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Abstract In this paper, the authors investigate the general solution of a new additive
functional equation
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f (xi)

where n is a positive integer with N−{1, 2, 3, 4} and discuss its generalized Hyers–
Ulam stability in Banach spaces and stability in fuzzy normed spaces using two
different methods.

1 Introduction

In 1940, Ulam [26] raised the following question. Under what conditions does there
exist an additive mapping near an approximately addition mapping? The case of
approximately additive functions was solved by Hyers [11] under the assumption
that for ε > 0 and f : E1 → E2 be such that ‖f (x + y) − f (x) − f (y)‖ ≤ ε for
all x, y ∈ E1 then there exists a unique additive mapping T : E1 → E2 such that
‖f (x) − T (x)‖ ≤ ε for all x ∈ E1.

In 1978, a generalized version of the theorem of Hyers for approximately linear
mapping was given by Rassias [20]. He proved that for a mapping f : E1 → E2 be
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such that f (tx) is continuous in t ∈ R and for each fixed x ∈ E1 assume that there
exist constant ε > 0 and p ∈ [0, 1) with

‖f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p) (1)

for all x, y ∈ E1 then there exists a unique R-Linear mapping T : E1 → E2 such
that

‖f (x) − T (x)‖ ≤ 2ε

2 − 2p
‖x‖p (2)

for all x ∈ E1.
A number of mathematicians were attracted by the result of Rassias. The stability

concept that was introduced and investigated by Rassias is called the Hyers–Ulam–
Rassias stability.

During the last decades, the stability problems of several functional equations
have been extensively investigated by a number of authors [1, 5, 8, 12, 23, 24].

In 1982–1989, Rassias [21, 22] replaced the sum appeared in the right-hand side
of the Eq. (1) by the product of powers of norms. In modelling applied problems
only partial information may be known (or) there may be a degree of uncertainty in
the parameters used in the model or some measurements may be imprecise. Due to
such features, we are tempted to consider the study of functional equations in the
fuzzy setting.

For the last 40 years, fuzzy theory has become a very active area of research and
a lot of development has been made in the theory of fuzzy sets to find the fuzzy
analogues of the classical set theory. This branch finds a wide range of applications
in the field of science and engineering.

Katsaras [13] introduced an idea of fuzzy norm on a linear space in 1984, in the
same year Wu and Fang [27] introduced a notion of fuzzy normed space to give a
generalization of the Kolmogoroff normalized theorem for fuzzy topological linear
spaces. In 1991, Biswas [4] defined and studied fuzzy inner product spaces in linear
space. In 1991, Felbin [7] introduced an alternative definition of a fuzzy norm on a
linear topological structures of a fuzzy normed linear spaces. In 1994, Cheng and
Mordeson [6] introduced a definition of fuzzy norm on a linear space in such a
manner that the corresponding induced fuzzy metric is of Kramosil and Michalek
[14]. In 2003, Bag and Samanta [2] modified the definition of Cheng and Mordeson
[6] by removing a regular condition. Recently various results have been investigated
by numerous authors, one can refer to [3, 9, 10, 15–19, 25].

Before we proceed to the main theorems, we will introduce some definitions and
an example to illustrate the idea of fuzzy norm.

Definition 1 Let X be a real linear space. A function N : X × R −→ [0, 1] is said
to be fuzzy norm on X if for all x, y ∈ X and a, b ∈ R.

(N1) N(x, a) = 0 for a ≤ 0;
(N2) x = 0 iff N(x, a) = 1 for all a > 0;
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(N3) N(ax, b) = N
(
x, b

|a|
)

if a �= 0;

(N4) N(x + y, a + b) ≥ min{N(x, a),N(y, b)};
(N5) N(x, .) is a non-decreasing function on R and lima−→∞N(x, a) = 1.

(N6) For x �= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a)

as the truth value of the statement the norm of x is less than or equal to the real
number a.

Definition 2 Let (X,N) be a fuzzy normed linear space. Let xn be a sequence
in X. Then xn is said to be convergent if there exists x ∈ X such that
limn→∞N (xn − x, t) = 1 for all t > 0. In that case, x is called the limit of
the sequence xn and we denote it by N − limn→∞xn = x.

Definition 3 A sequence xn in X is called Cauchy if for each ε > 0 and each t > 0
there exists n0 such that for all n ≥ n0 and all p > 0, we have N

(
xn+p − xn, t

)
>

1 − ε.

Definition 4 Every convergent sequence in a fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the
fuzzy normed space is called a fuzzy Banach space.

Definition 5 A mapping f : X → Y between fuzzy normed spaces X and Y
is continuous at a point x0 if for each sequence {xn} converging to x0 in X, the
sequence f {xn} converges to f {x0}. If f is continuous at each point of x0 ∈ X, then
f is said to be continuous on X.

Example Let (X, ‖.‖) be a normed linear space. Then

N(x, a) =
{

a
a+‖x‖ , a > 0, x ∈ X

0, a ≤ 0, x ∈ X

is a fuzzy norm on X.

In the following we will suppose that N(x, .) is left continuous for every x. A
fuzzy normed linear space is a pair(X,N), where X is a real linear space and N is
a fuzzy norm on X. Let (X,N) be a fuzzy normed linear space. A sequence {xn} in
X is said to be convergent if there exist x ∈ X such that limn→∞ N(xn − x, t) =
1 (t > 0). In that case, x is called the limit of the sequence {xn} and we write
N − limn→∞ xn = x. A sequence {xn} in fuzzy normed space (X,N) is called
cauchy if for each ε > 0 and δ > 0, there exist n0 ∈ N such that

N(xm − xn, δ) > 1 − ε, (m, n ≥ n0).

If each cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed space is called a fuzzy Banach space.
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In this paper, the authors investigate the general solution and generalized Hyers–
Ulam stability of a new type of n-dimensional functional equation of the form

f

(
n∑

i=1

xi

)
+

n∑
j=1;i �=j

f

⎛
⎝−xj − xi +

∑
1≤i<j<k≤n

xk

⎞
⎠ =

(
n2 − 5n + 6

2

) n∑
i=1

f (xi)

(3)
where n is a positive integer with N−{1, 2, 3, 4}, in the setting of Banach space and
fuzzy normed space using direct and fixed point methods.

Theorem 1 (Banach’s Contraction Principle) Let (X, d) be a complete metric
space and consider a mapping T : X −→ X which is strictly contractive mapping,
that is

(A1) d(T x, T y) ≤ Ld(x, y) for some (Lipschitz constant) L < 1, then

(i) The mapping T has one and only fixed point x∗ = T (x∗);
(ii) The fixed point for each given element x∗is globally attractive that is

(A2) limn−→∞T nx = x∗, for any starting point x ∈ X;

(iii) One has the following estimation inequalities:

(A3) (T nx, x∗) ≤ 1
1−L

d(T nx, T n+1x) , for all n ≥ 0, x ∈ X.

(A4) (x, x∗) ≤ 1
1−L

d(x, x∗),∀x ∈ X.

Theorem 2 (The Alternative of Fixed Point) Suppose that for a complete gener-
alized metric space (X, d) and a strictly contractive mapping T : X −→ Y with
Lipschitz constant L. Then, for each given element x ∈ X either

(B1) (T nx, T n+1x) = +∞, for all n ≥ 0, or
(B2) there exists natural number n0 such that:

(i) d(T nx, T n+1x) < ∞ for all n ≥ n0;
(ii) The sequence (T nx) is convergent to a fixed point y∗ of T;

(iii) y∗ is the unique fixed point of T in the set Y= {y ∈ X; d(T n0x, y)<∞};
iv) d(y∗, y) ≤ 1

1−L
d(y, T y) for all y ∈ L.

2 General Solution of the Functional Equation (3)

In this section, we obtain the general solution of the functional equation (3).
Throughout this section , let X and Y be real vector spaces.

Theorem 3 A function f : X −→ Y satisfies the functional equation (3) then
f : X −→ Y satisfies the functional equation (1).

Proof Let f : X −→ Y satisfy the functional equation (3). Replacing
(x1, x2, x3, . . . , xn) by (0, 0, . . . , 0), (x, 0, . . . , 0) and (x, x, 0 . . . , 0) in (3) we
obtain
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f (0) = 0, f (−x) = −f (x) and f (2x) = 2f (x) (4)

for all x ∈ X. It is easy to verify from (3) that

f
( x

2i

)
= 1

2i
f (x), i = 1, 2, 3, . . . , n (5)

for all x ∈ X. Setting (x1, x2, x3, . . . , xn) by (x, y, 0, . . . , 0) in (3) and using
oddness of f , we obtain the result of (1).

Define a mapping f : X → Y by

Df (x1, x2, . . . , xn) = f (

n∑
i=1

xi) +
n∑

j=1;i �=j

f

⎛
⎝−xj − xi +

∑
1≤i<j<k≤n

xk

⎞
⎠

−
(

n2 − 5n + 6

2

) n∑
i=1

f (xi)

for allx1, x2, . . . , xn ∈ X.

2.1 Stability Result for (3) in Banach Space Using Direct
Method

In this section, we consider X to be a real vector space and Y to be a Banach space,
we present the Hyers–Ulam stability of the functional equation (3).

Theorem 4 Let ψ : Xn −→ [0,∞) be a function such that∑∞
k=0

ψ(2kj x,2kj x,0,...,0)

2kj converges in R and

lim
k→∞

ψ(2kj x1, 2kj x2, . . . , 2kj xn)

2kj
= 0 (6)

for all x1, x2, . . . , xn ∈ X. If a function f : X −→ Y satisfies

||Df (x1, x2, . . . , xn)|| ≤ ψ(x1, x2, x3, . . . , xn) (7)

for all x1, x2, . . . , xn ∈ X, then there exists a unique additive function A : X −→ Y

which satisfies the functional equation (3) and

||f (x) − A(x)|| ≤ 1

(n2 − 5n + 6)

∞∑
k=0

ψ(2kj x, 2kj x, 0, . . . , 0)

2kj
(8)
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for all x ∈ X. The function A is given by

A(x) = lim
k−→∞

f (2kj x)

2kj
(9)

for all x ∈ X.

Proof Setting (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (7), we obtain

||
(

n2 − 5n + 6

2

)
f (2x) − (n2 − 5n + 6)f (x)|| ≤ ψ(x, x, 0, ..., 0) (10)

for all x ∈ X. It follows from (10) that

||f (2x)

2
− f (x)|| ≤ ψ(x, x, 0, . . . , 0)

(n2 − 5n + 6)
(11)

for all x ∈ X. Setting x by 2x in (11), we obtain

||f (22x)

2
− f (2x)|| ≤ ψ(2x, 2x, 0, . . . , 0)

(n2 − 5n + 6)
(12)

for all x ∈ X. It follows from (12) we get

||f (22x)

22
− f (2x)

2
|| ≤ ψ(2x, 2x, 0, . . . , 0)

2(n2 − 5n + 6)
(13)

for all x ∈ X. It follows from (11) and (13) that

||f (22x)

22
− f (x)|| ≤ 1

(n2 − 5n + 6)

[
ψ(x, x, 0, . . . , 0) + ψ(2x, 2x, 0, . . . , 0)

2

]
(14)

for all x ∈ X. Generalizing, we get

||f (2nx)

2n
− f (x)|| ≤ 1

(n2 − 5n + 6)

n−1∑
k=0

ψ(2kx, 2kx, 0, . . . , 0)

2k

≤ 1

(n2 − 5n + 6)

∞∑
k=0

ψ(2kx, 2kx, 0, . . . , 0)

2k
(15)

for all x ∈ X. Now we have to prove that the sequence
{

f (2kx)

2k

}
is a cauchy

sequence for all x ∈ X. For every positive integer n,m and for all x ∈ X, consider
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||f (2n+mx)

2n+m
− f (2nx)

2n
|| = 1

2n
||f (2nx) − f (2n+mx)

2m
||

≤ 1

(n2 − 5n + 6)

m−1∑
i=0

ψ(2i+nx, 2i+nx, 0, . . . , 0)

2i+n

≤ 1

(n2 − 5n + 6)

∞∑
i=0

ψ(2i+nx, 2i+nx, 0, . . . , 0)

2i+n
(16)

for all x ∈ X. By condition (6), the right-hand side approaches 0 as n → ∞. Thus,
the sequence is a cauchy sequence due to the completeness of the Banach space Y

A(x) = lim
k−→∞

f (2kx)

2k
∀x ∈ X,

is well-defined. We can see that (9) holds. To show that A satisfies (3), we set
(x, y) = (2nx1, 2nx2, . . . , 2nxn) in (7) and divide the resulting equation by 2n,
we obtain

1

2k
||Df (2kx1, 2kx2, . . . , 2kxn)|| ≤ 1

2k
ψ(2kx1, 2kx2, . . . , 2kxn).

Taking the limit as n→∞, using (6) and (9), A satisfies (3). To prove the uniqueness
of A, suppose that there exist another cubic function B : X → Y such that B

satisfies (3) and (8), we have

||A(x) − B(x)|| ≤ 1

2l
||A(2lx) − f (2lx)|| + ||f (2lx) − B(2lx)||

≤ 2

(n2 − 5n + 6)

∞∑
k=0

ψ(2k+1x, 2k+1x, 0, . . . ., 0)

2k+1 ∀x ∈ X.

By condition (6), the right-hand side approaches 0 as n → ∞, and it follows that
A(x) = B(x) for all x ∈ X. Hence, A is unique. This completes the proof of the
theorem.

The following corollary is an immediate consequence of Theorem 4, concerning
the stability of (3).

Corollary 1 Let λ and s be a non-negative real numbers. Let f : X −→ Y be a
function satisfying the inequality

||Df (x1, x2, x3, . . . , xn)|| ≤

⎧⎪⎪⎨
⎪⎪⎩

λ

λ(
∑n

i=1 ||xi ||s)
λ(

∏n
i=1 ||xi ||s + ∑n

i=1 ||xi ||ns)
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for all x1, x2, . . . , xn ∈ X. Then there exists a unique additive function A : X −→ Y

such that

||f (x) − A(x)|| ≤

⎧⎪⎪⎨
⎪⎪⎩

|2|λ
(n2−5n+6)

4λ||x||s
(n2−5n+6)|2−2s | ; s �= 1

4λ||x||ns

(n2−5n+6)|2−2ns | ; s �= 1
n

2.1.1 Stability Result for (3) in Banach Space Using Fixed Point Method

In this segment, the authors presented the generalized Ulam–Hyers stability of the
functional equation (3) in Banach space and using fixed point method.

Theorem 5 Let f : X −→ Y be a mapping for which there exists a function
ψ : Xn −→ [0,∞) with the condition

limk−→∞
ψ(ηk

i x1, η
k
i x2, . . . , η

k
i xn)

ηk
i

= 0 (17)

where

ηi =
{

2, if i = 0
1
2 , if i = 1

such that the functional inequality

||Df (x1, x2, . . . , xn)|| ≤ ψ(x1, x2, . . . , xn) (18)

for all x1, x2, . . . , xn ∈ W. If there exists L = L(i) such that the function

x −→ β(x) = ψ(x/2, x/2, 0, . . . , 0)

(n2 − 5n + 6)

has the property,

1

ηi

β(ηix) = Lβ(x) (19)

for all x ∈ X. Then there exists a unique additive function A : X −→ Y satisfying
the functional equation (3) and

||f (x) − A(x)|| ≤ L1−i

1 − L
β(x) (20)

holds for all x ∈ X.
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Proof Consider the set d = {u/u : X −→ Y, u(0) = 0)} and introduce the general-
ized metric on M. d(u, v) = inf {k ∈ (0,∞) : ||u(x) − v(x)|| ≤ kβ(x), x ∈ X} .

It is easy to see that (M, d) is complete. Define T : M −→ M by

T u(x) = 1

ηi

u(ηix)

for all x ∈ M. Now u, v ∈ M,

d(u, v) ≤ k ⇒ ||u(x) − v(x)|| ≤ kβ(x) ∀x ∈ X;

⇒ || 1

ηi

u(ηix) − 1

ηi

v(ηix)|| ≤ 1

ηi

kβ(ηix) ∀x ∈ X;

⇒ ||T u(x) − T v(x)|| ≤ kβ(x) ∀x ∈ X;

⇒ d(T u, T v) ≤ Lk

This implies d(T u, T v) ≤ Ld(u, v) for all u, v ∈ M. (i.e.,) T is strictly
contractive mapping on with Lipschitz constant L. Replacing (x1, x2, x3, . . . , xn)

by (x, x, 0, . . . , 0) in (18), we obtain

|| (n
2 − 5n + 6)

2
f (2x) − (n2 − 5n + 6)f (x)|| ≤ ψ(x, x, 0, . . . , 0) (21)

for all x ∈ X. It follows from (21) that

||f (x) − f (2x)

2
|| ≤ ψ(x, x, 0, . . . , 0)

(n2 − 5n + 6)
(22)

for all x ∈ X. Using (19) for the case i = 0, it reduces to

||f (x) − f (2x)

2
|| ≤ β(x)

for all x ∈ X.

i.e., d(f, Tf ) ≤ L ⇒ d(f, Tf ) ≤ 1 = L = L0 < ∞.

Again replacing x = x
2 in (21) and (22), we get

||
(

n2 − 5n + 6

2

)
f (x) − (n2 − 5n + 6)f

(x

2

)
|| ≤ ψ(

x

2
,
x

2
, 0, . . . , 0)
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and

||f (x) − 2f
(x

2

)
|| ≤ 2

(n2 − 5n + 6)
ψ(

x

2
,
x

2
, 0, . . . , 0) (23)

for all x ∈ X. Using (19) for the case i = 0, it reduces to

||f (x) − f (2x)

2
|| ≤ Lβ(x) (24)

for all x ∈ X. (i.e.,) d(f, Tf ) ≤ 2 ⇒ d(f, Tf ) ≤ 2 = L0 < ∞. In the above case,
we arrive

d(f, Tf ) ≤ L1−i .

Therefore (B2(i))holds. By (B2(ii)), it follows that there exists a fixed point A of
T in X, such that

A(x) = limk−→∞
f (ηk

i x)

ηk
i

(25)

for all x ∈ X. In order to prove A : X −→ Y is additive. Replacing (x1, x2, . . . , xn)

by (ηk
i x1, η

k
i x2, . . . , η

k
i xn) in (18) and dividing by ηk

i , it follows from (17) and (25),
we see that A satisfies (3) for all x1, x2, . . . , xn ∈ X. Hence A satisfies the functional
equation (3). By (B2(iii)), A is the unique fixed point of T in the set, Y = {f ∈
M; d(Tf,A) < ∞}. Using the fixed point alternative result, A is the unique function
such that

||f (x) − A(x)|| ≤ kβ(x)

for all x ∈ W and k > 0.Finally by (B2(iv)), we obtain

d(f,A) ≤ 1

1 − L
d(f, Tf )

(i.e., ) d(f,A) ≤ L1−i

1 − L
.

Hence, we conclude that

||f (x) − A(x)|| ≤ L1−i

1 − L
β(x)

for all x ∈ X. This completes the proof of the theorem.
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The following corollary is an immediate consequence of Theorem 5 concerning the
stability of (3).

Corollary 2 Let f : X −→ Y be a mapping and there exist real numbers λ and s
such that

||Df (x1, x2, . . . , xn)|| ≤

⎧⎪⎪⎨
⎪⎪⎩

λ

λ(
∑n

i=1 ||xi ||s)
λ(

∏n
i=1 ||xi ||s + ∑n

i=1 ||xi ||ns)

for all x1, x2, . . . , xn ∈ X. Then there exists a unique additive function A : X −→ Y

such that

||f (x) − A(x)|| ≤

⎧⎪⎪⎨
⎪⎪⎩

|2|λ
(n2−5n+6)

4λ||x||s
(n2−5n+6)|2−2s | ; s �= 1

4λ||x||ns

(n2−5n+6)|2−2ns | ; s �= 1
n

for all x ∈ X.

Proof Setting

ψ(x1, x2, x3, . . . , xn) ≤

⎧⎪⎪⎨
⎪⎪⎩

λ

λ(
∑n

i=1 ||xi ||s)
λ(

∏n
i=1 ||xi ||s + ∑n

i=1 ||xi ||ns)

for all x1, x2, . . . , xn ∈ X. Now

ψ(ηk
i x1, η

k
i x2, . . . , η

k
i xn)

ηk
i

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

ηk
i

λ

ηk
i

{∑n
i=1 ||ηk

i xi ||s
}

λ

ηk
i

{∏n
i=1 ||ηk

i xi ||ns + ∑n
i=1 ||ηk

i xi ||ns
}

=

⎧⎪⎪⎨
⎪⎪⎩

−→ 0 as k −→ ∞
−→ 0 as k −→ ∞
−→ 0 as k −→ ∞

i.e., (21) holds. But we have β(x) = 2
(n2−5n+6)

ψ(x
2 , x

2 , 0, . . . , 0).
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Hence

β(x) = 1

(n2 − 5n + 6)
ψ(

x

2
,
x

2
, 0, . . . , 0) =

⎧⎪⎪⎨
⎪⎪⎩

2λ
(n2−5n+6)

4λ||x||s
(n2−5n+6)2s

4λ||x||ns

(n2−5n+6)2ns

1

ηi

β(ηix) =

⎧⎪⎪⎨
⎪⎪⎩

1
ηi

2λ
(n2−5n+6)

1
ηi

4λ||x||s
(n2−5n+6)2s

1
ηi

4λ||x||ns

(n2−5n+6)2ns

=

⎧⎪⎪⎨
⎪⎪⎩

η−1
i β(x)

ηs−1
i β(x)

ηns−1
i β(x)

for all x ∈ X. Hence the inequality (3) holds for

L = 2−1 if i = 0 and L = 1
2−1 if i = 1

L = 2s−1 f or s < 1if i = 0 and L = 1
2s−1 f or s > 1 if i = 1.

L = 2ns−1 f or s < 1
n

if i = 0 and L = 1
2ns−1 f or s > 1

n
if i = 1.

Now, from (21) we prove the following cases:

Case1: L = 2−1 if i = 0

||f (x) − A(x)| ≤ L1−i

1−L
β(x) = (2−1)

1−2−1
2λ

(n2−5n+6)
= 2λ

(n2−5n+6)

Case2: L = 1
3−1 if i = 1

||f (x) − A(x)|| ≤ L1−i

1−L
β(x) = 1

1−2
2λ

(n2−5n+6)
= −2λ

(n2−5n+6)

Case3: L = 2 f or s < 1 if i = 0
||f (x) − A(x)|| ≤ L1−i

1−L
β(x) = 2s−1

1−2s−1
4λ||x||s

(n2−5n+6)2s = 4λ||x||s
(n2−5n+6)(2−2s )

Case4: L = 1
2s−1 f or s > 1 if i = 1

||f (x) − A(x)|| ≤ L1−i

1−L
β(x) = 1

1− 1
2s−1

4λ||x||s
(n2−5n+6)2s = 4λ||x||s

(n2−5n+6)(2s−2)

Case5: L = 2ns−1 f or s < 1 if i = 0
||f (x) − A(x)|| ≤ L1−i

1−L
β(x) = 2ns−1

1−2ns−1
4λ||x||ns

(n2−5n+6)2ns = 4λ||x||ns

(n2−5n+6)(2−2ns )

Case6: L = 1
2ns−1 f or s > 1

n
if i = 1

||f (x) − A(x)|| ≤ L1−i

1−L
β(x) = 1

1− 1
2ns−1

4λ||x||ns

(n2−5n+6)2ns = 4λ||x||ns

(n2−5n+6)(2ns−2)
.
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3 Stability Result for (3) in Fuzzy Normed Space Using
Direct Method

Throughout this section, assume that X,
(
Z,N

′)
, (Y,N) are linear space, Banach

space, and fuzzy normed space, respectively, we now investigate the fuzzy stability
of the functional equation (3).

Theorem 6 Let β ∈ {1,−1} be fixed and let ψ : Xn −→ Z be a mapping such

that for some d > 0 with 0 <
(

d
2

)β
< 1.

N ′ (ψ(2βx, 2βx, 0, . . . , 0), r
) ≥ N ′(dβψ(x, x, 0, . . . , 0), r) (26)

for all x ∈ X and all r > 0, d > 0, and

limk−→∞N ′ (ψ(2βkx1, 2βkx2, . . . , 2βkxn), 2βkr
)

= 1 (27)

for all x1, x2, . . . , xn ∈ X and all r > 0. Suppose an odd mapping f : X −→ Y

with f (0) = 0 satisfies the inequality

N(Df (x1, x2, . . . , xn), r) ≥ N ′(ψ(x1, x2, . . . , xn), r) (28)

for all r > 0 and all x1, x2, . . . , xn ∈ X. Then the limit

A(x) = N − limk−→∞
f (2βkx)

2βk
(29)

exists for all x ∈ X and the mapping A : X −→ Y is the unique additive mapping
such that

N(f (x) − A(x), r) ≥ N ′(ψ(x, x, 0, . . . , 0),
(n2 − 5n + 6)

2
r|2 − d|) (30)

for all x ∈ X and for all r > 0.

Proof Let β = 1. Replacing (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (28), we get

N

(
(n2 − 5n + 6)f (x) − (n2 − 5n + 6)

2
f (2x), r

)
≥ N ′(ψ(x, x, 0, . . . , 0), r)

(31)
for all x ∈ X and all r > 0. Replacing x by 2kx in (31), we obtain

N

(
f (2k+1x)

2
− f (2kx),

r

(n2 − 5n + 6)

)
≥ N ′(ψ(2kx, 2kx, 0, . . . , 0), r)

(32)
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for all x ∈ X and for all r > 0. Using (26), we get

N

(
f (2k+1x)

2
− f (2kx),

r

(n2 − 5n + 6)

)
≥ N ′(ψ(x, x, 0, . . . , 0),

r

dk
) (33)

for all x ∈ X and for all r > 0. It is easy to verify from (33) that

N

(
f (2k+1x)

2k+1 − f (2kx)

2k
,

r

(n2 − 5n + 6)2k

)
≥ N ′(ψ(x, x, 0, . . . , 0),

r

dk
)

(34)
holds for all x ∈ X and for all r > 0. Replacing r by dkr in (34),we get

N

(
f (2k+1x)

2k+1
− f (2kx)

2k
,

dkr

(n2 − 5n + 6)2k

)
≥ N ′(ψ(x, x, 0, . . . , 0), r) (35)

for all x ∈ X and for all r > 0. It follows from

f (2kx)

2k
− f (x) =

k−1∑
i=0

[
f (2i+1x)

2i+1
− f (2ix)

2i

]
(36)

and (35) that

N

(
f (2kx)

2k
− f (x),

k−1∑
i=0

dir

(n2 − 5n + 6)2i

)

≥ min

{
N

(
f (2i+1x)

2i+1 − f (2ix)

2i
,

dir

(n2 − 5n + 6)2i

)
: i = 0, 1, 2, . . . , k−1

}

≥ N ′(ψ(x, x, 0, . . . , 0), r) (37)

for all x ∈ X and for all r > 0. Replacing x by 2mx in (37), we get

N

(
f (2k+mx)

2k+m
− f (2mx)

2m
,

m+k−1∑
i=m

dir

(n2 − 5n + 6)2i

)
≥ N ′(ψ(x, x, 0, . . . , 0),

r

dm
)

(38)
for all x ∈ X and for all r > 0 and all m, k ≥ 0. Replacing r by dmr in (38), we get

N

(
f (2k+mx)

2k+m
− f (2mx)

2m
,

k−1∑
i=0

dir

(n2 − 5n + 6)2i

)
≥ N ′(ψ(x, x, 0, . . . , 0), r)

(39)
for all x ∈ X and for all r > 0 and all m, k ≥ 0. Using (N3) in (38), we obtain

N

(
f (2k+mx)

2k+m
− f (2mx)

2m
, r

)
≥ N ′

⎛
⎝ψ(x, x, 0, . . . , 0),

r∑m+k−1
i=m

di

(n2−5n+6)2i

⎞
⎠

(40)
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for all x ∈ X, r > 0 and all m, k ≥ 0. Since 0 < d < 2 and
∑k

i=0

(
d
2

)i
< ∞,

the Cauchy criterion for convergence and (N5) implies that
{

f (2kx)

2k

}
is a Cauchy

sequence in (Y,N). Since (Y,N) is a fuzzy Banach space, this sequence converges
to some point A(x) ∈ Y. So one can define the mapping A : X −→ Y by

A(x) := N − lim
k−→∞

f (2kx)

2k

for all x ∈ X. Letting m = 0 in (40), we get

N

(
f (2kx)

2k
− f (x), r

)
≥ N ′

⎛
⎝ψ(x, x, 0, . . . , 0),

r∑k−1
i=0

di

(n2−5n+6)2i

⎞
⎠ (41)

for all x ∈ X. Taking the limits as k −→ ∞ and using (N6), we arrive

N(f (x) − A(x), r) ≥ N ′(ψ(x, x, 0, . . . , 0), (n2 − 5n + 6)r.(2 − d))

for all x ∈ X and for all r > 0. Now, we claim that A is additive. Replacing
(x1, x2, x3, . . . , xn) by (2kx1, 2kx2, . . . , 2kxn) in (28), respectively, we get

N

(
1

2k
Df (2kx1, 2kx2, . . . , 2kxn), r

)
≥ N ′(ψ(2kx1, 2kx2, . . . , 2kxn), 2kr)

(42)
for all r > 0 and for all x1, x2, . . . , xn ∈ X. Since

lim
k−→∞ N ′ (ψ(2βkx1, 2βkx2, . . . , 2βkxn), 2βkr

)
= 1.

A satisfies the additive functional equation (3). Hence A : X → Y is additive. To
prove the uniqueness of A, let A′ be another additive mapping satisfying (30). Fix
x ∈ X, clearly A(2nx) = 2nA(x) and A

′
(2nx) = 2nA

′
(x) for all x ∈ X and all

n ∈ N . It follows from (30) that N(A(x) − A′(x), r) = N
(

A(2kx)

2k − A′(2kx)

2k , r
)

≥ min

{
N

(
A(2kx)

2k
− f (2kx)

2k
,
r

2

)
, N

(
f (2kx)

2k
− A′(2kx)

2k
,
r

2

)}

≥ N ′
(

ψ(2kx, 2kx, 0, . . . , 0),
r(n2 − 5n + 6)2k(2 − d)

2

)

≥ N ′
(

ψ(2kx, 2kx, 0, . . . , 0),
r(n2 − 5n + 6)2k(2 − d)

2dk

)
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for all x ∈ X and r > 0. Since limk−→∞ r(n2−5n+6)2k(2−d)

2dk = ∞, we obtain

limk→∞N ′
(

ψ(x, x, 0, . . . , 0),
r(n2 − 5n + 6)2k(2 − d)

2dk

)
= 1.

Thus N(A(x) − A′(x), r) = 1 for all x ∈ X and r > 0 and so A(x) = A′(x). For
β = −1, we can prove the result by a similar method.

The following corollary is an immediate consequence of Theorem 6, concerning the
stability for the functional equation (3).

Corollary 3 Suppose that the function f : X −→ Y satisfies the inequality

N(Df (x1.x2, . . . ., xn), r) ≥

⎧⎪⎪⎨
⎪⎪⎩

N ′(θ, r)

N ′(θ
∑n

i=1 ||xi ||s , r)
N ′(θ(

∑n
i=1 ||xi ||ns + Πn

i=1||xi ||s), r)

for all x1, x2, . . . , xn ∈ X and all r > 0, where θ, s are constants then there exists
a unique additive mapping A : X → Y such that

N(f (x) − A(x), r) ≥

⎧⎪⎪⎨
⎪⎪⎩

N ′(θ,
r(n2−5n+6)

|2|
N ′

(
2θ ||x||s , r(n2−5n+6)|2−2s |

2

)
; s �= 1

N ′
(

2θ ||x||ns,
r(n2−5n+6)|2−2ns |

2

)
; s �= 1

n

3.1 Stability Result for (3) in Fuzzy Normed Space Using Fixed
Point Method

Throughout this section, the authors investigated the generalized Ulam–Hyers
stability of the functional equation (3) in fuzzy normed space using fixed point
method.

To prove the stability result, we define the following μi is a constant such that

ηi =
{

2 if i = 0
1
2 if i = 1

and 
 is the set such that 
 = {t/t : W −→ B, t (0) = 0} .

Theorem 7 Let f : X −→ Y be a mapping for which there exists a function
ψ : Xn −→ Z with condition

limk−→∞N ′ (ψ(ηkx1, η
kx2, . . . , η

kxn), η
kr

)
= 1 (43)
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for all x1, x2, . . . , xn ∈ X and all r > 0 and satisfying the inequality

N(Df (x1, x2, . . . , xn), r) ≥ N ′(ψ(x1, x2, . . . , xn), r) (44)

for all x ∈ X and r > 0. If there exist L = L[i] such that the function x −→
β(x) = 1

(n2−5n+6)
ψ

(
x
2 , x

2 , 0, . . . , 0
)

has the property

N ′
(

L
1

ηi

β(ηix), r

)
= N ′ (β(x), r) (45)

for all x ∈ X and r > 0, then there exists a unique additive function A : X −→ Y

satisfying the functional equation (3) and

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1 − L
β(x), r

)

for all x ∈ X and r > 0.

Proof Let d be a general metric on 
 such that

d(t, u) = inf
{
k ∈ (0,∞)|N(t(x) − u(x), r) ≥ N ′(β(x), kr), x ∈ X, r > 0

}
It is easy to see that (
, d) is complete. Define T : 
 −→ 
 by T t (x) = 1

ηi
t (ηix)

for all x ∈ X,for t, u ∈ 
, we have

d(t, u) = k ⇒ N (t(x) − u(x), r) ≥ N ′(β(x), kr)

⇒ N

(
t (ηix)

ηi

− u(ηix)

ηi

, r

)
≥ N ′(β(ηix), kηir) (46)

⇒ N(T t (x) − T u(x), r) ≥ N ′(β(ηix), kηir)

⇒ N(T t (x) − T u(x), r) ≥ N ′(β(x), kLr)

⇒ d(T t (x) − T u(x)) ≥ kL

⇒ d(T t − T u, r) ≥ Ld(t, u)

for all t, u ∈ 
.Therefore T is strictly contractive mapping on 
 with Lipschitz
constant L, replacing (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (44), we get

N

(
(n2 − 5n + 6)

2
)f (2x) − (n2 − 5n + 6)f (x), r

)
≥ N ′ (ψ(x, x, 0, . . . , 0), r)

(47)
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for all x ∈ X and r > 0. Using (N3) in (47), we arrive

N

(
f (2x)

2
− f (x), r

)
≥ N ′

(
ψ(x, x, 0, . . . , 0)

(n2 − 5n + 6)
, r

)
(48)

for all x ∈ X and r > 0 with the help of (45) when i = 0, it follows from (48) that

⇒ N

(
f (2x)

2
− f (x), r

)
≥ N ′(Lβ(x), r)

⇒ d(Tf, f ) ≥ L = L1 = L1−i . (49)

Replacing x by x
2 in (47), we obtain

N
(
f (x) − 2f

(x

2

)
, r

)
≥ N ′

(
2

(n2 − 5n + 6)
ψ

(x

2
,
x

2
, 0, . . . , 0

)
, r

)

for all x ∈ X and r > 0, when i = 1, it follows from (49), we get

⇒ N
(
f (x) − 2f

(x

2

)
, r

)
≥ N ′(β(x), r)

⇒ T (f, Tf ) ≤ 1 = L0 = L1−i . (50)

Then from (49) and (50), we can conclude

⇒ T (f, Tf ) ≤ L1−i < ∞.

Now from the fixed point alternative in both cases, it follows that there exists a fixed
point A of T in 
 such that

A(x) = N − lim
k−→∞

f (ηkx)

ηk

for all x ∈ W and r > 0. Replacing (x1, x2, . . . , xn) by (ηk
i x1, η

k
i x2, . . . , η

k
i xn) in

(44), we arrive

N

(
1

ηk
i

Df (ηk
i x1, η

k
i x2, . . . , η

k
i xn), r

)
≥ N ′(ψ(ηk

i x1, η
k
i x2, . . . , η

k
i xn), η

k
i r)

for all r > 0 and all x1, x2, . . . , xn ∈ X. By proceeding the same procedure of the
Theorem 5.1 , we can prove the function A : X −→ Y is additive and it satisfies the
functional equation (3). By a fixed point alternative, since A is a unique fixed point
of T in the set

� = {f ∈ 
/d(f,A) < ∞} .
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Therefore A is a unique function such that

N(f (x) − A(x), r) ≥ N ′(β(x), kr)

for all x ∈ W and r > 0. Again using the fixed point alternative, we obtain

d(f,A) ≤ 1

1 − L
d(f, Tf )

⇒ d(f,A) ≤ L1−i

1 − L

⇒ N(f (x) − A(x), r) ≥ N ′
(

β(x)
L1−i

1 − L
, r

)

for all x ∈ X and r > 0. This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 7 concerning
the stability of (3).

Corollary 4 Suppose a function f : X −→ Y satisfies the inequality

N(Df (x1, x2, . . . , xn), r) ≥

⎧⎪⎪⎨
⎪⎪⎩

N ′(θ, r)

N ′(θ
∑n

i=1 ||xi ||s , r)
N ′(θ(

∑n
i=1 ||xi ||ns + Πn

i=1||xi ||s), r)

for all x1, x2, . . . , xn ∈ X and r > 0, where θ, s are constants with θ > 0. Then
there exists a unique additive mapping A : X −→ Y such that

N(f (x) − A(x), r) ≥

⎧⎪⎪⎨
⎪⎪⎩

N ′(θ,
r(n2−5n+6)

|2|
N ′

(
2θ ||x||s , r(n2−5n+6)|2−2s |

2

)
; s �= 1

N ′
(

2θ ||x||ns,
r(n2−5n+6)|2−2ns |

2

)
; s �= 1

n

for all x ∈ X and r > 0.

Proof Setting

ψ(x1, x2, x3, . . . , xn) ≤

⎧⎪⎪⎨
⎪⎪⎩

θ

θ(
∑n

i=1 ||xi ||s)
θ(

∏n
i=1 ||xi ||s + ∑n

i=1 ||xi ||ns)
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for all x1, x2, . . . , xn ∈ X. Then

N ′ (ψ
(
ηk
i x1, ηk

i x2, . . . , ηk
i xn

)
, ηk

i r
)

=

⎧⎪⎪⎨
⎪⎪⎩

N ′(θ, ηk
i
r)

N ′ (θ
∑n

i=1 ||xi ||s , η(1−s)k
i

r
)

N ′ (θ(
∑n

i=1 ||xi ||ns + Πn
i=1||xi ||s ), η(1−ns)k

i
r
)

=

⎧⎪⎪⎨
⎪⎪⎩

−→ 1 as k −→ ∞,

−→ 1 as k −→ ∞,

−→ 1 as k −→ ∞.

Thus, (6) holds. But we have

β(x) = 2

(n2 − 5n + 6)
ψ

(x

2
,
x

2
, 0, . . . , 0

)

has the property

N ′
(

L
1

ηi

β(ηix), r

)
≥ N ′(β(x), r)

for all x ∈ X and r > 0. Hence

N ′(β(x), r) = N ′ (ψ
(x

2
,
x

2
, 0, . . . , 0

)
, (n2 − 5n + 6)r

)

=

⎧⎪⎪⎨
⎪⎪⎩

N ′(θ, r(n2 − 5n + 6))

N ′
(

2
2s θ ||x||s , r(n2 − 5n + 6)

)
N ′

(
2

2ns θ ||x||ns, r(n2 − 5n + 6)
)

.

Now,

N ′
(

1

ηi

β(ηix), r

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N ′
(

θ
ηi

, r(n2 − 5n + 6)
)

N ′
(

θ
ηi

(
2
2s

)
||ηix||s , r(n2 − 5n + 6)

)
N ′

(
θ
ηi

(
2

2ns

)
||ηix||ns, r(n2 − 5n + 6)

)

=

⎧⎪⎪⎨
⎪⎪⎩

N ′(η−1
i β(x), r)

N ′(ηs−1
i β(x), r)

N ′(ηns−1
i β(x), r)

Now from the following cases for the conditions (i) and (ii)
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Case(i): L = 2−1 f or s = 0 if i = 0

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1−L
β(x), r

)
≥ N ′

(
2−1

1−2−1
2θ

(n2−5n+6)
, r

)
≥

N ′
(
θ,

r(n2−5n+6)
2

)
Case(ii): L =

(
1
2

)−1
f or s = 0 if i = 1

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1−L
β(x), r

)
≥ N ′

(
1

1−
(

1
2

)−1
2θ

(n2−5n+6)
, r

)
≥

N ′
(
θ,

−r(n2−5n+6)
2

)
Case(iii): L = (2)s−1 f or s < 1 if i = 0

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1 − L
β(x), r

)

≥ N ′
(

2s−1

1 − 2s−1

2θ ||x||s
(n2 − 5n + 6)2s

, r

)

≥ N ′
(

2θ ||x||s , r(n2 − 5n + 6)(2 − 2s)

2

)

Case(iv): L = (2)1−s f or s > 1 if i = 1

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1 − L
β(x), r

)

≥ N ′
(

21−s

1 − 21−s

2θ ||x||s
(n2 − 5n + 6)2s

, r

)

≥ N ′
(

2θ ||x||s , r(n2 − 5n + 6)(2s − 2)

2

)

Case(v): L = (2)ns−1 f or s < 1
n

if i = 0

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1 − L
β(x), r

)

≥ N ′
(

2ns−1

1 − 2ns−1

2θ ||x||ns

(n2 − 5n + 6)2ns
, r

)

≥ N ′
(

2θ ||x||ns,
r(n2 − 5n + 6)(2 − 2ns)

2

)
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Case(vi): L = (2)1−ns f or s < 1
n

if i = 1

N(f (x) − A(x), r) ≥ N ′
(

L1−i

1 − L
β(x), r

)

≥ N ′
(

21−ns

1 − 21−ns

2θ ||x||ns

(n2 − 5n + 6)2ns
, r

)

≥ N ′
(

2θ ||x||ns,
r(n2 − 5n + 6)(2ns − 2)

2

)

Hence the proof is completed.
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