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Abstract In this chapter, we investigate the stabilities of multiplicative inverse
quadratic difference and multiplicative inverse quadratic adjoint functional equa-
tions in the setting of non-Archimedean fields via fixed point method.

1 Introduction and Preliminaries

The question posed by Ulam [15] in 1940 is the basis for the theory of stability
of functional equations. The question raised by Ulam was answered by Hyers [5]
which made a cornerstone in the study of stability of functional equations. The result
obtained by Hyers is termed as Hyers–Ulam stability or ε-stability of functional
equation. Then, Hyers’ result was generalized by Aoki [1]. Also, Hyers’ result was
modified by Rassias [10] considering the upper bound as sum of powers of norms
(Hyers–Ulam–T. Rassias stability). Rassias [11] established Hyers’ result by taking
the upper bound as product of powers of norms (Ulam–Gavruta–J. Rassias stability).
In 1994, the stability result was further generalized into simple form by Gavruta [4]
by replacing the upper bound by a general control function (generalized Hyers–
Ulam stability).

In recent times, Ravi and Suresh [12] have investigated the generalized Hyers–
Ulam stability of multiplicative inverse quadratic functional equation in two vari-
ables of the form
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R(u + v) = R(u)R(v)

R(u) + R(v) + 2
√

R(u)R(v)
(1)

in the setting of real numbers. It is easy to verify that the multiplicative inverse
quadratic function R(u) = 1

u2 is a solution of Eq. (1). For further stability results
using fixed point method concerning different types of functional equations and
rational functional equations, one may refer [2, 6, 7, 9, 13, 14].

Here, we evoke a few fundamental notions of non-Archimedean field and fixed
point alternative theorem in non-Archimedean spaces. Throughout this chapter,
let us assume that N and R are the sets of natural numbers and real numbers,
respectively.

Definition 1 Let F be a field with a mapping (valuation) | · | from F into [0,∞).
Then F is said to be a non-Archimedean field if the upcoming requirements
persist:

(i) |k| = 0 if and only if k = 0;
(ii) |k1k2| = |k1||k2|;

(iii) |k1 + k2| ≤ max{|k1|, |k2|}
for all k, k1, k2 ∈ F .

It is evident that |1| = | − 1| = 1 and |k| ≤ 1 for all k ∈ N . Furthermore, we
presume that | · | is non-trivial, that is, there exists an α0 ∈ F such that |α0| �= 0, 1.

Suppose E is a vector space over a scalar field F with a non-Archimedean non-
trivial valuation | · |. A function || · || : E −→ R is a non-Archimedean norm
(valuation) if it satisfies the ensuing requirements:

(i) ||u|| = 0 if and only if u = 0;
(ii) ||ρu|| = |ρ|||u|| (ρ ∈ F, u ∈ E);

(iii) the strong triangle inequality (ultrametric); namely,

||u + v|| ≤ max{||u||, ||v||} (u, v ∈ E).

Then (E, || · ||) is known as a non-Archimedean space. By virtue of the inequality

‖u� − uk‖ ≤ max
{∥∥uj+1 − uj

∥∥ : k ≤ j ≤ � − 1
}

(� > k),

a sequence {uk} is Cauchy if and only if {uk+1 − uk} converges to 0 in a non-
Archimedean space. If every Cauchy sequence is convergent in the space, then it is
called as complete non-Archimedean space.

Definition 2 Assume H is a nonempty set. Suppose d : H × H → [0,∞] satisfies
the following properties:

(i) d(α, β) = 0 if and only if α = β;
(ii) d(α, β) = d(β, α) (symmetry);

(iii) d(α, γ ) ≤ max{d(α, β), d(β, γ )} (strong triangle inequality)
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for all α, β, γ ∈ H . Then (H, d) is called a generalized non-Archimedean metric
space. Suppose every Cauchy sequence in A is convergent, then (A, d) is called
complete.

Example 1 Let F be a non-Archimedean field. Assume A and B are two non-
Archimedean spaces over F . If B is complete and φ : A −→ [0,∞), for every
s, t : A −→ B, define

d(s, t) = inf{δ > 0 : |s(u) − t (u)| ≤ δφ(u), for all u ∈ A}.

Using Theorem 2.5 [3], Mirmostafaee [8] proposed new version of the alternative
fixed point principle in the setting of non-Archimedean space as follows:

Theorem 1 ([8] (Alternative Fixed Point Principle in Non-Archimedean
Scheme)) Suppose (H, d) is a non-Archimedean generalized metric space. Let
a mapping Λ : H −→ H be a strictly contractive, (that is, d(Λ(u),Λ(v)) ≤
ρd(v, u), for all u, v ∈ H and a Lipschitz constant ρ < 1), then either

(i) d
(
Λp(u),Λp+1u

) = ∞ for all p ≥ 0, or;
(ii) there exists some p0 ≥ 0 such that d

(
Λp(u),Λp+1(u)

)
< ∞ for all p ≥ p0;

the sequence {Λp(u)} is convergent to a fixed point u� of Λ; u� is the distinct
invariant point of Λ in the set Y = {y ∈ X : d (Λp0(u), v) < ∞} and
d (v, u�) ≤ d(v,Λ(v)) for all v in this set.

In this chapter, we consider the following functional equations

Rq

(
u + v

2

)
− Rq(u + v) = 3Rq(u)Rq(v)

Rq(u) + Rq(v) + 2
√

Rq(u)Rq(v)
(2)

and

Rq

(
u + v

2

)
+ Rq(u + v) = 5Rq(u)Rq(v)

Rq(u) +q (v) + 2
√

Rq(u)Rq(v)
. (3)

Clearly, the multiplicative inverse quadratic function Rq(u) = 1
u2 satisfies Eqs. (2)

and (3). Hence, Eqs. (2) and (3) are called as Multiplicative Inverse Quadratic Dif-
ference (MIQD) functional equation and Multiplicative Inverse Quadratic Adjoint
(MIQA) functional equation, respectively. We prove the stabilities of the above
Eqs. (2) and (3) in non-Archimedean fields by fixed point approach.

Let us presume that E and F are a non-Archimedean field and a complete non-
Archimedean field, respectively, in this chapter. In the sequel, we represent E∗ =
E\{0}, where E is a non-Archimedean field. For the sake of easy computation, we
describe the difference operators Δ1Rq,Δ2Rq : E∗ × E∗ −→ F by

Δ1Rq(u, v) = Rq

(
u + v

2

)
− Rq(u + v) − 3Rq(u)Rq(v)

Rq(u) + Rq(v) + 2
√

Rq(u)Rq(v)
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and

Δ2Rq(u, v) = Rq

(
u + v

2

)
+ Rq(u + v) − 5Rq(u)Rq(v)

Rq(u) + Rq(v) + 2
√

Rq(u)Rq(v)

for all u, v ∈ E∗.

2 Solution of Eqs. (2) and (3)

In this section, we attain the solution of functional equations (2) and (3). In the
following, we denote R\{0} by R∗.

Theorem 2 A mapping Rq : R∗ −→ R satisfies Eq. (1) if and only if Rq : R∗ −→
R satisfies Eq. (2) if and only if Rq : R∗ −→ R satisfies Eq. (3). Therefore, every
solution of Eqs. (2) and (3) is also a multiplicative inverse quadratic mapping.

Proof Let Rq : R∗ −→ R satisfy Eq. (1). Switching v into u in (1), we obtain

Rq(2u) = 1

4
Rq(u) (4)

for all u ∈ R∗. Now, letting u to u
2 in (4), one finds

Rq

(u

2

)
= 4Rq(u) (5)

for all u ∈ R∗. Again, substituting (u, v) by ( u
2 , v

2 ) in (1) and applying (5), we
obtain

Rq

(
u + v

2

)
= 4Rq(u)Rq(v)

Rq(u) + Rq(v) + 2
√

Rq(u)Rq(v)
(6)

for all u, v ∈ R∗. Subtracting (1) from (6), we arrive at (3).
Now, suppose Rq : R∗ −→ R satisfies Eq. (3). Plugging v by u in (3), we obtain

Rq(2u) = 1

4
RQ(u) (7)

for all u ∈ R∗. Now, replacing u by u
2 in (7), we get

Rq

(u

2

)
= 4Rq(u) (8)

for all u ∈ R∗. Using (8) in (3), we obtain
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Rq(u + v) = Rq(u)Rq(v)

Rq(u) + Rq(v) + √
Rq(u)Rq(v)

(9)

for all u, v ∈ R∗. Now, summing (9) with (3), we lead to (3).
Lastly, suppose Rq : R∗ −→ R satisfies Eq. (3). Letting v = u in (3), we obtain

Rq(2u) = 1

4
Rq(u) (10)

for all u ∈ R∗. Replacing u by u
2 in (10), we obtain

Rq

(u

2

)
= 4Rq(u) (11)

for all u ∈ R∗. In lieu of (11) and (3), we arrive at (1), which completes the proof.

3 Stabilities of Eqs. (2) and (3)

In this section, we investigate stabilities of Eqs. (2) and (3) via fixed point method
in non-Archimedean fields.

Theorem 3 Assume a mapping Rq : E∗ −→ F satisfies the inequality

∣∣Δ1Rq(u, v)
∣∣ ≤ ϕ(u, v) (12)

for all u, v ∈ E∗, where ϕ : E∗ × E∗ −→ F is a given function. If 0 < L < 1,

|2|−2ϕ
(

2−1u, 2−1v
)

≤ Lϕ(u, v) (13)

for all u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u) − rd(u)| ≤ L|2|2ϕ(u, u) (14)

for all u ∈ E∗.

Proof Plugging (u, v) by
(

u
2 , u

2

)
in (12), we obtain

∣∣∣Rq(u) − 2−2Rq

(
2−1u

)∣∣∣ ≤ ϕ
(

2−1u, 2−1u
)

(15)

for all u ∈ E∗. Let A = {p|p : E∗ −→ F }, and define

d(p, q) = inf{γ > 0 : |p(u) − q(u)| ≤ γ ϕ(u, u), for all u ∈ E∗}.
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In lieu of Example 1, we find that d turns into a complete generalized non-
Archimedean complete metric on A. Let Γ : A −→ A be a mapping defined
by

Γ (p)(u) = 2−2p
(

2−1u
)

for all u ∈ E∗ and p ∈ A. Then Γ is strictly contractive on A, in fact if |p(u) −
q(u)| ≤ γ ϕ(u, u), (u ∈ E∗), then by (13), we obtain

|Γ (p)(u) − Γ (q)(u)| = |2|−2
∣∣∣p

(
2−1u

)
− q

(
2−1u

)∣∣∣

≤ γ |2|−2ϕ
(

2−1u, 2−1u
)

≤ γLϕ(u, u) (u ∈ E∗).

From the above, we conclude that

(Γ (p), Γ (q)) ≤ Ld(p, q) (p, q ∈ A).

Consequently, the mapping d is strictly contractive with Lipschitz constant L.
Using (15), we have

|ρ(u)(s) − u(s)| =
∣∣∣3−11u

(
3−1s

)
− u(s)

∣∣∣

≤ ζ
( s

3
,
s

3

)
≤ |3|11Lζ(s, s) (s ∈ G∗).

This indicates that d(Γ (Rq), Rq) ≤ L|2|2. Due to Theorem 1 (ii), Γ has a distinct
invariant point rd : E∗ −→ F in the set G = {g ∈ F : d(u, g) < ∞} and for each
u ∈ E∗, rd(u) = lim

s→∞ Γ sRq(u) = lim
s→∞ 2−2sRq

(
2−su

)
(u ∈ E∗). Therefore, for

all u, v ∈ E∗,

|Δ1rd(u, v)| = lim
s→∞ |2|−2s

∣∣Δ1Rq

(
2−su, 2−sv

)∣∣

≤ lim
s→∞ |2|−2sϕ

(
2−su, 2−sv

)

≤ lim
s→∞ Lsϕ(u, v) = 0

which shows that rd is multiplicative inverse quadratic. Theorem 1 (ii) implies
d(Rq, rd(u)) ≤ d(Γ (Rq), Rq), that is, |Rq(u) − rd(u)| ≤ |2|2Lϕ(u, u) (u ∈
E∗). Let r ′

d : E∗ −→ F be a multiplicative inverse quadratic mapping which
satisfies (14), then r ′

d is a fixed point of Γ in A. However, by Theorem 1, Γ has only
one invariant in G. This completes the distinctiveness allegation of the theorem.
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The following theorem is dual of Theorem 3. We skip the proof as it is analogous
to Theorem 3.

Theorem 4 Suppose the mapping Rq : E∗ −→ F satisfies the inequality (13). If
0 < L < 1,

|2|2ϕ(2u, 2v) ≤ Lϕ(u, v),

for all u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u) − rd(u)| ≤ Lϕ
(u

2
,
u

2

)
,

for all u ∈ E∗.

The following corollaries follow directly from Theorems 3 and 4. In the
following corollaries, we assume that |2| < 1 for a non-Archimedean field E.

Corollary 1 Let ε(independent of u, v)≥ 0 be a constant exists for a mapping Rq :
E∗ −→ F such that the functional inequality satisfies

∣∣Δ1Rq(u, v)
∣∣ ≤ ε,

for all u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u) − rd(u)| ≤ ε,

for all u ∈ E∗.

Proof Assuming ϕ(u, v) = ε and selecting L = |2|−2 in Theorem 3, we get the
desired result.

Corollary 2 Let λ �= −2 and c1 ≥ 0 be real numbers exists for a mapping Rq :
E∗ −→ F such that the following inequality holds

∣∣Δ1Rq(u, v)
∣∣ ≤ c1

(|u|λ + |v|λ) ,

for all u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

∣∣Rq(u) − rd(u)
∣∣ ≤

{ |2|c1
|2|λ |u|λ, λ > −2

|2|3c1|u|λ, λ < −2

for all u ∈ E∗.
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Proof Consider ϕ(u, v) = c1
(|u|λ + |v|λ) in Theorems 3 and 4 and then assume

L = |2|−λ−2, λ > −2 and L = |2|λ+2, λ < −2, respectively, the proof follows
directly.

Corollary 3 Let c2 ≥ 0 and λ �= −2 be real numbers, and Rq : E∗ −→ F be a
mapping satisfying the functional inequality

∣∣Δ1Rq(u, v)
∣∣ ≤ c2|u|λ/2|v|λ/2,

for all u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u) − rd(u)| ≤
{

c2
|2|λ |u|λ, λ > −2

|2|2c2|u|λ, λ < −2

for all u ∈ E∗.

Proof It is easy to prove this corollary, by taking ϕ(u, v) = c2|u|λ/2|v|λ/2 and
then choosing L = |2|−λ−2, λ > −2 and L = |2|λ+2, λ < −2, respectively in
Theorems 3 and 4.

In the sequel, using fixed point technique, we investigate the stabilities of Eq. (3)
in the framework of non-Archimedean fields. Since the proof of the subsequent
results is akin to the results of Eq. (2), for the sake of completeness, we state only
theorems and skip their proofs.

Theorem 5 Let Rq : E∗ −→ F be a mapping satisfying the inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ ξ(u, v) (16)

for all u, v ∈ E∗, where ξ : E∗ × E∗ −→ [0,∞) is an arbitrary function. If
0 < L < 1,

|2|−2ξ
(

2−1u, 2−1v
)

≤ Lξ(u, v),

for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F gratifying Eq. (3) and

|Rq(u) − ra(u)| ≤ L|2|2ξ(u, u),

for each u ∈ E∗.

Theorem 6 Let Rq : E∗ −→ F be a mapping satisfying the inequality (16). If
0 < L < 1,

|2|2ξ(2u, 2v) ≤ Lξ(u, v),
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for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u) − ra(u)| ≤ Lξ
(u

2
,
u

2

)

for each u ∈ E∗.

Corollary 4 Let θ (independent of u, v)≥ 0 be a constant. Suppose a mapping
Rq : E∗ −→ F satisfies the inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ θ

for every u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u) − ra(u)| ≤ θ,

for each u ∈ E∗.

Corollary 5 Let α �= −2 and δ1 ≥ 0 be real numbers. If Rq : E∗ −→ F is a
mapping satisfying the inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ δ1

(|u|α + |v|α)
,

for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u) − ra(u)| ≤
{ |2|δ1|2|α |u|α, α > −2

|2|3δ1|u|α, α < −2

for each u ∈ E∗.

Corollary 6 Let Rq : E∗ −→ F be a mapping and δ2 ≥ 0 and α �= −2 be real
numbers. If the mapping Rq satisfies the functional inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ δ2|u|α/2|v|α/2

for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u) − ra(u)| ≤
{

δ2|2|α |u|α, α > −2

|2|2δ2|u|α, α < −2

for each u ∈ E∗.
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