
Coding Techniques in Verilog for Finite State
Machine Designs in FPGA

Valery Salauyou(&) and Łukasz Zabrocki(&)

Faculty of Computer Science,
Bialystok University of Technology, Bialystok, Poland

valsol@mail.ru, lukasz.zabrocki@gmail.com

Abstract. Coding techniques in Verilog HDL of finite state machines (FSMs)
for synthesis in field programmable gate arrays (FPGAs) are researched, and the
choice problem the best FSM coding styles in terms of an implementation cost
(area) and a performance (speed) are considered. The problem is solved
empirically by executing of experimental researches on the FSM benchmarks.
Seven coding styles in Verilog are offered for coding of combinational circuits
for FSMs from those two best styles are selected. On the basis of these two
coding styles of combinational circuits six coding styles of FSMs are offered.
The efficiency of the coding styles was researched for the synthesis of FSM
benchmarks in two classes of programmable devices: CPLD (Complex Pro-
grammable Logic Device) and FPGA. The experimental results showed that the
choice of coding styles allows to reduce the implementation cost of FSMs by a
factor of 3.06 and to increase the speed of FSMs by a factor of 1.6. In con-
clusion, the prospective directions for coding styles of FSMs are specified.

Keywords: Finite state machine � Field programmable gate array �
Coding styles � Verilog � CPLD � FPGA � Implementation cost � Speed � CAD

1 Introduction

Hardware Description Languages (HDLs) have a pivotal role in computer aided design
(CAD). In CAD, today two HDLs are widely used: Verilog and VHDL. Verilog has
been created by developers of CAD tools as an alternative of VHDL and it quickly
became popular among digital logic engineers. As of now Verilog has several stan-
dards, which are supported by most vendors of CAD. Today, Verilog is supported by
CAD tools of such firms as Intel, Xilinx, Synopsys, Cadence, Mentor Graphics, etc.

A finite state machine (FSM) is one of the most important components in the design
of a sequential circuit. The efficient Verilog coding styles are necessary to infer syn-
thesizable FSM from a project code. However, the Verilog standards do not give the
answer to a question: how to code the FSM in Verilog.

To date, there are few studies that have investigated the coding styles of FSM in
Verilog for synthesis in programmable devices. In [1], the encoding styles of the FSMs
in Verilog and VHDL which are provided in design tools from Synopsys are consid-
ered. The general principles of representation of FSMs in the HDL languages are
stated; two structural models are offered: with two and with one combinational circuit;

© Springer Nature Switzerland AG 2019
K. Saeed et al. (Eds.): CISIM 2019, LNCS 11703, pp. 493–505, 2019.
https://doi.org/10.1007/978-3-030-28957-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28957-7_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28957-7_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28957-7_41&domain=pdf
https://doi.org/10.1007/978-3-030-28957-7_41

different ways of state encoding are described: binary, one-hot, and almost one-hot. It
also is considered using case and if statements for the description of the transition
functions in different ways of state encoding, the error recovery and illegal states,
asynchronous inputs, and unknown inputs.

In [2], the standardized FSM coding style in Verilog that is used in Cisco design
tools is considered. In this style, the description of FSM transitions is carried out by
case statement, the states are declared by local parameters, the FSM transitions are
described by means of two variables: current and next. Using the compiler directives
cisco_fsm is presented. The application of the offered standardized style of the FSM
allows to analyze accessibility of each state, to find terminal states (from which there
are no exits), to carry out a dynamic FSM verification, and to build a state diagram.

The FSM coding styles of [1] are detailed and extended in [3]. In [3], the two FSM
coding styles are considered: with one and two processes; for each used style its
advantages and shortcomings are noted; the possible ways of state encoding are
described; the use of Synopsys FSM Tool for generation binary, Gray, and one-hot
coding is discussed. The coding style for synthesis of register outputs of the
Mealy FSM is offered.

The FSM coding styles of [3] have been developed in [4]. In [4], it is offered to use
register outputs of FSM to eliminate glitch upon transitions between states. Two
methods are for this purpose offered. The first method repeats the method [3] for the
installation of registers on outputs of the Mealy FSM. In the second method, the output
values of the Moore FSM are used for state encoding.

In [5], the five FSM coding styles are offered: style 1 with three processes for
Mealy and Moore machines; style 2 and 3 with two processes for Mealy and Moore
machines; style 4 with one process for Moore machines, and style 5 with two processes
for Moore machines. The question what of FSM coding styles is better is set, but the
answer to this question is not provided.

In [6], the FSM coding styles in Verilog and the different ways of state encoding
that implemented in design tool ISE from Xilinx are investigated. Experimental
researches were conducted for FPGA Spartan-6. Three FSM coding styles are con-
sidered: with one, two, and three processes; and also the next ways of state encoding
are considered. The experimental researches have been conducted for one simple FSM
example, which has one input, one exit, four states and five state transitions. Following
parameters were analyzed: the number of used flip-flops, the number of used FPGA
logic elements, and the maximum frequency of FSM. In [6], the following conclusions
are drawn: for speed optimization prefer one-hot and speed1 option, and for area
optimization chose gray or Johnson or sequential encoding scheme.

Overall, these studies indicate that most studies in the field of FSM coding have only
focused on coding styles that have been implemented in CAD tools. Such approaches,
however, have failed to address all coding styles which are possible in Verilog.

In this paper, we study the coding styles of FSMs in Verilog that can differ from the
traditional coding styles. A problem is to choose a best coding style for an optimization
of the area and the speed of FSMs. The problem is solved empirically by fulfilment of a
great number of experimental researches. The received results give recommendations
that allow to reduce considerably the FSM area and to increase the FSM speed without
the application of any special synthesis methods.

494 V. Salauyou and Ł. Zabrocki

2 FSMs with Three and Two Processes

Two types of FSMs are most known: Mealy machines and Moore machines. Previous
studies showed that there are three main coding styles of FSMs in Verilog: with three
processes, with two processes, and with one process, where the process is the always
block in Verilog.

Coding of the FSM by one process is possible only for Moore machine, and as the
Mealy machine is the most general model of the FSMs, in this paper we will study only
two coding styles: with three processes and with two processes.

In the FSM coding style with three processes, the first process describes a com-
binational circuit CLu, which implements the state transitions, the second process
describes a combinational circuit CLw, which implements the FSM outputs, and the
third process describes the FSM memory. In the coding style with two processes, the
first and the second processes are combined in one process.

Before proceeding to examine coding styles of FSMs, we will study coding styles
of combinational circuits for FSMs.

3 Coding Styles of Combinational Circuits for FSMs
in Verilog

In general, Verilog does not superimpose any restrictions on the coding styles of FSMs,
therefore we can use any Verilog statements and any constructions of these statements.
Commonly, to check that the FSM is in a certain state the case statement is used, and to
check transition conditions from some state both the if statement and the case statement
can be used. We will consider various ways of usage of if and case statements for check
of transition conditions and for forming FSM outputs.

Developers of the Verilog compilers recommend in the description of FSMs to use
constructions else and default in if and case statements, and besides as the next state
specify the present state in the constructions else and default. For completely specified
FSMs [7], the usage of the additional else and default constructions does not influence in
any way behavior of the FSM because this constructions will never be executed. For
incompletely specified FSMs [8], the usage of the additional else and default con-
structions determines indefinite transitions from each state by the transition to the present
state. Actually, the incompletely specified FSM is replaced by the completely specified
FSM. Since for incompletely specified FSMs it is guaranteed that on the FSM inputs
never there will be the vectors corresponding to the indefinite transition conditions, such
additional definitions do not influence behavior of the FSM. Thus, the use of the else and
default constructions do not influence on behavior of the FSM, however it allows to
reduce sometimes the implement cost of the combinational circuits CLu and CLw.

We will study the possible constructions of the if and case statements for assign-
ment of the values to the output vector out depending on the values of the input vector
in. In case of determination of the next state, the constructions of the if and case
statements have similar forms.

Coding Techniques in Verilog for Finite State Machine Designs 495

The following variants of the usage of the if statement for coding the FSM com-
binatorial circuits are possible:

(1) IF_1 – the check of each transition condition by means of the separate if statement
(it is considered that the given approach leads to of the minimum implementation
cost):

if (in==2`b00) out = 2`b11;
if (in==2`b01) out = 2`b01;
if (in==2`b10) out = 2`b10;

(2) IF_2 – the check of the first transition condition from some state by means of the if
statement, and the check of each following transition condition by means of the
construction else if (the traditional approach for coding incompletely specified
FSMs):

if (in==2`b00) out = 2`b11;
else if (in==2`b01) out = 2`b01;
else if (in==2`b10) out = 2`b10;

(3) IF_3 – this variant repeats the previous case except that the last transition con-
dition from some state is implemented by means of the construction else (the
traditional approach for coding completely specified FSMs):

if (in==2`b00) out = 2`b11;
else if (in==2`b01) out = 2`b01;
else out = 2`b10;

(4) IF_4 – this variant repeats the construction IF_2 except that the construction else
is added, which implements the transition to the present state (in coding transition
functions), and the zero or unknown output (in coding outputs):

if (in==2`b00) out = 2`b11;
else if (in==2`b01) out = 2`b01;
else if (in==2`b10) out = 2`b10;
else out = 2`b00;// or out = 2`bxx;.

Similarly, following variants of the usage of the case statement for coding the FSM
combinatorial circuits are possible:

(5) CASE_1 – the check of each transition condition by means of the separate case
item (the traditional approach for coding incompletely specified FSMs):

496 V. Salauyou and Ł. Zabrocki

case (in)
2`b00: out = 2`b11;
2`b01: out = 2`b01;
2`b10: out = 2`b10;

endcase

(6) CASE_2 – this variant repeats the previous case except that the last transition
condition from some state is implemented by means of the construction default
(the traditional approach for coding completely specified FSMs):

case (in)
2`b00: out = 2`b11;
2`b01: out = 2`b01;
default: out = 2`b10;

endcase

(7) CASE_3 – this variant repeats the CASE_2 construction except that the con-
struction default is added, which implements the transition to the present state (in
coding transition functions), and the zero or unknown output (in coding outputs):

case (in)
2`b00: out = 2`b11;
2`b01: out = 2`b01;
2`b10: out = 2`b10;
default: out = 2`b00; // or out = 2`bxx;

endcase

Note that in coding the transitions in the construction IF_4 after last else and in the
construction CASE_3 after default, it is described the transition to the present state, and
also here can it is described the transition to the initial state or to the recovery state.
Thus, we have 7 the coding variants in Verilog of the combinative circuits of FSMs.

In Listing 1, the variant IF_1 is used for check of three transitions conditions from
some state. The clk and reset inputs are included in this code to simulate switching
between states, and also the code contains a process for the generation of outputs. The
examples of usage for other variants the if and case statements for a check of the
transition conditions are built similarly.

Coding Techniques in Verilog for Finite State Machine Designs 497

Listing 1. Example of the variant IF_1 for three transition conditions

module IF_1_3 (input clk, reset, input [5:0] in, output reg [5:0] out);
reg [5:0] out_t;
always@(*) begin /* IF_1 variant */
 if(in==0) out_t=2;
 if(in==1) out_t=1;
 if(in==2) out_t=0;
end
always@(posedge clk) /* coding the outputs */
 if (~reset) out<=out_t;
 else out<=6'bx;
endmodule

To estimate the efficiency of the Verilog constructions that can be used for coding
combinational circuits of FSMs we will consider 19 examples. Each example differed
from another by the number of the checked conditions. The synthesis of combinational
circuits was made for FPGA families Cyclone III by Quartus version 17.1, all options
of synthesis were assigned by default.

The experimental research results for the implementation cost (the number of used
logic elements of the FPGA) are presented in Table 1, where ex_n is the name of a
example; n is the number of the checked conditions, n 2 [3, 21]; IF_1, …, IF_4 are the
coding variants with the if statement; CASE_1, …, CASE_3 are the coding variants
with the case statement; Cmax and Cmin is the maximum and minimum implementation
cost of the example for various coding variants; mid is the arithmetic mean value.

Table 1. Experimental research results of the coding styles of combinational circuits of FSMs

The
example

IF_1 IF_2 IF_3 IF_4 CASE_1 CASE_2 CASE_3 Cmax Cmin Cmax/
Cmin

ex_3 7 7 3 3 7 3 3 7 3 2.33
ex_4 6 7 3 3 3 3 3 7 3 2.33
ex_5 10 10 4 4 10 5 5 10 4 2.50
ex_6 10 10 4 4 10 5 5 10 4 2.50
ex_7 10 10 4 4 11 6 6 11 4 2.75
ex_8 9 9 3 3 4 3 3 9 3 3.00
ex_9 17 17 5 5 13 7 7 17 5 3.40
ex_10 15 14 6 6 13 7 7 15 6 2.50
ex_11 18 17 8 8 14 8 8 18 8 2.25
ex_12 13 13 5 5 9 6 6 13 5 2.60
ex_13 15 18 7 7 14 8 8 18 7 2.57
ex_14 15 14 6 6 14 8 8 15 6 2.50
ex_15 16 17 7 7 9 8 8 17 7 2.43

(continued)

498 V. Salauyou and Ł. Zabrocki

Table 1 shows that the coding variants IF_3 and IF_4 with the if statement, and also
the coding variants CASE_2 and CASE_3 with the case statement produce the iden-
tical results. The coding variants IF_3 and IF_4 produce the best results at imple-
mentation cost, the variants CASE_2 and CASE_3 follow them. One interesting
finding is that the worst results are received by means of the IF_1 variant, which was
considered earlier as the best at implementation cost.

The results of this investigation show that the coding styles of combinational
circuits of FSMs appreciably influence on the implementation cost. This fact is proved
by relation Cmax/Cmin, which equal to 2.73 on average and 3.4 at maximum.

To create the FSM coding styles, we select the constructions IF_4 and CASE_3
because these constructions provide the low implementation cost and provide addi-
tional possibilities for FSM coding.

4 Coding Styles of FSMs

We consider two main coding styles of FSMs in Verilog: with three processes and with
two processes. The description of FSMs with three processes contains first process for
the description of the combinational circuit CLu, which implements the transition
functions, the second process for the description of the combinational circuit CLw,
which implements the output functions, and the third process, which implements the
FSM memory. In the FSM description with two processes, the combinational circuits
CLu and CLw are represented by means of one process.

Each combinative circuit of the FSM is described or by means of the construction
IF_4 with if statement, or by means of the construction CASE_3 with case statement.
In this way, we can build six coding styles M_1, …, M_6 of FSMs, which are given in
Table 2.

Note that the coding style M_1 corresponds to the traditional style of coding of
FSMs with three processes, and the coding style M_5 corresponds to the traditional
style of coding of FSMs with two processes.

The fragments of FSM coding for IF_4 and CASE_3 constructions are shown in
listing 2 and 3 accordingly. Here in construction CASE_3, the casex statement is used
instead the case statement because input vectors of FSMs can contain don’t care values.

Table 1. (continued)

The
example

IF_1 IF_2 IF_3 IF_4 CASE_1 CASE_2 CASE_3 Cmax Cmin Cmax/
Cmin

ex_16 9 12 4 4 5 4 4 12 4 3.00
ex_17 23 21 7 7 11 7 7 23 7 3.29
ex_18 22 17 7 7 10 7 7 22 7 3.14
ex_19 28 23 10 10 11 10 10 28 10 2.80
ex_20 18 18 6 6 8 7 7 18 6 3.00
ex_21 26 22 9 9 11 10 10 26 9 2.89
mid 15.11 14.53 5.68 5.68 9.84 6.42 6.42 15.58 5.68 2.73

Coding Techniques in Verilog for Finite State Machine Designs 499

Listing 2. Fragment of FSM coding with construction IF_4

casex(state)
s0: if(in==2'b00) nextstate=s1;

else if(in==2'b01) nextstate=s2;
 else if(in==2'b11) nextstate=s3;

else nextstate=s0;
s1: if(in==2'b10) nextstate=s2;

else if(in==2'b00) nextstate=s0;
 else if(in==2'b01) nextstate=s3;

else nextstate=s1;
…
endcase

Listing 3. Fragment of FSM coding with construction CASE_3

casex(state)
s0: casex(in)
 2'b00: nextstate=s1;
 2'b01: nextstate=s2;

2'b11: nextstate=s3;
default: nextstate=s0;

endcase

s1: casex(in)
 2'b10: nextstate=s2;
 2'b00: nextstate=s0;

2'b01: nextstate=s3;
default: nextstate=s1;

endcase
…
endcase

Table 2. Coding styles of FSMs

Coding
style

The number of
process

Construct for coding
CLU

Construct for coding
CLW

M_1 3 IF_4 IF_4
M_2 3 CASE_3 IF_4
M_3 3 IF_4 CASE_3
M_4 3 CASE_3 CASE_3
M_5 2 IF_4
M_6 2 CASE_3

500 V. Salauyou and Ł. Zabrocki

5 Experimental Research Coding Styles of FSMs

To estimate the efficiency of the offered FSM coding styles in Verilog we used MCNC
benchmarks of FSMs [9]. The synthesis of FSMs was fulfilled for three FPGA families
which are related to three classes of programmable devices: MAX II family is Complex
Programmable Logic Devices (CPLD), Cyclone III and Stratix III family is Field
Programmable Gate Arrays (FPGA). The synthesis of the FSMs was made by Quartus
tool with the parameters of logical synthesis that set by default.

Criteria for selecting the best coding styles were as follows: the FSM implemen-
tation cost (the number of used logical elements of the FPGA) and the FSM speed (the
maximum frequency of the FPGA). Note that the coding style influences not all
benchmarks of FSMs. The coding styles make noticeable impact on the implementation
cost or the maximum frequency only in 23 FSM benchmarks from 44. Therefore such
examples were researched, for which the implementation cost or the maximum fre-
quency was changed.

The results of the experimental research for the FSM implementation cost and for
the FSM speed of family MAX II are presented in Tables 3 and 4 respectively, where
C_n is the implementation cost (the number of logic elements of FPGA) and F_n is the
speed (in MHz) of the FSM that coded by style M_n, n 2 [1, 6]; Cmin, Cmax, Fmin, and
Fmax are the maximum cost, the minimum cost, the maximum speed, and the minimum
speed of same benchmark for various coding styles; Cmax/Cmin, Fmax/Fmin are the
relation of corresponding parameters.

Table 3. Results of the FSM implementation cost for family MAX II

Benchmarks C_1 C_2 C_3 C_4 C_5 C_6 Cmin Cmax Cmax/Cmin

BBARA 33 30 29 29 33 29 29 33 1.14
BBSSE 57 57 58 58 57 58 57 58 1.02
BEECOUNT 21 21 14 14 21 14 14 21 1.50
CSE 104 103 101 101 104 98 98 104 1.06
DK14 40 41 39 39 40 39 39 41 1.05
DK15 17 16 16 16 17 16 16 17 1.06
EX1 132 129 121 118 138 118 118 138 1.17
EX3 24 27 22 22 24 22 22 27 1.23
EX5 19 21 20 20 19 20 19 21 1.11
EX6 55 58 56 56 55 56 55 58 1.05
KEYB 83 80 100 87 83 87 80 100 1.25
PLANET 210 224 225 230 216 230 210 230 1.10
S1 160 166 157 156 164 156 156 166 1.06
S1488 211 221 212 212 212 212 211 221 1.05
S1494 209 218 217 219 213 219 209 219 1.05
S208 24 55 41 41 18 41 18 55 3.06
S386 59 59 64 64 61 64 59 64 1.08
S420 34 18 19 19 34 19 18 34 1.89
S820 128 138 137 137 128 137 128 138 1.08

(continued)

Coding Techniques in Verilog for Finite State Machine Designs 501

The analysis of Table 3 shows that for FPGA family MAX II the relation between
the maximum and minimum implementation cost of the FSMs is equal to 1.26 on
average and to 3.06 at maximum (the example S208). Table 4 shows that for FPGA
family MAX II the relation between the maximum and minimum speed of the FSMs is
equal to 1.21 on average and to 1.60 at maximum (the example DK14). For family
MAX II, the coding style M_6 is the best at implementation cost, and the coding style
M_2 is the best at speed.

Table 3. (continued)

Benchmarks C_1 C_2 C_3 C_4 C_5 C_6 Cmin Cmax Cmax/Cmin

S832 135 132 132 132 134 132 132 135 1.02
SAND 209 213 199 198 208 198 198 213 1.08
STYR 249 252 216 221 258 225 216 258 1.19
TBK 434 328 422 298 449 282 282 449 1.59
mid 115.09 113.35 113.78 108.13 116.78 107.48 103.65 121.74 1.26

Table 4. Results of the FSM speed for family MAX II

Benchmarks F_1 F_2 F_3 F_4 F_5 F_6 Fmin Fmax Fmax/Fmin

BBARA 221 203 225 225 221 225 203 225 1.11
BBSSE 155 138 156 156 155 156 138 156 1.13
BEECOUNT 304 304 284 284 304 284 284 304 1.07
CSE 131 123 127 127 131 124 123 131 1.07
DK14 234 192 223 223 234 223 192 234 1.22
DK15 258 413 389 389 258 389 258 413 1.60
EX1 111 144 139 137 127 137 111 144 1.30
EX3 256 230 206 206 256 206 206 256 1.24
EX5 266 229 216 216 266 216 216 266 1.23
EX6 211 195 171 171 211 171 171 211 1.23
KEYB 143 136 112 114 143 114 112 143 1.28
PLANET 111 108 100 91 111 91 91 111 1.22
S1 113 119 111 120 120 120 111 120 1.08
S1488 114 112 112 112 108 112 108 114 1.06
S1494 119 121 105 114 121 114 105 121 1.15
S208 265 192 240 240 253 240 192 265 1.38
S386 166 149 176 176 145 176 145 176 1.21
S420 278 306 319 319 278 319 278 319 1.15
S820 97 115 118 124 107 124 97 124 1.28
S832 118 128 117 114 116 114 114 128 1.12
SAND 105 108 110 109 114 109 105 114 1.09
STYR 91 98 110 101 109 118 91 118 1.30
TBK 86 80 97 83 82 93 80 97 1.21
mid 171.87 171.43 172.30 171.78 172.61 172.83 153.52 186.52 1.21

502 V. Salauyou and Ł. Zabrocki

Similar experimental researches also were made for families Cyclone III and
Stratix III. Table 5 provides the generalised results of the experimental researches of
the FSM benchmarks, where Cmax/Cmin is the relation of the maximum and minimum
implementation cost of the FSMs for various coding styles; Fmax/Fmin is the same, only
for FSM speed.

Table 5 shows that by a choice of the FSM coding style, the implementation cost
can be reduced by a factor of 3.06 for family MAX II, by a factor of 2.5 for family
Cyclone III, and by a factor of 1.69 for family Stratix III. Similarly, the FSM speed can
be increased by a factor of 1.6 for family MAX II, by a factor of 1.46 for family
Cyclone III, and by a factor of 1.33 for family Stratix III.

The best coding styles at implementation cost and at speed for the FPGA families
are presented in Table 6, where M_1 is the FSM coding with three processes when the
next-state logic and the output logic is described by means of construction IF_4 (if …
else if … else); M_2 is the FSM coding with three processes when the next-state logic
is described by means of construction CASE_3 (case (…) … default: …), and the
output logic is described by means of construction IF_4; M_4 is the FSM coding with
three processes when the next-state logic and the output logic is described by means of
construction CASE_3; M_6 is the FSM coding with two processes when the next-state
logic and the output logic is described by means of single construction CASE_3.

Surprisingly, only one traditional FSM coding style M_1 (from six offered) is in
Table 6, which provides the maximum speed for family Stratix III.

The fulfilled researches showed that coding style of FSMs in Verilog makes
essential impact as on the FSM implementation cost (for separate examples by a factor
of 3.06), and on the FSM speed (for separate examples by a factor of 1.6). Therefore in
packet ZUBR [10] the program has been developed, which allows to form automati-
cally the FSM code in Verilog from the FSM representation in language KISS2 [9].
The program allows to generate the FSM codes in Verilog according to offered coding
styles M_1, …, M_6 and to select from them the most suitable description at the FSM
cost and the FSM speed.

Table 5. Relation of the best and worst results for the various FPGA families

Family Cmax/Cmin Fmax/Fmin

MAX II 3.06 1.60
Cyclone III 2.50 1.46
Stratix III 1.69 1.33

Table 6. The best coding styles of the FSMs for the various FPGA families

Family Cost Speed

MAX II M_6 M_2
Cyclone III M_6 M_2
Stratix III M_4 M_1

Coding Techniques in Verilog for Finite State Machine Designs 503

6 Conclusions

This study has shown that Verilog gives a great variety of the FSM coding styles,
which are researched till now not completely. This project is the first comprehensive
investigation of the FSM coding styles in Verilog. The traditional coding styles of
FSMs not always are the best at the implementation cost and the speed. The results of
this investigation show that the offered coding styles of FSMs in Verilog considerably
influences on the FSM cost (for our examples by a factor of 2.71 on average) and on
the FSM speed. The second major finding was that the FSM coding styles allow to
reduce the FSM implementation cost and to increase the FSM speed without using any
synthesis methods of FSMs. The findings of this study have a number of important
implications for future practice. The present study lays the groundwork for future
research into finding the coding styles of FSMs.

A limitation of this study is that all possible the coding styles of FSMs in Verilog
are researched not. In particular, such coding styles were not considered as an implicit
FSM coding, using assign statements, coding the FSM in the form of several separate
modules (for example, the combinational circuit and the register), etc.

Traditionally, the check of the FSM present state is made by case statement (and
also in the given paper), but with the same purpose it is possible to use various
constructions of if statement. The important problem also is research of coding styles
for Moore machines, as the model of the Moore machine of widely is used and it is
very popular among developers. The offered technique of creation and choice of
effective coding styles of FSMs in Verilog is applied for FPGA from Intel. Similar
researches can be made for FPGA from the other vendors. The similar technique can be
used also for research of coding styles of FSMs in VHDL. All these problems demand
the further careful research.

Acknowledgements. The present study was supported by a grant S/WI/3/2018 from Bialystok
University of Technology and founded from the resources for research by Ministry of Science
and Higher Education.

References

1. Golson, S.: State machine design techniques for Verilog and VHDL. Synopsys J. High-Level
Des. 9, 1–48 (1994)

2. Wang, T.H., Edsall, T.: Practical FSM analysis for Verilog. In: Verilog HDL Conference and
VHDL International Users Forum (IVC/VIUF), Santa Clara, USA, pp. 52–58 (1998)

3. Cummings, C.E.: State machine coding styles for synthesis. In: Synopsys Users Group
(SNUG 1998), San Jose, USA, pp. 1–20 (1998)

4. Cummings, C.E.: Coding and scripting techniques for FSM designs with synthesis-
optimized, glitch-free outputs. In: Synopsys Users Group (SNUG 2000), Boston, USA,
pp. 1–12 (2000)

5. Lee, J.M.: Verilog Quick Start. A Practical Guide to Simulation and Synthesis in Verilog,
3rd edn. Kluwer Academic Publishers, New York (2002)

504 V. Salauyou and Ł. Zabrocki

6. Uma, R., Dhavachelvan, P.: Finite state machine optimization in FPGAs. In: Second
International Conference on Computational Science, Engineering and Information Tech-
nology (CCSEIT-2012), Coimbatore, India, pp. 205–211 (2012)

7. Klimovich, A.S., Soloviev, V.V.: Minimization of mealy finite-state machines by internal
states gluing. J. Comput. Syst. Sci. Int. 2, 244–255 (2012)

8. Klimovicz, A.S., Solov’ev, V.V.: Minimization of incompletely specified Mealy finite-state
machines by merging two internal states. J. Comput. Syst. Sci. Int. 3, 400–409 (2013)

9. Yang, S.: Logic synthesis and optimization benchmarks user guide. Version 3.0. Technical
report. North Carolina. Microelectronics Center of North Carolina (1991)

10. Salauyou, V., Klimowicz, A., Grzes, T., Bulatowa, I., Dimitrowa-Grekow, T.: Synthesis
methods of finite state machines implemented in package ZUBR. In: Sixth International
Conference Computer-Aided Design of Discrete Devices (CAD DD’7). Minsk, Republic of
Belarus, pp. 53–56 (2007)

Coding Techniques in Verilog for Finite State Machine Designs 505

	Coding Techniques in Verilog for Finite State Machine Designs in FPGA
	Abstract
	1 Introduction
	2 FSMs with Three and Two Processes
	3 Coding Styles of Combinational Circuits for FSMs in Verilog
	4 Coding Styles of FSMs
	5 Experimental Research Coding Styles of FSMs
	6 Conclusions
	Acknowledgements
	References

