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Preface

This volume presents papers written by experts, who are actively working in various
areas of mathematics and its applications on issues in one way or another connected
to Ulam-type stability problems, motivated by the famous question concerning
approximate homomorphisms. These papers provide an insightful perspective on
a large number of investigations in mathematical analysis.

The present book is the outcome of two Conferences on Ulam Type Stability
(CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October
8-13, Timisoara, Romania).

The aim of the volume is not only to give an account of the present state of
research on Ulam-type stability but also to stimulate further research in the area.
Thus, alongside research papers containing new results, it includes surveys on
various themes pointing to the potential for further future study and identifying
several open problems and/or questions.

Let us recall that S.M. Ulam (April 13, 1909-May 13, 1984) was a prominent
mathematician and physicist. In 1940, he posed his famous question concerning
approximate homomorphisms, which gave rise to a long-lasting study of a field
which we now call Ulam (or Hyers-Ulam) stability.

The book contains 21 articles written by 29 authors from 12 countries, all
of whom have been intensively involved in active research in this area. Special
emphasis has been placed on the topics which apply methods and techniques
involving, or originating from, functional equations and inequalities (FEI).

We hope that this publication will serve as a kind of guidebook for both graduate
students and researchers in various fields, including not only mathematics but also
physics, engineering, and interdisciplinary research.

Subjects treated in this book are (in order of appearance in this volume) as
follows:

— Stability and solutions of the Cauchy functional equation in lattice environments

— Fixed-point approach to the Hyers-Ulam stability and hyperstability of a general
functional equation

— Reversing property of the Birkhoff-James orthogonality and its stability



vi Preface

— Optimal forward contract design for inventory (a value-of-waiting analysis via
sensitivity analysis of a functional equation)

— Hyers-Ulam stability of functional equations in quasi-S-Banach spaces

— Stability of the functional equation of p-Wright affine functions in 2-Banach
spaces

— Solutions and stability of a functional equation arising from a queueing system

— Approximately cubic mappings

— Solutions and stability of some functional equations on semigroups

— Bi-additive s-functional inequalities and quasi-x-multipliers on Banach -
algebras

— Ulam stability of a generalization of the Fréchet functional equation on a
restricted domain

— Various remarks concerning the notion of stability of functional equations

— Subdominant eigenvalue location of a bordered diagonal matrix

— A fixed-point theorem in uniformizable spaces

— Symmetry of Birkhoff-James orthogonality of bounded linear operators

— Ulam stability of zero-point equations

— Cauchy difference operator in some Orlicz spaces

— Semi-inner products and parapreseminorms on groups and a generalization of a
theorem of Maksa and Volkmann on additive functions

— Invariant means in Ulam-type stability theory

— Geometry of Banach function modules

— Exact and approximate orthogonalities based on norm derivatives

It is our pleasure to express warmest thanks to all the mathematicians, who
participated in this publication. We would also wish to acknowledge the support
of our referees.

Last but not least, we wish to acknowledge the superb assistance that the staff of
Springer provided for the publication of this volume.

Krakow, Poland Janusz Brzdek
Cluj-Napoca, Romania Dorian Popa
Athens, Greece Themistocles M. Rassias

March 2019
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Chapter 1 ®
Survey on Cauchy Functional Equation e
in Lattice Environments

Nutefe Kwami Agbeko

Abstract By replacing in Cauchy functional equation the addition with the lattice
operations we are able to formulate the Ulam’s stability problem in lattice envi-
ronments. Various types of solution are formulated and proved similarly as their
counterparts in addition environments. This survey contains a part of the habilitation
thesis presented to the Department of Mathematics, University of Debrecen (cf.
Agbeko, Studies on some addition-free environments. Habilitation Thesis submitted
to the University of Debrecen. http://www.uni-miskolc.hu/~matagbek/Habilitation
%20Thesis.pdf) and the material in Agbeko and Szokol (Extracta Math 33:1-10,
2018).

Keywords Functional equation - Functional inequality - Banach lattice - Ulam’s
stability - Lattice semigroup

Mathematics Subject Classification (2010) Primary 39B82, 06B99, 20M99;
Secondary 39B42, 39B52, 46A40

1.1 Introduction

In the early 90s we substituted with the lattice join operation, the addition in the
definition of measure as well as in the Lebesgue integral to obtain lattice-dependent
operators which behave similarly as their counterparts in Measure Theory do, in
the sense that existing major theorems in Measure Theory are also proved with the
addition replaced by the join (or supremum). We refer the reader to [1-4] for the
earliest results to [9] for other considerations. Later on we have studied the linear
functional equation in lattice environments (by replacing in the Cauchy functional

N. K. Agbeko (0<)
Institute of Mathematics, University of Miskolc, Miskolc, Hungary
e-mail: matagbek @uni-miskolc.hu
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equation the addition with lattice operations) and namely considered Ulam’s type
stability problem and separation theorem. Recalling it here as historical background
the Cauchy (or linear) functional equation reads:

fa+n=fx+710), (1.1)

where f is a real function.

The so-called Ulam’s stability problem involving Eq. (1.1) was first posed by M.
Ulam (see [33]) in the terms: “Give conditions in order for a linear mapping near an
approximately linear mapping to exist.” In a more precise formulation the problem
reads:

Given two Banach algebras E and E’, a transformation f : E — E’ is called
8-linear if

Ifx+y)=f&x)=fFfOl <3, (1.2)

for all x, y € E. Does there exist for each ¢ € (0, 1) some § > 0 such that to
each §-linear transformation f : E — E’ there corresponds a linear transformation
[ : E — E’ satisfying the inequality

If ) =1l <e

for all x € E? This question was answered in the affirmative for the first time by
Hyers [20]. Ever since various problems of stability on various spaces have come
to light. We shall just list few of them: [14, 19, 24, 25, 27, 32]. The lattice version
of the Ulam’s stability problem will be formulated in a more general form later in
Sects. 1.3 and 1.5.

1.2 Stability of Maximum Preserving Functional Equations
on Banach Lattices

We would like to stress the similitude between the present section and the result
in [11].
If % is a Banach lattice, then %™ will stand for its positive cone, i.e.

Br={xeB:x>0={x|:x € B}

Given two Banach lattices 2~ and % we say that a functional F : 2" — % is
cone-related if

F(ZT)={F(xD:xe Z}c#™,

also known in the literature as positive function.
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Some Properties 1 Let be given two Banach lattices 2 and % and, a cone-related
functional F : " — %

P1. Maximum Preserving Functional Equation:
F (x| viyh=F(xD)Vv FdyD

for all members x, y € Z.
P2. Semi-homogeneity:

F(t|x) =tF (Ix])

forall x € Z and every number T € [0, 00).
P3. Continuity From Below on the Positive Cone: The identity

lim F (x,) = F ( lim x,,)
n— 00 n— 00

holds for every increasing sequence (xp),eny C 2.
P4. For any increasing sequence (xi) C X the inequality hereafter holds
F (2"xy)

. . . . F Q%)
lim lim — < lim lim ———,
n—00 k— 00 n k— 00 n—00 n

(1.3)

provided that the limits exist.

We should note that every functional, which solves the maximum preserving
functional equation, is known as a join homomorphism in Lattice Theory.

Remark 1.1 Given two Banach lattices 2" and ¢ let a cone-related functional F :
X — % satisfy property P1. Then the following statements are valid.

1. F(lx vy < F(x]) Vv F (]y]) for all members x, y € Z".

2. The semi-homogeneity implies that ' (0) = 0.

3. F is an increasing operator, in the sense that if x, y € 2 are such that |x| < |y,
then F (|x]) < F (Iy]).

Theorem 1.1 Let be given a continuous function p : [0, co) — (0, 0o) and two
Banach lattices 2" and %'. Consider a cone-related functional F : & — % for
which there are numbers 9 > 0 and a € [0, 1) such that

F F(ly
[ e lxl v nly) — OE b2

1™ + liyll*

H <9 (1.4)

forall x,y € X and t, n € RY. Then there is a unique cone-related mapping
T : 2 — % which satisfies properties P1, P2 and inequality
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I7 (xD) = F (DIl _ 29
llx 22

(1.5)

foreveryx € Z.
Moreover, if F is continuous from below, then in order that T be continuous from
below it is necessary and sufficient that F enjoy property P4.

Each of the following theorem is a variation of the above result.

Theorem 1.2 Let be given a continuous function p : [0, co) — (0, oo0) with
p (0) = 0 and, two Banach lattices & and % . Consider a cone-related functional
F . Z — % for which there are numbers ¥ > 0 and o € [0, 1) such that

F F(ly
| @itV lyl) — @GR

1™ + llyll*

H <9 (1.6)

forall x, y € 2 and T, n € R*. Then there is a unique cone-related mapping
T : & — % which satisfies properties P1, P2 and inequality (1.5) is valid for
every x € Z. Moreover, if F is continuous from below, then in order that T be
continuous from below it is necessary and sufficient that F enjoy property P4.

Theorem 1.3 Let be given a continuous function p : [0, co) — (0, 00) and, two
Banach lattices & and %. Consider a cone-related functional F : 2 — % for
which there are numbers ¥ > 0 and a € [0, 1) such that

pE@)Vpm) p(@)Vp(n)
I 1% + Iyl1®

HF (rp(f)\XIVnp(n)lyl) _ @F(x)vipaDF(y) H
<? (1.7)

forall x, y € % and t, n € RT. Then there is a unique cone-related mapping
T : & — % which satisfies properties P1, P2 and inequality (1.5) is valid for
every x € 2. Moreover, if F is continuous from below, then in order that T be
continuous from below it is necessary and sufficient that F enjoy property P4.

Theorem 1.4 Let be given a continuous function p : [0, oo) — (0, co) with
p (0) = 0 and, two Banach lattices Z~ and % . Consider a cone-related functional
F : % — % for which there are numbers % > 0 and a € [0, 1) such that

H F (Tp(f)\XIVnp(n)lyl) _ p@FxhvapaF(yl)
p(@)+p(1n) p(@)+p)

H < (1.8)
Il + [Iyl®

forall x,y € X and t, n € RY. Then there is a unique cone-related mapping
T : 2 — % which satisfies properties P1, P2 and inequality (1.5) is valid for
every x € 2. Moreover, if F is continuous from below, then in order that T be
continuous from below it is necessary and sufficient that F enjoy property P4.
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We point out that the proof of Theorem 1.1 can be suitably adapted to show the
validity of Theorems 1.2—1.4.

It is worth to ask the question: Under what conditions inequalities (1.4)
and (1.6)—(1.8) hold true? The answer is formulated in the following results without
proof, because of their easiness (in fact, only the triangle inequality of the norm is
needed to check their validity).

Lemma 1.1 Let be given a continuous function p : [0, oo) — (0, 00) and, two
Banach lattices " and %'. Consider a cone-related functional F : 2 — % and
define the functional F. : 2 — % by F.(x) = F (x) Ac, where c € %™, Let
a € [0, 1) be some number, % C % be some non-empty subset and consider the
following four quantities:

swp  sup  sup MEelEIVAD = F(lxlvalyDl
ce%y t,n€[0,00) x, yeZ Ix)1* =+ Iyll* ’

tp(D) Fe(IxD)vap () Fe(ly) fp(r)F(IX\)Vnp(n)F(Iyl) H

sup sup sup p(@)Vp() p@)Vp)
ce?y t,n€l0,0) x,yeZ llx[|% + ||y||“
_ p@Fc(xDvapm) Fe(yD
sup sup sup p(T)Vp(n)
ce%y t,n€l0,00) x,yeZ ”x”a + “y”a
and
@ FAxDVvp() F(yD
o s |F@ixl v ly)) — 2OLGBOEOD |
7, 7€[0, 00) x,yezr el + Nyl

If any three of them are simultaneously finite, then the fourth is also finite.

Lemma 1.2 Let be given a continuous function p : [0, o0) — (0, o0) and, two
Banach lattices " and % . Consider a cone-related functional F : 2 — % and
define the functional F. : 2 — % by F.(x) = F (x) Ac, where c € &, Let
a € [0, 1) be some number and % C %+ some non-empty subset and consider the
following four quantities:

sp sup sup MFe@XIVAID = F@ixlvalyDl
cep t,1€l0,00) x,yeZ X% + ||y||°‘ ’
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(@ Fe(xDvap@ Fe(lyD) _ p(@F(xDvapm) F(y) H

sup sup sup p@)+pm) p@)+pm)
ce?y t,n€l0,00) x,yeZ lx1® 4+ Ny lI*
_p@Fe(xDVvap () Fe(lyD)
sup sup sup H fe iV QA0 H
ce? t,n€l0,00) x,yeZ llx[|% + ||y||“
and
(@ FEAxDVap) F(yD)
o | F@ixl v ly) — 2Orbmo H
7,7€[0,00) x,yeZ [lx 1% + ”)’”a

If any three of them are simultaneously finite, then the fourth is also finite.

Lemma 1.3 Let be given a continuous function p : [0, oo) — (0, co) and, two
Banach lattices 2 and %. Consider a cone-related functional F : & — % and
define the functional F. : 2 — % by F.(x) = F (x) Ac, where c € &, Let
a € [0, 1) be some number and % C %+ some non-empty subset and consider the
following four quantities:

HF (Tp(r)IXIVnp(n)ly\) _F (Tp(f)\xlvnp(n)lyl) H
¢ p(@)Vpm) p(@VpQn)
sup  sup sup

ce?y t,n€l0,00) x,yeZ flx1* 4 ”)’”a

3

PO Fe(xDVvapm Fe(yD) _ zp(@F(xDvapm F(y) H

sup sup sup p(T)Vp(n) p(@)Vp(n)
ce%y t,n€l0,00) x, ye X llx]|* + ||Y||°l
F p@Ixlvapmiyl ) _ rp(r)Fc(IxI)Vnp(n)Fc(Iy\)
sup sup sup ¢ p(@)Vp(n) p(@)Vp(n)
ce% 1. n€l0,00) x, yed Il + NIy ll®

and

HF (rp(f)\XIVnp(n)lyl) _ @F(x)vapaDF(yD H
p@)Vpn) p@)Vp()
sup sup

7,n€[0, 00) x,yeZ’ llx]|® + ||y||“

If any three of them are simultaneously finite, then the fourth is also finite.
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Lemma 1.4 Let be given a continuous function p : [0, o0) — (0, 00) and, two
Banach lattices Z" and % . Consider a cone-related functional F : & — % and
define the functional F. : 2 — % by F.(x) = F (x) Ac, where c € %, Let
a € [0, 1) be some number and % C %+ some non-empty subset and consider the
following four quantities:

HF (TP(T)IXIV')[’('I)I)'\) _F (rp(r)\XIvnp(n)lyI) H
¢ p(@)+p(n) p()+pn)
sup  sup sup

ce?y t,n€l0,00) x,yeZ ”x”(x + “y”a

9

@ Fe(xDvapm Fe(y) _ (@) F(x)vap() F(ly) H

sup sup sup p(0)+p@) p(0)+p()
ce?y t,n€l0,00) x,yeZ e 1* 4+ Ny lI*
HF' (rp(r>|x|vnp(n>|y\> _ @F(x)vpaFe(yD H
sup sup ¢ p()+p(n) p(@)+p(n)
cedy t.nel0, 00) x,yed 1 + [y 11

and

HF (tp(r)\XIvnp(n)lyl) _ p@F(x)vapaF(yl) H
p(@)+pQn) p(0)+p(n)
sup sup

7, 7€l0,00) x,ye 2 el + Nyl

If any three of them are simultaneously finite, then the fourth is also finite.

Proof (of Theorem 1.1) We first show by induction that for any fixed x € 2,

H FQ') _ p (|x|)H s sz(a D (1.9)
g )
[l

whenever n € N. In fact, for n = 1 the statement is obvious by choosing t = n =2
and x = y in inequality (1.4). Suppose the statement is true for n = k. Let us prove
it for n = k + 1. In fact, let 2x replace x and n = k in inequality (1.9) and observe
that

F(2*2)x])

x— — FQ2IxD k=1

<) 2D
[12x]|* Z
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Hence
F(2k+D
(2(k+1>m) - %F 2 |x|)H k—1 k
< ﬁz(ozfl) Zzl(afl) <9 Zzl(afl)'
=0 =1

llxl®

The triangle inequality yields

F (2%4D |x)) FQ® D)) F@lxl)
T—F(MD =< 2k+1 - 2
FQ2
+ H% - F(|x|)”

k
9y 27D 4y | x|
j=1

IA

k
= [lx|* Y2/,
j=0

We have just shown the validity of inequality (1.9) for every n € N. Since the
geometric series

o0

Zzl(aq) _ 2
= 2—2e’

(0 < a < 1), we obtain that

|25 - F | 2 0 I 1.10
< < . .
HE =2 "= S (10

Next, note that for all m > n > 0 and making the change of variable y = 2"x we
have

[27F (2" |x|) = 27" F (2" Ix])|| = 27" 27" F (2" |x]) — F (2" Ix]) |
=27" 27" F (2" yl) = F(yD)]

29

<N
- 2 -2«

Iyl

— 2—n(1—a)m ”x”a )
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Consequently, passing to the limit yields,

lim |27 F (27 1x1) =27 F (27 121) | = o

n—o00

Since % is a Banach space, we can thus conclude that the sequence

F (2" |x)) .
(—zn ) cw

converges in the % -norm. Now, define the mapping 7 : 2~ — % by

. F(2"xD)

Clearly, T is a cone-related operator. Let us show that 7' is maximum preserving.
In fact, letting T = n = 2" in (1.4) leads to

|F 2" Axl v IyD) =2" (F (xh v F AyD)| < o (1= + 1v1%) .-
Substituting x with 2"x and y with 2"y in this last inequality one can get
|F 4" (xl v iyD) —2" (F (2" Ix]) v F 2" )| < 20 (=1 + 11y1%)
which implies
47| F (4" (xl v IyD) = 2" (F (2" Ix]) v F (2" Iy1)) |
= [|47"F (4" (x| v Iy]) = 27" (F (2" IxI) v F (2" |y]))|
< 2@y (I + Iy %) -
Consequently, passing to the limit yields
17 (x[ v IyD =T (x) v T (yDIl =0,
x,y € Z orequivalently
T(xIvIyh=TAxh Vv Ty,
x,y € Z, because
lim 47"F (4" [g]) = lim 27"F (2" [z]), z€ 2.
Next, we show the validity of the identity

T (t|x)) =T (Ix])
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for all x € 2 and every number t € [0, 00). In fact, in inequality (1.4) choose
n = 7, y = 0 and substitute 2"t for t to observe via Remark 1.1/(2) that

|F (2"t Ix]) = 2" F (IxD|| < & lx[I*
for all x € 2" and every number 7 € [0, 00). This inequality can be transformed as
|F (47 x]) = 2" F (2" |x])| < 92" ||x||*

if we replace x with 2" x. Consequently,

< 927" x|

F 4"t |x]) F (2" |x])
o T o

Hence on the one hand,

. F @'t |x)) .
Iim ——— =171 lim
n—00 4n n—00

mth(m)

and on the other hand by changing the variable z = tx

. F@'tix) . F@ Iz
lim ———— = lim 4—n

n— 00 4n n— 00

=T () =T (¢ |x]).

Therefore, the semi-homogeneity holds true. In the next step taking the limit in
(1.10) leads to (1.5). Further, let us show the unicity. In fact, assume the existence
of another such cone-related functional G such that

S = eZ :G(x)#T (xD} #0.

Then (1.5) implies the existence of some 99 > 0 and 8 € [0, 1) such that for each
x €Y,

IG (Ix) = T (IxDl < Do llx]1” . (1.12)
One can easily deduce from the semi-homogeneity of G and T that kx € . for
every k € N whenever x € .. Taking into account (1.12) one can easily deduce by
the triangle inequality and the semi-homogeneity that
IG (x)) = T (IxDll = n~ "G (nx]) = T (inxD | < n*'0 1x ][ 4+ nP~ oo |11

which would imply in the limit that

1G (lx) =T (IxDIl = 0,
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or equivalently
G(x)=T(xD.

This would mean that x € . implies x ¢ .7, or equivalently ./ N .%¥ = {,
ie. ¥ = 0, a contradiction, indeed. Finally, let us prove the moreover-part. In
fact, assuming that F satisfies property P4, pick arbitrarily an increasing sequence
(Ixx)) € ZF with limit |x| € 2 . Then by (1.11), the monotonicity of T and the
continuity from below of F we have

) . F Q" xl) .
A T = b =T
. F Q@ x| . FQ@Mxx))
= lim —— = lim lim ——.
n— 00 on n— 00 k— 0o on
Thus
F (2" F (2"
fim tim LC %D oy = fim gim 2D (1.13)

k—> 00 H—>00 n n—>00 k— 00 n

By the conjunction of both inequalities (1.3) and (1.13), it follows that operator
T is continuous from below. To end the proof of the moreover-part we simply note
that the reverse conditional is trivial. Therefore, we can conclude on the validity of
the argument. O

Remark 1.2 Theorems 1.1-1.4 and Lemmas 1.1-1.4 remain valid for negative
values of the norm exponent «.

1.3 Functional Equation Involving Both Lattice Operations

In the sequel (27, Ag-, Vg-) will denote a vector lattice and (¥, Agy, Vo) a
Banach lattice with 2™F and ' their respective positive cones.
Let us consider the functional equation

T (Ix| A% Iy1) AL T (IxI A% 1yl) = T (Ix) AZT (Iyl) (1.14)

to hold true for all x, y € 2, where A%,-, A":%- € {Ag, Vg}and A;], AZ; €
{A%, Va} are fixed lattice operations, and where T : 2" — #.

Note that if in the special case the above four lattice operations are at the same
time the supremum (join) or the infimum (meet), then the functional equation (1.14)
is just the defining equation of the join (or meet)-homomorphism. Moreover, if
operations A, and A%’ are the same, then the left hand side of (1.14) is the maps
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of the meets or the joins. Next, we formulate a lattice version of Ulam’s stability
problem whose solution also solves Eq. (1.14).

Problem 1.1 Let be given lattice operations A%, A%. € {Ag, Vg} and
A*@, A;; € {Aa@, Va}, a vector lattice G, a vector lattice G, endowed with
a metric d(+, -) and a positive number ¢, does there exist some § > 0 such that, if a
mapping F : G; — G satisfies the perturbation inequality

d (F (Ix| &% 1y1) AL F (Ix| A% 191), F(xD A F (yh) <8

for all x, y € Gy, then an operation-preserving functional 7 : G; — G exists
with the property that

d(Tx), F(x)) <e

forallx € G?

Since the respective proofs of the main theorems in Sects. 1.3—1.5 will be based
on a Forti’s result in [15], known as the direct method, we thought we should recall
it here.

Theorem 1.5 (Forti) Letr (X, d) be a complete metric space and S an appropriate
set. Assume that f : S — X is a function satisfying the inequality

d(H(f(G(x), f(x) =éx), (1.15)

for all x € S, where § : § — [0, 00) is some function. If H : X — X isa
continuous function and satisfies the inequality

d(Hu),H W) <¢edw,v)), u,velX, (1.16)

for a certain non-decreasing subadditive function ¢ : [0, c0) — [0, 00) and the
series

icpi (6 (Gj (x))) (1.17)
j=0

is convergent for every x € S, then there exists a unique function F : § — X
solution of the functional equation

HFGX)=Fx), =xeS§, (1.18)

and satisfying the following inequality:
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dF @ Fen =Y e (5(6w)). (1.19)
j=0

The function F is given by

F(x)= lim H" (f (G" (0)). (1.20)

1.3.1 The Main Results of This Section

Theorem 1.6 Consider a cone-related functional F : 2 — % for which there are
numbers 9 > 0 and o € [0, 1) such that

F (el A% ) A% F (A5 D) <|x|> o, (m) H
v T

T T

(1.21)

14
=7 (1 + 1y 1)

for all x,y € Z and t € (0, o0), where A%, A’% € {Ag, Vol
and Ay, Ay € {Ay, Vol are fixed lattice operations. Then the sequence

(2_"F " |)c|))nGN is a Cauchy sequence for every x € Z'. Moreover, let the
functional T : & — % be defined by

T (x) = nlingo 27"F (2" |x). (1.22)

Then

(a) T is semi-homogeneous, i.e.
T (z|x|) =T (x]),

forall x € Z and all T € [0, 00);
(b) T is the unique cone-related functional satisfying both identity (1.14) and
inequality

o

1T Cxl) = F(xDIl = 57—

flx )% (1.23)

which holds for every x € 2.
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Theorem 1.7 Consider a cone-related functional F : 2 — % for which there are
numbers 9 > 0 and p € (1, 0o) such that

I= (F (1x] A% 1y]) A%, F (Ix] A% 1yl)) — F (x[x]) A F (t 1y ||

(1.24)
<9 (Ix” + llyll?)

or all x,y € Z and 1 € [0, o0), where A%, A% € {Ag, Vgl
4 Z
and Af‘@, Aj} € {Aw, Vo } are fixed lattice operations. Then the sequence

(2” F (27” [x I)) is a Cauchy sequence for every x € 2. Moreover, let the functional
T : 2 — % be defined by

T (x|) = nl_i)rrgo 2"F (27" |x]). (1.25)

Then
(a) T is semi-homogeneous, i.e.
T (tlx]) =T (Ix]),

forallx € Z and all T € [0, 00);
(b) T is the unique cone-related functional satisfying both identity (1.14) and
inequality

IT (xh — F(xDIl = [l 11” (1.26)

2 —2

which holds for every x € 2.

Before we start the proofs the following obvious remarks are worth being men-
tioned, as they will be used multiple times.

Remark 1.3 1If the conditions of Theorem 1.6 or 1.7 hold true, then F (0) = 0.

Remark 1.4 Let Z be a set closed under the scalar multiplication, i.e. bz € Z
whenever b € R and z € Z. Given a number ¢ € R let the function y : Z — Z be
defined by y (z) = cz. Then y/ : Z — Z the j-th iteration of y is given by

v =¢z

for every counting number j > 2.

Proof (of Theorem 1.6) First, if we choose T = 2, y = x and replace x by 2x in
inequality (1.21) then we obviously have

<9271 Ix). (1.27)

2
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Next, let us define the following functions:

.G Z - Z, G(x|)=2]|x|.

2.8: 2 — [0, 00), 8(x]) =021 x|

3. ¢ : [0, 00) = [0, 00), (1) =2"lr.

4 H:% - %, H(y)=2""yl.

50d(,): ¥ x¥ —1[0,00), dO1,y2)=Ilyt— 2yl

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

(I) From inequality (1.27) we obviously have

F(2]x])

d(H (F(G(x])) , F(x]) = H >

— F(|x|)”
< 927N Ix||* = 8 (Ix]).

(D) d (H (yi1) , H(y2D) = 27 yi = y2ll = ¢ (d (1, y2)) forall yi, y2 €
&

(III) Clearly, on the one hand ¢ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations G’ and ¢’ of G and ¢ respectively, one can observe that

00 00 o
] i — -1 (@=Dj _
;OW (3(¢7 (D)) =22 el Yo 200 = 9 el s < oo

J=0

Then in virtue of the above Forti’s theorem sequence (H” (F (G" |x]))),eN 1S a
Cauchy sequence for every x € £ and thus so is sequence (2_”F 2" le))neN and
furthermore, the mapping (1.22) is the unique functional which satisfies inequality
(1.23).

Next, we prove the validity of inequality (1.14). In fact, in (1.21) substitute x
with 2" x and y with 2"y, and also let t = 1. Then

|7 2" (1%l A% 1¥) AGF (2" (1K1 A% 1¥1)) = F (2" Ix]) A F (2" 1y1)]
4
< 22" (Il +1y1).

Dividing both sides of this last inequality by 2" yields

F (2" (k] A% YD) Ay F (2" (x| A% Iyl)  F @' IxD AR F 2" |y]) H
" n

-

(el + fly)*) 2@,
(1.28)

PN
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Taking the limit in (1.28) we have via (1.25) that

|7 (Ixl A% 1y1) A%, T (IxI A% 1y]) = T (Ix]) AT (IyD)| =0

which is equivalent to

T (Ix] A% 1Y) AL T (Ix| A% 1yl) = T (Ix) AZT (IyD) -

Because of Remark 1.3 identity T F (|x|) = F (t |x]) is trivial on the one hand for
T = 0andall x € .27, on the other hand for x = 0 and all T € [0, oo). Without loss
of generality let us thus fix arbitrarily a number t # 0 and an x € 2"\ {0}. In (1.21)
choose y = x and make the changes 7 to 7! and x to 2"x. Then

14

|=F (2" 1x]) = F (z2" Ix])|| < 5 Il
Divide both sides of this last inequality by 2" to get
—n n —n n v o nla—1)n
[z27F (2" |x]) — 27" F (2" |x])|| < E||x|| 2 ) (1.29)
By taking the limit in (1.29) we have via (1.22) that
IzT (x) =T (z |xDI =0
or equivalently,

T (z|x]) =T (lx])

for all x € 2. We have thus shown the semi-homogeneity of operator 7. We can
conclude on the validity of the argument. O

Proof (of Theorem 1.7) First, if we choose T = 2, y = x and replace x by 2~ !x in
inequality (1.24) then we obviously have

”2F (2—1 |x|) -F (|x|)” < 92177 x| . (1.30)

Next, let us define the following functions:

.G: X - 2, G(x))=2""x|

L8 2 = [0, 00), S(x|) =277 ||x|P.

. @0, 00) > [0, c0), ¢@(t)=2t.

H Y > %, H(y) =2yl

A, )W XY —[0,00), dOy1,y2) =yt —yl.

| S R S R

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.



1 Functional Equation in Lattice Environments 17
(I From inequality (1.30) we obviously have
d(H (F (G (D), F () = [2F (27 1) = F (e | =02'77 x)”
=3 (lx]).
D d(H (Iy1D) , H (y21) =2lly1 = y2ll = ¢ (d (y1, y2)) forall yi, y2 € ¥.
(IIT) Clearly, on the one hand ¢ is a non-decreasing subadditive function on the

positive half line, and on the other hand by applying Remark 1.4 on both the
iterations G’ and ¢’/ of G and ¢ respectively, one can observe that

> ) ° . 2P
2 (3(67 (xD)) = 92" 77 lle? 322077 = b e |P o < oo.
Jj=

j=0

Then in virtue of the above Forti’s theorem sequence (H" (F (G" |x]))),en 1S a
Cauchy sequence for every x € 2 and thus so is sequence (Z"F (2_" |x|))n N
and furthermore, the mapping (1.25) is the unique functional which satisfies
inequality (1.26). Next, we prove the validity of inequality (1.14). In fact, in (1.24)

substitute x with 27""x and y with 27"y, and also let t = 1. Then
[F @™ (x1a% ) AZF 27" (K A% 1y1) = F 7" k) A F 27" 1y
< 027" (IxlI” + IylI7) -

Multiplying both sides of this last inequality by 2" yields

|2 (F (27" (Il A% 1y1)) A F (27" (Ix1 AT 131)))

=2 (F 7" ) AZF @7 Iy)) [ < 0 (Ix1” + llyli7) 2077,
(1.31)
Taking the limit in (1.31) we have via (1.25) that

|7 (Ixl A% 1y1) A% T (Ix] A% 1yl) = T (x) AT (yD| =0
which is equivalent to
T (Ix] A% 1yl) AL T (IxI A% [yl) =T (1xD) AT (Iyl) .
Because of Remark 1.3 identity tF (|x|) = F (t |x]) is trivial on the one hand for
T =0andall x € 2, on the other hand for x = 0 and all T € [0, co0). Without loss
of generality let us thus fix arbitrarily a number t # 0 and an x € 2"\ {0}. In (1.24)

choose y = x and change x to 27" x. Then

[cF (27" |x]) = F (27" |x])| <& IxI? 27",
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Multiply both sides of this last inequality by 2" to get
2" F (27" |x[) — 2" F (27" |x)| < o [lx )7 2 =P, (1.32)
By taking the limit in (1.32) we have via (1.25) that
T (x) =T (z|xDI =0
or equivalently,
T (zlx)) =T (IxD)

for all x € 2. We have thus proved the semi-homogeneity of operator 7. We can
conclude on the validity of the argument. O

To end the section we shall provide an example showing that if in (1.24) the
parameter t is omitted and the power p of the norms equals the unity, then stability
cannot always be guaranteed. We remind that in the addition environments Gajda in
[16] and Gévruta in [18] gave some interesting examples to show how stability fails
when the power of the norms is equal to 1.

Example 1.1 Consider the Lipschitz-continuous function

F :[0, 0c0) = [0, 00), F(x) =vxZ+1.

Fix arbitrarily two numbers x, y € [0, oo). Since F is an increasing function
the very first equality in the chain of relations here below is valid, implying the
subsequent relations in the chain:

[F(xVy)=(F@ANFO)I=[FxVy —F&xAy)|

:'\/(x\/y)2+1—\/(x/\y)2+1'

_ @ vy’ — @Ay’

_\/(x\/y)z—f-l—i-\/(x/\y)z—i-l

el (xVy) +&Ay)
\/(x\/y)z—}-l—i-\/(x/\y)z—i-l

Shx—yl<x+y

for all x, y € [0, 00). Now, let T : [0, co) — [0, 0o) be a function such that
T (x) =xT (1) for all x € [0, o). Then a simple argument shows
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awp TOZLON_ oy [Vt ? 7] = o0

x€(0, 00) X x€(0, 00)

Remark 1.5 Theorem 1.6 remains valid for negative values of the norm exponent c.

1.4 Schwaiger’s Type Functional Equation

As a consequence of the counterexample given by Gajda (see [16]), many definitions
of approximately linear mappings have come to light. In this perspective Schwaiger
(cf. [31]) also proposed a functional equation similar to the Cauchy’s one and
suitably perturbed it and obtained a stability result similar to Hyers-Ulam’s original
one (see [11, 20, 33]). Schwaiger’s theorem reads:

Theorem 1.8 (Schwaiger’s Stability Theorem) Given a real vector space E| and
a real Banach space Ej, let f : E1 — E» be a mapping for which inequality

If (x +ay) = f () —af I < b () (1.33)

is satisfied for all o« € R. Then there exists a unique linear function g : E1 — E»
such that f — g is bounded.

In the sequel (2", Ag, Vg) will denote a vector lattice and (%, Ag, Vo) a
Banach lattice with 2" and %/ their respective positive cones.
Given two positive real numbers p and g consider the functional equation

T (29 1xl) v Iyl) = (2T (1) v T (1y]) (134)

forall x, y € & and t € [0, 0co0), where T maps 2 into %'.
The following simple examples show that the functional equation (1.34) has at
least one solution.

Example 1.2 The function 77 : [0, c0o) — [0, oo) defined by 77 (x) = x is a
solution of (1.34), for all 7, ¢, x, y € [0, oo) with the choice p = q.

Example 1.3 The function T : [0, oo) — [0, 0o) defined by T (x) = /x is a
solution of (1.34), for all 7, ¢, x, y € [0, oo) with the choice p = % <q.
Example 1.4 The function 73 : [0, co) — [0, 0o) defined by T3 (x) = x2isa
solution of (1.34), for all 7, ¢, x, y € [0, co) with the choice p = 2¢q > gq.
Example 1.5 Let Z = B (M, R) be the space of all bounded real-valued functions
defined on M. Then the functional

T: 2 — 2, suchthat T (| f]) = | f|*

solves (1.34) for arbitrary positive numbers g and o with p = go.
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The goal of this section is to prove the stability of the functional equation (1.34)
which can be viewed as a counterpart of the Schwaiger type stability theorem in
lattice environment.

Remark 1.6 Given two positive real numbers p and g, if a cone-related operator
T : & — & satisfies the functional equation (1.34), then

I. T(xIVvIiyD =T (x]) vT(yl]) forallx, ye Z andt = 1;
2.

T (¢? |x|) = ©T (Ix]) (1.35)

forall x € 2 andall T € [0, c0) \ {1}.

Proof Choosing t = 1 in (1.34) we obviously obtain that 7 is a join-
homomorphism. To show the second part we first prove that

T(0)=0.
In fact, take x = y = 0in (1.34). Then
T (0) = (t?T (0)) v T (0).
But since 7 runs over the non-negative real line, by choosing 7 = 2 yields
T =Q@roO)vrTO,

which is possible only if 7 (0) = 0. Consequently, (1.35) follows if we select y = 0
in (1.34). ]

Theorem 1.9 Given a pair of positive real numbers (p, q), consider a cone-related
functional F : & — % for which there are numbers 9 > 0 and a withqa € (0, p)
such that

| F (=2 1x1) v Iyl) = (P F (401) v F Ayb] <2779 (el + 1y1%)  (1.36)

forallx, y € Z and all T € [0, 00). Then the sequence (2_"1’F 2" le))nEN isa
Cauchy sequence for every x € 2. Let the functional T : 2~ — % be defined by

T (Ix]) = nli)n;o 27"PF (2" |x]). (1.37)

Then

a. T is a solution of the functional equation (1.34);
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b. T is the unique cone-related functional which satisfies inequality
qo

2999 .
I CxD) = F(xDll = o525 11l (1.38)

foreveryx € 2.

Moreover, assume that 2" is a Banach lattice and F is continuous from below on
the positive cone 2 +. Then in order that the limit operator T be continuous from
below on X7, it is necessary and sufficient that

F (2 F (2"
fim fim G i gim EE)

n—>00 k— 00 2np ~ k—>ooh—00 onp

(1.39)

for any increasing sequence (xi)geny C 27T

Theorem 1.10 Given a pair of positive real numbers (p, q), consider a cone-
related functional F : X — % for which there are numbers ¥ > 0 and o with
quo € (p, 00) such that

|F (7 1x]) v Iyl) = (zPF (101) v F(AyD| <279 (Ix1* + lyll*)  (1.40)

forallx, y € Z andall t € [0, 00). Then the sequence (2"”F (2_” |)c|))nEN isa
Cauchy sequence for every x € 2. Let the functional T : 2~ — % be defined by

T (k) = lim 2"7F (27" |x]). (1.41)

Then

a. T is a solution of the functional equation (1.34);
b. T is the unique cone-related functional which satisfies inequality

2Py
IT (IxD) = F (xDll = Y@ _ap llxl* (1.42)

foreveryx € 2.

Moreover, assume that 2" is a Banach lattice and F is continuous from below on
the positive cone 2. Then in order that the limit operator T be continuous from
below on 2, it is necessary and sufficient that

lim lim 2'7F (27"x) < lim lim 2" F (27"x). (1.43)

n—00 k— 00 —>o00n—>00

for any increasing sequence (xi)ieny C 2.
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Before we start the proofs the following obvious remark is worth being mentioned,
as it will be used multiple times in the sequel.

Remark 1.7 1If the conditions of Theorem 1.9 or 1.10 hold true, then F (0) = 0.
Proof In (1.36) or (1.40) choose x = y = 0 and observe that

|F©) —(z?F©)VvF©O|=0
so that
F(0) = (t?F (0)) v F(0).
But since 7 runs over the non-negative real line, by choosing t = 2 yields
F0)=@2F )V F©,

which is possible only if ' (0) = 0. O

Proof (of Theorem 1.9) First, we choose T = 27!, y = 0 and replacing x by 29x
in (1.36) we obviously have

— F(IxD| = 02777 x| (1.44)

F (27 |x])
20

Next, let us define the following functions:

.G X > %, G(x])=27]|x|.

L8 X — [0, 00), S(x])=029*"P || x]||*.

. ¢ : [0, 00) > [0, 00), ¢@(()=27"t.
H: Y - %, H(y)=27?]yl.

LA, ) Y xY —[0,00), d(yi, y2)=ly1— 2l

O N N R S R

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

() From inequality (1.44) we obviously have

F (27 )x])
2p

< 9217F x| = 8 (Ix]) .

d(H (F(G(xD)) , F(xD) = H - F(IXI)H

(II) Forall y;, y, € %,

d(H (1D, H(y20) =277 ly1 = »2ll=¢ @ (1, y2).
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(III) Clearly, on the one hand ¢ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations G’ and ¢/ of G and ¢ respectively, one can observe that

o0 o

Zq,j (5 (Gj (|x|))) = 920@e=P) || x| Zz(qa—P)j

j=0 Jj=0

qo
=0 |x]|¥ ———— < 0.
2P — 24«
Then in virtue of Forti’s theorem sequence (H" (F (G" |x]))),en 1S a Cauchy
sequence for every x € £ and thus so is sequence (2’”1’F 2m |x|))n oy and
furthermore, the mapping (1.37) is the unique functional which satisfies inequal-
ity (1.38).
Next, we prove that the mapping 7', defined in (1.37), satisfies the functional

equation (1.34). In fact, in (1.36) substitute x with 2"9x also y with 2"?y, and fix
arbitarily T € [0, co). Then

|F (2% (e 1x1) v Iy1)) = (2P F (27 Ix])) v F (2" |y])
< 927720 (x[@ + [Iy]©) .

Dividing both sides of this last inequality by 2" yields

” F @M (27 xD) v IyD)  (PF Q2" |x]) Vv F 2" |y) H

2 2 (1.45)

< 927P2W* P (1] + [y ]1*).

Taking the limit in (1.45) we have via (1.37) that for all t € [0, co) and all
x,yeZ

|7 ((z91x1) v Iy]) = (zPT (xD) v T (yh| =0

which is equivalent to (1.34).

The moreover part can be proved the same way the moreover parts of the
theorems in [5] were, after we will have proved that the limits on both sides of (1.39)
exist. In fact, on the one hand, the existence of the limit on the left hand side
follows from the combination of the monotonicity of F and (1.37). On the other
hand, because of (1.37) the inner limit on the right hand side equals T (xi) for every
k € N. But since the limit operator 7 is a join-homomorphism, it is also isotonic
or increasing. Consequently, (7 (xx))gen 1S @ convergent sequence. We have thus
proved that the limits on both sides of (1.39) exist.

Therefore, we can conclude on the validity of the argument. O
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Proof (of Theorem 1.10) First, we choose T = 2, y = 0 and replacing x by 279x
in (1.40) we obviously have

22 F (277 |x]) — F (Ix])|| < 92779% x|~ (1.46)

Next, let us define the following functions:

.G X > %, G(x|)=271|x|.

L8 X — [0, 00), §(x])=02P79% | x]||*.

. 9]0, 00) > [0, 00), @ (t) =2Pt.
.H: % - %, H(y|) =27yl

LA, ) I xY —[0,00), d(yi, y2)=ly1 =l

W AW =

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

() From inequality (1.46) we obviously have

d (H (F (G (IxD)) , F (IxD) = [[2PF (277 |x]) = F (IxD
< 9279 ||x |
=3 (Ix]).
D d (H (1D . Hy20) =27 lly1 = »2ll = ¢ (d (y1, y2)) forall y1, y € &.
(II) Clearly, on the one hand ¢ is a non-decreasing subadditive function on the

positive half line, and on other hand by applying Remark 1.4 on both the
iterations G’ and ¢’/ of G and ¢ respectively, one can observe that

0 . . > .
Zq)./ (5 (GJ (|x|)>) = 92(P=a4%) || x| Zz(p—tw)J
=0 j=0

P
_ o
=0 ||x|| Y@ _ap < 00.

Then in virtue of Forti’s theorem sequence (H" (F (G" |x]))),en 1s a Cauchy
sequence for every x € 2 and thus so is sequence (2”1’ F (2_"4 |x|))n oy and
furthermore, the mapping (1.41) is the unique functional which satisfies inequal-
ity (1.42).

Next, we prove that the mapping 7', defined in (1.41), satisfies the functional
equation (1.34). In fact, in (1.40) substitute x with 27"9x also y with 27"9y, and fix
arbitarily 7 € [0, co0). Then

|7 @ (& ) v IyD) = (27 F (27 Ixl)) v F 27" 1y]) |
< 927279 (x| + 11y11%)
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Multiply both sides of this last inequality by 2”7 to obtain

|27 F (27 (e lal) v I¥1)) = 2% (2P F (27 Ixl) v F (27 1y]))|

(1.47)
< 9272710 (||x||¥ + [|y[|) -
Taking the limit in (1.47) we have via (1.41) that for all t € [0, co) and all
x,yex

|7 (29 1x1) v 191) = (zPT (xD) v T (Iyh] =0

which is equivalent to (1.34).

The moreover part can be proved the same way the moreover parts of the
theorems in [5] were, after we will have proved that the limits on both sides of (1.43)
exist. In fact, on the one hand, the existence of the limit on the left hand side
follows from the combination of the monotonicity of F and (1.41). On the other
hand, because of (1.41) the inner limit on the right hand side equals T (xi) for every
k € N. But since the limit operator 7 is a join-homomorphism, it is also isotonic
or increasing. Consequently, (7" (xx))ien is @ convergent sequence. We have thus
proved that the limits on both sides of (1.43) exist. Therefore, we can conclude on
the validity of the argument. O

To end the section we shall provide some example showing that if in (1.40)
parameter T does not range over the whole non-negative half-line and the power «
of the norms equals the ratio of p and g, then stability cannot always be guaranteed.

Example 1.6 Fix arbitrarily three numbers p, g, ¢ € (0, oo) and consider the
function

F:R—> R, F(x]) =c.
Then whenever t € (0, 1] we have:

|F ((z91x1) v Iyl) = (tPF (xD) vV F (IyD| = |c = (zPc) V| =0 < x|* +y|*,

1N\9
where o = g. Since |x| = (leq) , for any function 7 : R — R which solves
Eq. (1.34) the following consecutive relations are true:

[F (Ix) =T (IxDI
x| €(0, 00) |x]* x| €(0, 00) [x]*
lc — |x|*T (1]
= sup —— G
[x]€(0, 00) x|
= sup a—T(l)‘:oo.
x|, 0oy | 1]
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1.5 A More General Form of Problem 1.1 with Some
Solutions

Consider the following functional equation [10]:

(7 (=7 1x1) A% (7 1¥1))) A% (T (7 1x1) A% (7 1¥1)))

(1.48)
= (¢PT (IxD) A% (n"T (IyD)

forall x, y € 2 and all 7, n € [0, c0), where A%, A% € {Ag, Vol and
Afgz,, A;‘; € {Aa, Vg } are fixed lattice operations, where 2" and ¢ are Banach
lattices.

Remark 1.8 If welet n = 7 and y = x in Eq.(1.48), we obtain the Schwaiger’s
type functional equation in lattice environment [7], recalled as follows

T (¢4 |x]) = e T (Ix]) (1.49)

forall x € Z and all T € [0, 00).

The results in this section are straight generalizations of Agbeko [5, 6] and Salahi
et al. [29].

We note that fetching for the unique solution of Eq. (1.48) in the sense of Ulam-
Hyers-Aoki is equivalent to solving the problem hereafter.

Problem 1.2 Given three numbers &, p, g € (0, 00), two Riesz spaces G| and G,
with G, being endowed with a metric d(-, -), four lattice operations A% o A*G”‘I €

{/\Gl, VG1} and A’&z, A’&*Z IS {/\sz \/Gz}, does there exist some real number
8 > 0 such that, if a mapping F : G| — G satisfies the perturbation inequality

d ((F (=7 1x1) AG, (07 191))) AG, (F ((z7 1x1) A, (n? 1¥1))) -
(xPF (1xD) AG (P F (IyD)) <8

for all x, y € Gy and all 7, n € [0, 00), then an operation-preserving functional
T : G; — G exists with the property that

d(T(x), F(x)) <e

forall x € Gy and all 7, n € [0, 00)?

Letting T = n = 1, Problem 1.2 reduces to Problem 1.1, indeed.
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1.5.1 The Main Results of This Section

Theorem 1.11 Given a pair of real numbers (p, q) € (0, 0o) x (0, 00), consider
a cone-related functional F : & — % for which there are numbers % > 0 and o
with qo € (p, o0) such that

[ (2 1x1) A% (0 11)) A% F (7 1x1) AT (n” 131))

(1.50)
— (zPF (1xD)) Ay (0 F (yD) | = 227D (el + Iy11%)

forall x, y € Z and all T, n € [0, 00). Then the sequence (2"1’F (2‘”4 |x|))nGN
is a Cauchy sequence for every x € 2. Let the functional T : X+ — ¥ be
defined by

T (x|) = nli)nolo 2"PF (27" |x]) (1.51)

forall x € Z'. Then T both is a solution of (1.48) and uniquely satisfies inequality

2P
1T Cxh) = F DIl = oo—=5 [l (1.52)

for every x € Z.

Theorem 1.12 Given a pair of real numbers (p, q) € (0, 0o) x (0, 00), consider
a cone-related functional F : 2~ — % for which there are numbers B € [0, 00),
Y > 0and @ with qa € (0, p) such that

[ (2 1x1) A% (0 1) A% F (2 Ix1) A% (0 11))

(1.53)
— (¢PF (IxD) A% (nPF (yD)|| < B+ 027PFD (x )1 + 1y1)

forallx, y € Z and all t, n € [0, 00). Then the sequence (2_””F 2™ |)c|))nEN

is a Cauchy sequence for every fixed x € Z . Let the functional T : v — % be
defined by

T (Ix]) = nli)ngo 27"PF (2" |x]) (1.54)

forallx € Z'. Then T both is a solution of (1.48) and uniquely satisfies inequality

B2r 9 |lx|* 20
IT () = F (Dl < 55— + =50 (1.55)

for every x € Z.
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Remark 1.9 1If the conditions of Theorem 1.11 or 1.12 hold true, then F (0) = 0.

Proof The proof is similar to its counterpart in [6, 7] under the conditions of
Theorem 1.11 or 1.12 when B8 = 0. Under the condition of Theorem 1.12 with
B > 0, we need to prove that F (0) = 0. Suppose in the contrary that F (0) > 0
were true. Then by letting x = y = 0 and n = 7 in (1.53), inequality

|F©) —tPF O] <8

follows or equivalently

B

77— 1] <
IF Ol

< 0

which, as t tends to infinity, would lead to an absurdity, indeed. Hence the relation
F (0) = 0 must be true.

1.5.2 Proof of the Main Results

We shall use the technique in [6] to prove the main theorems.

Proof (of Theorem 1.11) First, if we choose T = n = 2, y = x and replace x by
279x in inequality (1.50) then we obviously have

127F (279 1x]) — F (IxD | < 92779 |lx|* . (1.56)

Next, let us define the following functions:

G: 2t - 2, G(x))=279|x|, forall x e 't
§: 2t =0, 0), 8 (|x]) = 92P=9% ||x||*, forall x € Z'F
¢ : [0, o0) — [0, 00), @ (t) =2P¢, for all t € [0, o0)
H: %t > at, H(y) =2"1y|, forall y e #*

d: DT x @t -0, 00), dyl, Iy2D)=llyil = Iy2lll, forall yi, y» € #*.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.

(D) From inequality (1.56) we obviously have
d(H (F (G (Ix])) , F(xD) = I1H (F (G (x])) = F (IxDIl
= |27 F (279 |x]) — F (x|
< 2P x| = 8 (Ix]) .



1 Functional Equation in Lattice Environments 29

A d(H Uy, HAy20) = 2PNyl =2l = @ d Uy1l, [y2)) for all
yi, €.

(II) Clearly, on the one hand ¢ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations G/ and ¢/ of G and ¢ respectively, one can observe that

o0 o0

. . . 20
J J — §2P—9e « (p—qa)j — o
> ¢ (5(G7 1xD)) = w2r e Y2 =0 Ix]I* 57555 < -

Jj=0 J=0

Then in view of Forti’s theorem, sequence (H” (F (G" |x]))),en is a Cauchy
sequence for every x € 2 and thus so is sequence (2"7F (27" |x|)), _x-
Furthermore, the mapping (1.51) satisfies inequality (1.52).

Next, we prove that 7' solves (1.48). In fact, in (1.50) substitute x with 27"9x
also y with 279y, and fix arbitrarily 7, n € [0, co). Then

HF ((Tq lx[) A% (n |Y|)) - ((fq Ix) A (4 |y|)>
ng v ng

() o (e ()

Multiplying both sides of this last inequality by 2"7 yields

F ((r" [x1) A% (n? |y|)> Al F ((r" IxD) A% (n* |y|)>
2nq : 24

ol 1yl 9 lx® + Iyl
— P - K3k p T
(T F<2nq A@ n F ong = 2(1—[7) 2n(qo(—p) .
Taking the limit in (1.57) we have via (1.51) that

”T ((Tq IxI) A% (;7‘1 |y|)) T ((Tq |x|) A% (r]q Iyl))
— (x"T (kD) A% (0T ()| =0

Y

214

X
2nq

)

< 2=y (’

) ‘

2"P

57)

for all 7, n € [0, c0) and all x, y € 47, which is equivalent to (1.48). Thus
T also satisfies (1.49) in Remark 1.8. Finally, we show the uniqueness, using a
technique in [29]. In fact, assume that there is another functional § : & — %
which satisfies (1.48) and the inequality

IS (lx) — F (IxDIl < 82 [lx[|*?
for some numbers ay, 8, € (0, co) with gy > p, and for all x € 2. In (1.52) let

2P
) =———, o] :=«
29« —2p
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and by choosing 7 = 27" in Eq. (1.49) one can observe that for all x € 2

IS (x)) = T (|xDl =2"7 S (27" |x[) = T (27" |x]) |
=2 [P (@ 1)~ T (7 1)

27 5 (27 b)) — P (2779 )|

< 25y 2 4 27 [

= 2P x| 4 2P,
Hence,
IS (1)) = T (x| < 2794078y |1 2779278 || x |2
which, in the limit, yields
IS xD) =T (xDlI =0
or equivalently
S(x) =T (IxD)

forallx € 2.
This was to be proven.

Proof (of Theorem 1.12) First, if we choose T = n = 27!, y = x and replace x by
249x in inequality (1.53) then we obviously have

|27 F (29 lxl) = F (x| < B+ 029277 |x|*. (158)

Next, let us define the following functions:

G: 2+t —- 2T, G (x) =29 |x]|, forall x e Z'F
§: 2T — [0, 00), S(x|) =B+ 029 7P |x||*, forall x € 2T
¢ : [0, o0) = [0, 00), @ (t) =277t, for all ¢ € [0, oc0)
H: %t > ot H(y)=2""1y|, forall y e #*

d: YT x %t - 10,00, d(yil, Iy2l) =llyil = Iy2lll, forall yj, y, € #T.

We shall verify the fulfilment of all the three conditions of the Forti’s theorem as
follows.
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(I From inequality (1.58) we obviously have

d(H(F(G((x), F(xD) = I1H(F (G (x]))) — F (IxDl
= [277F (27 1x1) - F (D
< B+HO2PIx||* =8 (Ix]) .

AD d(H (Iy1D) » Hy2D) = 2770yl =2l = @@ (y1l, |y2D) for all
yi. nev.

(II) Clearly, on the one hand ¢ is a non-decreasing subadditive function on the
positive half line, and on the other hand by applying Remark 1.4 on both the
iterations G/ and ¢/ of G and ¢ respectively, one can observe that

i¢j (5 (Gj (|x|)>) =B i 27 Pi | 9o4e—p x| i 2(qa—=p)j
j=0

j=0 j=0
B2 X 29
2P -1 2P -2

Then in view of Forti’s theorem, sequence (H” (F (G" |x]))),en is a Cauchy
sequence for every x € %2 and thus so is sequence (2’”1’ F (2 |x|))n eN-
Furthermore, the mapping (1.54) satisfies inequality (1.55).

Next, we prove that T solves (1.48). In fact, in (1.53) substitute x with 2"9x also
y with 2"4y, and fix arbitrarily 7, n € [0, co0). Then

[£ @ (= 1xl) A% (0 1)) Ay F (2 (9 1x1) A% (0 131)))
= (e"F (2" 1x1)) A (1" F (2" 1y1)) |

< B 20Dy (|2 + |20y,
Dividing both sides of this last inequality by 2" yields

F (21 (29 16D A% (YD) A F (27 (2 1) A% (1 1vD))
2np

_(@PE Q@M xD) Ay P F 2" 1yD)
2

’ (1.59)

< p27 4+ 27 Py (x| + [lyl|*) 29@=Pm,
Taking the limit in (1.59) we have via (1.54) that

17 (e bel) A% (a 131)) A5 T (2 x1) A% (1 151))
= (T () A (1T (yD) [ = 0
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for all 7, n € [0, co) and all x, y € 27, which is equivalent to (1.48). Thus T
satisfies (1.49) in Remark 1.8. Finally, we show the uniqueness, using a technique
in [29]. In fact, assume that there is another functional S : 2~ — % which
satisfies (1.48) and the inequality

IS (xD) — F (IxDIl < B2 + 82 [Ix[1*2

for some numbers ay, 8, € (0, 00), B2 € [0, 00) with gay < p,and forallx € 2.
In (1.55) let

p2r 924
| i=—, 0] ==«

B : Tyl

T
and by choosing t = 2" in Eq. (1.49) one can observe that for all x € 2~
IS (x]) = T (IxDl = 27" |S (2" |x]) — T (2" |x]) |
<27 F (2" 1x]) = T (2" 1x]) |
+27" |8 (2" |x]) — F (2" |x])||
< 27" (By+ 8y 2" ™) + 27 (B2 + 82 |21 %)
= 27" (B + Ba) + 8121941 7P |[x ||t 4 8,219%27 7" | x[|2 .
Hence
IS (1x) = T (IxDIl < 27" (Bi + B2) + 8121977 || x||*1 + 5,247 || x || *2
which, in the limit, yields
IS (x) =T (xDI =0
or equivalently
S(x) =T (x])

for all x € £ . This completes the proof. O

To end the section we give an example showing that stability fails to occur in
general.

Example 1.7 Fix arbitrarily t, n € (0, 2) and consider the function

F [0, 00) = [0, 00), F(x)=x*, a=2
q
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Since F is increasing the first equality in the chain below is valid, entailing the
subsequent relations:

[F((x92) v (n7y)) = (=" F () A (0" F ()]
_ ‘(rqx)a“ v (nqy)a“ _ (.[pxa—i-l) A (npyot+l)‘
< (qu)a+l v (nqy)ot+l I (rpxa+l) A (npya+l)
< (qu)““ v (qu)““ + (2an+1) A (zpyaJrl)
< oPHa (] yatly L opta el o ety _ opta (xa+l + ya+l)

for all x, y € [0, 00). Now, let T : [0, co) — [0, 0o) be a function such that
T (uix) = uPT (x) for all x € [0, co) and all u € [0, 00). Since x = (xl/q)q,
and « is the ratio of p and g, we can then note that T (x) = x*T (1) for every

x € [0, 00). Now,
at+1l é a
F)—T | ! T<<x ) )‘

sup —————— = sup =
re,00)  2PTaxot x€(0, 00) 2rtaxetl

|x*th—xoT (1)

= su
xe((),poo) 2p+qxa+1
1 ’1 T
= sup —
2r+q x€(0, 00)

(1)'
= c0.
x

The above example about the lack of stability on the real line in lattice environments
is the counterpart of the example given by Czerwik [12] in the addition environments
for quadratic mappings.

1.6 Lattice-Valued Maps Defined on Semigroups

This section is the collection of notions and results in [9]. Order theory plays
an important role in many disciplines of computer science and engineering.
For example, it has applications in distributed computing (vector clocks, global
predicate detection), cryptography, programming language semantics (fixed-point
semantics), and data mining (concept analysis). Moreover, it is useful in other
disciplines of mathematics such as logic, combinatorics, number theory or measure
theory. Also the semigroup theory is an integral part of modern mathematics, with
connections and applications across a broad spectrum of areas such as theoretical
physics, computer sciences, control engineering, information sciences, coding
theory, topological spaces.
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Algebraic semigroups are defined in very simple terms: they are algebraic
varieties endowed with a composition law which is associative and a morphism
of varieties. We omit its formal definition together with its additional properties, as
well known. For basic definitions of ordered structures and related notions which
are used throughout the paper the reader is referred to Davey and Priestley [13] and
Schaefer [30].

We adopt the following notations: endpoints of open and closed, or half-open or
half-closed intervals are denoted by round and square brackets, respectively.

Proceeding to the main part let us assume that (S, x) is a semigroup, (L, <) is
a lattice and T: § — L is a lattice-valued mapping. We denote by L™ the positive
cone of L. Inspired by the notion of optimal averages we ask about morphisms
between the algebraic structure of G and the order structure of L. To be precise, we
are interested in the following functional equation

Txxy)=Tx)VT(), x,yeS (1.60)
and in its related functional inequalities
Txxy)>Tx)vT(y), =x,yeS (1.61)
and
Txxy) <Tx)VvT(), x,yelS. (1.62)
Clearly, (1.61) implies
Txxy)>Tx), Txxy)>T(), x,y€eS (1.63)
whereas (1.62) implies
T(x*) <T(kx), xeS8, (1.64)

respectively. In fact, (1.61) and (1.63) are equivalent. However, inequalities (1.63)
and (1.64) do not require the lattice structure of the target space, and they make
sense if L is a partially ordered set (poset for short).

Note also that from (1.60) it easily follows that

T(x")=T(x), xe€S8,neN, (1.65)

1

where the powers x" are defined inductively as follows: x! = x and x"t! = x" x x

forn e N.
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1.6.1 Examples and Basic Properties of Solutions
of (1.60), (1.61) and (1.62)

Example 1.8 Fix arbitrarily an element @ € L™ and let (S, %) be any semigroup
and T,,: S — L™ be the mapping defined by T, (x) = w. Then T,, trivially satisfies
the functional equation (1.60).

Example 1.9 Letn € N be fixed and P, := {po, p1, P2, ..., Pn—1} any set of n
elements. Let us define on the set Py, the binary operation x: P, x P, — Py, by
Pk * Pm = Pkvm- Then one can easily see that Py, is a commutative idempotent
semigroup with the unity element pg, which is also the unique invertible element of
P,. Define the functional 7: P, — N by T (px) = k. Then

T (pi*pm) =T (prvm) =kvm =T (pr) VT (pm)

forallk, m € {0, 1, ..., n — 1}, i.e. T satisfies Eq. (1.60).

One can easily extend this example to an infinite set. Let Py := {px : k € Ny} be
any sequence of arbitrary pairwise distinct elements furnished P, with the binary
operation x defined as above. Then P, is a commutative idempotent semigroup with
a unity element pg, which is also the only invertible element in P, and functional
T defined as previously solves (1.60).

Since lattice operations are associative, then trivially every lattice is a commuta-

[T

tive semigroup with operation “x” taken as “v”. A natural question is to know what

relation there is between operations “x” and “V”. A very short partial answer is as
follows.

Remark 1.10 Assume that Sis anet S = {x; : i € I}, where [ is a linearly ordered
set of indices, and define on § the following operation x: § x § — Sby x; »x; =
x;vj fori, j € I. Then (S, x) is a semigroup. Moreover, one can introduce an order
<onSbyx; <ux;ifi < j. We will show that both operations x and V coincide
if and only if S is monotone increasing, i.e. x; < x; whenever i < j. Indeed, if
x;i < xjfori < j,then x; xx; = x;jv; = x; V xj, 50 “%” and “Vv” are identical
operations. Similarly, if “#” and “Vv” coincide, then we get x;\; = x; V x; for all
i, j € 1, which implies that x; < x; fori < j.

Definition 1.1 Let (S, r) be a partially ordered set. Consider the mappings
M;:S — 25 and N,: S — 25, where 25 is the power set of S, which are
defined by

M (g)={peS:(p,g)etr} and N (p)={geS:(p, q) €t}

Note that M; (x) € M. (y), and N; (y) € N; (x) forall x, y € S with (x, y) € 7.

Example 1.10 Let the set S := {r € Q:r > 1} be endowed with the standard
multiplication operation and the standard order <, which we will denote by t.
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Further, let (pi),cy be a sequence of elements of S containing 1. Then we have
easily:

(@) My (x) UM, (y) € M, (xy) for all x, y € S, where the sets M are defined in
Definition 1.1.

(b) If x > land y > 1, then xy € M (xy) and xy ¢ M. (x) U M. (y). Therefore
M (x) U M; (y) is a proper subset of M, (xy).

(c) Letx € S. Then M, (x?) = M, (x) if and only if x = 1.

(d) Ifx, y € S, then M; (xy) = M, (x) ifand only if y = 1.

(e) Assume that (o) C [0, oc0) is a bounded sequence of distinct numbers. Let the
functional 77: S — [0, o) be defined by

Ty (x) =sup{ay : pr € M (x)}, x€S.

Since the sequence (pr)icn contains 1, then the set {ox : pr € M (x)}
is always non-empty and therefore 77 is well-defined. Moreover 77 solves
functional inequality (1.61).

(f) Let (Bx) C (0, oo) be a bounded sequence of distinct numbers such that

inf{B : k € N} > 0.
Let us define the functional 7>: S — (0, o) by

1
LW =i ey <Y

Then T is well-defined and solves functional inequality (1.62).

One can easily check that analogous statements can be obtained for operators
defined analogously to 77 and T, with the sets M, replaced by the sets N,.

One can modify this example using as the order t the divisibility relation on the
set of natural numbers.

Now, we provide some basic properties of the solutions of inequalities (1.63).

Proposition 1.1 Let (S, x) be a semigroup with a unit e and let L be a partially
ordered set. Further let T: S — L satisfy (1.63). Then

(i) T(x) = T(e)forallx € S,
(i) T(x) =T x~") = T(e) forall x € S which are invertible,
(iii) in particular, if S is a group, then every solution of the functional equa-
tion (1.60) on S is a constant mapping.

Proof Point (i) follows directly from the second part of (1.63) applied for y = e.
Next, assume that x € § is invertible. Then one can easily see that with the aid
of (i) we have

T(x)>T(e)=Txxx"") > T(x),
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which proves (ii). Note that the third part is an immediate consequence of
part (ii). |

Let © be a nonempty set. We will consider the space R® of real functions defined
on  with the pointwise multiplication. Let also (L, <) be a poset and (LT, <) its
positive cone. Further, denote

ker (f) :={we Q: f(w) =0}

whenever f € R%. We introduce on R two relations “< and “=_ " as follows.
For f, g: 2 — Rlet us define:

(1) f =, gifandonly if ker (f) C ker (g),
(i) f =, gifand only if ker (f) = ker (g).

" ker

The next remark is straightforward.

Remark 1.11 Forall f, g, h: 2 — R we have:
) f < S

Gi) if f <, gandg <, f,then f =_ g,
(i) if f <, gand g <, h,then f < _ h.

Lemma 1.5 For an arbitrary mapping jv: 2% — L% the following two assertions
are equivalent:

(i) w(ker (f)) < p(ker(g)) forall f, g € R® with f <. g,
(i) w(A) <u(B)forall A, B < Qwith A C B.

Proof Note that the implication (i) — (i) is obvious. To show the reverse
implication (i) =— (ii), let us assume that u (ker (f)) < u (ker(g)) for all
f. g € R® with f <, g. Pick arbitrarily two sets A, B € Q with A C B.
Then (since B¢ C A€, i.e. the complement of B is a subset of the complement of A)
it can be easily seen that

A = ker (XAr) C ker (XBC) = B,
where x denotes the characteristic function of a set. Consequently,
p(A) = (ker (x,0)) =< p(ker (x,e)) = 1 (B),

which completes the proof. O

Proposition 1.2 Endow the set R with the relation <, and the pointwise
multiplication operation. Fix w: 2% — L%t and let T: R® — L% be a mapping
defined by

T(f) =nker(f)), feR?
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Then the following two assertions are equivalent:

() T(f) <T (g)forall f, g e R with f <, g,
(1) w(A) <u(B)forall A, BC Qwith ACB.

Moreover, T solves the functional inequality (1.61).

Proof Note that the first part can be easily derived from Lemma 1.5, and the second
part is also immediate from the elementary fact that

ker (f - g) = ker (f) Uker (g) .

1.6.2 Separation Theorems in Lattice Environments

The main results of the present section (cf. [8]) essentially involve the topic
of separation (Theorems 1.13 and 1.14) and the Ulam-type stability problem
(Theorem 1.16).

Separation theorems have been studied by several authors. A classical result is
the Mazur-Orlicz Theorem [26], which was generalized by Kaufman [21] and by
Kranz [23]. In 1978 Rodé [28] proved a far reaching generalization of the Hahn-
Banach Theorem, which presently is a powerful tool in the theory of functional
equations and inequalities. Konig [22] found a simpler proof of the Rodé’s Theorem.
Gajda and Kominek [17] presented another approach, which motivated our next two
theorems.

In the first two results of this section we deal with the separation problem for
inequalities (1.61) and (1.62). To be precise, we ask whether given two solutions of
the reverse inequalities can be separated by a solution of the equation.

Theorem 1.13 Let us be given a o-continuous lattice L and a multiplicative
semigroup (S, ) which is commutative and has no elements of finite order, i.e. if
x € S, then there is no number n > 2 for which x* = x. Further, let f, g: S — L
be functionals for which

glxxy)=g@ Vg
and
fGx=<f@V IO

forall x, y € S. Suppose that g (x) < f (x) and

lim g <x2n> — lim f (x2”>

n—0o0 n—0o0
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for every x € S. Then there is a functional a: G — L such that

(1) g(x) =ax) = f(x), forallx €S,
(i) axxy)=ax)Vva®),foralx,yes.

Moreover, the functional a: S — L which meets conditions (i) and (ii) is unique.

First, we prove the two separation theorems. The following two lemmas are crucial
in their proofs.

Lemma 1.6 Let (S, ) be a commutative multiplicative semigroup and L a o-

continuous lattice. Let g: S — L be a functional for which

glxxy) = gx)Vg(y

forall x, y € S. Then, for every x € G the sequence (g (xzn))neN is increasing, so
that the limit

o0
. AN on
() = Ve (<)
n=

exists.

Lemma 1.7 Let (S, x) be a commutative multiplicative semigroup and L a o-
continuous lattice. Let f: S — L be a functional for which

faxy) = f&x)V )

forall x, y € S. Then, for every x € S the sequence (f (x2n)) is decreasing, so

that the limit

neN

exists.

The proofs of Lemmas 1.6 and 1.7 are omitted because they can be easily carried
out.

Proof (of Theorem 1.13) Combine the three functional inequalities from assumption
of Theorem 1.13 to see that

g@VEgM =g rx = fOax=f@®VIY (1.66)

for all x, y € S. One can thus easily observe that

s =g(*)=r(x)=r
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forall x € S and n € N. Then applying Lemmas 1.6 and 1.7 it ensues that
g = lim ¢ () < lim f(x*) = /() (1.67)
n—od n—oo
for all x € S. Now, due to our assumptions a mapping a: S — L can be defined by

a(x):= lim g (x2") = lim f (x2">

n—oo

for all x € S. Then (1.67) yields

g(x)=a) = f)

for all x € S. Next, fix arbitrarily x, y € S and n € N. Then in (1.66) replace x
with x2" and y with y2" to observe that

g (xz") Vg (y2n) <g (xz" *yz") <f (xzn *yzn) <f (xz") v f <y2n) :

By applying the commutativity and passing to the limit in the above chain of
inequalities, both Lemmas 1.6 and 1.7 entail

a(x)vVa(y)=a(xxy)<ax)Vva(y).
Therefore,
a(xxy)=a(x)Va(y
whenever x, y € S.

To end the proof suppose that b is another mapping which satisfies conditions (i)
and (ii) of the theorem and fix an arbitrary x € S. Since b also satisfies (1.65) it is

easy to see that
g (xzn) <bx)=0b (xzn) <f (x2”>

for all n € N. Then passing to the limit entails that
lim g (x2n> <bx) < lim f (xzn).
n—oo n—oo

Consequently, by the assumption, b (x) = a (x), which completes the proof. O

Theorem 1.14 Ler (S, x) be an Abelian group and (L, <) a lattice. Further,
suppose g: S — L and f: G — L are two mappings for which inequalities (1.61)
and (1.62) are met respectively. Then
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(1) g(x) =g (e)foreveryx €S,
) f) < fx)v iy (x’l) for every x € S. Moreover, given any x € S, if

f)=f (") then f (&) < f (x),
(i) f(e) > fx)V f (x_l)for all x € Sifand only if f (x) = f (e) for all

x eS.

Furthermore, suppose that g (x) < f(x) and f (x) = f (xfl)for every x € §.
Then the functionals f and g can be separated by a constant function, i.e. there
exist some B € L such that

g(x)=p=fx)

forall x € S.
Proof In (1.61) replace T by g and simultaneously y by e and x ! to get that

gx)vgl <gkx),

respectively

g@ve(x) =g

These two inequalities lead to the identity g (x) = g (e), x € S. Next, in (1.62)
replace 7 with £ and y with x~! to observe that

f@=fwvr(x),

whenever x € S. To show the biconditional in part (iii) we just note that the
necessity follows from part (ii) and that the sufficiency is obvious. To end the proof,
assume that f (x) = f (x_l) and g (x) < f(x) forallx € S.If B € L is defined
by

1
B = z[g(e) + f(e)],

then 8 separates g and f. O
An easy remark here below is worth being pointed out.

Remark 1.12 Let S, L and f be as in Theorem 1.14. Then the following three
conditions are equivalent:

i fx)=rf(x"), xes,
(i) f)=f(x7"), xes,
(i) f(x) < f(x71), xes.
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1.6.3 Stability Theorems

Now, we will focus on the stability of Eq. (1.60). One can say that Eq. (1.60) is
stable in a sense of Ulam if every perturbed solution of (1.60) is close to an
exact solution. In view of Proposition 1.1, which says that all solutions of (1.60)
on a group are constant mappings, one can expect that every perturbed solution
of (1.60) is bounded, or its norm is estimated by a mapping somehow related
to an error function. This however is not the case for (1.60), which is shown in
Example 1.12. There exists an unbounded approximate solution which satisfied
the stability problem with a bounded error function. Instead, we prove that every
solution of a perturbed equation vanishes asymptotically. To be more precise,
we show that under some assumptions all Hyers sequences of a particular type
converges to zero.
We begin with a result, which states that the following functional equation

Tx)=Tkx), xe8§

possesses some stability behaviour for mappings defined on a commutative semi-
group and taking values in a Banach lattice.

Theorem 1.15 Let (S, %) be an arbitrary semigroup and let 9 be a Banach lattice.
Further, assume that (o), eN Is a sequence of positive real numbers converging to
zero and ®: S — [0, +00) satisfies

n—1
lim o, Y ®G%)=0, xes. (1.68)
k=0

n——+00

If F: S — % is a mapping such that
IF(x?) — Fx)|| < ®(x), x €S8, (1.69)

then for every x € S the sequence (ot F (xzn))neN converges to zero in .

Theorem 1.16 Let (S, %) be a commutative semigroup and 9 be a Banach lattice,
F:S—> PBandV¥: S xS — [0, +00) satisfy

[Fxxy) = Fx)v Fy)l =W, y), x,yeSs. (1.70)

If (an)neN is a sequence of positive real numbers converging to zero and ®: S —
[0, +00) defined by

Px) =V(x,x), x,yeSs (1.71)
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satisfies (1.68), then for every x € S the sequence (o, F (xzn)),,eN converges to zero
in A.

Conversely, if there exists a sequence (oty)neN Of positive real numbers such
that for every x € S the sequence (a, F (xzn)),,eN converges to some T (x) and
W satisfies

lim o, ¥x>,y*)=0 x,ye€s, (1.72)

n—-+00

then T : S — A is a solution of Eq. (1.60).

The next example shows that the estimates of Theorem 1.16 are optimal in the
sense that the rate of convergence has to be the same in both conditions (1.68)
and (1.72).

Example 1.11 Let us take S = (1, 400) with x equal to the standard multiplication
in § and £ = R with the standard order. Next, take
F(x) =logx, x e (1,+400),
W (x, y) = min{logx,logy}, x,y € (1, +400).
Then clearly
|log(xy) —log x Vv log y| = min{log x, log y}

for every x, y € (1, +00), thus estimate (1.70) is satisfied. Moreover, it is easy to
see that for every sequence (&, ),eN such that

lim 2%, =0,
n—400

both conditions (1.68) and (1.72) hold true.

Next, we will modify the previous example in order to show that there exists an
unbounded mapping which satisfies estimate (1.70) with a bounded error function
W. Therefore, a direct analogue of Hyers Theorem is not true for functional
equation (1.60).

Example 1.12 Let us take S = (e, +00), where e is the base of the natural
logarithm, with % equal to the standard multiplication in S and & = R with the
standard order. Next, take

F(x) =log(logx), x € (e, +00),
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and W(x,y) = log2 for x,y € (e, 400). Fix x,y € (e, +00). Without loss of
generality we can assume that x < y. Then we have

<log?2.

logx +logy
log y

[log(log(xy)) — log(log x) Vv log(log y)| = ‘log (

Thus estimate (1.70) is satisfied with bounded W. Thus both conditions (1.68)
and (1.72) hold true with every sequence (¢, ),en for which lim no, = 0.
n—odo

Proof (of Theorem 1.15) Fix x € S and n € N and apply (1.69) repeatedly for x, x2,
. X2 Summing up the inequalities obtained and using the triangle inequality

we arrive at

n—1 n—1
IFGY) — Foll < Y IF?™) = Fa2) < Y oa?).

k=0 k=0
Next, multiply both sides of this estimate by «,, to see

n—1

o F () = an FO| < o 3 D).
k=0

Clearly, sequence (o, F(x)),cn tends to zero as n tends to +oo. Thus, it follows
from (1.68) that the sequence «, F (x) converges to zero. |

Proof (of Theorem 1.16) The first part follows immediately from Theorem 1.15
after substitution y = x in (1.70).

To prove the second part, fix x, y € S and a positive integer n and apply (1.70)
with x replaced by x2* and y replaced by y2'. Note that by the commutativity of
operation « we have

FO % y?) = F((rx ™),
and after multiplying both sides by «;, we get
lan F (G % 0)7) = an FOZ) V an FPO I < an W, ).

Let n tend to 400 and use assumption (1.72) to get the assertion. O

Remark 1.13 Let us note that in the proofs of Theorems 1.15 and 1.16 no
completeness of the target set 4 was used. This is a substantial difference between
our approach and a vast majority of other stability results, where completeness of
the target space is essential. Note however, that in the second part of Theorem 1.16
this is at least partially hidden in the assumptions, because we assume that a certain
sequence is convergent.
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Chapter 2 )
A Purely Fixed Point Approach to the Qs
Ulam-Hyers Stability and Hyperstability

of a General Functional Equation

Chaimaa Benzarouala and Lahbib Oubbi

Abstract In this paper, using a purely fixed point approach, we produce a new proof
of the Ulam-Hyers stability and hyperstability of the general functional equation:

m n
YAFQ aijxp)+A=0,  (x1x2....x) € X",
i=1 j=1

considered in Bahyrycz and Olko (Aequationes Math 89:1461, 2015. https://doi.
org/10.1007/s00010-014-0317-z), and in Bahyrycz and Olko (Aequationes Math
90:527, 2016. https://doi.org/10.1007/s00010-016-0418-y). Here m and n are pos-
itive integers, f is a mapping from a vector space X into a Banach space (Y, || |),
A €Y and, foreveryi € {1,2,...,m}and j € {1,...,n}, A; and a;; are scalars.
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2.1 Introduction

The problem of stability of functional equations goes back to 1940, when Ulam
[15] asked whether, for a given group G, a metric group (G2, d) and a positive
number e, it exists a number § > 0 such that, whenever a function f : G| — G3
satisfies the inequality d(f (xy), f(x) f(y)) < §, for every (x, y) € G%, there exists
a group homomorphism F : G; — G5 such that d(f(x), F(x)) < e, for every
x € G1. Whenever the answer to this problem is in the affirmative, one says that
the homomorphism equation f(xy) = f(x) f(y) is Ulam-stable, or that the group
homomorphisms are stable with respect to the equation f(xy) = f(x) f(y) and the
Ulam-approximation.

The first partial answer to this problem was given in 1941 by Hyers [8]. He
namely showed that the Cauchy equation f(x 4+ y) = f(x) + f(y) is Ulam stable,
whenever G; = X and G, = Y are real Banach spaces. Later, in 1978, Rassias
[14] considered Ulam’s problem with a new kind of approximation. He allowed the
Cauchy differences to be unbounded, but dominated in the following way:

IfG+y) = f) = fDI=0dxII” +1yII7),  x,y € X,

for some & > 0 and some p € [0, I[. With a similar method as Hyers, he
obtained that additive mappings between Banach spaces are stable with respect
to the Cauchy functional equation and the approximation above. Further, in 2003,
Radu [13] used the alternative fixed point theorem to retrieve Rassias’ theorem.
In the same year, L. Cadariu and V. Radu introduced in [4] a new approximation
condition generalizing Rassias’ one and, using the alternative fixed point theorem,
they showed that the additive mappings between Banach spaces are stable with
respect to the Jensen functional equation 2 f (%) = f(x) + f(y) and their new
approximation condition.

Instead of The Cauchy and the Jensen functional equations, a large variety
of functional equations have been considered in the literature, such as quadratic
functional equations [6], Euler-Lagrange type equations [9, 11], cubic equations
[5], quartic equations [12] and so on. Several authors have also considered systems
of functional equations and studied their stability [10, 11].

In 2014, A. Bahyrycz and J. Olko proved in [1] the stability of the general
functional equation

S ASQ ayx)+A=0, @.1)
i=1 j=1

where f is a mapping from a vector space X into a Banachspace Y, A; e K*, A e Y
and a;; € K. Equation (2.1) generalizes most of the linear functional equations in
the literature. The authors used the direct method, with, in midway, a fixed point
theorem of Brzdgk et al. [3], to show the stability of (2.1). In 2015, Dong [7], using
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the same theorem of J. Brzdgk et al., proved the hyperstability of Eq.(2.1) when
A = 0 with respect to two different approximation functions.

In the same sense of Dong et al., Bahyrycz and Olko in [2], using the same
theorem of Brzdgk et al., showed the hyperstability of Eq. (2.1).

In this note, using a proof similar to that of Oubbi [11], relying on the classical
Banach contraction theorem, we reprove the stability and the hyperstability of (2.1).
Along the way, let us notice that, in [1] and [2], the authors assumed that A is a
scalar in (2.1). Actually, A must be an element of Y. Fortunately, this does not alter
their results.

2.2 Stability of Eq. (2.1)

In all what follows X and Y will be vector spaces on the field K € {R, C} and
f : X — Y will be a mapping. The space Y will be endowed with a complete norm
Il Il. We will denote by A an element of Y and by n, m positive integers, while A;

and a;; will be scalars,i = 1,...,mand j = 1, ..., n. We will then be concerned
with the functional equation (2.1) and its corresponding homogenous one:
m n
D AIfQ aijxj) =0 22)
i=1 j=1

Theorem 2.1 Assume A = 0 or (A # 0and Y ;" | A; # 0). Suppose that some
mapping 0 : X" — R exists such that:

m n
1D AFOQ ayx) + Al <0G . x0), X1, X € X. 2.3)

i=1 j=1

Assume also that there exist a non empty set I ¢ {1,...,m}, c1,---,c, € K and
positive numbers w;, i ¢ 1, such that:

(i) Vi €I, B; = 1, where, foreveryk =1,...,m, By := Z;l':lakjcj:

(ii) Z,’g[ |Aj|lw; < |Ziel Ail,
(iii) OBix1, -, Bixp) SwiO(x1, -+ ,x5), 1 ¢1 x1,---,x, €X.

Then there exists a unique solution G : X — Y of (2.1) satisfying

1) = Gl < X ) oy 2.4)
| 2ier Ail = Xigr 1Ailwi

Before giving our proof, let us denote by 7 : YX — Y X an operator of the form:
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k
(Te)@) =Y w&(fn). EevX xeX 25)

i=1
withk e Nand oy, -+ , o, B1, -+, Br € K.
We will make use of the following lemma proven in [1].

Lemma 2.1 Assume that 6 : X" — R is a mapping and let T : YX — YX be

given by (2.5). Assume that there exist wy, - - - , wx € Ry such that Zf-{:l loi|lw; < 1
and
Q(ﬂi(.xl,"',xn))fwie(x],"‘,xn), i€{1,~~,k}, -xlv"'v-xnex'

If f satisfies the inequality:
m n
1D AFOQ ayxpll <O . X, X1, X € X,
i=1 j=1

and if the limit G(x) := lim,_ oo T" f(x) exists for every x € X, then G : X — Y
is a solution of (2.2).

Now we are in a position to prove Theorem 2.1.

Proof Assume that there exist a non empty set / & {1,---,m}, scalars ¢, - - - , s,
and positive numbers w;, i ¢ I, enjoying the assumptions (i)—(iii). Note that, due

to (ii), Ay :=) ;c; Ai #0.
Case A = 0:Let x € X be arbitrary. Putting x; = c;x, j € {1,---,n}in (2.3),
we get

—Ai f(c1x, -+, cuX)
1) =3 2O aijenl| < mAm
— A T |Arl
i¢l j=1
Consider the set:
My :={g:X — Y, 3B > Osuchthat | f(t)—g@®)| < BO(c1t, -+ ,cut), t€ X}
Then My is non empty, for f € My. Now, for every g, h € My, put

d(g,h) :==inf{B >0, |[g(t) —h@®)| < BO(c1t, -+, cat), t € X}

Then d is a distance on M ;. Indeed, since g, h € M, there exist B, B” > 0 such
that, for every x € X,

lg()—f ()l < B'O(cix, -+, cax) and  [A(x)=f() < B"0(c1x, -+, cn).
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Therefore
lgx) —h)l < llgx) — fFE)I+ I f(x) —h@)] < (B'+ B")0(cix, -+, cpx).

Thusd(g,h) < B'+B” < +ooforall g, h € My.Itis clear that d(g, h) = 0 if and
only if g = h, and that d(g, h) = d(h, g), g, h € My. For the triangular inequality,
let g,h,k € My, and B, B’ > 0 be given so that d(g, h) < B and d(h,k) < B’
Then, for all + € X, we have:

lg@ —k@®I < llg@®) —h@®I + @) — k@)
< BO(cit, - ,cnt) + B'O(cit, -+, cut)
< (B+ BHO(cit, - ,cpt).

Passing to the infimum, we getd(g, k) < d(g, h)+d(h, k). Therefore d is a distance
on My. Now, let’s show that the metric space (M, d) is complete. If (g,), is a
Cauchy sequence in M ¢, as the evaluations 6, : g = g(x) are uniformly continuous
from My into Y, the sequence (g,(x)), is Cauchy in Y, for every x € X. By the
completeness of Y, it converges to some g(x). But

Ve > 0,IN. e N,Vm > n > N¢ : d(gn, gm) < €.

Therefore
gn(x) — gm() | < €O(cr1x, - ,cpx), m>n>N,, x€X. (2.6)
Letting m tend to infinity, we get || g, (x) — g(x)|| < €O(c1x,--- , cpx). Thus

lg()=f I = lIg(xX)=gn () Fllgn ()= f ()| < (e+d(gn, [0 (c1x, -+, CcaXx).

Therefore the so defined mapping g belongs to M . Again by (2.6), (gn)» converges
in My to g and then (M, d) is complete.
Now, for arbitrary & € M s, define a mapping T'¢ from X into ¥ by:

—A: n
TE(x) := Z A—{'&(Zaijqx).
i¢l j=1
Since
—A; " O(c1x, -+, cpx)
WW—ZIHQﬁmMS—jm4L,NX
idl j=1

I f) = Treol < 2% ) oy
A7l
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Then Tf € My. Actually, T is a self mapping of M y. Indeed, for every g, h € My,
itholds [|g(x) — h(x)|| < d(h, g)0(c1x, -+, cyx). Then, for g € My,

ITg(x) = fOI = ITg(x) = T+ ITf(x) = f)l

A;
_Z' '||g<Za,,c,x> f(Za,,c,x>||+||Tf<x> Ol

t¢l j=1
O(cix, -+, cpx)
= |—|d<g NOBicix. -, Bieax) + 1|A—|
i¢l 1
O(c1x, -+, cpX)
<d(f, 8)2|—|w19(61x -, Cpx) + |A—[|n

i¢l

1
< d(fg)D |wl T | o).
igl

Whence Tg € My, forall g € My.
Now, let us show that T is a strictly contracting mapping. Given g and / in M.
Then

—A &
ITg(x) — Th<x>||—||2—g<2al,c,x> > G ajeol
j=1

igl Ar idl

<Z|—|||g(2a,,c,x> h(Zal,c,x)n

i¢l
n
<Z|—|d(g h)@(clza,/cj .- ,CnZaijcjx)
igl j=1

<d(g.h)y. |A—;|w,-9<c1x, S eax).
i¢l

Ifweputy :=3 |2—;|a)l~, then y < 1 and
d(Tg,Th) <yd(g,h), g heMy,
Therefore T is a strictly contracting mapping. By Banach fixed point theorem, there

exists a unique mapping G € My such that 7G = G and lim,;, .o T" f = G.
Thanks to Lemma 2.1, G is a solution of (2.1). Furthermore
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d(f.G) =d(f. lim T"f)
= lim d(f, T"f)
n—1
< lim » y/d(f.Tf)
n—>ooj=0
_ 4TS
===
1
< )
~ ALl = Z,g[ |Aj|w;

Thus (2.4) holds.
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Case A # 0and ) /.| A; # 0. Define a new function g : X — Y by g(x) :=

fx) + ﬁ Since

m n
1Y AfO aijxj)+ Al <01, . x%0), x1.++ X € X,

i=1 j=1

we get:
m n
1> Aig) ayxpll <O, -+, X, X1, X € X,

By the first part of the proof, there exists a unique solution H of (2.2) such that

9(c1x -, CpX)

lgx) — Hx)| < , x€X.
| 2 ier Ai Zig[ |Ai o
Since H is a solution of (2.2), G := H — Zm i is a solution of (2.1). But then
(Clx -, CpX)
If(x) =GO = , x€X.
| Zle] Zigl |A;|w;

This finishes the proof.
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2.3 Hyperstability of Eq. (2.1)

In this section, with an additional condition than in Theorem 2.1, we show the
hyperstability of Eq. (2.1).

Theorem 2.2 Assume that A =0or A #0and Y 1" | A; #0. Let 6 : X" — Ry
satisfy (2.3) and let v : K — R enjoy:
Q(ﬂxl,"',ﬂxn)iw(ﬂ)e(x],"',x”), 'X]’""xnex’ ﬂEK'

If there exist a non empty set I & {1,--- ,m} and a sequence (ck1, - , Ck.n)keN
of elements of K" such that, with the notation By ; = Z?:l ajjck,j, k € N and
ie{l,2,...,m}:

(i)  PBri=1 foralli € I andallk € N.

(ii)  Ari=Ye Ai #0. and limgse Yy 145 |0(Bri) < 1,
(iii)  limg_ o0 0(cr,1%, -+, CknXx) =0,

then f is a solution of Eq. (2.1).

Proof First assume A = 0. It follows from (i7) that there exists ko € N such that:

AA
7= e < 1 Yk = ko.

igl
For k > ko and arbitrary x € X, if we take in (2.3), x; = ¢k jx, j € {1,--- ,n}, we
will get:
—A; O(ck1X, -+, CpnX)
Ire=>" - Bl < T S xeX. 2.7)

igl
Consider the set M ;i defined by :
M? :={g:X — Y;3B > Osuchthat || f(1)—g(®)|| < BO(ck.1t, -+, Cknl), t € X}.

As in the proof of Theorem 2.1, (M ’;-, dy) is a complete metric space, with respect
to the distance '

di(g, h) = inf(B > 0; | g()—h()]| < BO(ci1t, -+ . cent). Vi € X}, g.h € ME.

Moreover, the self-mapping T of M ;‘c defined by:

—A;
TE(x) =) 4, §Bin). §e ¥ xex
i¢l
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is a contraction with Lipschitz constant y; < 1. By Banach fixed point theorem,
Ty admits a unique fixed point Gy € M’;' with G (x) = limy 0 T} f(x), x € X.
Again, by Lemma 2.1, we have:

> AiGr() aijxj) =0. (2.8)
i=1 j=1

and

O(ck,1X, -+, Ck,nX)
[Al(1 —yx)

I f(x) — Gr)ll < xeX. (2.9)

Letting k tend to +o00 in (2.9), we obtain
lim Gi(x) = f(x), xeX.
k— 00
Letting k tend to +o00 in (2.8), we obtain that f is a solution of (2.2) or equivalently

of (2.1).
Now, if A # 0and ) /.| A; # 0, define a new function g : X — Y by

A
g0 == f(X) + =i
Yisi Ai
We have
m n
1D AFQ ayx)) + Al <01, -+, %), X1+, % € X.
i=1 j=1
Then
m n A
1Y AFOQaijx) + s S 06w x € X,
i=1 j=1 =14
ie.,

m n
1Y " Aig> aixpll <O xa),  xp,ooo X € X.
i=1 j=1

By the first part of the proof, g satisfies (2.2). Hence f is a solution of (2.1), which
finishes the proof. O
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Chapter 3 )
Birkhoff-James Orthogonality Reversing <o
Property and Its Stability

Jacek Chmielinski and Pawel Wojcik

Abstract For real normed spaces, we consider the class of linear operators, approx-
imately preserving or reversing the Birkhoff-James orthogonality. In particular we
deal with stability problems.

Keywords Birkhoff-James orthogonality - Approximate orthogonality -
Orthogonality preserving mappings - Orthogonality reversing mappings -
Stability

Mathematics Subject Classification (2010) Primary 46B20, 39B82; Secondary
47B49

3.1 Introduction

Linear preservers problems and, in particular, orthogonality preserving property
have been studied widely in various settings of underlying spaces and with various
definitions of the orthogonality—cf., e.g., the survey [9]. In the present paper we
remind some of these results to give a context for a similar research concerning
an analogous orthogonality reversing property. We recall some recently published
results in this direction and we also present a few original ones. A significant part
of the paper is devoted to questions arising from the stability theory. Namely, along
with the considered property of an exact preservation (reversing) of orthogonality
we study also its approximate counterpart and we estimate how far these properties
are each to other.

Throughout the paper we usually assume that (X, || - ||) is a real normed space,
with dim X > 2. By Sy we denote the unit sphere in X and .Z(X) stands for the
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space of all continuous operators from X into X. For T € . (X) we consider its
usual operator norm || 7' || and the “lower norm” [T]:

ITN :=sup{ITx|l : llx| =1} =inf{M =0:Vx e X |[Tx] <M]x|l};
[T]:=mf{{|Tx| : [lx]l =1} =sup{m =0:Vx e X mlx| < |[Txll}.
By X* we mean the dual space, i.e., the (normed) space of all linear and continuous

functionals defined on X. For a fixed x € X by J(x) we denote the (nonempty) set
of supporting functionals:

Jx)={peX": lol=1 o) =lx|}

3.2 Birkhoff-James Orthogonality and Approximate
Orthogonality

In the case of inner product spaces we have a standard orthogonality relation
x1ly < (x|y) =0, as well as a natural notion of an approximate orthogonality

xLy & [xIy) | <elxl vl
(i.e., [cos L(x,y)| < €) with ¢ € [0, 1). If the given norm is not generated by
any inner product, then the notion of orthogonality has to be introduced using
solely the notion of the norm and by referring to some desired properties. Among
various concepts of such relations we have the Birkhoff-James orthogonality which
is defined by
xlpy <= VieR: |x+ry|=> x|
(cf. [3, 20, 21] or a more recent survey [1]). It is known (cf. [21, Corollary 2.2]) that
xlpy << 3FJepeJkx): o(y)=0.

In [5] the following definition of an approximate Birkhoff-James orthogonality
(or more specifically e-Birkhoff-James orthogonality with ¢ € [0, 1)) was intro-
duced:

xlyy &= VieR: fx+ayl® = xl? = 2elx]l 1Ay
Obviously, for ¢ = 0, J_S = 1, and if the norm comes from an inner product, then

L% is equivalent to L*. In a recent paper [16] authors have proved the following two
characterizations of the approximate Birkhoff—James orthogonality.
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Theorem 3.1 ([16, Theorems 2.2,2.3]) Forx,y € X ande € [0, 1)
x15y <<= 3Jzelin{x,y}: xL,z, lz—yl <ellyl; (3.1)

xly < 3Feelw: lpWl <elyll. (3.2)

3.3 Operators Preserving or Reversing Orthogonality

This section is devoted to the main considered property. We are interested in linear
operators which do not essentially change orthogonality of arguments. By this we
mean that they exactly preserve orthogonality (with the same or changed order) or
they do it in some sense approximately.

3.3.1 Exact Preservation or Reversal of the Orthogonality

Let T: X — X be a nonzero linear mapping. We say that T is orthogonality
preserving (OP) if

xlyy = TxL1;Ty, x,y e X. (3.3)

It is known that T satisfies (3.3) if and only if it is a similarity (a scalar multiple of
a linear isometry), i.e.,

ITxl = ylxll xeX

with some y > 0. This result is nontrivial (cf. [22]) and remains true also for
complex normed spaces X,Y and T: X — Y (cf. [4]). For inner product spaces
the property (3.3) is, additionally, equivalent with the condition

(Tx|Ty) =y*(xly), x,yeX

and the proof is quite elementary (cf. [6, Theorem 1]).

The Birkhoff-James orthogonality is generally not symmetric. If dim X > 3,
then symmetry of L characterizes inner product spaces among normed ones. If X
is a two-dimensional plane it is possible that L ; is symmetric even though the norm
does not come from an inner product (X is a Radon plane—cf. [23, 28]). Therefore,
we can consider the property that 7 keeps orthogonality but in a reverse order.

We say that T is orthogonality reversing (OR) if

xlyy = Tyl;Tx, x,yeX. (3.4)
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Orthogonality reversing operators have been introduced and studied in [10]. Obvi-
ously, if the Birkhoff-James orthogonality relation is symmetric, then the proper-
ties (3.3) and (3.4) coincide. We say that T essentially reverses orthogonality if
it is (OR) but not (OP). It has been proved that such operators may exist only on
Minkowski planes (2-dimensional normed spaces). Actually, if dim X > 3, then X
admits (OR) operators if and only if X is an inner product space (it was proved
first in [10, Theorem 4.1] for smooth spaces only and then, independently, in [35,
Theorem 2.1] and [36, Theorem 5] without this restriction).

Note, that we consider here the same (Birkhoff—James) orthogonality relation for
x,y and Tx, Ty. Alternatively, one can consider the property that for orthogonal
vectors x, y, their images Tx, Ty are orthogonal but in a different sense. Such
properties were considered, e.g., in [31, 36].

Finally, in this section, we estimate the distance between the two considered
classes of operators. Denote by Sim(X) the class of all similarities, i.e., the class
of all linear orthogonality preserving operators and by Rev(X) the class of all
linear operators reversing orthogonality. For the sake of convenience assume that
zero operator belongs to both classes. By Isom(X) we denote the class of all linear
isometries.

Theorem 3.2 For T € Rev(X) and U € Isom(X) it holds that
dist(7', Sim(X)) < ||T | dist(U, Rev(X)). (3.5)
Moreover, for each T € Rev(X) there exists V € Sim(X) such that
IT = VI <yxITl, (3.6)

where yx := inf{dist(U, Rev(X)) : U € Isom(X)} is a constant depending on X
only.

Proof For T = 0, (3.5) and (3.6) are obvious. If 0 # T € Rev(X), then X is an
inner product space (whence Rev(X) = Sim(X)) or dim X < 2. In the first case
again (3.5) and (3.6) follow trivially. Assume that dim X < 2. It is visible that

Rev(X) oRev(X) C Sim(X) and Rev(X) o Sim(X) = Rev(X).

Thus for an arbitrary similarity V € Sim(X) we have T2V € Sim(X) and TV €
Rev(X). Moreover, for any S € Sim(X) we have |TU — SU|| = |T — S| and (U
is invertible) {SU : S € Sim(X)} = Sim(X), whence

dist(T, Sim(X)) = dist(TU, Sim(X)) < |TU — T2V || < |IT| |U = TV].

Since V is an arbitrary similarity, 7V is an arbitrary operator reversing orthogonal-
ity. Passing to the infimum over Rev(X) we get (3.5).

Since dim X < oo, Sim(X) and Isom(X) are closed whence the distances are
attained and (3.5) implies (3.6).
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3.3.2 Operators Approximately Preserving or Reversing
Orthogonality

In real world applications, usually there is always some error in measurement So
we may tell that the respective property (like preservation of some relation) holds,
to some extent, approximately only. Thus it may be of some interest to consider
mappings which transform orthogonal vectors into approximately orthogonal ones.
In other words, we are interested in approximately orthogonality preserving (AOP)
linear operators and, similarly, approximately orthogonality reversing (AOR) ones.
We would like do describe how far these approximately preserving (reversing)
operators are from those which preserve (or reverse) orthogonality exactly.

3.3.2.1 AOP Operators: Review of Results

Let X and Y be real normed spaces and let 7: X — Y be a nonzero linear mapping.
For given € € [0, 1) we say that T is e-orthogonality preserving (¢-OP) if

xlyy = Tx1Ty, x,y € X. 3.7

The class of approximately orthogonality preserving operators for inner product
spaces has been introduced and studied in [6].

Theorem 3.3 ([6, Theorem 2]) Let X and Y be inner product spaces and let
T: X — Y be a nonzero linear mapping satisfying (3.7) for some ¢ € [0, 1). Then
T is injective, continuous and there exists y > 0 such that

KTx|Ty) —y (xly)| < min{y x| Iyl ITx[ 1Ty}, x,yeX (3.8)

with

1 I
s—de | — + /-5 3.9)
1—¢ 1—c¢

The above estimation can be improved if dim X < oo; namely we may take § = ¢
in that case (cf. [34, Theorem 5.5].
For arbitrary normed spaces, Theorem 3.3 was extended in [25].

Theorem 3.4 ([25], Remark 3.1) Let X, Y be real normed spaces, ¢ € [0, %). If
T: X — Y is a linear mapping and satisfies (3.7), then

A =8)IT [ Nlxll = ITxll < IT Il Il x € X.

The above result holds true also for complex spaces, however with a worse constant
1 — 16¢ (cf. [25, Theorem 3.5]).
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Let us only mention that similar problems were also considered for other types
of orthogonality, like isosceles orthogonality [11], p-orthogonality [12, 13, 30], px-
orthogonality [17], bisectric orthogonality [37], Roberts orthogonality [38, 39] and
others. The problem was also studied in other structures like Hilbert modules [19,
26] and for concrete spaces like the space of bounded linear operators [27]. See also
[9, 15, 32].

3.3.2.2 AOR Operators

In an analogous manner as in the previous part we define the class of operators
which approximately reverse orthogonality. For a given ¢ € [0, 1) we say that T is
e-orthogonality reversing (¢-OR) if

xlyy = TyliTx, x,y € X. (3.10)
We will show that e-OR operators (with positive ¢) may exists on X, even if

dim X > 3 and X is not an inner product space (as opposed to the case ¢ = 0).

Theorem 3.5 Let X be a real, uniformly convex normed space. Then, each linear
operator T : X — X such that [T] > 0 satisfies (3.10) with some ¢ < 1.

Proof Let T be a linear operator, [T] > 0 and assume that the assertion does not
hold. Thus for any increasing sequence &, ' 1 there exist sequences of unit vectors
Xn, Yn € Sx such that

Ty, en I Xn
ITyull “° I Tx0ll”

Xpnlsy, and neN

(we use homogeneity of %). Since x, Lyy,, we have in particular
X0 4 yull = llxall =1, and |lx, — yull = xall = 1, neN. (3.11)

En TX”

Now, since ”ﬁ T A VEAE applying (3.2), forany ¢ € J (”T} ”) we have

()
17 > &p.
172 !

Without loss of generality, we may assume ¢ (%) > &, (otherwise we replace

X, by —x, and use (3.11)). Now, we have

Ty Tx, Ty, Tx,
1+¢ <<p( )—HD( >=<ﬂ(—+—>
" 17 ynll (VA ITynll N Txull

=l =2
1Tl 1T
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Letting n — oo we get

=2

. H Ty
lim
n=00 || | Ty,

Tx, ‘
17, ||
The space X was assumed uniformly convex, thus it follows (cf. [18, Fact 9.5])

=0.

lim |——— —
n=00 || [Ty, ITxy|l

: : Xn n
Since x, L;y,, there is also Tl dg Tl and hence

1 < |l < I - il = e | (s - )|
17 17 x| 1Txull  NTyull (T] ITxull T yull
_ 1 T xy, Ty,
(T1 [ITxall N Tyall|l
So it follows
1 1 T T
e - -
170~ [T1 [ 1Txall 0T yull

as n — 00, a contradiction.

Notice that the above theorem can be applied for the identity operator on the
considered space X. It follows then, that in each real uniformly convex normed
space the Birkhoff-James orthogonality relation has the property

xlyy = ylix, x,yeX (3.12)

with some ¢ € [0,1). We call the above property an approximate symmetry
(or, more precisely, e-symmetry) of the Birkhoff-James orthogonality ;. This
notion has been introduced and studied in [14]. Theorem 3.5 yields (cf. also [14,
Theorem 4.1]) that the Birkhoff-James orthogonality in a real uniformly convex
normed space is approximately symmetric. The same holds true, in particular,
for a finite-dimensional real smooth normed space (cf. [14, Theorem 4.2]). But
generally it is not true—there are normed spaces (or classes of spaces) for which
the condition (3.12) does not hold with any ¢ € [0, 1). A simple example is the
plane R? with the maximum norm. We refer to [14] for detailed discussion on this
subject.
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3.4 Stability Problems

The stability problem for functional properties may be posed in an analogous way
as for functional equations. Namely, if a mapping satisfies some relation (property)
approximately only, we may ask whether there exists another mapping which is
close to the original one and which exactly satisfies the considered property.

The problem of stability of the orthogonality preserving property, posed in [6],
has been studied quite extensively. The first result obtained in [7, Theorem 4] for
finite-dimensional inner product spaces was generalized in [29] to arbitrary Hilbert
spaces.

Theorem 3.6 ([29], Theorem 2.3) Let X,Y be Hilbert spaces. Then, for each
linear mapping f: X — Y satisfying (3.7) there exists a linear orthogonality
preserving mapping T : X — Y such that

1 —
If =TI = (1 - \/ﬁ) min{|| f1I, [I7'[]}.

Additionally, in the case where X = Y, the constant 1 — ,/ %&i can be replaced by

1 (1 _ \/%) (cf. [33, Theorem 5.4]).

Later, the considerations were carried on in normed spaces (cf. [8, 11, 25]) and
it is known that for some normed spaces the orthogonality preserving property is
stable. Actually, stability of the orthogonality preserving property is equivalent to
the stability of linear isometries (SLI) property. We say that a pair (X, Y) has got the
(SLI) property if there exists a function §: [0, 1) — R satisfying lim,_¢8(g) =0
such that whenever T is an e-isometry (i.e., | |Tx| — [|x||| < €|lx], x € X), then
there exists an isometry U such that |7 — U|| < §(¢). The function § may depend
on X and Y butnoton 7.

For the orthogonality reversing property the situation is different since it may
happen that there exists an (¢-OR) operator which cannot be approximated by an
(OR) operator, simply because such an operator does not exist in the considered
space. Indeed, as it was mentioned in Sect. 3.3.1, a normed space X admits an (OR)
operator only if dim X = 2 or X is an inner product space. In the latter case the
problem reduces to stability of the orthogonality preserving property. Therefore it is
reasonable to restrict our (OR)-stability considerations to two-dimensional spaces
only, even though we can formulate a formally correct result for a wider class of
normed spaces.

Let us recall now an auxiliary result which will be used in the proof of our
stability theorem. It was proved by Wojcik [31] who considered a general problem
of transferring one relation into another and the stability of this property.

Theorem 3.7 ([31], Theorem 3) Let X and Y be finite-dimensional normed spaces
andlet Ry C X x X, Ry CY xY, R; C Y x Y. Suppose that for all ¢ € [0, 1), the
relations R§ are weakly homogeneous, i.e.,
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xRy = axRjay, x,yeY, a el

Assume that the family of relations {R5}ec(o,1) is continuous with respect to the
relation Ry, i.e., for each sequence (¢,)neN suchthat0 < g, < 1 and lim,_, », &, =
0 and for all sequences (an)neN, (bn)nen in Y such that lim,_a, = a,
lim,, 00 b, = b (a,b € Y) we have

(anR?’bn,neN) — aRyb.

Then, for an arbitrary § > 0 there exists ¢ > 0 such that for any linear mapping
f: X — Y satisfying

xRy = fxR5fy, x,yeX
there exists a linear mapping g: X — Y satisfying
xRy = gxRygy, x,ye X

such that

If =gl = 8 min{[| £ llgll}-

Applying the above theorem we immediately get the (OR)-stability.

Theorem 3.8 Let X be a finite-dimensional normed space. For each § > 0 there
exists € > 0 such that for any linear mapping A: X — X satisfying (3.10) there
exists a linear mapping T : X — X satisfying (3.4) and

A =TI <& -min{l|All, IT]}.

Proof Define a relation Ry C X x X by x Rjy < xLlg;y. For any ¢ € [0, 1)
define R5 C X x X by x Rj y <« y1%x. Since the orthogonality relations L, and
L%, satisfy the homogeneity and continuity properties, the assertion follows from
Theorem 3.7.

Although we only assumed that the dimension of X if finite, we have to stress
again that this result is essential only for two-dimensional spaces. If dim X > 3 and
X is not an inner product space, then no linear nonzero mapping satisfying (3.4)
exists and therefore also a nonzero mapping A satisfying (3.10) cannot exist for all
e > 0.

Corollary 3.1 Let X be a normed space with 3 < dim X < oo and which is not an
inner product space. Then there exists ey € (0, 1) such that for all ¢ < &g the set of
all nonzero linear mappings A: X — X satisfying (with this ) (3.10) is empty.

Notice that there are also two-dimensional normed spaces which does not admit
(OR) operators and the above corollary applies also to them.
Bearing the above remarks in mind, Theorem 3.8 may be reformulated as follows.
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Theorem 3.9 Let X be a finite-dimensional normed space. There exists €, € (0, 1]
(depending on X) such that for a linear mapping A: X — X satisfying (3.10) with
¢ € [0, &4), there exists a linear mapping T : X — X satisfying (3.4) and

A =TI < &) min{[|All, I T},

where §(¢) satisfies 5(¢) — Oas e — 0.

Now, we consider a reverse problem. Given an operator A which is close to an
orthogonality reversing operator 7', we show that A is approximately orthogonality
reversing. For reasons discussed above, we will assume dim X = 2. If X is an inner
product space the notions of (approximate) orthogonality reversing and preserving
properties coincide and this case will be covered by Theorem 3.12 (see the remark
following this theorem).

Let us recall some notions and respective properties. Let py denote the modulus
of smoothness of X, i.e.,

th —th| —2
px (1) :sup{”x+ I +!x =2 e Sx}, t>0.
It is known that (cf. [2, Proposition A.4])
t
> px (1) is a nondecreasing mapping (3.13)

and (cf. [2, 18]) X is uniformly smooth if and only if

ox (1)

—~0, as t—0. (3.14)

Smoothness of X implies card J(z) = 1 forall z € X \ {0}, i.e., J(z) = {¢;}.
Moreover (cf. [2, Proposition A.5]), if ¢y, ¢, are supporting functionals in x and y,
respectively, then

lex — @yl < i ﬁ‘b (3.15)

=
<

Now we are able to state and prove the announced result. Note that if X is a finite
dimensional normed space, then X is smooth if and only if X is uniformly smooth.

Theorem 3.10 Let X be a real, two-dimensional and smooth space. Let 0 # T €
L(X) satisfy (3.4) and let A € £ (X) satisfy, with y € (0, 1),

IT —All <y I[T] (3.16)
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Then A satisfies (3.10) with ¢ = e(y) where the mapping y +— €(y) depends only
on X and satisfies the condition

e(y) >0, asy — 0. (3.17)
Proof Notice that property (3.4) yields that T is injective and since X is finite

dimensional, [T] > 0. Let x, y € X and x_L;y. We may assume that x, y € Sx. For
a,b € X \ {0} we have the Massera-Schaffer inequality (cf. [24]):

a _H 2lla-bl
Ilall 51l max{[al, 1]}’
thus, in particular,
2||a — Dbl
_— = — . (3.18)
IIaII IIbII Bl
Applying the above inequality and (3.16) we get
2l1Ay — T 21A - T 2v[T
H H lAy =Tyl _204=TI _ 2071 _ ) g
IAyl Tyl 17yl [T] [T]
Moreover,
[ Tx]| = Ax[[| = ITx — Ax|| = |IT — Al Ix|| = y[T]lx|l = ¥ITx],
whence (1 — p)||Tx|| < ||Ax| and
1
I1Tx| < 1 | Ax|l. (3.20)
-Y

Combining smoothness with (3.2) we see that a l°,b < |¢,(b)| < ¢||b|| fora, b €
X\ {0} and a unique supporting functional ¢,. Since T'y 1,7 x, we have ¢7,(Tx) =
0 and
|@0ay(AX)| = [@ay(Ax) — @1y (T)|
< |eay(Ax) = Ay (T)| + |@ay(Tx) — 1y (T)|
= |pay(Ax = Tx)| + [(pay — ¢ry) (T1)|
< lAx = Tx|| + [[@ay — ory |- 171,

whence, using (3.15),
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Ay Ty
X (2 H TAYT — |T>|| H)
" 1Tx].

2
TAYT — Tyl Ty [

P
|ay(Ax)| < |Ax — Tx|| +2-

Now, applying (successively) (3.13), (3.19), (3.16) and (3.20) we obtain

px (4y)
|pay(Ax)| < | Ax — Tx| +2- 4VV AT x]
x (4y) 1
< 7Tl +2- 200 —jax
4 I—y
px (4y) 1
<yITx||+2- 1 - ——||Ax]|.
Y -y
Finally, using (3.20),
4 px (4y) 1
Ax)| < LA 2. — || Ax
a0 = fZo Al 2 S5 oA
4 1
=< Yy X )lleH.
-y 4y 1—vy
Define e(y) = X5 +2- ”{{;‘” 1= Then (3.14) yields (3.17). It follows from

the above inequahtles that |<pAy(Ax)‘ < e(y)-||Ax||, whence also, cf. (3.2),
Ay 150 Ax.,

Finally, A satisfies (3.10) with ¢ = e(y).
The following theorem is obtained as a consequence.

Theorem 3.11 Let X be a real, two-dimensional and smooth normed space. Let
a nonzero operator T € £ (X) satisfy (3.4) and let A € £ (X) satisfy, with a €

(O, %), inequality
IT — Al <a|T]. (3.21)

Then A satisfies (3.10) with ¢ = €(a) where the mapping a — €(a) depends on X
only and satisfies the condition €(a) — 0, as o — 0.

Proof Consider y := a 1 € (0, 1). Then (3.21) yields | T~ A|| < o ||T|| = y[T]
Now, for the mapping ¢(-) from Theorem 3.10 we define () := & (a . %)

Finally, we goes back to the orthogonality preserving property. The following
result is obtained by applying similar methods as in two previous theorems. We will
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present, however, the whole proof for the reader’s convenience. We do not need to
require finite-dimensionality of X but its uniform smoothness.

Theorem 3.12 Let X be a real, uniformly smooth normed space and let 0 £ T €
L(X) satisfy (3.3). If A € L (X) satisfies, with y € (0, 1), inequality |T — A| <
y T, then A satisfies (3.7) with ¢ = e(y) such that e(y) — 0asy — O.

Proof Let x,y € X and x_L;y. We may assume that x, y € Sx and thus (7T is a

similarity) |Tx| = |Ty|| = |IT|. Applying (3.18) and ||T — A|| < y||T| we get
H ” 204y =Tyl _ 204 =TI _ 2vI7I

1Ayl 1Tyl Iyt — ATy = ATl

—2y. (3.22)

Moreover, |[[Tx|| — [[Ax]|| = [[Tx — Ax|| < T — Al = vITI = yITx|,
whence (3.20) follows. Since Tx LTy, we have ¢, (Ty) = 0 (uniqueness of the
supporting functional is guaranteed by smoothness). Therefore
lpax(AV)| = loax(Ay) — @1 (Ty)
< lpax(Ay = Ty)| + [(pax — ¢rx) (Ty)]
< Ay = Tyl + llpax — erxll- 1Tyl

and by (3.15),

Tx
px( ” TAxT ~ TTxT

D 17yl

lpax(AY)| < |[Ay =Tyl +2-

T
2 ” TAx] — TTal

Proceeding analogously as in the last part of the proof of Theorem 3.10, applying
now (3.22), we get

ox (4y) 1
|wa<Ay)|s(1y 4o XV 1AY]).
-y 4y -y

Finally, with £(y) := % +2- 202 . £ we have |par(Ay)| < &(y)- 1Ayl

whence Ax L (V)Ay Thus A satisfies (3.7).

Notice, that the above theorem covers in particular the case where dim X > 3
and T satisfies (3.4) instead of (3.3). Then X must be an inner product space (which
obviously is uniformly convex), (3.4) is equivalent to (3.3) and (3.7) is equivalent
to (3.10) so A satisfies (3.10).
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Chapter 4 )
Optimal Forward Contract Design for e
Inventory: A Value-of-Waiting Analysis

Roy O. Davies and Adam J. Ostaszewski

Abstract A classical inventory problem is studied from the perspective of embed-
ded options, reducing inventory-management to the design of optimal contracts for
forward delivery of stock (commodity). Financial option techniques a la Black-
Scholes are invoked to value the additional ‘option to expand stock’. A simplified
approach which ignores distant time effects identifies an optimal ‘time to deliver’
and an optimal ‘amount to deliver’ for a production process run in continuous time
modelled by a Cobb-Douglas revenue function. Commodity prices, quoted in initial
value terms, are assumed to evolve as a geometric Brownian process with positive
(inflationary) drift. Expected revenue maximization identifies an optimal ‘strike
price’ for the expansion option to be exercised and reveals the underlying martingale
in a truncated (censored) commodity price. The paper establishes comparative
statics of the censor, using sensitivity analysis on the related censor functional
equation; key here is that the censor, as a function of the drift and volatility of
price, is the solution of a functional equation. Asymptotic approximation allows a
tractable analysis of the optimal timing.
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4.1 Problem Formulation and Model

We enhance a classical inventory-management problem by studying its embedded
options, reducing the problem to the design of optimal contracts for forward delivery
of inventory. The approach borrows much from the Black-Scholes model for valuing
financial options (see Musiela and Rutkowski [11, Chapter 5]) and reveals the
underlying martingale to be a truncated (right-censored) discounted commodity
price.

A production process runs continuously over a unit time interval and the manager
is permitted to acquire raw input materials at two dates: initially, at time ¢ = 0, and
again at one other time 6 < 1, selected freely, but committed to at time ¢ = 0.
This framework is intended as a proxy for a multi-stage inventory management
problem, since ‘proximal’ effects of forward contracting, as represented by the
date 9, are more significant than any additional ‘distal’ dates for forward delivery.
Distal dates for additional forward deliveries are thus neglected in this model (see
the ‘Interpretation’ paragraph at the end of Sect.4.4). Inputs are consumed in a
continuous production process which creates an instantaneous revenue rate at time
t equal to f(x;) (quoted in present-value terms), where x; is the instantaneous input
rate of consumed material. To begin with f (x) is, as usual, an Inada-type increasing
function, viz. twice differentiable, unboundedly increasing from zero, with slope
unbounded at the origin and strictly decreasing to zero at infinity; eventually f(x)
is specialized to a Cobb-Douglas production function. The revenue from any interval

[a, b] is taken to be
b
/ f(x)de.
a

If the manager decides to use up a proportion 6x in the period [0, 8] then, with 8
fixed, the Euler-Lagrange equation implies that a constant instantaneous input rate
equal to x is optimal. A further quantity (1 — 6)y may similarly be consumed in
the remaining time interval. If the quantity (1 — 6)y is made up from a contracted
forward delivery of (1 — 8)u and a possible supplement, purchased at time 6, of a
non-negative quantity (1 — 6)z, the revenue from the second interval will be

1
/g fGdt =1 —=06) f(u+2).

Values here and below are quoted in discounted terms, i.e. present-value terms
relative to time t+ = 0. (We side-step a discussion of the relevant discount factor.
In brief, discounting would be done relative to the required rate of return on capital
given the risk-class of the investment project; see Dixit and Pindyck [4, Chapter 4,
Section 2].)

Whilst the model of revenue assumes a steady (deterministic) market for the
output, the input prices are assumed stochastic. (We prefer this modelling choice to
the more general approach of including also a stochastic output price. Indeed, what



4 Optimal Forward Contract Design for Inventory 75

then determines optimal behaviour is the ratio of the two prices; so, in a sense, the
present simpler arrangement subsumes it.) Specifically, we suppose that at time 0
the price of inputs is bg = 1, and that, as time ¢ progresses, the present value of the
spot price, b;, follows the stochastic differential equation

db;  _ _

— = pdt + odwy, 4.1)

by
with w, a standard Wiener process. It is assumed that the constant growth rate
[ is positive, thus modelling anticipated inflation. The (present-value/discounted)
expected price at time 7 is ¢/, and so the price is expected to grow above the initial
price of unity. The price b; is log-normally distributed with a mean which we denote
by v = (it — 36t and a variance 0> = &2¢. Write ¢,(-) = q(-, jit, 5+/7) for the
density of b,;. Conditional on the initial choice of 0, the expected future revenue
consequent on the choice of x, # and z (with z selected at time 6) is

O(f(x) —x)+(1—0) ([0 {f(z+u) — bz}qe(b)db — u) ) (4.2)

This is a classical inventory problem but amended by the explicit inclusion of
the ‘option to expand inventory’ (choice of z) and of a ‘forward’ contract (choice
of u). We shall evaluate the embedded option in a framework reminiscent of Black-
Scholes option-pricing. The ‘forward contract’ is construed here as a contract signed
at the earlier date + = 0 with an agreed specified delivered quantity, u, a specified
delivery date ¢t = 0, and a price standardized here to unity per unit delivered.
The latter standardization fixes the unit of money, since, as is well-known, in the
absence of arbitrage and storage costs the forward price equals the price of inputs
at the initial time of contracting, compounded up to term-value at the required rate
of interest. Note that the advance purchase of u# has by assumption nil resale value
on delivery. This makes the delivered asset a ‘non-tradeable’ commodity, so that
the usual martingale valuation approach applied to a discounted security price is
not immediately appropriate; our analysis makes use of dynamical programming,
as in Eberly and Van Mieghem [5], and thereby identifies the underlying martingale
structure via an appropriately truncated (right-censored) price.

Apart from offering a real-options approach with optimal design in mind, in
contrast to the classical inventory literature (see for instance Bensousssan et al.
[2], or Scarf [15]), an additional contribution of the current paper is to provide
information about the sensitivity in regard to model parameters of the critical ‘strike
price’ for stock expansion (its comparative statics and asymptotics), an issue omitted
from consideration in Eberly and Van Mieghem [5].

The current study of profit dependence on timing, drift and variance is motivated
by the general discrete-time multi-period model of Gietzmann and Ostaszewski [7],
but with the simplifying removal of costly liquidation of inventory. There the latter
feature was necessary for a more comprehensive study into the dependence of a
firm’s ‘future value’ on accounting data. Such themes are explored in [12] in this
volume.
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Our option-based analysis is simpler than [3], though similar in spirit. There the
(retailer’s) inventory control problem studies re-distribution of a storable product;
one uses a (long) forward (contract) for delivery combined with an option to
dispose of any excess (a put, with a lower salvage price) coupled with an option
for additional supply (a call, with a penalty cost for ‘emergency supply’); for
background on these ‘option’ terms see e.g. [8]. A similar approach, albeit in
discrete time, is taken in [10] using at each date a continuum of puts and calls
maturing at the next date taken together with a short (negative) forward.

The rest of the paper is organized as follows. In Sect.4.2 we study optimality
conditions, which identify a threshold price level (the price censor) above which it
is not worth purchasing the input. We consider its sensitivity (comparative statics)
to price drift and volatility in Sect.4.3: here we view the censor as a function
of these two, identified by a functional equation. Then in Sect.4.4 we assess the
expected revenue and in Sect. 4.5 the optimal timing. Proofs (sensitivity analysis)
are spread across Sects. 4.6 and 4.7, some of this in outline with details relegated to
an Appendix.

4.2 Optimality: The Censor and Value of Waiting

From (4.2) the optimization problem separates into maximization over x > 0 of
f(x) — x (with solution specified by f'(x) = 1) and over u > 0 and over functions
z(.) of the (time t = 0) expectation

E[f(z(b) +u) — bz(b)] — u. 4.3)

Definition For any Inada-type strictly concave function f(x) define the ‘indirect
profit’ (i.e. maximized profit) for a deterministic price b by

h(b) = ma())i[f(x) — bx]. “4.4)

Evidently h(b) = f( (b)) — bI(b), where by tradition I denotes the inverse
function to f.

Theorem 1 (Optimal Forward Delivered Quantity) In the model setting above,
with time 0 given, let b = b(u, o, 0) be the scalar solving the equation

E[bg Ab] =bo =1, (4.5)

where bg denotes the random price at time 6. Then the profit-optimizing level of the
advance purchase u = u(i, o, 0) for (4.3) satisfies

f'(u) = b, (4.6)



4 Optimal Forward Contract Design for Inventory 77

and the optimal expected profit is given by
g, @) := E[h(b), b < bl + h(b) - Prlb > b]. 4.7)

Proof With B arbitrary, select u with 8 = f’(u). Note that h(8) = f(u) — Bu and
h'(B) = —u. Define the right-censored random variable By = By(8) by

By = by A B.

For given price b, the quantity z = z(b) which maximizes f(u + z) — bz is either
zero or satisfies the first-order condition

f'(z4+u) =b.

In view of the monotonicity of f’ we thus have z(b) = 0, unless b < 8. Given that
u has been purchased at a price of unity, the profit, when by < 8, is f(u + z) —
(boz(bg) + u) = h(by) + (ubyg — u). Otherwise itis f(u) —u = h(B) + uf — u.
Thus the expected profit is

I1(B) :== E[h(By) +uBg —u] = E[h(Bg)] + uE[Bg] — u.
Differentiating IT with respect to 8, and noting that
dE[h(be A B)1/dB = h'(B) Prlby > B,

we obtain, after some cancellations in view of 4’(B) = —u, the optimality condition
E[Bg] = 1 on . The model assumption that f is positive ensures the existence
of a solution of Eq.(4.5). With 8 set equal to the solution b of Eq. (4.5) we have
b= f'(u)),ie. (4.6). O

Definition In view of the right-censoring of the price b occurring under the
expectation, we call the solution of (4.5) the censor b = b(u, o, 0) at time 0. This
definition follows Gietzmann and Ostaszewski [6]. The censored variable is thus a
martingale.

Remark 1t is clear from the proof above that the censor describes the upper limit of
those prices which trigger the exercise of the option to expand stock. So evidently,
b > 1. We return in the next section to a consideration of its behaviour. Whilst this
threshold role makes the censor similar to the ‘optimal ISD control limit’ studied
by Eberly and Van Mieghem [5], their thresholds correspond to Investing/Staying-
put/Disinvesting and are distinct in respect of the treatment of capital depreciation.

Proposition 1 (Value of Waiting) The expected profit g(u, o) defined in (4.7)
obtained by optimal forward contracting is no worse than the indirect profit h(1)
obtained by only using purchases at initial prices, that is,

h(l) < g(n, o) = E[h(by A b)].
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Proof This follows from a simple application of Jensen’s inequality, as h(b) is
strictly convex in b. Indeed, we then have

h(1) = h(E[bg A b)) < E[h(by A b)].

Of course —h(b) is the Fenchel dual of the strictly concave function f, so —h(b)
is strictly concave in b (see [14, Section 12]). In the specific case of f(x) twice
differentiable the asserted convexity follows from h”(b) = —1/f"(I (b)), where I
denotes, as before, the inverse function of f”. m]

4.3 Sensitivity and the Censor Functional Equation

Assuming an Inada-type production function for the geometric Brownian model
adopted for the price as in (4.1), the censor equation (4.5) which defines b = b(u, o)
can be re-written as

1 = e ®(W —0) +bO(—W). (4.8)
Here ®(x) = ffoo p(w)dw, with p(w) = e_%“’z/\/27r, denotes the standard
normal cumulative distribution function, W = w(l;), and

Inb —v I,
w(b) = ,  Wherev=pu— 50 . 4.9)
o

This formulation leads naturally to a further definition.

Definition The normal censor is the function W(u, o) defined for u,o0 > 0
implicitly by the censor functional equation for W

e " = F(W,0), where F(W, o) := ®(W — o) + V37 0(=W).  (4.10)

We note that W is well defined since dF/dW > 0. It is helpful to be aware
of the hidden connection between the function F and the normal hazard rate
H(x) = ¢(x)/®(—x) (or its reciprocal, the Mills Ratio) and to use properties of
this function. We refer to Kendall and Stuart [9, p. 104], or Patel and Read [13] for

details. From ¢(c — W) = eow_%ozw(w),

1 1
F(W,0)=¢(c —W) (H(a —wW + H(W)>'

From (4.10), W (u, o) is decreasing in pu, since e * is decreasing. Less obvious is
the fact that W(u, o) is increasing in o since in fact 9W /do > 1. This is shown in
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Sect. 4.7, where we deduce the comparative statics of b(u, o) from corresponding
properties of W (i, o). The main results proved there are as follows.

Theorem 5 The censor g(u, o) is decreasing in the drift . and is increasing in the
standard deviation o.

These two properties together suggest the following result, obtained by setting
w =710 and 0 = 5+/0, and noting that (4.10) permits arbitrary positive 6.

Theorem 6 The censor b(0) = E(EQ, E\/g) is either unimodal or increasing on

the interval 0 < 0 < oo, according as @ > %52 orm < %Ez.

4.4 Cobb-Douglas Revenue: Asymptotic Results

We now assume f(x) is Cobb-Douglas, specifically f(x) = 2./x, so that the
indirect profit defined by (4.4) is h(b) = b~'. This choice for the power of x inflicts
no loss of generality, because in the presence of a log-normally distributed price
any other choice of power is equivalent to a re-scaling of ft, 6. Substituting into the
definition (4.7) yields

g1, 0) = O TIOW + o) + e PV o (—W), (4.11)

as the (optimal expected) profit per unit time arising after the re-stocking date 6. We
also define the associated function

20) = g(ib, 5v0),

for 0 < 6 < oo (with some re-sizing of jt,6 in mind, as in Proposition 4 of
Sect. 4.5). To study these functions we are led to analyse the behaviour of first
W (i, o) and then W (¢) := W (jit, 5+/1). The following are derived in Sect. 4.6.

Proposition 2 For fixed u > 0,

1
Wn,o) = —g + ch +o0(o0) (o0 — 0+).

Proposition 3 For fixed ;n > 0 and with fi := —® 1 (e™H),

W, 0)=0—[— {1+o(1)} (6 = 00).

o— [
From (4.11) and standard asymptotic estimates of ®(x) (see Abramowitz and

Stegan [1, Section 7]) Theorem A below is immediate. It also turns out that W)
behaves rather like &4/ (except when & = %62).
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Theorem A (Asymptotic Behaviour of the Profit g(u, o))

() g =e” " +o(l/0), aso — oo
(i) g=e*4+ 1 —-e"O(u/o)+o0(o), asoc — 0+.

Theorem B (Behaviour of the Profit g(0) at the Origin) We have g’ (0) = 6% so
that

gO)=1435%0+00) (6—0).

Theorem C (Asymptotic Behaviour of the Profit g(6) at Infinity)
() If5% < 1, then

@) =1+0(1/V0) > 1+ (06— o),

and §(0) has a maximum whose location tends to infinity as 5> — [i.

(i) Ifi <62 < 2, then
20) =1+ £ 5(1/v/8) (6 — 00).
(iti) If2j1 < &2, then
g0 =@ M0 L o(1/48) (0> o).

(v) If6% =21, then
30) = i ™ & (\/276) + o(1/F) = % 4o 4 o(1/\B) (68— o).

For the proofs see Sect. 4.6.

Figures 4.1, 4.2, 4.3 and 4.4 with a parameter value & = 0.05 show the
computed graphs of g (red/bold) alongside the approximation (green/faint) where
relevant; Fig. 4.4 shows the first to the right of the two approximations given in the
case (iv).

Interpretation Under ‘myopic management’, i.e. in the absence of forward con-
tracting, for a given re-stocking date 6 the expected profit would be

Eolh(bo)] = E[1/bg) = @~
Theorems A and C thus imply that forward contracting advantages lose significance

as variance increases, or as the re-stocking date 6 advances. This is ultimately our
justification for excluding any additional dates for further forward deliveries.
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Fig. 4.1 Typical graph of
2(0) in the case (i) 62 < f1;
here 1 = 0.05, 6 = 0.1

Fig. 4.2 Typical graph of
g(0) (red) in the case (ii) it <

ot < 21; here
n=0.05,6 =0.25

Fig. 4.3 Graph of g(#) in the
case (i) 21 < &2 (red-green
merged); here
a=0.050=04
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4.5 Cobb-Douglas Optimal Timing: Estimates

Assuming again as above, without much loss of generality, that f(x) = 2./x, we
turn now to revenue optimization in respect of the time 6 to be selected freely
in [0, 1]. Supposing there are no associated management costs in choosing 6, the
optimal revenue R(6) for a selected value of 6 is, from (4.2), given by
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Fig. 4.4 Graph of g(6) (red)
in the case (iv)

&% =21 =0.1 and of 4r
1+ D (/2010)

R(©) =0+ (1 —0)g(),

the first term being justified by #(1) = 1. Since g(0) = 1, the optimal choice of 6,
assuming such exists, is given by the following first-order condition:

% —1-0 (4.12)
g

Proposition 4 The first-order condition for R in (4.12) is satisfied for some 0 with
0 < 6 < 1. The smallest solution is a local maximum of R. If g is concave on [0, 1],
then the solution of (4.12) is unique.

Proof In general, by Proposition 1 on the Value of Waiting (Sect.4.2), g(1) —
g(0) > 0 and so the first assertion is obvious, since the right-hand side of (4.12)
is zero at & = 1 and is positive at 6 = 0; indeed, by Theorem B above, the left-hand
side has the limiting value zero as & — 0+ for o > 0. If, however, g(1) — g(0) =0
(i.e. h fails to be strictly convex), then since the function g is initially increasing
for 6 > 0, g has an internal local maximum at 6 for some 6 with 0 < 6 < 1 (by
the Mean Value Theorem). In this case the first-order condition for R is satisfied by
some 6 < 0, since the left-hand side tends to +00 as @ — 6.

Any internal solution 6* to Eq. (4.12) has g’(8*) > 0 and so the second assertion
follows since R'(8*—) > 0 and R'(6*+) < 0. Observe that if g”(0) < 0, then we
have

8(6) — g(0)

d <§(9) —8(0) -0
(g1 ’

o\~ g0 )Zl_g @

so the third assertion is clear; indeed concavity ensures that the left-hand side
of (4.12) is an increasing function of 6. |

One would wish to improve on Proposition 4 to show in more general cir-
cumstances (beyond the concavity which can sometimes fail, as Fig.4.1 shows)
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that (4.12) has a unique solution, and to study dependence on the two parameters
of the problem. This appears analytically intractable. For the purposes of gaining
an insight we propose therefore to replace g(¢) by a function related to it through
asymptotic analysis (as ¢ varies), on the grounds that from numerical evaluations
the substitute is qualitatively similar. Examination of behaviour for large + may be
justified by re-sizing the parameters [t, & which enables the termination date to
become ‘large’. This observation then introduces the advantages of the asymptotic
viewpoint.

Guided by Theorems B and C, we are led to a considerably simpler problem
obtained by making one of two ‘typical’ substitutions for g(8), namely

1+ Afe™?, if52<;1, or e’ ifip <o”,
according as variance is low, or high. Here « := |52 — jz| > 0. The substitution in
the first of the two situations fits qualitatively with numerical evaluations on the form

of g (see Fig. 4.1); it agrees in the second situation with the general form observed
in other figures and also the asymptotic form as t — oo.

Case (i) a« = L — &2 > 0. In this case the optimum time 6 is the solution of
/(1 —ab)=1-6,

a quadratic equation, leading to the explicit formula

L PR PO
o 4 1’

so that as « increases from zero the optimal time 6 recedes from the mid-point
towards the origin. That is, low volatilities move the replenishment timing back.

0 =0(x):=

| =

2

Case (ii) a = 6~ — 1 > 0. The first-order condition here reduces to

(1—eja=1-0,

with a unique solution in the unit interval. Here we can use a quadratic approxima-
tion for the exponential term and solve for 6 to obtain, for ¢ < 2, the approximation

so that the optimal choice of 6 is close to the midpoint 8 = 1/2, when « is small,
but advances as « increases towards unity (as a direct computation shows). That
is, high volatilities bring the replenishment position forward (meaning that waiting
longer, beyond the mid-term, is optimal for higher volatilities).
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4.6 Asymptotic Analysis: The Proofs

In this section we give outline arguments (for the details, see the Appendix) leading
to Propositions 2 and 3 and Theorems B and C of Sect. 4.4.

Lemma 1 We have for fixed n

lim W(u,o) = —o00, and lim oW(u,o0) = —pu.
o—0+ o—>0+

This follows directly from the definition of W (u, o). We now prove
Proposition 5 For i > 0,
w1
W(u,o) = - + EO’ + o(o) (o — 04).

. .. _ _152
Proof For an intuition, note that for small enough ¢ we have e™* ~ W30

and so

1
W, o) ~ —g + 50

This argument can be embellished as follows. For any non-zero ¢ let
no1
W) =——+ -0 +oe¢,
o 2
so that
1
o— W) = ﬁ—i——a—os.
o 2
We shall prove that for positive ¢ we have, for small enough o, that
W(—e) < W(u,o) < W(e).

This is achieved by showing that for all small enough o the expression below has
the same sign as ¢ :

D) =F(W(),0) — F(W(u,0),0)=F(W(),0) —e *.

This implies the Proposition. Now D(0+) = 0 and, since D(0) = ®(W(¢e) — o) +
WO D (=W (e)),
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1 1
D'(o) = e’%“W@W)ZF{—% +5 =6} + e 206} (1 + 0(0)
T
1
+67“+”2567%W(8)2{% 5+ e}.

Note that the first and third terms contain a factor o exp[—u? /o], which is small
compared with . So for small enough o the derivative D’(o) has the same sign as
. So the same is true for D (o). |

Definitions Recall from (4.10) that dF/0W > 0 and F(—o0,0) = 0,
F(+00,0) = 1. Let m be fixed; for the purposes only of the current section it
is convenient to define

D(m) :=1— d(m)

and to introduce, also as a temporary measure, a variant form VT’(m, o) of W(m, o)
obtained by replacing e* in (4.10) by ®(m) so that now

F(W(m,o),0) = ®(m) < 1. (4.13)

Claim For ¢ any constant

lim F(o —c,0) = ®(c).

o—>00

The proof is routine.

Conclusion from Claim Notice the consequences for the choices ¢ = (1 £ ¢)m.
Since

lim F(o —(1+e&)m, o) = D((1 4+ &)m) < (m),
o—
for large enough o we have

Flo—(0+é&em,0) < F(W,o0).

Hence for large enough o we have W > o —(14-¢)m. Similarly, takingc = (1—&)m
we obtain W < o — (1 — &)m. Thus

W@m,o) =0 —m{l +o(l)}(as 0 — o0).

This result can be improved by an argument similar to that for Proposition 2 by
reference to

D) = ®(0 — W)+ V27 D (W) — D(m)

to yield the following.
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Proposition 6 With the definition (4.13), for fixed m
. 1
Wim,o) =0 —m — ——{1 +o(1)} (as 0 — 00).
oc—m

Conclusion VT/(m, o) = W(u, o) when m = i where e * = ®(m). Restating
this equation as

et =1-0@) =o(—n),

we see that /i > 0 if and only if > In2, since i = —®~'(e™#); in particular for
small u we thus have 1 < 0.

Lemma 2

lim VOW®) =0and lim W) = +oco for fixed i, &5 > 0.
0—0+ 0—0+

This follows again by a routine argument starting from (4.10) but requires the
claim below and the definition

Vi=V(@®) =W®) —56.
Claim
L:= lim oV(0) =0.
60—0+

The proof here is by contradiction from (4.10), assuming L non-zero.

Proof of Theorem B Differentiation of (4.10) with respect to 9 gives
—fe ™ = (W — )W — ') + ¢V 73 (W) (= W)

1
¥ @(—W)e"W—%“Z[—562 + (eW)'1.

Now
PR
o( ) o( )2\/5
W)\ 1 Wo+/0
:<EUW_£W(W)>5 62\/_—’11-0=0 © — 0+),

using (4.10) and limy_, 45 @(W)/(W®(—W)) = 1 to deal with the bracketed
term. Thus
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—i = lim [®(—W)(cW)'].
6—0+
Differentiation of (4.11) with respect to 6 gives

g =162 jile POW +0)+ e oW + o) (W +0)

1
+e—ﬂ—aw+%az(p(_w)(_w’) + e‘“_”W+%"2<I>(—W)[§52 — = (W)
Now

20)=[6"— - lim ®=W)(cW)]1=35"
0—0+

Lemma 3 If%c’r2 # [, then
lim W(®) = +o0.
60— o0

Remark This leaves the identification of the appropriate sign as a separate task. The
proof is by contradiction from (4.10) by reference to simple properties of the normal
hazard rate H(w) = ¢(w)/P(—w). Lemma 4 below is proved by contradiction.
Lemma 5 clarifies the cross-over case.

Lemma 4 limg_,oo W(0) — 0 = —oc0.
Lemma 5 If 6% = [i, then limg_, o 6+/OW(6) = log 2.
Conclusion 1 If limy_, oo W(0) = —o0, then

_ i — 52 1
W) = —sz/g—i-o(\/g), for i1 > 562.

Lemma 6 If62 < 2ji, then

lim e“’WH%&z_me =1.
60— o0

This follows directly from (4.10) and Lemmas 3 and 4.
Proof of Theorem C Lemma 6 establishes case (ii) of Theorem C. Next we note:

Conclusion 2 If limg_,oc W(#) = 400, then for it < 55>

W) = @ — 20 + 0(1/V0).
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Case (iii) of Theorem C follows from this estimate. Combining (ii) and (iii) gives
(1). Turning to case (iv), if 52 =2ji, thenas @ — oo we have o + W (0) — +00, by
Lemma 5, so since limy_, o, ¢®" (@ = 2, and appealing to the standard asymptotic
estimates of ®(x), as 1 — ¢(x)/x for large x,

20) = @D (0 + W () + e VHET -0 o (W (9))
=M P(o + W)+ eV d(—W©H))

=M 4 % + 0(1/+/0).

This completes the proof of Theorem C.

4.7 Censor Comparative Statics: Reprise

This section considers the sensitivity of Z(M, o) to u and o, and the dependence of
b@) = b(uo, E\/g) on 6 as given in Sect. 4.3.

Theorem 2 The censor Z(,u, o) is decreasing in the drift .

Proof The derivative of b= exp(cW + u — %02) with respect to u is positive iff

oW (u, o)
—e Tl o

4.14
on (4.14)
But differentiation of (4.10) and
oW—1o2
eW(n,0) —o)=e"""27 p(W(u,0))
yield
~ ow
1 =bd(—W(u, o)) (—0—) .
o
So (4.14) holds iff ECD(—W(/,L, 0)) < 1. But the latter follows from (4.8). O

Theorem 3 The censor E(,u, o) is increasing in the standard deviation o.

Proof Differentiating b= exp(cW(u,o) + p — %02) with respect to o yields

b~ oW
— =b(n,0)jo— +W(u,o0)—o¢.
do do
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Differentiating also the censor equation (4.10) with respect to o, we obtain after
some cancellations that

oW (1, 0) —0) = VDI D (W (1, 0) {W(M, o)+ oaa—zv - a} .

The bracketed term appearing here and earlier is thus positive, and so

Bg(u, 0)/do > 0.

|
Using p(o — W) = e"W_%“zga(W) (cf. Sect. 4.2) we note the identity
ow (W (p, o))
W, ——0=———""—=HW(u, , 4.15
(n G)+080 o WL o) (W(u, o)) (4.15)

where H (x) denotes the normal hazard rate (¢ (x)/®(—x)). Since H(x) > x for all
x, Eq. (4.15) gives aW/do > 1 for o > 0. Recalling from Sect. 4.2 that W /o <
0, we have the following two results:

Theorem 4 The two functions oW (u,o0) — %02, W(u, o) — o are increasing

ino foro > 0.

Theorem 5 The normal censor W(u, o) is increasing in standard deviation and
decreasing with drift.

Our final result is the following.

Theorem 6 The censor b(0) = E(EQ, E\/g) is either unimodal or increasing on
the interval 0 < 0 < oo, according as @ > %52 orm < %52.

Proof Using bp(W) = eto(W — o) and applying the Chain Rule to b(0) =
b(ub, E«/@), we obtain

db® 1 -
9<I>(—W)% = —pfetd(W — o)} + Eab(p(W).

The stationarity condition for »(6) can be written using the normal hazard rate
H(x) = ¢(x)/P(—x) as

o= %GH(—W(/L, o) +0), (4.16)

where 1 = 7160 and o = 5+/0, and W (i1, o) is the normal censor as in (4.10).

We now regard p and o as free variables and let ¥ := 1t/ > be the dispersion
parameter. In this setting we seek a stationary point 6 of b(0) by first finding the
values u = pu* and 0 = o™ which satisfy Eq.(4.16) simultaneously with the
equation:

n= ko2, “4.17)
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We shall show that this is possible (uniquely) if and only if x > 1/2 (i.e. @ >
%52). Thus for 32 > 2z the function b(0) is increasing, but otherwise has a unique
maximum at 6 = p* /71 = o*2 /5 2.

We begin by noting that (4.16) defines an implicit function u = u(o) for all
o > 0. Indeed, elimination of i between (4.10) and (4.16) leads to

exp <_%(;H(_w+g)> = F(w, o), (4.18)

and then routine analysis shows that there is a unique solution w = w (o) of (4.18).
Since daW/du < 0, we may recover u(o) > 0, for ¢ > 0, from w(oc) =
W(n(o), o).

Linearization of both sides of (4.18) around ¢ = 0 yields the equation

H(—w) =2(p(w) + wd(-w))

with unique solution w = w(0) = 0. Hence limy;_.0 W(u (o), 0) = 0 and so, for
small o, we have the approximation to (4.16) given by the convex function

1
w= EO'H((I).

Numerical investigation of the positive function w = w (o) finds its maximum to be
0.051 for o approximately 2.547. To see why, rewrite (4.18) in the equivalent form:

d(w — o)

@(0)2m

1 1
exp (—02 — —ocH(—w+ o)) = + YO (—w).

2 2

For fixed w with 0 < w < 1, and large o, the left-hand side is close to e%(”“”l), in
view of the asymptotic over-approximation (x 4+ 1/x) for H(x) (when x is large),
whereas the first term on the right is asymptotic to 1/(c+/27). Neglecting the latter,
and replacing @ (—w) by %, the solution for w may be estimated by (2log2 —1)/o.

Finally, using the same asymptotic approximation for H (o), we may over-
approximate %O’H (0 —w(o)) by %02 + % From here we may conclude that, for
K > %, Egs. (4.16) and (4.17) have a solution with a crude over-estimate for o*
given by

1

*\2
@) =51

The supporting line u = %H (0)o provides the crude under-estimate ¢ =
1/k~/27. For the special case k = % the solution to (4.16) and (4.17) is o* = 4.331.
For k < % there is no solution, since %UH(G) > kol foro > 0. |
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4.8 Appendix

Proof of Proposition 6 For convenience put

R(W,0):=v2nF(W,0) = /Oo

o
_1,2 _152 _1.2
e 2 dx W20 / e 2% dx.
—W+o

w
Consider an arbitrary non-zero ¢; let W, := o —m — § and put

1—c¢
§ =

o —m

Now, with D as in the proof of Proposition 5 in Sect.4.6,as § — 0 and 0 — o0

© 1.2 12 [ 1.2 X 12
D(o) = (/ e 2 dx + V20 / e 2% dx> —/ e 2% dx
—W+o w m
o0 [o,0] o0
(/ e~ dx — / e_;xzdx> + e”((’_m_‘s)_%(’z/ % dx
m—+§ m o—m—3§

= —8e72m T’ 1 0(s?)

1

+ea(g—m—5)—%02
o—m—3§

e~ 2m3=07 (1 4 0(1/52))

1
= =8 HT 4 06T + T+ 01 o)

1
(5= 2) < 00D+ 01se)

1 -
= ( : ) e’ L 0(8%) + 0(1/0?)

(a—m)—gl%fn o—m

_ ((0 —m)? = (1 —¢e){(oc —m)* — (1 —8)}

—L(m+8)? 2
(0 —m) —(1—e)o —m) )e S+ 0d/e0)

_elo—mP4+(1—e)?
T (o—m3—(1—¢)oc—m)
I

= L 1’ 4 0(1/02),
o —m

e—%(m+6)2 + 0(1/02)

and this has the same sign as €. Thus, for ¢ > 0,

RW_,,0) < R(WW(m,o0),0) < R(Wg, o),
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and so, since dR(W,a)/0W > 0,
W_e <W(n,o) < W,. O

Proof of Lemma 2 We begin with the associated Claim (Sect. 4.6 above), for which
we recall that

V= V(©) =W®) - 50,
and then note (by the definition of the normal sensor in Sect. 4.3) that
(e =1)—{P(—0c—V)—D(-V)} = [e"‘“r%"2 —1]® (-0 — V). (4.19)
From here, for some V* between V and V + o,
(€= 1) —op(V*) = [V — 1]@(-0 — V),
so that
0+ ooV ~[e“VF17 _1]d(—0 — V).

Proof of Claim Put V := limg_,o4 V (), and suppose L = limg_.op oV () # 0
along a sequence of values of 6; then

V©O)~L/GV0): ooV ~50exp(—L?/5%0) /v 21
and so
—a6{1 — (5 /iv0) exp(—L?/520) /27t ~ —aé.
So, for small enough 6,
[”V+39% _ 1)@ (=0 — V) <0,

so that V < 0. Suppose first that V = —oo; then L = 0, since ®(00) = 1 reduces
Eq.(4.19) to

0= (k- 1),
contradicting L # 0. Likewise, from (4.19), the finiteness of 1% yields L = 0, a final

contradiction. C¢aim
We turn now to Lemma 2 proper. As above

(e — 1)+ op(VH) ~ [7VF37 — 1]®(~0 — V).
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By the Claim, o'V is small; so we may expand the exponential and, dividing by
o = 0+/6, obtain

T 1
—gdé+ (V") = (V + 50)(=0 = V).
If V. — V, afinite limit, then the Mills ratio (hazard rate) defined by

(V)

H(V) = cb(_f/)

satisfies Hi (V) = V, a contradiction, since tl}e ratio is alwa_lys greater than V. Thus
tye limit V must be infinite, and hence ¢(V) = 0. So V = 400, as otherwise
V = —o0 leads to the contradiction
0=Ve(-V)=V-1. O
Proof of Lemma 3 As in the definition of the normal censor
e = QW (O) — o) + VO3 o (—W(B)),

or

e*l_l«e*(TW(g)‘l’%Oz — e*dW(9)+%62¢(W(Q) _ O_) + CD(_W(Q)), (420)

e HI=WO10% _ (W (0)) + p(W(0))/H(o — W(0)),

where, as aﬂove, H (.) denotes the hazard rate. Assume that W () — W. We are to
prove that W is not finite. We argue by cases.

Case 1 %62 > [i. The left hand side is unbounded, whereas the right-hand side is

bounded for large 6 by
14+ 9o(W)/ @G0 —W).
Case 2 152 < fi. Letting @ — oo gives the contradiction:
0=o(-W)+0. O
Proof of Lemma 4 As before, if V := W (#) — o, then

eh = dV) 4V D (=0 — V).
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Suppose V — —oc is false. Then either V. — oo, or V — V, a finite limit. In
either case we have

V(o — V) <e 2oV +0)/(V +0) = 0,
as  — oo (since o — o0). This implies that 0 = ®(V), a contradiction in either

case. SoV — —o0. U

Proof of Lemma 5 As before suppose W(0) — W.If W < 0 (possibly —oo), then
we have in the limit ®(—W) = oo, a contradiction. If 0 < W < oo, then by (4.20)
above 0 = ®(—W), again a contradiction. This leaves two possibilities: either W =
oo or W = 0.

Suppose the former. Noting that

1= lim [ O(W©) o)+ VO S —W ()],

then W@ & (—W (6)) is bounded. But

Form: = W) =W o A
lim eo- (D(—W(Q)) = lim ——— = lim ¢ o= fr— = 00,
6—00 600 W(0)V2m 6— 00 W(@)v2n

by Lemma 4 andiy our assumption, a contradiction.
Thus after all W = 0. So

1= lim [ D (W (©0) — o) + e° VO D (0)]

_ =2 - -
01070 o= 3 W —35%6+0W(6)

. _

— lim _ + VO (0)]
6—00 (o — W(O))V21

—im o (Lo L)Ly e
6—00 2 o227 2 §—00

Proof of Conclusion 1 Recalling that o = &+/6, for any &, put

1=2
— 50" +¢ - 1
W)= 227 T g, Ao Wit _ e,

For ¢ > 0 and large enough 6,

TR0 WO39" — (W () + (~W(0))/H (o — W(©))

< o = MW7 _(9) < We(0).
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On the other hand, for ¢ < 0 and large enough 6

e—,w—aW(e)Jr%oZ > CID(—W(Q)) S e — ¢ —[i0+o We(0)+10 2.

SoW.(0) < —-W(@®). O
Proof of Lemma 6 Here, for large 6,

W®) = —(it — %62)\/§+ o(/0).

So, since o = 5/0,

Ib.)

o+ WEO) = 2% M«/_—l-o(«/_) o —W@®) = “«/_+ 0(v/6).

Furthermore, rewriting the normal censor equation,

e M+37 0 WO) = (=3 WO @ (—g 4 W(B))/p(—W(O) + o) + D(—W(B)).
So by Lemma 4, and since W () — —oo (as § — +00),
—ib+30 - W(©) _ 1.

lim e
60— 00

In fact, we have e_‘_“”%“z_"w(e) =1+ 0(1/\/5). O

Proof of Conclusion 2 As 2ji > &2, note that

@3 (37— %)= it e L L,
indeed,
1 1_,\°
P 15 4 160 = (ll_g&z) =0
From Sect. 4.6,
g(0) =@ Mo 9)) + @ (—W(B)) + 0(1//6)

3= 1=

3 _ - 1=2
=0 g (2 ) + b (%\/5) +o(1/3/8).
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Applying the asymptotic expansion

—x2/2

e
dx)~1-—
('x) xm

(as x — +00),

for which see [1], yields

_2 -

- o — 5 -

(@0 (27 TR /5) = @00 4 o1/vE). O
o

\S]I98)
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Ulam-Hyers Stability of Functional e
Equations in Quasi-#-Banach Spaces
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Abstract In this chapter, we give a survey on Ulam-Hyers stability of functional
equations in quasi-B-Banach spaces, in particular in p-Banach spaces, quasi-Banach
spaces and (8, p)-Banach spaces.

Keywords Ulam-Hyers stability - b-metric - Quasi-norm - Quasi-fS-norm
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5.1 Quasi-Normed Spaces and Quasi-S-Normed Spaces

In mathematics, more specially in functional analysis, a Banach space is a complete
normed vector space. Thus, a Banach space is a vector space with a metric that
allows the computation of vector length and distance between vectors and is
complete in the sense that a Cauchy sequence of vectors always converges to a
well defined limit that is within the space. Banach spaces are named after the
Polish mathematician Stefan Banach, who introduced this concept and studied it
systematically in 1920-1922 along with Hahn and Helly [69, Chapter 1]. Banach
spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and
Riesz earlier in the twentieth century. Banach spaces play a central role in functional
analysis. In other areas of analysis, the spaces under study are often Banach spaces.
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Banach spaces were generalized to quasi-Banach spaces. Moreover, there have
been very sound reasons to develop understanding these spaces such as the non-
normable property of many Banach spaces, and the absence of Hahn-Banach
theorem in quasi-Banach spaces, see [44] for fundamental facts in quasi-Banach
spaces. Similar to Banach algebras, the notion of quasi-Banach algebras was
introduced also.

Definition 5.1 ([39, page 77]; [5, Definition 3]; [45, pages 6-7]; [3, Remark 1.4];
[67, Definition 1.5]) Let A be a vector space over the field K (R or C), ¥k > 1 and
Il -]l : A— R4 be a function such that for all x, y € Aand alla € K,

1. ||x|| = 0if and only if x = 0.

2. llax|l = lalllx]l.
3. qlx + yl < c(lxll + Iyl).
Then
1. |- |l is called a quasi-norm on A, the smallest possible « is called the modulus of
concavity or quasi-triangle constant. Without loss of generality we can assume
k is the modulus of concavity. (A, || - ||, x) is called a quasi-normed space
2. .|l is called a p-norm on A, and (A, ||.||, k) is called a p-normed space if

lx + yI7 < lIxII” + Iyl (CRY)

forsome 0 < p < 1andforall x,y € A.

3. The sequence {x,}, is called convergent to x if nli}ngo llx, — x|| = 0, which we
denote by lim x, = x.
n—o0
4. The sequence {x,}, is called Cauchy if lim |x, — x;| = 0.
n,m— oo
5. The quasi-normed space (A, || - ||, k) is called quasi-Banach if each Cauchy
sequence is a convergent sequence.
6. The quasi-normed space (A, | - ||, «) is called p-Banach if it is a p-normed and
quasi-Banach space.
7. The quasi-normed space (A, || - ||, ) is called a quasi-normed algebra if A is
an algebra and ||xy|| < C||x|||ly|l forall x, y € A and some C > 0.
8. The quasi-normed algebra (A, || - ||, «) is called a quasi-Banach algebra if
(A, ||l - |I, k) is a quasi-Banach space.
9. The quasi-normed algebra (A, | - ||,«x) is called a p-normed algebra if
(A, |l - |I, k) is a p-normed space.
10. The p-normed algebra (A, | - ||, ) is called a p-Banach algebra if (A, || - ||, )

is a p-Banach space.

In 1993 Czerwik [21] introduced the notion of a b-metric with a coefficient 2.
This notion was generalized later with a coefficient x > 1 [22]. In 2010 Khamsi
and Hussain [47] reintroduced the notion of a b-metric under the name metric-
type. Another notion of metric-type, called s-relaxed, metric was introduced in [29,
Definition 4.2], see also [46]. A b-metric is called quasi-metric in [55]. Quasi-metric
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spaces play an important role in the study of Gromov hyperbolic metric spaces [79,
Final remarks], and in the study of optimal transport paths [82]. For convenience the
names b-metric and b-metric space will be used in what follows.

Definition 5.2 ([22, page 263]) Let X be a nonempty set,k > l andd : X x X —
R be a function satisfying the following conditions for all x, y, z € X:

1. d(x,y) =0ifand only if x = y.;
2.d(x,y)=d(y, x);
3.d(x,z) < K[d(x, y)+d(y, z)].

Then

1. d is called a b-metric on X and (X, d, k) is called a b-metric space.
2. The sequence {x,}, is called convergent to x in (X, d, «) if lim d(x,,x) =0,
n—oo

written lim x, = x.
n— oo
3. The sequence {x,}, is called Cauchy if lim d(x,,x,) =0.
n,m—oo

4. The space (X, d, k) is called complete if each Cauchy sequence is a convergent
sequence.

It is easy to see that every metric space is a b-metric space with k = 1, and there
exists a b-metric that is not a metric [4, Example 3.9]. Here, we give some known
examples of b-metric spaces.

Example 5.1 ([36, page 110]) Let X =R, p > landthe mapd : X x X — [0, 00)
defined by
d(x,y)=|x—y|’ forallx,ye X.

Then (X, d, ) is a b-metric space with coefficient x = 2P~1 > 1.
Next example shows the generality of Example 5.1.

Example 5.2 ([10, Example 1.1]) The set £,(R) with 0 < p < 1, where

£pR) = {{x,) CR: Y |x|” < o0},

n=1

together with the map d : £,(R) x £,(R) — [0, oo) defined by

)

1

d(x,y) = (E |x, — yn|p)p
n=1

1
forallx = {x,}, y = {ya} € £,(R) is a b-metric space with coefficientk =27 > 1.
The above result also holds for the general case £,(X) with0 < p < 1, where X is
a Banach space.
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Example 5.3 ([10, Example 1.2]) The set L,[0, 1] withO0 < p < 1, where

1
L,[0,1]:= {x:[O,l]—>R: f|x(t)|pdt<1},
0

together with the map d : L [0, 1] x L,[0, 1] — R defined by
! 1/p
dex,y) = ( /0 [x() = y()|"dr)

1
forall x, y € L,[0, 1] is a b-metric space with constant x =27 > 1.
Next we give the result claiming that every b-metric space is metrizable.

Theorem 5.1 ([65, Proposition on page 4308]) Let (Y, d, k) be a b-metric space,
0 =log,, 2, and

n
Dg(x,y) = inf[Zde(xi,xiH) CX] =X, X2, . Xy Xpp1 =y EY,n>1
i=1

forall x,y € Y. Then Dy is a metric on Y satisfying

1
Zde(x, y) < Da(x,y) <d’(x,y)

forall x,y € Y. In particular, if d is a metric then § = 1 and Dy = d.

It is also easy to see that every normed space is a quasi-normed space with k = 1.
But, there exist p-Banach spaces which are not normable as in following examples.

Example 5.4 ([56, Examples 1-2])

1. Lebesgue spaces L? with the quasi-norms

I|f||p=(/9|f(X)|pdu(x))7l’, fekly

are Banach spaces for | < p < oco. For 0 < p < 1, they are p-Banach spaces
1

with the quasi-triangle constant C = 27-T.
2. Lorentz spaces L?9 for 0 < p,q < oo and Marcinkiewicz or weak LP-spaces
L7 for 0 < p < oo are quasi-Banach spaces determined by the quasi-norms

1 1
(fom[ﬁf*(t)]q%)" if0<q < oo

1
suptr f*(t) ifg =00
t>0

||f||p,q =
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where
A0 =inffA > 0:pu(x € Q:|f(x)] > i) <1}

Moreover, the following assertions hold.

a. ||.llp,q is anorm if and only if either 1 < g < por p =g = 0.
b. The spaces L?-? are not normable if one of the following conditions holds.

.0<p<oocand0<gqg < 1.
ii.0<p<landl <¢q < oo0.
iii. p=1land1 < ¢g < oo.

However, by Aoki-Rolewicz Theorem, each quasi-norm is equivalent to some
p-norm. This theorem plays a very important role in p-normalizing a quasi-normed
space.

Theorem 5.2 ([56, Theorem 1/Aoki-Rolewicz Theorem]) Let (Y, |- ||y, ky) be a
quasi-normed space, p = logzw 2, and

S| =

n
:x:in,xi eY,nzl}

i=1

lxlly = inf{(an Ii117)
i=1

forallx € Y. Then ||| - |||y is a quasi-norm on Y satisfying

e + yllly < ey +1yily

and
1
2—IIXI|Y < lixlily = lixlly (5.2)
Ky
forall x,y € Y. In particular, the quasi-norm ||| - |||y is a p-norm, and if || - ||y is a
norm then p = Land ||| - lly = || - Ily.

The main results of [2] were proved by using the following fixed point result of
Brzdek et al. [13], where Y'Y is the set of all functions from U # @ to Y # .

Theorem 5.3 ([13, Theorem 1]) Assume that

1. U is a nonempty set, Y is a complete metric space, and 7 : YU — YU isa
given function.

2. There exist f1,..., fx : U — Uand Ly, ..., Ly : U — Ry such that for all
E, e YY and x € U,

k
d((ZH, (ZWE) = Y. Li@d(E(f0), n(fi ). (5.3)
i=1



102 N. V. Dung and W. Sintunavarat

3. There existe : U — Ry and ¢ : U — Y such that for all x € U,
d((Te)(x), 9(x)) < e(x)

4. Foreveryx € U,

o0
£ (x) = ) (A"e)(x) < 00
n=0
k
where (A8)(x) = Y L,-(x)cS(f,- (x))for alls:U - Riandx € U.
i=1
Then for every x € U, the limit li)nolo(ﬁ”q)) (x) = ¥ (x) exists and the function
n
¥ . U — Y so defined is a unique fixed point of 7 satisfying

d(p(x), ¥(x)) < &*(x)

forallx e U.
The version of Theorem 5.3 in Banach spaces is as follows.
Theorem 5.4 ([2, Theorem 2.1]) Assume that

1. U is a nonempty set, Y is a Banach space, and 7 : YUY — YU is a given

function.
2. There exist f1,..., fx : U - Uand Ly, ...,Ly : U — Ry such that for all
gneYlandx e U,

k
(T8 (x) — (T W) < ZLi(X)IIE(fi(X)) — u(fi @)1l
i=1
3. There existe : U — Ry and ¢ : U — Y such that for all x € U,
(T @)(x) — )]l < e(x).
4. Foreveryx € U,

£ (x) = ) (A"e)(x) < 00

n=0

k
where (A8)(x) = Y Li(x)S(ﬁ (x))for all§ : U — Ry andx e U.

i=1
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Then for every x € U, the limit lim (J"¢)(x) = ¥ (x) exists and the function
n— o0
¥ . U — Y so defined is a unique fixed point of J satisfying for all x € U,

lo(x) — ()] < &*(x).

The next result is an extension of Theorem 5.3 on complete metric spaces to
complete b-metric spaces, which was proved by using Theorem 5.1.
Theorem 5.5 ([24, Theorem 2.1]) Assume that

1. U is a nonempty set, (Y, d, k) is a complete b-metric space, and 7 : YU — YU
is a given function.

2. There exist f1,..., fx : U - Uand Ly, ..., Ly : U — Ry such that for all
E ne YV andx € U,

k
d(ZH®. (TE) = Y Lind (/). w(£i@)):
i=1

3. There existe : U — Ry and ¢ : U — Y such that for all x € U,
d((Te)(x), 9(x)) < e(x).
4. Forevery x € U and 0 = log,, 2,

e*(x) = Z(A”s)e(x) < o0

n=0
k
where (A8)(x) = ) Li(x)(S(fi(x))for alld:U — Ryiandx e U.
i=1
Then we have
1. For every x € U, the limit lim (J"¢)(x) = ¥ (x) exists and the function ¥ :
n—oo
U — Y so defined is a fixed point of 7 satisfying
&’ (p(x), ¥ (x)) < 4e*(x) (5.4)

forallx € U.
2. Foreveryx € U, if

£ (x) < (M Z(A”s)(x))g <00
n=1

for some positive real number M, then the fixed point of 7 satisfying (5.4) is
unique.
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From Theorem 5.5 we get the following result which is an extension of
Theorem 5.4 to quasi-Banach spaces.

Corollary 5.1 ([24, Corollary 2.2]) Assume that

1. U is a nonempty set, (Y, |||, k) is a quasi-Banach space, and 7 : YV — YU is
a given function.

2. There exist f1,..., fx : U — Uand Ly, ..., Ly : U — Ry such that for all
gneYYandx eU,

k
(T8 x) — (T W) < ZLi(X)IIE(fi(X)) — u(fi @)l
i=1
3. There existe : U — Ry and ¢ : U — Y such that for all x € U,
(T @)(x) — () < &(x)
4. Foreveryx € U and 0 = log,, 2,
£5(x) =Y (A"e)"(x) < o0
n=0
where
k
(A)(x) = > Li(x)8(fi(x))
i=1
foralls :U — Ry andx € U.

Then we have

1. For every x € U, the limit lim (J"¢)(x) = ¥ (x) exists and the function V :
n—oo
U — Y so defined is a fixed point of 7 satisfying

lo(x) — w(0))l? < 4e*(x) (5.5)

forallx € U.
2. Foreveryx € U, if

£ (x) < (M Z(A”e)(x))g <00
n=1

for some positive real number M, then the fixed point of & satisfying (5.5) is
unique.
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Remark 5.1 ([24, Remark 2.3]) If Y is a complete metric space in Theorem 5.5,
thenk = 1. So6® = 1 and D; = d and we obtain Theorem 5.3. Moreover the
inequality (5.4) becomes better as

d(p(x), ¥ (x)) = d° (p(x), ¥ (x)) < &*(x).
As a generalization of a quasi-normed space, the quasi-B-normed space was
introduced as follows.

Definition 5.3 ([40]) Let X be a vector space over the field K (R or C), « > 1,
0<pB<1l,and | -] : X - R4 be a function satisfying the following conditions
forallx,y € X andalla € K:

1. |lx|| = 0if and only if x = 0;

2. |lax| = lal?|x]l;

3. 0lx + yl < < (lxll + Iyl).

Then

1. |||l is called a quasi-B-norm on X, the smallest possible « is called the modulus of
concavity or quasi-triangle constant, and (X, || - ||, «) is called a quasi-B-normed
space. For a quasi-B-normed space (X, || - ||, ¥), without loss of generality we

can assume « is the modulus of concavity.
2. ||.]lis called a (B,p)-normon X, and (X, ||.||, «) is called a ( B, p)-normed space if

x4+ yI7 < llxI” + [y lI”

forsome 0 < p < landforallx,y € X.

3. The sequence {x,}, is called convergent to x if lim |x, — x|| = 0, which we
n—oo
denote by lim x, = x.
n— o0
4. The sequence {x,}, is called Cauchy if lim |x, —x,]| =0.
n,m—00

5. The quasi-f-normed space (X, || - ||, k) is called quasi-B-Banach space if each

Cauchy sequence is a convergent sequence.
6. The quasi-B-normed space (X, || - ||, «) is called (B8, p)-Banach space if it is a

(B, p)-normed and quasi-8-Banach space.

For § = 1, the quasi-B-norm reduces to a quasi-norm. The following example
shows that there exists a quasi-f#-norm that is not a quasi-norm.

Example 5.5 ([28, page 333]) Let X = R? and for some 0 < p, B < 1, define

1
Il (x1lP? + 1xalPP) 7 if xy # 0
B= .
" ifx2 =0

for all x = (x1, x2) € X. Then |.|| g is a (B, p)-norm that is not a quasi-norm.
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If X is a quasi-B-normed space with the quasi-B-norm |[|x||g, then it is a quasi-
1

normed space with the quasi-norm |x|| = |[x]|| g Recall that Aoki-Rolewicz
Theorem, see Theorem 5.2, plays a very important role in p-normalizing a
quasi-normed space. However, some authors used Aoki-Rolewicz Theorem to p-
normalize a quasi-B-normed space, see Sect.5.3.1. It seems to be not correct. We
present here an explicit Aoki-Rolewicz type Theorem to show that we can also p-
normalize a quasi-B-normed space as follows.

Theorem 5.6 Let (Y, | - |y, «y) be a quasi-B-normed space with 0 < B < 1,

p = log 12, and
Qry) P

n P E n
ity =inf{ (X al)" s x =Y xioxi e von =1}
i=l1

i=1

forallx € Y. Then ||| - |||y is a quasi-B-norm on Y satisfying

x4+ yllly < Hxlly + Hylly (5.6)
and

! p p p
EIIXIIY < lxllly = lixlly (5.7

forall x,y € Y. In particular, the quasi-B-norm ||| - |||y is a (B, p)-norm, and if
I Ny isanormthen p = p = 1land|ll-Illy =1 -ly.
Proof Put

n

n po L
[y =inf { (Y Ity )" cx =Y v e von = 1.

i=1 i=1

1 1
We find that ||.||1’§ is a quasi-norm with the modulus of concavity %. So by
Theorem 5.2 we get ||| |||y, is a quasi-norm on Y satisfying

lllx + yllly g < Hxllly g + LI
B B B

and

1 1
(IxIE)” < 1l 5 < ()
(2uy)7
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forall x,y € Y.Since 0 < 8 < 1, we get |||.|lly = (|||.|||y’,3)ﬂ is also a quasi-g-
norm on Y and

llx + vy = (1lx + yI15 5)"

(lx + Y112 5)°

(15, 5 + 1y11Y 5)”
(12115 5)° + (115, 5)"

= |l Iy + Hylly-

=
=

Also, we have

1

L P _ 1 % r\? P \B_ b4 B\P\B _ 14
2y Xly = ((m)é(uxny) )= (g )" = g < ()" = 1.

In 2005 Baak [7] introduced the so-called generalized quasi-normed space as
follows.

Definition 5.4 ([7, Definition 2]) Let X be a vector space over the field K (R or
C),k > 0,and || - || : X — R be a function satisfying the following conditions for
all x,x; € X,i e N,and all a € K:

1. |lx|| = 0if and only if x = 0;
2. flax|l = lalllx|l;

o0 o0
oY xll <x ) llxill.
i=1 i=1

Then || - || is called a generalized quasi-norm on X, and (X, || - ||, «) is called a
generalized quasi-normed space.

A generalized quasi-Banach space, a generalized p-norm and a generalized p-
Banach space were defined similarly to the quasi-normed spaces, see [7, page 216].
The author claimed that the generalized quasi-normed space is an extension of a
quasi-normed space. However, the class of all generalized quasi-normed spaces is
only a special class of quasi-normed spaces. Indeed, by choosing x; = x, xp = y
and x; = O for all i > 3 in Definition 5.4 we get |x 4+ y|| < «(||x]| + |¥ID.
Therefore generalized quasi-normed, generalized p-normed, generalized quasi-
Banach, generalized p-Banach in the sense of Definition 5.4 will be called
strong quasi-normed, strong p-normed, strong quasi-Banach, strong p-Banach
respectively in the next.
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5.2 Ulam-Hyers Stability of Functional Equations
in Quasi-Banach Spaces

A definition of stability in the case of homomorphisms between groups was
suggested by a problem posed by Ulam [80, page 64]. The first answer to Ulam’s
problem is the result of Hyers. Many authors then studied Ulam-Hyers stability of
the following Cauchy equation:

Ja+y=fx)+ ), x,yeX, (5.8)

where f is an unknown function from a space X to a space Y endowed with some
binary operations and thus forming groups, norm spaces, algebras etc. Next, we give
one of the famous results in this direction.

Theorem 5.7 ([41, Theorems 1 and 2]; [6, Theorem on page 64]; [31, Theo-
rem 2]; [53, Theorem 5]; [11, Theorem 1.2]) Let X, Y be two real normed spaces
and f : X — Y be a function satisfying the inequality

1fG+y) = f) = fFODI < adlxl” +lIy1”)

forall x,y € X \ {0}, where o and p are real constants with o > 0 and p # 1.
Then the following statements hold.

1. If p > 0and Y is complete, then there exists a unique solution T : X — Y
of (5.8) such that

1f @) = T@)I = 7557 lIx|1” forall x € X \ {0},

2. If p < O then f is additive, that is, (5.8) holds for all x, y € X \ {0}.

In 2006, Maligranda [56] presented an interesting report on the life and work,
the books and research of Tosio Aoki who was a Japanese mathematician and
published only two papers on functional analysis. Very surprisingly, those two
papers have a high impact to Ulam-Hyers stability and quasi-normed spaces. The
first paper [5] was on a very useful tool to p-normalize a quasi-normed space which
was then reproved by Rolewicz independently [78], see Theorem 5.2. The second
paper [6] was on Ulam-Hyers stability of additive map, see the above theorem.
Maligranda explained many aspects on Aoki result about Ulam-Hyers stability and
even proposed the term Ulam-Hyers-Aoki stability instead of Ulam-Hyers-Rassias
stability, see also [57]. In this chapter we use the term Ulam-Hyers stability to merit
the asker and the first answerer to the problem.

Ulam-Hyers stability was studied in quasi-Banach spaces where the authors
investigated many kinds of functional equations similar to those already considered
in Banach spaces. We may distinguish two approaches. In the first one, based
on Theorem 5.2, the authors claimed to study Ulam-Hyers stability of functional
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equations only for p-Banach spaces. In the second, the authors studied Ulam-Hyers
stability of functional equations in quasi-Banach spaces which are not assumed to
be p-Banach spaces. We must say that the stages in which we study Ulam-Hyers
stability of functional equations in quasi-Banach spaces are very similar to those in
Banach spaces as follows

1. First stage: Finding a certain kind of functional equations.

2. The second stage: Stating and proving Ulam-Hyers stability of that kind of
functional equations in quasi-Banach spaces by using direct method or the fixed
point method.

a. Direct method: the exact solution of the functional equation is explicitly
constructed as a limit of a sequence, starting from the given approximate
solution [30].

b. Fixed point method: the exact solution of the functional equation is explicitly
constructed as a fixed point of some certain map [14].

5.2.1 Ulam-Hyers Stability of Functional Equations in
p-Banach Spaces

The first result in this field belongs to Park et al. [68] published in 2006. In that
paper the authors proved Ulam-Hyers stability of the quadratic functional equation
of the form

Ja++fx—=y)=2fx)+2f()
in strong p-Banach spaces by the direct method as follows.

Theorem 5.8 ([68, Theorem 3.1]) Assume that the following conditions hold.

1. (X, |I.llx, kx) is a strong quasi-normed space over the field K and (Y, ||.|ly, ky)
is a strong p-Banach space, and f : X — Y is a given map.
2. There arer > 2, 0 > 0 such that

If G+ + fe=y) =2f0) =2fWlly < 0(lxl + lIyly)

forallx,y e X.

Then there exists a unique quadratic map Q : X — Y such that

Q) — f()lly =

~lxlly
(P — 4p)p

forall x € X.
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After that Park [67] proved Ulam-Hyers stability of homomorphisms in p-
Banach algebras. This was also applied to investigate isomorphisms between
p-Banach algebras. This problem was continued by Najati and Park [61] but the
latter paper was published 1 year earlier. Note that the following statement appeared
in [67, page 90] and [59, page 1320] and many papers later.

By Aoki-Rolewicz Theorem, each quasi-norm is equivalent to some p-norm. Since it is

much easier to work with p-norms than quasi-norms, henceforth we restrict our attention
mainly to p-norms.

Then, although the titles of many papers are about quasi-Banach spaces, almost all
their contents are on p-Banach spaces.

There have been many results on Ulam-Hyers stability of functional equations
in p-Banach spaces, and almost all of them were proved by the direct method. The
main result of [67] is as follows.

Theorem 5.9 ([67, Theorem 2.1]) Assume that the following conditions hold.

1. (A, |l.lla, k4) is a quasi-normed algebra and (B, ||.|p,kB) is a p-Banach
algebra over the field R.
2.r>1,0>0,and f : A — B is amap satisfying

If &+ y) = f) = fDMls < Ollxl Iyl
1f Gy = FC)fF DI < 0llxlllyll

forall x,y € A.
3. Foreach x € A, f(tx) is continuous int € R.

Then there exists a unique homomorphism H : A — B such that

If(x) —H@)lp <

XY, x e A
(@rr —2p)»

Also in [67] Ulam-Hyers stability of homomorphisms in p-Banach algebras
associated to Jensen functional equation, isomorphisms between p-Banach alge-
bras associated to Cauchy functional equation and to Jensen functional equation
were studied, see [67, Theorem 2.3], [67, Theorem 3.1] and [67, Theorem 3.3],
respectively.

In the year 2007 many results on Ulam-Hyers stability of functional equations
in p-Banach spaces were published. Park [66] proved Ulam-Hyers stability of
homomorphisms in p-Banach algebras and of generalized derivations on p-Banach
algebras for the functional equation of the form

DO ati —xp) +nf (D qxi)=nqg Yy f(x)
i=1 =1

i=1 i=1
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see [66, Theorems 2.1 and 2.2] and [66, Theorems 4.2 and 4.3], respectively. These
were also applied to investigate isomorphisms between p-Banach algebras, see
[66, Theorems 3.1 and 3.2]. Jun and Kim [42] characterized the generalized cubic
functional equation, see [42, Theorems 2.1 and 2.3], and then solved the generalized
Ulam-Hyers stability problem for Euler-Lagrange type cubic functional equations
of the form

flax+y)+ fx+ay) =@+ @ - Df&x) + fOMl+ala+ D fx+y),

where f is an unknown function from a p-norm space to a p-Banach space Y
and a is a fixed integer with a # 0, 1, see [42, Theorems 3.1, 3.3, 3.7 and 3.8],
also in p-Banach B-modules, see [42, Theorems 4.1-4.4]. These results were then
generalized in [50].

In 2008, Eskandani [27] characterized the following functional equation

m m

i:f(mx,- + Z xj) —l—f(le-) :Zf(imxi)

j=1j# i=1

where f is an unknown function from a quasi-norm space to a p-Banach space,
m € N with m > 2 [27, Lemma 2.1] and then investigated Ulam-Hyers stability
of (5.2.1) in p-Banach spaces [27, Theorems 2.2 and 2.3]. In the same year, Najati
and Moghimi [60] established the general solution of the functional equation

fRx+y)+ fQx—y)=fx+y)+ fx—y)+2fQ2x) =2f(x),

where f is an unknown function from a real vector space to a real vector space
[60, Lemmas 2.1 and 2.3, Theorem 2.4], and investigated Ulam-Hyers stability of
this equation in p-Banach spaces [60, Theorems 3.2, 3.3, 3.6, 3.7, 3.10 and 3.11].
Also, Najati and Eskandani [59] established the general solution and investigated
Ulam-Hyers stability of the following functional equation

x4+ )+ fRx—y)=2f(x+ ) +2f(x —y) +2[f(2x) =2 f(x)]

in the p-Banach spaces.

In 2009, Gordji and Khodaei [34] achieved the general solution and the general-
ized Ulam-Hyers stability of generalized mixed type cubic, quadratic and additive
functional equations of the form

FO+ky) + fx—ky) = fx+3) + k2 fx—y) +2(1 — k) f(x)

for fixed integers k with k # 0, £1 in the p-Banach spaces.
In 2012, Gao [32] investigated the generalized Ulam-Hyers stability of an n-
dimensional quadratic functional equation
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n

f(in)-l- Z f(xi_xj):an(xi)
i

i=1 l<i<j<n ie

with n > 2 in p-Banach spaces by the direct method [32, Theorem 10.2], and
by the fixed point method [32, Theorem 10.4]. Zhang and Wang [85] investigated
the generalized Ulam-Hyers stability of the quadratic-cubic functional equation of
the form

6f(x+y)=6f(x —y)+4fBy) =3f(x +2y) =3f(x =2y) + 97 (2y)

in p-Banach spaces [85, Theorems 25.1-25.7].
In 2015, Cho et al. [20] considered the following functional equation

n

Zf(Z‘Z(xi —xj)) +nf(qui) =WIZf(xi)
i—1 =1

i=1 i=1

in p-Banach algebras. Then authors proved Ulam-Hyers stability of homomor-
phisms in p-Banach algebras [20, Subsection 2.3.3] and stability of generalized
derivations in p-Banach algebras [20, Subsection 2.3.1].

In 2016 Balamurugan et al. [8] established the general solution and investigated
the generalized Ulam-Hyers stability of the following additive-quadratic-cubic-
quartic functional equation

fOx+2y+2)+ fBx+2y—2)+ fBx—2y+2)+ fBx —2y —2)
=B[fx+y)+ fx—=]+24[f(—x +y) + f(—=x — y)]
+ L2[fx+2)+ fx—]+6[f(—x+2)+ f(—x — 2)]
+4[f(y+z)—|—f(y—z)]~|—20f(2x)+4f(—2x) —160f(x) — 80f(—x)
+2/(2y) —80F(y) —24£(2)

in p-Banach spaces, where f(x) = f(x) + f(—x), see [8, Theorems 12, 13,
16, 19, 22, 25 and 28]. Heidarpour [35] proved the superstability of n-ring
homomorphisms on C [35, Theorems 2.1 and 2.3] and established Ulam-Hyers
stability of n-ring homomorphisms in p-Banach algebras [35, Theorems 3.1-3.3,
3.5 and 3.6]. Bodaghi and Kim [9] proved Ulam-Hyers stability for the following
mixed quadratic-additive functional equation in p-Banach spaces

S +my)+ f(x —my)

_2f @) = 2m? £ (y) + m? f(2y) if m is even
Fx+Y+ fx—y)=2m%2 =D f(y)+ m? -1 fQy) ifmisodd

see [9, Theorems 2.2, 2.6, 2.8 and 2.10].
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In 2017 Nikoufar [63] proved the generalized Ulam-Hyers stability of (o, a2)-
double Jordan derivations in p-Banach algebras and Isac-Rassias stability of double
Jordan derivations in p-Banach algebras [63, Theorems 2.6 and 2.8].

5.2.2 Ulam-Hyers Stability of Functional Equations in
Quasi-Banach Spaces Which Are Not Assumed to be
p-Banach

As mentioned in Sect.5.2.1, on studying Ulam-Hyers stability in quasi-Banach
spaces, the authors usually restricted their attentions mainly to p-norms. The
quotation on page 110 also appeared in the first works [60, page 401], [59,
page 1320], and in recent works [20, page 10]. However, quantities relevant to
Ulam-Hyers stability of functional equations are not preserved even by equivalent
norms in general. Moreover, the inequality (5.1) which may be seen to have the
modulus of concavity equal to 1, and the continuity of p-norms were used in
many proofs such as in proving the inequalities (3.17) and (3.20) in proof of
[60, Theorem 3.2], in proving the inequalities (3.32) and (3.35) in proof of [84,
Theorem 3.2].

Inspired by the above facts, some authors were interested in studying Ulam-
Hyers stability of functional equations in quasi-Banach spaces where the quasi-norm
is not assumed to be a p-norm, and thus, the modulus of concavity is greater than 1
and the quasi-norm is not continuous in general.

To overcome the modulus of concavity greater than 1 and the discontinuity
of quasi-norms, we can use the b-metric metrization theorem, see Theorem 5.1.
Note that we also use the following squeeze inequalities on b-metric mentioned in
Lemma 5.1 to overcome the discontinuity of a b-metric, and thus, of a quasi-norm,
in proving Ulam-Hyers stability of functional equations in quasi-normed spaces.
Besides that, some authors also used the assumption of strong quasi-Banach spaces
to overcome the modulus of concavity greater than 1 and the discontinuity of quasi-
norms.

Lemma 5.1 ([1], Lemma 2.1) Let (X, d, k) be a b-metric space and nlin;o Xy = X,
lim y, = y. Then we have

n—00

1. 5d(x.y) < liminfd(x,, yo) < limsupd (e, yn) < se?d(x. ).

2. If x =y, then nl_i)rr;od(xn, yn) = 0.

3. Foreachz € X, 1d(x,z) <liminfd(x,,z) <limsupd(x,,z) < kd(x, 2).
n—00 n—00
The first result in this field belongs to Park et al. [68] published in 2006. In that
paper the authors proved Ulam-Hyers stability of the quadratic functional equation
of the form
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Ja++fx =) =2f)+2f()

in strong quasi-Banach spaces by the direct method as follows.
Theorem 5.10 ([68], Theorem 2.1) Assume that the following conditions hold.

1. X is a strong quasi-normed space over the field K and (Y, |.||y, ky) is a strong
quasi-Banach space, and [ : X — Y is a given map with f(0) = 0.
2. ¢ : X x X — [0, 00) is a function satisfying

o0
G, y) = le%, ) < o0
j:

forallx,y e X.
S Nfx++fx—y)=2f(x)=2fWlly = ¢, y) forallx,y € X.

Then there exists a unique quadratic map Q : X — Y such that

K
1) = f)lly = - ¢(x, x)

forall x € X.

In [24] Dung and Hang used the fixed point method to prove an extension of the
stability result of Aiemsomboon and Sintunavarat [2, Theorem 2.2] to quasi-Banach
spaces by applying Corollary 5.1.

Theorem 5.11 ([24], Theorem 2.5) Assume that the following conditions hold.

1. (X, |1, ) is a quasi-normed space over the field F, (Y, ||.||, k) is a quasi-Banach
space over the field K, and g : X — Y is a given function.
2. There exista,b € F\ {0}, A, B € K\ {0} and u, v : X — Ry such that

My = {n eN: K(‘%’sl(a + bn)sy(a + bn) + )%‘sl(n)sz(n» < 1}
is an infinite set, where 0 = log,, 2,
s1(n) = inf{r € Ry : u(nx) < tu(x) forall x € X}
s2(n) = inf{r € Ry : v(nx) < tv(x) forall x € X}

forn € F\ {0}, and s1, 53 satisfy the following two conditions, where n — 00
in IF if and only if |n| — oo,
a. lim si(£n)sy(xn) = 0.

n—o0

b. lim s;(n) =0o0r lim sy(n) = 0.
n—oo n—>0oo
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3. The function g : X — Y satisfies the inequality
lg(ax + by) — Ag(x) — Bg(Y)|| < u(x)v(y) forx,y € X \ {0}.
Then g satisfies the equation
glax + by) = Ag(x) + Bg(y) forx,y € X \ {0}.

By [12, Lemma 3.1] we see thatif g : X — Y satisfies the general linear equation
on X \ {0} then it satisfies the general linear equation on X. From this fact and
Theorem 5.11 we get the following result which is an extension of Aiemsomboon
and Sintunavarat [2, Theorem 2.3] to quasi-Banach spaces.

Theorem 5.12 ([24], Theorem 2.6) Assume that the following conditions hold.

1. (X, |I.ll, ©) is a quasi-normed space over the field F, (Y, ||.|l, k) is a quasi-Banach
space over the field K, and g : X — Y is a given function.
2. There exista,b € F\ {0}, A, B € K\ {0} andu,v : X — Ry such that

My = {n eN: K(‘%‘sl(a + bn)sy(a + bn) + )g‘sl(n)sz(n)> < 1}
is an infinite set, where
s1(n) = inf{r € Ry : u(nx) < tu(x) for all x € X}
s2(n) = inf{r € R4 : v(nx) < tv(x) forall x € X}

forn € F\ {0} and s1, 57 satisfy the following two conditions
a. lim sy(£n)sy(xn) = 0.
n—o0

b. lim s;(n) =0or lim sy(n) =0.
n—oQ n—>oo
3. The function g : X — Y satisfies the inequality
lg(ax + by) — Ag(x) — BEWIl = u(x)v(y) for x, y € X \ {0}.
Then g satisfies the equation
glax +by) = Ag(x) + Bg(y) forx,y € X.

By using Theorem 5.11 we get an extension of [70, Theorem 2.1] to quasi-
Banach spaces as follows.

Corollary 5.2 ([24], Corollary 2.7) Assume that the following conditions hold.

1. (X, |I.ll, ©) is a quasi-normed space over the field F, (Y, ||.|l, k) is a quasi-Banach
space over the field K, and g : X — Y is a given function.
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2. There exista,b € F\ {0}, A,B € K\ {0}, c >0, p,ge Rwithp+qg <0
such that

lig(ax + by) — Ag(x) — BgW)Il < clixlI”lly|l? for x,y € X \ {0}.
Then g satisfies the equation
glax +by) = Ag(x) + Bg(y) forx,y € X.

The next example shows the significance of the obtained results in quasi-Banach
spaces.

Example 5.6 ([24, Example 2.8]) Let X = Y = L?(0,1) with0 < p < 1 and
g : X — Y be defined by g(x) = %x for all x € X. Then X, Y are quasi-Banach
spaces and all assumptions of Corollary 5.2 are satisfied witha = A and b = B. So
Corollary 5.2 is applicable to X, Y and g.

However, since L?(0, 1) with 0 < p < 1 is not normable [64, page 18], so [2,
Theorem 2.2] is not applicable to X, Y and g.

To overcome the modulus of concavity greater than 1 and the discontinuity of
quasi-norms, the author of [23] used the squeeze inequality (5.2) presented in an
explicit revision of Aoki-Rolewicz, see Theorem 5.2. As illustrations, the authors
proved an extension of the main result of [60] in p-Banach spaces to quasi-Banach
spaces with better approximation.

Theorem 5.13 ([23, Theorem 2.2]) Assume that the following conditions hold.

1. (X, |- llx,kx) is a real quasi-normed space and (Y, || - ||y, ky) is a real quasi-
Banach space.
2. ¢ : X x X — [0, 00) is a function such that forall x, y € X,

lim 4"p(—=, 2) =0

n—00 omn’ on

andforall x € X, all y € {0, x, —2x,3x,4x}, p = logzKY 2,

Z4”’¢J”(§, 5) < 00.
i=1

3. f: X — Y isan even function such that f(0) = 0and forallx,y € X,
IFCx+)+fCx—y) = fx+y) = fx—y) =2f2x)+2f(0)lly = o(x, y).

Then for all x € X, the limit Q(x) = lim 4”f(2x—,,) exists, and the function Q :
n—oo

X — Y is a unique quadratic function satisfying
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£ ) — 0W)lly < %y(x/?(x))% (5.9)
forall x € X, where

X XN g X A
3_2[’2i)+¢ (3.21"3,2[)

7 _oo ip(opp(* X 4
b =34 (20" (55 557) + 9"

by —2x X
s ).

The following example illustrates that the approximation defined by (5.9) in
Theorem 5.13 can be better than the approximation defined by (3.4) in [60,
Theorem 3.2].

Example 5.7 ([23, Example 2.3]) Let X =Y = L%[O, 1] and

1 2
lxllx = lxly = (/0 (o))

for all x € X, where

L%[O, 1] = {f :[0,1] > R |f|% is Lebesgue integrable }

1 2
Define f(x) = x2 4+ x* forall x € X, o(x,y) = (/ 6|x(t)y(t)|dt> for all
0
x,y € X. Then

1. All assumptions of Theorem 5.13 and [60, Theorem 3.2] are satisfied with ky =
2.

2. The approximation defined by (5.9) in Theorem 5.13 is better than the approxi-
mation defined by (3.4) in [60, Theorem 3.2].

Remark 5.2 ([23, Remark 2.4]) Similarly to the proof of Theorem 5.13, we can
prove extensions of [60, Theorems 3.6, 3.7, 3.10 and 3.11] and many other results
in p-Banach spaces to quasi-Banach spaces with better approximation.

As mentioned in Sect. 5.2.1, Ulam-Hyers stability of functional equations in p-
Banach algebras was studied by Park [67]. Two of the key techniques in [67] are the
proofs of R-linearity of the homomorphism [67, line +14 on page 91], and of the
preservation of multiplication [67, line -9 on page 91].

Recall that, to prove the R-linearity of the homomorphism [67, line +14 on
page 91], the author used the same reasoning as in [71, page 299], where the dual
space of a Banach space was used. However, one of the main differences between
Banach spaces and quasi-Banach spaces is the dual space, while the dual space
approach is very useful in Banach spaces by Hahn-Banach theorem, the dual space
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approach fails in quasi-Banach spaces since many quasi-Banach spaces have the
trivial dual space, see [44, page 1102].

Also, to prove the preservation of multiplication under the function H [67, line -9
on page 91], the function H was defined by

— 1 ne( X
H) = lim 27 ()
and thus

. X
He) = fim 2/ (37)

but the author used

. n Xy
o = lim 4 (575)

These limitations were subsequently used in many works, see for example in
old one [61, line +8 on page 769] and in recent one [20, Lemma 2.14]. Recall
that the quantities relevant to Ulam-Hyers stability are not preserved even under
equivalent norms. So Ulam-Hyers stability of homomorphisms in quasi-Banach
algebras, where the Banach space is not assumed to be p-Banach, may be different
from that in p-Banach algebras.

By the above reasons, some authors were interested in revising the proofs of
Ulam-Hyers stability of homomorphisms in p-Banach algebras [67], and interested
in extending that to quasi-Banach algebras.

To prove R-linearity of homomorphisms in quasi-Banach algebras,
Dung et al. [25] used the following Moore-Osgood Theorem on exchanging limits.

Theorem 5.14 (Moore-Osgood Theorem [33, Theoren_1 2.14.1 an_d Remark
2.1.4.1])) Let X, Y be subsets of Hausdorf{f spaces,a € X\ X, b € Y\ Y, Z be
a metric space, and f : X X Y — Z be a given function such that
1. lim f(x,y)=h(y)onY \ {b}.

X—a
2. lin}) f(x,y) = g(x) uniformly on X \ {a}.

y—

Then the limits  lim  f(x,y), lim lim f(x, y) and lim lim f(x, y) exist and
(x,y)—>(a,b) X—>a y—>b y—bx—a

lim  f(x,y) = lim lim f(x,y) = lim lim f(x, y).
(x,y)—(a,b) xX—>a y—b y—>bx—>a

To prove the preservation of multiplication under the function H, Dung et al. [25]
used the following, somewhat different, definition of the homomorphism

H(x) = nl_i)ngo4"f(:—n). (5.10)
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These techniques overcome the limitations appeared in many results on Ulam-
Hyers stability of homomorphisms in quasi-Banach algebras as mentioned above.

The following result is an extension of [67, Theorem 2.1], where the p-
Banach algebra is replaced by a quasi-Banach algebra, and it was proved by using
Theorems 5.2, 5.14 and the definition of H stated in (5.10).

Theorem 5.15 ([25], Theorem 4) Assume that the following conditions hold.

1. (A, ||.lla, k4) is a quasi-normed algebra and (B, |.||B, kp) is a quasi-Banach
algebra over the field R.
2.r>1,0>0,and f : A — B is a function satisfying

Ifx+y) = f) = fDMls < Ollxl4lyIy
1fGey) = FC) fF DB < 0llxlllyll

forall x,y € A.
3. Foreach x € A, f(tx) is continuous int € R.

Then there exists a unique homomorphism H : A — B such that

X%, xeA.

If(x)—HX)|p < T
(4rr —2r)»

The techniques used in proof of Theorem 5.15 may be applied to revise and
extend other results on Ulam-Hyers stability of homomorphisms in p-Banach
algebras to quasi-Banach algebras [25, Remark 5].

5.3 Ulam-Hyers Stability of Functional Equations
in Quasi-f-Banach Spaces

Ulam-Hyers stability of functional equations in quasi-8-Banach spaces was first
studied in [74] by Rassias and Kim. Then authors investigated Ulam-Hyers stability
of many kinds of functional equations similar to that in quasi-Banach spaces. We
may distinguish two ways in stating and proving the results. In the first way, based
on Theorem 5.2, the authors claimed to study Ulam-Hyers stability of functional
equations only for (8, p)-Banach spaces. In fact, we must use Theorem 5.6 to
do that. In the second way, the authors studied Ulam-Hyers stability of functional
equations in S-Banach spaces directly. We must say that the stages to study Ulam-
Hyers stability of functional equations in quasi-S-Banach spaces are very similar to
that in quasi-Banach spaces mentioned on page 109.
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5.3.1 Ulam-Hyers Stability of Functional Equations in
Quasi-B-Banach Spaces

In studying Ulam-Hyers stability of functional equations in quasi-B-Banach spaces,
many authors also used the quotation on page 110 to claim that we could replace a
quasi-B-Banach space by certain (8, p)-Banach space. However, as mentioned on
page 106 we could not use Aoki-Rolewicz Theorem to claim that every quasi-S-
norm is equivalent to certain (8, p)-norm. Alternatively we must use Theorem 5.6.

There have been many results on Ulam-Hyers stability of functional equations in
(B, p)-Banach spaces. In 2009, Rassias and Kim [74] generalized results obtained
for Jensen type maps and established new theorems about Ulam-Hyers stability for
general additive functional equations of the form

) . n—2 12 N
3 g(“T)W+ 3 xkz) Z%Zg(xi) (5.11)
i=1

I<i<j=<n I=1,k#i,j

in (8, p)-normed spaces. Note that in case n = 2, Eq. (5.11) yields Jensen additive
equation

X+y
2g <T) =g() +g)
and there are many interesting results concerning Ulam-Hyers stability problems of
Jensen equation, see [72] for example. Therefore, Eq. (5.11) is a generalized form
of Jensen additive equation. The characterization for additive maps was stated as
follows. Note that the case n < 3 was stated in [62, Lemma 2.2].

Lemma 5.2 ([74, Theorem 2.2]) Let X and Y be linear spaces, n > 3 and f :
X — Y be amap. Then f satisfies

) ) n—2 12 n
Z f(xz—iz-xj n Z Xkl>=¥2f(xi)
i=1

I<i<j<n =1,k #i, j

forall x1,x2,...,x, € X ifand only if f is additive.

By using the characterization mentioned above, the next result was proved for
contractively subadditive equations by using the direct method.

Theorem 5.16 ([74, Theorem 3.1]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ||.||y, ky) is a (B, p)-Banach space
with the p-norm ||.||y, and f : X — Y is a given map.
2. ¢ : X" — [0, 00) is a contractively subadditive function, that is,

p(x +y) < Llpx) + ¢(y)]

forall x,y € X", where the constant L is such that L > 0 and \'"PL < 1.
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3. D1 f(xty ey x)ll < @(x1, ..., x,) for all n-variables x, ..., x, € X, where
Xi+x; n? n—12<
i J -
Difico= 3 s(FFEH X w) - s,
1<i<j<n I1=1,kj#i,j i=1

Then there exists a unique additive map g : X — Y satisfying (5.11) and

Z’Sgo(x, Lo,X)

176 = g)lly < = e

forallx e Xand A =n — 1.

Similar to Theorem 5.16, the next result is for expansively superadditive
equations.

Theorem 5.17 ([74, Theorem 3.2]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ||.|y, ky) is a (8, p)-Banach space
with the p-norm ||.||y, and f : X — Y is a given map.
2. ¢ : X" — [0, 00) is a expansively subadditive function, that is,

1
px+y) > Z[w(x) +o(y)]

forall x,y € X", where the constant L is such that L > 0 and ML <1.
3. D1 f(xt, .oy x)ll < @(x1, ..., xp) for all n-variables xy, ..., x, € X.

Then there exists a unique additive map g : X — Y satisfying

n—2

. . —_ 122
Y s Y w) =S Y e
i=1

l<i<j<n =1,k #i,

and

26Lp(x, ..., x)

— <
I1f () — gy < NN YT,

forallx e Xand A =n — 1.

Another result about Ulam-Hyers stability of Eq. (5.11) is as follows.
Theorem 5.18 ([74, Theorem 3.3]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ||.||y, ky) is a (B, p)-Banach space
with the p-norm ||.||y, and f : X — Y is a given map.
2. ¢ : X" — [0, 00) is a function satisfying
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o0

) kho(ix, ... Aix) . kP xy, . MM xy,)
HCx, ..., x) ._Z(; 5 <oo, lim_ — =0
=
forall x,x1,...,x, € X, where A =n — 1.
3. D1 f(xty s x)lly < e(xt, ..., xp) for all n-variables x1, ..., x, € X.

Then there exists a unique additive map g : X — Y satisfying (5.11) and

28
1F0) = gWlly < s (..o )

forall x € X.
In 2010, Wang and Liu [81] investigated Ulam-Hyers stability of the following
quadratic functional equation

2fQx+y)+2fQx—y) =4f(x+y)+4f (x=y)+4f 2x)+f 2y)=8f(x)=8f(y)
in (B, p)-normed spaces. They characterized solutions of such quadratic functional
equations as follows.

Theorem 5.19 ([81, Theorem 2.1]) Suppose f : X — Y is a map. Then f
satisfies (5.3.1) if and only if there are a quadratic map Q(x) and a cubic map
H (x) such that f(x) = Q(x) + H(x) forall x € X.

Then the authors proved Ulam-Hyers stability by using the direct method as follows.
Theorem 5.20 ([81, Theorem 3.1]) Assume that the following conditions hold.

1. X is a linear space over the field K and (Y, ||.||y, ky) is a (8, p)-Banach space
with the p-norm ||.||y, and f : X — Y is a given map with f(0) = 0.
2. ¢ : X x X — [0, 00) is a function satisfying
> X Xy
W(x) =y 4PPer (o, o) <00, lim 4brg( ) =

Jim 4705 o
n=1

forallx,y € X.
3 NDfG, Wy < @(x,y) forall x,y € X, where

Df(x,y) =2f2x+y) +2fQ2x —y) —4f(x +y) —4f(x —y)
—4f(2x) = fQ2y) +8f(x) +8f(y).

Then there exists a unique quadratic map Q : X — Y such that

1 1
10() = f@ly = 35 (¥(0)7
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forall x € X.

Some other modifications of Theorem 5.20 were also stated, see [81, Theo-
rems 3.2, 3.4, 3.5, 3.7 and 3.8].

In 2011, Eskandani et al. [28] first characterized quadratic and quartic maps and
then established the general solution of the following mixed additive and quadratic
functional equation

fOx+)+fOx—y)=fx+y)+ fx—y)+A—=DIA+2)f(x)+Af(—x)]

in (B, p)-normed spaces [28, Lemmas 2.1-2.2, Theorem 2.3]. The authors then
investigated the generalized Ulam-Hyers stability of that equation with A € N and
X # 1in (B, p)-normed spaces, see [28, Theorems 3.1, 3.3, 3.4, 3.6, 3.7, 3.9, 3.10,
3.12 and 3.15].

In 2012 Kim et al. [51] studied the following two radical equations

fG2+yD) = f)+ fO)

FG2+yD) + fGf1x2 = y2) =2 () +2f ()

in (B, p)-Banach spaces, see [51, Lemma 2.1]. Then the authors proved Ulam-Hyers
stability by using subadditive and subquadratic functions for radical functional
equations in (8, p)-Banach spaces, see [51, Theorems 2.2, 2.3, 2.7 and 2.9-2.12].
Note that the characterizations for quadratic and quartic maps mentioned in that
paper were cited from [48].

In 2013, Moradlou and Rassias [58] proved that every generalized additive map
of Cauchy-Jensen type of the form

n n

2if(%+ > xi)+if(x,) =2f () xj)

i=1,i%j j=1 j=l

is Cauchy additive in (8, p)-normed spaces, see [58, Lemma 2.1]. Then they proved
the generalized Ulam-Hyers stability of that functional equation [58, Theorems 2.3—
2.4] by using the fixed point method. In the same year, Xu and Rassias also obtained
a description of the general solution of the septic and octic functional equations of
the form

Fx4+4y) =Tf(x+3y) +21 f(x +2y) = 35F(x +y) +35F(x)
21f(x —y)+T7f(x =2y) — f(x —3y) =5040f(y)

and
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fx+4y) —8f(x+3y) +28f(x +2y) —=56f(x +y) +70f(x)
=56f(x —y) +28f(x —2y) —8f(x —3y) + f(x —4y) =40320f(y)

in (B, p)-normed spaces [83, Theorems 2.1 and 2.2] and then proved Ulam-Hyers
stability of the septic and octic functional equations in (8, p)-normed spaces [83,
Theorems 3.2 3.5] by the direct method.

In 2014, Rassias and Kim [75] characterized the general solution of the (m, n)-
Cauchy-Jensen functional equation [75, Theorem 2.1] and established new theo-
rems about Ulam-Hyers stability of general (m, n)-Cauchy-Jensen additive maps
in (B, p)-Banach spaces, which generalized results obtained for Cauchy-Jensen
type additive maps by the direct method [75, Theorems 3.1-3.4 and 3.7-3.8].
Cho et al. [19] proved the generalized Ulam-Hyers stability results by considering
maps satisfying conditions much weaker than Hyers and Rassias conditions for
radical quadratic and radical quartic functional equations in (8, p)-Banach spaces.

In 2015, Kim et al. [52] found the general solution of the following Cauchy-
Jensen type functional equation of the form

2

in (B, p)-Banach spaces [52, Lemma 1], and then investigated the generalized
Ulam-Hyers stability of the equation in (8, p)-Banach spaces for any fixed nonzero
integer n by the direct method, see [52, Theorems 1-4]. Also Hong and Kim [37]
considered a modified quadratic functional equation and then investigated its
generalized Ulam-Hyers stability in (8, p)-Banach spaces, see [37, Theorems 2.1
and 2.2]. Ciadariu et al. [18] used a fixed point theorem [18, Theorem 2.2] to prove
some generalized Ulam-Hyers stability theorems for additive Cauchy functional
equations as well as for monomial functional equations in (8, p)-Banach spaces,
see [17, Theorem 2 on page 104 and Theorem 3 on page 107].

In 2016, Ravi et al. [77] obtained the generalized Ulam-Hyers stability of the
functional equation of the form

fx+6y) —11f(x +5y)+55f(x +4y) —165f (x + 3y)
+330f(x +2y) — 462 f(x + y) + 462 f(x) — 330 f(x — y)
F165F(x —2y) — 55f(x — 3y) + L1 f(x — 4y) — f(x — 5y) = 39916800 f (y)

in (B, p)-Banach spaces by using the fixed point method. The authors also
investigated the pertinent stability of the above functional equation using control
functions with sum of powers of norms, product of powers of norms and a mixture
of products and sums of powers of norms as upper bounds.

Continuing [77], in 2017 Rassias et al. [76] achieved the general solution of the
duodecic functional equation of the form
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fx+6y)—12f(x +5y) +66f(x +4y) —220f(x + 3y)
+495f (x +2y) =792 f(x +y) + 924 f(x) =792 f (x — y)
4495 f(x —2y) —220f(x —3y) + 66 f (x —4y)

—12f(x = 5y) + f(x — 6y) = 479001600 f (y)

in (B, p)-Banach spaces [76, Theorem 3.1], and investigated Ulam-Hyers stability
involving a general control function with sum of powers of norms, product of powers
of norms and mixed product-sum of powers of norms in (8, p)-Banach spaces via
the fixed point method [76, Theorem 4.2].

Recently, EL-Fassi [26] introduced and solved the radical quintic functional

equation of the form
FJ+9) = f+ 1)

in quasi-B-Banach spaces [26, Theorem 2.1]. The author next established Ulam-
Hyers stability results in quasi-8-Banach spaces [26, Theorems 3.1 and 3.2],
and then Ulam-Hyers stability by using subadditive and subquadratic functions
in (B, p)-Banach spaces for that functional equation [26, Theorems 3.4 and 3.5].
Also Kim and Liang [49] presented general solution of a generalized quadratic
functional equation with several variables, and then obtained its generalized Ulam-
Hyers stability results in (8, p)-Banach spaces [49, Theorems 3.1-3.5].

Up to now, there has been a few results on Ulam-Hyers stability of functional
equations in quasi-B-Banach spaces which are not assumed to be (8, p)-Banach
spaces. In 2012 Liguang and Jing [54] investigated Ulam-Hyers stability of a
functional equation deriving from additive and quadratic equations of the form

JE+2)+ o =2y)=fx+y)+ =y +3f2y) =6/

in quasi-B-Banach spaces without the assumption that they are (8, p)-Banach
spaces. The key technique in that paper is to transform the problem to certain
generalized metric space, see the proof of [54, Theorem 3.1]. In that proof, the
authors claimed without calculation that the function d defined by

d(g,h) =inf{[C:CeR,C=>0,|gx)—hx)|y < Cp,x),x € X}

is a generalized metric on the set Q2 = {g : X — Y}, where a generalized metric is
very similar to a metric except for d(g, h) € [0, oo]. However, by usual calculation,
it is easy to check that d is a generalized b-metric on 2. It remains an open problem
to prove the claim that d is a generalized metric on .

Recently EL-Fassi [26] established Ulam-Hyers stability results for the radical
quintic functional equation in quasi-B-Banach spaces as follows.
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Theorem 5.21 ([26, Theorem 3.1]) Assume that the following conditions hold.

1. (X, .1, k) is a quasi-B-Banach space.
2. f:R — X is a g-approximately radical quintic function, that is,

£ (x5 + %) — f) — fFODI < o(x,y)

forall x,y € R, where ¢ : R> — [0, 00) is a function.
o . i i n n
3. @0, y) = Y (%) p@25x,25y) < coand lim 27" ¢(25x,25y) = 0 for all
]=0 n—o0
x,y eR.

Then there exists a unique quintic map Q : R — X satisfying

O(Jx3+y3) = 0(x) + Q(»)

and
1f () — Q)| < ZK—ﬁcb(x,x)

forallx,y e R

Also see [26, Theorem 3.2] for a similar result. In the proof the author used the
following equality

10(° +¥%) =)=l = lim 277 £ (25 /x5 + ) = f 25 )~ F 25 ).

However, this equality does not hold since the quasi-B-norm ||.|| does not need to be
continuous. To overcome this confusion, we must use Lemma 5.1 or Theorem 5.6.

5.3.2 Some Open Problems in Ulam-Hyers Stability of
Functional Equations in Quasi-B-Normed Spaces

There have been many results on Ulam-Hyers stability in Banach spaces [73] and
Banach algebras [20]. Inspired by these works, we have the following question.

Question 5.1 Generalize Ulam-Hyers stability results in Banach spaces and in
Banach algebras to quasi-Banach spaces and quasi-Banach algebras.

Inspired by the work [24], we have the following equation.

Question 5.2 State other fixed point results in b-metric spaces and apply to study
the Ulam-Hyers stability of functional equations in quasi-Banach spaces and to
study integral equations, see [38] for example; see also [15].
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Finally we list some unsolved issues in the literature.

. Ulam-Hyers stability of Euler-Lagrange type cubic maps in quasi-Banach spaces

[42, Remarks 3.2 and 3.5].

. Ulam-Hyers stability of first-order linear partial differential equations [43,

Remark 3] (see also [16]).
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Abstract We present some stability results for the functional equation of p-Wright
affine functions in 2-Banach spaces. In this way we extend several earlier outcomes.
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6.1 Introduction

The subject of functional equations forms a somehow modern branch of mathemat-
ics. The importance of functional equations usually comes from their wide range of
applications. Functional equations have recent applications in many fields see e.g.
[13, 19, 24]. They have applications e.g. in Communication and Network models
see [20, 31, 36], in computer graphics [33], in information theory [2, 32], in decision
theory [1, 39], and in digital filtering [38]. In this chapter we investigate the stability
of the functional equation of the p-Wright affine functions investigated in [4] but in
2-Banach spaces.

Stability is a very important issue with many interesting applications and we
refer to, e.g., [9, 11, 12, 14, 15, 26, 34] for more details. Stability can be seen from
different points of views see [34] and hundreds of researchers are dealing with such
amazing topic. It has applications in optimization theory (see, e.g., [30]), it is related
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to the notion of shadowing (see, e.g., [25]), and it has applications in economics
(see [16]). It should be noted that the issue of stability of functional equations was
originally motivated by a problem of S.M. Ulam posed in 1940 and Hyers’s answer
to it published in [26]. Stability is very important because its an efficient tool for
evaluating the error people usually face when replacing functions that satisfy some
equations only approximately, by the exact solutions to those equations. Roughly
speaking, nowadays we say that an equation is stable in some class of functions if
any function from that class, satisfying the equation approximately (in some sense),
is near (in some way) to an exact solution of the equation. In the last few decades,
several stability problems of various (functional, difference, differential, integral)
equations have been investigated by many mathematicians (see e.g. [7, 8, 10, 27, 29]
for more details), but mainly in classical spaces.

Since the notion of an approximate solution and the idea of nearness of two
functions can be understood in many, nonstandard ways, depending on the needs
and tools available in a particular situation. One of such non-classical measures of a
distance can be introduced by the notion of a 2-norm. As far as we know the concept
of linear 2-normed space was introduced first by Géhler in [22], and it seems that
the first work on the Hyers-Ulam stability of functional equations in complete 2-
normed spaces (that is, 2-Banach spaces) see e.g. [23]. See also [17, 37] for some
details in 2-Banach spaces. This chapter is organized as follows: in Sect. 6.2 we
recall some definitions and the functional equation of our interest, in Sect. 6.3 we
introduce the fixed point theorem used in the stability, in Sect. 6.4 we investigate the
stability of the functional equation of the p-Wright affine functions, and in Sect. 6.5
we introduce a simple observation on superstability.

6.2 Preliminaries

Let 0 < p < 1 be a fixed real number. We say that a function f:
f:I— R,

mapping a real nonempty interval I into the set of reals R is p-Wright convex
provided (see, e.g., [18])

flpx1+ (1 = p)x2) + f((A = p)x1 + px2) < fx1) + f(x2), x1,x2 €l

If f satisfies the functional equation

fpx1 + (1 = p)x2) + f((1 = p)x1 + px2) = f(x1) + f(x2), (6.1)

then we say that it is p-Wright affine (see [18]). Note that for p = 1/2 Eq.(6.1)
becomes the Jensen’s functional equation

xit+x2 fl)+ f(x2)
f——)= 5 :
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For p = 1/3 Eq. (6.1) takes the form

fQx1+x2) + fx1 4 2x2) = f(3x1) + f(3x2),

which has been investigated by Najati and Park in [35]; in particular, they proved
some results on its stability and applied them in the investigation of the generalized
(o, t)-Jordan derivations on Banach algebras. The cases of more arbitrary p were
studied in [18] (see also [28]). We prove some results concerning the Hyers-Ulam
stability of (6.1). The method of the proof of the main result corresponds to some
observations in [9] and the main tool in it is a fixed point. To present it we need the
following three assumptions (R denotes the set of nonnegative reals). Let us recall
first (see, for instance, [21]) some definitions.

Definition 6.1 By a linear 2-normed space we mean a pair (X, |., .||) such that X
is an at least two-dimensional real linear space and

I ]: XxX—>R

is a function satisfying the following conditions:

(1) |lx1, x2]| = 0if and only if x| and x; are linearly dependent;
(2) lxr, x2ll = llx2, x1 |l forxy, x2 € X

() llx1, x2 + x3ll < [lx1, x2ll + [lx1, x3]| forx; € X, i =1,2,3
@) NIBx1, x2ll = |Blllx1, x2|| for B € Rand x1, x2 € X

Definition 6.2 A sequence (x,)n € N of elements of a linear 2-normed space X is
called a Cauchy sequence if there are linearly independent y, z € X such that
lim |lx, — X, 2l = 0 = [IX0 — X, ¥,
n,m— 00

whereas (x,)n € N is said to be convergent if there exists an x € X (called a limit
of this sequence and denoted by lim,,_, oo X,;) with

lim |x, —x,y|| =0, y € X.
n,m—00
A linear 2-normed space in which every Cauchy sequence is convergent is called a
2-Banach space.

Let us also mention that in linear 2-normed spaces, every convergent sequence
has exactly one limit and the standard properties of the limit of a sum and a scalar
product are valid. Next, it is easily seen that we have the following property.

Lemma 6.1 If X is a linear 2-normed space, x,y,z € X, y,z are linearly
independent, and

llx, ylI =0=llx, zll,

then x = 0.
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Let us yet recall a lemma from [37].

Lemma 6.2 If X is a linear 2-normed space and (x,)n € N is a convergent
sequence of elements of X, then

lim ||x,, zll = || lim x,, z|, z e X.
n—o0 n—oo

It is easy to check that (in view of the Cauchy-Schwarz inequality), if (., .) is a real
inner product in a real linear space X, of dimension greater than 1, and

lxr, x2l := \/II)€1||2||)€2II2 — (x1, x%2)%, xi,x2 € X

then conditions (1)—(4) are valid.

6.3 Fixed Point Theorem

Let us introduce the following three assumptions:

(A1) S is a nonempty set, (Y, |.,.]|) is a 2-Banach space, Yy is a subset of ¥
containing two linearly independent vectors, j € N,

fi:S—> S, gi Yo — Yo, Li:SxYy—R fori=1,---,];
(A2) T:YS — Y% isan operator satisfying the inequality
J
& (x) — Tue(x), yll = ZLi(X, WIIECSi (X)) = n(fi (X)), & (W,
= 6.2)

EueYs xeS, yeVY,

(A3) A :RS*Y0 5 RS*Y0 i5 an operator defined by

J
ASGe ) = Y Lite DS(fi), g1 (1)), 8 RSN, xes, ye¥
= 6.3)

Now, its the position to present the above mentioned fixed point theorem.
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Theorem 6.1 Let hypotheses (Al)—(A3) hold and functions € : S x Yo — R4 and
¢ . S — Y fulfill the following two conditions:

ITe(x) — @), yll <ex,y), xel, yel (6.4)

g5 (x,y) = Z(Als)(x, y) < 00, xeS, ye¥y (6.5)

i=1
Then there exists a unique fixed point r of T for which
lo(x) =),y <e*(x,y), x€S8, yeX (6.6)

Moreover,

Y = lim (T'p)(x), xes. 6.7)

6.4 Stability

The next theorem is the main result in this chapter and concerns the stability of
Eq. (6.1); it extends the results in [4] and corresponds to some outcomes, €.g., in
[3,5,6,9].

Theorem 6.2 Let (Al) be valid, p € R, A, k € (0, 0c0),
I+ 11— plf <1,

E be a subset of Y with0 € E and

px1+ (1 —p)x2 e E, x1,x € E, (6.8)
and g : E — Y satisfy

llg(px1 + (1 = p)x2) + g((I = p)x1 + px2) — g(x1) — g(x2), ¥l

< AQer yIF + lx2, yI5, xix e EyeYy. (69

Then there exists a unique solution G : E — Y of Eq. (6.1) such that

Allx, y|*
lg(x) — G(x), yll < . - x€E (6.10)
I—1|pl*—11-p|
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and G is given by:
G(x) =g + lim (T"go)(x),  x € E, (6.11)
n—

where go and T are defined by (6.14) and (6.15). Moreover, G is the unique solution
of Eq. (6.1) such that there exists a constant M € (0, co) with

lg(x) — G@), vl < Mllx, y|*,  x€E,yeVY. (6.12)
Proof Note that (6.9) with x, = 0 gives

lig(px1) + g((1 — p)x1) — g(x1) — g0), ¥l < A(llxr, yIF +1Iv1%),  (6.13)

x1 € E,yeYp.
Write
go(x1) = g(x1) —g(0), x € E (6.14)
and
T&(x1) = &(px1) + (1 — p)x1), x1 € E, e eYE, (6.15)

Then (6.13) implies the inequality

lgo(px1) + go((1 — p)x1) — g(x1) — g(0), ¥l < Allx1, ylI"), X1 €E,
(6.16)
which means that

ITgox1) — goxn). yll < A(llx1. y11). xp € E. (6.17)

Further note that (A3) holds with k = 2, fi(x) = px, Lo(x) =1 —p)x,L;(x) =1
fori = 1,2,x € E. Define A as in (A3). Clearly, with e(x) := A(]|x, y||k) for
x € E, we have

o]

£ () 1= ) (A"e)(x1) (6.18)

n=0

o0
< Al yI9 )Y Apl + 11— pH”
n=0
Al I
1—Iplk =11 —pl*’

x1 € E.
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Hence, according to Theorem 6.1, there exists a unique solution Go : X — Y of the
equation

Go(x1) = Go(px1) + Go((1 — p)x1), x1€kE (6.19)
such that
A(llx1, yII%)
llgo(x1) — Go(xD Il < T T x| € E; (6.20)
1—|pl*—=11-p|
moreover
Go(xy) == nlingo(Tngo)(X1), x1 € E. (6.21)

Now we show that, for every x1, x, € E, n € Ny (nonnegative integers),
IT" go(px1 + (1 — p)x2) + T"go((1 — p)x1 + px2) — T"g(x1) — T"g(x2), I
(6.22)

< AUpIF + 11 = pIo"lxr, yIF + llx2, I, x1,x2 € E,y € Yo

It is easy to see that the case n = 0 is just (6.9). Next, fix m € Ny and assume
that (6.22) holds for every x1, xp € E withn = m. Then
1T+ go(px1 + (1 = p)xa) + T go((1 — p)x1 + px2) (6.23)
—T" g (xr) = T g(xa), v
= [T"go(p(px1 + (1 = p)x2)) + T"go((1 — p)(px1 + (1 — p)x2))
+T"go(p((1 — p)x1 + px2)) + T"go((1 — p)(1 — p)x1 + px2))
—T"go(px1) — T" go((1 — p)x1) — T"go(px2) — T"go((1 — p)x2), ¥,
< IT"go(ppx1 + (1 = p)px2) + T" go((1 — p)px1 + ppx2) — T" go(px1)
—T"go(px2), Yl
+ IT" go(p(1 — p)x1 + (1 — p)(1 — p)x2)
+ T"go((1 — p)(1 — p)xi + p(1 — p)x2)
= T"go((1 = p)x1) — T"go(p(1 — p)x2), ¥l
< Alpl* + 11 = pI" ((pllxt, yID* + (pllx2, yID)
+(pl* + 11 = pIY" (A = pller, yID* + (1 = p)llx2, yIDO)
= (pl" + 11 = p" Wlxr, yID* + (lx2, ¥, x1,x2 € E, y € Y.
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Thus, by induction we have shown that (6.22) holds for every x1,x; € E and n €
Np. Letting n — oo in (6.22), we obtain that

Go(pxi + (I = p)x2) + Go((1 — p)xi + px2) = Go(x1) + Go(x2), (6.24)
X1, x2 € E.
Write G(x1) := Go(x1) + g(0) for x; € E. Then it is easily seen that

G(px1+ (1 —p)x2) + G((1 — p)x1 + px2) = Gx1) + G(x2), x1,x2€ E
(6.25)

and (6.10) holds. It remains to show the uniqueness of G. So suppose that My €
(0,00) and G : X — Y is a solution to (6.1) with

lg(x1) — G1(x1), yll < Mollx1, yll, x1 € E,yeV¥p. (6.26)
Note that
G(0) = g(0) = G1(0),
Gi(px1) + G1(( — p)x1) = G1(x1) + G1(0), x1 €E, (6.27)
G(px1) + G((1 = p)x1) = G(x1) + G(0), x1 € E, (6.28)

and, by (6.10),

(M + A)|lx1, ylI¥
IG(x1) — Gi1(x1), y|| <
1—|plk -1 - pl

(6.29)

o
=M+ Al yI* Y (plf+11=pH".  xi€E.

n=j

The case j = 0 is exactly (6.29). So fix [ € Ny and assume that (6.29) holds for
j = 1. Then, in view of (6.27) and (6.28),

1G(x1) —Gi(xn), yll (6.30)
= [1G(px1) + G((1 — p)x1) — Gi(px) — G1((1 = p)x1), yl,
= 1G(px1) = Gi(px), ¥l + 1G((A = p)x1) = G1((1 = p)x1), ¥l

o
< M+ AUpIF e, yI*+ 1A= p)IFx 19 Y ApF + 11— phy",

n=lI

o0
<M+ Ayl Y Aplf+11=pH",  xi€E,yeX.
n=Il+1

Thus we have shown (6.29). Now, letting j — oo in (6.29) we get G| = G. O
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6.5 An Observation on Superstability

The following is a very simple observation on the superstability of Eq.(6.1)
complements Theorem 6.2.

Theorem 6.3 Let (Al) be valid, p € F, A,k € (0,00), |p|* + |1 —p/* < 1, E
be a subset of Y such that 0 € E and (6.8) holds, and g : E — Y satisfy

lg(px1 + (1 — p)x2) + g((1 — p)x1 + px2) — g(x1) — g(x2), Yl (6.31)

k k
< Allxr, yIIMllx2, yli

forevery x1,x2 € E, y € Yo. Then g is a solution to (6.1).

Proof 1Tt is easy to see that (6.31) with x, = 0 gives

g(x1) = g(px1) + g((1 — p)x1) — g(0), x1€E (6.32)

We show that, for every x1,x2 € E, y € Yy, n € Ny,

lg(px1 + (1 — p)x2) + g((1 — p)x1 + px2) — g(x1) — g(x2), yll (6.33)
< A(pl* + 11 = pIP)"lxr, yIFllxa, yIIk.

It is easy to see that the case n = 0 is just (6.31). Next, fix m € Ny and assume
that (6.33) holds for every x1, x € E, with n = m. Then, by (6.32),
lg(px1 + (1 = p)x2) +g((1 — p)x1 + px2) — g(x1) — g(x2), yli (6.34)
= llg(p(px1+ (1 — p)x2)) + g((1 — p)(px1 + (1 — p)x2))
+g(p((1 = p)x1 + px2)) + g((1 = p)((1 = p)x1 + px2))
— &(px1) — g((1 — p)x1) — g(px2) — g((1 = p)x2), yli
< AQpP 11 = pPY" Ip I iler, yIFIPI 2, yI*
+ AQpPE + 11 = pPY" I = plFfler, Y11 = plF e, y11*
= A(pP* + 11 = pPY" e, y1F ez, y11*
for every x1,x € E,y € Yy. Therefore, by induction we have shown that (6.33)

holds for every x1, x» € E and n € Ny. Letting n — oo in (6.33), we obtain that g
is a solution to (6.1). |

Acknowledgement This work is funded by Jouf University, Kingdom of Saudi Arabia under the
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Chapter 7 )
On Solutions and Stability of a e
Functional Equation Arising

from a Queueing System

El-Sayed El-hady

Abstract We use the boundary value problems approach to investigate the analyt-
ical solution of a two-variable functional equation, which arose from a queueing
model. We also provide some remarks on the Ulam stability of such functional
equation.

Keywords Boundary value problem - Two-variable functional equation -
Queueing model

Mathematics Subject Classification (2010) Primary 30D05, 30E25, 39B32,
60K25, 65Q20; Secondary 39B82

7.1 Introduction

Functional equations have many recent interesting applications in various fields
see e.g. [12, 16]. They have applications in Communication models and Network
models see e.g. [15, 16, 21], in dynamical systems [3], in information theory [2, 23],
in computer graphics [24], decision theory [1, 32], and in digital filtering [31]. In
this chapter we are interested in a special case of the interesting class of functional
equations surveyed in [12]. It should be noted that so far there is no general solution
theory available for such interesting class of equations. In this chapter we investigate
the analytical solution of a functional equation arising from a queueing model. This
chapter is organized as follows: in Sect. 7.2 we recall the functional equation from
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the original article, in Sect. 7.3 we analyse the kernel which plays a crucial role in
the solution, in Sect. 7.4 we introduce a solution of the functional equation using
boundary value problem approach, and in Sect. 7.5 we investigate the stability of
the functional equation of interest.

7.2 The Functional Equation

The article [22] ends up with the following challenging two-variable functional
equation (for functions f of two complex variables)

(xQpx +1) =21+ p)xy +y>) f(x, ) (7.1)
= (x@px + 1) = (1 + p)xy — pxy®) f(x.0) + y(y = 2) £ (0. y),
where
Jxy) = menx ¥ Xl < 1yl <T+2p
m,n=0
is the probability generating function (PGF) of the sequence p,,_ ,, which is defined
in [22],

o
f0 =) pmox™. x| <1

is the generating function of the sequence p, 0,

o0
FON =Y poay",  Iyl<1+2p

is the generating function of the sequence pg ,, and 0 < p < 1 is some parameter.
Equation (7.1) can be written as follows

Ci(x, y) f(x,y) = Ca(x, ») f(x,0) + C3(x, y) f(O, y), (7.2)

where
Ci(x,y) = xQ2px + 1) = 2(1 + p)xy + y?,
Ca(x,y) = x2px + 1) — (1 + p)xy — pxy?,

and
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Ci(x,y) = y(y —x).

A crucial role in the solution of (7.2) is played by the kernel defined by

{(x,y): Ci(x,y) =0} (7.3)

The solution of (7.2) will be investigated in the next sections. It should be noted that
the current functional equation is related to the equations that appear in the literature
(see e.g. [10, 27, 30]) as follows:

» Itis a special case of the general class of functional equations surveyed in [12].

¢ It is different from the functional equations solved recently in [6, 13, 29].

¢ The functions C»(x, y), C3(x, y), are not related to each other unlike the case in
[15].

* We have only two unknowns namely f(x, 0) and f (0, y) unlike the case in [16].

¢ The contour L defined below is not a circle unlike the case in [14].

¢ We have only one system parameter, namely p which will simplify the analysis
of the kernel unlike the case in [26].

¢ We have two unknown functions namely f(x,0) and f(0, y) so we cannot use
Rouché’s theorem unlike the case in [28].

7.3 Kernel Analysis

The kernel given by (7.3) can be written as

{06, )5 Ci(x, y) = x(2px + 1) = 2(1 + p)xy + y* = 0}, (7.4)
It is obvious that (7.4) is a biquadratic equation, i.e. it can be considered as a
quadratic equation in x with coefficients in y and also can be considered as a

quadratic equation in y with coefficients in x. We have to study the two cases in
the following two subsections.

7.3.1 The Kernel as a Function in y

If we consider (7.4) as a quadratic equation in y we can write that
2,0x2+x —2xy —2,oxy+y2 =0
or in the form

y2 + (—2x —2px)y + 20x2 +x =0,
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which can be rewritten as

a(x)y* + B(x)y +y(x) =0, (7.5)
where
alx) =1,
B(x) = —2x — 2px,
and
y(x) =2px* + x.

Equation (7.5) has two solutions given by

—B(x) £/B(x)? — da(x)y (x)
2a(x)

=x+px£/x(x+ p2x — 1). (7.6)

It is easy to see that the function (7.6) is a local analytic function. That is to say it
is an analytic function except at the real zeros of the root which are the two branch
points at

y+(x) =

1

:O’ = —
A eI 2

This is because when x traverses any small circuit around x;, i = 1, 2, the function

X = x+pxEx(x+pix—1)

does not return to its original value.

7.3.2 The Kernel as a Function in x

If we consider (7.4) as a quadratic equation in x we can write that
2px% +x — 2xy —2pxy + y2 =0,
or in the form

20x* + (1 =2y —2py)x + y* =0,
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which can be written as

L)X+ p()x +v(y) =0, (7.7)
where
A(y) =2p,
uy)=1-=2y —2py,
and

v(y) = y*

Equation (7.5) has two solutions given by

—1(y) £/ =4 (y)
2A(y)

2y +2py — 1+ /41 + pD)yr —4(1 + p)y + |
_ o .

x+(y) =

(7.8)

It is easy to see that the function (7.8) is a local analytic function. This means that it
is an analytic function except at the real zeros of the root which are the two branch
points at

_1+p+2p 1+ p—=42p
NE 0+ 21+ p?)

This is because when y traverses any small circuit around y;, j = 1, 2, the function
x4 (y) defined by (7.8) does not return to its original value.

Lemma 7.1 Forx € [x1, xo] we have x € R and the two roots given by

Y+ (x) =x 4 px +/x(x + p2x — 1),
y_(x) =x + px —/x(x + p?x — 1)

are complex conjugates. Hence, the interval (x1, x2) is mapped by x — y4(x) onto
a contour L. Any point on such a contour satisfies

ly() > = 2px* +x.
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Proof Follows directly from the fact that the root function in (7.6) is zero for x = x
and x; and negative for x € (x1, x2), which is symmetric with respect to the real
line. Using (7.5) and Vieta’s formula we can guarantee that any point on that contour
satisfies

Iy = vy (x)y—(x)

= & = 2,0)c2 +x
o(x)

7.4 Solution of the Functional Equation

Since by definition the main unknown function f(x, y) is an analytic function in
the unit disks, this implies that if C;(x, y) = 0 then also

Ca(x, y) f(x,0) + C3(x, y) f(0, y) = 0. (7.9)

Now the solution of the main functional equation is reduced to the solution of the
functional equation (7.9) on

{G, y) - Ci(x, y) = 0}

It should be noted that it is sufficient to find one unknown of (7.9) and plug it
back in (7.9), using the kernel equation i.e. Ci(x, y) = 0 one can latter find the
other unknown and hence the main unknown f(x, y) will be obtained. Now using
the kernel analysis in Sect. 7.3 the main functional equation can be reduced to the
following boundary value problem.

Lemma 7.2 Find a function f(.) which is analytic inside the unit disk and satisfies
R(ia(Ty @) f(Ty @) =0, u € D

for some known function a(.) of a conformal mapping Yy, (.).

Proof Since the main unknown function f(x,y) is by definition an analytic
function in the unit disk, this implies that if C;(x, y) = 0, then also

C2(x, y) f(x,0) + C3(x, ») f(0, y) =0, (7.10)
which is equivalent to

C3(x, )

0) = —
T 0==5 6y

£Q0, y). (7.11)
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Now assume that the function given by (7.6) maps the interval [x1, x3] to a closed
contour L in the y-domain. That is to say the function y; (x) maps [x1,x2] to a
curve in the upper half plane while the function y_(x) maps [x1, x2] to a curve in
the lower half plane so that both functions defined by (7.6) map [x1, x2] to a closed
contour L which is symmetric with respect to the real line. Since for x € [x1, x2]
we have x € R. Then using this interval in the (7.11) we get

C I
RGf(x,0)=0= m(—i%f@, ),
which can be written as
0 = N{—ia(y) f(0, y)} (7.12)

for every y € L. The problem constructed is a Riemann-Hilbert boundary value
problem. The classical way to solve is to use some conformal mapping between L™
and the unit disk:

M,(y): LT+ DY,
with inverse
Yy(u): Dt — LT,
then the problem (7.12) can be reduced to the following
0 =NR{—-a(Tyw)) f(Vyw))},u € D.

The boundary value problem constructed is a homogenous Riemann-Hilbert bound-
ary value problem. In fact it is a special case of the problem stated, e.g., in [11, 17].
According to [11] the solution of this problem, when it exists, is given by

fO,y) =0 (y), (7.13)

where Q(y) is some polynomial, and the function ¢ (y) is defined by

o0 exp (ﬁ /; log (Z_K%)Z{—Zy) ifyelL"
A 1 —«a@) d - -

e (o o ox (58) ) iyl
with « denoting the index of the Riemann—Hilbert problem and ¢ (1) being the
interior limit of the function ¢ (#) on the unit circle. The solution of the Riemann-
Hilbert boundary value problem exists when x < 0 and is unique if and only if for
k:O,l,"',|K|_1
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k
C
/ 2C@ o,
L@
in that case, the polynomial Q(u) = 0. In the case that ¥ = 0, the solution is unique
and Q(u) is some constant.

7.5 Remarks on Stability of the Functional Equation

Stability of functional equations is an important issue with many interesting
applications and we refer to, e.g., [4, 5,7, 8, 19, 25] for more details. Stability can be
seen from different points of views see [25] and hundreds of researchers are dealing
with such amazing topic. It can be considered as a branch of optimization theory
(see, e.g., [20]), it is related to the notion of shadowing (see, e.g., [18]), and it has
applications in economics (see [9]). It should be noted that the issue of stability of
functional equations was originally motivated by a problem of S.M. Ulam posed in
1940 and Hyers’s answer to it published in [19].

There are many methods illustrated in the literature see e.g. [4] to investigate
stability, namely: the direct method, the method of invariant means, the method
based on the sandwich theorems, the weighted space method, the fixed point
method, and the method of shadowing. The notion of stability of functional
equations arises when we replace the functional equation by a functional inequality
which can be considered in some sense as a perturbation of the equation. The
stability question now is:

How do the solutions of the perturbed equation “the inequality” differ from those of the
given functional equation?

It seems that some methods used in such stability could be applied in investiga-
tions of solutions to (7.1), or even more general equations of the form

Ci(x, y) f(x,y) = Ca(x, y) f(x,0) + C3(x, ) f(0, y), x,yeDcCC.
(7.14)
It should be noted that the general solution of Eq.(7.14) is a function defined as
follows

fGt,):DcC—C (7.15)

where D is the unit disk in the complex plane, and C is the set of all complex
numbers. For instance, we could use the following classical definition of Ulam-
Hyers stability (cf., e.g., [8]): We say that the functional equation (7.14) is Ulam-
Hyers stable if there is a r > 0 such that for any € > 0 and

g:DcC—-C
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with
IC1(x, y)g(x, y) — Ca(x, y)g(x,0) — C3(x, y)g(0, y)| < € (7.16)
there exists a solution f to Eq. (7.14) such that
[f(z, w) — gz, w)| <re, (z,w) € D. (7.17)

So, the Ulam-Hyers stability of Eq.(7.14) means that every approximate (in the
sense of (7.16)) solution of (7.14) is close (in the sense of (7.17)) to the exact
solutions of the equation. Therefore, in some cases, we could use approximate
solutions of the equation (which might have a simpler form) knowing that they are
close to the functions that solve the equation exactly. This shows that the issue of
stability of (7.14) (and various similar equations surveyed in [12]) is of interest and
should be investigated.

Acknowledgement This work is funded by Jouf University, Kingdom of Saudi Arabia under the
research project number 39/600.
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Approximation by Cubic Mappings Qs
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Abstract Starting with a stability problem posed by Ulam for group homomor-
phisms, we characterize the functions with values in a Banach space, which can be
approximated by cubic mappings with a given error.
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8.1 Introduction

The study of stability problems for various functional equations originated from a
question posed by Ulam [38] in 1940 and reads as follows.

Let (G, 0) be a group, (G2, %) be a metric group with the metric d(-, -) and
& > 0. Does there exits a § > 0 such that f : G| — G satisfies

d(f(xoy), f(x)* f(y) <68, forallx,ye G
then there exists a homomorphism # : G; — G; with
d(f(x),h(x)) <e, forallx e G|?

The first affirmative answer to this question, was the one provided by Hyers [22],
who solved the problem for Banach spaces.

P. Gévruta (B<) - L. Manolescu
Department of Mathematics, Politehnica University of Timisoara, Timigoara, Romania
e-mail: laura.manolescu@upt.ro

© Springer Nature Switzerland AG 2019 153
J. Brzdek et al. (eds.), Ulam Type Stability,
https://doi.org/10.1007/978-3-030-28972-0_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28972-0_8&domain=pdf
mailto:laura.manolescu@upt.ro
https://doi.org/10.1007/978-3-030-28972-0_8

154 P. Gévruta and L. Manolescu

Theorem 8.1 (Hyers [22]) Let f : E1 — E» (E1, E» are Banach spaces) be a
function such that

Ifx+y)—fx)—fI=<é

for some § > 0 and forall x,y € E1. Then the limit

T(x) = lim f@x)

Soo O
exists for each x € Ey and T : E1 — E; is the unique additive mapping such that
lfx)—T@)|| <8, foreveryx € Ej.

Moreover, if f(tx) is continuous in t for each fixed x € E1, then the function T is

linear.

Another important result was obtained by Rassias [34] for approximately additive
mappings, by using the so called the direct method.

Theorem 8.2 (Rassias [34]) Let f : E1 — E> be a function between Banach
spaces, such that f(tx) is continuous in t for each fixed x. If f satisfies the
functional inequality

If G +y) = f) = fODI = 0dxII” + 1IyIIP)

forsome 6 > 0,0 < p < landforall x,y € E1, then there exists a unique linear
mapping T : E1 — Ej such that

lxI?, foreachx € Ej.

If ) =TI = 5—;

A further generalization was obtained by Gavruta [9], by replacing the Cauchy
difference by a control mapping ¢ and also introduced the concept of generalized
Hyers-Ulam-Rassias stability in the spirit of Th.M. Rassias’ approach.

In [24] was introduced the notion of i-additive mapping and was given a
generalized solution to Ulam’s problem for yr-additive mappings.

Definition 8.1 Let ¢/ : R, — R be a mapping, E1 and E; be normed spaces. A
mapping f : E1 — E» is called ¥-additive if there exists 6 > 0 such that

If(x+y) = f) = fODI = 0@ AxID + ¥ dlyiD),

forall x,y € Ej.

In [13], Gévruta gave the following characterization of {-additive mappings.
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Theorem 8.3 We suppose that  verifies the following conditions:

(D) Y(s) <Y @)Y(s), forallt,s = 0;

@{i) Yv(t+s)<y@)+v(s), forallt,s > 0;
(iii) 1 is monotone increasing on R ;
(iv) there exists tg > 0 such that ¥ (ty) < ty.

Let E1 be a normed space and E; a real Banach space, then f : Ey — Ej isa
Y —additive mapping if and only if there exists a constant ¢ > 0 and an additive
mapping T : E| — E3 such that

ILf ) =T < cylxl), forallx € Ey.

Other aspects concerning the connection between W-additive mappings and
Hyers-Ulam stability were studied in the paper [17].

For basic results on the stability of mappings, one can see the references [6, 7,
23, 27].

For recent results on the Hyers-Ulam-Rassias stability, see also [3, 4, 19,23, 27—
30, 32]. Some open problems in this field were solved in the following papers: [2,
10-14, 16, 18, 21].

In the paper [20], we have investigated the approximation of functions by additive
and quadratic mappings. We continue that work here by discussing about the
approximation of functions by cubic mappings.

8.2 Approximation of Functions by Additive
and by Quadratic Mappings

In this section, we present the main results from the paper [20].
We consider S to be an abelian semigroup, X to be a Banach space and the
following given functions:

f:S—>Xandd: S — R,.
Definition 8.2 We say that f is ®-approximable by an additive map if there exists
T : S — X additive such that
If) =T =®x), xeS.
We say that T is the additive ®-approximation of f.

Problem 8.1 Give conditions on f such that f to be ®-approximable by an
additive map.

We solve this problem by posing minimal conditions on ®. We denote by

o ={®:5—> Ry: lim

n—o0

2"
(nx) =0, forany x € §}.
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Theorem 8.4 Let be ® € o7. Then f is ®-approximable by an additive map if and
only if
lim If2"x +2"y) = f2"0) = fFR"DI _

n— 00 n

0, Mux,yes
and there exists V € < such that
[fQ2"x) =2" f(0)]l < ¥(Q2"x) +2"P(x), x€S.

In this case, the additive ®-approximation of f is unique and is given by

T(x)= lim /@)

—o0 2N

In the same paper, we give an analogous result for quadratic mappings.
The functional equation

e+ + =y =2fx)+2f()

is called a quadratic functional equation. Every solution of the quadratic functional
equation is said to be a quadratic mapping. The Hyers-Ulam stability for quadratic
functional equation was proved by Skof [37], for mappings acting between a normed
space and a Banach space. Cholewa [6] showed that Skof’s Theorem remains true
when the normed space is replaced with an abelian group.

Theorem 8.5 (Cholewa [6]) Let (G, +) be an abelian group and let E be a Banach
space. If a function f : G — E satisfies the inequality

[fx+y)+fx—=y)=2f) =2/ =8

for some § > 0 and for all x,y € G, then there exists a unique quadratic function
Q : G — E such that

If(x) = Q) = (1/2)8,

forany x € G.
Let (G, +) be an abelian group and X a Banach space.

Definition 8.3 We say that f is ®-approximable by a quadratic map if there exists
Q0 : G — X quadratic mapping such that

[f(x) = 0| <@(x), xeG.

We say that Q is the quadratic & approximation of f.
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Problem 8.2 Give conditions on f such that f to be ®-approximable by a
quadratic map.

We denote by

B (2"
9= (®:G >R, : lim 2N

n—o0

=0, for any x € §}.

The set 2 is the analogous of the set 7 from the case of approximation by
additive mappings.

In this case, we have the following characterization of functions which can be
approximated by quadratic ones.

Theorem 8.6 Let be Q € 2. Then f is ®-approximable by a quadratic map if and
only if the following two conditions holds
@) lim If2"x+2"y) + f2"x=2"y)=2f2"x)=2f 2"yl

n—o00 4n

(ii) there exists V € 2 such that

=0, Mx,yeC

If@2"x) 4" f(O)ll = W(2"x) +4"P(x),x € G.

In this case, the quadratic ®-approximation of f is unique and is given by

00 = 1im £(2"x)

1
—o0 4

From this result, we have immediately the result of Borelli and Forti [1] on the
stability of quadratic mappings.

8.3 Approximation of Functions by Cubic Mappings

The study of the stability of the cubic functional equation,

Ja+2y)+3f(00) =3fx+y)+ flx —y)+6f0), 8.1

in the sense of Ulam, was given by Rassias [35] in 2001. The generalized Hyers-
Ulam-Rassias stability of this equation was given by Géavruta and Cédariu [15] in
2002.

In 2002, Jun and Kim [25], introduced the following form of a cubic functional
equation

fCx+»+fCx—y)=2fx+y)+2f(x—y)+12f(x). (8.2)
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Every solution of this equation is said to be a cubic function. They established the
general solution and the Hyers-Ulam-Rassias stability for this functional equation.
The stability of Eq. (8.2) in fuzzy normed spaces was initiated in [31]. The stability
of the cubic functional equation in a non-Archimedean random normed space and
intuitionistic Random normed spaces was studied in the paper [36] and in the paper
[5], by using the fixed point method.

In the following, we will prove that the functional equations (8.1) and (8.2) are
equivalent with two other more functional equations, studied by other authors.

Theorem 8.7 Let (G,+) be an abelian group and X be a linear space. The
following functional equations are equivalent, for f : G — X,

(A) f(x+2y)+3f(x)=3f(x+y)—f(x—y)—6f(y) =0, forallx,y € G;
(B) fCx+y)+f2x—y)-2f(x+y)—2f(x—y)—12f(x) =0, forallx,y € G;
©) fCx+»+fx+2y)=3f(x)=3f()—6f(x+y)=0, forallx,y € G;

3
(D) Ajf(x) =) (=1)** (i) fx+ky)=31f(y) =0, forallx,y € G.
k=0

Proof (A) = (B)

In (A), we take x = y = 0 and it follows that f(0) = 0.

In (A), we take y = —x and it follows that —5 f(—x) + 3 f(x) — f(2x) = 0.

In (A), we take x = 0, y = x and it follows that — f(—x) — 9f(x) + f(2x) = 0.
By adding the above relations, we obtain that

—6f(=x) —=6f(x) =0,

so f is an odd function.
In (A),x — yand y — x and we get:

JRx+y)+3f(y) =3fx+y)— fly—x)—6f(x)=0.

We put here instead of y, —y and we use the fact that f is odd

(A) fQx =y) =3f() =3f(x =+ fx+y) —6f(x) =0.

By adding the previous form of (A) with (A”), we obtain (B).

(B) = (C)

In (B), we take x = y = 0 and we obtain that f(0) = 0.

In (B), we take x = 0 and we get f(y) + f(—y) =0, so f is odd.
In (B), we take y = 0 it follows f(2x) — 8f(x) = 0.

In (B) we replace x with x + y and y with x — y and we obtain:

JOx+y)+ flx+3y) = 12f(x +y) =2f(2x) =2f(2y) =0
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and since f(2x) = 8 f(x), we have:

(B") fBx+y)+ fx+3y) = 12f(x +y) = 16f(x) — 16 f(y) = 0.
In (B) we replace x with x + y and y with 2y and we obtain:
(B")8f(x +2y) +8f(x) = 12f(x +y) =2f(x +3y) =2f(x —y) =0
andby x — yand y — x
(B")8f(y+2x) +8f(y) = 12f(x +y) =2f(y +3x) +2f(x —y) = 0.

We add (B”) with (B""), and using (B’), it follows (C).
(C) = (D)

If f verifies (C), then f is odd. Indeed, in (C) we take x = y = 0 and it follows
that f(0) = 0.

In (C) we take y = —x and we get:

J=x)+ f(x) =30f(x) + f(=x)] =0,

so f(x)+ f(—x)=0.
In (C),wetakex = u +2v, y = —u — v:

f(=uw)+ fu+3v)=3fw+2v)—3f(—u—v)—6f(v) =0
and since f is odd, we have
—fw)+ fu+3v) —3fu+2v)+3fwu+v)—6f(v) =0,

that is, (D).
(D) = (4)

In (D), we replace x with x — y and we obtain:
—fx=+3fx)=3fx+y)+ fx+2y) —-6f(y) =0,

that is, (A).

Other functional equation equivalent with the ones mentioned above, was studied
in the papers [8, 33]. For the stability of equation (D), see Ref. [26].
Let (G, +) be an abelian group and X a Banach space. Let be the functions

f:G—>X, &:G— R,
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We define the following function Cy : G x G — X,
Cre,)=fQx+y)+fQ2x—y)=2f(x+y)=2f(x—y) - 12f(x)

If F is a cubic map, then

F(2x) = 8F (x).
Indeed, if y = O:

2F(2x) =4F(x) + 12F (x)

that is

F(2x) = 8F (x). (8.3)

Definition 8.4 We say that f is ®-approximable by a cubic map if there exists
F : G — X acubic map such that

[f(x) = Fo)ll = ®(x), VxeG. (8.4)

We say that F is the cubic ® approximation of f.
Problem Give conditions on f such that f to be ®-approximable by a cubic map.

We denote by

®(2"x)

‘5:{¢:G—>R+: lim

n—o0

=0, forall x € G}.

Theorem 8.8 Letbe F € €. Then f is ®-approximable by a cubic map if and only
if the following conditions holds

Cr(2"x,2"
@) lim I1Cr2"%x, 2" y)i

=0, forallx,y € G;
n—o00 n
(ii) there existsV € € such that

If@2"x) = 8" f(0)l = ¥(2"x) +8"P(x), x € G.

In this case, the cubic ®-approximation of f is unique and is given by

F(x) = lim f(;’:x).

— 00

Proof First, we assume that f is ®-approximable by a cubic map, i.e. there exist

F:G—> X
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such that the condition (8.4) holds. We have, for x, y € G,
IfQ2x+y)— FQx +y)| < P2x +y)
[f2x —y) = FQx — )| < P2x —y)
and also
[fx+y) = Fx+yl<®x+y)
[fx=y) = Fx =yl =Pkx—y)
It follows

[CrCe, I =1Crx,y) — Crlx, yl
=fCx+y) - FQx+y)+ fQ2x —y) = FQ2x —y)
—2[fx+y) - Fx+n]-2[f(x —y) = Flx —y)]
—12[f(x) = F(O)IIl
SP2x+y)+P2x —y)+20(x +y) +20(x — y) + P(x)

hence

ICr@"x, 2"Vl _ @[2"2x + ¥)] " Q2" (2x — y)]

8" 8" 8"
PR2"(x+y] | PR"(x —y)] ®(2"x)
2 F e 12—

By letting n go to infinity in the above inequality, we obtain:

lim ICr 2", 2" Il _

n—00 {n

0

Thus (i) holds.
Now we prove (ii). From (8.4), we have

[f(2"x) = F"x)|| < ®(2"x)
So, with (8.3), we obtain

IfQ2"x) =8 f)ll =1 f2"x) = FQ2"x) +8"F(x) — 8" f(0)||
<IfQ") = FQ" ) +8"IF(x) = f)l
<8"P(x)+ PQ2"x)
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Conversely, from (ii), we get

W (2"x)
8}1

- f(x)

=<

H f (2:x) + O(x) 8.5)

8

In (8.5), we put instead of x, 2" x to get

‘ fQ@7Mx)  f(2M)

gn+m {m

V7] (2n+mx) o (me)
= {n+m 8{m

By letting n, m go to infinity in the above inequality, we obtain

f@7""x)  f@2"x)

g{nt+m 8{m

lim =0
n,m—o0

Since X is a Banach space, it follows that the limit

F(x) = lim ACED

n—oo 8"

exists. And using (8.5)
IF(x) — fO)ll < P(x)

From (i) it follows that Cr(x, y) = 0, hence F is cubic.
Now we show that F is unique. We suppose that F' satisfies (8.4), i.e.

1F(x) — fO)l < P(x)
and exists F’" which satisfies
IF'(x) — fO)Il < ®(x).

By norm inequality, we have || F(x) — F’(x)|| < 2®(x). But, F and F’ are cubic
mappings and, by putting instead of x, 2"x and we get

[FQ2"x) = F'(2"x)|| < 2®(2"x)
and by dividing the above inequality by 8", we get

5 D (2%x) '
8]1

FQ'x) F'(2"x)
gngn

E

2"
But lim — 2 _ 050 F(x) = F/(X),

n—oo




8 Approximation by Cubic Mappings 163

As a corollary, we have the result of Jun and Kim [25].

Corollary 8.1 Let ¢ : G x G — Ry be a function such that

> p(2'x, 0)
Z T < 00 and

i=0

2y, 2
lim w —0, forallx,y € X.
n—>0oo

Suppose that a function f : G — X satisfies
ICrx, I = @lx, y), forallx,y € X. (8.6)

Then there exists a unique cubic function F : X — Y such that

1 X @2ix,0)
If(x) — F)| < 1—628—

forall x € G. The function F is given by

f(@2"x)

Fx) = nllpgo gn

Proof In (8.6), we take y = 0:

1
If(2x) =8f ()| =< E&/)(x, 0)

and by induction, we get

1@ 8 Fool <8 3 22RO e a
=T les T w
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9.1 Introduction

In 1940, Ulam [31] delivered a wide ranging talk before the Mathematics Club of
the University of Wisconsin in which he posed a number of important unsolved
problems. Among those was the question concerning the stability of group homo-
morphisms: Given a group G, a metric group (G2, d), a number ¢ > 0 and
a mapping f : G; —> Gj which satisfies d(f(xy), f(x)f(y)) < € for all
x,y € Gy, does there exist a homomorphism g : G; —> G; and a constant
k > 0, depending only on G| and G» such that d(f (x), g(x)) < ke forall x € G1?

In the case of a positive answer to this problem, we say that the Cauchy functional
equation f(xy) = f(x)f(y) is stable for the pair (G1, G»).

The first affirmative partial answer was given in 1941 by Hyers [16] where G,
G are Banach spaces.

In 1950 Aoki [2] provided a generalization of Hyers’ theorem for additive
mappings and in 1978 Rassias [22] generalized Hyers’ theorem for linear mappings
by allowing the Cauchy difference to be unbounded.

Beginning around the year 1980, several results for Hyers-Ulam-Rassias stability
of many functional equations have been proved by several mathematicians. For more
details, we can refer for example to [3, 8-10, 12-14, 17, 19, 23-26].

Let S be a semigroup with identity element e. Let o be an involutive morphism
of S. That is o is an involutive homomorphism:

o(xy)=0(x)o(y) and o(o(x)) =x forallx,y € S,
or ¢ is an involutive anti-homomorphism:
o(xy)=0()o(x) and o(o(x)) =x forall x,y € S.
We say that f : § — C satisfies the Jensen functional equation if
fxy)+ fxo(y) =2f(x), O.1)
forall x,y € S.

A complex valued function f defined on a semigroup S is a solution of a variant
of the Jensen functional equation if

fey) + flo(y)x) =2 (), 9.2)

for all x, y € S. Equations (9.1) and (9.2) coincide if f is central, and the central
solutions are the maps of the form f = a + ¢, where a : S — C is an additive
map such that a(o (x)) = —a(x) and where ¢ € C is a constant.

The Jensen functional equation (9.1) takes the form

FOay) + fy™) =2f) (9.3)
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forall x, y € S when o (x) = x~! and S is a group. The new equation (9.2) is much
simpler than (9.1). For a more general study we refer the reader to Ng’s paper [21]
and Stetkaer’s book [26].

The stability in the sense of Hyers-Ulam of the Jensen equations (9.1) and (9.3)
has been studied by various authors for the case when S is an abelian group or a
vector space. The interested reader is referred to the papers of Jung [18] and Kim
[20].

In 2010, Faiziev and Sahoo [11] proved the Hyers-Ulam stability of Eq. (9.3) on
some non-commutative groups such as metabelian groups and 7'(2, K), where K
is an arbitrary commutative field with characteristic different from two. They have
shown as well that every semigroup can be embedded into a semigroup in which the
Jensen equation is stable.

The quadratic functional equation

Ja+N+fx=y)=2fx)+2f¥), x,yeS 9.4)

has been extensively studied (see for example [1, 17, 26]). It was generalized by
Stetker [25] to the more general equation

e+ +fx+o()=2fx)+2f(), x,y€S. 9.5)

A stability result for the quadratic functional equation (9.4) was derived by Cholewa
[5] and by Czerwik [6]. Bouikhalene et al. [3] stated the stability theorem of
Eq. (9.5). In [7] the stability of the quadratic functional equation

Fan+ fay™H=2f0)+2f(), x,yeS (9.6)

was obtained on amenable groups.
Bouikhalene et al. [4] obtained the stability of the quadratic functional equation

Jy)+ fxo(y) =2f(x)+2f(y), x,y €S 9.7

on amenable semigroups.
In this paper we consider the following functional equations:
The p-Jensen functional equation

fy)+u) fxo(y) =2f(x), x,y €S, 9.8)

a variant of the u-Jensen functional equation

fy)+u@) flomx) =2f(x), x,y €S, 9.9)

and the p-quadratic functional equation

Jey) +pu) fxo(y) =2f(x)+2f(y), x,y €S, (9.10)

where p: § — Cis a multiplicative function such that u(xo (x)) = 1forall x € S.
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Our results are organized as follows. In Sects.9.2 and 9.3 we give a proof of
the Hyers-Ulam stability of the Jensen functional equation (9.1) and a variant of
the Jensen functional equation (9.2) on an amenable semigroup. As an application
(Sect. 9.4), we prove the Hyers-Ulam stability of the symmetric functional equation

JOy)+ fyx) =2f(x)+2f(y), x,y €G, .11

where G is an amenable group.

In Sects.9.5 and 9.6 we prove that the u-Jensen equation (9.8), respectively,
the w-quadratic functional equation (9.10) possesses the same solutions as Jensen’s
functional equation (9.1), respectively, the quadratic functional equation (9.7).
Furthermore, we prove the equivalence of their stability theorems on semigroups.

Throughout this paper m denotes a linear functional on the space B(S, C),
namely the space of all bounded functions on S.

The linear functional m is called a left, respectively, right invariant mean if and
only if

iﬂg fx) =m(f) <sup f(x); m(qf) =m(f); respectively, m(fq) = m(f)
xe xes

for all f € B(S,R) and a € S, where , f and f, are the left and right translates of
f defined by , f (x) = f(ax); fa(x) = f(xa),x € S.

A semigroup S which admits a left, respectively, right invariant mean on B(S, C)
will be called left, respectively, right amenable. If on the space B(S, C) there exists
a real linear functional which is simultaneously a left and right invariant mean, then
we say that S is two-sided amenable or just amenable. We refer to [15] for the
definition and properties of invariant means.

9.2 Stability of a Variant of the Jensen Functional Equation

In this section we investigate the Hyers-Ulam stability of the functional equa-
tion (9.2) on amenable semigroups.

Theorem 9.1 Let S be an amenable semigroup with identity element e. Let o be
an involutive anti-homomorphism, and let f : G —> C be a function. Assume that
there exists § > 0 such that

Lf(xy) + flo(y)x) =2f ()] <6 9.12)

forall x,y € S. Then, there exists a unique solution J : S —> C of the functional
equation (9.2) such that J (o (x)) = —J (x) and

[f(x) =J(x) = fle)] <6 9.13)
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forall x € S. Furthermore if S is a group and o (x) = x ! then there exists a unique
additive map a : S —> C such that

|f(x) —a(x) — f(e)] <6 9.14)

forall x € S.
Proof Let x, y bein S. Replacing x by o (x) in (9.12) we get

|fe)y) + fla(y)o@) =2f(o(x))] <8 (9.15)

Adding (9.12) to (9.15), and using the triangle inequality we obtain that

ILf (xy) + flo(o )]+ [f(@()x) + flo(x)y)] =2[f () + flo ()] < 28.

(9.16)
Hence
LfCGey) + fElo()x) =2 (0)] <3, 9.17)
where
[ = w forall x € S.

Subtracting (9.15) from (9.12), and using the triangle inequality we derive that

LfOey) + folo(x) —2f%(x)]| <6 (9.18)
for all x, y € S, where

J(&x) = flo(x)

fox) = 5 forall x € S.
Setting x = e in (9.17) we obtain
8
1f6(y) — féle)| < Eforallx,yeS. 9.19)

By replacing x by y in (9.18) and by the fact that f° is odd we get
|f7x) = fOlo(y)x) —=2f°(y)] < 8. (9.20)
This implies that for each y fixed in S, the function x — f%(yx) — f%(o(y)x) is

bounded. Since § is amenable, then there exists an invariant mean m on the space
of complex bounded functions on S and we can define the new mapping on S by

V() = mly [ —o(y) f°), forallyeS. 9.21)
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Using (9.21) and the fact that m is an invariant mean we get

V(yz2) + ¥ (0 @y) = miy £ —o@ow) [} +mle@yf” —omz £}
=miy [ =z 7Y+ Moy f* —o@ow) [}
=miy [ —on) B +mily 7 o) flo)
=m{yf* —on [} +mly f* —o0n [}
=y +v() =2¢0)

for all x, y € S. The function

v
J = —
» >
satisfies the variant of the Jensen functional equation (9.2), J(o(y)) = —J(y) for

all y € S, and we have the following inequality

1
) = DIl = Iim{yf” —ow f7 =2/ WM 9.22)

N >

1
< zsuplf”(yX) — flo(y)x) =21 <
xes
Finally, we obtain
lfO) =T = f@I=1f0)+ ) —J») = fe)l
SO = f@OI+1f70) =IO <8

for all y € S. This proves the first part of Theorem 9.1.

If S is a group and o(x) = x~!, then from [26, Proposition 12.29] we have
J = a, where a : S — C is an additive map.

Now suppose that there exist two odd functions J; and J; satisfying the variant
of the Jensen functional equation (9.2), and the following inequality

lf() = Ji(y) = f(e)] <6, withi =1,2. (9.23)
The function J := J; — J is also a solution of the functional equation (9.2), that is
J(xy)+J(o(y)x) =2J(x) forallx,y € S. (9.24)

By using the triangle inequality we get |J(x)| < 25 forall x € S.
Replacing y by x in (9.24) and using that J (o (x)) = —J (x) we get

J(x?) =2J(x) (9.25)
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and consequently, we get J (xzn) = 2"J(x) for all n € N. Since J is a bounded map
then J(x) = O for all x € S. This completes the proof of Theorem 2.1. O

The stability of Eq.(9.2) has been obtained in [4, Lemma 3.2], on amenable
semigroups with identity element and under the condition that o is an involutive
homomorphism. In the following theorem we investigate the Hyers-Ulam stability
of the functional equation (9.2) on amenable semigroups without identity element,
and where ¢ is a homomorphism.

Theorem 9.2 Let S be an amenable semigroup. Let o be an involutive homomor-
phism of S and let f : S —> C be a function. Assume that there exists § > 0 such
that

If(xy) + flo(nx) =2f ()] <4 (9.26)

for all x,y € S. Then there exists a unique additive function a : § — C and
xo € S such that

£ () — a@x) + f(xo) — f(o(x0)) — f ()| < 48 9.27)

forallx € S.

Proof In the proof we use some ideas from Stetkar [28].
Let x, y, z be in S. If we replace x by xy and y by z in (9.26) we get

|f(xy2) + fo()xy) =2f(xy)| < 6. (9:28)
By replacing x by o (z)x in (9.26) we get
|f (o (2)xy) + f(a(y)o(2)x) =2f(o(2)x)| <. (9:29)
Replacing y by z in (9.26) and multiplying the result by 2 we get
2f(xz) +2f(0c(@)x) —4f(x)| <26. (9.30)
If we replace y by yz in (9.26) we get
[f(xy2) + flo(y)o(z)x) —=2f(x)] < 4. 9.31)
Subtracting (9.31) from (9.29) and using the triangle inequality we get
|f(o(2)xy) = 2f(o(x)x) — flxyz) +2f(x)| = 26. (9-32)
Adding (9.30) and (9.32) and using the triangle inequality we obtain

12f(xz) =2f(x) + f(o()xy) — f(xyz)| < 43. (9.33)
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Subtracting (9.33) from (9.28) and applying the triangle inequality we get

[2f(xyz) —2f(xy) —2f(xz) +2f(x)| <56, (9.34)
which can be written as follows

2/ (xyz) =2 (O] = [2f(xy) =2f (0] = [2f(x2) =2f ()]l =58.  (9.35)

Now, for each fixed xg in S we define on S the function Ay, (t) = 2 f (xot) —2 f (x0).
Therefore, the inequality (9.35) can be written as follows

[Axy(¥2) — Axy(¥) — Axy(2)| <S8 forally,z € S. (9.36)

Since S is an amenable semigroup then by Szekelyhidi [30] there exists a unique
additive mapping b : S — C such that

|Ax,(x) —b(x)| <58 forallx € S. (9.37)
Replacing y in (9.26) by yz we get
|f(xyz) + fo(yz)x) = 2f(x)] < 6. (9.38)

If we replace x by o (y) and y by o (2)x in (9.26) we derive
|f(o(y)o(2)x) + f(zo(xy)) —2f(o(y)] < 3. (9.39)
Replacing x by z and y by o (xy) in (9.26) we get
| f(zo(xy)) + fxyz) =2f(2)| < 4. (9.40)

Subtracting (9.39) from the sum of (9.38) and (9.40) and applying the triangle
inequality we get

12/ (xy2) =2 (x) = 2f(2) + 2f (0 (y))] < 38. (9.41)
By replacing x and y by x¢, and z by x in (9.41) we get
|2 (x5x) — 2f (x0) — 2 (x) + 2f (o (x0))| < 35, (9.42)
which can be expressed as follows
12 (x5x) — 2 (x5) — 2f (x) = 2f (x0) + 2f (0 (x0)) + 2f (x()| <38.  (9.43)

Since A,2(x) =2 f(x3x) —2f(x3), then we have

142 () = 2f(x) =2f(x0) +2f (0 (x0) + 21 (xp)] < 38. (9.44)
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Subtracting (9.37) from (9.44) and using the triangle inequality we get
£ (x) = a(x) + f(x0) — f(o(x0) — f(xg)| <46, (9.45)

where a = 1b. This completes the proof of Theorem 2.2. O

9.3 Hyers-Ulam Stability of Eq. (9.1) on Amenable
Semigroups

In this section, we investigate the Hyers-Ulam stability of Eq. (9.1) on an amenable

semigroup, where o is an involutive anti-homomorphism.

Theorem 9.3 Let S be an amenable semigroup with identity element e. Let o be an
involutive anti-homomorphism of S. Let f : S —> C be a function which satisfies
the following inequality

If(xy) + fxo(y) =2f ()] <4 (9.46)

forall x,y € S and for some nonnegative 5. Then there exists a unique solution j
of the Jensen equation (9.1) such that j (o (x)) = —j(x) and

If(x) = Jj(x) = fle)] <38 9.47)

forall x € S.
First, we prove the following useful lemma.

Lemma 9.1 Let S be a semigroup. Let o be an involutive anti-homomorphism of
S. Let f : S —> C be a function such that f(o(x)) = — f(x) forall x € S and for
which there exists a solution g of the Drygas functional equation

g(yx) +glo(y)x) =2g(x) +g(y) +glo(y), x,y €S (9.48)

such that | f (x) — g(x)| < M, for all x € S and for some non negative M. Then

g)= lim 27" f(x%") forall x € S. (9.49)
n——+00
Furthermore g(o(x)) = —g(x) for all x € S and g satisfies the Jensen functional

equation

gxy)+ gxo(y)) =2gx) forallx,y € S.
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Proof Replacing y by xo (x) in (9.48) we obtain
g((xa () + g((xo (x)?) = 2g(x0 () + g(xo (x)) + g(xa(x)),  (9.50)

which implies that g((xo (x))?) = 2g(xo(x)) forall x € S.
By applying the induction assumption we get

2"g(xa (x)) = g((xo (x))*) (9.51)
forall n € N and for all x € S.

Now, by the hypothesis, f = g + b where b is a bounded function. Since f is
odd we have f = g? + b° and g¢ + b® = 0. Using (9.51) and the fact that

g((xa(x)*) = g*((xa (x))*)
we get
8(xo (x))] = 27"|g((xa (x))*)] < 27"[b° (xo (x))*'|. (9.52)
Letting n — o0 in the formula (9.52), we obtain that g(xo (x)) = 0 and hence
g(o(x)x) =O0forall x € S.
Setting y = x in (9.48) we get
g(x?) =2g(x) + g(x) + g0 (x)). (9.53)
If we replace x by o (x) in (9.53) we have
g(a(0)?) = 2g(0 (1)) + g(x) + g(o (x)). (9.54)

By adding (9.53) and (9.54) we get that g°(x?) = 4g°(x), and by induction it
follows that

gf(x?) =27 g°() (9.55)

for all x € S and for all n € N.
Using (9.55) and the fact that g + b° = 0 we have

g(x) =27 g(x*¥)y = 27 ¥ b (x?). (9.56)
Therefore, we get

lg¢0)] = 1277 g (P < 272 b (e ).
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So by letting n — +00 we obtain that g¢(x) = 0 for all x € §, which proves that
g(o(x)) = —g(x) forallx € S.

Using (9.53) and that g is odd we get that g(xz) = 2g(x), and by induction we
deduce that

g(x?) =2"g(x) (9.57)

forall x € S, and for all n € N.
Using (9.57) we get

27 ) = 27" () + B ()] = g () + 2700 (),
Thus
800 = 27" ()] = 27" B0 (). (9.58)
By letting n — 400 we obtain
g) = lim 27" f(x*).
We will prove that g satisfies the Jensen functional equation (9.1).

Since g(o(x)) = —g(x) for all x € S, the Drygas functional equation (9.48) can
be written as follows

gyx)+g(a(y)x) =2g(x), x,y €S. (9.59)
Replacing x by o (x) in (9.59) we get

g(yo (x)) + g(o(y)o(x)) = 2g(o (x)).
Using that g(o(x)) = —g(x) for all x € S we obtain

g(xa () + glxy) = 2¢(x), x,y €,
which means that g satisfies the Jensen functional equation (9.1). This completes

the proof of Lemma 9.1. Now, we are ready to prove Theorem 9.3. Setting x = ¢
in (9.46) we get

1f¢) = fle)] < (9.60)

[NSHIRSc]

forall y € S.
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The inequalities (9.46), (9.60) and the triangle inequality yield

Lfey) + fOx) =2f () =2f(y) +2f(e)| = [f(xy) + fxo(¥) = 2f(x)]

+ 1 x) + fyo) =2f I+ 12f(e) = fxa(y)) — fyo ()| < 38.
9.61)

Hence, from (9.46), (9.60) and (9.61) we get
fx) + flo)x) =2f)] < |f(yx)+ fxy) =2F() =2 (x) +2f(e)l

+1fle(x) + flxo () =2f(0(y) =2f(x) +2f(e)l

+1 = fOy) = fxo() +2f)+12f () +2f(0(y) —4f(e)] < 96.
(9.62)

From (9.46) and (9.62) we obtain
21f70x) + fOyo(x)) —2£°(y)] (9.63)
=1fOx)=flo(x)o(y) + f(yo(x) — fxa(y) —2f () +2f (@ ()]

<1fOx)+ f(yo(x) =2f W]+ [ f(xo(y)+f(o(x)o(y)=2f(o(y))
< 104.

Consequently we have
|f(yx) + fO(yo(x) —2f°(y)| <58 9.64)
for all x, y € S. Thus for fixed y € S, the functions x —> f?(yx) — f°(xa(y))

and x — f°(xy) + f°(xo(y)) —2f°(x) are bounded on S.
Furthermore,

m{f(?(y)d(z) + fé}(y)z - 2f;(y)} = m{(fé}(z) + fzo - zfo)o(y)} (9.65)

= m{foe + 0 —2f°),

where m is an invariant mean on S.
By using (9.62) we get that, for every fixed y € S, the function

x —> fOyx) + fOo(y)x) —2f°
is bounded and
m{zyfo +o @)y fo - nyo} = m{y(zfo +o(2) fo - Zfo)} (9.66)

= m{zfo +o(2) fo - 2f0}~
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Now we define the new mapping

$() = miyf* — £} v €S. (9.67)

By using the definition of ¢ and m, the equalities (9.65) and (9.66), we obtain that

() + @@ =Ml f* = Flro) +Mmlonf* = fod  9.68)
=mizy [* Fo@y [7 =20 ) = mifS 000 + Tome = 250
+2mfy [ = [}
=m{f" o) O =21 =m{f oy + 17 =21 +2m{y O — f3)}
=m{: " = fio)} T mlo [O = 2V +2m{y [0 = [y}
=2¢(y) + ¢ () + ¢ (0(2)),

which implies that ¢ is a solution of the Drygas functional equation (9.48).
Furthermore, we have

1 1
I%(y) - f'l= SleM) - 2f°)l = §|m{yf0 = ooy =27 (9.69)

1
<5 sup |fOx) = fOxo () =27

xes

1
=3 su];S) [f(yx) + fOyo(x) —2f°()l

<

8.

|

By Lemma 9.1, it follows that the function % is a solution of the Drygas functional

equation (9.48) and % — f? is a bounded mapping, thus we have

¢ _ . —n o, 2"
5= nETwZ fox), (9.70)
which implies that %(a x)) = —%(x) for all x € S, consequently % is a solution of

the Jensen functional equation (9.1). On the other hand, we have

@ == FOI=17 @+ £ -2~ fe) ©.71)
<@ = f@I+ 10 - 2|
) 58
<24+ 243

22
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We can use the same method as in Theorem 9.1 to prove the uniqueness of the
derived solution. This completes the proof of Theorem 9.3. O

9.4 Application: Stability of the Symmetric Functional
Equation (9.11)

In this section we use the result obtained in Sect. 9.3 to prove the stability of the
symmetric functional equation (9.11).

Theorem 9.4 Let G be an amenable group, and f : G —> C a function. Assume
that there exists a non-negative M such that

Lfey) + fyx) =2f(x) =2fI =M 9.72)

forall x,y € G. Then, there exists a unique solution J : G —> C of the symmetric
functional equation (9.11) such that

|f(x)—=J(x)— f(e)| < 12M forallx € G. (9.73)

Proof In the proof we use some ideas from Stetkar [26, Proposition 2.17].
Setting x = y = ¢ in (9.72) we get

M
lfe)l = = (9.74)
If we replace y by x~! in (9.72) we get
-1 M
Ifle) = fx)— fx D)l = ER 9.75)
Subtracting (9.75) from (9.74) and using the triangle inequality we obtain
@)+ fGahHl = M. 9.76)

Replacing x by xy and y by x~! in (9.72) we derive
|fOyx™) + fO) —2f (xy) = 2f(x™H < M. .77
Using (9.76), (9.77) and the triangle inequality we deduce that
|f ey ™) + f () = 2f (xy) +2f ()] < 3M. (9.78)
By replacing y by y~! in (9.78) we get that

ey ™+ foTh =2y 2 (0] < 3M. (9.79)
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Adding (9.78) to (9.79) and using the triangle inequality we have that
ILf Geyx ™) + f ey ™I+ ) + FOT DT = 2F () (9.80)
—2f(xy™ ) +4f ()] < 6M.

Using (9.76), (9.80) and the triangle inequality we obtain

IfGy) + fFey™) —2f ()] < 4M. (9.81)

By applying Theorem 9.3 there exists J: G —> C, unique solution of the Jensen
functional equation (9.3), that is

Jxy) + oy~ =27 (), (9.82)
such that J(x 1) = —J(x) and
lf(x) = Jx) = fe)| = 12M (9.83)
for all x € G. Interchanging x and y in (9.82) we obtain
J(yx)+ J(yx~H =2J(). (9.84)
Adding (9.82) to (9.84) we get
J(xy) + J(yx) + T (xy™) + T(yx™h) =20 (x) +2J (). (9.85)
Since J(x~!) = —J(x) for all x € G, then we deduce that
Jxy)+ J(yx) =2J(x) +2J(y) (9.86)
for all x,y € G, which means that J satisfies the symmetric functional equa-
tion (9.11).
For the uniqueness of the solution J we use that if J is a solution of (9.86) then

J(x?") = 2" J (x) for every integer n and for all x € G, and by similar computations
to those used above we deduce the rest of the proof. O

9.5 p-Jensen Functional Equation

The trigonometric functional equations having a multiplicative function © in front
of terms like f(xo(y)) or f(o(y)x) have been studied in many papers. The u-
d’ Alembert’s functional equation

FON +u@fay™ ) =2f)f(), x,y€S 9.87)
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which is an extension of d’Alembert’s functional equation

Fe) + fay™ ) =2f0)f(), x,y€S

has been treated systematically by Stetkar [27] on groups. The non-zero solutions
of (9.87) on groups with involution are the normalized traces of certain representa-
tion of S on C2. On abelian groups the solutions of (9.87) are

_ @+ u@yah
2

, wherey : § — C

J(x)

is a multiplicative function (see [27]).
On abelian groups the solutions of p-Wilson’s functional equation

f@y) +n)fxa(y) =2f(x)gl), x.y €S

are studied in [9] and [29]. We refer also the interested reader to [8] and [10].

In the present section we prove that the p-Jensen functional equations (9.8), (9.9)
have a non-zero solution only if u = 1. We note that in this case o is an arbitrary
surjective homomorphism which is not necessary involutive.

Theorem 9.5 Let S be a semigroup, o : S —> S be a homomorphism, and | be
a multiplicative function such that u(xo (x)) = 1 for all x € S. If the functional
equation

Fey) +uyfxo(y) =2f(x), x,yeS (9.88)

has a non-zero solution then p = 1. That is, the p-Jensen functional equation (9.88)
possesses the same solutions to those of the Jensen functional equation (1.2).

Proof Making the substitutions (xy, z), (xo (), z) in (9.88) we get respectively

fxyz) + u@) flxyo(2)) = 2f(xy), (9-89)

fxo(¥)2) + u@) f(xo(y)o(z)) =2 f(xo(y)). (9.90)
Multiplying (9.90) by () we obtain
u(y) f(xo()z) + n(yz) f(xo(y)o(2)) =2u(y) f(xo(y)). (9.91)

Adding (9.89) and (9.91) and applying (9.88) we obtain

fxyz) + u(@) fxyo(2)) + uy) f(xo(y)z) + u(yz) f(xo (y)o(2)) = 4f(x).
9.92)
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By using (9.88), Eq. (9.92) can be written as follows

2f) + n@Lf(xyo(2)) + u(yo () f(xo(y)z) = 4f(x). (9.93)

Multiplying (9.93) by u(o(z)) and using the fact that u(zo (z)) = 1 we get after
some simplification that

fxyo(2)) + n(yo(2) f(xo(y)z) = 2u(0(2) f(x). (9.94)
By replacing y in (9.88) by yo (z) we get
fxyo(2) + u(yo (2)) f (xo ()0 (2)) = 2 (x). (9.95)
Subtracting (9.95) from (9.94) we deduce that
1(yo )L f (xo (1)) — f(xo (y)o*(@))] = 2[u(o(2) — 111 (x). (9.96)

Multiplying the last identity by @ (o (y)z) and using the fact that u(zo (z)) = 1 we
obtain that

fxo(12) = f(xo(0)o?(2) = 2u(e (M1 — u(2)1f (). 9.97)

On the other hand, if we make the substitutions (xo(y),z) and (xo(y), 0 (2))
in (9.88) we deduce respectively

fxo()2) +u@) f(xo(y)o(z)) =2f(xa(y)). (9.98)
f(xo(0)0@) + 1o (2) f(xo (10> (2)) = 2f (xo (). (9.99)

Multiplying (9.99) by 1(z) and using the fact that (zo (z)) = 1 we derive that
1) f(xo (y)o(2)) + f(xo (y)0*(2)) = 2(2) f (xo (). (9.100)
Subtracting (9.100) from (9.98) we obtain
fxo()2) = f(xo ()0 () =2[1 — u(@)]f (xo (y)). (9.101)
By comparing (9.101) and (9.97) we deduce that
2u(oc (NI = n(@1f (x) =2[1 = w1 f(xo (y)), (9.102)
from which we get

[1 = n@]1ulo () fx) = fxo(y)]=0. (9.103)
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If we suppose that p # 1, then from (9.103) we deduce that

fxo(y) = p(o(y)fx) (9.104)

for all x, y € S. If we combine Egs. (9.104) and (9.88) we get

F&y) +up(e () f(x) =2f(x). (9.105)

Since w(yo(y)) = 1 we deduce that f(xy) = f(x) for all y € S. Therefore (9.88)
becomes

(n(y)=Dfx)=0

which means that either f = 0 or u = 1. Since p # 1, then we get f = 0, which
contradicts the assumption that f £ 0. O

Theorem 9.6 Let S be a semigroup, let ¢ : S —> S be a homomorphism, and |1
be a multiplicative function such that u(xo (x)) = 1 for all x € S. If the variant of
the p-Jensen functional equation

Fa)+uflex)=2f(x), x,yeS (9.106)

has a non-zero solution, then p = 1.

Proof The computations used in [10] for g = 1 show that for all fixed a in S, the
mapping x —> f(ax) — f(a) is additive.
On the other hand, by replacing y by yz in (9.106) we get

J(xyz) + u(y2) f(o(yz)x) = 2f (x). (9.107)

If we replace x by o (y) and y by o (z)x in (9.106) and multiply the result obtained
by u(yz) we deduce that

w(yz) fo(yz)x) + pu(xy) f(zo(xy)) = 2u(yz) f (o (y)). (9.108)

By replacing x by z and y by o (xy) in (9.106) and multiplying the result obtained
by w(xy) we get

wuxy) f(zo(xy)) + f(xyz) =2un(xy) f(2). (9.109)
By subtracting the sum of (9.107) and (9.109) from (9.108) we obtain

fxyz) = f(x) + pxy) f(z) — u(yz) f(o(y)). (9.110)
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Since for each fixed @ in S the function x —> f(a%x) — f(a?) is additive then the
new function

x — (@) f(x) — p@p) f(o@) +2f(@) —2f (@)
= p(@)[p(a) f (x) — p(x) f(o@)]+2f(a) —2f (@

is additive. Since p # 0, then we deduce that f is central. Thatis f(xy) = f(yx)
for all x, y € S. For the rest of the proof we use Theorem 9.5. O

Theorem 9.7 Let S be a semigroup, o : S —> S be an anti-homomorphism which
is surjective and u : S —> C be a multiplicative function such that u(xo (x)) = 1
forall x € S. If the u-Jensen functional equation

Jey) +ufxo(y) =2f(x), x,yeS (0.111)

has a non-zero solution, then p = 1.

Proof Making the substitutions (xy, z), (xo(¥), z) in (9.111) and multiplying the
second result by wn(y) we get respectively

JF(xyz) + (@) f(xyo (2)) = 2f (xy), 9.112)

ny) fxo(y)z) + u(yz) f(xo(y)o(2)) =2u(y) f(xa (y)). (9.113)

Adding (9.112) to (9.113) and using (9.111) we obtain

Sxyz) + u@) f(xyo(2)) + u(y) f(xo(»)z) + u(yz) f(xo (y)o(z)) = 4f(x).
9.114)

If we replace y in (9.111) by yz we get
fxyz) + u(yz) f(xo (2o (y) =2f(x). (9.115)
Subtracting (9.115) from (9.114) we obtain

nOyDLf (xo(y)o(2))— f(xo(2)o (Y)]+u(z) f(xyo () +u(y) f(xo (¥)2)=2f (x).
9.116)

Taking y = z in the last identity we find

nLf (xyo (y) + fxa(ny)] =21 x). (9.117)
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On the other hand, if we subtract (9.112) from (9.115) and multiply the result by
u(o(z)) and use the fact that (zo (z)) = 1 we get

ny) fxo (o (y) — fxyo(z)) =2u(o(2)) f(x) —2u(o(2) f(xy).
(9.118)

Replacing x in (9.111) by xo (z) implies
fxo(@)y) +uy) f(xo(@)o(y) =2f(xo(2)). (9.119)
The subtraction of (9.118) from (9.119) yields

fxo@)y) + f(xyo(z)) =2f(x0(2)) —2u(0o(2)) f(x) + 2u(0 (2)) f (xy).
(9.120)

Since o is surjective, then by taking t = o (z) in (9.120) we obtain
fxty) + flxyt) =2 f(xt) +2u() f (xy) — 2u(t) f(x) (9.121)

for all x, ¢,y € S. Replacing ¢ in (9.121) by y, and y by o (y) and multiplying the
resulting formulas obtained by w(y) and using the fact that u(yo (y)) = 1 we get

HLf (xyo () + f(xo(y)y)] (9.122)
=20(y) f(xy) + 202 (y) f (xa (1)) — 26> () f ().

If we subtract (9.122) from (9.117) we deduce
2u(Lf (xy) + pO) f (xo ()] = 2u* () f(x) = 2f (x). (9.123)

Using (9.111) we get
() — 1P f(x) =0 (9.124)

for all x and y in S. This means that if f is a non-zero solution of (9.121) then
w=1. m|

9.6 Solutions of p-Quadratic Functional Equation

In this section we consider the p-quadratic functional equation (1.10), and we
prove a similar result as in the precedent section for the p-quadratic functional
equation (9.10).
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Theorem 9.8 Let S be a semigroup, o : S —> S be a homomorphism, and | be
a multiplicative function such that u(xo (x)) = 1 for all x € S. If the u-quadratic
functional equation

Fey) +ufxo(y) =2fx)+2f(y), x,y €S (9.125)

has a non-zero solution, then u = 1. That is, the p-quadratic functional equa-
tion (9.125) possesses the same solutions to those of the quadratic functional
equation (1.4)

Proof Making the substitutions (xy, z), (xo (y), z) in (9.125) we get respectively

fxyz) +u(@) flxyo(2)) =2f(xy) +2f(2). (9.126)

Jxo()2) + p@) fxo(y)o(z)) =2f(xa(y) +2f(2). (9.127)

Multiplying (9.127) by u(y) we get

nw() fxo(z) + n(yz) f(xo(y)o(z) =2u(y) f(xo(y) +2u(y) f(2).
(9.128)

Adding (9.126) to (9.128) we obtain

[f(xyz) + u(yz) f(xo(y)o ()] + [u(z) f(xyo(2)) + u(y) f(xo(y)z)]
=2[f(xy) + () fxo ()] +2[1 + u(M]f ().

(9.129)
Replacing y by yz in (9.125) we get
fxyz) +nyz) f(xo(y)o(2)) =2f(x) +2f(y2). (9.130)
Multiplying (9.125) by 2 we derive
2L xy) + n) fxoNI=4f(x) +4f (). (9.131)
If we subtract (9.130) from the sum of (9.129) and (9.131) we obtain
w(@) fxyo(2)) + u(y) f(xo(y)z) +2f(yz) (9.132)

=2f(x) +4f () + 21+ pu(N1f(2).

On the other hand, if we replace y by yo (z) in (9.125) we get

F(xyo (2)) + u(yo (@) f(xo (0)o?(2)) = 2£(x) + 2f (yo (). (9.133)
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Multiplying the last equality by w(z) and using the fact that ;£ (zo (z)) = 1 we get

1(2) f(xyo (2)) + () f(xo (0)0%(2) = 21(2) f (x) + 2u(2) f (Yo (2)).
(9.134)

Subtracting (9.134) from (9.132) we deduce that

pLf (X0 (1)2) — fxo (N> @]+ 2Lf (v2) + 1(2) f (yo (2)] (9.135)
=21 = n@1f () +4F () +2(1 + n()) f(2)-

If we make the substitution (y, z) in (9.125) and multiply the result obtained by 2
we derive

2Lf (y2) + u(@) f(yo )] = 4Lf (y) + f(2)]. (9.136)

The subtraction of (9.136) from (9.135) implies after some simplification

wOIf(xa ()z2) — fxo (o (@)] =201 — u@]1f(x) +2(u@»y) — D f ().
9.137)

On the other hand, if we make the substitutions (xo(y),z) and (xo(y), 0 (2))
in (9.125) we get respectively

fxo(y)z) + @) fxo(y)o(2) =2f(xo(y)) +2f(2). (9.138)

o (o (2) + 1o (@) f(xo ()0’ () =2f(xo(y) +2f(0 ().  (9.139)

Multiplying (9.139) by n(z) and using the fact that u(zo (z)) = 1 we get

1) f(xo ()0 () + fxo()o(2) = 2u(z) f(xo () + 214(2) f (0 (2)).
(9.140)

Subtracting (9.140) from (9.138) we obtain

fxoM2)— fxo()o?(2) (9.141)
=2f(xo (M1 — n@)] +2f(2) — 2u) f (0 (2)).

Multiplying the last equation by 1(y) we obtain

LOLf (xo(Mz2) — fFxo(Mo?(@)] =2uMI1 — w@)1f (xo () (9.142)
+2u(y) f(2) —2u(yz) f(o(2)).



9 Functional Equations on Semigroups 189
Now, if we subtract (9.142) from (9.137) we deduce that

2[1 — @1 f(x) = 2f (@) =2u([1 — @] f(xo(y) —2u(yz) f(o(2)),

(9.143)
from which we get
(1= w@ILfx) = ny) fxoy)] = f(2) — pnlyz) f(o(). (9.144)
Taking y = z in (9.144) we obtain
[ = uWILF ) = ) fFExoON] = FO) — w(G?) f () (9.145)

forall x,y € S.
Setting S(y) = 1 — p(y) and multiplying (9.125) by B(y) and adding the result
obtained to (9.145) we derive that

B (xy) = f) =2f W] = f() =m0 (D) (9.146)
The last equation can be written as follows
BN f(xy) = BO)L(x) + [2B() + 11£ () — () f (@ (). (9.147)

Replacing y in (9.147) by o (y), and multiplying the result obtained by u(y?) and
using the fact that u(zo (z)) = 1 we find

n(?)Be ) f(xa () =pn(H B ) f(x) (9.148)
+1nOHRBE ) + 1) — fE2H).

Since u(yo (y)) = 1 we get that
uMB () =pnMI —ulcONl=pn@) —1=-1),

and thus Eq. (9.148) can be written in the form

LB fxo () =1L f(x) (9.149)
+ R2uMBB) — n(Hf @ () + f(@().

Adding (9.149) and (9.147) and using (9.125) we get

BO2Fx) +2f ] =[B0) +nMBMIF(X) + [28() + 11f(y)  (9.150)
+2uMBG) = 20(H1f (0 () + F@* ().
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Thus

BONS(x) = f() +2uMIBG) — w1 f (@ () + £ (07 () (9.151)

for all x, y in S.
If w # 1 then there exists yop € S such that S(yp) # 0 and from (9.151) we
deduce that f(x) = c, for all x € §, where

1
¢ = 5o 00 + 20001800 — 1G0)Lf (@ (o)) + (@G0,

which means that f is a constant. From (9.125) we deduce that f = 0, which
contradicts the assumption that f # 0. This completes the proof of Theorem 9.8.
O

9.7 Stability of the p-Jensen Functional Equation

In this section we study the stability of j-Jensen functional equation (9.8), where o
is a surjective homomorphism, and w is a bounded multiplicative function such that
uxo(x)) =1forallx € S.

Theorem 9.9 Let S be a semigroup, o : S —> S be a homomorphism, and (. be
a bounded multiplicative function such that u(xo (x)) = 1 for all x € S. If there
exists a non-negative scalar § such that

|fey) + ) fxo(y) =2fx)| <6 (9.152)
forall x,y € S, then either f is unbounded or u = 1.

Furthermore, the p-Jensen functional equation (9.8) is stable if and only if the
Jensen functional equation (1.1) is stable.

Proof Making the substitutions (xy, z), (xa (y), z) in (9.152) we get respectively

If (xy2) + u(2) f(xyo (2)) = 2f (xy) < 6, (9.153)

|f(xo(02) + n(2) f(xo (y)o(2)) —2f(xo(y)] < 6. (9.154)

The multiplicative mapping u is bounded, thus there exists a nonnegative real M
such that |u(x)| < M for all x € S. Multiplying (9.154) by u(y) we get

() f(xo(¥)z) + u(yz) f(xo(¥)o(z)) —2u(y) f(xo(y)| < M. (9.155)

Adding (9.153) and (9.155) and using the triangle inequality we obtain
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I[f(xyz) + n(yz) f(xo(y)o @)+ @) f(xyo(z)) + ny) f(xo(y)z)]
=2[f(xy) +puy) f(xaON] < (1 4+ M)é.

(9.156)
Replacing y by yz in (9.152) we obtain
|f(xyz) + n(yz2) f(xo(y)o(2) —=2f(x)| <. (9.157)
Multiplying (9.152) by 2 we get
[2[f (xy) + u(y) f(xo (y)] —4f(x)| < 23. (9.158)

If we subtract (9.157) from the sum of (9.156) and (9.158) and use the triangle
inequality we obtain

I @Lf (xyo (2)) + u(yo (2)) f(xo (y)z) = 2f (0)] = (4 + M)3. (9.159)

Multiplying the last inequality by (o (z)) and using the fact that u(zo (z)) = 1 we
get after some simplification

| £ (xy0(2) + n(yo (2) f(xo (1)2) = 2u(0 () f (¥)| < (4M + M?)8.
(9.160)

On the other hand, if we replace y in (9.152) by yo (z) we get
|f(xy0(2) + n(yo (2) f (xo (1)o>(2) — 2 (x)| < 8. (9.161)

Subtracting (9.161) from (9.160) we deduce that

(o @)Lf (xo (y)2) — fxo (o> (2) = 2u(o(2)) — 11f ()| (9.162)
< (144M + M?)s.

Multiplying the last identity by p(o (y)z) and using the fact that u(zo (z)) = 1 we
obtain

|f(xo(1)2) — f(xo (1)0%(2)) — 2o (YD1 — u(@)]1f (%) (9.163)
< (M +4M? + M>)s.

On the other hand, if we make the substitutions (xo(y),z) and (xo(y),0(z2))
in (9.152) we get respectively

[ f(xo(¥)2) + n(@) f(xo(y)o(z)) =2 f(xa(y)| <4, (9.164)
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| f (xo (1)0 () + (o () f(xo ()0 ?(2)) — 2f (xa ()| < 6. (9.165)
Multiplying (9.165) by 1(z) and using u(zo (z)) = 1 we derive that
1n(2) f(x0 ()0 () + f(xo ()0 () — 2u(2) f (xa ()| < M. (9.166)
Subtracting (9.166) from (9.164) and using the triangle inequality we obtain
|f(xo(1)2) — f(xo ()0 (@) = 2f (xa (YD1 — n(@)]] < (1 + M)s.  (9.167)

If we subtract (9.167) from (9.163) we deduce that

2[pu(o (NI — w@]1f (x) = 2f (xa ()1 — ()] (9.168)
< (142M +4M?* + M>)s,

from which we get

8
11— w@1ue () fx) = foGNI < (1 +2M +4M* + M3)§. (9.169)

If we suppose that o # 1, then there exists zg € S such that i (zp) # 1. From (9.169)
we deduce that

|f(xa(y) — (o () f(xX)] < ¢é (9.170)

forall x, y € S, where

é (1+42M + 4M? + M?).

T 21— uzo)

If we multiply (9.170) by u(y) and use the fact that u(xo (x)) = 1, we obtain
luy) f(xa(y) — f(x)| = M¢s. 9.171)

Subtracting (9.152) from (9.171) and using the triangle inequality we get

|f(xy) = f(0)| < M(p + 1)8 (9.172)

forall y € S. Replacing y by o (y) in (9.172) and multiplying the result by o (y) we
obtain

() f(xo (1) — p() f X)) < M (¢ + 1)8. 9.173)
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Subtracting (9.152) from the sum of (9.172) and (9.173) and using the triangle
inequality we deduce

11— uMIf )] < (M? + M)($ + 1) + 6. (9.174)

Since u # 1 we deduce that f is a bounded function. This completes the proof of
Theorem 9.9. o

9.8 Stability of the y-Quadratic Functional Equation
In this section we investigate the stability of the u-quadratic functional equa-
tion (1.10).

Theorem 9.10 Letr S be a semigroup, let o : S —> S be a homomorphism, and
W be a bounded multiplicative function such that (xo (x)) = 1. If there exists a
non-negative scalar § such that

IfGey) +n() fxa(y) =2f(x) =2f(M| =4, x,y €S, 9.175)

then either f is unbounded or u = 1.
Furthermore, the |-quadratic functional equation (1.10) is stable if and only if
the quadratic functional equation (9.7) is stable.

Proof Making the substitutions (xy, z), (xo (), z) in (9.175) we get respectively

|f(xy2) + 1(2) f(xyo (2)) = 2f (xy) = 2f(2)| < 6. (9.176)

| f(xo(¥)z) + @) fxo(y)o(2)) —2f(xo(y)) —2f(2)] < 4. (9.177)

Multiplying (9.177) by u(y) we get

() f(xo(y)z) + u(yz) f(xo (¥)o(2)) —2u(y) f(xo (y)) —2u(y) f(2)]

< Ms.
(9.178)

Adding (9.176) and (9.178) and using the triangle inequality we obtain

ILf (xyz) + pu(yz) f(xo (y)o(@)] + [n(@) f(xyo (2)) + n(y) f(xo (y)2)]

=2[f(xy) + u(y) fxo ()] =2[1 + uM1f (@] < (1 + M)s.
(9.179)
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Replacing y by yz in (9.175) we get
If(xyz2) + n(yz) f(xo(y)o (@) —2f(x) —=2f(y2)| <. (9.180)
Multiplying (9.175) by 2 we get
12Lf (xy) + n(y) f(xo (YN —4f(x) —4f(y)] < 26. (9.181)

If we subtract (9.180) from the sum of (9.179) and (9.181) and use the triangle
inequality we obtain

ln(z) f(xyo (2)) + () f(xo (y)2) +2f (yz) =2 (x) —4f(y) (9.182)
—2[1+puW1f @] = (44 M)3s.

On the other hand, if we replace y in (9.175) by yo (z) we deduce that

|f (xyo (2)) + 1(yo () f (x0 ()0 (2)) = 2 (x) = 2f (yo ()| 8. (9.183)

Multiplying the last inequality by 1£(z) and using the fact that (zo (z)) = 1 we get

[1(2) f (xyo (2)) + () f (X0 ()0 (2) = 20(2) f (x) = 2(2) f (yo ()]

< Ms.
(9.184)

Subtracting (9.184) from (9.182) and using the triangle inequality we obtain that

ILWLf (xo(0)2) — fxo (o @) +2[f (y2) + () f(yo (2)] (9.185)
—2[1 = u@1f () =4f(y) =20+ u() f(2)| = (4 +2M)3.

If we make the substitution (y, z) in (9.175) and multiply the result by 2 we obtain

12[f (y2) + @) f(yo ()] = 4Lf(y) + f(2)] = 26. (9.186)

The subtraction of (9.186) from (9.185) and the triangle inequality provide after
some simplification that

LS (ko (3)2) = f(xo ()0 @)] + 2[u(z) — 11 £ (x) (9.187)
+2(1 — u(y) f(2)] = (6 +2M)s.

On the other hand, if we make the substitutions (xo(y),z) and (xo(y),0(2))
in (9.175) we get respectively

[f(xo(y)2) + n(@) fxo(y)o(2) —2f(xa(y)) —2f(2)] < 4. (9.188)
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|f(xa ()0 (2)) + (0 (2) f (x0 (y)0°(2)) — 2f (x0 () — 2f (0 (2))| < 6.
(9.189)

Multiplying (9.189) by u(z) and using the fact that (zo (z)) = 1 we get that

I1(2) f(xa (V)0 (2) + fxo(0)0?(2)) — 2(2) f(xa () — 2u(2) £ (0 (2))]

< MS.
(9.190)

Subtracting (9.190) from (9.188) and using the triangle inequality we obtain

|f(xo(0)2) — fxo(3)0*(2) = 2f (xa (1 — ()] — 2 (2) 9.191)
+2u(z) f(o(2)] = (1 + M)S4.

Multiplying the last identity by w(y) we obtain

ILDLf (xo (0)2) = fFxo(Ma2@)] = 2uIl — n@1fxo(y))  (9.192)
—2u() f(2) +21(y2) f (@ ()] < (M + M?)8.

If we subtract (9.192) from (9.187) and use the triangle inequality we obtain that

12[(2) — 11F(x) +2(1 — n(3) f(2) + 21 — w(@1f(xa(y))  (9.193)
+2u(y) f(2) = 2u(y2) f (0 (2))] < (6 +3M + M?)3,

from which we get

Il (z) = 1L ) = ) f(xo (YN + f(2) = n(yz) f(o(2))] (9.194)

8
< (6+3M + MZ)E.
Setting y = z in (9.194) we obtain

IBOIFx) — ) fxoONI+ f(3) — O fFle())] < o (9.195)
where B(y) = u(y) — 1 forall y € S, and
2.8
a=(06+3M+M )z

Adding (9.195) to (9.175) multiplied by B(y) and using the triangle inequality we
obtain

IBOS (xy) = fx) = 2f D1+ F() = G O] < o+ (M + 1.
(9.196)
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The last inequality can be written in the form

1BO)f(xy) — BO) f(x) = 2B() — 11£(») — nOD f o) (9.197)
<o+ (M+1)s.

Replacing y in (9.197) by o (y), and multiplying the result by 1(y?) and using the
fact that u(zo (z)) = 1 we derive

() Blo () f(xa () — n(y?)Bo () f(x) (9.198)
— nOAHR2BE () = 11f (@) — fFE*ON] < M?a + (M + M?)s.

Since u(yo (y)) = 1 we get that

u()Bo(y) =pnWMluo(y) =11 =1—-nuly) =-41),
and thus inequality (9.197) can be expressed as follows

LB f(xa () — nMBO) f(x) — 2uMBG) + 1D (0 ()

+ F(02())] < M?a + (M? + M?)s.
(9.199)

Subtracting (9.175) multiplied by B(y) from the sum of (9.199) and (9.197) and
using the triangle inequality we get

IBOI2f(x) +2f(W] = [BO) +u(MBWMIfx) —12B8(y) —11f(y)
—R2uMBG) + 2D @) + f(@* ()]
<(1+ M»a + (M? + M* + M + 2)s. (9.200)

Simplifying the last inequality we obtain

B2 f(x) — £ = 2u() flo() — fF@* ) (9.201)
<+ M)Ha+ (M> + M?> + M +2)s.

Using the triangle inequality we deduce that

B2 F O <1FO) + 21 f () + fo ()] (9.202)
+(M> 4+ Da+ (M>+ M>+ M +2)8

forall x, y in S.
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If ;© # 1 then there exists yg € S such that S(yp) # 0. From (9.202) we deduce

that f is bounded. This completes the proof of Theorem 9.10. O
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Chapter 10 ®
Bi-additive s-Functional Inequalities Qs
and Quasi-%-Multipliers on Banach

x-Algebras

Jung Rye Lee, Choonkil Park, and Themistocles M. Rassias

Abstract Park introduced and investigated the following bi-additive s-functional
inequalities

I fGe+y, z4w)+f(x+y, z—w)+ f(x—y, z+w)+ f (x—y, z—w)—4f (x, 2) ||
s(4f (32, z—w) +4f (552, z4w) —4f (x, D+4f (v, w)) |, (10.1)

<|

J4f (5 2 —w) +4f (T 2+ w) —4f (x5, ) +4f (5, w)|
<lIs(fx+y,z+w)+ fx+y,z—w)+ f(x—y,z+w) (10.2)
+f(x_y92_w)_4f(x71))||7

where s is a fixed nonzero complex number with |s| < 1. Using the direct method,
we prove the Hyers-Ulam stability of quasi-x-multipliers on Banach x-algebras
and unital C*-algebras, associated to the bi-additive s-functional inequalities (10.1)
and (10.2).
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10.1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[23] concerning the stability of group homomorphisms. The functional equation

fx+y)=fx)+ f

is called the Cauchy equation. In particular, every solution of the Cauchy equation is
said to be an additive mapping. Hyers [13] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Rassias [21] for linear mappings by considering
an unbounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Givruta [10] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Rassias’ approach.
Gilanyi [11] showed that if f satisfies the functional inequality

1270 +2f(y) = fx = = [If(x+ (10.3)

then f satisfies the Jordan-von Neumann functional equation

2f)+2f (M =flx+y)+ flx—y).

See also [22]. Fechner [9] and Gilanyi [12] proved the Hyers-Ulam stability of the
functional inequality (10.3).

Park [17, 18] defined additive p-functional inequalities and proved the Hyers-
Ulam stability of the additive p-functional inequalities in Banach spaces and
non-Archimedean Banach spaces. The stability problems of various functional
equations and functional inequalities have been extensively investigated by a
number of authors (see [2, 4-8, 19]).

The notion of a quasi-multiplier is a generalization of the notion of a multiplier
on a Banach algebra, which was introduced by Akemann and Pedersen [1] for
C*-algebras. McKennon [15] extended the definition to a general complex Banach
algebra with bounded approximate identity as follows.

Definition 10.1 ([15]) Let A be a complex Banach algebra. A C-bilinear mapping
P: A x A — Aiscalled a quasi-multiplier on A if P satisfies

P(xy,zw) =xP(y,2)w

forall x, y, z, w € A.
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Definition 10.2 Let A be a complex Banach *-algebra. A bi-additive mapping P :
A X A — A s called a quasi-x-multiplier on A if P is C-linear in the first variable
and satisfies

P(x,z) = P(z,x)%,
P(xy,z) =xP(y,z)

forall x, y,z € A.

It is easy to show that if P is a quasi-+-multiplier, then P is conjugate C-linear
in the second variable and P(xy, zw) = x P(y, w)z* forall x, y, z, w € A.

This paper is organized as follows: In Sects.10.2 and 10.3, we prove the
Hyers-Ulam stability of the bi-additive s-functional inequalities (10.1) and (10.2)
in complex Banach spaces by using the direct method. In Sect. 10.4, we prove
the Hyers-Ulam stability and the superstability of quasi-x-multipliers on Banach
x-algebras and unital C*-algebras associated to the bi-additive s-functional inequal-
ities (10.1) and (10.2).

Throughout this paper, let X be a complex normed space and Y a complex
Banach space. Let A be a complex Banach x-algebra. Assume that s is a fixed
nonzero complex number with |s| < 1.

10.2 Bi-additive s-Functional Inequality (10.1)

Park [20] solved the bi-additive s-functional inequality (10.1) in complex normed
spaces.

Lemma 10.1 ([20, Lemma 2.11) If a mapping f : X> — Y satisfies f(0,z) =
f(x,0) =0and

| f(x+y, z+w)+ f(x+y, z—w)+ f(x =y, z+w)+ f(x—y, z—w)—4 f (x, 2) ||

s <4f <? z—w) t4f (? z—i—w) —4f(x, )+4(, w)) ‘

=<

(10.4)

forallx,y,z,w € X, then f : X*> — Y is bi-additive.

Using the direct method, we prove the Hyers-Ulam stability of the bi-additive
s-functional inequality (10.4) in complex Banach spaces.

Theorem 10.1 Let ¢ : X2 — [0, 00) be a function such that

W(x,y) = izhp (i, 21]) <00 (10.5)

j=1
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forallx,y € X. Let f : X* — Y be a mapping satisfying f(x,0) = f(0,z) = 0
and

If (x+y, z+w)+ f(x+y, z—w)+ f(x—y, z+w)+ f(x—y, z—w) =4 f (x, 2|

s (4f (%,Z—w> —I—4f( ,z—l—w) —4f(x,2)+4f(Q, w)> H

+o(x, y)o(z, w) (10.6)

forall x,y,z,w € X. Then there exists a unique bi-additive mapping B : X> — Y
such that

1
If(x.2) = Blx. Il = 7 W(x, x)e(z. 0) (10.7)

forallx,z € X.
Proof Letting w = 0 and y = x in (10.6), we get

12/ 2x,2) —4f(x, )| < (x, x)(z,0) (10.8)
forall x,z € X. So

=21 (3.9 = 5 2w

forall x, z € X. Hence

Pr(59) -2 (o)l

IA

S (52 ()|

17
3 lzj(p(z] 2}) (z,0) (10.9)

IA

for all nonnegative integers m and [ with m > [ and all x,z € X. It follows
from (10.9) that the sequence {Zkf(zx—,{, z)} is Cauchy for all x, z € X. Since Y is a
Banach space, the sequence {2F f (&

5%+ 2)} converges. So one can define the mapping
B:X?> > Yby

. X

for all x, z € X. Moreover, letting [ = 1 and passing the limit m — oo in (10.9),
we get (10.7).
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It follows from (10.5) and (10.6) that

|B(x +y, z+w)+B(x+y, z—w)+B(x—y, z+w)+B(x—y, z—w)—4B(x, 2) ||

- 2"(f(x;; 2w >+f< . w)+f< ,z+w)
52 me) ()]

< lim 2" <4f <2n+y1,z >+4f (’% z+w> —4f(3-2)
a1 ()| e (5 2t

<

(oo (o) o0 (Fcve) )

forall x, y, z, w € X. So

IB(x+y, z+w)+B(x+y, z—w)+B(x—y, z+w)+B(x—y, z—w)—4B(x, 2)|

s <4B (%, z—w) +4B ( 2 ,Z—I-w) —4B(x, z2)+4B(y, w)) H

forall x, y,z, w € X. By Lemma 10.1, the mapping B : X> — Y is bi-additive.
Now, let T : X2 — Y be another bi-additive mapping satisfying (10.7). Then we
have

|B(x,2)—T(x,2)| = quB (;T] Z) —2'T (24 )H

<4 (5 0) 27 (5 ) [Hl2r (559) - 27 (559
24 X X
=5¥ (2q 2q)“’(Z 0,

which tends to zero as ¢ — oo for all x, z € X. So we can conclude that B(x, z) =
T (x, z) for all x, z € X. This proves the uniqueness of A, as desired.

Corollary 10.1 Letr > 1 and 0 be nonnegative real numbers and let f : X*> — Y
be a mapping satisfying f(x,0) = f(0,z) = 0and

I f x4y, z+w)+ f(x+y, z—w)+ f (x—y, z+w)+ f (x—y, z—w)—4 f (x, 2) |
s (4f (%,z—w) +4f< y,z+w> —4f(x, D)4, w)> H

FOxN” + Iy Azl + Twl”) (10.10)
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forall x,y,z,w € X. Then there exists a unique bi-additive mapping B : X* — Y
such that

If G, 2) = Blx, )l = 57—

™11z

forallx,z € X.

Proof The proof follows from Theorem 10.1 by taking ¢(x, y) = ~/O(||x||" + ||y |I")
forall x,y € X.

Theorem 10.2 Let ¢ : X> — [0, 00) be a function such that

o0

1 . .
Wx,y) =Y g(p(ij, 27y) < 00 (10.11)
j=0

forallx,y € X. Let f : X*> — Y be a mapping satisfying (10.6) and f(x,0) =
f(0,z) = 0 forall x,z € X. Then there exists a unique bi-additive mapping B :
X% — Y such that

1
| f(x,2) = B(x, 2| < Z‘I’ (x, x) 9(z,0)
forallx,z € X.

Proof 1t follows from (10.8) that

1 1
Hf(x, 2) = 5f@2x.2)) = 2o, X)e(z. 0)

forall x, z € X.
The rest of the proof is similar to the proof of Theorem 10.1.

Corollary 10.2 Let r < 1 and 6 be nonnegative real numbers and let f : X> — Y

be a mapping satisfying (10.10) and f(x,0) = f(0,z) =0 forall x,z € X. Then
there exists a unique bi-additive mapping B : X* — Y such that

10— Bl <

" llz1"

forallx,z € X.

Proof The proof follows from Theorem 10.2 by taking ¢ (x, y) = Vodlx I+
forall x,y € X.
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10.3 Bi-additive s-Functional Inequality (10.2)

Park [20] solved the bi-additive s-functional inequality (10.2) in complex normed
spaces.

Lemma 10.2 ([20, Lemma 3.11) If a mapping f : X> — Y satisfies f(0,z) =
f(x,0) =0and

H4f <x+y,z—w)+4f< 2y,z+w) 4f(x, z)+4f(y,w)H

<lIs(fx+y,z+w) + fx+y,z—w) (10.12)
+fx—y,z+w) + flx—y,z—w) —4f(x,2)l

forallx,y,z,w € X, then f : X2 — Y is bi-additive.

Using the direct method, we prove the Hyers-Ulam stability of the bi-additive
s-functional inequality (10.12) in complex Banach spaces.

Theorem 10.3 Ler ¢ : X> — [0, o0) be a function satisfying (10.5). Let f : X> —
Y be a mapping satisfying f(x,0) = f(0,z) = 0and

J47 (552 2 —w) +47 (52 24 w) —4F(r, 2 +4F 0L w)| (10.13)
<ls(fx+y,z+w+fx+y,z—w) + fx—y,z+w)
+fx—y,z—w) —4f(x, Dl + ox, Yoz, w)

forall x,y,z,w € X. Then there exists a unique bi-additive mapping B : X* — Y
such that

1
If(x,2) = Bx,2)ll = g‘I/(Zx,O)fP(Z,O) (10.14)

forallx,z € X.
Proof Letting y = w = 01n (10.13), we get

HSf (%z) —4f(x,z)H < o(x, 0)p(z, 0) (10.15)

forall x, z € X.

The rest of the proof is similar to the proof of Theorem 10.1.
Corollary 10.3 Let r > 1 and 0 be nonnegative real numbers and let f : X*> — Y
be a mapping satisfying f(x,0) = f(0,z) = 0and

l4f (532 z—w) +4f (P z+w) —4f(x, 2 +4f (. w)|  (10.16)
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<lIs(fx+y,z+w+ fx+y,z—w)+ fx—y,z+w)
+fx =y, z—w) =4fC, )+ 0dxI” + IyIDAzl™ + llwl")

forall x,y,z,w € X. Then there exists a unique bi-additive mapping B : X> — Y
such that

r—2

1.0~ B ol < 22

Il flz1"

forallx,z € X.

Proof The proof follows from Theorem 10.3 by taking ¢ (x, y) = NCTEN NS
forall x,y € X.

Theorem 10.4 Let ¢ : X*> — [0, 00) be a function satisfying (10.11). Let f -
X% — Y be a mapping satisfying (10.13) and f(x,0) = f(0,z) = 0 for all
X,z € X. Then there exists a unique bi-additive mapping B : X* — Y such that

1
If(x,2) = B(x, )| = oW (2%, 0) 0(z. 0) (10.17)

forallx,z € X.
Proof 1t follows from (10.15) that

1 1
Hf(xs Z) - Ef(zx, Z) < g‘p@xv O)@(Z, 0)

forall x, z € X.
The rest of the proof is similar to the proofs of Theorems 10.1 and 10.3.

Corollary 10.4 Let r < 1 and 0 be nonnegative real numbers and let f : X> — Y
be a mapping satisfying (10.16) and f(x,0) = f(0,z) = 0forall x,z € X. Then
there exists a unique bi-additive mapping B : X*> — Y such that

9 r r
If(x,2) = B(x,2)|| = mIIXII Izl

forallx,z € X.

Proof The proof follows from Theorem 10.4 by taking ¢(x, y) = v/O(||x||" + ||y |I")
forall x,y € X.
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10.4 Quasi-#-Multipliers in C*-Algebras

In this section, we investigate quasi-k-multipliers on complex Banach x-algebras
and unital C*-algebras associated to the bi-additive s-functional inequalities (10.4)
and (10.12).

Theorem 10.5 Let ¢ : A2 — [0, 00) be a function such that there exists an L < 1
with

W(x,y) = iqu) (zﬁ y) < 00 (10.18)

2
j=l1
forallx,y € A. Let f : A2 — A be a mapping satisfying f(x,0) = f(0,z) =0

and

IfA G +y),z+w) + fAx+y),z—w) + fAx —y), 2+ w)
+ f(x = y), 2 —w) —4rf (x, 2) | (10.19)

X+ xX—
< |ls <4f (Ty Z—w) +af (Ty Z—l—w) —4f(x, D) 4y, w)) H
+ox, Yoz, w)
forallx € T' := (v € C : |v| = 1}andall x,y,z,w € A. Then there exists

a unique bi-additive mapping B : A> — A, which is C-linear in the first variable,
such that

If(x,2) = Bx,2)|| = %‘I'(x,X)w(z, 0) (10.20)

forall x, z € A.
Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,7) =
2f(x,z) and

1f Gy, 2) = xf (3. DI < p(x, ) ?0(z. 0), (10.21)
If(x,2) = £z, )*Il < @(x, 0)p(z, 0) (10.22)
forall x,y,z € A, then the mapping f : A> — A is a quasi-s-multiplier.

Proof Let A = 1in(10.19). By Theorem 10.1, there is a unique bi-additive mapping
B : A> — A satisfying (10.20) defined by

B(x,2):= lim 2'f (;—nz)

forall x, z € A.
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If f(2x,z) =2f(x,z) forall x,z € A, then we can easily show that B(x, z) =
f(x,z) forall x,z € A.
Letting y = x and w = 0 in (10.19), we get
12f(2rx, 2) —40f(x, D < ¢(x, X)p(z,0)
forall x,z € Aandall » € T!. So

12B(2Ax, 2) — 4AB(x, 2)|| = lim 2"
n—oo

2 (2hg52) =4 (55-9)]

< lim 2" i) 0(z,0) =0

~ n—oo <2x_”’ 2n

forall x,z € A and all » € T!. Hence 2B(2Ax, z) = 4AB(x, z) and so B(Ax,z) =
AB(x,z) forall x,z € A and all A € T!. By [16, Theorem 2.1], the bi-additive
mapping B : A> — A is C-linear in the first variable.

It follows from (10.21) that
Xy x y
f(zn.zn’z> _2_"f(2_n’z)H

2
< lim 4"¢ i,l 0,00 =0
n° n ’

n—o0

B(xy,z) —xB(y,2)|| = lim 4"
n—00

for all x, y, z € A. Thus
B(xy,z) =xB(y,2)

forallx, y,z € A.
It follows from (10.22) that

|B(x,z) — B(z, x)*|| = lim 2"
n—>oo

e Gy

< lim 2"¢ (21 o) 0 (z,0)=0

n—oo

forall x,z € A. Thus
B(x,z) = B(z, x)*

for all x, z € A. Hence the mapping f : A> — A is a quasi-s-multiplier.

Corollary 10.5 Let r > 2 and 6 be nonnegative real numbers, and let f : A> — A
be a mapping satisfying f(x,0) = f(0,z) =0and
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1F O+ 3z +w) 4+ FOG 43z —w) + Ol — ¥) 2+ w)
+fO(x —y), 72— w) —4rf(x, D) (10.23)
< |s(4f (B2 2 —w) +4f (R 24+ w) —4f(x, ) + 4 (v, w)) |
(X" + Iy 1Dzl + wl”)

forallx € T andall x, y, z, w € A. Then there exists a unique bi-additive mapping
B : A?> — A, which is C-linear in the first variable, such that

”f(-x’ Z) - B(.X, Z)” =

T 2|IXI|’|IZ|I’ (10.24)

forall x,z € A.

If, in addition, the mapping f : A2 > A satisfies f(2x,z) =2 f(x, z) and

If Gy, 2) =xf (. DIl < 0dlxll” + Iy ID Nzl (10.25)

IfCeo2) = flz 0"l < ellxl"lzll" (10.26)

forall x,y,z € A, then the mapping f : A> — A is a quasi-x-multiplier.

Proof The proof follows from Theorem 10.5 by taking ¢ (x, y) = N EN NS
forall x, y € A.

Theorem 10.6 Let ¢ : A2 — [0, 00) be a function such that

e ¢]

1 . .
W(x, y) = Z E(p(ij, 27y) < 00 (10.27)
j=0

forallx,y € A. Let f : A2 — A be a mapping satisfying (10.19) and f(x,0) =
f(0,z) = 0 forall x,z € A. Then there exists a unique bi-additive mapping B :
A% — A, which is C-linear in the first variable, such that

1
If(x,2) = Bx,2)|l = 7Y ek, 0) (10.28)

forall x,z € A.

If, in addition, the mapping f : A*> — A satisfies (10.21), (10.22) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier.

Proof The proof is similar to the proof of Theorem 10.5.

Corollary 10.6 Letr < 1 and 6 be nonnegative real numbers, and let f : A> — A
be a mapping satisfying (10.23) and f(x,0) = f(0,z) = 0 forall x,z € A. Then
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there exists a unique bi-additive mapping B : A> — A, which is C-linear in the
first variable, such that

If(x,2) = Bx,2)|| =

< g5 Xl lzl’ (10.29)

forall x,z € A.

If. in addition, the mapping f : A*> — A satisfies (10.25), (10.26) and
f@x,z) =2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier.

Proof The proof follows from Theorem 10.6 by taking ¢(x, y) = v/O(||x||" + |y |I")
forall x, y € A.

Similarly, we can obtain the following results.

Theorem 10.7 Let ¢ : A2 — [0, 00) be a function satisfying (10.18) and let f -
A% — A be a mapping satisfying f(x,0) = f(0,z) = 0 and

H4f (x% . w> Lar (xx — 4 w> A0 D)+ AAF . w)”

2
<|s(f&G+y,z+w)+ f&x+y,z—w)+ f(x —y, 2+ w)
+fx—y,z—w) —4f(x, DI+ ox, y)o(z, w) (10.30)

forallx € T and all x, y, z, w € A. Then there exists a unique bi-additive mapping
B : A2 — A, which is C-linear in the first variable, such that

If(x,2) = Bx,2)ll = %‘P(Zx,o)w(z,o) (10.31)

forall x, z € A.

If, in addition, the mapping f : A? — A satisfies (10.21), (10.22) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-s-
multiplier.

Corollary 10.7 Let r > 2 and 0 be nonnegative real numbers, and let f : A> — A
be a mapping satisfying f(x,0) = f(0,z) = 0 and

H4f (x" .- w) Lap (xx mbApN w) M) 4, w)”
< ISP+ v,z +w) + FG+y,2—w) + fOr— v, 2+ w)
FF 0=,z —w) — A£G DI+ O+ Iy Il + wl)(1032)

forallx € T andall x, y, z, w € A. Then there exists a unique bi-additive mapping
B : A?> — A, which is C-linear in the first variable, such that
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r—2

If(x,2) = Bx,2)|| = Il 11z (10.33)

-2 =2
forall x,z € A.

If, in addition, the mapping f : A*> — A satisfies (10.25), (10.26) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier.

Proof The proof follows from Theorem 10.7 by taking ¢ (x, y) = NACGTEN RS
forall x, y € A.

Theorem 10.8 Ler ¢ : A% — [0, 00) be a function satisfying (10.27). Let f : A —
A be a mapping satisfying (10.30) and f(x,0) = f(0,z) = 0 for all x,z € A.
Then there exists a unique bi-additive mapping B : A> — A, which is C-linear in
the first variable, such that

If(x,2) = B(x,2)|| = %‘I’ (2x,0) ¢(z,0) (10.34)

forall x,z € A.

If, in addition, the mapping f : A? — A satisfies (10.21), (10.22) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-s-
multiplier.

Corollary 10.8 Letr < 1 and 6 be nonnegative real numbers, and let f : A — A
be a mapping satisfying (10.32) and f(x,0) = f(0,z) = 0forall x,z € A. Then
there exists a unique bi-additive mapping B : A*> — A, which is C-linear in the
first variable, such that (10.29) holds for all x, z € A.

If, in addition, the mapping f : A*> — A satisfies (10.25), (10.26) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier.

Proof The proof follows from Theorem 10.8 by taking ¢ (x, y) = NAGTEN RS
forall x, y € A.

From now on, assume that A is a unital C*-algebra with unit e and unitary group
U(A).

Theorem 10.9 Let ¢ : A2 — [0, 00) be a function satisfying (10.18) and let f
A% — A be a mapping satisfying (10.19) and f(x,0) = f(0,z) = 0 for all
x,z € A. Then there exists a unique bi-additive mapping B : A*> — A, which is
C-linear in the first variable and satisfies (10.20).

If, in addition, the mapping f : A> — A satisfies (10.22), f(2x,z) = 2f(x, z)
and

I f @y, 2) — uf (v, DIl < @, y)*¢(z,0), (10.35)
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forallu € U(A) and all x, y, z € A, then the mapping f : A> — A is a quasi-s-
multiplier satisfying f(x, w) = xf (e, e)w* forall x, w € A.

Proof By the same reasoning as in the proof of Theorem 10.5, there is a unique
bi-additive mapping B : A?> — A satisfying (10.20), which is C-linear in the first
variable, defined by

B(x,2):= lim 2"f (;—nz)

forall x, z € A.

If f(2x,z2) =2f(x,z) forall x,z € A, then we can easily show that B(x, z) =
f(x,z) forall x,z € A.

By the same reasoning as in the proof of Theorem 10.5, B(uy, z) = uB(y, z) for
allu e U(A) and all y, z € A.

Since B is C-linear in the first variable and each x € A is a finite linear
combination of unitary elements (see [14]), ie., x = >0 au; (A; € C,
uj € U(A)),

B(xy,z) = B(ijujy,z) = ijB(ujy,z) = Z)»jujB(y,Z)

j=1 j=1 J=1

= () _2juj)B(y,2) =xB(y,2)
j=1

for all x,y,z € A. So by the same reasoning as in the proof of Theorem 10.5,
B : A> - A is a quasi-x-multiplier and satisfies

B(x,w) = B(xe, we) = xB(e, we) = xB(we, e)* = x(wB(e, e))* = xB(e, e)*w*

= xB(e, e)w*

forall x, w € A. Thus f : A2 — A is a quasi-+-multiplier and satisfies f(x, w) =
f(xe, we) = xf (e, e)w* forall x,w € A.

Corollary 10.9 Letr > 2 and 0 be nonnegative real numbers, and let f : A> — A
be a mapping satisfying (10.23) and f(x,0) = f(0,z) = 0 forall x,z € A. Then
there exists a unique bi-additive mapping B : A> — A, which is C-linear in the
first variable and satisfies (10.24).

If, in addition, the mapping f : A> — A satisfies (10.26), f(2x,z) = 2f(x, z)
and

If(uy, 2) —uf(y, DIl <0+ Iyl (10.36)

forallu € U(A) and all x, v, z € A, then the mapping f : A> — A is a quasi-*-
multiplier satisfying f(x, w) = xf (e, e)w™ forall x, w € A.
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Proof The proof follows from Theorem 10.9 by taking ¢ (x, y) = NCTES NS
forall x, y € A.

Theorem 10.10 Ler ¢ : A>2 — [0, 00) be a function satisfying (10.27). Let f :
A% — A be a mapping satisfying (10.19) and f(x,0) = f(0,z) = 0 for all
X,z € A. Then there exists a unique bi-additive mapping B : A®> — A, which is
C-linear in the first variable and satisfies (10.34).

If, in addition, the mapping f : A? — A satisfies (10.35), (10.22) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier satisfying f(x, w) = xf (e, e)w™ forall x, w € A.

Proof The proof is similar to the proofs of Theorems 10.6 and 10.9.

Corollary 10.10 Let r < 1 and 6 be nonnegative real numbers, and let f : A*> —
A be a mapping satisfying (10.23) and f(x,0) = f(0,z) = 0 forall x,z € A.
Then there exists a unique bi-additive mapping B : A> — A, which is C-linear in
the first variable and satisfies (10.29).

If, in addition, the mapping f : A*> — A satisfies (10.36), (10.26) and
fQx,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier satisfying f(x, w) = xf (e, e)w* forall x, w € A.

Proof The proof follows from Theorem 10.10 by taking ¢(x,y) = ~/@(||x|I" +
yll") forall x, y € A.

Similarly, we can obtain the following results.

Theorem 10.11 Ler ¢ : A2 — [0, 00) be a function satisfying (10.18) and let
f : A2 — A be a mapping satisfying (10.30) and f(x,0) = f(0,z) = 0 for all
x,z € A. Then there exists a unique bi-additive mapping B : A> — A, which is
C-linear in the first variable and satisfies (10.31).

If. in addition, the mapping f : A?> — A satisfies (10.35), (10.22) and
fQx,2) =2f(x,2) forall x, z € A, then the mapping f : A> — A is a quasi-*-
multiplier satisfying f(x, w) = xf (e, e)w* forall x, w € A.

Corollary 10.11 Let r > 2 and 6 be nonnegative real numbers, and let f : A> —
A be a mapping satisfying (10.32) and f(x,0) = f(0,z) = 0 forall x,z € A.
Then there exists a unique bi-additive mapping B : A> — A, which is C-linear in
the first variable and satisfies (10.33).

If. in addition, the mapping f : A> — A satisfies (10.36), (10.26) and
fx,2) =2f(x,2) forall x,z € A, then the mapping f : A> — A is a quasi-*-
multiplier satisfying f(x, w) = xf (e, e)w* forall x, w € A.

Proof The proof follows from Theorem 10.11 by taking ¢(x, y) = \/§(||x||’ +
yll") forall x, y € A.

Theorem 10.12 Let ¢ : A> — [0, 00) be a function satisfying (10.27). Let f :
A2 — A be a mapping satisfying (10.30) and f(x,0) = f(0,z) = 0 for all
x,z € A. Then there exists a unique bi-additive mapping B : A% — A, which is
C-linear in the first variable and satisfies (10.34).
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If, in addition, the mapping f : A% — A satisfies (10.35), (10.22) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> - Aisa quasi-*-
multiplier satisfying f(x, w) = xf (e, e)w* forall x, w € A.

Corollary 10.12 Let r < 1 and 0 be nonnegative real numbers, and let f : A> —
A be a mapping satisfying (10.32) and f(x,0) = f(0,z) = 0 forall x,z € A.
Then there exists a unique bi-additive mapping B : A> — A, which is C-linear in
the first variable and satisfies (10.29).

If, in addition, the mapping f : A? — A satisfies (10.36), (10.26) and
f@x,z) =2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-s-
multiplier satisfying f(x, w) = xf (e, e)w* forall x, w € A.

Proof The proof follows from Theorem 10.12 by taking ¢(x, y) = Vo(x|I” +
lyll") forall x,y € A.
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Chapter 11 )
On Ulam Stability of a Generalization of e
the Fréchet Functional Equation on a
Restricted Domain

Renata Malejki

Abstract In this paper we prove the Ulam type stability of a generalization of the
Fréchet functional equation on a restricted domain. In the proofs the main tool is a
fixed point theorem for some function spaces.

Keywords Ulam type stability - Fixed point theorem - Fréchet equation
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11.1 Introduction

Let K € {R,C} (R and C denote the fields of real and complex numbers,
respectively) and Aq, ..., A7 € K. Our consideration involve Ulam stability (see,
e.g., [15] for more details and suitable references) of the following conditional (i.e.,
on a restricted domain) functional equation

AlF(x+y+4+2z) +A2F(x)+ A3F(y) + A4F(2) (11.1)
=AsF(x+y)+ AsF(x +2) + A7F(y + 2),
x,y,2€D, x+y+z,x+y,x+z,y+z€D,
in the class of functions ¥ : D — Y, where D C X is nonempty, (X, +) is a

commutative monoid (i.e., a semigroup with a neutral element denoted by 0) and Y
is a Banach space over K.
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It is a natural generalization of several functional equations, stability of which
have been already investigated quite intensively (see [1, 3,4, 6, 8, 13, 17, 22, 29, 30,
33]). Let us mention here the Cauchy functional equation

fx+y)=fx)+ f),

the Jensen functional equation

1
flx+y) = E(f(2x) + f2y),
the Jordan—von Neumann (quadratic) functional equation

Ja++fx—=—y)=2fx)+2f(),

the Drygas equation

JE+)+flx =) =2f0)+ fO)+ f(=p),

and the Fréchet (see [19, 25]) functional equation

fa+y+)+fO+fM+f@)=fa+nN+fx+)+f+2). AL2)

It has been showed in [14] that the set of solutions of Eq.(11.1) is not empty.
Moreover, if we assume that at least two coefficients A; are not equal, then every
solution F of this equation, with F(0) = 0, is an additive function. Moreover, the
condition Ay + A> + A3z + A4 # As + Ag + A7 is sufficient to get F(0) = O for
each solution F of (11.1) (see [14]).

11.2 The Main Result

Unless explicitly state otherwise, in what follows we assume that (X, +) is a
commutative monoid, X := X3 \ {(0,0,0)}, Y is a Banach space over the field
Ke{R,C},and Ay, ..., A7 € K are fixed.

First we recall another theorem on stability of the generalization of the Fréchet
functional equation. It has been proved in [28].

Theorem 11.1 Ler (X, +) be an abelian group, A1 # 0 and
Ay + A3+ Ay = As + Ag + A7.

Assume that f: X — Y, c : Z \ {0} — [0,00) and L: X > [0, 00) satisfy the
following three conditions:
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M= {m € Z\{0} : |A7lc(=2m) + |As + Aglc(m + 1)
+ A3 4 Agle(=m) + [Az|c(@m + 1) < |A1]} # &,

L(kx,ky, kz) < c(k)L(x,y,2), (x.y.2)eX,me .M,
ke{-2m,m+1,—m,2m + 1},

[A1f(x +y+2)+ Arf(x) + Asf(3) + Aaf (@) — Asf(x + )
—Aef(x+2) —Arf(y+ Dl <L(x,y,2),  (x,y,2) € X°.

Then there is a unique function F : X — Y satisfying Eq. (11.1) with D = X and
such that

If(x) = F)Il < pr(x), x € X\ {0},
where
o) = inf L(2m + Dx, —mx, —mx)
L " me [A1] — Bm ’

Bm = |A7lc(=2m) + |As + Aglc(m + 1) + |A3 + Aslc(—m) + |A2|c(2m + 1).

The following theorem also concerns stability of Eq.(11.1). It complements
Theorem 11.1 and generalizes [14, Theorem 13]. It shows that the assumptions of
[14, Theorem 13] can be significantly weakened; in particular, that it is still valid on
a restricted domain. The proof of it will be provided in the next section. We use in
it a fixed point theorem for some function spaces from [12].

Theorem 11.2 Let D C X,0 € D,
2x,3x € D, x €D,
D := D3\ {(0,0,0)}, Ay + A3 + Ay # 0,

As+ A+ A7 — Ay
0 1= <1,
Ay + A3+ Ay

and a function L: D3 — [0, 00) fulfil the condition

Lkx, ky, kz) < cxL(x, v, 2), (x,y,2) € D,k € {2,3}, (11.3)
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with some c3, c3 € [0, 00) such that 8 := bycy 4+ bzcy < 1, where

A A A A
by ;Z‘M ’ :‘—1 ) (11.4)
Ay + Az + Ay Ay + Az + Ay
If f: D — Y satisfy the inequality
[A1f(x+y+2) +A2f(x) + A3 f(y) + A4 f(2) (11.5)

—Asf(x+y)—Asf(x+2) —A7f(y + )|l = L(x,y,2),

(x,y,2) €D x+y+z.x+y,x+z,y+z¢€D.

then there exists a unique solution F : D — Y of Eq. (11.1) such that F (0) = 0 and

| f(x) — F(x)I < pr(x), xeD, (11.6)
where
L(x, x, x)
RV v P AT 75 M (D
with
R PR

11.3 Proof of Theorem 11.2

In the proof we use the approach initiated in [10] and next applied also in [2,4, 6, 11,
13, 16, 28, 31, 35]. The main tool in it will the fixed point theorem for the function
spaces proved in [12].

Theorem 11.3 ([12]) Let the following three hypotheses be valid.

(HI1) S is a nonempty set, E is a Banach space, and functions fi,..., fr : S — S
andly, ..., Iy : S — Ry are given.
(H2) 7 : ES — ES is an operator satisfying the inequality

, & ueES xes.

k
| 7&() = Tu)| <Y LW]ES)) — m(fix)

i=1
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(H3) A :R.S — R.S is defined by

k
AS(x) =) L(0)8(fix). SeR S xeS.

i=1

Assume that functions ¢ : S — Ry and ¢ : S — E fulfil the following two
conditions

| 7o) — )| <ex), xeS, (11.8)
e*(x) 1= ZA”S(x) < 00, xeS. (11.9)
n=0

Then there exists a unique fixed point r of 7 with
lo(x) =Yl < e*(x), x €S.
Moreover,

Y(x) = nll)n;o T"e(x), xes.

From this theorem we obtain that an appropriately defined operator determines
an exact solution of Eq.(11.1) as the limit of a sequence of its iterates on an
approximate solution of this equation. Similar results can be found in, e.g., [4—
7,9, 10, 13, 18, 20, 21, 23, 24, 26-28, 31, 32, 34-36].

Proof Inserting x by y and z in condition (11.5) we get following inequality

[A1fGx) + (A2 + A3 + Ag) f(x) — (A5 + As + A7) f(20) | (11.10)

< L(x,x, x), x € D.
From (11.10) we have

As + Ag + A7 Aq

Hf(X) TS0+ J(3x)

. 1 a1 Sg(x)a x€D7
Ay + Az + Ay Ar+ Az + Ay

(11.11)
where function ¢ is given by

L(x,x,x)
e(x) i= ——————.
|A2 + Az + A4l
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Now we define an operator .7 and show that properties (H1), (H2) and (H3) of

Theorem 11.3 are satisfied. For every & € Y2, x € D let

As+ Ag+ A7 Al
= 2 _—
A vy veryytiCol el veryvenyytiSals

Notice that the operator .7 has the property

As+Ag+ A7 — Ay D
TEWO) = 0), Y=
§(0) Ayt Ast A §(0) S

It is easy to see that operator .7 is linear.

(11.12)

(11.13)

Let &, u € YP. Then by definition of the norm for every x € D we obtain

‘ 1§Bx) — u@Bx)|l.

(11.14)

As + Ag + Ay
1.7E(x) — Tu@| < m 1EQ2x) — n2x)||
+ 'A +A + Ay
Thus
|7&(x) — Tux)ll < b2 [1EQ2x) — n2x)||
+ b3 1EGx) — u(BG0)|, x € D\ {0}

In case x = 0 we have

As+ Ag+ A7 — Aq

1.78(0) — T )| = '

Ax+ A3+ Ay
_ ‘A5+A6+A7—A1
Ay + Az + Ay
Therefore
1760) — T uO) = o llEO) — nO)].
Consequently,

2
1.786(x) — Tl < Zli(x)llé(fi(X)) —u(fit)l, &pevP xe

i=1

(§(0) — 1(0)) H

(11.15)

D’

where f1(x) = 2x and f>(x) = 3x, which means that conditions (H1) and (H2) are
satisfied, withk =2, S = X, E =Y, 1 (x) = by, b(x) = b3 forx € D \ {0} and

11(0) = Bo, [(0) = 0.
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Next we define an operator A : Ry ? — R, as in (H3) by
2
An@) = Y L@n(fi(x). xeD (11.16)
i=1
for every n € Ry.P. Then for each € R, ” we have that
An(x) :=byn(2x) + b3n(3x), x € D\ {0}
and
An(0) := Bon(0).
Let us note that operator A is nondecreasing, i.e., An < A¢ forall n,¢ € R, P
withn < ¢.

Besides, by (11.14) and (11.15) the relation between operators .7 and A is
following

I7Ex) — Tu@| < AlE —ul)(x), & pe¥P xeD. (L.17)
By (11.11) and (11.12) we obtain the estimation
If(x) =T f@)l <ex), xeD,
so, condition (11.8) holds. In the special case when x = 0, we get

As + Ag + A7 —
Ay + A3+ Ay

A
I|f(0)—9f(0)||=’1— HIFOI < £00).

Now we will show that the function series

Z A"g(x)
n=0

is convergent for each x € D, i.e., condition (11.9) is satisfied. Fix an x € D \ {0}.
By (11.16) and (11.3), we obtain

Ae(x) = by e(2x) + b3 e(3x)
_ L(2x,2x,2x) L(3x,3x, 3x)
T A+ As+ Ayl U A+ As + Ag
< byey L(x,x,x) 4 byes L(x,x,x)
|A2 + A3z + A4l [Az + Az + A4l
L(x,x,x)
|A2 + A3 + A4l

= (baca + b3c3)
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Thus
Ae(x) < Be(x). (11.18)
By induction one can show that monotonicity and linearity of A implies
A'e(x) < Be(x). (11.19)

Consequently, for each x € D \ {0} we have the estimate

e x) =Y A'e(x) <e()(1+ Y B

n=0 n=1
_ e(x) . L(x,x,x)
T 1B |Ar+As+ A1 —B)’

In case x = 0 we get

Aeg(0) = Boe(0). (11.20)
So, by induction we obtain

A"e(0) = Bye(0). (11.21)

Hence

£5(0) = > A"2(0) =e(O)(1+ Y _ B}

n=0 n=1
O L(0,0,0)
1—Bo A2+ Az + A4l(1 — Bo)

Thus we have shown that

L(x,x,x)

< o0 x €D.
[Ay + Az + A4|(1 — y(x))

e*(x) = ZA"s(x) <
n=0

Because assumptions of Theorem 11.3 are satisfied, in view of this theorem there
exists a function F': D — Y satisfying Eq. (11.1) forx =y =z, i.e.,

A A A A
F(x) = Mp(zx) 1

———F F(@(3x), x € D. (11.22)
Ay + Az + Ay Ay + A3+ Ay
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Moreover,

1f () — F| < e*(x) < LGx, x, x) . xeD.
A2+ A3 + Asl(l — 7 ()

and
F(x) = lim 9" f(x), x € D.
n—>oo

Next we will prove that the function F satisfies Eq.(11.1) for all x, y,z € D,
firstly, by induction we will show that for all (x, y, z) € D3 such that x + y+z,x+
v, x+2z,y+z€ D,n e Ny :=NU {0} occurs the condition

[ATT" f(x+y+2) +AT"fx)+A3T"f(y)+ AsT" f(2) (11.23)
—AsT"f(x+y)—AcT"f(x+2) —A7.T" f(y +
< A" L(x,y,2),

where A := max{g, Bo}. For n = 0 condition (11.23) follows from (11.5). Now,
assume that (11.23) holds for some n € Ny and all (x, y, z) € D3 such that x + v+
z,X+y,x+2,y+z € D. Then by (11.12) we obtain

[A 7" f e+ y + 2+ AT F00) + AT F () + AT (2)
—AsT" T f e+ y) = AT x40 — AT (v + 2

- ‘ %Alﬂ"f(z(x ty+2)- ﬁfhyﬂf(3(x+y+z))
2212—31211“2«7”]0(2)0 - A2+3—;+A4Azynf(3x)
2212—2121’43?"}((2)’) - A2+A—;+A4A39"f(3y)
2212—3:{;2’44?’1]((22) - 142_'_?—;_'_1441449"]’(3@

- %Asy”ﬂﬂx +y)+ ﬁAsﬂ"fG(x +)
- HA&?”]C(Z(X +2)) + 142+A—;+1441A69nf(3(x +2)
LT QU+ D) + e AT +z))H

Ay + A3+ Ay Ay + Az + Ay

- ‘A5+A6+A7
T A2+ A3+ Ag

Al

MLQ2x,2y,27) + | ——m8
( y.22) Ay + A3+ Ay

A”L(3x, 3y, 3z)
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for every (x,y,2) € 5suchthatx+y+z,x+y,x+z,y+z € D. Hence by
(11.3)

|AV T x4y + )+ AT @)+ AT ) + AT f(2)
—AsT" N fx+ ) — AT fx +2) = 427" F (v + 2
< M(byea + b3c3)L(x, y,2) < A" L(x, v, 2) (11.24)

for (x, y,z) € Dsuchthatx +y+z, x4+ y,x + 2z, y+z € D. By (11.13),

[(Ar+ A2+ A3 + As — As — Ag — AT £ (0)

As+ Ag+ A7 — Ay
Ar+ Az + Ay

=Bo| (A1 + A2+ A3 + Ay — As — Ag — A7) T" £ 0|
<BoA"L(0,0,0) < A"T'L(0,0,0),

=H(A1+A2+A3+A4—A5—A6—A7) 9"]”@)”

which ends the proof of (11.23). Letting n — oo in (11.23), we obtain

AlF(x+y+2)+ A2 F(x) + A3F(y) + A4F(2)

=AsF(x+y) + A¢F(x + 2) + A7F(y + 2), (x,v,2) € D*.

Next we will show that F(0) = 0. In view of (11.12) we get by induction that

. _(As+Ac+ A7 — A" _ o D
95(0)—< Ayt As t A ) §(0) = By§(0), §eY ' ,nel
Thus
lim 7"£(0) =0, geyP, (11.25)

since By < 1. Consequently, we obtain F(0) = lim,_, o 7" f(0) = 0.
Now, we prove the uniqueness of F. By induction first we show that forall £, u €
Y2, neN

[77(x) = T @)l < A"(I1E — ulhx), x € D. (11.26)

By (11.17) condition (11.26) holds for n = 1. Fix &, u € Y? and let condition
(11.26) holds for n € N. Then by (11.17)

17" E(x) — " ol = 1.7 (T8 (x) — T(T" W)l
<A T"E - T"ul)(x), xeD.
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Hence by (11.26) and monotonicity of A we obtain

”yn-‘rls(x) _ ﬂ"“,u(x)” < A(An(Hé - M”))()C)
= A""(§ — u@). xe€D.

Let G : X — Y bealsoasolution of Eq. (11.1) such that || f (x)—G (x)|| < pr(x)
for x € D. Then

1G(x) — F(x)Il < 2pL(x), x € D. (11.27)
Hence by (11.26) we get that

2A"e(x)

I.7°G(x) = T"F()ll = 2A"pr(x) = =70

x€eD,

since A is a linear operator. Letting n — 00, by convergence of the series

o]

ZA”e(x),

n=0

we obtain
lim | "G(x) — T"F(x)|| =0, x €D.
n—oo

Thus, ||G(x) — F(x)|| = 0 for x € D, since G and F are fixed points of 7. Finally
G(x) = F(x) for every x € D. This completes the proof. O

For some suitable comments and examples concerning the assumptions used in
this paper we refer to [14].
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Miscellanea About the Stability e
of Functional Equations

Zenon Moszner

Abstract The interesting details about the stability, the superstability, the inverse
stability, the absolute stability and the stability in a class for a functional equation,
for a system, and the alternation of functional equations, about the approximation
of approximation and about the nearness of two approximations are given.

Keywords Stability - Superstability - Inverse stability - Absolute stability -
Stability in the class - Stability of the system - Stability of the alternation -
Stability of conditional equation - Approximation of approximation - Nearness of
two approximations - Translation equation - Geometric concomitant equation -
Dynamical system - Uniform b-stability - Inverse b-stability - Stability of
difference equation - Questions

Mathematics Subject Classification (2010) Primary 39B82; Secondary 39B62

12.1 Introduction

It is well known that the stability theory of functional equations is inspired by the
following S. Ulam’s question presented in 1940 and published in [28, p. 63]: when
can one assert that the solutions of the inequality lie near to the solutions of the strict
equation?

More exactly [28, p. 64]: for what metric groups G with a metric d it is true that
for every ¢ > 0 there exists a k such that for every function g : G — G with

dlg(xy), g(x)g(y)] < &, x,y €q,
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there exists a homomorphism f : G — G for which
dlg(x), f(x)] = ke, x€G.

It is possible to interpret these questions in various non-equivalent manners [19].
Hyers was the first to give the following interpretation [9]:

Let B; and B; be the Banach spaces. Does, for every ¢ > 0, there exista § > 0
such that to each function g : By — B; with

lg(x +y) —g(x) — g < é, x,y € By, (12.1)
there corresponds an additive function f : B — B, such that
lg(x) — f(X)] <, X € By. (12.2)

Hyers proved in [9] (by, so-called, “direct method”) that this property is true with
8 = ¢ and in this case the equation

Jfa+y) =fx)+ 1) (12.3)

is said to be stable (in the Hyers sense).

The Hyers result also is true with § = ¢ if the inequalities in (12.1) and (12.2)
are “< § and < ¢” or “< § and < ¢” [15]. On the contrary, it is true with “< § and
< ¢” only when 6 < & (consider g(x) = x + § in (12.1) and (12.2)).

12.2 Stability

(a) The Hyers result has been generalized in different directions.

By a simple modification of the Hyers proof of his theorem we obtain that the
Hyers result is valid also when Bj is a commutative semigroup (this remark is
already in [6]) and B, is a commutative semigroup divisible by 2 and complete
with respect to a metric d for which d(2a, 2b) > 2d(a, b) fora, b € B, [16].

If B is the semigroup such that

/\ \/ n(x +y) = nx + ny,

x,yeB1 neN, n>2

then Eq. (12.3) is stable.

Indeed, in the paper [5] it is proved that, for every function g from this semigroup
Bj to R such that |g(x 4+ y) — g(x) — g(»)| is bounded, we have g = f 4+ h, where
f is a solution of (12.3) and the function % is bounded (we do not have any estimate
for i in [5]). Thus
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g(nx) _ f(”x) + h(nx) — f(X)+ M — f(x) forn — +o0.
n n n n

If|g(x+y)—g(x)—g(y)| < &, then by the induction |g(nx) —ng(x)| < (n—1)e.
This implies that | f(x) — g(x)] < e.

The supposition that the semigroup Bj is commutative can be replaced by the
assumption that By is left (right) amenable [27].

Moreover, if Eq. (12.1) is stable for the functions f from a semigroup S to the
nontrivial Banach space B (i.e., By # {0}), then this equation is stable for the
functions f from the semigroup S to the Banach space B3, too [8].

(b) The above stability is formulated for the other functional equations by the
following way. Let

L(f) =R(f) (12.4)

be a functional equation in which f : §; — $; is the unknown function, S
is an arbitrary nonempty set, S is metric space with a metric d and L(f) and
R(f) have their values in S,. This equation is said to be stable (Ulam-Hyers
stable) if for every ¢ > 0 there exists a 6 > 0 such that, for every solution
g : S1 — S of the inequality

d[L(g), R(g)] =4, (12.5)
there exists a solution f of Eq. (12.4) such that
dlgx), f(x)] <e, x € 8. (12.6)

In this case there exists a function ® : (0, +00) — (0, 400) such that for every
e > 0if d[L(g), R(g)] < ®(e), then we have (12.6) for some solution f of
(12.4). If the function @ is unbounded the stability is called normal.

Comment All functions considered below are from R to R and the metric in R is
natural, unless explicitly stated otherwise.

(c) If the inequality (12.5) does not have any solution for some §p > O, then
Eq. (12.4) does not have solutions either and it is stable! It is sufficiently to
put § = 8 for every ¢ > 0. For instance, the equation f(x)> 4+ 1 = 0 is of this
type. Here the inequality (12.5): | f(x)? + 1| < 8 does not have any solution for
every 0 < § < 1. The inequality (12.5) for the equation [ f(x)]~' = 0 has a
solution for every § > 0, but this equation is not stable since it does not have
any solution.

(d) For two equivalent equations the first may be stable and the second unstable.
E.g., the equations exp[ f (x)+ f(y)— f(xy)] = 1 andexp f(xy) = exp[f(x)+
f(y)] are of this type. Indeed, if we have
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expe — 1

lexplg(x) + g(y) —glxy)] —1] < x,y €R,

expe +1°
for some function g, then

expe — 1
lexpg(x) — 1] < —-
expe + 1

and so |g(x) — 0] < &, whence the stability follows with
6 =(expe — l)(expe + 1)_1.

The function f(x) = 0 is the unique solution of the second equation. Assume
that this equation is stable. For ¢ = 1 there exists a § > 0 such that, if

lexp g(xy) —explg(x) +g(W]l <6,

then |g(x) — 0] < 1. Letn € N be such that [In1| > 1and |1 (2 —1)] < 6.
Then the function g(x) = 0 for x # 0 and g(0) = ln% is a solution of the
inequality (12.5) and |g(0) — O| > 1, thus a contradiction.

(e) Let L;(f) = R;(f) fori = 1,2 be the two functional equations as in (12.4).
Assume that for every § > 0 the inequalities

d[Li(g), Ri(g)] =8 and d[L2(g), R2(g)] =6 12.7)

are equivalent. Then

a/ the equations L{(f) = R1(f) and L2(f) = Ra(f) are equivalent, too;
b/ if the equation L{(f) = R;(f) is stable, then the equation Ly(f) = Ra(f) is
stable and vice versa.

Proof Assume that there exists a solution f of the first equation which is not a
solution of the second equation. In this case L2(f) # R2(f) for some values vy of
the variables in this equation. For § := %d [L2(f), R2(f)] > 0, where the variables
in Lo(f) and Ry(f) have the values vy, we obtain that the function f is a solution
of the first inequality in (12.7) and it is not the solution for the second inequality in
(12.7), thus a contradiction.

Assume that the equation L(f) = R;(f) is stable and let ¢ and § be as in the
definition of the stability. Let g : §; — 2 be such that d[L2(g), R2(g)] < 6.
Thus d[L1(g), R1(g)] < 4. This yields that there exists a solution f of equation
Li(f) = Ri(f) for which d[g(x), f(x)] < e. The proof is finished since the
function f is the solution of equation L, (f) = Ra2(f), too.

(f) Consider a little stronger version of the Ulam-Hyers stability, namely the s-
stability (see, e.g., [11]). Equation (12.4) is said to be s-stable if, for every § > 0,



12 Stability of Functional Equations 235

there exists a K (8) such that lims_,.¢o K () = 0 and, for every solution g : S| —
S, of the inequality (12.5), there exists a solution f of the equation such that

dlg(x), f(x)] < K(9), x € S.

Ifinf K[(0, +00)] = 0, then this stability is said to be normal uniformly b-stable
in [20].

The s-stability implies the Ulam-Hyers stability. In fact, for ¢ > 0 there exists
aé > 0 such that K(§) < e. We have d[g(x), f(x)] < K(§) < ¢ for this §.
The implication inverse is not true. E.g., Eq. (12.3), where f : G — Z, Z is the
set of integer numbers with the usual metric and G is the free group generated by
two elements, is evidently stable with § < 1. It is not s-stable since there exists a
function g : G — Z for which the function g(x + y) — g(x) — g(y) is bounded and
the function g(x) — f(x) is unbounded for every homeomorphism f : G — Z [6].

12.3 Stability of System

There exist the unstable (stable) system of stable (unstable) functional equations.
E.g., the equations

1f) =1=fx)+Df(x)=0 and E(f(x)) =0,

where E(u) denotes the integer part of u, are stable separately and the system of
these equations is not stable.
The system of the equations

(1f ) =11 = fx) + DIf )|+ [E(f(x)] =0,
(1fC)+ 1+ fx) + DIfOI+ [E(=f(x)] =0

is stable and the equations in this system are unstable (for the proofs see [14]). The
above equations are not natural. For the natural equations see Sect. 12.16.

Moreover if one the equation is stable and the other unstable, then their system
may be stable (unstable). Indeed, for f : R — R\ {0} the equation f 2x)4+1=0
is stable, the equation f(x) = 0 is unstable and their system is stable.

However, for the same f, the equation f(f(x)) = f(x) is stable, the equation
f(x) = 0 is unstable and their system is unstable.

Indeed, if for g : R — R\ {0} we have |g(g(x)) — g(x)| < §, then for f(x) = x
for x € g(R) and f(x) = g(x) for x € R\ g(R) we obtain f(f(x)) = f(x)
and |g(x) — f(x)| < & (the same proof is good for f : S — S if S C 8
and §; is a metric space with the metric denoted |a — b|). The system of their
equations is unstable since for the function g(x) = § we have |g(g(x)) — g(x)| <$§
and |g(x)| < & and the system of the equations in consideration does not have the
solution.
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By the above, the stability (unstability) of the system gives no information about
the stability of the equations in this system.

12.4 Slightly Differing Equations

Ulam has formulated in [28] the following question, too: When is true that the
solution of an equation differing slightly from a given one, must of necessity be
close to the solution of the given equation? This motivates the following definitions.

The equations L{(f) = Ri(f) and La(f) = R>(f) are said to be §-close if
d[Li(f), L2(f)] <dandd[R1(f), R2(f)] < §. These 5-close equations are called
stable for the solutions if there exists a ¢ > 0 such that for every solution f of the
first equation there exists a solution f> of the second equation for which d( f1, f2) <
¢ and vice versa. E.g., the equations f(x +y) = f(x) + f(y) and f(x + y) + 3 =
fx)+ f(y) for f : R — R are §-close and stable for the solutions with ¢ = §.
The same equations for f : R — R\ {0} are not stable for the solutions, since
f(x) = 4 is the solution of the second equation and the first equation does not have
any solution.

12.5 Stability of Alternation

The alternation

Li(f) =Ri(f) or La(f) = Ra(f) (12.8)

of two functional equations is said to be stable if, for every ¢ > 0, there exists a
8 > 0 such that, for every function g : S; — §> for which

d[L1(g), Ri(g)] =6 or d[L2(g), Ra(g)] =6,

there exists a solution f of this alternation for which d[g(x), f(x)] < e forx € .

We have for this stability the same situation as for the system.

Let f be a function from R to R\ {0}. The equations | f (x)| = x and | f (x)| = —x
are stable and their alternation is not stable.

The equations f(x) = f(1)x and f(x) = f(0)(1 — x) are unstable and their
alternation is stable.

From the equations f(x) = 2 and f(x) = x the first one is stable, the second
one is unstable and their alternation is unstable.

From the equations f(x) = f(x) and f(x) = f(1)x the first is evidently stable,
the second is not stable and their alternation is evidently stable [19].



12 Stability of Functional Equations 237

Here we have the same situation as for the system: the stability (unstability)
of the alternation gives no information about the stability of the equations in this
alternation.

The alternation (12.8) may be written in the form

Li(f) # Ri(f) = La(f) = Ra(f)

and the stability of it is defined as the stability of the alternation.

E.g., in the theory of elections [25] the generalized indicator plurality function
f RPA\{(,...,00} - R™\ {(,...,0)} is considered, which is a solution of
following functional equation

J@) - f#QO,....0) = fx+y) =fx) - f), (12.9)

where (u1,...,uy) - (V1,..., ) = (Wv1,...,upvy) and (xi,...,x,) +
O1s -5 yn) =1+ Y1545 X0 + Yn)-

This equation is not stable for » = m = 1. In this case our equation has the only
solution of the form f(x) = expa(x), where a(x) is the additive function. Assume
that for ¢ = 1/2 there exists a § > 0 such as in the definition of stability. It is
possible to suppose that § < 1/16. We have |g(x)g(y)| < & for g(x) = V8, thus
there exists a additive function a(x) such that |g(x) —expa(x)| = V8 —expa(x)| <
1/2. For a(x) # 0 we obtain a contradiction. For a(x) = 0 we have

1 3
> S—1l=1—-+V/6>1—-=—,
> V8 — 1 NEE 1=

N =

thus a contradiction, too.

Question Is the situation the same for the other n, m?

12.6 Stability of the Conditional Functional Equation

It is possible to consider the conditional functional equation of the form

(€)= L(f) = R(f),

where (C) is a condition. The stability of this equation is defined in the following
way: for every ¢ > 0 there exists a § > 0 such that, for every function g : R — R
for which (C) = d[L(g), R(g)] < § it is true, there exists a solution f of our
conditional equation such that d(g, f) < ¢.

We have here two possibilities: the condition (C) depends on f or not. E.g., the
conditional equation

(f is a function differentiable at every point of R) = f(f(x)) = f(x)
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is stable. The functions which are not differentiable at least at one point and the
idempotent function are the all solutions of our equation. If the function g : R — R
is a solution of the conditional inequality

(g is a function differentiable at every point of R) = |g(g(x)) — g(x)| < 3§

foraé > 0, then g is not differentiable at least at one point or |g(g(x)) — g(x)| < 4.
In the first case g is a solution of our equation and |[g(x) — g(x)] = 0 < §. In the
second case |g(g(x)) — g(x)| < § and for the function f, given by: f(x) = x for
x € g(R)and f(x) = g(x) forx € R\ g(R), we have |g(x) — f(x)| < §. Moreover
the function f is a solution of our equation since f(f(x)) = f(x).

Equation (12.9) for n = m = 1 as the conditional equation is not stable (the
proof as in Sect. 12.7 below).

The conditional equation

f@)=f) = fF&x, 1) = fFQ, 1), (12.10)

where the given function F (the transformation law) is a solution of the translation
equation with the identity condition, plays the role in the theory of the concomitants
of geometric objects. Exactly, the concomitant f(x) € S; of a geometric object
x € S with the transformation law F' is the geometric object if and only if f is a
solution of the above conditional equation [22]. If f(x) is the geometric object, then
there exists a transformation law G of this object and we have

G(f(x), D] = fIF(x, D] (12.11)

This equation is said to be the geometric concomitant equation. This equation
implies (12.10) (p[F (x,1)] = F(p(x),1) = F(p(y),1) = ¢[F(y,D]ifpx) =
¢(y)) but not vice versa even in the case G = F. Indeed, e.g., let (G, +) be a semi-
group with the neutral element 0 and let F'(x,¢) = x +¢ for x, t € G. The injection
f from G to G is evidently the solution of (12.10). If moreover f is not the identity
and f(0) = 0, then it is not a solution of (12.11) since f(x +1¢) = f(x) 4+t implies
f@) =tfort € G.

Equations (12.10) and (12.11) are evidently stable if G(x,¢) = F(x,t) = x.
Let (G, +) be as above and let S be the metric space with the metric d such that
card G = card S. Equation (12.11) is stable if G(x, 1) = F(x,t) = g~ '[g(x) +
t], where g is a bijection from S to G. In fact, assume that d[v¥ (g~ [g(x) +
D), g lg(W(x)) + t1] < e for a function ¥ : S — S and some ¢ > 0. Let x
be such that g(xp) = 0. We have thus that

dly(x), g [g(W(x) +g(x)l <e,  x€S8.

Since the function g_l [g(¥(x0)) + g(x)] is a solution of (12.11), so this equation
is stable with § = .
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Every transformation law F : § x G — S, where S is a set and G is a group,
i.e., the function F for which

F(F(x,t),s) =F(x,t+s), xe€S8,t,s€eG and F(x,0=x, xe€8,
is of the form
F(x, 1) =h [, (x) +1], x eS8, teq,

where S, forn € N; C N are the non-empty sets such that |_J S, = S and, for every

n € Ny, there exists a subgroup G, of G for which card S, = ind G, and 4, is a

bijection from S,, to the family of the right cosets of G by G, forn € Ny [13].
Analogously, the transformation law G : S; x G — §j is of the form

Gx,1) = gp'lgm(x) +11,  x€S81€GC,

where S for m € N, C N are the non-empty sets such that | J S, = S; and for
every m € N, there exists a subgroup G}, of G for which card S = ind G}, and g,
is a bijection from S, to the family of right cosets of G by G}, form € N,.

If the group G is abelian and S is the metric space with the metric d and G, =
G* forn € Ny and G}, = G* form € N», then Eq. (12.11) is stable. Indeed, assume
that d[g(F(x, 1)), G(g(x),t)] < ¢ for a function g : § — S; and some ¢ > 0. Let
x € S; and g(x) € S/. We have thus

d[g[hk_l(hk(x) +01, g ' [g1(g(x)) +t]] <e.

There exists xg such that hx(xg) = Gy = G*. For every x € S there exists £ (x) €
G such that i '[hg(xo) + t(x)] = h'[G* + t(x)] = x, whence G* + t(x) =
hi(x). There exists a; € G such that g;(g(x0)) = GJ +a; = G* + a;. From here
g1(g(x0)) +t(x) = G* + a; + t(x) = hg(x) + a;. Thus we obtain

dig(x), g ' (hi(x) + ap] < e.

The function f(x) = gl_l(hk (x) + ay) is the solution of (12.11). In fact, for
x € Sk, g(x) € S we have f(x) € S/ and this yields that

FIFG, 01 = flh (i) + 01 = g7 (o) + 1 +ar) = g (hi(x) +a; +1)

=g ' (@(f)) +0) =G(f(x),1).
Equation (12.11) is thus stable with § = ¢.

We note that the function g does not occur clearly in the form of the function f.
But the dependance of f on g is in “/” by the condition g(x) € S}
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The supposition that F and G are the transformation laws is essential in the
above considerations. Indeed, e.g., for the functions F'(x, t) = x + ¢ with ¢ > 0 and
G(x,t) = x from R x Rto R, Eq. (12.11) is not stable. It has the form: f(x +c¢) =
f(x) and this equation of periodic function is not stable. In fact, for the function

8
gx) = —x
C

we have |[g(x + ¢) — g(x)| < & and we obtain for every periodic function f
with period ¢ that g(nc) — f(nc) = dn — f(0), thus the function g(x) — f(x)
is unbounded.

Equation (12.11) may be stable for the transformation laws F and G such that
the subgroups Gy and G;" are not equal. E.g., put § = [0, +00), S1 = (—00, 0),

F(x,t) =xexpt = h, [h,(x) + 1], xeS,teRn=1,2,

where h1(x) = [lnx] : (0,+00) — R/{0} and hr(x) = [0] : {0} — R/R,
G(x,1) = xexpt = g;'[g1(x) + 1] for x € S, ¢ € R, where gi(x) =
In(—x) : (—o00,0) — R. Equation (12.11) is stable in this case since the function
glF(x,1)] — G(g(x), t) is unbounded for every function g : § — S; (the function
g(0-expt) —g(0) exp ¢ is unbounded). The last example is not very interesting since
the inequality (thus the equation, too) does not have any solution.

Problem Give a suitable example without this deficiency.

There exist the transformation laws F' and G for which Eq. (12.11) is not stable.
Put S =R,

o= [U G Do

G=MR,+), F(x,t) =xforx,t € R,
G(X,t)=gn_l[gn(x)+f] for x € (1/(n+1),1/n),t € R,

where g, is the bijection from (1/(n + 1), 1/n) to R, and G(2,¢) = 2 for ¢t € R.
The function f(x) = 2 is the only solution of Eq. (12.11). Indeed, if f is a solution
of (12.11), then f(x) = G(f(x), 1), thus f(x) is the fixed point of the function G.
It is impossibly that

f(x)EU(n-:—l’r]_z)’

neN

whence f(x) € {2}.
Assume that (12.11) is stable. This yields that for ¢ = 1 there exists aé > 0 such
that, for every function g : § — S, if

IgLF (x,1)] = G(g(x),1)| <8, x,t €R,
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then |[g(x) —2| < 1.Letn € Nbesuch that 1/n —1/(n+ 1) < 24. For the function
g(x) =(2n+1)/2n(n + 1)) we obtain

Ig[F (x, )] = G(g(x), )| = |g(x) = G(gx),N| = 1/2n(n+ 1)) <4,

since g(x) is the midpoint of the interval (1/(n+1), 1/n) and consequently we have
G(gx),t) e (1/(n+ 1), 1/n), too. Thus

1>gx)=2[=12n+1)/2nn+1) =2 > 1.

Question For which transformation laws F' (for which transformation laws F and
G) Eq.(12.10) (Eq. (12.11)) is stable?

We note that the implications

gx) =g(y) = d{g[F(x,0)], F(g(x),1)} = ¢

and

dlg(x),8(y)] =8 = d{g[F(x,n)], F(g(x), 1)} <8

are not equivalent. The second implies evidently the first but non vice versa. Put
F(x,t) = x+1t: R xR — R.Let y be the injection from R/Q to R such that
y([0]) =0, y([r]) = § and y([27]) = 38, where [a] means the coset in R/Q for
which a € [a]. Put g(x) = y([x]) for x € R. Our implications have in this case the
following form

y(xD =y(yD = ly(x+1D) —y({y +1DI =6

and

ly(xD) —y(IyDI =8 = ly(x +1D) —y{y +1D| < 4.

The first of these implications is true since y is an injection. The second is false,
since for x = 0 and y = ¢t = 7 it has the form

0—-48] <é=18 —368] <.

Conclusion The first of our implications has more solution than the second, despite
the fact that the family of functions g for which |g(x) — g(y)| < 4 is larger than the
family of functions g such that g(x) = g(y).

If the condition (C) does not depend on the function f, then the equation is said
to be the equation on a restricted domain, too. In fact, it is proved in [10] that the
conditional equation of Jensen
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bl za=27(0Y) = F0 + F)

for f from a normed space to a Banach space and with some a > 0, is stable.
The equation

Aty

CTay) = F@IO0 +a)

1+axy7£0=>f(

for f : R — R and @ > 0, which is from the special theory of relativity, is a
conditional equation, too.

Question Is this equation stable?

12.7 Superstability

Equation (12.4) is said to be superstable if the inequality d[L(f), R(f)] < é for
some § > 0 implies that the function f is bounded or it is a solution of Eq. (12.4).

The superstable equation may be unstable. E.g., by [1] (the first paper on the
subject of superstability) the equation f(x+y) = f(x) f(y),for f : R — (0, +00),
is superstable. Assume that this equation is stable. Then for ¢ = 1/2 thereisadp > 0
such that for every function g : R — (0, 400) with |g(x + y) — g(x)g(y)| <
8o, there exists a solution f of the equation such that [g(x) — f(x)| < 1/2. This
condition is satisfied for all § < 8¢, § > 0. For

1—+/1—-45
glx) = 5
where 0 < § < min {dg, 1/4}, we have g(x + y) — g(x)g(y) = 8, thus there exists a
solution f of the equation such that |[g(x)— f(x)| < 1/2. The function g is bounded,
hence the function f is bounded, too. Thus f(x) = 1. So, we have

1 1—V1—-4
52 %—1 —1 for &§—0,

which is a contradiction.

12.8 Stability of the Squares of Functional Equations

The square of the functional equation L(f) = R(f) is of the form [L(f ) =
[R(f )3, if this operation is defined. The stabilities (the superstabilities) of the
equations of this form are considered in many papers. E.g., in the paper [3], the
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superstability of the equation of the square of Cauchy equation [f(x 4+ y)]* =
[f&x)+ f (y)]z, (this equation is not equivalent to the Cauchy equation [12]) has
been proved for the function f from an abelian semigroup to a finite-dimensional
normed algebra, which is commutative (this supposition is omitted in [3]). In the
paper [18] is proved that the equation FOOP =[f(x+y)— fF(O)]Pis superstable
if f is mapping an abelian semigroup to the algebra A € {R, C} and the equation
[f (x+)1? = [f (x)+ f(y)]? is stable for the function f from a semigroup divisible
by 2 to the algebra with multiplicative norm.

Attention! The Lemma 2.8 in the paper [18] is not true! It reads as follows:

Let G be a groupoid divisible by 2. If the function f : G — A, where A € {R, C},
is a solution of the equation [ f 2x) =2 f (x)]f(2x) = 0, then f(2x) = 2 f(x). Thus
if f is bounded, then f = 0.

Indeed, define a function f : R — R by f(x) = x for x = 2k where k =
0,—1,-2,...,and f(x) = 0 otherwise. Then f is a bounded solution of the above
equation, 0 = f(2) # 2f(1) = 2 and it is not identically equal zero.

This error may affect validity of some results in the paper [18], in which
this lemma has been used. These results are: Theorem 2.7, the first part of
Proposition 2.26, and the statement that the alternations

Ja+y) = fx)—-f()=0 or fa+y) —fx)+f()=0
and
fQ2x)—2f(x)=0 or f2x)=0
are unstable.

Question Are the above results true even though the lemma 2.8 is false? Especially,
is the equation [ f (x + y) — f(x)]*> = f(y)? stable?

12.9 Inverse Stability

(a) The Ulam question may be inverted as follows: suppose that g can be approxi-
mated by a solution of an equation. Is g in this case an approximate solution of
this equation?

More exactly: Eq. (12.4) is said to be inversely stable if for every ¢ > 0 there
exists a § > 0 such that, for every function g : S — S, for which there exists
a solution f of Eq.(12.4) such that d(g, f) < §, we have d[L(g), R(g)] < ¢
[17].

In this case there exists a function ¥ : (0, +00) — (0, +00) such that,
for every ¢ > 0, if d(g, f) < W(e) for some solution f of Eq.(12.4), then
d[L(g), R(g)] < . If the function W is unbounded, then the inverse stability is
called normal.
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The equation f(x) = 0 is evidently stable and inversely stable. The equation
f(f(x)) = f(x) is stable (see Sect. 12.3) and it is not inversely stable [17].
The equation of homomorphism f(xy) = f(x) + f(y) from the free group
generated by two elements to R is unstable (see [6] and the remark in Example 1
in [16]) and it is not inversely stable for f : R — R [15]. The equation f(x +
y) = f(x)f(y) for f : R — (0, 4+00) is unstable (see Sect. 12.7) and it is not
inversely stable [17].

By the above, the stability and the inverse stability are independent.

(b) If the equation does not have any solution, then it is evidently inversely stable.

Let (S1, +) be a groupoid and (S>, +) be a groupoid with a metric d, which is
invariant with respect to the operation “+” in S,. Then Eq. (12.3) is inversely stable
for f : §1 — S, by the following inequalities
dlgx+y),g(x)+ g =dlgx +y), f(x + ] +dlf(x+y), f(x)+ f(¥)]

+dlf(x)+ f(), gx) + fF(Y)]
+dlg(x) + f(¥), 8(x) + 8]

=d[gx+y), fx+W]+dlfx+y), fx)+ fF(D)]
+d[f(x), g +df(y), g,

where f, g : R — R and f is a solution of (12.3).
The equation

Fa+?=1f&x) + fOP? (12.12)

is equivalent to Eq. (12.3) if f : R — R [8] and it is inversely unstable. Indeed, for
g(x) = x + & we have |g(x) — x| < § and the function

lg(x + y)? — [g(x) + g} = 2x + 2y +38)8

is unbounded.

12.10 Inverse Stability of System

The system of two inversely stable equations is evidently inversely stable.

The system of two inversely unstable equations may be inversely stable. E.g.,
Eq.(12.12) and f(x)> = |x| are not inversely stable and their system is inversely
stable since it does not have the solution.

The system may be inversely stable if one of the equations in this system is
inversely stable and the second is not. It is so if the first equation does not have the
solution and the second is an arbitrary inversely unstable equation. The system does
not have the solution, thus it is inversely stable.
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Moreover the system may be inversely unstable if one of the equations in this
system is inversely stable and the second is not. E.g., the system of equations: (12.3)
and (12.7) has this property.

Thus for the inverse stability non all cases are possible.

12.11 Inverse Stability for Alternation

The alternation (12.8) is said to be inversely stable if, for every ¢ > 0, there exists
a § > 0 such that, for every function g : S| — S for which d[g(x), f(x)] < § for
x € S1 and for some solution f of the alternation we have

d[L1(g), Ri(g)] <e or d[L2(g), Ra(g)] <Ze.

The alternation of two inversely stable equations may be inversely unstable. E.g.,
the equations f (x)2 = x and f(x)? = —x are inversely stable as the equations
which do not have the solutions. On the contrary their alternation is not inversely
stable since for g(x) = /[x] + § we have

lgx) = Vixl| <8
and the functions
lg(x)* — x| = ||x| + 28|x| + 6% — x|
and
1g(x)% 4+ x| = ||x| + 28]x| + 8% + x|

are unbounded.

If the first equation in the alternation is inversely stable and the second is
inversely unstable, then this alternation may be inversely stable. E.g., for the
alternation of Egs. (12.3) and (12.12), the first is inversely stable and the second
is not. Their alternation is inversely stable since every solution of this alternation is
an additive function and the first equation is inversely stable.

The equation f(x) = 0is evidently inversely stable and the equation f(x)?> = x
is not inversely stable (take the function g(x) = x 4+ §). The alternation of these
equations is not inversely stable. For the indirect proof assume that this alternation
is inversely stable. Thus for ¢ = 1 there exists a § > 0 such that, for every function
g, if |g(x) —x| < 8, then |g(x) — 0] < 1 or |g(x)> —x?| < 1.For g(x) = x + 8 we
have |g(x)—x| < & and thus we obtain |x+8| < 1 or |(x+8)%>—x2| = |26x+68%| < 1
and this is impossible for

2

1—52]

X >max[0, 1-56,
28
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The equations f(x)?2=x%and 1/f(x) = 1/x for f : (0, +00) — (0, +00) are
not inversely stable and their alternation is inversely stable. For g(x) = x + § we
have |g(x) — x| < § and the functions

2 2 2 1 1
lg(0)? — x2| = 28x + 8 and w—;‘:&c(x—i—é)

are unbounded.
The function f(x) = x is the only solution for the alternation of these equations.
We remark that for ¢ > 0 we have

®==
= e (0,@)
“ 25
and
5 + 257 f 4o
Bs) = 2T VEOT T
2¢e
if § — 0+.

Since the function «(8) is increasing for 0 < § < /¢ and the function B(8) is
decreasing for § > 0, so there exists a 8o > 0 such that «(§p) > 1 and 8(5p) < 1.
Let the function g : (0, +00) — (0, 400) be such that |g(x) — x| < &p. Let
h(x) = g(x) — x. Then |h(x)| < &p.

For 0 < x < 1 we have x < «(8p) and this implies that

18()% — x%| = 2xh(x) + h(0)?| < 2x[h ()] + h(x)? < 2x80 + 83 < e.

For x > 1 we have

’

L l‘ _
glx) x lx(x +h(x)| —
since

)
X(x +h()] = 2% — x|h(x)] > x> — x5 > =
&

and therefore ex? — g8y — 8o > 0 for x > B(80).
The function g(x) is thus the solution of the alternation

5, 1 1
lg(x)"—x"|<e or ———‘58
glx) x

and this yields that the alternation of our equations is inversely stable.
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12.12 Absolute Stability

If Eq. (12.4) is stable and inversely stable, then it is said to be absolutely stable.
Equation (12.3) is absolutely stable if the function f is from the commutative
semigroup S; to the Banach space S,. It is not absolutely stable if S; is the free
group generated by two elements, since it is not stable in this case (see Sect. 12.7).
The equation f(x)? = a for a > 0 is inversely stable [17]. It is stable, too; thus it is
absolutely stable. Indeed, if |g(x)?>—a| < €2, then |g(x)—+/a| < € or |g(x)++/a| <
¢ and consequently |g(x) — f(x)| < e for a solution f of the equation of the form

Flx) = Va o iflgx) — Jal <e,
—Va iflg() —val > & and |g(x) + val <.

The equation f(f(x)) = f(x) is stable (see Sect. 12.6). It is not inversely stable
[17], thus non absolutely stable, too. The equation f(x + y) = f(x)f(y) for a
function f : R — (0, +00) is not stable (see Sect. 12.7) nor inversely stable (take
the function g(x) = exp x + §); thus it is not absolutely stable (double reason).

12.13 Approximation of Approximation

The Ulam question suggests the following question: is the approximation of the
approximation of a functional equation an approximation of this equation?

More exactly: Eq. (12.4) is said to be approximately stable (in short: app-stable),
if for every ¢ > 0 there exists ad > 0 such that, for every functions g1, g2 : S = S
for which d[g1(x), g2(x)] < 6 for x € S and d[L(g1), R(g1)] < §, we have
d[L(g2), R(g2)] < e.

Equation (12.3) is app-stable if the function f is from the commutative semi-
group S; to the Banach space Sy, since it is absolutely stable (see Sect. 12.16 and
the following).

If Eq. (12.4) is absolutely stable, then it is app-stable. Assume that this equation
is absolutely stable. Thus it is inversely stable. So for an ¢ > 0 there exists a §; > 0
such that, for every function g : S — S, if d[g(x), f(x)] < §; for some solution
f of (12.4), then d[L(g), R(g)] < €. Since Eq.(12.4) is stable too, so for %81
there exists a §o > 0 such that, for every function g, if d[L(g), R(g)] < &2, then
dlgx), f(x)] < %81 for some solution f of (12.4). Assume that d[g1(x), g2(x)] <
6 and d[L(g1), R(g1)] < 4, where § = min(%Sl,Sz). Since d[L(g1), R(g1)] <§ <
82,50 d[g1(x), f(x)] < 381. Next

1 1
dlg2(x). f(0)] = d[g2(x). g1 ()] +dlg1(x). f)] = 581 + 281 =8

and consequently d[L(g2), R(g2)] < e.
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If the equation is app-stable, then it is inversely stable. Indeed, for ¢ > 0, let § be
such that in the definition of the approximate stability. Assume that, for the function
g, there exists a solution f of (12.4) such that d(g(x), f(x)] < §. Since moreover
dlL(f), R(f/)]=0=<34,s0d[L(g), R(g)] < &.

The approximate stability is not the consequence of the inverse stability. Indeed,
the equation F'(f(x)) = 0, where F(x) = —x forx < Oand F(x) = 1 forx > 0, is
inversely stable, since it does not have any solution. We can prove it, by the indirect
proof, using the functions g1 (x) = 6 and g2(x) = 0.

The stability is not the consequence of the approximate stability. E.g., Eq. (12.3)
for f : [0,400) — (0,+00) is app-stable since, if |[g1(x) — g2(x)| < & and
[g1(x +y) — g1(x) — g1 (y)| <4, then

lg2(x +¥) — g2(x) — g2(y)
<lga(x+y) — g0 — g — (@ +y) —g1(x) —g1(3)]
+lgix +y) —g1(x) —g1(Y)| <38+ =44.

Thus it is sufficient to put § = &/4 in the definition of the approximate stability
of (12.3). Equation (12.3) is not stable since it does not have any solution and the
function g(x) = x +4/2 is a solution of the inequality |g(x +y) —g(x) —g(¥)| < 4.

12.14 Two Approximations

It is possible to consider the following question: are the two approximate solutions
of a functional equation (12.4) near each other? More exactly: given ¢ > 0,
does there exist a § > 0 such that, for every functions g1, g2 : S — S, if
d[L(g1), R(g1)] < § and d[L(g2), R(g2)] < §, then d[g(x), g2(x)] < &?

For Eq.(12.3) and f : R — R the answer is no. This is evident with the functions
g1(x) = § and g»(x) = x. For the stable equation, which has the only solution f,
the answer is yes. Indeed, for ¢/2 > 0 let § be as in the definition of the stability.
Thus, for the solutions g; and g» of the inequality (12.5), we have d(g1, f) < ¢/2
and d(g2, f) < ¢/2andsod(gi, g2) < ¢.

12.15 Stability in the Class

The functional equation is said to be stable (inversely stable, absolutely stable) in
the class of functions K if it is stable (inversely stable, absolutely stable) according
to the above definitions, in which the functions g and f belong to the class K.

The stability in the class K of the equation L(f) = R(f) is in fact the stability of
the conditional equation of the form: f € K = L(f) = R(f). The only difference
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is such that a function f ¢ K is a solution of this conditional equation, but it is not
considered in the stability in that class. This difference has no effect on the stability.

We do not have any relation between the stability in the class K1 and the stability
in the class K, C K.

E.g., the equation f(f(x)) = f(x) is stable in the class K1 of functions from
R to R (see Sect. 12.8) and it is unstable in the class K; of differentiable functions
from R to R. Indeed, assume that this equation is stable in the class K>. Thus for
& = 1 there exists a§ > 0 such that, for every differentiable function g, if |g(g(x))—
g(x)] <4, then |g(x) — x| < 1 (the function f(x) = x is the only solution from the
functions under the consideration in the class K7). Let g be a differentiable function
from R to the interval [0, 2] N [0, &]. Since g(x) € [0, §] and g(g(x)) € [0, 8], so

1g(g(x)) — g(x)| < 4.
This yields that |g(x) — x| < 1, but since g(4) < 2, we have
gd) 4| =4—g#)=4-2=2

and we obtain a contradiction.

Equation (12.3) for f from the free group G, generated by two elements, to R is
unstable (see Sect. 12.3) and it is stable in the class of functions from G to Z (with
arbitrary positive § < 1).

Let V be a normed non-complete space, B be a completion of V to the Banach
space, and G an abelian group containing an element of infinite order. We put K| =
{f :G — B}, Ky = {f : G - V} and let K3 be the family of the functions
from G to a finite-dimensional subspace of the space V. We have K3 C K> C K.
Equation (12.3) is stable in the classes K| and K3 and it is unstable in the class K>,
since V is not complete [7].

Equation (12.3) is

a/ stable in the class { f : R — [0, 4-00)}—proof by the “direct method” as in [9];

b/ unstable in the class {f : R — (0, +00)}, since Eq. (12.3) does not have any
solution in this class and the inequality (12.1) has a solution for every § > 0,
e.g., gx)=4/2;

c/ stable in the class {f : R — [1, +00)}, since the inequality does not have any
solution for § = 1 (the inequality |g(0)| = |g(x +0) — g(x) — g(0)] < 1is
impossible).

The translation equation F (F(«, x), y) = F(a,x+y) for F : I xR — I, where
I is a non-degenerated interval in R, is stable in the class of continuous functions
[24]. It is unstable in the class of continuous functions for which the derivative of
F(.,0) : I — I at the point « exists for every ¢ € I [24]. The problem of its
stability in the class of all functions from 7 x R to I is still open.

The equation f(x)?> = x? is not inversely stable (see Sect.12.10) and it is
inversely stable in the class

Kry={f:R=>R\{0}}CcKi={f:R— R}

since this equation does not have the solution in this class.
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If the equation is inversely stable in the class K, then is evidently inversely
stable in the class K, C K.

The equations in the some above examples have not the solutions. These
equations are not interesting. From here the following question.

Question Is it possible to replace these non-interesting equations in the above
examples by the equations having the solutions?

Final conclusion We have to be careful with the approximations, since

a/ the approximate solution of a functional equation does not have to be the
approximation of a solution of this equation;

b/ the approximation of the solution does not have to be the approximate solution;

¢/ the approximation of the approximation does not have to be the approximation.

The situation is the same for the system and for the alternation of the functional
equations and for the stabilities in the classes.

12.16 Stability of the Translation Equation

Theorem 12.1

(a) Let the function F : I x R — I, where I is an internal, be a solution of the
translation equation

F(F(x,t),s) =F(x,t+5), (12.13)

and let S be the selector of the class of sets F(x,R) forx € F(I,R) =: I'* and
for which card F(x, R) > 1.
If F is continuous with respect to the second variable for every x € S and

for which at least one of the functions F(.,t) : I — I is continuous, then it is
of the form

hyllha(g(x)) +11  forg(x) € I,,t € R,

(12.14)
g(x) forg(x) e g(H\UI,, t € R,

F(x,t):{

where g : I — I is a continuous idempotent (go g = g), I, C g(I) forn €
N1 C Nare open and disjoint non-empty intervals (named the non-degenerated
orbits) and hy, : I, — R are the homeomorphisms.

(b) The function F of the form (12.14) is a continuous solution of (12.13).

This result has been proved in [26] in the case where F'(x, 0) = x (thus for the
dynamical system), under the assumption that the function F is continuous.
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Proof Part (a). We remark at the beginning that F'(I,¢) = I* for ¢t € R. Evidently
F(l,t) Cc I*. If x € I* then x = F(xy,#) for some (x1,t1) € I x R Thus
x = F(F(xi,t1 —t),t) € F(I,t). From here I* C F(I, t). Moreover, if x € I*,
then

F(x,0) = F(F(x1,11),0) = F(x1,t1) = x.

This yields that, if xyg € F(x,R) and x € I*, then x € F(xg, R). Indeed, if xg =
F(x, 1), then

F(xg,—t1) = F(F(x,t1),—t1) = F(x,0) = x.

If xo € SN F(x,R), then the function F(xgp,.) : R — I := F(x,R) is an
injection. Indeed, if F(xg, t;) = F(xo, 12) for #; < t», then for every ¢ > 0 there
exist 71 and 1 such that 0 < o — 11 < ¢ and F(xg, 1) = F(xg, t2). This yields
that

x0 = F(x0,0) = F(F(x0, 11), —71) = F(F(x0, 12), —71) = F(x0, 72 — 71)

and thus F(xg,t + (1o — 11)) = F(F(x09, 72 — 11),t) = F(x0,t). The function
F(x0,t) as microperiodic and continuous is thus constant. So, we have a con-
tradiction, since card F(x,R) > 1 and x = F(xg,t;) for some #; € R, thus
F(x,t) = F(F(xg,t1),t) = F(xo,t + t1). From here the function F(xg,1?) is a
homeomorphism from R to I, which we denote by 2!, and Iy is an open interval.
For x € Iy there exists a fp € R such that x = F(xo, 1) = A~ (). This yields that
to = h(x). Consequently, we have

F(x,t) = F(F(xo,10),1) = F(xo,to+1) = h~ 't + 1) = h " (h(x) +1).

Every two sets F(x1,R) and F(x», R) for x;, x € I are disjoint or identical.
Indeed, assume that xg € F(x1, R)NF(x3, R). We prove that F (x1, R) C F(x2, R).
For x € F(x1,R) we have x = F(x1,t) for some #; € R. Moreover xg =
F(x1, 1) = F(xy, t3) for some 7, t3 in R, whence x| = F(xg, —t2). From here

x = F(F(xo, —t2),11) = F(xo, 1 — 12)
= F(F(x2,13), 11 — o) = F(xo, 13 + 11 — 1) € F(x2, R).
Analogously, we obtain that F(x, R) C F(x1, R).
Let 5o € R be such that the function F(., sg) : I — [ is continuous. The set I*

is an interval since I* = F (I, sg).
If F(x0, R) is a degenerated interval, e.g., F'(xg, R) =: {x1}, then

F(x1,1) = F(F(x0,0),1) = F(xo,1) = x1

fort € R.
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The function F; = F|F(1,R)><R is thus of the form (12.12) with g(x) = x, where
as the intervals I, we take the different non-degenerated intervals F(x, R) for x €
F(,R).

We prove that this function Fj : I* x R — [ is continuous. At the beginning we
prove that this function is right-hand continuous (i.e., for x — xo+ and t — 1g).

1/ If xg € I,, for some n € N, then for x € I we have
Fi(x, 1) = h; ' [hy(x) + 1] > Fi(xo, 10)

forx — xg and t — f.

2/ If xo = inf I,, for some n € N, then since x — xo+ we can to admit that x € I,.

Fromhere Fi(x,t) = h;l [/, (x)+¢]. The function h,, as a homeomorphism from

I,, to R must be increasing or decreasing. If %, is increasing, then /1, (x) — —o0

if x — xo+, and thus h,(x) +t — —oco if x — xo+ and t — fo. This implies

that in this case
Fi(x,t) = inf I, = xog = F(x0, tp).
If h, is decreasing, the situation is analogous.
3/ Assume that, for every n € N, the point xg is not in [inf 7, sup I,,) and that
X, — xo and t,, — fg. Let
S1 := {x, : x, is not the fixed point of Fp}
and
S := {x, : x,, is the fixed point of Fy}.
If the set S is finite, then there exists an ng € N such that, for n > ng, we have
Fi1(xp, th) = X — x0 = F(x0, 10).

If the set S is finite, then there exists an n; € N such that, for n > n, there exists
an interval Iy, for which x,, € Iy (,) (the function k(n) must not be injective). Since
Xp —> X0, so inf Iy,y — xo and sup Iy(,) — xo. We have

inf Iy < F1(xn, tn) < sup Ixy,

thus

Fi(xp, t,) — x0 = F1(xo, t).



12 Stability of Functional Equations 253

If the sets S; and S are infinite, then the sequence x, consists of two
subsequences xi(,) € S1 and x;,) € S, whence by the above Fj is continuous
at the point (xo, o).

The function Fj is thus right-hand continuous. By the analogous reasoning we
obtain that F is left-hand continuous and thus it is continuous. Since

F()C,t) = F(F(-xvso)’t _SO) = F](F(.X',SO),I—SO),

the function F(x,t) is continuous and consequently the idempotent function
F(x,0) is continuous. We have F(x,t) = F(F(x,0),t) = Fi(F(x,0), t) and this
implies that F is of the form (12.12) with g(x) = F(x, 0).

Part (b). It is easy to verify that the function of the form (12.14) is the solution of
(12.13). The verification that this function is continuous is analogous as above. O

The set S in the Theorem 12.1 is countable, since it is a selector of the class of
open disjoint intervals (e.g., the set of midpoints of these intervals). The supposition
that at least one of the functions F'(.,t) is continuous is essential in the above
theorem. Indeed, let 7 : I — [ be a discontinuous idempotent function. For the
function F(x, t) = h(x), the function F(x, .) is continuous for every x € I and the
function F is not of the form (12.14). If a solution F of (12.13) depends only on ¢,
then it is the constant function, thus it has the form (12.14) (for N = @).

Question Does there exist a solution F' of (12.13), which depends on x and ¢, for
which the function F(x,.) is continuous for x € I and which is not of the form
(12.14)?

Since the function of the form (12.14) is continuous (see [24] and above), so a
solution F of (12.13) continuous with respect to second variable, for which at least
one function F(., t) is continuous, must be continuous.

If a solution F of (12.13) is Carathéodory, i.e., the function F(x,.) : R — [ is
measurable for every x € I and F(.,t) : I — [ is continuous for every t € R,
then the function F | 1%(0.400) is continuous [2]. Let the sequence #, be such that
t, — to < 0. We obtain

F(x,t,) = F(F(x, =1 +10),tn + 1 —10) > F(F(x, =1 + 1), 1) = F(x, t),

thus the function F(x,.) is continuous at every point fo > 0. This yields that the

function F is continuous, thus it has the form (12.14) by Theorem 12.1.
Unfortunately, a solution F' of (12.13), which is only such that F(x,0) is

continuous and F(x, .) is measurable, may be discontinuous. E.g., for the function

Fx,t) =g '(gx) +1) = g(g(x) + 1),

where g(x) = 1/x for x > 0 and g(x) = x for x < 0, the function F(x,.) is
discontinuous only at the point # = —g(x).

Let’s notice yet that there exists the continuous solution F of (12.13) such that
all functions F(., t) are not Jordan-measurable [21].
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The proof of Theorem 12.1 implies that the solution of (12.13) is of the form
(12.14), where g is an idempotent (not necessarily continuous), I, are the non-empty
disjoint subsets of 7 and &, : I, — R are the bijections, if and only if

{t e R: F(x,1) = x} € {4, {0}, R}

for every x € 1.

Note that the function F(x,7) = x¢() : R xR — R, where ¢ : R — Ris
a discontinuous solution of the equation ¢(t + s) = @(¢)@(s), is the discontinuous
solution of Eq. (12.13), which is continuous with respect to the variable x for every
t, and which is continuous with respect to variable ¢ for x = 0.

Similarly, a solution H : I x R — [ of the inequality (12.15) (below), which is
continuous with respect to each variable, can be discontinuous, e.g., the function

Hx,t) = % (x. 1) % (0, 0),

and H (0, 0) = 0, which is discontinuous at the point (0, 0).

The solution (12.14) is said to be simple if inf |[,,| > 0, where |I,| is the length
of the interval I,. If xo € g(I), then g(xg) = xo, since g is an idempotent. From
here, if xo € I, C g(I), then g(x9) = x9 € I,, and F(xp, .) : R — I, is a bijection.
If xo € g(I) \ U I, then g(xp) = xo € I, C g(I), thus F(xp, 1) = g(xp) = xo for
t € R, i.e., xg is a fixed point of F'.

The following theorem has been proved in [24] as Theorem 1.1.

Theorem 12.2 Let I C R be an interval. Suppose that H : I xR — [ is continuous
with respect to each variable and satisfies

|H(H(x,t),s) — H(x,t+5)| <e, xel t,s eR (12.15)
Then there exists a continuous solution F of (12.13) such that
|F(x,t) — H(x,1t)| < 10¢, xelteR (12.16)

Moreover in the proof in [24] of this theorem it is showed that this solution F is
simple.

We suppose that all solutions of (12.13) considered still are continuous. This
yields that every non-simple solution of (12.13) is approximated by the simple
solutions of (12.13), i.e., for every & > 0 and for every non-simple solution G of
(12.13), there exists a simple solution F of (12.11) such that |G(x,t) — F(x,t)| < ¢
for (x,r) € I x R. The inverse is not true, i.e., it is not true that, for every ¢ > 0
and for every simple solution G of (12.13), there exists a non-simple solution F of
(12.11) such that |G (x,t) — F(x,t)| < e for (x,t) € I x R.

For the proof we need the following lemma.
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Lemma 12.1 If at least one fixed point xo of F is