ g(xσ(x)), (9.50)

which implies that g((xσ(x))2) = 2g(xσ(x)) for all x ∈ S.
By applying the induction assumption we get

2ng(xσ(x)) = g((xσ(x))2
n

) (9.51)

for all n ∈ N and for all x ∈ S.
Now, by the hypothesis, f = g + b where b is a bounded function. Since f is

odd we have f = go + bo and ge + be = 0. Using (9.51) and the fact that

g((xσ(x))2
n

) = ge((xσ (x))2
n

)

we get

|g(xσ(x))| = 2−n|ge((xσ (x))2n)| ≤ 2−n|be(xσ (x))2n |. (9.52)

Letting n → +∞ in the formula (9.52), we obtain that g(xσ(x)) = 0 and hence
g(σ (x)x) = 0 for all x ∈ S.

Setting y = x in (9.48) we get

g(x2) = 2g(x)+ g(x)+ g(σ (x)). (9.53)

If we replace x by σ(x) in (9.53) we have

g(σ (x)2) = 2g(σ (x))+ g(x)+ g(σ (x)). (9.54)

By adding (9.53) and (9.54) we get that ge(x2) = 4ge(x), and by induction it
follows that

ge(x2n) = 22nge(x) (9.55)

for all x ∈ S and for all n ∈ N.
Using (9.55) and the fact that ge + be = 0 we have

ge(x) = 2−2nge(x2n) = −2−2nbe(x2n). (9.56)

Therefore, we get

|ge(x)| = |2−2nge(x2n)| ≤ 2−2n |be(x2n)|.
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So by letting n → +∞ we obtain that ge(x) = 0 for all x ∈ S, which proves that
g(σ (x)) = −g(x) for all x ∈ S.

Using (9.53) and that g is odd we get that g(x2) = 2g(x), and by induction we
deduce that

g(x2n) = 2ng(x) (9.57)

for all x ∈ S, and for all n ∈ N.
Using (9.57) we get

2−nf (x2n) = 2−n[g(x2n)+ bo(x2n)] = g(x)+ 2−nbo(x2n).

Thus

|g(x)− 2−nf (x2n)| ≤ 2−n|bo(x2n)|. (9.58)

By letting n→ +∞ we obtain

g(x) = lim
n→+∞ 2−nf (x2n).

We will prove that g satisfies the Jensen functional equation (9.1).
Since g(σ (x)) = −g(x) for all x ∈ S, the Drygas functional equation (9.48) can

be written as follows

g(yx)+ g(σ (y)x) = 2g(x), x, y ∈ S. (9.59)

Replacing x by σ(x) in (9.59) we get

g(yσ(x))+ g(σ (y)σ (x)) = 2g(σ (x)).

Using that g(σ (x)) = −g(x) for all x ∈ S we obtain

g(xσ(y))+ g(xy) = 2g(x), x, y ∈ S,

which means that g satisfies the Jensen functional equation (9.1). This completes
the proof of Lemma 9.1. Now, we are ready to prove Theorem 9.3. Setting x = e

in (9.46) we get

|f e(y)− f (e)| ≤ δ

2
(9.60)

for all y ∈ S.



178 K. Belfakih et al.

The inequalities (9.46), (9.60) and the triangle inequality yield

|f (xy) + f (yx)− 2f (x)− 2f (y)+ 2f (e)| ≤ |f (xy)+ f (xσ(y))− 2f (x)|
+ |f (yx)+ f (yσ(x)− 2f (y)| + |2f (e)− f (xσ(y))− f (yσ(x))| ≤ 3δ.

(9.61)

Hence, from (9.46), (9.60) and (9.61) we get

|f (yx) + f (σ(y)x)− 2f (x)| ≤ |f (yx)+ f (xy)− 2f (y)− 2f (x)+ 2f (e)|
+ |f (σ(y)x)+ f (xσ(y))− 2f (σ(y))− 2f (x)+ 2f (e)|
+ | − f (xy)− f (xσ(y))+ 2f (x)| + |2f (y)+ 2f (σ(y))− 4f (e)| ≤ 9δ.

(9.62)

From (9.46) and (9.62) we obtain

2|f o(yx) + f o(yσ(x))− 2f o(y)| (9.63)

= |f (yx)−f (σ(x)σ (y))+ f (yσ(x))− f (xσ(y))− 2f (y)+ 2f (σ(y))|
≤ |f (yx)+ f (yσ(x))− 2f (y)| + |f (xσ(y))+f (σ(x)σ (y))−2f (σ(y))|
≤ 10δ.

Consequently we have

|f o(yx)+ f o(yσ(x))− 2f o(y)| ≤ 5δ (9.64)

for all x, y ∈ S. Thus for fixed y ∈ S, the functions x −→ f o(yx) − f o(xσ(y))

and x −→ f o(xy)+ f o(xσ(y))− 2f o(x) are bounded on S.
Furthermore,

m{f oσ(y)σ (z) + f oσ(y)z − 2f oσ(y)} = m{(f oσ(z) + f oz − 2f o)σ(y)} (9.65)

= m{f oσ(z) + f oz − 2f o},

where m is an invariant mean on S.
By using (9.62) we get that, for every fixed y ∈ S, the function

x −→ f o(yx)+ f o(σ (y)x)− 2f o

is bounded and

m{zyf o +σ(z)y f o − 2yf
o} = m{y(zf o +σ(z) f o − 2f o)} (9.66)

= m{zf o +σ(z) f o − 2f o}.
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Now we define the new mapping

φ(y) := m{yf o − f oσ(y)}, y ∈ S. (9.67)

By using the definition of φ and m, the equalities (9.65) and (9.66), we obtain that

φ(zy) + φ(σ(z)y) = m{zyf o − f oσ(y)σ (z)} +m{σ(z)yf o − f oσ(y)z} (9.68)

=m{zyf o +σ(z)y f o − 2yf
o} −m{f oσ(y)σ (z) + f oσ(y)z − 2f oσ(y)}

+ 2m{yf o − f oσ(y)}
=m{zf o +σ(z) f o − 2f o} −m{f oσ(z) + f oz − 2f o} + 2m{yf o − f oσ(y)}
=m{zf o − f oσ(z)} +m{σ(z)f o − f oz } + 2m{yf o − f oσ(y)}
= 2φ(y)+ φ(z)+ φ(σ(z)),

which implies that φ is a solution of the Drygas functional equation (9.48).
Furthermore, we have

|φ
2
(y)− f o(y)| = 1

2
|φ(y)− 2f o(y)| = 1

2
|m{yf o − f oσ(y) − 2f o(y)}| (9.69)

≤ 1

2
sup
x∈S

|f o(yx)− f o(xσ(y))− 2f o(y)|

= 1

2
sup
x∈S

|f o(yx)+ f o(yσ(x))− 2f o(y)|

≤ 5

2
δ.

By Lemma 9.1, it follows that the function φ
2 is a solution of the Drygas functional

equation (9.48) and φ
2 − f o is a bounded mapping, thus we have

φ

2
= lim
n→+∞ 2−nf o(x2n), (9.70)

which implies that φ2 (σ (x)) = −φ
2 (x) for all x ∈ S, consequently φ

2 is a solution of
the Jensen functional equation (9.1). On the other hand, we have

|f (x)− φ

2
− f (e)| = |f e(x)+ f o(x)− φ

2
− f (e)| (9.71)

≤ |f e(x)− f (e)| + |f o(x)− φ

2
|

≤ δ

2
+ 5δ

2
+ 3δ.
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We can use the same method as in Theorem 9.1 to prove the uniqueness of the
derived solution. This completes the proof of Theorem 9.3. ��

9.4 Application: Stability of the Symmetric Functional
Equation (9.11)

In this section we use the result obtained in Sect. 9.3 to prove the stability of the
symmetric functional equation (9.11).

Theorem 9.4 Let G be an amenable group, and f : G −→ C a function. Assume
that there exists a non-negative M such that

|f (xy)+ f (yx)− 2f (x)− 2f (y)| ≤ M (9.72)

for all x, y ∈ G. Then, there exists a unique solution J : G −→ C of the symmetric
functional equation (9.11) such that

|f (x)− J (x)− f (e)| ≤ 12M for all x ∈ G. (9.73)

Proof In the proof we use some ideas from Stetkær [26, Proposition 2.17].
Setting x = y = e in (9.72) we get

|f (e)| ≤ M

2
. (9.74)

If we replace y by x−1 in (9.72) we get

|f (e)− f (x)− f (x−1)| ≤ M

2
. (9.75)

Subtracting (9.75) from (9.74) and using the triangle inequality we obtain

|f (x)+ f (x−1)| ≤ M. (9.76)

Replacing x by xy and y by x−1 in (9.72) we derive

|f (xyx−1)+ f (y)− 2f (xy)− 2f (x−1)| ≤ M. (9.77)

Using (9.76), (9.77) and the triangle inequality we deduce that

|f (xyx−1)+ f (y)− 2f (xy)+ 2f (x)| ≤ 3M. (9.78)

By replacing y by y−1 in (9.78) we get that

|f (xy−1x−1)+ f (y−1)− 2f (xy−1)+ 2f (x)| ≤ 3M. (9.79)
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Adding (9.78) to (9.79) and using the triangle inequality we have that

|[f (xyx−1)+ f ((xyx−1)−1)] + [f (y)+ f (y−1)] − 2f (xy) (9.80)

−2f (xy−1)+ 4f (x)| ≤ 6M.

Using (9.76), (9.80) and the triangle inequality we obtain

|f (xy)+ f (xy−1)− 2f (x)| ≤ 4M. (9.81)

By applying Theorem 9.3 there exists J : G −→ C, unique solution of the Jensen
functional equation (9.3), that is

J (xy)+ J (xy−1) = 2J (x), (9.82)

such that J (x−1) = −J (x) and

|f (x)− J (x)− f (e)| ≤ 12M (9.83)

for all x ∈ G. Interchanging x and y in (9.82) we obtain

J (yx)+ J (yx−1) = 2J (y). (9.84)

Adding (9.82) to (9.84) we get

J (xy)+ J (yx)+ J (xy−1)+ J (yx−1) = 2J (x)+ 2J (y). (9.85)

Since J (x−1) = −J (x) for all x ∈ G, then we deduce that

J (xy)+ J (yx) = 2J (x)+ 2J (y) (9.86)

for all x, y ∈ G, which means that J satisfies the symmetric functional equa-
tion (9.11).

For the uniqueness of the solution J we use that if J is a solution of (9.86) then
J (x2n) = 2nJ (x) for every integer n and for all x ∈ G, and by similar computations
to those used above we deduce the rest of the proof. ��

9.5 μ-Jensen Functional Equation

The trigonometric functional equations having a multiplicative function μ in front
of terms like f (xσ(y)) or f (σ(y)x) have been studied in many papers. The μ-
d’Alembert’s functional equation

f (xy)+ μ(y)f (xy−1) = 2f (x)f (y), x, y ∈ S (9.87)
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which is an extension of d’Alembert’s functional equation

f (xy)+ f (xy−1) = 2f (x)f (y), x, y ∈ S

has been treated systematically by Stetkær [27] on groups. The non-zero solutions
of (9.87) on groups with involution are the normalized traces of certain representa-
tion of S on C

2. On abelian groups the solutions of (9.87) are

f (x) = γ (x)+ μ(x)γ (x−1)

2
, where γ : S −→ C

is a multiplicative function (see [27]).
On abelian groups the solutions of μ-Wilson’s functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x)g(y), x, y ∈ S

are studied in [9] and [29]. We refer also the interested reader to [8] and [10].
In the present section we prove that the μ-Jensen functional equations (9.8), (9.9)

have a non-zero solution only if μ = 1. We note that in this case σ is an arbitrary
surjective homomorphism which is not necessary involutive.

Theorem 9.5 Let S be a semigroup, σ : S −→ S be a homomorphism, and μ be
a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S. If the functional
equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x), x, y ∈ S (9.88)

has a non-zero solution then μ = 1. That is, the μ-Jensen functional equation (9.88)
possesses the same solutions to those of the Jensen functional equation (1.2).

Proof Making the substitutions (xy, z), (xσ (y), z) in (9.88) we get respectively

f (xyz)+ μ(z)f (xyσ(z)) = 2f (xy), (9.89)

f (xσ(y)z)+ μ(z)f (xσ(y)σ (z)) = 2f (xσ(y)). (9.90)

Multiplying (9.90) by μ(y) we obtain

μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z)) = 2μ(y)f (xσ(y)). (9.91)

Adding (9.89) and (9.91) and applying (9.88) we obtain

f (xyz)+ μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z)) = 4f (x).
(9.92)
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By using (9.88), Eq. (9.92) can be written as follows

2f (x)+ μ(z)[f (xyσ(z))+ μ(yσ(z))f (xσ(y)z) = 4f (x). (9.93)

Multiplying (9.93) by μ(σ(z)) and using the fact that μ(zσ(z)) = 1 we get after
some simplification that

f (xyσ(z))+ μ(yσ(z))f (xσ(y)z) = 2μ(σ(z))f (x). (9.94)

By replacing y in (9.88) by yσ(z) we get

f (xyσ(z))+ μ(yσ(z))f (xσ(y)σ 2(z)) = 2f (x). (9.95)

Subtracting (9.95) from (9.94) we deduce that

μ(yσ(z))[f (xσ(y)z)− f (xσ(y)σ 2(z))] = 2[μ(σ(z))− 1]f (x). (9.96)

Multiplying the last identity by μ(σ(y)z) and using the fact that μ(zσ(z)) = 1 we
obtain that

f (xσ(y)z)− f (xσ(y)σ 2(z)) = 2μ(σ(y))[1 − μ(z)]f (x). (9.97)

On the other hand, if we make the substitutions (xσ (y), z) and (xσ (y), σ (z))

in (9.88) we deduce respectively

f (xσ(y)z)+ μ(z)f (xσ(y)σ (z)) = 2f (xσ(y)). (9.98)

f (xσ(y)σ (z))+ μ(σ(z))f (xσ(y)σ 2(z)) = 2f (xσ(y)). (9.99)

Multiplying (9.99) by μ(z) and using the fact that μ(zσ(z)) = 1 we derive that

μ(z)f (xσ(y)σ (z))+ f (xσ(y)σ 2(z)) = 2μ(z)f (xσ(y)). (9.100)

Subtracting (9.100) from (9.98) we obtain

f (xσ(y)z)− f (xσ(y)σ 2(z)) = 2[1 − μ(z)]f (xσ(y)). (9.101)

By comparing (9.101) and (9.97) we deduce that

2μ(σ(y))[1 − μ(z)]f (x) = 2[1 − μ(z)]f (xσ(y)), (9.102)

from which we get

[1 − μ(z)][μ(σ(y))f (x)− f (xσ(y))] = 0. (9.103)
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If we suppose that μ 
= 1, then from (9.103) we deduce that

f (xσ(y)) = μ(σ(y))f (x) (9.104)

for all x, y ∈ S. If we combine Eqs. (9.104) and (9.88) we get

f (xy)+ μ(y)μ(σ(y))f (x) = 2f (x). (9.105)

Since μ(yσ(y)) = 1 we deduce that f (xy) = f (x) for all y ∈ S. Therefore (9.88)
becomes

(μ(y)− 1)f (x) = 0

which means that either f = 0 or μ = 1. Since μ 
= 1, then we get f = 0, which
contradicts the assumption that f 
= 0. ��
Theorem 9.6 Let S be a semigroup, let σ : S −→ S be a homomorphism, and μ
be a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S. If the variant of
the μ-Jensen functional equation

f (xy)+ μ(y)f (σ (y)x) = 2f (x), x, y ∈ S (9.106)

has a non-zero solution, then μ = 1.

Proof The computations used in [10] for g = 1 show that for all fixed a in S, the
mapping x −→ f (ax)− f (a) is additive.

On the other hand, by replacing y by yz in (9.106) we get

f (xyz)+ μ(yz)f (σ (yz)x) = 2f (x). (9.107)

If we replace x by σ(y) and y by σ(z)x in (9.106) and multiply the result obtained
by μ(yz) we deduce that

μ(yz)f (σ (yz)x)+ μ(xy)f (zσ (xy)) = 2μ(yz)f (σ (y)). (9.108)

By replacing x by z and y by σ(xy) in (9.106) and multiplying the result obtained
by μ(xy) we get

μ(xy)f (zσ (xy))+ f (xyz) = 2μ(xy)f (z). (9.109)

By subtracting the sum of (9.107) and (9.109) from (9.108) we obtain

f (xyz) = f (x)+ μ(xy)f (z)− μ(yz)f (σ (y)). (9.110)
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Since for each fixed a in S the function x −→ f (a2x)− f (a2) is additive then the
new function

x −→μ(a2)f (x)− μ(a)μ(x)f (σ (a))+ 2f (a)− 2f (a2)

=μ(a)[μ(a)f (x)− μ(x)f (σ (a))] + 2f (a)− 2f (a2)

is additive. Since μ 
= 0, then we deduce that f is central. That is f (xy) = f (yx)

for all x, y ∈ S. For the rest of the proof we use Theorem 9.5. ��
Theorem 9.7 Let S be a semigroup, σ : S −→ S be an anti-homomorphism which
is surjective and μ : S −→ C be a multiplicative function such that μ(xσ(x)) = 1
for all x ∈ S. If the μ-Jensen functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x), x, y ∈ S (9.111)

has a non-zero solution, then μ = 1.

Proof Making the substitutions (xy, z), (xσ (y), z) in (9.111) and multiplying the
second result by μ(y) we get respectively

f (xyz)+ μ(z)f (xyσ(z)) = 2f (xy), (9.112)

μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z)) = 2μ(y)f (xσ(y)). (9.113)

Adding (9.112) to (9.113) and using (9.111) we obtain

f (xyz)+ μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z)) = 4f (x).
(9.114)

If we replace y in (9.111) by yz we get

f (xyz)+ μ(yz)f (xσ(z)σ (y)) = 2f (x). (9.115)

Subtracting (9.115) from (9.114) we obtain

μ(yz)[f (xσ(y)σ (z))−f (xσ(z)σ (y))]+μ(z)f (xyσ(z))+μ(y)f (xσ(y)z)=2f (x).
(9.116)

Taking y = z in the last identity we find

μ(y)[f (xyσ(y))+ f (xσ(y)y)] = 2f (x). (9.117)
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On the other hand, if we subtract (9.112) from (9.115) and multiply the result by
μ(σ(z)) and use the fact that μ(zσ(z)) = 1 we get

μ(y)f (xσ(z)σ (y))− f (xyσ(z)) = 2μ(σ(z))f (x)− 2μ(σ(z))f (xy).
(9.118)

Replacing x in (9.111) by xσ(z) implies

f (xσ(z)y)+ μ(y)f (xσ(z)σ (y)) = 2f (xσ(z)). (9.119)

The subtraction of (9.118) from (9.119) yields

f (xσ(z)y)+ f (xyσ(z)) = 2f (xσ(z))− 2μ(σ(z))f (x)+ 2μ(σ(z))f (xy).
(9.120)

Since σ is surjective, then by taking t = σ(z) in (9.120) we obtain

f (xty)+ f (xyt) = 2f (xt)+ 2μ(t)f (xy)− 2μ(t)f (x) (9.121)

for all x, t, y ∈ S. Replacing t in (9.121) by y, and y by σ(y) and multiplying the
resulting formulas obtained by μ(y) and using the fact that μ(yσ(y)) = 1 we get

μ(y)[f (xyσ(y))+ f (xσ(y)y)] (9.122)

= 2μ(y)f (xy)+ 2μ2(y)f (xσ(y))− 2μ2(y)f (x).

If we subtract (9.122) from (9.117) we deduce

2μ(y)[f (xy)+ μ(y)f (xσ(y))] − 2μ2(y)f (x) = 2f (x). (9.123)

Using (9.111) we get

[μ(y)− 1]2f (x) = 0 (9.124)

for all x and y in S. This means that if f is a non-zero solution of (9.121) then
μ = 1. ��

9.6 Solutions of μ-Quadratic Functional Equation

In this section we consider the μ-quadratic functional equation (1.10), and we
prove a similar result as in the precedent section for the μ-quadratic functional
equation (9.10).
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Theorem 9.8 Let S be a semigroup, σ : S −→ S be a homomorphism, and μ be
a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S. If the μ-quadratic
functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x)+ 2f (y), x, y ∈ S (9.125)

has a non-zero solution, then μ = 1. That is, the μ-quadratic functional equa-
tion (9.125) possesses the same solutions to those of the quadratic functional
equation (1.4)

Proof Making the substitutions (xy, z), (xσ (y), z) in (9.125) we get respectively

f (xyz)+ μ(z)f (xyσ(z)) = 2f (xy)+ 2f (z). (9.126)

f (xσ(y)z)+ μ(z)f (xσ(y)σ (z)) = 2f (xσ(y))+ 2f (z). (9.127)

Multiplying (9.127) by μ(y) we get

μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z)) = 2μ(y)f (xσ(y))+ 2μ(y)f (z).
(9.128)

Adding (9.126) to (9.128) we obtain

[f (xyz)+ μ(yz)f (xσ(y)σ (z))] + [μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)]
= 2[f (xy)+ μ(y)f (xσ(y))] + 2[1 + μ(y)]f (z).

(9.129)

Replacing y by yz in (9.125) we get

f (xyz)+ μ(yz)f (xσ(y)σ (z)) = 2f (x)+ 2f (yz). (9.130)

Multiplying (9.125) by 2 we derive

2[f (xy)+ μ(y)f (xσ(y))] = 4f (x)+ 4f (y). (9.131)

If we subtract (9.130) from the sum of (9.129) and (9.131) we obtain

μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)+ 2f (yz) (9.132)

= 2f (x)+ 4f (y)+ 2[1 + μ(y)]f (z).

On the other hand, if we replace y by yσ(z) in (9.125) we get

f (xyσ(z))+ μ(yσ(z))f (xσ(y)σ 2(z)) = 2f (x)+ 2f (yσ(z)). (9.133)
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Multiplying the last equality by μ(z) and using the fact that μ(zσ(z)) = 1 we get

μ(z)f (xyσ(z))+ μ(y)f (xσ(y)σ 2(z)) = 2μ(z)f (x)+ 2μ(z)f (yσ(z)).
(9.134)

Subtracting (9.134) from (9.132) we deduce that

μ(y)[f (xσ(y)z)− f (xσ(y)σ 2(z))] + 2[f (yz)+ μ(z)f (yσ(z))] (9.135)

= 2[1 − μ(z)]f (x)+ 4f (y)+ 2(1 + μ(y))f (z).

If we make the substitution (y, z) in (9.125) and multiply the result obtained by 2
we derive

2[f (yz)+ μ(z)f (yσ(z))] = 4[f (y)+ f (z)]. (9.136)

The subtraction of (9.136) from (9.135) implies after some simplification

μ(y)[f (xσ(y)z)− f (xσ(y)σ 2(z))] = 2[1 − μ(z)]f (x)+ 2(μ(y)− 1)f (z).
(9.137)

On the other hand, if we make the substitutions (xσ (y), z) and (xσ (y), σ (z))

in (9.125) we get respectively

f (xσ(y)z)+ μ(z)f (xσ(y)σ (z)) = 2f (xσ(y))+ 2f (z). (9.138)

f (xσ(y)σ (z))+ μ(σ(z))f (xσ(y)σ 2(z)) = 2f (xσ(y))+ 2f (σ(z)). (9.139)

Multiplying (9.139) by μ(z) and using the fact that μ(zσ(z)) = 1 we get

μ(z)f (xσ(y)σ (z))+ f (xσ(y)σ 2(z)) = 2μ(z)f (xσ(y))+ 2μ(z)f (σ (z)).
(9.140)

Subtracting (9.140) from (9.138) we obtain

f (xσ(y)z)− f (xσ(y)σ 2(z)) (9.141)

= 2f (xσ(y))[1 − μ(z)] + 2f (z)− 2μ(z)f (σ (z)).

Multiplying the last equation by μ(y) we obtain

μ(y)[f (xσ(y)z)− f (xσ(y)σ 2(z))] = 2μ(y)[1 − μ(z)]f (xσ(y)) (9.142)

+ 2μ(y)f (z)− 2μ(yz)f (σ (z)).
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Now, if we subtract (9.142) from (9.137) we deduce that

2[1 − μ(z)]f (x)− 2f (z) = 2μ(y)[1 − μ(z)]f (xσ(y))− 2μ(yz)f (σ (z)),
(9.143)

from which we get

[1 − μ(z)][f (x)− μ(y)f (xσ(y))] = f (z)− μ(yz)f (σ (z)). (9.144)

Taking y = z in (9.144) we obtain

[1 − μ(y)][f (x)− μ(y)f (xσ(y))] = f (y)− μ(y2)f (σ (y)) (9.145)

for all x, y ∈ S.
Setting β(y) = 1 − μ(y) and multiplying (9.125) by β(y) and adding the result

obtained to (9.145) we derive that

β(y)[f (xy)− f (x)− 2f (y)] = f (y)− μ(y2)f (σ (y)). (9.146)

The last equation can be written as follows

β(y)f (xy) = β(y)f (x)+ [2β(y)+ 1]f (y)− μ(y2)f (σ (y)). (9.147)

Replacing y in (9.147) by σ(y), and multiplying the result obtained by μ(y2) and
using the fact that μ(zσ(z)) = 1 we find

μ(y2)β(σ (y))f (xσ(y))) =μ(y2)β(σ (y))f (x) (9.148)

+ μ(y2)[2β(σ(y))+ 1]f (σ(y))− f (σ 2(y)).

Since μ(yσ(y)) = 1 we get that

μ(y)β(σ (y)) = μ(y)[1 − μ(σ(y))] = μ(y)− 1 = −β(y),

and thus Eq. (9.148) can be written in the form

μ(y)β(y)f (xσ(y)) =μ(y)β(y)f (x) (9.149)

+ [2μ(y)β(y)− μ(y2)]f (σ(y))+ f (σ 2(y)).

Adding (9.149) and (9.147) and using (9.125) we get

β(y)[2f (x)+ 2f (y)] = [β(y)+ μ(y)β(y)]f (x)+ [2β(y)+ 1]f (y) (9.150)

+ [2μ(y)β(y)− 2μ(y2)]f (σ(y))+ f (σ 2(y)).
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Thus

β(y)f (x) = f (y)+ 2μ(y)[β(y)− μ(y)]f (σ(y))+ f (σ 2(y)) (9.151)

for all x, y in S.
If μ 
= 1 then there exists y0 ∈ S such that β(y0) 
= 0 and from (9.151) we

deduce that f (x) = c, for all x ∈ S, where

c = 1

β(y0)
[f (y0)+ 2μ(y0)[β(y0)− μ(y0)]f (σ(y0))+ f (σ 2(y0))],

which means that f is a constant. From (9.125) we deduce that f = 0, which
contradicts the assumption that f 
= 0. This completes the proof of Theorem 9.8.

��

9.7 Stability of the μ-Jensen Functional Equation

In this section we study the stability of μ-Jensen functional equation (9.8), where σ
is a surjective homomorphism, and μ is a bounded multiplicative function such that
μ(xσ(x)) = 1 for all x ∈ S.

Theorem 9.9 Let S be a semigroup, σ : S −→ S be a homomorphism, and μ be
a bounded multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S. If there
exists a non-negative scalar δ such that

|f (xy)+ μ(y)f (xσ(y))− 2f (x)| ≤ δ (9.152)

for all x, y ∈ S, then either f is unbounded or μ = 1.
Furthermore, the μ-Jensen functional equation (9.8) is stable if and only if the

Jensen functional equation (1.1) is stable.

Proof Making the substitutions (xy, z), (xσ (y), z) in (9.152) we get respectively

|f (xyz)+ μ(z)f (xyσ(z))− 2f (xy)| ≤ δ, (9.153)

|f (xσ(y)z)+ μ(z)f (xσ(y)σ (z))− 2f (xσ(y))| ≤ δ. (9.154)

The multiplicative mapping μ is bounded, thus there exists a nonnegative real M
such that |μ(x)| ≤ M for all x ∈ S. Multiplying (9.154) by μ(y) we get

|μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z))− 2μ(y)f (xσ(y))| ≤ Mδ. (9.155)

Adding (9.153) and (9.155) and using the triangle inequality we obtain
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|[f (xyz)+ μ(yz)f (xσ(y)σ (z))]+ [μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)]
− 2[f (xy)+ μ(y)f (xσ(y))]| ≤ (1 +M)δ.

(9.156)

Replacing y by yz in (9.152) we obtain

|f (xyz)+ μ(yz)f (xσ(y)σ (z))− 2f (x)| ≤ δ. (9.157)

Multiplying (9.152) by 2 we get

|2[f (xy)+ μ(y)f (xσ(y))] − 4f (x)| ≤ 2δ. (9.158)

If we subtract (9.157) from the sum of (9.156) and (9.158) and use the triangle
inequality we obtain

|μ(z)[f (xyσ(z))+ μ(yσ(z))f (xσ(y)z)− 2f (x)| ≤ (4 +M)δ. (9.159)

Multiplying the last inequality by μ(σ(z)) and using the fact that μ(zσ(z)) = 1 we
get after some simplification

|f (xyσ(z))+ μ(yσ(z))f (xσ(y)z)− 2μ(σ(z))f (x)| ≤ (4M +M2)δ.

(9.160)

On the other hand, if we replace y in (9.152) by yσ(z) we get

|f (xyσ(z))+ μ(yσ(z))f (xσ(y)σ 2(z))− 2f (x)| ≤ δ. (9.161)

Subtracting (9.161) from (9.160) we deduce that

|μ(yσ(z))[f (xσ(y)z)− f (xσ(y)σ 2(z))− 2[μ(σ(z))− 1]f (x)| (9.162)

≤ (1 + 4M +M2)δ.

Multiplying the last identity by μ(σ(y)z) and using the fact that μ(zσ(z)) = 1 we
obtain

|f (xσ(y)z)− f (xσ(y)σ 2(z))− 2μ(σ(y))[1 − μ(z)]f (x)| (9.163)

≤ (M + 4M2 +M3)δ.

On the other hand, if we make the substitutions (xσ (y), z) and (xσ (y), σ (z))

in (9.152) we get respectively

|f (xσ(y)z)+ μ(z)f (xσ(y)σ (z))− 2f (xσ(y))| ≤ δ, (9.164)
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|f (xσ(y)σ (z))+ μ(σ(z))f (xσ(y)σ 2(z))− 2f (xσ(y))| ≤ δ. (9.165)

Multiplying (9.165) by μ(z) and using μ(zσ(z)) = 1 we derive that

|μ(z)f (xσ(y)σ (z))+ f (xσ(y)σ 2(z))− 2μ(z)f (xσ(y))| ≤ Mδ. (9.166)

Subtracting (9.166) from (9.164) and using the triangle inequality we obtain

|f (xσ(y)z)− f (xσ(y)σ 2(z))− 2f (xσ(y))[1 − μ(z)]| ≤ (1 +M)δ. (9.167)

If we subtract (9.167) from (9.163) we deduce that

|2[μ(σ(y))[1 − μ(z)]f (x)− 2f (xσ(y)))[1 − μ(z)]| (9.168)

≤ (1 + 2M + 4M2 +M3)δ,

from which we get

|[1 − μ(z)][μ(σ(y))f (x)− f (xσ(y))]| ≤ (1 + 2M + 4M2 +M3)
δ

2
. (9.169)

If we suppose thatμ 
= 1, then there exists z0 ∈ S such thatμ(z0) 
= 1. From (9.169)
we deduce that

|f (xσ(y))− μ(σ(y))f (x)| ≤ φδ (9.170)

for all x, y ∈ S, where

φ = 1

2(1 − μ(z0))
(1 + 2M + 4M2 +M3).

If we multiply (9.170) by μ(y) and use the fact that μ(xσ(x)) = 1, we obtain

|μ(y)f (xσ(y))− f (x)| ≤ Mφδ. (9.171)

Subtracting (9.152) from (9.171) and using the triangle inequality we get

|f (xy)− f (x)| ≤ M(φ + 1)δ (9.172)

for all y ∈ S. Replacing y by σ(y) in (9.172) and multiplying the result by σ(y) we
obtain

|μ(y)f (xσ(y))− μ(y)f (x)| ≤ M2(φ + 1)δ. (9.173)
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Subtracting (9.152) from the sum of (9.172) and (9.173) and using the triangle
inequality we deduce

|[1 − μ(y)]f (x)| ≤ (M2 +M)(φ + 1)δ + δ. (9.174)

Since μ 
= 1 we deduce that f is a bounded function. This completes the proof of
Theorem 9.9. ��

9.8 Stability of the μ-Quadratic Functional Equation

In this section we investigate the stability of the μ-quadratic functional equa-
tion (1.10).

Theorem 9.10 Let S be a semigroup, let σ : S −→ S be a homomorphism, and
μ be a bounded multiplicative function such that μ(xσ(x)) = 1. If there exists a
non-negative scalar δ such that

|f (xy)+ μ(y)f (xσ(y))− 2f (x)− 2f (y)| ≤ δ, x, y ∈ S, (9.175)

then either f is unbounded or μ = 1.
Furthermore, the μ-quadratic functional equation (1.10) is stable if and only if

the quadratic functional equation (9.7) is stable.

Proof Making the substitutions (xy, z), (xσ (y), z) in (9.175) we get respectively

|f (xyz)+ μ(z)f (xyσ(z))− 2f (xy)− 2f (z)| ≤ δ. (9.176)

|f (xσ(y)z)+ μ(z)f (xσ(y)σ (z))− 2f (xσ(y))− 2f (z)| ≤ δ. (9.177)

Multiplying (9.177) by μ(y) we get

|μ(y)f (xσ(y)z)+ μ(yz)f (xσ(y)σ (z))− 2μ(y)f (xσ(y))− 2μ(y)f (z)|
≤ Mδ.

(9.178)

Adding (9.176) and (9.178) and using the triangle inequality we obtain

|[f (xyz)+ μ(yz)f (xσ(y)σ (z))] + [μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)]
−2[f (xy)+ μ(y)f (xσ(y))] − 2[1 + μ(y)]f (z)| ≤ (1 +M)δ.

(9.179)
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Replacing y by yz in (9.175) we get

|f (xyz)+ μ(yz)f (xσ(y)σ (z))− 2f (x)− 2f (yz)| ≤ δ. (9.180)

Multiplying (9.175) by 2 we get

|2[f (xy)+ μ(y)f (xσ(y))] − 4f (x)− 4f (y)| ≤ 2δ. (9.181)

If we subtract (9.180) from the sum of (9.179) and (9.181) and use the triangle
inequality we obtain

|μ(z)f (xyσ(z))+ μ(y)f (xσ(y)z)+ 2f (yz)− 2f (x)− 4f (y) (9.182)

−2[1 + μ(y)]f (z)| ≤ (4 +M)δ.

On the other hand, if we replace y in (9.175) by yσ(z) we deduce that

|f (xyσ(z))+ μ(yσ(z))f (xσ(y)σ 2(z))− 2f (x)− 2f (yσ(z))| ≤ δ. (9.183)

Multiplying the last inequality by μ(z) and using the fact that μ(zσ(z)) = 1 we get

|μ(z)f (xyσ(z))+ μ(y)f (xσ(y)σ 2(z))− 2μ(z)f (x)− 2μ(z)f (yσ(z))|
≤ Mδ.

(9.184)

Subtracting (9.184) from (9.182) and using the triangle inequality we obtain that

|μ(y)[f (xσ(y)z) − f (xσ(y)σ 2(z))] + 2[f (yz)+ μ(z)f (yσ(z))] (9.185)

− 2[1 − μ(z)]f (x)− 4f (y)− 2(1 + μ(y))f (z)| ≤ (4 + 2M)δ.

If we make the substitution (y, z) in (9.175) and multiply the result by 2 we obtain

|2[f (yz)+ μ(z)f (yσ(z))] − 4[f (y)+ f (z)] ≤ 2δ. (9.186)

The subtraction of (9.186) from (9.185) and the triangle inequality provide after
some simplification that

|μ(y)[f (xσ(y)z)− f (xσ(y)σ 2(z))] + 2[μ(z)− 1]f (x) (9.187)

+2(1 − μ(y))f (z)| ≤ (6 + 2M)δ.

On the other hand, if we make the substitutions (xσ (y), z) and (xσ (y), σ (z))

in (9.175) we get respectively

|f (xσ(y)z)+ μ(z)f (xσ(y)σ (z))− 2f (xσ(y))− 2f (z)| ≤ δ. (9.188)
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|f (xσ(y)σ (z))+ μ(σ(z))f (xσ(y)σ 2(z))− 2f (xσ(y))− 2f (σ(z))| ≤ δ.

(9.189)

Multiplying (9.189) by μ(z) and using the fact that μ(zσ(z)) = 1 we get that

|μ(z)f (xσ(y)σ (z))+ f (xσ(y)σ 2(z))− 2μ(z)f (xσ(y))− 2μ(z)f (σ (z))|
≤ Mδ.

(9.190)

Subtracting (9.190) from (9.188) and using the triangle inequality we obtain

|f (xσ(y)z)− f (xσ(y)σ 2(z))− 2f (xσ(y))[1 − μ(z)] − 2f (z) (9.191)

+2μ(z)f (σ (z))| ≤ (1 +M)δ.

Multiplying the last identity by μ(y) we obtain

|μ(y)[f (xσ(y)z)− f (xσ(y)σ 2(z))] − 2μ(y)[1 − μ(z)]f (xσ(y)) (9.192)

−2μ(y)f (z)+ 2μ(yz)f (σ (z))| ≤ (M +M2)δ.

If we subtract (9.192) from (9.187) and use the triangle inequality we obtain that

|2[μ(z)− 1]f (x)+ 2(1 − μ(y))f (z)+ 2μ(y)[1 − μ(z)]f (xσ(y)) (9.193)

+2μ(y)f (z)− 2μ(yz)f (σ (z))| ≤ (6 + 3M +M2)δ,

from which we get

|[μ(z)− 1][f (x)− μ(y)f (xσ(y))] + f (z)− μ(yz)f (σ (z))| (9.194)

≤ (6 + 3M +M2)
δ

2
.

Setting y = z in (9.194) we obtain

|β(y)[f (x)− μ(y)f (xσ(y))] + f (y)− μ(y2)f (σ (y))| ≤ α (9.195)

where β(y) = μ(y)− 1 for all y ∈ S, and

α = (6 + 3M +M2)
δ

2
.

Adding (9.195) to (9.175) multiplied by β(y) and using the triangle inequality we
obtain

|β(y)[f (xy)− f (x)− 2f (y)] + f (y)− μ(y2)f (σ (y))| ≤ α + (M + 1)δ.
(9.196)
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The last inequality can be written in the form

|β(y)f (xy)− β(y)f (x)− [2β(y)− 1]f (y)− μ(y2)f (σ (y))| (9.197)

≤ α + (M + 1)δ.

Replacing y in (9.197) by σ(y), and multiplying the result by μ(y2) and using the
fact that μ(zσ(z)) = 1 we derive

|μ(y2) β(σ (y))f (xσ(y))− μ(y2)β(σ (y))f (x) (9.198)

− μ(y2)[2β(σ(y))− 1]f (σ(y))− f (σ 2(y))| ≤ M2α + (M2 +M3)δ.

Since μ(yσ(y)) = 1 we get that

μ(y)β(σ (y)) = μ(y)[μ(σ(y))− 1] = 1 − μ(y) = −β(y),

and thus inequality (9.197) can be expressed as follows

|μ(y)β(y)f (xσ(y))− μ(y)β(y)f (x) − [2μ(y)β(y)+ μ(y2)]f (σ(y))
+ f (σ 2(y))| ≤ M2α + (M2 +M3)δ.

(9.199)

Subtracting (9.175) multiplied by β(y) from the sum of (9.199) and (9.197) and
using the triangle inequality we get

|β(y)[2f (x)+ 2f (y)] − [β(y)+ μ(y)β(y)]f (x)− [2β(y)− 1]f (y)
− [2μ(y)β(y)+ 2μ(y2)]f (σ(y))+ f (σ 2(y))|

≤ (1 +M2)α + (M3 +M2 +M + 2)δ. (9.200)

Simplifying the last inequality we obtain

|β2(y)f (x)− f (y)− 2μ(y)f (σ (y))− f (σ 2(y))| (9.201)

≤ (1 +M2)α + (M3 +M2 +M + 2)δ.

Using the triangle inequality we deduce that

|β2(y)f (x)| ≤ |f (y)+ 2μ(y)f (σ (y))+ f (σ 2(y))| (9.202)

+ (M2 + 1)α + (M3 +M2 +M + 2)δ

for all x, y in S.
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If μ 
= 1 then there exists y0 ∈ S such that β(y0) 
= 0. From (9.202) we deduce
that f is bounded. This completes the proof of Theorem 9.10. ��
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Chapter 10
Bi-additive s-Functional Inequalities
and Quasi-∗-Multipliers on Banach
∗-Algebras

Jung Rye Lee, Choonkil Park, and Themistocles M. Rassias

Abstract Park introduced and investigated the following bi-additive s-functional
inequalities

‖f (x+y, z+w)+f (x+y, z−w)+f (x−y, z+w)+f (x−y, z−w)−4f (x, z)‖
≤ ∥∥s

(
4f

( x+y
2 , z−w)+4f

( x−y
2 , z+w)−4f (x, z)+4f (y,w)

)∥∥ , (10.1)

∥∥4f
( x+y

2 , z− w)+ 4f
( x−y

2 , z+ w)− 4f (x, z)+ 4f (y,w)
∥∥

≤ ‖s(f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w) (10.2)

+f (x − y, z− w)− 4f (x, z))‖,

where s is a fixed nonzero complex number with |s| < 1. Using the direct method,
we prove the Hyers-Ulam stability of quasi-∗-multipliers on Banach ∗-algebras
and unital C∗-algebras, associated to the bi-additive s-functional inequalities (10.1)
and (10.2).
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10.1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[23] concerning the stability of group homomorphisms. The functional equation

f (x + y) = f (x)+ f (y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation is
said to be an additive mapping. Hyers [13] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Rassias [21] for linear mappings by considering
an unbounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Găvruta [10] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Rassias’ approach.

Gilányi [11] showed that if f satisfies the functional inequality

‖2f (x)+ 2f (y)− f (x − y)‖ ≤ ‖f (x + y)‖ (10.3)

then f satisfies the Jordan-von Neumann functional equation

2f (x)+ 2f (y) = f (x + y)+ f (x − y).

See also [22]. Fechner [9] and Gilányi [12] proved the Hyers-Ulam stability of the
functional inequality (10.3).

Park [17, 18] defined additive ρ-functional inequalities and proved the Hyers-
Ulam stability of the additive ρ-functional inequalities in Banach spaces and
non-Archimedean Banach spaces. The stability problems of various functional
equations and functional inequalities have been extensively investigated by a
number of authors (see [2, 4–8, 19]).

The notion of a quasi-multiplier is a generalization of the notion of a multiplier
on a Banach algebra, which was introduced by Akemann and Pedersen [1] for
C∗-algebras. McKennon [15] extended the definition to a general complex Banach
algebra with bounded approximate identity as follows.

Definition 10.1 ([15]) Let A be a complex Banach algebra. A C-bilinear mapping
P : A× A→ A is called a quasi-multiplier on A if P satisfies

P(xy, zw) = xP (y, z)w

for all x, y, z,w ∈ A.
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Definition 10.2 Let A be a complex Banach ∗-algebra. A bi-additive mapping P :
A× A→ A is called a quasi-∗-multiplier on A if P is C-linear in the first variable
and satisfies

P(x, z) = P(z, x)∗,

P (xy, z) = xP (y, z)

for all x, y, z ∈ A.

It is easy to show that if P is a quasi-∗-multiplier, then P is conjugate C-linear
in the second variable and P(xy, zw) = xP (y,w)z∗ for all x, y, z,w ∈ A.

This paper is organized as follows: In Sects. 10.2 and 10.3, we prove the
Hyers-Ulam stability of the bi-additive s-functional inequalities (10.1) and (10.2)
in complex Banach spaces by using the direct method. In Sect. 10.4, we prove
the Hyers-Ulam stability and the superstability of quasi-∗-multipliers on Banach
∗-algebras and unital C∗-algebras associated to the bi-additive s-functional inequal-
ities (10.1) and (10.2).

Throughout this paper, let X be a complex normed space and Y a complex
Banach space. Let A be a complex Banach ∗-algebra. Assume that s is a fixed
nonzero complex number with |s| < 1.

10.2 Bi-additive s-Functional Inequality (10.1)

Park [20] solved the bi-additive s-functional inequality (10.1) in complex normed
spaces.

Lemma 10.1 ([20, Lemma 2.1]) If a mapping f : X2 → Y satisfies f (0, z) =
f (x, 0) = 0 and

‖f (x+y, z+w)+f (x+y, z−w)+f (x−y, z+w)+f (x−y, z−w)−4f (x, z)‖

≤
∥∥∥
∥s

(
4f

(
x+y

2
, z−w

)
+4f

(
x−y

2
, z+w

)
−4f (x, z)+4f (y,w)

)∥∥∥
∥

(10.4)

for all x, y, z,w ∈ X, then f : X2 → Y is bi-additive.

Using the direct method, we prove the Hyers-Ulam stability of the bi-additive
s-functional inequality (10.4) in complex Banach spaces.

Theorem 10.1 Let ϕ : X2 → [0,∞) be a function such that

�(x, y) :=
∞∑

j=1

2j ϕ
( x

2j
,
y

2j

)
<∞ (10.5)
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for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying f (x, 0) = f (0, z) = 0
and

‖f (x+y, z+w)+f (x+y, z−w)+f (x−y, z+w)+f (x−y, z−w)−4f (x, z)‖

≤
∥∥∥∥s

(
4f

(
x+y

2
, z−w

)
+4f

(
x−y

2
, z+w

)
−4f (x, z)+4f (y,w)

)∥∥∥∥

+ϕ(x, y)ϕ(z,w) (10.6)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping B : X2 → Y

such that

‖f (x, z)− B(x, z)‖ ≤ 1

4
�(x, x)ϕ(z, 0) (10.7)

for all x, z ∈ X.

Proof Letting w = 0 and y = x in (10.6), we get

‖2f (2x, z)− 4f (x, z)‖ ≤ ϕ(x, x)ϕ(z, 0) (10.8)

for all x, z ∈ X. So

∥∥
∥f (x, z)− 2f

(x
2
, z

)∥∥
∥ ≤ 1

2
ϕ
(x

2
,
x

2

)
ϕ(z, 0)

for all x, z ∈ X. Hence

∥
∥∥2lf

( x
2l
, z

)
− 2mf

( x
2m
, z

)∥∥∥ ≤
m−1∑

j=l

∥
∥∥2j f

( x
2j
, z

)
− 2j+1f

( x

2j+1
, z

)∥∥∥

≤ 1

4

m−1∑

j=l
2j ϕ

( x
2j
,
x

2j

)
ϕ(z, 0) (10.9)

for all nonnegative integers m and l with m > l and all x, z ∈ X. It follows
from (10.9) that the sequence {2kf ( x

2k
, z)} is Cauchy for all x, z ∈ X. Since Y is a

Banach space, the sequence {2kf ( x
2k
, z)} converges. So one can define the mapping

B : X2 → Y by

B(x, z) := lim
k→∞ 2kf

( x
2k
, z

)

for all x, z ∈ X. Moreover, letting l = 1 and passing the limit m → ∞ in (10.9),
we get (10.7).
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It follows from (10.5) and (10.6) that

‖B(x + y, z+w)+B(x+y, z−w)+B(x−y, z+w)+B(x−y, z−w)−4B(x, z)‖

= lim
n→∞

∥∥∥∥2n
(
f

(
x+y
2n

, z+w
)
+f

(
x+y
2n

, z−w
)
+f

(
x−y
2n

, z+w
)

+f
(
x − y

2n
, z− w

)
− 4f

( x
2n
, z

))∥∥∥∥

≤ lim
n→∞

∥∥∥
∥2ns

(
4f

(
x+y
2n+1

, z− w
)
+4f

(
x − y
2n+1

, z+w
)
− 4f

( x
2n
, z

)

+4f
( y

2n
,w

))∥∥
∥+ lim

n→∞ 2nϕ
( x

2n
,
y

2n

)
ϕ(z,w)

≤
∥∥∥∥s

(
4B

(
x+y

2
, z−w

)
+4B

(
x−y

2
, z+w

)
−4B(x, z)+4B(y,w)

)∥∥∥∥

for all x, y, z,w ∈ X. So

‖B(x+ y, z+w)+B(x+y, z−w)+B(x−y, z+w)+B(x−y, z−w)−4B(x, z)‖

≤
∥
∥∥∥s

(
4B

(
x+y

2
, z−w

)
+4B

(
x−y

2
, z+w

)
−4B(x, z)+4B(y,w)

)∥
∥∥∥

for all x, y, z,w ∈ X. By Lemma 10.1, the mapping B : X2 → Y is bi-additive.
Now, let T : X2 → Y be another bi-additive mapping satisfying (10.7). Then we

have

‖B(x, z)−T (x, z)‖ =
∥∥∥2qB

( x
2q
, z

)
− 2qT

( x
2q
, z

)∥∥∥

≤
∥∥∥2qA

( x
2q
, z

)
− 2qf

( x
2q
, z

)∥∥∥+
∥∥∥2qT

( x
2q
, z

)
− 2qf

( x
2q
, z

)∥∥∥

≤ 2q

2
�

( x
2q
,
x

2q

)
ϕ(z, 0),

which tends to zero as q → ∞ for all x, z ∈ X. So we can conclude that B(x, z) =
T (x, z) for all x, z ∈ X. This proves the uniqueness of A, as desired.

Corollary 10.1 Let r > 1 and θ be nonnegative real numbers and let f : X2 → Y

be a mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (x+y, z+w)+f (x+y, z−w)+f (x−y, z+w)+f (x−y, z−w)−4f (x, z)‖

≤
∥∥∥
∥s

(
4f

(
x+y

2
, z−w

)
+4f

(
x−y

2
, z+w

)
−4f (x, z)+4f (y,w)

)∥∥∥
∥

+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r ) (10.10)
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for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping B : X2 → Y

such that

‖f (x, z)− B(x, z)‖ ≤ θ

2r − 2
‖x‖r‖z‖r

for all x, z ∈ X.

Proof The proof follows from Theorem 10.1 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ X.

Theorem 10.2 Let ϕ : X2 → [0,∞) be a function such that

�(x, y) :=
∞∑

j=0

1

2j
ϕ(2j x, 2j y) <∞ (10.11)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying (10.6) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping B :
X2 → Y such that

‖f (x, z)− B(x, z)‖ ≤ 1

4
� (x, x) ϕ(z, 0)

for all x, z ∈ X.

Proof It follows from (10.8) that

∥∥∥∥f (x, z)−
1

2
f (2x, z)

∥∥∥∥ ≤ 1

4
ϕ(x, x)ϕ(z, 0)

for all x, z ∈ X.
The rest of the proof is similar to the proof of Theorem 10.1.

Corollary 10.2 Let r < 1 and θ be nonnegative real numbers and let f : X2 → Y

be a mapping satisfying (10.10) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then
there exists a unique bi-additive mapping B : X2 → Y such that

‖f (x, z)− B(x, z)‖ ≤ θ

2 − 2r
‖x‖r‖z‖r

for all x, z ∈ X.

Proof The proof follows from Theorem 10.2 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ X.
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10.3 Bi-additive s-Functional Inequality (10.2)

Park [20] solved the bi-additive s-functional inequality (10.2) in complex normed
spaces.

Lemma 10.2 ([20, Lemma 3.1]) If a mapping f : X2 → Y satisfies f (0, z) =
f (x, 0) = 0 and

∥
∥∥∥4f

(
x + y

2
, z− w

)
+ 4f

(
x − y

2
, z+ w

)
− 4f (x, z)+ 4f (y,w)

∥
∥∥∥

≤ ‖s(f (x + y, z+ w)+ f (x + y, z− w) (10.12)

+f (x − y, z+ w)+ f (x − y, z− w)− 4f (x, z))‖

for all x, y, z,w ∈ X, then f : X2 → Y is bi-additive.

Using the direct method, we prove the Hyers-Ulam stability of the bi-additive
s-functional inequality (10.12) in complex Banach spaces.

Theorem 10.3 Let ϕ : X2 → [0,∞) be a function satisfying (10.5). Let f : X2 →
Y be a mapping satisfying f (x, 0) = f (0, z) = 0 and

∥∥4f
( x+y

2 , z− w)+ 4f
( x−y

2 , z+ w)− 4f (x, z)+ 4f (y,w)
∥∥ (10.13)

≤ ‖s(f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+f (x − y, z− w)− 4f (x, z)‖ + ϕ(x, y)ϕ(z,w)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping B : X2 → Y

such that

‖f (x, z)− B(x, z)‖ ≤ 1

8
�(2x, 0)ϕ(z, 0) (10.14)

for all x, z ∈ X.

Proof Letting y = w = 0 in (10.13), we get

∥∥
∥8f

(x
2
, z

)
− 4f (x, z)

∥∥
∥ ≤ ϕ(x, 0)ϕ(z, 0) (10.15)

for all x, z ∈ X.
The rest of the proof is similar to the proof of Theorem 10.1.

Corollary 10.3 Let r > 1 and θ be nonnegative real numbers and let f : X2 → Y

be a mapping satisfying f (x, 0) = f (0, z) = 0 and

∥
∥4f

( x+y
2 , z− w)+ 4f

( x−y
2 , z+ w)− 4f (x, z)+ 4f (y,w)

∥
∥ (10.16)
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≤ ‖s(f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+f (x − y, z− w)− 4f (x, z))‖ + θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping B : X2 → Y

such that

‖f (x, z)− B(x, z)‖ ≤ 2r−2θ

2r − 2
‖x‖r‖z‖r

for all x, z ∈ X.

Proof The proof follows from Theorem 10.3 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ X.

Theorem 10.4 Let ϕ : X2 → [0,∞) be a function satisfying (10.11). Let f :
X2 → Y be a mapping satisfying (10.13) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ X. Then there exists a unique bi-additive mapping B : X2 → Y such that

‖f (x, z)− B(x, z)‖ ≤ 1

8
� (2x, 0) ϕ(z, 0) (10.17)

for all x, z ∈ X.

Proof It follows from (10.15) that

∥∥∥∥f (x, z)−
1

2
f (2x, z)

∥∥∥∥ ≤ 1

8
ϕ(2x, 0)ϕ(z, 0)

for all x, z ∈ X.
The rest of the proof is similar to the proofs of Theorems 10.1 and 10.3.

Corollary 10.4 Let r < 1 and θ be nonnegative real numbers and let f : X2 → Y

be a mapping satisfying (10.16) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then
there exists a unique bi-additive mapping B : X2 → Y such that

‖f (x, z)− B(x, z)‖ ≤ θ

4(2 − 2r )
‖x‖r‖z‖r

for all x, z ∈ X.

Proof The proof follows from Theorem 10.4 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ X.
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10.4 Quasi-∗-Multipliers in C∗-Algebras

In this section, we investigate quasi-∗-multipliers on complex Banach ∗-algebras
and unital C∗-algebras associated to the bi-additive s-functional inequalities (10.4)
and (10.12).

Theorem 10.5 Let ϕ : A2 → [0,∞) be a function such that there exists an L < 1
with

�(x, y) :=
∞∑

j=1

2j ϕ
( x

2j
,
y

2j

)
<∞ (10.18)

for all x, y ∈ A. Let f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0
and

‖f (λ(x + y), z+ w)+ f (λ(x + y), z− w)+ f (λ(x − y), z+ w)
+ f (λ(x − y), z− w)− 4λf (x, z)‖ (10.19)

≤
∥
∥∥∥s

(
4f

(
x+y

2
, z−w

)
+4f

(
x−y

2
, z+w

)
− 4f (x, z)+ 4f (y,w)

)∥
∥∥∥

+ ϕ(x, y)ϕ(z,w)

for all λ ∈ T1 := {ν ∈ C : |ν| = 1} and all x, y, z,w ∈ A. Then there exists
a unique bi-additive mapping B : A2 → A, which is C-linear in the first variable,
such that

‖f (x, z)− B(x, z)‖ ≤ 1

4
�(x, x)ϕ(z, 0) (10.20)

for all x, z ∈ A.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) and

‖f (xy, z)− xf (y, z)‖ ≤ ϕ(x, y)2ϕ(z, 0), (10.21)

‖f (x, z)− f (z, x)∗‖ ≤ ϕ(x, 0)ϕ(z, 0) (10.22)

for all x, y, z ∈ A, then the mapping f : A2 → A is a quasi-∗-multiplier.

Proof Let λ = 1 in (10.19). By Theorem 10.1, there is a unique bi-additive mapping
B : A2 → A satisfying (10.20) defined by

B(x, z) := lim
n→∞ 2nf

( x
2n
, z

)

for all x, z ∈ A.
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If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that B(x, z) =
f (x, z) for all x, z ∈ A.

Letting y = x and w = 0 in (10.19), we get

‖2f (2λx, z)− 4λf (x, z)‖ ≤ ϕ(x, x)ϕ(z, 0)

for all x, z ∈ A and all λ ∈ T1. So

‖2B(2λx, z)− 4λB(x, z)‖ = lim
n→∞ 2n

∥∥
∥2f

(
2λ
x

2n
, z

)
− 4λf

( x
2n
, z

)∥∥
∥

≤ lim
n→∞ 2nϕ

( x
2n
,
x

2n

)
ϕ(z, 0) = 0

for all x, z ∈ A and all λ ∈ T1. Hence 2B(2λx, z) = 4λB(x, z) and so B(λx, z) =
λB(x, z) for all x, z ∈ A and all λ ∈ T1. By [16, Theorem 2.1], the bi-additive
mapping B : A2 → A is C-linear in the first variable.

It follows from (10.21) that

‖B(xy, z)− xB(y, z)‖ = lim
n→∞ 4n

∥∥∥f
( xy

2n · 2n
, z

)
− x

2n
f

( y
2n
, z

)∥∥∥

≤ lim
n→∞ 4nϕ

( x
2n
,
y

2n

)2
ϕ (z, 0) = 0

for all x, y, z ∈ A. Thus

B(xy, z) = xB(y, z)

for all x, y, z ∈ A.
It follows from (10.22) that

‖B(x, z)− B(z, x)∗‖ = lim
n→∞ 2n

∥∥∥f
(
x,

z

2n

)
− f

( z
2n
, x

)∗∥∥∥

≤ lim
n→∞ 2nϕ

( x
2n
, 0

)
ϕ (z, 0) = 0

for all x, z ∈ A. Thus

B(x, z) = B(z, x)∗

for all x, z ∈ A. Hence the mapping f : A2 → A is a quasi-∗-multiplier.

Corollary 10.5 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying f (x, 0) = f (0, z) = 0 and
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‖f (λ(x + y), z+ w)+ f (λ(x + y), z− w)+ f (λ(x − y), z+ w)
+f (λ(x − y), z− w)− 4λf (x, z)‖ (10.23)

≤ ∥
∥s

(
4f

( x+y
2 , z− w)+ 4f

( x−y
2 , z+ w)− 4f (x, z)+ 4f (y,w)

)∥∥

+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all λ ∈ T1 and all x, y, z,w ∈ A. Then there exists a unique bi-additive mapping
B : A2 → A, which is C-linear in the first variable, such that

‖f (x, z)− B(x, z)‖ ≤ θ

2r − 2
‖x‖r‖z‖r (10.24)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f (xy, z)− xf (y, z)‖ ≤ θ(‖x‖r + ‖y‖r )‖z‖r , (10.25)

‖f (x, z)− f (z, x)∗‖ ≤ θ‖x‖r‖z‖r (10.26)

for all x, y, z ∈ A, then the mapping f : A2 → A is a quasi-∗-multiplier.

Proof The proof follows from Theorem 10.5 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ A.

Theorem 10.6 Let ϕ : A2 → [0,∞) be a function such that

�(x, y) :=
∞∑

j=0

1

2j
ϕ(2j x, 2j y) <∞ (10.27)

for all x, y ∈ A. Let f : A2 → A be a mapping satisfying (10.19) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ A. Then there exists a unique bi-additive mapping B :
A2 → A, which is C-linear in the first variable, such that

‖f (x, z)− B(x, z)‖ ≤ 1

4
� (x, x) ϕ(z, 0) (10.28)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (10.21), (10.22) and

f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier.

Proof The proof is similar to the proof of Theorem 10.5.

Corollary 10.6 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying (10.23) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then
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there exists a unique bi-additive mapping B : A2 → A, which is C-linear in the
first variable, such that

‖f (x, z)− B(x, z)‖ ≤ θ

2 − 2r
‖x‖r‖z‖r (10.29)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (10.25), (10.26) and

f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier.

Proof The proof follows from Theorem 10.6 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ A.

Similarly, we can obtain the following results.

Theorem 10.7 Let ϕ : A2 → [0,∞) be a function satisfying (10.18) and let f :
A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 and

∥∥∥∥4f

(
λ
x + y

2
, z− w

)
+ 4f

(
λ
x − y

2
, z+ w

)
− 4λf (x, z)+ 4λf (y,w)

∥∥∥∥

≤ ‖s(f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+f (x − y, z− w)− 4f (x, z))‖ + ϕ(x, y)ϕ(z,w) (10.30)

for all λ ∈ T1 and all x, y, z,w ∈ A. Then there exists a unique bi-additive mapping
B : A2 → A, which is C-linear in the first variable, such that

‖f (x, z)− B(x, z)‖ ≤ 1

8
�(2x, 0)ϕ(z, 0) (10.31)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (10.21), (10.22) and

f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier.

Corollary 10.7 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying f (x, 0) = f (0, z) = 0 and

∥∥∥∥4f

(
λ
x + y

2
, z− w

)
+ 4f

(
λ
x − y

2
, z+ w

)
− 4λf (x, z)+ 4λf (y,w)

∥∥∥∥

≤ ‖s(f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+f (x − y, z− w)− 4f (x, z))‖ + θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )(10.32)

for all λ ∈ T1 and all x, y, z,w ∈ A. Then there exists a unique bi-additive mapping
B : A2 → A, which is C-linear in the first variable, such that
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‖f (x, z)− B(x, z)‖ ≤ 2r−2θ

2r − 2
‖x‖r‖z‖r (10.33)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (10.25), (10.26) and

f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier.

Proof The proof follows from Theorem 10.7 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ A.

Theorem 10.8 Let ϕ : A2 → [0,∞) be a function satisfying (10.27). Let f : A→
A be a mapping satisfying (10.30) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A.
Then there exists a unique bi-additive mapping B : A2 → A, which is C-linear in
the first variable, such that

‖f (x, z)− B(x, z)‖ ≤ 1

8
� (2x, 0) ϕ(z, 0) (10.34)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (10.21), (10.22) and

f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier.

Corollary 10.8 Let r < 1 and θ be nonnegative real numbers, and let f : A→ A

be a mapping satisfying (10.32) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then
there exists a unique bi-additive mapping B : A2 → A, which is C-linear in the
first variable, such that (10.29) holds for all x, z ∈ A.

If, in addition, the mapping f : A2 → A satisfies (10.25), (10.26) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier.

Proof The proof follows from Theorem 10.8 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ A.

From now on, assume that A is a unital C∗-algebra with unit e and unitary group
U(A).

Theorem 10.9 Let ϕ : A2 → [0,∞) be a function satisfying (10.18) and let f :
A2 → A be a mapping satisfying (10.19) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique bi-additive mapping B : A2 → A, which is
C-linear in the first variable and satisfies (10.20).

If, in addition, the mapping f : A2 → A satisfies (10.22), f (2x, z) = 2f (x, z)
and

‖f (uy, z)− uf (y, z)‖ ≤ ϕ(u, y)2ϕ(z, 0), (10.35)
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for all u ∈ U(A) and all x, y, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Proof By the same reasoning as in the proof of Theorem 10.5, there is a unique
bi-additive mapping B : A2 → A satisfying (10.20), which is C-linear in the first
variable, defined by

B(x, z) := lim
n→∞ 2nf

( x
2n
, z

)

for all x, z ∈ A.
If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that B(x, z) =

f (x, z) for all x, z ∈ A.
By the same reasoning as in the proof of Theorem 10.5, B(uy, z) = uB(y, z) for

all u ∈ U(A) and all y, z ∈ A.
Since B is C-linear in the first variable and each x ∈ A is a finite linear

combination of unitary elements (see [14]), i.e., x = ∑m
j=1 λjuj (λj ∈ C,

uj ∈ U(A)),

B(xy, z) = B(

m∑

j=1

λjujy, z) =
m∑

j=1

λjB(ujy, z) =
m∑

j=1

λjujB(y, z)

= (

m∑

j=1

λjuj )B(y, z) = xB(y, z)

for all x, y, z ∈ A. So by the same reasoning as in the proof of Theorem 10.5,
B : A2 → A is a quasi-∗-multiplier and satisfies

B(x,w) = B(xe,we) = xB(e,we) = xB(we, e)∗ = x(wB(e, e))∗ = xB(e, e)∗w∗

= xB(e, e)w∗

for all x,w ∈ A. Thus f : A2 → A is a quasi-∗-multiplier and satisfies f (x,w) =
f (xe,we) = xf (e, e)w∗ for all x,w ∈ A.

Corollary 10.9 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying (10.23) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then
there exists a unique bi-additive mapping B : A2 → A, which is C-linear in the
first variable and satisfies (10.24).

If, in addition, the mapping f : A2 → A satisfies (10.26), f (2x, z) = 2f (x, z)
and

‖f (uy, z)− uf (y, z)‖ ≤ θ(1 + ‖y‖r )‖z‖r (10.36)

for all u ∈ U(A) and all x, y, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.
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Proof The proof follows from Theorem 10.9 by taking ϕ(x, y) = √
θ(‖x‖r+‖y‖r )

for all x, y ∈ A.

Theorem 10.10 Let ϕ : A2 → [0,∞) be a function satisfying (10.27). Let f :
A2 → A be a mapping satisfying (10.19) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique bi-additive mapping B : A2 → A, which is
C-linear in the first variable and satisfies (10.34).

If, in addition, the mapping f : A2 → A satisfies (10.35), (10.22) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Proof The proof is similar to the proofs of Theorems 10.6 and 10.9.

Corollary 10.10 Let r < 1 and θ be nonnegative real numbers, and let f : A2 →
A be a mapping satisfying (10.23) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A.
Then there exists a unique bi-additive mapping B : A2 → A, which is C-linear in
the first variable and satisfies (10.29).

If, in addition, the mapping f : A2 → A satisfies (10.36), (10.26) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Proof The proof follows from Theorem 10.10 by taking ϕ(x, y) = √
θ(‖x‖r +

‖y‖r ) for all x, y ∈ A.

Similarly, we can obtain the following results.

Theorem 10.11 Let ϕ : A2 → [0,∞) be a function satisfying (10.18) and let
f : A2 → A be a mapping satisfying (10.30) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique bi-additive mapping B : A2 → A, which is
C-linear in the first variable and satisfies (10.31).

If, in addition, the mapping f : A2 → A satisfies (10.35), (10.22) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Corollary 10.11 Let r > 2 and θ be nonnegative real numbers, and let f : A2 →
A be a mapping satisfying (10.32) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A.
Then there exists a unique bi-additive mapping B : A2 → A, which is C-linear in
the first variable and satisfies (10.33).

If, in addition, the mapping f : A2 → A satisfies (10.36), (10.26) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Proof The proof follows from Theorem 10.11 by taking ϕ(x, y) = √
θ(‖x‖r +

‖y‖r ) for all x, y ∈ A.

Theorem 10.12 Let ϕ : A2 → [0,∞) be a function satisfying (10.27). Let f :
A2 → A be a mapping satisfying (10.30) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique bi-additive mapping B : A2 → A, which is
C-linear in the first variable and satisfies (10.34).
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If, in addition, the mapping f : A2 → A satisfies (10.35), (10.22) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Corollary 10.12 Let r < 1 and θ be nonnegative real numbers, and let f : A2 →
A be a mapping satisfying (10.32) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A.
Then there exists a unique bi-additive mapping B : A2 → A, which is C-linear in
the first variable and satisfies (10.29).

If, in addition, the mapping f : A2 → A satisfies (10.36), (10.26) and
f (2x, z) = 2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-∗-
multiplier satisfying f (x,w) = xf (e, e)w∗ for all x,w ∈ A.

Proof The proof follows from Theorem 10.12 by taking ϕ(x, y) = √
θ(‖x‖r +

‖y‖r ) for all x, y ∈ A.
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Chapter 11
On Ulam Stability of a Generalization of
the Fréchet Functional Equation on a
Restricted Domain

Renata Malejki

Abstract In this paper we prove the Ulam type stability of a generalization of the
Fréchet functional equation on a restricted domain. In the proofs the main tool is a
fixed point theorem for some function spaces.

Keywords Ulam type stability · Fixed point theorem · Fréchet equation

Mathematics Subject Classification (2010) Primary 39B82; Secondary 39B52,
39B62, 47H10

11.1 Introduction

Let K ∈ {R,C} (R and C denote the fields of real and complex numbers,
respectively) and A1, . . . , A7 ∈ K. Our consideration involve Ulam stability (see,
e.g., [15] for more details and suitable references) of the following conditional (i.e.,
on a restricted domain) functional equation

A1F(x + y + z) + A2F(x)+ A3F(y)+ A4F(z) (11.1)

= A5F(x + y)+ A6F(x + z)+ A7F(y + z),
x, y, z ∈ D, x + y + z, x + y, x + z, y + z ∈ D,

in the class of functions F : D → Y , where D ⊂ X is nonempty, (X,+) is a
commutative monoid (i.e., a semigroup with a neutral element denoted by 0) and Y
is a Banach space over K.

R. Malejki (�)
Institute of Mathematics, Pedagogical University of Cracow, Kraków, Poland
e-mail: renata.malejki@up.krakow.pl

© Springer Nature Switzerland AG 2019
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It is a natural generalization of several functional equations, stability of which
have been already investigated quite intensively (see [1, 3, 4, 6, 8, 13, 17, 22, 29, 30,
33]). Let us mention here the Cauchy functional equation

f (x + y) = f (x)+ f (y),

the Jensen functional equation

f (x + y) = 1

2

(
f (2x)+ f (2y)),

the Jordan–von Neumann (quadratic) functional equation

f (x + y)+ f (x − y) = 2f (x)+ 2f (y),

the Drygas equation

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y),

and the Fréchet (see [19, 25]) functional equation

f (x+y+ z)+f (x)+f (y)+f (z) = f (x+y)+f (x+ z)+f (y+ z). (11.2)

It has been showed in [14] that the set of solutions of Eq. (11.1) is not empty.
Moreover, if we assume that at least two coefficients Ai are not equal, then every
solution F of this equation, with F(0) = 0, is an additive function. Moreover, the
condition A1 + A2 + A3 + A4 
= A5 + A6 + A7 is sufficient to get F(0) = 0 for
each solution F of (11.1) (see [14]).

11.2 The Main Result

Unless explicitly state otherwise, in what follows we assume that (X,+) is a
commutative monoid, X̂ := X3 \ {(0, 0, 0)}, Y is a Banach space over the field
K ∈ {R,C}, and A1, . . . , A7 ∈ K are fixed.

First we recall another theorem on stability of the generalization of the Fréchet
functional equation. It has been proved in [28].

Theorem 11.1 Let (X,+) be an abelian group, A1 
= 0 and

A2 + A3 + A4 = A5 + A6 + A7.

Assume that f : X → Y , c : Z \ {0} → [0,∞) and L : X̂ → [0,∞) satisfy the
following three conditions:
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M := {m ∈ Z \ {0} : |A7|c(−2m)+ |A5 + A6|c(m+ 1)

+ |A3 + A4|c(−m)+ |A2|c(2m+ 1) < |A1|} 
= ∅,

L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X̂,m ∈ M ,

k ∈ {−2m,m+ 1,−m, 2m+ 1},

‖A1f (x + y + z)+ A2f (x)+ A3f (y)+ A4f (z)− A5f (x + y)
− A6f (x + z)− A7f (y + z)‖ ≤ L(x, y, z), (x, y, z) ∈ X3.

Then there is a unique function F : X → Y satisfying Eq. (11.1) with D = X and
such that

‖f (x)− F(x)‖ ≤ ρL(x), x ∈ X \ {0},

where

ρL(x) := inf
m∈M

L((2m+ 1)x,−mx,−mx)
|A1| − βm ,

βm := |A7|c(−2m)+ |A5 + A6|c(m+ 1)+ |A3 + A4|c(−m)+ |A2|c(2m+ 1).

The following theorem also concerns stability of Eq. (11.1). It complements
Theorem 11.1 and generalizes [14, Theorem 13]. It shows that the assumptions of
[14, Theorem 13] can be significantly weakened; in particular, that it is still valid on
a restricted domain. The proof of it will be provided in the next section. We use in
it a fixed point theorem for some function spaces from [12].

Theorem 11.2 Let D ⊂ X, 0 ∈ D,

2x, 3x ∈ D, x ∈ D,

D̂ := D3 \ {(0, 0, 0)}, A2 + A3 + A4 
= 0,

β0 :=
∣∣∣∣
A5 + A6 + A7 − A1

A2 + A3 + A4

∣∣∣∣ < 1,

and a function L : D3 → [0,∞) fulfil the condition

L(kx, ky, kz) ≤ ckL(x, y, z), (x, y, z) ∈ D̂, k ∈ {2, 3}, (11.3)
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with some c2, c3 ∈ [0,∞) such that β := b2c2 + b3c3 < 1, where

b2 :=
∣∣∣∣
A5 + A6 + A7

A2 + A3 + A4

∣∣∣∣ , b3 :=
∣∣∣∣

A1

A2 + A3 + A4

∣∣∣∣ . (11.4)

If f : D → Y satisfy the inequality

‖A1f (x + y + z) + A2f (x)+ A3f (y)+ A4f (z) (11.5)

− A5f (x + y)− A6f (x + z)− A7f (y + z)‖ ≤ L(x, y, z),

(x, y, z) ∈ D3, x + y + z, x + y, x + z, y + z ∈ D.

then there exists a unique solution F : D → Y of Eq. (11.1) such that F(0) = 0 and

‖f (x)− F(x)‖ ≤ ρL(x), x ∈ D, (11.6)

where

ρL(x) := L(x, x, x)

|A2 + A3 + A4|(1 − γ (x)) , x ∈ D, (11.7)

with

γ (x) :=
{
β if x 
= 0;
β0 if x = 0.

11.3 Proof of Theorem 11.2

In the proof we use the approach initiated in [10] and next applied also in [2, 4, 6, 11,
13, 16, 28, 31, 35]. The main tool in it will the fixed point theorem for the function
spaces proved in [12].

Theorem 11.3 ([12]) Let the following three hypotheses be valid.

(H1) S is a nonempty set, E is a Banach space, and functions f1, . . . , fk : S → S

and l1, . . . , lk : S → R+ are given.
(H2) T : ES → ES is an operator satisfying the inequality

∥
∥T ξ(x)−T μ(x)

∥
∥ ≤

k∑

i=1

li (x)
∥
∥ξ(fi(x))− μ(fi(x))

∥
∥, ξ, μ ∈ ES, x ∈ S.
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(H3) � : R+S → R+S is defined by

�δ(x) :=
k∑

i=1

li (x)δ(fi(x)), δ ∈ R+S, x ∈ S.

Assume that functions ε : S → R+ and ϕ : S → E fulfil the following two
conditions

∥
∥T ϕ(x)− ϕ(x)∥∥ ≤ ε(x), x ∈ S, (11.8)

ε∗(x) :=
∞∑

n=0

�nε(x) <∞, x ∈ S. (11.9)

Then there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ S.

Moreover,

ψ(x) := lim
n→∞T nϕ(x), x ∈ S.

From this theorem we obtain that an appropriately defined operator determines
an exact solution of Eq. (11.1) as the limit of a sequence of its iterates on an
approximate solution of this equation. Similar results can be found in, e.g., [4–
7, 9, 10, 13, 18, 20, 21, 23, 24, 26–28, 31, 32, 34–36].

Proof Inserting x by y and z in condition (11.5) we get following inequality

‖A1f (3x)+ (A2 + A3 + A4)f (x)− (A5 + A6 + A7)f (2x)‖ (11.10)

≤ L(x, x, x), x ∈ D.

From (11.10) we have

∥
∥∥∥f (x)−

A5 + A6 + A7

A2 + A3 + A4
f (2x)+ A1

A2 + A3 + A4
f (3x)

∥
∥∥∥ ≤ ε(x), x ∈ D,

(11.11)

where function ε is given by

ε(x) := L(x, x, x)

|A2 + A3 + A4| .
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Now we define an operator T and show that properties (H1), (H2) and (H3) of
Theorem 11.3 are satisfied. For every ξ ∈ YD, x ∈ D let

T ξ(x) := A5 + A6 + A7

A2 + A3 + A4
ξ(2x)− A1

A2 + A3 + A4
ξ(3x). (11.12)

Notice that the operator T has the property

T ξ(0) = A5 + A6 + A7 − A1

A2 + A3 + A4
ξ(0), ξ ∈ YD. (11.13)

It is easy to see that operator T is linear.
Let ξ, μ ∈ YD . Then by definition of the norm for every x ∈ D we obtain

‖T ξ(x)−T μ(x)‖ ≤
∣∣∣
∣
A5 + A6 + A7

A2 + A3 + A4

∣∣∣
∣ ‖ξ(2x)− μ(2x)‖

+
∣∣∣∣

A1

A2 + A3 + A4

∣∣∣∣ ‖ξ(3x)− μ(3x)‖.

Thus

‖T ξ(x)−T μ(x)‖ ≤ b2 ‖ξ(2x)− μ(2x)‖ (11.14)

+ b3 ‖ξ(3x)− μ(3x)‖, x ∈ D \ {0}.

In case x = 0 we have

‖T ξ(0)−T μ(0)‖ =
∥∥∥
∥
A5 + A6 + A7 − A1

A2 + A3 + A4
(ξ(0)− μ(0))

∥∥∥
∥

=
∣∣∣∣
A5 + A6 + A7 − A1

A2 + A3 + A4

∣∣∣∣ ‖ξ(0)− μ(0)‖.

Therefore

‖T ξ(0) −T μ(0)‖ = β0 ‖ξ(0)− μ(0)‖. (11.15)

Consequently,

‖T ξ(x) −T μ(x)‖ ≤
2∑

i=1

li (x)‖ξ(fi(x))− μ(fi(x))‖, ξ, μ ∈ YD, x ∈ D,

where f1(x) = 2x and f2(x) = 3x, which means that conditions (H1) and (H2) are
satisfied, with k = 2, S = X, E = Y , l1(x) = b2, l2(x) = b3 for x ∈ D \ {0} and
l1(0) = β0, l2(0) = 0.
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Next we define an operator � : R+D → R+D as in (H3) by

�η(x) :=
2∑

i=1

li (x)η(fi(x)), x ∈ D (11.16)

for every η ∈ R+D . Then for each η ∈ R+D we have that

�η(x) := b2 η(2x)+ b3 η(3x), x ∈ D \ {0}
and

�η(0) := β0η(0).

Let us note that operator � is nondecreasing, i.e., �η ≤ �ζ for all η, ζ ∈ R+D
with η ≤ ζ .

Besides, by (11.14) and (11.15) the relation between operators T and � is
following

‖T ξ(x)−T μ(x)‖ ≤ �(‖ξ − μ‖)(x), ξ, μ ∈ YD, x ∈ D. (11.17)

By (11.11) and (11.12) we obtain the estimation

‖f (x)−T f (x)‖ ≤ ε(x), x ∈ D,

so, condition (11.8) holds. In the special case when x = 0, we get

‖f (0)−T f (0)‖ =
∣∣∣∣1 − A5 + A6 + A7 − A1

A2 + A3 + A4

∣∣∣∣ ‖f (0)‖ ≤ ε(0).

Now we will show that the function series

∞∑

n=0

�nε(x)

is convergent for each x ∈ D, i.e., condition (11.9) is satisfied. Fix an x ∈ D \ {0}.
By (11.16) and (11.3), we obtain

�ε(x) = b2 ε(2x)+ b3 ε(3x)

= b2
L(2x, 2x, 2x)

|A2 + A3 + A4| + b3
L(3x, 3x, 3x)

|A2 + A3 + A4|
≤ b2c2

L(x, x, x)

|A2 + A3 + A4| + b3c3
L(x, x, x)

|A2 + A3 + A4|
= (b2c2 + b3c3)

L(x, x, x)

|A2 + A3 + A4| .
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Thus

�ε(x) ≤ βε(x). (11.18)

By induction one can show that monotonicity and linearity of � implies

�nε(x) ≤ βnε(x). (11.19)

Consequently, for each x ∈ D \ {0} we have the estimate

ε∗(x) =
∞∑

n=0

�nε(x) ≤ ε(x)(1 +
∞∑

n=1

βn)

= ε(x)

1 − β = L(x, x, x)

|A2 + A3 + A4|(1 − β) .

In case x = 0 we get

�ε(0) = β0ε(0). (11.20)

So, by induction we obtain

�nε(0) = βn0 ε(0). (11.21)

Hence

ε∗(0) =
∞∑

n=0

�nε(0) = ε(0)(1 +
∞∑

n=1

βn0 )

= ε(0)

1 − β0
= L(0, 0, 0)

|A2 + A3 + A4|(1 − β0)
.

Thus we have shown that

ε∗(x) =
∞∑

n=0

�nε(x) ≤ L(x, x, x)

|A2 + A3 + A4|(1 − γ (x)) <∞, x ∈ D.

Because assumptions of Theorem 11.3 are satisfied, in view of this theorem there
exists a function F : D → Y satisfying Eq. (11.1) for x = y = z, i.e.,

F(x) = A5 + A6 + A7

A2 + A3 + A4
F(2x)− A1

A2 + A3 + A4
F(3x), x ∈ D. (11.22)
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Moreover,

‖f (x)− F(x)‖ ≤ ε∗(x) ≤ L(x, x, x)

|A2 + A3 + A4|(1 − γ (x)) , x ∈ D.

and

F(x) = lim
n→∞T nf (x), x ∈ D.

Next we will prove that the function F satisfies Eq. (11.1) for all x, y, z ∈ D,
firstly, by induction we will show that for all (x, y, z) ∈ D3 such that x+y+ z, x+
y, x + z, y + z ∈ D, n ∈ N0 := N ∪ {0} occurs the condition

‖A1T
nf (x + y + z) + A2T

nf (x)+ A3T
nf (y)+ A4T

nf (z) (11.23)

− A5T
nf (x + y)− A6T

nf (x + z)− A7T
nf (y + z)‖

≤ λn L(x, y, z),

where λ := max{β, β0}. For n = 0 condition (11.23) follows from (11.5). Now,
assume that (11.23) holds for some n ∈ N0 and all (x, y, z) ∈ D3 such that x+ y+
z, x + y, x + z, y + z ∈ D. Then by (11.12) we obtain

∥∥A1T
n+1f (x + y + z)+ A2T

n+1f (x)+ A3T
n+1f (y)+ A4T

n+1f (z)

− A5T
n+1f (x + y)− A6T

n+1f (x + z)− A7T
n+1f (y + z)∥∥

=
∥∥∥∥
A5+A6+A7

A2+A3+A4
A1T

nf (2(x + y + z))− A1

A2+A3+A4
A1T

nf (3(x+y+z))

+ A5 + A6 + A7

A2 + A3 + A4
A2T

nf (2x)− A1

A2 + A3 + A4
A2T

nf (3x)

+ A5 + A6 + A7

A2 + A3 + A4
A3T

nf (2y)− A1

A2 + A3 + A4
A3T

nf (3y)

+ A5 + A6 + A7

A2 + A3 + A4
A4T

nf (2z)− A1

A2 + A3 + A4
A4T

nf (3z)

− A5 + A6 + A7

A2 + A3 + A4
A5T

nf (2(x + y))+ A1

A2 + A3 + A4
A5T

nf (3(x + y))

− A5 + A6 + A7

A2 + A3 + A4
A6T

nf (2(x + z))+ A1

A2 + A3 + A4
A6T

nf (3(x + z))

− A5 + A6 + A7

A2 + A3 + A4
A7T

nf (2(y + z))+ A1

A2 + A3 + A4
A7T

nf (3(y + z))
∥∥∥∥

≤
∣∣∣∣
A5 + A6 + A7

A2 + A3 + A4

∣∣∣∣ λ
nL(2x, 2y, 2z)+

∣∣∣∣
A1

A2 + A3 + A4

∣∣∣∣ λ
nL

(
3x, 3y, 3z

)
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for every (x, y, z) ∈ D̂ such that x + y + z, x + y, x + z, y + z ∈ D. Hence by
(11.3)

∥
∥A1T

n+1f (x + y + z)+ A2T
n+1f (x)+ A3T

n+1f (y)+ A4T
n+1f (z)

− A5T
n+1f (x + y)− A6T

n+1f (x + z)− A7T
n+1f (y + z)∥∥

≤ λn(b2c2 + b3c3)L(x, y, z) ≤ λn+1L(x, y, z) (11.24)

for (x, y, z) ∈ D̂ such that x + y + z, x + y, x + z, y + z ∈ D. By (11.13),

∥∥(A1+A2 + A3 + A4 − A5 − A6 − A7)T
n+1f (0)

∥∥

=
∥∥
∥∥(A1 + A2 + A3 + A4 − A5 − A6 − A7)

A5 + A6 + A7 − A1

A2 + A3 + A4
T nf (0)

∥∥
∥∥

=β0
∥∥(A1 + A2 + A3 + A4 − A5 − A6 − A7)T

nf (0)
∥∥

≤β0λ
nL(0, 0, 0) ≤ λn+1L(0, 0, 0),

which ends the proof of (11.23). Letting n→ ∞ in (11.23), we obtain

A1F(x + y + z)+ A2F(x)+ A3F(y)+ A4F(z)

=A5F(x + y)+ A6F(x + z)+ A7F(y + z), (x, y, z) ∈ D3.

Next we will show that F(0) = 0. In view of (11.12) we get by induction that

T nξ(0) =
(
A5 + A6 + A7 − A1

A2 + A3 + A4

)n
ξ(0) = βn0 ξ(0), ξ ∈ YD, n ∈ N.

Thus

lim
n→∞T nξ(0) = 0 , ξ ∈ YD, (11.25)

since β0 < 1. Consequently, we obtain F(0) = limn→∞T nf (0) = 0.
Now, we prove the uniqueness of F . By induction first we show that for all ξ, μ ∈

YD , n ∈ N

‖T nξ(x)−T nμ(x)‖ ≤ �n(‖ξ − μ‖)(x), x ∈ D. (11.26)

By (11.17) condition (11.26) holds for n = 1. Fix ξ, μ ∈ YD and let condition
(11.26) holds for n ∈ N. Then by (11.17)

‖T n+1ξ(x)−T n+1μ(x)‖ = ‖T (T nξ)(x)−T (T nμ)(x)‖
≤ �(‖T nξ −T nμ‖)(x), x ∈ D.
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Hence by (11.26) and monotonicity of � we obtain

‖T n+1ξ(x)−T n+1μ(x)‖ ≤ �(�n(‖ξ − μ‖))(x)
= �n+1(‖ξ − μ‖)(x), x ∈ D.

LetG : X → Y be also a solution of Eq. (11.1) such that ‖f (x)−G(x)‖ ≤ ρL(x)

for x ∈ D. Then

‖G(x)− F(x)‖ ≤ 2ρL(x), x ∈ D. (11.27)

Hence by (11.26) we get that

‖T nG(x)−T nF (x)‖ ≤ 2�nρL(x) = 2�nε(x)

1 − γ (x) , x ∈ D,

since � is a linear operator. Letting n→ ∞, by convergence of the series

∞∑

n=0

�nε(x),

we obtain

lim
n→∞‖T nG(x)−T nF (x)‖ = 0, x ∈ D.

Thus, ‖G(x)− F(x)‖ = 0 for x ∈ D, since G and F are fixed points of T . Finally
G(x) = F(x) for every x ∈ D. This completes the proof. ��

For some suitable comments and examples concerning the assumptions used in
this paper we refer to [14].
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Chapter 12
Miscellanea About the Stability
of Functional Equations

Zenon Moszner

Abstract The interesting details about the stability, the superstability, the inverse
stability, the absolute stability and the stability in a class for a functional equation,
for a system, and the alternation of functional equations, about the approximation
of approximation and about the nearness of two approximations are given.

Keywords Stability · Superstability · Inverse stability · Absolute stability ·
Stability in the class · Stability of the system · Stability of the alternation ·
Stability of conditional equation · Approximation of approximation · Nearness of
two approximations · Translation equation · Geometric concomitant equation ·
Dynamical system · Uniform b-stability · Inverse b-stability · Stability of
difference equation · Questions
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12.1 Introduction

It is well known that the stability theory of functional equations is inspired by the
following S. Ulam’s question presented in 1940 and published in [28, p. 63]: when
can one assert that the solutions of the inequality lie near to the solutions of the strict
equation?

More exactly [28, p. 64]: for what metric groups G with a metric d it is true that
for every ε > 0 there exists a k such that for every function g : G→ G with

d[g(xy), g(x)g(y)] ≤ ε, x, y ∈ G,
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there exists a homomorphism f : G→ G for which

d[g(x), f (x)] ≤ kε, x ∈ G.

It is possible to interpret these questions in various non-equivalent manners [19].
Hyers was the first to give the following interpretation [9]:

Let B1 and B2 be the Banach spaces. Does, for every ε > 0, there exist a δ > 0
such that to each function g : B1 → B2 with

|g(x + y)− g(x)− g(y)| < δ, x, y ∈ B1, (12.1)

there corresponds an additive function f : B1 → B2 such that

|g(x)− f (x)| ≤ ε, x ∈ B1. (12.2)

Hyers proved in [9] (by, so-called, “direct method”) that this property is true with
δ = ε and in this case the equation

f (x + y) = f (x)+ f (y) (12.3)

is said to be stable (in the Hyers sense).
The Hyers result also is true with δ = ε if the inequalities in (12.1) and (12.2)

are “< δ and < ε” or “≤ δ and ≤ ε” [15]. On the contrary, it is true with “≤ δ and
< ε” only when δ < ε (consider g(x) = x + δ in (12.1) and (12.2)).

12.2 Stability

(a) The Hyers result has been generalized in different directions.

By a simple modification of the Hyers proof of his theorem we obtain that the
Hyers result is valid also when B1 is a commutative semigroup (this remark is
already in [6]) and B2 is a commutative semigroup divisible by 2 and complete
with respect to a metric d for which d(2a, 2b) ≥ 2d(a, b) for a, b ∈ B2 [16].

If B1 is the semigroup such that

∧

x,y∈B1

∨

n∈N, n≥2

n(x + y) = nx + ny,

then Eq. (12.3) is stable.
Indeed, in the paper [5] it is proved that, for every function g from this semigroup

B1 to R such that |g(x + y)− g(x)− g(y)| is bounded, we have g = f + h, where
f is a solution of (12.3) and the function h is bounded (we do not have any estimate
for h in [5]). Thus
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g(nx)

n
= f (nx)

n
+ h(nx)

n
= f (x)+ h(nx)

n
→ f (x) for n→ +∞.

If |g(x+y)−g(x)−g(y)| ≤ ε, then by the induction |g(nx)−ng(x)| ≤ (n−1)ε.
This implies that |f (x)− g(x)| ≤ ε.

The supposition that the semigroup B1 is commutative can be replaced by the
assumption that B1 is left (right) amenable [27].

Moreover, if Eq. (12.1) is stable for the functions f from a semigroup S to the
nontrivial Banach space B1 (i.e., B1 
= {0}), then this equation is stable for the
functions f from the semigroup S to the Banach space B2, too [8].

(b) The above stability is formulated for the other functional equations by the
following way. Let

L(f ) = R(f ) (12.4)

be a functional equation in which f : S1 → S2 is the unknown function, S1
is an arbitrary nonempty set, S2 is metric space with a metric d and L(f ) and
R(f ) have their values in S2. This equation is said to be stable (Ulam-Hyers
stable) if for every ε > 0 there exists a δ > 0 such that, for every solution
g : S1 → S2 of the inequality

d[L(g), R(g)] ≤ δ, (12.5)

there exists a solution f of Eq. (12.4) such that

d[g(x), f (x)] ≤ ε, x ∈ S1. (12.6)

In this case there exists a function� : (0,+∞)→ (0,+∞) such that for every
ε > 0 if d[L(g), R(g)] ≤ �(ε), then we have (12.6) for some solution f of
(12.4). If the function � is unbounded the stability is called normal.

Comment All functions considered below are from R to R and the metric in R is
natural, unless explicitly stated otherwise.

(c) If the inequality (12.5) does not have any solution for some δ0 > 0, then
Eq. (12.4) does not have solutions either and it is stable! It is sufficiently to
put δ = δ0 for every ε > 0. For instance, the equation f (x)2 + 1 = 0 is of this
type. Here the inequality (12.5): |f (x)2 + 1| ≤ δ does not have any solution for
every 0 ≤ δ < 1. The inequality (12.5) for the equation [f (x)]−1 = 0 has a
solution for every δ > 0, but this equation is not stable since it does not have
any solution.

(d) For two equivalent equations the first may be stable and the second unstable.
E.g., the equations exp[f (x)+f (y)−f (xy)] = 1 and exp f (xy) = exp[f (x)+
f (y)] are of this type. Indeed, if we have
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| exp[g(x)+ g(y)− g(xy)] − 1| ≤ exp ε − 1

exp ε + 1
, x, y ∈ R,

for some function g, then

| exp g(x)− 1| ≤ exp ε − 1

exp ε + 1

and so |g(x)− 0| ≤ ε, whence the stability follows with

δ = (exp ε − 1)(exp ε + 1)−1.

The function f (x) = 0 is the unique solution of the second equation. Assume
that this equation is stable. For ε = 1 there exists a δ > 0 such that, if

| exp g(xy)− exp[g(x)+ g(y)]| ≤ δ,

then |g(x) − 0| ≤ 1. Let n ∈ N be such that | ln 1
n
| > 1 and | 1

n
( 1
n
− 1)| ≤ δ.

Then the function g(x) = 0 for x 
= 0 and g(0) = ln 1
n

is a solution of the
inequality (12.5) and |g(0)− 0| > 1, thus a contradiction.

(e) Let Li(f ) = Ri(f ) for i = 1, 2 be the two functional equations as in (12.4).
Assume that for every δ > 0 the inequalities

d[L1(g), R1(g)] ≤ δ and d[L2(g), R2(g)] ≤ δ (12.7)

are equivalent. Then

a/ the equations L1(f ) = R1(f ) and L2(f ) = R2(f ) are equivalent, too;
b/ if the equation L1(f ) = R1(f ) is stable, then the equation L2(f ) = R2(f ) is

stable and vice versa.

Proof Assume that there exists a solution f of the first equation which is not a
solution of the second equation. In this case L2(f ) 
= R2(f ) for some values v0 of
the variables in this equation. For δ := 1

2d[L2(f ), R2(f )] > 0, where the variables
in L2(f ) and R2(f ) have the values v0, we obtain that the function f is a solution
of the first inequality in (12.7) and it is not the solution for the second inequality in
(12.7), thus a contradiction.

Assume that the equation L1(f ) = R1(f ) is stable and let ε and δ be as in the
definition of the stability. Let g : S1 → S2 be such that d[L2(g), R2(g)] ≤ δ.
Thus d[L1(g), R1(g)] ≤ δ. This yields that there exists a solution f of equation
L1(f ) = R1(f ) for which d[g(x), f (x)] ≤ ε. The proof is finished since the
function f is the solution of equation L2(f ) = R2(f ), too.

(f) Consider a little stronger version of the Ulam-Hyers stability, namely the s-
stability (see, e.g., [11]). Equation (12.4) is said to be s-stable if, for every δ > 0,
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there exists aK(δ) such that limδ→0K(δ) = 0 and, for every solution g : S1 →
S2 of the inequality (12.5), there exists a solution f of the equation such that

d[g(x), f (x)] ≤ K(δ), x ∈ S1.

If infK[(0,+∞)] = 0, then this stability is said to be normal uniformly b-stable
in [20].

The s-stability implies the Ulam-Hyers stability. In fact, for ε > 0 there exists
a δ > 0 such that K(δ) ≤ ε. We have d[g(x), f (x)] ≤ K(δ) ≤ ε for this δ.
The implication inverse is not true. E.g., Eq. (12.3), where f : G → Z, Z is the
set of integer numbers with the usual metric and G is the free group generated by
two elements, is evidently stable with δ < 1. It is not s-stable since there exists a
function g : G→ Z for which the function g(x + y)− g(x)− g(y) is bounded and
the function g(x)− f (x) is unbounded for every homeomorphism f : G→ Z [6].

12.3 Stability of System

There exist the unstable (stable) system of stable (unstable) functional equations.
E.g., the equations

(|f (x)− 1| − f (x)+ 1)f (x) = 0 and E(f (x)) = 0,

where E(u) denotes the integer part of u, are stable separately and the system of
these equations is not stable.

The system of the equations

(|f (x)− 1| − f (x)+ 1)|f (x)| + |E(f (x))| = 0,

(|f (x)+ 1| + f (x)+ 1)|f (x)| + |E(−f (x))| = 0

is stable and the equations in this system are unstable (for the proofs see [14]). The
above equations are not natural. For the natural equations see Sect. 12.16.

Moreover if one the equation is stable and the other unstable, then their system
may be stable (unstable). Indeed, for f : R → R \ {0} the equation f 2(x)+ 1 = 0
is stable, the equation f (x) = 0 is unstable and their system is stable.

However, for the same f , the equation f (f (x)) = f (x) is stable, the equation
f (x) = 0 is unstable and their system is unstable.

Indeed, if for g : R → R \ {0} we have |g(g(x))− g(x)| ≤ δ, then for f (x) = x

for x ∈ g(R) and f (x) = g(x) for x ∈ R \ g(R) we obtain f (f (x)) = f (x)

and |g(x) − f (x)| ≤ δ (the same proof is good for f : S1 → S2 if S2 ⊂ S1
and S2 is a metric space with the metric denoted |a − b|). The system of their
equations is unstable since for the function g(x) = δ we have |g(g(x))− g(x)| ≤ δ

and |g(x)| ≤ δ and the system of the equations in consideration does not have the
solution.
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By the above, the stability (unstability) of the system gives no information about
the stability of the equations in this system.

12.4 Slightly Differing Equations

Ulam has formulated in [28] the following question, too: When is true that the
solution of an equation differing slightly from a given one, must of necessity be
close to the solution of the given equation? This motivates the following definitions.

The equations L1(f ) = R1(f ) and L2(f ) = R2(f ) are said to be δ-close if
d[L1(f ), L2(f )] ≤ δ and d[R1(f ), R2(f )] ≤ δ. These δ-close equations are called
stable for the solutions if there exists a ε > 0 such that for every solution f1 of the
first equation there exists a solution f2 of the second equation for which d(f1, f2) ≤
ε and vice versa. E.g., the equations f (x + y) = f (x)+ f (y) and f (x + y)+ δ =
f (x) + f (y) for f : R → R are δ-close and stable for the solutions with ε = δ.
The same equations for f : R → R \ {0} are not stable for the solutions, since
f (x) = δ is the solution of the second equation and the first equation does not have
any solution.

12.5 Stability of Alternation

The alternation

L1(f ) = R1(f ) or L2(f ) = R2(f ) (12.8)

of two functional equations is said to be stable if, for every ε > 0, there exists a
δ > 0 such that, for every function g : S1 → S2 for which

d[L1(g), R1(g)] ≤ δ or d[L2(g), R2(g)] ≤ δ,

there exists a solution f of this alternation for which d[g(x), f (x)] ≤ ε for x ∈ S1.
We have for this stability the same situation as for the system.
Let f be a function from R to R\{0}. The equations |f (x)| = x and |f (x)| = −x

are stable and their alternation is not stable.
The equations f (x) = f (1)x and f (x) = f (0)(1 − x) are unstable and their

alternation is stable.
From the equations f (x) = 2 and f (x) = x the first one is stable, the second

one is unstable and their alternation is unstable.
From the equations f (x) = f (x) and f (x) = f (1)x the first is evidently stable,

the second is not stable and their alternation is evidently stable [19].



12 Stability of Functional Equations 237

Here we have the same situation as for the system: the stability (unstability)
of the alternation gives no information about the stability of the equations in this
alternation.

The alternation (12.8) may be written in the form

L1(f ) 
= R1(f )⇒ L2(f ) = R2(f )

and the stability of it is defined as the stability of the alternation.
E.g., in the theory of elections [25] the generalized indicator plurality function

f : Rn \ {(0, . . . , 0)} → R
m \ {(0, . . . , 0)} is considered, which is a solution of

following functional equation

f (x) · f (y) 
= (0, . . . , 0)⇒ f (x + y) = f (x) · f (y), (12.9)

where (u1, . . . , um) · (v1, . . . , vm) = (u1v1, . . . , umvm) and (x1, . . . , xn) +
(y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

This equation is not stable for n = m = 1. In this case our equation has the only
solution of the form f (x) = exp a(x), where a(x) is the additive function. Assume
that for ε = 1/2 there exists a δ > 0 such as in the definition of stability. It is
possible to suppose that δ ≤ 1/16. We have |g(x)g(y)| ≤ δ for g(x) = √

δ, thus
there exists a additive function a(x) such that |g(x)−exp a(x)| = |√δ−exp a(x)| ≤
1/2. For a(x) 
= 0 we obtain a contradiction. For a(x) = 0 we have

1

2
≥ |√δ − 1| = 1 −√

δ ≥ 1 − 1

4
= 3

4
,

thus a contradiction, too.

Question Is the situation the same for the other n,m?

12.6 Stability of the Conditional Functional Equation

It is possible to consider the conditional functional equation of the form

(C)⇒ L(f ) = R(f ),

where (C) is a condition. The stability of this equation is defined in the following
way: for every ε > 0 there exists a δ > 0 such that, for every function g : R → R

for which (C) ⇒ d[L(g), R(g)] ≤ δ it is true, there exists a solution f of our
conditional equation such that d(g, f ) ≤ ε.

We have here two possibilities: the condition (C) depends on f or not. E.g., the
conditional equation

(f is a function differentiable at every point of R) ⇒ f (f (x)) = f (x)
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is stable. The functions which are not differentiable at least at one point and the
idempotent function are the all solutions of our equation. If the function g : R → R

is a solution of the conditional inequality

(g is a function differentiable at every point of R) ⇒ |g(g(x))− g(x)| ≤ δ

for a δ > 0, then g is not differentiable at least at one point or |g(g(x))−g(x)| ≤ δ.
In the first case g is a solution of our equation and |g(x) − g(x)| = 0 ≤ δ. In the
second case |g(g(x)) − g(x)| ≤ δ and for the function f , given by: f (x) = x for
x ∈ g(R) and f (x) = g(x) for x ∈ R\g(R), we have |g(x)−f (x)| ≤ δ. Moreover
the function f is a solution of our equation since f (f (x)) = f (x).

Equation (12.9) for n = m = 1 as the conditional equation is not stable (the
proof as in Sect. 12.7 below).

The conditional equation

f (x) = f (y)⇒ f (F (x, t)) = f (F (y, t)), (12.10)

where the given function F (the transformation law) is a solution of the translation
equation with the identity condition, plays the role in the theory of the concomitants
of geometric objects. Exactly, the concomitant f (x) ∈ S1 of a geometric object
x ∈ S with the transformation law F is the geometric object if and only if f is a
solution of the above conditional equation [22]. If f (x) is the geometric object, then
there exists a transformation law G of this object and we have

G(f (x), t)] = f [F(x, t)]. (12.11)

This equation is said to be the geometric concomitant equation. This equation
implies (12.10) (ϕ[F(x, t)] = F(ϕ(x), t) = F(ϕ(y), t) = ϕ[F(y, t)]if ϕ(x) =
ϕ(y)) but not vice versa even in the case G = F . Indeed, e.g., let (G,+) be a semi-
group with the neutral element 0 and let F(x, t) = x + t for x, t ∈ G. The injection
f fromG toG is evidently the solution of (12.10). If moreover f is not the identity
and f (0) = 0, then it is not a solution of (12.11) since f (x+ t) = f (x)+ t implies
f (t) = t for t ∈ G.

Equations (12.10) and (12.11) are evidently stable if G(x, t) = F(x, t) = x.
Let (G,+) be as above and let S be the metric space with the metric d such that
card G = card S. Equation (12.11) is stable if G(x, t) = F(x, t) = g−1[g(x) +
t], where g is a bijection from S to G. In fact, assume that d[ψ(g−1[g(x) +
t]), g−1[[g(ψ(x)) + t]] ≤ ε for a function ψ : S → S and some ε > 0. Let x0
be such that g(x0) = 0. We have thus that

d[ψ(x), g−1[g(ψ(x0))+ g(x)] ≤ ε, x ∈ S.

Since the function g−1[g(ψ(x0)) + g(x)] is a solution of (12.11), so this equation
is stable with δ = ε.



12 Stability of Functional Equations 239

Every transformation law F : S × G → S, where S is a set and G is a group,
i.e., the function F for which

F(F(x, t), s) = F(x, t + s), x ∈ S, t, s ∈ G and F(x, 0) = x, x ∈ S,

is of the form

F(x, t) = h−1
n [hn(x)+ t], x ∈ Sn, t ∈ G,

where Sn for n ∈ N1 ⊂ N are the non-empty sets such that
⋃
Sn = S and, for every

n ∈ N1, there exists a subgroup Gn of G for which card Sn = indGn and hn is a
bijection from Sn to the family of the right cosets of G by Gn for n ∈ N1 [13].

Analogously, the transformation law G : S1 ×G→ S1 is of the form

G(x, t) = g−1
m [gm(x)+ t], x ∈ S∗m, t ∈ G,

where S∗m for m ∈ N2 ⊂ N are the non-empty sets such that
⋃
S∗m = S1 and for

every m ∈ N2 there exists a subgroup G∗
m of G for which card S = indG∗

m and gm
is a bijection from S∗m to the family of right cosets of G by G∗

m for m ∈ N2.
If the group G is abelian and S1 is the metric space with the metric d and Gn =

G∗ for n ∈ N1 andG∗
m = G∗ form ∈ N2, then Eq. (12.11) is stable. Indeed, assume

that d[g(F (x, t)),G(g(x), t)] ≤ ε for a function g : S → S1 and some ε > 0. Let
x ∈ Sk and g(x) ∈ S∗l . We have thus

d
[
g[h−1

k (hk(x)+ t)], g−1
l

[
gl(g(x))+ t

] ] ≤ ε.

There exists x0 such that hk(x0) = Gk = G∗. For every x ∈ Sk there exists t (x) ∈
G such that h−1

k [hk(x0) + t (x)] = h−1
k [G∗ + t (x)] = x, whence G∗ + t (x) =

hk(x). There exists al ∈ G such that gl(g(x0)) = G∗
l + al = G∗ + al . From here

gl(g(x0))+ t (x) = G∗ + al + t (x) = hk(x)+ al . Thus we obtain

d[g(x), g−1
l (hk(x)+ al)] ≤ ε.

The function f (x) = g−1
l (hk(x) + al) is the solution of (12.11). In fact, for

x ∈ Sk, g(x) ∈ S∗l we have f (x) ∈ S∗l and this yields that

f [F(x, t)] = f [h−1
k (hk(x)+ t)] = g−1

l (hk(x)+ t + al) = g−1
l (hk(x)+ al + t)

= g−1
l (gl(f (x))+ t) = G(f (x), t).

Equation (12.11) is thus stable with δ = ε.
We note that the function g does not occur clearly in the form of the function f .

But the dependance of f on g is in “l” by the condition g(x) ∈ S∗l .
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The supposition that F and G are the transformation laws is essential in the
above considerations. Indeed, e.g., for the functions F(x, t) = x+c with c > 0 and
G(x, t) = x from R×R to R, Eq. (12.11) is not stable. It has the form: f (x + c) =
f (x) and this equation of periodic function is not stable. In fact, for the function

g(x) = δ

c
x

we have |g(x + c) − g(x)| ≤ δ and we obtain for every periodic function f
with period c that g(nc) − f (nc) = δn − f (0), thus the function g(x) − f (x)

is unbounded.
Equation (12.11) may be stable for the transformation laws F and G such that

the subgroups Gk and G∗
l are not equal. E.g., put S = [0,+∞), S1 = (−∞, 0),

F(x, t) = x exp t = h−1
n [hn(x)+ t], x ∈ S, t ∈ R, n = 1, 2,

where h1(x) = [ln x] : (0,+∞) → R/{0} and h2(x) = [0] : {0} → R/R,
G(x, t) = x exp t = g−1

1 [g1(x) + t] for x ∈ S1, t ∈ R, where g1(x) =
ln(−x) : (−∞, 0) → R. Equation (12.11) is stable in this case since the function
g[F(x, t)] −G(g(x), t) is unbounded for every function g : S → S1 (the function
g(0 ·exp t)−g(0) exp t is unbounded). The last example is not very interesting since
the inequality (thus the equation, too) does not have any solution.

Problem Give a suitable example without this deficiency.

There exist the transformation laws F and G for which Eq. (12.11) is not stable.
Put S = R,

S1 =
[ ⋃

n∈N

( 1

n+ 1
,

1

n

)]
∪ {2},

G = (R,+), F(x, t) = x for x, t ∈ R,

G(x, t) = g−1
n [gn(x)+ t] for x ∈ (1/(n+ 1), 1/n), t ∈ R,

where gn is the bijection from (1/(n + 1), 1/n) to R, and G(2, t) = 2 for t ∈ R.
The function f (x) = 2 is the only solution of Eq. (12.11). Indeed, if f is a solution
of (12.11), then f (x) = G(f (x), t), thus f (x) is the fixed point of the function G.
It is impossibly that

f (x) ∈
⋃

n∈N

( 1

n+ 1
,

1

n

)
,

whence f (x) ∈ {2}.
Assume that (12.11) is stable. This yields that for ε = 1 there exists a δ > 0 such

that, for every function g : S → S1, if

|g[F(x, t)] −G(g(x), t)| ≤ δ, x, t ∈ R,
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then |g(x)− 2| ≤ 1. Let n ∈ N be such that 1/n− 1/(n+ 1) ≤ 2δ. For the function
g(x) = (2n+ 1)/(2n(n+ 1)) we obtain

|g[F(x, t)] −G(g(x), t)| = |g(x)−G(g(x), t)| ≤ 1/(2n(n+ 1)) ≤ δ,

since g(x) is the midpoint of the interval (1/(n+1), 1/n) and consequently we have
G(g(x), t) ∈ (1/(n+ 1), 1/n), too. Thus

1 ≥ |g(x)− 2| = |(2n+ 1)/(2n(n+ 1))− 2| > 1.

Question For which transformation laws F (for which transformation laws F and
G) Eq. (12.10) (Eq. (12.11)) is stable?

We note that the implications

g(x) = g(y)⇒ d{g[F(x, t)], F (g(x), t)} ≤ δ

and

d[g(x), g(y)] ≤ δ ⇒ d{g[F(x, t)], F (g(x), t)} ≤ δ

are not equivalent. The second implies evidently the first but non vice versa. Put
F(x, t) = x + t : R × R → R. Let γ be the injection from R/Q to R such that
γ ([0]) = 0, γ ([π ]) = δ and γ ([2π ]) = 3δ, where [a] means the coset in R/Q for
which a ∈ [a]. Put g(x) = γ ([x]) for x ∈ R. Our implications have in this case the
following form

γ ([x]) = γ ([y])⇒ |γ ([x + t])− γ ([y + t])| ≤ δ

and

|γ ([x])− γ ([y])| ≤ δ ⇒ |γ ([x + t])− γ ([y + t])| ≤ δ.

The first of these implications is true since γ is an injection. The second is false,
since for x = 0 and y = t = π it has the form

|0 − δ| ≤ δ ⇒ |δ − 3δ| ≤ δ.

Conclusion The first of our implications has more solution than the second, despite
the fact that the family of functions g for which |g(x)− g(y)| ≤ δ is larger than the
family of functions g such that g(x) = g(y).

If the condition (C) does not depend on the function f , then the equation is said
to be the equation on a restricted domain, too. In fact, it is proved in [10] that the
conditional equation of Jensen
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|x| + |y| ≥ a ⇒ 2f
(x + y

2

)
= f (x)+ f (y)

for f from a normed space to a Banach space and with some a > 0, is stable.
The equation

1 + αxy 
= 0 ⇒ f
( x + y

1 + αxy
)
= f (x)f (y)(1 + αxy)

for f : R → R and α > 0, which is from the special theory of relativity, is a
conditional equation, too.

Question Is this equation stable?

12.7 Superstability

Equation (12.4) is said to be superstable if the inequality d[L(f ), R(f )] ≤ δ for
some δ > 0 implies that the function f is bounded or it is a solution of Eq. (12.4).

The superstable equation may be unstable. E.g., by [1] (the first paper on the
subject of superstability) the equation f (x+y) = f (x)f (y), for f : R → (0,+∞),
is superstable. Assume that this equation is stable. Then for ε = 1/2 there is a δ0 > 0
such that for every function g : R → (0,+∞) with |g(x + y) − g(x)g(y)| ≤
δ0, there exists a solution f of the equation such that |g(x) − f (x)| ≤ 1/2. This
condition is satisfied for all δ ≤ δ0, δ > 0. For

g(x) = 1 −√
1 − 4δ

2
,

where 0 < δ ≤ min {δ0, 1/4}, we have g(x+ y)− g(x)g(y) = δ, thus there exists a
solution f of the equation such that |g(x)−f (x)| ≤ 1/2. The function g is bounded,
hence the function f is bounded, too. Thus f (x) = 1. So, we have

1

2
≥

∣∣∣
1 −√

1 − 4δ

2
− 1

∣∣∣ → 1 for δ → 0,

which is a contradiction.

12.8 Stability of the Squares of Functional Equations

The square of the functional equation L(f ) = R(f ) is of the form [L(f )]2 =
[R(f )]2, if this operation is defined. The stabilities (the superstabilities) of the
equations of this form are considered in many papers. E.g., in the paper [3], the



12 Stability of Functional Equations 243

superstability of the equation of the square of Cauchy equation [f (x + y)]2 =
[f (x) + f (y)]2, (this equation is not equivalent to the Cauchy equation [12]) has
been proved for the function f from an abelian semigroup to a finite-dimensional
normed algebra, which is commutative (this supposition is omitted in [3]). In the
paper [18] is proved that the equation [f (y)]2 = [f (x + y)− f (x)]2 is superstable
if f is mapping an abelian semigroup to the algebra A ∈ {R,C} and the equation
[f (x+y)]2 = [f (x)+f (y)]2 is stable for the function f from a semigroup divisible
by 2 to the algebra with multiplicative norm.

Attention! The Lemma 2.8 in the paper [18] is not true! It reads as follows:
LetG be a groupoid divisible by 2. If the function f : G→ A, whereA ∈ {R,C},

is a solution of the equation [f (2x)−2f (x)]f (2x) = 0, then f (2x) = 2f (x). Thus
if f is bounded, then f = 0.

Indeed, define a function f : R → R by f (x) = x for x = 2k , where k =
0,−1,−2, . . ., and f (x) = 0 otherwise. Then f is a bounded solution of the above
equation, 0 = f (2) 
= 2f (1) = 2 and it is not identically equal zero.

This error may affect validity of some results in the paper [18], in which
this lemma has been used. These results are: Theorem 2.7, the first part of
Proposition 2.26, and the statement that the alternations

f (x + y)− f (x)− f (y) = 0 or f (x + y)− f (x)+ f (y) = 0

and

f (2x)− 2f (x) = 0 or f (2x) = 0

are unstable.

Question Are the above results true even though the lemma 2.8 is false? Especially,
is the equation [f (x + y)− f (x)]2 = f (y)2 stable?

12.9 Inverse Stability

(a) The Ulam question may be inverted as follows: suppose that g can be approxi-
mated by a solution of an equation. Is g in this case an approximate solution of
this equation?

More exactly: Eq. (12.4) is said to be inversely stable if for every ε > 0 there
exists a δ > 0 such that, for every function g : S1 → S2 for which there exists
a solution f of Eq. (12.4) such that d(g, f ) ≤ δ, we have d[L(g), R(g)] ≤ ε

[17].
In this case there exists a function � : (0,+∞) → (0,+∞) such that,

for every ε > 0, if d(g, f ) ≤ �(ε) for some solution f of Eq. (12.4), then
d[L(g), R(g)] ≤ ε. If the function � is unbounded, then the inverse stability is
called normal.
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The equation f (x) = 0 is evidently stable and inversely stable. The equation
f (f (x)) = f (x) is stable (see Sect. 12.3) and it is not inversely stable [17].
The equation of homomorphism f (xy) = f (x) + f (y) from the free group
generated by two elements to R is unstable (see [6] and the remark in Example 1
in [16]) and it is not inversely stable for f : R → R [15]. The equation f (x +
y) = f (x)f (y) for f : R → (0,+∞) is unstable (see Sect. 12.7) and it is not
inversely stable [17].

By the above, the stability and the inverse stability are independent.
(b) If the equation does not have any solution, then it is evidently inversely stable.

Let (S1,+) be a groupoid and (S2,+) be a groupoid with a metric d, which is
invariant with respect to the operation “+” in S2. Then Eq. (12.3) is inversely stable
for f : S1 → S2 by the following inequalities

d[g(x + y), g(x)+ g(y)] ≤ d[g(x + y), f (x + y)] + d[f (x + y), f (x)+ f (y)]
+ d[f (x)+ f (y), g(x)+ f (y)]
+ d[g(x)+ f (y), g(x)+ g(y)]

= d[g(x + y), f (x + y)] + d[f (x + y), f (x)+ f (y)]
+ d[f (x), g(x)] + d[f (y), g(y)],

where f, g : R → R and f is a solution of (12.3).
The equation

f (x + y)2 = [f (x)+ f (y)]2 (12.12)

is equivalent to Eq. (12.3) if f : R → R [8] and it is inversely unstable. Indeed, for
g(x) = x + δ we have |g(x)− x| ≤ δ and the function

|g(x + y)2 − [g(x)+ g(y)]2| = (2x + 2y + 3δ)δ

is unbounded.

12.10 Inverse Stability of System

The system of two inversely stable equations is evidently inversely stable.
The system of two inversely unstable equations may be inversely stable. E.g.,

Eq. (12.12) and f (x)2 = |x| are not inversely stable and their system is inversely
stable since it does not have the solution.

The system may be inversely stable if one of the equations in this system is
inversely stable and the second is not. It is so if the first equation does not have the
solution and the second is an arbitrary inversely unstable equation. The system does
not have the solution, thus it is inversely stable.
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Moreover the system may be inversely unstable if one of the equations in this
system is inversely stable and the second is not. E.g., the system of equations: (12.3)
and (12.7) has this property.

Thus for the inverse stability non all cases are possible.

12.11 Inverse Stability for Alternation

The alternation (12.8) is said to be inversely stable if, for every ε > 0, there exists
a δ > 0 such that, for every function g : S1 → S2 for which d[g(x), f (x)] ≤ δ for
x ∈ S1 and for some solution f of the alternation we have

d[L1(g), R1(g)] ≤ ε or d[L2(g), R2(g)] ≤ ε.

The alternation of two inversely stable equations may be inversely unstable. E.g.,
the equations f (x)2 = x and f (x)2 = −x are inversely stable as the equations
which do not have the solutions. On the contrary their alternation is not inversely
stable since for g(x) = √|x| + δ we have

|g(x)−√|x|| ≤ δ

and the functions

|g(x)2 − x| = ||x| + 2δ|x| + δ2 − x|

and

|g(x)2 + x| = ||x| + 2δ|x| + δ2 + x|

are unbounded.
If the first equation in the alternation is inversely stable and the second is

inversely unstable, then this alternation may be inversely stable. E.g., for the
alternation of Eqs. (12.3) and (12.12), the first is inversely stable and the second
is not. Their alternation is inversely stable since every solution of this alternation is
an additive function and the first equation is inversely stable.

The equation f (x) = 0 is evidently inversely stable and the equation f (x)2 = x2

is not inversely stable (take the function g(x) = x + δ). The alternation of these
equations is not inversely stable. For the indirect proof assume that this alternation
is inversely stable. Thus for ε = 1 there exists a δ > 0 such that, for every function
g, if |g(x)− x| ≤ δ, then |g(x)− 0| ≤ 1 or |g(x)2 − x2| ≤ 1. For g(x) = x + δ we
have |g(x)−x| ≤ δ and thus we obtain |x+δ| ≤ 1 or |(x+δ)2−x2| = |2δx+δ2| ≤ 1
and this is impossible for

x > max
[
0, 1 − δ, 1 − δ2

2δ

]
.
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The equations f (x)2 = x2 and 1/f (x) = 1/x for f : (0,+∞) → (0,+∞) are
not inversely stable and their alternation is inversely stable. For g(x) = x + δ we
have |g(x)− x| ≤ δ and the functions

|g(x)2 − x2| = 2δx + δ2 and
∣∣∣

1

g(x)
− 1

x

∣∣∣ = δx(x + δ)

are unbounded.
The function f (x) = x is the only solution for the alternation of these equations.

We remark that for ε > 0 we have

α(δ) := ε − δ2

2δ
→ +∞

and

β(δ) := εδ +√
ε2δ2 + 4εδ

2ε
→ 0

if δ → 0+.
Since the function α(δ) is increasing for 0 < δ ≤ √

ε and the function β(δ) is
decreasing for δ > 0, so there exists a δ0 > 0 such that α(δ0) ≥ 1 and β(δ0) ≤ 1.
Let the function g : (0,+∞) → (0,+∞) be such that |g(x) − x| ≤ δ0. Let
h(x) = g(x)− x. Then |h(x)| ≤ δ0.

For 0 < x ≤ 1 we have x ≤ α(δ0) and this implies that

|g(x)2 − x2| = |2xh(x)+ h(x)2| ≤ 2x|h(x)| + h(x)2 ≤ 2xδ0 + δ2
0 ≤ ε.

For x ≥ 1 we have

∣
∣∣

1

g(x)
− 1

x

∣
∣∣ = |h(x)

|x(x + h(x))| ≤ ε,

since

|x(x + h(x))| ≥ x2 − x|h(x)| ≥ x2 − xδ0 ≥ δ0

ε

and therefore εx2 − εδ0 − δ0 ≥ 0 for x ≥ β(δ0).
The function g(x) is thus the solution of the alternation

|g(x)2 − x2| ≤ ε or
∣∣
∣

1

g(x)
− 1

x

∣∣
∣ ≤ ε

and this yields that the alternation of our equations is inversely stable.
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12.12 Absolute Stability

If Eq. (12.4) is stable and inversely stable, then it is said to be absolutely stable.
Equation (12.3) is absolutely stable if the function f is from the commutative

semigroup S1 to the Banach space S2. It is not absolutely stable if S1 is the free
group generated by two elements, since it is not stable in this case (see Sect. 12.7).
The equation f (x)2 = a for a ≥ 0 is inversely stable [17]. It is stable, too; thus it is
absolutely stable. Indeed, if |g(x)2−a| ≤ ε2, then |g(x)−√

a| ≤ ε or |g(x)+√
a| ≤

ε and consequently |g(x)− f (x)| ≤ ε for a solution f of the equation of the form

f (x) =
{√

a if |g(x)−√
a| ≤ ε,

−√
a if |g(x)−√

a| > ε and |g(x)+√
a| ≤ ε.

The equation f (f (x)) = f (x) is stable (see Sect. 12.6). It is not inversely stable
[17], thus non absolutely stable, too. The equation f (x + y) = f (x)f (y) for a
function f : R → (0,+∞) is not stable (see Sect. 12.7) nor inversely stable (take
the function g(x) = exp x + δ); thus it is not absolutely stable (double reason).

12.13 Approximation of Approximation

The Ulam question suggests the following question: is the approximation of the
approximation of a functional equation an approximation of this equation?

More exactly: Eq. (12.4) is said to be approximately stable (in short: app-stable),
if for every ε > 0 there exists a δ > 0 such that, for every functions g1, g2 : S1 → S2
for which d[g1(x), g2(x)] ≤ δ for x ∈ S1 and d[L(g1), R(g1)] ≤ δ, we have
d[L(g2), R(g2)] ≤ ε.

Equation (12.3) is app-stable if the function f is from the commutative semi-
group S1 to the Banach space S2, since it is absolutely stable (see Sect. 12.16 and
the following).

If Eq. (12.4) is absolutely stable, then it is app-stable. Assume that this equation
is absolutely stable. Thus it is inversely stable. So for an ε > 0 there exists a δ1 > 0
such that, for every function g : S1 → S2, if d[g(x), f (x)] ≤ δ1 for some solution
f of (12.4), then d[L(g), R(g)] ≤ ε. Since Eq. (12.4) is stable too, so for 1

2δ1
there exists a δ2 > 0 such that, for every function g, if d[L(g), R(g)] ≤ δ2, then
d[g(x), f (x)] ≤ 1

2δ1 for some solution f of (12.4). Assume that d[g1(x), g2(x)] ≤
δ and d[L(g1), R(g1)] ≤ δ, where δ = min( 1

2δ1, δ2). Since d[L(g1), R(g1)] ≤ δ ≤
δ2, so d[g1(x), f (x)] ≤ 1

2δ1. Next

d[g2(x), f (x)] ≤ d[g2(x), g1(x)] + d[g1(x), f (x)] ≤ 1

2
δ1 + 1

2
δ1 = δ1

and consequently d[L(g2), R(g2)] ≤ ε.
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If the equation is app-stable, then it is inversely stable. Indeed, for ε > 0, let δ be
such that in the definition of the approximate stability. Assume that, for the function
g, there exists a solution f of (12.4) such that d(g(x), f (x)] ≤ δ. Since moreover
d[L(f ), R(f )] = 0 ≤ δ, so d[L(g), R(g)] ≤ ε.

The approximate stability is not the consequence of the inverse stability. Indeed,
the equation F(f (x)) = 0, where F(x) = −x for x < 0 and F(x) = 1 for x ≥ 0, is
inversely stable, since it does not have any solution. We can prove it, by the indirect
proof, using the functions g1(x) = δ and g2(x) = 0.

The stability is not the consequence of the approximate stability. E.g., Eq. (12.3)
for f : [0,+∞) → (0,+∞) is app-stable since, if |g1(x) − g2(x)| ≤ δ and
|g1(x + y)− g1(x)− g1(y)| ≤ δ, then

|g2(x + y) − g2(x)− g2(y)|
≤ |g2(x + y)− g2(x)− g2(y)− (g1(x + y)− g1(x)− g1(y))|

+ |g1(x + y)− g1(x)− g1(y)| ≤ 3δ + δ = 4δ.

Thus it is sufficient to put δ = ε/4 in the definition of the approximate stability
of (12.3). Equation (12.3) is not stable since it does not have any solution and the
function g(x) = x+δ/2 is a solution of the inequality |g(x+y)−g(x)−g(y)| ≤ δ.

12.14 Two Approximations

It is possible to consider the following question: are the two approximate solutions
of a functional equation (12.4) near each other? More exactly: given ε > 0,
does there exist a δ > 0 such that, for every functions g1, g2 : S1 → S2, if
d[L(g1), R(g1)] ≤ δ and d[L(g2), R(g2)] ≤ δ, then d[g1(x), g2(x)] ≤ ε?

For Eq. (12.3) and f : R → R the answer is no. This is evident with the functions
g1(x) = δ and g2(x) = x. For the stable equation, which has the only solution f ,
the answer is yes. Indeed, for ε/2 > 0 let δ be as in the definition of the stability.
Thus, for the solutions g1 and g2 of the inequality (12.5), we have d(g1, f ) ≤ ε/2
and d(g2, f ) ≤ ε/2 and so d(g1, g2) ≤ ε.

12.15 Stability in the Class

The functional equation is said to be stable (inversely stable, absolutely stable) in
the class of functions K if it is stable (inversely stable, absolutely stable) according
to the above definitions, in which the functions g and f belong to the class K .

The stability in the classK of the equation L(f ) = R(f ) is in fact the stability of
the conditional equation of the form: f ∈ K ⇒ L(f ) = R(f ). The only difference
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is such that a function f 
∈ K is a solution of this conditional equation, but it is not
considered in the stability in that class. This difference has no effect on the stability.

We do not have any relation between the stability in the classK1 and the stability
in the class K2 ⊂ K1.

E.g., the equation f (f (x)) = f (x) is stable in the class K1 of functions from
R to R (see Sect. 12.8) and it is unstable in the class K2 of differentiable functions
from R to R. Indeed, assume that this equation is stable in the class K2. Thus for
ε = 1 there exists a δ > 0 such that, for every differentiable function g, if |g(g(x))−
g(x)| ≤ δ, then |g(x)− x| ≤ 1 (the function f (x) = x is the only solution from the
functions under the consideration in the classK2). Let g be a differentiable function
from R to the interval [0, 2] ∩ [0, δ]. Since g(x) ∈ [0, δ] and g(g(x)) ∈ [0, δ], so

|g(g(x))− g(x)| ≤ δ.

This yields that |g(x)− x| ≤ 1, but since g(4) ≤ 2, we have

|g(4)− 4| = 4 − g(4) ≥ 4 − 2 = 2

and we obtain a contradiction.
Equation (12.3) for f from the free group G, generated by two elements, to R is

unstable (see Sect. 12.3) and it is stable in the class of functions from G to Z (with
arbitrary positive δ < 1).

Let V be a normed non-complete space, B be a completion of V to the Banach
space, andG an abelian group containing an element of infinite order. We putK1 =
{f : G → B}, K2 = {f : G → V } and let K3 be the family of the functions
from G to a finite-dimensional subspace of the space V . We have K3 ⊂ K2 ⊂ K1.
Equation (12.3) is stable in the classes K1 and K3 and it is unstable in the class K2,
since V is not complete [7].

Equation (12.3) is

a/ stable in the class {f : R → [0,+∞)}—proof by the “direct method” as in [9];
b/ unstable in the class {f : R → (0,+∞)}, since Eq. (12.3) does not have any

solution in this class and the inequality (12.1) has a solution for every δ > 0,
e.g., g(x) = δ/2;

c/ stable in the class {f : R → [1,+∞)}, since the inequality does not have any
solution for δ = 1 (the inequality |g(0)| = |g(x + 0) − g(x) − g(0)| < 1 is
impossible).

The translation equation F(F(α, x), y) = F(α, x+y) for F : I×R → I , where
I is a non-degenerated interval in R, is stable in the class of continuous functions
[24]. It is unstable in the class of continuous functions for which the derivative of
F(., 0) : I → I at the point α exists for every α ∈ I [24]. The problem of its
stability in the class of all functions from I × R to I is still open.

The equation f (x)2 = x2 is not inversely stable (see Sect. 12.10) and it is
inversely stable in the class

K2 = {f : R → R \ {0}} ⊂ K1 = {f : R → R},
since this equation does not have the solution in this class.
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If the equation is inversely stable in the class K1, then is evidently inversely
stable in the class K2 ⊂ K1.

The equations in the some above examples have not the solutions. These
equations are not interesting. From here the following question.

Question Is it possible to replace these non-interesting equations in the above
examples by the equations having the solutions?

Final conclusion We have to be careful with the approximations, since

a/ the approximate solution of a functional equation does not have to be the
approximation of a solution of this equation;

b/ the approximation of the solution does not have to be the approximate solution;
c/ the approximation of the approximation does not have to be the approximation.

The situation is the same for the system and for the alternation of the functional
equations and for the stabilities in the classes.

12.16 Stability of the Translation Equation

Theorem 12.1

(a) Let the function F : I × R → I , where I is an internal, be a solution of the
translation equation

F(F(x, t), s) = F(x, t + s), (12.13)

and let S be the selector of the class of sets F(x,R) for x ∈ F(I,R) =: I ∗ and
for which cardF(x,R) > 1.

If F is continuous with respect to the second variable for every x ∈ S and
for which at least one of the functions F(., t) : I → I is continuous, then it is
of the form

F(x, t) =
{
h−1
n [hn(g(x))+ t] for g(x) ∈ In, t ∈ R,

g(x) for g(x) ∈ g(I) \⋃
In, t ∈ R,

(12.14)

where g : I → I is a continuous idempotent (g ◦ g = g), In ⊂ g(I) for n ∈
N1 ⊂ N are open and disjoint non-empty intervals (named the non-degenerated
orbits) and hn : In → R are the homeomorphisms.

(b) The function F of the form (12.14) is a continuous solution of (12.13).

This result has been proved in [26] in the case where F(x, 0) = x (thus for the
dynamical system), under the assumption that the function F is continuous.
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Proof Part (a). We remark at the beginning that F(I, t) = I ∗ for t ∈ R. Evidently
F(I, t) ⊂ I ∗. If x ∈ I ∗, then x = F(x1, t1) for some (x1, t1) ∈ I × R Thus
x = F(F(x1, t1 − t), t) ∈ F(I, t). From here I ∗ ⊂ F(I, t). Moreover, if x ∈ I ∗,
then

F(x, 0) = F(F(x1, t1), 0) = F(x1, t1) = x.

This yields that, if x0 ∈ F(x,R) and x ∈ I ∗, then x ∈ F(x0,R). Indeed, if x0 =
F(x, t1), then

F(x0,−t1) = F(F(x, t1),−t1) = F(x, 0) = x.

If x0 ∈ S ∩ F(x,R), then the function F(x0, .) : R → I0 := F(x,R) is an
injection. Indeed, if F(x0, t1) = F(x0, t2) for t1 < t2, then for every ε > 0 there
exist τ1 and τ2 such that 0 < τ2 − τ1 ≤ ε and F(x0, τ1) = F(x0, τ2). This yields
that

x0 = F(x0, 0) = F(F(x0, τ1),−τ1) = F(F(x0, τ2),−τ1) = F(x0, τ2 − τ1)

and thus F(x0, t + (τ2 − τ1)) = F(F(x0, τ2 − τ1), t) = F(x0, t). The function
F(x0, t) as microperiodic and continuous is thus constant. So, we have a con-
tradiction, since cardF(x,R) > 1 and x = F(x0, t1) for some t1 ∈ R, thus
F(x, t) = F(F(x0, t1), t) = F(x0, t + t1). From here the function F(x0, t) is a
homeomorphism from R to I0, which we denote by h−1, and I0 is an open interval.
For x ∈ I0 there exists a t0 ∈ R such that x = F(x0, t0) = h−1(t0). This yields that
t0 = h(x). Consequently, we have

F(x, t) = F(F(x0, t0), t) = F(x0, t0 + t) = h−1(t0 + t) = h−1(h(x)+ t).

Every two sets F(x1,R) and F(x2,R) for x1, x2 ∈ I are disjoint or identical.
Indeed, assume that x0 ∈ F(x1,R)∩F(x2,R). We prove that F(x1,R) ⊂ F(x2,R).
For x ∈ F(x1,R) we have x = F(x1, t1) for some t1 ∈ R. Moreover x0 =
F(x1, t2) = F(x2, t3) for some t2, t3 in R, whence x1 = F(x0,−t2). From here

x = F(F(x0,−t2), t1) = F(x0, t1 − t2)
= F(F(x2, t3), t1 − t2) = F(x0, t3 + t1 − t2) ∈ F(x2,R).

Analogously, we obtain that F(x2,R) ⊂ F(x1,R).
Let s0 ∈ R be such that the function F(., s0) : I → I is continuous. The set I ∗

is an interval since I ∗ = F(I, s0).
If F(x0,R) is a degenerated interval, e.g., F(x0,R) =: {x1}, then

F(x1, t) = F(F(x0, 0), t) = F(x0, t) = x1

for t ∈ R.
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The function F1 = F
∣∣
F(I,R)×R

is thus of the form (12.12) with g(x) = x, where
as the intervals In we take the different non-degenerated intervals F(x,R) for x ∈
F(I,R).

We prove that this function F1 : I ∗ ×R → I is continuous. At the beginning we
prove that this function is right-hand continuous (i.e., for x → x0+ and t → t0).

1/ If x0 ∈ In for some n ∈ N , then for x ∈ I we have

F1(x, t) = h−1
n [hn(x)+ t] → F1(x0, t0)

for x → x0 and t → t0.
2/ If x0 = inf In for some n ∈ N , then since x → x0+ we can to admit that x ∈ In.

From here F1(x, t) = h−1
n [hn(x)+t]. The function hn as a homeomorphism from

In to R must be increasing or decreasing. If hn is increasing, then hn(x)→ −∞
if x → x0+, and thus hn(x) + t → −∞ if x → x0+ and t → t0. This implies
that in this case

F1(x, t)→ inf In = x0 = F1(x0, t0).

If hn is decreasing, the situation is analogous.
3/ Assume that, for every n ∈ N , the point x0 is not in [inf In, sup In) and that
xn → x0 and tn → t0. Let

S1 := {xn : xn is not the fixed point of F1}

and

S2 := {xn : xn is the fixed point of F1}.

If the set S1 is finite, then there exists an n0 ∈ N such that, for n > n0, we have

F1(xn, tn) = xn → x0 = F(x0, t0).

If the set S2 is finite, then there exists an n1 ∈ N such that, for n > n1, there exists
an interval Ik(n) for which xn ∈ Ik(n) (the function k(n)must not be injective). Since
xn → x0, so inf Ik(n) → x0 and sup Ik(n) → x0. We have

inf Ik(n) < F1(xn, tn) < sup Ik(n),

thus

F1(xn, tn)→ x0 = F1(x0, t0).
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If the sets S1 and S2 are infinite, then the sequence xn consists of two
subsequences xk(n) ∈ S1 and xl(n) ∈ S2, whence by the above F1 is continuous
at the point (x0, t0).

The function F1 is thus right-hand continuous. By the analogous reasoning we
obtain that F1 is left-hand continuous and thus it is continuous. Since

F(x, t) = F(F(x, s0), t − s0) = F1(F (x, s0), t − s0),
the function F(x, t) is continuous and consequently the idempotent function
F(x, 0) is continuous. We have F(x, t) = F(F(x, 0), t) = F1(F (x, 0), t) and this
implies that F is of the form (12.12) with g(x) = F(x, 0).

Part (b). It is easy to verify that the function of the form (12.14) is the solution of
(12.13). The verification that this function is continuous is analogous as above. ��

The set S in the Theorem 12.1 is countable, since it is a selector of the class of
open disjoint intervals (e.g., the set of midpoints of these intervals). The supposition
that at least one of the functions F(., t) is continuous is essential in the above
theorem. Indeed, let h : I → I be a discontinuous idempotent function. For the
function F(x, t) = h(x), the function F(x, .) is continuous for every x ∈ I and the
function F is not of the form (12.14). If a solution F of (12.13) depends only on t ,
then it is the constant function, thus it has the form (12.14) (for N1 = ∅).

Question Does there exist a solution F of (12.13), which depends on x and t , for
which the function F(x, .) is continuous for x ∈ I and which is not of the form
(12.14)?

Since the function of the form (12.14) is continuous (see [24] and above), so a
solution F of (12.13) continuous with respect to second variable, for which at least
one function F(., t) is continuous, must be continuous.

If a solution F of (12.13) is Carathéodory, i.e., the function F(x, .) : R → I is
measurable for every x ∈ I and F(., t) : I → I is continuous for every t ∈ R,
then the function F

∣∣
I×(0,+∞)

is continuous [2]. Let the sequence tn be such that
tn → t0 ≤ 0. We obtain

F(x, tn) = F(F(x,−1 + t0), tn + 1 − t0)→ F(F(x,−1 + t0), 1) = F(x, t0),

thus the function F(x, .) is continuous at every point t0 ≥ 0. This yields that the
function F is continuous, thus it has the form (12.14) by Theorem 12.1.

Unfortunately, a solution F of (12.13), which is only such that F(x, 0) is
continuous and F(x, .) is measurable, may be discontinuous. E.g., for the function

F(x, t) = g−1(g(x)+ t) = g(g(x)+ t),

where g(x) = 1/x for x > 0 and g(x) = x for x ≤ 0, the function F(x, .) is
discontinuous only at the point t = −g(x).

Let’s notice yet that there exists the continuous solution F of (12.13) such that
all functions F(., t) are not Jordan-measurable [21].
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The proof of Theorem 12.1 implies that the solution of (12.13) is of the form
(12.14), where g is an idempotent (not necessarily continuous), In are the non-empty
disjoint subsets of I and hn : In → R are the bijections, if and only if

{t ∈ R : F(x, t) = x} ∈ {∅, {0},R}

for every x ∈ I .
Note that the function F(x, t) = xϕ(t) : R × R → R, where ϕ : R → R is

a discontinuous solution of the equation ϕ(t + s) = ϕ(t)ϕ(s), is the discontinuous
solution of Eq. (12.13), which is continuous with respect to the variable x for every
t , and which is continuous with respect to variable t for x = 0.

Similarly, a solution H : I × R → I of the inequality (12.15) (below), which is
continuous with respect to each variable, can be discontinuous, e.g., the function

H(x, t) = εxt

x2 + t2 , (x, t) 
= (0, 0),

and H(0, 0) = 0, which is discontinuous at the point (0, 0).
The solution (12.14) is said to be simple if inf |In| > 0, where |In| is the length

of the interval In. If x0 ∈ g(I), then g(x0) = x0, since g is an idempotent. From
here, if x0 ∈ In ⊂ g(I), then g(x0) = x0 ∈ In and F(x0, .) : R → In is a bijection.
If x0 ∈ g(I) \ ⋃

In, then g(x0) = x0 ∈ In ⊂ g(I), thus F(x0, t) = g(x0) = x0 for
t ∈ R, i.e., x0 is a fixed point of F .

The following theorem has been proved in [24] as Theorem 1.1.

Theorem 12.2 Let I ⊂ R be an interval. Suppose thatH : I×R → I is continuous
with respect to each variable and satisfies

|H(H(x, t), s)−H(x, t + s)| ≤ ε, x ∈ I, t, s ∈ R. (12.15)

Then there exists a continuous solution F of (12.13) such that

|F(x, t)−H(x, t)| ≤ 10ε, x ∈ I, t ∈ R. (12.16)

Moreover in the proof in [24] of this theorem it is showed that this solution F is
simple.

We suppose that all solutions of (12.13) considered still are continuous. This
yields that every non-simple solution of (12.13) is approximated by the simple
solutions of (12.13), i.e., for every ε > 0 and for every non-simple solution G of
(12.13), there exists a simple solution F of (12.11) such that |G(x, t)−F(x, t)| ≤ ε

for (x, t) ∈ I × R. The inverse is not true, i.e., it is not true that, for every ε > 0
and for every simple solution G of (12.13), there exists a non-simple solution F of
(12.11) such that |G(x, t)− F(x, t)| ≤ ε for (x, t) ∈ I × R.

For the proof we need the following lemma.



12 Stability of Functional Equations 255

Lemma 12.1 If at least one fixed point x0 of F is in a non-degenerated orbit J of
G, then it is impossible that

|G(x, t)− F(x, t)| ≤ ε, (x, t) ∈ I × R

(a) for every 0 < ε < |J |/2, if J is bounded;
(b) for every ε > 0, if J is unbounded.

Proof Part (a). In the opposite case we have

|J |
2
> ε ≥ sup

t∈R
|G(x0, t)− F(x0, t)|

≥ sup
x∈J

|G(x0, t (x))− F(x0, t (x))|

= sup
x∈J

|x − x0| ≥ |J |
2
,

where t (x) is such thatG(x0, t (x)) = x for x ∈ J (G(x0, .) : R → J is a bijection),
thus a contradiction.

Part (b). If J is unbounded, then the function |G(x0, t)−F(x0, t)| = |G(x0, t)−
x0| is unbounded, too, since G(x0,R) = J . ��

Put S(F ) := {x ∈ I : F(x, t) = x for t ∈ R} for F : I × R → I .

Proposition 12.1 Let G : I × R → I be a simple solution of (12.13) such that
G(x, 0) = x for x ∈ I . This solution can be approximated by the non-simple
solutions of (12.13) if and only if Int S(G) 
= ∅.

Proof “If” part. Let a, b ∈ R and a < b. The function f (a, b, ., .) : (a, b)× R →
(a, b) of the form f (a, b, x, t) = h−1(h(a, b, x)+ t), where

h(a, b, x) = tan
[ π

b − a (x − a)−
π

2

]

for x ∈ (a, b), is a continuous solution of (12.12). Assume that the non-degenerated
interval [c, d] is such that [c, d] ⊂ S(G). Let 0 < ε < d − c. The function

F(x, t)=
{
f
(
c + ε

n+1 , c + ε
n
, x, t

)
for (x, t) ∈ (

c + ε
n+1 , c + ε

n

)×R and n∈N,

G(x, t) for x ∈ I \⋃(
c + ε

n+ 1 , c + ε
n

)
and t ∈ R,

is the non-simple continuous solution of (12.13) for which

|G(x, t)− F(x, t)| ≤ ε, (x, t) ∈ I × R.

It is evident if (x, t) ∈ I \⋃(
c+ ε

n+1 , c+ ε
n

)×R. If (x, t) ∈ (
c+ ε

n+1 , c+ ε
n

)×R,
then
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|G(x, t)− F(x, t)| =
∣∣∣x − f (

c + ε

n+ 1
, c + ε

n
, x, t

)∣∣∣ ≤ ε

n
− ε

n+ 1
≤ ε

since x and f
(
c + ε

n+1 , c + ε
n
, x, t

)
are in the interval

(
c + ε

n+1 , c + ε
n

)
.

“Only if” part. We remark as the beginning that, for the two open non-
degenerated different intervals K1 and K2, if K1 ∩ K2 
= ∅ and K2 is bounded,
then a bound of K2 is in K1. Let 0 < ε < 1

2 inf |Jn|, where Jn for n ∈ N2, are the
non-degenerated orbits of G. Let F of the form (12.14) be a non-simple solution
of (12.13), for which |G(x, t) − F(x, t)| ≤ ε for (x, t) ∈ I × R. If S(F ) = I ,
then of course there exists a fixed point of F in every non-degenerated orbit of G,
thus we have a contradiction by Lemma 12.1. If F has the non-degenerated orbits,
then there exists a non-degenerated orbit I ∗ of F for which |I ∗| < inf |Jn|. Thus
I ∗ 
= Jn for n ∈ N2. If I ∗ ∩ Jn 
= ∅ for some n ∈ N2, then there exists a bound of
I ∗, which is in Jn. Since this bound is a fixed point of F , we obtain a contradiction
by Lemma 12.1. From here I ∗ ∩ Jn = ∅ for n ∈ N2, hence

I ∗ ⊂ I \
⋃
Jn = G(I, 0) \

⋃
Jn = S(G). ��

We remark that the supposition that G(x, 0) = x for x ∈ I is used only in the
end of the above proof for “only if” part.

Question Is this supposition essential in the part “only if” in the Proposition?

The Proposition yields that it is impossible to substitute the simple solution of
(12.13) by the non-simple solution of (12.13) in the above mentioned Theorem 12.2.
But there exist the solutionsH of the inequality (12.15), which can be approximated
by the non-simple solutions of (12.13). E.g., if for the function F in (12.16) there
exists a non-simple solution F1 of (12.13) such that

|F(x, t)− F1(x.t)| ≤ ε, (x, t) ∈ I × R

(e.g., if Int S(F ) 
= ∅), then

|H(x, t)−F1(x, t)| ≤ |H(x, t)−F(x, t)| + |F(x, t)−F1(x, t)| ≤ 10ε+ ε = 11ε

for (x, t) ∈ I × R.

12.17 Stability of the Dynamical System

A continuous solution F : I×R → I of (12.13) (it is sufficient that F is continuous
with respect to the second variable—see Sect. 12.15) for which

F(x, 0) = x f orx ∈ I (12.17)
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is called the dynamical system. This system is said to be stable if the system (12.13)
and (12.17) is stable. It is proved in [24] that this system is stable in the class C
of functions from I × R to I continuous with respect to each variable if and only
if I = R. In this case δ = ε/9 and the approximation F is the simple solution
of (12.13) and (12.17). Here this approximation F may be replaced by the non-
simple solution of (12.13) if and only if Int S(F ) 
= ∅ by the Proposition 12.1.

Equation (12.17) is stable in the class C. We present the proof given by
B. Przebieracz (communicated by e-mail).

Proof Assume that the function H : I × R → I is such that |H(x.0) − x| ≤ ε for
an ε > 0 and every x ∈ I . Let a := inf I and b := sup I (may be a = −∞ and/or
b = +∞). Let G(x, t) := H(x, t)−H(x, 0)+ x. Put

K(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

a if G(x, t) ≤ a,

G(x, t) if G(x, t) ∈ I,
b if G(x, t) ≥ b.

We have K(I,R) ⊂ cl I . It cannot be that K(I,R) ⊂ I . E.g., if I = (0,+∞),
H(x, t) = x + ε exp t and x0 = ε(1 − exp(−1)), then G(x0,−1) = 0 and thus
K(x0,−1) = 0 
∈ I . Since G(x, 0) = x ∈ I , so K(x, 0) = G(x, 0) = x.

If G(x, t) ∈ I , then

|K(x, t)−H(x, t)| = |H(x, t)−H(x, t)+H(x, 0)− x| ≤ ε.

If G(x, t) ≤ a, then

|K(x, t)−H(x, t)| = |a −H(x, t)| = H(x, t)− a ≤ H(x, 0)− x ≤ ε.

If G(x, t) ≥ b, then

|K(x, t)−H(x, t)| = |b −H(x, t)| = b −H(x, t) = x −H(x, 0) ≤ ε.

From here |K(x, t) − H(x, t)| ≤ ε for (x, t) ∈ I × R. The above implies that the
function K is good if I is closed.

Put

F(x, t) =
{
(1 − |t |)K(x, t)+ |t |H(x, t) if |t | ≤ 1 and x ∈ I,
H(x, t) if |t | > 1 and x ∈ I.

We remark that

a/ we have for |t | ≤ 1 that

|F(x, t)−H(x, t)| = (1 − |t |)|K(x, t)−H(x, t)| ≤ ε
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and for |t | > 1 that

|F(x, t)−H(x, t)| = 0 ≤ ε,

b/ we obtain for |t | > 1 that F(x, t) = H(x, t) ∈ I and for 0 < |t | ≤ 1 that

F(x, t)= (1−|t |)K(x, t)+|t |H(x, t)∈ (K(x, t),H(x, t))∪ (H(x, t),K(x, t))⊂ I

since K(x, t) ∈ cl I , H(x, t) ∈ I and F(x, 0) = K(x, 0) = x ∈ I . This yields
that K(x, t) ∈ I for (x, t) ∈ I × R. The proof is thus finished.

��
The translation equation (12.13) is stable in the classC for every interval I . Since

the system (12.13) and (12.17) is stable in the class C only for I = R [24], so for
I 
= R this system is not stable though the equations in this system are stable!

12.18 b-Stability and Inverse b-Stability

Hyers by his “direct method” has constructed in fact, for a solution g of the
inequality

|g(x + y)− g(x)− g(y)| ≤ ε

with a given ε > 0 the solution f of (12.3) (f (x) = limn→+∞(g(2nx)2−n) for
which the inequality

|g(x)− f (x)| ≤ δ

is true with δ = ε. This remark suggests the following definition: Eq. (12.4) is said
to be uniformly b-stable if, for every ε > 0, there exists a δ > 0 such that for every
function g for which d[L(g), R(g)] ≤ ε there exists a solution f of (12.4) for which
d[g, f ] ≤ δ. This definition may be formulated as follow: there exists a function
� : (0,+∞) → (0,+∞) (the measure of the uniform b-stability) such that, for
every ε > 0 and every function g, if d[L(g), R(g)] ≤ ε, then there exists a solution
f of (12.4) such that d[g, f ] ≤ �(ε).

If there exists a measure for which inf�(0,+∞) = 0, then this uniform
b-stability is called normal. The Hyers definition of the stability quoted in the
introduction is different with the definition of this uniform b-stability. These
definitions are equivalent for the functions from a Banach space to a Banach space,
since δ = ε = �(ε) in this case. They are not equivalent in general case. E.g.,
Eq. (12.3) for the functions from the free group generated by two elements to the
group of integers with normal metric is not uniformly b-stable [6] and it is stable
(every δ < 1 is good here). Conversely, the equation

f (x + y) = f (x)f (y) (12.18)
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for f : R → (0,+∞) is universally b-stable and it is not stable. Indeed, it is proven
in [1] that if |g(x + y) − g(x)g(y)| ≤ ε, then g is the solution of the equation or
|g(x)| ≤ max(4, 4ε) =: �(ε) for x ∈ R. From here your equation is universally
b-stable with �(ε) as the measure. This equation is not stable (see Sect. 12.7).

The above notion of the uniform b-stability is called uniform since δ does not
depend on the function g. If δ depends on ε and g, then the equation is only b-stable.
More precisely, Eq. (12.4) is said to be b-stable if, for every function g and for every
ε > 0, there exists a δ > 0 such that if d[L(g), R(g)] ≤ ε, then d[g, f ] ≤ δ for
some solution f of (12.4). We remark that the fact that δ depends on the function g
is not sufficient to believe that the equation is not uniformly b-stable. E.g., we have
for Eq. (12.16) that |g(x)| ≤ max{4, 4ε} + |g(0)| if |g(x + y)− g(x)g(y)| ≤ ε, but
in spite of this Eq. (12.16) is uniformly b-stable.

The second example. The theorems in [10] imply that if

∣∣
∣2g

(x + y
2

)
− g(x)− g(y)

∣∣
∣ ≤ ε (12.19)

for a function g from a normed space to a Banach space, then there exists a Jensen
function f , i.e., the solution of the Jensen equation

2f
(x + y

2

)
= f (x)+ f (y),

such that |g(x)− f (x)| ≤ ε + |g(0)|. Here δ = ε + |g(0)| depends on ε and g and
nevertheless this equation is uniformly b-stable. Indeed, if the function g satisfies
(12.19), then the function G(x) = g(x) − g(0) satisfies (12.19), too. Thus there
exists a Jensen function F such that

|g(x)− [F(x)+ g(0)]| = |G(x)− F(x)| ≤ ε +G(0) = ε

and F(x)+ g(0) is the Jensen function.
It is proved in [4] that if

∣∣∣g
(x + y

2

)2 − g(x)g(y)
∣∣∣ ≤ ε

for g from an abelian 2-divisible group G to C and some ε, then

|g(x)| ≤ 1

2

[
A+

√
A2 + 4δ

]
, x ∈ G,

where A = infx∈G |g(x)|, or g is a solution of the Lobachevsky equation

f
(x + y

2

)2 = f (x)f (y).

Thus this equation is superstable and b-stable. Hence the following question.
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Question Is this equation uniformly b-stable?

The equation sin f (x) = 0 for f : R → R \ {kπ}k∈N is evidently b-stable in
the class of bounded functions, since every equation, which has a bounded solution,
is b-bounded in this class. Assume that it is uniformly b-stable. Thus, for ε > 0,
there exists a δ(ε) > 0 such that, for every function g : R → R\ {kπ}k∈N for which
| sin g(x)| ≤ ε, there exists a solution f : R → R\{kπ}k∈N of our equation such that
|g(x)−f (x)| ≤ δ(ε). We have thus that, for g(x) = E(δ(1))+1 (E(x) is the entire
part of x) there exists a solution f of our equation such that |g(x)− f (x)| ≤ δ(1).
This solution f has the form f (x) = −k(x)π , where k(x) ∈ N ∪ {0}. From here

δ(1) ≥ |g(0)− f (0)| = E(δ(1))+ 1 + k(0)π > δ(1),

thus a contradiction. Therefore our equation is not uniformly b-stable.
This equation is not b-stable in the class of all functions f : R → R \ {kπ}k∈N.

Indeed, for the function g(x) = x, the function sin g(x) is bounded and the function
x + k(x)π is unbounded if k(x) ∈ {kπ}k∈N for x ∈ R. Our equation is uniformly
b-bounded if f : R → R, since for every function g : R → R we have

∣∣∣g(x)− E
(g(x)
π

)
π

∣∣∣ =
∣∣∣π

[g(x)
π

− E
(g(x)
π

)]∣∣∣ ≤ π

for x ∈ R and the function E(g(x)/π)π is a solution of our equation.
However, it is easy to verify that, if Eq. (12.4) is normally stable (see

Sect. 12.2(b)), then it is uniformly b-stable. We remark that, if for an equation there
exists a normal measure �, then there exists the measure, which is not normal, e.g.,
�1(ε) = max[a,�(ε)] for a > 0, but non conversely.

Some of the theorems about the Ulam-Hyers stability are formulated in fact as
the theorems about the uniform b-stability with the normal measure of uniform b-
stability.

Equation (12.4) is called inversely b-stable if every approximation of a solution
of (12.4) is an approximate solution of (12.4). It is possible to consider the uniform
inverse b-stability. The b-stability and the inverse b-stability are not equivalent
[17]. However, if the inverse stability of Eq. (12.4) is normal, then this equation
is inversely b-stable. Indeed, assume that d[g, f ] ≤ δ for some δ > 0 and some
solution f of (12.12). Since the function � is unbounded, there exists an ε > 0
such that �(ε) ≥ δ. From here d[g, f ] ≤ �(ε), thus d(L(g), R(f )) ≤ ε, since
Eq. (12.4) is inversely stable. The supposition that the inverse stability is normal
is here essential, since there exists an equation which is inversely stable, but not
inversely b-stable. E.g., the equation 1/f (x) = 1 for f : R → R. Really, the
inequality

|g(x)− 1| ≤ ε

1 + ε
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implies the inequality |1/g(x) − 1| ≤ ε and for the function g(x) = exp(−x2) the
function g(x)− 1 is bounded and the function 1/g(x)− 1 is unbounded.

The b-stability is considered in many papers of stability. This b-stability and
the stability are not equivalent [16]. Nevertheless, if the stability of Eq. (12.12) is
normal, then this equation is b-stable (the proof as above).

12.19 Stability of Difference Equations

It is possible to consider the stability in a different sense than that of the Ulam-
Hyers. E.g., we have for the difference equation the following definition. The
solution an of a difference equation is said to be stable if, for every ε > 0, there
exists a δ > 0 such that, for every solution bn of this equation, if |a1 − b1| ≤ δ,
then |an − bn| ≤ ε for every n ∈ N. We remark that this stability is different from
the Ulam-Hyers stability. Here stable is a solution and, in the case of Ulam-Hyers
stability, stable is the equation.

The simple example. For the equation an+1 = λan every solution is stable if
|λ| ≤ 1. Indeed, every solution of this equation is of the form an = λn−1a1, thus for
δ = ε, if |a1 − b1| ≤ δ = ε for a solution bn of our equation, then

|an − bn| = |λn−1a1 − λn−1b1| ≤ |a1 − b1| ≤ ε

for n ∈ N.
If |λ| > 1, then every solution of this equation is not stable. Assume, for an

indirect proof, that there exists a solution an, which is stable. Thus for ε = 1 there
exists a δ > 0 such that, for every solution bn, if |a1 − b1| ≤ δ, then |an − bn| ≤ 1.
We have for bn = λn−1(a1 + δ) that |a1 − (a1 + δ)| ≤ δ, thus

1 ≥ |λn−1a1 − λn−1(a1 + δ)| = |λ|n−1δ → +∞

if n→ +∞ and we obtain the contradiction.
This equation is Ulam-Hyers stable if |λ| < 1, i.e., for every ε > 0 there exists a

δ > 0 such that, for every sequence bn for which |bn+1 − λbn| ≤ δ for n ∈ N, there
exists a solution an of our equation for which |bn − an| ≤ ε for n ∈ N. Indeed, we
have by the induction that

|bn − λn−1b1| ≤ δ(1 + |λ| + . . .+ |λ|n−2) = δ
1 − |λ|n−1

1 − |λ| ≤ δ
1

1 − |λ| ≤ ε

for δ = (1 − |λ|)ε.
Our equation is not Ulam-Hyers stable for |λ| ≥ 1, since we have for bn = nδ

that |bn+1 − bn| ≤ δ and the function bn − λn−1a1 is unbounded.
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12.20 On the Stability of Idempotent Function
with Constant Derivative

We consider the system

f (f (x)) = f (x) and f ′(x) = a (12.20)

of functional equations, where f : I → I is a differentiable function, I is non-
degenerated interval in R and a ∈ R.

We adjust the Ulam-Hyers stability of the Cauchy equation of the additive
function [9] to this system. The system (12.20) is said to be stable if, for every
ε > 0 there exists a δ > 0 such that, for every differentiable function h : I → I

such that

|h(h(x))− h(x)| ≤ δ and |h′(x)− a| ≤ δ, x ∈ R, (12.21)

there exists a solution f of (12.20) for which

|h(x)− f (x)| ≤ ε, x ∈ R. (12.22)

Here in fact the stability of idempotent function with constant derivative is not
defined; only the stability of the system (12.20) is defined, for which this function is
the solution. Thus the title of the Sect. 12.20 is incorrect. The same function may be
a solution of different stable or unstable systems [23]. E.g., the system (12.20) with
a = 1 and the system: f ′(x) = 1 and f (0) = 0 are equivalent, the system (12.20)
is stable while the second system is not stable. Indeed, for I = R and the function
h(x) = (1 + δ)x we have |h′(x) − 1| ≤ δ and |h(0) − 0| ≤ δ and the function
h(x)− x = δx is unbounded.

Every differentiable idempotent function f : I → I is the identity (f (x) = x)
or it is constant (f (x) = b ∈ I ). Indeed, we have f (x) = x for x ∈ f (I) and
f (I) is an interval. If f (I) = I , then f (x) = x for x ∈ I . If f (I) is degenerated,
i.e., I = b, then f (x) = b for x ∈ I . We prove that the case when f (I) is non-
degenerated and f (I) 
= I is impossible. So, suppose that there exists a bound c
of f (I) for which c ∈ Int I . Assume that c is the left end of f (I) (the reasoning is
analogous if c is the right end of f (I)). We have thus

f ′(x0) = lim
x→c+

f (x)− f (c)
x − c = lim

x→c+
x − c
x − c = 1

and since f (x) ≥ f (c) for x < c, so

f (x)− f (c)
x − c ≤ 0.

From this we obtain a contradiction.
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On the other hand, there exist the idempotent continuous functions, which are
not of the above form, e.g., the function f (x) = b for x ∈ (−∞, b] ∩ I , f (x) = x

for x ∈ I ∩ (b, c) and f (x) = c for x ∈ [c,+∞) ∩ I , where b, c ∈ I , b < c.
Moreover, we notice that, for every δ > 0, there exist a differentiable function f
with |f (f (x)) − f (x)| ≤ δ and which is neither the constant function nor the
identity function, e.g.,

f (x) = δ

2
sin x.

Theorem 12.3 The system (12.20) is stable for every a ∈ R (for a = 1 with
δ = min(ε/3, 1/4), for a = 0 with δ = min(ε/2, 1/2), for 0 
= a 
= 1 with δ for
which (12.21) does not have any solution).

Proof We notice that if f ′(x) = a, then f (x) = ax + b for any b and, if f is
idempotent, then a(ax + b) + b = ax + b, thus a = 0 or a = 1. If a = 0, then
f (x) = b ∈ I and, if a=1, then f (x) = x.

Let the function h : I → I be such that |h(h(x))−h(x)| ≤ δ and |h′(x)−a| ≤ δ

for every x ∈ I , with some δ > 0 and a ∈ R.
We prove that if a > 0 and δ ≤ a/(2a + 2), then

|h(x)− x| ≤ a + 2

a
δ, x ∈ I. (12.23)

We have

|h(h(x))− h(x)| ≤ δ ≤ a + 2

a
δ, x ∈ I,

thus (12.23) is satisfied for x ∈ h(I).
Since |h′(x)− a| ≤ δ, so

0 < a − a

2a + 2
≤ a − δ ≤ h′(x) ≤ a + δ ≤ a + a

2a + 2
. (12.24)

From here the function h is increasing.
Let y1 = inf I , y2 = sup I , x1 = inf h(I), x2 = suph(I). Let us consider some

cases.

1/ For y1 > −∞ and y2 = +∞ the function h is unbounded from above, since
otherwise we would have for some θ(n)

h(n)− h(y1 + 1)

n− (y1 + 1)
= h′(θ(n))→ 0 for n→ +∞,

which is a contradiction with (12.24).

a/ If x1 = y1, then h(I) = I and the condition (12.23) is satisfied.
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b/ If x1 > y1 and y1 ∈ I , then we have h(y1) = x1 and |h(x1)− x1| ≤ δ. Since

h(x1)− x1 = h(x1)− h(y1) = h′(θ)(x1 − y1)

for some θ , so

(a − δ)(x1 − y1) ≤ h′(θ)(x1 − y1) = |h(x1)− x1| ≤ δ,

whence

x1 − y1 ≤ δ

a − δ .

Since δ ≤ a/(2a + 2), from (12.24) we obtain

|h(x)− x| ≤ |h(x)− x1| + |x1 − x| ≤ h′(θ)(x − y1)+ (x1 − x)

≤ δ

a − δ [h
′(θ)+ 1] ≤ δ + a + 1

a − δ δ ≤ a + 2

a
δ

for x ∈ [y1, x1). Hence (12.23) is satisfied, because h(I) = [x1,+∞).

2/ If y1 = −∞ and y2 = +∞, then, as above in 1/, we obtain by (12.24) that the
function h is unbounded from above and from below. Thus h(I) = R and (12.23)
is satisfied.

The proof of (12.23) is analogous in the other cases.
By (12.21) we have, for a= 1, that |h(x) − x| ≤ 3δ if 0 < δ ≤ 1/4.

Since f (x)= x is the solution of (12.20) in this case, so for every ε > 0 and
δ = min(ε/3, 1/4) we have (12.22). From here the system (12.20) is stable for
a = 1.

For a < 0 and

δ ≤ a − a2

3a − 2

we have

|h(x)− x| ≤ 2
a − 1

a
δ, x ∈ I. (12.25)

The proof is analogous as above, only we take x2 in place of x1, since the function
h is decreasing in this case.

By (12.23) and (12.25), for a 
= 0, there exist the positive constants A(a) and
B(a) such that, for the solution h of (12.21), we have

|h(x)− x| ≤ B(a)δ for 0 < δ ≤ A(a)
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and x ∈ I . Since also |h(y)− y| ≤ B(a)δ, so for some θ we obtain

|[h′(θ)− 1](x − y)| = |h′(θ)(x − y)− (x − y)| = |h(x)− h(y)− (x − y)|
≤ |h(x)− x| + |h(y)− y| ≤ 2B(a)δ.

Moreover, since |h′(x)−a| = |h′(x)−1−(a−1)| ≤ δ, so |a−1|−δ ≤ |h′(x)−1|.
Let 0 
= a 
= 1. Assume that, for every positive δ < min{|a− 1|, A(a)}, there exists
a solution of (12.21). This yields that [|a − 1| − δ]|x − y| ≤ 2B(a)δ and

|x − y| ≤ 2B(a)δ
1

|a − 1| − δ
for x, y ∈ I .

If the interval I is unbounded, then the last inequality is impossible. From here,
for δ < min{|a − 1|, A(a)}, the system (12.21) does not have any solution.

If the interval I is bounded, then

0 < |I | ≤ 2B(a)δ
1

|a − 1| − δ ,

where |I | is the length of I . This implies that, if I is bounded and

δ < min
{
|a − 1|, A(a), |I ||a − 1| 1

2B(a)+ |I |
}
,

then the system (12.21) does not have any solution, too.
Thus, for 0 
= a 
= 1, there exists a δ > 0 such that the system (12.21) does not

have any solution. From here this δ is “good” for every ε > 0 in the definition of the
stability of the system (12.20). Hence this system is stable for 0 
= a 
= 1.

We consider the case a = 0.We proceed with the following remark. Let α and β
be real numbers for which |α − β| ≤ 2δ and |α/β| ≤ δ for some positive δ ≤ 1/2.
We have

∣∣∣α
(α
β
− 1

)∣∣∣ ≤ 2δ2

and

0 < 1 − δ ≤ 1 − α

β
,

thus

|α| ≤ 2δ

1 − δ δ ≤ 2δ.



266 Z. Moszner

We have |h(x)− x| ≤ δ and |h(y)− y| ≤ δ for x, y ∈ h(I). Thus

|[h(x)− h(y)] − (x − y)| ≤ 2δ

and, moreover, for x 
= y,

∣∣∣
h(x)− h(y)
x − y

∣∣∣ = |h′(θ)| ≤ δ.

By the above remark, for α = h(x) − h(y) and β = x − y, we have |h(x) −
h(y)| ≤ 2δ for x, y ∈ h(I), whence suph(I)− infh(I) ≤ 2δ. Let c = inf h(I) and
d = suph(I). Since |h(h(x))− h(x)| ≤ δ, so

c − δ ≤ h(h(x))− δ ≤ h(x) ≤ h(h(x))+ δ ≤ d + δ.

From here h(x) ∈ [c − δ, d + δ] and, for the solution f (x) = (c + d)/2 of the
system (12.20), we have

|h(x)− f (x)| ≤ d + δ − c + δ
2

≤ 4δ

2
= 2δ, x ∈ I.

Thus the system (12.20) is stable for a = 0 with δ = min(ε/2, 1/2). ��
Remark Let S(a, I ), for 0 
= a 
= 1, be the set of all δ > 0 for which the system
(12.21) does not have any solution. We have, by the proof of Theorem 12.3, in the
case 0 
= a 
= 1, that, if I is unbounded, then δ ∈ S(a, I ) for

0 < δ < min{|a − 1, A(a)}.

Moreover, if I is bounded, then δ ∈ S(a, I ) for

0 < δ < min
{
|a − 1|, A(a), |I ||a − 1|

2B(a)+ |I |
}
.

Since S(a, I ) 
= ∅ and, if δ ∈ S(a, I ) and 0 < δ1 < δ, then δ1 ∈ S(a, I ), this set is
an interval and inf S(a, I ) = 0. The function h(x) = x is a solution of (12.21) for
δ = |1 − a|, thus sup S(a, I ) ≤ |1 − a|. Moreover, the function h(x) = b ∈ I is a
solution of (12.21) for δ = |a|, whence sup S(a, I ) ≤ min{|a|, |1 − a|}.
Problem To calculate sup S(a, I ).

Remark Note that sup S(a, I ) cannot be equal to min(|a|, |1 − a|). E.g., for I =
[0, 1], a = 1/2, δ = (

√
2 − 1)/2 the function

h(x) =
√

2x

2
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is a solution of (12.21), whence

sup S
( 1

2
, [0, 1]

)
≤

√
2 − 1

2

and min(|a|, |1 − a|) = 1/2. According to the last remark, if 0 < δ < 1/22,
then δ ∈ S(1/2, [0, 1]), and consequently 1/24 ∈ S(1/2, [0, 1]). For a = 1/2,
I = [0, 1/6], δ = 1/24, the function h(x) = x/2 is a solution of (12.21), thus
1/24 
∈ S(1/2, [0, 1/6]). From here S(1/2, [0, 1]) 
= S(1/2, [0, 1/6]).

Let S be a metric space with the metric d. Recall that the equation f (f (x)) =
f (x) of the idempotent function f : S → S is said to be stable, if for every
ε > 0, there exists a δ > 0 such that, for every function h : S → S for which
d[h(h(x)), h(x)] ≤ δ for x ∈ S, there exists a idempotent function f for which
d[h(x), f (x)] ≤ ε for x ∈ S.

Theorem 12.4

(a) The equation of the idempotent function from S to S is stable (with δ = ε).
(b) The equation of the idempotent function from the non-degenerated interval I

to I with the usual metric, is stable in the class of continuous functions (with
δ = ε/3).

(c) The above equation is not stable in the class of differentiable functions.

Proof Part (a). For the function f (x) = x for x ∈ h(S) and the function f (x) =
h(x) for x ∈ S \ h(S), we have d[h(x), f (x)] ≤ δ for the function h : S → S such
that d[h(h(x)), h(x)] ≤ δ.

Note that unfortunately the above function f may be discontinuous, even if the
function h is continuous. E.g., for the continuous function h(x) = δ exp(x) for
x ≤ 0 and h(x) = x + δ for x > 0, the function f (x) = x for x > 0 and
f (x) = h(x) for x ≤ 0 is not continuous at the point 0.

But there exists here the continuous idempotent f (x) = max{x, δ} for which
|h(x)−f (x)| ≤ δ. This idempotent is of the form (12.26) (below).There exists also
continuous idempotent, which is not of the form (12.26), e.g., f (x) = max{x, 0}.

Part (b). Assume that h : I → I is the continuous function such that |h(h(x))−
h(x)| ≤ δ. The function f : I → I of the form

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, if x ∈ [h(z1), h(z2)] ∩ I,
h(z1) if x ∈ [z1, h(z1)) ∩ I,
h(z2) if x ∈ (h(z2), z2] ∩ I,
h(x) if x ∈ I \ h(I) and h(x) ∈ [h(z1), h(z2)],
h(z1) if x ∈ I \ h(I) and h(x) ∈ [z1, h(z1)),

h(z2) if x ∈ I \ h(I) and h(x) ∈ (h(z2), z2],

(12.26)
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where z1 = infh(I), z2 = suph(I), h(z1) := z1 if z1 
∈ I and h(z2) := z2 if z2 
∈ I ,
is the continuous idempotent [19]. We prove that |h(x)− f (x)| ≤ 3δ for x ∈ I (by
the considerations in [24], we have |h(x)− f (x)| ≤ 10δ). Indeed

a/ if x ∈ [h(z1), h(z2)]∩I , then x ∈ h(I) and thus |h(x)−f (x)| = |h(x)−x| ≤ δ,
b/ if x ∈ [z1, h(z1)] ∩ I , then x ∈ [z1, z2] and thus |h(x) − x| ≤ δ; moreover, we

have |h(z1)−z1| ≤ δ and since x, z1 ∈ [z1, h(z1)], so |x−z1| ≤ |h(z1)−z1| ≤ δ.
From here

|h(x)− f (x)| = |h(x)− h(z1)| ≤ |h(x)− x| + |x − z1| + |z1 − h(z1)| ≤ 3δ.

c/ for x ∈ [h(z2), z2] ∩ I the reasoning is analogous as above,
d/ for x ∈ I \ h(I) and h(x) ∈ [h(z1), h(z2)], we obtain |h(x)− f (x)| = 0 ≤ δ,
e/ if x ∈ I \ h(I) and h(x) ∈ [z1, h(z1)], then

|h(x)− f (x)| = |h(x)− h(z1)| ≤ |h(z1)− z1| ≤ δ,

f/ for x ∈ I \ h(I) and h(x) ∈ [h(z2), z2] the situation is analogous.

Part (c). For the function

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ −δ,
1
4δ (x + δ)2 for x ∈ (−δ, δ),
x if x ≥ δ.

(12.27)

and δ > 0 we have |h(h(x))− h(x)| ≤ δ for x ∈ R and the inequality

|h(x)− f (x)| ≤ ε, x ∈ R

is impossible for any differentiable idempotent function f and for any ε > 0. ��
Remark In the paper [23, Theorem 3.1 and Corollary 3.8] it has been proved, in
a quite long way, that, for every δ > 0, δ ≤ 2/5, and every continuous function
H : I × R → I with |H(H(x, t), s) − H(x, t + s)| ≤ δ and |H ′(x, 0) − 1| ≤ δ,
there is a continuous function F : I×R → I for which F(F(x, t), s) = F(x, t+s),
F ′(x, 0) = 1 and |H(x, t) − F(x, t)| ≤ 10δ. From here, if H(x, t) = h(x), then
|h(h(x)) − h(x)| ≤ δ and |h′(x) − 1| ≤ δ. Thus there exists a continuous solution
F(x, t) of the translation equation such that F ′(x, 0) = 1 and |h(x) − F(x, t)| ≤
10δ, whence |h(x) − F(x, 0)| ≤ 10δ. For the differentiable idempotent function
f (x) = F(x, 0) we have thus f ′(x) = 1 and |h(x)− f (x)| ≤ 10δ.

Remark The equation f ′(x) = 0 for f : R → R is not stable, i.e., it is not true
that, for every ε > 0, there exists a δ > 0 such that, for every differentiable function
h : R → R for which |h′(x)| ≤ δ, there exists a constant function f (x) for which
|h(x)− f (x)| ≤ ε. The function h(x) = δx is “good” here.
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We have here a phenomenon: the equations in the system (12.20) for a = 0 are
unstable and the system is stable.

In the theory of the stability of functional equations the other stabilities have been
considered [19], e.g., the b-stability or the inverse stability.

We say that the system (12.20) is b-stable provided, for every differentiable
function h : I → I , if the condition (12.21) is true for a δ > 0 (i.e., the function
|h(h(x)) − h(x)| + |h′(x) − a| is bounded), then (12.22) is satisfied for a solution
f of (12.20) and an ε > 0.

The system (12.20) is said to be inversely stable provided, for every δ > 0, there
exists a ε > 0 such that, if for a differentiable function h : I → I there exists a
solution f of (12.20) for which (12.22) is true, then (12.21) is satisfied.

Theorem 12.5 The system (12.20) is b-stable if and only if the interval I is bounded
and a = 0 or a = 1 (with ε = |I |) and it is inversely stable (with every ε > 0) if
and only if 0 
= a 
= 1.

Proof If I is bounded and a = 0 (a = 1), then |h(x)− b| ≤ |I | for every b ∈ I and
x ∈ I (|h(x) − x| ≤ |I | for x ∈ I ). Since f (x) = b (f (x) = x) is the solution of
(12.20), this system is b-stable in this case with ε = |I |.

If I is unbounded and a = 0 (a = 1), then (12.21) is satisfied by h(x) = x

(h(x) = b ∈ I ) and δ = 1. Since the constant function f (x) = b ∈ I (f (x) = x) is
the only solution of (12.20) and the function |x − b| is unbounded thus the system
(12.20) is not b-stable.

If 0 
= a 
= 1, then h(x) = b ∈ I satisfies (12.21) with δ = |a|. Since the system
(12.20) does not have any solution in this case, so this system is not b-stable. By the
same reasoning, this system in inversely stable (with arbitrary ε > 0), since (12.22)
is not true for any function h.

In the case a = 0 the system (12.20) has only the constant solutions f (x) = b ∈
I . Assume that it is inversely stable. Thus there exists a ε > 0 such that, for every
differentiable function h : I → I , if there exists a b ∈ I with |h(x) − b| ≤ ε for
x ∈ I , then

|h(h(x))− h(x)| ≤ 1 and |h′(x)| ≤ 1.

Let b and c be such that b, c ∈ I , b < c and c − b ≤ ε. Let h : I → [b, c] be a
differentiable function for which there exists an x0 such that |h′(x0)| > 1. Then we
have |h(x)− b| ≤ b − c ≤ ε, which is a contradiction.

In the case a = 1 the system (12.20) has the only solution f (x) = x. Assume that
it is inversely stable. Thus there exists an ε > 0 such that, for every differentiable
function h : I → I , if |h(x)− x| ≤ ε for x ∈ I , then

|h(h(x))− h(x)| ≤ 1 and |h′(x)| ≤ 1.

Let b and c be such that b, c ∈ Int I and b < c. Put α = min{ε, c − b} and let
g : R → [0, α] be the differentiable function such that g(x) = 0 for x ≤ c and
there exists an x0 for which g′(x0) > 1.
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Put h(x) = x − g(x) for x ∈ I . If x ∈ (−∞, c] ∩ I , then h(x) = x ∈ I .
If x ∈ (c,+∞) ∩ I , then

h(x) = x − g(x) ∈ [x − α, x] ⊂ [c − α, x] ⊂ [b, x] ⊂ I.

From here h is the function from I to I . Moreover |h(x) − x| = g(x) ≤ α ≤ ε

and |h′(x0)− 1| = | − g′(x0)| > 1, thus a contradiction. ��
It is possible to consider the other stabilities of the system (12.20) [19].

Remark The results for the equation

|f (f (x))− f (x)| + |f ′(x)− a| = 0

are the same as above. Indeed, this equation and the system (12.20) are equivalent
and

|f (f (x))−f (x)|+|f ′(x)−a| ≤ δ ⇒ |f (f (x))−f (x)| ≤ δ and |f ′(x)−a| ≤ δ

and

|f (f (x))−f (x)| ≤ δ and f ′(x)−a| ≤ δ ⇒ |f (f (x))−f (x)|+|f ′(x)−a| ≤ 2δ.

Remark The equation of the idempotent function is b-stable and it is not inversely
stable.
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Chapter 13
Subdominant Eigenvalue Location and
the Robustness of Dividend Policy
Irrelevance

Adam J. Ostaszewski

Abstract This paper, on subdominant eigenvalue location of a bordered diagonal
matrix, is the mathematical sequel to an accounting paper by Gao et al. (J Bus Financ
Acc 40:673–694, 2013). We explore the following characterization of dividend-
policy irrelevance (DPI) to equity valuation in a multi-dimensional linear dynamics
framework L: DPI occurs under L when discounting the expected dividend stream
by a constant interest rate iff that rate is equal to the dominant eigenvalue of the
canonical principal submatrix A of L. This is justifiably the ‘latent’ (or gross) rate
of return, since the principal submatrix relates the state variables to each other
but with dividend retention. We find that DPI reduces to the placement of the
maximum eigenvalue of L between the dominant and subdominant eigenvalues of
A. We identify a special role, and a lower bound, for the coefficient measuring the
year-on-year dividend-on-dividend sensitivity in achieving robust equity valuation
(independence of small variations in the dividend policy).

Keywords Dividend irrelevance · Dominant eigenvalue · Bordered diagonal
matrix · Performance stability · Dividend-on-dividend sensitivity

Mathematics Subject Classification (2010) Primary 91B32, 91B38; Secondary
91G80, 49J55, 49K40

13.1 Introduction and Motivation

Accounting theory seeks to reconcile valuation of a firm based on historically
observed variables (‘primitives’, that recognize value created to date) with its
equity value, arrived at by markets in a prospective fashion: see [27]. The market’s
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valuation is theoretically modelled as the present value of future (expected) divi-
dends and involves discounting by the (notional) riskless interest rate in force, say
r per unit time. From the historic (accounting) side, various secondary composite
variables have been derived from the primitives (with appropriate technical names
such as ‘residual income’—for a brief introduction see [8]), formalizing in one way
or another a notion of current ‘earnings’; the latter is then intended to identify equity
value directly (as a dependent variable) and to provide empirically stable time series.

To arrive at such a composite accounting variable, assumptions are needed
concerning the future evolution of the primitives—at least in a hypothetical ‘steady
state’ context. (For a ‘dynamic’ alternative, drawing on the value of waiting, see
[5] in this same volume.) The favourite mechanism for this context is a linear
state-space representation L, thereby introducing subtle links—our main concern
here—between accounting theory and mathematics.

It is noteworthy, though not of direct mathematical significance to this paper, that
an encouraging feature for the use of a (linear) representation L is its flexibility in
permitting inclusion, alongside state variables that recognize historic value creation
(as above), additional ‘information’ state variables; these capture the (typical)
dynamics of an embedded ‘potential to create’ value, an ‘intangible’ value, currently
unrecognized in the accounts but feeding through to future recognized value (a
matter central to the luckless 2014 attempt by Pfizer to bid for AstraZeneca—‘the
mega-merger that never was’). This partly bridges the historic-prospective divide.
(The idea was introduced into the accounting literature of linear systems by Ohlson
[21], and enabled him to include the accounting of ‘goodwill’ value—see [15]; for
another example of an intangible, involving product ‘image’ and its valuation, see
e.g. [13].)

Returning to mathematical concerns, we note that the eigenstructure of L
(eigenvalue distribution) has to connect with economic consequences of an assumed
‘steady state’—such as absence of arbitrage opportunities in equity valuation, and
its relation to the notional riskless interest rate (above). A further fundamental
insight, going back to Miller and Modigliani [18] in 1961, is that—under pre-
scribed conditions (but see e.g. [4] for the effects of alternative informational
assumptions)—the equity value should not depend on the distribution of value,
be it impounded into the share price or placed in the share-holders’ pockets (via
dividend payouts); this is properly formalized below. (This is one aspect of capital
structure irrelevance: equity value should not depend on debt versus equity issuance
[17, 19].) The principle of dividend policy irrelevancy also carries implications for
the linear dynamics. For a recent analysis of the connections see [7], where the
basic result asserts that DPI occurs iff the riskless interest rate agrees with the
dominant eigenvalue of the reduced linear system (‘subsystem’) obtained by the
firm withholding (retaining) dividend payouts. One may call the latter the dominant
‘latent’ rate of the system L. Recall that it is the riskless rate r that is used in the
present-value calculation above.

This is a knife-edge characterization in regard both to the riskless interest rate
and the dominant eigenvalue, so it is natural to study accounting robustness in
the DPI framework. That is the principal aim of this paper, achieved by studying
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an eigenvalue location problem, similar but distinct from one in control theory
(reviewed shortly below). The delicacy of this matter is best seen in the light of
Wilkinson’s example in [28, §33] of a sparse 20 × 20 matrix with the integers
n = 1, 2, . . . , 20 on the diagonal (its eigenvalues) and all superdiagonal entries of
20; a small perturbation of ε in the bottom left-hand corner yields the characteristic
polynomial to be (λ−20) . . . (λ−1)−2019ε, so that for ε := 10−10 the eigenvalues
are these: 6 real ones which are to 1 decimal place 0.9, 2.1, 2.6, 18.4, 18.9, 20.0, and
7 conjugate complex pairs (all in mid-range values, in modulus) as follows:

4± i1.1; 5.9± i1.9; 8.1± i2.5; 10.5± i2.7; 12.9± i2.5; 15.1± i1.9; 17± i1.1.

Turning now to the mathematical problem, consider, granted initial conditions,
the performance of the following discrete-time system:

zt+1 = Azt + avt +bdt ,
vt+1 = + αvt ,

dt+1 = wT zt + γ vt + βdt .

⎫
⎬

⎭
(�)

Here β is the dividend-on-dividend ‘year-on-year’ growth; its effect is particularly
significant—see below and Sect. 13.2 (Theorem 3). So the state variables at time
t are (zt , vt , dt ) ∈ R

n+2 – with dt representing the time-t dividend, vt an
‘information’ variable (as above), subjected to ‘fading’ over time by a factor α
satisfying

0 ≤ α < 1,

with A a real matrix (hereafter, the reduced matrix of the system, or the ‘dividend-
retention’ matrix) that is constant over time. The performance of the system at time
0 is measured by the expression

P0 =
∞∑

t=1

R−t dt ,

in which a discount factor R is applied to the sequence d = {dt } generated by (�).
Here R = 1 + r with r as above (the governing riskless interest rate per unit time),
and so P0 represents an initial equity valuation of the firm—in the sense motivated
above. To guarantee convergence it is sufficient to assume that all components of
any solution of (�) have growth below R; referring to the modulus of the dominant
eigenvalue of the coefficient matrix in (�) by λ�max this growth condition may be
restated as

λ�max < R. (13.1)
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The bottom row vector in (�)

ωdiv = (wT , γ, β)

is termed the dividend policy.
In this setting the full coefficient matrix is assumed constant, but not known

to observers of the state variables (which are disclosed in the annual accounts).
However, whereas A and the penultimate row involve value created over time
through an initial (fixed) investment, it is the final row that generates the returns
(over time) to the investors. Thus the equity P0 should be regarded as a function of
R and of the dividend-policy vector parameters set by the managers, that is

P0(R;ω1, . . . , ωn, γ, β) :=
∞∑

t=1

R−t dt . (13.2)

One says that the valuation P0(.) exhibits Dividend Policy Irrelevancy (DPI) at R
if the function P0(R; . . .) is unchanged as the dividend-policy vector ωdiv varies.
A first problem is to determine circumstances under which the system exhibits
dividend irrelevancy. Up to a technical side-condition (ensuring co-dependence of
dividends and value creation) the short answer is that the dominant eigenvalue of
A should agree with R—this was first proved by Ohlson in the special case n = 1,
and then generalized in [7] (and also referred to in the earlier published monograph
[23]).

Below we refine the notion of dividend irrelevancy in order to study the
effects of a proximal sub-dominant eigenvalue. We first establish notation and
some conventions. Begin by omitting hereafter explicit mention of the information
variable vt ; we regard it as yet another state variable absorbed into A (with α then
becoming an eigenvalue of the reduced matrix), and so we overlook its simple
dynamics; we may now free up α and γ for other uses below. The eigenvalues
λA1 , λ

A
2 , . . . , λ

A
n of the reduced matrix A (latent relative to L, below) are listed

in order of decreasing modulus. As these will be required to be real, positive and
(generically) distinct, this is taken to mean

λA1 > λA2 > . . . > λAn > 0.

Whenever convenient (e.g. in proofs) we omit the superscript A. The system matrix
L of (�) above, viewed as the augmented matrix of A, is now given by

LA = A�(w, β) :=
[
A b

wT β

]

(“A-bordered”), and is regarded as a function of the real vector (wT , β). Its
(possibly complex) eigenvalues will likewise be regarded as functions of (wT , β)
and denoted by λLj , or more simply by κj , so that
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κ1 = λL1 , κ2 = λL2 , . . . , κn+1 = λLn+1,

which distinguish them more easily (from λAj ); each index here is identified through
the functional conditions

κj (0, . . . , 0, β) = λAj for j = 1, . . . , n, and κn+1(0, . . . , 0, β) = β. (13.3)

We write

λLmax(w
T , β), or κmax(w

T , β) := max{κj (wT , β) : j = 1, . . . , n+ 1}.

Although A� is not in general symmetric, we will contrive situations in which the
eigenvalues of A interlace with those of A� : κj ≥ λj ≥ κj+1, just as in Cauchy’s
Interlace Theorem, cf. [11, Thm. 4.3.1], [3, Ch.7, §8 Th. 4], [12], at least for j ≥ 2.

Since we are mostly concerned with the characteristic polynomial and eigenvalue
location, we will be working in an equivalent canonical setting in which, firstly, A
is diagonal and, secondly, as a further simplification, we suppose that for j ≤ n

the dividend significance coefficients bj are all non-zero. Rescaling by bj the j -th
equation of the diagonalized system gives what we term the equivalent canonical
system in which the resulting dividend significance coefficients are δj = ±1 (as,
of course, we may also rescale by −bj : see Remark 4 in Sect. 13.2.1). Thus L is
replaced by

H(ω) =

⎡

⎢⎢
⎢⎢⎢
⎣

λA1 0 0 δ1

0 λA2 δ2

. . .

0 0 λAn δn

ω1 ω2 ωn+1

⎤

⎥⎥
⎥⎥⎥
⎦
, (13.4)

where δj = ±1 for each j. It is preferable to subsume β as ωn+1 (rather than as
δn+1) into the ‘canonical dividend-policy vector’ corresponding to (wT , β). Our
first definitions all contain growth conditions analogous to (13.1) and are motivated
by Proposition 1 below.

Definition 1 We say that the system (�) has dividend irrelevance at R if, for all
ω = (ω1, . . . , ωn, β) such that |λLmax(ω, β)| < R,

P0(R;ω, β) = P0(R; o, β),

with o the zero vector.

Definition 2 We say that the system (�) has local dividend irrelevance at R for
ω = (ω1, . . . , ωn, β) if there is ε > 0 so that, for all ω′ = (ω′

1, . . . , ω
′
n, β

′) such
that ||ω − ω′|| < ε and |λLmax(ω

′, β ′)| < R,
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P0(R;ω′, β ′) = P0(R;ω, β).

Here the norm is Euclidean. The local definition is weaker in that it requires
merely that the equity valuation be robust in respect of the accounting system
(i.e. insensitive to minor accounting variations). However, in our model setting P0,

regarded as a function of ω1, . . . , ωn+1, is a rational function in these variables (see
Observation below in Sect. 13.2), so its local constancy for a given R is equivalent
to global constancy for the same R. An intermediate definition permitting constant
equity is the following

Definition 3 We say that the system (�) has bounded dividend irrelevance at R if,
for some positive ρ < R and all ω = (ω1, . . . , ωn) such that |λLmax(ω, β)| < ρ,

P0(R;ω, β) = P0(R; o, β).

The example below identifies anomalous behaviour which these definitions offer
as possible.

The requirement for dividend irrelevance amounts to discovering to what extent
P0(R, d) depends only on the initial data: A, b, z0, d0.

In view of the role of the interest rate R > 0, it will be appropriate to make the
following.

Blanket Assumption The eigenvalues λA1 , . . . , λ
A
n of A are all real and positive.

Notice that if |κmax(ω, β)| < λ2, small enough variations in the dividend-policy
vector will ensure that the inequality is preserved. This entails (see Proposition 1
below) that the system will have local dividend-policy irrelevance at more than one
rate, namely at R = λ1 and R = λ2. Our contribution is to identify in Theorem 3
below a condition on β, namely that

β > 2λ2 − λ1,

requiring a lower bound on the dividend-on-dividend yearly growth, which ensures
that |κmax(ω, β)| > λ2 and thereby achieves uniqueness of the latent rate of return
in this case: dividend-policy irrelevance occurs only at the one rate R = λ1.

Example of Bounded-DPI at Both R = λ1 and λ2 We take λ1 = 2, λ2 = 1.5,
β = 0.5, and δ1 = −1, δ2 = +1, ω2 = 0.1. Note that 2λ2 − λ1 = 3 − 2 = 1, so
β < 2λ2 − λ1.

Figure 13.1 shows the locus of the conjugate complex root pair for ω1 running
through the range 0.1–1.2 generated by Mathematica. The third root is below,
but close to, 1.5. Note that the additional vertical line appears from the numerics
(the computer routine switches the identity of the two conjugates). Variations in ω
bounding the eigenvalues to |ζ | < λ2 keep both equity P0(λ2) and P0(λ1) constant.
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Fig. 13.1 Eigenvalue locus
as ω1 varies. For a range of
values of ω1 all eigenvalues
of A� lie in the disc of radius
λA2 (the second largest
eigenvalue of A)

13.1.1 Continuous-Time Analogue

Letting Dt denote cumulative dividends, the analogous dynamic in continuous time
may be formulated, indicating differentiation with a dot, as

żt = Azt + bDt ,
Ḋt = wT zt + wn+1Dt .

Here zt = (x1
t , . . . , x

n
t ) is now the state vector of flow variables and b and w are

columns in Rn. Putting Zt = (x1
t , . . . , x

n
t ,Dt ), we arrive at the system

Żt = A�Zt ,

where as before A� is A bordered by b and w̄T = (w1, . . . , wn,wn+1). Thus Dt
has growth rate at most κmax, the largest eigenvalue of A�.

The equity is

P0 =
∫ ∞

0
e−rt dDt = −rD0 + r

∫ ∞

0
e−rtDtdt,
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which converges provided that the dividend flow is of exponential growth less than
r and in particular that

lim
t→∞ e

−rtDt = 0. (13.5)

This requires therefore that κmax < r.

The identical format allows interpretation of results in this paper leading to valid
conclusions for the continuous-time framework. In fact set

Z̃ =
∫ ∞

0
e−rtZtdt

to obtain the discounted flow, i.e. the Laplace transform. We conclude that

−rZ0 + rZ̃ = A�Z̃,

subject to κmax < r. Assuming rI − A� is invertible we have

Z̃ = (rI − A�)−1Z0,

whence

P0 = P0(w̄) = (0, . . . , 0, 1)T (rI − A�(w̄))−1Z0.

This formula was exploited in Ashton et al. in [1, 2] in a stochastic setting.
An identical formula can be developed for discrete time (with Laplace transform

replaced by z-transform) and is the departure point for the purely algebraic argument
developed in [7]. We note an important conclusion, which follows from the form of
the adjugate matrix (or by invoking Cramer’s Rule).

Observation In the framework above, the equity P0 regarded as a function of
w1, . . . , wn+1 is a rational function in these variables.

13.1.2 Control-Theory Analogies

We remark on the contextual similarities between the accounting model and two
standard control-theory settings and identify the differences. For background, see
e.g. [25].

The first setting is the closest. Here we regard zt as a state vector and dt as a
control variable, and write the system equation as

zt+1 = Azt + dtb,
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with the control variable selected according to a non-standard (since it is in effect
differential) feedback-law

dt+1 = wT zt + βdt .

In these circumstances we interpret P0(R, d) defined by (13.2) as the system
performance index (a discounted cost stream), and require that that it be either
(1) independent of the feedback law parameters, or (2) independent of small
variations in the parameters. This is akin to performance stability, or even a
‘disturbance decoupling problem’, except that there is no modelled disturbance here.
Our analysis is similar to that of the standard pole-placement problem (requiring
assignment of eigenvalues through feedback-law design). Where we differ is in the
inevitable presence and effect of zeros as well as poles.

The alternative view is to regard zt as the observation vector of the state Zt =
(z t , dt ), with state equation and observation vector defined respectively by

Zt+1 = HZt,

z t = PZt .

Here P is the projection matrix from R
n+1 to R

n. In these circumstances the
performance index of the system is given by P0(R, d), and we wish to ensure that
the performance is dependent only on the evolution of observation and the initial
state Z 0.

13.1.3 The Accounting Context

The dividend irrelevance question (in particular whether or not dividends should
be irrelevant to stockholders) has been a live issue since the 1961 paper [18]
of Modigliani and Miller. See, for example, [6]. The current quest for dividend
irrelevance comes from the general possibility of restating equity in terms of
an identically discounted alternative series based on accounting numbers, as first
pointed out in 1936 by Preinreich [24]; see the discussion in the survey paper by
Ohlson and Gao [23]. If (�) models the evolution of the firm and zt models its
observable accounting numbers, interest focuses on whether valuations are possible
at time t = 0, based on the accounting numbers alone, that is to say in the
absence of access to the currently unobservable information ωdiv. See Proposition 2
below.
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13.1.4 Organization of Material

The paper is organized as follows. In Sect. 13.2 we give our main theorems
(Theorems 1–4) and the auxiliary propositions on which they are based. Shorter
proofs are included here, but longer proofs are delayed till later. The results of
Sects. 13.2 and 13.3 are then used in Sect. 13.4 to perform a detailed study of
eigenvalue location of the augmented matrix. This is done by examining the two-
pole case first, and then estimating the distortion effects when other poles are
present. Some bifurcation analysis is conducted in Sect. 13.5 in circumstances
corresponding to Theorem 1. Section 13.6 and onwards contain longer proofs, or
such details as are not required for the analysis of Sect. 13.4.

13.2 Main Theorems and Auxiliary Propositions

In [7] it is shown that dividend irrelevance at R occurs iff R takes the value of
the dominant eigenvalue, here defined to be the largest in modulus (in the spirit
of the Perron-Frobenius context—see [11, Ch. 8], [26, Ch.1,2]), of the reduced
matrix A, which will forthwith be diagonal. Asymptotic considerations suggest this
result, since for generic initial conditions, and for large t the dominant eigenvalue
growth of A� dwarfs into insignificance the other state components, both those
entering the accounting state vector and those entering the dividend (provided of
course that the dividend-policy vector gives the dominant growth component a non-
zero coefficient). Asymptotic considerations thus turn the multi-dimensional system
apparently into an essentially one-dimensional one, and it is to this that Ohlson’s
Principle (initially proven in dimension one only) might apply—see Theorem 2
below. That is to say, assuming dividend and dominant state variable are inter-
linked, dividend irrelevance occurs if and only if R takes a unique value, that
value being the dominant eigenvalue of the dividend-retention matrix A (that of the
dominant state). (Of course, in the long run, observation of the dividend sequence
permits inference of the dividend-policy vector.)

In this paper we offer an analysis of the quoted result based on algebraic
considerations, some complex analysis (including an inessential reference to Mar-
den’s ‘Mean-Value Theorem for polynomials’), and graphical analysis. These
complement a standard textbook analysis based on Gerschgorin’s circle theorem—
for which see e.g. [20, Th. 13.14] or [9, Th. 7.8d].

Unsurprisingly, the eigenvalues of A� may be located arbitrarily, but only
if no restrictions are placed on the dividend policy (w, β). Evidently, Dividend
Irrelevance must implicitly assume the convergence assumption (13.1) as a bound
on the eigenvalues of A�. It transpires (see Proposition 3) that the dividend-policy
vector is restricted by this assumption to the interior of an appropriate polytope
in R

n+1.
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Conditions may be placed on the vector b such that, when ω = (w, β) lies in an
open region of parameter space, it is the case that the dominant eigenvalue of the
augmented matrix is real and lies between the first largest and the second largest
eigenvalue of the reduced matrix. This is the substance of our first main result stated
here and proved in Sect. 13.6.

Theorem 1 (An Eigenvalue Dominance Theorem) Suppose that A has real
positive distinct eigenvalues. In the canonical setting (13.4) we have as follows.

(i) If sign[δ1] = −1 and sign[δj ] = +1 for j = 2, . . . , n, then the open set

{ω : A� has real distinct roots and λ2 < κ1(ω) < λ1},

has non-empty intersection with the set

{ω : ω1 > 0, . . . , ωn+1 > 0}.

Moreover, κ2, the second largest eigenvalue of A�, is increasing in ω for small
ω. Under these circumstances dividend irrelevance holds uniquely at R= λ1.

(ii) More generally, the open set

{ω : A� has real distinct roots and λ2 < κ1(ω) < λ1},

has non-empty intersection with the set

{ω : δ1ω1 < 0, δ2ω2 > 0, . . . , δnωn > 0},

and again under these circumstances dividend irrelevance holds uniquely at
R = λ1.

(iii) If δ1ω1 < 0 and δkωk > 0 for all k = 2, .., n, and � has all its eigenvalues
in the disc |ζ | < λ1 of the complex ζ -plane, then A� has an eigenvalue in the
annulus

A := {ζ ∈ C : λ2 < |ζ | < λ1}.

(iv) If δ1ω1 < 0 and δkωk < 0 for all k = 2, .., n, then the system � has a real
eigenvalue in the real interval (λ2, λ1).

For a proof see Sect. 13.6.

Remark We see therefore that for an appropriate vector b there is a region of
parameter space for which the eigenvalues of the augmented matrix A� remain
strictly bounded in modulus by λ1, the dominant eigenvalue of A. Note the re-
emergence of the side conditions δ1ω1 < 0 analogous to the condition ω12ω21 < 0
in Ohlson’s Theorem for n = 1 (see [23]).
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We are able to provide some information about the extent of the subspace (see
formula (13.14) of Sect. 13.3) where we obtain (when δ1 < 0) the upper bound on
positive ω1 of

1

4
(λ1 − β)2 + {ω2δ2 + . . .},

for the case δ2ω2 > 0.Moreover, Proposition 4 and calculations of Sect. 13.4 appear
to imply that, even if ω1 rises above this bound, the two particular roots of the
characteristic polynomial of A� which are forced into coincidence remain outside
the disc |ζ | ≤ λ2 in the complex ζ -plane (as they move asymptotically to a vertical
towards %(ζ ) = λ2), provided

β > 2λ2 − λ1.

By contrast, we find for ω1δ1 < 0 and ω2δ2 < 0 the top two roots of the augmented
matrix A� both approach λ2 from opposite sides; this again is in keeping with the
expectation that dividend irrelevance occurs only at the dominant root λ1.

Our results link to work concerned with the real spectral radius of a matrix,
see Hinrichsen and Kelb [10], which investigates by how much a matrix may be
perturbed without moving its spectrum out of a given open set in the complex
plane. In the cited work the open set of concern is usually either the unit disc or the
open left half-plane, both in connection with stability issues. Our interest, however,
focuses additionally on the open set described by the annulus A defined by the first
and second largest eigenvalues of A (cf. Theorem 1). We note that there is a well-
established Sturmian algorithm for counting the number of zeros of a polynomial
in the unit disc in the complex plane (see Marden [16, §42, p. 148]), and so in
principle the issue of Dividend Irrelevance is resolvable for a given policy vector
ωdiv by reference to the number of zeros in the unit circle of the two characteristic
polynomials

χA�(κ/λA1 ), χA�(κ/λA2 ).

Specifically, the first should have n + 1 zeros and the second no more than n. The
Schur-Cohn criterion [16, Th. 43.1], [9, §6.8] might perhaps also be invoked to count
the number of roots in the unit disc.

13.2.1 Preliminaries

Our analysis is based on two results embodied in Proposition 1 and in the
equivalences given in Proposition 2. The arbitrary placement of the zeros, the
substance of Proposition 3, is also a consequence of Proposition 2.
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Proposition 1 (Under the Assumption of Distinct Eigenvalues) In the canonical
setting (13.4) with

δj = ±1 :
for any j ≤ n and fixed R, the equity P0(R, ω) is locally or globally independent
of ω iff R = λj provided

R > max{|κk(ω)| : k = 1, . . . , n+ 1}, (13.6)

in which case

d0 + P0(R; d) = −RZ
j

0

δj
.

The proof is in Sect. 13.7.

Remark 1 Apparently, if the eigenvalues of A� all lie in the disc with radius any
other eigenvalue of A, the Proposition permits local dividend irrelevance to occur at
several rates of return. We will show below that subject to (13.6) such an anomalous
behaviour is definitely excluded when ω1 
= 0 and also ωj 
= 0 for some 1 < j ≤ n.

Remark 2 In principle we might want to allow δj = −1, to respect a restriction
in the directional sense of a re-scaling of accounting variables (if appropriate); it
transpires from the next Proposition that the sign of δj can be absorbed by ωj and
the choice of sign is only a matter of symbolic convenience, so that we can interpret
δ1ω1 < 0 as saying ω1 > 0. That said, it is important to realize that rescaling an
accounting variable, say zk by α, requires an inverse rescaling of the corresponding
dividend-policy component, that is of ωk by α−1 (in order to preserve the definition
of dividend untouched). The right-hand side of the valuation equation perforce does
not refer to the eigenvalues κj , despite the fact that these control the growth rates of
the canonical accounting variables.

The following algebraic equivalences lie at the heart of all our arguments.
Below we denote by χA�(κ, ω1, . . . , ωn+1) the characteristic polynomial of
A�(ω1, . . . , ωn+1).

Proposition 2 (Inverse Relations) Put λn+1 = β = ωn+1. The equations below
are all equivalent.

χA�(κ, ω1, . . . , ωn+1) = 0. (13.7)

n+1∏

j=1

(κ − λj ) = ω1δ1

n∏

j=2

(κ − λj )+ ω2δ2

n∏

j 
=2

(κ − λj ) (13.8)

+ . . .+ ωnδn
n∏

j 
=n
(κ − λj ).
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Polar form for j ≤ n with leading quadratic term:

ω1δ1 + ω2δ2 + . . .+ ωnδn = (κ − λj )(κ − β)+
n∑

k 
=j

ωkδk(λj − λk)
κ − λk . (13.9)

Polar form for j = n+ 1 and with κ 
= λk for k = 1, . . . , n:

β = κ − ω1δ1

κ − λ1
− ω2δ2

κ − λ2
− . . .− ωnδn

κ − λn . (13.10)

In particular, with j = 1, putting

f (κ) := {ω2δ2 + ..} − (κ − λ1)(κ − β)− ω2δ2(λ1 − λ2)

κ − λ2
− . . . (13.11)

we obtain the equivalent equation

f (κ) = −ω1δ1.

Proof of equivalence follows in Sect. 13.8. Each of the above identities enables a
different analytic approach.

Our first conclusion regards the potentially arbitrary placement of the zeros of
(13.7).

Proposition 3 (Zero Placement) In the canonical setting of Proposition 1, for an
appropriate choice of real vector ω the characteristic polynomial

χA�(κ, ω) = |κI − A�(ω)|

may take the form

κn+1 − p0κ
n + p2κ

n−1 + . . .+ (−1)n+1pn, (13.12)

for arbitrary choice of real coefficients p0, . . . , pn. The transformation

(p0, . . . , pn)→ (ω1, . . . , ωn+1)

is affine invertible. The roots κ1, . . . , κn+1 of the characteristic polynomial may
therefore be located at will, subject only to the inclusion, for each selected complex
root, of its conjugate.

This result is proved in Sect. 13.9.
Proposition 3 above indicates that in principle the region of parameter space in

which the boundedness assumption (13.8) holds may be obtained as the transform
under the above mentioned transformation of the set of vectors (p0, . . . , pn)
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satisfying a criterion derived from Cauchy’s theorem on the Inclusion Radius [9,
Th. 6.41], [16, Th. 27.1], namely

|pn| + |pn−1|λ1 + . . .+ |p0|λn1 < λn+1
1 .

(Recall that the inclusion radius of the polynomial (13.12) is the unique positive root
of the polynomial |pn| + |pn−1|κ + . . . + |p0|κn − κn+1.) Since the set of vectors
(p0, . . . , pn) so described is the interior of a polytope, the corresponding region in
parameter space is therefore likewise seen to be the interior of a polytope. Let us
term this the Cauchy polytope.

Evidently (0, . . . , 0, β) is on the boundary of the Cauchy polytope, since then

χA�(κ, ω) = (κ − λ1)..(κ − λn)(κ − β).

An immediate corollary is the following result, first announced for the case n = 1
by Ohlson at the 2003 International Conference on Advances in Accounting-based
Valuation—see [23, Lemma 4.1; generalization of Lemma 4.1: Appendix 2].

Theorem 2 (Multivariate Ohlson Principle) The system � has dividend irrele-
vance at R iff R = λ1.

Proof By varying ω we can place one eigenvalue of A� in the interval (λ2, λ1), so
by Proposition 1, there cannot be dividend irrelevance at λ2 and below. Note that
this means that δ1ω1 
= 0 for the chosen ω. ��

The situation with general placement of eigenvalues alters if β is a positive real,
lies below the eigenvalues of A, and the dividend-policy vector ω of the canonical
setting is non-negative in all its components. The formula (13.10) confines the non-
real eigenvalues κj to an infinite strip, while the formula (13.8) allows us to confine
all the eigenvalues still further when ω is itself bounded.

We refer to formula (13.9) as the associated polar form. This form offers a
graphical approach to the analysis of the real root location, and some insight into
complex root location; in particular, the leading quadratic term is responsible for
unbounded root behaviour, as follows.

Proposition 4 (Unbounded Roots) Fix ωk for k 
= j with

Aj =
∑

h 
=j
ωhδh(λj − λh) 
= 0.

(i) Subject to λk < |κ| we have the asymptotic expansion

ω1δ1+ ω2δ2 + . . .+ ωnδn

= (κ − λj )(κ − β)+
∞∑

s=1

1

κs

⎛

⎝
n∑

h 
=j
ωhδhλ

s−1
h (λj − λh)

⎞

⎠ .
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(ii) For j ≤ n the unbounded roots as δjωj → −∞ behave asymptotically as
follows:

κ =
{ ±√|ωj | +O(ω−1/2

j ), for δj = 1,[
1
2 (λj + β)+ Aj

2|ωj | + +O(ω−2
j )

]
± i

[√|ωj | +O(ω−1/2
j )

]
, for δj = −1.

For the proof, see Sect. 13.10.
See Fig. 13.1 above and Fig. 13.5 in Sect. 13.4 for illustrative examples.

Remark 3 In the case j = 1 with δ1 = −1, we are of course assuming that ω1 →
∞. If moreover δkωk > 0 for all k = 2, . . . , n, and λ1 > λ2 > . . . > λn, we
have A1 = ∑

h 
=1 ωhδh(λ1 − λh) > 0. Here the conjugate roots have real part

approaching 1
2 (λj + β) from the right. However, with other sign assumptions on

δhωh, the sign of A1 need not be positive, in particular if δhωh < 0 for all h.

Remark 4 By (13.8) we may rewrite the characteristic polynomial in the form

1

ωj

n+1∏

k=1

(κ−λk)− 1

ωj
{ω1δ1

n∏

k=2

(κ−λk)+ω2δ2

n∏

k 
=2

(κ−λk)+. . .+ωnδn
n∏

k 
=n
(κ−λk)}.

For fixed ωk, with j 
= k,pass to the limit as |ωj | → ∞ to obtain the following
equation of degree n− 1 :

n∏

k 
=j
(κ − λk) = 0.

Thus given the assumptions of the Proposition 4, only two complex roots can be
unbounded.

Remark 5 Note that, by contrast, the unbounded roots for ω1, . . . , ωn fixed and
β varying have the asymptotic behaviour κ = β + O(β−1). Note also that, if∑
k 
=j ωkδk(λj − λk) = 0, then the error term O-behaviour alters.

Theorem 3 With fixed ωk for k 
= 1 such that
∑
k 
=1 ωkδk(λj − λk) 
= 0, and with

δ1 = −1 if

β ≥ 2λ2 − λ1,

the unbounded root locus does not enter the disc |ζ | ≤ λ2 as ω1 → ∞. So the
system � has local dividend irrelevance at (ω, β) uniquely at R = λ1.

Proof Under these circumstances the unbounded roots are outside the disc |ζ | ≤ λ2,
since they are confined to %(ζ ) > λ2 by virtue of
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λ2 ≤ 1

2
(λ1 + β).

By Proposition 1 the only remaining value available for R is thus λ1. ��
Notation Below and throughout, K(ε) denotes the real interval [β − η(ε), λ1 +
η(ε)], where

β−η = (β + λ1)−
√
(λ1 − β)2 + 4ε

2
, λ1+η = (β + λ1)+

√
(λ1 − β)2 + 4ε

2
;

S(K, π/(n+1)) comprises the two circles in the plane subtending angles of π/(n+
1) on K(ε).

Proposition 5 (Strip-and-Two-Circles Theorem) Suppose that β ≤ λn < . . . <

λ1, that ω1 
= 0, and that

δ1ω1, . . . , δnωn ≥ 0.

(i) All the non-real roots of the characteristic equation (13.7) lie in the infinite strip
of the complex ζ -plane given by

β ≤ %(ζ ) ≤ λ1.

(ii) For ε > 0 arbitrary, if

ω1 + . . .+ ωn ≤ ε, δ1ω1, . . . , δnωn ≥ 0,

then all the roots of (13.7) lie in the star-shaped region S(K, π/(n+ 1)).

The proof is delayed to Sect. 13.11.

Remark 6 Taken together parts (i) and (ii) may operate simultaneously. These
results should, however, be taken together with Gerschgorin’s Circle Theorem,
which implies immediately that the eigenvalues lie in the union of the discs in the
complex ζ -plane given by |ζ − λj | ≤ |ωj | and by |ζ − β| ≤ |ω1| + . . . |ωn|. Thus
the eigenvalues are bounded, not only to the above mentioned vertical strip but also
to a horizontal strip of width 2 max{|ωj | : j ≤ n} around the real axis.

Remark 7 It is obvious that, for ω2 = .. = ωn = 0 and with |ω1| ≤ ε, the real
roots of (13.7) lie in K(ε) by continuity. Gerschgorin’s Circle Theorem limits the
real roots to the slightly larger interval [β − ε, λ1 + ε]. Thus the two-circle result is
merely a sharpening of the bounds.

Remark 8 If λn < β, less elegant improvements can be made so that K extends
only as far as λ1 on the left.
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Fig. 13.2 Vertical strip and
two-circle bounds. Horizontal
bound implied by
Gerschgorin’s Theorem

We can state, ahead of the proof of Proposition 5, our theorem on eigenvalue
location.

Theorem 4 (Eigenvalue Bounds) Suppose that β ≤ λn < . . . < λ1 and that

|ω1|, . . . , |ωn| ≤ ε.

Non-real eigenvalues lie in the rectangle bounded by γ = β, ζ = λ1, ζ = ±ε. Real
eigenvalues lie in the interval K(ε).

The theorem follows from Proposition 5—see Fig. 13.2. The two-circle result
gives useful bounds only for the real roots.

Remark The above analysis does not yet exclude the possibility of all eigenvalues
being located to the left of λ2. We next offer a graphical analysis of the real-root
locations in the following subsection, which shows that at least one root has to be to
the right of λ1 when ω1 
= 0 and ωj 
= 0 for some j > 1.

13.3 Eigenvalue Location: General Analysis

Our ultimate purpose of establishing DPI (achieved in the next section) is to show
that under suitable restrictions one can guarantee the existence of a real eigenvalue
in the range (λ2, λ1). Specifically, we show that if δ1 = −1 and δ2 = . . . = +1 there
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is a real eigenvalue in the range (λ2, λ1) for all small enough positive ω1. The aim
of this section is to identify (i) the real-root locus of the characteristic polynomial
of H(ω) by examining the general features of the graph of the associated polar
form of the characteristic equation given by (13.9), and (ii) the complex-root locus
when the associated polar form has just two poles. The latter is a preliminary to our
identification of (iii) an elementary estimate of the distortion effect of other poles.

In this section the real eigenvalues of H(ω) (see Eq. (13.4)) are studied as
functions of ω1 with the other components of ω fixed. Interest naturally focuses on
ω1 as the link coefficient with the dominant state vector. The two-pole case arises
when n = 3 and is considered as a benchmark, with a view to understanding how
the multi-pole situation deforms the benchmark case.

Treating ω1 as a free variable, with the remaining dividend-policy coefficient
fixed, we use (13.9) to study the map κ → ω1 and its local inverses. We have, with
f as in (13.11),

−ω1δ1 = f (κ) = {ω2δ2+..}−(κ−λ1)(κ−β)−ω2δ2(λ1 − λ2)

κ − λ2
−. . . , (13.13)

so that the graph of f , or of ω1, against κ has (n − 1) vertical asymptotes from
right to left at κ = λ2, λ3, . . . λn all of which are manifestly simple poles. The
asymptotes break up the concave leading quadratic term (if δ1 < 0) into n connected
components corresponding to the intervals (−∞, λn), (λn, λn−1), . . . , (λn,+∞).
The equation

∂ω1

∂κ
= 0

is equivalent to an n-degree polynomial equation so its n roots contribute to at most
n stationary points in the graph.

In the interval (λj+1, λj ) the component has an even, respectively an odd,
number of stationary points depending on whether the sign of ωj+1δj+1ωjδj is +1
or −1. In view of the behaviour of the leading quadratic term, not all the components
can be monotone (possess a zero number of stationary points!). Thus at least one
component is non-monotonic.

The components may be interpreted as graphs/loci of the eigenvalues κj (ω1).

More precisely, the differentiable local inverses of the mapping κ → ω1 are the
graphs of κj (ω1). That is to say, each non-monotonic component must be first
partitioned into monotone parts on either side of its stationary points. The labelling
of these inverses from right to left respects the cyclic order on the set {1, . . . , n}
together with one or other of the identifications

lim
κ↗λj

ω1(κ) = κj , lim
κ↘λj

ω1(κ) = κj .

The latter may require the point at infinity on the asymptote κ = λj to be considered
as the intersection of consecutive loci.
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Note that from (13.13) f (λ1) = 0 and so κ1(0) = λ1. (This is consistent with
the matrix H(ω)− κI having a first column with zeros in all but the last row.)

We will see in Sect. 13.4.1 from these asymptotic features of the graph that, since
κ1(0) = λ1, for all small enough positive ω1 the eigenvalue κ1(ω1) is in the range
(λ2, λ1), as we now demonstrate.

As a preview of the full argument of Sect. 13.4.2, with our assumption that δ1 =
−1 and δ2 = δ3 = . . . = +1, we note that we can arrange for κ1(ω1) to be large
and positive in the vicinity to the right of λ1 by taking ω2 < 0. With ω2 < 0 the
domain of κ1 is infinite, so that

lim
ω1→∞ κ1(ω1) = λ2.

Thus the largest real eigenvalue κ1 remains above λ2. See Fig. 13.3
(in Sect. 13.4.1 below). Of course for small enough ω1 the remaining roots κj (ω1),

even if complex, remain in an open vertical complex strip including the closed real
interval [β, λ2].

We can similarly arrange for κ1(ω1) to be large and negative in the vicinity to the
right of λ1 by taking ω2 > 0. In view of the behaviour of the graph for large κ > λ1,

this implies the existence of two roots in (λ1, λ2) under these circumstances. With
ω2 > 0 the domain of κ1 is bounded, say by ω1 ≤ ω∗

1 = ω∗
1(ω2, . . . , ωn+1), and

one has

lim
ω1↘ω∗

1

κ1(ω1) = lim
ω1↗ω∗

1

κ2(ω1).

See Fig. 13.4 (below in Sect. 13.4.1). As the eigenvalue κ1 remains above λ2,

dividend irrelevance can occur only at λ1. An upper bound for ω∗
1 is provided by

the maximum value of the leading quadratic term

−(κ − λ1)(κ − β)+ {ω2δ2 + ..}

obtained by evaluation at κ = 1
2 (λ1 + β), namely

1

4
(λ1 − β)2 + {ω2δ2 + . . .}. (13.14)

This gives β, the coefficient at the previous date’s dividend, a significant bounding
role.

In order to understand the qualitative behaviour of the complex eigenvalues of
the characteristic equation, we study the associated polar form on an open interval
between the two adjacent poles at λj+1and λj for j ≥ 2. As a first step, we study
the contribution to f (κ) arising in (13.13) only from the two terms corresponding
to the two adjacent poles λj+1 and λj . In the subsequent section we identify how
the presence of the other terms in (13.13) perturbs this simple analysis.
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13.3.1 Root Locus for Two-Pole Case

For present purposes, by scaling and a shift of origin, as λj+1 < λj we may take
λj+1 = 0 and λj = τ > 0. It is convenient to study the corresponding terms of
f (κ) by introducing T > 0 and looking at the two functions

f1(x) = 1

x
+ T

x − τ = (1 + T )x − τ
x(x − τ) ,

f2(x) = 1

x
− T 2

x − τ .

The first of these has its zero at x = τ/(1 + T ) in (0, τ ) and maps (0, τ ) bijectively
onto the reals. The second function is more awkward; provided T 
= 1, it has a zero
outside (0, τ ) at τ/(1 − T 2). More information is provided in the Circle Lemma
below.

Circle Lemma For 0 < T 
= 1, the function f2(x) has a positive local minimum
value K+ at x+, and positive local maximum value K− at x−, where

x± = τ

1 ± T , K± = (1 ± T )2
τ

.

The range of f2(x) on (0, τ ) omits an interval of positive values (K−,K+).
For K− < K < K+ the equation

f2(z) = K, equivalently z2 − (τ + (1 − T 2)K−1)z+ τK−1 = 0, (13.15)

has conjugate complex roots in the complex ζ -plane describing a circle centred at
the real number (x+ + x−)/2 with radius |x+ − x−|/2.

The real part moves from x+ towards x−. Hence for 0 < T < 1, asK decreases
from K+ the real part increases and for T > 1 it decreases.

Note See below for a more general analysis of the behaviour of the real part near
a local minimum. For T = 1 the function f2 is symmetric about x = τ/2 and is
asymptotic to zero at infinity; a limiting version of the lemma is thus still valid, but
the conjugate roots lie on the vertical line %(ζ ) = τ/2 for 0 < K < K+ = 4/τ.

Proof The conjugate roots z, z̄ = x ± iy satisfy

x2 + y2 = zz̄ = τK−1.

In view of the dependence of the real part on K as given by x = (τ + (1 −
T 2)K−1)/2, we see that the term τK−1 can be absorbed by a shift of origin on the
x axis. Hence the locus as K varies is a circle. Reference to the extreme locations
x± identifies the shifted centre, and the radius. ��
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13.3.2 Multi-Pole Case: A Distortion Estimate

The presence of additional poles outside (λj+1, λj ) distorts the result obtained in
the Circle Lemma above for the two-pole contribution. Provided all the eigenvalues
λj are well-separated, i.e. the ratio of adjacent intervals does not vary greatly
(see the calculation of τ/c below), the distortion is controlled by the value
of

∑
k /∈{j,j+1} ωkδk(λj − λk). In the next subsection we take note of a third-

derivative test (based on Taylor’s Theorem) which identifies bifurcation behaviour
of coincident real roots. For an application see Sect. 13.4.5.1.

We again work in the standardized co-ordinate system with the adjacent poles at
x = 0 and x = τ. Put ξ := τ/2; then the decomposition, valid for x ∈ (0, τ ) and
c > 0,

1

x + c = A0(x)

x
1[ξ,a](x)− Aτ (x)

x − τ 1[0,ξ ](x)

yields the following bounds:

0 <
τ

2c + τ < A0(x) <
c

c + τ < 1, for ξ < x < a,

0 <
τ

2c + τ < Aτ (x) <
τ

c
, for 0 < x < ξ.

These and an amendment of the parameter T in f2(x) to a variable coefficient T =
T (x) for x in the closed interval [0, τ ] enable us to account for the presence of
terms other than f2(x) in f (x) (as defined in Proposition 2), by absorbing their
contributions into T (x). On [0, τ ], the ‘adjusted’ T inherits from f boundedness,
continuity and indeed two-fold differentiability. Thus we have

f (x) = 1

x
− T

x − τ , f ′ = − 1

x2
+ S

(x − τ)2 ,

where S = S(x) = T (x)− (x−τ)T ′(x) ∼ T (τ), for x close to τ . Expansion round
x yields

T (τ) = T (x)+ (τ − x)T ′(τ )+ 1

2
(τ − x)2T ′′(x)+ o((τ − x)3), as x → τ,

so

S = T (τ)− 1

2
(x − τ)2T ′′(x)+ o((τ − x)3).

The main point of this is to observe how S perturbs the complex roots (cf.
Fig. 13.7). The Eq. (13.15) of the Circle Lemma now gives us the following.
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Proposition 6 (Distortion Estimate) The equation

K = 1

x
− T (x)

x − τ
is equivalent to f2(x) = K + T̄ for

T̄ = T ′(x)+ 1

2
(τ − x)T ′′(x)+ o((τ − x)2).

The equation f (x) = K is equivalent to

x = τ

2
+ (1 − S2)

2K
± i

2

√
δ(K−1),

with δ(k) = τ 2K+K−(k − k+)(k− − k), where

0 < k−1− = K− = (1 − S(x))2
τ

< K <
(1 + S(x))2

τ
= K+ = k−1+ ,

S = T (τ)− 1

2
(x − τ)2T ′′(x)+ o((τ − x)3.

We note that 1
2T

′′(x+) = −f ′(x+)+ o((τ − x+)).

13.3.3 Analysis of the Real Part via Taylor’s Theorem

Proposition 7 (Third-Derivative Test: Real Part Follows f ′′/f ′′′) Suppose that
f (κ) has a local minimum/maximum at κ = κ∗. Let κ(ω) denote the local solution
for κ over the complex domain of the equation g(κ) = 0 for

g(κ) =
{
f (κ)− ω2, for κ∗ a local minimum,
f (κ)+ ω2, for κ∗ a local maximum,

with ω > 0 small and with κ(0) = κ∗. If f ′′′(κ∗) 
= 0, then the locus κ(ω) satisfies
near 0:

%(κ(ω)) is increasing if f ′′(κ∗)/f ′′′(κ∗) > 0, and is otherwise decreasing.

For a proof see Sect. 13.12. Proposition 7 implies that the quadratic terms of the
associated polar form f (κ) have no effect on the local behaviour of the real part at
a bifurcation.



296 A. J. Ostaszewski

13.4 Eigenvalue Location: Some Cases

In this section we consider the case n = 2, and the two cases with n general when
δkωk are of constant sign for k = 2, . . . , n, as referred to in Theorem 1.

13.4.1 The Case n = 2

This case is in fact typical, despite having the simplifying structure that one root of
the cubic characteristic polynomial χH is always real. There may thus be two more
real roots, or two conjugate complex roots.

In view of earlier comments, we need to consider only the case δ1ω1 < 0.
Interpret this as saying δ1 = −1 and ω1 > 0.

(a) For now assume δ2 
= 0.(For δ2 = 0 see (b) below.) Taken together Figs. 13.3
and 13.4 tell it all. They graph the implicit relation between ω1 and the
eigenvalues κ as given by the equation χH (κ;ω1) = 0, treating κ as the
independent variable and ω1 as dependent. To derive the root locus for real roots
κ rotate the graphs, so that ω1 becomes the independent variable. Then each
branch of the graph yields the κj as the dependent eigenvalues in decreasing
magnitude.

If δ2ω2 < 0, then for increasing ω1, as in Fig. 13.3, the dominant root of
H(ω) decreases down to λ2 (in the limit).

If δ2ω2 > 0, then for increasing ω1, as in Fig. 13.4, the first/second root of
H(ω), respectively, decrease/increase into coincidence in the interval (λ2, λ1).

Thereafter, the root locus of the conjugate pair behaves as illustrated below in
Fig. 13.5. That is, the real part decreases towards 1

2 (λ1 + β) and the imaginary
parts tend to infinity.

Fig. 13.3 Graph of
ω1(κ) with δ1 = −1,
δ2 = +1, ω2 < 0. Leading
quadratic in green; κ-axis
horizontal
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Fig. 13.4 Graph of
ω1(κ) with δ1 = −1,
δ2 = +1, ω2 > 0. Leading
quadratic in green; κ-axis
horizontal

Fig. 13.5 Locus of the
conjugate roots in the
complex ζ -plane for δ1 < 0
as ω1 increases with ω2 fixed.
Vertical asymptote is
%(ζ ) = 1

2 (λ1 + β)

(b) We consider now the limiting case δ2 = 0. As the characteristic polynomial is

χH (κ) = (κ − λ1)(κ − λ2)(κ − β)− ω1δ1(κ − λ2)

= (κ − λ2)[(κ − λ1)(κ − β)− ω1δ1],

this has one root at κ = λ2 which, by Proposition 1, precludes DPI occurring
at R = λ2. Note that the expression in square brackets corresponds to an
analogous problem with reduced order (effectively the n = 1 case), and this
feature, of a reduction of order, occurs for general n.

Remark Of course, for δ1ω1 < 0, the characteristic polynomial of H(ω) for δ2 = 0
has two additional real roots in the interval (β, λ1) for small |ω1|. For larger |ω1|
the conjugate roots lie in the complex ζ -plane on the vertical %(ζ ) = 1

2 (λ1 + β).

This is because

κ = (β + λ1)±
√
(λ1 − β)2 + 4ω1δ1

2
= 1

2
(λ1 + β)± i{

√|ω1| +O(|ω1|−1/2)}.
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As before, if β ≥ 2λ2 − λ1, then λ2 ≤ 1
2 (λ1 + β) and the conjugate roots do

not enter the open disc |ζ | < λ2; however, if β < 2λ2 − λ1, then 1
2 (λ1 + β) < λ2,

which means that two roots will be in the open disc for a range of values of |ω1|
with the third on the boundary. Eventually the conjugate pair exits the annulus A
(see Fig. 13.1).

13.4.2 General Case δ1ω1 < 0 with δjωj > 0 for j = 2, . . . , n

We fix arbitrarily δjωj > 0 for j = 2, . . . , n. The assumption ω1δ1 < 0 is without
loss of generality interpreted as δ1 = −1 with variable ω1 > 0. The analysis
now proceeds similarly. Here we have the identity connecting eigenvalue κ and
parameter ω1 in the shape of the associated polar form (13.9):

ω1 = f (κ) := −(κ − λ1)(κ − β)+ {ω2δ2 + ..} − ω2δ2(λ1 − λ2)

κ − λ2
− . . . .

We note that the quadratic term reflects the behaviour of the two equations which
remain when all the variables other than the dividend and the dominant accounting
variable are ignored (again equivalent to taking ω2 = .. = ωn = 0). Our analysis
identifies the locations of all the n+ 1 real roots of f (κ) = 0 in order to discuss the
equation f (κ) = ω1.

Noting that f (λj+) = −∞ and f (λj−) = +∞, by the Intermediate Value
Theorem, there exist roots κj (0) for j = 3, . . . , n of the equation f (κ) = 0 which
are real and satisfy

λj < κj (0) < λj−1.

Finally, since f (−∞) = −∞ and f (λn−) = +∞, there exists a root κn+1(0)<λn.
Evidently the equation f (κ) = ω1 similarly has roots κj (ω1) for any ω1 in the

respective intervals for j = 3, . . . , n+ 1. Thus we have ‘interlacing’ for j ≥ 2:

κn+1(ω1) < λn < κn(ω1) < . . . < λj < κj (ω1) < λj−1 < . . . < κ3(ω1) < λ2.

Now f (λ2+) = −∞ and f (λ1) = 0 with f (+∞) = −∞. There are thus two
generic possibilities.

1. The equation f (κ) = 0 has a root in (λ2, λ1). In this case, as ω1 increase
from zero there are initially two real roots κ1(ω1) and κ2(ω2) of the equation
f (κ) = ω1 which lie in (λ2, λ1) and which move into coincidence. Thereafter
they become complex conjugates which behave qualitatively as in the case n = 2.
In particular, κ3, . . . , κn+1 are increasing in ω1 (under the assumptions of this
case), and since

κ1 + ..+ κn+1 = λ1 + λ2 + . . . λn + β,
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with the right-hand side constant, we see that %(κ1) = 1
2 (κ1 + κ2) is decreasing

in ω1. As the lower bound is 1
2 (λ1 + β), the complex roots certainly do not enter

the disc |ζ | ≤ λ2 provided 1
2 (λ1 + β) ≥ λ2 i.e. β ≥ 2λ2 − λ1. (Note that

2λ2 − λ1 < λ1.)

2. The function f (κ) is negative in (λ2, λ1) and the equation f (κ) = 0 has its
remaining root in (λ1,+∞). In this case the convergence assumption is violated
for small ω1 in that there are eigenvalues of H(ω) outside the disc |ζ | < λ1.

Finally, the special case arises when f (κ) = 0 has a double root at κ = λ1. In
this case as ω1 increases from zero the remaining two roots are conjugate complex
and again behave as in Figs. 13.3 and 13.4.

13.4.3 General n : Case δ1ω1 < 0 with δjωj < 0 for
j = 2, . . . , n

This proceeds similarly. The root κ1 decreases towards λ2 as ω1 increases. Likewise
the roots κj for j = 2, . . . , n − 1 decrease towards λj+1. As these latter roots
remain bounded, the remaining two roots κn and κn+1 may be real, but will be
the unbounded complex conjugates for large enough ω1 (indeed the remaining
component of the graph is n-shaped). This time the real part increases towards
1
2 (β + λ1) as ω1 increases.

13.4.4 General n : Case when δkωk = 0 for some
k = 2, . . . , n with δjωj > 0 for Remaining Indices j

We find that in all these cases DPI cannot hold at R = λ2, by Proposition 1.
Clearly, if δ2 = 0, then κ = λ2 is an eigenvalue of the system, i.e. there is an

eigenvalue in the annulus A and so DPI cannot hold at R = λ2.

In general, if δkωk = 0 for just one of k = 3, . . . , n, then χH (λk) = 0, and in
fact

χH (κ) =
n+1∏

j=1

(κ − λj )−
n∑

j=1

ωjδj

n∏

h 
=j
(κ − λh)

= (κ − λk)[
n+1∏

h=1,h 
=k
(κ − λh)−

n∑

j=1,j 
=k
ωj δj

n∏

h 
=j
(κ − λh)]

= (κ − λk) · χK(κ),
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with K the matrix obtained from H by omitting the k-th row and column, i.e. a
reduction of order occurs. But now the assumptions for K agree with those made in
the case of the previous subsection. It now follows that χK(κ) has an eigenvalue in
the annulus A , and so again DPI cannot hold at R = λ2.

Finally, if δkωk = 0 for several among k = 3, . . . , n and δjωj > 0 for
the remaining indices j , then a further reduction of order occurs, with the same
conclusion that an eigenvalue exists in the annulus A . So here too, DPI cannot hold
at R = λ2.

Note that in both scenarios the locus of κ1 decreases as ω1 increases from zero.

13.4.5 Effect of the Dividend-on-Dividend Multiplier: A
Distortion Example

We conclude this section by illustrating the effect of the policy parameter β = ω3
on the three eigenvalues in the case ω1 = ω2 = 0.1. In the range β < λ2 we
see in the illustrative example of Fig. 13.6 that the root κ1 decreases whilst the
root κ2 increases as β increases; κ3 increases for all β, as might be expected,
with λ2 as supremum. Intuitively speaking, the push away from the origin created
by the two increasing roots κ2 and κ3 causes the location of the coincident root
κ1 = κ2 to execute a jump up to a new coincidence location above λ1, by way
of a continuous root locus in the complex ζ -plane (see the Remark on bifurcation
in the next section). The push can in fact be physically interpreted. The partial-
fraction-expansion terms in (13.10) may be regarded as modelling electric charges
placed at the pole locations λj and acting according to an inverse distance law (see
Marden [16, §1.3 p. 7]). Thus for β large enough to ensure both κ2 and κ1 have
been re-located above λ1, we see the locus of κ1 resume its downward path towards
the origin (but tending in the limit only as far as the barrier λ1), while κ2 resumes
its upward path away from the origin. The locus dynamics are investigated more
properly in the next section.

Fig. 13.6 Graph of ω3(κ)

with δ1 = −1, δ2 =
+1, ω1, ω2 > 0; κ-axis
horizontal
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Fig. 13.7 Root locus of
conjugate roots as β varies
for ω1, ω2 > 0 fixed
(δ1 = −1, δ2 = +1)

The conjugate root locus for this case is shown in Fig. 13.7. For β varying over
the range corresponding to the presence of complex roots (with ω1 and ω2 fixed),
the root locus of the conjugate pair appears close to being a circle |κ−λ2|2 = const.

as a consequence of the Circle Lemma and Proposition 6.

13.4.5.1 A Case Study: Distorted Circle

Since ω1 = ω2 = 0.1 we have here

f (κ) = 10κ + 1

κ − 2
− 1

κ − 1
,

so the equation f (x) = K is equivalent to f2(κ) = K − 10κ. The essential reason
for the closeness observed here is the slow variation of κ3 in the vicinity of λ2.
Indeed, by (13.8) we have

χ(κ) = (κ − λ1)(κ − λ2)(κ − β)− {ω1δ1(κ − λ2)+ ω2δ2(κ − λ1)},

from which we compute that

κ1 + κ2 + κ3 = λ1 + λ2 + β,
κ1κ2κ3 = λ1λ2β − ω1δ1λ2 − ω2δ2λ1,
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and so

(κ1 − λ1)(κ2 − λ1) = κ1κ2 − λ1(κ1 + κ2)+ λ2
1

= (λ1λ2β − ω1δ1λ2 − ω2δ2λ1)κ
−1
3 − λ1(λ1 + β + (λ2 − κ3))

+λ2
1

= βλ1(λ2 − κ3)κ
−1
3 − λ1(λ2 − κ3)− (ω1δ1λ2 + ω2δ2λ1λ

−1
2 )

= λ1(λ2 − κ3)[βκ−1
3 − 1] − (ω1δ1λ2 + ω2δ2λ1λ

−1
2 ).

So the positive sensitivity to variation in β is slight, as asserted, though in fact it is
increasing.

Of course, writing λ2 in place of κ3, all the dependence on β is formally lost;
however, note that the remaining constant is inadequate as an explanation of the
actual radius.

13.4.6 Qualitative Behaviour in the Most General Case

The picture emerging from our analysis for δ1ω1 < 0 is that the dominant and
subdominant eigenvalues remain in the annulus (of Theorem 1) provided

β > 2λ1 − λ2.

Other eigenvalues, when real, interlace between the eigenvalues of A, with κj
remaining associated with λh for h = j or h = j + 1. One pair of roots become
unbounded as a complex conjugate pair and are asymptotic on one or other side
of %(ζ ) = 1

2 (λ1 + β) as ω1 → +∞, depending on the remaining parameters of
ω. Evidently a regime change occurs with the unbounded root locus being vertical.
Other conjugate pairs execute deformed circles as described by the Circle Lemma
and Proposition 6 of Sect. 13.3.1.

13.5 Differential Properties of Eigenvalues: Some
Bifurcation Analysis

The purpose of this section is to analyse briefly the root locus in the ζ -plane. We
conduct a partial analysis mostly concentrated on the dynamics of the dominant
eigenvalue as ω1 changes (with the remaining policy parameters fixed) with a
view to completing the proof of the Dominance Theorem in the next section. Our
starting point is the following proposition, which follows from (13.8) by implicit
differentiation. It is suggested by our earlier Circle Lemma of Sect. 13.3.1 and
Proposition 6 concerning the third derivative.
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Proposition 8 (Under the Assumption of Distinct Eigenvalues) In the canonical
setting of Proposition 1, let the dividend-policy vector be represented by ω =
(ω1, . . . , ωn+1) with ωn+1 = β. The eigenvalues κj = λLj of the augmented matrix
A�, viewed as functions of ω = (ω1, . . . , ωn+1), satisfy the following differential
properties expressed in terms of the constants λj = λAj :

(i) for 1 ≤ h ≤ n+ 1, 1 ≤ k ≤ n

∂κh

∂ωk
= −δj (λ1 − κh)(λ2 − κh) . . . (λk−1 − κh)(λk+1 − κh) . . . (λn − κh)

(κ1 − κh)(κ2 − κh) . . . (κh−1 − κh)(κh+1 − κh) . . . (κn+1 − κh) ;
(13.16)

(ii) for 1 ≤ h ≤ n+ 1

∂κh

∂ωn+1
= (λ1 − κh)(λ2 − κh) . . . (λn − κh)
(κ1 − κh)(κ2 − κh) . . . (κh−1 − κh)(κh+1 − κh) . . . (κn+1 − κh) .

(13.17)

Proof From the identity

χH (κ) = (κ − κ1)(κ − κ2) . . . (κ − κn+1),

we have

χ ′
H (κ) =

d

dκ
χH (κ) = (κ−κ2) . . . (κ−κn+1)+(κ−κ1)(κ−κ3) . . . (κn+1−κ)+. . . ,

so that

χ ′
H (κj ) =

∏

h 
=j
(κj − κh).

So, for ω = ω0 := (0, . . . , 0, β), as then κ1 = λ1,

χ ′
H (κ1) = (λ1 − λ2) . . . (λ1 − λn)(λ1 − ωn+1).

From the identity

χH (κj (ω), ω) = 0,

by implicit differentiation,

∂κ1

∂ωj
= − ∂χ

∂ωj
÷

(
∂χ

∂κ

)

κ=κ1

= ∂χ

∂ωj
÷

∏

h>1

(κh − κ1),
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except at the critical points ω defined by

∏

j>1

(κj (ω)− κ1(ω)) = 0,

e.g. where the locus of κ1(ω) crosses κ2(ω). The result of the Proposition now
follows directly from (13.8). ��
Remark For the assumption of distinct roots to hold we must manifestly disregard
the non-generic critical points, which are those points ω where any two of the
functions κj agree in value; of particular importance to us are points ω where κ1(ω)

may cease to be the largest eigenvalue (in modulus), as for instance when it agrees
in value with κ2(ω). The first formula when j = 1 is to be read as

∂κ1

∂ω1
= − δ1(λ2 − κ1) . . . (λn − κ1)

(κ2 − κ1) . . . (κn − κ1)(κn+1 − κ1)
,

and note that, at ω = ω0 := (0, . . . , 0, β), we have, by (13.3), κn+1 = β and for
j = 1, . . . , n :

κj = λj ,

∂κ1

∂ω1
= δ1

(λ1 − β) , (13.18)

and

∂κ1

∂ωj
= 0, for j > 1.

Equation (13.18) implies that the choice of a β value close to λ1 will accelerate the
growth rate κ1 of the leading canonical variable (see Sect. 13.7) Z1 relative to the
first dividend-policy coefficient.

Technical Point In the arguments that follow, it is important to realize that when
the roots κj and κj+1 are complex conjugates, then for real κ1 the following
signature property is satisfied:

sign[(κj − κ1)(κj+1 − κ1)] = +1,

just as when κj and κj+1 were real and both below κ1. (Since the quadratic has no
real roots, it is positive definite here.)

Corollary 1 (Bifurcation Behaviour Near κ1 = κ2) Assume the eigenvalues of
A are real and distinct and that for j = 3, . . . , n, κj is real and satisfies λj+1 <

κj < λj . At any bifurcation point, for small enough positive increments in ω1, the
conjugate complex roots κ1 and κ2 move away from the origin if δ1 > 0, and towards
the origin if δ1 < 0.
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Remark The corollary is thus in keeping with the intuition expressed in connection
with Figs. 13.6 and 13.7 where we alluded to the push away from the origin for the
root κ2 regarded as a function of β = ω3.

Proof Suppose that δ1 = −1. Suppose that κ1 = κ2 occurs at some point ω1 = ω∗
1 .

If now ω1 = ω∗
1 +	ω with 	ω > 0, put κ = %(κ1) and β = *(κ1), so that

κ1 = κ + iε, κ2 = κ − iε,
(κ1 − λj ) = ρj e

iθj , (κ1 − κj+1) = ρ′j eiφj .

We need to be sure which of κ ± iε is to be interpreted as κ1 and κ2 and whether the
display above is correct. In fact, either interpretation is valid, and leads to the same
conclusion; we return to this issue in a moment. Thus, since ρj < ρ′j , for 	ω small
enough we shall have

θj > φj ,

so that

ρj e
iθj

ρ′j eiφj
= ρj

ρ′j
exp[i(θj − φj )],

and hence that

	κ1

	ω
= − 1

2εi

ρ2e
iθ2

ρ′2eiφ2
· . . . · ρne

iθn

ρ′neiφn
= 1

2ε

ρ2

ρ′2
· . . . · ρn

ρ′n
exp[i(π

2
+ ψ)],

where ψ is small and positive. That is, the remaining ratios pull 	κ1 in the same
direction, towards the origin. Note that if we switch the interpretation of κ ± iε

around, then the angles θj , φj change sign, making ψ small and negative. However,
the sign of (κ2 − κ1) also switches.

In conclusion, the conjugate complex roots κ1 and κ2 initially move closer to
the origin if δ1 < 0. See Figs. 13.7 and 13.8 above for an illustration in the case
n = 2, where the third root of χA� is evidently real. Note the vertical asymptote in
the complex ζ -plane for %(ζ ) = 1

2 (λ2 + β) identified by Proposition 4. ��
Remark (Bifurcation Behaviour Elsewhere) Assuming that the first repeated root is
not the dominant root, one may attempt to repeat the argument at the other locations
to observe a tug of war between those ratios below the coincidence location pulling
one way and those above it pulling the other way. (We have noted in Sect. 13.4.5 the
electric force field interpretation.) Who wins this tug of war is determined by the
geometric considerations, and so we discover that there will be a critical point λ,
a watershed, such that to the right of λ the complex roots move towards the origin,
whereas to the left they move away from it.
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Corollary 2 Assume all the eigenvalues λj are real and positive, at some ω κ1 is
the maximal eigenvalue (in modulus) and is real, and further

λ3 < κ1 < λ1.

Then

(i) for j = 1, 2

sign[∂κ1/∂ω1] = sign[δ1]sign[(κ1 − λ2)],
sign[∂κ1/∂ω2] = −sign[δ2],

(ii) for j = 3, . . . , n

sign[∂κ1/∂ωj ] = −sign[δj ]sign[(κ1 − λ2)],

and finally for j = n+ 1

sign[∂κ1/∂ωn+1] = −1.

Proof Counting the signs gives

sign[(κ2 − κ1)(κ3 − κ1) . . . (κn+1 − κ1)] = (−1)n

sign[(λ1 − κ1)(λ3 − κ1) . . . (λn − κ1)] = (−1)n−2.

For j ≥ 3 :

sign [(λ1 − κ1)(λ2 − κ1) . . . (λj−1 − κ1)(λj+1 − κ1) . . . (λn − κ1)]
= (−1)(n−3)sign[(λ2 − κ1)] = (−1)(n−4)sign[(κ1 − λ2)].

��
Corollary 3 Suppose all the eigenvalues of A are real and positive, and ω is small
enough so that

|κn+1| < . . . < |κ2| < κ1,

and κj is real with

λj+1 < κj < λj−1.

Then, for each h with κh real,



13 Subdominant Eigenvalue Location 307

sign[∂κh/∂ωh] = sign[δh],
sign[∂κh/∂ωj ] = sign[δh]sign[(κh − λh)]sign[(κh − λj )], f orh 
= j ≤ n,

sign[∂κh/∂ωn+1] = sign[(κh − λh)],

where h > 1. In particular, provided κ2 < κ1,

sign[∂κ2/∂ω1] = −sign[δ1]sign[(κ2 − λ2)] , sign[∂κ2/∂ω2] = sign[δ2],
sign[∂κ2/∂ωj ] = sign[δj ]sign[(κ2 − λ2)] for 3 ≤ j ≤ n,

sign[∂κ2/∂ωn+1] = sign[(κ2 − λ2)].

Proof Recalling for h ≤ n that

∂κh

∂ωh
= −δh(λ1 − κh)(λ2 − κh) . . . (λh−1 − κh)(λh+1 − κh) . . . (λn − κh)

(κ1 − κh)(κ2 − κh) . . . (κh−1 − κh)(κh+1 − κh) . . . (κn+1 − κh) ,

we compute that

sign[(κ1 − κh)(κ2 − κh) . . . (κh−1 − κh)(κh+1 − κh) . . . (κn+1 − κh)] = (−1)(n+1−h),

sign[(λ1 − κh)(λ2 − κh) . . . (λh−1 − κh)(λh+1 − κh) . . . (λn − κh)] = (−1)(n−h),

and so

= (−1)(n−h)sign[(λh − κh)]
= sign[(λ1 − κh)(λ2 − κh) . . . (λh−1 − κh)(λh − κh)(λh+1 − κh) . . . (λn − κh)]
= sign[(λj − κh)]sign[(λ1 − κh)(λ2 − κh) . . . (λj−1 − κh)(λj+1 − κh) . . . (λn − κh)].

��

13.6 Proof of the Dominance Theorem

We may now put together the analysis of the last sections to deduce our main result
concerning the location of the dominant eigenvalue of H(ω).

Proof of Eigenvalue Dominance Theorem We consider the first part of the theorem
only, as the more general result follows by a restatement of the same argument. By
selecting the sign of δ1 as (−1) and of δh for h > 1 as (+1), we can arrange, given
(13.18), for the eigenvalue function κ1(ω) identified by the condition κ1(ω0) = λ1
to be decreasing in ω in the region

{ω : ω1 > 0, . . . , ωn+1 > 0},
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and so to remain below λ1. We have, however, to ensure that κ1(ω) remains the
maximal root. Recall that ω0 = (0, . . . , 0, β). Since the remaining eigenvalues λj =
κj (ω0) are below λ1 we may, by continuity, ensure that the eigenvalues functions
κ2(ω), . . . , κn+1(ω) of H(ω) also lie strictly below λ1 and that moreover κ2(ω) <

κ1(ω). �
Remark By Corollary 3 it is possible that, following a path in parameter space,
the locus of κ2 intersects that of κ1. Note, however, that if upon intersection at ω∗
we were thereafter to have κ1(ω

′) < κ2(ω
′) for ω′ close to ω∗, then provided

the remaining eigenvalues remain below κ1(ω
∗), the signs of all the derivatives

∂κ1/∂ωj and those of ∂κ2/∂ωj would switch, i.e. both loci would turn around, a
contradiction. Thus, subject to the assumption about the remaining eigenvalues, this
implies that in fact ω∗ is at the boundary of that region in policy-parameter space
where κ1 and κ2 are both real. Moreover, according to (13.16) the graph has infinite
slope at ω∗. We illustrate this point in the following simple example with n = 1,
λ1 = 1 and |β| < 1.

Example For δ1 = −1, let

A� =
[

1 −1
ω1 β

]
.

The characteristic polynomial is κ2 − (1 + β)κ + (β + ω1). Here

dκ1

dω
= 1

(1 + β − 2κ1)
= −b1

(κ2 − κ1)
,

since κ1 + κ2 = 1 + β. The roots are real for

ω1 ≤ 1

4
[(1 + β)2 − 4β] = 1

4
(1 − β)2 = ω∗

1(β),

and we have

κ1 = 1

2

(
1 + β +

√
(1 − β)2 − 4ω1

)

decreasing down to κ1 = 1
2 (1 + β) as ω1 increases, and analogously

κ2 = 1

2

(
1 + β −

√
(1 − β)2 − 4ω1

)

increasing up to κ2 = 1
2 (1 + β). See Fig. 13.8.

We note that as the roots become complex the real part stays constant at (1+β)/2,
i.e. the root locus bifurcates and the conjugate roots move orthogonally to the real
axis; there being no poles in this simple case, there is no ‘push’ on the real part,
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Fig. 13.8 For fixed β the
root locus of κ1(ω1) (in red)
and κ2(ω1) (in green) with
vertical κ-axis

neither away nor towards the origin. In particular, provided the roots are in the unit
circle, they remain in the annulus β = λ2 < |ζ | < 1 = λ1.

13.7 Obtaining Dividend Irrelevance

In this section we prove the results in Proposition 1.
After a change of accounting state variables from zt to, say Zt , the system

becomes

[
Zt+1

dt+1

]
= H

[
Zt

dt

]
,

where

H = H(ω) =

⎡

⎢⎢⎢⎢⎢
⎣

λ1 0 0 b1

0 λ2 b2

. . .

0 0 λn bn

ω1 ω2 ωn+1

⎤

⎥⎥⎥⎥⎥
⎦
,

with ωn+1 = β, the new augmented matrix (with the same eigenvalues as the
original augmented matrix A�) and where λ1, . . . , λn are the eigenvectors of A
assumed presented in decreasing modulus size (with λ1 largest).

Evidently the characteristic polynomial

χH (κ) = χH (κ, ω1, . . . , ωn, ωn+1) = |κI −H |

is the same as χA�(κ). We assume its eigenvalues κ1, . . . , κn+1 have distinct
modulus.
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The force of our implicit assumptions on the dividend significance coefficients
is that they are all non-zero: bj 
= 0 for all j. Otherwise, the eigenvalues of the
augmented matrix would include all the eigenvalues of the reduced matrix. (To see
this expand the characteristic determinant by the j -th row.)

Henceforth we assume the canonical variables have been re-scaled by bj and we
may therefore take for the canonical dividend significance coefficients the symbol
δj with the additional stipulation that

|δj | = 1 for j = 1, .., n.

As a first step we note the consequence for dividend irrelevance of the non-zero
dividend significance coefficients. Writing Z = (. . . , Zj , . . .) and fixing j, there
are coefficients l1, .., ln+1 such that

dt =
∑

h
lhκ

t
h.

Now the equation

Zj (t + 1) = λjZ
j (t)+ δj

∑

h
lhκ

t
h,

with the solution also given by the eigenvalues of the augmented matrix

Zj (t) =
∑

h
Lhκ

t
h,

must satisfy
∑

Lhκ
t
h(κh − λj ) = δj

∑

h
lhκ

t
h

for all t. Hence

Lh = δj lh

κh − λj .

We thus have, assuming R > |κj | for all j, that the dividend series converges, and

P0(R; d) =
∞∑

t=1

R−t dt =
∑

h

1

R − κh lhκh =
1

δj

∑

h

κh − λj
R − κh Lhκh.

Consequently, if R = λj is permitted, then with subscript indicating time

P0(R; d) = − 1

δj

∑

h

Lhκh = −Z
j

1

δ1
= −λjZ

j

0 + δj d0

δ1
= −λjZ

j

0

δ1
+ d0.

This indeed depends only on the initial data. See Ashton [1] for a discussion of
this formula. The earliest form of this equation is due to Ohlson in 1989, though
published later in [22].



13 Subdominant Eigenvalue Location 311

We recall that the basis of this calculation is the identity

P0(R; d) =
∞∑

t=1

R−t dt =
∞∑

t=1

R−t ∑

h

lhκ
t
h =

∑

h

lh

∞∑

t=1

R−t κth

=
∑

h

lh
κh/R

1 − κh/R =
∑

h

1

R − κh lhκh.

We will thus obtain dividend irrelevance at R = λj provided all the eigenvalues
κj are in modulus less than R.

13.8 Derivation of Equivalences

We begin by expanding by the bottom row

|H − κI | =

∣∣
∣∣∣∣∣∣
∣∣∣

λ1 − κ 0 0 δ1

0 λ2 − κ δ2

. . .

0 0 λn − κ δn

ω1 ω2 λn+1 − κ

∣∣
∣∣∣∣∣∣
∣∣∣
n+1

= 0

to obtain

(−1)nω1D1(κ)− . . .− ωnDn(κ)+
n+1∏

j=1

(λj − κ) = 0,

or

(−1)nω1D1(κ)+ (−1)n−1ω2D2(κ) . . .− ωnDn(κ) = (−1)(−1)n+1
n+1∏

j=1

(κ − λj ),

where

D1(κ) =

∣
∣∣∣∣∣∣
∣

0 0 0 δ1

λ2 − κ 0 δ2

. . .

0 λn − κ δn

∣
∣∣∣∣∣∣
∣
n

= (−1)n−1δ1

n∏

j=2

(λj − κ) = δ1

n∏

j=2

(κ − λj ).
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Similarly,

D2(κ) =

∣∣∣
∣∣∣∣∣∣
∣∣

λ1 − κ 0 0 δ1

0 0 0 δ2

λ3 − κ

0 0 λn − κ δn

∣∣∣
∣∣∣∣∣∣
∣∣
n

= (−1)n−2δ2

n∏

j 
=2

(λj − κ) = −δ2

n∏

j 
=2

(κ − λj ).

This yields the equation

ω1δ1

n∏

j=2

(κ − λj )+ ω2δ2

n∏

j 
=2

(κ − λj )+ . . .+ ωnδn
n∏

j 
=n
(κ − λj ) =

n+1∏

j=1

(κ − λj ).

Dividing by
n∏

h 
=j
(κ − λh),

(κ − λj )(κ − β) = ωjδj +
∑

h 
=j
ωhδh

κ − λj
κ − λh = ωjδj +

∑

h 
=j
ωhδh

(
1 − λj − λh

κ − λh
)
,

or

ω1δ1 + ω2δ2 + . . . = (κ − λj )(κ − β)+
n∑

h 
=j

ωhδh(λj − λh)
κ − λh ,

as required.

Dividing by
n∏

j=1
(κ − λj ), we obtain

κ − β = ω1δ1

κ − λ1
+ ω2δ2

κ − λ2
+ . . .+ ωnδn

κ − λn .

13.9 Invertible Parametrization and Zero Placement

This section is devoted to a proof of Proposition 3. Let us write

χA(κ) = |κI − A| =
n∑

s=0

(−1)sasκ
n−s =

n∏

j=1

(κ − λj ),
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so that

as =
∑

j1<...<js

λj1 . . . λjs

denotes the elementary symmetric function summing the zeros of χA(κ) taken s at
a time. Thus

a0 = 1, a1 = λ1 + . . .+ λn, . . . an = λ1 . . . λn.

Hence

n+1∏

j=1

(κ − λj ) = (κ − β)
[

n∑

s=0

(−1)sasκ
n−s

]

= κn+1 − (a1 + βa0)κ
n + . . .+ (−1)s[as+1 + βas]κn−s

+ . . .+ (−1)n+1βan.

As a first step we compute that

λ2 + . . .+ λn = a1 − λ1,

and that

∑

1<u<v

λuλv =
∑

u<v

λuλv − λ1

∑

1<v

λv =
∑

u<v

λuλv − λ1(
∑

v

λv − λ1)

= a1 − λ1(a1 − λ) = a2 − a1λ1 + λ2
1.

Similarly,

∑

1<u<v<w

λuλvλw =
∑

u<v<w

λuλvλw − λ1

∑

1<v<w

λvλw

= a3 − λ1[a2 − a1λ1 + λ2
1]

= a3 − a2λ1 + a1λ
2
1 − λ3

1.

The pattern is now clear, and we shall show by induction that

∑

1<j1<...<js

λj1 . . . λjs = as − as−1λ1 + λ2
1as−2 + . . .+ (−1)sa0λ

s
1.
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Indeed,

∑

j1<...<js

λj1 . . . λjs =
∑

j1<...<js

λj1 . . . λjs − λ1

∑

1<j2<...<js

λj2 . . . λjs

= as − λ1(as−1 + . . .+ (−1)s−1λs−1
1 )

= as − as−1λ1 + λ2
1as−2 + . . .+ (−1)sa0λ

s
1.

Note that

an − an−1λ1 + λ2
1an−2 + . . .+ (−1)na0λ

n
1 = 0,

so

λ2 . . . λn = λ−1
1 an = an−1 − λ1an−2 + . . .+ (−1)n−1λn−1

1 .

Our next step is to observe that the coefficients in the polynomial on the right-hand
side of identity (13.8) may be expanded as follows:

D(κ) = ω1δ1

n∏

j 
=1

(κ − λj )+ ω2δ2

n∏

j 
=2

(κ − λj )+ . . .+ ωnδn
n∏

j 
=n
(κ − λj )

= (ω1δ1 + ω2δ2 + . . .+ ωnδn)κn−1 − (ω1δ1[λ2 + . . .] + . . .)κn−2

+(ω1δ1[λ2λ3 + . . .] + . . .)κn−3 +

. . .+ (−1)s(ω1δ1ās(1)+ . . .)κn−s + . . .+ (−1)n−1[
n∑

j=1

ωjδj

n∏

h 
=j
λh],

where

ās(h) =
∑

j1<...<js
jk 
=h

λj1 . . . λjs

(i.e. the summation refers to the omission of h from any of the components j1 . . . js).
Note also that

n∏

h 
=j
λh = an

λj
.
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We now consider for constants ps the identity

n+1∏

j=1

(κ − λj )− {ω1δ1

n∏

j 
=1

(κ − λj )+ ω2δ2

n∏

j 
=2

(κ − λj )+ . . .+ ωnδn
n∏

j 
=n
(κ − λj )}

= κn+1 − p0κ
n + p2κ

n−1 + . . .+ pn.

Comparing sides, we obtain

p0 = (a1 + βa0),

p1 = a2 + βa1 − (ω1δ1 + ω2δ2 + . . .+ ωnδn),
p2 = a3 + βa2 − (ω1δ1λ1 + . . .) ,

. . .

pn = an+1 + βan −
(
ω1δ1λ

−1
1 + . . .

)
.

Now given any p0, we select β, so that

β = p0 − a1.

For the remaining equations, we have

p1 − a2 − βa1 = ω1δ1 + ω2δ2 + . . .+ ωnδn,
p2 − a3 − βa2 = ω1δ1(a1 − λ1)+ . . . ,
p3 − a4 − βa3 = ω1δ1(a2 − s1λ1 + λ2

1)+ . . . ,
. . .

pn − an+1 − βan = ω1δ1(an−1 − an−2λ1 + (−1)n−1a0λ
n−1
1 )+ . . . ,

where an+1 = 0, i.e.

N

⎡

⎢⎢
⎣

δ1ω1

δ2ω2

. . .

δnωn

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

p1 − a2 − βa1

p2 − a3 − βa2

. . .

pn − an+1 − βan

⎤

⎥⎥
⎦ .
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Here the coefficient matrix N is given as follows:

N =

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

1 1

a1 − λ1 a1 − λn
a2 − a1λ1 + λ2

1 . . . a2 − a1λn + λ2
n

. . . . . .

an−1 − λ1an−2 + . . .+ (−1)n−1λn−1
1 an−1 − λnan−2 + . . .+ (−1)n−1λn−1

n

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

.

Its determinant is equal, up to a possible sign change, to the van der Monde
determinant V (λ1, . . . , λn). Hence N is non-singular and the equation may be
solved for any given vector (p1, . . . , pn). To see this, note that N may be reduced
to the alternant matrix A(0, . . . , n− 1) in the variables (−λ1), . . . (−λn):

∣∣∣∣∣
∣∣∣∣∣∣

1 1 . . . 1
a1 − λ1 a1 − λ2 . . . a1 − λn

a2 − a1λ1 + λ2
1

. . .∑n−1
i=0 (−1)ian−1−i λi1

∑n−1
i=0 (−1)ian−1−i λin

∣∣∣∣∣
∣∣∣∣∣∣

=

∣
∣∣∣∣∣
∣∣∣∣∣

1 1 . . . 1
−λ1 −λ2 . . . −λn
λ2

1 λ2
n

. . .

(−λ1)
n−1 (−λn)n−1

∣
∣∣∣∣∣
∣∣∣∣∣

= V (−λ1, . . . ,−λn)
(taking a1 times the first row, a2 times the second row and so on).

It is now easy to find the inverse transformation by applying the elementary row
operations just used to the original matrix equation. This leads to the following
result. Putting gj = pj − aj+1 − βaj , the original equations

N

⎡

⎢⎢
⎣

δ1ω1

δ2ω2

. . .

δnωn

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

g1

g2

. . .

gn

⎤

⎥⎥
⎦

now transform to

V

⎡

⎢
⎢
⎣

δ1ω1

δ2ω2

. . .

δnωn

⎤

⎥
⎥
⎦ =

⎡

⎢⎢
⎢⎢⎢
⎣

h1

h2

hn

⎤

⎥⎥
⎥⎥⎥
⎦
,
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where

h1 = g1,

h2 = g2 − a1h1,

h3 = g3 − a2h1 + a1h2,

. . .

hn = gn − an−1h1 + an−2h2 − . . .± a1hn−1.

Note that with the sign adjustment h′n = (−1)nhn the equations specify gj as a
convolution (taking a0 := 1). Now we have

⎡

⎢⎢
⎣

δ1ω1

δ2ω2

. . .

δnωn

⎤

⎥⎥
⎦ = V −1

⎡

⎢
⎢⎢⎢⎢
⎣

h1

h2

hn

⎤

⎥
⎥⎥⎥⎥
⎦
,

where the inverse V −1 is given by (see Klinger [14]) the matrix with jk entry

(−1)j+k
ān−j (k)

k−1∏

l=1
(λk − λl)

n∏

h=k+1
(λh − λk)

;

here ās(j) is the elementary symmetric function as above (sum over the s-fold
product omitting the variable λj ).

13.10 Asymptotics of the Unbounded Roots

Proof of Proposition 4 Assume that κ 
= λj for j = 1, . . . , n. We rewrite (13.9) as

ω1δ1 + ω2δ2 + . . .+ ωnδn = (κ − λj )(κ − β)+
n∑

k 
=j

ωkδk(λj − λk)
κ

+
n∑

k 
=j
ωkδk(λj − λk)

[
1

κ − λk − 1

κ

]
,
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so that

ω1δ1 + ω2δ2 + . . .+ ωnδn = (κ − λj )(κ − β)+ 1

κ

⎡

⎣
n∑

k 
=j
ωkδk(λj − λk)

⎤

⎦

+
n∑

k 
=j
ωkδk(λj − λk)

[
λκ

κ(κ − λk)
]
.

Iterating, we obtain

ω1δ1 + ω2δ2 + . . .+ ωnδn = (κ − λj )(κ − β) (13.19)

+
N∑

s=1

1

κs

⎡

⎣
n∑

k 
=j
ωkδkλ

s
κ(λj − λk)

⎤

⎦

+
n∑

k 
=j
ωkδkλ

N−1
κ (λj − λk) 1

κN(κ − λk) .

and hence the assertion of the Proposition follows provided κ > |λk|. The
alternative direct derivation by expanding κ−1(1 − λk/κ)

−1as a geometric series
is less informative about the convergence of the series.

We may in principle use the identity (13.19) (valid for all large enough κ)
recursively to obtain an asymptotic expansion (in ωj ) for the unbounded roots.

To obtain the first term of the expansion, let |κ| → ∞ and consider the quadratic
approximation

ω1δ1 + ω2δ2 + . . .+ ωnδn ∼ κ2 − (λj + β)κ + λjβ

= [κ − 1

2
(λj + β)]2 − 1

4
(λj − β)2,

so that ωjδj is large and positive and

κ = 1

2
(λj + β)±

√
1

4
(λj − β)2 +

∑

k

ωkδk.

Hence for δj = −1 we have the first term of the expansion to be

κ = 1

2
(λj + β)± i

√|ωj |.

Now write

κ = α+i√|ωj |, α = κ̂j+ε, κ̂j = 1

2
(λj+β), A =

n∑

k 
=j
ωkδk(λj−λk).
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With this notation, taking only one term in (13.19) we have with ωj large and
negative that

−ωj +
n∑

k 
=j
ωkδk = [κ − κ̂j ]2 − 1

4
(λj − β)2 + A

κ

= [i√ωj + ε]2 − 1

4
(λj − β)2 + A

α + i√ωj

= −ωj + 2iε
√
ωj + ε2 − 1

4
(λj − β)2 − A

α − i√ωj
ωj − α2 ,

so to first order in ε

n∑

k 
=j
ωkδk = 2iε

√
ωj − 1

4
(λj − β)2 − A

κ̂j + ε − i√ωj
ωj − κ̂2

j

.

Writing ε = u+ iv and taking real and imaginary parts gives the two equations

−A
ωj − κ̂2

j

u− 2v
√
ωj = γj =

n∑

k 
=j
ωkδk + 1

4
(λj − β)2 + A κ̂j

ωj − κ̂2
j

,

2u
√
ωj − A

ωj − κ̂2
j

v = − A
√
ωj

ωj − κ̂2
j

.

Note that for |ωj | → ∞

γj →
n∑

k 
=j
ωkδk + 1

4
(λj − β)2.

Now the determinant of the two equations in u and v above is positive and equal
to

	 = A2

(ωj − κ̂2
j )

2
+ 4ωj .

Solving for u and v, we have

u	 = − Aγj

ωj − κ̂2
j

− 2Aωj
ωj − κ̂2

j

= −2A− 2κ̂2
j + γj

ωj − κ̂2
j

A,

v	 = −A√ωj
(ωj − κ̂2

j )
2
− 2γj

√
ωj ,
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so that

u = − A

2ωj
+O(ω−2

j ), v = − γj

4
√
ωj

+O(ω−5/2).

The result for u assumes that A 
= 0 and further that

2κ̂2
j + γj 
= 0,

i.e.

n∑

k 
=j
ωkδk + 3

4
(λj + β)2 
= 0.

13.11 Strip-and-Two-Circles Theorem

We prove Proposition 5. For part (i) we argue as follows. Suppose, for all j , that
ωjδj ≥ 0 and β ≤ λn. Suppose z satisfies

z− β = ω1δ1

z− λ1
+ ω2δ2

z− λ2
+ . . .+ ωnδn

z− λn .

If z is strictly to the right of λ1, then we may also assume that z has positive
imaginary part (otherwise switch to the conjugate root z̄). The argument of z − λj
is thus positive for each j, and that of 1/(z − λj ) negative, i.e. has negative
imaginary part. The right-hand side therefore sums to a complex number with
negative imaginary part. However, z− β has positive imaginary part.

If z is to the left of β, then we may suppose it has negative imaginary part. The
argument of λj − z is for each j thus positive, as also for β − z. Now apply the
previous reasoning to the identity

β − z = ω1δ1

λ1 − z +
ω2δ2

λ2 − z + . . .+
ωnδn

λn − z .

For part (ii), let εj be arbitrary real for j = 1, . . . n. We will apply Marden’s
‘Mean-Value Theorem for polynomials’ (Marden [16, §2.8 p.23]) to the polynomi-
als hj for j = 1, . . . , n and the polynomial f (z) as defined by

f (z) =
n+1∏

h=1

(z− λh), hj (z) = εj

n∏

h 
=j
(z− λh).
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We must, however, first find for each j the location of the roots of the equation
f (z) = hj (z). The roots are of course z = λk for k 
= j taken together with the two
real roots of

(z− β)(z− λj ) = εj ,

which are to the left of β and the right of λj . The exact and approximate formulas
are

u±j =
(β + λj )±

√
(λj − β)2 + 4εj

2
∼ β − εj

4(λj − β) , λj + εj

4(λj − β) ,

and require that

−1

4
(λj − β)2 ≤ εj .

Thus the roots of all the equations lie in the interval K = (u−1 , u
+
1 ). By Marden’s

Theorem in the special case of real positive scalars mj summing to unity, the roots
of

f (z) =
∑

mjhj (z)

lie in the star-shaped region S(K, π/(n + 1)) (cf. Proposition 5). Thus if we take
εj = ε small and mjε = δjωj so that

δ1ω1 + . . .+ δnωn = ε, with δ1ω1, . . . , δnωn ≥ 0,

then indeed
∑
mj = 1 and all the roots of (13.7) lie in the said star-shaped region.

In fact, one may take ε1 = ε small and m1ε1 = δ1ω1, and for j > 1, εj = μ :=
min{λj − λj+1 : for j > 1} and mjμ = δjωj > 0, leading to the restriction

1 = m1 + . . .+mn = δ1ω1

ε
+ 1

μ
(δ2ω2 + . . .),

i.e.

δ1ω1 + ε

μ
(δ2ω2 + . . .+ δnωn) = ε (δ1ω1, . . . , δnωn ≥ 0).
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13.12 The Third-Derivative Test

The result in Sect. 13.3.3 is a consequence of the following by specializing g(κ) :=
f (κ∗ + κ)− f (κ∗) when f ′(κ∗) = 0.

Proposition 9 For g with g(0) = 0, g′(0) = 0, g′′(0) > 0, g′′′(0) 
= 0, the solution
κ = κ(ω) over the complex domain of the equation

g(κ) = −ω2

with ω > 0 small and subject to κ(0) = 0, satisfies

%(κ(ω)) initially increasing if g′′′(0) > 0, and

initially decreasing if g′′′(0) < 0.

The imaginary part is initially increasing and satisfies |*(κ(ω))| > ω.

Proof Below we work to order o(ω). Without loss of generality we assume that
g′′(0) = +2. (Otherwise rescale g and ω2 by 2/g′′(0).) Set G := g′′′(0)/6 
= 0;
then, by Taylor’s Theorem, the first approximation to the equation is

g(κ) = κ2 + o(κ2) = −ω2,

with solution κ = ±iω. So we introduce correction terms by putting

κ = α + i(ω + β)

and solve a second approximation

g(κ) = κ2 +Gκ3 + o(κ3) = −ω2.

Substitution for κ gives after cancellation of the term −ω2

0 = [α2 − (2ωβ + β2)+ 2iα(ω + β)] +G[α3 + 3iα2(ω + β) (13.20)

−3α(ω + β)2 − i(ω + β)3].

Equate real and imaginary parts to 0; cancelling the second by (ω + β) (non-zero,
w.l.o.g.) gives

3Gα2 + 2α −G(ω + β)2 = 0.
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The roots corresponding to the imaginary part, for ω and β sufficiently small, are

−1 ±√
1 + 3G2(ω + β)2

3G
= 1

3G
{1

2
3G2(ω + β)2 − 1

8
9G4(ω + β)4 + ..}

= 1

2
G(ω + β)2 + . . . ,

So we may neglect α2 and β2 in what follows, which leads to the approximation

α = Gωβ. ��
Claim For ω > 0 small enough, β > 0. In particular, α is the same sign as G. (So,
also, conversely, if α is the same sign as G, then β > 0.)

Proof The equation for the real part of (13.20), ignoring (2ωβ+β2) and cancelling
by α 
= 0, gives

Gα2 + α − 3G(ω + β)2 = 0.

Its two roots α± have negative product −3(ω + β)2, and

α± = − 1

2G

[
1 ±

√
1 + 12G2(ω + β)2

]

= − 1

2G

[
1 ± {1 + 6G2(ω + β)2}

]
+ o(ω)

= −G−1, 3G(ω + β)2 to order o(ω).

The root near −1/G is ruled out by the continuity of the root locus, which tends
to 0 as ω → 0. For G > 0 the positive root is near 3G(ω + β)2 ∼ 6Gωβ, and so
β > 0, as ω > 0. For G < 0, the negative root is 3G(ω + β)2 ∼ 6Gωβ, and again
β > 0, as ω > 0. ��
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Chapter 14
A Fixed Point Theorem in Uniformizable
Spaces

Lahbib Oubbi

Abstract We provide a fixed point theorem in uniformizable spaces, extending
former results of G. L. Forti, and of J. Brzdęk.

Keywords Fixed point theorem · Uniformizable space
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14.1 Introduction

In [7], Forti noticed that most of the results concerning the Ulam-Hyers stability
of functional equations are shown using, roughly speaking, the same argument.
The proofs consist of modifying the given equation, generally depending on several
variables, in order to get an operator T acting on functions from a domain X into
a metric space (Y, d) whose fixed point, if any, is a solution of the given functional
equation, approximating the given function f . He then gave a fixed point theorem
showing that, under appropriate conditions, the operator T admits a fixed point so
that the equation is stable. Forti’s theorem has been applied by Brzdęk in an easier
fashion to show the stability of the Cauchy equation, the Jensen equation, and the
quadratic one, see [2]. A variant of the same theorem from [4] (see also [3]) has been
used by Zhang [8] and later by Bahyrycz and Olko [1] to show the (hyper-) stability
of a very general linear equation. For more information on connections between the
fixed point theory and Ulam stability we refer to [5].

In this note, we provide a theorem similar to Forti’s one, but in a more general
setting; for a survey of related results see [6].
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14.2 Preliminaries

A pseudo-metric on a non-empty set Z is any mapping d : Z×Z → [0,+∞[ such
that:

(P-1) ∀x ∈ Z, d(x, x) = 0,
(P-2) ∀(x, y) ∈ Z2, d(x, y) = d(y, x),
(P-3) ∀(x, y, z) ∈ Z3, d(x, y) ≤ d(x, z)+ d(z, y).

A uniformizable space is any non-empty set Z endowed with a family (di)i∈I of
semi-metrics such that di(x, y) = 0 for every i ∈ I if and only if x = y. Such a
uniformizable space will be denoted by (Z, (di)i∈I ).

A sequence (xn)n ⊂ Z is said to be Cauchy if, for every i ∈ I , di(xn, xm)
converges to zero as n,m tend to +∞. It is said to converge to some x ∈ Z, if, for
all i ∈ I , di(xn, x) tends to zero as n tends to +∞. If every Cauchy sequence in Z
converges to some point of Z, we say that Z is sequentially complete.

If Tn : S → S is a self mapping of some non-empty set S, n ∈ N, we will
denote by

m◦
n=k Tn

the composition mapping Tk ◦ Tk+1 ◦ · · · ◦ Tm, with k ≤ m.

14.3 The Results

The following theorem generalizes a former result of the author, presented in the
international conference on functional equations and inequalities (ICFEI 2017) held
in Będlewo (Poland) in July 2017.

Theorem 14.1 Let S be a non-empty set and (Z, (di)i∈I ) a sequentially complete
uniformizable space. Given mappings f : S → Z, G : S → S, H : Z → Z and,
for every i ∈ I , δi : S → R

+, and βi : R+ → R
+. Assume that, for every i ∈ I , βi

is non-decreasing and the conditions (14.1), (14.2) and (14.3) below hold :

di(H ◦ f ◦G(s), f (s)) ≤ βi ◦ δi(s), ∀s ∈ S, (14.1)

there exists a sequence (ij )j∈N0 ⊂ I such that i0 = i and

dij (H(x),H(y)) ≤ βij (dij+1(x, y)), x, y ∈ Z, j ≥ 0, (14.2)

∞∑

n=1

(
n◦
j=0

βij

)
◦ δin ◦Gn(s) < +∞, ∀s ∈ S. (14.3)



14 A Fixed Point Theorem in Uniformizable Spaces 327

Then there exists a mapping F : S → Z such that:

F(s) = lim
n→+∞H

n ◦ f ◦Gn(s), (14.4)

∀i ∈ I, di(Hn ◦f ◦Gn(s), F (s)) ≤
+∞∑

k=n

(
k◦
j=0

βij

)
◦δik ◦Gk(s), s ∈ S. (14.5)

In particular

di(F (s), f (s)) ≤
∞∑

n=0

(
n◦
j=0

βij

)
◦ δin ◦Gn(s), ∀s ∈ S. (14.6)

If in additionH is continuous, then F is a fixed point of the operator� : ZS → ZS ,
g �→ H ◦ g ◦ G. Finally, if for every i ∈ I , βi is subadditive, then F is the unique
fixed point of � which satisfies (14.5).

Proof If we set Qn := Hn ◦ f ◦Gn, then using (14.2), we get for all s ∈ S and all
i ∈ I :

di(Qn+1(s),Qn(s)) ≤ βi0
(
di1 (Qn(G(s)),Qn−1(G(s)))

)
.

Using (14.2) and the fact that βi is non-decreasing, we obtain

di(Qn+1(s),Qn(s)) ≤ βi0 ◦ βi1
(
di2

(
Qn−1(G

2(s)),Qn−2(G
2(s))

))
.

Then, step by step, we get:

di(Qn+1(s),Qn(s)) ≤
(
n−1◦
k=0

βik

)
(din

(
Q1(G

n(s)), f (Gn(s))
)
.

Using (14.1), we come to

di(Qn+1(s),Qn(s)) ≤
(

n◦
k=0

βik

)
◦ δin ◦Gn(s).

Therefore, for n < m and i ∈ I , one has:

di(Qn(s),Qm(s)) ≤
m−1∑

k=n
di(Qk+1(s),Qk(s))

≤
m−1∑

k=n

(
k◦
j=0

βij

)
◦ δik ◦Gk(s). (14.7)
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Since, by assumption (14.3), the series

∞∑

k=0

(
k◦
j=0

βij

)
◦ δik ◦Gk(s)

converges for every s ∈ S, the sequence (Qn(s))n is Cauchy in Z. The latter being
sequentially complete, (Qn(s))n converges to some

F(s) := lim
n→∞H

n ◦ f ◦Gn(s) ∈ Z.

If in (14.7) we let m tend to infinity, the so-defined function F satisfies (14.5) as
required. Taking n = 0, we get (14.6).

Now, if H is continuous, for every s ∈ S, one has:

(H ◦ F ◦G)(s) = H {F [G(s)]}
= H {lim

n
(Hn ◦ f ◦Gn)(G(s))}

H being continuous = lim
n
Hn+1 ◦ f ◦Gn+1(s)

= F(s).

Therefore F is a fixed point of �. For the unicity, assume that R : S → X satisfies
H ◦ R ◦G = R together with (14.5). Then for every i ∈ I , we have:

di(R(s), F (s)) ≤ di(R(s),Qn(s))+ di(Qn(s), F (s)).

Due to (14.5)), we get

di(R(s), F (s)) ≤ 2
+∞∑

k=n

(
k◦
j=0

βij

)
◦ δik ◦Gk(s).

Since

+∞∑

k=n

(
k◦
j=0

βij

)
◦ δik ◦Gk(s)

tends to 0 as n tends to infinity, di(R(s), F (s)) = 0. As i was arbitrary, R(s) =
F(s).

Denote by υX (resp. βX) the realcompactification (Stone-Čech compactifica-
tion) of a Hausdorff Tychonoff space X. This is the smallest realcompact (resp.
compact) space containing X as a dense topological subspace such that every
continuous function f from X into R (resp. into a compact space) extends
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continuously to υX (resp. βX). Denote by f υ (resp. f β ) such an extension. By
Cb(X) we will mean the algebra of bounded continuous functions from X into
K ∈ {R,C}. Notice that X is realcompact (resp. compact) if and only if X = υX

(resp. X = βX).

Corollary 14.1 Assume that (X, τ) is a Tychonoff space, that f : S → X, G :
S → S, and H : X → X are given mappings, and that, for every g ∈ C(X), there
exist mappings δg : S → R

+ and βg : R+ → R
+ so that βg is non-decreasing and

|g(H ◦ f ◦G(s))− g(f (s))| ≤ βg ◦ δg(s), ∀s ∈ S. (14.8)

Assume that, for every g ∈ C(X), there is a sequence (gn)n∈N0 ⊂ C(X) such that
g0 = g and

|gn(H(x))−gn(H(y))| ≤ βg(|gn+1(x)−gn+1(y)|), ∀x, y ∈ X, n ∈ N0 (14.9)

∞∑

n=0

(
n◦
k=0

βgk

)
◦ δgn ◦Gn(s) < +∞, ∀s ∈ S. (14.10)

Then there exists F : S → υX s.t., for every g ∈ C(X),

|gυ(F (s))− g(f (s))| ≤
∞∑

n=0

(
n◦
k=0

βgk

)
◦ δgn ◦Gn(s), ∀s ∈ S. (14.11)

If in addition H is continuous and, for every g ∈ C(X), βg is subadditive, then F is
the unique mapping from S into υX which satisfies both Hυ ◦ F ◦G = F and, for
every g ∈ C(X) and every n ∈ N,

|g(Hn◦f ◦Gn(s))−gυ(F (s))| ≤
∞∑

k=n

(
n◦
k=0

βgk

)
◦δgn ◦Gn(s), ∀s ∈ S. (14.12)

Similarly,

Corollary 14.2 Assume that (X, τ) is a Tychonoff space, that f : S → X, G :
S → S, and H : X → X are given mappings, and that, for every g ∈ Cb(X), there
exist mappings δg : S → R

+ and βg : R+ → R
+ so that βg is non-decreasing and

|g(H ◦ f ◦G(s))− g(f (s))| ≤ βg ◦ δg(s), ∀s ∈ S. (14.13)

Assume that, for every g ∈ Cb(X), there is a sequence (gn)n∈N0 ⊂ Cb(X) such that
g0 = g and

|gn(H(x))− gn(H(y))| ≤ βg(|gn+1(x)− gn+1(y)|), ∀x, y ∈ X, n ∈ N0
(14.14)
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∞∑

n=0

(
n◦
k=0

βgk

)
◦ δgn ◦Gn(s) < +∞, ∀s ∈ S. (14.15)

Then there exists F : S → βX such that, for every g ∈ Cb(X),

|gβ(F (s))− g(f (s))| ≤
∞∑

n=0

(
n◦
k=0

βgk

)
◦ δgn ◦Gn(s), ∀s ∈ S. (14.16)

If in addition H is continuous and, for every g ∈ Cb(X), βg is subadditive, then F
is the unique mapping from S into βX which satisfies both Hβ ◦ F ◦ G = F and,
for every g ∈ Cb(X) and every n ∈ N,

|g(Hn◦f ◦Gn(s))−gβ(F (s))| ≤
∞∑

k=n

(
n◦
k=0

βgk

)
◦δgn ◦Gn(s), ∀s ∈ S. (14.17)

Notice that if we take in Theorem 14.1, in Corollary 14.1 and in Corollary 14.2,
dik = di for every i ∈ I , we get the main fixed point theorems previously obtained
by the author and presented in the International Conference on Functional Equations
and Inequalities in Będlewo, July 2017.

Remark 14.1 The subadditivity of βi in Theorem 14.1 and of βg in Corollary 14.1
and Corollary 14.2 can be released. The proofs remain unchanged.
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Chapter 15
Symmetry of Birkhoff-James
Orthogonality of Bounded Linear
Operators

Kallol Paul, Debmalya Sain, and Puja Ghosh

Abstract We survey the recent developments in the study of symmetry of Birkhoff-
James orthogonality of bounded linear operators between Banach spaces and Hilbert
spaces. We also present some new results, along with the corresponding proofs, that
have not been published before. In the last section we suggest some future directions
for research, in particular connected to the notion of Ulam stability.
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Bounded linear operators · Ulam stability
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15.1 Introduction

The purpose of this short chapter is to survey the recent developments in the study
of symmetry of Birkhoff-James orthogonality of bounded linear operators between
Banach spaces and Hilbert spaces. We also present some new results, along with the
corresponding proofs, that have not been published before. Before establishing the
relevant notations and terminologies to be used throughout this article, we would
like to draw the attention of the reader to the importance of different notions of
orthogonality in studying the geometry of Banach spaces. We believe that our
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comments in the next paragraph would serve the purpose of motivating the reader
towards further exploration of orthogonality and related topics in order to gain a
better understanding of the difficulties arising in the study of geometry of Banach
spaces, as opposed to the Hilbert spaces.

The usual notion of orthogonality in an inner product space has no unique
standard counterpart in case of Banach spaces. However, there are several notions
of orthogonality in a Banach space, each of which generalizes some particular
aspect of the usual inner product orthogonality. It is perhaps already clear from
our previous comments that the various orthogonality types are not equivalent in
general. Indeed, the study of interconnections between the different orthogonality
types in the general setting of Banach spaces is an active and fruitful area of research
in the study of geometry of Banach spaces. We refer the reader to [1, 3, 18, 20]
for a detailed study of different orthogonality types and their interrelations in the
setting of Banach spaces. We would like to emphasize that the differences between
the orthogonality types in Banach spaces highlight the ideal behaviour of inner
product orthogonality. Furthermore, these differences essentially result in a more
complicated Banach space geometry in contrast to its Hilbert space counterpart. In
essence, in order to describe the geometry of a Banach space, it is often helpful to
consider the various notions of orthogonality types and their respective properties.

Letters X,Y denote Banach spaces. We reserve the symbol H for a Hilbert
space. Let θ denote the zero element of the concerned space. Throughout this
article, we assume the underlying field to be R, i.e., we consider only real Banach
spaces and real Hilbert spaces. Let BX = {x ∈ X : ‖x‖ ≤ 1} and SX =
{x ∈ X : ‖x‖ = 1} be the unit ball and the unit sphere of the Banach space
X respectively. Let B(X,Y),K(X,Y) respectively denote the Banach space of all
bounded linear operators and compact linear operators from X to Y, endowed with
the usual operator norm. We write B(X,Y) = B(X) and K(X,Y) = K(X) if
X = Y. It is immediate that in case of finite-dimensional spaces X and Y, we have,
B(X,Y) = K(X,Y). Let X∗ denote the dual space of X. Although we would be
considering only one orthogonality type, namely Birkhoff-James orthogonality, let
us also mention the notion of isosceles orthogonality to put things in perspective.

Definition 15.1 ([2, 16]) For any two elements x, y ∈ X, x is said to be orthogonal
to y in the sense of Birkhoff-James, written as x ⊥B y, if ‖x‖ ≤ ‖x + λy‖ ∀λ ∈ R.

Definition 15.2 ([3]) For any two elements x, y ∈ X, x is said to be isosceles
orthogonal to y, written as x ⊥I y, if ‖x + y‖ = ‖x − y‖.

A quick glance at the definitions of the above mentioned orthogonality types
reveals the following properties: Birkhoff-James orthogonality is homogeneous, i.e,
x ⊥B y implies αx ⊥B βy for every x, y ∈ X and for every scalars α, β ∈ R.

However, Birkhoff-James orthogonality is not symmetric, i.e., x ⊥B y does not
necessarily imply that y ⊥B x. On the other hand, isosceles orthogonality is
symmetric but not homogeneous. This observation leads us to the question of
symmetry of Birkhoff-James orthogonality. This question has been explored by
many mathematicians, including Radon [25], James [15] and Day [10]. Indeed, for
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spaces having dimension at least 3, we have the following useful characterization
of inner product spaces:

Theorem 15.1 ([15, Th.1]) Let X be a Banach space of dimension at least 3. Then
X is a Hilbert space (i.e., the norm on X comes from an inner product) if and only
if Birkhoff-James orthogonality is symmetric in X.

In view of the above result, it is perhaps natural to ask the following local
question:

Question In the setting of a Banach space, what can be said about the symmetry of
Birkhoff-James orthogonality at a particular point of the space.

In order to address the above question, the following two notions were introduced
in [28]:

Definition 15.3 An element x ∈ X is said to be left symmetric if x⊥By ⇒ y⊥Bx
for all y ∈ X.

Definition 15.4 An element x ∈ X is said to be right symmetric if y⊥Bx ⇒ x⊥By
for all y ∈ X.

It is interesting to investigate and characterize the left symmetric and the right
symmetric points in a Banach space. However, in this article our focus is on
exploring the left symmetric and the right symmetric points in the space of all
bounded linear operators between Banach spaces and Hilbert spaces, endowed
with the usual operator norm. It is easy to see that the concept of Birkhoff-
James orthogonality remains meaningful in the space of bounded (compact) linear
operators between Banach spaces, with the usual operator norm. Indeed, for any two
elements T ,A ∈ B(X), T is orthogonal toA in the sense of Birkhoff-James, written
as T ⊥B A, if

‖T ‖ ≤ ‖T + λA‖ ∀λ ∈ R.

Since B(X,Y) is not an inner product space, the question of symmetry of
Birkhoff-James orthogonality in B(X,Y) is a valid one. In case of a general Banach
space X, it is easy to see that for T ,A ∈ B(X), T ⊥B Amay not imply A ⊥B T , or
conversely. Indeed, on (R3, ‖.‖2), let us consider the following two linear operators

with respect to the usual basis of the space: Let T =

⎛

⎝
1 0 0
0 1/2 0
0 0 1/2

⎞

⎠ and A =

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠. Then it can be easily verified by applying elementary arguments that

T ⊥B A but A 
⊥B T . This evidently illustrates that the left symmetric and the right
symmetric linear operators between Banach (Hilbert) spaces are special elements in
the corresponding operator space.



334 K. Paul et al.

The notions of strict convexity and smoothness in a Banach space play important
roles in our discussion of symmetric points in operator spaces. Although these
concepts are well-known and are almost standard, let us mention the relevant
definitions for the sake of completeness.

Definition 15.5 A Banach space X is said to be strictly convex if every element of
the unit sphere is an extreme point of the unit ball. Equivalently, X is strictly convex
if and only if given any two elements x, y ∈ X \ {θ}, with ‖x + y‖ = ‖x‖ + ‖y‖,
there exists λ > 0 such that y = λx.

Definition 15.6 Let X be a Banach space and x ∈ X\ {θ}. X is said to be smooth at
x if there exists a unique norm one functional f ∈ SX∗ such that f (x) = ‖f ‖‖x‖ =
‖x‖. Equivalently, X is smooth at a non-zero point x in X if and only if there exists
a unique supporting hyperplane to B(θ, ‖x‖) = {y ∈ X : ‖y‖ ≤ ‖x‖} at the point
x.

In order to study the Birkhoff-James orthogonality of bounded linear operators
between Banach spaces, it is often helpful to consider the set of points on the unit
sphere of the domain space at which the concerned operators attain their norm. In
view of this, the following definition was introduced in [29]:

Definition 15.7 Let X,Y be Banach spaces and let T ∈ B(X,Y). The norm
attainment set of MT of T is defined as MT = {x ∈ SX : ‖T x‖ = ‖T ‖}.

The norm attainment set of a bounded linear operator T defined between Hilbert
spaces is always a unit sphere of some subspace of the domain space, if MT 
= ∅.
However, the structure ofMT for operators defined between Banach spaces is yet to
be known. The idea of studying the norm attainment set of a bounded linear operator
is relatively new and it can effectively applied in exploring many areas of geometry
of Banach spaces, including the study of isometries, smooth operators and extreme
contraction between Banach spaces. We refer the readers to [24, 33, 34] for more
information on this topic. Indeed, it is easy to observe that T is a scalar multiple of an
isometry if and only if MT = SX. On the other hand, it follows from Theorems 4.1
and 4.2 of [24] that if X is a finite-dimensional smooth Banach space then T ∈ B(X)
is a smooth point if and only if MT is a doubleton, i.e., T attains norm at only one
pair of points. The relation between the norm attainment set MT and orthogonality
of operators in B(X) has been studied by Sain and Paul [30] and Sain et al. [31]. In
the context of a finite-dimensional Hilbert space H, Bhatia and S̆emrl [5] and Paul
et al. [21, 22] independently proved that for every T ,A ∈ B(H), T ⊥B A if and
only if there exists x ∈ MT such that T x ⊥B Ax. On the other hand, Benítez et
al. proved in [4] that a finite-dimensional real Banach space X is an inner product
space if and only if for every T ,A ∈ B(X), T ⊥B A implies that there exists
x ∈ MT such that T x ⊥B Ax. We would like to remark that both these results give
a nice relation between the geometry of the underlying space X and orthogonality
of operators in B(X). We would like to note that this particular connection has
been utilized to a great extent in order to study the symmetry of Birkhoff-James
orthogonality of bounded linear operators. It should be noted that if H is a complex
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Hilbert space then Theorem 2.5 of [35] gives a complete characterization of right
symmetric bounded linear operators in B(H), in terms of isometry and coisometry.
However, the arguments used in [35] are no longer applicable in general, if we
allow the operators to be defined on a Banach space instead of a Hilbert space. This
observation serves as another motivation for studying the symmetry of Birkhoff-
James orthogonality of bounded linear operators between Banach spaces.

15.2 Brief Outline of the Article

We begin with an exploration of right symmetric and left symmetric bounded linear
operators in B(�n∞) and B(�n1). We next study the same problem, in the context of
a Hilbert space, for both finite-dimensional and infinite-dimensional spaces. Our
next objective is to study the left symmetry and the right symmetry of bounded
linear operators on a two-dimensional strictly convex Banach space. As we will
see, for the corresponding result in higher dimensions, we require the additional
assumption of smoothness. We also mention the disjointness of the class of smooth
operators and the class of right symmetric operators on a finite-dimensional strictly
convex and smooth Banach space. We further make note of the fact that it is possible
to explore the connection between the rank of a bounded linear operator and the
operator being a right symmetric point in the corresponding operator space. Finally,
we furnish some new results on symmetry of Birkhoff-James orthogonality in the
operator space, along with the detailed proofs, in the setting of infinite-dimensional
Banach spaces. Let us mention here that the new results presented here actually
improve some of the earlier known results in this context.

15.3 Symmetry of Birkhoff-James Orthogonality in
Operator Spaces

We begin with a study of symmetric points in the operator spaces B(�n1) and B(�n∞).
In this context, whenever we consider the matrix representation of a bounded
linear operator, it is assumed that the matrix representation is with respect to the
standard ordered basis of the space R

n. In order to study the symmetric properties
of orthogonality of linear operators on (Rn, ‖.‖1) in the sense of Birkhoff-James, it
is useful to make note of the following easy lemma [13].

Lemma 15.1 ([13, Lemma 2.1]) Extreme points (or, their scalar multiples) of the
closed unit ball are the only right symmetric points of �n1 .

Using the above lemma, it is possible to completely characterize the right
symmetric operators in B(�n1). Indeed, the following theorem was proved in [13]:
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Theorem 15.2 ([13, Th.2.2]) Let T = (tij ) be a bounded linear operator in B(�n1).
Then T is right symmetric if and only if T attains norm at all extreme points and
images of the extreme points under T are scalar multiples of extreme points of the
unit ball.

We next state a result [13] that characterizes left symmetric operators in B(�n1).

Theorem 15.3 ([13, Th.2.3]) Let T = (tij ) be a bounded linear operator in B(�n1).
Then T is left symmetric if and only if T attains norm at only one extreme point, the
image of which is a left symmetric point in �n1 and the images of other extreme points
are zero.

We next state some analogous results from [12], regarding the symmetry of
Birkhoff-James orthogonality in B(�n∞). The following result characterizes the left
symmetric points in B(�n∞). We would like to note that the unit ball of �2∞ has only
two pair of extreme points ±(1, 1) and ±(1,−1).

Theorem 15.4 ([12, Th.2.3]) Let T = (tij ) be a linear operator on �2∞. Then T is
left symmetric if and only if T attains norm at only one extreme point, the image of
which is a left symmetric point of �2∞ and image of the other extreme point is zero.

When n ≥ 3, we have the following theorem [12] regarding left symmetric
operators in B(�n∞).

Theorem 15.5 ([12, Th.2.5]) Let T be a linear operator on �n∞, where n ≥ 3. Then
T is left symmetric if and only if T is the zero operator.

The next theorem [12] characterises right symmetric points in B(�n∞).

Theorem 15.6 ([12, Th.2.1]) Let T = (tij ) be a bounded linear operator on �n∞.
Then T is right symmetric if and only if for each i ∈ {1, 2, . . . , n} exactly one term
of ti1, ti2, . . . , tin is non-zero and all non-zero terms are of the same magnitude.

Our next objective is to state some results from [11] on symmetric points in
B(H), where H is a finite-dimensional Hilbert space.

Theorem 15.7 ([11, Th.2.7]) Let H be a finite-dimensional Hilbert space and let
T ∈ B(H). Then T is right symmetric if and only if MT = SH, i.e., T is a scalar
multiple of an isometry.

If the dimension of the underlying Hilbert space is infinite then we have the
following result for compact linear operators [11]:

Theorem 15.8 ([11, Th.2.8]) Let H be an infinite-dimensional Hilbert space and
let T ∈ K(H). Then T is right symmetric if and only if T is the zero operator.

Remark 15.1 In case of a complex Hilbert space H, symmetry of Birkhoff-James
orthogonality in the corresponding operator space was also studied by Turns̆ek in
[35]. However, the technique used in [11], for the finite-dimensional case and for
compact operator on an infinite-dimensional Hilbert space are completely different
from the one used by Turns̆ek.
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In the next theorem [11] we consider the converse question of characterizing the
left symmetric operators in K(H).

Theorem 15.9 ([11, Th.2.10]) Let H be a Hilbert space and T ∈ K(H). Then T is
left symmetric if and only if T is the zero operator.

The following corollary is immediate from the above theorem.

Corollary 15.1 Let H be a finite-dimensional Hilbert space and let T ∈ B(H).
Then T is left symmetric if and only if T is the zero operator.

Remark 15.2 If T is a bounded linear operator in B(H) then it is not necessarily
true that MT 
= ∅. However, if T ∈ B(H) attains norm then following the same
method as used in the proof of Theorem 2.10 in [11], it can be proved that T is left
symmetric if and only if T is the zero operator.

In view of the results on symmetry of Birkhoff-James orthogonality of operators
in B(�n1), B(�

n∞) and B(H) stated above, it is apparent that Banach spaces and
Hilbert spaces behave very differently in this context. Motivated by this observation,
it is natural to investigate the same question of symmetry of Birkhoff-James
orthogonality in the framework of general Banach spaces. Our next results from [32]
characterizes the left symmetric operator(s) defined on a two-dimensional strictly
convex Banach space.

Theorem 15.10 ([32, Th.2.1]) Let X be a two-dimensional strictly convex Banach
space. Then T ∈ B(X) is left symmetric if and only if T is the zero operator.

For the corresponding result in case of higher dimensional Banach spaces, the
following lemma turns out to be useful. Moreover, we would like to remark that the
proof of the next lemma in [32] also gives an alternative approach towards probing
the norm attainment set of a bounded linear between Banach spaces, in comparison
to the last part of Theorem 2.3 in [29].

Lemma 15.2 ([32, Lemma.2.1]) Let X be a Banach space. Let T ∈ B(X) and
x ∈ MT . If in addition, both x and T x are smooth points in X then for any y ∈ X,

we have, x ⊥B y ⇒ T x ⊥B Ty.
When the dimension of X is strictly greater than 2, the above lemma can be

effectively applied to obtain the following theorem [32] regarding left symmetric
bounded linear operator(s) in B(X).

Theorem 15.11 ([32, Th.2.2]) Let X be an n-dimensional strictly convex and
smooth Banach space. T ∈ B(X) is left symmetric if and only if T is the zero
operator.

The next result [32] gives a rather surprising connection between right symmetric
bounded linear operators and the smoothness of the concerned operator, with the
additional assumption of the underlying Banach space being finite-dimensional,
strictly convex and smooth.
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Theorem 15.12 ([32, Th.2.3]) Let X be a finite-dimensional strictly convex and
smooth Banach space. Let T ∈ B(X) be smooth. Then T is not right symmetric.

When X is not necessarily strictly convex or smooth, we have the following two
theorems [32] regarding right symmetric operators.

Theorem 15.13 ([32, Th.2.4]) Let X be an n−dimensional Banach space. Let x0 ∈
SX be a left symmetric point. Let T ∈ B(X) be such that MT = {±x0} and x0 is an
eigenvector of T . Then either of the following is true:

(i) rank T ≥ n− 1.
(ii) T is not a right symmetric point in B(X).

Theorem 15.14 ([32, Th.2.5]) Let X be an n−dimensional Banach space. Let T ∈
B(X) be such thatMT = {±x0} and ker T contains a non-zero left symmetric point.
Then either of the following is true:

(i) I ⊥B T and T ⊥B I, where I ∈ B(X) is the identity operator on X.

(ii) T is not a right symmetric point in B(X).

Till this point, we have only stated some of the known results regarding the
symmetry of Birkhoff-James orthogonality in operator spaces, without discussing
the proofs. Now we are going to present some new results, along with their
corresponding proofs, in this context. First, we need the following lemma, the proof
of which can be found in [29] and [32].

Lemma 15.3 Let X be a Banach space, T ∈ B(X) and x ∈ MT . Then

(i) If T x⊥BTy then x⊥By.
(ii) If in addition, both x and T x are smooth points in X then for any y ∈ X, we

have, x ⊥B y ⇒ T x ⊥B Ty.
Using the above lemma, we now obtain a complete characterization of left

symmetric operators in K(X), under the additional assumptions that X is reflexive,
strictly convex and smooth. Let us observe that the following theorem improves
Theorem 15.11.

Theorem 15.15 Let X be a reflexive, strictly convex and smooth Banach space and
dimension of X is at least two. Then T ∈ K(X) is left symmetric if and only if T is
the zero operator.

Proof Since X is reflexive and T is compact so MT 
= ∅ i.e., there exists x ∈ SX
such that ‖T x‖ = ‖T ‖. We complete the proof in the following five steps:

Step 1 We claim that x is right symmetric.
If possible suppose that x is not right symmetric. Then there exists y ∈ SX such

that y ⊥B x, but x 
⊥B y. Since X is strictly convex so y is an exposed point
and there exists a subspace Hy of codimension one such that y⊥SBHy, see [23].
Consider a linear operator A : X −→ X defined as A(z = ay + h) = aT x, where
a is a scalar and h ∈ Hy. Clearly A is a compact operator. Then 1 = ‖z‖ = ‖ay +
h‖ >| a |, if a 
= 0, h 
= 0 and ‖Az‖ = ‖aT x‖ ≤| a | ‖T ‖. Also ‖Az‖ = ‖T ‖,
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if | a |= 1. So MA = {±y}. Since X is smooth and y ⊥B x, we have x ∈ Hy ,
so Ax = 0, from which it follows that T x ⊥B Ax. As x ∈ MT , T ⊥B A. Now
x 
⊥B y, and x ∈ MT , so by Lemma 15.3, we get T x 
⊥B Ty, i.e., Ay 
⊥B Ty.

Since MA = ±{y}, by Theorem 2.1 of Sain [30], it follows that A 
⊥B T , which
contradicts that T is left symmetric. Hence x must be right symmetric.

Step 2 We claim that Ty = 0 if y ∈ SX and y ⊥B x.
Since X is strictly convex so y is an exposed point and there exists a subspace

Hy of codimension one such that y⊥SBHy. Consider a linear operator A : X −→ X

defined as A(z = ay + h) = aTy, where a is a scalar and h ∈ Hy. Clearly A
is a compact operator. Then 1 = ‖z‖ = ‖ay + h‖ >| a |, if a 
= 0, h 
= 0 and
‖Az‖ = ‖aTy‖ ≤| a | ‖T ‖. Also ‖Az‖ = ‖T ‖, if | a |= 1. So MA = {±y}. Since
X is smooth and y ⊥B x, we have x ∈ Hy , so Ax = 0, from which it follows that
T x ⊥B Ax. As x ∈ MT , T ⊥B A. But Ay = Ty and MA = {±y} implies that
A 
⊥B T . Thus T is not left symmetric, a contradiction. Hence, y ⊥B x ⇒ Ty = 0.

Step 3 We claim that x is left symmetric.
If possible suppose there exists y ∈ SX such that x ⊥B y, but y 
⊥B x. We

claim Ty = 0. If possible let Ty 
= 0. As before since X is strictly convex so
y is an exposed point and there exists a subspace Hy of codimension one such that
y⊥SBHy. Define a linear operator A on X such thatA(z = ay+h) = aTy, where a
is a scalar and h ∈ Hy. Clearly, MA = ±{y}. As Ay 
⊥B Ty, applying Theorem 2.1
of [30], we conclude that A 
⊥B T . Since X is smooth and x ⊥B y, applying
Lemma 15.3 we get, T x ⊥B Ty. It is easy to check that Ax = bTy for some scalar
b. So T x ⊥B Ax. Since x ∈ MT , we have, T ⊥B A. Thus we have, T ⊥B A but
A 
⊥B T ,which contradicts our assumption that T is left symmetric. This completes
the proof of our claim that Ty = 0. Thus we have x⊥y, y 
⊥B x and Ty = 0. Now,
from Theorem 2.3 of James [16], it follows that there exists a scalar k such that
kx + y ⊥B x. As T is left symmetric, by Step 2 , we get T (kx + y) = 0. Since
Ty = 0 and T x 
= 0, it now follows that k = 0. So y ⊥B x, a contradiction to our
choice of y. Therefore x is left symmetric. Hence x is a symmetric point in X.

Step 4 We show that T x is left symmetric.
If possible let T x be not left symmetric. Then there exists y ∈ SX such that

T x⊥By but y 
⊥B T x. Since X is strictly convex so x is an exposed point and there
exists a subspace Hx of codimension one such that x⊥SBHx. Consider a linear
operator A : X −→ X defined as A(z = ax + h) = ay, where a is a scalar and
h ∈ Hx. Clearly A is a compact operator. Then 1 = ‖z‖ = ‖ax + h‖ >| a |,
if a 
= 0, h 
= 0 and ‖Az‖ = ‖ay‖ ≤| a | . Also ‖Az‖ = 1, if | a |= 1. So
MA = {±x}. Since A is compact and Ax 
⊥B T x so A 
⊥B T but tx⊥BAx implies
that T⊥A. This is a contradiction to the fact thatT is left symmetric. Hence for each
x ∈ MT , T x is left symmetric.

Step 5 We construct an operator A such that A⊥BT but T 
⊥B A.
Consider a unit vector y ∈ H . Then y⊥BHy where Hy is a subspace of H

of codimension one in H. Let v ∈ SX such that T x⊥Bv. Then since T is left
symmetric by Step 3, T x is left symmetric and so v⊥BT x. Let ‖x + y‖ = r , by
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orthogonality and strict convexity 1 < r < 2. Choose w = (1 − t)T x + tv for
some t ∈ (0, 1) so that w ∈ B(v, ε) with 0 < ε < 2−r

1+r . This choice is possible, for,
‖w − v‖ = (1 − t)‖T x − v‖ ≤ (1 − t)(1 + ‖T ‖) and one can consider t so that
(1− t)(1+‖T ‖) < 2−r

1+r . Now, any element z ∈ X can be written as z = ax+by+h
where a, b are scalars and h ∈ Hy. Consider a linear operator A : X −→ X defined
as Az = av + bw. Then clearly A is compact. Clearly T⊥BA since x ∈ MT

and T x⊥BAx. We next show that A 
⊥B T . For this we first claim that z 
∈ MA if
ab < 0. Clearly ‖A( x+y

‖x+y‖
)‖ = ‖w+v‖

r
> 1+ε and so ‖A‖ > 1. Clearly x, y 
∈ MA.

Let z = −ax + by + h ∈ SX where a > 0, b > 0. Then by using orthogonality we
have, 1 = ‖z‖ = ‖ − ax + by + h‖ >| a | . Similarly | b |< 1. Now

‖Az‖ = ‖ − av + bw‖
= ‖(b − a)v + b(w − v)‖
< | b − a | +‖w − v‖
< 1 + ε
< ‖A( x + y

‖x‖ + ‖y‖ )‖

This shows that z 
∈ MA. Similarly considering z = ax − by + h ∈ SX where
a > 0, b > 0 we can show that z 
∈ MA. So if z = ax + by + h ∈ MA then
we must have ab > 0. Next our claim is that T z 
∈ (Az)− for all z ∈ MA. Let
z = ax + by + h ∈ MA, then ab > 0 and Az = av + bw, T z = aT x. Consider
a > 0. Then b > 0. Then av+bw = av+b(1−t)x+btv = (a+bt)v+b(1−t)T x ⇒
‖av+bw−b(1− t)T x‖ = ‖(a+bt)v‖ < ‖(a+bt)v+b(1− t)T x‖ = ‖av+bw‖,
since v ⊥B T x. Thus, T x /∈ (av + bw)−. Hence, by Sain [28, Prop. 2.1], aT x /∈
(av + bw)− ⇒ T z /∈ (Az)−. Similarly, a < 0, b < 0 implies that T z /∈ (Az)−.
Using Theorem 2.1 of [33] we get T 
⊥B A. This shows that T is not left symmetric.
This completes the proof of the theorem.

We next show that smooth compact operators on a reflexive, strictly convex,
smooth Banach space are not right symmetric. We would further like to note that
the following result, which happens to be the final one in this article, improves
Theorem 15.12.

Theorem 15.16 Let T be a compact linear operator on a reflexive, strictly convex,
smooth Banach space X. Let us further assume that T is smooth. Then T is not right
symmetric.

Proof If possible let T be smooth and right symmetric. Since T is a compact
operator on a reflexive space X so T must attain its norm. The smoothness of T
ensures that MT = {±x} for some x ∈ SX. We claim that x is left symmetric.
If not, then there exists y ∈ SX such that x⊥By but y 
⊥B x. Since X is strictly
convex so y is an exposed point and there exists a subspace Hy of codimension
one such that y⊥SBHy. Consider a linear operator A : X −→ X defined as
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A(z = ay + h) = aT x, where a is a scalar and h ∈ Hy. Clearly A is a
compact operator. Then 1 = ‖z‖ = ‖ay + h‖ >| a |, if a 
= 0, h 
= 0 and
‖Az‖ = ‖aT x‖ ≤| a | ‖T ‖. Also ‖Az‖ = ‖T ‖, if | a |= 1. So MA = {±y}.
Since x ∈ MT and x⊥By so we get T x⊥BTy i.e., Ay⊥BTy. So A⊥BT . Again by
Lemma 15.3 Ay 
⊥B Ax, since MA = {±y} and y 
⊥ x. Thus T x 
⊥B Ax. As T
is compact and MT = {±x} so T 
⊥B A. This shows that T is not right symmetric
and so our claim is established. Since x ∈ MT so there exists a hyperspace Hx
such that x⊥BHx and T x⊥BT (Hx). Since x is left symmetric soHx⊥Bx. Consider
z0 = x+h0 where h0 ∈ Hx‖h0‖ 
= 0 and ‖T h0‖ > ‖T ‖. As X is strictly convex so
orthogonality is left unique and hence h0⊥Bx implies that z0 
⊥B x. Let z = z0‖z0‖ .
Considering the element T z, T h0 we get a scalar d such that (dT z + T h0)⊥BT z.
We claim that d 
= 0. If d = 0 then T h0⊥BT z and so T h0⊥BT x + T h0, which is
not possible as ‖T h0 − (T x + T h0)‖ = ‖T x‖ = ‖T ‖ < ‖T h0‖. Thus d 
= 0. As
before we get a hyperspace Hz such that z ⊥SB Hz and we can define a compact
linear operator A on X such that A(az + h) = a(dT z + T h0) where a is a scalar
and h ∈ Hz. Then A⊥BT . We claim that T 
⊥B A. If not, then by Theorem 2.1
of [24] we get T x⊥BAx. Let x = bz + h for some scalar b and h ∈ Hz. Clearly
b 
= 0, since z 
⊥B x. Now Ax = b(dT z + T h0), T x⊥BAx, T x⊥BT h0 and so by
smoothness of T x we get T x⊥BT z. Then by Lemma 15.3 we get x⊥Bz. Since x
is left symmetric so we get z⊥Bx, a contradiction. Thus T is not right symmetric.
This completes the proof of the theorem.

15.4 Future Directions for Research and Ulam Stability

In this short article we have surveyed some of the known results and have also
presented some new results, in the context of symmetry of Birkhoff-James orthogo-
nality in operator spaces. However, there are some important questions in this area
that remain unanswered. One of the major unsolved problems in this particular area
of study is to characterize right symmetric points in the space of bounded linear
operators between general Banach spaces, even with the assumption of smoothness
and strict convexity. Theorems 15.12 and 15.16 give a useful necessary condition
for a bounded linear operator to be right symmetric, namely, the concerned operator
can not be smooth. It will be interesting to obtain a tractable sufficient condition
for a bounded linear operator to be right symmetric. On the other hand, regarding
left symmetric bounded linear operators, it will be interesting to study the problem
without the assumptions of smoothness and strict convexity.

Some other possibilities for further research could be connected with the notion
of Ulam stability (for more details we refer to [6–8, 14, 17, 19, 26, 27]). One of more
abstract versions of that notion concerns the stability of mathematical theorems
(motivated by a more general notion of stability arising naturally in problems of
mechanics). It reads as follows (see [36], Page 63, chapter VI Some Questions in
Analysis, section 1 Stability):
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When is it true that by changing “a little” the hypotheses of a theorem one can still assert
that the thesis of the theorem remains true or “approximately” true?

As J. Brzdęk has suggested to us, we could consider such modifications for
instance for Theorem 15.1. Following the notion of hyperstability (see [9]), we may
ask: under what conditions on a function φ : X2 → R we can replace in the theorem
the Birkhoff-James orthogonality by the approximate orthogonality ⊥φB understood
in the following way (cf., e.g., [9] for somewhat similar ideas).

Definition 15.8 Let φ : X2 → R. For any two elements x, y ∈ X, x is said to be
φ-orthogonal to y in the sense of Birkhoff-James, written as x ⊥φB y, if

‖x‖ ≤ ‖x + λy‖ + φ(x, y) ∀λ ∈ R. (15.1)

A similar issue also can be considered with the last inequality replaced by the
condition

‖x‖ ≤ φ(x, y)‖x + λy‖ ∀λ ∈ R;

or even with the condition

‖x‖ ≤ φ(‖x + λy‖) ∀λ ∈ R,

but this time with φ : R → R.
We could go one step further and ask about a possibility to replace, in Theo-

rem 15.1, the symmetry by a φ-symmetry understood as follows: if x, y ∈ X and
x ⊥B y, then x ⊥φB y.

Similar problems could be raised in connection with many other results presented
in this paper.
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Ulam Stability of Zero Point Equations
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Abstract In this paper, we will study different kind of Ulam stability concepts for
the zero point equation. Our approach is based on weakly Picard operator theory
related to fixed point and coincidence point equations.
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16.1 Introduction

There is a large number of papers on Ulam stability for:

– functional equations [5, 8, 10, 21, 22, 28, 32–37, 64–66, 85, 86];
– difference equations [16, 17, 46, 62, 69, 72, 83, 90];
– differential equations [1, 3, 4, 26, 38–41, 47, 54, 63, 73–76, 88, 89, 91];
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– integral equations [4, 28, 71, 72, 75, 76];
– fixed point equations [12, 13, 23, 25, 44, 56, 59, 68, 72, 75, 76, 78];
– coincidence point equations [27, 59, 60, 72, 75, 76].

In this paper we will study different kind of Ulam stability concepts for zero
point equations. Our approach is based on weakly Picard operator theory related to
fixed point and coincidence point equations.
The structure of our paper is as follows:

1. Introduction
2. Preliminaries

(a) Retraction-displacement condition in the metric fixed point theory
(b) Operatorial equations and corresponding Ulam inequations
(c) Basic notions in Ulam stability

3. Ulam stability of the zero point equations
4. Abstract models of Ulam stability. Examples
5. Some research directions.

16.2 Preliminaries

Let X be a nonempty set and T : X → X be an operator. Any solution of the fixed
point equation

x = T (x), x ∈ X, (16.1)

is called a fixed point of T .
We denote by FT the fixed point set of T , i.e., FT := {x ∈ X | T (x) = x} and

by Graph(T ) := {(x, T (x)) ∈ X ×X|x ∈ X} the graphic of T .
If (X, d) is a metric space, then, by definition, T : X → X is said to be a weakly

Picard operator if

T n(x)→ x∗(x) ∈ FT as n→ ∞, for all x ∈ X. (16.2)

If T is a weakly Picard operator, then we can define the following set retraction
T∞ : X → FT given by T∞(x) = lim

n→∞ T
n(x).

A weakly Picard operator T : X → X for which there exists a function ψ :
R+ → R+ increasing, continuous in 0 and satisfying ψ(0) = 0, such that

d(x, T∞(x)) ≤ ψ(d(x, T (x)), for all x ∈ X, (16.3)

is called a ψ-weakly Picard operator. In particular, if ψ(t) = ct (for some c > 0),
then T is said to be a c-weakly Picard operator.
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By definition, a weakly Picard operator T with a unique fixed point is called a
Picard operator. In this case, we write FT = {x∗}. As a consequence T∞(x) = x∗,
for every x ∈ X.

Moreover, a Picard operator T for which the condition (16.3) is satisfied is called
a ψ-Picard operator.

For more considerations on weakly Picard operator theory see [11, 12, 57, 77, 79].

Definition 16.1 Let (X, d) be a metric space and T : X → X be an operator. Then,
T is called:

(i) an l-contraction if l ∈]0, 1[ and

d(T (x), T (y)) ≤ ld(x, y), for every x, y ∈ X.

(ii) a graphic l-contraction if l ∈]0, 1[ and

d(T (x), T 2(x)) ≤ ld(x, T (x)), for every x ∈ X.

Any contraction is a graphic contraction but not reversely.

Example 16.1 Let X := [0, 1] ∪ [2, 3] and T : X → X be defined by

T (x) :=
{ 1

2x, x ∈ [0, 1]
1
2x + 3

2 , x ∈ [2, 3].

Then T is a continuous graphic 1
2 -contraction, but it isn’ t a contraction.

The following result was proved in [77]. It is also known as Graphic Contraction
Principle.

Theorem 16.1 ([77]) Let (X, d) be a complete metric space and T : X → X be a
graphic l-contraction. Then:

(1) the sequence (T n(x))n∈N converges in (X, d) and
∑

n∈N
d(T n(x), T n+1(x)) <

∞, for each x ∈ X;
If, in addition to our initial assumptions, we suppose that, for each x ∈ X, we
have

lim
n→∞ T (T

n(x)) = T ( lim
n→∞ T

n(x)),

then we have the following conclusions:
(2) FT = FT n 
= ∅, for all n ∈ N

∗;
(3) T is a weakly Picard operator;
(4) d(x, T∞(x)) ≤ 1

1−l d(x, T (x)), for every x ∈ X, i.e., T is a ψ-weakly Picard
operator with ψ(t) = t

1−l , for t ∈ R+.
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Remark 16.1 There are many relevant examples of graphic contractions. For
example, generalized contractions such as Kannan mappings, Ćirić-Reich-Rus
mappings, Chatterjea mappings, Zamfirescu mappings, Hardy-Rogers mappings,
Berinde mappings, Suzuki mappings are graphic contractions. For other examples
and related considerations see [57].

16.2.1 Retraction-Displacement Condition in the Metric Fixed
Point Theory

We start our considerations with some examples.

Example 16.2 Let (X, d) be a complete metric space and T : X → X be a graphic
l-contraction with closed graphic. Then, by the Graphic Contraction Principle, we
have that FT 
= ∅, and T n(x) → x∗(x) ∈ FT as n → ∞, for all x ∈ X. The
operator T∞ : X → FT defined by x �→ x∗(x), is a retraction of X onto the fixed
point set of T , FT . Moreover,

d(x, T∞(x)) ≤ 1

1 − l d(x, T (x)), ∀ x ∈ X.

Remark 16.2 In the conditions of the above example, let Y ⊂ X be such that FT ⊂
Y . Then, for each y ∈ Y , there exists a fixed point x ∈ FT such that

d(y, x) ≤ 1

1 − l d(y, T (y)).

Indeed, for a given y ∈ Y , the corresponding element with the above property is
x := T∞(y) ∈ FT .

Remark 16.3 If (X, d) is a complete metric space and T : X → X is an l-
contraction, then FT = {x∗}, T∞(x) = x∗ for all x ∈ X and

d(x, x∗) ≤ 1

1 − l d(x, T (x)), for every x ∈ X.

Example 16.3 Let (X, d) be a generalized complete metric space (with a gener-
alized metric d : X × X → R+ ∪ {+∞}). Let X =

⋃

i∈I
Xi be the canonical

decomposition of X into metric spaces, with respect to the generalized metric d
(see [58, 79]).

Let T : X → X be an l-contraction and denote

ET := {x ∈ X | d(x, T (x)) < +∞}.

We suppose that ET 
= ∅. Let J := {i ∈ I | Xi ∩ ET 
= ∅}.
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Then T (Xi) ⊂ Xi , for all i ∈ J and ET =
⋃

i∈J
Xi . It is clear that T (ET ) ⊂ ET

and FT = FT ∩ ET . Each pair (Xi, d), i ∈ I is a complete metric space and

T

∣∣∣
Xi

: Xi → Xi is an l-contraction.

By the above example we immediately obtain the following result.

Theorem 16.2 Let (X, d) be a generalized complete metric space (with a general-
ized metric d : X × X → R+ ∪ {+∞}), T : X → X be an l-contraction such that
ET 
= ∅. Then:

(i) FT 
= ∅, and FT ⊂ ET ;

(ii) T n(x) → T∞(x) ∈ FT as n → ∞, for all x ∈ ET , i.e., T
∣∣
∣
ET

: ET → ET is

a weakly Picard operator;
(iii) T∞ : ET → FT is a retraction and

d(x, T∞(x)) ≤ 1

1 − l d(x, T (x)), for all x ∈ ET ,

i.e., the operator T
∣∣
∣
ET

: ET → ET satisfies a retraction-displacement

condition (see[12, 77, 79]).

Remark 16.4 In the conditions of the above theorem, let Y ⊂ ET be such that
FT ⊂ Y . Then, for each y ∈ Y , there exists x ∈ FT such that

d(y, x) ≤ 1

1 − l d(y, T (y)). (16.4)

We notice again that x := T∞(y) (i.e., the value on y of the retraction T∞) is an
element x with the property (16.4).

Remark 16.5 For an adequate understanding of the above theorem, it is very useful
to compare it with other Contraction Principles in generalized metric spaces, see
[21, 22, 58, 64, 79].

Recall that ϕ : R+ → R+ is said to be a comparison function (see [11, 70]) if
it is increasing and ϕk(t) → 0 as k → +∞, for each t > 0 As a consequence, we
also have ϕ(t) < t , for each t > 0, ϕ(0) = 0 and ϕ is continuous in 0. Moreover, ϕ :
R+ → R+ is said to be a strict comparison function (see [70]) if it is a comparison
function and lim

t→∞(t − ϕ(t)) = ∞. For example, ϕ(t) = t
t+1 , t ∈ R+ is a strict

comparison function.

Example 16.4 Let (X, d) be a generalized complete metric space (with a general-
ized metric d : X×X → R+ ∪ {+∞}) and T : X → X be a graphic ϕ-contraction
(where the mapping ϕ : R+ → R+ is a strict comparison function), such that
FT 
= ∅. Denote

ET := {x ∈ X | d(x, T (x)) < +∞}.
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Obviously, ET 
= ∅. If we define

ψϕ(t) := sup{s ∈ R+|s − ϕ(s) ≤ t},
then T : ET → ET is a ψϕ-WPO and T∞ : ET → FT satisfies the relation

d(x, T∞(x)) ≤ ψϕ(d(x, T (x)), for all x ∈ ET .

For other examples in which a retraction r from the space to the fixed point set of
an operator T appear as well as some estimates of d(x, r(x)) in terms of d(x, T (x))
see: [12, 77, 79].

The above considerations give rise to the following notions.

Definition 16.2 Let (X, d) be a metric space and T : X → X be an operator with
FT 
= ∅. Let r : X → FT be a retraction and ψ : R+ → R+. By definition the
operator T satisfies the (ψ, r) retraction-displacement condition if:

(i) ψ is increasing, continuous at 0 and ψ(0) = 0;
(ii) d(x, r(x)) ≤ ψ(d(x, T (x))), for all x ∈ X.

Definition 16.3 Let (X, d) be a generalized complete metric space (with a gen-
eralized metric d : X × X → R+ ∪ {+∞}), T : X → X an operator and
ET := {x ∈ X | d(x, T (x)) < +∞}. We suppose that FT 
= ∅ and T (ET ) ⊂ ET .
Let r : ET → FT a retraction and ψ : R+ → R+. By definition the operator T
satisfies the (ψ, r) retraction-displacement condition if:

(i) ψ is increasing, continuous at 0 and ψ(0) = 0;
(ii) d(x, r(x)) ≤ ψ(d(x, T (x)), for all x ∈ ET .

16.2.2 Operatorial Equations and Corresponding Ulam
Inequations

The Case of Coincidence Equations Let (X, d) and (Y, ρ) be two metric spaces,
and T ,R : X → Y two operators. We consider the coincidence point equation

T (x) = R(x) (16.5)

with the solution set

C(T ,R) := {x ∈ X | T (x) = R(x)} 
= ∅,
and for each ε > 0 the inequations

ρ(T (x), R(x)) ≤ ε

with the solution set Sε.
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The Ulam Problem (See [76]) Is the Following In which conditions there exist a
retraction rε : Sε → C(T ,R) and a function θ : R+ → R+ such that

d(x, rε(x)) ≤ θ(ε), for all x ∈ Sε, and for every ε > 0.

If, in the above problem, there exists a function θ : R+ → R+ such that θ(0) = 0
and is continuous in 0, then the coincidence point equation is said to be Ulam stable.

Consider in the above coincidence equation that (Y, ρ) = (X, d) and R = 1X.
Thus, we have:

The Case of Fixed Point Equations Let (X, d) be a metric space, T : X → X an
operator. We consider the fixed point equation

x = T (x)

with the solution set FT := C(T , 1X) 
= ∅, and for each ε > 0 the inequations

d(x, T (x)) ≤ ε,

with the solution set Sε.

The Ulam problem consists in finding sufficient conditions under which there
exist a retraction rε : Sε → FT and a function θ : R+ → R+ such that

d(x, rε(x)) ≤ θ(ε), for all x ∈ Sε and for every ε > 0.

If such a mapping θ exists such that θ(0) = 0 and θ is continuous in 0, then we
call the fixed point equation to be Ulam stable.

If, in the coincidence point equation (16.5), we consider that (Y, ‖·‖) is a normed
space (with O the zero (null) element of the space) and R : X → Y is defined by
R(x) = O, then we have:

The Case of Zero Point Equation Let (X, d) be a metric space, (Y, ‖·‖) a normed
space (with O its zero (null) element) and T : X → Y an operator. We consider the
zero point equation

T (x) = O

with the solution set, ZT 
= ∅, and for each ε > 0 the inequations

‖T (x)‖ ≤ ε,

with the solution set, Sε.
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The Ulam problem consists in finding conditions under which there exist a
retraction rε : Sε → FT and a function θ : R+ → R+ such that

‖x − rε(x)‖ ≤ θ(ε), for all x ∈ Sε and for every ε > 0.

If a such θ exists such that θ(0) = 0 and θ is continuous in 0, then the zero point
equation is called Ulam stable.

Remark 16.6 If, in the above considerations, we work with generalized metric
spaces, then (see [75]):

(1) if d(x, y) ∈ R
m+, then ε = (ε1, . . . , εm), with εi > 0, i = 1,m;

(2) if d(x, y) ∈ s(R+), then ε = (ε1, . . . , εn, . . .) with εi > 0, i ∈ N
∗;

(3) if d(x, y) ∈ C([a, b],R+), then ε ∈ C([a, b],R∗+);
(4) if d(x, y) is an element in a cone K of an ordered Banach space, then ε is an

element in the interior of K , i.e. ε ∈ ◦
K;

(5) if d(x, y) ∈ K , then θ : K → K .

16.2.3 Basic Notions in Ulam Stability

Since fixed point equations and zero point equations are particular cases of coinci-
dence point equations we consider in what follow the coincidence point equations.
The problem is what conditions should we ask for the function (operator !)
θ which appear in Ulam stability. See for example, [16, 17, 32, 35, 36, 38–
41, 66, 68, 72, 75, 76, 85, 86]. In what follow we consider the point of view presented
in [72, 75] and [76].

Let (X, d) and (Y, ρ) be two metric spaces, and T ,R : X → Y two operators.
We consider the coincidence point equation

T (x) = R(x) (16.6)

with the solution set, C(T ,R) 
= ∅, and for each ε > 0 the inequation

ρ(T (x), R(x)) ≤ ε

with the solution set Sε.

Definition 16.4 By definition, Eq. (16.6) is Ulam-Hyers stable if there exist a
retraction rε : Sε → C(T ,R) and c > 0 such that

d(x, rε(x)) ≤ cε, ∀ x ∈ Sε, ∀ ε > 0.

In other words, Eq. (16.6) is Ulam-Hyers stable if it is Ulam stable with a function
θ(t) = ct , for all t ∈ R+.
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Definition 16.5 By definition, Eq. (16.6) is generalized Ulam-Hyers stable if there
exist a retraction rε : Sε → C(T ,R) and an increasing function θ : R+ → R+,
continuous in 0 with θ(0) = 0 such that

d(x, rε(x)) ≤ θ(ε), for all x ∈ Sε and for every ε > 0.

So, Eq. (16.6) is generalized Ulam-Hyers stable if it is Ulam stable and if, in
addition, the function θ is increasing.

Let us consider now the set M(X, Y ) of operators from a nonempty set X to a
metric space (Y, ρ). If T ,R : M(X, Y ) → M(X, Y ) are two given operators, then
the coincidence problem for T and R is the following

T (f ) = R(f ). (16.7)

There are two possibilities to define Ulam stability.
The first one is to endow M(X, Y ) with a (generalized or not) metric and to

study Ulam stability with respect to this metric. Thus, in this case, we have the
following three notions: Ulam stability, Ulam-Hyers stability and generalized Ulam-
Hyers stability.

The second possibility is to consider Ulam stability in terms of the metric ρ on
Y . In this case, the Ulam inequations are the following

ρ(T (f )(x), R(f )(x)) ≤ ε, for each x ∈ X(where ε > 0).

Denote by Sε the solution set for these inequations, for each ε > 0.
In this case, we have the following concepts.

Definition 16.6 By definition, Eq. (16.7) is Ulam stable with respect to the metric
ρ of Y , if there exist, for each ε > 0, a retraction rε : Sε → C(T ,R) and a function
θ : R+ → R+, continuous in 0 with θ(0) = 0 such that

ρ(f (x), rε(f )(x)) ≤ θ(ε), for all f ∈ Sε, x ∈ X and ε > 0.

Definition 16.7 By definition, Eq. (16.7) is Ulam-Hyers stable with respect to the
metric ρ of Y , if there exist c > 0 and, for each ε > 0, a retraction rε : Sε →
C(T ,R) such that

ρ(f (x), rε(f )(x)) ≤ cε, for all f ∈ Sε, x ∈ X and for ε > 0.

Definition 16.8 By definition, Eq. (16.7) is generalized Ulam-Hyers stable with
respect to the metric ρ of Y , if there exist, for each ε > 0, a retraction rε : Sε →
C(T ,R) and an increasing function θ : R+ → R+, continuous in 0 with θ(0) = 0
such that

ρ(f (x), rε(f )(x)) ≤ θ(ε), for all f ∈ Sε, x ∈ X and for ε > 0.



354 A. Petruşel and I. A. Rus

The papers of Aoki [5] and Rassias [65] have generated other types of Ulam
stability on the function spaces changing the standard Ulam inequations (see [21,
22, 28, 35, 36, 66, 72, 75, 76]).

Let χ : X → R+ be a given functional. Related to Eq. (16.7), we consider the
following inequations

ρ(T (f )(x), R(f )(x)) ≤ εχ(x), for each x ∈ X; (where ε > 0).

We denote the solution set of these inequations by Sε,χ .
In this context, we have the following concepts.

Definition 16.9 By definition, Eq. (16.7) is Ulam-Hyers-Aoki-Rassias stable with
respect to the metric ρ of Y and to the function χ : X → R+, if there exist c > 0
and, for each ε > 0, a retraction rε : Sε,χ → C(T ,R) such that

ρ(f (x), rε(f )(x)) ≤ cεχ(x), for all f ∈ Sε,χ , x ∈ X and for ε > 0.

Definition 16.10 By definition, Eq. (16.7) is generalized Ulam-Hyers-Aoki-
Rassias stable with respect to the metric ρ of Y and to the function χ : X → R+,
if there exist c > 0, an increasing function θ : R+ → R+, continuous in 0 with
θ(0) = 0 and, for each ε > 0, a retraction rε : Sε,χ → C(T ,R) such that

ρ(f (x), rε(f )(x)) ≤ θ(ε)χ(x), for all f ∈ Sε,χ , x ∈ X and for ε > 0.

Remark 16.7 For a better understanding of the above definitions, see the concepts
given in [16, 26, 32, 33, 36, 38, 39, 41, 54, 62, 63, 68, 72–76, 85, 88, 89] and the
results presented in [17, 21, 22, 28, 35, 40, 86, 90].

16.3 Ulam Stability of Zero Point Equations

Let (X, d) be a metric space, (Y,+, ρ) be a metric abelian group and T : X → Y

be an operator. We denote by O the zero (null) element of (Y,+). We consider the
zero point equation

T (x) = O. (16.8)

We denote by ZT the solution set of (16.8) and, for each ε > 0, by Sε the solution
set of the the corresponding Ulam inequations

ρ(T (x),O) ≤ ε. (16.9)

Following the approaches given in Sect. 16.2.3 of this paper, the basic notions in
Ulam stability theory for (16.8) are given as follows.
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Definition 16.11 By definition, the Ulam problem for the zero point equation (16.8)
is the following:

In which conditions, for ε > 0, there exist a retraction rε : Sε → ZT and a
function θ : R+ → R+, such that

ρ(x, rε(x)) ≤ θ(ε), for all x ∈ Sε, and for ε > 0 ?

We have the following concepts.

Definition 16.12 By definition, the zero point equation (16.8) is Ulam stable if,
for ε > 0, there exist a retraction rε : Sε → ZT and a function θ : R+ → R+
continuous in 0 with θ(0) = 0 such that

ρ(x, rε(x)) ≤ θ(ε), for all x ∈ Sε, and for ε > 0.

Definition 16.13 By definition, the zero point equation (16.8) is Ulam-Hyers stable
if, for ε > 0, there exist a retraction rε : Sε → ZT and c > 0 such that

ρ(x, rε(x)) ≤ cε, for all x ∈ Sε, and for ε > 0.

Definition 16.14 By definition, the zero point equation (16.8) is generalized Ulam-
Hyers stable if, for ε > 0, there exist a retraction rε : Sε → ZT and an increasing
function θ : R+ → R+ continuous in 0 with θ(0) = 0 such that

ρ(x, rε(x)) ≤ θ(ε), for all x ∈ Sε, and for ε > 0.

Let us consider now the set M(X, Y ) of operators from a nonempty set X to a
metric abelian group (Y,+, ρ) (withO its zero (null) element). Let T : M(X, Y )→
M(X, Y ) be an operator and consider the zero point equation for T

T (f ) = o, (16.10)

where o : X → Y is given by o(x) = O.
For this problem we have two possibilities to define Ulam stability. The first

possibility is to endow M(X, Y ) with a (generalized or not) metric and to study
the Ulam stability of the zero point equation (16.10) with respect to this metric. As
a consequence, in this case, we have the following notions: Ulam problem, Ulam
stability, Ulam-Hyers stability and generalized Ulam-Hyers stability.

The second possibility is to consider Ulam stability of the zero point equa-
tion (16.10) in terms of the metric ρ on Y . In this case, the Ulam inequations are the
following

ρ(T (f )(x),O) ≤ ε, for each x ∈ X(where ε > 0). (16.11)
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As a consequence, in this case, we have, with respect to the metric ρ, the
following stabilities: Ulam stability, Ulam-Hyers stability and generalized Ulam-
Hyers stability (see Definitions 16.6–16.8).

Let χ : X → R+ be a given functional. Related to Eq. (16.11), we consider the
following inequations

ρ(T (f )(x),O) ≤ εχ(x), for each x ∈ X; (where ε > 0). (16.12)

We denote the solution set of these inequations by Sε,χ .

Definition 16.15 By definition, Eq. (16.10) is Ulam-Hyers-Aoki-Rassias stable
with respect to the metric ρ of Y and to the function χ : X → R+, if there exist
c > 0 and, for each ε > 0, a retraction rε : Sε,χ → ZT such that

ρ(f (x), rε(f )(x)) ≤ cεχ(x), for all f ∈ Sε,χ , x ∈ X and for ε > 0.

Remark 16.8 There are various zero point (null point, roots) theorems in the
literature. One of the most interesting zero point theorem was proved by Miranda
[49]. Actually, the result was presented, without proof, by H. Poincaré in 1883
(see [61]) and then rediscovered by Miranda in 1940. Some extensions of Miranda-
Poincaré-Bolzano theorem, including the case of infinite dimensional spaces, were
given in [6, 7, 30, 45, 48, 50, 55, 87].

16.4 Abstract Models of Ulam Stability: Examples

The first abstract model of Ulam stability for the zero point equation is the following.

I. Let (X, ‖ · ‖) be a Banach space and T : X → X be an operator. We consider the
zero point equation

T (x) = O (16.13)

and, for each ε > 0, the corresponding Ulam inequation

‖T (x)‖ ≤ ε. (16.14)

We denote by Sε the solution set of (16.14).
Let us suppose that there exists an operator P : X → X such that:

(i) ZT = FP , i.e., Eq. (16.13) is equivalent to the fixed point equation

x = P(x); (16.15)
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(ii) P is a c-weakly Picard operator, i.e., c > 0 and

‖x − P∞(x)‖ ≤ c‖x − P(x)‖, for each x ∈ X;

(iii) there exists k > 0 such that

‖x − P(x)‖ ≤ k‖T (x)‖, for each x ∈ X.

Under the above assumptions the zero point equation (16.13) is Ulam-Hyers
stable.

Indeed, by (i), we notice that P∞ is a retraction of X onto ZT . By (ii) and (iii),
if x ∈ Sε, then P∞(x) ∈ ZT and

‖x − P∞(x)‖ ≤ c‖x − P(x)‖ ≤ ck‖T (x)‖ ≤ ckε.

Example 16.5 Let (X, 〈〉) be a real Hilbert space and T : X → X be an operator.
We suppose:

(1) there exists m > 0 such that

〈T (x)− T (y), x − y〉 ≥ m‖x − y‖2, for each x, y ∈ X,

i.e., T is strictly monotone;
(2) T is L-Lipschitz, i.e., L > 0 and

‖T (x)− T (y)‖ ≤ L‖x − y‖, for every x, y ∈ X.

It is well-known (see, for example, [19, 20, 80, 84]) that, in the above conditions,
there exists γ > 0 such that the operator P : X → X defined by

P(x) = x − γ T (x)

is an l-contraction, with l depending on m,L and γ .
Since the assumptions (i)–(iii) of our abstract model are satisfied (with c := 1

1−l
and k := γ ), we have the following Ulam stability theorem.

Theorem 16.3 Let (X, ‖ · ‖) be a Banach space and T : X → X be an operator. If
the above assumptions (1) and (2) are satisfied, then the zero point equation (16.13)
is Ulam-Hyers stable.

Remark 16.9 Similar examples and results can be given in the case of global
Newton-Kantorovich algorithms [11, 20, 24, 51, 52, 82].

II. Our second abstract model for Ulam-Hyers stability of zero point equation is
defined in the following setting.
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Let (X, ‖·‖X) be a normed space and (Y, ‖·‖Y ) be a Banach space. Let M(X, Y )
be the set of all mappings from X to Y . We consider on M(X, Y ) the complete
generalized metric d given by

d(f, g) := sup
x∈X

‖f (x)− g(x)‖Y .

Let T : M(X, Y )→ M(Xm, Y ) be an operator, where m ∈ N, m ≥ 1. The problem
we consider now is to study the zero point equation

T (x) = o, (16.16)

where o : X → Y is given by o(x) = O. In this respect, we consider the operator
T	 : M(X, Y )→ M(X, Y ) defined by

f �→ T	(f ), where T	(f )(x) := Tf (x, · · · , x).

Let us suppose that ZT = ZT	 and there exists an operator P : M(X, Y ) →
M(X, Y ) having the following properties:

(a) FP = ZT	 ;
(b) P(EP ) ⊂ EP , where EP := {f ∈ M(X, Y )|d(f, P (f )) <∞};
(c) there exists k > 0 such that, for each ε > 0, the following implication holds

‖T	(f )(x)‖Y ≤ε, for every x∈X⇒‖f (x)−P(f )(x)‖Y ≤ kε, for every x∈X;

(d) the operator P : EP → EP is c-weakly Picard.

Then, the zero point equation (16.16) is Ulam-Hyers stable.
Indeed, let us consider, for each ε > 0, the Ulam inequation

‖T (f )(x1, · · · , xm)‖Y ≤ ε, for every x1, · · · , xm ∈ X. (16.17)

We denote by Sε the solution set of (16.17). Let f ∈ Sε. Then, we get that f ∈ EP
and P∞(f ) ∈ ZT . Moreover, we have

d(f, P∞(f )) ≤ cd(f, P (f )) ≤ ckε, for every f ∈ Sε.

We will illustrate the above abstract model by the following example.

Example 16.6 Let (X, ‖·‖X) be a normed space and (Y, ‖·‖Y ) be a Banach space.
We consider the following Cauchy type functional equation

f (x1 + x2)− f (x1)− f (x2) = O, for every x1, x2 ∈ X, (16.18)

where f : X → Y .
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If we define the operator T : M(X, Y )→ M(X2, Y ) by

T (f )(x1, x2) := f (x1 + x2)− f (x1)− f (x2),

then the Cauchy functional equation (16.18) is equivalent to the zero point equation

T (f ) = o, (16.19)

where o : X ×X → Y is given by o(x1, x2) = O.
In this case, T	 has the following form

T	(f )(x) = f (2x)− 2f (x).

Now, we consider the operator P : M(X, Y )→ M(X, Y ) defined by

P(f )(x) := 1

2
f (2x), x ∈ X.

It is obvious that P : EP → EP is a 2-weakly Picard operator (by Theorem 16.2.)
and P satisfies the above assumptions (a) and (b), with c = 2 and k = 1

2 . Thus, if
f ∈ Sε, then f ∈ EP and P∞(f ) ∈ ZT . Moreover, we have that

d(f, P∞(f )) ≤ ε.

Thus, we have proved the well-known Hyers stability theorem for the Cauchy
functional equation (16.18).

Remark 16.10 In a similar manner we can study Ulam-Hyers stability for other
functional equations, see [2, 29, 35, 36]. Moreover, we can consider a suitable metric
on M(X, Y ) for the study of Ulam-Hyers-Aoki-Rassias stability.

16.5 Some Research Directions

We will present now some research directions related to the concepts and the results
of this paper.

16.5.1 The Root Equation

Let (X, ‖·‖) be a Banach space and T : X → X be an operator. Let y be an element
of Y . We consider the root equation

T (x) = y. (16.20)
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The problem is to use the first abstract model for the zero point equation

T (x)− y = O, (16.21)

in order to study the Ulam-Hyers stability of the root equation (16.20).
References: [14, 15, 19, 42, 51, 53, 67, 78, 81].

16.5.2 Volterra Type Equation

LetK ∈ C([a, b]×[a, b]×R). We consider the following Volterra integral equation

∫ t

a

K(t, s, x(s))ds = 0, for t ∈ [a, b]. (16.22)

By a solution of (16.22) we understand a continuous function x : [a, b] → R which
satisfies (16.22), for every t ∈ [a, b].

The problem is to utilize the technique proposed in Sect. 16.4 for the study of the
Ulam-Hyers stability of the Volterra equation (16.22).

16.5.3 Kuratowski’s Equation

Let (X, d) be a metric spaces and αK : Pb(X) → R+ be Kuratowski’s measure
of non-compactness, where Pb(X) denotes the family of all nonempty and bounded
subsets of X. Let us consider the zero point equation

αK(A) = 0. (16.23)

The problem is to study the Ulam-Hyers stability of Eq. (16.23).
References: [9, 24, 70, 79].

16.5.4 More General Spaces

Another research direction is related to the study of Ulam-Hyers stability for the
zero point equation in more general settings: generalized metric spaces (in various
senses), quasi-metric spaces, pseudo-metric spaces, b-metric spaces, gauge spaces
and other distance spaces.

References: [18, 31, 43, 75, 79].
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21. Cădariu, L., Radu, V.: A general fixed point method for the stability of Jensen functional
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54, 125–133 (2009)

74. Rus, I.A.: Ulam stability of ordinary differential equations in a Banach space. Carpath. J. Math.
26, 103–107 (2010)

75. Rus, I.A.: Ulam stability of operatorial equations. In: Rassias, Th.M„ Brzdek, J. (eds.)
Functional Equations in Mathematical Analysis, pp. 287–305. Springer, New York (2012)

76. Rus, I.A.: Results and problems in Ulam stability of operatorial equations and inclusions.
In: Rassias, Th.M. (ed.) Handbook of Functional Equations: Stability Theory, pp. 323–352.
Springer, New York (2014)

77. Rus, I.A.: Relevant classes of weakly Picard operators. An. Univ. Vest Timişoara, Mat.-Inf. 54,
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Chapter 17
Cauchy Difference Operator in Some
Orlicz Spaces

Stanisław Siudut

Abstract Let (G, ·, λ) be a measurable group with a complete, left-invariant and
finite measure λ. If ϕ is a convex ϕ-function satisfying conditions ϕ(u)/u → 0
as u → 0, ϕ(u)/u → ∞ as u → ∞, f : G → R and the Cauchy difference
C f (x, y) = f (x · y) − f (x) − f (y) of f belongs to L ϕ

λ×λ(G × G,R), then
there exists unique additive A : G → R such that f − A ∈ L ϕ

λ (G,R). Moreover,
‖f −A‖ϕ ≤ K‖C f ‖ϕ, whereK = 1 if λ(G) ≥ 1,K = 1+(λ(G))−1 if λ(G) < 1.
Similar result we also obtain without associativity of · but with f ∈ L ϕ

λ (G,R)

and with measurability of C f . In this case A = 0 and the Cauchy difference C :
Lϕ(G,R) → Lϕ(G × G,R) is linear continuous and continuously invertible on
its image, where Lϕ(G,R) denotes the space of equivalence classes of functions in
L ϕ(G,R). Moreover, C is compact iff Lϕ(G,R) has a finite dimension.

Let (G, ·, λ) be a measurable group with a complete, left-invariant and σ -finite
measure λ such that λ(G) = ∞. If ϕ is a ϕ-function, f : G → R and C f ∈
L ϕ
λ×λ(G×G,R), then there exists a unique additive A : G→ R, which is equal to

f λ a.e.
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17.1 Introduction

Let (G, ·) be a semigroup. If f : G→ R, then we call the expression

C f (x, y) = f (x · y)− f (x)− f (y)
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the Cauchy difference of f on G×G. The Cauchy equation

C f (x, y) = 0

is Ulam stable when any function approximately satisfying it is near to a solution of
this equation (such a solution will be called an additive function). Various definitions
and examples of such stability are presented, e.g., in [2, 3, 6], [8, Chapter XVII],
[11, 13–17].

Let λ be a complete measure defined on a σ -algebra $ of subsets of G. By
λ × λ we understand the completion of the product of the measure λ times itself.
In this note ϕ-function is called a function ϕ : [0,∞) → [0,∞), continuous,
non-decreasing and such that ϕ(t) = 0 iff t = 0 and

lim
t→∞ϕ(t) = ∞.

Let ϕ be a ϕ-function. We consider two examples of Orlicz classes L ϕ
λ (G,R)

and L ϕ
λ×λ(G × G,R) with Luxemburg’s F -norms (quasi-norms in another ter-

minology), both F -norms are denoted by ‖‖. For the notions of qusi-norm and
quasi-normed spaces see [19].

Then the stability question can be stated as follows: Does there exist a K ∈ R+
such that, for every f : G→ R with

C f ∈ L ϕ
λ×λ(G×G,R),

there exists an additive function A : G→ R such that

‖f − A‖ ≤ K‖C f ‖?

Here, we only introduce some basic notations and prove some introductory
lemmas. For the definition and further properties of Orlicz spaces we refer the reader
to [10, 12] and [7].

Let (X,$, ν) be a measure space. Let ϕ be a ϕ-function. By L ϕ
ν (X,R) (L ϕ

ν for
short) we denote the set of all ϕ-integrable functions on this measure space, i.e.,

L ϕ
ν = L ϕ

ν (X,R)

= {f ∈ M$ |
∫

X

ϕ(k|f (t)|)dν(t) <∞ for some k > 0},

where

M$ := {f : X → R | f is $-measurable}.
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We shall consider two elements of L ϕ
ν as equivalent if they are equal $-a.e. The

space Lϕν of equivalence classes of elements f ∈ L ϕ
ν becomes a Fréchet space with

the Luxemburg’s F -norm defined by

‖f ‖ = inf{u > 0 |
∫

X

ϕ(
1

u
|f (t)|)dν(t) ≤ u}.

If ϕ is a convex ϕ-function then Lϕν becomes a Banach space with the norm

‖f ‖ = inf{u > 0 |
∫

X

ϕ(
1

u
|f (t)|)dν(t) ≤ 1}.

If we assume additionally that the measure ν is σ -finite and

(01)
ϕ(u)

u
→ 0 as u→ 0, (∞1)

ϕ(u)

u
→ ∞ as u→ ∞,

then one can define Orlicz’s norm in Lϕν by

‖f ‖O = sup{
∫

X

f (x)z(x)dν(x) | z ∈ M$ and
∫

X

ϕ∗(|z(x)|)dν(x) ≤ 1},

where ϕ∗ is the complementary (in the Young sense) function for ϕ, that is

ϕ∗(v) = sup
u≥0
(uv − ϕ(u))

for v ≥ 0. The inequalities

‖f ‖ ≤ ‖f ‖O ≤ 2‖f ‖

hold and

‖f ‖O = inf
t>0

{t−1 + t−1
∫

X

ϕ(t |f (x)|)dν(x)}.

Moreover, the following two Hölder inequalities

|
∫

X

f (t)w(t)dν(t)| ≤ ‖f ‖O‖w‖
L
ϕ∗
ν
,

|
∫

X

f (t)w(t)dν(t)| ≤ ‖f ‖‖w‖O
L
ϕ∗
ν

are valid for functions f ∈ Lϕν , w ∈ Lϕ∗ν .
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Example 17.1 The functions

ϕ(u) = (u+ 1)ln(1 + u)− u,

ϕ∗(v) = ev − v − 1

are mutually complementary and satisfy (01) and (∞1).
Let ν be a nonatomic measure. Since

ϕ(u)

up
→ 0 as u→ ∞

for p > 1, from [10, Theorems 3.3 and 3.4] we obtain that Lp 
= L
ϕ
ν and the norms

‖‖p and ‖‖ are not equivalent for all 1 ≤ p ≤ ∞.

If the mappings f and g are equal almost everywhere with respect to the measure
ν we write

f
ν= g .

Let G be a nonempty set endowed with the binary operation written multiplica-
tively. Let (G,$, λ) be a complete measure space, where λ is not identically 0.
Given such a measure space (G,$, λ) and A ∈ $, y ∈ G we define

Ay = {t ∈ G | ty ∈ A}, yA = {t ∈ G | yt ∈ A}.

The following two conditions will be assumed further on

(r) Ay ∈ $ and λ(Ay) = λ(A) for all A ∈ $, y ∈ G,
(l) yA ∈ $ and λ(yA) = λ(A) for all A ∈ $, y ∈ G.

Note that condition (r) ((l), respectively) is automatically satisfied ifG is a group
and the σ -algebra$ and the measure λ are invariant with respect to right (left, resp.)
translations.

Let f : G→ R, y ∈ G. Then we define yf, fy : G→ R by

yf (x) := f (y · x), fy(x) := f (x · y).

Lemma 17.1 ([13, p. 203]) Let (G,$, λ) be a complete measure space satisfying
(r) and let y ∈ G, f ∈ L 1

λ (G,R). Then

fy ∈ L 1
λ (G,R) and

∫

G

fy(t)dλ(t) =
∫

G

f (t)dλ(t). (17.1)

If we replace the binary operation (x, y) �→ x · y by (x, y) �→ y · x, then we get
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Lemma 17.2 If (G,$, λ) satisfies (l), then for all y ∈ G and f ∈ L 1
λ (G,R), the

function yf : G→ R belongs to L 1
λ (G,R) and

∫

G
yf (t)dλ(t) =

∫

G

f (t)dλ(t). (17.2)

Lemma 17.3 Assume that λ(G) < ∞. If ϕ is a convex ϕ-function satisfying
conditions (01), (∞1) and f ∈ L ϕ

λ (G,R), then the functionsm2,m3 : G×G→ R,
defined by

m2(x, y) = f (x), m3(x, y) = f (y),

belong to L ϕ
λ×λ(G×G,R) and

‖m2‖ = ‖m3‖ ≤ K‖f ‖,
where K = 1 if λ(G) ≤ 1 and K = 2λ(G) if λ(G) > 1. Moreover, if (G,$, λ)
satisfies (l) or (r) and the functionm1(x, y) = f (x · y) is measurable in the product
space, then

m1 ∈ L ϕ
λ×λ(G×G,R)

and ‖m1‖ = ‖m2‖.
Proof Suppose that the condition (r) is satisfied. Applying the definition of L ϕ and
Lemma 17.1 we have, for a certain k > 0,

∞ >

∫

G

ϕ(k|f (x)|)dλ(x)

=
∫

G

ϕ(k|fy(x)|)dλ(x)

= 1

λ(G)

∫

G

dλ(y)

∫

G

ϕ(k|f |y(x))dλ(x),

and, by the Fubini-Tonelli theorem, the mapping m1 : (x, y) �→ f (x · y) belongs to
L ϕ
μ (G×G,R).
Similarly, m2,m3 ∈ L ϕ

μ (G × G,R). It is clear that ‖m2‖ = ‖m3‖ and, from
Lemma 17.1 and Fubini theorem, ‖m2‖ = ‖m1‖.

Now we prove that ‖m2‖ ≤ ‖f ‖ when λ(G) ≤ 1:

‖m2‖ = inf{u > 0 |
∫

G×G
ϕ(u−1|f (x)|)dμ(x, y) ≤ 1}

= inf{u > 0 |
∫

G

ϕ(u−1|f (x)|)dλ(x) ≤ 1

λ(G)
}

≤ inf{u > 0 |
∫

G

ϕ(u−1|f (x)|)dλ(x) ≤ 1} = ‖f ‖.
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Finally, if λ(G) > 1 then

‖m2‖ ≤ ‖m2‖O = inf
t>0

{t−1(1 +
∫

G×G
ϕ(t |f (x)|)dμ(x, y))}

= λ(G) inf
t>0

{t−1(
1

λ(G)
+

∫

G

ϕ(t |f (x)|)dλ(x))}

≤ λ(G) inf
t>0

{t−1(1 +
∫

G

ϕ(t |f (x)|)dλ(x))} = λ(G)‖f ‖O

≤ 2λ(G)‖f ‖.

The main results in Sect. 17.2 are Theorems 17.1 and 17.2. These theorems give
an affirmative answer to the question of stability in the case of Orlicz’s classes
L ϕ
λ (G,R) and L ϕ

λ×λ(G×G) provided that (G, ·, λ) is complete measurable group
(see Definition 17.1). In the case

λ× λ(G) = ∞

there occurred even the superstability, that is

C f ∈ L ϕ
λ×λ(G×G)

entails f = A a.e. for an additive A.
In Sect. 17.3 we investigate some properties of the Cauchy difference treated

as a linear operator which maps the Orlicz space Lϕλ into the Orlicz space Lϕλ×λ.
For example, a necessary and sufficient condition under which C is compact is
presented.

17.2 Stability of the Cauchy Equation

In the sequel μ denotes the complete product of the measure λ times itself.

Proposition 17.1 Let G be a semigroup and let (G,$, λ) be a complete measure
space satisfying at least one of the conditions (r) ,(l) . We assume additionally that
the mapping

S : G×G - (x, y) �→ (x, x · y) ∈ G×G

is measurable, i.e. S−1(U) isμ-measurable for everyμ-measurable setU ⊂ G×G.
Let f : G→ R be such a function that

C f ∈ L ϕ
μ (G×G,R)
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for a certain convex ϕ-function ϕ satisfying conditions (01) and (∞1). If

0 < λ(G) <∞,

then there exists a function g : G→ R such that:

(i) C g
μ= 0,

(ii) f − g ∈ L ϕ
λ (G,R),

(iii) ‖f − g‖ ≤ K‖C f ‖, where K = 1 if λ(G) ≥ 1, K = 2
λ(G)

if λ(G) < 1,

(iv) g1
λ= g for each function g1 : G→ R satisfying the conditions C g1

μ= 0,
f − g1 ∈ L ϕ

λ (G,R).

Proof Suppose that condition (r) is satisfied and write

λn = λ

λ(G)
.

Applying Hölder’s inequality we get L ϕ
μ ⊂ L 1

μ . Therefore C f ∈ L 1
μ and by the

Fubini theorem the function

φ(y) :=
∫

G

(f (x · y)− f (x)− f (y))dλn(x)

=
∫

G

(f (x · y)− f (x))dλn(x)− f (y)

is defined for λ-almost all y ∈ G, so there exists M ∈ $, λ(M) = 0 such that φ(y)
is defined for y ∈ G\M . Furthermore, φ is measurable.

Define the function g : G→ R by

g(y) =
{∫

G
(f (x · y)− f (x))dλn(x) for y ∈ G\M,

0 for y ∈ M.

Clearly g−f λ= φ, thus g−f is measurable. Using Lemma 17.1, for y, z, y ·z ∈
G\M , we have

g(y)+ g(z) =
∫

G

(f (x · y)− f (x))dλn(x)+
∫

G

(f (x · z)− f (x))dλn(x)

=
∫

G

(f ((x · y) · z)− f (x · z)+ f (x · z)− f (x))dλn(x)

=
∫

G

(f (x · (y · z))− f (x))dλn(x) = g(y · z).
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Thus

g(y)+ g(z) = g(y · z)

for (y, z) ∈ G2\(M × G ∪G ×M ∪ S−1(G ×M)). To prove (i) we only have to
show that M ×G∪G×M ∪ S−1(G×M) is μ-measurable and that its measure is
zero.

Clearly μ(M ×G) = μ(G×M) = 0, therefore we have to prove that

S−1(G×M) = {(y, z) ∈ G×G | y ∈ Mz}
is measurable and that its measure is zero. But this is a simple implication of the fact
that S is measurable and of the Fubini Theorem (as by the condition (r), Mz ∈ $

and λ(Mz) = 0 for every z ∈ G). This completes the proof of (i).
We have

|g(y)− f (y)| = |
∫

G

C f (x, y)dλn(x)| (17.3)

≤
∫

G

|C f (x, y)|dλn(x), for λ almost all y ∈ G.

Applying Jensen’s inequality we obtain for u > 0 and almost all y ∈ G

ϕ(
1

u
|g(y)− f (y)|) ≤

∫

G

ϕ(
1

u
|C f (x, y)|)dλn(x),

which implies

λ(G)

∫

G

ϕ(
1

u
|g(y)− f (y)|)dλ(y)

≤
∫

G

dλ(y)

∫

G

ϕ(
1

u
|C f (x, y)|)dλ(x)

=
∫

G×G
ϕ(

1

u
|C f (x, y)|)dμ(x, y) ≤ 1 , for u > ‖C f ‖.

Taking u = η + ‖C f ‖, η > 0 we obtain

λ(G)

∫

G

ϕ(
1

u
|g(y)− f (y)|)dλ(y) ≤ 1,

and if λ(G) ≥ 1, then

∫

G

ϕ(
1

u
|g(y)− f (y)|)dλ(y) ≤ 1,

which implies that ‖g − f ‖ ≤ u for all η > 0. It proves (ii) and (iii) if λ(G) ≥ 1.
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The case λ(G) < 1. Define the sets N, Ñ,M by

N = {z | z : G→ R is measurable and
∫

G

ϕ∗(|z(y)|)dλ(y) ≤ 1},

Ñ = {z̃ | z̃ : G×G→ R and z̃(x, y) = z(y) for some z ∈ N},

M = {w | w : G×G→ R is measurable and
∫

G×G
ϕ∗(|w(x, y)|)dμ(x, y) ≤ 1}.

In view of the inclusion Ñ ⊂ M and (17.3) we obtain the following inequalities

sup
z∈N

∫

G

λ(G)|g(y)− f (y)|z(y)dλ(y)

≤ sup
z∈N

∫

G

∫

G

|C f |(x, y)z(y)dλ(x)dλ(y)

≤ sup
z̃∈Ñ

∫

G

∫

G

|C f |(x, y)z̃(x, y)dλ(x)dλ(y)

≤ sup
w∈M

∫

G×G
|C f |(x, y)w(x, y)dμ(x, y).

Consequently,

λ(G)‖g − f ‖O ≤ ‖C f ‖O.

From this we get

‖g − f ‖ ≤ 2

λ(G)
‖C f ‖,

which proves (ii) and (iii) if λ(G) < 1.
Uniqueness of g. If C g1

μ= 0 and f − g1 ∈ L ϕ
λ , then

h := g − g1 = (f − g1)− (f − g) ∈ L ϕ
λ ⊂ L 1

λ

and C h
μ= 0, so C h ∈ L 1

μ . Therefore, by the Fubini theorem

0 =
∫

G

C h(x, y)dλ(x)

=
∫

G

(hy(x)− h(x))dλ(x)− h(y)λ(G)

= − h(y)λ(G)
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for λ-almost all y ∈ G. Thus ‖h‖1 = 0, which proves (iv). The proof for case (l) is
analogous.

We can now sharpen the statement of Proposition 17.1, (iii).

Proposition 17.2 If λ(G) ≥ 1, then the constant K = 1 in the statement of
Proposition 17.1 (iii) is best possible. It means that for every 0 < δ < 1 there
is a convex ϕ-function satisfying the conditions (01), (∞1) such that the estimate

‖f − g‖ ≤ (1 − δ)‖C f ‖,

is false for some f with C f ∈ L ϕ
μ .

If 0 < λ(G) < 1, then the best possible constant Kb belongs to the interval

[ 1

λ(G)
, 1 + 1

λ(G)

]
.

Moreover, replacing the Luxemburg’s norm by the Orlicz’s one we obtain the
following inequality

‖f − g‖O ≤ (λ(G))−1‖C f ‖O, (17.4)

where (λ(G))−1 cannot be decreased.

Proof First we calculate ‖f − 0‖/‖C f ‖ and ‖f − 0‖O/‖C f ‖O for f = 1 and
ϕ(t) = tp/p, where p > 1 (see Proposition 17.1 (iv)). After easy calculations (cf.
[7, Section 9]) we obtain

‖1‖
‖C 1‖ = (ϕ−1( 1

λ(G)
))−1

(ϕ−1( 1
(λ(G))2

))−1
= 1

p
√
λ(G)

→ 1 as p → ∞.

Thus Kb = 1 in the case λ(G) ≥ 1.
Now we assume 0 < λ(G) < 1. The estimate (17.4) result from the proof of

Proposition 17.1 (ii), (iii) in this case. For ϕ(t) = tp/p we have ϕ∗(t) = tq/q,
where 1/p + 1/q = 1, and therefore

‖1‖O
‖C 1‖O = λ(G)(ϕ∗−1

( 1
λ(G)

))

λ(G)2(ϕ∗−1
( 1
(λ(G))2

))
= 1

λ(G)

q
√
λ(G)→ 1

λ(G)
as p → 1 + .

Thus (in Orlicz’s norm)

(I) 1
λ(G)

is best possible in the case 0 < λ(G) < 1.
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Moreover,

‖1‖
‖C 1‖ = 1

p
√
λ(G)

→ 1

λ(G)
as p → 1 + .

This proves that Kb ∈ [1/λ(G),∞).
The above localization of Kb can be improved in the following way: Let r =

(λ(G))−1 and � be a set of all convex ϕ-functions satisfying conditions (0)1,(∞)1.
Let us observe that

{r2ϕ | ϕ ∈ �} = � and L ϕ = L r2ϕ.

This yields

Kb = sup
‖f − g‖ϕ
‖C f ‖ϕ = sup

‖f − g‖r2ϕ

‖C f ‖r2ϕ

, (17.5)

where the supremum is taken over the set % defined by

% = {(ϕ, f ) | ϕ ∈ �, f ∈ R
G is such that C f ∈ L ϕ

μ and ‖C f ‖ 
= 0}.

Clearly,

‖C f ‖r2ϕ = ‖C f ‖ϕ,n, (17.6)

where the subscript n indicates that ‖C f ‖ϕ,n is calculated with respect to the
normalized measure.

Let

B = ‖f − g‖ϕ,n.

Dividing both f − g and C f by B we see, that one can assume without loss of
generality that ‖f − g‖ϕ,n = 1. Let us observe that inequality of the type (20) in [7,
p. 251] is true also for Luxemburg’s norm. Furthermore, formula (22) holds true for
Luxemburg’s norm, provided that the Luxemburg’s norm of u is equal to 1 (cf. [7,
p. 251]).

From these observations we obtain

‖f − g‖r2ϕ ≤ 1 +
∫

G

r2ϕ(|f (t)− g(t)|)dλ(t) ≤ 1 + r‖f − g‖ϕ,n. (17.7)

Since ‖f − g‖ϕ,n = 1, from (17.5), (17.6) and (17.7) we deduce that

Kb ≤ sup

(‖f − g‖ϕ,n
‖C f ‖ϕ,n + r ‖f − g‖ϕ,n

‖C f ‖ϕ,n
)
≤ 1 + 1

λ(G)
,
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where the supremum is taken over the set % (the last inequality is a consequence of
the first part of the proof, because λn(G) = 1). The proof is complete.

We propose the following two open problems.

(Q1) Find Kb as a function of t = λ(G) when λ(G) is less than 1.
(Q2) Examine whether the limit of Kb(t) as t → 1− is equal to 1.

To formulate the main stability theorem we need the following definition.

Definition 17.1 ([5, §59 and p. 164]) We say that (G, ·,∑, λ) is a complete
measurable group, iff

(a) (G, ·) is a group,
(b) (G,$, λ) is a σ -finite measure space, λ is not identically zero and is complete,
(c) the σ -algebra$ and the measure λ are invariant with respect to left translations,
(d) λ× λ is the completion of the product measure,
(e) the transformation S : G×G - (x, y) �→ (x, x · y) ∈ G×G is measurability

preserving, i.e. S and S−1 are measurable.

It is worth mentioning that under the assumptions (a)–(e) and λ(G) < ∞ the
measure λ is invariant under translations and under symmetry with respect to zero,
where zero means the unit of the group G, (cf. [18, p. 1155−2]). This implies that
the measure λ× λ on G×G has the same properties. Therefore the families I1, I2
of all subsets of G and G × G, respectively, of measure zero are p.l.i. ideals in G
and G×G, respectively. These ideals are conjugate (by the Fubini Theorem). This
fact is still true if λ(G) = ∞, because the measure λ restricted to I1 is invariant
under translations and under symmetry with respect to zero (a simple consequence
of [5, Theorem D, p. 259], cf. also [15]). Definitions of p.l.i. ideals and conjugate
p.l.i. ideals one can found in [8, pp. 437–439].

Theorem 17.1 Let (G,$, λ) be a complete measurable group. Let f : G → R

be such a function that C f ∈ L ϕ
μ (G × G,R) for a certain convex ϕ-function ϕ

satisfying conditions (01), (∞1). If λ(G) <∞, then there is a unique additive map
A : G→ R such that

f − A ∈ L ϕ
λ (G,R).

Moreover

‖f − A‖ ≤ K‖C f ‖,
where K = 1 if λ(G) ≥ 1 and K = 1 + 1

λ(G)
if λ(G) < 1.

Proof In view of Proposition 17.1 there exists the function g : G → R satisfying
the conditions (i)–(iv) of Proposition 17.1. Due to (i) and [8, Theorem 17.6.1 on p.
444], there exists a unique additive function A : G→ R such that

A
λ= g.
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This and conditions (ii), (iii) and (iv) from Proposition 17.1 together with Proposi-
tion 17.2 makes the proof complete.

Example 17.2 Let B : R → R be a discontinuous solution of the Cauchy equation

B(x + y) = B(x)+ B(y)

such that B|Q = 0. Since every measurable solution of the Cauchy equation is
continuous (cf. [8, p. 218] and [1]), B is not measurable. Consider the set G =
[0, 1) with the binary operation +1 defined for all pairs (x, y) of elements of G by

x +1 y = x + y for x + y < 1, x +1 y = x + y − 1 otherwise.

Let λ be the Lebesgue measure restricted to the σ -algebra $ of all Lebesgue-
measurable subsets of G. Observe that (G,$, λ) is a complete measurable group
with λ(G) = 1. Since B(1) = 0, B|G is a homomorphism of G into R. Clearly, this
homomorphism is not measurable. Therefore B|G is not λ-equal to 0. Denoting by
f the function 1 + B|G we have

C f ∈ Lϕμ(G×G,R) and ‖C f ‖ > 0

although f does not belong to L ϕ
λ . By Theorem 17.1 there exists a unique additive

map A : G→ R such that

f − A ∈ L ϕ
λ (G,R).

This fact and additivity of B|G entail

A(x) = B(x) for all x ∈ G.

The next theorem is a counterpart of [15, Theorem 3.1].

Theorem 17.2 Let (G, ·, λ) be a measurable group with a complete, left-invariant
and σ -finite measure λ such that λ(G) = ∞. If ϕ is a ϕ-function, f : G→ R and

C f ∈ L ϕ
μ (G×G,R),

then there exists a unique additive A : G → R which is equal to f λ a.e. The
Cauchy equation

C f (x, y) = 0

is satisfied for almost all (x, y) ∈ G×G.
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Proof First observe that the class L ϕ is closed under addition and left translations
and that from the Fubini Theorem

f ∈ L ϕ
μ implies f (·, y) ∈ L ϕ

λ for almost all y ∈ G.

Making use of the just stated facts and arguing analogously as in the proof of [15,
Theorem 3.1] (with X replaced by G, L +

p (X,R) replaced by L ϕ
λ ), we can easily

obtain the assertion.

As a trivial consequence of Theorems 17.1 and 17.2 we obtain the following
result.

Remark 17.1 Let G be a complete measurable group with measure λ and let ϕ be
a ϕ-function. If λ(G) < ∞ we additionally assume that ϕ is convex and that it
satisfies conditions (01), (∞1). Then the pair

(L ϕ
λ (G,R),L

ϕ
μ (G×G,R))

has the double difference property, i.e. for every f : G→ R such that

C f ∈ L ϕ
μ (G×G,R)

there exists an additive A : G→ R such that f − A ∈ L ϕ
λ (G,R) (cf. [9]).

17.3 Cauchy Difference as a Linear Operator

We begin with

Theorem 17.3 Let G be a non-empty set with a binary operation ·. Let (G,$, λ)
be a measure space satisfying at least one of the conditions (r) , (l) . If

0 < λ(G) <∞,

f ∈ L ϕ
λ (G,R) for a certain convex ϕ-function ϕ satisfying conditions (01), (∞1)

and the mapping

G2 - (x, y) �→ f (x · y) ∈ R

is measurable in the product space, then

(j) C f ∈ L ϕ
μ (G×G,R);

(jj) ‖f ‖ ≤ K‖C f ‖, where K is the constant defined in the preceding theorem;
(jjj) ‖C f ‖ ≤ K1‖f ‖, where K1 = 3 if λ(G) ≤ 1, K1 = 6λ(G) if λ(G) > 1;

(jv) C f
μ= 0 ⇔ f

λ= 0.
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Proof Since the functions m1,m2,m3 defined in Lemma 17.3 belong to L ϕ
μ , we

get C f ∈ L ϕ
μ , which proves (j).

From Lemma 17.3

‖C f ‖ = ‖m1 −m2 −m3‖ ≤ ‖m1‖ + ‖m2‖ + ‖m3‖ = K1‖f ‖,

which gives (jjj).
Observe that for every y ∈ G

C f (·, y) = fy − f − f (y) ∈ L ϕ
λ ⊂ L 1

λ ,

and therefore by Lemma 17.1

∫

G

C f (x, y)dλn(x) = −f (y). (17.8)

Hence, for every y ∈ G,

|f (y)| ≤
∫

G

|C f (x, y)|dλn(x).

We obtain the proof of (jj) by repeating the method which is used in the proof
of part (iii) of Propositions 17.1 and 17.2. Notice that the associativity of · and the
property of mapping S are used in the proof of Proposition 17.1 only to obtain

g(y)+ g(z) = g(y · z)

for μ-almost all (y, z) ∈ G2. Because now g
λ= 0, these assumptions are

superfluous. Since (jj) implies (jv), the proof is completed.

The following equality

{f ∈ Lϕλ(G,R) | C f ∈ Lϕμ(G×G,R)}
= { f ∈ Lϕλ(G,R) | (x, y) �→ f (x · y) is measurable in the product space }

results from properties of measurable functions and Theorem 17.3. Clearly, the set

DC = {f ∈ Lϕλ(G,R) | C f ∈ Lϕμ(G×G,R)}

is a linear subspace of Lϕλ(G,R).

Theorem 17.4 Let G be a non-empty set with a binary operation ·. Let (G,$, λ)
be a measure space satisfying at least one of the conditions (r) , (l) . If

0 < λ(G) <∞,
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then the linear operator

C : DC - f �→ C f ∈ Lϕμ(G×G,R)

is continuous and invertible. Moreover, the inverse operator (defined on C (DC )) is
continuous and C−1 has the form

C−1h(z) =
{−(λ(G))−1

∫
G
h(x, z)dλ(x) if (r) occurs,

−(λ(G))−1
∫
G
h(z, y)dλ(y) if (l) occurs,

for almost all z ∈ G.
If DC = L

ϕ
λ then the following statements are equivalent:

(p) C is compact;
(q) there is a finite σ -algebra $0 on G such that $0 ⊂ $ and such that each set in

$ differs from a set in $0 by a λ-null set.

Proof The continuity of C results from Theorem 17.3 (jjj). The existence and
continuity of C−1 results from Theorem 17.3 (jv), (jj), respectively.

The form of C−1 is a consequence of the proof of Theorem 17.3, (17.8).
(q) ⇒ (p): From [4, Exercise 3, p. 141] both the spaces Lϕλ , Lϕμ have finite

dimensions. This proves the compactness of C .
(p) ⇒ (q): Assume that C is compact and (q) does not hold. Thus, the space Lϕλ

is infinite-dimensional. The operator H : Lϕμ → L
ϕ
λ defined by

(Hz)(y) = −
∫

G

z(x, y)dλn(x)

is continuous (cf. the proof of Proposition 17.1 (iii)). By the formula (17.8),HC f =
f for all f ∈ Lϕλ . Since the product of a continuous linear operator with a compact
operator is compact, HC = I is compact on the infinite-dimensional space Lϕλ , a
contradiction.
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Chapter 18
Semi-Inner Products and
Parapreseminorms on Groups and a
Generalization of a Theorem of Maksa
and Volkmann on Additive Functions

Árpád Száz

Abstract By using inner products and paraprenorms on groups, we prove a natural
generalization of a basic theorem of Gyula Maksa and Peter Volkmann on additive
functions.
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functions
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18.1 Introduction

In this paper, by using inner products and paraprenorms on groups, we shall prove a
natural generalization of the following basic theorem of Maksa and Volkmann [82].

Theorem 18.1 For functions f : G → E from a group G to a real or complex
inner product space E, the inequality

‖ f (x y) ‖ ≥ ‖ f (x)+ f (y) ‖ (
x, y ∈ G )

implies

f (x y) = f (x)+ f (y)
(
x, y ∈ G )

.

Á. Száz (�)
Department of Mathematics, University of Debrecen, Debrecen, Hungary
e-mail: szaz@science.unideb.hu

© Springer Nature Switzerland AG 2019
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Remark 18.1 For the origins of this striking theorem, see Volkmann [134], Maksa
[81] and Kurepa [74]. The latter author also studied the converse inequality and
provided two illustrating examples.

The G(·) = R (+) and E (+) = R (+) particular case of Theorem 18.1 was
later also proved, in a completely different way, by Kwon et al. [75] without citing
the works of the above mentioned authors.

Remark 18.2 Before the inequalities

| f (x)+ f (y) | ≤ | f (x + y) | and ‖ f (x)+ f (y) ‖ ≤ ‖ f (x + y) ‖,

the squared and normed Cauchy equations

f ( x + y )2 = (
f (x)+ f (y)

)2 and ‖ f ( x + y ) ‖ = ‖ f (x)+ f (y) ‖

were also intensively investigated by a great number of mathematicians.
See, for instance, Robinson [101], Hosszú [56], Vincze [131–133], Fischer and

Muszély [35, 36], Haruki [54, 55], Dhombres and Aczél [1, 23], Swiatak and Hosszú
[115, 116], Kuczma [68], Skof [110–112], Ger [40–42, 44], Schöpf [105], Piejko
[97], Batko and Tabor [8, 9], Ger and Koclega [45], Tabor and Tabor [125, 126],
Fochi [37], Oikhberg and Rosenthal [92], Kannappan [63] and Dong and Chen
[25].

Remark 18.3 Later, some similar results have also been proved for some analogous
inequalities derived from the quadratic equation and its generalizations by Gillányi
[47], Rätz [100], Fechner [31], Eqorachi et al. [30] and Manar and Elqorachi [83],

Moreover, several other functional inequalities, implying additivity or
quadraticity, have also been intensively investigated by Park et al. [94], Roh and
Chang [102], Lee et al. [77], Chung et al. [22], Dong and Zheng [26] and Park et al.
[95].

18.2 Semi-inner Products

The following definition of semi-inner products has been taken from [121] and [12].
(For some immediate generalizations, see [13] and [14].)

It is in accordance with that of [119], but differs from the one introduced by
Lumer [78]. (For some further developments, see [51] and [27].)

Our former definitions of semi-inner products may also be modified according to
the ideas of Bognár [10], Antoine and Grossmann [4] and Drygas [28].

However, in the present paper, it seems convenient to adhere to the following less
general, original notion.

Definition 18.1 Let X be an additively written group. Then, a function P of X2 to
C is called a semi-inner product on X if for any x, y, z ∈ X we have
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(a) P (x, x) ≥ 0,
(b) P (y, x) = P (x, y),
(c) P (x + y, z) = P (x, z)+ P (y, z).

Remark 18.4 The above semi-inner product P will be called an inner product if

(d) P(x, x) = 0 implies x = 0 for all x ∈ X.

To illustrate the appropriateness of Definition 18.1, the following example has
been suggested to me by Zoltán Boros.

Example 18.1 If a is an additive function of X to an inner product space H and

P (x, y) = 〈 a (x), a (y) 〉
for all x, y ∈ X, then P is a semi-inner product on X. Moreover, P is an inner
product if and only if a is injective. That is, a−1(0) = {x : a(x) = 0} = {0}.

Note that, despite this, P may be a rather curious function even if X = R
n and

H = R. Namely, by Kuczma [69, p. 292], there exists a discontinuous, injective
additive function of Rn to R. In the case n = 1, by Makai [79], Kuczma [69, p. 293]
and Baron [6, 7], we can state even more.

The most basic consequences of Definition 18.1 can be listed in the following

Theorem 18.2 If P is a semi-inner product on X, then for any x, y, z ∈ X and
k ∈ Z we have

(1) P (x + y, z) = P (y + x, z),
(2) P (x, z+ y) = P (x, y + z),
(3) P (x, y + z) = P (x, y)+ P (x, z),
(4) P (k x, y ) = k P (x, y) = P (x, k y ),
(5) z = x + y − (y + x) implies P (z, z) = 0.

Proof By using (b) and (c), and the additivity of complex conjugation, we can easily
see that (3) is true.

Hence, by the Z-homogeneity of additive functions of one group to another [13,
120], it is clear that (4) is also true.

Moreover, from (c) and (3), by using the commutativity of the addition in C, we
can see that (1) and (2) are also true.

Now, if z is as in (5), then by using (c), (4) and (1) we can also easily see that

P (z, z) = P ( x + y − (y + x), z) = P ( x + y, z )− P ( y + x, z ) = 0.

Therefore, (5) is also true. ��
Remark 18.5 Note that, in particular, (4) yields

P (0, y) = 0 = P (x, 0 ) and P (− x, y ) = −P (x, y) = P (x,−y )
for all x, y ∈ X.
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Moreover, from (5), we can see that x+y = y+x for all x, y ∈ X if in particular
P is an inner product. Therefore, only commutative groups can have inner products.
This simple, but striking fact was first observed by Zoltán Boros.

Remark 18.6 In addition to Definition 18.1 and Theorem 18.2, we can also easily
note that the real and imaginary parts (first and second coordinate functions) P1 and
P2 of P , defined by

P1(x , y) = 2−1
(
P (x, y)+ P (x, y)

)
= 2−1 (P (x, y)+ P (y, x) )

and

P2(x , y) = (i 2)−1
(
P (x, y)− P (x, y)

)
= i−1 2−1(P (x, y)− P (y, x)

)

for all x, y ∈ X, also have the same commutativity and bilinearity properties as P .
Furthermore, by properties (a) and (b), for any x, y ∈ X we have

(1) P1 (x , x) = P (x, x) and P2(x , x) = 0,
(2) P1 (y , x) = P1 (x , y) and P2 (y , x) = −P2 (x , y).

Thus, in particular P1 is also a semi-inner product on X. However, because of its
skew-symmetry, P2 cannot be a semi-inner product on X whenever P2 
= 0.

Remark 18.7 Conversely, one can easily see that if P1 is a real-valued semi-inner
product on X and P2 is a nonzero, skew-symmetric, biadditive function of X2 to R,
then

P = (P1 , P2) = P1 + i P2

is a complex-valued semi-inner product on X.

18.3 The Induced Seminorms

Because of (a) in Definition 18.1, we may naturally introduce the following

Definition 18.2 If P is a semi-inner product on the group X, then for any x ∈ X
we define

p (x) = √
P(x, x) .

Example 18.2 If in particular P is as in Example 18.1, then

p (x) = √〈 a (x), a (x)〉 = ‖ a (x) ‖
for all x ∈ X. Thus, for any x ∈ X, we have p (x) = 0 if and only if a (x) = 0.
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Concerning the function p, introduced in Definition 18.2, we can easily prove

Theorem 18.3 If P is a semi-inner product on X, then for any x, y ∈ X and k ∈ Z

we have

(1) p (x) ≥ 0,
(2) p ( k x ) = | k | p (x),
(3) p (x + y) = p (y + x),
(4) p

(
k (x + y)) = p ( k x + k y),

(5) z = x + y − (y + x) implies p (z) = 0,
(6) p (x + y)2 = P1(x + y, x)+ P1(x + y, y),
(7) p (x + y)2 = p (x)2 + p (y)2 + 2 P1(x , y).

Proof By Definition 18.2 and Theorem 18.2, it is clear that (1), (2) and (5) are true.
Moreover, by using Remark 18.6, we can see that

p (x) = √
P1(x , x)

and

p (x + y)2 = P1( x + y, x + y ) = P1 (x + y, x)+ P1 (x + y, y )
= P1 (x , x)+ P1 (y , x)+ P1 (x , y)+ P1 (y , y)

= p (x)2 + 2P1(x , y)+ p (y)2.

Therefore, (6) and (7) are also true.
Hence, by the symmetry of P1, the commutativity of the addition in R and the

nonnegativity of p, it is clear that (3) is also true.
Moreover, by using (2), (7) and Theorem 18.2, we can see that

p
(
k (x + y))2 = k2 p (x + y)2 = k2 p (x)2 + k2 p (y)2 + 2 k2 P1(x , y)

and

p ( k x + k y)2 = p (k x)2 + p (k x)2 + 2P1(k x, k y)

= k2 p (x)2 + k2 p (y)2 + 2 k2 P1(x , y).

Therefore, p
(
k (x + y)

)2 = p ( k x + k y)2, and thus by the nonnegativity of p
assertion (4) also holds. ��
Remark 18.8 Note that, in particular, (2) yields

p (0) = 0 and p (−x) = p (x)

for all x ∈ X. Thus, p is an even function.
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Remark 18.9 Moreover, to feel the importance of (4), one can note that for any
x, y ∈ X, we have 2 ( x + y ) = 2 x + 2 y if and only if y + x = x + y.

Therefore, if x and y do not commute, then 2 ( x + y ) 
= 2 x + 2 y. However, by
(4), we still have p

(
2 (x + y)) = p ( 2 x + 2 y).

Remark 18.10 In addition to Theorem 18.3, we can also note that P is an inner
product on X if and only if p (x) = 0 implies x = 0 for all x ∈ X.

Now, by using Theorems 18.3 and 18.2, one can also easily establish the
following

Theorem 18.4 If P is a semi-inner product onX, then for any x, y ∈ X we have

(1) p (x − y)2 = p (x + y)2 − 4P1(x , y),
(2) p (x − y)2 = 2p (x)2 + 2p (y)2 − p ( x + y )2.

Moreover, as an immediate consequence of Theorems 18.4 and 18.3, one can
state.

Theorem 18.5 If P is a semi-inner product onX, then for any x, y ∈ X we have

(1) P1(x , y) = 4−1
(
p (x + y)2 − p (x − y)2

)
,

(2) P1(x , y) = 2−1
(
p (x + y)2 − p (x)2 − p (y)2

)
.

Remark 18.11 Now, similar polar formulas for P2(x , y) cannot be proved. There-
fore, in accordance with Remark 18.7, P can be recovered from p only in the
real-valued case. (See [13, Example 5.6].)

Moreover, in the present generality, the usual Schwarz’s inequality cannot also
be proved. In [12], by improving the argument of [11], we could only prove the
following weakened form of it. (See also [13] and [14].)

Lemma 18.1 If P is a semi-inner product on X, then for any x, y ∈ X we have

|P1(x , y) | ≤ p (x) p (y).

Proof By using Theorems 18.3 and 18.2, we can see that

p ( n x + my )2 = p (n x)2 + p (my)2 + 2P1(n x, m y)

= n2 p (x)2 + m2 p (y)2 + 2 nmP1(x , y),

and thus

−2P1(x , y) ≤ (n/m)p (x)2 + (m/n) p (y)2

for all n,m ∈ N.
Therefore, by the definition of rational numbers, we actually have

−2P1(x , y) ≤ r p (x)2 + r−1 p (y)2

for all r ∈ Q with r > 0.
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Hence, by using that each real number is a limit of a sequence of rational numbers
and the operations in R are sequentially continuous, we can already infer that

−2P1(x , y) ≤ λp (x)2 + λ−1 p (y)2

for all λ ∈ R with λ > 0.
Now, if p (x) 
= 0 and p (y) 
= 0, then by taking λ = p (y)/p (x) we can see

that

−2P1(x , y) ≤ 2p (x) p (y),

and thus −P1(x , y) ≤ p (x) p (y) also holds.
While, if for instance p (x) = 0, then we can see that

−2P1(x , y) ≤ λ−1 p (y)2

for all λ > 0, and thus −2P1(x , y) ≤ 0. Therefore, −P1(x , y) ≤ 0, and thus
−P1(x , y) ≤ p (x) p (y) trivially holds.

Consequently, the inequality

−P1(x , y) ≤ p (x) p (y)

is always true. Hence, by using Remarks 18.5 and 18.8, we can also see that

P1(x , y) = −P1(−x, y) ≤ p (−x) p (y) = p (x) p (y).

Therefore, by the definition of the absolute value, the required inequality is also
true. ��

The above weak Schwarz inequality allows us to prove the subadditivity of p.
Thus, some of the results on semi-inner product spaces can be extended to semi-
inner product groups.

Theorem 18.6 If P is a semi-inner product on X, then for any x, y ∈ X we have
(1) p (x + y) ≤ p (x)+ p (y), (2) |p (x)− p (y) | ≤ p (x − y).

Proof By using Theorem 18.3 and Lemma 18.1, we can see that

p (x + y)2 = P1(x + y, x)+ P1(x + y, y) ≤ p (x + y) p (x) + p (x + y) p (y).

Therefore, by the nonnegativity of p, inequality (1) is also true.
Now, to complete the proof, it remains to note only that (2) can be derived from

(1) on the usual way. ��
Remark 18.12 Theorems 18.3 and 18.6 show that the function p is a seminorm on
X. Moreover, from Remark 18.10, we can see that p is a norm on X if and only if
P is an inner product on X.



390 Á. Száz

Remark 18.13 Instead of a norm p on a groupX, several authors (see [124, p. 111])
prefer to use a metric d on X which is translation-invariant in the sense that

d ( x + z, y + z ) = d (x, y) and d ( z+ x, z+ y ) = d (x, y)

for all x, y, z ∈ X.
Note that these conditions can be reformulated in several different forms. For

instance, the second condition is equivalent to the requirement that

d (0, y) = d ( x, x + y )
(
d (x, y) = d ( 0,−x + y )

)

for all x, y ∈ X. Thus, d may, for instance, be naturally called upper left-translation-
invariant if d (0, y) ≤ d ( x, x + y ) for all x, y ∈ X.

Moreover, if p is as in Definition 18.2, then we can easily see that the function
d, defined by

d (x, y) = p (−x + y )

for all x, y ∈ X, is a translation-invariant semimetric on X such that

d ( k x, k y ) = | k | d (x, y)

for all k ∈ Z and x, y ∈ X.

Remark 18.14 Metrics derivable from norms have formerly been explicitly studied
by Oikhberg and Rosenthal [92], Šemrl [106, 107] and Chmieliński [20, 21].

Moreover, the equivalence of norms to norms derived from inner products have
been studied by Joichi [59] and Chmieliński [19]. However, equivalences of metrics
to metrics derived from norms seem not to be investigated.

18.4 Some Further Properties of the Induced Seminorm

Assertions (3)–(4) and (6)–(7) of Theorem 18.3 can be extended to all finite and
certain infinite families of elements of X. However, in the sequel, we shall only
need the last statement of the following

Theorem 18.7 If P is a semi-inner product on X, then for any x, y, z ∈ X and
k ∈ Z we have

(1) p ( x + y + z ) = p ( x + z+ y ),
(2) p

(
k ( x + y + z )) = p ( k x + k y + k z ),

(3) p ( x + y + z )2 = P1( x + y + z, x )+ P1( x + y + z, y )+ P1(x + y + z, z ),
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(4) p ( x + y + z )2 = p (x)2 + p (y)2 + p (z)2 + 2P1(x , y) + 2P1(x , z) +
2P1(y , z),

(5) p ( x+y+ z )2 = p (x+y)2 + p (x+ z)2 + p (y+ z)2 − p (x)2 − p (y)2 −
p (z)2 .

Proof Assertion (1) is immediate from Definition 18.2 by Remark 18.6. To prove
(2) and (3), note that by (7) in Theorem 18.3 we have

p ( x + y + z )2 = p (x + y)2 + p (z)2 + 2P1( x + y, z )
= p (x)2 + p (y)2 + 2P1(x , y)+ p (z)2 + 2P1(x , z)+ 2P1(y , z)

= p (x)2 + p (y)2 + p (z)2 + 2P1(x , y)+ 2P1(x , z)+ 2P1(y , z)

= p (x)2 + p (y)2 + p (z)2 + p (x + y)2 − p (x)2 − p (y)2

+ p (x + z)2 − p (x)2 − p (z)2 + p (y + z)2 − p (y)2 − p (z)2

= p (x + y)2 + p (x + z)2 + p (y + z)2 − p (x)2 − p (y)2 − p (z)2.

��
Remark 18.15 The above parallelepiped law (5) plays a similar role in characteri-
zation of inner product spaces as the parallelogram identity established in assertion
(2) of Theorem 18.4.

Their importance, in this context, was first recognized by Fréchet [38] and Jordan
and von Neumann [60]. (See also Amir [3], Istrǎtescu [58] and Alsina, Sikorska and
Tomás [2], for instance.)

Whenever p is even, the parallelogram identity can be derived from the paral-
lelepiped law by taking z = −y. Moreover, if X is commutative and p is even, then
they are actually equivalent. (For a proof, see [84] and [122].)

Remark 18.16 In this respect, it is also worth noticing that if p is a function of the
group X to R such that for any x, y, z ∈ Y we have

(1) p (x + y)2 = p (y + x)2,
(2) p ( x+y+z )2 = p (x+y)2+p (x+z)2+p (y+z)2−p (x)2−p (y)2−p (z)2,

then by [114, Proposition 13.25] of Stetkaer there exist a unique additive function a
of X to R and a unique symmetric biadditive function A of X2 to R such that

p (x)2 = a (x)+ A (x, x)

for all x ∈ X.
Hence, if in addition p is even, we can infer that

a (x)+A (x, x)=p (x)2 = p (−x)2 = a (−x)+A (−x,−x) = −a (x)+A (x, x),
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and thus a (x) = 0 for all x ∈ X. Therefore, we have p (x)2 = A (x, x) for all
x ∈ X. Hence, if in addition p is nonnegative, we can infer that p (x) = √

A (x, x )

for all x ∈ X.

In [12], we tried to prove the following generalization of Theorem 18.7 by
induction. However, later Jens Schwaiger has suggested some more convenient
proofs.

Theorem 18.8 If P is a semi-inner product on X, then for any n ∈ N, with n > 1,
and x = ∑n

i=1 xi , with xi ∈ X, we have

(1) p (x)2 =
n∑

i=1
P1(x , xi ),

(2) p (x)2 =
n∑

i=1
p (xi)

2 + ∑

1≤i<j≤n
2P1( xi , xj ),

(3) p (x)2 = ∑

1≤i<j≤n
p ( xi + xj )

2 − (n− 2)
n∑

i=1
p (xi)

2.

Remark 18.17 Meantime, we observed that the general solution and the generalized
stability of the more general functional equation

f
( n∑

i=1
xi

)
+ (n − 2)

n∑

i=1
f (xi) = ∑

1≤i<j≤n
f ( xi + xj ),

where f is a function of one vector space X to another Y , were already established
by Nakmahachalasint [88].

The n = 3 particular case of this fundamental equation was formerly intensively
investigated by Kannappan [62], Jung [61], Rassias [99], Fechner [32], and later
by Ng and Zhao [90]. Moreover, Popoviciu [98], Trif [128, 129], Smajdor [113],
Brzdęk [16], Nakmahachalasint [89], and Najati and Rassias [87] considered some
similar equations.

18.5 Parapreseminorms

Now, because of Theorems 18.3 and 18.7, we may also naturally introduce

Definition 18.3 Let X be an additively written group. Then, a function p of X to R

will be called a parapreseminorm on X if for any x, y, z ∈ X we have

(a) 0 ≤ p (x),
(b) p (−x ) ≤ p (x),
(c) p (y + x) ≤ p (x + y),
(d) p ( x+y+ z )2 ≤ p (x+y)2 + p (x+ z)2 + p (y+ z)2 − p (x)2 − p (y)2 −

p (z)2 .
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Remark 18.18 The above parapreseminorm p will called a paraseminorm if

(e) p (n x) = np (x) for all n ∈ N and x ∈ X.

Moreover, a paraseminorm (parapreseminorm) p on X is called a paranorm
(paraprenorm) if

(f) p (x) = 0 implies x = 0 for all x ∈ X.

This definition differs from that of Wilansky [136, p. 15]. However, it is in
accordance with a former definition of the present author [118].

Now, by Theorems 18.3 and 18.7, we can at once state the following

Theorem 18.9 If P is a semi-inner product on X and

p (x) = √
P(x, x)

for all x ∈ X, then p is a paraseminorm on X.

Remark 18.19 By Remark 18.10, in addition to the above theorem, we can also
state that p is paranorm on X if and only if P is an inner product on X.

Moreover, by using Definition 18.3, we can also easily prove the following

Theorem 18.10 If p is a parapreseminorm onX, then for any x, y ∈ X we have

(1) p (0) = 0,
(2) p (x) = p (−x),
(3) 2p (x) ≤ p (2 x),
(4) p (x + y) = p (y + x),
(5) 2p (x)2 + 2p2 (y) ≤ p (x + y)2 + p (x − y)2 .

Proof Assertions (2) and (4) can be immediately derived from properties (b) and (c)
in Definition 18.3, respectively, by writing −x in place of x in (b) and changing the
roles x and y in (c).

To derive (1), by taking z = 0 in (d), we can note that

p (x + y)2 ≤ p (x + y)2 + p (x)2 + p (y)2 − p (x)2 − p (y)2 − p (0)2

= p (x + y)2 − p (0)2 .

Therefore, p (0)2 ≤ 0, and thus p (0)2 = 0. Therefore, (1) is also true.
Now, from (d), by taking z = −y and using (1) and (2), we can also see that

p (x)2 ≤ p (x + y)2 + p (x − y)2 + p (0)2 − p (x)2 − p (y)2 − p (−y)2

= p (x + y)2 + p (x − y)2 − p (x)2 − 2p (y)2.

Therefore, (5) is also true.
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Finally, from (5), by taking x = y and using (1), we can see that

2p (x)2 + 2p (x)2 ≤ p (2 x)2 + p (0)2 = p (2 x)2,

and thus
(

2p (x)
)2 ≤ p (2 x)2 . Hence, by (a), it is clear that (3) is also true. ��

Remark 18.20 If in particular p is a paraseminorm onX, then by properties (1) and
(2) and Remark 18.18 we have p (0 x) = p (0) = 0 = 0 p (x) for all x ∈ X and

p
(
(−n) x ) = p (−n x ) = p (n x ) = n p (x)

for all n ∈ N and x ∈ X. Therefore, p (k x) = | k | p (x) also holds for all k ∈ Z

and x ∈ X.

Remark 18.21 From property (5), we can at once see that if p is a parapreseminorm
on X, then p2 is a superquadratic function on X, and thus −p2 is a subquadratic
function on X.

Thus, some properties of parapreseminorms can be immediately derived from
those of the subquadratic functions investigated by Kominek, Troczka-Pawelec,
Gilányi and Kézi [49, 50, 65–67, 130].

By using property (5), we can also easily show that some important norms
defined even on R

2 fail to be paranorms.

Example 18.3 For any x = (x1 , x2) ∈ R
2, define

p1(x) = | x1 |+| x2 |, p2(x) =
√
x 2

1 + x 2
2 and p∞(x) = max

{ | x1 |, | x2 |
}
.

Then, p2 is a paranorm, but p1 and p∞ are not paranorms on R
2.

Since p2 can be derived from the usual inner product on R
2, by Theorem 18.9

and Remark 18.19, it is clear that p2 is a paranorm on R
2.

Moreover, by taking

a = (1, 0), b = (0, 1), c = (1, 1), d = (−1, 1),

we can see that

2p1(c)
2 + 2p1(d)

2 = 24 but p1(c + d )2 + p1(c − d )2 = 23

and

2p∞(a)2 + 2p∞(b)2 = 22 but p∞(a + b)2 + p∞(a − d )2 = 2.

Therefore, by the assertion (5) of Theorem 18.10, the norms p1 and p∞ cannot be
paranorms on R

2.
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18.6 Some Further Theorems on Parapreseminorms

Now, by using Theorem 18.10 and an argument given in the second part of [49,
Remark 3.2] of Gilányi and Troczka-Pawelec, we can also prove the following

Theorem 18.11 If p is a subadditive parapreseminorm onX, then for any x, y ∈ X
we have

(1) p (x + y)2 − p (x − y)2 ≤ 4p (x) p (y),
(2) 0 ≤ p (x + y)2 + p (x − y)2 − 2p (x)2 − 2p2 (y) ≤ 4p (x) p (y).

Proof If x, y ∈ X, then by using the subadditivity of p, we can see that

p (x + y)2 ≤ (
p (x)+ p (y))2 = p (x)2 + p (y)2 + 2p (x) p (y).

Hence, by using (5) in Theorem 18.10, we can infer that

2p (x + y)2 ≤ 2p (x)2 + 2p (y)2 + 4p (x) p (y)

≤ p (x + y)2 + p (x − y)2 + 4p (x) p (y).

Therefore, (1) also holds.
On the other hand, from (5) in Theorem 18.10, it is clear that the first part of (2)

is true. Moreover, form the fact that

p (x + y)2 ≤ p (x)2 + p (y)2 + 2p (x) p (y)

for all x, y ∈ X, by using (2) in Theorem 18.10, we can infer that

p (x−y)2 ≤ p (x)2+p (−y)2+2p (x) p (−y) = p (x)2+p (y)2+2p (x) p (y)

for all x, y ∈ X. Therefore, we can also state that

p (x + y)2 + p (x − y)2 ≤ 2p (x)2 + 2p (y)2 + 4p (x) p (y)

for all x, y ∈ X. Thus, the second part of (2) is also true. ��
Moreover, by using Theorem 18.10 and an argument made with the help of

Gy. Maksa and Z. Boros in the proof of [122, Theorem 8.1], we can also prove

Theorem 18.12 If p is a parapreseminorm on X such that
(1) p (2 x) ≤ 2p (x) , (2) p ( x + y + z ) ≤ p ( x + z+ y ) ,

for all x, y, z ∈ X, then the corresponding equalities also hold, and moreover we
have

p (x + y)2 + p (x − y)2 = 2p (x)2 + 2p (x)2

for all x, y ∈ X.
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Proof To check the latter equality, for any x ∈ X, define

f (x) = p (x)2.

Then, by Theorem 18.10, for any x, y ∈ X we have

2 f (x)+ 2 f (y) ≤ f (x + y)+ f (x − y).

Hence, it is clear that, for any u, v ∈ X, we have

2 f (u+ v)+ 2 f (u− v) ≤ f ( u+ v + u− v )+ f
(
u+ v − (u− v)).

Moreover, by using assumptions (2), (1) and the definition of f , we can see that

f ( u+ (v + u)− v ) ≤ f ( u− v + v + u ) = f (2u ) ≤ 4 f (u)

and

f
(
u+ v − (u− v)) = f ( u+ 2 v − u ) ≤ f ( u− u+ 2 v ) = f ( 2v ) ≤ 4 f (v).

Therefore,

2 f (u+ v)+ 2 f (u− v) ≤ 4 f (u)+ 4 f (v),

and thus f (u + v) + f (u − v) ≤ 2 f (u) + 2 f (v) also holds. This shows that
we actually have

f (x + y)+ f (x − y) = 2 f (x)+ 2 f (y)

for all x, y ∈ X. Therefore, by the definition of f , the required equality is also true.
��

Remark 18.22 Note that if p is a nonnegative function of the group X such that

p (x + y)2 + p (x − y)2 ≤ 2p (x)2 + 2p (y)2

for all x, y ∈ X, then by putting x = y we can already get

p (2 x)2 ≤ p (2 x)2 + p (0)2 ≤ 4p (x)2 = ( 2p (x)
)2
,

and thus p (2 x) ≤ 2p (x) for all x ∈ X. Therefore, condition (1) follows from the
assertion of the theorem.

The necessity of the Kannappan condition (2) could certainly be demonstrated
only with a much more difficult argument. In this respect, it is noteworthy that,
by Stetkaer [114, Example 13.20 and Lemma B.4] there exists an integer-valued
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quadratic function f of a free group, with three generators, such that the Kannappan
condition does not hold for f .

Now, by using Theorem 18.12 and an improvement of an argument of Ger [43],
we can also prove the following addition to Theorem 18.11.

Corollary 18.1 If p is as in Theorem 18.12, then for any x, y ∈ X, the following
assertions are equivalent :

(1) p (x + y) ≤ p (x) + p (y), (2) p (x + y)2 − p (x − y)2 ≤
4p (x) p (y).

Proof By the nonnegativity of p and the assertion of Theorem 18.12, it is clear that
the following inequalities are equivalent :

p (x + y) ≤ p (x)+ p (y),

p (x + y)2 ≤ (
p (x)+ p (y)

)2
,

p (x + y)2 ≤ p (x)2 + p (y)2 + 2p (x) p (y),

2p (x + y)2 ≤ 2p (x)2 + 2p (y)2 + 4p (x) p (y),

2p (x + y)2 ≤ p (x + y)2 + p (x − y)2 + 4p (x) p (y),

p (x + y)2 − p (x − y)2 ≤ 4p (x) p (y).

��
Moreover, by using Theorem 18.12 and an argument of Ger [43], we can also

prove the following

Theorem 18.13 If p is as in Theorem 18.12, then p is already a seminorm on X.

Proof By Theorem 18.12 and Remark 18.16, there exists a real-valued semi-inner
product P on X such that p(x)2 = P (x, x) for all x ∈ X. Thus, by Remark 18.12,
the required assertion is also true. ��

18.7 Characterizations of Additive and Jensen Functions

Now, we are ready to prove the following generalization of Theorem 18.1 of Maksa
and Volkmann which is actually a hyperstability result. (See [17].)

Theorem 18.14 If f is a function of one groupX to another Y , q is a paraprenorm
on Y , then the following assertions are equivalent :

(1) f (x)+ f (y) = f (x + y) for all x, y ∈ X ,
(2) q

(
f (x)+ f (y)

) = q
(
f (x + y)) for all x, y ∈ X ,

(3) q
(
f (x)+ f (y)

) ≤ q
(
f (x + y)) for all x, y ∈ X .
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Proof Actually, only the implication (3) �⇒ (1) has to be proved. For this, note
that if (3) holds, then in particular, by (3) in Theorem 18.10, we have

2 q
(
f (0)

) ≤ q
(

2 f (0)
) ≤ q

(
f (0)

)
,

and thus q
(
f (0)

) ≤ 0. Therefore, q
(
f (0)

) = 0, and thus f (0) = 0.
Now, by using (3), we can also see that

q
(
f (x)+ f (−x )) ≤ q

(
f (0)

) = q (0) = 0,

and thus f (x)+ f (−x ) = 0 for all x ∈ X. Therefore, f is odd.
Hence, by using (2) in Theorem 18.10, we can see that

q
(
f (−x)) = q

( − f (x)) = q
(
f (x)

)
,

and thus

q
(
f (−y − x)) = q

(
f

( − (x + y))) = q
(
f (x + y))

for all x, y ∈ X.
Now, by using the above facts, (d) in Definition 18.3, (4) in Theorem 18.10 and

assertion (3), we can also see that

q
(
f (x + y)− f (y)− f (x)

)2 = q
(
f (x + y)+ f (−y)+ f (−x))2

≤ q
(
f (x+y)+f (−y))2+ q

(
f (x+y)+f (−x))2+ q

(
f (−y)+f (−x))2

− q
(
f (x + y))2 − q

(
f (−y))2 − q

(
f (−x))2 =

q
(
f (x + y)+ f (−y))2 + q

(
f (−x)+ f (x + y))2 + q

(
f (−y)+ f (−x))2

− q
(
f (x + y))2 − q

(
f (y)

)2 − q
(
f (x)

)2 ≤
q
(
f (x)

)2 + q
(
f (y)

)2 + q
(
f (x + y))2

− q
(
f (x + y))2 − q

(
f (y)

)2 − q
(
f (x)

)2 = 0

for all x, y ∈ X. Therefore, we necessarily have

q
(
f (x+ y)− f (y)− f (x)) = 0, and hence f (x+ y)− f (y)− f (x) = 0

for all x, y ∈ X. Thus, (1) also holds. ��
From this theorem, following the ideas of Kwon et al. [75], we can derive
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Corollary 18.2 If f is a 2-homogeneous function of one uniquely 2-divisible group
X to another Y and q is a 2-subhomogeneous paraprenorm on Y , then the following
assertions are equivalent :

(1) 2−1
(
f (x)+ f (y)

) = f
(

2−1 (x + y)) for all x, y ∈ X ,
(2) q

(
2−1

(
f (x)+ f (y)

) ) = q
(
f

(
2−1 (x + y))) for all x, y ∈ X ,

(3) q
(

2−1
(
f (x)+ f (y)

)) ≤ q
(
f

(
2−1 (x + y))) for all x, y ∈ X .

Proof Actually now, by Theorem 18.10, q is also 2-homogeneous. Therefore, if (3)
holds, then we have

q
(
f (x)+f (y) ) = q

(
2

(
2−1( f (x)+ f (y)

)))
= 2 q

(
2−1(f (x)+ f (y)

))

≤ 2 q
(
f

(
2−1 (x + y)

))
= q

(
2 f

(
2−1 (x + y)

))

= q
(
f

(
2
(

2−1 (x + y))
))

= q
(
f (x + y))

for all x, y ∈ X. Hence, by using Theorem 18.14, we can infer that

f (x)+ f (y) = f (x + y),

and thus

2−1( f (x)+ f (y)
) = 2−1 f (x + y) = 2−1 f

(
2

(
2−1 (x + y)

))

= 2−1 2 f
(

2−1(x + y)
)
=f

(
2−1(x + y)

)

for all x, y ∈ X. Therefore, (1) also holds. ��
Remark 18.23 Note that if q is a parapreseminorm on a uniquely 2-divisible group
Y , then by Theorem 18.10, for any y ∈ Y , we also have

q
(

2−1y
) = 2−1

(
2 q

(
2−1y

)) ≤ 2−1 q
(

2
(
2−1y

)) = 2−1 q (y).

Therefore, in this case q is not only 2-superhomogeneous, but also 2−1-subhomo-
geneous.

Remark 18.24 In this respect, it is also worth mentioning that if q is 2-subhomo-
geneous parapreseminorm on a uniquely 2-divisible commutative group Y , then by
using two arguments of Rosenbaum [104], utilized also in [18], it can be shown that
q is subadditive if and only if q is 2−1-convex in the sense that

q
(

2−1 y + 2−1 z
) ≤ 2−1 q (y)+ 2−1 q (z)

for all y, z ∈ Y .
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Remark 18.25 Note that if in particular the groups X and Y considered in Corol-
lary 18.2 are commutative, then the Jensen equation, considered in (1), can also be
written in the more instructive form

2−1f (x)+ 2−1f (y) = f
(

2−1 x + 2−1y
)
.

Namely, if for instance x, y ∈ X, then by the above assumptions

2
(

2−1 x + 2−1 y
) = 2

(
2−1 x

)+ 2
(

2−1 y
) = x + y,

and thus 2−1 (x+y) = 2−1 x+2−1 y also holds. ( See also Ger and Koclęga [45].)

Remark 18.26 In this respect, it is also worth noticing that by considering the
modified Jensen equations

f (x+y)+ f (x−y) = 2 f (x) and 2 f (x+y) = f (2 x)+ f (2 y)
instead of the original one, one can certainly prove some counterparts of Corol-
lary 18.2 under possibly weaker assumptions.

18.8 Further Characterizations of Additive
and Jensen Functions

By using Theorem 18.14, we can also easily prove the following

Theorem 18.15 If f is a function of one group X to another Y , Q is an inner
product on Y and

q (y) = √
Q(y, y)

for all y ∈ Y , then the following assertions are equivalent :

(1) f (x)+ f (y) = f ( x + y ) for all x, y ∈ X ,
(2) 2 Q1

(
f (x), f (y)

) = q
(
f ( x + y ) ) 2 − q

(
f (x)

) 2 − q
(
f (y)

) 2
for all

x, y ∈ X ,
(3) 2 Q1

(
f (x), f (y)

) ≤ q
(
f ( x + y ) ) 2 − q

(
f (x)

) 2 − q
(
f (y)

) 2
for all

x, y ∈ X .

Proof If (1) holds, then by using (7) in Theorem 18.3 we can see that

2 Q1
(
f (x), f (y)

) =q (
f (x)+ f (y))2 − q

(
f (x)

)2 − q
(
f (y)

)2

=q (
f (x + y))2 − q

(
f (x)

)2 − q
(
f (y)

)2

for all x, y ∈ X. Therefore, (2) also holds.
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Now, since (2) trivially implies (3), it remains only to prove that (3) also implies
(1). For this, note that if (3) holds, then by (7) in Theorem 18.3 we have

q
(
f (x)+ f (y)

)2 = q
(
f (x)

)2 + q
(
f (y)

)2 + 2 Q1
(
f (x), f (y)

)

≤ q
(
f (x)

)2 + q
(
f (y)

)2 + q
(
f (x + y))2 − q

(
f (x)

)2 − q
(
f (y)

)2

= q
(
f (x + y))2

for all x, y ∈ X. Therefore, by the nonnegativity of q, we also have

q
(
f (x)+ f (y)

) ≤ q
(
f (x + y))

for all x, y ∈ X. Hence, by Remark 18.19 and Theorem 18.14, we can see that (1)
also holds. ��

From this theorem, analogously to Corollary 18.2, we can derive

Corollary 18.3 If f is a 2-homogeneous function of one uniquely 2-divisible group
X to another Y , Q is an inner product on Y and

q (y) = √
Q(y, y)

for all y ∈ Y , then the following assertions are equivalent :

(1) 2−1
(
f (x)+ f (y)

) = f
(

2−1 (x + y)) for all x, y ∈ X ,

(2) 2 Q1
(

2−1 f (x), 2−1 f (y)
) = q

(
f ( 2−1 (x + y))2 − q

(
2−1 f (x)

)2

−q (
2−1 f (y)

)2
for all x, y ∈ X ,

(3) 2 Q1
(

2−1 f (x), 2−1 f (y)
) ≤ q

(
f ( 2−1 (x + y))2 − q

(
2−1 f (x)

)2

−q (
2−1 f (y)

)2
for all x, y ∈ X ,

Proof If (1) holds, then by using Theorem 18.3 and Remarks 18.5 and 18.23 we can
see that

2 Q1
(

2−1 f (x), 2−1 f (y)
)

= q
(

2−1 f (x)+ 2−1 f (y)
)2 − q

(
2−1 f (x)

)2 − q
(

2−1 f (y)
)2

= q
(

2−1 (
f (x)+ f (y)

))2 − q
(

2−1 f (x)
)2 − q

(
2−1 f (y)

)2

= q
(
f

(
2−1 (x + y))

)2 − q
(

2−1 f (x)
)2 − q

(
2−1 f (y)

)2

for all x, y ∈ X. Therefore, (2) also holds.
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While, if (3) holds, then by using Theorems 18.2 and 18.3 we can see that

2 Q1
(
f (x), f (y)

) = 2 Q1

(
2
(

2−1 f (x)
)
, 2

(
2−1 f (x)

))

= 22 2Q1
(

2−1 f (x), 2−1 f (y)
)

≤ 22
(
q
(
f ( 2−1 (x + y))2 − q

(
2−1 f (x)

)2 − q
(

2−1 f (y)
)2

)

=
(

2 q
(
f ( 2−1 (x + y))

)2 −
(

2 q
(

2−1 f (x)
))2 −

(
2 q

(
2−1 f (y)

))2

= q
(

2 f ( 2−1 (x + y))2 − q
(
f (x)

)2 − q (
f (y)

)2

= q
(
f (x + y))2 − q

(
f (x)

)2 − q (
f (y)

)2

for all x, y ∈ X. ��
Remark 18.27 Note that the proofs of Theorems 18.14 and 18.15 do not require any
particular trick. Therefore, they are more simple than the one given by Maksa and
Volkmann [82] which was actually based on assertion (3) of Theorem 18.7.

In a former version of this paper [121], we have used assertion (4) of Theo-
rem 18.7 to prove the implication (3) �⇒ (1) of Theorem 18.14. However, assertion
(5) of Theorem 18.7 seems to be a more convenient tool than (3) and (4).

Remark 18.28 In this respect, it is also worth mentioning that particular cases of
assertion (3) of Theorem 18.8 can certainly be also applied to some other important
functional inequalities.

Such ones may be the quadratic and Drygas inequalities studied by Gillányi [47],
Rätz [100], Fechner [31] and Manar and Elqorach [83]. And, the ones derivable
from the modified quadratic and Cauchy equations considered by Kominek [64]
and Stetkaer [114, p. 2.15].

Remark 18.29 However, note that if for instance f is an even, subadditive function
of group X to R, then f is nonnegative, and thus

| f (x + y) | = f (x + y) ≤ f (x)+ f (y) = | f (x)+ f (y) |

for all x, y ∈ R.
Moreover, if f is an odd isometry of an arbitrary preseminormed group X to a

2-cancellable one Y , then f (0) = 0, and thus

‖ f (x + y) ‖ = ‖ f (x + y)− f (0) ‖ = ‖ x + y − 0 ‖
= ‖ x − (−y) ‖ = ‖ f (x)− f (−y) ‖ = ‖ f (x)+ f (y) ‖

for all x, y ∈ X.
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And, according to the easier part of a famous characterization theorem of Ger
[42], the composition of an odd isometry and an additive function is also a solution
of the corresponding equality.

Therefore, to prove certain counterparts of Theorems 18.14 and 18.15 some
additional requirements will be needed. For some ideas in this respect, see [74,
Theorem 2] of Kurepa which should also be proved with the help of assertion (5) of
Theorem 18.7.

Remark 18.30 To justify the appropriateness of our present treatment, we can also
note that an application of Theorem 18.14, to the proof of the left-invariance of
some lower left-invariant generalized metrics, will be given in our forthcoming
paper Semimetrics and preseminorms on groups.

Remark 18.31 Meantime, we have observed that, before us [14], Multarzyński [86]
also considered semi-inner products on certain groupoids.

Moreover, before Boros [11] and Ger [43], Kurepa [71, 72] also proved Schwarz
inequalities on groups.

The results of Kurepa strongly suggest that instead semi-inner products it may
be more convenient to start with some quadratic functions.

Acknowledgements The work of the author has been supported by the Hungarian Scientific
Research Fund (OTKA) Grant K-111651.

Moreover, the author is greatly indebted to Zoltán Boros, Gyula Maksa, Attila Gilányi and Jens
Schwaiger for some inspiring conversations.

References

1. Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge University
Press, Cambridge (1989)

2. Alsina, C., Sikorska, J., Tomás, M. S.: Norm Derivatives and Characterizations of Inner
Product Spaces. World Scientific, New Yersey (2010)

3. Amir, D: Characterizations of Inner Product Spaces. Birkhäuser, Besel (1986)
4. Antoine, J.-P., Grossmann, A.: Partial inner product spaces. I. General properties. J. Funct.

Anal. 23, 369–378 (1976)
5. Baker J.A.: On quadratic functionals continuous along rays. Glasnik Mat. 23, 215–229 (1968)
6. Baron, K.: On additive involutions and Hamel bases. Aquationes Math. 87, 159–163 (2014)
7. Baron, K.: Orthogonally additive bijections are additive. Aequationes Math. 89, 297–299

(2015)
8. Batko, B, Tabor, J.: Stability of an alternative Cauchy equation on a restricted domain.

Aequationes Math. 57, 221–232 (1999)
9. Batko, B., Tabor, J.: Stability of the generalized alternative Cauchy equation. Abh. Math.

Sem. Univ. Hamburg 69, 67–73 (1999)
10. Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)
11. Boros, Z.: Schwarz inequality over groups. In: Talk Held at the Conference on Inequalities

and Applications, Hajdúszoboszló, Hungary (2016)
12. Boros, Z., Száz, Á.: Semi-inner products and their induced seminorms and semimetrics on

groups, Technical Report, 2016/6, 11 pp. Institute of Mathematics, University of Debrecen,
Debrecen (2016)



404 Á. Száz

13. Boros, Z., Száz, Á.: A weak Schwarz inequality for semi-inner products on groupoids,
Rostock. Math. Kolloq. 71, 28–40 (2016)

14. Boros, Z, Száz, Á.: Generalized Schwarz inequalities for generalized semi-inner products on
groupoids can be derived from an equality. Novi Sad J. Math. 47, 177–188 (2017)

15. Boros, Z., Száz, Á.: Infimum problems derived from the proofs of some generalized Schwarz
inequalities, Teaching Math. Comput. Sci. 17, 41–57 (2019)
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Chapter 19
Invariant Means in Stability Theory

László Székelyhidi

Abstract This is a survey paper about the use of invariant means in the theory
of Ulam type stability of functional equations. We give a summary about invariant
means and we present some typical recent applications concerning stability.

Keywords Hypergroup · Stability
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19.1 Amenable Groups and G-Sets

The concept of amenable group was introduced by J. von Neumann in his paper [39].
Roughly speaking, a group is amenable, if there exists a finitely additive probability
measure defined on all subsets of the group which is invariant under the action of
the group on itself. The exact definition follows: given a group G we say that G is
amenable if there exists a function μ : P(G) → [0, 1] on the power set P(G) of
G such that

1. μ(A ∪ B) = μ(A)+ μ(B) whenever A,B ⊆ G and A ∩ B = ∅;
2. μ(G) = 1;
3. μ(gA) = μ(A) holds for each A ⊆ G and g in G, where gA is the left translate

of A by the element g.

In fact, this is the concept of left amenability of G as we assume that μ is invariant
with respect to the left translations. Clearly, we have the respective concept referring
to right translations. Originally, von Neumann introduced this concept for G-sets.
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Given a group G with identity e by a G-set we mean a nonempty set X such that G
acts on X: there is a function ϕ : G×X → X such that

1. Identity: ϕ(e, x) = x holds for each x in X;
2. Composition: ϕ(g, ϕ(h, x)) = ϕ(gh, x) holds for each g, h in G and x in X.

Such an action is called a left action, and instead of ϕ(g, x) we write g ·x, or simply
gx. The set Gx = {gx : g ∈ G} is the orbit of the element x in X. Similarly, we
can define the right action of G on X, denoted by xg. Accordingly, we call X a left
G-set, or a right G-set. Left and right actions can be converted into each other in
a natural way. Indeed, if ϕr : X × G → X is a right action of G on X, then we
define ϕl : G × X → G by ϕl(g, x) = ϕr(x, g

−1) to get a left action of G on X.
Hence it is enough to consider e.g. left actions only. Then the original formulation
of von Neumann reads as follows: given a group G, a left G-set X, and a nonempty
subset S ⊆ X we say that the triple (X, S,G) is amenable, or simply the G-set X is
amenable if there exists a function μ : P(X)→ [0, 1] such that

1. μ(A ∪ B) = μ(A)+ μ(B) whenever A,B ⊆ X and A ∩ B = ∅;
2. μ(S) = 1;
3. μ(gA) = μ(A) holds for each A ⊆ X and g in G.

Such a function μ is called a G-invariant measure for (X, S,G), or simply an
invariant measure. The set of all G-invariant measures on X will be denoted by
MG(X). If G = {e} is the trivial group, then we write simply M(X) for MG(X),
and its elements are called measures onG. We underline that, in fact, these measures
are only finitely additive, hence they are not measures in the sense of Lebesgue
theory. The space M(X) is given the usual topology: (μi) converges to μ in M(X)

if and only if for each ε > 0 and for every finite collectionA1, A2, . . . , Ak in P(X)

we have an i0 such that |μi(Aj )−μ(Aj )| < ε for j = 1, 2, . . . , k and i ≥ i0. Given
a map f : X → Y we have a natural map f∗ : M(X)→ M(Y ) defined by

f∗(μ)(B) = μ
(
f−1(B)

)
for each B ⊆ Y.

Clearly, if G acts on X, then it also acts on M(X): for a left action we have

gμ(A) = μ(gA) whenever A ⊆ X.

Obviously, a G-set X is amenable if and only if MG(X) 
= ∅.
Amenability can be considered as a finiteness condition: finite G-sets are

amenable with the G-invariant measure

μ(A) = |A|
|S| ,

where |A| denotes the number of elements in A. More generally, the following
simple statement holds.
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Theorem 19.1 Every G-set having a finite orbit is amenable.

Proof Let x be in X such thatGx is finite; then the function μ defined on P(X) by

μ(A) = |A ∩Gx|
|S ∩Gx|

is an invariant measure for (X, S,G).

We call the group G amenable, if the triple (G,G,G) is amenable.
The first well-known example for non-amenable group is the following one.

Theorem 19.2 The free group Fk of rank k ≥ 2 is not amenable.

Proof We prove by contradiction. Assume that μ is a left invariant measure on Fk ,
and let x 
= y denote two of the free generators of Fk . Let A denote in Fk the set of
those words whose reduced form starts by a positive or negative power of x. Then
Fk = A ∪ xA, hence

1 = μ(Fk) ≤ μ(A)+ μ(xA) = 2μ(A),

consequently μ(A) ≥ 1
2 . On the other hand, the sets y−1A, A, yA are pairwise

disjoint, hence

1 = μ(F2) ≥ μ(y−1A ∪ A ∪ yA) = μ(y−1A)+ μ(A)+ μ(yA) = 3μ(A),

which implies 1
2 ≤ μ(A) ≤ 1

3 , a contradiction.

We recall that given the G-set X, the H set Y and the surjective homomorphism
� : G→H the function f : X→Y is called�-equivariant, or simply equivariant,
if

f (gx) = �(g)f (x)

holds for each x in X and g in G. By the following theorem, equivariant mappings
preserve amenability.

Theorem 19.3 Let G,H be groups, � : G → H a surjective homomorphism, X
a G-set, Y an H -set, and f : X → Y a �-equivariant mapping. If X is amenable,
then so is Y .

Proof Let μ be a G-invariant measure on X; we show that f∗(μ) is an H = �(G)-
invariant measure on Y . Indeed, if B ⊆ Y , then

f−1(�(g)B
) = gf−1(B)

holds for each g in G. To prove this equality first let x be in gf−1(B), then x = ga

with some a in X such that f (a) is in B. It follows f (x) = f (ga) = �(g)f (a),
which is in �(g)B, hence x is in f−1

(
�(g)B

)
.
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For the reverse inclusion let x be in f−1
(
�(g)B

)
, then f (x) is in�(g)B, which

implies that f (g−1x) = �(g−1)f (x) is in B. Then g−1x is in f−1(B) and x is in
gf−1(B) which completes the proof.

Now let B ⊆ Y and h an arbitrary element of H . By the surjectivity of �, we
have that h = �(g) for some g in G. Further,

f∗(μ)(hB) = μ
(
f−1(hB)

) = μ
(
f−1(�(g)B)

) = μ
(
gf−1(B)

)

= μ
(
f−1(B)

) = f∗(μ)(B)

which was to be proved.

Corollary 19.1 The group G is amenable if and only if every G-set is amenable.

Proof If X is a G-set, then we take x in X, and define the map f : G → X as
f (g) = gx, then f is equivariant with the homomorphism � = id, and we apply
the previous theorem.

19.2 Paradoxical Decompositions

We shall use � for disjoint union. We say that the G-set X has a paradoxical
decomposition if there are partitions

X = Y1 � Y2 � · · · � Ym = Z1 � Z2 � · · · � Zn (19.1)

and elements g1, g2, . . . , gm, h1.h2, . . . , hn in G such that

X = g1Y1 � g2Y2 � · · · � gmYm � h1Z1 � h2Z2 � · · · � hnZn.

For instance, consider the free group F2 with the two free generators a, b and let

Y1 = {reduced words starting with a}, Y2 = F2\Y1

Z1 = {reduced words starting with b} ∪ {1, b−1, b−2, . . . }, Z2 = F2\Z1.

Then

F2 = Y1 � Y2 = Z1 � Z2 = Y1 � a−1Y2 � Z1 � b−1Z2

is a paradoxical decomposition of F2.

Theorem 19.4 The G-set X is amenable if and only if it has no paradoxical
decomposition.
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Proof The proof can be found in [7] (see also [8]). In fact, the necessity of the
condition is obvious: suppose that we have the paradoxical decomposition in the
definition, and μ is a G-invariant measure on X. Then we have

μ(X) =
m∑

i=1

μ(Yi) =
n∑

j=1

μ(Zj ) =
m∑

i=1

μ(Yi)+
n∑

j=1

μ(Zj ).

It follows
∑m
i=1 μ(Yi) =

∑n
j=1 μ(Zj ) = 0, hence μ(X) = 0, a contradiction.

Paradoxical decompositions are related to the Hausdorff–Banach–Tarski para-
dox. Consider the triple (X, S,G) where X = S = Sn−1, the unit sphere in R

n

and G = SO(n), the special orthogonal group. Hausdorff showed in [22] that an
invariant measure fails to exist for n = 3. In fact, Hausdorff’s example shows that
S2 can be decomposed into four disjoint sets A,B,C,D such that

1. D is denumerable, and it has measure zero with respect to any finite normalized
invariant measure on S2.

2. There is a 2π/3 rotation in SO(3)whose iterates carryA,B,C onto one another.
3. There is a π rotation in SO(3) which carries each of A,B,C onto the union of

the other two.

These investigations were generalized by Banach and Tarski in [6] and this
phenomena is referred to as the Hausdorff–Banach–Tarski Paradox. The Tarski
Alternative Theorem states that a group is either amenable or admits a paradoxical
decomposition (see [8, 37, 38]).

Given the paradoxical decomposition (19.1) of the G-set X we define its
complexity as c = m + n, and the number T (X) = inf c, where the infimum is
taken for all paradoxical decompositions of X, is called the Tarski number of X.
If X has no paradoxical decomposition then we set T (X) = +∞. By the Tarski
Alternative Theorem, the group G is amenable if and only if T (G) = +∞.

For more about paradoxical decompositions see [9].

19.3 Invariant Means

We recall that for any nonempty set X we denote by M(X) the set of all finitely
additive probability measures on X, that is, the set of all those functions μ :
P(X)→ [0, 1] satisfying the following two conditions:

1. μ(A ∪ B) = μ(A)+ μ(B) whenever A,B ⊆ X and A ∩ B = ∅;
2. μ(X) = 1.

We introduced a topology on M(X), which is clearly identical with the Tychonoff
topology on product spaces. Consequently, we have the following result:
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Theorem 19.5 M(X) is a compact Hausdorff space.

Proof The set M(X) is a subset of [0, 1]P(X), and its topology coincides with the
topology inherited from [0, 1]P(X) as a subspace. As [0, 1]P(X) is compact, it is
enough to show that M(X) is a closed subset. The two conditions

μ(A ∪ B)− μ(A)− μ(B) = 0, and μ(X)− 1 = 0

—defining a measure—are zero sets of continuous functions, hence they are closed,
and so is their intersection. For the same reason, as a subspace of a Hausdorff space,
M(X) is Hausdorff, too.

A simple example for measure is the point mass δx for each x in X defined by

δx(A) =
{

1 if x ∈ A
0 if x /∈ A,

whenever A ⊆ X. The mapping δ : X → M(X) defined by δ(x) = δx is injective
and δ(X) is a discrete subset of M(X). Consequently, δ(X) is not closed. Clearly,
M(X) is a convex set.

For each set X we denote by l∞(X) the set of all bounded real valued functions
on X, which is a Banach space when equipped with the pointwise linear operations
and the sup norm ‖.‖∞. The dual of l∞(X) plays an important role, more exactly,
the subspace M (X) of l∞(X) consisting of all nonnegative, normalized linear
functionals on l∞(X):

M (X) = {m : m ∈ l∞(X)∗,m(f ) ≥ 0 if f ≥ 0, m(1) = 1}.

The elements of M (X) are called means. Every mean m satisfies

inf
x∈X f (x) ≤ m(f ) ≤ sup

x∈X
f (x)

for each bounded function f . In other words, means are positive linear functionals
on l∞(X) satisfying the normalizing conditionm(1) = 1. Clearly, M (X) is convex,
and it is a weak*-closed subspace of the unit ball of l∞(X)∗, which is compact in the
weak*-topology, hence M (X) is compact, too. The space M (X) is closely related
to M(X), as it is shown by the following theorem.

Theorem 19.6 For each mean m on X and A ⊆ X we let

μm(A) = m(χA),

where χA is the characteristic function of the set A. Then the mapping m �→ μm is
a homeomorphism between M (X) and M(X).
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Proof Let S (X) denote the space of simple functions, that is, the functions in
l∞(X) having finite range. It is easy to see that S (X) is a dense subspace in l∞(X).
If m in l∞(X)∗ satisfies m(χA) = 0 for each A ⊆ X, then m vanishes on S (X), by
linearity, hence m = 0, which proves injectivity.

For surjectivity, let μ be in M(X); then we define for each f in S (X):

mμ(f ) =
∑

y∈f (X)
yμ

(
f−1({y})).

Obviously, mμ is linear on S (X). On the other hand, it is easy to see that mμ is
uniformly continuous on the dense subspace S (X), hence it extends uniquely and
continuously to a linear function on l∞(X): we denote the unique extension by mμ,
too. In other words, mμ is in l∞(X)∗. It follows

mμ(χA) = 0 · μ(
χ−1
A ({0}))+ 1 · μ(

χ−1
A ({1})) = μ(A),

which proves the surjectivity of the mapping m �→ μm between M (X) and M(X),
as μ = μmμ . Also, this mapping is weak*-continuous, hence, by bijectivity and
compactness, its inverse is continuous, too.

The means in the convex hull of δ(X) are called discrete means—they form a
weak*-dense subset Md(X) in M (X), as it is shown by the following theorem.

Theorem 19.7 The set of discrete means Md(X) is weak*-dense in M (X).

Proof We show that every meanm is the weak*-limit of some net of discrete means.
Assuming the contrary, by the Hahn–Banach Theorem, there exists an ε > 0 and a
function f in l∞(X) such that

m(f ) ≥ ε +m′(f )

holds for each discrete mean m′. On the other hand, every point mass is a discrete
mean, hence we have

m(f ) > sup
Md (X)

m′(f ) ≥ sup
x∈X

f (x),

which contradicts to the property of the mean m.

If X is a G-set then G acts on l∞(X) and also on l∞(X)∗ in a natural way: for
each f in l∞(X) we let g · f (x) = f (g · x) and for each m in l∞(X)∗ we define
g ·m(f ) = m(g · f ) for each f in l∞(X). The mean m on X is called G-invariant,
if g · m = m holds for each g in G. Of course, this is a left G-invariant mean, and
right G-invariant means are defined analogously. The following theorem connects
amenability with the existence of invariant means.
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Theorem 19.8 Let X be a G-set. Then X is amenable if and only if there exists a
G-invariant mean on X.

Proof Let theG-setX be amenable and let μ be aG-invariant measure onX. Then,
by Theorem 19.6, there exists a mean m in M (X) such that μ = μm. Given f in
l∞(X) let (sn) be a sequence of simple functions on X such that

lim
n→∞‖f − sn‖∞ = 0,

then

lim
n→∞ |m(f )−m(sn)| = 0. (19.2)

Clearly, for each g in G we have

lim
n→∞‖g · f − g · sn‖∞ = 0,

hence also

lim
n→∞ |m(g · f )−m(g · sn)| = 0. (19.3)

On the other hand, using the notation of Theorem 19.6, we have

m(g · sn) = mμ(g · sn) =
∑

y∈g·sn(X)
yμ

(
(g · sn)−1({y}) =

∑

y∈sn(X)
yμ

(
g · (sn)−1({y}) =

∑

y∈sn(X)
yμ

(
s−1
n ({y}) = mμ(sn) = m(sn),

that is, by (19.2) and (19.3), we have m(g · f ) = m(f ), which proves that m is a
G-invariant mean on X.

Conversely, if m is a G-invariant mean on X, then it is obvious, that the measure
μm, defined in Theorem 19.6, is a G-invariant measure on X, hence X is amenable.

The following criterium for the existence of invariant means is useful (see
[12, 16]).

Theorem 19.9 (Dixmier) Given the groupG and theG-set X there is an invariant
mean on l∞(X) if and only if for every functions f1, f2, . . . , fn in l∞(X) and every
elements g1, g2, . . . , gn in G we have

inf
x∈X

n∑

k=1

(fk(x)− fk(gk · x)) ≤ 0.
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Proof Let Y denote the subspace in l∞(X) generated by all functions of the form

h =
n∑

k=1

(fk − gk · fk)

with f1, f2, . . . , fn in l∞(X) and g1, g2, . . . , gn inG. Then Y is annihilated by any
invariant mean m, hence for h in Y we have

inf
x∈X h(x) ≤ m(h) = 0.

For the converse assume that the given condition is satisfied, and we consider the
set K of those real valued bounded functions � on X for which inf� > 0. This is
a convex open set in l∞(X), which is disjoint from Y , hence, by the Hahn–Banach
Theorem there is an m in l∞(X)∗ such that m(Y) = 0 and m(K) > 0. By rescaling
we have m(1) = 1 which is then an invariant mean on X.

19.4 Elementary Groups

In this section we study algebraic properties of amenable groups. First we recall
that the group G is left amenable if there is a left invariant mean on G, or, what
is the same, there is a finitely additive normalized left invariant measure (simply:
measure) defined on all subsets of G. Analogously, we call G right amenable, if
there is a right invariant mean on G, or, what is the same, there is a finitely additive
normalized right invariant measure defined on all subsets of G. Finally, we call G
amenable, if there exists a two-sided invariant mean on G, or, what is the same,
there is a finitely additive normalized two-sided invariant measure defined on all
subsets of G. By virtue of the following theorem these concepts coincide.

Theorem 19.10 LetG be a group. Then the following statements are equivalent:

1. G is amenable;
2. G is left amenable;
3. G is right amenable.

Proof The implication 1.⇒2. is obvious. Ifm is a left invariant mean onG, then we
define

m̃(f ) = m(f̌ )

for each f in l∞(G), where

f̌ (g) = f (g−1)
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for each g in G. Then we have

m̃(f · g) = m
(
(f · g)ˇ) = m

(
g · f̌ ) = m(f̌ ) = m̃(f ),

hence m̃ is a right invariant mean on G and 2. ⇒ 3. is proved.
Finally, let m be a right invariant mean on G, and for each f in l∞(G) and x in

G we write

Ff (x) = m(x · f ).

Then, clearly, Ff is bounded, hence we can define

m̃(f ) = m(Ff ).

We prove that m̃ is two-sided invariant. First we note that

Fg·f = Ff · g

holds for each g in G. Indeed, for x in G we have

Fg·f (x) = m
(
x · (g · f )) = m

(
(xg) · f ) = Ff (xg) = Ff · g(x).

Using this we obtain

m̃(g · f ) = m(Fg·f ) = m(Ff · g) = m(Ff ) = m̃(f ),

by the right invariance of m. On the other hand, we have

Ff ·g = Ff .

Indeed,

Ff ·g(x) = m
(
x · (f · g)) = m

(
(x · f ) · g) = m(x · f ) = Ff (x)

for each x in G, by the right invariance of m. Hence

m̃(f · g) = m(Ff ·g) = m(Ff ) = m̃(f ),

which proves the two-sided invariance of m̃ and the implication 3. ⇒ 1.

Corollary 19.2 Every finite group is amenable.

Proof This is obvious: for instance, it follows from Theorem 19.1.

Theorem 19.11 The additive group Z of integers is amenable.
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Proof Let S : l∞(Z)→ l∞(Z) denote the shift operator defined by

(Sx)n = xn+1

whenever x = (. . . , x−1, x0, x1, . . . ) is in l∞(Z). Let e denote the constant 1
sequence on Z and we define the closed subspace

Y = {Sx − x : x ∈ l∞(Z)}.
Then dist (Y, e) ≥ 1; otherwise we had an x in l∞(Z) with

xn+1 − xn ≥ ε

for some ε > 0, hence x cannot be bounded. We define for each x in the subspace
Re + Y

m(x) = m(λe + y) = λ

for each real λ; in fact, this formula defines uniquely m, and it is a linear functional
on Re + Y with norm 1 and m(1) = 1, vanishing on Y . By the Hahn–Banach
Theorem, m extends to l∞(Z) to a linear functional with normed 1 and m(1) = 1—
the shift invariance of m follows from the construction.

It turns out that the class of amenable groups, which will be denoted by AG, is
closed under some elementary algebraic operations.

Theorem 19.12 Every subgroup of an amenable group is amenable.

Proof Let μ be a left invariant measure on G, and let R denote a complete set of
representatives of the right cosets of the subgroup H . Then we define

μ̃(A) = μ
(⋃

r∈R
Ar

)
for A ⊆ H.

Obviously, μ̃ is normalized as

μ̃(H) = μ
(⋃

r∈R
Hr

)
= μ(G) = 1.

If A and B are disjoint subsets of H , then the sets
⋃
r∈R Ar and

⋃
r∈R Br are

disjoint, too, hence we have

μ̃(A ∪ B) = μ
(⋃

r∈R
(A ∪ B)r

)
= μ

(⋃

r∈R
(Ar ∪ Br)

)
=

μ
((⋃

r∈R
Ar

) ∪ (⋃

r∈R
Br

)) = μ
(⋃

r∈R
Ar

)+ μ(⋃

r∈R
Br

) = μ̃(A)+ μ̃(B),
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thus μ̃ is a measure. Finally, for each h in H and A ⊆ H we derive

μ̃(hA) = μ
(⋃

r∈R
(hA)r

) = μ
(
h

⋃

r∈R
Ar

) = μ
(⋃

r∈R
Ar

) = μ̃(A),

that is, μ̃ is left invariant.

By Theorem 19.2 we get the following corollary:

Corollary 19.3 If a group has a free subgroup on two generators, then the group is
non-amenable.

If we denote by NF the family of groups having no subgroup on two generators,
then we have the inclusion AG ⊆ NF . In fact, in [16] the conjecture has been
formulated that we have equality in this inclusion. Even in the eighties, the only
known examples for non-amenable groups had a subgroup on two free generators.
For instance, SL(2,Z) is non-amenable. Indeed, it is possible to show (see e.g. [8,
Lemma 2.3.2]) that the matrices

a =
(

1 2
0 1

)

and

b =
(

1 0
2 1

)

generate a free subgroup in SL(2,Z). Accordingly, no matrix group is amenable
which includes SL(2,Z) as a subgroup.

Theorem 19.13 Every factor group of an amenable group is amenable.

Proof Let μ be an invariant measure on the groupG, and let� : G→ G/N denote
the canonical homomorphism of G onto the factor group with respect to the normal
subgroup N . Then we define

μ̃(A) = μ
(
�−1(A)

)
if A ⊆ G/N.

We have

μ̃(G/N) = μ
(
�−1(G/N)

) = μ(G) = 1,

so that μ̃ is normalized. If A,B are disjoint subsets in G/N , then �−1(A) and
�−1(B) are disjoint, hence we obtain

μ̃(A ∪ B) = μ
(
�−1(A ∪ B)) = μ

(
�−1(A) ∪�−1(B)

) =

μ
(
�−1(A)

)+ μ(
�−1(B)

) = μ̃(A)+ μ̃(B).
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Finally, if g is in G and A ⊆ G/N , then

μ̃(gNA) = μ
(
�−1(gNA)

) = μ
(
g�−1(NA)

) = μ
(
g�−1(A)

) = μ
(
�−1(A)

) = μ̃(A),

hence μ̃ is a left invariant measure on G/N .

Corollary 19.4 Every homomorphic image of an amenable group is amenable.

Proof By the Fundamental Theorem on homomorphisms between groups, every
homomorphic image of a group is isomorphic to some factor group.

Recall that the groupG is said to be the extension of the group N by the group Q,
if there is a short exact sequence

1 → N → G→ Q→ 1.

In more details this means that N is a normal subgroup of G and the factor group
G/N is isomorphic toQ. The following theorem says that ifQ andN are amenable,
then so is G.

Theorem 19.14 Every extension of an amenable group by an amenable group is
amenable.

Proof Let m,M be left invariant means on N and G/N , respectively. If f is in
l∞(G) and g, h are lying in the same coset of N , then Ng = Nh, hence g = nh for
some n in N . It follows g · f (x) = nh · f (x) holds for each x in N . This implies
that if we restrict the functions g · f and nh · f to N , then

m(g · f ) = m
(
n · (h · f )) = m(h · f ).

So, we can define the function Ff : G/N → R by

Ff (gN) = m(g · f ),

as the right side depends only on gN . Finally, we define

m̃(f ) = M(Ff ).

Clearly, m̃ is a normalized positive linear functional on l∞(G). We have to prove
the invariance, only. Let g be in G, then for each f in l∞(G) we have

Fg·f (h ·N) = m
(
h · (g · f )) = m(gh · f ) = Ff (ghN) = g · Ff (hN),

hence

m̃(g · f ) = M(Fg·f ) = M(g · Ff ) = M(Ff ) = m̃(f ),

consequently, m̃ is a left invariant mean on G.
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Corollary 19.5 The direct sum of finitely many amenable groups is amenable.

Proof Indeed, ifG is the direct sum of the amenable groupsH and N , thenG is the
extension of N by H .

We recall that the set I is called directed if it is partially ordered by ≤ and for
each i, j in I there is a k in I such that i ≤ k and j ≤ k. A family of sets is called
directed if it is a directed set equipped with the inclusion as partial order. The union
of a directed family of sets is called direct union.

Theorem 19.15 The direct union of amenable groups is amenable.

Proof Letmα be a left invariant mean on the groupHα and letG be the direct union
of the directed family (Hα). Then for f in l∞(G)

m̃α(f ) = mα(f
∣∣
Hα
)

defines a mean on G which is invariant under translations by elements of Hα . Let
Mα denote the set of all means on G which are invariant under translations by
elements of Hα; then Mα is weak*-compact in l∞(G)∗, and the family (Mα) has
the finite intersection property: indeed, we have

N⋂

i=1

Mαi ⊇ Mβ 
= ∅,

whenever

N⋃

i=1

Hαi ⊆ Hβ.

The existence of such a β is guaranteed by the directed property of the family (Hα)
for any choice of the finitely many indices α1, α2, . . . , αN . By compactness, the
intersection

⋂
Mα is nonempty, and each element of this set is a left invariant mean

on G.

Theorem 19.16 Every commutative group is amenable.

Proof First we remark that every group has maximal amenable subgroups. Indeed,
this follows from Zorn’s Lemma and Theorem 19.15. Let G be commutative, and
let M be a maximal amenable subgroup. If x is an element of G not in M , then
the cyclic group generated by x is amenable: if x is of finite order, then it generates
a finite group, and if it is of infinite order, then it generates a group isomorphic
to Z, which is amenable, by Theorem 19.11. We conclude that the subgroup of
G generated by M and x is the extension of M by an amenable group, which
is amenable, too, by Theorem 19.14. This is a contradiction, which proves that
M = G, and G is amenable.
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Corollary 19.6 Every solvable group is amenable.

Proof Solvable groups can be obtained from commutative groups via finitely many
extensions by commutative groups, hence they are amenable, by Theorems 19.16
and 19.14.

The group G is called polycyclic, if there is a finite sequence of subgroups

{e} = H0 � H1 � · · · � Hn = G

such that Hi is normal in Hi+1, and Hi+1/Hi is cyclic for i = 0, 1, . . . , n − 1. It
is not difficult to show that every finitely generated nilpotent group is polycyclic.
Clearly, every polycyclic groups is solvable. Hence we have

Corollary 19.7 Every polycyclic group is amenable.

Let P be a family of groups. We say that a groupG is locally P , if every finitely
generated subgroup of G belongs to P .

Theorem 19.17 Every locally amenable group is amenable.

Proof Every group is the direct union of its finitely generated subgroups, hence if
every finitely generated subgroup is amenable, then, by Theorem 19.15, the group
itself is amenable.

Corollary 19.8 Every locally finite group is amenable.

Proof Every locally finite group is locally amenable, hence the previous theorem
applies.

Corollary 19.9 The direct sum of any family of amenable groups is amenable.

Proof Every finitely generated subgroup of the direct sum is included in the direct
sum of some finite subfamily, which is amenable, by Theorem 19.5. It follows
that the direct sum of any family of amenable groups is locally amenable, hence
Theorem 19.17 applies.

We have seen that starting with finite and commutative groups we can create
amenable groups when applying any of the following constructions:

1. taking subgroups;
2. taking homomorphic images;
3. taking amenable extensions;
4. taking direct unions.

The elements of the smallest family of groups including finite groups and
commutative groups, and is closed under these four operations are called elementary
amenable groups, and the family is denoted by EG. Summarizing the above results
we have proved the inclusion EG ⊆ AG ⊆ NF . Von Neumann asked in [39]
whetherAG = NF and Day in [11] noted that it is not known ifEG = AG, or even
EG = NF . In [10] the author shows that the groups in EG can be constructed from
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finite and commutative groups using merely steps 3. and 4. above. He also shows
that every torsion group is EG is locally finite (see [10, Theorem 2.3]). Combining
this with the existence of non-locally finite torsion groups (see [15, 27]) it is proved
that EG 
= NF , hence EG 
= AG, or AG 
= NF , or both.

19.5 Growth of Groups

To discuss asymptotic growth properties of groups we use the word metric. Suppose
that a group G and a symmetric generating set S is given, that is, for s in S we
have s−1 is in S, too. A word over S is a finite ordered sequence w = s1s2 . . . sn
whose terms are elements of S. The number n is called the length of the word w.
An evaluation of this word will be called the element w = s1 · s2 · · · · · sn of G. The
empty word is the empty sequence w = ∅, its length is 0, and its evaluation is the
identity element of G: ∅ = e.

Given an element g in G the word norm |g| of g with respect to S is the shortest
length of a word whose evaluation is g. Given two elements g, h in G the word
distance dS(g, h)with respect to S is the word norm of g−1h. It is easy to verify that
the word metric satisfies the axioms of the metric; the symmetry is the consequence
of the fact that S is supposed to be a symmetric set.

A simple example is presented by the free group F2 on two generators a, b. A
symmetric generating set is S = {a, b, a−1, b−1}. A word is called reduced if a and
a−1, or b and b−1 do not occur next to each other. Every element in F2 can be written
in a unique way in reduced form, and this is the shortest word representing the
element. For instance, b−1a is the reduced form of this element, hence |b−1a| = 2,
and also dS(a, b) = 2. The left action of G on itself is defined by l : g �→ lg

for each l, g in G. This mapping is an isometry with respect to the word metric as
dS(lg, lh) = |(lh)−1 · (lg)| = |h−1g| = dS(g, h) for each l, g, h in G.

LetG be finitely generated, S a finite symmetric generating set, and let Bn(G, S)
denote the set of those elements which can be represented as a word of length at
most n:

Bn(G, S) = {g : g = s1 · s2 · · · · · sk with s1, s2, . . . , sk ∈ S, k ≤ n},

further let νG,S(n) denote the number of elements of Bn(G, S). It can be shown that
if S1 is another finite symmetric generating set, then νG,S and νG,S1 are equivalent
in the sense that

νG,S(n/C) ≤ νG,S1(n) ≤ νG,S(Cn)

holds for each n with some positive number C > 0.
We say that G has exponential growth, if νG,S(n) ≥ Bn holds for some

B > 1; otherwise it has subexponential growth. It has polynomial growth, if
νG,S(n) ≤ p(n) holds for some polynomial p, and it has intermediate growth if its
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growth is neither exponential, nor polynomial. It is easy to see that these properties
are independent of the choice of the generating set. It follows that every finitely
generated group has at least polynomial growth. Also, every finitely generated
Abelian group has polynomial growth (see [8, Corollary 6.6.12]).

As an example we consider G = Z, the group of integers with the symmetric
generating set S = {−1, 1}. Then we have

Bn(G, S) = {−n,−(n− 1), . . . ,−1, 0, 1, . . . , n− 1, n}

hence νG,S(n) = 2n+ 1. It follows that Z has polynomial growth.
Groups with polynomial growth are related to nilpotent groups. A group G is

said to be nilpotent if it has an upper central series which terminates with G. An
upper central series is an ascending sequence

{e} = Z0 � Z1 � · · · � Zn � . . .

such that the successive subgroups Zn are defined as

Zn+1 = {z ∈ G : [z, g] ∈ Zn for each g ∈ G} (n = 0, 1, . . . ).

Here [z, g] = z−1g−1zg is the commutator of z and g. Hence Z1 is the center ofG:
the set of all elements ofG which commute with every element ofG. Consequently,
G is nilpotent if and only if for some n ≥ we have

{e} = Z0 � Z1 � · · · � Zn = G.

The length of an upper central sequence describes “non-commutativity” of the
group; if—and only if—the length is ≤ 1, then the group is commutative. The
following theorem describes some relation between nilpotency and growth (see [8,
Theorem 6.8.1]).

Theorem 19.18 Every finitely generated nilpotent group has polynomial growth.

In [26] John Milnor posed a problem about the existence of a finitely generated
group of intermediate growth. An important contribution in the subject is provided
by Gromov’s celebrated theorem (see [21], also [7, Theorem 4.1]).

Theorem 19.19 (Gromov) A finitely generated group has polynomial growth if
and only if it is virtually nilpotent, that is, it has a nilpotent subgroup with finite
index.

We have the following corollary (see [7, Corollary 4.2]):

Corollary 19.10 Every finitely generated group with polynomial growth is
amenable.

In fact, the following more general theorem holds true (see [7]):
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Theorem 19.20 Every finitely generated group with subexponential growth is
amenable.

We denote the smallest family of groups containing finite groups and commu-
tative groups having subexponential growth and closed under the four elementary
operations by SG. We call the groups in SG subexponentially amenable groups, and
we have

EG ⊆ SG ⊆ AG ⊆ NF

and EG 
= NF . We also have the following theorem (see [8, Corollary 6.6.5]).

Theorem 19.21 Every finitely generated group which contains a subgroup isomor-
phic to the free group F2 has exponential growth.

In his 1980 paper (see [17]) R. I. Grigorchuk constructed a group which was
an infinite, finitely generated torsion group, but not locally finite. This example
answered Burnside’s problem in the negative: not every torsion group is locally
finite. In the next section we exhibit further important properties of the Grigorchuk
group related to amenability.

19.6 The Grigorchuk Group and the Burnside Groups

Let Sym A denote the set of all bijections of the set A. The Grigorchuk group G
is a subgroup of Sym ∪n∈N{0, 1}n generated by the bijections a, b, c, d defined
recursively as follows:

a(x0x1 . . . ) = (1 − x0)x1 . . .

b(x0x1 . . . ) =
{
x0a(x1 . . . ), if x0 = 0

x0c(x1 . . . ), if x0 = 1

c(x0x1 . . . ) =
{
x0a(x1 . . . ), if x0 = 0

x0d(x1 . . . ), if x0 = 1

d(x0x1 . . . ) =
{
x0x1 . . . , if x0 = 0

x0b(x1 . . . ), if x0 = 1.

The elements of G can be realized as words on the alphabet {0, 1}. Every word w
can be written in a unique way as w = s1s2 . . . sn with si in {0, 1}, and n = l(w),
the length of w.
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Obviously, a2 = b2 = c2 = d2 = id, hence S = {a, b, c, d} is a symmetric
generating set of G. Also we have the relations bc = cb = d, dc = cd = b,
db = bd = c, which can be proved by the induction on the length of the words.

We give a simple example. Let w = 10110. Then we have

a(w) = a(10110) = 00110

b(w) = b(10110) = 1c(0110) = 10a(110) = 10010

c(w) = c(10110) = 1d(0110) = 10110

d(w) = d(10110) = 1b(0110) = 10a(110) = 10010.

The following theorem summarizes the most important properties of the Grig-
orchuk group.

Theorem 19.22 The Grigorchuk group has the following properties:

1. The Grigorchuk group is an infinite finitely generated torsion group (see [8]).
2. The Grigorchuk group has intermediate growth (see [18, 19]).
3. The Grigorchuk group has no free subgroup on two generators.

Hence the Grigorchuk group answers Milnor’s question about the existence
of groups with intermediate growth. Also it provides a solution to the problem
formulated in [11] as it is presented in the following theorem:

Theorem 19.23 The Grigorchuk group is amenable (see [8, Corollary 6.11.3]) but
not elementary amenable (see [20]).

It follows that we can update our chain of inclusions:

EG � SG ⊆ AG ⊆ NF.

The free Burnside group B(m, n) is the factor group of the free group Fm on m
generators with respect to the normal subgroup generated by all nth powers. The
order of every element of B(m, n) divides n, hence B(m, n) is a torsion group. It
follows that B(m, n) cannot have a free subgroup on two generators, that is, B(m, n)
belongs to NF . On the other hand, S. I. Adyan proved in [1] that the free Burnside
group is non-amenable for m ≥ 2 if n ≥ 665 is odd. In other words, we can modify
our chain of inclusions to

EG � SG ⊆ AG � NF.

In fact, in the paper [28] A. Ju. Olšanskiı̆ proved that there exists a non-amenable
group such that every proper subgroup of it is cyclic. It follows that such a group
cannot have a free subgroup on two generators, that is, it belongs to NF but
not to AG.
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Finally, to fill the gap about the inclusion SG ⊆ AG we note that there is a gen-
eral construction of amenable groups (see [7, Section 7.2] which produces groups of
“bounded tree automorphisms” with exponential growth (see [7, Proposition 7.14],
also [7, Example 7.15]). Finally, we conclude

EG � SG � AG � NF.

19.7 Ulam Stability

The concept of “Ulam stability” arises form the problem of Stanislaw Ulam he
presented in 1940 at the Mathematics Club of the University of Wisconsin. The
problem is formulated by Ulam in The Scottish Book (see [25] on p. 11. as follows:
“As an example of this ‘epsilon stability,’ consider the simple functional equation:
f (x + y) = f (x) + f (y), i.e., the equation defining the automorphism of the
group of real numbers under addition. The ‘epsilonic’ analogue of this equation is
|g(x + y) − g(x) − g(y)| < ε. The question is then: Is the solution g necessarily
near some solution f of the strictly linear equation? As D. H. Hyers and I showed,
the answer is yes. In fact, |g − f | < ε, with the same epsilon as above.” In [14]
G.-L. Forti uses the following definition (with somewhat different notation): Let G
be a group (or a semigroup) and B a Banach space. We say that the couple (G,B)
has the property of the stability of homomorphisms if for each ε > 0 there exists a
δ > 0 such that for every function f : G→ B, satisfying

‖f (xy)− f (x)− f (y)‖ ≤ ε

whenever x, y is in G, there exist a homomorphism h : G→ B such that

‖f (x)− h(x)‖ ≤ δ (19.4)

for all x in G. In this case we say that the functional equation

f (xy) = f (x)+ f (y)

is, or simply the homomorphisms are Ulam-stable for the couple (G,B). Of course,
the functional equation and the pair G,B can be replaced by other equations, resp.
structures, but this problem was the starting point of the flourishing stability theory.
As Ulam mentioned in his remark above, Hyers became the first contributor to this
theory by his basic theorem as follows (see [23]):

Theorem 19.24 (Hyers) Let E and E′ be Banach spaces and let f : E → E′ be
such that

‖f (x + y)− f (x)− f (y)‖ ≤ ε
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for x, y in E. Then the limit l(x) = limn→∞ 2−nf (2nx) exists for each x in E, l is
an additive function, and the inequality ‖f (x) − l(x)‖ ≤ ε is true for all x in E.
Moreover l is the only additive function satisfying this inequality.

From the original proof of Hyers it is clear that Banach space E can be replaced
by any Abelian group. In fact, the existence of the limit l(x) also follows on any
group, if f (2nx) is replaced by f (x2n)—although the function l is not necessarily a
homomorphism, in general. Further, we observe in the theorem of Hyers that δ can
be taken as ε; in fact, in [14, Theorem 2] the following simple result is proved:

Theorem 19.25 If G is any group and B is a Banach space, further homomor-
phisms are Ulam-stable for the couple (G,B), then the smallest δ satisfying (19.4)
is ε.

On the other hand, the following theorem shows that the Banach space E′ can be
replaced by the space of real, or complex numbers.

Theorem 19.26 Let K denote R or C. If the homomorphisms are Ulam-stable for
the pair (G,K), then the homomorphisms are Ulam-stable for the pair (G,B) with
any K-Banach space B.

Proof Let f : G→ B be a function satisfying

‖f (xy)− f (x)− f (y)‖ ≤ ε

for each x, y in G; then, for every linear functional L on B we have

‖(L ◦ f )(xy)− (L ◦ f )(x)− (L ◦ f )(y)‖ ≤ ε‖L‖

for each x, y inG. By assumption, there exists a homomorphism hL : G→ K such
that, by Theorem 19.25

|(L ◦ f )(x)− hL(x)| ≤ ε‖L‖ (19.5)

holds for each x in G. We define

h(x) = lim
n→∞ 2−nf

(
x2n),

which limit exists, by the above remarks. By the continuity of L, we have

hL(x) = lim
n→∞ 2−n(L ◦ f )(x2n) = L

(
h(x)

)

for each L in the dual of B, and for every x in G. It follows

L
(
h(xy)

) = hL(xy) = hL(x)+ hL(y) = L
(
h(x)

)+ L(
h(y)

) = L
(
h(x)+ h(y)),
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hence h(xy) = h(x)+h(y) holds for each x, y inG, as the dual of B is a separating
family for B. By Eq. (19.5), we have

|L(
f (x)

)− L(
h(x)

)| ≤ ε‖L‖

for each x in G. If there exists an x0 such that

‖f (x0)− h(x0)‖ > ε,

then, by the Hahn–Banach Theorem, we take a linear functional L0 with ‖L0‖ = 1
in the dual of B such that

L0
(
f (x0)− h(x0)

) = ‖f (x0)− h(x0)‖.

Then

ε < ‖f (x0)− h(x0)‖ = |L0
(
f (x0)− h(x0)

)| ≤ ε,

a contradiction. It follows ‖f (x)− h(x)‖ ≤ ε which was to be proved.

In the light of these results we shall consider the stability problem only for pairs
(G,K) where G is any group.

The stability property of homomorphisms can also be formulated in the follow-
ing, slightly different way: given a group G and a function f : G → K we define
the Cauchy-difference C f of f as

C f (x, y) = f (xy)− f (x)− f (y)

for each x, y in G. We say that the pair (G,K) has the HS-property, if for
every function f : G → K with bounded Cauchy-difference there exists a
homomorphism h : G → K such that f − h is bounded. The relation between
the HS-property and the Ulam-stability of homomorphisms for the pair (G,K) is
clarified in the following theorem.

Theorem 19.27 LetG be a group. The pair (G,K) has the HS-property if and only
if the homomorphisms are Ulam-stable for the pair (G,K).

Proof The sufficiency is obvious. Conversely, suppose that the pair (G,K) has the
HS-property and let f : G→ K be a function with

|f (xy)− f (x)− f (y)| ≤ ε

for each x, y in G. By the HS-property, there is a homomorphism h : G→ K such
that f − h is bounded; say |f (x)− h(x)| ≤ K for each x in G. By Theorem 19.25,
we can take K = ε, and our statement is proved.

By the above results, we introduce the class HS of groups G for which the pair
(G,R) has the HS-property: clearly, finite and commutative groups are included in
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HS. In the subsequent paragraphs we shall study the location of HS in the chain
of families

EG � SG � AG � NF.

Of course, similar results can be obtained if R is replaced by C.

19.8 Invariant Means and Ulam-Stability

First we present a proof of Hyers’ theorem and this proof can be considered as a
first step toward the application of invariant means in stability theory.

Theorem 19.28 Let G be an Abelian group and f : G→ R such that

|f (x + y)− f (x)− f (y)| ≤ ε

for each x, y in G. Then there exists a unique homomorphism h : G→ R such that
|f (x)− h(x)| ≤ ε holds for each x in G.

Proof We note that the uniqueness is obvious: if there were two homomorphisms
with the given property, then their difference—which is a homomorphism, too—
were bounded, and it is impossible unless it is zero.

We prove that the sequence
{
2−nf (2nx)

}
is bounded for each x in G. More

exactly, we show that

|2−nf (2nx)− f (x)| ≤ (1 − 2−n)ε.

We have |f (2x)− 2f (x)| ≤ ε, by the assumption on f , with x = y. This is our
statement for n = 1. Supposing that we have proved the statement for n, we put 2nx
for x in the previous inequality to obtain

|f (2 · 2nx)− 2f (2nx)| ≤ ε.

By assumption, we have

|2f (2nx)− 2n+1f (x)| ≤ (2n+1 − 2)ε,

hence, by adding these inequalities

|f (2n+1x)− 2n+1f (x)| ≤ (2n+1 − 1)ε,

which is our statement. In particular,

|2−nf (2nx)− f (x)| ≤ ε.
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Let LIMn be a Banach-limit on N, and we define

h(x) = LIMn

(
2−nf (2nx)

)
,

then h : G→ R is well-defined. On the other hand, by the properties of LIMn, we
have

|f (x)−h(x)| = |LIMn

(
f (x)−2−nf (2nx)

)
| ≤ LIMn

(
|f (x)−2−nf (2nx)|

)
≤ ε.

Now we show that h is a homomorphism. For x, y in G we have

h(x + y)− h(x)− h(y) = LIMn

(
2−n[f (

2n(x + y))− f (
2nx

)− f (
2ny

)]
)
≤

ε · LIMn(2
−n) = 0,

as LIMn(cn) = limn→∞ cn, if {cn} is convergent.

Of course, the Banach-limit LIMn can be replaced by any invariant mean on Z,
the additive group of integers.

This proof suggests that similar argument can be used on amenable groups. In
fact, the first application of invariant means in stability theory was the following
result (see [33]) presented at the 22nd International Symposium on Functional
Equations:

Theorem 19.29 Every amenable group is in HS.

Proof Let f : G→ R be a function satisfying

|f (xy)− f (x)− f (y)| ≤ ε

for each x, y in the amenable groupG. LetM be any right invariant mean onG and
we define

h(y) = Mx[f (xy)− f (x)]

for each y in G. Here Mx means that M is applied on the function x �→ f (xy) −
f (x), which is obviously bounded on G. We have

|f (y)− h(y)| = |Mx[f (y)− f (x)− f (xy)]| ≤ Mx[|f (y)− f (x)− f (xy)|] ≤ ε,

by the properties of M . On the other hand, we have

h(yz)− h(y)− h(z) = Mx[f (xyz)− f (x)− f (xy)+ f (x)− f (xz)+ f (x)] =

Mx[f (xyz)−f (xy)−f (xz)+f (x)]=Mx

[
[f (xyz)−f (xy)]−[f (xz)−f (x)]

]
= 0,



19 Invariant Means in Stability Theory 433

as the function x �→ f (xyz) − f (xy) is the right translate of x �→ f (xz) − f (x)

by y, and M is right invariant. Hence h is a homomorphism. Further, we have

|f (y)− h(y)| = |Mx[f (y)− f (x)+ f (xy)]| ≤ Mx[|f (y)− f (x)+ f (xy)|] ≤ ε,

and the proof is complete.

By this result, we have the inclusion AG ⊆ HS. The natural question arises: are
there any groups not in HS? The first example for such a group was presented by
G. L. Forti at the same 22nd ISFE:

Theorem 19.30 The free group F2 on two generators is not in HS.

Proof The proof here is taken from [14]. Let a, b the two generators of F2 and
suppose that every element of F2 is written in reduced form: it does not contain
aa−1, a−1a, bb−1, b−1b, and it is written without exponents different from −1 and
1. For x in F2 we define f (x) as

f (x) = r(x)− s(x),

where r(x) is the number of words of the form ab contained in x, and s(x) is the
number of words of the form b−1a−1 contained in x. Then f : F2 → R is well-
defined and unbounded. Further, we have

f (xy)− f (x)− f (y) ∈ {−1, 0, 1},

hence |f (xy) − f (x) − f (y)| ≤ 1. Assume that h : F2 → R is a homomorphism.
Then h is completely determined by the values h(a) and h(b). On the other hand,
clearly f vanishes on the two subgroups generated by a, and b, respectively. Hence,
if f−h is bounded on these two subgroups, then h vanishes on these two subgroups,
as well. In particular, h(a) = h(b) = 0, hence h = 0, which contradicts the
boundedness of f − h.

The appearance of the free group on two generators arises the natural question:
is there any close connection between amenability and Ulam-stability? Another
problem is whether we have HS ⊆ NF ? In fact, from the above result it follows
only that the equation of homomorphism is not Ulam-stable on the free group on
two generators, not on groups having a subgroup isomorphic to F2. This leads to
the question: does HS have the property that every subgroup of a group belonging
to HS belongs to HS, too? In [14] the related question is formulated as an open
problem in the following way: given a group G, a subgroup H ⊆ G and a function
f : H → R with C f is bounded does f have an extension f̃ : G → R such that
C f̃ is bounded?
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19.9 Elementary Operations and Stability

In this section we study the behavior of the family HS under the elementary
operations listed in Sect. 19.4. In the previous section we observed that the following
problem is still open: is it true, that if the group G is in HS, then every subgroup
H ⊆ G is in HS? Nevertheless, we have:

Theorem 19.31 Let G be a group in HS. Then every homomorphic image of G is
in HS.

Proof Let � : G → H be a surjective homomorphism with G in HS, and let
f : H → C be a function satisfying

|f (uv)− f (u)− f (v)| ≤ ε

for each u, v in H . Let x, y be in G, then

|f ; (�(x)�(y))− f (
�(x)

)− f (
�(y)

)| ≤ ε,

hence

|(f ◦�)(xy)− (f ◦�)(x)− (f ◦�)(y)| ≤ ε,

that is, by the property of G, there exists a homomorphism a : G→ H such that

|(f ◦�)(x)− a(x)| ≤ ε

holds for each x in G. It follows for each natural number n

|f (
�(x)n

)− na(x)| = |f (
�(xn)

)− na(x)| ≤ ε,

and

∣
∣∣
1

n
f
(
�(x)n

)− a(x)
∣
∣∣ ≤ 1

n
ε → 0,

hence

a(x) = lim
n→∞

1

n
f
(
�(x)n

)

for each x in G. It follows that �(x) = �(y) implies a(x) = a(y), hence we can
define the function A as

A
(
�(x)

) = a(x)
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for each x in G. Clearly, A : H → C is a homomorphism, and we have for each
u = �(x)

|f (u)− A(u)| = |(f ◦�)(x)− A(
�(x)

)| = |(f ◦�)(x)− a(x)| ≤ ε,

and the proof is complete.

Corollary 19.11 Let G be a group in HS. Then every factor group of G is in HS.

Proof By the Homomorphism Theorem, every factor group of G is isomorphic to
a homomorphic image of G: in fact, the factor group with respect to the normal
subgroup of N is isomorphic to the homomorphic image of G under the natural
homomorphism.

Theorem 19.32 The direct sum of any two groups in HS is in HS.

Proof Let G = H ⊕ K with H,K in HS and let f : H ⊕ K → C be a function
satisfying

|f (
(x, u)(y, v)

) − f (x, u)− f (y, v)| ≤ ε

for each x, y in H and u, v in K . Recall that the operation in H ⊕K is defined as

(x, u)(y, v) = (xy, uv),

hence we have

|f (xy, uv)− f (x, u)− f (y, v)| ≤ ε (19.6)

for each x, y in H and u, v in K . Putting y = eH , u = eK , the identity elements in
H and K , respectively, we have

|f (x, v)− f (x, eK)− f (eH , v)| ≤ ε

for each x in H and v in K . On the other hand, putting u = v = eK in (19.6), we
have

|f (xy, eK)− f (x, eK)− f (y, ek)| ≤ ε, (19.7)

hence by the assumption on H , there is a homomorphism hH : H → C such that

|f (x, eK)− hH (x)| ≤ ε

for each x in H . Similarly, there exists a homomorphism hK : K → C such that

|f (eH , y)− hK(y)| ≤ ε
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for each y in K . Hence, we have

|f (x, v)− hH (x)− hK(v)| ≤ (19.8)

|f (x, v)− f (x, eK)− f (eH , v)+ |f (x, eK)− hH (x)| + |f (eH , v)− hK(v)| ≤ 3ε

for each (x, v) in H ⊕K . On the other hand, with the notation h(x, u) = hH (x)+
hK(u) we obtain

h
(
(x, u)(y, v)

) = h(xy, uv) = hH (xy)+ hK(uv) =

hH (x)+ hH (y)+ hK(u)+ hK(v) = h(x, u)+ h(y, v),

that is, h : H ⊕K → C is a homomorphism. Finally, from (19.8) we infer

|f (x, v)− h(x, v)| ≤ 3ε

for each (x, v) in H ⊕K , which proves the theorem.

Theorem 19.33 Let G be the direct union of a family of groups in HS. Then
G is in HS.

Proof Let G be the union of the directed family {Hα} of subgroups in HS and let
f : G→ C be a function satisfying

|f (xy)− f (x)− f (y)| ≤ ε

for each x, y in G. If fα denotes the restriction of f to Hα , then clearly

|fα(xy)− fα(x)− fα(y)| ≤ ε

holds for each x, y in Hα , hence, by assumption, there are homomorphisms
hα : Hα → C such that

|fα(x)− hα(x)| ≤ ε

holds for x inHα . We show that the family {hα} is directed with respect to extension:
if for some α, β, γ we have Hα ∪ Hβ ⊆ Hγ , then hγ (x) = hα(x) for each x
in Hα , and hγ (x) = hβ(x) for each x in Hβ . Indeed, by the properties of the
homomorphisms hα , we have

|fα(x)− hα(x)| ≤ ε

for each x in Hα , and

|fγ (x)− hγ (x)| ≤ ε
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for each x in Hγ . As Hα ⊆ Hγ , and fγ (x) = fα(x) = f (x) for x in Hα , by the
uniqueness statement in Hyers’ Theorem, we infer hγ (x) = hα(x) for x in Hα .
Hence the direct limit h : G→ C of the family of functions {hα} exists, it is clearly
a homomorphism of G, and it obviously satisfies

|f (x)− h(x)| ≤ ε

for each x in G.

We can summarize these results by establishing that the familyHS enjoys similar
properties like EG, but we are unable to prove that it is closed under forming
subgroups and group extensions with groups in HS. We note that the construction
of Forti in Theorem 19.30 also works on the free Burnside group B(m, n) providing
an example for a group which is not in AG (for m ≥ 2 and n ≥ 665 odd), not in
HS, and it is in NF : it has no free subgroup on two generators. This means that
violation of the Ulam-stability property does not mean that the group must contain
free subgroup of rank 2. We note, that B(m, n) is a torsion group, hence every
homomorphism of it is zero. In [14], Forti studied the connection between AG and
HS, and he proved the following result:

Theorem 19.34 The groupG is amenable if and only if for every positive integer n
and for every functions f1, f2, . . . , fn : G → R with bounded Cauchy-differences
there exist homomorphisms h1, h2, . . . , hn : G → R such that fi − hi is bounded
for each i = 1, 2, . . . , n, further for every x1, x2, . . . , xn in G we have

inf
y

n∑

i=1

C fi(xi, y) ≤
n∑

i=1

hi(xi)− fi(xi) ≤ sup
y

n∑

i=1

C fi(xi, y). (19.9)

Proof First assume that G is amenable and M is a left invariant mean on G. If
f1, f2, . . . , fn : G → R are functions with bounded Cauchy-differences, then we
let

hi(x) = My[fi(xy)− fi(y)]
for i = 1, 2, . . . , n and x inG. By Theorem 19.29, hi : G→ R is a homomorphism,
and fi − hi is bounded for i = 1, 2, . . . , n. Then, for each x1, x2, . . . , xn in G we
derive

inf
y

n∑

i=1

[fi(xiy)− fi(y)] ≤ My

[ n∑

i=1

[fi(xiy)− fi(y)
]
≤ sup

y

n∑

i=1

[fi(xiy)− fi(y)],

or

inf
y

n∑

i=1

C fi(xi, y)+
n∑

i=1

fi(xi) ≤
n∑

i=1

hi(xi) ≤ sup
y

n∑

i=1

C fi(xi, y)+
n∑

i=1

fi(xi),

by the properties of the mean. This latter inequality is exactly (19.9).
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For the converse we show that the condition in this theorem implies the condition
for amenability in Theorem 19.9. Indeed, let f1, f2, . . . , fn : G → R be bounded
functions and let x1, x2, . . . , xn be arbitrary elements in G. Clearly, the Cauchy-
differences of the fi’s are bounded, and the corresponding homomorphisms hi are
zero. Assume that the condition of Dixmier is not satisfied, that is

inf
x∈G

n∑

i=1

(fi(x)− fi(xi · x)) = ε > 0.

In other words, we have

n∑

i=1

(−fi(xi)− C fi(xi · x)) ≥ ε, or
n∑

i=1

C fi(xi · x) ≤ −
n∑

i=1

fi(xi)− ε,

hence, by (19.9) and hi ≡ 0

−
n∑

i=1

fi(xi) ≤ −
n∑

i=1

fi(xi)− ε,

a contradiction.

Seemingly, the condition in this theorem is stronger than the HS-property.
Nevertheless, we were unable to find a group having the HS-property but not
amenable. If we denote the class of groups having the property in the previous
theorem by MS, then

AG = MS ⊆ HS.

Whether the inclusion is proper is an open question.

19.10 Stability of Linear Functional Equations

Invariant means can be used to prove stability theorems for a wide class of functional
equations. In this section we consider linear functional equations. The setting is the
following: let G be an Abelian group, n a natural number, and let ϕi, ψi : G → G

be homomorphisms such that the range of ϕi is contained in the range of
ψi : Ranϕi ⊆ Ranψi for i = 1, 2, . . . , n. We consider the functional equation

f0(x)+
n+1∑

i=1

fi
(
ϕi(x)+ ψi(y)

) = 0, (19.10)
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where fi : G→ C are the unknown functions and the equation holds for each x, y
in G. For n = 1, ϕ1 = 0, ϕ2 = ψ1 = ψ2 = id and f0 = f1 = −f2 we have the
equation of homomorphisms:

f0(x)+ f0(y) = f0(x + y),

and with the choice fi = (−1)n+1−i(n+1
i

)
f0, ϕi = id, ψi(x) = ix for

i = 1, 2, . . . , n+ 1 we have the Fréchet functional equation:

	n+1
y f (x) =

n+1∑

i=0

(−1)n+1−i
(
n+ 1

i

)
f (x + iy) = 0. (19.11)

We recall that solutions f : G → C of the latter functional equation are called
generalized polynomials of degree at most n. The difference operators are defined
in the usual way:

	yf (x) = f (x + y)− f (x)

and the iterates

	y1,y2,...,yn+1f (x) = 	yn+1 [	y1,y2,...,ynf ](x)

for each function f : G → C and elements x, y, y1, y2, . . . , yn+1 in G. In
particular, for y = y1 = y2 = · · · = yn+1 we write

	n+1
y f (x) = 	y1,y2,...,yn+1f (x).

We use the notation 	0
yf (x) = f (x) for each x, y in G.

Linear functional equations have a huge literature. For references the reader
should consult with handbooks on functional equations. Here we focus on the Ulam-
stability of these functional equations. First we show that the Fréchet functional
equation (19.11) possesses the Ulam-stability property in the following way (see
[31]):

Theorem 19.35 Let G be an Abelian group, n a natural number, and f : G → C

a function such that the function

(x, y) �→ 	n+1
y f (x)

is bounded. Then there exists a generalized polynomial P : G → C of degree at
most n such that f − P is bounded.

Proof First we note that, by the results in [13], the expression 	y1,y2,...,yn+1f (x)

is a linear combination of terms 	n+1
y f (z), where the number of terms depends
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on n only, and the y, z’s depend on x, y1, y2, . . . , yn+1 linearly. It follows, that the
function

(x, y1, y2, . . . , yn+1) �→ 	y1,y2,...,yn+1f (x)

is bounded on Gn+2.
Without loss of generality we may assume that f (0) = 0. Let M be an invariant

mean on G. Then, for each x, y1, y2, . . . , yn+1 in G we can calculate as follows:

Mx[	y1,y2,...,yn+1f (x)] = Mx[	y1,y2,...,ynf (x+yn+1)]−Mx[	y1,y2,...,ynf (x)] = 0,

by the invariance of M .
By induction, we can prove for k = 1, 2, . . . that

Myn+2Myn+3 . . .Myn+k+1[	y1,y2,...,yn+k+1f ](x) = (−1)k	y1,y2,...,yn+1f (x).

We define for x in G:

f0(x) = (−1)nMy1My2 . . .Myn[	y1,y2,...,yn,xf ](0),

then f0 : G → C is a bounded function. On the other hand, we have for each
u1, u2, . . . , un+1 in G:

[	u1,u2,...,un+1(f − f0)](x) =

	u1,u2,...,un+1f (x)+(−1)n+1	u1,u2,...,un+1

[
My1My2 . . .Myn[	y1,y2,...,yn,xf ](0)

] =

	u1,u2,...,un+1f (x)+

(−1)n+1	u1,u2,...,un+1

[
My1My2 . . .Myn[	y1,y2,...,ynf (x)−	y1,y2,...,ynf (0)]

] =

	u1,u2,...,un+1f (x)+ (−1)n+1My1My2 . . .Myn[	u1,u2,...,un+1	y1,y2,...,ynf ](x) =

	u1,u2,...,un+1f (x)+ (−1)n+1(−1)n[	u1,u2,...,un+1f ](x) = 0

hence P = f − f0 is a generalized polynomial of degree at most n.

Corollary 19.12 Let G be an Abelian group, n a natural number, and f : G→ C

a function such that the function

(x, y1, y2, . . . , yn+1) �→ 	y1,y2,...,yn+1f (x)

is bounded. Then there exists a generalized polynomial P : G → C of degree at
most n such that f − P is bounded.
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We shall denote by LS the family of those Abelian groups G for which the
following property holds: for each natural number n, for each homomorphisms
ϕi, ψi : G → G (i = 1, 2, . . . , n + 1) with the above properties and for each
ε > 0 there exists a δ > 0 such that if f0 : G→ C is a function such that

|f0(x)+
n+1∑

i=1

fi
(
ϕi(x)+ ψi(y)

)| ≤ ε, (19.12)

then there exists a generalized polynomial P0 : G → C such that
|f0(x) − P0(x)| ≤ δ for each x in G. Roughly speaking, LS-property for G
means that linear functional equations have a stability property which is analogous
to Ulam-stability of homomorphisms. First we show that We underline that here we
consider commutative groups, only. Now we prove that for commutative groups,
HS-property and LS-property are equivalent.

Theorem 19.36 Every Abelian group is in LS.

Proof We assume thatG is an Abelian group inHS, and let n, ϕi, ψi and ε be given
with the properties as above. We introduce the function

Fn+1(x, y) = f0(x)+
n+1∑

i=1

fi
(
ϕi(x)+ ψi(y)

)

for each x, y in G; then Fn+1 : G×G → C is bounded: |Fn+1(x, y)| ≤ ε. Let zn+1
be arbitrary in G; by assumption, ϕn+1(zn+1) is in the range of ψn+1, hence there
is a wn+1 in G such that ψn+1(wn+1) = ϕn+1(zn+1). Putting x + zn+1 for x and
y − wn+1 for y in Fn+1 we have

Fn+1(x + zn+1, y − wn+1) =

f0(x + zn+1) +
n∑

i=1

fi

(
ϕi(x) + ϕi(zn+1) + ψi(y) − ψi(wn+1)

) + fn+1
(
ϕn+1(x) + ψn+1(y)

)
,

hence

Fn+1(x + zn+1, y − wn+1) − Fn+1(x, y) =

�zn+1f0(x) +
n∑

i=1

�ϕi(zn+1)−ψi(wn+1)fi

(
ϕi(x) + ψi(y)

)

for each x, y in G. If we write Fn(x, y) = Fn+1(x + zn+1, y − wn+1) − Fn+1(x, y)

for each x, y in G (while zn+1 is arbitrary in G, but fixed), then Fn : G × G → C

is a bounded function; in fact, |Fn(x, y)| ≤ 2ε. Also, we write

gi(x) = �ϕi(zn+1)−ψi(wn+1)fi(x)
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for i = 1, 2, . . . , n. Then we conclude that the functions 	zn+1f0, g1, g2, . . . , gn
satisfy the condition

Fn(x, y) = 	zn+1f0 +
n∑

i=1

gi
(
ϕi(x)+ ψi(y)

)

holds for x, y inG, and Fn is a bounded function. Continuing this process, after n+1
steps we arrive at the following conclusion: for every choice of x, z1, z2, . . . , zn+1
in G we have

|	z1,z2,...,zn+1f0(x)| ≤ 2n+1ε.

By the previous theorem, our statement follows.

The previous theorem can be used to describe all solutions of inhomogeneous
linear functional equations with bounded right hand side. More exactly, we have
(see [30]):

Corollary 19.13 Let G be an Abelian group, n a natural number,
ϕi, φi : G→ G homomorphisms with Ranϕi ⊆ ψi , and let ci be complex numbers
(i = 1, 2 . . . , n+ 1). If F : G×G→ R is a bounded function, then every solution
f : G→ R of the functional equation

f (x)+
n+1∑

i=1

cif
(
ϕi(x)+ ψi(y)

) = F(x, y) (19.13)

has the form f = f0 + P , where f0 : G → R is a bounded solution of (19.13),
and P : G → R is a generalized polynomial of degree at most n satisfying the
homogeneous equation

P(x)+
n+1∑

i=1

ciP
(
ϕi(x)+ ψi(y)

) = 0 (19.14)

corresponding to (19.13).

Proof Clearly, every function f = f0 + P of the given form is a solution of the
functional equation (19.13).

For the converse, we know, by Theorem 19.36, that every function f : G → R

satisfying (19.13) has the form f = f0 + P with f0 : G → R is bounded, and
P : G→ R is a polynomial of degree at most n. Substituting into (19.13) gives

P(x)+
n+1∑

i=1

ciP
(
ϕi(x)+ ψi(y)

) = F(x, y)− [f0(x)+
n+1∑

i=1

cif0
(
ϕi(x)+ ψi(y)

)]
(19.15)
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for each x, y in G. The left side is a generalized polynomial in both x and y, and
the right side is bounded, hence both sides are constant:

P(x)+
n+1∑

i=1

ciP
(
ϕi(x)+ ψi(y)

) = K (19.16)

with some real number K . Now we have two cases.
If

∑n+1
i=1 ci = −1, then we write P = Q + P(0), where Q : G → R is a

generalized polynomial of degree at most nwithQ(0) = 0. Substitution into (19.13)
gives

Q(x)+
n+1∑

i=1

ciQ
(
ϕi(x)+ ψi(y)

) = K,

and putting x = y = 0 we obtain K = 0. It follows, by (19.16), that P is a solution
of (19.14). In this case, by (19.15) and (19.16), we infer that f0 is a bounded solution
of the functional equation (19.13), and our statement is proved.

If c = ∑n+2
i=1 ci 
= −1, then we define for x in G:

Q(x) = P(x)−K(1 + c)−1, and g0(x) = f0(x)+K(1 + c)−1.

By (19.16), we get:

Q(x)+
n+1∑

i=1

ciQ
(
ϕi(x)+ ψi(y)

) =

P(x)−K(1+ c)−1 +
n+1∑

i=1

ciP
(
ϕi(x)+ψi(y)

)−
n+1∑

i=1

ciK(1+ c)−1 = K −K = 0,

hence Q is a solution of (19.14). Clearly, Q is a generalized polynomial of degree
at most n and f = g0 +Q, where g0 is bounded. Finally, we conclude

g0(x)+
n+1∑

i=1

cig0
(
ϕi(x)+ ψi(y)

) = f0(x)+
n+1∑

i=1

cif0
(
ϕi(x)+ ψi(y)

)+K =

F(x, y)− [P(x)+
n+1∑

i=1

ciP
(
ϕi(x)+ ψi(y)

)] +K = F(x, y),

that is, g0 is a bounded solution of the functional equation (19.13). The theorem is
proved.
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19.11 Functional Equations Involving Nonlinearity

If a functional equation is nonlinear in the above sense, then, in some cases, other
types of stability appear. Prominent examples are provided by the multiplicative
Cauchy equation, the trigonometric functional equations, etc. One of those new
phenomena is the so-called superstability. The multiplicative Cauchy equation and
its pexiderized versions posses this superstability property—or some variant of it—
which means that if the multiplicative Cauchy difference

(x, y) �→ f (xy)− f (x)f (y)

is bounded, then f is either bounded, or it is an exact solution of the equation
(see e.g. [32]). It is clear that we cannot expect that an exact solution plus a
bounded function will not—in general—have the property, that its multiplicative
Cauchy difference is bounded. Another interesting example is presented by the
addition formulas of some trigonometric functions. For instance, assume that a pair
of functions f, g has the property that the function

(x, y) �→ f (xy)− f (x)g(y)− f (y)g(x)

is bounded. What can be said about the pair (f, g) in connection with the sine
functional equation? It turns out that, in the presence of some additive terms,
amenability plays a role in the Ulam-stability, but it is not the case for “pure”
multiplicative equations.

In the subsequent sections we exhibit the stability properties of the sine and the
cosine functional equations on amenable groups, and we also present an Ulam-
stability result for some functional equations related to spherical functions.

19.12 The Stability of the Sine and the Cosine Equations

First we study the sine functional equation. The following theorem—also for
complex valued functions—was proved in [34, Theorem 2.3] below. We recall that
a function m : G→ R is called exponential, resp. additive, if

m(xy) = m(x)m(y), resp. a(xy) = a(x)+ a(y)

holds for each x, y in G.

Theorem 19.37 Let G be an amenable group and let f, gG :→ R be functions.
The function

(x, y) �→ f (xy)− f (x)g(y)− f (y)g(x) (19.17)
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is bounded if and only if one of the following possibilities holds:

1. f = 0 and g is arbitrary;
2. f, g are bounded;
3. f = am + b, g = m, where m is a bounded exponential, a is additive, and
b : G→ R is a bounded function;

4. f = λ(m − b), g = 1
2 (m + b), where m is an exponential, b : G → R is a

bounded function, and λ is a complex number;
5. f (xy) = f (x)g(y)+ f (y)g(x) holds for each x, y in G.

Proof It is clear that function in (19.17) is bounded in the cases 1. and 2. In the third
case we obtain, by elementary calculation

f (xy)− f (x)g(y)− f (y)g(x) = b(xy)− b(x)m(y)− b(y)m(x),

which is bounded. Similarly, in case 4. we have

f (xy)− f (x)g(y)− f (y)g(x) = λ
(
b(x)b(y)− b(xy),

which is bounded, as well. The case 5. is obvious: in this case the function in (19.17)
is identically zero.

Now suppose that f is unbounded and we use [34, Lemma 2.2] which says, that,
if F denotes the space of all bounded real functions on G and f is unbounded,
then either 4., or 5. holds, or g = m is a bounded exponential. We show that in this
case we have possibility 3. We may assume m 
= 0, otherwise f is bounded, then
m(x)−1 = m(x−1), consequently

(x, y) �→ f (xy)− f (x)g(y)− f (y)g(x)
m(xy)

= f (xy)m
(
(xy)−1)− f (x)m(x−1)− f (y)m(y−1)

is bounded, hence, by Hyers’ Theorem,

f (x)m(x)−1 = f (x)m(x−1) = a(x)+ b0(x)

with some additive function a and bounded function b0 : G→ R. It follows f (x) =
a(x)m(x) + b0(x)m(x) = a(x)m(x) + b(x), and our statement is proved, as b is
bounded.

The cosine equation was considered also in [34, Theorem 3.3] and the corre-
sponding result is as follows:

Theorem 19.38 Let G be an amenable group and let f, g :→ R be functions. The
function

(x, y) �→ f (xy)− f (x)f (y)+ g(x)g(y) (19.18)

is bounded if and only if one of the following possibilities holds:

1. f = 0 and g is arbitrary;
2. f is an exponential, g is bounded;



446 L. Székelyhidi

3. f = (1+ a)m+ b, g = am+ b, or f = am+ b, g = (1− a)m− b, where m
is a bounded exponential, a is additive, and b : G→ R is a bounded function;

4. f = λ2

λ2−1
m − 1

λ2−1
b, g = λ

λ2−1
m + λ

λ2−1
b, where m is an exponential, b :

G→ R is a bounded function, and λ is a complex number with λ2 
= 1;
5. f (xy) = f (x)f (y)− g(x)g(y) holds for each x, y in G.

19.13 A Functional Equation Related to Spherical Functions

In this section we consider the functional equation

∫

K

f
(
xky

)
dmK(k) = g(x)h(y)+ p(y). (19.19)

Here we suppose that G is a group, K is a compact subgroup in G with normalized
Haar measure mK , and the unknown functions f, g, h, p : G → C are continuous.
This functional equation was investigated in [36], where the general solution was
described and its stability was proved under different conditions. Clearly, ifK = {e}
is the trivial subgroup, then the equation reduces to

f (xy) = g(x)h(y)+ p(y),

which is a special Levi–Civitá equation, including the pexiderized additive and
multiplicative Cauchy functional equations. If K is a finite group, then the left side
reduces to a linear combination:

n∑

j=1

f (xkjy) = g(x)h(y)+ p(x).

If in (19.19) p vanishes and f = g = h, then the nonzero K-invariant solutions of

∫

K

f (xky) dmK(k) = f (x)f (y) (19.20)

are called generalized K-spherical functions. Here we recall the following result:

Theorem 19.39 Suppose thatG is an amenable group,K is finite and let f, g, h, p
be continuous functions with f and h unbounded. Then the function

(x, y) �→
∫

K

f (xky)dmK(k)− g(x)h(y)− p(y)

is bounded if and only if we have
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f (x) = h(e)[ϕ(x)+ ψ(x)] + b1(x)

g(x) = ϕ(x)+ ψ(x)
h(x) = h(e)ω(x)

p(x) = h(e)ϕ(x)+ b2(x)

where ω : G → C is a generalized K-spherical function, b1, b2 : G → C are
bounded functions, h(e) is a nonzero complex number, ϕ : G → C is a function
satisfying

∫

K

ϕ(xky)dmK(k) = ϕ(x)ω(y)+ ϕ(y) (19.21)

and ψ : G→ C is a function satisfying

∫

K

ψ(xky)dmK(k) = ψ(x)ω(y) (19.22)

for each x, y in G.

Proof As f is unbounded, hence g is unbounded, too, and the function

x �→
∫

K

f (xky)dmK(k)− g(x)h(y)

is bounded for every fixed y in G. By Theorem [36, Theorem 5], it follows that
h = c ω, where c = h(e) 
= 0, and ω is a generalized K-spherical function on
G. Replacing h by h/h(e) we may suppose that h(e) = 1. Putting y = e in the
condition we have that f − g is bounded. LetM be a right invariant mean onG and
we define

ϕ(y) = Mx[
∫

K

g(xky)dmK(k)− g(x)ω(y)]

for each y in G. Then, since ω is a generalized K-spherical function, we have

∫

K

ϕ(ylz)dmK(l)− ϕ(y)ω(z)− ϕ(z) =
∫

K

Mx[
∫

K

g(xkylz)dmK(k)− g(x)ω(y(z)]dmK(l)−

ω(z)Mx[
∫

K

g(xky)dmK(k)− g(x)ω(y)] −Mx[
∫

K

g(xkz)dmK(k)− g(x)ω(z)] =
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∫

K

Mx[
∫

K

g(xkylz)dmK(l)− g(xky)ω(z)]dmK(k)−
∫

K

Mx[
∫

K

g(xlz)dmK(l)− g(x)ω(z)]dmK(k) = 0,

by Fubini’s Theorem about interchanging the order of integration, and by the right
invariance of the mean M . Now we obtain

ϕ(y)− p(y) = Mx[
∫

K

g(xky)dmK(k)− g(x)ω(y)− p(y)] =

Mx[
∫

K

f (xky)dmK(k)− g(x)ω(y)− p(y)] +Mx[
∫

K

(g(xky)− f (xky)dmK(k)]

and here both terms are bounded. It follows that p − ϕ is bounded.
As f − g is bounded we have

(x, y) �→
∫

K

f (xky)dmK(k)−
∫

K

g(xky)dmK(k)

is bounded, hence we have that the function

(x, y) �→
∫

K

g(xky)dmK(k)− g(x)ω(y)− ϕ(y)

is bounded, too. We let

∣∣∣
∫

K

g(xky)dmK(k)− g(x)ω(y)− ϕ(y)
∣∣∣ ≤ L

for each x, y in G with some constant L. It follows

∣∣∣
∫

K

∫

K

g(xlykz)dmK(k)dmK(l)− ω(z)
∫

K

g(xly)dmK(l)− ϕ(z)
∣∣∣ ≤ L

and

∣∣∣
∫

K

∫

K

g(xlykz)dmK(l)dmK(k)−

−g(x)
∫

K

ω(ykz)dmK(k)−
∫

K

ϕ(ykz)dmK(k)

∣
∣∣ ≤ L.

From these two inequalities, by (19.21) and the property of ω, we infer
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∣∣∣ω(z)
(∫

K

g(xly)dmK(l)− g(x)ω(y)− ϕ(y)
)∣∣∣ ≤ 2L

for each x, y, z in G. As ω = h is unbounded it follows that we have

∫

K

g(xly)dmK(l) = g(x)ω(y)+ ϕ(y)

for each x, y in G. Hence and from (19.21), we have

∫

K

(g(xly)− ϕ(xly))dmK(l) = (g(x)− ϕ(x))ω(y),

that is, g = ϕ + ψ , where ψ : G → C satisfies (19.22) for each x, y in G. The
theorem is proved.

19.14 Generalizations

As we said above several results in the preceding paragraphs can be extended to
more general situations. The theory of amenability and invariant means is well-
developed even on semigroups (see [11, 16]), and groupoids (see [2, 3]). The concept
of amenability and invariant means on hypergroups has also been invented and
applied. In [24] the author proves that every commutative hypergroup is amenable.
In [29] a systematic study of amenability of hypergroups was initiated. The first
applications of invariant means to functional equations on hypergroups can be found
in [35].

In [5] the author verifies the existence of left and right invariant means acting on
certain function spaces over an amenable semigroup that are essentially larger than
the spaces of bounded functions (see also [4]).

Amenability on groups can be used to prove stability of some linear functional
equations even if the group is non-commutative. In [40] the author proves the
following stability result for the square norm equation using exactly the same idea
of [33] (see Theorem 19.29 above).

Theorem 19.40 Let G be an amenable group. If f : G→ C satisfies

|f (xy)− f (xy−1 − 2f (x)− 2f (y)| ≤ δ

for each x, y in G, then there exists a quadratic function q : G→ C, that is

q(xy)+ q(xy−1) = 2q(x)+ 2q(y),

such that |f − q| ≤ 5
2δ.
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The main step in the proof is to show that the function

y �→ Mx[f (yx)+ f (xy−1)− 2f (x)]

is quadratic.

Acknowledgement Research was supported by OTKA Grant No. K111651.
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Chapter 20
On Geometry of Banach Function
Modules: Selected Topics

Paweł Wójcik

Abstract The aim of the paper is to present results concerning the geometry
of Banach function modules. In particular, we characterize the k-smooth points
in Banach function modules and we compute the norm derivatives in Banach
function modules. Using the notion of the norm derivatives, we apply our results
to characterize orthogonality in the sense of Birkhoff in C (K;X), and to give
a new characterization of smooth points in C (K). Moreover, the stability of the
orthogonality equation in normed spaces is considered.

Keywords Function module · Extreme point · k-Smooth point · Norm
derivatives · Stability · Orthogonality equation

Mathematics Subject Classification (2010) Primary 46B20, 39B82; Secondary
46E15, 39B52, 46C50

20.1 Preliminaries

Let X be a real Banach space. The closed unit ball of X is denoted by B(X). The
unit sphere of X is denoted by S(X). A subset A ⊂ X is absorbing if for each x in
X there is an ε > 0 such that tx ∈A for 0 < t < ε. Fix x ∈ X \ {0}. We consider
the set J (x) defined as follows

J (x) := {x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖}.

The set J (x) is convex and closed, and J (x) ⊂ S(X∗). By the Hahn-Banach
theorem we get J (x) 
=∅ for all x∈X \ {0}.
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J. Brzdęk et al. (eds.), Ulam Type Stability,
https://doi.org/10.1007/978-3-030-28972-0_20

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28972-0_20&domain=pdf
mailto:pawel.wojcik@up.krakow.pl
https://doi.org/10.1007/978-3-030-28972-0_20


454 P. Wójcik

20.1.1 Function Modules

IfK is a compact Hausdorff space andX a real normed linear space, we let C (K;X)
denote the space of all continuous functions f from K to X with

‖f ‖∞ := sup{‖f (t)‖X : t ∈ K}.

In particular, C (K) := C (K;R). In this paper we consider a class of spaces, called
Banach function modules, which are more general than the spaces C (K;X). The
space

⊕

t∈K
Yt denotes the functions y : K→ ∏

t∈K
Yt for which

‖y‖∞ := sup{‖y(t)‖
Yt
: t ∈ K} <∞,

and to shorten the notation we will write ‖y‖ = sup{‖y(t)‖ : t ∈ K}.
A Banach function module, or function module is a triple (K, (Yt )t∈K, Y ), where

K is a nonempty compact Hausdorff space, (Yt )t∈K a family of Banach spaces, and
Y a closed subspace of

⊕

t∈K
Yt such that the following conditions are satisfied:

(FM1) if h ∈ C (K) and y ∈ Y , then hy ∈ Y ; here (hy)(t) := h(t)·y(t);
(FM2) t→‖y(t)‖ is an upper semicontinuous function for every y∈Y ;
(FM3) Yt = {y(t) : y ∈ Y } for every t ∈ K;
(FM4) cl {t ∈ K : Yt 
= {0}} = K .

So, we will say that Y is a function module. The following notation will be
frequently used:

Y = (K, (Yt )t∈K, Y ) and Y ∗ = (K, (Yt )t∈K, Y )∗.

A natural example of a function module is a space C (K;X) where K is compact
and we take Yt=X for each t ∈K . Another example of a function module is a space
Y1⊕∞Y2⊕∞Y3, where Y1, Y2, Y3 are Banach spaces and K={1, 2, 3}. A property
of function modules that will be of importance to us is that for any t ∈ K , there is
some element F of the module which attains its norm on t . Even a bit more can be
said.

Theorem 20.1 If (K, (Yt )t∈K, Y ) is a function module and t ∈ K , u ∈ Yt are
given, there exists F ∈ Y such that

F(t) = u and‖F‖ = ‖F(t)‖ = ‖u‖.

Furthermore, if U is a given neighborhood of t , F may be chosen so that F(r) = 0
for r ∈ K \ U .
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20.1.2 Extreme Points

The useful tool in this paper is a theorem due to Behrends [2] which characterizes
the extremal points of the closed unit ball in a space (K, (Yt )t∈K, Y )∗ (or briefly Y ∗)
in terms of extremal points of the closed unit ball in Yt . By Ext(L) we will denote
the set of all extremal points of a given set L. For t ∈ K , let ψt : Y→Yt denote the
evaluation function defined by ψt(y) := y(t). We are ready to describe the extreme
points of the closed unit ball of the dual of the function module Y .

Theorem 20.2 ([2, p. 80]) If (K, (Yt )t∈K, Y ) is a function module, then γ is an
extreme point of B(Y ∗) if and only if

there are t ∈ K and y∗ ∈ Ext(B(Y ∗
t )) such that γ = y∗ ◦ ψt .

20.2 Multismoothness in Banach Function Modules

Let X be a real normed linear space. The point x ∈ S(X) is a smooth point if
J (x) consists exactly of one point. In this paper, motivated by the results published
by Lin and Rao [9] and Saleh Hamarsheh [11], we study the notion of k-smooth
points. In [9, 11] they generalize the notion of smoothness by calling a unit vector
x in a Banach space X a k-smooth point, or a multismooth point of order k if
dim spanJ (x) = k. For a natural number k, the set of k-smooth points in X is
denoted by N k

sm(X). It is easy to see that the point x is smooth point if and only if
x is a 1-smooth point. Note that J (x) is a weak∗-compact convex set and hence it is
easy to see that x ∈ N k

sm(X) if and only if dim span ExtJ (x) = k because

dim spanJ (x) = dim span ExtJ (x). (20.1)

Lin and Rao characterized in [9] multismoothness in l∞-direct sums and proved the
following theorem.

Theorem 20.3 ([9]) Let {Xi : i ∈ I } be an infinite family of nonzero Banach
spaces. Let X = ⊕

i∈I
Xi (i.e., X is a l∞-direct sum) and let x = (xi) be a unit

vector in X. Let
I1 := {i ∈ I : ‖xi‖ < 1}, let
I2 := {i ∈ I : ‖xi‖ = 1, and xi ∈ N mi

sm (Xi)}, and let
I3 := I \ (I1 ∪ I2).

Then the following statements are equivalent:

(a) x ∈ N k
sm(X),

(b) I3 = ∅, I2 is finite, sup{‖xi‖ : i ∈ I1} < 1, k = ∑

i∈I2
mi .
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Similar investigations have been carried out by Saleh Hamarsheh in l1-direct sums
(see [11, Theorem 7, p. 3]). The paper [10] also presents an interesting result.
Namely, Saleh Hamarsheh [10] proved that if f ∈L1(μ,X) is not a smooth point,
(i.e., f /∈N 1

sm

(
L1(μ,X)

)
), then f is not a multismooth point of any finite order,

which means that f /∈N (ksm
(
L1(μ,X)

)
for all k ∈ {2, 3, 4, . . .}.

In a recent paper [14] the author has proved the following characterization of
multismoothness in K (H1,H2), i.e., the space of all compact operators between
two Hilbert spaces.

Theorem 20.4 ([14]) Let H1, H2 be real (resp. complex) Hilbert spaces. Suppose
that A∈K (H1,H2), ‖A‖=1. Then the following statements are equivalent:

(a) A ∈ N k
sm (K (H1,H2)),

(b) k = (
n+1

2

)
, (resp. k = n2)

where n = dim span {x∈S(H1) : ‖Ax‖=‖A‖}.
Theorem 20.3 motivates this section. Now we return to the geometry of Banach
function modules to prove the main result of this section. Let (K, (Yt )t∈K, Y ) be a
function module. Given y ∈ Y , we denote

M (y) := {t ∈K : ‖y(t)‖=‖y‖}.

By (FM2) and by compactness of K we have M (y) 
= ∅. There is a useful
observation that can be made here. Because of (FM1) (and Theorem 20.1) it can
be shown that if t1, . . . , tn are distinct points in K and z∗k ∈ Y ∗

tk
, then

z∗1 ◦ ψt1 , . . . , z∗n ◦ ψtn are linearly independent. (20.2)

The main result in this section is the following:

Theorem 20.5 Let (K, (Yt )t∈K, Y ) be a function module. Let k ∈N. Suppose that
y ∈ Y and ‖y‖ = 1. Then the following statements are equivalent:

(a) y ∈ N k
sm(Y ),

(b) M (y)={t1, . . . , tp}, y(tj )∈N mj
sm (Ytj ), k=

p∑

j=1
mj .

Before launching into the proof, a few words motivating the proof are appropriate.
Theorem 20.3 motivates this section. It is worth mentioning that Theorems 20.3
and 20.5 are not equivalent (i.e., both theorems are independent). Indeed, in general
case, (K, (Yt )t∈K, Y ) �

⊕

t∈K
Yt . In fact, they are not equal unless K = {1, . . . , n}.

Moreover, if y ∈ Y , i.e., y ∈ (K, (Yt )t∈K, Y ), then the following implication holds
true:

y ∈ N k
sm

(
⊕

t∈K
Yt

)

⇒ y ∈ N
j
sm((K, (Yt )t∈K, Y )) and j � k. (20.3)
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The reverse implication (more precisely, y ∈ N k
sm(Y ) ⇒ y ∈ N k

sm

(⊕
Yt

)
) is,

generally, not true unless K = {1, . . . , n}, which means
⊕
Yt = Y .

To summarize, this discussion shows that Theorem 20.3 and the “property”

y∈N k
sm(Y )� y∈N k

sm(
⊕

Yt )

motivate Theorem 20.5. The method of proof presented here is different from that
of [9, 11].

Proof To prove (a)⇔(b) suppose that y ∈ S(Y ). If we consider

J (y)={ϕ∈Y ∗ : ‖ϕ‖=1, ϕ(y)=1},

it is a straightforward computation to show that J (y) is an extremal subset of B(Y ∗).
Therefore

ExtJ (y) ⊂ ExtB(Y ∗).

It follows from this and Theorem 20.2 that

ExtJ (y) ⊂ {z∗ ◦ ψt : t ∈K, z∗ ∈ExtB(Y ∗
t )}. (20.4)

Now we will show that

ExtJ (y) ⊂ {z∗ ◦ ψt ∈S(Y ∗) : t ∈M (y), z∗ ∈ExtJ (y(t))}. (20.5)

Let ϕ∈ExtJ (y). By (20.4) for some t ∈K and z∗ ∈ExtB(Y ∗
t ), we get

ϕ = z∗ ◦ ψt .

Thus 1=ϕ(y)=z∗(y(t)) and so ‖y(t)‖ = 1. It follows that

t ∈ M (y) and z∗ ∈J (y(t)).

Since

z∗ ∈J (y(t))⊂B(Y ∗
t ) and z∗ ∈ExtB(Y ∗

t ),

we have z∗ ∈ExtJ (y(t)), so

ϕ ∈ {z∗ ◦ ψt ∈ S(Y ∗) : t ∈M (y), z∗ ∈ExtJ (y(t))},

i.e., (20.5) holds.
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A moment’s reflection shows that

{z∗ ◦ ψt ∈ S(Y ∗) : t ∈M (y), z∗ ∈ExtJ (y(t))} ⊂ J (y). (20.6)

Now we show k = ∑

t∈M (y)

dim spanJ (y(t)). We get that

∑

t∈M (y)

dim spanJ (y(t))
(20.1)=

∑

t∈M (y)

dim span ExtJ (y(t))
(20.2)=

(20.2)= dim span
⋃

t∈M (y)

{z∗ ◦ ψt ∈ S(Y ∗) : z∗ ∈ExtJ (y(t))} =

= dim span{z∗ ◦ ψt ∈ S(Y ∗) : t ∈M (y), z∗ ∈ExtJ (y(t))} (20.5)
�

(20.5)
� dim span ExtJ (y)

(20.1)= dim spanJ (y) = k.

On the other hand we get

k = dim spanJ (y)
(20.6)
�

(20.6)
� dim span{z∗ ◦ ψt ∈ S(Y ∗) : t ∈M (y), z∗ ∈ExtJ (y(t))} =
= dim span

⋃

t∈M (y)

{z∗ ◦ ψt ∈ S(Y ∗) : z∗ ∈ExtJ (y(t))} (20.2)=

(20.2)=
∑

t∈M (y)

dim span ExtJ (y(t))
(20.1)=

∑

t∈M (y)

dim spanJ (y(t)).

It follows from the above inequalities that k= ∑

t∈M (y)

dim spanJ (y(t)). In this case,

k=
∑

t∈M (y)

dim spanJ (y(t)) =
p∑

j=1

mj

for some numbers p,m1, . . . , mp such that M (y)={t1, . . . , tp}, where

m1=dim spanJ (y(t1)), . . . , mp=dim spanJ (y(tp)),

i.e., y(t1)∈N m1
sm (Yt1), . . ., y(tp)∈N mp

sm (Ytp ). The theorem is proved.
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20.3 Norm Derivatives in Banach Function Module

In a real normed linear space (X, ‖·‖), the Gateaux derivatives of the norm are given
for fixed x and y in X by the two expressions lim

λ→0±
‖x+λy‖−‖x‖

λ
. Note that instead

of considering the above norm derivatives, it is more convenient to introduce the
functionals

ρ′±(x, y) := lim
λ→0±

‖x + λy‖2 − ‖x‖2

2λ
= ‖x‖· lim

λ→0±
‖x + λy‖ − ‖x‖

λ
, x, y ∈ X,

because when the norm comes from an inner product 〈·|·〉 : X×X→R, we obtain
ρ′+(x, y) = 〈x|y〉 = ρ′−(x, y), i.e., functionals ρ′+, ρ′− are perfect generalizations of
inner products. Convexity of the norm yields that the above definition is meaningful.
The mappings ρ′+ and ρ′− are called the norm derivatives and their following
properties, which will be useful in the present note, can be found, e.g., in [1, 4]:

(ND1) ∀x,y∈X ∀α∈R ρ′±(x, αx + y) = α‖x‖2 + ρ′±(x, y);
(ND2) ∀x,y∈X ∀α�0 ρ′±(αx, y) = αρ′±(x, y) = ρ′±(x, αy);
(ND3) ∀x,y∈X ∀α<0 ρ′±(αx, y) = αρ′∓(x, y) = ρ′±(x, αy);
(ND4) ∀x∈X ρ′±(x, x) = ‖x‖2;
(ND5) ∀x,y∈X |ρ′±(x, y)| � ‖x‖·‖y‖;
(ND6) ∀x,y∈X ρ′−(x, y) � ρ′+(x, y).

Moreover, mappings ρ′+, ρ′− are continuous with respect to the second variable, but
not necessarily with respect to the first one. If the norm is generated by an inner
product 〈·|·〉, we consider the standard orthogonality relation: x⊥y :⇔ 〈x|y〉 = 0.
In general case, we may consider the definition introduced by Birkhoff [3]:

x⊥By :⇔ ∀λ∈R ‖x‖ � ‖x + λy‖.

Now, we define ρ+-orthogonality and ρ−-orthogonality:

x⊥ρ+y :⇔ ρ′+(x, y) = 0, x⊥ρ−y :⇔ ρ′−(x, y) = 0.

In a real normed space X, we have for arbitrary x, y ∈ X (cf. [1, 4]):

x⊥By ⇔ ρ′−(x, y) � 0 � ρ′+(x, y). (20.7)

It yields

⊥ρ− ,⊥ρ+ ⊂ ⊥B (20.8)

and, if X is smooth, then also ⊥ρ− = ⊥ρ+ = ⊥B . Let us recall the following
result containing a representation of the norm derivatives ρ′± in terms of supporting
functionals.
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Theorem 20.6 ([4, Theorem 15, p. 36]) Let X be a real normed space. Then one
has the representation:

ρ′+(x, y) = ‖x‖·sup {x∗(y) : x∗ ∈J (x)} and
ρ′−(x, y) = ‖x‖·inf {x∗(y) : x∗ ∈J (x)} f or all x, y∈X. (20.9)

20.3.1 Examples

The following examples motivate this section.

Example 20.1 Let c0 be the space of all sequences convergent to 0 with supremum
norm. Then for x = (xn), y = (yn) we have (see [6]):

ρ′+(x, y)=max {xnyn : |xn|=‖x‖} and
ρ′−(x, y)=min {xnyn : |xn|=‖x‖} . (20.10)

Example 20.2 Let C [0, 1] be the space of all continuous real-valued functions
equipped with the norm ‖x‖ = sup{|x(u)| : u ∈ [0, 1]}. Then for x, y in C [0, 1]
we have (see [5]):

ρ′+(x, y)=max {x(u)y(u) : |x(u)|=‖x‖} ,
ρ′−(x, y)=min {x(u)y(u) : |x(u)|=‖x‖} . (20.11)

In this section we will generalize these examples (see our main result, i.e.,
Theorem 20.8). The method of proof presented here is different from that of [5, 6].
We obtain the earlier results (i.e., (20.10) and (20.11)) as particular cases.

20.3.2 Main Results

A well-known theorem of Singer [12] will be useful in this section.

Theorem 20.7 ([12, p. 170]) Let X be a real normed linear space, E an n-
dimensional subspace of X, x ∈ X \E. The following statements are equivalent:

(a) x⊥BE;
(b) There exist ϕ1, . . . , ϕn+1∈Ext(B(X∗)) and λ1, . . . , λn+1� 0with

n+1∑

j=1
λj =1, such that ∀y∈E

n+1∑

j=1
λjϕj (y)=0, and ∀j ϕj (x)=‖x‖.

Let Y be a function module and let x ∈Y . Recall that we denote M (x) := {t ∈K :
‖x(t)‖=‖x‖}. By (FM2) and by compactness of K we have M (x) 
=∅.
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Lemma 20.1 Let (K, (Yt )t∈K, Y ) be a function module. Suppose that y, z ∈ Y ,
y 
=0 
=z. Then the following conditions are equivalent:

(a) y⊥Bz,
(b) There exist λ∈[0, 1], t1, t2 ∈M (y) and y∗1 ∈J (y(t1)), y∗2 ∈J (y2(t2)) such that

λy∗1 (z(t1))+(1−λ)y∗2 (z(t2))=0.

Proof Suppose that y⊥Bz. Clearly dim span{z} = 1. Applying Theorem 20.7 we
obtain

λϕ1(z)+(1−λ)ϕ2(z)=0 and ϕ1(y)=‖y‖, ϕ2(y)=‖y‖ (20.12)

for some λ ∈ [0, 1] and for some ϕ1, ϕ2 ∈ Ext (B(Y ∗)).
By Theorem 20.2, we have

ϕ1=y∗1 ◦ ψt1 , ϕ2=y∗2 ◦ ψt2
for some t1, t2 ∈ K , y∗1 ∈ExtB(Y ∗

t1
) and y∗2 ∈ExtB(Y ∗

t2
). Now the condition (20.12)

becomes

λy∗1 (z(t1))+(1−λ)y∗2 (z(t2))=0

and

y∗1 (y(t1))=‖y‖, y∗2 (y(t2))=‖y‖.

Thus we obtain ‖y(t1)‖=‖y‖ and ‖y(t2)‖=‖y‖. It follows that

y∗1 ∈J (y(t1)) and y∗2 ∈J (y(t2)).

The proof of this implication is complete.
We prove (b)⇒(a). Fix an arbitrary β ∈ R. From (b) we get

‖y‖ = λ‖y‖+(1−λ)‖y‖ (b)= λy∗1 (y(t1))+(1−λ)y∗2 (y(t2)) =
= λy∗1 (y(t1))+(1−λ)y∗2 (y(t2))+ β ·0 (b)=
(b)= λy∗1 (y(t1))+(1−λ)y∗2 (y(t2))+

+ β ·(λy∗1 (z(t1))+(1−λ)y∗2 (z(t2))
) =

= λy∗1 (y(t1)+β ·z(t1))+ (1−λ)y∗2 (y(t2)+β ·z(t2)) �
� λ‖y + βz‖ + (1−λ)λ‖y + βz‖ = ‖y + βz‖.

That means y⊥Bz. The proof of Lemma 20.1 is complete.
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Now we prove the main result of this section. The same symbol, ρ′+, will be used to
denote the norm derivatives on Yt and on Y .

Theorem 20.8 Let (K, (Yt )t∈K, Y ) be a function module. Suppose that x, y ∈ Y

and x 
= 0 
= y. Then

ρ′+(x, y) = sup
{
ρ′+(x(t), y(t)) : t ∈M (x)

}
,

ρ′−(x, y) = inf
{
ρ′−(x(t), y(t)) : t ∈M (x)

}
.

(20.13)

Proof Without loss of generality, we may assume that ‖x‖∞ = 1 (see (ND2)).
Since the proofs are similar we present only ρ′+(x, y) = sup{. . .}. Fix λ ∈ (0, 1).
Fix t ∈ M (x) to obtain

‖x(t)+λy(t)‖2−‖x(t)‖2

2λ
= ‖x(t)+λy(t)‖2−‖x‖2

2λ
� ‖x+λy‖2−‖x‖2

2λ
.

(20.14)
Since λ was arbitrarily chosen from the interval (0, 1), letting λ → 0+ in (20.14)
we obtain

ρ′+(x(t), y(t)) � ρ′+(x, y).

Since t was arbitrarily chosen from the set M (x), we get

sup
{
ρ′+(x(t), y(t)) : t ∈ M (x)

}
� ρ′+(x, y).

It follows from the above inequality that

ρ′+(x, y) � sup
{
ρ′+(x(t), y(t)) : t ∈M (x)

} (20.9)=
= sup

{‖x(t)‖·sup{x∗(y(t)) : x∗ ∈J (x(t))} : t ∈M (x)
} =

= sup
{‖x‖·sup{x∗(y(t)) : x∗ ∈J (x(t))} : t ∈M (x)

} =
= sup

{
sup{x∗(y(t)) : x∗ ∈J (x(t))} : t ∈M (x)

} =: c. (20.15)

To end the proof, it remains to prove ρ′+(x, y)�c. By (20.15) we have

∀t∈M (x) ∀x∗∈J (x(t)) x∗(y(t)) � c. (20.16)

From (ND1) we have for α := −ρ′+(x,y)
‖x‖2

ρ′+(x, αx + y) = 0, i.e., x⊥ρ+αx + y.

By (20.8) we get

x⊥Bαx+y.
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Using Lemma 20.1 we obtain

λx∗1 (αx(t1)+y(t1))+(1−λ)x∗2 (αx(t2)+y(t2))=0 (20.17)

for some t1, t2 ∈ M (x), x∗1 ∈ J (x(t1)), x∗2 ∈ J (x(t2)) and for some λ ∈ [0, 1]. It
follows from (20.17) that

0 =λx∗1 (αx(t1)+y(t1))+(1−λ)x∗2 (αx(t2)+y(t2)) =
= αλx∗1 (x(t1))+ λx∗1 (y(t1))+ α(1−λ)x∗2 (x(t2))+(1−λ)x∗2 (y(t2)) =

= αλ‖x(t1)‖+ λx∗1 (y(t1))+ α(1−λ)‖x(t2)‖+(1−λ)x∗2 (y(t1))
(20.16)
�

� αλ‖x‖+ λc + α(1−λ)‖x‖+(1−λ)c =

= α‖x‖ + c = −ρ′+(x, y)
‖x‖2

‖x‖ + c = −ρ′+(x, y)
12

·1 + c =

= −ρ′+(x, y)+ c,

and so ρ′+(x, y) � c. The proof is complete.

As an illustration of the applications of our theorems we explore here the Birkhoff
orthogonality in function modules. It is a straightforward verification to show that
the relation ⊥B is homogeneous, i.e., x⊥By implies αx⊥Bβy (for arbitrary α, β ∈
R). We will extend this result.

Theorem 20.9 Let (K, (Yt )t∈K, Y ) be a function module. Suppose that x, y ∈ Y

and x 
= 0 
= y. Let f, h ∈ C (K). Suppose that

M (x) ⊂ M (f ) and f (t)·h(t) � 0 (20.18)

for t ∈M (x). Then

x⊥By ⇒ f ·x⊥Bh·y.

Proof Assume that x⊥By. Condition M (x) ⊂ M (f ) yields that

M (x) ⊂ M (f ·x). (20.19)

Combining (20.7) and (20.13), we immediately get

inf
{
ρ′−(x(t), y(t)) : t ∈ M (x)

}
� 0 � sup

{
ρ′+(x(t), y(t)) : t ∈ M (x)

}
.

Next, from (ND2), (ND3) and (20.18), it follows that

inf
{
ρ′−(f (t)x(t), h(t)y(t)) : t ∈ M (x)

}
� 0 �

� sup
{
ρ′+(f (t)x(t), h(t)y(t)) : t ∈ M (x)

}
,

(20.20)
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and consequently,

ρ′−(f ·x, h·y) (20.13)= inf
{
ρ′−(f (t)·x(t), h(t)·y(t)) : t ∈M (f ·x)} (20.19)

�

� inf
{
ρ′−(f (t)·x(t), h(t)·y(t)) : t ∈M (x)

} (20.20)
� 0

(20.20)
�

� sup
{
ρ′+(f (t)·x(t), h(t)·y(t)) : t ∈M (x)

} (20.19)
�

� sup
{
ρ′+(f (t)·x(t), h(t)·y(t)) : t ∈M (f ·x)} (20.13)=

(20.13)= ρ′+(f ·x, h·y),

whence using (20.7) again we deduce f ·x⊥Bh·y.

LetX be a real normed linear space. We define {x}⊥B as being Birkhoff’s orthogonal
set of x, i.e., {x}⊥B := {y ∈ X : x⊥By}. It is known (e.g. [4, Theorem 48, p. 127])
that

x is smooth if and only if {x}⊥B is a linear subspace of X. (20.21)

Indeed, The next theorem clarifies completely the relation between condition x ∈
N 1
sm(X) and Birkhoff’s orthogonal sets. Namely, the condition (20.21) can be

strengthen as follows.

Theorem 20.10 Let (K, (Yt )t∈K, Y ) be a function module. If x∈Y , then

x is smooth ⇔ {x}⊥B is a function module (precisely, submodule).

Proof Suppose that the vector x is smooth, i.e., x ∈N 1
sm(Y ). According to (20.21),

{x}⊥B is a linear subspace of Y . It remains to show (FM1). It follows from
Theorem 20.5 that cardM (x) = 1 (for example, let M (x) = {t1}) and x(t1) ∈
N 1
sm(Yt1). Since the point x(t1) is smooth in Yt1 , we have

ρ′+(x(t1), ·) = ρ′−(x(t1), ·)

and

ρ′+(x(t1), αz(t1)) = αρ′+(x(t1), z(t1)) (20.22)

for α ∈ R, z ∈ Y . It follows that

x⊥Bz⇔ ρ+(x, z) = 0.

Observe first that by Theorem 20.8, we get
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ρ′−(x, z) = ρ′−(x(t1), z(t1)) = ρ′+(x(t1), z(t1)) = ρ′+(x, z)

for all z ∈ Y . Therefore, it follows that

x⊥Bz ⇔ ρ+(x, z) = 0 ⇔ ρ+(x(t1), z(t1)) = 0. (20.23)

Fix f ∈ C (K). Thus we obtain the following implications:

y ∈{x}⊥B ⇒ x⊥By (20.23)⇒ ρ′+(x(t1), y(t1)) = 0 ⇒
⇒ f (t1)·ρ′+(x(t1), y(t1)) = 0

(20.22)⇒
⇒ ρ′+(x(t1), f (t1)·y(t1)) = 0

(20.23)⇒
⇒ x⊥Bf ·y ⇒ f ·y ∈{x}⊥B ,

so (FM1) holds. The converse implication is trivial; see (20.21).

Using the concept of the norm derivatives, we apply our results to characterize
orthogonality in the sense of Birkhoff in C (K;X). The mappings ρ′−, ρ′+ are
continuous with respect to the second variable. If a normed space X is smooth,
then the mappings ρ′−, ρ′+ are also continuous with respect to the first variable and
ρ′− = ρ′+.

Theorem 20.11 Suppose that K is a compact Hausdorff space. Let X be a smooth
normed linear. Assume that f, g ∈ C (K;X). If M (f ) is connected then

f⊥Bg ⇔ ∃to∈M (f ) f (to)⊥Bg(to).

Proof We start with proving “⇐”. Suppose ∃to∈M (f ) f (to)⊥Bg(to). Fix an arbi-
trary λ ∈ R. It follows that

‖f ‖ = ‖f (to)‖ � ‖f (to)+ λg(to)‖ � ‖f + λg‖.

That means f⊥Bg.
We prove “⇒”. Assume f⊥Bg. Combining (20.7) and (20.13), we get

inf
{
ρ′−(f (t), g(t)) : t ∈ M (f )

}
� 0 �

� sup
{
ρ′+(f (t), g(t)) : t ∈ M (f )

}
.

(20.24)

The smoothness of X implies that

ρ′−(f (t), g(t)) = ρ′+(f (t), g(t)).

It is helpful to recall that M (f ) is compact. Define
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ϕ : M (f )→ R by ϕ(·) := ρ′+(f (·), g(·)).

Now the condition (20.24) becomes

min {ϕ(t) : t ∈ M (f )} � 0 � max {ϕ(t) : t ∈ M (f )} .

Since X is smooth, ϕ is continuous; indeed, see [4, Theorem 1, p. 4] and [4,
Corollary 5, p. 38]. Moreover, ϕ(to) is connected. Using the Darboux property
we get for some to ∈ M (f ) that ϕ(to) = 0. Thus for the element to we
have ρ′+(f (t0), g(to)) = 0. Hence f (to)⊥Bg(to). The proof of Theorem 20.11 is
complete.

Theorem 20.12 Let f ∈C (K). The following conditions are equivalent:

(a) f ∈ N 1
sm(C (K)),

(b) {f }⊥B is an ideal in the algebra C (K),
(c) {f }⊥B is a maximal ideal in the algebra C (K).

Proof The implication (c)⇒(b) has a trivial verification. It is easy to see that
C (K) is a function module and submodules of C (K) are ideals. So, applying
Theorem 20.10 we obtain the implication (b)⇒(a). In order to prove (a)⇒(c),
assume that f ∈ N 1

sm(C (K)). Then ρ′+(f, ·) is linear. Notice that ρ′(f, ·)∈C (K)∗.
Since

{f }⊥B =ker ρ′+(f, ·),

we get

co dim{f }⊥B =1.

Hence {f }⊥B is a maximal ideal in C (K).

20.4 Stability of Orthogonality Equation in Normed Spaces

The aim of this section is to present results concerning the norm derivatives and
its preservation (both accurate and approximate) by mapping. Recently, the author
prove the following theorem.

Theorem 20.13 ([15, Theorem 4]) Let X and Y be real Banach spaces. Assume
that Y is separable. Let f : X → Y be a mapping satisfying the functional equation

∀x,y∈X ρ′+(f (x), f (y)) = ρ′+(x, y). (20.25)

If f is surjective, then f is linear.
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Now, suppose that a function f : X → Y is, in some sense, an approximate solution
of (20.25). The natural problems are: to describe such a class of mapping mappings
and to answer the stability question. More precisely, the question arises: how much
f differs from an exact solution of (20.25). This is a classical problem in the theory
of stability (see, e.g.: [7, 8, 13]). For the orthogonality equation (20.25), we would
like to consider the following type of stability.

Theorem 20.14 Let X and Y be real smooth Banach spaces. Assume that Y is
separable. Let f : X → Y be a mapping satisfying the functional inequality

∀x,y∈X |ρ′+(f (x), f (y))− ρ′+(x, y)| ≤ ε. (20.26)

If f is surjective, then

∀x,y∈X ‖f (x + y)− f (x)− f (y)‖ ≤ √
3ε. (20.27)

Proof Since X, Y are smooth, ρ′+(a, ·) and ρ′+(b, ·) are linear for all a ∈ X, b ∈ Y .
For arbitrary x, y, z ∈ X we have

|ρ′+(f (a), f (x+ y)− f (x)− f (y))| = |ρ′+(f (a), f (x + y))− ρ′+(f (a), f (x))
−ρ′+(f (a), f (y))
−ρ′+(a, x+ y)+ ρ′+(a, x)+ ρ′+(a, y)| ≤

≤ |ρ′+(f (a), f (x + y))− ρ′+(a, x + y)|
+|ρ′+(f (a), f (x))− ρ′+(a, x)|
+|ρ′+(f (a), f (y))− ρ′+(a, y)| ≤ 3ε.

(20.28)

Let x, y∈X. Since f is surjective, there is a∈X such that f (a)=f (x+y)−f (x)−
f (y). It follows from (20.28) that

‖f (x+y)−f (x)−f (y)‖2 = |ρ′+(f (x+y)−f (x)−f (y), f (x+y)−f (x)−f (y))|
= |ρ′+(f (a), f (x+y))−f (x)−f (y))|≤3ε.

The proof is complete.

Finally, we present a result concerning the stability of the orthogonality equation
in normed spaces. Applying the assumption of surjectivity of a mapping f we can
derive some stability result for Eq. (20.25).

Theorem 20.15 LetX, Y be Banach smooth spaces and f : X → Y satisfy (20.26)
(with some ε ≥ 0). If f is surjective, then there is a mapping fε : X → Y such that
fε satisfies (20.25) and ‖f (x)− fε(x)‖ ≤ √

3ε.
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Proof By Theorem 20.14, f is
√

3ε-additive, i.e. f satisfies (20.27). The well
known Hyers’ Theorem (see [7]) implies that the mapping

∀x∈X fε(x) := lim
n→+∞

1

2n
f (2nx)

is well-defined and additive. Moreover ‖f (x)− fε(x)‖ ≤ √
3ε.

SinceX, Y is smooth, the both mappings ρ′+ and ρ′+ (inX and in Y , respectively)
are continuous with respect to the first and second variable. Putting in (20.26), the
vectors 2nu, 2nw in place of x, y respectively, and dividing by 4n and using (ND2)
we obtain

∀u,w∈X
∣∣∣∣ρ

′+
(

1

2n
f (2nu),

1

2n
f (2nw)

)
− ρ′+

(
1

2n
2nu,

1

2n
2nw

)∣∣∣∣ ≤
ε

4n
,

whence, letting n→ ∞, we obtain ρ′+(fε(u), fε(w)) = ρ′+(u,w) for all u,w∈X.
The proof is complete.
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Chapter 21
On Exact and Approximate
Orthogonalities Based on Norm
Derivatives

Ali Zamani and Mahdi Dehghani

Abstract We survey mainly recent results on the orthogonality relations in normed
linear spaces related to norm derivatives. We will focus on fundamental properties
of norm derivatives orthogonality, differences and connections between these
orthogonality types, and geometric results and problems closely related to them.
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21.1 Introduction

One of the most well-known concept in study of the geometry of normed linear
spaces is the notion of orthogonality. This concept and its connection with several
geometric properties of normed linear spaces, like strict convexity (rotundity) and
smoothness has been studied extensively. It is known that in an inner product space
(H, 〈·, ·〉) there is one orthogonality relation derived from inner product. In fact, the
vectors x, y ∈ H are orthogonal (written as x ⊥ y) if and only if 〈x, y〉 = 0.

The situation is completely different in general normed linear spaces. However,
there is not a unique way to define the notion of orthogonality in general normed
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linear spaces. Since 1934 many mathematicians have introduced different general-
ized orthogonality in normed linear spaces for which, all of them are generalizations
of orthogonality in an inner product space.

In 1934, Roberts [67] introduced the first orthogonality in real normed linear
spaces. Let (X, ‖ · ‖) be a normed linear space over K ∈ {R,C}, whose dimension
is at least 2. A vector x ∈ X is said to be orthogonal in the sense of Roberts to a
vector y ∈ X, denoted by x ⊥R y if

‖x − ty‖ = ‖x + ty‖ (t ∈ K).

Later, in 1935 Birkhoff [8] introduced one of the most important orthogonality type.
This notion of orthogonality was developed by James in [38, 39]. (Actually, this
notion was much earlier considered by Carathéodory, see [2].) A vector x ∈ X is
said to be orthogonal to a vector y ∈ X in the sense of Birkhoff–James, written as
x ⊥B y, if

‖x + ty‖ ≥ ‖x‖ (t ∈ K).

The geometrical interpretation is that the line passing through x in the direction of y
supports (at the point x) the ball centred at 0 and with radius ‖x‖. Note that Roberts
orthogonality implies Birkhoff–James orthogonality. In [39] James elaborated how
the notions like smoothness, rotundity, etc., of a normed linear space can be studied
using Birkhoff–James orthogonality.

Also, James showed an example of a normed plane in which at least one of any
two vectors, which are Roberts orthogonal to each other, must be the origin cf.
[38]. Due to this situation, James introduced in 1945 isosceles orthogonality and
Pythagorean orthogonality [38]. A vector x ∈ X is said to be isosceles orthogonal
to a vector y ∈ X denoted by x ⊥I y if

‖x + y‖ = ‖x − y‖.

Furthermore, a vector x ∈ X is said to be Pythagorean orthogonal to a vector y ∈ X
denoted by x ⊥P y if

‖x + y‖2 = ‖x‖2 + ‖y‖2.

For normed linear spaces, isosceles and Pythagorean orthogonality are not
equivalent. They are also not equivalent to Roberts orthogonality. Of course, in an
inner product space we have

⊥B=⊥I=⊥P=⊥R=⊥ .

However, properties like symmetry, homogeneity, additivity, etc., of the orthogonal-
ity in inner product spaces do not always carry over to generalized orthogonalities.
For example, it is known that Birkhoff–James orthogonality is homogeneous and
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not symmetric, while isosceles orthogonality and Pythagorean orthogonality are
symmetric but not homogeneous, which shows (besides further properties) that
these types of orthogonalities are different. We refer the reader to [2, 4, 38–40] and
the references therein for basic properties of these type of orthogonalities. Also, a
classification of different types of orthogonality in normed linear spaces, their main
properties, and the relations between them can be found in e.g., survey paper [68]
(see also [24, 25, 37]).

Recall that a normed linear space X is called smooth if each point of the unit
sphere SX has a unique supporting hyperplane to the closed unit ball BX, or
equivalently, if to each nonzero x ∈ X there exits a unique x∗ ∈ X∗ satisfying
‖x∗‖ = 1 and x∗(x) = ‖x‖ (see e.g., [3, 31]). Here, X∗ denotes as usual the
(topological) dual ofX. In the case of real normed linear space (X, ‖ ·‖), it has been
proved that X is smooth if the ‖ · ‖ has the Gateaux derivative in X, i.e.,

G±(x, y) := lim
t→0±

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ X; see e.g., [48].
One of the prominent reasons for importance of Birkhoff–James orthogonality is

its application to characterize smooth normed linear spaces. Considering existence
properties of Birkhoff–James orthogonality, we recall here the following result
from [39].

Lemma 21.1 ([39, Corollary 2.2 and Theorem 4.1]) Let X be a normed linear
space and let x, y ∈ X with x 
= 0. Then there exists t ∈ K such that x ⊥B (tx+y).
In particular, t is unique if and only if X is smooth.

The concept of semi-inner product space was introduced by Lumer [53] and then
the main properties of it were discovered in [34, 55, 64]. It has been proved in [53]
that in any normed linear space (X, ‖ · ‖) there exists a mapping [·|·] : X×X → K

satisfying the properties:

(i) [αx + y|z] = α[x|z] + [y|z] for all x, y, z ∈ X and all α ∈ K;
(ii) [x|βy] = β̄[x|y] for all x, y ∈ X and all β ∈ K;

(iii) [x|x] = ‖x‖2 for all x ∈ X;
(iv) |[x|y]| ≤ ‖x‖‖y‖ for all x, y ∈ X.

Such a mapping is called a semi-inner product in X. It is known, however, that in
a normed linear space there exists exactly one semi-inner product if and only if
the space is smooth. More characterizations of smooth normed linear spaces by the
notion of semi-inner products could be found in [31].

For vectors x, y ∈ X, the semi-inner product orthogonality is defined as follows:

x ⊥s y if and only if [y|x] = 0.

We remark that for any semi-inner product that generates the norm, we have
⊥s⊂⊥B . Nevertheless, the reverse implication is generally not true; see e.g, [31].
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For more information about semi-inner product spaces and its relation with
Birkhoff–James orthogonality the reader is refereed to [31] and the references
therein.

In 1986 norm derivatives were defined by Amir [4] in a real normed linear space
(X, ‖ · ‖) as follows:

ρ±(x, y) := lim
t→0±

‖x + ty‖2 − ‖x‖2

2t
= ‖x‖ lim

t→0±
‖x + ty‖ − ‖x‖

t
.

These functionals extend inner products and many geometrical properties of inner
product spaces could be formulated in normed linear spaces by means of norm
derivatives. The problem of finding necessary and sufficient conditions for a
normed linear space to be an inner product one has been investigated by many
mathematicians. There are many different ways to characterize inner product spaces
among normed linear spaces. In 1935, Jordan and von Neumann [42] proved that
the norm on a linear space X is induced by an inner product if and only if it
satisfies the parallelogram law. Another way to obtain characterizations of inner
product spaces is to force the orthogonality relation on a normed linear space to
fulfill some properties of the natural orthogonality of inner product spaces. Day
[26] and James [40] obtained some new characterizations of inner product spaces
by means of isosceles and Birkhoff–James orthogonality. For instance, they proved
that a normed linear space X, whose dimension is at least three, is an inner product
space if and only if Birkhoff–James orthogonality is symmetric in X. Also, it has
been proved in [38] that isosceles orthogonality is homogeneous in a normed linear
space if and only if this space is an inner product space. In particular, Tapia [70, 71]
characterized inner product spaces in terms of norm derivatives. More precisely, he
proved that a normed linear spaceX is an inner product space if and only ifG+(·, ·)
is linear in the first variable if and only if G+(·, ·) is symmetric.

Norm derivatives play an important role in describing the geometric properties
of normed linear spaces. The basic geometric properties such as strict convexity
and smoothness of normed linear spaces have been characterized by many mathe-
maticians using the notion of norm derivatives. As the most famous descriptions for
smooth real normed linear spaces based on norm derivatives, we point out here the
following result from [3].

Lemma 21.2 ([3, Remark 2.1.1]) Let X be a real normed linear space. Then X is
smooth if and only if ρ−(x, y) = ρ+(x, y) for all x, y ∈ X.

Orthogonality relations which are taken from norm derivatives provide a good
framework for developing studies of the geometric structure of normed linear
spaces. During the last years many papers concerning various aspects of orthog-
onalities related to norm derivatives have appeared. In this paper we want to give
some overview on these results as well as to collect a number of items from the
literature dealing with the subject. Our paper can also be taken as an update of
existing surveys and monographs; see [16, 22, 68].
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21.2 Exact and Approximate Norm Derivatives
Orthogonalities

In this section we assume that the considered normed linear spaces are real and their
dimensions are not less than 2.

21.2.1 ρ-Orthogonality

Let (X, ‖ · ‖) be a normed linear space and let x, y ∈ X. The orthogonality relations
associated to the functionals ρ− and ρ+ are defined by

x ⊥ρ− y if and only if ρ−(x, y) = 0;
x ⊥ρ+ y if and only if ρ+(x, y) = 0.

In 1987, Miličić [56] introduced a new orthogonality relation as follows

x ⊥ρ y if and only if ρ(x, y) = 0,

where the functional ρ(·, ·) := 〈·, ·〉g : X ×X → R was defined by

ρ(x, y) = 〈y, x〉g = ρ−(x, y)+ ρ+(x, y)
2

.

Among the just defined three orthogonality relations only ⊥ρ is homogeneous (i.e.,
for all x, y ∈ X and all α, β ∈ R, if x ⊥ρ y, then αx ⊥ρ βy) and none of
them is symmetric. It has been proved in [3] that the relations ⊥ρ± and ⊥ρ in a
normed linear space X are symmetric if and only if X is an inner product space.
First, we remind several properties of these functions, which are used to obtain
different characterizations of inner product spaces and smooth normed linear spaces.

Theorem 21.1 Let (X, ‖ · ‖) be a normed linear space, and let x, y ∈ X. Then

(i) ρ±(x, x) = ‖x‖2 and ρ−(x, y) ≤ ρ+(x, y).

(ii) For all t ∈ R, ρ±(tx, y) = ρ±(x, ty) =
{
tρ±(x, y) t ≥ 0
tρ∓(x, y) t ≤ 0.

(iii) |ρ±(x, y)| ≤ ‖x‖ ‖y‖.
(iv) For all t ∈ R, ρ±(x, tx + y) = t‖x‖2 + ρ±(x, y).
In [3], Alsina et al. provided a complete description of these orthogonality rela-
tions. The relation of Birkhoff–James orthogonality, ρ±-orthogonality and ρ-
orthogonality has been obtained in [3] as follows:

Theorem 21.2 ([3, Propositions 2.2.2-3]) Let X be a normed linear space. Then
⊥ρ±⊂⊥B and ⊥ρ⊂⊥B .
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In particular, the equalities ⊥B=⊥ρ− , ⊥B=⊥ρ+ and ⊥B=⊥ρ in X are equiva-
lent to the smoothness of X.

Now, we recall that norm derivatives characterize Birkhoff–James orthogonality in
the following sense.

Theorem 21.3 ([4, 39]) Let (X, ‖ · ‖) be a normed linear space, x, y ∈ X and let
α ∈ R. Then the following conditions are equivalent:

(i) x ⊥B (y − αx).
(ii) ρ−(x, y) ≤ α‖x‖2 ≤ ρ+(x, y).

In particular, x ⊥B y if and only if ρ−(x, y) ≤ 0 ≤ ρ+(x, y).

There is a deep connection of smooth normed linear spaces and the orthogonality
relations related norm derivatives. Chmieliński and Wójcik in [21] clarified that the
relations ⊥ρ± and ⊥ρ are generally incomparable. More precisely, they proved that
these orthogonality relations are comparable in a normed linear space X if and only
if X is smooth.

Theorem 21.4 ([21, Theorem 1]) Let X be a normed linear space. Then the
following conditions are equivalent:

(i) ⊥ρ+⊂⊥ρ− . (ii) ⊥ρ−⊂⊥ρ+ . (iii) ⊥ρ+=⊥ρ− .
(iv) ⊥ρ+⊂⊥ρ . (v) ⊥ρ⊂⊥ρ+ . (vi) ⊥ρ+=⊥ρ .
(vii) ⊥ρ−⊂⊥ρ . (viii) ⊥ρ⊂⊥ρ− . (ix) ⊥ρ−=⊥ρ . (x) X is smooth.

Finally, we remark that the connection between the relations ⊥ρ and ⊥s were given
in [21].

Theorem 21.5 ([21, Theorem 2]) Let X be a normed linear space and let [·|·] be
a given semi-inner product in X. Then the following conditions are equivalent:

(i) ⊥ρ⊂⊥s . (ii) ⊥s⊂⊥ρ . (iii) ⊥ρ=⊥s . (iv) ρ(·, ·) = [·|·].

21.2.2 ρ∗-Orthogonality

Another type of an orthogonality relation connected to norm derivatives that was
introduced in [11] is ρ∗-orthogonality. In this section we will review elementary
properties of ρ∗-orthogonality. Also, some characterizations of smooth normed
linear spaces in terms of ρ∗-orthogonality which has been obtained in [60] are
reviewed.
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Definition 21.1 ([11]) Let X be a normed linear space. Then a vector x ∈ X is
called ρ∗-orthogonal to a vector y ∈ X, denoted by x ⊥ρ∗ y if

ρ∗(x, y) := ρ−(x, y)ρ+(x, y) = 0.

First, we represent some elementary properties of the functional ρ∗.

Proposition 21.1 ([60, Proposition 2.1]) Let (X, ‖ · ‖) be a normed linear space.
Then

(i) ρ∗(tx, y) = ρ∗(x, ty) = t2ρ∗(x, y) for all x, y ∈ X and all t ∈ R.
(ii) |ρ∗(x, y)| ≤ ‖x‖2‖y‖2 for all x, y ∈ X.

(iii) For all nonzero vectors x, y ∈ X, if x ⊥ρ∗ y, then x and y are linearly
independent.

(iv) ρ∗(x, tx + y) = t2‖x‖4 + 2t‖x‖2ρ(x, y) + ρ∗(x, y) for all x, y ∈ X and all
t ∈ R.

It is clear that ⊥ρ− ∪ ⊥ρ+=⊥ρ∗⊂⊥B and so the equality ⊥B=⊥ρ∗ implies the
smoothness of the norm. Also, it is noticed in [60] that the relations ⊥ρ and ⊥ρ∗
are incomparable. In fact, according to the following theorem, these orthogonality
relations in a normed linear space X are comparable if and only if X is smooth.

Theorem 21.6 ([60, Theorem 3.1]) Let X be a normed linear space. Then the
following conditions are equivalent:

(i) ⊥B⊂⊥ρ∗ . (ii) ⊥B=⊥ρ∗ . (iii) ⊥ρ⊂⊥ρ∗ .
(iv) ⊥ρ∗⊂⊥ρ . (v) ⊥ρ∗=⊥ρ . (vi) ⊥ρ∗⊂⊥ρ+ .
(vii) ⊥ρ∗⊂⊥ρ− . (viii) ⊥ρ∗=⊥ρ− . (ix) X is smooth.

Moreover, the connection between semi-inner product orthogonality and ρ∗-
orthogonality has been established in the following theorem.

Theorem 21.7 ([60, Proposition 2.2]) Let X be a normed linear space and let [·|·]
be a given semi-inner product inX. Then the following conditions are equivalent:

(i) ⊥ρ∗=⊥s .
(ii) ⊥ρ∗⊂⊥s .

(iii) ρ∗(x, y) = [y|x]2 for all x, y ∈ X.

Let us now suppose that ⊥ is a binary relation on a real vector space X satisfying

(O1) Totality of ⊥ for zero: x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(O2) Independence: if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly

independent;
(O3) Homogeneity: if x, y ∈ X and x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) The Thalesian property: let P be a two-dimensional subspace of X. If x ∈ P

and μ ≥ 0, then there exists y ∈ P such that x ⊥ y and x + y ⊥ μx − y.
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The pair (X,⊥) is called an orthogonality space in the sense of Rätz [66]. Inner
product spaces and normed linear spaces with Birkhoff–James orthogonality are
typical examples of orthogonality spaces. Also, it has been proved in [3] that ρ-
orthogonality is an orthogonality space. Using Proposition 21.1, it easy to check that
the conditions (O1)–(O3) are true for ρ∗-orthogonality and the following theorem
ensures that ρ∗-orthogonality has the Talesian property. Therefore a normed linear
space with ρ∗-orthogonality is an orthogonality space in the sense of Rätz.

Theorem 21.8 ([60, Theorem 4.2]) For any two-dimensional subspace P of a
normed linear space X and for every x ∈ P , μ ≥ 0, there exists a vector y ∈ P

such that

x ⊥ρ∗ y and x + y ⊥ρ∗ μx − y.

Let X be a normed linear space and let (G,+) be an Abelian group. Let us recall
that a mapping A : X −→ G is called additive if A(x + y) = A(x)+ A(y) for all
x, y ∈ X, a mapping B : X × X −→ G is called biadditive if it is additive in both
variables and a mappingQ : X −→ G is called quadratic ifQ(x+y)+Q(x−y) =
2Q(x) + 2Q(y) for all x, y ∈ X. As an immediate consequence of Theorem 21.8
and [3, Theorem 2.8.1], we deduce the following assertion.

Corollary 21.1 Let X be a normed linear space and let (G,+) be an Abelian
group. A mapping f : X −→ G satisfies the condition

x ⊥ρ∗ y �⇒ f (x + y) = f (x)+ f (y) (x, y ∈ X)

if and only if there exist an additive mapping A : X −→ G and a biadditive and
symmetric mapping B : X ×X −→ G such that

f (x) = A(x)+ B(x, x) (x ∈ X)

and

x ⊥ρ∗ y �⇒ B(x, y) = 0 (x, y ∈ X).

Finally, as a consequence of Theorem 21.8 and [58, Theorem 3], we have the
following result.

Corollary 21.2 Let X be a normed linear space and let (G,+) be an Abelian
group. Suppose that Y is a real Banach space. If f : X −→ G is a mapping
fulfilling

x ⊥ρ∗ y �⇒ ‖f (x + y)− f (x)− f (y)‖ ≤ ε (x, y ∈ X)
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for some ε > 0, then there exist exactly an additive mapping A : X −→ Y and
exactly a quadratic mapping Q : X −→ Y such that

‖f (x)− f (0)− A(x)−Q(x)‖ ≤ 68

3
ε (x ∈ X).

21.2.3 Some Generalized Norm Derivatives Orthogonality

In [88] an orthogonality relation as an extension of ρ± and ρ-orthogonality that
is called ρλ-orthogonality has been introduced. We start this section by reviewing
some main results which obtained about this orthogonality relation in [88].

Let X be a normed linear space and let λ ∈ [0, 1]. Then a vector x ∈ X is said to
be ρλ-orthogonal to a vector y ∈ X denoted by x ⊥ρλ y if

ρλ(x, y) := λρ−(x, y)+ (1 − λ)ρ+(x, y) = 0.

It is evident that ρ0 and ρ1-orthogonality coincide with ρ+ and ρ−-orthogonality,
respectively. Also, ρ 1

2
-orthogonality is equivalent to ρ-orthogonality. As an exten-

sion of Theorem 21.2, it has been proved that ρλ-orthogonality always implies
Birkhoff–James orthogonality.

Proposition 21.2 ([88, Theorem 2.5]) Let X be a normed linear space and let λ ∈
[0, 1]. Then ⊥ρλ⊂⊥B .

It is noticed in [88, Example 2.8] that for nonsmooth normed linear spaces, the
orthogonalities ⊥ρλ and ⊥B may not coincide. However, analogously to Theo-
rem 21.2, the equality ⊥ρλ=⊥B in a normed linear space X implies the smoothness
of X.

Theorem 21.9 ([88, Theorem 2.7]) Let X be a normed linear space and let λ ∈
[0, 1]. Then the following statements are equivalent:

(i) ⊥B⊂⊥ρλ . (ii) ⊥B=⊥ρλ . (iii) X is smooth.

Moreover, the relations ⊥ρ± , ⊥ρ and ⊥ρλ are generally incomparable; cf. [88,
Example 2.10]. The following theorems give some characterizations of smooth
normed linear spaces in terms of ρλ-orthogonality.

Theorem 21.10 ([88, Theorem 2.12]) Let X be a normed linear space and let λ ∈
(0, 1]. Then the following conditions are equivalent.

(i) ⊥ρλ⊂⊥ρ+ . (ii) ⊥ρ+⊂⊥ρλ . (iii) ⊥ρλ=⊥ρ+ . (iv) X is smooth.
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Theorem 21.11 ([88, Theorem 2.13]) Let X be a normed linear space and let λ ∈
[0, 1). Then the following conditions are equivalent:

(i) ⊥ρλ⊂⊥ρ− . (ii) ⊥ρ−⊂⊥ρλ . (iii) ⊥ρλ=⊥ρ− . (iv) X is smooth.

Theorem 21.12 ([88, Theorem 2.11]) Let X be a normed linear space and let λ ∈
[0, 1] such that λ 
= 1

2 . Then the following conditions are equivalent:

(i) ⊥ρ⊂⊥ρλ . (ii) ⊥ρλ⊂⊥ρ . (iii) ⊥ρλ=⊥ρ . (iv) X is smooth.

More generally, a new orthogonality relation based on norm derivatives which is a
generalization of the above orthogonalities has been introduced and studied in [28].
We will continue this section to review this orthogonality and its relation with other
types of orthogonality relations which have already introduced.

Definition 21.2 ([28]) LetX be a normed linear space, and let λ ∈ [0, 1], υ = 1
2k−1

with k ∈ N. For x, y ∈ X, consider the functional ρυλ : X × X → R which is
defined by

ρυλ (x, y) := λρυ−(x, y)ρ1−υ+ (x, y)+ (1 − λ)ρυ+(x, y)ρ1−υ− (x, y).

A vector x ∈ X is called ρυλ -orthogonal to a vector y ∈ X, denoted by x ⊥ρυλ y, if
ρυλ (x, y) = 0.

It is obvious that for a real inner product space, ρυλ -orthogonality coincides with the
standard orthogonality given by the inner product. Therefore ρυλ -orthogonality can
be considered as a generalization of orthogonality of inner product spaces in real
normed linear spaces. We have

ρv0 (x, y) = ρv+(x, y)ρ1−v− (x, y) and ρv1 (x, y) = ρv−(x, y)ρ1−v+ (x, y)

for all v = 1
2k−1 (k ∈ N). Hence it is easy to see that ⊥ρv0 =⊥ρ∗ and ⊥ρv1 =⊥ρ∗

for all v = 1
2k+1 (k ∈ N). On the other hand, we have ρ1

λ(x, y) = ρλ(x, y) and

therefore ρ1
λ-orthogonality coincides with ρλ-orthogonality for all λ ∈ [0, 1]. We

point out here the elementary properties of the functional ρvλ .

Proposition 21.3 ([28, Theorem 2.1]) Let (X, ‖ · ‖) be a normed linear space and
let x, y ∈ X. Then

(i) ρvλ(x, x) = ‖x‖2.

(ii) ρvλ(tx, y) = ρvλ(x, ty) =
{
tρvλ(x, y) t ≥ 0
tρv1−λ(x, y) t ≤ 0.

(iii) |ρvλ(x, y)| ≤ ‖x‖‖y‖.
(iv) Let t be a real number such that ρ∗(x, tx + y) 
= 0. If
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K := K(x, y, t) = ρ−(x, tx + y)
ρ+(x, tx + y) ,

then

ρvλ(x, tx + y) = t‖x‖2(λKv + (1 − λ)K−v)+ λKvρ+(x, y)

+(1 − λ)K−vρ−(x, y).

It is clear that ⊥ρ±⊂⊥ρvλ and so ⊥ρ∗⊂⊥ρvλ . However, some illustrative example have
been prepared in [28] which show that the relations ⊥ρ,⊥ρλ and ⊥ρvλ are generally
incomparable. This fact lead us to the following descriptions of smooth normed
linear spaces.

Theorem 21.13 ([28, Theorem 2.14]) Let X be a normed linear space and let λ ∈
[0, 1] \ { 1

2 } and v = 1
2k−1 (k ∈ N). Then the following conditions are equivalent:

(i) ⊥ρ⊂⊥ρvλ . (ii) ⊥ρvλ⊂⊥ρ . (iii) ⊥ρvλ= ⊥ρ. (iv) X is smooth.

It is worth noting that the situation is different for the case λ = 1
2 and in this case, we

have ⊥ρ⊂⊥ρv1
2

. Indeed, for each x, y ∈ X, if x ⊥ρ y, then ρ−(x, y) = −ρ+(x, y).
Hence

ρv1
2
(x, y) = 1

2

[
(−1)vρυ+(x, y)ρ1−υ+ (x, y)+ (−1)1−vρυ+(x, y)ρ1−υ+ (x, y)

]

= 1

2
[−ρ+(x, y)+ ρ+(x, y)] = 0.

Theorem 21.14 ([28, Theorem 2.16]) Let X be a normed linear space and let λ ∈
(0, 1) and v = 1

2k+1 (k ∈ N). Then the following conditions are equivalent:

(i) ⊥ρvλ⊂⊥ρλ . (ii) ⊥ρλ⊂⊥ρvλ (λ 
= 1

2
). (iii) ⊥ρλ=⊥ρvλ . (iv) X is smooth.

Theorem 21.15 ([28, Theorem 2.17]) Let X be a normed linear space and let λ ∈
[0, 1] and v = 1

2k−1 (k ∈ N). Then the following conditions are equivalent:

(i) ⊥ρvλ⊂⊥ρ− (except for ⊥ρ1
1
=⊥ρ− ).

(ii) ⊥ρvλ⊂⊥ρ+ (except for ⊥ρ1
0
=⊥ρ+ ).

(iii) X is smooth.

The following result is an analogue of Theorems 21.2 and Proposition 21.2 which
describes the relation between Birkhoff–James orthogonality and ρvλ-orthogonality.

Proposition 21.4 ([28, Proposition 2.9]) Let X be a normed linear space and let
λ ∈ [0, 1] and v = 1

2k−1 (k ∈ N). Then ⊥ρvλ⊂⊥B .
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Also, as stated in [28], for non-smooth normed linear spaces, Birkhoff–James
orthogonality and ρvλ-orthogonality may not coincide. Now, as an analogue of
Theorems 21.2 and 21.9, we prove that the equality ⊥ρvλ=⊥B in normed linear
spaces yields the smoothness of the norm. In fact, all the results which mentioned
in Theorem 21.2 and Proposition 21.2 are given from the next theorem for the
particular modes of λ and v.

Theorem 21.16 Let X be a normed linear space, λ ∈ [0, 1] and let v = 1
2k−1

(k ∈ N). Then the following conditions are equivalent:

(i) X is smooth.
(ii) ⊥B⊂⊥ρvλ .

Proof The implication (i)⇒(ii) is clear. Now, we prove the implication (ii)⇒(i).
Suppose that λ ∈ [0, 1] such that λ 
= 1

2 and (ii) holds. It follows from (ii)
and Theorem 21.2 that ⊥ρ⊂⊥B⊂⊥ρvλ and so Theorem 21.13 concludes that X is
smooth.

Now, assume that λ = 1
2 . If x, y ∈ X and x 
= 0, then we obtain from

Lemma 21.1 that there is t ∈ R such that x ⊥B (tx + y) and so (ii) implies that
there is t ∈ R such that ρvλ(x, tx + y) = 0. If ρ∗(x, tx + y) 
= 0, then it follows
from Proposition 21.3 (iv) that

Kvρ+(x, tx + y)+K−vρ−(x, tx + y) = 0.

So, we have K2v−1 = −1. Accordingly, K = ρ−(x,tx+y)
ρ+(x,tx+y) = −1 and so t =

−ρ(x,y)
‖x‖2 . Consequently, Birkhoff–James orthogonality is right-unique. Therefore X

is smooth, by Lemma 21.1.
Also, if ρ∗(x, tx + y) = 0, then ρ−(x, tx + y)ρ+(x, tx + y) = 0. Therefore, we

obtain t = −ρ±(x,y)
‖x‖2 . Hence Birkhoff–James orthogonality is right-unique, and so X

is smooth.

21.2.4 The λ-Angularly Property of Norms

The concept of angle and the question how to measure angles are interesting from
the geometrical view points; see e.g. [7, 61, 62] and the references therein. In
this section, we study an angle function based on ρλ. Let us begin with some
observations. In a real inner product space

(
H, 〈·, ·〉), the angle θ(x, y) between

two non-zero elements x, y is defined by

θ(x, y) = arccos

( 〈x, y〉
‖x‖‖y‖

)
.
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Now, let (X, ‖ · ‖) be a real normed linear space, and let λ ∈ [0, 1]. For all non-zero
elements x, y ∈ X we have −1 ≤ ρλ(x,y)

‖x‖‖y‖ ≤ 1. Hence we can define the notion of
λ-angle between the non-zero elements x and y.

Definition 21.3 The number

θλ(x, y) := arccos

(
ρλ(x, y)

‖x‖‖y‖
)
.

is called the λ-angle between the element x and the element y in a normed linear
space.

We will refrain from referring to the λ-angle between x and y, since the λ-angle
from x to y may not coincide with the λ-angle from y to x. Notice that θλ(x, y)
does not depend on the lengths of x and y. Also, if the norm in X arises from an
inner product, it is easy to see that λ-angles agree with angles defined by the inner
product.

Definition 21.4 Two norms, ‖ · ‖1 and ‖ · ‖2, on X have the λ-angularly property
if there exists a constant C such that for all non-zero elements x, y ∈ X,

tan

(
θλ,2(x, y)

2

)
≤ C tan

(
θλ,1(x, y)

2

)
.

Here θλ,1(x, y) and θλ,2(x, y) are the λ-angles from x to y relative to ‖ · ‖1 and
‖ · ‖2, respectively. Also, tan(π2 ) is taken to be +∞.

Our definition is motivated by the Wielandt and generalized Wielandt inequalities,
which can be applied in matrix analysis and multivariate analysis, where angles
between elements correspond to statistical correlation; see e.g. [74].

Remark 21.1 Suppose the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property on
X. Then the norms ‖ · ‖2 and ‖ · ‖1 have the (1−λ)-angularly property onX. Indeed,
for every non-zero x, y ∈ X we have

tan

(
θ1−λ,1(x, y)

2

)
= − tan

(
θλ,1(x,−y)

2

)

≤ − 1

C
tan

(
θλ,2(x,−y)

2

)
= 1

C
tan

(
θ1−λ,2(x, y)

2

)
.

In the following theorem we show that λ-angularly property of norms share a
geometric property.

Recall that a normed linear space (X, ‖ · ‖) is strictly convex (rotund) if and only
if x 
= y and ‖x‖ = ‖y‖ = 1 together imply that ‖tx + (1 − t)y‖ < 1 for all
0 < t < 1. To get the next result we use some ideas of [44].
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Theorem 21.17 Suppose the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property
on X. Then the following statements are equivalent:

(i) (X, ‖ · ‖1) is strictly convex.
(ii) (X, ‖ · ‖2) is strictly convex.

Proof (i)⇒(ii) Since a normed linear space is strictly convex if every boundary
point of the unit ball is an extreme point (see [31]), hence it is enough to show that
if x

‖x‖1
is an extreme point of the ‖ · ‖1-unit ball, then x

‖x‖2
is an extreme point of

the ‖ · ‖2-unit ball. Suppose x
‖x‖2

is not an extreme point of the ‖ · ‖2-unit ball. Then

there are points y and z inX such that x
‖x‖2

= y+z
2 and the closed line segment from

y to z is contained in the ‖ · ‖2-unit ball. If s ∈ [0, 1] then the points (1 − s)y + sz

and sy + (1 − s)z are on the line segment and hence in the ‖ · ‖2-unit ball. Thus,

2 = ‖y + z‖2 = ‖(1 − s)y + sz+ sy + (1 − s)z‖2

≤ ‖(1 − s)y + sz‖2 + ‖sy + (1 − s)z‖2 ≤ 1 + 1 = 2.

It follows that ‖(1 − s)y + sz‖2 = ‖sy + (1 − s)z‖2 = 1. In particular, we observe
that ‖y‖2 = ‖z‖2 = 1. Hence

ρλ,2(y, z) = λρ−,2(y, z)+ (1 − λ)ρ+,2(y, z)

= λ‖y‖2 lim
t→0−

‖y + tz‖2 − ‖y‖2

t
+ (1−λ)‖y‖2 lim

t→0+
‖y + tz‖2 − ‖y‖2

t

= λ lim
s→0−

∥
∥∥y + s

1−s z
∥
∥∥

2
− 1

s
1−s

+ (1 − λ) lim
s→0+

∥
∥∥y + s

1−s z
∥
∥∥

2
− 1

s
1−s

= λ lim
s→0−

‖(1 − s)y + sz‖2 − (1 − s)
s

+ (1 − λ) lim
s→0+

‖(1 − s)y + sz‖2 − (1 − s)
s

= λ+ (1 − λ) = 1.

It follows that ρλ,2(y, z) = 1, cos
(
θλ,2(y, z)

) = 1, and tan
(
θλ,2(x,y)

2

)
= 0. By the

λ-angularly property, tan
(
θλ,1(x,y)

2

)
= 0 as well. This implies cos

(
θλ,1(y, z)

) = 1

and hence ρλ,1(y, z) = ‖y‖1‖z‖1. From [88, Theorem 2.2] we obtain

‖y‖1‖z‖1 = ρλ,1(y, z) ≤ (‖y + z‖1 − ‖y‖1)‖y‖1 ≤ ‖z‖1‖y‖1,

and hence (‖y + z‖1 − ‖y‖1)‖y‖1 = ‖z‖1‖y‖1, i.e., ‖y + z‖1 = ‖y‖1 + ‖z‖1. On
the other hands, we have



21 Orthogonalities Based on Norm Derivatives 483

x

‖x‖1
=

y+z
2 ‖x‖2∥

∥ y+z
2 ‖x‖2

∥
∥

1

= y + z
‖y + z‖1

= ‖y‖1

‖y‖1 + ‖z‖1

y

‖y‖1
+ ‖z‖1

‖y‖1 + ‖z‖1

z

‖z‖1
,

which is a convex combination of the points y
‖y‖1

and z
‖z‖1

. Thus, x
‖x‖1

is an interior

point of the line segment from y
‖y‖1

to z
‖z‖1

. Since the endpoints of this segment lie
in the ‖ · ‖1-unit ball, so the convexity shows that the entire line segment lies in the
‖ · ‖1-unit ball. Thus x

‖x‖1
is not an extreme point of the ‖ · ‖1-unit ball, which is a

contradiction.
By using a similar argument we get (ii)⇒(i).

The next theorem may be viewed as a stability result for the λ-angularly property of
norms.

Theorem 21.18 Suppose the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property
on X and let ‖ · ‖3 = ‖ · ‖1 + ‖ · ‖2. Then the following statements hold.

(i) The norms ‖ · ‖3 and ‖ · ‖1 have the λ-angularly property.
(ii) The norms ‖ · ‖3 and ‖ · ‖2 have the (1 − λ)-angularly property.

Proof

(i) Let x, y ∈ X \ {0}. Let ρλ,i(x, y) and θλ,i(x, y) be the functional ρλ and the
λ-angle from x to y with respect to the norm ‖ · ‖i , for i = 1, 2, 3. We have

ρλ,3(x, y) = λρ−,3(x, y)+ (1 − λ)ρ+,3(x, y)

= λ‖x‖3 lim
t→0−

‖x + ty‖3 − ‖x‖3

t
+ (1−λ)‖x‖3 lim

t→0+
‖x + ty‖3 − ‖x‖3

t

= λ‖x‖3 lim
t→0−

‖x + ty‖1 + ‖x + ty‖2 − ‖x‖1 − ‖x‖2

t

+ (1 − λ)‖x‖3 lim
t→0+

‖x + ty‖1 + ‖x + ty‖2 − ‖x‖1 − ‖x‖2

t

= λ‖x‖3
ρ−,1(x, y)

‖x‖1
+ λ‖x‖3

ρ−,2(x, y)
‖x‖2

+ (1 − λ)‖x‖3
ρ+,1(x, y)

‖x‖1
+ (1 − λ)‖x‖3

ρ+,2(x, y)
‖x‖2

= ‖x‖3

‖x‖1

(
λρ−,1(x, y)+ (1 − λ)ρ+,1(x, y)

)

+ ‖x‖3

‖x‖2

(
λρ−,2(x, y)+ (1 − λ)ρ+,2(x, y)

)

= ‖x‖3

‖x‖1
ρλ,1(x, y)+ ‖x‖3

‖x‖2
ρλ,2(x, y).
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Therefore

ρλ,3(x, y) = ‖x‖3

‖x‖1
ρλ,1(x, y)+ ‖x‖3

‖x‖2
ρλ,2(x, y),

whence

cos θλ,3(x, y) = ρλ,3(x, y)

‖x‖3 ‖y‖3

= ρλ,1(x, y)

‖x‖1 ‖y‖3
+ ρλ,2(x, y)

‖x‖2 ‖y‖3

= ‖y‖1

‖y‖3
cos θλ,1(x, y)+ ‖y‖2

‖y‖3
cos θλ,2(x, y).

Thus

cos θλ,3(x, y) = ‖y‖1

‖y‖3
cos θλ,1(x, y)+ ‖y‖2

‖y‖3
cos θλ,2(x, y). (21.1)

Now, by (21.1) and the fact that 1+r
1+t ≤ 1 + r

t
for all r, t > 0 , we have

tan

(
θλ,3(x, y)

2

)
=

√
1 − cos θλ,3(x, y)

1 + cos θλ,3(x, y)

≤

√√
√√√√√1 +

tan

(
θ2
λ,2(x,y)

2

)

tan

(
θ2
λ,1(x,y)

2

) tan

(
θλ,1(x, y)

2

)

≤
√

1 + C2 tan

(
θλ,1(x, y)

2

)
.

Hence

tan

(
θλ,3(x, y)

2

)
≤

√
1 + C2 tan

(
θλ,1(x, y)

2

)
.

So, the norms ‖ · ‖3 and ‖ · ‖1 have the λ-angularly property.
(ii) Since the norms ‖ · ‖1 and ‖ · ‖2 have the λ-angularly property, Remark 21.1

shows that the norms ‖ · ‖2 and ‖ · ‖1 have the (1−λ)-angularly property. Thus
from (i) we conclude that the norms ‖ · ‖3 and ‖ · ‖2 have the (1−λ)-angularly
property.
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21.2.5 Approximate Norm Derivatives Orthogonalities

In an inner product space (H, 〈·, ·〉) an approximate orthogonality (ε-orthogonality)
of vectors x, y ∈ H was naturally defined in [13, 30] by

x ⊥ε y if and only if |〈x, y〉| ≤ ε‖x‖‖y‖.

For ε ≥ 1, it is clear that every pair of vectors are ε-orthogonal, so the interesting
case is when ε ∈ [0, 1).

Now, let (X, ‖ · ‖) be a normed linear space and let x, y ∈ X. Analogously, for
a given semi-inner product [·|·] on X the approximate semi-orthogonality relation
was defined in [15, 30] by

x ⊥εs y if and only if |[y|x]| ≤ ε‖x‖‖y‖.

The first notion of approximate Birkhoff–James orthogonality has been proposed by
Dragomir [29] as follows:

x ⊥εD y if and only if ‖x + ty‖ ≥ (1 − ε)‖x‖ (t ∈ K).

Chmieliński [12] also introduced another notion of approximate Birkhoff–James
orthogonality, defined in the following way:

x ⊥εB y if and only if ‖x + ty‖2 ≥ ‖x‖2 − 2ε‖x‖‖ty‖ (t ∈ K).

We would like to remark that in a normed linear space, both types of approximate
Birkhoff–James orthogonality are homogeneous. For more information about these
types of approximate orthogonality and their properties the reader is referred to
[12, 29].

Inspired by approximate Birkhoff–James orthogonality, for a normed linear
space, others notions of approximate orthogonality were considered. One of them is
the approximate Roberts orthogonality. In fact, the authors in [86] introduced two
versions of approximate Roberts orthogonality as follows:

x ⊥εR y ⇔
∣∣∣‖x + ty‖2 − ‖x − ty‖2

∣∣∣ ≤ 4ε‖x‖‖ty‖ (t ∈ R)

and

x ⊥ε R y ⇔
∣∣
∣‖x + ty‖ − ‖x − ty‖

∣∣
∣ ≤ ε(‖x + ty‖ + ‖x − ty‖) (t ∈ R).

It can be remarked that these two orthogonality relations are related to analogous
definitions for isosceles orthogonality introduced in [20] (see also [85]). Another
one is the approximate Pythagorean orthogonality which has been investigated
in [77]:
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x ⊥εP y ⇔
∣∣∣‖x + y‖2 − ‖x‖2 − ‖y‖2

∣∣∣ ≤ 2ε‖x‖‖y‖.

Also, we remember two generalized types of approximate isosceles orthogonality,
namely approximate cI -orthogonality, in normed linear spaces were considered in
[87]. For a fixed c 
= 0, the first one is

x ⊥ε cI y ⇔
∣∣∣‖x + cy‖2 − ‖x − cy‖2

∣∣∣ ≤ 4ε‖x‖‖cy‖,

and the second one is

x ⊥εcI y ⇔
∣∣
∣‖x + cy‖ − ‖x − cy‖

∣∣
∣ ≤ ε(‖x + cy‖ + ‖x − cy‖).

In a similar way Chmieliński and Wójcik [22] introduced the notions of an
approximate ρ± and ρ-orthogonality as follows:

x ⊥ερ± y if and only if |ρ±(x, y)| ≤ ε‖x‖‖y‖,
x ⊥ερ y if and only if |ρ(x, y)| ≤ ε‖x‖‖y‖.

Similarly, the approximate ρ∗-orthogonality has been defined and studied in [27]:

x ⊥ερ∗ y if and only if |ρ∗(x, y)| ≤ ε2‖x‖2‖y‖2.

Obviously, if the norm in X comes from an inner product, then

⊥ε=⊥εs=⊥εB=⊥εR=⊥εP=⊥ε cI=⊥ερ±=⊥ερ=⊥ερ∗ .

Also, it is clear that for ε = 0 all the above approximate orthogonalities coincide
with the related exact orthogonalities.

Chmieliński and Wójcik generalized Theorem 21.3 for approximate Birkhoff–
James orthogonality in [22] as follows:

Theorem 21.19 ([22, Thorem 3.1]) Let (X, ‖ · ‖) be a normed linear space and
let ε ∈ [0, 1). Then, for arbitrary x, y ∈ X and α ∈ R the following condition are
equivalent:

(i) x ⊥εB (y − αx).
(ii) ρ−(x, y)− ε‖x‖‖y − αx‖ ≤ α‖x‖2 ≤ ρ+(x, y)+ ε‖x‖‖y − αx‖.

In particular, x ⊥εB y if and only if

ρ−(x, y)− ε‖x‖‖y‖ ≤ 0 ≤ ρ+(x, y)+ ε‖x‖‖y‖.

They also identified the relationship between ⊥εs , ⊥ερ± , ⊥ερ and ⊥εB in the following
theorem.
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Theorem 21.20 ([21, 22]) Let ε ∈ [0, 1). For an arbitrary normed linear space X
and ♦ ∈ {s, ρ−, ρ+, ρ} we have ⊥ε♦⊂⊥εB .

Of course, for non-smooth normed linear spaces, the approximate orthogonalities
⊥ερ± and ⊥ερ are incomparable. The following generalization of Theorem 21.4 has
been proved in [22].

Theorem 21.21 ([22, Theorem 3.3]) Let X be a normed linear space and let ε ∈
[0, 1). Then the following conditions are equivalent:

(i) ⊥ερ+⊂⊥ερ− . (ii) ⊥ερ−⊂⊥ερ+ . (iii) ⊥ερ+=⊥ερ− .
(iv) ⊥ερ+⊂⊥ερ . (v) ⊥ερ⊂⊥ερ+ . (vi) ⊥ερ+=⊥ερ .
(vii) ⊥ερ−⊂⊥ερ . (viii) ⊥ερ⊂⊥ερ− . (ix) ⊥ερ−=⊥ερ . (x) X is smooth.

Some illustrated examples were provided in [21, 22] which show that equalities
in Theorem 21.20 need not to hold in non-smooth normed linear spaces. Actually,
using this fact and Theorem 21.21 it has been proved in [22] that the smoothness
of a normed linear space X resulted also from ⊥ερ±=⊥εB and ⊥ερ=⊥εB for some
ε ∈ [0, 1). In fact, the following theorem is a generalization of Theorem 21.2.

Theorem 21.22 ([22, Theorem 3.4]) Let X be a normed linear space and let ε ∈
[0, 1). If ⊥ερ±=⊥εB or ⊥ερ=⊥εB , then X is smooth.

Moreover, an approximate version of Theorem 21.5 has been prepared as follows:

Theorem 21.23 ([22, Theorem 3.5]) Let X be a normed linear space and let [·|·]
be a fixed semi-inner product in X. For ε ∈ [0, 1) the following conditions are
equivalent:

(i) ⊥ερ⊂⊥εs . (ii) ⊥εs⊂⊥ερ . (iii) ⊥ερ=⊥εs . (iv) 〈·, ·〉g = [·|·].

Another characterization of smooth normed linear spaces using comparison of
approximate ρ±-orthogonality and approximate semi-inner product has been pre-
sented in [78].

Theorem 21.24 Let X be a normed linear space and let [·|·] be a fixed semi-inner
product in X. For ε ∈ [0, 1) the following conditions are equivalent.

(i) ⊥ερ+⊂⊥εs . (ii) ⊥εs⊂⊥ερ+ . (iii) ⊥ερ+=⊥εs .
(iv) ⊥ερ−⊂⊥εs . (v) ⊥εs⊂⊥ερ− . (vi) ⊥ερ−=⊥εs .
(vii) X is smooth.



488 A. Zamani and M. Dehghani

In [69] Stypuła and Wójcik by introducing the constants

E ρ(X) := inf
{
ε ∈ [0, 1] : ⊥ρ+⊂⊥ερ−

}

and

R(X) := sup
{‖x − y‖ : conv{x, y} ⊂ SX

}

provided some different characterizations of rotundity and smoothness of dual
spaces. We have, of course, 0 ≤ E ρ(X) ≤ 1 and 0 ≤ R(X) ≤ 2. Observe that,

E ρ(X) = 0 if and only if X is smooth

and

R(X) = 0 if and only if X is rotund.

A well-known theorem states that if X∗ is rotund, then X is smooth. The following
theorem states this well-known result in terms of constants E ρ(X) and R(X).

Theorem 21.25 ([69, Corollary 2.6]) Let X be a real normed linear space. Then

E ρ(X) ≤ R(X∗).

Moreover, if X is a reflexive Banach space, then

E ρ(X) ≤ R(X∗) ≤ 2E ρ(X).

Hence,

(i) if X is reflexive, X∗ is rotund if and only if X is smooth;
(ii) if X is reflexive, X∗ is smooth if and only if X is rotund.

Now, let us review the results obtained related to approximate ρ∗-orthogonality from
[27]. It is easy to check that the approximate ρ∗-orthogonality is homogenous. Also,
if x ⊥ερ+ y and x ⊥ερ− y, then x ⊥ερ∗ y. Indeed, by the arithmetic-geometric means
inequality, we get

|ρ∗(x, y)| = |ρ−(x, y)ρ+(x, y)| ≤
( |ρ−(x, y)| + |ρ+(x, y)|

2

)2

≤ ε2‖x‖2‖y‖2.

We notice that the relations ⊥ερ± , ⊥ερ and ⊥ερ∗ are generally incomparable, see [27,
Example 2.1]. Also, the relation between ⊥ερ∗ and ⊥εB has been identified as follows:

Theorem 21.26 ([27, Theorem 2.3]) Let X be a normed linear space and let ε ∈
[0, 1). Then ⊥ερ∗⊂⊥εB .
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It is noticed in [27, Example 2.4] that for nonsmooth normed linear spaces, the
orthogonalities ⊥ερ∗ and ⊥εB may not coincide.

Theorem 21.27 ([27, Remark 2.5]) Let X be a normed linear space and let ε ∈
[0, 1). If ⊥εB⊂⊥ερ∗ , then X is smooth.

To finish this section we consider analogously, the notion of approximate ρvλ-
orthogonality which is studied in [1]. In fact, naturally, for ε ∈ [0, 1), λ ∈ [0, 1]
and v = 1

2k−1 (k ∈ N), we say that a vector x ∈ X is approximate ρvλ-orthogonal to
a vector y ∈ X, in short x ⊥ε

ρvλ
y, if

|ρvλ(x, y)| ≤ ε‖x‖‖y‖.

In particular, for v = 1, we have x ⊥ερλ y if and only if |ρλ(x, y)| ≤ ε‖x‖‖y‖.
Note that the relations x ⊥ερ0

y, x ⊥ερ1
y and x ⊥ερ 1

2

y coincide with the relations

x ⊥ερ+ y, x ⊥ερ− y and x ⊥ερ y, respectively.
In [1] some illustrated examples have been presented to show that the relations

⊥ερ± , ⊥ερ , ⊥ερ∗ , ⊥ερλ and ⊥ε
ρvλ

are incomparable in general normed linear spaces.
The following result is a generalization of Theorem 21.20.

Theorem 21.28 ([1, Theorem 2.4]) Let X be a normed linear space and let ε ∈
[0, 1), λ ∈ [0, 1] and v = 1

2k−1 (k ∈ N). Then ⊥ε
ρvλ
⊂⊥εB .

According to [1], there are non-smooth normed linear spaces such that ⊥εB 
⊂⊥ερλ .
Analogously to Theorem 21.22, it has been proved in the following theorem that
approximate Birkhoff–James orthogonality and approximate ρvλ-orthogonality in a
normed linear space X are equivalent if and only if X is smooth.

Theorem 21.29 ([1, Theorem 2.7]) Let X be a normed linear space and let ε ∈
[0, 1), λ ∈ [0, 1] and v = 1

2k−1 (k ∈ N). If ⊥εB⊂⊥ε
ρvλ

, then X is smooth.

21.3 Orthogonality Preserving Property and Applications in
the Geometry of Normed Linear Spaces

21.3.1 Linear Mappings Preserving Orthogonality

The problem of determining the structure of linear mappings between normed linear
spaces, which leave certain properties invariant, has been considered in several
papers. These are the so-called linear preserver problems, see [10, 52] and the
references therein. The study on linear orthogonality preserving mappings can be
considered as a part of the theory of linear preservers. The orthogonality preserving
property have been intensively studied recently in connection with functional
analysis and operator theory; cf. [13, 23, 47, 72, 81, 89, 91].
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Let H and K be inner product spaces. A mapping T : H → K is called
orthogonality preserving if

x ⊥ y ⇒ T x ⊥ Ty (x, y ∈ X).

Such mappings can be very irregular, far from being continuous or linear (see
[13, Example 2]). For that reason we restrict ourselves to linear mappings only.
On the other hand, for linear orthogonality preserving mappings we have a simple
characterization.

Theorem 21.30 ([13, Theorem 1]) Let H and K be (real or complex) inner
product spaces. For a nonzero linear mapping T : H → K the following conditions
are equivalent (with some γ > 0 ):

(i) T is a similarity (scalar multiple of a linear isometry), i.e., ‖T x‖ = γ ‖x‖ for
all x ∈ H .

(ii) 〈T x, T y〉 = γ 2〈x, y〉 for all x, y ∈ H .
(iii) T is orthogonality preserving.

Orthogonality preserving mappings have been widely studied in the setting of inner
product C∗-modules, see [5, 6, 32, 35, 43, 49–51, 59, 89]. In particular, further
generalizations of Theorem 21.30 can be found in [18, 33]. Similar investigations
have been carried out in normed linear spaces for sesquilinear form (instead of inner
products) in paper [79].

Let X and Y be normed linear spaces and let T : X → Y be a linear and
continuous operator. The norm of T is defined as usual:

‖T ‖ = sup
{‖T x‖ : ‖x‖ = 1

} = inf
{
M > 0 : ‖T x‖ ≤ M‖x‖, x ∈ X}

.

Similarly, we define

[T ] := inf
{‖T x‖ : ‖x‖ = 1

} = sup
{
m ≥ 0 : ‖T x‖ ≥ m‖x‖, x ∈ X}

.

Now, let ♦,♥ ∈ {B, I, s, ρ±, ρ, ρ∗, ρλ, ρυλ }. We say that a mapping T : X → Y

(exactly) preserves (♦,♥)-orthogonality if

x ⊥♦ y ⇒ T x ⊥♥ Ty (x, y ∈ X).

In particular, we say that T is ♦-orthogonality preserving if

x ⊥♦ y ⇒ T x ⊥♦ Ty (x, y ∈ X).

Koehler and Rosenthal [45, Theorem 1] showed that a linear operator from a normed
linear space into itself is an isometry if and only if it preserves some semi-inner
product. Blanco and Turnšek [9, Remark 3.2] and Chmieliński [15, Theorem 2.5]
extended it to different normed linear spaces. Namely, we have the following result.
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Theorem 21.31 Let X and Y be normed linear spaces. For a linear mapping T :
X −→ Y and some γ > 0 the following conditions are equivalent:

(i) T is a similarity.
(ii) [T x, T y]Y = γ 2[x, y]X for all x, y ∈ X.

(iii) T is s-orthogonality preserving.

The conditions (ii) and (iii) should be understood that they are satisfied with respect
to some semi-inner products [·, ·]X and [·, ·]Y in X and Y , respectively.

It has been proved by Koldobsky [46] that a linear mapping T : X → X preserving
B-orthogonality has to be a similarity. In [36, Theorem 1], Ionică using the
connections between the Birkhoff–James orthogonality and norm derivatives gave
an alternative proof of the above results in the case of different real normed linear
spaces (see also [65]). The respective result for both real and complex cases was
given by Blanco and Turnšek in [9, Theorem 3.1]. Very recently, Wójcik in [83]
presented a somewhat simpler proof of this theorem.

Theorem 21.32 Let X and Y be (real or complex) normed linear spaces. A linear
mapping T : X → Y is B-orthogonality preserving if and only if it is a scalar
multiple of a linear isometry.

The following result gives a characterization of inner product spaces.

Theorem 21.33 ([15, Theorem 2.9]) LetX be a normed linear space. Suppose that
there exists an inner product space K and a linear mapping T from X into K or
from K onto X such that T preserves B-orthogonality. Then X is an inner product
space.

Martini and Wu [54, Lemma 4] proved the following result.

Theorem 21.34 Let X and Y be two normed linear spaces. If a linear mapping
T : X −→ Y preserves I -orthogonality, then it also preserves B-orthogonality.

Combining Theorems 21.32 and 21.34 actually lead us to the following result.

Corollary 21.3 Let X and Y be normed linear spaces, and let T : X −→ Y be a
nonzero linear mapping. Then the following conditions are equivalent:

(i) T is I -orthogonality preserving.
(ii) T is a scalar multiple of a linear isometry.

Remark 21.2 Notice that Corollary 21.3 also has been proved in [16, Theorem 4.5].

The next theorem gives characterizations of inner product spaces by properties of
linear operators related to B-orthogonality and I -orthogonality.
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Theorem 21.35 ([84, Theorems 9, 10]) LetX and Y be two normed linear spaces.
Each one of the following conditions implies that X and T (X) are inner product
spaces.

(i) There exists a nonzero linear mapping T : X −→ Y which preserve (I, B)-
orthogonality.

(ii) There exists a nonzero linear mapping T : X −→ Y which preserve (B, I )-
orthogonality.

The orthogonality preserving mappings have been considered also in [63]. The
paper [63] shows another way to consider the orthogonality preserving mappings.
Some other results on B-orthogonality preserving mapping can be found in
[19, 82, 84].

21.3.2 Mappings Which Exactly Preserve Norm Derivatives
Orthogonality

The aim of this subsection is to present results concerning the linear mappings
which preserve norm derivatives orthogonality. We survey on the results presented in
[11, 21, 22, 28, 60, 75, 88], as well as give some new and more general ones. In 2010,
Chmieliński and Wójcik [21] studied norm derivatives orthogonality preserving
mappings. They proved that for arbitrary normed linear spaces X and Y , if a linear
mapping T : X −→ Y preserves ρ−-orthogonality or preserves ρ+-orthogonality
then it is a similarity. Later, Wójcik [75] showed that a linear mapping preserving
ρ-orthogonality has to be a similarity. These results give

Theorem 21.36 Let X and Y be normed linear spaces, and let T : X −→ Y be a
nonzero linear mapping. Then the following conditions are equivalent:

(i) T preserves ρ+-orthogonality.
(ii) T preserves ρ−-orthogonality.

(iii) T preserves ρ-orthogonality.
(iv) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.
(v) ρ+(T x, T y) = ‖T ‖2ρ+(x, y) for all x, y ∈ X.

(vi) ρ−(T x, T y) = ‖T ‖2ρ−(x, y) for all x, y ∈ X.
(vii) ρ(T x, T y) = ‖T ‖2ρ(x, y) for all x, y ∈ X.

As for the ρ∗-orthogonality preserving mapping the following characterization has
been given in [60] (see also [11]).

Theorem 21.37 Let X, Y be normed linear spaces and let T : X −→ Y be a
nonzero linear mapping. Then the following conditions are equivalent:

(i) T preserves ρ∗-orthogonality.
(ii) T preserves (ρ∗, B)-orthogonality.

(iii) T preserves (B, ρ∗)-orthogonality.
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(iv) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.
(v) ρ∗(T x, T y) = ‖T ‖4 ρ∗(x, y) for all x, y ∈ X.

If X = Y , then each one of these assertions is also equivalent to
(vi) there exists a semi-inner product [·|·] : X ×X −→ R satisfying

[T x, T y]X = ‖T ‖2[x, y]X (x, y ∈ X).

Recall that a normed linear space (X, ‖ · ‖) satisfies the δ-parallelogram law for
some δ ∈ [0, 1), if the double inequality

2(1 − δ)‖z‖2 ≤ ‖z+ w‖2 + ‖z− w‖2 − 2‖w‖2 ≤ 2(1 + δ)‖z‖2

holds for all z,w ∈ X; cf. [17]. Also a normed linear space (X, ‖ · ‖) is equivalent
to an inner product space if there exist an inner product in X and a norm ||| · |||
generated by this inner product such that

1

k
‖x‖ ≤ |||x||| ≤ k‖x‖ (x ∈ X)

holds for some k ≥ 1; see [41].

Corollary 21.4 ([60, Corollary 2.7]) Any one of the following assertions implies
that X is equivalent to an inner product space.

(i) There exist a normed linear space Y satisfying the δ-parallelogram law for
some δ ∈ [0, 1) and a nonzero linear mapping T : X −→ Y such that T
preserves ρ∗-orthogonality.

(ii) There exist a normed linear space Y satisfying the δ-parallelogram law for
some δ ∈ [0, 1) and a nonzero surjective linear mapping S : Y −→ X such
that S preserves ρ∗-orthogonality.

We remark that the converse of Corollary 21.4 holds also true. Indeed, if X is
equivalent to an inner product space, then we can choose δ = 0, Y = X and T = id,
the identity operator on X. Recall that a normed linear space (X, ‖ · ‖) is called
uniformly smooth if X satisfies the property that for every ε > 0 there exists δ > 0
such that if x, y ∈ X with ‖x‖ = 1 and ‖y‖ ≤ δ, then ‖x+y‖+‖x−y‖ ≤ 2+ε‖y‖;
cf. [3].

The modulus of smoothness of X is the function &X defined for every t > 0 by
the formula

&X(t) := sup

{‖x + y‖ + ‖x − y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = t

}
.

Furthermore, X is called uniformly convex if for every 0 < ε ≤ 2 there is some
δ > 0 such that for any two vectors with ‖x‖ = ‖y‖ = 1, the condition ‖x−y‖ ≥ ε

implies that
∥
∥ x+y

2

∥
∥ ≤ 1 − δ.
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The modulus of convexity of X is the function σX defined by

σX(ε) := inf

{
1 −

∥∥∥
∥
x + y

2

∥∥∥
∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

Let X, Y be normed linear spaces. If a linear mapping T : X −→ Y preserves
ρ∗-orthogonality, then from Theorem 21.37 we conclude that T must be a similarity.
Thus, the spaces X and Y have to share some geometrical properties. In particular,
the modulus of convexity σX and modulus of smoothness &X must be preserved,
i.e., σX = σT (X) and &X = &T (X). As a consequence, we have the following result.

Corollary 21.5 LetX be a normed linear space. Suppose that there exists a normed
linear space Y which is a uniformly convex (uniformly smooth) space, a strictly
convex space, or an inner product space and a nontrivial linear mapping T from
X into Y (or from Y onto X) such that T preserves ρ∗-orthogonality. Then X is,
respectively, a uniformly convex (uniformly smooth) space, a strictly convex space,
an inner product space.

Recently, the authors of the paper [88] considered the class of linear mappings
preserving ρλ-orthogonality. They showed that each such a mapping must be a
similarity. Namely, they proved the following result.

Theorem 21.38 ([88, Theorem 3.4]) Let X and Y be normed linear spaces and
λ ∈ [0, 1]. Let T : X −→ Y be a nonzero linear mapping. Then the following
conditions are equivalent:

(i) T preserves ρλ-orthogonality.
(ii) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.

(iii) ρλ(T x, T y) = ‖T ‖2 ρλ(x, y) for all x, y ∈ X.

Let X be a normed linear space endowed with two norms ‖ · ‖1 and ‖ · ‖2, which
generate respective functionals ρ4,1 and ρ4,2, where 4 ∈ {λ, ∗}. Following [3,
Definition 2.4.1], we say that functionals ρ4,1 and ρ4,2 are equivalent if there exist
constants 0 < m ≤ M such that

m|ρ4,1(x, y)| ≤ |ρ4,2(x, y)| ≤ M|ρ4,1(x, y)| (x, y ∈ X).

Taking X = Y and T = id, one obtains, from Theorems 21.37 and 21.38, the
following result.

Corollary 21.6 Let X be a normed linear space endowed with two norms ‖ · ‖1
and ‖ · ‖2, which generate respective functionals ρ4,1 and ρ4,2 with 4 ∈ {λ, ∗} and
λ ∈ [0, 1]. Then the following conditions are equivalent:

(i) The functionals ρ4,1 and ρ4,2 are equivalent.
(ii) The spaces (X, ‖ · ‖1) and (X, ‖ · ‖2) are isometrically isomorphic.

Next, we formulate one of our main results.
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Theorem 21.39 Let X, Y be normed linear spaces, λ ∈ [0, 1] and let υ = 1
2k−1

(k ∈ N). If T : X −→ Y be a nonzero linear mapping, then the following conditions
are equivalent:

(i) T preserves ρυλ -orthogonality.
(ii) T preserves (ρυλ , B)-orthogonality.

(iii) ‖T x‖ = ‖T ‖ ‖x‖ for all x ∈ X.
(iv) ρυλ (T x, T y) = ‖T ‖2 ρυλ (x, y) for all x, y ∈ X.

Proof (i)⇒(ii) Suppose that x, y ∈ X and x⊥ρυλ y. Then T x⊥ρυλ T y, by (i). It fol-
lows from Proposition 21.4 that T x⊥BTy. Thus T preserves (ρυλ , B)-orthogonality.

(ii)⇒(iii) Suppose that (ii) holds and fix x, y ∈ X \ {0}. If x and y are linearly
dependent, then ‖T x‖

‖x‖ = ‖Ty‖
‖y‖ . Now, assume that x and y are linearly independent.

For any t ∈ R, it is easy to see that ρ±
(
x + ty,

−ρ±(x+ty,y)
‖x+ty‖2 (x + ty)+ y

)
= 0 and

hence

ρυλ

(
x + ty, −ρ±(x + ty, y)‖x + ty‖2 (x + ty)+ y

)
= 0.

It follows from Proposition 21.4 that T x + tT y⊥B −ρ±(x+ty,y)
‖x+ty‖2 (T x + tT y) + Ty.

By Theorem 21.3, we get

ρ−
(
T x + tT y, −ρ±(x + ty, y)‖x + ty‖2

(T x + tT y)+ Ty
)

≤ 0

≤ ρ+
(
T x + tT y, −ρ±(x + ty, y)‖x + ty‖2 (T x + tT y)+ Ty

)
.

This implies

−ρ−(x + ty, y)
‖x + ty‖2 ‖T x + tT y‖2 + ρ−(T x + tT y, T y) ≤ 0 (t ∈ R) (21.2)

and

0 ≤ −ρ+(x + ty, y)
‖x + ty‖2 ‖T x + tT y‖2 + ρ+(T x + tT y, T y) (t ∈ R). (21.3)

Let us define

ϕx,y(t) := ‖T x + tT y‖
‖x + ty‖ (t ∈ R).

Then simple computations show that
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(ϕx,y)
′±(t) =

ρ±(T x + tT y, T y)‖x + ty‖ − ρ±(x + ty, y)‖T x + tT y‖
‖x + ty‖2 .

From (21.2) and (21.3) it follows that

0 ≤ (ϕx,y)
′−(t) and (ϕx,y)

′+(t) ≤ 0 (t ∈ R).

Hence ϕx,y is constant on R. Therefore,

‖T x‖
‖x‖ = ϕx,y(0) = lim

t→∞ϕx,y(t) =
‖Ty‖
‖y‖ .

Now, we fix a unit vector y0 inX. For every nonzero vector x ∈ X, we conclude that
‖T x‖
‖x‖ = ‖Ty0‖. Hence ‖T x‖ = ‖Ty0‖‖x‖ for all x ∈ X. Therefore (iii) is valid.

The other implications are trivial.

Let us adopt the notion of Birkhoff orthogonal set of x from [3]:

[x]B‖·‖ = {y ∈ X : x ⊥B y}.

We now define the ♦-orthogonal set of x as follows:

[x]♦‖·‖ = {y ∈ X : x ⊥♦ y},

where ♦ ∈ {I, s, ρ∗, ρυλ }.
Theorem 21.40 Let X be a normed linear space endowed with two norms ‖ · ‖1
and ‖ · ‖2, and let λ ∈ [0, 1] and υ = 1

2k−1 (k ∈ N). For every x ∈ X, the following
conditions are equivalent:

(i) [x]B‖·‖1
= [x]B‖·‖2

. (ii) [x]s‖·‖1
= [x]s‖·‖2

.

(iii) [x]I‖·‖1
= [x]I‖·‖2

. (iv) [x]ρ∗‖·‖1
= [x]ρ∗‖·‖2

.

(v) [x]ρυλ‖·‖1
= [x]ρυλ‖·‖2

.

Proof (i)⇒(v) Suppose that (i) holds and define T = id : (X, ‖ · ‖1)→ (X, ‖ · ‖2)

to be the identity map. Then T is B-orthogonal preserving. It follows from
Theorem 21.32 that there exists M > 0 such that ‖T x‖2 = ‖x‖2 = M‖x‖1, which

implies that [x]ρυλ‖·‖1
= [x]ρυλ‖·‖2

(x ∈ X).
(v)⇒(i) If (v) holds, then T = id : (X, ‖ · ‖1) → (X, ‖ · ‖2) is ρυλ -orthogonal

preserving. It follows from Theorem 21.39 that there existsM > 0 such that ‖x‖2 =
‖T x‖2 = M‖x‖1, which ensures that [x]B‖·‖1

= [x]B‖·‖2
(x ∈ X).

The other implications can be proved similarly.
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In [75, Theorem 5.1] Wójcik proved that a real normed linear space X is smooth
if and only if there exist a real normed linear space Y and a nonvanishing linear
mapping T : X −→ Y , such that T preserves (♦,♥)-orthogonality for some
♦,♥ ∈ {ρ−, ρ+, ρ} with ♦ 
= ♥.

In the sequel, from [60, Theorems 3.2-3] and [28, Theorems 2.20-22] we are
going to provide some characterizations of smooth real normed linear spaces in
terms of linear mappings that preserve ρ∗ and ρvλ-orthogonality to other types of
orthogonality relations.

Theorem 21.41 Let X be a real normed linear space and let λ ∈ [0, 1] and υ =
1

2k−1 (k ∈ N). Then the following conditions are equivalent:

(i) X is smooth.
(ii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ∗, ρ+)-orthogonality.
(iii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ∗, ρ−)-orthogonality.
(iv) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ∗, ρ)-orthogonality.
(v) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρ, ρ∗)-orthogonality.
(vi) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρυλ , ρ−)-orthogonality.
(vii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρυλ , ρ+)-orthogonality.
(viii) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρυλ , ρλ)-orthogonality.
(ix) There exist a normed linear space Y and a nonvanishing linear mapping T :

X −→ Y such that T preserves (ρυλ , ρ)-orthogonality.

21.3.3 Approximate Orthogonality Preserving Mapping

Ulam [73] raised the general problem of when a mathematical object which satisfies
a certain property approximately must be close, in some sense, to one that satisfies
this property accurately. Approximately orthogonality preserving mappings in the
framework of inner product spaces have been studied in this setting, see [13, 14, 23,
47, 72, 81, 90, 91].

Let H and K be two inner product spaces and let δ, ε ∈ [0, 1). A mapping
T : H → K is called a (δ, ε)-orthogonality preserving if

x ⊥δ y ⇒ T x ⊥ε T y (x, y ∈ H).

Often δ = 0 has been considered. Therefore, we say that T is ε-orthogonality
preserving if
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x ⊥ y ⇒ T x ⊥ε T y (x, y ∈ H).

Obviously, if δ = ε = 0, then T is orthogonality preserving. Hence, the natural
question is whether a (δ, ε)-orthogonality preserving linear mapping T must be
close to a linear orthogonality preserving mapping. The following result was proved
in [13, Theorem 2] (see also [72, Remark 2.1]).

Theorem 21.42 ([13, Theorem 2]) LetH andK be two Hilbert spaces, and let T :
H → K be a nonzero linear ε-orthogonality preserving mapping with ε ∈ [0, 1).
Then T is injective, continuous and, with some γ > 0, T satisfies the functional
inequality

∣∣∣〈T x, T y〉 − γ 〈x, y〉
∣∣∣ ≤ 4ε

1 + ε min
{
γ ‖x‖‖y‖, ‖T x‖ ‖Ty‖

}
(x, y ∈ H).

Conversely, if T : H → K satisfies

∣∣∣〈T x, T y〉 − γ 〈x, y〉
∣∣∣ ≤ εmin

{
γ ‖x‖‖y‖, ‖T x‖ ‖Ty‖

}
(x, y ∈ H)

with ε ≥ 0 and with γ > 0, then T is a quasi-linear mapping and ε-orthogonality
preserving.

Recently, Moslehian et al. [61] have been obtained the following result.

Theorem 21.43 ([61, Theorem 3.10]) LetH andK be two real Hilbert spaces and
dimH <∞. Let T : H → K be a linear mapping with 0 < [T ]. Then there exists
γ such that T satisfies

∣∣∣〈T x, T y〉 − γ 〈x, y〉
∣∣∣ ≤

(
1 − [T ]2

‖T ‖2

)
‖T ‖2 ‖x‖ ‖y‖ (x, y ∈ H).

Moreover, [T ]2 ≤ |γ | ≤ 2‖T ‖2 − [T ]2.

In 2007, Turnšek proved the following

Theorem 21.44 ([72, Theorem 2.3]) Let H and K be two Hilbert spaces, T :
H → K be a nonzero ε-orthogonality preserving linear mapping, ε ∈ [0, 1), and
T = U |T | be its polar decomposition. Then U is an isometry and

∥∥∥T − ‖T ‖U
∥∥∥ ≤

(
1 −

√
1 − ε
1 + ε

)
‖T ‖.

Wójcik extended Theorem 21.44 as follows. (The same result is later obtained in
[91] by using a different approach.)
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Theorem 21.45 ([81, Theorem 5.4]) Let H be Hilbert space, T : H → H be a
nonzero linear ε-orthogonality preserving mapping and let ε ∈ [0, 1). Then there
exists linear mapping S : H → H preserving orthogonality such that

∥∥∥T − S
∥∥∥ ≤ 1

2

(
1 −

√
1 − ε
1 + ε

)
‖T ‖.

Moreover, ‖S‖ = 1
2 (‖T ‖ + [T ]) and ‖T − S‖ = 1

2 (‖T ‖ − [T ]).
Kong and Cao [47] considered the class of (δ, ε)-orthogonality preserving linear
mappings. They proved the following result.

Theorem 21.46 Let δ, ε ∈ [0, 1). Let H,K be Hilbert spaces and let T : H → K

be a nonzero (δ, ε)-orthogonality preserving linear mapping. Then there exists λ0 ∈
{z ∈ C : δ+1

2 ≤ |z| ≤ δ + 2} such that

√
|λ0|2 − ε|λ0|2

(δ + 1)2 + ε(δ + 1)2
‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T x‖‖x‖ (x ∈ H).

An stronger version of the previous theorem proved by Wójcik in [81].

Theorem 21.47 ([81, Theorem 3.4]) Let δ, ε ∈ [0, 1). Let H,K be Hilbert spaces
and let T : H → K be a nonzero (δ, ε)-orthogonality preserving linear mapping.
Then T is injective, continuous and δ ≤ ε. Moreover the following inequality is
true:

√
1 − ε
1 + ε

√
1 + δ
1 − δ ‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T x‖‖x‖ (x ∈ H).

As for a stability problem, we would like to know, whether each (δ, ε)-orthogonality
preserving linear mapping T can be approximated by a linear orthogonality
preserving map S. Kong and Cao [47] proved the following result.

Theorem 21.48 Let δ, ε ∈ [0, 1). Let H,K be Hilbert spaces and let T : H →
K be linear mapping (δ, ε)-orthogonality preserving. Let T = U |T | be its polar
decomposition. Then U is an isometry and there exists λ0 ∈ C such that

∥∥∥T − ‖T ‖U
∥∥∥ ≤

(
1 −

√
|λ0|2 − ε|λ0|2

(δ + 1)2 + ε(δ + 1)2

)
‖T ‖.

Wójcik extended Theorem 21.48 as follows.

Theorem 21.49 Let δ, ε ∈ [0, 1). Let H be Hilbert space, and let T : H → K be
linear mapping (δ, ε)-orthogonality preserving. Then there exists linear mapping
S : H → H preserving orthogonality such that
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∥∥∥T − S
∥∥∥ ≤ 1

2

(
1 −

√
1 − ε
1 + ε

√
1 + δ
1 − δ

)
‖T ‖.

Moreover, ‖S‖ = 1
2 (‖T ‖ + [T ]) and ‖T − S‖ = 1

2 (‖T ‖ − [T ]).
For Hilbert C∗-modules some analogous results can be found in [35, 59]. Recently,
Chmieliński et al. [23] have been verified the approximate orthogonality preserving
property for two linear mappings. Similar investigations have been carried out for
pairs of mappings on inner product C∗-modules in [33].

Approximate orthogonality preserving property has been considered also in the
setting of normed linear spaces with respect to various definitions of orthogonality
in general normed linear spaces.

Let X, Y be two normed linear spaces, δ, ε ∈ [0, 1) and

♦,♥ ∈ {B, cI, R, P, ρ±, ρ, ρ∗, ρλ, ρvλ}.

A mapping T : X → Y is called a (δ, ε)-(♦,♥)-orthogonality preserving if

x ⊥δ♦ y ⇒ T x ⊥ε♥ Ty, (x, y ∈ X).

In particular, we say that T is ε-♦-orthogonality preserving if

x ⊥♦ y ⇒ T x ⊥ε♦ Ty, (x, y ∈ X).

Mojškerc and Turnšek [57] considered the class of linear mappings approximately
preserving the Birkhoff–James orthogonality. They proved the following result.

Theorem 21.50 ([57, Theorem 3.5 and Remark 3.1]) Let X, Y be two normed
linear spaces, ε ∈ [0, 1

16 ) and let T : X → Y be a nonzero ε-B-orthogonality
preserving linear mapping. Then T is injective, continuous and

(1 − 16ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

Also, if X and Y are real normed linear spaces, then the constant (1 − 16ε) can be
replaced by (1 − 8ε) with ε ∈ [0, 1

8 ).

The following result was proved in [87]:

Theorem 21.51 ([87, Theorem 3.2]) Let X, Y be two real normed linear spaces,
and let 0 < b ≤ a and δ, ε ∈ [0, b

a
). Let T : X −→ Y be a nonzero linear

(δ, ε)-(aI, bI)-orthogonality preserving mapping. Then δ ≤ a−b+ε(a+b)
a+b−ε(a−b) and T is

injective, continuous and satisfies

(1 + δ)(b − εa)
(1 − δ)(a + εb)γ ‖x‖ ≤ ‖T x‖ ≤ (1 − δ)(a + εb)

(1 + δ)(b − εa)γ ‖x‖

for all x ∈ X and for all γ ∈ [ [T ], ‖T ‖ ].
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Taking a = b = 1 and δ = 0 we get from Theorem 21.51 the following result.

Theorem 21.52 ([20, Theorem 3.2]) Let X and Y be two real normed linear
spaces, and let ε ∈ [0, 1). Let T : X −→ Y be a nonzero linear ε-I -orthogonality
preserving mapping. Then T is injective, continuous and satisfies

1 − ε
1 + ε ‖T ‖‖x‖ ≤ ‖T x‖ ≤ 1 + ε

1 − ε [T ]‖x‖ (x ∈ X). (21.4)

In the next Theorem we formulate a result from Theorem 21.52.

Theorem 21.53 ([20, Theorem 3.6]) Let X and Y be two real normed linear
spaces, and let ε ∈ [0, 1). For a nontrivial linear mapping T : X −→ Y the
following conditions are equivalent:

(i) T preserves ε-I -orthogonality.
(ii) 1−ε

1+ε‖T ‖‖x‖ ≤ ‖T x‖ ≤ 1+ε
1−ε [T ]‖x‖ for all x ∈ X.

(iii) 1−ε
1+ε γ ‖x‖ ≤ ‖T x‖ ≤ 1+ε

1−ε γ ‖x‖ for all x ∈ X and for all γ ∈ [ [T ], ‖T ‖ ].
(iv) ‖T x‖ ‖y‖ ≤ 1+ε

1−ε‖Ty‖ ‖x‖ for all x, y ∈ X.

(v) ‖T ‖ ≤ 1+ε
1−ε [T ].

As consequences of Theorem 21.51, we have the following results.

Corollary 21.7 ([87, Corollary 3.3]) Let X, Y be two real normed linear spaces,
and let 0 < b ≤ a and ε, δ ∈ [0, b

a
). Let T : X −→ Y be a linear (δ, ε)-(aI, bI)-

orthogonality preserving mapping with 0 ≤ a−b+ε(a+b)
a+b−ε(a−b) < δ. Then T = 0.

Corollary 21.8 ([87, Corollary 3.4]) Let X, Y be two real normed linear
spaces, and let 0 < b ≤ a and ε, δ ∈ [0, b

a
). Let T : X −→ Y be a

nonzero linear (δ, ε)-(aI, bI)-orthogonality preserving mapping. If a linear
mapping S : X → Y satisfies ‖S − T ‖ ≤ θ‖T ‖, then ‖S‖ ≤ η[S], where

η = (1−δ)2(a+εb)2+θ(1−δ2)(a+εb)(b−εa)
(1+δ)2(b−εa)2−θ(1−δ2)(a+εb)(b−εa) .

Wójcik in [77] was obtain the following result for the stability of the orthogonality
preserving mappings for the finite-dimensional spaces.

Theorem 21.54 ([77]) Let X and Y be finite-dimensional real normed linear
spaces, and let ♦ ∈ {D, I,R, P }. Then, for an arbitrary θ > 0, there exists ε > 0
such that for any linear ε-♦-orthogonality preserving mapping T : X −→ Y there
exists a linear ♦-orthogonality preserving mapping S : X −→ Y such that

‖T − S‖ ≤ θ min{‖T ‖, ‖S‖}.

Some other results for the stability of the orthogonality preserving property in
normed linear spaces can be found in [16, 20, 57, 68, 76].

Approximate orthogonality preserving mappings have been also considered for
norm derivatives orthogonality relations.
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Remark 21.3 Let X, Y be normed linear spaces and let T : X → Y be linear
mapping. Then, T approximately preserves ρ+-orthogonality if and only if T
approximately preserves ρ−-orthogonality. Indeed, suppose that T approximately
preserves ρ+-orthogonality and let x ⊥ρ− y. Thus −x ⊥ρ+ y, hence −T x ⊥ερ+ Ty
and finally T x ⊥ερ− Ty, i.e., T approximately preserves ρ−-orthogonality. The
proof of the reverse is the same.

Chmieliński and Wójcik in [22, Theorem 5.1] proved that an approximate ρ±-
orthogonality preserving mapping is an approximate B-orthogonality preserving
mapping. Next, Wójcik [80, Theorem 5.5] obtained a same result for approximate
ρ-orthogonality preserving mappings. More precisely, he proved that the property
that a linear mapping approximately preserves the Birkhoff–James orthogonality
is equivalent to that it approximately preserves the ρ and ρ±-orthogonality (the
proof of which is by no means elementary). The same result was proved in
[27, Theorem 2.7] for approximate ρ∗-orthogonality preserving mappings. Thus,
from Theorem 21.50, we obtain the following characterization of linear mappings
approximately preserving the orthogonality relations.

Theorem 21.55 Let X, Y be two real normed linear space and let ε ∈ [0, 1
8 ).

If T : X → Y is a nonzero linear mapping, then the following conditions are
equivalent:

(i) T is ε-ρ−-orthogonality preserving.
(ii) T is ε-ρ+-orthogonality preserving.

(iii) T is ε-ρ-orthogonality preserving.
(iv) T is ε-ρ∗-orthogonality preserving.
(v) T is ε-B-orthogonality preserving.

Moreover, each of the above conditions implies that T is injective, continuous and

(1 − 8ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

Note that, in particular for ♦,♥ ∈ {B, ρ±, ρ, ρ∗} with ♦ 
= ♥, the property that
a linear mapping approximately preserves the ♦-orthogonality is equivalent to that
it approximately preserves the ♥-orthogonality. Although ⊥ε♦ and ⊥ε♥ need not be
equivalent unless we assume the smoothness of the norm.

Taking X = Y and T = id, one obtains, from Theorem 21.55, the following
result.

Corollary 21.9 Let ε ∈ [0, 1
8 ) and ♦ ∈ {B, ρ±, ρ, ρ∗}. Let ‖ · ‖1 and ‖ · ‖2 be

two norms in a linear space X. By ⊥1 and ⊥2 we denote the ♦-orthogonality with
respect to one of the two norms. If ⊥1⊂⊥ε2, then both norms are equivalent and,
with some γ > 0, we have

(1 − 8ε)γ ‖x‖1 ≤ ‖x‖2 ≤ γ ‖x‖1 (x ∈ X).
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Recently, the class of linear mappings approximately preserving ρυλ -orthogonality
has been studied in [1]. Although ⊥ε

ρvλ
need not be equivalent to ⊥εB , unless we

assume the smoothness of the norm, it has been proved in [1] the following result.

Theorem 21.56 ([1, Theorem 3.4]) Let X and Y be normed linear spaces and let
ε ∈ [0, 1), λ ∈ [0, 1] and v = 1

2k+1 (k ∈ N). If T : X → Y is a nonzero linear
mapping, then the following conditions are equivalent:

(i) T is ε-ρvλ-orthogonality preserving.
(ii) T is ε-B-orthogonality preserving.

Moreover, each of the above conditions implies that T is injective, continuous and

(1 − 8ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

As an special case, the authors in [1] proved a similar result for approximately ρλ-
orthogonality preserving linear mappings.

Corollary 21.10 ([1, Corollary 3.6]) LetX and Y be normed linear spaces and let
ε ∈ [0, 1) and λ ∈ [0, 1]. If T : X → Y is a nonzero linear mapping, then the
following conditions are equivalent:

(i) T is ε-ρλ-orthogonality preserving.
(ii) T is ε-B-orthogonality preserving.

Moreover, each of the above conditions implies that T is injective, continuous and

(1 − 8ε)‖T ‖‖x‖ ≤ ‖T x‖ ≤ ‖T ‖‖x‖ (x ∈ X).

In particular, if we take ε = 0 in the foregoing corollary, then we obtain that every
ρλ-orthogonality preserving mapping is a similarity. We should notify that this result
was already shown in [88, Theorem 3.4] with a different approach.

Acknowledgement The authors would like to thank the referee for her/his valuable suggestions
and comments.
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