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Abstract. The very active community for interpretable machine learn-
ing can learn from the rich 50+ year history of explainable AI. We here
give two specific examples from this legacy that could enrich current
interpretability work: First, Explanation desiderata were we point to the
rich set of ideas developed in the ‘explainable expert systems’ field and,
second, tools for quantification of uncertainty of high-dimensional fea-
ture importance maps which have been developed in the field of compu-
tational neuroimaging.
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3.1 Neural Network Interpretability

High activity research fields often develop to be somewhat myopic in their early
phases - simply because the large body of published work leaves little time to fol-
low progress in other areas or even to look back at previous research in the field.
Independent component analysis is a prominent early example, for which a history
of lost insights was recalled in Comon’s paper [6]. Deep learning interpretability
is a contemporary example: One could easily get the impression that the inter-
pretability issue surfaced with the new wave of deep learning, however, this is not
the case. While end-to-end learning has hugely accentuated the need for explana-
tions, interpretability is an active research topic with an over 50-year history. In
fact, since the early days of intelligent systems the importance and focus on inter-
pretability has only increased [30]. From scientific contexts, where interpretability
methods can assist formulation of causal hypotheses, see e.g., work in bio-medicine
[43] and computational chemistry [40], to recent societal importance in the Euro-
pean Union’s General Data Protection Regulatory, establishing the so-calledRight
to explanation as coined by Goodman and Flaxman [15].

Here we make two dives into the rich history of explainability in intelligent
systems and we ask ‘what can modern work learn’?

First a semantic note. The terms interpretability and explainability are often
used interchangeably in the literature. However, in a recent review [13] a use-
ful distinction is made. The more general concept is explainability which covers
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interpretability, i.e., to communicate machine learning function to user, and com-
pleteness, i.e., that the explanation is a close enough approximation that it can
be audited. The distinction is described: ‘...interpretability alone is insufficient.
In order for humans to trust black-box methods, we need explainability – mod-
els that are able to summarize the reasons for neural network behavior, gain
the trust of users, or produce insights about the causes of their decisions. While
interpretability is a substantial first step, these mechanisms need to also be com-
plete, with the capacity to defend their actions, provide relevant responses to
questions, and be audited’ [13]. In Montavon et al.’s comprehensive tutorial a
related distinction is made: ‘... interpreting the concepts learned by a model
by building prototypes, and explaining the model’s decisions by identifying the
relevant input variables’ [30].

Explainability, in this broader sense, has been a key component in several
intelligent systems communities and the central tenet of this paper is that future
work can learn from looking back at this history. We will focus on two specific
lines of research, the first concerns the broader foundation of explainability:
What are the desiderata, i.e., the salient dimensions and issues that should be
addressed? Our second focus area concerns the important specific challenge of
understanding the dimensions of uncertainty in machine learning models and
their explanations.

Going back in time prior to the new wave of deep learning, many have stressed
the importance of interpretability. Breiman’s classic paper Statistical Modeling:
The Two Cultures has a strong focus on interpretability [3]. Breiman notes:
‘Occam’s Razor, long admired, is usually interpreted to mean that simpler is
better. Unfortunately, in prediction, accuracy and simplicity (interpretability)
are in conflict. For instance, linear regression gives a fairly interpretable picture of
the y, x relation. But its accuracy is usually less than that of the less interpretable
neural nets’. As we will see below, this dilemma has been acknowledged by
the explainable expert systems community many years earlier. Breiman clearly
expressed his preferences: ‘On interpretability, trees rate an A+’, however, it was
already known that trees and rule based systems have severe limitations when
it comes to both implementing and comprehending function, see e.g. [29].

The interest in intelligent systems’ interpretability has earlier roots. In a
1988 position paper Mitchie discussed how AI would pass different criteria from
weak to ultra-strong [28]: ‘The ultra-strong criterion demands that the system
be capable not only of explaining how it has structured its acquired skills: it
should also be able to teach them’. This ambition is still very relevant.

Going further back in early expert system history, explanation and human
interaction were key issues. Expert systems in the late 60’s - like ‘SCHOLAR’
developed for instructional support - were designed for interaction [5], such as
explaining why a student’s answer was wrong in a mixed initiative dialogue.
Stanford’s widely discussed ‘MYCIN’ expert system for antimicrobial selection
was designed with three components: A rule based decision support component
that combined MYCIN and physicians judgment, an explanation module and a
learning module [4,41,42]. This rule based system had about 200 rules in 1975.
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MYCIN developers held it self-evident that AI could get medical acceptance
only with convincing explanations [42]. Thus, MYCIN was equipped to map its
internal rules to natural language and answer both ‘why’ and ‘how’ questions.
By 1983 the MYCIN system had expanded to 500 rules and the state of the
art was summarized in a review in Science [10]. In a 1984 book summarizing
experiences with MYCIN no less than four chapters are devoted to MYCIN’s
explanation mechanisms [4].

Prior to Breiman’s comments, earlier work on explainability in statistics
includes Good’s discussion of evidence in context of belief networks [14]. Good
considered three dimensions of explanations: ‘What’, concerning semantic expla-
nations as in a dictionary, ‘How’ as in natural or manufacturing process descrip-
tions, and finally the ‘Why’ type explanations - hypothesizing causal mechanisms
behind an event.

3.2 Desiderata of Explainable AI

Expert systems moved on and important principles can be learned from Swartout
and Moore’s 1993 review of ‘second generation explainable expert systems’ [47]
listing five general desiderata for useful explanations of AI, adding significant
perspective to recent work in the field:

D1 Fidelity: the explanation must be a reasonable representation of what the
system actually does.

D2 Understandability: Involves multiple usability factors including terminology,
user competencies, levels of abstraction and interactivity.

D3 Sufficiency: Should be able to explain function and terminology and be
detailed enough to justify decision.

D4 Low Construction Overhead: The explanation should not dominate the cost
of designing AI.

D5 Efficiency: The explanation system should not slow down the AI significantly.

Expert systems have developed through several generations. The notion of sec-
ond versus first generation AI was based on the modes of explanation. First
generation systems were characterized by explanations based directly on rules
applied by the AI to reach decisions. This leads to high fidelity (D1), but often
conflicts with understandability (D2) because the rules used for inference may be
incomprehensive for the user [47]. So-called Explainable Expert Systems (EES)
addressed this dilemma. The XPLAIN system [46] is an example. XPLAIN
was based on two key principles to enhance understandability: ‘explicitly dis-
tinguishing different forms of domain knowledge present in the knowledge base
and formal recording of the system development process’ [34]. The evaluation of
XPLAIN is anecdotal, yet quite convincing. Cases are presented in which the sys-
tem is able to answer ‘why’ questions - and even at times resorting to ‘white lies’
to create a smoother learning experience [46]. Computational complexity both
in construction and execution (desiderata D4−D5) are not so prominent in cur-
rent literature, although the most widely used methods differ significant in com-
plexity. The so-called Local Interpretable Model-agnostic Explanation (LIME)
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scheme, for example, is based on image segmentation, random sampling and mul-
tiple linear model fittings, hence rather complex at explanation time [37], hence
a challenge to D5. An approach such a ‘Testing with Concept Activation Vec-
tors’ (TCAV) comes at a significant initial cost [19], hence may pose a challenge
to D4.

Much of the EES progress was produced in the context of rule based expert
systems, while AI based on machine learning - so-called connectionists’ methods -
more often was considered ‘black box’. Interest in connectionists’ methods was
primarily based on performance and not interpretability, c.f., the quote from
[2] ‘...symbolic learning techniques produce more understandable outputs but
they are not as good as connectionist learning techniques in generalization’. We
already noted that this view was propagated by Breiman, hence, the sparking
interest in converting existing neural networks to decision tree form [1,48,49]
or even learn neural networks that more readily are converted to trees see for
example work by Gallant [12] and by Craven and Shavlik [7]. But trees may not
deliver on D2, in particular, as discussed above and noted by [46] - the intuitive
appeal of trees fails in practice when trees get to be complex in structure or
operate in high dimensional feature spaces. These challenges were also recently
noted in [33]. For domains where modern neural networks excel such as image,
audio and text data, tree based explanations are challenged.

Returning to the list of desiderata, several recent papers have aimed at fram-
ing the discourse of interpretability. Presumably unaware of [47], Lipton notes
that interpretability is not a well-defined concept and goes on to discuss mul-
tiple dimensions of interpretability and formulates a set of desiderata [25,26]
closely related to D1 − D3. Lipton’s desiderata read (i) ‘Trust’, (ii) ‘Causality’,
(iii) ‘Transferability’, (iv) ‘Informativeness’, and (v) ‘Fair and Ethical Decision-
Making’. Here Lipton discusses several dimensions of (i) ‘Trust’ mostly covered
in desiderata D1−D2, (ii) ‘Causality’ is roughly equivalent to [47]’s D3, while the
notion of ‘Transferability’ and ‘Informativeness’ both refer to the user’s ability
to gain abstract ‘knowledge’ from explanations. This idea also appeared in the
original paper’s discussion of usability D2, viz. the need to explain a system at
different levels of abstraction. ‘Fair and Ethical Decision-Making’ is noted by
Lipton as an area that specifically requires interpretability. In [47] such consid-
erations are framed in a general discussion of usability (D2). It is also noted that
an explanation systems must be able to explain from different perspectives ‘..
e.g., form versus function in the biological domain or safety vs. profitability in
the financial domain’.

The usability dimension (D2) remains an important issue in contemporary
interpretability papers. The question ‘Interpretable to Whom?’ has been raised
in several papers [8,33,50] focusing on the user and addressed by human factors
evaluation. In fact, Doshi-Velez and Been open their paper with the more gen-
eral statement ‘Unfortunately, there is little consensus on what interpretability in
machine learning is and how to evaluate it for benchmarking’ [8]. Their key con-
tribution is to point out that current machine learning workflows are incomplete
in the sense that they have unspecified objectives from the application domain.
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This can be important issues that were not included in the machine learning
objective function: ‘...incompleteness that produces some kind of unquantified
bias, e.g. the effect of including domain knowledge in a model selection pro-
cess’ [8]. Seemingly unaware of the results of the EES community they focus on
usability, and in case there are human users involved, a fully specified applica-
tion somehow will entail human factors evaluation, immediately making [47]’s
discussion of desideratum D2 relevant. When evaluating AI explanation systems
with human subjects, we should be aware of the users’ potential cognitive biases
[39]. In the context of explainability, it is interesting to note that users may
suffer from biases, for example the interesting phenomenon ‘choice blindness’
discovered by Johansson et al. [18]. Choice blindness shows up in failure to make
and explain consistent decisions. In the work of [18] magicians ‘fool’ users to
explain decisions users did or did not make with similar strengths. Yet, we note
that the importance of actual usability evaluation of explanation methods also
appeared early. A 1990 AAAI workshop featured work on user scenarios [9] and
later work was reported in [45].

Breiman equated simplicity and interpretability. However, it is well-known
that seemingly simple models can be hard to interpret. Even simple linear clas-
sification models need careful tuning to optimize stability of feature importance
maps [36]. The ‘filters vs. pattern’ discussion that first emerged in the context
of neuroimaging is another example of unexpected complexity. In this context,
there is an important difference between visualizing the classification model and
the corresponding (causal) generative model. The difference is induced by corre-
lated input noise and can lead to wrong conclusions if not handled appropriately
as pointed out by Haufe et al. [17]. Similar challenges appear in deep networks
[20]. Further examples of the dissociation of simplicity and interpretability are
discussed by Lipton [25,26], citing the work on ‘Interpretable Boosted Näıve
Bayes Classification’ by [38]. This paper opens with a statement aligned with
the Breiman’s dilemma: ‘Efforts to develop classifiers with strong discrimination
power using voting methods have marginalized the importance of comprehen-
sibility’. The objective of the paper is to demonstrate that the interpretation
problem for voting systems can be mitigated. Specifically, Madigan et al.’s tools
for interpretation in Naive Bayes classifiers [27]’ is shown to be useful for complex
boosting ensembles.

3.3 Quantify Similarity and Uncertainty of Feature
Importance Maps Using Resampling

In certain application domains of neural networks, including scientific computing
and bio-medicine, interpretation have played an important role for long and tools
have been developed for explanation of neural networks’ function.

In early work on mind reading based on brain scanning interpretability was
naturally in focus [24,31]. The dominating analysis paradigm at the time was
Friston et al.’s SPM ‘statistical parametric mapping’ [11]. This approach pro-
duced intuitively appealing three dimensional brain maps of voxel-wise signifi-
cant activation. These maps have had significant impact in the field and it was
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a strong aim of neural networks visualizations to produce matching SPMs. The
tools developed included 3D mapping of voxel-wise saliency [32] and sensitiv-
ity [21]. The usability (D2) for neuroscientists was enhanced by embedding the
maps in 3D ‘anatomically informed’ navigation tools, see e.g., [32] for exam-
ples. The brain map visualizations were further enriched with knowledge graph
information to facilitate decision making and teaching [35].

Concerning the first desideratum (D1) - fidelity of explanations - we need to
consider the two logical fundamental properties: ‘Existence’ and ‘uniqueness’.
Considering the many constraints imposed by the desiderata, the very exis-
tence of a satisfactory interpretability scheme is a non-trivial issue. Finding such
schemes is the concern of current interpretability engineering literature. Given
existence, we face an equally important issue of uniqueness. Note that at least
two mechanisms of uncertainty can contribute to non-uniqueness: Firstly, epis-
temic uncertainty, i.e., uncertainty in the explainability model, typically induced
by a combination of limited data and knowledge. Epistemic uncertainty gives
rise to multiple competing paradigm of explainability. The second source of non-
uniqueness is the inherent randomness of a given problem domain for which noise
and finite samples can conspire to create large fluctuations in solutions (‘aleatory
uncertainty’).

Epistemic uncertainty was discussed in detail in the work of Lange et al.
[23]. Nine different interpretation schemes were evaluated to explore the diver-
sity in model space and learn similarities. The idiosyncratic scales employed by
different mapping procedures is a significant challenge for quantitative compar-
isons of visualizations. This problem was addressed in [16] proposing a simple
nonparametric approach to standardization of maps, hence, allowing maps to be
meaningfully combined, e.g., by simple averaging. Such consensus based methods
allow reduction of model uncertainty and quantification of inter-map differences
(epistemic uncertainty).

Aleatory uncertainty in brain maps was addressed by the so-called NPAIRS
framework [44]. Statistical re-sampling techniques such as split-half, can pro-
vide unbiased estimates of variance of interpretability heat maps. This allows
for mapping of the local visualization ‘effect size’, by scaling heat maps by their
standard deviation. Application of these tools include imaging pipeline optimiza-
tion [22]. Outside the original domain of these methods, they have been applied
for skin cancer diagnosis support [43]. We foresee that future applications of deep
learning within scientific computing will call for careful and unbiased quantifi-
cation of aleatory uncertainty and methods to aggregate multiple explanation
hypotheses.

3.4 Concluding Remarks

Explainability is at the core of modern machine learning. The transparency made
possible by effective tools for explainability can improve design and debugging for
the machine learning engineer and even more importantly, our users’ trust and
usability in the tools we develop. It would be productive if the very active com-
munity of scientist working in this field made an even bigger effort to embrace
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the rich 50+ year history of explainable AI. Here we focused on two specific
topics from this legacy that could enrich current interpretability work: (1) Care-
ful definition of the task via Explanation desiderata. Here we pointed to a rich
set of ideas developed in the ‘explainable expert systems’ field and (2) Care-
ful handling of uncertainty. Here we pointed to the comprehensive workflows
for quantification of uncertainty of high-dimensional feature importance maps,
originally developed in the field of computational neuroimaging.
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