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Preface

This edited volume, Frontiers in Functional Equations and Analytic Inequalities,
investigates functional equations and analytic inequalities in the broad sense and
is written by authors who are in these mathematical fields for the past 50 years. It
starts with fundamental notions of functional equations and analytic inequalities and
several methods of solving functional equations and analytic inequalities in various
spaces. It follows the progress of functional equations and analytic inequalities in the
last five decades via excellent research chapters dedicated to the approximation and
stability results of different types of functional equations and functional inequalities
due to Abel, Cauchy, Euler, Lagrange, Jensen, Schröder, d’Alembert, Poisson, Dry-
gas, Golab-Schinzel, etc., as well as very interesting new research results in analytic
inequalities related to Cauchy-Schwarz, Hölder, Minkowski, Heisenberg, Landau,
Ostrowski, Poincare, Sobolev, Hilbert, Hardy, Littlewood, and Po1ya inequalities.
Clearly, error estimates are expressed in terms of inequalities. This book is a forum
for exchanging ideas among eminent mathematicians from many parts of the world,
as a tribute to the Frontiers of Functional Equations and Analytic Inequalities. It
is intended to boost the cooperation among mathematicians working on a broad
variety of pure and applied mathematical areas. This transatlantic collection of
mathematical ideas and methods comprises a wide area of applications in which
equations, inequalities, and computational techniques pertinent to their solutions
play a core role, resulting in tremendous influence on our everyday life, because new
tools have been developed and revolutionary research results have been achieved,
bringing scientists of exact sciences even closer, by fostering the emergence of
new approaches, techniques, and perspectives in functional equations, analytic
inequalities, etc. Notice analytic inequalities is the backbone of pure and applied
mathematics. Based on them, we find all kinds of important estimates, necessary
to derive important conclusions in most of mathematics. Opial inequalities of all
kinds including fractional are used to establish uniqueness of initial value and
boundary problems in ordinary and partial differential equations. Also derive upper
bounds of solutions. Ostrowski inequalities are employed in quadrature problems
in connection to numerical analysis. Gruss inequalities are applied in probability in
covariance problems. Also, Ostrowski inequalities help find estimates in expected
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value in probability and statistics. Furthermore, analytic inequalities have a great
interest on their own merit, they present very surprising results, and thus they
deserve continuous research. At AMS-MathSciNet, searching for “inequalities,” we
found over 30,676 articles and books!!!

This project belongs to constructive and computational mathematics: that is, the
solution to the problem is given via computations and constructively. It is presented
as a visually completely described theoretical object, i.e., you see it and you know
it. It has nothing to do with existential mathematics where the solution is proved to
exist, but you do not know it! All in all, this book makes a great pillar of modern
mathematics based on classical and contemporary methods.

The functional equations part contains the following interesting topics:

• Hyperstability of a linear functional equation on restricted domains: F. Skof
solved the Hyers-Ulam problem for additive mappings on a restricted domain.
Also, S.M. Jung investigated the Hyers-Ulam stability for additive and quadratic
mappings on restricted domains, and John M. Rassias investigated the Hyers-
Ulam stability of mixed-type mappings on restricted domains. Hyers-Ulam’s
stability results to a three-point boundary value problem of nonlinear fractional-
order differential equations are established. Furthermore in this part, different
types of Ulam stability concepts for the aforesaid problem of nonlinear FDEs are
introduced. Finally, the whole analysis is verified by some adequate examples.

• Topological degree theory and Ulam’s stability analysis of a boundary value
problem of fractional differential equations: Here, the existence and uniqueness
of positive solution to a class of nonlinear fractional-order differential equa-
tions with boundary conditions are studied. By using fixed-point theorems on
contraction mapping together with topological degree theory, some sufficient
conditions in order to obtain the existence and uniqueness of positive solution
for the considered problem are investigated.

• On a variant of μ-Wilson’s functional equation with an endomorphism: The main
goal of this topic is to find the solutions (f, g) of the generalized variant of μ-
d’Alembert’s functional equation and μ-Wilson’s functional equation.

• On the additivity of maps preserving triple Jordan product A∗B + λB∗A on ∗-
algebras.

• General solution and Hyers-Ulam stability of duotrigintic functional equation
in multi-Banach spaces: In this part, the general form of a new duotrigintic
functional equation is introduced. Then, the general solution and the generalized
Hyers-Ulam stability of such functional equations in multi-Banach spaces are
investigated.

• Stabilities of MIQD and MIQA functional equations via fixed-point technique:
The stabilities of multiplicative inverse quadratic difference and multiplicative
inverse quadratic adjoint functional equations in the setting of non-Archimedean
fields via the fixed-point method are investigated.

• Hyers-Ulam stability of first-order differential equation via integral inequality:
In this part, the nonlinear integral inequality of Gollwitzer type is derived.
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• Stability of n-dimensional functional equations in Banach spaces and fuzzy
normed spaces: The general solution of a new generalized additive functional
equation is investigated, and its generalized Hyers-Ulam stability in Banach
spaces and stability in fuzzy normed spaces are discussed by using two different
fundamental methods.

• Measure zero stability problem for the Drygas functional equation with complex
involution: The Hyers-Ulam stability theorem for the famous σ -Drygas func-
tional equation f(x + y) + f( x + σ (y) ) = 2f(x) + f(y) + fσ ((y)), where σ is an
involution, is established.

• Fourier transforms and Ulam stabilities of linear differential equations: The
purpose of this part is to study the Hyers-Ulam stability and the generalized
Hyers-Ulam stability of the general linear differential equations of first-order
and second-order with constant coefficients using the classical Fourier transform
method.

• A class of functional equations of type d’Alembert on monoids: The solutions of
the functional equation f ( x y ) − f(σ (y)x) = g(x)h(y) are obtained, where σ is
an involutive automorphism.

• Hyers-Ulam stability of a discrete diamond-alpha derivative equation: Here, the
Hyers-Ulam stability (HUS) of a certain first-order linear constant coefficient
discrete diamond-alpha derivative equation is established. In particular, for each
parameter value, it is determined whether the equation has HUS, and if so,
whether there exists a minimum HUS constant.

• Hyers-Ulam stability for a first-order linear proportional nabla difference oper-
ator: The Hyers-Ulam stability (HUS) of a certain first-order proportional nabla
difference equation with a sign-alternating coefficient is established.

• Solution of generalized Jensen and quadratic functional equation.
• On some functional equations with applications in networks: Functional equa-

tions appear in many applications. They provide a powerful tool for narrowing
the models used to describe many phenomena. On the other hand, a boundary
value problem theory to investigate the solution of a special functional equation
is discussed.

• Approximate solutions of an (AQQ) additive-quadratic-quartic functional equa-
tion: In this paper, the authors prove some stability and hyperstability results
for an interesting new mixed type (AQQ), additive-quadratic-quartic functional
equation.

The inequalities part of the book deals with:

• Quantitative complex Korovkin theory via inequalities
• Ostrowski-type inequalities involving sublinear integrals with applications to

Choquet and Shilkret integrals
• Inequalities for special strong differential superordinations using a generalized

Salagean operator and Ruscheweyh derivative
• Conformable fractional Landau, Hilbert-Pachpatte, Ostrowski, Opial, Poincare,

and Sobolev inequalities
• Inequalities for h-quasiconvex functions
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• Local fractional inequalities of Opial, Hilbert-Pachpatte, Ostrowski, comparison
of means, Poincare, Sobolev, Landau, and Polya-Ostrowski

• Hermite-Hadamard-type integral inequalities for twice differentiable generalized
convex mappings

• Hardy-type inequalities using conformable calculus
• Inequalities for symmetrized or anti-symmetrized inner products of complex-

valued functions
• Generalized finite Hilbert transform and inequalities
• Hermite-Hadamard inequalities for composite convex functions
• Error estimates for approximate solutions of delay Volterra integral equations
• Harmonic and trace inequalities over Lipschitz domains
• Dirichlet beta function via generalized Mathieu series
• About Levinson inequality
• Integral norm inequalities for operators on differential forms
• Hadamard integral inequality for harmonically convex functions
• Norm inequalities for singular integrals related to operators and Dirac-Harmonic

equations
• Inequalities for analytic functions induced by a fractional integral operator

This volume’s results are expected to find applications in many areas of pure
and applied mathematics, especially in ordinary and partial differential equations
and fractional differential equations. As such, this book is suitable for researchers,
graduate students, and related seminars, also to be in all science and engineering
libraries.

The preparation of volume took place during 2018–2019 in Memphis, Tennessee,
USA, and Athens, Greece.

Memphis, TN, USA George A. Anastassiou
Athens, Greece John Michael Rassias
May 1, 2019
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Complex Korovkin Theory via
Inequalities: A Quantitative Approach

George A. Anastassiou

Abstract Let K be a compact convex subset of C and C (K,C) be the space
of continuous functions from K into C. We consider bounded linear operators
from C (K,C) into itself. We assume that these are bounded by companion real
positive linear operators. We study quantitatively the rate of convergence of the
approximation and high order approximation of these complex operators to the
unit operators. Our results are inequalities of Korovkin type involving the complex
modulus of continuity of the engaged function or its derivatives and basic test
functions.

2010 Mathematics Subject Classification 41A17, 41A25, 41A36

1 Introduction

The study of the convergence of positive linear operators became more intensive
and attractive when P. Korovkin (1953) proved his famous theorem (see [6], p. 14).

Korovkin’s First Theorem Let [a, b] be a compact interval in R and (Ln)n∈N be
a sequence of positive linear operators Ln mapping C ([a, b]) into itself. Assume
that (Lnf ) converges uniformly to f for the three test functions f = 1, x, x2. Then
(Lnf ) converges uniformly to f on [a, b] for all functions of f ∈ C ([a, b]).

So a lot of authors since then have worked on the theoretical aspects of the above
convergence. But R. A. Mamedov (1959) (see [7]) was the first to put Korovkin’s
theorem in a quantitative scheme.

Mamedov’s Theorem Let {Ln}n∈N be a sequence of positive linear operators in
the space C ([a, b]), for which Ln1 = 1, Ln (t, x) = x + αn (x), Ln

(
t2, x

) =
x2 + βn (x). Then it holds

G. A. Anastassiou (�)
Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
e-mail: ganastss@memphis.edu

© Springer Nature Switzerland AG 2019
G. A. Anastassiou and J. M. Rassias (eds.), Frontiers in Functional Equations
and Analytic Inequalities, https://doi.org/10.1007/978-3-030-28950-8_1
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‖Ln (f, x)− f (x)‖∞ ≤ 3ω1

(
f,
√
dn

)
, (1)

where ω1 is the first modulus of continuity and dn =
∥∥βn (x)− 2xαn (x)

∥∥∞ .
An improvement of the last result was the following.

Shisha and Mond’s Theorem (1968, see [9]) Let [a, b] ⊂ R be a compact interval.
Let {Ln}n∈N be a sequence of positive linear operators acting on C ([a, b]). For n =
1, 2, . . . , suppose Ln (1) is bounded. Let f ∈ C ([a, b]). Then for n = 1, 2, . . . , it
holds

‖Lnf − f ‖∞ ≤ ‖f ‖∞ · ‖Ln1− 1‖∞ + ‖Ln (1)+ 1‖∞ · ω1
(
f,μn

)
, (2)

where

μn :=
∥∥∥
(
Ln

(
(t − x)2

))
(x)

∥∥∥
1
2

∞ . (3)

Shisha–Mond inequality generated and inspired a lot of research done by many
authors worldwide on the rate of convergence of a sequence of positive linear
operators to the unit operator, always producing similar inequalities, however, in
many different directions.

The author (see [1]) in his 1993 research monograph produces in many directions
best upper bounds for |(Lnf ) (x0)− f (x0)|, x0 ∈ Q ⊆ R

n, n ≥ 1, compact
and convex, which lead for the first time to sharp/attained inequalities of Shisha–
Mond type. The method of proving is probabilistic from the theory of moments.
His pointwise approach is closely related to the study of the weak convergence with
rates of a sequence of finite positive measures to the unit measure at a specific point.

The author in [3, pp. 383–412] continued this work in an abstract setting: Let
X be a normed vector space, Y be a Banach lattice; M ⊂ X is a compact and
convex subset. Consider the space of continuous functions from M into Y , denoted
by C (M, Y ); also consider the space of bounded functions B (M, Y ). He studied
the rate of the uniform convergence of lattice homomorphisms T : C (M, Y ) →
C (M, Y ) or T : C (M, Y )→ B (M, Y ) to the unit operator I . See also [2].

Also the author in [4, pp. 175–188] continued the last abstract work for bounded
linear operators that are bounded by companion real positive linear operators. Here
the involved functions are from [a, b] ⊂ R into (X, ‖·‖) a Banach space.

All the above have inspired and motivated the work of this chapter. Our results
are of Shisha–Mond type, i.e., of Korovkin type.

Namely here let K be a convex and compact subset of C and L be a linear
operator from C (K,C) into itself, and let L̃ be a positive linear operator from
C (K,R) into itself, such that |L (f )| ≤ λL̃ (|f |), ∀ f ∈ C (K,C), where λ > 0.

Clearly then L is a bounded linear operator. Here we create a complete
quantitative Korovkin type theory over the last described setting.
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2 Preparation and Motivation

We need

Theorem 1 ([5]) Let K ⊆ (C, |·|) and f a function from K into C. Consider the
first complex modulus of continuity

ω1 (f, δ) := sup
x,y∈K
|x−y|<δ

|f (x)− f (y)| , δ > 0. (4)

We have:

(1)′ If K is open convex or compact convex, then ω1 (f, δ) < ∞, ∀ δ > 0, where
f ∈ UC (K,C) (uniformly continuous functions).

(2)′ If K is open convex or compact convex, then ω1 (f, δ) is continuous on R+ in
δ, for f ∈ UC (K,C) .

(3)′ If K is convex, then

ω1 (f, t1 + t2) ≤ ω1 (f, t1)+ ω1 (f, t2) , t1, t2 > 0, (5)

that is, the subadditivity property is true. Also it holds

ω1 (f, nδ) ≤ nω1 (f, δ) (6)

and

ω1 (f, λδ) ≤ λ�ω1 (f, δ) ≤ (λ+ 1) ω1 (f, δ) , (7)

where n ∈ N, λ > 0, δ > 0, ·� is the ceiling of the number.
(4)′ Clearly in general ω1 (f, δ) ≥ 0 and is increasing in δ > 0 and ω1 (f, 0) = 0.
(5)′ If K is open or compact, then ω1 (f, δ)→ 0 as δ ↓ 0, iff f ∈ UC (K,C) .
(6)′ It holds

ω1 (f + g, δ) ≤ ω1 (f, δ)+ ω1 (g, δ) , (8)

for δ > 0, any f, g : K → C, K ⊂ C is arbitrary.

Next we give examples that motivate our main assumptions in this chapter.

Example 1 Let K ⊂ C be a compact and convex set, l : C (K,C) → C a linear
functional, and l̃ : C (K,R) → R a positive linear functional. If f ∈ C (K,C),
then |f | ∈ C (K,R). We want to see that

|l (f )| ≤ λ̃l (|f |) , where λ > 0 (9)

is possible.
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Also, we want to see that

l (cg) = c̃l (g) , ∀ g ∈ C (K,R) , ∀ c ∈ C, (10)

is also possible.
So here is a concrete example of l, l̃.
Take K = [a1, b1] × [a2, b2] ⊂ C a rectangle. Here z = x + iy ∈ C, and

f (z) = f1 (x, y) + if2 (x, y). We have that f ∈ C (K,C) iff f1, f2 ∈ C (K,R) .
Define the following linear functional

l (f ) :=
∫ b1

a1

∫ b2

a2

f1 (x, y) dxdy + i
∫ b1

a1

∫ b2

a2

f2 (x, y) dxdy, ∀ f ∈ C (K,C) .
(11)

This is a linear functional from C (K,C)→ C.

Let now g ∈ C (K,R), then

l (g) =
∫ b1

a1

∫ b2

a2

g (x, y) dxdy ∈ R, (12)

so that l̃ := l|C(K,R) is a positive linear functional from C (K,R) into R.
Let c ∈ K , then c = a + ib, hence cg = (a + ib) g = ag + ibg, thus

l (cg) =
∫ b1

a1

∫ b2

a2

(ag (x, y)) dxdy + i
∫ b1

a1

∫ b2

a2

(bg (x, y)) dxdy = (13)

a

∫ b1

a1

∫ b2

a2

g (x, y) dxdy + ib
∫ b1

a1

∫ b2

a2

g (x, y) dxdy =

(a + ib)
∫ b1

a1

∫ b2

a2

g (x, y) dxdy = c

∫ b1

a1

∫ b2

a2

g (x, y) dxdy = c̃l (g) .

Thus

l (cg) = c̃l (g) (14)

is true, where

l̃ (g) :=
∫ b1

a1

∫ b2

a2

g (x, y) dxdy, ∀ g ∈ C (K,R) .

Next, we notice that
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|l (f )| ≤
∫ b1

a1

∫ b2

a2

|f1 (x, y)| dxdy +
∫ b1

a1

∫ b2

a2

|f2 (x, y)| dxdy =

∫ b1

a1

∫ b2

a2

(|f1 (x, y)| + |f2 (x, y)|) dxdy ≤ (15)

√
2
∫ b1

a1

∫ b2

a2

√
(f1 (x, y))

2 + (f2 (x, y))
2dxdy =

√
2
∫ b1

a1

∫ b2

a2

|f (z)| dxdy = √2̃l (|f |) .

That is,

|l (f )| ≤ √2̃l (|f |) , ∀ f ∈ C (K,C) (16)

is valid.
Relations (14) and (16) motivate our major assumptions of our theory here.

We continue with a more general example.

Example 2 Let K be a compact and convex subset of C, and f ∈ C (K,C), which
is f (z) = u (x, y)+ iv (x, y) = u+ iv, where z = x + iy, z ∈ K; x, y ∈ R.

All linearities here are over the field of R.
Consider L̃ : C (K,R) → C (K,R) a positive linear operator. And consider

L : C (K,C)→ C (K,C) the linear operator such that:

L (f ) (z) := L̃ (u) (x, y)+ iL̃ (v) (x, y) , (17)

indeed L is a linear operator.
Notice from |u| ≤ |u| ⇔ − |u| ≤ u ≤ |u| ⇔ −L̃ (|u|) ≤ L̃ (u) ≤ L̃ (|u|) ⇔∣∣L̃ (u)
∣∣ ≤ L̃ (|u|).

Thus

|L (f ) (z)| ≤ ∣∣L̃ (u) (x, y)∣∣+ ∣∣L̃ (v) (x, y)∣∣ ≤

L̃ (|u|) (x, y)+ L̃ (|v|) (x, y) = L̃ (|u| + |v|) (x, y) ≤
√

2L̃
(√

u2 + v2
)
(x, y) = √2L̃ (|f (z)|) = √2L̃ (|f |) (z) . (18)

We have proved that
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(1) |L (f )| (z) ≤ √2L̃ (|f |) (z) , ∀ z ∈ K. (19)

Next, let g ∈ C (K,R), and c ∈ C, i.e. c = a + bi; a, b ∈ R. Then cg = ag + ibg.
Clearly L (cg) = L̃ (ag)+ iL̃ (bg) = aL̃ (g)+ ibL̃ (g) = cL̃ (g) .

That is true

(2) L (cg) = cL̃ (g) , ∀ c ∈ C and ∀ g ∈ C (K,R) . (20)

Properties (1) and (2), see (19), (20), justify our theory here. Notice that f ∈
C (K,C), iff u, v ∈ C (K,R) .
Application 2 Take K := [0, 1]2, z ∈ K (z = x + iy), x, y ∈ [0, 1] . Let g ∈
C
(
[0, 1]2 ,R

)
, then the two-dimensional Bernstein polynomials are

Bn1,n2 (g) (x, y) :=
n1∑

k1=0

n2∑

k2=0

g

(
k1

n1
,
k2

n2

)(
n1

k1

)(
n2

k2

)
xk1 (1− x)n1−k1 yk2 (1− y)n2−k2 , (21)

and they converge uniformly to g, for n1, n2 →∞.
Thus, for f ∈ C ([0, 1]2 ,C

)
, we define

BC

n1,n2
(f ) (z) := Bn1,n2 (u) (x, y)+ iBn1,n2 (v) (x, y) , (22)

the complex Bernstein operators.
Indeed it is

BC

n1,n2
(f ) (z) =

n1∑

k1=0

n2∑

k2=0

u

(
k1

n1
,
k2

n2

)(
n1

k1

)(
n2

k2

)
xk1 (1− x)n1−k1 yk2 (1− y)n2−k2 +

i

n1∑

k1=0

n2∑

k2=0

v

(
k1

n1
,
k2

n2

)(
n1

k1

)(
n2

k2

)
xk1 (1− x)n1−k1 yk2 (1− y)n2−k2 =

n1∑

k1=0

n2∑

k2=0

[
u

(
k1

n1
,
k2

n2

)
+ iv

(
k1

n1
,
k2

n2

)](
n1

k1

)(
n2

k2

)

xk1 (1− x)n1 − k1 yk2 (1− y)n2 − k2,

(23)
a complex linear operator.

Notice that
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∣∣∣BC

n1,n2
(f ) (z)− f (z)

∣∣∣ =
∣∣(Bn1,n2 (u) (x, y)− u (x, y)

)+ i (Bn1,n2 (v) (x, y)− v (x, y)
)∣∣ =

√(
Bn1,n2 (u) (x, y)− u (x, y)

)2 + (Bn1,n2 (v) (x, y)− v (x, y)
)2 =: (∗) . (24)

We have that
∣∣Bn1,n2 (u) (x, y)− u (x, y)

∣∣ < ε1, ∀ x, y ∈ [0, 1]2, ∀ n1, n2 ≥ N1,
and

∣∣Bn1,n2 (v) (x, y)− v (x, y)
∣∣ < ε2, ∀ x, y ∈ [0, 1]2, ∀ n1, n2 ≥ N2; N1, N2 ∈

N, where ε1, ε2 > 0.
Thus, it holds

(∗) ≤
√
ε2

1 + ε2
2 =: ε, (25)

∀ x, y ∈ [0, 1]2, ∀ n1, n2 ≥ max (N1, N2) =: N∗, ε > 0.
Hence
∣∣∣BC

n1,n2
(f ) (z)− f (z)

∣∣∣ ≤ ε, ∀ z ∈ [0, 1]2 , ∀ n1, n2 ≥ N∗ ∈ N, where ε > 0.

Therefore BC
n1,n2

(f )→ f , uniformly convergent, as n1, n2 →∞.

3 Main Results

Let K be a compact and convex subset of C. Consider L : C (K,C) → C (K,C)

a linear operator and L̃ : C (K,R) → C (K,R) a positive linear operator (i.e. for
f1.f2 ∈ C (K,R) with f1 ≥ f2 we get L̃ (f1) ≥ L̃ (f2)) both over the field of R.

We assume that

|L (f )| ≤ λL̃ (|f |) , ∀ f ∈ C (K,C) , where λ > 0, (27)

(i.e. |L (f ) (z)| ≤ λL̃ (|f |) (z), ∀ z ∈ K).
We call L̃ the companion operator of L.
Let z0 ∈ K . Clearly, then L (·) (z0) is a linear functional from C (K,C) into

C, and L̃ (·) (z0) is a positive linear functional from C (K,R) into R. Notice
L (f ) (z) ∈ C and L̃ (|f |) (z) ∈ R, ∀ f ∈ C (K,C) (thus, |f | ∈ C (K,R)). Here
L (f ) ∈ C (K,C), and L̃ (|f |) ∈ C (K,R), ∀ f ∈ C (K,C) .

Notice that C (K,C) = UC (K,C), also C (K,R) = UC (K,R) (uniformly
continuous functions).

By [3, p. 388], we have that L̃
(|· − z0|r

)
(z0), r > 0, is a continuous function in

z0 ∈ K.
We have the following approximation result with rates of Korovkin type.
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Theorem 3 Here K is a convex and compact subset of C and Ln is a sequence of
linear operators from C (K,C) into itself, n ∈ N. There is a sequence of companion
positive linear operators L̃n from C (K,R) into itself, such that

|Ln (f )| ≤ λL̃n (|f |) , λ > 0, ∀ f ∈ C (K,C) , ∀ n ∈ N (28)

(i.e. |Ln (f ) (z0)| ≤ λ
(
L̃n (|f |)

)
(z0), ∀ z0 ∈ K).

Additionally, we assume that

Ln (cg) = cL̃n (g) , ∀ g ∈ C (K,R) , ∀ c ∈ C (29)

(i.e. (Ln (cg)) (z0) = c
(
L̃n (g)

)
(z0) , ∀ z0 ∈ K).

Then, for any f ∈ C (K,C), we have

|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λ
(
L̃n (1 (·)) (z0)+ 1

)
ω1
(
f, L̃n (|· − z0|) (z0)

)
, (30)

∀ z0 ∈ K , ∀ n ∈ N.

If L̃n (1 (·)) (z0) = 1, ∀ z0 ∈ K , then

|(Ln (f )) (z0)− f (z0)| ≤ 2λω1
(
f, L̃n (|· − z0|) (z0)

)
, (31)

∀ z0 ∈ K , ∀ n ∈ N.

If L̃n (1 (·)) (z0) → 1, and L̃n (|· − z0|) (z0) → 0, as n → ∞, then
Ln (f ) (z0)→ f (z0), ∀ f ∈ C (K,C) . Here L̃n (1 (·)) (z0) is bounded.

Proof We notice that

|(Ln (f )) (z0)− f (z0)| =

|(Ln (f )) (z0)− Ln (f (z0) (·)) (z0)+ Ln (f (z0) (·)) (z0)− f (z0)| (29)=
∣
∣(Ln (f )) (z0)− Ln (f (z0) (·)) (z0)+ f (z0) L̃n (1 (·)) (z0)− f (z0)

∣
∣ ≤

|(Ln (f )) (z0)− Ln (f (z0) (·)) (z0)| + |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣ = (32)

|Ln (f (·)− f (z0)) (z0)| + |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣ (28)≤

|f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+ λ (L̃n (|f (·)− f (z0)|)

)
(z0) ≤

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λ
(
L̃n

(
ω1

(
f,
δ |· − z0|

δ

)))
(z0) ≤
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|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λ
(
L̃n

(
ω1 (f, δ)

(
1 (·)+ 1

δ
|· − z0|

)))
(z0) =

|f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+ λω1 (f, δ)

[
L̃n (1 (·)) (z0)+ 1

δ
L̃n (|· − z0|) (z0)

]
=

(33)
|f (z0)|

∣∣L̃n (1 (·)) (z0)− 1
∣∣+ λω1

(
f, L̃n (|· − z0|) (z0)

) [
L̃n (1 (·)) (z0)+ 1

]
,

(34)
by choosing

δ := L̃n (|· − z0|) (z0) , (35)

if L̃n (|· − z0|) (z0) > 0.
Next we consider the case of

L̃n (|· − z0|) (z0) = 0. (36)

By Riesz representation theorem ([8, p. 304]) there exists a positive finite measure
μz0

such that

L̃n (g) (z0) =
∫

K

g (t) dμz0
(t) , ∀ g ∈ C (K,R) . (37)

That is,

∫

K

|t − z0| dμz0
(t) = 0,

which implies |t − z0| = 0, a.e., hence t − z0 = 0, a.e., and t = z0, a.e. on K.
Consequently μz0

({t ∈ K : t �= z0}) = 0.
That is,μz0

= δz0M (where 0 < M := μz0
(K) = L̃n (1 (·)) (z0)). Hence, in that

case L̃n (g) (z0) = g (z0)M . Consequently, it holds ω1
(
f, L̃n (|· − z0|) (z0)

) = 0,
and the right-hand side of (30) equals |f (z0)| |M − 1| .

Also, it is L̃n (|f (·)− f (z0) (·)|) (z0) = |f (z0)− f (z0)|M = 0.
And by (28) we obtain

|(Ln (f (·)− f (z0) (·))) (z0)| = 0,

that is,

|Ln (f ) (z0)− Ln (f (z0) (·)) (z0)| = 0.

The last says that
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Ln (f ) (z0) = Ln (f (z0) (·)) (z0)
(29)= f (z0) L̃n (1 (·)) (z0) = Mf (z0) .

Consequently the left-hand side of (30) becomes

|Ln (f ) (z0)− f (z0)| = |Mf (z0)− f (z0)| = |f (z0)| |M − 1| .

So that (30) becomes an equality, and both sides equal |f (z0)| |M − 1| in the
extreme case of L̃n (|· − z0|) (z0) = 0. Thus, inequality (30) is proved completely
in both cases.

A similar result follows:

Theorem 4 Here all as in Theorem 3. Then, for any f ∈ C (K,C), we have

|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+ (38)

λ
(
L̃n (1 (·)) (z0)+ 1

)
ω1

(
f,
(
L̃n

(
|· − z0|2

)
(z0)

) 1
2
)
,

∀ z0 ∈ K , ∀ n ∈ N.

If L̃n (1 (·)) (z0) = 1, ∀ z0 ∈ K , then

|(Ln (f )) (z0)− f (z0)| ≤ 2λω1

(
f, L̃n

(
|· − z0|2

)
(z0)

) 1
2
, (39)

∀ z0 ∈ K , ∀ n ∈ N.

Remark 1 (To Theorem 4) If L̃n (1 (·)) (z0) → 1, and L̃n
(|· − z0|2

)
(z0) → 0, as

n→∞, we get that Ln (f ) (z0)→ f (z0), ∀ f ∈ C (K,C) . Here L̃n (1 (·)) (z0) is
bounded.

For t, z0 ∈ K with t = t1 + it2 and z0 = z01 + iz02 we have

L̃n

(
|t − z0|2

)
(z0) = L̃n

(
(t1 − z01)

2 + (t2 − z02)
2
)
(z0) = (40)

L̃n

(
(t1 − z01)

2
)
(z0)+ L̃n

(
(t2 − z02)

2
)
(z0) .

so if L̃n
(
(t1 − z01)

2) (z0) and L̃n
(
(t2 − z02)

2) (z0) converge to zero, as n → ∞,
we get that L̃n

(|t − z0|2
)
(z0)→ 0.

We also notice that

L̃n

(
|t − z0|2

)
(z0) =

(
L̃n

(
t21

)
(z0)− z2

01

)
+
(
L̃n

(
t22

)
(z2)− z2

02

)
+ (41)

|z|2 (L̃n (1 (·)) (z0)− 1
)− 2z01

(
L̃n (t1) (z0)− z01

)− 2z02
(
L̃n (t2) (z0)− z02

)
.
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Thus, if L̃n (1 (·)) (z0) → 1, L̃n (t1) (z0) → z01, L̃n (t2) (z0) → z02,
L̃n
(
t21

)
(z0) → z2

01 and L̃n
(
t22

)
(z0) → z2

02, as n → ∞, then we get that
Ln (f ) (z0)→ f (z0), ∀ f ∈ C (K,C) .
Proof of Theorem 4 Let t, z0 ∈ K and δ > 0. If |t − z0| > δ, then

|f (t)− f (z0)| ≤ ω1 (f, |t − z0|) = ω1

(
f, |t − z0| δ−1δ

)
≤ (42)

(
1+ |t − z0|

δ

)
ω1 (f, δ) ≤

(

1+ |t − z0|2
δ2

)

ω1 (f, δ) .

The estimate

|f (t)− f (z0)| ≤
(

1+ |t − z0|2
δ2

)

ω1 (f, δ) (43)

also holds trivially when |t − z0| ≤ δ.
So (43) is true always, ∀ t ∈ K , for any z0 ∈ K.
As in the proof of Theorem we have

|(Ln (f )) (z0)− f (z0)| ≤ . . . ≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣

+λ (L̃n (|f (·)− f (z0)|)
)
(z0)

(43)≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λ

(

L̃n

((

1 (·)+ |· − z0|2
δ2

)

ω1 (f, δ)

))

(z0) =

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λω1 (f, δ)

[
L̃n (1 (·)) (z0)+ 1

δ2 L̃n

(
|· − z0|2

)
(z0)

]
=

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λω1

(
f,
(
L̃n

(
|· − z0|2

)
(z0)

) 1
2
) [
L̃n (1 (·)) (z0)+ 1

]
,

(44)
by choosing

δ :=
(
L̃n

(
|· − z0|2

)
(z0)

) 1
2
, (45)

if L̃n
(|· − z0|2

)
(z0) > 0.

Next we consider the case of

L̃n

(
|· − z0|2

)
(z0) = 0.
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By Riesz representation theorem there exists a positive finite measure μz0
such that

L̃n (g) (z0) =
∫

K

g (t) dμz0
(t) , ∀ g ∈ C (K,R) . (46)

That is,

∫

K

|t − z0|2 dμz0
(t) = 0,

which implies |t − z0|2 = 0, a.e., hence |t − z0| = 0, a.e., thus t − z0 = 0, a.e., and
t = z0, a.e. on K. Consequently μz0

({t ∈ K : t �= z0}) = 0.
That is, μz0

= δz0M (where 0 < M := μz0
(K) = L̃n (1 (·)) (z0)). Hence, in

that case L̃n (g) (z0) = g (z0)M .

Consequently, it holds ω1

(
f,
(
L̃n
(|· − z0|2

)
(z0)

) 1
2

)
= 0, and the right-hand

side of (38) equals |f (z0)| |M − 1| . Also, it is L̃n (|f (·)− f (z0) (·)|) (z0) =
|f (z0)− f (z0)|M = 0.

And by (28) we obtain

|(Ln (f (·)− f (z0) (·))) (z0)| = 0,

that is,

|Ln (f ) (z0)− Ln (f (z0) (·)) (z0)| = 0.

The last says that

Ln (f ) (z0) = Ln (f (z0) (·)) (z0)
(29)= f (z0) L̃n (1 (·)) (z0) = Mf (z0) .

Consequently the left-hand side of (38) becomes

|Ln (f ) (z0)− f (z0)| = |Mf (z0)− f (z0)| = |f (z0)| |M − 1| .

So that (38) becomes an equality, and both sides equal |f (z0)| |M − 1| in the
extreme case of L̃n

(|· − z0|2
)
(z0) = 0. Thus, inequality (38) is proved completely

in both cases.

We give

Corollary 1 All as in Theorem 3, z0 ∈ K . Then

‖Ln (f )− f ‖∞ ≤ ‖f ‖∞
∥∥L̃n (1 (·))− 1

∥∥∞+ (47)

λ
∥∥L̃n (1 (·))+ 1

∥∥∞ ω1

(
f,
∥∥L̃n (|· − z0|) (z0)

∥∥∞,z0

)
,
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∀ n ∈ N.

If L̃n (1 (·)) = 1, then

‖Ln (f )− f ‖∞ ≤ 2λω1

(
f,
∥∥L̃n (|· − z0|) (z0)

∥∥∞,z0

)
, (48)

∀ n ∈ N.

As L̃n (1)
u→ 1, and L̃n (|· − z0|) (z0)

u→ 0 (u is uniformly), as n → ∞, then

Ln (f )
u→ f , ∀ f ∈ C (K,C). Notice L̃n (1) is bounded, and all suprema in (47)

are finite.

Corollary 2 All as in Theorem 4, z0 ∈ K . Then

‖Ln (f )− f ‖∞ ≤ ‖f ‖∞
∥∥L̃n (1 (·))− 1

∥∥∞+ (49)

λ
∥∥L̃n (1 (·))+ 1

∥∥∞ ω1

(
f,

∥∥∥L̃n
(
|· − z0|2

)
(z0)

∥∥∥
1
2

∞,z0

)
,

∀ n ∈ N.

If L̃n (1 (·)) = 1, then

‖Ln (f )− f ‖∞ ≤ 2λω1

(
f,

∥∥∥L̃n
(
|· − z0|2

)
(z0)

∥∥∥
1
2

∞,z0

)
, (50)

∀ n ∈ N.

As L̃n (1)
u→ 1, and L̃n

(|· − z0|2
)
(z0)

u→ 0, then Ln (f )
u→ f , as n → ∞, ∀

f ∈ C (K,C).
We need

Theorem 5 ([5]) Let K ⊆ C convex, x0 ∈ K0 (interior of K) and f : K → C

such that |f (t)− f (x0)| is convex in t ∈ K . Furthermore let δ > 0 so that the
closed disk D (x0, δ) ⊂ K . Then

|f (t)− f (x0)| ≤ ω1 (f, δ)

δ
|t − x0| , ∀ t ∈ K. (51)

We present a convex Korovkin type result:

Theorem 6 Here all as in Theorem 3. Let a fixed z0 ∈ K0 and assume that
|f (t)− f (z0)| is convex in t ∈ K . Assume the closed diskD

(
z0, L̃n (|· − z0|) (z0)

)

⊂ K . Then

|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣

+ λω1
(
f, L̃n (|· − z0|) (z0)

)
, ∀ n ∈ N. (52)
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As L̃n (1 (·)) (z0) → 1, and L̃n (|· − z0|) (z0) → 0, then (Ln (f )) (z0) → f (z0),
as n→∞.

Proof As in the proof of Theorem 3 we have

|(Ln (f )) (z0)− f (z0)| ≤

|f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+ λ (L̃n (|f (·)− f (z0)|)

)
(z0)

(51)≤

(δ > 0 : D (z0, δ) ⊂ K)

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λω1 (f, δ)

δ
L̃n (|· − z0|) (z0) =

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λω1
(
f, L̃n (|· − z0|) (z0)

)
, (53)

by choosing

δ := L̃n (|· − z0|) (z0) ,

if L̃n (|· − z0|) (z0) > 0.
The case L̃n (|· − z0|) (z0) = 0 is treated similarly as in the proof of Theorem 3.

The theorem is proved.

We make

Remark 2 Let f : D ⊆ C → C be an analytic function on the convex domain
D and y, x ∈ D, then we have the following Taylor’s expansion with integral
remainder

f (y) =
N−1∑

k=0

f (k) (x)

k! (y − x)k +

1

(N − 1)! (y − x)
N

∫ 1

0
f (N) [(1− s) x + sy] (1− s)N−1 ds, (54)

for N ∈ N, see [10, p. 8].
Clearly then

f (y) =
N∑

k=0

f (k) (x)

k! (y − x)k +

1

(N − 1)! (y − x)
N

∫ 1

0

[
f (N) [(1− s) x + sy]− f (N) (x)

]
(1− s)N−1 ds,

(55)
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for N ∈ N.

Call the remainder of (55) as

RN (x, y) := (y − x)N
(N − 1)!

∫ 1

0

[
f (N) [(1− s) x + sy]− f (N) (x)

]
(1− s)N−1 ds.

(56)
We have that

|RN (x, y)| ≤ |y − x|
N

(N − 1)!
∫ 1

0

∣
∣
∣f (N) [(1− s) x + sy]− f (N) (x)

∣
∣
∣ (1− s)N−1 ds =: (∗) ,

(57)
N ∈ N.

Next assume f (N) ∈ UC (D,C).
We observe that

(∗) ≤ |y − x|
N

(N − 1)!
∫ 1

0
ω1

(
f (N),

δs |y − x|
δ

)
(1− s)N−1 ds ≤

|y − x|N
(N − 1)!ω1

(
f (N), δ

) ∫ 1

0

[
1+ s |y − x|

δ

]
(1− s)N−1 ds =

|y − x|N
(N − 1)!ω1

(
f (N), δ

) [∫ 1

0
(1− s)N−1 ds + |y − x|

δ

∫ 1

0
(1− s)N−1 (s − 0)2−1 ds

]
=

|y − x|N
(N − 1)!ω1

(
f (N), δ

) [ 1

N
+ |y − x|

δ

1

N (N + 1)

]
=

|y − x|N
N ! ω1

(
f (N), δ

) [
1+ |y − x|

δ (N + 1)

]
. (59)

We have proved

|RN (x, y)| ≤ |y − x|
N

N ! ω1

(
f (N), δ

) [
1+ |y − x|

δ (N + 1)

]
, (60)

N ∈ N, δ > 0.
The last means that

∣∣∣∣∣
f (y)−

N∑

k=0

f (k) (x)

k! (y − x)k
∣∣∣∣∣
≤

ω1

(
f (N), δ

) |y − x|N
N !

[
1+ |y − x|

δ (N + 1)

]
, (61)
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N ∈ N, δ > 0, ∀ x, y ∈ D, where f (N) ∈ UC (D,C) .
We make

Remark 3 Let f : K ⊆ C→ C be an analytic function on the convex and compact
set K , and z0 ∈ K , where δ > 0.

Then, as in (61), we get

∣∣∣∣∣
f (·)−

N∑

k=0

f (k) (z0)

k! (· − z0)
k

∣∣∣∣∣
≤

ω1

(
f (N), δ

) |· − z0|N
N !

[
1+ |· − z0|

δ (N + 1)

]
, (62)

∀ N ∈ N. Here ω1 is on K.

Above we mean that f : D ⊆ C → C is analytic on the convex domain D,
where K ⊆ D. For convenience we set and use f = f |K.

We have proved

Theorem 7 Let f : K ⊆ C → C be an analytic function on the convex and
compact set K; z0 ∈ K , δ > 0, and f (k) (z0) = 0, k = 1, 2, . . . , N. Then

|f (·)− f (z0)| ≤ ω1
(
f (N), δ

)

N !

[

|· − z0|N + |· − z0|N+1

δ (N + 1)

]

, (63)

over K , N ∈ N.

We present higher order of approximation:

Theorem 8 Here K is a convex and compact subset of C and Ln is a sequence of
linear operators from C (K,C) into itself, n ∈ N. There is a sequence of companion
positive linear operators L̃n from C (K,R) into itself, such that

|Ln (f )| ≤ λL̃n (|f |) , λ > 0, ∀ f ∈ C (K,C) , ∀ n ∈ N. (64)

Additionally, we assume that

Ln (cg) = cL̃n (g) , ∀ g ∈ C (K,R) , ∀ c ∈ C. (65)

Here we consider f : K → C that are analytic, so that f (k) (z0) = 0, k =
1, 2, . . . , N , where z0 ∈ K.

Then
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|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+

λω1

(
f (N),

((
L̃n
(|· − z0|N+1)) (z0)

) 1
(N+1)

)

N !
((
L̃n

(
|· − z0|N+1

))
(z0)

)( N
N+1

)

[(
L̃n (1 (·)) (z0)

) 1
(N+1) + 1

(N + 1)

]
, (66)

∀ n ∈ N.

If L̃n (1 (·)) (z0) = 1, then

|(Ln (f )) (z0)− f (z0)| ≤
λ (N + 2) ω1

(
f (N),

((
L̃n
(|· − z0|N+1)) (z0)

) 1
(N+1)

)

(N + 1)!
((
L̃n

(
|· − z0|N+1

))
(z0)

)( N
N+1

)

, (67)

∀ n ∈ N.

If L̃n (1 (·)) (z0) → 1 and L̃n
(|· − z0|N+1) (z0) → 0, then (Ln (f )) (z0) →

f (z0), as n→∞. Here L̃n (1 (·)) (z0) is bounded.

Proof We notice that

|(Ln (f )) (z0)− f (z0)| =

|(Ln (f )) (z0)− Ln (f (z0) (·)) (z0)+ Ln (f (z0) (·)) (z0)− f (z0)| (65)=
∣∣(Ln (f )) (z0)− Ln (f (z0) (·)) (z0)+ f (z0) L̃n (1 (·)) (z0)− f (z0)

∣∣ ≤

|(Ln (f )) (z0)− Ln (f (z0) (·)) (z0)| + |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣ = (68)

|Ln (f (·)− f (z0)) (z0)| + |f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣ (64)≤

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λ (L̃n (|f (·)− f (z0)|)
)
(z0)

(63)≤

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λ
ω1
(
f (N), δ

)

N !
[
L̃n

(
|· − z0|N

)
(z0)+ 1

δ (N + 1)
L̃n

(
|· − z0|N+1

)
(z0)

]
=: (∗) .

By Hölder’s inequality and Riesz representation theorem we obtain
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L̃n

(
|· − z0|N

)
(z0) ≤

((
L̃n

(
|· − z0|N+1

))
(z0)

)( N
N+1

)
(
L̃n (1 (·)) (z0)

) 1
N+1 .

(70)
Therefore

(∗) ≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λ
ω1
(
f (N), δ

)

N !

[(
L̃n

(
|· − z0|N+1

)
(z0)

)( N
N+1

)
(
L̃n (1 (·)) (z0)

) 1
N+1

+ 1

δ (N + 1)
L̃n

(
|· − z0|N+1

)
(z0)

]
=: (ξ) . (71)

We choose

δ :=
((
L̃n

(
|· − z0|N+1

))
(z0)

) 1
(N+1)

, (72)

in case of L̃n
(|· − z0|N+1) (z0) > 0.

Then it holds

(ξ) = |f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+

λω1

(
f (N),

((
L̃n
(|· − z0|N+1)) (z0)

) 1
(N+1)

)

N !
[
δN
(
L̃n (1 (·)) (z0)

) 1
N+1 + δN

(N + 1)

]
=

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λω1

(
f (N),

((
L̃n
(|· − z0|N+1)) (z0)

) 1
(N+1)

)

N !
((
L̃n

(
|· − z0|N+1

))
(z0)

)( N
N+1

)

[(
L̃n (1 (·)) (z0)

) 1
(N+1) + 1

(N + 1)

]
. (73)

Next we treat the case of

L̃n

(
|· − z0|N+1

)
(z0) = 0.

By Riesz representation theorem there exists a positive finite measure μz0
such that
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L̃n (g) (z0) =
∫

K

g (t) dμz0
(t) , ∀ g ∈ C (K,R) . (74)

That is,

∫

K

|t − z0|N+1 dμz0
(t) = 0,

which implies |t − z0|N+1 = 0, a.e., hence |t − z0| = 0, a.e., thus t − z0 = 0, a.e.,
and t = z0, a.e. on K. Consequently μz0

({t ∈ K : t �= z0}) = 0.
That is, μz0

= δz0M (where 0 < M := μz0
(K) = L̃n (1 (·)) (z0)). Hence, in

that case L̃n (g) (z0) = g (z0)M .

Consequently, it holds ω1

(
f (N),

(
L̃n
(|· − z0|N+1) (z0)

) 1
(N+1)

)
= 0, and the

right-hand side of (66) equals |f (z0)| |M − 1| . Also, it is
L̃n (|f (·)− f (z0) (·)|) (z0) = |f (z0)− f (z0)|M = 0.

And by (64) we obtain

|(Ln (f (·)− f (z0) (·))) (z0)| = 0,

that is,

|Ln (f ) (z0)− Ln (f (z0) (·)) (z0)| = 0.

The last says that

Ln (f ) (z0) = Ln (f (z0) (·)) (z0)
(65)= f (z0) L̃n (1 (·)) (z0) = Mf (z0) .

Consequently the left-hand side of (66) becomes

|Ln (f ) (z0)− f (z0)| = |Mf (z0)− f (z0)| = |f (z0)| |M − 1| .

So that (66) becomes an equality, and both sides equal |f (z0)| |M − 1| in the
extreme case of L̃n

(|· − z0|N+1) (z0) = 0. Thus, inequality (66) is proved
completely in both cases.

We give

Corollary 3 All as in Theorem 8. Here N = 1, i.e. f ′ (z0) = 0. Then

|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λω1

(
f ′,
((
L̃n

(
|· − z0|2

))
(z0)

) 1
2
)((

L̃n

(
|· − z0|2

))
(z0)

) 1
2
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[
(
L̃n (1 (·)) (z0)

) 1
2 + 1

2

]
, ∀ n ∈ N. (75)

If L̃n (1 (·)) (z0) = 1, then

|(Ln (f )) (z0)− f (z0)| ≤
3λω1

(
f ′,
((
L̃n
(|· − z0|2

))
(z0)

) 1
2

)

2

((
L̃n

(
|· − z0|2

))
(z0)

) 1
2
, ∀ n ∈ N. (76)

If L̃n (1 (·)) (z0) → 1 and L̃n
(|· − z0|2

)
(z0) → 0, as n → ∞, we get that

(Ln (f )) (z0)→ f (z0) .

We make

Remark 4 Let f : D ⊆ C → C be an analytic function on the convex domain
D and K be a compact and convex subset of D and t, z0 ∈ K , with z0 ∈ K0

(interior of K), then we have the following modified Taylor’s expansion with
integral remainder:

f (t) =
N∑

k=0

f (k) (z0)

k! (t − z0)
k +

(t − z0)
N

(N − 1)!
∫ 1

0

[
f (N) [(1− s) z0 + st]− f (N) (z0)

]
(1− s)N−1 ds, (77)

for N ∈ N.
Assuming f (k) (z0) = 0, k = 1, . . . , N, we get

f (t)−f (z0) = (t − z0)
N

(N − 1)!
∫ 1

0

[
f (N) [(1− s) z0 + st]− f (N) (z0)

]
(1− s)N−1 ds,

(78)
N ∈ N.

We have that

|f (t)− f (z0)| ≤

|t − z0|N
(N − 1)!

∫ 1

0

∣∣
∣f (N) [(1− s) z0 + st]− f (N) (z0)

∣∣
∣ (1− s)N−1 ds =: (∗) . (79)

We assume that
∣
∣f (N) (t)− f (N) (z0)

∣
∣ is convex in t ∈ K . Let δ > 0 such that the

closed disk D (z0, δ) ⊂ K. Then, by Theorem 5, we obtain that
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∣∣
∣f (N) (t)− f (N) (z0)

∣∣
∣ ≤ ω1

(
f (N), δ

)

δ
|t − z0| , ∀ t ∈ K. (80)

Notice that by convexity of K , (1− s) z0 + st ∈ K , 0 ≤ s ≤ 1. Therefore

(∗) (80)≤ |t − z0|N
(N − 1)!

ω1
(
f (N), δ

)

δ

∫ 1

0
s |t − z0| (1− s)N−1 ds =

|t − z0|N+1

(N − 1)!
ω1
(
f (N), δ

)

δ

∫ 1

0
(1− s)N−1 (s − 0)2−1 ds =

|t − z0|N+1

(N − 1)!
ω1
(
f (N), δ

)

δ

1

N (N + 1)
= |t − z0|N+1

(N + 1)!
ω1
(
f (N), δ

)

δ
. (81)

We have proved that

|f (t)− f (z0)| ≤ ω1
(
f (N), δ

)

δ (N + 1)! |t − z0|N+1 , (82)

∀ t ∈ K , N ∈ N.

We have proved

Theorem 9 Let K be a compact and convex subset of the convex domain D ⊆ C,

z0 ∈ K0. Here f : K → C is analytic such that f (k) (z0) = 0, k = 1, 2, . . . , N ∈
N. We assume that

∣∣f (N) (·)− f (N) (z0)
∣∣ is convex over K . Let δ > 0 such that the

closed disk D (z0, δ) ⊂ K . Then

|f (·)− f (z0)| ≤ ω1
(
f (N), δ

)

δ (N + 1)! |· − z0|N+1 , (83)

over K .

The convex analog of Theorem 8 follows:

Theorem 10 All as in Theorem 8. Additionally we assume that: z0 ∈ K0,∣∣f (N) (·)− f (N) (z0)
∣∣ is convex over K , and that the closed disk

D
(
z0, L̃n

(|· − z0|N+1) (z0)
) ⊂ K. Then

|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣
∣L̃n (1 (·)) (z0)− 1

∣
∣+

λω1
(
f (N), L̃n

(|· − z0|N+1) (z0)
)

(N + 1)! , (84)

∀ n ∈ N.
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If L̃n (1 (·)) (z0) → 1 and L̃n
(|· − z0|N+1) (z0) → 0, as n → ∞, then

Ln (f ) (z0)→ f (z0) .

Proof As in the proof of Theorem 8 we have

|(Ln (f )) (z0)− f (z0)| ≤ . . . ≤

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λ (L̃n (|f (·)− f (z0)|)
)
(z0)

(83)≤

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λ
ω1
(
f (N), δ

)

δ (N + 1)! L̃n
(
|· − z0|N+1

)
(z0) = (85)

|f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+ λ

(N + 1)!ω1

(
f (N), L̃n

(
|· − z0|N+1

)
(z0)

)
,

by choosing

δ := L̃n

(
|· − z0|N+1

)
(z0) ,

if L̃n
(|· − z0|N+1) (z0) > 0.

If L̃n
(|· − z0|N+1) (z0) = 0, then this case is treated similarly to the proof of

Theorem 8.

We give

Corollary 4 (To Theorem 10, Case of N = 1) All as in Theorem 10. Assume∣∣f ′ (·)− f ′ (z0)
∣∣ is convex overK , and the closed diskD

(
z0, L̃n

(|· − z0|2
)
(z0)

) ⊂
K. Then

|(Ln (f )) (z0)− f (z0)| ≤ |f (z0)|
∣∣L̃n (1 (·)) (z0)− 1

∣∣+

λω1
(
f ′, L̃n

(|· − z0|2
)
(z0)

)

2
, (86)

∀ n ∈ N.

If L̃n (1 (·)) (z0) → 1 and L̃n
(|· − z0|2

)
(z0) → 0, as n → ∞, then

Ln (f ) (z0)→ f (z0) .
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4 Illustration

Here we go according to Example 2 and Application 2. We will study the
quantitative uniform convergence of complex Bernstein operators BC

n1,n2
(f ) to

f ∈ C ([0, 1]2 ,C
)
. Indeed we have

∣∣∣BC

n1,n2
(f )

∣∣∣ (z) ≤
√

2Bn1,n2 (|f |) (z) , ∀ z ∈ [0, 1]2 and ∀ f ∈ C
(

[0, 1]2 ,C
)
,

(87)
and

BC

n1,n2
(cg) = cBn1,n2 (g) , ∀ c ∈ C and ∀ g ∈ C

(
[0, 1]2 ,R

)
. (88)

Clearly BC
n1,n2

maps C
(
[0, 1]2 ,C

)
into itself and Bn1,n2 maps C

(
[0, 1]2 R

)
into

itself. Notice that Bn1,n2 (1 (·)) (x, y) = 1.
Hence by Theorem 4 (39) we get:

∣∣∣BC

n1,n2
(f ) (z0)− f (z0)

∣∣∣ ≤ 2
√

2ω1

(
f,

√
Bn1,n2

(|· − z0|2
)
(z0)

)
, (89)

∀ z0 ∈ [0, 1]2, ∀ n1, n2 ∈ N.

Here z0 = z01 + iz02, z01, z02 ∈ [0, 1], and t = t1 + it2, where t1, t2 ∈ [0, 1] .
We notice that

Bn1,n2

(
|t − z0|2

)
(z0) = Bn1,n2

(
(t1 − z01)

2 + (t2 − z02)
2
)
(z01, z02) =

Bn1,n2

(
(t1 − z01)

2
)
(z01, z02)+ Bn1,n2

(
(t2 − z02)

2
)
(z01, z02) = (90)

(
Bn1

(
(t1 − z01)

2
))
(z01)+

(
Bn2

(
(t2 − z02)

2
))
(z02) =

z01 (1− z01)

n1
+ z02 (1− z02)

n2
, (91)

where Bn1, Bn2 are the basic univariate Bernstein operators over [0, 1].
That is,

Bn1,n2

(
|t − z0|2

)
(z0) = z01 (1− z01)

n1
+ z02 (1− z02)

n2
, (92)

∀ z0 ∈ [0, 1]2 .

Therefore we find
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Bn1,n2

(
|t − z0|2

)
(z0) ≤ 1

4

(
1

n1
+ 1

n2

)
, (93)

∀ z0 ∈ [0, 1]2 .

That is,

√
Bn1,n2

(|· − z0|2
)
(z0) ≤ 1

2

√
1

n1
+ 1

n2
, (94)

∀ z0 ∈ [0, 1]2 .

By (89), finally, we obtain

∥∥∥BC

n1,n2
(f )− f

∥∥∥∞ ≤ 2
√

2ω1

(

f,
1

2

√
1

n1
+ 1

n2

)

, (95)

∀ n1, n2 ∈ N.

Consequently, as n1, n2 → ∞, we get that BC
n1,n2

(f )
u→ f , uniformly, ∀ f ∈

C
(
[0, 1]2 ,C

)
.

Many other examples as above could be given but we choose to omit this task.
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Hyperstability of a Linear Functional
Equation on Restricted Domains

Jaeyoung Chung, John Michael Rassias, Bogeun Lee, and Chang-Kwon Choi

Abstract Let X, Y be real Banach spaces, f : X → Y and H be a subset of X
such that Hc is of the first category. Using the Baire category theorem we prove the
Ulam–Hyers stability of the linear functional equation

f (ax + by + α) = Af (x)+ Bf (y)+ C

for all x, y ∈ H, such that ‖x‖+‖y‖ ≥ d with d > 0, where a, b,A,B are nonzero
real numbers and α ∈ X is fixed. As a consequence we solve the hyperstability
problem associated to

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δψ(x, y)

for all x, y ∈ K, where K is a subset of R with Lebesgue measure zero and
ψ(x, y) = |x|p + |y|q, p, q < 0; or ψ(x, y) = |x|p|y|q, p + q < 0; or
ψ(x, y) = |x|p|y|q, pq < 0.
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1 Introduction

Throughout this paper we denote by X, Y a real normed space and a Banach space,
respectively. A mapping f : X → Y is called an additive mapping if f satisfies
f (x + y) = f (x)+ f (y) for all x, y ∈ X. The Hyers–Ulam stability problems for
functional equations have been originated by Ulam in 1940 (see [22]). One of the
first assertions to be obtained is the following result, essentially due to Hyers [8]
that gives an answer to the fundamental question of Ulam.

Theorem 1.1 Suppose that f : X→ Y satisfies the inequality

‖f (x + y)− f (x)− f (y)‖ ≤ ε

for all x, y ∈ X. Then there exists a unique additive mapping g : X→ Y such that

‖f (x)− g(x)‖ ≤ ε

for all x ∈ X.

In 1950 Aoki [1] generalized the above result and in 1978 Rassias [17]
generalized the result by allowing the Cauchy difference to be unbounded (see also
[3]). This stability concept is also applied to the case of other functional equations.
In particular, the Hyers’ result was generalized to the general linear functional
equation

f (ax + by + α) = Af (x)+ Bf (y)+ C (1.1)

for all x, y ∈ X, where a, b,A,B are nonzero real numbers and α ∈ X is fixed (see
[5, 12, 14–16] for the pertinent results).

Among the numerous results, Skof [21] solved the Hyers–Ulam problem for
additive mappings on a restricted domain. Jung [9, 11] investigated the Hyers–
Ulam stability for additive and quadratic mappings on restricted domains and
Rassias [18, 19] investigated the Hyers–Ulam stability of mixed type mappings on
restricted domains. For more results on functional equations or inequalities satisfied
on restricted domains or satisfied under restricted conditions, we refer the reader to
[2, 4, 6, 7, 10, 20, 21].

In this paper we first consider the stability of the Eq. (1.1) in some abstract
domains satisfying a certain condition which we denote by (C) (see the beginning
of the Sect. 2 for the condition). Secondly, using the Baire category theorem, we
prove the stability of the Eq. (1.1) on restricted domains of form H2 ∩ {(x, y) ∈
X2 : ‖x‖ + ‖y‖ ≥ d} with d > 0, where H is a subset of X such that Hc is of the
first category. Thirdly, as a consequence we show that for some particular forms of
ψ(x, y), the functional equation is ψ-hyperstable, i.e., each f : X → Y satisfying
the inequality
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‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δψ(x, y) (1.2)

has the form f (x) = g(x) + f (0), where g is an additive function (see [4, 14, 15]
for hyperstabilities of functional equations). Finally, using the fact that the set R of
real number can be partitioned as R = K∪(R\K), where K is of Lebesgue measure
zero and R \ K is of the first category, we prove the hyperstability of the equation
on a set � ⊂ {(x, y) ∈ R

2 : |x| + |y| ≥ d} of Lebesgue measure zero when f is
defined on R.

2 Stability on Abstract Restricted Domains

In this section consider the Ulam–Hyers stability of the functional equation on
restricted domains  ⊂ X × X satisfying some of the conditions: Let a, b be fixed
real numbers with ab �= 0 and α ∈ X be fixed. Throughout this section we assume
that ⊂ X×X satisfies the following condition (C): For any x, y ∈ X andM > 0,
there exists t ∈ X with ‖t‖ ≥ M such that

(C)
{
(x− bt,y+ at), (−bt,y + at),

(
x− bt,−α

b
+ at

)
,
(
−bt,−α

b
+ at

)}
⊂.

We obtain the following stability theorem on restricted domain .

Theorem 2.1 Suppose that f : X→ Y satisfies the inequality

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ (2.1)

for all x, y ∈ . Then there exists a unique additive mapping g : X→ Y such that

g(ax) = Ag(x) and g(bx) = Bg(x) (2.2)

for all x ∈ X, and inequality

‖f (x)− g(x)− f (0)‖ ≤ 4δ (2.3)

for all x ∈ X. Furthermore, if there exists an unbounded function f satisfying (2.1),
then each of the couples {(a,A), (b, B)} consists either of algebraic numbers which
are algebraic conjugates each other or of transcendental numbers.

Proof Let the following difference:

D(x, y) = f (ax + by + α)− Af (x)− Bf (y)− C (2.4)

for all x, y ∈ X. Then we clearly have
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D

(
x

a
− bt, y − α

b
+ at

)
= f (x + y)− Af

(x
a
− bt

)
− Bf

(
y − α
b

+ at
)
− C,

D
(x
a
− bt,−α

b
+ at

)
= f (x)− Af

(x
a
− bt

)
− Bf

(
−α
b
+ at

)
− C,

D

(
−bt, y − α

b
+ at

)
= f (y)− Af (−bt)− Bf

(
y − α
b

+ at
)
− C,

D
(
−bt, −α

b
+ at

)
= f (0)− Af (−bt)− Bf

(
−α
b
+ at

)
− C

and we can write

f (x + y)− f (x)− f (y)+ f (0)

= D

(
x

a
− bt, y − α

b
+ at

)
−D

(x
a
− bt, −α

b
+ at

)
−D

(
−bt, y − α

b
+ at

)

+D
(
−bt, −α

b
+ at

)
(2.5)

for all x, y, t ∈ X.
Since  satisfies the said condition (C), for given x

a
,
y−α
b
∈ X we can choose

t ∈ X such that
∥∥∥
∥D
(
x

a
− bt, y − α

b
+ at

)∥∥∥
∥ ≤ δ,

∥∥
∥D
(x
a
− bt, −α

b
+ at

)∥∥
∥ ≤ δ, (2.6)

∥∥∥∥D
(
−bt, y − α

b
+ at

)∥∥∥∥ ≤ δ,
∥∥∥D
(
−bt, −α

b
+ at

)∥∥∥ ≤ δ.

Thus from (2.5) and (2.6) we have

‖f (x + y)− f (x)− f (y)+ f (0)‖ ≤ 4δ (2.7)

for all x, y ∈ X. Thus, replacing f by f − f (0) in Theorem 1.1 we get (2.3). Now,
we prove (2.2). Since  satisfies the condition (C), for given x, y ∈ X there exists
t ∈ X such that

‖f (ax + by + α)− Af (x − bt)− Bf (y + at)− C‖ ≤ δ, (2.8)
∥∥
∥−f (0)+ Af (−bt)+ Bf

(
−α
b
+ at

)
+ C

∥∥
∥ ≤ δ. (2.9)

From (2.7) we have

‖Af (x − bt)− Af (x)− Af (−bt)+ Af (0)‖ ≤ 4|A|δ, (2.10)

‖Bf (y + at)− Bf (y)− Bf (at)+ Bf (0)‖ ≤ 4|B|δ, (2.11)
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∥∥∥−Bf
(
−α
b
+ at

)
+ Bf

(
−α
b

)
+ Bf (at)− Bf (0)

∥∥∥ ≤ 4|B|δ (2.12)

for all x, y, t ∈ X. From (2.8)–(2.10), using the triangle inequality we get

‖f (ax + by + α)− Af (x)− Bf (y)‖
≤ (2+ 4|A| + 8|B|)δ + |Af (0)| +

∣∣∣Bf
(
−α
b

)∣∣∣ := M1 (2.13)

for all x, y ∈ X. From (2.3) we have

|f (x)− g(x)| ≤ 4δ + |f (0)| := M2 (2.14)

for all x ∈ X. Using (2.13), (2.14) and the triangle inequality we have

‖g(ax + by + α)− Ag(x)− Bg(y)‖ ≤ M1 + (1+ |A| + |B|)M2 := M3
(2.15)

for all x, y ∈ X. Putting y = −α
b

in (2.15) and using the triangle inequality we have

‖g(ax)− Ag(x)‖ ≤ M3 +
∣∣∣Bg

(
−α
b

)∣∣∣ (2.16)

for all x ∈ X. Putting x = − c
a

in (2.15) and using the triangle inequality we have

‖g(by)− Bg(y)‖ ≤ M3 +
∣∣∣Ag

(
− c
a

)∣∣∣ (2.17)

for all y ∈ X. Since g is additive, from (2.16) and (2.17) we get g(ax) = Ag(x)

and g(bx) = Bg(x) for all x ∈ X. Now, we prove the final statement. If f is
unbounded, then from (2.3) we get g �= 0. Now, it suffices to show for one couple,
say (a,A). Assume that a is algebraic. Let p(x) be the irreducible polynomial such
that p(a) = 0. Then from the relation g(ax) = Ag(x) for all x ∈ X we have
p(A)g(x) = g(p(a)x) = g(0) = 0 for all x ∈ X, which implies p(A) = 0 since
g �= 0. Conversely, if p(A) = 0, then we have g(p(a)x) = 0 and hence p(a) = 0.
Now, the proof is complete. ��

Assume that , in addition to the condition (C), satisfies the following two
conditions: For any x, y ∈ X and M > 0, there exists t ∈ X with ‖t‖ ≥ M

such that

(C)′
{
(x + y, t) ,

(
x,
a

b
y + t

)
, (y, t) ,

(
0,
a

b
y + t

)}
⊂ ,

(C)′′
{
(t, x + y) ,

(a
b
x + t, y

)
, (t, x) ,

(a
b
x + t, 0

)}
⊂ .

Then the constant 4δ in (2.3) can be replaced by min
{

4δ, 4δ
|A| ,

4δ
|B|
}

.
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Theorem 2.2 Let  satisfy the three conditions: (C), (C)′, and (C)′′. Suppose that
f : X→ Y satisfies the inequality (2.1) for all x, y ∈ . Then there exists a unique
additive mapping g : X→ Y such that both relations (2.2) hold for all x ∈ X, and

‖f (x)− g(x)− f (0)‖ ≤ min

{
4δ,

4δ

|A| ,
4δ

|B|
}

(2.18)

for all x ∈ X.

Proof Similarly, from the following four equalities

D(x + y, t) = f (ax + ay + bt + α)− Af (x + y)− Bf (t)− C,
D
(
x,
a

b
y + t

)
= f (ax + ay + bt + α)− Af (x)− Bf

(a
b
y + t

)
− C,

D(y, t) = f (ay + bt + α)− Af (y)− Bf (t)− C,
D
(

0,
a

b
y + t

)
= f (ay + bt + α)− Af (0)− Bf

(a
b
y + t

)
− C,

we have

Af (x + y)−Af (x)− Af (y)+ Af (0) (2.19)

= −D(x + y, t)+D
(
x,
a

b
y + t

)
+D(y, t)−D

(
0,
a

b
y + t

)

for all x, y, t ∈ X. Since  satisfies (C)′, for given x, y ∈ X we can choose t ∈ X
such that

‖D(x + y, t)‖ ≤ δ,
∥
∥
∥D
(
x,
a

b
y + t

)∥∥
∥ ≤ δ, ‖D (y, t)‖ ≤ δ,

∥
∥
∥D
(

0,
a

b
y + t

)∥∥
∥ ≤ δ.
(2.20)

Thus from (2.19) and (2.20) we have

‖f (x + y)− f (x)− f (y)+ f (0)‖ ≤ 4δ

|A| (2.21)

for all x, y ∈ X. Thus, there exists an additive mapping g1 : X→ Y such that

‖f (x)− g1(x)− f (0)‖ ≤ 4δ

|A| (2.22)

for all x ∈ X. Now, from the following equalities
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D(t, x + y) = f (at + bx + by + α)− Af (t)− Bf (x + y)− C,

D

(
b

a
x + t, y

)
= f (at + bx + by + α)− Af

(
b

a
x + t

)
− Bf (y)− C,

D(t, x) = f (at + bx + α)− Af (t)− Bf (x)− C,

D

(
b

a
x + t, 0

)
= f (at + bx + α)− Af

(
b

a
x + t

)
− Bf (0)− C,

we have

Bf (x + y)−Bf (x)− Bf (y)+ Bf (0) (2.23)

= −D(t, x + y)+D
(a
b
x + t, y

)
+D(t, x)−D

(a
b
x + t, 0

)

for all x, y, t ∈ X. Since  satisfies (C)′′, for given x, y ∈ X we can choose t ∈ X
such that

‖D(t, x + y)‖ ≤ δ,
∥∥
∥D
(a
b
x + t, y

)∥∥
∥ ≤ δ, ‖D(t, x)‖ ≤ δ,

∥∥
∥D
(a
b
x + t, 0

)∥∥
∥ ≤ δ.
(2.24)

Thus from (2.23) and (2.24) we have

‖f (x + y)− f (x)− f (y)+ f (0)‖ ≤ 4δ

|B| (2.25)

for all x, y ∈ X. Thus, there exists an additive g2 : X→ Y such that

|f (x)− g2(x)− f (0)| ≤ 4δ

|B| (2.26)

for all x ∈ X. From three inequalities (2.3), (2.22), and (2.26), and using the triangle
inequality we have

|g(x)− g1(x)| ≤ 4δ + 4δ

|A| , (2.27)

|g(x)− g2(x)| ≤ 4δ + 4δ

|B| (2.28)

for all x ∈ X. Since g, g1, and g2 are additive mappings, from (2.27) we have
g = g1, and from (2.27) we have g = g2. Thus from (2.3), (2.22), and (2.26) we get
(2.18). Now, the proof is complete. ��
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Remark 2.3 It is easy to see that for each d > 0, the set  = {(x, y) : ‖x‖+‖y‖ ≥
d} satisfies the conditions (C). Thus, if f : X→ Y satisfies the inequality (2.1) for
all x, y ∈ X such that ‖x‖ + ‖y‖ ≥ d, then the result in Theorem 2.2 holds true.

Now, let n = {(x, y) : ‖x‖ ≥ n, ‖y‖ ≥ n} for positive integers n ∈ N. Then
n satisfies the condition (C) for all n ∈ N. Thus, as a consequence of Theorem 2.1,
we have the following Corollary 2.4.

Corollary 2.4 Let p, q < 0. Suppose that f : X→ Y satisfies the inequality

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ(‖x‖p + ‖y‖q) (2.29)

for all x, y ∈ X. Then there exists a unique additive mapping g : X→ Y satisfying

g(ax) = Ag(x), g(bx) = Bg(x) (2.30)

for all x ∈ X, and

f (x) = g(x)+ f (0) (2.31)

for all x ∈ X. Furthermore, if f is not constant, then each of the two couples
{(a,A), (b, B)} consists either of algebraic numbers which are algebraic conju-
gates each other or of transcendental numbers.

Proof For each positive integer m ∈ N, we can choose n ∈ N such that δ(‖x‖p +
‖y‖p) ≤ 1

m
if (x, y) ∈ n. Since n satisfies (C), by Theorem 2.1, there exists an

additive mapping g : X→ Y such that

‖f (x)− g(x)− f (0)‖ ≤ 4

m
(2.32)

for all x ∈ X, where g is independent of m. Now, letting m→∞ in (2.32) we get
f (x) = g(x)+ f (0). Thus, using the triangle inequality with (2.29) we have

‖g(ax+by+α)−Ag(x)−Bg(y)‖ ≤ δ(‖x‖p+‖y‖q)+‖f (0)−Af (0)−Bf (0)−C‖
(2.33)

for all x, y ∈ X. Putting y = −α
b

in (2.33) and using the triangle inequality we have

‖g(ax)− Ag(x)‖ ≤ δ‖x‖p +M (2.34)

for all x, y ∈ X, where M = δ
∥
∥α
b

∥
∥q + ∥∥Bg (α

b

)∥∥+‖f (0)−Af (0)−Bf (0)−C‖.
For each x ∈ X with x �= 0, choose k ∈ N, so that ‖kx‖ ≥ 1. Then we have

‖g(ax)− Ag(x)‖ = 1

k
‖g(akx)− Ag(kx)‖ ≤ 1

k
(δ‖kx‖p +M) ≤ 1

k
(δ +M).

(2.35)
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Letting k → ∞ in (2.35) we obtain g(ax) = Ag(x) for all x �= 0, and g(0) =
Ag(0) = 0. Putting x = −α

a
in (2.34) and using the same approach we get g(bx) =

Bg(x) for all x ∈ X. The last statement can be proved by the same methods as in
the proof of Theorem 2.1. ��
Remark 2.5 Let φ(x, y) = ‖x+y‖p+‖x−y‖q +‖y‖r , or ‖x+y‖p+‖x−y‖q +
‖x‖r , where p, q, r < 0. Assume that f : X→ Y satisfies the inequality.

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δφ(x, y) (2.36)

for all x, y ∈ X instead of (2.29). Then using (2.22) and (2.26) we can show that
the result in Theorem 2.4 holds true.

3 Stability on Concrete Restricted Domains

Throughout this section we assume that X is complete. By constructing subsets
 ⊂ X × X satisfying the three conditions (C), (C)′, (C)′′ we prove the Hyers–
Ulam stability of the functional equation (1.1) satisfied on restricted domains of
form H2 ∩ {(x, y) ∈ X2 : ‖x‖ + ‖y‖ ≥ d} with d > 0, where H is a subset of X
such that Hc is of the first category. As a consequence we obtain a stability theorem
of the equation on a set of Lebesgue measure zero when X = R.

Recall that a subset K of a topological space E is said to be of the first category
if K is a countable union of nowhere dense subsets of E, and otherwise it is said to
be of the second category. As named Baire category theorem it is well known that
every nonempty open subset of a compact Hausdorff space or a complete metric
space is of the second category.

The proof of the following lemma can be found in [7]. For the reader we give the
proof.

Lemma 3.1 Let H be a subset of X such that Hc := X \H is of the first category.
Then, for any countable subsets U ⊂ X, � ⊂ R\{0} andM > 0, there exists t ∈ X
with ‖t‖ ≥ M such that

U + �t = {u+ γ t : u ∈ U, γ ∈ �} ⊂ H. (3.1)

Proof Let Hc
u,γ = γ−1(Hc − u), u ∈ U, γ ∈ �. Then, since Hc is of the first

category, Hc
u,γ are also of the first category for all u ∈ U, γ ∈ �. Since each

Hc
u,γ consists of a countable union of nowhere dense subsets of X, by the Baire

category theorem, the countable union of all {Hc
u,γ : u ∈ U, γ ∈ �} cannot cover

X0 := {t ∈ X : ‖t‖ ≥ M}, i.e.,

X0 �⊂
⋃

(u,γ )∈U×�
Hc
u,γ .
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Choose a t ∈ X0 such that t /∈ Hc
u,γ for all u ∈ U, γ ∈ �. Then we have u+γ t ∈ H

for all u ∈ U, γ ∈ �. Now, the proof is complete. ��
From now on we identify R

2 with C.

Lemma 3.2 Let P = {(pj + γ j t, qj + λj t) : j = 1, 2, . . . , r}, where pj , qj , t ∈
X, γ j , λj ∈ R with γ 2

j + λ2
j �= 0 for all j = 1, 2, . . . , r . Then there exists a

θ ∈ [0, 2π) such that e−iθP := {(p′j + γ ′j t, q ′j + λ′j t) : j = 1, 2, . . . , r} satisfies
γ ′j λ′j �= 0 for all j = 1, 2, . . . , r .

From now on we let P = P(x, y, t) := S1 ∪ S2 ∪ S3, where

S1 =
{
(x − bt, y + at) , (−bt, y + at) ,

(
x − bt,−α

b
+ at

) (
−bt, −α

b
+ at

)}
,

S2 =
{
(x + y, t) ,

(
x,
a

b
y + t

)
, (y, t) ,

(
0,
a

b
y + t

)}
,

S3 =
{
(t, x + y) ,

(a
b
x + t, y

)
, (t, x) ,

(a
b
x + t, 0

)}
.

Lemma 3.3 Let H be a subset of X such that Hc is of the first category. Then there
exists a θ ∈ [0, 2π) such that θ,d := (eiθH2) ∩ {(x, y) ∈ X2 : ‖x‖ + ‖y‖ ≥ d}
satisfies the conditions (C), (C)′, (C)′′ for all d > 0.

Proof Let θ be the angle of rotation in Lemma 3.2 for P = S1 ∪ S2 ∪ S3. It suffices
to show that for given x, y ∈ X there exists t ∈ X such that

e−iθP (x, y, t) ⊂ H2 and P(x, y, t) ⊂ {(u, v) : ‖u‖ + ‖v‖ ≥ d}. (3.2)

Let e−iθP (x, y, t) := {(p′j+γ ′j t, q ′j+λ′j t) : j = 1, 2, . . . , r}. Then by Lemma 3.2,
we have γ ′j λ′j �= 0 for all j = 1, 2, . . . , r . LetU = {p′j , q ′j : j = 1, 2, . . . , r}, � =
{γ ′j , λ′j : j = 1, 2, . . . , r}. Then we have

{u, v : (u, v) ∈ e−iθP (x, y, t)} ⊂ U + �t. (3.3)

Now, by Lemma 3.1, there exists t ∈ X with ‖t‖ ≥ max1≤j≤r (|γ j |+|λj |)−1(|pj |+
|qj | + d) such that

U + �t ⊂ H. (3.4)

From (3.3) and (3.4) we have

e−iθP ⊂ H2.

By the choice of t , we have P(x, y, t) ⊂ {(u, v) : ‖u‖ + ‖v‖ ≥ d}. This completes
the proof. ��
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Remark 3.4 In view of the proof of Lemma 3.3 we can see that 0,d := H2 ∩
{(x, y) ∈ X2 : ‖x‖ + ‖y‖ ≥ d} satisfies (C) for all d > 0.

Thus, as a consequence of Theorem 2.1 we obtain the following Theorem 3.5.

Theorem 3.5 Let d > 0. Suppose that f : X→ Y satisfies the inequality

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ (3.5)

for all x, y ∈ H with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive mapping
g : X→ Y satisfying

g(ax) = Ag(x), g(bx) = Bg(x) (3.6)

for all x ∈ X, and

‖f (x)− g(x)− f (0)‖ ≤ 4δ (3.7)

for all x ∈ X. Furthermore, if there exists an unbounded function f satisfying (3.5),
then each of the two couples {(a,A), (b, B)} consists either of algebraic numbers
which are algebraic conjugates each other or of transcendental numbers.

As a consequence of Theorem 2.2 and Lemma 3.3 we obtain the following.

Theorem 3.6 Suppose that f : X → Y satisfies the inequality (3.5) for all x, y ∈
θ,d . Then there exists a unique additive mapping g : X→ Y satisfying

g(ax) = Ag(x) and g(bx) = Bg(x) (3.8)

for all x ∈ X, and

‖f (x)− g(x)− f (0)‖ ≤ min

{
4δ,

4δ

|A| ,
4δ

|B|
}

(3.9)

for all x ∈ X. Furthermore, if there exists an unbounded function f satisfying (3.5)
for all x, y ∈ θ,d , then each of the two couples {(a,A), (b, B)} consists either of
algebraic numbers which are algebraic conjugates each other or of transcendental
numbers.

Remark 3.7 The set R of real numbers can be partitioned as follows:

R = K ∪ (R \K),

where K is of Lebesgue measure zero and R \ K is of the first category [13,
Theorem 1.6]. Thus, in view of Lemma 3.3, �d := (eiθK2) ∩ {(x, y) ∈ X2 :
|x| + |y| ≥ d} is of Lebesgue measure zero satisfying (C), (C)′, (C)′′. Now, as a
consequence of Theorem 3.5 we obtain the following.
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Corollary 3.8 For any d > 0, there exists a subset �d ⊂ {(x, y) ∈ X2 : |x| +
|y| ≥ d} of Lebesgue measure zero such that if f : R → Y satisfies the functional
inequality

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ
for all (x, y) ∈ �d , then there exists a unique additive mapping g : R → Y

satisfying

g(ax) = Ag(x), g(bx) = Bg(x) (3.10)

for all x ∈ X, and

‖f (x)− g(x)− f (0)‖ ≤ min

{
4δ,

4δ

|A| ,
4δ

|B|
}

for all x ∈ X. Furthermore, if there exists an unbounded function f satisfying
(2.15), then each of the couples {(a,A), (b, B)} consists either of algebraic numbers
which are algebraic conjugates each other or of transcendental numbers.

Letting δ = 0 in Theorem 3.6 we have the following Corollary 3.9.

Corollary 3.9 For any d > 0, there exists a subset �d ⊂ {(x, y) ∈ X2 : |x| +
|y| ≥ d} of Lebesgue measure zero such that if f : R → Y satisfies the functional
equation

f (ax + by + α)− Af (x)− Bf (y)− C = 0 (3.11)

for all (x, y) ∈ �d , then the functional equation (3.11) holds for all x, y ∈ X.

4 Hyperstability on Restricted Domains and on a Set
of Lebesgue Measure Zero

In this section we consider the hyperstability of the functional equation (1.1) in
the restricted domain H2, where Hc is of the first category. Let us consider the
functional inequalities

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δψ(‖x‖, ‖y‖) (4.1)

for all (x, y) ∈ eiθH2, where δ ≥ 0 and ψ is one of the following:

(Case 1) ψ(s, t) = sp + tq , p, q < 0 ;
(Case 2) ψ(s, t) = sptq, p + q < 0 ;
(Case 3) ψ(s, t) = sptq, pq < 0.
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We first prove the hyperstability theorem for Case 1 and Case 2. In particular, the
following result for Case 2 is a generalization of Theorem 2.1 of [15].

Theorem 4.1 Suppose that f : X → Y satisfies the inequality (4.1) for all x, y ∈
H when ψ(s, t) = sp + tq , p, q < 0 or sptq, p + q < 0. Then there exists a
unique additive mapping g : X→ Y satisfying

g(ax) = Ag(x) and g(bx) = Bg(x) (4.2)

for all x ∈ X, and

f (x) = g(x)+ f (0) (4.3)

for all x ∈ X. Furthermore, if f not constant, then each of the couples
{(a,A), (b, B)} consists either of algebraic numbers which are algebraic
conjugates each other or of transcendental numbers.

Proof First, we consider Case 1 when ψ(s, t) = sp + tq , p, q < 0. Let d =
H2 ∩ {(x, y) : ‖x‖ ≥ d, ‖y‖ ≥ d} for d > 0. Then by Lemma 3.1, for any
U = {0, x, y,−α/b}, � = {a,−b} and M > 0 there exists t ∈ X with ‖t‖ ≥ M

such that U + �t ⊂ H. Thus, for any x, y ∈ X and M > 0 there exists t ∈ X with
‖t‖ ≥ M such that

P(x, y, t) :=
{
(x − bt, y + at) , (−bt, y + at) ,
(
x − bt,−α

b
+ at

) (
−bt, −α

b
+ at

)}
⊂ d. (4.4)

Thus, d satisfies condition (C). For each positive integer m ∈ N, we can choose
dm > 0 such that ‖x‖p + ‖y‖q ≤ 1

m
for all (x, y) ∈ dm . Thus, from (4.1) we get

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ

m
(4.5)

for all (x, y) ∈ dm . Since dm satisfies (C), by Theorem 2.1, there exists an
additive mapping g : X→ Y satisfying (4.2) and

‖f (x)− g(x)− f (0)‖ ≤ 4δ

m
(4.6)

for all x ∈ X, where g is independent of m. Now, letting m → ∞ in (4.6) we get
f (x) = g(x)+ f (0).

Since dm satisfies (C), for given x, y ∈ X and M > 0, there exists t ∈ X with
‖t‖ ≥ M such that
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‖f (ax + by + α)− Af (x − bt)− Bf (y + at)− C‖ ≤ 4δ

m
, (4.7)

‖ − f (0)+ Af (−bt)+ Bf
(
−α
b
+ at

)
+ C‖ ≤ 4δ

m
. (4.8)

Since f − f (0) is additive we have

Af (x − bt) = Af (x)+ Af (−bt)− Af (0), (4.9)

Bf (y + at) = Bf (y)+ Bf (at)− Bf (0), (4.10)

Bf
(
−α
b
+ at

)
= Bf

(
−α
b

)
+ Bf (at)− Bf (0) (4.11)

for all x, y, t ∈ X. From (4.7)∼(4.9), we get

∥∥∥f (ax + by + α)− Af (x)− Bf (y)− f (0)+ Af (0)+ Bf
(
−α
b

)∥∥∥ ≤ 8δ

m
(4.12)

for all x, y ∈ X. Letting m→∞ in (4.12) we get

f (ax + by + α)− Af (x)− Bf (y)− f (0)+ Af (0)+ Bf
(
−α
b

)
= 0 (4.13)

for all x, y ∈ X. Since f (x) = g(x) + g(0), putting y = −α
b

in (4.13) we have
g(ax) = Ag(x) for all x ∈ X. Putting x = −α

a
, y = 0 in (4.13) we have

−f (0)+ Bf (0)+ Af
(
−α
a

)
= −f (0)+ Af (0)+ Bf

(
−α
b

)
. (4.14)

Putting y = −α
a

in (4.13) and using (4.14) we have g(bx) = Bg(x) for all x ∈ X.
Secondly, we consider Case 2 when ψ(s, t) = sptq, p + q < 0. Let d =

H2 ∩ {(x, y) : d ≤ 1
2

∣∣ a
b

∣∣ ‖x‖ ≤ ‖y‖ ≤ 2
∣∣ a
b

∣∣ ‖x‖} for d > 0. For given x, y ∈ X,
if we choose t ∈ X such that ‖t‖ is sufficiently large, then d ≤ 1

2

∣∣ a
b

∣∣ ‖u‖ ≤ ‖v‖ ≤
2
∣∣ a
b

∣∣ ‖u‖ for all (u, v) ∈ P(x, y, t) in (4.5). Thus, as in the first case we can see
that d satisfies the condition (C). Since there exists c > 0 such that ‖x‖p‖y‖q ≤
c‖x‖p+q for all (x, y) ∈ d , for each positive integerm ∈ N, we can choose dm > 0
such that ‖x‖p‖y‖q ≤ c‖x‖p+q ≤ 1

m
for all (x, y) ∈ dm . Thus, from (4.2) we get

(4.6) for all (x, y) ∈ dm . Now, the remaining part of the proof is similar to the first
case. Finally, the last statement can be proved by the same methods as in the proof
of Theorem 2.1. Now, the proof is complete. ��

Now, we prove the hyperstability theorem for Case 3 when ψ(s, t) =
sptq, pq < 0.

Theorem 4.2 Let p, q ∈ R with pq < 0. Then there exists a θ ∈ [0, 2π) such that
if f : X→ Y satisfies the inequality
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‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ‖x‖p‖y‖q (4.15)

for all (x, y) ∈ eiθH2, then g = f − f (0) is an additive mapping.

Proof We may assume that p > 0, q < 0. For each m ∈ N, let θ,m = eiθH2 ∩
{(x, y) ∈ X : ‖x‖ ≥ m}, where θ is the angle of rotation in Lemma 3.3. Then θ,m
satisfies the condition (C)′. Thus, from (1.19) in Theorem 2.2, for given x, y ∈ X
and m ∈ N, we can choose tm ∈ X with ‖tm‖ ≥ m such that

‖Af (x + y)− Af (x)− Af (y)+ Af (0)‖ (4.16)

= ‖ −D(x + y, tm)‖ +
∥∥
∥D
(
x,
a

b
y + tm

)∥∥
∥+ ‖D(y, tm)‖ +

∥∥
∥−D

(
0,
a

b
y + tm

)∥∥
∥

≤ ‖x + y‖p‖tm‖q + ‖x‖p
∥∥
∥
a

b
y + tm

∥∥
∥
q + ‖y‖p‖tm‖q,

whereD(x, y) = f (ax+by+α)−Af (x)−Bf (y)−C. Lettingm→∞ in (4.19)
we get

f (x + y)− f (x)− f (y)+ f (0) = 0 (4.17)

for all x ∈ X. Letting g = f − f (0) we get (4.17). Now, the proof is complete. ��
Remark 4.3 We have no idea if g = f − f (0) in Theorem 4.2 satisfies some of the
relations (4.2).

Let K be a subset of R with Lebsegue measure zero such that Kc is of the first
category(see Remark 3.7). Then as a consequence of Theorem 4.1 we obtain the
following.

Corollary 4.4 Suppose that f : R→ Y satisfies the inequality

‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ(|x|p + |y|q),
p, q < 0 (or δ|x|p|y|q, p + q < 0)

for all x, y ∈ K. Then g = f − f (0) is an additive mapping satisfying

g(ax) = Ag(x) and g(bx) = Bg(x)

for all x ∈ R. Furthermore, if f is not constant, then each of the two couples
{(a,A), (b, B)} consists either of algebraic numbers which are algebraic conju-
gates each other or of transcendental numbers.

As a consequence of Theorem 4.2 we obtain the following.

Corollary 4.5 There exists an angle θ ∈ [0, 2π) such that if f : R → Y satisfies
the inequality
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‖f (ax + by + α)− Af (x)− Bf (y)− C‖ ≤ δ|x|p|y|q, pq < 0 (4.18)

for all (x, y) ∈ eiθK2, then g = f − f (0) is an additive mapping.
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Functional Equations



Hyers–Ulam’s Stability Results to a
Three-Point Boundary Value Problem of
Nonlinear Fractional Order Differential
Equations

Kamal Shah, Zamin Gul, Yongjin Li, and Rahmat Ali Khan

Abstract This research is devoted to investigate the existence and multiplicity
results of boundary value problem (BVP) for nonlinear fractional order differential
equation (FDEs). To obtain the required results, we use some fixed point theorems
due to Leggett–Williams and Banach. Further in this paper, we introduce different
types of Ulam’s stability concepts for the aforesaid problem of nonlinear FDEs. The
concerned types of Ulam’s stability are devoted to Ulam–Hyers (UH), generalized
Ulam–Hyers (GUH) stability and Ulam–Hyers–Rassias (UHR), generalized Ulam–
Hyers–Rassias (GUHR) stability. Finally the whole analysis is verified by some
adequate examples.

2010 Mathematics Subject Classification 26A33, 34A08, 35B40

1 Introduction

Fractional differential equations (FDEs) received considerable attention due to its
large numbers of applications in various disciplines of sciences and technology
like physics, mechanics, chemistry, engineering, signal and image processing
phenomenons, etc. There has been a significant development in the theory of initial
and BVPs for nonlinear FDEs. Researchers have been paid much attention to
investigate different aspects of the aforesaid problems which are included qualitative
theory, numerical analysis, optimization, and stability analysis. It is a well-known
fact that in the last few years, many researchers focused their attention to develop
the existence theory of solutions to nonlinear FDEs, see, for example, [1–5, 35]
and the references therein. This is because of numerous applications of BVPs of
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differential and integral equations in physics, engineering, and technology. As far as
we know that the mentioned aspect has been very well studied for BVPs of ordinary
differential equations and plenty of research articles, books, and monograph can be
found on this topic in literature. Similarly, the mentioned aspect has been very well
explored for nonlinear FDEs with boundary conditions.

For instance, Bai and Lü [2] investigated the existence theory of solutions to BVP
recalled as

Dp
0+u(t)+ f(t, u(t)) = 0, t ∈ I, 1 < p ≤ 2,

u(0) = u(1) = 0,

where Dp
0+ is the Riemann–Liouville derivative of arbitrary order and f : I ×

[0,∞)→ [0,∞) is continuous function.
In same line Kaufmann and Mboumi [12] investigated appropriate results for the

existence of solutions to the BVP given by

Dp
0+u(t)+ α(t)f(u(t)) = 0, t ∈ I, 1 < p ≤ 2,

u(0) = 0, u′(1) = 0,

where α(t) is a positive and continuous function on I.
Following the aforesaid investigation, Li et al. [17], considered the following

nonlinear FDE as

Dp
0+u(t)+ f(t, u(t)) = 0, t ∈ I,

u(0) = 0, Dq
0+u(1) = aDqu(ξ), 0 < q < 1,

where 1 < p ≤ 2, Dp
0+ is the Riemann–Liouville derivative and f : I × [0,∞)→

[0,∞) is continuous function. In the last few years some other remarkable work
which is devoted to existence theory of nonlinear FDEs has been done, few of them
we refer as [14, 22, 29, 36].

One of the important area of differential equations is devoted to investigate
BVPs, because such problems arise in various disciplines like physics, engineering,
fluid mechnics, etc. In this regard from applications point of view, here we refer
some famous BVPs of differential equations which are the wave equation, like
the computation of the normal modes, the Sturm–Liouville problems, and Dirichlet
problem, etc. For usability purposes, a BVP should be well posed which implies that
a unique solution exists corresponding to the input which depends continuously on
the input. In thermal sciences BVPs have significant applications, for instance to find
the temperature at all points of an iron bar with one end kept at lowest energy level
and the other end at the freezing point of water. Due to these importance applications
researchers studied BVPs of both classical and arbitrary order differential equations
from different aspects. Besides from the existence theory another aspect which is
recently considered by many authors is known as stability of solutions. In fact
it is very difficult job to solve every nonlinear problem of differential or integral



Hyers–Ulam’s Stability Results to a Nonlinear Fractional Order Differential Equations 47

equations for their exact solution, therefore in such a situation one need some
iterative methods to find approximate or numerical solutions. Now for the numerical
solutions stability is a demanding task. Researchers investigated different kinds of
stability for differential, integral, and functional equations like exponential, Mittag–
Leffler, and Lyapunov stability, for details, see [18, 23, 25]. Recently some authors
explored another form of stability known as UH and GUH stability for the solutions
of FDEs, see [19, 23, 26, 27, 30]. This form of stability was pointed out by Ulam
in 1940 which was later explained by Hyers in a more brilliant way in 1941. The
mentioned stability has been improved further in 1970 by Rassias to some other
forms known as UHR and GUHR stability, see [21]. The aforesaid stability has been
very well studied for initial value problems and simple two-point BVPs of linear
and nonlinear FDEs, see [7, 14, 32]. In the last few years the said stability analysis
has been extensively considered by many authors, we refer some work as [6, 8–
11, 19, 24, 28, 31, 33, 34]. The concerned stability is very rarely investigated for the
multi-point BVPs of FDEs. Here we remark that nonlocal BVPs of FDEs are of key
impotence for engineers, physics, etc. The stable solutions of the aforesaid problems
help us in understanding the phenomenon which has the differential equations.

Inspired from the aforesaid work, we consider the following three-point BVP of
nonlinear FDEs as

Dp
0+u(t)+ f(t, u(t)) = 0, t ∈ I, (1)

Dq
0+u(0) = 0, Dq

0+u(1) = λu(ξ), 0 ≤ q < 1, p− q ≥ 1,

where Dp
0+ is the standard Riemann–Liouville fractional derivative of order 1 < p ≤

2, and λΓ (p − q)ξp−2 ≤ Γ (p)(1 − q), f : I × [0,∞) → [0,∞) is continuous
function. By using Leggett–Williams and Banach fixed point theorems we develop
the required results. Further different kinds of Ulam’s stability results are also
investigated. Here we remark that investigating the UH and GUH stability for the
solutions of nonlinear FDEs involving Riemann–Liouville fractional derivative is
very rarely studied in literature. Most of the investigations about the stability are
related to Caputo type derivative. Further we also studied UHR and GUHR stability
results for the considered BVP of FDEs. The whole analysis is justified by providing
some problems.

2 Axillary Results

This part of the paper is devoted to some necessary notations, definitions, and results
related to fractional calculus and functional analysis for which reader can see [13,
15, 20]. These definitions and lemmas will be used throughout this manuscript.

Definition 1 The fractional order integral of arbitrary order p > 0 for the function
f ∈ L([a, b],R) is recalled as
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I p
a f(t) = 1

Γ (p)

∫ t

a

(t − s)p−1f(s)ds,

where the integration on the right-hand side is pointwise defined on (0,∞).
Definition 2 If p > 0, then the Riemann–Liouville fractional derivatives for a
continuous function f ∈ ((0,∞),R), is given by

Dp
0+f(t) = 1

Γ (n− p)

(
d

dt

)n ∫ t

0
(t − s)n−p−1f(s)ds,

where n = [p] + 1, provided that the integral on the right is pointwise on (0,∞).
Definition 3 A concave functional θ ≥ 0 on a cone P of a real Banach space X
for all 0 ≤ λ ≤ 1 is defined by

θ(λu+ (1− λ)v) ≥ λθ(u)+ (1− λ)θ(v) for all u, v ∈P.

Lemma 1 ([12]) The solution of FDE

Dp
0+u(t) = 0

is given by

u(t) = b1t
p−1 + b2t

p−2 + . . .+ bntp−n,

for some bi ∈ R, i = 1, 2, . . . , n, where n = [p] + 1.

Lemma 2 Using the above Lemma 1, we get the result given by

I
p

0+Dp
0+u(t) = u(t)+ b1t

p−1 + b2t
p−2 + . . .+ bntp−n,

for some bi ∈ R, i = 1, 2, . . . , n, where N = [p] + 1.

Lemma 3 Let f ∈ L(I) and p, q are two constants such that p > 1 > q ≥ 0, then

Dq
0+I

p
0+f (t) = I

p−q
0+ f(t)

= 1

Γ (p− q)

∫ t

0
(t − s)p−q−1f(s)ds.

To get our main results of existence, we present the following lemmas from fixed
point theory.

Theorem 1 ([12]) Let X be a Banach space, P ⊂ X is a cone, and A1, A2 are
open sets with 0 ∈ A1, A1 ⊂ A2, and let T :P∩ (A2 \A1)→P be a completely
continuous operator such that either
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(i) ‖T u‖X ≤ ‖u‖X, u ∈P ∩ ∂A1, and ‖T u‖X ≥ ‖u‖X, u ∈P ∩ ∂A2, or

(ii) ‖T u‖X ≥ ‖u‖X, u ∈P ∩ ∂A1, and ‖T u‖X ≤ ‖u‖X, u ∈P ∩ ∂A2,

then T has a fixed point in P ∩ (A2 \ A1).

Theorem 2 ([12]) Let X be a Banach space with P ⊂ X is closed and convex set.
Assume that U is a relatively open subset of P with 0 ∈ U and T : U → P is
completely continuous. Then either

1. T has a fixed in Ū, or
2. there exist u ∈ ∂U and γ ∈ (0, 1) with u = γT u.

Theorem 3 (Leggett–Williams’s fixed point theorem, [16]) Let P be a cone in a
real Banach space X, Pc = {u; ‖u‖X < c}, θ is a nonnegative continuous concave
functional on P such that θ(u) ≤ ‖u‖X, for all u ∈ P̄c, and P(θ, b, d) = {u ∈
P; b ≤ θ(u), ‖u‖X ≤ d}. Suppose that T : P̄c → P̄c is completely continuous
and there exist positive constants 0 < a < b < d ≤ c such that

(C1) {u ∈P(θ, b, d) : θ(u) > b} �= ∅ and θ(T u) > b, for u ∈P(θ, b, d),

(C2) ‖T u‖X < a for u ∈ P̄a,

(C2) θ(T u) > b for u ∈P(θ, b, c) with ‖T u‖X > d.

Then T has at least three fixed points u1, u2, and u3 with

‖u‖X < a, b < θ(u2), a < ‖u3‖X, with θ(u3) < b.

3 Existence Theory

Lemma 4 Let y ∈ L(I) and 1 < p ≤ 2, then FDE

Dp
+0u(t) +y(t) = 0, t ∈ I, (2)

Dq
+0u(0) = 0, Dq

+0u(1) = λu(ξ), 0 ≤ q < 1, p− q ≥ 1,

where λ, ξ ∈ (0, 1) and λΓ (p− q)ξp−2 ≤ Γ (p)(1− q) has a solution given as

u(t) =
∫ 1

0
K(t, s)y(s)ds,

where
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K(t, s) = 1

Γ (p)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΓ (p) tp−1(1− s)p−q−1

−dtp−1λΓ (p− q)(ξ − s)p−1 − (t − s)p−1,

if 0 ≤ s ≤ min{ξ, t} < 1

dΓ (p)tp−1(1− s)p−q−1 − (t − s)p−1, if 0 ≤ ξ ≤ s ≤ t ≤ 1

dΓ (p)tp−1(1− s)p−q−1 − dtp−1λΓ (p− q)(ξ − s)p−1,

if 0 ≤ t ≤ s ≤ ξ < 1

dΓ (p)tp−1(1− s)p−q−1, if max{ξ, t} ≤ s ≤ 1,

and d = (Γ (p)− Γ (p− q)λξp−1)−1.

Or

K(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(t, s), if 0 ≤ s ≤ min{ξ, t} < 1

g2(t, s), if 0 ≤ ξ ≤ s ≤ t ≤ 1

g3(t, s), if 0 ≤ t ≤ s ≤ ξ < 1

g4(t, s), if max{ξ, t} ≤ s ≤ 1.

Proof Applying Lemma 2 to the linear BVP (2), we get

u(t) = b1t
p−1 + b2t

p−2 −I py(t),

for some real constants b1 and b2. Also by using definition 2, we have

Dq
0+u(t) = b1

Γ (p)
Γ (p− q)

tp−q−1 + b2
Γ (p− 1)

Γ (p− q− 1)
tp−q−2 −I p−qy(t),

Multiplying both sides by t2+q−p and taking t → 0, we get b2 = 0, therefore

u(t) = b1t
p−1 −I py(t),

and

Dq
+0u(t) = b1

Γ (p)
Γ (p− q)

tp−q−1 −I p−qy(t).

Using boundary condition Dq
+0u(1) = λu(ξ), we get
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b1 = Γ (p− q)

Γ (p)− Γ (p− q)λξp−1 (I
p−qy(1)− λI py(ξ)).

Hence, BVP (2) has unique solution given as

u(t) = d

Γ (p)
Γ (p)tp−1

∫ 1

0
(1− s)p−q−1y(s)ds

+ 1

Γ (p)

[
− dtp−1λΓ (p− q)

∫ ξ

0
(ξ − s)p−1y(s)ds −

∫ t

0
(t − s)p−1y(s)ds

]

=
∫ 1

0
K(t, s)y(s)ds.

Lemma 5 The Green’s function K(t, s) obeys the following hypothesis:

1. K(t, s) is continuous on I× I,
2. K(t, s) > 0 for any s, t ∈ (0, 1).

Proof Clearly K(t, s) is continuous function on I× I. To prove the second part we
prove that each gi(t, s) > 0 for i = 1, 2, 3, 4. Now taking

g1(t, s) = tp−1

Γ (p)
h(t, s),

where

h(t, s) = dΓ (p)(1− s)p−q−1 − dλΓ (p− q)(ξ − s)p−1 − (1− s

t
)p−1

implies that for all t ∈ [s, 1],
∂h(t, s)

∂t
= −(p− 1)(1− s

t
)p−2(

s

t2
) ≤ 0,

Showing that h(t, s) is decreasing function at t ∈ [s, 1], but always non-negative.
Because for maximum value of t = 1,

h(1, s) = dΓ (p)(1− s)p−q−1 − dλΓ (p− q)(ξ − s)p−1 − (1− s)p−1

so

h(1, 0) = dΓ (p)− dλΓ (p− q)ξp−1 − 1

= d(Γ (p)− λΓ (p− q)ξp−1)− 1

= 0.
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Also

h(1, ξ) = dΓ (p)(1− ξ)p−q−1 − (1− ξ)p−1

≥ d(1− ξ)p−1(Γ (p)(1+ qξ)− (Γ (p)− λΓ (p− q)ξp−1)

= d(1− ξ)p−1ξ(qΓ (p)+ λΓ (p− q)ξp−2)

> 0.

Further

∂h(1, s)

∂s
= −dΓ (p)(p− q− 1)(1− s)p−q−2

+λd(p− 1)(ξ − s)p−2 + (p− 1)(1− s)p−2.

Let at s = s∗, ∂h(1,s)
∂s

= 0, which implies that

λd(ξ − s∗)p−2 = dΓ (p)(p− q− 1)(1− s∗)p−q−2 − (p− 1)(1− s∗)p−2

p− 1
.

Therefore

h(1, s∗) = dΓ (p)(1− s∗)p−q−1

−dΓ (p)(p− q− 1)(1− s∗)p−q−2 − (p− 1)(1− s∗)p−2

p− 1
(ξ − s∗)

−(1− s∗)p−1

> dΓ (p)(1− s∗)p−q−1 − dΓ (p)(1− s∗)p−q−2(ξ − s∗)
+(1− s∗)p−2(ξ − s∗)
−(1− s∗)p−1

> d(1− ξ)(1− s∗)p−2(Γ (p)qs∗ + λΓ (p− q)ξp−1)

> 0.

Hence we have

min
0≤s≤ξ h(1, s) = min{h(1, 0), h(1, s∗), h(1, ξ)} = 0.

Also

∂h(1, 0)

∂s
= −dΓ (p)(p− q− 1)+ λdΓ (p− q)(p− 1)ξp−2 + p− 1.



Hyers–Ulam’s Stability Results to a Nonlinear Fractional Order Differential Equations 53

But

λdΓ (p− q)(p− 1)ξp−2 ≥ dΓ (p)(p− q− 1),

if p ≤ 2 and λΓ (p − q)ξp−2 ≤ pΓ (p)(1 − q), which show that ∂h(1,0)
∂s

> 0.
Hence we concluded that h(1, s) > 0 for all s ∈ (0, ξ ], or g1(t, s) > 0 for all
0 ≤ s ≤ min{t, ξ} < 1. By using similar argument we can prove that each gi(t, s)
for all i = 2, 3, 4, are positive in their corresponding interval. Therefore K(t, s) > 0
for all 0 < s, t < 1.

Lemma 6 The function K(t, s) satisfies the following hypothesis

1. K(t, s) ≤ K(s, s), for all s, t ∈ I,
2. There exists a positive function γ (s) ∈ C(0, 1) such that

min
ξ≤t≤1

K(t, s) ≥ γ (s) max
0≤t≤1

K(t, s) = γ (s)K(s, s), for 0 < s < 1.

Proof For part first we will prove that g1(t, s) and g2(t, s) are both decreasing with
respect to t ∈ [s, 1], while g3(t, s) and g4(t, s) are both increasing with respect to
t ∈ [0, s].
Consider

g1(t, s) = h(t, s)

Γ (p)
if 0 ≤ s ≤ {t, ξ} < 1,

and

∂h(t, s)

∂t
= dΓ (p)(p− 1)tp−2(1− s)p−q−1 − d(p− 1)tp−2λΓ (p− q)(ξ − s)p−1

−(p− 1)(t − s)p−2

≤ (p− 1)tp−2
[
dΓ (p)(1− s)p−q−1 − (1− s)p−2

]

≤ (p− 1)d(t (1− s))p−2ξ

[
− Γ (p)(1− q)+ Γ (p− q)λξp−2

]

≤ 0.

From which we see that g1(t, s) is decreasing function for t . Similarly one can prove
that g2(t, s) is decreasing function for t ∈ [s, 1].
Further

∂g3(t, s)

∂t
= d(p− 1)tp−2

Γ (p)
(Γ (p)(1− s)p−q−1 − λΓ (p− q)(ξ − s)p−1)
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= d(p− 1)tp−2

Γ (p)
r(s),

where

r(s) = Γ (p)(1− s)p−q−1 − λΓ (p− q)(ξ − s)p−1 for 0 ≤ s ≤ ξ .

Now

r(0) = (Γ (p)− λΓ (p− q)ξp−1)

= d−1 > 0,

and

r(ξ) = Γ (p)(1− ξ)p−q−1 ≥ 0.

Also

r ′(s) = −Γ (p)(p− q− 1)(1− s)p−q−2 + λΓ (p− q)(p− 1)(ξ − s)p−2,

Setting r ′(s∗) = 0 which implies that

λΓ (p− q)(p− 1)(ξ − s∗)p−2 = (p− q− 1)Γ (p)(1− s∗)p−q−2,

or

λΓ (p− q)(ξ − s∗)p−2 = p− q− 1

p− 1
Γ (p)(1− s∗)p−q−2.

Therefore

r(s∗) = Γ (p)(1− s∗)p−q−1 − Γ (p)(p− q− 1

p− 1
)(1− s∗)p−q−2(ξ − s∗)

> Γ (p)(1− s∗)p−q−2
[

1− s∗ − ξ + s∗
]

> 0.

Hence min r(s) > 0 which implies that ∂g3(t,s)
∂t

> 0, showing that g3(t, s) is
increasing function for t ∈ [s, 1]. Finally g4(t, s) is also increasing function for
t ∈ [s, 1], because

∂g4(t, s)

∂t
= d(p− 1)tp−2(1− s)p−q−1 > 0.
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Hence we concluded that K(t, s) is increasing function for s ≤ t, and decreasing
for s ≥ t .
So K(t, s) ≤ K(s, s) for s, t ∈ I. Also, one has

min
ξ≤t≤1

K(t, s) =
⎧
⎨

⎩

minξ≤t≤1{g1(t, s), g3(t, s)}, if 0 ≤ s ≤ ξ,

minξ≤t≤1{g2(t, s), g4(t, s)}, if ξ ≤ s ≤ 1,

or

min
ξ≤t≤1

K(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

g1(t, s), if 0 ≤ s ≤ ξ,

ψ(s), if ξ ≤ s ≤ 1,

where ψ(s) = min{g2(1, s), g4(ξ , s)}. From which we have

minξ≤t≤1 K(t, s)
K(s, s)

=

⎧
⎪⎨

⎪⎩

g1(t,s)
K(s,s) , if 0 ≤ s ≤ ξ,
ψ(s)

K(s,s) , if ξ ≤ s ≤ 1,

where

K(s, s) =

⎧
⎪⎨

⎪⎩

dΓ (p)sp−1(1−s)p−q−1−dλΓ (p−q)sp−1(ξ−s)p−1

Γ (p) , if 0 ≤ s ≤ ξ,

dsp−1(1− s)p−q−1, if ξ ≤ s ≤ 1.

Therefore taking

γ (s) =

⎧
⎪⎨

⎪⎩

g1(t,s)
K(s,s) , if 0 ≤ s ≤ ξ,
ψ(s)

K(s,s) , if ξ ≤ s ≤ 1,

we have

min
ξ≤t≤1

K(t, s) ≤ γ (s)K(s, s) = γ (s) max
0≤t≤1

K(t, s), (3)

where 0 < s < 1 is the required result.

Theorem 4 If there exists a real valued function h ∈ L(I) such that |f(t, u) −
f(t, v)| ≤ h(t)|u− v|, for t ∈ I and for all u, v ∈ [0,∞) and moreover if
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0 <
∫ 1

0
K(s, s)h(s)ds < 1,

then there exists a unique positive solution of FDE (2) on I.

Proof Let X = C(I,R) be the Banach space of all continuous functions with
‖u‖X = sup0≤t≤1 |u(t)| and P be the cone such that

P = {u ∈ X : u(t) ≥ 0, t ∈ I}.

We prove that the mapping

T :P →P

defined as

T u(t) =
∫ 1

0
K(t, s)f(s, u(s))ds.

is contraction mapping. We consider u, v ∈P such that

|T u(t)−T v(t)| ≤
∫ 1

0
K(t, s)|f(s, u(s))− f(s, v(s))|)ds

≤ ||u− v||X
∫ 1

0
K(s, s)h(s)ds.

This implies that

||T u−T v||X ≤ ϕ||u− v||X,

where ϕ = ∫ 1
0 K(s, s)h(s)ds ∈ (0, 1). Hence considered FDE (2) has unique

solution.

Theorem 5 Let there exist two nonnegative real valued function α, β ∈ L(I) with
f(t, u) ≤ α(t)+ β(t)u, for every (t, u) ∈ I× [0,∞). Then the mapping T :P →
P defined by T u(t) = ∫ 1

0 K(t, s)f(s, u(s))ds is completely continuous.

Proof

Step 1 First we will show that operator T : P → P is continuous. Let un(t)
be converged to u ∈ P then by continuity of f(t, u(s)), limn→∞ f(t, un(t)) =
f(t, u(t)) for t ∈ I.

So we have as n→∞

sup
s∈I
||f(s, un(s))− f(t, u(s))||X → 0.
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Now consider

|(T un)(t)− (T u)(t)| =
∣∣∣
∣

∫ 1

0
K(t, s)[f(s, un(s))− f(s, u(s))]ds

∣∣∣
∣

≤ sup
s∈I

∣∣
∣∣f(s, un(s))− f(t, u(s))

∣∣
∣∣

∫ 1

0
K(s, s)ds.

From which it is clear that

||T un −T u||X → 0, n→∞.

Hence T is continuous.

Step 2 To show T (u) is bounded for every bounded set u of P .
Let ||u||X ≤ r, so we have

|T u(t)| =
∣
∣∣∣

∫ 1

0
K(t, s)f(s, u(s))ds

∣
∣∣∣

≤
∫ 1

0
K(t, s)α(s)ds +

∫ 1

0
K(t, s)β(s)||u||Xds

≤
∫ 1

0
K(s, s)α(s)ds + r

∫ 1

0
K(s, s)β(s)ds

= l,

which yields

||T u||X ≤ l.

Step 3 To show T maps every bounded set of P into equi-continuous set of P .
Let u belong to a bounded subset of P such that ||u||X ≤ r , then we have

|T u(t2)−T u(t1)| =
∣∣
∣∣

∫ 1

0
|K(t2, s)−K(t1, s)|f(s, u(s))ds

∣∣
∣∣

≤
∫ 1

0
|K(t2, s)−K(t1, s)|(α(s)+ β(s)||u(s)||X)ds

≤ l

∫ 1

0
|K(t2, s)−K(t1, s)|(α(s)+ β(s)r)ds.
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Since K(t, s) is continuous on I× I, so also uniformly continuous on I× I. Hence
for any ε > 0, there exist δ > 0 such that

|K(t2, s)−K(t1, s)| < ε

l × ∫ 1
0 (α(s)+ rβ(s))ds

,

whenever |t2 − t1| < δ,

which implies that

||T u(t2)−T u(t1)||X < ε,

whenever |t2 − t1| < δ.

Hence {T u} is equi-continuous. Therefore by Arzelá–Ascoli theorem the operator
T :P →P is completely continuous.

Theorem 6 Assume that there exist two nonnegative real valued function α, β ∈
L(I) such that f(t, x) ≤ α(t)+ β(t)x, for every (t, u) ∈ I× [0,∞). If

∫ 1

0
K(s, s)β(s)ds < 1,

then the FDE (2) has at least one positive solution.

Proof Let

U = {u ∈P : ||u||X < r},

where

r =
∫ 1

0 K(s, s)α(s)ds

1− ∫ 1
0 K(s, s)β(s)ds

> 0,

and for a completely continuous operator

T : U →P,

defined by

T u(t) =
∫ 1

0
K(t, s)f(s, u(s))ds,

assume that there exist u ∈ P and γ ∈ (0, 1) such that u = γT u, we claim that
||u||X �= r . So we get
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u(t) = γ

∫ 1

0
K(t, s)f(s, u(s))ds

≤ γ

∫ 1

0
K(t, s)(α(s)+ β(s)u(s))ds

≤ γ

[ ∫ 1

0
K(s, s)α(s)ds +

∫ 1

0
K(s, s)β(s)‖u‖Xds

]
,

or

‖u‖X ≤ γ

[ ∫ 1

0
K(s, s)α(s)ds + r

∫ 1

0
K(s, s)β(s)ds

]

<

∫ 1

0
K(s, s)α(s)ds + r

∫ 1

0
K(s, s)β(s)ds = r

or in other words u is not in ∂U. Hence T has a fixed point u ∈ U. Therefore by
Theorem 2, the FDE(2) has at least one positive solution.

Theorem 7 Assume that there exist

1. Two positive real valued functions α, β ∈ L(I), such that f(t, u) ≤ α(t)+β(t)u,
for every t ∈ I and for u ∈ [0,∞),

2. f(t, u) ≤M r2, for (t, s) ∈ I× [0, r2],
3. f(t, u) ≥ N r1, for (t, s) ∈ I× [0, r1],
where r1 and r2 are positive constants with 0 < r1 < r2 and

M =
(∫ 1

0
K(s, s)β(s)ds

)−1

, N =
(∫ 1

ξ

K(s, s)n(s)ds
)−1

.

Then the FDE (2) has at least a positive solution.

Proof Given that there exist two positive real valued functions α, β ∈ L(I) with
f(t, u) ≤ α(t)+ β(t)u, for every (t, u) ∈ I× [0,∞). Therefore the mapping

T :P →P

defined by

T u(t) =
∫ 1

0
K(t, s)f(s, u(s))ds,

is completely continuous. Also
(a) Let A2 = {u ∈ X : ‖u‖X < r2}. For u ∈ P ∩ ∂A2, ‖u‖X = r2 which yields

that 0 ≤ u(t) ≤ r2 for each t ∈ I. Then by condition (2) we have
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|T u(t)| =
∣∣∣
∣

∫ 1

0
K(t, s)f(s, u(s))ds

∣∣∣
∣

≤
∫ 1

0
K(s, s)M r2ds

≤ r2,

which means that

‖T u‖X ≤ ‖u‖X.

(b) Let A1 = {u ∈ X : ‖u‖X < r1}. For u ∈ P ∩ ∂A1, ‖u‖X = r1 then for every
t ∈ [ξ, 1] we have

|T u(t)| =
∣
∣∣∣

∫ 1

0
K(t, s)f(s, u(s))ds

∣
∣∣∣

≥
∫ 1

0
γ (s)K(s, s)N r1ds

≥ N r1

∫ 1

ξ

γ (s)K(s, s)ds = r1,

which produces

‖T u‖X ≥ ‖u‖X.

Hence by Lemma 1, T has a fixed point u ∈P ∩ (A2 \A1), which is the required
solution of FDE (2).

Theorem 8 Assume that there exist two positive real valued functions α, β ∈ L(I)
such that f(t, u) ≤ α(t)+ β(t)u, for every t ∈ I and

1. f(t, u) < M a1, for (t, u) ∈ I× [0, a1],
2. f(t, u) ≤M c, for (t, u) ∈ I× [0, c],
3. f(t, u) ≥ N b, for (t, u) ∈ [ξ, 1] × [b, c],
where a1, b, and c are constants such that 0 < a1 < b < c, then the FDE (2) has
at least three positive solutions u1, u2, and u3 with

‖u1‖X < a1, b < θ(u2) < ‖u2‖X < c, a1 < ‖u3‖X, θ(u3) < b.

Proof To derive all the assumptions of Lemma 3, we follow as if u ∈ Pc, then
‖u‖X ≤ c. So 0 ≤ u(t) ≤ c for t ∈ I. We have



Hyers–Ulam’s Stability Results to a Nonlinear Fractional Order Differential Equations 61

|T u(t)| =
∣∣∣
∣

∫ 1

0
K(t, s)f(s, u(s))ds

∣∣∣
∣

≤
∫ 1

0
K(s, s)M cds

= M c

∫ 1

0
K(s, s)ds = c,

which implies that

‖T u‖X ≤ c, u ∈Pc.

Hence T :Pc →Pc is operator which is completely continuous.
Following similar fashion one claims that if u ∈Pa1 , then ‖T u‖X ≤ a1. Further

we choose u(t) = b+c
2 , t ∈ I, it is clear that u(t) = b+c

2 ∈ P(θ, b, c), θ(u) =
b+c

2 > b. Therefore {u ∈P(θ, b, c) : θ(u) > b} �= ∅. Also, if u ∈P(θ, b, c) then
b ≤ u(t) ≤ c, t ∈ [ξ, 1]. And by last condition, we have

f(t, u(t)) ≥ N b.

Hence, we get

θ(T u) = min
ξ≤t≤1

|T u(t)|

= min
ξ≤t≤1

∣
∣∣∣

∫ 1

0
K(t, s)f(s, u(s))ds

∣
∣∣∣

≥ min
ξ≤t≤1

∫ 1

0
K(t, s)N bds

>

∫ 1

ξ

γ (s)K(s, s)N bds

> N b

∫ 1

ξ

γ (s)K(s, s)ds = b,

which means that θ(T u) > b, with u ∈ (θ, b, c).
Thus, thanks to Theorem 3, there exist at least three solutions u1, u2, and u3 for the
FDE (2) such that

‖u1‖X < a1, b < θ(u2) < ‖u2‖X < c, a1 < ‖u3‖X, θ(u3) < b.

Hence we get the required result.
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4 Different Kinds of Ulam’s Stability for the Solutions
of BVP (1)

This portion of the paper is devoted to the UH, GUH, UHR, and GUHR stability of
the solutions to consider BVP (1) of nonlinear FDEs. To come across the required
result, we give the following axillary results needed.

Definition 4 The solution u ∈ C(I,R) of the considered problem (1) is UH stable
if we can find a real number Ĉf > 0 with the property that for every � > 0 and for
each solution u ∈ C(I,R) of the inequality

|cDpu(t)− f(t, u(t))| ≤ �, t ∈ I, (4)

there exists a unique solution v ∈ C(I,R) of the proposed BVP (1) with a constant
Ĉf > 0 with

‖u− v‖X ≤ Ĉf� > 0, t ∈ I.

Definition 5 The solution u ∈ C(I,R) of the proposed BVP (1) is called to be
GUH stable, if we can find

Θf : (0,∞)→ R+, with Θf(0) = 0,

such that for each solution v ∈ C(I,R) of the inequality (4), we can find a unique
solution v ∈ C(I,R) of the considered BVP (1) with

‖u− v‖X ≤ ĈfΘf(�), t ∈ I.

Remark 1 A function u ∈ (I,R) is said to be the solution of inequality given in (4)
if and only if, we can find a function ℵ ∈ (I,R) depends on u only, then

(i) |ℵ(t)| ≤ �, f or all t ∈ I;
(ii) cDpu(t) = f(t, u(t))+ ℵ(t), f or all t ∈ I.

Next we recall the definitions of UHR and GUHR stability [21] for our
considered problem (1) as below:

Definition 6 FDE (1) is said to be UHR stable with respect to χ ∈ C(I,R) if there
exists a real constant Ĉf > 0 such that for each� > 0 and for every solution u ∈ CI
of the inequality

|cDpu(t)− f(t, u(t))| ≤ �χ(t), t ∈ I, (5)

there exists a solution v ∈ C(I) of the Eq. (1), such that

|u(t)− v(t)| ≤ Ĉφ,ϕεχ(t), t ∈ I.



Hyers–Ulam’s Stability Results to a Nonlinear Fractional Order Differential Equations 63

Definition 7 Equation (1) is said to be GUHR stable with respect to χ ∈ C(I),
if there exists a real number Ĉf > 0 such that for each solution u ∈ CI of the
inequality

|cDpu(t)− f(t, u(t))| ≤ χ(t), t ∈ I, (6)

there exists a solutionw ∈ C(I) of the Eq. (1) such that |w(t)−x(t)| ≤ Ĉχ,�,Υ χ(t),
t ∈ I.

Lemma 7 Under assumption h ∈ L(I) such that |f(t, u) − f(t, v)| ≤ h(t)|u − v|,
for t ∈ (I) , the solution u ∈ (I,R) of the considered problem is given by

Dp
0+u(t)+ f(t, u(t)) = ℵ(t), 0 < t < 1, (7)

Dq
0+u(0) = 0, Dq

0+u(1) = λu(ξ), 0 ≤ q < 1, p− q ≥ 1,

satisfying the relation given by

∣
∣∣∣u(t)−

∫ 1

0
K(t, s)f(s, u(s))ds

∣
∣∣∣ ≤ K�, f or all t ∈ I. (8)

Proof Thanks to Lemma 4 , we get the solution of the considered problem (12) as

u(t) =
∫ 1

0
K(t, s)f(s, u(s))ds +

∫ 1

0
K(t, s)ℵ(s)ds, t ∈ I, (9)

where K(t, s) is the same Green’s function defined in Lemma 4. From (14), we may
write as

∣
∣
∣
∣u(t)−

∫ 1

0
K(t, s)f(s, u(s))ds

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0
K(t, s)ℵ(s)ds

∣
∣
∣
∣

≤ max
t∈I

∫ 1

0
|K(t, s)||ℵ(s)|ds

≤ K∗�, f or all t ∈ I, K∗ = max
t∈I

∫ 1

0
|K(t, s)|ds.

Theorem 9 Under the assumption h ∈ L(I) such that |f(t, u) − f(t, v)| ≤
h(t)|u − v|, for all t ∈ I and Lemma 7 together with the condition Υ =
maxt∈I

∫ 1
0 K(t, s)h(s)ds �= 1, the solution of FDE (1) is UH stable and conse-

quently GUH stable.

Proof Let u ∈ C(I,R) be any solution of FDE (1) and v ∈ C(I,R) be the unique
solution of the considered problem, then consider
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|v(t)− u(t)| =
∣∣∣
∣v(t)−

∫ 1

0
K(t, s)f(s, v(s))ds +

∫ 1

0
K(t, s)f(s, v(s))ds

−
∫ 1

0
K(t, s)f(s, u(s))ds

∣∣
∣∣

≤
∣
∣∣∣v(t)−

∫ 1

0
K(t, s)f(s, v(s))ds

∣
∣∣∣+
∣
∣∣∣

∫ 1

0
K(t, s)f(s, v(s))ds

−
∫ 1

0
K(t, s)f(s, u(s))ds

∣∣∣∣

≤ K∗� +
∫ 1

0
|K∗(t, s)|h(s)|v − u|ds,

which on simplification yields that

‖v − u‖X ≤ K∗� +max
t∈I

∫ 1

0
K(t, s)h(s)ds‖v − u‖X

which further gives

‖y − x‖X ≤ K∗�
1− Υ , f or all t ∈ I, where Υ = max

t∈I

∫ 1

0
K(t, s)h(s)ds. (10)

Hence the solution of the considered problem (1) is UH stable . Also if we let
Θ(�) = � and Ĉf = K∗�

1−Υ , then (15) can be written as

‖y − x‖X ≤ ĈfΘ(�), f or all t ∈ I

It is clear that Θ(0) = 0. Hence the solution of the proposed problem (1) is GUH
stable.

Let the following inequality hold for a nondecreasing function χ : (0,∞)→ R

I pχ(t) ≤ λχχ(t). (11)

Lemma 8 Under the inequality (11) and assumption h ∈ L(I) with |f(t, u) −
f(t, v)| ≤ h(t)|u − v|, for all t ∈ I, the solution u ∈ (I,R) of the considered
problem is given by

Dp
0+u(t)+ f(t, u(t)) = ℵ(t), 0 < t < 1,

Dq
0+u(0) = 0, Dq

0+u(1) = λu(ξ), 0 ≤ q < 1, p− q ≥ 1, (12)
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satisfying the following relation

∣
∣∣∣u(t)−

∫ 1

0
K(t, s)f(s, u(s))ds

∣
∣∣∣ ≤ Kλχ�χ(t), f or all t ∈ I. (13)

Proof Thanks to Lemma 4 , we get the solution of the considered problem (12) as

u(t) =
∫ 1

0
K(t, s)f(s, u(s))ds +

∫ 1

0
K(t, s)ℵ(s)ds, t ∈ I, (14)

where K(t, s) is the same Green’s function defined in Lemma 4. From (14), we may
write as

∣∣∣
∣u(t)−

∫ 1

0
K(t, s)f(s, u(s))ds

∣∣∣
∣ =

∣∣∣
∣

1

Γ (p)

[
dΓ (p)tp−1

∫ 1

0
(1− s)p−q−1y(s)ds

−dtp−1λΓ (p− q)
∫ ξ

0
(ξ − s)p−1y(s)ds

−
∫ t

0
(t − s)p−1y(s)ds

]∣∣∣∣

≤ dλΓ (p − q)λχχ(t)+ λχχ(t)
= λχ,�χ(t), where � = λχ(1+ dλΓ (p − q)).

Theorem 10 Under the assumption h ∈ L(I) such that |f(t, u) − f(t, v)| ≤
h(t)|u − v|, for all t ∈ I and Lemma 8 together with the condition Υ =
maxt∈I

∫ 1
0 K(t, s)h(s)ds < 1, the solution of FDE (1) is UHR and consequently

GUHR stable.

Proof Let u ∈ C(I,R) be any solution of FDE (1) and v ∈ C(I,R) be the unique
solution of the considered problem, then consider

|v(t)− u(t)| =
∣∣∣∣v(t)−

∫ 1

0
K(t, s)f(s, v(s))ds +

∫ 1

0
K(t, s)f(s, v(s))ds

−
∫ 1

0
K(t, s)f(s, u(s))ds

∣∣∣∣

≤
∣∣∣
∣v(t)−

∫ 1

0
K(t, s)f(s, v(s))ds

∣∣∣
∣+
∣∣∣
∣

∫ 1

0
K(t, s)f(s, v(s))ds

−
∫ 1

0
K(t, s)f(s, u(s))ds

∣∣
∣∣

≤ λχ,�χ(t)+
∫ 1

0
|K∗(t, s)|h(s)|v − u|ds,
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which on simplification yields that

‖v − u‖X ≤ λχ,�χ(t)+max
t∈I

∫ 1

0
K(t, s)h(s)ds‖v − u‖X

which further gives

‖v − u‖X ≤ Ĉχ,�,Υ χ(t), f or all t ∈ I, where Ĉχ,�,Υ = λχ,�

1− Υ . (15)

Hence the solution of the considered problem (1) is UHR stable. On a similar
computation, we can easily derive that the solution of the proposed problem (1)
is GUHR stable.

5 Example

Example 1 Consider the fractional order boundary value differential equation

Dp
0+u(t)+

e2t u(t)

4(2+ e2t )(2+ u(t)) + cos
2t + 1 = 0, for 0 < t < 1,

Dq
0+(0) = 0, Dq

0+u(1) = λu(ξ), (16)

where p = 3
2 , p = 1

20 , ξ = 9
10 , λ = 1

200 .

Let f(t, u) = e2t u(t)

4(2+e2t )(2+u(t)) + cos2t + 1, (t, u) ∈ I× [0,∞).
Taking h(t) = e2t

2(2+e2t )
, one has

∣
∣∣∣f(t, u2(t))− f(t, u1(t)

∣
∣∣∣ =

e2t

4(2+ e2t )

∣
∣∣∣
u2(t)

2+ u2(t)
− u1(t)

2+ u1(t)

∣
∣∣∣

≤ e2t

2(2+ e2t )
‖u2 − u1‖X

≤ h(t)‖u2 − u1‖X for all (t, u) ∈ I× [0,∞).

Also, we get

0 <
∫ 1

0
K(s, s)h(s)ds ≤

∫ 1

0
dsp−1(1− s)p−q−1ds

≤ dβ(p,p− q)

≤ Γ (p)Γ (p− q)

Γ (2p− p)(Γ (p)− Γ (p− q)λξp−1)

≤ 0.464248 < 1.
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Thus, thanks to Theorem 4, the FDE (16) has a unique solution. Further, it is easy

to compute that Υ = maxt∈I
∫ 1

0
e2s

2(2+e2s )
K(t, s)ds �= 1. Thus by Theorem 9, the

solution of BVP (16) is UH stable and consequently GUH stable. Further taking
χ(t) = t , one can obtain the conditions of UHR and GUHR stability of the solutions
for the BVP (16).

Example 2

Dp
0+u(t)+

t
3
2 u(t)

2+ 5u(t)
+ te2t + 1 = 0, for 0 < t < 1,

Dq
0+(0) = 0, Dq

0+u(1) = λu(ξ), (17)

where p = 3
2 , q = 1

2 , ξ = 4
10 , λ = 1

200 .

Let f(t, u) = t
3
2 u(t)

2+5u(t) + te2t + 1, (t, u) ∈ I × [0,∞), Taking β(t) = te2t + 1 and

α(t) = t
3
2 we have

f(t, u(t)) = u(t)

2+ 5u(t)
α(t)+ β(t)

≤ α(t)+ β(t) for all (t, u) ∈ I× [0,∞).

Further we have

0 <
∫ 1

0
K(s, s)β(s)ds ≤

∫ 1

0
dsp−1(1− s)p−q−1s

3
2 ds

≤ dβ(3, 1)

≤ Γ (3)Γ (1)

Γ (4)(Γ (1.5)− Γ (1)(0.05)(0.02))

≤ 0.376527 < 1.

Thanks to Theorem 6, the FDE (17) has at least one positive solution. Also, it is

easy to compute that Υ = maxt∈I
∫ 1

0 s
3
2 K(t, s)ds �= 1. Thus by Theorem 9, the

solution of FDE (17) is UH stable and consequently GUH-stable. Further on an
easy computation we can easily obtain the results of UHR and GUHR stability by
taking χ(t) = t .

Example 3

Dp
0+u(t)+

u2(t)

5
+ cos2t

20
+ 1 = 0, for0 < t < 1,

Dq
0+(0) = 0, Dq

0+u(1) = λu(ξ), (18)
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where p = 3
2 , q = 0, ξ = 1

2 , λ = 1
2

Let

f(t, u) = u2(t)

5
+ cos2t

20
+ 1, for all (t, u) ∈ I× [0,∞).

Now d = (Γ (p)− Γ (p− q)λξp−1)−1 = 1.5045,
∫ 1

0 K(s, s)ds = 0.59077, and

∫ 1

ξ

γ (s)K(s, s)ds =
∫ 1

1
2

g2(1, s)ds

= 0.37598 . . .
∫ 1

1
2

(1− s) 1
2 ds

= 0.08862 . . . .

Hence

M =
(∫ 1

0
K(s, s)ds

)−1

= 1.6927, N =
(∫ 1

ξ

γ (s)K(s, s)ds
)−1

= 2.6597.

Choosing r1 = 1
3 and r2 = 1, we have

f(t, u) = u2(t)

5
+ cos2(t)

20
+ 1 ≤ 1.25 ≤M r2, for all (t, u) ∈ I× [0, r2],

f(t, u) = u2(t)

5
+ cos2(t)

20
+ 1 ≥ 1 ≥ N r1, for all (t, u) ∈ I× [0, r1].

Hence all conditions of Theorem 7 are satisfied, thus the FDE (18) has at least one
positive solution u such that 1

3 ≤ ‖u‖X ≤ 1. It is easy to verify the results of
Theorem 9 by taking h(t) = 1 to derive Υ �= 1, by taking h(t) = 1.

Example 4 Consider the problem

Dp
0+u(t)+ f(t, u) = 0, for 0 < t < 1,

Dq
0+(0) = 0, Dq

0+u(1) = λu(ξ), (19)

where p = 3
2 , q = 0, ξ = 1

2 , λ = 1
2 .

Let

f(t, u) =
⎧
⎨

⎩

t+3
25 + u2, if (t, u) ∈ I× I,

3t
25 + u+ 2, if (t, u) ∈ I× (0,∞).
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By computing we have

M =
(∫ 1

ξ

γ (s)K(s, s)ds
)−1

= 1.6927 and

N =
(∫ 1

ξ

γ (s)K(s, s)ds
)−1

= 2.6597.

Taking a1 = 1
5 , b = 3

4 , c = 5, we have

f(t, u) = t + 3

25
+ u2 ≤ 0.2 ≤ 0.3385 =M a1, (t, u) ∈ I× [0, 1

5
],

f(t, u) = 3t

25
+ u+ 2 ≤ 7.12 ≤ 8.4635 =M c, (t, u) ∈ I× [0, 5],

f(t, u) = 3t

25
+ u+ 2 ≥ 2.75 ≥ 1.9947 = N b, (t, u) ∈ [1

2
, 1] × [3

4
, 5].

Since assumptions of Theorem 8 hold, so the FDE (19) has at least three positive
solutions u1, u2, and u3 with

‖u1‖X <
1

5
,

3

4
< θ(u2),

1

5
< ‖u3‖X, where θ(u3) <

3

4
.

for all the three solutions. One can easily show by taking h(t) = t+3
25 and h(t) = 3t

25
in respective cases that Υ �= 1. Hence by Theorem 9, the solutions u1, u2, u3 are
UH and GUH stable. The results of UHR and GUHR stability are obvious for the
BVP (19), if we consider χ(t) = t .

6 Conclusion

In the current work, we have developed some results for qualitative theory of
solutions by using classical fixed point theorems due to Leggett–Williams and
Banach. Further stability analysis which is very important for numerical and
optimization purposes has been investigated. The respective analysis has been
very rarely investigated for the nonlinear FDEs involving Riemann–Liouville frac-
tional derivative. The whole analysis has been demonstrated by providing several
examples.
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Abstract In this article, we study the existence and uniqueness of positive solu-
tion to a class of nonlinear fractional order differential equations with boundary
conditions. By using fixed point theorems on contraction mapping together with
topological degree theory, we investigate some sufficient conditions in order to
obtain the existence and uniqueness of positive solution for the considered problem.
Further we also investigate different kinds of Ulam stability for the considered
problem. Moreover, we also provide an example to justify the whole results.
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1 Introduction

The study of fractional differential equations is an important area for research in
recent time, because of its wide range of applications in describing the real-word
problems. These applications can be found in various scientific and engineering
disciplines such as physics, chemistry, optimization theory, biology, viscoelasticity,
control theory, signal processing, etc. For details, we refer [1–8]. Due to large
number of applications of fractional differential equations, researchers are giving
much attention to study fractional order differential equations, we refer the readers
to [9–13] and the references therein for the recent development in the theory of
fractional differential equations. It is worthwhile to mention that Caputo’s fractional
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order derivative plays important roles in applied problems as it provides known
physical interpretation for initial and boundary value problems of differential
equations of arbitrary order. On the other hand, the Riemann–Liouville derivative
of fractional order does not provide physical interpretations in most of the cases for
initial and boundary problems. Existence theory of differential equations of classical
as well as arbitrary order with multi-point boundary conditions has attracted the
attention of many researchers and is a rapidly growing area of research, because
such problems occurred in applications, we refer the readers to [14–19]. The area
devoted to study boundary value problems of classical order differential equations
has been studied and plenty of work is available on it by means of degree theory,
however, for differential equations of fractional order, the area is quite recent and
very few papers are available on it. As in [20], the authors studied the following
problems by using topological degree theory

cDqu(t) = f (t, u(t)), 0 < q < 1, t ∈ [0, T ],
u(0)+ g(u) = u0,

and

cDqu(t) = f (t, u(t)), 0 < q < 1, t ∈ [0, T ],
au(0)+ bu(T ) = c, a + b �= 0,

cDqu(t) = f (t, u(t)), 0 < q < 1, t ∈ [0, T ],
u(0) = u0,Δu(tk) = Ik(u(tk)), k = 1, 2, · · · n.

where g ∈ C([0, T ],R), f ∈ C([0, T ] × R,R), Ik : R → R is continuous
function called impulse. Similarly in [21], the authors studied the following multi-
point boundary value problems by topological degree theory given by

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ [0, 1],

u(0) = g(u),

m−2∑

k=0

λku(ηk)+ h(u) = u(1).

where g, h ∈ C([0, 1],R), f ∈ C([0, 1] × R,R). In very recent times, Shah et
al. [22] developed sufficient conditions for the existence and uniqueness of positive
solution to a coupled system with four-point boundary conditions via topological
degree.

Motivated by the above work, in this article, we study the following class of
nonlinear fractional order differential equations with given boundary conditions as

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ J = [0, 1],
λ1u(0)+ μ1u(1) = g1(u),

λ2u
′(0)+ μ2u

′(1) = g1(u).
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where gk : C(J,R)→ R f or k = 1, 2, are continuous functions and f : J ×R →
R is nonlinear continuous function and λk, μk(k = 1, 2) are real constants with
λk + μk �= 0, k = 1, 2.

Here we remark that existence theory together with stability analysis is very
important from numerical as well as optimization point of view. Beside from exis-
tence theory of solutions to the nonlinear fractional differential equations, the aspect
devoted to stability analysis has been attracted the attention, see [23–26]. Different
kinds of stability including exponential, Mittag–Leffler, and Lyapunov stability have
been studied for the said differential equations, for details see [27–29]. Another
kind of stability which greatly attracted the researchers’ attention has been recently
considered for nonlinear and linear fractional differential equations, we refer [30–
33]. This important form of stability was first pointed out by Ulam in 1940 and
was brilliantly explained by Hyers in 1940. After that valuable contributions have
been done in this regard. In 1997, Rassias extended the aforementioned stability to
some other forms known as Ulam–Hyers–Rassias and generalized Ulam–Hyers–
Rassias stability. The concerned stability results have been investigated recently
for fractional differential equations, ordinary and functional equations, see [34].
The aforementioned stability has been investigated for functional, integral, and
differential equations very well, see [35–37]. In the last few years significant
contribution has been done in the aforementioned aspects. Problems devoted to
integral, functional, and differential equations have been evaluated for the aforesaid
stability, see [38–50, 55, 56].

Therefore in this work, the considered class of differential equations of fractional
order is investigated for positive solutions by means of contraction mapping prin-
ciple coupled with topological degree theory. Sufficient conditions are developed
under which the considered class of boundary value problem has at least one and
unique solution. Then using nonlinear analysis we develop sufficient conditions for
different kinds of Ulam stability.

We present the rest of the paper in four sections, in Sect. 2, we present some of
the basic results and theorems, which are helpful in this paper. Also, we give some
assumptions which are needed for this study. Section 3 is devoted to the main results.
In Sect. 4, we provide a detailed analysis for stability theory. In Sect. 5, we give an
example for verification of the established results. In the last section, we give a brief
conclusion.

2 Preliminaries Results

In this section, we recall some definitions and basic results which are helpful
throughout in this article, for details see [51–54].

The notation C(J,R) is used for Banach space for all continuous function
defined for J into R with norm

‖u‖c = sup{|u(t)| : 0 ≤ t ≤ 1}.
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We denote X = C[0, 1], we recall the following results from degree theory.

Definition 1 Let C ⊂ X and T : C → X be a continuous bounded map, then T is
α-condensing if α(T (V )) < α(V ) for all V bounded subset of C with α(V ) > 0.

The following theorem given by Isaia is important for our main results

Theorem 1 Let T : V → X be α-condensing and

V = {u ∈ X : thereexists λ ∈ [0, 1] suchthat u = λT u}.

If V is a bounded subset of X and there exists r > 0 such that V ⊂ Ur (0), then the
degree

D(I − λT ,Ur (0), 0) = 1, f orall λ ∈ [0, 1].

Consequently, T has at least one fixed point and the set of the fixed points of T lies
in Ur (0).

The following propositions are needed.

Proposition 1 If T1, T2 : V → X are α-Lipschitz maps with constants κ1 and κ2
respectively, then T1 + T2 : V → X are α-Lipschitz with constants κ1 + κ2.

Proposition 2 If T1 : V → X is compact, then T is α-Lipschitz with constant
κ = 0.

Proposition 3 If T1 : V → X is Lipschitz with constant κ , then T1 is α-Lipschitz
with the same constant κ .

Definition 2 The fractional(arbitrary) order integral of a function u ∈ L1([0, b],R)
of order q ∈ R+ is defined by

I qu(t) = 1

Γ (q)

∫ t

0
(t − s)q−1u(s)ds, n− 1 < q ≤ n.

Definition 3 The Caputo’s fractional order derivative of a function u on the interval
[0, b] is defined by

cDqu(t) = 1

Γ (n− q)
∫ t

0
(t − s)n−q−1u(n)(s) ds, n = [q] + 1,

where [q] represents integer part of q.

For the existence of solutions to the considered problem, we need the following
results:

Theorem 2 The fractional order differential eqnarray of order q > 0 of the form

cDqu(t) = 0, n− 1 < q ≤ n,
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has a solution of the form

u(t) = c0 + c1t + c2t
2 + . . .+ cn−1t

n−1,

where ci ∈ R, for i = 0, 1, . . . , n− 1.

Theorem 3 The following result holds for a fractional order differential equation q

Iq [cDqu](t) = u(t)+ c0 + c1t + c2t
2 + . . .+ cn−1t

n−1,

for arbitrary ci ∈ R, for i = 0, 1, 2, . . . , n− 1.

The consequence of Theorems 2 and 3 leads us to the following useful result.

Theorem 4 Let u ∈ CJ and y ∈ C(J×R,R), then the solution of linear fractional
differential equation

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u), (1)

λ2u
′(0) + μ2u

′(1) = g1(u).

where gk(k = 1, 2) : C(J,R)→ R are nonlocal continuous functions and the real
constant λk, μk satisfy the relations λk + μk �= 0, for k = 1, 2, is given by

u(t) = g(u)+
∫ 1

0
G (t, s)f (s, u(s))ds,

where

g(u) = 1

λ1 + μ1
g1(u)+ 1

λ2 + μ2

[
t − μ1

]
g2(u)

and G (t, s) is the Green’s function provided by

G (t, s)=
⎧
⎨

⎩

(t−s)q−1

Γ (q)
+ μ1(1−s)q−1

(λ1+μ1)Γ (q)
+ μ2

λ2+μ2

(
μ1

λ1+μ1
− t
)
(1−s)q−2

Γ (q−1) , 0 ≤ s ≤ t ≤ 1,
μ1(1−s)q−1

(λ1+μ1)Γ (q)
+ μ2

λ2+μ2

(
μ1

λ1+μ1
− t
)
(1−s)q−2

Γ (q−1) , 0 ≤ t ≤ s ≤ 1,

(2)

Proof Consider the following linear problem of FDES subject to the given boundary
condition for y ∈ C(J,R)

cDqu(t) = y(t), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u), (3)

λ2u
′(0) + μ2u

′(1) = g1(u).
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In view of Lemma 2, (3) can be written as

u(t) = c0 + c1t − I qy(t), c0, c1 ∈ R, (4)

using λ1u(0)+ μ1u(1)− g1(u) = 0 in (4), we get

λ1c0 + μ1I
qy(t)+ μ1c0 + μ1c1 = g1(u)

which yields

c0 = − μ1

λ1 + μ1
c1 − μ1

λ1 + μ1
I qy(t)+ 1

λ1 + μ1
.

Now using λ2u
′(0)+ μ2u

′(1)− g2(u) = 0 in (4), we get

λ2c1 + μ2I
q−1y(1)+ μ2c1 = g2(u)

implies that

c1 = 1

λ2 + μ2

[
g2(u)− μ2I

q−1y(1)
]
.

By simple calculation, we get

c0= 1

λ1+μ1

[
g1(u)− μ1

λ2 + μ2
g2(u)

]
+ μ1

λ1 + μ1

[
μ2

λ2 + μ2
I q−1y(1)− I qy(1)

]
.

Hence (4) becomes

u(t) = 1

λ1 + μ1
g1(u)+ 1

λ2 + μ2
(t − μ1) g2(u)+ μ1

λ1 + μ1
I qy(1)

+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t
)
I q−1y(1)+ I qy(t).

hencewehave u(t) = g(u)+
∫ 1

0
G (t, s)f (s, u(s))ds, (5)

where

g(u) = 1

λ1 + μ1
g1(u)+ 1

λ2 + μ2

[
t − μ1

]
g2(u) (6)

Thus in view of (5), our considered problem (1) is written as in the form of Fredholm
integral eqnarray given by
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u(t) = g(u)+
∫ 1

0
G (t, s)f (s, u(s))ds, t ∈ [0, 1], (7)

where G (t, s) is Green’s function defined as in (2) and g(u) is defined in (6).

In other words, we need the following assumptions to be hold, which are needed for
our main results:

(B1) For u, v ∈ C[0, 1], there exist kg ∈ [0, 1), such that

|g(u)− g(v)| ≤ kg‖u− v‖c;

(B2) For arbitrary u ∈ C(J,R), there exist Cg,Mg > 0 and r1 ∈ [0, 1),

| f (u) |≤ Cg||u||r1c +Mg;

(B3) For arbitrary u ∈ C(J,R), there exist Cf ,Mf > 0 and r2 ∈ [0, 1),

| f (t, u) |≤ Cf ||u||r2c +Mf ;

(B4) There exists a constant Lf > 0, such that

| f (t, u)− f (t, ū) |≤ Lf ‖u− ū‖c , f orany u, ū ∈ R.

Let an operator T : C(J,R) −→ C(J,R)bedef ined. Then 7 in the form of
operator equation as

T u(t) = Fu(t)+Gu(t), (8)

where

Fu(t)= 1

λ1 + μ1
g1(u)+ 1

λ2 + μ2
[t − μ1]g2(u),Gu(t)=

∫ 1

0
G (t, s)f (s, u(s))ds.

The solution of operator equation (8) is the corresponding solution of the considered
problem (1).

3 Main Results

Theorem 5 The operator F : C(J,R) → C(J,R) is Lipschitz with constant
kg ∈ [0, 1). Consequently F is α-Lipschitz with constant kg . Moreover F obeys
the growth condition given by

‖Fu‖c ≤ Cg ‖u‖r1c +Mg, f orevery u ∈ C(J,R). (9)
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Proof By (B1)

‖Fu−Fv‖c = sup

∣
∣
∣∣

1

λ1 + μ1
(g1(u)− g1(v))+

(
t

λ2 + μ2
− μ1

λ2 + μ2

)
(g2(u)− g1(v))

∣
∣
∣∣

≤ 1
∣
∣λ1 + μ1

∣
∣ |g1(u)− g1(v)| +

∣
∣∣
∣

1

λ2 + μ2
− μ1

λ2 + μ2

∣
∣∣
∣ |g2(u)− g2(v)|,

using t ≤ 1

‖Fu−Fv‖c ≤ kg1∣
∣λ1 + μ1

∣
∣‖u− v‖c +

kg2∣
∣λ2 + μ2

∣
∣ ‖u− v‖c using kg1 , kg2 ∈ [0, 1)

≤
[

kg1∣∣λ1 + μ1

∣∣ +
kg2∣∣λ2 + μ2

∣∣

]

‖u− v‖c ,

using

[
kg1∣∣λ1 + μ1

∣∣ +
kg2∣∣λ2 + μ2

∣∣

]

= kg.

Thus

‖Fu− Fv‖ ≤ kg ‖u− v‖c .

Hence in view of Proposition 1, F is α-Lipschitz with constant kg . For growth
condition, consider

‖Fu‖c = sup

∣∣
∣∣

1

λ1 + μ1
g1(u)+ 1

λ2 + μ2
(t − μ1)g2(u)

∣∣
∣∣

≤ sup

∣∣∣∣
1

λ1 + μ1
g1(u)

∣∣∣∣+ sup

∣∣∣∣
t − μ1

λ2 + μ2

∣∣∣∣ |g2(u)|

≤ Cg1

|λ1 + μ1|
‖u‖r1c +Mg1 +

1

|λ2 + μ2|
Cg2‖u‖r1c +Mg2

=
[

Cg1∣∣λ1 + μ1

∣∣ +
Cg2∣∣λ2 + μ2

∣∣

]

‖u‖r1c +Mg1 +Mg2

which implies that

‖Fu‖c ≤ Cg ‖u‖r1c +Mg, Cg = Cg1∣∣λ1 + μ1

∣∣ +
Cg2∣∣λ2 + μ2

∣∣ , Mg = Mg1 +Mg2 .

which is the growth condition (9).
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Theorem 6 The operator G : C(J,R) −→ C(J,R) is continuous, moreover G
satisfies the following growth condition:

‖Gun‖c ≤ M
Cf ‖u‖r2c +Mf

Γ (q)
, f orevery u ∈ C(J,R),

where M = 1+
∣∣∣ μ1
λ1+μ1

∣∣∣+
∣∣∣ μ2
λ2+μ2

(
μ1

λ1+μ1

)∣∣∣ .

Proof Consider that {un} be the sequence of bounded set Bk = {‖u‖c ≤ k : u ∈
C(J,R)}.
Where Bk ⊆ C(J,R) and un → u as n → ∞ in Bk . We have to show that
‖Gun −Gu‖c → 0 as n→∞.
Consider

|Gun(t)−Gu(t)| ≤
∫ 1

0
|G (t, s)| |f (s, un(s)− f (s, u(s))| ds

≤
∫ t

0

(t − s)q−1

Γ (q)
|f (s, un(s))− f (s, u(s))| ds

+
∣∣∣
∣

μ1

λ1 + μ1

∣∣∣
∣

∫ 1

0

(1− s)q−1

Γ (q)
|f (s, un(s))− f (s, u(s))| ds

+
∣∣
∣∣

μ2

λ2 + μ2

∣∣
∣∣

[
μ1

λ1 + μ1

] ∫ 1

0

(1− s)q−2

Γ (q − 1)

× |f (s, un(s))− f (s, u(s))| ds.

In view of continuity of f, we have

f (t, un(s))→ f (t, u(s)) as n→∞, f oreach t ∈ J.

Applying (B3), and using Lebesgue dominated convergent theorem, we have

∫ t

0

(t − s)q−1

Γ (q)

[
Cf ‖u‖r2c +Mf

]
ds → 0 as n→∞.

Consequently,
∣
∣∣ μ1
λ1+μ1

∣
∣∣
∫ 1

0
(1−s)q−1

Γ (q)

[
Cf ‖u‖r2c +Mf

]
ds → 0 as n→∞

and

∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣

[
μ1

λ1 + μ1

] ∫ 1

0

(1− s)q−2

Γ (q − 1)

[
Cf ‖u‖r2c +Mf

]
ds → 0 as n→∞.

From which it is followed that ‖Gun −Gu‖ → 0 as n → ∞. Thus G is
continuous.
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For growth condition, consider

|Gun(t)| =
∣∣∣∣

∫ 1

0
G (t, s)f (s, un(s))ds

∣∣∣∣

≤
∫ 1

0
G (t, s) |f (s, un(s))| ds

≤
∫ 1

0

(t − s)q−1

Γ (q)

[
Cf ‖u‖r2c +Mf

]
ds

+
∣∣∣
∣

μ1

λ1 + μ1

∣∣∣
∣

∫ 1

0

(1− s)q−1

Γ (q)

[
Cf ‖u‖r2c +Mf

]
ds

+ 1

Γ (q − 1)

∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣

(∣∣∣∣
μ1

λ1 + μ1
− 1

∣∣∣∣

)

×
∫ 1

0
(1− s)q−2 [Cf ‖u‖r2c +Mf

]
ds.

From which, we have

‖Gun‖ ≤ Cf ‖u‖r2c +Mf

Γ (q)

[
1+

∣∣∣∣
μ1

λ1 + μ1

∣∣∣∣

(∣∣∣∣
μ2

λ2 + μ2

∣∣∣∣+ 1

)]
. (10)

Hence

‖Gun‖ ≤ M

Γ (q)

(
Cf ‖u‖r2c +Mf

)
. (11)

Theorem 7 The operator G : C (J,R) → C (J,R) is completely continuous and
α-Lipschitz with constant zero.

Proof For the compactness of G, we consider D ⊆ Bk ⊆ C (J,R) is bounded
set. We have to show that G(D) is relatively compact in C (J,R) with the help of
Arzelà Ascali theorem.
Let {un} be sequence in D ⊆ Bk for every un ∈ D . Then from Growth condition
(11), it is obvious that G(D) is bounded in C(J,R).

Let 0 ≤ t1 ≤ t2 ≤ 1, then for equi-continuity, we discuss two cases from Green’s
function (2) as:

Case I 0 ≤ s ≤ t ≤ 1.

|Gun(t1)−Gun(t2)| ≤ 1

Γ (q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
|f (s, un(s))| ds

+ 1

Γ (q)

∫ t2

t1

(t2 − s)q−1 |f (s − un(s))| ds
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+(t2 − t1)
∣
∣∣
∣

μ2

λ2 + μ2

∣
∣∣
∣

1

Γ (q − 1)

∫ 1

0
(1− s)q−2 |f (s, un(s))| ds

≤ 1

Γ (q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

] (
Cf ‖un‖r2c +Mf

)
ds

+ 1

Γ (q)

∫ t2

t1

(t2 − s)q−1 (Cf ‖un‖r2c +Mf

)
ds

+(t2 − t1)
∣∣μ2
∣∣

∣
∣λ2 + μ2

∣
∣

1

Γ (q − 1)

∫ 1

0
(1−s)q−2 (Cf ‖un‖r2c +Mf

)
ds.

Therefore

‖Gun(t1)−Gun(t2)‖ =
[
(t
q

1 − tq2 )
Γ (q + 1)

+ (t2 − t1)q
Γ (q + 1)

+ (t2 − t1)
∣∣μ2

∣∣
∣
∣λ2 + μ2

∣
∣Γ (q)

]

× (Cf ‖u‖r2c +Mf

)
. (12)

Clearly t1 → t2, then the right-hand side of (12) tends to zero. So

‖Gun(t1)−Gun(t2)‖ → 0 as t1 → t2.

Thus in this case G is equi-continuous.

Case II if 0 ≤ t ≤ s ≤ 0, then

|Gun(t1)−Gun(t2)| ≤ μ2 (t1 − t2)∣
∣λ2 + μ2

∣
∣Γ (q − 1)

∫ 1

0
(1− s)q−2 |f (s, un(s))| ds

≤ μ2 (t1 − t2)∣
∣λ2 + μ2

∣
∣Γ (q)

(
Cf ‖u‖r2c +Mf

)→ 0, as t1 → t2.

So G in this case is also equi-continuous. Hence G is equi-continuous and G(D) ⊆
C(J,R), which satisfies the hypothesis of Arzela Ascali theorem. So G(D) is
relatively compact in C(J,R). G is completely continuous. It is easy to show that
G is α−Lipschitz with constant zero by using Proposition 2.

Theorem 8 Assume that (B1)–(B3) hold, then boundary value problem (1) has at
least one positive solution u ∈ C(J,R) and the set of the solutions is bounded in
C(J,R).

Proof As F,G, T : C(J,R) → C(J,R) have been defined previously are
continuous in view of continuity of f, g. Moreover F and G are α-Lipschitz. Thus
T is strict α-contraction. Consider

W0 = {u ∈ C(J,R) : thereexist λ ∈ [0, 1], λu = λT u} .
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To prove that W0 is bounded subset of C(J,R). Let u ∈ W0 such that u = λT u,

one can see

‖u‖c = ‖λT u‖c = λ (‖Fu+Gu‖c)
≤ λ (‖Fu‖c + ‖Gu‖c)

In view of Growth conditions of F,G, we get

‖u‖c ≤
(
Cg ‖u‖r1c +Mg +MCf ‖u‖r2c +Mf

Γ (q)

)
, r1, r2 ∈ [0, 1). (13)

Thus W0 is bounded. If not, let R = ‖u‖c , taking R = ‖u‖c such that R →∞.
Then from (13), we have

1 ≤ lim
R→∞

λ

[
Cg ‖u‖r1c +Mg

R
+MCf ‖u‖r2c +Mf

RΓ (q)

]
= 0.

which is contraction.
This implies that W0 is bounded and T has at least one fixed point by means of

Theorem 1, which is the corresponding positive solution of boundary value problem
therefore (1).

Theorem 9 Under the assumption (B1) to (B4), boundary value problem (1) has a
unique solution if G∗ < 1, where

G∗ = kg1∣∣λ1 + μ1

∣∣ +
kg2∣∣λ2 + μ2

∣∣ + Lf
∫ 1

0
G (t, s)ds.

Proof From (B1)–(B3), we have

‖T u− T v‖ ≤ 1
∣∣λ1 + μ1

∣∣ ‖g1(u)− g1(v)‖c +
1

∣∣λ2 + μ2

∣∣ ‖g2(u)− g2(v)‖c

+
∫ 1

0
G (t, s) ‖f (s, u)− f (s, v)‖ ds

≤ kg1∣∣λ1 + μ1

∣∣ ‖u− v‖c +
kg2∣∣λ2 + μ2

∣∣ ‖u− v‖c

+ Lf

∫ 1

0
G (t, s) ‖u− v‖c ds

≤
[

kg1 + kg2∣∣λ1 + μ1

∣∣+ ∣∣λ2 + μ2

∣∣ + Lf
∫ 1

0
G (1, s)ds

]

‖u− v‖c

‖T u− T v‖c ≤ G∗ ‖u− v‖c
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where

G∗ = kg1∣∣λ1 + μ1

∣∣ +
kg2∣∣λ2 + μ2

∣∣ + Lf
∫ 1

0
G (1, s)ds < 1.

Hence T has a unique fixed point, which is the corresponding positive solution to
the considered problem (1).

4 Ulam’s Stability Analysis of Boundary Value Problem (1)

In this section, we prove necessary and sufficient conditions for various types
of Ulam’s stability like Ulam–Hyers, generalized Ulam–Hyers stability, Ulam–
Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability of the solutions to
the considered problem (1) of nonlinear fractional differential equations. In this
regard we review the following definitions and results for further analysis.

Definition 4 The solution u ∈ C([0, 1]) of the fractional differential equation given
by

cDqu(t) = f (t, u(t)), t ∈ J, (14)

is Ulam–Hyers stable if we can find a real number ĈLf ,kg,G ∗ > 0 with the property
that for every ε > 0 and for every solution u ∈ C[0, 1] of the inequality

∣∣∣
∣
cDqu(t)− f (t, u(t))

∣∣∣
∣ ≤ ε, t ∈ [0, 1], (15)

there exists unique solution v ∈ C[0, 1] of the given fractional differential equation
(1) with a constant ĈLf ,kg,G ∗ > 0 with

‖u− v‖c ≤ ĈLf ,kg,G ∗ε.

Definition 5 The solution u ∈ C[0, 1] of the fractional differential equation (1) is
called to be generalized Ulam–Hyers stable , if we can find

θf,q : (0,∞)→ R+, θf,q(0) = 0,

such that for each solution u ∈ C[0, 1] of the inequality (15), we can find a unique
solution v ∈ C[0, 1] of the fractional differential equation (1) with

‖u− v‖c ≤ ĈLf ,kg,G ∗θf,q .

Next we recall the definitions of Ulam–Hyers–Rassias and generalized Ulam–
Hyers–Rassias stability [34] for our considered problem (1) as below:
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Definition 6 Fractional differential equation (1) is said to be Ulam–Hyers–Rassias
stable with respect to ϕ ∈ C([0, 1],R) if there exists a nonzero positive real constant
ĈLf ,kg,G ∗ such that for each ε > 0 and for every solution u ∈ C[0, 1] of the
inequality

∣∣∣
∣
cDqu(t)− f (t, u(t))

∣∣∣
∣ ≤ ϕ(t)ε, t ∈ [0, 1], (16)

there exists a solution v ∈ C[0, 1] of the Eq. (1), such that

|u(t)− v(t)| ≤ ĈLf ,kg,G ∗εϕ(t), t ∈ [0, 1].

Definition 7 Equation (1) is said to be generalized Ulam–Hyers–Rassias stable
with respect to ϕ ∈ C[0, 1], if there exists a real number ĈLf ,kg,G ∗ > 0 such
that for each solution u ∈ C[0, 1] of the inequality

∣∣∣∣
cDqu(t)− f (t, u(t))

∣∣∣∣ ≤ ϕ(t), t ∈ [0, 1], (17)

there exists a solution v ∈ C[0, 1] of the Eq. (1) such that |u(t) − v(t)| ≤
ĈLf ,kg,G ∗θ(ε)ϕ(t), t ∈ [0, 1].
Remark 1 A function u ∈ C[0, 1] is said to be the solution of inequality given in
(15) if and only if there exists a function � ∈ C[0, 1] that depends on u only such
that

(i) |�(t)| ≤ ε, f orall t ∈ [0, 1];
(ii) cDqu(t) = f (t, u(t))+�(t), f orall t ∈ [0, 1].
Lemma 1 Under the assumption given in Remark 1, the solution u ∈ C[0, 1] of the
boundary value problem given by

⎧
⎨

⎩

cDqu(t) = f (t, u(t))+�(t), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0)+ μ1u(1) = g1(u),

λ2u
′(0)+ μ2u

′(1) = g1(u)

(18)

satisfies the following relation:

∣∣∣∣u(t)−
(
g(u)+

∫ 1

0
G (t, s)f (s, u(s))ds

)∣∣∣∣ ≤ εG ∗, where max
t∈[0,1]

∫ 1

0
|G (t, s)|ds=G ∗.

(19)

Proof In view of Theorem 4, the solution of the problem (18) is given by

u(t) = g(u)+
∫ 1

0
G (t, s)f (s, u(s))ds +

∫ 1

0
G (t, s)�(s)ds,
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where G is the Green’s function as defined in Theorem 4. Using Remark 1 we can
easily get the result given in (19).

Theorem 10 Under the assumption (B1), (B4) and Lemma 1, the solution of the
considered problem (1) is Ulam’s stable and consequently generalized Ulam–Hyers
stable if the condition [kg + LfG ∗] < 1 holds.

Proof Let u ∈ C[0, 1] be any solution of boundary value problem (1) and v ∈
C[0, 1] be the unique solution of the considered problem (1), then take

|u(t)− v(t)| =
∣∣∣
∣u(t)−

(
g(v)+

∫ 1

0
G (t, s)f (s, v(s))ds

)∣∣∣
∣

≤
∣∣
∣∣u(t)−

(
g(u)+

∫ 1

0
G (t, s)f (s, u(s))ds

)∣∣
∣∣

+
∣
∣∣∣g(u)− g(v)+

∫ 1

0
G (t, s)[f (s, u(s))− f (s, v(s))]

∣
∣∣∣

≤ εG ∗ + kg‖u− v‖c + LfG ∗‖u− v‖c.

From which we have

‖u− v‖c ≤ εG ∗ + [kg + LfG ∗]‖u− v‖c,

where kg is defined in Theorem 5 which yields

‖u− v‖c ≤ ĈLf ,kg,G ∗ε, where
G ∗

1− [kg + LfG ∗] = ĈLf ,kg,G ∗ . (20)

Hence the solution of the considered problem (1) is Ulam–Hyers stable. Further if
we set θ(ε) = ε such that θ(0) = 0, then we get

‖u− v‖c ≤ ĈLf ,kg,G ∗θ(ε) (21)

which implies that the solution of the proposed problem is generalized Ulam–Hyers
stable.

(B5) Let for δϕ > 0 there exists a nondecreasing function ϕ ∈ ([0, 1],R+)
such that

∫ t

0

(t − s)q−1

Γ (q)
ϕ(s)ds ≤ δϕϕ(t), f or t ∈ [0, 1].

Theorem 11 Under the assumptions (B1), (B4), (B5), the solution of the consid-
ered problem (1) is Ulam–Hyers–Rassias stable if kg + LfG ∗ < 1.
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Proof Let u ∈ C[0, 1] be any solution of the inequality (16) and v ∈ C[0, 1]) be
the unique solution of the problem (1), then the solution of

cDqu(t) = f (t, u(t))+�(t), 1 < q ≤ 2, t ∈ [0, 1],
λ1u(0) + μ1u(1) = g1(u),

λ2u
′(0) + μ2u

′(1) = g1(u)

is given by

u(t) = 1

λ1 + μ1
g1(u)+ 1

λ2 + μ2
(t − μ1) g2(u)+ μ1

λ1 + μ1

∫ 1

0

(1− s)q−1

Γ (q)
f (s, u(s))

+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t
)∫ 1

0

(1− s)q−2

Γ (q − 1)
f (s, u(s))+

∫ t

0

(t − s)q−1

Γ (q)
f (s, u(s))

+ μ1

λ1 + μ1

∫ 1

0

(1− s)q−1

Γ (q)
�(s)+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t
)

×
∫ 1

0

(1− s)q−2

Γ (q − 1)
�(s)+

∫ t

0

(t − s)q−1

Γ (q)
�(s)

u(t) = g(u)+
∫ 1

0
G (t, s)f (s, u(s))ds (22)

+ μ1

λ1 + μ1

∫ 1

0

(1− s)q−1

Γ (q)
�(s)+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t
)

×
∫ 1

0

(1− s)q−2

Γ (q − 1)
�(s)+

∫ t

0

(t − s)q−1

Γ (q)
�(s).

Then from (22) we have

∣∣
∣∣u(t) − g(u)−

∫ 1

0
G (t, s)f (s, u(s))ds

∣∣
∣∣

=
∣
∣∣∣

μ1

λ1 + μ1

∫ 1

0

(1− s)q−1

Γ (q)
�(s)+ μ2

λ2 + μ2

(
μ1

λ1 + μ1
− t
)

×
∫ 1

0

(1− s)q−2

Γ (q − 1)
�(s)+

∫ t

0

(t − s)q−1

Γ (q)
�(s)

∣∣∣∣

≤ εδϕϕ(t).

Then using the same fashion as in Theorem 10, we have

|u(t)− v(t)| ≤
∣∣∣∣u(t)−

(
g(u)+

∫ 1

0
G (t, s)f (s, u(s))ds

)∣∣∣∣
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+ |g(u)− g(v)| +
∣∣∣
∣

∫ 1

0
G (t, s)f (s, u(s))ds

−
∫ 1

0
G (t, s)f (s, v(s))ds

∣∣
∣∣

≤ εδϕϕ(t)+ kg‖u− v‖c + LfG ∗‖u− v‖c
which further gives‖u− v‖c ≤ εδϕϕ(t)+ [kg + LfG ∗]‖u− v‖c. (23)

Hence we have

‖u− v‖c≤ĈLf ,kg,G ∗εδϕϕ(t), t ∈ [0, 1], where ĈLf ,kg,G ∗ =
1

1− [kg + LfG ∗] .

(24)

Hence from (24) we concluded that the solution of the considered problem (1)
is Ulam–Hyers–Rassias stable. Further it is easy to prove that the solution of the
considered problem (1) is generalized Ulam–Hyers Rassias stable.

5 Example

Example 1 Consider the boundary value problem

cD
3
2 u(t) = |u(t)|

(1+ et )(1+ 9u(t))
, t ∈ [0, 1],

u(0)+ u(1) = g1(u) =
5∑

k=1

δku(tk), tk ∈ (0, 1),
5∑

k=1

δk ≤ 1

20
, (25)

1

2
ú(0)+ 1

2
ú(1) = g2(u) =

3∑

k=1

δ́ku(tk), tk ∈ (0, 1),
3∑

k=1

δ́k ≤ 1

10
.

Then λ1 = μ1 = 1, λ2 = μ2 = 1
2 , g1(u) =∑5

k=1 δku(tk), g2(u) =∑3
k=1 δ́ku(tk),

and f (t, u) = |u(t)|
(1+et )(1+9u(t)) .

We have

|f (t, u)− f (t, v)| ≤
∣∣∣∣
|u| (1+ 9 |v|)− |v| (1+ 9 |u|)
(1+ et )(1+ 9 |u|)(1+ 9 |v|)

∣∣∣∣ ≤
1

200
|u− v|.
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Clearly

Mf = 0, Cf = 1

2
, kg1 =

1

20
, kg2 =

1

10
, f rom which, we have

kg = 3

20
, r1 = r2 = 1

2
, Lf = 1

200
, q = 3

2
.

By simple computation, one can show that

G∗ =
1
20

2
+

1
10

1
+ 1

200

∫ 1

0
G (1, s)ds = 1

40
+ 1

10
+ 1

200

∫ 1

0
G (1, s)ds < 1.

Thus in view of Theorem 9, (25) has unique solution. Further, it is easy to show
that the set of solution is bounded by using Theorem 8. Further the condition kg +
LfG ∗ < 1 obviously holds so by Theorem 10, the solution of the given problem is
Ulam–Hyers stable and consequently generalized Ulam–Hyers stable. Let ϕ(t) = t ,
then the conditions of Ulam–Hyers Rassias and generalized Ulam–Hyers Rassias
stability can be easily received by using Theorem 11.

6 Conclusion

Considering the Caputo fractional derivative we have successfully established
existence theory of at least one solution to a boundary value problem of fractional
differential equations by using topological degree theory. Further by using nonlinear
functional analysis we have developed appropriate conditions for different kinds
of Ulam stability theory including Ulam–Hyers, generalized Ulam–Hyers, Ulam–
Hyers Rassias, and generalized Ulam–Hyers–Rassias stability. The whole results
have been demonstrated by a proper example.
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On a Variant of μ-Wilson’s Functional
Equation with an Endomorphism

K. H. Sabour, A. Charifi, and S. Kabbaj

Abstract The main goal of this chapter is to find the solutions (f, g) of the
generalized variant of μ-d’Alembert’s functional equation

f (xy)+ μ(y)f (ϕ(y)x) = 2f (x)f (y),

and μ-Wilson’s functional equation

f (xy)+ μ(y)f (ϕ(y)x) = 2f (x)g(y),

in the setting of semigroups, monoids, and groups, where ϕ is an endomorphism
not necessarily involutive and μ is a multiplicative function. We prove that their
solutions can be expressed in terms of multiplicative and additive functions. Many
consequences of these results are presented.

1 Notation and Terminology

To formulate our results we recall the following notations and assumptions that will
be used throughout the chapter.

Let S be a semigroup, i.e., a set equipped with an associative operation. A monoid
M is a semigroup with an identity element that we denote e. Let G be a group.

The map σ : S → S denotes an involutive automorphism. That σ is involutive
means that σ(σ(x)) = x for all x ∈ S. The map ϕ : M → M denotes an
endomorphism where M is a possibly non-abelian group or monoid.

A multiplicative function on M is a map χ : M → C such that χ(xy) =
χ(x)χ(y) for all x, y ∈ M . A character on a group G is a homomorphism from
G into the multiplicative group of non-zero complex numbers. While a non-zero
multiplicative function on a group can never take the value 0, it is possible for a
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multiplicative function on a monoid to take the value 0 on a proper, non-empty
subset of S. If χ : S → C is multiplicative and χ �= 0, then

Iχ = {x ∈ S | χ(x) = 0}

is either empty or a proper subset of S. The fact that χ is multiplicative establishes
that Iχ is a two-sided ideal in S if not empty (for us an ideal is never the empty set).
It follows also that S\Iχ is a subsemigroup of S. These ideals play an essential role
in our discussion of Eq. (5) on monoids.

A function A : S → C is called additive, if it satisfies A(xy) = A(x)+A(y) for
all x, y ∈ S.

If S is a topological space, then we let C(S) denote the algebra of continuous
functions from S into C.

2 Introduction

The functional equation

g(x + y)+ g(x − y) = 2g(x)g(y), x, y ∈ R, (1)

is known as the d’Alembert’s functional equation. It has a long history going back
to d’Alembert [2]. As the name suggests this functional equation was introduced by
d’Alembert in connection with the composition of forces and plays a central role
in determining the sum of two vectors in Euclidean and non-Euclidean geometries.
The continuous solutions of (1) were determined by Cauchy in 1821 (see [1]).

D’Alembert’s functional equation was generalized in another direction by Wilson
[10], viz. to the functional equation

f (x + y)+ f (x − y) = 2f (x)g(y), x, y ∈ R, (2)

that contains the two unknown functions f and g.
D’Alembert’s functional equation (1) possesses periodic and non-periodic solu-

tions. To exclude the non-periodic solutions Kannappan, in 1968, modified (1) to
the functional equation

f (x − y + z0)+ f (x + y + z0) = 2f (x)f (y), x, y ∈ R, (3)

where z0 is a non-zero real constant. Kannappan proved that any solution f : R→
C of (3) has the form f (x) = g(x − z0), where g : R → C is a periodic solution
of (1) with period 2z0. This enabled him to find all Lebesgue measurable solutions
(see [7]).

Equations (1)–(3) have been extended to abelian groups: You just replace the
domain of definition R by an abelian group (G,+). They have been solved in that



On a Variant of μ-Wilson’s Functional Equation 95

setting. For more details concerning (1)–(3), and their further generalizations we
refer to the monographs [8, 9], and the references therein.

The purpose of the present chapter is first to solve the μ-d’Alembert’s functional
equation

g(xy)+ μ(y)g(ϕ(y)x) = 2g(x)g(y), x, y ∈ S, (4)

where μ : S → C\{0} is a multiplicative function such that μ(xϕ(x)) = 1 for all
x ∈ S. This equation provides a common generalization of (1), the symmetrized
multiplicative Cauchy equation

g(xy)+ g(yx) = 2g(x)g(y), x, y ∈ S,

and the variant of d’Alembert’s functional equation

g(xy)+ g(ϕ(y)x) = 2g(x)g(y), x, y ∈ S,

solved by Fadli et al. [6], and secondly to use that to find the solutions of the
following generalization of μ-Wilson’s functional equation

f (xy)+ μ(y)f (ϕ(y)x) = 2f (x)g(y), x, y ∈ M, (5)

where M is a possibly non-abelian group or monoid (that is, a semigroup with
identity), μ : M → C\{0} is a multiplicative function such that μ(xϕ(x)) = 1
for all x ∈ M, and ϕ : M → M is an endomorphism, for unknown functions
f, g : M → C. This equation, in the case where ϕ is an involutive automorphism,
has been introduced and solved by Elqorachi et al. in [5].

By various elementary methods we find all solutions of (5) on monoids that
are generated by their squares and on groups, in terms of multiplicative and
additive functions. This contrasts the solutions of the functional equation f (xy) +
f (y−1x) = 2f (x)g(y), where the non-abelian phenomena like 2-dimensional
irreducible representations may occur (see [4]). Our results constitute a natural
extension of earlier results of, e.g., [6].

As other important results in this chapter, we solve the following functional
equations

f (xyz0)+ μ(y)f (ϕ(y)xz0) = 2f (x)g(y), x, y ∈ G,
f (xyz0)+ μ(y)f (ϕ(y)xz0) = 2g(x)f (y), x, y ∈ G,
f (xyz0)+ μ(y)f (ϕ(y)xz0) = 2f (x)f (y), x, y ∈ G,

f (xy)+ μ(y)f (ϕ(y)x) = 2g(x)h(y), x, y ∈ G,

whereG is a group, z0 ∈ G is a fixed element, and ϕ : G→ G is an endomorphism.
Finally, we note that the sine addition law on semigroups given in [3] is a key

ingredient of the proof of our main results (Theorems (1)–(3)).
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3 Main Results

The following lemma will be used in the proof of our main results (Theorems (1)–
(3)).

Lemma 1 Let μ : S → C\{0} be a multiplicative function such that μ(xϕ(x)) = 1
for all x ∈ S. Let the pair φ,ψ : S → C be a solution of the functional equation

φ(xy)+ μ(y)φ(ϕ(y)x) = 2φ(x)ψ(y), x, y ∈ S. (6)

Then we have

φ(xyz)− φ(x)ψ(yz) = [φ(xy)− φ(x)ψ(y)]ψ(z)
+[φ(xz)− φ(x)ψ(z)]ψ(y). (7)

Proof Let x, y, z ∈ S. If we replace x by xy and y by z in (6), we get

φ(xyz)+ μ(z)φ(ϕ(z)xy) = 2φ(xy)ψ(z). (8)

On the other hand, if we replace x by ϕ(z)x in (6), we obtain

φ(ϕ(z)xy)+ μ(y)φ(ϕ(yz)x) = 2φ(ϕ(z)x)ψ(y)

= 2μ(ϕ(z))[μ(z)φ(ϕ(z)x)]ψ(y)
= 2[2μ(ϕ(z))φ(x)ψ(z)
−μ(ϕ(z))φ(xz)]ψ(y)].

Also

μ(y)φ(ϕ(yz)x) = μ(y)μ(ϕ(yz))[μ(yz)φ(ϕ(yz)x)]
= μ(ϕ(z))[2φ(x)ψ(yz)− φ(xyz)].

So by using μ(zϕ(z)) = 1, we have

μ(z)φ(ϕ(z)xy)+ [2φ(x)ψ(yz)− φ(xyz)] = 2[2φ(x)ψ(z)− φ(xz)]ψ(y).

Subtracting this functional equation from (8) we get

φ(xyz)− φ(x)ψ(yz) = [φ(xy)− φ(x)ψ(y)]ψ(z)
+[φ(xz)− φ(x)ψ(z)]ψ(y).

The following theorem leads to the solution of the functional equation (4) on an
arbitrary semigroup.
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Theorem 1 Let μ : S → C\{0} be a multiplicative function such that
μ(xϕ(x))= 1 for all x ∈ S. The function f : S → C satisfies (4) if and only
if it has one of the following forms:

a. f = 0.
b. There exists a non-zero multiplicative function χ of S with χ ◦ ϕ = 0, such that
f = 1

2χ.

c. There exists a multiplicative function χ of S with χ ◦ ϕ2 = χ, such that

f = χ + μχ ◦ ϕ
2

.

Moreover, if S is a topological semigroup and f ∈ C(S), then χ,μχ ◦ ϕ ∈ C(S).
Proof If f = 0, then (a) is the case. From now on we assume that f �= 0.

Using Lemma 1 with Φ = ψ = f , we obtain

f (xyz)− f (x)f (yz) = [f (xy)− f (x)f (y)]f (z)
+[f (xz)− f (x)f (z)]f (y). (9)

With the notation fa(b) := f (ab)− f (a)f (b) we can reformulate (9) to

fx(yz) = fx(y)f (z)+ fx(z)f (y).

This shows that the pair (fx, f ) satisfies the sine addition low for any x ∈ S.
Case 1 Suppose that fx = 0 for all x ∈ S. By the definition of fx, we see that f is
multiplicative. Substituting f into (4), we conclude that μf ◦ ϕ = f. We may thus
write it as f = (f + μf ◦ ϕ)/2, which is the form claimed in the theorem.

Case 2 We now suppose that fx �= 0 for some x ∈ S.
From Lemma 3.4 in [3], we see that there exist two multiplicative functions χ1, χ2 :
S → C such that

f = χ1 + χ2

2
.

We may assume that they are different, because we otherwise are back to the
multiplicative case already treated. Substituting f into (4) we find after a reduction
that

χ1(x)[χ2(y)− μ(y)χ1 ◦ ϕ(y)] + χ2(x)[χ1(y)− μ(y)χ2 ◦ ϕ(y)] = 0
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for all x, y ∈ S. Since χ1 �= χ2 we get from the theory of multiplicative functions
(see, for instance, [9, Theorem 3.18(d)]) that both terms are 0. Therefore

{
χ1(x)[χ2(y)− μ(y)χ1 ◦ ϕ(y)] = 0

χ2(x)[χ1(y)− μ(y)χ2 ◦ ϕ(y)] = 0
(10)

for all x, y ∈ S. Since χ1 �= χ2, then at least χ1 �= 0 or χ2 �= 0.
If χ2 = 0, then χ1 �= 0 and hence χ1 ◦ ϕ = 0. Thus f = 1

2χ1.

So we are in Case (b). The same is true for χ1 = 0 and χ2 �= 0.
If χ1 �= 0 and χ2 �= 0, then (10) becomes

χ1 = μχ2 ◦ ϕ = χ1 ◦ ϕ2,

which yields the desired formula with χ = χ1.

The rest of the proof is trivial.
The continuity statement follows from [9, Theorem 3.18(d)].

The following theorem solves the functional equation (5) on an arbitrary group.

Theorem 2 Let μ : G→ C be a character such that μ(xϕ(x)) = 1 for all x ∈ G.
The pair f, g : G→ C satisfies (5) if and only if it has one of the following forms:

a. f = 0 and g is arbitrary.
b. There exists a character χ of G such that

f = αχ and g = χ + μχ ◦ ϕ
2

,

for some α ∈ C\{0}.
c. There exists a character χ of G with χ = χ ◦ ϕ2, such that

g = χ + μχ ◦ ϕ
2

.

Furthermore, we have

i. If χ �= μχ ◦ ϕ, then

f = αχ + βμχ ◦ ϕ,

for some α, β ∈ C\{0}.
ii. If χ = μχ ◦ϕ, then there exists a non-zero additive function A : G→ C with
A ◦ ϕ = −A such that

f = (α + A)χ,

for some α ∈ C.
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Moreover, ifG is a topological group, f �= 0 and f, g ∈ C(G), then χ,μχ ◦ϕ,A ∈
C(G).

The monoid version (Theorem 3) differs from Theorem 2 only when χ = μχ ◦ ϕ
(case (c)(ii)), where the formulations are more complicated. The conclusions of the
two versions agree if χ vanishes nowhere, which is the case on groups.

Theorem 3 LetM be a monoid which is generated by its squares and let μ : M →
C\{0} be a multiplicative function such that μ(xϕ(x)) = 1 for all x ∈ M . The pair
f, g : M → C satisfies (5) if and only if it has one of the following forms:

a. f = 0 and g is arbitrary.
b. There exists a non-zero multiplicative function χ : M → C such that

f = αχ and g = χ + μχ ◦ ϕ
2

,

for some α ∈ C\{0}.
c. There exists a non-zero multiplicative function χ : M → C with χ = χ ◦ ϕ2,

such that

g = χ + μχ ◦ ϕ
2

.

Furthermore, we have

i. If χ �= μχ ◦ ϕ, then

f = αχ + βμχ ◦ ϕ,

for some α, β ∈ C\{0}.
ii. If χ = μχ ◦ ϕ, then there exists a non-zero additive function A : M\Iχ → C

with A ◦ ϕ = −A such that

f (x) =
{
(α + A(x))χ(x) for x ∈ M\Iχ
0 for x ∈ Iχ

for some α ∈ C.

Moreover, ifM is a topological monoid generated by its squares ,f �= 0, and f, g ∈
C(M), then χ,μχ ◦ ϕ ∈ C(M), while A ∈ C(M\Iχ ).
Proof The case f = 0 is trivial, so we will assume from now on that f �= 0.
Using Lemma 1 with Φ = f and ψ = g, we find that

f (xyz)− f (x)g(yz) = [f (xy)− f (x)g(y)]g(z)+ [f (xz)− f (x)g(z)]g(y),
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i.e.

hx(yz) = hx(y)g(z)+ hx(z)g(y),

where ha(b) := f (ab) − f (a)g(b). So, the pair (hx, g) is a solution of the sine
addition law for any x ∈ S. In particular for x = e, we have

f = he + f (e)g.

Case 1 Suppose that he = 0. Then f = f (e)g and hence f (e) �= 0. Indeed,
f (e) = 0 would imply f = 0, contradicting our assumption. So, g is a solution of
the functional equation (4). According to Theorem 1, we have only the following
two cases:

Subcase 1.1 There exists a non-zero multiplicative function χ : M → C with
χ ◦ϕ = 0 such that g = 1

2χ. So g = (χ +μχ ◦ϕ)/2. It is Case (b) of our theorem.

Subcase 1.2 There exists a multiplicative function χ : M → C with χ = χ ◦ ϕ2

such that g = (χ + μχ ◦ ϕ)/2. Since g �= 0 (because f �= 0), we have χ �= 0. So
we are in Case (c)(i).

Case 2 Let us suppose that he �= 0. From Lemma 3.4 in [3], we see that there exist
two multiplicative functions χ1, χ2 : M → C, such that

g = χ1 + χ2

2
.

Subcase 2.1 Let us assume that χ1 �= χ2. By Lemma 3.4 in [3], we have he =
c(χ1 − χ2) for some constant c ∈ C\{0}. So

f = c(χ1 − χ2)+
1

2
f (e)(χ1 + χ2)

= αχ1 + βχ2,

where α = c + 1
2f (e) and β = −c + 1

2f (e). Substituting f into (5), we find after
a reduction that

αχ1(x)[χ2(y)− μχ1 ◦ ϕ(y)] + βχ2(x)[χ1(y)− μχ2 ◦ ϕ(y)] = 0,

for all x, y ∈ M. Since χ1 �= χ2 we get that

{
αχ1(x)[χ2(y)− μχ1 ◦ ϕ(y)] = 0

βχ2(x)[χ1(y)− μχ2 ◦ ϕ(y)] = 0
(11)



On a Variant of μ-Wilson’s Functional Equation 101

If χ2 = 0, then χ1 �= 0 and hence μαχ1 ◦ ϕ = 0. If α = 0, then f = 0 but f �= 0
by assumption, so that α �= 0 and hence μχ1 ◦ϕ = 0. Thus f = αχ1 and g = 1

2χ1.

So we are in Case (b). The same is true for χ1 = 0 and χ2 �= 0.

If χ1 �= 0 and χ2 �= 0, then (11) becomes

{
α[χ2(y)− μχ1 ◦ ϕ(y)] = 0

β[χ1(y)− μχ2 ◦ ϕ(y)] = 0
(12)

Suppose that β = 0. Then α = 2c �= 0. From (12), we see that χ2 = μχ1 ◦ ϕ and
arrive at the solution in Case (b) with χ = χ1. The same is true for α = 0 with the
multiplicative function χ2 replacing χ.

We now suppose that α �= 0 and β �= 0. From (12), we see that χ2 = μχ1 ◦ ϕ
and μχ2 ◦ϕ = χ1. So χ1 �= μχ1 ◦ϕ (because χ1 �= χ2), χ1 = μχ2 ◦ϕ = χ1 ◦ϕ2,

and we have

f = αχ1 + βχ2 = αχ1 + βμχ1 ◦ ϕ,
g = χ1 + χ2

2
= χ1 + μχ1 ◦ ϕ

2
.

This is Case (c)(i) with χ = χ1.

Subcase 2.2 Assume that χ1 = χ2 = χ. If M is a group, we get from Lemma 3.4
in [3] that he = χA for some additive function A : M → C. So

g = χ and f = χA+ f (e)χ = (α + A)χ,

where α = f (e). Substituting f into (5), we get

[A(y)− A(x)− α]χ(y)+ [A ◦ ϕ(y)+ A(x)+ α]μ(y)χ ◦ ϕ(y) = 0, (13)

for all x, y ∈ M. Using (13) and the fact that A �= 0 (because he �= 0), we infer that
χ = μχ ◦ϕ. This implies thatA◦ϕ = −A. So, we are in case (c)(ii) of Theorem 2.

If M is a monoid which is generated by its squares, we get from Lemma 3.4 in
[3] that there exists an additive function A : M\Iχ → C for which

he(x) =
{
χ(x)A(x) for x ∈ M\Iχ
0 for x ∈ Iχ

Since f = he + f (e)g and χ(x) = 0 for x ∈ Iχ we have

f (x) =
{
(α + A(x))χ(x) for x ∈ M\Iχ
0 for x ∈ Iχ
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where α = f (e). Substitution into (5) gives that χ = μχ ◦ ϕ and A ◦ ϕ = −A. So,
we are in case (c)(ii) of Theorem 3.

Conversely, simple computations prove that the formulas above for f and g

define solutions of (5).
The continuity statements follow from Lemma 3.4 in [3] and [9, Theo-

rem 3.18(d)].

Remark 1 When the condition χ = χ ◦ ϕ2 in Case (c) of Theorem 2 is always
satisfied, the Cases (b) and (c) of Theorem 2 can be reduced to the following:

d. There exists a character χ of G such that

g = χ + μχ ◦ ϕ
2

.

Furthermore, we have

i. If χ �= μχ ◦ ϕ, then

f = αχ + βμχ ◦ ϕ,

for some (α, β) ∈ C
2\{(0, 0)}.

ii. If χ = μχ ◦ ϕ, then there exists an additive function A : G → C with
A ◦ ϕ = −A such that

f = (α + A)χ,

for some α ∈ C.

The same idea is valid for Theorem 3.

Example 1 As a non-abelian example on a group, we consider the 3-dimensional
Heisenberg group G = H3(R) described in [9, Example A.17(a)]), and we take as
the endomorphism

ϕ

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ =
⎛

⎝
1 rx r2z

0 1 ry

0 0 1

⎞

⎠

where r is a real constant. In the case where r > 0 the map ϕ is known in the
literature as the dilation.

The continuous characters on H3(R) are parametrized by (α, β) ∈ C
2 as follows

(see, e.g., [9, Example 3.14]).

χα,β

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = eαx+βy for x, y, z ∈ R.
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The continuous additive functions on H3(R) are parametrized by (λ, ν) ∈ C
2 as

follows (see, e.g., [9, Example 2.11]).

Aλ,ν

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = λx + νy for x, y, z ∈ R.

Let μ be a continuous character inH3(R). Then there exist constants α0, β0 ∈ C

such that

μ

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = eα0x+β0y for x, y, z ∈ R.

In this example, we have dealt with the following three cases:

Case 1 Suppose that r = 1. Then ϕ = id. So that μ(Xϕ(X)) = 1 for all X
∈ H3(R) if and only if μ = 1 and Aλ,ν ◦ ϕ = −Aλ,ν if and only if Aλ,ν =
0. In conclusion, by help of Theorem 2 combined with Remark 1, the continuous
solutions f, g : H3(R)→ C of (5) are the following:

1. f = 0 and g is arbitrary in C(H3(R)).

2. There exist constants c ∈ C\{0} and α, β ∈ C such that

f

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = ceαx+βy for x, y, z ∈ R,

g

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = eαx+βy for x, y, z ∈ R.

Case 2 Suppose that r = −1. Simple computations prove that μ(Xϕ(X)) = 1 for
all X ∈ H3(R), χα,β ◦ ϕ2 = χα,β and Aλ,ν ◦ ϕ = −Aλ,ν.

We compute that μχα,β ◦ ϕ = χα,β if and only if α = α0
2 and β = β0

2 , and in
that case

χ α0
2 ,

β0
2

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = e
α0
2 x+ β0

2 y for x, y, z ∈ R.

In conclusion, by help of Theorem 2 combined with Remark 1, the continuous
solutions f, g : H3(R)→ C of (5) are the following:
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1. f = 0 and g is arbitrary in C(H3(R)).

2. There exist constants (c, c1) ∈ C\{(0, 0)} and α, β ∈ C such that

f

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = ceαx+βy + c1e
(α−α0)x+(β−β0)y for x, y, z ∈ R,

g

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = eαx+βy + e(α−α0)x+(β−β0)y

2
for x, y, z ∈ R.

3. There exist constants c, λ, ν ∈ C such that

f

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = (c + λx + νy)(e α0x+β0y
2 ) for x, y, z ∈ R,

g

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = e
α0x+β0y

2 for x, y, z ∈ R.

Case 3 Now we suppose that r �= ∓1. Then μ(Xϕ(X)) = 1 for all X ∈ H3(R) if
and only if μ = 1.We compute that χα,β ◦ϕ2 = χα,β if and only if α = β = 0, and
Aλ,ν ◦ϕ = −Aλ,ν if and only ifAλ,ν = 0. So point (c) of Theorem 2 does not occur.
In conclusion, by help of Theorem 2, the continuous solutions f, g : H3(R) → C

of (5) are the following:

1. f = 0 and g is arbitrary in C(H3(R).

2. There exist constants c ∈ C\{0} and (α, β) ∈ C such that

f

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = ceαx+βy for x, y, z ∈ R,

g

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = eαx+βy + er(αx+βy)
2

for x, y, z ∈ R.

4 Applications

As immediate consequences of Theorems 2 and 3, combined with Remark 1, we
obtain the following two corollaries:
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Corollary 1 Let μ : G→ C be a character such that μ(xσ(x)) = 1 for all x ∈ G.
The pair f, g : G→ C satisfies the equation

f (xy)+ μ(y)f (σ (y)x) = 2f (x)g(y), x, y ∈ G (14)

if and only if it has one of the following forms:

a. f = 0 and g is arbitrary.
b. There exists a character χ of G such that

g = χ + μχ ◦ σ
2

.

Furthermore, we have

i. If χ �= μχ ◦ σ , then

f = αχ + βμχ ◦ σ,

for some (α, β) ∈ C
2\{(0, 0)}.

ii. If χ = μχ ◦ σ , then there exists an additive function A : G → C with
A ◦ σ = −A such that

f = (α + A)χ,

for some α ∈ C.

Moreover, ifG is a topological group, f �= 0, and f, g ∈ C(G), then χ,μχ◦σ ,A ∈
C(G).

Corollary 2 LetM be a monoid which is generated by its squares and let μ : M →
C\{0} be a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ M .
The pair f, g : M → C satisfies (14) if and only if it has one of the following
forms:

a. f = 0 and g is arbitrary.
b. There exists a non-zero multiplicative function χ : M → C such that

g = χ + μχ ◦ σ
2

.

Furthermore, we have

i. If χ �= μχ ◦ σ , then

f = αχ + βμχ ◦ σ ,

for some (α, β) ∈ C
2\{(0, 0)}.
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ii. If χ = μχ ◦ σ , then there exists an additive function A : M\Iχ → C with
A ◦ σ = −A such that

f (x) =
{
(α + A(x))χ(x) for x ∈ M\Iχ
0 for x ∈ Iχ

for some α ∈ C.

Moreover, ifM is a topological monoid generated by its squares, f �= 0, and f, g ∈
C(M), then χ,μχ ◦ σ ∈ C(M), while A ∈ C(M\Iχ ).

In the rest of the chapter let G be a group, ϕ : G→ G be an endomorphism, let
μ : G→ C be a character such that μ(xϕ(x)) = 1 for all x ∈ G, and let z0 ∈ G be
a fixed element.

In view of Theorem 2, we obtain the following result which is an extension of
the result of [9, Exercise 11.6].

Corollary 3 Let the pair f, g : G→ C be a solution of the functional equation

f (xyz0)+ μ(y)f (ϕ(y)xz0) = 2f (x)g(y), x, y ∈ G. (15)

Then we have the following possibilities:

a. f = 0 and g is arbitrary.
b. There exists a character χ of G such that

f = αχ and g = χ(z0)

2
(χ + μχ ◦ ϕ),

for some α ∈ C\{0}.
c. There exists a character χ of G with χ = χ ◦ ϕ2 and μ(z0)χ ◦ ϕ(z0) = χ(z0)

such that

g = χ(z0)

2
(χ + μχ ◦ ϕ).

Furthermore, we have

i. If χ �= μχ ◦ ϕ, then

f = αχ + βμχ ◦ ϕ,

for some α, β ∈ C\{0}.
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ii. If χ = μχ ◦ϕ, then there exists a non-zero additive function A : G→ C with
A ◦ ϕ = −A and A(z0) = 0 such that

f = (α + A)χ,

for some α ∈ C.

Conversely, the functions given with these properties satisfy the functional
equation (15).

Moreover, if G is a topological group, f �= 0, and f, g ∈ C(G), then χ,μχ ◦
ϕ,A ∈ C(G).
Proof If f = 0, then (a) is the case. From now on we assume that f �= 0.

By putting y = e in (15) we get that

f (xz0) = g(e)f (x), x ∈ G. (16)

Since f �= 0, we get immediately g(e) �= 0. So, using (16), we can reformulate the
form of Eq. (15) as

f (xy)+ μ(y)f (ϕ(y)x) = 2f (x)
g(y)

g(e)
, x, y ∈ G.

So the pair (f, g
g(e)

) is a solution of (5). Since f �= 0, we know from Theorem 2
that there are only the following three cases:

Case 1 There exist a character χ of G and a constant α ∈ C\{0} such that

f = αχ and g = g(e)

2
(χ + μχ ◦ ϕ).

Simple computations based on (16) show that g(e) = χ(z0). So we are in Case (b)
of our statement.

Case 2 There exist a character χ of G with χ �= μχ ◦ ϕ and χ = χ ◦ ϕ2, and
constants α, β ∈ C\{0} such that

f = αχ + βμχ ◦ ϕ and g = g(e)

2
(χ + μχ ◦ ϕ).

Simple computations based on (16) show that

α[g(e)− χ(z0)]χ + β[g(e)− μ(z0)χ ◦ ϕ(z0)]μχ ◦ ϕ = 0.
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By the linear independence of different characters we infer that

{
α[g(e)− χ(z0)] = 0

β[g(e)− μ(z0)χ ◦ ϕ(z0)] = 0

Since α, β �= 0 we get that g(e) = χ(z0) = μ(z0)χ ◦ ϕ(z0). So we arrive at the
solution in Case (c)(i).

Case 3 There exist a character χ of G with χ = μχ ◦ ϕ, an additive function
A : G→ C with A ◦ ϕ = −A, and a constant α ∈ C such that

f = (α + A)χ and g = g(e)χ.

Using (16), we get that

[g(e)− χ(z0)]A = A(z0)χ(z0)− α[g(e)− χ(z0)].

Since A is additive, the last equality can hold only if g(e) = χ(z0) and A(z0) = 0.
So we are in Case (b) or (c)(ii). This finishes the necessity assertion.

Conversely, simple computations prove that the formulas above for (f, g) define
solutions of (15).

The continuity statements follow from Theorem [9, Theorem 3.18(d)].

As another consequence of Theorem 2, we have the following result.

Corollary 4 The solutions f, g : G→ C of the functional equation

f (xyz0)+ μ(y)f (ϕ(y)xz0) = 2g(x)f (y), x, y ∈ G, (17)

are the following:

a. f = 0 and g is arbitrary.
b. There exist a character χ of G and a constant c ∈ C\{0} such that

f = c
χ + μχ ◦ ϕ

2
and g = χ(z0)

2
χ + μ(z0)χ ◦ ϕ(z0)

2
μχ ◦ ϕ.

Proof We leave out the simple verifications that the formulas of (a) and (b) define
solutions of (17). It is thus smug to prove that any solution (f, g) of (17) falls
into one of these two categories. We note that the proof is similar to the proof of
Corollary 3.

The first case is obvious, so we suppose that f �= 0. By putting y = e in (17) we
get that

f (xz0) = f (e)g(x), x ∈ G. (18)



On a Variant of μ-Wilson’s Functional Equation 109

Since f �= 0, we have f (e) �= 0. So, using (18), we can reformulate the form of
Eq. (17) as

g(xy)+ μ(y)g(ϕ(y)x) = 2g(x)
f (y)

f (e)
, x, y ∈ G.

So the pair (g, f
f (e)

) is a solution of (5). Since f �= 0, we know from Theorem 2
that there are only the following two cases:

Case 1 There exists a character χ of G such that

g = αχ and f = f (e)

2
(χ + μχ ◦ ϕ),

for some α ∈ C\{0}.
Simple computations based on (18) show that

[χ(z0)− 2α]χ + μ(z0)χ ◦ ϕ(z0)μχ ◦ ϕ = 0.

Since μ(z0)χ ◦ ϕ(z0) �= 0, the last equality can hold only if χ = μχ ◦ ϕ and
α = χ(z0). So we are in Case (b) above with c = f (e).

Case 2 There exist a character χ of G with χ ◦ ϕ2 = χ and χ �= μχ ◦ ϕ, and
constants α, β ∈ C\{0} such that

f = f (e)

2
(χ + μχ ◦ ϕ) and g = αχ + βμχ ◦ ϕ.

Simple computations based on (18) show that

[χ(z0)− 2α]χ + [μ(z0)χ ◦ ϕ(z0)− 2β]μχ ◦ ϕ = 0.

By the linear independence of different characters we infer that α = 1
2χ(z0) and

β = 1
2μ(z0)χ ◦ ϕ(z0). So we are in Case (b) above with c = f (e).

Case 3 There exist a character χ of G with χ = μχ ◦ ϕ, a non-zero additive
function A : G→ C with A ◦ ϕ = −A, and a constant α ∈ C such that

f = f (e)χ and g = (α + A)χ.

Using (18), we get that

α + A = χ(z0).

Since A is additive, the last equality can hold only if A = 0 and α = χ(z0). This
case does not apply, because A �= 0 by assumption. This finishes the proof.
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As a consequence of Corollary 4, we have the following result which is a natural
extension of Kannappan’s functional equation (3).

Corollary 5 The solutions f : G→ C of the functional equation

f (xyz0)+ μ(y)f (ϕ(y)xz0) = 2f (x)f (y), x, y ∈ G, (19)

are either f ≡ 0 or

f = χ(z0)
χ + μχ ◦ ϕ

2
,

where χ is a character of G satisfying μ(z0)χ ◦ ϕ(z0) = χ(z0).

Remark 2 By using Theorem 3, we can get the solutions of the functional equa-
tions (15), (17), and (19) on monoids that are generated by their squares.

In the following lemma, we give a characterization of the solutions of

f (xy)+ μ(y)f (ϕ(y)x) = 2g(x)h(y), x, y ∈ G. (20)

Lemma 2 The triple f, g, h : G→ C be a solution of the functional equation (20).
Then we have the following possibilities:

1. f = 0, g = 0, h is arbitrary.
2. f = 0, h = 0, g is arbitrary.
3. f = h(e)g, where h(e) �= 0, and g is a solution of (5) with companion function
h/h(e), i.e.,

g(xy)+ g(ϕ(y)x) = 2g(x)
h(y)

h(e)
, x, y ∈ G.

Proof The first two cases are obvious, so we suppose that f �= 0. Taking y = e

in (20) we get f = h(e)g. If h(e) = 0, we get f = 0 contradicting our assumption.
Hence h(e) �= 0. Replacing f by h(e)g in (20), we obtain the identity in (3).

In view of Theorem 2 and Lemma 2 we find the complete solution of (20) on an
arbitrary group.

Theorem 4 The triple f, g, h : G→ C satisfies (20) if and only if it has one of the
following forms:

1. f = 0, g = 0, h is arbitrary.
2. f = 0, h = 0, g is arbitrary.
3. There exists a character χ of G such that

h = γ
2 (χ + μχ ◦ ϕ), g = αχ and f = γαχ,

for some α, γ ∈ C\{0}.
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4. There exists a character χ of G with χ = χ ◦ ϕ2 such that

h = γ

2
(χ + μχ ◦ ϕ),

for some γ ∈ C\{0}. Furthermore, we have

a. If χ �= μχ ◦ ϕ, then

g = αχ + βμχ ◦ ϕ,
f = γ (αχ + βμχ ◦ ϕ),

for some α, β, γ ∈ C\{0}.
b. If χ = μχ ◦ϕ, then there exists a non-zero additive function A : G→ C with
A ◦ ϕ = −A such that

g = (α + A)χ,
f = γ (α + A)χ,

for some α, γ ∈ C.

Moreover, ifG is a topological group, and f, g, h ∈ C(G), then χ, χ ◦ϕ,A,A◦ϕ ∈
C(G).
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On the Additivity of Maps Preserving
Triple Jordan Product A∗B + λB∗A on
∗-Algebras

Vahid Darvish, Mojtaba Nouri, and Mehran Razeghi

Abstract Suppose that A and B are ∗-algebras and Φ : A −→ B is a unital
bijective map such that

Φ(P • A • P) = Φ(P ) •Φ(A) •Φ(P )

for all A ∈ A and P ∈ {IA, P1, IA − P1} where P1 is a projection in A. The
operation •λ between two arbitrary elements S and T is defined as S •λ T = S∗T +
λT ∗S for λ ∈ {−1, 1}. Then, Φ is additive.

1 Introduction

Let R be a ∗-ring and A•B = AB+BA∗ and [A,B]∗ = AB−BA∗ forA,B ∈ R.
These are two new products. These products play an important role in some research
topics and attract many authors’ attention recently (for example, see [1, 3]).

The authors in [5] reduced the assumption of the two above-mentioned results.
They proved that if A and B are two C∗-algebras and the map Φ from A onto B is
bijective, unital, and satisfies

Φ(A •λ P ) = Φ(A) •λ Φ(P ),

for all A ∈ A and P ∈ {P1, IA − P1} where P1 is a nontrivial projection in A and
λ ∈ {−1, 1}, then, Φ is ∗-additive.
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In [4], they considered A is a von Neumann algebra with no central abelian
projections and B is a ∗-algebra. Suppose that a bijective map Φ : A→ B satisfies

Φ([[A,B]∗, C]∗) = [[Φ(A),Φ(B)]∗, Φ(C)]∗
for all A,B,C ∈ A where [A,B]∗ = AB − BA∗ is the skew Lie product. They
showed that the following hold:

1. Φ(I) is self-adjoint central element in B with Φ(I)2 = I.

2. Let Ψ (A) = Φ(I)Φ(A) for all A ∈ A, then there exists a central projection
E ∈ A such that the restriction of Ψ to AE is a linear ∗-isomorphism and the
restriction of Ψ to A(I − E) is a conjugate linear ∗-isomorphism.

Also, the authors in [2] by considering the same assumptions on Φ as above which
holds in the following condition

Φ(A • B • C) = Φ(A) •Φ(B) •Φ(C)

where A • B = AB + BA∗ obtained the same results.
Motivated by the above results we show that if Φ : A → B which is bijective

and satisfies

Φ(P •λ A •λ P ) = Φ(P ) •λ Φ(A) •λ Φ(P ),
for all A ∈ A and P ∈ {IA, P1, IA − P1} where P1 is a projection in A. The
operation •λ between two arbitrary elements S and T is defined as S •λ T = S∗T +
λT ∗S for λ ∈ {−1, 1}. Then, Φ is additive.

It is well known that ring A is prime, in the sense that AAB = 0 for A,B ∈ A
which implies either A = 0 or B = 0. Also, for the real and imaginary part of T we
will use �(T ) and �(T ), respectively.

2 Main Results

We need the following lemma for proving our theorems.

Lemma 1 Suppose A and B are two ∗-algebras and Φ : A −→ B is a map that
satisfies

Φ(P •λ A •λ P ) = Φ(P ) •λ Φ(A) •λ Φ(P )

for λ ∈ {−1, 1} and P ∈ {I, I − P1, P1}. If for T ,A,B ∈ A, we have

Φ(T ) = Φ(A)+ (B).

Then,

Φ(P •λ T •λ P ) = Φ(P •λ A •λ P )+Φ(P •λ B •λ P ).
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Lemma 2 It is easy to show that Φ(0) = 0.

Theorem 1 Let A and B be two prime ∗-algebras with a nontrivial projection and
for each A,B ∈ A, we have

A •λ B = A∗B + λB∗A

for λ ∈ {−1, 1}. If a unital bijective map Φ : A → B satisfies the following
condition

Φ(P •λ A •λ P ) = Φ(P ) •λ Φ(A) •λ Φ(P ),

then Φ is additive.

Proof Let P1 be a nontrivial projection in A and P2 = IA − P1. Denote Aij =
PiAPj , i, j = 1, 2, then A = ∑2

i,j=1 Aij . For every A ∈ A, we may write
A = A11+A12+A21+A22. In all that follow, when we write Aij , it indicates that
Aij ∈ Aij . For showing additivity of Φ on A, we use the above partition of A and
give some steps that prove Φ is additive on each Aij , i, j = 1, 2.

We prove the above theorem by several steps.

Step 1 For A11 ∈ A11 and A21 ∈ A21 we have

Φ(A11 + A21) = Φ(A11)+Φ(A21).

Since Φ is surjective, then we have T ∈ A such that

Φ(T ) = Φ(A11)+Φ(A22). (1)

By applying Lemma 1 for P2 in relation (1), we have

Φ(P2 •λ T •λ P2) = Φ(P2 •λ A11 •λ P2)+Φ(P2 •λ A21 •λ P2)

= Φ(A∗21 + λA21).

Since Φ is injective, we have

T ∗22 + T ∗21 + 2λT22 + λT21 + λ2T ∗22 = A∗21 + λA21.

For λ ∈ {−1, 1}, we obtain �T22 = �T22 = 0, �T21 = �A21 and �T21 = �A21.

Hence, T22 = 0, A21 = T21.
By applying Lemma 1 for P1 in relation (1), we have

Φ(P1 •λ T •λ P1) = Φ(P1 •λ A11 •λ P1)+Φ(P1 •λ A21 •λ P1)

= Φ(A∗11 + 2λA11 + λ2A∗11).
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Since Φ is injective, we have

T ∗11 + T ∗12 + 2λT11 + λT12 + λ2T ∗11 = A∗11 + 2λA11 + λ2A∗11.

For λ ∈ {−1, 1}, we can write T11 = A11 and T12 = 0.

Step 2 For A12 ∈ A12 and A21 ∈ A21, we have

Φ(A12 + A21) = Φ(A12)+Φ(A21).

Since Φ is surjective, we can find T ∈ A such that

Φ(T ) = Φ(A12)+Φ(A21). (2)

By applying Lemma 1 for P1 and P2 in Eq. (1), we have

Φ(P1 •λ T •λ P1) = Φ(P1 •λ A12 •λ P1)+Φ(P1 •λ A21 •λ P1) = Φ(A∗12+ λA12),

and

Φ(P2 •λ T •λ P2) = Φ(P2 •λ A12 •λ P2)+Φ(P2 •λ A21 •λ P2) = Φ(A∗21+ λA21).

Hence, Φ is injective and we have

T ∗11 + T ∗12 + 2λT11 + λT12 + λ2T ∗11 = A∗12 + λA∗12,

and

T ∗22 + T ∗21 + 2λT22 + λT21 + λ2T ∗22 = A∗21 + λA∗21.

For λ ∈ {−1, 1}, we obtain�(T12) = �(A12), �(T12) = �(A12),�(T21) = �(A21),
�(T21) = �(A21). So, A21 = T21, A12 = T12 and T11 = T22 = 0.

Step 3 For each A ∈ A, we have

Φ(4�(A)) = 4�(Φ(A))

and

Φ(−4�(A)) = −4�(Φ(A)).

Φ(2A+ 2A∗) = Φ(I •λ A •λ I )
= Φ(I) •λ Φ(A) •λ Φ(I)
= (Φ(I)∗Φ(A)+Φ(A)∗Φ(I)) •λ Φ(I)
= 2Φ(A)+ 2Φ(A)∗,
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then Φ(4�(A)) = 4�(Φ(A)) and similarly

Φ(2A∗ − 2A) = Φ(I •λ A •λ I ) = Φ(I) •λ Φ(A) •λ Φ(I)
= (Φ(I)∗Φ(A)−Φ(A)∗Φ(I)) •λ Φ(I) = 2Φ(A)∗ − 2Φ(A)

then Φ(−4�(A)) = −4�(Φ(A)).
Step 4 For A11 ∈ A11 and A12 ∈ A12, we have

Φ(A11 + A12) = Φ(A11)+Φ(A12).

There exists T ∈ A such that

Φ(2T ) = Φ(2A11)+Φ(2A12). (3)

By applying Lemma 1 for P2 in Eq. (3), we have

Φ(P2 •λ 2T •λ P2) = Φ(P2 •λ 2A11 •λ P2)+Φ(P2 •λ 2A12 •λ P2) = 0.

Since Φ is injective, we have

T ∗22 + T ∗21 + 2λT22 + λT21 + λ2T ∗22 = 0.

For λ ∈ {−1, 1}, we have �T22 = �T22 = 0 and T21 = 0. Hence, T22 = T21 = 0.
By applying Lemma 1 for P1 and λ = 1 in Eq. (3) and Steps 1 and 3, we have

Φ(P1 •1 2T •1 P1) = Φ(P1 •1 2A11 •1 P1)+Φ(P1 •1 2A12 •1 P1)

= Φ(4A∗11 + 4A11)+Φ(2A12 + 2A∗12)

= Φ(4�(2A11))+Φ(4�(A∗12)) = 4�(Φ(2A11))+ 4�(Φ(A∗12))

= 4�(Φ(2A11 + A∗12)) = Φ(8�(A11)+ 4�(A12)).

From injectivity of Φ, we have

8�T11 + 4�T12 = 8�A11 + 4�A12. (4)

Similarly, by applying Lemma 1 for P1 and λ = −1 in relation (3) Steps 1 and 3,
we have

Φ(P1 •−1 2T •−1 P1) = Φ(P1 •−1 2A11 •−1 P1)+Φ(P1 •−1 2A12 •−1 P1)

= Φ(4A∗11 − 4A11)+Φ(2A∗12 − 2A12) = Φ(−4i�(2A11))
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+Φ(−4i�(A∗12)) = −4i�(Φ(2A11))+ 4i�(Φ(A∗12))

= −4i�(Φ(2A11 + A∗12)) = Φ(−8i�(A11)− 4i�(A∗12))

= Φ(−8i�(A11)− 4i�(A12)).

From injectivity of Φ we have

8�T11 + 4i�T12 = 8i�A11 + 4i�A12. (5)

By summing up relations (4) and (5), we have T11 = A11 and T12 = A12.
Similarly, we can show that

Φ(A21 + A22) = Φ(A21)+Φ(A22)

for A21 ∈ A21 and A22 ∈ A22.

Step 5 For Aij , Bij ∈ Aij for i �= j , we have

Φ(Aij + Bij ) = Φ(Aij )+Φ(Bij ).

Equivalently, we prove

Φ(2Aij + 2Bij ) = Φ(2Aij )+Φ(2Bij ).

There exists T ∈ A such that

Φ(2T ) = Φ(2Aij )+Φ(2Bij ). (6)

By applying Lemma 1 for Pj in relation (6), we can write

Φ(Pj •λ 2T •λ Pj ) = Φ(Pj •λ 2Aij •λ Pj )+Φ(Pj •λ 2Bij •λ Pj ) = 0.

Since Φ is injective, we have

T ∗jj + T ∗j i + 2λTjj + λTji + λ2T ∗jj = 0.

For λ ∈ {−1, 1}, we have Tjj = 0 and Tji = 0. By applying Lemma 1 for Pi in
relation (6), for λ = 1 we have

Φ(Pi •1 2T •1 Pi) = Φ(Pi •1 2Aij •1 Pi)+Φ(Pi •1 2Bij •1 Pi)

= Φ(2A∗ij + 2Aij )+Φ(2B∗ij + 2Bij )

= Φ(4�(Aij ))+Φ(4�(B∗ij ))
= 4�Φ(Aij )+ 4�Φ(B∗ij )
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= 4�Φ(Aij + B∗ij ) = Φ(4�Aij + 4�Bij )
= Φ(4�(Aij + 4�Bij )).

From injectivity of Φ, we have

8�(Tii)+ 4�(Tij ) = 4�(Aij )+ 4�(Bij ). (7)

Similarly, by applying Lemma 1 for Pi in relation (6), for λ = −1, we have

8i�(Tii)+ 4i(�Tij ) = 4i�(Aij )+ 4i�(Bij ). (8)

By summing up relations (7) and (8), we have Tii = 0 and Tij = Aij + Bij .
Step 6 For A11 ∈ A11, A12 ∈ A12, A21 ∈ A21 and A22 ∈ A22, we have

Φ(A11 + A12 + A21 + A22) = Φ(A11)+Φ(A12)+Φ(A21)+Φ(A22).

Equivalently, we prove

Φ(2A11 + 2A12 + 2A21 + 2A22) = Φ(2A11)+Φ(2A12)+Φ(2A21)+Φ(2A22).

Since Φ is surjective, we have

Φ(2T ) = Φ(2A11)+Φ(2A12)+Φ(2A21)+Φ(2A22). (9)

By applying Lemma 1 for P1 in relation (9), we have

Φ(P1 •1 2T •1 P1) = Φ(P1 •1 2A11 •1 P1)+Φ(P1 •1 2A12 •1 P1)

+Φ(P1 •1 2A22 •1 P1)+Φ(P1 •1 2A21 •1 P1)

= Φ(4A∗11 + 4A11)+Φ(2A∗12 + 2A12)

= Φ(4�(2A11))+Φ(4�(A12))

= 4�(Φ(2A11))+ 4�(Φ(A12)) = 4�(Φ(2A11 + A12))

= Φ(8�(A11)+ 4�(A12)).

From injectivity of Φ, we obtain

8�(T11)+ 4�(T12) = 8�(A11)+ 4�(A12). (10)

By applying Lemma 1 for P1 in relation (10) for λ = −1 and applying Steps 3
and 4, we have

Φ(P1 •−1 2T •−1 P1) = Φ(P1 •−1 2A11 •−1 P1)+Φ(P1 •−1 2A12 •−1 P1)
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+Φ(P1 •−1 2A22 •−1 P1)+Φ(P1 •−1 2A21 •−1 P1)

= Φ(4A∗11 − 4A11)+Φ(2A∗12 − 2A12)

= Φ(−4i(�2A11))+Φ(−4i�(A12))

= −4i�(Φ(2A11))− 4i�(Φ(A12))

= −4i�(Φ(2A11 + A12))

= Φ(−8i�(A11)− 4i�(A12)).

Since Φ is injective, we have

8i�(T11)+ 4i�(T12) = 8i�(A11)+ 4i�(A12). (11)

By summing up relations (10) and (11), we have T11 = A11 and T12 = A12.
Similarly, by applying Lemma 1 for P2 in relation (9), we have T22 = A22 and

T21 = A21.

Step 7 Φ is the preserver of the orthogonal projection P1 and P2 in the both sides.

We have

Φ(I •−1 Pi •−1 I ) = Φ(I) •−1 Φ(Pi) •−1 Φ(I) = 0.

Hence, we obtain

2Φ(Pi)
∗ = 2Φ(Pi). (12)

For each A ∈ A, we have

Φ(Pi •λ A •λ Pi) = Φ(Pi) •λ Φ(A) •λ Φ(Pi).

For λ ∈ {−1, 1}, we have

Φ(A∗Pi + PiAPi + PiA+ PiA∗Pi) = Φ(A)∗Φ(Pi)2 +Φ(Pi)∗Φ(A)Φ(Pi)
+(Φ(Pi)∗)2Φ(A)+Φ(Pi)∗Φ(A)∗Φ(Pi)

and

Φ(A∗Pi − PiAPi − PiA+ PiA∗Pi) = Φ(A)∗Φ(Pi)2 −Φ(Pi)∗Φ(A)Φ(Pi)
+(Φ(Pi)∗)2Φ(A)−Φ(Pi)∗Φ(A)∗Φ(Pi).
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We subtract the above two relations from each other, to obtain

2Φ(Pi)
∗Φ(A)Φ(Pi)+ 2(Φ(Pi)

∗)2Φ(A) = Φ(A∗Pi + PiAPi + PiA+ PiA∗Pi)
−Φ(A∗Pi − PiAPi − PiA+PiA∗Pi)

= Φ(2A∗ii + 2Aii + Aij + A∗ij )
−Φ(2A∗ii − 2Aii + A∗ij − Aij )

= Φ(4�Aii)−Φ(−4i�Aii)+ 2Φ(Aij )

= 4�Φ(Aii)+ 4i�Φ(Aii)+ 2Φ(Aij )

= 4Φ(Aii)+ 2Φ(Aij )

= 2Φ(Aii)+ 2Φ(Aii + Aij )
= 2Φ(Aii)+ 2Φ(APi).

Now, from (12), we have

Φ(Pi)
∗Φ(A)Φ(Pi)+ (Φ(Pi)∗)2Φ(A) = Φ(PiAPi)+Φ(APi).

Put A = I . From (10) we have

Φ(Pi)
2 = Φ(Pi).

Also, one can easily show that

Φ(Pi)Φ(Pj ) = Φ(Pi)(I −Φ(Pi)) = 0.

Step 8 We show that

Φ(Aij ) = Bij ,

for i �= j .
For each Aij ∈ Aij , we have

Φ(Pi •λ Aij •λ Pi) = Φ(Pi) •λ Φ(Aij ) •λ Φ(Pi).

So, we have

Φ(A∗ij + Aij ) = Φ(Aij )
∗Φ(Pi)2 +Φ(Pi)∗Φ(Aij )Φ(Pi)

+(Φ(Pi)∗)2Φ(Aij )+Φ(Pi)∗Φ(Aij )∗Φ(Pi)
and

Φ(A∗ij − Aij ) = Φ(Aij )
∗Φ(Pi)2 −Φ(Pi)∗Φ(Aij )Φ(Pi)

−(Φ(Pi)∗)2Φ(Aij )+Φ(Pi)∗Φ(Aij )∗Φ(Pi).
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By subtracting the above two relations, we have

Φ(Aij ) = Φ(Pi)Φ(Aij )Φ(Pi)+Φ(Pi)Φ(Aij ). (13)

From relation (13), we have

Φ(Pi)Φ(Aij )Φ(Pi) = 0

Φ(Pj )Φ(Aij )Φ(Pi) = 0

Φ(Pj )Φ(Aij )Φ(Pj ) = 0.

Hence, Φ(Aij ) ⊆ Bij . Since Φ−1 has the properties of Φ, we have the result.

Step 9 We show that

Φ(Aii ) = Bii

for 1 ≤ i ≤ 2.

For each Aii ∈ Aii , we have

Φ(Pi •λ Aii •λ Pi) = Φ(Pi) •λ Φ(Aii) •λ Φ(Pi).

Since λ ∈ {−1, 1}, we have

Φ(2A∗ii + 2Aii) = Φ(Pi)
∗Φ(Aii)Φ(Pi)+Φ(Aii)∗Φ(Pi)2

+(Φ(Pi)∗)2Φ(Aii)+Φ(Pi)∗Φ(Aii)∗Φ(Pi)

and

Φ(2A∗ii − 2Aii) = Φ(Pi)
∗Φ(Aii)∗Φ(Pi)+Φ(Aii)∗Φ(Pi)2

−Φ(Pi)2Φ(Aii)−Φ(Pi)∗Φ(Aii)∗Φ(Pi).

We subtract the above two relations from each other and obtain

2Φ(Aii) = Φ(Pi)Φ(Aii)Φ(Pi)+Φ(Pi)Φ(Aii). (14)

From (14), we have

Φ(Pi)Φ(Aii)Φ(Pj ) = 0

Φ(Pj )Φ(Aii)Φ(Pj ) = 0

Φ(Pj )Φ(Aii)Φ(Pi) = 0.
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Hence, we have

Φ(Aii) = Φ(Pi)Φ(Aii)Φ(Pi)+Φ(Pj )Φ(Aii)Φ(Pj )
+Φ(Pj )Φ(Aii)Φ(Pi)+Φ(Pi)Φ(Aii)Φ(Pj )

= Φ(Pi)Φ(Aii)Φ(Pi) ∈ Bii .

So, Φ(Aii ) ⊆ Bii .
Since Φ−1 has the properties of Φ, Φ(Aii ) = Bii
Step 10 For Aii, Bii ∈ Aii , we have

Φ(Aii + Bii) = Φ(Aii)+Φ(Bii).

First, we will prove that Φ(PiA+ PiB) = Φ(PiA)+Φ(PiB) for every A,B ∈ A.
By Step 5 and for every Φ(T )ji ∈ Bj i such that i �= j , we obtain

Φ(Pi) (Φ(PiA+ PiB)−Φ(PiA)−Φ(PiB))Φ(T )ji
= Φ(Pi) (Φ(PiA+ PiB)−Φ(PiA)−Φ(PiB))QjΦ(T )Qi

= Φ(Pi)Φ(PiA+ PiB)Qj −Φ(Pi)Φ(PiA)Qj

−Φ(Pi)Φ(PiB)Qj )Φ(T )Qi

= (Φ(PiAPj + PiBPj )−Φ(PiAPj )
−Φ(PiBPj ))Φ(T )Qi by Step 8

= (Φ(Aij + Bij )−Φ(Aij )−Φ(Bij )
)
Φ(T )Qi

= (Φ(Aij )+Φ(Bij )−Φ(Aij )−Φ(Bij )
)
Φ(T )Qi by Step 5

= 0.

Since B is prime and Φ(T )ij ∈ Bij ,

Φ(Pi) (Φ(PiA+ PiB)−Φ(PiA)−Φ(PiB))Φ(Pj ) = 0.

Also, we know that Φ(Pi) and Φ(Pj ) are strictly positive, then the above equation
leads us to

Φ(PiA+ PiB) = Φ(PiA)+Φ(PiB).

Multiplying the both sides of the above equation by Φ(Pi) and applying Step 9, we
have

Φ(Aii + Bii) = Φ(Aii)+Φ(Bii).

The additivity of Φ comes from the above steps.
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General Solution and Hyers–Ulam
Stability of DuoTrigintic Functional
Equation in Multi-Banach Spaces

Murali Ramdoss and Antony Raj Aruldass

Abstract In this paper, we introduce the general form of a new duotrigintic
functional equation. Then, we find the general solution and study the generalized
Hyers–Ulam stability of such functional equation in multi-Banach spaces by
employing fixed point technique. Also, we give an example for non-stability cases
for this new functional equation.

1 Introduction

Stability problem of a functional equation was first posed by Ulam [36] and that was
partially answered by Hyers [14] and then generalized by Aoki [1] and Rassias [26]
for additive mappings and linear mappings, respectively. In 1994, a generalization of
Rassias theorem was obtained by Gâvruta [13], who replaced ε

(‖x‖p + ‖y‖p) by
a general control function φ(x, y). This idea is known as generalized Hyers–Ulam–
Rassias stability. After that, the general stability problems of various functional
equations such as quadratic [8], cubic [3, 5, 17, 28], quartic [3, 4, 27], quintic
[39], sextic [39], septic and octic [38], nonic [6, 29, 30], decic [2], undecic [32],
quattuordecic [33], hexadecic [22], octadecic [23], vigintic [25], viginticduo [19],
quattuorvigintic [15, 24, 31], octavigintic [16] and trigintic [7] functional equations
have been investigated by a number of authors with more general domains and co-
domains.

2 Preliminaries

In this section, we recall some basic concepts concerning Multi-Banach Spaces.
The Multi-Banach Spaces were first investigated by Dales and Polyakov [10].
Theory of Multi-Banach Spaces is similar to operator sequence space and has some
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connections with operator spaces and Banach Spaces. In 2007 Dales and Moslehian
[9] first proved the stability of mappings and also gave some examples on multi-
normed spaces. The asymptotic aspects of the quadratic functional equations in
multi-normed spaces were investigated by Moslehian et al. [21] in 2009. In the
last two decades, the stability of functional equations on multi-normed spaces
was proved by many mathematicians (see [12, 18, 34, 35, 37, 40]). Let (℘, ‖·‖)
be a complex normed space, and let k ∈ N. We denote by ℘k the linear space
℘ ⊕ ℘ ⊕ ℘ ⊕ . . . ⊕ ℘ consisting of k- tuples (x1, . . . , xk) where x1, . . . , xk ∈ ℘.
The linear operations on ℘k are defined coordinate wise. The zero element of either
℘ or ℘k is denoted by 0. We denote by Nk the set {1, 2, . . . , k} and by !k the group
of permutations on k symbols.

Definition 1 ([9]) A multi-norm on
{
℘k : k ∈ N} is a sequence (‖.‖) =

(‖.‖k : k ∈ N) such that ‖.‖k is a norm on ℘k for each k ∈ N, ‖x‖1 = ‖x‖
for each x ∈ ℘, and the following axioms are satisfied for each k ∈ N with
k ≥ 2 :
1.
∥∥(xσ(1), . . . , xσ(k)

)∥∥
k
= ‖(x1 . . . xk)‖k , for σ ∈ !k, x1, . . . , xk ∈ ℘;

2. ‖(α1x1, . . . , αkxk)‖k ≤
(
maxi∈Nk |αi |

) ‖(x1 . . . xk)‖k
for α1 . . . αk ∈ C, x1, . . . , xk ∈ ℘;

3. ‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1 , for x1, . . . , xk−1 ∈ ℘;
4. ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1 for x1, . . . , xk−1 ∈ ℘.
In this case, we say that

(
(℘k, ‖.‖k) : k ∈ N

)
is a multi-normed space.

Suppose that
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi-normed space, and take k ∈ N. We

need the following two properties of multi-norms. They can be found in [9].

(a) ‖(x, . . . x)‖k = ‖x‖ ,∀x ∈ ℘,

(b)max
i∈Nk

‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤
k∑

i=1

‖xi‖ ≤ kmax
i∈Nk

‖xi‖ ,∀x1, . . . , xk ∈ ℘.

It follows from (b) that if (℘, ‖.‖) is a Banach Space, then (℘k, ‖.‖k) is a Banach
Space for each k ∈ N;

In this case,
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi-Banach space.

3 The Fixed Point Method

The fixed point method is one of the most dynamic areas of research during the last
60 years with lot of applications in various fields of pure and applied mathematics.
Let X be a nonempty set. A function d : X × X → [0,∞) is called a generalized
metric on X if d satisfies
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1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X.
The following fixed point theorem proved by Diaz and Margolis [11] plays an
important role in proving our theorem:

Theorem 1 ([11]) Let (X, d) be a complete generalized metric space and let J :
X→ X be a strictly contractive mapping with Lipschitz constant L < 1. Then for
each given element x ∈ X, either

d(Jnx,Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(i) d(Jnx,Jn+1x) <∞ for all n ≥ n0;
(ii) The sequence

{
Jnx

}
is convergent to a fixed point y∗ of J;

(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(iv) d(y, y∗) ≤ 1

1−Ld(y,Jy) for all y ∈ Y .

Let X and Y be real vector spaces. For convenience, we use the following
abbreviation for a mapping f : X→ Y

Df (x, y) = f (x + 16y)− 32f (x + 15y)+ 496f (x + 14y)− 4960f (x + 13y)
+35960f (x+12y)−201376f (x+11y)+906192f (x+10y)−3365856f (x+9y)
+10518300f (x + 8y)− 28048800f (x + 7y)+ 64512240f (x + 6y)
−129024480f (x + 5y)+ 225792840f (x + 4y)− 347373600f (x + 3y)
+471435600f (x + 2y)− 565722720f (x + y)+ 601080390f (x)
−565722720f (x − y)+ 471435600f (x − 2y)− 347373600f (x − 3y)
+225792840f (x − 4y)− 129024480f (x − 5y)+ 64512240f (x − 6y)
−28048800f (x − 7y)+ 10518300f (x − 8y)− 3365856f (x − 9y)
+906192f (x − 10y)− 201376f (x − 11y)+ 35960f (x − 12y)

−4960f (x−13y)+496f (x−14y)−32f (x−15y)+f (x−16y)−32!f (y) (1)

for all x, y ∈ X, where 32! = 2.631308369× 1035.

In this paper, we introduce the Duotrigintic functional equation:

Df (x, y) = 0.

for all x, y ∈ X. Moreover, we prove the stability of the Duotrigintic functional
equation (1) in Multi-Banach Spaces by using fixed point method. It is easy to show
that the function f (x) = x32 satisfies the functional equation (1), which is called
as duotrigintic functional equation and every solution of the duotrigintic functional
equation is said to be a duotrigintic mapping.
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4 General Solution of Duotrigintic Functional
Equation in (1)

Theorem 2 Let X and Y be vector spaces. If f : X→ Y is the function (1) for all
x, y ∈ X, then f is a Duotrigintic mapping.

Proof Substituting x = 0 and y = 0 in (1), we obtain that f (0) = 0. Substituting
(x, y) with (x, x) and (x,−x) in (1), respectively, and subtracting two resulting
equations, we can arrive at f (−x) = f (x), that is to say, f is an even function.

Letting (x, y) by (16x, x) and (0, 2x) respectively in (1), and subtracting the two
resulting equations, we arrive at
32f (31x)− 528f (30x)+ 4960f (29x)− 35464f (28x)+ 201376f (27x)
−911152f (26x)+ 3365856f (25x)− 10482340f (24x)
+28048800f (23x)− 64713616f (22x)+ 129024480f (21x)
−224886648f (20x)+ 347373600f (19x)− 474801456f (18x)
+565722720f (17x)− 590562090f (16x)+ 565722720f (15x)
−499484400f (14x)+347373600f (13x)−161280600f (12x)+129024480f (11x)
−193536720f (10x)+ 28048800f (9x)+ 215274540f (8x)+ 3365856f (7x)
−348279792f (6x)+ 201376f (5x)+ 471399640f (4x)+ 4960f (3x)

− 32!
2
f (2x)+ 32!f (x) = 0 (2)

for all x ∈ X. Substituting x = 15x and y = x in (1), further multiplying the
resulting equation by 32, and subtracting the obtained result from (2), we get
496f (30x)− 10912f (29x)+ 123256f (28x)− 949344f (27x)+ 5532880f (26x)
−25632288f (25x)+ 97225052f (24x)− 308536800f (23x)+ 852847984f (22x)
−1935367200f (21x)+ 3903896712f (20x)− 6877997280f (19x)
+1.064115374× 1010f (18x)− 1.452021648× 1010f (17x)
+1.751256495× 1010f (16x)− 1.866884976× 1010f (15x)
+1.760364264× 1010f (14x)− 1.47385656× 1010f (13x)
+1.09546746× 1010f (12x)− 7096346400f (11x)+ 3935246640f (10x)
−2036342880f (9x)+ 1112836146f (8x)− 333219744f (7x)
−240572400f (6x)− 28796768f (5x)+ 477843672f (4x)− 1145760f (3x)

− 32!
2
f (2x)+ 32!(33)f (x) = 0 (3)

for all x ∈ X. Replacing (x, y)with (14x, x) in (1), further multiplying the resulting
equation by 496, and subtracting the obtained result from (3), we have
4960f (29x)− 122760f (28x)+ 1510816(27x)− 12303280f (26x)
+74250208f (25x)− 352246180f (24x)+ 1360927776f (23x)
−43842288f (22x)+ 1.19768376× 1010f (21x)
−2.809417433× 1010f (20x)+ 5.71181448× 1010f (19x)
−1.013520949× 1011f (18x)+ 1.577770891× 1011f (17x)
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−2.163194927× 1011f (16x)+ 2.619296193× 1011f (15x)
−2.805322308× 1011f (14x)+ 2.658599035× 1011f (13x)
−2.22877383× 1011f (12x)+ 1.652009592× 1011f (11x)
−1.08058002× 1011f (10x)+ 6.19597992× 1010f (9x)
−3.08852349× 1010f (8x)+ 1.357898506× 1010f (7x)
−5457649200f (6x)+ 1640667808f (5x)+ 28372440f (4x)+ 98736736f (3x)

− 32!
2
f (2x)+ 32!(529)f (x) = 0 (4)

for all x ∈ X. Replacing (x, y)with (13x, x) in (1), further multiplying the resulting
equation by 4960, and subtracting the obtained result from (4), we get
35960f (28x)− 949344f (27x)+ 12298320f (26x)− 104111392f (25x)
+646578780f (24x)− 3133784544f (23x)
+1.231041694× 1010f (22x)− 4.01939304× 1010f (21x)
+1.110278737× 1011f (20x)− 2.628625656× 1011f (19x)
+5.386093259× 1011f (18x)− 9.621553973× 1011f (17x)
+1.506653563× 1012f (16x)− 2.076390957× 1012f (15x)
+2.52545246× 1012f (14x)− 2.715498831× 1012f (13x)
+2.583107308× 1012f (12x)− 2.173119617× 1012f (11x)
+1.614915054× 1012f (10x)− 1.057972687× 1012f (9x)
+6.090761859× 1011f (8x)− 3.064017253× 1011f (7x)
+1.336643988× 1011f (6x)− 5.053010019× 1010f (5x)
+1.67230182× 1010f (4x)− 4395980544f (3x)

− 32!
2
f (2x)+ 32!(5489)f (x) = 0 (5)

for all x ∈ X. Plugging (x, y) into (12x, x) in (1), further multiplying the resulting
equation by 35960, and subtracting the obtained result from (5), we have
201376f (27x)− 5537840f (26x)+ 74250208f (25x)
−646542820f (24x)+ 4107696416f (23x)
−2.027624738× 1010f (22x)+ 8.084225136× 1010f (21x)
−2.672101943× 1011f (20x)+ 7.457722824× 1011f (19x)
−1.781250825× 1012f (18x)+ 3.677564904× 1012f (17x)
−6.612856963× 1012f (16x)+ 1.04151637× 1013f (15x)
−1.442737172× 1013f (14x)+ 1.762789018× 1013f (13x)
−1.903174351× 1013f (12x)+ 1.817026939× 1013f (11x)
−1.533790913× 1013f (10x)+ 1.43358197× 1013f (9x)
−7.51043434× 1012f (8x)+ 4.333318575× 1012f (7x)
−2.186195751× 1012f (6x)+ 9.581047478× 1011f (5x)
−3.615150858× 1011f (4x)+ 1.16641352× 1011f (3x)

− 32!
2
f (2x)+ 32!(41449)f (x) = 0 (6)



130 M. Ramdoss and A. R. Aruldass

for all x ∈ X. Plugging (x, y) into (11x, x) in (1), further multiplying the resulting
equation by 201376, and subtracting the obtained result from (6), we arrive at
906192f (26x)− 25632288f (25x)+ 352282140f (24x)− 3133784544f (23x)
+2.0276046× 1010f (22x)− 1.016430688× 1011f (21x)
+4.105924235× 1011f (20x)− 1.372360898× 1012f (19x)
+3.867104325× 1012f (18x)− 9.313651939× 1012f (17x)
+1.936957672× 1013f (16x)− 3.505409525× 1013f (15x)
+5.552533436× 1013f (14x)− 7.730792521× 1013f (13x)
+9.489123499× 1013f (12x)− 1.028728952× 1014f (11x)
+9.858506937× 1013f (10x)− 8.350223342× 1013f (9x)
+6.244227173× 1013f (8x)− 4.113594037× 1013f (7x)
+2.379623793× 1013f (6x)− 1.203311299× 1013f (5x)
+5.286846507× 1012f (4x)− 2.001591711× 1012f (3x)

− 32!
2
f (2x)+ 32!(242825)f (x) = 0 (7)

for all x ∈ X. Plugging (x, y) into (10x, x) in (1), further multiplying the resulting
equation by 906192, and subtracting the obtained result from (7), we have
3365856f (25x)− 97189092f (24x)+ 1360927776f (23x)
−1.231061832× 1010f (22x)+ 8.084225136× 1010f (21x)
−4.105915173× 1011f (20x)+ 1.677750882× 1012f (19x)
−5.664494989× 1012f (18x)+ 1.610394623× 1013f (17x)
−3.909089907× 1013f (16x)+ 8.186685635× 1013f (15x)
−1.490863309× 1014f (14x)+ 2.374792521× 1014f (13x)
−3.323199342× 1014f (12x)+ 4.097805079× 1014f (11x)
−4.461091714× 1014f (10x)+ 4.291511697× 1014f (9x)
−3.647688975× 1014f (8x)+ 2.73651237× 1014f (7x)
−1.808154283× 1014f (6x)+ 1.048878683× 1014f (5x)
−5.317407875× 1013f (4x)+ 2.342050117× 1013f (3x)

− 32!
2
f (2x)+ 32!(1149017)f (x) = 0 (8)

for all x ∈ X. Replacing (x, y) with (9x, x) in (1), further multiplying the resulting
equation by 3365856, and subtracting the obtained result from (8), we get
10518300f (24x) − 308536800f (23x) + 4384027440f (22x) − 4.01939304 ×
1010f (21x)+ 2.672111005× 1011f (20x)− 1.372360898× 1012f (19x)
+5.664491624× 1012f (18x)− 1.929913693× 1013f (17x)
+5.53173227× 1013f (16x)− 1.352720538× 1014f (15x)
+2.851914892× 1014f (14x)− 5.225069332× 1014f (13x)
+8.368895818× 1014f (12x)− 1.177003885× 1015f (11x)
+1.45803204× 1015f (10x)− 1.593998867× 1015f (9x)
+1.539372314× 1015f (8x)− 1.313133109× 1015f (7x)
+9.883941957× 1014f (6x)− 6.550999864× 1014f (5x)
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+3.811204361× 1014f (4x)− 1.938394451× 1014f (3x)

− 32!
2
f (2x)+ 32!(4514873)f (x) = 0 (9)

for all x ∈ X. Replacing (x, y) with (8x, x) in (1), further multiplying the resulting
equation by 10518300, and subtracting the obtained result from (9), we arrive at
28048800f (23x)− 833049360f (22x)1.19768376× 1010f (21x)
−1.110269675× 1011f (20x)+ 7.457722824× 1011f (19x)
−3.867107693× 1012f (18x)+ 1.610394623× 1013f (17x)
−5.53173122× 1013f (16x)+ 1.597536392× 1014f (15x)
−3.933676047× 1014f (14x)+ 8.346112548× 1014f (13x)
−1.538067247× 1015f (12x)+ 2.476775902× 1015f (11x)
−3.500669031× 1015f (10x)+ 4.356442419× 1015f (9x)
−4.782971563× 1015f (8x)+ 4.637308513× 1015f (7x)
−3.970312093× 1015f (6x)+ 2.998731922× 1015f (5x)
−1.994214631× 1015f (4x)+ 1.165396876× 1015f (3x)

− 32!
2
f (2x)+ 32!(15033173)f (x) = 0 (10)

for all x ∈ X. Replacing (x, y) with (7x, x) in (1),further multiplying the resulting
equation 28048800, and subtracting the obtained result from (10), we arrive at
64512240f (22x)− 1935367200f (21x)+ 2.809508052× 1010f (20x)
−2.6286625656 × 1011f (19x) + 1.781247459 × 1012f (18x) − 9.313651939 ×
1012f (17x)
+3.909090958× 1013f (16x)− 1.352720538× 1014f (15x)
+3.933675767× 1014f (14x)− 9.748796622× 1014f (13x)
+2.080914588× 1015f (12x)− 3.856442309× 1015f (11x)
+6.242743601× 1015f (10x)− 8.866760471× 1015f (9x)
+1.108487277× 1016f (8x)− 1.222228904× 1016f (7x)
+1.189767046× 1016f (6x)− 1.022547957× 1016f (5x)
+7.754846356× 1015f (4x)− 5.193238933× 1015f (3x)

− 32!
2
f (2x)+ 32!(43081973)f (x) = 0 (11)

for all x ∈ X. Setting (x, y) by (6x, x) in (1), further multiplying the resulting
equation by 64512240, and subtracting the obtained result from (11), we arrive at
129024480f (21x)− 3902990520f (20x)+ 5.71181448× 1010f (19x)
−5.386126918× 1011f (18x)+ 3.677564904× 1012f (17x)
−1.936956622× 1013f (16x)+ 8.186685633× 1013f (15x)
−2.851915174× 1014f (14x)+ 8.346112548× 1014f (13x)
−2.080914522× 1015f (12x)+ 4.467215911× 1015f (11x)
−8.323658349× 1015f (10x)+ 1.354309065× 1016f (9x)
−1.93285258× 1016f (8x)+ 2.427407082× 1016f (7x)
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−2.688169178× 1016f (6x)+ 2.628355153× 1016f (5x)
−2.271698069× 1016f (4x)+ 1.743374903× 1016f (3x)

− 32!
2
f (2x)+ 32!(107594213)f (x) = 0 (12)

for all x ∈ X. Replacing (x, y) with (5x, x) in (1), further multiplying the resulting
equation by 129024480, and subtracting the obtained result from (12), we have
225792840f (20x)− 6877997280f (19x)1.013487293× 1011f (18x)
−9.621553973× 1011f (17x)+ 6.612867481× 1012f (16x)
−3.505409525× 1013f (15x)+ 1.490863029× 1014f (14x)
−5.225069332× 1014f (13x)+ 1.538067313× 1015f (12x)
−3.856442438× 1015f (11x)+ 8.323662221× 1015f (10x)
−1.558977711× 1016f (9x)+ 2.549181227× 1016f (8x)
−3.655730204× 1016f (7x)+ 4.613637043× 1016f (6x)
−5.138745418× 1016f (5x)+ 5.07093769× 1016f (4x)
−4.47501023× 1016f (3x)

− 32!
2
f (2x)f (2x)+ 32!(236618693)f (x) = 0 (13)

for all x ∈ X. Plugging (x, y) into (4x, x) in (1), further multiplying the resulting
equation by 225792840, and subtracting the obtained result from (13), we have
347373600f (19x)− 1.064451964× 1010f (18x)
1.577770891 × 1011f (17x) − 1.506643045 × 1012f (16x) + 1.041516365 ×
1013f (15x)
−5.552536241× 1013f (14x)+ 2.374792521× 1014f (13x)
−8.36889742× 1014f (12x)+ 2.476782998× 1015f (11x)
−6.242851659× 1015f (10x)+ 1.354414659× 1016f (9x)
−2.549871384× 1016f (8x)+ 4.19226389× 1016f (7x)
−6.051502427× 1016f (6x)+ 7.710867162× 1016f (5x)
−8.73852283× 1016f (4x)+ 8.93192555× 1016f (3x)

− 32!
2
f (2x)+ 32!(462411533)f (x) = 0 (14)

for all x ∈ X. Replacing (x, y) with (3x, x) in (1), further multiplying the resulting
equation by 347373600, and subtracting the obtained result from (14), we have
471435600f (18x)− 1.45202165× 1010f (17x)+ 2.16330011× 1011f (16x)
−2.076390956× 1012f (15x)+ 1.442734367× 1013f (14x)
−7.73082726× 1013f (13x)+ 3.3233089× 1014f (12x)
−1.77169036× 1015f (11x)+ 3.502283946× 1015f (10x)
−8.87819402× 1015f (9x)+ 1.939093697× 1016f (8x)
−3.682661996× 1016f (7x)+ 6.132260323× 1016f (6x)
−9.030938968× 1016f (5x)+ 1.88753222× 1017f (4x)
−1.418900525× 1017f (3x)
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− 32!
2
f (2x)+ 32!(809785133)f (x) = 0 (15)

for all x ∈ X. Replacing (x, y) with (2x, x) in (1), further multiplying the resulting
equation by 471435600, and subtracting the obtained result from (15), we get
565722700f (17x)− 1.75020466× 1010f (16x)+ 2.619296198× 1011f (15x)
−2.525951944× 1012f (14x)+ 1.764262872× 1013f (13x)
−9.51141113× 1013f (12x)+ 4.11953627× 1014f (11x)
−1.47336995× 1015f (10x)+ 4.43994465× 1015f (9x)
−1.144964077× 1016f (8x)+ 2.558689753× 1016f (7x)
−5.008288087× 1016f (6x)+ 8.667539472× 1016f (5x)
−1.337895693× 1017f (4x)+ 1.856385106× 1017f (3x)

− 32!
2
f (2x)+ 32!(1281220733)f (x) = 0 (16)

for all x ∈ X. Replacing (x, y) with (x, x) in (1), further multiplying the resulting
equation by 565722720, and subtracting the obtained result from (16), we arrive
601080390f (16x)− 1.923457248× 1010f (15x)
+2.981358734× 1011f (14x)− 2.981358734× 1012f (13x)
+2.161485082× 1013f (12x)− 1.210431646× 1014f (11x)
+5.446942408× 1014f (10x)− 2.023150037× 1015f (9x)
+6.32234387× 1015f (8x)− 1.685958364× 1016f (7x)
+3.877704238× 1016f (6x)− 7.755678478× 1016f (5x)
+1.357196483× 1017f (4x)− 2.08799458× 1017f (3x)

− 32!
2
f (2x)+ 32!(1846943453)f (x) = 0 (17)

for all x ∈ X. Taking x = 0 and y = x in (1), further multiplying the resulting
equation by 601080390, and subtracting the obtained result from (17), we arrive

− 32!
2
f (2x)+ 32!(2147483648)f (x) = 0 (18)

for all x ∈ X. It follows from (18), we get

f (2x) = 232f (x) (19)

for all x ∈ X. ��
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5 Hyers–Ulam Stability of Functional Equation (1)
in Multi-Banach Spaces

Theorem 3 LetX be a linear space and let
(
(Y k, ‖.‖k) : k ∈ N

)
be a Multi-Banach

Space. Suppose that δ is a non-negative real number and f : X→ Y be a function
fulfills

sup
k∈N
‖(f (x1, y1), . . . , f (xk, yk))‖k ≤ δ (20)

∀x1, . . . , xk, y1, . . . , yk ∈ X. Then there exists a unique Duotrigintic mapping T :
X→ Y such that

sup
k∈N
‖(f (x1)− T(x1), . . . , f (xk)− T(xk))‖k ≤

4294967297

32!(4294967295)
δ. (21)

∀xi ∈ X, where i = 1, 2, . . . , k.

Proof Letting (xi, yi) by (16xi, xi) and (0, 2xi) respectively in (20), and subtracting
the two resulting equations, we arrive at
supk∈N ‖(32f (31x1)− 528f (30x1)+ 4960f (29x1)− 35464f (28x1)

+201376f (27x1)− 911152f (26x1)+ 3365856f (25x1)− 10482340f (24x1)

+28048800f (23x1)− 64713616f (22x1)+ 129024480f (21x1)

−224886648f (20x1)+ 347373600f (19x1)− 474801456f (18x1)

+565722720f (17x1)− 590562090f (16x1)+ 565722720f (15x1)

−499484400f (14x1)

+347373600f (13x1)− 161280600f (12x1)+ 129024480f (11x1)

−193536720f (10x1)+ 28048800f (9x1)+ 215274540f (8x1)+ 3365856f (7x1)

−348279792f (6x1)+ 201376f (5x1)+ 471399640f (4x1)+ 4960f (3x1)

−32!
2
f (2x1)+ 32!f (x1), . . . , 32f (31xk)− 528f (30xk)+ 4960f (29xk)

−35464f (28xk)
+201376f (27xk)− 911152f (26xk)+ 3365856f (25xk)
−10482340f (24xk)+ 28048800f (23xk)− 64713616f (22xk)
+129024480f (21xk)
−224886648f (20xk)+ 347373600f (19xk)− 474801456f (18xk)
+565722720f (17xk)− 590562090f (16xk)+ 565722720f (15xk)
−499484400f (14xk)+ 347373600f (13xk)− 161280600f (12xk)
+129024480f (11xk)
−193536720f (10xk)+ 28048800f (9xk)+ 215274540f (8xk)+ 3365856f (7xk)
−348279792f (6xk)+ 201376f (5xk)+ 471399640f (4xk)

+4960f (3xk)− 32!
2
f (2xk)+ 32!f (xk)

)∥∥∥
∥
k

≤ 3

2
δ (22)
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for all xi ∈ X, where i = 1, 2, .., k. Substituting xi = 15xi and yi = xi in (20),
further multiplying the resulting equation by 32, and subtracting the obtained result
from (22), we arrive at
supk∈N ‖(496f (30x1)− 10912f (29x1)+ 123256f (28x1)− 949344f (27x1)

+5532880f (26x1)− 25632288f (25x1)+ 97225052f (24x1)

−308536800f (23x1) +852847984f (22x1)− 1935367200f (21x1)

+3903896712f (20x1)

−6877997280f (19x1)+ 1.064115374× 1010f (18x1)

−1.452021648× 1010f (17x1)+ 1.751256495× 1010f (16x1)

−1.866884976× 1010f (15x1)+ 1.760364264× 1010f (14x1)

−1.47385656× 1010f (13x1)+ 1.09546746× 1010f (12x1)

−7096346400f (11x1)+ 3935246640f (10x1)− 2036342880f (9x1)

+1112836146f (8x1)− 333219744f (7x1)− 240572400f (6x1)

−28796768f (5x1)+ 477843672f (4x1)− 1145760f (3x1)− 32!
2
f (2x1)

+32!(33)f (x1), ..,

496f (30xk)− 10912f (29xk)+ 123256f (28xk)− 949344f (27xk)
+5532880f (26xk)− 25632288f (25xk)+ 97225052f (24xk)
−308536800f (23xk)
+852847984f (22xk)− 1935367200f (21xk)+ 3903896712f (20xk)
−6877997280f (19xk)+ 1.064115374× 1010f (18xk)
−1.452021648× 1010f (17xk)+ 1.751256495× 1010f (16xk)
−1.866884976× 1010f (15xk)+ 1.760364264× 1010f (14xk)
−1.47385656× 1010f (13xk)+ 1.09546746× 1010f (12xk)
−7096346400f (11xk)+ 3935246640f (10xk)− 2036342880f (9xk)
+1112836146f (8xk)− 333219744f (7xk)− 240572400f (6xk)
−28796768f (5xk)+ 477843672f (4xk)− 1145760f (3xk)

−32!
2
f (2xk)+ 32!(33)f (xk)

)∥∥∥∥
k

≤ 67

2
δ (23)

for all xi ∈ X, where i = 1, 2, . . . , k. Applying the same procedure of Theorem 2
and using (19), we get

sup
k∈N

∥
∥∥∥

(
f (x1)− 1

232 f (2x1), . . . , f (xk)− 1

232 f (2xk)

)∥∥∥∥
k

≤ 4294967297

(32!)(4294967295)
δ

(24)
for all xi ∈ X, where i = 1, 2, . . . , k.

Let " = {g : X→ Y |g(0) = 0} and introduce the generalized metric d defined
on " by

d(u, v) = inf

{
λ ∈ [0,∞]| sup

k∈N
‖(u(x1)− v(x1), . . . , u(xk)− v(xk))‖k ≤ λ

}
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forall x1, . . . , xk ∈ X. Then it is easy to show that (", d) is a generalized complete
metric space. See [20].

We define an operator J : "→ " by

Ju(x) = 1

232 u(2x) ∀x ∈ X.

We assert that J is a strictly contractive operator. Given u, v ∈ ", let λ ∈ (0,∞)
be an arbitrary constant with d(u, v) ≤ λ. By the definition of d, it follows that

sup
k∈N
‖(u(x1)− v(x1), . . . , u(xk)− v(xk))‖k ≤ λ,

for all x1, . . . , xk ∈ X. Therefore,

sup
k∈N
‖(Ju(x1)−Jv(x1), . . . ,Ju(xk)−Jv(xk))‖k

≤ sup
k∈N

∥∥∥∥

(
1

232 u(2x1)− 1

232 v(2x1), . . . ,
1

232 u(2xk)−
1

232 v(2xk)

)∥∥∥∥
k

≤ 1

232 λ

for all x1, . . . , xk ∈ X. Hence, it holds that d(Ju,Jv) ≤ 1

232 λ i.e., d(Ju,Jv) ≤
1

232 d(u, v) ∀u, v ∈ ". This means that J is strictly contractive operator on " with

the Lipschitz constant L = 1

232
.

By (24), we have d(Jh, h) ≤ 4294967297

(32!)(4294967296)
δ. According to Theorem 1,

we deduce the existence of a fixed point of J that is the existence of mapping T :
X→ Y such that

T(2x) = 232T(x) ∀x ∈ X.

Moreover, we have d
(
Jnh,T

)→ 0, which implies

T(x) = lim
n→∞J

nh(x) = lim
n→∞

h(2nx)

232n

for all x ∈ X.
Also, d(h,T) ≤ 1

1−Ld(Jh, h) implies the inequality
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d(h,T) ≤ 1

1− 1

232

d(Jh, h)

≤ 4294967297

(32!)(4294967295)
δ.

Setting x1 = . . . = xk = 2nx, y1 =, . . . ,= yk = 2ny in (20) and divide both sides
by 232n. Then, using property (a) of multi-norms, we obtain

‖DT(x, y)‖ = lim
n→∞

1

232n

∥∥Dh
(
2nx, 2ny

)∥∥ = 0

for all x, y ∈ X. Hence T is Duotrigintic mapping.
The uniqueness of T follows from the fact that T is the unique fixed point of J

with the property that there exists � ∈ (0,∞) such that

sup
k∈N
‖(f (x1)− T(x1), . . . , f (xk)− T(xk))‖k ≤ �

for all x1, . . . , xk ∈ X.
This completes the proof of the theorem. ��

Corollary 1 Let X be a linear space, and let (Y k, ‖.‖k) be a Multi-Banach space.
Let θ > 0, 0 < p < 32 and f : X→ Y be a mapping satisfying f (0) = 0

sup
k∈N
‖Df (x1, y1), . . . ,Df (xk, yk)‖k ≤ θ

(‖x1‖p + ‖y1‖p , .., ‖xk‖p + ‖yk‖p
)

(25)
for all x1, . . . , xk, y1 . . . , yk ∈ X. Then there exists a unique mapping T : X → Y

such that

sup
k∈N
‖(f (x1)− T(x1), . . . , f (xk)− T(xk))‖ ≤ 1

232 − 2p
!(‖x1‖p , . . . , ‖xk‖p)

(26)
where

! = 2

32!θ
[

1

2
2p + (16p + 1)+ 32(15p + 1)+ 496(14p + 1)+ 4960(13p + 1)

+35960(12p + 1)+ 201376(11p + 1)+ 906192(10p + 1)+ 3365856(9p + 1)

+10518300(8p + 1)+ 28048800(7p + 1)

+64512240(6p + 1)+ 129024480(5p + 1)+ 225792840(4p + 1)

+347373600(3p + 1)+ 471435600(2p + 1)+ 866262915
]
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Proof The proof is similar to that of Theorem 3, replacing δ by θ
(‖x1‖p +

‖y1‖p , .., ‖xk‖p + ‖yk‖p
)
. ��

Corollary 2 Let X be a linear space, and let (Y k, ‖.‖k) be a Multi-Banach Space.
Let θ > 0, 0 < r + s = p < 32 and f : X→ Y be a mapping satisfying f (0) = 0

sup
k∈N
‖Df (x1, y1), . . . ,Df (xk, yk)‖k ≤ θ

(‖x1‖r . ‖y1‖s , . . . , ‖xk‖r . ‖yk‖s
)

(27)
for all x1, . . . , xk, y1 . . . , yk ∈ X. Then there exists a unique mapping T : X → Y

such that

sup
k∈N
‖(f (x1)−T(x1), . . . , f (xk)−T(xk))‖ ≤ 1

232 − 2p
!32(‖x1‖r+s , . . . , ‖xk‖r+s)

(28)
where

!32 = 2

32! θ
[
16r + 32(15r )+ 496(14r )+ 4960(13r )+ 35960(12r )

+201376(11r )+ 906192(10r )+ 3365856(9r )+ 10518300(8r )+ 28048800(7r )

+64512240(6r )+ 129024480(5r )+ 225792840(4r )+ 347373600(3r )

+471435600(2r )+ 565722720
]

Proof The proof is similar to that of Theorem 3, replacing δ by θ
(‖x1‖r . ‖y1‖s , ..,

‖xk‖r . ‖yk‖s
)
. ��

Example Let k ∈ N. We define φ : R→ R, by

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 x ∈ [1,∞)
x32 x ∈ (−∞,∞)
−1 x ∈ (−∞,−1].

We consider the function f : R→ R defined by

f (x) =
∞∑

n=0

φ(4nx)

432n , (x ∈ R).

Then f satisfies the following functional inequality:

‖Df (x1, y1)), ..,Df (xk, yk)‖k ≤
232 + 32!
432 − 1

496

(|x1|32+, .., |xk|32 + |y1|32+, .., |yk|32)

for all x1, . . . , xk, y1, .., yk ∈ R.
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Proof We have

|f (x)| ≤ 432

432 − 1

for all x ∈ R. Therefore, we see that f is bounded. Let x, y ∈ R. If |x|32+|y|32 = 0

or |x|32 + |y|32 ≥ 1

432
, then

|Df (x, y)| ≤
(
232 + 32!) 432

432 − 1
≤
(
232 + 32!) 432

432 − 1
432
(
|x|32 + |y|32

)
.

Now, suppose that 0 < |x|32+|y|32 ≤ 1

432 . Then there exists a non-negative integer

k such that

1

432(k+2)
≤ |x|32 + |y|32 <

1

432(k+1)
.

Hence, 4kx < 1
4 and 4ky < 1

4 , and
4n(x + 16y), 4n(x + 15y), 4n(x + 14y), 4n(x + 13y), 4n(x + 12y),
4n(x + 11y), 4n(x + 10y), 4n(x + 9y), 4n(x + 8y), 4n(x + 7y)
4n(x + 6y), 4n(x + 5y), 4n(x + 4y), 4n(x + 3y), 4n(x + 2y)
4n(x + y)4n(x), 4n(x − y), 4n(x − 2y), 4n(x − 3y),
4n(x − 4y), 4n(x − 5y), 4n(x − 6y), 4n(x − 7y),
4n(x − 8y), 4n(x − 9y), 4n(x − 10y), 4n(x − 11y), 4n(x − 12y)
4n(x − 13y), 4n(x − 14y), 4n(x − 15y), 4n(x − 16y) ∈ (−1, 1)
for all n = 0, 1, . . . , k − 1. Thus we get

|Df (x, y|)
|x|32 + |y|32 ≤

∞∑

n=k

232 + 32!
432n(|x|32 + |y|32)

≤
∞∑

n=0

232 + 32!
432n432(k+2)(|x|32 + |y|32)

464

≤
∞∑

n=0

232 + 32!
432n

464 = 232 + 32!
432 − 1

496,

or

|Df (x, y)| ≤≤ 232 + 32!
432 − 1

496(|x|32 + |y|32).

��
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Stabilities of MIQD and MIQA
Functional Equations via Fixed
Point Technique

B. V. Senthil Kumar, S. Sabarinathan, and M. J. Rassias

Abstract In this chapter, we investigate the stabilities of multiplicative inverse
quadratic difference and multiplicative inverse quadratic adjoint functional equa-
tions in the setting of non-Archimedean fields via fixed point method.

1 Introduction and Preliminaries

The question posed by Ulam [15] in 1940 is the basis for the theory of stability
of functional equations. The question raised by Ulam was answered by Hyers [5]
which made a cornerstone in the study of stability of functional equations. The result
obtained by Hyers is termed as Hyers–Ulam stability or ε-stability of functional
equation. Then, Hyers’ result was generalized by Aoki [1]. Also, Hyers’ result was
modified by Rassias [10] considering the upper bound as sum of powers of norms
(Hyers–Ulam–T. Rassias stability). Rassias [11] established Hyers’ result by taking
the upper bound as product of powers of norms (Ulam–Gavruta–J. Rassias stability).
In 1994, the stability result was further generalized into simple form by Gavruta [4]
by replacing the upper bound by a general control function (generalized Hyers–
Ulam stability).

In recent times, Ravi and Suresh [12] have investigated the generalized Hyers–
Ulam stability of multiplicative inverse quadratic functional equation in two vari-
ables of the form
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R(u+ v) = R(u)R(v)

R(u)+ R(v)+ 2
√
R(u)R(v)

(1)

in the setting of real numbers. It is easy to verify that the multiplicative inverse
quadratic function R(u) = 1

u2 is a solution of Eq. (1). For further stability results
using fixed point method concerning different types of functional equations and
rational functional equations, one may refer [2, 6, 7, 9, 13, 14].

Here, we evoke a few fundamental notions of non-Archimedean field and fixed
point alternative theorem in non-Archimedean spaces. Throughout this chapter,
let us assume that N and R are the sets of natural numbers and real numbers,
respectively.

Definition 1 Let F be a field with a mapping (valuation) | · | from F into [0,∞).
Then F is said to be a non-Archimedean field if the upcoming requirements
persist:

(i) |k| = 0 if and only if k = 0;
(ii) |k1k2| = |k1||k2|;

(iii) |k1 + k2| ≤ max{|k1|, |k2|}
for all k, k1, k2 ∈ F .

It is evident that |1| = | − 1| = 1 and |k| ≤ 1 for all k ∈ N . Furthermore, we
presume that | · | is non-trivial, that is, there exists an α0 ∈ F such that |α0| �= 0, 1.

Suppose E is a vector space over a scalar field F with a non-Archimedean non-
trivial valuation | · |. A function || · || : E −→ R is a non-Archimedean norm
(valuation) if it satisfies the ensuing requirements:

(i) ||u|| = 0 if and only if u = 0;
(ii) ||ρu|| = |ρ|||u|| (ρ ∈ F, u ∈ E);

(iii) the strong triangle inequality (ultrametric); namely,

||u+ v|| ≤ max{||u||, ||v||} (u, v ∈ E).

Then (E, || · ||) is known as a non-Archimedean space. By virtue of the inequality

‖u� − uk‖ ≤ max
{∥∥uj+1 − uj

∥∥ : k ≤ j ≤ �− 1
}

(� > k),

a sequence {uk} is Cauchy if and only if {uk+1 − uk} converges to 0 in a non-
Archimedean space. If every Cauchy sequence is convergent in the space, then it is
called as complete non-Archimedean space.

Definition 2 Assume H is a nonempty set. Suppose d : H ×H → [0,∞] satisfies
the following properties:

(i) d(α, β) = 0 if and only if α = β;
(ii) d(α, β) = d(β, α) (symmetry);

(iii) d(α, γ ) ≤ max{d(α, β), d(β, γ )} (strong triangle inequality)
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for all α, β, γ ∈ H . Then (H, d) is called a generalized non-Archimedean metric
space. Suppose every Cauchy sequence in A is convergent, then (A, d) is called
complete.

Example 1 Let F be a non-Archimedean field. Assume A and B are two non-
Archimedean spaces over F . If B is complete and φ : A −→ [0,∞), for every
s, t : A −→ B, define

d(s, t) = inf{δ > 0 : |s(u)− t (u)| ≤ δφ(u), for all u ∈ A}.

Using Theorem 2.5 [3], Mirmostafaee [8] proposed new version of the alternative
fixed point principle in the setting of non-Archimedean space as follows:

Theorem 1 ([8] (Alternative Fixed Point Principle in Non-Archimedean
Scheme)) Suppose (H, d) is a non-Archimedean generalized metric space. Let
a mapping Λ : H −→ H be a strictly contractive, (that is, d(Λ(u),Λ(v)) ≤
ρd(v, u), for all u, v ∈ H and a Lipschitz constant ρ < 1), then either

(i) d
(
Λp(u),Λp+1u

) = ∞ for all p ≥ 0, or;
(ii) there exists some p0 ≥ 0 such that d

(
Λp(u),Λp+1(u)

)
<∞ for all p ≥ p0;

the sequence {Λp(u)} is convergent to a fixed point u% of Λ; u% is the distinct
invariant point of Λ in the set Y = {y ∈ X : d (Λp0(u), v) < ∞} and
d (v, u%) ≤ d(v,Λ(v)) for all v in this set.

In this chapter, we consider the following functional equations

Rq

(
u+ v

2

)
− Rq(u+ v) = 3Rq(u)Rq(v)

Rq(u)+ Rq(v)+ 2
√
Rq(u)Rq(v)

(2)

and

Rq

(
u+ v

2

)
+ Rq(u+ v) = 5Rq(u)Rq(v)

Rq(u)+q (v)+ 2
√
Rq(u)Rq(v)

. (3)

Clearly, the multiplicative inverse quadratic function Rq(u) = 1
u2 satisfies Eqs. (2)

and (3). Hence, Eqs. (2) and (3) are called as Multiplicative Inverse Quadratic Dif-
ference (MIQD) functional equation and Multiplicative Inverse Quadratic Adjoint
(MIQA) functional equation, respectively. We prove the stabilities of the above
Eqs. (2) and (3) in non-Archimedean fields by fixed point approach.

Let us presume that E and F are a non-Archimedean field and a complete non-
Archimedean field, respectively, in this chapter. In the sequel, we represent E∗ =
E\{0}, where E is a non-Archimedean field. For the sake of easy computation, we
describe the difference operators Δ1Rq,Δ2Rq : E∗ × E∗ −→ F by

Δ1Rq(u, v) = Rq

(
u+ v

2

)
− Rq(u+ v)− 3Rq(u)Rq(v)

Rq(u)+ Rq(v)+ 2
√
Rq(u)Rq(v)
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and

Δ2Rq(u, v) = Rq

(
u+ v

2

)
+ Rq(u+ v)− 5Rq(u)Rq(v)

Rq(u)+ Rq(v)+ 2
√
Rq(u)Rq(v)

for all u, v ∈ E∗.

2 Solution of Eqs. (2) and (3)

In this section, we attain the solution of functional equations (2) and (3). In the
following, we denote R\{0} by R∗.

Theorem 2 A mapping Rq : R∗ −→ R satisfies Eq. (1) if and only if Rq : R∗ −→
R satisfies Eq. (2) if and only if Rq : R∗ −→ R satisfies Eq. (3). Therefore, every
solution of Eqs. (2) and (3) is also a multiplicative inverse quadratic mapping.

Proof Let Rq : R∗ −→ R satisfy Eq. (1). Switching v into u in (1), we obtain

Rq(2u) = 1

4
Rq(u) (4)

for all u ∈ R∗. Now, letting u to u
2 in (4), one finds

Rq

(u
2

)
= 4Rq(u) (5)

for all u ∈ R∗. Again, substituting (u, v) by ( u2 ,
v
2 ) in (1) and applying (5), we

obtain

Rq

(
u+ v

2

)
= 4Rq(u)Rq(v)

Rq(u)+ Rq(v)+ 2
√
Rq(u)Rq(v)

(6)

for all u, v ∈ R∗. Subtracting (1) from (6), we arrive at (3).
Now, suppose Rq : R∗ −→ R satisfies Eq. (3). Plugging v by u in (3), we obtain

Rq(2u) = 1

4
RQ(u) (7)

for all u ∈ R∗. Now, replacing u by u
2 in (7), we get

Rq

(u
2

)
= 4Rq(u) (8)

for all u ∈ R∗. Using (8) in (3), we obtain
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Rq(u+ v) = Rq(u)Rq(v)

Rq(u)+ Rq(v)+
√
Rq(u)Rq(v)

(9)

for all u, v ∈ R∗. Now, summing (9) with (3), we lead to (3).
Lastly, suppose Rq : R∗ −→ R satisfies Eq. (3). Letting v = u in (3), we obtain

Rq(2u) = 1

4
Rq(u) (10)

for all u ∈ R∗. Replacing u by u
2 in (10), we obtain

Rq

(u
2

)
= 4Rq(u) (11)

for all u ∈ R∗. In lieu of (11) and (3), we arrive at (1), which completes the proof.

3 Stabilities of Eqs. (2) and (3)

In this section, we investigate stabilities of Eqs. (2) and (3) via fixed point method
in non-Archimedean fields.

Theorem 3 Assume a mapping Rq : E∗ −→ F satisfies the inequality

∣∣Δ1Rq(u, v)
∣∣ ≤ ϕ(u, v) (12)

for all u, v ∈ E∗, where ϕ : E∗ × E∗ −→ F is a given function. If 0 < L < 1,

|2|−2ϕ
(

2−1u, 2−1v
)
≤ Lϕ(u, v) (13)

for all u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u)− rd(u)| ≤ L|2|2ϕ(u, u) (14)

for all u ∈ E∗.
Proof Plugging (u, v) by

(
u
2 ,

u
2

)
in (12), we obtain

∣∣∣Rq(u)− 2−2Rq

(
2−1u

)∣∣∣ ≤ ϕ
(

2−1u, 2−1u
)

(15)

for all u ∈ E∗. Let A = {p|p : E∗ −→ F }, and define

d(p, q) = inf{γ > 0 : |p(u)− q(u)| ≤ γ ϕ(u, u), for all u ∈ E∗}.
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In lieu of Example 1, we find that d turns into a complete generalized non-
Archimedean complete metric on A. Let Γ : A −→ A be a mapping defined
by

Γ (p)(u) = 2−2p
(

2−1u
)

for all u ∈ E∗ and p ∈ A. Then Γ is strictly contractive on A, in fact if |p(u) −
q(u)| ≤ γ ϕ(u, u), (u ∈ E∗), then by (13), we obtain

|Γ (p)(u)− Γ (q)(u)| = |2|−2
∣∣∣p
(

2−1u
)
− q

(
2−1u

)∣∣∣

≤ γ |2|−2ϕ
(

2−1u, 2−1u
)

≤ γLϕ(u, u) (u ∈ E∗).

From the above, we conclude that

(Γ (p), Γ (q)) ≤ Ld(p, q) (p, q ∈ A).

Consequently, the mapping d is strictly contractive with Lipschitz constant L.
Using (15), we have

|ρ(u)(s)− u(s)| =
∣∣∣3−11u

(
3−1s

)
− u(s)

∣∣∣

≤ ζ
( s

3
,
s

3

)
≤ |3|11Lζ(s, s) (s ∈ G∗).

This indicates that d(Γ (Rq), Rq) ≤ L|2|2. Due to Theorem 1 (ii), Γ has a distinct
invariant point rd : E∗ −→ F in the set G = {g ∈ F : d(u, g) <∞} and for each
u ∈ E∗, rd(u) = lim

s→∞Γ
sRq(u) = lim

s→∞ 2−2sRq
(
2−su

)
(u ∈ E∗). Therefore, for

all u, v ∈ E∗,

|Δ1rd(u, v)| = lim
s→∞ |2|

−2s
∣
∣Δ1Rq

(
2−su, 2−sv

)∣∣

≤ lim
s→∞ |2|

−2sϕ
(
2−su, 2−sv

)

≤ lim
s→∞L

sϕ(u, v) = 0

which shows that rd is multiplicative inverse quadratic. Theorem 1 (ii) implies
d(Rq, rd(u)) ≤ d(Γ (Rq), Rq), that is, |Rq(u) − rd(u)| ≤ |2|2Lϕ(u, u) (u ∈
E∗). Let r ′d : E∗ −→ F be a multiplicative inverse quadratic mapping which
satisfies (14), then r ′d is a fixed point of Γ in A. However, by Theorem 1, Γ has only
one invariant in G. This completes the distinctiveness allegation of the theorem.
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The following theorem is dual of Theorem 3. We skip the proof as it is analogous
to Theorem 3.

Theorem 4 Suppose the mapping Rq : E∗ −→ F satisfies the inequality (13). If
0 < L < 1,

|2|2ϕ(2u, 2v) ≤ Lϕ(u, v),

for all u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u)− rd(u)| ≤ Lϕ
(u

2
,
u

2

)
,

for all u ∈ E∗.
The following corollaries follow directly from Theorems 3 and 4. In the

following corollaries, we assume that |2| < 1 for a non-Archimedean field E.

Corollary 1 Let ε(independent of u, v)≥ 0 be a constant exists for a mapping Rq :
E∗ −→ F such that the functional inequality satisfies

∣
∣Δ1Rq(u, v)

∣
∣ ≤ ε,

for all u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u)− rd(u)| ≤ ε,

for all u ∈ E∗.
Proof Assuming ϕ(u, v) = ε and selecting L = |2|−2 in Theorem 3, we get the
desired result.

Corollary 2 Let λ �= −2 and c1 ≥ 0 be real numbers exists for a mapping Rq :
E∗ −→ F such that the following inequality holds

∣∣Δ1Rq(u, v)
∣∣ ≤ c1

(|u|λ + |v|λ) ,

for all u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

∣∣Rq(u)− rd(u)
∣∣ ≤

{ |2|c1
|2|λ |u|λ, λ > −2

|2|3c1|u|λ, λ < −2

for all u ∈ E∗.
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Proof Consider ϕ(u, v) = c1
(|u|λ + |v|λ) in Theorems 3 and 4 and then assume

L = |2|−λ−2, λ > −2 and L = |2|λ+2, λ < −2, respectively, the proof follows
directly.

Corollary 3 Let c2 ≥ 0 and λ �= −2 be real numbers, and Rq : E∗ −→ F be a
mapping satisfying the functional inequality

∣
∣Δ1Rq(u, v)

∣
∣ ≤ c2|u|λ/2|v|λ/2,

for all u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping rd : E∗ −→ F satisfying Eq. (2) and

|Rq(u)− rd(u)| ≤
{

c2
|2|λ |u|λ, λ > −2

|2|2c2|u|λ, λ < −2

for all u ∈ E∗.
Proof It is easy to prove this corollary, by taking ϕ(u, v) = c2|u|λ/2|v|λ/2 and
then choosing L = |2|−λ−2, λ > −2 and L = |2|λ+2, λ < −2, respectively in
Theorems 3 and 4.

In the sequel, using fixed point technique, we investigate the stabilities of Eq. (3)
in the framework of non-Archimedean fields. Since the proof of the subsequent
results is akin to the results of Eq. (2), for the sake of completeness, we state only
theorems and skip their proofs.

Theorem 5 Let Rq : E∗ −→ F be a mapping satisfying the inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ ξ(u, v) (16)

for all u, v ∈ E∗, where ξ : E∗ × E∗ −→ [0,∞) is an arbitrary function. If
0 < L < 1,

|2|−2ξ
(

2−1u, 2−1v
)
≤ Lξ(u, v),

for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F gratifying Eq. (3) and

|Rq(u)− ra(u)| ≤ L|2|2ξ(u, u),

for each u ∈ E∗.
Theorem 6 Let Rq : E∗ −→ F be a mapping satisfying the inequality (16). If
0 < L < 1,

|2|2ξ(2u, 2v) ≤ Lξ(u, v),
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for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u)− ra(u)| ≤ Lξ
(u

2
,
u

2

)

for each u ∈ E∗.
Corollary 4 Let θ (independent of u, v)≥ 0 be a constant. Suppose a mapping
Rq : E∗ −→ F satisfies the inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ θ

for every u, v ∈ E∗. Then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u)− ra(u)| ≤ θ,

for each u ∈ E∗.
Corollary 5 Let α �= −2 and δ1 ≥ 0 be real numbers. If Rq : E∗ −→ F is a
mapping satisfying the inequality

∣∣Δ2Rq(u, v)
∣∣ ≤ δ1

(|u|α + |v|α) ,

for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u)− ra(u)| ≤
{ |2|δ1|2|α |u|α, α > −2

|2|3δ1|u|α, α < −2

for each u ∈ E∗.
Corollary 6 Let Rq : E∗ −→ F be a mapping and δ2 ≥ 0 and α �= −2 be real
numbers. If the mapping Rq satisfies the functional inequality

∣
∣Δ2Rq(u, v)

∣
∣ ≤ δ2|u|α/2|v|α/2

for every u, v ∈ E∗, then there exists a unique multiplicative inverse quadratic
mapping ra : E∗ −→ F satisfying Eq. (3) and

|Rq(u)− ra(u)| ≤
{

δ2|2|α |u|α, α > −2

|2|2δ2|u|α, α < −2

for each u ∈ E∗.
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Hyers–Ulam Stability of First Order
Differential Equation via Integral
Inequality

S. Tamilvanan, E. Thandapani, and J. M. Rassias

Abstract In this chapter, first we derive a nonlinear integral inequality of Goll-
witzer type, and as an application we investigate the Hyers–Ulam stability of
nonlinear differential equation

y′(t) = f (t, y(t)), t ≥ a,

where f is a given function. The obtained results are new to the literature.

2010 Mathematics Subject Classification 34K10

1 Introduction

The Hyers–Ulam stability of functional equations received great attention in the last
few years, see, for example, [9–11] and the references cited therein. C. Alsina and
R. Ger [1] were the first authors who investigated the Hyers–Ulam stability of a
differential equation. In fact, they proved that if a differentiable function y : I → R

satisfies |y′(t) − y(t)| ≤ ε for all t ∈ I , then there exists a differentiable function
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g : I → R satisfying g′(t) = g(t) for any t ∈ I such that |y(t)− g(t)| ≤ 3ε for all
t ∈ I .

The above result has been generalized and extended in different directions by
many researchers, see, for example, [4–7, 12] and the references therein. In all these
papers, the authors discussed the Hyers–Ulam stability of first or second order linear
differential equations and it seems that no such result is available in the literature
dealing with Hyers–Ulam stability for the nonlinear differential equations. This
observation motivated us to study the Hyers–Ulam stability of the following first
order nonlinear differential equation

y′(t) = f (t, y(t)), t ∈ I = [a, b] (1)

where y ∈ C′(I ), f ∈ C(I,R) and −∞ < a, b <∞.
Next, we give the definition of Hyers–Ulam stability for differential equations.

Definition 1 We say that Eq. (1) has the Hyers–Ulam stability if the following
property holds: for every ε > 0, y ∈ C′(I ), if

|y′(t)− f (t, y(t))| ≤ ε
then there exists some u ∈ C′(I ) satisfying

u′(t) = f (t, u(t))

such that |y(t) − u(t)| ≤ K(ε) for every t ∈ I , where K(ε) is an expression of ε
only.

If the above statement is also true when we replace ε andK(ε) by φ(t) andΦ(t),
where φ,Φ : I → [0,∞) are functions not depending on y and u explicitly, then
we say that the corresponding differential equation has the Hyers–Ulam–Rassias
stability (or the generalized Hyers–Ulam stability). For more detailed definitions
of the Hyers–Ulam stability and Hyers–Ulam–Rassias stability, one can refer to
[9–11]. In this chapter, first we present nonlinear integral inequality of Gollwitzer
type, and as an application we discuss the Hyers–Ulam stability of nonlinear
differential equation (1).

2 Gollwitzer Type Integral Inequality

First we derive a nonlinear Gollwitzer type integral inequality that provides us
a powerful tool for proving the Hyers–Ulam stability of a nonlinear first order
differential equations. We begin with the following result which can be found in
[3, Theorem 41,p.39].

Lemma 1 If x > 0 and 0 < α ≤ 1, then

xα ≤ αx + (1− α), (2)
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and the equality holds if α = 1.

Theorem 1 Let u, f, g and h be nonnegative real-valued continuous functions
defined on I , and

u(t) ≤ f (t)+ g(t)
t∫

a

h(s)uα(s) ds, t ∈ I (3)

where 0 < α ≤ 1. Then

u(t) ≤ f (t)+g(t)
t∫

a

h(s)(αf (s)+ (1−α)) ·exp

⎛

⎝
t∫

s

αh(σ )g(σ ) dσ

⎞

⎠ ds. (4)

Proof Define a function R(t) by

R(t) =
t∫

a

h(s)uα(s) ds, t ∈ I

then R(a) = 0, and u(t) ≤ f (t)+ g(t)R(t). Then using Lemma 1, we obtain

R′(t) = h(t)uα(t) ≤ h(t)(f (t)+ g(t)R(t))α
≤ (αh(t)f (t)+ (1− α)h(t))+ αh(t)g(t)R(t). (5)

Multiplying (5) by exp
(
− ∫ t

a
αh(σ )g(σ ) dσ

)
we have

d

dt

[
R(t) exp

(
−
∫ t

a

αh(σ )g(σ ) dσ

)]

≤ (αh(t)f (t)+ (1− α)h(t)) exp

(
−
∫ t

a

αh(σ )g(σ ) dσ

)
. (6)

By setting t = s in the last inequality and integrating it with respect to s from a to
t , we obtain

R(t) exp
(
− ∫ t

a
αh(σ )g(σ ) dσ

)

≤
t∫

a

(αh(s)f (s)+ (1− α)h(s)) exp
(− ∫ s

a
αh(σ )g(σ ) dσ

)
ds. (7)

Using the bound on R(t) from (7) in u(t) ≤ f (t) + g(t)R(t), we have the desired
inequality (4). This completes the proof.
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Corollary 1 Let u(t) and p(t) be real-valued nonnegative continuous functions
defined on I such that

u(t) ≤ u0 +
t∫

a

p(s)uα(s) ds, t ∈ I (8)

where u0 ≥ 0 and 0 < α ≤ 1. Then

u(t) ≤ A(t) exp

(
α

∫ t

a

p(s) ds

)
(9)

where A(t) = u0 + (1− α)
∫ t
a
p(s) ds.

Proof The proof follows from Theorem 1 by taking f (t) = u0 ≥ 0, g(t) ≡ 1 and
h(t) = p(t) and the details are omitted.

Remark 1 If we take α = 1, then Theorem 1 reduced to the well-known Gollwitzer
inequality [2]. However for 0 < α < 1, the result obtained in Theorem 1 is new to
the literature.

Remark 2 If we take α = 1, then Corollary 1 reduced to the well-known Gronwall
inequality [8].

3 Hyers–Ulam Stability

As an application of the integral inequality established in Sect. 2 we investigate the
Hyers–Ulam stability of Eq. (1).

Theorem 2 Assume that p(t) ∈ C(I) such that

|f (t, u)− f (t, v)| ≤ p(t)|u− v|α (10)

where 0 < α ≤ 1, and
∫ ∞

a

p(t) dt <∞. (11)

If for φ(t) ∈ C(I) such that
∫∞
a
φ(t) dt <∞, and

|y′ − f (t, y)| ≤ φ(t) (12)

then there exists a u ∈ C′(I ) and K > 0 satisfying

u′ = f (t, u) (13)

such that |y(t)− u(t)| ≤ K; that is, Eq. (1) has the Hyers–Ulam stability.
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Proof From the inequality (12), we have

y(t) ≤ y(a)+
∫ t

a

f (s, y(s)) ds +
∫ t

a

φ(s) ds, (14)

and from Eq. (13) we obtain

u(t) = u(a)+
∫ t

a

f (s, u(s)) ds. (15)

Combining (14) and (15) yields

|y(t)− u(t)| ≤ |y(a)− u(a)| +
∫ t

a

|f (s, y(s))− f (s, u(s))| ds +
∫ t

a

φ(s) ds.

Using (10) in the last inequality, one obtains

|y(t)− u(t)| ≤ M1 +
∫ t

a

p(s)|y(s)− u(s)|α ds +M2 (16)

where M1 = |y(a)− u(a)| and
∫∞
a
φ(t) dt ≤ M2, by hypothesis.

Applying Corollary 1 in (16), we obtain

|y(t)− u(t)| ≤
[
M1 +M2 + (1− α)

∫ t

a

p(s) ds

]
exp

(
α

∫ t

a

p(s) ds

)
. (17)

It follows from (11) that there is a constant M3 > 0 such that
∫∞
a
p(t) dt ≤ M3,

and using this in (17), we have

|y(t)− u(t)| ≤ K

where K = [M1 +M2 + (1− α)M3] exp (αM3). This completes the proof.

4 Conclusion

In this chapter, first we have obtained a new nonlinear integral inequality and as an
application we present a Hyers–Ulam stability of a nonlinear differential equation.
In this approach, we don’t need the explicit form of the solution of the studied
equation, whereas in [1, 4–7, 12] the authors used an explicit form of the solutions
to prove their results.
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Stability of an n-Dimensional Functional
Equation in Banach Space and Fuzzy
Normed Space

Sandra Pinelas, V. Govindan, and K. Tamilvanan

Abstract In this paper, the authors investigate the general solution of a new additive
functional equation

f

(
n∑

i=1

xi

)

+
n∑

j=1;i �=j
f

⎛

⎝−xj − xi +
∑

1≤i<j<k≤n
xk

⎞

⎠=
(
n2 − 5n+ 6

2

) n∑

i=1

f (xi)

where n is a positive integer with N−{1, 2, 3, 4} and discuss its generalized Hyers–
Ulam stability in Banach spaces and stability in fuzzy normed spaces using two
different methods.

1 Introduction

In 1940, Ulam [26] raised the following question. Under what conditions does there
exist an additive mapping near an approximately addition mapping? The case of
approximately additive functions was solved by Hyers [11] under the assumption
that for ε > 0 and f : E1 → E2 be such that ‖f (x + y) − f (x) − f (y)‖ ≤ ε for
all x, y ∈ E1 then there exists a unique additive mapping T : E1 → E2 such that
‖f (x)− T (x)‖ ≤ ε for all x ∈ E1.

In 1978, a generalized version of the theorem of Hyers for approximately linear
mapping was given by Rassias [20]. He proved that for a mapping f : E1 → E2 be
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such that f (tx) is continuous in t ∈ R and for each fixed x ∈ E1 assume that there
exist constant ε > 0 and p ∈ [0, 1) with

‖f (x + y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p) (1)

for all x, y ∈ E1 then there exists a unique R-Linear mapping T : E1 → E2 such
that

‖f (x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (2)

for all x ∈ E1.
A number of mathematicians were attracted by the result of Rassias. The stability

concept that was introduced and investigated by Rassias is called the Hyers–Ulam–
Rassias stability.

During the last decades, the stability problems of several functional equations
have been extensively investigated by a number of authors [1, 5, 8, 12, 23, 24].

In 1982–1989, Rassias [21, 22] replaced the sum appeared in the right-hand side
of the Eq. (1) by the product of powers of norms. In modelling applied problems
only partial information may be known (or) there may be a degree of uncertainty in
the parameters used in the model or some measurements may be imprecise. Due to
such features, we are tempted to consider the study of functional equations in the
fuzzy setting.

For the last 40 years, fuzzy theory has become a very active area of research and
a lot of development has been made in the theory of fuzzy sets to find the fuzzy
analogues of the classical set theory. This branch finds a wide range of applications
in the field of science and engineering.

Katsaras [13] introduced an idea of fuzzy norm on a linear space in 1984, in the
same year Wu and Fang [27] introduced a notion of fuzzy normed space to give a
generalization of the Kolmogoroff normalized theorem for fuzzy topological linear
spaces. In 1991, Biswas [4] defined and studied fuzzy inner product spaces in linear
space. In 1991, Felbin [7] introduced an alternative definition of a fuzzy norm on a
linear topological structures of a fuzzy normed linear spaces. In 1994, Cheng and
Mordeson [6] introduced a definition of fuzzy norm on a linear space in such a
manner that the corresponding induced fuzzy metric is of Kramosil and Michalek
[14]. In 2003, Bag and Samanta [2] modified the definition of Cheng and Mordeson
[6] by removing a regular condition. Recently various results have been investigated
by numerous authors, one can refer to [3, 9, 10, 15–19, 25].

Before we proceed to the main theorems, we will introduce some definitions and
an example to illustrate the idea of fuzzy norm.

Definition 1 Let X be a real linear space. A function N : X × R −→ [0, 1] is said
to be fuzzy norm on X if for all x, y ∈ X and a, b ∈ R.

(N1) N(x, a) = 0 for a ≤ 0;
(N2) x = 0 iff N(x, a) = 1 for all a > 0;
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(N3) N(ax, b) = N
(
x, b
|a|
)

if a �= 0;

(N4) N(x + y, a + b) ≥ min{N(x, a),N(y, b)};
(N5) N(x, .) is a non-decreasing function on R and lima−→∞N(x, a) = 1.
(N6) For x �= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a)
as the truth value of the statement the norm of x is less than or equal to the real
number a.

Definition 2 Let (X,N) be a fuzzy normed linear space. Let xn be a sequence
in X. Then xn is said to be convergent if there exists x ∈ X such that
limn→∞N (xn − x, t) = 1 for all t > 0. In that case, x is called the limit of
the sequence xn and we denote it by N − limn→∞xn = x.

Definition 3 A sequence xn in X is called Cauchy if for each ε > 0 and each t > 0
there exists n0 such that for all n ≥ n0 and all p > 0, we have N

(
xn+p − xn, t

)
>

1− ε.

Definition 4 Every convergent sequence in a fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the
fuzzy normed space is called a fuzzy Banach space.

Definition 5 A mapping f : X → Y between fuzzy normed spaces X and Y
is continuous at a point x0 if for each sequence {xn} converging to x0 in X, the
sequence f {xn} converges to f {x0}. If f is continuous at each point of x0 ∈ X, then
f is said to be continuous on X.

Example Let (X, ‖.‖) be a normed linear space. Then

N(x, a) =
{

a
a+‖x‖ , a > 0, x ∈ X
0, a ≤ 0, x ∈ X

is a fuzzy norm on X.

In the following we will suppose that N(x, .) is left continuous for every x. A
fuzzy normed linear space is a pair(X,N), where X is a real linear space and N is
a fuzzy norm on X. Let (X,N) be a fuzzy normed linear space. A sequence {xn} in
X is said to be convergent if there exist x ∈ X such that limn→∞N(xn − x, t) =
1 (t > 0). In that case, x is called the limit of the sequence {xn} and we write
N − limn→∞ xn = x. A sequence {xn} in fuzzy normed space (X,N) is called
cauchy if for each ε > 0 and δ > 0, there exist n0 ∈ N such that

N(xm − xn, δ) > 1− ε, (m, n ≥ n0).

If each cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed space is called a fuzzy Banach space.
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In this paper, the authors investigate the general solution and generalized Hyers–
Ulam stability of a new type of n-dimensional functional equation of the form

f

(
n∑

i=1

xi

)

+
n∑

j=1;i �=j
f

⎛

⎝−xj − xi +
∑

1≤i<j<k≤n
xk

⎞

⎠=
(
n2 − 5n+ 6

2

) n∑

i=1

f (xi)

(3)
where n is a positive integer with N−{1, 2, 3, 4}, in the setting of Banach space and
fuzzy normed space using direct and fixed point methods.

Theorem 1 (Banach’s Contraction Principle) Let (X, d) be a complete metric
space and consider a mapping T : X −→ X which is strictly contractive mapping,
that is

(A1) d(T x, T y) ≤ Ld(x, y) for some (Lipschitz constant) L < 1, then

(i) The mapping T has one and only fixed point x∗ = T (x∗);
(ii) The fixed point for each given element x∗is globally attractive that is

(A2) limn−→∞T nx = x∗, for any starting point x ∈ X;

(iii) One has the following estimation inequalities:

(A3) (T nx, x∗) ≤ 1
1−Ld(T

nx, T n+1x) , for all n ≥ 0, x ∈ X.

(A4) (x, x∗) ≤ 1
1−Ld(x, x

∗),∀x ∈ X.

Theorem 2 (The Alternative of Fixed Point) Suppose that for a complete gener-
alized metric space (X, d) and a strictly contractive mapping T : X −→ Y with
Lipschitz constant L. Then, for each given element x ∈ X either

(B1) (T nx, T n+1x) = +∞, for all n ≥ 0, or
(B2) there exists natural number n0 such that:

(i) d(T nx, T n+1x) <∞ for all n ≥ n0;
(ii) The sequence (T nx) is convergent to a fixed point y∗ of T;

(iii) y∗ is the unique fixed point of T in the set Y={y ∈ X; d(T n0x, y)<∞};
iv) d(y∗, y) ≤ 1

1−Ld(y, T y) for all y ∈ L.

2 General Solution of the Functional Equation (3)

In this section, we obtain the general solution of the functional equation (3).
Throughout this section , let X and Y be real vector spaces.

Theorem 3 A function f : X −→ Y satisfies the functional equation (3) then
f : X −→ Y satisfies the functional equation (1).

Proof Let f : X −→ Y satisfy the functional equation (3). Replacing
(x1, x2, x3, . . . , xn) by (0, 0, . . . , 0), (x, 0, . . . , 0) and (x, x, 0 . . . , 0) in (3) we
obtain
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f (0) = 0, f (−x) = −f (x) and f (2x) = 2f (x) (4)

for all x ∈ X. It is easy to verify from (3) that

f
( x

2i

)
= 1

2i
f (x), i = 1, 2, 3, . . . , n (5)

for all x ∈ X. Setting (x1, x2, x3, . . . , xn) by (x, y, 0, . . . , 0) in (3) and using
oddness of f , we obtain the result of (1).

Define a mapping f : X→ Y by

Df (x1, x2, . . . , xn) = f (

n∑

i=1

xi)+
n∑

j=1;i �=j
f

⎛

⎝−xj − xi +
∑

1≤i<j<k≤n
xk

⎞

⎠

−
(
n2 − 5n+ 6

2

) n∑

i=1

f (xi)

for allx1, x2, . . . , xn ∈ X.

2.1 Stability Result for (3) in Banach Space Using Direct
Method

In this section, we consider X to be a real vector space and Y to be a Banach space,
we present the Hyers–Ulam stability of the functional equation (3).

Theorem 4 Let ψ : Xn −→ [0,∞) be a function such that
∑∞

k=0
ψ(2kj x,2kj x,0,...,0)

2kj
converges in R and

lim
k→∞

ψ(2kj x1, 2kj x2, . . . , 2kj xn)

2kj
= 0 (6)

for all x1, x2, . . . , xn ∈ X. If a function f : X −→ Y satisfies

||Df (x1, x2, . . . , xn)|| ≤ ψ(x1, x2, x3, . . . , xn) (7)

for all x1, x2, . . . , xn ∈ X, then there exists a unique additive function A : X −→ Y

which satisfies the functional equation (3) and

||f (x)− A(x)|| ≤ 1

(n2 − 5n+ 6)

∞∑

k=0

ψ(2kj x, 2kj x, 0, . . . , 0)

2kj
(8)
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for all x ∈ X. The function A is given by

A(x) = lim
k−→∞

f (2kj x)

2kj
(9)

for all x ∈ X.
Proof Setting (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (7), we obtain

||
(
n2 − 5n+ 6

2

)
f (2x)− (n2 − 5n+ 6)f (x)|| ≤ ψ(x, x, 0, ..., 0) (10)

for all x ∈ X. It follows from (10) that

||f (2x)
2

− f (x)|| ≤ ψ(x, x, 0, . . . , 0)

(n2 − 5n+ 6)
(11)

for all x ∈ X. Setting x by 2x in (11), we obtain

||f (2
2x)

2
− f (2x)|| ≤ ψ(2x, 2x, 0, . . . , 0)

(n2 − 5n+ 6)
(12)

for all x ∈ X. It follows from (12) we get

||f (2
2x)

22
− f (2x)

2
|| ≤ ψ(2x, 2x, 0, . . . , 0)

2(n2 − 5n+ 6)
(13)

for all x ∈ X. It follows from (11) and (13) that

||f (2
2x)

22
− f (x)|| ≤ 1

(n2 − 5n+ 6)

[
ψ(x, x, 0, . . . , 0)+ ψ(2x, 2x, 0, . . . , 0)

2

]

(14)
for all x ∈ X. Generalizing, we get

||f (2
nx)

2n
− f (x)|| ≤ 1

(n2 − 5n+ 6)

n−1∑

k=0

ψ(2kx, 2kx, 0, . . . , 0)

2k

≤ 1

(n2 − 5n+ 6)

∞∑

k=0

ψ(2kx, 2kx, 0, . . . , 0)

2k
(15)

for all x ∈ X. Now we have to prove that the sequence
{
f (2kx)

2k

}
is a cauchy

sequence for all x ∈ X. For every positive integer n,m and for all x ∈ X, consider



Stability of an n-Dimensional Functional Equation 165

||f (2
n+mx)

2n+m
− f (2nx)

2n
|| = 1

2n
||f (2nx)− f (2n+mx)

2m
||

≤ 1

(n2 − 5n+ 6)

m−1∑

i=0

ψ(2i+nx, 2i+nx, 0, . . . , 0)

2i+n

≤ 1

(n2 − 5n+ 6)

∞∑

i=0

ψ(2i+nx, 2i+nx, 0, . . . , 0)

2i+n
(16)

for all x ∈ X. By condition (6), the right-hand side approaches 0 as n→∞. Thus,
the sequence is a cauchy sequence due to the completeness of the Banach space Y

A(x) = lim
k−→∞

f (2kx)

2k
∀x ∈ X,

is well-defined. We can see that (9) holds. To show that A satisfies (3), we set
(x, y) = (2nx1, 2nx2, . . . , 2nxn) in (7) and divide the resulting equation by 2n,
we obtain

1

2k
||Df (2kx1, 2kx2, . . . , 2kxn)|| ≤ 1

2k
ψ(2kx1, 2kx2, . . . , 2kxn).

Taking the limit as n→∞, using (6) and (9),A satisfies (3). To prove the uniqueness
of A, suppose that there exist another cubic function B : X → Y such that B
satisfies (3) and (8), we have

||A(x)− B(x)|| ≤ 1

2l
||A(2lx)− f (2lx)|| + ||f (2lx)− B(2lx)||

≤ 2

(n2 − 5n+ 6)

∞∑

k=0

ψ(2k+1x, 2k+1x, 0, . . . ., 0)

2k+1 ∀x ∈ X.

By condition (6), the right-hand side approaches 0 as n → ∞, and it follows that
A(x) = B(x) for all x ∈ X. Hence, A is unique. This completes the proof of the
theorem.

The following corollary is an immediate consequence of Theorem 4, concerning
the stability of (3).

Corollary 1 Let λ and s be a non-negative real numbers. Let f : X −→ Y be a
function satisfying the inequality

||Df (x1, x2, x3, . . . , xn)|| ≤

⎧
⎪⎪⎨

⎪⎪⎩

λ

λ(
∑n

i=1 ||xi ||s)
λ(
∏n
i=1 ||xi ||s +

∑n
i=1 ||xi ||ns)
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for all x1, x2, . . . , xn ∈ X. Then there exists a unique additive functionA : X −→ Y

such that

||f (x)− A(x)|| ≤

⎧
⎪⎪⎨

⎪⎪⎩

|2|λ
(n2−5n+6)

4λ||x||s
(n2−5n+6)|2−2s | ; s �= 1

4λ||x||ns
(n2−5n+6)|2−2ns | ; s �= 1

n

2.1.1 Stability Result for (3) in Banach Space Using Fixed Point Method

In this segment, the authors presented the generalized Ulam–Hyers stability of the
functional equation (3) in Banach space and using fixed point method.

Theorem 5 Let f : X −→ Y be a mapping for which there exists a function
ψ : Xn −→ [0,∞) with the condition

limk−→∞
ψ(ηki x1, η

k
i x2, . . . , η

k
i xn)

ηki

= 0 (17)

where

ηi =
{

2, if i = 0
1
2 , if i = 1

such that the functional inequality

||Df (x1, x2, . . . , xn)|| ≤ ψ(x1, x2, . . . , xn) (18)

for all x1, x2, . . . , xn ∈ W. If there exists L = L(i) such that the function

x −→ β(x) = ψ(x/2, x/2, 0, . . . , 0)

(n2 − 5n+ 6)

has the property,

1

ηi
β(ηix) = Lβ(x) (19)

for all x ∈ X. Then there exists a unique additive function A : X −→ Y satisfying
the functional equation (3) and

||f (x)− A(x)|| ≤ L1−i

1− Lβ(x) (20)

holds for all x ∈ X.
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Proof Consider the set d = {u/u : X −→ Y, u(0) = 0)} and introduce the general-
ized metric on M. d(u, v) = inf {k ∈ (0,∞) : ||u(x)− v(x)|| ≤ kβ(x), x ∈ X} .
It is easy to see that (M, d) is complete. Define T : M −→ M by

T u(x) = 1

ηi
u(ηix)

for all x ∈ M. Now u, v ∈ M,

d(u, v) ≤ k ⇒ ||u(x)− v(x)|| ≤ kβ(x) ∀x ∈ X;

⇒ || 1

ηi
u(ηix)−

1

ηi
v(ηix)|| ≤

1

ηi
kβ(ηix) ∀x ∈ X;

⇒ ||T u(x)− T v(x)|| ≤ kβ(x) ∀x ∈ X;

⇒ d(T u, T v) ≤ Lk

This implies d(T u, T v) ≤ Ld(u, v) for all u, v ∈ M. (i.e.,) T is strictly
contractive mapping on with Lipschitz constant L. Replacing (x1, x2, x3, . . . , xn)

by (x, x, 0, . . . , 0) in (18), we obtain

|| (n
2 − 5n+ 6)

2
f (2x)− (n2 − 5n+ 6)f (x)|| ≤ ψ(x, x, 0, . . . , 0) (21)

for all x ∈ X. It follows from (21) that

||f (x)− f (2x)

2
|| ≤ ψ(x, x, 0, . . . , 0)

(n2 − 5n+ 6)
(22)

for all x ∈ X. Using (19) for the case i = 0, it reduces to

||f (x)− f (2x)

2
|| ≤ β(x)

for all x ∈ X.

i.e., d(f, Tf ) ≤ L⇒ d(f, Tf ) ≤ 1 = L = L0 <∞.

Again replacing x = x
2 in (21) and (22), we get

||
(
n2 − 5n+ 6

2

)
f (x)− (n2 − 5n+ 6)f

(x
2

)
|| ≤ ψ(x

2
,
x

2
, 0, . . . , 0)
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and

||f (x)− 2f
(x

2

)
|| ≤ 2

(n2 − 5n+ 6)
ψ(
x

2
,
x

2
, 0, . . . , 0) (23)

for all x ∈ X. Using (19) for the case i = 0, it reduces to

||f (x)− f (2x)

2
|| ≤ Lβ(x) (24)

for all x ∈ X. (i.e.,) d(f, Tf ) ≤ 2 ⇒ d(f, Tf ) ≤ 2 = L0 <∞. In the above case,
we arrive

d(f, Tf ) ≤ L1−i .

Therefore (B2(i))holds. By (B2(ii)), it follows that there exists a fixed point A of
T in X, such that

A(x) = limk−→∞
f (ηki x)

ηki

(25)

for all x ∈ X. In order to prove A : X −→ Y is additive. Replacing (x1, x2, . . . , xn)

by (ηki x1, η
k
i x2, . . . , η

k
i xn) in (18) and dividing by ηki , it follows from (17) and (25),

we see that A satisfies (3) for all x1, x2, . . . , xn ∈ X.Hence A satisfies the functional
equation (3). By (B2(iii)), A is the unique fixed point of T in the set, Y = {f ∈
M; d(Tf,A) <∞}.Using the fixed point alternative result, A is the unique function
such that

||f (x)− A(x)|| ≤ kβ(x)

for all x ∈ W and k > 0.Finally by (B2(iv)), we obtain

d(f,A) ≤ 1

1− Ld(f, Tf )

(i.e., ) d(f,A) ≤ L1−i

1− L.

Hence, we conclude that

||f (x)− A(x)|| ≤ L1−i

1− Lβ(x)

for all x ∈ X. This completes the proof of the theorem.
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The following corollary is an immediate consequence of Theorem 5 concerning the
stability of (3).

Corollary 2 Let f : X −→ Y be a mapping and there exist real numbers λ and s
such that

||Df (x1, x2, . . . , xn)|| ≤

⎧
⎪⎪⎨

⎪⎪⎩

λ

λ(
∑n

i=1 ||xi ||s)
λ(
∏n
i=1 ||xi ||s +

∑n
i=1 ||xi ||ns)

for all x1, x2, . . . , xn ∈ X. Then there exists a unique additive functionA : X −→ Y

such that

||f (x)− A(x)|| ≤

⎧
⎪⎪⎨

⎪⎪⎩

|2|λ
(n2−5n+6)

4λ||x||s
(n2−5n+6)|2−2s | ; s �= 1

4λ||x||ns
(n2−5n+6)|2−2ns | ; s �= 1

n

for all x ∈ X.
Proof Setting

ψ(x1, x2, x3, . . . , xn) ≤

⎧
⎪⎪⎨

⎪⎪⎩

λ

λ(
∑n

i=1 ||xi ||s)
λ(
∏n
i=1 ||xi ||s +

∑n
i=1 ||xi ||ns)

for all x1, x2, . . . , xn ∈ X. Now

ψ(ηki x1, η
k
i x2, . . . , η

k
i xn)

ηki

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ

ηki
λ

ηki

{∑n
i=1 ||ηki xi ||s

}

λ

ηki

{∏n
i=1 ||ηki xi ||ns +

∑n
i=1 ||ηki xi ||ns

}

=

⎧
⎪⎪⎨

⎪⎪⎩

−→ 0 as k −→∞
−→ 0 as k −→∞
−→ 0 as k −→∞

i.e., (21) holds. But we have β(x) = 2
(n2−5n+6)

ψ(x2 ,
x
2 , 0, . . . , 0).
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Hence

β(x) = 1

(n2 − 5n+ 6)
ψ(
x

2
,
x

2
, 0, . . . , 0) =

⎧
⎪⎪⎨

⎪⎪⎩

2λ
(n2−5n+6)

4λ||x||s
(n2−5n+6)2s

4λ||x||ns
(n2−5n+6)2ns

1

ηi
β(ηix) =

⎧
⎪⎪⎨

⎪⎪⎩

1
ηi

2λ
(n2−5n+6)

1
ηi

4λ||x||s
(n2−5n+6)2s

1
ηi

4λ||x||ns
(n2−5n+6)2ns

=

⎧
⎪⎪⎨

⎪⎪⎩

η−1
i β(x)

ηs−1
i β(x)

ηns−1
i β(x)

for all x ∈ X. Hence the inequality (3) holds for

L = 2−1 if i = 0 and L = 1
2−1 if i = 1

L = 2s−1 f or s < 1if i = 0 and L = 1
2s−1 f or s > 1 if i = 1.

L = 2ns−1 f or s < 1
n
if i = 0 and L = 1

2ns−1 f or s > 1
n
if i = 1.

Now, from (21) we prove the following cases:

Case1: L = 2−1 if i = 0

||f (x)− A(x)| ≤ L1−i
1−Lβ(x) = (2−1)

1−2−1
2λ

(n2−5n+6)
= 2λ

(n2−5n+6)

Case2: L = 1
3−1 if i = 1

||f (x)− A(x)|| ≤ L1−i
1−Lβ(x) = 1

1−2
2λ

(n2−5n+6)
= −2λ

(n2−5n+6)
Case3: L = 2 f or s < 1 if i = 0
||f (x)− A(x)|| ≤ L1−i

1−Lβ(x) = 2s−1

1−2s−1
4λ||x||s

(n2−5n+6)2s
= 4λ||x||s

(n2−5n+6)(2−2s )

Case4: L = 1
2s−1 f or s > 1 if i = 1

||f (x)− A(x)|| ≤ L1−i
1−Lβ(x) = 1

1− 1
2s−1

4λ||x||s
(n2−5n+6)2s

= 4λ||x||s
(n2−5n+6)(2s−2)

Case5: L = 2ns−1 f or s < 1 if i = 0
||f (x)− A(x)|| ≤ L1−i

1−Lβ(x) = 2ns−1

1−2ns−1
4λ||x||ns

(n2−5n+6)2ns
= 4λ||x||ns

(n2−5n+6)(2−2ns )

Case6: L = 1
2ns−1 f or s > 1

n
if i = 1

||f (x)− A(x)|| ≤ L1−i
1−Lβ(x) = 1

1− 1
2ns−1

4λ||x||ns
(n2−5n+6)2ns

= 4λ||x||ns
(n2−5n+6)(2ns−2)

.
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3 Stability Result for (3) in Fuzzy Normed Space Using
Direct Method

Throughout this section, assume that X,
(
Z,N

′)
, (Y,N) are linear space, Banach

space, and fuzzy normed space, respectively, we now investigate the fuzzy stability
of the functional equation (3).

Theorem 6 Let β ∈ {1,−1} be fixed and let ψ : Xn −→ Z be a mapping such

that for some d > 0 with 0 <
(
d
2

)β
< 1.

N ′
(
ψ(2βx, 2βx, 0, . . . , 0), r

) ≥ N ′(dβψ(x, x, 0, . . . , 0), r) (26)

for all x ∈ X and all r > 0, d > 0, and

limk−→∞N ′
(
ψ(2βkx1, 2βkx2, . . . , 2βkxn), 2βkr

)
= 1 (27)

for all x1, x2, . . . , xn ∈ X and all r > 0. Suppose an odd mapping f : X −→ Y

with f (0) = 0 satisfies the inequality

N(Df (x1, x2, . . . , xn), r) ≥ N ′(ψ(x1, x2, . . . , xn), r) (28)

for all r > 0 and all x1, x2, . . . , xn ∈ X. Then the limit

A(x) = N − limk−→∞ f (2
βkx)

2βk
(29)

exists for all x ∈ X and the mapping A : X −→ Y is the unique additive mapping
such that

N(f (x)− A(x), r) ≥ N ′(ψ(x, x, 0, . . . , 0),
(n2 − 5n+ 6)

2
r|2− d|) (30)

for all x ∈ X and for all r > 0.

Proof Let β = 1. Replacing (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (28), we get

N

(
(n2 − 5n+ 6)f (x)− (n2 − 5n+ 6)

2
f (2x), r

)
≥ N ′(ψ(x, x, 0, . . . , 0), r)

(31)
for all x ∈ X and all r > 0. Replacing x by 2kx in (31), we obtain

N

(
f (2k+1x)

2
− f (2kx), r

(n2 − 5n+ 6)

)
≥ N ′(ψ(2kx, 2kx, 0, . . . , 0), r)

(32)
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for all x ∈ X and for all r > 0. Using (26), we get

N

(
f (2k+1x)

2
− f (2kx), r

(n2 − 5n+ 6)

)
≥ N ′(ψ(x, x, 0, . . . , 0),

r

dk
) (33)

for all x ∈ X and for all r > 0. It is easy to verify from (33) that

N

(
f (2k+1x)

2k+1 − f (2kx)

2k
,

r

(n2 − 5n+ 6)2k

)
≥ N ′(ψ(x, x, 0, . . . , 0),

r

dk
)

(34)
holds for all x ∈ X and for all r > 0. Replacing r by dkr in (34),we get

N

(
f (2k+1x)

2k+1
− f (2kx)

2k
,

dkr

(n2 − 5n+ 6)2k

)
≥ N ′(ψ(x, x, 0, . . . , 0), r) (35)

for all x ∈ X and for all r > 0. It follows from

f (2kx)

2k
− f (x) =

k−1∑

i=0

[
f (2i+1x)

2i+1
− f (2ix)

2i

]
(36)

and (35) that

N

(
f (2kx)

2k
− f (x),

k−1∑

i=0

dir

(n2 − 5n+ 6)2i

)

≥ min
{
N

(
f (2i+1x)

2i+1 − f (2ix)

2i
,

dir

(n2 − 5n+ 6)2i

)
: i = 0, 1, 2, . . . , k−1

}

≥ N ′(ψ(x, x, 0, . . . , 0), r) (37)

for all x ∈ X and for all r > 0. Replacing x by 2mx in (37), we get

N

(
f (2k+mx)

2k+m
− f (2mx)

2m
,

m+k−1∑

i=m

dir

(n2 − 5n+ 6)2i

)

≥ N ′(ψ(x, x, 0, . . . , 0),
r

dm
)

(38)
for all x ∈ X and for all r > 0 and all m, k ≥ 0. Replacing r by dmr in (38), we get

N

(
f (2k+mx)

2k+m
− f (2mx)

2m
,

k−1∑

i=0

dir

(n2 − 5n+ 6)2i

)

≥ N ′(ψ(x, x, 0, . . . , 0), r)

(39)
for all x ∈ X and for all r > 0 and all m, k ≥ 0. Using (N3) in (38), we obtain

N

(
f (2k+mx)

2k+m
− f (2mx)

2m
, r

)
≥ N ′

⎛

⎝ψ(x, x, 0, . . . , 0),
r

∑m+k−1
i=m di

(n2−5n+6)2i

⎞

⎠

(40)
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for all x ∈ X, r > 0 and all m, k ≥ 0. Since 0 < d < 2 and
∑k

i=0

(
d
2

)i
< ∞,

the Cauchy criterion for convergence and (N5) implies that
{
f (2kx)

2k

}
is a Cauchy

sequence in (Y,N). Since (Y,N) is a fuzzy Banach space, this sequence converges
to some point A(x) ∈ Y. So one can define the mapping A : X −→ Y by

A(x) := N − lim
k−→∞

f (2kx)

2k

for all x ∈ X. Letting m = 0 in (40), we get

N

(
f (2kx)

2k
− f (x), r

)
≥ N ′

⎛

⎝ψ(x, x, 0, . . . , 0),
r

∑k−1
i=0

di

(n2−5n+6)2i

⎞

⎠ (41)

for all x ∈ X. Taking the limits as k −→∞ and using (N6), we arrive

N(f (x)− A(x), r) ≥ N ′(ψ(x, x, 0, . . . , 0), (n2 − 5n+ 6)r.(2− d))

for all x ∈ X and for all r > 0. Now, we claim that A is additive. Replacing
(x1, x2, x3, . . . , xn) by (2kx1, 2kx2, . . . , 2kxn) in (28), respectively, we get

N

(
1

2k
Df (2

kx1, 2kx2, . . . , 2kxn), r

)
≥ N ′(ψ(2kx1, 2kx2, . . . , 2kxn), 2kr)

(42)
for all r > 0 and for all x1, x2, . . . , xn ∈ X. Since

lim
k−→∞N

′ (ψ(2βkx1, 2βkx2, . . . , 2βkxn), 2βkr
)
= 1.

A satisfies the additive functional equation (3). Hence A : X → Y is additive. To
prove the uniqueness of A, let A′ be another additive mapping satisfying (30). Fix
x ∈ X, clearly A(2nx) = 2nA(x) and A

′
(2nx) = 2nA

′
(x) for all x ∈ X and all

n ∈ N . It follows from (30) that N(A(x)− A′(x), r) = N
(
A(2kx)

2k
− A′(2kx)

2k
, r
)

≥ min
{
N

(
A(2kx)

2k
− f (2kx)

2k
,
r

2

)
, N

(
f (2kx)

2k
− A′(2kx)

2k
,
r

2

)}

≥ N ′
(
ψ(2kx, 2kx, 0, . . . , 0),

r(n2 − 5n+ 6)2k(2− d)
2

)

≥ N ′
(
ψ(2kx, 2kx, 0, . . . , 0),

r(n2 − 5n+ 6)2k(2− d)
2dk

)
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for all x ∈ X and r > 0. Since limk−→∞ r(n2−5n+6)2k(2−d)
2dk

= ∞, we obtain

limk→∞N ′
(
ψ(x, x, 0, . . . , 0),

r(n2 − 5n+ 6)2k(2− d)
2dk

)
= 1.

Thus N(A(x) − A′(x), r) = 1 for all x ∈ X and r > 0 and so A(x) = A′(x). For
β = −1, we can prove the result by a similar method.

The following corollary is an immediate consequence of Theorem 6, concerning the
stability for the functional equation (3).

Corollary 3 Suppose that the function f : X −→ Y satisfies the inequality

N(Df (x1.x2, . . . ., xn), r) ≥

⎧
⎪⎪⎨

⎪⎪⎩

N ′(θ, r)
N ′(θ

∑n
i=1 ||xi ||s , r)

N ′(θ(
∑n

i=1 ||xi ||ns +Πn
i=1||xi ||s), r)

for all x1, x2, . . . , xn ∈ X and all r > 0, where θ, s are constants then there exists
a unique additive mapping A : X→ Y such that

N(f (x)− A(x), r) ≥

⎧
⎪⎪⎨

⎪⎪⎩

N ′(θ, r(n
2−5n+6)
|2|

N ′
(

2θ ||x||s , r(n2−5n+6)|2−2s |
2

)
; s �= 1

N ′
(

2θ ||x||ns, r(n2−5n+6)|2−2ns |
2

)
; s �= 1

n

3.1 Stability Result for (3) in Fuzzy Normed Space Using Fixed
Point Method

Throughout this section, the authors investigated the generalized Ulam–Hyers
stability of the functional equation (3) in fuzzy normed space using fixed point
method.

To prove the stability result, we define the following μi is a constant such that

ηi =
{

2 if i = 0
1
2 if i = 1

and  is the set such that  = {t/t : W −→ B, t (0) = 0} .
Theorem 7 Let f : X −→ Y be a mapping for which there exists a function
ψ : Xn −→ Z with condition

limk−→∞N ′
(
ψ(ηkx1, η

kx2, . . . , η
kxn), η

kr
)
= 1 (43)
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for all x1, x2, . . . , xn ∈ X and all r > 0 and satisfying the inequality

N(Df (x1, x2, . . . , xn), r) ≥ N ′(ψ(x1, x2, . . . , xn), r) (44)

for all x ∈ X and r > 0. If there exist L = L[i] such that the function x −→
β(x) = 1

(n2−5n+6)
ψ
(
x
2 ,

x
2 , 0, . . . , 0

)
has the property

N ′
(
L

1

ηi
β(ηix), r

)
= N ′ (β(x), r) (45)

for all x ∈ X and r > 0, then there exists a unique additive function A : X −→ Y

satisfying the functional equation (3) and

N(f (x)− A(x), r) ≥ N ′
(
L1−i

1− Lβ(x), r
)

for all x ∈ X and r > 0.

Proof Let d be a general metric on  such that

d(t, u) = inf
{
k ∈ (0,∞)|N(t(x)− u(x), r) ≥ N ′(β(x), kr), x ∈ X, r > 0

}

It is easy to see that (, d) is complete. Define T :  −→  by T t (x) = 1
ηi
t (ηix)

for all x ∈ X,for t, u ∈ , we have

d(t, u) = k ⇒ N (t(x)− u(x), r) ≥ N ′(β(x), kr)

⇒ N

(
t (ηix)

ηi
− u(ηix)

ηi
, r

)
≥ N ′(β(ηix), kηir) (46)

⇒ N(T t (x)− T u(x), r) ≥ N ′(β(ηix), kηir)

⇒ N(T t (x)− T u(x), r) ≥ N ′(β(x), kLr)

⇒ d(T t (x)− T u(x)) ≥ kL

⇒ d(T t − T u, r) ≥ Ld(t, u)

for all t, u ∈ .Therefore T is strictly contractive mapping on  with Lipschitz
constant L, replacing (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (44), we get

N

(
(n2 − 5n+ 6)

2
)f (2x)− (n2 − 5n+ 6)f (x), r

)
≥ N ′ (ψ(x, x, 0, . . . , 0), r)

(47)
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for all x ∈ X and r > 0. Using (N3) in (47), we arrive

N

(
f (2x)

2
− f (x), r

)
≥ N ′

(
ψ(x, x, 0, . . . , 0)

(n2 − 5n+ 6)
, r

)
(48)

for all x ∈ X and r > 0 with the help of (45) when i = 0, it follows from (48) that

⇒ N

(
f (2x)

2
− f (x), r

)
≥ N ′(Lβ(x), r)

⇒ d(Tf, f ) ≥ L = L1 = L1−i . (49)

Replacing x by x
2 in (47), we obtain

N
(
f (x)− 2f

(x
2

)
, r
)
≥ N ′

(
2

(n2 − 5n+ 6)
ψ
(x

2
,
x

2
, 0, . . . , 0

)
, r

)

for all x ∈ X and r > 0, when i = 1, it follows from (49), we get

⇒ N
(
f (x)− 2f

(x
2

)
, r
)
≥ N ′(β(x), r)

⇒ T (f, Tf ) ≤ 1 = L0 = L1−i . (50)

Then from (49) and (50), we can conclude

⇒ T (f, Tf ) ≤ L1−i <∞.
Now from the fixed point alternative in both cases, it follows that there exists a fixed
point A of T in  such that

A(x) = N − lim
k−→∞

f (ηkx)

ηk

for all x ∈ W and r > 0. Replacing (x1, x2, . . . , xn) by (ηki x1, η
k
i x2, . . . , η

k
i xn) in

(44), we arrive

N

(
1

ηki

Df (ηki x1, η
k
i x2, . . . , η

k
i xn), r

)

≥ N ′(ψ(ηki x1, η
k
i x2, . . . , η

k
i xn), η

k
i r)

for all r > 0 and all x1, x2, . . . , xn ∈ X. By proceeding the same procedure of the
Theorem 5.1 , we can prove the function A : X −→ Y is additive and it satisfies the
functional equation (3). By a fixed point alternative, since A is a unique fixed point
of T in the set

* = {f ∈ /d(f,A) <∞} .
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Therefore A is a unique function such that

N(f (x)− A(x), r) ≥ N ′(β(x), kr)

for all x ∈ W and r > 0. Again using the fixed point alternative, we obtain

d(f,A) ≤ 1

1− Ld(f, Tf )

⇒ d(f,A) ≤ L1−i

1− L

⇒ N(f (x)− A(x), r) ≥ N ′
(
β(x)

L1−i

1− L, r
)

for all x ∈ X and r > 0. This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 7 concerning
the stability of (3).

Corollary 4 Suppose a function f : X −→ Y satisfies the inequality

N(Df (x1, x2, . . . , xn), r) ≥

⎧
⎪⎪⎨

⎪⎪⎩

N ′(θ, r)
N ′(θ

∑n
i=1 ||xi ||s , r)

N ′(θ(
∑n

i=1 ||xi ||ns +Πn
i=1||xi ||s), r)

for all x1, x2, . . . , xn ∈ X and r > 0, where θ, s are constants with θ > 0. Then
there exists a unique additive mapping A : X −→ Y such that

N(f (x)− A(x), r) ≥

⎧
⎪⎪⎨

⎪⎪⎩

N ′(θ, r(n
2−5n+6)
|2|

N ′
(

2θ ||x||s , r(n2−5n+6)|2−2s |
2

)
; s �= 1

N ′
(

2θ ||x||ns, r(n2−5n+6)|2−2ns |
2

)
; s �= 1

n

for all x ∈ X and r > 0.

Proof Setting

ψ(x1, x2, x3, . . . , xn) ≤

⎧
⎪⎪⎨

⎪⎪⎩

θ

θ(
∑n

i=1 ||xi ||s)
θ(
∏n
i=1 ||xi ||s +

∑n
i=1 ||xi ||ns)
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for all x1, x2, . . . , xn ∈ X. Then

N ′
(
ψ
(
ηki x1, η

k
i x2, . . . , η

k
i xn

)
, ηki r

)
=

⎧
⎪⎪⎨

⎪⎪⎩

N ′(θ, ηk
i
r)

N ′
(
θ
∑n
i=1 ||xi ||s , η(1−s)ki

r
)

N ′
(
θ(
∑n
i=1 ||xi ||ns +Πn

i=1||xi ||s ), η(1−ns)ki
r
)

=

⎧
⎪⎪⎨

⎪⎪⎩

−→ 1 as k −→∞,
−→ 1 as k −→∞,
−→ 1 as k −→∞.

Thus, (6) holds. But we have

β(x) = 2

(n2 − 5n+ 6)
ψ
(x

2
,
x

2
, 0, . . . , 0

)

has the property

N ′
(
L

1

ηi
β(ηix), r

)
≥ N ′(β(x), r)

for all x ∈ X and r > 0. Hence

N ′(β(x), r) = N ′
(
ψ
(x

2
,
x

2
, 0, . . . , 0

)
, (n2 − 5n+ 6)r

)

=

⎧
⎪⎪⎨

⎪⎪⎩

N ′(θ, r(n2 − 5n+ 6))

N ′
(

2
2s θ ||x||s , r(n2 − 5n+ 6)

)

N ′
(

2
2ns θ ||x||ns, r(n2 − 5n+ 6)

)
.

Now,

N ′
(

1

ηi
β(ηix), r

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N ′
(
θ
ηi
, r(n2 − 5n+ 6)

)

N ′
(
θ
ηi

(
2
2s

)
||ηix||s , r(n2 − 5n+ 6)

)

N ′
(
θ
ηi

(
2

2ns

)
||ηix||ns, r(n2 − 5n+ 6)

)

=

⎧
⎪⎪⎨

⎪⎪⎩

N ′(η−1
i β(x), r)

N ′(ηs−1
i β(x), r)

N ′(ηns−1
i β(x), r)

Now from the following cases for the conditions (i) and (ii)
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Case(i): L = 2−1 f or s = 0 if i = 0

N(f (x) − A(x), r) ≥ N ′
(
L1−i
1−Lβ(x), r

)
≥ N ′

(
2−1

1−2−1
2θ

(n2−5n+6)
, r
)
≥

N ′
(
θ,

r(n2−5n+6)
2

)

Case(ii): L =
(

1
2

)−1
f or s = 0 if i = 1

N(f (x) − A(x), r) ≥ N ′
(
L1−i
1−Lβ(x), r

)
≥ N ′

(
1

1−
(

1
2

)−1
2θ

(n2−5n+6)
, r

)

≥

N ′
(
θ,
−r(n2−5n+6)

2

)

Case(iii): L = (2)s−1 f or s < 1 if i = 0

N(f (x)− A(x), r) ≥ N ′
(
L1−i

1− Lβ(x), r
)

≥ N ′
(

2s−1

1− 2s−1

2θ ||x||s
(n2 − 5n+ 6)2s

, r

)

≥ N ′
(

2θ ||x||s , r(n
2 − 5n+ 6)(2− 2s)

2

)

Case(iv): L = (2)1−s f or s > 1 if i = 1

N(f (x)− A(x), r) ≥ N ′
(
L1−i

1− Lβ(x), r
)

≥ N ′
(

21−s

1− 21−s
2θ ||x||s

(n2 − 5n+ 6)2s
, r

)

≥ N ′
(

2θ ||x||s , r(n
2 − 5n+ 6)(2s − 2)

2

)

Case(v): L = (2)ns−1 f or s < 1
n

if i = 0

N(f (x)− A(x), r) ≥ N ′
(
L1−i

1− Lβ(x), r
)

≥ N ′
(

2ns−1

1− 2ns−1

2θ ||x||ns
(n2 − 5n+ 6)2ns

, r

)

≥ N ′
(

2θ ||x||ns, r(n
2 − 5n+ 6)(2− 2ns)

2

)
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Case(vi): L = (2)1−ns f or s < 1
n

if i = 1

N(f (x)− A(x), r) ≥ N ′
(
L1−i

1− Lβ(x), r
)

≥ N ′
(

21−ns

1− 21−ns
2θ ||x||ns

(n2 − 5n+ 6)2ns
, r

)

≥ N ′
(

2θ ||x||ns, r(n
2 − 5n+ 6)(2ns − 2)

2

)

Hence the proof is completed.
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Measure Zero Stability Problem for
Drygas Functional Equation with
Complex Involution

Ahmed Nuino, Muaadh Almahalebi, and Ahmed Charifi

Abstract In this chapter, we discuss the Hyers–Ulam stability theorem for the
σ -Drygas functional equation

f (x + y)+ f (x + σ(y)) = 2f (x)+ f (y)+ f (σ(y))

for all (x, y) ∈ Ω ⊂ C
2 for Lebesgue measure m(Ω) = 0, where f : C→ Y and

σ : X→ X is an involution.

1 Introduction

The study of stability problems of functional equations was motivated by a question
of S. M. Ulam asked in 1940 [35]. The first result giving answer to this question is
due to Hyers [21]. Subsequently, his result was extended and generalized in several
ways by many authors worldwide.

Characterizing quasi-inner product spaces, Drygas considers in [15] the func-
tional equation

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y), x, y ∈ R (1)

which is a generalization of an important quadratic functional equation

f (x + y)+ f (x − y) = 2f (x)+ 2f (y), x, y ∈ R. (2)

The functional equation (1) is now known in the literature as Drygas equation. The
general solution of Drygas equation was given by Ebanks, Kannappan, and Sahoo
in [16]. It has the form
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f (x) = A(x)+Q(x),

whereA : R −→ R is an additive function andQ : R −→ R is a quadratic function.
In 2002, Jung and Sahoo [24] considered the stability problem of the following
functional equation:

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ g(2y), (3)

and as a consequence they obtained the stability theorem of functional equation of
Drygas (1) where f and g are functions from a real vector space X to a Banach
space Y .

Here we state a slightly modified version of the results in [24].

Theorem 1 Let ε ≥ 0 be fixed and let X be a real vector space and Y a Banach
space. If a function f : X −→ Y satisfies the inequality

‖f (x + y)+ f (x − y)− 2f (x)− f (y)− f (−y)‖ ≤ ε, (4)

for all x, y ∈ X, then there exists a unique additive mapping A : X −→ Y and a
unique quadratic mapping Q : X −→ Y such that S = A +Q is a solution of (1)
such that

‖f (x)− S(x)‖ ≤ 25

3
ε, (5)

for all x ∈ X.

This result was improved first by Yang in [36] and later by Sikorska in [31]. In this
chapter we use the Sikorska’s result as a basic tool in the main result. So, we need
to present the following theorem.

Theorem 2 ([31]) Let (X,+) be a group and Y be a Banach space. Given an ε >
0, assume that f : X→ Y satisfies the condition

‖f (x + y)+ f (x − y)− 2f (x)− f (y)− f (−y)‖ ≤ ε, x, y ∈ X.

Then there exists a uniquely determined function g : X→ Y such that

g(x) = 2

9
g(3x)− 1

9
g(−3x), x ∈ X,

and

‖f (x)− g(x)‖ ≤ ε x ∈ X.
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Moreover, if X is Abelian, then g satisfies

g(x + y)+ g(x − y) = 2g(x)+ g(y)+ g(−y), x, y ∈ X.

The stability and solution of the Drygas equation under some additional conditions
was also studied by Forti and Sikorska in [19] in the case when X and Y are
amenable groups.

It is a very natural subject to consider functional equations or inequalities
satisfied on restricted domains or satisfied under restricted conditions [2–10, 13, 18–
23, 25, 26, 28–30]. Among the results, S. M. Jung and J. M. Rassias proved the
Hyers–Ulam stability of the quadratic functional equations in a restricted domain
[22, 27].

It is very natural to ask if the restricted domainD := {(x, y) ∈ X2 : ‖x‖+‖y‖ ≥
d} can be replaced by a much smaller subset Ω ⊂ D, i.e., a subset of measure 0
in a measure space X. In 2013, J. Chung considered the stability of the Cauchy
functional equation

f (x + y) = f (x)+ f (y) (6)

in a set Ω ⊂ {(x, y) ∈ R
2 : |x| + |y| ≥ d} of measure m(Ω) = 0 when f :

R −→ R. In 2014, J. Chung and J. M. Rassias proved the stability of the quadratic
functional equation in a set of measure zero.

Let E be a real vector space, G = (G,+) be an arbitrary semigroup. We say that
a function f : G −→ E satisfies the σ -Drygas equation if

f (x + y)+ f (x + σ(y)) = 2f (x)+ f (y)+ f (σ(y)) (7)

for all x, y ∈ G, where σ be an involution of G (which means that σ(x + y) =
σ(x)+ σ(y) and σ

(
σ(x)

) = x for all x, y ∈ G).
If σ(x) = −x and G is an abelian group in Eq. (7), then Eq. (7) reduces to the

classic Drygas functional equation (1).
The solutions of Drygas equation in abelian group are obtained by Stetkær in

[32] and [33]. Various authors studied the Drygas equation, for example Szabo
[34], Ebanks et al. [16], Jung and Sahoo [24], Yang [36], Faĭziev and Sahoo [17].
There are several functional equations reduced to those of the Drygas functional
equation (1), i.e. the mixed type additive, quadratic, Jensen and Pexidered equations,
we refer, for example, to [1, 3, 13, 14].

In this chapter, our aim is to prove the Hyers–Ulam stability on Ω ⊂ X2 of
Lebesgue measure 0 for the σ -Drygas functional equation (7), where f : X → Y

and σ : X→ X is a complex involution. We also obtain an asymptotic behavior of
this equation.
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2 Stability of Eq. (7) in Set of Measure Zero

Throughout this section, assume that X is a complex normed space and Y is a
complex Banach space. If an additive mapping σ : X → Y satisfies σ(σ(x)) = x

for all x ∈ X, then σ is called complex involution on X.
For given x, y, t ∈ X, we define

Px,y,t :=
{
(x + y, t), (x + σ(x), t), (x, y + t), (x, y + σ(t)), (y, t), (σ (y), σ (t))

}
.

Throughout this section, we assume that Ω ⊂ X2 satisfies the following condition:
For given x, y ∈ X, there exists t ∈ X such that

(C) Px,y,t ⊂ Ω

where σ : X→ X is a complex involution. In the following theorem, we prove the
Hyers–Ulam stability theorem for the Drygas functional equation (7) in Ω .

Theorem 3 Let ε ≥ 0 be fixed. Suppose that f : X −→ Y satisfies the functional
inequality

‖f (x + y)+ f (x + σ(y))− 2f (x)− f (y)− f (σ(y))‖ ≤ ε (8)

for all (x, y) ∈ Ω , where σ : X → X is a complex involution. Then there exists a
unique mapping S : X −→ Y such that S is a solution of (7) and

‖f (x)− S(x)‖ ≤ 25ε (9)

for all x ∈ X.

Proof Assume that f : X → Y be a function satisfying (7) for all (x, y) ∈ Ω and
let σ : X→ X. Define D : X ×X→ Y by

D(x, y) := f (x + y)+ f (x + σ(y))− 2f (x)− f (y)− f (σ(y)), (x, y) ∈ Ω.

Since Ω satisfies (C), for given x, y ∈ X, there exists t ∈ X such that

‖D(x+y, t)‖ ≤ ε, ∥∥D
(
x+σ(y), t)∥∥ ≤ ε, ‖D(x, y+t)‖ ≤ ε,

∥∥D
(
x, y+σ(t))∥∥ ≤ ε, ‖D(y, t)‖ ≤ ε, ∥∥D

(
σ(y), σ (t)

)∥∥ ≤ ε.
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Thus, using the triangle inequality we have

∥∥∥f (x + y)+ f (x + σ(y))− 2f (x)− f (y)− f (σ(y))
∥∥∥

=
∥∥∥− 1

2
D(x + y, t)− 1

2
D
(
xσ(y), t

)

+ 1

2
D(x, y + t)+ 1

2
D
(
x, yσ (t)

)+ 1

2
D(y, t)+ 1

2
D
(
σ(y), σ (t)

)∥∥∥ ≤ 3ε

for all x, y ∈ X. Next, according to Theorem 1, there exists a unique additive
mapping A : X −→ Y and a unique quadratic mapping Q : X −→ Y such that
S = A+Q is a solution of (7) such that

‖f (x)− S(x)‖ ≤ 25 ε

for all x ∈ X. This completes the proof.

The following corollary is a particular case of Theorem 3, where ε = 0.

Corollary 1 Suppose that f : X −→ Y satisfies the functional equation

f (x + y)+ f (x + σ(y)) = 2f (x)+ f (y)+ f (σ(y)) (10)

for all (x, y) ∈ Ω , where σ : X→ X is a complex involution. Then, (10) holds for
all x, y ∈ X.

3 Construction of a Set Ω of Lebesgue Measure Zero

In this section, we construct a set Ω of measure zero satisfying the condition (C)
whenX = C. From now on, we identify R

2 with C and we suppose that σ : C→ C

is an involution. The following lemma is a crucial key of our construction [[27],
Theorem 1.6].

Lemma 1 ([27]) The set R of real numbers can be partitioned as R = F ∪K where
F is of first Baire category, i.e., F is a countable union of nowhere dense subsets of
R, and K is of Lebesgue measure 0.

The following lemma was proved by Chung and Rassias in [11] and [12].

Lemma 2 ([11, 12]) Let K be a subset of R of measure 0 such that Kc := R \ K
is of first Baire category. Then, for any countable subsets U ⊂ R, V ⊂ R \ {0} and
M > 0, there exists λ ≥ M such that

U + λV = {u+ λv : u ∈ U, v ∈ V } ⊂ K. (11)
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We study two cases for the involution σ : C → C. First, we suppose that σ(z) =
−z, where z is the conjugate of z for all z ∈ C. It is easy to prove the following
lemma.

Lemma 3 The general solution f : C→ Y of the functional equation

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y), x, y ∈ C,

is

f (x) = A(x)+ B(x, x), x ∈ C,

where B : C × C → Y is an arbitrary symmetric bi-additive function with
B(a, ib) = B(ia, ib) = 0 and A : C → Y is an arbitrary additive function with
A(ib) = 0 for all a, b ∈ R.

In this case, the condition (C) can be reduced to the following condition:
For given x, y ∈ C, there exists t ∈ C such that

(C1)
{
(x+y, t), (x−x, t), (x, y+t), (x, y−t), (y, t), (−y,−t)

}
⊂ Ω. (12)

In the following theorem, we give the construction of a set Ω ⊂ C
2 of Lebesgue

measure zero satisfying (12).

Theorem 4 Let K be the set defined in Lemma 2, R be the rotation

R =

⎛

⎜⎜⎜⎜
⎝

√
3

2 0 − 1
2 0

0
√

3
2 0 − 1

2
1
2 0

√
3

2 0

0 1
2 0

√
3

2

⎞

⎟⎟⎟⎟
⎠

(13)

and Ω = R−1(K ×K ×K ×K). Then Ω satisfies (12) and has four-dimensional
Lebesgue measure 0.

Proof Let x, y, t ∈ C such that x = a + ib, y = c + id and t = u + iv where
a, b, c, d, u, v ∈ R and let

Qx,y,t =
{
(a + c, b + d, u, v), (0, 2b, u, v), (a, b, c + u, d + v),
× (a, b, c − u, d + v), (c, d, u, v), (−c, d,−u, v)}.

Then Ω satisfies (12) if and only if, for every x = a + ib, y = c + id ∈ C, there
exists t = u+ iv ∈ C such that

R
(
Qx,y,t

) ⊂ K ×K ×K ×K. (14)
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The inclusion (14) is equivalent to

Sx,y,t :=
{√

3

2
p1 − 1

2
p3,

√
3

2
p2 − 1

2
p4,

1

2
p1 +

√
3

2
p3,

1

2
p2

+
√

3

2
p4 : (p1, p2, p3, p4) ∈ Qx,y,t

}

⊂ K.

If we choose α ∈ R such that v = αu, then we can easily check that the set
Sx,y,u+iαu is included in a set of form U + uV , where

U =
{

0,
1

2
a, b,

√
3b,±1

2
c,±

√
3

2
c,

1

2
d,

√
3

2
d,

1

2
(a + c),

√
3

2
(a + c),

×1

2
(b + d),

√
3

2
(b + d),

(√
3

2
a − 1

2
c

)

,

(√
3

2
b − 1

2
d

)

,

(
1

2
b +

√
3

2
d

)}

and

V =
{

±1

2
u,±

√
3

2
u,−1

2
αu,

√
3

2
αu

}

.

According to (11) in Lemma 2, for each x = a + ib, y = c + id ∈ C and M > 0,
there exists u ≥ M such that

Sx,y,u+iαu ⊂ U + uV ⊂ K.

Thus, Ω satisfies (12). This completes the proof.

In the second case, we assume that σ(z) = −iz for all z ∈ C. We obtain the
following results.

Lemma 4 The general solution f : C→ Y of the functional equation

f (x + y)+ f (x − iy) = 2f (x)+ f (y)+ f (−iy), x, y ∈ C,

is

f (x) = A(x)+ B(x, x), x ∈ C,

whereB : C×C→ Y is an arbitrary symmetric bi-additive function withB(a, b) =
B(a, ib) = B(ia, ib) = 0 and A : C → Y is an arbitrary additive function with
A(ib) = A(b) for all a, b ∈ R.
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Here, the condition (C) reduces to the following condition:
For given x, y ∈ C, there exists t ∈ C such that

(C1)
{
(x + y, t), (x − ix, t), (x, y + t), (x, y − it), (y, t), (−iy,−it)

}
⊂ Ω.

(15)
By virtue of Theorem 3, it suffices to construct a set Ω ∈ C

2 of measure zero
satisfying (15).

Theorem 5 Let K be the set defined in Lemma 2, R be the rotation

R =

⎛

⎜⎜⎜⎜
⎝

√
3

2 0 − 1
2 0

0
√

3
2 0 − 1

2
1
2 0

√
3

2 0

0 1
2 0

√
3

2

⎞

⎟⎟⎟⎟
⎠

(16)

and Ω = R−1(K ×K ×K ×K). Then Ω satisfies (15) and has four-dimensional
Lebesgue measure 0.

Proof Similarly to the proof of the Theorem 4, let x, y, t ∈ C such that x = a+ ib,
y = c + id and t = u+ iv where a, b, c, d, u, v ∈ R and let

Q′x,y,t =
{
(a + c, b + d, u, v), (a − b, b − a, u, v), (a, b, c + u, d + v),
(a, b, c − v, d − u), (c, d, u, v), (−d,−c,−v,−u)}.

Then, we get

S′x,y,t :=
{√

3

2
p1 − 1

2
p3,

√
3

2
p2 − 1

2
p4,

1

2
p1 +

√
3

2
p3,

1

2
p2 +

√
3

2
p4 : (p1, p2, p3, p4) ∈ Qx,y,t

}

⊂ U + uV ⊂ K, (17)

for some u ∈ R, where

U =
{

1

2
c,

√
3

2
c,±

√
3

2
d,± 1

2
d,

√
3

2
(a + b),

√
3

2
(a − b),

√
3

2
(b + d),

√
3

2
(b − a), 1

2
(a + c),

1

2
(a − b), 1

2
(b + d), 1

2
(b − a),

(√
3

2
a − 1

2
c

)

,

(√
3

2
b − 1

2
d

)

,

(
1

2
a +

√
3

2
c

)

,

(
1

2
b +

√
3

2
d

)}
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and

V =
{

±1

2
u,±1

2
αu,±

√
3

2
u,±

√
3

2
αu

}

.

Thus, Ω satisfies (15). This completes the proof.

In the following corollaries, we consider σ as the previous cases.

Corollary 2 Let ε ≥ 0 be a constant and let f : C→ Y satisfy

∥
∥f (x + y)+ f (x + σ(y))− 2f (x)− f (y)− f (σ(y))∥∥ ≤ ε

for all (x, y) ∈ Ω where Ω ∈ C
2 of Lebesgue measure zero. Then there exist a

unique arbitrary additive mapping A : C → Y and a unique arbitrary symmetric
bi-additive mapping B : C× C→ Y such that

‖f (x)− A(x)− B(x, x)‖ ≤ 25ε

for all x ∈ C.

Corollary 3 Suppose that f : C→ Y satisfies

∥∥f (x + y)+ f (x + σ(y))− 2f (x)− f (y)− f (σ(y))∥∥→ 0 (18)

as (x, y) ∈ Ω , |x| + |y| → ∞. Then f is a drygas mapping.

Proof The condition (18) implies that for each n ∈ N
∗, there exists dn > 0 such

that

∥∥f (x + y)+ f (x + σ(y))− 2f (x)− f (y)− f (σ(y))∥∥ ≤ 1

n
(19)

for all (x, y) ∈ Ωdn :=
{
(x, y) ∈ Ω : |x| + |y| ≥ dn

}
. In view of the proof of

theorems 4 and 5, the inclusions (14) and (17) imply that for every x, y ∈ C and
M > 0 there exists u ≥ M such that

Sx,y,t = Sx,y,u+iαu ⊂ Ω and S′x,y,t = S′x,y,u+iαu ⊂ Ω (20)

For given x, y ∈ C, if we take M = dn + |x| + |y| and if u ≥ M , then we get

Sx,y,u+iαu⊂
{
(p, q) : |p|+|q| ≥ dn

}
and S′x,y,u+iαu ⊂

{
(p, q) : |p|+|q| ≥ dn

}
.

(21)
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It follows from (20) and (21) that for each x, y ∈ C there exists u ∈ R such that

Sx,y,u+iαu ⊂ Ωdn and S′x,y,u+iαu ⊂ Ωdn. (22)

So, Ωdn satisfies the conditions (12) and (15). Thus, by Theorem 3, there exists a
unique mapping Sn : C→ Y such that Sn is a solution of (7) and

‖f (x)− Sn(x)‖ ≤ 25

n
(23)

for all x ∈ C. Now, replacing n ∈ N
∗ by m ∈ N

∗ in (23) and using the triangle
inequality, we get

‖Sm(x)− Sn(x)‖ ≤ ‖Sm(x)− f (x)+ f (x)− Sn(x)‖ ≤ 25

m
+ 25

n
≤ 50 (24)

for all m, n ∈ N
∗ and all x ∈ C. Hence, Sm − Sn is bounded, so we conclude that

Sm = Sn for all m, n ∈ N
∗. Finally, letting n→∞ in (23), we get the result.
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Fourier Transforms and Ulam Stabilities
of Linear Differential Equations

Murali Ramdoss and Ponmana Selvan Arumugam

Abstract The purpose of this paper is to study the Hyers–Ulam stability and Gen-
eralized Hyers–Ulam stability of the general Linear Differential Equations of first
order and second order with constant coefficients using Fourier Transform method.
Moreover, the Hyers–Ulam stability constants of these differential equations are
obtained. Some examples are given to illustrate the main results.

AMS Subject Classification 35B35, 34K20, 26D10, 44A10, 39B82

1 Introduction

We say that a functional equation is stable, if for every approximate solution, there
exists an exact solution near to it. A simulating and famous talk presented by
Ulam [44] in 1940 motivated the study of stability problems for various functional
equations. He gave a wide range of talk before a Mathematical Colloquium at the
University of Wisconsin in which he presented a list of unsolved problems. Among
those was the following question concerning the stability of homomorphisms.

Theorem 1 (Ulam [44]) Let G1 be a group and let G2 be a group endowed with a
metric ρ. Given ε > 0, does there exist a δ > 0 such that if f : G1 → G2 satisfies
ρ(f (xy), f (x) f (y)) < δ, for all x, y ∈ G, then we can find a homomorphism
h : G1 → G2 exists with ρ(f (x), h(x)) < ε for all x ∈ G1?

If the answer is affirmative, we say that the functional equation for homomor-
phisms is stable. In 1941, Hyers [11] was the first mathematician to present the
result concerning the stability of functional equations. He brilliantly answered the
question of Ulam, the problem for the case of approximately additive mappings,
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when G1 and G2 are assumed to be Banach spaces. The result of Hyers is stated in
the following celebrated theorem.

Theorem 2 (Hyers [11]) Assume that G1 and G2 are Banach spaces. If a function
f : G1 → G2 satisfies the inequality ‖f (x + y)− f (x)− f (y)‖ ≤ ε for some
ε > 0 and for all x, y ∈ G1, then the limit

A(x) = lim
n→∞ 2−n f (2n x)

exists for each x ∈ G1 and A : G1 → G2 is the unique additive function such that

‖f (x)− A(x)‖ ≤ ε (1)

for all x ∈ G1. Moreover, if f (tx) is continuous in t for each fixed x ∈ G1, then A
is linear.

Taking the above fact into account, the additive functional equation

f (x + y) = f (x)+ f (y)

is said to have Hyers–Ulam stability on (G1,G2). In the above theorem, an additive
function A satisfying the inequality (1) is constructed directly from the given
function f and it is the most powerful tool to study the stability of several functional
equations. In course of time, the theorem formulated by Hyers was generalized by
Rassias [33], Aoki [4], and Bourgin [6] for additive mappings.

In 1982, Rassias [34] gave a further generalization of the result of D.H. Hyers
and proved a theorem using weaker conditions controlled by a product of different
powers of norms. His theorem is presented as follows:

Theorem 3 (Rassias [34]) Let f : X → Y be a mapping from a Normed Vector
space X into a Banach space Y subject to the inequality

‖f (x + y)− f (x)− f (y)‖ ≤ ε ‖x‖p ‖y‖p (2)

for all x, y ∈ X, where ε and p are constants with ε > 0 and 0 ≤ p < 1
2 . Then the

limit

A(x) = lim
n→∞

1

2n
f (2n x)

exists for all x ∈ X and A : X→ Y is the unique additive mapping which satisfies

‖f (x)− A(x)‖ ≤ ε

2− 22p
‖x‖2p (3)

for all x ∈ X. If p < 0, then the inequality (2) holds for x, y �= 0 and (3) for x �= 0.
If p > 0, then the inequality (2) holds for all x, y ∈ X and the limit
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A(x) = lim
n→∞ 2nf

( x
2n

)

exists for all x ∈ X. If in addition f : X → Y is a mapping such that the
transformation t → f (tx) is continuous in t ∈ R for each fixed x ∈ X, then A
is R-linear mapping.

This type of stability involving a product of powers of norms is called Hyers–
Ulam–Gavruta stability by Bouikhalence and Elquorachi [5], Nakmahachalasint
[26, 27], Park and Nataji [31], Pietrzyk [32], and Sibaha et al. [42]. Since then,
almost many mathematicians are studied the related Ulam stability problems on
different types of functional equations or abstract spaces. (See, for example, [7–
10, 17, 18, 28, 35, 36, 39, 40, 46]).

A generalization of Ulam’s problem was recently proposed by replacing func-
tional equations with differential equations: The differential equation

φ
(
f, x, x′, x′′, . . . x(n)

)
= 0

has the Hyers–Ulam stability if for a given ε > 0 and a function x such that

∣
∣∣φ
(
f, x, x′, x′′, . . . x(n)

)∣∣∣ ≤ ε,

there exists a solution xa of the differential equation such that |x(t)− xa(t)| ≤ K(ε)
and

lim
ε→0

K(ε) = 0.

If the preceding statement is also true when we replace ε andK(ε) by φ(t) and ϕ(t),
where φ, ϕ are appropriate functions not depending on x and xa explicitly, then we
say that the corresponding differential equation has the generalized Hyers–Ulam
stability or Hyers–Ulam–Rassias stability.

Obloza seems to be the first author who has investigated the Hyers–Ulam stability
of linear differential equations [29, 30]. Thereafter, in 1998, Alsina and Ger [3] were
the first authors who investigated the Hyers–Ulam stability of differential equations.
They proved in [3] the following theorem.

Theorem 4 Assume that a differentiable function f : I → R is a solution of the
differential inequality

∥∥x′(t)− x(t)∥∥ ≤ ε, where I is an open subinterval of R.
Then there exists a solution g : I → R of the differential equation x′(t) = x(t)

such that for any t ∈ I , we have ‖f (t)− g(t)‖ ≤ 3ε.

This result of Alsina and Ger [3] has been generalized by Takahasi [43]. They
proved in [43] that the Hyers–Ulam stability holds true for the Banach Space valued
differential equation y′(t) = λy(t). Indeed, the Hyers–Ulam stability has been
proved for the first-order linear differential equations in more general settings [13–
15, 20–23].
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Using the approach as in [44], Miura et al. [22], Miura [23], Takahasi et al.
[43], and Miura et al. [20] proved that the Hyers–Ulam stability holds true for
the differential equation x′ = λx, while Jung [13] proved a similar result for the
differential equation φ(t)x′(t) = x.

In 2006, Jung [16] investigated the Hyers–Ulam stability of a system of first-
order linear differential equations with constant coefficients by using matrix method.
In 2007, Wang et al. [45] studied the Hyers–Ulam stability of a class of first-order
linear differential equations. Rus [41] discussed four types of Ulam stability: Ulam–
Hyers stability, Generalized Ulam–Hyers stability, Ulam–Hyers-Rassias stability,
and Generalized Ulam–Hyers–Rassias stability of the Ordinary Differential Equa-
tion u′(t) = A(u(t))+ f (t, u(t)), t ∈ [a, b]. In 2014, Alqifiary and Jung [1] proved
the Generalized Hyers–Ulam stability of linear differential equation of the form

x(n)(t)+
n−1∑

k=0

αk x
(k)(t) = f (t)

by using the Laplace Transform method, where αk are scalars and x and f are n
times continuously differentiable function and of the exponential order, respectively.
Recently, the Hyers–Ulam stability of differential equations has been investigated
in a series of paper [2, 12, 19, 24, 25, 37, 38, 47] and the investigation is ongoing.
Motivated and connected by the above discussions, our main intention is by applying
Fourier Transform method to investigate the Hyers–Ulam stability and Hyers–
Ulam–Rassias stability of the first-order homogeneous linear differential equation
of the form

x′(t)+ l x(t) = 0 (4)

and the non-homogeneous linear differential equation

x′(t)+ l x(t) = r(t) (5)

where l is a scalar, x(t) and r(t) are the continuously differentiable functions.
Also, by using Fourier Transforms, we establish the Hyers–Ulam stability and
Hyers–Ulam–Rassias stability of the second order homogeneous linear differential
equation

x′′(t)+ l x′(t)+m x(t) = 0 (6)

and the non-homogeneous second order differential equation

x′′(t)+ l x′(t)+m x(t) = r(t) (7)

where l and m are scalars, x(t) is a twice continuously differentiable function, and
r(t) is a continuously differentiable function.
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2 Preliminaries

In this section, we introduce some standard notations, definitions, and theorems, it
will be very useful to prove our main results.

Throughout this paper, F denotes the real field R or the complex field C. A
function f : (0,∞) → F of exponential order if there exists constants A,B ∈ R
such that |f (t)| ≤ AetB for all t > 0.

For each function f : (0,∞)→ F of exponential order. Let g denote the Fourier
Transform of f so that

g(u) =
∞∫

−∞
f (t) e−itu dt.

Then, at points of continuity of f , we have

f (x) = 1

2π

∞∫

−∞
g(u) e−ixu du,

this is called the inverse Fourier transforms. The Fourier transform of f is denoted
by F(ξ). We also introduce a notion, the convolution of two functions.

Definition 1 (Convolution) Given two functions f and g, both are Lebesgue
integrable on (−∞,+∞). Let S denote the set of x for which the Lebesgue integral

h(x) =
∞∫

−∞
f (t) g(x − t) dt

exists. This integral defines a function h on S called the convolution of f and g. We
also write h = f ∗ g to denote this function.

Theorem 5 The Fourier transform of the convolution of f (x) and g(x) is the
product of the Fourier transform of f (x) and g(x). That is,

F{f (x) ∗ g(x)} = F{f (x)} F{g(x)} = F(s) G(s)

or

F

⎧
⎨

⎩

∞∫

−∞
f (t) g(x − t) dt

⎫
⎬

⎭
= F(s) G(s),

where F(s) and G(s) are Fourier transform of f (x) and g(x), respectively.

Now, we give the definition of Hyers–Ulam stability and Generalized Hyers–
Ulam stability of the differential equations (4), (5), (6), and (7).
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Definition 2 The linear differential equation (4) is said to have the Hyers–Ulam
stability, if there exists a constant K > 0 having the following properties: For
every ε > 0, there exists x(t) is a continuously differentiable function satisfying the
inequality |x′(t) + l x(t)| ≤ ε. Then there exists some y : (0,∞) → F satisfying
the differential equation (4) such that |x(t) − y(t)| ≤ Kε, for any t > 0. We call
such K as the Hyers–Ulam stability constant for (4).

Definition 3 We say that the non-homogeneous linear differential equation (5)
has the Hyers–Ulam stability, if there exists x(t) is a continuously differentiable
function satisfying the following condition: For every ε > 0 there exists a positive
constant K such that |x′(t) + l x(t) − r(t)| ≤ ε. Then there exists a solution
y : (0,∞)→ F satisfies the differential equation (5) such that |x(t)− y(t)| ≤ Kε,
for any t > 0. We call such K as the Hyers–Ulam stability constant for the
differential equation (5).

Definition 4 We say that the homogeneous linear differential equation (6) has the
Hyers–Ulam stability property, if there exists a real constant K > 0 satisfying the
following properties: For every ε > 0, there exists x(t) is a twice continuously
differentiable function satisfying |x′′(t) + l x′(t) + m x(t)| ≤ ε. Then there exists
y : (0,∞)→ F satisfying the differential equation (6) such that |x(t)−y(t)| ≤ Kε,
for any t > 0. We call such K as the Hyers–Ulam stability constant for (6).

Definition 5 The non-homogeneous linear differential equation (7) is said to have
the Hyers–Ulam stability, if there exists a positive real constant K > 0 satisfying
the following properties: For every ε > 0, there exists x(t) is a twice continuously
differentiable function satisfying |x′′(t)+ l x′(t)+m x(t)− r(t)| ≤ ε. Then there
exists some y : (0,∞) → F satisfying (7) such that |x(t) − y(t)| ≤ Kε, for any
t > 0. We call such K as the Hyers–Ulam stability constant for (7).

Definition 6 We say that the homogeneous linear differential equation (4) has the
Generalized Hyers–Ulam stability, if there exists a constant K > 0 having the
following properties: For every ε > 0 and x(t) is a continuously differentiable
function, if there exists φ : (0,∞) → (0,∞) satisfies the inequality |x′(t) +
l x(t)| ≤ φ(t)ε. Then there exists some y : (0,∞) → F satisfying the differential
equation (4) such that |x(t) − y(t)| ≤ K φ(t)ε, for any t > 0. We call such K as
Generalized Hyers–Ulam stability constant for (4).

Definition 7 The linear differential equation (5) is said to have the Generalized
Hyers–Ulam stability, if there exists a positive constant K satisfying the following
conditions: For every ε > 0, there exists x(t) is a continuously differentiable
function and φ : (0,∞)→ (0,∞) satisfying the inequality

|x′(t)+ l x(t)− r(t)| ≤ φ(t)ε.

Then there exists a solution y : (0,∞)→ F satisfying the differential equation (5)
such that |x(t)−y(t)| ≤ K φ(t)ε, for any t > 0. We call suchK as the Generalized
Hyers–Ulam stability constant for the differential equation (5).
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Definition 8 We say that the homogeneous linear differential equation (6) has the
Generalized Hyers–Ulam stability, if there exists a constant K > 0 having the
following properties: For every ε > 0 and x(t) is a twice continuously differentiable
function, if there exists φ : (0,∞)→ (0,∞) satisfies the inequality

|x′′(t)+ l x′(t)+m x(t)| ≤ φ(t)ε.

Then there is a solution y : (0,∞) → F of the differential equation (6) such that
|x(t)−y(t)| ≤ K φ(t)ε, for any t > 0. We call suchK as Generalized Hyers–Ulam
stability constant for (6).

Definition 9 The non-homogeneous linear differential equation (7) is said to
have the Generalized Hyers–Ulam stability, if there exists a positive constant K
satisfying the following: For every ε > 0, there exists x(t) is a twice continuously
differentiable function and φ : (0,∞)→ (0,∞) satisfying the inequality

|x′′(t)+ l x′(t)+m x(t)− r(t)| ≤ φ(t)ε.

Then there exists a solution y : (0,∞)→ F satisfying the differential equation (7)
such that |x(t)−y(t)| ≤ K φ(t)ε, for any t > 0. We call suchK as the Generalized
Hyers–Ulam stability constant for the differential equation (7).

3 Hyers–Ulam Stability

In the following theorems, we prove the Hyers–Ulam stability of the homogeneous
and non-homogeneous linear differential equations (4), (5), (6), and (7). Firstly, we
prove the Hyers–Ulam stability of first-order homogeneous differential equation (4).

Theorem 6 Let l be a constant in F. For every ε > 0, there exists a positive constant
K such that x : (0,∞)→ F is a continuously differentiable function satisfying the
inequality

|x′(t)+ l x(t)| ≤ ε (8)

for all t > 0. Then there exists a solution y : (0,∞) → F of the differential
equation (4) such that |x(t)− y(t)| ≤ Kε, for any t > 0.

Proof Assume that x(t) is a continuously differentiable function that satisfies the
inequality (8). Let us define a function p : (0,∞) → F such that p(t) =: x′(t) +
l x(t) for each t > 0. In view of (8), we have |p(t)| ≤ ε. Now, taking Fourier
transform to p(t), we have

F{p(t)} = F{x′(t)+ l x(t)}
P(ξ) = F{x′(t)} + l F{x(t)} = −iξX(ξ)+ l X(ξ) = (l − iξ)X(ξ)
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X(ξ) = P(ξ)

(l − iξ) .

Thus

F{x(t)} = X(ξ) = P(ξ) (l + iξ)
l2 − ξ2 . (9)

Taking Q(ξ) = 1

(l − iξ) , then we have

F{q(t)} = 1

(l − iξ) ⇒ q(t) = F−1
{

1

(l − iξ)
}
.

Now, we set y(t) = e−lt and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =
∞∫

−∞
e−lt eist dt =

0∫

−∞
e−lt eist dt +

∞∫

0

e−lt eist dt = 0

(10)

Now,

F{y′(t)+ l y(t)} = F{y′(t)} + l F{y(t)} = −iξY (ξ)+ l Y (ξ) = (l − iξ)Y (ξ)

Then by using (10), we have F{y′(t)+ l y(t)} = 0, since F is one-to-one operator,
thus y′(t) + l y(t) = 0. Hence y(t) is a solution of the differential equation (4).
Then by using (9) and (10) we can obtain

F{x(t)} − F {y(t)} = X(ξ)− Y (ξ) = P(ξ) (l + iξ)
l2 − ξ2

= P(ξ) Q(ξ) = F{p(t)} F{q(t)}
⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)|

=
∣∣
∣∣∣∣

∞∫

−∞
p(t) q(t − x) dx

∣∣
∣∣∣∣
≤ |p(t)|

∣∣
∣∣∣∣

∞∫

−∞
q(t − x) dx

∣∣
∣∣∣∣
≤ Kε.
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where K =
∣∣∣∣∣

∞∫
−∞

q(t − x) dx
∣∣∣∣∣

and the integral exists for each value of t . Then by

the virtue of Definition 2 the homogeneous linear differential equation (4) has the
Hyers–Ulam stability. ��

Now, we prove the Hyers–Ulam stability of the non-homogeneous linear differ-
ential equation (5) using Fourier transform method.

Theorem 7 Let l be a constant in F. For every ε > 0, there exists a positive constant
K such that x : (0,∞) → F is a continuously differentiable function that satisfies
the inequality

|x′(t)+ l x(t)− r(t)| ≤ ε (11)

for all t > 0. Then there exists a solution y : (0,∞)→ F of the non-homogeneous
differential equation (5) such that |x(t)− y(t)| ≤ Kε, for any t > 0.

Proof Assume that x(t) is a continuously differentiable function that satisfies the
inequality (11). Let us define a function p : (0,∞)→ F such that p(t) =: x′(t)+
l x(t) − r(t) for each t > 0. In view of (11), we have |p(t)| ≤ ε. Now, taking
Fourier transform to p(t), we have

F{p(t)} = F{x′(t)+ l x(t)− r(t)}
P(ξ) = F{x′(t)} + l F{x(t)} − F{r(t)}

= −iξX(ξ)+ l X(ξ)− R(ξ) = (l − iξ)X(ξ)− R(ξ)

X(ξ) = P(ξ)+ R(ξ)
(l − iξ) .

Thus

F{x(t)} = X(ξ) = {P(ξ)+ R(ξ)} (l + iξ)
l2 − ξ2 . (12)

Let us choose Q(ξ) as
1

(l − iξ) , then we have

F{q(t)} = 1

(l − iξ) ⇒ q(t) = F−1
{

1

(l − iξ)
}
.

Now, we set y(t) = e−lt + (r(t) ∗ q(t)) and taking Fourier transform on both sides,
we get

F{y(t)} = Y (ξ) =
∞∫

−∞
e−lt eist dt + R(ξ)

(l − iξ) =
R(ξ)

(l − iξ) (13)
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Now,

F{y′(t)+ l y(t)} = −iξY (ξ)+ l Y (ξ) = R(ξ)

Then by using (13), we have F{y′(t) + l y(t)} = F {r(t)}, since F is one-to-one
operator, thus y′(t) + l y(t) = r(t). Hence y(t) is a solution of the differential
equation (5). Then by using (12) and (13) we can obtain

F{x(t)} − F {y(t)} = X(ξ)− Y (ξ) = {P(ξ)+ R(ξ)} (l + iξ)
l2 − ξ2

− R(ξ)

(l − iξ)
= P(ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}
The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∣∣

∞∫

−∞
p(t) q(t − x) dx

∣∣∣∣∣∣
≤ |p(t)|

∣∣∣∣∣∣

∞∫

−∞
q(t − x) dx

∣∣∣∣∣∣
≤ Kε.

where K =
∣∣∣∣∣

∞∫
−∞

q(t − x) dx
∣∣∣∣∣

and the integral exists for each value of t . Hence,

by the virtue of Definition 3, the non-homogeneous differential equation (5) has the
Hyers–Ulam stability. ��
Theorem 8 Let l, m be a constant in F such that there existsμ, ν ∈ F withμν = m,
μ + ν = −l, and μ �= ν. For every ε > 0, there exists a positive constant K such
that x : (0,∞) → F is a twice continuously differentiable function satisfying the
inequality

|x′′(t)+ l x′(t)+m x(t)| ≤ ε (14)

for all t > 0. Then there exists a solution y : (0,∞) → F of the homogeneous
differential equation (6) such that |x(t)− y(t)| ≤ Kε, for any t > 0.

Proof Assume that x(t) be a continuously differentiable function satisfying the
inequality (14). Let us define a function p : (0,∞) → F such that p(t) =:
x′′(t) + l x′(t) + m x(t) for each t > 0. In view of (14), we have |p(t)| ≤ ε.
Now, taking Fourier transform to p(t), we have

F{p(t)} = F{x′′(t)+ l x′(t)+m x(t)}
P(ξ) = F{x′′(t)} + l F{x′(t)} +m F{x(t)} = (ξ2 − iξ l +m) X(ξ)

X(ξ) = P(ξ)

ξ2 − iξ l +m.
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Since l, m be a constant in F such that there exists μ, ν ∈ F with μ + ν = −l,
μν = m, and μ �= ν, we have (ξ2 − iξ l +m) = (iξ − μ) (iξ − ν). Thus

F{x(t)} = X(ξ) = P(ξ)

(iξ − μ) (iξ − ν) . (15)

Let Q(ξ) = 1

(iξ − μ) (iξ − ν) , then we have

F{q(t)} = 1

(iξ − μ) (iξ − ν) ⇒ q(t) = F−1
{

1

(iξ − μ) (iξ − ν)
}
.

Now, setting y(t) as
μe−μt − νe−νt

μ− ν and taking Fourier transform, we obtain

F{y(t)} = Y (ξ) =
∞∫

−∞

μe−μt − νe−νt
μ− ν eist dt = 0. (16)

Now,

F{y′′(t)+ l y′(t)+m y(t)} = (ξ2 − iξ l +m) Y(ξ).

Then by using (16), we have F{y′′(t) + l y′(t) + m y(t)} = 0, since F is one-to-
one operator, thus y′′(t) + l y′(t) + m y(t) = 0. Hence y(t) is a solution of the
differential equation (6). Then by using (15) and (16) we can obtain

F{x(t)} − F {y(t)} = X(ξ)− Y (ξ) = P(ξ)

ξ2 − iξ l +m = P(ξ) Q(ξ)

= F{p(t)} F{q(t)}
⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣
∣∣
∣∣
∣

∞∫

−∞
p(t) q(t − x) dx

∣
∣∣
∣∣
∣
≤ |p(t)|

∣
∣∣
∣∣
∣

∞∫

−∞
q(t − x) dx

∣
∣∣
∣∣
∣
≤ Kε.

where K =
∣∣
∣∣∣

∞∫
−∞

q(t − x) dx
∣∣
∣∣∣

and the integral exists for each value of t . Then by

the virtue of Definition 4 the homogeneous linear differential equation (6) has the
Hyers–Ulam stability. ��
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Theorem 9 Let l, m be a constant in F such that there existsμ, ν ∈ F withμν = m,
μ + ν = −l, and μ �= ν. For every ε > 0, there exists a positive constant K such
that x : (0,∞)→ F which is a twice continuously differentiable function satisfying
the inequality

|x′′(t)+ l x′(t)+m x(t)− r(t)| ≤ ε (17)

for all t > 0. Then there exists a solution y : (0,∞)→ F of the non-homogeneous
differential equation (7) such that |x(t)− y(t)| ≤ Kε, for any t > 0.

Proof Assume that x(t) be a continuously differentiable function satisfying the
inequality (17). Let us define a function p : (0,∞) → F such that p(t) =:
x′′(t)+ l x′(t)+m x(t)− r(t) for each t > 0. In view of (17), we have |p(t)| ≤ ε.
Now, taking Fourier transform to p(t), we have

F{p(t)} = F{x′′(t)+ l x′(t)+m x(t)− r(t)}
P(ξ) = F{x′′(t)} + l F{x′(t)} +m F{x(t)} − F{r(t)}

= (ξ2 − iξ l +m) X(ξ)− R(ξ)

X(ξ) = P(ξ)+ R(ξ)
ξ2 − iξ l +m.

Since l, m be a constant in F such that there exists μ, ν ∈ F with μ + ν = −l,
μν = m and μ �= ν, we have (ξ2 − iξ l +m) = (iξ − μ) (iξ − ν). Thus

F{x(t)} = X(ξ) = P(ξ)+ R(ξ)
(iξ − μ) (iξ − ν) . (18)

Taking Q(ξ) = F{q(t)} = 1

(iξ − μ) (iξ − ν) and set

y(t) = μe−μt − νe−νt
μ− ν + (r(t) ∗ q(t))

and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =
∞∫

−∞

μe−μt − νe−νt
μ− ν eist dt + R(ξ)

(iξ − μ) (iξ − ν)

= R(ξ)

(iξ − μ) (iξ − ν) . (19)

Now,

F{y′′(t)+ l y′(t)+m y(t)} = F{y′′(t)} + l F{y′(t)} +m F{y(t)}
= (ξ2 − iξ l +m) Y(ξ) = R(ξ).
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Then by using (19), we have F{y′′(t) + l y′(t) + m y(t)} = 0F{r(t)}, since F is
one-to-one operator, thus y′′(t)+ l y′(t)+m y(t) = r(t). Hence y(t) is a solution
of the differential equation (7). Then by using (18) and (19) we can obtain

F{x(t)} − F {y(t)} = X(ξ)− Y (ξ) = P(ξ)+ R(ξ)
(iξ − μ) (iξ − ν) −

R(ξ)

(iξ − μ) (iξ − ν)
= P(ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}
The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣
∣∣
∣
∣∣

∞∫

−∞
p(t) q(t − x) dx

∣
∣∣
∣
∣∣
≤ |p(t)|

∣
∣∣
∣
∣∣

∞∫

−∞
q(t − x) dx

∣
∣∣
∣
∣∣
≤ Kε.

where K =
∣
∣∣∣∣

∞∫
−∞

q(t − x) dx
∣
∣∣∣∣

and the integral exists for each value of t . Then by

the virtue of Definition 5 the non-homogeneous linear differential equation (7) has
the Hyers–Ulam stability. ��

4 Generalized Hyers–Ulam Stability

In the following theorems, we prove the Generalized Hyers–Ulam stability of the
differential equations (4), (5), (6), and (7). Firstly, we prove the Generalized Hyers–
Ulam stability of first-order homogeneous differential equation (4).

Theorem 10 Let l be a constant in F. For every ε > 0, there exists a positive
constant K such that x : (0,∞)→ F is a continuously differentiable function and
φ : (0,∞)→ (0,∞) be an integrable function satisfying

|x′(t)+ l x(t)| ≤ φ(t)ε (20)

for all t > 0. Then there exists a solution y : (0,∞) → F of the homogeneous
differential equation (4) such that |x(t)− y(t)| ≤ K φ(t)ε, for any t > 0.

Proof Assume that x(t) is a continuously differentiable function satisfying the
inequality (20). Let us define a function p : (0,∞) → F such that p(t) =:
x′(t) + l x(t) for each t > 0. In view of (20), we have |p(t)| ≤ φ(t)ε. Now,
taking Fourier transform to p(t), we have

F{x(t)} = X(ξ) = P(ξ) (l + iξ)
l2 − ξ2 . (21)
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Choosing Q(ξ) = 1

(l − iξ) , then we have q(t) = F−1
{

1

(l − iξ)
}

. Now, we set

y(t) = e−lt and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =
∞∫

−∞
e−lt eist dt = 0. (22)

Hence

F{y′(t)+ l y(t)} = −iξY (ξ)+ l Y (ξ) = (l − iξ)Y (ξ)

Then by using (22), we have F{y′(t)+ l y(t)} = 0, since F is one-to-one operator,
thus y′(t) + l y(t) = 0. Hence y(t) is a solution of the differential equation (4).
Then by using (21) and (22) we can obtain

F{x(t)− y(t)} = F{p(t) ∗ q(t)}
The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣
∣∣
∣∣

∞∫

−∞
p(t) q(t − x) dx

∣∣
∣∣
∣∣
≤ |p(t)|

∣∣
∣∣
∣∣

∞∫

−∞
q(t − x) dx

∣∣
∣∣
∣∣
≤ Kφ(t)ε.

where K =
∣∣∣
∣∣

∞∫
−∞

q(t − x) dx
∣∣∣
∣∣
, the integral exists for each value of t and φ(t) is an

integrable function. Then by the virtue of Definition 6 the differential equation (4)
has the Generalized Hyers–Ulam stability. ��

Now, we prove the Hyers–Ulam stability of the non-homogeneous linear differ-
ential equation (5) using Fourier transform method.

Theorem 11 Let l be a constant in F. For every ε > 0, there exists a positive
constant K such that x : (0,∞)→ F is a continuously differentiable function and
φ : (0,∞)→ (0,∞) be an integrable function satisfying the condition

|x′(t)+ l x(t)− r(t)| ≤ φ(t)ε (23)

for all t > 0. Then there exists a solution y : (0,∞)→ F of the non-homogeneous
differential equation (5) such that |x(t)− y(t)| ≤ K φ(t)ε, for any t > 0.

Proof Assume that x(t) is a continuously differentiable function satisfying the
inequality (23). Let us define a function p : (0,∞) → F such that p(t) =:
x′(t) + l x(t) − r(t) for each t > 0. In view of (23), we have |p(t)| ≤ φ(t)ε.
Now, taking Fourier transform to p(t), we have
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F{x(t)} = X(ξ) = {P(ξ)+ R(ξ)} (l + iξ)
l2 − ξ2 . (24)

Now, let us take Q(ξ) as
1

(l − iξ) , then we have

F{q(t)} = 1

(l − iξ) ⇒ q(t) = F−1
{

1

(l − iξ)
}
.

We set y(t) = e−lt + (r(t) ∗ q(t)) and taking Fourier transform on both sides, we
get

F{y(t)} = Y (ξ) =
∞∫

−∞
e−lt eist dt + R(ξ)

(l − iξ) =
R(ξ)

(l − iξ) (25)

Now,

F{y′(t)+ l y(t)} = F{y′(t)} + l F{y(t)} = −iξY (ξ)+ l Y (ξ) = R(ξ)

Then by using (25), we have F{y′(t) + l y(t)} = F {r(t)}, since F is one-to-one
operator, thus y′(t) + l y(t) = r(t). Hence y(t) is a solution of the differential
equation (5). Then by using (24) and (25) we can obtain

F{x(t)− y(t)} = F{p(t) ∗ q(t)}
The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣
∣∣
∣∣

∞∫

−∞
p(t) q(t − x) dx

∣∣
∣∣
∣∣
≤ |p(t)|

∣∣
∣∣
∣∣

∞∫

−∞
q(t − x) dx

∣∣
∣∣
∣∣
≤ K φ(t)ε.

where K =
∣∣∣
∣∣

∞∫
−∞

q(t − x) dx
∣∣∣
∣∣
, the integral exists for each value of t and φ(t) is an

integrable function. Hence by the virtue of Definition 7 the differential equation (5)
has the Generalized Hyers–Ulam stability. ��

Now, we are going to establish the Generalized Hyers–Ulam stability of the
second order homogeneous differential equation (6).

Theorem 12 Let l, m be a constant in F such that there exists μ, ν ∈ F with μν =
m, μ + ν = −l, and μ �= ν. For every ε > 0, there exists a positive constant
K such that x : (0,∞) → F is a twice continuously differentiable function and
φ : (0,∞)→ (0,∞) be an integrable function satisfying the inequality



210 M. Ramdoss and P. S. Arumugam

|x′′(t)+ l x′(t)+m x(t)| ≤ φ(t)ε (26)

for all t > 0. Then there exists a solution y : (0,∞) → F of the homogeneous
differential equation (6) such that |x(t)− y(t)| ≤ Kφ(t)ε, for any t > 0.

Proof Assume that x(t) is a continuously differentiable function satisfying the
inequality (26). Let us define a function p : (0,∞) → F such that p(t) =:
x′′(t) + l x′(t) + m x(t) for each t > 0. In view of (26), we have |p(t)| ≤ φ(t)ε.
Now, taking Fourier transform to p(t), we have

P(ξ) = F{x′′(t)} + l F{x′(t)} +m F{x(t)} = (ξ2 − iξ l +m) X(ξ)

X(ξ) = P(ξ)

ξ2 − iξ l +m.

Since l, m be a constant in F such that there exists μ, ν ∈ F with μ + ν = −l,
μν = m and μ �= ν, we have (ξ2 − iξ l +m) = (iξ − μ) (iξ − ν). Thus

F{x(t)} = X(ξ) = P(ξ)

(iξ − μ) (iξ − ν) . (27)

Choosing Q(ξ) as
1

(iξ − μ) (iξ − ν) , then we have F{q(t)} = 1

(iξ − μ) (iξ − ν)
and we define a function y(t) = μe−μt − νe−νt

μ− ν and taking Fourier transform on

both sides, we get

F{y(t)} = Y (ξ) =
∞∫

−∞

μe−μt − νe−νt
μ− ν eist dt = 0. (28)

Now, F{y′′(t) + l y′(t) + m y(t)} = (ξ2 − iξ l + m) Y(ξ). Then by using (28),
we have F{y′′(t) + l y′(t) + m y(t)} = 0, since F is one-to-one operator, thus
y′′(t)+ l y′(t)+m y(t) = 0. Hence y(t) is a solution of the differential equation (6).
Then by using (27) and (28) we can obtain

F{x(t)} − F {y(t)} = X(ξ)− Y (ξ) = P(ξ)

ξ2 − iξ l +m
= P(ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have
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|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣∣∣∣∣

∞∫

−∞
p(t) q(t − x) dx

∣∣∣∣∣∣

≤ |p(t)|
∣∣∣
∣∣∣

∞∫

−∞
q(t − x) dx

∣∣∣
∣∣∣
≤ Kφ(t)ε.

where K =
∣∣∣∣∣

∞∫
−∞

q(t − x) dx
∣∣∣∣∣

exists for each value of t and φ(t) is an integrable

function. Then by the virtue of Definition 8 the homogeneous linear differential
equation (6) has the Generalized Hyers–Ulam stability. ��

Finally, we are going to investigate the Generalized Hyers–Ulam stability of the
second order non-homogeneous differential equation (7).

Theorem 13 Let l, m be a constant in F such that there exists μ, ν ∈ F with μν =
m, μ + ν = −l, and μ �= ν. For every ε > 0, there exists a positive constant
K such that x : (0,∞) → F is a twice continuously differentiable function and
φ : (0,∞)→ (0,∞) be an integrable function satisfying the inequality

|x′′(t)+ l x′(t)+m x(t)− r(t)| ≤ φ(t)ε (29)

for all t > 0. Then there exists a solution y : (0,∞)→ F of the non-homogeneous
differential equation (7) such that |x(t)− y(t)| ≤ Kφ(t)ε, for any t > 0.

Proof Assume that x(t) is a continuously differentiable function satisfying the
inequality (29). Let us define a function p : (0,∞) → F such that p(t) =:
x′′(t)+l x′(t)+m x(t)−r(t) for each t > 0. In view of (29), we have |p(t)| ≤ φ(t)ε.
Now, taking Fourier transform to p(t), we have

P(ξ) = F{x′′(t)} + l F{x′(t)} +m F{x(t)} − F{r(t)}
= (ξ2 − iξ l +m) X(ξ)− R(ξ)

X(ξ) = P(ξ)+ R(ξ)
ξ2 − iξ l +m.

Since l, m be a constant in F such that there exists μ, ν ∈ F with μ + ν = −l,
μν = m and μ �= ν, we have (ξ2 − iξ l +m) = (iξ − μ) (iξ − ν). Thus

F{x(t)} = X(ξ) = P(ξ)+ R(ξ)
(iξ − μ) (iξ − ν) . (30)

Assuming Q(ξ) = F{q(t)} = 1

(iξ − μ) (iξ − ν) and let us define a function
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y(t) = μe−μt − νe−νt
μ− ν + (r(t) ∗ q(t))

and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =
∞∫

−∞

μe−μt − νe−νt
μ− ν eist dt + R(ξ)

(iξ − μ) (iξ − ν)

= R(ξ)

(iξ − μ) (iξ − ν) . (31)

Now, F{y′′(t)+l y′(t)+m y(t)} = (ξ2−iξ l+m) Y(ξ) = R(ξ). Then by using (31),
we have F{y′′(t) + l y′(t) + m y(t)} = 0F{r(t)}, since F is one-to-one operator,
thus y′′(t) + l y′(t) + m y(t) = r(t). Hence y(t) is a solution of the differential
equation (7). Then by using (30) and (31) we can obtain

F{x(t)} − F {y(t)} = P(ξ)+ R(ξ)
(iξ − μ) (iξ − ν) −

R(ξ)

(iξ − μ) (iξ − ν)
= P(ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}
The operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t).
Taking modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =
∣∣
∣∣
∣∣

∞∫

−∞
p(t) q(t − x) dx

∣∣
∣∣
∣∣
≤ |p(t)|

∣∣
∣∣
∣∣

∞∫

−∞
q(t − x) dx

∣∣
∣∣
∣∣
≤ Kφ(t)ε.

where K =
∣
∣∣∣∣

∞∫
−∞

q(t − x) dx
∣
∣∣∣∣

and the integral exists for each value of t . Then by

the virtue of Definition 9 the non-homogeneous linear differential equation (7) has
the Generalized Hyers–Ulam stability. ��

5 Applications

In this section, we investigate some examples to illustrate the main results.

Example 1 Consider the non-homogeneous differential equation

x′(t)+ x(t) = 2 cos t. (32)
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Using Theorem 7, we have |x′(t) + x(t) − 2 cos t | ≤ ε, where x is a continuously
differentiable function. Let p(t) = x′(t)+x(t)−2 cos t for each t > 0 and we have
|p(t)| ≤ ε. Now, taking Fourier transform to p(t),

P(ξ) = (−iξ + 1)X(ξ)+ F{2 cos t} = (1− iξ)X(ξ)− δ(w − 1)− δ(w + 1)

X(ξ) = P(ξ)+ δ(w − 1)+ δ(w + 1)

(1− iξ) .

where F{cos t} = δ(w − 1)+ δ(w + 1)

2
, δ(t) is a delta function, and w is a

frequency of 1 cycle/second. Let Q(ξ) as
1

(1− iξ) , then we have F{q(t)} =
1

(1− iξ) . Since, we have a solution function y(t) = e−t + [(2 cos t) ∗ q(t)] and

taking Fourier transform, we get

F{y(t)} = Y (ξ) = δ(w − 1)+ δ(w + 1)

(1− iξ) .

Also, F{y′(t) + y(t)} = (1 − iξ) Y (ξ) = 2F{cos t}, since F is one-to-one
operator, thus y′(t) + y(t) = 2 cos t . Hence y(t) is a solution of the differential
equation (32). Then by Theorem 7, we obtain that |x(t) − y(t)| ≤ Kε. Hence, the
non-homogeneous differential equation (32) has the Hyers–Ulam stability.

Example 2 Let us consider the non-homogeneous differential equation

x′′(t)− 21x′(t)+ 90x(t) = e−|t |, (33)

where x(t) is a twice continuously differentiable function satisfying the inequality

∣∣∣x′′(t)− 21x′(t)+ 90x(t)− e−|t |
∣∣∣ ≤ ε.

Take p(t) = x′′(t)− 21x′(t)+ 90x(t)− e−|t |, then |p(t)| ≤ ε. Now, taking Fourier
transform, we get

P(ξ) = (ξ2 + 21iξ + 90)− F{e−|t |} = (ξ2 + 21iξ + 90) X(ξ)− 2

1+ ξ2

X(ξ) =
P(ξ)+ 2

1+ ξ2

ξ2 + 21iξ + 90
.

Since l, m be a constant in F such that there exists μ, ν ∈ F with μ + ν = −l,
μν = m, and μ �= ν, we have (ξ2 + 21iξ + 90) = (iξ + 6) (iξ + 15). Taking
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Q(ξ) = F{q(t)} = 1

(iξ + 6) (iξ + 15)

and set y(t) = −6e6t + 15e15t

9
+ (e−|t | ∗ q(t)) and taking Fourier transform on

both sides, we get Y (ξ) = 2

(1+ ξ2) (iξ + 6) (iξ + 15)
. Now,

F{y′′(t)− 21 y′(t)+ 90 y(t)} = (ξ2 + 21iξ + 90) Y (ξ) = 2

1+ ξ2
.

then by using the Theorem 9, we can have y(t) satisfying the differential equa-

tion (33) andX(ξ)−Y (ξ) = P(ξ)

(iξ + 6) (iξ + 15)
gives that x(t)−y(t) = p(t)∗q(t).

Hence by Theorem 9, we obtain |x(t) − y(t)| ≤ Kε. Thus the non-homogeneous
linear differential equation (33) has the Hyers–Ulam stability.

Example 3 Consider the differential equation

x′′(t)− x(t) = e−a|t |, (34)

a > 0 and x(t) is a twice continuously differentiable function satisfying the
inequality

∣
∣∣x′′(t)− x(t)− e−a|t |

∣
∣∣ ≤ ε.

Take p(t) = x′′(t)− x(t)− e−a|t |, then |p(t)| ≤ ε. Now, taking Fourier transform,
we get

F{p(t)} = F
{
x′′(t)− x(t)− e−a|t |

}

P(ξ) = (ξ2 − 1)− F{e−a|t |} = (ξ2 − 1) X(ξ)− 2a

a2 + ξ2

X(ξ) =
P(ξ)+ 2a

a2 + ξ2

ξ2 − 1
=
P(ξ)+ 2a

a2 + ξ2

(iξ + 1) (iξ − 1)
.

Letting Q(ξ) = F{q(t)} = 1

(iξ + 1) (iξ − 1)
and set y(t) = e−t +

(
e−a|t | ∗ q(t)) and taking Fourier transform on both sides, we get Y (ξ) =

2a

(a2 + ξ2) (iξ + 1) (iξ − 1)
. Now,

F{y′′(t)− y(t)} = (ξ2 − 1) Y (ξ) = 2a

a2 + ξ2 .
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then by using Theorem 9, we can see that y(t) satisfies the differential equation (34)

and X(ξ)− Y (ξ) = P(ξ)

(iξ + 1) (iξ − 1)
gives that x(t)− y(t) = p(t) ∗ q(t). Hence

by Theorem 9, we obtain |x(t) − y(t)| ≤ Kε. Thus the differential equation (34)
has the Hyers–Ulam stability.

Remark 1 The above examples are also true when we replace ε and Kε with φ(t)ε
andKφ(t)ε, respectively, where φ(t) does not depend on x and y explicitly, then we
say that the corresponding differential equations has the Generalized Hyers–Ulam
stability.

Conclusion We have proved the Hyers–Ulam stability and Generalized Hyers–
Ulam stability of the linear differential equations of the first and second order with
constant coefficients using Fourier Transform method. That is, we established the
sufficient criteria for Hyers–Ulam stability and Generalized Hyers–Ulam stability of
the linear differential equation of the first and second order with constant coefficients
using Fourier Transform method. Additionally, this paper also provides another
method to study the Hyers–Ulam stability of differential equations. Also, this paper
shows that the Fourier Transform method is more convenient to study the Hyers–
Ulam stability and Generalized Hyers–Ulam stability of the linear differential
equation with constant coefficients.
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A Class of Functional Equations of Type
d’Alembert on Monoids

Belaid Bouikhalene and Elhoucien Elqorachi

Abstract Recently, the solutions of the functional equation f (xy) − f (σ(y)x) =
g(x)h(y) obtained, where σ is an involutive automorphism and f, g, h are complex-
valued functions, in the setting of a group G and a monoid S. Our main goal
is to determine the general complex-valued solutions of the following version of
this equation, viz. f (xy) − μ(y)f (σ (y)x) = g(x)h(y) where μ : G −→ C

is a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ G. As an
application we find the complex-valued solutions (f, g, h) on groups of equation
f (xy)+ μ(y)g(σ (y)x) = h(x)h(y) on monoids.

1 Introduction

We recall that a semigroup S is a non-empty set equipped with an associative
operation. We write the operation multiplicatively. A monoid is a semigroup S with
identity element that we denote e. A functionμ : S −→ C is said to be multiplicative
if μ(xy) = μ(x)μ(y) for all x, y ∈ S.

Let S be a semigroup and σ : S −→ G a homomorphism involutive, that is
σ(xy) = σ(x)σ (y) and σ(σ(x)) = x for all x, y ∈ S.

Recently, Stetkær [21] obtained the complex-valued solutions of the following
variant of d’Alembert’s functional equation

f (xy)+ f (σ(y)x) = 2f (x)f (y), x, y ∈ S. (1)
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They are the functions of the form

f (x) = χ + χ ◦ σ
2

,

where χ : S −→ C is multiplicative.
At a later stage, that is in 2015, Ebanks and Stetkær [8] obtained the complex-

valued solutions on monoids of the following d’Alembert’s other functional equa-
tion

f (xy)− f (σ(y)x) = g(x)h(y), x, y ∈ S. (2)

This functional equation contains, among others, an equation of d’Alembert [1–
5, 9, 12, 14, 20, 22, 23]

f (x + y)− f (x − y) = g(x)h(y), x, y ∈ R (3)

whose general solutions are known on abelian groups, and a functional equation

f (x + y)− f (x + σ(y)) = g(x)h(y), x, y ∈ G (4)

studied by Stetkær [[15], Corollary III.5] on abelian group G.
There are various ways of extending functional equations from abelian groups to

non-abelian groups. The μ-d’Alembert functional equation

f (xy)+ μ(y)f (xσ(y)) = 2f (x)f (y), x, y ∈ G (5)

which is an extension of d’Alembert functional equation

f (xy)+ f (xσ(y)) = 2f (x)f (y), x, y ∈ G, (6)

where in this case σ is an involutive ofG, is closely related to pre-d’Alembert func-
tion. It occurs in the literature. See Parnami et al. [11], Davison [6, Proposition 2.11],
Ebanks and Stetkær [7], Stetkær [16, Lemma IV.4], and Yang [24, Proposition 4.2].
The functional equation (5) has been treated systematically by Stetkær [18] and [19].
The non-zero solutions of (5) are the normalized traces of certain representation of
G on C

2. Davison proved this via his work [6] on the pre-d’Alembert functional
equation on monoids.

The variant Wilson’s functional equation

f (xy)+ μ(y)f (σ (y)x) = 2f (x)g(y), x, y ∈ G (7)

with μ �= 1 was recently studied on groups by Elqorachi and Redouani [10].
The complex-valued solutions of Eq. (7) with σ(x) = x−1 and μ(x) = 1 for all

x ∈ G are obtained on groups by Ebanks and Stetkær [7].
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The present paper complements and contains the existing results of (2) by finding
the solutions f, g, h of the extension

f (xy)− μ(y)f (σ (y)x) = g(x)h(y), x, y ∈ S (8)

of it to monoids that need not be abelian.
As in the previous results [8] one of the main ideas is to relate the functional

equation (2) to a sine subtraction laws on monoids. In our case we need the solutions
of the following version of the sine subtraction law

μ(z)f (yσ (z)) = f (y)g(z)− f (z)g(y), x, y ∈ S. (9)

These results are obtained in Theorem 1. We need also the solutions of Eq. (7) on
monoids that are not in the literature, the results are derived in Theorem 3.

In Sect. 4 we obtain the main results of the present paper. Furthermore, as an
application we find the complex-valued solutions (f, g, h) of the functional equation

f (xy)+ μ(y)g(σ (y)x) = h(x)h(y), x, y ∈ G (10)

on groups and monoids in terms of multiplicative and additive functions.

1.1 Notation and Preliminary

Throughout this paperG denotes a group and S a semigroup. A mapping μ : S −→
C is a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ G. Let χ : S −→
C be a multiplicative function such that χ �= 0, then Iχ = {x ∈ S | χ(x) = 0}
is either empty or a proper subset of S. Furthermore, Iχ is a two-sided ideal in S if
not empty and S\Iχ is a subsemigroup of S. If S is a topological space, then we let
C(S) denote the algebra of continuous functions from S into C.

For later use we need the following results.

Proposition 1 ([9, 13]) Let G be a group, and suppose f, g : G −→ C satisfy the
sine addition law

f (xy) = f (x)g(y)+ f (y)g(x), x, y ∈ G (11)

with f �= 0. Then there exist multiplicative functions χ1, χ2 : G −→ C and a
constant c ∈ C \ {0} such that:

(i) g = χ1+χ2
2 and f = c(χ1 − χ2).

(ii) g = χ1 and f = χ1A where A : G −→ C is an additive function such that
A �= 0.

Furthermore, if G is a topological group and f, g ∈ C(G), then χ1, χ2 ∈ C(G).
The next proposition corresponds to lemma 3.4 in [8]
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Proposition 2 Let S be a semigroup, and suppose f, g : S −→ C satisfy the sine
addition law

f (xy) = f (x)g(y)+ f (y)g(x), x, y ∈ S (12)

with f �= 0. Then there exist multiplicative functions χ1, χ2 : S −→ C such that

g = χ1 + χ2

2
.

Additionally we have the following

(i) If χ1 �= χ2 , then f = c(χ1 − χ2) for some constant c ∈ C \ {0}.
(ii) If χ1 = χ2, then letting χ := χ1 we have g = χ . If S is a semigroup such that

S = {xy ∈ S : x, y ∈ S} (for instance, a monoid), then χ �= 0.

If S is a group, then there is an additive function A : S −→ C, A �= 0, such that
f = χA.

If S is a semigroup which is generated by its squares, then there exists an additive
function A : S \ Iχ −→ C for which

f (x) =
{
χ(x)A(x) f or x ∈ S \ Iχ
0 f or x ∈ Iχ

Furthermore, if S is a topological group, or if S is a topological semigroup
generated by its squares, and f, g ∈ C(S), then χ1, χ2, χ ∈ C(S). In the group
case A ∈ C(S) and in the second case A ∈ C(S \ Iχ ).

2 μ-Sine Subtraction Law on a Group and on a Monoid

In this section we deal with a new version of the sine subtraction law

μ(z)k(yσ(z)) = k(y)l(z)− k(z)l(y), x, y ∈ S (13)

where k, l are complex valued functions and μ is a multiplicative function. We
shall say that k satisfies μ-sine subtraction law with companion function l. As in
Lemma 3.1 in [6] if S is a topological semigroup and k, l satisfy (13) such that
k �= 0 and k is a continuous function then l is also a continuous function. In the case
where μ = 1 and G is a topological group, the functional equation (13) was solved
in [8].
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Here we focus exclusively on (13), and we include nothing about other extension
of cosine, sine addition, and subtraction formulas:

μ(z)k(yσ(z))=k(y)l(z)+k(z)l(y), μ(z)k(yσ (z))=k(y)k(z)−l(z)l(y), y, z ∈ S.

The next theorem is the analogous of Theorem 3.2 in [8].

Theorem 1 LetG be a group and let σ : G −→ C be an involutive automorphism.
Let μ : G −→ C be a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ S.
The solutions k, l : G −→ C of the μ-sine subtraction law (13) with k �= 0 are
the following pairs of functions, where χ : G −→ C \ {0} denotes a character and
c1 ∈ C, c2 ∈ C \ {0} are constants.

(i) If χ �= μχ ◦ σ , then

k = c2
χ − μχ ◦ σ

2
, l = χ + μχ ◦ σ

2
+ c1

χ − μχ ◦ σ
2

.

(ii) If χ = μχ ◦ σ , then

k = χA, l = χ(1+ c1A)

where A : G −→ C \ {0} is an additive function such that A ◦ σ = −A �= 0.

Furthermore, if G is a topological group and k ∈ C(G), then l, χ, μχ ◦ σ ,A ∈
C(G).

Proof By using some ideas from [8] we get by interchanging x and y that
μ(x)k(yσ (x)) = −μ(y)k(xσ (y)) for all x, y ∈ G. By setting y = e we get that
k(x) = −μ(x)k(σ (x)) for all x ∈ G. Using this and Eq. (13) we get for all x, y ∈ G
that

k(x)[l(y)− μ(y)l(σ (y))] − k(y)[l(x)− μ(x)l(σ (x))]
= μ(y)k(xσ (y))− μ(y)k(xσ (y))
= 0.

So that we get for all x, y ∈ G that

k(x)[l(y)− μ(y)l(σ (y))] = k(y)[l(x)− μ(x)l(σ (x))]. (14)

Let l+(x) = l(x)+μ(x)l(σ (x))
2 and l−(x) = l(x)−μ(x)l(σ (x))

2 for all x ∈ G. We have
l = l+ + l−, l+(σ (x)) = μ(σ(x))l+(x) and l−(σ (x)) = −μ(σ(x))l−(x) for all
x ∈ G. From (13) we have for all x, y ∈ G that k(x)l−(y) = k(y)l−(x). Since
k �= 0 we assume that there exists an x0 ∈ G such that k(x0) �= 0. So that we have
l−(y) = l−(x0)

k(x0)
f (y) = cf (y) for all y ∈ G. Then l− = ck. On the other hand, by
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subsisting the fact that l = l+ + l− in (13) and by using k(x)l−(y) = k(y)l−(x) we
get that

μ(y)k(xσ (y)) = k(y)l+(z)− k(z)l+(y), x, y ∈ G (15)

Replacing y by σ(y) in (15) we get that

k(xy) = k(y)l+(z)+ k(z)l+(y), x, y ∈ G. (16)

According to Proposition 1 we have

(i) k = c1(χ1 − χ2) and l+ = χ1+χ2
2 where c1 ∈ C \ {0}. Since k(x) =

−μ(x)k(σ (x)) and l+(x) = μ(σ(x))k(σ (x)) for all x ∈ G we get that
c2(χ1 − χ2) = −c2μ(χ1 ◦ σ − χ2 ◦ σ) and μ(χ1 ◦ σ + χ2 ◦ σ) = χ1 + χ2.
Then χ2 = μχ1 ◦ σ , l+ = χ1+μχ1◦σ

2 and k = c2
χ1−μχ1◦σ

2 . Since l− = ck =
cc2

χ1−μχ1◦σ
2 = c1

χ1−μχ1◦σ
2 where c1 ∈ C \ {0}. By using the fact l = l− + l+

we get (i).
(ii) we have l+ = χ and k = χA. Since l+(σ (x)) = μ(σ(x))l+(x) for all x ∈ G

we get that χ = μχ ◦ σ . From k(x) = −μ(x)k(σ (x)) for all x ∈ G we get that
A = −A ◦ σ . By using the fact l = l− + l+ = cχA + χ = χ(cA + 1). This
ends the proof.

��
In the next proposition we extend Theorem 1 to monoids.

Proposition 3 Let S be a monoid and let σ : S −→ S be an involutive
automorphism. Let μ : G −→ C be a multiplicative function such that μ(xσ(x)) =
1 for all x ∈ S. The solutions k, l : G −→ C of the μ-sine subtraction law (13)
with k �= 0 are the following pairs of functions, where χ : G −→ C \ {0} denotes a
multiplicative function and χ(e) = 1 and c1 ∈ C, c2 ∈ C \ {0} are constants:

(i) If χ �= μχ ◦ σ , then

k = c1
χ − μχ ◦ σ

2
, l = χ + μχ ◦ σ

2
+ c2

χ − μχ ◦ σ
2

.

(ii) If χ = μχ ◦ σ and S is generated by its squares, then

k(x) = χ(x)A(x), l(x) = χ(x)(1+ c1A(x)) ∀x ∈ S�Iχ
l(x) = k(x) = 0, ∀x ∈ S�Iχ

where A : G −→ C \ {0} is an additive function such that A ◦ σ = −A �= 0.

Furthermore, if S is a topological monoid, and k ∈ C(S), then l, χ, μχ ◦ σ ∈
C(S) and A ∈ C(S\Iχ ).
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Proof By the same way in Proposition 3.6 in [8] and by using Theorem 1 and the
Proposition 2 we get the proof. ��

3 Variant of Wilson’s Functional Equation on Monoids

The solutions of the functional equation (7) on groups are obtained in [10]. More
precisely, Elqorachi and Redouani proved the following theorem.

Theorem 2 Let G be a group, let σ : G −→ G a homomorphism such that σ ◦
σ = I , where I denotes the identity map, and μ: G −→ C be a multiplicative
function such that μ(xσ(x)) = 1 for all x ∈ G. The solutions f, g of the functional
equation (7) are the following pairs of functions, where χ : G −→ C denotes a
function multiplicative and c, α ∈ C

∗

(i) f = 0 and g arbitrary.
(ii) g = χ+μχ◦σ

2 and f = αg.
(iii) g = χ+μχ◦σ

2 and f = (c+α/2)χ−(c−α/2)χ◦σ with (μ−1)χ = (μ−1)χ◦σ .
(iv) g = χ and f = χ(a + α), where χ = μχ ◦ σ and a is an additive map which

satisfies a ◦ σ + a = 0.

We shall now extend this result to monoids.

Theorem 3 Let S be a monoid, let σ : S −→ S a homomorphism such that σ ◦
σ = I , where I denotes the identity map, and μ: S −→ C be a multiplicative
function such that μ(xσ(x)) = 1 for all x ∈ S. The solutions f, g of the functional
equation (7) are the following pairs of functions, where χ : S −→ C denotes a
function multiplicative and c, α ∈ C

∗

(i) f = 0 and g arbitrary.
(ii) g = χ+μχ◦σ

2 and f = αg.
(iii) g = χ+μχ◦σ

2 and f = (c+α/2)χ−(c−α/2)χ◦σ with (μ−1)χ = (μ−1)χ◦σ .
(iv) g = χ . Furthermore, if S is a monoid which is generated by its squares, then

χ = μχ ◦ σ , there exists an additive function a: S\Iχ −→ C for which
a ◦ σ + a = 0,

f (x) =
{
χ(x)(a(x)+ α) f or x ∈ S \ Iχ
0 f or x ∈ Iχ

Indeed, if S is a topological group, or S is a topological monoid generated by
its squares, f, g, μ ∈ C(S), and σ : G −→ G is continuous, then χ ∈ C(S).
In the group case a ∈ C(S) and in the second case a ∈ C(S\Iχ ).

Proof Verifying that the stated pairs of functions constitute solutions consists
of simple computations. To see the converse, i.e., that any solution f, g of (7)
is contained in one of the cases below, we will use [8, Lemma 3.4] and [10,
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Theorem 3.1]]. All, except the last paragraphs of part (iv) and the continuity
statements, are in Theorem 3.1 in [10]. Now, we assume that S is a monoid generated
by its squares. We use the notation used in the proof of Theorem 3.1 in [10], in
particular for the last paragraphs of part (iv) we have

fe(xy) = fe(x)χ(y)+ fe(y)χ(x) (17)

for all x, y ∈ S and with f = fe + f (e)χ . So, from [[8], Lemma 3.4] we get
f (x) = 0+ f (e)χ(x) = 0+ f (e)0 = 0 if x ∈ Iχ and f (x) = χ(x)(a(x)+ f (e))
if x ∈ S\Iχ and where a is an additive function of S\Iχ .

Now, we will verify that χ = μχ ◦ σ and a ◦ σ = −a.
Since f, g are solution of Eq. (7) we have

f (xy)+ μ(y)f (σ (y)x) = 2f (x)χ(y) (18)

for all x, y ∈ G. By using the new expression of f and the fact that Iχ is an ideal,
we get after an elementary computation that f (xy) = f (yx) for all x, y ∈ G. So,
Eq. (18) can be written as follows

f (xy)+ μ(y)f (xσ(y)) = 2f (x)χ(y), x, y ∈ G. (19)

By replacing y by σ(y) in (19) and multiplying the result obtained by μ(y) we get

f (xy)+ μ(y)f (xσ(y)) = 2f (x)μ(y)χ(σ (y)), x, y ∈ G. (20)

Finally, by comparing (19), (20) and using f �= 0 we get χ(y) = μ(y)χ(σ (y)) for
all y ∈ G.

By substituting the expression of f into (19) and using χ(y) = μ(y)χ(σ (y))

and μ(yσ(y)) = 1 for all y ∈ G, we find after reduction that χ(x)χ(y)[a(y) +
a(σ (y))] = 0 for all x, y ∈ S\Iχ . Since χ �= 0 we get a(y) + a(σ (y)) = 0 for all
y ∈ S\Iχ .

For the topological statement we use [[17], Theorem 3.18(d)]. This completes
the proof. ��

4 Solutions of (8) on Groups and Monoids

In this section we solve the functional equation

f (xy)− μ(y)f (σ (y)x) = g(x)h(y), x, y ∈ S (21)

where S is a monoid.
In the next proposition we show that h satisfies the μ-sine subtraction law
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Proposition 4 Let S be a monoid, let σ be an involutive automorphism on S, let
μ be a multiplicative function on S and suppose f, g, h : S −→ C satisfy the
functional equation (13). Suppose also that g �= 0 and h �= 0. Then

(i) h(σ(y)) = −μ(σ(x))h(x)) for all x ∈ S.
(ii) h(xy) = h(yx) for all x, y ∈ S.

(iii) h satisfies the μ-sine subtraction law (13).
(iv) If g(e) = 0, then g = bh for some b ∈ C \ {0}.
(vi) If g(e) �= 0, then h satisfies the μ-sine subtraction law with companion

function g
g(e)

.

Moreover, if S is a topological monoid, and h ∈ C(S), then the companion function
in case (i) is also continuous.

Proof We follow the path of the proof of Proposition 3.1 in [6].
By substituting (x, yz), (σ (y), σ (z)x) and (z, σ (xy)) and (z, σ (xy)) in (21) we

obtain

f (xyz)− μ(xyz)f (σ (yz)x) = g(x)h(yz), (22)

f (σ(yz)x)− μ(σ(z)x)f (zσ (xy)) = g(σ (y))h(σ (z)x), (23)

f (zσ (xy))− μ(σ(xy))f (xyz) = g(z)h(σ (xy)). (24)

By multiplying (22) by μ(σ(xy)) we obtain that

μ(σ(xy))f (xyz)− μ(σ(x)z)f (σ (yz)x) = μ(σ(xy))g(x)h(yz). (25)

By adding (25) and (24) we obtain

f (zσ (xy))−μ(σ(x)z)f (σ (yz)x) = g(z)h(σ (xy))+μ(σ(xy))g(x)h(yz). (26)

By multiplying (26) by μ(σ(z)x) we obtain

μ(σ(z)x)f (zσ (xy))−f (σ(yz)x) = μ(σ(z)x)g(z)h(σ (xy))+μ(σ(zy))g(x)h(yz).
(27)

By adding (27) and (23) we obtain

0 = g(σ (y))h(σ (z)x)+ μ(σ(z)x)g(z)h(σ (xy))+ μ(σ(zy))g(x)h(yz). (28)

Setting x0 such that g(x0) �= 0 and the fact that μ(xσ(x)) = μ(x)μ(σ(x)) = 1 for
all x ∈ G, we get that

h(yz) = μ(y)g(σ (y))l(z)+ g(z)l1(y), y, z ∈ S (29)
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where l, l1 are complex valued functions on S. Using (29) in (28) we obtain for all
x, y, z ∈ S

g(x)g(σ (y)){l1(σ (z))+ μ(σ(z))l(z)} + g(x)g(z){μ(σ(z))l(σ (y))
+ μ(σ(zy))l1(y)} + g(z)g(σ (y)){μ(σ(z))l(x)+ μ(σ(z)x)l1(σ (x))} = 0.

(30)

Putting x = x0, y = σ(x0), Eq. (30) becomes

l1(σ (z))+ μ(σ(z))l(z) = cμ(σ(z))g(z), z ∈ S (31)

By putting (31) in (30) we obtain 3μ(σ(z))cg(x)g(σ (y))g(z) = 0 for all x, y, z ∈
S. Since g �= 0 and μ(σ(z)) �= 0 it follows that c = 0 and then l1(σ (z)) =
−μ(σ(z))l(z) for all z ∈ S. So that Eq. (29) becomes

h(yz) = μ(y)g(σ (y))l(z)− μ(y)g(z)l(σ (y)), x, y, z ∈ S (32)

Replacing (y, z) by (σ (z), σ (y)) in (32) we obtain

h(σ(zy)) = μ(σ(zy))(μ(y)g(σ (y))l(z)− μ(y)g(z)l(σ (y))− μ(σ(zy))h(z).
(33)

From which we obtain by putting y = e that

h(σ(z)) = −μ(σ(z))h(z), z ∈ S. (34)

From (33) and (34) we get that h a central function, i.e. h(yz) = h(zy) for all
y, z ∈ S.

Next we consider two cases:
First case: Suppose g(e) = 0. Let z = e and x = x0 in (28) give that

h(y) = −cμ(y)g(σ (y)), y ∈ S (35)

for some c ∈ C \ {0}. By replacing y by σ(y) in (35) we obtain that h(σ(y) =
−cμ(σ(y))g(y) for all y ∈ G. By using (34) we get that g = 1

c
h = bh where

b = 1
c

and that

g(σ (z)) = −μ(σ(z))g(z), z ∈ S. (36)

Using (36) in (32) and setting m = −bl we get

h(yz) = μ(y)g(σ (y))l(z)− μ(y)g(z)l(σ (y))
= −μ(y)μ(σ(y))g(y)l(z)− μ(y)g(z)l(σ (y))
= −g(y)l(z)− μ(y)g(z)l(σ (y))
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= −bh(y)l(z)− μ(y)bh(z)l(σ (y))
= h(y)m(z)+ μ(y)h(z)m(σ(y)).

By replacing z by σ(z) we obtain

h(yσ(z)) = h(y)(m ◦ σ)(z)+ μ(y)h(σ (z))m(σ(y)), y, z ∈ S. (37)

By multiplying (37) by μ(z) and by setting n(z) = (m ◦ σ)(z)μ(z) we obtain the
μ-sine subtraction law with the companion function n

μ(z)h(yσ(z)) = h(y)n(z)− h(z)n(y). (38)

This ends the first case.
Second case: Suppose g(e) �= 0. Then we obtain from (28) with x = e that

h(yz) = [μ(y)g(σ (y))h(z)+ g(z)h(y)]/g(e). (39)

Interchanging y and z in (39) we get

h(zy) = [μ(z)g(σ (z))h(y)+ g(y)h(z)]/g(e). (40)

By replacing z by σ(z) in (40) and multiplying it by μ(z) we get

μ(z)h(σ (z)y) = h(y)
g

g(e)
(z)− g

g(e)
(y)h(z), y, z ∈ S. (41)

Since h is central it follows that h satisfies the μ-sine subtraction law with the
companion function g

g(e)

μ(z)h(yσ(z)) = h(y)
g

g(e)
(z)− g

g(e)
(y)h(z), y, z ∈ S. (42)

��
In the next two theorems, by using the result obtained for μ-sine subtraction law,
we give solutions of Eq. (21). We will follow the method used in [8].

Let Nμ(σ , S) be the null space given by

Nμ(σ , S) = {θ : S −→ C : θ(xy)− μ(y)θ(σ (y)x) = 0, x, y ∈ S}.

In the next theorem we consider the group case

Theorem 4 Let G be a group, let σ be an involutive automorphism on G, let μ :
G −→ C be a multiplicative function and suppose f, g, h : G −→ C satisfy
functional equation (21). Suppose also that g �= 0 and h �= 0. Then there exist a
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character χ of G, constants c, c1, c2 ∈ C, and a function θ ∈ Nμ(σ , S) such that
one of the following holds:

(i) If χ �= μχ ◦ σ , then

h = c1
χ − μχ ◦ σ

2
, g = χ + μχ ◦ σ

2
+ c2

χ − μχ ◦ σ
2

,

f = θ + c1

2
[cχ − μχ ◦ σ

2
+ c2

χ + μχ ◦ σ
2

]

(ii) If χ = μχ ◦ σ , then

h = χA, g = χ(c + c2A), f = θ + χA(c
2
+ c2

4
A).

where A : G −→ C \ {0} is an additive function such that A ◦ σ = −A �= 0.
Conversely, the formulas of (i) and (ii) define solutions of (3.1).

Moreover, ifG is a topological group, and f, g, h ∈ C(G), then χ,μχ◦σ ,A, θ ∈
C(G), while A ∈ C(G).
The proof of the Theorem 4 will be integrated into that of Theorem 5 in which we
consider the monoid case

Theorem 5 Let S be a monoid which is generated by its squares, let σ be an
involutive automorphism on G, let μ : G −→ C be a multiplicative function and
suppose f, g, h : G −→ C satisfy functional equation (21). Suppose also that g �= 0
and h �= 0. Then there exist a multiplicative function χ : S −→ Cχ �= 0, constants
c, c1, c2 ∈ C, and a function θ ∈ Nμ(σ , S) such that one of the following holds:

(i) If χ �= μχ ◦ σ , then

h = c1
χ − μχ ◦ σ

2
, g = χ + μχ ◦ σ

2
+ c2

χ − μχ ◦ σ
2

,

f = θ + c1

2
[cχ − μχ ◦ σ

2
+ c2

χ + μχ ◦ σ
2

]

(ii) If χ = μχ ◦ σ , then h(x) = g(x) = 0 and f (x) = θ(x) for x ∈ Iχ , and

h(x) = χ(x)A(x), g(x) = χ(x)(c + c2A(x)),

f (x) = θ(x)+ χ(x)A(x)( c
2
+ c2

4
A(x))

for x ∈ S \ Iχ where A : S \ Iχ −→ C \ {0} is an additive function such that
A ◦ σ = −A �= 0.
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Furthermore, if S is a topological monoid and k ∈ C(G), then l, χ , μχ ◦ σ ,
A ∈ C(G). Conversely, the formulas of (i) and (ii) define solutions of (21).

Moreover, if S is a topological monoid, and f, g, h ∈ C(S), then χ,μχ ◦
σ ,A, θ ∈ C(S), while A ∈ C(S \ Iχ ).
Proof According to Proposition 4 we have the two following cases:

First case: Suppose that g(e) = 0, then h satisfies the μ-sine subtraction law and
g = bh where b ∈ C \ {0}. According to Theorem 1 and Proposition 3 we get (for
S is a group or a monoid) that if χ �= μχ ◦ σ , then h = c1

χ−μχ◦σ
2 where c1 ∈ C.

Since g = bh, then g = c2
χ−μχ◦σ

2 where c2 ∈ C. Subsisting g and h in (21) we get
for all x, y ∈ S

f (xy)− μ(y)f (σ (y)x) = g(x)h(y)

= c1c2

4
[χ(x)− μ(x)χ(σ (x))][χ(y)− μ(y)χ(σ(y))]

= c1c2

4
[χ(xy)− μ(y)χ(σ (y)x)− μ(x)χ(σ(σ (y)x))

+μ(xy)χ(σ (xy))].

Let θ = f − c1c2
4 (χ + μχ ◦ σ) we have θ ∈ Nμ(σ , S) and f = θ + c1

2 [c χ−μχ◦σ2
+c2

χ+μχ◦σ
2 ] with c = 0.

Now, if χ = μχ ◦ σ .
When S is a group then we get from Theorem 1 that h = χA where A is an

additive function such thatA◦σ = −A �= 0. Since g = bh, then g = bχA = c2χA.
Subsisting g and h in 21 we get

f (xy)− μ(y)f (σ (y)x) = g(x)h(y)c2χ(x)A(x)χ(y)A(y)

= c2

4
[χ(y)A(xy)2 − χ(σ(y))A(σ(y)x)2].

Let θ = f − c2
χA2

4 . Then θ ∈ Nμ(σ , S).
When S is a monoid, by Proposition 3 and by the same way as in [6] we have

θ = θ1 ∪ θ2 where θ1(x) = f (x)− c2
χ(x)A2(x)

4 on S \ Iχ and θ2(x) = f (x) on I .
Second case: Suppose g(e) �= 0. We have h and g

g(e)
play the role of k and l

respectively in Theorem 1 or in Proposition 3. If χ �= μχ ◦ σ , then h = c1
χ−μχ◦σ

2
where c1 ∈ C and g = c

χ+μχ◦σ
2 + c2

χ−μχ◦σ
2 . By the same way as in [8] we get

that θ = f − c1
[(c+c2)χ−(c−c2)χ◦σ ]

4 ∈ Nμ(σ , S).
Finally, if g(e) �= 0 and χ = μχ ◦ σ we get the remainder by the same way as in

[8]. ��
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5 Applications: Solutions of Eq. (10) on Groups and Monoids

In this section, we use the results obtained in the previous paragraph to solve the
functional equation (10) on groups and monoids. We proceed as follows to reduce
the equation to the functional equations (7), (8) so that we can apply Theorems 2–5.

Theorem 6 Let G be a group, and σ a homomorphism involutive of G. Let μ :
G −→ C be a multiplicative function such that μ(xσ(x)) = 1 for all x ∈ G.
Suppose that the functions f, g, h : G −→ C satisfy the functional equation (10).
Suppose also that f +g �= 0. Then there exist a character χ ofG, constants α ∈ C

∗,
c1, c2 ∈ C, and a function θ ∈ Nμ(σ , S) such that one of the following holds:

(a) If χ �= μχ ◦ σ , then f = 1
2 [(1 + c1c2

2 )
χ+μχ◦σ

2 + 2c2
χ−μχ◦σ

2 + θ]; g =
1
2 [(1− c1c2

2 )
χ+μχ◦σ

2 − θ ] and h = 1
α
[χ+μχ◦σ2 + c2

χ−μχ◦σ
2 ].

(b) If χ = μχ ◦ σ then f = c2χ(2+A)+θ+χAc2(1+A
4 )

2 ; g = c2χ(2+A)−θ−χAc2(1+A
4 )

2
and h = 1

α
c2χ(2+ A).

Proof Let f, g, h: G −→ C satisfy the functional equation (10). The case g = −f
was treated in Theorems 2 and 3. From now on, we assume that f + g �= 0. Let
ho := h−μh◦σ

2 respectively he := h+μh◦σ
2 denote the odd, respectively even, part of

h with respect to μ and σ .
Setting x = e in (10) gives us

f (y)+ μ(y)g(σ (y)) = h(e)h(y) (43)

for all y ∈ G. Taking y = e in (10) and using μ(e) = 1 we find

f (x)+ g(x) = h(e)h(x) (44)

for all x ∈ G. So, by comparing (43) with (44) we get

g(x) = μ(x)g(σ (x)), x ∈ G. (45)

We note that (f + g)(xy) + μ(y)(f + g)(σ (y)x) = f (xy) + μ(y)g(σ (y)x) +
g(xy) + μ(y)f (σ (y)x) = h(x)h(y) + g(xy) + μ(y)f (σ (y)x). By using (45)
we have g(xy) = μ(xy)g(σ (x)σ (y)), then we get g(xy) + μ(y)f (σ (y)x) =
μ(y)f (σ (y)x) + μ(xy)g(σ (x)σ (y)) = μ(y)[f (σ(y)x) + μ(x)g(σ (x)σ (y))] =
μ(y)h(x)h(σ (y)), which implies that

(f + g)(xy)+ μ(y)(f + g)(σ (y)x) = 2h(x)he(y) (46)

for all x, y ∈ G. From (44) and the assumption that f + g �= 0 we get h(e) �= 0.
So, Eq. (46) can be written as follows:
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(f + g)(xy)+ μ(y)(f + g)(σ (y)x) = 2(f + g)(x)he(y)
h(e)

(47)

for all x, y ∈ G.
On the other hand, by using similar computation used above, we obtain

(f − g)(xy)− μ(y)(f − g)(σ (y)x) = 2h(x)ho(y) = (f + g)(x)2ho(y)

h(e)
(48)

for all x, y ∈ G. We can now apply Theorems 2–5.
If ho = 0, then f − g ∈ N(σ ,G), so there exists θ ∈ Nμ(σ ,G) such that

f − g = θ. Since f, g satisfy (47) then from Theorem 1 we get the only possibility
f + g = α2 χ+μχ◦σ

2 and h = α
χ+μχ◦σ

2 for some character χ : G −→ C and
a constant α ∈ C and we deduce that f = 1

2 [θ + α2(
χ+μχ◦σ

2 )]; g = 1
2 [−θ +

α2(
χ+μχ◦σ

2 )]. We deal with case (i).
So for the rest of the proof we will assume that ho �= 0. The function f + g, ho

are solution of Eq. (48) with f + g �= 0 and ho �= 0, so we know from Theorem 4
that there are only the following two possibilities:

(i) f − g = θ + c1
2 [c χ−μχ◦σ2 + c2

χ+μχ◦σ
2 ]; f + g = χ+μχ◦σ

2 + c2
χ−μχ◦σ

2 for
some character χ on G such that χ �= μχ ◦ σ , θ ∈ Nμ(σ ,G) and constants
c, c1, c2 ∈ C. So, we have g = 1

2 [(1− c1c2
2 )

χ+μχ◦σ
2 + (c2− cc1

2 )
χ−μχ◦σ

2 − θ];
f = 1

2 [(1+ c1c2
2 )

χ+μχ◦σ
2 + (c2+ cc1

2 )
χ−μχ◦σ

2 + θ ]. Since g = μg ◦σ , then we
have c2 = cc1

2 and f , g are as follows: f = 1
2 [(1+ c1c2

2 )
χ+μχ◦σ

2 +2c2
χ−μχ◦σ

2 +
θ ]; g = 1

2 [(1− c1c2
2 )

χ+μχ◦σ
2 − θ ]. We deal with case (a).

(ii) f − g = θ + χA( c2 + c2
4 A); f + g = χ(c + c2A), where χ is a character on

G such that χ = μχ ◦ σ , A is an additive map on G such that A ◦ σ = −A,

θ ∈ Nμ(σ ,G) and c, c2 ∈ C. So, we get g = χ(c+c2A)−θ−χA( c2+ c
4 )A

2 . Since g =
μg◦σ so, we have c = 2c2. Consequently we have g = c2χ(2+A)−θ−χAc2(1+A

4 )

2 ;

f = c2χ(2+A)+θ+χAc2(1+A
4 )

2 , where A: G −→ C is an additive function such
that A ◦ σ(x) = −A(x) for all x ∈ G. We deal with case (b). This ends this
proof. In the next theorem we solve (10) on monoids.

��
Theorem 7 Let S be a monoid which is generated by its squares, let σ an involutive
automorphism on S. Let μ : S −→ C be a multiplicative function such that
μ(xσ(x)) = 1 for all x ∈ S. Suppose that f, g, h : S −→ C satisfy the functional
equation (10). Suppose also that f + g �= 0. Then there exist a character χ of G,
constants α ∈ C

∗, c1, c2 ∈ C, and a function θ ∈ Nμ(σ , S) such that one of the
following holds:

(a) If χ �= μχ ◦ σ , then f = 1
2 [(1 + c1c2

2 )
χ+μχ◦σ

2 + 2c2
χ−μχ◦σ

2 + θ]; g =
1
2 [(1− c1c2

2 )
χ+μχ◦σ

2 − θ ] and h = 1
α
[χ+μχ◦σ2 + c2

χ−μχ◦σ
2 ].
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(b) If χ = μχ ◦ σ , then f (x) = θ(x)
2 , g(x) = −θ(x)

2 and h(x) = 0

for all x ∈ Iχ ; f (x) = c2χ(2+A(x))+θ(x)+χ(x)Ac2(1+A(x)
4 )

2 ; g(x) =
c2χ(2+A(x))−θ(x)−χ(x)Ac2(1+A(x)

4 )

2 and h(x) = 1
α
c2χ(2+A(x)) for all x ∈ S\Iχ

and where A: S\Iχ −→ C is an additive function such that A ◦σ(x) = −A(x)
for all x ∈ S\Iχ .
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Hyers–Ulam Stability of a Discrete
Diamond-Alpha Derivative Equation

Douglas R. Anderson and Masakazu Onitsuka

Abstract We establish the Hyers–Ulam stability (HUS) of a certain first-order
linear constant coefficient discrete diamond-alpha derivative equation. In particular,
for each parameter value we determine whether the equation has HUS, and if so
whether there exists a minimum HUS constant.

1 Introduction

In 1940, Ulam [24, p. 63] posed the following questions:

When is it true that the solution of an equation differing slightly from a given one, must
of necessity be close to the solution of the given equation? Similarly, if we replace a given
functional equation by a functional inequality, when can one assert that the solutions of the
inequality lie near to the solutions of the strict equation?

The problem for the case of approximately additive mappings was solved by Hyers
[7], who proved that the Cauchy equation is stable in Banach spaces, and the result
of Hyers was generalized by Rassias [18]. Since then there has been a significant
amount of interest in Hyers–Ulam stability (HUS), especially in relation to ordinary
differential equations; for example, see [1, 2, 4, 8–14, 21, 25, 26]. See also many
pertinent results for functional equations and quadratic functional equations [5, 6,
17, 19, 22]. For some results on time scales, see [23].

For λ ∈ R, the equation

x′(t)− λx(t) = 0, t ∈ R (1)
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has HUS if and only if there exists a constant K > 0 with the following property:

For arbitrary ε > 0, if a function φ : R → R satisfies |φ′(t) − λφ(t)| ≤ ε for all t ∈ R,
then there exists a solution x : R→ R of (1) such that |φ(t)− x(t)| ≤ Kε for all t ∈ R.

Such a constant K is called an HUS constant for (1) on R. Recently, Onitsuka
and Shoji [16] explored the minimum HUS constant for (1). Also, Onitsuka [15]
investigated the influence of the constant step size h > 0 on HUS for the first-order
homogeneous linear difference equation

Δhx(t)− λx(t) = 0 (2)

on the uniformly discrete time scale hZ, where Δh is the forward difference

Δhx(t) = x(t + h)− x(t)
h

, t ∈ hZ := {hk : k ∈ Z}.

We propose to extend these results to the discrete diamond-alpha case, which
contains the delta forward difference equation and the nabla backward difference
equation [3] as special cases. For more on the diamond-α derivative, see [20] and
the references therein.

2 Hyers–Ulam Stability for a Discrete Diamond-Alpha
Derivative Equation

Let Z represent the set of integers. For any nonempty open interval I ⊆ R, let
T := Z ∩ I . Define

Tκ :=
{
T\{minT} : minT exists,

T : otherwise,
and T

κ :=
{
T\{maxT} : maxT exists,

T : otherwise,

and set Tκκ = Tκ ∩ T
κ . In this paper we consider on T the Hyers–Ulam stability of

the first-order linear homogeneous discrete diamond-alpha derivative equation with
constant coefficient given by

♦αx(t)− λx(t) = 0, ♦αx(t) := αΔx(t)+ (1− α)∇x(t), α ∈ [0, 1], (3)

where λ ∈ R; here, we use the forward difference operatorΔx(t) := x(t+1)−x(t)
and the backward difference operator ∇x(t) := x(t)− x(t − 1) for all t ∈ T

κ
κ . Note

that if a function x exists on T, thenΔx exists on T
κ and ∇x exists on Tκ . Thus, for

the remainder of the paper, we assume that T and T
κ
κ are nonempty sets in R.
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Definition 1 We say that (3) has Hyers–Ulam stability (HUS) on T if and only if
there exists a constant K > 0 with the following property. For arbitrary ε > 0, if a
function φ : T→ R satisfies

|♦αφ(t)− λφ(t)| ≤ ε for all t ∈ T
κ
κ ,

then there exists a solution x : T → R of (3) such that |φ(t) − x(t)| ≤ Kε for all
t ∈ T. Such a constant K is called an HUS constant for (3) on T.

Given this definition, we would like to know, given α ∈ [0, 1], for which values
of the parameter λ ∈ R does (3) have HUS, and if it does have HUS, is there a
minimum HUS constant?

We start with values for which (3) does not have HUS.

Theorem 1 For any α ∈ [0, 1], if λ = 0 or λ = 2(1− 2α), then (3) does not have
Hyers–Ulam stability on Z.

Proof Let λ = 0 and α ∈ (0, 1]. Given ε > 0, note that the function φ(t) := εt

satisfies |♦αφ(t)| = ε for all t ∈ Z. As x(t) = c1 + c2

(
1− 1

α

)t
is the general

solution to ♦αx(t) = 0, we see that |φ(t)− x(t)| → ∞ as t →±∞ for any choice
of the constants c1, c2 ∈ R, so that (3) does not have HUS on Z when λ = 0 and
α ∈ (0, 1]. Let λ = 0 and α = 0. Given ε > 0, again see that φ(t) := εt satisfies
|♦0φ(t)| = |∇φ(t)| = ε for all t ∈ Z. As x(t) ≡ c is the general solution to
∇x(t) = 0, we see that |φ(t)− x(t)| → ∞ as t →±∞ for any choice of c ∈ R, so
that (3) does not have HUS on Z when λ = 0 and α = 0.

Next, since λ = 2(1− 2α) for any α ∈ [0, 1] is equivalent to writing α = 2− λ
4

for λ ∈ [−2, 2], let α = 2− λ
4

for λ ∈ [−2, 2). Given ε > 0, the function φ(t) :=
εt (−1)t satisfies

∣∣∣♦ 2−λ
4
φ(t)− λφ(t)

∣∣∣ =
∣∣∣(−1)t+1ε

∣∣∣ = ε

for all t ∈ Z. As

x(t) = c1(−1)t + c2

(
2+ λ
2− λ

)t

is the general solution to ♦ 2−λ
4
x(t) − λx(t) = 0, we see that |φ(t) − x(t)| → ∞

as t → ±∞ for any choice of the constants c1, c2 ∈ R, so that (3) does not have

HUS on Z when α = 2− λ
4

for λ ∈ [−2, 2). If α = 0 and λ = 2, then using

φ(t) := εt (−1)t and x(t) = c(−1)t/h as above, we see there is no HUS on Z when
λ = 2 and α = 0 either. ��



240 D. R. Anderson and M. Onitsuka

We now consider cases where (3) does have HUS, given α ∈ [0, 1] and λ ∈ R

not mentioned in 1 above. We begin with the special cases of α = 1 and α = 0,
respectively, in the next few theorems. The α = 1 case is known from [15], while
the α = 0 is new to the literature.

Theorem 2 ([15, Theorem 1.5]) Let α = 1, so that ♦α = Δ in (3). Assume λ > −1
with λ �= 0. Let ε > 0 be a given arbitrary constant, and let φ : T→ R satisfy

|Δφ(t)− λφ(t)| ≤ ε, t ∈ T
κ .

Then one of the following holds:

(i) If λ > 0 and τ ∗ := maxT exists, then any solution x of (3) with |φ(τ ∗) −
x(τ ∗)| < ε

λ
satisfies |φ(t)− x(t)| < ε

λ
for all t ∈ T.

(ii) If λ > 0 and maxT does not exist, then lim
t→∞φ(t)(1 + λ)−t exists, and the

function

x(t) :=
(

lim
t→∞φ(t)(1+ λ)

−t) (1+ λ)t

is the unique solution of (3) such that |φ(t)− x(t)| ≤ ε
λ

for all t ∈ T.
(iii) If −1 < λ < 0 and τ ∗ := minT exists, then any solution x of (3) with

|φ(τ ∗)− x(τ ∗)| < ε
|λ| satisfies |φ(t)− x(t)| < ε

|λ| for all t ∈ T.

(iv) If −1 < λ < 0 and minT does not exist, then lim
t→−∞φ(t)(1+ λ)

−t exists, and

the function

x(t) :=
(

lim
t→−∞φ(t)(1+ λ)

−t
)
(1+ λ)t

is the unique solution of (3) such that |φ(t)− x(t)| ≤ ε
|λ| for all t ∈ T.

Theorem 3 ([15, Theorem 1.7]) Let α = 1, so that ♦α = Δ in (3). Assume λ < −1
with λ �= −2. Let ε > 0 be a given arbitrary constant, and let φ : T→ R satisfy

|Δφ(t)− λφ(t)| ≤ ε, t ∈ T
κ.

Then one of the following holds:

(i) If λ < −2 and τ ∗ := maxT exists, then any solution x of (3) with

|φ(τ ∗)− x(τ ∗)| < ε

|λ+ 2| satisfies |φ(t)− x(t)| < ε

|λ+ 2|
for all t ∈ T.

(ii) If λ < −2 and maxT does not exist, then lim
t→∞φ(t)(1 + λ)

−t exists, and the

function
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x(t) :=
(

lim
t→∞φ(t)(1+ λ)

−t) (1+ λ)t

is the unique solution of (3) such that

|φ(t)− x(t)| ≤ ε

|λ+ 2|
for all t ∈ T.

(iii) If −2 < λ < −1 and τ ∗ := minT exists, then any solution x of (3) with

|φ(τ ∗)− x(τ ∗)| < ε

λ+ 2
satisfies |φ(t)− x(t)| < ε

λ+ 2

for all t ∈ T.
(iv) If −2 < λ < −1 and minT does not exist, then lim

t→−∞φ(t)(1 + λ)
−t exists,

and the function

x(t) :=
(

lim
t→−∞φ(t)(1+ λ)

−t
)
(1− λ)t

is the unique solution of (3) such that

|φ(t)− x(t)| ≤ ε

λ+ 2

for all t ∈ T.

Theorem 4 Let α = 0, so that ♦α = ∇ in (3). Assume λ < 1 with λ �= 0. Let ε > 0
be a given arbitrary constant, and let φ : T→ R satisfy

|∇φ(t)− λφ(t)| ≤ ε, t ∈ Tκ .

Then one of the following holds:

(i) If 0 < λ < 1 and τ ∗ := maxT exists, then any solution x of (3) with |φ(τ ∗)−
x(τ ∗)| < ε

λ
satisfies |φ(t)− x(t)| < ε

λ
for all t ∈ T.

(ii) If 0 < λ < 1 and maxT does not exist, then lim
t→∞φ(t)(1 − λ)

t exists, and the

function

x(t) :=
(

lim
t→∞φ(t)(1− λ)

t
)
(1− λ)−t

is the unique solution of (3) such that |φ(t)− x(t)| ≤ ε
λ

for all t ∈ T.
(iii) If λ < 0 and τ ∗ := minT exists, then any solution x of (3) with |φ(τ ∗) −

x(τ ∗)| < ε
|λ| satisfies |φ(t)− x(t)| < ε

|λ| for all t ∈ T.
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(iv) If λ < 0 and minT does not exist, then lim
t→−∞φ(t)(1 − λ)t exists, and the

function

x(t) :=
(

lim
t→−∞φ(t)(1− λ)

t

)
(1− λ)−t

is the unique solution of (3) such that |φ(t)− x(t)| ≤ ε
|λ| for all t ∈ T.

Proof From ∇φ(t) = Δφ(t − 1) = φ(t)− φ(t − 1), we have

∇φ(t)− λφ(t) = Δφ(t − 1)− λ (Δφ(t − 1)+ φ(t − 1))

= (1− λ)Δφ(t − 1)− λφ(t − 1)

= (1− λ)
(
Δφ(t − 1)− λ

1− λφ(t − 1)

)
(4)

for all t ∈ Tκ . Therefore, using the assumption |∇φ(t)− λφ(t)| ≤ ε for all t ∈ Tκ ,
we get

∣∣∣∣Δφ(t − 1)− λ

1− λφ(t − 1)

∣∣∣∣ ≤
ε

|1− λ| , t ∈ Tκ .

That is,

∣∣∣∣Δφ(t)−
λ

1− λφ(t)
∣∣∣∣ ≤

ε

|1− λ| , t ∈ T
κ . (5)

Now, we consider case (i). Suppose that 0 < λ < 1 and τ ∗ := maxT exists.
Then λ

1−λ > 0 and 1 − λ > 0 hold. Using Theorem 2 (i) with (5), we have the
following: any solution x of

Δx(t)− λ

1− λx(t) = 0 (6)

with

|φ(τ ∗)− x(τ ∗)| <
ε

|1−λ|
λ

1−λ
= ε

λ

satisfies

|φ(t)− x(t)| <
ε

|1−λ|
λ

1−λ
= ε

λ

for all t ∈ T. From (4) and (6) is equivalent to (3) with α = 0. Thus, case (i) is now
true.
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Next, we consider case (ii). Using Theorem 2 (ii) with (5), we see that

lim
t→∞φ(t)

(
1+ λ

1− λ
)−t

= lim
t→∞φ(t)(1− λ)

t

exists, and the function

x(t) :=
(

lim
t→∞φ(t)(1− λ)

t
)(

1+ λ

1− λ
)t
=
(

lim
t→∞φ(t)(1− λ)

t
)
(1− λ)−t

is the unique solution of (6) such that |φ(t) − x(t)| ≤ ε
λ

for all t ∈ T. From (4),
(6) is equivalent to (3) with α = 0. Therefore, we conclude that x(t) is the unique
solution of (3) with α = 0 such that |φ(t)− x(t)| ≤ ε

λ
for all t ∈ T. Thus, case (ii)

is true.
Since λ < 0 implies −1 < λ

1−λ < 0, cases (iii) and (iv) can be proved by using
Theorem 2 (iii) and (iv). The proof of (iii) and (iv) are the same as the above, thus,
the proof is now complete. ��
Theorem 5 Let α = 0, so that ♦α = ∇ in (3). Assume λ > 1 with λ �= 2. Let ε > 0
be a given arbitrary constant, and let φ : T→ R satisfy

|∇φ(t)− λφ(t)| ≤ ε, t ∈ Tκ .

Then one of the following holds:

(i) If 1 < λ < 2 and τ ∗ := maxT exists, then any solution x of (3) with

|φ(τ ∗)− x(τ ∗)| < ε

2− λ satisfies |φ(t)− x(t)| < ε

2− λ
for all t ∈ T.

(ii) If 1 < λ < 2 and maxT does not exist, then lim
t→∞φ(t)(1 − λ)

t exists, and the

function

x(t) :=
(

lim
t→∞φ(t)(1− λ)

t
)
(1− λ)−t

is the unique solution of (3) such that

|φ(t)− x(t)| ≤ ε

2− λ
for all t ∈ T.
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(iii) If λ > 2 and τ ∗ := minT exists, then any solution x of (3) with

|φ(τ ∗)− x(τ ∗)| < ε

λ− 2
satisfies |φ(t)− x(t)| < ε

λ− 2

for all t ∈ T.
(iv) If λ > 2 and minT does not exist, then lim

t→−∞φ(t)(1 − λ)t exists, and the

function

x(t) :=
(

lim
t→−∞φ(t)(1− λ)

t

)
(1− λ)−t

is the unique solution of (3) such that

|φ(t)− x(t)| ≤ ε

λ− 2

for all t ∈ T.

Proof Using the same way as in the proof of Theorem 4, it easily turns out that the
assertions in Theorem 5 are true. ��

By using Theorems 4 and 5, we can establish the following result.

Theorem 6 Let α = 0, and assume λ �= 0, 1, 2. Let ε > 0 be a given arbitrary
constant, and let φ : T→ R satisfy

|∇φ(t)− λφ(t)− f (t)| ≤ ε, t ∈ Tκ ,

where f is a real-valued function on T. Then one of the following holds:

(i) If 0 < λ < 1, then there exists a solution x : T→ R of

∇x(t)− λx(t)− f (t) = 0 (7)

such that |φ(t)− x(t)| ≤ ε
λ

for all t ∈ T.
(ii) If λ < 0, then there exists a solution x : T→ R of (7) such that |φ(t)−x(t)| ≤

ε
|λ| for all t ∈ T.

(iii) If 1 < λ < 2, then there exists a solution x : T → R of (7) such that
|φ(t)− x(t)| ≤ ε

2−λ for all t ∈ T.
(iv) If λ > 2, then there exists a solution x : T→ R of (7) such that |φ(t)−x(t)| ≤

ε
λ−2 for all t ∈ T.

Proof We assume that

|∇φ(t)− λφ(t)− f (t)| ≤ ε
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for all t ∈ Tκ . Let u(t) = (1 − λ)−t∇−1f (t)(1 − λ)t−1 on T, where ∇−1 is an
anti-backward difference operator. Then u(t) is a solution of (7). Actually, we can
check that

f (t)(1− λ)t−1 = ∇u(t)(1− λ)t = u(t)(1− λ)t − u(t − 1)(1− λ)t−1

= [(1− λ)u(t)− u(t − 1)](1− λ)t−1

= [∇u(t)− λu(t)](1− λ)t−1

holds for all t ∈ Tκ . From this, we see that

∇(φ(t)− u(t))− λ(φ(t)− u(t)) = ∇φ(t)− λφ(t)− (∇u(t)− λu(t))
= ∇φ(t)− λφ(t)− f (t)

for all t ∈ Tκ , and thus,

|∇(φ(t)− u(t))− λ(φ(t)− u(t))| = |∇φ(t)− λφ(t)− f (t)| ≤ ε

for all t ∈ Tκ , by the assumption.
First, we consider case (i). Using Theorem 4 (i) and (ii), we can find a solution

v : T→ R of (3) with α = 0 such that |(φ(t)− u(t))− v(t)| ≤ ε
λ

for all t ∈ T. Let
x(t) = u(t)+ v(t) for all t ∈ T. Then we see that

∇x(t) = ∇u(t)+∇v(t) = λu(t)+ f (t)+ λv(t) = λx(t)+ f (t)

holds on Tκ . This means that x is a solution of (7) on T. Thus, (i) is true.
Next, we consider case (ii). From Theorem 4 (iii) and (iv), there exists a solution

v : T→ R of (3) with α = 0 such that |(φ(t)−u(t))−v(t)| ≤ ε
|λ| for all t ∈ T. Let

x(t) = u(t)+ v(t) for all t ∈ T. Using the same argument as above, x is a solution
of (7) on T. Thus, (ii) is true.

Cases (iii) and (iv) can be proved by using Theorem 5. The proof of (iii) and (iv)
are the same as the above, thus, the proof is now complete. ��

3 Hyers–Ulam Stability for the General Case

In the remainder of the paper, we will explore HUS and HUS constants for (3) in
the case that α ∈ (0, 1) and λ ∈ R\{0}. Note that upon expansion, (3) is equivalent
to the second-order difference equation

αx(t + 1)+ (1− 2α − λ)x(t)+ (α − 1)x(t − 1) = 0.
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If we denote the characteristic values of this equation as

Λ− := λ+ 2α − 1−
√

1− 2λ+ 4αλ+ λ2

2α
and

Λ+ := λ+ 2α − 1+
√

1− 2λ+ 4αλ+ λ2

2α
,

then the general solution to (3) is

x(t) = a1Λ
t− + a2Λ

t+, t ∈ T,

for arbitrary constants a1, a2 ∈ R. Note that Λ− < 0 and Λ+ > 0 for all α ∈ (0, 1)
and for all λ ∈ R, and that the discriminant satisfies 1− 2λ+ 4αλ+ λ2 > 0 for all
α ∈ (0, 1) and for all λ ∈ R.

Before presenting the main theorem, we give a lemma.

Lemma 1 Let α ∈ (0, 1), λ ∈ R and g(μ) = αμ2 − (λ + 2α − 1)μ + α − 1
for μ ∈ R. Then Λ− and Λ+ are two different real roots of g(μ) = 0, and satisfy
Λ− < 0 < Λ+. Furthermore, the following hold:

(i) If 0 < λ < 2(1− 2α), then Λ+ − 1 > 0 and 1 < Λ−−1
Λ− < 2;

(ii) If λ > 0 and λ > 2(1− 2α), then Λ+ − 1 > 0 and Λ−−1
Λ− > 2;

(iii) If λ < 0 and λ < 2(1− 2α), then −1 < Λ+ − 1 < 0 and 1 < Λ−−1
Λ− < 2;

(iv) If 2(1− 2α) < λ < 0, then −1 < Λ+ − 1 < 0 and Λ−−1
Λ− > 2.

Proof From α ∈ (0, 1), the discriminant (λ + 2α − 1)2 − 4α(α − 1) of g(μ) = 0
is positive, so that Λ− and Λ+ are two different real roots of g(μ) = 0. Since
g(0) = α − 1 < 0, we see that Λ− < 0 < Λ+ holds.

First, we consider (i). Since g(1) = −λ < 0 we haveΛ+ > 1. On the other hand,
from g(−1) = λ+2(2α−1) < 0, we haveΛ− < −1, so that 2Λ− < Λ−−1 < Λ−.
Hence we obtain 1 < Λ−−1

Λ− < 2.
Next, we consider case (ii). As in the same argument of (i), we have Λ+ > 1.

From g(−1) = λ+2(2α−1) > 0, we have−1 < Λ− < 0, so thatΛ−−1 < 2Λ−.
Hence we get Λ−−1

Λ− > 2.
Next, we consider case (iii). Since g(1) = −λ > 0 we have 0 < Λ+ < 1. Using

the same argument of (i), we obtain 1 < Λ−−1
Λ− < 2. By using the same arguments,

the statement of (iv) is clearly true. ��
Theorem 7 Let α ∈ (0, 1). Assume λ �= 0, 2(1−2α). Let ε > 0 be a given arbitrary
constant, and let φ : T→ R satisfy

|♦αφ(t)− λφ(t)| ≤ ε for all t ∈ T
κ
κ .
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Then one of the following holds:

(i) If 0 < λ < 2(1−2α), then (3) has Hyers–Ulam stability with an HUS constant
1

1−
√

1−2λ+4αλ+λ2
on T;

(ii) If λ > 0 and λ > 2(1 − 2α), then (3) has Hyers–Ulam stability with an HUS
constant 1√

1−2λ+4αλ+λ2−1
on T;

(iii) If λ < 0 and λ < 2(1 − 2α), then (3) has Hyers–Ulam stability with an HUS
constant 1√

1−2λ+4αλ+λ2−1
on T;

(iv) If 2(1−2α) < λ < 0, then (3) has Hyers–Ulam stability with an HUS constant
1

1−
√

1−2λ+4αλ+λ2
on T.

Proof Due to Theorem 1, assume λ �= 0 and λ �= 2(1− 2α) for any α ∈ (0, 1). We
consider the function g(μ) = αμ2−(λ+2α−1)μ+α−1 for μ ∈ R. Therefore, by
Lemma 1,Λ− andΛ+ are two different real roots of g(μ) = 0 withΛ− < 0 < Λ+.
From this, we see that

Λ− +Λ+ = λ+ 2α − 1

α
and Λ−Λ+ = α − 1

α
(8)

holds. Now, for arbitrary ε > 0, we assume that a function φ : T→ R satisfies

|♦αφ(t)− λφ(t)| ≤ ε

for all t ∈ T
κ
κ . Let ψ(t) = αΛ−∇φ(t) − α(Λ− − 1)φ(t) for all t ∈ Tκ . Using (8),

we have

Δψ(t)− (Λ+ − 1)ψ(t) = αΛ−Δ(∇φ(t))− α(Λ− − 1)Δφ(t)

−α(Λ+ − 1)Λ−∇φ(t)+ α(Λ− − 1)(Λ+ − 1)φ(t)

= αΛ−Δ(φ(t)− φ(t − 1))− α(Λ− − 1)Δφ(t)

−α(Λ−Λ+−Λ−)∇φ(t)+α(Λ−Λ+−Λ−−Λ++1)φ(t)

= αΛ−Δφ(t)− αΛ−∇φ(t)− α(Λ− − 1)Δφ(t)

−α(Λ−Λ+ −Λ−)∇φ(t)− λφ(t)
= αΔφ(t)− αΛ−Λ+∇φ(t)− λφ(t)
= ♦αφ(t)− λφ(t) (9)

for all t ∈ T
κ
κ . By the assumption, we see that

|Δψ(t)− (Λ+ − 1)ψ(t)| = |♦αφ(t)− λφ(t)| ≤ ε (10)

for all t ∈ T
κ
κ . The proof can be divided into four cases: (i) 0 < λ < 2(1− 2α); (ii)

λ > 0 and λ > 2(1− 2α); (iii) λ < 0 and λ < 2(1− 2α); (iv) 2(1− 2α) < λ < 0.
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First, we consider case (i) 0 < λ < 2(1− 2α). From Lemma 1 (i), we see that

Λ+ − 1 > 0 and 1 <
Λ− − 1

Λ−
< 2. (11)

Using Theorem 2 with (10) and (11), we conclude that there exists a solution y :
Tκ → R of

Δy(t)− (Λ+ − 1)y(t) = 0 (12)

such that |ψ(t)− y(t)| ≤ ε
Λ+−1 for all t ∈ Tκ . This inequality implies that

∣
∣∣∣∇φ(t)−

Λ− − 1

Λ−
φ(t)− y(t)

αΛ−

∣
∣∣∣ ≤

ε

α|Λ−|(Λ+ − 1)
(13)

for all t ∈ Tκ . Using Theorem 6 (iii) with (11) and (13), we can find a solution
x : T→ R of

∇x(t)− Λ− − 1

Λ−
x(t)− y(t)

αΛ−
= 0 (14)

such that

|φ(t)− x(t)| ≤
ε

α|Λ−|(Λ+−1)

2− Λ−−1
Λ−

= ε

α|Λ− + 1|(Λ+ − 1)

for all t ∈ T. By using (8), we have

α(Λ− + 1)(Λ+ − 1) = −1+
√

1− 2λ+ 4αλ+ λ2, (15)

and therefore,

|φ(t)− x(t)| ≤ ε

1−
√

1− 2λ+ 4αλ+ λ2

for all t ∈ T.
Now, we will show that x(t) is a solution of (3) on T. Recalling (9), we have

♦αx(t)− λx(t) = αΛ−Δ(∇x(t))− α(Λ− − 1)Δx(t)

−α(Λ+ − 1)Λ−∇x(t)+ α(Λ− − 1)(Λ+ − 1)x(t)

for all t ∈ T
κ
κ . Using (12) and (14), we get

♦αx(t)− λx(t) = Δ [α(Λ− − 1)x(t)+ y(t)]− α(Λ− − 1)Δx(t)

−(Λ+ − 1) [α(Λ− − 1)x(t)+y(t)]+ α(Λ− − 1)(Λ+ − 1)x(t)

= Δy(t)− (Λ+ − 1)y(t) = 0
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for all t ∈ T
κ
κ . Thus, x(t) is a solution of (3) on T. Consequently, (3) has Hyers–

Ulam stability with an HUS constant 1

1−
√

1−2λ+4αλ+λ2
on T.

Next, we consider case (ii) λ > 0 and λ > 2(1 − 2α). From Lemma 1 (ii), we
see that

Λ+ − 1 > 0 and
Λ− − 1

Λ−
> 2. (16)

Repeating the same argument as in the proof of case (i), we see that there exists a
solution y : Tκ → R of (12) such that |ψ(t) − y(t)| ≤ ε

Λ+−1 for all t ∈ Tκ . That
is, (13) holds for all t ∈ Tκ . Using Theorem 6 (iv) with (13) and (16), we can find a
solution x : T→ R of (14) such that

|φ(t)− x(t)| ≤
ε

α|Λ−|(Λ+−1)
Λ−−1
Λ− − 2

= ε

α(Λ− + 1)(Λ+ − 1)

for all t ∈ T. By (15), we obtain

|φ(t)− x(t)| ≤ ε
√

1− 2λ+ 4αλ+ λ2 − 1

for all t ∈ T. Repeating the same argument as in the proof of case (i), x(t) is
a solution of (3) on T. Consequently, (3) has Hyers–Ulam stability with an HUS
constant 1√

1−2λ+4αλ+λ2−1
on T.

Next, we consider case (iii) λ < 0 and λ < 2(1 − 2α). From Lemma 1 (iii), we
see that

− 1 < Λ+ − 1 < 0 and 1 <
Λ− − 1

Λ−
< 2. (17)

Using Theorem 2 with (10) and (17), we conclude that there exists a solution y :
Tκ → R of (12) such that |ψ(t)− y(t)| ≤ ε

|Λ+−1| for all t ∈ Tκ . That is,

∣∣∣∣∇φ(t)−
Λ− − 1

Λ−
φ(t)− y(t)

αΛ−

∣∣∣∣ ≤
ε

α|Λ−||Λ+ − 1|
holds for all t ∈ Tκ . Using Theorem 6 (iii) with (17), we can find a solution x :
T→ R of (14) such that

|φ(t)− x(t)| ≤
ε

α|Λ−||Λ+−1|
2− Λ−−1

Λ−
= ε

α|Λ− + 1||Λ+ − 1|
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for all t ∈ T. By (15), we obtain

|φ(t)− x(t)| ≤ ε
√

1− 2λ+ 4αλ+ λ2 − 1

for all t ∈ T. We can easily see that x(t) is a solution of (3) on T. Consequently, (3)
has Hyers–Ulam stability with an HUS constant 1√

1−2λ+4αλ+λ2−1
on T.

Finally, we consider case (iv) 2(1− 2α) < λ < 0. From Lemma 1 (iv), we have

−1 < Λ+ − 1 < 0 and
Λ− − 1

Λ−
> 2.

Using this inequalities and the same arguments above, we see that (3) has Hyers–
Ulam stability with an HUS constant 1

1−
√

1−2λ+4αλ+λ2
on T. This completes the

proof. ��
From Theorems 2, 3, 4, 5, and 7, we obtain the following result.

Theorem 8 Let α ∈ [0, 1]. If λ �= 0, 2(1− 2α), then (3) has Hyers–Ulam stability
with an HUS constant 1∣

∣
∣1−
√

1−2λ+4αλ+λ2
∣
∣
∣

on T.

Proof Consider the case α = 1. From Theorems 2 and 3, (3) has HUS on T.
Moreover, an HUS constant for (3) is 1

|1−|λ+1|| . When α = 1, we have

1
∣∣∣1−

√
1− 2λ+ 4αλ+ λ2

∣∣∣
= 1

|1− |λ+ 1|| .

Thus, the assertion is true when α = 1.
Next, we consider the case α = 0. From Theorems 4 and 5, (3) has HUS on T.

Moreover, an HUS constant for (3) is 1
|1−|λ−1|| . When α = 0, we get

1
∣∣∣1−

√
1− 2λ+ 4αλ+ λ2

∣∣∣
= 1

|1− |λ− 1|| .

Thus, the assertion is true when α = 0.
By Theorem 7, we can conclude that the case α ∈ (0, 1) is true immediately. ��

Remark 1 By Theorem 7 (i), if 0 < λ < 2(1 − 2α), then (3) has Hyers–
Ulam stability with an HUS constant of 1

1−
√

1−2λ+4αλ+λ2
on T; consequently, if

a minimum HUS constant exists in this case, it is bounded above by this number. Is
there a lower bound? Given ε > 0, consider the non-homogeneous diamond-alpha
difference equations

♦αy1(t)− λy1(t) = −ε, t ∈ Z, 0 < λ < 2(1− 2α) (18)
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and

♦αy2(t)− λy2(t) = (−1)t ε, t ∈ Z, 0 < λ < 2(1− 2α). (19)

Then, for arbitrary constants c1, c2 ∈ R, the function

φ1(t) =
ε

λ
+ c1Λ

t− + c2Λ
t+, t ∈ Z

is the general solution of (18), and the function

φ2(t) =
(−1)t ε

2− λ− 4α
+ c1Λ

t− + c2Λ
t+, t ∈ Z

is the general solution of (19). Since x(t) = c1Λ
t− + c2Λ

t+ is a solution of (3),

|φ1(t)− x(t)| =
ε

λ

and

|φ2(t)− x(t)| =
ε

2− λ− 4α
, α ∈

(
0,

2− λ
4

)
, λ ∈ (0, 2)

for t ∈ Z. Thus, the minimum HUS constant K† for (3), if it exists, satisfies

K† ∈

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
1
λ
, 1

1−
√

1−2λ+4αλ+λ2

]
: λ ∈ (0, 1), α ∈

(
0, 1−λ

2

]
,

[
1

2−4α−λ ,
1

1−
√

1−2λ+4αλ+λ2

]
: λ ∈ (0, 1), α ∈

[
1−λ

2 , 2−λ
4

]
;

λ ∈ [1, 2), α ∈
(

0, 2−λ
4

)

for these values of λ and α, leaving a gap. It remains an open question whether one
can do better than this in this case. ♦
Remark 2 Consider Theorem 7 (ii), and let α = 1

2 and λ = 33
56 . Then λ > 0 and

λ > 2(1 − 2α), so by Theorem 7 (ii), (3) has Hyers–Ulam stability with an HUS
constant

1
√

1− 2λ+ 4αλ+ λ2 − 1
= 56

9

on T. Consider φ : T→ R given by

φ(t) := 56ε

9(−2)t
+ c1

(−4

7

)t
+ c2

(
7

4

)t
, T = N0 := {0, 1, 2, 3, · · · },
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which satisfies
∣
∣∣∣♦1/2φ(t)− 33

56
φ(t)

∣
∣∣∣ =

∣
∣∣∣

ε

(−2)t

∣
∣∣∣ ≤ ε for all t ∈ T

κ
κ = N

for any given arbitrary constant ε > 0 and for arbitrary constants c1, c2 ∈ R. Clearly

x(t) = c1

(−4
7

)t + c2

(
7
4

)t
is a solution of (3) for these values of α and λ, yielding

|φ(t)− x(t)| = 56ε

9(2t )
≤ 56ε

9
, t ∈ T.

Thus

1
√

1− 2λ+ 4αλ+ λ2 − 1
= 56

9

is the minimum HUS constant in this case. ♦
Remark 3 Consider Theorem 7 (iii), and let α = 1

2 and λ = −15
8 . Then λ < 0 and

λ < 2(1 − 2α), so by Theorem 7 (iii), (3) has Hyers–Ulam stability with an HUS
constant

1
√

1− 2λ+ 4αλ+ λ2 − 1
= 8

9

on T. For φ : T→ R given by

φ(t) := 8ε

9
(2−t )+ c1(4

−t )+ c2(−4)t , T = N0 := {0, 1, 2, 3, · · · },

φ satisfies

♦1/2φ(t)+ 15

8
φ(t) = 2−t ε ≤ ε for all t ∈ T

κ
κ = N

for any given arbitrary constant ε > 0 and for arbitrary constants c1, c2 ∈ R. Clearly
x(t) = c1(4−t )+ c2(−4)t is a solution of (3) for these values of α and λ, yielding

|φ(t)− x(t)| = 8ε

9
(2−t ) ≤ 8ε

9
, t ∈ T.

Thus

1
√

1− 2λ+ 4αλ+ λ2 − 1
= 8

9

is the minimum HUS constant in this case. ♦
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Remark 4 Consider Theorem 7 (iv), and let α = 3
4 and λ = −35

48 . Then 2(1−2α) <
λ < 0, so by Theorem 7 (iv), (3) has Hyers–Ulam stability with an HUS constant

1

1−
√

1− 2λ+ 4αλ+ λ2
= 48

5

on T. Consider φ : T→ R given by

φ(t) := 48ε

5
(2−t )+ c1

(
4

9

)t
+ c2

(−3

4

)t
, T = N0 := {0, 1, 2, 3, · · · },

which satisfies

♦3/4φ(t)+ 35

48
φ(t) = 2−t ε ≤ ε for all t ∈ T

κ
κ = N

for any given arbitrary constant ε > 0 and for arbitrary constants c1, c2 ∈ R. Clearly

x(t) = c1

(
4
9

)t + c2

(−3
4

)t
is a solution of (3) for these values of α and λ, yielding

|φ(t)− x(t)| = 48ε

5
(2−t ) ≤ 48ε

5
, t ∈ T.

Thus

1

1−
√

1− 2λ+ 4αλ+ λ2
= 48

5

is the minimum HUS constant in this case. ♦
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Hyers–Ulam Stability for a First-Order
Linear Proportional Nabla Difference
Operator

Douglas R. Anderson

Abstract The Hyers–Ulam stability (HUS) of a certain first-order proportional
nabla difference equation with a sign-alternating coefficient is established. For those
parameter values for which HUS holds, an HUS constant is found, and in special
cases it is shown that this is the minimal such constant possible. A 2-cycle solution
and a 4-cycle solution are shown to not have HUS.

1 Introduction

Ulam [23, p. 63] first posed the problem of finding conditions such that a linear
mapping near an approximately linear mapping exists. This was solved by Hyers [6]
for the case of approximately additive mappings, when he proved that the Cauchy
equation is stable in Banach spaces; Rassias [19] subsequently generalized these
results. Since then there has been a significant amount of interest in Hyers–Ulam
stability (HUS), especially in relation to difference and differential equations; for
example, see [1, 3–5, 7–14, 17, 18, 20–22, 24].

We focus on the difference equations case first. Let T ⊂ hZ be nonempty, and
define T

κ := T\{maxT} if maxT ∈ hZ exists, and T
κ := T otherwise. Then, for

β ∈ R, consider the equation

Δhx(t)− βx(t) = 0, t ∈ T
κ , (1)

for h > 0, where Δh is the forward difference operator

Δhx(t) = x(t + h)− x(t)
h

, t ∈ hZ := {hk : k ∈ Z}.
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Recently, Onitsuka [15] investigated the influence of the constant step size h > 0
on HUS for (1). In this context, (1) has HUS if and only if there exists a constant
K > 0 with the following property:

For arbitrary ε > 0, if a function φ : T→ R satisfies |Δφ(t) − βφ(t)| ≤ ε for all t ∈ T
κ,

then there exists a solution x : T→ R of (1) such that |φ(t)− x(t)| ≤ Kε for all t ∈ T.

Such a constant K > 0 is called an HUS constant for (1) on T. Onitsuka [15] was
able to classify whether (1) has HUS for each possible value of β ∈ R, and for those
values of β for which (1) has HUS, whether there is a minimum value of the HUS
constant K , what the corresponding solution x looks like, and whether that solution
x is unique; see also [16]. We propose to modify and generalize these discrete results
of [15] to a new equation utilizing a proportional nabla difference operator with an
alternating coefficient, introduced below. For convenience, we will henceforth take
h = 1.

2 Hyers–Ulam Stability for a Proportional Nabla
Difference Operator

In this section we consider on S ⊂ Z the Hyers–Ulam stability of the first-
order linear homogeneous proportional nabla difference equation with alternating
coefficient given by

Dαx(t)− β(−1)tx(t) = 0, Dαx(t) := α∇x(t)+ (1− α)x(t), α ∈ (0, 1],
(2)

where β ∈ R is a parameter. Clearly D0 is the identity operator, while D1 is the
backward difference operator,

D1x(t) = ∇x(t) := x(t)− x(t − 1).

Consequently, these results modify those available for forward difference equations,
and include results for backward difference equations as a special case when α = 1.
It is easy to see that the operator Dα satisfies

Dαx(t) = x(t)− αx(t − 1),

allowing one interpretation of this proportional difference operator to be what
proportion of x(t − 1) gets subtracted off, with α = 1 being the full amount that
yields the traditional ∇ difference operator. To maintain the first-order nature of (2),
however, we henceforth consider only

α ∈ (0, 1] and β �= ±1.

Proportional derivatives and differences were first introduced in [2].
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Define

Sκ :=
{

S \{min S } : if the minimum of S exists,

S : otherwise.

Note that if a function x exists on S , then Dαx exists on Sκ . For the remainder of
the paper, we assume that S and Sκ are nonempty sets in Z.

Definition 1 We say that (2) has Hyers–Ulam stability (HUS) on S if and only if
there exists a constant K > 0 with the following property. For arbitrary ε > 0, if a
function φ : S → R satisfies

|Dαφ(t)− β(−1)tφ(t)| ≤ ε for all t ∈ Sκ ,

then there exists a solution x : S → R of (2) such that |φ(t) − x(t)| ≤ Kε for all
t ∈ S . Such a constant K is called an HUS constant for (2) on S .

Theorem 1 (No HUS) Equation (2) does not have Hyers–Ulam stability on Z if

β2 = 1± α2.

Proof First let β2 = 1− α2, say β = √1− α2. Given ε > 0, note that the function

φ(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
1−α−

√
1−α2

)
εt/2+cα2

α
(
−1+
√

1−α2
) : t = 2n

(t−1)ε
2α + (t+1)

(
−1+
√

1−α2
)
ε

2α2 + c : t = 2n+ 1

satisfies

|Dαφ(t)− (−1)t
√

1− α2φ(t)| = |(−1)t ε| = ε

for all t ∈ Z. As the 2-cycle

x(t) := c

⎧
⎨

⎩

1+
√

1−α2

α
: t = 2n

1 : t = 2n+ 1

for any c ∈ R and any n ∈ Z is the general solution of Dαx(t) −
(−1)t

√
1− α2x(t) = 0, we see that |φ(t) − x(t)| → ∞ as t → ±∞, so

that (2) does not have HUS on Z when β = √1− α2; a similar result holds when
β = −√1− α2, and thus is omitted. Next, let β2 = 1 + α2, say β = √1+ α2.
Given ε > 0, note that the function
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φ(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−1+α+

√
1+α2

)
εt/2+cα2

α
(
−1+
√

1+α2
) : t = 4n

(t−1)ε
2α + (t+1)

(
−1+
√

1+α2
)
ε

2α2 + c : t = 4n+ 1
(
−1+α+

√
1+α2

)
εt/2+cα2

α
(

1−
√

1+α2
) : t = 4n+ 2

(1−t)ε
2α + (t+1)

(
1−
√

1+α2
)
ε

2α2 − c : t = 4n+ 3

satisfies

|Dαφ(t)− (−1)t
√

1+ α2φ(t)| =
∣∣∣∣(−1)

⌈
1−t

2

⌉

ε

∣∣∣∣ = ε

for all t ∈ Z. As the 4-cycle

x(t) := c

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1+
√

1+α2

α
: t = 4n

1 : t = 4n+ 1
α

1−
√

1+α2
: t = 4n+ 2

−1 : t = 4n+ 3

for any c ∈ R and any n ∈ Z is the general solution of Dαx(t) −
(−1)t

√
1+ α2x(t) = 0, we see that |φ(t) − x(t)| → ∞ as t → ±∞, so

that (2) does not have HUS on Z when β = √1+ α2 either, as is the case when
β = −√1+ α2. The proof is complete. ��
Remark 1 In the following discussion, take

E1(t) := α + β(−1)t + 1

β2 + α2 − 1
(3)

and

ψ(t) :=

⎧
⎪⎨

⎪⎩

(
α2

1−β2

) t
2 : t even,

α
1+β

(
α2

1−β2

) t−1
2 : t odd.

(4)

Note that ψ is a fundamental solution of (2).

Lemma 1 Assume β ∈ (−1, 1) with β2 + α2 − 1 �= 0. Let ψ be the fundamental
solution of (2) given in (4), and let E : S → R be a particular solution to the
difference equation

DαE(t)− β(−1)tE(t) = −1. (5)
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Let ε > 0 be a fixed arbitrary constant, and let φ be a real-valued function on S .
Then the inequality

|Dαφ(t)− β(−1)tφ(t)| ≤ ε

holds for all t ∈ Sκ if and only if the nabla inequality

0 ≤ ∇
[
φ(t)− εE(t)

ψ(t)

]
≤ 2ε

α

∣∣∣ψ−1(t − 1)
∣∣∣

holds for all t ∈ Sκ .

Proof Since β ∈ (−1, 1) with β2 + α2 − 1 �= 0, the fundamental solution ψ in (4)
satisfies ψ(t) > 0 for all t ∈ S . Expanding the following nabla difference for
t ∈ Sκ , we see that

α∇
[
φ(t)− εE(t)

ψ(t)

]

= αψ(t − 1)(φ(t)− εE(t))− αψ(t)(φ(t − 1)− εE(t − 1))

ψ(t − 1)ψ(t)

=
(
1− β(−1)t

)
(φ(t)− εE(t))− αφ(t − 1)+ εαE(t − 1)

ψ(t − 1)

=
(
Dαφ(t)− β(−1)tφ(t)

)− ε (DαE(t)− β(−1)tE(t)
)

ψ(t − 1)

= ψ−1(t − 1)
[(
Dαφ(t)− β(−1)tφ(t)

)+ ε]

holds for all t ∈ Sκ ; the overall result then follows. ��
Proposition 1 Assume β ∈ (−1, 1) with β2 + α2 − 1 �= 0. Let ε > 0 be a given
arbitrary constant, and let φ : S → R satisfy |Dαφ(t) − β(−1)tφ(t)| ≤ ε for
all t ∈ Sκ . Then there exist a non-decreasing function u : S → R and a non-
increasing function v : S → R such that

φ(t) = u(t)ψ(t)+ εE1(t) = v(t)ψ(t)− εE1(t) (6)

for E1 and ψ in (3) and (4), respectively, and one of the following holds.

(i) If β ∈
(
−1,−√1− α2

)
∪
(√

1− α2, 1
)

and max S =: s∗ exists, then the

inequality

u(t) ≤ u(s∗) < v(s∗) ≤ v(t) (7)

holds for all t ∈ S .
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(ii) If β ∈
(
−1,−√1− α2

)
∪
(√

1− α2, 1
)

and max S does not exist, then

lim
t→∞u(t) and lim

t→∞ v(t) exist, and

u(t) ≤ lim
t→∞u(t) = lim

t→∞ v(t) ≤ v(t) (8)

holds for all t ∈ S .

(iii) If β ∈
(
−√1− α2,

√
1− α2

)
and min S =: s∗ exists, then the inequality

v(t) ≤ v(s∗) < u(s∗) ≤ u(t) (9)

holds for all t ∈ S .

(iv) If β ∈
(
−√1− α2,

√
1− α2

)
and min S does not exist, then lim

t→−∞u(t) and

lim
t→−∞ v(t) exist, and

v(t) ≤ lim
t→−∞ v(t) = lim

t→−∞ u(t) ≤ u(t) (10)

holds for all t ∈ S .

Proof Fix the parameter β ∈ (−1, 1) with β2 + α2 − 1 �= 0. It is straightforward to
check that E1 given in (3) solves (5). Define the functions u and v on S via

u(t) := (φ(t)− εE1(t))
1

ψ(t)
and v(t) := (φ(t)+ εE1(t))

1

ψ(t)

for t ∈ S . Then (6) holds, and thus for t ∈ S we obtain

v(t) = u(t)+2εE1(t)

ψ(t)
, v(t)

⎧
⎨

⎩

< u(t) : β ∈
(
−√1− α2,

√
1− α2

)
,

> u(t) : β ∈
(
−1,−√1− α2

)
∪
(√

1− α2, 1
)
.

(11)

Using Lemma 1, we have that the inequality

0 ≤ ∇u(t) ≤ 2ε

αψ(t − 1)

holds for all t ∈ Sκ . Since

∇
(

2εE1(t)

ψ(t)

)
= −2ε

αψ(t − 1)
,

this together with (11) implies that
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− 2ε

αψ(t − 1)
≤ ∇v(t) ≤ 0, t ∈ S .

Consequently, u is non-decreasing and v is non-increasing.
First we consider (i). From the results above and the assumptions in (i), we see

that u(s∗) is the maximum of u on S , and v(s∗) is the minimum of v on S . Then (7)
follows from (11), and (i) holds.

Next we consider (ii). Let t0 ∈ S be a fixed number. From the inequality in (11)
with

β ∈
(
−1,−

√
1− α2

)
∪
(√

1− α2, 1
)
, (12)

we have

u(t) < v(t0), t ∈ S,

and thus u is bounded above on S . As S is unbounded in this case, the lim
t→∞u(t)

exists. Since (12) holds in this case, we have

lim
t→∞

2εE1(t)

ψ(t)
= 0.

Consequently, we have from the equality in (11) that lim
t→∞ u(t) = lim

t→∞ v(t). As a

result, (8) is true for t ∈ S , since u is non-decreasing and v is non-increasing; thus
(ii) holds.

The arguments for (iii) and (iv) are similar to those given above for (i) and (ii),
and thus are omitted. This completes the proof. ��
Theorem 2 Assume β ∈ (−1, 1) with β2 + α2 − 1 �= 0. Let ε > 0 be a given
arbitrary constant, and let φ : S → R satisfy

|Dαφ(t)− β(−1)tφ(t)| ≤ ε, t ∈ Sκ .

Then one of the following holds.

(i) If β ∈
(
−1,−√1− α2

)
∪
(√

1− α2, 1
)

and s∗ := max S exists, then any

solution x of (2) with |φ(s∗)− x(s∗)| < εE1(s
∗) satisfies

|φ(t)− x(t)| < ε
max{α ± β + 1}
β2 + α2 − 1

for all t ∈ S , where E1 is given in (3).
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(ii) If β ∈
(
−1,−√1− α2

)
∪
(√

1− α2, 1
)

and max S does not exist, then

lim
t→∞φ(t)ψ

−1(t) exists, and the function

x(t) :=
(

lim
t→∞φ(t)ψ

−1(t)
)
ψ(t)

is the unique solution of (2) such that

|φ(t)− x(t)| ≤ εmax{α ± β + 1}
β2 + α2 − 1

(13)

for all t ∈ S , where ψ is given in (4).

(iii) If β ∈
(
−√1− α2,

√
1− α2

)
and s∗ := min S exists, then any solution x

of (2) with |φ(s∗)− x(s∗)| < εE1(s∗) satisfies

|φ(t)− x(t)| < ε
max{α ± β + 1}

1− β2 − α2

for all t ∈ S .

(iv) If β ∈
(
−√1− α2,

√
1− α2

)
and min S does not exist, then

lim
t→−∞φ(t)ψ

−1(t) exists, and the function

x(t) :=
(

lim
t→−∞φ(t)ψ

−1(t)

)
ψ(t)

is the unique solution of (2) such that

|φ(t)− x(t)| ≤ εmax{α ± β + 1}
1− β2 − α2

for all t ∈ S .

Proof From Proposition 1, we can find a non-decreasing function u : S → R and
a non-increasing function v : S → R such that (6) holds for all t ∈ S .

First we consider (i). From Proposition 1 (i), we have (7) for all t ∈ S . Let x
be any solution of (2) with |φ(s∗)− x(s∗)| < εE1(s

∗). Then this solution x can be
expressed as

x(t) := x(s∗)ψ(t)
ψ(s∗)

, t ∈ S ,

for ψ given in (4). Using (6) and (7) and |φ(s∗)− x(s∗)| < εE1(s
∗), we obtain

u(s∗) < x(s∗)
ψ(s∗)

< v(s∗).
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From this inequality and the results above, we have that

φ(t)− x(t) ≤ u(s∗)ψ(t)+ εE1(t)− x(s∗)
ψ(s∗)

ψ(t)

=
(
u(s∗)− x(s∗)

ψ(s∗)

)
ψ(t)+ εE1(t) < ε

max{α ± β + 1}
β2 + α2 − 1

and

φ(t)− x(t) ≥ v(s∗)ψ(t)− εE1(t)− x(s∗)
ψ(s∗)

ψ(t)

=
(
v(s∗)− x(s∗)

ψ(s∗)

)
ψ(t)− εE1(t) > −εmax{α ± β + 1}

β2 + α2 − 1

for all t ∈ S ; thus, (i) holds.
Next consider (ii). From Proposition 1 (ii), we have (8) for all t ∈ S . Since

lim
t→∞ u(t) exists and lim

t→∞ψ
−1(t) = 0, we see that

lim
t→∞φ(t)ψ

−1(t) = lim
t→∞

(
u(t)+ εE1(t)ψ

−1(t)
)
= lim

t→∞ u(t)

exists. Now, we consider the function

x(t) :=
(

lim
t→∞φ(t)ψ

−1(t)
)
ψ(t)

for all t ∈ S . This x is a well-defined solution of (2). Using (6) and (8), we obtain

φ(t)− x(t) =
(
u(t)− lim

t→∞φ(t)ψ
−1(t)

)
ψ(t)+ εE1(t) ≤ εmax{α ± β + 1}

β2 + α2 − 1

and

φ(t)− x(t) =
(
v(t)− lim

t→∞φ(t)ψ
−1(t)

)
ψ(t)− εE1(t) ≥ −εmax{α ± β + 1}

β2 + α2 − 1

for all t ∈ S . That is, (13) holds for all t ∈ S . We next show that this x is the unique
solution of (2) such that (13) for all t ∈ S . Pick any constant c �= lim

t→∞φ(t)ψ
−1(t),

and define y(t) := cψ(t) for all t ∈ S . This y is some solution of (2) different
from x, by the uniqueness of solutions for the initial value problem. Since

lim
t→∞(u(t)− c) = lim

t→∞φ(t)ψ
−1(t)− c �= 0,
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we have

lim
t→∞ |φ(t)− y(t)| = lim

t→∞ |(u(t)− c)ψ(t)+ εE1(t)| = ∞.

Consequently, x is the unique solution of (2) such that (13) for all t ∈ S ; thus, (ii)
holds.

The arguments for (iii) and (iv) are similar to those given above for (i) and (ii),
and thus are omitted. This completes the proof. ��

By Theorem 2, we obtain the following result immediately.

Corollary 1 If β ∈ (−1, 1) with β2+α2−1 �= 0, then (2) has Hyers–Ulam stability
with an HUS constant max{α±β+1}∣

∣β2+α2−1
∣
∣ on S .

Corollary 2 Assume β ∈ (−1, 1) with β2 + α2 − 1 > 0. Then the minimum HUS
constant for (2) on all of Z is

max{α ± β + 1}
∣
∣β2 + α2 − 1

∣
∣ .

Proof For t ∈ Z and arbitrary constant C ∈ R, the function

φ(t) :=
⎧
⎨

⎩

(
(α+β+1)ε
β2+α2−1

+ C(1+β)
α

)
ψ(t)− (α+β+1)ε

β2+α2−1
: t even

(
(α+β+1)ε
β2+α2−1

+ C(1+β)
α

)
ψ(t)− (α−β+1)ε

β2+α2−1
: t odd

satisfies

Dαφ(t)− β(−1)tφ(t) = ε for all t ∈ Z.

As shown in Theorem 2(ii), using ψ as in (4),

lim
t→∞

(
φ(t)ψ−1(t)

)
= (α + β + 1)ε

β2 + α2 − 1
+ C(1+ β)

α

exists, and the function

x(t) :=
(
(α + β + 1)ε

β2 + α2 − 1
+ C(1+ β)

α

)
ψ(t)

solves (2). Then

|φ(t)− x(t)| = |−εE1(t)| = εE1(t)

on Z, for E1 given in (3). This means that the minimum HUS constant for (2) on
Z is greater than or equal to maxE1(t) = max α±β+1

β2+α2−1
. So, this together with
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Corollary 1 implies that the minimum HUS constant for (2) on Z is max α±β+1
β2+α2−1

when β ∈ (−1, 1) with β2 + α2 − 1 > 0. ��
Lemma 2 Assume β �= ±1 and β2−α2−1 �= 0. Letψ be the fundamental solution
of (2) given in (4), and let G : S → R solve the difference equation

DαG(t)− β(−1)tG(t) = 1 sgnψ(t − 1), (14)

where sgn is the sign of the expression. Let ε > 0 be a fixed arbitrary constant, and
let φ be a real-valued function on S . Then the inequality

|Dαφ(t)− β(−1)tφ(t)| ≤ ε

holds for all t ∈ Sκ if and only if the nabla inequality

0 ≤ ∇
[
φ(t)+ εG(t)

ψ(t)

]
≤ 2ε

α

∣∣∣ψ−1(t − 1)
∣∣∣

holds for all t ∈ Sκ .

Proof Since ψ solves (2), we have αψ(t−1) = (1− β(−1)t
)
ψ(t). Expanding the

following nabla difference for t yields

α∇
[
φ(t)+ εG(t)

ψ(t)

]

= αψ(t − 1)(φ(t)+ εG(t))− αψ(t)(φ(t − 1)+ εG(t − 1))

ψ(t − 1)ψ(t)

=
(
1− β(−1)t

)
(φ(t)+ εG(t))− αφ(t − 1)− εαG(t − 1)

ψ(t − 1)

= sgnψ(t − 1)

(
Dαφ(t)− β(−1)tφ(t)

)+ ε (DαG(t)− β(−1)tG(t)
)

|ψ(t − 1)|
=
∣∣∣ψ−1(t − 1)

∣∣∣
[
(sgnψ(t − 1))

(
Dαφ(t)− β(−1)tφ(t)

)+ ε]

holds for all t ∈ Sκ , asG solves (14). The overall result then follows for all t ∈ Sκ ,
completing the proof. ��
Remark 2 For β > 1 with β2 − α2 − 1 �= 0, the function G = G1, where G1 is
given by

G1(t) :=
⎧
⎨

⎩

(−1)
t
2

(
α+β+1
β2−α2−1

)
: t even

(−1)
t−1

2

(
α+β−1
β2−α2−1

)
: t odd,

(15)
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solves (14) with sgnψ(t − 1) = −(−1) t2�. Consequently, Lemma 2 holds with
G = G1 given here in (15).

Proposition 2 Assume β ∈
(

1,
√

1+ α2
)
∪
(√

1+ α2,∞
)

. Let ε > 0 be a given

arbitrary constant, and let φ : S → R satisfy |Dαφ(t) − β(−1)tφ(t)| ≤ ε for
all t ∈ Sκ . Then there exist a non-decreasing function u : S → R and a non-
increasing function v : S → R such that

φ(t) = u(t)ψ(t)− εG1(t) = v(t)ψ(t)+ εG1(t) (16)

for ψ and G1(t) in (4) and (15), respectively, and one of the following holds.

(i) If β ∈
(

1,
√

1+ α2
)

and max S =: s∗ exists, then the inequality

u(t) ≤ u(s∗) < v(s∗) ≤ v(t) (17)

holds for all t ∈ S .

(ii) If β ∈
(

1,
√

1+ α2
)

and max S does not exist, then lim
t→∞ u(t) and lim

t→∞ v(t)
exist, and

u(t) ≤ lim
t→∞u(t) = lim

t→∞ v(t) ≤ v(t) (18)

holds for all t ∈ S .
(iii) If β >

√
1+ α2 and min S =: s∗ exists, then the inequality

v(t) ≤ v(s∗) < u(s∗) ≤ u(t) (19)

holds for all t ∈ S .
(iv) If β >

√
1+ α2 and min S does not exist, then lim

t→−∞u(t) and lim
t→−∞ v(t)

exist, and

v(t) ≤ lim
t→−∞ v(t) = lim

t→−∞ u(t) ≤ u(t) (20)

holds for all t ∈ S .

Proof Fix the parameter β ∈
(

1,
√

1+ α2
)
∪
(√

1+ α2,∞
)

, and define the

functions u and v on S via

u(t) := (φ(t)+ εG1(t)) ψ
−1(t) and v(t) := (φ(t)− εG1(t)) ψ

−1(t)

for t ∈ S . Then (16) holds, and thus for t ∈ S we obtain
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u(t) = v(t)+ 2εG1(t)ψ
−1(t), u(t)

{
< v(t) : 1 < β <

√
1+ α2,

> v(t) : β >
√

1+ α2.
(21)

From the assertion in Lemma 2 and the definition of the function u, we have

0 ≤ ∇u(t) ≤ 2ε

α

∣∣∣ψ−1(t − 1)
∣∣∣

for all t ∈ Sκ . In addition, using the equality found in (21), we get

∇u(t) = ∇v(t)+ 2ε

α

∣
∣∣ψ−1(t − 1)

∣
∣∣ ,

so that

−2ε

α

∣∣∣ψ−1(t − 1)
∣∣∣ ≤ ∇v(t) ≤ 0

for all t ∈ Sκ . It follows that u is non-decreasing and v is non-increasing.
First we consider (i). Since u is non-decreasing and v is non-increasing, by the

inequality in (21) with 1 < β <
√

1+ α2 and the fact that s∗ := max S exists,
inequality (17) holds for t ∈ S and (i) is true.

Consider (ii). Let t0 ∈ S be a fixed number. From the inequality in (21) with
1 < β <

√
1+ α2, we have

u(t) < v(t0), t ∈ S ,

and thus u is bounded above on S . With S unbounded, we know lim
t→∞u(t) exists.

Moreover, 1 < β2 < 1+ α2 implies that

lim
t→∞G1(t)ψ

−1(t) = 0.

As a result, we have from the equality in (21) that lim
t→∞ u(t) = lim

t→∞ v(t).
Consequently, (18) is true for t ∈ S , and (ii) holds.

Using the same arguments in the proofs of (i) and (ii), we can easily see that
assertions (iii) and (iv) are also true. The proof is now complete. ��
Theorem 3 Assume β ∈

(
1,
√

1+ α2
)
∪
(√

1+ α2,∞
)

. Let ε > 0 be a given

arbitrary constant, and let φ : S → R satisfy

|Dαφ(t)− β(−1)tφ(t)| ≤ ε, t ∈ Sκ .

Then one of the following holds.
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(i) If β ∈
(

1,
√

1+ α2
)

and s∗ := max S exists, then any solution x of (2) with

|φ(s∗)− x(s∗)| < εmax |G1(t)| satisfies |φ(t)− x(t)| < εmax |G1(t)|

for all t ∈ S , where G1 is given in (15).

(ii) If β ∈
(

1,
√

1+ α2
)

and max S does not exist, then lim
t→∞φ(t)ψ

−1(t) exists,

and the function

x(t) :=
(

lim
t→∞φ(t)ψ

−1(t)
)
ψ(t)

is the unique solution of (2) such that

|φ(t)− x(t)| ≤ εmax |G1(t)|

for all t ∈ S , where ψ is given in (4).
(iii) If β >

√
1+ α2 and s∗ := min S exists, then any solution x of (2) with

|φ(s∗)− x(s∗)| < εmax |G1(t)| satisfies |φ(t)− x(t)| < εmax |G1(t)|

for all t ∈ S .
(iv) If β >

√
1+ α2 and min S does not exist, then lim

t→−∞φ(t)ψ
−1(t) exists, and

the function

x(t) :=
(

lim
t→−∞φ(t)ψ

−1(t)

)
ψ(t)

is the unique solution of (2) such that

|φ(t)− x(t)| ≤ εmax |G1(t)|

for all t ∈ S .

Proof From Proposition 2, we can find a non-decreasing function u : S → R and
a non-increasing function v : S → R such that (16) holds for all t ∈ S .

First we consider (i). Assume β ∈
(

1,
√

1+ α2
)

and s∗ := max S exists. From

Proposition 2 (i), we have (17) for all t ∈ S . Let x be any solution of (2) with

|φ(s∗)− x(s∗)| < εmax |G1(t)|.

Then this x can be expressed as

x(t) := x(s∗)ψ(t)
ψ(s∗)
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for all t ∈ S , and the above inequality yields

φ(s∗)− εmax |G1(t)| < x(s∗) < φ(s∗)+ εmax |G1(t)|. (22)

The rest of the proof continues as in the proof of the cases of Theorem 2, and thus
the details are omitted. ��

By Theorem 3, we obtain the following result immediately.

Corollary 3 If β ∈
(

1,
√

1+ α2
)
∪
(√

1+ α2,∞
)

, then (2) has Hyers–Ulam

stability with an HUS constant K = max |G1(t)| on S , for G1 given in (15).

Remark 3 Assume β ∈
(

1,
√

1+ α2
)
∪
(√

1+ α2,∞
)

. We will prove that the

minimum HUS constant for (2) on all of Z is K = max |G1(t)|, where G1 is given
in (15). The function

φ(t) := εG1(t)+ (max |G1(t)|) ψ(t), t ∈ Z

satisfies |Dαφ(t)− βφ(t)| = ε for all t ∈ Z since G1 solves (14), and the function
x(t) := (max |G1(t)|) ψ(t) solves (2). Clearly |φ(t) − x(t)| = ε|G1(t)| on Z.
This means that the minimum HUS constant for (2) on Z is greater than or equal
to max |G1(t)|. So, this together with Corollary 3 implies that the minimum HUS
constant for (2) on Z is max |G1(t)|.
Remark 4 For β < −1 with β2 − α2 − 1 �= 0, the function G = G2, where G2 is
given by

G2(t) := (−1) t2�
(
α − β − (−1)t

β2 − α2 − 1

)
(23)

solves (14) with sgnψ(t − 1) = (−1)

⌈
t−1

2

⌉

. Consequently, Lemma 2 holds with
G = G2 given here in (23).

Theorem 4 Assume β ∈
(
−∞,−√1+ α2

)
∪
(
−√1+ α2,−1

)
. Let ε > 0 be a

given arbitrary constant, and let φ : S → R satisfy

|Dαφ(t)− β(−1)tφ(t)| ≤ ε, t ∈ Sκ .

Then one of the following holds.

(i) If β ∈
(
−√1+ α2,−1

)
and s∗ := max S exists, then any solution x of (2)

with

|φ(s∗)− x(s∗)| < εmax |G2(t)| satisfies |φ(t)− x(t)| < εmax |G2(t)|

for all t ∈ S , where G2 is given in (23).
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(ii) If β ∈
(
−√1+ α2,−1

)
and max S does not exist, then lim

t→∞φ(t)ψ
−1(t)

exists, and the function

x(t) :=
(

lim
t→∞φ(t)ψ

−1(t)
)
ψ(t)

is the unique solution of (2) such that

|φ(t)− x(t)| ≤ εmax |G2(t)|

for all t ∈ S , where ψ is given in (4).
(iii) If β < −√1+ α2 and s∗ := min S exists, then any solution x of (2) with

|φ(s∗)− x(s∗)| < εmax |G2(t)| satisfies |φ(t)− x(t)| < εmax |G2(t)|

for all t ∈ S .
(iv) If β < −√1+ α2 and min S does not exist, then lim

t→−∞φ(t)ψ
−1(t) exists,

and the function

x(t) :=
(

lim
t→−∞φ(t)ψ

−1(t)

)
ψ(t)

is the unique solution of (2) such that

|φ(t)− x(t)| ≤ εmax |G2(t)|

for all t ∈ S .

Remark 5 Similar to Remark 3, for β ∈
(
−∞,−√1+ α2

)
∪
(
−√1+ α2,−1

)

the minimum HUS constant for (2) on all of Z is K = max |G2(t)|, where G2 is
given in (23).

3 Extension

With care, one could extend these results to the more general equation

Dαx(t)− βg(t)x(t) = 0, t ∈ S ⊆ Z, α ∈ (0, 1], β �= 1

A
,

1

B
,

(24)

where the 2-cycle coefficient function g is given by
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g(t) :=
{
A : t even

B : t odd

for any A,B ∈ R with A �= B. In this case, the fundamental solution ψ to (24) is

ψ(t) :=

⎧
⎪⎨

⎪⎩

(
α2

(1−βA)(1−βB)
) t

2 : t even,

α
1−βB

(
α2

(1−βA)(1−βB)
) t−1

2 : t odd.

4 Conclusion

In this paper, we investigated the Hyers–Ulam stability (HUS) of the proportional
nabla difference equation

Dαx(t)− β(−1)t x(t) = 0, t ∈ S ⊆ Z, α ∈ (0, 1], β �= ±1.
(25)

For the parameter values

β2 = 1− α2 or β2 = 1+ α2,

the solution of (2) is a 2-cycle and a 4-cycle, respectively, and there is no HUS.
If β ∈ (−1, 1) with β2 + α2 − 1 �= 0, then (25) has Hyers–Ulam stability with

an HUS constant

K = max |E1(t)|,

and this is the minimal HUS constant if S = Z, for E1 given in (3). If β ∈
(1,
√

1+ α2) ∪ (√1+ α2,∞), then (25) has Hyers–Ulam stability with an HUS
constant

K = max |G1(t)|,

and this is the minimal HUS constant if S = Z, for G1 given in (15). If β ∈(
−∞,−√1+ α2

)
∪ (−√1+ α2,−1), then (25) has Hyers–Ulam stability with an

HUS constant

K = max |G2(t)|,

and this is the minimal HUS constant if S = Z, for G2 given in (23).
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Solution of Generalized Jensen and
Quadratic Functional Equations

A. Charifi, D. Zeglami, and S. Kabbaj

Abstract We obtain in terms of additive and multi-additive functions the general
solution f : S → H of each of the functional equations

∑

λ∈Φ
f (x + λy + aλ) = Nf (x), x, y ∈ S,

∑

λ∈Φ
f (x + λy + aλ) = Nf (x)+Nf (y), x, y ∈ S,

where (S,+) is an abelian monoid, Φ is a finite group of automorphisms of S,
N = |Φ| designates the number of its elements, {aλ, λ ∈ Φ} are arbitrary elements
of S, and (H,+) is an abelian group. In addition, some applications are given.
These equations provide a common generalization of many functional equations
(Cauchy’s, Jensen’s, quadratic, Φ-quadratic equations, . . . ).

1 Introduction

The Φ-quadratic functional equation

∑

λ∈Φ
f (x + λy) = Nf (x)+Nf (y), x, y ∈ S, (1)

and the Φ-Jensen functional equation
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∑

λ∈Φ
f (x + λy) = Nf (x), x, y ∈ S, (2)

where S is an abelian semigroup (a non-empty set equipped with an associative
operation), Φ is a finite group of automorphisms of S, H is an abelian group and
f : S → H is the unknown function were studied by Łukasik [9] and appeared
in several works by Stetkær by considering S an abelian group, see, for example,
[13–15]. Let id : S → S denote the identity function and σ : S → S denote an
additive function of S, such that σ(σ(x) = x, for all x ∈ S then Eq. (1) reduces to
the functional equations

f (x + y) = f (x)+ f (y), x, y ∈ S , Φ = {id} (3)

f (x + y)+ f (x + σ(y)) = 2f (x)+ 2f (y), x, y ∈ S, Φ = {id, σ } (4)

n−1∑

i=0

f (x + ωiy) = nf (x)+ nf (y), x, y ∈ S = H = C, ω = e
2iπ
n ,

Φ =
{
ωi, 0 ≤ i ≤ n− 1

}
. (5)

If f is a solution of (3), it is said to be additive or satisfies Cauchy’s equation.
Equation (4) is related to symmetric biadditive functions [8, 11]. It is natural that
this equation is called quadratic functional equation. In particular, it is well known
that a function f between real vector spaces satisfies the equation

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

if and only if there exists a unique symmetric biadditive functionB such that f (x) =
B(x, x) for all x. The biadditive function B is given by

B(x, y) = 1

4
{f (x + y)+ f (x − y)} , for all x, y. (6)

Some information, applications, and numerous references concerning (4) and its
further generalizations can be found, e.g., in [3, 4, 6, 7, 12–15].

Let S be an abelian monoid (that is, a semigroup with identity) and H be an
abelian group (satisfying some assumptions). As a continuation of the works by
Łukasik [9] and by Charifi et al. [1, 2], the purpose of the present paper is first to
give an explicit description of the solutions of the generalized Φ-Jensen functional
equation

∑

λ∈Φ
f (x + λy + aλ) = Nf (x), x, y ∈ S, (7)
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and the generalized Φ-quadratic functional equation

∑

λ∈Φ
f (x + λy + aλ) = Nf (x)+Nf (y), x, y ∈ S, (8)

where f : S → H is an application, Φ is a finite group of automorphisms of S, N
designates the number of its elements, and {aλ, λ ∈ Φ} are arbitrary elements of S,
and secondly, to illustrate our theory, we give some applications.

These linear functional equations encompass, in addition to (1)–(5) on monoid,
the following functional equations as special cases:

f (x + y + a) = f (x)+ f (y), x, y ∈ S,

f (x + y + a)+ f (x + σ(y)+ b) = 2f (x), x, y ∈ S,

f (x + y + σ(a))+ f (x + σ(y)+ a) = 2f (x)+ 2f (y), x, y ∈ S,

f (x + y + a)+ f (x + σ(y)+ b) = 2f (x)+ 2f (y), x, y ∈ S,

where a, b ∈ S and σ is an involution of S, i.e. σ(x + y) = σ(y) + σ(x) and
σ(σ(x)) = x for all x, y ∈ S.

We shall adhere to the following notation.

Notation To formulate our results we introduce the following notation and assump-
tions that, unless otherwise explicitly stated, will be used throughout the paper:

Let S be an abelian monoid with identity element that we denote 0, letH,N , and
Φ given as above, let HS denote the Z-module consisting of all maps from S into
H and let {aλ, λ ∈ Φ} denote arbitrary elements of S.

A function A : S → H is additive if A(x + y) = A(x) +Ay) for all x, y ∈ S,
in this case it is easily seen that A(rx) = rA(x) for all x ∈ S and all r ∈ N.

Let k ∈ N, a function Ak : Sk → F is k-additive if it is additive in each variable,
in addition we say that Ak is symmetric if it satisfies Ak(xπ(1), xπ(2), . . . , xπ(k)) =
Ak(x1, x2, . . . , xk) for all (x1, x2, . . . , xk) ∈ Sk and all permutations π of k
elements.

Let Ak : Sk → H be a k-additive and symmetric function and let A∗k : S → H

defined by A∗k(x) = A(x, x, . . . , x) for all x ∈ S. Such a function A∗k will be called
a monomial function of degree k (if A∗k �= 0). We note that A∗k(rx) = rkA(x) for
all x ∈ S and all r ∈ N.

A function P : S → H is called a GP function (generalized polynomial function)
of degree m ∈ N iff there exist A0 ∈ H and symmetric k-additive functions Ak :
Sk → H (for 1 ≤ k ≤ m) such that

A∗m �= 0 and P(x) = A0 +
m∑

k=1

A∗k(x) for all x ∈ S. (9)
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For h ∈ S we define the linear difference operator Δh on HS by

Δh(f )(x) = f (x + h)− f (x), (10)

for all f ∈ HS and x ∈ S. Notice that these difference operators commute
(ΔhΔh′ = Δh′Δh for all h, h′ ∈ S) and if h ∈ S, n ∈ N then Δnh the n-th iterate of
Δh satisfies

Δnh(f )(x) =
n∑

k=0

(−1)n−k
(
n

k

)
f (x + kh), for all x, h ∈ S and f ∈ HS . (11)

2 Auxiliary Results

In this section, we note some results for later use.

Lemma 1 (Łukasik [9]) Let n ∈ N
∗. Then we have

(i)

n∑

k=1

(−1)n−k
(
n

k

)
ki = 0, i ∈ {1, 2, . . . , n− 1} , n �= 1. (12)

and

n∑

k=1

(−1)n−k
(
n

k

)
kn = n!. (13)

(ii) Let (H,+) be an abelian group uniquely divisible by n!. If x1, x2, . . . , xn ∈ H
be such that

n∑

i=1

kixi = 0, k ∈ {0, 1, . . . , n} . (14)

Then x1 = · · · = xn = 0.

The following theorem was proved by Mazur and Orlicz [10] and generalized by
Djoković [5]:

Theorem 1 Let (S,+) be an abelian semigroup, n ∈ N, (H,+) be an abelian
group uniquely divisible by n! and f ∈ HS. Then the following statements are
equivalent

(i) Δnhf (x) = 0 for all x, h ∈ E.
(ii) Δh1...hnf (x) = 0 for all x, h1, . . . , hn ∈ E.

(iii) f is a GP function of degree at most n− 1.
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In the next lemma we recall a general property of functions satisfying (7).

Lemma 2 (Charifi et al. [2]) Let (S,+) be an abelian monoid, Φ be a finite
subgroup of the group of automorphisms of S, N = card(Φ), (H,+) be an abelian
group uniquely divisible byN ! and {aλ, λ ∈ Φ} are arbitrary elements of S. Assume
that the function f : S → G satisfies the following equation

∑

λ∈Φ
f (x + λy + aλ) = Nf (x) and

∑

λ∈Φ
f (λy) = 0 (15)

for all x, y ∈ S. Then, ΔNy f (x) = 0 for x, y ∈ S.

3 Solutions of Eq. (7)

In the following theorem we determine, in terms of GP functions, the solutions of
the generalized Φ-Jensen functional equation (7).

Theorem 2 Let (S,+) be an abelian monoid,Φ be a finite subgroup of the group of
automorphisms of S, N = card(Φ), (H,+) be an abelian group uniquely divisible
by N ! and {aλ, λ ∈ Φ} are arbitrary elements of S. Then the function f : S → H

is a solution of Eq. (7) if and only if f has the following form

f (x) = A0 +
N−1∑

i=1

A∗i (x), x ∈ S, (16)

where A0 ∈ H and Ak : Sk → H , k ∈ {1, 2, . . . , N − 1} are k-additive and
symmetric functions which satisfy the following conditions

∑

i=max(k+j,k+1)≤N−1

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

) = 0

for all

x, y ∈ S, 0 ≤ k ≤ N − 2, 0 ≤ j ≤ N − k − 1.

Proof It is easy to check, by simple computation, that if f has the form (16) then f
satisfies Eq. (7). Indeed,

∑

λ∈Φ
f (x + λy + aλ)

= NA0+
∑

λ∈Φ

N−1∑

i=1

A∗i (x + λy + aλ)
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= NA0 +
∑

λ∈Φ

N−1∑

i=1

A∗i (x)

+
∑

λ∈Φ

N−1∑

j=0

N−2∑

k=0

N−1∑

i=max(k+1,j+k)

(
i

j

)(
i − j
k

)
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

)

= NA0+
∑

λ∈Φ

N−1∑

i=1

A∗i (x)

= Nf (x),

for all x, y ∈ S.
Conversely, suppose that f is a solution of Eq. (7). By taking in (7), respectively,

y = 0 and x = 0 we get

∑

λ∈Φ
f (x + aλ) = Nf (x), x ∈ S, (17)

and

∑

λ∈Φ
f (λy + aλ) = Nf (0), y ∈ S, (18)

By replacing, in the previous equality, y by μy we obtain

N2f (0) =
∑

μ∈Φ

∑

λ∈Φ
f (μλy + aλ)

=
∑

λ∈Φ

∑

μ∈Φ
f (μλy + aλ)

=
∑

λ∈Φ

∑

ν∈Φ
f (νy + aλ)

=
∑

ν∈Φ

∑

λ∈Φ
f (νy + aλ)

= N
∑

ν∈Φ
f (νy), (19)

for every y ∈ S. It follows, by taking g := f − f (0) in (19) that

∑

ν∈Φ
g(νy) = 0 for all y ∈ S, (20)
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so we can reformulate Eq. (7) as

∑

λ∈Φ
g(x + λy + aλ) = Ng(x)+

∑

λ∈Φ
g(λy), x, y ∈ S, (21)

i.e., g is a solution of the last equation and Eq. (7). In view of Lemma 2 and
Theorem 1, we infer that g is a GP function of degree at mostN−1. Then by putting
A0 = f (0) we obtain that there exist Ak : Sk → H, k ∈ {1, 2, . . . , N − 1} k-
additive and symmetric function such that

f (x) = A0 +
N−1∑

i=1

A∗i (x), x ∈ S. (22)

To prove the condition:

∑

i=max(k+j,k+1)

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

) = 0, x, y ∈ S,

(23)
for all 0 ≤ k ≤ N − 2, 0 ≤ j ≤ N − 1− k we define the functions I, Jk,Q(k,j) :
S × S → H by the formulas

I (x, y) =
∑

λ∈Φ
f (x + λy + aλ)−Nf (x), (24)

Jk(x, y) =
N−k−1∑

j=0

∑

i=max(k+j,k+1)

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

),

(25)
and

Q(k,j)(x, y) =
∑

i=max(k+j,k+1)

(
i

j

)(
i − j
k

)
∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

),

(26)
for all x, y ∈ S. A direct computation, using the expression of f given in (22) and
the condition (iii), shows that we have

0 = I (x, y)

=
∑

λ∈Φ
f (x + λy + aλ)−Nf (x)

=
∑

λ∈Φ

N−1∑

i=1

A∗i (x + λy + aλ)−N
N−1∑

i=1

A∗i (x)
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=
N−2∑

k=0

N−k−1∑

j=0

∑

i=max(k+j,k+1)≤N−1

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

)

=
N−2∑

k=0

N−k−1∑

j=0

Q(k,j)(x, y)

=
N−2∑

k=0

Jk(x, y)

for all x, y ∈ S. Lemma 1 (ii) applied, respectively, to the functions Jk and Q(k,j)

completes the proof of Theorem 2.

By using Theorem 2, we get the following corollaries. First if we take
{aλ, λ ∈ Φ} = {0} in (7) (i.e., using the notations of Theorem 2, k = i − j ),
we obtain the following result which has been proved by Łukasik ([9], Theorem 5).

Corollary 1 (Łukasik [9]) Let (S,+) be an abelian monoid, let Φ be a finite
subgroup of the group of automorphisms of S, N = card(Φ) and let H be an
abelian group uniquely divisible by N !. Then the general solution f : S → H of
the functional equation

∑

λ∈Φ
f (x + λy) = Nf (x), x, y ∈ S, (27)

is

f (x) = A0 +
N−1∑

i=1

A∗i (x), x ∈ S (28)

where A0 ∈ H, Ak : Sk → H, k ∈ {1, 2, . . . , N − 1} are arbitrary k-additive and
symmetric functions which satisfy the following conditions

∑

λ∈Φ
Ai (x, . . . x, λy, . . . , λy︸ ︷︷ ︸

j

) = 0, x, y ∈ S, 1 ≤ j ≤ i − 1, 1 ≤ i ≤ N − 1.

(29)

Proof Using the notations of Theorem 2, if {aλ = 0, λ ∈ Φ} = {0}, then i =
k + j, j ≥ 1 and k ≥ 1. Thus, by Theorem 2 we get

0 =
∑

i=max(k+j,k+1)≤N−1

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

)

j

=
N−1∑

2≤i=k+j

(
i

k

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

),
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=
N−2∑

k=1

N−1−k∑

j=1

(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

)

=
N−2∑

j=1

N−1−j∑

k=1

(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

), x, y ∈ S.

We define, for 1 ≤ k ≤ N − 1 − j, 0 ≤ j ≤ N − 2, the mappings gj , h(k,j) :
S × S → H by

gj (x, y) =
N−j−1∑

k=1

(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

),

h(k,j)(x, y) =
(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

).

First, we note

gj (x, ny) = njgj (x, y), x, y ∈ S, n ∈ N
∗, 1 ≤ j ≤ N − 2,

h(k,j)(nx, y) = nkh(k,j)(x, y), x, y ∈ S, n ∈ N
∗, 1 ≤ k ≤ N−1− j, 1 ≤ j ≤ N−2

and

N−1−j∑

k=1

h(k,j)(x, y) = gj (x, y), x, y ∈ S, n ∈ N
∗, 1 ≤ j ≤ N − 2.

Now, from the above equalities we get

N−1∑

j=1

njgj (x, y) =
N−1∑

j=1

gj (x, ny) = 0, x, y ∈ S, n ∈ N
∗

and then by Lemma 1,

gj (x, y) = 0, x, y ∈ S, 1 ≤ j ≤ N − 2.

So, we obtain
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N−1−j∑

k=1

nkh(k,j)(x, y) =
N−1−j∑

k=1

h(k,j)(nx, y) = gj (nx, y) = 0, x, y ∈ S, n ∈ N
∗,

1 ≤ j ≤ N − 2

which gives, according to Lemma 1,

h(k,j)(x, y) = 0, x, y ∈ S, 1 ≤ j ≤ N − 2, 1 ≤ k ≤ N − 1− j.

This ends the proof.

The second corollary was proved by Sinopoulos ([12], Theorem 2) on a semi-group.

Corollary 2 (Sinopoulos [12]) Let (S,+) be an abelian monoid, and let H be an
abelian group uniquely divisible by 2. Suppose that σ is an endomorphism of S such
that σ(σ(x)) = x for x ∈ S. Then, the general solution f : S → H of the functional
equation

f (x + y)+ f (x + σ(y)) = 2f (x), x, y ∈ S, (30)

is

f (x) = A0 +A1(x) (31)

where A0 ∈ H is an arbitrary constant and A1 : S → H is an arbitrary additive
function with A1(σ (x)) = −A1(x) for all x ∈ S.

In the following corollary we solve another special case of Eq. (7) that is,
according to our knowledge, not in the literature.

Corollary 3 Let (S,+) be an abelian monoid, a, b ∈ S and let H be an abelian
group uniquely divisible by 2. Suppose that σ is an endomorphism of S such that
σ(σ(x)) = x for x ∈ S. Then, the general solution f : S → H of the functional
equation

f (x + y + a)+ f (x + σ(y)+ b) = 2f (x), x, y ∈ S, (32)

is

f (x) = A0 +A1(x), x ∈ S, (33)

where A0 ∈ H,A1 : S → H is an arbitrary additive function with A1(σ (x)+x) =
0 and A1(a + b) = 0 for all x ∈ S.

Corollary 4 Let j be a primitive 3rd root of unity, and let a be a complex constant.
The continuous solution f : C→ C of the functional equation
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f (x+y+ ja)+f (x+ jy+ j2a)+f (x+ j2y+a) = 3f (x), x, y ∈ C, (34)

are the functions of the form

f (z) = α0 + α1z+ α2z+ α3z
2 + α4z̄

2, z ∈ C (35)

where α0, . . . , α4 are arbitrary complex numbers.

Proof In view of Theorem 2, we infer that there exist α0 ∈ C, an additive function
A1 : C→ C and a symmetric and bi-additive function A2 : C2 → C such that

f (z) = α0 +A1(z)+A2(z) for all z ∈ C. (36)

Since j is a primitive 3rd root of unity we have 1 + j + j2 = 0. The continuity
of f provides that A1 and A2 have the following forms:

A1(z) = α1z+ α2z̄ and A2(z) = α3z
2 + α4z̄

2 + α5 |z|2 , z ∈ C. (37)

The condition of Theorem 2 can be satisfied only for α5 = 0. This gives the
expression of f.

4 Solutions of Eq. (8)

Now we characterize the general solution of the generalized Φ-quadratic equa-
tion (8).

Theorem 3 Let (S,+) be an abelian monoid,Φ be a finite subgroup of the group of
automorphisms of S, N = card(Φ), (H,+) be an abelian group uniquely divisible
by (N+1)! and {aλ, λ ∈ Φ} are arbitrary elements of S. Then the function f : S →
H is a solution of Eq. (8) if and only if f has the following form:

f (x) = A0 +
N∑

i=1

A∗i (x), x ∈ S, (38)

where A0 ∈ H and Ak : Sk → H , k ∈ {1, 2, . . . , N} are symmetric and k-additive
functions satisfying the three conditions:

(i)
∑

λ∈Φ

N∑

k=1
A∗k(aλ) = NA0,

(ii)
∑

i=max(k+j,k+1)≤N
(
i
k

)(
i−k
j

) ∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

)=0,

x, y ∈ S,

1 ≤ k ≤ N − 1, 0 ≤ j ≤ N − k and



284 A. Charifi et al.

(iii)
N∑

k=i
(
i
k

) ∑

λ∈Φ
Ak(λx, . . . , λx︸ ︷︷ ︸

i

, aλ, . . . , aλ) = NA∗i (x), x ∈ S, 1 ≤ i ≤ N.

Proof It is easy to check, by simple computations, that if f satisfies (38) then f is
a solution of Eq. (8). Indeed, if the above three conditions (i)–(iii) are satisfied, then
we have for all x, y ∈ S
∑

λ∈Φ
f (x + λy + aλ)

= NA0 +
∑

λ∈Φ

N∑

i=1

A∗i (x + λy + aλ)

= NA0 +
∑

λ∈Φ

N∑

i=1

A∗i (x)+
∑

λ∈Φ

N∑

i=1

A∗i (λy + aλ)

+
N−1∑

k=1

N−k∑

j=0

∑

i=max(k+j,k+1)

(
i

k

)(
i−k
j

)∑

λ∈Φ
Ai (x, . . . , x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

)

= Nf (x)+
N∑

i=1

i∑

k=0

(
i

k

)∑

λ∈Φ
Ai (λy, . . . , λy︸ ︷︷ ︸

k

, aλ, . . . , aλ)

= Nf (x)+
N∑

i=1

∑

λ∈Φ
A∗i (aλ)+

N∑

k=1

N∑

i=k

(
i

k

)∑

λ∈Φ
Ai (λy, . . . , λy︸ ︷︷ ︸

k

, aλ, . . . , aλ)

= Nf (x)+NA0 +
N∑

k=1

NA∗k(y)

= Nf (x)+Nf (y).

So f is a solution of (8). Conversely, suppose that f : S → H is a solution of
Eq. (8). By taking, respectively, x = y = 0, y = 0 and x = 0 in (8) we obtain

∑

λ∈Φ
f (aλ) = 2Nf (0), (39)

∑

λ∈Φ
f (x + aλ) = Nf (x)+Nf (0), (40)

∑

λ∈Φ
f (λx + aλ) = Nf (x)+Nf (0), (41)
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for all x ∈ S. Thus, using these equalities and Eq. (8), we obtain:

N2f (x)+N
∑

μ∈Φ
f (μy) =

∑

λ∈Φ

∑

μ∈Φ
f (x + λμy + aλ)

=
∑

λ∈Φ

∑

ν∈Φ
f (x + νy + aλ)

=
∑

ν∈Φ

∑

λ∈Φ
f (x + νy + aλ)

= N2f (0)+N
∑

ν∈Φ
f (x + νy).

With the notation g := f − f (0) we can reformulate (8) to

∑

λ∈Φ
g(x + λy) = Ng(x)+

∑

λ∈Φ
g(λy), x, y ∈ S. (42)

So in view of ([9], Lemma 3) we infer that there exist A0 ∈ H and some k-additive
and symmetric functions Ak : Sk → H , k ∈ {1, 2, . . . , N} such that

f (x) = A0 +
N∑

i=1

A∗i (x), x ∈ S, (43)

and

∑

λ∈Φ

N∑

k=1

A∗i (aλ) = NA0. (44)

In virtue of (40) and (41) we have

∑

λ∈Φ
g(y + aλ) =

∑

λ∈Φ
g(λy + aλ), (45)

and in view of the previous equality, (43) and (44) we obtain

∑

λ∈Φ

N∑

i=1

{
A∗i (y)+A∗i (aλ)

} =
∑

λ∈Φ

N∑

i=1

A∗i (y + aλ)

=
∑

λ∈Φ
g(y + aλ)

=
∑

λ∈Φ
g(λy + aλ)
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=
N∑

i=1

i∑

k=0

(
i

k

)∑

λ∈Φ
Ai (λy, . . . , λy︸ ︷︷ ︸

k

, aλ, . . . , aλ)

= NA0+
N∑

k=1

N∑

i=k

(
i

k

)∑

λ∈Φ
Ai (λy, . . . , λy︸ ︷︷ ︸

k

, aλ, . . . , aλ).

Thus by putting for 1 ≤ k ≤ N

gk(y) := NA∗k(y)−
N∑

i=k

(
i

k

)∑

λ∈Φ
Ai (λy, . . . , λy︸ ︷︷ ︸

k

, aλ, . . . , aλ), y ∈ S, (46)

we get

N∑

i=1

migi(y) =
N∑

i=1

gi(my) = 0, (47)

for all y ∈ S and m ∈ N
∗. Then the condition (iii) follows from Lemma 1 (ii).

Finally, in order to get the condition (ii) we define, for all 1 ≤ k ≤ N − 1 and
0 ≤ j ≤ N − k the maps I, Jk,Q(k,j) : S × S → H by the formulas

I (x, y) =
∑

λ∈Φ
f (x + λy + aλ)−Nf (x)−Nf (y), (48)

Jk(x, y) =
N−k∑

j=0

∑

i=max(k+j,k+1)≤N

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

),

(49)
and

Q(k,j)(x, y) =
∑

i=max(k+j,k+1)≤N

(
i

j

)(
i − j
k

)
∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

),

(50)
for all x, y ∈ S. A direct computation, using the expression of f given in (43), the
conditions (i) and (iii), shows that we have

0 = I (x, y)

=
∑

λ∈Φ
f (x + λy + aλ)−Nf (x)−Nf (y)

=
∑

λ∈Φ

N∑

i=1

A∗i (x + λy + aλ)−N
N∑

i=1

A∗i (x)−
∑

λ∈Φ

N∑

i=1

A∗i (λy + aλ)
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=
N−1∑

k=1

N−k∑

j=0

∑

i=max(k+j,k+1)

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

)

=
N−k∑

j=0

N−1∑

k=1

Q(k,j)(x, y)

=
N−k∑

j=0

Jk(x, y)

for all x, y ∈ S.
Lemma 1 (ii) applied, respectively, to the functions Jk andQ(k,j) gives the sought

result.

By using Theorem 3 we get the following corollaries. First if we take
{aλ, λ ∈ Φ} = {0} in (8), we obtain the following result which was proved by
Łukasik ([9], Theorem 4).

Corollary 5 (Łukasik [9]) Let (S,+) be an abelian monoid, let Φ be a finite
subgroup of the group of automorphisms of S, N = card(Φ) and let H be an
abelian group uniquely divisible by (N +1)!. Then the general solution f : S → H

of the functional equation

∑

λ∈Φ
f (x + λy) = Nf (x)+Nf (y), x, y ∈ S, (51)

is

f (x) =
N∑

i=1

A∗i (x), x ∈ S, (52)

where Ak : Sk → H, k ∈ {1, 2, . . . , N} are arbitrary k-additive and symmetric
functions which satisfy the following conditions

∑

λ∈Φ
Ai (x, . . . x, λy, . . . , λy︸ ︷︷ ︸

j

) = 0, x, y ∈ S, 1 ≤ j ≤ i − 1, 2 ≤ i ≤ N (53)

and

A∗k(μx) = A∗k(x), x ∈ S, μ ∈ Φ, 1 ≤ k ≤ N. (54)

Proof With the notations of previous theorem, if {aλ, λ ∈ Φ} = {0}, then i =
j + k, j ≥ 1 and k ≥ 1. For all 1 ≤ k ≤ N − 1 by Theorem 3 we get that
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NA∗k(x) =
N∑

i=k

(
i

k

)∑

λ∈Φ
A∗i (λx)

=
N∑

i=k

(
i

k

)∑

ν∈Φ
A∗i (νμx), μ ∈ Φ

= NA∗k(μx), x ∈ S, μ ∈ Φ.

On the other hand, for all 1 ≤ k ≤ N − 1, 1 ≤ j ≤ N − k, we have

0 =
∑

2≤i=max(k+j,k+1)≤N

(
i

k

)(
i − k
j

)∑

λ∈Φ
Ai (x, . . . x︸ ︷︷ ︸

k

, aλ, . . . , aλ, λy, . . . , λy︸ ︷︷ ︸
j

)

=
N∑

i=2

(
i

k

)∑

λ∈Φ
Ai=k+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

),

=
N−j∑

k=1

N−1∑

j=1

(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

)

=
N−1∑

k=1

N−k∑

j=1

(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

), x, y ∈ S.

For 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1 such that k + j ≤ N we define the mappings
gj , h(k,j) : S × S → H by

gj (x, y) =
N−j∑

k=1

(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

),

h(k,j)(x, y) =
(
i

j

)∑

λ∈Φ
Ak+j (x, . . . x︸ ︷︷ ︸

k

, λy, . . . , λy
︸ ︷︷ ︸

j

).

First, we have the following equalities

gj (x, ny) = njgj (x, y), x, y ∈ S, n ∈ N
∗, 1 ≤ j ≤ N − 1,

h(k,j)(nx, y) = nkh(k,j)(x, y), x, y ∈ S, n ∈ N
∗, 1 ≤ k ≤ N−j, 1 ≤ j ≤ N−1
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and

N−j∑

k=1

h(k,j)(x, y) = gj (x, y), x, y ∈ S, n ∈ N
∗, 1 ≤ j ≤ N − 1.

Now, from the above equalities we get

N−1∑

j=1

njgj (x, y) =
N−1∑

j=1

gj (x, ny) = 0, x, y ∈ S, n ∈ N
∗

and then by Lemma 1,

gj (x, y) = 0, x, y ∈ S, 1 ≤ j ≤ N − 1.

So, we obtain

N−j∑

k=1

nkh(k,j)(x, y) =
N−j∑

k=1

h(k,j)(nx, y) = gj (nx, y) = 0, x, y ∈ S, n ∈ N
∗,

1 ≤ j ≤ N − 1

which gives in view of Lemma 1,

h(k,j)(x, y) = 0, x, y ∈ S, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − j.

This ends the proof.
The following corollary was proved by Sinopoulos ([12], Theorem 3) on a semi-

group.

Corollary 6 (Sinopoulos [12]) Let (S,+) be an abelian monoid, and let H be an
abelian group, uniquely divisible by 2. Suppose that σ is an endomorphism of S
such that σ(σ(x)) = x for x ∈ S. Then, the general solution f : S → H of the
functional equation

f (x + y)+ f (x + σ(y)) = 2f (x)+ 2f (y), x, y ∈ S, (55)

is

f (x) = A1(x)+A∗2(x) (56)

where A1 : S → H is an arbitrary additive function with A1(σ (x)) = A1(x) for
all x ∈ S, and A2 : S × S → G is an arbitrary symmetric biadditive function with
A2(σ (x), y) = −A2(x, y) for all x, y ∈ S.

In the following two corollaries we solve other special cases of Eq. (8) that are,
according to our knowledge, not in the literature.



290 A. Charifi et al.

Corollary 7 Let (S,+) be an abelian group, a, b ∈ S and let H be an abelian
group, uniquely divisible by 2. Then, the general solution f : S → H of the
functional equation

f (x + y + a)+ f (x − y + b) = 2f (x)+ 2f (y), x, y ∈ S, (57)

is

f (x) = A∗2(a)+ 2A2(x, a)+A∗2(x), for x ∈ S, (58)

where A2 : S×S → G is an arbitrary symmetric biadditive function with A2(x, a+
b) = 0 for all x ∈ S.

Corollary 8 Let (S,+) be an abelian monoid, a, b ∈ S and let H be an abelian
group, uniquely divisible by 2. Suppose that σ is an endomorphism of S such that
σ(σ(x)) = x for x ∈ S. Then, the general solution f : S → H of the functional
equation

f (x + y + a)+ f (x + σ(y)+ b) = 2f (x)+ 2f (y), x, y ∈ S, (59)

is

f (x) = 1

2
A1(a + b)+A∗2(a)+A1(x)+A∗2(x) (60)

where A2 : S × S → G is an arbitrary symmetric bi-additive function with

A2(x, a + b) = 0, A2(x, y + σ(y)) = 0

for all x ∈ S and A1 : S → H is an arbitrary additive function with

A1(x) = A1(σ (x))+ 4A2(x, a)

for all x ∈ S.
The following corollary is a particular case of Corollary 7.

Corollary 9 Let (S,+) be a commutative group, a ∈ S and let H be an abelian
group, uniquely divisible by 2. Then, the general solution f : S → H of the
functional equation

f (x + y − a)+ f (x − y + a) = 2f (x)+ 2f (y), x, y ∈ S, (61)

is

f (x) = A∗2(a)− 2A∗2(x, a)+A∗2(x), for x ∈ S, (62)

where A2 : S × S → H is an arbitrary symmetric bi-additive function.
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Corollary 10 Let (S,+) be a commutative group, let H be an abelian group and
a ∈ E. Then, the general solution f : S → E of the functional equation

f (x + y + a) = f (x)+ f (y), x, y ∈ S, (63)

is

f (x) = A(a)+A(x), x ∈ S, (64)

where A : S → H is an arbitrary additive function.

Corollary 11 (Stetkær [14]) Let w be a primitive N th root of unity, where N ≥ 2.
The continuous solution f : C→ C of the functional equation

N−1∑

n=0

f (x + wny) = Nf (x)+N(f (y), x, y ∈ C, (65)

are the functions of the form

f (z) = αzN + βz̄N + γ |z|2 , z ∈ C, (66)

where α, β, γ range over C.
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Part III
Analytic Inequalities



On Some Functional Equations with
Applications in Networks

El-Sayed El-Hady

Abstract Functional equations appear in many applications. They provide a pow-
erful tool for narrowing the models used to describe many phenomena. In particular,
some class of functional equations arises recently from many applications, e.g.
networks and communication. In this chapter on the one hand, we present some
functional equations of the same class of interest. On the other hand, we use
boundary value problem theory to investigate the solution of a special functional
equation: an equation arising from some queueing model.

1 Introduction

Functional equations (FEs) are well known as the equations where the unknowns are
functions not variables [4, 12, 27]. They are relatively old subject of mathematics,
but thanks to the pioneer mathematician Aczél [4] their theory has prospered. FEs
arise in models of various fields, such as queueing models, see, e.g., [8, 15, 16],
digital filtering [25], economics [19], population ethics [6], neural networks [21],
decision theory [1], and in inventory control of database systems [14].

In particular, the following general class of two-variable functional equations

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y)+ C4(x, y)f (0, 0)

+ C5(x, y), (1)

where Ci(x, y), i = 1, . . . , 5 are given polynomials in two complex variables x, y,
arises from different communication and network systems. The unknown functions
f (x, y), f (x, 0), f (0, y) are defined as follows:
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f (x, y) =
∞∑

m,n=0

pm,nx
myn, |x| ≤ 1, |y| ≤ 1

f (x, 0) =
∞∑

m=0

pm,0x
m, |x| ≤ 1,

and

f (0, y) =
∞∑

n=0

p0,ny
n, |y| ≤ 1

for some sequences of interest pm,n, pm,0, p0,n, respectively.
Various special cases of (1) appear in the literature, see, e.g., [3, 20, 24], such

equations have been solved using the theory of boundary value problems [13].
Some special case of (1) has appeared in [2] in the context of analyzing a multi-
programmed computer. The technique used there is that of analytic continuation.
Another special case of (1) arises from a network gateway queueing model [23].
A similar equation arises from two parallel queues created by arrivals with two
demands, see [18]. One more arises in [28] from two parallel processors with
coupled inputs. A survey paper [7] gives an array of similar functional equations
and techniques for their solution.

This chapter is mainly concerned with a solution of a two-variable FE arising
from a double queue model originally published in [22] using boundary value
problem. As a motivation, we first recall some functional equations together with
their applications and show the solutions as introduced in the original articles. The
chapter is organized as follows: In Sects. 2–6 we present some functional equations
coming from different applications, in Sect. 7 we recall the functional equation of
interest from the original article [22], in Sect. 8 we investigate the solution of the
equation by reduction to Riemann–Hilbert boundary value problem, and finally in
Sect. 9 we conclude our work.

2 Equation Arising from Symmetric Two-Node Aloha
Network

This equation arises [26] from a packet radio model having two symmetric,
interfering queues, as illustrated in Fig. 1. The PGF f (x, y) of the two-dimensional
distribution characterizing the system yields the two-place FE

f (x, y) =g(x, y)p (x(y − 1)− p(2xy − x − y))
xy − g(x, y)((x + y)pp̃ + xy(p2 + p̃2))

f (x, 0)
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Fig. 1 Symmetric two-node
aloha network

+ g(x, y)p (y(x − 1)− p(2xy − x − y))
xy − g(x, y)((x + y)pp̃ + xy(p2 + p̃2))

f (0, y)

+ g(x, y)p p(2xy − x − y)
xy − g(x, y)((x + y)pp̃ + xy(p2 + p̃2))

f (0, 0), (2)

where

g(x, y) = (xr + r̃)(yr + r̃), and r̃ = 1− r.
Up to now there is no solution available to Eq. (2). With some manipulation this FE
can be rewritten in the general form (1) as

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y)+ C4(x, y)f (0, 0), (3)

where

C1(x, y) = xy − (xr + r̃)(yr + r̃)((x + y)pp̃ + xy(p2 + p̃2)),

C2(x, y) = p(xr + r̃)(yr + r̃)(x(y − 1)− p(2xy − x − y)),
C3(x, y) = p(xr + r̃)(yr + r̃)(y(x − 1)− p(2xy − x − y)),

and

C4(x, y) = p2(xr + r̃)(yr + r̃)(2xy − x − y).

3 Equation Arising from Inventory Control of Database
Systems

This equation arises [18] from a double queue model, illustrated in Fig. 2. The
resultant two-place FE takes the form

Q(x, y)f (x, y) = βx(y − 1)f (x, 0)+ αy(x − 1)f (0, y), (4)
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Fig. 2 Inventory control of
database systems

where

Q(x, y) = (1+ α + β)xy − αy − βx − x2y2.

This equation is solved first by parameterizing the kernel given by

{(x, y) : Q(x, y) = 0}
by a pair of elliptic functions x = x(t), y = y(t). The functional equation for
f (x, y) is converted using the analytic continuation into a set of conditions on
f (x(t), 0), f (0, y(t)), which in turn lead to the determination of f (x, y) of the
form

f (x, 0) = β − 1

β

Φ(x)

Φ(1)
, |x| ≤ 1,

where

Φ(x) =
√
a3 − x +√a3 − 1

[√a3 − x +√a3 − α/β] · [√a3 − x −√a3 − α] ,

f (0, y) = α − 1

α

Ψ (y)

Ψ (1)
, |y| ≤ 1,

where

Ψ (y) =
√
b3 − y +√b3 − 1

[√b3 − y +√b3 − β/α] · [√b3 − y +√b3 − β] ,

for some positive constants a3, b3. This FE can be rewritten in the general form (1)
as

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y), (5)

where

C1(x, y) = (1+ α + β)xy − αy − βx − x2y2,

C2(x, y) = βx(y − 1),
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and

C3(x, y) = αy(x − 1).

4 Equation Arising from Two Parallel Queues with Batch
Server

This equation arises [17] from a model consisting of two parallel M/M/1 queues
with infinite capacities, illustrated in Fig. 3. It is assumed that the arrivals form two
independent Poisson processes with parameters λ1, λ2, and that the service times
are distributed exponentially with instantaneous service rates S1 and S2 depending
on the system state in the following manner:

• S1 = μ1, S2 = μ2 if both queues are nonempty;
• S1 = μ∗1, if queue 2 is empty;
• S2 = μ∗2, if queue 1 is empty.

The resultant two-place FE is given by

T (x, y)f (x, y) = a(x, y)f (x, 0)+ b(x, y)f (0, y)+ c(x, y)f (0, 0), (6)

where

a(x, y) = μ1(1−
1

x
)+ q(1− 1

y
),

b(x, y) = μ2(1−
1

y
)+ p(1− 1

x
),

c(x, y) = p(
1

x
− 1)+ q(1

y
− 1),

T (x, y) = λ1(1− x)+ μ1(1−
1

x
)+ λ2(1− y)+ μ2(1−

1

y
),

p = μ1 − μ∗1, q = μ2 − μ∗2.

Fig. 3 Two parallel queues
with batch server
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Solution of (6) has been obtained by solving a Dirichlet problem for a circle

yielding, for x =
√
μ1
λ1
eiρ (writing x in a polar form with

√
μ1
λ1

as its magnitude

and ρ as its argument)

f (x, 0) = f (

√
μ1

λ1
eiρ, 0)

= 1

π

∫ π

0

z sin ρu(ρ)

1+ z2 − 2z cos ρ
dρ + f (0, 0), |z| < 1,

where

u(ρ) = 1

1− ξ �
μ∗2(1− 1

h(x)
)f (0, 0)

μ∗1(1− 1
x
)− μ2(1− 1

h(x)
)
, 0 < ξ < 1

where h(x) is one root of the kernel. A similar formula for f (0, y) is given by

f (0, y) = f (0,

√
μ2

λ2
eiρ)

= 1

π

∫ π

0

z sin θv(θ)dθ

1+ z2 − 2z cos θ
+ f (0, 0).

The unknown f (0, 0) can be found by using the normalization condition. For
the case that pq �= μ1μ2, the authors determine f (x, 0), f (0, y) by solving a
homogenous Riemann–Hilbert problem for a circle. Equation (6) can be rewritten
in the general form (1) as

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y)+ C4(x, y)f (0, 0), (7)

where

C1(x, y) = λ1(xy − x2y)+ μ1(xy − y)+ λ2(xy − xy2)+ μ2(xy − x),
C2(x, y) = μ1(xy − y)+ q(xy − x),
C3(x, y) = μ2(xy − x)+ p(xy − y),

and

C4(x, y) = p(y − xy)+ q(x − xy).

We note that the solution of the current equation is not an explicit solution.
Moreover, the solution is given for some special cases.
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5 Equation Arising from Two Types of Customers with One
Server

This equation arises [9] from a one-server-two-queue model with two types
of customers, as illustrated in Fig. 4. The PGF f (x, y) of the two-dimensional
distribution characterizing the system yields the two-place FE

(1− (1

x
+ 1

y
)ε0α(χ)− ε1

xy
α2(χ))xyf (x, y)

= (
1

x
β(χ)− (1

x
+ 1

y
)ε0α(χ)− ε1

xy
α2(χ))xyf (x, 0)

+ (1

y
β(χ)− (1

x
+ 1

y
)ε0α(χ)− ε1

xy
α2(χ))xyf (0, y)

+ (γ (χ)− (1

x
+ 1

y
)β(χ)+ (1

x
+ 1

y
)ε0α(χ)+ ε1

xy
α2(χ))xyf (0, 0), (8)

where it is assumed that χ(x, y) � λ(1 − x+y
2 ). On the other hand, α =∫∞

0 tdA(t) > 0, β = ∫∞
0 tdB(t) > 0, and γ = ∫∞

0 tdC(t) > 0 are the first
moments, with A,B, and C being the probability distributions. Equation (8) has
been solved by reducing it to a Riemann boundary value problem, yielding solutions
of the form

f (x(z), 0)/f (0, 0) = eΓ1(z)(Ψ (z)+ a1z+ a0), |z| < 1,

f (0, y(z))/f (0, 0) = z−1eΓ1(z)(Ψ (z)+ a1z+ a0), |z| > 1,

where for |z| = 1

Γ1(z) := 1

2πi

∫

|ζ |=1
log ζ−1G(ζ)

d ζ

ζ − z ,

Ψ (z) := 1

2πi

∫

|ζ |=1
g(ζ )e−Γ

+
1 (ζ )

d ζ

ζ − z ,

G(z) := −x(z)
y(z)

· y(z)− β{λ(1−
x(z)+y(z)

2 )}
x(z)− β{λ(1− x(z)+y(z)

2 )} ,

g(z) := G(z)− γ {λ{(1− x(z)+y(z)
2 )} − 1}x(z)

β{λ(1− x(z)+y(z)
2 )} − x(z) + 1,

Fig. 4 Two types of
customers with one server
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with a1 and a0 constants. The unknown f (0, 0) has been obtained by applying
the normalization condition f (1, 1) = 1. This FE can be rewritten in the general
form (1) as

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+ C3(x, y)f (0, y)+ C4(x, y)f (0, 0), (9)

where

C1(x, y) = xy − (y + x)ε0α(χ)− ε1α
2(χ),

C2(x, y) = yβ(χ)− (y + x)ε0α(χ)− ε1α
2(χ),

C3(x, y) = xβ(χ)− (y + x)ε0α(χ)− ε1α
2(χ),

and

C4(x, y) = γ (χ)xy − (y + x)β(χ)+ (y + x)ε0α(χ)+ ε1α
2(χ).

6 Equation Arising from Asymmetric Clocked Buffered
Switch

This equation arises [10] from a model of an asymmetric 2 × 2 clocked buffered
switch, illustrated in Fig. 5. The PGF f (x, y) of the two-dimensional distribution
characterizing the system yields the two-place FE

(xy − φ(x, y))f (x, y) = (x − 1)(y − 1)φ(x, y)[f (x, 0)

(x − 1)
+ f (0, y)

(y − 1)
+ f (0, 0)],

(10)
where

φ(x, y) = [1− a1 + a1(r11x + r12y)][1− a2 + a2(r21x + r22y)],

Fig. 5 Asymmetric 2× 2
switch
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a1, a2 are the probabilities that the arrival stream generated at the start of a slot
is of stream 1, 2, respectively, and ri,j is the probability that an i-arrival joins the
queue of the j -th service facility, for i, j = 1, 2. Equation (10) has been solved by
using analytic continuation in locating the zeros and poles of the unknown functions
f (x, 0), f (0, y). The unknown functions are given by

f (x, 0) = f (1, 0)
P (I)(1)P (II)(1)

P (I)(x)P (II)(x)

A(I)(x)A(II)(x)

A(I)(1)A(II)(1)
, for all x

similarly

f (0, y) = f (0, 1)
Q(I)(1)Q(II)(1)

Q(I)(y)Q(II)(y)

Γ (I)(y)Γ (II)(y)

Γ (I)(1)Γ (II)(1)
, for all y

where f (1, 0) is given by

f (1, 0) = 1− a2r22 − a1r12,

and f (0, 1) is given by

f (0, 1) = 1− a1r11 − a2r21.

The unknown f (0, 0) is given by

f (0, 0) = (1− a2r22 − a1r12)
Q(I)(1)Q(II)(1)

Γ (I)(1)Γ (II)(1)
,

where the functions P (I)(.), P (II)(.),Q(I)(.),Q(II)(.), A(I)(.), A(II)(.), Γ (I)(.),

and Γ (II)(.) are defined in [10] as infinite products. Equation (10) can be rewritten
in the general form (1) as

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+C3(x, y)f (0, y)+C4(x, y)f (0, 0), (11)

where

C1(x, y) = xy − [1− a1 + a1(r11x + r12y)][1− a2 + a2(r21x + r22y)],

C2(x, y) = (y − 1)[1− a1 + a1(r11x + r12y)][1− a2 + a2(r21x + r22y)],

C3(x, y) = (x − 1)[1− a1 + a1(r11x + r12y)][1− a2 + a2(r21x + r22y)],

and

C4(x, y) = (x − 1)(y − 1)[1− a1 + a1(r11x + r12y)][1− a2 + a2(r21x + r22y)].
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We note that the solution of the current equation is not a closed-form one as it is
given in terms of an infinite product.

7 The Functional Equation of Interest

In this section, we investigate the analytical solution of a particular case of (1).
Such special case is a two-place functional equation arising from a LANE Gateway
queueing model depicted in Fig. 6 (see [22]) for more details.

It should be noted that the authors in [23] investigated the analytical solution of
such functional equation. A solution has been introduced using only the physical
properties of the underlying queueing system. Here, we deal with the equation as
a mathematical entity without taking the application into our consideration. Our
solution is based on the following assumptions:

1. r̃1 = r̃2 = r̃ ,

2. s̃1 = s̃2 = s̃.

3. ξ1 = ξ2 = 0.

Using the above assumptions in [22] to get

C1(x, y)f (x, y) = C2(x, y)f (x, 0)+C3(x, y)f (0, y)+C4(x, y)f (0, 0), (12)

where

C1(x, y) = xy − (r̃ + rs̃y)(r̃ + r2s̃x),

C2(x, y) = (y − 1)(r̃)(r̃ + r2s̃x),

C3(x, y) = (x − 1)(r̃)(r̃ + rs̃y),

and

C4(x, y) = (x − 1)(y − 1)(r̃)2.

Fig. 6 Gateway modeled as
two back-to-back interfering
queues

�

1 = r1s1

2 = r2s2

� �

� � ��

�

IINALINAL

s2s1
�

�

Queue I

Queue II

r2r1

x

x
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A crucial role in the solution of (12) is played by the kernel, see, e.g., [24], defined
by

{(x, y) : C1(x, y) = 0}. (13)

The main idea in the solution of (12) is based on the analyticity property of the main
unknown f (x, y) which means that if C1(x, y) = 0 then

C2(x, y)f (x, 0)+ C3(x, y)f (0, y)+ C4(x, y)f (0, 0) = 0 (14)

Now the solution of the main functional equation (12) is reduced to the solution
of (14). Equation (14) can be written

(y − 1)(r̃)(r̃+ rs̃x)f (x, 0)+ (x − 1)(r̃)(r̃ + rs̃y)f (0, y)
+ (x − 1)(y − 1)(r̃)2f (0, 0) = 0, (15)

which can be divided by r̃(x − 1)(y − 1) �= 0 to get

(r̃ + rs̃x)
(x − 1)

f (x, 0) + (r̃ + rs̃y)
(y − 1)

f (0, y)

+ r̃f (0, 0) = 0. (16)

Now, it is clear that the solution of (12) is reduced to the solution of (16) on the set
defined as

G := {(x, y) : C1(x, y) = xy − (r̃ + rs̃y)(r̃ + r2s̃x) = 0}, (17)

which is obviously an infinite set of ordered pairs. We can choose a special set
from (17). That is the set defined as

G0 := {(x, x̄) : C1(x, x̄) = xx̄ − (r̃ + rs̃x̄)(r̃ + r2s̃x) = 0} ⊂ G, (18)

where x̄ is the complex conjugate of x. The problem now is to solve (16) in the new
subset (18). Introducing the function

F(x) := (r̃ + rs̃x)
(x − 1)

f (x, 0)+ 1

2
r̃f (0, 0), (19)

in (16) to get

F(x)+ F(y) = 0, (20)
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which is satisfied in the subset (18). So that we can rewrite it as

F(x)+ F(x̄) = 0. (21)

The main functional equation is now reduced to the following boundary value
problem.

8 Boundary Value Problem

Find a function F(.) satisfying the following conditions:

1. Analytic inside the unit disk
2. Has a single pole at 1
3. �(F ) = 0
4. limx→1 F(x) = f (1, 0)

on the set G0 which is a simply connected domain, see, e.g., [11]. To solve the
stated problem we use a conformal mapping which exists by the Riemann conformal
mapping theorem. Assume that Φ with inverse Ψ is the conformal mapping of the
set G0 (which is a simply connected domain) to the unit disk with normalization
conditions Φ(0) = 0, Φ(1) = 1. This gives rise to the following Riemann–Hilbert
boundary value problem on the unit disk: Determine a function H(.) defined as

H := F ◦Φ
satisfying the conditions

1. analytic inside the unit disk and continuous on the closure of the disk.
2. �H = 0
3. limw→1(w − 1)H(w) = f (1,0)

Φx(1)
,

where

Φx := dΦ

dx
.

The problem just stated on the unit disk is a Dirichlet problem with a pole at 1 (see
[11] chapter 1). The solution of this problem is given by

H(w) = 1

2

f (1, 0)

Φx(1)

w + 1

w − 1
, w ∈ D,

where D is the unit disk. This gives

F(x) = H(Ψ (x)) = 1

2

f (1, 0)

Φx(1)

Ψ (x)+ 1

Ψ (x)− 1
,
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inside the set G0. Substituting in the original equation to yield

f (x, y) = f (1, 0)Ψx(1)
(x − 1)(y − 1)M(x, y)

(Ψ (x)− 1)(Ψ (y)− 1)

Ψ (x)Ψ (y)− 1

xy −M(x, y) .

The obtained expression is a potential solution of the functional equation of interest.
Let us also mention that the particular conformal mapping used is explicitly
expressed in terms of the Jacobi elliptic function (see, e.g., [5]) for some details.

9 Conclusion

In this chapter, we shed the light on a certain class of interesting functional
equations. For such class of equations, no exact form solutions obtained so far. We
recall certain special cases of such class of equations with their different applications
and solutions. At the end, we investigate the solution of a particular functional
equation using the theory of boundary value problems. The solution is given in terms
of some conformal mapping. Potential future work could be to use some numerical
techniques to investigate the solution of such interesting class of equations.
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Approximate Solutions of an
Additive-Quadratic-Quartic (AQQ)
Functional Equation

Tianzhou Xu, Yali Ding, and John Michael Rassias

Abstract In this paper, the authors prove some stability and hyperstability results
for an (AQQ): additive-quadratic-quartic functional equation of the form

f (x + y + z)+ f (x + y − z)+ f (x − y + z)+ f (x − y − z)
= 2[f (x + y)+ f (x − y)+ f (y + z)+ f (y − z)+ f (x + z)+ f (x − z)]
− 4f (x)− 4f (y)− 2[f (z)+ f (−z)]

by using fixed point theory.
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1 Introduction and Preliminaries

Throughout this paper, N and Z stand for the sets of all positive integers and integers,
respectively; moreover, Z0 := Z\{0}. R and C stand for the sets of reals and
complex numbers, respectively, and R+ := [0,∞).

The study of stability problems for functional equations is related to a question
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the stability for various classes of functional equations in various spaces have been
published, and there are many interesting results concerning this problem, see, for
instance, [1, 2, 5, 10–13, 15, 17] and the references therein. The fixed point method
is one of the most effective tools in studying these problems (for more details see,
e.g., [4, 6, 9]).

The next two definitions describe roughly the main ideas of such stability and
hyperstability notions (AB denotes the family of all functions mapping a set B �= ∅
to a set A �= ∅). Definitions 1.1 and 1.2 are actually Definitions 1 and 7 from the
survey paper [7].

Definition 1.1 Let A �= ∅ be a set, (X, d) be a metric space, P ⊂ C ⊂ R
An+ be

nonempty, T : C → R
A+, and F1,F2 map a nonempty D ⊂ XA into XA

n
. The

equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn) (1.1)

is stable provided for any ε ∈ P and ϕ0 ∈ D with

d(F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)) ≤ ε(x1, . . . , xn), x1, . . . , xn ∈ A,
(1.2)

there is a solution ϕ ∈ D of (1.1) with

d(ϕ(x), ϕ0(x)) ≤ T ε(x), x ∈ A.

Definition 1.2 LetA and (X, d) be as before, ε ∈ R
An+ and F1,F2 map a nonempty

D ⊂ XA into XA
n
. We say that (1.1) is ε-hyperstable provided every ϕ0 ∈ D,

satisfying (1.2), fulfills (1.1).

Let (X,+) be a commutative group with the neutral element denoted by 0, Y
be a Banach space over a field F ∈ {R,C}. Recently, interesting results concerning
additive-quadratic-quartic functional equation

f (x + y + z)+ f (x + y − z)+ f (x − y + z)+ f (x − y − z)
= 2[f (x + y)+ f (x − y)+ f (y + z)+ f (y − z)+ f (x + z)+ f (x − z)]
− 4f (x)− 4f (y)− 2[f (z)+ f (−z)], x, y, z ∈ X (1.3)

have been obtained in [14]. Every solution of the functional equation (1.3) is said to
be an additive-quadratic-quartic mapping. Indeed, general solution of the Eq. (1.3)
was found in [14]. We say that a function f : X→ Y fulfills the additive-quadratic-
quartic functional equation (1.3) on X0 := X\{0} (or is a solution to (1.3) on X0)
provided

f (x + y + z)+ f (x + y − z)+ f (x − y + z)+ f (x − y − z)
= 2[f (x + y)+ f (x − y)+ f (y + z)+ f (y − z)+ f (x + z)+ f (x − z)]
− 4f (x)− 4f (y)− 2[f (z)+ f (−z)], x, y, z ∈ X0. (1.4)
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In this paper we prove stability and hyperstability results for the Eq. (1.4). The
proof of our main result is based on the following fixed point result obtained in [8,
Theorem 1] (see also [3, Theorem 2], [4, Theorem 11] and [6, Theorem 19]).

Theorem 1.1 Let the following three hypotheses be valid:

(H1) E is a nonempty set, (V , d) is a complete metric space, k ∈ N, f1, . . . , fk :
E→ E and L1, . . . , Lk : E→ R+ are given maps;

(H2) T : V E → V E is an operator satisfying the inequality

d ((T ξ)(x), (T μ)(x)) ≤
k∑

i=1

Li(x)d (ξ(fi(x)), μ(fi(x))) , ξ , μ ∈ VE, x ∈ E;
(1.5)

(H3) " : RE+ → R
E+ is an operator defined by

("δ)(x) :=
k∑

i=1

Li(x)δ(fi(x)), δ ∈ R
E+, x ∈ E. (1.6)

If functions ε : E→ R+ and ϕ : E→ V fulfill the following two conditions :

d ((T ϕ) (x), ϕ(x)) ≤ ε(x), x ∈ E, (1.7)

and

ε∗(x) :=
∞∑

l=0

(
"lε
)
(x) <∞, x ∈ E, (1.8)

then there exists a unique fixed point ψ of T such that

d(ϕ(x), ψ(x)) ≤ ε∗(x), x ∈ E. (1.9)

Moreover,

ψ(x) := lim
l→∞

(
T lϕ

)
(x), x ∈ E. (1.10)

2 Main Results

Throughout this section, unless otherwise explicitly stated, we will assume that
(X,+) be a commutative group, Y be a Banach space over K ∈ {R,C}. Given
f : X→ Y , put
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(Df )(x, y, z) := f (x + y + z)+ f (x + y − z)+ f (x − y + z)+ f (x − y − z)
− 2[f (x + y)+ f (x − y)+ f (y + z)+ f (y − z)+ f (x + z)
+ f (x − z)] + 4f (x)+ 4f (y)+ 2[f (z)+ f (−z)]

for all x, y, z ∈ X.

Theorem 2.1 Let (X,+) be a commutative group, X0 := X\{0}, Y be a Banach
space over K ∈ {R,C}, and ψ1, ψ2, ψ3 : X0 → R+ be three functions such that

M := {m ∈ Z0 : βm := 2c(m+ 1)+ 2c(5m+ 1)+ 2c(−3m)+ c(2m+ 1)

+ 2c(4m+ 1)+ 5c(3m+ 1)+ c(6m+ 1)+ 4c(−2m)+ 2c(m) < 1}�=∅,
ci(m) := inf{t ∈ R+ : ψi(mx) ≤ tψi(x), x ∈ X}, i ∈ {1, 2, 3},m ∈ Z0,

c(u) := c1(u)c2(u)c3(u), u ∈ Z0. (2.1)

Suppose that f : X→ Y satisfies the inequality

‖(Df )(x, y, z)‖ ≤ ψ1(x)ψ2(y)ψ3(z), x, y, z ∈ X0. (2.2)

Then there exists a unique solution F : X0 → Y of Eq. (1.4) such that

‖f (x)− F(x)‖ ≤ c0ψ1(x)ψ2(x)ψ3(x), x ∈ X0, (2.3)

where c0 := infm∈M{ c1(3m+1)c2(−2m)c3(−m)
1−βm }.

Proof Replacing (x, y, z) by ((3m+ 1)x,−2mx,−mx) in (2.2) we get

‖f (x)+ 5f ((3m+ 1)x)+ f ((6m+ 1)x)− 2f ((m+ 1)x)− 2f ((5m+ 1)x)
−2f (−3mx)− f ((2m+ 1)x)− 2f ((4m+ 1)x)+ 4f (−2mx)+ 2f (mx)‖
≤ ψ1((3m+ 1)x)ψ2(−2mx)ψ3(−mx), x ∈ X0,m ∈ Z0.

(2.4)
Define

εm(x) := ψ1((3m+ 1)x)ψ2(−2mx)ψ3(−mx)
≤ c1(3m+ 1)c2(−2m)c3(−m)ψ1(x)ψ2(x)ψ3(x), x ∈ X0,m ∈ Z0,

(2.5)
and

(Tmξ)(x) := 2ξ((m+ 1)x)+ 2ξ((5m+ 1)x)+ 2ξ(−3mx)+ ξ((2m+ 1)x)
+2ξ((4m+ 1)x)− 5ξ((3m+ 1)x)− ξ((6m+ 1)x)
−4ξ(−2mx)− 2ξ(mx), x ∈ X0, ξ ∈ YX0 ,m ∈ Z0.

(2.6)
Then, it follows from (2.4) that

‖(Tmf )(x)− f (x)‖ ≤ εm(x), x ∈ X0,m ∈ Z0.
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We will show that the hypotheses of Theorem 1.1 are fulfilled. For k = 9 and
f1(x) := (m + 1)x, f2(x) := (5m + 1)x, f3(x) := −3mx, f4(x) := (2m + 1)x,
f5(x) := (4m + 1)x, f6(x) := (3m + 1)x, f7(x) := (6m + 1)x, f8(x) := −2mx,
f9(x) := mx, L1(x) = L2(x) = L3(x) = L5(x) = L9(x) := 2, L4(x) = L7(x) :=
1, L6(x) := 5, L8(x) := 4, x ∈ X0, inequality (1.5) becomes

‖(Tmξ)(x)− (Tmμ)(x)‖
= ‖2ξ((m+ 1)x)+ 2ξ((5m+ 1)x)+ 2ξ(−3mx)+ ξ((2m+ 1)x)+ 2ξ((4m+ 1)x)
−5ξ((3m+ 1)x)− ξ((6m+ 1)x)− 4ξ(−2mx)− 2ξ(mx)− 2μ((m+ 1)x)
−2μ((5m+ 1)x)− 2μ(−3mx)− μ((2m+ 1)x)− 2μ((4m+ 1)x)
+5μ((3m+ 1)x)+ μ((6m+ 1)x)+ 4μ(−2mx)+ 2μ(mx)‖

≤ 2‖(ξ − μ)((m+ 1)x)‖ + 2‖(ξ − μ)((5m+ 1)x)‖ + 2‖(ξ − μ)(−3mx)‖
+‖(ξ − μ)((2m+ 1)x)‖ + 2‖(ξ − μ)((4m+ 1)x)‖ + 5‖(ξ − μ)((3m+ 1)x)‖
+‖(ξ − μ)((6m+ 1)x)‖ + 4‖(ξ − μ)(−2mx)‖ + 2‖(ξ − μ)(mx)‖,
x ∈ X0, ξ , μ ∈ YX0 ,m ∈ Z0,

where

(ξ − μ)(u) := ξ(u)− μ(u), u ∈ X0,

so hypothesis (H2) is valid. Next, put "m : RX0+ → R
X0+ for m ∈ Z0 by

("mδ)(x) := 2δ((m+ 1)x)+ 2δ((5m+ 1)x)+ 2δ(−3mx)+ δ((2m+ 1)x)
+2δ((4m+ 1)x)+ 5δ((3m+ 1)x)+ δ((6m+ 1)x)+ 4δ(−2mx)
+2δ(mx), x ∈ X0, δ ∈ R

X0+ .
(2.7)

It is easily seen that "m has the form described in (H3).
Now, using mathematical induction, we will show that for each x ∈ X0 we have

(
"lmεm

)
(x) ≤ c1(3m+ 1)c2(−2m)c3(−m)βnmψ1(x)ψ2(x)ψ3(x), (2.8)

for all l ∈ N0 and m ∈ M. Fix an m ∈ M, from (2.1) and (2.5), we obtain that
the inequality (2.8) holds for l = 0. Fix an x ∈ X0, assume that (2.8) holds for
n = l ∈ N0. Then we have

(
"l+1
m εm

)
(x) = ("m

(
"lmεm

))
(x)

= 2
(
"lmεm

)
((m+ 1)x)+ 2

(
"lmεm

)
((5m+ 1)x)+ 2

(
"lmεm

)
(−3mx)

+ ("lmεm
)
((2m+ 1)x)+ 2

(
"lmεm

)
((4m+ 1)x)+ 5

(
"lmεm

)
((3m+ 1)x)

+ ("lmεm
)
((6m+ 1)x)+ 4

(
"lmεm

)
(−2mx)+ 2

(
"lmεm

)
(mx)

≤ c1(3m+ 1)c2(−2m)c3(−m)βl+1
m ψ1(x)ψ2(x)ψ3(x),

and hence (2.8) holds for any l ∈ N0, m ∈ M and x ∈ X0. So, we receive the
following estimation
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ε∗m(x) =
∞∑

n=0

(
"nmεm

)
(x) ≤ c1(3m+ 1)c2(−2m)c3(−m)ψ1(x)ψ2(x)ψ3(x)

1− βm
(2.9)

for all x ∈ X0 and m ∈ M. By using Theorem 1.1 with E = X0, V = Y and
ϕ = f , for each m ∈M there exists a function Fm : X0 → Y such that

Fm(x) = 2Fm((m+ 1)x)+ 2Fm((5m+ 1)x)+ 2Fm(−3mx)+ Fm((2m+ 1)x)
+2Fm((4m+ 1)x)− 5Fm((3m+ 1)x)− Fm((6m+ 1)x)− 4Fm(−2mx)
−2Fm(mx), x ∈ X0,

(2.10)
and

‖f (x)− Fm(x)‖ ≤ c1(3m+ 1)c2(−2m)c3(−m)ψ1(x)ψ2(x)ψ3(x)

1− βm
, x ∈ X0.

(2.11)
Moreover,

Fm(x) = lim
n→∞(T

n
mf )(x), x ∈ X0,m ∈M. (2.12)

Now, we show by mathematical induction that

‖(T n
mf )(x + y + z)+(T n

mf )(x + y − z)+(T n
mf )(x − y + z)+(T n

mf )(x − y − z)
−2[(T n

mf )(x + y)+ (T n
mf )(x − y)+ (T n

mf )(y + z)
+(T n

mf )(y − z)+ (T n
mf )(x + z)+ (T n

mf )(x − z)] + 4(T n
mf )(x)

+4(T n
mf )(y)+ 2[(T n

mf )(z)+ (T n
mf )(−z)]‖ ≤ βnmψ1(x)ψ2(y)ψ3(z)

(2.13)
for all x, y, z ∈ X0, n ∈ N0 and m ∈M.

Fix m ∈ M. For n = 0, then (2.13) is just (2.2). So, fix l ∈ N0 and suppose
that (2.13) holds for n = l and every x, y, z ∈ X0. Then, for every x, y, z ∈ X0,

‖(T l+1
m f )(x + y + z)+ (T l+1

m f )(x + y − z)+ (T l+1
m f )(x − y + z)

+(T l+1
m f )(x − y − z)− 2[(T l+1

m f )(x + y)+ (T l+1
m f )(x − y)

+(T l+1
m f )(y + z)+ (T l+1

m f )(y − z)+ (T l+1
m f )(x + z)+ (T l+1

m f )(x − z)]
+4(T l+1

m f )(x)+ 4(T l+1
m f )(y)+ 2[(T l+1

m f )(z)+ (T l+1
m f )(−z)]‖

= ‖2(T l
mf )((m+ 1)(x + y + z))+ 2(T l

mf )((5m+ 1)(x + y + z))
+2(T l

mf )(−3m(x + y + z))+ (T l
mf )((2m+ 1)(x + y + z))

+2(T l
mf )((4m+ 1)(x + y + z))− 5(T l

mf )((3m+ 1)(x + y + z))
−(T l

mf )((6m+ 1)(x + y + z))− 4(T l
mf )(−2m(x + y + z))

−2(T l
mf )(m(x + y + z))+ 2(T l

mf )((m+ 1)(x + y − z))
+2(T l

mf )((5m+ 1)(x + y − z))+ 2(T l
mf )(−3m(x + y − z))

+(T l
mf )((2m+ 1)(x + y − z))+ 2(T l

mf )((4m+ 1)(x + y − z))
−5(T l

mf )((3m+ 1)(x + y − z))− (T l
mf )((6m+ 1)(x + y − z))

−4(T l
mf )(−2m(x + y − z))− 2(T l

mf )(m(x + y − z))
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+2(T l
mf )((m+ 1)(x − y + z))+ 2(T l

mf )((5m+ 1)(x − y + z))
+2(T l

mf )(−3m(x − y + z))+ (T l
mf )((2m+ 1)(x − y + z))

+2(T l
mf )((4m+ 1)(x − y + z))− 5(T l

mf )((3m+ 1)(x − y + z))
−(T l

mf )((6m+ 1)(x − y + z))− 4(T l
mf )(−2m(x − y + z))

−2(T l
mf )(m(x − y + z))+ 2(T l

mf )((m+ 1)(x − y − z))
+2(T l

mf )((5m+ 1)(x − y − z))+ 2(T l
mf )(−3m(x − y − z))

+(T l
mf )((2m+ 1)(x − y − z))+ 2(T l

mf )((4m+ 1)(x − y − z))
−5(T l

mf )((3m+ 1)(x − y − z))− (T l
mf )((6m+ 1)(x − y − z))

−4(T l
mf )(−2m(x − y − z))− 2(T l

mf )(m(x − y − z))
−2[2(T l

mf )((m+ 1)(x + y))+ 2(T l
mf )((5m+ 1)(x + y))

+2(T l
mf )(−3m(x + y))+ (T l

mf )((2m+ 1)(x + y))
+2(T l

mf )((4m+ 1)(x + y))− 5(T l
mf )((3m+ 1)(x + y))

−(T l
mf )((6m+ 1)(x + y))− 4(T l

mf )(−2m(x + y))
−2(T l

mf )(m(x + y))+ 2(T l
mf )((m+ 1)(x − y))

+2(T l
mf )((5m+ 1)(x − y))+ 2(T l

mf )(−3m(x − y))
+(T l

mf )((2m+ 1)(x − y))+ 2(T l
mf )((4m+ 1)(x − y))

−5(T l
mf )((3m+ 1)(x − y))− (T l

mf )((6m+ 1)(x − y))
−4(T l

mf )(−2m(x − y))− 2(T l
mf )(m(x − y))

+2(T l
mf )((m+ 1)(y + z))+ 2(T l

mf )((5m+ 1)(y + z))
+2(T l

mf )(−3m(y + z))+ (T l
mf )((2m+ 1)(y + z))

+2(T l
mf )((4m+ 1)(y + z))− 5(T l

mf )((3m+ 1)(y + z))
−(T l

mf )((6m+ 1)(y + z))− 4(T l
mf )(−2m(y + z))

−2(T l
mf )(m(y + z))+ 2(T l

mf )((m+ 1)(y − z))
+2(T l

mf )((5m+ 1)(y − z))+ 2(T l
mf )(−3m(y − z))

+(T l
mf )((2m+ 1)(y − z))+ 2(T l

mf )((4m+ 1)(y − z))
−5(T l

mf )((3m+ 1)(y − z))− (T l
mf )((6m+ 1)(y − z))

−4(T l
mf )(−2m(y − z))− 2(T l

mf )(m(y − z))
+2(T l

mf )((m+ 1)(x − z))+ 2(T l
mf )((5m+ 1)(x − z))

+2(T l
mf )(−3m(x − z))+ (T l

mf )((2m+ 1)(x − z))
+2(T l

mf )((4m+ 1)(x − z))− 5(T l
mf )((3m+ 1)(x − z))

−(T l
mf )((6m+ 1)(x − z))− 4(T l

mf )(−2m(x − z))
−2(T l

mf )(m(x − z))+ 4[2(T l
mf )((m+ 1)x)

+2(T l
mf )((5m+ 1)x)+ 2(T l

mf )(−3mx)
+(T l

mf )((2m+ 1)x)+ 2(T l
mf )((4m+ 1)x)

−5(T l
mf )((3m+ 1)x)− (T l

mf )((6m+ 1)x)
−4(T l

mf )(−2mx)− 2(T l
mf )(mx)]

+4[2(T l
mf )((m+ 1)y)+ 2(T l

mf )((5m+ 1)y)
+2(T l

mf )(−3my)+ (T l
mf )((2m+ 1)y)

+2(T l
mf )((4m+ 1)y)− 5(T l

mf )((3m+ 1)y)
−(T l

mf )((6m+ 1)y)− 4(T l
mf )(−2my)

−2(T l
mf )(my)] + 2[2(T l

mf )((m+ 1)z)
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+2(T l
mf )((5m+ 1)z)+ 2(T l

mf )(−3mz)
+(T l

mf )((2m+ 1)z)+ 2(T l
mf )((4m+ 1)z)

−5(T l
mf )((3m+ 1)z)− (T l

mf )((6m+ 1)z)
−4(T l

mf )(−2mz)− 2(T l
mf )(mz)

+2(T l
mf )(−(m+ 1)z)+ 2(T l

mf )(−(5m+ 1)z)
+2(T l

mf )(3mz)+ (T l
mf )(−(2m+ 1)z)

+2(T l
mf )(−(4m+ 1)z)− 5(T l

mf )(−(3m+ 1)z)
−(T l

mf )(−(6m+ 1)z)− 4(T l
mf )(2mz)

−2(T l
mf )(−mz)]‖

≤ βlm(2ψ1((m+ 1)x)ψ2((m+ 1)y)ψ3((m+ 1)z)
+2ψ1((5m+ 1)x)ψ2((5m+ 1)y)ψ3((5m+ 1)z)
+2ψ1(−3mx)ψ2(−3my)ψ3(−3mz)+ ψ1((2m+ 1)x)ψ2((2m+ 1)y)
×ψ3((2m+ 1)z)+ 2ψ1((4m+ 1)x)ψ2((4m+ 1)y)ψ3((4m+ 1)z)
+5ψ1((3m+ 1)x)ψ2((3m+ 1)y)ψ3((3m+ 1)z)
+ψ1((6m+ 1)x)ψ2((6m+ 1)y)ψ3((6m+ 1)z)
+4ψ1(−2mx)ψ2(−2my)ψ3(−2mz)+ 2ψ1(mx)ψ2(my)ψ3(mz))

≤ βl+1
m ψ1(x)ψ2(y)ψ3(z).

Thus, by mathematical induction, it results that (2.13) holds for every x, y, z ∈ X0
and n ∈ N0. Letting n→∞ in (2.13) we get

Fm(x + y + z)+ Fm(x + y − z)+ Fm(x − y + z)+ Fm(x − y − z)
= 2[Fm(x + y)+ Fm(x − y)+ Fm(y + z)+ Fm(y − z)+ Fm(x + z)
+Fm(x − z)] − 4Fm(x)− 4Fm(y)− 2[Fm(z)+ Fm(−z)].

(2.14)
So, we have proved that, for each m ∈ M there exists a function Fm : X0 → Y

satisfying the Eq. (1.4) for all x, y, z ∈ X0 and such that

‖f (x)− Fm(x)‖ ≤ c1(3m+ 1)c2(−2m)c3(−m)ψ1(x)ψ2(x)ψ3(x)

1− βm
, x ∈ X0.

(2.15)
Next, we show that Fm = Fk for all m, k ∈ M. So, fix m, k ∈ M.

Note that Fk satisfies (2.14) with m replaced by k. Thus, replacing (x, y, z) by
((3m + 1)x,−2mx,−mx) in (2.14), we obtain that TmFj = Fj for j = m, k

and

‖Fm(x)− Fk(x)‖

≤
(
c1(3m+ 1)c2(−2m)c3(−m)

1− βm
+ c1(3k + 1)c2(−2k)c3(−k)

1− βk

)

× ψ1(x)ψ2(x)ψ3(x)
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=
(
c1(3m+ 1)c2(−2m)c3(−m)+ c1(3k + 1)c2(−2k)c3(−k)(1− βm)

1− βk

)

× ψ1(x)ψ2(x)ψ3(x)

∞∑

n=0

βnm

= μψ1(x)ψ2(x)ψ3(x)

∞∑

n=0

βnm, (2.16)

where

μ := c1(3m+ 1)c2(−2m)c3(−m)+ c1(3k + 1)c2(−2k)c3(−k)(1− βm)
1− βk

.

By mathematical induction we will show that

‖Fm(x)− Fk(x)‖ ≤ μψ1(x)ψ2(x)ψ3(x)

∞∑

n=j
βnm. (2.17)

Fix an x ∈ X0. For j = 0 inequality (2.17) is simply (2.16). So, take l ∈ N0 and
suppose that (2.17) holds for j = l. Then, we have

‖Fm(x)− Fk(x)‖ = ‖(TmFm)(x)− (TmFk)(x)‖
= ‖2Fm((m+ 1)x)+ 2Fm((5m+ 1)x)+ 2Fm(−3mx)+ Fm((2m+ 1)x)
+2Fm((4m+ 1)x)− 5Fm((3m+ 1)x)− Fm((6m+ 1)x)
−4Fm(−2mx)− 2Fm(mx)− 2Fk((m+ 1)x)− 2Fk((5m+ 1)x)
−2Fk(−3mx)− Fk((2m+ 1)x)− 2Fk((4m+ 1)x)
+5Fk((3m+ 1)x)+ Fk((6m+ 1)x)+ 4Fk(−2mx)+ 2Fk(mx)‖

= 2‖Fm((m+ 1)x)− Fk((m+ 1)x)‖ + 2‖Fm((5m+ 1)x)− Fk((5m+ 1)x)‖
+2‖Fm(−3mx)− Fk(−3mx)‖ + ‖Fm((2m+ 1)x)− Fk((2m+ 1)x)‖
+2‖Fm((4m+ 1)x)− Fk((4m+ 1)x)‖ + 5‖Fm((3m+ 1)x)
−Fk((3m+ 1)x)‖ + ‖Fm((6m+ 1)x)− Fk((6m+ 1)x)‖
+4‖Fm(−2mx)− Fk(−2mx)‖ + 2‖Fm(mx)− Fk(mx)‖

≤ μ(2ψ1((m+ 1)x)ψ2((m+ 1)x)ψ3((m+ 1)x)
+2ψ1((5m+ 1)x)ψ2((5m+ 1)x)ψ3((5m+ 1)x)
+2ψ1(−3mx)ψ2(−3mx)ψ3(−3mx)+ ψ1((2m+ 1)x)
×ψ2((2m+ 1)x)ψ3((2m+ 1)x)+ 2ψ1((4m+ 1)x)ψ2((4m+ 1)x)
×ψ3((4m+ 1)x)+ 5ψ1((3m+ 1)x)ψ2((3m+ 1)x)ψ3((3m+ 1)x)
+ψ1((6m+ 1)x)ψ2((6m+ 1)x)ψ3((6m+ 1)x)

+4ψ1(−2mx)ψ2(−2mx)ψ3(−2mx)+ 2ψ1(mx)ψ2(mx)ψ3(mx))
∞∑
n=l

βnm
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≤ μ(2c(m+ 1)+ 2c(5m+ 1)+ 2c(−3m)+ c(2m+ 1)+ 2c(4m+ 1)

+5c(3m+ 1)+ c(6m+ 1)+ 4c(−2m)+ 2c(m))ψ1(x)ψ2(x)ψ3(x)
∞∑
n=l

βnm

≤ μψ1(x)ψ2(x)ψ3(x)

∞∑

n=l
βn+1
m ≤ μψ1(x)ψ2(x)ψ3(x)

∞∑

n=l+1

βnm.

Hence (2.17) is true for each j ∈ N0 and x ∈ X0. Letting j → ∞ in (2.17) and

using the fact that the series
∞∑
n=0

βnm is convergent we obtain that Fm = Fk =: F .

From (2.14), F is a solution to (1.4), it remains to prove the statement concerning
the uniqueness of F . So, assume that G : X → Y is another function satisfying
equation (1.4) and inequality (2.3). Then

‖G(x)− F(x)‖ ≤ 2c0ψ1(x)ψ2(x)ψ3(x), x ∈ X0. (2.18)

Further, TmG = G for each m ∈ Z0. Next, with a fixed m ∈ M, we will show by
mathematical induction that

‖G(x)− F(x)‖ ≤ 2c0β
n
mψ1(x)ψ2(x)ψ3(x), x ∈ X0. (2.19)

Clearly, if n = 0, then (2.19) is simply (2.18). So, fix l ∈ N0 and suppose that (2.19)
holds for l and x ∈ X0. Then, for every x ∈ X0,

‖G(x)− F(x)‖ = ‖(T l+1
m G)(x)− (T l+1

m F)(x)‖
= ‖2(T l

mG)((m+ 1)x)+ 2(T l
mG)((5m+ 1)x)+ 2(T l

mG)(−3mx)
+(T l

mG)((2m+ 1)x)+ 2(T l
mG)((4m+ 1)x)− 5(T l

mG)((3m+ 1)x)
−(T l

mG)((6m+ 1)x)− 4(T l
mG)(−2mx)− 2(T l

mG)(mx)

−(2(T l
mF )((m+ 1)x)+ 2(T l

mF )((5m+ 1)x)+ 2(T l
mF )(−3mx)

+(T l
mF )((2m+ 1)x)+ 2(T l

mF )((4m+ 1)x)− 5(T l
mF )((3m+ 1)x)

−(T l
mF )((6m+ 1)x)− 4(T l

mF )(−2mx)− 2(T l
mF )(mx))

≤ 2‖(T l
mG)((m+ 1)x)− (T l

mF )((m+ 1)x)‖ + 2‖(T l
mG)((5m+ 1)x)

−(T l
mF )((5m+ 1)x)‖ + 2‖(T l

mG)(−3mx)− (T l
mF )(−3mx)‖

+‖(T l
mG)((2m+ 1)x)− (T l

mF )((2m+ 1)x)‖
+2‖(T l

mG)((4m+ 1)x)− (T l
mF )((4m+ 1)x)‖ + 5‖(T l

mG)((3m+ 1)x)
−(T l

mF )((3m+ 1)x)‖ + ‖(T l
mG)((6m+ 1)x)− (T l

mF )((6m+ 1)x)‖
+4‖(T l

mG)(−2mx)− (T l
mF )(−2mx)‖

+2‖(T l
mG)(mx)− (T l

mF )(mx)‖
≤ [2ψ1((m+ 1)x)ψ2((m+ 1)x)ψ3((m+ 1)x)+ 2ψ1((5m+ 1)x)
×ψ2((5m+ 1)x)ψ3((5m+ 1)x)+ 2ψ1(−3mx)ψ2(−3mx)ψ3(−3mx)
+ψ1((2m+ 1)x)ψ2((2m+ 1)x)ψ3((2m+ 1)x)+ 2ψ1((4m+ 1)x)
×ψ2((4m+ 1)x)ψ3((4m+ 1)x)+ 5ψ1((3m+ 1)x)ψ2((3m+ 1)x)
×ψ3((3m+ 1)x)+ ψ1((6m+ 1)x)ψ2((6m+ 1)x)ψ3((6m+ 1)x)
+4ψ1(−2mx)ψ2(−2mx)ψ3(−2mx)+ 2ψ1(mx)ψ2(mx)ψ3(mx)]·2c0β

l
m
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≤ 2c0β
l
m · (2c(m+ 1)+ 2c(5m+ 1)+ 2c(−3m)+ c(2m+ 1)

+2c(4m+ 1)+ 5c(3m+ 1)+ c(6m+ 1)+ 4c(−2m)+ 2c(m))
·ψ1(x)ψ2(x)ψ3(x)

= 2c0β
l+1
m ψ1(x)ψ2(x)ψ3(x)

for all x ∈ X0, l ∈ N0 and m ∈ M. Thus we have shown (2.19). Now, letting
j →∞ in (2.19), we get G = F . This completes the proof. ��

The following hyperstability result can be deduced from Theorem 2.1.

Corollary 2.1 Let (X,+) be a commutative group, Y be a Banach space over K ∈
{R,C}. Suppose that f : X → Y and c1, c2, c3 : Z0 → R+ satisfy conditions
(2.1), (2.2) and

lim
k→∞ inf{c1(3k + 1)c2(−2k)c3(−k)} = 0. (2.20)

Then f satisfies (1.4).

Corollary 2.2 LetX be a normed space and Y be a Banach space over K ∈ {R,C}.
Suppose that f : X→ Y satisfies the inequality

‖(Df )(x, y, z)‖ ≤ α‖x‖p‖y‖q‖z‖r , x, y, z ∈ X\{0}, (2.21)

for some α ≥ 0 and p, q, r ∈ R such that p + q + r < 0. Then f satisfies (1.4).

Proof Let ψ1, ψ2, ψ3 : X → R+ be defined by ψ1(x) = α1‖x‖p, ψ2(x) =
α2‖x‖q and ψ3(x) = α3‖x‖r , where α1, α2, α3 ∈ R+ and p, q, r ∈ R such that
p + q + r < 0 and α = α1α2α3. For each k ∈ N,

c1(k) = inf{t ∈ R+ : ψ1(kx) ≤ tψ1(x), x ∈ X\{0}}
= inf{t ∈ R+ : α1‖kx‖p ≤ tα1‖x‖p, x ∈ X\{0}} = kp.

Also, we have c2(k) = kq and c3(k) = kr for each k ∈ N. Then we get

lim
k→∞(2c(k + 1)+ 2c(5k + 1)+ 2c(−3k)+ c(2k + 1)+ 2c(4k + 1)+ 5c(3k + 1)

+c(6k + 1)+ 4c(−2k)+ 2c(k))
= lim

k→∞(2(k + 1)p+q+r + 2(5k + 1)p+q+r + 2(3k)p+q+r

+(2k + 1)p+q+r + 2(4k + 1)p+q+r + 5(3k + 1)p+q+r
+(6k + 1)p+q+r + 4(2k)p+q+r + 2kp+q+r )

= 0.

Thus, there is k0 ∈ N such that, for k ≥ k0,

2c(k + 1)+ 2c(5k + 1)+ 2c(−3k)+ c(2k + 1)+ 2c(4k + 1)+ 5c(3k + 1)

+ c(6k + 1)+ 4c(−2k)+ 2c(k) < 1.
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Since p, q, r ∈ R with p + q + r < 0, then

lim
k→∞ c1(3k + 1)c2(−2k)c3(−k) = lim

k→∞ k
p(3+ 1

k
) · 2qkq · kr

= lim
k→∞ k

p+q+r · (3+ 1
k
) · 2q = 0.

Thus, the conditions (2.1), (2.2), and (2.20) are fulfilled. Then by Corollary 2.1, we
get the desired results. ��
Theorem 2.2 Let (X,+) be a commutative group, X0 := X\{0}, Y be a Banach
space over K ∈ {R,C} and ψ1, ψ2, ψ3 : X0 → R+ be three functions such that

M := {m ∈ Z0 : γm := 2c(m+ 1)+ 2c(5m+ 1)+ 2c(−3m)+ c(2m+ 1)
+2c(4m+ 1)+ 5c(3m+ 1)+ c(6m+ 1)+ 4c(−2m)+ 2c(m) < 1} �= ∅,

ci(m) := inf{t ∈ R+ : ψi(mx) ≤ tψi(x), x ∈ X}, i ∈ {1, 2, 3},m ∈ Z0,

c(u) := max
i∈{1,2,3} ci(u), u ∈ Z0.

(2.22)
Suppose that f : X→ Y satisfies the inequality

‖(Df )(x, y, z)‖ ≤ ψ1(x)+ ψ2(y)+ ψ3(z), x, y, z ∈ X0. (2.23)

Then there exists a unique solution F : X0 → Y of Eq.(1.4) such that

‖f (x)− F(x)‖ ≤ c0(ψ1(x)+ ψ2(x)+ ψ3(x)), x ∈ X0, (2.24)

where c0 := infm∈M{max{c1(3m+1),c2(−2m),c3(−m)}
1−γm }.

Proof Replacing (x, y, z) by ((3m+ 1)x,−2mx,−mx) in (2.23) we get

‖f (x)+ 5f ((3m+ 1)x)+ f ((6m+ 1)x)− 2f ((m+ 1)x)− 2f ((5m+ 1)x)
−2f (−3mx)− f ((2m+ 1)x)− 2f ((4m+ 1)x)+ 4f (−2mx)+ 2f (mx)‖
≤ ψ1((3m+ 1)x)+ ψ2(−2mx)+ ψ3(−mx), x ∈ X0,m ∈ Z0.

(2.25)
Define

εm(x) := ψ1((3m+ 1)x)+ ψ2(−2mx)+ ψ3(−mx)
≤ c1(3m+ 1)ψ1(x)+ c2(−2m)ψ2(x)+ c3(−m)ψ3(x)

≤ max{c1(3m+ 1), c2(−2m), c3(−m)}(ψ1(x)+ ψ2(x)

+ψ3(x)), x ∈ X0,m ∈ Z0.

(2.26)

Tm is defined as in (2.6) and "m : RX+ → R
X+ for m ∈ Z0 is defined as in (2.7).

Then, it follows from (2.25) that

‖(Tmf )(x)− f (x)‖ ≤ εm(x), x ∈ X0,m ∈ Z0. (2.27)
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We will show that the hypotheses of Theorem 1.1 are fulfilled. For k = 9 and
f1(x) := (m + 1)x, f2(x) := (5m + 1)x, f3(x) := −3mx, f4(x) := (2m + 1)x,
f5(x) := (4m + 1)x, f6(x) := (3m + 1)x, f7(x) := (6m + 1)x, f8(x) := −2mx,
f9(x) := mx, L1(x) = L2(x) = L3(x) = L5(x) = L9(x) := 2, L4(x) = L7(x) :=
1, L6(x) := 5, L8(x) := 4, x ∈ X0, inequality (1.5) becomes

‖(Tmξ)(x)− (Tmμ)(x)‖
= ‖2ξ((m+ 1)x)+ 2ξ((5m+ 1)x)+ 2ξ(−3mx)+ ξ((2m+ 1)x)
+2ξ((4m+ 1)x)− 5ξ((3m+ 1)x)− ξ((6m+ 1)x)− 4ξ(−2mx)
−2ξ(mx)− 2μ((m+ 1)x)− 2μ((5m+ 1)x)− 2μ(−3mx)
−μ((2m+ 1)x)− 2μ((4m+ 1)x)+ 5μ((3m+ 1)x)+ μ((6m+ 1)x)
+4μ(−2mx)+ 2μ(mx)‖

≤ 2‖(ξ − μ)((m+ 1)x)‖ + 2‖(ξ − μ)((5m+ 1)x)‖
+2‖(ξ − μ)(−3mx)‖ + ‖(ξ − μ)((2m+ 1)x)‖ + 2‖(ξ − μ)((4m+ 1)x)‖
+5‖(ξ − μ)((3m+ 1)x)‖ + ‖(ξ − μ)((6m+ 1)x)‖ + 4‖(ξ − μ)(−2mx)‖
+2‖(ξ − μ)(mx)‖, x ∈ X0, ξ , μ ∈ YX0 ,m ∈ Z0,

where

(ξ − μ)(u) := ξ(u)− μ(u), u ∈ X0,

so hypothesis (H2) is valid. Next, put "m : RX0+ → R
X0+ for m ∈ Z0 by

("mδ)(x) := 2δ((m+ 1)x)+ 2δ((5m+ 1)x)+ 2δ(−3mx)+ δ((2m+ 1)x)
+2δ((4m+ 1)x)+ 5δ((3m+ 1)x)+ δ((6m+ 1)x)
+4δ(−2mx)+ 2δ(mx), x ∈ X, δ ∈ R

X0+ .

Then it is easily seen that "m has the form described in (H3).
Next, it is easily seen that, by mathematical induction on l, from (2.26) we get

(
"lmεm

)
(x) ≤ max{c1(3m+1), c2(−2m), c3(−m)}γ nm(ψ1(x)+ψ2(x)+ψ3(x)),

(2.28)
for all l ∈ N0 and m ∈M. Thus, by (2.28), we obtain that

ε∗m(x) =
∞∑

n=0

(
"nmεm

)
(x)

≤ max{c1(3m+ 1), c2(−2m), c3(−m)}(ψ1(x)+ ψ2(x)+ ψ3(x))

1− γm
(2.29)

for all x ∈ X0 and m ∈ M. By using Theorem 1.1 with E = X0, V = Y and
ϕ = f , for each m ∈M there exists a function Fm : X0 → Y , given by Fm(x) =
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limn→∞(T n
mf )(x) for x ∈ X0, is a unique fixed point of Tm, i.e.,

Fm(x) = 2Fm((m+ 1)x)+ 2Fm((5m+ 1)x)+ 2Fm(−3mx)+ Fm((2m+ 1)x)
+2Fm((4m+ 1)x)− 5Fm((3m+ 1)x)− Fm((6m+ 1)x)
−4Fm(−2mx)− 2Fm(mx), x ∈ X0,

(2.30)
and

‖f (x)− Fm(x)‖

≤ max{c1(3m+ 1), c2(−2m), c3(−m)}(ψ1(x)+ ψ2(x)+ ψ3(x))

1− γm
, x ∈ X0.

(2.31)

Similarly as in the proof of Theorem 2.1 we can show that

‖(T n
mf )(x + y + z)+ (T n

mf )(x + y − z)+ (T n
mf )(x − y + z)

+(T n
mf )(x − y − z)− 2[(T n

mf )(x + y)+ (T n
mf )(x − y)

+(T n
mf )(y + z)+ (T n

mf )(y − z)+ (T n
mf )(x + z)

+(T n
mf )(x − z)] + 4(T n

mf )(x)+ 4(T n
mf )(y)

+2[(T n
mf )(z)+ (T n

mf )(−z)]‖ ≤ γ nm(ψ1(x)+ ψ2(y)+ ψ3(z))

(2.32)

for all x, y, z ∈ X0, n ∈ N0 and m ∈M. Letting n→∞ in (2.32) we get

Fm(x + y + z)+ Fm(x + y − z)+ Fm(x − y + z)+ Fm(x − y − z)
= 2[Fm(x + y)+ Fm(x − y)+ Fm(y + z)+ Fm(y − z)+ Fm(x + z)
+Fm(x − z)] − 4Fm(x)− 4Fm(y)− 2[Fm(z)+ Fm(−z)].

(2.33)
So, we have proved that, for each m ∈ M there exists a function Fm : X0 → Y

satisfying the Eq. (1.4) for all x, y, z ∈ X0 and such that

‖f (x)− Fm(x)‖

≤ max{c1(3m+ 1), c2(−2m), c3(−m)}(ψ1(x)+ ψ2(x)+ ψ3(x))

1− γm
, x ∈ X0.

(2.34)

The rest of the proof is similar to the proof of Theorem 2.1. ��
One can prove the following hyperstability results.

Corollary 2.3 Let (X,+) be a commutative group, Y be a Banach space over K ∈
{R,C}. Suppose that f : X → Y and c1, c2, c3 : Z0 → R+ satisfy conditions
(2.22), (2.23) and
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lim
k→∞max{c1(3k + 1), c2(−2k), c3(−k)} = 0. (2.35)

Then f satisfies (1.4).

Corollary 2.4 LetX be a normed space and Y be a Banach space over K ∈ {R,C}.
Suppose that f : X→ Y satisfies the inequality

‖(Df )(x, y, z)‖ ≤ α (‖x‖p + ‖y‖p + ‖z‖p) , x, y, z ∈ X\{0}, (2.36)

for some α ≥ 0 and p ∈ R such that p < 0. Then f satisfies (1.4).
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Ostrowski Type Inequalities Involving
Sublinear Integrals

George A. Anastassiou

Abstract The topic here is estimation of a function from its average. This is done
by the Ostrowski type inequalities. Here we define a very general sublinear integral
which generalizes the well-known Choquet and Shilkret integrals. Then we produce
a series of Ostrowski type inequalities at all levels: univariate, multivariate, and
fractional, acting to all possible cases. At the end we give a fractional Polya–
Choquet inequality. Our upper bounds are simple, very tight, and accurate.

1 Introduction

The famous Ostrowski [1, 12] inequality motivates this work and has as follows:

∣∣∣
∣

1

b − a
∫ b

a

f (y) dy − f (x)
∣∣∣
∣ ≤

(
1

4
+
(
x − a+b

2

)2

(b − a)2
)

(b − a) ∥∥f ′∥∥∞,

where f ∈ C1 ([a, b]), x ∈ [a, b], and it is a sharp inequality.
Another motivation comes from author’s [3, pp. 507–508], see also [2]:

Let f ∈ C1
(

k∏

i=1
[ai, bi]

)
, where ai < bi; ai, bi ∈ R, i = 1, . . . , k, and let

x0 := (x01, . . . , x0k) ∈
k∏

i=1
[ai, bi] be fixed. Then

∣∣
∣∣∣∣∣∣
∣

1
k∏

i=1
(bi − ai)

∫ b1

a1

. . .

∫ bi

ai

. . .

∫ bk

ak

f (z1, . . . , zk) dz1 . . . dzk − f (x0)

∣∣
∣∣∣∣∣∣
∣

≤

G. A. Anastassiou (�)
Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
e-mail: ganastss@memphis.edu

© Springer Nature Switzerland AG 2019
G. A. Anastassiou and J. M. Rassias (eds.), Frontiers in Functional Equations
and Analytic Inequalities, https://doi.org/10.1007/978-3-030-28950-8_19

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28950-8_19&domain=pdf
mailto:ganastss@memphis.edu
https://doi.org/10.1007/978-3-030-28950-8_19


326 G. A. Anastassiou

k∑

i=1

(
(x0i − ai)2 + (bi − x0i )

2

2 (bi − ai)

)∥∥∥
∥
∂f

∂zi

∥∥∥
∥∞

.

The last inequality is sharp, the optimal function is

f ∗ (z1, . . . , zk) :=
k∑

i=1

|zi − x0i |αi , αi > 1.

A further inspiration is author’s next fractional result, see [5, p. 44]:
Let [a, b] ⊂ R, α > 0, m = α� (·� ceiling of the number), f ∈ ACm ([a, b])

(i.e., f (m−1) is absolutely continuous), and
∥∥Dα

x0−f
∥∥∞,[a,x0]

,
∥∥Dα∗x0

f
∥∥∞,[x0,b]

<

∞ (whereDα
x0−f ,Dα∗x0

f are the right and left Caputo fractional derivatives of f of
order α, respectively), x0 ∈ [a, b]. Assume f (k) (x0) = 0, k = 1, . . . , m− 1. Then

∣∣∣
∣

1

b − a
∫ b

a

f (x) dx − f (x0)

∣∣∣
∣ ≤

1

(b − a) Γ (α + 2)
·

{∥∥Dα
x0−f

∥∥∞,[a,x0]
(x0 − a)α+1 + ∥∥Dα∗x0

f
∥∥∞,[x0,b]

(b − x0)
α+1
}
≤

1

Γ (α + 2)
max

{∥∥Dα
x0−f

∥∥∞,[a,x0]
,
∥∥Dα∗x0

f
∥∥∞,[x0,b]

}
(b − a)α.

Another great source for inspiration is [7].
In this work we define a general sublinear integral, which has Choquet and

Shilkret integrals as special cases, and we derive a rich set of Ostrowski type
inequalities at the univariate, multivariate, and fractional levels, acting to all possible
directions. We finish with a fractional Polya–Choquet inequality.

2 Background-I

ConsiderΩ �= ∅ and let F be a σ -algebra inΩ . Here μ is a set function μ : F →
[0,+∞) which is monotone, i.e. for A,B ∈ Ω : A ⊂ B we have μ (A) ≤ μ (B),
furthermore it holds μ (∅) = 0.

Here f, g : Ω → R+ = [0,+∞) are F -measurable, we write it as f, g ∈
M (Ω,R+).

We consider a functional denoted by the integral symbol (SL)
∫
A
f dμ, ∀A ∈ F,

which is positive, i.e.
∫
A
f dμ ≥ 0.

We assume the following properties:

(1) (positive homogeneous)

(SL)

∫

A

αf dμ = α (SL)

∫

A

f dμ, ∀ α ≥ 0, ∀ f ∈ M (Ω,R+).
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(2) (Monotonicity) if f, g ∈ M (Ω,R+) satisfy f ≤ g, then (SL)
∫
A
f dμ ≤

(SL)
∫
A
gdμ, ∀ A ∈ F .

And
(3) (Subadditivity)

(SL)

∫

A

(f + g) dμ ≤ (SL)
∫

A

f dμ+ (SL)
∫

A

gdμ, ∀ A ∈ F .

(4)

(SL)

∫

A

1dμ = μ (A) , ∀ A ∈ F .

(5) If Ω = R
d , d ∈ N, we assume that μ is strictly positive, i.e. μ (A) > 0, for any

A compact subset of Rd . Here F = B the Borel σ -algebra.

We call (SL)
∫
A
f dμ a sublinear integral.

We notice the following:

f (x) = f (x)− g (x)+ g (x) ≤ |f (x)− g (x)| + g (x),

hence

(SL)

∫

A

f (x) dμ (x) ≤ (SL)
∫

A

(|f (x)− g (x)| + g (x)) dμ (x) ≤

(SL)

∫

A

|f (x)− g (x)| dμ (x)+ (SL)
∫

A

g (x) dμ (x),

i.e.,

(SL)

∫

A

f (x) dμ (x)− (SL)
∫

A

g (x) dμ (x) ≤ (SL)
∫

A

|f (x)− g (x)| dμ (x).

Similarly, we get that

(SL)

∫

A

g (x) dμ (x)− (SL)
∫

A

f (x) dμ (x) ≤ (SL)
∫

A

|f (x)− g (x)| dμ (x).

In conclusion, it holds

∣
∣∣∣(SL)

∫

A

f (x) dμ (x)− (SL)
∫

A

g (x) dμ (x)

∣
∣∣∣ ≤ (SL)

∫

A

|f (x)− g (x)| dμ (x),
(1)

∀ A ∈ F and ∀ f, g ∈ M (Ω,R+).
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3 Background-II

About the Choquet integral:
We make

Definition 1 Consider Ω �= ∅ and let C be a σ -algebra of subsets in Ω .

(i) (see, e.g., [14, p. 63]) The set function μ : C → [0,+∞] is called a monotone
set function (or capacity) if μ (∅) = 0 and μ (A) ≤ μ (B) for all A,B ∈ C ,
with A ⊂ B. Also, μ is called submodular if

μ (A ∪ B)+ μ (A ∩ B) ≤ μ (A)+ μ (B) , for all A,B ∈ C . (2)

μ is called bounded if μ (Ω) < +∞ and normalized if μ (Ω) = 1.
(ii) (see, e.g., [14, p. 233], or [9]) If μ is a monotone set function on C and if

f : Ω → R is C -measurable (that is, for any Borel subset B ⊂ R it follows
f−1 (B) ∈ C ), then for any A ∈ C , the Choquet integral is defined by

(C)

∫

A

f dμ =
∫ +∞

0
μ
(
Fβ (f ) ∩ A

)
dβ+

∫ 0

−∞
[
μ
(
Fβ (f ) ∩ A

)−μ (A)] dβ,
(3)

where we used the notation Fβ (f ) = {ω ∈ Ω : f (ω) ≥ β}. Notice that if f ≥
0 on A, then in the above formula we get

∫ 0
−∞ = 0.

The integrals on the right-hand side are the usual Riemann integral.
The function f will be called Choquet integrable on A if (C)

∫
A
f dμ ∈ R.

Next we list some well-known properties of the Choquet integral.

Remark 1 If μ : C → [0,+∞] is a monotone set function, then the following
properties hold:

(i) For all a ≥ 0 we have (C)
∫
A
af dμ = a · (C) ∫A f dμ (if f ≥ 0, then see, e.g.,

[14], Theorem 11.2, (5), p. 228 and if f is arbitrary sign, then see, e.g., [10,
p. 64], Proposition 5.1, (ii)).

(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [14, pp. 232–233], or
[10, p. 65]) (C)

∫
A (f + c) dμ = (C)

∫
A
f dμ+ c · μ (A) .

If μ is submodular too, then for all f, g of arbitrary sign and lower bounded,
we have (see, e.g., [10, p. 75], Theorem 6.3)

(C)

∫

A

(f + g) dμ ≤ (C)
∫

A

f dμ+ (C)
∫

A

gdμ. (4)

(iii) If f ≤ g on A, then (C)
∫
A
f dμ ≤ (C)

∫
A
gdμ (see, e.g., [14, p. 228],

Theorem 11.2, (3) if f, g ≥ 0 and p. 232 if f, g are of arbitrary sign).
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(iv) Let f ≥ 0. If A ⊂ B, then (C)
∫
A
f dμ ≤ (C)

∫
B
f dμ. In addition, if μ is

finitely subadditive, then

(C)

∫

A∪B
f dμ ≤ (C)

∫

A

f dμ+ (C)
∫

B

f dμ. (5)

(v) It is immediate that (C)
∫
A

1 · dμ (t) = μ (A) .

(vi) If μ is a countably additive bounded measure, then the Choquet integral
(C)

∫
A
f dμ reduces to the usual Lebesgue type integral (see, e.g., [10, p. 62],

or [13, p. 226]).
(vii) If Ω = R

d , d ∈ N, we assume μ is strictly positive, i.e. μ (A) > 0, for every
A compact subset of Rd . Here C = B the Borel σ -algebra.

Clearly here, for μ being submodular, we get

∣∣∣∣(C)
∫

A

f (x) dμ (x)− (C)
∫

A

g (x) dμ (x)

∣∣∣∣ ≤ (C)
∫

A

|f (x)− g (x)| dμ (x),
(6)

∀ A ∈ C and ∀ f, g ∈ M (Ω,R+) (f, g are measurable with respect to C σ -
algebra).

From now on in this article we assume thatμ : C → [0,+∞) and is submodular.

4 Background-III

Here we follow [13].
Let F be a σ -field of subsets of an arbitrary set Ω . An extended non-negative

real valued function μ on F is called maxitive if μ (∅) = 0 and

μ (∪i∈IEi) = sup
i∈I
μ (Ei), (7)

where the set I is of cardinality at most countable, where {Ei}i∈I is a disjoint
collection of sets from F . We notice that μ is monotone and (7) is true even
{Ei}i∈I are not disjoint. For more properties of μ see [13]. We also call μ a maxitive
measure. Here f stands for a non-negative measurable function on Ω . In [13], Niel
Shilkret developed his non-additive integral defined as follows:

(
N∗
) ∫

D

f dμ := sup
y∈Y
{y · μ (D ∩ {f ≥ y})}, (8)

where Y = [0,m] or Y = [0,m) with 0 < m ≤ ∞, and D ∈ F . Here we take
Y = [0,∞).
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It is easily proved that

(
N∗
) ∫

D

f dμ = sup
y>0
{y · μ (D ∩ {f > y})}. (9)

The Shilkret integral takes values in [0,∞].
The Shilkret integral [13] has the following properties:

(
N∗
) ∫

Ω

χEdμ = μ (E), (10)

where χE is the indicator function on E ∈ F,

(
N∗
) ∫

D

cf dμ = c
(
N∗
) ∫

D

f dμ, c ≥ 0, (11)

(
N∗
) ∫

D

sup
n∈N

fndμ = sup
n∈N

(
N∗
) ∫

D

fndμ, (12)

where fn, n ∈ N, is an increasing sequence of elementary (countably valued)
functions converging uniformly to f . Furthermore we have

(
N∗
) ∫

D

f dμ ≥ 0, (13)

f ≥ g implies
(
N∗
) ∫

D

f dμ ≥ (N∗)
∫

D

gdμ, (14)

where f, g : Ω → [0,∞] are measurable.
Let a ≤ f (ω) ≤ b for almost every ω ∈ E, then

aμ (E) ≤ (N∗)
∫

E

f dμ ≤ bμ (E); (15)

(
N∗
) ∫

E

1dμ = μ (E); (16)

f > 0 almost everywhere and (N∗)
∫
E
f dμ = 0 imply μ (E) = 0;

(N∗)
∫
Ω
f dμ = 0 if and only f = 0 almost everywhere;

(N∗)
∫
Ω
f dμ <∞ implies that

N (f ) := {ω ∈ Ω|f (ω) �= 0} has σ -finite measure;

(
N∗
) ∫

D

(f + g) dμ ≤ (N∗)
∫

D

f dμ+ (N∗)
∫

D

gdμ; (17)
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and
∣
∣∣∣
(
N∗
) ∫

D

f dμ− (N∗)
∫

D

gdμ

∣
∣∣∣ ≤

(
N∗
) ∫

D

|f − g| dμ. (18)

From now on in this article we assume that μ : F → [0,+∞).
If Ω = R

d , d ∈ N, we assume μ is strictly positive, i.e. μ (A) > 0, for every A
compact subset of Rd . Here F = B the Borel σ -algebra.

Conclusion 1 We observe that the Choquet integral (C)
∫
A
f dμ and Shilkret

integral (N∗)
∫
A
f dμ are perfect examples of the sublinear integral (SL)

∫
A
f dμ

of Sect. 2, fulfilling all properties and they have great applications in many areas of
pure and applied mathematics and mathematical economics.

Therefore, all the results presented in this article which are for the general
integral (SL)

∫
A
f dμ are of course valid for the Choquet and Shilkret integrals.

5 Univariate Ostrowski (SL)-Integral Inequalities

From now on we work in the setting of Sect. 2: Background-I.
We make

Remark 2 Let f ∈ C1 ([a, b] ,R+), and μ ([a, b]) > 0, x ∈ [a, b]. We will
estimate

E :=
∣∣
∣∣∣

(SL)
∫

[a,b] f (t) dμ (t)

μ ([a, b])
− f (x)

∣∣
∣∣∣
= (19)

∣∣∣
∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− μ ([a, b]) f (x)

μ ([a, b])

∣∣∣
∣ =

∣
∣∣∣

1

μ ([a, b])

(
(SL)

∫

[a,b]
f (t) dμ (t)− (SL)

∫

[a,b]
f (x) dμ (t)

)∣∣∣∣ ≤

1

μ ([a, b])
(SL)

∫

[a,b]
|f (t)− f (x)| dμ (t) ≤

∥
∥f ′
∥
∥∞

μ ([a, b])
(SL)

∫

[a,b]
|t − x| dμ (t) . (20)

If f : [a, b] → R+ is a Lipschitz function of order 0 < α ≤ 1, i.e.
|f (x)− f (y)| ≤ K |x − y|α , ∀ x, y ∈ [a, b], where K > 0, denoted by
f ∈ Lipα,K ([a, b] ,R+), then we get
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E ≤ 1

μ ([a, b])
(SL)

∫

[a,b]
|f (t)− f (x)| dμ (t) ≤

K

μ([a, b])
(SL)

∫

[a,b]
|t − x|α dμ (t). (21)

We have proved the following Ostrowski type inequalities:

Theorem 1 Here μ ([a, b]) > 0 and x ∈ [a, b].

(1) Let f ∈ C1 ([a, b] ,R+), then

∣∣∣
∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (x)

∣∣∣
∣ ≤

∥∥f ′
∥∥∞

μ ([a, b])
(SL)

∫

[a,b]
|t − x| dμ (t) . (22)

(2) Let f ∈ Lipα,K ([a, b] ,R+), 0 < α ≤ 1, then

∣
∣∣∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (x)

∣
∣∣∣ ≤

K

μ ([a, b])
(SL)

∫

[a,b]
|t − x|α dμ (t). (23)

We make

Remark 3 Let f ∈ C1 ([a, b] ,R+) and g ∈ C1 ([a, b]), by Cauchy’s mean value
theorem we get that

(f (t)− f (x)) g′ (c) = (g (t)− g (x)) f ′ (c),

for some c between t and x; for any t, x ∈ [a, b].
If g′ (c) �= 0, we have

(f (t)− f (x)) =
(
f ′ (c)
g′ (c)

)
(g (t)− g (x)).

Here we assume that g′ (t) �= 0, ∀ t ∈ [a, b]. Hence it holds

|f (t)− f (x)| ≤
∥∥∥∥
f ′

g′

∥∥∥∥∞
|g (t)− g (x)|, (24)

∀ t, x ∈ [a, b].



Ostrowski Type Inequalities Involving Sublinear Integrals 333

We have again as before

E ≤ 1

μ ([a, b])
(SL)

∫

[a,b]
|f (t)− f (x)| dμ (t) ≤

1

μ ([a, b])
(SL)

∫

[a,b]

∥∥∥∥
f ′

g′

∥∥∥∥∞
|g (t)− g (x)| dμ (t) ≤

1

μ ([a, b])

∥∥∥∥
f ′

g′

∥∥∥∥∞
(SL)

∫

[a,b]
|g (t)− g (x)| dμ (t). (25)

We have established the following general Ostrowski type inequality:

Theorem 2 Here μ is such that μ ([a, b]) > 0, x ∈ [a, b]. Let f ∈ C1 ([a, b] ,R+)
and g ∈ C1 ([a, b]) with g′ (t) �= 0, ∀ t ∈ [a, b] . Then

∣∣∣
∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (x)

∣∣∣
∣ ≤

∥∥∥f
′
g′
∥∥∥∞

μ ([a, b])
(SL)

∫

[a,b]
|g (t)− g (x)| dμ (t). (26)

We give for g (t) = et the next result

Corollary 1 Here μ is such that μ ([a, b]) > 0, x ∈ [a, b]. Let f ∈
C1 ([a, b] ,R+), then

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (x)

∣∣∣∣ ≤

∥∥
∥f

′
et

∥∥
∥∞

μ ([a, b])
(SL)

∫

[a,b]

∣∣et − ex∣∣ dμ (t). (27)

When g (t) = ln t we get

Corollary 2 Here μ is such that μ ([a, b]) > 0, x ∈ [a, b] and a > 0. Let f ∈
C1 ([a, b] ,R+) . Then

∣∣∣
∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (x)

∣∣∣
∣ ≤

∥∥tf ′ (t)
∥∥∞

μ ([a, b])
(SL)

∫

[a,b]

∣∣∣∣ln
t

x

∣∣∣∣ dμ (t). (28)
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Many other applications of Theorem 2 could follow but we stop it here.
We make

Remark 4 Let f ∈ [C ([a, b] ,R+) ∩ Cn+1 ([a, b])
]
, n ∈ N, x ∈ [a, b]. Then by

Taylor’s theorem we get

f (y)− f (x) =
n∑

k=1

f (k) (x)

k! (y − x)k + Rn (x, y), (29)

where the remainder

Rn (x, y) :=
∫ y

x

(
f (n) (t)− f (n) (x)

) (y − t)n−1

(n− 1)! dt; (30)

here y can be ≥ x or ≤ x.
By [3] we get that

|Rn (x, y)| ≤
∥
∥f (n+1)

∥
∥∞

(n+ 1)! |y − x|n+1 , for all x, y ∈ [a, b] . (31)

Here we assume f (k) (x) = 0, for all k = 1, . . . , n.
Therefore it holds

|f (t)− f (x)| ≤
∥∥f (n+1)

∥∥∞
(n+ 1)! |t − x|n+1 , for all t, x ∈ [a, b]. (32)

Here we have again

E ≤ 1

μ ([a, b])
(SL)

∫

[a,b]
|f (t)− f (x)| dμ (t) ≤

1

μ ([a, b])
(SL)

∫

[a,b]

∥∥f (n+1)
∥∥∞

(n+ 1)! |t − x|n+1 dμ (t) =

∥∥f (n+1)
∥∥∞

μ ([a, b]) (n+ 1)! (SL)
∫

[a,b]
|t − x|n+1 dμ (t). (33)

We have derived the following high order Ostrowski-type inequality:

Theorem 3 Let f ∈ [
C ([a, b] ,R+) ∩ Cn+1 ([a, b])

]
, n ∈ N, x ∈ [a, b]. We

assume that f (k) (x) = 0, all k = 1, . . . , n. Here μ is such that μ ([a, b]) > 0.
Then
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∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (x)

∣∣∣∣ ≤

∥
∥f (n+1)

∥
∥∞

(n+ 1)!μ ([a, b])
(SL)

∫

[a,b]
|t − x|n+1 dμ (t), (34)

which generalizes (22).

When x = a+b
2 we get

Corollary 3 Let f ∈ [
C ([a, b] ,R+) ∩ Cn+1 ([a, b])

]
, n ∈ N. Assume that

f (k)
(
a+b

2

) = 0, k = 1, . . . , n. Here μ is such that μ ([a, b]) > 0. Then

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f

(
a + b

2

)∣∣∣∣ ≤

∥∥f (n+1)
∥∥∞

(n+ 1)!μ ([a, b])
(SL)

∫

[a,b]

∣∣∣
∣t −

a + b
2

∣∣∣
∣

n+1

dμ (t). (35)

6 Multivariate Ostrowski (SL)-Integral Inequalities

Here Q is a compact and convex subset of Rk , k ≥ 1.
We make

Remark 5 Let f ∈ C (Q,R+) and μ is such that μ (Q) > 0, x ∈ Q. We will
estimate

∣
∣∣∣∣

(SL)
∫
Q
f (t) dμ (t)

μ (Q)
− f (x)

∣
∣∣∣∣
=

∣∣
∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− μ (Q)

μ (Q)
f (x)

∣∣
∣∣ =

1

μ (Q)

∣∣∣
∣(SL)

∫

Q

f (t) dμ (t)− (SL)
∫

Q

f (x) dμ (t)

∣∣∣
∣ ≤

1

μ (Q)
(SL)

∫

Q

|f (t)− f (x)| dμ (t), (36)

where t = (t1, . . . , tk), x = (x1, . . . , xk).
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That is,
∣∣
∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣∣
∣∣ ≤

1

μ (Q)
(SL)

∫

Q

|f (t)− f (x)| dμ (t). (37)

We make

Remark 6 Here Q :=
k∏

i=1
[ai, bi], where ai < bi ; ai, bi ∈ R, i = 1, . . . , k;

x = (x1, . . . , xk) ∈
k∏

i=1
[ai, bi] is fixed, and f ∈ C1

(
k∏

i=1
[ai, bi] ,R+

)
. Consider

gt (r) := f (x + r (t − x)), r ≥ 0. Note that gt (0) = f (x), gt (1) = f (t). Thus

f (t)− f (x) = gt (1)− gt (0) = g′t (ξ ) (1− 0) = g′t (ξ), (38)

where ξ ∈ (0, 1).
That is,

f (t)− f (x) =
k∑

i=1

(ti − xi) ∂f
∂ti

(x + ξ (t − x)). (39)

Hence

|f (t)− f (x)| ≤
k∑

i=1

|ti − xi |
∣∣∣∣
∂f

∂ti
(x + ξ (t − x))

∣∣∣∣

≤
k∑

i=1

|ti − xi |
∥∥
∥∥
∂f

∂ti

∥∥
∥∥∞

. (40)

By (37) we get
∣∣
∣∣∣∣∣∣
∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f (x)

∣∣
∣∣∣∣∣∣
∣

≤

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

|f (t)− f (x)| dμ (t) ≤

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

(
k∑

i=1

|ti − xi |
∥∥
∥∥
∂f

∂ti

∥∥
∥∥∞

)

dμ (t) ≤
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1

μ

(
k∏

i=1
[ai, bi]

)

⎛

⎝
k∑

i=1

(SL)

∫

k∏

i=1
[ai ,bi ]

|ti − xi |
∥∥∥∥
∂f

∂ti

∥∥∥∥∞
dμ (t)

⎞

⎠ =

1

μ

(
k∏

i=1
[ai, bi]

)

⎛

⎝
k∑

i=1

∥∥∥
∥
∂f

∂ti

∥∥∥
∥∞

(SL)

∫

k∏

i=1
[ai ,bi ]

|ti − xi | dμ (t)
⎞

⎠. (41)

Here μ is such that μ

(
k∏

i=1
[ai, bi]

)
> 0.

Therefore we get

∣
∣∣∣∣∣∣
∣∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f (x)

∣
∣∣∣∣∣∣
∣∣

≤ (42)

k∑

i=1

⎛

⎜⎜⎜
⎝

∥∥∥ ∂f∂ti

∥∥∥∞

μ

(
k∏

i=1
[ai, bi]

)

⎞

⎟⎟⎟
⎠

⎛

⎝(SL)
∫

k∏

i=1
[ai ,bi ]

|ti − xi | dμ (t)
⎞

⎠.

If f :
k∏

i=1
[ai, bi] → R+ is a Lipschitz function of order 0 < α ≤ 1, i.e.

|f (x)− f (y)| ≤ K ‖x − y‖αl1 , ∀ x, y ∈
k∏

i=1
[ai, bi], K > 0, where ‖x − y‖l1 :=

k∑

i=1
|xi − yi |, denoted by f ∈ Lipα,K

(
k∏

i=1
[ai, bi] ,R+

)
, then by (37) we get

∣∣∣∣
∣∣∣∣∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f (x)

∣∣∣∣
∣∣∣∣∣

≤ (43)

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

|f (t)− f (x)| dμ (t) ≤
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1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

K ‖t − x‖αl1 dμ (t) =

K

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

‖t − x‖αl1 dμ (t).

We have proved

∣
∣∣∣∣∣∣
∣∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f (x)

∣
∣∣∣∣∣∣
∣∣

≤ (44)

K

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

‖t − x‖αl1 dμ (t).

We have established the following multivariate Ostrowski (SL)-inequalities.

Theorem 4 Here μ is such that μ

(
k∏

i=1
[ai, bi]

)
> 0, x ∈

k∏

i=1
[ai, bi].

(1) Let f ∈ C1
(

k∏

i=1
[ai, bi] ,R+

)
, then

∣∣∣∣∣
∣∣∣∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f (x)

∣∣∣∣∣
∣∣∣∣

≤ (45)

k∑

i=1

⎛

⎜⎜⎜
⎝

∥
∥∥ ∂f∂ti

∥
∥∥∞

μ

(
k∏

i=1
[ai, bi]

)

⎞

⎟⎟⎟
⎠

⎛

⎝(SL)
∫

k∏

i=1
[ai ,bi ]

|ti − xi | dμ (t)
⎞

⎠.

(2) Let f ∈ Lipα,K
(

k∏

i=1
[ai, bi] ,R+

)
, 0 < α ≤ 1, then
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∣∣∣∣∣∣
∣∣∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f (x)

∣∣∣∣∣∣
∣∣∣

≤ (46)

K

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

‖t − x‖αl1 dμ (t).

We make

Remark 7 Let Q be a compact and convex subset of R
k , k ≥ 1. Let f ∈(

C (Q,R+) ∩ Cn+1 (Q)
)
, n ∈ N and x ∈ Q is fixed such that all partial derivatives

fα := ∂αf
∂tα

, where α = (α1, . . . , αk), αi ∈ Z
+, i = 1, . . . , k, |α| =

κ∑

i=1
αi = j ,

j = 1, . . . , n fulfill fα (x) = 0.
By [3, p. 513], we get that

|f (t)− f (x)| ≤

[(
k∑

i=1
|ti − xi |

∥∥∥ ∂
∂ti

∥∥∥∞

)n+1

f

]

(n+ 1)! , ∀ t ∈ Q. (47)

Call

Dn+1 (f ) := max
α:|α|=n+1

‖fα‖∞. (48)

For example, when k = 2 and n = 1, we get that
⎡

⎣

(
2∑

i=1

|ti − xi |
∥
∥∥∥
∂

∂ti

∥
∥∥∥∞

)2

f

⎤

⎦ =

(t1 − x1)
2

∥∥
∥∥∥
∂2f

∂t21

∥∥
∥∥∥∞
+ 2 |t1 − x1| |t2 − x2|

∥∥
∥∥
∂2f

∂t1∂t2

∥∥
∥∥∞
+ (t2 − x2)

2

∥∥
∥∥∥
∂2f

∂t22

∥∥
∥∥∥∞

,(49)

and

D2 (f ) = max
α:|α|=2

‖fα‖∞. (50)

Clearly, it holds

⎡

⎣
(

2∑

i=1

|ti − xi |
∥∥∥∥
∂

∂ti

∥∥∥∥∞

)2

f

⎤

⎦ ≤ D2 (f ) (|t1 − x1| + |t2 − x2|)2 . (51)
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Consequently, we derive that

⎡

⎣
(

k∑

i=1

|ti − xi |
∥∥∥∥
∂

∂ti

∥∥∥∥∞

)n+1

f

⎤

⎦ ≤ Dn+1 (f ) ‖t − x‖n+1
l1

, ∀ t ∈ Q. (52)

By (37) we get

∣∣∣∣
1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣∣∣∣ ≤

1

μ (Q)
(SL)

∫

Q

|f (t)− f (x)| dμ (t) ≤ (53)

1

μ (Q)
(SL)

∫

Q

[(
k∑

i=1
|ti − xi |

∥∥∥ ∂
∂ti

∥∥∥∞

)n+1

f

]

(n+ 1)! dμ (t) ≤

1

μ (Q)
(SL)

∫

Q

Dn+1 (f ) ‖t − x‖n+1
l1

(n+ 1)! dμ (t) = (54)

1

μ (Q)

Dn+1 (f )

(n+ 1)! (SL)
∫

Q

‖t − x‖n+1
l1

dμ (t).

Here μ is such that μ (Q) > 0.
By (53) and (54) we obtain

∣
∣∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣
∣∣∣ ≤

Dn+1 (f )

(n+ 1)!μ (Q) (SL)
∫

Q

‖t − x‖n+1
l1

dμ (t). (55)

We have established the following multivariate Ostrowski general (SL)-
inequality:

Theorem 5 Let Q be a compact and convex subset of R
k , k ≥ 1. Let f ∈(

C (Q,R+) ∩ Cn+1 (Q)
)
, n ∈ N, x ∈ Q be fixed: fα (x) = 0, all α : |α| = j ,

j = 1, . . . , n. Here μ is such that μ (Q) > 0. Then

∣
∣∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣
∣∣∣ ≤
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Dn+1 (f )

(n+ 1)!μ (Q) (SL)
∫

Q

‖t − x‖n+1
l1

dμ (t). (56)

Corollary 4 All as in Theorem 5. Then

∣∣∣∣
1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣∣∣∣ ≤

1

(n+ 1)!μ (Q) (SL)
∫

Q

⎡

⎣

(
k∑

i=1

|ti − xi |
∥∥
∥∥
∂

∂xi

∥∥
∥∥∞

)n+1

f

⎤

⎦ dμ (t). (57)

Next we take again Q :=
k∏

i=1
[ai, bi], we set a := (a1, . . . , ak), b :=

(b1, . . . , bk), and a+b
2 =

(
a1+b1

2 , . . . ,
ak+bk

2

)
∈

k∏

i=1
[ai, bi].

Corollary 5 Let f ∈
(
C

(
k∏

i=1
[ai, bi]R+

)
∩ Cn+1

(
k∏

i=1
[ai, bi]

))
, n ∈ N, such

that fα
(
a+b

2

) = 0, all α : |α| = j , j = 1, . . . , n. Here μ is such that

μ

(
k∏

i=1
[ai, bi]

)
> 0. Then

∣
∣∣∣∣∣∣
∣∣

1

μ

(
k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

f (t) dμ (t)− f
(
a + b

2

)

∣
∣∣∣∣∣∣
∣∣

≤

Dn+1 (f )

(n+ 1)!μ
(

k∏

i=1
[ai, bi]

) (SL)
∫

k∏

i=1
[ai ,bi ]

∥∥
∥∥t −

a + b
2

∥∥
∥∥

n+1

l1

dμ (t). (58)

Proof By Theorem 5.

We make

Remark 8 By multinomial theorem we have that

‖t − x‖n+1
l1

=
(

k∑

i=1

|ti − xi |
)n+1

=

∑

r1+r2+...+rk=n+1

(
n+ 1

r1, r2, . . . , rk

)
|t1 − x1|r1 |t2 − x2|r2 . . . |tk − xk|rk , (59)
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where
(

n+ 1
r1, r2, . . . , rk

)
= (n+ 1)!
r1!r2! . . . rk! . (60)

By (59), (60), (54) we get
∣∣
∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣∣
∣∣ ≤

1

μ (Q)
(SL)

∫

Q

Dn+1 (f )

(n+ 1)! ‖t − x‖
n+1
l1

dμ (t) =

1

μ (Q)
(SL)

∫

Q

⎡

⎣
∑

r1+r2+...+rk=n+1

(
Dn+1 (f )

r1!r2! . . . rk!
)( k∏

i=1

|ti − xi |ri
)⎤

⎦ dμ (t) ≤

1

μ (Q)

⎛

⎝
∑

r1+r2+...+rk=n+1

(SL)

∫

Q

(
Dn+1 (f )

r1!r2! . . . rk!
)( k∏

i=1

|ti − xi |ri
)

dμ (t)

⎞

⎠ =

1

μ (Q)

⎛

⎝
∑

r1+r2+...+rk=n+1

(
Dn+1 (f )

r1!r2! . . . rk!
)
(SL)

∫

Q

(
k∏

i=1

|ti − xi |ri
)

dμ (t)

⎞

⎠.

(61)

We have proved the following multivariate Ostrowski general SL-inequality:

Theorem 6 Here all as in Theorem 5. Then
∣∣∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣∣∣∣ ≤

Dn+1 (f )

μ (Q)

⎡

⎣
∑

r1+r2+...+rk=n+1

(
1

r1!r2! . . . rk!
)
(SL)

∫

Q

(
k∏

i=1

|ti − xi |ri
)

dμ (t)

⎤

⎦.

(62)

We make

Remark 9 In case k = 2, n = 1, by (53), (54) we get

∣∣
∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣∣
∣∣ ≤

1

μ (Q)
(SL)

∫

Q

D2 (f )

2
‖t − x‖2

l1
dμ (t) =
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1

μ (Q)
(SL)

∫

Q

D2 (f )

2

[
(t1 − x1)

2 + 2 |t1 − x1| |t2 − x2| + (t2 − x2)
2
]
dμ (t) ≤

(63)
1

μ (Q)

[
(SL)

∫

Q

D2 (f )

2
(t1 − x1)

2 dμ (t)+

(SL)

∫

Q

D2 (f ) |t1 − x1| |t2 − x2| dμ (t)+ (SL)
∫

Q

D2 (f )

2
(t2 − x2)

2 dμ (t)

]
=

1

μ (Q)

[
D2 (f )

2
(SL)

∫

Q

(t1 − x1)
2 dμ (t)+

D2 (f ) (SL)

∫

Q

|t1 − x1| |t2 − x2| dμ (t)+ D2 (f )

2
(SL)

∫

Q

(t2 − x2)
2 dμ (t)

]
.

We have proved.

Corollary 6 Let Q be a compact and convex subset of R2. Let f ∈ (C (Q,R+)
∩C2 (Q)), x = (x1, x2) ∈ Q be fixed: ∂f

∂t1
(x1, x2) = ∂f

∂t2
(x1, x2) = 0. Here μ is

such that μ (Q) > 0. Then

∣
∣∣∣

1

μ (Q)
(SL)

∫

Q

f (t) dμ (t)− f (x)
∣
∣∣∣ ≤

D2 (f )

2μ (Q)
(SL)

∫

Q

(t1 − x1)
2 dμ (t)+ D2 (f )

μ (Q)
(SL)

∫

Q

|t1 − x1| |t2 − x2| dμ (t)
(64)

+D2 (f )

2μ (Q)
(SL)

∫

Q

(t2 − x2)
2 dμ (t).

7 Canavati Fractional Background

We need

Remark 10 Here [·] denotes the integral part of the number. Let α > 0, m = [α],
β = α − m, 0 < β < 1, f ∈ C ([a, b]), [a, b] ⊂ R, x ∈ [a, b]. The gamma
function Γ is given by Γ (α) = ∫∞

0 e−t tα−1dt . We define the left Riemann–
Liouville integral

(
J a+α f

)
(x) = 1

Γ (α)

∫ x

a

(x − t)α−1 f (t) dt, (65)

a ≤ x ≤ b. We define the subspace Cαα+ ([a, b]) of Cm ([a, b]) :
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Cαa+ ([a, b]) = {f ∈ Cm ([a, b]) : J a+1−βf
(m) ∈ C1 ([a, b])}. (66)

For f ∈ Cαa+ ([a, b]), we define the left generalized α-fractional derivative of f
over [a, b] as

Dα
a+f :=

(
J a+1−βf

(m)
)′
, (67)

see [4, p. 24]. Canavati first in [8] introduced the above over [0, 1]. Notice that
Dα
a+f ∈ C ([a, b]).
We need the following left fractional Taylor’s formula, see [4, pp. 8–10], and in

[8] the same over [0, 1] that appeared first.
Let f ∈ Cαa+ ([a, b]):

(i) If α ≥ 1, then

f (x)=f (a)+f ′ (a) (x − a)+f ′′ (a) (x − a)
2

2
+. . .+f (m−1) (a)

(x−a)m−1

(m−1)! +

1

Γ (α)

∫ x

a

(x − t)α−1 (Dα
a+f

)
(t) dt, (68)

all x ∈ [a, b].
(ii) If 0 < α < 1, we have

f (x) = 1

Γ (α)

∫ x

a

(x − t)α−1 (Dα
a+f

)
(t) dt, (69)

all x ∈ [a, b] .

Notice that

∫ x

a

(x − t)α−1 (Dα
a+f

)
(t) dt =

∫ x

a

(
Dα
a+f

)
(t) d

(
(x − t)α
−α

)
(70)

= (Dα
a+f

) (
ξx
) (x − a)α

α
, where ξx ∈ [a, x] ,

by first integral mean value theorem.
Hence, when α ≥ 1 and f (i) (a) = 0, i = 0, 1, . . . , m − 1 or when 0 < α < 1,

we get

f (x) = (Dα
a+f

) (
ξx
) (x − a)α
Γ (α + 1)

, all x ∈ [a, b]. (71)

Furthermore we need:
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Let again α > 0, m = [α], β = α − m, f ∈ C ([a, b]), call the right Riemann–
Liouville fractional integral operator by

(
Jαb−f

)
(x) := 1

Γ (α)

∫ b

x

(t − x)α−1 f (t) dt, (72)

x ∈ [a, b], see also [6, pp. 333, 345].
Define the subspace of functions

Cαb− ([a, b]) = {f ∈ Cm ([a, b]) : J 1−β
b− f (m) ∈ C1 ([a, b])}. (73)

Define the right generalized α-fractional derivative of f over [a, b] as

Dα
b−f = (−1)m−1

(
J

1−β
b− f (m)

)′
, (74)

see [6, p. 345]. We set D0
b−f = f.

Notice that Dα
b−f ∈ C ([a, b]).

From [6, p. 348], we need the following right Taylor fractional formula:
Let f ∈ Cαb− ([a, b]), α > 0, m = [α]. Then

(i) If α ≥ 1, we get

f (x) =
m−1∑

k=0

f (k) (b)

k! (x − b)k + (Jαb−Dα
b−f

)
(x), (75)

all x ∈ [a, b] .
(ii) If 0 < α < 1, we get

f (x) = Jαb−Dα
b−f (x) =

1

Γ (α)

∫ b

x

(t − x)α−1 (Dα
b−f

)
(t) dt, (76)

all x ∈ [a, b].
Notice that

∫ b

x

(t − x)α−1 (Dα
b−f

)
(t) dt =

∫ b

x

(
Dα
b−f

)
(t) d

(
(t − x)α

α

)

= (Dα
b−f

) (
ηx
) (b − x)α

α
, where ηx ∈ [x, b], (77)

by first integral mean value theorem.
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Hence, when α ≥ 1 and f (k) (b) = 0, k = 0, 1, . . . , m − 1 or 0 < α < 1, we
obtain

f (x) = (Dα
b−f

) (
ηx
) (b − x)α
Γ (α + 1)

, all x ∈ [a, b] . (78)

Let f ∈ Cαa+ ([a, b]), α ≥ 1, and f (i) (a) = 0, i = 1, . . . , m− 1, then

|f (x)− f (a)| ≤ ∥∥Dα
a+f

∥
∥∞

(x − a)α
Γ (α + 1)

, (79)

all x ∈ [a, b] , by (68).
Again let f ∈ Cαa+ ([a, b]), α ≥ 1, and f (i) (a) = 0, i = 1, . . . , m − 1, then

by (68) we have

f (x)− f (a) = 1

Γ (α)

∫ x

a

(x − t)α−1 (Dα
a+f

)
(t) dt, (80)

hence

|f (x)− f (a)| ≤ (x − a)α−1

Γ (α)

∥∥Dα
a+f

∥∥
L1([a,b]), (81)

all x ∈ [a, b] .
Let p, q > 1 : 1

p
+ 1

q
= 1, continuing from (80), α ≥ 1, we get

|f (x)− f (a)| ≤ 1

Γ (α)

(∫ x

a

(x − t)p(α−1) dt

) 1
p ∥
∥Dα

a+f
∥
∥
Lq([a,b]) =

(x − a) (p(α−1)+1)
p

Γ (α) (p (α − 1)+ 1)
1
p

∥∥Dα
a+f

∥∥
Lq([a,b]) , (82)

∀ x ∈ [a, b] .
Let f ∈ Cαb− ([a, b]), α ≥ 1, m = [α] , f (k) (b) = 0, k = 1, . . . , m − 1, then

by (75) we get:

f (x)− f (b) = 1

Γ (α)

∫ b

x

(t − x)α−1 (Dα
b−f

)
(t) dt. (83)

We derive the following estimates:

(1)

|f (x)− f (b)| ≤ (b − x)α−1

Γ (α + 1)

∥∥Dα
b−f

∥∥∞, (84)
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(2)

|f (x)− f (b)| ≤ (b − x)α−1

Γ (α)

∥∥Dα
b−f

∥∥
L1([a,b]), (85)

(3) let p, q > 1 : 1
p
+ 1

q
= 1, then

|f (x)− f (b)| ≤ (b − x) (p(α−1)+1)
p

Γ (α) (p (α − 1)+ 1)
1
p

∥∥Dα
b−f

∥∥
Lq([a,b]), (86)

∀ x ∈ [a, b].

8 Caputo Fractional Background

We need

Remark 11 Let ν > 0, n := ν�, ·� is the ceiling of the number, f ∈ ACn ([a, b])
(i.e., f (n−1) is absolutely continuous on [a, b]). We call the left Caputo fractional
derivative ([11])

Dν∗af (x) :=
1

Γ (n− ν)
∫ x

a

(x − t)n−ν−1 f (n) (t) dt, (87)

∀ x ∈ [a, b] .
The above function Dν∗af (x) exists almost everywhere for x ∈ [a, b].
If ν ∈ N, then Dν∗af = f (ν) the ordinary derivative, it is also D0∗af = f.

We have the left fractional Taylor formula for left Caputo fractional derivatives
[11, p. 40].

Assume ν > 0, n = ν�, and f ∈ ACn ([a, b]). Then

f (x) =
n−1∑

k=0

f (k) (a)

k! (x − a)k + 1

Γ (ν)

∫ x

a

(x − t)ν−1Dν∗af (t) dt, (88)

∀ x ∈ [a, b] .
Additionally assume that

f (k) (a) = 0, k = 1, . . . , n− 1;
then

f (x)− f (a) = 1

Γ (ν)

∫ x

a

(x − t)ν−1Dν∗af (t) dt, (89)

∀ x ∈ [a, b] .
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We get the following estimates:

(1) if Dν∗af ∈ L∞ ([a, b]), then

|f (x)− f (a)| ≤
∥∥Dν∗af

∥∥∞
Γ (ν + 1)

(x − a)ν, (90)

∀ x ∈ [a, b], see [4, p. 619];
(2) if ν ≥ 1, and Dν∗af ∈ L1 ([a, b]), then

|f (x)− f (a)| ≤
∥
∥Dν∗af

∥
∥
L1([a,b])

Γ (ν)
(x − a)ν−1, (91)

∀ x ∈ [a, b], see [4, p. 620];
(3) let p, q > 1 : 1

p
+ 1

q
= 1, and ν > 1

q
, and Dν∗af ∈ Lq ([a, b]), then

|f (x)− f (a)| ≤
∥∥Dν∗af

∥∥
Lq([a,b])

Γ (ν) (p (ν − 1)+ 1)
1
p

(x − a)ν− 1
q , (92)

∀ x ∈ [a, b], see [4, p. 621].

Furthermore we need:
Let f ∈ ACm ([a, b]) (f (m−1) is absolutely continuous on [a, b]), m ∈ N,

m = α�, α > 0. We define the right Caputo fractional derivative of order α > 0 by

Dα
cb−f (x) =

(−1)m

Γ (m− α)
∫ b

x

(J − x)m−α−1 f (m) (J ) dJ, (93)

∀ x ∈ [a, b], see [6, p. 336].
If α = m ∈ N, then

Dα
cb−f (x) = (−1)m f (m) (x) , ∀ x ∈ [a, b]. (94)

If x > b we define Dα
cb−f (x) = 0.

We also need:
Let f ∈ ACm ([a, b]), α > 0, m = α�. Then

f (x) =
m−1∑

k=0

f (k) (b)

k! (x − b)k + 1

Γ (α)

∫ b

x

(J − x)α−1Dα
cb−f (J ) dJ, (95)

∀ x ∈ [a, b], the right Caputo fractional Taylor formula with integral remainder, see
[6, p. 338].
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Additionally assume that

f (k) (b) = 0, k = 1, . . . , m− 1,

then

f (x)− f (b) = 1

Γ (α)

∫ b

x

(J − x)α−1Dα
cb−f (J ) dJ, (96)

∀ x ∈ [a, b] .
Following (96) we get the following estimates:

(1) if Dα
cb−f ∈ L∞ ([a, b]), then

|f (x)− f (b)| ≤ (b − x)α
Γ (α + 1)

∥∥Dα
cb−f

∥∥∞, (97)

∀ x ∈ [a, b], see [5, p. 23];
(2) if Dα

cb−f ∈ L1 ([a, b]), α ≥ 1, then

|f (x)− f (b)| ≤
∥
∥Dα

cb−f
∥
∥
L1([a,b])

Γ (α)
(b − x)α−1, (98)

∀ x ∈ [a, b], see [5, p. 24];
(3) let p, q > 1 : 1

p
+ 1

q
= 1, and α > 1

q
, m = α� , Dα

cb−f ∈ Lq ([a, b]), then

|f (x)− f (b)| ≤
∥∥Dα

cb−f
∥∥
Lq([a,b])

Γ (α) (p (α − 1)+ 1)
1
p

(b − x)α− 1
q , (99)

∀ x ∈ [a, b], see [5, p. 25].

9 Main Fractional Results

We make

Remark 12 Here μ is such that μ ([a, b]) > 0. Let α ≥ 1, f ∈ Cαa+ ([a, b]) and
f (i) (a) = 0, i = 1, . . . , m− 1; m = [α]. By (19), (20), for x = a, we get that

∣
∣∣∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (a)

∣
∣∣∣ ≤ (100)

1

μ ([a, b])
(SL)

∫

[a,b]
|f (t)− f (a)| dμ (t) =: Δ(a).
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By (79) we obtain

Δ(a) ≤ 1

μ ([a, b])
(SL)

∫

[a,b]

∥∥Dα
a+f

∥∥∞
Γ (α + 1)

(t − a)α dμ (t) =

1

μ ([a, b])

∥∥Dα
a+f

∥∥∞
Γ (α + 1)

(SL)

∫

[a,b]
(t − a)α dμ (t). (101)

By (81) we obtain

Δ(a) ≤ 1

μ ([a, b])
(SL)

∫

[a,b]

∥
∥Dα

a+f
∥
∥
L1([a,b])

Γ (α)
(t − a)α−1 dμ (t) =

1

μ ([a, b])

∥∥Dα
a+f

∥∥
L1([a,b])

Γ (α)
(SL)

∫

[a,b]
(t − a)α−1 dμ (t). (102)

And by (82) (p, q > 1 : 1
p
+ 1

q
= 1) we derive

Δ(a) ≤ 1

μ ([a, b])
(SL)

∫

[a,b]

∥∥Dα
a+f

∥∥
Lq([a,b])

Γ (α) (p (α − 1)+ 1)
1
p

(t − a) (p(α−1)+1)
p dμ (t) =

1

μ ([a, b])

∥∥Dα
a+f

∥∥
Lq([a,b])

Γ (α) (p (α − 1)+ 1)
1
p

(SL)

∫

[a,b]
(t − a)

(
α−1+ 1

p

)

dμ (t). (103)

We have proved that

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (a)

∣∣∣∣ ≤

1

μ ([a, b])
min

{∥∥Dα
a+f

∥∥∞
Γ (α + 1)

(SL)

∫

[a,b]
(t − a)α dμ (t),

∥∥Dα
a+f

∥∥
L1([a,b])

Γ (α)
(SL)

∫

[a,b]
(t − a)α−1 dμ (t),

∥∥Dα
a+f

∥∥
Lq([a,b])

Γ (α) (p (α − 1)+ 1)
1
p

(SL)

∫

[a,b]
(t − a)α− 1

q dμ (t)

}

. (104)

We have established the following left generalized fractional Ostrowski SL-
integral inequality.
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Theorem 7 Here μ is such that μ ([a, b]) > 0. Let p, q > 1 : 1
p
+ 1

q
= 1; α ≥ 1.

Let f ∈ Cαa+ ([a, b]) with f (i) (a) = 0, i = 1, . . . , m − 1; m = [α]; and f is
R+-valued. Then

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (a)

∣∣∣∣ ≤

1

μ ([a, b])
min

{∥∥Dα
a+f

∥∥∞
Γ (α + 1)

(SL)

∫

[a,b]
(t − a)α dμ (t),

∥∥Dα
a+f

∥∥
L1([a,b])

Γ (α)
(SL)

∫

[a,b]
(t − a)α−1 dμ (t),

∥∥Dα
a+f

∥∥
Lq([a,b])

Γ (α) (p (α − 1)+ 1)
1
p

(SL)

∫

[a,b]
(t − a)α− 1

q dμ (t)

}

. (105)

Similarly (as in Remark 12), we get the right generalized fractional Ostrowski
SL-integral inequality (use of (19), (20) for x = b, and (84)–(86)).

Theorem 8 Here μ is such that μ ([a, b]) > 0. Let p, q > 1 : 1
p
+ 1

q
= 1; α ≥ 1.

Let f ∈ Cαb− ([a, b]) with f (k) (b) = 0, k = 1, . . . , m − 1; [α] = m; and f is
R+-valued. Then

∣∣∣
∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (b)

∣∣∣
∣ ≤

1

μ ([a, b])
min

{∥∥Dα
b−f

∥∥∞
Γ (α + 1)

(SL)

∫

[a,b]
(b − t)α dμ (t),

∥
∥Dα

b−f
∥
∥
L1([a,b])

Γ (α)
(SL)

∫

[a,b]
(b − t)α−1 dμ (t),

∥
∥Dα

b−f
∥
∥
Lq([a,b])

Γ (α) (p (α − 1)+ 1)
1
p

(SL)

∫

[a,b]
(b − t)α− 1

q dμ (t)

⎫
⎬

⎭
. (106)

We present the following left Caputo fractional Ostrowski SL-integral inequali-
ties:

Theorem 9 Here μ is such that μ ([a, b]) > 0. Let f : [a, b] → R+ such that
f ∈ ACn ([a, b]), where n = ν�, ν > 0. Assume f (k) (a) = 0, k = 1, . . . , n − 1.
We have
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(1) if Dν∗af ∈ L∞ ([a, b]), then

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (a)

∣∣∣∣ ≤

∥∥Dν∗af
∥∥∞

μ ([a, b]) Γ (ν + 1)
(SL)

∫

[a,b]
(t − a)ν dμ (t), (107)

(2) if ν ≥ 1, and Dν∗af ∈ L1 ([a, b]), then

∣
∣∣∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (a)

∣
∣∣∣ ≤

∥∥Dν∗af
∥∥
L1([a,b])

μ ([a, b]) Γ (ν)
(SL)

∫

[a,b]
(t − a)ν−1 dμ (t), (108)

and
(3) let p, q > 1 : 1

p
+ 1

q
= 1, and ν > 1

q
, and Dν∗af ∈ Lq ([a, b]), then

∣
∣∣∣

1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (a)

∣
∣∣∣ ≤

∥∥Dν∗af
∥∥
Lq([a,b])

μ ([a, b]) Γ (ν) (p (ν − 1)+ 1)
1
p

(SL)

∫

[a,b]
(t − a)ν− 1

q dμ (t). (109)

Proof By the use of (90)–(92), acting as in the proof of Theorem 7.

Next, we give the following right Caputo fractional Ostrowski SL-integral
inequalities:

Theorem 10 Here μ is such that μ ([a, b]) > 0. Let f : [a, b] → R+ such that
f ∈ ACm([a, b]),m ∈ N,m = α�, α > 0. Assume f (k)(b) = 0, k = 1, . . . , m−1.
We have

(1) if Dα
cb−f ∈ L∞ ([a, b]), then

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (b)

∣∣∣∣ ≤

∥∥Dα
cb−f

∥∥∞
μ ([a, b]) Γ (α + 1)

(SL)

∫

[a,b]
(b − t)α dμ (t), (110)

(2) if α ≥ 1, and Dα
cb−f ∈ L1 ([a, b]), then
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∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (b)

∣∣∣∣ ≤

∥∥Dα
cb−f

∥∥
L1([a,b])

μ ([a, b]) Γ (α)
(SL)

∫

[a,b]
(b − t)α−1 dμ (t), (111)

(3) if p, q > 1 : 1
p
+ 1

q
= 1, α > 1

q
, Dα

cb−f ∈ Lq ([a, b]), then

∣∣∣∣
1

μ ([a, b])
(SL)

∫

[a,b]
f (t) dμ (t)− f (b)

∣∣∣∣ ≤

∥∥Dα
cb−f

∥∥
Lq([a,b])

μ ([a, b]) Γ (α) (p (α − 1)+ 1)
1
p

(SL)

∫

[a,b]
(b − t)α− 1

q dμ (t). (112)

Proof Use of (97)–(99), acting again as in the proof of Theorem 7.

We make

Remark 13 Let x0 ∈ [a, b]. Of interest will be to fractionally estimate the quantity

∣∣∣∣∣

(SL)
∫

[a,x0] f (t) dμ (t)

μ ([a, x0])
+ (SL)

∫
[x0,b] f (t) dμ (t)

μ ([x0, b])
− 2f (x0)

∣∣∣∣∣
≤

∣∣∣∣
1

μ ([a, x0])
(SL)

∫

[a,x0]
f (t) dμ (t)− f (x0)

∣∣∣∣+ (113)

∣
∣∣∣

1

μ ([x0, b])
(SL)

∫

[x0,b]
f (t) dμ (t)− f (x0)

∣
∣∣∣,

above we have μ ([a, x0]) , μ ([x0, b]) > 0.
An important case is when x0 = a+b

2 .

The above can be done with the use of our earlier fractional results.
We make

Remark 14 Here μ is positive on any non-empty closed subsets of [a, b] and is
finitely subadditive.

Let f : [a, b] → R+ be continuous, such that f ∈ Cαa+
([
a, a+b2

])
, 0 < α < 1.

By (71) we get

f (x) ≤ ∥∥Dα
a+f

∥∥
∞,
[
a, a+b2

] (x − a)α
Γ (α + 1)

, all x ∈
[
a,
a + b

2

]
. (114)

Assume also f ∈ Cαb−
([
a+b

2 , b
])

, 0 < α < 1.
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By (78) we obtain

f (x) ≤ ∥∥Dα
b−f

∥∥
∞,
[
a+b

2 ,b
] (b − x)α
Γ (α + 1)

, ∀ x ∈
[
a + b

2
, b

]
. (115)

We notice that the Choquet integral

(C)

∫

[a,b]
f (t) dμ (t) = C

∫
[
a, a+b2

]
∪
[
a+b

2 ,b
] f (t) dμ (t)

(5)≤

(C)

∫
[
a, a+b2

] f (t) dμ (t)+ (C)
∫
[
a+b

2 ,b
] f (t) dμ (t)

(by (114), (115))≤

∥
∥Dα

a+f
∥
∥
∞,
[
a, a+b2

]

Γ (α + 1)
(C)

∫
[
a, a+b2

] (t − a)α dμ (t)+ (116)

∥∥Dα
b−f

∥∥
∞,
[
a+b

2 ,b
]

Γ (α + 1)
(C)

∫
[
a+b

2 ,b
] (b − t)α dμ (t).

We have proved the generalized α-fractional Polya–Choquet type inequality:

(C)

∫

[a,b]
f (t) dμ (t) ≤

1

Γ (α + 1)

[
∥∥Dα

a+f
∥∥
∞,
[
a, a+b2

] (C)

∫
[
a, a+b2

] (t − a)α dμ (t)+

∥
∥Dα

b−f
∥
∥
∞,
[
a+b

2 ,b
] (C)

∫
[
a+b

2 ,b
] (b − t)α dμ (t)

]

. (117)
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Inequalities for Special Strong
Differential Superordinations Using a
Generalized Sălăgean Operator and
Ruscheweyh Derivative

Alina Alb Lupaş

Abstract In the present paper we establish several inequalities for strong differen-
tial superordinations regarding the extended new operator RDm

λ,α defined by using
the extended Sălăgean operator and the extended Ruscheweyh derivative, RDm

λ,α :
A ∗
nζ → A ∗

nζ , RD
m
λ,αf (z, ζ ) = (1 − α)Rmf (z, ζ ) + αDm

λ f (z, ζ ), z ∈ U, ζ ∈ U,
where Rmf (z, ζ ) denote the extended Ruscheweyh derivative, Dm

λ f (z, ζ ) is the
extended generalized Sălăgean operator, and A ∗

nζ = {f ∈ H (U × U), f (z, ζ ) =
z+an+1 (ζ ) z

n+1+. . . , z ∈ U, ζ ∈ U} is the class of normalized analytic functions.

1 Introduction

Denote by U the unit disc of the complex plane U = {z ∈ C : |z| < 1}, U = {z ∈
C : |z| ≤ 1} the closed unit disc of the complex plane, and H (U ×U) the class of
analytic functions in U × U .

Let

A ∗
nζ = {f ∈H (U × U), f (z, ζ ) = z+ an+1 (ζ ) z

n+1 + . . . , z ∈ U, ζ ∈ U},

where ak (ζ ) are holomorphic functions in U for k ≥ 2, and

H ∗[a, n, ζ ]={f ∈H (U×U), f (z, ζ )=a+an (ζ ) zn+an+1 (ζ ) z
n+1+. . . , z ∈ U, ζ ∈ U},

for a ∈ C, n ∈ N, ak (ζ ) are holomorphic functions in U for k ≥ n.
We extend the generalized Sălăgean differential operator [6] and Ruscheweyh

derivative [9] to the new class of analytic functions A ∗
nζ introduced in [8].
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Definition 1 ([5]) For f ∈ A ∗
nζ , n,m ∈ N, the operator Rm is defined by Rm:

A ∗
nζ → A ∗

nζ ,

R0f (z, ζ ) = f (z, ζ ),

R1f (z, ζ ) = zf ′z (z, ζ ) , . . . ,

(m+ 1) Rm+1f (z, ζ ) = z
(
Rmf (z, ζ )

)′
z
+mRmf (z, ζ ) , z ∈ U, ζ ∈ U.

Remark 1 ([5]) If f ∈ A ∗
nζ , f (z, ζ ) = z+∑∞

j=n+1 aj (ζ ) z
j , then

Rmf (z, ζ ) = z+∑∞
j=n+1 C

m
m+j−1aj (ζ ) z

j , z ∈ U, ζ ∈ U.
Definition 2 ([3]) For f ∈ A ∗

nζ , λ ≥ 0 and n,m ∈ N, the operator Dm
λ is defined

by Dm
λ : A ∗

nζ → A ∗
nζ ,

D0
λf (z, ζ ) = f (z, ζ )

D1
λf (z, ζ ) = (1− λ) f (z, ζ )+ λzf ′z(z, ζ ) = Dλf (z, ζ ) , . . . ,

Dm+1
λ f (z, ζ ) = (1− λ)Dm

λ f (z, ζ )+ λz
(
Dm
λ f (z, ζ )

)′
z

= Dλ
(
Dm
λ f (z, ζ )

)
, z ∈ U, ζ ∈ U.

Remark 2 ([3]) If f ∈ A ∗
nζ and f (z) = z+∑∞

j=n+1 aj (ζ ) z
j , then

Dm
λ f (z, ζ ) = z+∑∞

j=n+1 [1+ (j − 1) λ]m aj (ζ ) zj , for z ∈ U, ζ ∈ U .

As a dual notion of strong differential subordination G.I. Oros has introduced
and developed the notion of strong differential superordinations in [7].

Definition 3 ([7]) Let f (z, ζ ),H (z, ζ ) be analytic inU×U. The function f (z, ζ )
is said to be strongly superordinate to H (z, ζ ) if there exists a function w analytic
in U , with w (0) = 0 and |w (z)| < 1, such that H (z, ζ ) = f (w (z) , ζ ) , for all
ζ ∈ U . In such a case we write H (z, ζ ) ≺≺ f (z, ζ ) , z ∈ U, ζ ∈ U.
Remark 3 ([7])

(i) Since f (z, ζ ) is analytic in U × U , for all ζ ∈ U, and univalent in U, for all
ζ ∈ U , Definition 3 is equivalent to H (0, ζ ) = f (0, ζ ) , for all ζ ∈ U, and
H
(
U × U) ⊂ f

(
U × U).

(ii) If H (z, ζ ) ≡ H (z) and f (z, ζ ) ≡ f (z) , the strong superordination becomes
the usual notion of superordination.

Definition 4 ([4]) We denote by Q∗ the set of functions that are analytic and
injective on U × U\E (f, ζ ), where E (f, ζ ) = {y ∈ ∂U : lim

z→y
f (z, ζ ) = ∞},

and are such that f ′z (y, ζ ) �= 0 for y ∈ ∂U × U\E (f, ζ ). The subclass of Q∗ for
which f (0, ζ ) = a is denoted by Q∗ (a).

We need the following lemmas to obtain some inequalities for the strong
differential superordinations.
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Lemma 1 ([4]) Let h (z, ζ ) be a convex function with h(0, ζ ) = a and let γ ∈ C
∗

be a complex number withRe γ ≥ 0. If p ∈H ∗[a, n, ζ ]∩Q∗, p(z, ζ )+ 1
γ
zp′z(z, ζ )

is univalent in U × U and

h(z, ζ ) ≺≺ p(z, ζ )+ 1

γ
zp′z(z, ζ ), z ∈ U, ζ ∈ U,

then

q(z, ζ ) ≺≺ p(z, ζ ), z ∈ U, ζ ∈ U,

where q(z, ζ ) = γ

nz
γ
n

∫ z
0 h (t, ζ ) t

γ
n
−1dt, z ∈ U, ζ ∈ U. The function q is convex

and is the best subordinant.

Lemma 2 ([4]) Let q (z, ζ ) be a convex function in U × U and let h(z, ζ ) =
q(z, ζ )+ 1

γ
zq ′z(z, ζ ), z ∈ U, ζ ∈ U, where Re γ ≥ 0.

If p ∈H ∗ [a, n, ζ ] ∩Q∗, p(z, ζ )+ 1
γ
zp′z(z, ζ ) is univalent in U × U and

q(z, ζ )+ 1

γ
zq ′z(z, ζ ) ≺≺ p(z, ζ )+

1

γ
zp′z (z, ζ ), z ∈ U, ζ ∈ U,

then

q(z, ζ ) ≺≺ p(z, ζ ), z ∈ U, ζ ∈ U,

where q(z, ζ ) = γ

nz
γ
n

∫ z
0 h (t, ζ ) t

γ
n
−1dt, z ∈ U , ζ ∈ U. The function q is the best

subordinant.

We extend the differential operator studied in [1, 2] to the new class of analytic
functions A ∗

nζ .

Definition 5 ([3]) Let α, λ ≥ 0, n,m ∈ N. Denote by RDm
λ,α the extended operator

given by RDm
λ,α : A ∗

nζ → A ∗
nζ ,

RDm
λ,αf (z, ζ ) = (1− α)Rmf (z, ζ )+ αDm

λ f (z, ζ ), z ∈ U, ζ ∈ U.

Remark 4 ([3]) If f ∈ A ∗
nζ , f (z) = z+∑∞

j=n+1 aj (ζ ) z
j , then

RDm
λ,αf (z, ζ ) = z + ∑∞

j=n+1

{
α [1+ (j − 1) λ]m + (1− α)Cmm+j−1

}
aj (ζ ) z

j,

z ∈ U, ζ ∈ U.
Remark 5 For α = 0, RDm

λ,0f (z, ζ ) = Rmf (z, ζ ), where z ∈ U, ζ ∈ U, and for

α = 1, RDm
λ,1f (z, ζ ) = Dm

λ f (z, ζ ), where z ∈ U, ζ ∈ U.
For λ = 1, we obtain RDm

1,αf (z, ζ ) = Lmα f (z, ζ ) which was studied in [4, 5].
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For m = 0, RD0
λ,αf (z, z) = (1− α)R0f (z, ζ ) + αD0

λf (z, ζ ) = f (z, ζ ) =
R0f (z, ζ ) = D0

λf (z, ζ ), where z ∈ U, ζ ∈ U.

2 Main Results

Theorem 1 Let h (z, ζ ) be a convex function in U × U with h (0, ζ ) = 1. Let
m ∈ N, λ, α ≥ 0, f (z, ζ ) ∈ A ∗

nζ , F (z, ζ ) = Ic (f ) (z, ζ ) = c+2
zc+1

∫ z
0 t

cf (t, ζ ) dt ,

z ∈ U , ζ ∈ U, Rec > −2, and suppose that
(
RDm

λ,αf (z, ζ )
)′
z

is univalent in

U × U ,
(
RDm

λ,αF (z, ζ )
)′
z
∈H ∗ [1, n, ζ ] ∩Q∗ and

h (z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z

, z ∈ U, ζ ∈ U, (1)

then

q (z, ζ ) ≺≺ (RDm
λ,αF (z, ζ )

)′
z

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = c+2

nz
c+2
n

∫ z
0 h(t, ζ )t

c+2
n
−1dt. The function q is convex and it is the

best subordinant.

Proof We have

zc+1F (z, ζ ) = (c + 2)
∫ z

0
tcf (t, ζ ) dt

and differentiating it, with respect to z, we obtain (c + 1) F (z, ζ ) + zF ′z (z, ζ ) =
(c + 2) f (z, ζ ) and

(c + 1) RDm
λ,αF (z, ζ )+z

(
RDm

λ,αF (z, ζ )
)′
z
= (c + 2) RDm

λ,αf (z, ζ ) , z ∈ U, ζ ∈ U.
Differentiating the last relation with respect to z we have

(
RDm

λ,αF (z, ζ )
)′
z
+ 1

c + 2
z
(
RDm

λ,αF (z, ζ )
)′′
z2 =

(
RDm

λ,αf (z, ζ )
)′
z

, z ∈ U, ζ ∈ U.
(2)

Using (2), the strong differential superordination (1) becomes

h (z, ζ ) ≺≺ (RDm
λ,αF (z, ζ )

)′
z
+ 1

c + 2
z
(
RDm

λ,αF (z, ζ )
)′′
z2 . (3)

Denote

p (z, ζ ) = (RDm
λ,αF (z, ζ )

)′
z
, z ∈ U, ζ ∈ U. (4)
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Replacing (4) in (3) we obtain

h (z, ζ ) ≺≺ p (z, ζ )+ 1

c + 2
zp′z (z, ζ ) , z ∈ U, ζ ∈ U.

Using Lemma 1 for γ = c + 2, we have

q (z, ζ ) ≺≺ p (z, ζ ) , z ∈ U, ζ ∈ U, i.e. q (z, ζ ) ≺≺ (RDm
λ,αF (z, ζ )

)′
z

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = c+2

nz
c+2
n

∫ z
0 h(t, ζ )t

c+2
n
−1dt. The function q is convex and it is the

best subordinant.

Corollary 1 Let h (z, ζ ) = ζ+(2β−ζ )z
1+z , where β ∈ [0, 1). Let m ∈ N, λ, α ≥

0, f (z, ζ ) ∈ A ∗
nζ , F (z, ζ ) = Ic (f ) (z, ζ ) = c+2

zc+1

∫ z
0 t

cf (t, ζ ) dt , z ∈ U,

ζ ∈ U, Rec > −2, and suppose that
(
RDm

λ,αf (z, ζ )
)′
z

is univalent in U × U ,
(
RDm

λ,αF (z, ζ )
)′
z
∈H ∗ [1, n, ζ ] ∩Q∗ and

h (z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z

, z ∈ U, ζ ∈ U, (5)

then

q (z, ζ ) ≺≺ (RDm
λ,αF (z, ζ )

)′
z

, z ∈ U, ζ ∈ U,

where q is given by q(z, ζ ) = 2β − ζ + 2(c+2)(ζ−β)
nz

c+2
n

∫ z
0
t
c+2
n −1

t+1 dt, z ∈ U, ζ ∈ U.
The function q is convex and it is the best subordinant.

Proof Following the same steps as in the proof of Theorem 1 and considering

p(z, ζ ) =
(
RDm

λ,αF (z, ζ )
)′
z
, the strong differential superordination (5) becomes

h(z, ζ ) = ζ + (2β − ζ )z
1+ z ≺≺ p (z, ζ )+ 1

c + 2
zp′z (z, ζ ) , z ∈ U, ζ ∈ U.

By using Lemma 1 for γ = c + 2, we have q(z, ζ ) ≺≺ p(z, ζ ), i.e.

q(z, ζ ) = c + 2

nz
c+2
n

∫ z

0
h(t, ζ )t

c+2
n
−1dt = c + 2

nz
c+2
n

∫ z

0

ζ + (2β − ζ )t
1+ t t

c+2
n
−1dt

= 2β − ζ + 2 (c + 2) (ζ − β)
nz

c+2
n

∫ z

0

t
c+2
n
−1

t + 1
dt ≺≺ (RDm

λ,αF (z, ζ )
)′
z
, z ∈ U, ζ ∈ U.

The function q is convex and it is the best subordinant.
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Theorem 2 Let q (z, ζ ) be a convex function in U×U and let h (z, ζ ) = q (z, ζ )+
1
c+2zq

′
z (z, ζ ) , where z ∈ U, ζ ∈ U, Rec > −2.

Let m ∈ N, λ, α ≥ 0, f (z, ζ ) ∈ A ∗
nζ , F (z, ζ ) = Ic (f ) (z, ζ ) =

c+2
zc+1

∫ z
0 t

cf (t, ζ ) dt , z ∈ U, ζ ∈ U, and suppose that
(
RDm

λ,αf (z, ζ )
)′
z

is

univalent in U × U ,
(
RDm

λ,αF (z, ζ )
)′
z
∈H ∗ [1, n, ζ ] ∩Q∗ and

h (z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z

, z ∈ U, ζ ∈ U, (6)

then

q (z, ζ ) ≺≺ (RDm
λ,αF (z, ζ )

)′
z

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = c+2

nz
c+2
n

∫ z
0 h(t, ζ )t

c+2
n
−1dt. The function q is the best subordinant.

Proof Following the same steps as in the proof of Theorem 1 and considering

p (z, ζ ) =
(
RDm

λ,αF (z, ζ )
)′
z
, z ∈ U, ζ ∈ U, the strong differential superordi-

nation (6) becomes

h (z, ζ ) = q (z, ζ )+ 1

c+2
zq ′z (z, ζ ) ≺≺ p (z, ζ )+

1

c + 2
zp′z (z, ζ ) , z ∈ U, ζ ∈ U.

Using Lemma 2 for γ = c + 2, we have

q (z, ζ ) ≺≺ p (z, ζ ) , z ∈ U, ζ ∈ U, i.e. q (z, ζ ) ≺≺ (RDm
λ,αF (z, ζ )

)′
z

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = c+2

nz
c+2
n

∫ z
0 h(t, ζ )t

c+2
n
−1dt. The function q is the best subordinant.

Theorem 3 Let h (z, ζ ) be a convex function, h(0, ζ ) = 1. Let m ∈ N, λ, α ≥ 0,

f (z, ζ ) ∈ A ∗
nζ and suppose that

(
RDm

λ,αf (z, ζ )
)′
z

is univalent and
RDmλ,αf (z,ζ )

z
∈

H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z
, z ∈ U, ζ ∈ U, (7)

then

q(z, ζ ) ≺≺ RDm
λ,αf (z, ζ )

z
, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1dt. The function q is convex and it is the best

subordinant.
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Proof By using the properties of operator RDm
λ,α , we have for z ∈ U, ζ ∈ U,

RDm
λ,αf (z, ζ ) = z+∑∞

j=n+1

{
α [1+ (j − 1) λ]m + (1− α)Cmm+j−1

}
aj (ζ ) z

j .

Consider p(z, ζ ) = RDmλ,αf (z,ζ )

z
= z+∑∞

j=n+1

{
α[1+(j−1)λ]m+(1−α)Cmm+j−1

}
aj (ζ )z

j

z
=

1+ pn (ζ ) zn + pn+1 (ζ ) z
n+1 + . . . , z ∈ U, ζ ∈ U.

We deduce that p ∈H ∗[1, n, ζ ].
Let RDm

λ,αf (z, ζ ) = zp(z, ζ ), z ∈ U, ζ ∈ U. Differentiating with respect to z

we obtain
(
RDm

λ,αf (z, ζ )
)′
z
= p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.

Then (7) becomes

h(z, ζ ) ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.

By using Lemma 1 for γ = 1, we have

q(z, ζ )≺≺p(z, ζ ), z ∈ U, ζ ∈ U i.e. q(z, ζ ) ≺≺ RDm
λ,αf (z, ζ )

z
, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1dt. The function q is convex and it is the best

subordinant.

Corollary 2 Let h(z, ζ ) = ζ+(2β−ζ )z
1+z be a convex function in U × U , where 0 ≤

β < 1. Let m ∈ N, λ, α ≥ 0, f (z, ζ ) ∈ A ∗
nζ and suppose that

(
RDm

λ,αf (z, ζ )
)′
z

is

univalent and
RDmλ,αf (z,ζ )

z
∈H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z
, z ∈ U, ζ ∈ U, (8)

then

q(z, ζ ) ≺≺ RDm
λ,αf (z, ζ )

z
, z ∈ U, ζ ∈ U,

where q is given by q(z, ζ ) = 2β − ζ + 2(ζ−β)
nz

1
n

∫ z
0
t

1
n−1

t+1 dt, z ∈ U, ζ ∈ U. The

function q is convex and it is the best subordinant.

Proof Following the same steps as in the proof of Theorem 3 and considering

p(z, ζ ) = RDmλ,αf (z,ζ )

z
, the strong differential superordination (8) becomes

h(z, ζ ) = ζ + (2β − ζ )z
1+ z ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.
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By using Lemma 1 for γ = 1, we have q(z, ζ ) ≺≺ p(z, ζ ), i.e.

q(z, ζ ) = 1

nz
1
n

∫ z

0
h(t, ζ )t

1
n
−1dt = 1

nz
1
n

∫ z

0

ζ + (2β − ζ )t
1+ t t

1
n
−1dt

= 2β − ζ + 2 (ζ − β)
nz

1
n

∫ z

0

t
1
n
−1

t + 1
dt ≺≺ RDm

λ,αf (z, ζ )

z
, z ∈ U, ζ ∈ U.

The function q is convex and it is the best subordinant.

Theorem 4 Let q (z, ζ ) be convex in U × U and let h be defined by h (z, ζ ) =
q (z, ζ ) + zq ′z (z, ζ ) . If m ∈ N, λ, α ≥ 0, f (z, ζ ) ∈ A ∗

nζ , suppose that
(
RDm

λ,αf (z, ζ )
)′
z

is univalent and
RDmλ,αf (z,ζ )

z
∈ H ∗ [1, n, ζ ] ∩ Q∗ and satisfies

the differential superordination

h(z, ζ ) = q (z, ζ )+ zq ′z (z, ζ ) ≺≺
(
RDm

λ,αf (z, ζ )
)′
z
, z ∈ U, ζ ∈ U, (9)

then

q(z, ζ ) ≺≺ RDm
λ,αf (z, ζ )

z
, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1dt. The function q is the best subordinant.

Proof Following the same steps as in the proof of Theorem 3 and considering

p(z, ζ ) = RDmλ,αf (z,ζ )

z
, the strong differential superordination (9) becomes

q(z, ζ )+ zq ′z(z, ζ ) ≺≺ p(z, ζ )+ zp′z (z, ζ ) , z ∈ U, ζ ∈ U.

Using Lemma 2 for γ = 1, we have

q(z, ζ ) ≺≺ p(z, ζ ), z ∈ U, ζ ∈ U, i.e.

q(z, ζ ) = 1

nz
1
n

∫ z

0
h(t, ζ )t

1
n
−1dt ≺≺ RDm

λ,αf (z, ζ )

z
, z ∈ U, ζ ∈ U,

and q is the best subordinant.

Theorem 5 Let h (z, ζ ) be a convex function, h(0, ζ ) = 1. Let m ∈ N, λ, α ≥ 0,

f (z, ζ ) ∈ A ∗
nζ and suppose that

(
zRDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ )

)′

z

is univalent and
RDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ )
∈

H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) ≺≺
(
zRDm+1

λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

)′

z

, z ∈ U, ζ ∈ U, (10)
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then

q(z, ζ ) ≺≺ RDm+1
λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1dt. The function q is convex and it is the best

subordinant.

Proof For f ∈ A ∗
nζ , f (z) = z+∑∞

j=n+1 aj (ζ ) z
j we have

RDm
λ,αf (z, ζ ) = z +∑∞

j=n+1

{
α [1+ (j − 1) λ]m + (1− α)Cmm+j−1

}
aj (ζ ) z

j ,

z ∈ U, ζ ∈ U.
Consider

p(z, ζ ) = RDm+1
λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

=
z+∑∞

j=n+1

{
α [1+ (j − 1) λ]m+1 + (1− α)Cm+1

m+j
}
aj (ζ ) z

j

z+∑∞
j=n+1

{
α [1+ (j − 1) λ]m + (1− α)Cmm+j−1

}
aj (ζ ) zj

.

We have p′z (z, ζ ) =
(
RDm+1

λ,α f (z,ζ )
)′
z

RDmλ,αf (z,ζ )
− p (z, ζ ) ·

(
RDmλ,αf (z,ζ )

)′
z

RDmλ,αf (z,ζ )
and we obtain

p (z, ζ )+ z · p′z (z, ζ ) =
(
zRDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ )

)′

z

.

Relation (10) becomes

h(z, ζ ) ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.

By using Lemma 1 for γ = 1, we have

q(z, ζ ) ≺≺ p(z, ζ ), z ∈ U, ζ ∈ U, i.e. q(z, ζ ) ≺≺ RDm+1
λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1dt. The function q is convex and it is the best

subordinant.

Corollary 3 Let h(z, ζ ) = ζ+(2β−ζ )z
1+z be a convex function in U × U , where 0 ≤

β < 1. Let λ, α ≥ 0, m ∈ N, f (z, ζ ) ∈ A ∗
nζ and suppose that

(
zRDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ z)

)′

z

is

univalent and
RDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ )
∈H ∗ [1, n, ζ ] ∩Q∗. If
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h(z, ζ ) ≺≺
(
zRDm+1

λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

)′

z

, z ∈ U, ζ ∈ U, (11)

then

q(z, ζ ) ≺≺ RDm+1
λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

, z ∈ U, ζ ∈ U,

where q is given by q(z, ζ ) = 2β − ζ + 2(ζ−β)
nz

1
n

∫ z
0
t

1
n−1

t+1 dt, z ∈ U, ζ ∈ U. The

function q is convex and it is the best subordinant.

Proof Following the same steps as in the proof of Theorem 5 and considering

p(z, ζ ) = RDm+1
λ,α f (z,ζ )

RDmλ,αf (z,ζ )
, the strong differential superordination (11) becomes

h(z, ζ ) = ζ + (2β − ζ )z
1+ z ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.

By using Lemma 1 for γ = 1, we have q(z, ζ ) ≺≺ p(z, ζ ), i.e.

q(z, ζ ) = 1

nz
1
n

∫ z

0
h(t, ζ )t

1
n
−1 = 1

nz
1
n

∫ z

0

ζ + (2β − ζ )t
1+ t t

1
n
−1dt

= 2β − ζ + 2 (ζ − β)
nz

1
n

∫ z

0

t
1
n
−1

t + 1
dt ≺≺ RDm+1

λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

, z ∈ U, ζ ∈ U.

The function q is convex and it is the best subordinant.

Theorem 6 Let q (z, ζ ) be a convex function and h be defined by h (z, ζ ) =
q (z, ζ ) + zq ′z (z, ζ ) . Let λ, α ≥ 0, m ∈ N, f (z, ζ ) ∈ A ∗

nζ and suppose that
(
zRDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ )

)′

z

is univalent and
RDm+1

λ,α f (z,ζ )

RDmλ,αf (z,ζ )
∈H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) = q (z, ζ )+ zq ′z (z, ζ ) ≺≺
(
zRDm+1

λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

)′

z

, z ∈ U, ζ ∈ U,
(12)

then

q(z, ζ ) ≺ RDm+1
λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1dt. The function q is the best subordinant.
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Proof Following the same steps as in the proof of Theorem 5 and considering

p(z, ζ ) = RDm+1
λ,α f (z,ζ )

RDmλ,αf (z,ζ )
, the strong differential superordination (12) becomes

h (z, ζ ) = q(z, ζ )+ zq ′z(z, ζ ) ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.

By using Lemma 2 for γ = 1, we have

q(z, ζ ) ≺≺ p(z, ζ ), z ∈ U, ζ ∈ U, i.e.

q(z, ζ ) = 1

nz
1
n

∫ z

0
h(t, ζ )t

1
n
−1dt ≺≺ RDm+1

λ,α f (z, ζ )

RDm
λ,αf (z, ζ )

, z ∈ U, ζ ∈ U,

and q is the best subordinant.

Theorem 7 Let h (z, ζ ) be a convex function in U × U with h(0, ζ ) = 1
and let λ, α ≥ 0, m ∈ N, f (z, ζ ) ∈ A ∗

nζ ,
(m+1)(m+2)

z
RDm+2

λ,α f (z, ζ )−
(m+1)(2m+1)

z
RDm+1

λ,α f (z, ζ )+ m2

z
RDm

λ,αf (z, ζ )−
α
[
(m+1)(m+2)− 1

λ2

]

z
Dm+2
λ f (z, ζ )

+α
[
(m+1)(2m+1)− 2(1−λ)

λ2

]

z
Dm+1
λ f (z, ζ )−

α

[
m2− (1−λ)2

λ2

]

z
Dm
λ f (z, ζ ) is univalent and

[RDm
λ,αf (z, ζ )]′z ∈H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) ≺≺ (m+ 1) (m+ 2)

z
RDm+2

λ,α f (z, ζ )− (m+ 1) (2m+ 1)

z
RDm+1

λ,α f (z, ζ )+
(13)

m2

z
RDm

λ,αf (z, ζ )−
α
[
(m+ 1) (m+ 2)− 1

λ2

]

z
Dm+2
λ f (z, ζ )+

α
[
(m+ 1) (2m+ 1)− 2(1−λ)

λ2

]

z
Dm+1
λ f (z, ζ )−

α
[
m2 − (1−λ)2

λ2

]

z
Dm
λ f (z, ζ ),

z ∈ U, ζ ∈ U, holds, then

q(z, ζ ) ≺≺ [RDm
λ,αf (z, ζ )]′z, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1. The function q is convex and it is the best

subordinant.

Proof For f ∈ A ∗
nζ , f (z) = z+∑∞

j=n+1 aj (ζ ) z
j we have

RDm
λ,αf (z, ζ ) = z +∑∞

j=n+1

{
α [1+ (j − 1) λ]m + (1− α)Cmm+j−1

}
aj (ζ ) z

j ,

z ∈ U, ζ ∈ U.
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Let

p(z, ζ ) = (RDm
λ,αf (z, ζ )

)′
z

(14)

= 1+
∞∑

j=n+1

{
α [1+ (j − 1) λ]m+ (1− α)Cmm+j−1

}
jaj (ζ ) z

j−1

= 1+ pn (ζ ) zn + pn+1 (ζ ) z
n+1 + . . . .

By using the properties of operators RDm
λ,α , Rm and Dm

λ , after a short calculation,
we obtain
p (z, ζ )+zp′z (z, ζ ) = (m+1)(m+2)

z
RDm+2

λ,α f (z, ζ )− (m+1)(2m+1)
z

RDm+1
λ,α f (z, ζ )

+m2

z
RDm

λ,αf (z, ζ ) −
α
[
(m+1)(m+2)− 1

λ2

]

z
Dm+2
λ f (z, ζ ) + α

[
(m+1)(2m+1)− 2(1−λ)

λ2

]

z

Dm+1
λ f (z, ζ )−

α

[
m2− (1−λ)2

λ2

]

z
Dm
λ f (z, ζ ) .

Using the notation in (14), the strong differential superordination becomes

h(z, ζ ) ≺≺ p(z, ζ )+ zp′z(z, ζ ).
By using Lemma 1 for γ = 1, we have

q(z, ζ ) ≺≺ p(z, ζ ), z ∈ U, ζ ∈ U, i.e. q(z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z
, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1. The function q is convex and it is the best

subordinant.

Corollary 4 Let h(z, ζ ) = ζ+(2β−ζ )z
1+z be a convex function in U × U , where

0 ≤ β < 1. Let λ, α ≥ 0, m ∈ N, f (z, ζ ) ∈ A ∗
nζ , suppose that

(m+1)(m+2)
z

RDm+2
λ,α f (z, ζ ) − (m+1)(2m+1)

z
RDm+1

λ,α f (z, ζ ) + m2

z
RDm

λ,αf (z, ζ )

−α
[
(m+1)(m+2)− 1

λ2

]

z
Dm+2
λ f (z, ζ ) + α

[
(m+1)(2m+1)− 2(1−λ)

λ2

]

z
Dm+1
λ f (z, ζ )

−
α

[
m2− (1−λ)2

λ2

]

z
Dm
λ f (z, ζ ) is univalent in U × U and [RDm

λ,αf (z, ζ )]′z ∈
H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) ≺ (m+ 1) (m+ 2)

z
RDm+2

λ,α f (z, ζ )− (m+ 1) (2m+ 1)

z
RDm+1

λ,α f (z, ζ )+
(15)

m2

z
RDm

λ,αf (z, ζ )−
α
[
(m+ 1) (m+ 2)− 1

λ2

]

z
Dm+2
λ f (z, ζ )+

α
[
(m+ 1) (2m+ 1)− 2(1−λ)

λ2

]

z
Dm+1
λ f (z, ζ )−

α
[
m2 − (1−λ)2

λ2

]

z
Dm
λ f (z, ζ ) ,



Inequalities for Special Strong Differential Superordinations 369

z ∈ U, ζ ∈ U, then

q(z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z
, z ∈ U, ζ ∈ U,

where q is given by q(z, ζ ) = 2β − ζ + 2(ζ−β)
nz

1
n

∫ z
0
t

1
n−1

t+1 dt, z ∈ U, ζ ∈ U. The

function q is convex and it is the best subordinant.

Proof Following the same steps as in the proof of Theorem 7 and considering

p(z, ζ ) =
(
RDm

λ,αf (z, ζ )
)′
z
, the strong differential superordination (15) becomes

h(z, ζ ) = ζ + (2β − ζ )z
1+ z ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, ζ ∈ U.

By using Lemma 1 for γ = 1, we have q(z, ζ ) ≺≺ p(z, ζ ), i.e.

q(z, ζ ) = 1

nz
1
n

∫ z

0
h(t, ζ )t

1
n
−1 = 1

nz
1
n

∫ z

0

ζ + (2β − ζ )t
1+ t t

1
n
−1dt

= 2β − ζ + 2 (ζ − β)
nz

1
n

∫ z

0

t
1
n
−1

t + 1
dt ≺≺ (RDm

λ,αf (z, ζ )
)′
z
, z ∈ U, ζ ∈ U.

The function q is convex and it is the best subordinant.

Theorem 8 Let q (z, ζ ) be a convex function in U × U and h (z, ζ ) =
q (z, ζ ) + zq ′z (z, ζ ). Let λ, α ≥ 0, m ∈ N, f (z, ζ ) ∈ A ∗

nζ , sup-

pose that (m+1)(m+2)
z

RDm+2
λ,α f (z, ζ )− (m+1)(2m+1)

z
RDm+1

λ,α f (z, ζ )+m2

z
RDm

λ,α

f (z, ζ )− α
[
(m+1)(m+2)− 1

λ2

]

z
Dm+2
λ f (z, ζ )+ α

[
(m+1)(2m+1)− 2(1−λ)

λ2

]

z
Dm+1
λ f (z, ζ )−

α

[
m2− (1−λ)2

λ2

]

z
Dm
λ f (z, ζ ) is univalent in U × U and [RDm

λ,αf (z, ζ )]′z ∈
H ∗ [1, n, ζ ] ∩Q∗. If

h(z, ζ ) = q (z, ζ )+ zq ′z (z, ζ ) ≺≺
(m+ 1) (m+ 2)

z
RDm+2

λ,α f (z, ζ )− (16)

(m+ 1) (2m+ 1)

z
RDm+1

λ,α f (z, ζ )+ m2

z
RDmλ,αf (z, ζ )−

α
[
(m+ 1) (m+ 2)− 1

λ2

]

z
Dm+2
λ f (z, ζ )+

α
[
(m+ 1) (2m+ 1)− 2(1−λ)

λ2

]

z
Dm+1
λ f (z, ζ )

−
α
[
m2 − (1−λ)2

λ2

]

z
Dmλ f (z, ζ ), z ∈ U, ζ ∈ U,
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then

q(z, ζ ) ≺≺ (RDm
λ,αf (z, ζ )

)′
z
, z ∈ U, ζ ∈ U,

where q(z, ζ ) = 1

nz
1
n

∫ z
0 h(t, ζ )t

1
n
−1. The function q is the best subordinant.

Proof Following the same steps as in the proof of Theorem 7 and considering

p(z, ζ ) =
(
RDm

λ,αf (z, ζ )
)′
z
, the strong differential superordination (16) becomes

h(z, ζ ) = q (z, ζ )+ zq ′z (z, ζ ) ≺≺ p(z, ζ )+ zp′z(z, ζ ), z ∈ U, .

By using Lemma 2 for γ = 1, we have q(z, ζ ) ≺≺ p(z, ζ ), i.e.

q(z, ζ ) = 1

nz
1
n

∫ z

0
h(t, ζ )t

1
n
−1 ≺≺ (RDm

λ,αf (z, ζ )
)′
z
, z ∈ U, ζ ∈ U.

The function q is the best subordinant.
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and Ruscheweyh derivative. Comput. Math. Appl. 61, 1048–1058 (2011). https://doi.org/10.
1016/j.camwa.2010.12.055
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Ruscheweyh derivative. J. Comput. Anal. Appl. 13(1), 98–107 (2011)
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Conformable Fractional Inequalities

George A. Anastassiou

Abstract This is a long journey in the modern realm of Conformable fractional
differentiation. In that setting the author presents the following types of analytic
inequalities: Landau, Hilbert–Pachpatte, Ostrowski, Opial, Poincare, and Sobolev
inequalities. We present uniform and Lp results, involving left and right con-
formable fractional derivatives, as well engaging several functions. We discuss many
interesting special cases.

1 Introduction

Our motivations to write this work follow. The first inspiration comes next.
Let p ∈ [1,∞], I = R+ or I = R and f : I → R is twice differentiable with

f, f ′′ ∈ Lp (I), then f ′ ∈ Lp (I).
Moreover, there exists a constant Cp (I) > 0 independent of f , such that

∥∥f ′
∥∥
p,I
≤ Cp (I) ‖f ‖

1
2
p,I

∥∥f ′′
∥∥

1
2
p,I ,

where ‖·‖p,I is the p-norm on the interval I , see [3, 14].
The research on these inequalities started by Landau [20] in 1914. For the case

of p = ∞ he proved that

C∞ (R+) = 2 and C∞ (R) =
√

2,

are the best constants above.
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In 1932, Hardy and Littlewood [17] proved the above inequality for p = 2, with
the best constants

C2 (R+) =
√

2 and C2 (R) = 1.

In 1935, Hardy et al. [16] showed that the best constant Cp (R+) above satisfies
the estimate

Cp (R+) ≤ 2 for p ∈ [1,∞),

which yields Cp (R) ≤ 2 for p ∈ [1,∞).
In fact in [15] and [18], it was shown that Cp (R) ≤

√
2.

The author in [9] studied extensively fractional Landau type inequalities involv-
ing right and left Caputo fractional derivatives.

The famous Ostrowski ([21]) inequality motivates this work and has as follows:

∣∣∣∣
1

b − a
∫ b

a

f (y) dy − f (x)
∣∣∣∣ ≤

(
1

4
+
(
x − a+b

2

)2

(b − a)2
)

(b − a) ∥∥f ′∥∥∞,

where f ∈ C1 ([a, b]), x ∈ [a, b], and it is a sharp inequality.
Another motivation is author’s next Ostrowski type fractional result, see [9],

p. 44:
Let [a, b] ⊂ R, α > 0, m = α� (·� ceiling of the number), f ∈ ACm ([a, b])

(i.e., f (m−1) is absolutely continuous), and
∥∥Dα

x0−f
∥∥∞,[a,x0]

,
∥∥Dα∗x0

f
∥∥∞,[x0,b]

<

∞ (whereDα
x0−f ,Dα∗x0

f are the right and left Caputo fractional derivatives of f of
order α, respectively), x0 ∈ [a, b]. Assume f (k) (x0) = 0, k = 1, . . . , m− 1.

Then

∣∣∣
∣

1

b − a
∫ b

a

f (x) dx − f (x0)

∣∣∣
∣ ≤

1

(b − a) Γ (α + 2)
·

{∥
∥Dα

x0−f
∥
∥∞,[a,x0]

(x0 − a)α+1 + ∥∥Dα∗x0
f
∥
∥∞,[x0,b]

(b − x0)
α+1
}
≤

1

Γ (α + 2)
max

{∥∥Dα
x0−f

∥∥∞,[a,x0]
,
∥∥Dα∗x0

f
∥∥∞,[x0,b]

}
(b − a)α .

The author’s monographs [4–10] motivate and support greatly this work too.
From the point of view of Conformable fractional differentiation the author

scans the broad area of analytic inequalities and reveals a great variety of well-
known inequalities in the Conformable fractional environment to all possible
directions.
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2 Main Results—I

We need

Definition 1 ([2, 19]) Let f : [0,∞) → R. The conformable α-fractional
derivative for α ∈ (0, 1] is given by

Dαf (t) := lim
ε→0

f
(
t + εt1−α)− f (t)

ε
, (1)

Dαf (0) = lim
t→0+Dαf (t) . (2)

If f is differentiable, then

Dαf (t) = t1−αf ′ (t) , (3)

where f ′ is the usual derivative.
We define

Dn
αf = Dn−1

α (Dαf ) . (4)

If f : [0,∞)→ R is α-differentiable at t0 > 0, α ∈ (0, 1], then f is continuous at
t0, see [19].

Definition 2 ([13]) Let α ∈ (0, 1] and 0 ≤ a < b. A function f : [a, b] → R is
α-fractional integrable on [a, b] if the integral

I aα f (b) :=
∫ b

a

f (t) dαt :=
∫ b

a

f (t) tα−1dt, (5)

exists and is finite.

We need

Theorem 1 ([13]) (Ostrowski Type Inequality) Let a, b, t ∈ R+ with 0 ≤ a < b,
and let f : [a, b] → R be α-fractional differentiable for α ∈ (0, 1]. Then

∣∣∣∣
α

bα − aα
∫ b

a

f (t) dαt − f (t)
∣∣∣∣ ≤

M1

2α (bα − aα)
[(
tα − aα)2 + (bα − tα)2

]
,

(6)
where

M1 := sup
t∈(a,b)

|Dαf (t)| . (7)

Inequality (6) is sharp.
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Corollary 1 (to Theorem 1) Let a, b ∈ R+ with 0 ≤ a < b,and let f : [a, b] → R

be α-fractional differentiable for α ∈ (0, 1]. Then
∣
∣∣∣

α

bα − aα
∫ b

a

f (t) dαt − f (a)
∣
∣∣∣ ≤

M1

2α

(
bα − aα) , (8)

where

M1 := sup
t∈(a,b)

|Dαf (t)| .

We need

Theorem 2 ([11]) Let α ∈ (0, 1], and f : [a, b] → R, a ≥ 0, be α-fractional
differentiable on [a, b]. Assume that Dαf is continuous on [a, b]. Then

I aαDαf (t) = f (t)− f (a) , ∀ t ∈ [a, b] . (9)

We make

Remark 1 Let α ∈ (0, 1], and any a, b ∈ R+ : 0 ≤ a < b, and Dαf is α-fractional
differentiable and continuous on every [a, b] ⊂ R+. By Corollary 1 we get

∣∣∣∣
α

bα − aα
∫ b

a

Dαf (t) dαt −Dαf (a)
∣∣∣∣ ≤

M2

2α

(
bα − aα) , (10)

where

M2 := sup
t∈(a,b)

∣∣
∣D2

αf (t)

∣∣
∣ .

By Theorem 2, equivalently we have
∣∣∣∣

α

bα − aα (f (b)− f (a))−Dαf (a)
∣∣∣∣ ≤

M2

2α

(
bα − aα) . (11)

Hence it holds

|Dαf (a)| − α

bα − aα |f (b)− f (a)| ≤
M2

2α

(
bα − aα) . (12)

Equivalently, we can write

|Dαf (a)| ≤ α

bα − aα |f (b)− f (a)| +
M2

2α

(
bα − aα) ≤ (13)

(
α

bα − aα
) (

2 ‖f ‖∞,[0,+∞)
)+

(
bα − aα

2α

)∥∥∥D2
αf

∥∥∥∞,[0,+∞) ,

∀ a, b ∈ R+ : a < b.
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Notice that the right-hand side of (13) depends only on bα − aα . Therefore it
holds

‖Dαf ‖∞,[0,+∞) ≤
(

2α

bα − aα
)
‖f ‖∞,[0,+∞) +

(∥∥D2
αf
∥∥∞,[0,+∞)
2α

)
(
bα − aα) .

(14)
Set t := bα − aα > 0. Thus

‖Dαf ‖∞,[0,+∞) ≤
(

2α

t

)
‖f ‖∞,[0,+∞) +

(∥∥D2
αf
∥∥∞,[0,+∞)
2α

)

t , ∀ t > 0.

(15)
Call

μ := 2α ‖f ‖∞,[0,+∞) ,

and (16)

θ :=
(∥∥D2

αf
∥∥∞,[0,+∞)
2α

)

,

both are greater than zero.
That is, we have

‖Dαf ‖∞,[0,+∞) ≤
μ

t
+ θ · t , ∀ t > 0. (17)

Consider the function

y (t) := μ

t
+ θ · t , t > 0. (18)

As in [9], pp. 80–82, y has a global minimum at

t0 =
(μ
θ

) 1
2
, (19)

which is

y (t0) = 2
√
θμ. (20)

Consequently we derive

y (t0) = 2
√
‖f ‖∞,[0,+∞)

∥∥D2
αf
∥∥∞,[0,+∞). (21)



376 G. A. Anastassiou

We have proved that

‖Dαf ‖∞,[0,+∞) ≤ 2
√
‖f ‖∞,[0,+∞)

∥∥D2
αf
∥∥∞,[0,+∞). (22)

We have established the following conformable fractional Landau type
inequality:

Theorem 3 Let f : R+ → R be α-fractional differentiable, α ∈ (0, 1]. And Dαf
is also α-fractional differentiable and continuous on R+. Assume that ‖f ‖∞,R+ ,∥∥D2

αf
∥∥∞,R+ <∞. Then

‖Dαf ‖∞,R+ ≤ 2 ‖f ‖
1
2
∞,R+

∥
∥∥D2

αf

∥
∥∥

1
2

∞,R+
, (23)

that is, ‖Dαf ‖∞,R+ <∞.
Note 1 If f is differentiable then Dαf (t) = t1−αf ′ (t), t > 0, α ∈ (0, 1]. When
t > 0, t1−α is differentiable. If f is twice differentiable and t > 0, then we have

D2
αf (t) = Dα (Dαf (t)) = Dα

(
t1−αf ′ (t)

)
= t1−α

(
t1−αf ′ (t)

)′

= t1−α
(
(1− α) t−αf ′ (t)+ t1−αf ′′ (t)

)
.

That is an interesting formula:

D2
αf (t) = (1− α) t1−2αf ′ (t)+ t2(1−α)f ′′ (t) , t > 0. (24)

We need

Definition 3 Let α ∈ (0, 1]. We define the spaces of functions:

Lpα ([a, b]) :=
{
f : [a, b] ⊂ R+ → R :

∫ b

a

|f (t)|p dαt < +∞, p ≥ 1

}
,

and

L
p
α (R+) :=

{

f : R+ → R :
∫

R+
|f (x)|p dαx :=

∫

R+
|f (x)|p xα−1dx < +∞, p ≥ 1

}

.

We need the conformable fractional Lp Ostrowski type inequality:

Theorem 4 ([22]) Let a ≥ 0, f : [a, b] → R be an α-fractional differentiable
function for α ∈ (0, 1], Dα (f ) ∈ Lpα ([a, b]); p, q > 1 : 1

p
+ 1

q
= 1. Then for all

x ∈ [a, b], we have the inequality:
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∣∣∣∣
α

bα − aα
∫ b

a

f (t) dαt − f (x)
∣∣∣∣ ≤ Aα (x, q) ‖Dα (f )‖p , (25)

where

Aα (x, q) = 1

(bα − aα)

(
1

α (q + 1)

(
bα − aα

2

)α(q+1)
) 1
q

+

∣
∣∣∣∣

1

α

(
xα − aα + bα

2

)∣∣∣∣∣

1
q

. (26)

When x = a, we get:

∣∣∣
∣

α

bα − aα
∫ b

a

f (t) dαt − f (a)
∣∣∣
∣ ≤ Aα (a, q) ‖Dα (f )‖p , (27)

where

Aα (a, q) = 1

bα − aα
(

1

α (q + 1)

(
bα − aα

2

)α(q+1)
) 1
q

+
[

1

α

(
bα − aα

2

)] 1
q

. (28)

We need

Corollary 2 ([22]) Let a ≥ 0, f : [a, b] → R be an α-fractional differentiable
function for α ∈ (0, 1], Dα (f ) ∈ Lpα ([a, b]) , p, q > 1 : 1

p
+ 1

q
= 1. Then

∣∣∣∣∣
α

bα − aα
∫ b

a

f (t) dαt − f
((

aα + bα
2

) 1
α

)∣∣∣∣∣
≤ (29)

1

2

(
1

α (q + 1)

) 1
2
(
bα − aα

2

)α
(

1+ 1
q

)
−1

‖Dα (f )‖p,[a,b] .

We make

Remark 2 Here f : R+ → R be α-fractional differentiable and 0 < α ≤ 1,
and Dαf is also α-fractional differentiable and continuous function on R+, and
D2
α (f ) ∈ Lpα (R+), p, q > 1 : 1

p
+ 1

q
= 1. Here [a, b] ⊂ R+.
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Then, by (29), we get:
∣
∣∣∣∣
Dαf

((
aα + bα

2

) 1
α

)

− α

bα − aα
∫ b

a

Dαf (t) dαt

∣
∣∣∣∣
≤

1

2

(
1

α (q + 1)

) 1
2
(
bα − aα

2

)α
(

1+ 1
q

)
−1 ∥∥∥D2

α (f )

∥∥∥
p,[a,b]

, (30)

equivalently it holds
∣∣∣∣∣
Dαf

((
aα + bα

2

) 1
α

)

− α

bα − aα (f (b)− f (a))
∣∣∣∣∣
≤

1

2

(
1

α (q + 1)

) 1
2
(
bα − aα

2

)α
(

1+ 1
q

)
−1 ∥∥
∥D2

α (f )

∥∥
∥
p,[a,b]

. (31)

Hence it follows

∣∣∣∣∣
Dαf

((
aα + bα

2

) 1
α

)∣∣∣∣∣
− α

bα − aα |f (b)− f (a)| ≤

1

2

(
1

α (q + 1)

) 1
2 ∥∥∥D2

α (f )

∥∥∥
p,[a,b]

(
bα − aα

2

)α
(

1+ 1
q

)
−1

. (32)

Thus, it holds

∣
∣∣∣∣
Dαf

((
aα + bα

2

) 1
α

)∣∣∣∣∣
≤
(
2α ‖f ‖∞,R+

)

bα − aα +
[

1

2
α
(

1+ 1
q

)

(
1

α (q + 1)

) 1
q ∥∥∥D2

α (f )

∥∥∥
p,R+

]
(
bα − aα)α

(
1+ 1

q

)
−1

(33)

true, ∀ a, b ∈ R+, a < b.

The right-hand side of (33) depends only on bα − aα.
We have aα ≤ aα+bα

2 ≤ bα , iff a ≤
(
aα+bα

2

) 1
α ≤ b.

From now on we assume that |Dαf | is increasing (or decreasing) then

|Dαf (a)| ≤
∣∣∣∣
∣
Dαf

((
aα + bα

2

) 1
α

)∣∣∣∣
∣

(34)

(or |Dαf (b)| ≤
∣∣
∣∣Dαf

((
aα+bα

2

) 1
α

)∣∣
∣∣).
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Therefore it holds

‖Dαf ‖∞,R+ ≤
(
2α ‖f ‖∞,R+

)

bα − aα + (35)

(
1

2
α
(

1+ 1
q

)

(
1

α (q + 1)

) 1
q ∥∥∥D2

α (f )

∥∥∥
p,R+

)
(
bα − aα)α

(
1+ 1

q

)
−1
.

Set t := bα − aα > 0, so that

‖Dαf ‖∞,R+ ≤
(
2α ‖f ‖∞,R+

)

t
+ (36)

(
1

2
α
(

1+ 1
q

)

(
1

α (q + 1)

) 1
q ∥∥∥D2

α (f )

∥∥∥
p,R+

)

t
α
(

1+ 1
q

)
−1
, ∀ t > 0.

Call

μ̃ := 2α ‖f ‖∞,R+ ,

and (37)

θ̃ :=
(

1

2
α
(

1+ 1
q

)

(
1

α (q + 1)

) 1
q ∥∥∥D2

α (f )

∥
∥∥
p,R+

)

,

both are greater than 0.
From now on we consider α ∈ (0, 1), i.e. 0 < α < 1, thus 1

α
> 1.

We would like to have

0 < α

(
1+ 1

q

)
− 1 < 1 ⇔

(0 < )
1− α
α

<
1

q
<

2− α
α
; (38)

where 0 < 1
q
< 1.

By α < 1 we get 2−α
α
> 1. Therefore 1

q
< 2−α

α
, always correct.

Inequalities (38) are written, equivalently, as

α

2− α < q <
α

1− α . (39)

Notice that 1
2 < α < 1 is equivalently to α

1−α > 1.
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From now on we assume that

1

2
< α < 1 and 1 < q <

α

1− α , (40)

and it holds

0 < α

(
1+ 1

q

)
− 1 < 1. (41)

Next, we call

ν̃ := α

(
1+ 1

q

)
− 1, ν̃ ∈ (0, 1) . (42)

We consider the function

ỹ (t) = μ̃

t
+ θ̃ t ν̃ , t ∈ (0,∞) . (43)

Next we act as in [9], pp. 80–82.
The only critical number here is

t̃0 =
(
μ̃

ν̃θ̃

) 1
ν̃+1

, (44)

and ỹ has a global minimum at t̃0, which is

ỹ
(
t̃0
) = (θ̃ μ̃ν̃)

1
ν̃+1 (̃ν + 1) ν̃

−
(

ν̃
ν̃+1

)

. (45)

Thus, we have proved

‖Dαf ‖∞,R+ ≤ (46)

[(
1

2
α
(

1+ 1
q

)

(
1

α (q + 1)

) 1
q ∥∥∥D2

α (f )

∥∥∥
p,R+

)
(
2α ‖f ‖∞,R+

)a
(

1+ 1
q

)
−1

] 1

α
(

1+ 1
q

)

(
α

(
1+ 1

q

))(
α

(
1+ 1

q

)
− 1

)−
(
α
(

1+ 1
q

)
−1
)

α
(

1+ 1
q

)

.

We have established the following Lp conformable fractional Landau type
inequality:
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Theorem 5 Here f : R+ → R be α-fractional differentiable with 1
2 < α < 1,

and Dαf is also α-fractional differentiable and continuous function on R+, and
D2
α (f ) ∈ Lpα (R+), where p, q > 1 : 1

p
+ 1

q
= 1,1 < q < α

1−α . Assume |Dαf | is
monotone and ‖f ‖∞,R+ <∞. Then

‖Dαf ‖∞,R+ ≤

⎡

⎢⎢
⎣‖f ‖

((
α
(

1+ 1
q

)
−1
)

α
(

1+ 1
q

)

)

∞,R+
∥∥∥D2

α (f )

∥∥∥
1

α
(

1+ 1
q

)

p,R+

⎤

⎥⎥
⎦·

⎡

⎣ (2α)
a
(

1+ 1
q

)
−1

2
α
(

1+ 1
q

)

(α (q + 1))
1
q

⎤

⎦

1

α
(

1+ 1
q

) (
α

(
1+ 1

q

))(
α

(
1+ 1

q

)
− 1

)−
(
α
(

1+ 1
q

)
−1
)

α
(

1+ 1
q

)

.

(47)
That is, ‖Dαf ‖∞,R+ < +∞.

3 Main Results—II

In this section we use generalized Conformable fractional calculus.
Here we follow [1] for the basics of generalized Conformable fractional calculus,

see also [19].
We need

Definition 4 ([1]) Let a, b ∈ R. The left conformable fractional derivative starting
from a of a function f : [a,∞)→ R of order 0 < α ≤ 1 is defined by

(
T aα f

)
(t) = lim

ε→0

f
(
t + ε (t − a)1−α)− f (t)

ε
. (48)

If
(
T aα f

)
(t) exists on (a, b), then

(
T aα f

)
(a) = lim

t→a+
(
T aα f

)
(t). (49)

The right conformable fractional derivative of order 0 < α ≤ 1 terminating at b of
f : (−∞, b] → R is defined by

(
b
αTf

)
(t) = − lim

ε→0

f
(
t + ε (b − t)1−α)− f (t)

ε
. (50)

If
(
b
αTf

)
(t) exists on (a, b), then

(
b
αTf

)
(b) = lim

t→b−

(
b
αTf

)
(t). (51)
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Note that if f is differentiable then

(
T aα f

)
(t) = (t − a)1−α f ′ (t) , (52)

and
(
b
αTf

)
(t) = − (b − t)1−α f ′ (t) . (53)

Denote by

(
I aα f

)
(t) =

∫ t

a

(x − a)α−1 f (x) dx, (54)

and

(
bIαf

)
(t) =

∫ b

t

(b − x)α−1 f (x) dx, (55)

these are the left and right conformable fractional integrals of order 0 < α ≤ 1.

In the higher order case we can generalize things as follows:

Definition 5 ([1]) Let α ∈ (n, n+1], and set β = α−n. Then, the left conformable
fractional derivative starting from a of a function f : [a,∞)→ R of order α,where
f (n) (t) exists, is defined by

(
Taαf

)
(t) =

(
T aβ f

(n)
)
(t) , (56)

The right conformable fractional derivative of order α terminating at b of f :
(−∞, b] → R, where f (n) (t) exists, is defined by

(
b
αTf

)
(t) = (−1)n+1

(
b
βTf

(n)
)
(t) . (57)

If α = n+ 1, then β = 1 and Tan+1f = f (n+1).

If n is odd, then b
n+1Tf = −f (n+1), and if n is even, then b

n+1Tf = f (n+1).
When n = 0 (or α ∈ (0, 1]), then β = α, and (56), (57) collapse to {(48)–(51)},

respectively.

Lemma 1 ([1]) Let f : (a, b)→ R be continuously differentiable and 0 < α ≤ 1.
Then, for all t > a we have

I aα T
a
α (f ) (t) = f (t)− f (a) . (58)

We need
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Definition 6 (See Also [1]) If α ∈ (n, n + 1], then the left fractional integral of
order α starting at a is defined by

(
Iaαf

)
(t) = 1

n!
∫ t

a

(t − x)n (x − a)β−1 f (x) dx. (59)

Similarly, (author’s definition, see [12]) the right fractional integral of order α
terminating at b is defined by

(
bIαf

)
(t) = 1

n!
∫ b

t

(x − t)n (b − x)β−1 f (x) dx. (60)

We need

Proposition 1 ([1]) Let α ∈ (n, n + 1] and f : [a,∞) → R be (n+ 1) times
continuously differentiable for t > a. Then, for all t > a we have

IaαTaα (f ) (t) = f (t)−
n∑

k=0

f (k) (a) (t − a)k
k! . (61)

We also have

Proposition 2 ([12]) Let α ∈ (n, n + 1] and f : (−∞, b] → R be (n+ 1) times
continuously differentiable for t < b. Then, for all t < b we have

−b Iα bαT (f ) (t) = f (t)−
n∑

k=0

f (k) (b) (t − b)k
k! . (62)

If n = 0 or 0 < α ≤ 1, then (see also [1])

bIα
b
αT (f ) (t) = f (t)− f (b) . (63)

In conclusion we derive

Theorem 6 ([12]) Let α ∈ (n, n+ 1] and f ∈ Cn+1 ([a, b]), n ∈ N. Then

(1)

f (t)−
n∑

k=0

f (k) (a) (t − a)k
k! = 1

n!
∫ t

a

(t − x)n (x − a)β−1 (Taα (f )
)
(x) dx,

(64)
and
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(2)

f (t)−
n∑

k=0

f (k) (b) (t − b)k
k! = − 1

n!
∫ b

t

(b − x)β−1 (x − t)n
(
b
αT (f )

)
(x) dx,

(65)
∀ t ∈ [a, b] .

We need

Remark 3 ([12]) We notice the following: let α ∈ (n, n+1] and f ∈ Cn+1 ([a, b]),
n ∈ N. Then (β := α − n, 0 < β ≤ 1)

(
Taα (f )

)
(x) =

(
T αβ f

(n)
)
(x) = (x − a)1−β f (n+1) (x) , (66)

and
(
b
αT (f )

)
(x) = (−1)n+1

(
b
βTf

(n)
)
(x) =

(−1)n+1 (−1) (b − x)1−β f (n+1) (x) = (−1)n (b − x)1−β f (n+1) (x) . (67)

Consequently we get that

(
Taα (f )

)
(x) ,

(
b
αT (f )

)
(x) ∈ C ([a, b]) .

Furthermore it is obvious that

(
Taα (f )

)
(a) =

(
b
αT (f )

)
(b) = 0, (68)

when 0 < β < 1, i.e. when α ∈ (n, n+ 1) .
If f (k) (a) = 0, k = 1, . . . , n, then

f (t)− f (a) = 1

n!
∫ t

a

(t − x)n (x − a)β−1 (Taα (f )
)
(x) dx, (69)

∀ t ∈ [a, b] .
If f (k) (b) = 0, k = 1, . . . , n, then

f (t)− f (b) = − 1

n!
∫ b

t

(b − x)β−1 (x − t)n
(
b
αT (f )

)
(x) dx, (70)

∀ t ∈ [a, b] .

We make

Remark 4 Here let αi ∈ (ni, ni + 1], fi ∈ Cni+1 ([ai, bi]), ni ∈ Z+; βi := αi − ni
(0 < βi ≤ 1), where i = 1, 2.
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By definition we have

(
T aiαi (fi)

)
(ti) =

(
T
αi
βi

(
f
(ni)
i

))
(ti) , i = 1, 2.

Assume that f (ki )i (ai) = 0, ki = 0, 1, . . . , ni; i = 1, 2.
Then (by (69))

fi (ti) = 1

ni !
∫ ti

ai

(ti − xi)ni (xi − ai)βi−1 (T aiαi (fi)
)
(xi) dxi, (71)

∀ ti ∈ [ai, bi]; i = 1, 2.
Let p, q > 1 : 1

p
+ 1

q
= 1, then

|fi (ti)| ≤ (bi − ai)ni
ni !

∫ ti

ai

(xi − ai)βi−1
∣∣(T aiαi (fi)

)
(xi)
∣∣ dxi, (72)

i = 1, 2.
Therefore we get

|f1 (t1)| ≤ (b1 − a1)
n1

n1!
∫ t1

a1

(x1 − a1)
β1−1

∣∣T a1
α1
(f1) (x1)

∣∣ dx1 ≤

(b1 − a1)
n1

n1!
(∫ t1

a1

(x1 − a1)
p(β1−1) dx1

) 1
p
(∫ t1

a1

∣∣(T a1
α1
(f1)

)
(x1)

∣∣q dx1

) 1
q ≤

(b1 − a1)
n1

n1!

(
(t1 − a1)

p(β1−1)+1

p
(
β1 − 1

)+ 1

) 1
p ∥∥T a1

α1
(f1)

∥∥
Lq([a1,b1])

, (73)

under the assumption β1 >
1
q
⇔ p

(
β1 − 1

)+ 1 > 0.
We have proved that

|f1 (t1)| ≤ (b1 − a1)
n1

n1!

(
(t1 − a1)

p(β1−1)+1

p
(
β1 − 1

)+ 1

) 1
p ∥∥T a1

α1
(f1)

∥∥
Lq([a1,b1])

, (74)

∀ t1 ∈ [a1, b1], where β1 >
1
q
.

Similarly, by assuming β2 >
1
p

, we get

|f2 (t2)| ≤ (b2 − a2)
n2

n2!

(
(t2 − a2)

q(β2−1)+1

q
(
β2 − 1

)+ 1

) 1
q ∥∥T a2

α2
(f2)

∥∥
Lp([a2,b2])

, (75)

∀ t2 ∈ [a2, b2].
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Hence we have (by (74) and (75) multiplication)

|f1 (t1)| |f2 (t2)| ≤
[
(b1 − a1)

n1

n1! · (b2 − a2)
n2

n2!
]

1
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

(t1 − a1)
p(β1−1)+1

p (t2 − a2)
q(β2−1)+1

q

(76)∥∥T a1
α1
(f1)

∥∥
Lq([a1,b1])

∥∥T a2
α2
(f2)

∥∥
Lp([a2,b2])

≤

(using Young’s inequality for a, b ≥ 0, a
1
p b

1
q ≤ a

p
+ b

q
)

(
(b1 − a1)

n1 (b2 − a2)
n2

n1!n2!
)

1
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

[
(t1 − a1)

p(β1−1)+1

p
+ (t2 − a2)

q(β2−1)+1

q

]

∥∥T a1
α1
(f1)

∥∥
Lq([a1,b1])

∥∥T a2
α2
(f2)

∥∥
Lp([a2,b2])

, (77)

∀ ti ∈ [ai, bi]; i = 1, 2.
Therefore we can write

|f1 (t1)| |f2 (t2)|[
(t1−a1)

p(β1−1)+1

p
+ (t2−a2)

q(β2−1)+1

q

] ≤

(b1 − a1)
n1 (b2 − a2)

n2

n1!n2!
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

(78)

∥
∥T a1

α1
(f1)

∥
∥
Lq([a1,b1])

∥
∥T a2

α2
(f2)

∥
∥
Lp([a2,b2])

,

∀ ti ∈ [ai, bi]; i = 1, 2.
The denominator of the left-hand side of (78) can be zero only when both t1 = a1

and t2 = a2.

Therefore it holds

∫ b1

a1

∫ b2

a2

|f1 (t1)| |f2 (t2)| dt1dt2[
(t1−a1)

p(β1−1)+1

p
+ (t2−a2)

q(β2−1)+1

q

] ≤
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(b1 − a1)
n1+1 (b2 − a2)

n2+1
∥∥T a1

α1 (f1)
∥∥
Lq([a1,b1])

∥∥T a2
α2 (f2)

∥∥
Lp([a2,b2])

n1!n2!
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

. (79)

Notice here that T aiαi (fi) ∈ C ([ai, bi]).
We have proved the left Conformable fractional Hilbert–Pachpatte inequality:

Theorem 7 Let αi ∈ (ni, ni + 1], fi ∈ Cni+1 ([ai, bi]), [ai, bi] ⊂ R, ni ∈ Z+;
βi := αi − ni , i = 1, 2; p, q > 1 : 1

p
+ 1

q
= 1. Assume that f (ki )i (ai) = 0,

ki = 0, 1, . . . , ni; i = 1, 2. Suppose that β1 >
1
q

and β2 >
1
p

. Then

∫ b1

a1

∫ b2

a2

|f1 (t1)| |f2 (t2)| dt1dt2[
(t1−a1)

p(β1−1)+1

p
+ (t2−a2)

q(β2−1)+1

q

] ≤ (80)

(b1 − a1)
n1+1 (b2 − a2)

n2+1
∥∥T a1

α1 (f1)
∥∥
Lq([a1,b1])

∥∥T a2
α2 (f2)

∥∥
Lp([a2,b2])

n1!n2!
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

.

We make

Remark 5 Here let αi ∈ (ni, ni + 1], fi ∈ Cni+1 ([ai, bi]), ni ∈ Z+; βi := αi − ni
(0 < βi ≤ 1), where i = 1, 2.

By definition we have

(
bi
αi
T (fi)

)
(ti) = (−1)ni+1

(
bi
βi
T
(
f
(ni)
i

))
(ti) , i = 1, 2.

Assume that f (ki )i (bi) = 0, ki = 0, 1, . . . , ni; i = 1, 2.
Then (by (70))

fi (ti) = − 1

ni !
∫ bi

ti

(bi − xi)βi−1 (xi − ti )ni
(
bi
αi
T (fi)

)
(xi) dxi, (81)

∀ ti ∈ [ai, bi]; i = 1, 2 (βi := αi − ni , 0 < βi < 1 when αi ∈ (ni, ni + 1)).
Let p, q > 1 : 1

p
+ 1

q
= 1, then

|fi (ti)| ≤ (bi − ai)ni
ni !

∫ bi

ti

(bi − xi)βi−1
∣
∣∣
(
bi
αi
T (fi)

)
(xi)

∣
∣∣ dxi, (82)

i = 1, 2.
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We have

|f1 (t1)| ≤ (b1 − a1)
n1

n1!
∫ b1

t1

(b1 − x1)
β1−1

∣∣∣
(
b1
α1
T (f1)

)
(x1)

∣∣∣ dx1 ≤

(b1 − a1)
n1

n1!
(∫ b1

t1

(b1 − x1)
p(β1−1) dx1

) 1
p ∥∥∥b1

α1
T (f1)

∥∥∥
Lq([a1,b1])

= (83)

(b1 − a1)
n1

n1!

(
(b1 − t1)p(β1−1)+1

p
(
β1 − 1

)+ 1

) 1
p ∥
∥∥b1
α1
T (f1)

∥
∥∥
Lq([a1,b1])

.

We assume β1 >
1
q

and we have proved

|f1 (t1)| ≤ (b1 − a1)
n1

n1!

(
(b1 − t1)p(β1−1)+1

p
(
β1 − 1

)+ 1

) 1
p ∥∥∥b1

α1
T (f1)

∥∥∥
Lq([a1,b1])

, (84)

∀ t1 ∈ [a1, b1] .
Similarly, by assuming β2 >

1
p

, we get

|f2 (t2)| ≤ (b2 − a2)
n2

n2!

(
(b2 − t2)q(β2−1)+1

q
(
β2 − 1

)+ 1

) 1
q ∥∥
∥b2
α2
T (f2)

∥∥
∥
Lp([a2,b2])

, (85)

∀ t2 ∈ [a2, b2].
Hence it holds

|f1 (t1)| |f2 (t2)| ≤
[
(b1 − a1)

n1

n1!
(b2 − a2)

n2

n2!
]

1
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

(b1 − t1)
p(β1−1)+1

p (b2 − t2)
q(β2−1)+1

q

(86)∥
∥∥b1
α1
T (f1)

∥
∥∥
Lq([a1,b1])

∥
∥∥b2
α2
T (f2)

∥
∥∥
Lp([a2,b2])

≤

(using Young’s inequality for a, b ≥ 0, a
1
p b

1
q ≤ a

p
+ b

q
)

(
(b1 − a1)

n1 (b2 − a2)
n2

n1!n2!
)

1
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q
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[
(b1 − t1)p(β1−1)+1

p
+ (b2 − t2)q(β2−1)+1

q

]

(87)

∥
∥∥b1
α1
T (f1)

∥
∥∥
Lq([a1,b1])

∥
∥∥b2
α2
T (f2)

∥
∥∥
Lp([a2,b2])

,

∀ ti ∈ [ai, bi]; i = 1, 2.
Therefore we can write

|f1 (t1)| |f2 (t2)|[
(b1−t1)p(β1−1)+1

p
+ (b2−t2)q(β2−1)+1

q

] ≤

(b1 − a1)
n1 (b2 − a2)

n2

n1!n2!
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

(88)

∥∥∥b1
α1
T (f1)

∥∥∥
Lq([a1,b1])

∥∥∥b2
α2
T (f2)

∥∥∥
Lp([a2,b2])

,

∀ ti ∈ [ai, bi]; i = 1, 2.
The denominator of the left-hand side of (88) equals 0 only when both t1 = b1

and t2 = b2.

Therefore it holds
∫ b1

a1

∫ b2

a2

|f1 (t1)| |f2 (t2)| dt1dt2[
(b1−t1)p(β1−1)+1

p
+ (b2−t2)q(β2−1)+1

q

] ≤

(b1 − a1)
n1+1 (b2 − a2)

n2+1
∥∥∥b1
α1T (f1)

∥∥∥
Lq([a1,b1])

∥∥∥b2
α2T (f2)

∥∥∥
Lp([a2,b2])

n1!n2!
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

. (89)

Notice here that biαi T (fi) ∈ C ([ai, bi]).
We have proved the right conformable fractional Hilbert–Pachpatte inequality:

Theorem 8 Let αi ∈ (ni, ni + 1], fi ∈ Cni+1 ([ai, bi]), [ai, bi] ⊂ R, ni ∈ Z+;
βi := αi − ni , i = 1, 2. Assume that f (ki )i (bi) = 0, ki = 0, 1, . . . , ni; i = 1, 2. Let
p, q > 1 : 1

p
+ 1

q
= 1, with β1 >

1
q
, β2 >

1
p

. Then

∫ b1

a1

∫ b2

a2

|f1 (t1)| |f2 (t2)| dt1dt2[
(b1−t1)p(β1−1)+1

p
+ (b2−t2)q(β2−1)+1

q

] ≤

(b1 − a1)
n1+1 (b2 − a2)

n2+1
∥∥∥b1
α1T (f1)

∥∥∥
Lq([a1,b1])

∥∥∥b2
α2T (f2)

∥∥∥
Lp([a2,b2])

n1!n2!
(
p
(
β1 − 1

)+ 1
) 1
p
(
q
(
β2 − 1

)+ 1
) 1
q

. (90)



390 G. A. Anastassiou

Next we present Conformable fractional Ostrowski type inequalities:

Theorem 9 Let α ∈ (n, n+1], n ∈ Z+, f ∈ Cn+1 ([a, b]), β := α−n; x0 ∈ [a, b]
be fixed. Assume f (k) (x0) = 0, k = 1, . . . , n. Then

∣∣∣
∣

1

b − a
∫ b

a

f (t) dt − f (x0)

∣∣∣
∣ ≤

Γ (β)

Γ (α + 2) (b − a)
{
(x0 − a)α+1

∥∥x0
α T (f )

∥∥∞,[a,x0] + (b − x0)
α+1

∥∥T x0
α (f )

∥∥∞,[x0,b]

}
. (91)

Proof We have (by (69))

f (t)− f (x0) = 1

n!
∫ t

x0

(t − x)n (x − x0)
β−1 (T x0

α (f )
)
(x) dx, (92)

∀ t ∈ [x0, b], and (by (70))

f (t)− f (x0) = − 1

n!
∫ x0

t

(x0 − x)β−1 (x − t)n (x0
α T (f )

)
(x) dx, (93)

∀ t ∈ [a, x0] .
We observe that

|f (t)− f (x0)| ≤ 1

n!
∫ t

x0

(t − x)n (x − x0)
β−1

∣∣T x0
α (f ) (x)

∣∣ dx ≤
∥∥T x0

α (f )
∥∥∞,[x0,b]

n!
∫ t

x0

(t − x)(n+1)−1 (x − x0)
β−1 dx =

∥
∥T x0

α (f )
∥
∥∞,[x0,b]

n!
Γ (n+ 1) Γ (β)

Γ (n+ β + 1)
(t − x0)

n+β =
∥∥T x0

α (f )
∥∥∞,[x0,b] Γ (β)

Γ (n+ β + 1)
(t − x0)

n+β . (94)

That is,

|f (t)− f (x0)| ≤
∥∥T x0

α (f )
∥∥∞,[x0,b] Γ (β)

Γ (n+ β + 1)
(t − x0)

n+β , ∀ t ∈ [x0, b] . (95)

Similarly, it holds

|f (t)− f (x0)| ≤ 1

n!
∥∥x0
α T (f )

∥∥∞,[a,x0]

∫ x0

t

(x0 − x)β−1 (x − t)(n+1)−1 dx =
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∥∥x0
α T (f )

∥∥∞,[a,x0]

n!
Γ (β) Γ (n+ 1)

Γ (β + n+ 1)
(x0 − t)β+n =

∥
∥x0
α T (f )

∥
∥∞,[a,x0] Γ (β)

Γ (β + n+ 1)
(x0 − t)β+n . (96)

That is,

|f (t)− f (x0)| ≤
∥∥x0
α T (f )

∥∥∞,[a,x0] Γ (β)

Γ (β + n+ 1)
(x0 − t)β+n , ∀ t ∈ [a, x0] . (97)

Hence, we can write

∣∣
∣∣

1

b − a
∫ b

a

f (t) dt − f (x0)

∣∣
∣∣ ≤

1

b − a
{∫ x0

a

|f (t)− f (x0)| dt +
∫ b

x0

|f (t)− f (x0)| dt
}
≤

Γ (β)

Γ (n+ β + 1) (b − a)
{(∫ x0

a

(x0 − t)β+n dt
)∥∥x0

α T (f )
∥∥∞,[a,x0]+

(∫ b

x0

(t − x0)
n+β dt

)∥∥T x0
α (f )

∥∥∞,[x0,b]

}
=

Γ (β)

Γ (n+ β + 1) (b − a)
{
(x0 − a)β+n+1

∥
∥x0
α T (f )

∥
∥∞,[a,x0]+

(b − x0)
n+β+1

∥∥T x0
α (f )

∥∥∞,[x0,b]

}
, (98)

proving (91).

Theorem 10 Here all as in Theorem 9. Let p1, p2, p3 > 1 : 1
p1
+ 1

p2
+ 1

p3
= 1,

with β > 1
p1
+ 1

p3
. Then

∣∣∣∣
1

b − a
∫ b

a

f (t) dt − f (x0)

∣∣∣∣ ≤

1

(b − a) n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p1

)

{
(b − x0)

α+ 1
p2
+ 1
p1
∥∥T x0

α (f )
∥∥
p3,[x0,b] + (x0 − a)α+

1
p2
+ 1
p1
∥∥x0
α T (f )

∥∥
p3,[a,x0]

}
.

(99)
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Proof By (92) we get

|f (t)− f (x0)| ≤ 1

n!
∫ t

x0

(t − x)n (x − x0)
β−1

∣∣T x0
α (f ) (x)

∣∣ dx ≤

1

n!
(∫ t

x0

(t − x)p1n dx

) 1
p1
(∫ t

x0

(x − x0)
p2(β−1) dx

) 1
p2 ∥∥T x0

α (f )
∥∥
p3,[x0,b] =

∥∥T x0
α (f )

∥∥
p3,[x0,b]

n!

(
(t − x0)

p1n+1

p1n+ 1

) 1
p1
(
(t − x0)

p2(β−1)+1

p2 (β − 1)+ 1

) 1
p2

=

∥∥T x0
α (f )

∥∥
p3,[x0,b] (t − x0)

n+ 1
p1
+β−1+ 1

p2

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

. (100)

Notice that p2 (β − 1)+ 1 > 0, iff β > 1
p1
+ 1

p3
.

We have proved

|f (t)− f (x0)| ≤
∥∥T x0

α (f )
∥∥
p3,[x0,b] (t − x0)

n+β− 1
p3

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

, (101)

∀ t ∈ [x0, b] .
Similarly, we have (by (93))

|f (t)− f (x0)| ≤
1

n!
(∫ x0

t

(x0 − x)p2(β−1) dx

) 1
p2
(∫ x0

t

(x − t)p1n dx

) 1
p1 ∥∥x0

α T (f )
∥∥
p3,[a,x0] =

1

n!

(
(x0 − t)p2(β−1)+1

p2 (β − 1)+ 1

) 1
p2
(
(x0 − t)p1n+1

p1n+ 1

) 1
p1 ∥∥x0

α T (f )
∥∥
p3,[a,x0] =

∥∥x0
α T (f )

∥∥
p3,[a,x0] (x0 − t)β+n−

1
p3

n! (p2 (β − 1)+ 1)
1
p2 (p1n+ 1)

1
p1

. (102)

We have proved that

|f (t)− f (x0)| ≤
∥∥x0
α T (f )

∥∥
p3,[a,x0] (x0 − t)β+n−

1
p3

n! (p2 (β − 1)+ 1)
1
p2 (p1n+ 1)

1
p1

, (103)

∀ t ∈ [a, x0], where β > 1
p1
+ 1

p3
.
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Therefore, we derive

∣∣∣∣
1

b − a
∫ b

a

f (t) dt − f (x0)

∣∣∣∣ ≤

1

b − a
{∫ x0

a

|f (t)− f (x0)| dt +
∫ b

x0

|f (t)− f (x0)| dt
}
≤

1

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2 (b − a)

{(∫ x0

a

(x0 − t)β+n−
1
p3 dt

)∥∥x0
α T (f )

∥∥
p3,[a,x0]

+
(∫ b

x0

(t − x0)
n+β− 1

p3 dt

)∥∥T x0
α (f )

∥∥
p3,[x0,b]

}
= (104)

1

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2 (b − a)

⎧
⎨

⎩
(x0 − a)β+n+

1
p2
+ 1
p1

(
β + n+ 1

p2
+ 1

p1

)
∥∥x0
α T (f )

∥∥
p3,[a,x0]

+ (b − x0)
n+β+ 1

p2
+ 1
p1

(
β + n+ 1

p2
+ 1

p1

)
∥∥T x0

α (f )
∥∥
p3,[x0,b]

⎫
⎬

⎭
, (105)

proving (99).

We make

Remark 6 Here we will discuss about generalized conformable fractional
Ostrowski and Grüss type inequalities involving several functions.

Let α ∈ (n, n + 1], n ∈ Z+, fi ∈ Cn+1 ([a, b]), i = 1, . . . , r ∈ N, [a, b] ⊂ R,
β := α − n, x0 ∈ [a, b], and f (k)i (x0) = 0, k = 1, . . . , n; i = 1, . . . , r.

If n = 0, initial conditions are void, i.e. 0 < α ≤ 1.
By (69) and (70) we get that

fi (t)− fi (x0) = 1

n!
∫ t

x0

(t − x)n (x − x0)
β−1 (T x0

α (fi)
)
(x) dx, (106)

∀ t ∈ [x0, b], all i = 1, . . . , r,
and

fi (t)− fi (x0) = − 1

n!
∫ x0

t

(x0 − x)β−1 (x − t)n (x0
α T (fi)

)
(x) dx, (107)

∀ t ∈ [a, x0], all i = 1, . . . , r.
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Multiply (106), (107) by
r∏

j=1
j �=i

fj (t) to get

r∏

k=1

fk (t)−

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠ fi (x0) =

r∏

j=1
j �=i

fj (t)

n!
∫ t

x0

(t − x)n (x − x0)
β−1 (T x0

α (fi)
)
(x) dx, (108)

and

r∏

k=1

fk (t)−

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟
⎟
⎠ fi (x0) =

−

r∏

j=1
j �=i

fj (t)

n!
∫ x0

t

(x0 − x)β−1 (x − t)n (x0
α T (fi)

)
(x) dx, (109)

∀ i = 1, . . . , r.
Adding (108), (109) per set, we obtain

r

(
r∏

k=1

fk (t)

)

−
r∑

i=1

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟
⎟
⎠ fi (x0)

⎤

⎥
⎥
⎦ =

1

n!
r∑

i=1

⎡

⎢⎢
⎣

r∏

j=1
j �=i

fj (t)

∫ t

x0

(t − x)n (x − x0)
β−1 (T x0

α (fi)
)
(x) dx

⎤

⎥⎥
⎦, (110)

∀ t ∈ [x0, b], and

r

(
r∏

k=1

fk (t)

)

−
r∑

i=1

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠ fi (x0)

⎤

⎥⎥
⎦ =
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− 1

n!
r∑

i=1

⎡

⎢⎢
⎣

r∏

j=1
j �=i

fj (t)

∫ x0

t

(x0 − x)β−1 (x − t)n (x0
α T (fi)

)
(x) dx

⎤

⎥⎥
⎦, (111)

∀ t ∈ [a, x0] .
Next we integrate (110), (111) with respect to t ∈ [a, b] . We have

r

∫ b

x0

(
r∏

k=1

fk (t)

)

dt −
r∑

i=1

⎡

⎢⎢
⎣fi (x0)

∫ b

x0

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠ dt

⎤

⎥⎥
⎦ =

1

n!
r∑

i=1

⎡

⎢⎢
⎣

∫ b

x0

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠

(∫ t

x0

(t − x)n (x − x0)
β−1 (T x0

α (fi)
)
(x) dx

)
dt

⎤

⎥⎥
⎦,

(112)
and

r

∫ x0

a

(
r∏

k=1

fk (t)

)

dt −
r∑

i=1

⎡

⎢⎢
⎣fi (x0)

∫ x0

a

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠ dt

⎤

⎥⎥
⎦ =

− 1

n!
r∑

i=1

⎡

⎢
⎢
⎣

∫ x0

a

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟
⎟
⎠

(∫ x0

t

(x0 − x)β−1 (x − t)n (x0
α T (fi)

)
(x) dx

)
dt

⎤

⎥
⎥
⎦.

(113)
Adding (112), (113) we obtain

θ (f1, . . . , fr ) (x0) := r

∫ b

a

(
r∏

k=1

fk (t)

)

dt −
r∑

i=1

⎡

⎢⎢
⎣fi (x0)

∫ b

a

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠ dt

⎤

⎥⎥
⎦

= 1

n!
r∑

i=1

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣

∫ b

x0

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠

(∫ t

x0

(t − x)n (x − x0)
β−1 (T x0

α (fi)
)
(x) dx

)
dt

⎤

⎥⎥
⎦
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−

⎡

⎢⎢
⎣

∫ x0

a

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟⎟
⎠

(∫ x0

t

(x0 − x)β−1 (x − t)n (x0
α T (fi)

)
(x) dx

)
dt

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦.

(114)
Hence, it holds

|θ (f1, . . . , fr ) (x0)| ≤

1

n!
r∑

i=1

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

∫ b

x0

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∣
∣fj (t)

∣
∣

⎞

⎟
⎟
⎠

(∫ t

x0

(t − x)n (x − x0)
β−1

∣
∣T x0
α (fi) (x)

∣
∣ dx

)
dt

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

∫ x0

a

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∣
∣fj (t)

∣
∣

⎞

⎟
⎟
⎠

(∫ x0

t

(x0 − x)β−1 (x − t)n ∣∣x0
α T (fi) (x)

∣
∣ dx

)
dt

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ =: (∗).

(115)

We notice that

(∗) ≤
r∑

i=1

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣

∫ b

x0

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∣∣fj (t)
∣∣

⎞

⎟⎟
⎠

∥∥T x0
α (fi)

∥∥∞,[x0,b] Γ (β)

Γ (n+ β + 1)
(t − x0)

n+β dt

⎤

⎥⎥
⎦+

+

⎡

⎢⎢
⎣

∫ x0

a

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∣∣fj (t)
∣∣

⎞

⎟⎟
⎠

∥∥x0
α T (fi)

∥∥∞,[a,x0] Γ (β)

Γ (β + n+ 1)
(x0 − t)β+n dt

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦. (116)

Thus we have proved so far

|θ (f1, . . . , fr ) (x0)| ≤ Γ (β)

Γ (β + n+ 1)

r∑

i=1

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣
∥∥T x0

α (fi)
∥∥∞,[x0,b]

∫ b

x0

(t − x0)
n+β

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∣∣fj (t)
∣∣

⎞

⎟⎟
⎠ dt

⎤

⎥⎥
⎦+
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⎡

⎢⎢
⎣
∥∥x0
α T (fi)

∥∥∞,[a,x0]

∫ x0

a

(x0 − t)β+n
⎛

⎜⎜
⎝

r∏

j=1
j �=i

∣∣fj (t)
∣∣

⎞

⎟⎟
⎠ dt

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦. (117)

We further notice that

|θ (f1, . . . , fr ) (x0)| ≤ Γ (β)

Γ (β + n+ 2)

r∑

i=1

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣
∥
∥T x0

α (fi)
∥
∥∞,[x0,b]

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∥
∥fj
∥
∥∞,[x0,b]

⎞

⎟
⎟
⎠ (b − x0)

n+β+1

⎤

⎥
⎥
⎦+

⎡

⎢⎢
⎣
∥∥x0
α T (fi)

∥∥∞,[a,x0]

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[a,x0]

⎞

⎟⎟
⎠ (x0 − a)n+β+1

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦, (118)

which is an∞-Ostrowski type inequality.
Next let p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1, such that β > 1

p1
+ 1

p3
.

Hence we can write

(∗) ≤ 1

n!
r∑

i=1

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

∫ b
x0

⎛

⎜
⎝

r∏

j=1
j �=i

∣∣fj (t)
∣∣

⎞

⎟
⎠
∥∥T x0

α (fi)
∥∥
p3,[x0,b] (t − x0)

n+β− 1
p3

(p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

dt

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(119)

+

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∫ x0
a

⎛

⎜
⎝

r∏

j=1
j �=i

∣
∣fj (t)

∣
∣

⎞

⎟
⎠
∥
∥x0
α T (fi)

∥
∥
p3,[a,x0] (x0 − t)β+n−

1
p3

(p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

dt

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

=

1

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2
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r∑

i=1

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

∫ b

x0

(t − x0)
n+β− 1

p3

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∣∣fj (t)
∣∣

⎞

⎟⎟
⎠ dt

⎞

⎟⎟
⎠
∥∥T x0

α (fi)
∥∥
p3,[x0,b]

⎤

⎥⎥
⎦

+

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

∫ x0

a

(x0 − t)β+n−
1
p3

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∣
∣fj (t)

∣
∣

⎞

⎟
⎟
⎠ dt

⎞

⎟
⎟
⎠
∥
∥x0
α T (fi)

∥
∥
p3,[a,x0]

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ ≤

(120)
1

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

r∑

i=1

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣
(b − x0)

n+β+ 1
p1
+ 1
p2

(
n+ β + 1

p1
+ 1

p2

)

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[x0,b]

⎞

⎟⎟
⎠
∥∥T x0

α (fi)
∥∥
p3,[x0,b]

⎤

⎥⎥
⎦ (121)

+

⎡

⎢
⎢
⎣
(x0 − a)n+β+

1
p1
+ 1
p2

(
n+ β + 1

p1
+ 1

p2

)

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∥
∥fj
∥
∥∞,[a,x0]

⎞

⎟
⎟
⎠
∥
∥x0
α T (fi)

∥
∥
p3,[a,x0]

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦.

We have proved the Lp-Ostrowski type inequality:

|θ (f1, . . . , fr ) (x0)| ≤
1

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

(
n+ β + 1

p1
+ 1

p2

)

r∑

i=1

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣(b − x0)

n+β+ 1
p1
+ 1
p2

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[x0,b]

⎞

⎟⎟
⎠
∥∥T x0

α (fi)
∥∥
p3,[x0,b]

⎤

⎥⎥
⎦

+

⎡

⎢⎢
⎣(x0 − a)n+β+

1
p1
+ 1
p2

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[a,x0]

⎞

⎟⎟
⎠
∥∥x0
α T (fi)

∥∥
p3,[a,x0]

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦. (122)

From now on we assume 0 < α ≤ 1, i.e. n = 0. So no initial conditions are needed.
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Notice that

Δ(f1, . . . , fr ) :=
∫ b

a

θ (f1, . . . , fr ) (x) dx =

r (b − a)
(∫ b

a

(
r∏

k=1

fk (x) dx

))

−

r∑

i=1

⎡

⎢⎢
⎣

(∫ b

a

fi (x) dx

)
⎛

⎜⎜
⎝

∫ b

a

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (x)

⎞

⎟⎟
⎠ dx

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦, (123)

and it holds

|Δ(f1, . . . , fr )| ≤
∫ b

a

|θ (f1, . . . , fr ) (x)| dx. (124)

By (124) and (118) we get the∞-Gruss type inequality (here α = β):

|Δ(f1, . . . , fr )| ≤ Γ (α) (b − a)a+2

Γ (α + 3)

r∑

i=1

⎡

⎢
⎢
⎣

(

sup
x0∈[a,b]

∥
∥T x0

α (fi)
∥
∥∞,[x0,b]

)
⎛

⎜
⎜
⎝

r∏

j=1
j �=i

sup
x0∈[a,b]

∥
∥fj
∥
∥∞,[x0,b]

⎞

⎟
⎟
⎠ (125)

+
(

sup
x0∈[a,b]

∥∥x0
α T (fi)

∥∥∞,[a,x0]

)
⎛

⎜⎜
⎝

r∏

j=1
j �=i

sup
x0∈[a,b]

∥∥fj
∥∥∞,[a,x0]

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦.

We have proved that

|Δ(f1, . . . , fr )| ≤ Γ (α) (b − a)a+2

Γ (α + 3)

r∑

i=1

⎡

⎢⎢
⎣

(

sup
x0∈[a,b]

∥∥x0
α T (fi)

∥∥∞,[a,x0] + sup
x0∈[a,b]

∥∥T x0
α (fi)

∥∥∞,[x0,b]

)
⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[a,b]

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ .

(126)
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Next by (122) we get the Lp-Gruss inequality:

|Δ(f1, . . . , fr )| ≤

(b − a)α+ 1
p1
+ 1
p2
+1

n! (p1n+ 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p1
+ 1

p2

) (
α + 1

p1
+ 1

p2
+ 1
)

r∑

i=1

⎡

⎢
⎢
⎣

(

sup
x0∈[a,b]

∥
∥T x0

α (fi)
∥
∥
p3,[x0,b] + sup

x0∈[a,b]

∥
∥x0
α T (fi)

∥
∥
p3,[a,x0]

)
⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∥
∥fj
∥
∥∞,[a,b]

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦.

(127)

We have proved the following results:
An ∞-Ostrowski type Conformable fractional inequality for several functions

follows:

Theorem 11 Let α ∈ (n, n + 1], n ∈ Z+, fi ∈ Cn+1 ([a, b]), i = 1, . . . , r ∈ N,
[a, b] ⊂ R, β := α− n, x0 ∈ [a, b], and f (k)i (x0) = 0, k = 1, . . . , n; i = 1, . . . , r .
Call

θ (f1, . . . , fr ) (x0) := r

∫ b

a

(
r∏

k=1

fk (t)

)

dt −
r∑

i=1

⎡

⎢
⎢
⎣fi (x0)

∫ b

a

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

fj (t)

⎞

⎟
⎟
⎠ dt

⎤

⎥
⎥
⎦.

(128)
Then

|θ (f1, . . . , fr ) (x0)| ≤ Γ (β)

Γ (α + 2)

r∑

i=1

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣
∥
∥T x0

α (fi)
∥
∥∞,[x0,b]

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∥
∥fj
∥
∥∞,[x0,b]

⎞

⎟
⎟
⎠ (b − x0)

α+1

⎤

⎥
⎥
⎦+

⎡

⎢⎢
⎣
∥∥x0
α T (fi)

∥∥∞,[a,x0]

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[a,x0]

⎞

⎟⎟
⎠ (x0 − a)α+1

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦. (129)

Next follows the corresponding Lp-Ostrowski inequality for several functions.
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Theorem 12 All as in Theorem 11. Let p1, p2, p3 > 1 : 1
p1
+ 1

p2
+ 1

p3
= 1 such

that β > 1
p1
+ 1

p3
. Then

|θ (f1, . . . , fr ) (x0)| ≤ (130)

1

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

(
α + 1

p1
+ 1

p2

)

r∑

i=1

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣(b − x0)

α+ 1
p1
+ 1
p2

⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∥
∥fj
∥
∥∞,[x0,b]

⎞

⎟
⎟
⎠
∥
∥T x0

α (fi)
∥
∥
p3,[x0,b]

⎤

⎥
⎥
⎦

+

⎡

⎢⎢
⎣(x0 − a)α+

1
p1
+ 1
p2

⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[a,x0]

⎞

⎟⎟
⎠
∥∥x0
α T (fi)

∥∥
p3,[a,x0]

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦.

The corresponding Gruss type inequalities follow:

Theorem 13 Let all as in Theorem 11, with 0 < α ≤ 1. We denote

Δ(f1, . . . , fr ) :=
∫ b

a

θ (f1, . . . , fr ) (x) dx =

r (b − a)
(∫ b

a

(
r∏

k=1

fk (x) dx

))

− (131)

r∑

i=1

⎡

⎢⎢
⎣

(∫ b

a

fi (x) dx

)
⎛

⎜⎜
⎝

∫ b

a

⎛

⎜⎜
⎝

r∏

j=1
j �=i

fj (x)

⎞

⎟⎟
⎠ dx

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦.

Then

|Δ(f1, . . . , fr )| ≤ Γ (α) (b − a)a+2

Γ (α + 3)

r∑

i=1

⎡

⎢
⎢
⎣

(

sup
x0∈[a,b]

∥
∥x0
α T (fi)

∥
∥∞,[a,x0] + sup

x0∈[a,b]

∥
∥T x0

α (fi)
∥
∥∞,[x0,b]

)
⎛

⎜
⎜
⎝

r∏

j=1
j �=i

∥
∥fj
∥
∥∞,[a,b]

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦.

(132)
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Theorem 14 Here all as in Theorems 11 and 13. Let p1, p2, p3 > 1 : 1
p1
+ 1

p2
+

1
p3
= 1, with 0 < α ≤ 1, such that β > 1

p1
+ 1

p3
. Then

|Δ(f1, . . . , fr )| ≤

(b − a)α+ 1
p1
+ 1
p2
+1

n! (p1n+ 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p1
+ 1

p2

) (
α + 1

p1
+ 1

p2
+ 1
)

r∑

i=1

⎡

⎢⎢
⎣

(

sup
x0∈[a,b]

∥∥T x0
α (fi)

∥∥
p3,[x0,b] + sup

x0∈[a,b]

∥∥x0
α T (fi)

∥∥
p3,[a,x0]

)
⎛

⎜⎜
⎝

r∏

j=1
j �=i

∥∥fj
∥∥∞,[a,b]

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ .

(133)

We make

Remark 7 Here we discuss about Conformable fractional left Opial inequality.
Let α ∈ (n, n+1], n ∈ Z+, f ∈ Cn+1 ([a, b]) (β := α−n, 0 < β ≤ 1). Assume

f (k) (a) = 0, k = 0, 1, . . . , n, then (by (69))

f (t) = 1

n!
∫ t

a

(t − x)n (x − a)β−1 (T aα (f )
)
(x) dx, (134)

∀ t ∈ [a, b] .
Let a ≤ w ≤ t , then we have

f (w) = 1

n!
∫ w

a

(w − x)n (x − a)β−1 (T aα (f )
)
(x) dx. (135)

Then

|f (w)| ≤ (b − a)n
n!

∫ w

a

(x − a)β−1
∣
∣T aα (f ) (x)

∣
∣ dx ≤

(b − a)n
n!

(∫ w

a

(x − a)(β−1)p dx

) 1
p
(∫ w

a

∣∣T aα (f ) (x)
∣∣q dx

) 1
q =

(b − a)n
n!

(
(w − a)p(β−1)+1

p (β − 1)+ 1

) 1
p

(z (w))
1
q , (136)

where

z (w) :=
∫ w

a

∣∣T aα (f ) (x)
∣∣q dx, all a ≤ w ≤ t, (137)
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[we need p (β − 1)+1 > 0 ⇔ p (β − 1) > −1 ⇔ β−1 > − 1
p
⇔ β > 1− 1

p
= 1

q
,

so we assume that β > 1
q

]
and

z (a) = 0. (138)

Thus

z′ (w) = ∣∣T aα (f ) (w)
∣∣q , and

∣∣T aα f (w)
∣∣ = (z′ (w)) 1

q . (139)

Therefore we obtain

|f (w)| ∣∣T aα f (w)
∣∣ ≤ (b − a)n

n!
(w − a)p(β−1)+1

p

(p (β − 1)+ 1)
1
p

(
z (w) z′ (w)

) 1
q . (140)

Integrating the last inequality we get

∫ t

a

|f (w)| ∣∣T aα f (w)
∣∣ dw ≤

(b − a)n
n! (p (β − 1)+ 1)

1
p

∫ t

a

(w − a)p(β−1)+1
p

(
z (w) z′ (w)

) 1
q dw ≤

(b − a)n
n! (p (β − 1)+ 1)

1
p

(∫ t

a

(w − a)p(β−1)+1 dw

) 1
p
(∫ t

a

z (w) z′ (w) dw
) 1
q =

(141)

(b − a)n
n! (p (β − 1)+ 1)

1
p

(
(t − a)p(β−1)+2

p (β − 1)+ 2

) 1
p (∫ t

a

z (w) dz (w)

) 1
q =

(b − a)n
n! (p (β − 1)+ 1)

1
p

(t − a)(β−1)+ 2
p

(p (β − 1)+ 2)
1
p

(
z2 (t)

2

) 1
q

=

(b − a)n (t − a)β−1+ 2
p

n!2 1
q [(p (β − 1)+ 1) (p (β − 1)+ 2)]

1
p

(∫ t

a

∣
∣T aα (f ) (x)

∣
∣q dx

) 2
q

.

(142)

We have proved the conformable left fractional Opial inequality:
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Theorem 15 Let α ∈ (n, n+ 1], n ∈ Z+, f ∈ Cn+1 ([a, b]) , β := α − n. Assume
f (k) (a) = 0, k = 0, 1, . . . , n. Let p, q > 1 : 1

p
+ 1

q
= 1, β > 1

q
. Then

∫ t

a

|f (w)| ∣∣T aα f (w)
∣∣ dw ≤

(b − a)n (t − a)β−1+ 2
p

n!2 1
q [(p (β − 1)+ 1) (p (β − 1)+ 2)]

1
p

(∫ t

a

∣∣T aα (f ) (x)
∣∣q dx

) 2
q

, (143)

∀ t ∈ [a, b] .

We make

Remark 8 Here we discuss the Conformable right fractional Opial inequality.
Let α ∈ (n, n+1], n ∈ Z+, f ∈ Cn+1 ([a, b]) (β := α−n, 0 < β ≤ 1). Assume

that f (k) (b) = 0, k = 0, 1, . . . , n, then (by (70))

f (t) = − 1

n!
∫ b

t

(b − x)β−1 (x − t)n
(
b
αT (f )

)
(x) dx, (144)

∀ t ∈ [a, b] .
Let t ≤ w ≤ b, then we have

f (w) = − 1

n!
∫ b

w

(b − x)β−1 (x − w)n
(
b
αT (f )

)
(x) dx. (145)

Then

|f (w)| ≤ (b − a)n
n!

∫ b

w

(b − x)β−1
∣∣∣bαT (f ) (x)

∣∣∣ dx ≤

(b − a)n
n!

(∫ b

w

(b − x)p(β−1) dx

) 1
p
(∫ b

w

∣∣∣bαT (f ) (x)
∣∣∣
q

dx

) 1
q

=

(b − a)n
n!

(b − w) p(β−1)+1

p

(p (β − 1)+ 1)
1
p

(z (w))
1
q , (146)

where

z (w) :=
∫ b

w

∣∣∣bαT (f ) (x)
∣∣∣
q

dx, (147)

t ≤ w ≤ b, z (b) = 0. Thus
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− z (w) :=
∫ w

b

∣
∣∣bαT (f ) (x)

∣
∣∣
q

dx, (148)

and

(−z (w))′ =
∣∣∣bαT (f ) (x)

∣∣∣
q ≥ 0, (149)

and

∣∣∣bαT (f ) (x)
∣∣∣ = ((−z (w))′) 1

q = (−z′ (w)) 1
q . (150)

(want p (β − 1)+ 1 > 0 ⇔ p (β − 1) > −1 ⇔ β − 1 > − 1
p
⇔ β > 1− 1

p
= 1

q
,

so we assume β > 1
q

).
Therefore we obtain

|f (w)|
∣
∣∣bαT (f ) (w)

∣
∣∣ ≤ (b − a)n

n!
(b − w)p(β−1)+1

p

(p (β − 1)+ 1)
1
p

(
z (w)

(−z′ (w))) 1
q ,

(151)
all t ≤ w ≤ b.

Hence it holds

∫ b

t

|f (w)|
∣∣∣bαT (f ) (w)

∣∣∣ dw ≤

(b − a)n
n! (p (β − 1)+ 1)

1
p

∫ b

t

(b − w)p(β−1)+1
p

(
z (w)

(−z′ (w))) 1
q dw ≤

(b − a)n
n! (p (β − 1)+ 1)

1
p

(∫ b

t

(b − w)p(β−1)+1 dw

) 1
p
(∫ b

t

z (w)
(−z′ (w)) dw

) 1
q

=
(152)

(b − a)n
n! (p (β − 1)+ 1)

1
p

(b − t)(β−1)+ 2
p

(p (β − 1)+ 2)
1
p

(z (t))
2
q

2
1
q

=

(b − a)n (b − t)β−1+ 2
p

n!2 1
q [(p (β − 1)+ 1) (p (β − 1)+ 2)]

1
p

(∫ b

t

∣
∣∣bαT (f ) (x)

∣
∣∣
q

dx

) 2
q

. (153)

We have proved the Conformable right fractional Opial type inequality:

Theorem 16 Let α ∈ (n, n+ 1], n ∈ Z+, β := α − n, f ∈ Cn+1 ([a, b]). Assume
f (k) (b) = 0, k = 0, 1, . . . , n. Let p, q > 1 : 1

p
+ 1

q
= 1 such that β > 1

q
. Then
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∫ b

t

|f (w)|
∣∣∣bαT (f ) (w)

∣∣∣ dw ≤

(b − a)n (b − t)β−1+ 2
p

2
1
q n! [(p (β − 1)+ 1) (p (β − 1)+ 2)]

1
p

(∫ b

t

∣∣∣bαT (f ) (x)
∣∣∣
q

dx

) 2
q

, (154)

∀ t ∈ [a, b] .

Next we give a left conformable fractional Poincare type inequality:

Theorem 17 Let α ∈ (n, n+ 1], n ∈ Z+, f ∈ Cn+1 ([a, b]) , β := α − n. Assume
f (k) (a) = 0, k = 0, 1, . . . , n. Let p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1, such that

β > 1
p1
+ 1

p3
. Then

‖f ‖p3,[a,b] ≤
(b − a)α ∥∥T aα f

∥∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2 (αp3)

1
p3

. (155)

Proof Since f (k) (a) = 0, k = 0, 1, . . . , n, then (by (69))

f (t) = 1

n!
∫ t

a

(t − x)n (x − a)β−1 (T aα (f )
)
(x) dx, (156)

∀ t ∈ [a, b] .
Let p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1. Then

|f (t)| ≤ 1

n!
∫ t

a

(t − x)n (x − a)β−1
∣∣T aα (f ) (x)

∣∣ dx ≤

1

n!
(∫ t

a

(t − x)p1n dx

) 1
p1
(∫ t

a

(x − a)p2(β−1) dx

) 1
p2 ∥∥T aα f

∥∥
p3,[a,b] = (157)

1

n!
(t − a)

p1n+1
p1

(p1n+ 1)
1
p1

(t − a)
p2(β−1)+1

p2

(p2 (β − 1)+ 1)
1
p2

∥∥T aα f
∥∥
p3,[a,b] =

(t − a)n+ 1
p1
+β−1+ 1

p2

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

∥∥T aα f
∥∥
p3,[a,b] = (158)

(t − a)n+β− 1
p3

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

∥∥T aα f
∥∥
p3,[a,b] .



Conformable Fractional Inequalities 407

We have proved

|f (t)| ≤ (t − a)n+β− 1
p3

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

∥∥T aα f
∥∥
p3,[a,b] , (159)

∀ t ∈ [a, b] .
Then

|f (t)|p3 ≤ (t − a)p3(n+β)−1

(n!)p3 (p1n+ 1)
p3
p1 (p2 (β − 1)+ 1)

p3
p2

∥∥T aα f
∥∥p3
p3,[a,b] . (160)

Therefore, it holds

∫ b

a

|f (t)|p3 dt ≤
∫ b
a (t − a)p3(n+β)−1 dt

(n!)p3 (p1n+ 1)
p3
p1 (p2 (β − 1)+ 1)

p3
p2

∥∥T aα f
∥∥p3
p3,[a,b] =

(b − a)p3(n+β) ∥∥T aα f
∥∥p3
p3,[a,b]

(n!)p3 (p1n+ 1)
p3
p1 (p2 (β − 1)+ 1)

p3
p2 p3 (n+ β)

. (161)

Consequently, we get

‖f ‖p3,[a,b] ≤
(b − a)(n+β) ∥∥T aα f

∥
∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2 (p3 (n+ β))

1
p3

. (162)

(we want p2 (β − 1) + 1 > 0 ⇔ p2 (β − 1) > −1 ⇔ β − 1 > − 1
p2
⇔ β >

1− 1
p2
⇔ β > 1

p1
+ 1

p3
, by assumption).

It follows the right conformable fractional Poincare type inequality:

Theorem 18 Let α ∈ (n, n+1], n ∈ Z+, f ∈ Cn+1 ([a, b]) , β := α−n, f (k) (b) =
0, k = 0, 1, . . . , n. Let p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1, such that β > 1

p1
+ 1

p3
.

Then

‖f ‖p3,[a,b] ≤
(b − a)α ∥∥bαT (f )

∥∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2 (αp3)

1
p3

. (163)

Proof By (70) we get (∀ t ∈ [a, b])

f (t) = − 1

n!
∫ b

t

(b − x)β−1 (x − t)n
(
b
αT (f )

)
(x) dx. (164)
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Hence

|f (t)| ≤ 1

n!
∫ b

t

(b − x)β−1 (x − t)n
∣∣∣bαT (f ) (x)

∣∣∣ dx ≤

1

n!
(∫ b

t

(x − t)p1n dx

) 1
p1
(∫ b

t

(b − x)p2(β−1) dx

) 1
p2 ∥∥∥bαT (f )

∥∥∥
p3,[a,b]

= (165)

1

n!
(b − t)

p1n+1
p1

(p1n+ 1)
1
p1

(b − t)
p2(β−1)+1

p2

(p2 (β − 1)+ 1)
1
p2

∥∥
∥bαT (f )

∥∥
∥
p3,[a,b]

=

(b − t)n+ 1
p1
+β−1+ 1

p2

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

∥∥
∥bαT (f )

∥∥
∥
p3,[a,b]

=

(b − t)n+β− 1
p3

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

∥∥∥bαT (f )
∥∥∥
p3,[a,b]

.

We have proved

|f (t)| ≤ (b − t)n+β− 1
p3

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

∥∥∥bαT (f )
∥∥∥
p3,[a,b]

, (166)

∀ t ∈ [a, b] .
Then, it holds

|f (t)|p3 ≤
(b − t)p3(n+β)−1

∥
∥b
αT (f )

∥
∥p3

p3,[a,b]

(n!)p3 (p1n+ 1)
p3
p1 (p2 (β − 1)+ 1)

p3
p2

, (167)

∀ t ∈ [a, b] . Hence, we derive

∫ b

a

|f (t)|p3 dt ≤
(b − a)p3(n+β) ∥∥b

αT (f )
∥
∥p3

p3,[a,b]

(n!)p3 (p1n+ 1)
p3
p1 (p2 (β − 1)+ 1)

p3
p2 p3 (n+ β)

. (168)

Then, raise (168) to the power 1
p3

, and we are done.

Next we give a left conformable fractional Sobolev type inequality:

Theorem 19 All assumptions as in Theorem 17 and r > 0. Then

‖f ‖r,[a,b] ≤
(b − a)

(
α− 1

p3
+ 1
r

) ∥∥T aα f
∥∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

[
r
(
α − 1

p3

)
+ 1
] 1
r

. (169)
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Proof We use (159). Hence it holds

|f (t)|r ≤
(t − a)r

(
n+β− 1

p3

) ∥
∥T aα f

∥
∥r
p3,[a,b]

(n!)r (p1n+ 1)
r
p1 (p2 (β − 1)+ 1)

r
p2

, (170)

∀ t ∈ [a, b] .
Consequently we obtain

∫ b

a

|f (t)|r dt ≤
(b − a)r

(
n+β− 1

p3

)
+1 ∥∥T aα f

∥∥r
p3,[a,b]

(n!)r (p1n+ 1)
r
p1 (p2 (β − 1)+ 1)

r
p2

[
r
(
n+ β − 1

p3

)
+ 1
] .

(171)
We have proved that

‖f ‖r,[a,b] ≤
(b − a)

(
n+β− 1

p3
+ 1
r

) ∥∥T aα f
∥∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

[
r
(
n+ β − 1

p3

)
+ 1
] 1
r

.

(172)
We have established (169).

It follows the right conformable fractional Sobolev type inequality:

Theorem 20 All assumptions as in Theorem 18, and r > 0. Then

‖f ‖r,[a,b] ≤
(b − a)

(
α− 1

p3
+ 1
r

) ∥
∥b
αT (f )

∥
∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

[
r
(
α − 1

p3

)
+ 1
] 1
r

. (173)

Proof We use (166). We get that

|f (t)|r ≤
(b − t)r

(
n+β− 1

p3

) ∥∥b
αT (f )

∥∥r
p3,[a,b]

(n!)r (p1n+ 1)
r
p1 (p2 (β − 1)+ 1)

r
p2

, (174)

and

∫ b

a

|f (t)|r dt ≤
(b − a)r

(
n+β− 1

p3

)
+1 ∥∥b

αT (f )
∥∥r
p3,[a,b]

(n!)r (p1n+ 1)
r
p1 (p2 (β − 1)+ 1)

r
p2

[
r
(
n+ β − 1

p3

)
+ 1
] .

(175)
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Finally, we derive

‖f ‖r,[a,b] ≤
(b − a)

(
n+β− 1

p3
+ 1
r

) ∥∥b
αT (f )

∥∥
p3,[a,b]

n! (p1n+ 1)
1
p1 (p2 (β − 1)+ 1)

1
p2

[
r
(
n+ β − 1

p3

)
+ 1
] 1
r

,

(176)
proving the claim.

We need

Corollary 3 (of Theorem 9) Let α ∈ (0, 1], f ∈ C1 ([a, b]), [a, b] ⊂ R. Then

∣∣∣∣
1

b − a
∫ b

a

f (t) dt − f (a)
∣∣∣∣ ≤

(b − a)α
α (α + 1)

∥∥T aα (f )
∥∥∞,[a,b] , (177)

and

∣∣∣
∣

1

b − a
∫ b

a

f (t) dt − f (b)
∣∣∣
∣ ≤

(b − a)α
α (α + 1)

∥∥
∥bαT (f )

∥∥
∥∞,[a,b]

. (178)

We need

Corollary 4 Let α ∈ (0, 1], any [a, b] ⊂ R+, f ∈ C1 (R+) with
∥∥T 0

α (f )
∥∥∞,R+ <+∞. Then

∣∣
∣∣

1

b − a
∫ b

a

f (t) dt − f (a)
∣∣
∣∣ ≤

(b − a)α
α (α + 1)

∥∥
∥T 0

α (f )

∥∥
∥∞,R+

. (179)

Proof It comes from (177), and the following:
Here

T aα (f ) (x) = (x − a)1−α f ′ (x) ,

all x ∈ [a, b], 0 ≤ a < b.

Then

∣∣T aα (f ) (x)
∣∣ = (x − a)1−α ∣∣f ′ (x)∣∣ ≤ x1−α ∣∣f ′ (x)

∣∣ =
∣∣∣T 0
α (f ) (x)

∣∣∣ ,

∀ x ∈ [a, b] .
Therefore it holds

∥∥T aα (f )
∥∥∞,[a,b] ≤

∥∥
∥T 0

α (f )

∥∥
∥∞,R+

. (180)
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Corollary 5 Let α ∈ (0, 1], any [a, b] ⊂ R−, f ∈ C1 (R−) with
∥∥0
αT (f )

∥∥∞,R− <+∞. Then

∣∣∣∣
1

b − a
∫ b

a

f (t) dt − f (b)
∣∣∣∣ ≤

(b − a)α
α (α + 1)

∥∥∥0
αT (f )

∥∥∥∞,R−
. (181)

Proof It comes from (178), and the following:
Here

−
(
b
αT (f )

)
(x) = (b − x)1−α f ′ (x) ,

all x ∈ [a, b], a < b ≤ 0.
Then
∣∣∣bαT (f ) (x)

∣∣∣ = (b − x)1−α ∣∣f ′ (x)∣∣ ≤ (−x)1−α ∣∣f ′ (x)∣∣ =
∣∣∣0αT (f ) (x)

∣∣∣ ,

∀ x ∈ [a, b] .
Therefore it holds

∥∥∥bαT (f )
∥∥∥∞,[a,b]

≤
∥∥∥0
αT (f )

∥∥∥∞,R−
. (182)

We need

Corollary 6 (to Theorem 10) Let α ∈ (0, 1], f ∈ C1 ([a, b]), [a, b] ⊂ R. Let
p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. Then

∣∣
∣∣

1

b − a
∫ b

a

f (t) dt − f (a)
∣∣
∣∣ ≤

1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) (b − a)α−
1
p1
∥∥T aα (f )

∥∥
p3,[a,b] ,

(183)
and

∣∣∣
∣

1

b − a
∫ b

a

f (t) dt − f (b)
∣∣∣
∣ ≤

1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) (b − a)α−
1
p1

∥∥∥bαT (f )
∥∥∥
p3,[a,b]

.

(184)

We need
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Corollary 7 Let α ∈ (0, 1], f ∈ C1 (R+) , any [a, b] ⊂ R+. Let p1, p2, p3 > 1 :
1
p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. We assume that

∥∥T 0
α (f )

∥∥
p3,R+ < +∞. Then

∣∣∣∣
1

b − a
∫ b

a

f (t) dt − f (a)
∣∣∣∣ ≤

1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) (b − a)α−
1
p1

∥∥∥T 0
α (f )

∥∥∥
p3,R+

.

(185)

Proof As in the proof of Corollary 4 we have that

∣∣T aα (f ) (x)
∣∣ ≤

∣∣∣T 0
α (f ) (x)

∣∣∣ ,

∀ x ∈ [a, b] .
Clearly then

∥∥T aα (f )
∥∥
p3,[a,b] ≤

∥∥
∥T 0

α (f )

∥∥
∥
p3,[a,b]

≤
∥∥
∥T 0

α (f )

∥∥
∥
p3,R+

. (186)

Corollary 8 Let α ∈ (0, 1], f ∈ C1 (R−) , any [a, b] ⊂ R−. Let p1, p2, p3 > 1 :
1
p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. We assume that

∥∥0
αT (f )

∥∥
p3,R− < +∞. Then

∣
∣∣∣

1

b − a
∫ b

a

f (t) dt − f (b)
∣
∣∣∣ ≤

1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) (b − a)α−
1
p1

∥
∥∥0
αT (f )

∥
∥∥
p3,R−

.

(187)

We make

Proof As in the proof of Corollary 5 we have that

∣∣∣bαT (f ) (x)
∣∣∣ ≤

∣∣∣0αT (f ) (x)
∣∣∣ ,

∀ x ∈ [a, b] .
Clearly then

∥∥
∥bαT (f )

∥∥
∥
p3,[a,b]

≤
∥∥
∥0
αT (f )

∥∥
∥
p3,[a,b]

≤
∥∥
∥0
αT (f )

∥∥
∥
p3,R−

. (188)

We make
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Remark 9 Let α ∈ (0, 1], any [a, b] ⊂ R+, f ∈ C2 (R+), with
∥∥T 0

α

(
f ′
)∥∥∞,R+ <+∞. Then (by (179))

∣∣∣∣
1

b − a
∫ b

a

f ′ (t) dt − f ′ (a)
∣∣∣∣ ≤

(b − a)α
α (α + 1)

∥∥∥T 0
α

(
f ′
)∥∥∥∞,R+

. (189)

That is,
∣∣∣∣

1

b − a (f (b)− f (a))− f
′ (a)

∣∣∣∣ ≤
(b − a)α
α (α + 1)

∥∥∥T 0
α

(
f ′
)∥∥∥∞,R+

. (190)

Hence it holds

∣
∣f ′ (a)

∣
∣− 1

b − a |f (b)− f (a)| ≤
(b − a)α
α (α + 1)

∥∥
∥T 0

α

(
f ′
)∥∥
∥∞,R+

. (191)

Equivalently, we can write

∣∣f ′ (a)
∣∣ ≤ 1

b − a |f (b)− f (a)| +
(b − a)α
α (α + 1)

∥
∥∥T 0

α

(
f ′
)∥∥∥∞,R+

≤ (192)

2 ‖f ‖∞,R+
b − a + (b − a)α

α (α + 1)

∥∥
∥T 0

α

(
f ′
)∥∥
∥∞,R+

,

∀ a, b ∈ R+ : a < b.

The last right-hand side of (192) depends only on (b − a) .
Therefore it holds

∥
∥f ′
∥
∥∞,R+ ≤

2 ‖f ‖∞,R+
b − a + (b − a)α

α (α + 1)

∥
∥∥T 0

α

(
f ′
)∥∥∥∞,R+

. (193)

Set t := b − a > 0. Thus

∥
∥f ′
∥
∥∞,R+ ≤

2 ‖f ‖∞,R+
t

+ tα

α (α + 1)

∥∥
∥T 0

α

(
f ′
)∥∥
∥∞,R+

, (194)

∀ t > 0.
Call

μ := 2 ‖f ‖∞,R+ ,

and (195)

θ :=
∥∥T 0

α

(
f ′
)∥∥∞,R+

α (α + 1)
, α ∈ (0, 1],

both μ, θ are greater than zero.
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That is, we have

∥∥f ′
∥∥∞,R+ ≤

μ

t
+ θtα, ∀ t > 0. (196)

Consider the function

y (t) := μ

t
+ θtα, t > 0, α ∈ (0, 1]. (197)

Next we act as in [9], pp. 80–82. The only critical number here is

t0 =
( μ
αθ

) 1
α+1

, (198)

and y has a global minimum at t0, which is

y (t0) =
(
θμα

) 1
α+1 (α + 1) α

−
(

α
α+1

)

. (199)

Thus, we have proved:

∥∥f ′
∥∥∞,R+ ≤

[∥∥T 0
α

(
f ′
)∥∥∞,R+

α (α + 1)

(
2 ‖f ‖∞,R+

)α
] 1
α+1

(α + 1) α
−
(

α
α+1

)

, (200)

under the assumption ‖f ‖∞,R+ < +∞.
We have established the following ∞-conformable left fractional alternative

Landau type inequality:

Theorem 21 Let α ∈ (0, 1], f ∈ C2 (R+); ‖f ‖∞,R+ ,
∥∥T 0

α

(
f ′
)∥∥∞,R+ < +∞.

Then

∥∥f ′
∥∥∞,R+ ≤

(
α + 1

α

)(
2α

α + 1

) 1
α+1 ‖f ‖

α
α+1
∞,R+

∥
∥∥T 0

α

(
f ′
)∥∥∥

1
α+1

∞,R+
. (201)

That is,
∥∥f ′
∥∥∞,R+ < +∞.

We make

Remark 10 Let α ∈ (0, 1], any [a, b] ⊂ R−, f ∈ C2 (R−), with
∥
∥0
αT
(
f ′
)∥∥∞,R− <+∞. Assume also ‖f ‖∞,R− < +∞. Then (by (181)) we get

∣
∣∣∣

1

b − a
∫ b

a

f ′ (t) dt − f ′ (b)
∣
∣∣∣ ≤

(b − a)α
α (α + 1)

∥∥∥0
αT
(
f ′
)∥∥∥∞,R−

. (202)
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That is,

∣
∣∣∣

1

b − a (f (b)− f (a))− f
′ (b)

∣
∣∣∣ ≤

(b − a)α
α (α + 1)

∥
∥∥0
αT
(
f ′
)∥∥∥∞,R−

. (203)

Hence it holds

∣∣f ′ (b)
∣∣− 1

b − a |f (b)− f (a)| ≤
(b − a)α
α (α + 1)

∥∥∥T 0
α

(
f ′
)∥∥∥∞,R−

. (204)

Equivalently, we can write

∣∣f ′ (b)
∣∣ ≤ 1

b − a |f (b)− f (a)| +
(b − a)α
α (α + 1)

∥∥∥0
αT
(
f ′
)∥∥∥∞,R−

≤

2 ‖f ‖∞,R−
b − a + (b − a)α

α (α + 1)

∥
∥∥0
αT
(
f ′
)∥∥∥∞,R−

, (205)

∀ a, b ∈ R− : a < b.

The last right-hand side of (205) depends only on (b − a) .
Therefore it holds

∥∥f ′
∥∥∞,R− ≤

2 ‖f ‖∞,R−
b − a + (b − a)α

α (α + 1)

∥
∥∥0
αT
(
f ′
)∥∥∥∞,R−

. (206)

Set t := b − a > 0. Thus

∥∥f ′
∥∥∞,R− ≤

2 ‖f ‖∞,R−
t

+ tα

α (α + 1)

∥
∥∥0
αT
(
f ′
)∥∥∥∞,R−

, (207)

∀ t > 0.
Call

μ := 2 ‖f ‖∞,R− ,

and (208)

θ :=
∥∥0
αT
(
f ′
)∥∥∞,R−

α (α + 1)
, α ∈ (0, 1],

both μ, θ > 0.
That is, we have

∥∥f ′
∥∥∞,R− ≤

μ

t
+ θtα, ∀ t > 0. (209)
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Consider the function

y (t) := μ

t
+ θtα, t > 0, α ∈ (0, 1]. (210)

Next we act as in [9], pp. 80–82. The only critical number here is

t0 =
(
μ

αθ

) 1
α+1

, (211)

and y has a global minimum at t0, which is

y
(
t0
) = (θμα) 1

α+1 (α + 1) α
−
(

α
α+1

)

. (212)

Thus, we have proved:

∥∥f ′
∥∥∞,R− ≤

[∥∥0
αT
(
f ′
)∥∥∞,R−

α (α + 1)

(
2 ‖f ‖∞,R−

)α
] 1
α+1

(α + 1) α
−
(

α
α+1

)

. (213)

We have established the following ∞-conformable right fractional alternative
Landau type inequality:

Theorem 22 Let α ∈ (0, 1], f ∈ C2 (R−); ‖f ‖∞,R− ,
∥
∥0
αT
(
f ′
)∥∥∞,R− < +∞.

Then

∥∥f ′
∥∥∞,R− ≤

(
α + 1

α

)(
2α

α + 1

) 1
α+1 ‖f ‖

α
α+1
∞,R−

∥∥∥0
αT
(
f ′
)∥∥∥

1
α+1

∞,R−
. (214)

That is,
∥∥f ′
∥∥∞,R− < +∞.

We make

Remark 11 Let α ∈ (0, 1], any [a, b] ⊂ R+, f ∈ C2 (R+), ‖f ‖∞,R+ < +∞.
Let p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. We assume that

∥∥T 0
α

(
f ′
)∥∥
p3,R+ < +∞. Then (by (185))

∣∣∣∣
1

b − a
∫ b

a

f ′ (t) dt − f ′ (a)
∣∣∣∣ ≤ γ (b − a)δ

∥∥∥T 0
α

(
f ′
)∥∥∥
p3,R+

, (215)

where

γ := 1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) , (216)
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and

δ := α − 1

p1
. (217)

Since α < 1 + 1
p1

, then α − 1
p1
< 1. Since α > 1

p1
+ 1

p3
> 1

p1
, then α − 1

p1
> 0.

Hence 0 < δ < 1. That is,

∣∣∣∣
1

b − a (f (b)− f (a))− f
′ (a)

∣∣∣∣ ≤ γ (b − a)δ
∥∥∥T 0

α

(
f ′
)∥∥∥
p3,R+

. (218)

Hence it holds

∣∣f ′ (a)
∣∣− 1

b − a |f (b)− f (a)| ≤ γ (b − a)
δ
∥∥∥T 0

α

(
f ′
)∥∥∥
p3,R+

. (219)

Equivalently, we can write

∣∣f ′ (a)
∣∣ ≤ 1

b − a |f (b)− f (a)| + γ (b − a)
δ
∥∥∥T 0

α

(
f ′
)∥∥∥
p3,R+

≤ (220)

2 ‖f ‖∞,R+
b − a + (b − a)δ γ

∥∥∥T 0
α

(
f ′
)∥∥∥
p3,R+

,

∀ a, b ∈ R+ : a < b.

The last right-hand side of (220) depends only on (b − a) .
Therefore it holds

∥∥f ′
∥∥∞,R+ ≤

2 ‖f ‖∞,R+
b − a + (b − a)δ γ

∥∥
∥T 0

α

(
f ′
)∥∥
∥
p3,R+

. (221)

Set t := b − a > 0. Thus

∥
∥f ′
∥
∥∞,R+ ≤

2 ‖f ‖∞,R+
t

+ tδγ
∥∥
∥T 0

α

(
f ′
)∥∥
∥
p3,R+

, (222)

∀ t > 0.
Call

μ := 2 ‖f ‖∞,R+ ,

and (223)

θ := γ

∥
∥∥T 0

α

(
f ′
)∥∥∥
p3,R+

, α ∈ (0, 1],

both μ, θ > 0.
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That is, we have

∥∥f ′
∥∥∞,R+ ≤

μ

t
+ θtδ, ∀ t > 0. (224)

Consider the function

y (t) := μ

t
+ θtδ, ∀ t > 0, 0 < δ < 1. (225)

Next we act as in [9], pp. 80–82. The only critical number here is

t0 =
( μ
δθ

) 1
δ+1

, (226)

and y has a global minimum at t0, which is

y (t0) =
(
θμδ

) 1
δ+1 (δ + 1) δ

−
(

δ
δ+1

)

. (227)

Thus, we have proved:

∥∥f ′
∥∥∞,R+ ≤

[(
γ

∥∥∥T 0
α

(
f ′
)∥∥∥
p3,R+

) (
2 ‖f ‖∞,R+

)δ
] 1
δ+1

(δ + 1) δ
−
(

δ
δ+1

)

.

(228)

We have established the following Lp-conformable left fractional alternative
Landau type inequality:

Theorem 23 Let α ∈ (0, 1], f ∈ C2 (R+), ‖f ‖∞,R+ < +∞. Let p1, p2, p3 > 1 :
1
p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. We assume that

∥
∥T 0

α

(
f ′
)∥∥
p3,R+ < +∞. Set

γ := 1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) ,

and (229)

δ := α − 1

p1
.

Then

∥∥f ′
∥∥∞,R+ ≤ ‖f ‖

δ
δ+1
∞,R+

∥∥
∥T 0

α

(
f ′
)∥∥
∥

1
δ+1

p3,R+
γ

1
δ+1 2

δ
δ+1 (δ + 1) δ

−
(

δ
δ+1

)

. (230)

That is,
∥∥f ′
∥∥∞,R+ < +∞.
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We make

Remark 12 Let α ∈ (0, 1], any [a, b] ⊂ R−, f ∈ C2 (R−), ‖f ‖∞,R− < +∞.
Let p1, p2, p3 > 1 : 1

p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. We assume that

∥∥0
αT
(
f ′
)∥∥
p3,R− < +∞. Then (by (187))

∣∣
∣∣

1

b − a
∫ b

a

f ′ (t) dt − f ′ (b)
∣∣
∣∣ ≤ γ (b − a)δ

∥∥
∥0
αT
(
f ′
)∥∥
∥
p3,R−

, (231)

where

γ := 1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) , (232)

and

δ := α − 1

p1
. (233)

It holds 0 < δ < 1. That is,

∣∣∣∣
1

b − a (f (b)− f (a))− f
′ (b)

∣∣∣∣ ≤ γ (b − a)δ
∥∥∥0
αT
(
f ′
)∥∥∥
p3,R−

. (234)

Hence it holds

∣∣f ′ (b)
∣∣− 1

b − a |f (b)− f (a)| ≤ γ (b − a)
δ
∥∥∥0
αT
(
f ′
)∥∥∥
p3,R−

. (235)

Equivalently, we can write

∣∣f ′ (b)
∣∣ ≤ 1

b − a |f (b)− f (a)| + γ (b − a)
δ
∥∥∥0
αT
(
f ′
)∥∥∥
p3,R−

≤ (236)

2 ‖f ‖∞,R−
b − a + (b − a)δ γ

∥∥∥0
αT
(
f ′
)∥∥∥
p3,R−

,

∀ a, b ∈ R− : a < b.

The last right-hand side of (236) depends only on (b − a) .
Therefore it holds

∥
∥f ′
∥
∥∞,R− ≤

2 ‖f ‖∞,R−
b − a + (b − a)δ γ

∥
∥∥0
αT
(
f ′
)∥∥∥
p3,R−

. (237)
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Set t := b − a > 0. Thus

∥
∥f ′
∥
∥∞,R− ≤

2 ‖f ‖∞,R−
t

+ tδγ
∥∥
∥0
αT
(
f ′
)∥∥
∥
p3,R−

, (238)

∀ t > 0.
Call

μ := 2 ‖f ‖∞,R− ,

and (239)

θ := γ

∥
∥∥0
αT
(
f ′
)∥∥∥
p3,R−

, α ∈ (0, 1],

both μ, θ > 0.
That is, we have

∥∥f ′
∥∥∞,R− ≤

μ

t
+ θtδ, ∀ t > 0. (240)

Consider the function

y (t) := μ

t
+ θtδ, ∀ t > 0, 0 < δ < 1. (241)

Next we act as in [9], pp. 80–82. The only critical number here is

t0 =
(
μ

δθ

) 1
δ+1

, (242)

and y has a global minimum at t0, which is

y
(
t0
) = (θμδ)

1
δ+1 (δ + 1) δ

−
(

δ
δ+1

)

. (243)

Thus, we have proved:

∥∥f ′
∥∥∞,R− ≤

[(
γ

∥∥∥0
αT
(
f ′
)∥∥∥
p3,R−

) (
2 ‖f ‖∞,R−

)δ
] 1
δ+1

(δ + 1) δ
−
(

δ
δ+1

)

.

(244)

We have established the following Lp-conformable right fractional alternative
Landau type inequality:
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Theorem 24 Let α ∈ (0, 1], f ∈ C2 (R−),‖f ‖∞,R− < +∞. Let p1, p2, p3 > 1 :
1
p1
+ 1

p2
+ 1

p3
= 1, with α > 1

p1
+ 1

p3
. We assume that

∥∥T 0
α

(
f ′
)∥∥
p3,R− < +∞. Set

γ := 1

(p1 + 1)
1
p1 (p2 (α − 1)+ 1)

1
p2

(
α + 1

p2
+ 1

p3

) ,

and (245)

δ := α − 1

p1
.

Then

∥∥f ′
∥∥∞,R− ≤ ‖f ‖

δ
δ+1
∞,R−

∥∥∥0
αT
(
f ′
)∥∥∥

1
δ+1

p3,R−
γ

1
δ+1 2

δ
δ+1 (δ + 1) δ

−
(

δ
δ+1

)

. (246)

That is,
∥∥f ′
∥∥∞,R− < +∞.

Comment 3 Let f, g ≥ 0 be functions. Then it is well-known that

sup (fg) ≤ (sup f ) (sup g) . (247)

Property (247) strongly supports our investigations throughout Section 3.
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New Inequalities for η-Quasiconvex
Functions

Eze R. Nwaeze and Delfim F. M. Torres

Abstract The class of η-quasiconvex functions was introduced in 2016. Here we
establish novel inequalities of Ostrowski type for functions whose second derivative,
in absolute value raised to the power q ≥ 1, is η-quasiconvex. Several interesting
inequalities are deduced as special cases. Furthermore, we apply our results to the
arithmetic, geometric, Harmonic, logarithmic, generalized log and identric means,
getting new relations amongst them.

2010 MSC: 26D15, 26E60 (Primary); 26A51 (Secondary)

1 Introduction

A function G : I → R is said to be convex on the interval I ⊂ R if

G(xu+ (1− x)v) ≤ xG(u)+ (1− x)G(v)

holds for all u, v ∈ I and x ∈ [0, 1]. Many interesting inequalities have been
established for convex functions. Worthy of mention is the following result proved
in 2011 by Sarikaya and Aktan [8].

Theorem 1 (See [8]) Let I ⊂ R be an open interval, α, β ∈ R with α < β,
λ ∈ [0, 1], and G : I → R be a twice differentiable mapping such that G′′ is
integrable. If |G′′| is a convex function on [α, β], then
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∣
∣∣∣(λ− 1)G

(
α + β

2

)
− λG(α)+G(β)

2
+ 1

β − α
∫ β

α

G(x) dx

∣
∣∣∣

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(β−α)2
12

[(
λ4 + (1+ λ)(1− λ)3 + 5λ−3

4

)
|G′′(α)|

+
(
λ4 + (2− λ)λ3 + 1−3λ

4

)
|G′′(β)|

]
, if 0 ≤ λ ≤ 1

2 ,

(β−α)2(3λ−1)
48

[
|G′′(α)| + |G′′(β)|

]
, if 1

2 ≤ λ ≤ 1.

In 2015, Liu obtained a related inequality for s-convex functions [7]. The notion
of s-convexity was introduced in 1994 by Hudzik and Maligranda [5]. Let us recall
it here.

Definition 2 (See [5]) A function G : [0,∞)→ R is said to be s-convex if

G(ux + (1− x)v) ≤ xsG(u)+ (1− x)sG(v)

holds for all u, v ∈ I, x ∈ [0, 1] and for some fixed s ∈ (0, 1].
Evidently, the notion of s-convexity given in Definition 2 generalizes the classical

concept of convexity. For this class of functions, Liu [7], among other things,
established the following result:

Theorem 3 (See [7]) Let I ⊂ [0,∞),G : I → R be a twice differentiable function
on I ◦ such that G′′ ∈ L1[α, β], where α, β ∈ I with α < β. If |G′′|q is s-convex on
[α, β] for some fixed s ∈ (0, 1] and q ≥ 1, then

∣∣∣∣
1

β − α
∫ β

α

G(x) dx − (1− λ)G
(α + β

2

)
− λG(α)+G(β)

2

∣∣∣∣

≤ (β − α)2
16

(8λ3 − 3λ+ 1

3

)1− 1
q

{[
2(2λ)s+3 − 2(s + 3)λ+ s + 2

(s + 2)(s + 3)

∣∣∣∣G
′′
(
α + β

2

)∣∣∣∣

q

+ 4(1− 2λ)s+2[(s + 1)λ+ 1] + 2(s + 3)λ− 2

(s + 1)(s + 2)(s + 3)
|G′′(α)|q

] 1
q

+
[

2(2λ)s+3 − 2(s + 3)λ+ s + 2

(s + 2)(s + 3)

∣∣∣∣G
′′
(
α + β

2

)∣∣∣∣

q

+ 4(1− 2λ)s+2[(s + 1)λ+ 1] + 2(s + 3)λ− 2

(s + 1)(s + 2)(s + 3)
|G′′(β)|q

] 1
q
}

for 0 ≤ λ ≤ 1
2 and

∣
∣∣∣

1

β − α
∫ β

α

G(x) dx − (1− λ)G
(α + β

2

)
− λG(α)+G(β)

2

∣
∣∣∣
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≤ (β − α)2
16

(
λ− 1

3

)1− 1
q

{[
2(s + 3)λ− s − 2

(s + 2)(s + 3)

∣∣∣∣G
′′
(
α + β

2

)∣∣∣∣

q

+ 2(s + 3)λ− 2

(s + 1)(s + 2)(s + 3)
|G′′(α)|q

] 1
q

+
[

2(s + 3)λ− s − 2

(s + 2)(s + 3)

∣
∣∣∣G
′′
(
α + β

2

)∣∣∣∣

q

+ 2(s + 3)λ− 2

(s + 1)(s + 2)(s + 3)
|G′′(β)|q

] 1
q
}

for 1
2 ≤ λ ≤ 1.

In 2016, Eshaghi Gordji et al. [4] proposed a larger class of functions called
η-quasiconvex.

Definition 4 (See [4]) A function G : I ⊂ R→ R is said to be an η-quasiconvex
function with respect to η : R× R→ R, if

G(xu+ (1− x)v) ≤ max {G(v),G(v)+ η(G(u),G(v))}

for all u, v ∈ I and x ∈ [0, 1].
An η−quasiconvex function G : [α, β] → R is integrable if η is bounded

from above on G([α, β]) × G([α, β]) (see [2, Remark 4]). By taking η(x, y) =
x − y in Definition 4, one recovers the classical definition of quasiconvexity. It is
also important to note that any convex function is η-quasiconvex with respect to
η(x, y) = x − y. For some results around this recent class of functions, we invite
the interested reader to see [1, 3, 6] and the references therein.

Motivated by the above results, it is our purpose to generalize Theorems 1
and 3 for the class of η−quasiconvex functions. To the best of our knowledge, the
results we prove here (see Theorems 7 and 10) are novel and provide an interesting
contribution to the literature of Ostrowski type results. In addition, we apply our
results to some special known means of positive real numbers.

The paper is organized as follows. We begin by recalling in Sect. 2 two results,
needed in the sequel. In Sect. 3, we formulate and prove our main results, that
is, Theorems 7 and 10, followed by several interesting corollaries. Section 4
contains applications of our results to special means, in particular to the arithmetic,
geometric, harmonic, logarithmic, the generalized log-mean, and identric means
(see Propositions 14, 15 and 16). We end with Sect. 5 of conclusion.

2 Preliminaries

In this section, we recall two results that will be needed in the proof of our main
results.
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Lemma 5 (See [7]) Let I ⊂ R and G : I → R be a twice differentiable function
on I ◦ such that G′′ ∈ L1[α, β], where α, β ∈ I with α < β. Then,

1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

= (β − α)2
16

[ ∫ 1

0
(x2 − 2λx)G′′

(
x
α + β

2
+ (1− x)α

)
dx

+
∫ 1

0
(x2 − 2λx)G′′

(
x
α + β

2
+ (1− x)β

)
dx

]

holds for any λ ∈ [0, 1].
Lemma 6 (See [8]) Let I ⊂ R and G : I → R be a twice differentiable function
on I ◦ such that G′′ ∈ L1[α, β], where α, β ∈ I with α < β. Then,

1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

= (β − α)2
∫ 1

0
p(x)G′′(xα + (1− x)β) dx

holds for any λ ∈ [0, 1], where

p(x) =
{

1
2x(x − λ), 0 ≤ x ≤ 1

2 ,

1
2 (1− x)(1− λ− x), 1

2 ≤ x ≤ 1.
(1)

3 Main Results

We now state and prove our first main result.

Theorem 7 Let I ⊂ [0,∞) and G : [α, β] ⊂ I → R be a twice differentiable
function on (α, β) with α < β. If |G′′|q , q ≥ 1, is η-quasiconvex on [α, β] and
η-bounded from above on |G′′|q([α, β])× |G′′|q([α, β]), then

∣∣∣∣
1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

∣∣∣∣

≤

⎧
⎪⎨

⎪⎩

(β−α)2
16

(
8λ3−3λ+1

3

)(
N

1
q
q,η +M

1
q
q,η

)
, if 0 ≤ λ ≤ 1

2 ,

(β−α)2
16

(
λ− 1

3

)(
N

1
q
q,η +M

1
q
q,η

)
, if 1

2 ≤ λ ≤ 1,
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holds, where

Mq,η := max

{∣∣G′′(α)
∣∣q ,
∣∣G′′(α)

∣∣q + η
(∣∣∣∣G

′′
(
α + β

2

)∣∣∣∣

q

,
∣∣G′′(α)

∣∣q
)}

and

Nq,η := max

{∣
∣G′′(β)

∣
∣q ,
∣
∣G′′(β)

∣
∣q + η

(∣∣
∣∣G
′′
(
α + β

2

)∣∣
∣∣

q

,
∣
∣G′′(β)

∣
∣q
)}
.

Proof The hypothesis that function |G′′|q , q ≥ 1, is η-quasiconvex on [α, β],
implies that for x ∈ [0, 1] we have

∣∣
∣∣G
′′
(
x
α + β

2
+ (1− x)α

)∣∣
∣∣

q

≤Mq,η (2)

and
∣∣
∣∣G
′′
(
x
α + β

2
+ (1− x)β

)∣∣
∣∣

q

≤ Nq,η. (3)

Using Lemma 5, (2), (3) and Hölder’s inequality, one obtains that

∣∣∣∣
1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

∣∣∣∣

≤ (β − α)2
16

[ ∫ 1

0
|x2 − 2λx|

∣∣∣∣G
′′
(
x
α + β

2
+ (1− x)α

) ∣∣∣∣ dx

+
∫ 1

0
|x2 − 2λx|

∣∣∣∣G
′′
(
x
α + β

2
+ (1− x)β

) ∣∣∣∣ dx
]

≤ (β − α)2
16

[(∫ 1

0
|x2 − 2λx| dx

)1− 1
q

×
(∫ 1

0
|x2 − 2λx|

∣∣∣G′′
(
x
α + β

2
+ (1− x)α

) ∣∣∣
q

dx

) 1
q

+
(∫ 1

0
|x2 − 2λx| dx

)1− 1
q
(∫ 1

0
|x2 − 2λx|

∣∣∣G′′
(
x
α + β

2
+ (1− x)β

) ∣∣∣
q

dx

) 1
q
]

≤ (β − α)2
16

[(∫ 1

0
|x2 − 2λx| dx

)1− 1
q
(∫ 1

0
|x2 − 2λx|Mq,η dx

) 1
q
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+
(∫ 1

0
|x2 − 2λx| dx

)1− 1
q
(∫ 1

0
|x2 − 2λx|Nq,η dx

) 1
q
]

≤ (β − α)2
16

[(
N

1
q
q,η +M

1
q
q,η

) ∫ 1

0
|x2 − 2λx| dx

]
. (4)

To finish the proof, we need to evaluate
∫ 1

0
|x2−2λx| dx. For this, we consider two

cases.

Case I: 0 ≤ λ ≤ 1
2 We get 0 ≤ 2λ ≤ 1 and

∫ 1

0
|x2 − 2λx| dx =

∫ 2λ

0
|x2 − 2λx| dx +

∫ 1

2λ
|x2 − 2λx| dx

=
∫ 2λ

0
(2λx − x2) dx +

∫ 1

2λ
(x2 − 2λx) dx

= 8λ3 − 3λ+ 1

3
.

(5)

Case II: 1
2 ≤ λ ≤ 1 We get 2λ ≥ 1 and x2 ≤ 2λx2 ≤ 2λx, because x ∈ [0, 1]. It

follows that

∫ 1

0
|x2 − 2λx| dx =

∫ 1

0
(2λx − x2) dx

= λ− 1

3
.

(6)

The desired inequalities are obtained by using (5) and (6) in inequality (4).

Corollary 8 Let I ⊂ [0,∞) and G : [α, β] ⊂ I → R be a twice differentiable
function on (α, β) with α < β. If |G′′| is η-quasiconvex on [α, β] and η bounded
from above on |G′′|([α, β])× |G′′|([α, β]), then the inequality

∣∣
∣∣

1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

∣∣
∣∣

≤
⎧
⎨

⎩

(β−α)2
16

(
8λ3−3λ+1

3

)(
Nη +Mη

)
, if 0 ≤ λ ≤ 1

2 ,

(β−α)2
16

(
λ− 1

3

)(
Nη +Mη

)
, if 1

2 ≤ λ ≤ 1,

holds, where

Mη := max

{∣∣G′′(α)
∣∣,
∣∣G′′(α)

∣∣+ η
(∣∣∣∣G

′′
(
α + β

2

)∣∣∣∣,
∣∣G′′(α)

∣∣
)}
,
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and

Nη := max

{∣∣G′′(β)
∣∣,
∣∣G′′(β)

∣∣+ η
(∣∣∣∣G

′′
(
α + β

2

)∣∣∣∣,
∣∣G′′(β)

∣∣
)}
.

Proof The proof follows by setting q = 1 in Theorem 7.

Remark 9 By choosing different values of λ ∈ [0, 1] in the inequality of Corol-
lary 8, we obtain different results for η−quasiconvex functions. For example,

1. for λ = 0, we get a midpoint type inequality:

∣∣
∣∣

1

β − α
∫ β

α

G(x) dx −G
(
α + β

2

) ∣∣
∣∣ ≤

(β − α)2
48

(
Nη +Mη

)
; (7)

2. for λ = 1
3 , we get a Simpson type inequality:

∣
∣∣∣

1

β − α
∫ β

α

G(x) dx−2

3
G

(
α + β

2

)
−G(α)+G(β)

6

∣
∣∣∣ ≤

(β − α)2
162

(
Nη+Mη

)
;

(8)
3. for λ = 1

2 , we obtain a midpoint-trapezoid type inequality:

∣∣
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1

β − α
∫ β

α

G(x) dx−1

2
G

(
α + β

2

)
−G(α)+G(β)

4

∣∣
∣∣ ≤

(β − α)2
96

(
Nη+Mη

)
;

(9)
4. for λ = 1, we have a trapezoid type inequality:

∣∣∣∣
1

β − α
∫ β

α

G(x) dx − G(α)+G(β)
2

∣∣∣∣ ≤
(β − α)2

24

(
Nη +Mη

)
. (10)

Follows the second main result of our paper.

Theorem 10 Let I ⊂ [0,∞) and G : [α, β] ⊂ I → R be a twice differentiable
function on (α, β) with α < β. If |G′′|q , q ≥ 1, is η-quasiconvex on [α, β] and η
bounded from above on |G′′|q([α, β])× |G′′|q([α, β]), then the inequality
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1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2
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≤

⎧
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⎪⎩

(β−α)2
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(
8λ3−3λ+1

3

)
U

1
q
q,η, if 0 ≤ λ ≤ 1

2 ,

(β−α)2
8

(
3λ−1

3

)
U

1
q
q,η, if 1

2 ≤ λ ≤ 1,

holds, where
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Uq,η := max
{∣∣G′′(β)

∣∣q ,
∣∣G′′(β)

∣∣q + η (∣∣G′′ (α)∣∣q , ∣∣G′′(β)∣∣q)}.

Proof Since |G′′|q is η-quasiconvex on [α, β], the inequality
∣∣G′′ (xα + (1− x)β)∣∣q ≤ Uq,η (11)

holds for x ∈ [0, 1]. From the definition of p(x) given by (1), we observe that for
0 ≤ λ ≤ 1

2 one has
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Also, for 1

2 ≤ λ ≤ 1, we get

∫ 1

0
|p(x)| dx =

∫ 1
2

0

∣
∣∣
1

2
x(x − λ)

∣
∣∣ dx +

∫ 1

1
2

∣
∣∣
1

2
(1− x)(1− λ− x)

∣
∣∣ dx

= 1

2

[ ∫ 1
2

0
x(λ− x) dx +

∫ 1

1
2

(1− x)(λ+ x − 1) dx

]

= 3λ− 1

24
.

(13)

Now, using Lemma 6, the Hölder inequality and (11), we obtain that
∣∣∣∣

1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

∣∣∣∣

≤ (β − α)2
∫ 1

0
|p(x)|

∣∣
∣G′′(xα + (1− x)β)

∣∣
∣ dx

≤ (β − α)2
(∫ 1

0
|p(x)| dx

)1− 1
q
(∫ 1

0
|p(x)|

∣
∣∣G′′(xα + (1− x)β)

∣
∣∣
q

dx

) 1
q

≤ (β − α)2U
1
q
q,η

∫ 1

0
|p(x)| dx.

We get the intended result by using (12) and (13).



New Inequalities for η-Quasiconvex Functions 431

Corollary 11 Let I ⊂ [0,∞) and G : [α, β] ⊂ I → R be a twice differentiable
function on (α, β) with α < β. If |G′′| is η-quasiconvex on [α, β] and η bounded
from above on |G′′|([α, β])× |G′′|([α, β]), then the inequality

∣
∣∣∣

1

β − α
∫ β

α

G(x) dx − (1− λ)G
(
α + β

2

)
− λG(α)+G(β)

2

∣
∣∣∣

≤
⎧
⎨

⎩

(β−α)2
8

(
8λ3−3λ+1

3

)
Uη, if 0 ≤ λ ≤ 1

2 ,

(β−α)2
8

(
3λ−1

3

)
Uη, if 1

2 ≤ λ ≤ 1,

holds, where

Uη := max
{∣∣G′′(β)

∣
∣,
∣
∣G′′(β)

∣
∣+ η (∣∣G′′ (α)∣∣, ∣∣G′′(β)∣∣)}.

Proof Let q = 1 in Theorem 10.

Remark 12 Choosing different values of λ ∈ [0, 1], we obtain, from Corollary 11,
the succeeding results:

1. for λ = 0, we get

∣∣∣∣
1

β − α
∫ β

α

G(x) dx −G
(
α + β

2

) ∣∣∣∣ ≤
(β − α)2

24
Uη; (14)

2. for λ = 1
3 , we obtain

∣∣∣∣
1

β − α
∫ β

α

G(x) dx − 2

3
G

(
α + β

2

)
− G(α)+G(β)

6

∣∣∣∣ ≤
(β − α)2

81
Uη;

(15)

3. for λ = 1
2 , we have

∣∣∣∣
1

β − α
∫ β

α

G(x) dx − 1

2
G

(
α + β

2

)
− G(α)+G(β)

4

∣∣∣∣ ≤
(β − α)2

48
Uη;

(16)

4. for λ = 1, we get

∣∣∣
∣

1

β − α
∫ β

α

G(x) dx − G(α)+G(β)
2

∣∣∣
∣ ≤

(β − α)2
12

Uη. (17)

Remark 13 Let 0 < α < β. By setting G(x) = ln x with x ∈ [α, β] and η(x, y) =
x − y in inequalities (14)–(17), one gets [7, Proposition 3].
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4 Application to Special Means

In this section, we apply our results to the following special means of arbitrary
positive numbers μ and ν with μ �= ν:

1. the arithmetic mean

A(μ, ν) = μ+ ν
2
;

2. the geometric mean

G(μ, ν) = √μν;

3. the harmonic mean

H(μ, ν) = 2μν

μ+ ν ;

4. the logarithmic mean

L(μ, ν) = ν − μ
ln ν − lnμ

;

5. the generalized log-mean

Lp(μ, ν) =
[
νp+1 − μp+1

(p + 1)(ν − μ)
] 1
p

, p �= −1, 0;

6. the identric mean

I (μ, ν) = 1

e

(
νν

μμ

) 1
ν−μ

.

We now state our findings in the following propositions.

Proposition 14 Let μ and ν be two positive numbers, μ < ν. The following
inequalities hold:

1.
∣
∣L2

2(μ, ν)− A2(μ, ν)
∣
∣ ≤ (ν − μ)2

12
;

2.
∣∣∣L2

2(μ, ν)− 2A2(μ,ν)+A(μ2,ν2)
3

∣∣∣ ≤ 2(ν − μ)2
81

;

3.
∣∣∣L2

2(μ, ν)− A2(μ,ν)+A(μ2,ν2)
2

∣∣∣ ≤ (ν − μ)2
24

;

4.
∣
∣L2

2(μ, ν)− A(μ2, ν2)
∣
∣ ≤ (ν − μ)2

6
.
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Proof The desired inequalities follow by employing (7)–(10) to functionG(x) = x2

defined on the interval [μ, ν]. In this case, |G′′(x)| = 2. By taking η(x, y) = x− y,
we easily see that |G′′(x)| is η−quasiconvex. Moreover, Mη = Nη = 2.

Proposition 15 Let μ and ν be two positive numbers, μ < ν. The following
inequalities hold:

1.
∣
∣A−1(μ, ν)− L−1(μ, ν)

∣
∣ ≤ (ν−μ)2

48

[
max

{
2
μ3 ,

16
(μ+ν)3

}
+max

{
2
ν3 ,

16
(μ+ν)3

} ]
;

2.
∣
∣∣ 2A−1(μ,ν)+H−1(μ,ν)

3 − L−1(μ, ν)

∣
∣∣ ≤ (ν−μ)2

162

[
max

{
2
μ3 ,

16
(μ+ν)3

}
+max

{
2
ν3 ,

16
(μ+ν)3

} ]
;

3.
∣
∣∣A

−1(μ,ν)+H−1(μ,ν)
2 − L−1(μ, ν)

∣
∣∣ ≤ (ν−μ)2

96

[
max

{
2
μ3 ,

16
(μ+ν)3

}
+max

{
2
ν3 ,

16
(μ+ν)3

} ]
;

4.
∣∣H−1(μ, ν)− L−1(μ, ν)

∣∣ ≤ (ν−μ)2
24

[
max

{
2
μ3 ,

16
(μ+ν)3

}
+max

{
2
ν3 ,

16
(μ+ν)3

} ]
.

Proof We apply inequalities (7)–(10) to the function G : [μ, ν] → R defined by
G(x) = 1

x
. For this, we observe that |G′′(x)| = 2

x3 is convex on [μ, ν] and so
η−quasiconvex with respect to η(x, y) = x − y.

We end with more four new inequalities.

Proposition 16 Let μ and ν be two positive numbers with μ < ν. Then the
following inequalities hold:

1. |lnA(μ, ν)− ln I (μ, ν)| ≤ (ν−μ)2
48

[
max

{
1
μ2 ,

4
(μ+ν)2

}
+max

{
1
ν2 ,

4
(μ+ν)2

} ]
;

2.
∣∣∣ 2 lnA(μ,ν)+lnG(μ,ν)

3 − ln I (μ, ν)
∣∣∣ ≤ (ν−μ)2

162

[
max

{
1
μ2 ,

4
(μ+ν)2

}
+max

{
1
ν2 ,

4
(μ+ν)2

} ]
;

3.
∣
∣
∣ lnA(μ,ν)+lnG(μ,ν)

2 − ln I (μ, ν)
∣
∣
∣ ≤ (ν−μ)2

96

[
max

{
1
μ2 ,

4
(μ+ν)2

}
+max

{
1
ν2 ,

4
(μ+ν)2

} ]
;

4. |lnG(μ, ν)− ln I (μ, ν)| ≤ (ν−μ)2
24

[
max

{
1
μ2 ,

4
(μ+ν)2

}
+max

{
1
ν2 ,

4
(μ+ν)2

} ]
.

Proof Result follows by applying (7)–(10) to the function G(x) = ln x, x ∈ [μ, ν],
taking η(x, y) = x − y and noting that |G′′(x)| = 1

x2 is η−quasiconvex.

5 Conclusion

We proved two main theorems that establish Ostrowski type inequalities in terms
of a parameter λ ∈ [0, 1]. By choosing λ = 0, 1/3, 1/2, 1, we deduced midpoint,
Simpson, midpoint-trapezoid, and trapezoid type inequalities, respectively. There-
after, we illustrated the importance of our results by applying them to special means
of positive real numbers.
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Local Fractional Inequalities

George A. Anastassiou

Abstract This research is about inequalities in a local fractional setting. The author
presents the following types of analytic local fractional inequalities: Opial, Hilbert-
Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, and Polya–
Ostrowski. The results are with respect to uniform and Lp norms, involving left and
right Riemann–Liouville fractional derivatives. We derive also several interesting
special cases.

1 Introduction

Several sources motivate us to write this work. The first one comes next. It is the
famous Opial inequality [13]:

∫ a

0

∣∣y′ (x) y (x)
∣∣ dx ≤ a

2

∫ a

0

∣∣y′ (x)
∣∣2 dx,

where y (x) is absolutely continuous function and y (0) = 0. The above inequality
is proved sharp.

The well-known Ostrowski [14] inequality also motivates this work and has as
follows:

∣∣∣
∣

1

b − a
∫ b

a

f (y) dy − f (x)
∣∣∣
∣ ≤

(
1

4
+
(
x − a+b

2

)2

(b − a)2
)

(b − a) ∥∥f ′∥∥∞ ,

where f ∈ C1 ([a, b]), x ∈ [a, b], and it is a sharp inequality.
Next Dρ∗af indicates the left Caputo fractional derivative of order ρ > 0,

anchored at a ∈ R, see [10, p. 50].
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The author in [7, pp. 82–83], proved the following left Caputo fractional Landau
inequality: Let 0 < ν ≤ 1, f ∈ AC2 ([0, b]) (i.e. f ′ ∈ AC ([0, b]), absolutely
continuous functions), ∀ b > 0. Suppose ‖f ‖∞,R+ < +∞, Dν+1

∗0 f ∈ L∞ (R+),
and

∥∥∥Dν+1∗a f

∥∥∥∞,[a,+∞) ≤
∥∥∥Dν+1

∗0 f

∥∥∥∞,R+
, ∀ a ≥ 0.

Then

∥
∥f ′
∥
∥∞,R+ ≤ (ν + 1)

(
2

ν

) ν
ν+1

(Γ (ν + 2))−
1
ν+1
(‖f ‖∞,R+

) ν
ν+1

(∥
∥
∥Dν+1

∗0 f

∥
∥
∥∞,R+

) 1
ν+1

,

that is
∥∥f ′
∥∥∞,R+ is finite.

The last inequality is another inspiration.
The author’s monographs [2–6, 8] motivate and support greatly this work too.
Under the point of view of local fractional differentiation the author examines

the broad area of analytic inequalities and produces a great variety of well-known
inequalities in the local fractional environment to all possible directions.

2 Background

We mention

Definition 1 ([11]) Let x, x′ ∈ [a, b], f ∈ C ([a, b]). The Riemann–Liouville
(R-L) fractional derivative of a function f of order q (0 < q < 1) is defined as

D
q
xf
(
x′
) =

{
D
q
x+f

(
x′
)
, x′ > x,

D
q
x−f

(
x′
)
, x′ < x

}
=

1

Γ (1− q)

{
d
dx′
∫ x′
x

(
x′ − t)−q f (t) dt, x′ > x,

− d
dx′
∫ x
x′
(
t − x′)−q f (t) dt, x′ < x,

(1)

the left and right R-L fractional derivatives, respectively.

We need

Definition 2 ([11, 12]) The local fractional derivative of order q (0 < q < 1) of a
function f ∈ C ([a, b]) is defined as

Dqf (x) = lim
x′→x

D
q
x

(
f
(
x′
)− f (x)) . (2)

More generally we define
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Definition 3 ([9]) Let N ∈ Z+, 0 < q < 1, the local fractional derivative of order
(N + q) of a function f ∈ CN ([a, b]) is defined by

DN+qf (x) = lim
x′→x

D
q
x

(

f
(
x′
)−

N∑

n=0

f (n) (x)

n!
(
x′ − x)n

)

. (3)

If N = 0, then Definition 3 collapses to Definition 2.
We need

Definition 4 (Related to Definition 3) Let f ∈ CN ([a, b]), N ∈ Z+. Set

F
(
x, x′ − x; q,N) := D

q
x

(

f
(
x′
)−

N∑

n=0

f (n) (x)

n!
(
x′ − x)n

)

. (4)

Let x′ − x := t , then x′ = x + t , and

F (x, t; q,N) = D
q
x

(

f (x + t)−
N∑

n=0

f (n) (x)

n! tn

)

. (5)

We make

Remark 1 Here x′, x ∈ [a, b], and a ≤ x + t ≤ b, equivalently a − x ≤ t ≤ b− x.
From a ≤ x ≤ b, we get a − x ≤ 0 ≤ b − x. We assume here that F (x, ·; q,N) ∈
C1 ([a − x, b − x]). Clearly, then it holds

DN+qf (x) = F (x, 0; q,N) , (6)

and DN+qf (x) exists in R.

We would need:

Theorem 1 ([9]) Let f ∈ CN ([a, b]), N ∈ Z+. Here x, x′ ∈ [a, b], and
F (x, ·; q,N) ∈ C1 ([a − x, b − x]). Then

f
(
x′
) =

N∑

n=0

f (n) (x)

n!
(
x′ − x)n + DN+qf (x)

Γ (q + 1)

∣
∣x′ − x∣∣q + (7)

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q,N)
dt

∣
∣(x′ − x)− t∣∣q dt.

Corollary 1 (To Theorem 1, N = 0) Let f ∈ C ([a, b]), x, x′ ∈ [a, b], and
F (x, ·; q, 0) ∈ C1 ([a − x, b − x]). Then
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f
(
x′
) = f (x)+ Dqf (x)

Γ (q + 1)

∣∣x′ − x∣∣q + (8)

1

Γ (q + 1)

∫ x′−x

0

dF (x, t; q, 0)

dt

∣∣(x′ − x)− t∣∣q dt.

3 Main Results

We make

Remark 2 Let f ∈ CN ([0, a]), N ∈ Z+, a > 0, x ∈ [0, a]; F (0, ·; q,N) ∈
C1 ([0, a]), 0 < q < 1. Then, by (7), we have

f (x) =
N∑

n=0

f (n) (0)

n! xn + DN+qf (0)
Γ (q + 1)

xq+ (9)

1

Γ (q + 1)

∫ x

0

dF (0, t; q,N)
dt

(x − t)q dt.

Assume that f (n) (0) = 0, n= 0, 1, . . . , N, and DN+qf (0) = 0(=F (0, 0; q,N)
= D

q

0f (0)).
Then

f (x) = 1

Γ (q + 1)

∫ x

0

dF (0, t; q,N)
dt

(x − t)q dt, (10)

∀ x ∈ [0, a] .
Here it is

F (0, t; q,N) = D
q

0 (f (t)) ∈ C1 ([0, a]) ,

where Dq

0 is the left Riemann–Liouville fractional derivative.
We have that

|f (x)| ≤ 1

Γ (q + 1)

∫ x

0

∣∣∣∣
dF (0, t; q,N)

dt

∣∣∣∣ (x − t)q dt (11)

≤ aq

Γ (q + 1)

∫ x

0

∣∣
∣∣
dF (0, t; q,N)

dt

∣∣
∣∣ dt,

∀ x ∈ [0, a] .
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Consider the function

z (x) := aq

Γ (q + 1)

∫ x

0

∣
∣∣∣
dF (0, t; q,N)

dt

∣
∣∣∣ dt, (12)

∀ x ∈ [0, a]; z (0) = 0. Then

z′ (x) = aq

Γ (q + 1)

∣
∣∣∣
dF (0, x; q,N)

dx

∣
∣∣∣ . (13)

Notice that |f (x)| ≤ z (x), ∀ x ∈ [0, a], and we have:

2
∫ a

0

aq

Γ (q + 1)

∣∣∣
∣
dF (0, x; q,N)

dx

∣∣∣
∣ |f (x)| dx ≤

2
∫ a

0
z′ (x) z (x) dx = z2 (a) . (14)

By Cauchy–Schwarz inequality we get:

z2 (a) =
(∫ a

0
z′ (x) dx

)2

≤
(∫ a

0
1dx

)(∫ a

0

(
z′ (x)

)2
dx

)

= a

∫ a

0

(
aq

Γ (q + 1)

)2 (
dF (0, x; q,N)

dx

)2

dx. (15)

That is, it holds

2aq

Γ (q + 1)

∫ a

0

∣∣∣∣
dF (0, x; q,N)

dx

∣∣∣∣ |f (x)| dx ≤

a

(
aq

Γ (q + 1)

)2 ∫ a

0

(
dF (0, x; q,N)

dx

)2

dx. (16)

We have proved that

∫ a

0
|f (x)|

∣∣∣∣
dF (0, x; q,N)

dx

∣∣∣∣ dx ≤
aq+1

2Γ (q + 1)

∫ a

0

(
dF (0, x; q,N)

dx

)2

dx,

(17)
an Opial type inequality.

Equivalently we have proved:

Theorem 2 Let f ∈ CN ([0, a]), N ∈ Z+, a > 0, 0 < q < 1, Dq

0f ∈ C1 ([0, a]),
and f (n) (0) = 0, n = 0, 1, . . . , N, and DN+qf (0) = 0. Then
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∫ a

0
|f (x)|

∣∣∣∣
d

dx

(
D
q

0f (x)
)
∣∣∣∣ dx ≤

aq+1

2Γ (q + 1)

∫ a

0

(
d

dx

(
D
q

0f (x)
))2

dx,

(18)
above Dq

0 is the left Riemann–Liouville fractional derivative.

Inequality (18) is a local fractional Opial type inequality.

Corollary 2 Let f ∈ C ([0, a]), a > 0, 0 < q < 1, Dq

0f ∈ C1 ([0, a]), and
f (0) = Dqf (0) = 0. Then

∫ a

0
|f (x)|

∣∣∣∣
d

dx

(
D
q

0f (x)
)
∣∣∣∣ dx ≤

aq+1

2Γ (q + 1)

∫ a

0

(
d

dx

(
D
q

0f (x)
))2

dx. (19)

Proof Similar to Theorem 2.

We make

Remark 3 Here all as in Remark 2. Let p1, q1 > 1 : 1
p1
+ 1

q1
= 1. Then it holds

f (x) = 1

Γ (q + 1)

∫ x

0

dF (0, t; q,N)
dt

(x − t)q dt, (20)

∀ x ∈ [0, a] .
Let 0 ≤ w ≤ x, then we have

f (w) = 1

Γ (q + 1)

∫ w

0

dF (0, t; q,N)
dt

(w − t)q dt. (21)

Hence we derive

|f (w)| ≤ 1

Γ (q + 1)

∫ w

0

∣∣
∣∣
dF (0, t; q,N)

dt

∣∣
∣∣ (w − t)q dt (22)

≤ 1

Γ (q + 1)

(∫ w

0
(w − t)qp1 dt

) 1
p1
(∫ w

0

∣∣∣∣
dF (0, t; q,N)

dt

∣∣∣∣

q1

dt

) 1
q1

= 1

Γ (q + 1)

(
wqp1+1

qp1 + 1

) 1
p1
(∫ w

0

∣
∣∣∣
dF (0, t; q,N)

dt

∣
∣∣∣

q1

dt

) 1
q1

= 1

Γ (q + 1)

⎛

⎝ w
q+ 1

p1

(qp1 + 1)
1
p1

⎞

⎠ (z (w))
1
q1 , (23)

where
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z (w) :=
∫ w

0

∣∣∣∣
dF (0, t; q,N)

dt

∣∣∣∣

q1

dt, (24)

all 0 ≤ w ≤ x, z (0) = 0.
Thus

z′ (w) =
∣∣∣
∣
dF (0, w; q,N)

dw

∣∣∣
∣

q1

, (25)

and
∣∣
∣∣
dF (0, w; q,N)

dw

∣∣
∣∣ =

(
z′ (w)

) 1
q1 . (26)

Therefore we obtain

|f (w)|
∣∣
∣∣
dF (0, w; q,N)

dw

∣∣
∣∣ ≤

w
q+ 1

p1

Γ (q + 1) (qp1 + 1)
1
p1

(
z (w) z′ (w)

) 1
q1 . (27)

Hence it holds

∫ x

0
|f (w)|

∣∣∣∣
dF (0, w; q,N)

dw

∣∣∣∣ dw ≤

1

Γ (q + 1) (qp1 + 1)
1
p1

∫ x

0
w

qp1+1
p1
(
z (w) z′ (w)

) 1
q1 dw ≤ (28)

1

Γ (q + 1) (qp1 + 1)
1
p1

(∫ x

0
wqp1+1dw

) 1
p1
(∫ x

0
z (w) z′ (w) dw

) 1
q1 =

1

Γ (q + 1) (qp1 + 1)
1
p1

(
xqp1+2

qp1 + 2

) 1
p1
(∫ x

0
z (w) dz (w)

) 1
q1 =

x
q+ 2

p1

Γ (q + 1) [(qp1 + 1) (qp1 + 2)]
1
p1

(
z2 (x)

2

) 1
q1 =

x
q+ 2

p1

2
1
q1 Γ (q + 1) [(qp1 + 1) (qp1 + 2)]

1
p1

(∫ x

0

∣∣∣∣
dF (0, t; q,N)

dt

∣∣∣∣

q1

dt

) 2
q1
. (29)

We have proved an Lp-Opial type local fractional inequality:
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Theorem 3 Let p1, q1 > 1 : 1
p1
+ 1

q1
= 1; f ∈ CN ([0, a]), N ∈ Z+,

a > 0; F (0, ·; q,N) ∈ C1 ([0, a]), 0 < q < 1. Assume that f (n) (0) = 0,
n = 0, 1, . . . , N, and DN+qf (0) = 0 (i.e. F (0, 0; q,N) = D

q

0f (0) = 0).
[Here it is F (0, t; q,N) = D

q

0 (f (t)) ∈ C1 ([0, a]), where Dq

0 is the left
Riemann–Liouville fractional derivative.]

Then

∫ x

0
|f (w)|

∣∣∣∣
dF (0, w; q,N)

dw

∣∣∣∣ dw ≤ (30)

x
q+ 2

p1

2
1
q1 Γ (q + 1) [(qp1 + 1) (qp1 + 2)]

1
p1

(∫ x

0

∣∣∣∣
dF (0, w; q,N)

dw

∣∣∣∣

q1

dw

) 2
q1
,

∀ x ∈ [0, a] .
⇔ it holds

∫ x

0
|f (w)|

∣∣∣∣∣
dD

q

0f (w)

dw

∣∣∣∣∣
dw ≤

x
q+ 2

p1

2
1
q1 Γ (q + 1) [(qp1 + 1) (qp1 + 2)]

1
p1

(∫ x

0

∣∣∣
∣∣
dD

q

0f (w)

dw

∣∣∣
∣∣

q1

dw

) 2
q1

, (31)

∀ x ∈ [0, a] .

We make

Remark 4 Here all as in Remark 2 for f1, f2. Let i = 1, 2, then

fi (xi) = 1

Γ (q + 1)

∫ xi

0

dFi (0, ti; q,N)
dti

(xi − ti )q dti , (32)

∀ xi ∈ [0, ai] .
Hence it holds

|fi (xi)| ≤ 1

Γ (q + 1)

∫ xi

0

∣∣
∣∣
dFi (0, ti; q,N)

dti

∣∣
∣∣ (xi − ti )q dti . (33)

Let p1, q1 > 1 : 1
p1
+ 1

q1
= 1. We get by Hölder’s inequality:

|f1 (x1)| ≤ 1

Γ (q + 1)

(∫ x1

0
(x1 − t1)qp1 dt1

) 1
p1 ·
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(∫ x1

0

∣∣∣
∣
dF1 (0, t1; q,N)

dt1

∣∣∣
∣

q1

dt1

) 1
q1 ≤ (34)

1

Γ (q + 1)

x

qp1+1
p1

1

(qp1 + 1)
1
p1

∥
∥∥∥
dF1 (0, t1; q,N)

dt1

∥
∥∥∥
q1,[0,a1]

,

∀ x1 ∈ [0, a1] .
Similarly, we obtain

|f2 (x2)| ≤ 1

Γ (q + 1)

x

qq1+1
q1

2

(qq1 + 1)
1
q1

∥
∥∥∥
dF2 (0, t2; q,N)

dt2

∥
∥∥∥
p1,[0,a2]

. (35)

Therefore we have

|f1 (x1)| |f2 (x2)| ≤ 1

(Γ (q + 1))2 (qp1 + 1)
1
p1 (qq1 + 1)

1
q1

·

x

qp1+1
p1

1 x

qq1+1
q1

2

∥∥∥∥
dF1 (0, t1; q,N)

dt1

∥∥∥∥
q1,[0,a1]

∥∥∥∥
dF2 (0, t2; q,N)

dt2

∥∥∥∥
p1,[0,a2]

≤ (36)

(using Young’s inequality for a, b ≥ 0, a
1
p1 b

1
q1 ≤ a

p1
+ b

q1
)

1

(Γ (q + 1))2 (qp1 + 1)
1
p1 (qq1 + 1)

1
q1

[
x
qp1+1
1

p1
+ x

qq1+1
2

q1

]

·

∥∥∥
∥
dF1 (0, t1; q,N)

dt1

∥∥∥
∥
q1,[0,a1]

∥∥∥
∥
dF2 (0, t2; q,N)

dt2

∥∥∥
∥
p1,[0,a2]

,

∀ xi ∈ [0, ai]; i = 1, 2.
So far we have established

|f1 (x1)| |f2 (x2)|[
x
qp1+1
1
p1

+ x
qq1+1
2
q1

] ≤ 1

(Γ (q + 1))2 (qp1 + 1)
1
p1 (qq1 + 1)

1
q1

· (37)

∥∥
∥∥
dF1 (0, t1; q,N)

dt1

∥∥
∥∥
q1,[0,a1]

∥∥
∥∥
dF2 (0, t2; q,N)

dt2

∥∥
∥∥
p1,[0,a2]

,

∀ xi ∈ [0, ai]; i = 1, 2.
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The denominator of left-hand side (37) can be zero only when x1 = 0 and x2 = 0.
By integrating (37) over [0, a1]× [0, a2] we get
∫ a1

0

∫ a2

0

|f1 (x1)| |f2 (x2)| dx1dx2[
x
qp1+1
1
p1

+ x
qq1+1
2
q1

] ≤ a1a2

(Γ (q + 1))2 (qp1 + 1)
1
p1 (qq1 + 1)

1
q1

·

(38)∥∥∥
∥
dF1 (0, t1; q,N)

dt1

∥∥∥
∥
q1,[0,a1]

∥∥∥
∥
dF2 (0, t2; q,N)

dt2

∥∥∥
∥
p1,[0,a2]

.

We have proved the following local fractional Hilbert-Pachpatte inequality:

Theorem 4 Let p1, q1 > 1 : 1
p1
+ 1

q1
= 1; i = 1, 2 for fi ∈ CN ([0, ai]), N ∈ Z+,

ai > 0; Fi (0, ·; q,N) ∈ C1 ([0, ai]), 0 < q < 1. Assume that f (n)i (0) = 0, n =
0, 1, . . . , N , and DN+qfi (0) = 0, i = 1, 2 (i.e. Fi (0, 0; q,N) = D

q

0fi (0) = 0).
[Here it is Fi (0, ti; q,N) = D

q

0 (fi (ti)) ∈ C1 ([0, ai]), where Dq

0 is the left
Riemann–Liouville fractional derivative]

Then
∫ a1

0

∫ a2

0

|f1 (x1)| |f2 (x2)| dx1dx2[
x
qp1+1
1
p1

+ x
qq1+1
2
q1

] ≤ a1a2

(Γ (q + 1))2 (qp1 + 1)
1
p1 (qq1 + 1)

1
q1

·

(39)∥
∥∥∥
dF1 (0, t1; q,N)

dt1

∥
∥∥∥
q1,[0,a1]

∥
∥∥∥
dF2 (0, t2; q,N)

dt2

∥
∥∥∥
p1,[0,a2]

.

⇔ it holds
∫ a1

0

∫ a2

0

|f1 (x1)| |f2 (x2)| dx1dx2[
x
qp1+1
1
p1

+ x
qq1+1
2
q1

] ≤ a1a2

(Γ (q + 1))2 (qp1 + 1)
1
p1 (qq1 + 1)

1
q1

·

(40)∥∥
∥∥
d

dt1
D
q

0 (f1 (t1))

∥∥
∥∥
q1,[0,a1]

∥∥
∥∥
d

dt2
D
q

0 (f2 (t2))

∥∥
∥∥
p1,[0,a2]

.

We need

Remark 5 Here f ∈ CN ([a, b]), x, x′ ∈ [a, b], 0 < q < 1, N ∈ Z+, and

D
q
x±
(
f (·)−

N∑

n=0

f (n)(x)
n! (· − x)n

)
∈ L∞ (a, b).

By [1] we obtain:

(i) if x′ > x, then

f
(
x′
)−

N∑

n=0

f (n) (x)

n!
(
x′ − x)n = (41)
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1

Γ (q)

∫ x′

x

(
x′ − z)q−1

D
q
x+

(

f (z)−
N∑

n=0

f (n) (x)

n! (z− x)n
)

dz,

(ii) if x′ < x, then

f
(
x′
)−

N∑

n=0

f (n) (x)

n!
(
x′ − x)n = (42)

1

Γ (q)

∫ x

x′

(
z− x′)q−1

D
q
x−

(

f (z)−
N∑

n=0

f (n) (x)

n! (z− x)n
)

dz.

By Proposition 15.114, [3, p. 388], indeed we have that the functions in x′ of the
right-hand sides of (41) and (42) are continuous.

When N = 0, we derive

(i) if x′ > x, then

f
(
x′
)− f (x) = 1

Γ (q)

∫ x′

x

(
x′ − z)q−1

D
q
x+ (f (z)− f (x)) dz, (43)

(ii) if x′ < x, then

f
(
x′
)− f (x) = 1

Γ (q)

∫ x

x′

(
z− x′)q−1

D
q
x− (f (z)− f (x)) dz. (44)

For x′ > x we get

∣∣f
(
x′
)− f (x)∣∣ ≤ ∥∥Dq

x+ (f (·)− f (x))
∥∥∞,[x,b]

(
x′ − x)q
Γ (q + 1)

, (45)

and for x′ < x we find that

∣
∣f
(
x′
)− f (x)∣∣ ≤ ∥∥Dq

x− (f (·)− f (x))
∥
∥∞,[a,x]

(
x − x′)q
Γ (q + 1)

. (46)

We have that

1

b − a
∫ b

a

f
(
x′
)
dx′ − f (x) = 1

b − a
∫ b

a

(
f
(
x′
)− f (x)) dx′ =

1

b − a
[∫ x

a

(
f
(
x′
)− f (x)) dx′ +

∫ b

x

(
f
(
x′
)− f (x)) dx′

]
. (47)
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Hence it holds

∣∣∣∣
1

b − a
∫ b

a

f
(
x′
)
dx′ − f (x)

∣∣∣∣ ≤

1

b − a
[∫ x

a

∣∣f
(
x′
)− f (x)∣∣ dx′ +

∫ b

x

∣∣f
(
x′
)− f (x)∣∣ dx′

]
≤

(by (45) and (46))

1

b − a

[∥∥Dq
x− (f (·)− f (x))

∥∥∞,[a,x]

Γ (q + 1)

∫ x

a

(
x − x′)q dx′+

∥∥Dq
x+ (f (·)− f (x))

∥∥∞,[x,b]

Γ (q + 1)

∫ b

x

(
x′ − x)q dx′

]

= (48)

1

(b − a) Γ (q + 2)

[
(x − a)q+1

∥∥Dq
x− (f (·)− f (x))

∥∥∞,[a,x]+

(b − x)q+1
∥
∥Dq

x+ (f (·)− f (x))
∥
∥∞,[x,b]

]
.

We have proved a local fractional∞-Ostrowski inequality:

Theorem 5 Let f ∈ C ([a, b]), x ∈ [a, b], 0 < q < 1, and Dq
x+ (f (·)− f (x)) ∈

L∞ ([x, b]), Dq
x− (f (·)− f (x)) ∈ L∞ ([a, x]). Then

∣∣
∣∣

1

b − a
∫ b

a

f
(
x′
)
dx′ − f (x)

∣∣
∣∣ ≤

1

(b − a) Γ (q + 2)

[
(b − x)q+1

∥∥Dq
x+ (f (·)− f (x))

∥∥∞,[x,b]+

(x − a)q+1
∥∥Dq

x− (f (·)− f (x))
∥∥∞,[a,x]

]
. (49)

We make

Remark 6 Here p1, q1 > 1 : 1
p1
+ 1

q1
= 1, with 1

q1
< q < 1, f ∈ C ([a, b]),

x ∈ [a, b], Dq
x+ (f (·)− f (x)) ∈ Lq1 ([x, b]), Dq

x− (f (·)− f (x)) ∈ Lq1 ([a, x]) .
Notice here that q > 1

q1
⇔ (q − 1) p1 + 1 > 0.

If x′ > x, then

∣∣f
(
x′
)− f (x)∣∣ ≤ 1

Γ (q)

∫ x′

x

(
x′ − z)q−1 ∣∣Dq

x+ (f (z)− f (x))
∣∣ dz ≤
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1

Γ (q)

(∫ x′

x

(
x′ − z)(q−1)p1 dz

) 1
p1 ∥∥Dq

x+ (f (·)− f (x))
∥∥
q1,[x,b] =

1

Γ (q)

(
x′ − x)

(q−1)p1+1
p1

((q − 1) p1 + 1)
1
p1

∥
∥Dq

x+ (f (·)− f (x))
∥
∥
q1,[x,b] . (50)

Thus

∣
∣f
(
x′
)− f (x)∣∣ ≤

(
x′ − x)

(q−1)p1+1
p1

Γ (q) ((q − 1) p1 + 1)
1
p1

∥
∥Dq

x+ (f (·)− f (x))
∥
∥
q1,[x,b] ,

(51)
∀ x′ ∈ [x, b], and 1

q1
< q < 1.

Similarly, if x′ < x, then

∣∣f
(
x′
)− f (x)∣∣ ≤ 1

Γ (q)

∫ x

x′

(
z− x′)q−1 ∣∣Dq

x− (f (z)− f (x))
∣∣ dz ≤

1

Γ (q)

(∫ x

x′

(
z− x′)(q−1)p1 dz

) 1
p1 ∥∥Dq

x− (f (·)− f (x))
∥∥
q1,[a,x] =

1

Γ (q)

(
x − x′)

(q−1)p1+1
p1

((q − 1) p1 + 1)
1
p1

∥∥Dq
x− (f (·)− f (x))

∥∥
q1,[a,x] . (52)

Thus it holds

∣∣f
(
x′
)− f (x)∣∣ ≤

(
x − x′)

(q−1)p1+1
p1

Γ (q) ((q − 1) p1 + 1)
1
p1

∥∥Dq
x− (f (·)− f (x))

∥∥
q1,[a,x] ,

(53)
∀ x′ ∈ [a, x], and 1

q1
< q < 1.

Consequently, we derive

∣∣∣∣
1

b − a
∫ b

a

f
(
x′
)
dx′ − f (x)

∣∣∣∣ ≤

1

b − a
[∫ x

a

∣∣f
(
x′
)− f (x)∣∣ dx′ +

∫ b

x

∣∣f
(
x′
)− f (x)∣∣ dx′

]
≤

1

(b − a)

[∥∥Dq
x− (f (·)− f (x))

∥∥
q1,[a,x]

Γ (q) ((q − 1) p1 + 1)
1
p1

(∫ x

a

(
x − x′)(q−1)+ 1

p1 dx′
)
+ (54)
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∥∥Dq
x+ (f (·)− f (x))

∥∥
q1,[x,b]

Γ (q) ((q − 1) p1 + 1)
1
p1

(∫ b

x

(
x′ − x)(q−1)+ 1

p1 dx′
)]

=

1

(b − a) Γ (q) ((q − 1) p1 + 1)
1
p1

·

⎡

⎣
∥
∥Dq

x− (f (·)− f (x))
∥
∥
q1,[a,x]

(x − a)q+ 1
p1

(
q + 1

p1

) + ∥∥Dq
x+ (f (·)− f (x))

∥
∥
q1,[x,b]

(b − x)q+ 1
p1

(
q + 1

p1

)

⎤

⎦ .

We have proved the following Lp-Ostrowski type local fractional inequality:

Theorem 6 Let p1, q1 > 1 : 1
p1
+ 1

q1
= 1, with 1

q1
< q < 1, f ∈ C ([a, b]),

x ∈ [a, b], Dq
x+ (f (·)− f (x)) ∈ Lq1 ([x, b]), Dq

x− (f (·)− f (x)) ∈ Lq1 ([a, x]) .
Then

∣∣∣
∣

1

b − a
∫ b

a

f
(
x′
)
dx′ − f (x)

∣∣∣
∣ ≤

1

(b − a) Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

) ·

(55)[
(b − x)q+ 1

p1
∥∥Dq

x+ (f (·)− f (x))
∥∥
q1,[x,b] + (x − a)

q+ 1
p1
∥∥Dq

x− (f (·)− f (x))
∥∥
q1,[a,x]

]
.

Corollary 3 Here f ∈ C ([a, b]), x ∈ [a, b], Dq
x+ (f (·)− f (x)) ∈ L2 ([x, b]),

D
q
x− (f (·)− f (x)) ∈ L2 ([a, x]), 1

2 < q < 1. Then

∣∣∣
∣

1

b − a
∫ b

a

f
(
x′
)
dx′ − f (x)

∣∣∣
∣ ≤

1

(b − a) Γ (q)√((q − 1) 2+ 1)
(
q + 1

2

) ·

(56)[
(b − x)q+ 1

2
∥
∥Dq

x+ (f (·)− f (x))
∥
∥

2,[x,b] + (x − a)q+
1
2
∥
∥Dq

x− (f (·)− f (x))
∥
∥

2,[a,x]

]
.

We make

Remark 7 Here we will discuss the related comparison of means.
Let f ∈ CN ([0, a]), N ∈ Z+, a > 0, x ∈ [0, a]; F (0, ·; q,N) ∈ C1 ([0, a]),

0 < q < 1. Then

f (x) =
N∑

n=0

f (n) (0)

n! xn + DN+qf (0)
Γ (q + 1)

xq+ (57)

1

Γ (q + 1)

∫ x

0

dF (0, t; q,N)
dt

(x − t)q dt.



Local Fractional Inequalities 449

Assume that f (n) (0) = 0, n = 0, 1, . . . , N. Here DN+qf (0) = F (0, 0; q,N) =(
D
q

0f
)
(0), where Dq

0 is the left Riemann–Liouville fractional derivative.
So far we have

f (x) =
(
D
q

0f
)
(0)

Γ (q + 1)
xq + R (x) , (58)

where

R (x) := 1

Γ (q + 1)

∫ x

0

(
d

dt
D
q

0f (t)

)
(x − t)q dt. (59)

We also assume that Dq

0f ∈ C1 ([0, a]).
We notice that

|R (x)| ≤ 1

Γ (q + 1)

∥∥∥∥
d

dt
D
q

0f

∥∥∥∥∞,[0,a]

∫ x

0
(x − t)q dt

= xq+1

Γ (q + 2)

∥
∥∥∥
d

dt
D
q

0f

∥
∥∥∥∞,[0,a]

. (60)

That is,

|R (x)| ≤ xq+1

Γ (q + 2)

∥∥∥
∥
d

dt
D
q

0f

∥∥∥
∥∞,[0,a]

, (61)

∀ x ∈ [0, a] .
Hence, it holds

∫ a

0
f (x) dx −

(
D
q

0f
)
(0)

Γ (q + 1)

∫ a

0
xqdx =

∫ a

0
R (x) dx, (62)

equivalently,

∫ a

0
f (x) dx −

(
D
q

0f
)
(0)

Γ (q + 1)

(
xq+1

q + 1
|a0
)
=
∫ a

0
R (x) dx, (63)

equivalently,

∫ a

0
f (x) dx −

(
D
q

0f
)
(0)

Γ (q + 2)
aq+1 =

∫ a

0
R (x) dx. (64)
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Therefore, we find

∣∣∣∣
∣

∫ a

0
f (x) dx −

(
D
q

0f
)
(0)

Γ (q + 2)
aq+1

∣∣∣∣
∣
≤
∥
∥ d
dt
D
q

0f
∥
∥∞,[0,a]

Γ (q + 2)

∫ a

0
xq+1dx =

∥∥ d
dt
D
q

0f
∥∥∞,[0,a]

Γ (q + 2)

aq+2

q + 2
=
∥∥ d
dt
D
q

0f
∥∥∞,[0,a]

Γ (q + 3)
aq+2. (65)

We have proved the following local fractional comparison of means result:

Theorem 7 Let f ∈ CN ([0, a]), N ∈ Z+, a > 0, F (0, ·; q,N) ∈ C1 ([0, a]), 0 <
q < 1. Assume that f (n) (0) = 0, n = 0, 1, . . . , N; and that Dq

0f ∈ C1 ([0, a]) .
Then

∣∣∣∣∣

∫ a

0
f (x) dx −

(
D
q

0f
)
(0)

Γ (q + 2)
aq+1

∣∣∣∣∣
≤ aq+2

Γ (q + 3)

∥∥∥∥
d

dt
D
q

0f

∥∥∥∥∞,[0,a]
, (66)

⇔
∣
∣∣∣∣
1

a

∫ a

0
f (x) dx −

(
D
q

0f
)
(0)

Γ (q + 2)
aq

∣
∣∣∣∣
≤ aq+1

Γ (q + 3)

∥
∥∥∥
d

dt
D
q

0f

∥
∥∥∥∞,[0,a]

. (67)

We make

Remark 8 Here we discuss the related Poincare inequalities. All assumptions are as
in Theorem 7, plus DN+qf (0) = 0.

Hence we have

f (x) = 1

Γ (q + 1)

∫ x

0

dF (0, t; q,N)
dt

(x − t)q dt, (68)

∀ x ∈ [0, a] .
Let p1, q1 > 1 : 1

p1
+ 1

q1
= 1. Then

|f (x)| ≤ 1

Γ (q + 1)

∫ x

0

∣
∣∣∣
dF (0, t; q,N)

dt

∣
∣∣∣ (x − t)q dt ≤ (69)

1

Γ (q + 1)

(∫ x

0
(x − t)qp1 dt

) 1
p1
(∫ x

0

∣∣∣∣
dF (0, t; q,N)

dt

∣∣∣∣

q1

dt

) 1
q1 ≤

1

Γ (q + 1)

x
qp1+1
p1

(qp1 + 1)
1
p1

∥∥∥∥
dF (0, t; q,N)

dt

∥∥∥∥
q1,[0,a]

. (70)
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That is,

|f (x)| ≤ x
qp1+1
p1

Γ (q + 1) (qp1 + 1)
1
p1

∥∥∥∥
dF (0, t; q,N)

dt

∥∥∥∥
q1,[0,a]

,

∀ x ∈ [0, a] .
Thus

|f (x)|q1 ≤ xq1(q+1)−1

(
Γ (q + 1) (qp1 + 1)

1
p1

)q1

∥∥∥∥
dF (0, t; q,N)

dt

∥∥∥∥

q1

q1,[0,a]
. (71)

Therefore we have

∫ a

0
|f (x)|q1 dx ≤ aq1(q+1)

(
Γ (q + 1) (qp1 + 1)

1
p1

)q1

q1 (q + 1)

∥
∥
∥
∥
dF (0, t; q,N)

dt

∥
∥
∥
∥

q1

q1,[0,a]
.

(72)
That is,

‖f ‖q1,[0,a] ≤
a(q+1)

Γ (q + 1) (qp1 + 1)
1
p1 (q1 (q + 1))

1
q1

∥∥∥∥
dF (0, t; q,N)

dt

∥∥∥∥
q1,[0,a]

.

(73)

We have proved the following local fractional Poincare inequality:

Theorem 8 Let f ∈ CN ([0, a]), N ∈ Z+, a > 0, F (0, ·; q,N) ∈ C1 ([0, a]),
0 < q < 1; f (n) (0) = 0, n = 0, 1, . . . , N; DN+qf (0) = 0, Dq

0f ∈ C1 ([0, a]);
p1, q1 > 1 : 1

p1
+ 1

q1
= 1.

[we have F (0, t; q,N) = D
q

0f (t), where Dq

0 is the left Riemann–Liouville
fractional derivative.]

Then

‖f ‖q1,[0,a] ≤
aq+1

Γ (q + 1) (qp1 + 1)
1
p1 (q1 (q + 1))

1
q1

∥∥∥
(
D
q

0f
)′∥∥∥

q1,[0,a]
. (74)

Next comes the related local fractional Sobolev type inequality:

Theorem 9 All as in Theorem 8, plus r > 0. Then

‖f ‖r,[0,a] ≤
a
q+ 1

p1
+ 1
r

∥
∥∥
(
D
q

0f
)′∥∥∥

q1,[0,a]

Γ (q + 1) (qp1 + 1)
1
p1

(
r
(
q + 1

p1

)
+ 1
) 1
r

. (75)
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Proof By (70) we get:

|f (x)| ≤ x
q+ 1

p1

Γ (q + 1) (qp1 + 1)
1
p1

∥∥∥
(
D
q

0f
)′∥∥∥

q1,[0,a]
, (76)

∀ x ∈ [0, a] .
Hence

|f (x)|r ≤ x
r
(
q+ 1

p1

)

(
Γ (q + 1) (qp1 + 1)

1
p1

)r
∥∥∥
(
D
q

0f
)′∥∥∥

r

q1,[0,a]
. (77)

Consequently, it holds

∫ a

0
|f (x)|r dx ≤ a

r
(
q+ 1

p1

)
+1

(
Γ (q + 1) (qp1 + 1)

1
p1

)r (
r
(
q + 1

p1

)
+ 1
)
∥
∥∥
(
D
q

0f
)′∥∥∥

r

q1,[0,a]
.

(78)

We make

Remark 9 Let f ∈ C1 ([a, b]), 0 < q < 1, Dq
a+
(
f ′ (·)− f ′ (a)) ∈ L∞ ([a, b]).

Then, by Theorem 5, we get

∣∣∣∣
1

b − a
∫ b

a

f ′
(
x′
)
dx′ − f ′ (a)

∣∣∣∣ ≤
(b − a)q
Γ (q + 2)

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b],

(79)
⇔
∣∣∣∣

1

b − a (f (b)− f (a))− f
′ (a)

∣∣∣∣ ≤
(b − a)q
Γ (q + 2)

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b].

(80)
Hence it holds

∣∣f ′ (a)
∣∣− 1

b − a |f (b)− f (a)| ≤
(b − a)q
Γ (q + 2)

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b],

(81)
⇔
∣
∣f ′ (a)

∣
∣ ≤ |f (b)− f (a)|

b − a + (b − a)q
Γ (q + 2)

∥
∥Dq

a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b]. (82)
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Therefore

∣
∣f ′ (a)

∣
∣ ≤ 2 ‖f ‖∞,[a,b]

b − a + (b − a)q
Γ (q + 2)

∥
∥Dq

a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b] . (83)

Complete assumptions follow:
Assume here that f ∈ C1 ([A0,+∞)), where A0 ∈ R is fixed, 0 < q < 1, and

for every [a, b] ⊂ [A0,+∞) we have thatDq
a+
(
f ′ (·)− f ′ (a)) ∈ L∞ ([a, b]), and

that

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b] ≤

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)
<∞,

(84)
∀ a ≥ A0,

along with

‖f ‖∞,[A0,+∞) <∞. (85)

Therefore (by (83)) we have

∣∣f ′ (a)
∣∣ ≤ 2 ‖f ‖∞,[A0,+∞)

b − a + (b − a)q
Γ (q + 2)

∥
∥∥Dq

A0+
(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)
,

(86)
where the right-hand side of (86) depends only on (b − a) .

Calling t = b − a > 0; we can write

∥∥f ′
∥∥∞,[A0,+∞) ≤

2 ‖f ‖∞,[A0,+∞)
t

+ tq

Γ (q + 2)

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)
,

(87)
∀ t > 0.

Set

μ := 2 ‖f ‖∞,[A0,+∞)

and (88)

θ :=

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)
Γ (q + 2)

,

both are greater than zero.
We consider the function

y (t) = μ

t
+ θtq , 0 < q < 1, t > 0. (89)
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As in [7, pp. 81–82], y has a global minimum at

t0 =
(
μ

qθ

) 1
q+1

, (90)

which is

y (t0) =
(
θμq

) 1
q+1 (q + 1) q−

q
q+1. (91)

Consequently it is

y (t0) =
⎡

⎢
⎣

∥
∥∥Dq

A0+
(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)
Γ (q + 2)

(
2 ‖f ‖∞,[A0,+∞)

)q

⎤

⎥
⎦

1
q+1

(q + 1) q−
q
q+1.

(92)
We have proved that

∥∥f ′
∥∥∞,[A0,+∞) ≤ (q + 1)

(
2

q

) q
q+1

(Γ (q + 2))−
1
q+1 · (93)

(‖f ‖∞,[A0,+∞)
) q
q+1

(∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)

) 1
q+1

.

We have established a local left fractional Riemann–Liouville ∞-Landau
inequality:

Theorem 10 Assume here that f ∈ C1 ([A0,+∞)), where A0 ∈ R is fixed, 0 <
q < 1, and for every [a, b] ⊂ [A0,+∞) we have that Dq

a+
(
f ′ (·)− f ′ (a)) ∈

L∞ ([a, b]), and that

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b] ≤

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥∞,[A0,+∞)
<∞,

(94)
∀ a ≥ A0,

along with

‖f ‖∞,[A0,+∞) <∞. (95)

Then

∥
∥f ′
∥
∥∞,[A0,+∞) ≤ (q + 1)

(
2

q

) q
q+1

(Γ (q + 2))−
1
q+1 ·
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‖f ‖
q
q+1
∞,[A0,+∞)

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥
1
q+1

∞,[A0,+∞)
. (96)

If A0 = 0, we have

Corollary 4 Assume here that f ∈ C1 (R+), 0 < q < 1, and for any [a, b] ⊂ R+
we have that Dq

a+
(
f ′ (·)− f ′ (a)) ∈ L∞ ([a, b]), and that

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥∞,[a,b] ≤

∥∥Dq

0+
(
f ′ (·)− f ′ (0))∥∥∞,R+ <∞, (97)

∀ a ≥ 0,
along with

‖f ‖∞,R+ <∞. (98)

Then

∥
∥f ′
∥
∥∞,R+ ≤ (q + 1)

(
2

q

) q
q+1

(Γ (q + 2))−
1
q+1 ·

‖f ‖
q
q+1
∞,R+

∥
∥Dq

0+
(
f ′ (·)− f ′ (0))∥∥

1
q+1
∞,R+ . (99)

That is,

∥∥f ′
∥∥∞,R+ <∞.

It follows a local left fractional Riemann–Liouville Lp-Landau inequality:

Theorem 11 Let p1, q1 > 1 : 1
p1
+ 1

q1
= 1, 1

q1
< q < 1; f ∈ C1 ([A0,+∞)),

A0 ∈ R is fixed, ‖f ‖∞,[A0,+∞) < ∞; Dq
a+
(
f ′ (·)− f ′ (a)) ∈ Lq1 ([a, b]), ∀

[a, b] ⊆ [A0,+∞); and ∀ a ≥ A0 it holds

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥

q1,[a,b] ≤
∥
∥∥Dq

A0+
(
f ′ (·)− f ′ (A0)

)∥∥∥
q1,[A0,+∞)

< +∞.
(100)

Then

∥∥f ′
∥∥∞,[A0,+∞) ≤

⎛

⎝
2
(
q + 1

p1

)

q − 1
q1

⎞

⎠

q− 1
q1

q+ 1
p1 1

(Γ (q))

1
q+ 1

p1 ((q − 1) p1 + 1)
1

qp1+1

·

(101)

∥
∥∥Dq

A0+
(
f ′ (·)− f ′ (A0)

)∥∥∥
1

q+ 1
p1

q1,[A0,+∞)
(‖f ‖∞,[A0,+∞)

)
q− 1

q1
q+ 1

p1 .
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That is,

∥∥f ′
∥∥∞,[A0,+∞) < +∞.

The case A0 = 0 follows:

Corollary 5 Let p1, q1 > 1 : 1
p1
+ 1
q1
= 1, 1

q1
< q < 1; f ∈ C1 (R+), ‖f ‖∞,R+ <

+∞; Dq
a+
(
f ′ (·)− f ′ (a)) ∈ Lq1 ([a, b]), ∀ [a, b] ⊆ R+; and ∀ a ≥ 0 it holds

∥∥Dq
a+
(
f ′ (·)− f ′ (a))∥∥

q1,[a,b] ≤
∥∥Dq

0+
(
f ′ (·)− f ′ (0))∥∥

q1,R+ < +∞. (102)

Then

∥∥f ′
∥∥∞,R+ ≤

⎛

⎝
2
(
q + 1

p1

)

q − 1
q1

⎞

⎠

q− 1
q1

q+ 1
p1 1

(Γ (q))

1
q+ 1

p1 ((q − 1) p1 + 1)
1

qp1+1

· (103)

∥
∥Dq

0+
(
f ′ (·)− f ′ (0))∥∥

1
q+ 1

p1
q1,R+

(‖f ‖∞,R+
)
q− 1

q1
q+ 1

p1 .

That is,

∥∥f ′
∥∥∞,R+ < +∞.

Proof of Theorem 11 By Theorem 6 we get:

∣∣∣∣
1

b − a
∫ b

a

f ′
(
x′
)
dx′ − f ′ (a)

∣∣∣∣ ≤ (104)

(b − a)q− 1
q1

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)
∥∥Dq

a+
(
f ′ (·)− f ′ (a))∥∥

q1,[a,b] =: ρ.

That is,

∣∣∣∣
f (b)− f (a)

b − a − f ′ (a)
∣∣∣∣ ≤ ρ. (105)

Hence it holds

∣∣f ′ (a)
∣∣− 1

b − a |f (b)− f (a)| ≤ ρ, (106)
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equivalently,

∣∣f ′ (a)
∣∣ ≤ |f (b)− f (a)|

b − a + ρ ≤ 2 ‖f ‖∞,[A0,+∞)
b − a + ρ. (107)

So far we have derived

∣
∣f ′ (a)

∣
∣ ≤ 2 ‖f ‖∞,[A0,+∞)

b − a + (108)

(b − a)q− 1
q1

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)
∥∥
∥Dq

A0+
(
f ′ (·)− f ′ (A0)

)∥∥
∥
q1,[A0,+∞)

,

and the right-hand side of (108) depends only on b − a =: t > 0.
Therefore it holds

∥∥f ′
∥∥∞,[A0,+∞) ≤

2 ‖f ‖∞,[A0,+∞)
t

+ (109)

t
q− 1

q1

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)
∥∥∥Dq

A0+
(
f ′ (·)− f ′ (A0)

)∥∥∥
q1,[A0,+∞)

,

∀ t ∈ (0,∞) .
Notice that 0 < q − 1

q1
< 1. Call

μ̃ := 2 ‖f ‖∞,[A0,+∞) ,

and (110)

θ̃ :=

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥
q1,[A0,+∞)

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

) ,

both are positive,
and

ν̃ := q − 1

q1
∈ (0, 1) . (111)

We consider the function

ỹ (t) = μ̃

t
+ θ̃ t ν̃ , t ∈ (0,∞) . (112)
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The only critical number is

t̃0 =
(
μ̃

ν̃θ̃

) 1
ν̃+1

, (113)

and ỹ has a global minimum at t̃0, which is

ỹ
(
t̃0
) = (θ̃ μ̃ν̃)

1
ν̃+1 (̃ν + 1) ν̃−

ν̃
ν̃+1 . (114)

Consequently, we derive

ỹ
(
t̃0
) =

⎛

⎜
⎝

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥
q1,[A0,+∞)

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)

⎞

⎟
⎠

p1
qp1+1

·

2

q− 1
q1

q+ 1
p1
(‖f ‖∞,[A0,+∞)

)
q− 1

q1
q+ 1

p1

(
q + 1

p1

)(
q − 1

q1

)− q− 1
q1

q+ 1
p1 . (115)

We have proved that

∥∥f ′
∥∥∞,[A0,+∞) ≤

⎛

⎝
2
(
q + 1

p1

)

q − 1
q1

⎞

⎠

q− 1
q1

q+ 1
p1 1

(Γ (q))

1
q+ 1

p1 ((q − 1) p1 + 1)
1

qp1+1

·

∥∥∥Dq
A0+

(
f ′ (·)− f ′ (A0)

)∥∥∥
1

q+ 1
p1

q1,[A0,+∞)
(‖f ‖∞,[A0,+∞)

)
q− 1

q1
q+ 1

p1 . (116)

Next comes a local fractional Polya–Ostrowski type inequality:

Theorem 12 Let f ∈ C ([a, b]), 0 < q < 1, and assume that
D
q(
a+b

2

)
+
(
f (·)− f ( a+b2

)) ∈ L∞
([
a+b

2 , b
])

, Dq(
a+b

2

)
−
(
f (·)− f ( a+b2

)) ∈
L∞

([
a, a+b2

])
.

Set M (f ) := max

⎧
⎪⎨

⎪⎩

∥∥∥∥∥
D
q(
a+b

2

)
−
(
f (·)− f ( a+b2

))
∥∥∥∥∥∞,

[
a, a+b2

] ,

∥
∥∥∥∥
D
q(
a+b

2

)
+

(
f (·)− f

(
a + b

2

))∥∥∥∥∥∞,
[
a+b

2 ,b
]

⎫
⎪⎬

⎪⎭
.
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Then

∣∣∣
∣

∫ b

a

f
(
x′
)
dx′ − f

(
a + b

2

)
(b − a)

∣∣∣
∣ ≤

∫ b

a

∣∣
∣∣f
(
x′
)− f

(
a + b

2

)∣∣
∣∣ dx

′ ≤ M (f )
(b − a)q+1

Γ (q + 2) 2q
, (117)

⇔
∣∣∣
∣

1

b − a
∫ b

a

f
(
x′
)
dx′ − f

(
a + b

2

)∣∣∣
∣ ≤

1

b − a
∫ b

a

∣∣
∣∣f
(
x′
)− f

(
a + b

2

)∣∣
∣∣ dx

′ ≤ M (f )
(b − a)q

Γ (q + 2) 2q
. (118)

Corollary 6 All as in Theorem 12. Additionally assume that f
(
a+b

2

) = 0. Then

∫ b

a

∣
∣f
(
x′
)∣∣ dx′ ≤ M∗ (f ) (

b − a)q+1

Γ (q + 2) 2q
, (119)

where M∗ (f ) := max

⎧
⎪⎨

⎪⎩

∥∥∥
∥∥
D
q(
a+b

2

)
−f
∥∥∥
∥∥∞,

[
a, a+b2

] ,

∥∥∥
∥∥
D
q(
a+b

2

)
+f
∥∥∥
∥∥∞,

[
a+b

2 ,b
]

⎫
⎪⎬

⎪⎭
.

Proof of Theorem 12 We have

f
(
x′
)− f

(
a + b

2

)
=

1

Γ (q)

∫ x′

a+b
2

(
x′ − z)q−1

D
q(
a+b

2

)
+

(
f (z)− f

(
a + b

2

))
dz, (120)

all a+b2 ≤ x′ ≤ b,
and

f
(
x′
)− f

(
a + b

2

)
=

1

Γ (q)

∫ a+b
2

x′

(
z− x′)q−1

D
q(
a+b

2

)
−

(
f (z)− f

(
a + b

2

))
dz, (121)

all a ≤ x′ ≤ a+b
2 .
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Then it holds

∣∣∣∣

∫ b

a

(
f
(
x′
)− f

(
a + b

2

))
dx′
∣∣∣∣ ≤

∫ b

a

∣∣∣∣f
(
x′
)− f

(
a + b

2

)∣∣∣∣ dx
′ = (122)

∫ a+b
2

a

∣∣
∣∣f
(
x′
)− f

(
a + b

2

)∣∣
∣∣ dx

′ +
∫ b

a+b
2

∣∣
∣∣f
(
x′
)− f

(
a + b

2

)∣∣
∣∣ dx

′ =: (∗) .

Notice that
∣∣∣∣f
(
x′
)− f

(
a + b

2

)∣∣∣∣ ≤

1

Γ (q + 1)

∥∥
∥∥∥
D
q(
a+b

2

)
−

(
f (·)− f

(
a + b

2

))∥∥
∥∥∥∞,

[
a, a+b2

]

(
a + b

2
− x′

)q
,

(123)
all a ≤ x′ ≤ a+b

2 ,

and
∣∣∣∣f
(
x′
)− f

(
a + b

2

)∣∣∣∣ ≤

1

Γ (q + 1)

∥
∥∥∥∥
D
q(
a+b

2

)
+

(
f (·)− f

(
a + b

2

))∥∥∥∥∥∞,
[
a+b

2 ,b
]

(
x′ − a + b

2

)q
,

(124)
all a+b2 ≤ x′ ≤ b.

Therefore we have

(∗) ≤ 1

Γ (q + 1)

⎡

⎢
⎣

(∫ a+b
2

a

(
a + b

2
− x′

)q
dx′
)∥∥
∥∥
∥
D
q(
a+b

2

)
−

(
f (·)− f

(
a + b

2

))∥∥
∥∥
∥∞,

[
a, a+b2

]

(125)

+
(∫ b

a+b
2

(
x′ − a + b

2

)q
dx′
)∥∥∥∥
∥
D
q(
a+b

2

)
+

(
f (·)− f

(
a + b

2

))∥∥∥∥
∥∞,

[
a+b

2 ,b
]

⎤

⎥
⎦ ≤

M (f )

Γ (q + 1)

[(
a+b

2 − a)q+1

q + 1
+
(
b − a+b

2

)q+1

q + 1

]

=
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M (f )

Γ (q + 2)

[(
b − a

2

)q+1

+
(
b − a

2

)q+1
]

=

M (f )

2qΓ (q + 2)
(b − a)q+1 = M (f )

(b − a)q+1

Γ (q + 2) 2q
.

We make

Remark 10 Let f ∈ CN ([a, b]), N ∈ Z+. Here x, x′ ∈ [a, b] : x′ < x, and
F (x, ·; q,N) ∈ C1 ([a − x, b − x]), 0 < q < 1. By Theorem 1 we get

f
(
x′
) =

N∑

n=0

f (n) (x)

n!
(
x′ − x)n + DN+qf (x)

Γ (q + 1)

(
x − x′)q −

1

Γ (q + 1)

∫ 0

x′−x
dF (x, t; q,N)

dt

(
t − x′ + x)q dt. (127)

Clearly then we get:
Let f ∈ CN ([a, 0]), a < 0, N ∈ Z+, F (0, ·; q,N) ∈ C1 ([a, 0]), 0 < q < 1.

Then, for any x ∈ [a, 0], we derive

f (x) =
N∑

n=0

f (n) (0)

n! xn + DN+qf (0)
Γ (q + 1)

(−x)q −

1

Γ (q + 1)

∫ 0

x

dF (0, t; q,N)
dt

(t − x)q dt. (128)

One can go and act right fractionally, by using (128), and establish all corresponding
results of this work to this right fractional direction. We omit this task.

We make

Remark 11 Let f ∈ C1 ([a, b]), 0 < q < 1, Dq
b−
(
f ′ (·)− f ′ (b)) ∈ L∞ ([a, b]).

Then, by Theorem 5, we get

∣∣∣
∣

1

b − a
∫ b

a

f ′
(
x′
)
dx′ − f ′ (b)

∣∣∣
∣ ≤

(b − a)q
Γ (q + 2)

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

,

(129)
⇔
∣∣∣
∣

1

b − a (f (b)− f (a))− f
′ (b)

∣∣∣
∣ ≤

(b − a)q
Γ (q + 2)

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

.

(130)
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Hence it holds

∣∣f ′ (b)
∣∣− 1

b − a |f (b)− f (a)| ≤
(b − a)q
Γ (q + 2)

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

,

(131)
⇔
∣∣f ′ (b)

∣∣ ≤ |f (b)− f (a)|
b − a + (b − a)q

Γ (q + 2)

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

. (132)

Therefore

∣∣f ′ (b)
∣∣ ≤ 2 ‖f ‖∞,[a,b]

b − a + (b − a)q
Γ (q + 2)

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

. (133)

Complete assumptions follow:
Assume here that f ∈ C1 ((−∞, B0]), where B0 ∈ R is fixed, 0 < q < 1, and

for every [a, b] ⊂ (−∞, B0] we have that Dq
b−
(
f ′ (·)− f ′ (b)) ∈ L∞ ([a, b]), and

that

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

≤
∥∥∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥∥∞,(−∞,B0]
<∞,

(134)
∀ b ≤ B0,

along with

‖f ‖∞,(−∞,B0] <∞. (135)

Therefore (by (133)) we have

∣∣f ′ (b)
∣∣ ≤ 2 ‖f ‖∞,(−∞,B0]

b − a + (b − a)q
Γ (q + 2)

∥∥∥Dq
B0−

(
f ′ (·)− f ′ (B0)

)∥∥∥∞,(−∞,B0]
,

(136)
where the right-hand side of (136) depends only on (b − a) .

Calling t = b − a > 0; we can write

∥∥f ′
∥∥∞,(−∞,B0] ≤

2 ‖f ‖∞,(−∞,B0]
t

+ tq

Γ (q + 2)

∥∥∥Dq
B0−f

′ (·)− f ′ (B0)

∥∥∥∞,(−∞,B0]
,

(137)
∀ t > 0.

Set

μ := 2 ‖f ‖∞,(−∞,B0]

and (138)
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θ :=

∥∥∥Dq
B0−

(
f ′ (·)− f ′ (B0)

)∥∥∥∞,(−∞,B0]
Γ (q + 2)

,

both are greater than zero.
We consider the function

y (t) = μ

t
+ θtq , 0 < q < 1, t > 0. (139)

As in [7, pp. 81–82], y has a global minimum at

t0 =
(
μ

qθ

) 1
q+1

, (140)

which is

y (t0) =
(
θμq

) 1
q+1 (q + 1) q−

q
q+1 . (141)

Consequently it is

y (t0) =
⎡

⎢
⎣

∥∥
∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥
∥∞,(−∞,B0]

Γ (q + 2)

(
2 ‖f ‖∞,(−∞,B0]

)q

⎤

⎥
⎦

1
q+1

(q + 1) q−
q
q+1 .

(142)
We have proved that

∥∥f ′
∥∥∞,(−∞,B0] ≤ (q + 1)

(
2

q

) q
q+1

(Γ (q + 2))−
1
q+1 · (143)

(‖f ‖∞,(−∞,B0]
) q
q+1

(∥
∥∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥∥∞,(−∞,B0]

) 1
q+1

.

We have established a local right fractional Riemann–Liouville ∞-Landau
inequality:

Theorem 13 Assume here that f ∈ C1 ((−∞, B0]), where B0 ∈ R is fixed, 0 <
q < 1, and for every [a, b] ⊂ (−∞, B0] we have that Dq

b−
(
f ′ (·)− f ′ (b)) ∈

L∞ ([a, b]), and that

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

≤
∥∥∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥∥∞,(−∞,B0]
<∞,

(144)
∀ b ≤ B0,
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along with

‖f ‖∞,(−∞,B0] <∞. (145)

Then

∥∥f ′
∥∥∞,(−∞,B0] ≤ (q + 1)

(
2

q

) q
q+1

(Γ (q + 2))−
1
q+1 ·

‖f ‖
q
q+1
∞,(−∞,B0]

∥∥
∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥
∥

1
q+1

∞,(−∞,B0]
. (146)

If B0 = 0, we have

Corollary 7 Assume here that f ∈ C1 (R−), 0 < q < 1, and for every [a, b] ⊂ R−
we have that Dq

b−
(
f ′ (·)− f ′ (b)) ∈ L∞ ([a, b]), and that

∥
∥Dq

b−
(
f ′ (·)− f ′ (b))∥∥∞,[a,b]

≤ ∥∥Dq

0−
(
f ′ (·)− f ′ (0))∥∥∞,R− <∞, (147)

∀ b ≤ 0,
along with

‖f ‖∞,R− <∞. (148)

Then

∥∥f ′
∥∥∞,R− ≤ (q + 1)

(
2

q

) q
q+1

(Γ (q + 2))−
1
q+1 ·

‖f ‖
q
q+1
∞,R−

∥∥Dq

0−
(
f ′ (·)− f ′ (0))∥∥

1
q+1
∞,R− . (149)

That is,

∥∥f ′
∥∥∞,R− <∞.

It follows a local right fractional Riemann–Liouville Lp-Landau inequality:

Theorem 14 Let p1, q1 > 1 : 1
p1
+ 1
q1
= 1, 1

q1
< q < 1; f ∈ C1 ((−∞, B0]),B0 ∈

R is fixed, ‖f ‖∞,(−∞,B0] < ∞; Dq
b−
(
f ′ (·)− f ′ (b)) ∈ Lq1 ([a, b]), ∀ [a, b] ⊆

(−∞, B0]; and ∀ b ≤ B0 it holds

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥

q1,[a,b]
≤
∥∥∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥∥
q1,(−∞,B0]

< +∞.
(150)
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Then

∥∥f ′
∥∥∞,(−∞,B0] ≤

⎛

⎝
2
(
q + 1

p1

)

q − 1
q1

⎞

⎠

q− 1
q1

q+ 1
p1 1

(Γ (q))

1
q+ 1

p1 ((q − 1) p1 + 1)
1

qp1+1

·

(151)

∥∥∥Dq
B0−

(
f ′ (·)− f ′ (B0)

)∥∥∥
1

q+ 1
p1

q1,(−∞,B0]
(‖f ‖∞,(−∞,B0]

)
q− 1

q1
q+ 1

p1 .

That is,

∥∥f ′
∥∥∞,(−∞,B0] < +∞.

The case B0 = 0 follows:

Corollary 8 Let p1, q1 > 1 : 1
p1
+ 1
q1
= 1, 1

q1
< q < 1; f ∈ C1 (R−), ‖f ‖∞,R− <

+∞; Dq
b−
(
f ′ (·)− f ′ (b)) ∈ Lq1 ([a, b]), ∀ [a, b] ⊆ R−; and ∀ b ≤ 0 it holds

∥∥Dq
b−
(
f ′ (·)− f ′ (b))∥∥

q1,[a,b]
≤ ∥∥Dq

0−
(
f ′ (·)− f ′ (0))∥∥

q1,R−
< +∞. (152)

Then

∥∥f ′
∥∥∞,R− ≤

⎛

⎝
2
(
q + 1

p1

)

q − 1
q1

⎞

⎠

q− 1
q1

q+ 1
p1 1

(Γ (q))

1
q+ 1

p1 ((q − 1) p1 + 1)
1

qp1+1

· (153)

∥∥Dq

0−
(
f ′ (·)− f ′ (0))∥∥

1
q+ 1

p1
q1,R−

(‖f ‖∞,R−
)
q− 1

q1
q+ 1

p1 .

That is,

∥∥f ′
∥∥∞,R− < +∞.

Proof of Theorem 14 By Theorem 6 we get:

∣∣∣∣
1

b − a
∫ b

a

f ′
(
x′
)
dx′ − f ′ (b)

∣∣∣∣ ≤ (154)

(b − a)q− 1
q1

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)
∥∥Dq

b−
(
f ′ (·)− f ′ (b))∥∥

q1,[a,b]
=: ρ.
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That is,
∣∣
∣∣
f (b)− f (a)

b − a − f ′ (b)
∣∣
∣∣ ≤ ρ. (155)

Hence it holds

∣
∣f ′ (b)

∣
∣− 1

b − a |f (b)− f (a)| ≤ ρ, (156)

equivalently,

∣∣f ′ (b)
∣∣ ≤ |f (b)− f (a)|

b − a + ρ ≤ 2 ‖f ‖∞,(−∞,B0]
b − a + ρ. (157)

So far we have derived

∣∣f ′ (b)
∣∣ ≤ 2 ‖f ‖∞,(−∞,B0]

b − a + (158)

(b − a)q− 1
q1

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)
∥∥∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥∥
q1,(−∞,B0]

,

and the right-hand side of (158) depends only on b − a =: t > 0.
Therefore it holds

∥∥f ′
∥∥∞,(−∞,B0] ≤

2 ‖f ‖∞,(−∞,B0]
t

+ (159)

t
q− 1

q1

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)
∥∥∥Dq

B0−f
′ (·)− f ′ (B0)

∥∥∥
q1,(−∞,B0]

,

∀ t ∈ (0,∞) .
Notice that 0 < q − 1

q1
< 1. Call

μ̃ := 2 ‖f ‖∞,(−∞,B0] ,

and (160)

θ̃ :=

∥∥∥Dq
B0−f

′ (·)− f ′ (B0)

∥∥∥
q1,(−∞,B0]

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

) ,

both are positive,



Local Fractional Inequalities 467

and

ν̃ := q − 1

q1
∈ (0, 1) . (161)

We consider the function

ỹ (t) = μ̃

t
+ θ̃ t ν̃ , t ∈ (0,∞) . (162)

The only critical number is

t̃0 =
(
μ̃

ν̃θ̃

) 1
ν̃+1

, (163)

and ỹ has a global minimum at t̃0, which is

ỹ
(
t̃0
) = (θ̃ μ̃ν̃)

1
ν̃+1 (̃ν + 1) ν̃−

ν̃
ν̃+1 . (164)

Consequently, we derive

ỹ
(
t̃0
) =

⎛

⎜
⎝

∥∥
∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥
∥
q1,(−∞,B0]

Γ (q) ((q − 1) p1 + 1)
1
p1

(
q + 1

p1

)

⎞

⎟
⎠

p1
qp1+1

·

2

q− 1
q1

q+ 1
p1
(‖f ‖∞,(−∞,B0]

)
q− 1

q1
q+ 1

p1

(
q + 1

p1

)(
q − 1

q1

)− q− 1
q1

q+ 1
p1 . (165)

We have proved that

∥∥f ′
∥∥∞,(−∞,B0] ≤

⎛

⎝
2
(
q + 1

p1

)

q − 1
q1

⎞

⎠

q− 1
q1

q+ 1
p1 1

(Γ (q))

1
q+ 1

p1 ((q − 1) p1 + 1)
1

qp1+1

·

∥
∥∥Dq

B0−
(
f ′ (·)− f ′ (B0)

)∥∥∥
1

q+ 1
p1

q1,(−∞,B0]
(‖f ‖∞,(−∞,B0]

)
q− 1

q1
q+ 1

p1 . (166)
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Some New Hermite–Hadamard Type
Integral Inequalities for Twice
Differentiable Generalized
((h1, h2); (η1, η2))-Convex Mappings and
Their Applications

Artion Kashuri and Rozana Liko

Abstract In this article, we first introduced a new class of generalized
((h1, h2); (η1, η2))-convex mappings and an interesting lemma regarding Hermite–
Hadamard type integral inequalities. By using the notion of generalized
((h1, h2); (η1, η2))-convexity and lemma as an auxiliary result, some new estimates
difference between the left and middle part in Hermite–Hadamard type integral
inequality associated with twice differentiable generalized ((h1, h2); (η1, η2))-
convex mappings are established. It is pointed out that some new special cases can
be deduced from main results. At the end, some applications to special means for
different positive real numbers are provided.

1 Introduction

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (−∞,+∞). For any subset K ⊆ R

n, where R
n is

used to denote an n-dimensional vector space, K◦ is the interior of K. The set of
integrable functions on the interval [a, b] is denoted by L[a, b].

The following inequality, named Hermite–Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1 Let f : I ⊆ R −→ R be a convex function on I and a, b ∈ I with
a < b. Then the following inequality holds:

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

. (1)

This inequality (1) is also known as trapezium inequality.
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The trapezium type inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. For other recent results which
generalize, improve, and extend the inequality (1) through various classes of convex
functions interested readers are referred to [1–30, 32, 34, 35, 37–41, 45, 47, 48].
Let us recall some special functions and evoke some basic definitions as follows.

Definition 1 The incomplete beta function is defined for a, b > 0 as

βx(a, b) =
∫ x

0
ta−1(1− t)b−1dt, 0 < x ≤ 1. (2)

Definition 2 ([46]) A set S ⊆ R
n is said to be invex set with respect to the mapping

η : S × S −→ R
n, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].

The invex set S is also termed an η-connected set.

Definition 3 ([31]) Let h : [0, 1] −→ R be a non-negative function and h �= 0.
The function f on the invex set K is said to be h-preinvex with respect to η, if

f
(
x + tη(y, x)) ≤ h(1− t)f (x)+ h(t)f (y) (3)

for each x, y ∈ K and t ∈ [0, 1] where f (·) > 0.

Clearly, when putting h(t) = t in Definition 3, f becomes a preinvex function [36].
If the mapping η(y, x) = y − x in Definition 3, then the non-negative function f
reduces to h-convex mappings [43].

Definition 4 ([44]) Let S ⊆ R
n be an invex set with respect to η : S × S −→ R

n.

A function f : S −→ [0,+∞) is said to be s-preinvex (or s-Breckner-preinvex)
with respect to η and s ∈ (0, 1], if for every x, y ∈ S and t ∈ [0, 1],

f
(
x + tη(y, x)) ≤ (1− t)sf (x)+ t sf (y). (4)

Definition 5 ([33]) A function f : K −→ R is said to be s-Godunova–Levin–
Dragomir-preinvex of second kind, if

f
(
x + tη(y, x)) ≤ (1− t)−sf (x)+ t−sf (y), (5)

for each x, y ∈ K, t ∈ (0, 1) and s ∈ (0, 1].
Definition 6 ([42]) A non-negative function f : K ⊆ R −→ R is said to be tgs-
convex on K if the inequality

f
(
(1− t)x + ty) ≤ t (1− t)[f (x)+ f (y)] (6)

grips for all x, y ∈ K and t ∈ (0, 1).
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Definition 7 ([28]) A function f : I ⊆ R −→ R is said to MT -convex functions,
if it is non-negative and ∀ x, y ∈ I and t ∈ (0, 1) satisfies the subsequent inequality

f (tx + (1− t)y) ≤
√
t

2
√

1− t f (x)+
√

1− t
2
√
t
f (y). (7)

The concept of η-convex functions (at the beginning was named by ϕ-convex
functions), considered in [13], has been introduced as the following.

Definition 8 Consider a convex set I ⊆ R and a bifunction η : f (I)×f (I) −→ R.

A function f : I −→ R is called convex with respect to η (briefly η-convex), if

f
(
λx + (1− λ)y) ≤ f (y)+ λη(f (x), f (y)), (8)

is valid for all x, y ∈ I and λ ∈ [0, 1].
Geometrically it says that if a function is η-convex on I, then for any x, y ∈
I, its graph is on or under the path starting from (y, f (y)) and ending at
(x, f (y)+ η(f (x), f (y))) . If f (x) should be the end point of the path for every
x, y ∈ I, then we have η(x, y) = x − y and the function reduces to a convex one.
For more results about η-convex functions, see [7, 8, 12, 13].

Definition 9 ([1]) Let I ⊆ R be an invex set with respect to η1 : I × I −→ R.

Consider f : I −→ R and η2 : f (I) × f (I) −→ R. The function f is said to be
(η1, η2)-convex if

f
(
x + λη1(y, x)

) ≤ f (x)+ λη2(f (y), f (x)), (9)

is valid for all x, y ∈ I and λ ∈ [0, 1].
Motivated by the above works and references therein, the main objective of this
article is to apply a new class of generalized ((h1, h2); (η1, η2))-convex mappings
and an interesting lemma to establish some new estimates difference between the
left and middle part in Hermite–Hadamard type integral inequality associated with
twice differentiable generalized ((h1, h2); (η1, η2))-convex mappings. Also, some
new special cases will be deduced. At the end, some applications to special means
for different positive real numbers will be given as well.

2 Main Results

The following definitions will be used in this section.

Definition 10 ([10]) A set K ⊆ R
n is named as m-invex with respect to the

mapping η : K × K −→ R
n for some fixed m ∈ (0, 1], if mx + tη(y,mx) ∈ K

grips for each x, y ∈ K and any t ∈ [0, 1].
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Remark 1 In Definition 10, under certain conditions, the mapping η(y,mx) could
reduce to η(y, x). When m = 1, we get Definition 2.

We next introduce the concept of generalized ((h1, h2); (η1, η2))-convex mappings.

Definition 11 Let K ⊆ R be an open m-invex set with respect to the mapping
η1 : K × K −→ R. Suppose h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are
continuous. Consider f : K −→ (0,+∞) and η2 : f (K) × f (K) −→ R. The
mapping f is said to be generalized ((h1, h2); (η1, η2))-convex if

f
(
mϕ(x)+ tη1(ϕ(y),mϕ(x))

) ≤ [mh1(t)f
r(x)+ h2(t)η2(f

r(y), f r(x))
] 1
r ,

(10)

holds for all x, y ∈ I, r �= 0, t ∈ [0, 1] and some fixed m ∈ (0, 1].
Remark 2 In Definition 11, if we choose m = r = 1, h1(t) = 1, h2(t) =
t, η1(ϕ(y),mϕ(x)) = ϕ(y) − mϕ(x), η2(f

r(y), f r(x)) = η(f r(y), f r(x)) and
ϕ(x) = x, ∀x ∈ I, then we get Definition 8. Also, in Definition 11, if we choose
m = r = 1, h1(t) = 1, h2(t) = t and ϕ(x) = x, ∀x ∈ I, then we get Definition 9.
Under some suitable choices as we have done above, we can also get Definitions 4
and 5.

Remark 3 For r = 1, let us discuss some special cases in Definition 11 as
follows.

(I) If taking h1(t) = h(1 − t), h2(t) = h(t), then we get generalized
((m, h); (η1, η2))-convex mappings.

(II) If taking h1(t) = (1 − t)s, h2(t) = t s for s ∈ (0, 1], then we get generalized
((m, s); (η1, η2))-Breckner-convex mappings.

(III) If taking h1(t) = (1−t)−s , h2(t) = t−s for s ∈ (0, 1], then we get generalized
((m, s); (η1, η2))-Godunova–Levin–Dragomir-convex mappings.

(IV) If taking h1(t) = h2(t) = t (1 − t), then we get generalized
((m, tgs); (η1, η2))-convex mappings.

(V) If taking h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t , then we get generalized

(m; (η1, η2))-MT -convex mappings.

It is worth to mention here that to the best of our knowledge all the special cases
discussed above are new in the literature.
Let us see the following example of a generalized ((h1, h2); (η1, η2))-convex
mapping which is not convex.
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Example Let us take m = r = 1, h1(t) = 1, h2(t) = t and ϕ an identity function.
Consider the function f : [0,+∞) −→ [0,+∞) by

f (x) =
{
x, 0 ≤ x ≤ 2;
2, x > 2.

Define two bifunctions η1 : [0,+∞) × [0,+∞) −→ R and η2 : [0,+∞) ×
[0,+∞) −→ [0,+∞) by

η1(x, y) =
{−y, 0 ≤ y ≤ 2;
x + y, y > 2,

and

η2(x, y) =
{
x + y, x ≤ y;
4(x + y), x > y.

Then f is generalized ((1, t); (η1, η2))-convex mapping. But f is not preinvex with
respect to η1 and also it is not convex (consider x = 0, y = 3 and t ∈ (0, 1]).
For establishing our main results regarding some new estimates difference between
the left and middle part in Hermite–Hadamard type integral inequality associated
with generalized ((h1, h2); (η1, η2))-convexity, we need the following lemma.

Lemma 1 Let ϕ : I −→ K be a continuous function. Suppose K ⊆ R be an
open m-invex subset with respect to η : K × K −→ R for some fixed m ∈ (0, 1],
where η(ϕ(x),mϕ(y)) �= 0 and η(ϕ(y),mϕ(x)) �= 0. If f : K −→ R is a twice
differentiable mapping on K◦ such that f ′′ ∈ L(K), then the following identity
holds:

− 2

η2(ϕ(y),mϕ(x))
f

(
mϕ(x)+ η(ϕ(y),mϕ(x))

2

)

− 2

η2(ϕ(x),mϕ(y))
f

(
mϕ(y)+ η(ϕ(x),mϕ(y))

2

)

+ 2

η3(ϕ(y),mϕ(x))

∫ mϕ(x)+η(ϕ(y),mϕ(x))

mϕ(x)

f (t)dt

+ 2

η3(ϕ(x),mϕ(y))

∫ mϕ(y)+η(ϕ(x),mϕ(y))

mϕ(y)

f (t)dt
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=
∫ 1

2

0
t2
[
f ′′ (mϕ(x)+ tη(ϕ(y),mϕ(x)))+ f ′′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) ]dt

(11)

+
∫ 1

1
2

(1− t)2[f ′′ (mϕ(x)+ tη(ϕ(y),mϕ(x)))+ f ′′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) ]dt.

We denote

Tf (η, ϕ; x, y,m)

:=
∫ 1

2

0
t2
[
f ′′ (mϕ(x)+ tη(ϕ(y),mϕ(x)))+ f ′′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) ]dt

(12)

+
∫ 1

1
2

(1− t)2[f ′′ (mϕ(x)+ tη(ϕ(y),mϕ(x)))+ f ′′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) ]dt.

Proof

Tf (η, ϕ; x, y,m) = T11 + T12 + T21 + T22,

where

T11 =
∫ 1

2

0
t2f ′′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) dt;

T12 =
∫ 1

2

0
t2f ′′ (mϕ(x)+ tη(ϕ(y),mϕ(x))) dt;

T21 =
∫ 1

1
2

(1− t)2f ′′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) dt;

T22 =
∫ 1

1
2

(1− t)2f ′′ (mϕ(x)+ tη(ϕ(y),mϕ(x))) dt.

Now, using twice integration by parts, we have

T11 = t2f ′ (mϕ(y)+ tη(ϕ(x),mϕ(y)))
η(ϕ(x),mϕ(y))

∣∣∣∣

1
2

0

− 2

η(ϕ(x),mϕ(y))

∫ 1
2

0
tf ′ (mϕ(y)+ tη(ϕ(x),mϕ(y))) dt
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=
f ′
(
mϕ(y)+ η(ϕ(x),mϕ(y))

2

)

4η(ϕ(x),mϕ(y))
− 2

η(ϕ(x),mϕ(y))

×
{
tf (mϕ(y)+ tη(ϕ(x),mϕ(y)))

η(ϕ(x),mϕ(y))

∣∣
∣∣

1
2

0

− 1

η(ϕ(x),mϕ(y))

∫ 1
2

0
f (mϕ(y)+ tη(ϕ(x),mϕ(y))) dt

}

=
f ′
(
mϕ(y)+ η(ϕ(x),mϕ(y))

2

)

4η(ϕ(x),mϕ(y))
− 2

η(ϕ(x),mϕ(y))
(13)

×
{f

(
mϕ(y)+ η(ϕ(x),mϕ(y))

2

)

2η(ϕ(x),mϕ(y))
− 1

η2(ϕ(x),mϕ(y))

∫ mϕ(y)+ η(ϕ(x),mϕ(y))
2

mϕ(y)

f (t)dt

}
.

In a similar way, we find

T12 =
f ′
(
mϕ(x)+ η(ϕ(y),mϕ(x))

2

)

4η(ϕ(y),mϕ(x))
− 2

η(ϕ(y),mϕ(x))
(14)

×
{f

(
mϕ(x)+ η(ϕ(y),mϕ(x))

2

)

2η(ϕ(y),mϕ(x))
− 1

η2(ϕ(y),mϕ(x))

∫ mϕ(x)+ η(ϕ(y),mϕ(x))
2

mϕ(x)

f (t)dt

}
.

T21 = −
f ′
(
mϕ(y)+ η(ϕ(x),mϕ(y))

2

)

4η(ϕ(x),mϕ(y))
+ 2

η(ϕ(x),mϕ(y))
(15)

×
{
−
f
(
mϕ(y)+ η(ϕ(x),mϕ(y))

2

)

2η(ϕ(x),mϕ(y))
+ 1

η2(ϕ(x),mϕ(y))

∫ mϕ(y)+η(ϕ(x),mϕ(y))

mϕ(y)+ η(ϕ(x),mϕ(y))
2

f (t)dt

}
.

T22 = −
f ′
(
mϕ(x)+ η(ϕ(y),mϕ(x))

2

)

4η(ϕ(y),mϕ(x))
+ 2

η(ϕ(y),mϕ(x))
(16)

×
{
−
f
(
mϕ(x)+ η(ϕ(y),mϕ(x))

2

)

2η(ϕ(y),mϕ(x))
+ 1

η2(ϕ(y),mϕ(x))

∫ mϕ(x)+η(ϕ(y),mϕ(x))

mϕ(x)+ η(ϕ(y),mϕ(x))
2

f (t)dt

}
.

Adding Eqs. (13)–(16), we get our lemma. ��
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Remark 4 In Lemma 1, if we take m = 1, a < b, x = μa + (1 − μ)b, y =
μb + (1 − μ)a, where μ ∈ [0, 1]\{ 1

2

}
and η(ϕ(x),mϕ(y)) = ϕ(x) −

mϕ(y), η(ϕ(y),mϕ(x)) = ϕ(y) − mϕ(x), where ϕ(x) = x for all x ∈ I, in
identity (11), then it becomes identity of Lemma 2.1 in [37].

Theorem 2 Let h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are continuous
functions. Suppose K ⊆ R be an open m-invex subset with respect to η1 :
K × K −→ R for some fixed m ∈ (0, 1], where η1(ϕ(x),mϕ(y)) �= 0 and
η1(ϕ(y),mϕ(x)) �= 0. Assume that f : K −→ (0,+∞) is a twice differentiable
mapping on K◦ such that f ′′ ∈ L(K) and η2 : f (K) × f (K) −→ R. If f ′′q is
generalized ((h1, h2); (η1, η2))-convex mapping, 0 < r ≤ 1, q > 1, p−1 + q−1 =
1, then the following inequality holds:

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤

(
1

(2p + 1)22p+1

) 1
p

(17)

×
{[
m
(
f ′′(x)

)rq
I r (h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
I r (h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
I r (h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
I r (h2(t); r)

] 1
rq

+
[
m
(
f ′′(x)

)rq
J r (h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
J r(h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
J r (h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
J r(h2(t); r)

] 1
rq

}
,

where

I (hi(t); r) :=
∫ 1

2

0
h

1
r

i (t)dt, J (hi(t); r) :=
∫ 1

1
2

h
1
r

i (t)dt, ∀ i = 1, 2.

Proof From Lemma 1, generalized ((h1, h2); (η1, η2))-convexity of f ′′q, Hölder
inequality, Minkowski inequality, and properties of the modulus, we have

∣∣Tf (η1, ϕ; x, y,m)
∣∣

≤
∫ 1

2

0
t2
[|f ′′ (mϕ(x)+ tη1(ϕ(y),mϕ(x))

) | + |f ′′ (mϕ(y)+ tη1(ϕ(x),mϕ(y))
) |]dt

+
∫ 1

1
2

(1−t)2[|f ′′ (mϕ(x)+ tη1(ϕ(y),mϕ(x))
) |+|f ′′ (mϕ(y)+ tη1(ϕ(x),mϕ(y))

) |]dt
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≤
(∫ 1

2

0
t2pdt

) 1
p

×
{(∫ 1

2

0

(
f ′′(mϕ(x)+ tη1(ϕ(y),mϕ(x)))

)q
dt

) 1
q

+
(∫ 1

2

0

(
f ′′(mϕ(y)+ tη1(ϕ(x),mϕ(y)))

)q
dt

) 1
q }

+
(∫ 1

1
2

(1− t)2pdt
) 1
p

×
{(∫ 1

1
2

(
f ′′(mϕ(x)+ tη1(ϕ(y),mϕ(x)))

)q
dt

) 1
q

+
(∫ 1

1
2

(
f ′′(mϕ(y)+ tη1(ϕ(x),mϕ(y)))

)q
dt

) 1
q }

≤
(

1

(2p + 1)22p+1

) 1
p

×
{(∫ 1

2

0

[
mh1(t)

(
f ′′(x)

)rq + h2(t)η2
((
f ′′(y)

)rq
,
(
f ′′(x)

)rq) ]
1
r
dt

) 1
q

+
(∫ 1

2

0

[
mh1(t)

(
f ′′(y)

)rq + h2(t)η2
((
f ′′(x)

)rq
,
(
f ′′(y)

)rq) ]
1
r
dt

) 1
q

+
(∫ 1

1
2

[
mh1(t)

(
f ′′(x)

)rq + h2(t)η2
((
f ′′(y)

)rq
,
(
f ′′(x)

)rq) ]
1
r
dt

) 1
q

+
(∫ 1

1
2

[
mh1(t)

(
f ′′(y)

)rq + h2(t)η2
((
f ′′(x)

)rq
,
(
f ′′(y)

)rq) ]
1
r
dt

) 1
q }

≤
(

1

(2p + 1)22p+1

) 1
p

×
{[(∫ 1

2

0
m

1
r
(
f ′′(x)

)q
h

1
r

1 (t)dt

)r
+
(∫ 1

2

0
η

1
r

2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq

+
[(∫ 1

2

0
m

1
r
(
f ′′(y)

)q
h

1
r

1 (t)dt

)r
+
(∫ 1

2

0
η

1
r

2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq
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+
[(∫ 1

1
2

m
1
r
(
f ′′(x)

)q
h

1
r

1 (t)dt

)r
+
(∫ 1

1
2

η
1
r

2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq

+
[(∫ 1

1
2

m
1
r
(
f ′′(y)

)q
h

1
r

1 (t)dt

)r
+
(∫ 1

1
2

η
1
r

2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq
}

=
(

1

(2p + 1)22p+1

) 1
p

×
{[
m
(
f ′′(x)

)rq
I r (h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
I r (h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
I r (h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
I r (h2(t); r)

] 1
rq

+
[
m
(
f ′′(x)

)rq
J r (h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
J r(h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
J r (h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
J r(h2(t); r)

] 1
rq

}
.

So, the proof of this theorem is completed. ��
We point out some special cases of Theorem 2.

Corollary 1 In Theorem 2 for h1(t) = h(1 − t), h2(t) = h(t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, h); (η1, η2))-convex mappings

∣
∣Tf (η1, ϕ; x, y,m)

∣
∣ ≤ 2

(
1

(2p + 1)22p+1

) 1
p

(18)

×
{[
mLrqI r (h(t); r)+ η2

(
Lrq, Lrq

)
I r (h(1− t); r)

] 1
rq

+
[
mLrqI r (h(1− t); r)+ η2

(
Lrq, Lrq

)
I r (h(t); r)

] 1
rq

}
.

Corollary 2 In Corollary 1 for h1(t) = (1 − t)s and h2(t) = t s , we get the
following Hermite–Hadamard type inequality for generalized ((m, s); (η1, η2))-
Breckner-convex mappings
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∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

(2p + 1)22p+1

) 1
p
(

r

(s + r)2 s
r
+1

) 1
q

(19)

×
{[
mLrq + η2

(
Lrq, Lrq

) (
2
s
r
+1 − 1

)r ] 1
rq

+
[
mLrq

(
2
s
r
+1 − 1

)r + η2
(
Lrq, Lrq

) ] 1
rq

}
.

Corollary 3 In Corollary 1 for h1(t) = (1 − t)−s and h2(t) = t−s and 0 <

s < r, we get the following Hermite–Hadamard type inequality for generalized
((m, s); (η1, η2))-Godunova–Levin–Dragomir-convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

(2p + 1)22p+1

) 1
p
(

r

(r − s)21− s
r

) 1
q

(20)

×
{[
mLrq + η2

(
Lrq, Lrq

) (
21− s

r − 1
)r ] 1

rq

+
[
mLrq

(
21− s

r − 1
)r + η2

(
Lrq, Lrq

) ] 1
rq

}
.

Corollary 4 In Theorem 2 for h1(t) = h2(t) = t (1 − t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, tgs); (η1, η2))-convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 4

(
1

(2p + 1)22p+1

) 1
p

β
1
q

1/2

(
1+ 1

r
, 1+ 1

r

)
(21)

×
[
mLrq + η2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 5 In Corollary 1 for h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t and r ∈
( 1

2 , 1
]
, we get the following Hermite–Hadamard type inequality for generalized

(m; (η1, η2))-MT -convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

(2p + 1)22p+1

) 1
p
(

1

2

) 1
rq

(22)
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×
{[
mLrqβr1/2

(
1− 1

2r
, 1+ 1

2r

)
+ η2

(
Lrq, Lrq

)
βr1/2

(
1+ 1

2r
, 1− 1

2r

)] 1
rq

+
[
mLrqβr1/2

(
1+ 1

2r
, 1− 1

2r

)
+ η2

(
Lrq, Lrq

)
βr1/2

(
1− 1

2r
, 1+ 1

2r

)] 1
rq
}
.

Theorem 3 Let h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are continuous
functions. Suppose K ⊆ R be an open m-invex subset with respect to η1 :
K × K −→ R for some fixed m ∈ (0, 1], where η1(ϕ(x),mϕ(y)) �= 0 and
η1(ϕ(y),mϕ(x)) �= 0. Assume that f : K −→ (0,+∞) is a twice differentiable
mapping on K◦ such that f ′′ ∈ L(K) and η2 : f (K) × f (K) −→ R. If f ′′q is
generalized ((h1, h2); (η1, η2))-convex mapping, 0 < r ≤ 1 and q ≥ 1, then the
following inequality holds:

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤

(
1

24

)1− 1
q

(23)

×
{[
m
(
f ′′(x)

)rq
F r(h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
F r(h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
F r(h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
F r(h2(t); r)

] 1
rq

+
[
m
(
f ′′(x)

)rq
Gr(h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
Gr(h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
Gr(h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
Gr(h2(t); r)

] 1
rq

}
,

where

F(hi(t); r) :=
∫ 1

2

0
t2h

1
r

i (t)dt, G(hi(t); r) :=
∫ 1

1
2

(1− t)2h
1
r

i (t)dt, ∀ i = 1, 2.

Proof From Lemma 1, generalized ((h1, h2); (η1, η2))-convexity of f ′′q, the well-
known power mean inequality, Minkowski inequality, and properties of the modu-
lus, we have

∣∣Tf (η1, ϕ; x, y,m)
∣∣

≤
∫ 1

2

0
t2
[|f ′′ (mϕ(x)+ tη1(ϕ(y),mϕ(x))

) |+|f ′′ (mϕ(y)+ tη1(ϕ(x),mϕ(y))
) |]dt
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+
∫ 1

1
2

(1−t)2[|f ′′ (mϕ(x)+ tη1(ϕ(y),mϕ(x))
) |+|f ′′ (mϕ(y)+ tη1(ϕ(x),mϕ(y))

) |]dt

≤
(∫ 1

2

0
t2dt

)1− 1
q

×
{(∫ 1

2

0
t2
(
f ′′(mϕ(x)+ tη1(ϕ(y),mϕ(x)))

)q
dt

) 1
q

+
(∫ 1

2

0
t2
(
f ′′(mϕ(y)+ tη1(ϕ(x),mϕ(y)))

)q
dt

) 1
q }

+
(∫ 1

1
2

(1− t)2dt
)1− 1

q

×
{(∫ 1

1
2

(1− t)2 (f ′′(mϕ(x)+ tη1(ϕ(y),mϕ(x)))
)q
dt

) 1
q

+
(∫ 1

1
2

(1− t)2 (f ′′(mϕ(y)+ tη1(ϕ(x),mϕ(y)))
)q
dt

) 1
q }

≤
(

1

24

)1− 1
q

×
{(∫ 1

2

0
t2
[
mh1(t)

(
f ′′(x)

)rq + h2(t)η2
((
f ′′(y)

)rq
,
(
f ′′(x)

)rq) ]
1
r
dt

) 1
q

+
(∫ 1

2

0
t2
[
mh1(t)

(
f ′′(y)

)rq + h2(t)η2
((
f ′′(x)

)rq
,
(
f ′′(y)

)rq) ]
1
r
dt

) 1
q

+
(∫ 1

1
2

(1− t)2
[
mh1(t)

(
f ′′(x)

)rq + h2(t)η2
((
f ′′(y)

)rq
,
(
f ′′(x)

)rq) ]
1
r
dt

) 1
q

+
(∫ 1

1
2

(1− t)2
[
mh1(t)

(
f ′′(y)

)rq + h2(t)η2
((
f ′′(x)

)rq
,
(
f ′′(y)

)rq) ]
1
r
dt

) 1
q }

≤
(

1

24

)1− 1
q

×
{[(∫ 1

2

0
m

1
r
(
f ′′(x)

)q
t2h

1
r

1 (t)dt

)r
+
(∫ 1

2

0
t2η

1
r

2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq
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+
[(∫ 1

2

0
m

1
r
(
f ′′(y)

)q
t2h

1
r

1 (t)dt

)r
+
(∫ 1

2

0
t2η

1
r

2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq

+
[(∫ 1

1
2

m
1
r
(
f ′′(x)

)q
(1− t)2h

1
r

1 (t)dt

)r

+
(∫ 1

1
2

(1− t)2η
1
r

2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq

+
[(∫ 1

1
2

m
1
r
(
f ′′(y)

)q
(1− t)2h

1
r

1 (t)dt

)r

+
(∫ 1

1
2

(1− t)2η
1
r

2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
h

1
r

2 (t)dt

)r ] 1
rq
}

=
(

1

24

)1− 1
q

×
{[
m
(
f ′′(x)

)rq
F r(h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
F r(h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
F r(h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
F r(h2(t); r)

] 1
rq

+
[
m
(
f ′′(x)

)rq
Gr(h1(t); r)+ η2

((
f ′′(y)

)rq
,
(
f ′′(x)

)rq)
Gr(h2(t); r)

] 1
rq

+
[
m
(
f ′′(y)

)rq
Gr(h1(t); r)+ η2

((
f ′′(x)

)rq
,
(
f ′′(y)

)rq)
Gr(h2(t); r)

] 1
rq

}
.

So, the proof of this theorem is completed. ��
We point out some special cases of Theorem 3.

Corollary 6 In Theorem 3 for h1(t) = h(1 − t), h2(t) = h(t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, h); (η1, η2))-convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

24

)1− 1
q

(24)
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×
{[
mLrqF r(h(t); r)+ η2

(
Lrq, Lrq

)
F r(h(1− t); r)

] 1
rq

+
[
mLrqF r(h(1− t); r)+ η2

(
Lrq, Lrq

)
F r(h(t); r)

] 1
rq

}
.

Corollary 7 In Corollary 6 for h1(t) = (1 − t)s and h2(t) = t s , we get the
following Hermite–Hadamard type inequality for generalized ((m, s); (η1, η2))-
Breckner-convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

24

)1− 1
q

(25)

×
{[
mLrq

(
r

(s + 3r)2
s
r
+3

)r
+ η2

(
Lrq, Lrq

)
βr1/2

(
3, 1+ s

r

) ] 1
rq

+
[
mLrqβr1/2

(
3, 1+ s

r

)
+ η2

(
Lrq, Lrq

) ( r

(s + 3r)2
s
r
+3

)r ] 1
rq
}
.

Corollary 8 In Corollary 6 for h1(t) = (1 − t)−s and h2(t) = t−s and 0 <

s < r, we get the following Hermite–Hadamard type inequality for generalized
((m, s); (η1, η2))-Godunova–Levin–Dragomir-convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

24

)1− 1
q

(26)

×
{[
mLrq

(
r

(3r − s)23− s
r

)r
+ η2

(
Lrq, Lrq

)
βr1/2

(
3, 1− s

r

) ] 1
rq

+
[
mLrqβr1/2

(
3, 1− s

r

)
+ η2

(
Lrq, Lrq

) ( r

(3r − s)23− s
r

)r ] 1
rq
}
.

Corollary 9 In Theorem 3 for h1(t) = h2(t) = t (1 − t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, tgs); (η1, η2))-convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 4

(
1

24

)1− 1
q

β
1
q

1/2

(
3+ 1

r
, 1+ 1

r

)
(27)

×
[
mLrq + η2

(
Lrq, Lrq

) ] 1
rq
.
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Corollary 10 In Corollary 6 for h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t and r ∈
( 1

2 , 1
]
, we get the following Hermite–Hadamard type inequality for generalized

(m; (η1, η2))-MT -convex mappings

∣∣Tf (η1, ϕ; x, y,m)
∣∣ ≤ 2

(
1

24

)1− 1
q
(

1

2

) 1
rq

(28)

×
{[
mLrqβr1/2

(
3− 1

2r
, 1+ 1

2r

)
+ η2

(
Lrq, Lrq

)
βr1/2

(
3+ 1

2r
, 1− 1

2r

)] 1
rq

+
[
mLrqβr1/2

(
3+ 1

2r
, 1− 1

2r

)
+ η2

(
Lrq, Lrq

)
βr1/2

(
3− 1

2r
, 1+ 1

2r

)] 1
rq
}
.

3 Applications to Special Means

Definition 12 A function M : R2+ −→ R+ is called a Mean function if it has the
following properties:

1. Homogeneity: M(ax, ay) = aM(x, y), for all a > 0,
2. Symmetry: M(x, y) = M(y, x),

3. Reflexivity: M(x, x) = x,

4. Monotonicity: If x ≤ x′ and y ≤ y′, then M(x, y) ≤ M(x′, y′),
5. Internality: min{x, y} ≤ M(x, y) ≤ max{x, y}.
We consider some means for different positive real numbers α, β.

1. The arithmetic mean:

A := A(α, β) = α + β
2

.

2. The geometric mean:

G := G(α, β) = √αβ.

3. The harmonic mean:

H := H(α, β) = 2
1
α
+ 1

β

.
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4. The power mean:

Pr := Pr(α, β) =
(
αr + βr

2

) 1
r

, r ≥ 1.

5. The identric mean:

I := I (α, β) =
{

1
e

(
ββ

αα

)
, α �= β;

α, α = β.

6. The logarithmic mean:

L := L(α, β) = β − α
lnβ − lnα

.

7. The generalized log-mean:

Lp := Lp(α, β) =
[
βp+1 − αp+1

(p + 1)(β − α)
] 1
p

; p ∈ R \ {−1, 0}.

It is well known that Lp is monotonic nondecreasing over p ∈ R with L−1 := L

and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤ I ≤
A. Now, let a and b be positive real numbers such that a < b. Let us consider
continuous functions ϕ : I −→ K, η1 : K ×K −→ R and M := M(ϕ(a), ϕ(b)) :
[ϕ(a), ϕ(a)+ η1(ϕ(b), ϕ(a))] × [ϕ(a), ϕ(a)+ η1(ϕ(b), ϕ(a))] −→ R+, which is
one of the above-mentioned means. Therefore one can obtain various inequalities
using the results of Sect. 2 for these means as follows. Replace η1(ϕ(a), ϕ(b)) =
η1(ϕ(b), ϕ(a)) = M(ϕ(a), ϕ(b)), for m = 1 in (17) and (23), one can obtain the
following interesting inequalities involving means:

∣∣Tf (M(·, ·), ϕ; a, b, 1)
∣∣ ≤

(
1

(2p + 1)22p+1

) 1
p

(29)

×
{[ (

f ′′(a)
)rq

I r (h1(t); r)+ η2
((
f ′′(b)

)rq
,
(
f ′′(a)

)rq)
I r (h2(t); r)

] 1
rq

+
[ (
f ′′(b)

)rq
I r (h1(t); r)+ η2

((
f ′′(a)

)rq
,
(
f ′′(b)

)rq)
I r (h2(t); r)

] 1
rq

+
[ (
f ′′(a)

)rq
J r (h1(t); r)+ η2

((
f ′′(b)

)rq
,
(
f ′′(a)

)rq)
J r(h2(t); r)

] 1
rq

+
[ (
f ′′(b)

)rq
J r (h1(t); r)+ η2

((
f ′′(a)

)rq
,
(
f ′′(b)

)rq)
J r(h2(t); r)

] 1
rq

}
,
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∣∣Tf (M(·, ·), ϕ; a, b, 1)
∣∣ ≤

(
1

24

)1− 1
q

(30)

×
{[ (

f ′′(a)
)rq

F r(h1(t); r)+ η2
((
f ′′(b)

)rq
,
(
f ′′(a)

)rq)
F r(h2(t); r)

] 1
rq

+
[ (
f ′′(b)

)rq
F r(h1(t); r)+ η2

((
f ′′(a)

)rq
,
(
f ′′(b)

)rq)
F r(h2(t); r)

] 1
rq

+
[ (
f ′′(a)

)rq
Gr(h1(t); r)+ η2

((
f ′′(b)

)rq
,
(
f ′′(a)

)rq)
Gr(h2(t); r)

] 1
rq

+
[ (
f ′′(b)

)rq
Gr(h1(t); r)+ η2

((
f ′′(a)

)rq
,
(
f ′′(b)

)rq)
Gr(h2(t); r)

] 1
rq

}
.

Letting M(ϕ(a), ϕ(b)) := A,G,H,Pr, I, L,Lp,Mp in (29) and (30), we get
inequalities involving means for a particular choices of twice differentiable gen-
eralized ((h1, h2); (η1, η2))-convex mapping f at certain powers. The details are
left to the interested reader.

4 Conclusion

In this article, we first presented a new integral identity concerning twice dif-
ferentiable mappings defined on m-invex set. By using the notion of generalized
((h1, h2); (η1, η2))-convexity and lemma as an auxiliary result, some new estimates
difference between the left and middle part in Hermite–Hadamard type integral
inequality associated with twice differentiable generalized ((h1, h2); (η1, η2))-
convex mappings are established. It is pointed out that some new special cases
are deduced from main results. At the end, some applications to special means for
different positive real numbers are provided. Motivated by this new interesting class
we can indeed see to be vital for fellow researchers and scientists working in the
same domain. We conclude that our methods considered here may be a stimulant for
further investigations concerning Hermite–Hadamard, Ostrowski, and Simpson type
integral inequalities for various kinds of convex and preinvex functions involving
local fractional integrals, fractional integral operators, Caputo k-fractional deriva-
tives, q-calculus, (p, q)-calculus, time scale calculus, and conformable fractional
integrals.



Some New Hermite–Hadamard Type Integral Inequalities 487

References

1. S.M. Aslani, M.R. Delavar, S.M. Vaezpour, Inequalities of Fejér type related to generalized
convex functions with applications. Int. J. Anal. Appl. 16(1), 38–49 (2018)

2. F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via
Riemann-Liouville fractional integrals. Ital. J. Pure Appl. Math. 33, 299–306 (2014)

3. Y.-M. Chu, G.D. Wang, X.H. Zhang, Schur convexity and Hadamard’s inequality. Math.
Inequal. Appl. 13(4), 725–731 (2010)

4. Y.-M. Chu, M.A. Khan, T.U. Khan, T. Ali, Generalizations of Hermite-Hadamard type
inequalities for MT -convex functions. J. Nonlinear Sci. Appl. 9(5), 4305–4316 (2016)

5. Y.-M. Chu, M.A. Khan, T. Ali, S.S. Dragomir, Inequalities for α-fractional differentiable
functions. J. Inequal. Appl. 2017(93), 12 (2017)

6. Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional inte-
gration. Ann. Funct. Anal. 1(1), 51–58 (2010)

7. M.R. Delavar, M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities.
SpringerPlus 5, 1661 (2016)

8. M.R. Delavar, S.S. Dragomir, On η-convexity. Math. Inequal. Appl. 20, 203–216 (2017)
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Hardy’s Type Inequalities via
Conformable Calculus

S. H. Saker, M. R. Kenawy, and D. Baleanu

Abstract In this chapter, we establish some inequalities of Hardy and Leindler
type and their converses via conformable calculus with weighted functions. As
applications, we obtain some classical integral inequalities as special cases.

1 Introduction

The classical discrete Hardy inequality is given by

∞∑

n=1

(
1

n

n∑

i=1

g(i)

)p
≤
(

p

p − 1

)p ∞∑

n=1

gp(n), p > 1. (1)

where g(n) is a sequence with nonnegative terms. Some generalizations of the
discrete Hardy inequality (1) have been obtained by Leindler [11, 12] with new
weighted function. In particular, Leindler in [11] proved that if p > 1 and λ(n) > 0
then the inequality with heads
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∞∑
n=1

λ(n)

(
n∑

k=1
g(k)

)p
≤ pp

∞∑
n=1

λ1−p(n)
( ∞∑
k=n

λ(k)

)p
gp(n), (2)

holds and the inequality with tails

∞∑
n=1

λ(n)

( ∞∑
k=n

g(k)

)p
≤ pp

∞∑
n=1

λ1−p(n)
(

n∑

k=1
λ(k)

)p
gp(n), (3)

also holds.
In 1928 Copson [5] proved some new types of discrete inequalities (see
also [7, Theorem 344]). In particular one of his inequalities is given by

∞∑

n=1

( ∞∑

k=n
g(k)

)p
≥ pp

∞∑

n=1

(ng(n))p , for 0 < p < 1, (4)

where gn is a sequence with nonnegative terms. The converses of (2) and (3) are
proved by Leindler in [12]. In particular, he proved that if 0 < p ≤ 1, then

∞∑
n=1

λ(n)

(
n∑

k=1
g(k)

)p
≥ pp

∞∑
n=1

λ1−p(n)
( ∞∑
k=n

λ(k)

)p
gp(n), (5)

and

∞∑
n=1

λ(n)

( ∞∑
k=n

g(k)

)p
≥ pp

∞∑
n=1

λ1−p(n)
(

n∑

k=1
λ(p)

)p
gp(n). (6)

An interesting variant of the Hardy–Copson inequalities was given by Leindler
[13]. In fact Leindler in [13] generalized the above inequalities and proved that
if
∑∞

i=n λ(i) <∞, p > 1 and 0 ≤ c < 1, then

∞∑

n=1

λ(n)

((n))c

(
n∑

i=1

λ(i)g(i)

)p
≤
(

p

1− c
)p ∞∑

n=1

λ(n)((n))p−cgp(n), (7)

where n =∑∞
i=n λ(i), and if 1 < c ≤ p, then

∞∑

n=1

λ(n)

((n))c

( ∞∑

i=n
λ(i)g(i)

)p
≤
(

p

c − 1

)p ∞∑

n=1

λ(n)((n))p−cgp(n). (8)

In recent years, some authors studied the fractional inequalities by using the
fractional Caputo and Riemann–Liouville derivative, we refer to [4, 8], and [18]
for the results. In [1] and [9] the authors extended the calculus of fractional
order to conformable calculus. Recently, some authors have extended classical
inequalities by using conformable calculus such as Opial’s inequality [15] and [14],
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Hermite–Hadamard’s inequality [3, 6, 10] and [17], Chebyshev’s inequality [2], and
Steffensen’s inequality [16].
The following question now arises: Is it possible to prove inequalities of Leindler-
type and their converses by using conformable calculus? Our aim in this chapter
is to give an affirmative answer to this question and obtain the classical integral
inequalities as special cases.
The chapter is organized as follows: In Sect. 2, we will present some preliminaries
about the conformable calculus and also the Hölder’s inequality for α− differen-
tiable functions which will be needed in the proofs of the main results. In Sect. 3,
we will establish some Leindler-type inequalities and some of their generalizations
for α− differentiable functions and obtain the classical ones as α = 1. In Sect. 4,
we will prove some converses of Leindler-type inequalities and some of their
generalizations and obtain the classical ones when α = 1.

2 Basic Concepts and Lemmas

In this section, we present the concepts of conformable derivative and integral of
order 0 < α ≤ 1, that will be used throughout the article. For more details, we refer
the reader to [1] and [9] for the recent results on conformable calculus.

Definition 1 Let f : [0,∞) → R. Then the conformable derivative of order α of
f is defined by

Dαf (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

,

for all t > 0 and 0 < α ≤ 1, and Dαf (0) = limt→0+ Dαf (t).

Let α ∈ (0, 1] and f, g be α−differentiable at a point t . Then

Dα(fg) = fDαg + gDαf. (9)

Further, let α ∈ (0, 1] and f, g be α−differentiable at a point t , with g(t) �= 0. Then

Dα

(
f

g

)
= gDαf − fDαg

g2 . (10)

Remark 1 If f is a differentiable function, then

Dαf (t) = t1−α df (t)
dt

.

Definition 2 Let f : [0,∞) → R. Then the conformable integral of order α of f
is defined by
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Iαf (t) =
∫ t

0
f (s)dαs =

∫ t

0
sα−1f (s)ds, (11)

for all t > 0 and 0 < α ≤ 1.

Now, we state an integration by parts (see [1] and [9]).

Lemma 1 Assume that U, V : [0,∞)→ R are two functions such that U, V are
differentiable and 0 < α ≤ 1. Then for any b > 0,

∫ b

0
U(s)DαV (s)dαs = U(s)V (s)|b0 −

∫ b

0
V (s)DαU(s)dαs. (12)

Next, we state a Hölder type inequality needed in the next section (of course it

is the usual Hölder inequality for the functions considered (i.e., s
(α−1)
p f (s) and

s
(α−1)
q g(s)).

Lemma 2 Let f, g : [0,∞)→ R and 0 < α ≤ 1. Then for any b > 0,

∫ b

0
|f (s)g(s)| dαs ≤

(∫ b

0
|f (s)|p dαs

) 1
p
(∫ b

0
|g(s)|q dαs

) 1
q

, (13)

where 1/p + 1/q = 1 (provided the integrals exist (and are finite)).

Define the conformable Hardy operator

T g(t) =
∫ t

0
g(s)dαs, (14)

and its dual

T
∗
g(t) =

∫ ∞

t

g(s)dαs. (15)

Throughout the chapter, we will assume that the functions are nonnegative locally
α−integrable and the integrals throughout are assumed to exist (and are finite, i.e.
convergent).

3 Leindler Type Inequalities

In this section, we will establish some Leindler type inequalities and some of their
generalizations for α−differentiable functions and obtain the classical ones when
α = 1.
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Theorem 1 If p > 1, then

∫ ∞

0
ω(t)T pg(t)dαt ≤ pp

∫ ∞

0
ω1−p(t)p(t)gp(t)dαt, (16)

where

(t) :=
∫ ∞

t

ω(s)dαs.

Proof Integrating the term
∫∞

0 ω(t)T pg(t)dαt, by parts formula (12) with

U(t) = T pg(t), and V (t) = −(t),

we get that

∫ ∞

0
ω(t)T pg(t)dαt = −T pg(t)(t)

∣
∣∞
0 + p

∫ ∞

0
t1−αT p−1g(t)(t)T

′
g(t)(t)dαt

= p

∫ ∞

0
t1−αT p−1g(t)(t)T

′
g(t)(t)dαt, (17)

where

T g(0) = 0, T g(∞) <∞, (0) <∞ and  (∞) = 0.

From the definition of conformable Hardy operator (14), we see that

T
′
g(t) = tα−1g(t).

Substituting into (17), we obtain

∫ ∞

0
ω(t)T pg(t)dαt = p

∫ ∞

0

g(t)(t)

(ω(t))
p−1
p

(ω(t))
p−1
p T p−1g(t)dαt. (18)

Applying the Hölder inequality (13) on the right-hand side of (18) with indices p
and p/(p − 1), we see that

∫ ∞

0
ω(t)T pg(t)dαt ≤ p

(∫ ∞

0

(
g(t)(t)

(ω(t))
p−1
p

)p
dαt

)1/p

×
(∫ ∞

0

(
(ω(t))

p−1
p T p−1g(t)

) p
p−1

dαt

) p−1
p

,
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then

∫ ∞

0
ω(t)T pg(t)dαt ≤ p

(∫ ∞

0

(g(t)(t))p

ωp−1(t)
dαt

)1/p (∫ ∞

0
ω(t)T pg(t)dαt

)1−1/p

,

since

(∫ ∞

0
ω(t)T pg(t)dαt

)1−1/p

> 0,

then

(∫ ∞

0
ω(t)T pg(t)dαt

) 1
p ≤ p

(∫ ∞

0

(g(t)(t))p

ωp−1(t)
dαt

)1/p

.

This implies that

∫ ∞

0
ω(t)T pg(t)dαt ≤ pp

∫ ∞

0
ω1−p(t)p(t)gp(t)dαt,

which is the desired inequality (16). The proof is complete. ��
Remark 2 In Theorem 1 if α = 1, then we obtain the inequality

∫ ∞

0
ω(t)

(∫ t

0
g(s)ds

)p
dt ≤ pp

∫ ∞

0
ω1−p(t)

(∫ ∞

t

ω(s)ds

)p
gp(t)dt.

(19)

Remark 3 In Theorem 1 if ω(t) = 1/tp, then we obtain the inequality

∫ ∞

0

(
1

t

∫ t

0
g(s)dαs

)p
dαt ≤

(
p

p − α
)p ∫ ∞

0

(
tα−1g(t)

)p
dαt. (20)

which is the Hardy inequality.

Remark 4 As a consequence if α = 1 in (20), we obtain the classical Hardy
inequality

∫ ∞

0

(
1

t

∫ t

0
g(s)ds

)p
dt ≤

(
p

p − 1

)p ∫ ∞

0
gp(t)dt. (21)

Theorem 2 If p > 1, then

∫ ∞

0
ω(t)T

∗p
g(t)dαt ≤ pp

∫ ∞

0
ω1−p(t)"p(t)gp(t)dαt, (22)
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where

"(t) :=
∫ t

0
ω(s)dαs.

Proof Integrating the term
∫∞

0 ω(t)T
∗p
g(t)dαt, by parts formula (12) with

U(t) = T
∗p
g(t), and V (t) = "(t),

we get

∫ ∞

0
ω(t)T

∗p
g(t)dαt = T

∗p
g(t)"(t)

∣∣∣
∞
0
− p

∫ ∞

0
t1−αT ∗

p−1

g(t)T ∗′g(t)"(t)dαt

= −p
∫ ∞

0
t1−αT ∗

p−1

g(t)T ∗′g(t)"(t)dαt, (23)

where

T
∗
g(0) <∞, T ∗g(∞) = 0, "(0) = 0 and "(∞) <∞.

From the definition of conformable dual Hardy operator (15), we see that

T ∗′g(t) = −tα−1g(t).

Substituting into (23), we obtain

∫ ∞

0
ω(t)T

∗p
g(t)dαt = p

∫ ∞

0

g(t)"(t)

(ω(t))
p−1
p

(ω(t))
p−1
p T

∗p−1

g(t)dαt. (24)

Applying the Hölder inequality (13) on the right-hand side of (24) with indices p
and p/(p − 1), we see that

∫ ∞

0
ω(t)T

∗p
g(t)dαt ≤ p

(∫ ∞

0

(
g(t)"(t)

(ω(t))
p−1
p

)p
dαt

)1/p

×
(∫ ∞

0

(
(ω(t))

p−1
p T

∗p−1

g(t)

) p
p−1

dαt

) p−1
p

.

Then

(∫ ∞

0
ω(t)T

∗p
g(t)dαt

) 1
p ≤ p

(∫ ∞

0

(g(t)"(t))p

ωp−1(t)
dαt

)1/p

,
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and so that
∫ ∞

0
ω(t)T

∗p
g(t)dαt ≤ pp

∫ ∞

0
ω1−p(t)"p(t)gp(t)dαt,

which is the desired inequality (22). The proof is complete. ��
Remark 5 In Theorem 2 if α = 1, then we obtain the inequality

∫ ∞

0
ω(t)

(∫ ∞

t

g(s)ds

)p
dt ≤ pp

∫ ∞

0
ω1−p(t)

(∫ t

0
ω(s)ds

)p
gp(t)dt.

(25)

Remark 6 In Theorem 2 if ω(t) = 1, then we obtain the inequality

∫ ∞

0

(∫ ∞

t

g(s)dαs

)p
dαt ≤

(p
α

)p ∫ ∞

0

(
tαg(t)

)p
dαt, (26)

which is the Copson inequality.

Remark 7 As a consequence if α = 1 in (26) we obtain the Copson inequality

∫ ∞

0

(∫ ∞

t

g(s)ds

)p
dt ≤ pp

∫ ∞

0
(tg(t))p dt. (27)

Theorem 3 If p ≥ 1 and 0 ≤ c < 1, then

∫ ∞

0

ω(t)

c(t)
0p(t)dαt ≤

(
p

1− c
)p ∫ ∞

0

ω(t)

c−p(t)
gp(t)dαt, (28)

where

(t) :=
∫ ∞

t

ω(s)dαs, and 0(t) :=
∫ t

0
ω(s)g(s)dαs.

Proof Integrating the term

∫ ∞

0

ω(t)

c(t)
0p(t)dαt,

by parts formula (12) with

U(t) = 0p(t), and V (t) = −
1−c(t)
1− c ,

and
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DαU(t) = pt1−α0p−1(t)0
′
(t) and DαV (t) = ω(t)−c(t),

we obtain

∫ ∞

0

ω(t)

c(t)
0p(t)dαt = −0

p(t)1−c(t)
1− c

∣∣
∣∣

∞

0
+
∫ ∞

0

pt1−α0p−1(t)0
′
(t)1−c(t)

1− c dαt.

By using

0(0) = 0, 0(∞) <∞, (0) <∞ and (∞) = 0,

and since 0
′
(t) = tα−1ω(t)g(t), we get that

∫ ∞

0

ω(t)

c(t)
0p(t)dαt = − p

1− c
∫ ∞

0
t1−α0p−1(t)tα−1ω(t)g(t)1−c(t)dαt,

and hence

∫ ∞

0

ω(t)

c(t)
0p(t)dαt = p

1− c
∫ ∞

0

ω(t)1−c(t)g(t)
(
ω(t)
c(t)

) p−1
p

(
ω(t)

c(t)

) p−1
p

0p−1(t)dαt.

(29)
Applying the Hölder inequality (13) on the right-hand side of (29) with indices p
and p/p − 1, we see that

∫ ∞

0

ω(t)

c(t)
0p(t)dαt

≤ p

1− c

⎛

⎝
∫ ∞

0

⎛

⎝ω(t)1−c(t)g(t)
(
ω(t)

c(t)

)− p−1
p

⎞

⎠

p

dαt

⎞

⎠

1
p

×
⎛

⎜
⎝
∫ ∞

0

⎛

⎝
(
ω(t)

c(t)

) p−1
p

0p−1(t)

⎞

⎠

p
p−1

dαt

⎞

⎟
⎠

p−1
p

= p

1− c
(∫ ∞

0
ω(t)p−c(t)gp(t)dαt

) 1
p
(∫ ∞

0

ω(t)

c(t)
0p(t)dαt

) p−1
p

.

Thus

(∫ ∞

0

ω(t)

c(t)
0p(t)dαt

) 1
p ≤ p

1− c
(∫ ∞

0
ω(t)p−c(t)gp(t)dαt

) 1
p

,
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and hence

∫ ∞

0

ω(t)

c(t)
0p(t)dαt ≤

(
p

1− c
)p ∫ ∞

0
ω(t)p−c(t)gp(t)dαt,

which is the desired inequality (28). The proof is complete. ��
Remark 8 In Theorem 3, if α = 1, then we obtain the inequality

∫ ∞

0

ω(t)

c(t)

(∫ t

0
ω(s)g(s)ds

)p
dt ≤

(
p

1− c
)p ∫ ∞

0

ω(t)

c−p(t)
gp(t)dt, (30)

where (t) = ∫∞
t
ω(s)ds, p > 1 and 0 ≤ c < 1.

Theorem 4 If 1 < c ≤ p and p > c − 1, then

∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≤

(
p

c − 1

)p ∫ ∞

0

ω(t)

c−p(t)
gp(t)dαt, (31)

where

(t) :=
∫ ∞

t

ω(s)dαs and !(t) :=
∫ ∞

t

ω(s)g(s)dαs.

Proof Integrating the term

∫ ∞

0

ω(t)

c(t)
!p(t)dαt,

by parts formula (12) with

U(t) = !p(t), andV (t) = −
1−c(t)
1− c ,

and

DαU(t) = pt1−α!p−1(t)!
′
(t) and DαV (t) = ω(t)−c(t),

we obtain

∫ ∞

0

ω(t)

c(t)
!p(t)dαt=−!

p(t)1−c(t)
1−c

∣∣
∣∣

∞

0
+
∫ ∞

0

pt1−α!p−1(t)!
′
(t)1−c(t)

1−c dαt.

By using !
′
(t) = −tα−1ω(t)g(t),

!(0) <∞, !(∞) = 0, (0) <∞, (∞) = 0 and c > 1,
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and noting

lim
t→∞

1−c
p (t)!(t) = lim

t→∞

∫∞
t
sα−1 ω(s)g(s) ds

((t))
c−1
p

= lim
t→∞

−tα−1ω(t)g(t)

− c−1
p
((t))

c−1
p
−1
tα−1ω(t)

= lim
t→∞

p ((t))
1− c−1

p
g(t)

c − 1
= 0,

we get that
∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≤ p

c − 1

∫ ∞

0
t1−α!p−1(t)tα−1ω(t)g(t)1−c(t)dαt,

then

∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≤ p

c − 1

∫ ∞

0

ω(t)1−c(t)g(t)
(
ω(t)
c(t)

) p−1
p

(
ω(t)

c(t)

) p−1
p

!p−1(t)dαt.

(32)
Applying the Hölder inequality (13) on the right-hand side of (32) with indices p
and p/(p − 1), we see that

∫ ∞

0

ω(t)

c(t)
!p(t)dαt

≤ p

c − 1

⎛

⎝
∫ ∞

0

⎛

⎝ω(t)1−c(t)g(t)
(
ω(t)

c(t)

)− p−1
p

⎞

⎠

p

dαt

⎞

⎠

1
p

×

⎛

⎜⎜
⎝

∫ ∞

0

⎛

⎜
⎝
(
ω(t)

c(t)

) p−1
p

!p−1(t)

⎞

⎟
⎠

p
p−1

dαt

⎞

⎟⎟
⎠

p−1
p

= p

c − 1

(∫ ∞

0
ω(t)p−c(t)gp(t)dαt

) 1
p
(∫ ∞

0

ω(t)

c(t)
!p(t)dαt

) p−1
p

.

Thus

(∫ ∞

0

ω(t)

c(t)
!p(t)dαt

) 1
p ≤ p

c − 1

(∫ ∞

0
ω(t)p−c(t)gp(t)dαt

) 1
p

,
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and hence

∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≤

(
p

c − 1

)p ∫ ∞

0
ω(t)p−c(t)gp(t)dαt,

which is the desired inequality (31). The proof is complete ��
Remark 9 From the proof of Theorem 4 we see that if tα−1ω(t)g(t) and tα−1ω(t)

is continuous on [0,∞) replaced either by

(i) tα−1ω(t)g(t), tα−1ω(t) is continuous on (0,∞) and limt→∞ ((t))
1− c−1

p
g(t)

= 0, or
(ii) limt→∞1−c(t)!p(t) = 0,

then (31) is again true.

Remark 10 In Theorem 4 at α = 1, then we obtain the inequality

∫ ∞

0

ω(t)

c(t)

(∫ ∞

t

ω(s)g(s)ds

)p
dt ≤

(
p

c − 1

)p ∫ ∞

0

ω(t)

c−p(t)
gp(t)dt, (33)

where (t) = ∫∞
t
ω(s)ds, and 1 < c ≤ p.

4 Reversed Inequalities

In this section, we will prove some converses of inequalities and some generaliza-
tions and obtain the classical ones when α = 1.

Theorem 5 If 0 < p ≤ 1, then

∫ ∞

0
ω(t)T pg(t)dαt ≥ pp

∫ ∞

0
ω1−p(t)p(t)gp(t)dαt, (34)

where

(t) :=
∫ ∞

t

ω(s)dαs.

Proof Integrating the term
∫∞

0 ω(t)T pg(t)dαt by parts formula (12) with

U(t) = T pg(t) and V (t) = −(t),

and we obtain
∫ ∞

0
ω(t)T pg(t)dαt = −T pg(t)(t)

∣∣∞
0 +

∫ ∞

0
pt1−αT p−1g(t)T

′
g(t)(t)dαt.
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By using

T g(0) = 0, T g(∞) <∞, (0) <∞ and (∞) = 0,

and from (14), we have

T
′
g(t) = tα−1g(t),

and so we have
∫ ∞

0
ω(t)T pg(t)dαt = p

∫ ∞

0
t1−αT p−1g(t)tα−1g(t)(t)dαt,

then

∫ ∞

0
ω(t)T pg(t)dαt = p

∫ ∞

0

(
p(t)gp(t)

T p(1−p)g(t)

) 1
p

dαt,

which can be rewritten in the form

(∫ ∞

0
ω(t)T pg(t)dαt

)p
= pp

(∫ ∞

0

(
p(t)gp(t)

T p(1−p)g(t)

) 1
p

dαt

)p

. (35)

Applying Hölder’s inequality

∫ ∞

0
F(t)G(t)dαt ≤

(∫ ∞

0
Fu(t)dαt

) 1
u
(∫ ∞

0
Gv(t)dαt

) 1
v

,

with indices u = 1/p and v = 1/ (1− p) , and

F(t) = p(t)gp(t)

T p(1−p)g(t)
and G(t) = ω1−p(t)T p(1−p)g(t),

we see that

(∫ ∞

0
F

1
p (t)dαt

)p
=
(∫ ∞

0

(
p(t)gp(t)

T p(1−p)g(t)

) 1
p

dαt

)p

≥
∫∞

0 |F(t)G(t)| dαt
(∫∞

0 G
1

1−p (t)dαt
)1−p
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=
∫ ∞

0

p(t)gp(t)

T p(1−p)g(t)
ω1−p(t)T p(1−p)g(t)dαt

×
(∫ ∞

0

(
ω1−p(t)T p(1−p)g(t)

) 1
1−p

dαt

)p−1

,

and then

(∫ ∞

0

(
p(t)gp(t)

T p(1−p)g(t)

) 1
p

dαt

)p

≥
(∫ ∞

0
p(t)gp(t)ω1−p(t)dαt

)

×
(∫ ∞

0

(
ω(t)T pg(t)

)
dαt

)p−1

. (36)

Substituting (36) into (35), we have

(∫ ∞

0
ω(t)T pg(t)dαt

)p
≥ pp

∫∞
0 p(t)gp(t)ω1−p(t)dαt
(∫∞

0 (ω(t)T pg(t)) dαt
)1−p .

This implies that

∫ ∞

0
ω(t)T pg(t)dαt ≥ pp

∫ ∞

0
ω1−p(t)p(t)gp(t)dαt,

which is the desired inequality (34). The proof is complete. ��
Remark 11 In Theorem 5 if α = 1, then we obtain the inequality

∫ ∞

0
ω(t)

(∫ t

0
g(s)ds

)p
dt ≥ pp

∫ ∞

0
ω1−p(t)

(∫ ∞

t

ω(s)ds

)p
gp(t)dt,

(37)

Remark 12 In Theorem 5 if ω(t) = 1/tp and p > α, then we obtain the inequality

∫ ∞

0

(∫ t
0 g(s)dαs

t

)p
dαt ≥

(
p

p − α
)p ∫ ∞

0

(
tα−1g(t)

)p
dαt. (38)

which is the reversed Hardy inequality.

Remark 13 If α = 1 in (38) we obtain the reversed Hardy inequality for 0 < p ≤ 1

∫ ∞

0

(∫ t
0 g(s)ds

t

)p
dt ≥

(
p

p − 1

)p ∫ ∞

0
gp(t)dt. (39)
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Theorem 6 If 0 < p ≤ 1, then

∫ ∞

0
ω(t)T

∗p
g(t)dαt ≥ pp

∫ ∞

0
ω1−p(t)"p(t)gp(t)dαt, (40)

where

"(t) :=
∫ t

0
ω(s)dαs.

Proof Integrating the term
∫∞

0 ω(t)T
∗p
g(t)dαt by parts formula (12) with

U(t) = T
∗p
g(t), and V (t) = "(t),

and we obtain
∫ ∞

0
ω(t)T

∗p
g(t)dαt = T

∗p
g(t)"(t)

∣∣∣
∞
0
−
∫ ∞

0
pt1−αT ∗

p−1

g(t)T ∗′g(t)"(t)dαt.

By using

T
∗
g(0) <∞, T ∗g(∞) = 0, "(0) = 0 and "(∞) <∞,

and from (15), we get that

T ∗′g(t) = −tα−1g(t),

so we have
∫ ∞

0
ω(t)T

∗p
g(t)dαt = p

∫ ∞

0
t1−αT ∗

p−1

g(t)tα−1g(t)"(t)dαt,

then

∫ ∞

0
ω(t)T

∗p
g(t)dαt = p

∫ ∞

0

(
"p(t)gp(t)

T
∗p(1−p)

g(t)

) 1
p

dαt,

which can be rewritten in the form

(∫ ∞

0
ω(t)T

∗p
g(t)dαt

)p
= pp

⎛

⎝
∫ ∞

0

(
"p(t)gp(t)

T
∗p(1−p)

g(t)

) 1
p

dαt

⎞

⎠

p

. (41)
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Proceeding as in the proof of Theorem 5, we have that

∫ ∞

0
ω(t)T

∗p
g(t)dαt ≥ pp

∫ ∞

0
ω1−p(t)"p(t)gp(t)dαt,

which is the desired inequality (40). The proof is complete. ��
Remark 14 In Theorem 6, if α = 1, then we obtain the inequality

∫ ∞

0
ω(t)

(∫ ∞

t

g(s)ds

)p
dt ≥ pp

∫ ∞

0
ω1−p(t)

(∫ t

0
ω(s)ds

)p
gp(t)dt.

(42)

Remark 15 In Theorem 6 if ω(t) = 1 and p ≥ α, then we obtain the inequality

∫ ∞

0

(∫ ∞

t

g(s)dαs

)p
dαt ≥

(p
α

)p ∫ ∞

0

(
tαg(t)

)p
dαt,

since (p/α)p > 1, we have

∫ ∞

0

(∫ ∞

t

g(s)dαs

)p
dαt ≥

∫ ∞

0

(
tαg(t)

)p
dαt, (43)

which is the reversed Copson, inequality.

Remark 16 If α = 1 in (43), we obtain the reversed Copson inequality

∫ ∞

0

(∫ ∞

t

g(s)ds

)p
dt ≥

∫ ∞

0
(tg(t))p dt. (44)

Theorem 7 If c ≤ 0 < p < 1, then

∫ ∞

0

ω(t)

"c(t)
0p(t)dαt ≥

(
p

1− c
)p ∫ ∞

0

ω(t)

"c−p(t)
gp(t)dαt, (45)

where

(t) :=
∫ ∞

t

ω(s)dαs and 0(t) :=
∫ t

0
ω(s)g(s)dαs.

Proof Integrate by parts the term

∫ ∞

0

ω(t)

c(t)
0p(t)dαt,

with
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U(t) = 0p(t)−c(t), and V (t) = −(t),

and using

DαU(t) = t1−α
(
p0

p−1
(t)0

′
(t)−c(t)− c0p(t)−c−1(t)

′
(t)
)
,

we obtain
∫ ∞

0

ω(t)

c(t)
0p(t)dαt = −1−c(t)0p(t)

∣∣
∣
∞
0

+
∫ ∞

0
t1−α

(
p0

p−1
(t)0

′
(t)−c(t)− c0p(t)−c−1(t)

′
(t)
)
(t)dαt.

By using

0(0) = 0, 0(∞) <∞, (∞) = 0 and (0) <∞,

and since 0
′
(t) = tα−1ω(t)g(t), and 

′
(t) = −tα−1ω(t), we get that

∫ ∞

0

ω(t)

c(t)
0p(t)dαt = p

∫ ∞

0
ω(t)g(t)1−c(t)0p−1

(t)dαt

+ c
∫ ∞

0

0p(t)ω(t)

c(t)
dαt.

Then
∫ ∞

0

ω(t)

c(t)
0p(t)dαt = p

1− c
∫ ∞

0
ω(t)g(t)1−c(t)0p−1

(t)dαt,

which can be rewritten in the form

(∫ ∞

0

ω(t)

c(t)
0p(t)dαt

)p
=
(

p

1− c
)p (∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)0p(1−p)(t)

) 1
p

dαt

)p

.

Applying Hölder’s inequality

∫ ∞

0
F(t)G(t)dαt ≤

(∫ ∞

0
Fu(t)dαt

) 1
u
(∫ ∞

0
Gv(t)dαt

) 1
v

,

with indices u = 1/p and v = 1/ (1− p) , where

F(t) = (ω(t)g(t))p

p(c−1)(t)0p(1−p)(t)
and G(t) =

(
ω(t)

c(t)

)1−p
0
p(1−p)

(t),
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we get that

(∫ ∞

0
F

1
p (t)dαt

)p
=
(∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)0p(1−p)(t)

) 1
p

dαt,

)p

≥
∫∞

0 F(t)G(t)dαt
(∫∞

0 G
1

1−p (t)dαt
)1−p

=
∫ ∞

0

(ω(t)g(t))p

p(c−1)(t)0
p(1−p)

(t)

(
ω(t)

c(t)

)1−p
0
p(1−p)

(t)dαt

×
⎛

⎝
∫ ∞

0

((
ω(t)

c(t)

)1−p
0
p(1−p)

(t)

) 1
1−p

dαt

⎞

⎠

p−1

,

so

(∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)0p(1−p)(t)

) 1
p

dαt

)p

≥
(∫ ∞

0

ω(t)gp(t)

c−p(t)
dαt

)

×
(∫ ∞

0

(
ω(t)

c(t)

)
Fp(t)dαt

)p−1

,

then

(∫ ∞

0

ω(t)

c(t)
0p(t)dαt

)p
≥
(

p

1− c
)p (∫ ∞

0

ω(t)gp(t)

c−p(t)
dαt

)

×
(∫ ∞

0

(
ω(t)

c(t)

)
Fp(t)dαt

)p−1

.

Hence

∫ ∞

0

ω(t)

c(t)
0p(t)dαt ≥

(
p

1− c
)p ∫ ∞

0

ω(t)gp(t)

c−p(t)
dαt,

which is the desired inequality (45). The proof is complete. ��
Remark 17 In Theorem 7 if α = 1, then we obtain the inequality

∫ ∞

0

ω(t)

c(t)

(∫ t

0
ω(s)g(s)ds

)p
dt ≥

(
p

1− c
)p ∫ ∞

0

ω(t)

c−p(t)
gp(t)dt, (46)

where (t) = ∫∞
t
ω(s)ds and c ≤ 0 < p < 1.
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Theorem 8 If 0 < p < 1 < c and p < c − 1, then

∫ ∞

0

ω(t)

"c(t)
!p(t)dαt ≥

(
p

c − 1

)p ∫ ∞

0

ω(t)

"c−p(t)
gp(t)dαt, (47)

where

(t) :=
∫ ∞

t

ω(s)dαs and !(t) :=
∫ ∞

t

ω(s)g(s)dαs.

Proof Integrating the term

∫ ∞

0

ω(t)

c(t)
!p(t)dαt,

by parts formula (12) with

U(t) = !p(t) and V (t) = −
1−c(t)
1− c ,

and

DαU(t) = pt1−α!p−1(t)!
′
(t) and DαV (t) = ω(t)−c(t),

we obtain

∫ ∞

0

ω(t)

c(t)
!p(t)dαt = −!

p(t)1−c(t)
1− c

∣
∣∣∣

∞

0

+
∫ ∞

0

pt1−α!p−1(t)! ′(t)1−c(t)
1− c dαt.

By using !
′
(t) = −tα−1ω(t)g(t),

!(0) <∞, !(∞) = 0, (0) <∞, (∞) = 0 and c > 1,

and noting that

lim
t→∞(t)!

p
1−c (t) = lim

t→∞

∫∞
t
sα−1 ω(s) ds

(!(t))
p
c−1

= lim
t→∞

−tα−1ω(t)

− p
c−1 (!(t))

p
c−1−1 tα−1ω(t)g(t)
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= lim
t→∞

(c − 1) (!(t))
1− p

c−1

pg(t)
= 0.

we get that

∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≤ p

c − 1

∫ ∞

0
t1−α!p−1(t)tα−1ω(t)g(t)1−c(t)dαt.

Then
∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≤ p

c − 1

∫ ∞

0
ω(t)g(t)1−c(t)!p−1

(t)dαt,

which can be rewritten in the form

(∫ ∞

0

ω(t)

c(t)
!p(t)dαt

)p
=
(

p

c − 1

)p (∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)!p(1−p)(t)

) 1
p

dαt

)p

.

Applying Hölder’s inequality

∫ ∞

0
F(t)G(t)dαt ≤

(∫ ∞

0
Fu(t)dαt

) 1
u
(∫ ∞

0
Gv(t)dαt

) 1
v

with indices u = 1/p and v = 1/ (1− p) , where

F(t) = (ω(t)g(t))p

p(c−1)(t)!p(1−p)(t)
and G(t) =

(
ω(t)

c(t)

)1−p
!

p(1−p)
(t),

we get that

(∫ ∞

0
F

1
p (t)dαt

)p
=
(∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)!p(1−p)(t)

) 1
p

dαt,

)p

≥
∫∞

0 F(t)G(t)dαt
(∫∞

0 G
1

1−p (t)dαt
)1−p

=
∫ ∞

0

(ω(t)g(t))p

p(c−1)(t)!
p(1−p)

(t)

(
ω(t)

c(t)

)1−p
!

p(1−p)
(t)dαt

×
⎛

⎝
∫ ∞

0

((
ω(t)

c(t)

)1−p
!

p(1−p)
(t)

) 1
1−p

dαt

⎞

⎠

p−1

,
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this implies that

(∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)!p(1−p)(t)

) 1
p

dαt,

)p

≥
(∫ ∞

0

ω(t)gp(t)

c−p(t)
dαt

)

×
(∫ ∞

0

(
ω(t)

c(t)

)
Fp(t)dαt

)p−1

,

since we have

(∫ ∞

0

ω(t)

c(t)
!p(t)dαt

)p
=
(

p

c − 1

)p (∫ ∞

0

(
(ω(t)g(t))p

p(c−1)(t)!p(1−p)(t)

) 1
p

dαt,

)p

,

then

(∫ ∞

0

ω(t)

c(t)
!p(t)dαt

)p
≥
(

p

c − 1

)p (∫ ∞

0

ω(t)gp(t)

c−p(t)
dαt

)

×
(∫ ∞

0

(
ω(t)

c(t)

)
Fp(t)dαt

)p−1

.

Hence

∫ ∞

0

ω(t)

c(t)
!p(t)dαt ≥

(
p

c − 1

)p ∫ ∞

0

ω(t)gp(t)

c−p(t)
dαt,

which is the desired inequality (47). The proof is complete. ��
Remark 18 From the proof of Theorem 8 we see that if tα−1ω(t)g(t) and tα−1ω(t)

is continuous on [0,∞) replaced either by

(i) tα−1ω(t)g(t), tα−1ω(t) is continuous on (0,∞) and limt→∞ (!(t))
1− p

c−1

g(t)
= 0,

or
(ii) limt→∞1−c(t)!p(t) = 0,

then (47) is again true.

Remark 19 In Theorem 8, if α = 1, then we obtain the inequality

∫ ∞

0

ω(t)

c(t)

(∫ ∞

t

ω(s)g(s)ds

)p
dt ≥

(
p

c − 1

)p ∫ ∞

0

ω(t)

c−p(t)
gp(t)dt, (48)

where (t) = ∫∞
t
ω(s)ds and 0 < p < 1 < c.
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Inequalities for Symmetrized or
Anti-Symmetrized Inner Products
of Complex-Valued Functions Defined
on an Interval

Silvestru Sever Dragomir

Abstract For a function f : [a, b] → C we consider the symmetrical transform of
f on the interval [a, b] , denoted by f̆ , and defined by

f̆ (t) := 1

2
[f (t)+ f (a + b − t)] , t ∈ [a, b]

and the anti-symmetrical transform of f on the interval [a, b] denoted by f̃ and
defined by

f̃ := 1

2
[f (t)− f (a + b − t)] , t ∈ [a, b].

We consider in this paper the inner products

〈f, g〉1 :=
∫ b

a

f̆ (t) ğ (t)dt and 〈f, g〉∼ :=
∫ b

a

f̃ (t) g̃ (t)dt,

the corresponding norms and establish their fundamental properties. Some Schwarz
and Grüss’ type inequalities are also provided.

1 Introduction

For a function f : [a, b] → C we consider the symmetrical transform of f on the
interval [a, b] , denoted by f̆[a,b] or simply f̆ , when the interval [a, b] is implicit, as
defined by
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f̆ (t) := 1

2
[f (t)+ f (a + b − t)] , t ∈ [a, b] . (1)

The anti-symmetrical transform of f on the interval [a, b] is denoted by f̃[a,b], or
simply f̃ and is defined by

f̃ := 1

2
[f (t)− f (a + b − t)] , t ∈ [a, b] .

It is obvious that for any function f we have f̆ + f̃ = f. We observe that the
symmetrical and anti-symmetrical transforms are linear transforms, namely

(αf + βg)1 = αf̆ + βğ

and

(αf + βg)∼ = αf̃ + βg̃

for any functions f, g and any scalars α, β ∈ C.
We say that the function is symmetrical a.e. on the interval [a, b] if

f (t) = f (a + b − t) for almost every t ∈ [a, b]

and anti-symmetrical a.e. on the interval [a, b] if

f (t) = −f (a + b − t) for almost every t ∈ [a, b] .

We observe that if the function is (Lebesgue) integrable on [a, b], then by the change
of variable s = a + b − t, t ∈ [a, b] we have

∫ b

a

f̆ (t) dt = 1

2

[∫ b

a

f (t) dt +
∫ b

a

f (a + b − s) ds
]
=
∫ b

a

f (t) dt

and

∫ b

a

f̃ (t) dt = 1

2

[∫ b

a

f (t) dt −
∫ b

a

f (a + b − s) ds
]
= 0.

Assume that all functions below are measurable and the integrals involved are
finite, then by considering the functionals

〈f, g〉1 :=
∫ b

a

f̆ (t) ğ (t)dt and 〈f, g〉∼ :=
∫ b

a

f̃ (t) g̃ (t)dt
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we have

〈αf + βh, g〉1 = α 〈f, g〉1 + β 〈h, g〉1 , 〈g, f 〉1 = 〈f, g〉1
for any scalars α, β and

〈f, f 〉1 ≥ 0,

and the similar relations for the functional 〈·, ·〉∼ .
These show that the functionals 〈·, ·〉1 and 〈·, ·〉∼ are nonnegative Hermitian

forms. We also observe that if f̆ ∈ L2 [a, b] , the Hilbert space of Lebesgue square-
integrable functions on [a, b] and 〈f, f 〉1 = 0, then f must be anti-symmetrical
a.e. on the interval [a, b] . Also, if f̃ ∈ L2 [a, b] and 〈f, f 〉∼ = 0, then f must be
symmetrical a.e. on the interval [a, b].

We can define the equivalence relation ” 1 ” by f 1 g ⇔ f − g is anti-
symmetrical a.e. on the interval [a, b] . Similarly, we have the equivalence relation
” ∼ ” by f ∼ g⇔ f − g is symmetrical a.e. on the interval [a, b].

We define the linear space of measurable functions L12 [a, b] as the collections

of all ” 1 ”-classes of measurable functions for which
∫ b
a

∣∣∣f̆ (t)
∣∣∣
2
dt < ∞, and in

a similar way the space L∼2 [a, b] . In this situation 〈·, ·〉1 becomes a proper inner
product on L12 [a, b] and 〈·, ·〉∼ a proper inner product on L∼2 [a, b] . Therefore
‖·‖1 := 〈·, ·〉1/21 and ‖·‖∼ := 〈·, ·〉1/2∼ are norms on L12 [a, b] and L∼2 [a, b] ,
respectively.

In what follows we establish some fundamental properties for these inner
products. Some Schwarz and Grüss’ type inequalities are also provided. For recent
results in connection to Grüss’ inequality, see [1–12, 14–18, 20–27] and the
references therein.

2 Some Fundamental Properties

We have

Theorem 1 If f, g ∈ L2 [a, b] then f, g ∈ L12 [a, b], we have the representations

〈f, g〉1 =
1

2

[∫ b

a

f (t) g (t)+
∫ b

a

f (a + b − t) g (t)dt
]

(2)

= 1

2

[∫ b

a

f (t) g (t)+
∫ b

a

f (t) g (a + b − t)dt
]

=
∫ b

a

f (t) ğ (t)dt =
∫ b

a

f̆ (t) g (t)dt,



514 S. S. Dragomir

‖f ‖2
1 =

1

2

[∫ b

a

|f (t)|2 +
∫ b

a

f (t) f (a + b − t)dt
]

(3)

=
∫ b

a

f (t) f̆ (t)dt =
∫ b

a

f̆ (t) f (t)dt

and the inequalities

(
1

b − a
∫ b

a

|f (t)| dt
)2

(4)

≤ 1

2

[
1

b − a
∫ b

a

|f (t)|2 + 1

b − a
∫ b

a

f (t) f (a + b − t)dt
]

≤ 1

b − a
∫ b

a

|f (t)|2 ,

∣
∣∣∣

∫ b

a

f (t) g (t)+
∫ b

a

f (a + b − t) g (t)dt
∣
∣∣∣

2

(5)

≤
[∫ b

a

|f (t)|2 +
∫ b

a

f (t) f (a + b − t)dt
]

×
[∫ b

a

|g (t)|2 +
∫ b

a

g (t) g (a + b − t)dt
]
.

Proof We have by the definition of 〈·, ·〉1 that

〈f, g〉1 =
1

4

∫ b

a

[f (t)+ f (a + b − t)] [g (t)+ g (a + b − t)]dt (6)

= 1

4

∫ b

a

[
f (t) g (t)+ f (a + b − t) g (t)

+f (t) g (a + b − t)+ f (a + b − t) g (a + b − t)] dt

= 1

4

[∫ b

a

f (t) g (t)dt +
∫ b

a

f (a + b − t) g (t)dt

+
∫ b

a

f (t) g (a + b − t)dt +
∫ b

a

f (a + b − t) g (a + b − t)dt
]
,

for any f, g ∈ L2 [a, b] .
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Using the change of variable s = a + b − t, t ∈ [a, b] , we have

∫ b

a

f (t) g (a + b − t)dt =
∫ b

a

f (a + b − t) g (t)dt

and

∫ b

a

f (a + b − t) g (a + b − t)dt =
∫ b

a

f (t) g (t)dt

and by (6) we get the first equality in (2). The rest is obvious.
The equality (3) follows by (2) for g = f. Also, from (3) we observe that∫ b

a
f (t) f (a + b − t)dt is a real number for any f ∈ L2 [a, b] .
If f ∈ L2 [a, b] , then by Cauchy–Bunyakovsky–Schwarz inequality we have

‖f ‖2
1 =

1

4

∫ b

a

|f (t)+ f (a + b − t)|2 dt

≥ 1

4 (b − a)
∣∣
∣∣

∫ b

a

[f (t)+ f (a + b − t)] dt
∣∣
∣∣

2

= 1

4 (b − a)
∣
∣∣∣

∫ b

a

f (t) dt +
∫ b

a

f (a + b − t) dt
∣
∣∣∣

2

= 1

b − a
∣
∣∣∣

∫ b

a

f (t) dt

∣
∣∣∣

2

,

which proves the first inequality in (4).
If f ∈ L2 [a, b] , then by Cauchy–Bunyakovsky–Schwarz inequality we also

have

‖f ‖2
1 =

∫ b

a

f̆ (t) f (t)dt ≤
(∫ b

a

∣∣∣f̆ (t)
∣∣∣
2
dt

)1/2 (∫ b

a

|f (t)|2 dt
)1/2

= ‖f ‖1 ‖f ‖2 ,

which implies that ‖f ‖1 ≤ ‖f ‖2 that is equivalent to the second inequality in (4).
By the Schwarz inequality for the inner product 〈·, ·〉1 , namely

∣
∣〈f, g〉1

∣
∣2 ≤ ‖f ‖2

1 ‖g‖2
1 ,

and by employing (2) and (3) we obtain the desired result (5).

We have the corresponding result for L∼2 [a, b] .



516 S. S. Dragomir

Theorem 2 If f, g ∈ L2 [a, b] then f, g ∈ L∼2 [a, b], we have the representations

〈f, g〉∼ =
1

2

[∫ b

a

f (t) g (t)−
∫ b

a

f (a + b − t) g (t)dt
]

(7)

= 1

2

[∫ b

a

f (t) g (t)−
∫ b

a

f (t) g (a + b − t)dt
]

=
∫ b

a

f (t) g̃ (t)dt =
∫ b

a

f̃ (t) g (t)dt,

‖f ‖2∼ =
1

2

[∫ b

a

|f (t)|2 −
∫ b

a

f (t) f (a + b − t)dt
]

(8)

=
∫ b

a

f (t) f̃ (t)dt =
∫ b

a

f̃ (t) f (t)dt

and the inequalities

0 ≤ 1

2

[
1

b − a
∫ b

a

|f (t)|2 − 1

b − a
∫ b

a

f (t) f (a + b − t)dt
]

(9)

≤ 1

b − a
∫ b

a

|f (t)|2 ,

∣∣∣∣

∫ b

a

f (t) g (t)−
∫ b

a

f (a + b − t) g (t)dt
∣∣∣∣

2

(10)

≤
[∫ b

a

|f (t)|2 −
∫ b

a

f (t) f (a + b − t)dt
]

×
[∫ b

a

|g (t)|2 −
∫ b

a

g (t) g (a + b − t)dt
]
.

Proof If f ∈ L2 [a, b] then f ∈ L∼2 [a, b], we have the representations

〈f, g〉1 =
1

4

∫ b

a

[f (t)− f (a + b − t)] [g (t)− g (a + b − t)]dt

= 1

4

∫ b

a

[
f (t) g (t)− f (a + b − t) g (t)

−f (t) g (a + b − t)+ f (a + b − t) g (a + b − t)] dt
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= 1

4

[∫ b

a

f (t) g (t)dt −
∫ b

a

f (a + b − t) g (t)dt

−
∫ b

a

f (t) g (a + b − t)dt +
∫ b

a

f (a + b − t) g (a + b − t)dt
]

= 1

2

[∫ b

a

f (t) g (t)−
∫ b

a

f (a + b − t) g (t)dt
]

for any f, g ∈ L2 [a, b] .
The rest of the equality (7) and (8) follow from this equality.
As above, we observe that the integral

∫ b
a
f (t) f (a + b − t)dt is a real number

for any f ∈ L2 [a, b].
By Cauchy–Bunyakovsky–Schwarz integral inequality we have for f ∈ L2 [a, b]

that

∣∣∣∣

∫ b

a

f (t) f (a + b − t)dt
∣∣∣∣ ≤

(∫ b

a

|f (t)|2 dt
)1/2 (∫ b

a

∣∣f (a + b − t)∣∣2 dt
)1/2

=
∫ b

a

|f (t)|2 dt,

namely, since
∫ b
a
f (t) f (a + b − t)dt is real,

−
∫ b

a

|f (t)|2 dt ≤
∫ b

a

f (t) f (a + b − t)dt ≤
∫ b

a

|f (t)|2 dt,

which is equivalent to (9).
By the Schwarz inequality for the inner product 〈·, ·〉∼ , namely

∣∣〈f, g〉∼
∣∣2 ≤ ‖f ‖2∼ ‖g‖2∼ ,

for any f, g ∈ L2 [a, b] and the equalities (7) and (8) we get the desired result (10).

3 Inequalities for Bounded Functions

Now, for φ, Φ ∈ C and [a, b] an interval of real numbers, define the sets of complex-
valued functions (see for instance [19])

Ū[a,b] (φ,Φ)

:= {g : [a, b] → C|Re
[
(Φ − g (t)) (g (t)− φ)] ≥ 0 for almost every t ∈ [a, b]

}
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and

Δ̄[a,b] (φ,Φ) :=
{
g : [a, b] → C|

∣
∣∣
∣g (t)−

φ +Φ
2

∣
∣∣
∣ ≤

1

2
|Φ − φ| for a.e. t ∈ [a, b]

}
.

The following representation result may be stated.

Proposition 1 For any φ, Φ ∈ C, φ �= Φ, we have that Ū[a,b] (φ,Φ) and
Δ̄[a,b] (φ,Φ) are nonempty, convex, and closed sets and

Ū[a,b] (φ,Φ) = Δ̄[a,b] (φ,Φ) . (11)

Proof We observe that for any z ∈ C we have the equivalence
∣∣
∣∣z−

φ +Φ
2

∣∣
∣∣ ≤

1

2
|Φ − φ|

if and only if

Re
[
(Φ − z) (z̄− φ)] ≥ 0.

This follows by the equality

1

4
|Φ − φ|2 −

∣∣∣∣z−
φ +Φ

2

∣∣∣∣

2

= Re
[
(Φ − z) (z̄− φ)]

that holds for any z ∈ C.
The equality (11) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 1 For any φ, Φ ∈ C, φ �= Φ,we have that

Ū[a,b] (φ,Φ) = {g : [a, b] → C | (ReΦ − Re g (t)) (Re g (t)− Reφ) (12)

+ (ImΦ − Im g (t)) (Im g (t)− Imφ) ≥ 0 for a.e. t ∈ [a, b]} .

Now, if we assume that Re (Φ) ≥ Re (φ) and Im (Φ) ≥ Im (φ) , then we can
define the following set of functions as well:

S̄[a,b] (φ,Φ) := {g : [a, b] → C | Re (Φ) ≥ Re g (t) ≥ Re (φ) (13)

and Im (Φ) ≥ Im g (t) ≥ Im (φ) for a.e. t ∈ [a, b]} .

One can easily observe that S̄[a,b] (φ,Φ) is closed, convex, and

∅ �= S̄[a,b] (φ,Φ) ⊆ Ū[a,b] (φ,Φ) . (14)

We have the following Grüss’ type inequalities:
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Theorem 3 Let φ, Φ ∈ C, φ �= Φ and f ∈ Δ̄[a,b] (φ,Φ) , g ∈ L2 [a, b] . Then

∣
∣∣∣〈f, g〉1 −

φ +Φ
2

∫ b

a

g (t)dt

∣
∣∣∣ ≤

1

2
|Φ − φ|

∫ b

a

|ğ (t)| dt (15)

≤ 1

2
|Φ − φ|

∫ b

a

|g (t)| dt

and

∣∣〈f, g〉∼
∣∣ ≤ 1

2
|Φ − φ|

∫ b

a

|g̃ (t)| dt ≤ 1

2
|Φ − φ|

∫ b

a

|g (t)| dt. (16)

We also have
∣∣∣∣〈f, g〉1 −

1

b − a
∫ b

a

g (s)ds

∫ b

a

f (t) dt

∣∣∣∣ (17)

≤ 1

2
|Φ − φ|

∫ b

a

∣∣∣∣ğ (t)−
1

b − a
∫ b

a

g (s) ds

∣∣∣∣ dt

≤ 1

2
|Φ − φ|

∫ b

a

∣∣∣∣g (t)−
1

b − a
∫ b

a

g (s) ds

∣∣∣∣ dt.

Proof We have by (2) that

∫ b

a

(
f (t)− φ +Φ

2

)
ğ (t)dt =

∫ b

a

f (t) ğ (t)dt − φ +Φ
2

∫ b

a

ğ (t)dt (18)

= 〈f, g〉1 −
φ +Φ

2

∫ b

a

g (t)dt.

Taking the modulus in this equality, we have

∣∣∣∣〈f, g〉1 −
φ +Φ

2

∫ b

a

g (t)dt

∣∣∣∣ ≤
∫ b

a

∣∣∣∣f (t)−
φ +Φ

2

∣∣∣∣ |ğ (t)| dt

≤ 1

2
|Φ − φ|

∫ b

a

|ğ (t)| dt

= 1

4
|Φ − φ|

∫ b

a

|[g (t)+ g (a + b − t)]| dt

≤ 1

4
|Φ − φ|

∫ b

a

[|g (t)| + |g (a + b − t)|] dt

= 1

2
|Φ − φ|

∫ b

a

|g (t)| dt

and the inequality (15) is proved.
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We have by (7) that

∫ b

a

(
f (t)− φ +Φ

2

)
g̃ (t)dt =

∫ b

a

f (t) g̃ (t)dt − φ +Φ
2

∫ b

a

g̃ (t)dt (19)

=
∫ b

a

f (t) g̃ (t)dt = 〈f, g〉∼ .

Taking the modulus in this equality we have

∣∣∣∣

∫ b

a

f (t) g̃ (t)dt

∣∣∣∣ ≤
∫ b

a

∣∣∣∣f (t)−
φ +Φ

2

∣∣∣∣ |g̃ (t)| dt

≤ 1

2
|Φ − φ|

∫ b

a

|g̃ (t)| dt

= 1

4
|Φ − φ|

∫ b

a

|[g (t)− g (a + b − t)]| dt

≤ 1

4
|Φ − φ|

∫ b

a

[|g (t)| + |g (a + b − t)|] dt

= 1

2
|Φ − φ|

∫ b

a

|g (t)| dt

and the inequality (16) is obtained.
We also have

∫ b

a

(
f (t)− φ +Φ

2

)(
ğ (t)− 1

b − a
∫ b

a

g (s)ds

)
dt

=
∫ b

a

f (t)

(
ğ (t)− 1

b − a
∫ b

a

g (s)ds

)
dt

− φ +Φ
2

∫ b

a

(
ğ (t)− 1

b − a
∫ b

a

g (s)ds

)
dt

=
∫ b

a

f (t) ğ (t)dt − 1

b − a
∫ b

a

g (s)ds

∫ b

a

f (t) dt

− φ +Φ
2

∫ b

a

(
ğ (t)− 1

b − a
∫ b

a

g (s)ds

)
dt

=
∫ b

a

f (t) ğ (t)dt − 1

b − a
∫ b

a

g (s)ds

∫ b

a

f (t) dt

= 〈f, g〉1 −
1

b − a
∫ b

a

g (s)ds

∫ b

a

f (t) dt,
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which gives, by taking the modulus,

∣
∣∣∣〈f, g〉1 −

1

b − a
∫ b

a

g (s)ds

∫ b

a

f (t) dt

∣
∣∣∣

≤
∫ b

a

∣
∣∣∣f (t)−

φ +Φ
2

∣
∣∣∣

∣
∣∣∣ğ (t)−

1

b − a
∫ b

a

g (s)ds

∣
∣∣∣ dt

≤ 1

2
|Φ − φ|

∫ b

a

∣
∣∣∣ğ (t)−

1

b − a
∫ b

a

g (s) ds

∣
∣∣∣ dt

= 1

2
|Φ − φ|

∫ b

a

∣
∣∣∣
g (t)+ g (a + b − t)

2
− 1

b − a
∫ b

a

g (s) ds

∣
∣∣∣ dt

≤ 1

2
|Φ − φ|

∫ b

a

∣
∣∣∣g (t)−

1

b − a
∫ b

a

g (s) ds

∣
∣∣∣ dt

and the last inequality (17) is proved.

We have

Theorem 4 Let φ, Φ ∈ C, φ �= Φ and f ∈ Δ̄[a,b] (φ,Φ). If ψ̆, Ψ̆ ∈ C, ψ̆ �= Ψ̆

and ğ ∈ Δ̄[a,b]

(
ψ̆, Ψ̆

)
, then

∣∣∣
∣∣
〈f, g〉1 −

ψ̆ + Ψ̆
2

∫ b

a

f (t) dt − φ +Φ
2

∫ b

a

g (t)dt

+
(
φ +Φ

2

)(
ψ̆ + Ψ̆

2

)

(b − a)
∣∣∣
∣∣

≤ 1

4
|Φ − φ|

∣∣∣Ψ̆ − ψ̆
∣∣∣ (b − a) (20)

and

∣
∣∣∣〈f, g〉1 −

1

b − a
∫ b

a

g (s)ds

∫ b

a

f (t) dt

∣
∣∣∣ (21)

≤ 1

2
|Φ − φ| (b − a)

(
1

b − a
∫ b

a

|ğ (t)|2 −
∣∣∣∣

1

b − a
∫ b

a

g (t) dt

∣∣∣∣

2)1/2

≤ 1

4
|Φ − φ|

∣∣∣Ψ̆ − ψ̆
∣∣∣ (b − a) .
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If ψ̃, Ψ̃ ∈ C, ψ̃ �= Ψ̃ and g̃ ∈ Δ̄[a,b]

(
ψ̃, Ψ̃

)
, then

∣∣
∣∣∣
〈f, g〉∼ −

ψ̃ + Ψ̃
2

∫ b

a

f (t) dt

∣∣
∣∣∣
≤ 1

4
|Φ − φ|

∣
∣∣Ψ̃ − ψ̃

∣
∣∣ (b − a) . (22)

Proof We have by (18) that

∫ b

a

(
f (t)− φ +Φ

2

)(

ğ (t)− ψ̆ + Ψ̆
2

)

dt

=
∫ b

a

f (t)

(

ğ (t)− ψ̆ + Ψ̆
2

)

dt − φ +Φ
2

∫ b

a

(

ğ (t)− ψ̆ + Ψ̆
2

)

dt

=
∫ b

a

f (t) g̃ (t)dt − ψ̆ + Ψ̆
2

∫ b

a

f (t) dt

− φ +Φ
2

∫ b

a

ğ (t)dt +
(
φ +Φ

2

)(
ψ̆ + Ψ̆

2

)

= 〈f, g〉1 −
ψ̆ + Ψ̆

2

∫ b

a

f (t) dt − φ +Φ
2

∫ b

a

g (t)dt

+
(
φ +Φ

2

)(
ψ̆ + Ψ̆

2

)

(b − a) .

Taking the modulus in this equality, we have

∣∣∣∣∣
〈f, g〉1 −

ψ̆ + Ψ̆
2

∫ b

a

f (t) dt − φ +Φ
2

∫ b

a

g (t)dt +
(
φ +Φ

2

)(
ψ̆ + Ψ̆

2

)∣∣∣∣∣

≤
∫ b

a

∣
∣∣∣f (t)−

φ +Φ
2

∣
∣∣∣

∣∣
∣∣∣
ğ (t)− ψ̆ + Ψ̆

2

∣∣
∣∣∣
dt ≤ 1

4
|Φ − φ|

∣
∣∣Ψ̆ − ψ̆

∣
∣∣ (b − a) ,

which proves (20).
By the Schwarz and Grüss’ inequalities, see, for instance, [13], we have

1

b − a
∫ b

a

∣∣∣∣ğ (t)−
1

b − a
∫ b

a

g (s) ds

∣∣∣∣ dt

= 1

b − a
∫ b

a

∣∣∣∣ğ (t)−
1

b − a
∫ b

a

ğ (s) ds

∣∣∣∣ dt
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≤
(

1

b − a
∫ b

a

∣∣
∣∣ğ (t)−

1

b − a
∫ b

a

ğ (s) ds

∣∣
∣∣

2

dt

)1/2

=
(

1

b − a
∫ b

a

|ğ (t)|2 −
∣∣∣∣

1

b − a
∫ b

a

g (t) dt

∣∣∣∣

2)1/2

≤ 1

2

∣∣∣Ψ̆ − ψ̆
∣∣∣

and by (17) we get (21).
By (19) we have

∫ b

a

(
f (t)− φ +Φ

2

)(

g̃ (t)− ψ̃ + Ψ̃
2

)

dt

=
∫ b

a

f (t)

(

g̃ (t)− ψ̃ + Ψ̃
2

)

dt = 〈f, g〉∼ −
ψ̃ + Ψ̃

2

∫ b

a

f (t) .

By taking the modulus in this equality, we have

∣
∣∣∣∣
〈f, g〉∼ −

ψ̃ + Ψ̃
2

∫ b

a

f (t) dt

∣
∣∣∣∣
≤
∫ b

a

∣∣∣∣f (t)−
φ +Φ

2

∣∣∣∣

∣
∣∣∣∣
g̃ (t)− ψ̃ + Ψ̃

2

∣
∣∣∣∣
dt

≤ 1

4
|Φ − φ|

∣
∣∣Ψ̃ − ψ̃

∣
∣∣ (b − a)

and the inequality (22) is proved.

Remark 1 We observe that if φ, Φ ∈ R, φ < Φ and f is real-valued function, then
f ∈ Δ̄[a,b] (φ,Φ) is equivalent to

φ ≤ f (t) ≤ Φ for a.e. t ∈ [a, b] .

If ψ̆, Ψ̆ ∈ R, ψ̆ < Ψ̆ and g is real-valued function, then ğ ∈ Δ̄[a,b]

(
ψ̆, Ψ̆

)
is

equivalent to

ψ̆ ≤ 1

2
[g (t)+ g (a + b − t)] ≤ Ψ̆ for a.e. t ∈ [a, b] . (23)

If ψ, Ψ are real numbers so that ψ ≤ g (t) ≤ Ψ for a.e. t ∈ [a, b] , then

ψ ≤ 1

2
[g (t)+ g (a + b − t)] ≤ Ψ for a.e. t ∈ [a, b] . (24)

One can find examples of functions for which the bounds provided by (23) are
better than (24). For instance, if we consider the function f : [a, b] ⊂ (0,∞)→ R

given by g (t) = ln t, then we have
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ğ (t) = 1

2
[ln t + ln (a + b − t)] ,

(ğ (t))′ = 1

2

(
1

t
− 1

a + b − t
)
=

a+b
2 − t

t (a + b − t) , t ∈ (a, b)

and

(ğ (t))′′ = −1

2

(
1

t2
+ 1

(a + b − t)2
)
, t ∈ (a, b) .

These show that f̆ is strictly increasing on
(
a, a+b2

)
, strictly decreasing on

(
a+b

2 , b
)
,

and strictly concave on (a, b) . Therefore

ψ̆ := lnG(a, b) ≤ ğ (t) ≤ lnA (a, b) =: Ψ̆ for any t ∈ [a, b] , (25)

where G(a, b) := √
ab is the geometric mean and A (a, b) := 1

2 (a + b) is the
arithmetic mean of positive numbers a, b.

Since ψ := ln a ≤ ln t ≤ ln b =: Ψ, then by (24) we get

ψ ≤ ğ (t) ≤ Ψ for any t ∈ [a, b] . (26)

We observe that the bounds provided by (25) for ğ are better than (26).

4 The Case of One Function of Bounded Variation

For a function of bounded variation f : [a, b] → C we denote by
∨b
a (f ) its total

variation on [a, b] .

Theorem 5 Assume that f : [a, b] → C is of bounded variation g is integrable on
[a, b] . Then we have

∣∣
∣∣〈f, g〉1 −

f (a)+ f (b)
2

∫ b

a

g (t)dt

∣∣
∣∣ ≤

1

2

b∨

a

(f )

∫ b

a

|ğ (t)| dt (27)

≤ 1

2

b∨

a

(f )

∫ b

a

|g (t)| dt

and

∣∣〈f, g〉∼
∣∣ ≤ 1

2

b∨

a

(f )

∫ b

a

|g̃ (t)| dt ≤ 1

2

b∨

a

(f )

∫ b

a

|g (t)| dt. (28)
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Proof We have by (2) that

∫ b

a

(
f (t)− f (a)+ f (b)

2

)
ğ (t)dt =

∫ b

a

f (t) ğ (t)dt − f (a)+ f (b)
2

∫ b

a

ğ (t)dt

= 〈f, g〉1 −
f (a)+ f (b)

2

∫ b

a

g (t)dt.

Taking the modulus in this equality, we get

∣∣
∣∣〈f, g〉1 −

f (a)+ f (b)
2

∫ b

a

g (t)dt

∣∣
∣∣ ≤

∫ b

a

∣∣
∣∣f (t)−

f (a)+ f (b)
2

∣∣
∣∣ |ğ (t)| dt.

(29)
Observe that, for any t ∈ [a, b] we have

∣∣∣∣f (t)−
f (a)+ f (b)

2

∣∣∣∣ =
∣∣∣∣
f (t)− f (a)+ f (t)− f (b)

2

∣∣∣∣

≤ 1

2
[|f (t)− f (a)| + |f (b)− f (t)|] ≤ 1

2

b∨

a

(f )

and by (29) we get the first inequality in (27).
Since

∫ b

a

|ğ (t)| dt = 1

2

∫ b

a

|g (t)+ g (a + b − t)| dt

≤ 1

2

∫ b

a

[|g (t)| + |g (a + b − t)|] dt =
∫ b

a

|g (t)| dt,

the last part of (27) also holds.
We have by (7) that

∫ b

a

(
f (t)− f (a)+ f (b)

2

)
g̃ (t)dt =

∫ b

a

f (t) g̃ (t)dt − f (a)+ f (b)
2

∫ b

a

g̃ (t)dt

=
∫ b

a

f (t) g̃ (t)dt = 〈f, g〉∼ .

Taking the modulus in this equality, we get

∣∣〈f, g〉∼
∣∣ ≤

∫ b

a

∣∣∣
∣f (t)−

f (a)+ f (b)
2

∣∣∣
∣ |g̃ (t)| dt ≤

1

2

b∨

a

(f )

∫ b

a

|g̃ (t)| dt
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= 1

4

b∨

a

(f )

∫ b

a

|g (t)− g (a + b − t)| dt

≤ 1

4

b∨

a

(f )

∫ b

a

[|g (t)| + |g (a + b − t)|] dt = 1

2

b∨

a

(f )

∫ b

a

|g (t)| dt

and the inequality (28) is proved.

We say that the function h : [a, b] → R is H -r-Hölder continuous with the
constant H > 0 and power r ∈ (0, 1] if

|h (t)− h (s)| ≤ H |t − s|r (30)

for any t, s ∈ [a, b] . If r = 1 we call that h is L-Lipschitzian when H = L > 0.

Corollary 2 Assume that f : [a, b] → C is of bounded variation and g is H -r-
Hölder continuous with the constant H > 0 and power r ∈ (0, 1]. Then

∣
∣〈f, g〉∼

∣
∣ ≤ 1

4 (r + 1)
H

b∨

a

(f ) (b − a)r+1 . (31)

In particular, if L-Lipschitzian with L > 0, then

∣∣〈f, g〉∼
∣∣ ≤ 1

8
L

b∨

a

(f ) (b − a)2 . (32)

Proof Since g is H -r-Hölder continuous with the constant H > 0 and power r ∈
(0, 1], then

|g̃ (t)| = 1

2
|g (t)− g (a + b − t)| ≤ 1

2
H |2t − a − b|r

= 1

2
2rH

∣∣∣
∣t −

a + b
2

∣∣∣
∣

r

= 1

21−r H
∣∣∣
∣t −

a + b
2

∣∣∣
∣

r

,

which implies that

∫ b

a

|g̃ (t)| dt ≤ 1

21−r H
∫ b

a

∣∣∣
∣t −

a + b
2

∣∣∣
∣

r

dt = 1

21−r H
(b − a)r+1

2r (r + 1)

= 1

2 (r + 1)
H (b − a)r+1

and the inequality (31) is proved.
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5 The Case of One Hölder Continuous Function

We say that the function h : [a, b] → C is K-p-Hölder continuous in the middle
with the constant K > 0 and power p > 0 if

∣∣∣∣h (t)− h
(
a + b

2

)∣∣∣∣ ≤ K
∣∣∣∣t −

a + b
2

∣∣∣∣

p

(33)

for any t ∈ [a, b] . We observe that if h : [a, b] → C is H -r-Hölder continuous
with the constant H > 0 and power r ∈ (0, 1], then it is Hölder continuous in the
middle with the same constants H and r .

We define the following Lebesgue norms for a measurable function h : [a, b]
→ C

‖h‖∞ := essup
t∈[a,b]

|h (t)| <∞ if h ∈ L∞ [a, b]

and, for β ≥ 1,

‖h‖β :=
(∫ b

a

|h (t)|β dt
)1/β

<∞ if h ∈ Lβ [a, b] .

Theorem 6 Assume that f : [a, b] → C is K-p-Hölder continuous in the middle
with the constant K > 0 and power p > 0, and g is integrable on [a, b] . Then we
have

∣∣
∣∣〈f, g〉1 − f

(
a + b

2

)∫ b

a

g (t)dt

∣∣
∣∣ ≤ K

∫ b

a

∣∣
∣∣t −

a + b
2

∣∣
∣∣

p

|ğ (t)| dtt (34)

≤ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2p (b − a)p ‖ğ‖1 ,

1
2p(pα+1)1/α

(b − a)p+1/α ‖ğ‖β
where α, β > 1 with 1

α
+ 1

β
= 1,

1
2p(p+1) (b − a)p+1 ‖ğ‖∞ ,

≤ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2p (b − a)p ‖g‖1 ,

1
2p(pα+1)1/α

(b − a)p+1/α ‖g‖β
where α, β > 1 with 1

α
+ 1

β
= 1,

1
2p(p+1) (b − a)p+1 ‖g‖∞ ,
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and

∣∣〈f, g〉∼
∣∣ ≤ K

∫ b

a

∣∣∣
∣t −

a + b
2

∣∣∣
∣

p

|g̃ (t)| dt (35)

≤ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2p (b − a)p ‖g̃‖1 ,

1
2p(pα+1)1/α

(b − a)p+1/α ‖g̃‖β
where α, β > 1 with 1

α
+ 1

β
= 1,

1
2p(p+1) (b − a)p+1 ‖g̃‖∞ ,

≤ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2p (b − a)p ‖g‖1 ,

1
2p(pα+1)1/α

(b − a)p+1/α ‖g‖β
where α, β > 1 with 1

α
+ 1

β
= 1,

1
2p(p+1) (b − a)p+1 ‖g‖∞ .

Proof We have by (2) that

∫ b

a

(
f (t)− f

(
a + b

2

))
ğ (t)dt =

∫ b

a

f (t) ğ (t)dt − f
(
a + b

2

)∫ b

a

ğ (t)dt

= 〈f, g〉1 − f
(
a + b

2

)∫ b

a

g (t)dt.

Taking the modulus in this equality, we get

∣∣∣∣〈f, g〉1 − f
(
a + b

2

)∫ b

a

g (t)dt

∣∣∣∣ ≤
∫ b

a

∣∣∣∣f (t)− f
(
a + b

2

)∣∣∣∣ |ğ (t)| dt

≤ K

∫ b

a

∣∣∣∣t −
a + b

2

∣∣∣∣

p

|ğ (t)| dt.

By the Hölder’s integral inequality we have

∫ b

a

∣∣
∣∣t −

a + b
2

∣∣
∣∣

p

|ğ (t)| dt ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxt∈[a,b]
∣∣t − a+b

2

∣∣p ∫ b
a
|ğ (t)| dt,

(∫ b
a

∣
∣t − a+b

2

∣
∣pα dt

)1/α (∫ b
a
|ğ (t)|β dt

)1/β

where α, β > 1 with 1
α
+ 1

β
= 1,

∫ b
a

∣∣t − a+b
2

∣∣p dt essupt∈[a,b] |ğ (t)|
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2p (b − a)p ‖ğ‖1 ,

1
2p(pα+1)1/α

(b − a)p+1/α ‖ğ‖β
where α, β > 1 with 1

α
+ 1

β
= 1,

1
2p(p+1) (b − a)p+1 ‖ğ‖∞ ,

which proves the second inequality in (34).
By the triangle inequality for the Lebesgue norms we have

‖ğ‖β =
1

2
‖g + g (a + b − ·)‖β ≤

1

2

[‖g‖β + ‖g (a + b − ·)‖β
] = ‖g‖β ,

which proves the last part of (34).
We have by (7) that

∫ b

a

(
f (t)− f

(
a + b

2

))
g̃ (t)dt =

∫ b

a

f (t) g̃ (t)dt − f
(
a + b

2

)∫ b

a

g̃ (t)dt

=
∫ b

a

f (t) g̃ (t)dt = 〈f, g〉∼ .

Taking the modulus in this equality, we get

∣
∣〈f, g〉∼

∣
∣ ≤

∫ b

a

∣∣
∣∣f (t)− f

(
a + b

2

)∣∣
∣∣ |g̃ (t)| dt ≤ K

∫ b

a

∣∣
∣∣t −

a + b
2

∣∣
∣∣

p

|g̃ (t)| dt,

which proves the second inequality in (35).
The rest follows in a similar manner and the details are omitted.

Corollary 3 Assume that f : [a, b] → C is K-p-Hölder continuous in the middle
with the constant K > 0 and power p > 0, and g is H -r-Hölder continuous with
the constant H > 0 and power r ∈ (0, 1]. Then

∣
∣〈f, g〉∼

∣
∣ ≤ 1

2p+1 (p + r + 1)
HK (b − a)p+r+1 . (36)

In particular, if L-Lipschitzian with L > 0, then

∣∣〈f, g〉∼
∣∣ ≤ 1

2p+1 (p + 2)
LK (b − a)p+2 . (37)
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Proof From the first inequality in (35) we have

∣∣〈f, g〉∼
∣∣ ≤ K

∫ b

a

∣∣∣∣t −
a + b

2

∣∣∣∣

p

|g̃ (t)| dt ≤ 1

21−r HK
∫ b

a

∣∣∣∣t −
a + b

2

∣∣∣∣

p+r
dt

= 1

21−r HK
(b − a)p+r+1

2p+r (p + r + 1)
= 1

2p+1 (p + r + 1)
HK (b − a)p+r+1 ,

which proves (36).
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Generalized Finite Hilbert Transform
and Some Basic Inequalities

Silvestru Sever Dragomir

Abstract In this paper we consider a generalized finite Hilbert transform of
complex valued functions and establish some basic inequalities for several particular
classes of interest. Applications for some particular instances of finite Hilbert
transforms are given as well.

1 Introduction

Finite Hilbert transform on the open interval (a, b) is defined by

(Tf ) (a, b; t) := 1

π
PV

∫ b

a

f (τ )

τ − t dτ := lim
ε→0+

[∫ t−ε

a

+
∫ b

t+ε

]
f (τ)

π (τ − t)dτ
(1)

for t ∈ (a, b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [13, Section 3.2] or [17, Lemma II.1.1].

We say that the function f : [a, b] → R is α-H -Hölder continuous on (a, b), if

|f (t)− f (s)| ≤ H |t − s|α for all t, s ∈ (a, b) ,

where α ∈ (0, 1], H > 0.
The following theorem holds.

Theorem 1 (Dragomir et al., [1]) If f : [a, b] → R is α-H -Hölder continuous on
(a, b) , then we have the estimate
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∣∣∣∣(Tf ) (a, b; t)−
f (t)

π
ln

(
b − t
t − a

)∣∣∣∣ ≤
H

απ

[
(t − a)α + (b − t)α]

for all t ∈ (a, b).
The following two corollaries are natural.

Corollary 1 Let f : [a, b] → R be an L-Lipschitzian mapping on [a, b], i.e. f
satisfies the condition

|f (t)− f (s)| ≤ L |t − s| for all t, s ∈ [a, b] , (L > 0) .

Then we have the inequality

∣∣∣∣(Tf ) (a, b; t)−
f (t)

π
ln

(
b − t
t − a

)∣∣∣∣ ≤
L (b − a)

π

for all t ∈ (a, b).
Corollary 2 Let f : [a, b] → R be an absolutely continuous mapping on [a, b]. If
f ′ ∈ L∞ [a, b], then, for all t ∈ (a, b), we have

∣∣
∣∣(Tf ) (a, b; t)−

f (t)

π
ln

(
b − t
t − a

)∣∣
∣∣ ≤

∥∥f ′
∥∥∞ (b − a)
π

,

where
∥∥f ′
∥∥∞ = essupt∈(a,b)

∣∣f ′ (t)
∣∣ <∞.

We also have

Theorem 2 (Dragomir et al., [1]) Let f : [a, b] → R be a monotonic nondecreas-
ing (nonincreasing) function on [a, b]. If the finite Hilbert transform (Tf ) (a, b, ·)
exists in every t ∈ (a, b), then

(Tf ) (a, b; t) ≥ (≤) 1

π
f (t) ln

(
b − t
t − a

)

for all t ∈ (a, b).
The following result can be useful in practice.

Corollary 3 Let f : [a, b] → R and � : [a, b] → R, � (t) = t such that f − m�,
M� − f are monotonic nondecreasing, where m, M are given real numbers. If
(Tf ) (a, b, ·) exists in every point t ∈ (a, b), then we have the inequality

(b − a)m
π

≤ (Tf ) (a, b; t)− 1

π
f (t) ln

(
b − t
t − a

)
≤ (b − a)M

π
(2)

for all t ∈ (a, b).
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Remark 1 If the mapping is differentiable on (a, b), the condition that f − m�,
M�−f are monotonic nondecreasing is equivalent with the following more practical
condition

m ≤ f ′ (t) ≤ M for all t ∈ (a, b) .

From (2) we may deduce the following approximation result

∣∣∣
∣(Tf ) (a, b; t)−

1

π
f (t) ln

(
b − t
t − a

)
− M +m

2π
(b − a)

∣∣∣
∣ ≤

M −m
2π

(b − a) .

for all t ∈ (a, b).
For several recent papers devoted to inequalities for the finite Hilbert transform

(Tf ), see [2–10, 12, 14–16] and [18, 19].
We can naturally generalize the concept of Hilbert transform as follows.
For a continuous strictly increasing function g : [a, b] → [g (a) , g (b)] that is

differentiable on (a, b) we define the following generalization of the finite Hilbert
transform of a function f : (a, b)→ C by

(
Tgf

)
(a, b; t) := 1

π
PV

∫ b

a

f (τ ) g′ (τ )
g (τ )− g (t)dτ (3)

:= lim
ε→0+

[∫ t−ε

a

+
∫ b

t+ε

]
f (τ) g′ (τ )

π [g (τ)− g (t)]dτ

:= 1

π
lim
ε→0+

[∫ t−ε

a

f (τ ) g′ (τ )
g (τ )− g (t)dτ +

∫ b

t+ε
f (τ ) g′ (τ )
g (τ )− g (t)dτ

]

for t ∈ (a, b) , provided the above PV exists.
For [a, b] ⊂ (0,∞) and g (t) = ln t, t ∈ [a, b] we have

(Tlnf ) (a, b; t) := 1

π
lim
ε→0+

[∫ t−ε

a

f (τ )

τ ln
(
τ
t

)dτ +
∫ b

t+ε
f (τ )

τ ln
(
τ
t

)dτ

]

(4)

where t ∈ (a, b) .
For g (t) = exp (αt) , t ∈ [a, b] ⊂ R with α > 0 we have

(
Texp(α)f

)
(a, b; t) (5)

:= 1

π
lim
ε→0+

[∫ t−ε

a

f (τ ) exp (ατ)

exp (ατ)− exp (αt)
dτ +

∫ b

t+ε
f (τ ) exp (ατ)

exp (ατ)− exp (αt)
dτ

]

where t ∈ (a, b) .
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For [a, b] ⊂ (0,∞) and g (t) = t r , t ∈ [a, b] , r > 0, we have

(Trf ) (a, b; t) := r

π
lim
ε→0+

[∫ t−ε

a

f (τ ) τ r−1

τ r − t r dτ +
∫ b

t+ε
f (τ ) τ r−1

τ r − t r dτ

]
, (6)

where t ∈ (a, b) .
Similarly, we can consider the function g (t) = −t−p, t ∈ [a, b] ⊂ (0,∞) ,

p > 0, and then we have

(
T−pf

)
(a, b; t) := p

π
lim
ε→0+

[∫ t−ε

a

f (τ ) τ−p−1

t−p − τ−p dτ +
∫ b

t+ε
f (τ ) τ−p−1

t−p − τ−p dτ
]

(7)

= ptp

π
lim
ε→0+

[∫ t−ε

a

f (τ )

τ (τp − tp)dτ +
∫ b

t+ε
f (τ )

τ (τp − tp)dτ
]
,

where t ∈ (a, b) .
For [a, b] ⊂

[
− π

2ρ ,
π
2ρ

]
and g (t) = sin (ρt) , t ∈ [a, b] where ρ > 0, we have

(
Tsin(ρ)f

)
(a, b; t) (8)

:= ρ

π
lim
ε→0+

[∫ t−ε

a

f (τ ) cos (ρτ)

sin (ρτ)− sin (ρt)
dτ +

∫ b

t+ε
f (τ ) cos (ρτ)

sin (ρτ)− sin (ρt)
dτ

]

where t ∈ (a, b) .
For g (t) = sinh (σ t) , t ∈ [a, b] ⊂ R with σ > 0 we have

(
Tsinh(σ )f

)
(a, b; t) (9)

:= σ

π
lim
ε→0+

[∫ t−ε

a

f (τ ) cosh (στ)

sinh (στ)− sinh (σ t)
dτ +

∫ b

t+ε
f (τ ) cosh (στ)

sinh (στ)− sinh (σ t)
dτ

]

where t ∈ (a, b) .
Similar transforms can be associated to the following functions as well:

g (t) = tan (ρt) , t ∈ [a, b] ⊂
[
− π

2ρ
,
π

2ρ

]
where ρ > 0,

and

g (t) = tanh (σ t) , t ∈ [a, b] ⊂ R with σ > 0.

Motivated by the above facts, in this paper we consider the generalized finite
Hilbert transform

(
Tgf

)
(a, b; t) of complex valued functions f and establish some

basic inequalities for several particular classes of interest. Applications for some
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particular instances of finite Hilbert transforms as the one presented in (4)–(9) are
given as well.

2 Main Results

Consider the function 1 (t) = 1, t ∈ (a, b). We can state the following basic result:

Lemma 1 For a continuous strictly increasing function g : [a, b] → [g (a) , g (b)]
that is differentiable on (a, b) we have

(
Tg1
)
(a, b; t) = 1

π
ln

(
g (b)− g (t)
g (t)− g (a)

)
, t ∈ (a, b) . (10)

We also have for f : (a, b)→ C that

(
Tgf

)
(a, b; t) = 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
+ 1

π
PV

∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ
(11)

for t ∈ (a, b) , provided that the PV from the right-hand side of the equality (11)
exists.

Proof We have

(
Tg1
)
(a, b; t) = 1

π
lim
ε→0+

[∫ t−ε

a

g′ (τ )
g (τ )− g (t)dτ +

∫ b

t+ε
g′ (τ )

g (τ )− g (t)dτ
]

(12)

= 1

π
lim
ε→0+

[
ln |g (τ)− g (t)||t−εa + ln (g (τ )− g (t))|bt+ε

]

= 1

π
lim
ε→0+ [ln (g (t)− g (t − ε))− ln (g (t)− g (a))

+ ln (g (b)− g (t))− ln (g (t + ε)− g (t))]

= 1

π
ln

(
g (b)− g (t)
g (t)− g (a)

)
+ 1

π
lim
ε→0+ ln

(
g (t)− g (t − ε)
g (t + ε)− g (t)

)

for t ∈ (a, b) .
Since g is differentiable, we have

lim
ε→0+

g (t)− g (t − ε)
g (t + ε)− g (t) = lim

ε→0+

g(t)−g(t−ε)
ε

g(t+ε)−g(t)
ε

= g′ (t)
g′ (t)

= 1

for t ∈ (a, b) , and by (12) we get (10).
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From the definition (3) we have

(
Tgf

)
(a, b; t) := 1

π
PV

∫ b

a

(f (τ )− f (t)+ f (t)) g′ (τ )
g (τ )− g (t) dτ

= 1

π
PV

∫ b

a

(f (τ )− f (t)) g′ (τ ) dτ
g (τ)− g (t) + 1

π
PV

∫ b

a

f (t) g′ (τ ) dτ
g (τ)− g (t)

= 1

π
PV

∫ b

a

(f (τ )− f (t)) g′ (τ ) dτ
g (τ)− g (t) + 1

π
f (t) PV

∫ b

a

g′ (τ ) dτ
g (τ)− g (t)

= 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
+ 1

π
PV

∫ b

a

(f (τ )− f (t)) g′ (τ ) dτ
g (τ)− g (t)

for t ∈ (a, b) , which proves the identity (11).

The following result holds:

Theorem 3 Assume that g is as in Lemma 1 and f : [a, b] → R is continuous on
[a, b] and differentiable on (a, b) . If

∥∥∥
∥
f ′

g′

∥∥∥
∥
(a,b),∞

:= sup
s∈(a,b)

∣∣∣
∣
f ′ (s)
g′ (s)

∣∣∣
∣ <∞,

then
(
Tgf

)
(a, b; t) exists for all t ∈ (a, b) and

∣∣
∣∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)∣∣
∣∣ ≤

1

π

∥∥
∥∥
f ′

g′

∥∥
∥∥
(a,b),∞

[g (b)− g (a)]
(13)

for all t ∈ (a, b) .
Proof By Cauchy’s mean value theorem, for any t, τ ∈ (a, b) with t �= τ there
exists an s between t and τ such that

f (τ)− f (t)
g (τ )− g (t) =

f ′ (s)
g′ (s)

,

therefore for any t, τ ∈ (a, b) with t �= τ we have

∣∣
∣∣
f (τ)− f (t)
g (τ )− g (t)

∣∣
∣∣ ≤

∥∥
∥∥
f ′

g′

∥∥
∥∥
(a,b),∞

.

This implies that

∫ t−ε

a

∣∣
∣∣
f (τ)− f (t)
g (τ )− g (t)

∣∣
∣∣ g
′ (τ ) dτ ≤

∥∥
∥∥
f ′

g′

∥∥
∥∥
(a,b),∞

[g (t − ε)− g (a)]
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and

∫ b

t+ε

∣∣∣∣
f (τ)− f (t)
g (τ )− g (t)

∣∣∣∣ g
′ (τ ) dτ ≤

∥∥∥∥
f ′

g′

∥∥∥∥
(a,b),∞

[g (b)− g (t + ε)]

for t ∈ (a, b) and min {t − a, b − t} > ε > 0.
By the triangle inequality for the modulus and the fact that g′ (τ ) > 0 for t ∈

(a, b) , we have

∣∣∣∣

∫ t−ε

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ +
∫ b

t+ε
f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ
∣∣∣∣ (14)

≤
∫ t−ε

a

∣∣∣
∣
f (τ)− f (t)
g (τ )− g (t)

∣∣∣
∣ g
′ (τ ) dτ +

∫ b

t+ε

∣∣∣
∣
f (τ)− f (t)
g (τ )− g (t)

∣∣∣
∣ g
′ (τ ) dτ

≤
∥∥∥
∥
f ′

g′

∥∥∥
∥
(a,b),∞

[g (b)− g (t + ε)+ g (t − ε)− g (a)]

for t ∈ (a, b) and min {t − a, b − t} > ε > 0.
By taking the limit over ε→ 0+ in (14) we get

∣
∣∣∣PV

∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ
∣
∣∣∣ ≤

∥
∥∥∥
f ′

g′

∥
∥∥∥
(a,b),∞

[g (b)− g (a)] (15)

for t ∈ (a, b).
By utilizing the equality (11) we obtain from (15) the desired result (13).

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective, then we can define the g-mean of two numbers
a, b ∈ I as

Mg (a, b) := g−1
(
g (a)+ g (b)

2

)
.

If I = R and g (t) = t is the identity function, thenMg (a, b) = A (a, b) := a+b
2 ,

the arithmetic mean. If I = (0,∞) and g (t) = ln t, then Mg (a, b) = G(a, b) :=√
ab, the geometric mean. If I = (0,∞) and g (t) = 1

t
, then Mg (a, b) =

H (a, b) := 2ab
a+b , the harmonic mean. If I = (0,∞) and g (t) = tp, p �= 0,

then Mg (a, b) = Mp (a, b) :=
(
ap+bp

2

)1/p
, the power mean with exponent p.

Finally, if I = R and g (t) = exp t, then

Mg (a, b) = LME (a, b) := ln

(
exp a + exp b

2

)
,

the LogMeanExp function.
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Corollary 4 With the assumptions of Theorem 3, we have

∣∣(Tgf
) (
a, b;Mg (a, b)

)∣∣ ≤ 1

π

∥∥∥∥
f ′

g′

∥∥∥∥
(a,b),∞

[g (b)− g (a)] . (16)

We also have

Theorem 4 Let g : [a, b] → [g (a) , g (b)] be a strictly increasing function that is
differentiable on (a, b) and f : (a, b)→ C such that f ◦g−1 is ofH -r-Hölder type
on (g (a) , g (b)), where H > 0, r ∈ (0, 1], then

∣
∣∣∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)∣∣∣∣ (17)

≤ H

πr

[
(g (b)− g (t))r + (g (t)− g (a))r]

for t ∈ (a, b) .
In particular, in the Lipschitz case, we have for H = L that

∣∣
∣∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)∣∣
∣∣ ≤

L

πr
[g (b)− g (a)] (18)

for t ∈ (a, b) .
Proof For t ∈ (a, b) and min {t − a, b − t} > ε > 0 we have

∫ t−ε

a

∣
∣∣∣
f (τ)− f (t)
g (τ )− g (t)

∣
∣∣∣ g
′ (τ ) dτ =

∫ t−ε

a

∣
∣∣∣
f ◦ g−1 (g (τ ))− f ◦ g−1 (g (t))

g (τ )− g (t)
∣
∣∣∣ g
′ (τ ) dτ

≤ H
∫ t−ε

a

|g (τ)− g (t)|r
|g (τ)− g (t)| g

′ (τ ) dτ

= H

∫ t−ε

a

|g (τ)− g (t)|r−1 g′ (τ ) dτ

= H

∫ t−ε

a

(g (t)− g (τ))r−1 g′ (τ ) dτ

= H

r

[
(g (t)− g (a))r − (g (t)− g (t − ε))r]

and

∫ b

t+ε

∣∣∣∣
f (τ)− f (t)
g (τ )− g (t)

∣∣∣∣ g
′ (τ ) dτ =

∫ b

t+ε

∣∣∣∣
f ◦ g−1 (g (τ ))− f ◦ g−1 (g (t))

g (τ )− g (t)
∣∣∣∣ g
′ (τ ) dτ

≤ H
∫ b

t+ε
|g (τ)− g (t)|r
|g (τ)− g (t)| g

′ (τ ) dτ
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= H

∫ b

t+ε
|g (τ)− g (t)|r−1 g′ (τ ) dτ

= H

∫ b

t+ε
(g (τ )− g (t))r−1 g′ (τ ) dτ

= H

r

[
(g (b)− g (t))r − (g (t + ε)− g (t))r] .

By adding these two inequalities, we get

∫ t−ε

a

∣∣∣
∣
f (τ)− f (t)
g (τ )− g (t)

∣∣∣
∣ g
′ (τ ) dτ +

∫ b

t+ε

∣∣∣
∣
f (τ)− f (t)
g (τ )− g (t)

∣∣∣
∣ g
′ (τ ) dτ (19)

≤ H

r

[
(g (b)− g (t))r + (g (t)− g (a))r

− (g (t + ε)− g (t))r − (g (t)− g (t − ε))r]

for t ∈ (a, b) and min {t − a, b − t} > ε > 0.
By using the triangle inequality and taking the limit over ε→ 0+, we get

∣∣∣∣PV
∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ
∣∣∣∣ ≤

H

r

[
(g (b)− g (t))r + (g (t)− g (a))r]

for t ∈ (a, b).
Finally, by making use of the equality (11) we deduce the desired result (17).

Corollary 5 With the assumptions of Theorem 4, we have

∣∣(Tgf
) (
a, b;Mg (a, b)

)∣∣ ≤ H

2r−1πr
(g (b)− g (a))r . (20)

In particular, for r = 1, we get

∣∣(Tgf
) (
a, b;Mg (a, b)

)∣∣ ≤ L

π
(g (b)− g (a)) . (21)

For a function f : (a, b) → C and an injective function g : (a, b) → C we
define the divided difference

[f, g; t, s] := f (t)− f (s)
g (t)− g (s) for t, s ∈ (a, b) , t �= s.

Now, for γ , Γ ∈ C, γ �= Γ, an injective function g : (a, b) → C and (a, b) a
finite interval of real numbers, define the sets of complex-valued functions (see also
[11] for a similar definition):
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Ū(a,b),g,d (γ , Γ )

:=
{
f : (a, b)→ C |Re

[
(Γ − [f, g; t, s])

(
[f, g; t, s]− γ

)]
≥ 0,

for all t, s ∈ (a, b) , t �= s
}

(22)

and

Δ̄(a,b),g,d (γ , Γ ) :=
{
f : (a, b)→ C|

∣∣∣
∣[f, g; t, s]−

γ + Γ
2

∣∣∣
∣ ≤

1

2
|Γ − γ |

for all t, s ∈ (a, b) , t �= s
}
. (23)

The following representation result may be stated.

Proposition 1 For any γ , Γ ∈ C, γ �= Γ, we have that Ū(a,b),g,d (γ , Γ ) and
Δ̄(a,b),g,d (γ , Γ ) are nonempty, convex, and closed sets and

Ū(a,b),d (γ , Γ ) = Δ̄(a,b),d (γ , Γ ) . (24)

Proof We observe that for any z ∈ C we have the equivalence

∣∣∣∣z−
γ + Γ

2

∣∣∣∣ ≤
1

2
|Γ − γ |

if and only if

Re [(Γ − z) (z̄− γ̄ )] ≥ 0.

This follows by the equality

1

4
|Γ − γ |2 −

∣∣∣∣z−
γ + Γ

2

∣∣∣∣

2

= Re [(Γ − z) (z̄− γ̄ )]

that holds for any z ∈ C.
The equality (24) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 6 For any γ , Γ ∈ C, γ �= Γ, we have that

Ū(a,b),g,d (γ , Γ ) = {f : (a, b)→ C | (ReΓ − Re [f, g; t, s]) (Re [f, g; t, s]− Re γ )

+ (ImΓ − Im [f, g; t, s]) (Im [f, g; t, s]− Im γ ) ≥ 0 for all t, s ∈ (a, b) , t �= s} .
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Now, if we assume that Re (Γ ) ≥ Re (γ ) and Im (Γ ) ≥ Im (γ ) , then we can
define the following set of functions as well:

S̄(a,b),g,d (γ , Γ ) := {f : (a, b)→ C | Re (Γ ) ≥ Re [f, g; t, s] ≥ Re (γ )

and Im (Γ ) ≥ Im [f, g; t, s] ≥ Im (γ ) for all t, s ∈ (a, b) , t �= s} . (25)

One can easily observe that S̄(a,b)g,d (γ , Γ ) is closed, convex, and

∅ �= S̄(a,b),g,d (γ , Γ ) ⊆ Ū(a,b),g,d (γ , Γ ) . (26)

We have

Theorem 5 Let g : [a, b] → [g (a) , g (b)] be a strictly increasing function that
is differentiable on (a, b) and f : (a, b) → C such that f ∈ Δ̄(a,b),g,d (γ , Γ ) for
some γ , Γ ∈ C, γ �= Γ. Then we have

∣∣∣
∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− γ + Γ

2π
(g (b)− g (a))

∣∣∣
∣ (27)

≤ 1

2π
|Γ − γ | (g (b)− g (a))

for all t ∈ (a, b) .
Proof Since f ∈ Δ̄(a,b),d (γ , Γ ) it follows that

∣∣
∣∣f (t)− f (s)−

γ + Γ
2

(g (t)− g (s))
∣∣
∣∣ ≤

1

2
|Γ − γ | |g (t)− g (s)|

for any t, s ∈ (a, b) .
By the continuity of the modulus property, we have

|f (t)− f (s)| −
∣∣
∣∣
γ + Γ

2

∣∣
∣∣ |g (t)− g (s)| ≤

∣∣
∣∣f (t)− f (s)−

γ + Γ
2

(g (t)− g (s))
∣∣
∣∣

≤ 1

2
|Γ − γ | |g (t)− g (s)| ,

for any t, s ∈ (a, b) , which implies that

|f (t)− f (s)| ≤ 1

2
(|γ + Γ | + |Γ − γ |) |g (t)− g (s)|

for any t, s ∈ (a, b) . This can be written as
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∣∣∣f ◦ g−1 (g (t))− f ◦ g−1 (g (s))

∣∣∣ ≤ 1

2
(|γ + Γ | + |Γ − γ |) |g (t)− g (s)|

for any t, s ∈ (a, b), namely f ◦ g−1 is Lipschitzian with the constant
1
2 (|γ + Γ | + |Γ − γ |) on (g (a) , g (b)) .

Therefore the Cauchy Principal value

PV

∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ

exists (see [13, Section 3.2] or [17, Lemma II.1.1]) and we have

1

π
PV

∫ b

a

(
f (τ)− f (t)
g (τ )− g (t) −

γ + Γ
2

)
g′ (τ ) dτ (28)

= 1

π
PV

∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ − γ + Γ
2π

(g (b)− g (a))

= (Tgf
)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− γ + Γ

2π
(g (b)− g (a))

for any t ∈ (a, b) .
The following property of the Cauchy Principal Value follows by the properties

of integral, modulus, and limit,

∣∣∣∣PV
∫ b

a

A (t, s) ds

∣∣∣∣ ≤ PV
∫ b

a

|A (t, s)| ds, (29)

assuming that the PV s involved exist for all t ∈ (a, b).
Using the equality (28) and the property (29) we get

∣∣∣
∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− γ + Γ

2π
(g (b)− g (a))

∣∣∣
∣

≤ 1

π
PV

∫ b

a

∣∣∣
∣
f (τ)− f (t)
g (τ )− g (t) −

γ + Γ
2

∣∣∣
∣ g
′ (τ ) dτ ≤ 1

2π
|Γ − γ |

∫ b

a

g′ (τ ) dτ

= 1

2π
|Γ − γ | (g (b)− g (a))

for all t ∈ (a, b) and the inequality (27) is obtained.

Corollary 7 With the assumptions of Theorem 5 we have

∣∣∣∣
(
Tgf

) (
a, b;Mg (a, b)

)− γ + Γ
2π

(g (b)− g (a))
∣∣∣∣ ≤

1

2π
|Γ − γ | (g (b)− g (a)) .

(30)
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The case of monotonic functions f : (a, b)→ R provides the following simple
result:

Proposition 2 Let g : [a, b] → [g (a) , g (b)] be a strictly increasing function that
is differentiable on (a, b) and f : (a, b) → R a monotonic nondecreasing (non-
increasing) function so that the generalized finite Hilbert transform

(
Tgf

)
(a, b; t)

exists, then

(
Tgf

)
(a, b; t) ≥ (≤) 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
(31)

for any t ∈ (a, b) .
Proof The proof follows by the representation (11) on observing that if f :
(a, b)→ R is a monotonic nondecreasing (nonincreasing) function on (a, b) , then
for any t, τ ∈ (a, b) we have

f (τ)− f (t)
g (τ )− g (t) ≥ (≤) 0,

which implies that

PV

∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ ≥ (≤) 0

for any t ∈ (a, b) .
Corollary 8 Let g : [a, b] → [g (a) , g (b)] be a strictly increasing function that
is differentiable on (a, b) and f : (a, b) → R a function such that for some real
numbers m < M we have that f −mg and Mg − f are monotonic nondecreasing
on (a, b) . If the generalized finite Hilbert transform

(
Tgf

)
(a, b; t) exists, then we

have

m

π
(g (b)− g (a)) ≤ (Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
(32)

≤ M

π
(g (b)− g (a))

for any t ∈ (a, b) .
This can be also written as
∣∣∣∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− 1

2π
(M +m) (g (b)− g (a))

∣∣∣∣

(33)

≤ 1

2π
(M −m) (g (b)− g (a))

for any t ∈ (a, b) .
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Proof Applying proposition (31) for the monotonic nondecreasing function f −mg
we have

(
Tg (f −mg)

)
(a, b; t) (34)

≥ 1

π
(f (t)−mg (t)) ln

(
g (b)− g (t)
g (t)− g (a)

)

= 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
−m 1

π
g (t) ln

(
g (b)− g (t)
g (t)− g (a)

)

for all t ∈ (a, b) .
By the linearity of the generalized Hilbert transform we also have

(
Tg (f −mg)

)
(a, b; t) = (Tgf

)
(a, b; t)−m (Tgg

)
(a, b; t)

and by the identity (11) for f = g we get

(
Tgg
)
(a, b; t) = 1

π
g (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
+ 1

π
PV

∫ b

a

g (τ )− g (t)
g (τ )− g (t)g

′ (τ ) dτ

= 1

π
g (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
+ 1

π
(g (b)− g (a)) ,

which gives that

(
Tg (f −mg)

)
(a, b; t) (35)

= (Tgf
)
(a, b; t)− m

π
g (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− m

π
(g (b)− g (a))

for all t ∈ (a, b) .
On making use of (34) and (35) we get

(
Tgf

)
(a, b; t)− m

π
g (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− m

π
(g (b)− g (a))

≥ 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− m

π
g (t) ln

(
g (b)− g (t)
g (t)− g (a)

)

for all t ∈ (a, b) , which proves the first inequality in (32).
The second part follows in a similar way by considering the monotonic nonde-

creasing function Mg − f.
Remark 2 From (32) we get for t = a+b

2 that
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m

π
(g (b)− g (a)) ≤ (Tgf

)
(
a, b; a + b

2

)
≤ M

π
(g (b)− g (a)) , (36)

where f and g are as in Corollary 8.

Remark 3 If f and g are as in Corollary 8, then we observe that

m ≤ [f, g; t, s] = f (t)− f (s)
g (t)− g (s) ≤ M

for all t, s ∈ (a, b) with t �= s, then by (27) for Γ = M and γ = m we recapture
the inequality (33) as well.

Remark 4 We also observe that if f : (a, b)→ R is differentiable on (a, b) and

mg′ (t) ≤ f ′ (t) ≤ Mg′ (t) for all t ∈ (a, b) ,

then the inequality (32) holds.

3 Related Results

The following identity is of interest as well:

Lemma 2 Let g : [a, b] → [g (a) , g (b)] be a strictly increasing function that is
differentiable on (a, b) and f : (a, b)→ R a locally absolutely continuous function
on (a, b) , then

(
Tgf

)
(a, b; t) = 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)

+ 1

π
PV

∫ b

a

(∫ 1

0

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) ds

)

g′ (τ ) dτ (37)

for any t ∈ (a, b) .
Proof For an absolutely continuous function h : [c, d] → C and for x, y ∈ [c, d]
with x �= y we have

h (y)− h (x)
y − x =

∫ y
x
h′ (u) du
y − x .

If we use the change of variable u = (1− s) x + sy, s ∈ [0, 1] we have du =
(y − x) ds and then
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∫ y
x
h′ (u) du
y − x = (y − x) ∫ 1

0 h
′ ((1− s) x + sy) ds
y − x =

∫ 1

0
h′ ((1− s) x + sy) ds.

For t, τ ∈ (a, b) with t �= τ we then have

f (τ)− f (t)
g (τ )− g (t) =

f ◦ g−1 (g (τ ))− f ◦ g−1 (g (t))

g (τ )− g (t)

=
∫ 1

0

(
f ◦ g−1

)′
((1− s) g (τ )+ sg (t)) ds.

For z ∈ (g (a) , g (b)) we have

(
f ◦ g−1

)′
(z) =

(
f ′ ◦ g−1

)
(z)
(
g−1
)′
(z) =

(
f ′ ◦ g−1

)
(z)

(
g′ ◦ g−1

)
(z)

and therefore

∫ 1

0

(
f ◦ g−1

)′
((1− s) g (τ )+ sg (t)) ds =

∫ 1

0

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) ds

for t, τ ∈ (a, b) with t �= τ .

This implies that

PV

∫ b

a

f (τ )− f (t)
g (τ )− g (t) g

′ (τ ) dτ

= PV

∫ b

a

(∫ 1

0

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) ds

)

g′ (τ ) dτ

for t ∈ (a, b) and by the equality (11) we deduce (37).

Now, for ϕ, Φ ∈ C and [a, b] an interval of real numbers, define the sets of
complex-valued functions

Ū[a,b] (ϕ,Φ) :=
{
g : [a, b] → C|Re

[
(Φ − g (t)) (g (t)− ϕ)] ≥ 0 for a.e. t ∈ [a, b]

}

and

Δ̄[a,b] (ϕ,Φ) :=
{
g : [a, b] → C|

∣∣∣∣g (t)−
ϕ +Φ

2

∣∣∣∣ ≤
1

2
|Φ − ϕ| for a.e. t ∈ [a, b]

}
.

The following representation result may be stated.
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Proposition 3 For any ϕ, Φ ∈ C, ϕ �= Φ, we have that Ū[a,b] (ϕ,Φ) and
Δ̄[a,b] (ϕ,Φ) are nonempty, convex, and closed sets and

Ū[a,b] (ϕ,Φ) = Δ̄[a,b] (ϕ,Φ) . (38)

The proof is as in Proposition 1.

Corollary 9 For any ϕ, Φ ∈ C, ϕ �= Φ,we have that

Ū[a,b] (ϕ,Φ) = {g : [a, b] → C | (ReΦ − Re g (t)) (Re g (t)− Reϕ) (39)

+ (ImΦ − Im g (t)) (Im g (t)− Imϕ) ≥ 0 for a.e. t ∈ [a, b]} .

Now, if we assume that Re (Φ) ≥ Re (ϕ) and Im (Φ) ≥ Im (ϕ) , then we can
define the following set of functions as well:

S̄[a,b] (ϕ,Φ) := {g : [a, b] → C | Re (Φ) ≥ Re g (t) ≥ Re (ϕ) (40)

and Im (Φ) ≥ Im g (t) ≥ Im (ϕ) for a.e. t ∈ [a, b]} .

One can easily observe that S̄[a,b] (ϕ,Φ) is closed, convex, and

∅ �= S̄[a,b] (ϕ,Φ) ⊆ Ū[a,b] (ϕ,Φ) . (41)

Theorem 6 Let g : [a, b] → [g (a) , g (b)] be a strictly increasing function that is
differentiable on (a, b) and f : (a, b)→ R a locally absolutely continuous function
on (a, b) . Assume that there exists ϕ, Φ ∈ C, ϕ �= Φ, such that f

′
g′ ∈ Δ̄[a,b] (ϕ,Φ) ,

then we have
∣
∣∣∣
(
Tgf

)
(a, b; t)− 1

π
f (t) ln

(
g (b)− g (t)
g (t)− g (a)

)
− ϕ +Φ

2π
(g (b)− g (a))

∣
∣∣∣ (42)

≤ 1

2π
|Φ − ϕ| (g (b)− g (a))

for all t ∈ (a, b) .
Proof Let t, τ ∈ (a, b) with t �= τ . Since f ′

g′ ∈ Δ̄[a,b] (ϕ,Φ), hence

∣∣∣∣∣

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) −

ϕ +Φ
2

∣∣∣∣∣
≤ 1

2
|Φ − ϕ|

for a.e. s ∈ [0, 1] .
Taking the integral over s in this inequality, we get
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∣∣∣∣∣

∫ 1

0

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) ds −

ϕ +Φ
2

∣∣∣∣∣

≤
∫ 1

0

∣∣
∣∣∣

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) −

ϕ +Φ
2

∣∣
∣∣∣
ds ≤ 1

2
|Φ − ϕ|

for t, τ ∈ (a, b) with t �= τ .

Using the property (29) we get

∣∣∣∣∣
PV

∫ b

a

(∫ 1

0

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) ds

)

g′ (τ ) dτ

−ϕ +Φ
2

(g (b)− g (a))
∣∣
∣∣

≤ PV
∫ b

a

∣∣∣∣
∣

∫ 1

0

(
f ′ ◦ g−1

)
((1− s) g (τ )+ sg (t))

(
g′ ◦ g−1

)
((1− s) g (τ )+ sg (t)) ds −

ϕ +Φ
2

∣∣∣∣
∣
g′ (τ ) dτ

≤ 1

2
|Φ − ϕ| (g (b)− g (a))

for t ∈ (a, b) , and by the equality (37) we deduce the desired result (42).

4 Examples

Consider the following logarithmic finite Hilbert transform

(Tlnf ) (a, b; t) := 1

π
lim
ε→0+

[∫ t−ε

a

f (τ )

τ ln
(
τ
t

)dτ +
∫ b

t+ε
f (τ )

τ ln
(
τ
t

)dτ

]

(43)

where t ∈ (a, b) ⊂ (0,∞) .
If we assume that if f : (a, b)→ R is differentiable on (a, b) and

m

t
≤ f ′ (t) ≤ M

t
for all t ∈ (a, b) , (44)

then by Remark 4 we have

m

π
ln

(
b

a

)
≤ (Tlnf ) (a, b; t)− 1

π
f (t) ln

(
ln
(
b
t

)

ln
(
t
a

)

)

≤ M

π
ln

(
b

a

)
(45)

for all t ∈ (a, b) .
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In particular, we have

m

π
ln

(
b

a

)
≤ (Tlnf ) (a, b;G(a, b)) ≤ M

π
ln

(
b

a

)
, (46)

where G(a, b) := √ab is the geometric mean of a, b > 0.
This inequality can be extended for complex functions as follows: if f : (a, b)→

C is locally absolutely continuous on (a, b) and there exist the complex numbers ϕ,
Φ ∈ C, ϕ �= Φ such that

∣
∣∣∣tf

′ (t)− ϕ +Φ
2

∣
∣∣∣ ≤

1

2
|Φ − ϕ| for a.e. t ∈ [a, b] , (47)

then
∣∣∣∣∣
(Tlnf ) (a, b; t)− 1

π
f (t) ln

(
ln
(
b
t

)

ln
(
t
a

)

)

− ϕ +Φ
2π

ln

(
b

a

)∣∣∣∣∣
(48)

≤ 1

2π
|Φ − ϕ| ln

(
b

a

)

for all t ∈ (a, b) .
In particular, we have

∣
∣∣∣(Tlnf ) (a, b;G(a, b))− ϕ +Φ

2π
ln

(
b

a

)∣∣∣∣ ≤
1

2π
|Φ − ϕ| ln

(
b

a

)
. (49)

Now, observe that the fact that f ◦ exp is of H -r-Hölder type on (ln a, ln b),
where H > 0, r ∈ (0, 1] and (a, b) ⊂ (0,∞) , is equivalent to the inequality

|f (t)− f (s)| ≤ H |ln t − ln s|r for all t, s ∈ (a, b) ,

then by (17) we get

∣∣∣∣∣
(Tlnf ) (a, b; t)− 1

π
f (t) ln

(
ln
(
b
t

)

ln
(
t
a

)

)∣∣∣∣∣
≤ H

πr

[(
ln

(
b

t

))r
+
(

ln

(
t

a

))r]

(50)
for all t ∈ (a, b) .

In particular, we have

∣∣(Tgf
)
(a, b;G(a, b))∣∣ ≤ H

2r−1πr

(
ln

(
b

a

))r
. (51)
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Consider the exponential finite Hilbert transform

(
Texp(α)f

)
(a, b; t) (52)

:= 1

π
lim
ε→0+

[∫ t−ε

a

f (τ ) exp (ατ)

exp (ατ)− exp (αt)
dτ +

∫ b

t+ε
f (τ ) exp (ατ)

exp (ατ)− exp (αt)
dτ

]

= 1

π
exp (−αt)

× lim
ε→0+

[∫ t−ε

a

f (τ ) exp (α (τ − t))
exp (α (τ − t))− 1

dτ +
∫ b

t+ε
f (τ ) exp (α (τ − t))
exp (α (τ − t))− 1

dτ

]

where t ∈ (a, b) ⊂ R.

If we assume that if f : (a, b)→ R is differentiable on (a, b) and

n exp (αt) ≤ f ′ (t) ≤ N exp (αt) for all t ∈ (a, b) ,

then by applying Remark 4 for m = n
α
, M = N

α
we have

n

πα
(exp (αb)− exp (αa)) (53)

≤ (Texp(α)f
)
(a, b; t)− 1

π
f (t) ln

(
exp (αb)− exp (αt)

exp (αt)− exp (αa)

)

≤ N

πα
(exp (αb)− exp (αa))

for any t ∈ (a, b) .
If we take in (53)

t = LMEα (a, b) := ln

(
exp (αa)+ exp (αb)

2

)1/α

,

then we get

n

πα
(exp (αb)− exp (αa)) ≤ (Texp(α)f

)
(a, b;LMEα (a, b)) (54)

≤ N

πα
(exp (αb)− exp (αa)) .

This inequality can be extended for complex functions as follows: if f : (a, b)→
C is locally absolutely continuous on (a, b) and there exist the complex numbers ϕ,
Φ ∈ C, ϕ �= Φ such that

∣∣∣∣
f ′ (t)

exp (αt)
− ϕ +Φ

2

∣∣∣∣ ≤
1

2
|Φ − ϕ| for a.e. t ∈ [a, b] ,
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then

∣∣∣∣
(
Texp(α)f

)
(a, b; t)− 1

π
f (t) ln

(
exp (αb)− exp (αt)

exp (αt)− exp (αa)

)

−ϕ +Φ
2πα

(exp (αb)− exp (αa))

∣∣
∣∣

≤ 1

2πα
|Φ − ϕ| (exp (αb)− exp (αa)) (55)

for any t ∈ (a, b) .
In particular, we get

∣∣∣∣
(
Texp(α)f

)
(a, b;LMEα (a, b))− ϕ +Φ

2πα
(exp (αb)− exp (αa))

∣∣∣∣ (56)

≤ 1

2πα
|Φ − ϕ| (exp (αb)− exp (αa)) .

Now, observe that the fact that f ◦
(

1
α

ln
)

is of H -r-Hölder type on

(exp (αa) , exp (αb)), where H > 0, r ∈ (0, 1] and (a, b) ⊂ R, is equivalent
to the inequality

|f (t)− f (s)| ≤ H |exp (αt)− exp (αs)|r for all t, s ∈ (a, b) , (57)

then by the inequality (17) we get

∣
∣∣∣
(
Texp(α)f

)
(a, b; t)− 1

π
f (t) ln

(
exp (αb)− exp (αt)

exp (αt)− exp (αa)

)∣∣∣∣ (58)

≤ H

πr

[
(exp (αb)− exp (αt))r + (exp (αt)− exp (αa))r

]

for any t ∈ (a, b) .
In particular, we have

∣∣(Texp(α)f
)
(a, b;LMEα (a, b))

∣∣ ≤ H

2r−1πr
(exp (αb)− exp (αa))r . (59)

For [a, b] ⊂ (0,∞) and g (t) = t r , t ∈ [a, b] , r > 0, we consider the positive
r-power Hilbert transform

(Trf ) (a, b; t) := r

π
lim
ε→0+

[∫ t−ε

a

f (τ ) τ r−1

τ r − t r dτ +
∫ b

t+ε
f (τ ) τ r−1

τ r − t r dτ

]
, (60)

where t ∈ (a, b) .
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If f : (a, b)→ R is differentiable on (a, b) and

mtr−1 ≤ f ′ (t) ≤ Mtr−1 for all t ∈ (a, b) , (61)

then by 32

m

πr

(
br − ar) ≤ (Trf ) (a, b; t)− 1

π
f (t) ln

(
br − t r
t r − ar

)
≤ M

πr

(
br − ar) (62)

for all t ∈ (a, b) ⊂ (0,∞) .
In particular, we have

m

πr

(
br − ar) ≤ (Trf ) (a, b;Mr (a, b)) ≤ M

πr

(
br − ar) (63)

where Mr (a, b) :=
(
ar+br

2

)1/r

Also, if f : (a, b)→ C is locally absolutely continuous on (a, b) and there exist
the complex numbers ϕ, Φ ∈ C, ϕ �= Φ such that

∣∣
∣∣
f ′ (t)
tr−1

− ϕ +Φ
2

∣∣
∣∣ ≤

1

2
|Φ − ϕ| for a.e. t ∈ [a, b] , (64)

then
∣∣
∣∣(Trf ) (a, b; t)−

1

π
f (t) ln

(
br − t r
t r − ar

)
− ϕ +Φ

2πr

(
br − ar)

∣∣
∣∣ (65)

≤ 1

2πr
|Φ − ϕ| (br − ar)

for all t ∈ (a, b) ⊂ (0,∞) .
In particular, we have

∣∣∣∣(Trf ) (a, b;Mr (a, b))− ϕ +Φ
2πr

(
br − ar)

∣∣∣∣ ≤
1

2πr
|Φ − ϕ| (br − ar) . (66)

The function f ◦ (·)1/r is of H -s-Hölder type on (ar , br ), where H > 0, s ∈
(0, 1], is equivalent to

|f (t)− f (u)| ≤ H ∣∣t r − ur ∣∣s for all t, u ∈ (a, b) ,

then by (17) we have

∣
∣∣∣(Trf ) (a, b; t)−

1

π
f (t) ln

(
br − t r
t r − ar

)∣∣∣∣ ≤
H

πs

[(
br − t r)s + (t r − ar)s] (67)

for all t ∈ (a, b) ⊂ (0,∞) .
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In particular,

|(Trf ) (a, b;Mr (a, b))| ≤ H

2s−1πs

(
br − ar)s . (68)

The case r = 1 provides the corresponding results for the regular Hilbert
transform, see [1].

Similarly, we can consider the negative p-power Hilbert transform

(
T−pf

)
(a, b; t) := ptp

π
lim
ε→0+

[∫ t−ε

a

f (τ )

τ (τp − tp)dτ +
∫ b

t+ε
f (τ )

τ (τp − tp)dτ
]
,

(69)
for [a, b] ⊂ (0,∞) and p > 0.

If f : (a, b)→ R is differentiable on (a, b) and

m ≤ tp+1f ′ (t) ≤ M for all t ∈ (a, b) , (70)

then by (32) we have

m

πp

(
bp − ap
apbp

)
≤ (T−pf

)
(a, b; t)− 1

π
f (t) ln

(
(bp − tp) ap
bp (tp − ap)

)
(71)

≤ M

πp

(
bp − ap
apbp

)

for all t ∈ (a, b) .
In particular,

m

πp

(
bp − ap
apbp

)
≤ (T−pf

) (
a, b;M−p (a, b)

)− 1

π
f (t) ln

(
(bp − tp) ap
bp (tp − ap)

)

(72)

≤ M

πp

(
bp − ap
apbp

)

where M−p (a, b) :=
(
a−p+b−p

2

)−1/p
.

The case p = 1 is of interest, since in this case

(T−1f ) (a, b; t) := t

π
lim
ε→0+

[∫ t−ε

a

f (τ )

τ (τ − t)dτ +
∫ b

t+ε
f (τ )

τ (τ − t)dτ
]
, (73)

and if

m ≤ t2f ′ (t) ≤ M for all t ∈ (a, b) , (74)
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then

m

π

(
b − a
ab

)
≤ (T−1f ) (a, b; t)− 1

π
f (t) ln

(
(b − t) a
b (t − a)

)
≤ M

π

(
b − a
ab

)
(75)

for all t ∈ (a, b) .
In particular, we have

m

π

(
b − a
ab

)
≤ (T−1f ) (a, b;H (a, b)) ≤ M

π

(
b − a
ab

)
(76)

where H (a, b) := 2ab
a+b is the harmonic mean of a, b > 0.

Also, if f : (a, b)→ C is locally absolutely continuous on (a, b) and there exist
the complex numbers ϕ, Φ ∈ C, ϕ �= Φ such that

∣∣∣∣t
2f ′ (t)− ϕ +Φ

2

∣∣∣∣ ≤
1

2
|Φ − ϕ| for a.e. t ∈ [a, b] , (77)

then
∣∣∣∣(T−1f ) (a, b; t)− 1

π
f (t) ln

(
(b − t) a
b (t − a)

)
− γ + Γ

2π

(
b − a
ab

)∣∣∣∣ (78)

≤ 1

2π
|Γ − γ |

(
b − a
ab

)

for all t ∈ (a, b) .
In particular, we have

∣
∣∣∣(T−1f ) (a, b;H (a, b))− γ + Γ

2π

(
b − a
ab

)∣∣∣∣ ≤
1

2π
|Γ − γ |

(
b − a
ab

)
. (79)

The fact that f ◦ [− (·)−1] is of H -s-Hölder type on
(
− 1
a
,− 1

b

)
, where K >

0, s ∈ (0, 1], is equivalent to

|f (t)− f (u)| ≤ K
∣∣∣∣
t − u
tu

∣∣∣∣

s

for all t, u ∈ (a, b) ,

then by (17) we have

∣
∣∣∣(T−1f ) (a, b; t)− 1

π
f (t) ln

(
(b − t) a
b (t − a)

)∣∣∣∣ ≤
K

πs

[(
b − t
bt

)s
+
(
t − a
ta

)s]

(80)
for all t ∈ (a, b) .
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In particular, we have

|(T−1f ) (a, b;H (a, b))| ≤ K

2s−1πs

(
b − a
ba

)s
. (81)
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Inequalities of Hermite–Hadamard Type
for Composite Convex Functions

Silvestru Sever Dragomir

Abstract In this paper we obtain some inequalities of Hermite–Hadamard type for
composite convex functions. Applications forAG,AH -convex functions,GA,GG,
GH -convex functions, andHA, HG, HH -convex function are given. Applications
for p, r-convex, and LogExp convex functions are presented as well.

1 Introduction

The following inequality holds for any convex function f defined on R

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

, a, b ∈ R, a < b. (1)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [18]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [3]. In 1974,
D. S. Mitrinović found Hermite’s note in Mathesis [18]. Since (1) was known as
Hadamard’s inequality, the inequality is now commonly referred to as the Hermite–
Hadamard inequality.

In order to extend this result for other classes of functions, we need the following
preparations.
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Let g : [a, b] → [g (a) , g (b)] be a continuous strictly increasing function that
is differentiable on (a, b) .

Definition 1 A function f : [a, b] → R will be called composite-g−1 convex
(concave) on [a, b] if the composite function f ◦ g−1 : [g (a) , g (b)] → R is
convex (concave) in the usual sense on [g (a) , g (b)] .

In this way, any concept of convexity (log-convexity, harmonic convexity,
trigonometric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-
convexity, s-Godunova–Levin convexity, etc.) can be extended to the corresponding
composite-g−1 convexity. The details however will not be presented here.

If f : [a, b] → R is composite-g−1 convex on [a, b], then we have the inequality

f ◦ g−1 ((1− λ) u+ λv) ≤ (1− λ) f ◦ g−1 (u)+ λf ◦ g−1 (v) (2)

for any u, v ∈ [g (a) , g (b)] and λ ∈ [0, 1] .
This is equivalent to the condition

f ◦ g−1 ((1− λ) g (t)+ λg (s)) ≤ (1− λ) f (t)+ λf (s) (3)

for any t, s ∈ [a, b] and λ ∈ [0, 1] .
If we take g (t) = ln t , t ∈ [a, b] ⊂ (0,∞), then the condition (3) becomes

f
(
t1−λsλ

)
≤ (1− λ) f (t)+ λf (s) (4)

for any t, s ∈ [a, b] and λ ∈ [0, 1] , which is the concept of GA-convexity as
considered in [1].

If we take g (t) = − 1
t
, t ∈ [a, b] ⊂ (0,∞) , then (3) becomes

f

(
ts

(1− λ) s + λt
)
≤ (1− λ) f (t)+ λf (s) (5)

for any t, s ∈ [a, b] and λ ∈ [0, 1] , which is the concept of HA-convexity as
considered in [1].

If p > 0 and we consider g (t) = tp, t ∈ [a, b] ⊂ (0,∞) , then the condition (3)
becomes

f
[(
(1− λ) tp + λsp)1/p

]
≤ (1− λ) f (t)+ λf (s) (6)

for any t, s ∈ [a, b] and λ ∈ [0, 1] , which is the concept of p-convexity as
considered in [22].

If we take g (t) = exp t, t ∈ [a, b] , then the condition (3) becomes

f
[
ln ((1− λ) exp (t)+ exp g (s))

] ≤ (1− λ) f (t)+ λf (s) (7)

which is the concept of LogExp convex function on [a, b] as considered in [14].
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Further, assume that f : [a, b] → J, J an interval of real numbers and k : J →
R a continuous function on J that is strictly increasing (decreasing) on J.

Definition 2 We say that the function f : [a, b] → J is k-composite convex
(concave) on [a, b], if k ◦ f is convex (concave) on [a, b] .

In this way, any concept of convexity as mentioned above can be extended to
the corresponding k-composite convexity. The details however will not be presented
here.

With g : [a, b] → [g (a) , g (b)] a continuous strictly increasing function that
is differentiable on (a, b) , f : [a, b] → J, J an interval of real numbers and
k : J → R a continuous function on J that is strictly increasing (decreasing) on J,
we can also consider the following concept:

Definition 3 We say that the function f : [a, b] → J is k-composite-g−1 convex
(concave) on [a, b] , if k ◦ f ◦ g−1 is convex (concave) on [g (a) , g (b)] .

This definition is equivalent to the condition

k ◦ f ◦ g−1 ((1− λ) g (t)+ λg (s)) ≤ (1− λ) (k ◦ f ) (t)+ λ (k ◦ f ) (s) (8)

for any t, s ∈ [a, b] and λ ∈ [0, 1] .
If k : J → R is strictly increasing (decreasing) on J, then the condition (8) is

equivalent to:

f ◦ g−1 ((1− λ) g (t)+ λg (s)) ≤ (≥) k−1 [(1− λ) (k ◦ f ) (t)+ λ (k ◦ f ) (s)]
(9)

for any t, s ∈ [a, b] and λ ∈ [0, 1] .
If k (t) = ln t, t > 0 and f : [a, b] → (0,∞), then the fact that f is k-composite

convex on [a, b] is equivalent to the fact that f is log-convex or multiplicatively
convex or AG-convex, namely, for all x, y ∈ I and t ∈ [0, 1] one has the inequality:

f (tx + (1− t) y) ≤ [f (x)]t [f (y)]1−t . (10)

A function f : I → R\ {0} is called AH -convex (concave) on the interval I if
the following inequality holds [1]

f ((1− λ) x + λy) ≤ (≥) 1

(1− λ) 1
f (x)

+ λ 1
f (y)

= f (x) f (y)

(1− λ) f (y)+ λf (x)
(11)

for any x, y ∈ I and λ ∈ [0, 1] .
An important case that provides many examples is that one in which the function

is assumed to be positive for any x ∈ I. In that situation the inequality (11) is
equivalent to
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(1− λ) 1

f (x)
+ λ 1

f (y)
≤ (≥) 1

f ((1− λ) x + λy)
for any x, y ∈ I and λ ∈ [0, 1] .

Taking into account this fact, we can conclude that the function f : I → (0,∞)
is AH -convex (concave) on I if and only if f is k-composite concave (convex) on
I with k : (0,∞)→ (0,∞) , k (t) = 1

t
.

Following [1], we can introduce the concept of GH -convex (concave) function
f : I ⊂ (0,∞)→ R on an interval of positive numbers I as satisfying the condition

f
(
x1−λyλ

)
≤ (≥) 1

(1− λ) 1
f (x)

+ λ 1
f (y)

= f (x) f (y)

(1− λ) f (y)+ λf (x) . (12)

Since

f
(
x1−λyλ

)
= f ◦ exp [(1− λ) ln x + λ ln y]

and

f (x) f (y)

(1− λ) f (y)+ λf (x) =
f ◦ exp (ln x) f ◦ exp (ln y)

(1− λ) f ◦ exp (y)+ λf ◦ exp (x)

then f : I ⊂ (0,∞) → R is GH -convex (concave) on I if and only if f ◦ exp
is AH -convex (concave) on ln I := {x| x = ln t, t ∈ I } . This is equivalent to the
fact that f is k-composite-g−1 concave (convex) on I with k : (0,∞) → (0,∞) ,
k (t) = 1

t
and g (t) = ln t, t ∈ I.

Following [1], we say that the function f : I ⊂ R\{0} → (0,∞) isHH -convex
if

f

(
xy

tx + (1− t) y
)
≤ f (x) f (y)

(1− t) f (y)+ tf (x) (13)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (13) is reversed, then f is said to
be HH -concave.

We observe that the inequality (13) is equivalent to

(1− t) 1

f (x)
+ t 1

f (y)
≤ 1

f
(

xy
tx+(1−t)y

) (14)

for all x, y ∈ I and t ∈ [0, 1].
This is equivalent to the fact that f is k-composite-g−1 concave on [a, b] with

k : (0,∞)→ (0,∞) , k (t) = 1
t

and g (t) = − 1
t
, t ∈ [a, b] .

The function f : I ⊂ (0,∞) → (0,∞) is called GG-convex on the interval I
of real umbers R if [1]
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f
(
x1−λyλ

)
≤ [f (x)]1−λ [f (y)]λ (15)

for any x, y ∈ I and λ ∈ [0, 1] . If the inequality is reversed in (15), then the
function is called GG-concave.

This concept was introduced in 1928 by Montel [19], however, the roots of the
research in this area can be traced long before him [20]. It is easy to see that [20],
the function f : [a, b] ⊂ (0,∞)→ (0,∞) isGG-convex if and only if the function
g : [ln a, ln b] → R, g = ln ◦f ◦ exp is convex on [ln a, ln b] . This is equivalent
to the fact that f is k-composite-g−1 convex on [a, b] with k : (0,∞) → R,

k (t) = ln t and g (t) = ln t, t ∈ [a, b] .
Following [1] we say that the function f : I ⊂ R \ {0} → (0,∞) is HG-convex

if

f

(
xy

tx + (1− t) y
)
≤ [f (x)]1−t [f (y)]t (16)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (3) is reversed, then f is said to
be HG-concave.

Let f : [a, b] ⊂ (0,∞) → (0,∞) and define the associated functions Gf :[
1
b
, 1
a

]
→ R defined by Gf (t) = ln f

(
1
t

)
. Then f is HG-convex on [a, b] iff Gf

is convex on
[

1
b
, 1
a

]
. This is equivalent to the fact that f is k-composite-g−1 convex

on [a, b] with k : (0,∞)→ R, k (t) = ln t and g (t) = − 1
t
, t ∈ [a, b] .

Following [21], we say that the function f : [a, b] → (0,∞) is r-convex, for
r �= 0, if

f ((1− λ) x + λy) ≤ [(1− λ) f r (y)+ λf r (x)]1/r (17)

for any x, y ∈ [a, b] and λ ∈ [0, 1].
If r > 0, then the condition (17) is equivalent to

f r ((1− λ) x + λy) ≤ (1− λ) f r (y)+ λf r (x)

namely f is k-composite convex on [a, b] where k (t) = t r , t ≥ 0.
If r < 0, then the condition (17) is equivalent to

f r ((1− λ) x + λy) ≥ (1− λ) f r (y)+ λf r (x)

namely f is k-composite concave on [a, b] where k (t) = t r , t > 0.
In this paper we obtain some inequalities of Hermite–Hadamard type for com-

posite convex functions. Applications for various classes of convexity as provided
above are given as well.
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2 Some Refinements

We need the following refinement of Hermite–Hadamard inequality. This result
was obtained for the first time by Barnett, Cerone, and Dragomir in 2002 in the
paper [2, p. 10, Eq. (2.2)] where various applications for the Hermite–Hadamard
divergence measure in Information Theory were also given. The same result was
also rediscovered by El Farissi in 2010 with a similar proof, see [16].

Lemma 1 Assume that h : [c, d] → R is convex on [c, d]. Then for any λ ∈ [0, 1]
we have

h

(
c + d

2

)
≤ λh

(
λd + (2− λ) c

2

)
+ (1− λ) h

(
(1+ λ) d + (1− λ) c

2

)

(18)

≤ 1

d − c
∫ d

c

h (u) du

≤ 1

2
[h ((1− λ) c + λd)+ λh (c)+ (1− λ) h (d)] ≤ h (c)+ h (d)

2
.

Proof For the sake of completeness, we give here a simple proof as in [2]. Apply-
ing the Hermite–Hadamard inequality on each subinterval [c, (1− λ) c + λd] ,
[(1− λ) c + λd, d], where λ ∈ (0, 1) , then we have

h

(
c + (1− λ) c + λd

2

)
× [(1− λ) c + λd − c]

≤
∫ (1−λ)c+λd

c

h (u) du

≤ h ((1− λ) c + λd)+ h (c)
2

× [(1− λ) c + λd − c]

and

h

(
(1− λ) c + λd + d

2

)
× [d − (1− λ) c − λd]

≤
∫ d

(1−λ)c+λd
h (u) du

≤ h (d)+ h ((1− λ) c + λd)
2

× [d − (1− λ) c − λd] ,

which are clearly equivalent to
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λh

(
λd + (2− λ) c

2

)
≤ 1

d − c
∫ (1−λ)c+λd

c

h (u) du (19)

≤ λh ((1− λ) c + λd)+ λh (c)
2

and

(1− λ) h
(
(1+ λ) d + (1− λ) c

2

)
≤ 1

d − c
∫ d

(1−λ)c+λd
h (u) du (20)

≤ (1− λ) h (d)+ (1− λ) h ((1− λ) c + λd)
2

,

respectively.
Summing (19) and (20), we obtain the second and first inequality in (18).
By the convexity property, we obtain

λh

(
λd + (2− λ) c

2

)
+ (1− λ) h

(
(1+ λ) d + (1− λ) c

2

)

≥ h
[
λ

(
λd + (2− λ) c

2

)
+ (1− λ)

(
(1+ λ) d + (1− λ) c

2

)]

= h

(
c + d

2

)

and the first inequality in (18) is proved.

For various inequalities of Hermite–Hadamard type, see the monograph online
[15] and the more recent survey paper [12].

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective, then we can define the g-mean of two numbers
a, b ∈ I as

Mg (a, b) := g−1
(
g (a)+ g (b)

2

)
. (21)

If I = R and g (t) = t is the identity function, thenMg (a, b) = A (a, b) := a+b
2 ,

the arithmetic mean. If I = (0,∞) and g (t) = ln t, then Mg (a, b) = G(a, b) :=√
ab, the geometric mean. If I = (0,∞) and g (t) = 1

t
, then Mg (a, b) =

H (a, b) := 2ab
a+b , the harmonic mean. If I = (0,∞) and g (t) = tp, p �= 0,

then Mg (a, b) = Mp (a, b) :=
(
ap+bp

2

)1/p
, the power mean with exponent p.

Finally, if I = R and g (t) = exp t, then
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Mg (a, b) = LME (a, b) := ln

(
exp a + exp b

2

)
, (22)

the LogMeanExp function.

Theorem 1 Let g : [a, b] → [g (a) , g (b)] be a continuous strictly increasing
function that is differentiable on (a, b) . If f : [a, b] → R is composite-g−1 convex
on [a, b] , then

f
(
Mg (a, b)

) ≤ λf ◦ g−1
(
λg (b)+ (2− λ) g (a)

2

)
(23)

+ (1− λ) f ◦ g−1
(
(1+ λ) g (b)+ (1− λ) g (a)

2

)

≤ 1

g (b)− g (a)
∫ b

a

f (t) g′ (t) dt

≤ 1

2

[
f ◦ g−1 ((1− λ) g (a)+ λg (b))+ λf (a)+ (1− λ) f (b)

]

≤ f (a)+ f (b)
2

for any λ ∈ [0, 1] .

Proof From the inequality (18) we have for the convex function f ◦ g−1 and c,
d ∈ [g (a) , g (b)] that

f ◦ g−1
(
c + d

2

)
(24)

≤ λf ◦ g−1
(
λd + (2− λ) c

2

)
+ (1− λ) f ◦ g−1

(
(1+ λ) d + (1− λ) c

2

)

≤ 1

d − c
∫ d

c

f ◦ g−1 (u) du

≤ 1

2

[
f ◦ g−1 ((1− λ) c + λd)+ λf ◦ g−1 (c)+ (1− λ) f ◦ g−1 (d)

]

≤ f ◦ g−1 (c)+ f ◦ g−1 (d)

2

for any λ ∈ [0, 1] .
If we take c = g (a) and d = g (b) , then we get

f ◦ g−1
(
g (a)+ g (b)

2

)
(25)

≤ λf ◦ g−1
(
λg (b)+ (2− λ) g (a)

2

)
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+ (1− λ) f ◦ g−1
(
(1+ λ) g (b)+ (1− λ) g (a)

2

)

≤ 1

g (b)− g (a)
∫ g(b)

g(a)

f ◦ g−1 (u) du

≤ 1

2

[
f ◦ g−1 ((1− λ) g (a)+ λg (b))+ λf (a)+ (1− λ) f (b)

]

≤ f (a)+ f (b)
2

for any λ ∈ [0, 1] .
Using the change of variable g−1 (u) = t, t ∈ [a, b] we have u = g (t) , du =

g′ (t) dt and

∫ g(b)

g(a)

f ◦ g−1 (u) du =
∫ b

a

f (t) g′ (t) dt

and by (25) we get the desired result (23).

Corollary 1 With the assumptions of Theorem 1 we have

f
(
Mg (a, b)

) ≤ 1

2

[
f ◦ g−1

(
g (b)+ 3g (a)

4

)
+ f ◦ g−1

(
g (a)+ 3g (b)

4

)]

(26)

≤ 1

g (b)− g (a)
∫ b

a

f (t) g′ (t) dt

≤ 1

2

[
f
(
Mg (a, b)

)+ f (a)+ f (b)
2

]
≤ f (a)+ f (b)

2
.

Remark 1 Using the change of variable u = (1− s) c + sd, s ∈ [0, 1] , then we
have du = (d − c) ds, which gives that

1

d − c
∫ d

c

h (u) du =
∫ 1

0
h ((1− s) c + sd) ds.

Using this fact, we have from Theorem 1 the following inequality

f
(
Mg (a, b)

) ≤ λf ◦ g−1
(
λg (b)+ (2− λ) g (a)

2

)
(27)

+ (1− λ) f ◦ g−1
(
(1+ λ) g (b)+ (1− λ) g (a)

2

)
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≤ b − a
g (b)− g (a)

∫ 1

0
f ((1− s) a + sb) g′ ((1− s) a + sb) ds

=
∫ 1

0
f ◦ g−1 ((1− τ) g (a)+ τg (b)) dτ

≤ 1

2

[
f ◦ g−1 ((1− λ) g (a)+ λg (b))+ λf (a)+ (1− λ) f (b)

]

≤ f (a)+ f (b)
2

for all λ ∈ [0, 1] .

Corollary 2 Let g : [a, b] → [g (a) , g (b)] be a continuous strictly increasing
function that is differentiable on (a, b) , f : [a, b] → J, J an interval of real
numbers, and k : J → R a continuous function on J that is strictly increasing
(decreasing) on J. If the function f : [a, b] → J is k-composite-g−1 convex on
[a, b] , then

f
(
Mg (a, b)

)

≤ (≥) k−1
{
λk ◦ f ◦ g−1

(
λg (b)+ (2− λ) g (a)

2

)

+ (1− λ) k ◦ f ◦ g−1
(
(1+ λ) g (b)+ (1− λ) g (a)

2

)}

≤ (≥) k−1
(

1

g (b)− g (a)
∫ b

a

k ◦ f (t) g′ (t) dt
)

≤ (≥) k−1
{

1

2

[
k ◦ f ◦ g−1 ((1−λ) g (a)+λg (b))+λk ◦ f (a)+ (1−λ) k ◦ f (b)

]}

≤ (≥) k−1
(
k ◦ f (a)+ k ◦ f (b)

2

)
(28)

for any λ ∈ [0, 1] .

Proof From (23) we have

k ◦ f (Mg (a, b)
)

(29)

≤ λk ◦ f ◦ g−1
(
λg (b)+ (2− λ) g (a)

2

)

+ (1− λ) k ◦ f ◦ g−1
(
(1+ λ) g (b)+ (1− λ) g (a)

2

)
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≤ 1

g (b)− g (a)
∫ b

a

k ◦ f (t) g′ (t) dt

≤ 1

2

[
k ◦ f ◦ g−1 ((1− λ) g (a)+ λg (b))+ λk ◦ f (a)+ (1− λ) k ◦ f (b)

]

≤ k ◦ f (a)+ k ◦ f (b)
2

for any λ ∈ [0, 1] .
Taking k−1 in (29) we obtain the desired result (28).

In 1906, Fejér [17], while studying trigonometric polynomials, obtained the
following inequalities which generalize that of Hermite and Hadamard:

Theorem 2 (Fejér’s Inequality) Consider the integral
∫ b
a
h (x)w (x) dx, where h

is a convex function in the interval (a, b) and w is a positive function in the same
interval such that

w (x) = w (a + b − x) , for any x ∈ [a, b]

i.e., y = w (x) is a symmetric curve with respect to the straight line which contains

the point
(

1
2 (a + b) , 0

)
and is normal to the x-axis. Under those conditions the

following inequalities are valid:

h

(
a + b

2

)∫ b

a

w (x) dx ≤
∫ b

a

h (x)w (x) dx ≤ h (a)+ h (b)
2

∫ b

a

w (x) dx.

(30)
If h is concave on (a, b), then the inequalities reverse in (30).

If w : [a, b] → R is continuous and positive on the interval [a, b] , then the
function W : [a, b] → [0,∞), W (x) := ∫ x

a
w (s) ds is strictly increasing and

differentiable on (a, b) and the inverse W−1 :
[
a,
∫ b
a
w (s) ds

]
→ [a, b] exists.

Corollary 3 Assume that w : [a, b] → R is continuous and positive on the interval
[a, b] and f : [a, b] → R is composite-W−1 convex on [a, b] , then we have the
following Fejér’s type inequality

f

[
W−1

(
1

2

∫ b

a

w (s) ds

)]

≤ λf
[
W−1

(
1

2
λ

∫ b

a

w (s) ds

)]
+ (1− λ) f

[
W−1

(
1

2
(1+ λ)

∫ b

a

w (s) ds

)]

≤ 1
∫ b
a
w (s)

∫ b

a

f (t) w (t) dt
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≤ 1

2

[
f

[
W−1

(
λ

∫ b

a

w (s) ds

)]
+ λf (a)+ (1− λ) f (b)

]
≤ f (a)+ f (b)

2
(31)

for all λ ∈ [0, 1] .
In particular, we have

f

[
W−1

(
1

2

∫ b

a

w (s) ds

)]

≤ 1

2
f

[
W−1

(
1

4

∫ b

a

w (s) ds

)]
+ 1

2
f

[
W−1

(
3

4

∫ b

a

w (s) ds

)]

≤ 1
∫ b
a
w (s)

∫ b

a

f (t) w (t) dt

≤ 1

2

[
f

[
W−1

(
1

2

∫ b

a

w (s) ds

)]
+ f (a)+ f (b)

2

]
≤ f (a)+ f (b)

2
. (32)

Remark 2 Assume that w : [a, b] → R is continuous and positive on the interval
[a, b] , f : [a, b] → J, J an interval of real numbers, and k : J → R a
continuous function on J that is strictly increasing (decreasing) on J. If the function
f : [a, b] → J is k-composite-W−1 convex on [a, b] , then

f

[
W−1

(
1

2

∫ b

a

w (s) ds

)]

≤ (≥) k−1
{
λk ◦ f

[
W−1

(
1

2
λ

∫ b

a

w (s) ds

)]

+ (1− λ) k ◦ f
[
W−1

(
1

2
(1+ λ)

∫ b

a

w (s) ds

)]}

≤ (≥) k−1

(
1

∫ b
a
w (s)

∫ b

a

k ◦ f (t) w (t) dt
)

≤ (≥) k−1
{

1

2

[
k ◦ f

[
W−1

(
λ

∫ b

a

w (s) ds

)]
+ λk ◦ f (a)+ (1− λ) k ◦ f (b)

]}

≤ (≥) k−1
(
k ◦ f (a)+ k ◦ f (b)

2

)
(33)

for all λ ∈ [0, 1] .
In particular, we have
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f

[
W−1

(
1

2

∫ b

a

w (s) ds

)]

≤ (≥) k−1
{

1

2
k ◦ f

[
W−1

(
1

4

∫ b

a

w (s) ds

)]
+ 1

2
k ◦ f

[
W−1

(
3

4

∫ b

a

w (s) ds

)]}

≤ (≥) k−1

(
1

∫ b
a
w (s)

∫ b

a

k ◦ f (t) w (t) dt
)

≤ (≥) k−1
{

1

2

[
k ◦ f

[
W−1

(
1

2

∫ b

a

w (s) ds

)]
+ 1

2
k ◦ f (a)+ 1

2
k ◦ f (b)

]}

≤ (≥) k−1
(
k ◦ f (a)+ k ◦ f (b)

2

)
. (34)

3 Reverse Inequalities

The following reverse inequalities may be stated:

Theorem 3 Let g : [a, b] → [g (a) , g (b)] be a continuous strictly increasing
function that is differentiable on (a, b) . If f : [a, b] → R is composite-g−1 convex
on [a, b] , then

0 ≤ 1

g (b)− g (a)
∫ b

a

f (t) g′ (t) dt − f (Mg (a, b)
)

(35)

≤ 1

8
(g (b)− g (a))

[
f ′− (b)
g′− (b)

− f ′+ (a)
g′+ (a)

]

and

0 ≤ f (a)+ f (b)
2

− 1

g (b)− g (a)
∫ b

a

f (t) g′ (t) dt (36)

≤ 1

8
(g (b)− g (a))

[
f ′− (b)
g′− (b)

− f ′+ (a)
g′+ (a)

]
,

provided that the lateral derivatives f ′+ (a) , g′+ (a) , f ′− (b) and g′− (b) are finite.

Proof Let h : [c, d] → R be a convex function on [c, d] .We use the inequality that
has been established in [4]

0 ≤ 1

d − c
∫ d

c

h (u) du− h
(
c + d

2

)
≤ 1

8
(d − c) [h′− (d)− h′+ (c)

]
(37)

and the inequality obtained in [5]
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0 ≤ h (c)+ h (d)
2

− 1

d − c
∫ d

c

h (u) du ≤ 1

8
(d − c) [h′− (d)− h′+ (c)

]
. (38)

The constant 1
8 is best possible in both (37) and (38).

From the inequalities (37) and (38) we have for the convex function h = f ◦g−1

and c, d ∈ [g (a) , g (b)] that

0 ≤ 1

d − c
∫ d

c

(
f ◦ g−1

)
(u) du−

(
f ◦ g−1

)(c + d
2

)
(39)

≤ 1

8
(d − c)

[(
f ◦ g−1

)′
− (d)−

(
f ◦ g−1

)′
+ (c)

]

and

0 ≤
(
f ◦ g−1

)
(c)+ (f ◦ g−1

)
(d)

2
− 1

d − c
∫ d

c

(
f ◦ g−1

)
(u) du (40)

≤ 1

8
(d − c)

[(
f ◦ g−1

)′
− (d)−

(
f ◦ g−1

)′
+ (c)

]
.

Since f ◦ g−1 has lateral derivatives for z ∈ (g (a) , g (b)) it follows f has lateral
derivatives in each point of (a, b) and by the chain rule and the derivative of the
inverse function, we have

(
f ◦ g−1

)′
± (z) =

(
f ′± ◦ g−1

)
(z)
(
g−1
)′
(z) =

(
f ′± ◦ g−1

)
(z)

(
g′ ◦ g−1

)
(z)

. (41)

Therefore, by (39) and (40) we get

0 ≤ 1

d − c
∫ d

c

(
f ◦ g−1

)
(u) du−

(
f ◦ g−1

)(c + d
2

)
(42)

≤ 1

8
(d − c)

[(
f ′− ◦ g−1

)
(d)

(
g′ ◦ g−1

)
(d)

−
(
f ′+ ◦ g−1

)
(c)

(
g′ ◦ g−1

)
(c)

]

and

0 ≤
(
f ◦ g−1

)
(c)+ (f ◦ g−1

)
(d)

2
− 1

d − c
∫ d

c

(
f ◦ g−1

)
(u) du (43)

≤ 1

8
(d − c)

[(
f ′− ◦ g−1

)
(d)

(
g′ ◦ g−1

)
(d)

−
(
f ′+ ◦ g−1

)
(c)

(
g′ ◦ g−1

)
(c)

]
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and by taking c = g (a) and d = g (b) in (42) and (43), then we get the desired
results (35) and (36).

Corollary 4 Assume that w : [a, b] → R is continuous and positive on the interval
[a, b] . If f : [a, b] → R is composite-W−1 convex on [a, b] , then we have the
following weighted reverse integral inequalities

0 ≤ 1
∫ b
a
w (s)

∫ b

a

f (t) w (t) dt − f
[
W−1

(
1

2

∫ b

a

w (s) ds

)]
(44)

≤ 1

8

[
f ′− (b)
w (b)

− f ′+ (a)
w (a)

] ∫ b

a

w (s) ds

and

0 ≤ f (a)+ f (b)
2

− 1
∫ b
a
w (s)

∫ b

a

f (t) w (t) dt (45)

≤ 1

8

[
f ′− (b)
w (b)

− f ′+ (a)
w (a)

] ∫ b

a

w (s) ds,

provided that f ′− (b) and f ′+ (a) are finite.

Remark 3 Let g : [a, b] → [g (a) , g (b)] be a continuous strictly increasing
function that is differentiable on (a, b) , f : [a, b] → J, J an interval of real
numbers, and k : J → R a continuous function on J that is strictly increasing
on J and differentiable on the interior of J. If the function f : [a, b] → J is k-
composite-g−1 convex on [a, b] and f ′+ (a) , g′+ (a) , f ′− (b), g′− (b) , k′ (f (a)) and
k′ (f (b)) are finite, then by Theorem 3 we have

0 ≤ 1

g (b)− g (a)
∫ b

a

(k ◦ f ) (t) g′ (t) dt − k ◦ f (Mg (a, b)
)

(46)

≤ 1

8
(g (b)− g (a))

[
k′ (f (b)) f ′− (b)

g′− (b)
− k′ (f (a)) f ′+ (a)

g′+ (a)

]

and

0 ≤ k ◦ f (a)+ k ◦ f (b)
2

− 1

g (b)− g (a)
∫ b

a

(k ◦ f ) (t) g′ (t) dt (47)

≤ 1

8
(g (b)− g (a))

[
k′ (f (b)) f ′− (b)

g′− (b)
− k′ (f (a)) f ′+ (a)

g′+ (a)

]
.

Assume that w : [a, b] → R is continuous and positive on the interval [a, b] ,
f : [a, b] → J, J an interval of real numbers, and k : J → R a continuous
function on J that is strictly increasing on J and differentiable on the interior of J.
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If the function f : [a, b] → J is k-composite-W−1 convex on [a, b] and f ′+ (a) ,
f ′− (b), k′ (f (a)) and k′ (f (b)) are finite, then we have the weighted inequalities

0 ≤ 1

g (b)− g (a)
∫ b

a

(k ◦ f ) (t) w (t) dt − k ◦ f
(
W−1

(
1

2

∫ b

a

w (s) ds

))

(48)

≤ 1

8
(g (b)− g (a))

[
k′ (f (b)) f ′− (b)

w (b)
− k′ (f (a)) f ′+ (a)

w (a)

]

and

0 ≤ k ◦ f (a)+ k ◦ f (b)
2

− 1

g (b)− g (a)
∫ b

a

(k ◦ f ) (t) w (t) dt (49)

≤ 1

8
(g (b)− g (a))

[
k′ (f (b)) f ′− (b)

w (b)
− k′ (f (a)) f ′+ (a)

w (a)

]
.

4 Applications for AG and AH -Convex Functions

The function f : [a, b] → (0,∞) is AG-convex means that f is k-composite
convex on [a, b] with k (t) = ln t, t > 0.By making use of Corollary 2 for g (t) = t,

we get

f

(
a + b

2

)
≤ f λ

(
λb + (2− λ) a

2

)
f 1−λ

(
(1+ λ) b + (1− λ) a

2

)

≤ exp

(
1

b − a
∫ b

a

ln f (t) dt

)

≤
√
f ((1− λ) a + λb) f λ (a) f 1−λ (b) ≤ √f (a) f (b) (50)

for any λ ∈ [0, 1] , see also [11].
If we use Remark 3 for g (t) = t, then we get

0 ≤ 1

b − a
∫ b

a

ln f (t) dt − ln f

(
a + b

2

)
≤ 1

8
(b − a)

[
f ′− (b)
f (b)

− f ′+ (a)
f (a)

]

(51)
and

0 ≤ ln f (a)+ ln f (b)

2
− 1

b − a
∫ b

a

ln f (t) dt ≤ 1

8
(b − a)

[
f ′− (b)
f (b)

− f ′+ (a)
f (a)

]
.

(52)
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By taking the exponential in (51) and (52) we get the equivalent inequalities

1 ≤
exp

(
1
b−a

∫ b
a

ln f (t) dt
)

f
(
a+b

2

) ≤ exp

{
1

8
(b − a)

[
f ′− (b)
f (b)

− f ′+ (a)
f (a)

]}
(53)

and

1 ≤
√
f (a) f (b)

exp
(

1
b−a

∫ b
a

ln f (t) dt
) ≤ exp

{
1

8
(b − a)

[
f ′− (b)
f (b)

− f ′+ (a)
f (a)

]}
(54)

that was obtained in [11].
The function f : [a, b] → (0,∞) is AH -convex on [a, b] means that f is k-

composite concave on [a, b] with k : (0,∞)→ (0,∞) , k (t) = 1
t
. By making use

of Corollary 2 for g (t) = t, we get

f

(
a + b

2

)

≤
{
λf−1

(
λb + (2− λ) a

2

)
+ (1− λ) f−1

(
(1+ λ) b + (1− λ) a

2

)}−1

≤
(

1

b − a
∫ b

a

f−1 (t) dt

)−1

≤
{

1

2

[
f−1 ((1− λ) a + λb)+ λf−1 (a)+ (1− λ) f−1 (b)

]}−1

≤
(
f−1 (a)+ f−1 (b)

2

)−1

(55)

for any λ ∈ [0, 1] .
By taking the power −1, this inequality is equivalent to

f−1
(
a + b

2

)

≥ λf−1
(
λb + (2− λ) a

2

)
+ (1− λ) f−1

(
(1+ λ) b + (1− λ) a

2

)

≥ 1

b − a
∫ b

a
f−1 (t) dt

≥ 1

2

[
f−1 ((1− λ) a + λb)+ λf−1 (a)+ (1− λ) f−1 (b)

]
≥ f−1 (a)+ f−1 (b)

2
(56)

for any λ ∈ [0, 1] .
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If we use Remark 3 for g (t) = t, then we get

0 ≤ f−1
(
a + b

2

)
− 1

b − a
∫ b

a

f−1 (t) dt ≤ 1

8
(b − a)

[
f ′− (b)
f 2 (b)

− f ′+ (a)
f 2 (a)

]

(57)
and

0 ≤ 1

b − a
∫ b

a

f−1 (t) dt − f−1 (a)+ f−1 (b)

2
≤ 1

8
(b − a)

[
f ′− (b)
f 2 (b)

− f ′+ (a)
f 2 (a)

]
.

(58)

5 Applications for GA, GG, and GH -Convex Functions

If we take g (t) = ln t , t ∈ [a, b] ⊂ (0,∞) , then f : [a, b] → R is GA-convex on
[a, b] means that that f : [a, b] → R composite-g−1 convex on [a, b] . By making
use of Corollary 2 for k (t) = t, we get

f
(√

ab
)
≤ (1− λ) f

(
a

1−λ
2 b

λ+1
2

)
+ λf

(
a

2−λ
2 b

λ
2

)
(59)

≤ 1

ln
(
b
a

)
∫ b

a

f (t)

t
dt

≤ 1

2

[
f
(
a1−λbλ

)
+ (1− λ) f (b)+ λf (a)

]
≤ f (a)+ f (b)

2

for any λ ∈ [0, 1] . This result was obtained in [6].
If we use Remark 3 for k (t) = t, then we get

0 ≤ 1

ln
(
b
a

)
∫ b

a

f (t)

t
dt − f

(√
ab
)
≤ 1

8
ln

(
b

a

) [
bf ′− (b)− af ′+ (a)

]
(60)

and

0 ≤ f (a)+ f (b)
2

− 1

ln
(
b
a

)
∫ b

a

f (t)

t
dt ≤ 1

8
ln

(
b

a

) [
bf ′− (b)− af ′+ (a)

]
.

(61)
These results were also obtained in [6].

The function f : I ⊂ (0,∞) → (0,∞) is GG-convex means that f is k-
composite-g−1 convex on [a, b] with k : (0,∞)→ R, k (t) = ln t and g (t) = ln t,
t ∈ [a, b] . By making use of Corollary 2 we get

f
(√

ab
)
≤ f λ

(
a

2−λ
2 b

λ
2

)
f 1−λ (a

1−λ
2 b

λ+1
2

)
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≤ exp

(
1

ln
(
b
a

)
∫ b

a

ln f (t)

t
dt

)

≤
√
f
(
a1−λbλ

)
f λ (a) f 1−λ (b) ≤ √f (a) f (b) (62)

for any λ ∈ [0, 1] . This result was obtained in [7], see also [13].
If we use Remark 3, then we have the inequalities

1 ≤
√
f (a) f (b)

exp
(

1
ln b−ln a

∫ b
a

ln f (s)
s

ds
) ≤

(
b

a

) 1
8

[
f ′−(b)b
f (b)

− f ′+(a)a
f (a)

]

(63)

and

1 ≤
exp

(
1

ln b−ln a

∫ b
a

ln f (s)
s

ds
)

f
(√

ab
) ≤

(
b

a

) 1
8

[
f ′−(b)b
f (b)

− f ′+(a)a
f (a)

]

. (64)

These results were obtained in [7], see also [13].
We also have that f : [a, b] ⊂ (0,∞)→ R isGH -convex on [a, b] is equivalent

to the fact that f is k-composite-g−1 concave on [a, b] with k : (0,∞)→ (0,∞) ,
k (t) = 1

t
and g (t) = ln t, t ∈ I. By making use of Corollary 2 we get

f
(√

ab
)
≤
[
λf−1

(
a

2−λ
2 b

λ
2

)
+ (1− λ) f−1

(
a

1−λ
2 b

λ+1
2

)]−1

≤
(

1

ln
(
b
a

)
∫ b

a

f−1 (t)

t
dt

)−1

≤
{

1

2

[
f−1

(
a1−λbλ

)
+ λf−1 (a)+ (1− λ) f−1 (b)

]}−1

≤
(
f−1 (a)+ f−1 (b)

2

)−1

(65)

for any λ ∈ [0, 1] .
This is equivalent to

f−1
(√

ab
)
≥ λf−1

(
a

2−λ
2 b

λ
2

)
+ (1− λ) f−1

(
a

1−λ
2 b

λ+1
2

)

≥ 1

ln
(
b
a

)
∫ b

a

f−1 (t)

t
dt
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≥ 1

2

[
f−1

(
a1−λbλ

)
+ λf−1 (a)+ (1− λ) f−1 (b)

]

≥ f−1 (a)+ f−1 (b)

2
. (66)

If we use Remark 3, then we get

0 ≤ f−1
(√

ab
)
− 1

ln
(
b
a

)
∫ b

a

f−1 (t)

t
dt ≤ 1

8
ln

(
b

a

)[
bf ′− (b)
f 2 (b)

− af ′+ (a)
f 2 (a)

]

(67)
and

0 ≤ 1

ln
(
b
a

)
∫ b

a

f−1 (t)

t
dt − f−1 (a)+ f−1 (b)

2

≤ 1

8
ln

(
b

a

)[
bf ′− (b)
f 2 (b)

− af ′+ (a)
f 2 (a)

]
. (68)

6 Applications for HA, HG, and HH -Convex Functions

Let f : [a, b] ⊂ (0,∞) → R be an HA-convex function on the interval [a, b] .
This is equivalent to the fact that f is composite-g−1 convex on [a, b] with the
increasing function g (t) = − 1

t
. Then by applying Corollary 2 for k (t) = t, we

have the inequalities

f

(
2ab

a + b
)
≤ (1− λ) f

(
2ab

(1− λ) a + (λ+ 1) b

)
+ λf

(
2ab

(2− λ) a + λb
)

(69)

≤ ab

b − a
∫ b

a

f (t)

t2
dt

≤ 1

2

[
f

(
ab

(1− λ) a + λb
)
+ (1− λ) f (a)+ λf (b)

]

≤ f (a)+ f (b)
2

for any λ ∈ [0, 1] . This result was obtained in [9].
If we use Remark 3, then we get

0 ≤ ab

b − a
∫ b

a

f (t)

t2
dt − f

(
2ab

a + b
)
≤ 1

8

[
f ′− (b) b2 − f ′+ (a) a2

ab

]

(b − a)
(70)
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and

0 ≤ f (a)+ f (b)
2

− ab

b − a
∫ b

a

f (t)

t2
dt ≤ 1

8

[
f ′− (b) b2 − f ′+ (a) a2

ab

]

(b − a) .
(71)

These results were obtained in [9].
Let f : [a, b] ⊂ (0,∞) → (0,∞) be an HG-convex function on the interval

[a, b] . This is equivalent to the fact that f is k-composite-g−1 convex on [a, b]
with k : (0,∞) → R, k (t) = ln t and g (t) = − 1

t
, t ∈ [a, b] . Then by applying

Corollary 2, we have the inequalities

f

(
2ab

a + b
)
≤ f 1−λ

(
2ab

(1− λ) a + (λ+ 1) b

)
f λ
(

2ab

(2− λ) a + λb
)

(72)

≤ exp

(
ab

b − a
∫ b

a

ln f (t)

t2
dt

)

≤
√

f

(
ab

(1− λ) a + λb
)

[f (a)]1−λ [f (b)]λ ≤ √f (a) f (b)

for any λ ∈ [0, 1] . This result was obtained in [10].
If we use Remark 3, then we get

1 ≤
exp

(
ab
b−a

∫ b
a

ln f (t)
t2

dt
)

f
(

2ab
a+b
) ≤ exp

(
1

8

[
f ′− (b) b2

f (b)
− f ′+ (a) a2

f (a)

]
b − a
ab

)

(73)

and

1 ≤
√
f (a) f (b)

exp
(
ab
b−a

∫ b
a

ln f (t)
t2

dt
) ≤ exp

(
1

8

[
f ′− (b) b2

f (b)
− f ′+ (a) a2

f (a)

]
b − a
ab

)

.

(74)
These results were obtained in [10].

Let f : [a, b] ⊂ (0,∞) → (0,∞) be an HH -convex function on the interval
[a, b] . This is equivalent to the fact that f is k-composite-g−1 concave on [a, b]
with k : (0,∞) → (0,∞) , k (t) = 1

t
and g (t) = − 1

t
, t ∈ [a, b] . Then by

applying Corollary 2, we have the inequalities

f

(
2ab

a + b
)

≤
{
λf−1

(
2ab

(2− λ) a + λb
)
+ (1− λ) f−1

(
2ab

(1− λ) a + (λ+ 1) b

)}−1
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≤
(

ab

b − a
∫ b

a

f−1 (t)

t2
dt

)−1

≤
{

1

2

[
f−1

(
ab

(1− λ) a + λb
)
+ λf−1 (a)+ (1− λ) f−1 (b)

]}−1

≤
(
f−1 (a)+ f−1 (b)

2

)−1

(75)

for any λ ∈ [0, 1] .
By taking the power −1 in (75), then we get

f−1
(

2ab

a + b
)

≥ λf−1
(

2ab

(2− λ) a + λb
)
+ (1− λ) f−1

(
2ab

(1− λ) a + (λ+ 1) b

)

≥ ab

b − a
∫ b

a

f−1 (t)

t2
dt

≥ 1

2

[
f−1

(
ab

(1− λ) a + λb
)
+ λf−1 (a)+ (1− λ) f−1 (b)

]
≥ f−1 (a)+ f−1 (b)

2
(76)

for any λ ∈ [0, 1] .
If we use Remark 3, then we get

0 ≤ f−1
(

2ab

a + b
)
− ab

b − a
∫ b

a

f−1 (t)

t2
dt

≤ 1

8

[
b2f ′− (b)
f 2 (b)

− a2f ′+ (a)
f 2 (a)

]
ab

b − a (77)

and

0 ≤ ab

b − a
∫ b

a

f−1 (t)

t2
dt − f−1 (a)+ f−1 (b)

2

≤ 1

8

[
b2f ′− (b)
f 2 (b)

− a2f ′+ (a)
f 2 (a)

]
ab

b − a . (78)

For related results, see [8].
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7 Applications for p, r-Convex, and LogExp Convex
Functions

If p > 0 and we consider g (t) = tp, t ∈ [a, b] ⊂ (0,∞) , then f : [a, b] ⊂
(0,∞)→ (0,∞) is p-convex on [a, b] is equivalent to the fact that f is composite-
g−1 convex on [a, b] . Using Corollary 2 for k (t) = t we get

f
(
Mp (a, b)

)

≤ λf
[(

λbp + (2− λ) ap
2

)1/p
]

+ (1− λ) f
[(

(1+ λ) bp + (1− λ) ap
2

)1/p
]

≤ p

bp − ap
∫ b

a

f (t) tp−1dt

≤ 1

2

{
f
[(
(1− λ) ap + λbp)1/p

]
+ λf (a)+ (1− λ) f (b)

}
≤ f (a)+ f (b)

2
(79)

for any λ ∈ [0, 1] , where Mp (a, b) :=
(
ap+bp

2

)1/p
. This improves the

corresponding result from [22].
If we use Remark 3, then we get

0 ≤ p

bp − ap
∫ b

a

f (t) tp−1dt − f (Mp (a, b)
) ≤ 1

8p

(
bp − ap)

[
f ′− (b)
bp−1

− f ′+ (a)
ap−1

]

(80)
and

0 ≤ ap + bp
2

− p

bp − ap
∫ b

a

f (t) tp−1dt ≤ 1

8p

(
bp − ap)

[
f ′− (b)
bp−1 − f ′+ (a)

ap−1

]
.

(81)
Assume that the function f : [a, b] → (0,∞) is r-convex, for r > 0. This is

equivalent to the fact that f is k-composite convex with k (t) = t r , t > 0, and by
Corollary 2 for g (t) = t we get

f

(
a + b

2

)

≤
{
λf r

(
λa + (2− λ) b

2

)
+ (1− λ) f r

(
(1+ λ) b + (1− λ) a

2

)}1/r

≤
(

1

b − a
∫ b

a
f r (t) dt

)1/r
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≤
{

1

2

[
f r ((1− λ) a + λb)+ λf r (a)+ (1− λ) f r (b)]

}1/r
≤
(
f r (a)+ f r (b)

2

)1/r

(82)

for any λ ∈ [0, 1] .
By taking the power r > 0, we get the equivalent inequality

f r
(
a + b

2

)

≤ λf r
(
λa + (2− λ) b

2

)
+ (1− λ) f r

(
(1+ λ) b + (1− λ) a

2

)

≤ 1

b − a
∫ b

a

f r (t) dt

≤ 1

2

[
f r ((1− λ) a + λb)+ λf r (a)+ (1− λ) f r (b)] ≤ f r (a)+ f r (b)

2
(83)

for any λ ∈ [0, 1] .
From Remark 3, we get for g (t) = t that

0 ≤ 1

b − a
∫ b

a

f r (t) dt − f r
(
a + b

2

)

≤ r

8
(b − a)

[
f r−1 (b) f ′− (b)− f r−1 (a) f ′+ (a)

]
(84)

and

0 ≤ f r (a)+ f r (b)
2

− 1

b − a
∫ b

a

f r (t) dt

≤ r

8
(b − a)

[
f r−1 (b) f ′− (b)− f r−1 (a) f ′+ (a)

]
. (85)

Assume that f : [a, b] → R is LogExp convex function on [a, b] as considered
in [14]. This is equivalent to the fact that f is composite-g−1 convex with g (t) =
exp t . By utilizing Corollary 2 for k (t) = t we get

f (LME (a, b))

≤ λf
[

ln

(
λ exp b + (2− λ) exp a

2

)]
+ (1− λ) f

[
ln

(
(1+ λ) exp b + (1− λ) exp a

2

)]
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≤ 1

exp b − exp a

∫ b

a
f (t) exp tdt

≤ 1

2

[
f
[
ln ((1− λ) exp (a)+ λ exp (b))

]+ λf (a)+ (1− λ) f (b)] ≤ f (a)+ f (b)
2

(86)

for λ ∈ [a, b] , where LME (a, b) := ln
(

exp a+exp b
2

)
.

If we use Remark 3, then we get

0 ≤ 1

exp b − exp a

∫ b

a

f (t) exp tdt − f (LME (a, b)) (87)

≤ 1

8
(exp b − exp a)

[
exp (−b) f ′− (b)− exp (−a) f ′+ (a)

]

and

0 ≤ f (a)+ f (b)
2

− 1

exp b − exp a

∫ b

a

f (t) exp tdt (88)

≤ 1

8
(exp b − exp a)

[
exp (−b) f ′− (b)− exp (−a) f ′+ (a)

]
.
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Error Estimation for Approximate
Solutions of Delay Volterra Integral
Equations

Oktay Duman

Abstract This work is related to inequalities in the approximation theory. Mainly,
we study numerical solutions of delay Volterra integral equations by using a
collocation method based on sigmoidal function approximation. Error estimation
and convergence analysis are provided. At the end of the paper we display numerical
simulations verifying our results.

1 Introduction

The theory of integral equations is an important subject in pure and applied
mathematics. There are many applications of this theory to problems in the physical
and biological sciences. In general, integral equations are used as mathematical
models for many and varied physical situations. In order to find numerical solutions
of integral equations, we use various techniques, such as degenerate kernel methods,
projection methods including collocation and Galerkin methods, and the Nystrom
method, iteration methods. For details about the topic we suggest the books by
Atkinson [5] and Brunner [7]. To model more realistic and complex structures,
primarily taken from the biological sciences literature, we usually need delay
dynamics, such as delay integral equations and delay differential equations. In the
present paper we mainly focus on the numerical solutions of an integral equation
with constant delay. In this study, for numerical solution of a delayed Volterra
equation, we use a collocation method based on sigmoidal function approximation,
which was first studied by Costarelli and Spigler (see [10–12]). For the neural
network operators based on sigmoidal functions and their approximation properties,
we refer the papers and cited therein: [1–4, 9, 13]. For other variants of collocation
methods used in numerical solution of Volterra-type integral equations see the recent
papers: [5–7, 15–18].
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Fig. 1 Domains Dτ and D. (a) 0 < τ < 1. (b) τ > 1. (c) No delay

We consider the following delay Volterra integral equation

f (t) =
{
g(t)+ ∫ t−τ0 K1(t, s)f (s)ds +

∫ t
0 K2(t, s)f (s)ds, if t ∈ [0, 1]

φ(t), if t ∈ [−τ , 0),
(1)

where τ > 0 is a delay term. We should note that Eq. (1) and its special cases have
frequently been encountered in physical and biological modeling processes (see, for
instance, [8]). For example, in the case of K2 = 0, the equation turns out to the
theory of a circulating fuel nuclear reactor (see [14]). Also, the case of K2 = −K1
reduces to the process of population dynamics. Recently, some numerical solutions
of Eq. (1) have been obtained in different approaches, such as iterated collocation
method, Runge–Kutta method, a multilevel correction method.

In (1) the kernel functions K1 and K2 are defined on the following domains Dτ
and D, respectively (see Fig. 1):

Dτ = {(t, s) : 0 ≤ s ≤ t − τ , τ ≤ t ≤ 1}
∪ {(t, s) : t − τ ≤ s ≤ 0, 0 ≤ t ≤ τ } for 0 < τ < 1, (2)

Dτ = {(t, s) : t − τ ≤ s ≤ 0, 0 ≤ t ≤ 1} for τ ≥ 1, (3)

and

D = {(t, s) : 0 ≤ s ≤ t, 0 ≤ t ≤ 1} . (4)

We assume that K1 : Dτ → R, K2 : D → R, g : [0, 1] → R, and φ :
[−τ , 0] → R are given sufficiently smooth functions on their domains such that (5)
possesses a unique solution f ∈ C[0, 1], For the continuity φ at 0, we need the
following condition

φ(0) = g(0)−
∫ 0

−τ
K1(0, s)φ(s)ds. (5)



Error Estimation for Approximate Solutions of Delay Volterra Integral Equations 587

Note that f is already determined with the function φ on [−τ , 0]. Hence, throughout
the paper we assume that φ ∈ C[−τ , 0] having the condition (5). About the kernels,
at first, we assume that, for each fixed t ∈ [0, 1], the kernel function K1(t, s) is
integrable with respect to s such that (t, s) ∈ Dτ , and K2(t, s) is integrable with
respect to s such that (t, s) ∈ D.

In this paper we seek numerical solutions of (1) with respect to the given delay
term τ > 0.

We should note that if we take τ ≥ 1, then (1) reduces to the standard Volterra
integral equation:

f (t) = h(t)+
∫ t

0
K(t, s)f (s)ds, (6)

where

h(t) := g(t)−
∫ 0

t−τ
K1(t, s)φ(s)ds and K(t, s) := K2(t, s).

Since the numerical solutions of (6) via the collocation method based on neural
network approximation were systematically investigated by Costarelli and Spigler
(see [11]), in the present paper we just focus on the case of 0 < τ < 1.

It is not hard to see that, for 0 < τ < 1, Eq. (1) can be written in the following
form:

f (t) =

⎧
⎪⎨

⎪⎩

g(t)+ ∫ t−τ0 K1(t, s)f (s)ds +
∫ t

0 K2(t, s)f (s)ds, if t ∈ [τ , 1]
g(t)− ∫ 0

t−τ K1(t, s)φ(s)ds +
∫ t

0 K2(t, s)f (s)ds, if t ∈ [0, τ )
φ(t), if t ∈ [−τ , 0).

(7)
Our strategy in this paper is as follows:

• In Sect. 2, we prove the existence and uniqueness of the approximate solution
of (1) for 0 < τ < 1 via the collocation method based on neural network
approximation.

• In Sect. 3, under suitable smoothness conditions on the functions K1, K2, g, and
φ, we obtain the uniform convergence of this approximate solution to the exact
solution of (1) on the interval [0, 1].

• In Sect. 4, we display some numerical simulations verifying our results.
• The last section is devoted to the concluding remarks.

2 Collocation Method Based on Unit Step Functions

Now, for k = 0, 1, 2, . . . , N, define the functions Hk : [0, 1] → {0, 1} by

Hk(t) = H (t − tk) for k = 1, 2, . . . , N and H0(t) = H(t − t−1) = 1,
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where tk = k
N

and H is the unit step function, H(t) := 1 for t ≥ 0, and H(t) := 0
for t < 0. Then, Costarelli and Spigler [10] proved the following neural network
approximation theorem: for every f ∈ C[0, 1],

lim
N→∞‖GN(f )− f ‖[0,1] = 0,

where ‖·‖[0,1] denotes the usual supremum norm on the unit interval [0, 1], and

GN(f ; t) =
N∑

k=1

(f (tk)− f (tk−1))Hk(t)+ f (0). (8)

Later they applied the above approximation to the numerical solutions of Volterra
integral equations (see [11, 12]). The main idea is first to take unknown coefficients
in (8) and then to determine them by forcing a collocation method on the finite
dimensional space ΣN = span{Hk : k = 0, 1, . . . , N} and the collocation points
CN = {t0, t1, . . . , tN }. We should note that such a collocation method and further
improvements have been investigated by Brunner (see, for instance, [6]).

For numerical solutions of (1) we first assume that

G∗N(t) =
N∑

k=0

αkHk(t) for t ∈ [0, 1] (9)

denotes the approximation to the exact solution f on [0, 1]. We also remark that
there is no need to approximate to f on [−τ , 0) since f is already determined on
[−τ , 0) as a given function φ.

Now, as stated before, we just consider the term τ belonging to (0, 1). Since
Eq. (7) holds for this delay τ , the corresponding residual on [0, 1] is given by

rN(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G∗N(t)− g(t)−
∫ t−τ

0 K1(t, s)G
∗
N(s)ds

− ∫ t0 K2(t, s)G
∗
N(s)ds,

if t ∈ [τ , 1]
G∗N(t)− g(t)+

∫ 0
t−τ K1(t, s)φ(s)ds

− ∫ t0 K2(t, s)G
∗
N(s)ds,

if t ∈ [0, τ ).
(10)

Intuitively, we try to make rN(t) as small as possible. For that, the unknown
coefficients αk in (9) are determined by forcing

rN(tj ) = 0, j = 0, 1, . . . , N, (11)

at the collocation points tj = j
N

. Then, from (7) and (9)–(11) we may write that

N∑

k=0

(
Hk(tj )−

∫ tj−τ
0 K1(tj , s)Hk(s)ds −

∫ tj
0 K2(tj , s)Hk(s)ds

)
αk = g(tj )

for tj ∈ [τ , 1] (j = 0, 1, . . . , N),
(12)
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and

N∑

k=0

(
Hk(tj )−

∫ tj
0 K2(tj , s)Hk(s)ds

)
αk = g(tj )−

∫ 0
tj−τ K1(tj , s)φ(s)ds

for tj ∈ [0, τ ) (j = 0, 1, . . . , N).
(13)

The last linear system of Eqs. (12)–(13) can be written in the matrix form as follows:

ANXN = BN,

where XN = [
α0 α1 · · · αN

]T
is the unknown matrix and the matrices AN =

[ajk]j,k=0,...,N and BN =
[
b0 b1 · · · bN

]T
are given as follows:

ajk =
[(
Hk(tj )−

∫ tj−τ

0
K1(tj , s)Hk(s)ds −

∫ tj

0
K2(tj , s)Hk(s)ds

)]
for tj ∈ [τ , 1]

ajk =
[(
Hk(tj )−

∫ tj

0
K2(tj , s)Hk(s)ds

)]
for tj ∈ [0, τ ), (j, k = 0, 1, . . . , N)

and

bj = g(tj ) for tj ∈ [τ , 1]

bj = g(tj )−
∫ 0

tj−τ
K1(tj , s)φ(s)ds for tj ∈ [0, τ ) (j = 0, 1, . . . , N).

Since

Hk(tj ) = H(tj − tk) =
{

1, if j ≥ k
0, if j < k,

the entries of the matrix AN = [ajk] becomes

ajk :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if j < k

1, if j = k

1− ∫ tj
tk
K2(tj , s)ds, if j > k and tj ≤ τ + tk

1− ∫ tj−τ
tk

K1(tj , s)ds −
∫ tj
tk
K2(tj , s)ds, if j > k and tj > τ + tk

(14)
for j, k = 0, 1, . . . , N. Then, AN = [ajk] is a lower triangular matrix with
detA = 1. Therefore, for the unknown matrix XN , we have a unique solution

XN = A−1
N BN,

which immediately implies that the Volterra integral Eq. (7) with delay 0 < τ < 1
admits a unique approximate solution in the form of (9).

As a result, we get the next theorem.
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Theorem 1 For a given delay Volterra integral equation as in (1) with a delay term
0 < τ < 1, let φ ∈ C[−τ , 0] satisfy the condition (5), and let, for each fixed
t ∈ [0, 1], the kernel function K1(t, s) be integrable with respect to s such that
(t, s) ∈ Dτ , and K2(t, s) be integrable with respect to s such that (t, s) ∈ D. Then,
the collocation method for solving (1) admits a unique solution, which means that
the approximate solution G∗N having the form (9) is unique, and the corresponding
matrix to the linear system is lower triangular, whose terms are given by (14).

3 Error Estimation and Convergence Analysis

Now we show that, under some smoothness conditions, the approximate solution
obtained in the previous section is uniformly convergent to the exact solution f on
[0, 1].
Theorem 2 For a given delay Volterra integral Eq. (7) with a delay 0 < τ < 1, in
addition to the conditions of Theorem 1, assume that the followings hold:

(a) for each i = 1, 2, there exist Mi > 0 and βi ∈ (0, 1] such that

|Ki(t, s)−Ki(u, s)| ≤ Mi |t − u|βi for all (t, s), (u, s) ∈ Dτ and D, resp.,

(b) for each i = 1, 2, there exist positive constants Ci such that

|Ki(t, s)| ≤ Ci for all (t, s) ∈ Dτ and D, resp.,

(c) there exist M3 > 0 and β3 ∈ (0, 1] such that

|g(t)− g(u)| ≤ M3 |t − u|β3 for all t, u ∈ [0, 1].

Then, for every t ∈ [0, 1] and for all N ∈ N, we have the error estimation
between the approximate solutionG∗N having the form (9) and the exact solution
f ∈ C[0, 1] as follows:

|eN(t)| :=
∣∣f (t)−G∗N(t)

∣∣ ≤ Mτe
C

Nβ
, (15)

where β =: min{β1, β2, β3} andMτ,C are certain positive constants indepen-
dent of t and N.

Proof Let τ ∈ (0, 1) be given. We first assume that t ∈ [0, τ ]. For a given N ∈ N,
putting j = j (N, t) := ,Nt- , we get

|eN(t)| =
∣∣f (t)−G∗N(t)

∣∣ ≤ ∣∣f (t)− f (tj
)∣∣+ ∣∣f (tj

)−G∗N(t)
∣∣ .
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Also since G∗N(t) = G∗N
(
tj
)
, we obtain that

|eN(t)| ≤
∣∣f (t)− f (tj

)∣∣+ ∣∣f (tj
)−G∗N(tj )

∣∣ . (16)

Then, using (7) and (11), we see that

|eN(t)| ≤
∣∣g(t)− g (tj

)∣∣

+
∣∣∣∣∣

∫ 0

tj−τ
K1(tj , s)φ(s)ds −

∫ 0

t−τ
K1(t, s)φ(s)ds

∣∣∣∣∣

+
∣∣∣∣

∫ t

0
K2(t, s)f (s)ds −

∫ tj

0
K2(tj , s)f (s)ds

∣∣∣∣

+
∫ tj

0

∣∣K2(tj , s)
∣∣ ∣∣f (s)−G∗N(s)

∣∣ ds.

The last inequality implies that

|eN(t)| ≤
∣∣g(t)− g (tj

)∣∣+ ‖φ‖[−τ ,0]
∫ 0

t−τ
∣∣K1(t, s)−K1(tj , s)

∣∣ ds

+‖φ‖[−τ ,0]
∫ t−τ

tj−τ
∣
∣K1(tj , s)

∣
∣ ds

+‖f ‖[0,1]
∫ tj

0

∣∣K2(t, s)−K2(tj , s)
∣∣ ds

+‖f ‖[0,1]
∫ t

tj

|K2(t, s)| ds +
∫ tj

0

∣∣K2(tj , s)
∣∣ |eN(s)| ds,

where, as usual, ‖·‖[a,b] denotes the usual supremum norm on [a, b]. From the
hypotheses (a)− (c), we conclude that

|eN(t)| ≤ M3
(
t − tj

)β3 + τM1 ‖φ‖[−τ ,0]
(
t − tj

)β1

+C1 ‖φ‖[−τ ,0]
(
t − tj

)+M2 ‖f ‖[0,1]
(
t − tj

)β2

+C2 ‖f ‖[0,1]
(
t − tj

)+ C2

∫ tj

0
|eN(s)| ds.

By the fact that j = ,Nt- we observe 0 ≤ t − tj ≤ 1
N
≤ 1. Then, taking β :=

min{β1, β2, β3} and using the fact that tj ≤ t , we may write that

|eN(t)| ≤ M3 + (τM1 + C1) ‖φ‖[−τ ,0] + (C2 +M2) ‖f ‖[0,1]
Nβ

+C2

∫ t

0
|eN(s)| ds.
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Then, it follows from Gronwall’s lemma that

|eN(t)| ≤
(
M3 + (τM1 + C1) ‖φ‖[−τ ,0] + (C2 +M2) ‖f ‖[0,1]

)
eC2

Nβ
, (17)

Assume now that t ∈ (τ , 1]. For a given N ∈ N, take again j := ,Nt- . Then,
there are two possible cases: tj ≤ τ or tj > τ . If tj ≤ τ , then we may write
from (7), (10), (11), and (16) that

|eN(t)| ≤
∣∣g(t)− g (tj

)∣∣

+
∫ t−τ

0
|K1(t, s)| |f (s)| ds +

∫ 0

tj−τ
∣∣K1(tj , s)

∣∣ |φ(s)| ds

+
∣∣
∣∣

∫ t

0
K2(t, s)f (s)ds −

∫ tj

0
K2(tj , s)f (s)ds

∣∣
∣∣

+
∣
∣∣∣

∫ tj

0
K2(tj , s)f (s)ds −

∫ tj

0
K2(tj , s)G

∗
N(s)ds

∣
∣∣∣ .

Hence, from (a)− (c), we get

|eN(t)| ≤ M3(t − tj )β3 + C1 ‖f ‖[0,1] (t − τ)
+C1 ‖φ‖[−τ ,0]

(
τ − tj

)+M2 ‖f ‖[0,1] (t − tj )β2

+C2 ‖f ‖[0,1] (t − tj )+ C2

∫ t

0
|eN(s)| ds.

Since t − τ ≤ t − tj and tj ≤ t, we arrive

|eN(t)| ≤
(
M3 + C1 ‖φ‖[−τ ,0] + (C1 + C2 +M2) ‖f ‖[0,1]

)
eC2

Nβ
. (18)

Finally, if tj > τ, then

|eN(t)| ≤
∣
∣g(t)− g (tj

)∣∣

+
∣∣∣∣

∫ t−τ

0
K1(t, s)f (s)ds −

∫ tj−τ

0
K1(tj , s)f (s)ds

∣∣∣∣

+
∣∣∣
∣

∫ t

0
K2(t, s)f (s)ds −

∫ tj

0
K2(tj , s)f (s)ds

∣∣∣
∣

+
∣∣∣∣

∫ tj−τ

0
K2(tj , s)f (s)ds −

∫ tj−τ

0
K2(tj , s)G

∗
N(s)ds

∣∣∣∣

+
∣∣∣
∣

∫ tj

0
K2(tj , s)f (s)ds −

∫ tj

0
K2(tj , s)G

∗
N(s)ds

∣∣∣
∣ ,



Error Estimation for Approximate Solutions of Delay Volterra Integral Equations 593

which implies

|eN(t)| ≤ M3(t − tj )β3

+M1 ‖f ‖[0,1] (t − tj )β1 + C1 ‖f ‖[0,1] (t − tj )
+M2 ‖f ‖[0,1] (t − tj )β2 + C2 ‖f ‖[0,1] (t − tj )

+2C2

∫ t

0
|eN(s)| ds.

Hence

|eN(t)| ≤
(
M3 + (C1 + C2 +M1 +M2) ‖f ‖[0,1]

)
e2C2

Nβ
(19)

Then, taking C := 2C2 and

Mτ := M3 + (C1 + τM1) ‖φ‖[−τ ,0] + (C1 + C2 +M1 +M2) ‖f ‖[0,1]
and also combining (17)–(19), for every t ∈ [0, 1] and for all N ∈ N we arrive the
inequality (15).

Corollary 1 Under the conditions of Theorem 2, the approximate solution G∗N
having the form (9) is uniformly convergent to the exact solution f ∈ C[0, 1].

Proof From (15), observe that ‖eN‖[0,1] ≤ Mτe
C

Nβ
for every N ∈ N.

4 Numerical Simulations

In this section we display two numerical applications verifying our results obtained
in the previous sections.

Example 1 Consider the Volterra integral Eq. (1) with the delay τ = 1
2 and the

following given functions:

K1(t, s) = t + s, K2(t, s) = ts, φ(t) = 6t3 − 9t2 + 4t

and

g(t) = t

960

(
1152t5 − 2448t4 + 3440t3 − 9160t2 + 11 040t − 4171

)
.

Then, the exact solution of (1) will be

f (t) = 6t3 − 9t2 + 4t.
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Fig. 2 Graphs of G∗10(t) and
G∗20(t), which are numerical
solutions of (1), approximate
to the exact solution
f (t) = 6t3 − 9t2 + 4t

Table 1 Maximum errors for
numerical solutions in
Example 1

N ‖eN‖[0,1]
5 5.8195× 10−1

10 3.8642× 10−1

20 2.2434× 10−1

We understand from Fig. 2 and Table 1 that the corresponding numerical solutions
G∗N defined by (9) approximate to f when N is sufficiently large. We know from
Theorem 2 that the upper bounds of the errors depend on β1, β2, β3, C1, C2,

M1,M2,M3, and τ .

Example 2 Consider the following delay differential equation

⎧
⎪⎪⎨

⎪⎪⎩

f ′′(t)+
(

2t − 1
3

)
f ′
(
t − 1

3

)
− 2tf ′(t)+ 3f

(
t − 1

3

)
− 3f (t) = g′′(t), t ∈

[
1
3 , 1
]

f ′′(t)− 2tf ′(t)− 3f (t) = g′′(t)− 5t
3 + 4

9 , t ∈
[
0, 1

3

)

(20)
with the initial and delay conditions

f (0) = 0, f ′(0) = 1

3
and f (t) = φ(t) = t

3
for t ∈

[
−1

3
, 0

)
.

Then, by taking τ = 1
3 , K(t, s) := K1(t, s) = −K2(t, s) = −(t + s), φ(t) = t

3
and

g(t) =
⎧
⎨

⎩

1
972 (3t − 1)2

(
21t2 + 20t − 3

)− 1
36 t

3 (7t + 10)+ 1
3 t (t + 1) if τ ≤ t ≤ 1

1
486 (3t − 1)2 (15t − 2)− 1

36 t
3 (7t + 10)+ 1

3 t (t + 1) if 0 ≤ t < τ,
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the Eq. (20) turns out to be the following delay integral equation:

f (t) =
⎧
⎨

⎩

g(t)+ ∫ t
t−τ K(t, s)f (s)ds if 0 ≤ t ≤ 1

φ(t) if −τ ≤ t < 0,
(21)

which is a special case of (1). Then, observe that the exact solution of (20), or
equivalently (21), becomes

f (t) = t (t + 1)

3
for t ∈ [0, 1].

Table 2 and Fig. 3 verify Theorems 1 and 2.

Table 2 Maximum errors for
numerical solutions in
Example 2

N ‖eN‖[0,1]
7 1.7792× 10−1

15 8.9126× 10−2

21 6.5134× 10−2

Fig. 3 Graphs of G∗7(t) and G∗21(t), which are numerical solutions of (20), approximate to the

exact solution f (t) = t (t+1)
3
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5 Concluding Remarks

In this paper we obtain numerical solutions of delay Volterra integral equation
having linear structure by using a collocation method based on neural network
approximation introduced by Costarelli and Spigler [11]. For a future study, it
would be interesting to investigate nonlinear delay Volterra equations and also delay
Volterra integro-equations from this point of view. We should note that although we
mainly use the unit interval [0, 1], all results can easily be moved any compact
interval by a simple translation. We understand from this paper that the collocation
method based on the process of unit step functions is quite an effective and easy
way for obtaining the approximate solutions of Volterra integral equations. Another
interesting situation is the multivariate case of this process.
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Harmonic and Trace Inequalities
in Lipschitz Domains

Soumia Touhami, Abdellatif Chaira, and Delfim F. M. Torres

Abstract We prove boundary inequalities in arbitrary bounded Lipschitz domains
on the trace space of Sobolev spaces. For that, we make use of the trace operator,
its Moore–Penrose inverse, and of a special inner product. We show that our trace
inequalities are particularly useful to prove harmonic inequalities, which serve as
powerful tools to characterize the harmonic functions on Sobolev spaces of non-
integer order.
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1 Introduction

In this article we establish some new and important operator inequalities connected
with traces on Hilbert spaces. Trace inequalities find several interesting applications,
e.g., to problems from quantum statistical mechanics and information theory
[2, 5, 11]. Here we establish new trace inequalities in Lipschitz domains, that is,
in a domain of the Euclidean space whose boundary is “sufficiently regular,” in the
sense that it can be thought of as, locally, being the graph of a Lipschitz continuous
function [14]. The study of Lipschitz domains is an important research area per
se, since many of the Sobolev embedding theorems require them as the natural
domain of study [19]. Consequently, many partial differential equations found in
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applications and variational problems are defined on Lipschitz domains [3, 6, 12]. In
our case, we investigate the application of the obtained trace inequalities in Lipschitz
domains to harmonic functions [8], which is a subject of strong current research
[10, 15, 18, 22].

The paper is organized as follows. In Sect. 2, we fix notations and recall necessary
definitions and results, needed in the sequel. Our contribution is then given in
Sect. 3: we prove a Moore–Penrose inverse equality (Theorem 1), trace inequalities
(Theorem 2), and harmonic inequalities (Theorems 3 and 4). As an application of
Theorem 4, we obtain a functional characterization of the harmonic Hilbert spaces
for the range of values 0 ≤ s ≤ 1 (Corollary 1).

2 Preliminaries

Let H1 and H2 be two Hilbert spaces with inner products (·, ·)H1 and (·, ·)H2 and
associated norms ‖ · ‖H1 and ‖ · ‖H2 , respectively. We denote by L(H1,H2) the
space of all linear operators from H1 into H2 and L(H1,H1) is briefly denoted
by L(H1). For an operator A ∈ L(H1,H2), D(A), R(A), and N(A) denote its
domain, its range, and its null space, respectively. The set of all bounded operators
fromH1 intoH2 is denoted by B(H1,H2), while B(H1,H1) is briefly denoted by
B(H1). The set of all closed densely defined operators fromH1 intoH2 is denoted
by C(H1,H2) and, analogously as before, C(H1,H1) is denoted by C(H1). For
A ∈ C(H1,H2), its adjoint operator is denoted by A∗ ∈ C(H2,H1).

The Moore–Penrose inverse of a closed densely defined operator A ∈
C(H1,H2), denoted by A†, is defined as the unique linear operator in C(H2,H1)

such that

D(A†) = R(A)⊕N(A∗), N(A†) = N(A∗),

and

{
AA†A = A,

A†AA† = A†,

{
AA† ⊂ PR(A),

A†A ⊂ PR(A†)
,

where E denotes the closure of E, E ∈ {R(A),R(A†)
}
, and PE the orthogonal

projection on the closed subspace E. The following lemma is used in the proof of
our Moore–Penrose inverse equality (Theorem 1).

Lemma 1 (See Lemma 2.5 and Corollary 2.6 of [13]) Let A ∈ C(H1,H2) and
B ∈ C(H2,H1) be such that B = A†. Then,

1. A(I + A∗A)−1 = B∗(I + BB∗)−1;
2. (I + A∗A)−1 + (I + BB∗)−1 = I + PN(B∗);
3. A∗(I + AA∗)−1 = B(I + B∗B)−1;
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4. (I + AA∗)−1 + (I + B∗B)−1 = I + PN(A∗);
5. (I + AA∗)−1 + (I + B∗B)−1 = I (if A∗ is injective);
6. N(A∗(I + AA∗)−1/2) = N(A∗) = N(B).
Lemma 2 (See Theorem 3.5 of [21]) Let H1 and H2 be two Hilbert spaces,
A ∈ B(H1,H2), and B be its Moore–Penrose inverse. Then, the operator B∗(I +
BB∗)−1/2 is bounded with closed range and has a bounded Moore–Penrose inverse
given by

TB = B(I + B∗B)−1/2 + A∗(I + B∗B)−1/2.

Moreover, the adjoint operator of TB is TB∗ , where

TB∗ = B∗(I + BB∗)−1/2 + A(I + BB∗)−1/2.

Lemma 3 (See Theorem 3.8 of [21]) Let H1 and H2 be two Hilbert spaces, A ∈
B(H1,H2), and B be its Moore–Penrose inverse. Then, the decomposition

A = (I + B∗B)−1/2TB∗

holds, where TB∗ = B∗(I + BB∗)−1/2 + A(I + BB∗)−1/2.

Lemma 4 (See Corollary 3.7 of [21]) Let A ∈ B(H1,H2) and B be its Moore–
Penrose inverse. Then, TB is an isomorphism from R(B∗) to N(B∗)⊥, where
N(B∗)⊥ denotes the orthogonal complement of N(B∗).

Let  be an open subset of Rd with boundary ∂ and closure . We say that
∂ is Lipschitz continuous if for every x ∈ ∂ there exists a coordinate system
(ŷ, yd) ∈ R

d−1 × R, a neighborhood Qδ,δ′(x) of x, and a Lipschitz function γ x :
Q̂δ → R, with the following properties:

1.  ∩Qδ,δ′(x) =
{
(ŷ, yd) ∈ Qδ,δ′(x) / γ x (̂x) < yd

}
;

2. ∂ ∩Qδ,δ′(x) =
{
(ŷ, yd) ∈ Qδ,δ′(x) / γ x (̂x) = yd

}
;

where Qδ,δ′(x) =
{
(ŷ, yd) ∈ R

d / ‖ŷ − x̂‖Rd−1 < δ and |yd − xd | < δ′
}

and

Q̂δ(x) =
{
ŷ ∈ R

d−1 / ‖ŷ − x̂‖Rd−1 < δ
}

for δ, δ′ > 0. An open connected subset  ⊂ R
d , whose boundary is Lipschitz

continuous, is called a Lipschitz domain. In the rest of this paper,  denotes a
bounded Lipschitz domain in R

d , d ≥ 2. We denote by Ck(), k ∈ N or k = ∞, the
space of real k times continuously differentiable functions on. The spaceC∞ of all
real functions on  with a compact support in  is denoted by C∞c (). We say that
a sequence (ϕn)n≥1 ∈ C∞c () converges to ϕ ∈ C∞c (), if there exists a compact
Q ⊂  such that supp(ϕn) ⊂ Q for all n ≥ 1 and, for all multi-index α ∈ N

d ,
the sequence (∂αϕn)n≥1 converges uniformly to ∂αϕ, where ∂α denotes the partial
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derivative of order α. The space C∞c (), induced by this convergence, is denoted
by D(), while D ′() is the space of distributions on . For k ∈ N, Hk() is the
space of all distributions u defined on  such that all partial derivatives of order at
most k lie in L2(), i.e., ∂αu ∈ L2() ∀ |α| ≤ k. This is a Hilbert space with the
scalar product

(u, v)k, =
∑

|α|≤k

∫



∂αu ∂αv dx,

where dx is the Lebesgue measure and u, v ∈ Hk(). The corresponding norm,
denoted by ‖ · ‖k,, is given by

‖u‖k, =
⎛

⎝
∑

|α|≤k

∫



|∂αu|2 dx
⎞

⎠

1/2

.

Sobolev spaces Hs(), for non-integers s, are defined by the real interpolation
method [1, 16, 20]. The trace spaces Hs(∂) can be defined by using charts on
∂ and partitions of unity subordinated to the covering of ∂. If  is a Lipschitz
hypograph, then there exists a Lipschitz function γ : R

d−1 → R such that
 = {

x ∈ R
d−1 / xd < γ (̂x) for all x̂ ∈ R

d−1
}
. This allows to construct Sobolev

spaces on the boundary ∂, in terms of Sobolev spaces on R
d−1 [16]. This is done

as follows. For g ∈ L2(∂), we define gγ (̂x) = g(̂x, γ (̂x)) for x̂ ∈ R
d−1, we let

Hs(∂) =
{
g ∈ L2(∂) | gγ ∈ Hs(Rd−1) for 0 ≤ s ≤ 1

}
,

and equip this space with the inner product (g, y)Hs(∂) = (gγ , yγ )s,Rd−1 , where

(u, v)s,Rd−1 =
∫

Rd−1
(1+ |ξ |2)s û(ξ )̂v(ξ) dξ

and û denotes the Fourier transform of u. Recalling that any Lipschitz function is
almost everywhere differentiable, we know that any Lipschitz hypograph  has a
surface measure σ and an outward unit normal ν that exists σ -almost everywhere

on ∂. If  is a Lipschitz hypograph, then dσ(x) =
√

1+ ‖∇γ (̂x)‖2
Rd−1dx̂ and

ν(x) = (−∇γ (̂x), 1)
√

1+ ‖∇γ (̂x)‖2
Rd−1

for almost every x ∈ ∂. Suppose now that  is a Lipschitz domain. Because
∂ ⊂ ⋃

x∈∂ Qδ,δ′(x) and ∂ is compact, there exist x1, x2, . . . , xn ∈ ∂ such
that
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∂ ⊂
n⋃

j=1

Qδ,δ′(x
j ).

It follows that the family (Wj ) = (Qδ,δ′(x
j )) is a finite open cover of ∂, i.e., each

Wj is an open subset of R
d and ∂ ⊆ ⋃

j Wj . Let (ϕj ) be a partition of unity
subordinate to the open cover (Wj ) of ∂, i.e., ϕj ∈ D(Wj ) and

∑
j ϕj (x) = 1 for

all x ∈ ∂. The inner product in Hs(∂) is then defined by

(u, v)s,∂ =
∑

j

(ϕju, ϕjv)Hs(∂j ),

where j can be transformed to a Lipschitz hypograph by a rigid motion, i.e., by a
rotation plus a translation, and satisfiesWj∩ = Wj∩j for each j . The associated
norm will be denoted by ‖ · ‖s,∂. It is interesting to mention that a different choice
of (Wj ), (j ) and (ϕj ) would yield the same space Hs(∂) with an equivalent
norm, for 0 ≤ s ≤ 1. For more on the subject, we refer the interested reader to
[1, 7, 16].

The trace operator maps each continuous function u on  to its restriction onto
∂ and may be extended to be a bounded surjective operator, denoted by �s , from

Hs() toHs− 1
2 (∂) for 1/2 < s < 3/2 [4, 16]. The range and null space of �s are

given by R(�s) = Hs−1/2(∂) andN(�s) = Hs
0 (), respectively, where Hs

0 () is
defined to be the closure in Hs() of infinitely differentiable functions compactly
supported in . For s = 3/2, this is no longer valid. For s > 3/2, the trace operator
from Hs() to H 1(∂) is bounded [4].

Let us set � = T1�1, where �1 is the trace operator from H 1() to H 1/2(∂)

and T1 is the embedding operator from H 1/2(∂) into L2(∂). According to a
classical result of Gagliardo [9], we know that R(�) = H 1/2(∂). Since �1 is
bounded and T1 is compact [17], the trace operator � from H 1() to L2(∂) is
also compact.

Now, let us induce H 1() with the following inner product:

(u, v)∂, =
∫



∇u∇vdx +
∫

∂

�u�vdσ ∀u, v ∈ H 1().

The associated norm ‖ · ‖∂, is given by

‖u‖∂, =
(
‖∇u‖2

0, + ‖�u‖2
0,∂

)1/2

and H 1(), induced with the inner product (·, ·)∂,, is denoted by H 1
∂ (). A well-

known result of Nečas [17], asserts that under the condition that  is a bounded
Lipschitz domain, the norms ‖ · ‖∂, and ‖ · ‖1, are equivalent.

The following characterization is useful to prove our trace inequalities in Sect. 3.
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Lemma 5 (See Corollary 6.9 of [21]) Let � be the trace operator from H 1
∂ () to

L2(∂), " its Moore–Penrose inverse, and "∗ be its adjoint operator. Then, for
0 ≤ s ≤ 1, we have that Hs(∂) = Hs(∂) with equivalence of norms, where
Hs(∂) = {(I +"∗")−sg | g ∈ L2(∂)}.

3 Main Results

We begin by proving an important equality that, together with the trace inequalities
of Theorem 2, will be useful to prove our harmonic inequality of Theorem 3.

Theorem 1 (The Moore–Penrose Inverse Equality) Let � ∈ B(H 1
∂ (), L

2(∂))

be the trace operator and " ∈ C(L2(∂),H 1
∂ ()) its Moore–Penrose inverse.

Then, for a real s, the following equality holds:

T"∗(I +""∗)−s = (I +"∗")−sT"∗ ,

where T"∗ = "∗(I +""∗)−1/2 + �(I +""∗)−1/2.

Proof From Lemma 1,

N(T"∗(I +""∗)−s) = N(T"∗)
= N("∗(I +""∗)−1/2)

= N("∗)
= H 1

0 ()

= N((I +"∗")−sT"∗),

and we have

T"∗(I +""∗)−sv = 0 = (I +"∗")−sT"∗v

for all v ∈ N("∗). Now let us consider the operator �∗� : H 1
∂ () −→ H 1

∂ (),
where �∗ is the adjoint of the trace operator �. Given the compactness of �, the
operator �∗� is compact and self-adjoint. Then there exists a sequence of pairs
(sk, vk)k≥1 associated to �∗� such that

�∗�vk = s2
k vk.

To prove the equality on N("∗)⊥, we show that

T"∗(I +""∗)−svk = (I +"∗")−sT"∗vk.
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To this end, let �vk = skzk . It follows that �∗zk = skvk and, from Lemma 3,
�vk = (I +"∗")−1/2T"∗vk . On the other hand,

T"∗vk = "∗(I +""∗)−1/2vk + �(I +""∗)−1/2vk.

By putting (I +""∗)−1vk = wk , we have vk = wk +""∗wk and

�∗�vk = s2
k vk = �∗�wk + wk,

which implies that

(I + �∗�)−1�∗�vk = s2
k (I + �∗�)−1vk

= wk

= �∗�(I + �∗�)−1vk.

(1)

Using Lemma 1, it follows from (1) that

(I + �∗�)−1�∗�vk = �∗"∗(I +""∗)−1vk.

This leads, again from Lemma 1, to

(I +""∗)−1vk = s2
k (I + �∗�)−1vk

= s2
k (vk − (I +""∗)−1vk),

so that

(1+ s2
k )(I +""∗)−1vk = s2

k vk.

Thus,

(I +""∗)−1vk = s2
k

1+ s2
k

vk

= (1+ s2
k )
−1s2

k vk,

which implies that

(
I +""∗)−s vk =

(
s2
k

(
1+ s2

k

)−1
)s
vk.

In particular,

(I +""∗)−1/2vk = sk(1+ s2
k )
−1/2vk.
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Consequently,

T"∗vk = "∗(I +""∗)−1/2vk + �(I +""∗)−1/2vk

= "∗
⎛

⎝ sk√
1+ s2

k

vk

⎞

⎠+ �
⎛

⎝ sk√
1+ s2

k

vk

⎞

⎠

= 1
√

1+ s2
k

zk + s2
k√

1+ s2
k

zk

=
√

1+ s2
k zk.

Therefore,

T"∗(I +""∗)−svk =
(

s2
k

1+ s2
k

)s ⎛

⎝ 1+ s2
k√

1+ s2
k

⎞

⎠ zk

=
(

s2
k

1+ s2
k

)s √
1+ s2

k zk.

On the other hand, ��∗zk = �skvk = s2
k zk . By putting (I + "∗")−1zk = ek , we

have

zk = ek +"∗"ek,

which implies that

��∗zk = s2
k zk = ��∗ek + ek

and

(I + ��∗)−1��∗zk = s2
k (I + ��∗)−1zk

= ek

= ��∗(I + ��∗)−1zk.

Using Lemma 1, it follows that

(I + ��∗)−1��∗zk = �"(I +"∗")−1zk.

This leads, again from Lemma 1, to
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(I +"∗")−1zk = s2
k (I + ��∗)−1zk = s2

k

(
zk − (I +"∗")−1zk

)
,

so that

(1+ s2
k )(I +"∗")−1zk = s2

k zk

and

(I +"∗")−1zk = s2
k (1+ s2

k )
−1zk.

Consequently,

(
I +"∗")−s zk =

(
s2
k

(
1+ s2

k

)−1
)s
zk,

which implies that

(
I +"∗")−s T"∗vk =

(
I +"∗")−s

√
1+ s2

k zk

=
√

1+ s2
k

(
s2
k

1+ s2
k

)s
zk.

Hence, one has (I +"∗")−s T"∗vk = T"∗ (I +""∗)−s vk for all k ≥ 1 and the
proof is complete. ��

Let us now consider the family of Hilbert spaces

Hs() = {v ∈ Hs() / *v = 0 in D ′()}, s ≥ 0,

that consist of real harmonic functions on the usual Sobolev space Hs(). For 1 <
s < 3/2, we equipHs() with the following norm:

‖u‖Hs () = ‖�su‖s−1/2,∂.

Theorem 2 (The Trace Inequalities) Let  ⊂ R
d , d ≥ 2, be a bounded Lipschitz

domain with boundary ∂. Consider, for 1 < s < 3/2, the trace operators �s and
� from Hs() to Hs−1/2(∂) and from H 1

∂ () to L2(∂), respectively, and let "
be the Moore–Penrose inverse of �. Then there exist two positive constants c1 and
c2 such that the inequalities

c1‖�sv‖s−1/2,∂ ≤ ‖(I +"∗")s−1/2�ṽ‖0,∂ ≤ c2‖�sv‖s−1/2,∂ (2)

hold for all v ∈ Hs(), where ṽ is the embedding of v inH1().
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Proof Assume 1 < s < 3/2 and let v ∈ Hs() and ṽ be its embedding in H1().
Clearly, �sv ∈ Hs−1/2(∂) and �ṽ ∈ L2(∂). From Lemma 5, it follows that

Hs−1/2(∂) = Hs−1/2(∂)

with equivalence between the norm ‖ · ‖s−1/2,∂ and the graph norm defined for
g ∈ L2(∂) by

g /−→ ‖(I +"∗")s−1/2g‖0,∂.

Equivalently, there exist two positive constants c1 and c2 such that (2) holds for all
v ∈ Hs(). ��

As an application of Theorems 1 and 2, we prove the harmonic inequality (3).

Theorem 3 (The Harmonic Inequality for 1 < s < 3/2) Assume 1 < s < 3/2.
Then, for all v ∈ Hs(), the following inequality holds:

‖v‖Hs () ≤ ‖T"∗‖ ‖(I +""∗)s−1ṽ‖∂,, (3)

where

T"∗ = "∗(I +""∗)−1/2 + �(I +""∗)−1/2

and ṽ is the embedding of v inH1().

Proof Consider v ∈ Hs() and ṽ its embedding in H1(). It follows from
Theorem 2 that there exists a positive constant c3 such that

‖v‖Hs () = ‖�sv‖s−1/2,∂ ≤ c3 ‖(I +"∗")s−1/2�ṽ‖0,∂.

Moreover, from Lemma 3, we have

� = (I +"∗")−1/2T"∗ ,

where

T"∗ = "∗(I +""∗)−1/2 + �(I +""∗)−1/2.

It follows from Theorem 1 that

‖v‖Hs () = ‖(I +"∗")s−1T"∗ ṽ‖0,∂ = ‖T"∗(I +""∗)s−1ṽ‖0,∂.

Lemma 2 asserts that T"∗ is bounded and the intended inequality (3) follows. ��
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Now consider the embedding operator E from H 1() into L2() and its adjoint
E∗, which is the solution operator of the following Robin problem for the Poisson
equation:

{
−*u = f in ,

∂νu+ �u = 0 on ∂,

where f ∈ L2() and ∂ν denotes the normal derivative operator with exterior
normal ν. Let E∗0 be the solution operator of the Dirichlet problem for the following
Poisson equation:

{
−*u0 = f in ,

�u0 = 0 on ∂.

By setting E∗1 = E∗ − E∗0 and u1 = E∗1f , it follows that u1 is the solution of the
Dirichlet problem for the following Laplace equation:

{
−*u1 = 0 in ,

�u1 = �u on ∂.

Let 0 ≤ s ≤ 1, F1 be the Moore–Penrose inverse of E1, F ∗1 be its adjoint operator,
and denote

Xs() =
{
(I + F ∗1 F1)

−s/2v | v ∈ H()
}
,

whereH() is the Bergman space. Next we prove the harmonic inequalities for the
case s = 1.

Theorem 4 (The Harmonic Inequalities for s = 1) Let  ⊂ R
d , d ≥ 2, be

a bounded Lipschitz domain. Then, for all v ∈ H1(), there exist two positive
constants c′1 and c′2, not depending on v, such that

c′1‖v‖∂, ≤ ‖(I + F ∗1 F1)
1/2E1v‖0, ≤ c′2‖v‖∂,. (4)

Proof From Lemma 3, the decomposition

E1 = (I + F ∗1 F1)
−1/2TF ∗1

holds, where

TF ∗1 = F ∗1 (I + F1F
∗
1 )
−1/2 + E1(I + F1F

∗
1 )
−1/2.
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Moreover, since R(E1) = H1(), it follows that H1() = X1(). Now consider
the graph norm

‖u‖X1() = ‖(I + F ∗1 F1)
1/2u‖0,

for u ∈ X1(). It follows that E1v ∈ X1() for v ∈ H1() and

‖(I + F ∗1 F1)
1/2E1v‖0, = ‖TF ∗1 v‖0,.

In agreement with Lemma 4, we can view TF ∗1 as an isomorphism fromH1() into
H(), and there exist two positive constants c′1 and c′2, not depending on v, such
that (4) holds. ��

The harmonic inequalities of Theorem 4 are a useful tool to provide a functional
characterization of the harmonic Hilbert spaces for the range of values 0 ≤ s ≤ 1.

Corollary 1 Assume 0 ≤ s ≤ 1. Then Hs() form an interpolatory family.
Moreover,

Hs() = Xs()

with equivalence of norms.

Proof For s = 0, one has the equality X() = H() by definition. For s = 1,
Theorem 4 asserts that X1() = H1() with the equivalence of the norm ‖ · ‖X1()

with the norm on H1(), which is the same as the one on H 1
∂ (). The intended

equality Hs() = Xs() with equivalence of norms, 0 < s < 1, follows from
classical results on the theory of positive self-adjoint operators, which assert that
both Xs() andHs() form an interpolating family for 0 < s < 1. ��

Acknowledgements This research is part of the first author’s Ph.D. project, which is carried out
at Moulay Ismail University, Meknes. It was essentially finished during a visit of Touhami to the
Department of Mathematics of University of Aveiro, Portugal, November 2018. The hospitality of
the host institution and the financial support of Moulay Ismail University, Morocco, and CIDMA,
Portugal, are here gratefully acknowledged. Torres was partially supported by the Portuguese
Foundation for Science and Technology (FCT) through CIDMA, project UID/MAT/04106/2019.

References

1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces (Elsevier/Academic Press, Amsterdam 2003)
2. E. Carlen, Trace inequalities and quantum entropy: an introductory course, in Entropy and the

Quantum. Contemporary Mathematics, vol. 529 (American Mathematical Society, Providence,
RI, 2010), pp. 73–140



Harmonic and Trace Inequalities in Lipschitz Domains 611

3. C.D. Collins, J.L. Taylor, Eigenvalue convergence on perturbed Lipschitz domains for ellip-
tic systems with mixed general decompositions of the boundary, J. Differ. Equ. 265(12),
6187–6209 (2018)

4. M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J.
Math. Anal. 19(3), 613–626 (1988)

5. X. Chen, R. Jiang, D. Yang, Hardy and Hardy-Sobolev spaces on strongly Lipschitz domains
and some applications. Anal. Geom. Metr. Spaces 4, 336–362 (2016)

6. B. Dacorogna, Introduction to the Calculus of Variations, 3rd edn. (Imperial College Press,
London, 2015)

7. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and
Technology. Functional and Variational Methods, vol. 2 (Springer, Berlin, 1988)

8. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (Ameri-
can Mathematical Society, Providence, 1998)

9. E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni
in n variabili. Rend. Sem. Mat. Univ. Padova 27, 284–305 (1957)

10. V.K. Gupta, P. Sharma, Hypergeometric inequalities for certain unified classes of multivalent
harmonic functions. Appl. Appl. Math. 13(1), 315–332 (2018)

11. M. Hayajneh, S. Hayajneh, F. Kittaneh, On some classical trace inequalities and a new Hilbert-
Schmidt norm inequality. Math. Inequal. Appl. 21(4), 1175–1183 (2018)

12. M. Kohr, W.L. Wendland, Variational approach for the Stokes and Navier–Stokes systems with
nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var.
Partial Differ. Equ. 57(6), 165 (2018)

13. J.-Ph. Labrousse, Inverses généralisés d’opérateurs non bornés. Proc. Amer. Math. Soc. 115(1),
125–129 (1992)

14. C.R. Loga, An extension theorem for matrix weighted Sobolev spaces on Lipschitz domains.
Houston J. Math. 43(4), 1209–1233 (2017)

15. G. Maze, U. Wagner, A note on the weighted harmonic-geometric-arithmetic means inequali-
ties. Math. Inequal. Appl. 15(1), 15–26 (2012)

16. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univer-
sity Press, Cambridge, 2000)
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Dirichlet Beta Function via Generalized
Mathieu Series Family

P. Cerone

Abstract Integral representations for a generalized Mathieu series and its compan-
ions are used to obtain approximation and bounds for undertaking analysis leading
to novel insights for the Dirichlet Beta function and its companions. The bounds are
procured using a variety of approaches including utilizing integral representation
and Čebyšev functional results. The relationship to Zeta type functions is also
examined. It is demonstrated that the Dirichlet Beta function relations are particular
cases of the generalized Mathieu companions.

1 Introduction

The series, known in the literature as the Mathieu series,

S (r) =
∞∑

n=1

2n
(
n2 + r2

)2 , r > 0, (1)

has been extensively studied in the past since its introduction by Mathieu [24] in
1890, where it arose in connection with work on elasticity of solid bodies. The
reader is directed to the references and the books [6], [4], and [29] for further
illustration of various representations and bounds. The various applications areas
involve the solution of the biharmonic equation in a rectangular two-dimensional
domain using the so- called superposition method and the interested reader is
referred to the work of Meleshko [25–27] for excellent coverage and further
references. A literature search in MathScinet with ‘Mathieu series’ results in over
700 hits demonstrates that the area continues to attract many avenues of research
and application. See also some of the recent activity such as in [4, 15, 17, 28, 31].
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One of the main questions addressed in relation to the series is obtaining sharp
bounds.

Building on some results from [38], Alzer et al. [1] showed that the best constants
a and b in

1

x2 + a < S (x) <
1

x2 + b , x �= 0 (2)

are a = 1
2ζ (3) and b = 1

6 where ζ (·) denotes the Riemann zeta function defined by

ζ (p) =
∞∑

n=1

1

np
. (3)

An integral representation for S (r) as given in (1) was presented in [16] and
[18] as

S (r) = 1

r

∫ ∞

0

x

ex − 1
sin (rx) dx. (4)

Guo [20] utilized (4) to obtain bounds on S (r). Alternate bounds to (1) were
obtained by Qi and coworkers in [33–35].

Guo in [20] posed the interesting problem as to whether there is an integral
representation of the generalized Mathieu series

Sμ (r) =
∞∑

n=1

2n
(
n2 + r2

)1+μ , r > 0, μ > 0. (5)

In [36] an integral representation was obtained for Sm (r), wherem ∈ N, namely

Sm (r) = 2

(2r)m m!
∫ ∞

0

tm

et − 1
cos
(mπ

2
− rt

)
dt

− 2
m∑

k=1

[
(k − 1) (2r)k−2m−1

k! (m− k + 1)

(− (m+ 1)

m− k
)

×
∫ ∞

0

tk cos
[
π
2 (2m− k + 1)− rt]

et − 1
dt

]

. (6)

The challenge of Guo [20] to obtain an integral representation for Sμ (r) as defined
in (5) was successfully answered by Cerone and Lenard [12] in which the following
two theorems were proved.
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Theorem 1 The generalized Mathieu series Sμ (r) defined by (5) may be repre-
sented in the integral form

Sμ (r) = Cμ (r)

∫ ∞

0

xμ+ 1
2

ex − 1
J
μ− 1

2
(rx) dx, μ > 0, (7)

where

Cμ (r) =
√
π

(2r)μ− 1
2 � (μ+ 1)

(8)

and Jν (z) is the νth order Bessel function of the first kind.

Theorem 2 For m a positive integer we have

Sm (r) = 1

2m−1 ·
1

r2m−1 ·
1

m

m−1∑

k=0

(−1)

⌊
3k
2

⌋

k! rk [δk evenAk (r)+ δk oddBk (r)], (9)

where

Ak (r) =
∫ ∞

0

xk+1

ex − 1
sin (rx) dx, Bk (r) =

∫ ∞

0

xk+1

ex − 1
cos (rx) dx, (10)

with δcondition = 1 if condition holds and zero otherwise and ,x- is the largest
integer not greater than x.

The emphasis as in [12] became the derivation of bounds for the generalized
Mathieu series Sμ (r). The first approach utilized sharp bounds for the Bessel
function |Jν (z)| . To this end, in an article by Landau [21], the best possible uniform
bounds were obtained for Bessel functions using monotonicity arguments. Landau
showed

|Jν (z)| < bL

ν
1
3

(11)

uniformly in the argument z > 0 and is best possible in the exponent 1
3 and constant

bL = 2
1
3 sup

z
Ai (z) = 0.674885 · · · , (12)

where Ai (z) is the Airy function satisfying

w′′ − zw = 0.
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Landau also showed that for z > 0

|Jν (z)| ≤ cL

z
1
3

(13)

uniformly in the order ν > 0 and the exponent 1
3 is best possible with

cL = sup
z
z

1
3 J0 (z) = 0.78574687 . . . . (14)

The following theorem, based on the Landau bounds (11)–(14), was obtained
in [12].

Theorem 3 The generalized Mathieu series Sμ (r) are bounded above, for μ > 1
2

and r > 0, are given by,

Sμ (r) ≤ bL
√
π

(2r)μ− 1
2

· 1
(
μ− 1

2

) 1
3

·
�
(
μ+ 3

2

)

� (μ+ 1)
ζ

(
μ+ 3

2

)
, (15)

and

Sμ (r) ≤ cL ·
√
π

2μ− 1
2 rμ− 1

6

· �
(
μ+ 7

6

)
ζ

(
μ+ 7

6

)
, (16)

where bL and cL are given by (12) and (14), respectively.

The following corollary was also obtained in [12] for S (r) = S1 (r). The first of
these results is corrected below.

Corollary 1 The Mathieu series S (r) satisfies the following bounds:

S (r) ≤ 3π

2
13
6

bL · ζ
(

5

2

)
· 1√

r
(17)

and

S (r) ≤ 7cL
36

·
√
π

2
· �
(

1

6

)
ζ

(
13

6

)
· r− 5

6 , (18)

where bL and cL are given by (12) and (14), respectively.

The following results were obtained in [12] using a weighted Čebyšev functional
approach. See also [10] where the approach was utilized for a greater variety of
special functions.



Dirichlet Beta Function Relations 617

Theorem 4 For μ > 0 and r > 0 the generalized Mathieu series Sμ (r) satisfies
∣
∣∣∣∣∣∣
Sμ (r)− π2

12μ
(
r2 + 1

4

)μ

∣
∣∣∣∣∣∣

(19)

≤ κ

⎡

⎢
⎢
⎢
⎢
⎣

1√
π
·

�
(

2μ− 1
2

)

22μ−1�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ
[(

1
4

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 1

2μ2
(
r2 + 1

4

)2μ

⎤

⎥
⎥
⎥
⎥
⎦

1
2

≤ κ
⎡

⎢
⎣
�
(

2μ− 1
2

)
�
(
μ+ 1

2

)

22μ�3 (μ+ 1)
· 1

r4μ−1
− 1

2μ2
(
r2 + 1

4

)2μ

⎤

⎥
⎦

1
2

,

where

κ =
[
π2
(

1− π2

72

)
− 7ζ (3)

] 1
2

= 0.3198468959 . . . .. (20)

Corollary 2 The Mathieu series S (r) satisfies the following bounds:
∣∣∣∣∣∣

∞∑

n=1

2n
(
n2 + r2

)2 −
π2

12
(
r2 + 1

4

)

∣∣∣∣∣∣
≤ 2
√

2 · κ
{

2

1+ (4r)2 −
1

[
1+ (2r)2]2

} 1
2

(21)
where κ is as given by (20).

As explained in Milovanović and Pogany [28], motivated by [12], a family of
Mathieu a-series were introduced by Pogany et al.[32] together with their integral
representations, various approaches and results were used to procure bounds.

The alternating generalized Mathieu series, companion to Sμ (r), was intro-
duced by Pogany and Tomovski [31] and is represented by

S̃μ (r) =
∞∑

n=1

(−1)n−1 · 2n
(
n2 + r2

)1+μ , r > 0, μ > 0. (22)

which can be also expressed in the following integral form

S̃μ (r) = Cμ (r)

∫ ∞

0

xμ+ 1
2

ex + 1
J
μ− 1

2
(rx) dx, μ > 0, (23)

where Cμ (r) is as given in (8).
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In the paper [13], bounds were obtained for the alternating generalized Mathieu
series S̃μ (r) in Sect. 3; and, the odd φμ(r) and even ψμ(r) generalized Math-
ieu series, as defined in Sect. 4. This was accomplished by using their integral
representations via Čebyšev Functional bounds which is presented in Sect. 2. The
methodology produces both the approximation and bounds for the companion series
of the generalized Mathieu series. In Sect. 5 some properties of the generalized
Mathieu series and its companions are given with an emphasis on the moments in
terms of Beta and Zeta functions. The paper’s emphasis was to analyze the odd and
even counterparts for the generalized Mathieu series as has been accomplished. It is
further demonstrated that the relationship between the Zeta function, the alternating
Zeta function, and the odd Zeta function is recaptured by allowing r− > 0 in
the relationship between the generalized Mathieu series, the alternating and odd
Mathieu series in Theorem 8 and Remark 7.

The emphasis of the current article is to extend this methodology to the Dirichlet
Beta L- function family through the generalized Mathieu series, whereas the work
in [13] emphasized the extension to a generalized Mathieu series Sμ (r) by the
Zeta function, ζ (·) as generator. The current work is based on the generator as the
sum of the reciprocal powers of odd positive numbers, λ(s). The Dirichlet Beta

function β(s) =∑∞
n=1

(−1)n−1

(2n−1)s has the honor as the lead of this family though. The
generalized Mathieu series are based on two parameters r and μ, as exemplified
by (5) and (7), in addition to various generators. The Dirichlet L-series have played
a great deal of attention in number theory. These are also relevant to lattice sums
which may be represented by lower dimensional lattice sums. The classic example
of this was first given by Lorenz [22] as [39], is given by,

∞∑

m,n �=0,0

1
(
m2 + n2

)s = 4ζ (s) · β(s). (24)

The reader is encouraged to refer to [5, 39] and [14] for interest and further
references.

2 Some Results on Bounding the Čebyšev Functional

The current section presents a key methodology to procure approximation and
bounds for the integral representations of the Zeta and Dirichlet Beta function
companions as generators of generalized Mathieu series.

The weighted Čebyšev functional defined by

T (f, g;p) :=M (fg;p)−M (f ;p)M (g;p), (25)

whereM is the weighted integral mean
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M (h;p) :=
∫ b
a
p (x) h (x) dx
∫ b
a
p (x) dx

, (26)

has been extensively investigated in the literature with the view of determining its
bounds. The unweighted Čebyšev functional T (f, g; 1) was bounded by Grüss in
[19] by the product of the difference of the functions and their function bounds.

There has been much activity in procuring bounds for T (f, g;p) and the
interested reader is referred to [7, 11]. The functional T (f, g;p) is known to satisfy
a number of identities. Included amongst these are identities of Sönin type, namely

P · T (f, g;p) =
∫ b

a

p (t) [f (t)−K] [g (t)−M (g;p)] dt, (27)

where K is a constant and

P =
∫ b

a

p (x) dx. (28)

The constantK ∈ R, but in the literature some of the more popular values have been
taken as

0,
*+ δ

2
, f

(
a + b

2

)
andM (f ;p),

where −∞ < δ ≤ f (t) ≤ * <∞ and t ∈ [a, b].
An identity attributed to Körkine, viz.,

P 2 · T (f, g;p) = 1

2

∫ b

a

∫ b

a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy
(29)

may also easily be shown to hold.

Remark 1 For −∞ < δ ≤ f (t) ≤ * < ∞ for t ∈ [a, b] Cerone and Dragomir
[11] showed that

P · |T (f, g;p)| ≤ 1

2
(*− δ)

∫ b

a

p (t) |g (t)−M (g;p)| dt (30)

≤ 1

2
(*− δ)

(∫ b

a

p (t) |g (t)−M (g;p)|α dt
) 1
α

, 1 ≤ α <∞

≤ 1

2
(*− δ) ess sup

t∈[a,b]
|g (t)−M (g;p)| .

Specifically, if −∞ < φ ≤ g (t) ≤ 0 <∞ for t ∈ [a, b], then
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|T (f, g;p)| ≤ 1

2
(*− δ)

∫ b

a

p (t) |g (t)−M (g;p)| dt (31)

≤ 1

2
(*− δ)

[
1

P

∫ b

a

p (t) g2 (t) dt −M2 (g;p)
] 1

2

≤ 1

4
(*− δ) (0− φ) .

The results in (30) were obtained from the Sönin type identity (27) on taking
K = *+δ

2 .

It is instructive to show from (27) that the best K, in the sense of providing the
sharpest bound for the Euclidean or two-norm, results when K =M (f ;p).
Lemma 1 The sharpest bound for the Čebyšev functional involving the Euclidean
norm is given by

P · |T (f, g;p)| (32)

≤ inf
K

[∫ b

a

p (t) (f (t)−K)2 dt
] 1

2
[∫ b

a

p (t) (g (t)−M (g;p))2 dt
] 1

2

=
[∫ b

a

p (t) f 2 (t) dt −M2 (f ;p)
] 1

2
[∫ b

a

p (t) g2 (t) dt −M2 (g;p)
] 1

2

.

Proof From (27) we have, on using the Cauchy-Buniakowsky-Schwartz, inequality

P ·|T (f, g;p)| ≤
(∫ b

a

p (t) (f (t)−K)2 dt
) 1

2
(∫ b

a

p (t) (g (t)−M (g;p))2 dt
) 1

2

.

Now, the sharpest bound is obtained by taking the infimum over K ∈ R. That is,

inf
K∈R

(∫ b

a

p (t) (f (t)−K)2 dt
) 1

2

= inf
K∈R

(∫ b

a

p (t)
(
f 2 (t)− 2Kf (t)+K2

)
dt

) 1
2

= inf
K∈R

[∫ b

a

p (t) f 2 (t) dt

+ P ·K (K − 2M (f ;p))
] 1

2

=
(∫ b

a

p (t) f 2 (t) dt − P ·M2 (f ;p)
) 1

2

,

and the infimum occurs when K =M (f ;p).
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In the next section Lemma 1 is used to obtain bounds.
We note that the first inequality in (30) results from

|P · T (f, g;p)| ≤ inf
K
‖f (·)−K‖∞

∫ b

a

p (t) |g (t)−M (g;p)| dt (33)

≤ ‖f (·)−K‖∞
∫ b

a

p (t) |g (t)−M (g;p)| dt,

which are tighter than those in Lemma 1.
However, (33) relies on knowing where the shifted functions are positive and

where they are negative. This is not always an easy task.
The first result in (30) arises from (33) with K = *+δ

2 so that

∥∥∥
∥f (·)−

*+ δ
2

∥∥∥
∥∞

= sup
t∈[a,b]

∣∣∣
∣f (t)−

*+ δ
2

∣∣∣
∣ =

*− δ
2

,

where −∞ < δ ≤ f (t) ≤ * <∞ for t ∈ [a, b].

3 Bounds for S̃μ (r) via the Čebyšev Functional

Bounds on the Čebyšev functional (25) may be looked upon as estimating the
distance of the weighted mean of the product of two functions from the product
of the weighted means of the two functions. This proves to be quite useful since the
individual means are invariably easier to evaluate.

The following technical lemma involving the Euler beta function will B(x, y)
be required, which is represented in terms of the gamma function by

B(x, y) = �(x)�(y)

�(x + y) . (34)

Lemma 2 The following result holds (see [13] for the proof)

1

2
· B( 1

2 , μ)

[
α2 + r2

]2μ− 1
2

≤
∫ π

2

0

cos2μ−1 φ
[
α2 + r2 cos2 φ

]2μ− 1
2

dφ ≤ 1

2
· B(

1
2 , μ)

α4μ−1 , (35)

It is noted that equality follows in (35) when r = 0.

Theorem 5 (see [13] for the Proof) For μ > 0 and r > 0, the alternating
generalized Mathieu series S̃μ (r) satisfies the following bounds:



622 P. Cerone

∣∣∣∣∣∣
∣
S̃μ (r)− π2

24μ
(
r2 + 1

4

)μ

∣∣∣∣∣∣
∣

(36)

≤ κ̃

⎡

⎢
⎢
⎢
⎢
⎣

1√
π
·

�
(

2μ− 1
2

)

22μ−1�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ
[(

1
4

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 1

2μ2
(
r2 + 1

4

)2μ

⎤

⎥
⎥
⎥
⎥
⎦

1
2

≤ κ̃
⎡

⎢
⎣

1

23μ−1μ2(μ− 1
2 )B(μ,μ− 1

2 )
− 1

2μ2
(
r2 + 1

4

)2μ

⎤

⎥
⎦

1
2

,

where κ̃ is as given by

κ̃ =
[
π3

4
− 8 ·G− 2 ·

(
π2

24

)2] 1
2

= 0.29260623049 . . . . (37)

Corollary 3 The alternating Mathieu series S̃ (r) satisfies the result

∣∣∣∣∣∣

∞∑

n=1

(−1)n−1 · 2n
(
n2 + r2

)2 − π2

24
(
r2 + 1

4

)

∣∣∣∣∣∣
≤ 2
√

2 · κ̃
{

2

1+ (4r)2 −
1

[
1+ (2r)2]2

} 1
2

,

(38)
where κ̃ is as given by (37).

Proof Let μ = 1 in (36) and using (1) and (5) gives the above result (38), on noting
that

26
∫ π

2

0

cosφ
[
1+ (4r cosφ)2

] 3
2

dφ = 64

1+ (4r)2

and after some simplification.

Remark 2 The result of Theorem 5 holds for any μ > 0 and r > 0 whereas those
obtained in [12] were valid for μ > 1

2 .

Remark 3 From (37) we may infer, since κ̃ > 0,

G <
π3

32

(
1− π

72

)
= 0.9266678949 . . . .
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4 Odd and Even Generalized Mathieu Series

Using the generalized Mathieu series, Sμ (r) as given in (1) and (7)–(8) together
with the alternating generalized Mathieu series S̃μ (r) as given in (22)–(23) we
introduce the odd generalized Mathieu series, φμ(r) and the even generalized
Mathieu series, ψμ(r). These are given by [13]

φμ(r) :=
Sμ (r)+ S̃μ (r)

2
(39)

=
∞∑

n=1

2 · (2n− 1)

(
(
2n− 1)2 + r2

)1+μ

= Cμ (r) · 2
∫ ∞

0

xμ+ 1
2

ex − e−x Jμ− 1
2
(rx) dx, r, μ > 0,

and

ψμ(r) :=
Sμ (r)− S̃μ (r)

2
(40)

=
∞∑

n=1

2 · (2n)
(
(
2n)2 + r2

)1+μ

= Cμ (r) · 2
∫ ∞

0

xμ+ 1
2

e2x − 1
J
μ− 1

2
(rx) dx, r, μ > 0,

where Cμ (r) is positive as defined in (8).

Remark 4 It may be noticed that if we have identities for any two of the generalized
Mathieu type series Sμ (r) , S̃μ (r), φμ(r), ψμ(r) then we may deduce the other

two. In particular, Sμ(r) = φμ(r) + ψμ(r)

2 and S̃μ(r) = φμ(r) − ψμ(r)

2 . This, however,
is not the case with regard to inequalities or bounds since recourse to the triangle
inequality would result in a coarser bound. We may further notice that their integral
representation may be given by

2Cμ (r)
∫ ∞

0
H(x) · xμ− 1

2 J
μ− 1

2
(rx) dx, r, μ > 0 (41)

where Cμ (r) is positive as defined in (8) and H(x) is one of the following

HM(x) = x

ex − 1
, HA(x) = x

ex + 1
, HO(x) = x

ex − e−x , HE(x) =
x

e2x − 1
,

(42)
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where the subscripts relate to the generalized Mathieu, alternating Mathieu, odd
Mathieu, and even Mathieu series integral representations, respectively.

Remark 5 It should be emphasized that the H·(·) in (42) represent the weights
associated with the integral representation of the generalized Mathieu and its
companions. They satisfy the following conditions:

HA(x) < HE(x) < HO(x) < HM(x) , x < ln(2) (43)

HE(x) < HA(x) < HO(x) < HM(x) , x > ln(2).

In [13] the odd and even generalized Mathieu series bounds were obtained via a
Čebyšev functional approach. If we allow the subscripts of O and E to represent the
cases related to φμ(r) (odd) and ψμ(r) (even).

We note from (39) that

φμ(r)

2Cμ (r)
=
∫ ∞

0
HO(x) · xμ− 1

2 J
μ− 1

2
(rx) dx, r, μ > 0 (44)

where from (42)

HO(x) = x

ex − e−x . (45)

The following theorem is a correction of the result in [13]. The ( 1
2 )

2 within the
integral was (1)2.

Theorem 6 (see [13] for the Proof) For μ > 0 and r > 0 the odd generalized
Mathieu series φμ(r) satisfies the following relationship, namely

∣
∣
∣∣
∣
φμ(r)−

π2

4μ
(
r2 + 1

)μ

∣
∣
∣∣
∣

(46)

≤ κO

⎡

⎢
⎢
⎣

4�
(

2μ− 1
2

)

22μ−1
√
π�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ
[
( 1

2 )
2 + r2 cos2 φ

]2μ− 1
2

dφ − 4

μ2
(
12 + r2

)2μ

⎤

⎥
⎥
⎦

1
2

≤ κO
⎡

⎣ 22μ+3

μ2(μ− 1
2 ) · B

(
μ,μ− 1

2

) − 4

μ2
(
12 + r2

)2μ

⎤

⎦

1
2

,

where
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κO =
[
π2

8
(1− π2

8
)+ 7

8
ζ (3)

] 1
2

and B(x, y) is the Euler beta function given by (34).

We note from (39) that

ψμ(r)

2Cμ (r)
=
∫ ∞

0
HE(x) · xμ− 1

2 J
μ− 1

2
(rx) dx, r, μ > 0 (47)

where from (42)

HE(x) = x

e2x − 1
. (48)

Theorem 7 (see [13] for the Proof) For μ > 0 and r > 0 the even generalized
Mathieu series ψμ(r) satisfies the following relationship:

∣∣∣
∣∣
ψμ(r)−

π2

6μ
(
r2 + 22

)μ

∣∣∣
∣∣

(49)

≤ κE
⎡

⎣
4�
(

2μ− 1
2

)

22μ−1
√
π�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ

[
(1)2 + r2 cos2 φ

]2μ− 1
2

dφ − 8

μ2
(
12 + r2

)2μ

⎤

⎦

1
2

≤ κE
⎡

⎣ 1

4μ−1μ2(μ− 1
2 ) · B

(
μ,μ− 1

2

) − 8

μ2
(
12 + r2

)2μ

⎤

⎦

1
2

,

where

κE =
[
π2

24
(1− π2

12
)

] 1
2

(50)

and B(x, y) is the Euler beta function given by (34).
The remainder of the results in this section were developed in [13] to complete

the interplay between the generators as depicted by the Zeta family and the
generalized Mathieu series expressions.

The following lemma demonstrates the relationship for the generalized Mathieu
series and its companions.

Lemma 3 The companion generalized Mathieu series may be expressed in terms
of the generalized Mathieu series, namely
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S̃μ (r) = Sμ (r)− 4−μSμ
( r

2

)

φμ(r) = Sμ (r)− 2−2μ−1Sμ

( r
2

)
(51)

ψμ(r) = 2−2μ−1Sμ

( r
2

)
.

Proof From the generalized Mathieu series (5) it may be shown that

Sμ

( r
2

)
= 22μ+1

∞∑

n=1

2 · (2n)
(
(2n)2 + r2

)1+μ (52)

and so from (40) and (52) gives ψμ(r) = 2−2μ−1Sμ
(
r
2

)
, the third result. Further,

the first result of (51) readily follows on noting that 2 ·ψμ(r) = Sμ (r)− S̃μ (r). The

second result is procured from (39), 2 ·φμ(r) = Sμ (r)+ S̃μ (r) and substituting the

first result for S̃μ (r).

Remark 6 It is important to emphasize, as mentioned earlier, that obtaining bounds
for the companions in terms of those of the generalized Mathieu series would
produce inferior bounds from using the triangle inequality required for the first two
results in (51).

Theorem 8 The following relationship holds:

Sμ (r) = 2φμ(r)− S̃μ (r). (53)

Proof The relationship (53) follows easily from (51) by subtracting the first
equation from twice the second.

Remark 7 Equation (53) recaptures, on allowing r− > 0, the well-known result
involving the Zeta function ζ (x)

ζ (x) = 2λ(x)− η(x) (54)

where λ(x) is the odd zeta, η(x) is the alternating zeta, and x = 2μ + 1. This
demonstrates that (53) is an extension of the Zeta expression (54) through the
variable r of Mathieu type functions.

Remark 8 The Čebyšev Functional bounds have been used to procure bounds for
the Mathieu family of special functions. Much effort has been expended in the
literature as to various ways of bounding the Mathieu series (1). The accuracy of
bounds over particular regions of parameters cannot be determined a priori (see also,
for example, [3, 28]). A comparison of the bounds using (2) and (38) demonstrates
that the upper bound for the Mathieu series is better for 0 < r < 0.855662 and
for the lower bound, better over 0 < r < 1.206377 for (38) and better for the
remainder of r for the bounds (2). It must be remembered however that (38) is valid
for the more general result involving parameters r and μ.
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5 Dirichlet Beta Function Generalized
Mathieu Series Bounds

The Dirichlet beta function or Dirichlet L-function is given by [17]

β (x) =
∞∑

n=0

(−1)n

(2n+ 1)x
, x > 0 (55)

where β (2) = G, Catalan’s constant. See [9] and [8] in which sharp double bounds
were obtained.

It is readily observed that β (x) is the alternating version of λ (x), however, it
cannot be directly related to ζ (x). It is also related to η (x) in that only the odd
terms are summed.

The beta function may be evaluated explicitly at positive odd integer values of x,
namely

β (2n+ 1) = (−1)n
E2n

2 (2n)!
(π

2

)2n+1
, (56)

where En are the Euler numbers generated by

sech (x) = 2ex

e2x + 1
=

∞∑

n=0

En
xn

n! .

The Dirichlet beta function may be analytically continued over the whole
complex plane by the functional equation

β (1− z) =
(

2

π

)z
sin
(πz

2

)
� (z) β (z).

The function β (z) is defined everywhere in the complex plane and has no
singularities, unlike the Riemann zeta function, ζ (s) = ∑∞

n=1
1
ns
, which has a

simple pole at s = 1.
The Dirichlet beta function and the zeta function have important applications in

a number of branches of mathematics, and in particular in Analytic number theory.
See, for example, [2, 14].

Further, β (x) has an alternative integral representation [17, p. 56], namely

β (x) = 1

2� (x)

∫ ∞

0

tx−1

cosh (t)
dt, x > 0.

That is,

β (x) = 1

� (x)

∫ ∞

0

tx−1

et + e−t dt, x > 0. (57)
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The function β (x) is also connected to prime number theory [17] which may
perhaps be best summarized by

β (x) =
∏

p prime
p≡1 mod 4

(
1− p−x)−1·

∏

p prime
p≡3 mod 4

(
1+ p−x)−1 =

∏

p odd
prime

(
1− (−1)

p−1
2 p−x

)−1
,

where the rearrangement of factors is permitted because of absolute convergence.
The main thrust of the article is to investigate the Dirichlet Beta function via

generalized Mathieu series approach, which may be looked upon as an alternating
odd generalized Mathieu series, φ̃μ(r), namely

φ̃μ(r) =
∞∑

n=1

(−1)n−1 2(2n− 1)

(
(
2n− 1)2 + r2

)1+μ (58)

= Cμ (r) · 2
∫ ∞

0

xμ+ 1
2

ex + e−x Jμ− 1
2
(rx) dx, r, μ > 0.

This is, in part, inspired by the alternating odd zeta function, β(s) =
∑∞

n=1
(−1)n−1

(2n−1)s which has explicit closed form solution in terms of Euler polynomials
for s = 2m+ 1 whereas ζ (2m) for m ∈ N is explicitly given in terms of Bernoulli
polynomials. This is so, since using a limiting argument φ̃μ(0) = 2β(2μ+ 1).

Theorem 9 For μ > 0 and r > 0 the alternating odd generalized Mathieu series
φ̃μ(r) satisfies the following relationship, namely

∣∣
∣∣∣
φ̃μ(r)−

2 ·G
μ
(
r2 + 1

)μ

∣∣
∣∣∣

(59)

≤ κ
Õ

⎡

⎢
⎢
⎢⎢
⎣

4�
(

2μ− 1
2

)

22μ−1
√
π�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ
[(

1
2

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 4

μ2
(
12 + r2

)2μ

⎤

⎥
⎥
⎥⎥
⎦

1
2

≤ κ
Õ

⎡

⎣ 22μ+3

μ2(μ− 1
2 ) · B

(
μ,μ− 1

2

) − 4

μ2
(
12 + r2

)2μ

⎤

⎦

1
2

,

where

κ
Õ
=
[
G(1−G)+ π3

32

] 1
2

(60)

and B(x, y) is the Euler beta function given by (34)



Dirichlet Beta Function Relations 629

Proof We notice that
φ̃μ(r)

2Cμ(r)
from (58) may be written in the form

φ̃μ(r)

2Cμ (r)
=
∫ ∞

0
e−x · x

1+ e−2x
· xμ− 1

2 J
μ− 1

2
(rx) dx, r, μ > 0 (61)

If we now let

p
Õ (x) = e−x, f

Õ (x) =
x

1+ e−2x
, g (x) = xμ−

1
2 J
μ− 1

2
(rx) (62)

then from (26)

P
Õ
=
∫ ∞

0
p
Õ (x) dx =

∫ ∞

0
e−xdx = 1, (63)

P
Õ
·M (

f
Õ
;p) =

∫ ∞

0
e−x · x

1+ e−2x dx = G (64)

and

P
Õ
·M (g;p) =

∫ ∞

0
e−x · xμ− 1

2 J
μ− 1

2
(rx) dx = (2r)μ− 1

2 � (μ)√
π
(
12 + r2

)μ , (65)

where we have used the fact that G is Catalan’s constant (see [30, p. 610]) to
procure (64), and from Watson [37, p. 386],

∫ ∞

0
e−αx ·xνJν (βx) dx = (2β)ν√

π
·
�
(
ν + 1

2

)

(
α2 + β2

)ν+ 1
2

, Re (ν) >
1

2
, Re (α) > |Im (β)| ,

with α = 1, ν = μ− 1
2 , β = r to obtain (65).

Now, from (25)–(28) we have on using (61)–(65)

φ̃μ(r)

2Cμ (r)
− (2r)μ− 1

2 � (μ)√
π
(
12 + r2

)μ ·G

=
∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K

)( x

1+ e−2x −G
)
dx.

Further, using the Cauchy-Buniakowsky-Schwartz inequality, we have from (32) to
give



630 P. Cerone

∣∣∣
∣∣
φ̃μ(r)

2Cμ (r)
− (2r)μ− 1

2 � (μ)√
π
(
12 + r2

)μ ·G
∣∣∣
∣∣

=
(∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K

)2
dx

) 1
2
(∫ ∞

0
e−x

(
x

1+ e−2x
−G

)2

dx

) 1
2

.

(66)

As mentioned in Sect. 2, the appropriate choice of K is the weighted integral
mean as given from (65), namely

K = K∗ = (2r)μ− 1
2 � (μ)√

π
(
12 + r2

)μ . (67)

Now using the result

∫ b

a

p (t) [h (t)−M (h;p)]2 dt =
∫ b

a

p (t) h2 (t) dt − P ·M2 (h;p). (68)

to evaluate the two expressions on the right-hand side of (66) produces; firstly,

∫ ∞

0
e−x

(
x

1+ e−2x
−G

)2

dx =
∫ ∞

0
e−x

(
x

1+ e−2x

)2

dx − 1 ·G2. (69)

and secondly, allowing for the permissible interchange of integration and summa-
tion, we have

∫ ∞

0
e−x

(
x

1+ e−2x

)2

dx =
∫ ∞

0
e−xx2 ·

( ∞∑

n=1

(−1)(n−1)ne−2(n−1)x

)

dx

(70)

=
∞∑

n=0

(−1)n(n+ 1) ·
∫ ∞

0
e−(2n+1)xx2dx

=
∞∑

n=0

(−1)n(n+ 1)� (3)

(2n+ 1)3
=

∞∑

n=0

(−1)n · (2n+ 2)

(2n+ 1)3

=
∞∑

n=0

(−1)n
(

1

(2n+ 1)2
+ 1

(2n+ 1)3

)

= G+ β(3)
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where
∑∞

n=0
(−1)n

(2n+1)x = β (x) [30, p. 602] and, in (70) we have used the fact that

∫ ∞

0
e−αxxpdx = � (p + 1)

αp+1
.

Hence, from (69) and (70) we have

[∫ ∞

0
e−x

(
x

1− e−2x −G
)2

dx

] 1
2

=
[
G(1−G)+ π3

32

] 1
2

. (71)

where we have used the fact that β (3) = π3

32 .

Now, for the first expression on the right-hand side of (66), we have, on using (68)
and (65)

∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K∗

)2
dx =

∫ ∞

0
e−xx2μ−1J 2

μ− 1
2
(rx) dx − 1 ·K2∗ .

(72)
A result in Watson [37, p. 290] states that

∫ ∞

0
e−2atJα (γ t) Jβ (γ t) t

α+βdt

=
�
(
α + β + 1

2

)

π
3
2

γ α+β
∫ π

2

0

cosα+β φ cos (α − β) φ
(
a2 + γ 2 cos2 φ

)α+β+ 1
2

dφ (73)

and so taking a = 1
2 , α = β = μ− 1

2 and γ = r in (73) gives

∫ ∞

0
e−xx2μ−1J 2

μ− 1
2
(rx) dx

=
�
(

2μ− 1
2

)
r2μ−1

π
3
2

∫ π
2

0

cos2μ−1 φ
((

1
2

)2 + r2 cos2 φ

)2μ− 1
2

dφ (74)

That is, from (72) and (72) we have
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[∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K∗

)2
dx

] 1
2

=

⎡

⎢⎢⎢⎢
⎣

�
(

2μ− 1
2

)

π
3
2

r2μ−1
∫ π

2

0

cos2μ−1 φ
[(

1
2

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 1 ·K2∗

⎤

⎥⎥⎥⎥
⎦

1
2

. (75)

Placing (75) and (71) into (66) produces the stated result (59) upon multiplication
by 2Cμ (r) and using (8).

For the coarser bound in (59) we have from (35) of Lemma 2

∫ π
2

0

cos2μ−1 φ
[
( 1

2 )
2 + r2 cos2 φ

]2μ− 1
2

dφ ≤ 24μB(
1

2
, μ) = 24μ

√
π� (μ)

�
(
μ+ 1

2

)

and so, on substitution into the first result in (59) produces the second, upon some
simplification.

5.1 Dirichlet L-Function Generalized Mathieu Series

The previous work investigating the generalized Mathieu series was extended to
the alternating, odd, and even generalized Mathieu series. The odd (φμ(r)) and

alternating (φ̃μ(r)) generalized Mathieu series will be used to obtain other results
concerning L(4,1)(·) and L(4,3)(·) as generators.

Let

0+μ(r) :=
φμ (r)+ φ̃μ (r)

2
(76)

=
∞∑

n=0

2 · (4n+ 1)

(
(
4n+ 1)2 + r2

)1+μ

= Cμ (r) · 2
∫ ∞

0

xex

e2x − e−2x x
μ− 1

2 J
μ− 1

2
(rx) dx, r, μ > 0,

and
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0−μ(r) :=
φμ (r)− φ̃μ (r)

2
(77)

=
∞∑

n=0

2 · (4n+ 3)

(
(
4n+ 3)2 + r2

)1+μ

= Cμ (r) · 2
∫ ∞

0

xe−x

e2x − e−2x
xμ−

1
2 J
μ− 1

2
(rx) dx, r, μ > 0,

where

Cμ (r) =
√
π

(2r)μ− 1
2 � (μ+ 1)

· (78)

Theorem 10 For μ > 0 and r > 0 the alternating odd generalized Mathieu series
φ̃μ(r) satisfies the following relationship, namely

∣∣
∣∣∣
0+μ(r)
2Cμ (r)

− (2r)μ− 1
2 � (μ)√

π
(
12 + r2

)μ · L(4,1)(2)
∣∣
∣∣∣

(79)

≤ κφ+

⎡

⎢
⎢
⎢
⎢
⎣

4�
(

2μ− 1
2

)

22μ−1
√
π�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ
[(

1
2

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 4

μ2
(
12 + r2

)2μ

⎤

⎥
⎥
⎥
⎥
⎦

1
2

≤ κφ+
⎡

⎣ 22μ+3

μ2(μ− 1
2 ) · B

(
μ,μ− 1

2

) − 4

μ2
(
12 + r2

)2μ

⎤

⎦

1
2

,

where

κφ+ =
[
L(4,1) (2) (

1

2
− L(4,1) (2))+ 3

2
L(4,1) (3)

] 1
2

(80)

and B(x, y) is the Euler beta function given by (34)

Proof We notice that
0+μ (r)
2Cμ(r)

from (76) may be written in the form

0+μ(r)
2Cμ (r)

=
∫ ∞

0
e−x · x

1− e−4x · xμ−
1
2 J
μ− 1

2
(rx) dx, r, μ > 0. (81)

If we now let
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pφ+ (x) = e−x, fφ+ (x) =
x

1− e−4x , g (x) = xμ−
1
2 J
μ− 1

2
(rx) (82)

then from (26)

Pφ+ =
∫ ∞

0
pφ+ (x) dx =

∫ ∞

0
e−xdx = 1, (83)

Pφ+ ·M
(
f
Õ
;p) =

∫ ∞

0
e−x · x

1− e−4x dx = L(4,1)(2) (84)

and

P
φ+ ·M (g;p) =

∫ ∞

0
e−x · xμ− 1

2 J
μ− 1

2
(rx) dx = (2r)μ− 1

2 � (μ)√
π
(
12 + r2

)μ , (85)

where we have used the fact that L(4,1)(x) = ∑∞
n=0

1
(4n+1)x to procure (84), and

from Watson [37, p. 386]

∫ ∞

0
e−αx ·xνJν (βx) dx = (2β)ν√

π
·
�
(
ν + 1

2

)

(
α2 + β2

)ν+ 1
2

, Re (ν) >
1

2
, Re (α) > |Im (β)| ,

with α = 1, ν = μ− 1
2 , β = r to obtain (85).

Now, from (25)–(28) we have on using (81)–(85)

0+μ(r)
2Cμ (r)

− (2r)μ− 1
2 � (μ)√

π
(
12 + r2

)μ · L(4,1)(2)

=
∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K

)( x

1− e−4x − L(4,1)(2)
)
dx. (86)

Further, using the Cauchy-Buniakowsky-Schwartz inequality, we have from (32). to
give

∣∣
∣∣∣
0+μ(r)
2Cμ (r)

− (2r)μ− 1
2 � (μ)√

π
(
12 + r2

)μ · L(4,1)(2)
∣∣
∣∣∣

=
(∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K

)2
dx

) 1
2

×
(∫ ∞

0
e−x

(
x

1− e−4x − L(4,1)(2)
)2

dx

) 1
2

. (87)
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As mentioned in Sect. 2, the appropriate choice of K is the weighted integral
mean as given from (85), namely

K = K∗ = (2r)μ− 1
2 � (μ)√

π
(
12 + r2

)μ . (88)

Now using the result

∫ b

a

p (t) [h (t)−M (h;p)]2 dt =
∫ b

a

p (t) h2 (t) dt − P ·M2 (h;p). (89)

to evaluate the two expressions on the right-hand side of (87) produces; firstly,

∫ ∞

0
e−x

(
x

1+ e−2x
− L(4,1)(2)

)2

dx =
∫ ∞

0
e−x

(
x

1− e−4x

)2

dx−1·(L(4,1)(2))2.
(90)

and secondly, allowing for the permissible interchange of integration and summa-
tion, we have

∫ ∞

0
e−x

(
x

1− e−4x

)2

dx =
∫ ∞

0
e−xx2 ·

( ∞∑

n=1

ne−4(n−1)x

)

dx (91)

=
∞∑

n=0

(n+ 1) ·
∫ ∞

0
x2e−(4n+1)xx2dx

=
∞∑

n=0

(n+ 1) ·
∫ ∞

0
e−(4n+1)xx2dx

=
∞∑

n=0

(n+ 1)� (3)

(4n+ 1)3
=

∞∑

n=0

(2n+ 2)

(4n+ 1)3

= 1

2

∞∑

n=0

(
1

(4n+ 1)2
+ 3

(4n+ 1)3

)

= 1

2
L(4,1) (2)+ 3

2
L(4,1) (3)

where we have used the fact that
∫ ∞

0
e−αxxpdx = � (p + 1)

αp+1
.
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Hence, from (90) and (91) we have

[∫ ∞

0
e−x

(
x

1− e−2x
− L(4,1)(2)

)2

dx

] 1
2

=
[
L(4,1) (2) (

1

2
− L(4,1) (2))+ 3

2
L(4,1) (3)

] 1
2

. (92)

Now, for the first expression on the right-hand side of (87), we have, on using (89)
and (85)

∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K∗

)2
dx =

∫ ∞

0
e−xx2μ−1J 2

μ− 1
2
(rx) dx − 1 ·K2∗ .

(93)
A result in Watson [37, p. 290] states that

∫ ∞

0
e−2atJα (γ t) Jβ (γ t) t

α+βdt

=
�
(
α + β + 1

2

)

π
3
2

γ α+β
∫ π

2

0

cosα+β φ cos (α − β) φ
(
a2 + γ 2 cos2 φ

)α+β+ 1
2

dφ (94)

and so taking a = 1
2 , α = β = μ− 1

2 and γ = r in (94) gives

∫ ∞

0
e−xx2μ−1J 2

μ− 1
2
(rx) dx

=
�
(

2μ− 1
2

)
r2μ−1

π
3
2

∫ π
2

0

cos2μ−1 φ
((

1
2

)2 + r2 cos2 φ

)2μ− 1
2

dφ (95)

That is, from (93) and (95) we have

[∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K∗

)2
dx

] 1
2

=

⎡

⎢⎢
⎢⎢
⎣

�
(

2μ− 1
2

)

π
3
2

r2μ−1
∫ π

2

0

cos2μ−1 φ
[(

1
2

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 1 ·K2∗

⎤

⎥⎥
⎥⎥
⎦

1
2

. (96)
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Placing (96) and (92) into (87) produces the stated result (79) upon multiplication
by 2Cμ (r) and using (8).

For the coarser bound in (79) we have from (35) of Lemma 2

∫ π
2

0

cos2μ−1 φ
[
( 1

2 )
2 + r2 cos2 φ

]2μ− 1
2

dφ ≤ 24μB(
1

2
, μ) = 24μ

√
π� (μ)

�
(
μ+ 1

2

)

and so on substitution into the first result in (79) produces the second, upon some
simplification.

Theorem 11 For μ > 0 and r > 0 the alternating odd generalized Mathieu series
φ̃μ(r) satisfies the following relationship, namely

∣
∣
∣
∣∣
0−μ(r)−

(2r)μ− 1
2 � (μ)√

π
(
32 + r2

)μ · L(4,3)(2)
∣
∣
∣
∣∣

(97)

≤ κφ−

⎡

⎢
⎢⎢
⎢
⎣

4�
(

2μ− 1
2

)

22μ−1√π�2 (μ+ 1)

∫ π
2

0

cos2μ−1 φ
[(

3
2

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 1

3

(2r)μ− 1
2 � (μ)√

π
(
32 + r2

)μ

⎤

⎥
⎥⎥
⎥
⎦

1
2

≤ κ
φ−

⎡

⎣ 22μ+3

μ2(μ− 1
2 ) · B

(
μ,μ− 1

2

) − 1

3

(2r)μ− 1
2 � (μ)√

π
(
32 + r2

)μ

⎤

⎦

1
2

,

where

κφ− =
[

1

2

(
L(4,3) (2)+ L(4,3) (3)

)− 1

3

(
L(4,3) (2)

)2
] 1

2

(98)

and B(x, y) is the Euler beta function given by (34)

Proof We notice that
0−μ (r)
2Cμ(r)

from (77) may be written in the form

0−μ(r)
2Cμ (r)

=
∫ ∞

0
e−3x · x

1− e−4x
· xμ− 1

2 J
μ− 1

2
(rx) dx, r, μ > 0. (99)

If we now let

pφ− (x) = e−3x, fφ− (x) =
x

1− e−4x
, g (x) = xμ−

1
2 J
μ− 1

2
(rx) (100)

then from (26)
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Pφ− =
∫ ∞

0
pφ− (x) dx =

∫ ∞

0
e−3xdx = 1

3
, (101)

Pφ− ·M
(
f
Õ
;p) =

∫ ∞

0
e−3x · x

1− e−4x dx = L(4,3)(2) (102)

and

P
φ− ·M (g;p) =

∫ ∞

0
e−3x · xμ− 1

2 J
μ− 1

2
(rx) dx = (2r)μ− 1

2 � (μ)√
π
(
32 + r2

)μ , (103)

where we have used the fact that L(4,3)(x) = ∑∞
n=0

1
(4n+3)x to procure (102), and

from Watson [37, p. 386],

∫ ∞

0
e−αx ·xνJν(βx)dx = (2β)ν√

π
·
�
(
ν + 1

2

)

(
α2 + β2

)ν+ 1
2

, Re (ν)>
1

2
, Re (α)> |Im (β)| ,

with α = 1, ν = μ− 1
2 , β = r to obtain (103).

Now, from (25)–(28) we have on using (99)–(103)

0−μ(r)
2Cμ (r)

− (2r)μ− 1
2 � (μ)√

π
(
32 + r2

)μ · L(4,3)(2)

=
∫ ∞

0
e−3x

(
xμ−

1
2 J
μ− 1

2
(rx)−K

)( x

1− e−4x − L(4,3)(2)
)
dx. (104)

Further, using the Cauchy-Buniakowsky-Schwartz inequality, we have from (32), to
give

∣
∣∣∣∣
0−μ(r)
2Cμ (r)

− (2r)μ− 1
2 � (μ)√

π
(
32 + r2

)μ · L(4,3)(2)
∣
∣∣∣∣

(105)

=
(∫ ∞

0
e−3x

(
xμ−

1
2 J
μ− 1

2
(rx)−K

)2
dx

) 1
2

×
(∫ ∞

0
e−3x

(
x

1− e−4x − L(4,3)(2)
)2

dx

) 1
2

.

As mentioned in Sect. 2, the appropriate choice of K is the weighted integral
mean as given from (103), namely

K = K∗ = (2r)μ− 1
2 � (μ)√

π
(
32 + r2

)μ , (106)
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Now using the result

∫ b

a

p (t) [h (t)−M (h;p)]2 dt =
∫ b

a

p (t) h2 (t) dt − P ·M2 (h;p). (107)

to evaluate the two expressions on the right-hand side of (105) produces; firstly,

∫ ∞

0
e−x
(

x

1+ e−2x −L(4,3)(2)
)2

dx =
∫ ∞

0
e−x
(

x

1−e−4x

)2

dx−1

3
·(L(4,3)(2))2.

(108)
and secondly, allowing for the permissible interchange of integration and summa-
tion, we have

∫ ∞

0
e−3x

(
x

1− e−4x

)2

dx =
∫ ∞

0
e−3xx2 ·

( ∞∑

n=1

ne−4(n−1)x

)

dx (109)

=
∞∑

n=0

(n+ 1) ·
∫ ∞

0
x2e−(4n+1)xx2dx

=
∞∑

n=0

(n+ 1) ·
∫ ∞

0
e−(4n+3)xx2dx

=
∞∑

n=0

(n+ 1)� (3)

(4n+ 3)3
=

∞∑

n=0

(2n+ 2)

(4n+ 3)3

= 1

2

∞∑

n=0

(
1

(4n+ 3)2
+ 1

(4n+ 3)3

)

= 1

2

(
L(4,3) (2)+ L(4,3) (3)

)
.

where we have used the fact that
∫ ∞

0
e−αxxpdx = � (p + 1)

αp+1
.

Hence, from (107) and (102) we have

[∫ ∞

0
e−3x

(
x

1− e−2x − L(4,3)(2)
)2

dx

] 1
2

=
[

1

2

(
L(4,3) (2)+ L(4,3) (3)

)− 1

3

(
L(4,3) (2)

)2
] 1

2

. (110)
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Now, for the first expression on the right-hand side of (105), we have, on
using (107) and (103)

∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K∗

)2
dx =

∫ ∞

0
e−xx2μ−1J 2

μ− 1
2
(rx) dx − 1

3
·K2∗ .
(111)

A result in Watson [37, p. 290] states that

∫ ∞

0
e−2atJα (γ t) Jβ (γ t) t

α+βdt

=
�
(
α + β + 1

2

)

π
3
2

γ α+β
∫ π

2

0

cosα+β φ cos (α − β) φ
(
a2 + γ 2 cos2 φ

)α+β+ 1
2

dφ (112)

and so taking a = 3
2 , α = β = μ− 1

2 and γ = r in (112) gives

∫ ∞

0
e−xx2μ−1J 2

μ− 1
2
(rx) dx

=
�
(

2μ− 1
2

)
r2μ−1

π
3
2

∫ π
2

0

cos2μ−1 φ
((

3
2

)2 + r2 cos2 φ

)2μ− 1
2

dφ (113)

That is, from (111) and (113) we have

[∫ ∞

0
e−x

(
xμ−

1
2 J
μ− 1

2
(rx)−K∗

)2
dx

] 1
2

=

⎡

⎢
⎢⎢⎢
⎣

�
(

2μ− 1
2

)

π
3
2

r2μ−1
∫ π

2

0

cos2μ−1 φ
[(

3
2

)2 + r2 cos2 φ

]2μ− 1
2

dφ − 1

3
·K2∗

⎤

⎥
⎥⎥⎥
⎦

1
2

.

(114)

Placing (114) and (110) into (105) produces the stated result (97) upon multiplica-
tion by 2Cμ (r) and using (8).

For the coarser bound in (97) we have from (35) of Lemma 2

∫ π
2

0

cos2μ−1 φ
[
( 3

2 )
2 + r2 cos2 φ

]2μ− 1
2

dφ ≤ 1

2

(
2

3

)4μ−1

B(
1

2
, μ) =

(
3

4

)(
2

3

)4μ

·
√
π� (μ)

�
(
μ+ 1

2

)
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and so on substitution into the first result in (97) produces the second, upon some
simplification.

The following theorem demonstrates the relationship for the generalized Mathieu
series related to the Beta L- function family. This can be compared with the end of
Sect. 4 where the Zeta function family results were discussed.

Theorem 12 The following relationships hold, namely

φμ (r) =
{

2 ·0+μ(r)− φ̃μ (r)
2 ·0−μ(r)+ ˜� φμ (r)

}

(115)

φ̃μ (r) =
{

2 ·0+μ(r)− φμ (r)
φμ (r)− 2 ·0−μ(r)

}

where φμ (r) is defined in (39), φ̃μ (r) is given in (58), and 0+μ(r) and 0−μ(r)
are defined in (76) and (77), respectively. These entities represent the generalized
Mathieu series propagated by series of reciprocal powers of odd numbers, alternat-
ing odd numbers, L(4,1)(·) and L(4,3)(·).
Proof This is trivial since 0+μ(r) := φμ(r)+φ̃μ(r)

2 and 0−μ(r) := φμ(r)−φ̃μ(r)
2 are

defined (76) and (77).

Remark 9 If r is allowed to tend to zero for the first result at (115), namely
φμ (r) = 2 ·0+μ(r)− φ̃μ (r),then the relationship λ(x) = 2L(4,1)(x)− β(x) where
x= 2μ + 1 results. The similar process relating the Zeta function ζ (x) produced
ζ (x) = 2λ(x) − η(x), where λ(x) is the odd zeta, η(x) is the alternating zeta, and
x = 2μ+ 1 at (54).

6 Some Properties of the Generalized Mathieu Series
and Its Companions Including Beta Related L-Functions

Let

Gμ(r;H) = γ μ

∫ ∞

0
H(x)xμ−

1
2 ·
J
μ− 1

2
(rx)

rμ− 1
2

dx, r, μ > 0 (116)

where from (42). Let

γ μ =
⎧
⎨

⎩
Cμ =

√
π

2μ−
1
2 �(μ+1)

, for HM(·) and HA(·)
2Cμ, for HO(·) and HE(·)

. (117)

The following proposition determines the moments of (116). See also [15] where
a Mellin transform approach has been used only for the generalized Mathieu series.



642 P. Cerone

Proposition 1 (see [13]) The moments of Gμ(r;H) from (116) and (117) given by

M(k) =
∫ ∞

0
rkGμ(r;H)dr (118)

= [1or2]
B(k2 + 1

2 , μ− k
2 + 1

2 )

� (2μ− k)
∫ ∞

0
x2μ−k−2H(x)dx

where B(x, y) is the Euler beta function given by (34), and

[1or2] =
{

1, for HM(·) and HA(·)
2, for HO(·) and HE(·) . (119)

Proof From (116), (117) and (118) we have

M(k) = γ μ

∫ ∞

0
xμ−

1
2H(x)

∫ ∞

0
rk ·

J
μ− 1

2
(rx)

rμ− 1
2

drdx (120)

and so the substitution of ω = rx produces

∫ ∞

0
rk ·

J
μ− 1

2
(rx)

rμ− 1
2

dr = xμ−k−
3
2

∫ ∞

0
ωk−(μ−

1
2 ) · J

μ− 1
2
(ω) dω (121)

= xμ−k−
3
2 · 2k−μ+ 1

2

�
(
k
2 + 1

2

)

�
(
μ− k

2

)

where we have used the result

∫ ∞

0
ωλ−ν · Jν (ω) dω = 2λ−ν

�
(
λ
2 + 1

2

)

�(ν − λ
2 + 1

2 )

with ν = μ− 1
2 and λ = k.Thus, substituting (121) into (120) gives

M(k) = γ μ δμ,k

∫ ∞

0
x2μ−k−2H(x)dx (122)

where

δμ,k = 2k−μ+
1
2

�
(
k
2 + 1

2

)

�
(
μ− k

2

) . (123)

Further, using the duplication formula for the gamma function,

√
π� (2z) = 22z−1� (z) �

(
z+ 1

2

)
with z = μ− k

2
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gives �
(
μ− k

2

) =
√
π�(2μ−k)

22μ−k−1�
(
μ− k

2+ 1
2

) and so, from (117) and (123), we have

γ μ δμ,k = [1or2]
�
(
k
2 + 1

2

)
�
(
μ− k

2 + 1
2

)

� (μ+ 1) � (2μ− k) · (124)

Substitution of (124) into (122) produces the statement of the proposition.

The following corollary gives the moments for the generalized Mathieu series
and its companions.

Corollary 4 (see [13]) Let the subscript of M,A,O,E indicate the generalized:
Mathieu, Alternating, Odd and Even series moments, respectively (see [13] for the
proof). These are then given by

M
(k)
M = B(

k

2
+ 1

2
, μ− k

2
+ 1

2
)ζ (2μ− k) , 2μ− k > 1 (125)

M
(k)
A = B(

k

2
+ 1

2
, μ− k

2
+ 1

2
)(1− 2−(2μ−k−1))ζ (2μ− k) , 2μ− k > 0

M
(k)
O = 2B(

k

2
+ 1

2
, μ− k

2
+ 1

2
)(1− 2−(2μ−k))ζ (2μ− k) , 2μ− k > 1

M
(k)
E = 2B(

k

2
+ 1

2
, μ− k

2
+ 1

2
)2−(2μ−k)ζ (2μ− k) , 2μ− k > 1

where B(x, y) is the Euler beta function given by (34).

We now analyze the moments associated with the Dirichlet Beta-L function
results via Mathieu type series.

Let

Gμ(r;H) = γ μ

∫ ∞

0
H(x)xμ−

1
2 ·
J
μ− 1

2
(rx)

rμ− 1
2

dx, r, μ > 0 (126)

where Cμ =
√
π

2μ−
1
2 �(μ+1)

, and

γ μ = 2Cμ for Hφ(x) := x

ex − e−x ,Hφ̃(x) :=
x

ex + e−x , (127)

HL(4,1) (x) :=
xex

e2x − e−2x
, HL(4,3) (x) :=

xe−x

e2x − e−2x
.



644 P. Cerone

Proposition 2 The moments of Gμ(r;H) from (126) and (127) are given by

M(k) =
∫ ∞

0
rkGμ(r;H)dr (128)

= 2B(k2 + 1
2 , μ− k

2 + 1
2 )

� (2μ− k)
∫ ∞

0
x2μ−k−2H(x)dx

Proof Similar to the previous proposition.

Corollary 5 Let the subscript ofO, Õ, L(4,1), L(4,3) indicate the generalized: Odd,
Alternating Odd, DirichletL(4,1) andL(4,3), series moments, respectively. These are
then given by

M
(k)
O = 2B(

k

2
+ 1

2
, μ− k

2
+ 1

2
)(1− 2−(2μ−k))ζ (2μ− k) , 2μ− k > 1

(129)

M
(k)

Õ
= 2B(

k

2
+ 1

2
, μ− k

2
+ 1

2
)�(2μ− k)β(2μ− k), 2μ− k > 0

M
(k)
L(4,1)

= 2B(
k

2
+ 1

2
, μ− k

2
+ 1

2
)�(2μ− k)L(4,1)(2μ− k), 2μ− k > 1

M
(k)
L(4,3)

= 2B(
k

2
+ 1

2
, μ− k

2
+ 1

2
)�(2μ− k)L(4,3)(2μ− k), 2μ− k > 1

where B(x, y) is the Euler beta function given by (34)

Proof From (128) we require to evaluate the integral for the various H(x) repre-
senting each of the generalized Mathieu functions as given in (127).

That is, we require to evaluate

M(q;H) =
∫ ∞

0
xq−1H(x)dx (130)

where q = 2μ− k − 1 and for each of H(x) as given in (127).
For the odd generalized Mathieu series we have from (127)

M(q;HO) =
∫ ∞

0

xq

ex − e−x dx, q = 2μ− k − 1 (131)

= �(2μ− k)(1− 2−(2μ−k))ζ (2μ− k)
where we have used the result

∫ ∞

0
e−x xq

1− e−2x dx =
∫ ∞

0
e−x xq

1− e−2x dx

=
∫ ∞

0
e−xxq

( ∞∑

n=0

e−2nx

)

dx
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=
∞∑

n=0

∫ ∞

0
e−(2n+1)xxqdx

=
∞∑

n=0

� (q + 1)

(2n+ 1)q+1

= � (q + 1) (1− 2−(q+1))ζ (q + 1)

where
∑∞

n=0
1

(2n+1)s = (1−2−s)ς (s),we have allowed the permissible interchange
of integration and summation and we have used the result

∫ ∞

0
e−αxxpdx = � (p + 1)

αp+1
. (132)

Substituting (131) into (128) and noting (132) gives the first result.
For the alternating odd generalized Mathieu series we have from (127)

M(q;H
Õ
) =

∫ ∞

0

xq

ex + e−x dx, q = 2μ− k − 1 (133)

= �(2μ− k)β(2μ− k)

where we have used the result,

∫ ∞

0
e−x xq

1+ e−2x dx =
∫ ∞

0
e−x xq

1+ e−2x dx

=
∫ ∞

0
e−xxq

( ∞∑

n=0

(−1)ne−2nx

)

dx

=
∞∑

n=0

(−1)n
∫ ∞

0
e−(2n+1)xxqdx

=
∞∑

n=0

(−1)n� (q + 1)

(2n+ 1)q+1

= � (q + 1) β (q + 1)

where
∑∞

n=0
(−1)n

(2n+1)s = β (s) , Re s > 1 [30, p. 602, 25.2.2], we have allowed
the permissible interchange of integration and summation and we have used the
result (132).

Substituting (133) into (128) and noting (132) gives the second result.
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Thirdly, for the Dirichlet L(4,1) generalized Mathieu series we have from (127)

M(q;HL(4,1) ) =
∫ ∞

0

xq · ex
e2x − e−2x dx, q = 2μ− k − 1 (134)

= �(2μ− k)L(4,1)(2μ− k)

where we have

∫ ∞

0

xqe−x

1− e−4x dx =
∫ ∞

0
e−xxq

( ∞∑

n=0

e−4nx

)

dx

=
∞∑

n=0

∫ ∞

0
e−(4n+1)xxqdx

= � (q + 1) L(4,1) (q + 1)

giving (134).
Substituting (134) into (128) and noting (132) gives the third result.
Finally, for the Dirichlet L(4,3) generalized Mathieu series we have from (127)

M(q;HL(4,3) ) =
∫ ∞

0

xq · e−x
e2x − e−2x dx, q = 2μ− k − 1 (135)

= �(2μ− k)L(4,3)(2μ− k)

where we have

∫ ∞

0

xq · e−3x

1− e−4x dx =
∫ ∞

0
e−3xxq

( ∞∑

n=0

e−4nx

)

dx

=
∞∑

n=0

∫ ∞

0
e−(4n+3)xxqdx

= � (q + 1) L(4,3) (q + 1)

giving (135).
Substituting (135) into (128) and noting (132) gives the last result and thus

completing the proof.

The generalized Mathieu series Sμ (r) is a positive, decreasing function of both
μ and r for μ > 0, r > 0.

The following interesting results hold (see also [12])
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Corollary 6 The generalized Mathieu series as defined in (5) satisfies the identity

∫ ∞

0
Sμ (r) dr = √π ·

�
(
μ+ 1

2

)

μ� (μ)
ζ (2μ) , μ > 0. (136)

For m a positive integer, then

∫ ∞

0
Sm (r) dr = (−1)m−1 22m−1π2m+ 1

2

m! (2m)! �

(
m+ 1

2

)
B2m, (137)

where we have used a 1748 result of Euler states that for m ∈ N

ζ (2m) = (−1)m−1 22m−1π2m

(2m)! B2m. (138)

and, Bk are the Bernoulli numbers defined by

x

ex − 1
=

∞∑

k=0

xk

k! Bk, |x| < 2π.

Remark 10 An alternative representation to (137) is given in a 1999 paper by Lin
in Chinese (see [23]), namely

ζ (2m) = Amπ
2m, (139)

where Am satisfies the recurrence relation

Am = (−1)m−1 · m

(2m+ 1)! +
m−1∑

j=1

(−1)j−1

(2j + 1)!Am−j (140)

and by convention the sum is neglected for m = 1 so that A1 = 1
3! . Thus an

equivalent result to (137) may be obtained as, from (139),

∫ ∞

0
Sm (r) dr =

�
(
m+ 1

2

)

m! π2m+ 1
2 · Am

with Am being given by (140).

Remark 11 Similar results to the above corollary may be obtained for the compan-
ion zeroth moments by taking in (125). These are obviously related, for example,

M
(0)
A = M

(0)
M −M(0)

E and M
(0)
O = 2M(0)

M −M(0)
E .
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Corollary 7 From (115) the Moments associated with the Dirichlet beta-L series
are given by the following relationship, namely

M
(k)
O =

{
2 ·M(k)

L(4,1)
−M(k)

Õ

2 ·M(k)
L(4,3)

+M(k)

Õ

}

(141)

M
(k)

Õ
=
{

2 ·M(k)
L(4,1)

−M(k)
O

M
(k)
O − 2 ·M(k)

L(4,3)

}

Remark 12 The moments may be used to approximate the class of generalized
Mathieu series and obtain bounds for the remainders. Further, the current paper
has aimed at investigating odd and even members of generalized Mathieu series,
which it is believed not to have been treated in the literature. Their relationship
to the Zeta function has also been highlighted throughout the paper and in
particular in Theorem 8 and Remark 7. The Dirichlet Beta-L function and its
companion generators have been explored via the generalized Mathieu series in
terms of procuring approximation and bounds. The moments have been determined
and identities have been recaptured for the generators by allowing r->0 for the
generalized Mathieu representations in terms of both series and integrals.
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Recent Research on Levinson’s Inequality

Jadranka Mićić and Marjan Praljak

Abstract In this paper we review the results on Levinson’s inequality and present
some of its generalizations using several new approaches. We provide a probabilistic
version for the family of 3-convex functions at a point. We also show that this is
the largest family of continuous functions for which the inequality holds. From the
obtained inequality, we derive new families of exponentially convex functions and
related results. We also give a monotonic refinement of the probabilistic version
of Levinson’s inequality. Levinson’s type inequality of Hilbert space operators is
discussed as well for unital fields of positive linear mappings and a large class
of functions. Order among quasi-arithmetic means is considered under similar
conditions.

1 Introduction

In this section we will review the history of research of Levison’s inequality.
A well-known inequality due to Levinson [11] is given in the following theorem.

Theorem 1 If f : (0, 2c) → R satisfies f ′′′ ≥ 0 and pi, xi, yi , i = 1, 2, . . . , n,
are such that pi > 0,

∑n
i=1 pi = 1, 0 � xi � c and

x1 + y1 = x2 + y2 = . . . = xn + yn = 2c, (1)

then the inequality
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n∑

i=1

pif (xi)− f (x) �
n∑

i=1

pif (yi)− f (y) (2)

holds, where x = ∑n
i=1 pixi and y = ∑n

i=1 piyi denote the weighted arithmetic
means.

A function f : I → R is called k-convex if kth order divided difference satisfies
[x0, . . . , xk]f ≥ 0 for all choices of k + 1 distinct points x0, . . . , xk ∈ I . If the kth
derivative f (k) of a k-convex function exists, then f (k) ≥ 0, but f (k) may not exist
(for properties of divided differences and k-convex functions, see [22]).

Popoviciu [23] showed that in Theorem 1 it is enough to assume that f is 3-
convex. Bullen [4] gave another proof of Popoviciu’s result, as well as a converse
of Levinson’s inequality (rescaled to a general interval [a, b]). Bullen’s result is the
following:

Theorem 2

(a) If f : [a, b] → R is 3-convex and pi, xi, yi , i = 1, 2, . . . , n, are such that
pi > 0,

∑n
i=1 pi = 1, a � xi, yi � b, (1) holds (for some c ∈ [a, b]) and

max(x1, . . . , xn) ≤ min(y1, . . . , yn), (3)

then (2) holds.
(b) If for a continuous function f inequality (2) holds for all n, all c ∈ [a, b],

all 2n distinct points satisfying (1) and (3) and all weights pi > 0 such that∑n
i=1 pi = 1, then f is 3-convex.

Pečarić [20] proved that one can weaken the assumption (3) and still guarantee
that inequality (2) holds, i.e. the following result holds:

Theorem 3 If f : [a, b] → R is 3-convex and pi, xi, yi , i = 1, 2, . . . , n, are such
that pi > 0,

∑n
i=1 pi = 1, a � xi, yi � b, (1) holds (for some c ∈ [a, b]) and

xi + xn−i+1 ≤ 2c,
pixi + pn−i+1xn−i+1

pi + pn−i+1
≤ c, i = 1, 2, . . . , n, (4)

then (2) holds.

The inequality from Theorem 3 for uniform weights pi = 1
n

was proven by
Lawrence and Segalman [10]. A shorter proof of Lawrence and Segalman’s result
for a wider class of functions was obtained by Pečarić [21]. More recently, Hussain
et al. [9] gave a refinement of the inequality from Theorem 3.

All of the generalizations of Levinson’s inequality mentioned so far assume
that (1) holds, i.e. that the distribution of the points xi is equal to the distribution
of the points yi reflected around the point c ∈ [a, b]. Recently, Mercer [12] made a
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significant improvement by replacing this condition of symmetric distribution with
the weaker one that the variances of the two sequences are equal.

Theorem 4 If f : [a, b] → R satisfies f ′′′ ≥ 0 and pi, xi, yi , i = 1, 2, . . . , n, are
such that pi > 0,

∑n
i=1 pi = 1, a � xi, yi � b, (3) holds and

n∑

i=1

pi(xi − x)2 =
n∑

i=1

pi(yi − y)2, (5)

then (2) holds.

Witkowski [24] showed that, similarly as before, the assumptions on differentia-
bility of f can be weakened and for Theorem 4 to hold it is enough to assume that
f is 3-convex. Furthermore, Witkowski weakened the assumption (5) as well and
showed that equality of variances can be replaced by inequality in certain direction.

Theorem 5 If f : (a, b)→ R is 3-convex, pi > 0 for i = 1, 2, . . . , n,
∑n

i=1 pi =
1, a � xi, yi � b are such that (3) holds and

(a) f ′′−(max xi) > 0 and
∑n

i=1 pi(xi − x)2 ≤
∑n

i=1 pi(yi − y)2, or

(b) f ′′+(min yi) < 0 and
∑n

i=1 pi(xi − x)2 ≥
∑n

i=1 pi(yi − y)2, or
(c) f ′′−(max xi) ≤ 0 ≤ f ′′+(min yi),

then (2) holds.

Witkowski [24] extended this result in several ways. Firstly, he showed that
Levinson’s inequality can be stated in a more general setting with random variables.
Furthermore, he showed that it is enough to assume that f is 3-convex and that
the assumption (5) of equality of the variances can be weakened to inequality in
a certain direction. In the following, E(Z) and Var(Z) denote the expectation and
variance, respectively, of a random variable Z.

Theorem 6 Let I be an open interval of R (bounded or unbounded), f : I → R be
a 3-convex function, and X, Y : (,μ)→ I be two random variables satisfying

(i) E(X2), E(Y 2), E(f (X)), E(f (Y )), E(f ′(X)), E(f ′(Y )), E(Xf ′(X)),
E(Yf ′(Y )) are finite,

(ii) ess supX ≤ ess infY ,
(iii) f ′′+(ess supX) > 0 and Var(X) ≤ Var(Y ), or f ′′−(ess infY ) < 0 and Var(X) ≥

Var(Y ), or f ′′+(ess supX) < 0 < f ′′−(ess infY ),

then

E(f (X))− f (E(X)) ≤ E(f (Y ))− f (E(Y )). (6)
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2 Generalization of Levinson’s Inequality

In this section we will build on and extend the methods of Witkowski [24]. We will
introduce a new class of functionsKc1(a, b) that extends 3-convex functions and can
be interpreted as functions that are “3-convex at point c”.

Definition 1 Let f : I → R be a real valued function on an arbitrary interval I in
R and c ∈ I ◦, where I ◦ is the interior of I .

We say that f ∈ Kc1(I ) (resp. f ∈ Kc2(I )) if there exists a constant α such
that the function F(t) = f (t)− α

2 t
2 is concave (resp. convex) on I

⋂
(−∞, c] and

convex (resp. concave) on I
⋂[c,∞).

Before stating our main results, we will introduce a new class of functions and
show some of its properties.

Remark 1

(1) If f ∈ Kci (a, b), i = 1, 2, and f ′′(c) exists, then f ′′(c) = A. If f ∈ Kc1(a, b),
we have

[x1, x2, x3]F = [x1, x2, x3]f − A

2
≤ 0 ≤ [y1, y2, y3]f − A

2
= [y1, y2, y3]F.

Therefore, if f ′′−(c) and f ′′+(c) exist, letting xj ↗ c and yj ↘ c, we get f ′′−(c) ≤
A ≤ f ′′+(c).

(2) If f : (a, b)→ R is 3-convex (3-concave), then f ∈ Kc1(a, b) (f ∈ Kc2(a, b))
for every c ∈ (a, b). Indeed, if f is 3-convex, then f ′, f ′′− and f ′′+ exist and
f ′ is convex (see [22]). Hence, for every α1, α2 ∈ (a, c], β1, β2 ∈ [c, b) and
A ∈ [f ′′−(c), f ′′+(c)] the function F(x) = f (x)− A

2 x
2 satisfies

F ′(α2)− F ′(α1)

α2 − α1
≤ 0 ≤ F ′(β2)− F ′(β1)

β2 − β1
,

so F ′ is nonincreasing on (a, c] and nondecreasing on [c, b). The next theorem
shows that this property characterizes 3-convex (3-concave) functions.

On the other hand, f (x) = x4 is an example of a function that belongs
to K2

1(−1, 3), but is not 3-convex on (−1, 3). Furthermore, f (x) = |x| is an
example of a function that belongs to K0

1(−1, 1), but f is not differentiable at
zero, a point in the interval (−1, 1).

(3) If f ∈ Kc1(a, b) (f ∈ Kc2(a, b)) for every c ∈ (a, b), then f is 3-convex (3-
concave), see [3, Theorem 2.4].

Taking into account (2) and (3), we can describe the property from the definition
ofKc1(a, b) as “3-convexity at point c”. Therefore, we have shown that a function f
is 3-convex on (a, b) if and only if it is 3-convex at every c ∈ (a, b).

We will generalize Theorem 4 by weakening the assumptions on the function f .
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Theorem 7 Let a < xi ≤ c ≤ yi < b, pi > 0 for i = 1, 2, . . . , n,
∑n

i=1 pi = 1
and (5) holds. If f ∈ Kc1(a, b), then inequality (2) holds and if f ∈ Kc2(a, b),
then (2) holds with reverse sign of inequality.

Proof For 0 ≤ t ≤ 1, let xi(t) = x + t (xi − x) and yi(t) = y + t (yi − y). If
f ∈ Kc1(a, b), then the function

U(t) :=
n∑

i=1

pif (yi(t))− f (y)−
n∑

i=1

pif (xi(t))+ f (x)

is convex and U ′+(0) ≥ 0 (see [3, Theorem 2.46]). So U(0) ≤ U(1), which is
inequality (2).

The following theorem represents a probabilistic version of Levinson’s inequality
under the assumption of equal variances.

Theorem 8 Let X, Y : → I be two random variables such that

Var(X) = Var(Y ) <∞ (7)

and that there exists c ∈ I ◦ such that

ess supX ≤ c ≤ ess infY. (8)

Then for every f ∈ Kc1(I ) such that E(f (X)) and E(f (Y )) are finite inequal-
ity (6) holds.

Proof Let F(x) = f (x) − A
2 x

2, where A is the constant from Definition 1. Since
F : I ∩ (−∞, c] → R is concave, Jensen’s inequality implies

0 ≤ F(E(X))− E(F (X)) = f (E(X))− E(f (X))+ A

2
Var(X). (9)

Similarly, F : I ∩ [c,∞)→ R is convex, so

0 ≤ E(f (Y ))− f (E(Y ))− A

2
Var(Y ). (10)

Adding up (9) and (10) we obtain that (6) holds.

2.1 Mean Value Theorems

Notice that Levinson’s inequality (6) is linear in f . This motivates us to define the
following linear functional: for fixed random variables X, Y :  → I and c ∈ I ◦
such that (7) and (8) hold, we define
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"(f ) = E(f (Y ))− f (E(Y ))− E(f (X))+ f (E(X)) (11)

for functions f : I → R such that E(f (X)) and E(f (Y )) are finite. Notice that
Theorem 8 guarantees that "(f ) ≥ 0 for f ∈ Kc1(I ).

We will give two mean value results.

Theorem 9 Let −∞ < a < c < b < ∞, I = [a, b], X, Y :  → I be two
random variables such that (7) and (8) hold, and let " be given by (11). Then for
f ∈ C3([a, b]) there exists ξ ∈ [a, b] such that

"(f ) = f ′′′(ξ)
6

[
E(Y 3 −X3)− E

3(Y )+ E
3(X)

]
. (12)

Proof Since f is bounded, E(f (X)) and E(f (Y )) are finite and "(f ) is well
defined. Furthermore, since f ∈ C3([a, b]), there exist m = minx∈[a,b] f ′′′(x)
and M = maxx∈[a,b] f ′′′(x). The functions f1(x) = f (x) − m

6 x
3 and f2(x) =

M
6 x

3 − f (x) are 3-convex. Hence, by Theorem 8 we have "(fi) ≥ 0, i = 1, 2, and
we get

m

6
"(id3) ≤ "(f ) ≤ M

6
"(id3), (13)

where id(x) = x. Since id3 is 3-convex, by Theorem 8 we have

0 ≤ "(id3) = E(Y 3 −X3)− E
3(Y )+ E

3(X).

If "(id3) = 0, then (13) implies "(f ) = 0 and (12) holds for every ξ ∈ [a, b].
Otherwise, dividing (13) by 0 < "(id3)/6 we get

m ≤ 6"(f )

"(id3)
≤ M,

so continuity of f ′′′ insures existence of ξ ∈ [a, b] satisfying (12).

Theorem 10 Let I , c, X, Y , and " be as in Theorem 9 and let f, g ∈ C3([a, b]). If
"(g) �= 0, then there exists ξ ∈ [a, b] such that either

"(f )

"(g)
= f ′′′(ξ)
g′′′(ξ)

,

or f ′′′(ξ) = g′′′(ξ) = 0.

Proof Define h ∈ C3([a, b]) by h(x) = αf (x) − βg(x), where α = "(g), β =
"(f ). Due to the linearity of " we have "(h) = 0. Now, by Theorem 9 there exist
ξ, ξ1 ∈ [a, b] such that

0 = "(h) = h′′′(ξ)
6

"(id3) and 0 �= "(g) = g′′′(ξ1)

6
"(id3).
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Therefore,"(id3) �= 0 and 0 = h′′′(ξ) = αf ′′′(ξ)−βg′′′(ξ), which gives the claim
of the theorem.

Remark 2 Theorems 9 and 10 are generalizations of mean value results from [1].
Indeed, let I = [0, 2a], c = a be the midpoint of the segment and X be the discrete
random variable taking values xi ∈ [0, c] with probabilities pi , i = 1, . . . , n. The
random variables Y1 = 2a − X and Y2 = X + a satisfy Var(Y1) = Var(Y2) =
Var(X). The results from [1] can be recovered by applying Theorems 9 and 10 with
the pair of random variables X and Y1 or X and Y2.

2.2 Exponential Convexity

In this subsection we will give refinements of the results obtained in the above
subsection by constructing certain exponentially convex functions.

We will first give some basic definitions and results on exponential convexity that
we will use in this subsection.

Definition 2 A function g : I → R, where I is an interval in R, is n-exponentially
convex in the Jensen sense on I if

n∑

i,j=1

ξ iξ j g

(
xi + xj

2

)
≥ 0

holds for all choices ξ i ∈ R and xi ∈ I , i = 1, . . ., n.
A function g : I → R is n-exponentially convex on I if it is n-exponentially

convex in the Jensen sense and continuous on I .

Definition 3 A function g : I → R is exponentially convex in the Jensen sense
on I if it is n-exponentially convex in the Jensen sense on I for every n ∈ N. A
function g : I → R is exponentially convex on I if it is exponentially convex in the
Jensen sense and continuous on I .

Remark 3 A function g : I → R is log-convex in the Jensen sense, i.e.

g

(
x1 + x2

2

)2

≤ g(x1)g(x2), for all x1, x2 ∈ I, (14)

if and only if

ξ2
1g(x1)+ 2ξ1ξ2g

(
x1 + x2

2

)
+ ξ2

2g(x2) ≥ 0

holds for every ξ1, ξ2 ∈ R and x1, x2 ∈ I , i.e., if and only if g is 2-exponentially
convex in the Jensen sense. If g(x1) = 0 for some x1 and [a, b] ⊂ I is an arbitrary
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interval containing x1, then it follows from (14) and non-negativity of g that g
vanishes on [a1, b1], where a1 = (a + x1)/2 and b1 = (x1 + b)/2. Applying
the same reasoning to intervals [a, a1] and [b1, b] we obtain sequences an ↘ a and
bn ↗ b with g vanishing on [an, bn]. Thus g is zero on (a, b) and a function that is
2-exponentially convex in the Jensen sense is either identically equal to zero or it is
strictly positive and log-convex in the Jensen sense.

The following results will enable us to construct exponentially convex functions.

Theorem 11 Let X, Y : → I be two random variables and c ∈ I ◦ such that (7)
and (8) hold and let " be given by (11). Furthermore, let ϒ = {ft : I → R | t ∈
J }, where J is an interval in R, be a family of functions such that, for every t ∈
J , E(ft (X)) and E(ft (Y )) are finite and for every four mutually different points
u0, u1, u2, u3 ∈ I the mapping t /→ [u0, u1, u2, u3]ft is n-exponentially convex.
Then the mapping t /→ "(ft ) is n-exponentially convex in the Jensen sense on J . If
the mapping t /→ "(ft ) is continuous on J , then it is n-exponentially convex on J.

Proof For ξ i ∈ R and ti ∈ J , i = 1, . . . , n, we define the function

f (x) =
n∑

i,j=1

ξ iξ j f ti+tj
2
(x).

Due to linearity of the divided differences and the assumption that the function
t /→ [u0, u1, u2, u3]ft is n-exponentially convex in the Jensen sense we have

[u0, u1, u2, u3]f =
n∑

i,j=1

ξ iξ j [u0, u1, u2, u3]f ti+tj
2
≥ 0.

This implies that f is 3-convex, so f ∈ Kc1(I ). Due to linearity of the expectation,
E(f (X)) and E(f (Y )) are finite, so by Theorem 8

0 ≤ "(f ) =
n∑

i,j=1

ξ iξ j"(f ti+tj
2
).

Therefore, the mapping t /→ "(ft ) is n-exponentially convex. If it is also
continuous, it is n-exponentially convex by definition.

If the assumptions of Theorem 11 hold for all n ∈ N, then we immediately get
the following corollary.

Corollary 1 Let X, Y , c, and " be as in Theorem 11. Furthermore, let ϒ = {ft :
I → R | t ∈ J }, where J is an interval in R, be a family of functions such that, for
every t ∈ J , E(ft (X)) and E(ft (Y )) are finite and for every four mutually different
points u0, u1, u2, u3 ∈ I the mapping t /→ [u0, u1, u2, u3]ft is exponentially
convex. Then the mapping t /→ "(ft ) is exponentially convex in the Jensen sense
on J . If the mapping t /→ "(ft ) is continuous on J , then it is exponentially convex
on J.
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Corollary 2 Let X, Y , c, and " be as in Theorem 11. Furthermore, let ϒ = {ft :
I → R | t ∈ J }, where J is an interval in R, be a family of functions such that, for
every t ∈ J , E(ft (X)) and E(ft (Y )) are finite and for every four mutually different
points u0, u1, u2, u3 ∈ I the mapping t /→ [u0, u1, u2, u3]ft is 2-exponentially
convex in the Jensen sense. Then the following statements hold:

1. If the mapping t /→ "(ft ) is continuous on J , then for r, s, t ∈ J such that
r < s < t , we have

"(fs)
t−r ≤ "(fr)t−s"(ft )s−r . (15)

2. If the mapping t /→ "(ft ) is strictly positive and differentiable on J , then for all
s, t, u, v ∈ J such that s ≤ u and t ≤ v we have

μs,t (ϒ) ≤ μu,v(ϒ),

where

μs,t (ϒ) =

⎧
⎪⎨

⎪⎩

(
"(fs)
"(ft )

) 1
s−t
, s �= t,

exp

(
d
ds
("(fs))

"(fs)

)
, s = t.

(16)

Consider now the family of functions

ϒ1 = {ft : I → R | t ∈ R}, I ⊂ (0,∞),

defined by

ft (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xt− t (t−1)
2 x2+t (t−2)x− (t−1)(t−2)

2
t (t−1)(t−2) , t �= 0, 1, 2

1
2 ln x, t = 0,

−x ln x, t = 1,
1
2x

2 ln x, t = 2.

(17)

The functions ft are 3-convex since f ′′′t (x) = xt−3 ≥ 0. Moreover, the function

f (x) =
n∑

i,j=1

ξ iξ j f ti+tj
2
(x)

satisfies

f ′′′(x) =
n∑

i,j=1

ξ iξ jf
′′′
ti+tj

2

(x) =
(

n∑

i=1

ξ ie
ti−3

2 ln x

)2

≥ 0,
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so f is 3-convex. Therefore

0 ≤ [u0, u1, u2, u3]f =
n∑

i,j=1

ξ iξ j [u0, u1, u2, u3]f ti+tj
2

so the mapping t /→ [u0, u1, u2, u3]ft is n-exponentially convex in the Jensen
sense. As this holds for all n ∈ N, we see that the familyϒ1 satisfies the assumptions
of Corollary 1. For the remainder of this section we assume that E(ft (X)) and
E(ft (Y )) are finite for all ft given by (17). Hence, by Corollary 1, the mapping
t /→ "(ft ) is exponentially convex in the Jensen sense. It is straightforward to
check that it is also continuous, so the mapping t /→ "(ft ) is exponentially convex.
An immediate consequence of Corollary 2 (i) is the following result.

Corollary 3 Let I ⊂ (0,∞), c ∈ I ◦, and let X, Y :  → I be two random
variables such that (7) and (8) hold. If E(Y t −Xt)− E

t (Y )+ E
t (X) �= 0 for some

t ∈ R\{0, 1, 2}, then for all r, s, t ∈ R\{0, 1, 2} such that r < s < t we have

E(Y t −Xt)− E
t (Y )+ E

t (X)

t (t − 1)(t − 2)
≥
(
E(Y s −Xs)− E

s(Y )+ E
s(X)

s(s − 1)(s − 2)

) t−r
s−r ·

·
(
E(Y r −Xr)− E

r (Y )+ E
r (X)

r(r − 1)(r − 2)

) s−t
s−r

> 0. (18)

Applying Theorem 10 for the functions f = ft and g = fs given by (17) and
defined on a segment I = [a, b] ⊂ (0,∞), we conclude that there exist ξ ∈ I such
that

ξ =
(
f ′′′s
f ′′′t

)−1 (
"(fs)

"(ft )

)
=
(
"(fs)

"(ft )

) 1
s−t
, s �= t.

Moreover, μs,t (ϒ1) given by (16) for the familyϒ1 can be calculated in the limiting
cases s → t as well and equal

μs,t (ϒ1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
"(fs)
"(ft )

) 1
s−t
, s �= t,

exp
(

2"(fsf0)
"(f0)

− 3s2−6s+2
s(s−1)(s−2)

)
, s = t �= 0, 1, 2,

exp

(
"(f 2

0 )

"(f0)
+ 3

2

)
, s = t = 0,

exp
(
"(f0f1)
"(f1)

)
, s = t = 1,

exp
(
"(f0f2)
"(f2)

− 3
2

)
, s = t = 2.

By Corollary 2 (ii), μs,t (ϒ1) are monotone in parameters s and t .
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Remark 4 By applying Corollary 1 to the family of functions ϒ1 given by (17)
and the pair of discrete random variables X and Y1 or X and Y2 from Remark 2
we conclude that the mapping t /→ [u0, u1, u2, u3]ft is exponentially convex
which generalizes the result from [2] where the log-convexity of the mapping was
proven. Also, the inequalities obtained in [2] can be recovered from Corollary 2 (i).
Furthermore, μs,t (ϒ1) applied for the same family of functions and random
variables yield the Cauchy means obtained in [1].

2.3 A Monotonic Refinement of Levinson’s Inequality

In this subsection we will construct the corresponding two mappings in connection
with Levinson’s inequality and show their monotonicity and convexity properties.

Theorem 12 Let f : [a, b] → R be 3-convex at point c, x :  → [a, c] and
y : → [c, b] such that Var(x) = Var(y) and H,V : [0, 1] → R the mappings

H(t) = 1

μ()

∫



[f (ty(s)+ (1− t)E[y])− f (tx(s)+ (1− t)E[x])] dμ(s)

and

V (t) = 1

μ()2

∫



∫



[f (ty(s)+ (1− t)y(u))− f (tx(s)+ (1− t)x(u))] dμ(s)dμ(u).

Then:

(a) the mappings H and V are convex on [0, 1],
(b) the mapping H is nondecreasing on [0, 1], while the mapping V is nonincreas-

ing on [0, 1
2 ] and nondecreasing on [ 1

2 , 1],
(c) the following equalities hold:

inf
t∈[0,1]H(t) = H(0) = f (E[y])− f (E[x]),

sup
t∈[0,1]

H(t) = H(1) = E[f (y)] − E[f (x)]),

inf
t∈[0,1]V (t) = V (

1

2
) = 1

μ()2

∫



∫



[
f

(
y(s)+ y(u)

2

)
− f

(
x(s)+ x(u)

2

)]

dμ(s)dμ(u),

sup
t∈[0,1]

V (t) = V (0) = V (1) = E[f (y)] − E[f (x)]),

(d) V (t) ≥ max{H(t),H(1− t)} holds for all t ∈ [0, 1].
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Proof Since the function y takes values in [c, b], so does the function y(t) = ty +
(1 − t)E[y] for every t ∈ [0, 1]. Furthermore, since the function F is convex on
[c, b], by [6] the mapping

H1(t) = 1

μ()

∫



F(ty(s)+ (1− t)E[y]) dμ(s)

is convex an nondecreasing on [0, 1], and we have

H1(t) = E[f (y(t))] − A

2
t2Var(y)− A

2
E

2[y].

Similarly, the function x(t) = tx + (1 − t)E[x] takes values in [a, c] for every
t ∈ [0, 1] and −F is convex on [a, c], so by [6] the mapping

H2(t) = − 1

μ()

∫



F(tx(s)+ (1− t)E[x]) dμ(s)

is convex and nondecreasing on [0, 1], and we have

H2(t) = −E[f (x(t))] + A

2
t2Var(x)+ A

2
E

2[x].

Let us also denote the (constant) mapping H3(t) = A
2

(
E

2[y] − E
2[x]). All three

of the mappings Hi , i = 1, 2, 3, are convex and nondecreasing and, therefore, so is
their sum. Since Var(x) = Var(y) we have H = H1 +H2 +H3 and this proves the
convexity and monotonicity properties of H from parts (a) and (b), while the first
two equalities in (c) follow by simple calculation.

As for the mapping V , first of all, it is easy to see that V (t) = V (1 − t) for all
t ∈ [0, 1], that is, V is symmetric with respect to t = 1

2 . Next, since y takes values
in [c, b] and F is convex on that interval, then the mapping

V1(t) = 1

μ()2

∫



∫



F(ty(s)+ (1− t)y(u)) dμ(s)dμ(u)

is convex on [0, 1], nondecreasing on [ 1
2 , 1] and we have

V1(t) = 1

μ()2

∫



∫



f (ty(s)+(1−t)y(u)) dμ(s)dμ(u)+At(1−t)Var(y)−A
2
E[y2].

Similarly, since x takes values in [a, c] and −F is convex on that interval, then the
mapping

V2(t) = − 1

μ()2

∫



∫



F(tx(s)+ (1− t)x(u)) dμ(s)dμ(u)
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is convex on [0, 1], nondecreasing on [ 1
2 , 1] and we have

V2(t) = − 1

μ()2

∫



∫



f (tx(s)+(1−t)x(u)) dμ(s)dμ(u)−At(1−t)Var(x)+A
2
E[x2].

Let us also denote the (constant) mapping V3(t) = A
2

(
E[y2] − E[x2]). All three of

the mappings Vi , i = 1, 2, 3, are convex and nondecreasing on [ 1
2 , 1] and, therefore,

so is their sum. Since Var(x) = Var(y) we have V = V1 + V2 + V3. Furthermore,
since V is symmetric around t = 1

2 , it follows that it is nonincreasing on [0, 1
2 ], its

minimum is attained at t = 1
2 and its maximum is attained at t = 0 and t = 1. This

proves the convexity and monotonicity properties of V .
Finally, as for part (d), since V is symmetric around t = 1

2 and H is
nondecreasing, it is enough to prove that V (t) ≥ H(t) for t ∈ [ 1

2 , 1]. This
inequality holds since V1(t) ≥ H1(t) and V2(t) ≥ H2(t) by Theorem by [6] (d)
and V3(t) = H3(t) since Var(x) = Var(y) and this finishes the proof.

A monotonic refinement of Levinson’s inequality (6) based on Theorem 12 is
the following: if x(t) and y(t) for t ∈ [0, 1] are as in the proof of Theorem 12, then
H(t) = E[f (y(t))] − E[f (x(t))]) and for 0 ≤ s ≤ t ≤ 1 it holds

f (E[y])− f (E[x]) = H(0) ≤ E[f (y(s))] − E[f (x(s))])
≤ E[f (y(t))] − E[f (x(t))]) ≤ H(1) = E[f (y)] − E[f (x)]).

3 Levinson’s Operator Inequality

In this section we give Levinson’s operator inequality and Levinson’s mappings.
Let B(H) be the algebra of all bounded linear operators on a complex Hilbert

space H . We denote by Bh(H) the real subspace of all self-adjoint operators on H .
We assume that the reader is familiar with basic notions about operator theory.
If a function f is operator convex, then the so-called Choi-Davis-Jensen’s

inequality (or in short Jensen’s operator inequality) f (0(X)) ≤ 0(f (X)) holds for
any unital positive linear mapping 0 on B(H) and any X ∈ Bh(H) with spectrum
contained in I . Many other versions of Jensen’s operator inequality can be found in
[7, 8].

Now we give the definition of classes of functions for which we observe
Levinson’s operator inequality.

Definition 4 Let f ∈ C(I ) be a real valued function on an arbitrary interval I in R

and c ∈ I ◦, where I ◦ is the interior of I .

We say that f ∈
•
Kc1(I ) (resp. f ∈

•
Kc2(I )) if F is operator concave (resp. operator

convex) on I ∩(−∞, c] and operator convex (resp. operator concave) on I ∩[c,∞).
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3.1 Levinson’s Inequality with Operator
Convexity and Concavity

First, we observe Levinson’s operator inequality for f ∈
•
Kc1(I ).

Theorem 13 Let (X1, . . . , Xn) be an n-tuple and (Y1, . . . , Yk) be a k-tuple of
self-adjoint operators Xi, Yj ∈ Bh(H) with spectra contained in [mx,Mx] and
[my,My], respectively, such that a < mx ≤ Mx ≤ c ≤ my ≤ My < b for some
a, b, c ∈ R. Let (01, . . . , 0n) be a unital n-tuple and (!1, . . . , !k) be a unital
k-tuple of positive linear mappings 0i,!j : B(H)→ B(K).

If f ∈
•
Kc1((a, b)) and αX ≤ αY , then

n∑

i=1
0i
(
f (Xi)

)− f
( n∑

i=1
0i(Xi)

)
≤ α

2X ≤ α
2 Y ≤

k∑

j=1
!j
(
f (Yj )

)− f
( k∑

j=1
!j(Yj )

)
,

(19)

where X :=
n∑

i=1
0i
(
X2
i

)−
( n∑

i=1
0i(Xi)

)2
, Y :=

k∑

j=1
!j
(
Y 2
j

)−
( k∑

j=1
!j(Yj )

)2
.

If f ∈
•
Kc2((a, b)) and αX ≥ αY , then the reverse inequalities are valid in (19).

Proof If f ∈
•
Kc1((a, b)), then there is a constant α such that F(t) = f (t) − α

2 t
2

is operator concave on [mx, c] ⊂ (a, c]. Then the reverse of Jensen’s operator
inequality gives

0 ≤ f
( n∑

i=1
0i(Xi)

)
− α

2

( n∑

i=1
0i(Xi)

)2 −
n∑

i=1
0i
(
f (Xi)

)+ α
2

n∑

i=1
0i
(
X2
i

)
.

It follows

n∑

i=1

0i
(
f (Xi)

)− f
( n∑

i=1

0i(Xi)
)
≤ α

2
X. (20)

Also, since F is operator convex on [c,My] ⊂ [c, b), Jensen’s operator inequality
gives

α

2
Y ≤

k∑

j=1

!j
(
f (Yj )

)− f
( k∑

j=1

!j(Yj )
)
. (21)

Combining (20) and (21) and taking into account that αX ≤ αY , we obtain (19).

Next, we give the following obvious corollary to Theorem 13 with convex
combinations of operators Xi , i = 1, . . . , n and Yj , j = 1, . . . , k. This is a
generalization of [3, Theorem 2.6].
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Corollary 4 Let operators and a, b, c be as in Theorem 13 and (p1, . . . , pn) be an
n-tuple and (q1, . . . , qk) be a k-tuple of positive scalars such that

∑n
i=1 pi = 1 and

∑k
j=1 qj = 1.

If f ∈
•
Kc1((a, b)) and αP ≤ αQ, then

n∑

i=1

pif (Xi)− f
(
X̄
) ≤ α

2
P ≤ α

2
Q ≤

k∑

j=1

qjf (Yj )− f
(
Ȳ
)
, (22)

where P :=
n∑

i=1
pi
(
Xi − X̄

)2
, Q :=

k∑

j=1
qj
(
Yj − Ȳ

)2
, X̄ :=

n∑

i=1
piXi , Ȳ :=

k∑

j=1
qjYj denote the weighted arithmetic means of operators.

If f ∈
•
Kc2([mx,My]) and α

2P ≥ α
2Q, then reverse inequalities are valid in (22).

Remark 5

(a) If f is convex, then f ′′−(c) ≤ α ≤ f ′′+(c) (see [3]). So, condition αX ≤ αY

(resp. αX ≥ αY) in Theorem 13 can be weakened to X ≤ Y (resp. Y ≤ X).

(b) Setting n = k, pi = qi and A :=
n∑

i=1
pi
(
Xi − X̄

)2 =
n∑

i=1
pi
(
Yi − Ȳ

)2
in

Corollary 4, we get the operators version of (2) and a generalization of Mercer’s
result given in Theorem 4.

3.2 Levinson’s Inequality Without Operator
Concavity and Convexity

In this subsection we give Levinson’s operator inequality for f ∈ Kci (I ), i = 1, 2.
Operator convexity plays an essential role in (19). This inequality will be false

if we replace an operator convex function by a general convex function (see [18,
Counterexample 1]). Now, we give a general result when Levinson’s operator
inequality holds for f ∈ Kc1([mx,My]) with conditions on the spectra of operators.
There have been many interesting works devoted to obtain operator inequalities
under spectra conditions. The reader is referred to [16, 19] and the references
therein.

Theorem 14 Let mappings and operators be as in Theorem 13, mXi ,MXi be
bounds of Xi and mYj ,MYj be bounds of Yj , such that a < mXi ≤ MXi ≤ c ≤
mYj ≤ MYj < b for some a, b, c ∈ R, i = 1, . . . , n, j = 1, . . . , k, and let mX,MX

and mY ,MY be bounds of X̄ =∑n
i=10i(Xi) and Ȳ =∑k

j=1!j(Yj ), respectively,
such that
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(mX,MX) ∩ [mXi ,MXi ] = ∅, i = 1, . . . , n,
(mY ,MY ) ∩ [mYj ,MYj ] = ∅, j = 1, . . . , k.

(23)

If f ∈ Kc1((a, b)) and αX ≤ αY hold, then (19) is valid, where

X :=
n∑

i=1
0i
(
X2
i

)− X̄2 and Y :=
k∑

j=1
!j
(
Y 2
j

)− Ȳ 2.

If f ∈ Kc2((a, b)) and αX ≥ αY hold, then reverse inequalities are valid in (19).

Proof The proof is similar to the one for Theorem 13, when we apply Jensen’s
operator inequality without operator convexity and concavity (see [16, Theorem 1.]).

As an application of Theorem 14, we obtain many interesting inequalities. For
example, we obtain the following inequalities for some power functions.

Example 1 The function f (t) = tn, n = 3, 4, . . . is an element ofKc1((−c,∞)) for
α = n(n − 1)cn−2 and c ∈ R

+. Let mappings 0i , !j and operators Xi , Yj , X, Y ,
X̄, Ȳ be as in Theorem 14. If spectra conditions (23) hold and X ≤ Y , then

n∑

i=1

0i
(
Xni
)− X̄n ≤

(
n

2

)
cn−2X ≤

(
n

2

)
cn−2Y ≤

k∑

j=1

!j
(
Ynj
)− Ȳ n.

Next, we give a version of Levison’s operator inequality with the scalar product.
We omit the proof.

Theorem 15 Let operators and a, b, c be as in Theorem 13. Let (z1, . . . , zn) be an
n-tuple and (w1, . . . , wk) be a k-tuple of vectors zi, wj ∈ H , such that

∑n
i=1 ‖

zi ‖2= 1 and
∑k

i=1 ‖ wi ‖2= 1. If f ∈ Kc1((a, b)) and αx ≤ αy, then

n∑

i=1

〈
f (Xi)zi, zi

〉− f (x̄) ≤ α

2
x ≤ α

2
y ≤

k∑

j=1

〈
f (Yj )wj ,wj

〉− f (ȳ), (24)

where x :=
n∑

i=1

〈(
Xi − x̄1H

)2
zi, zi

〉
, x̄ :=

n∑

i=1

〈
Xizi, zi

〉
, y :=

k∑

j=1

〈(
Yj − ȳ1H

)2

wj ,wj
〉
, ȳ :=

k∑

j=1

〈
Yjwj ,wj

〉
. But, if f ∈ Kc2((a, b)) and αx ≥ αy, then reverse

inequalities are valid in (24).

3.3 Converse of Levinson’s Operator Inequality

In this subsection we give converse of the inequality (19) for f ∈ Kc1(I ). First, for
convenience we introduce some abbreviations:
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Let f : [m,M] → R, m < M and α ∈ R. We denote a linear function through
the points (m, F (m)) and (M,F (M)) by f lineα,[m,M], i.e.

f lineα,[m,M](t) =
M − t
M −mf (m)+

t −m
M −mf (M)−

α

2

(
(M +m)t −mM

)
, t ∈ R,

and the slope of the line through (m, F (m)) and (M,F (M)) by kα,f [m,M], i.e.

kα,f [m,M] = f (M)− f (m)
M −m − α

2
(M +m).

Next, we give converse of Levinson’s operator inequality for two operators.

Theorem 16 Let X, Y ∈ Bh(H) be self-adjoint operators with spectra contained
in [m,M] and [n,N ], respectively, such that a < m ≤ M ≤ c ≤ n ≤ N < b.
Let 0,! be normalized positive linear mappings 0,! : B(H) → B(K) and mx ,
Mx , (mx ≤ Mx) and ny , Ny , (ny ≤ Ny) be bounds of operators 0(X) and !(Y),
respectively (see Fig. 1). If f ∈ Kc1((a, b)) and C1 ≥ C2, then

0
(
f (X)

)−f (0(X))+β11K ≥ C1 ≥ C2 ≥ !
(
f (Y )

)−f (!(Y))+β21K, (25)

where

C1 := α

2

[
0
(
X2)−0(X)2

]
, C2 := α

2

[
!
(
Y 2)−!(Y)2

]
, (26)

and

β1 = max
mx≤t≤Mx

{
f (t)− α

2 t
2 − f lineα,[m,M](t)

}
≥ 0,

β2 = min
ny≤t≤Ny

{
f (t)− α

2 t
2 − f lineα,[n,N ](t)

}
≤ 0.

(27)

In the dual case, if f ∈ Kc2((a, b)) and C1 ≤ C2 hold, then reverse inequalities are
valid in (25), where β1 ≤ 0 with min instead of max and β2 ≥ 0 with max instead
of min in (27).

Fig. 1 Bounds of operators
for converse of Levinson’s
inequality
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Proof If f ∈ Kc1((a, b)), then there is a constant α such that F(t) = f (t) − α
2 t

2

is concave on [m,M] ⊂ (a, c]. The converse of Jensen’s operator inequality gives
(see [17, Theorem 3.4])

0
(
f (X)

)− α

2
0
(
X2)− f (0(X))+ α

2
0(X)2 + β11K ≥ 0

⇒ 0
(
f (X)

)− f (0(X))+ β11K ≥ C1. (28)

Similarly, since F is operator convex on [n,N ] ⊂ [c, b), then Jensen’s operator
inequality gives

C2 ≥ !
(
f (Y )

)− f (!(Y))+ β21K. (29)

Combining inequalities (28) and (29) and taking into account C1 ≥ C2 we
obtain (25).

Remark 6 Applying Theorem 16 we obtain a version of the converse of Levinson’s
inequality (19) with more operators. We omit the details. Applying this result we
can obtain the following converse of (22).

Let Xi, Yj , pi, qj , P,Q, a, b, c be as in Corollary 4 and β1, β2 be defined
by (27).

If f ∈ Kc1((a, b)) and αP ≥ αQ, then

k1∑

i=1

pif (Xi)− f
(
X̄
)
+ β11K ≥ α

2
P ≥ α

2
Q ≥

k2∑

j=1

qjf (Yj )− f
(
Ȳ
)+ β21K.

3.4 Levinson’s Mapping and Its Properties

In this subsection we observe some Levinson’s mappings for two operators.
Analogously, we can observe Levinson’s mapping for more operators. We omit the
details.

1. First, we define two Levinson’s mappings

L0,!, L̄0,! :
•
Kc1((a, b))× Bh(H)× Bh(H)× [0, 1] → Bh(H) as

L0,!(f,X, Y, t) := !
(
f (tY + (1− t)!(Y )) )−0(f (tX + (1− t)0(X)) ), (30)

L̄0,!(f,X, Y, t) := t!
(
f (Y )

)+ (1− t)f (!(Y ))− [t0(f (X))+ (1− t)f (0(X))],

where X, Y ∈ Bh(H) are self-adjoint operators with spectra contained in [m,M]
and [n,N ], such that a < m ≤ M ≤ c ≤ n ≤ N < b, t ∈ [0, 1] and
0,! : B(H) → B(H) are normalized positive linear mappings. Moreover, let
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0 preserve the operator X̄ := 0(X) and the product of operators X and X̄, and let
!, analogous, preserve Ȳ := !(Y) and the product of Y and Ȳ in the mapping (30).

Theorem 17 IfC1≤C2 holds (see (26)), then L0,!(f,X, Y, ·) and L̄0,!(f,X, Y, ·)
is convex and monotone increasing on [0, 1]. So,

inf
t∈[0,1]L0,!(f,X, Y, t) = inf

t∈[0,1] L̄0,!(f,X, Y, t) = f (!(Y ))− f (0(X)),

sup
t∈[0,1]

L0,!(f,X, Y, t) = sup
t∈[0,1]

L̄0,!(f,X, Y, t) = !(f (Y ))−0(f (X)).

These properties are proven in [15, Theorems 3.1 and 3.2].

2. Next, we define the operator-valued functional

*0,! :
•
Kc1((a, b))× Bh(H)× Bh(H)× Bh(H)× Bh(H)× [0, 1] → Bh(H)

related to Levinson’s inequality as a difference between respective mappings L̄0,!
and L0,! , i.e.

*0,!(f,A,B;C,D, t) = (1− t)!(f (C))+ t!(f (D))−!(f ((1− t)C + tD) )
− [(1− t)0(f (A))+ t0(f (B))−0(f ((1− t)A+ tB) )]

where 0,! : B(H) → B(H) are normalized positive linear mappings, f ∈
•
Kc1((a, b)) , A,B,C,D ∈ Bh(H) are self-adjoint operators with spectra of A,C
contained in [m,M] and spectra of B,D contained in [n,N ], such that a < m ≤
M ≤ c ≤ n ≤ N < b and t ∈ [0, 1].

For the sake of convenience let us define operator functions:

δ0(A,B) = 0
(
(A− B)2) (31)

and

*0(f,A,B, t) = (1− t)0(f (A))+ t0(f (B))−0(f ((1− t)A+ tB) ).

So, we can read

*0,!(f,A,B;C,D, t) = *!(f,C,D, t)−*0(f,A,B, t). (32)

We can also consider the following functional

50,!(f,A,B;C,D) = !
(
f (C)

)+!(f (D))−!
(∫ 1

0 f ((1− t)C + tD) dt
)

−0(f (A))−0(f (B))+0
(∫ 1

0 f ((1− t)A+ tB) dt
)
.
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We observe that

50,!(f,A,B;C,D)
= ∫ 1

0 *0,!(f,A,B;C,D, t)dt =
∫ 1

0 *0,!(f,A,B;C,D, 1− t)dt ≥ 0.
(33)

Now, we can show an operator quasi-linearity property for the functional (32), as
operator superadditive and operator monotone as a function of intervals.

Theorem 18 If α δ!(C,D) ≥ α δ0(A,B), then for every A1 = (1− s)A+ sB ∈
[A,B] and C1 = (1− s)C + sD ∈ [C,D], we have

0 ≤ *0,!(f,A,A1;C,C1, t)+*0,!(f,A1, B;C1,D, t)

≤ *0,!(f,A,B;C,D, t).

Moreover, ifB1 = (1−r)A+rB andD1 = (1−r)C+rD so that [A1, B1] ⊂ [A,B]
and [C1,D1] ⊂ [C,D], then

0 ≤ *0,!(f,A1, B1;C1,D1, t) ≤ *0,!(f,A,B;C,D, t).

These properties are proven in [15, Theorem 3.4].
Applying the above two inequalities we are able to state the following bounds.

For the details of the proof, see in [15, Corollary 3.6].

Corollary 5 Let 0,! : B(H) → B(H) be normalized positive linear mappings,
A,C ∈ Bh(H) be self-adjoint operators with spectra of A and C contained in
[m,M] and [n,N ], respectively, such that a < m ≤ M ≤ c ≤ n ≤ N < b,
Ā = 0(A) and C̄ = !(C).

If α δ!(C, C̄) ≥ α δ0(A, Ā), B = (1− s)A+ sĀ and D = (1− s)C+ sC̄, then

inf
B ∈ [A, Ā]
D ∈ [C, C̄]

{
!
(
f ((1− t)C + tD) )+!(f ((1− t)D + tC̄) )−!(f (D) )

−0(f ((1− t)A+ tB) )−0(f ((1− t)B + tĀ) )+0(f (B) )
}

= !
(
f
(
(1− t)C + tC̄) )−0(f ((1− t)A+ tĀ) )

holds for every f ∈
•
Kc1((a, b)) and t ∈ [0, 1].

Moreover, if B1 = (1− s)A+ sĀ, B2 = (1− r)A+ rB, D1 = (1− s)C + sC̄
and D2 = (1− r)C + rD for r, s ∈ [0, 1], then
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sup
B1, B2 ∈ [A, Ā]
D1,D2 ∈ [C, C̄]

{
(1− t)!(f (D1)

)+ t!(f (D2)
)−!(f ((1− t)D1 + tD2)

)

−(1− t)0(f (B1)
)− t0(f (B2)

)+0(f ((1− t)B1 + tB2)
)}

= (1− t)!(f (C) )+ t!(f (C̄) )−!(f ((1− t)C + tC̄) )

− (1− t)0(f (A) )− t0(f (Ā) )+0(f ((1− t)A+ tĀ) ).
(34)

If 0 and ! preserve the operator f (Ā) and f (C̄), respectively, then supremum
in (34) is equal to L̄0,!(f,A,C, t)− L0,!(f,A,C, t).

Similarly, utilizing the representation (33), we can obtain bounds of

!
( ∫ 1

0 f ((1− t)C + tD) dt
)+!( ∫ 1

0 f
(
(1− t)D + tC̄) dt)−!(f (D) )

− 0
( ∫ 1

0 f ((1− t)A+ tB) dt
)−0( ∫ 1

0 f
(
(1− t)B + tĀ) dt)+0(f (B) ).

We omit the details.

4 Quasi-Arithmetic Means of Operators

In this section we give order among quasi-arithmetic means of operators.
We define the quasi-arithmetic mean as follows:

Mϕ(X,�, n) := ϕ−1

(
n∑

i=1

0i (ϕ(Xi))

)

, (35)

where (X1, . . . , Xn) is an n-tuple of self-adjoint operators in Bh(H) with spectra in
I , (01, . . . , 0n) is a unital n-tuple of positive linear mappings0i : B(H)→ B(K),
and ϕ : I → R is a strictly monotone function. There have been many works
devoted to observing the order among these means, see, e.g., [7, 8, 13, 14].

The power mean is a special case of the quasi-arithmetic mean:

Mr (X,�, n) :=
{(∑n

i=10i
(
Xri

))1/r
, r ∈ R\{0},

exp
(∑n

i=1 0i
(

ln(Xi)
))
, r = 0,

(36)

where X1, . . . , Xn are positive operators.
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4.1 Results with Operator Convexity and Concavity

As a generalization of [5, Corollary] on operators and quasi-arithmetic means, we
obtain the following results.

Theorem 19 Let mappings, operators and a, b, c1 be as in Theorem 13. Let ψ, ϕ :
(a, b) → R be strictly monotone functions, c = ϕ(c1) and I is the open interval
between ϕ(a) and ϕ(b).

If ψ ◦ ϕ−1 ∈
•
Kc1(I ) and αXϕ ≤ αYϕ , then

ψ
(
Mψ(X,�, n)

)− ψ(Mϕ(X,�, n)
)

≤ α
2Xϕ ≤ α

2Yϕ ≤ ψ
(
Mψ(Y,�, k)

)− ψ(Mϕ(Y,�, k)
)
,

(37)

where

Xϕ :=
n∑

i=1
0i
(
ϕ(Xi)

2
)−

( n∑

i=1
0i (ϕ(Xi))

)2
,

Yϕ :=
k∑

j=1
!j
(
ϕ(Yj )

2
)−

( k∑

j=1
!j
(
ϕ(Yj )

))2
.

(38)

Ifψ ◦ϕ−1 ∈
•
Kc2(I ) and αXϕ ≥ αYϕ hold, then reverse inequalities are valid in (37).

Proof Suppose that ϕ is a strictly increasing function in (a, b). For a function

f ∈
•
Kc1((ϕ(a), ϕ(b))) there is a constant α such that F(t) = f (t) − α

2 t
2 is

operator concave on [ϕ(mx), c] ⊂ (ϕ(a), c]. Then the converse of Jensen’s operator
inequality gives

n∑

i=1

0i
(
f (ϕ(Xi))

)− f
( n∑

i=1

0i(ϕ(Xi))
)
≤ α

2

[ n∑

i=1

0i
(
ϕ(Xi)

2)−
( n∑

i=1

0i(ϕ(Xi))
)2
]
.

Also, since F is operator convex on [c, ϕ(My)] ⊂ [c, ϕ(b)), Jensen’s inequality
gives

α

2

[ k∑

j=1

!j
(
ϕ(Yj )

2)−
( k∑

j=1

!j (ϕ(Yj ))
)2
]
≤

k∑

j=1

!j
(
f (ϕ(Yj ))

)− f
( k∑

j=1

!j (ϕ(Yj ))
)
.

Setting f = ψ ◦ ϕ−1 in the above two inequalities and taking into account that
αXϕ ≤ αYϕ holds, we obtain the desired inequality (37).

Setting ψ equal to the identity function in Theorem 19, we can obtain inequal-
ity (39). We give this result with weakened assumptions.
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Theorem 20 Let mappings, operators and a, b, c1 be as in Theorem 13. Let f :
(a, b) → R such that ϕ := f |(a,c1], ψ := f |[c1,b)

be strictly monotone functions,
c = ϕ(c1) and I is the open interval between f (a) and f (b).

If f−1 ∈
•
Kc1(I ) and αYψ ≤ αXϕ , then

Mψ(Y,�, k)−M1(Y,�, k) ≤ α

2
Yψ ≤ α

2
Xϕ ≤Mϕ(X,�, n)−M1(X,�, n),

(39)
where

Yψ :=
( k∑

j=1

!j
(
ψ(Yj )

))2 −
k∑

j=1

!j
(
ψ(Yj )

2), Xϕ :=
( n∑

i=1

0i (ϕ(Xi))
)2 −

n∑

i=1

0i
(
ϕ(Xi)

2).

If f−1 ∈
•
Kc2(I ) and αYψ ≥ αXϕ holds, then reverse inequalities are valid in (39).

Remark 7 Let 0i , !j be mappings, Xi , Yj be positive operators as in Theorem 19
and 0 < mx ≤ Mx ≤ c ≤ my ≤ My < b. Setting α = 0, f (t) = t s , s ≥ 1 for
t ∈ (0, c], f (t) = cs/r t r , r ≤ −1 or 1

2 ≤ r ≤ 1 for t ∈ [c,∞) in Theorem 20, we
obtain

Mr (Y,�, k)−M1(Y,�, k) ≤ 0 ≤Ms(X,�, n)−M1(X,�, n). (40)

The inequality (40) holds for all positive operators Xi , Yj without condition Mx ≤
c ≤ my . Really, LHS (resp. RHS) of (40) holds since t /→ t s (resp. t /→ t r ) is
operator concave (resp. operator convex) on (0,∞), see [8, 14].

Setting α �= 0 in Theorem 20, we can obtain a refinement of (40) for some r, s:

Corollary 6 Let 0i , !j be mappings, Xi , Yj be positive operators as in Theo-
rem 19, 0 < mx ≤ Mx ≤ c ≤ my ≤ My < b and

C1/2 :=
( k∑

j=1
!i(
√
Yj )
)2 −

k∑

j=1
!j
(
Yj
)
, Cs :=

( n∑

i=1
0i(X

s
i )
)2 −

n∑

i=1
0i
(
X2s
i

)
,

Cexp :=
( n∑

i=1
0i(expXi)

)2 −
n∑

i=1
0i
(
(expXi)2

)
.

1. If s ≥ 1 and C1/2 ≤ Cs , then for every α ∈ (0, 2c1−2s)

M1/2(Y,�, k)−M1(Y,�, k) ≤ αC1/2 ≤ αCs ≤Ms(X,�, n)−M1(X,�, n).
(41)

2. If C1/2 ≤ Cexp, then for every α ∈ (0, 2c1−2s)

M1/2(Y,�, k)−M1(Y,�, k) ≤ αC1/2 ≤ αCexp ≤Mexp(X,�, n)−M1(X,�, n).
(42)
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4.2 Results Without Operator Convexity and Concavity

For wider application it is interesting to consider inequalities involving quasi-
arithmetic means under similar conditions as in Sect. 3.2. Thus, if spectra conditions
hold, then (37) is valid for all strictly monotone functions ϕ,ψ : (a, b) → R such
that ψ ◦ ϕ−1 ∈ Kc1(I ):
Theorem 21 Let 0i , !j be mappings, Xi , Yj be operators as in Theorem 14, a <
mx ≤ Mx ≤ c ≤ my ≤ My < b, and mϕX,MϕX and mϕY ,MϕY be bounds of
Mϕ(X,�, n) and Mϕ(Y,�, k), respectively, such that

(mϕX,MϕX) ∩ [mXi ,MXi ] = ∅, i = 1, . . . , n,
(mϕY ,MϕY ) ∩ [mYj ,MYj ] = ∅, j = 1, . . . , k.

(43)

Let ψ, ϕ : (a, b)→ R be strictly monotone functions, c = ϕ(c1) and I is the open
interval between ϕ(a) and ϕ(b).

If ψ ◦ ϕ−1 ∈
•
Kc1(I ) and αXϕ ≤ αYϕ , then (37) is valid, where Xϕ, Yϕ are defined

by (38).

Ifψ ◦ϕ−1 ∈
•
Kc2(I ) and αXϕ ≥ αYϕ hold, then reverse inequalities are valid in (37).

Proof We use the same technique as in the proof of Theorem 19, taking into account
spectra conditions (43). We omit the details.

Applying Theorem 21, we obtain a generalization and refining of Bullen’s result
[5, Corollary] for power means.

Corollary 7 Let the assumptions of Theorem 21 hold with spectra conditions (43).
Let

CsX :=

⎧
⎪⎪⎨

⎪⎪⎩

( n∑

i=1
0i(X

s
i )
)2 −

n∑

i=1
0i
(
X2s
i

)
, s �= 0

( n∑

i=1
0i(lnXi)

)2 −
n∑

i=1
0i
(

ln2(Xi)
)
, s = 0,

and CsY , C0Y be analogous notations for operators Y1, . . . , Yk .
Let α = r

s

(
r
s
− 1
)
c
r
s
−2 for r s �= 0, α = r2 exp(c r) for s = 0 and α = − 1

s
c−2

for r = 0.

(i) If r < 0 < s, 2s ≤ r ≤ s < 0, s < 0 < r or 0 < s ≤ r ≤ 2s, CsX ≤ CsY ,
then

Ms(X,�, n)r−Mr (X,�, n)r ≤ αCsX ≤ αCsY ≤Ms(Y,�, k)r−Mr (Y,�, k)r .
(44)

(ii) If r ≤ 2s < 0, 0 < 2s ≤ r , CsX ≥ CsY or s ≤ r < 0 or 0 < r ≤ s,
CsX ≤ CsY , then reverse inequalities are valid in (44).
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(iii) If r < 0, C0X ≤ C0Y , then (44) is valid for s = 0.
But, if r > 0, C0X ≥ C0Y , then reverse inequalities are valid in (44) for s = 0.

(iv) If s > 0, CsX ≤ CsY , then

ln

(
M0(X,�, n)
Ms(X,�, n)

)
≤ αCsX ≤ αCsY ≤ ln

(
M0(Y,�, k)
Ms(Y,�, k)

)
. (45)

But, if s < 0, CsX ≥ CsY and spectra conditions:

(mϕY ,MϕY ) ∩ [mYi ,MYi ] = ∅, i = 1, . . . , k, (46)

hold, then reverse inequalities are valid in (45).

Proof We prove only (i). We set ϕ(t) = t s , ψ(t) = t r and f (t) = t
r
s , r, s �= 0.

Let us consider a function F(t) = t
r
s − α

2 t
2 for α = r

s
( r
s
− 1)c

r
s
−2. Since F ′′(t) =

r
s
( r
s
− 1)(t

r
s
−2 − c rs−2), then c is inflection point of F .

If r
s
< 0 or 1 ≤ r

s
≤ 2, then f ∈ Kc2((0,∞)) and α > 0. So, applying Theorem 21

we obtain (44) in the case (i).

Finally, we give version of Theorem 20 without operator convexity or concavity.
The proof is similar to the one for Theorem 21 and we omit it.

Theorem 22 Let the assumptions of Theorem 21 hold with spectra conditions (43).
Let f : (a, b) → R such that ϕ := f |(a,c1], ψ := f |[c1,b)

be strictly monotone
functions, c = ϕ(c1) and I is the open interval between f (a) and f (b).

If f−1 ∈ Kc1(I ) and αYψ ≤ αXϕ , then (39) is valid, where Xϕ, Yϕ are defined
by (38).

If f−1 ∈ Kc2(I ) and αYψ ≥ αXϕ holds, then reverse inequalities are valid in (39).

Remark 8 By setting r = 1 in Corollary 7, we obtain order between Ms(Y,�, k)
and Ms(X,�, n). Moreover, setting α = 0 and f (t) = t s , s ≥ 1 for t ∈ (0, c],
f (t) = cs/r t r , r ≤ 1 for t ∈ [c,∞) in Theorem 22, we obtain obvious inequality

Mr (Y,�, k)−M1(Y,�, k) ≤ 0 ≤Ms(X,�, n)−M1(X,�, n)

under spectra conditions (43).
But, for some α > 0, we can obtain refining of the above inequalities: Let CsX ,

CrY , and C0Y as in Corollary 20. If s ≥ 1, 0 ≤ r ≤ 1, CrY ≤ CsX , and spectra
conditions (46) hold, then

Mr (Y,�, k)−M1(Y,�, k) ≤ αCsY ≤ αCsX ≤Ms(X,�, n)−M1(X,�, n)

is valid for every α ∈ (0, c−2+(1−r)/r2
(1− r)/r2).
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20. J. Pečarić, On an inequality of N. Levinson. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat.
Fiz. 678–715, 71–74 (1980)
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Integral Norm Inequalities for Various
Operators on Differential Forms

Shusen Ding, Dylan Helliwell, Gavin Pandya, and Arthur Yae

Abstract We obtain integral norm estimates for the homotopy operator, the
potential operator, and their composition applied to differential forms. Initial results
are established for all differential forms, while stronger results are shown to hold
for solutions to the A-harmonic equation.

1 Introduction

The objective of this paper is to develop the upper bound estimates for the homotopy
operator T , the potential operator P , and their composition T ◦ P acting on
differential forms. It is well known that differential forms have been used in
many fields of science and engineering such as PDEs, analysis, theoretical physics,
and general relativity, see [1, 2, 4–6, 8, 14, 15]. For example, they were used to
define various systems of partial differential equations and geometric structures on
manifolds, see [1, 9, 14].

Additionally, both the homotopy operator T and the potential operator P are key
operators which are widely studied and well used in several areas of mathematics,
such as partial differential equations, potential analysis, and harmonic analysis, see
[1, 3, 7, 10, 12, 15].

In many situations, we need to study the upper bound of the operators and their
composition. In so doing, we encounter expressions such as Pω = d(T Pω) +
T (dPω), and thus we develop Lp estimates for T Pω and dPω in terms of the
Lp-norm of the differential form ω.

The homotopy operator T brings subtlety to these arguments because of the,
sometimes implicit, dependence on the so-called weight function that is necessary
to establish the algebraic properties of T . As such, we have attempted to more
explicitly show how the choice of the weight function affects various results.
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This paper is organized as follows: we first introduce basic notation, definitions,
and lemmas in Sect. 2. This includes a detailed discussion of the homotopy operator,
the potential operator, and the A-Harmonic equation on differential forms. Then in
Sect. 3 we present and prove our main results. Finally, in Sect. 4, we demonstrate
applications of our main results by applying our main theorems to some particular
differential forms to develop norm estimates for some operators.

This work was carried out mainly over the summer of 2018, and we gratefully
acknowledge the Seattle University’s College of Science and Engineering Summer
Undergraduate Research Program, and Seattle University’s Department of Mathe-
matics for their generous support.

2 Background

This section provides the necessary background material for our main results. First,
we establish our conventions and notation for differential forms and their norms.
Then we discuss the homotopy operator and include versions of the Poincaré
and Sobolev inequalities for differential forms. We next provide details about the
potential operator, including an explicit bound on the operator norm. Finally, we
discuss the A-harmonic equation and its solutions.

2.1 Differential Forms

In what follows, Ω is always an open, bounded, convex subset of R
n, while D

denotes an arbitrary bounded open set in R
n. The Lebesgue measure ofD is written

|D|. We denote by B an open ball and, given a positive constant σ , σB is the ball
centered at the same point and with radius equal to σ times that of B.

Let Λk = Λk(D) be the set of differential k-forms on D of the form

ω =
∑

I

ωI dxi1 ∧ dxi2 ∧ · · · ∧ dxik =
∑

I

ωI dxI,

where the sum is over all ordered multi-indices I = (i1, . . . , ik) with ip < iq for
p < q, and the ωI are measurable functions on D. To indicate the value of ω at a
point x ∈ D and vectors v1, v2, . . . , vk , we write

ω(x; v1, v2, . . . , vk).

If v is a vector field on D, we define the interior product v�ω to be the (k− 1)-form
on D such that

(v�ω)(x; v1, v2, . . . , vk−1) = ω(x; v, v1, v2, . . . , vk).
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We define Lp(D,Λk) to be the set of k-forms whose component functions are
each in Lp(D) and we define the norm on Lp(D,Λk) to be

‖ω‖p,D =
(∫

D

∑

I

|ωI (x)|p dx
) 1
p

.

Similarly, we define W 1,p(D,Λk) to be the set of k-forms whose component
functions are each in the Sobolev space W 1,p(D), and we define the norm on
W 1,p(D,Λk) to be

‖ω‖1,p,D =
⎛

⎝
∫

D

∑

I

|ωI (x)|p +
∑

I,j

∣∣∣∣
∂ωI

∂xj
(x)

∣∣∣∣

p

dx

⎞

⎠

1
p

.

For simplicity of notation, the domain may not appear if it is unambiguous.
We will make use of local versions of these spaces as well and write ω ∈

L
p
loc(D,Λ

k) if for all open sets G such that G ⊂ D, we have ω ∈ Lp(G,Λk),

with an analogous definition for W 1,p
loc (D,Λ

k)

From the monotonic property of the Lp spaces, we have the following lemma.

Lemma 1 Suppose 1 < p < n, 1 < q < np/(n− p) and ω ∈ Lnp/(n−p)(D,Λk).
Then for all balls B ⊂ D

‖ω‖q,B ≤ |B|
1
n
+ 1
q
− 1
p ‖ω‖np/(n−p),B .

2.2 The Homotopy Operator

Given a point y in a convex domain Ω for a k-form ω, we define the (k − 1)-form
Kyω as follows: given a point x ∈ Ω and a set of vectors v1, . . . , vk−1 at x, extend
the vectors to be constant on the segment connecting x and y. Then

Kyω(x; v1, . . . vk−1) =
∫ 1

0
tk−1

(
(x − y)�ω

)
(tx + (1− t)y; v1, . . . , vk−1) dt.

Since the vectors vi do not play a significant role in the analysis, they are often
omitted and we write

Kyω(x) =
∫ 1

0
tk−1

(
(x − y)�ω

)
(tx + (1− t)y) dt. (1)
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Next, let ϕ ∈ L∞(Ω) with the property that
∫
Ω
ϕ = 1, and define the Homotopy

operator

Tϕω(x) =
∫

Ω

ϕ(y)Kyω(x) dy. (2)

In mathematical physics the homotopy operator comes up in the context of
Lagrangian mechanics. Suppose that a given mechanical system has a smooth
manifoldX of dimension n as its space of independent variables. If the configuration
space of the system is a fiber bundle Q over X, then a Lagrangian is an n-form η

on the jet bundle J kQ, which essentially encodes the possible kth order behaviors
of a smooth section of Q. Given a section σ of Q, the k-jet jkσ is a section of
J kQ where jkσ |x encodes the kth order behavior of σ at x. Then the action of the
Lagrangian η is the map

S : Γ (Q) −→ R

σ /−→
∫

X

(jkσ )∗η.

It can be shown that two Lagrangians η and ζ have the same extremals if and only
if η − ζ = dω for some n− 1 form ω.

Motivated by this theorem, we introduce the notion of a homotopy operator
to address the general question “when can we invert an exterior derivative?” Let
f, g : C → D be cochain maps. Recall that f and g are called cochain homotopic
if there exists a map ψ : C → D such that dDψ +ψdC = g− f , in which case we
call ψ a homotopy operator. Pictorially, we have

where ψ is a homotopy operator if

d(ψn−1a)+ ψn(da) = gna − fna

for all a ∈ Cn.
In the case that C and D are the DeRham complexes of manifolds M and N , an

explicit homotopy operator can be constructed. Specifically, suppose f, g : M → N

are smooth maps which are connected by a homotopy

h : I ×M → N, h(0, x) = f (x), h(1, x) = g(x).

Then the pullback maps f ∗ and g∗ are cochain homotopic, with explicit homotopy
operator ψ given by



Integral Norm Inequalities for Various Operators on Differential Forms 681

ψω(x; v1, . . . , vk−1) =
∫

I

(
∂

∂t
�h∗ω

)(
(t, x); ṽ1, . . . , ṽk−1

)
dt,

where ∂
∂t

is the unit vector field tangent to I and ṽi are vector fields on I ×M that
project down to vi .

In a contractible manifold, we may take f to be the constant map and g to be the
identity, in which case

d(ψω)+ ψ(dω) = g∗ω − f ∗ω = ω.

Thus if ω is closed, ψ inverts the exterior derivative, i.e.

ω = d(ψω).

Therefore if we are investigating two Lagrangians η and ζ , we may find whether or
not they are equivalent by simply checking whether or not η − ζ is closed.

With a particular choice of the constant y, the subsequent homotopy operator is
denoted by Ky . Moreover, any linear combination of the Ky normalized to unity
satisfies the same algebraic requirement. That is, if dμ is a volume form on M and
ϕ ∈ L∞(μ) is such that

∫
M
ϕdμ = 1, then the quantity

Tϕω(x) =
∫

M

ϕ(y)Kyω(x)dμ(y)

satisfies

ω = Tϕ(dω)+ d(Tϕω).

We call ϕ the weight function for Tϕ .
On a bounded, convex domain Ω ⊂ R

n, we can use the linear homotopy
hy(x, t) = tx + (1 − t)y. In this case Ky takes the form given by (1) and the
homotopy operator takes the form of Eq. (2).

Note that if ω is a closed form, then T (dω) vanishes and d(T ω) = ω, so we have
successfully inverted the exterior derivative. The homotopy operator also arises in
other contexts where applications of differential forms are found, as the inversion of
the exterior derivative is broadly useful, see [1, 5, 7].

It was established in [9] that the homotopy operator is bounded on Lp(Ω,Λk).
Because of the estimates made there, it is easy to lose track of the dependence on
the weight function, so we restate the result here and include a proof which provides
an explicit bound on the operator norm:

Lemma 2 Let 1 ≤ k ≤ n and let ϕ ∈ L∞(Ω). Then for all 1 < p < ∞ the
homotopy operator

Tϕ : Lp(Ω,Λk) −→ Lp(Ω,Λk−1)
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is a bounded operator. That is, there exists a constant C > 0 such that

‖Tϕω‖p ≤ C‖ω‖p
for all ω ∈ Lp(Ω,Λk). In particular, we show that

C ≤ ‖ϕ‖∞ nπ
n
2 (diamΩ)n+12n−1

kΓ (n2 + 1)
.

Proof This proof follows in three steps. We make a change of variables to isolate
ω in the integrand. Then, we use the boundedness of Ω to restrict the domain of
integration and formulate a bound on what remains. And finally, we apply Young’s
convolution inequality to complete the proof. Let ω be a k-form on Ω , k ≥ 1.
Applying Fubini’s theorem to the integral defining Tϕ yields

Tϕω(x) =
∫ 1

0

∫

Ω

ϕ(y)tk−1(x − y)�ω(tx + (1− t)y)dydt.

Using the change of variables (y, t) /→ (z, s) : z = tx + (1 − t)y, s = t
1−t , we

obtain

Tϕω(x) =
∫ ∞

0

∫

Ωs

sk−1(1+ s)n−kϕ(z− s(x − z))(x − z)�ω(z)dzds,

where Ωs = {z : z− s(x − z)} is obtained by shrinking Ω by a factor of 1
1+s about

x. The convexity of Ω then guarantees that Ωs ⊂ Ω .
By extending ϕ to be zero outside Ω we have ϕ(z − s(x − z)) = 0 for z /∈ Ωs .

This allows us to expand the domain of integration above, and then apply Fubini’s
theorem to get

Tϕω(x) =
∫ ∞

0

∫

Ω

sk−1(1+ s)n−kϕ(z− s(x − z))(x − z)�ω(z) dz ds

=
∫

Ω

∫ ∞

0
sk−1(1+ s)n−kϕ(z− s(x − z))(x − z)�ω(z) ds dz

=
∫

Ω

(∫ ∞

0
sk−1(1+ s)n−kϕ(z− s(x − z)) ds

)
(x − z)�ω(z) dz.

Define a function F : Ω × R
n→ R by

F(u, v) =
∫ ∞

0
sk−1(1+ s)n−k|ϕ(u− sv)|ds.

Since ϕ is supported in Ω , the integrand vanishes whenever

s > av := (diamΩ)/|v|
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and hence

F(u, v) =
∫ av

0
sk−1(1+ s)n−k|ϕ(u− sv)|ds.

Now we estimate:

|F(u, v)| =
∣∣∣
∣

∫ av

0
sk−1(1+ s)n−k|ϕ(u− sv)|ds

∣∣∣
∣

≤ ‖ϕ‖∞
∫ av

0
sk−1

n−k∑

j=0

(
n− k
j

)
sj ds

= ‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)∫ av

0
sj+k−1ds

= ‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(av)

j+k

j + k

= ‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(diamΩ)j+k

(j + k)|v|j+k .

Using this estimate, along with the fact that |v�η| ≤ |v||η| for any vector field v and
form η, we have

|Tϕω(x)| ≤
∫

Ω

‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(diamΩ)j+k

(j + k)|x − z|j+k−1 |ω(z)| dz

= ‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(diamΩ)j+k

j + k
∫

Ω

|ω(z)|
|x − z|j+k−1 dz.

Let S = {x− y : x, y ∈ Ω}. For 0 ≤ j ≤ n− k, set fj (u) = χS(u)
y

|y|j+k , where
χS is the characteristic function. Since these functions have poles of order at most
n− 1 and are compactly supported in R

n, each fj ∈ L1(Rn). Thus we have

|T ω(x)| ≤ ‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(diamΩ)j+k

j + k
∫

Ω

|fj (x − z)||ω(z)|dz

= ‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(diamΩ)j+k

j + k (|fj | ∗ |ω|)(x)
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(where we set ω identically zero outside of Ω). Finally, by Young’s convolution
inequality,

‖T ω‖p ≤
⎡

⎣‖ϕ‖∞
n−k∑

j=0

(
n− k
j

)
(diamΩ)j+k

j + k ‖fj‖1

⎤

⎦ ‖ω‖p.

Note that

‖fj‖1 ≤ σn(diamΩ)n−j−k+1

2n−j−k+1(n− j − k + 1)
,

where σn = nπ
n
2 /Γ (n2 + 1) is the surface area of the unit sphere in R

n. Thus we
find

‖T ω‖p ≤ ‖ϕ‖∞ nπ
n
2 (diamΩ)n+12n−1

kΓ (n2 + 1)
‖ω‖p.

��
In [9], it is demonstrated that, given Ω , a choice of ϕ can be made such that

‖ϕ‖∞ ≤ κ(Ω)(diamΩ)−n

where κ(Ω) is a scale invariant quantity that captures the shape of Ω . As such, the
estimate above can be simplified to

‖T ω‖p ≤ C(diamΩ)‖ω‖p
where C depends on the dimension and the shape of Ω but not its size. Implicit in
this is the choice of ϕ.

For our purposes, the domains of interest will be balls, and we make the estimates
above a bit more explicit. Let ϕ0 be a weight function on the unit ball centered at
the origin. Then, given a ball B with radius r centered at x0, the function

ϕB(x) = r−nϕ0
(
r−1(x − x0)

)

is a weight function for B and

‖ϕB‖∞ =
(

diamB

2

)−n
‖ϕ0‖∞

so that, for T = TϕB , we have

‖T ω‖p,B ≤ C

k
‖ϕ0‖∞(diamB)‖ω‖p,B
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where

C = nπ
n
2 22n−1

Γ (n2 + 1)

is a purely dimensional constant. We encode this as follows to use later.

Lemma 3 Let ϕ0 be a weight function for the unit ball and let TB = TϕB be
the associated homotopy operator on a ball B. On a bounded domain D, let
ω ∈ L

p
loc(D,Λ

k), 1 < p < ∞. Then there is a constant C depending only on
n, k and ϕ0, such that for all balls B ⊂ D

‖TBω‖p,B ≤ C|B|1/n‖ω‖p,B.

Note that since we have switched from diamB to |B| 1
n , the dimensional contribution

to the constant is not quite the same as that written above.
For ω ∈ Lp(Ω,Λk) and for any weight function ϕ supported on Ω , we define

ωΩ =

⎧
⎪⎨

⎪⎩

1

|Ω|
∫

Ω

ω(x)dx if k = 0

d(Tϕω) if 1 ≤ k ≤ n.

This serves as an average of sorts for forms in that there is a constant C such that
for all closed forms η ∈ Lp(Ω,Λk),

‖ω − ωΩ‖p ≤ C‖ω − η‖p.

In this sense, ωΩ minimizes the Lp-distance between ω and the subspace of exact
forms to within a factor of C. This notation is meant to parallel the fact that the
average uΩ = 1

|Ω|
∫
Ω
u of a real-valued function u uniquely minimizes the L1-

distance between u and the subspace of closed 0-forms (constants):

‖u− uΩ‖1,Ω < ‖u− c‖1,Ω for all c �= uΩ,

and approximately minimizes the Lp-distance to within a factor of 2:

‖u− uΩ‖p,Ω ≤ 2‖u− c‖p,Ω for all c ∈ R.

We state here two lemmas that further illustrate the averaging nature of ωB and
will also prove to be useful later. Here and later, for a given ball B, the weight
function ϕB being used is determined as above in terms of a given weight function
ϕ0 on the unit ball.

Lemma 4 (Poincaré Inequality) Let ω and dω be elements of Lp(D,Λk), 1 <

p <∞, and let ϕ0 be a weight function for the unit ball. Then there is a constant C
depending only on n, p, and ϕ0, such that for all balls B ⊂ D
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‖ω − ωB‖p,B ≤ C|B|1/n‖dω‖p,B.

Lemma 5 (Sobolev Inequality) Let ω and dω be elements of Lp(D,Λk), 1 <

p < n. Then there is a constant C depending only on n, p, and ϕ0, such that for all
balls B ⊂ D

‖ω − ωB‖ np
n−p , B ≤ C‖dω‖p,B.

2.3 The Potential Operator

The name “potential operator” may refer to several different constructions. The
one we investigate here arises from harmonic analysis and the theory of singular
integrals. For α > 0, the Riesz Potential Operator on D ⊂ R

n is defined as

Pα : Lp(D) −→ Lp(D)

Pαf (x) =
∫

D

f (y)dy

|x − y|n−α .

To see that Pα is a well-defined (and indeed bounded) operator Lp(D)→ Lp(D),
note that g(x) = 1/|x|n−α is integrable on any bounded domain in R

n, and that
Pαf = g ∗ f . By Young’s convolution inequality, ‖Pαf ‖p ≤ ‖g‖1‖f ‖p.

The desirable properties of the Riesz potential operators can be captured by a
standard integral operator

Pf (x) =
∫

D

K(x, y)f (y)dy

for a measurable kernel satisfying

K = max

{

ess sup
x∈D

(∫

D

|K(x, y)| dy
)
, ess sup

y∈D

(∫

D

|K(x, y)| dx
)}

<∞.

We generalize this operator to differential forms as follows: given a point x ∈ D
and a set of vectors v1, . . . , vk at x, extend the vectors to constant vector fields on
D. Then

(Pω)(x; v1, . . . , vk) =
∫

D

K(x, y)ω(y; v1, . . . , vk)dy.

We note that, by evaluating on standard basis vectors {ei : 1 ≤ i ≤ n}, this is
the same as applying the operator component-wise. Thus we define the potential
operator as
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Pω(x) =
∫

D

K(x, y)ω(y)dy

=
∑

I

(∫

D

K(x, y)ωI (y)dy

)
dxI

where again K satisfies the standard estimates.
With the potential operator defined, we have the following lemma, the proof of

which is similar to the proof for Young’s convolution inequality.

Lemma 6 For 1 < q < ∞, P : Lq(D,Λk)→ Lq(D,Λk) is a bounded operator
with

‖Pω‖q ≤ K ‖ω‖q .

The operator P is non-local so some care is necessary when developing local
arguments. To handle this, we restrict the domain of definition for K . More
specifically, if P is defined on a domain D with kernel K , and U ⊂ D is open, we
define the restricted potential operator PU : Lq(U,Λk) −→ Lq(U,Λk) as follows:

PUω(x) =
∫

U

K(x, y)ω(y) dy.

This is equivalent to using the kernel KU(x, y) = χU(y)K(x, y) on the original
domain D and as such, if K satisfies the necessary estimates, so does KU , and we
may conclude that PU is bounded as long as P is and the operator norm for PU is
bounded by that of P . To use later, we state this formally as follows:

Lemma 7 Let P be the potential operator on domain D, and let U ⊂ D be open.
Then for 1 < q < ∞, the restricted potential operator PU : Lq(U,Λk) −→
Lq(U,Λk) is bounded with

‖PUω‖q,U ≤ K ‖ω‖q,U .

2.4 The A-Harmonic Equation

The A-harmonic equation, as its name suggests, generalizes Laplace’s equation. Its
solutions, called A-harmonic tensors, are differential forms ω ∈ Λk(D) such that

d%A(x, dω) = 0

where d% is the Hodge codifferential operator andA : D×Λl(D)→ Λl(D) satisfies
the conditions:
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|A(x, ξ)| ≤ a|ξ |p−1 and 〈A(x, ξ), ξ 〉 ≥ |ξ |p

for almost every x ∈ D and all ξ ∈ Λl(D). Here a, b > 0 are constants and
1 < p <∞ is a fixed exponent associated with the A-harmonic equation. Here, the
inner product and point-wise norm are defined in terms of the Hodge star operator

as follows: 〈α, β〉 = %(α ∧ %β) and |α| = 〈α, α〉 1
2

A weak solution to the A-harmonic equation is an element of the Sobolev space
W

1,p
loc (D,Λ

l−1) such that

∫

D

〈A(x, dω), dϕ〉 dx = 0

for all ϕ ∈ W 1,p
loc (D,Λ

l−1) with compact support.
This is defined in analogy to the scalar A-harmonic equation:

div A(x,∇f (x)) = 0,

where f (x) is a function in D.
If a k-form ω solves the A-harmonic equation in a domain D, we write ω ∈

A (D,Λk).
Some of the properties thatA-harmonic tensors enjoy include the following Weak

Reverse Hölder Inequality [11].

Lemma 8 (Weak Reverse Hölder Inequality) Suppose ω ∈ A (D,Λk). Then for
all 1 < p <∞, ω ∈ Lploc(D,Λk). Moreover for s, t, σ > 1 and for all balls B with
σB ⊂ D

‖ω‖s,B ≤ C|B|(t−s)/st‖ω‖t,σB.

where the constant C is independent of B and ω.

See [1, 11, 15] for more results about A-harmonic tensors.

3 Main results

This section contains our main results. First, we establish an estimate for T ◦ P
acting on A-harmonic tensors. Then we show that d ◦ P is bounded. Finally, we
develop the upper bound for the norm ‖T P (ω) − (T P (ω))B‖p,B in terms of the
norm of ω.

Theorem 1 Let ϕ0 be a weight function for the unit ball and let TB = TϕB be the
associated homotopy operator on a ball B. Let P be the potential operator on a
domain D. Let ω ∈ A (D,Λk) and let p, q ∈ (1,∞). Then for all balls B with
σB ⊂ D where σ > 1,
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‖TBPBω‖q,B ≤ C|B|
1
n
+ 1
p
− 1
q ‖ω‖p,σB

where the constant C is independent of B and ω.

Proof By Lemma 8, for all B with σB ⊂ D, ω ∈ Lq(B,Λk). Then, combining
Lemmas 3, 7, and 8, we find

‖TBPBω‖q,B ≤ C1|B| 1
n ‖PBω‖q,B

≤ C2|B| 1
n ‖ω‖q,B

≤ C|B| 1
n
+ 1
p
− 1
q ‖ω‖p,σB.

��
Next we show that not only is the potential operator bounded on Lp spaces, but

also as a map from Lp spaces to Sobolev spaces.

Theorem 2 Suppose P is the potential operator in a domain D ⊂ Rn with
kernel K ∈ W 1,p(D × D) for some p ≥ 2 and let U ⊂ D be open. Then
PU : Lq(U,Λk) → W 1,p(U,Λk) is bounded, where q = p

p−1 is the Hölder
conjugate of p. More specifically

‖PUω‖1,p,U ≤ C‖ω‖ p
p−1 ,U

where C is independent of ω and U .

Proof For any multi-index I and index j ,

∂(PUω)I

∂xj
=
∫

U

∂K

∂xj
(x, y)ωI (y)dy.

Thus
∥∥∥∥
∂(PUω)I

∂xj

∥∥∥∥

p

p,U

≤
∫

U

(∫

U

∣∣∣∣
∂K

∂xj
(x, y)ωI (y)

∣∣∣∣ dy
)p

dx

≤
∫

U

⎡

⎣
(∫

U

∣∣∣∣
∂K

∂xj
(x, y)

∣∣∣∣

p

dy

) 1
p
(∫

U

|ωI (y)|
p
p−1 dy

) p−1
p

⎤

⎦

p

dx

= ‖ωI‖pp
p−1 ,U

∫

U

∫

U

∣∣∣∣
∂K

∂xj
(x, y)

∣∣∣∣

p

dydx

≤ ‖ω‖pp
p−1 ,U

‖K‖p1,p,U×U
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where in the second inequality we have used Hölder’s inequality. Thus,

‖PUω)‖p1,p,U =
∫

U

∑

I

|(PUω)I (x)|p +
∑

I,j

∣∣∣
∣
∂(PUω)I

∂xj
(x)

∣∣∣
∣

p

dx

= ‖PUω‖pp,U +
∑

I,j

∥
∥∥∥
∂(PUω)I

∂xi

∥
∥∥∥

p

p,U

≤ K ‖ω‖pp,U +N‖ω‖pp
p−1 ,B

‖K‖p1,p,U×U
≤ Cp‖ω‖pp

p−1 ,U

where N = n
(
n
k

)
. The first inequality arises from Lemma 7 for the first term and the

previous estimate for the second. The second inequality follows from the inclusion
of Lp(U,Λk) into Lq(U < Λk) since q = p

p−1 ≤ p. Finally, note that the constant
C depends on the kernel for the potential operator, and hence implicitly on D, but
not on the subset U . ��

As a corollary, we find that the map ω /→ dPUω is bounded on Lp spaces:

Corollary 1 Suppose P is the potential operator in a domain D ⊂ Rn with
kernel K ∈ W 1,p(D × D) for some p ≥ 2 and let U ⊂ D be open. Then
dPU : Lp(U,Λk) → Lp(U,Λk) is bounded. Specifically, there is a constant C,
independent of ω and U , such that

‖dPUω‖p,U ≤ C|U |
p−2
p ‖ω‖p,U .

Proof Note that

‖dPUω‖p,U ≤ ‖PUω‖1,p,U

so by Theorem 2 and Hölder’s inequality we have

‖d(PUω)‖p,U ≤ C‖ω‖ p
p−1 ,U

≤ C|U | p−2
p ‖ω‖p,U .

��
It is worth noting that Theorem 2 and Corollary 1 are both valid for any open

subsets of D, including D itself.
Combining Lemma 4 and Corollary 1 proves the following:

Corollary 2 Suppose P is the potential operator in a domain D ⊂ Rn with kernel
K ∈ W 1,p(D × D) for some p ≥ 2, and let ϕ0 be a weight function for the unit
ball. Then for all balls B ⊂ D and for all ω ∈ Lp(D,Λk),
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‖PBω − (PBω)B‖p,B ≤ C|B|
1
n
+ p−2

p ‖ω‖p,B
where the constant C is independent of B and ω.

Theorem 3 Suppose P is the potential operator in a domain D with kernel K ∈
W 1,p(D × D) for some p ≥ 2. Let ϕ0 be a weight function for the unit ball and
let TB = TϕB be the associated homotopy operator on a ball B. Let 1 < q <

np/(n− p). Then for all balls B ⊂ D and for all ω ∈ Lp(D,Λk),

‖TBPBω − (TBPBω)B‖q,B ≤ C|B|
1
n
+ 1
q
− 1
p ‖ω‖p,B

where the constant C is independent of B and ω.

Proof By combining a number of our earlier results, we have

‖TBPBω−(TBPBω)B‖q,B
≤ |B| 1

n
+ 1
q
− 1
p ‖TBPBω − (TBPBω)B‖np/(n−p),B (Lemma 1)

≤ C1|B|
1
n
+ 1
q
− 1
p ‖d(TBPBω)‖p,B (Lemma 5)

= C1|B|
1
n
+ 1
q
− 1
p ‖(PBω)B‖p,B

≤ C2|B|
1
n
+ 1
q
− 1
p

[
‖PBω − (PBω)B‖p,B + ‖PBω‖p,B

]

≤ C2|B|
1
n
+ 1
q
− 1
p

[
C3|B|

1
n
+ p−2

p ‖ω‖p,B + ‖PBω‖p,B
]

(Corollary 2)

≤ C2|B|
1
n
+ 1
q
− 1
p

[
C4‖ω‖p,B + C5‖ω‖p,B

]
(Lemma 6)

= C|B| 1
n
+ 1
q
− 1
p ‖ω‖p,B.

��

4 Applications

It can be quite hard to obtain the upper bounds of the composite operator. The
following example shows that the norm inequalities proved in this paper provide
us easy ways to estimate the upper bounds for the norms of the composite operator.

Example 1 Let Ω = {(x, y, z) : x2 + y2 + z2 < 1} ⊂ R
3 and ω be the following

1-form defined by

ω(x, y, z) = xdx + ydy + zdz
√

1+ x2 + y2 + z2
.
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Then, ω is smooth in Ω and it is a solution of the A-harmonic equation for any
operators A satisfying the required conditions mentioned in Sect. 2.4. Note that

|ω(x, y, z)| =
√
x2 + y2 + z2

√
1+ x2 + y2 + z2

< 1.

Therefore,

‖ω‖p,Ω =
(∫

Ω

|ω|pdv
)1/p

≤ |Ω| = 4π/3.

Using Lemma 3 and Corollary 1, we obtain the following upper bound estimates for
T ω and dPω

‖T ω‖p,Ω ≤ C1‖ω‖p,Ω ≤ C2

and

‖dPω‖p,Ω ≤ C3‖ω‖p,Ω ≤ C4,

respectively.

Example 2 Similar to the case in R
3, we can easily check that the following

differential form

ω(x1, · · · xn) =
n∑

i=1

xi√
1+ x2

1 + · · · + x2
n

dxi

is also a solution of the A-harmonic equation for any operators A. Using Lemma 3
and Corollary 1 proved above as we did in the last example, we obtain the upper
bound estimates for the operators T and dP applied to the 1-form ω defined above.

We conclude with two remarks: First, the inequalities proved in Theorem 3 can
also be extended into the global cases, such as the Lp-averaging domains; see [1]
or [13] for more properties of Lp-averaging domains. Second, most of the Lp norm
inequalities obtained in this paper can be extended to the Lψ estimates, where ψ is
a convex function.
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Hadamard Integral Inequality for the
Class of Harmonically (γ , η)-Convex
Functions

Hamid Vosoughian, Sadegh Abbaszadeh, and Maryam Oraki

Abstract In this paper, harmonically (γ , η)-convex inequality is introduced as

f

⎛

⎝ 1

γ 1
y
, 1
x
(t)

⎞

⎠ ≤ 1

η 1
f (y)

, 1
f (x)

(t)
,

in which γ and η are two geodesic arcs. Then, some refinements of Hadamard
integral inequality for harmonically (γ , η)-convex functions in the case of Lebesgue
and Sugeno integral are studied.

1 Introduction

Harmonic mean is a kind of averaging functions which is a generalization of
arithmetic mean and has applications in many branches of science. In the theory
of aggregation functions, harmonic mean is a quasi-arithmetic and anti-Lagrangian
mean generated by the function 1

x2 . Based on the definition of harmonic mean,
the concept of harmonically convexity was introduced by Das [7]. A function
f : I ⊂ R/{0} → R is said to be harmonically convex, if

f

(
xy

(1− t)x + ty
)
≤ (1− t)f (x)+ tf (y) (1)
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for all x, y ∈ I and t ∈ [0, 1]. Like other generalization of convexity, harmonically
convexity may be exploited in multi-objective nonlinear programming problems
[8, 11], where the global optimum is the point in which the direction of the
monotonicity is changed.

The Hadamard inequality provides an upper bound for the mean value of a
convex function f : [a, b] −→ R,

∫ 1

0
f
(
(1− t)a + tb)dt ≤ f (a)+ f (b)

2
. (2)

The above inequality would be reversed in the case that f is concave. Several
refinements of Hadamard inequality for the class of harmonically convex functions
have been studied by different authors; Işcan [9, 10] obtained new estimates on
generalization of Hadamard inequality for harmonically quasi-convex functions,
via the Riemann–Liouville fractional integral. Chen [6] gave some extensions of
the Hermite–Hadamard inequality for harmonically convex functions via fractional
integrals. The aim of this paper is to consider the inequality (2) for a new class of
convex functions, which is called harmonically (γ , η)-convex functions.

This paper follows this organization: Some preliminaries and specifically, the
definition of Sugeno integral and its properties are presented in Sect. 2. In Sect. 3,
harmonically (γ , η)-convex functions are introduced, and some refinements of
Hadamard inequality for this new class are considered. In Sect. 4, some applications
for harmonically (γ , η)-convexity in the case of new geodesic arcs are dealt with.
Eventually, a conclusion is given in Sect. 5.

2 Preliminaries

The geodesic path is defined as follows.

Definition 1 ([15, 16]) A geodesic is a C∞ smooth path γ whose tangent is parallel
along the path γ . LetM be a complete n-dimensional Riemannian manifold. For all
x, y ∈ M , the mapping γ x,y : [0, 1] → M is a geodesic joining the points x and y
if γ x,y(0) = y and γ x,y(1) = x.

Let X be a non-empty set and 6 be a σ -algebra of subsets of X.

Definition 2 ([14]) Let μ : 6 −→ [0,∞) be a set function. μ is called a fuzzy
measure if

1. μ(∅) = 0.
2. E,F ∈ 6 and E ⊂ F imply μ(E) ≤ μ(F).
3. En ∈ 6 (n ∈ N), E1 ⊂ E2 ⊂ . . . , imply

limn→∞ μ(En) = μ(
⋃∞
n=1 En) (continuity from below).

4. En ∈ 6 (n ∈ N), E1 ⊃ E2 ⊃ . . . , μ(E1) <∞, imply
limn→∞ μ(En) = μ(

⋂∞
n=1 En) (continuity from above).
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The triple (X,6,μ) is called a fuzzy measure space.
Let (X,6,μ) be a fuzzy measure space. The set of all μ-measurable functions,

Fμ(X), is defined as

Fμ(X) = {f : X −→ [0,∞) : f is measurable with respect to 6}.
For f ∈ Fμ(X) and α > 0, we denote by Fα and Fα̃ the following sets

Fα = {x ∈ X : f (x) ≥ α} and Fα̃ = {x ∈ X : f (x) > α}.
Note that if α ≤ β, then Fβ ⊂ Fα and Fβ̃ ⊂ Fα̃ .

Definition 3 ([12, 17, 19]) Let (X,6,μ) be a fuzzy measure space, f ∈ Fμ(X)
and A ∈ 6, then the Sugeno integral of f on A with respect to the fuzzy measure μ
is defined by

(S)

∫

A

f dμ =
∨

α≥0

(
α ∧ μ(A ∩ Fα)

)
,

where ∧ is just the prototypical t-norm minimum and ∨ the prototypical t-conorm
maximum. If A = X, then

(S)

∫

A

f dμ =
∨

α≥0

(
α ∧ μ(Fα)

)
.

The following properties of Sugeno integral are well known and can be found in
[12, 19].

Theorem 1 Let (X,6,μ) be a fuzzy measure space, A,B ∈ 6 and f, g ∈ Fμ(X);
then

(F1) (S)
∫
A
f dμ ≤ μ(A).

(F2) (S)
∫
A
kdμ = k ∧ μ(A), k non-negative constant.

(F3) If f ≤ g on A then (S)
∫
A
f dμ ≤ (S) ∫

A
gdμ.

(F4) If A ⊂ B then (S)
∫
A
f dμ ≤ (S) ∫

B
f dμ.

Most well-known integral inequalities have been proved for Sugeno integral, see
[1–5, 13, 18].

3 Main Results

From now on, let (X,6,μ) be a fuzzy measure space. If f ∈ Fμ(X) and A ∈ 6,
we set

� = {α | α ≥ 0, μ(A ∩ Fα) > μ(A ∩ Fβ) for any β > α
}
.
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Then

(S)

∫

A

f dμ =
∨

α∈�

(
α ∧ μ(A ∩ Fα

)
.

If X = R is the set of real numbers, 6 is the Borel field and μ is the Lebesgue
measure, (X,6,μ) is a fuzzy measure space; but it is important to know that the
Sugeno integral is not an extension of the Lebesgue integral.

The main contribution of this paper is to study a new concept of convexity in
which both sides of convex inequality are based on harmonic mean. This generalized
form is defined by

f

(
xy

(1− t)x + ty
)
≤ f (x)f (y)

(1− t)f (x)+ tf (y) (3)

for all x, y ∈ I and t ∈ [0, 1].
Theorem 2 Let I ⊆ R

+ and a, b ∈ I with a < b. If f : I → I is function
satisfying (3) with af (b) �= bf (a), then

1

b − a
∫ b

a

f (x)dx

≤ f (a)f (b)(b − a)
bf (a)− af (b) + ab(f (b)− f (a))f (a)f (b)

(bf (a)− af (b))2
(

ln

(
b

a

)
+ ln

(
f (a)

f (b)

))
.

Proof One can easily see that the function f : [a, b] → [a, b], where a, b ∈ I ⊂
R
+ and a < b, satisfies the inequality

f (x) ≤ f (a)f (b)(b − a)x
(bf (a)− af (b))x + ab(f (b)− f (a)) .

Integrating both sides of the above inequality over [a, b], we obtain the assertion of
theorem. ��

Consequently, the concept of harmonically (γ , η)-convex functions is introduced
as follows:

Definition 4 For two closed subintervals I and J of (0,+∞), let γ x,y : [0, 1] → I

be a geodesic arc joining the points x, y ∈ I and ηu,v : [0, 1] → J be a geodesic
arc joining the points u, v ∈ J . A real valued function f : I → J is said to be
harmonically (γ , η)-convex if

f

⎛

⎝ 1

γ 1
y
, 1
x
(t)

⎞

⎠ ≤ 1

η 1
f (y)

, 1
f (x)

(t)

for all t ∈ [0, 1].
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Remark 1 By the following method, one can distinguish different cases of harmon-
ically (γ , η)-convex functions from each other: If f : [a, b] → [c, d] satisfies the
inequality

f (x) = f
( 1

γ 1
b
, 1
a

(
γ−1

1
b
, 1
a

( 1
x
)
)
)
≤
( 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

(4)

for all x ∈ [a, b], then f is a harmonically (γ , η)-convex function. For the geodesic
arcs γ : [0, 1] → I and η : [0, 1] → J defined by γ x,y(t) = (1 − t)x + ty and
ηu,v(t) = u1−t vt , respectively, by (4) we have the following inequalities:

• Harmonically (γ , γ )-convex functions satisfy the inequality

f (x) ≤
(

1

f (a)
+
(

1

f (b)
− 1

f (a)

)(
ab − bx
ax − bx

))−1

(5)

for all x ∈ [a, b].
• Harmonically (γ , η)-convex functions satisfy the inequality

f (x) ≤ f (a)
(
f (b)

f (a)

) ab−bx
ax−bx

(6)

for all x ∈ [a, b].
• Harmonically (η, γ )-convex functions satisfy the inequality

f (x) ≤
(

1

f (a)
+
(

1

f (b)
− 1

f (a)

)(
ln(a)− ln(x)

ln(a)− ln(b)

))−1

(7)

for all x ∈ [a, b].
• Harmonically (η, η)-convex functions satisfy the inequality

f (x) ≤ f (a)
(
f (b)

f (a)

) ln(a)−ln(x)
ln(a)−ln(b)

(8)

for all x ∈ [a, b].
In the next theorem, we consider the refinement of Hadamard inequality for

harmonically (γ , η)-convex functions in the context of nonlinear integrals.

Theorem 3 Consider the fuzzy measure space (R, 6,μ). Let γ : [0, 1] → [a, b]
and η : [0, 1] → [c, d] be two invertible geodesic arcs. If f : [a, b] → [c, d] is a
harmonically (γ , η)-convex function, then
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(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

1

γ 1
b
, 1
a

(

η−1
1

f (b)
, 1
f (a)

( 1
α
)

) , b

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠,

γ , η are comonotone,

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎜
⎝α ∧ μ

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣a,

1

γ 1
b
, 1
a

(

η−1
1

f (b)
, 1
f (a)

( 1
α
)

)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠,

γ , η are countermonotone.

Proof It follows from the (γ , η)-convexity of f and the property (F3) of fuzzy
measures that

(S)

∫ b

a

f (x)dμ = (S)

∫ b

a

f
( 1

γ 1
b
, 1
a

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

dμ

≤ (S)
∫ b

a

( 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

dμ.

(9)

Firstly, we assume that γ and η are comonotone, then η ◦ γ−1 is an increasing
function. So, according to Definition 3, we have

(S)

∫ b

a

( 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

dμ

=
∨

α>0

⎛

⎝α ∧ μ
⎛

⎝[a, b] ∩ 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
) ≥ α

⎞

⎠

⎞

⎠

=
∨

α>0

(
α ∧ μ

(
[a, b] ∩ η 1

f (b)
, 1
f (a)

(
γ−1

1
b
, 1
a

(
1

x
)
) ≤ ( 1

α
)

))

=
∨

α>0

(
α ∧ μ

(
[a, b] ∩ { 1

x
≤ γ 1

b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

(
1

α
)
)}
))

(10)

=
∨

α>0

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝[a, b] ∩ {x ≥ 1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)
) }
⎞

⎟
⎠

⎞

⎟
⎠

=
∨

α>0

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣

1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)
) , b

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠.
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Since η ◦ γ−1 is increasing, we have

a ≤ 1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)
) < b

⇒ 1

b
< γ 1

b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

(
1

α
)
) ≤ 1

a

⇒ η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

(
1

b
)
)
<

1

α
≤ η 1

f (b)
, 1
f (a)

(
γ−1

1
b
, 1
a

(
1

a
)
)

⇒ 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
a
)
) ≤ α < 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
b
)
)

⇒ 1

η 1
f (b)

, 1
f (a)

(
1
) ≤ α < 1

η 1
f (b)

, 1
f (a)

(
0
)

⇒ f (a) ≤ α < f (b).

(11)

Thus, � = [f (a), f (b)) and we only need to consider α ∈ [f (a), f (b)). It follows
from (9), (10), and (11) that

(S)

∫ b

a

( 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

dμ

≤
∨

α∈
[
f (b),f (a)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)

) , b

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠.

Secondly, we assume that γ and η are countermonotone, then η ◦ γ−1 is a
decreasing function. So, by Definition 3 we have

(S)

∫ b

a

( 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

dμ

=
∨

α>0

⎛

⎝α ∧ μ
⎛

⎝[a, b] ∩ 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
) ≥ α

⎞

⎠

⎞

⎠

=
∨

α>0

(
α ∧ μ

(
[a, b] ∩ η 1

f (b)
, 1
f (a)

(
γ−1

1
b
, 1
a

(
1

x
)
) ≤ ( 1

α
)

))
(12)

=
∨

α>0

(
α ∧ μ

(
[a, b] ∩ { 1

x
≥ γ 1

b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

(
1

α
)
)}
))
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=
∨

α>0

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝[a, b] ∩ {x ≤ 1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)
) }
⎞

⎟
⎠

⎞

⎟
⎠

=
∨

α>0

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣a,

1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)
)

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠.

Since η ◦ γ−1 is decreasing, we have

a <
1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)
) ≤ b

⇒ 1

b
≤ γ 1

b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

(
1

α
)
)
<

1

a

⇒ η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

(
1

a
)
)
<

1

α
≤ η 1

f (b)
, 1
f (a)

(
γ−1

1
b
, 1
a

(
1

b
)
)

⇒ 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
b
)
) ≤ α < 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
a
)
)

⇒ 1

η 1
f (b)

, 1
f (a)

(
1
) ≤ α < 1

η 1
f (b)

, 1
f (a)

(
0
)

⇒ f (b) ≤ α < f (a).

(13)

Thus, � = [f (b), f (a)) and we only need to consider α ∈ [f (b), f (a)). It follows
from (9), (12), and (13) that

(S)

∫ b

a

( 1

η 1
f (b)

, 1
f (a)

(
γ−1

1
b
, 1
a

( 1
x
)
)
)

dμ

≤
∨

α∈
[
f (b),f (a)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣a,

1

γ 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)

)

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠.

��
Corollary 1 Let f : [a, b] → [c, d] be a harmonically (γ , η)-convex function, 6
be the Borel field, and μ be the Lebesgue measure on R. Then
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(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜⎜
⎝α ∧

⎛

⎜⎜
⎝b − 1

γ 1
b
, 1
a

(

η−1
1

f (b)
, 1
f (a)

( 1
α
)

)

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠,

γ , η are comonotone,

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎜
⎝α ∧

⎛

⎜
⎜
⎝

1

γ 1
b
, 1
a

(

η−1
1

f (b)
, 1
f (a)

( 1
α
)

) − a

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

γ , η are countermonotone.

The rest of the results of this section are concerned about investigating particular
geodesic arcs γ : [0, 1] → I and η : [0, 1] → J defined by γ x,y(t) = (1− t)x+ ty
and ηu,v(t) = u1−t vt .

Theorem 4 Let (R, 6,μ) be a fuzzy measure space and f : [a, b] → [a, b] be a
harmonically (γ , γ )-convex function. Then

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)
(
α ∧ μ

([
abα(f (b)−f (a))

f (a)(f (b)−α)(b−a)+aα(f (b)−f (a)) , b
]))

,

f (a) < f (b),

f (a) ∧ μ([a, b]), f (a) = f (b),

∨
α∈
[
f (b),f (a)

)
(
α ∧ μ

([
a,

abα(f (b)−f (a))
f (a)(f (b)−α)(b−a)+aα(f (b)−f (a))

]))
,

f (a) > f (b).

Proof It is easy to obtain that

1

γ 1
b
, 1
a

(
γ−1

1
f (b)

, 1
f (a)

( 1
α
)

) = abα(f (b)− f (a))
f (a)(f (b)− α)(b − a)+ aα(f (b)− f (a))

and the assertion of the theorem comes from the assertion of Theorem 3 with
particular geodesic arcs. ��
Theorem 5 Let (R, 6,μ) be a fuzzy measure space and f : [a, b] → [c, d] be a
harmonically (γ , η)-convex function. Then
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(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

ab

(b−a)
(

log f (b)
f (a)

f (b)
α

)

+a
, b

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠,

f (a) < f (b),

f (a) ∧ μ([a, b]), f (a) = f (b),

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎜
⎝α ∧ μ

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣a,

ab

(b−a)
(

log f (b)
f (a)

f (b)
α

)

+a

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠,

f (a) > f (b).

Proof One can easily see that

1

γ 1
b
, 1
a

(
γ−1

1
f (b)

, 1
f (a)

( 1
α
)

) = ab

(b − a)
(

log f (b)
f (a)

f (b)
α

)
+ a

and the assertion of the theorem comes from the assertion of Theorem 3 with
particular geodesic arcs. ��
Theorem 6 Let (R, 6,μ) be a fuzzy measure space and f : [c, d] → [a, b] be a
harmonically (η, γ )-convex function. Then

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)
(
α ∧ μ

([
b
(
a
b

) f (a)(f (b)−α)
α(f (b)−f (a)) , b

]))
,

f (a) < f (b),

f (a) ∧ μ([a, b]), f (a) = f (b),

∨
α∈
[
f (b),f (a)

)
(
α ∧ μ

([
a, b

(
a
b

) f (a)(f (b)−α)
α(f (b)−f (a))

]))
,

f (a) > f (b).

Proof Obviously,

1

γ 1
b
, 1
a

(
γ−1

1
f (b)

, 1
f (a)

( 1
α
)

) = b
(a
b

) f (a)(f (b)−α)
α(f (b)−f (a))

and the assertion of the theorem concluded by the assertion of Theorem 3 with
particular geodesic arcs. ��
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Theorem 7 Let (R, 6,μ) be a fuzzy measure space and f : [c, d] → [c, d] be a
harmonically (η, η)-convex function. Then

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)
(
α ∧ μ

([
b
(
b
a

)log f (b)
f (a)

α
f (b)

, b

]))
,

f (a) < f (b),

f (a) ∧ μ([a, b]), f (a) = f (b),

∨
α∈
[
f (b),f (a)

)
(
α ∧ μ

([
a, b

(
b
a

)log f (b)
f (a)

α
f (b)

]))
,

f (a) > f (b).

Proof Clearly,

1

η 1
b
, 1
a

(
η−1

1
f (b)

, 1
f (a)

( 1
α
)

) = b

(
b

a

)log f (b)
f (a)

α
f (b)

and the assertion of the theorem concluded by the assertion of Theorem 3 with
particular geodesic arcs. ��
Example 1 Suppose that the geodesic arcs γ : [0, 1] → I and η : [0, 1] → J are
defined by γ x,y(t) = (1 − t)x + ty and ηu,v(t) = u1−t vt , respectively. Denoting
the right-hand side functions of the inequalities (5)–(8) by g(x), we have

• The function f : [1, 2] → (0,+∞) defined by f (x) = √
x is harmonically

(γ , γ )-convex (see (5)), and satisfies the assertion of Theorem 4, see Fig. 1 left.

1 1.2 1.4 1.6 1.8 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

f(x)
g(x)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

f(x)
g(x)

Fig. 1 A harmonically (γ , γ )-convex function (left) and a harmonically (γ , η)-convex function
(right) dominated by the corresponding g(x)
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2 2.2 2.4 2.6 2.8 3
0.692

0.694

0.696

0.698

0.7

0.702

0.704

0.706

0.708

f(x)
g(x)

1 1.2 1.4 1.6 1.8 2
1.1

1.15

1.2

1.25

1.3

1.35

1.4

f(x)
g(x)

Fig. 2 A harmonically (η, γ )-convex function (left) and a harmonically (η, η)-convex function
(right) dominated by the corresponding g(x)

• The function f : [π4 , π2
]→ (0,+∞) defined by f (x) = 1

x

sin2( 1
x
)

is harmonically
(γ , η)-convex (see (6)), and satisfies the assertion of Theorem 5, see Fig. 2 right.

• The function f : [2, 3] → (0,+∞) defined by f (x) = 1
x

1
x is harmonically

(η, γ )-convex (see (7)), and satisfies the assertion of Theorem 6, see Fig. 1 left.

• The function f : [1, 2] → (0,+∞] defined by f (x) = 4
√

cosh( 2
x
) is

harmonically (η, η)-convex (see (8)), and satisfies the assertion of Theorem 7,
see Fig. 2 right.

4 Application

In this section, we consider new geodesic arcs and applied them in the structure of
harmonically (γ , η)-convex functions.

Case 1 We define the geodesic arcs γ : [0, 1] → I ⊂ R
+ and η : [0, 1] → J ⊂

R
+ by γ x,y(t) = x+(y−x)t and ηu,v(t) = u

(
v
u

)sin π
2 t , and introduce the following

class of harmonically (γ , η)-convex functions f : I → J :

f
( ab

a + (b − a)t
) ≤ f (b)

(
f (a)

f (b)

)sin π
2 t

,

where a, b ∈ I with a < b.
If f : I → J is a (γ , η)-convex function and (R, 6,μ) is a fuzzy measure

space, then Theorem 3 gives us the following class of harmonically (γ , η)-convex
functions:
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(S)

∫ b

a

f dμ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

πab

πa+2(b−a) arcsin

(

log f (b)
f (a)

(
f (b)
α
)

) , b

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎜
⎝α ∧ μ

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣a,

πab

πa+2(b−a) arcsin

(

log f (b)
f (a)

(
f (b)
α
)

)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠,

f (a) > f (b).

By replacing ηu,v(t) = u
(
v
u

)sin π
2 t with ηu,v(t) = u

(
v
u

)cos π2 t we obtain

f
( ab

a + (b − a)t
) ≤ f (b)

(
f (a)

f (b)

)cos π2 t

,

Thus, we obtain

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

πab

πa+2(b−a) arccos

(

log f (b)
f (a)

(
f (b)
α
)

) , b

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)

⎛

⎜⎜
⎝α ∧ μ

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣a,

πab

πa+2(b−a) arccos

(

log f (b)
f (a)

(
f (b)
α
)

)

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠,

f (a) > f (b).

Case 2 We define the geodesic arcs γ : [0, 1] → I ⊂ R
+ and η : [0, 1] → J ⊂

R
+ by γ x,y(t) = x

( y
x

)sin π
2 t and ηu,v(t) = u + (v − u)t , the following class of

harmonically (γ , η)-convex functions f : I → J is introduced:

f

(
b
(a
b

)sin π
2 t
)
≤ f (a)f (b)

f (a)+ (f (b)− f (a))t ,

where a, b ∈ I with a < b.
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If f : I → J is a (γ , η)-convex function and (R, 6,μ) is a fuzzy measure space,
then by Theorem 3:

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)
(
α ∧ μ

([
b
(
a
b

)sin
(
πf (a)(f (b)−α)
2α(f (b)−f (a))

)

, b

]))
,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)
(
α ∧ μ

([
a, b

(
a
b

)sin
(
πf (a)(f (b)−α)
2α(f (b)−f (a))

)]))
,

f (a) > f (b).

Also replacing γ x,y(t) = x
( y
x

)sin π
2 t with γ x,y(t) = x

( y
x

)cos π2 t we have

f

(
b
(a
b

)cos π2 t
)
≤ f (a)f (b)

f (a)+ (f (b)− f (a))t ,

So,

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)
(
α ∧ μ

([
b
(
a
b

)cos
(
πf (a)(f (b)−α)
2α(f (b)−f (a))

)

, b

]))
,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)
(
α ∧ μ

([
a, b

(
a
b

)cos
(
πf (a)(f (b)−α)
2α(f (b)−f (a))

)]))
,

f (a) > f (b).

Case 3 We define the geodesic arcs γ : [0, 1] → I ⊂ R
+ and η : [0, 1] →

J ⊂ R
+ by γ x,y(t) = x

( y
x

)t and ηu,v(t) = u
(
v
u

)sin π
2 t , the following class of

harmonically (γ , η)-convex functions f : I → J is introduced:

f

(
b
(a
b

)t) ≤ f (b)
(
f (a)

f (b)

)sin π
2 t

,

where a, b ∈ I with a < b.
If f : I → J is a (γ , η)-convex function and (R, 6,μ) is a fuzzy measure space,

then according to Theorem 3 we have the following result:
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(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣b
(a
b

) 2
π

arcsin

(

log f (b)
f (a)

f (b)
α

)

, b

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣a, b

(a
b

) 2
π

arcsin

(

log f (b)
f (a)

f (b)
α

)⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (a) > f (b).

By replacing ηu,v(t) = u
(
v
u

)sin π
2 t with ηu,v(t) = u

(
v
u

)cos π2 t we get

f

(
b
(a
b

)t) ≤ f (b)
(
f (a)

f (b)

)cos π2 t

,

and so

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣b
(a
b

) 2
π

arccos

(

log f (b)
f (a)

f (b)
α

)

, b

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣a, b

(a
b

) 2
π

arccos

(

log f (b)
f (a)

f (b)
α

)⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (a) > f (b).

Case 4 We define the geodesic arcs γ : [0, 1] → I ⊂ R
+ and η : [0, 1] → J ⊂

R
+ by γ x,y(t) = x

( y
x

)sin π
2 t and ηu,v(t) = u

(
v
u

)t , the following class of geodesic
convex functions f : I → J is introduced:

f

(
b
(a
b

)sin π
2 t
)
≤ f (b)

(
f (a)

f (b)

)t
,

where a, b ∈ I with a < b.
If f : I → J is a (γ , η)-convex function and (R, 6,μ) is a fuzzy measure space,

then according to Theorem 3 we obtain the following result:
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(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣b
(a
b

)sin

(
π
2 log f (b)

f (a)

f (b)
α

)

, b

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣a, b

(a
b

)sin

(
π
2 log f (b)

f (a)

f (b)
α

)⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (a) > f (b).

In addition, by replacing γ x,y(t) = x
( y
x

)sin π
2 t with γ x,y(t) = x

( y
x

)cos π2 t , we have

f

(
b
(a
b

)cos π2 t
)
≤ f (b)

(
f (a)

f (b)

)t
,

and then

(S)

∫ b

a

f dμ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
α∈
[
f (a),f (b)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣b
(a
b

)cos

(
π
2 log f (b)

f (a)

f (b)
α

)

, b

⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (b) > f (a),

∨
α∈
[
f (b),f (a)

)

⎛

⎜
⎝α ∧ μ

⎛

⎜
⎝

⎡

⎢
⎣a, b

(a
b

)cos

(
π
2 log f (b)

f (a)

f (b)
α

)⎤

⎥
⎦

⎞

⎟
⎠

⎞

⎟
⎠,

f (a) > f (b).

5 Conclusion

Any generalization of the concept of convexity may cause a modification in
nonlinear optimization, e.g., in necessary and sufficient optimality criteria and in the
connectedness of the solution set in linear and nonlinear complementarity systems.
This paper deals with the concept of harmonically convexity, and introduces
some generalizations for this concept. Moreover, some refinements of Hadamard
inequality for harmonically convex functions are considered, in the context of linear
and nonlinear integrals.
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Norm Inequalities for Singular Integrals
Related to Operators and
Dirac-Harmonic Equations

Ravi P. Agarwal, Shusen Ding, and Yuming Xing

Abstract In this paper, we establish norm inequalities and imbedding inequalities
for singular integrals of the solutions to the Dirac-harmonic equation and operators
acting on these solutions. These inequalities can be used to study the integrability
of the operators and their compositions.

1 Introduction

Let Ω ⊂ R
n, n ≥ 2, be a domain with Lebesgue measure |Ω| < ∞. Let B

and σB be the balls with the same center and diam(σB) = σdiam(B). We do
not distinguish the balls from cubes in this paper. We use D′(Ω,∧l ) to denote the
space of all differential l-forms in Ω and Lp(Ω,∧l ) is the space of all l-forms
u(x) =∑I uI (x)dxI in Ω satisfying

∫
Ω
|uI |p <∞ for all ordered l-tuples I , l =

1, 2, · · · , n. We always use d : D′(Ω,∧l )→ D′(Ω,∧l+1), l = 0, 1, · · · , n− 1, to
denote the exterior derivative. The Hodge star operator % : ∧k → ∧n−k is defined
as follows. If

ω = ωi1i2···ik (x1, x2, · · · , xn)dxi1∧dxi2∧· · ·∧dxik = ωIdxI , i1 < i2 < · · · < ik,

is a differential k-form, then

%ω = %(ωi1i2···ik dxi1 ∧ dxi2 ∧ · · · ∧ dxik ) = (−1)
∑
(I )ωI dxJ ,
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where I = (i1, i2, · · · , ik), J = {1, 2, · · · , n} − I , and
∑
(I ) = k(k+1)

2 +∑k
j=1 ij .

The Hodge codifferential operator d% : D′(Ω,∧l+1) → D′(Ω,∧l ) is defined by
d% = (−1)nl+1 % d% on D′(Ω,∧l+1), l = 0, 1, · · · , n− 1.

A differential k-form u(x) is generated by {dxi1 ∧ dxi2 ∧ · · · ∧ dxik }, k =
1, 2, · · · , n, that is,

u(x) =
∑

I

ωI (x)dxI =
∑

ωi1i2···ik (x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik , (1)

where the coefficients ωi1i2···ik (x) are differentiable functions defined in Ω and
I = (i1, i2, · · · , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n. A function u(x1, x2, · · · , xn) is
called a 0-form. Let ∧l = ∧l (Rn) be the set of all l-forms in R

n and ∧ = ∧(Rn) =
⊕nl=0 ∧l ((Rn)) be a graded algebra with respect to the exterior products. The
Dirac-harmonic equation for differential forms was introduced in [3] in 2015, which
includes the well-known A-harmonic equations as its special cases. Specifically, the
following equation for differential forms

d%A(x,Dω) = 0, (2)

is called the Dirac-harmonic equation, where D = d + d∗ is the Dirac operator and
the operator A : Ω ×∧(Rn)→ ∧(Rn) satisfies the following conditions:

|A(x, ξ)| ≤ a|ξ |p−1 and < A(x, ξ), ξ > ≥ |ξ |p (3)

for almost every x ∈ Ω and all ξ ∈ ∧(Rn). Here a > 0 is a constant and 1 <

p < ∞ is a fixed exponent related to the condition of the operator A satisfies. Let
W 1
p,loc(Ω,∧l−1) = ∩W 1

p(Ω
′,∧l−1), where the intersection is for all Ω ′ compactly

contained in Ω . A solution to the Dirac-harmonic equation is an element of the
Sobolev space W 1

p,loc(Ω,∧l−1) such that

∫

Ω

< A(x,Dω),Dϕ >= 0 (4)

for all ϕ ∈ W 1
p(Ω,∧l−1) with compact support.

We should notice that if ω is a function (0-form), both the A-harmonic equation
d∗A(x, dω) = 0 and the Dirac-harmonic equation d∗A(x,Dω) = 0 become the
usual A-harmonic equation

divA(x,∇ω) = 0 (5)

for functions. See [1, 6, 8] for more results about different versions of the A-
harmonic equation. Also, if A : Ω × ∧l (Rn) → ∧l (Rn) is defined by A(x, ξ) =
ξ |ξ |p−2 with p > 1, then, A satisfies the required conditions (3) and Eq. (2)
becomes
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d%(Dω|Dω|p−2) = 0,

which is called the p-Dirac-harmonic equation for differential forms. Let
C∞(Ω,∧l ) be the space of smooth l-forms on Ω and the Green’s operator G
be defined on C∞(Ω,∧l ) by assigning G(u) to be a solution of the Poisson’s
equation ΔG(u) = u − H(u), where H is the harmonic projection operator, see
[4, 7, 9] for more results about Green’s operator. We use W 1,p(E,∧l ) to denote the
Sobolev space of l-forms which equals Lp(E,∧l ) ∩ Lp1 (E,∧l ) with norm

‖u‖W 1,p(E) = ‖u‖W 1,p(E,∧l ) = diam(E)−1‖u‖p,E + ‖∇u‖p,E (6)

for any subset E ⊂ R
n and p > 0.

The purpose of this paper is to establish the norm inequalities for solutions to
the Dirac-harmonic equation and the composition G ◦ F of Green’s operator G and
a bounded operator F applied to these solutions defined in Ω ⊂ R

n. In Sect. 2,
we prove the norm inequalities with singular factors for the composition G ◦ F of
Green’s operator and any bounded operator F . In Sect. 3, we establish the weighted
Poincaré inequalities for solutions to the Dirac-harmonic equation of differential
forms. In Sect. 4, we obtain the Sobolev imbedding inequalities with singular factors
for the composition of operators and the solutions to the Dirac-harmonic equation.
Many existing results are special cases of our new inequalities obtained in this paper.
In real applications, we often face to estimate the integrals with singular factors. For
example, let us assume that the object P1 with mass m1 is located at the origin and
the object P2 with mass m2 is located at (x1, x2, x3) in R

3. Then, Newton’s Law of
Gravitation states that the magnitude of the gravitational force between two objects

P1 and P2 is |F| = m1m2G/d
2(P1, P2), where d(P1, P2) =

√
x2

1 + x2
2 + x2

3 is the
distance between P1 and P2, and G is the gravitational constant. Thus, we have to
evaluate a singular integral whenever the integrand contains |F| as a factor and the
integral domain includes the origin.

2 Estimates for the Norms of Operators

In this section, we will prove some norm inequalities for the composition G ◦ F
of Green’s operator G and a bounded operator F applied to differential forms, see
[4, 7–9] for more results about Green’s operator and other operators on differential
forms. We will need the following Caccioppoli inequality and Weak Reverse Hölder
inequality obtained in [3] in 2015.

Lemma 1 Suppose that u is a solution of the Dirac-harmonic equation in a domain
Ω . Then there is a constant C, which is independent of u, such that
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(∫

B

|Du|pdx
)1/p

≤ C|B|−1/n
(∫

σB

|u− c|pdx
)1/p

(7)

for all balls or cubes B with σB ⊂ Ω , where c is any differential form withDc = 0,
σ > 1 and p > 1 are constants.

Lemma 2 Let u be a solution of the Dirac-harmonic equation in a domain Ω and
0 < s, t <∞. Then, there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (8)

for all balls or cubes B with σB ⊂ Ω for some σ > 1.

We will also use the following norm inequality appeared in [7].

Lemma 3 Let u ∈ C∞(∧lM) and l = 1, 2, · · · , n, 1 < s <∞. Then, there exists
a positive constant C, independent of u, such that

‖dd∗G(u)‖s,M+‖d∗dG(u)‖s,M+‖dG(u)‖s,M+‖d∗G(u)‖s,M+‖G(u)‖s,M ≤ C‖u‖s,M .
(9)

We first prove the following local Poincaré-type estimate for the operatorsG◦F .

Theorem 1 Let u ∈ Lsloc(Ω,∧l ), l = 1, 2, · · · , n, 1 < s < ∞, G be Green’s
operator, and F be a bounded operator. Then, there exists a constantC, independent
of u, such that

‖G(F(u))− (G(F (u)))B‖s,B ≤ C|B|diam(B)‖u‖s,B (10)

for all balls B with B ⊂ Ω .

Proof We know that

‖T v‖s,B ≤ C|B|diam(B)‖v‖s,B
and vB = d(T v) for any l form v with l �= 0, where T is the homotopy operator,
see [2, 5] for more properties of the homotopy operator T , By decomposition of
differential forms, we have

v = d(T v)+ T (dv) = vB + T (dv).

Thus,

v − vB = T (dv) (11)

for any form v. Therefore, replacing the above v by G(F(u)) and using Lemma 3,
we have
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‖G(F(u))− (G(F (u)))B‖s,B
= ‖T d(G(F(u)))‖s,B
≤ C1|B|diam(B)‖d(G(F(u)))‖s,B
≤ C2|B|diam(B)‖F(u)‖s,B (12)

≤ C3|B|diam(B)‖u‖s,B
since the operator F is bounded. The proof of Theorem 1 has been completed. ��

In applications, such as in calculating electric or magnetic fields, we often face
the fact that the integrand contains a singular factor. So, we extend our result to the
following singular weighted case.

Theorem 2 Let u ∈ Lsloc(Ω,∧l ), l = 1, 2, · · · , n, 1 < s <∞, be a solution of the
Dirac-harmonic equation in a bounded domain Ω , G be Green’s operator, and F
be a bounded operator. Then, there exists a constant C, independent of u, such that

(∫

B

|G(F(u))− (G(F (u)))B |s 1

|x − xB |α dx
)1/s

≤ C|B|γ
(∫

σB

|u|s 1

|x − xB |λ dx
)1/s

(13)
for all balls B with σB ⊂ Ω and any real numbers α and λ with α > λ ≥ 0, where
γ = 1+ 1

n
− α−λ

ns
and xB is the center of ball B and σ > 1 is a constant.

Proof Let ε ∈ (0, 1) be a constant small enough such that εn < α − λ and B ⊂ Ω

be a ball with center xB and radius rB . Select t = s/(1 − ε). Then, we have t > s.
Choose β = t/(t − s), By the Hölder inequality and Theorem 1, we find that

( ∫
B

(
|G(F(u))− (G(F (u)))B |

)s
1

|x−xB |α dx
)1/s

=
( ∫

B

(
|G(F(u))− (G(F (u)))B | 1

|x−xB |α/s
)s
dx
)1/s

≤ ‖G(F(u))− (G(F (u)))B‖t,B
( ∫

B

(
1

|x−xB |
)tα/(t−s)

dx
)(t−s)/st

= ‖G(F(u))− (G(F (u)))B‖t,B
( ∫

B
|x − xB |−αβdx

)1/βs

≤ C1|B|diam(B)‖u‖t,B‖|x − xB |−α‖1/s
β,B .

(14)

We can assume that xB = 0. Otherwise, we can easily move the center to the origin
by a simple transformation. Thus, for any x ∈ B, it follows that

|x − xB | ≥ |x| − |xB | = |x|.

Using the polar coordinate substitution, we obtain that
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∫

B

|x − xB |−αβdx ≤ C
∫ rB

0
ρ−αβρn−1dρ ≤ C

n− αβ (rB)
n−αβ. (15)

Select m = nst/(ns + αt − λt), then 0 < m < s. Using Lemma 2, we find that

‖u‖t,B ≤ C2|B|m−tmt ‖u‖m,σB, (16)

where σ > 1 is a constant. By Lemma 2 again, we obtain

‖u‖m,σB =
(∫
σB

(|u||x − xB |−λ/s |x − xB |λ/s
)m
dx
)1/m

≤
(∫
σB

(|u||x − xB |−λ/s
)s
dx
)1/s (∫

σB

(|x − xB |λ/s
) ms
s−m dx

) s−m
ms

≤ (∫
σB
|u|s |x − xB |−λdx

)1/s
C3(σ rB)

λ/s+n(s−m)/ms

≤ C4
(∫
σB
|u|s |x − xB |−λdx

)1/s
(rB)

λ/s+n(s−m)/ms.

(17)
It should be noticed that

diam(B) · |B|1+ 1
t
− 1
m = |B|1+ 1

n
+ 1
t
− ns+αt−λt

nst = |B|1+ 1
n
− α−λ

ns . (18)

Substituting (15), (16) and (17) in (14) and using (18), we have

(∫

B

(|G(F(u))− (G(F (u)))B |)s 1

|x − xB |α dx
)1/s

≤ C5|B|γ
(∫

σB

|u|s |x − xB |−λdx
)1/s

.

We have completed the proof of Theorem 2. ��
Replacing α by 2α and λ by α in Theorem 2, we have the following version of

the symmetric inequality.

Corollary 1 Assume that u,G,F satisfy the same conditions as mentioned in
Theorem 2. Then,

(∫

B

|G(F(u))− (G(F (u)))B |s 1

|x − xB |2α dx
)1/s

≤ C|B|1+ 1
n
− α
ns

(∫

σB

|u|s 1

|x − xB |α dx
)1/s

.

(19)

for all balls B with σB ⊂ Ω and any real numbers α ≥ 0.

Sometimes, it is more convenient to use if the right-hand side does not contain
any singular factor, that is, the integral on the right-hand side has no weight. Thus,
choosing λ = 0 in Theorem 2, inequality (13) reduces to the following useful
version.
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Corollary 2 Assume that u,G,F satisfy the same conditions as mentioned in
Theorem 2. Then,

(∫

B

|G(F(u))− (G(F (u)))B |s 1

|x − xB |α dx
)1/s

≤ C|B|1+ 1
n
− α
ns

(∫

σB

|u|sdx
)1/s

(20)
for all balls B with σB ⊂ Ω and any real numbers α ≥ 0.

Note that it does not contain a singular factor in the integral on the right-hand
side of the above inequality.

In the proof of Theorem 2, if we substitute (15) into (14), then using the weak
reverse Hölder inequality (Lemma 2),

‖u‖t,B ≤ C|B|1/t−1/s‖u‖s,σB,

where σ > 1 is a constant, and by a simple calculation, we will obtain the following
inequality which enables us to estimate the norm of G ◦ F with a singular factor in
terms of the simple norm of u.

Theorem 3 Let u ∈ Lsloc(Ω,∧l ), l = 1, 2, · · · , n, 1 < s <∞, be a solution of the
Dirac-harmonic equation in a bounded domain Ω , G be Green’s operator, and F
be a bounded operator. Then, there exists a constant C, independent of u, such that

(∫

B

|G(F(u))− (G(F (u)))B |s 1

|x − xB |α dx
)1/s

≤ C
(∫

σB

|u|sdx
)1/s

(21)

for all balls B with σB ⊂ Ω and any real numbers α with 0 ≤ α ≤ s(n+ 1), where
xB is the center of ball B and σ > 1 is a constant.

Note that we can also obtain the above Theorem 3 directly from Corollary 2 by
selecting α such that 0 ≤ α ≤ s(n+ 1).

The following definition of Ls(μ)-averaging domains can be found in [1].

Definition 1 We call a proper subdomain Ω ⊂ R
n an Ls(μ)-averaging domain,

s ≥ 1, if μ(Ω) <∞ and there exists a constant C such that

(
1

μ(Ω)

∫

Ω

|u− uB0 |sdμ
)1/s

≤ C sup
4B⊂Ω

(
1

μ(B)

∫

B

|u− uB |sdμ
)1/s

(22)

for some ball B0 ⊂ Ω and all u ∈ Lsloc(Ω;μ). Here the supremum is over all balls
B ⊂ Ω with 4B ⊂ Ω and μ is a measure defined by dμ = w(x)dx for a weight
w(x) and uB = 1

μ(B)

∫
B
u(x)dx.

Theorem 4 Let u ∈ D
′
(Ω,∧1) be a solution of the Dirac-harmonic equation,

G be Green’s operator, and F be a bounded operator. Assume that s is a fixed
exponent associated with the Dirac-harmonic equation. Then, there exists a constant
C, independent of u, such that
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(∫

Ω
|G(F(u))− (G(F (u)))B0 |s )

1

d(x, ∂Ω)α
dx

)1/s
≤ C

(∫

Ω
|u|s 1

d(x, ∂Ω)λ
dx

)1/s

(23)
for any bounded and convex Ls(μ)-averaging domain Ω ⊂ R

n. Here B0 ⊂ Ω is a
fixed ball and α and λ are constants with 0 ≤ λ < α < min{n, s + λ+ n(s − 1)}.
Proof Let rB be the radius of a ball B ⊂ Ω . We may assume the center of B is 0.
Then, d(x, ∂Ω) ≥ rB −|x| for any x ∈ B. Therefore, d−1(x, ∂Ω) ≤ 1

rB−|x| for any
x ∈ B. Similar to the proof of Theorem 2, we have

(∫

B
|G(F(u))− (G(F (u)))B |s 1

d(x, ∂Ω)α
dx

)1/s
≤ C1|B|γ

(∫

σB
|u|s 1

d(x, ∂Ω)λ
dx

)1/s

(24)
for all balls B with σB ⊂ Ω , σ > 1, and any real numbers α and λ with α > λ ≥ 0,
where γ = 1+ 1

n
− α−λ

ns
. Write dμ = 1

d(x,∂Ω)α
dx. Then,

μ(B) =
∫

B

dμ =
∫

B

1

d(x, ∂Ω)α
dx ≥

∫

B

1

(diam(Ω))α
dx = C1|B|,

and hence 1
μ(B)

≤ C2|B| . Since Ω is an Ls(μ)-averaging domain, using (22) as well
as Theorem 2, and noticing that γ − 1/s = (1 − 1/s) + (s + λ − α)/ns > 0, we
obtain

(
1

μ(Ω)

∫

Ω

|G(F(u))− (G(F (u)))B0 |s)
1

d(x, ∂Ω)α
dx

)1/s

=
(

1

μ(Ω)

∫

Ω

|G(F(u))− (G(F (u)))B0 |s)dμ
)1/s

≤ C3 sup
4B⊂Ω

(
1

μ(B)

∫

B

|G(F(u))− (G(F (u)))B |sdμ
)1/s

≤ C4 sup
4B⊂Ω

(
1

|B|
∫

B

|G(F(u))− (G(F (u)))B |sdμ
)1/s

≤ C5 sup
4B⊂Ω

|B|γ−1/s
(∫

σB

|u|s 1

d(x, ∂Ω)λ
dx

)1/s

≤ C5|Ω|γ−1/s
(∫

Ω

|u|s 1

d(x, ∂Ω)λ
dx

)1/s

≤ C6

(∫

Ω

|u|s 1

d(x, ∂Ω)λ
dx

)1/s

,

which is equivalent to
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(∫

Ω

|G(F(u))− (G(F (u)))B0 |s)
1

d(x, ∂Ω)α
dx

)1/s

≤ C
(∫

Ω

|u|s 1

d(x, ∂Ω)λ
dx

)1/s

.

We have completed the proof of Theorem 4. ��
Similar to the case of the local inequality, choose λ = 0 in Theorem 4, we have

the following estimate for the weighted norm of G ◦ F in terms of the simple norm
of u.

Corollary 3 Let u ∈ D
′
(Ω,∧1) be a solution of the Dirac-harmonic equation,

G be Green’s operator, and F be a bounded operator. Assume that s is a fixed
exponent associated with the Dirac-harmonic equation. Then, there exists a constant
C, independent of u, such that

(∫

Ω

|G(F(u))− (G(F (u)))B0 |s)
1

d(x, ∂Ω)α
dx

)1/s

≤ C
(∫

Ω

|u|sdx
)1/s

(25)
for any bounded and convex Ls(μ)-averaging domain Ω ⊂ R

n. Here B0 ⊂ Ω is a
fixed ball and α is a constant with 0 < α < min{n, s ++n(s − 1)}.

3 Poincaré Inequalities

When we deal with the integral of the vector field F= ∇f , we need to study
the singular integral if the potential function f contains a singular factor, such as
the potential energy in physics. It is obvious that the singular integrals are more
interesting to us since they have wide applications in different fields of mathematics
and physics. The basic integral estimates have been well developed in [3]. In this
section, we will prove the global inequalities with singular factors for solutions
to the Dirac-harmonic equation in the John domains. We will use the following
Covering Lemma appearing in [6].

Lemma 4 Each Ω has a modified Whitney cover of cubes V = {Qi} such that

∪iQi = Ω,
∑

Qi∈V
χ√ 5

4Q
≤ NχΩ

for all x ∈ R
n and some N > 1, and if Qi ∩ Qj �= ∅, then there exists a cube

R (this cube need not be a member of V ) in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR.
Moreover, if Ω is δ-John, then there is a distinguished cube Q0 ∈ V which can be
connected with every cube Q ∈ V by a chain of cubes Q0,Q1, · · · ,Qk = Q from
V and such that Q ⊂ ρQi , i = 0, 1, 2, · · · , k, for some ρ = ρ(n, δ).

We will also need the following version of the weak reverse Hölder inequality
proved in [3] in 2015.
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Lemma 5 Let ω be a solution to the Dirac-harmonic equation in Ω , σ > 1 be
some constant, and 0 < r, s <∞ be any constants. Then, there exists a constant C,
independent of ω, such that

‖ω − ωB‖s,B ≤ C|B|(r−s)/rs‖ω − ωB‖r,σB (26)

for all cubes or balls B with σB ⊂ Ω .

The following Poincaré inequality with the Dirac operator also appeared in [3]
in 2015.

Lemma 6 Let u ∈ D′(Q,∧l ) be a differential form and Du ∈ Lp(Q,∧), p > 1.
Then, u− uQ is in Lp(Q,∧) and

||u− uQ||p,Q ≤ C|Q|1/n||Du||p,Q. (27)

for any cube Q ⊂ R
n, where C is a constant, independent of u.

Using Lemma 5, Lemma 6, and the same method developed in the proof of
Theorem 2, we can easily prove the following weighted Poincaré inequality.

Theorem 5 Let u ∈ Lsloc(Ω,∧l ), l = 1, 2, · · · , n, 1 < s <∞, be a solution of the
Dirac-harmonic equation in a bounded domain Ω . Then, there exists a constant C,
independent of u, such that

(∫

U

|u− uU |s) 1

dα(x, ∂Ω)
dx

)1/s

≤ C|U |γ
(∫

σU

|Du|s 1

dλ(x, ∂Ω)
dx

)1/s

,

(28)
for all balls U with σU ⊂ Ω and any real numbers α and λ with α > λ ≥ 0, where
γ = 1+ 1

n
− α−λ

ns
and xU is the center of ball U and σ > 1 is a constant.

Definition 2 A proper subdomain Ω ⊂ R
n is called a δ-John domain, δ > 0, if

there exists a point x0 ∈ Ω which can be joined with any other point x ∈ Ω by a
continuous curve γ ⊂ Ω so that

d(ξ, ∂Ω) ≥ δ|x − ξ |

for each ξ ∈ γ . Here d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω .

We are ready to prove the following weighted norm Poincaré inequality for
solutions to the Dirac-harmonic equation.

Theorem 6 Let u ∈ D′(Ω,∧0), 1 < s < ∞, be a solution of the Dirac-harmonic
equation in δ-John domain Ω ⊂ R

n and Du ∈ Ls(Ω,∧1). Then, there exists a
constant C, independent of u, such that
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(∫

Ω

|u− uU0 |s)
1

dα(x, ∂Ω)
dx

)1/s

≤ C
(∫

Ω

|Du|s 1

dλ(x, ∂Ω)
dx

)1/s

,

where U0 ⊂ Ω is a fixed cube and α and λ are constants with 0 ≤ λ < α <

min{n, s + λ+ n(s − 1)}.
Proof From Lemma 4, there is a modified Whitney cover of cubes V = {Ui} for Ω
such that Ω = ∪Ui , and

∑
Ui∈V χ√ 5

4Ui
≤ NχΩ for some N > 1. Since Ω = ∪Ui ,

for any x ∈ Ω , it follows that x ∈ Ui for some i. Apply (28) to Ui , we find that

(∫

Ui

|u− uUi |s)
1

dα(x, ∂Ω)
dx

)1/s

≤ C|Ui |γ
(∫

σUi

|Du|s 1

dλ(x, ∂Ω)
dx

)1/s

,

(29)
where σ > 1 is a constant. Let μ(x) and μ1(x) be measures defined by dμ =

1
dα(x,∂Ω)

dx and dμ1(x) = 1
dλ(x,∂Ω)

dx. Then,

μ(U) =
∫

U

1

dα(x, ∂Ω)
dx ≥

∫

U

1

(diam(Ω))α
dx = M|U |, (30)

where M is a positive constant. Then, by the elementary inequality (a + b)s ≤
2s(|a|s + |b|s), s ≥ 0, we have

( ∫
Ω
|u− uU0 |s 1

dα(x,∂Ω)
dx
)1/s

=
( ∫
∪Ui |u− uU0 |sdμ

)1/s

≤
(∑

U∈V
(

2s
∫
U
|u− uU |sdμ

+2s
∫
U
|uU − uU0 |sdμ

))1/s

≤ C1

(∑
U∈V

∫
U
|u− uU |sdμ

)1/s

+
(∑

U∈V
∫
U
|uU − uU0 |sdμ

)1/s

(31)

for a fixed U0 ⊂ Ω . The first sum in (31) can be estimated by using (29) and
Covering Lemma,
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∑
U∈V

∫
U
|u− uU |sdμ

≤ C2
∑

U∈V |U |γ s
∫
ρU
|Du|sdμ1

≤ C3|Ω|γ s∑U∈V
∫
U
|Du|sdμ1) ≤ C4|Ω|γ s

∫
Ω
|Du|sdμ1

≤ C5
∫
Ω
|Du|s dx

dλ(x,∂Ω)
.

(32)

To estimate the second sum in (31), we need to use the property of δ-John domain.
Fix a cube U ∈ V and let U0, U1, · · · , Uk = U be the chain in Lemma x.

|uU − uU0 | ≤
k−1∑

i=0

|uUi − uUi+1 |. (33)

The chain {Ui} also has property that, for each i, i = 0, 1, · · · , k − 1, with Ui ∩
Ui+1 �= ∅, there exists a cube Di such that Di ⊂ Ui ∩Ui+1 and Ui ∪Ui+1 ⊂ NDi ,
N > 1.

max{|Ui |, |Ui+1|}
|Ui ∩ Ui+1| ≤ max{|Ui |, |Ui+1|}

|Di | ≤ C6

For such Dj , j = 0, 1, · · · , k − 1, Let E = min{D0,D1, · · · ,Dk−1}, then

max{|Ui |, |Ui+1|}
|Ui ∩ Ui+1| ≤ max{|Ui |, |Ui+1|}

|E| ≤ C7. (34)

By (30), (34), and Lemma 6, we have

|uUi − uUi+1 |s

= 1

μ(Ui ∩ Ui+1)

∫

Ui∩Ui+1

|uUi − uUi+1 |s
dx

dα(x, ∂Ω)

≤ C8
1

|Ui ∩ Ui+1|
∫

Ui∩Ui+1

|uUi − uUi+1 |s
dx

dα(x, ∂Ω)

≤ C8
C7

max{|Ui |, |Ui+1|}
∫

Ui∩Ui+1

|uUi − uUi+1 |sdμ (35)

≤ C9

i+1∑

j=i

1

|Uj |
∫

Uj

|u− uU |sdμ
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≤ C10

i+1∑

j=i

|Uj |γ s
|Uj |

∫

ρUj

|Du|sdμ1

= C10

i+1∑

j=i
|Uj |γ s−1

∫

ρUj

|Du|s dx

dλ(x, ∂Ω)

Since U ⊂ NUj for j = i, i + 1, 0 ≤ i ≤ k − 1, From (35)

|uUi − uUi+1 |sχU (x) ≤ C11
∑i+1

j=i χNUj (x)|Uj |γ s−1
∫
ρUj
|Du|s dx

dλ(x,∂Ω)

≤ C12
∑i+1

j=i χNUj (x)|Ω|γ s−1
∫
ρUj
|Du|sdμ1.

(36)

We see that |Ω|γ−1/s < ∞ since γ − 1
s
= 1 + 1

n
+ λ

ns
− 1

s
− α

ns
> 0 when

α < s + λ+ n(s − 1). Thus, from (a + b)1/s ≤ 21/s(|a|1/s + |b|1/s), (33) and (36),

|uU − u)U0 |χU(x) ≤ C13

∑

E∈V

( ∫

ρE

|Du|sdμ1

)1/s · χNE(x)

for every x ∈ R
n. Then,

∑

U∈V

∫

U

|uU − uU0 |sdμ ≤ C13

∫

n

∣
∣∣
∑

E∈V

( ∫

ρE

|Du|sdμ1

)1/s
χNE(x)

∣
∣∣
s

dμ.

Notice that

∑

E∈V
χNE(x) ≤

∑

E∈V
χρNE(x) ≤ NχΩ(x).

Using elementary inequality |∑N
i=1 ti |s ≤ Ns−1∑N

i=1 |ti |s , we finally have

∑
U∈V

∫
U
|uU − uU0 |sdμ

≤ C14
∫
n

(∑
E∈V (

∫
ρE
|Du|sdμ1)χNE(x)

)
dμ

= C14
∑

E∈V (
∫
ρE
|Du|sdμ1) ≤ C15

∫
Ω
|Du|s dx

dλ(x,∂Ω)
.

(37)

Substituting (32) and (37) in (31), we have proved Theorem 6. ��
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4 Sobolev Imbedding Inequalities

We all know that for any v ∈ Lsloc(Ω,∧1), it follows that ‖∇v‖s,B = ‖dv‖s,B .
Thus, by Lemma 3, we have

‖∇G(F(u))‖s,B = ‖dG(F(u))‖s,B ≤ C1‖F(u)‖s,B ≤ C2‖u‖s,B . (38)

Starting from (38), using the similar method developed in Sect. 2 and noticing that
1

d(x,∂Ω)
≤ 1

rB−|x| for any x ∈ B where rB is the radius of ball B, we can prove the
following lemma.

Lemma 7 Let u ∈ Lsloc(Ω,∧1), 1 < s < ∞, be a solution of Dirac-harmonic
equation in a bounded domain Ω , G be Green’s operator, and F be a bounded
operator. There exists a constant C, independent of u, such that

(∫

B

|∇G(F(u))|s 1

d(x, ∂Ω)α
dx

)1/s

≤ C|B|γ
(∫

ρB

|u|s 1

d(x, ∂Ω)λ
dx

)1/s

.

(39)
for all balls B with ρB ⊂ Ω and any numbers α, λ with α > λ ≥ 0 and γ =
1+ 1

n
− α−λ

ns
. Here xB is the center of ball B.

We should notice that (39) can also be written as

‖∇GF(u)‖s,B,w1 ≤ C|B|γ ‖u‖s,ρB,w2 , (40)

where the weights are defined by w1(x) = 1
dα(x,∂Ω)

and w2(x) = 1
dλ(x,∂Ω)

. Next,
we prove the imbedding inequality with a singular factor in John domain.

Theorem 7 Let u ∈ D′
(Ω,∧1) be a solution of the Dirac-harmonic equation, G

be Green’s operator, and F be a bounded operator. Then, there exists a constant C,
independent of u, such that

‖G(F(u))− (G(F (u)))B0‖W 1,s (Ω),w1
≤ C‖u‖s,Ω,w2 (41)

for anyLS(μ)-averaging domainΩ ⊂R
n. Here the weights are defined byw1(x) =

1
dα(x,∂Ω)

and w2(x) = 1
dλ(x,∂Ω)

. B0 ⊂ Ω is a fixed cube. α and λ are constants with
0 ≤ λ < α < min{n, λ+ n(s − 1)}.
Proof Using Lemma 4, (40) and noticing that

γ − 1

s
− 1

n
= 1− 1

s
− α − λ

ns
> 0

by the condition α < min{n, n(s − 1)+ λ}. We obtain
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‖∇GF(u)‖s,Ω,w1 ≤
∑

B∈V ‖∇GF(u)‖s,B,w1

≤∑B∈V
(
C1|B|γ ‖u‖s,ρB,w2

)

≤∑B∈V
(
C1|Ω|γ ‖u‖s,Ω,w2

)

≤ C2N‖u‖s,Ω,w2

≤ C3‖u‖s,Ω,w2 .

(42)

We know that (G(F (u)))B0 is a closed form,∇((G(F (u)))B0) = d((G(F (u)))B0) =
0. Thus, by using Theorem 4 and (42), and using the condition

γ − 1

n
− 1

s
= 1− 1

s
− α − λ

ns
> 0.

We find that

‖G(F(u))− (G(F (u)))B0‖W 1,s (Ω),w1

= diam(Ω)−1‖G(F(u))− (G(F (u)))B0‖s,Ω,w1 + ‖∇(G(F (u))− (G(F (u)))B0)‖s,Ω,w1

= diam(Ω)−1‖G(F(u))− (G(F (u)))B0‖s,Ω,w1 + ‖∇(G(F (u)))‖s,Ω,w1

≤ C1|Ω|−1/n|Ω|γ−1/s‖u‖s,Ω,w2 + C2‖u‖s,Ω,w2

≤ C3‖u‖s,Ω,w2

holds. We have completed the proof of the Theorem 7. ��
Using Theorem 6 and the similar method to the proof of Theorem 7 above, we

have the following imbedding inequality with singular factors.

Theorem 8 Let u ∈ Ls(Ω,∧0), 1 < s < ∞, be a solution of the Dirac-harmonic
equation in δ-John domain Ω ⊂ R

n and Du ∈ Ls(Ω,∧1), Then, there exists a
constant C, independent of u, such that

‖u− uU0‖W 1,s (Ω),w1
≤ C‖Du‖s,Ω,w2 (43)

where U0 ⊂ Ω is a fixed cube; α and λ are constants with 0 ≤ λ < α < min{n, s+
λ + n(s − 1)} and the weights are defined by w1(x) = 1

dα(x,∂Ω)
and w2(x) =

1
dλ(x,∂Ω)

.
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Using the Poincaré inequality and Caccioppoli inequality, we have

‖u− uB‖p,B ≤ C1‖u− c‖p,σB
for any B ⊂ Ω , any closed form c and some constant σ > 1. Choose c = 0, we
obtain

‖u− uB‖p,B ≤ C1‖u‖p,σB (44)

We should notice that in Theorem 8, the right-hand side is the weighted norm ofDu.
However, sometimes, it would be complicated to evaluate the norm ‖Du‖s,Ω,w2 .
Hence, we are motivated to develop inequalities with the simple norm ‖u‖s,Ω,w2 on
the right-hand side. For this purpose, starting with (44) and using the same method
developed in the proof of Theorem 6, we can easily obtain the following inequality
with the simple weighted norm of u on the right-hand side.

Theorem 9 Let u ∈ D′(Ω,∧0), 1 < s < ∞, be a solution of the Dirac-harmonic
equation in δ-John domain Ω ⊂ R

n. Then, there exists a constant C, independent
of u, such that

(∫

Ω

|u− uU0 |s)
1

dα(x, ∂Ω)
dx

)1/s

≤ C
(∫

Ω

|u|s 1

dλ(x, ∂Ω)
dx

)1/s

, (45)

where U0 ⊂ Ω is a fixed cube and α and λ are constants with 0 ≤ λ < α <

min{n, s + λ+ n(s − 1)}.
Since λ is any real number with λ ≥ 0 in (45), choosing λ = 0 in (45), we have

(∫

Ω

|u− uU0 |s)
1

dα(x, ∂Ω)
dx

)1/s

≤ C
(∫

Ω

|u|sdx
)1/s

, (46)

whereU0 ⊂ Ω is a fixed cube and α is a constant with 0 < α < min{n, s+n(s−1)}.
From (46) and noticing the fact that ∇u = du for u ∈ D′(Ω,∧0) and Caccioppoli
inequality, we have the following simple version of imbedding inequality

‖u− uU0‖W 1,s (Ω),w1
≤ C‖u‖s,Ω,

where U0 ⊂ Ω is a fixed cube, w1(x) = 1
dα(x,∂Ω)

, and α is a constant with 0 <

α < min{n, s + n(s − 1)}. This would be a very useful global inequality since the
right-hand side only contains a simple norm of the solution u. Hence, we should pay
enough attention to it and summarize it as the following theorem.

Theorem 10 Let u ∈ D′(Ω,∧0), 1 < s <∞, be a solution of the Dirac-harmonic
equation in δ-John domain Ω ⊂ R

n. Then, there exists a constant C, independent
of u, such that
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‖u− uU0‖W 1,s (Ω),w1
≤ C‖u‖s,Ω,

where U0 ⊂ Ω is a fixed cube, w1(x) = 1
dα(x,∂Ω)

, and α is a constant with 0 < α <

min{n, s + n(s − 1)}.
Remark 1. Since the Dirac-harmonic equation is an extension of the A-harmonic

equations and p-harmonic equations, many existing results about harmonic
equations are the special cases of our theorems.

2. TheLs-norm estimates developed in this paper can be extended into theLϕ-norm
estimates. Considering the length of the paper, we do not include the Lϕ-norm
estimates here.
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Inequalities for Analytic Functions
Defined by a Fractional Integral
Operator

Alina Alb Lupaş

Abstract In this paper we have introduced and studied the subclass DRm,n(λ, d, α,

β, γ ) using the fractional integral associated with the convolution product of
generalized Sălăgean operator and Ruscheweyh derivative. The main objective
is to obtain some inequalities that give several properties such as coefficient
estimates, distortion theorems, closure theorems, neighborhoods and the radii
of starlikeness, convexity and close-to-convexity of functions belonging to the class
DRm,n(λ, d, α, β, γ ).

1 Introduction

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H (U)

the space of holomorphic functions in U .
Let A (p, l) = {f ∈ H (U) : f (z) = zp +∑∞

j=p+l aj zj , z ∈ U}, with

A (1, 1) = A and H [a, l] = {f ∈H (U) : f (z) = a+alzl+al+1z
l+1+. . . , z ∈

U}, where p, l ∈ N, a ∈ C.

Definition 1 (Al Oboudi [1]) For f ∈ A , α ≥ 0 and m ∈ N, the operator Dm
α is

defined by Dm
α : A → A as follows:

D0
αf (z) = f (z)

D1
αf (z) = (1− α) f (z)+ αzf ′(z) = Dαf (z)

. . .

Dm
α f (z) = (1− α)Dm−1

α f (z)+ αz (Dm
α f (z)

)′ = Dα

(
Dm−1
α f (z)

)
, z ∈ U.
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Remark 1 If f ∈ A and f (z) = z+∑∞
j=2 aj z

j , then

Dm
α f (z) = z+

∑∞
j=2

[1+ (j − 1) α]m aj z
j , z ∈ U.

Remark 2 For α = 1 in the above definition we obtain the Sălăgean differential
operator [5].

Definition 2 (S.T. Ruscheweyh [4]) For f ∈ A and n ∈ N, the operator Rn is
defined by Rn : A → A as follows:

R0f (z) = f (z)

R1f (z) = zf ′ (z)

. . .

(n+ 1) Rn+1f (z) = z
(
Rnf (z)

)′ + nRnf (z) , z ∈ U.

Remark 3 If f ∈ A , f (z) = z + ∑∞
j=2 aj z

j , then Rnf (z) = z

+∑∞
j=2

Γ (n+j)
Γ (n+1)Γ (j)aj z

j for z ∈ U .

Definition 3 Let n,m ∈ N. Denote by DRm,nα : A → A the operator given by the
convolution product of the generalized Sălăgean operator Sm and the Ruscheweyh
derivative Rn:

DRm,nα f (z) = (Dm
α ∗ Rn

)
f (z), (1)

for any z ∈ U and each nonnegative integers m, n.

Remark 4 If f ∈ A and f (z) = z+∑∞
j=2 aj z

j , then

DRm,nα f (z) = z+
∑∞

j=2
[1+ (j − 1) α]m

Γ (n+ j)
Γ (n+ 1) Γ (j)

a2
j z
j , z ∈ U.

Definition 4 ([2]) The fractional integral of order λ (λ > 0) is defined for a
function f by

D−λz f (z) = 1

Γ (λ)

∫ z

0

f (t)

(z− t)1−λ dt, (2)

where f is an analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (z− t)λ−1 is removed by requiring
log (z− t) to be real, when (z− t) > 0.

From Definition 3 and Definition 4 we get the fractional integral associated
with the convolution product of generalized Sălăgean operator and Ruscheweyh
derivative,
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D−λz DRm,nα f (z) = 1

Γ (λ)

∫ z

0

DRm,nα f (t)

(z− t)1−λ dt =

1

Γ (λ)

∫ z

0

t

(z− t)1−λ dt+
∞∑

j=2

[1+ (j − 1) α]m
Γ (n+ j)

Γ (λ) Γ (n+ 1) Γ (j)
a2
j

∫ z

0

tj

(z− t)1−λ dt,

which has the following form, after a simple calculation,

D−λz DRm,nα f (z) = 1

Γ (λ+ 2)
zλ+1 +

∞∑

j=2

[1+ (j − 1) α]m jΓ (n+ j)
Γ (n+ 1) Γ (j + λ+ 1)

a2
j z
j+λ,

for the function f (z) = z +∑∞
j=2 aj z

j ∈ A . We note that D−λz DRm,nα f (z) ∈
A (λ+ 1, 1) .

Remark 5 For α = 1 we obtain the operator D−λz SRm,n defined and studied in [3].

Definition 5 Let the function f ∈ A . Then f is said to be in the class
DRm,n(λ, d, α, β, γ ) if it satisfies the following criterion:

∣
∣∣∣∣
1

d

(
z(D−λz DRm,nα f (z))′ + γ z2(D−λz DRm,nα f (z))′′

(1− γ )D−λz DR
m,n
α f (z)+ γ z(D−λz DR

m,n
α f (z))′

− 1

)∣∣∣∣∣
< β, (3)

where λ > 0, d ∈ C− {0}, α ≥ 0, 0 < β ≤ 1, 0 ≤ γ ≤ 1, m, n ∈ N, z ∈ U .

In this paper we shall first deduce a necessary and sufficient condition for a
function f to be in the class DRm,n(λ, d, α, β, γ ). Then obtain the distortion
and growth theorems, closure theorems, neighborhood and radii of univalent
starlikeness, convexity and close-to-convexity of order δ, 0 ≤ δ < 1, for these
functions.

2 Coefficient Inequality

Theorem 1 Let the function f ∈ A . Then f is said to be in the class
DRm,n(λ, d, α, β, γ ) if and only if

∞∑

j=2

[1+ (j − 1) α]m jΓ (n+ j)
Γ (j + λ+ 1)

·
{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)

}
a2
j

≤ (γ λ+ 1) (β |d| − λ) Γ (n+ 1)

Γ (λ+ 2)
, (4)
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where λ > 0, d ∈ C− {0}, α ≥ 0, 0 < β ≤ 1, 0 ≤ γ ≤ 1, m, n ∈ N, z ∈ U.
Proof Let f ∈ DRm,n(λ, d, α, β, γ ). Assume that inequality (4) holds true. Then
we find that

∣∣
∣
∣∣
z(D−λz DRm,nα f (z))′+γ z2(D−λz DRm,nα f (z))′′

(1−γ )D−λz DR
m,n
α f (z)+γ z(D−λz DR

m,n
α f (z))′

−1

∣∣
∣
∣∣
=

∣
∣∣
∣
∣∣

λ(γ λ+1)
Γ (λ+2) z

λ+1+∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1)

{
γ j2+ [2γ (λ−1)+1] j+ (λ−1) [γ (λ−1)+1]

}
a2
j z
j+λ

γλ+1
Γ (λ+2) z

λ+1+∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1) [γ j+γ (λ−1)+1] a2

j z
j+λ

∣
∣∣
∣
∣∣
≤

λ(αλ+1)
Γ (λ+2) +

∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1)

{
γ j2+ [2γ (λ−1)+1] j+ (λ−1) [γ (λ−1)+1]

}
a2
j

∣
∣zj−1

∣
∣

αλ+1
Γ (λ+2)−

∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1) [γ j+γ (λ−1)+1] a2

j

∣
∣zj−1

∣
∣

≤ β|d|.

Choosing values of z on real axis and letting z→ 1−, we have

∞∑

j=2

[1+ (j − 1) α]m jΓ (n+ j)
Γ (j + λ+ 1)

·
{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)

}
a2
j

≤ (γ λ+ 1) (β |d| − λ) Γ (n+ 1)

Γ (λ+ 2)
.

Conversely, assume that f ∈ DRm,n(λ, d, α, β, γ ), then we get the following
inequality

Re

{
z(D−λz DRm,nα f (z))′+γ z2(D−λz DRm,nα f (z))′′

(1−γ )D−λz DR
m,n
α f (z)+γ z(D−λz DR

m,n
α f (z))′

−1

}

> −β|d|

Re

⎧
⎨

⎩

λ(γ λ+1)
Γ (λ+2) z

λ+1+∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1)

{
γ j2+ [2γ (λ−1)+1] j+ (λ−1) [γ (λ−1)+1]

}
a2
j z
j+λ

γλ+1
Γ (λ+2) z

λ+1+∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1) [γ j+γ (λ−1)+1] a2

j z
j+λ −1+β|d|

⎫
⎬

⎭
> 0

Re

(γλ+1)(β|d|−λ)
Γ (λ+2) zλ+1+∑∞

j=2
[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)} a2

j z
j+λ

γλ+1
Γ (λ+2) z

λ+1+∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1) [γ j+γ (λ−1)+1] a2

j z
j+λ > 0.

Since Re(−eiθ ) ≥ −|eiθ | = −1, the above inequality reduces to

(γ λ+1)(β|d|−λ)
Γ (λ+2) rλ+1−∑∞

j=2
[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)} a2

j r
j+λj

γ λ+1
Γ (λ+2) r

λ+1−∑∞
j=2

[1+(j−1)α]mjΓ (n+j)
Γ (n+1)Γ (j+λ+1) [γ j+γ (λ−1)+1] a2

j r
j+λ > 0.

Letting r → 1− and by the mean value theorem we have desired inequality (4).
This completes the proof of Theorem 1
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Corollary 1 Let the function f ∈ A be in the class DRm,n(λ, d, α, β, γ ). Then

aj ≤
√√√√ (γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

,

j ≥ 2.

3 Distortion Theorems

Theorem 2 Let the function f ∈ A be in the class DRm,n(λ, d, α, β, γ ). Then for
|z| = r < 1, we have

r −
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r

2 ≤ |f (z)|

≤ r +
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r

2.

The result is sharp for the function f given by

f (z)=z+
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|}z

2, z∈U.

Proof Given that f ∈ DRm,n(λ, d, α, β, γ ), from the Eq. (4) and since

2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|}

is nondecreasing and positive for j ≥ 2, then we have

√
2 (1+α)m (n+1) {(λ+1) [γ (λ+1+β |d|)+1]+β |d|}

∞∑

j=2

aj ≤

∞∑

j=2

√
[1+ (j−1) α]m jΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}aj

≤
√

(γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
,
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which is equivalent to

∞∑

j=2

aj ≤
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} . (5)

Using (5), we obtain

f (z) = z+
∞∑

j=2

aj z
j

|f (z)| ≤ |z| +
∞∑

j=2

aj |z|j ≤ r +
∞∑

j=2

aj r
j ≤ r + r2

∞∑

j=2

aj

≤ r +
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r

2.

Similarly,

|f (z)| ≥ r −
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r

2.

This completes the proof of Theorem 2.

Theorem 3 Let the function f ∈ A be in the class DRm,n(λ, d, α, β, γ ). Then for
|z| = r < 1, we have

−
√

2 (γ λ+ 1) (λ+ 2) (β |d| − λ)
(1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r ≤ |f

′(z)|

≤
√

2 (γ λ+ 1) (λ+ 2) (β |d| − λ)
(1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r.

The result is sharp for the function f given by

f (z) = z+
√

(γ λ+1) (λ+2) (β |d| −λ)
2 (1+α)m (n+1) {(λ+1) [γ (λ+1+β |d|)+1]+β |d|}z

2, z ∈ U.

Proof From (5)
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f ′(z) = 1+
∞∑

j=2

jaj z
j−1

|f ′(z)| ≤ 1−
∞∑

j=2

jaj |z|j−1 ≤ 1+
∞∑

j=2

jaj r
j−1 ≤

1+
√

2 (γ λ+ 1) (λ+ 2) (β |d| − λ)
(1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r.

Similarly,

|f ′(z)| ≥ 1−
√

2 (γ λ+ 1) (λ+ 2) (β |d| − λ)
(1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} r.

This completes the proof of Theorem 3.

4 Closure Theorems

Theorem 4 Let the functions fk , k = 1, 2, . . ., l, defined by

fk(z) = z+
∞∑

j=2

aj,kz
j , aj,k ≥ 0, z ∈ U, (6)

be in the class DRm,n(λ, d, α, β, γ ). Then the function h defined by

h(z) =
l∑

k=1

μkfk(z), μk ≥ 0, z ∈ U,

is also in the class DRm,n(λ, d, α, β, γ ), where

l∑

k=1

μk = 1.

Proof We can write

h(z) =
l∑

k=1

μkz+
l∑

k=1

∞∑

j=2

μkaj,kz
j = z+

∞∑

j=2

l∑

k=1

μkaj,kz
j .
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Furthermore, since the functions fk , k = 1, 2, . . ., l, are in the class
DRm,n(λ, d, α, β, γ ), then from Corollary 1 we have

∑∞
j=2

√
[1+ (j−1) α]m jΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}aj

≤
√

(γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)

Thus it is enough to prove that

∑∞
j=2

√
[1+ (j−1) α]m jΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

(∑m

k=1
μkaj,k

)
=

∑m

k=1
μk

∑∞
j=2

√
[1+ (j−1) α]m jΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}aj,k

≤
m∑

k=1

μk

√

(γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
=
√

(γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
.

Hence the proof is complete.

Corollary 2 Let the functions fk, k = 1, 2, defined by (6) be in the class
DRm,n(λ, d, α, β, γ ). Then the function h defined by

h(z) = (1− ζ )f1(z)+ ζf2(z), 0 ≤ ζ ≤ 1, z ∈ U,

is also in the class DRm,n(λ, d, α, β, γ ).

Theorem 5 Let

f1(z) = z,

and

fj (z)=z+
√√√√ (γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

zj ,

j ≥ 2, z ∈ U.
Then the function f is in the class DRm,n(λ, d, α, β, γ ) if and only if it can be

expressed in the form

f (z) = μ1f1(z)+
∞∑

j=2

μjfj (z), z ∈ U,
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where μ1 ≥ 0, μj ≥ 0, j ≥ 2 and μ1 +
∑∞

j=2 μj = 1.

Proof Assume that f can be expressed in the form

f (z) = μ1f1(z)+
∞∑

j=2

μjfj (z) =

z+∑∞
j=2

√
(γ λ+1)(β|d|−λ) Γ (n+1)

Γ (λ+2)
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1) {γ j2+[γ (2λ−2+β|d|)+1]j+[γ (λ−1)+1](λ−1+β|d|)}μjz
j .

Thus

∑∞
j=2

√√√√
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

(γ λ+1) (β |d| −λ) Γ (n+1)
Γ (λ+2)

·
√√√√ (γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

μj=

∞∑

j=2

μj=1−μ1 ≤ 1.Hence f ∈ DRm,n(λ, d, α, β, γ ).

Conversely, assume that f ∈ DRm,n(λ, d, α, β, γ ).
Setting

μj =
√√√√

[1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

(γ λ+1) (β |d| −λ) Γ (n+1)
Γ (λ+2)

aj ,

since

μ1 = 1−
∞∑

j=2

μj .

Thus

f (z) = μ1f1(z)+
∞∑

j=2

μjfj (z).

Hence the proof is complete.

Corollary 3 The extreme points of the class DRm,n(λ, d, α, β, γ ) are the functions

f1(z) = z,
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and

fj (z) = z+
√√√
√ (γ λ+ 1) (β |d| − λ) Γ (n+1)

Γ (λ+2)
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

zj ,

j ≥ 2, z ∈ U.

5 Inclusion and Neighborhood Results

We define the δ- neighborhood of a function f ∈ A by

Nδ(f ) = {g ∈ A : g(z) = z+
∞∑

j=2

bj z
j and

∞∑

j=2

j |aj − bj | ≤ δ}. (7)

In particular, for e(z) = z

Nδ(e) = {g ∈ A : g(z) = z+
∞∑

j=2

bj z
j and

∞∑

j=2

j |bj | ≤ δ}. (8)

Furthermore, a function f ∈ A is said to be in the class DRξ
m,n(λ, d, α, β, γ ) if

there exists a function h ∈ DRm,n(λ, d, α, β, γ ) such that

∣∣∣∣
f (z)

h(z)
− 1

∣∣∣∣ < 1− ξ, z ∈ U, 0 ≤ ξ < 1. (9)

Theorem 6 If

δ =
√

2 (γ λ+ 1) (λ+ 2) (β |d| − λ)
(1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} ,

then

DRm,n(λ, d, α, β, γ ) ⊂ Nδ(e).

Proof Let f ∈ DRm,n(λ, d, α, β, γ ). Then in view of assertion of Corollary 1 and
since
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[1+ (j − 1) α]m jΓ (n+ j)
Γ (j + λ+ 1)

·
{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)

}

≥ (1+ α)m Γ (n+ 2)

4Γ (λ+ 3)
{(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|}

for j ≥ 2, we get

√
(1+ α)m Γ (n+ 2)

4Γ (λ+ 3)
{(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|}

∞∑

j=2

aj ≤

∞∑

j=2

√
[1+ (j − 1) α]m jΓ (n+ j)

Γ (j + λ+ 1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}aj

≤
√

(γ λ+ 1) (β |d| − λ) Γ (n+ 1)

Γ (λ+ 2)
,

which implies

∞∑

j=2

aj ≤
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} . (10)

Applying assertion of Corollary 1 in conjunction with (10), we obtain

∞∑

j=2

jaj ≤
√

2 (γ λ+ 1) (λ+ 2) (β |d| − λ)
(1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} = δ,

by virtue of (7), we have f ∈ Nδ(e).
This completes the proof of the Theorem 6.

Theorem 7 If h ∈ DRm,n(λ, d, α, β, γ ) and

ξ = 1+ δ
2

√
(γ λ+ 1) (λ+ 2) (β |d| − λ)

2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} , (11)

then

Nδ(h) ⊂ DRξ
m,n(λ, d, α, β, γ ).
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Proof Suppose that f ∈ Nδ(h), we then find from (7) that

∞∑

j=2

j |aj − bj | ≤ δ,

which readily implies the following coefficient inequality

∞∑

j=2

|aj − bj | ≤ δ

2
. (12)

Next, since h ∈ DRm,n(λ, d, α, β, γ ) in the view of (10), we have

∞∑

j=2

bj ≤
√

(γ λ+ 1) (λ+ 2) (β |d| − λ)
2 (1+ α)m (n+ 1) {(λ+ 1) [γ (λ+ 1+ β |d|)+ 1]+ β |d|} . (13)

Using (12) and (13), we get

∣
∣∣∣
f (z)

h(z)
− 1

∣
∣∣∣ ≤

∑∞
j=2 |aj − bj |

1−∑∞
j=2 bj

≤

δ

2
(

1−
√

(γ λ+1)(λ+2)(β|d|−λ)
2(1+α)m(n+1){(λ+1)[γ (λ+1+β|d|)+1]+β|d|}

) = 1− ξ,

provided that ξ is given by (11), thus by condition (9), f ∈ DRξ
m,n(λ, d, α, β, γ ),

where ξ is given by (11).

6 Radii of Starlikeness, Convexity, and Close-to-Convexity

Theorem 8 Let the function f ∈ A be in the class DRm,n(λ, d, α, β, γ ). Then f
is univalent starlike of order δ, 0 ≤ δ < 1, in |z| < r1, where

r1 = inf
j

⎧
⎨

⎩

(1−δ)2 [1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)

}

(γ λ+1) (β |d| −λ) Γ (n+1)
Γ (λ+2) (j−δ)2

⎫
⎬

⎭

1
2(j−1)

.



Inequalities for Analytic Functions Defined by a Fractional Integral Operator 743

The result is sharp for the function f given by

fj (z) = z+
√√
√
√ (γ λ+1) (β |d| −λ) Γ (n+1)

Γ (λ+2)
[1+(j−1)α]mjΓ (n+j)

Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

zj , j ≥ 2.

Proof It suffices to show that

∣∣∣∣
zf ′(z)
f (z)

− 1

∣∣∣∣ ≤ 1− δ, |z| < r1.

Since

∣∣∣
∣
zf ′(z)
f (z)

− 1

∣∣∣
∣ =

∣∣∣∣
∣

∑∞
j=2(j − 1)aj zj−1

1+∑∞
j=2 aj z

k−1
|
∣∣∣∣
∣
≤
∑∞

j=2(j − 1)aj |z|j−1

1−∑∞
j=2 aj |z|j−1

.

To prove the theorem, we must show that

∑∞
j=2(j − 1)aj |z|j−1

1−∑∞
j=2 aj |z|j−1

≤ 1− δ.

It is equivalent to

∞∑

j=2

(j − δ)aj |z|j−1 ≤ 1− δ,

using Theorem 1, we obtain

|z| ≤
⎧
⎨

⎩

(1−δ)2 [1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

(γ λ+1) (β |d| −λ) Γ (n+1)
Γ (λ+2) (j−δ)2

⎫
⎬

⎭

1
2(j−1)

.

Hence the proof is complete.

Theorem 9 Let the function f ∈ A be in the class DRm,n(λ, d, α, β, γ ). Then f
is univalent convex of order δ, 0 ≤ δ ≤ 1, in |z| < r2, where

r2 = inf
j

⎧
⎨

⎩

(1−δ)2 [1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2+ [γ (2λ−2+β |d|)+1] j+ [γ (λ−1)+1] (λ−1+β |d|)}

(γ λ+1) (β |d| −λ) Γ (n+1)
Γ (λ+2) (j−δ)2

⎫
⎬

⎭

1
2(j−1)

.
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The result is sharp for the function f given by

fj (z) = z+ (14)

√√√√ (γ λ+ 1) (β |d| − λ) Γ (n+1)
Γ (λ+2)

[1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

zj ,

j ≥ 2.

Proof It suffices to show that

∣∣∣∣
zf ′′(z)
f ′(z))

∣∣∣∣ ≤ 1− δ, |z| < r2.

Since

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ =
∣∣∣∣
∣

∑∞
j=2 j (j − 1)aj zj−1

1+∑∞
j=2 jaj z

j−1

∣∣∣∣
∣
≤
∑∞

j=2 j (j − 1)aj |z|j−1

1−∑∞
j=2 jaj |z|j−1

.

To prove the theorem, we must show that

∑∞
j=2 j (j − 1)aj |z|j−1

1−∑∞
j=2 jaj |z|j−1

≤ 1− δ,

∞∑

j=2

j (j − δ)aj |z|j−1 ≤ 1− δ,

using Theorem 1, we obtain

|z|j−1 ≤ (1− δ)
j (j − δ)

√√
√
√

[1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

(γ λ+ 1) (β |d| − λ) Γ (n+1)
Γ (λ+2)

,

or

|z| ≤
⎧
⎨

⎩

(1− δ)2 [1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

(γ λ+ 1) (β |d| − λ) Γ (n+1)
Γ (λ+2) (j − δ)2

⎫
⎬

⎭

1
2(j−1)

.

Hence the proof is complete.
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Theorem 10 Let the function f ∈ A be in the class DRm,n(λ, d, α, β, γ ). Then
f is univalent close-to-convex of order δ, 0 ≤ δ < 1, in |z| < r3, where

r3 = inf
j

⎧
⎨

⎩

(1− δ)2 [1+(j−1)α]mΓ (n+j)
j2Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

(γ λ+ 1) (β |d| − λ) Γ (n+1)
Γ (λ+2)

⎫
⎬

⎭

1
2(j−1)

.

The result is sharp for the function f given by (14).

Proof It suffices to show that

|f ′(z)− 1| ≤ 1− δ, |z| < r3.

Then

|f ′(z)− 1| =
∣∣
∣∣∣∣

∞∑

j=2

jaj z
j−1

∣∣
∣∣∣∣
≤

∞∑

j=2

jaj |z|j−1.

Thus |f ′(z) − 1| ≤ 1 − δ if
∑∞

j=2
jaj
1−δ |z|j−1 ≤ 1. Using Theorem 1, the above

inequality holds true if

|z|j−1 ≤ (1− δ)
j

·
√√√√

[1+(j−1)α]mjΓ (n+j)
Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

(γ λ+ 1) (β |d| − λ) Γ (n+1)
Γ (λ+2)

or

|z| ≤
⎧
⎨

⎩

(1− δ)2 [1+(j−1)α]mΓ (n+j)
j2Γ (j+λ+1)

{
γ j2 + [γ (2λ− 2+ β |d|)+ 1] j + [γ (λ− 1)+ 1] (λ− 1+ β |d|)}

(γ λ+ 1) (β |d| − λ) Γ (n+1)
Γ (λ+2)

⎫
⎬

⎭

1
2(j−1)

.

Hence the proof is complete.
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Anti-backward difference operator, 245
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Approximate solutions
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Volterra integral equations)
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B
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Banach’s Contraction Principle, 162
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Closure theorems, 737–740
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Comparison of means, 448, 450
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Complex modulus of continuity, 5
Complex-valued functions, 548
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Conformable fractional calculus, 381
Conformable fractional derivative, 381, 382
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AG and AH, 574–576
GA, GG, and GH, 576–578
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Convexity, 424, 710, 742–745
Convex mappings, 472, 476
Copson inequality, 496, 504

D
d’Alembert’s functional equation, 94–95, 219
Delay differential equation, 594
Delay Volterra integral equations

collocation (see Collocation method)
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domains, 586
error estimation, 590–593
kernel functions, 586
numerical simulations, 593–595
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Dimensional Heisenberg group, 102
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Double queue model, 296, 297
Drygas functional equation
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general solution, 128–133
Hyers–Ulam stability, 134–139
multi-Banach spaces, 125
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quadratic functional equations, 126

E
Electric/magnetic fields, 717
Endomorphism, 95

See also μ-Wilson’s functional equation
Error estimation, 590–593
Euler beta function, 625, 628, 633, 637, 642
Existence and uniqueness, 74, 587
Exponential finite Hilbert transform, 552
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Extended differential operator, 357, 359

F
Fejer’s inequality, 569–571
Finite Hilbert transform, 533–557
First Baire category, 187
First category, 35–38
First order linear differential equations, 198
Fixed point technique, 126–127, 130, 150
Fixed point theorems, 47, 49, 127
Forward difference operator, 238, 255
Fourier transform method
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linear differential equations (see Linear

differential equations)
non-homogeneous linear differential
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fields, 295
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Jensen, see Jensen functional equation
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Monoids (see Monoids)
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packet radio model, 296
quadratic functional equation

(see Quadratic functional
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special cases, 275, 296
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297
two parallel queues with batch server,

299–301
two-place
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double queue model, 297
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one-server-two-queue model, 301
two parallel queues with batch server,

299
Wilson’s, 220, 225, 226

Function of bounded variation, 524–526
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Fuzzy theory, 160
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Dirichlet L-function, 632–641
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Godunova–Levin–Dragomir-convex mappings,

479, 483
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Green’s function, 79, 82
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Gronwall’s lemma, 592
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Hermite–Hadamard type integral inequality,
471, 473, 478, 479, 482–484, 486
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HG-convex, 563, 579
HH-convex function, 579
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Hilbert spaces, 599, 600, 602, 607, 610
Hilbert transform, 535, 546
Hodge star operator, 713
Hölder continuous, 526–530
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491–493, 497, 499, 501, 505, 508,
528, 690

Homomorphism, 219, 225, 232
Homotopy operator, 677–681, 685, 688, 691,

716
H-s-Hölder type, 554, 556
Hyers–Ulam-J. Rassias stability, 143
Hyers–Ulam stability (HUS), 28, 45

continuously differentiable function, 201
discrete diamond-alpha derivative equation,

238–245
existence theory, 49–61
first-order homogeneous linear difference

equation, 238
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diamond-alpha derivative equation,
238

functional equations, 153
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integral inequality, 156–157
linear differential equations, 154
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nabla difference operator, 256–270

(See also Nabla difference operator)
non-homogeneous linear differential

equation, 203, 204, 206, 208
nonlinear differential equation, 154
outcomes, 47–49
problems, 28
second order homogeneous differential

equation, 209
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Hyers–Ulam stability theorem, 186
Hyers–Ulam-T. Rassias stability, 143
Hyperstability

restricted domains, 38–42
See also Linear functional equation

I
Imbedding inequalities, 726–728
Inclusion and neighborhood, 740–742
Incomplete beta function, 470
Increasing function, 535, 537, 540, 543, 545,

547, 549, 560, 561
Inequalities, 357–370
Information Theory, 564
Integral equations

mathematical models, 585
Volterra-type (see Delay Volterra integral

equations)
Integral inequality, 156, 573, 697
Integral norm inequalities, 677–692

applications, 691–692
differential forms, 678–679
A-Harmonic equation, 678, 687–688, 692,

714
homotopy operator, 677–681, 685, 688, 691
outcomes, 688–691
potential operator, 686–687

Inverse Fourier transforms, 199
Invex set, 470
∗-Isomorphism, 114, 601, 610
Iteration method, 585

J
Jensen functional equation, 273, 274

definition, 274
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K
Kannappan’s functional equation, 110
Korovkin theory

illustration, 25–26
outcomes, 9–24
preparation and motivation, 5–9

L
Lagrangian mechanics, 680
Landau type inequalities, 372, 376, 380, 414,

416, 418, 420
LANE Gateway queueing model, 304–306
Laplace equation, 609, 687
Laplace Transform method, 198
Lebesgue dominated convergent theorem, 81
Lebesgue measure, 27, 29, 35–42, 185,

187–192
Lebesgue measure zero, 27, 29, 35, 37, 38

hyperstability, 38–42
Lebesgue norms, 529
Lebesgue square integrable functions, 513
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Levinson’s inequality, 651–675

exponential convexity, 657–661
mean value theorems, 655–657
monotonic refinement, 661–663
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Levinson’s mappings, 663, 668–671
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664–665
without operator convexity and concavity,

665–666
Linear differential equations

applications, 212–215
first-order homogeneous, 197, 198, 201
Generalized Hyers–Ulam stability, 207–212
Hyers–Ulam stability, 201–207
non-homogeneous, 198
preliminary, 199–201
second order homogeneous, 198, 209
second order non-homogeneous, 211

Linear functional equation, 275
additive function, 29
Banach space, 28
Hyers–Ulam problem, 28
stability theorem, 29
triangle inequality, 31–33
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Linear transforms, 512
Lipschitz constant, 127, 136, 145, 148, 162,

167
Lipschitz domains

partial differential equations, 599–600
properties, 601
Sobolev spaces, 602
trace inequalities, 599, 600, 603, 607–608

Lipschitz hypograph, 602, 603
L-Lipschitzian mapping, 534
Local fractional derivative, 436, 437
Logarithmic finite Hilbert transform, 550
Log-convex/multiplicatively convex, 561
LogExp convex functions, 560, 581–583
LogMeanExp function, 539, 566

M
Mamedov’s Theorem, 3–4
Maps preserving problems

nontrivial projection, 113–114
outcomes, 114–124
products, 113
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26A33, 45, 73
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Mathieu series, 613–616
Matrix method, 198
Maxitive measurement, 329
Midpoint-trapezoid type inequality, 429, 433
Midpoint type inequality, 429
Minkowski’s inequality, vii, 476, 480
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applications, 232–234
complex-valued solutions, 220, 221
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229, 230, 233
ì-sine subtraction law, 222–225
notation and preliminary, 221–222
solutions, 226–231
topological group, 221–223, 225, 230
Wilson’s functional equation, 225–226
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function, 534, 545

Moore–Penrose inverse equality, 600, 601,
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Multi-Banach spaces, 125
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Multiplicative inverse quadratic adjoint

(MIQA), 145

Multiplicative inverse quadratic difference
(MIQD), 145

Multiplicative inverse quadratic mapping, 151

N
Nabla difference operator, 238

2-cycle, 257, 271
4-cycle, 258, 271
definition, 257
extension, 270, 271
first-order, 256
linear equation, 256

n-Dimensional functional equation
Banach space

direct method, 163–166
fixed point method, 166–170

functional equation, 162–163
fuzzy Banach space, 161
fuzzy normed space, 161

direct method, 171–174
fixed point method, 174–180

fuzzy theory, 160
Hyers–Ulam–Rassias stability, 160

Neural network operators, 585
Non-Archimedean field, 144–147
Non-Archimedean norm
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fundamental notions, 144
metric, 145
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equation, 198
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special means, 432–33

Nystrom method, 585

O
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See also Hyers–Ulam stability (HUS)
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Sublinear integrals, see Ostrowski inequality
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Superposition method, 613
Symmetrical transform, 511
Symmetric two-node aloha network, 296, 297

T
Topological degree theory, 74, 75, 90
Trace inequalities, 599, 600, 603, 607–608
Trace spaces, 602
Trapezium inequality, 469
Trapezoid type inequality, 429, 433
Triple Jordan product, see Maps preserving

problems
Two parallel queues model, 296, 299–301
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Ulam–Hyers–Rassias stable, 89
Ulam–Hyers stability, 29, 85, 166, 198
Ulam’s stability analysis, 85–89
Unit step functions, 587–590, 596

V
von Neumann algebra, 114

W
Weak Reverse Hölder inequality, 688, 715,

719, 721
Weighted arithmetic means, 652
μ-Wilson’s functional equation

applications, 104–111
functional equation, 94

generalization, with endomorphism, 95
generalized, with endomorphism, 94
gropup, with endomorphism, 93
multiplicative function, 93–94, 97–98
notation and terminology, 93
outcomes, 96–104
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Young’s convolution inequality, 684
Young’s inequality, 386, 443
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