

Coding Techniques in Verilog for Finite State Machine Designs in FPGA

Valery Salauyou^(\boxtimes) and Łukasz Zabrocki^(\boxtimes)

Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland valsol@mail.ru, lukasz.zabrocki@gmail.com

Abstract. Coding techniques in Verilog HDL of finite state machines (FSMs) for synthesis in field programmable gate arrays (FPGAs) are researched, and the choice problem the best FSM coding styles in terms of an implementation cost (area) and a performance (speed) are considered. The problem is solved empirically by executing of experimental researches on the FSM benchmarks. Seven coding styles in Verilog are offered for coding of combinational circuits for FSMs from those two best styles are selected. On the basis of these two coding styles of combinational circuits six coding styles of FSMs are offered. The efficiency of the coding styles was researched for the synthesis of FSM benchmarks in two classes of programmable devices: CPLD (Complex Programmable Logic Device) and FPGA. The experimental results showed that the choice of coding styles allows to reduce the implementation cost of FSMs by a factor of 3.06 and to increase the speed of FSMs are specified.

Keywords: Finite state machine · Field programmable gate array · Coding styles · Verilog · CPLD · FPGA · Implementation cost · Speed · CAD

1 Introduction

Hardware Description Languages (HDLs) have a pivotal role in computer aided design (CAD). In CAD, today two HDLs are widely used: Verilog and VHDL. Verilog has been created by developers of CAD tools as an alternative of VHDL and it quickly became popular among digital logic engineers. As of now Verilog has several standards, which are supported by most vendors of CAD. Today, Verilog is supported by CAD tools of such firms as Intel, Xilinx, Synopsys, Cadence, Mentor Graphics, etc.

A finite state machine (FSM) is one of the most important components in the design of a sequential circuit. The efficient Verilog coding styles are necessary to infer synthesizable FSM from a project code. However, the Verilog standards do not give the answer to a question: how to code the FSM in Verilog.

To date, there are few studies that have investigated the coding styles of FSM in Verilog for synthesis in programmable devices. In [1], the encoding styles of the FSMs in Verilog and VHDL which are provided in design tools from Synopsys are considered. The general principles of representation of FSMs in the HDL languages are stated; two structural models are offered: with two and with one combinational circuit;

K. Saeed et al. (Eds.): CISIM 2019, LNCS 11703, pp. 493–505, 2019. https://doi.org/10.1007/978-3-030-28957-7_41 different ways of state encoding are described: binary, one-hot, and almost one-hot. It also is considered using *case* and *if* statements for the description of the transition functions in different ways of state encoding, the error recovery and illegal states, asynchronous inputs, and unknown inputs.

In [2], the standardized FSM coding style in Verilog that is used in Cisco design tools is considered. In this style, the description of FSM transitions is carried out by *case* statement, the states are declared by local parameters, the FSM transitions are described by means of two variables: *current* and *next*. Using the compiler directives cisco_fsm is presented. The application of the offered standardized style of the FSM allows to analyze accessibility of each state, to find terminal states (from which there are no exits), to carry out a dynamic FSM verification, and to build a state diagram.

The FSM coding styles of [1] are detailed and extended in [3]. In [3], the two FSM coding styles are considered: with one and two processes; for each used style its advantages and shortcomings are noted; the possible ways of state encoding are described; the use of Synopsys FSM Tool for generation binary, Gray, and one-hot coding is discussed. The coding style for synthesis of register outputs of the Mealy FSM is offered.

The FSM coding styles of [3] have been developed in [4]. In [4], it is offered to use register outputs of FSM to eliminate glitch upon transitions between states. Two methods are for this purpose offered. The first method repeats the method [3] for the installation of registers on outputs of the Mealy FSM. In the second method, the output values of the Moore FSM are used for state encoding.

In [5], the five FSM coding styles are offered: style 1 with three processes for Mealy and Moore machines; style 2 and 3 with two processes for Mealy and Moore machines; style 4 with one process for Moore machines, and style 5 with two processes for Moore machines. The question what of FSM coding styles is better is set, but the answer to this question is not provided.

In [6], the FSM coding styles in Verilog and the different ways of state encoding that implemented in design tool ISE from Xilinx are investigated. Experimental researches were conducted for FPGA Spartan-6. Three FSM coding styles are considered: with one, two, and three processes; and also the next ways of state encoding are considered. The experimental researches have been conducted for one simple FSM example, which has one input, one exit, four states and five state transitions. Following parameters were analyzed: the number of used flip-flops, the number of used FPGA logic elements, and the maximum frequency of FSM. In [6], the following conclusions are drawn: for speed optimization prefer *one-hot* and *speed1* option, and for area optimization chose *gray* or *Johnson* or *sequential* encoding scheme.

Overall, these studies indicate that most studies in the field of FSM coding have only focused on coding styles that have been implemented in CAD tools. Such approaches, however, have failed to address all coding styles which are possible in Verilog.

In this paper, we study the coding styles of FSMs in Verilog that can differ from the traditional coding styles. A problem is to choose a best coding style for an optimization of the area and the speed of FSMs. The problem is solved empirically by fulfilment of a great number of experimental researches. The received results give recommendations that allow to reduce considerably the FSM area and to increase the FSM speed without the application of any special synthesis methods.

2 FSMs with Three and Two Processes

Two types of FSMs are most known: Mealy machines and Moore machines. Previous studies showed that there are three main coding styles of FSMs in Verilog: with three processes, with two processes, and with one process, where the process is the *always* block in Verilog.

Coding of the FSM by one process is possible only for Moore machine, and as the Mealy machine is the most general model of the FSMs, in this paper we will study only two coding styles: with three processes and with two processes.

In the FSM coding style with three processes, the first process describes a combinational circuit CL_{ϕ} , which implements the state transitions, the second process describes a combinational circuit CL_{ψ} , which implements the FSM outputs, and the third process describes the FSM memory. In the coding style with two processes, the first and the second processes are combined in one process.

Before proceeding to examine coding styles of FSMs, we will study coding styles of combinational circuits for FSMs.

3 Coding Styles of Combinational Circuits for FSMs in Verilog

In general, Verilog does not superimpose any restrictions on the coding styles of FSMs, therefore we can use any Verilog statements and any constructions of these statements. Commonly, to check that the FSM is in a certain state the *case* statement is used, and to check transition conditions from some state both the *if* statement and the *case* statement can be used. We will consider various ways of usage of *if* and *case* statements for check of transition conditions and for forming FSM outputs.

Developers of the Verilog compilers recommend in the description of FSMs to use constructions *else* and *default* in *if* and *case* statements, and besides as the next state specify the present state in the constructions *else* and *default*. For completely specified FSMs [7], the usage of the additional *else* and *default* constructions does not influence in any way behavior of the FSM because this constructions will never be executed. For incompletely specified FSMs [8], the usage of the additional *else* and *default* constructions determines indefinite transitions from each state by the transition to the present state. Actually, the incompletely specified FSMs is replaced by the completely specified FSM. Since for incompletely specified FSMs it is guaranteed that on the FSM inputs never there will be the vectors corresponding to the indefinite transition conditions, such additional definitions do not influence on behavior of the FSM. Thus, the use of the *else* and *default* constructions do not influence on behavior of the FSM, however it allows to reduce sometimes the implement cost of the combinational circuits CL_{ϕ} and CL_{ψ} .

We will study the possible constructions of the *if* and *case* statements for assignment of the values to the output vector *out* depending on the values of the input vector *in*. In case of determination of the next state, the constructions of the *if* and *case* statements have similar forms.

The following variants of the usage of the *if* statement for coding the FSM combinatorial circuits are possible:

(1) IF_1 – the check of each transition condition by means of the separate *if* statement (it is considered that the given approach leads to of the minimum implementation cost):

if (in==2`b00)	out = $2`b11;$
if (in==2`b01)	out = $2`b01;$
if (in==2`b10)	out = 2`b10;

(2) IF_2 – the check of the first transition condition from some state by means of the *if* statement, and the check of each following transition condition by means of the construction *else if* (the traditional approach for coding incompletely specified FSMs):

if (in==2`b00)	out = $2`b11;$
else if (in==2`b01)	out = $2`b01;$
else if (in==2`b10)	out = $2`b10;$

(3) IF_3 – this variant repeats the previous case except that the last transition condition from some state is implemented by means of the construction *else* (the traditional approach for coding completely specified FSMs):

if (in==2`b00)	out = 2`b11;
else if (in==2`b01)	out = 2`b01;
else	out = $2`b10;$

(4) IF_4 – this variant repeats the construction IF_2 except that the construction *else* is added, which implements the transition to the present state (in coding transition functions), and the zero or unknown output (in coding outputs):

if (in==2`b00)	out = 2`b11;
else if (in==2`b01)	out = 2`b01;
else if (in==2`b10)	out = 2`b10;
else	out = 2`b00;// or out = 2`bxx;.

Similarly, following variants of the usage of the *case* statement for coding the FSM combinatorial circuits are possible:

(5) CASE_1 – the check of each transition condition by means of the separate case item (the traditional approach for coding incompletely specified FSMs):

```
case (in)
2`b00: out = 2`b11;
2`b01: out = 2`b01;
2`b10: out = 2`b10;
endcase
```

(6) CASE_2 – this variant repeats the previous case except that the last transition condition from some state is implemented by means of the construction *default* (the traditional approach for coding completely specified FSMs):

```
case (in)

2`b00: out = 2`b11;

2`b01: out = 2`b01;

default: out = 2`b10;

endcase
```

(7) CASE_3 – this variant repeats the CASE_2 construction except that the construction *default* is added, which implements the transition to the present state (in coding transition functions), and the zero or unknown output (in coding outputs):

```
case (in)

2'b00: out = 2'b11;

2'b01: out = 2'b01;

2'b10: out = 2'b10;

default: out = 2'b00; // or out = 2'bxx;

endcase
```

Note that in coding the transitions in the construction IF_4 after last *else* and in the construction CASE_3 after *default*, it is described the transition to the present state, and also here can it is described the transition to the initial state or to the recovery state. Thus, we have 7 the coding variants in Verilog of the combinative circuits of FSMs.

In Listing 1, the variant IF_1 is used for check of three transitions conditions from some state. The *clk* and *reset* inputs are included in this code to simulate switching between states, and also the code contains a process for the generation of outputs. The examples of usage for other variants the *if* and *case* statements for a check of the transition conditions are built similarly.

Listing 1. Example of the variant IF_1 for three transition conditions

```
module IF 1 3 (input clk, reset, input [5:0] in, output reg [5:0] out);
reg [5:0] out t;
always@(*) begin
                       /* IF 1 variant */
     if(in==0)
                        out t=2;
     if(in=1)
                       out t=1;
     if(in=2)
                       out t=0;
end
                                /* coding the outputs */
always@(posedge clk)
     if (~reset)
                        out<=out t;
     else
                       out \leq 6'bx;
endmodule
```

To estimate the efficiency of the Verilog constructions that can be used for coding combinational circuits of FSMs we will consider 19 examples. Each example differed from another by the number of the checked conditions. The synthesis of combinational circuits was made for FPGA families Cyclone III by Quartus version 17.1, all options of synthesis were assigned by default.

The experimental research results for the implementation cost (the number of used logic elements of the FPGA) are presented in Table 1, where ex_n is the name of a example; n is the number of the checked conditions, $n \in [3, 21]$; IF_1, ..., IF_4 are the coding variants with the *if* statement; CASE_1, ..., CASE_3 are the coding variants with the *case* statement; C_{max} and C_{min} is the maximum and minimum implementation cost of the example for various coding variants; *mid* is the arithmetic mean value.

The example	IF_1	IF_2	IF_3	IF_4	CASE_1	CASE_2	CASE_3	C _{max}	C _{min}	C _{max} / C _{min}
	7	7	3	3	7	3	3	7	3	2.33
ex_3			-	-		-	-		-	
ex_4	6	7	3	3	3	3	3	7	3	2.33
ex_5	10	10	4	4	10	5	5	10	4	2.50
ex_6	10	10	4	4	10	5	5	10	4	2.50
ex_7	10	10	4	4	11	6	6	11	4	2.75
ex_8	9	9	3	3	4	3	3	9	3	3.00
ex_9	17	17	5	5	13	7	7	17	5	3.40
ex_10	15	14	6	6	13	7	7	15	6	2.50
ex_11	18	17	8	8	14	8	8	18	8	2.25
ex_12	13	13	5	5	9	6	6	13	5	2.60
ex_13	15	18	7	7	14	8	8	18	7	2.57
ex_14	15	14	6	6	14	8	8	15	6	2.50
ex_15	16	17	7	7	9	8	8	17	7	2.43

Table 1. Experimental research results of the coding styles of combinational circuits of FSMs

(continued)

The example	IF_1	IF_2	IF_3	IF_4	CASE_1	CASE_2	CASE_3	C _{max}	C _{min}	C _{max} / C _{min}
ex_16	9	12	4	4	5	4	4	12	4	3.00
ex_17	23	21	7	7	11	7	7	23	7	3.29
ex_18	22	17	7	7	10	7	7	22	7	3.14
ex_19	28	23	10	10	11	10	10	28	10	2.80
ex_20	18	18	6	6	8	7	7	18	6	3.00
ex_21	26	22	9	9	11	10	10	26	9	2.89
mid	15.11	14.53	5.68	5.68	9.84	6.42	6.42	15.58	5.68	2.73

 Table 1. (continued)

Table 1 shows that the coding variants IF_3 and IF_4 with the *if* statement, and also the coding variants CASE_2 and CASE_3 with the *case* statement produce the identical results. The coding variants IF_3 and IF_4 produce the best results at implementation cost, the variants CASE_2 and CASE_3 follow them. One interesting finding is that the worst results are received by means of the IF_1 variant, which was considered earlier as the best at implementation cost.

The results of this investigation show that the coding styles of combinational circuits of FSMs appreciably influence on the implementation cost. This fact is proved by relation C_{max}/C_{min} , which equal to 2.73 on average and 3.4 at maximum.

To create the FSM coding styles, we select the constructions IF_4 and CASE_3 because these constructions provide the low implementation cost and provide additional possibilities for FSM coding.

4 Coding Styles of FSMs

We consider two main coding styles of FSMs in Verilog: with three processes and with two processes. The description of FSMs with three processes contains first process for the description of the combinational circuit CL_{ϕ} , which implements the transition functions, the second process for the description of the combinational circuit CL_{ψ} , which implements the output functions, and the third process, which implements the FSM memory. In the FSM description with two processes, the combinational circuits CL_{ϕ} and CL_{ψ} are represented by means of one process.

Each combinative circuit of the FSM is described or by means of the construction IF_4 with *if* statement, or by means of the construction CASE_3 with *case* statement. In this way, we can build six coding styles M_1, ..., M_6 of FSMs, which are given in Table 2.

Note that the coding style M_1 corresponds to the traditional style of coding of FSMs with three processes, and the coding style M_5 corresponds to the traditional style of coding of FSMs with two processes.

The fragments of FSM coding for IF_4 and CASE_3 constructions are shown in listing 2 and 3 accordingly. Here in construction CASE_3, the *casex* statement is used instead the *case* statement because input vectors of FSMs can contain *don't care* values.

Coding	The number of	Construct for coding	Construct for coding				
style	process	CL_{Φ}	CL _Ψ				
M_1	3	IF_4	IF_4				
M_2	3	CASE_3	IF_4				
M_3	3	IF_4	CASE_3				
M_4	3	CASE_3	CASE_3				
M_5	2	IF_4					
M_6	2	CASE_3	CASE_3				

Table 2. Coding styles of FSMs

Listing 2. Fragment of FSM coding with construction IF_4

casex	(state)	
s0:	if(in==2'b00)	nextstate=s1;
	else if(in==2'b01)	nextstate=s2;
	else if(in==2'b11)	nextstate=s3;
	else	nextstate=s0;
s1:	if(in==2'b10)	nextstate=s2;
	else if(in==2'b00)	nextstate=s0;
	else if(in==2'b01)	nextstate=s3;
	else	nextstate=s1;
endca	se	

Listing 3. Fragment of FSM coding with construction CASE_3

casex(s	tate)		
s0:	casex(in	l)	
		2'b00:	nextstate=s1;
		2'b01:	nextstate=s2;
		2'b11:	nextstate=s3;
		default:	nextstate=s0;
	endcase		
s1:	casex(in	l)	
		2'b10:	nextstate=s2;
		2'b00:	nextstate=s0;
		2'b01:	nextstate=s3;
		default:	nextstate=s1;
	endcase		
endcase			

5 Experimental Research Coding Styles of FSMs

To estimate the efficiency of the offered FSM coding styles in Verilog we used MCNC benchmarks of FSMs [9]. The synthesis of FSMs was fulfilled for three FPGA families which are related to three classes of programmable devices: MAX II family is Complex Programmable Logic Devices (CPLD), Cyclone III and Stratix III family is Field Programmable Gate Arrays (FPGA). The synthesis of the FSMs was made by Quartus tool with the parameters of logical synthesis that set by default.

Criteria for selecting the best coding styles were as follows: the FSM implementation cost (the number of used logical elements of the FPGA) and the FSM speed (the maximum frequency of the FPGA). Note that the coding style influences not all benchmarks of FSMs. The coding styles make noticeable impact on the implementation cost or the maximum frequency only in 23 FSM benchmarks from 44. Therefore such examples were researched, for which the implementation cost or the maximum frequency was changed.

The results of the experimental research for the FSM implementation cost and for the FSM speed of family MAX II are presented in Tables 3 and 4 respectively, where C_n is the implementation cost (the number of logic elements of FPGA) and F_n is the speed (in MHz) of the FSM that coded by style M_n, $n \in [1, 6]$; C_{min} , C_{max} , F_{min} , and F_{max} are the maximum cost, the minimum cost, the maximum speed, and the minimum speed of same benchmark for various coding styles; C_{max}/C_{min} , F_{max}/F_{min} are the relation of corresponding parameters.

				•			-		
Benchmarks	C_1	C_2	C_3	C_4	C_5	C_6	C _{min}	C _{max}	C _{max} /C _{min}
BBARA	33	30	29	29	33	29	29	33	1.14
BBSSE	57	57	58	58	57	58	57	58	1.02
BEECOUNT	21	21	14	14	21	14	14	21	1.50
CSE	104	103	101	101	104	98	98	104	1.06
DK14	40	41	39	39	40	39	39	41	1.05
DK15	17	16	16	16	17	16	16	17	1.06
EX1	132	129	121	118	138	118	118	138	1.17
EX3	24	27	22	22	24	22	22	27	1.23
EX5	19	21	20	20	19	20	19	21	1.11
EX6	55	58	56	56	55	56	55	58	1.05
KEYB	83	80	100	87	83	87	80	100	1.25
PLANET	210	224	225	230	216	230	210	230	1.10
S1	160	166	157	156	164	156	156	166	1.06
S1488	211	221	212	212	212	212	211	221	1.05
S1494	209	218	217	219	213	219	209	219	1.05
S208	24	55	41	41	18	41	18	55	3.06
S386	59	59	64	64	61	64	59	64	1.08
S420	34	18	19	19	34	19	18	34	1.89
S820	128	138	137	137	128	137	128	138	1.08

Table 3. Results of the FSM implementation cost for family MAX II

(continued)

Benchmarks	C_1	C_2	C_3	C_4	C_5	C_6	C _{min}	C _{max}	C _{max} /C _{min}
S832	135	132	132	132	134	132	132	135	1.02
SAND	209	213	199	198	208	198	198	213	1.08
STYR	249	252	216	221	258	225	216	258	1.19
TBK	434	328	422	298	449	282	282	449	1.59
mid	115.09	113.35	113.78	108.13	116.78	107.48	103.65	121.74	1.26

 Table 3. (continued)

Table 4. Results of the FSM speed for family MAX II

F3						E /E
	F_4	F_5	F_6	F _{min}	F _{max}	F _{max} /F _{min}
225	225	221	225	203	225	1.11
156	156	155	156	138	156	1.13
284	284	304	284	284	304	1.07
127	127	131	124	123	131	1.07
223	223	234	223	192	234	1.22
389	389	258	389	258	413	1.60
139	137	127	137	111	144	1.30
206	206	256	206	206	256	1.24
216	216	266	216	216	266	1.23
171	171	211	171	171	211	1.23
112	114	143	114	112	143	1.28
100	91	111	91	91	111	1.22
111	120	120	120	111	120	1.08
112	112	108	112	108	114	1.06
105	114	121	114	105	121	1.15
240	240	253	240	192	265	1.38
176	176	145	176	145	176	1.21
319	319	278	319	278	319	1.15
118	124	107	124	97	124	1.28
117	114	116	114	114	128	1.12
110	109	114	109	105	114	1.09
110	101	109	118	91	118	1.30
97	83	82	93	80	97	1.21
172.30	171.78	172.61	172.83	153.52	186.52	1.21
	56 884 27 23 889 39 006 116 71 12 00 11 12 05 400 76 19 18 17 10 77	56 156 84 284 27 127 23 223 89 389 39 137 006 206 116 216 71 171 12 114 00 91 11 120 12 112 05 114 40 240 76 176 19 319 18 124 17 114 10 109 10 101 77 83	56 156 155 84 284 304 27 127 131 23 223 234 89 389 258 39 137 127 06 206 256 16 216 266 71 171 211 12 114 143 00 91 111 11 120 120 12 112 108 05 114 121 40 240 253 76 176 145 19 319 278 18 124 107 17 114 116 10 109 114 10 109 14	56 156 155 156 84 284 304 284 27 127 131 124 23 223 234 223 89 389 258 389 39 137 127 137 06 206 256 206 216 216 266 216 71 171 211 171 12 114 143 114 00 91 111 91 11 120 120 120 12 112 108 112 05 114 121 114 40 240 253 240 76 176 145 176 19 319 278 319 18 124 107 124 17 114 116 114 10 109 114 109 <	56 156 155 156 138 284 284 304 284 284 27 127 131 124 123 223 223 234 223 192 89 389 258 389 258 39 137 127 137 111 206 256 206 206 216 216 216 216 71 171 211 171 171 12 114 143 114 112 00 91 111 91 91 11 120 120 120 111 12 114 143 114 105 40 240 253 240 192 76 176 145 176 145 19 319 278 319 278 18 124 107 124 97 17 114 116 114 114 10 109 114 109 105 10 101 109 118 91 77 83 82 93 80	56 156 155 156 138 156 84 284 304 284 284 304 27 127 131 124 123 131 23 223 234 223 192 234 89 389 258 389 258 413 39 137 127 137 111 144 06 206 256 206 206 256 16 216 266 216 216 266 71 171 211 171 171 211 12 114 143 114 112 143 00 91 111 91 91 111 11 120 120 120 111 120 12 112 108 112 108 114 05 114 121 114 105 121 40

The analysis of Table 3 shows that for FPGA family MAX II the relation between the maximum and minimum implementation cost of the FSMs is equal to 1.26 on average and to 3.06 at maximum (the example S208). Table 4 shows that for FPGA family MAX II the relation between the maximum and minimum speed of the FSMs is equal to 1.21 on average and to 1.60 at maximum (the example DK14). For family MAX II, the coding style M_6 is the best at implementation cost, and the coding style M_2 is the best at speed.

Similar experimental researches also were made for families Cyclone III and Stratix III. Table 5 provides the generalised results of the experimental researches of the FSM benchmarks, where C_{max}/C_{min} is the relation of the maximum and minimum implementation cost of the FSMs for various coding styles; F_{max}/F_{min} is the same, only for FSM speed.

Family	C _{max} /C _{min}	F _{max} /F _{min}
MAX II	3.06	1.60
Cyclone III	2.50	1.46
Stratix III	1.69	1.33

Table 5. Relation of the best and worst results for the various FPGA families

Table 5 shows that by a choice of the FSM coding style, the implementation cost can be reduced by a factor of 3.06 for family MAX II, by a factor of 2.5 for family Cyclone III, and by a factor of 1.69 for family Stratix III. Similarly, the FSM speed can be increased by a factor of 1.6 for family MAX II, by a factor of 1.46 for family Cyclone III, and by a factor of 1.33 for family Stratix III.

The best coding styles at implementation cost and at speed for the FPGA families are presented in Table 6, where M_1 is the FSM coding with three processes when the next-state logic and the output logic is described by means of construction IF_4 (if ... else if ... else); M_2 is the FSM coding with three processes when the next-state logic is described by means of construction CASE_3 (case (...) ... default: ...), and the output logic is described by means of construction IF_4; M_4 is the FSM coding with three processes when the next-state logic and the output logic is described by means of construction IF_4; M_4 is the FSM coding with three processes when the next-state logic and the output logic is described by means of construction CASE_3; M_6 is the FSM coding with two processes when the next-state logic and the output logic is described by means of single construction CASE_3.

Family	Cost	Speed
MAX II	M_6	M_2
Cyclone III	M_6	M_2
Stratix III	M_4	M_1

Table 6. The best coding styles of the FSMs for the various FPGA families

Surprisingly, only one traditional FSM coding style M_1 (from six offered) is in Table 6, which provides the maximum speed for family Stratix III.

The fulfilled researches showed that coding style of FSMs in Verilog makes essential impact as on the FSM implementation cost (for separate examples by a factor of 3.06), and on the FSM speed (for separate examples by a factor of 1.6). Therefore in packet ZUBR [10] the program has been developed, which allows to form automatically the FSM code in Verilog from the FSM representation in language KISS2 [9]. The program allows to generate the FSM codes in Verilog according to offered coding styles M_1, ..., M_6 and to select from them the most suitable description at the FSM cost and the FSM speed.

6 Conclusions

This study has shown that Verilog gives a great variety of the FSM coding styles, which are researched till now not completely. This project is the first comprehensive investigation of the FSM coding styles in Verilog. The traditional coding styles of FSMs not always are the best at the implementation cost and the speed. The results of this investigation show that the offered coding styles of FSMs in Verilog considerably influences on the FSM cost (for our examples by a factor of 2.71 on average) and on the FSM speed. The second major finding was that the FSM coding styles allow to reduce the FSM implementation cost and to increase the FSM speed without using any synthesis methods of FSMs. The findings of this study have a number of important implications for future practice. The present study lays the groundwork for future research into finding the coding styles of FSMs.

A limitation of this study is that all possible the coding styles of FSMs in Verilog are researched not. In particular, such coding styles were not considered as an implicit FSM coding, using *assign* statements, coding the FSM in the form of several separate modules (for example, the combinational circuit and the register), etc.

Traditionally, the check of the FSM present state is made by *case* statement (and also in the given paper), but with the same purpose it is possible to use various constructions of *if* statement. The important problem also is research of coding styles for Moore machines, as the model of the Moore machine of widely is used and it is very popular among developers. The offered technique of creation and choice of effective coding styles of FSMs in Verilog is applied for FPGA from Intel. Similar researches can be made for FPGA from the other vendors. The similar technique can be used also for research of coding styles of FSMs in VHDL. All these problems demand the further careful research.

Acknowledgements. The present study was supported by a grant S/WI/3/2018 from Bialystok University of Technology and founded from the resources for research by Ministry of Science and Higher Education.

References

- Golson, S.: State machine design techniques for Verilog and VHDL. Synopsys J. High-Level Des. 9, 1–48 (1994)
- Wang, T.H., Edsall, T.: Practical FSM analysis for Verilog. In: Verilog HDL Conference and VHDL International Users Forum (IVC/VIUF), Santa Clara, USA, pp. 52–58 (1998)
- Cummings, C.E.: State machine coding styles for synthesis. In: Synopsys Users Group (SNUG 1998), San Jose, USA, pp. 1–20 (1998)
- Cummings, C.E.: Coding and scripting techniques for FSM designs with synthesisoptimized, glitch-free outputs. In: Synopsys Users Group (SNUG 2000), Boston, USA, pp. 1–12 (2000)
- Lee, J.M.: Verilog Quick Start. A Practical Guide to Simulation and Synthesis in Verilog, 3rd edn. Kluwer Academic Publishers, New York (2002)

- Uma, R., Dhavachelvan, P.: Finite state machine optimization in FPGAs. In: Second International Conference on Computational Science, Engineering and Information Technology (CCSEIT-2012), Coimbatore, India, pp. 205–211 (2012)
- Klimovich, A.S., Soloviev, V.V.: Minimization of mealy finite-state machines by internal states gluing. J. Comput. Syst. Sci. Int. 2, 244–255 (2012)
- 8. Klimovicz, A.S., Solov'ev, V.V.: Minimization of incompletely specified Mealy finite-state machines by merging two internal states. J. Comput. Syst. Sci. Int. **3**, 400–409 (2013)
- 9. Yang, S.: Logic synthesis and optimization benchmarks user guide. Version 3.0. Technical report. North Carolina. Microelectronics Center of North Carolina (1991)
- Salauyou, V., Klimowicz, A., Grzes, T., Bulatowa, I., Dimitrowa-Grekow, T.: Synthesis methods of finite state machines implemented in package ZUBR. In: Sixth International Conference Computer-Aided Design of Discrete Devices (CAD DD'7). Minsk, Republic of Belarus, pp. 53–56 (2007)