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Abstract In this article, we study the existence and uniqueness of positive solu-
tion to a class of nonlinear fractional order differential equations with boundary
conditions. By using fixed point theorems on contraction mapping together with
topological degree theory, we investigate some sufficient conditions in order to
obtain the existence and uniqueness of positive solution for the considered problem.
Further we also investigate different kinds of Ulam stability for the considered
problem. Moreover, we also provide an example to justify the whole results.
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1 Introduction

The study of fractional differential equations is an important area for research in
recent time, because of its wide range of applications in describing the real-word
problems. These applications can be found in various scientific and engineering
disciplines such as physics, chemistry, optimization theory, biology, viscoelasticity,
control theory, signal processing, etc. For details, we refer [1–8]. Due to large
number of applications of fractional differential equations, researchers are giving
much attention to study fractional order differential equations, we refer the readers
to [9–13] and the references therein for the recent development in the theory of
fractional differential equations. It is worthwhile to mention that Caputo’s fractional
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order derivative plays important roles in applied problems as it provides known
physical interpretation for initial and boundary value problems of differential
equations of arbitrary order. On the other hand, the Riemann–Liouville derivative
of fractional order does not provide physical interpretations in most of the cases for
initial and boundary problems. Existence theory of differential equations of classical
as well as arbitrary order with multi-point boundary conditions has attracted the
attention of many researchers and is a rapidly growing area of research, because
such problems occurred in applications, we refer the readers to [14–19]. The area
devoted to study boundary value problems of classical order differential equations
has been studied and plenty of work is available on it by means of degree theory,
however, for differential equations of fractional order, the area is quite recent and
very few papers are available on it. As in [20], the authors studied the following
problems by using topological degree theory

cDqu(t) = f (t, u(t)), 0 < q < 1, t ∈ [0, T ],
u(0) + g(u) = u0,

and

cDqu(t) = f (t, u(t)), 0 < q < 1, t ∈ [0, T ],
au(0) + bu(T ) = c, a + b �= 0,

cDqu(t) = f (t, u(t)), 0 < q < 1, t ∈ [0, T ],
u(0) = u0,Δu(tk) = Ik(u(tk)), k = 1, 2, · · · n.

where g ∈ C([0, T ], R), f ∈ C([0, T ] × R, R), Ik : R → R is continuous
function called impulse. Similarly in [21], the authors studied the following multi-
point boundary value problems by topological degree theory given by

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ [0, 1],

u(0) = g(u),

m−2∑

k=0

λku(ηk) + h(u) = u(1).

where g, h ∈ C([0, 1], R), f ∈ C([0, 1] × R, R). In very recent times, Shah et
al. [22] developed sufficient conditions for the existence and uniqueness of positive
solution to a coupled system with four-point boundary conditions via topological
degree.

Motivated by the above work, in this article, we study the following class of
nonlinear fractional order differential equations with given boundary conditions as

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ J = [0, 1],
λ1u(0) + μ1u(1) = g1(u),

λ2u
′(0) + μ2u

′(1) = g1(u).



Topological Degree Theory and Ulam’s Stability Analysis of a Boundary Value. . . 75

where gk : C(J, R) → R f or k = 1, 2, are continuous functions and f : J × R →
R is nonlinear continuous function and λk, μk(k = 1, 2) are real constants with
λk + μk �= 0, k = 1, 2.

Here we remark that existence theory together with stability analysis is very
important from numerical as well as optimization point of view. Beside from exis-
tence theory of solutions to the nonlinear fractional differential equations, the aspect
devoted to stability analysis has been attracted the attention, see [23–26]. Different
kinds of stability including exponential, Mittag–Leffler, and Lyapunov stability have
been studied for the said differential equations, for details see [27–29]. Another
kind of stability which greatly attracted the researchers’ attention has been recently
considered for nonlinear and linear fractional differential equations, we refer [30–
33]. This important form of stability was first pointed out by Ulam in 1940 and
was brilliantly explained by Hyers in 1940. After that valuable contributions have
been done in this regard. In 1997, Rassias extended the aforementioned stability to
some other forms known as Ulam–Hyers–Rassias and generalized Ulam–Hyers–
Rassias stability. The concerned stability results have been investigated recently
for fractional differential equations, ordinary and functional equations, see [34].
The aforementioned stability has been investigated for functional, integral, and
differential equations very well, see [35–37]. In the last few years significant
contribution has been done in the aforementioned aspects. Problems devoted to
integral, functional, and differential equations have been evaluated for the aforesaid
stability, see [38–50, 55, 56].

Therefore in this work, the considered class of differential equations of fractional
order is investigated for positive solutions by means of contraction mapping prin-
ciple coupled with topological degree theory. Sufficient conditions are developed
under which the considered class of boundary value problem has at least one and
unique solution. Then using nonlinear analysis we develop sufficient conditions for
different kinds of Ulam stability.

We present the rest of the paper in four sections, in Sect. 2, we present some of
the basic results and theorems, which are helpful in this paper. Also, we give some
assumptions which are needed for this study. Section 3 is devoted to the main results.
In Sect. 4, we provide a detailed analysis for stability theory. In Sect. 5, we give an
example for verification of the established results. In the last section, we give a brief
conclusion.

2 Preliminaries Results

In this section, we recall some definitions and basic results which are helpful
throughout in this article, for details see [51–54].

The notation C(J, R) is used for Banach space for all continuous function
defined for J into R with norm

‖u‖c = sup{|u(t)| : 0 ≤ t ≤ 1}.
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We denote X = C[0, 1], we recall the following results from degree theory.

Definition 1 Let C ⊂ X and T : C → X be a continuous bounded map, then T is
α-condensing if α(T (V )) < α(V ) for all V bounded subset of C with α(V ) > 0.

The following theorem given by Isaia is important for our main results

Theorem 1 Let T : V → X be α-condensing and

V = {u ∈ X : thereexists λ ∈ [0, 1] suchthat u = λT u}.

If V is a bounded subset of X and there exists r > 0 such that V ⊂ Ur (0), then the
degree

D(I − λT ,Ur (0), 0) = 1, f orall λ ∈ [0, 1].

Consequently, T has at least one fixed point and the set of the fixed points of T lies
in Ur (0).

The following propositions are needed.

Proposition 1 If T1, T2 : V → X are α-Lipschitz maps with constants κ1 and κ2
respectively, then T1 + T2 : V → X are α-Lipschitz with constants κ1 + κ2.

Proposition 2 If T1 : V → X is compact, then T is α-Lipschitz with constant
κ = 0.

Proposition 3 If T1 : V → X is Lipschitz with constant κ , then T1 is α-Lipschitz
with the same constant κ .

Definition 2 The fractional(arbitrary) order integral of a function u ∈ L1([0, b], R)

of order q ∈ R+ is defined by

I qu(t) = 1

Γ (q)

∫ t

0
(t − s)q−1u(s)ds, n − 1 < q ≤ n.

Definition 3 The Caputo’s fractional order derivative of a function u on the interval
[0, b] is defined by

cDqu(t) = 1

Γ (n − q)

∫ t

0
(t − s)n−q−1u(n)(s) ds, n = [q] + 1,

where [q] represents integer part of q.

For the existence of solutions to the considered problem, we need the following
results:

Theorem 2 The fractional order differential eqnarray of order q > 0 of the form

cDqu(t) = 0, n − 1 < q ≤ n,
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has a solution of the form

u(t) = c0 + c1t + c2t
2 + . . . + cn−1t

n−1,

where ci ∈ R, for i = 0, 1, . . . , n − 1.

Theorem 3 The following result holds for a fractional order differential equation q

Iq [cDqu](t) = u(t) + c0 + c1t + c2t
2 + . . . + cn−1t

n−1,

for arbitrary ci ∈ R, for i = 0, 1, 2, . . . , n − 1.

The consequence of Theorems 2 and 3 leads us to the following useful result.

Theorem 4 Let u ∈ CJ and y ∈ C(J ×R, R), then the solution of linear fractional
differential equation

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u), (1)

λ2u
′(0) + μ2u

′(1) = g1(u).

where gk(k = 1, 2) : C(J, R) → R are nonlocal continuous functions and the real
constant λk, μk satisfy the relations λk + μk �= 0, for k = 1, 2, is given by

u(t) = g(u) +
∫ 1

0
G (t, s)f (s, u(s))ds,

where

g(u) = 1

λ1 + μ1
g1(u) + 1

λ2 + μ2

[
t − μ1

]
g2(u)

and G (t, s) is the Green’s function provided by

G (t, s)=
⎧
⎨

⎩

(t−s)q−1

Γ (q)
+ μ1(1−s)q−1

(λ1+μ1)Γ (q)
+ μ2

λ2+μ2

(
μ1

λ1+μ1
− t

)
(1−s)q−2

Γ (q−1)
, 0 ≤ s ≤ t ≤ 1,

μ1(1−s)q−1

(λ1+μ1)Γ (q)
+ μ2

λ2+μ2

(
μ1

λ1+μ1
− t

)
(1−s)q−2

Γ (q−1)
, 0 ≤ t ≤ s ≤ 1,

(2)

Proof Consider the following linear problem of FDES subject to the given boundary
condition for y ∈ C(J, R)

cDqu(t) = y(t), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u), (3)

λ2u
′(0) + μ2u

′(1) = g1(u).
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In view of Lemma 2, (3) can be written as

u(t) = c0 + c1t − I qy(t), c0, c1 ∈ R, (4)

using λ1u(0) + μ1u(1) − g1(u) = 0 in (4), we get

λ1c0 + μ1I
qy(t) + μ1c0 + μ1c1 = g1(u)

which yields

c0 = − μ1

λ1 + μ1
c1 − μ1

λ1 + μ1
I qy(t) + 1

λ1 + μ1
.

Now using λ2u
′(0) + μ2u

′(1) − g2(u) = 0 in (4), we get

λ2c1 + μ2I
q−1y(1) + μ2c1 = g2(u)

implies that

c1 = 1

λ2 + μ2

[
g2(u) − μ2I

q−1y(1)
]
.

By simple calculation, we get

c0 = 1

λ1+μ1

[
g1(u) − μ1

λ2 + μ2
g2(u)

]
+ μ1

λ1 + μ1

[
μ2

λ2 + μ2
I q−1y(1) − I qy(1)

]
.

Hence (4) becomes

u(t) = 1

λ1 + μ1
g1(u) + 1

λ2 + μ2
(t − μ1) g2(u) + μ1

λ1 + μ1
I qy(1)

+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t

)
I q−1y(1) + I qy(t).

hencewehave u(t) = g(u) +
∫ 1

0
G (t, s)f (s, u(s))ds, (5)

where

g(u) = 1

λ1 + μ1
g1(u) + 1

λ2 + μ2

[
t − μ1

]
g2(u) (6)

Thus in view of (5), our considered problem (1) is written as in the form of Fredholm
integral eqnarray given by
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u(t) = g(u) +
∫ 1

0
G (t, s)f (s, u(s))ds, t ∈ [0, 1], (7)

where G (t, s) is Green’s function defined as in (2) and g(u) is defined in (6).

In other words, we need the following assumptions to be hold, which are needed for
our main results:

(B1) For u, v ∈ C[0, 1], there exist kg ∈ [0, 1), such that

|g(u) − g(v)| ≤ kg‖u − v‖c;

(B2) For arbitrary u ∈ C(J, R), there exist Cg,Mg > 0 and r1 ∈ [0, 1),

| f (u) |≤ Cg||u||r1
c + Mg;

(B3) For arbitrary u ∈ C(J, R), there exist Cf ,Mf > 0 and r2 ∈ [0, 1),

| f (t, u) |≤ Cf ||u||r2
c + Mf ;

(B4) There exists a constant Lf > 0, such that

| f (t, u) − f (t, ū) |≤ Lf ‖u − ū‖c , f orany u, ū ∈ R.

Let an operator T : C(J, R) −→ C(J, R)bedef ined. Then 7 in the form of
operator equation as

T u(t) = Fu(t) + Gu(t), (8)

where

Fu(t)= 1

λ1 + μ1
g1(u) + 1

λ2 + μ2
[t − μ1]g2(u),Gu(t)=

∫ 1

0
G (t, s)f (s, u(s))ds.

The solution of operator equation (8) is the corresponding solution of the considered
problem (1).

3 Main Results

Theorem 5 The operator F : C(J, R) → C(J, R) is Lipschitz with constant
kg ∈ [0, 1). Consequently F is α-Lipschitz with constant kg . Moreover F obeys
the growth condition given by

‖Fu‖c ≤ Cg ‖u‖r1
c + Mg, f orevery u ∈ C(J, R). (9)
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Proof By (B1)

‖Fu−Fv‖c = sup

∣∣∣∣
1

λ1 + μ1
(g1(u) − g1(v)) +

(
t

λ2 + μ2
− μ1

λ2 + μ2

)
(g2(u) − g1(v))

∣∣∣∣

≤ 1∣∣λ1 + μ1
∣∣ |g1(u) − g1(v)| +

∣∣∣∣
1

λ2 + μ2
− μ1

λ2 + μ2

∣∣∣∣ |g2(u) − g2(v)|,

using t ≤ 1

‖Fu−Fv‖c ≤ kg1∣∣λ1 + μ1

∣∣‖u − v‖c + kg2∣∣λ2 + μ2

∣∣ ‖u − v‖c using kg1 , kg2 ∈ [0, 1)

≤
[

kg1∣∣λ1 + μ1

∣∣ + kg2∣∣λ2 + μ2

∣∣

]
‖u − v‖c ,

using

[
kg1∣∣λ1 + μ1

∣∣ + kg2∣∣λ2 + μ2

∣∣

]
= kg.

Thus

‖Fu − Fv‖ ≤ kg ‖u − v‖c .

Hence in view of Proposition 1, F is α-Lipschitz with constant kg . For growth
condition, consider

‖Fu‖c = sup

∣∣∣∣
1

λ1 + μ1
g1(u) + 1

λ2 + μ2
(t − μ1)g2(u)

∣∣∣∣

≤ sup

∣∣∣∣
1

λ1 + μ1
g1(u)

∣∣∣∣ + sup

∣∣∣∣
t − μ1

λ2 + μ2

∣∣∣∣ |g2(u)|

≤ Cg1

|λ1 + μ1|
‖u‖r1

c + Mg1 + 1

|λ2 + μ2|
Cg2‖u‖r1

c + Mg2

=
[

Cg1∣∣λ1 + μ1

∣∣ + Cg2∣∣λ2 + μ2

∣∣

]
‖u‖r1

c + Mg1 + Mg2

which implies that

‖Fu‖c ≤ Cg ‖u‖r1
c + Mg, Cg = Cg1∣∣λ1 + μ1

∣∣ + Cg2∣∣λ2 + μ2

∣∣ , Mg = Mg1 + Mg2 .

which is the growth condition (9).
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Theorem 6 The operator G : C(J, R) −→ C(J, R) is continuous, moreover G

satisfies the following growth condition:

‖Gun‖c ≤ M
Cf ‖u‖r2

c + Mf

Γ (q)
, f orevery u ∈ C(J, R),

where M = 1 +
∣∣∣ μ1
λ1+μ1

∣∣∣ +
∣∣∣ μ2
λ2+μ2

(
μ1

λ1+μ1

)∣∣∣ .

Proof Consider that {un} be the sequence of bounded set Bk = {‖u‖c ≤ k : u ∈
C(J, R)}.
Where Bk ⊆ C(J, R) and un → u as n → ∞ in Bk . We have to show that
‖Gun − Gu‖c → 0 as n → ∞.
Consider

|Gun(t) − Gu(t)| ≤
∫ 1

0
|G (t, s)| |f (s, un(s) − f (s, u(s))| ds

≤
∫ t

0

(t − s)q−1

Γ (q)
|f (s, un(s)) − f (s, u(s))| ds

+
∣∣∣∣

μ1

λ1 + μ1

∣∣∣∣
∫ 1

0

(1 − s)q−1

Γ (q)
|f (s, un(s)) − f (s, u(s))| ds

+
∣∣∣∣

μ2

λ2 + μ2

∣∣∣∣

[
μ1

λ1 + μ1

] ∫ 1

0

(1 − s)q−2

Γ (q − 1)

× |f (s, un(s)) − f (s, u(s))| ds.

In view of continuity of f, we have

f (t, un(s)) → f (t, u(s)) as n → ∞, f oreach t ∈ J.

Applying (B3), and using Lebesgue dominated convergent theorem, we have

∫ t

0

(t − s)q−1

Γ (q)

[
Cf ‖u‖r2

c + Mf

]
ds → 0 as n → ∞.

Consequently,
∣∣∣ μ1
λ1+μ1

∣∣∣
∫ 1

0
(1−s)q−1

Γ (q)

[
Cf ‖u‖r2

c + Mf

]
ds → 0 as n → ∞

and

∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣

[
μ1

λ1 + μ1

] ∫ 1

0

(1 − s)q−2

Γ (q − 1)

[
Cf ‖u‖r2

c + Mf

]
ds → 0 as n → ∞.

From which it is followed that ‖Gun − Gu‖ → 0 as n → ∞. Thus G is
continuous.
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For growth condition, consider

|Gun(t)| =
∣∣∣∣
∫ 1

0
G (t, s)f (s, un(s))ds

∣∣∣∣

≤
∫ 1

0
G (t, s) |f (s, un(s))| ds

≤
∫ 1

0

(t − s)q−1

Γ (q)

[
Cf ‖u‖r2

c + Mf

]
ds

+
∣∣∣∣

μ1

λ1 + μ1

∣∣∣∣
∫ 1

0

(1 − s)q−1

Γ (q)

[
Cf ‖u‖r2

c + Mf

]
ds

+ 1

Γ (q − 1)

∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣

(∣∣∣∣
μ1

λ1 + μ1
− 1

∣∣∣∣

)

×
∫ 1

0
(1 − s)q−2 [

Cf ‖u‖r2
c + Mf

]
ds.

From which, we have

‖Gun‖ ≤ Cf ‖u‖r2
c + Mf

Γ (q)

[
1 +

∣∣∣∣
μ1

λ1 + μ1

∣∣∣∣

(∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣ + 1

)]
. (10)

Hence

‖Gun‖ ≤ M

Γ (q)

(
Cf ‖u‖r2

c + Mf

)
. (11)

Theorem 7 The operator G : C (J, R) → C (J, R) is completely continuous and
α-Lipschitz with constant zero.

Proof For the compactness of G, we consider D ⊆ Bk ⊆ C (J, R) is bounded
set. We have to show that G(D) is relatively compact in C (J, R) with the help of
Arzelà Ascali theorem.
Let {un} be sequence in D ⊆ Bk for every un ∈ D . Then from Growth condition
(11), it is obvious that G(D) is bounded in C(J, R).

Let 0 ≤ t1 ≤ t2 ≤ 1, then for equi-continuity, we discuss two cases from Green’s
function (2) as:

Case I 0 ≤ s ≤ t ≤ 1.

|Gun(t1) − Gun(t2)| ≤ 1

Γ (q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
|f (s, un(s))| ds

+ 1

Γ (q)

∫ t2

t1

(t2 − s)q−1 |f (s − un(s))| ds
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+(t2 − t1)

∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣
1

Γ (q − 1)

∫ 1

0
(1 − s)q−2 |f (s, un(s))| ds

≤ 1

Γ (q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

] (
Cf ‖un‖r2

c + Mf

)
ds

+ 1

Γ (q)

∫ t2

t1

(t2 − s)q−1 (
Cf ‖un‖r2

c + Mf

)
ds

+(t2 − t1)

∣∣μ2
∣∣

∣∣λ2 + μ2
∣∣

1

Γ (q − 1)

∫ 1

0
(1−s)q−2 (

Cf ‖un‖r2
c +Mf

)
ds.

Therefore

‖Gun(t1) − Gun(t2)‖ =
[

(t
q

1 − t
q

2 )

Γ (q + 1)
+ (t2 − t1)

q

Γ (q + 1)
+ (t2 − t1)

∣∣μ2

∣∣
∣∣λ2 + μ2

∣∣Γ (q)

]

× (
Cf ‖u‖r2

c + Mf

)
. (12)

Clearly t1 → t2, then the right-hand side of (12) tends to zero. So

‖Gun(t1) − Gun(t2)‖ → 0 as t1 → t2.

Thus in this case G is equi-continuous.

Case II if 0 ≤ t ≤ s ≤ 0, then

|Gun(t1) − Gun(t2)| ≤ μ2 (t1 − t2)∣∣λ2 + μ2

∣∣Γ (q − 1)

∫ 1

0
(1 − s)q−2 |f (s, un(s))| ds

≤ μ2 (t1 − t2)∣∣λ2 + μ2

∣∣Γ (q)

(
Cf ‖u‖r2

c + Mf

) → 0, as t1 → t2.

So G in this case is also equi-continuous. Hence G is equi-continuous and G(D) ⊆
C(J, R), which satisfies the hypothesis of Arzela Ascali theorem. So G(D) is
relatively compact in C(J, R). G is completely continuous. It is easy to show that
G is α−Lipschitz with constant zero by using Proposition 2.

Theorem 8 Assume that (B1)–(B3) hold, then boundary value problem (1) has at
least one positive solution u ∈ C(J, R) and the set of the solutions is bounded in
C(J, R).

Proof As F,G, T : C(J, R) → C(J, R) have been defined previously are
continuous in view of continuity of f, g. Moreover F and G are α-Lipschitz. Thus
T is strict α-contraction. Consider

W0 = {u ∈ C(J, R) : thereexist λ ∈ [0, 1], λu = λT u} .
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To prove that W0 is bounded subset of C(J, R). Let u ∈ W0 such that u = λT u,

one can see

‖u‖c = ‖λT u‖c = λ (‖Fu + Gu‖c)

≤ λ (‖Fu‖c + ‖Gu‖c)

In view of Growth conditions of F,G, we get

‖u‖c ≤
(

Cg ‖u‖r1
c + Mg + M

Cf ‖u‖r2
c + Mf

Γ (q)

)
, r1, r2 ∈ [0, 1). (13)

Thus W0 is bounded. If not, let R = ‖u‖c , taking R = ‖u‖c such that R → ∞.

Then from (13), we have

1 ≤ lim
R→∞

λ

[
Cg ‖u‖r1

c + Mg

R
+ M

Cf ‖u‖r2
c + Mf

RΓ (q)

]
= 0.

which is contraction.
This implies that W0 is bounded and T has at least one fixed point by means of

Theorem 1, which is the corresponding positive solution of boundary value problem
therefore (1).

Theorem 9 Under the assumption (B1) to (B4), boundary value problem (1) has a
unique solution if G∗ < 1, where

G∗ = kg1∣∣λ1 + μ1

∣∣ + kg2∣∣λ2 + μ2

∣∣ + Lf

∫ 1

0
G (t, s)ds.

Proof From (B1)–(B3), we have

‖T u − T v‖ ≤ 1∣∣λ1 + μ1

∣∣ ‖g1(u) − g1(v)‖c + 1∣∣λ2 + μ2

∣∣ ‖g2(u) − g2(v)‖c

+
∫ 1

0
G (t, s) ‖f (s, u) − f (s, v)‖ ds

≤ kg1∣∣λ1 + μ1

∣∣ ‖u − v‖c + kg2∣∣λ2 + μ2

∣∣ ‖u − v‖c

+ Lf

∫ 1

0
G (t, s) ‖u − v‖c ds

≤
[

kg1 + kg2∣∣λ1 + μ1

∣∣ + ∣∣λ2 + μ2

∣∣ + Lf

∫ 1

0
G (1, s)ds

]
‖u − v‖c

‖T u − T v‖c ≤ G∗ ‖u − v‖c
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where

G∗ = kg1∣∣λ1 + μ1

∣∣ + kg2∣∣λ2 + μ2

∣∣ + Lf

∫ 1

0
G (1, s)ds < 1.

Hence T has a unique fixed point, which is the corresponding positive solution to
the considered problem (1).

4 Ulam’s Stability Analysis of Boundary Value Problem (1)

In this section, we prove necessary and sufficient conditions for various types
of Ulam’s stability like Ulam–Hyers, generalized Ulam–Hyers stability, Ulam–
Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability of the solutions to
the considered problem (1) of nonlinear fractional differential equations. In this
regard we review the following definitions and results for further analysis.

Definition 4 The solution u ∈ C([0, 1]) of the fractional differential equation given
by

cDqu(t) = f (t, u(t)), t ∈ J, (14)

is Ulam–Hyers stable if we can find a real number ĈLf ,kg,G ∗ > 0 with the property
that for every ε > 0 and for every solution u ∈ C[0, 1] of the inequality

∣∣∣∣
cDqu(t) − f (t, u(t))

∣∣∣∣ ≤ ε, t ∈ [0, 1], (15)

there exists unique solution v ∈ C[0, 1] of the given fractional differential equation
(1) with a constant ĈLf ,kg,G ∗ > 0 with

‖u − v‖c ≤ ĈLf ,kg,G ∗ε.

Definition 5 The solution u ∈ C[0, 1] of the fractional differential equation (1) is
called to be generalized Ulam–Hyers stable , if we can find

θf,q : (0,∞) → R+, θf,q(0) = 0,

such that for each solution u ∈ C[0, 1] of the inequality (15), we can find a unique
solution v ∈ C[0, 1] of the fractional differential equation (1) with

‖u − v‖c ≤ ĈLf ,kg,G ∗θf,q .

Next we recall the definitions of Ulam–Hyers–Rassias and generalized Ulam–
Hyers–Rassias stability [34] for our considered problem (1) as below:
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Definition 6 Fractional differential equation (1) is said to be Ulam–Hyers–Rassias
stable with respect to ϕ ∈ C([0, 1], R) if there exists a nonzero positive real constant
ĈLf ,kg,G ∗ such that for each ε > 0 and for every solution u ∈ C[0, 1] of the
inequality

∣∣∣∣
cDqu(t) − f (t, u(t))

∣∣∣∣ ≤ ϕ(t)ε, t ∈ [0, 1], (16)

there exists a solution v ∈ C[0, 1] of the Eq. (1), such that

|u(t) − v(t)| ≤ ĈLf ,kg,G ∗εϕ(t), t ∈ [0, 1].

Definition 7 Equation (1) is said to be generalized Ulam–Hyers–Rassias stable
with respect to ϕ ∈ C[0, 1], if there exists a real number ĈLf ,kg,G ∗ > 0 such
that for each solution u ∈ C[0, 1] of the inequality

∣∣∣∣
cDqu(t) − f (t, u(t))

∣∣∣∣ ≤ ϕ(t), t ∈ [0, 1], (17)

there exists a solution v ∈ C[0, 1] of the Eq. (1) such that |u(t) − v(t)| ≤
ĈLf ,kg,G ∗θ(ε)ϕ(t), t ∈ [0, 1].
Remark 1 A function u ∈ C[0, 1] is said to be the solution of inequality given in
(15) if and only if there exists a function � ∈ C[0, 1] that depends on u only such
that

(i) |�(t)| ≤ ε, f orall t ∈ [0, 1];
(ii) cDqu(t) = f (t, u(t)) + �(t), f orall t ∈ [0, 1].
Lemma 1 Under the assumption given in Remark 1, the solution u ∈ C[0, 1] of the
boundary value problem given by

⎧
⎨

⎩

cDqu(t) = f (t, u(t)) + �(t), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u),

λ2u
′(0) + μ2u

′(1) = g1(u)

(18)

satisfies the following relation:

∣∣∣∣u(t)−
(

g(u) +
∫ 1

0
G (t, s)f (s, u(s))ds

)∣∣∣∣ ≤ εG ∗, where max
t∈[0,1]

∫ 1

0
|G (t, s)|ds=G ∗.

(19)

Proof In view of Theorem 4, the solution of the problem (18) is given by

u(t) = g(u) +
∫ 1

0
G (t, s)f (s, u(s))ds +

∫ 1

0
G (t, s)�(s)ds,
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where G is the Green’s function as defined in Theorem 4. Using Remark 1 we can
easily get the result given in (19).

Theorem 10 Under the assumption (B1), (B4) and Lemma 1, the solution of the
considered problem (1) is Ulam’s stable and consequently generalized Ulam–Hyers
stable if the condition [kg + Lf G ∗] < 1 holds.

Proof Let u ∈ C[0, 1] be any solution of boundary value problem (1) and v ∈
C[0, 1] be the unique solution of the considered problem (1), then take

|u(t) − v(t)| =
∣∣∣∣u(t) −

(
g(v) +

∫ 1

0
G (t, s)f (s, v(s))ds

)∣∣∣∣

≤
∣∣∣∣u(t) −

(
g(u) +

∫ 1

0
G (t, s)f (s, u(s))ds

)∣∣∣∣

+
∣∣∣∣g(u) − g(v) +

∫ 1

0
G (t, s)[f (s, u(s)) − f (s, v(s))]

∣∣∣∣

≤ εG ∗ + kg‖u − v‖c + Lf G ∗‖u − v‖c.

From which we have

‖u − v‖c ≤ εG ∗ + [kg + Lf G ∗]‖u − v‖c,

where kg is defined in Theorem 5 which yields

‖u − v‖c ≤ ĈLf ,kg,G ∗ε, where
G ∗

1 − [kg + Lf G ∗] = ĈLf ,kg,G ∗ . (20)

Hence the solution of the considered problem (1) is Ulam–Hyers stable. Further if
we set θ(ε) = ε such that θ(0) = 0, then we get

‖u − v‖c ≤ ĈLf ,kg,G ∗θ(ε) (21)

which implies that the solution of the proposed problem is generalized Ulam–Hyers
stable.

(B5) Let for δϕ > 0 there exists a nondecreasing function ϕ ∈ ([0, 1], R+)

such that

∫ t

0

(t − s)q−1

Γ (q)
ϕ(s)ds ≤ δϕϕ(t), f or t ∈ [0, 1].

Theorem 11 Under the assumptions (B1), (B4), (B5), the solution of the consid-
ered problem (1) is Ulam–Hyers–Rassias stable if kg + Lf G ∗ < 1.
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Proof Let u ∈ C[0, 1] be any solution of the inequality (16) and v ∈ C[0, 1]) be
the unique solution of the problem (1), then the solution of

cDqu(t) = f (t, u(t)) + �(t), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u),

λ2u
′(0) + μ2u

′(1) = g1(u)

is given by

u(t) = 1

λ1 + μ1
g1(u) + 1

λ2 + μ2
(t − μ1) g2(u) + μ1

λ1 + μ1

∫ 1

0

(1 − s)q−1

Γ (q)
f (s, u(s))

+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t

)∫ 1

0

(1 − s)q−2

Γ (q − 1)
f (s, u(s))+

∫ t

0

(t − s)q−1

Γ (q)
f (s, u(s))

+ μ1

λ1 + μ1

∫ 1

0

(1 − s)q−1

Γ (q)
�(s) + μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t

)

×
∫ 1

0

(1 − s)q−2

Γ (q − 1)
�(s) +

∫ t

0

(t − s)q−1

Γ (q)
�(s)

u(t) = g(u) +
∫ 1

0
G (t, s)f (s, u(s))ds (22)

+ μ1

λ1 + μ1

∫ 1

0

(1 − s)q−1

Γ (q)
�(s) + μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t

)

×
∫ 1

0

(1 − s)q−2

Γ (q − 1)
�(s) +

∫ t

0

(t − s)q−1

Γ (q)
�(s).

Then from (22) we have

∣∣∣∣u(t) − g(u) −
∫ 1

0
G (t, s)f (s, u(s))ds

∣∣∣∣

=
∣∣∣∣

μ1

λ1 + μ1

∫ 1

0

(1 − s)q−1

Γ (q)
�(s) + μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t

)

×
∫ 1

0

(1 − s)q−2

Γ (q − 1)
�(s) +

∫ t

0

(t − s)q−1

Γ (q)
�(s)

∣∣∣∣

≤ εδϕϕ(t).

Then using the same fashion as in Theorem 10, we have

|u(t) − v(t)| ≤
∣∣∣∣u(t) −

(
g(u) +

∫ 1

0
G (t, s)f (s, u(s))ds

)∣∣∣∣
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+ |g(u) − g(v)| +
∣∣∣∣
∫ 1

0
G (t, s)f (s, u(s))ds

−
∫ 1

0
G (t, s)f (s, v(s))ds

∣∣∣∣

≤ εδϕϕ(t) + kg‖u − v‖c + Lf G ∗‖u − v‖c

which further gives‖u − v‖c ≤ εδϕϕ(t) + [kg + Lf G ∗]‖u − v‖c. (23)

Hence we have

‖u − v‖c ≤ĈLf ,kg,G ∗εδϕϕ(t), t ∈ [0, 1], where ĈLf ,kg,G ∗ = 1

1 − [kg + Lf G ∗] .

(24)

Hence from (24) we concluded that the solution of the considered problem (1)
is Ulam–Hyers–Rassias stable. Further it is easy to prove that the solution of the
considered problem (1) is generalized Ulam–Hyers Rassias stable.

5 Example

Example 1 Consider the boundary value problem

cD
3
2 u(t) = |u(t)|

(1 + et )(1 + 9u(t))
, t ∈ [0, 1],

u(0) + u(1) = g1(u) =
5∑

k=1

δku(tk), tk ∈ (0, 1),

5∑

k=1

δk ≤ 1

20
, (25)

1

2
ú(0) + 1

2
ú(1) = g2(u) =

3∑

k=1

δ́ku(tk), tk ∈ (0, 1),

3∑

k=1

δ́k ≤ 1

10
.

Then λ1 = μ1 = 1, λ2 = μ2 = 1
2 , g1(u) = ∑5

k=1 δku(tk), g2(u) = ∑3
k=1 δ́ku(tk),

and f (t, u) = |u(t)|
(1+et )(1+9u(t))

.
We have

|f (t, u) − f (t, v)| ≤
∣∣∣∣
|u| (1 + 9 |v|) − |v| (1 + 9 |u|)
(1 + et )(1 + 9 |u|)(1 + 9 |v|)

∣∣∣∣ ≤ 1

200
|u − v|.
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Clearly

Mf = 0, Cf = 1

2
, kg1 = 1

20
, kg2 = 1

10
, f rom which, we have

kg = 3

20
, r1 = r2 = 1

2
, Lf = 1

200
, q = 3

2
.

By simple computation, one can show that

G∗ =
1
20

2
+

1
10

1
+ 1

200

∫ 1

0
G (1, s)ds = 1

40
+ 1

10
+ 1

200

∫ 1

0
G (1, s)ds < 1.

Thus in view of Theorem 9, (25) has unique solution. Further, it is easy to show
that the set of solution is bounded by using Theorem 8. Further the condition kg +
Lf G ∗ < 1 obviously holds so by Theorem 10, the solution of the given problem is
Ulam–Hyers stable and consequently generalized Ulam–Hyers stable. Let ϕ(t) = t ,
then the conditions of Ulam–Hyers Rassias and generalized Ulam–Hyers Rassias
stability can be easily received by using Theorem 11.

6 Conclusion

Considering the Caputo fractional derivative we have successfully established
existence theory of at least one solution to a boundary value problem of fractional
differential equations by using topological degree theory. Further by using nonlinear
functional analysis we have developed appropriate conditions for different kinds
of Ulam stability theory including Ulam–Hyers, generalized Ulam–Hyers, Ulam–
Hyers Rassias, and generalized Ulam–Hyers–Rassias stability. The whole results
have been demonstrated by a proper example.

Acknowledgements The authors declare that there does not exist any conflict of interest. Further,
this work has been supported by the National Natural Science Foundation of China (11571378).

References

1. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
2. A.A. Kilbas, O.I. Marichev, S.G. Samko, Fractional Integrals and Derivatives (Theory and

Applications) (Gordon and Breach, Switzerland, 1993)
3. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations. North-Holland Mathematics Studies, vol. 204 (Elsevier, Amsterdam, 2006)
4. V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems (Cam-

bridge Academic, Cambridge, 2009)



Topological Degree Theory and Ulam’s Stability Analysis of a Boundary Value. . . 91

5. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
Equations (Wiley, New York, 1993)

6. I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering
(Academic, New York, 1999)

7. V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of
Particles, Fields and Media (Springer, HEP, Heidelberg, Germany, 2010)

8. I. Podlubny, Fractional differential equations. An introduction to fractional derivative, frac-
tional differential equations, to methods of their solution and some of their applications.
Mathematics in Science and Engineering, vol. 198 (Academic, San Diego, 1999)

9. M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential equations
with fractional order and nonlocal conditions. Nonlinear Anal. 71, 2391–2396 (2009)

10. B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear
integro-differential equations of fractional order. Appl. Math. Comput. 217, 480–487 (2010)

11. Z. Bai, On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal.
72, 916–924 (2010)

12. M. El-Shahed, J.J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value
problem of fractional order. Comput. Math. Appl. 59, 3438–3443 (2010)

13. A. Belarbi, M. Benchohra, A. Ouahab, Existence results for functional differential equations
of fractional order. Appl. Anal. 85, 1459–1470 (2006)

14. R.P. Agarwal, M. Benchohra, S. Hamani, Boundary value problems for differential inclusions
with fractional order. Adv. Stud. Contemp. Math. 12(2), 181–196 (2008)

15. M. Benchohra, J.R. Graef, S. Hamani, Existence results for boundary value problems with
nonlinear fractional differential equations. Appl. Anal. 87, 851–863 (2008)

16. M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential equations
with fractional order. Surv. Math. Appl. 3, 1–12 (2008)

17. K. Shah, R.A. Khan, Existence and uniqueness of positive solutions to a coupled system of
nonlinear fractional order differential equations with anti periodic boundary conditions. Differ.
Equ. Appl. 7(2), 245–262 (2015)

18. K. Shah, H. Khalil, R.A. Khan, Investigation of positive solution to a coupled system of
impulsive boundary value problems for nonlinear fractional order differential equations. J.
Chaos Solitons Fractals 77, 240–246 (2015)

19. C.F. Li, X.N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for
nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363–1375 (2010)

20. J. Wang , Y. Zhou, W. Wei, Study in fractional differential equations by means of topological
degree methods. Numer. Funct. Anal. Optim. 33(2), 216–238 (2012)

21. R.A. Khan, K. Shah, Existence and uniqueness of positive solutions to fractional order multi-
point boundary value problems. Commun. Appl. Anal. 19, 515–526 (2015)

22. K. Shah, A. Ali, R.A. Khan, Degree theory and existence of positive solutions to coupled
systems of multi-point boundary value problems. Bound. Value Probl. 2016, 43 (2016)

23. I.A. Rus, Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J.
Math. 26, 103–107 (2010)

24. M. Obloza, Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace
Mat. 13, 259–270 (1993)

25. J. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations. Appl. Math. Comput.
258, 72–83 (2015)

26. S. Tang, A. Zada, S. Faisal, M.M.A. El-Sheikh, T. Li, Stability of higher order nonlinear
impulsive differential equations. J. Nonlinear Sci. Appl. 9, 4713–4721 (2016)

27. G. Lijun, D. Wang, G. Wang, Further results on exponential stability for impulsive switched
nonlinear time-delay systems with delayed impulse effects. Appl. Math. Comput. 268,
186–200 (2015)

28. I. Stamova, Mittag-Leffler stability of impulsive differential equations of fractional order. Q.
Appl. Math. 73(3), 525–535 (2015)

29. J.C. Trigeassou, et al., A Lyapunov approach to the stability of fractional differential equations.
Signal Process. 91(3), 437–445 (2011)



92 A. Ali et al.

30. J. Wang, L. Lv, W. Zhou, Ulam stability and data dependence for fractional differential
equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 63, 1–10 (2011)

31. K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of Ψ -fractional pantograph
equations with boundary conditions. Bol. Soc. Paran. Mat. 22(2), 1–13 (2018)

32. A. Zada, S. Faisal, Y. Li, On the Hyers–Ulam stability of first order impulsive delay differential
equations. J. Funct. Spaces 2016, 6 pages (2016)

33. A. Zada, O. Shah, R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of
boundedness of Cauchy problems. Appl. Math. Comput. 271, 512–518 (2015)

34. T.M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc.
72, 297–300 (1978)

35. S.M. Ulam, Problems in Modern Mathematics (Wiley, New York, 1940)
36. S.M. Ulam, A Collection of Mathematical Problems (Interscience, New York, 1960)
37. P. Kumama, A. Ali, K. Shah, R.A. Khan, Existence results and Hyers-Ulam stability to a

class of nonlinear arbitrary order differential equations. J. Nonlinear Sci. Appl. 10, 2986–2997
(2017)

38. J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependece for fractional differential equations
with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 63, 1–10 (2011)

39. F. Haq, K. Shah, G. Rahman, M. Shahzad, Hyers-Ulam stability to a class of fractional
differential equations with boundary conditions. Int. J. Appl. Comput. Math. 2017, 1–13 (2017)

40. J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam–Hyers stability of a nonlinear fractional
Volterra integro-differential equation. Appl. Math. Lett. 81, 50–56 (2018)

41. A. Zada, S. Ali, Y. Li, Ulam’s type stability for a class of implicit fractional differential
equations with non-instantaneous integral impulses and boundary condition. Adv. Difference
Equ. 2017, 317 (2017)

42. J. Wang, M. Feckan, Y. Zhou, Ulam’s type stability of impulsive ordinary differential equations.
J. Math. Anal. Appl. 395, 258–264 (2012)

43. S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis
(Springer, New York, 2011)

44. J. Wang, M. Feckan, Y. Zhou, Ulam’s type stability of impulsive ordinary differential equations.
J. Math. Anal. Appl. 395, 258–264 (2012)

45. D.H. Hyers, G. Isac, T.M. Rassias, Stability of Functional Equations in Several Variables
(Birkhäuser, Basel, 1998)

46. S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis
(Hadronic Press, Palm Harbor, 2001)

47. S.M. Jung, Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett.
17, 1135–1140 (2004)

48. S.E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued
differential equation y′ = λy. Bull. Korean Math. Soc. 39, 309–315 (2002)

49. D.S. Cimpean, D. Popa, Hyers-Ulam stability of Euler’s equation. Appl. Math. Lett. 24, 1539–
1543 (2011)

50. J. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl.
Math. Lett. 25, 723–728 (2012)

51. J. Wang, L. Lv, Y. Zhou, Boundary value problems for fractional differential equations
involving Caputo derivative in Banach spaces. J. Appl. Math. Comput. 38(1–2), 209–224
(2012)

52. K. Deimling, Nonlinear Functional Analysis (Springer, New York, 1985)
53. K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics

(Springer, New York, 2010)
54. F. Isaia, On a nonlinear integral equation without compactness. Acta. Math. Univ. Comenianae.

75, 233–240 (2006)
55. S.M. Ulam, A Collection of the Mathematical Problems (Interscience, New York, 1960)
56. T.M. Rassias, On the stability of functional equations and a problem of Ulam. Acta. Appl.

Math. 62, 23–130 (2000)


	Topological Degree Theory and Ulam's Stability Analysis of a Boundary Value Problem of Fractional Differential Equations
	1 Introduction
	2 Preliminaries Results
	3 Main Results
	4 Ulam's Stability Analysis of Boundary Value Problem (1)
	5 Example
	6 Conclusion
	References


