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Abstract. Internet communication is essential for everyone. Algorithms
that decide about the correctness of this communication are protocols,
and the central part of it that keeps all in safety are security protocols.
Because every such program must be implemented and applied, errors are
probable. That is why we need verification methods based on mathemat-
ical models, and we also need tools checking the new protocols, looking
for undiscovered gaps. Existing verification tools and languages describ-
ing the protocols are not free of errors or imperfections. Sometimes they
neglect some dependencies, and sometimes they are utterly redundant.
We present in the article a formal model that we have recently developed.
It describes the different behaviours and properties of security protocols.
On the base of it, we implemented the tool that verifies many types of
protocol, first of all, if they work and then if they meet the security
requirements. At the end of the article, we provided a summary of our
results with the results obtained from popular tool.
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1 Introduction

Internet communication affects all areas of our modern life. We use it for virtual
conversation, business, shopping, and in our private life. In each of the situations
mentioned above, we may wonder if our data is safe, how much potential intrud-
ers can learn. Does every Internet user realize what Internet communication is,
how many operations hide under it?

The Internet was initially the domain of scientists subsidized by the army.
From the very beginning, it was supposed to enable safe communication, even in
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the event of damage or attack of parts of the network. Many devices, algorithms
and software decide about the operation of the modern network. Examples of
these algorithms are communication protocols that deal with data exchange.
Their most essential parts are security protocols. These are small algorithms
consisting of several steps to guarantee correct verification of communicating
pages, as well as security of transmitted data.

During these several decades of Internet existence, scientists invented and
implemented many protocols, many of them turned out to be defective. Errors
and gaps were detected, sometimes only after many years of use [18,21]. There
was and still is a strong need to verify the mechanisms that determine the
security of our data.

The verifications were initially carried out experimentally, but of course, there
are no better methods than formal verification, allowing the analysis of a much
broader spectrum of possible situations. There are several paths for verification.
The first approach is deductive verification, the descriptions of which can be
found in the works of Burrows, Abbadi and Needham [1,6]. Basin and Wollf
used logic in their work [3]. Another approach was based on inductive methods
[20,22]. Currently, most of the works on verification of security protocols focus
on model checking [4,9,10,19].

For each of the developed methods, teams of researchers created dedicated
tools, firstly to show their performance and effectiveness, and secondly to provide
verification tools to the public. Here is a list of the most popular tools: Scyther
[7], ProVerif [5], AVISPA [2], UPPAAL [8], VerICS [13], PathFinder [17].

The question arises whether the topic has not been exhausted with such a
long list of methods and tools. We should emphasise that researchers still develop
new protocols, adapt them, and existing tools are not free of defects [15]. We
also care about the time of the verification, especially since most tools search the
redundant space of generated actions and their combination, which not reflects
reality.

The article presents our current approach to protocol verification. Our team
has been working for years in this field, developed techniques related to auto-
matic machine networks [16], verification using SAT tools [14], probabilistic ver-
ification [24], up to the current method. Our methods have also been used in
practice to verify the MobInfoSec system, which is a distributed, modular, and
configurable cryptographic access control system to sensitive information [23].
In the method described in the article, a tuple represents a step of the protocol.
In every tuple, we distinguish elements related to the conditions that the user
must meet to send a message, elements related to the message itself, and ele-
ments suggesting what knowledge the recipient has gained. This simple structure
allows a quick analysis of whether the user can take the next step. If he did not
get the right knowledge in previous tuples - he can not. In this way, the model
is strictly limited and does not allow for the analysis of paths that do not occur
in reality.

The article consists of five sections: introduction, description of an exemplary
protocol, description of the formal method, experimental results and a summary.
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2 Exemplary Security Protocol

In this part of the article, we show an example of the security protocol used
in the MobInfoSec system, which enables encryption and sharing of confidential
information to a group of connected users of mobile devices [12,23]. The system
includes software and hardware. A team of researchers and programmers devel-
oped it for popular mobile devices available on the market. One of the most
complex components that met the ORCON rules was a strong mutual authen-
tication scheme between secret protection modules (SP). The system performs
communication between multiple users. Each of them on its device has two mod-
ules: Module Secret Protection (SP) and Authentication Module (MU) (Fig. 1).

Fig. 1. Trust domains concept for different mobile devices

One of the communication points is taken as the initiator of the protocol
(chairman - in the picture described by letter A) and should authenticate with
other users (Bi); at the end, it establishes secure communication channels.

The entire communication protocol, which consists of five phases, is described
in detail in the article [23], here we describe only the part responsible for authen-
tication, which is a security protocol. For the description, we use the Common
Language, which is the most popular form of protocol description appearing
in the literature. We assume that before the security protocol, the keys of the
SP.A and SP.Bi modules are activated, which is necessary to perform the cryp-
tographic operations; there is also a request from MU.A to SP.A to generate a
random number (nonce - a number used once).
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α1 SP.A → MU.A: {NSP.A, i(SP.A)}
α2 MU.A → MU.Bi: {NSP.A, i(SP.A)}
α3 MU.Bi → SP.Bi: {NSP.A, i(SP.A)}
α4 SP.Bi → MU.Bi: {{NSP.Bi

,−kSP.Bi
,

h(NSP.Bi
, NSP.A, i(SP.A))}−kSP.Bi

}+kSP.A

α5 MU.Bi → MU.A: {{NSP.Bi
,−kSP.Bi

,
h(NSP.Bi

, NSP.A, i(SP.A))}−kSP.Bi
}+kSP.A

α6 MU.A → SP.A: {{NSP.Bi
,−kSP.Bi

,
h(NSP.Bi

, NSP.A, i(SP.A))}−kSP.Bi
}+kSP.A

where:

– i(SP.A) - the identifier of the secret protection module of user A,
– NX - random numbers - nonces generated by the module specified in sub-

script,
– h(NSP.Bi

, NSP.A, i(SP.A)) - hash value calculated for a message
NSP.Bi

, NSP.A, i(SP.A) using hash function h.
– −kSP.Bi, +kSP.A - keys, public and private accordingly.

Let’s follow the protocol step by step. The SP module belonging to the user
A generates a random number NSP.A and, together with its identifier i(SP.A),
transmits it to the MU module (step α1). Everything happens in one trusted
domain. All this information is transferred to the user’s Bi domain (step α2),
where it goes to the secret protection module from the authentication module
(α3). User Bi generates his nonce NSP.Bi

, adds previously obtained information
and provides a hash function h(NSP.Bi

, NSP.A, i(SP.A)), signs whole with his
key −kSP.Bi and encrypts with the user’s A key +kSP.A. The whole is sent in
sequence from the SP to MU module in the user’s Bi domain (α4). Next to the
user’s A domain (α5) and already internally from the MU module to the SP
module. When the protocol is completed, the user’s A module SP and each SP
module of user Bi (for i = 1, ..., n) have confidential key materials NSP.A and
NSP.Bi

(i = 1, ..., n). On this basis, each party calculates the new symmetric key
for independent, trusted channels.

3 Verification Method

In the paper [16], a mathematical model of a protocol’s executions (correct runs)
is transformed into a network of finite synchronous automata. Many protocol
executions (the runs) were expressed as the computations in this network. The
security problems were modelled as a problem of the reachability of desired
(unsecured) states in the network. The computations in the network were sub-
sequently encoded as propositional boolean formulas. SAT-solvers answer the
question whether a valuation fulfilling the formula exists, and therefore whether
an attack on the protocol exists. In the paper [16], several experimental results
for untimed protocols were given. In some cases, they were better than those
obtained during verification with the AVISPA Tool.
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Now, we introduce a new approach. The double translation of the mathe-
matical model of executions proposed in [16] brought along some redundancies,
of which the following method is free. The obtained and described experimental
results in the last section of the article are promising for the later development
of this approach.

In the proposed method, we encode each step of a protocol execution in the
form of a tuple (1) containing conditions for executing a given step and actions
taking place during its execution. We can analyse many executions that are
running in parallel. That is why we mark each step as αi

j , where i is the number
of the execution and j is the number of the protocol step. Each tuple takes the
form:

αi
j = (Send,Rec, PreCond(Si

j), S
i
j , PostKnow(Si

j)), (1)

where Send is the sender, Rec is the receiver, Si
j is the j-th step of the i-th

protocol’s execution, PreCond(Si
j) is the set of conditions that must be met for

the step Si
j to be executed and at the end PostKnow(Si

j) is the set of knowledge
that is gained as a result of the step. As you can see, the order of the elements
in the tuple clearly suggests the time sequence of individual actions.

We distinguish two types of PreCond, that must be held before a step:

1. GX
U - represents the generation of new confidential information X (nonces,

keys) by the user U (e.g. GNA

A - the nonce NA generated by the user A),
2. PX

U - represents the requirement to have the given knowledge element X
necessary for the user U to perform the given step U (e.g. PNB

A - the user A
must have the nonce NB to perform the step).

In the PostKnow set, you will find the knowledge gained as a result of
performing the step, which will be marked as KX

U - knowledge about the object
X gained by the user U .

Example 1. Now we can represent steps of the security protocol part for MobIn-
foSec system in the form of tuples:

α1 = (SP.A,MU.A,−sender and receiver

{P ISP.A

SP.A , GNSP.A

SP.A },−PreCond

{NSP.A, i(SP.A)},−message (2)

{K
i(SP.A)
MU.A ,KNSP.A

MU.A }) − PostKnow

Since we can consider interleaving of different executions of the same protocol,
we enter the designation alphaj

i where i is the step number, and j is the execu-
tion number. For clarity, let’s also mark as hash = h(NSP.Bi

, NSP.A, i(SP.A))
and as messageα4 = {{NSP.Bi ,−kSP.Bi , h(NSP.Bi , NSP.A, i(SP.A))}−kSP.Bi

}+kSP.A .
Thus, one arbitrary execution of the entire protocol looks as follows:
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α1
1 = (SP.A,MU.A, {P

i(SP.A)
SP.A , GNSP.A

SP.A },

{NSP.A, i(SP.A)},

{K
i(SP.A)
MU.A ,KNSP.A

MU.A })

α1
2 = (MU.A,MU.Bi, {P

i(SP.A)
MU.A , PNSP.A

MU.A },

{NSP.A, i(SP.A)},

{K
i(SP.A)
MU.Bi

,KNSP.A

MU.Bi
})

α1
3 = (MU.Bi, SP.Bi {P

i(SP.A)
MU.Bi

, PNSP.A

MU.Bi
},

{NSP.A, i(SP.A)},

{K
i(SP.A)
SP.Bi

,KNSP.A

SP.Bi
})

α1
4 = (SP.Bi,MU.Bi {P

i(SP.A)
SP.Bi

, PNSP.A

SP.Bi
, P+kSP.A

SP.Bi
, G

NSP.Bi

SP.Bi
, Ghash

SP.Bi
},

{messageα4},

{K
messageα4
MU.Bi

})

α1
5 = (MU.Bi,MU.A {P

messageα4
MU.Bi

},

{messageα4},

{K
messageα4
MU.A })

α1
5 = (MU.A, SP.A {P

messageα4
MU.A },

{messageα4},

{K
NSP.Bi

SP.A ,Khash
SP.A}) (3)
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Let’s explain the above formula on the example of the fourth tuple, which
looks the most complex. The module SP.Bii sends a message to the module
MU.Bi. It needs the identifier i(SP.A), the nonce NSP.A, the key +kSP.A, and
must also generate the nonce NSP.B , and the hash value. The module SP.Bi

sends the entire messageα4 to the module MU.Bi, but this second one can not
do anything with message, MU.Bi can only forward it to the user’s A domain.
The message reaches the right sender only in the sixth step, and then SP.A can
decipher the message and learn the nonce NSP.Bi

and the hash value from it.
On this base, we can generate interlaces of many executions from many ses-

sions, for example α1
1, α

2
1, α

2
2, α

1
2, ..., α

1
5, α

2
5. How to check if the generated tuples

are real and have the right to exist in actual protocol executions? We must
define the so-called correct tuple. Let Π be the base space consisting of the users
and their attributes (identifiers, nonces, cryptographic keys, etc.). We have to
consider all the executions of the protocol in this space and all tuples for all
executions. Under the set of all these tuples, we define a correct tuple represents
the real executions of the protocol in the network.

Definition 1. We call the sequence s = s1, s2, . . . , sp a correct tuple iff the
following conditions hold:

1. if si = Sk
j for some j, k ≤ p then (j = 1 ∨ ∃t<i(st = Sk

j−1)) and
PreCond(Sk

j ) ⊆ {s1, . . . , si−1} ∧ PostKnow(Sk
j ) ⊆ {si+1, . . . , sp},

2. if si = GX
U , then ∀t�=i(st 	= GX

U ),
3. if si = PX

U , then ∃t<i(st = GX
U ∨ st = KX

U ).

The first point guarantees a proper dependence on the order of carrying
out the individual steps of a given execution. Points second and third, ensure a
dependence of the users’ knowledge necessary to execute the individual steps. In
particular, the second point guarantees that a given knowledge can be generated
only once. The third point shows that a given user has some knowledge if he has
generated it or obtained it as the result of one of the previous steps.

Thanks to the following theorem, we can reduce verification of considered
security protocol for a given set of their executions to the analysis of the corre-
sponding set of tuples that represents executions. Specifically, observe that there
is an attack upon the protocol in the considered set of executions if there is an
a correct tuple that represents attacking execution. An attacking execution con-
tains an element in which the Intruder I learns secret information (for example
KNSP.A

I ), or can even finish the protocol by impersonating another user without
being recognised. For the definition of the correctness of knowledge, see [14].

4 Experimental Results

The tool implemented by us (from now on referred to as an E-Ver from an
efficient verifier) enabled modelling and generation of many security protocols,
taking into account all the new assumptions described in the previous sections.
Then, we compared the time results with the results of the known tool - ProVerif,
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with which we have not combined our method so far. We obtained all the results
presented below on the same computer unit, equipped with an Intel Core i7
processor, 16 GB main memory and Ubuntu Linux operating system.

At the input, the tool accepts the protocol description defined in the ProToc
language [11]. This description allows to include information about external and
internal actions which are performed during protocol execution.

Table 1. Summary of the MobInfoSec security protocol executions

No. Execution

1 SP.A → MU.A → MU.B1 → SP.B1

2 SP.A → MU.A → MU.B2 → SP.B2

3 I → MU.B1 → SP.B1

4 I → MU.B2 → SP.B2

5 IA → MU.B1 → SP.B1

6 IA → MU.B2 → SP.B2

7 SP.A → MU.A → I

8 SP.A → MU.A → IB1

9 SP.A → MU.A → IB2

Table 1 presents a summary of the MobInfoSec security protocol executions.
We can find here all the communication possibilities between users A and Bi.
In column ‘Executions’ is located information about the users according to the
order they appear in the protocol. By A and Bi, we mark honest users. By I the
Intruder is indicated. Designations IA and IBi

mean an Intruder impersonate
honest users. For every execution in which Intruder take part, there are more
possibilities for parameters (nonces, keys). The Intruder can use his own or
other users parameters. we show below (example for one chairman and two other
users).

Each of the nodes in our executions tree consists of five elements:

– execution’s number,
– step’s number,
– set of the needs (elements needed to execute a given step - PreCond),
– set of generated elements (elements generated in a given step - PreCond),
– set of knowledge (elements that increase the set of knowledge after a given

step - PostKnow).

Elements which are located in mentioned sets are numbers referring to a
cryptographic object used by users in protocol’s executions. Thanks to such
simplification, we can build a tree of nodes and verify a protocol faster than
other tools. Also, our structure is smaller than in other tools.
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Next, our tool tries to build a tree and find an attack. By following the
methodology mentioned earlier, nodes that meet the imposed conditions are
added to the tree. If the created path contains an attack, a tool returns infor-
mation about finding an attack.

Let’s show a summary of how our tool works for several popular protocols
(Fig. 2.) like The Needham–Schroeder Symmetric Key Protocol (NSSK [21] -
It forms the basis for the Kerberos protocol), the Needham–Schroeder Public-
Key Protocol corrected by Lowe (NSPKLOWE [21]). Wide-Mouth Frog protocol
(WMF [6]) and Woo and Lam Pi protocol [25]. We examined three time param-
eters:

– node generation time (TNG),
– time of finding attacks (TAF ),
– protocol checking time (TPC).

Fig. 2. Summary of protocols verification times in E-Ver in a graphical form

Please note that for all examined protocols an attack was found (nor-
mal attack or man-in-the-middle attack). For all protocols and all parameters
obtained times were lower than 1 [ms] (Table 2).

Table 2. Summary of protocols verification times in E-Ver

Protocol TNG [ms] TAF [ms] TPC [ms]

NSPK 0.002853 0.000224 0.007503

NSPKLowe 0.001791 0.000145 0.004582

WMF 0.001382 0.000167 0.003488

WooLamPi 0.002378 0.000192 0.005677
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Table 3. Comparison of E-Ver and ProVerif

Time [ms] NSKK Denning-Sacco

ProVerif 24 9

E-Ver 0.008659 0.005632

Fig. 3. Comparison of E-Ver and ProVerif in a graphical form

Next, we compared verification time with ProVerif (Table 3, Fig. 3). You can
not specify the time of generating structures and the different stages for the tool
ProVerif, so we limited the results to the total work time tool for the protocol.

5 Conclusion

The article presents the last work carried out by the authors in the field of
verification of security protocols. Previous methods included many redundant
operations and steps: building machines, testing with Sat-solver, and so on. The
current formal model allows for a broad expression of the parameters of security
protocols that are used nowadays. It allows to analyse the conditions needed to
perform individual steps, takes into account the knowledge aspect, significantly
limiting the searched space. The developed method allows to examine the inter-
laces of the same protocols for many sessions, to analyse the difficult-to-study
Intruder model, which is Dolev-Yao.

The important thing is that for all of the protocols we examine, the time to
detect attacks or search the whole tree in the absence of an attack is surpris-
ingly small. Despite the size of the structure causing the exponential complexity
of the algorithm, due to constraints imposed on attachable nodes (considering
PreCond and PostKnow), the tree shrinks to real performances, which allows
for quick analysis. Thanks to the structure built on constraints, we are also able
to detect a situation in which the algorithm itself is incorrectly constructed,
which is not always possible with the use of other tools.
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