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Abstract. A neuroscience method to understanding the brain is to find
and study the preferred stimuli that highly activate an individual cell or
groups of cells. Recent advances in machine learning enable a family of
methods to synthesize preferred stimuli that cause a neuron in an arti-
ficial or biological brain to fire strongly. Those methods are known as
Activation Maximization (AM) [10] or Feature Visualization via Opti-
mization. In this chapter, we (1) review existing AM techniques in the lit-
erature; (2) discuss a probabilistic interpretation for AM; and (3) review
the applications of AM in debugging and explaining networks.
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4.1 Introduction

Understanding the human brain has been a long-standing quest in human his-
tory. One path to understanding the brain is to study what each neuron1 codes
for [17], or what information its firing represents. In the classic 1950’s experi-
ment, Hubel and Wiesel studied a cat’s brain by showing the subject different
images on a screen while recording the neural firings in the cat’s primary visual
cortex (Fig. 4.1). Among a variety of test images, the researchers found oriented
edges to cause high responses in one specific cell [14]. That cell is referred to
as an edge detector and such images are called its preferred stimuli. The same
technique later enabled scientists to discover fundamental findings of how neu-
rons along the visual pathway detect increasingly complex patterns: from circles,
edges to faces and high-level concepts such as one’s grandmother [3] or specific
celebrities like the actress Halle Berry [37].
1 In this chapter, “neuron”, “cell”, “unit”, and “feature” are used interchangeably.
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Fig. 4.1. In the classic neuroscience experiment, Hubel and Wiesel discovered a cat’s
visual cortex neuron (right) that fires strongly and selectively for a light bar (left) when
it is in certain positions and orientations [14].

Similarly, in machine learning (ML), visually inspecting the preferred stimuli
of a unit can shed more light into what the neuron is doing [48,49]. An intuitive
approach is to find such preferred inputs from an existing, large image collection
e.g. the training or test set [49]. However, that method may have undesired
properties. First, it requires testing each neuron on a large image set. Second, in
such a dataset, many informative images that would activate the unit may not
exist because the image space is vast and neural behaviors can be complex [28].
Third, it is often ambiguous which visual features in an image are causing the
neuron to fire e.g. if a unit is activated by a picture of a bird on a tree branch, it
is unclear if the unit “cares about” the bird or the branch (Fig. 4.13b). Fourth,
it is not trivial how to extract a holistic description of what a neuron is for from
the typically large set of stimuli preferred by a neuron.

A common practice is to study the top 9 highest activating images for a
unit [48,49]; however, the top-9 set may reflect only one among many types of
features that are preferred by a unit [29].

Instead of finding real images from an existing dataset, one can synthesize
the visual stimuli from scratch [10,25,27,29,32,42,46]. The synthesis approach
offers multiple advantages: (1) given a strong image prior, one may synthesize
(i.e. reconstruct) stimuli without the need to access the target model’s training
set, which may not be available in practice (see Sect. 4.5); (2) more control over
the types and contents of images to synthesize, which helps shed light on more
controlled research experiments.

Activation Maximization. Let θ be the parameters of a classifier that maps
an image x ∈ R

H×W×C (that has C color channels, each of which is W pixels
wide and H pixels high) onto a probability distribution over the output classes.
Finding an image x that maximizes the activation al

i(θ,x) of a neuron indexed i
in a given layer l of the classifier network can be formulated as an optimization
problem:
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x∗ = arg max
x

(al
i(θ,x)) (4.1)

This problem was introduced as activation maximization2 (AM) by Erhan, Ben-
gio and others [10]. Here, al

i(.) returns the activation value of a single unit as in
many previous works [27–29]; however, it can be extended to return any neural
response a(.) that we wish to study e.g. activating a group of neurons [24,26,33].
The remarkable DeepDream visualizations [24] were created by running AM to
activate all the units across a given layer simultaneously. In this chapter, we will
write a(.) instead of al

i(.) when the exact indices l, i can be omitted for generality.
AM is a non-convex optimization problem for which one can attempt to find a

local minimum via gradient-based [44] or non-gradient methods [30]. In post-hoc
interpretability [23], we often assume access to the parameters and architecture
of the network being studied. In this case, a simple approach is to perform
gradient ascent [10,27,31,48] with an update rule such as:

xt+1 = xt + ε1
∂a(θ,xt)

∂xt
(4.2)

That is, starting from a random initialization x0 (here, a random image), we
iteratively take steps in the input space following the gradient of a(θ,x) to find
an input x that highly activates a given unit. ε1 is the step size and is chosen
empirically.

Note that this gradient ascent process is similar to the gradient descent pro-
cess used to train neural networks via backpropagation [39], except that here we
are optimizing the network input instead of the network parameters θ, which are
frozen.3 We may stop the optimization when the neural activation has reached
a desired threshold or a certain number of steps has passed.

In practice, synthesizing an image from scratch to maximize the activation
alone (i.e. an unconstrained optimization problem) often yields uninterpretable
images [28]. In a high-dimensional image space, we often find rubbish examples
(also known as fooling examples [28]) e.g. patterns of high-frequency noise that
look like nothing but that highly activate a given unit (Fig. 4.2).

In a related way, if starting AM optimization from a real image (instead of a
random one), we may easily encounter adversarial examples [44] e.g. an image
that is slightly different from the starting image (e.g. of a school bus), but that
a network would give an entirely different label e.g. “ostrich” [44]. Those early
AM visualizations [28,44] revealed huge security and reliability concerns with
machine learning applications and informed a plethora of follow-up adversarial
attack and defense research [1,16].

Networks that We Visualize. Unless otherwise noted, throughout the
chapter, we demonstrate AM on CaffeNet, a specific pre-trained model of the
well-known AlexNet convnets [18] to perform single-label image classification on
the ILSVRC 2012 ImageNet dataset [7,40].
2 Also sometimes referred to as feature visualization [29,32,48]. In this chapter, the

phrase “visualize a unit” means “synthesize preferred images for a single neuron”.
3 Therefore, hereafter, we will write a(x) instead of a(θ, x), omitting θ, for simplicity.
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Fig. 4.2. Example of activation maximization without image priors. Starting from a
random image (a), we iteratively take steps following the gradient to maximize the
activation of a given unit, here the “bell pepper” output in CaffeNet [18]. Despite
highly activating the unit and being classified as “bell pepper”, the image (b) has high
frequencies and is not human-recognizable.

4.2 Activation Maximization via Hand-Designed Priors

Examples like those in Fig. 4.2b are not human-recognizable. While the fact
that the network responds strongly to such images is intriguing and has strong
implications for security, if we cannot interpret the images, it limits our ability
to understand what the unit’s purpose is. Therefore, we want to constrain the
search to be within a distribution of images that we can interpret e.g. photo-
realistic images or images that look like those in the training set. That can be
accomplished by incorporating natural image priors into the objective function,
which was found to substantially improve the recognizability of AM images [21,
27,29,32,48]. For example, an image prior may encourage smoothness [21] or
penalize pixels of extreme intensity [42]. Such constraints are often incorporated
into the AM formulation as a regularization term R(x):

x∗ = arg max
x

(a(x) − R(x)) (4.3)

For example, to encourage the smoothness in AM images, R : RH×W×C → R

may compute the total variation (TV) across an image [21]. That is, in each
update, we follow the gradients to (1) maximize the neural activation; and (2)
minimize the total variation loss:

xt+1 = xt + ε1
∂a(xt)
∂xt

− ε2
∂R(xt)

∂xt
(4.4)

However, in practice, we do not always compute the analytical gradient
∂R(xt)/∂xt. Instead, we may define a regularization operator r : RH×W×C →
R

H×W×C (e.g. a Gaussian blur kernel), and map x to a more regularized (e.g.
slightly blurrier as in [48]) version of itself in every step. In this case, the update
step becomes:

xt+1 = r(xt) + ε1
∂a(xt)
∂xt

(4.5)
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Note that this update form in Eq. 4.5 is strictly more expressive [48], and
allows the use of non-differentiable regularizers r(.).

Fig. 4.3. Activation maximization results of seven methods in the literature (b–h),
each employing a different image prior (e.g. L2 norm, Gaussian blur, etc.). Images are
synthesized to maximize the output neurons (each corresponding to a class) of the
CaffeNet image classifier [18] trained on ImageNet. The categories were not cherry-
picked, but instead were selected based on the images available in previous papers [21,
29,42,46,48]. Overall, while it is a subjective judgement, Activation Maximization via
Deep Generator Networks method (h) [27] produces images with more natural colors
and realistic global structures. Image modified from [27].

Local Statistics. AM images without priors often appear to have high-
frequency patterns and unnatural colors (Fig. 4.2b). Many regularizers have been
designed in the literature to ameliorate these problems including:

– Penalize extreme-intensity pixels via α-norm [42,46,48] (Fig. 4.3b).
– Penalize high-frequency noise (i.e. smoothing) via total variation [21,29]

(Fig. 4.3e), Gaussian blurring [48,54] (Fig. 4.3c) or a bilateral filter [45].
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– Randomly jitter, rotate, or scale the image before each update step to syn-
thesize stimuli that are robust to transformations, which has been shown to
make images clearer and more interpretable [24,32].

– Penalize the high frequencies in the gradient image ∂a(xt)
∂xt

(instead of the
visualization xt) via Gaussian blurring [32,54].

– Encourage patch-level color statistics to be more realistic by (1) matching
those of real images from a dataset [46] (Fig. 4.3d) or (2) learning a Gaussian
mixture model of real patches [24].

While substantially improving the interpretability of images (compared to high-
frequency rubbish examples), these methods only effectively attempt to match
the local statistics of natural images.

Global Structures. Many AM images still lack global coherence; for exam-
ple, an image synthesized to highly activate the “bell pepper” output neuron
(Fig. 4.3b–e) may exhibit multiple bell-pepper segments scattered around the
same image rather than a single bell pepper. Such stimuli suggest that the net-
work has learned some local discriminative features e.g. the shiny, green skin
of bell peppers, which are useful for the classification task. However, it raises
an interesting question: Did the network ever learn the global structures (e.g.
the whole pepper) or only the local discriminative parts? The high-frequency
patterns as in Fig. 4.3b–e might also be a consequence of optimization in the
image space. That is, when making pixel-wise changes, it is non-trivial to ensure
global coherence across the entire image. Instead, it is easy to increase neural
activations by simply creating more local discriminative features in the stimulus.

Previous attempts to improve the global coherence include:

– Gradually paint the image by scaling it and alternatively following the gra-
dients from multiple output layers of the network [54].

– Bias the image changes to be near the image center [29] (Fig. 4.3g).
– Initialize optimization from an average image (computed from real training

set images) instead of a random one [29] (Fig. 4.3h).

While these methods somewhat improved the global coherence of images
(Fig. 4.3g–h), they rely on a variety of heuristics and introduce extra hyperpa-
rameters [29,54]. In addition, there is still a large realism gap between the real
images and these visualizations (Fig. 4.3a vs. h).

Diversity. A neuron can be multifaceted in that it responds strongly to multiple
distinct types of stimuli, i.e. facets [29]. That is, higher-level features are more
invariant to changes in the input [19,49]. For example, a face-detecting unit in
CaffeNet [18] was found to respond to both human and lion faces [48]. Therefore,
we wish to uncover different facets via AM in order to have a fuller understanding
of a unit.
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However, AM optimization starting from different random images often con-
verge to similar results [10,29]—a phenomenon also observed when training neu-
ral networks with different initializations [20]. Researchers have proposed differ-
ent techniques to improve image diversity such as:

– Drop out certain neural paths in the network when performing backpropaga-
tion to produce different facets [46].

– Cluster the training set images into groups, and initialize from an average
image computed from each group’s images [29].

– Maximize the distance (e.g. cosine similarity in the pixel space) between a
reference image and the one being synthesized [32].

– Activate two neurons at the same time e.g. activating (bird + apron) and (bird
+ candles) units would produce two distinct images of birds that activate the
same bird unit [27] (Fig. 4.10).

– Add noise to the image in every update to increase image diversity [26].

While obtaining limited success, these methods also introduce extra hyper-
parameters and require further investigation. For example, if we enforce two
stimuli to be different, exactly how far should they be and in which similarity
metric should the difference be measured?

4.3 Activation Maximization via Deep Generator
Networks

Much previous AM research were optimizing the preferred stimuli directly in the
high-dimensional image space where pixel-wise changes are often slow and uncor-
related, yielding high-frequency visualizations (Fig. 4.3b–e). Instead, Nguyen
et al. [27] propose to optimize in the low-dimensional latent space of a deep
generator network, which they call Deep Generator Network Activation Maxi-
mization (DGN-AM). They train an image generator network to take in a highly
compressed code and output a synthetic image that looks as close to real images
from the ImageNet dataset [40] as possible. To produce an AM image for a given
neuron, the authors optimize in the input latent space of the generator so that it
outputs an image that activates the unit of interest (Fig. 4.4). Intuitively, DGN-
AM restricts the search to only the set of images that can be drawn by the prior
and encourages the image updates to be more coherent and correlated compared
to pixel-wise changes (where each pixel is modified independently).

Generator Networks. We denote the sub-network of CaffeNet [18] that maps
images onto 4096-D fc6 features as an encoder E : R

H×W×C → R
4096. We

train a generator network G : R4096 → R
H×W×C to invert E i.e. G(E(x)) ≈ x.

In addition to the reconstruction losses, the generator was trained using the
Generative Adversarial Network (GAN) loss [13] to improve the image realism.
More training details are in [9,27]. Intuitively, G can be viewed as an artificial
general “painter” that is capable of painting a variety of different types of images,
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given an arbitrary input description (i.e. a latent code or a condition vector).
The idea is that G would be able to faithfully portray what a target network
has learned, which may be recognizable or unrecognizable patterns to humans.

Fig. 4.4. We search for an input code (red bar) of a deep generator network (left)
that produces an image (middle) that strongly activates a target neuron (e.g. the
“candle” output unit) in a given pre-trained network (right). The iterative optimization
procedure involves multiple forward and backward passes through both the generator
and the target network being visualized.

Optimizing in the Latent Space. Intuitively, we search in the input code
space of the generator G to find a code h ∈ R

4096 such that the image G(h)
maximizes the neural activation a(G(h)) (see Fig. 4.4). The AM problem in
Eq. 4.3 now becomes:

h∗ = arg max
h

(a(G(h)) − R(h)) (4.6)

That is, we take steps in the latent space following the below update rule:

ht+1 = ht + ε1
∂a(G(ht))

∂ht
− ε2

∂R(ht)
∂ht

(4.7)

Note that, here, the regularization term R(.) is on the latent code h instead of
the image x. Nguyen et al. [27] implemented a small amount of L2 regularization
and also clipped the code. These hand-designed regularizers can be replaced by
a strong, learned prior for the code [26].

Optimizing in the latent space of a deep generator network showed a great
improvement in image quality compared to previous methods that optimize in
the pixel space (Fig. 4.5; and Fig. 4.3b–h vs. Fig. 4.3i). However, images synthe-
sized by DGN-AM have limited diversity—they are qualitatively similar to the
real top-9 validation images that highest activate a given unit (Fig. 4.6).
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Fig. 4.5. Images synthesized from scratch via DGN-AM method [27] to highly activate
output neurons in the CaffeNet deep neural network [15], which has learned to classify
1000 categories of ImageNet images. Image from [27].

To improve the image diversity, Nguyen et al. [26] harnessed a learned realism
prior for h via a denoising autoencoder (DAE), and added a small amount of
Gaussian noise in every update step to improve image diversity [26]. In addition
to an improvement in image diversity, this AM procedure also has a theoretical
probabilistic justification, which is discussed in Sect. 4.4.

4.4 Probabilistic Interpretation for Activation
Maximization

In this section, we first make a note about the AM objective, and discuss a
probabilistically interpretable formulation for AM, which is first proposed in
Plug and Play Generative Networks (PPGNs) [26], and then interpret other AM
methods under this framework. Intuitively, the AM process can be viewed as
sampling from a generative model, which is composed of (1) an image prior and
(2) a recognition network that we want to visualize.

4.4.1 Synthesizing Selective Stimuli

We start with a discussion on AM objectives. In the original AM formulation
(Eq. 4.1), we only explicitly maximize the activation al

i of a unit indexed i in
layer l; however, in practice, this objective may surprisingly also increase the
activations al

j �=i of some other units j in the same layer and even higher than
al

i [27]. For example, maximizing the output activation for the “hartebeest” class
is likely to yield an image that also strongly activates the “impala” unit because
these two animals are visually similar [27]. As the result, there is no guarantee
that the target unit will be the highest activated across a layer. In that case,
the resultant visualization may not portray what is unique about the target
unit (l, i).
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Instead, we are interested in selective stimuli that highly activate only al
i,

but not al
j �=i. That is, we wish to maximize al

i such that it is the highest single
activation across the same layer l. To enforce that selectivity, we can either
maximize the softmax or log of softmax of the raw activations across a layer
[26,42] where the softmax transformation for unit i across layer l is given as
sl

i = exp(al
i)/

∑
j exp(al

j). Such selective stimuli (1) are more interpretable and
preferred in neuroscience [3] because they contain only visual features exclusively
for one unit of interest but not others; (2) naturally fit in our probabilistic
interpretation discussed below.

Fig. 4.6. Side-by-side comparison between real and synthetic stimuli synthesized via
DGN-AM [27]. For each unit, we show the top 9 validation set images that highest
activate a given neuron (left) and 9 synthetic images (right). Note that these synthetic
images are of size 227 × 227 i.e. the input size of CaffeNet [18]. Image from [27].

4.4.2 Probabilistic Framework

Let us assume a joint probability distribution p(x, y) where x denotes images,
and y is a categorical variable for a given neuron indexed i in layer l. This model
can be decomposed into an image density model and an image classifier model:

p(x, y) = p(x)p(y|x) (4.8)

Note that, when l is the output layer of an ImageNet 1000-way classifier
[18], y also represents the image category (e.g. “volcano”), and p(y|x) is the
classification probability distribution (often modeled via softmax).
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We can construct a Metropolis-adjusted Langevin [38] (MALA) sampler for
our p(x, y) model [26]. This variant of MALA [26] does not have the accept/reject
step, and uses the following transition operator:4

xt+1 = xt + ε12∇ log p(xt, y) + N(0, ε23) (4.9)

Since y is a categorical variable, and chosen to be a fixed neuron yc outside the
sampler, the above update rule can be re-written as:

xt+1 = xt +ε12∇ log p(y = yc|xt)+ε12∇ log p(xt)+N(0, ε23) (4.10)

Decoupling ε12 into explicit ε1 and ε2 multipliers, and expanding the ∇ into
explicit partial derivatives, we arrive at the following update rule:

xt+1 = xt + ε1
∂ log p(y = yc|xt)

∂xt
+ ε2

∂ log p(xt)
∂xt

+ N(0, ε23) (4.11)

An intuitive interpretation of the roles of these three terms is illustrated in
Fig. 4.7 and described as follows:

– ε1 term: take a step toward an image that causes the neuron yc to be the
highest activated across a layer (Fig. 4.7; red arrow)

– ε2 term: take a step toward a generic, realistic-looking image (Fig. 4.7; blue
arrow).

– ε3 term: add a small amount of noise to jump around the search space to
encourage image diversity (Fig. 4.7; green arrow).

Maximizing Raw Activations vs. Softmax. Note that the ε1 term in
Eq. 4.11 is not the same as the gradient of raw activation term in Eq. 4.2.
We summarize in Table 4.1 three variants of computing this ε1 gradient term:
(1) derivative of logits; (2) derivative of softmax; and (3) derivative of log of
softmax. Several previous works empirically reported that maximizing raw, pre-
softmax activations al

i produces better visualizations than directly maximizing
the softmax values sl

i (Table 4.1a vs. b); however, this observation had not been
fully justified [42]. Nguyen et al. [26] found the log of softmax gradient term
(1) working well empirically; and (2) theoretically justifiable under the proba-
bilistic framework in Sect. 4.4.2.

We refer readers to [26] for a more complete derivation and discussion of the
above MALA sampler. Using the update rule in Eq. 4.11, we will next interpret
other AM algorithms in the literature.

4 We abuse notation slightly in the interest of space and denote as N(0, ε23) a sample
from that distribution. The first step size is given as ε12 in anticipation of later
splitting into separate ε1 and ε2 terms.
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Fig. 4.7. AM can be considered as a sampler, traversing in the natural image manifold.
We start from a random initialization h0. In every step t, we first add a small amount of
noise (green arrow), which pushes the sample off the natural-image manifold (h′

t). The
gradients toward maximizing activation (red arrow) and more realistic images (blue
arrow) pull the noisy h′

t back to the manifold at a new sample ht+1.

Table 4.1. A comparison of derivatives for use in activation maximization methods.
(a) has most commonly been used, (b) has worked in the past but with some difficulty,
but (c) is correct under the sampler framework in Sect. 4.4.2 and [26].

a. Derivative of raw activations. Worked well
in practice [10,27] but may produce
non-selective stimuli and is not quite the
right term under the probabilistic framework
in Sect. 4.4.2

∂al
i

∂x

b. Derivative of softmax. Previously avoided
due to poor performance [42,48], but poor
performance may have been due to
ill-conditioned optimization rather than the
inclusion of logits from other classes

∂sl
i

∂x
= sl

i

(
∂al

i

∂x
−

∑
j

sl
j

∂al
j

∂x

)

c. Derivative of log of softmax. Correct term
under the sampler framework in Sect. 4.4.2.
Well-behaved under optimization, perhaps

due to the
∂al

i
∂x

term untouched by the sl
i

multiplier

∂ log sl
i

∂x
=

∂ log p(y = yi|xt)

∂x

=
∂al

i

∂x
− ∂

∂x
log

∑
j

exp(al
j)

4.4.3 Interpretation of Previous Algorithms

Here, we consider four representative approaches in light of the probabilistic
framework:

1. AM with no priors [10,28,44] (discussed in Sect. 4.1)
2. AM with a Gaussian prior [42,46,48] (discussed in Sect. 4.2)
3. AM with hand-designed priors [21,29,31,42,46,48] (discussed in Sect. 4.2)
4. AM in the latent space of generator networks [26,27] (discussed in Sect. 4.3)
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Activation Maximization with No Priors. From Eq. 4.11, if we set
(ε1, ε2, ε3) = (1, 0, 0), we obtain a sampler that follows the neuron gradient
directly without contributions from a p(x) term or the addition of noise. In
a high-dimensional space, this results in adversarial or rubbish images [28,44]
(as discussed in Sect. 4.2). We can also interpret the optimization procedure in
[28,44] as a sampler with a non-zero ε1 but with a p(x) such that ∂ log p(x)

∂x = 0
i.e. a uniform p(x) where all images are equally likely.

Activation Maximization with a Gaussian Prior. To avoid producing
high-frequency images [28] that are uninterpretable, several works have used L2

decay, which can be thought of as a simple zero-mean Gaussian prior over images
[42,46,48]. From Eq. 4.11, if we define a Gaussian p(x) centered at the origin
(assume the mean image has been subtracted) and set (ε1, ε2, ε3) = (1, λ, 0),
pulling Gaussian constants into λ, we obtain the following noiseless update rule:

xt+1 = (1 − λ)xt +
∂ log p(y = yc|xt)

∂xt
(4.12)

The first term decays the current image slightly toward the origin, as appro-
priate under a Gaussian image prior, and the second term pulls the image toward
higher probability regions for the chosen neuron. Here, the second term is com-
puted as the derivative of the log of a softmax transformation of all activations
across a layer (see Table 4.1).

Activation Maximization with Hand-Designed Priors. In an effort to
outdo the simple Gaussian prior, many works have proposed more creative,
hand-designed image priors such as Gaussian blur [48], total variation [21], jit-
ter, rotate, scale [24], and data-driven patch priors [46]. These priors effectively
serve as a simple p(x) component in Eq. 4.11. Note that all previous methods
considered under this category are noiseless (ε3 = 0).

Activation Maximization in the Latent Space of Generator Networks.
To ameliorate the problem of poor mixing in the high-dimensional pixel space
[5], several works instead performed optimization in a semantically meaningful,
low-dimensional feature space of a generator network [6,26,27,47,53].

That approach can be viewed as re-parameterizing p(x) as
∫
h

p(x|h)p(h),
and sampling from the joint probability distribution p(h, y) instead of p(x, y),
treating x as a deterministic variable. That is, the update rule in Eq. 4.11 is now
changed into the below:

ht+1 = ht + ε1
∂ log p(y = yc|ht)

∂ht
+ ε2

∂ log p(ht)
∂ht

+ N(0, ε23) (4.13)

In this category, DGN-AM [27] follows the above rule with (ε1, ε2, ε3) =
(1,1,0).5 Specifically, we hand-designed a p(h) via clipping and L2 regularization
5 ε3 = 0 because noise was not used in DGN-AM [27].
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(i.e. a Gaussian prior) to keep the code h within a “realistic” range. PPGNs
follows exactly the update rule in Eq. 4.13 with a better p(h) prior learned via
a denoising autoencoder [26]. PPGNs produce images with better diversity than
DGN-AM [26].

4.5 Applications of Activation Maximization

In this section, we review how one may use activation maximization to under-
stand and explain a pre-trained neural network. The results below are specifi-
cally generated by DGN-AM [27] and PPGNs [26] where the authors harnessed
a general image generator network to synthesize AM images.

Visualize Output Units for New Tasks. We can harness a general learned
ImageNet prior to synthesize images for networks trained on a different dataset
e.g. MIT Places dataset [50] or UCF-101 activity videos [27] (Figs. 4.5 and 4.8).

Fig. 4.8. Preferred stimuli generated via DGN-AM [27] for output units of a network
trained to classify images on the MIT Places dataset [51] (left) and a network trained
to classify videos from the UCF-101 dataset (right). The results suggested that the
learned ImageNet prior generalizes well to synthesizing images for other datasets.

Visualize Hidden Units. Instead of synthesizing preferred inputs for output
neurons (Fig. 4.5), one may apply AM to the hidden units. In a comparison
with visualizing real image regions that highly activate a unit [50], we found
AM images may provide similar but sometimes also complementary evidence
suggesting what a unit is for [27] (Fig. 4.9). For example, via DGN-AM, we
found that a unit that detects “TV screens” also detects people on TV (Fig. 4.9,
unit 106).

Synthesize Preferred Images Activating Multiple Neurons. First, one
may synthesize images activating a group of units at the same time to study the
interaction between them [27,32]. For example, it might be useful to study how a
network distinguishes two related and visually similar concepts such as “impala”
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Fig. 4.9. AM images for example hidden units at layer 5 of an CaffeNet [18] trained
to classify images of scenes [50]. For each unit: the left two images are masked-out real
images, each highlighting a region that highly activates the unit via methods in [50],
and humans provide text labels (e.g. “lighthouse”) describing the common theme in
the highlighted regions. The right two images are AM images, which enable the same
conclusion regarding what feature a hidden unit has learned. Figure from [27].

and “hartebeest” animals in ImageNet [7]. One way to do this is to synthesize
images that maximize the “impala” neuron’s activation but also minimize the
“hartebeest” neuron’s activation. Second, one may reveal different facets of a
neuron [29] by activating different pairs of units. That is, activating two units at
the same time e.g. (castle + candle); and (piano + candle) would produce two
distinct images of candles that activate the same “candle” unit [27] (Fig. 4.10). In
addition, this method sometimes also produces interesting, creative art [12,27].

Fig. 4.10. Synthesizing images via DGN-AM [27] to activate both the “castle” and
“candles” units of CaffeNet [18] produces an image that resembles a castle on fire (top
right). Similarly, “piano” + “candles” produces a candle on a piano (bottom right).
Both rightmost images highly activate the “candles” output neuron.

Watch Feature Evolution During Training. We can watch how the features
evolved during the training of a target classifier network [27]. Example videos
of AM visualizations for sample output and hidden neurons during the training
of CaffeNet [15] are at: https://www.youtube.com/watch?v=q4yIwiYH6FQ and
https://www.youtube.com/watch?v=G8AtatM1Sts. One may find that features
at lower layers tend to converge faster vs. those at higher layers.

https://www.youtube.com/watch?v=q4yIwiYH6FQ
https://www.youtube.com/watch?v=G8AtatM1Sts
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Synthesizing Videos. To gain insights into the inner functions of an activity
recognition network [43], one can synthesize a single frame (Fig. 4.8; right) or an
entire preferred video. By synthesizing videos, Nguyen et al. [27] found that a
video recognition network (LRCN [8]) classifies videos without paying attention
to temporal correlation across video frames. That is, the AM videos6 appear to
be a set of uncorrelated frames of activity e.g. a basketball game. Further tests
confirmed that the network produces similar top-1 predicted labels regardless of
whether the frames of the original UCF-101 videos [43] are randomly shuffled.

Activation Maximization as a Debugging Tool. We discuss here a case
study where AM can be used as a debugging tool. Suppose there is a bug in your
neural network image classifier implementation that internally and unexpectedly
converts all input RGB images (Fig. 4.11a) into BRG images (Fig. 4.11b) before
feeding them to the neural network. This bug might be hard to notice by only
examining accuracy scores or attribution heatmaps [23]. Instead, AM visualiza-
tions could reflect the color space of the images that were fed to the neural
network and reveal this bug (Fig. 4.11c).

Synthesize Preferred Images Conditioned on a Sentence. Instead of
synthesizing images preferred by output units in an image classifier, we can also
synthesize images that cause an image captioning network to output a desired
sentence (examples in Fig. 4.12).

This reverse-engineering process may uncover interesting insights into the
system’s behaviors. For example, we discovered an interesting failure of a state-
of-the-art image captioner [8] when it declares birds even when there is no bird
in an image (Fig. 4.13).

Synthesize Preferred Images Conditioned on a Semantic Segmentation
Map. We can extend AM methods to synthesize images with more fine-grained
controls of where objects are placed by matching a semantic map output of a seg-
mentation network (Fig. 4.14) or a target spatial feature map of a convolutional
layer.

Synthesize Preferred Stimuli for Real, Biological Brains. While this
survey aims at visualizing artificial networks, it is also possible to harness our
AM techniques to study biological brains. Two teams of Neuroscientists [22,36]
have recently been able to reconstruct stimuli for neurons in alive macaques’
brains using either the ImageNet PPGN (as discussed in Sect. 4.4) [22] or the
DGN-AM (as discussed in Sect. 4.3) [36]. The synthesized images surprisingly
resemble monkeys and human nurses that the subject macaque meets frequently
[36] or show eyes in neurons previously shown to be tuned for detecting faces
[22]. Similar AM frameworks have also been interestingly applied to reconstruct
stimuli from EEG or MRI signals of human brains [34,41].
6 https://www.youtube.com/watch?v=IOYnIK6N5Bg.

https://www.youtube.com/watch?v=IOYnIK6N5Bg
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(a) Regular ImageNet training images

(b) ImageNet training images converted into the BRG color space

(c) Visualizations of the units that are trained on BRG ImageNet images above (b)

Fig. 4.11. The original ImageNet training set images are in RGB color space (a). We
train CaffeNet [18] on their BRG versions (b). The activation maximization images
synthesized by DGN-AM [27], faithfully portray the color space of the images, here
BRG, where the network was trained on.

Fig. 4.12. We synthesize input images (right) such that a pre-trained image caption-
ing network (LRCN [8]) outputs the target caption description (left sentences). Each
image on the right was produced by starting optimization from a different random
initialization.
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Fig. 4.13. While synthesizing images to cause an image captioning model [8] to output
“A bird is sitting on a branch” via DGN-AM method [27], we only obtained images
of branches or trees that surprisingly has no birds at all (a). Further tests on real MS
COCO images revealed that the model [8] outputs correct captions for a test image that
has a bird (b), but still insists on the existence of the bird, even when it is manually
removed via Adobe Photoshop (c). This suggests the image captioner learned a strong
correlation between birds and tree branches—a bias that might exist in the language
or image model.

Fig. 4.14. A segmentation network from [52] is capable of producing a semantic seg-
mentation map (b) given an input real image (a). The authors extend the DGN-AM
method [27] to synthesize images (c) to match the target segmentation map (b), which
specifies a scene with a building on green grass and under a blue sky background.
Figure modified from [52].

4.6 Discussion and Conclusion

While activation maximization has proven a useful tool for understanding neural
networks, there are still open challenges and opportunities such as:

– One might wish to harness AM to compare and contrast the features learned
by different models. That would require a robust, principled AM approach
that produces faithful and interpretable visualizations of the learned features
for networks trained on different datasets or of different architectures. This
is challenging due to two problems: (1) the image prior may not be general
enough and may have a bias toward a target network or one dataset over the
others; (2) AM optimization on different network architectures, especially of
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different depths, often requires different hyper-parameter settings to obtain
the best performance.

– It is important for the community to propose rigorous approaches for evaluat-
ing AM methods. A powerful image prior may incur a higher risk of producing
misleading visualizations—it is unclear whether a synthesized visual feature
comes from the image prior or the target network being studied or both. Note
that we have investigated that and surprisingly found the DGN-AM prior to
be able to generate a wide diversity of images including the non-realistic ones
(e.g. blurry, cut-up, and BRG images [27]).

– Concepts in modern deep networks can be highly distributed [4,11,44]; there-
fore, it might be promising to apply AM to study networks at a different,
larger scale than individual neurons, e.g. looking at groups of neurons [33].

– It might be a fruitful direction to combine AM with other tools such as attri-
bution heatmapping [33] or integrate AM into the testbeds for AI applications
[35] as we move towards safe, transparent, and fair AI.

– One may also perform AM in the parameter space of a 3D renderer (e.g.
modifying the lighting, object geometry or appearances in a 3D scene) that
renders a 2D image that strongly activates a unit [2]. AM in a 3D space allows
us to synthesize stimuli by varying a controlled factor (e.g. lighting) and thus
might offer deeper insights into a model’s inner-workings.

Activation maximization techniques enable us to shine light into the black-
box neural networks. As this survey shows, improving activation maximization
techniques improves our ability to understand deep neural networks. We are
excited for what the future holds regarding improved techniques that make neu-
ral networks more interpretable and less opaque so we can better understand
how deep neural networks do the amazing things that they do.
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